
Properties of boson-exchange superconductors
J. P. Carbotte

Department of Physics, McMaster University, Hamilton, Ontario, Canada L884Mf
The author reviews some of the important successes achieved by Eliashberg theory in describing the ob-
served superconducting properties of many coiiventional superconductors. Functional derivative tech-
niques are found to help greatly in understanding the observed deviations from BCS laws. Approximate
analytic formulas with simple correction factors for strong-coupling corrections embodied in the single
parameter T, /co~„are also found to be very helpful. Here T, is the critical temperature and co~„ is an aver-
age boson energy mediating the pairing potential in Eliashberg theory. In view of the discovery of high-
T, superconductivity in the copper oxides, results in the very strong coupling limit of T, /co~„-1 are also
considered, as is the asymptotic limit when T, /cu~„—+ ~. This case is of theoretical interest only, but it is
nevertheless important because simple analytic results apply that give insight into the more realistic
strong-coupling regime. A discussion more specific to the oxides is included in which it is concluded that
some high-energy boson-exchange mechanism must be operative, with, possibly, some important phonon
contribution in some cases, A more definitive application of boson-exchange models to the oxides awaits
better experimental results.
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Carbotte (1980a, 1980b, 1981); Allen and Mitrovic
(1982); Zarate and Carbotte (1983a, 1983b); and Whit-
more (1984)] in the electron-boson interaction and even
in the Fermi surface, although, in some sense, these
efFects are included in an average way when experimental
data are used for the electron-boson spectral density.
New developments concerned with the energy depen-
dence in the electronic density of states [Pickett (1980,
1982), Mitrovic and Carbotte (198la, 1983a, 1983b), Car-
botte (1982), and Kieselmann and Rietschel (1982)] and
with energy dependence in the pairing interaction have
also been omitted. This leaves the isotropic Eliashberg
equations without magnetic impurities, spin fluctuations
[Mitrovic and Carbotte (1982); Zarate and Carbotte
(1987)] (paramagnons), and other forms of magnetism
[Schossmann and Carbotte (1986), Schachinger, Stephan,
and Carbotte (1988)] (spin glass effects): Proximity sys-
tems will also not be reviewed, although considerable in-
teresting new developments (Zarate and Carbotte, 1985)
have taken place.

Even within the limited scope just described, I shall
not be able to cover all developments and shall, undoubt-
edly, leave out many contributions that could have been
included. Some choices had to be made.

I. INTRODUCTION AND OVERVIEW B. Overview of each section

A. Purpose and limit on scope 1. The critical temperature

Much that was known at the time about Eliashberg
theory and its application to real superconductors was re-
viewed by Scalapino (1969) and by McMillan and Rowell
(1969) in Parks's two-volume series on superconductivity.
Since then, the book by Ginzburg and Kirzhnits [(1982);
Dolgov and Maksimov (1982a, 1982b)] has appeared. It
contains some discussion of the more recent develop-
ments of strong-coupling theory, as does the excellent
and comprehensive review of Allen and Mitrovic (1982),
which is, however, limited to a discussion of the critical
temperature. In this review I want to survey and em-
phasize some of the more important results obtained as
well as ideas developed since 1969, and to look at Eliash-
berg theory in the light of the discovery of superconduc-
tivity at high temperature in the oxides.

In order to keep this review within a manageable
length, it was necessary to restrict considerably the devel-
opments covered. None of the well-known derivations of
the Eliashberg equations themselves and of the associated
formulas for the free energy, the optical properties, etc. ,
are repeated. Moreover, the efFects of magnetic impuri-
ties within the theories of Abrikosov and Gor'kov [(1960,
1961), weak scattering —Born's approximation; Am-
begaokar and Griffin (1965); Skalski et al. (1964); Maki
(1969); Schachinger et al. (1980)] and of Shiba (1968) and
Rusinov [(1969a, 1969b), strong scattering —a t-matrix
approach)] are not covered. Another eff'ect necessarily
neglected is that of anisotropy [Allen (1980); Daams and

Section II deals exclusively with the critical tempera-
ture T, . It starts with the Eliashberg equations in their
nonlinear form, applicable at any temperature below T,
and written on the imaginary Matsubara frequency axis.
No derivation is given. The kernels are the electron-
phonon or, more generally, the electron-boson spectral
density a F(co) describing an effective electron-electron
interaction due to any form of boson exchange, and the
Coulomb pseudopotential p*, usually treated as an ad-
justable parameter. For the reader who is not as familiar
with the complexity of the Eliashberg equations, we first
reduce the equations in a BCS-type approximation to ob-
tain a renormalized BCS form in which the role of the
pairing potential X(0)V [with X(0) the single-spin elec-
tron density of states at the Fermi energy] is played by
X(0)V =(A.—p, *)/(I+A, ), where A, is the electron-boson
mass-renormalization parameter. The BCS equation is
then linearized and the usual equation for the critical
temperature obtained. It is used to calculate a first esti-
mate of the maximum value of T, possible within BCS
theory for a given characteristic boson energy co, . This
estimate will later be seen to be in need of revision and is,
in fact, quite wrong, although often quoted.

Next, the familiar BCS result for the ratio of T, to the
gap edge (b,o) at zero temperature is obtained and is used
to illustrate the first important difFerence between Eliash-
berg theory and BCS theory —that dimensionless ratios
such as 260/kz T, are not universal in Eliashberg formal-
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ism, while they are universal in the BCS limit of the
theory.

A much used, approximate formula for T„superior to
BCS and first derived by McMillan (1968) and later
modified and improved by Dynes (1972) and by Allen and
Dynes (1975), is introduced, discussed, and used to make
a second estimate of the maximum critical temperature
possible within Eliashberg theory. The estimate assumes
that arbitrary values are possible for the kernels, and
concerns about lattice stability are ignored.

In addition to A, and p', the improved McMillan equa-
tion involves a definite characteristic phonon energy co&„,

which is related to a logarithmic moment of the spectral
density a F(co). While this analytic formula for T, has
been very useful, it remains approximate and its limita-
tions are discussed through comparison with exact nu-
merical solutions of the full Eliashberg equations. In par-
ticular, it is noted that the McMillan equation leads to a
saturation of T, as I,—+ ao, while the exact results do not.
Thus the concept of a maximum possible T, value, based
on such an equation, is an artifact of the approximations
that were made to be able to obtain a simple analytic
equation and is not intrinsic to Eliashberg theory.

An asymptotic equation, valid for large A, , is derived
that gives T, =0.183&A, coE, where co@ is a characteristic
boson energy in a model in which the spectral density is
taken to be a delta function at a particular Einstein-
oscillator frequency coE. Thus, in more exact approaches
to T„ the limit of infinite electron-boson mass renormal-
ization (X~~ with co@ constant) gives a continuous in-

crease of T„ following the law &A, . It is clear, then, that
maximum T, discussions need to be posed within the
framework of lattice or other instabilities and are not
contained in Eliashberg theory. As A, increases
indefinitely, the lattice will surely reach a point when it is
no longer stable because of the very large electron-
phonon interaction. At present, there is no universally
accepted, simple, and quantitative stability criterion.

The concept of the functional derivative of T, with
respect to rI. F(co) has helped greatly in understanding
the exact relationship between phonons of a particular
frequency m0 and the size of the critical temperature. In
fact, this functional derivative denoted by 5T, /5a F(coo)
gives the limit of the ratio of the change in T, (5T, ) to
the infinitesimal perturbation when the electron-phonon
spectral density is augmented by e5(co —coo) at a particu-
lar frequency coo. That is, 5T, /6cz F(co )=0li mo5T, /e
and describes the effectiveness in T, of the spectral
weight at frequency co0.

Approximate universal analytic equations for
5T, /6a F(co), applicable to any superconductor in the
weak-coupling limit, are derived. From these it is found
that high- and low-frequency phonons contribute little to
T„while there exists an intermediate optimum phonon
region for which the phonons are most effective. A near-
ly universal finding is that the optimum phonon energy
co,~ equals approximately 7k~ T„with k~ the Boltzmann

constant. A simple, physical argument is offered to ex-
plain qualitatively the calculated shape of 5T, /5a F(co).
General formulas for the functional derivative are also
given and numerical results, based on these, are present-
ed. They confirm the idea that an optimum phonon fre-
quency exists and that very low frequency phonons are
not very effective in raising T, . Phonon softening with
constant spectral area A (see below) can only be
beneficial if it occurs at frequencies above the optimum
value. In this regard the phonon softening with decreas-
ing temperature, observed in Nb3Sn by Shirane and Axe
(1973) for a specific acoustic branch, is interesting. But,
using functional derivatives, it can be shown that the
softened modes mainly fall in a region where
6T, /6a2F(co) is small; so they contribute very little to

C'

The idea of an optimum phonon energy in a F(co) is
used to prove a theorem that states that, for a given
strength of the spectral density, defined as the area under
it, namely, A = f0"a F(co)de, the best shape that will

maximize T, is a delta function placed at the maximum
of its own functional derivative. Choosing any other
shape for a F(co), with fixed 3, will only lead to a lower-
ing of T, . This fact is described by the inequality
T, ~ Ac (p" ), where c (p*) is a universal number deter-
mined by Eliashberg theory. It is only slightly decreasing
with increasing p*. The equality holds for a 6 function
and the inequality for any other realistic shape. Some
values in real materials can, in fact, fall reasonably close
to the optimum value. The inequality mentioned above
represents a more sophisticated formulation of a previous
empirical observation of Leavens and Carbotte (1974),
which led them to suggest that, for many materials with
A, bounded by 1.2& A, &2.4, a reasonable formula for T,
is T, =0.148M. This formula, as well as the equality
T, =c(p*)A for a 5-function spectral density, leads to
the conclusion that T, can be increased indefinitely if 3
is increased without limit, and that the mathematical
structure of the Eliashberg equations does not lead to sat-
uration of T, . With the discovery of superconductivity
at very elevated temperatures in the copper oxides, it is
interesting to note that the formula T, =c (p* ) 2 can give
a value of T, = 160 K for a modest value of mass
enhancement of k= 1.54 and fixed p*. For this to occur,
we need to take coE to be of order 100 meV, which falls
around the maximum phonon energy observed in the ox-
ides. The corresponding value of 2 =77 meV, which is
much larger than the value of 3 =13.5 meV for Nb3Ge,
is probably unrealistically large for a phonon mechanism,
while it may not be for another kind of boson-exchange
process.

Section II ends with a discussion of the isotope effect.
For a pure electron-phonon system with p* =0, it can be
shown that P—= —d lnT, /d lnM is, quite generally, equal
to 0.5. No simplification of the Eliashberg equations are
required in order to prove this theorem, which is, of
course, consistent with simple BCS theory. When p is
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not zero, however, pW —,'. This can be seen easily from
the McMillan equation. It predicts that, for reasonably
small values of A, , P can become small and, indeed, can
even be negative, as has been observed in some systems.
But a small A, value and a finite p* of order 0.1 usually
implies a small value of T, . For large T„we expect large
A, 's and P near 0.5. Of the many complications that can,
in principle, change P, an unusually large value of
Coulomb pseudopotential p* or a high-energy additional
attractive mechanism unconnected to ion mass, which we
simulate through a finite negative p*, are real possibili-
ties. It is very important to understand that, in com-
pounds people often talk about partial isotope effects (p; )

for each mass species rather than the total p„,=g p;. A
beautiful, formal, but quite general and powerful formu-
lation of partial contributions to the total isotope eItect,
has been given by Rainer and Culetto (1979), and we re-
view this work. In view of the controversy that remains
around the value of p for the oxides, it is important to
realize that if p, , for a particular i, is zero, this only
means that those particular vibrations are not involved in
the superconductivity. Alternatively, if it is large, they
certainly are involved. In either case, it does not say any-
thing about the efFect of other phonon modes and, in that
sense, does not address the question of mechanism direct-
ly. For this, the total isotope effect is more relevant, but
still not unambiguous.

2. Tunneling and its relation to
electron-phonon interaction

In Section III we start with the real-axis formulation of
the Eliashberg equations, which we write without deriva-
tion since it is our aim to use these in applications to real
superconductors and to understand, as much as possible,
their implications for superconducting properties. The
equations themselves, which apply at any temperature T
below T„are a set of two complicated nonlinear integral
equations for a complex frequency-dependent gap A(co)
and renormalization function Z(co), the latter of which
exists in both normal and superconducting states. Both
quantities are temperature dependent. In order to give
the reader some feeling for these equations, which, we ad-
mit, are rather formidable, we start by reducing them to
a BCS form through a number of appropriate approxima-
tions. This involves, among other sirnplifications, keep-
ing only the real part of both gap and renormalization
and assuming they are frequency independent and, in the
case of the renormalization Z, temperature independent
as well (i.e., it is evaluated at T =0 in the normal state).

A more sophisticated two-step model for the gap near
T = T, can be used to derive a McMillan-like equation
for T, . We can introduce arbitrary numerical parame-
ters into the basic derived functional form, so as to ac-
count for errors made dur ing the simplifications.
Definite choices for the parameters introduced result
when we compare with exact numerical solutions of the
full equations in specific cases. The end result of such a

procedure is the Allen-Dynes equation, which is valid for
values of A, that are not too large. Another equation that
follows directly from an approximate solution of the
real-axis Eliashberg equations is that of Leavens and Car-
botte (1974). It has the advantage of having no numeri-
cal adjustable parameter, but it has the disadvantage
that a further moment of a F(co) besides
k=2 J o a F(co)/codco is needed. It was constructed
from a consideration of the behavior of exact numerical
solutions to the Eliashberg equations and reduces to an
Allen-Dynes —type formula in the appropriate limit.

A second issue considered in this section is the relation
between real-axis and imaginary-axis formulation of the
Eliashberg equations. In a real-axis formulation, the gap
is complex and defined for all frequencies co while, in
the Matsubara formulation, 6 is real and defined only at
an infinite discrete set of imaginary frequencies
ice„=imT(2n —1) with n =0, +1,+2, . . . . The two
formulations can be related to each other through formal
analytic continuation of the gap and gap equations. The
two sets of equations are then equivalent, except for a
small complication that should be noted, but that is of lit-
tle consequence in practice. In both formulations, a
sharp step-function cutoA'is introduced into the Coulomb
pseudopotential term at some definite frequency co, . But
a sharp cuto6' on the real axis does not analytically con-
tinue to a sharp cutoff'on the imaginary axis and vice ver-
sa. Therefore there is a di6'erence between the two cases,
and, for a given n F(co), slightly different p* parameters
are needed to get a common T, value.

To go from exact numerical solutions for the Matsu-
bara gaps and renormalization factors at discrete, imagi-
nary frequencies to the real-axis solutions, we can employ
the Pade approxirnant technique first introduced by Vid-
berg and Serene (1977). The technique is standard and
straightforward and involves a continued fraction that
can be used for real frequencies, after the numerical
coeKcients have been fitted to imaginary-frequency data.
The method has been used mainly at T =0 and gives reli-
able values for the gap edge A0 in most cases. It does not
always, however, give a faithful representation of the
phonon structure at higher frequencies. This is a serious
limitation if we want to discuss tunneling experiments,
but it may not be so important if we simply want to use
the resulting gaps inside integrals that weigh all frequen-
cies fairly equally.

A new, more accurate, and compact method for going
from the imaginary-axis gaps to the real axis has been
developed recently by Marsiglio, Schossmann, and Car-
botte (1988). It involves new equations that still require
iteration for the real-frequency renormalization function
co(co) =coZ(co) and pairing energy P(co), but they do not
contain any principal-value integrals. Instead, the
imaginary-axis solutions enter. The equations converge
very rapidly compared with the real-axis ones and give
results that are identical and, in particular, can be used to
discuss tunneling experiments.

For a given model of cz F (co) and p*, the gap equations
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at zero temperature can be solved for the frequency-
dependent gap A(co) and, from it, the quasiparticle densi-

ty of states in the superconductor calculated. This func-
tion is measured in tunneling experiments using
superconductor —oxide —normal-metal junctions. Struc-
ture in the current-voltage I- V characteristics reflects the
details of the frequency dependence of the spectral densi-
ty u F(co), and a measurement of I Vc-haracteristics
offers an opportunity to measure a F(co) in electron-
phonon superconductors. The procedure is called inver-
sion of tunneling data and gives a unique a F(co) as well
as p* value [McMillan and Rowell (1969)]. In a given
case, the Eliashberg equations are repeatedly solved for
model a F(co)'s, which are constantly adjusted until con-
vergence is reached between predicted I-V structure and
experimental data. This spectroscopy has now been ap-
plied to many s, p, and d elements and alloys as well as
compounds including the A15's.

In the case of Pb, there exists a beautiful proof of the
validity of the Eliashberg equations that needs to be
stressed, since recent claims have been made that the
electron-phonon interaction may not be operative even in
conventional metals (Hirsch, 1989a, 1989b, 1989c; Hirsch
and Marsiglio, 1989). To invert tunneling data and get
the kernels a F(cu) and p* for a given material, it is only
necessary to use I( V) data extending to voltages equal to
the end of the phonon spectrum (coo) plus the gap edge
(b,o). We can then use the Eliashberg equations with the
measured kernels to predict the I( V) structure in the
multiphonon region beyond h0+cu0. In Pb, the predicted
phonon structure in this high-energy region agrees very
well with experiment. This is taken as a strong proof of
the consistency of the Eliashberg equations when applied
to Pb.

There is much additional evidence that we are really
measuring the electron-phonon spectral density in tun-
neling inversion. As a first observation, the shape that is
obtained for the spectral density a F(co) as a function of
co looks very much like the phonon frequency distribu-
tion of the material of interest, with some small
differences. In addition, there is now an entire industry
in which band-structure calculations, giving the electron-
ic wave functions as well as eigenenergies, are extended
to calculate electron-phonon matrix elements and from
them, the spectral density. Besides the gradient of the
self-consistent crystal potential, such computations re-
quire a knowledge of the lattice dynamics, i.e., phonon
frequencies and polarization vectors. But these are
known from coherent inelastic neutron-scattering data on
the phonon-dispersion curves. A Born —von Karman fit
to limited data gives the force constants between atoms,
which can be used to calculate the phonons everywhere.

The formula for the spectral density a F(co), which is
evaluated and which is exact, involves two Fermi-surface
integrals. One is over the initial electron states (k), the
other over final states (k'). The transitions involved de-
scribe electron scattering from the Fermi surface to the
Fermi surface with crystal momentum k —k' transfer to

the phonon system. A Dirac delta function in the in-
tegrand puts phonons co.(k —k'), with j being a branch
index, in bins according to energy co. In addition, each
phonon mode is weighted by the strength of its coupling
to the electron system due to the electron-phonon in-
teraction. This prescription for a F(co) is similar to, but
slightly different from, that for the phonon frequency dis-
tribution F(co). For this latter function, the momentum
label in the phonon frequency is restricted to the first
Brillouin zone, and each phonon is weighted by 1. Thus,
except for a different weighting factor for the phonons
and a somewhat different phase-space sum, which is
determined by phonon variables for F(co) and electronic
variables for a F(co), the two functions are related.

A long discussion is given of the similarities and
differences between a F(co) and F(co). A general con-
clusion is that when the phonons are well characterized
by a Born —von Karman model, F(co) and a F(co) look
very much the same, although it is important, in such
comparisons, to account for phonon lifetime effects, par-
ticularly in alloys. When the ratio a F(co)/F(co) is tak-
en, the resulting a (co) does have some variation with ~,
but this is usually not sufIicient to significantly distort the
shape of a F (co) compared with F (co). More specifically,
the high-energy longitudinal phonon peaks are often
found to be somewhat attenuated and broaden in tunnel-
ing measurements. Moreover, an overall shift towards
some softening of the a F(co) spectrum is sometimes ob-
served when compared with F(co).

The review of calculations of the electron-phonon in-
teraction in conventional superconductors is limited to
those works in which a full spectral density is computed
and displayed. This includes calculations for s-p metals,
such as Pb, Al, and Zn, with multiple plane-wave pseudo-
potential and Fermi surface. Those calculations based on
a single plane wave and a spherical Fermi surface are not
included. In the transition element series, we mention
calculations in Nb, Pt, and Pd. The compounds reviewed
include the refractory compounds such as TiN, SnN,
VN, and NbN, and some of the A15 compounds. It is
important to be aware that many calculations do not
compute a F(co) directly. Rather, only the McMillan-
Hopfield parameter g is computed [Grimvall (1981)].
This parameter is related to the first frequency moment
of a F(co) and does not depend on phonon variables.
The mass-enhancement parameter k is then calculated
from the formula A, = i)/M(co ), where M is the ion mass
and (co ) is some average squared phonon frequency. A
value for this last quantity is then required, and usually
only an approximate estimate of A, results. In principle,
we are usually interested in the entire function a F(co)
and not just in k, even if it were known exactly.

Computations of a F (co) that use results of band-
structure calculations have proceeded along two distinct
lines. In the first kind of calculations, the microscopic
equation for a F(co) is evaluated directly. In the second,
the phonon lifetimes y (k) due to the electron-phonon
interaction are computed first, and a formula due to Al-

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



1 032 J. P. Carbotte: Properties of boson-exchange superconductors

len (1980) is used to relate y (k) to a F(co). This formu-
la is exact and can have some special advantages in
specific cases. For example, the intermediate quantity

y (k) can be tested directly against phonon linewidth
data, and the parameters in the calculations adjusted to
get better agreement. Extensive comparisons of this kind
exist for Nb. Ill addition, in soIIle cases, Nb3Sn, for ex-
ample, neutron groups have been measured for some
phonons at different temperatures. As we lower the tem-
perature through the superconducting transition temper-
ature, the electrons become condensed in the supercon-
ducting state and a definite energy 250 is required to ex-
cite a hole-particle pair out of the condensate. This im-

plies that, in the superconducting state, phonons with en-

ergy co(260 will have no lifetime coming from the
electron-phonon interaction, and the neutron groups will,
as a result, sharpen up, as is observed.

Tunneling spectroscopy has been instrumental in del-
ineating the role played by the electron-phonon interac-
tion in conventional superconductors, as have calcula-
tions of the spectral density a F(co). With the discovery
of superconductivity in the oxides with large values of
T„an interest has developed in understanding better the
kind of information that might be available from tunnel-
ing in those systems, should we be able to fabricate
good-quality junctions. This brings us to a discussion of
tunneling inversion when a joint phonon-plus-high-
energy electronic mechanism is present, which is a possi-
ble model for the oxides. The high-energy mechanism
need not be specified in detail. Its origin is certainly not
known at this time, and therefore it is modeled by intro-
ducing a sharp extra peak in the spectral density at some
high energy. This is assumed to be additional to a pho-
non contribution, which is present but not su%ciently im-

portant to give a very high value of T, . In this case it is
found that the resulting phonon structure in the quasi-
particle density of states can still be quite pronounced.
This could lead one to believe that we are more strongly
coupled to the phonons than we actually are if the ex-
istence of the high-energy electronic peak is not recog-
nized. Inversion of such characteristics would lead to a
small value for an effective electron-phonon spectral den-
sity relative to the size of the gap. In fact, we would find

a«F(co) =a F(cu)/(1+A, ,„), where k,„ is the contribu-
tion to the electronic mass renormalization coming from
the electronic mechanism. Moreover, the effective p*
would be negative and it would never be possible to get
perfect agreement between the calculated I-V curve and
the experimental data. Thus the existence of a second,
unrecognized high-energy mechanism leads to a break-
down of the usual inversion procedure with a recogniz-
able pattern of failure, namely, small a,~F(co), negative
p*, and a less than perfect fit.

3. The energy gap at zero temperature

Section IV is concerned exclusively with the zero-
temperature energy gap that exists in the quasiparticle

excitation spectrum of real superconductors. It starts
with Eliashberg calculations of the dimensionless ratio
260/k~ T, for a large number of materials for which the
microscopic parameters a F(co) and p* are known from
tunneling inversion or, in a few cases, from some other
source. The calculations, which can be taken as another
test of the validity of the Eliashberg equations for the sys-
tems considered, show that most materials do not obey
the BCS universal law 260/k~T, =3.53. Furthermore,
when calculated values are compared with experiment,
excellent overall agreement is obtained at the level of a
few percent in most cases. This agreement leaves no
doubt that Eliashberg theory, with an electron-phonon
kernel and Coulomb pseudopotential (much less impor-
tant), applies while BCS does not.

A simple, approximate formula that includes a correc-
tion of the general form a ( T, /co~„) ln(co~„/bT, ) is derived
from Eliashberg theory through a series of simplifying as-
sumptions. The constants a and b are parameters to be
described later, and co&„ is the characteristic phonon ener-

gy introduced by Allen and Dynes (1975). Formulas of
the form just mentioned that include strong-coupling
corrections in terms of the parameter T, /co&„have ap-
peared early in the literature, but m&„was not well
defined. In addition, it is only recently that such a form
could be tested against exact numerical solutions on a
large number of specific cases, and that the data in con-
ventional materials could be used to give definite values
for the arbitrary constants a and b through a best visual
fit to the exact results. In this way it is found that the
formula 2bo/ks T, =3.53[1+12.S(T, /co&„) ln(co&„/2T, )]
fits remarkably well a great deal of theoretical as well as
experimental data on 260/k&T, . There is some Auctua-
tion off the main-trend curve in specific cases, but this
can be understood as being due to some dependence on
details of the shape of a F(co) that are not captured in
the single parameter T, /m&„. An analysis of the variation
in 250/k~T, for fixed T, and co&„, but for different mea-
sured shapes of a F(co), helps to explain the observed de-
viations.

The functional derivative of the gap edge A0 with
cz F(co) is interesting because it gives information about
the effect on b, o of various frequencies in a F(u). As for
5T, /5a F (co), detailed brute-force calculations of
56O/5a F (co) based on the full Eliashberg equations give
a curve that goes to zero in the limit ~—+0 and co~ oo

and exhibits a single peak in between. The peak is now
sharper and falls at an energy lower than that for T, . A
rule of thumb, established on the basis of a few typical
cases, give 2Q*(ho) —Q*(T, )-7k' T„where A* is the
optimum frequency, i.e., at the maximum in the function-
al derivative. For the ratio 260/k~T„ the functional
derivative is found to be yet sharper and to peak at yet
lower energies with A*(2b,o/kz T, ) —4

k& T„but the gen-
eral shape is the same. Such curves lead to the idea of
the existence of an optimum spectrum for A0 and
250/k~ T, . Before going into such ideas, a long technical
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discussion is given of a method for obtaining these func-
tional derivatives, developed by Coombes and Carbotte
(1986), which is more elegant than the brute-force
method often employed before. It gives the same results,
of course. Some readers may want to skip the details.
The essence of the method is that the infinitesimal change
in the gap on changing the electron-phonon spectral den-
sity is isolated and separately continued analytically to
the real-frequency axis using Pade approximates.

Turning to the case of a 6-function spectral density
a F(co)= A5(co —

coE ), we can show that the gap edge 60
normalized to 2 is a universal function of coE/2 and p*.
Further, as a function of the universal dimensionless fre-
quency coE =co@/3, numerical solutions for ho/2 give a
curve similar in shape to the functional derivative. It ex-
hibits a single distinct maximum at a definite optimum
frequency co@ (just a number), and b,o

——b,o/2 takes on
the definite value [b (p*)j. Thus for a 5-function spectral
density of weight A, b,o=b (p*)A; and so b,o, as does T„
can grow indefinitely with A. Any other shape should
lead to a smaller value of AQ for the same 3 value, as is
verified for a large number of real systems. As for T„the
maximum value for 60/A =b(p*) is a weakly varying
function of p* decreasing slightly with increasing p*.
From the shape found for 5[260/kii T, j/5a F (co), we ex-

pect a similar story to hold for 26Q/k&T, . For a delta-
function spectral density, we can, in fact, demonstrate
that this ratio is independent of 3 and is only a function
of co@/2 for a given LLi*. In this case we find that
26O/kg T keeps increasing as coz /2 is decreased, and
that a maximum is- only reached in the limit of
cuE/A~0. Using functional derivatives, we can show
that this upper limit of 13 for 2b, /koTi,ialso holds for
any other shape, since removing weight from the delta
function at zero frequency and placing it anywhere else is
found to reduce this ratio. The relevant functional
derivative is negative definite and exactly zero at co=0.
Curves of 2b,o/kii T, as a function of T, /co~„confirm this
effect as T, /co&„gets large; i.e., they show saturation.

The formal discussion of the maximum value of
26O/kz T, in Eliashberg theory, which holds for any ker-
nel whatever its origin, shape, or size, is followed by a
simplified but analytic discussion of the same problem,
which yields the approximate answer 11.6 instead of 13
for the maximum value of 2ho/kiiT, . This reasonable
agreement can be taken as confirmation of the numerical
work and of the approximate derivations.

The section ends with a discussion of the jurnp ob-
served at energy AQ in the I- V characteristics of a
superconductor —insulator —normal-metal tunneling junc-
tion. This jump is found to correlate well with the
strong-coupling parameter T, /coj„and to grow large as
T, /co&„gets large, a result found to be consistent with its
functional derivative.

4. Thermodynamics for specific materials

Section V is mainly concerned with the comparison be-
tween theory and experiment of thermodynamic proper-

ties for a large number of conventional superconductors,
for which the microscopic kernels u F(co) and p* are
known from tunneling. In general, the theory predicts
results that are quite different from BCS and are in good
agreement with experiments confirming, once more, the
remarkable accuracy of Eliashberg theory when applied
to conventional superconductivity.

From the general formula for the free-energy difference
between normal and superconducting state, which de-
pends only on the Matsubara gaps and renormalization
functions, we can obtain all of the thermodynamics. In
particular, the temperature dependence of the electronic
specific-heat difference between superconducting and
normal state b, C( T) and of the critical magnetic-field de-
viation function D (t) are of special interest.

As an illustration of the agreement between theory and
experiment that can be achieved with the Eliashberg
equations and tunneling-derived kernels, we compare
C„(T,)/(y T, ), the electronic specific heat in the super-
conducting state at T, normalized by its normal-state
value, with y, the coefficient of the electronic specific
heat at T equal to zero (Sommerfeld constant);
yT, /H, (0) with H, (0), the zero-temperature thermo-
dynamic critical magnetic field; and the extremum values
of D(t) for the case of Pb and Nb. The agreement is very
good and the disagreement with BCS predictions clear.
Comparison in other materials is similar with the main
remaining uncertainty having to do with some variability
in the available data. The absolute value of H, (0), of the
jump in the specific heat at T„b,C ( T, ), and of
[BH,(T)/dT]z. are all dependent on the electronic densi-

ty of states at the Fermi energy for single spin [X(0)j, in
addition to depending on the kernels a F(co) and p*. To
determine this quantity we use the measured Sommerfeld
constant y, and the resulting agreement between theory
and experiment for the three quantities mentioned above
is excellent. In addition, the derived value of N(0) agrees
well with band-structure calculations.

Next we compare the theoretical results for the full
temperature variation of the critical magnetic-field devia-
tion function D (t) with experiment for Al (BCS), Ta, Sn,
Tl, In, Nb, Hg, and Pb and find remarkable qualitative
and good quantitative agreement. The temperature vari-
ation of the specific heat for the same materials, as just
mentioned, is also presented and a detailed comparison
with experiment given for the case of Pb. The agreement
is ahnost exact throughout most of the temperature
range. As a further illustration of an s-p material, we
consider the alloy PbQ981Q &

with equally good results.
For the alloy Nbp 75ZIQ 25 a comparison with pure Nb is
presented as well as a direct comparison with experimen-
tal data. The comparison with data is important because,
in this case, a recent accurate determination of the ther-
modynamics is available, and the agreement is essentially
exact. The comparison with Nb is also significant be-
cause the a F(co) for Nb07~Zr02~ shows considerable
softening over Nb leading to an important enhancement
of strong-coupling effects in thermodynamic quantities as
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well as in the gap to critical temperature ratio 260/k~ T, .
This is discussed in detail using functional derivative
1deas.

The thermodynamics measured for the A 15 com-
pounds can also be understood quite satisfactorily within
Eliashberg theory. To illustrate this, the case of V3S1 1s

considered in detail and a comparison with experiment
presented for various dimensionless ratios as well as for
D(t) and the temperature variation of the specific heat.
One problem that should be mentioned is that the elec-
tronic density of states %(0) derived from the measured
value of H, (0) and Eliashberg calculations for the same
quantity is not in good agreement with band-structure
calculations. In most other cases, it is. An explanation
of this discrepancy, in terms of energy dependence in the
electronic density of states and a slight deviation from
perfect stoichiometry, is o6'ered.

Instead of continuing with further comparison of
Eliashberg results with experiment in more specific cases,
we next derive approximate but analytic formulas for
some of the dimensionless ratios of interest and At the ar-
bitrary constants introduced (to make up for errors in the
simplifications) to the results of a large number of exact
numerical calculations on real materials. In almost all
the cases considered, a correction of the same form
a ( T, /co~„) ln(co&„/bT, ), as described before for
250/k&T„ is found to fit the numerical results remark-
ably well. The quantities considered are AC(T, )/(y T, ),
the slope of the specific heat at T„yT, /H, (0), and the
reduced critical field h, (t) at zero reduced temperature
with h, (t)=H, (T)/~dH, (t)/dt~, , The formulas de-
rived here clearly imply that definite relationships exist
between these various quantities for an Eliashberg super-
conductor, at least at the level of accuracy represented by
the analytic formulas themselves. These relations put im-
portant constraints on results of the theory. In reality,
some materials do fall slightly o6' the main-trend curves
represented by our approximate formulas. An analysis of
the deviations is given, and it is concluded that such devi-
ations depend on detailed features of a F(co) not cap-
tured in the single strong-coupling parameter T, /co, „.

Presently known conventional superconductors fall in
the range T, /m&„~0. 25. With the discovery of the high-

T, oxides, it is of interest to know what Eliashberg
theory predicts when T, /co&„ is increased beyond this re-
stricted range. Results are presented for the normalized
specific-heat jump hC(T, )/yT„ for its slope at T„
[T,d hC ( T) /d T]T /y T„ for the normalized slope

C

[T,dAC/dT]z. /b C( T, ), for y T, /H, (0), and for the ex-

trema in D (t) for values up to T, /co, „=1.4. In the very
strong coupling regime, the results are found to behave in
a completely unexpected fashion. For example, the nor-
malized specific-heat jump AC(T, )/(y T, ) is predicted to
be smaller than the BCS value of 1.43 and is opposite to
the results for the usual strong-coupling regime. Thus
the very strong coupling regime can be distinguished
easily from the usual one, at least in principle. Gf course,

to achieve this regime, very large values of A. would be
needed. This may not be compatible with lattice stability
for an electron-phonon mechanism. On the other hand,
some other mechanism may be operative. This would re-
quire the existence of low-frequency bosons of the order
of T, .

5. ThermodYnamics: Some formal
results and applications

Section VI, as did Sec. V, deals with thermodynamic
properties, but considers mainly formal aspects. It starts
with the equation for the free-energy difference hF, be-
tween normal and superconducting state, given by dada
(1964). It is less compact then the Bardeen-Stephen
(1964) equation, but it has the great advantage, when
considering functional derivatives, that its variation with
gap and renormalization function is zero. These varia-
tions give, respectively, the two Eliashberg equations for
the gap and normal-state channels. From the %'ada for-
mula, we derive formal, but completely general, formulas
for the total functional derivative of b,F with n F(co)
from which follows the functional derivative of the
critical-field deviation function D(t) at a fixed value of
reduced temperature and of the critical magnetic field.
This formal section is followed by a simple application of
the functional derivative [which gives the response of a
given property to an infinitesimal change in a F(co) at a
given frequency] to a discussion of the effect of hydro-
static pressure on the critical temperature, the zero-
temperature thermodynamic critical field, and the devia-
tion function D(t) in superconducting Pb. It is found
that most of the observed shift in T, is due to the changes
in p*. The phonon contribution largely cancels, because
some frequency regions in the shift in a F(co) add on to
T, while others subtract, as can be seen very clearly from
functional derivative considerations. In contrast, for
H, (0), we can understand that the cancellation among
phonon shifts is less important, and phonon shifts are as
important as p* changes in determining the full observed
change in H, (0). Finally, for D(t), the shift is found to
onginate mainly from the change in a F(co), with the
change in p' being of lesser importance.

A second application of the functional derivative is to
optimum spectra for the thermodynamics. The first
quantity considered is the normalized specific-heat jump.
That an optimum spectra exists is indicated by the shape
of the functional derivative of the normalized jump
EC(T, )/(yT, ). This derivative increases slowly from
zero as ~ is reduced from ~, shows a maximum around
5k& T, (with some variation in position of maximum with
the different base materials considered), and then drops
through zero before diverging like —1/cu for co~0. This
indicates that, for a given area A under the spectral den-
sity, the best shape is a delta function centered at the
Einstein frequency ~E placed right at the position of the
maximum in its own functional derivative. For a delta-
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function spectrum, it is shown that, for a given value of
p, the normalized jump is a unique function of ~E/T,
and independent of A. As the dimensionless parameter
coE/T, =BE is varied, a single maximum is traced out for
KC ( T, ) I(y T, ) in accordance with our expectation. This
maximum occurs at coE —=d (p*), with d (p*) a well-
defined number for a given p*. The height at maximum
has value c (p*), which is the maximum value attainable
for any shape whatsoever. This statement is supported
by the fact that the functional derivative for such an op-
timum delta-function base is negative definite and exactly
zero at coz/T, =d (p*). Thus adding or removing weight
to the delta function at BE leaves the specific-heat jump
unchanged, while adding weight anywhere else decreases
it. We have thus found a local maximum that should be
valid for any boson-exchange mechanism that can be de-
scribed by the Eliashberg equations and that is quite in-
dependent of shape, size, or origin of the kernels in these
equations. A test of this assertion for many known su-
perconductors is positive, and new superconductor s
could be tested. Should the test fail, we would need to
conclude that the isotropic Eliashberg equations are
inapplicable to that material and that a new or modified
theory is required.

The same kind of argument leads us to conclude that
an optimum spectrum also exists for the normalized
slope of the specific heat at T„ the critical field at T =0
H, (0)/[&2N(0) 2], for the dimensionless ratio

y T, /H, (0), as well as for the critical-field deviation
function D(t). For the first, second, and last of these
quantities Q, there exists a maximum universal number
for Q*, while for the third, a minimum exists and none of
these extrema can be violated by any Eliashberg super-
conductor.

Next, the asymptotic limit of the free energy with
electron-phonon mass enhancement k~ oo is considered.
We can prove that in this limit the free-energy difference
ELFIN(0)= —,'Acozg(t) with co@ the boson frequency in-

volved and g (t) a universal function determined through
the numerical solution of a dimensionless form of the
Eliashberg equations. The only restriction is that
v A, t))l; so only finite temperatures are treated. This
universal limit is, in a sense, the opposite of the BCS lim-
it, which corresponds to very weak coupling. Numerical
values are obtained for g (t) and are presented in the form
of the reduced thermodynamic critical magnetic field

h, (t) The effective . reduced field is found to behave com-
pletely differently from its BCS counterpart. It has up-
ward curvature throughout the reduced temperature
range considered and diverges as I; ~0. From a
knowledge of h, (t), we can also determine the free energy
in the limit A, —+oo and, consequently, the specific-heat
difference between the normal and superconducting state.
As an example, the specific-heat jump at T, is found to
behave like 19.9/A. , while the normalized derivative of
the jump (d Idt)[b C ( T) ly T] ~, , goes like 39.2/A, .
These are exact numerical results obtained from com-
plete numerical solutions of the Eliashberg equations in

the appropriate limit. The section ends with a simple one
Matsubara gap solution of this same problem. It is useful
because it turns out to be qualitatively correct and aids in
understanding the exact results.

6. The upper critical magnetic field

Section VII deals with the upper critical magnetic field

H, z(T) and starts from the strong-coupling equations of
Schossmann and Schachinger (1986), which are valid for
any impurity content and depend only on the electron-
phonon spectral density, Coulomb pseudopotential, and
Fermi velocity. These equations, which involve Matsu-
bara gaps b, (ice„), are linearized because they describe a
second-order phase boundary between normal and super-
conducting state in an external magnetic field FI. In a
two-square-well model, they reduce to the well-known
equations of Werthamer et al. (1966), but with important
renormalizations that cannot be ignored and that affect
the Fermi velocity, the impurity content, and the Pauli
limiting term ip~H, where pz is the Bohr magneton.
When a fit to data is used, the renormalizations of the
Fermi velocity and of the impurity scattering time are, in
a sense, already included, and the renormalized WHH
(Werthamer, Helfand, and Hohenberg) theory (BCS)
gives results, in some cases, that are not very difFerent
from those based on the full Eliashberg equations. A de-
tailed comparison with experiment is given for the case
of Nb, which includes full calculations as well as WHH
results. In this case, Pauli limiting is not an important
factor. On the other hand, when Pauli limiting does play
a role, WHH without renormalization fails because it
greatly overestimates the effect of Pauli limiting with at-
tendant need for large unphysical values of spin-orbit
scattering in order to restore agreement with experiment.
The difficulty is that BCS leaves out a (1+X) renormal-
ization that greatly reduces the band-splitting term. This
was recognized by Orlando et al. (1979). They used
free-energy arguments to derive the Clogston-Pauli limit-
ing field, which gives a factor of (&1+A, )

' for the re-
normalization while a complete microscopic derivation
by Schossmann and Carbotte (1989) gives (1+A, )

[Tedrow and Meservey (1982)]. Within a two-square-well
model, it is shown that a universal curve applies for the
renormalized field H, ~(0)/(1+A, )T, as a function of re-
normalized slope at T„namely, [dH, 2( T) /d T]T I
(1+A, )T, . Dirty and clean limits are considered and
compared with the results that apply when Pauli limiting
is unimportant, which corresponds to the limit of
H, z/(1+A, )T, 8 1. Strong-coupling corrections beyond
1+k renormalizations are also discussed.

The discussion then shifts to the derivation of simple
formulas for strong-coupling corrections. We start by
showing that, in the dirty limit, the complete strong-
coupling equations of Schossmann and Schachinger
(1986) properly reduce to the well-known equations of
Bergmann and Rainer (1973). These are much simpler
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than the equations for a general impurity content and ap-
ply only when impurity scattering parameter (+~ os

(t+ = I/2~r with r the scattering time). The comparison
of the derived approximate analytic form with results of
exact numerical calculations for a large number of real
materials leads to a form for the reduced field h, 2(0) at
zero temperature that contains a (T, /co&„) ln(coi„/bT, )

correction. An additional linear term is also required for
a good fit. The same holds for the clean limit. Strong-
coupling corrections for the Ginzburg-Landau parameter
si (iri =H, 2/&2H, ) are also derived and compared with
exact results. It is noted that a very simple relationship
holds between k(T, t+) —= i~, (T, r+)/a. ,(T„r+),where T is
the temperature and t+ is the impurity parameter, and
the dimensionless ratio 2ho/k~T, . Other more complex
relationships also hold.

Next, the strong-coupling parameter associated with
the upper critical field g~ is calculated on the basis of a

c2

La-Sr-Cu-0 and Pb-type spectrum as a function of
T, /co&„ for small and large values. This includes the very
strong coupling limit. Results are given for T=T, and
T =0 in the clean (t+ =0) and dirty (r+ = 100 meV) lim-
its. The choice of underlying spectral density is not cru-
cial. As the coupling is increased, g~ starts first to in-

c2

crease above the BCS value of 1, displays a maximum,
and then drops below 1 for very strong coupling. This
characteristic behavior is opposite to the conventional
strong-coupling case.

The temperature variation of the reduced critical field

h, z(t) =—H, z(T)/I ~[dH, 2(T)/dTjT T ~T, I is examined

for a number of delta-function-based spectra with in-
creasing value of T, /coz where co@ is the Einstein fre-
quency of the base 5 function. Such curves do not de-
pend on the strength of the spectral density 3, a parame-
ter that simply sets the size of T„but drops out of the di-
mensionless ratio T, /co@. As T, /co@ increases from the
BCS limit T/ ozc~O, the reduced h, 2(t) curves change
in shape and eventually acquire an upward curvature
with value at t =0 considerably larger than the corre-
sponding BCS value. Eventually h, 2(0) reaches a max-
imum value which depends on impurity content and then
drops toward an asymptotic value of 0.57.

The Ginzburg-Landau parameter ~, (T, t+) is also
displayed for different values of T, /~&„, and its behavior
in the very strong coupling regime is again found to be
opposite to our expectation based on the results for the
conventional regime.

Asymptotic limits that result when the electron-
phonon mass-renormalization parameter A, tends towards
infinity are considered. In the dirty limit, indicated by
the superscript "di," we find that H~z(T) is equal to
(0.1833vr/eD)rvE&A. k (t), where k (t) is a universal func-
tion of reduced temperature determined from Eliashberg
theory. Its exact numerical value is obtained for any
t )0 such that t&A, ))1. It shows upward curvature for
all t considered and increases indefinitely as t —+0. In the
above relationship, ~E is the phonon frequency and D

the diffusion constant characteristic of electron scattering
in the dirty limit. An approximate one-Matsubara-gap
theory gives results for h, 2(t) in the asymptotic limit that
are not very different from the exact value
and are very simple, namely, h, z(t)=——,'(1/t —t). Near
T = T„ the exact numerical work gives

H, 2 ( T)= (2.24vr T, /eD)(1 —r) to be compared with

(2~T, /eD)(1 t) w—hen a one-gap approximation is used.
Results are obtained in the clean limit and are also

shown to hold for any finite impurity content. This is not
surprising since, as the electron-phonon interaction be-
comes very large, the electron scattering coming from
this effect alone overwhelms any finite impurity contribu-
tion. We find that the same function k(t) as previously
introduced also determines the clean limit (now
represented by the superscript "cl") H;2(t), which is

equal to (6' T, /evF )Ak (t)t: a function that is well

behaved at t —+0. Near r =1, we get H;z(t)
=(13.4n T, A, /evF)(1 —t), and near t~O, H;z(t)
=7.64m T, A, /evF, in serious disagreement with another
estimate in the literature. In the one-gap model, the ana-
lytic results are H;z(t)=—(12' A. T2/evF)(1 —t) for r —1

and =-6m A, T, /evr; for t~0, in good qualitative agree-
ment with the exact numerical values.

In a later section the idea of the functional derivative
of H, 2 with spectral density a F(co) is introduced and
general exact formulas from which it can be calculated
are given. Numerical results based on these general
equations are given, from which the idea of the existence
of an optimum spectrum follows. These are investigated
after a scaling theorem, valid for any delta-function spec-
trum, is established. Results for the maximum value of
strong-coupling corrections to H, 2(T) at t =0 and t =1
for t =0, 50, and 500 meV are presented in tabular form
and tested against results for real materials in a few cases
using a graphical representation. Finally, functional
derivatives are used to verify that a local maximum was
reached in each case of interest.

7. Optical properties

Section VIII deals with specific optical properties,
namely, the local and London limits of the penetration
depth and electromagnetic coherence length. general
formulas, valid for any coupling strength, are given for
these quantities. At any temperature they depend only
on the solutions of the Eliashberg equations. Evaluation
of the equations for the local limit requires only a
knowledge of b, (ice„), while the London limit depends
additionally on Z(ice„) which, in turn, has an impurity
dependence. For large impurity content, the London
limit reduces exactly to the local limit, which applies
only to dirty systems. An exact relationship holds be-
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tween the London [AL(T)], local [XI(T)] penetration
depths and the coherence length [g(T)], which involves
the mean free path l, namely, [A,~(T)/A, L (T)] =g(T)/l.
This relation is useful in testing results of numerical cal-
culations.

To start, we present results for the temperature depen-
dence of the penetration depth in V3Si in the pure Lon-
don (l = ~ ) limit as well as for the case of finite mean
free path chosen to represent a particular experimental
sample. The results are presented in the form
[k(0)/A(t)] —(1 t ),—where the two-fiuid result has
been subtracted out, and are compared with a BCS tem-
perature variation, which is also the result that we obtain
when the aluminum spectrum is used for ct F(co). For
the spectral density of V3Si, two different tunneling-
derived spectra are used. The first is from the work of
Kihlstrom (1985), and the other from Bangert, Geerk,
and Schweiss (1985). This last spectrum is not con-
sidered realistic and is used only to show that any arbi-
trary shape spectrum will not do in calculating the tem-
perature variation of the penetration depth. Comparison
of our theoretical results with the experimental data of
Christen et al. (1984) reveals good agreement with the re-
sults of our full Eliashberg calculations based on the
spectrum of Kihlstrom (1985) and poor agreement with
BCS and with the results obtained from the Bangert
et al. (1985) n F(co). We can conclude that when reli-
able data are available on normal-state properties, good
agreement can be obtained for electromagnetic proper-
ties. Furthermore, BCS theory does not apply and
strong-coupling theory is needed to achieve quantitative
agreement.

The discussion turns next to the theoretical derivations
of approximate equations for the strong-coupling correc-
tions associated with optical properties. Through a fit of
the resultant formulas (with arbitrary coefficients) to ex-
act numerical data on a large number of conventional
materials, we find specific formulas for the strong-
coupling parameters q&, g&, and g& at T =0 and

I. 1

T=T„as well as for related properties. The resulting
forms fit the numerical data very well. Finally, asymp-
totic limits are considered. In the limit k —+~, we are
able to establish that A

& ( t) is given by
(t) =(+A. bozo ~pa//2A)g (t), where coz is the

characteristic phonon energy and o.& the normal-state
resistivity with g(t) a universal dimensionless function
that can be calculated numerically for t )0 with
&A, t ))1. The same function also determines A,L(t). In
fact, Vn XL (t)/VA, =1.274Ag (t)&t, where n is the car-
rier density per cubic centimeters and A is the classical
penetration depth. The temperature dependence of each
of these quantities is distinct, in the asymptotic limit,
from a BCS variation. In addition, we can show that the
coherence length takes the form g(t)=0. 87UFfi/cozen. t.
Approximate, one-Matsubara-gap results are derived and
compared with the exact results and found to be qualita-
tively valid with some important quantitative differences.

8. Mainly about the oxides

Section IX deals specifically with superconductivity in
the oxides. It starts with a discussion of phonon models
applied to the high-T, case. A T, value of 125 K is easily
and naturally obtained within Eliashberg theory and an
electron-phonon mechanism. In some cases, but not in
all, the necessary value of the mass enhancement A, is
usually large and may not be compatible with lattice sta-
bility, although we are not aware of any reliable quantita-
tive criterion for stability that could be used to definitely
settle this question. Objections to a phonon mechanism
therefore fall outside Eliashberg theory and would need
to be found through considerations other than simply the
large observed value for T, .

After a review of existing information on the partial
oxygen isotope effect in La-Sr-Cu-O, we review the
theory of such a quantity and conclude that many purely
phononic models can be constructed that would be con-
sistent with the data. Another possibility is a joint
phononic-plus-high-energy excitonic mechanism. In the
discussion of the partial isotope effect, the formulation of
Rainer and Culetto (1979) proves useful, since it allows
us to determine the role played separately in the total P
by each phonon mode. A long discussion is also included
on total isotope effects and on possible exotic mecha-
nisms that might contribute to it.

The thermodynamic properties predicted on the basis
of a spectral density for La-Sr-Cu-0 given by Weber
(1987a, 1987b) are presented with a view at a comparison
with experiment. The calculated spectral density is based
on a pure phonon model and follows a procedure for cal-
culation that has proved very successful in the A15 com-
pounds. It does give a value for T, of order 35 K, but
only if the material is near a structural phase transition.
Another limitation of the model is that the predicted ox-
ygen isotope effect is a little too large in comparison with
experiment.

When we attempt to compare calculated supercon-
ducting properties, such as the gap-to-critical-
temperature dimensionless ratio 2b, o/k&T, or the nor-
malized specific-heat jump at T„b,C ( T, ) /y T, with y
the Sommerfeld constant, it is found that there exists too
much variability in the present data for any firm con-
clusion to be drawn. As an example, the value obtained
for 2b, o/kz T, varies significantly with material used and
method of measurement. While far-infrared determina-
tions on the whole favor a value around 3.54, much
larger values are indicated in tunneling experiments that,
in general, give an uncomfortably large range of possible
values.

The electronic specific-heat jump at T, is also uncer-
tain and, in any case, the value of the Sommerfeld con-
stant, needed in comparison with experiment, is not
known. It cannot be measured directly from the specific
heat above T, because, in this temperature range, the
phonons make the dominant contribution. Moreover, a
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1038 J. P. Carbotte: Properties of boson-exchange superconductors

magnetic field of sufficient strength to quench the super-
conductivity cannot be used at low temperature because
its value is too large. Other methods are indirect and re-
quire simplifying assumptions to extract y. For example,
to extract it from the magnetic susceptibility requires an
unknown Stoner enhancement factor, and to use the
slope of the upper critical field requires knowledge of the
normal-state resistivity as well as strong-coupling correc-
tions, not to mention the large variability in value of
slope found in different experiments.

While a knowledge of thermodynamic properties can,
in principle, give invaluable information on mechanism,
the variability in the present existing data is too large for
any definitive conclusion to be drawn. This leaves open
the possibility that La-Sr-Cu-0 has a joint phononic-
plus-high-energy excitonic contribution to the pairing.
The superconducting properties for such a joint mecha-
nism are calculated and are found to be more consistent
with available data than is a pure phonon model, al-
though significant uncertainty remains. In particular, a
joint model is definitely more consistent with present
band-structure calculations for the value of the electronic
density of states at the Fermi energy. On the other hand,
it is as yet unclear whether band-structure calculations
can be applied directly to such highly correlated systems,
although fairly convincing evidence is starting to accu-
mulate in favor of band theory.

After a short review of electron-phonon calculations of
the electron mass renormalization k in Y-Ba-Cu-O, the
isotope effect is reviewed. It is stressed that the total iso-
tope efFect is likely to be small even though very recent
partial isotope effect measurement on the oxygen indi-
cates that it may not be negligible. Nevertheless, this is
strong, although not completely compelling, evidence for
a joint mechanism. The properties of such a joint mecha-
nism for a 96-K superconductor are calculated in a. mod-
el consistent with present isotope effect measurements
(Akis and Carbotte, 1989c). Interesting deviations from
pure BCS laws are predicted, but comparison with exper-
iment is unsuccessful at this time because of limitation in
the accuracy of the data.

Finally, we discuss recent experiments on the ratio of
the slope in the specific heat at T, to its jump. The value
of this ratio is large compared with BCS and, in fact,
large with respect to the maximum value possible in an
Eliashberg superconductor, whatever the size, shape, or
origin of the kernels in these equations. The observation
is also inconsistent with a pure excitonic mechanism and
remains a puzzle at this point.

The temperature variation of the London penetration
depth in Y-Ba-Cu-Q has been measured by several
groups. The different early sets of results are consistent
with the strong-coupling calculations of Blezius et al.
(1988) and of Rammer (1988a) and indicate a phonon
model. Unfortunately, this conclusion is not firm, since
other data favor a BCS temperature variation that would
be consistent with a pure exciton model or a joint mecha-
nism. If consensus on the data could be achieved, we

would be able to say something fairly definitive about the
mechanism, but, at present, this is not yet possible.

II. THE CRITICAL TEMPERATURE

A. The Eliashberg equations
and their reduction to BCS

—p*(co, )&(co, —leo ~ )]

A(i co )
X

+co +b (ico )

(2.1)

and

&T ~mZ(ico„)=1+ g A, (i co —ico„)
~n m +co +6 (ico )

(2.2)

where p*(co, ) is the Coulomb pseudopotential opposing
superconductivity. It comes with a cutoff at co„other-
wise, the sum over m will not converge in Eq. (2.1). In
both (2.1) and (2.2), A,(i co —i co„) is related to the
electron-boson attraction between two electrons interact-
ing around the Fermi energy and is related to the
electron-boson spectral density cc F(co) (McMillan and
Rowell, 1969), with co the frequency of the exchanged bo-
son, through the relation

A, (ico i co„)=2I — =—X(m —n),Qa F(Q)dfl
0 +(co„co )—

(2.3)
where ico„=i~T(2n —1) is the nth Matsubara frequency
and n =0,+1,+2, . . . with T being the temperature.
These equations are derived with the help of thermo-
dynamic Green's functions [Nambu (1960); Abrikosov
et al. (1963); Rickayzen (1965, 1980)].

Equations (2.1) and (2.2) can be reduced to the much
simpler BCS [Bardeen et al. (1957)] form if a two-
square-well model [Allen and Dynes (1975)] is used for
A, ( n —m ). In this model we take

for both ico„i, ico i (co, ,
lco Eco 0 otherwise, (2.4)

The equations that underlie all of the work to be de-
scribed in this review are the Eliashberg [Eliashberg
(1960a, 1960b); Schrieffer (1964); Scalapino (1969); Berg-
mann and Rainer (1973); Rainer and Bergmann (1974);
and Daams and Carbotte (1981)]gap equations, which in-
volve two nonlinear coupled equations for the Matsubara
gaps b, (ico„) and the renormalization factors Z(ico„). On
the imaginary-frequency axis, they take the form [Rainer
and Bergmann (1974); Allen and Dynes (1975); Allen and
Mitrovic. (1982)]

b(ico„)Z(ico„)=~Tg [ A(ico ico„)—
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with A, the usual effective mass-renormalization parame-
ter given by

B. A first estimate of maximum T,

A(m =n)=A(0)—=k= 2a F(A)dQ
0 0 (2.5)

If this last equation is used to get an estimate for the
maximum possible value for the critical temperature by
letting A, —+ oo, we get

If in Eq. (2.2) we further neglect the gap in the denomina-
tor on the right-hand side, we get [Allen and Dynes
(1975)]

%co
(k sT, ) '"=1.13

e
(2.13)

&TZ(ice„)=1.+ g A(im ice—„)sgn(co )= I+A, .
n

(2.6)

with

b(T)= ~ ~T
m

&(T)

+co +b, (T)
(2.8)

This last equation is just the finite temperature version of
the BCS gap equation [Bardeen et al. (1957)] written in
terms of Matsubara frequencies and with the usual pair-
ing parameter X(0)V given by

Inserting this result into Eq. (2.1), we obtain for the two-
square-well model

b, ( T),
~
co„(co, ,

(2.7)

which is a very optimistic estimate. Phonons in the
high-T, oxides, as an example, extend up to 100 meV.
Should we be coupled entirely to such modes, which is
not likely to be the case, Eq. (2.13) gives 42 meV (-487
K) for the maximum T, . We shall soon see that Eq.
(2.12) is inadequate as A, —+ oo and that the above estimate
is not valid. Nevertheless, it does indicate that changing
the scale of m, from a phonon to an electronic energy
scale might increase T, substantially. This argument is
often brought forward as favoring an electronic mecha-
nism in the high-T, oxides with T, up to 125 K [Sleight
et al. (1975); Bednorz and Miiller (1986); Cava et al.
(1987); Chen et al. (1987); Chu et al. (1987); M. K. Wu
et al. (1987); Maeda et al. (1988); Sheng and Hermann
(1988); Subramanian et al. (1988)].

For the temperature T =0, Eq. (2.8) reads

(2.14)
X(0)V= (2.9)

and we get

~c /2'fiT +
21 X—p*

]co
/

I+X n ——'
2

with X(0) being the single-spin electronic density of states
at the Fermi energy, and Vbeing the pairing potential.

For a temperature T near T„we can linearize Eq. (2.8)
to get

2b, (0)
k.T,

'" (2.15)

for the dimensionless ratio of twice the gap to critical
temperature. For actual superconductors (Meservey and
Schwartz, 1969) Eq. (2.15) is rarely obeyed, and complete
numerical solutions of Eqs. (2.1) and (2.2) are required to
get quantitative agreement with experiment, as will be
seen later.

(2.10)
C. McMillan equation and related issues

COc

&T.
(2.11)

where y is the Euler constant. Thus

1+X
kg T~ = 1.13i6co~ exp

p
(2.12)

where we have reintroduced the Boltzmann constant kz
and Planck's constant A.

with P(Z) the digamma function. For large Z, f(Z) goes
like ln(Z), so that

In order to solve Eqs. (2.1) and (2.2) so as to get an ac-
curate T, value, we need to know the input parameters
a F(Q) and p*. These microscopic parameters are
known for many conventional superconductors from
McMillan and Rowell (1969) inversion of tunneling data.
This technique will be described in detail in the next sec-
tion. References to the a F(co) used in this work are
given in Table I. in Fig. 1, we show results of tunneling
inversion for the electron-phonon spectral density of Pb
(Grimvall, 1981; solid curve) and compare with similarly
obtained spectra for Sn" (dotted curve) and In (dashed
curve). Here the asterisk indicates that these two last
spectra have been renormalized to have the same value of
T, and of co&„as Pb. The characteristic phonon energy
co,„is, as is also A, , a much used moment of a F(co). The
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1040 J. P. Carbotte: Properties of boson-exchange superconductors

mass-renormalization A, is twice the first inverse moment
and has already been introduced [formula (2.5)], while
co&„, which was first used by Allen and Dynes (1975), is
defined as

2 ~ a F(co)
co,„=exp +— ln(co) d co

0 CO

(2.16)

n F(co)= A5(co —co~), (2.17)

It can be taken to represent an important measure of the
average boson frequency associated with the spectral
density a F(co). For a delta function centered around
the Einstein frequency coE, i.e., for

quencies, the low-energy part is weighted more heavily in
co&„ than the high, and the value of ~&„wi11 depend on the
shape of the spectral density. For the case of Pb,
1=1.55 and co&„=4.83 meV. With this spectrum a nu-
merical solution of the linearized version of Eqs. (2.1) and
(2.2) gives T, =0.6198 meV (-7.2 K) for @*=0.144
with co, =66 meV. This result wiH now be compared
with the prediction of the McMillan (1968) formula,
which is an approximate but analytic equation for T, .
This formula, which has been extremely popular, is much
more quantitative than the BCS result (2.12). It was first
developed by McMillan and then later refined by Allen
and Dynes (1975) to read

with A the area under n F(co), Eq. (2.16) clearly gives
m&„=co+. In other cases, when there is a spread in fre-

1.04(1+A, )

A,
—p*(1+0.62K, ), (2.18)

TABLE I. Spectral-function sources. We tabulate here the
sources for the o. F(v) spectra used in our calculations. Most
of the spectra come from a tabulation of Rowell et al. (1970),

1. Al comes from a theoretical calculation of Leung
et al. (1976a, 1975b).

2. Several sources are available for Nb. Nb(R) comes
from Robinson and Rowell (1972); Nb(A) comes
from Arnold et al. (1980). These have been mea-
sured through tunneling. A theoretical calculation
[Nb(B)] comes from Butler et al. (1977).

3. V has been obtained through tunneling by Zasadzin-
ski et al. (1982).

4. Amorphous Bi and Ga have been obtained through
tunneling by Chen et al. (1969).

5. La is from Lou and Tomasch (1972), through tunnel-
ing.

6. Mo is from Kimhi and Geballe (1980), through tun-
neling

7. Nb, Sn has been obtained from Shen (1972) through
tunneling.

8. V3Si(Kihl. ) has been obtained through tunneling by
Kihlstrom (1985). We have scaled it to give 1=1
and used T, =16.4 K (rather than 15.4 K as mea-
sured by Kihlstrom), which is in better agreement
with the single-crystal T, value.

9. V3Si was obtained from scaling G(A) obtained
through inelastic neutron scattering, such that A, =1,
by Schweiss et al. (1976).

10. Nb3A1 has three possibilities. Two of them [(1) and
{2)] were obtained from tunneling measurements by
Kwo and Geballe (1981); the third [{3)]is a phonon
spectrum obtained by Schweiss et al. (1972) and
scaled to give A, =1.7.

11. Nb3Ge (1) was obtained through tunneling by Geerk
et al. (1982), whereas Nb3Ge (2) was scaled from
neutron-scattering data obtained by Muller et al.
(1982) to give A. =1.6. p has been fitted to give
T, =20 K.

12. V3Ga has been obtained through tunneling by Zasad-
zinski et al. (1980).

13. Finally, the spectra by Weber (1987a, 1987b) have
been obtained by theoretical calculations.

A complete derivation of this equation will be given in
the next section. As a first check on its accuracy, we
consider Pb. In this case, it gives a T, =—0.496 meV
( —5.76 K), which is about 20 percent smaller than the
exact result. Already we see some problem with the
McMillan equation (2.18). Furthermore, it is not at all
clear which value of p* should be used in (2.18). It cer-
tainly should not be the value used in the complete nu-
merical solution, as we have done, but unfortunately no

I.4—

I.2
Pb

~ ~ 4 l Sn

In

a F(~)

0.8

0.6

0.2

/')

/ )
/

': /

'-/

I

IO l2 I48
u) (meV)

FIG. 1. Scale electron-phonon spectral densities based on the
spectral density of Sn (dotted curve) and In (dashed curve) corn-
pared with that for Pb (solid curve). Each curve has the same
cu]„and T, value as pure Pb, and a F(co)=BnoF(~b) with B
and b being appropriately chosen constants.
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precise correction formula is known. Despite these prob-
lems, it is of interest to proceed with caution to estimate
from Eq. (2.18) a maximum value of T, as A, —+~. We
get for p*=0

+~in
( k T )max e

—1.04
B c (2.19)

In general, the value of ~&„will depend on the shape of
a F(c0). If, for the purpose of argument, we take it as
roughly —,

' the largest phonon energy in the system, we

get a value for (kii T, )
'" that is about —,

' of the value es-

timated on the basis of Eq. (2.12) or 14 meV ( —162.5 K).
We shall soon see that both estimates are wrong and that
Eliashberg theory itself does not give a maximum value
for T, . Rather, the critical temperature must be limited
for the electron-phonon case, by lattice stability argu-
ments and not by the mathematical structure of the
theory of superconductivity itself [Cohen and Anderson
(1972); Varma (1982)].

playing the role of temperature, so that we immediately
conclude that

TM TOyg (2.23)

This relationship implies that the characteristic strong-
coupling ratio T, /m&„ is completely unaffected by a uni-
form stretch or compression of the frequency scale for
the electron-boson spectral density. At the same time, on
varying b, we can get any value of T, we wish. To in-
crease it, b needs to be made less than 1. This corre-
sponds to increasing co&„. This result is in agreement with
both approximate equations for T„namely, Eq. (2.12),
the two-square-well result (Allen and Mitrovic, 1982),
and Eq. (2.18), the McMillan (1968) equation as modified
by Allen and Dynes (1975).

A given spectrum aoF(co) can be scaled by b on the fre-
quency axis to give any desired value of cu&„. After this is
done, we can multiply by another constant factor 8 to get
a model spectral density

cc~F(co)=Ba()F(bee), (2.24)
D. A scaling theorem

We start by establishing a scaling theorem (Coombes
and Carbotte, 1986a, 1988) for T, that applies exactly
when p* =0 and is approximately true when p* is not an
important player in T, as compared with the role played
by the electron-phonon spectral density. Consider a base
spectrum aoF(co) and another denoted by ccMF (c0),
which is constructed from the base spectrum through
scaling of the frequency axis by a constant factor of b;
1.e.)

which has any desired value of T, . A11 we need to do is
adjust B in an appropriate manner. This is how the two
spectra Sn* and In* of Fig. 1 were obtained. This leads
us to consider a plot of T, /u&„as a function of 1, for a
spectrum BccoF(cu) where k=Bko as a function of X.

Figure 2 displays results based on Pb, Nb3Sn, Hg, and
V3Si. All plots are for p* =0. 1 in the range up to A, = 10.
Similar plots have been given by Allen and Dynes (1975)
and by Marsiglio and Carbotte (1987c), but in a much
more restricted range of A, . On the same plot we also

aMF(co)=aoF(bc@) . (2.20)

We note that b ) 1 means that we have compressed the
base spectrum and b & 1 extends it to higher frequencies.
Reference to Eq. (2.16) gives that co,„=co,„/b and refer-
ence to Eq. (2.5) yields A,~ =A, o; i.e., the mass-
renormalization function k is unchanged.

When we substitute (2.20) into the Eliashberg equa-
tions (2.1) and (2.2), we can rewrite them to read
(Coombes and Carbotte, 1986a)

CO

b, (ice„)Z(ice„)=mTg A, (ice„ico ) —p-
m

1.0

0.8

0.6

0.4

(V = 0-1)

McMillan formula

Pb

-Nb Sn3

———Hg

-Nb

. ~

, ~

., ~ ''
~ ' ..~ ~

''r
r

rr'
r r r. ~

b(i co )
X

QB +b (ice )

(2.21)

0.0 I I

00 10 20 30 40 50 60 70 80 90 100

(2.22)

with A(ice„)=bh(iso„), co„=co„b, and co, =bco, . If we

ignore the extra factor of 1/b in p*(co, /b) as being unim-

portant, we see that (2.21) and (2.22) are identical to the
equations for the base spectrum aoF(cu) with T=Tb—FIG. 2. T, /m&„as a function of A, given by the McMillan equa-

tion (solid curve) for @*=0.1. Exact results are also given for
scaled Pb (dotted curve), Hg (dashed curve), Nb (dot-dashed

curve), and Nb3Sn (dashed-double-dotted curve) spectra from
the full numerical solutions of the Eliashberg equations.
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show the McMillan equation results (solid line). It is
striking that for large values of A, , T, /m]„keeps rising
when the exact equations (2.21) and (2.22) are used, while
the McMillan equation predicts saturation. This predic-
tion, which leads to a finite maximum critical tempera-
ture for infinite k as we have seen, is clearly an artifact of
the approximate solution (2.18), which does not apply for
large I, and is, therefore, not real. There is, in fact, no
limit to T, in Eliashberg theory. This leads us to a con-
sideration of the exact asymptotic limit for the critical
temperature T, .

E. Asymptotic limit of A,~ ~

We return to Eqs. (2.1) and (2.2) and substitute the
equation for Z(i co„) into that for b, (i co„) to get

b, (ico„)=irTQX(i co —ico„)

~m
b(i co . )

— A(i co„)
~n

+co +b, (ico )

If we assume co+ ((2~T for any temperature of interest,
we can drop coE in the denominator of (2.26) and obtain

2
k(l&m l&n )

(2vrT) (m n)— (2.27)

where we have introduced the dimensionless temperature
T:—

T/+Acorn.

If we further introduce into (2.25) di-
mensionless Matsubara gaps A(ico„)=6(ico„)/Q&co—z,
we can rewrite it in the universal form:

2Z(ico„)=rrT g~„(2rrT) (m —n)

X

~m —.
d, (i co ) — E(i co„)

+co +5 (ico )

(2.28)

which is a dimensionless equation that does not refer to
any particular material parameters. Numerical solution
of this equation gives universal Matsubara gaps

(2.25)

where we have taken p, *(co, ) =0. This is sufFicient for our
purposes but is by no means essential to the arguments
that follow. We first note that the term m =n on the
right-hand side of Eq. (2.25) drops out of the sum be-
cause, in that case, the quantity in the large parentheses
is exactly zero [Marsiglio et al. (1989)]. It is therefore
permissible to restrict the sum over m to m Wn, so that
A, (ico ico„) is —needed only for mWn. If we use for the
spectral density the delta function of (2.7), we find

2'~ c4
A, ( l co~ ico„)— with mWn .

coF +(2irT) (m n)—
(2.26)

b,(ico„):f—„(t), which are well-defined functions of the
reduced temperature t = T/T, . The single universal
number T, is obtained from a numerical solution of the
linearized version of (2.28) and gives

T, =0.2584 or T, =0.258+co@A =0.183&k co@,

(2.29)

a result first obtained by Allen and Dynes [(1975); Owen
and Scalapino (1971)] which holds for @*=0. We shall
see later that a single-Matsubara-gap approximation
would have given I/(ir&2) for the coefficient in (2.29)
rather than 0.258. In both cases for a fixed value of the
boson Einstein frequency coE, T, goes to infinity as

This contradicts the results obtained for
(kii T, )

'" in Eqs. (2.13) and (2.19), which were based on
the approximate equations (2.12) and (2.18), respectively.
These equations break down when A, is large, as is also il-
lustrated in Fig. 2.

Leavens (1975, 1977) and Leavens and Carbotte (1974,
1977) arrived at the conclusion that T, is not bounded in
Eliashberg theory by using very diA'erent arguments from
those presented so far. We shall discuss these brieAy, but
before doing so, we want to stress once more that limits
on T, that may exist for a given boson-exchange mecha-
nism must be found outside Eliashberg theory. For ex-
ample, in the case of the electron-phonon interaction the
criterion of lattice instability is probably involved. Since
such criteria are at best qualitative, a firm limit cannot be
placed on T„although rough estimates are certainly use-
ful.

F. Functional derivatives

Before the work of Leavens (1975, 1977) can be under-
stood properly, it is necessary to introduce the idea of
functional derivatives, first discussed within Eliashberg
theory by Bergmann and Rainer [(1973); Karakosov
et al. (1975, 1976)]. These authors considered the prob-
lem of the response of T, to an infinitesimal (e) addition
to the base cc F(co) at a specific frequency Q. By
definition, the functional derivative of T, with respect to
cc F(Q) is given by

(2.30)

where AT, is the change in T, that results when one adds
on to the spectral density a new piece of the form
e5(co —Q ).

In Appendix A we give a simple analytic but approxi-
mate equation for the functional derivative of T, . The
calculations follow the work of Mitrovic and Carbotte
(1981b) in which the infinitesimal addition term is treated
exactly. For the remaining part, a two-square-well model
is employed. This leads to a universal function G(Q)
with
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5T,
5a F(Q)

and [Eq. (A15)]

G(Q)
1

(2.31a)

G(Q)= g. . .8„,4Q
0 +4wn

(2.31b)

where 0=0/k~ T„and the B„are numbers given by
[Eq. (A16)]

7l 2&i 1 (2m —1) 4
(2.32)

U= 3 sin(cot), (2.33)

where t is the time. If we introduce an electron into the
system, it will pull the ion towards itself, because of the

The universal function G(O) is shown in Fig. 3. The
shape of this curve is characteristic of all functional
derivatives of T„even when they are computed exactly.
It goes to zero like 0 as 0 goes to zero and like I /0 as 0
goes to infinity. In between, the curve exhibits a single
broad maximum at Q *—= 10.0 with maximum value
G(Q *)=0.8. This means that all phonon frequencies
have the effect of increasing T„but for given area low
and high frequencies are less effective than those around
A=10.0k~ T, . This leads to the idea of the existence of
an optimum frequency for T, .

The shape of 5T, /5(x F(Q), exhibited in Fig. 3, and
the existence of an optimum frequency can be understood
with the help of a simple classical model for lattice dy-
namics. Consider a single positively charged ion that can
perform harmonic motion with frequency co about its
equilibrium position on the perfect lattice. Let U be its
excursion off equilibrium and A be the amplitude of the
harmonic motion [Carbotte (1987)]

attractive ion-electron interaction, and so build up an ion
polarization cloud about itself. The maximum polariza-
tion that can be obtained occurs when the oscillator is
fully stretched at maximum amplitude. This occurs for

pt 7T/2, where the subscript "op" stands for op-
timum. For this lattice polarization to be effective in
creating an overall electron-electron attraction, it is
necessary that the first electron, which travels with the
Fermi velocity (UF), still be within the coherence length

go (which is the typical length associated with supercon-
ductivity) when full polarization occurs. The condition is
t =go/UF, and therefore

VVp

2 o
(2.34)

where use has been made of the simple formula
go=fivF/mb(0) [Grimvall (1981)]. Thus we expect the
functional derivative to peak around 7k&T, and to show
a broad maximum because there is nothing sharp in the
argument just given. It should then drop to zero at both
high and low frequencies. If the lattice oscillates too
slowly compared with the typical time gp/UF there will

be no polarization. If it oscillates too rapidly, the polar-
ization will simply average out to zero over the time of
interest. Thus 5T, /5a F(Q) should indeed go to zero at
both A~O and fl ~ oo.

So far, we have based our arguments on the approxi-
mate form (2.31) for the functional derivative. An exact
formulation has been given by Bergmann and Rainer
(1973; for a formulation including anisotropy, see Daams
and Carbotte, 1980a). For the discussion it is convenient
to rewrite Eqs. (2.1) and (2.2) in terms of the alter-
nate quantities co(i co„):—co„Z(ico„) and b, (i co„)
—=6(i'„)co(iso„)/co„. The equations are now

5(ltd„) =7TT g [A,(lCO„—lCd ) p ]

I.O

G(a, )
0.8

A(i co )X--
+co (ice )+5 (iso )

(2.35)

0.6

OA

co(i co )
X

+co (ice )+b, (ice )

(2.36)

I

l5

For the functional derivative of T, with respect to
a F(co) we need only the linearized form of Eqs. (2.35)
and (2.36), which apply near T, . Introducing
b„=h(iso„)/[~co(iso„)~+p], where p is a pair-breaking
parameter that will be zero at T„and substituting (2.36)
into (2.35) yields the equation

FIG. 3. Universal function GI', A) as a function of normalized
phonon energy Q=Q/T„which enters the curve for the func-
tional derivative of T, with respect to a F(cg) in the A, model
of Mitrovic and Carbotte. (2.37)

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



1044 J. P. Carbotte: Properties of boson-exchange superconductors

which is an eigenvalue equation with kernel

/co(i co„)
/K„=vr T, A(i ,co„i—co ) —p* —5„

C

(2.38)

A„SK„Z
5p=

Q 2
(2.39)

A variation 6E„ in the kernel leads to a change in p of
5p, which can be written in the form

6T,
Scr F(co)

5p
Sa F(co)

Bp
BT

(2.40)

where Sp/Sa F(co) means the variation in p due to the
explicit dependence of K„on cz F(co) only, i.e.,

with 5„ in this last equation being the eigenvector for
p=0 and T= T, .

The functional derivative of the critical temperature is
given by

gb, „
gp n, m

Scc F(co)

M, ( l CO„ l CO ) M, ( l CO„ l CO )

Slz F(co) "'
Scc F(co)

Q 2
(2.41)

gZ„~T,
n, m

sgn( co co„) b,

Bp
BT 2

also Bp/BT takes account only of the explicit T dependence and is

BA,(lCO„ lCO ) BA, (ECO„ l CO ~ )

(2.42)

2cocr F(co)
[co'+ (co„—co )']'

2(co„—co )

T

4—

C
2 ~ 2

Bci F(lo) Pb

I I I I

5 IO l5 20 25
cul kBTC

Finally,

Sk(l&„LMm )

Scc F(co) co +(co„—co )

and

BA,(l CO„ l CO~ )

aT

(2.43)

(2.44)

To evaluate Eq. (2.40) numerically, we only need the
numerical solutions of (2.37) for a given a F(co) spectrum
and p* at the critical temperature of the unperturbed sys-
tem with p( T, ) =0 in (2.37). Numerical evaluation of the
relevant formulas for Pb and Tl are shown in Fig. 4. We
see that the exact theory is not qualitatively di6'erent
from our approximate analytic two-square-well-model
solution. There are, of course, quantitative differences; in
particular, the maximum in the exact curves occurs
around 7.0k& T, rather than 10.0k& T, .

As previously mentioned, the shape of the functional
derivative curve suggests a method of optimizing the
shape of a F(co) for a given spectral weight A, which is
the area under cc F(co) [A = Jo cz F(co)dco] We exPect.
that taking infinitesimal weight out of the base cc F(co) at
a frequency away from the maximum in its functional
derivative and placing the same amount of weight at the
position of the maximum (where the phonons are more
eff'ective in T, ) should increase the critical temperature.
If, for any base function, the functional derivative retains
its shape, i.e., displays a maximum, then we should be
able to repeat the procedure step after step and conclude
that, for a given spectral weight 3, the best shape of
cc F(co) in order to maximize T, is a delta function at an
optimum Einstein frequency coE, which should also be
the frequency defining the maximum in its own function-
al derivative.

FIG. 4. Functional derivative of T, with respect to a I'(co)
[6T, /Ace F(co)] as a function of the normalized phonon fre-
quency co/k&T, for Pb and Tl. The two curves show the same
general behavior but have distinct amplitudes. They were ob-
tained from exact numerical work based on Eq. (2.40).

G. A delta-function spectral density

We can quantify this concept through use of a delta-
function spectrum for cz F(co) [Eq. (2.17)]. Substitution
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—p*9(co, —iso
i
A )

6(iso )
X

+co +b, (ice )

(2.45)

2coE
Z(ice„)=1+

m ~a+(~n ~m ) +co +b (ice )

(2.46)

of (2.17) into the Eliashberg equations (2.1) and (2.2)
leads to dimensionless equations of the form [Blezius and
Carbotte (1987, 1988)]

2cog
6(i co„)Z()co„)=~Tg

m ~ z+(~n ~m )

and the above approximation is justified. It follows
directly from the scaled equations (2.45) and (2.46) that

T, = Af(co~,p*), (2.47)

where the function f (co@,p" ) is to be determined through
numerical calculation and is a universal curve for a fixed
Coulomb repulsion p'. In Fig. 5, we plot this universal
function for three different values of p*, namely,
p*=0.0, 0.1, and 0.2. We see that all three curves have
the same shape as a function of coz=coz/A. Each exhib-
its a maximum at some intermediate value of QE, which
decreases with increasing p', and each curve goes to zero
at BE=0 and BE= oo. It is clear that, for a delta-
function spectral density, there is a unique optimum fre-
quency that makes T, largest for a fixed value of A. If
we denote by co@(p*) the normalized frequency Bz at
which the maximum occurs, we find that at this frequen-
cy

where A(ice„)=A(ice„)/A, T= T/A, coz=coz/A, and
B„=co„/A. Equations (2.45) and (2.46) depend only on
the single material parameter BE and on p*, provided as
did Leavens (1975), we neglect the A dependence that ap-
pears in the cutofF' on the Coulomb repulsion term. For
many superconductors, p* is not an important parameter

T.
=c(p,*) and co@(p*)=d(p*),

where c and d are universal functions of p .

H. The optimum spectrum for T,

(2.48)

0.2

We can prove that (2.48) represents a local maximum
for any shape of a F(co) with a fixed A. In the lower part
of Fig. 5, we show the functional derivative of T, /A with
respect to a F(co) for the optimum base delta-function
spectrum

a F(co)= A5(co a)~(p*))— (2.49)

O.l

0

—O. I

=o.z) '

2.0 cuE/A 5.0
I I

with co+(p*)= 1.3 A for p* =0. l. In this case
A g( T, /A )/QcL~F(co) is negative definite and zero exactly
at co@=1.3=—co@(p*). That is, the functional derivative
is exactly zero at the frequency of the base delta function
(2.49) and negative everywhere else. This means that
adding weight to the spectral density at this frequency
leaves T, /3 unchanged, and adding weight anywhere
else reduces it. Thus we have maximized T, /2 with the
optimum spectrum (2.49) for arbitary A. It follows that
the inequality

T, ~ Ac(p*) (2.50)

FIG. 5. Critical temperature T, divided by 2, the area under
the spectral density, for an underlying delta-function-model
spectra density a F{co)=25(cu —co&), as a function of normal-
ized Einstein frequency coE/A. For a given value of Coulomb
pseudopotential p* (@*=0,solid curve; p*=0.1, dashed curve;
and p =0.2, dotted curve), the curve T, /2 vs coE/2 is univer-
sal and independent of A. In the lower frame is the functional
derivative A6(T, /2)/6&x F(cg) for the base 6 function with
p* =0.1. It is seen to be exactly zero at the optimum frequency
indicated by the maximum of the T, /3 vs co&/2 curve and is
negative definite for all other frequencies.

holds. The equality applies to a delta function and the
inequality to any other spectral shape. This result was
first established by Leavens (1975) using somewhat
difFerent arguments.

The inequality (2.50) is tested against conventional su-
perconductors in Fig. 6, where we show c(p,") as a func-
tion of p* [solid line with open circles, Leavens (1975),
Mitrovic and Carbotte (1981b)]. On the same figure we
have plotted the ratio T, /A (solid dots) for a large num-
ber of the conventional superconductors to be identified
in the next section. It is clear that several fall close to
our theoretical maximum, indicating that, in nature,
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0.20

unusually large. The highest value of A known to us
from tunneling inversion is —13.5 meV for Nb3Ge. We
stress, however, that the value of k that is required is per-
fectly modest.

The other point we wish to make is to introduce briefly
the equation of Leavens and Carbotte (1971, 1972, 1974)
for T„which was established on the basis of a version of
the McMillan equation of the form (2.18) but with co&„re-
placed by (cu}. This was introduced by Dynes (1972)
with

O. IO-

0.075— I

0.05
l

O.IO O.I5 0.20

2 Ja F(co)den
(~)=

y
a F(co)

d
(2.51)

FIG. 6. Constant c(p, *) in the relation kz T, =c(p*)A for the
maximum T, associated with a given 2 as a function of p,

Placed on the same figure (solid dots) are the results for T, /3
obtained in the case of many strong-coupling superconductors
for which u I'(co) is known from tunneling spectroscopy. The
solid points all fall below the maximum curve, as they must.

2 1.04(1+A, )
exp

A,
—p*(1+0.62K, )

(2.52)

For k in the range 1.2&k&2.4, Leavens and Carbotte
(1974) noticed that the function on the right-hand side of
(2.52) was approximately constant, which suggested the
simple relation

T, =0.1483 (2.53)

some systems have boson modes that fall near the broad
maximum around the optimum frequency. In these cases
T, is nearly as large as it can be made for a given A.

Equation (2.48), like the asymptotic form (2.29), im-

plies that there is no limit placed on T, by the theory of
superconductivity itself. An infinite T, can be reached in
Eliashberg theory for a fixed coE by increasing
indefinitely because T, =0. 183&A. co@ [Allen and Dynes
(1975)] for A, ~oo. On the other hand, an infinite T,
value can also be obtained for a fixed k by increasing 2
indefinitely. This follows from Eq. (2.48). To be specific,
for @*=0.1, c(p*)=0.175 and co@(p*)=1.3A. In this
case the optimum value of mass renormalization is quite
finite, namely, A,*=1.54, which is very close to the value
for Pb. Yet because T, =0. 1753, it can be made
infinitely large by taking A ~~. At the same time, of
course, coE also goes toward infinity. Both cases just de-
scribed achieve an infinite T„but in very difterent ways.
We conclude, as previously described, that the criteria
for maximum T, need to be found outside Eliashberg
theory.

To end this discussion, we make two final points. Sup-
posing we could find a system for which the bosons (pho-
nons) fall close to the optimum value, how large could we
make T, if co+(p*) is to remain within the range of pho-
non energies? For the high-T, oxides, phonons are mea-
sured to exist up to energies of the order of 100 meV.
This implies a value of 2 =—77 meV for p, *=0.1, and
hence a T, value of 13.5 meV or about 160 K for a mass
renormalization of X*=1.54. For this to occur, howev-
er, we would need to be preferentially strongly coupled
only to the 100-rneV phonons and have an 2 value that is

with the constant fit to numerical data on T, obtained
from solutions of the full Eliashberg equations (2.35) and
(2.36) using several known spectral density functions.
That this is a reasonable formula for T, can also be seen
from a close examination of Fig. 5. In the range
0.6&co+/3 «1.5, the curves for T, /3 are reasonably
Bat, and so T, =const X 8 is a good first approximation.
For p'=0. 1, we should take the constant somewhat
below the maximum value of 0.175, and 0.148 is reason-
able. The range defined above, over which Eq. (2.53)
should be valid, is roughly 1.3 & A, & 3.3. The more
rigorous approach on which (2.53) is based gave the
slightly smaller range quoted above.

I. Other equations for 7,

Over the years many other analytic equations have
been suggested for T, [Allen and Mitrovic (1982)]. They
all have certain advantages and disadvantages and usual-
ly a limited range of validity, although this may not be
explicitly stated. Allen and Dynes (1975) extended the
range of validity of the McMillan equation (2.18) by add-
ing modifications to the prefactor on the right-hand side.
These changes were designed to introduce into the T,
equation some dependence on the shape of spectral densi-
ty and to increase the range of validity to higher values of

For an assessment of its accuracy, see Cai et al.
(1979).

An equation by Rowell (1976) is equally simple and
similar to our equation (2.53). There is also very exten-
sive work on T, equations by Wu and collaborators [H.
Wu et al. (1977, 1987); Kung et al. (1978) Wu and Ji
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(1979); Wang et al. (1980); Wu et al. (1980); Zhou et al.
(1980)], by Kirzhnits et al. (1973), and by Khan and Al-
len (1980). Other works, too numerous to quote [Dolgov
and Maksimov (1982a, 1982b); Combescot (1989)], also
exist. The interested reader is referred to the review of
Allen and Mitrovic (1982) for further details on these al-
ternate equations. At the present time, we recommend a
complete numerical solution of the linearized version of
Eqs. (2.1) and (2.2) when a F(co) is known from tunnel-
ing. When only an estimate of A, is available, the McMil-
lan equation may be most useful.

The functional derivative technique introduced in this
section for T, has proven to be quite helpful in our dis-
cussion of the existence of an optimum spectrum for T, .
It has many other uses. We shall illustrate only two oth-
ers here. In Fig. 7 we show phonon-dispersion curves
along [110]for Nb3Sn as determined by inelastic neutron
scattering by Shirane and Axe (1971). The measurements
were carried out at the four temperatures indicated in the
figure, namely, 295, 120, 80, and 46 K. Considerable
softening of this acoustic branch is observed as T is re-
duced. The question arises: is this softening directly re-
lated to superconductivity? Cowan and Carbotte (1978)
have argued that it is not. In Fig. 8, we show the
electron-phonon spectral density for Nb3Sn as obtained

0.20 ~ I I I I I I
I

I I I l 0.8

0.1 5 0,6

3

& 0.10

O

0.05

~ ~

I

1

'~

3
0.4

0.2

0.00
0.00 1 0.00

I l i I I I I

20.00
0.0

30.00

FIG. 8. Electron-phonon spectral density n F(co) (dotted
curve) for Nb3Sn measured from tunneling inversion as a func-
tion of ~ compared with the functional derivative 5T, /5a F{co)
(solid curve) for the same system.

5
E

C9
CL

by Shen (1972). On the same figure we also plot the func-
tional derivative of T, with respect to a F(ru) and note
that the phonons below 4 meV, which are the modes
most affected by the softening depicted in Fig. 7, fall in a
region that is mostly ineffective for T, . In fact, perform-
ing a full Eliashberg calculation of the critical tempera-
tures with the omission of the entire range (co~3.8) in
er F(co) decreases T, by only 0.16 K. Phonon softening is
not the answer to the relatively high T, value found in
Nb3Sn

J. The isotope effect

0
0.G5 o.io O. l 5

[g go]
0.20 O. 25

FIG. 7. Phonon-dispersion curves for Nh3Sn along the [g'0]
direction measured by inelastic neutron scattering at several
diff'erent temperatures [from Shirane and Axe (1971)].

a F(co)=V(&M ro), (2.54)

where the entire mass dependence has been exhibited and
therefore A, =2f V(&M co)/code@ is independent of M, as
can be verified by introducing the variable V M co:—x in
this integral.

The functional derivative of T, with respect to er F(co)
also enters into a very elegant formulation of the isotope
eff'ect given by Rainer and Culetto (1979). Before
describing their work it is instructive to start with a brief
discussion of the dependence of T, on isotope mass M
based on the simple BCS-type equation (2.12) with p* set
equal to zero. First, we note that A, is independent of iso-
topic mass. In the next section, when the electron-
phonon spectral density rr F(co) is written explicitly in
terms of microscopic quantities, we shall show that for a
single component system the ion mass enters only as a
multiplicative factor on the frequency co, namely,
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If co, in Eq. (2.12) with @*=0is interpreted as a pho-
non energy, it will vary as the inverse of M to the power

and the only mass dependence of T, will be through
this factor, so that the isotope coefficient P defined by

0.5

0.4

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

d lnT

d lnM 2
(2.55)

0.3

which is the classical BCS result. In general, (2.55) does
not hold exactly for real materials except in special cases.
This can be seen readily if we use the McMillan equation
(2.18) and keep the Coulomb pseudopotential p*, which
does depend on ~, and hence on mass M for a phonon
mechanism. The well-known equation for p* is [Morel
and Anderson (1962)]

0.2

0.1

0.0
0.0

I

0.2 0.4 0.6 0.8

0.10

0,13

0.20

I

1.0
I

1.2

1+@ln

(2.56)

where p is a purely electronic quantity referring to the
average Coulomb potential on the Fermi surface and EF
is the Fermi energy. Differentiation of (2.56) with respect
to M gives

dp 1

d lnM 2
(2.57)

Noting (2.57) and differentiating Eq. (2.18) gives

1 1.04(1+A, )(1+0.62K, )
p

[A, —p*(1+0.62k)]
(2.58)

which reduces to —,
' when p*=0 and is, in general, less

then this when p* is finite. A plot is given in Fig. 9 as a
function of X for three values of p', namely, p'=0. 1,
0.13, and 0.2. It is clear that p is different from —,

' only
when I, is small, in which case it can even be negative
when A, and p' are nearly balanced, as is observed in o.U.

FIG. 9. Isotope effect coefficient p as a function of A, obtained
from the McMillan equation [see Eq. (2.58)] for three values of
p* (p*=0.1, solid curve; p*=0.13, dotted curve; and p =0.2,
dashed curve). For small values of A, , it is possible for p to be
small and even to be negative, although this region is not shown
on the figure.

When k gets much larger than p*, which is expected for
an electron-phonon system with large T„ the isotope
eAect will be close to its ideal value.

The above results were obtained using approximate T,
equations, but we can show quite generally that for
p =0 the exact numerical solution of the linearized ver-
sion of Eqs. (2.1) and (2.2) do indeed give p= —,', whatever
the shape of the spectral density. The proof of this fact
depends on the observation that any spectral density
a F(co) depends on M only through a F(co) =V(&M cu).

Inserting this into the eigenvalue equation (2.37) for T,
with p=0 gives the equation

0=rcT, Q f —5„~2n —I
~

+g f sgn(cu co„) 5, , (2.59)
x +(2~T, ) (n —m) x +(2irT, ) (m' n)—

where T, =v M T, and is a number independent of M,
since it is given by Eq. (2.59) which makes no reference to
the ion mass. It follows therefore that T, —I/v M and
that P= —,

' for p*=O and any a F(cu).

tion M, =n, M with n; some appropriate constant that
depends on i, we can show that Eq. (2.54) still holds. It
follows directly from this that if all nuclear masses are
changed by the same ratio 5M;/M, =—6M/M', the total
isotope effect P„„,defined as —d lnT, /d lnM, is just the
sum of all the partial P, 's. That is,

K. The Rainer and Culetto approach
to the partial isotope effect tot i (2.60a)

When exact numerical calculations of P are contem-
plated, in specific cases, the method of Rainer and Culet-
to (1979) is very revealing. It was first derived for a mul-
timass system M,. with corresponding isotopic coeKcients
P, —= —d lnT, /d lnM;. If we refer each mass in a com-
pound to some reference mass M according to the equa-

5a F(co)=—cu [a F(cu)]1 d 2 5M
2 dco

(2.60b)

and, for p, *=O,p„„=—,
' even in a compound involving

several diAerent mass species. Further,
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This formula follows directly from the fact that
a F(co):V—(&M co), which we have used already to show
that A, is unaffected by isotopic mass.

The corresponding change in T, is given by p = —0.15

6T,
5T, = J5a F(co) den,

5a F(co)
(2.61)

0.15— p, = 0.0

p. = 015
which can be rewritten, after an integration by parts, in
the form

d co ~Tc
51nT, = —J dcoa F(co)51nM

0 de 2T, 5cc2F(~)

3 0.10—

(2.62)

This form suggested to Rainer and Culetto (1979) that a
partial isotope effect coe%cient for the phonons of fre-
quency ~ be introduced according to

0.05—

with

P(co) =R(co)a F(co) (2.63) 0.00
0.0 80.0 40.0

(xneV)

60.0 80.0
I 1 I I I

~Tc
R(co) =

de 2T~ 5a F(~)
(2.64)

The total isotope effect is then

P„„=j dcoP(co) . (2.65)

The weighting function R (co) looks much like the func-
tional derivative of T„ itself, and is presented in Fig. 10
for a five-wide-bins model of cc F(co), which is also shown
on the same figure. The three R (co) curves are for
p* = —0. 15 (solid), p* =0.0 (short dash), and p* =0. 15
(long dash). While these curves all have the same general
shape, they vary considerably in absolute value. The
three systems considered include one in which some
high-energy nonphonon mechanism is involved in addi-
tion to a phonon contribution. The high-energy contri-
bution is simulated by a negative p*. In all three cases,
which are summarized in Table II, the T, is equal to 36
K, which is the value observed for the oxide La-Sr-Cu-O.
Other cases could have been considered, but the data of
Table II are sufficient to iHustrate our main points and to
give some understanding of how the partial isotope effect
works. When thinking about the curves presented in Fig.
10, it is important to remember that the a F(co) shown
(five wide bins of equal width and height) is to be normal-
ized difFerently in each of the three cases considered. It
has the smallest overall value for p*= —0. 15 and the

FIG. 10. Function R (co) vs co (in meV) entering the partial iso-
tope effect given by formula (2.64) for three values of p*
(p*= —0.15, solid curve; p*=0.0, short dashed curve; and
@*=0.15, longer dashed curve). This function is based on a
model e F composed of five bins of equal width, which is shown
for comparison.

largest for p =0.15 since, in this case, the electron-
phonon attraction must overcome some Coulomb repul-
sion. This is clearly illustrated in the second column of
Table II where the corresponding values of A, are entered.
We note that for p* =0.15, k is more than 5 times larger
than for p*= —0. 15, with the case of p*=0.0 intermedi-
ate.

Returning to Fig. 10 and R (co), we note that this func-
tion goes to zero at co=0 and co~oo and has a single
fairly broad peak falling somewhere at the end of the first
bin in a F(co) and hence at relatively low energy com-
pared with the maximum phonon energy in the system.
This shape for R(co) means that very low and very high
energy phonons contribute less to the isotope effect than
do phonons around the maximum in R(co). The data en-
tered in Table II help to illustrate this. The third column
gives the total isotope effect. This is followed by the par-
tial contributions p; from bins i = 1,5, respectively.
Starting with the case p = —0. 15, we see that even

TABLE II. Total and partial isotope effect for the five bins of equal-width model for o. F(co) shown in
Fig. 10.

—0.15
0.0
0.15

0.491
1.797
2.643

0.31
0.50
0.49

0.079
0.152
0.166

0.087
0.149
0.152

0.054
0.092
0.100

0.048
0.061
0.047

0.039
0.043
0.027
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though each bin is of equal size, the erst two bins con-
tribute the most to p because they fall around the max-
imum of R (co) while the last three contribute less because
they fall in the slowly decaying tail of R(co). We note,
also, that in all cases each of the last three bins contrib-
utes somewhat less as the index i increases from 3 to 5,
because R(co) drops with increasing co in this region. For
p*= —0. 15, the total isotope effect p„, is 0.315, with
more than half of this value coming from the first two
peaks. This case could be thought of as simulating the
situation observed in La-Sr-Cu-0 for a model in which a
joint mechanism of high-energy-boson-plus-phonon ex-
change is considered [Allender et al. (1973); Marsiglio,
Akis, and Carbotte (1987a, 1988); Marsiglio and Carbotte
(1987b, 1987c); Marsiglio and Carbotte (1988a)]. For the
phonon contribution, the oxygen modes would be
thought of as roughly described by the last three higher-
energy bins contributing together 0.141 to the oxygen
isotope effect, which is close to the measured value
0.16—0.20 [Batlogg, Kourouklis, et al. (1987); Faltens
et al. (1987)]. The reason the total p is considerably
below —, in this case is due to the excitonic contribution.
For a pure phonon model P=O. 5, as we see in the second
row of Table II, and for p*=0.15, it is only slightly less,
namely, 0.475, which is representative of many strong-
coupling conventional superconductors. It is clear from
our discussion so far that the total isotope effect can be

I

reduced from 0.5 in two ways: either the Coulomb pseu-
dopotential p* is accounted for or some high-energy non-
phonon mechanism is present. In addition, not all pho-
nons contribute the same amount to P. The very low and
very high energy phonons are less effective than those
around 1/5 the maximum phonon energy in the system,
at least in the models considered here and by Rainer and
Culetto.

III. TUNNELING AND ITS RELATION
TO THE ELECTRON-PHGNON INTERACTION

A. Real-axis Eliashberg equations
and reduction to BCS

Discussions of the current-voltage characteristics of a
tunneling junction have traditionally made use of the
real-frequency-axis formulation of the Eliashb erg
[Schrieffer et al. (1963); Schrieffer (1964); Scalapino et al.
(1965); Scalapino et al. (1966)] equations, which are de-
rived iq. many places including the review of Allen and
Mitrovic (1982). They consist of two coupled nonlinear
integral equations with singular kernels involving a fre-
quency (co) and temperature (T) dependent complex gap
6(co, T) and renormalization Z, (co, T) They. take the
form [Scalapino (1969)]

r

A(co, T)Z, (co, T)= f der'Re ' f dvn F(v)
0 co' —6 (co', T)

X [n(v)+ f( —co')] 1

6)+CO +V+ l0 67 CO V+lO

—[n (v)+f(co')]
&+v co +lO

1

co v+co +lO

CO ' T—p, f den'Re ' [1 2f(co')]-
')/co' —5 (co', T)

(3.1)

t

[1—Z, (co, T) jr'= f ™den'Re — f dva F(v)
0 co' —6 (co', T)

X [n (v)+f ( —co')] 1
~ ++

Q7 + CO +V+ l 0 CO CO V+ l 0

+ [n(v)+ f(co') ] — +1 1

i CO CO +V+l0 CO V+CO +l0
(3.2)

where co, is a boson energy cutoff introduced into the Coulomb repulsion term proportional to p in order to achieve
convergence in Eq. (3.1). It is often taken to be 10 times the maximum boson energy in the spectral density a F(co). If
this is done, the first integral over co in (3.1), which deals with the boson kernel, can be extended to infinite if one
wishes, because convergence has already been achieved by co'=co, . In Eqs. (3.1) and (3.2), f(co) is the Fermi function
I/(e~"+1) and n(v) is the Bose factor I/(e~ —1) with p—:(ksT, ) '. The real part of the product b(co, T)Z, (co, T)
and of Z, (co, T) itself is determined by the principal-value integrals in (3.1) and (3.2), while the imaginary part comes
from the delta-function parts with I/(x+iO )=P/x+iir6(x), where I' denotes a principal part. Because of the oc-
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currence of denominators that vanish, the integrals in (3.1) and (3.2) need to be done carefully when numerical work is

attempted.
To get some feeling for these complex equations, it is instructive to reduce them to BCS. To achieve this end, several

approximations are required. First, all the boson factors in (3.1) and (3.2) are ignored, i.e., real boson scattering process-
es are left out. Further, the imaginary parts of 5 and Z, are neglected; h(co, T) is replaced by its co=0 value, up to
co=co, and taken to be zero after that; and Z, is replaced by its value in the normal state at m=0 and T =0. With
these approximations, we get

boZ~(0, 0)=f dco'Re f dva F(v) f( —co')
+co 60

2
CO +V

co Q0—p f dco'Re [1 2f (—co')]
+co 60

(3.3a)

and

[1—Z~(0, T)]co=f dco' f dv a'F(v)
0 0 , f( —co')+ f(co')

co —(co'+ v) co (co v)
(3.3b)

where b.o in the first equation (3.3a) is b, (0, T). In the last
equation, we must cancel a factor of co that appears on
both right- and left-hand sides and then take the limit of
co —+0. This gives the mass-renormalization factor A, (T)
at finite temperature (Grimvall, 1968, 1969):

1+A, 0 ~2+g2

X I 1 —2f [Qe +60(T)]I, (3.7)

with

Z~(0, T) —1 =—A, ( T) (3.4a)
which is the usual BCS equation at finite temperature
[Bardeen et al. (1957)] with the temperature T made ex-
plicit in h0 on both sides of the equation.

I 1

A(T)=2 f dco' f dva F(v) +
0 0 (co'+ v) (co' —v)

Taking now the T =0 limit of Eq. (3.4) gives
I

Z~(0, 0) —1=f dva F(v) f0 (co'+ v)

(3.4b)

B. Better solutions

Less approximate but still analytical solutions of (3.1)
and (3.2) are possible and have been discussed in the
literature. Of these, the McMillan (1968) equation for
the critical temperature is the best known and is also the
most widely used. We take a two-step model for the gap
[Leavens and Carbotte (1974)]

= f "2"F"
d =~

0 V
(3.5)

In addition, if we neglect co' in each of the denominators
in the first integral of (3.3a), we arrive at

b 0( T), 0 & co & coo,
b(co, T)= '&

Ct) ) C00

1+1,, 0(cu(m0,

(3.8a)

b,o(T) =f dco' [1 2f (co')], —(3.6) Zs( co~ T ) (3.8b)

where we have made explicit the temperature dependence
of A0 and where the cutoff co, is now important for both
A, and p, colltllbutloiis. Filially, settlllg e—:+co 60, we

obtain

with co0 some cutoff frequency that is assumed to be
much less than m, . All boson factors are again neglected
and the limit T= T, is taken, which means that Eq. (3.1)
can be linearized in the gap value. Equation (3.1) now
reads

60f, [1 2f(co')]+6, f—, [1—2f(co')]
0

(3.9)

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



1052 J. P. Carbotte: Properties of boson-exchange superconductors

and

(3.10)

where the last two terms in (3.9) are just b, /(1+A, ),
which has been solved for explicitly in (3.10). The second
term in (3.9) can be worked out to be

Vf dva F(v)—ln 1+1+k 0 V COp

(3.11)

Here we have used the fact that ~, ))~0 and co, ))v for
all important frequencies v in a F(v). Moreover (Morel
and Anderson, 1962),

which is one version of the famous McMillan equation.
Later, Allen and Dynes (197S) suggested substituting for
&co) the value co&„given by Eq. (2.16). One limitation of
(3.17) is that it is not always made clear what value of p*
should go with this choice of &co). Formula (3.12) sug-
gests that the appropriate choice is certainly not the
value used in a full Eliashberg numerical solution with
cutoA' co, . It should correspond to a somewhat lower
cuto6' equal to ~0 that might be associated with the max-
imum boson energy in the system. Even if this problem
about the choice of p* is overlooked, we have seen in the
previous section that McMillan's approximate equation
stops being satisfactory when X get large. In that case,
we need to solve numerically the full Eliashberg equa-
tions.

1+p ln
C00 C. Solution of Leavens and Carbotte

If we take v/coo«1, Eq. (3.9) reduces to an eigenvalue
equation for T, of the form

1+1,=f, f dva F(v)2, +
0 CO 0 CO +V CO V

Leavens and Carbotte (1974) have suggested a com-
pletely analytic formula for T, without the need of intro-
ducing numerically fitted parameters as was done by
McMillan. Their equation, however, introduces a new
moment of a F(co), namely,

1. 13600—p*ln
kg T~ Mp

1. 13cop
P 111

k~T,
(3.13) 2FX—=2f d

F
1 1+ '

0 V V
(3.18)

where 3 = Jo"a F(v)dv is just the area under the spec-
tral density [Leavens (1977)]. If we define an average
phonon energy by [Dynes (1972)]

&co) =2A/k

and replace the denominators co'+ v and v —co' in the first
integral of (3.13) simply by v, we get

Their arguments are based on the following observation.
In Figs. 11 and 12, we show complete numerical solu-

4.p-

I+X=f [1 2f (co')]A, —
0 CO

(3.14)

or

1+A,
kg T~ = 1.136)pexp

k —p*(1+A, & co ) /coo)
(3.15)

I.2

E pe

0.43

This suggests taking coo=c '&co) where c is some con-
stant and trying, as a semiphenomenological form, an
equation -0.8-

10 '40. 50.

k~T, = &co)a exp
b(1+A, )

A,
—p*(1+cd, )

(3.16)
-I.2 ™

-1.6-

with the constants a, b, and c to be fit to data on real ma-
terials. Following McMillan (1968), Dynes (1972) sug-
gested, on the basis of many solutions of the Eliashberg
equations for real materials for which a F(co) were
known from tunneling inversion, the explicit form

& co ) 1.04( 1+k)
exp

A,
—p*(1+0.62K, )

(3.17)
FIG. 11. Real, 61(co), and imaginary, 62(co), part of the com-
plex real-frequency-axis gap A(e):—A, (e)+ iA&(e) for
Pl3O 9Bio l at T=0 as a function of cu in meV.
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myV

l.6-
I+A, =j J dva F(v)2, +

0 03 0 6) +V CO V

l,4

1.0
T/ T ~ .864

1. 13cop—p'ln
B c

(3.19)

O.B

0.6

0.4

O.2

0

-0.2+
-0.4

-0.6 =-

IO.

QJ meV
I

40. SO.

Q7 I

I+A, = 2J dva F(v) f0 0

I

2kB T,
tanh

M +V

Further, Leavens and Carbotte note that
(I/co')f (co')/(v cu')—is peaked about co'-=0. If the im-
portant frequencies in a F(v) are large compared with

k&T, [which measures the exponential decay of f(co')],
we can replace this factor by (I/co')f(co')/(v+co') and
get

-O.e-
- I.O-

1. 13cop—p*ln (3.20)

FICx. 12. Real, A&(co), and imaginary, 62(co), part of the com-
plex real-frequency-axis gap A(~) =A&(co)+i A&(co) for
Pbp 98ip, at T=0.964T, as a function of co in meV.

The first integral in (3.20) can be worked out to read

1.13cop—A, +kin
B c

which gives a final equation for T, of the form

(3.21)

tions of the Eliashberg equations (3.1) and (3.2) for the
real and imaginary part of the gap. The materia1 is
Pbp 9Bip, and the solutions, by Vashishta and Carbotte
(1973), are based on a tunneling-derived spectral density.
The figures apply, respectively, to a temperature T=O
and T/T, =0.964 (very near T, ). Both real (b, &) and
imaginary (b,2) parts show a great deal of structure and
cannot be fit easily to a simple function. The real part of
the gap shows a small increase as cu increases from the
value zero; then it exhibits two peaks corresponding to
the transverse and longitudinal peaks in the phonon spec-
trum of Pbp 9Bip &. At approximately the maximum pho-
non frequency in a F(cu), it is seen to drop precipitously
through zero and to become negative, showing a deep
minimum and then a gradual increase toward a constant
small negative value. Leavens and Carbotte (1974) no-
ticed that approximating h(co') by a constant h, o in the
right-hand side of (3.1) for the entire range co'=(O, coo),
with coo the maximum phonon energy in a F(co), un-

derestimates the contribution of this integral in this re-
gion. This arises because the full b, (co') actually increases
as we increase co' from m'=0, as we have noted. This led
Leavens and Carbotte to suggest that ~0 be fixed at the
maximum frequency in the spectral density, which now
gives p* a definite value, and that additionally the 6
contribution for co') cop be dropped to compensate for
the underestimation of the real part of the gap in the first
integral. It seems reasonable then to approximate the
gap equation at T, by (3.13), but with the second term
left out on the right-hand side. This suggests the approx-
imate form

1+k+A,
kB T, = 1.13cupexp

p
(3.22)

This is an analytic formula for T, that is semiquantitative
and has no fitting parameters. Furthermore, cop has a
definite meaning and so does p*, since mp is the max-
imum frequency in a F(co). If we assume that coo/v)) 1

for a11 important v in the spectral density, then

k=-k ln
COp

(3.23)

and

kB T, —= 1.13copexp
1+k

p
1n

p

600

(3.24)

If we should further replace A. —p* in the second ex-
ponential by A, , which is reasonable when A, is much
larger that p*, we arrive at

kB T = 1.13&) exp
1+X

p
(3.25)

which is a simplified form of the Allen-Dynes equation.

D. Relation between the real-
and the imaginary-axis equations

Before turning to the zero-temperature Eliashberg
equations on the real-frequency axis and a discussion of
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a&

a~(z —z, )

a3(z —z~)
4
4

a„(z—z„,)1+

(3.26)

such that

C~(z;)=u, , i = I, . . . , X . (3.27)

The coefficients a, are then given by the recursion

a, =g;(z, ), g, (z, )=u;, i =1, . . . , X,
g~ i(z~ i ) —g~ i(z)

g~(z) =
(z —z~, )g~ . , (z)

It can be shown that

A~(z)
C~(z) =

BN

(3.28)

(3.29)

where A~ and B& are polynomials given by the recursion

superconducting tunneling, we shall discuss the relation-
ship between the real- and the imaginary-axis equations.

First, the real-frequency-axis equations (3.1) and (3.2)
can be obtained from the imaginary-axis equations (2.1)
and (2.2) by formal analytic continuation, and the two
sets of equations are fully equivalent provided the cutoff
m, is infinite. For a finite cutoff, one must remember that
a sharp cutoff on the real axis does not analytically con-
tinue to a sharp cutoff on the imaginary axis and vice ver-
sa. This problem was discussed at length by Leavens and
Fenton (1980). Still, it is conventional to use a sharp
cutoff in both cases, and so there is a small difference be-
tween the two formulations. What is often done when
one is using tunneling-derived data for iz F(v) in the
imaginary-axis formulation is that the Coulomb pseudo-
potential is readjusted to get the exact experimental T,
va1ue.

Another method of relating the real- and the
imaginary-axis solution of the gap equation that has
often been employed in particular calculations is to ob-
tain the real-axis gap and renormalization by analytically
continuing the Matsubara h(iso„) and Z(ice„), given by
Eqs. (2.1) and (2.2), to the real axis by means of Pade ap-
proximants [Vidberg and Serene (1977)]. The X-point
Pade approximant to a complex function u (z) of the
complex variable z, whose X values u, (i =1, . . . , N) are
given at X complex points z, (i = 1, . . . , X), is defined as
a continued fraction:

A, +, (z) = A„(z)+(z —z„)a„+,A„,(z),
n =1,2, . . . , X—1,

(3.31)

B„+,(z) =B„(z)+(z —z„)a„+,B„,(z),

n =1,2, . . . , X—1,

(3.32)

Vidberg and Serene (1977) have tested this method on
several general cases and have applied it to the problem
of obtaining the real-axis solutions h(co) and Zs(co) from
the imaginary solutions b (i co„) and Zs (i co„) at the
Matsubara frequencies. The main conclusions of their
analysis are as follows:

(1) In order to get a good approximation to a function
structured in the interval [O, co] on the real axis, one
should use a suScient number of input points from the
interval [O,ice'] on the imaginary axis where ice' belongs
to the range of the imaginary axis where the function at-
tains its asymptotic form (usually i co is several times icy).

(2) The number of digits in the known values of the
function u, (i =1, . . . , N) is crucial for obtaining an ac-
curate analytic continuation.

(3) Overall agreement between the b, (co) and Z&(co) ob-
tained by means of the X-point Pade approximant and
those tabulated by Rowell et al. (1970) is good, being ex-
cellent in the low-frequency range (from zero up to
several meV) and somewhat less satisfactory in the pho-
Ilon regIon.

It is usually only the zero-temperature solutions that
are analytically continued in this way. Leavens and
Ritchie (1984, 1985) have discussed the case of finite T
and, in particular, T near T„which is somewhat more
complicated. Similar results were also given by Blaschke
and Blocksdorf (1982) in the course of their discussion of
optical properties in strong-coupling theory. In all cases,
the phonon structure is not accurately represented by the
numerical work, although, for many purposes, this is not
an important limitation, particularly when dealing with
quantities that involve integrals over the quasiparticle
density of states or other related quantities.

A new and better method of analytic continuation
from imaginary to real axis has been introduced recently
by Marsiglio, Schossmann, and Carbotte (1988). Their
final equations for the renormalized frequency co(co) and
pairing function P(co) are [here co(z) —=zZ (z)]

co(i co )
co(co)=co+i~Tg, [A,(co —iso ) A(co+ice )]- ,

=i [ei (ice )+P (ice )]'~

+i' dz, cx E(z)[n(z)+f(z —co)],
oo co(co z )

67 . Cg Z CO Z
(3.33)
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(ice )
P(co)=&'wTg, [A,(cu —ice )+A(c,o+ico )

—2p, *O(co, —~co ~]
~ =) [S (icy )+P (ice )]'

+Brf ™dz, q
a F(z)[n(z)+f(z —co)] .

[co (co —z) —P (co —z)]' (3.34)

These equations give solutions for the real-axis gap and
renormalization that are essentially identical to those ob-
tained from the solution of the real-axis equations even in
the phonon region. Results for the quasiparticle density
of states in Pb are shown in Fig. 13 and are barely discer-
nible (few parts per thousand) from the corresponding re-
sults obtained from the real-axis equations (3.1) and (3.2)
(with a smeared cutoff in p*, as discussed by Marsiglio,
Schossmann, and Carbotte (1988). The phonon structure
near 5 and 10 meV is clearly identifiable in the quasipar-
ticle density of states given by

N(~) R co
(3.35)N(0) +co —b (co, T)

where N(0) is the single-spin electronic density of states
at the Fermi energy. In the inset of Fig. 13, we show re-
sults when a bin structure is used for defining a F(co).

Oscillations in the density of states are faithfully repro-
duced in the numerical work, indicating the accuracy of
the method. This new method for solving for the real-
axis gap function is about two orders of magnitude faster
than the conventional method and does not involve any
principal-part integrals with singular integrands. Nu-
merically, it is therefore much superior to the older
method, and we recommend use of (3.3) and (3.34) in con-
junction with (2.1) and (2.2) over (3.1) and (3.2), and over
the Vidberg-Serene continued-fraction method.

E. The zero-temperature limit and tunneling

The zero-temperature version of the Eliashberg equa-
tions plays an essential role in tunneling inversion. The
equations are obtained as the zero-temperature limit of
Eqs. (3.1) and (3.2) and are

t

b, (co)Zs(co) = f den'Re f dv(z F(v)
0 co' —5 (co')

1

co + co +v+ l 0 co co v+ I 0

and

I„f—"'d R.
0 ~&2 +2( I

)

[1—Zs(co)]co= f den'Re f dva F(v)
)/co' —6 (co') .+

co+6) +v+ l 0 co 67 v+l0

(3.36)

(3.37)

I.20

I.I5-

o
I IO

l.05—

I.OO-

0.95-

0.9$ 5.0 IO.O

(meV)
l5.0 20.0

FICi. 13. Frequency dependence of the quasiparticle density of
states in Pb calculated by the analytic continuation technique
based on Eqs. {3.33) and {3.34). On the scale of the figure, the
results are indistinguishable from those generated by the real-
axis equations {at zero temperature) {3.36) and (3.37). The
dashed curve in the inset shows the oscillations of the density of
states if the o. F{~)spectrum is treated as a set of 5 functions
with spacing Ace=0. 1 meV.

I

For given microscopic parameters a F(v) and p, one can
calculate the quasiparticle density of states N(co)/N(0)
given by (3.35) and from it the current (I)—voltage (V)
characteristics of a tunneling junction. For a normal-
metal —insulator —superconductor junction (NIS), the for-
mula for I versus Vis [Meservey and Schwartz (1969)]

(3.38)

at zero temperature, the derivative of the thermal factors
in (3.38) reduces to a delta function, so that we get

dI
dV

dI
dV

=Re (3 39)&V' —~'(V)

where S and % denote "superconducting" and "normal
state, " respectively. We have already seen in Fig. 13 that
this last function contains a sharp picture of a F(v).
McMillan and Rowell (1965, 1969) have invented a tech-
nique to go from a knowledge of the measured quasipar-
ticle density of states

Is( V) ~ fde Re [f(co) f(co+V)];—
co —b, (co)
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X (V)=- dI dI
dV

(3.40)

5X, (V)
5a F(v)= f dV

5a F(v)
[X (V) —X, (V)] .

(3.41)

The new spectral density is

a,F(v) =aoF(v)+5a F(v) . (3.42)

The procedure is continued until convergence is reached.
A unique a F(v) and p* result, and they are referred to
as the measured microscopic parameters for that particu-
lar material. Results obtained in this way for Pb are
shown in Fig. 14 (dotted curve).

5.5

(where the subscript m denotes "measured") to a F(v)
and p, (or p*, if you wish). The procedure followed is
simple. A first guess is made for the two quantities,
namely, aoF(v) and po. Equations (3.36) and (3.37) are
solved numerically to get b, (co) and from it an initial cal-
culated value of the density of quasiparticle states
N, (co)/X(0), which is given by (3.35). Here the subscript
c stands for "calculated" and the superscript 0 for a first
choice. In addition, the functional derivative
5X, (V)I5a F(v), which gives the infinitesimal response
of X, (V) to a change in a F(v), is computed. This is
used to make a second guess for a F(v) through the
equation

The inversion procedure just described requires data
only up to the voltage that corresponds to the maximum
phonon energy in a F(v) plus the zero-temperature gap
value. As a first test of the Eliashberg equations, one can
use the measured spectral density and the zero-
temperature equations, (3.36) and (3.37), to predict the
quasiparticle density of states at higher voltages in the
multiphonon region. When this is done and the theoreti-
cal results are compared with experiment, McMillan and
Rowell (1969) get, for the case of Pb, the excellent agree-
ment shown in Fig. 15. This remarkable figure consti-
tutes strong evidence for the validity of the Eliashberg
equations in the conventional superconductors. Many in-
versions have now been carried out for a variety of sys-
tems, including many A15 compounds. A tabulation of
earlier data is given by Rowell, McMillan, and Dynes
(1970).

It has turned out that not all data can be treated as
easily as that for Pb. In some cases it has proved very
dificult to produce good-quality junctions and often a
proximity layer will have formed between the supercon-
ductor and the oxide barrier. In this case the interpreta-
tion of data is more dificult, but Arnold and other
researchers [Wolf and Zasadzinski (1974); Arnold (1978);
Wolf et al. (1979); Arnold et al. (1978, 1980); Wolf and
Arnold (1982)] have devised a new inversion method in
which the proximity layer is explicitly accounted for by
introducing appropriate modifications of the underlying
mathematical equations. However, it is necessary to in-
troduce a fitting parameter, as the proximity layer is not
well characterized. This introduces some uncertainties in
the inversion procedure, which, although it is somewhat
less satisfactory, has, nevertheless, proved useful in many
cases.
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a F(~)2
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I.OO

0.98
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0.5-
0.94 I I I I

l3 l5 I 7 I9
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I I

23 25
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FIG. 14. Electron-phonon spectral density a F(cu) measured in
tunneling experiments (dotted curve) compared with that which
is calculated from first principles (solid curve).

FICx. 15. Predicted (solid curve) normalized density of states in
Pb as a function of energy co compared with measured values
(open dots) as a function of energy measured from the gap edge.
The measured density of states divided by the BCS density of
states above 11 meV was not used in the fitting procedure that
produced a I' (co), and a comparison of theory and experiment
in the multiple-phonon region is a valid test of the theory
[McMillan and Rowell (1969)].
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Once an a F(v) is known from tunneling inversion, a
second test of the validity of the Eliashberg equations can
be carried out. One can calculate from the finite-
temperature Eliashberg equations on the imaginary axis,
(2.1) and (2.2), a variety of superconducting properties
and compare with experiment. In general, the degree of
agreement with experiment obtained is remarkable, as we
will see in detail in Sec. V. In fact, at this point, it is
probably the experiments that lag beh1nd.

F. Calculation of the spectral density function

A third test involves first-principle calculations of the
electron-phonon spectral density a F(v) which require
knowledge of the electronic wave functions, the phonon
spectrum, and the electron-phonon matrix elements be-
tween two single-particle Bloch states. It is beyond the
scope of this review to give a detailed description of such
work, and the reader is referred to the book of Grimvall
(1981) for a comprehensive presentation. It will be
sufhcient here to give some of the highlights. The general
equation for the electron-phonon spectral density a F(v)
that enters the Eliashberg equations is [Carbotte and
Dynes (1968); Carbotte (1969); Dynes et al. (1969);
Leung et al. (1976a, 1976b)]

a F(v)= A,
(2m)

Xg f d k5(ek)

1

N (0)vari

&& f d k'5(ei, , )lg„„, l 5(v —co (k' —k)),
(3.43)

where Q, is the atomic volume, ek is the energy of the
Bloch state gi, with band index implied in the momentum
label k, j is a phonon branch index with phonon frequen-

cy ~ (k' —k), and gki, ,
~

is the electron-phonon matrix ele-

ment. The two Dirac delta functions of energy limit the
integrations over momentum to the Fermi surface, and
the Fermi energy has been taken to be zero. Finally, in
the notation of Eq. (3.43), the single-spin density of states
1S

Q, Q, dSk
N(0)= f d k5(ek)=

3 f(2vr) (2m )' ~F I&Uk I

(3.44a)

(3.44b)

where M is the ion mass, V is the crystal potential, and

where, because the integration is over the Fermi surface
only, dS& is an element of Fermi surface area and Uk is
the Fermi velocity. The electron-phonon matrix element
is related to the matrix element of the gradient of the
crystal potential and the phonons. It is

' 1/2

ej(k) is the polarization vector for the (jk}th phonon
mode. We note that g„„,. goes Jikt. 1/~M, and, of
course, co~(k' —k) in Eq. (3.43) goes like I/v'M. This
means that the delta function in the definition of
a F(co)/&M goes like &M times a delta function in-

dependent of co and independent of mass; Eq. (2.54) fol-
lows. For a compound with atoms of different masses M
we can refer each to some reference mass M through
M =o, M with a some appropriate number. In this case

g&k. again goes like the scaling mass M to power minus
one-half, as does co (k' —k), and Eq. (2.54) also holds
with no change.

Tomlinson and Carbotte (1977) have computed (3.43)
for Pb from first principles. They use a pseudopotential
[Appapillai and Williams (1973); Anderson and Gold
(1963)] to characterize the electron-ion potential and
multiple plane waves for the corresponding Bloch states.
The phonons are taken from a Born —von Karman fit to
the phonon-dispersion curves measured by coherent in-

elastic neutron scattering [Brockhouse et al. (1962); Sted-
man et al. (1967); Kotov et al. (1968a, 1968b); Cowley
(1974)]. In Fig. 14, the theoretical results obtained (solid
curve) are compared with the measured tunneling spec-
tral density (dotted curve). There is a great deal of agree-
ment between these two spectral densities as to shape, al-

though there certainly are minor disagreements in detail.
Moreover, the theoretical value obtained for the
electron-phonon mass-renormalization parameter A, is
1.32, to be compared with 1.55 from tunneling. At
present, we assign the difference between these two quan-
tities (which is significant) to inaccuracies in the calcula-
tions. Having said this, it is clear that the measured
a F(co) is very closely related to the phonon frequency
distribution and reAects well its shape. We discuss this
important point next.

G. Comparison with the phonon distribution

Some of the discrepancy seen in Fig. 14 between calcu-
lated and measured spectral density can be traced to
deficiencies in the Born —von Karman model used to
specify the phonons. Because the phonon-dispersion
curves are highly structured in Pb [Cowley (1974)], long-
range force constants are required in order to get a good
fit in a harmonic analysis. It has been found, in fact, that
a fit to only a few high-symmetry directions [Dynes et al.
(1968)] is not sufficient to produce a reliable phonon fre-
quency distribution F(co) from the derived Born —von
Karman fit. This is illustrated in Fig. 16, compiled from
various sources by Rowell and Dynes (1970). The upper-
most curve is the phonon frequency distribution F(co) for
Pb calculated by Gilat (1965) from a fit to only high-
symmetry measured phonon-dispersion curves [Cowley
(1974)]. Dynes et al. (1968) have noted that the van
Hove singularities present in this curve, that are in
poorest agreement with the tunneling results (shown as
the solid curve in the frame second from the top), corre-
spond to off-symmetry regions in the Brillouin zone not
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sampled in the fit. The dashed curve in the second frame
is a result of a direct sampling of all measured phonons
on and off high symmetry by Stedman et al. (1967). This
greatly improves the agreement with tunneling. The
shapes of the two curves are close except for a small shift
of the upper longitudinal peaks. The dashed line in the

LEAQ

lowermost frame labeled as Roy and Brockhouse (1970)
was obtained by these authors through incoherent inelas-
tic neutron scattering on a polycrystal sample of Pb. It is
compared with the solid curve, which is the tunneling re-
sult for a F(Eo) folded with the resolution of their spec-
trometer. The agreement is excellent, and we can con-
clude that the tunneling-derived a F(co) agrees well with
the measured phonon frequency distribution F(co) in Pb
and, by implication, with the shape obtained from first-
principle calculations of a F(EO), as these are based on
the measured phonons. Further evidence that this is so is
given in Fig. 17. In the lower frame, we show a compar-
ison of tunneling results (solid curve) for a F(EO) in
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FIG. 16. Phonon frequency distribution for Pb, upper frame, as
derived by Gilat (1965) through a Born —von Karman analysis of
the measured high-symmetry phonon-dispersion curves from
coherent inelastic neutron scattering. The second frame gives
the phonon frequency distribution (dashed curve) determined
by Stedman et al. (1967) through a sampling of phonon energies
throughout the Brillouin zone by inelastic neutron scattering
and its comparison with the tunneling-derived a I (co). The
second to last frame is data on the phonon frequency distribu-
tion obtained directly from inelastic incoherent neutron scatter-
ing on polycrystalline Pb by Kolov et al. (1968); the last frame
is a comparison of the tunneling a I' (co) smeared by the instru-
ment resolution of the neutron spectrometer (solid curve) com-
pared with polycrystalline results for F(co) by Roy and Brock-
house (1970). From Rowell and Dynes (1970).
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FIG. 17. Electron-phonon spectral density a F(co) (solid curve,
upper frame) for Pbp 4pTlp 6p determined from tunneling experi-
ments and convoluted by instrument resolution of the neutron
spectrometer, compared with the neutron results for the pho-
non frequency distribution I'(co) (dashed curve) measured by
Roy and Brockhouse (1970) by incoherent inelastic neutron
scattering. The lower frame shows the tunneling results (solid
curve) compared with the phonon frequency distribution
(dashed curve) determined from a Born—von Karman analysis of
the phonon-dispersion curves in Pbp 4pTlp 6p by Brockhouse
et al. (1968).
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F(co)=—g&(co —~, (k))1
(3.45)

Pb0 4T10 6, which we compare with the phonon frequency
distribution (dashed curve) obtained for the same system
through a Born —von Kar man fit to high-symmetry
phonon-dispersion curves measured by inelastic coherent
neutron scattering by Brockhouse et al. (1968). Dynes
et al. (1969) have also calculated a F(co) in a one-plane-
wave pseudopotential model for this alloy and find no
significant change in shape from F(co). The degree of
agreement between the tunneling-derived a F(co) and the
phonon frequency distribution is very good. This is not
surprising, since the phonon-dispersion curves for this al-
loy are smooth and a fit only to high-symmetry phonons
can be expected to give a good representation of the pho-
nons throughout the Brillouin zone. We note that the
position and width of the two prominent peaks in Fig. 17
agree and that the main difference is that F(co) shows
sharp van Hove singularities while the tunneling result
does not. This is partially an artifact because the phonon
lifetime effects present in the alloy are left out of any
Born —von Karman analysis, which necessarily assumes
sharp phonons [Rowell and Dynes (1970)]. But inelastic
incoherent neutron scattering on polycrystaHine samples
gives F(co) directly, which, in principle, includes lifetime
effects. This is shown in the upper frame of Fig. 17 as the
dashed line and is compared with the tunneling a F(co)
(solid curve) folded into the resolution function of the
neutron spectrometer. The agreement is very good. On
the basis of these results, it has become conventional to
compare neutron results for F(co) directly with tunneling
results for a F(co).

That a F(co) turns out to look nearly the same as the
frequency distribution F(co) is not very surprising since
the frequency distribution is given by a formula that is
not so different from Eq. (3.43) for a F(co). It is worth
contrasting the two. A known prescription for F(co) is

er. The proportionality is, however, not exact as can be
seen in Fig. 18. What is shown in this figure is the ratio
a F(co)/F(co) denoted by a (co) calculated by Tomlinson
and Carbotte (1976) for the case of Pb. While some un-
certainty in a (co) may arise because these authors used a
Born —von Karman model to specifiy the phonons, this is
probably not very serious for the ratio of a F(co) to F(co).
Besides some small, almost random wiggles that are not
of interest, we note in Fig. 18 a gradual increase in the
coupling of the electrons to the phonons as cu increases.
The lower-energy end corresponds mainly to coupling to
transverse phonons while the high end deals mainly with
longitudinal phonons. While the variation in a (co) is
certainly significant, it is not sufficient to profoundly
affect the shape of u F(co) relative to F(co).

A comparison of tunneling results on a F(co) for
Nb3Sn and inelastic incoherent neutron-scattering results
for the generalized phonon frequency distribution G(co)
is given in Fig. 19 where the ratio of a F(co) /G(co) is also
shown [dashed line; Schweiss et al. (1976)]. It is impor-
tant to realize that for an aHoy system with atoms of
differing Fermi scattering length which describes the in-
teraction between the incident neutron and the scattering
nucleus, G(co) can be somewhat different from F(co), but
we shall ignore this here. We see that the efFective u (co)
(dashed curve) obtained for Nb3Sn in this way is quite
different from that obtained for Pb. It is largest at low
phonon energies, dropping significantly across the main
peak at intermediate energies and increasing slightly over
the small high-energy hump. Thus a (co) is not indepen-
dent of cu, but, to a first approximation, it is probably
justifiable to ignore this effect, particularly when it enters
quantities that depend on an integration of a F(co) over
all frequencies. In this case it is more the overaH shape
and strength of a F(co) that matters, and other details
are less important.

with X, the number of ions in the system; j, the phonon
branch index; and k, the momentum ranging over the
first Brillouin zone (FBZ). Thus each phonon mode
enters (3.45) once and is given equal weighting. The
same delta function that puts phonons into bins accord-
ing to energy co in (3.45) also appears in (3.43). One
difference between these two formulas is that for a F(co)
each phonon co.(k —k') is weighted by the appropriateJ

2strength of the electron-phonon interaction ~gkk. ~ ~
rather

than by one. Furthermore, in (3.43), the phase space
over which the label k —k' in the phonon variable co

varies is controlled by electronic variables, namely, by
the momentum transfer for electron scattering from Pk to

But as initial and final electron states are each aver-
aged over the Fermi surface, k —k' will, in general, range
over several Brillouin zones and each phonon Inode will
be sampled several times. Thus the main difference be-
tween a F(co) and F(co) is that each phonon is weighted
in a slightly different way, and so it is not surprising that
these two functions are nearly proportional to each oth-
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FIG. 18. Calculated a'(co) for Pb using a multiple-plane-wave
electronic structure and the measured pho non-dispersion
curves.
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FIG. 19. Measured incoherent inelastic neutron-scattering gen-
eral frequency distribution for Nb, Sn (solid dots), as a function
of energy Ace, compared with the electron-phonon spectral den-

sity measured in tunneling experiments (solid curve). The ratio
a'(Ace) =aF(%co)—IG(A'co) is shown by the dashed curve [from
Schweiss et al. {1976)].

FIG. 20. Calculated isotropic o, F4', co) function for Zn as a func-
tion of reduced frequency co/co, with cu, =4.178 X 10' rad/sec,
the maximum phonon frequency in the crystal. Multiple plane
waves with a fitted pseudopotential and measured phonons were
employed [Tomlinson and Swihart {1979)j.

H. More about the calculations of a'F(ai)

Returning to first-principle calculations of a F(ro), the
only other multiple-plane-wave calculations in the s-p
metals besides Pb (which include a distorted, nonspheri-
cal Fermi surface) with which we are familiar and for
which a full n F(co) spectrum is displayed, are the calcu-
lations of Leung er al. (1976a, 1976b) for Al and Tomlin-
son and Swihart (1979) for Zn. In Fig. 20, we reproduce
the a F(ru) for Zn calculated by these authors. The cor-
responding mass-enhancement parameter is k =0.334.
Tomlinson and Swihart (1979) also quote a second value
of 0.36 obtained from a diA'erent treatment of the pseudo-
potential. These values are to be compared with the pre-
vious values of 0.425 by Truant and Carbotte (1973) and
0.42 by Allen and Cohen (1969), both obtained using a
spherical Fermi surface and a single-plane-wave approxi-
mation for the pseudowavefunction. It is clear that one-
plane-wave calculations are not very accurate, and we

will not describe such work in detail here except to point
out that the first such calculations appear to be due to
Carbotte and Dynes (1968) for Na, K, Al, and Pb. For
more information on such work, which is extensive, we
refer the reader to the book by Grimvall (1981).

Before turning to a F(co ) calculations in the transition
metals, some alloys, and the refractory and the A15 com-
pounds, we need to expand somewhat on the theory of
a F(ru) and related quantities. So far, we have intro-
duced four important moments of a F(co), namely,
[formula (2.5)], A [the area under a F(ro)], co&„[formula
(2.46)], and X [formula (3.18)]. The first moment of

(3.46)

The McMillan-Hopfield parameter [Grimvall (1981)]
denoted by r) is defined by the last identity in (3.46). We
can define an average of the square of the phonon fre-
quencies by

(to ):— f A F(cu)co dred
0

(3.47)

and so conclude that

M(co )
(3.48)

There are many calculations of g in the literature from
which A. is estimated through (3.48). This requires a
guess for (co ) which is usually taken from a considera-
tion of phonon data alone. The accuracy of such a pro-
cedure is not clear, although it should be reasonable since
F(co) and a F(ro) are not so different [Rainer (1986)].
Here we describe only calculations that avoid this ap-
proximation. While several such calculations proceed to
a direct evaluation of (3.43) based on band-structure cal-

a f(ru) is also important because it depends only on elec-
tronic quantities, as can easily be seen by substitution of
(3.44b) into (3.43) and integrating to get

f ct F(co)co dcu

'2

f d k 6(ek) f d k'5(ek, )

Rev. Mod. Phys. , Vol. 62, No. 4, October 1 990



J. P. Carbotte: Properties of boson-exchange superconductors

culations and the gradient of the electron-ion potential,
others employ a related formula first given by Allen
(1972, 1974, 1975, 1980). The inverse lifetime of a pho-
non (kj ) of frequency co.(k) due to the electron-ion in-
teraction is given by

In

CQ

CO

X 5(k —k' —q )to ~gk„, ~

(3.49a)

and is related to the spectral density through

0,a F(co)=
2trN(0)(2tr)

7'(q, tu, (q))
X f d qg 5(tu —to (q)) .

f7COJ q
(3.49b)

0. 0 |.0 I i I

Z. O 3.0 4. 0
iHEQUENCY THz

5. 0 6. 0 7. 0

Thus a F(co) can be calculated from a knowledge of pho-
non quantities alone. This procedure was followed by
Butler et al. (1977) in a calculation of phonon properties
for Nb, as well as giving a comparison with experiment.
Further details are found in the paper of Butler et al.
(1979). The results of their calculated lifetimes, based on
full band-structure results for Nb, are presented in Fig.
21 for two high-symmetry directions, [$,0,0] and [g, g, 0]
for transverse (dashed and dotted curves) and longitudi-
nal (solid curve) branches. A comparison with experi-
ment is also given. The spectral density obtained in this
way from formula (3.49b) is presented in Fig. 22 (solid
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FIG. 21. Phonon linewidths in Nb. The histograms indicate
calculated linewidths (full width at half-maximum). The solid
histograms indicate longitudinal modes and the dashed and dot-
ted histograms indicate transverse modes. The circles and tri-
angles are experimental mode linewidths [Butler et al. (1977)].

FIG. 22. Calculated {histogram) and experimental (smooth
curve) spectral density a'I'(co) for Nb. The calculated spectral
function should be broadened somewhat, since the 6 function in

Eq. (3.49b) should really be a Lorentzian of half-width y;(q)
[Butler et al. (1977)].

histogram) and is compared with early tunneling results
by Robinson and Rowell (1972; solid curve). The agree-
ment between the two curves is not good, but it was im-
proved in later tunneling experiments as to shape. The
high-frequency peak, however, remains attenuated in all
tunneling work. As for absolute magnitude, it is to be
noted that the theoretical calculations [Butler et al.
(1977)] give a A value of 1.22, which is considerably
larger than the best tunneling value to date which is 1.01
given by Arnold et al. (1980). The difference between
these two numbers may well be representative of the ac-
curacy of present first-principle calculations. There have,
in fact, been several other independent first-principle cal-
culations for a F(co) in Nb differing mainly in the com-
putational scheme used for the band structure and
electron-ion matrix element. Harmon and Sinha (1976)
quote a A, =1.87 and, in a later calculation (1977), 1.58.
Butler et al. (1979) in extended calculations quote
A, =1.12. Peter et al. (1977) give a smaller value of
A. =0.86 and Weber (1984a), 0.9. Finally, Glotzel et al.
(1979) have attempted to give a critical assessment of
some of the errors that might be expected in such calcu-
lations and find for Nb that A, = 1.3 [Rainer (1986)]. It is
clear that while such calculations generally confirm the
idea that the electron-phonon interaction is largely
resopnsible for the superconductivity in this material
and, presumably, in the other transition metals, it is not
possible to calculate an accurate value of T, yet or, if you
like, X, although it is safe to say that its magnitude is
close to 1.0. Glotzel et al. (1979) also give values of iL for
other metals: 1.2 for V, 0.9 for Ta, 0.4 for Mo, and 0.5
for Pd. On the basis of similar full calculations of
a F(to), Rietschel and Winter (1979) obtained 1.04 for V
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and Pinski et al. (1978) get 0.4 and 0.41 for Mo and Pd,
respectively. The relatively large value of k of order
0.4—0.5 found in these calculations for Pd is worth com-
menting on because Pd is not observed to be a supercon-
ductor. It is, however, known to have a significantly
enhanced spin susceptibility. It is argued that it is the
paramagnons that suppress T, in this case. Pinski et al.
(1978) give arguments for a mass renormalization due to
spin fIuctuations of ksF—=0.34 in Pd. This large value is
interesting but remains to be confirmed.

Before turning to calculations of n F(ro) for the A15
compounds, we describe an interesting application of for-
mula (3.49a) for phonons. This prescription comes from
the Fermi "golden rule" for electron scattering from the
Fermi-surface state fk to a state 1lk. of energy Ace~(k —k')
above the Fermi surface through the absorption of a pho-
non. But in the superconducting state, at zero tempera-
ture all electrons are bound in a condensate, and an ener-
gy 2b, (twice the superconducting energy gap) needs to be
supplied before energy conservation can be fulfilled.
Hence a phonon with energy ~ & 26 will have no contri-
bution to its lifetime from the electron-phonon interac-
tion. Thus the corresponding neutron group should be
sharper at T=O than it is at a temperature that is greater
than the critical temperature. This has been observed by
Axe and Shirane (1973) in Nb3Sn. In Fig. 23 we show
neutron counts as a function of energy for the [g'0]T,
phonon in Nb3Sn with /=0. 18. The phonon energy Ac@&

is around 4.0 meV, which is less than 25-=7.0 meV. At
T=6 K, which is much less than the superconducting
critical temperature of approximately 18 K, the phonon
line shape is narrow (open circles) compared with the
T=26 K case (solid dots). Axe and Shirane argue that
the remaining linewidth at low T is within instrument
resolution and that the diA'erence between the high- and

200

Theory

Nb, Sn

a2 F(~}
F (~)

~ y

. fl

~s I

Energie frnev j
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FIG. 24. Calculated electron-phonon spectral density a F(m)
(solid curve) for Nb3Sn compared with calculated phonon fre-
quency distribution F(~) (dotted curve). Also shown is the cal-
culated result for a (cg) as a function of co (long dashed curve)
[Weber (1984a)].
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FIG. 23. Widths of low-energy [g'0] T, acoustic phonons
broaden appreciably at temperatures near T„the superconduct-
ing transition temperature. This figure shows the same phonon
profile above and below T, = 18.0 K [Axe and Shirane (1973)].

FIG. 25. Eliashberg function a F(co) and phonon density of
states F(co) for Nb3Ge. The theoretical results are given by
solid lines; the dashed lines for a F(co) and F(m) are data. The
dotted line represents the theoretical coupling function a'(co)
[Weber (1984)].
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low-T results measures the electron-phonon contribution
to the lifetime for this phonon.

Weber (1984a, and 1984b) has done extensive and de-
tailed calculations of the electron-phonon spectral densi-
ty for the A15 compounds. His results for Nb3Sn are
reproduced in Fig. 24. What is shown is a F(co) (solid
curve), the phonon frequency distribution on F(co) (dot-
ted curve), and the ratio a F(co)/F(co), which is a (co).
The results for the frequency dependence of a F(co) are
quite different from those presented in Fig. 19, which in-
volved no calculations. On the other hand, the calculat-
ed k value is 1.5, which is not far off the measured value
of 1.5 —1.7 [Shen (1972)]. A similar situation holds for
Nb3Ge, and Weber's results are summarized in the upper

frame of Fig. 25. In the lower frame we show a compar-
ison between the tunneling-derived results (dashed line)
for a F(~) by Kihlstrom and Geballe (1981)and the pho-
non frequency distribution measured by incoherent in-
elastic neutron scattering by Miiller et al. (1982). A
good deal of agreement is clearly evident between these
two functions. The agreement with theory is not as good
and the A, value obtained somewhat large at k= 1.9.

We mention two more calculations. Rietschel et al.
(1980) have calculated spectral densities for several re-
fractory compounds, namely, TiN, SnN, VN, and NbN
with T, 's of 5.5, 10.0, 8.6, and 17.3, respectively. Their
results are shown in Fig. 26, and the values obtained for
A, are 0.45, 0.60, 1.54, and 1.23, respectively. These data
cannot be compared with experiment at this time, but
Rietschel et al. (1980) make the interesting point that
spin fluctuations must limit the T, value in at least VN.
They also argue that this may be a much more general
occurrence in materials with a spin-enhanced susceptibil-
ity. Finally, we simply mention that Schell et al. (1980)
have presented similar calculations of a F(ro) in some
transition-metal hexaborides.

0
I. Inversion for a joint phonon-exciton mechanism

VN

0

05.

x4

6 20 25 3) 35 4Q 60 65 70

u {meV)

FICx. 26. Eliashberg function a I'(co) for TiN, ZrN, VN, and
NbN as calculated from Eq. (3.43). For ZrN the optical part
has been reduced before plotting and must be multiplied by 4
[from Rietschel et ttj. (1980)].

Before leaving this section, we describe work on tun-
neling inversion when a high-energy mechanism is
present in addition to a phonon mechanism. This may
have some relevance for some of the high-T, oxides like
La-Sr-Cu-0 and also BaPbp 75Bip 2503 and Bap 6Kp 4BiO3

Phonon structure as large in size as in Pb has been ob-
served in tunnel junctions of Ba(Pb,Bi)03 [Batlogg et al.
(1982)], which has a critical temperature of about 12.0 K.
An attempt to invert the data so as to recover microscop-
ic parameters failed Batlogg et al. (1982). No details are
given of this failure. Presumably, a negative effective
Coulomb repulsion parameter p* resulted, and the
effective parameters did not reproduce well the initial
data.

There is as yet no consensus as to the mechanism that
is responsible for the superconductivity of the high-T,
oxides [Wolf and Kresin (1987)]. One possibility that is
being explored is that it is a combined phonon-plus-
excitonic mechanism [Marsiglio, Akis, and Carbotte
(1987b, 1988); Marsiglio and Carbotte (1987b, 1988a)].
In this picture, La-Sr-Cu-0 would have a significant pho-
non contribution and an attendant isotope effect as mea-
sured, while Y-Ba-Cu-0 would be mainly excitonic with
no or almost zero isotope effect. We wish to consider
now the quasiparticle density of states for a combined
phonon-and-exciton model. We also wish to invert the
data assuming a pure phonon system so as to understand
what the signature of the exciton peak might be when
such a procedure is applied in the analyses of experi-
ments.

To calculate the density of quasiparticle states normal-
ized to the single-spin electronic density of states at the
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Fermi energy [X(0)] which is given by Eq. (3.35), we
need the complex frequency-dependent gap b.(co) which
follows from the zero-temperature Eliashberg equations
(3.36) and (3.37) on the real-frequency axis. The kernel in
these equations is now denoted by g(Q), where g(Q) is
the sum of the usual electron-phonon spectral density
denoted by a F(Q) and an exciton contribution P(Q),
presumably at higher frequencies. Given g(Q) and the
Coulomb pseudopotential p' with a fixed cutoff co„we
can calculate the quasiparticle density of states X(co)—a
quantity that is measured in tunneling experiments. Con-
versely, given K(co), we can recover, through an inver-
sion procedure, the kernel g(Q) and p'. In what follows,
we shall invert %(co) using the method of Galkin et al.
(1979) as implemented by Mitrovic and Carbotte (1981c,
1982).

The method of Galkin et al. (1979) used the previously
given Eq. (3.39) for the normalized tunneling conduc-
tance, which we repeat here for convenience using a
slightly different notation,

(dI /d V) = cr(co) =Re (3.50)
(dI/d V)& Qco2 —g~(co+ i0+ )

holds. These two equations can be used to determine
A(co) from the experimentally measured a(co). We note
that this procedure does not require the use of the Eliash-
berg equations.

In the next step of the inversion procedure, one has to
solve the equation

c 0 01

b2 = c2 ci 0
a&

(3.52)

0=60&0]&A2&

[see Eqs. (3.36) and (3.37) for the origin of these equa-
tions]

a;=a F(Q),s-, Q;, ~Q~Q;,

for the vector (a), where for the set of equally spaced fre-
quencies

with co representing the voltage. In. addition, the disper-
sion relation

b, =—Im[b (ho+ Q, )Z(ho+ Q; )],1
(3.53)

Im
V co 6(co+ i0 )—

2co + cT(co ) aves(co )
I' d co' (3.51)

~p CO CO

Q,.

c, = f ' d~'Re

wherei =1,2, . . . with

4(b,o+ co')

[(&o+co') —4 (ho+co')]'~

+ oo ~0+
Z(b, o+co)=1- d co'Re

&o+co o [(b,o+co') —b, (ho+co')]'

X dQa (Q)F(Q),s.
0 Q) +Q7+ 0+260+ l 5

1

cc) co+0 l 6
(3.54)

In these equations 60 is the gap edge at zero temperature
Re[A(co=ho)]=ho. Equations (3.52) and (3.53) can be
obtained by taking the imaginary part of Eq. (3.36) with
P(Q) =0 and assuming that a F(Q),s is known. A guess
is made for a F(Q),s- and Z is calculated from (3.54).
The resulting function together with the known b.(co)
determines matrices (b) and (c) via (3.53). Equation (3.52)
is solved for the vector (a), which gives a F(Q),~, and the
procedure is repeated until a fully converged a F(Q),s is
obtained. With this inversion procedure, the Coulomb
repulsion parameter p*(co, ) does not come in.

In Fig. 27, we show our input spectrum for g(Q). For
the lower frequency distribution, we use the tunneling-
derived electron-phonon spectral density obtained for
pure Pb but reduced by a factor of 0.83, so that the
mass-renormalization value is A,,„=1.28. The high-
frequency Lorentzian peak is meant to simulate an exci-
tonic contribution and has a mass-enhancement factor of

A,„=0.67. For these parameters the zero-temperature

gap edge 60—=7.3 meV. The quasiparticle density of
states that is obtained in this way is shown in Fig. 28
(solid curve) in the low-energy region. If the data in this
region are inverted without reference to the excitonic
structure that appears at high energy, we recover very
nearly the input electron-phonon spectral density a F(Q )
divided by the renormalization factor (1+A,,„). This was
expected from some previous work [Daams, Mitrovic,
and Carbotte (1981); Zarate and Carbotte (1984)]. The
erst signature of the effect of the exciton peak is that this
efective phonon spectral density

a,~F(Q) —=
a F(Q)

ex
(3.55)

is too small to be consistent with a gap edge (ho) value of
-7.3 meV, and, in fact, a negative effective Coulomb
pseudopotential p,*tt ( —0. 176) is required to reproduce
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5.0

4.0—

3.0—

2.0—

I.O—

0.00.0 20.0 40.0 60.0
u) (meV)

80.0

FIG. 27. Eliashberg spectral density g (cu) used in this work. It
is made up of the sum of an electron-phonon contribution
o. F(co) at low energy and an excitonic part P(co) at higher en-

ergy centered on 70 meV (Lorentzian peak).

this value of Ao. This negative value of p,*z of course,
simulates the presence of the excitonic peak at a higher
energy, which was not used in the inversion. Another
important signature is that the effective kernels cannot
reproduce exactly the original quasiparticle density of
states, as is shown in the dashed curve of Fig. 28. While
it overlaps the solid curve, there are some differences,
and we must conclude that no effective phonon kernel
plus negative p* can ever reproduce exactly the efFect of
a phonon-plus-exciton kernel. We can therefore take the
failure of the inversion procedure as outlined here as in-
direct evidence of an additional high-energy mechanism
adding on to a phonon contribution. This second mecha-
nism need not be excitonic in origin. It need only be at
higher energies and describable, in a first approximation,
by some high-energy peak in the Eliashberg equations.

The effective electron-phonon mass renormalization
corresponding to the spectral density (3.55) is small,
equal approximately to 0.77, and is, simply, k,~/( 1+1,,„).
On its own with p*=o, it would give a small gap edge
and a small amount of phonon structure. On the other
hand, the original phonon kernel plus exciton leads to a
large gap Ao and considerable structure in the phonon re-
gion. That this is the case can be seen when Figs. 29 and

1.20
l.20-

I. I5—
I. I 0-

V( )xV{0)

l. I 0-
N(us)/Nacs((u)

I.OO

l.05—
0.90-

I.OO
0.0

I I f I

5.0 IO.O l5.0 20.0 25.0 30.0
~ {meV)

0.80
0.0

I l I

5.0 IO.O l5.0 20,0 25.0 30.0
~ (meV)

FIG. 28. Quasipartic1e density of states (solid curve) obtained
from the combined phonon and exciton spectrum of' Fig. 27.
For p*=0.1, we get a gap edge of 7.27 meV. Superimposed are
results (dashed line) obtained from the eftective Eliashberg ker-
nels (A,;~=-0.77 and p,*&=-—0. 176) derived by inversion of the
solid curve. The effective kernels do not reproduce the density
of states exactly. The dotted curve is the BCS density of states,
included for reference.

FIG. 29. Ratio of the quasiparticle density of states X(co) to its
BCS value XBcs(co) for various systems. In all cases p =-0.08
and the Pb electron-phonon spectral density is used, but with a
multiplicative factor of B included so as to increase or decrease
the coupling. The curves exhibit more structure as 8 increases
with 8 =0.83, 1.00, 2.83, and 3.83, and the gap edge Ao is, re-
spectively, 1.25, 1.63, 3.02, and 4.57 meV.
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30 are compared.
In Fig. 29, we show results of several runs using, in all

cases, a Pb spectral shape with p* —=0.08. Only the pho-
non region is shown and what is plotted in X(co) divided

by the BCS density of states

unrecognized in a tunneling experiment, effectively
enhances the structure in the phonon region at lower en-

ergy and could lead one to think that the phonon kernel
is larger than it actually is.

&Bcs(~) co=Re
%(0)

(3 56) IV. THE ENERGY GAP AT ZERO TEMPERATURE

I.20

I.I 0-

N(~ )/N&&s(w)

I.OO

0.90—

0.80
0.0

t l I 1
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FIG. 30. Ratio of the quasiparticle density of states X(cu) to its
BCS value NBcs(co) for the combined phonon-plus-exciton spec-
trum of Fig. 27. This case corresponds to 8 =0.83 and has a
gap edge of 50=7.27 meV for p =0.01. The amount of struc-
ture obtained'is much larger than that for the corresponding
B =0.83 case of Fig. 29.

a quantity that involves only the gap edge. The various
curves shown start at their respective gap edges Ao and
are for B=0.83, B= 1.00, B=2. 83, and B=3.83 in or-
der of increasing size. Here B is a factor multiplying the
original Pb a F(Q) so as to increase or decrease its value.
The gap edges are, respectively, 1.25, 1.63, 3.02, and 4.57
meV and correspond to ever increasing electron-phonon
spectral density. These curves are to be compared with
the curve in Fig. 30, which applies to the case of phonon
plus exciton that we have previously described. It has a
Do=7.27 meV for a p* =0.1. It is clear that the amount
of structure obtained in the phonon region is much larger
than that obtained for the same a F(Q) along (i.e. ,

without an additional exciton peak) and very much larger
than for a, Fs(Q). It is only slightly smaller than the
B=2.83 case. As first pointed out by Kus and Carbotte
(1979) within the context of hydrogen in aluminum, a
high-energy peak in the Eliashberg kernel, which goes

A. Gap for specific systems
and comparison with experiment

An important check on the validity of the Eliashberg
equations for phonon superconductors is the calculation
of superconducting properties from tunneling-derived
microscopic parameters a F(co) and p* and comparison
with experiment. One such quantity is the energy gap.
Mitrovic, Zarate, and Carbotte (1984) have carried out
such calculations for many superconductors. The
sources for the spectra used are specified in Table I and
the results given in Table III. In a11 cases, the
imaginary-axis Eliashberg equations (2.1) and (2.2) were
used with the p* parameter fit to get the measured T, . It
can be seen from the table that such fitted values are
slightly different from those given by tunneling. This is
as expected, since a sharp cutoff on the real axis is not
completely equivalent to a sharp cutoff on the imaginary
axis [Leavens and Fenton (1980)]. Furthermore, p* de-
pends on the cutoff frequency (co, ) used. This frequency
is not always quoted in tunneling inversion work, al-
though this is not expected to affect the value of a F(co).
In almost all cases considered in Table III, we have used
3 times the maximum frequency in the spectral density.
Given in Table III are the theoretical and experimental
gap values as well as the percent difference between these
two quantities. The agreement is very good in almost all
cases and is at the level of a few percent. A notable ex-
ception is Nb3Sn, for which we have no explanation ex-
cept perhaps that the measured value has been underes-
timated. Usually, the larger the gap value obtained in a
tunneling experiment, the higher the quality of the data.
We note, also, that all the values quoted in Table III were
obtained using ihe analytic continuation technique of
Vidberg and Serene (1977) described in the previous sec-
tion, which allows us to go from the imaginary to the real
frequency axis. The gap edge Ao is determined from the
complex real-axis gap at zero temperature through
the equation ho=Re[A(co=ho, T=O)]. On the whole,
Table III is a striking confirmation of the validity of
Eliashberg theory and of the electron-phonon mecha-
nism.

Mitrovic, Zarate, and Carbotte (1984) derived an ap-
proximate formula for the ratio 260/kg T, valid in the
strong-coupling regime. The form they suggest, which is
derived in Appendix B, is the same as that given earlier
by Cxeilikman and Kresin [1965, 1966; Geilikman et al.
(1975)] but with different numerical factors. Contrary to
the previous work, the characteristic phonon energy that
enters the new formula is well defined and is co&„given
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first by Allen and Dynes (1975) in the context of im-
proved McMillan-type equations. The method of deriva-
tion employed by Mitrovic, Zarate, and Carbotte (1984)
appears to be very different from that used by Geilikman
and Kresin (1965, 1966), so that, in a sense, the calcula-
tions are complementary. The final form obtained is [Eq.
(B41)]

260 =3.53 1+12.5
B Tc

2 r

Tc in
ln

2T.
(4.1)

where the numerical factors 12.5 and 2 were chosen to fit

as well as is possible all the numerical data on real ma-

terials. This is illustrated in Fig. 31 where the solid dots
are the calculated values of Table IV. In the table, we

give the calculated T, values, which are also the experi-
mental numbers. All calculations were done for a cutoff
frequency of 6 times the maximum phonon energy and
the p* fit to T, using a sharp, ,~utoF on the imaginary
axis. The difference in p* between Tables III and IV
reAects the different cutoffs. In addition, A., co&„, 3, and
m „are entered in columns 4 to 7, respectively; the
strong-coupling index T, /co, „in column 8; and the values
of 2ho/kz T„ in column 9. These data correspond to the
solid dots of Fig. 31. The deviations off the dashed trend
curve are due to details of a E(co) that are not captured
by a single parameter T, /co&„. We note that the BCS
value results for T, /co&„—+0, and that the conventional
strong-coupling region extends up to T, /co&„—=0.25.

It is of some interest to understand a little better why

TABLE III. Comparison of calculated and experimental gap edge.

System

Al
Sn
Nb3Sn
Nb (Robinson)
Nb (Butler)
Nb (Arnold)
V
Nbp 75Zro. 25

jotunn

0.11
0.15
0.11

0.16
0.15

0. 10+0.02

l fitted

0.1472
0.1143
0.1575
0.1158
0.2735
0.1854
0.19
0.1808

gexpt
0

(meV)

0.606
3.1

1.46

1.51
0.8
1.9

gcalc
0

(meV)

0.18
0.599
3.53
1.57
1.53
1.54
0.85
1.93

gcalc gexpt

gexpt
0

—1.1

+ 13.9
+7.5

+2
+6
+ 1.6

Ta
In
Inp9 p l

0.73 0.27

Inp. 67Tlp. 33

In0. 57Tlp. 43

Inp 5pTlo 5p

Pbp gTlp 2

0.27 0.73

Ino. 17Tlo. g3

Ino. o7Tlo. 93

Tl
Pbo. 4Tlo. 6

Pbo. 6Tlo. 4

Pb
o 9Bio lo

Pbp gBi
Pbp 7Bio 3

Pbo. 65B~O. 35

Pbo. 6oTlo, 02Bjo.oz

Tlp. 90»0. 10

Hg
Amorphous Bi
Amorphous

Pb0. 5o»o. 5o

Amorphous
»0.75Bio.25

Amorphous Ga

0.11
0.125
0.12
0.13
0.13
0.14
0.13
0.122
0.1 1

0.12
0.13
0.135
0.113
0.126
0.131
0.095
0.111
0.11
0.111
0.137
0.119
0.11
0.105

0.14

0.14
0.17

0.1169
0.1130
0.1271
0.1358
0.1314
0.1387
0.1377
0.1239
0.1164
0.1188
0.1311
0.1281
0.1149
0.1262
0.1446
0.1120
0.1127
0.1154
0.0996
0.1538
0.1114
0.1197
0.0917

0.1338

0.1340
0.1632

0.72
0.541
0.530
0.57
0.54
0.42
0.41
1.28
0.64
0.535
0.45
0.366
0.805
1.08
1.40
1.54
1.61
1.77
1.84
1.50
0.354
0.83
1.21

1.51

1.48
1.68

0.71
0.556
0.540
0.564
0.543
0.426
0.41
1.33
0.64
0.545
0.46
0.382
0.822
1.11
1.40
1.55
1.67
1.82
1.98
1.49
0.374
0.83
1.30

1.57

1.53
1.74

—1.4
+2.8
+ 1.9
—1.0
+0.6
+ 1.4

0.0
+ 3.9

0.0
+ 1.9
+2.2
+4.0
+2.1

+2.8
0.0

+0.6
+3.7
+2.8
+7.6
—0.7
+5.6

0.0
+7.4

+4.0

+3.4
+3.6
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some materials fall off the main-trend curve in Fig. 31.
Coombes and Carbotte (1986a) have given a detailed
analysis of these deviations. To be specific, they consider
the case of Pb for which T, /~&„=0. 128. To get some
feeling for the dependence, in this case, of 26o/kz T, on
shape of the spectral density, they scale several model
base spectra aoF(co) to get a F(co)*=BaoF(bco) with 8
and b constants, as described in Sec. II. In this way, they
can start with the spectrum for any given material (X)
and get the Pb T, value, as well as T, /co&„value, by ad-
justing the two constants B and b. Once this is done,
they can recalculate the gap-to-critical-temperature ratio
and see how it compares with that for pure Pb. Such re-
scaled spectra based on Sn and In are shown in Fig. 1.
Results for 26o/k~T, are given in the inset of Fig. 31.
We see that this ratio is, indeed, dependent not only on
T, /co, „value, but also on the shape of a F(co)*. The
differences are not very large, however. Larger

differences can, of course, be found if more extreme mod-
el spectra are used instead of real-material shapes.

B. Functional derivatives

The functional derivative of the gap edge Ao as a func-
tion of a F(co) gives information on the relative impor-
tance of different phonon modes on 60. Such derivatives
can be computed directly by augmenting a given base
a F(co) spectrum by an infinitesimal delta function at a
particular frequency co, as was done by Mitrovic et al.
(1980). Some of their results are reproduced in Fig. 32
where we plot 5 lnbo/5a F(O) against fl/bo for Tl (dot-
dashed), Nb (dotted), Pb (dashed), and Nb3Sn (solid).
These are to be compared with 51nT, /5a F(Q) for the
same materials given in Fig. 33. The shape of the func-
tional derivative curves for Ao are very similar to those

TABLE IV. Superconducting properties of conventional materials.

Material (meV) (meV)

Area

(meV)

~max

(meV)

Al
V
Ta
Sn
Tl
Tlp 9B1p
In
Nb (Butler)
Nb (Arnold)
V3Si 1

V Si (Kihl. )

Nb (Rowell)
Mo
Pbo. zTlo. 6

La
V3CJa
Nb3A1 (2)
Nb3Ge (2)
Pbo. 6Tlo. 4

Pb
Nb3A1 (3)
Pbo. sTlo. 2

Hg
Nb3Sn
Pbp 98io l

Nb3A1 (1)
Nb3Cxe (1)
Pbp 88io 2

Pbp 7Bip 3

Pbo. 6s»0. 35

Pbo. sB&o.s
Cxa

Pbo 7sBio.zs

Bi

0.1017
0.4621
0.3862
0.3233
0.2034
0.1983
0.2931
0.7931
0.7931
1.4741
1.4132
0.7931
0.7586
0.3966
0.4340
1.2931
1.2070
1.7240
0.5086
0.6198
1.6121
0.5862
0.3612
1.5603
0.6595
1.4138
1.7240
0.6853
0.7284
0.7716
0.6026
0.7379
0.5957
0.5267

0.147
0.223
0.121
0.116
0.1.32
0.113
0.116
0.373
0.186
0.142
0.139
0.118
0.071
0.115
0.040
0.090
0.082
0.238
0.125
0.144
0.225
0.121
0.124
0.156
0.105
0.127
0.088
0.111
0.109
0.091
0.136
0.174
0.136
0.091

0.43
0.80
0.69
0.72
0.80
0.78
0.81
1.22
1.01
1.00
1.00
0.98
0.90
1.15
0.98
1.14
1.20
1.60
1.38
1.55
1.70
1.53
1.62
1.70
1.66
1.70
1.60
1.88
2.01
2.13
3.00
2.25
2.76
2.45

25.50
14.78
11.06
8.40
4.45
4.15
5.83

13.88
12.83
21.11
19.88
10.69
9.95
4.17
4.37

12.54
10.66
15.17
4.27
4.83

12.52
4.32
2.47
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4.33
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10.80
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3.8S
1 ~ 88
3.04
2.07
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5.74
6.76
4.18
3.42
2.00
1.86
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9.35
7.25

11.80
10.76
6.29
5.47
2.74
2.S6
8.56
7.51

13.34
3.35
4.03

12.72
3.71
2.64

10.69
3.98
9.32

10.33
4.21
4.46
4.60
4.30
6.15
4.20
3.S3

41.4
33.1
20.9
18.8
10.9
10.5
15.8
26.9
28.3
49.3
44.5
28.5
33.0
11.0
15.0
37.0
35.7
31.3
10.9
11.0
35.7
10.9
14.3
28.7
9.9

35.7
34.3
11.0
10.4
10.1
13.1
27.0
10.4
14.0

0.004
0.031
0.035
0.038
0.046
0.048
0.050
0.057
0.062
0.070
0.071
0.074
0.076
0.095
0.099
0.103
0.113
0.114
0.119
0.128
0.129
0.136
0.146
0.146
0.152
0.156
0.160
0.172
0.182
0.200
0.320
0.243
0.288
0.320

3.535
3.675
3.673
3.705
3.753
3.769
3.791
3.876
3.883
3.933
3.935
3.964
3.968
4.134
4.104
4.179
4.248
4.364
4.352
4.497
4.461
4.505
4.591
4.567
4.674
4.617
4.601
4.843
4.968
5.081
5.194
4.722
5.119
4.916
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2Q*(bo)-Q*(T, )-7 k~T, , (4 2)

where Q*(b,o) is the optimum frequency for 60 and
Q*(T, ) for T, .

From a knowledge of the functional derivative given in
Figs. 32 and 33, we can construct the functional deriva-
tive of the dimensionless ratio 260/k~ T, through the for-
mula

5(2b,o/k~ T, )

5a F(Q)
250 6 lnh0

5a F(Q)
5 lnT,

5a F(Q)

(4.3)

for T;. In general, however, they fall slightly above in
magnitude, and the peak is at a somewhat lower frequen-
cy. A rule of thumb is
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FIG. 31. Ratio 2hp/kz T, vs T, /co&„. The solid dots represent
the accurate results from the full numerical solutions of the
Eliashberg equations. Experiment tends to agree to within 10
percent. In increasing order of T, /co]„, the dots correspond to
the following systems: Al, V, Ta, Sn, Tl, Tlp 9Bip „ In, Nb
(Butler), Nb (Arnold), V3Si (1), V3Si (Kihl), Nb (Rowell), Mo,
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The insert shows results for different a F(co) spectra as defined
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FIG. 32. Functional derivative of the gap edge at zero tempera-
ture hp normalized to b,p, i.e., 5lnhp/5e F(Q) as a function of
Q/Ap for Nb, Sn (solid curve), Pb (dashed curve), Nb (dotted
curve), and Ta (dot-dashed curve).
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peak is much sharper and the rule of thumb for the fre-
quency at maximum is now

6A*(26o/k~ T, ) —Sk~ T, . (4.4)

C. Formal theory

Introducing Z„=b(icy„)/~ oc„~ into Eqs. (2.1) and (2.2)
and substituting the second equation into the first gives
[A(n —m )—:A(i co„—ice )]

To maximize this ratio for a given area under a F(Q), we
would need to place the entire spectrum at rather low en-
ergies. In fact, we shall analyze this in detail later on in
this section. First, though, we wish to describe work by
Coombes and Carbotte (1987), who have proposed a
more elegant method for getting the functional derivative
of the gap. They used Pade approximants to analytically
continue directly the infinitesimal part of the gap.

00 I

10
I I

20
Q (meV)

~ ~ ~ J ~ '~ ~ ~ ~ J

50
co„+~TAX(n —m )

1

m Q I+6,

FICx. 34. Functional derivative of the dimensionless ratio of the
gap to critical temperature with respect to o. F(0 ), i.e.,

5[2ho/k~T, ]/oa F(II) as a function of 0 for Nb3Sn (solid
curve), Pb (dashed curve) „Nb (dotted curve), and Ta (dot-
dashed curve).

Results for the same four materials as described in Figs.
32 and 33 are given in Fig. 34. We see that this function-
al derivative is largest for the weakest coupling material
Ta and that, in all cases, it peaks at lower energy than ei-
ther the functional derivative of Ao or T, . As well, the

=~TQ[A, (n —m ) —p*]
m +1+6 (4.5)

For the rest of the mathematical manipulations of this
section, which are rather tedious, we shall denote
a F(Q):—G(Q). Besides a dependence on temperature,
Eq. (4.5) depends explicitly on G(Q) through the A, 's.
Denoting this explicit variation by M, „/SG(Q), we find
the equation

56
X nm fi. (II): n

CO 1+ g [A(n —m') —A( +n' m—1))—

HATT

/ +I+X',

—b,„[X(n —m )
—X(n +m —1)] —[A(n —m )+A(n +m —1)—2p*](1+5' )'" (1+~.)

" (4.7)

and

N
20 —6, +6

=, 0'+(2~T)'(n —m )'

2Q, 6, +6
) 0 +(2~T) (n +m —1)

(4.8)

66„56, 06„6T,
6G(Q) 5G(Q) r)T 5G(A)

+ "t (4.9)

where BA, /BT satisfies the equation

duced temperature that we take as fixed. The full varia-
tion of 6, is given by

This last quantity is completely known from the solution
of (4.5); and so Eq. (4.6) is now explicit. But b, „ is also an
explicit function of temperature T=tT„with t the re- with

gH„T =g„
BT (4.10)
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g„=+[AX(n —m )
—bi(n +m —1)]

m +1+b,

For t constant, T' and T are related by the ratio
(5T, + T, )/T, =1+5T,/T, with 5T, =e[5T, /56(Q)],
so that we can write

—g[bA(n —m )+AX(n +m —1)]
m +1+5

5b, (i co„)
6'(i co„)=5(i ~„/(1+ 5T, /T, ) ) +e (4.16)

where

(4. 1 1) Both sides of Eq. (4.16) can now be analytically contin-
ued to get

FQQbA(l)=4 j dQ (2~T) l . (4.12)[Q'+ (2~T )'i']'
Thus our final equation is

6T,
b, '(co, T)=h co 1—

T.
56(i co„)
5G(Q), T +eA.

(4.17)

56(Q) =~ '-' " +g
T, 56(Q) (4.13)

where the last term stands for analytical continuation us-

ing, in our case, Pade approximants. %'e get, on expand-
ing (4.17),

6A„6A, 6, 6T,
5G(Q) " 5G(Q) T, 56(Q) (4.14)

From a knowledge of M, „/56(Q) and 6„, we want to
construct A(co, T) on the real axis and 55(co, T)/56(Q).
This can be done by analytic continuation using Pade ap-
proximants as described in the previous section.

First, we note that the 6„'s used in our numerical
work are related to the 6„'s by A, co„=A„ for positive n

with the analytic continuation of b, „being A(co, T). Thus
we have

gg(~ T ) 5T, M, (i co„)
6'(co, T)=b(co, T) co

' — +@~
Bco T 56 Q

(4.18)

5g(~ T) 5b.(ice„)
56(Q) 56(Q)

c)h(co, T) 1 5T
c)co T, 56(Q)

(4.19)

For a fixed value of m, this last equation tells us that on
rearranging terms

5b, (ice„)
b, '(i co'„)=A(i co„)+e 56 Q

(4.15)

The Matsubara gaps for the system with the added piece
e5(Q —coo) are denoted by 5'(ice'„) and related to those
with e=O by the equation

AO=Reh'(co=ho, T) —= 5', (co=&0, T),
which leads to

(4.20)

In addition, the gap bo=b, „+e[56o/56(Q)] is obtained
from the equation

5b, (iso„)
5bo 6'(Ao) —d(bo) ' 56(Q)= lim

56(Q) e-o e

aa, (~, T)

c)co a, T, 56(Q)
c)b, , (co, T)1—

BCO ~p

(4.21)

660
5G(Q)

56,(co, T)
56(co)

c)h, (co, T)1—
BCO ~p

(4.22)

Assuming constant I;, we can rewrite

where A.
&

is the real part of the analytic continuation A
and 6, is the real part of the gap. This last formula can
be evaluated directly in our programs, which gives us A.
[56(ice„)/56(Q)] and b(co, T) through Pade approxi-
mants techniques. While formula (4.21) is the most use-
ful for our work, it can be rewritten in another way that
is sometimes more useful for discussion. Substituting
(4.19) into (4.21) leads to

56, (co, T)
5G(Q)

56,(co, T) Bb) 5T,
56(Q) dT 56(Q)+ t (4.23)

650
56(Q)

5b, (co, T) c)b, ,(co, T) 1 5T,+T56(Q) ~, BT ~, T, 5g(Q)

aa, (~, T)1—
BCO ~p

(4.24)

This last formula involves the temperature derivative of
the real gap c)h, (co, T) /BT, which is not evaluated direct-

ly here. If we assume that it is finite, however, we see
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from (4.24) that it is not needed, because the second term
drops out as T~O, since it contains an explicit factor of
temperature. This leaves us with the formula

TABLE V. Variation of b (p ) and c (p*) with Coulomb pseu-
dopotential. The quantities b(p*) and c(p*) give, respectively,
the value of 5o/2 and QE/2 at maximum.

5ho

5G(Q)

5b, , (co, T)
5G(Q)

T—+0. (4.25)
b(p*)
c(p }

0.56
0.87

0 1

0.46
0.63

p* =0.2267

0.40
0.52

Thus, at low temperature, it does not matter whether we
keep T or t constant as we would expect. Our numerical
work confirms that as well and suggests that working
with t =0. 1 is good enough.

Application of the above technique to the calculation
of the functional derivative of the gap edge gives essen-
tially the same results as the direct technique of Mitrovic
et al. (1980) and verifies that both approaches have been
properly implemented on the computer.

D. Optimization of the gap

The shape of the functional derivative of Ao shown in
Fig. 32 suggests that for a given area under a F(co) we
can maximize the value of the gap edge by using a delta
function spectral density u F(co)= A5(co —Qz ) centered
at the Einstein frequency QE. For such a model spec-
trum we have already shown in Sec. II that
b(ice„)= Af„(T/A, Qz/A, p"), where f„ is a universal
function. This implies that the gap edge at zero tempera-
ture satisfies

ho= Ag(Qz, p*)

o czo 0

6
o 5—a p. (cu ) =O.l

0

(~c)= 0-2267

p, (~ ) =o. l

(~c) =0-2267

oo0 0

I I I I I I

0 2 4 6 8 lo l2 l4 0
a,,(me V)

2 5 4 5 6
XE

FIG. 35. Gap edge at zero temperature Ao in meV as a function
of Einstein frequency QE in meV for various values of p*:
p*=0.0; V, p*=0.1; and o, p =0.2267 (left-hand frame) and
as a function of XE =—2A/AE (right-hand frame). The curves
are universal and the base o. E(O) = A 6(A —OE ).

with g a universal function independent of material pa-
rameters except for the dimensionless frequency

QE=—QE/3 .

We have solved for g(QE, p*):—bo/A for three values

of p, *, nainely, 0.0, 0.1, and 0.227. In all cases, g(QE, p" )

is found to exhibit a maximum at some definite optimum
frequency 0 E that varies with p*. In fact, the shape of
g(QE, p*) reflects well the functional derivative curve of
Fig. 32. The behavior obtained by Carbotte et al. (1986)
is shown in Fig. 35, where Ao is plotted as a function of
AE and A,E on the left- and right-hand picture, respec-
tively. All calculations are for A =10.672 meV (the
Nb3Sn value), and only the region near the maximum is
plotted with a dense set of points.

The maximum observed in Fig. 35 for each of the three
values of p* considered represents the maximum value
for the ratio of the gap to 3 that can be achieved for any
shape of a F(Q), since the peak must occur when the
phonon energy in the base delta function is placed at the
maximum of its own functional derivative 5bo/5n F(Q).
If we determine this value of 0 E, we conclude that

bo = Ag(Q ~,p*)—:Ab(p*), (4.27)

since Q E is a well-defined dimensionless number denoted
by c(p*) in Table V. In Table V, we show the results ob-
tained for b(p*), and we note that b(p*) is reduced as p*
increases. For any other spectrum with the same p* and
2, we expect

60 ~ Ab(p*) =ho . (4.28)

The previously mentioned results of Mitrovic, Zarate,
and Carbotte (1984) on b.o for a large number of materi-
als, given in Table III, can be used to test the validity of
the inequality (4.28). This is shown in Fig. 36 by the line
b(p*) versus p*, along with the b,o/A for the many su-

perconductors previously discussed. The solid dots,
unidentified individually, are for PbT1Bi alloys; the
crosses are for the InT1 alloys. We note that the inequali-
ty (4.28) on the gap is well satisfied. The system falling
closest to the b(p*) versus p* curve is the alloy
Pbo 658io 35 for which p* =0.0996 and 60/2 =0.43.
This is to be compared with the value of b (p* =0. 1)
given in Table V, which is 0.46. The diA'erence with
Pbo 65Bio 35 is only 10 percent. This shows that some real
materials can very nearly exhibit the maximum possible
gap value for their particular spectral weight A.

With the discovery of superconductivity with tempera-
tures as high as 125 K in the copper oxides, it is
worthwhile considering what value the dimensionless ra-
tio 26O/kz T, might take, should we go beyond the con-
ventional strong-coupling regime for T, /cu&„, which ends
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FIG. 36. Maximum value of 60/A as a function of p* {dashed curve through solid dots). The data for the various materials are from
full numerical solutions of the Eliashberg equations based on tunneling data for the spectral density.

around T, /co&„& 0.25. This was done. by Marsiglio et al.
(1987a). These authors consider two possible spectra for
a F(Q). They take Pb and the spectral shape calculated
by Weber (1987a, 1987b) for La-Sr-Cu-O, which is shown
in Fig. 37. The scaling described in Sec. II allows us to
reach any value of T, and T, /co&„we wish through ad-
justment of the two parameters B and b in the form
BaoF(bee) When thi.s is done and 2bolk~ T, is calculat-
ed, we obtain the curve shown in Fig. 38. We see that
2ho/kz T, simply rises with increasing coupling, al-

though it does have some dependence on spectral shape.
At T, /coI„= 1.4, the Pb based curve (dotted) has reached
a value greater than 10 while the La-Sr-Cu-G based one
(solid) is less than 9. Both also show some signs of satu-
ration at higher values of T, /co~„.

From the shape of the functional derivative of

2ho/k&T, shown previously in Fig. 34 for a few select
materials, we would expect that, for a given spectral
weight A, the optimum shape for a F(Q) that maximizes
this ratio is a delta function placed at some low frequency

11.0
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I I
i

I I I
i

I I I
i

I I I

5.0

I

0.4
1

0.6
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0.8 1.4

40 60 80

FIG. '37. Calculated electron-phonon spectral density a F(co)
for La& 85Sro»CuO4 from the work of Weber {1987a,1987b).

FIG. 38. Gap ratio 26O/k&T, vs T, /co~„ for two spectral-
function shapes, that of Pb and LSCO. In the very strong cou-
pling regime, 2ho/kz T, continues to rise above the BCS value,
and the shape dependence is more pronounced. However, the
qualitative feature of increasing 250/k~ T, seems to be shape in-

dependent.
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corresponding to the maximum in its own functional
derivative. Use of a delta-function spectrum indeed
shows that 260/k~ T, keeps rising as k~ (x), and numeri-
cal work indicates that the limit of QE~O for fixed A is
about 13 [Carbotte (1987b)]. The maximum value turns
out also to be the asymptotic limit. Some insight into
this interesting result can be obtained from functional
derivative considerations. At the maximum, we would
expect the functional derivative of the base delta function
to be negative definite and exactly zero right at the posi-
tion of the frequency in the base delta function. This
would prove that adding weight to the base delta func-
tion changes nothing, while taking weight from it and
placing it anywhere else reduces 260/k~T, so that the
delta function indeed maximizes this quantity. But our
numerical work shows that the maximum occurs for
coE~O in the base function. Because of numerical prob-
lems, we could not calculate the functional derivative
right at coE=O, but we could calculate such a quantity
for smaller and smaller values of ~E and analyze the
trend. In Fig. 39 we show functional derivative results
for ~E/T, =4 7,
functions. It is clear that the progression of these curves
is towards a negative definite curve with maximum equal
to zero at co=0 as the base Einstein frequency is lowered
towards zero.

E. Asymptotic limit

Additional insight can be obtained from approximate
analytic results. In principle, in the asymptotic limit, the
universal equation (2.28) gives the gap at zero tempera-
ture as well as the critical temperature, and both asymp-
totically go like Q A Qz or &A, Qz. We have already es-
tablished that in exact numerical calculations
T, =0.26+Acoz. In a single-Matsubara-gap approxi-
mation, as described by Allen and Dynes (1975) and as
we shall show later, the approximate result would instead
have been T, =(1/@&2)Q Acoz. To get an equivalent
approximate equation for the gap edge, it is convenient
to return to Eqs. (2.1) and (2.2) and take the zero-
temperature limit to get

(4.29)

2QE A Cc)
Z(co) = 1+ f der'

Q~+(co —~') +co' +b. (co')

(4.30)

Detailed numerical solutions of (3.33) and (3.34) by Mar-
siglio (1988) indicate that in the very strong coupling lim-
it (g~ co ) a reasonable model for the gap is (co & 0)

0.8

0.6

~o for~(2
b, (co)= .

O fOr co )260

(4.31)

(4.32)

0.4

Making use of this model in Eqs. (4.29) and (4.30), we ob-
tain

0.2

0.0

-0.2

-0.4

-0.6

with

AGE
Z(co —0)=1+2A [QEJ(&g )]+

CI. nE

EOZ(co-0) =2A Q~b()J(QE)

E ~~
I 2

I

~

2
E ~ 0

@CO 1J(Q~ ) =
0 ~' +Q~E

1 ~ &5 &E

QE60 2 2 60

(4.33)

(4.34)

(4.35)

-0.8 0.0 1.0 2.0 3.0 4.0 5.0

Substitution of (4.35) into (4.33) and (4.34) and combining
these last two relationships gives

b,o
-=1.3Q A Q~ . (4.36)

FIG. 39. Functional derivative of the dimensionless ratio of
gap to critical temperature 26o/k&T, with electron-phonon
spectral density a F(co), 5(25O/k&T, )/5a F(co), as a function
of co/T, for three different delta-function base spectra identified
by the Einstein frequency of the base a I' (co)= 2 6(~—co~ ).

When use is made of the approximate result

+An, ,
77 2

we finally arrive at the asymptotic value of [Carbotte
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tion. The quantity of interest is

5J~
56(Q) 56(Q)

d A, (co)

dco

To find the functional derivative of

o

(4.39)

d b, , (co)

d&

we need to return to Eq. (4.18) and take the derivative
with respect to cu of the real part of the gap evaluate at
A0 and expand to first order in e to get

d b, , (co)

de &o

56(i co„)

den
' 56(A)

d h, (co) Mo+
a, 56(O) n,

db, , (co) d A, (co) 1 5T,
du t, d~~ a, T, 56(A) n,

+so (4.40)

Results based on this last formula are given in Fig. 42
as a function of 0,/T, for V (solid line), Nb (dashed line),
V3Si (dotted line), and Nb3Ge (dot-dashed line). It is seen
that in all cases the functional derivative increases rapid-
ly as A/T, is decreased and that, for the lowest tempera-
ture at which it was possible to converge our programs,
signs of a turnover toward 0 at m=0 are visible. This
form for the functional derivative is consistent with the
results shown in Fig. 41.

C

field, which is used to describe its temperature depen-
deIice, is defined as

H, (T)
D(t)=— —(1—t') .

H, (0)
(5.4)

Dimensionless BCS ratios, which are associated with the
thermodynamics and which are often quoted, are the
normalized jump in the specific heat at T„
AC(T, )/(yT, ), the ratio yT, /H, (0), the slope of the
specific heat at T„

V. THERMODYNAMICS FOR SPECIFIC MATERIALS

A. Comparison with experiment for Pb and Nb

The thermodynamics of a strong-coupling supercon-
ductor follows from the numerical solutions of Eqs. (2.1)
and (2.2) with appropriate microscopic parameters. The
free-energy difference AF between superconducting (F )

and normal (F ) state is given by the formula of Bardeen
and Stephen (1964)

X(0) rrTQ +co„+—b, (ice„)—~co„~

X Z'(i~„) Z"(i~„)—
+co„+6 (ice„)

(5.1)

hC(T) = —T
dT2

and the thermodynamic critical magnetic field is

H, ( T)=& 8rtb,F—
(5.2)

(5.3)

Finally, the deviation function for the critical magnetic

where Z+(ice„) is the renormalization function for the
normal state. It is given by Eq. (2.2) with A(ice ) set
equal to zero on the right-hand side.

All thermodynamic properties follow from a
knowledge of AI'". In particular, the specific-heat
difFerence is

db, C(T) 1

dT

and the minimum in the deviation function. These quan-
tities have the value 1.43, 0.168, 3.77, and —0.037, re-
spectively, f'or a weak-coupling system, but are quite
di8'erent for actual electron-phonon systems.

Extensive calculations of thermodynamic properties of
specific superconductors, for which a F(co) is known
from tunneling, have been carried out by Daams and
Carbotte (1981) and the results compared with experi-
ment. In Table VI, we reproduce some of their results
for Pb and Nb. Similar results can be found in their pa-
per for Hg, Sn, Tl, and Al. Additional results exist for
the Tl-Pb-Bi [Daams et al. (1978)] alloy series; for Nb
[Daams and Carbotte (1980b)], where the effect of vari-
ous choices of a F(co) is examined in detail; for Nb, in-
cluding a possible contribution from paramagnons [Ba-
quero et al. (1981)]; for Nbo 7~Zro 2~ [Mitrovic and Car-
botte (1981a)];for Ta [Baquero and Carbotte (1983)];and
for V [Daams et al. (1984)], including an investigation of
the efFects of paramagnons.

From Table VI where the thermodynamic quantities
C„/(yT, ), yT, /H, (0) and the extrema values of D(t)
are quoted and compared with experiment, it is seen that
good agreement is achieved although there is more varia-
tion from one experiment to the next than one might like.
Despite this uncertainty, it is clear that BCS theory does
not apply, awhile Eliashberg theory does. The other quan-
tities entered —H, (0), bC(T, ), and —BH, (T)/BT)z. —

C

are all dependent on the electronic density of states at
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the Fermi energy X(0), which enters linearly in formula
(5.1) for the free-energy difference. This quantity is
determined from the measured Sommerfeld constant y
[Gladstone et al. (1969)] and the tunneling-derived
mass-enhancement parameter according to the formula

y= —'~ k X(0)(1+A,),
where kz is the Boltzmann constant usually taken to be
1. It is seen that when X(0) is derived from y, good

agreement with experiment is obtained for all three quan-
tities quoted above, namely, the zero-temperature critical
magnetic field, its slope at T„as well as the specific-heat
jump at T, . The theoretical results for Pb are based on
the spectrum given in the tabulation by Rowell et al.
(1970) as discussed in Table I. Two sets of theoretical re-
sults are given for the case of Nb. They are Nb(R), based
on the tunneling-derived spectrum of Robinson and
Rowell (1972), and Nb(B), based on the calculated spec-
trum of Butler et ah. (1977). As seen in a previous sec-

TABLE VI. The experiments are classified according to type (magnetization or calorimetric). The numbers in parentheses were ob-
tained indirectly from plots or other data. The entries under D(t) are the extrema of D {t). The y used for the theoretical work was
taken from a compilation of Gladstone et al. (1969). X(0) was then deduced from y and the A,(0) of the o.2E(co).

T.
K

H,
G m J/mol K

AC, (T, )

mJ/mol K

—(BH, /BT)

G/K C„/y T, yT, /H, D(t) Ref.

Cal
Cal
Cal
Mag
Mag
Mag

7.19
(7.19)
(7.19)
7.18
7.20
7.18

(803)
(803)
(803}
803
803

3.00
(3.13)
(3.13)
3.06
3.13

(3.13)

Pb experiment
59
58
53
58
60

(57)

(240)
(236)
(227)
238
237

3.71
(3.67).
(3.36)
(3.69)
(3.66)
(3.57)

(0.134)
(0.140)
(0.140)
(0.137}
(0.140)
(0.140)

0.025

0.024
0.021

BCS
Isotropic

(tunneling, co, =66)
7.19 818 3.13

Theory

61 247
2.43
3.70

0.168
0.132

—0.037
0.025

E(0)=0.86X 10' meV ' cm ', molar volume=17. 9 cm'

Mag
Mag
Mag
Cal
Cal
Cal
Cal
Cal
Cal
Cal
Cal
Cal

BCS
Isotropic spectrum

Nb(R)
Nb(B)

9.20
9.25
9.20
9.17
9.19
9.18
9.26
8.70
9.28
9.23
9.18
9.09

9.20
9.25

1960
1993
1980
1944
1994

2061
2000
2014

(1975)
2038

2007
1992

7.15
7.90
7.88

7.53,7.95
7.80
7.72
7.80
8.47
7.82
7.80
7.74
7.53

7.80
7.80

Nb experiment

147
127
140

(134)
(144)
140
153
139

(135)
(134)
(131)

Theory

141
139

(430)
(401)
415
412
427
419
453
417
(413)
413

(409)

422
418

{3.01)
(2.75)

3.03,2.92
2.87

(3.03)
(2.94)
3.07
2.91

(2.87)
(2.88)

2.43

2.96
2.91

(0.146)
(0.158)
(0.158)
(0.155)
(0.153)

(0.146)
(0.148)
0.154
(0.158)
(0.157)

0.168

0.151
0.155

—0.003
+0.003

—0.027
—0.012
+0.OOS

-0.0& S
+0.003

—0.008
+0, 0004—0.007
+0.002

—0.037

—0.008
+0.002—0.009
+0.002

X(0)=4.64X 10' meV ' cm, molar volume=10. 8 cm

'Neighbor et al. (1967).
Shiffman et al. (1963).

'Clement and Quinnell (1952).
Decker et al. (1958).

'Chanin and Torre (1972).
Rohrer (1960).
Stromberg and Swenson (1962).

"Finnemore et al. (1966).
'French (1968).

'Chou et al. (1958).
Leupold and Boorse (1964)~

'Ishikawa and Toth (1971).
Novotny and Meincke (1975).

"Brown et al. (1953).
Ferreira da Silva et al. (1969).

"Ohtsuka and Kirnura (1971).
qCorsan and Cook (1969).
"Hershfeld et ah. (1962).
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1078 J. P. Carbotte: Properties of boson-exchange superconductors

tion, these spectra di6'er significantly from one another in
detail, but we now see that they give basically the same
thermodynamics. Yet another more recent Nb spectrum
will be presented later in relation to a comparison be-
tween the thermodynamics of Nbo 7~Zro z5 with Nb [Wolf
and Noer (1979)].

0.03

0.02

0.01

B. Critical-field deviation function

The results obtained by Daams and Carbotte (1981) for
the critical-field deviation function D(t) are shown in

Fig. 43 for Pb, Hg, Nb, In, Tl, Sn, Ta, and Al (denoted as
BCS) in order of decreasing deviation from BCS. They
can be compared with the experimental results compiled
by Swihart [(1962); Rickayzen (1965); Daams (1979)],
which we reproduced in Fig. 44. The qualitative and
near quantitative agreement obtained between theory and
experiment is very good and leaves no doubt that an
electron-phonon mechanism is operative and that Eliash-
berg theory is remarkably exact while BCS theory cannot
be used for quantitative comparison with experiment.
Similar theoretical results of Daams and Carbotte (1981)
for the electronic specific heat in the superconducting
state C„(T)/(yT) are presented for the same systems as
in Fig. 43, namely, Pb, Hg, Nb, In, Tl, Ta, Sn, and Al in
Fig. 45 [Swihart et al. (1965)]. Since calculated D(t)'s

0.05

-0.01

-0.02

-0.03

—0.04
0 0.2 0.4 0.6

(TIT,)'
0.8 t.0

agree well with experiment, these also do. In fact, the

specific-heat

di6'er ence between superconducting and
normal state for Pb, measured by Chanin and Torre
(1972), is given in Fig. 46. These results fall almost exact-
ly on the theoretical results shown in Fig. 47, which are
very diferent from BCS. If the two figures had been su-

FIG. 44. Experimental results for the thermodynamic critical
magnetic field as compiled by Swihart (1962).

0.02

0.0 I

0

-0.0l

Ces
+T

-0.02

-0.05

-0.04— I

0.5 l.o 0 0.5 1,0

FIG. 43. Thermodynamic critical magnetic-field deviation
function D (t) as a function of the square of the reduced temper-
ature t for various materials as calculated in Eliashberg theory.
The lowest solid curve is the BCS result, while the solid circles
are the results of full Eliashberg calculations for Al.

FIG. 45. Calculated {with Eliashberg theory) electronic specific
heat in the superconducting state normalized to y T (the normal
state) with y Sommerfeld constant, as a function of the square
of the reduced temperature for several materials.
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TABLE VII. Comparison of some microscopic parameters for Nbo 75iro p5 and Nb.

Nbp 75Zno p5

2y" a'(~)F(~)
d

0 M

A =f a (co)F(co)den (meV)
p

2
mo, maximum phonon energy in n (co)I'(~) (meV)
coo„cutoff in Matsubara sums {meV)

p, Coulomb pseudopotential
T, critical temperature (meV)
T, (K)

1.311

7.425

26.0
156.0

0.1808
0.922

10.8

1.009

7.247

28.3
169.7

0.1854
0.7945
9.22

best tunneling-derived value to date. The most impor-
tant feature of these results is the considerable shift in
a F(co) towards higher weight at lower energy observed
with alloying. A measure of the extent of this softening
is given by k which, we note from Table VII, increases by
30% despite the fact that the area A under a F(co) in-
creases by only 2.5 percent. This softening in spectrum
leads to more pronounced strong-coupling effects in the
thermodynamic properties of NbQ 75ZrQ 25 compared with
Nb as calculated by Mitrovic and Carbotte (1981). This
is seen in Table VIII for thermodynamic quantities that
are all found to move significantly towards larger devia-
tions from BCS values when NbQ 75ZrQ z5 is compared
with Nb. The calculations of Mitrovic and Carbotte
(1981) seem to have stimulated new, more accurate ex-
periments in both Nb and NbQ75ZrQ z5 by Junod et QI.

(1986). Their experimental data are entered in Table
VIII, and it is seen that the agreement with theory is al-
most exact. This is important, since some of the older
data reported in Table VI did show bothersome
differences from one paper to the other. When new more
accurate data are taken, the agreement between theory

and experiment is seen to improve and is excellent.
Finally, the gap-to-critical-temperature ratio based on

the spectra of Wolf and Noer (1979) gives 4.19 for
NbQ»ZrQ 25 and 3.88 for Nb, to be compared with the ex-
perimental result of 4.12 and 3.86 by Wolf and Noer
(1979) and 4.18 and 3.89 by Junod et al. (1986). The
agreement is very good. One can easily understand why
b, o is more affected than T, by the softening of a F(co)
(seen in Fig. 48) on going from Nb to Nba 75Zro 25. We
have already given functional derivatives for T„EQ, and
62/0~kT, with respect to a F(ro) in previous sections.

The results from Nb are presented in Figs. 49(a) and
49(b). The functional derivative 5b,o/5a F(co) compared
with 5T, /5a F(co) peaks at lower energy (-4kzT, ) and

b,o '5b, o/5a F(a)) ~ T, '5T, /5a F(co),

which results in a non-negative 5(2bo/k~T, )/5a F(co)
that peaks at —8k~T, /6. Thus it is seen that the shift
towards lower energy of spectral weight in a F(oo) to the
region below —10 meV in going from Nb to NbQ 75ZrQ z5

will increase AQ, T„and also 24Q/k~T, . The Coulomb

TABLE VIII. Thermodynamic properties.

Nbo. 75Zro. 2s

Theory Exp. Theory Exp.

H, (0), critical field at T=O (Oe)
hC(T, ), specified heat jump at T,

(rn I/mol K)
—(dH, /d T)T (G/K)

2571.0

213.0
478.0

2490

215.0
480.0

2002.0

138.0
415.0

2020

138.0
415.0

Minimum D(t) deviation function
At t =T!T,
Maximum D(t) deviation function
At t =T/T,

0,0070
0.184

0.008
0.23

—0.0101
0.542
0.0013
0.051

—0.011
0.55
0.001
0.047

C„{T,)/(yT, ), ratio of electronic
specific heat at T, in super-
conducting and normal states

y'T, /H, (0), ratio of specific heat
in normal state to square of
zero-temperature critical field

3.22

0.143

3.23

0.143

2.91

0.153

2.91

0.153
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repulsion parameter p* also changes slight1y from
-0.185 for Nb to -0.181 for Nbp75Zrp 25, but this is a
small efFect. From the values of T, 'BT, /Bp*= —4.2,
b,o 'Bho/Bp' = —4. 8, and 8 in(2b, o/ks T, )/Bp* = —0.6
for Nb, we estimate the changes in T„hp and 26p/kg T,
due to the change in p,

* to be 5( T, ) =0.15 K,
5(b,o) =0.03 meV, and 5(2b,o/k~ T, ) =0.06. These
changes are small compared to the total changes
5„,( T, ) = 1.58 K, 5„,(b, o) =0.39 meV, and

5„,(260/ks T, ) =0.27. Therefore most of the shift in go-
ing from Nb to Nbp 75Zrp 25 is due to shift of the
electron-phonon spectral weight to the more favorable

frequency region as indicated by the functional deriva-
tives.

D. V3Si, comparison with experiment

We turn next to a discussion of the thermodynamic
properties of the A15 compounds. It will be sufhcient for
our purposes to consider in detail only the case of V3Si.
Similar agreement is found in the other A15's. We begin
with two non-tunneling-derived models for a F(co). The
first, which we shall later see is not far from the
tunneling-derived spectrum, is taken to be a constant "c"
times the measured [Schweiss et al. (1970)] generalized
phonon density of states G(co) in V3Si at T=77 K ob-
tained from incoherent inelastic neutron scattering. The
constant c is taken in such a way that the resulting mass
renormalization A, = 1, so a F&(~)=cG(co). The second
spectrum is a Fz(co)=—a„F(co) with a„F(co) determined
from far-infrared-absorption experiments (McKnight,
Bean, and Perkowitz, 1979; McKnight, Perkowitz, et al.
1979). In this case, A, is equal to 1.29. We need to stress
that a„F(co), which controls transport properties, is
different from a F(co) and that it is used here mainly to
illustrate that thermodynamic properties are sensitive to
some of the details of a F(co), so that we cannot use just
any arbitrary spectrum. This will be discussed in more
detail later.

The two spectra a,F (solid curve) and azF (dotted
curve) are compared in Fig. 50 and are seen to be quite
diAerent. These differences are also rejected in Table IX
where some typical parameters for the two spectra are
given in the first four rows. In particu1ar, we note that
spectrum 1 is much harder than spectrum 2, as can be
seen by the values of the average phonon energy (co) and
(co )' . They will lead to very different thermodynam-

0.8

4P

E

(b)
gg

~ 0.4
40 i

0.8

0.6—

0.2

0

'0 IO 20 30
Q (meV)

40 50

lO 20
cu (meV)

30 40

FIG. 49. (a) the functional derivative of T, (dashed curve) and
of the gap 60 (solid curve) with respect to a I'(co) for Nb. (b)
the functional derivative of the dimensionless ratio 26O/k&T,
with respect to a I'(co) for Nb.

FIG. 50. Comparison of two model electron-phonon spectral
densities for V,Si. The first model o. F&(co) (solid curve) in-
volves a constant times the measured phonon frequency distri-
bution determined by incoherent inelastic neutron scattering.
The second model a F2(co) (dotted curve) involves the transport
electron-phonon spectral density measured in optical measure-
ments.
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ics. In Fig. 51 we present the results of our calculation of
the deviation functions D (t) for the two spectra together
with the experimental results [Muto er al. (1979)];in Fig.
52, we show a similar comparison for the specific heat
ln(C„/y T, ). In Table IX, we give calculated and experi-
mental values for some characteristic thermodynamic pa-
rameters.

Obviously, the results obtained from the spectrum
based on the neutron experiments with A, =1 give a fit to
the experimental values of thermodynamic quantities,
which is of the same quality as that found for the s-p and
transition metals. At the same time, the thermodynamic
properties calculated on the basis of the second spectrum
(A, = l. 29) correspond to a superconductor that is consid-
erably more strongly coupled than V3Si and is unaccept-
able. Moreover, the latter spectrum requires an unusual-

ly small Coulomb repulsion parameter; i.e.,
p*(co, ) =0.05, in order to obtain the experimental value
of T, . It can safely be ruled out as the possible candidate
for the a F(co) in V3Si.

The results presented so far do not depend on the nu-
merical value for the electronic density of states. Since
the results for dimensionless ratios based on the first
spectrum give good agreement with the experiments, it
makes sense to attempt to fit the value of N(0) to the ex-

perimental result for some particular thermodynamic
quantity dependent on N (0). Calculated values for other
quantities, also dependent on N(0), can then be com-
pared with the experiment. In addition, the value of
N (0) extracted in such a way can be compared with the
values inferred from other independent experimental
quantities or obtained in band-structure calculations. %'e
have fit N(0) to the zero-temperature thermodynamic
critical field H, (0)=6.43 kOe [Muto et al. (1979)],
and the value obtained for N (0)= 13.64 X 10'9
states/(meV cm spin). When we compare calculated
thermodynamic parameters for this value of N(0) with
the experimental results [Brock (1969); Knapp et al.
(1975)], in all cases, the agreement is within a few per-
cent.

The results presented so far clearly suggest that the
a F(co) spectrum, based on the measured G(co) at T=77
K and with A, =1, is able to account for the thermo-
dynamic properties of V3Si within the usual Eliashberg
theory of superconductivity, while the a„F(Q) inferred
from the far-infrared-absorption measurements cannot.
Thus, from this point on, we shall not refer to the results
obtained on the basis of the latter spectrum.

The calculated value for the ratio 26o/k~ T, is in ex-
cellent agreement with the value -3.8 obtained in the re-

TABLE IX. Summary of some typical parameters for the two-model spectra of electron-phonon interaction in V3Si and comparison
of calculated values for several thermodynamic quantities with experimental results. Tunneling results are also included.

A, =2f dQ a'(Q)F(Q)/0
0

2 =f dt's a'(Q)F(Q)
(~)=22 //(,

(co')' '= 2f dA Qa'(A)F(Q) A/,

0
0 „maximum phonon energy in a F
co, cutoff' energy in Matsbuara sums
p*(co, ) Coulomb repulsion parameter
T, superconducting critical temperature

dH, ( T)
T„parameter for which

the BCS theory gives the value 1.74
T.

y parameter for which BCS
H, (0)

theory gives the value 0.168
AC/(yT, ). ratio of jump in specific heat

at T, to the normal-state electronic specific
heat at T„' BCS value is 1.43

2AO/k&T„BCS value is 3.53

Spectrum 1

11.99 meV

23.96 meV

25.78 meV

50 meV
250 meV

0.15
17.1 K

1.95

0.151

2.01

Spectrum 2

1.29

8.63 meV

13.38 meV

16.45 meV

50 meV
250 meV

0.05
16.63 K

0.142

2.25

4.33

Experiment

14.5—17.1 k'

0 153

2.01

3.76+0. 1'
3.8
3.8'

3.4—3.6

Tunneling

0.902

9.55 meV

10.6 meV

42 meV
254 meV

0.102
15.4 K

0.151

1.97

3.89

'Roberts (1976).
Muto et al. (1979).

'McKnight, Bean, and Perkowitz (1979);McKnight, Perkowitz et al. (1979).
dHauser et al. (1966).
'Moore et al. (1977).
Moore et al. (1979).
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O.OIO

SPECTRUM 2
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t2

FIG. 51. Thermodynamic critical-field deviation function D(t)
as a function of the square of the reduced temperature t. The
solid dots are experimental results, while the solid curve
represents the predictions of Eliashberg theory based on model
spectrum a F&(co). The dotted curve is the result for similar
calculations based on the model a F, (co).

IO

IO'

IO

IO 2.0 3.0

FIG. 52. Comparison of theory and experimental (empty cir-
cles) results for the electronic specific heat C„ in the supercon-
ducting state normalized to the normal-state value at T, (yT, )
as a function of T, /T. The solid curve is the result of fu11
Eliashberg calculations based on model a F&(co), while the dot-
ted curve involves, instead, a F&(co).

cent far-infrared measurements [McKnight, Bean, and
Perkowitz (1979); McKnight, Perkowitz, et al. (1979)] as
well as in the older tunneling results [Hauser et al (1966);
Moore et al. (1977)]. More recent tunneling experiments
[Moore et al. (1979)] give the value 2b,o/kz T, —3.5, but
there were indications that the bulk value for 60 was un-
derestimated. On the basis of the functional derivatives
5T, /5n F(Q), 560/5a F(Q), and 5(2b. o/kiiT, ) /
5a F(Q), which are non-negative peaked functions with
the peak frequencies 0*(T, ) —8kii T„Q*(b,o)-2b,o, and
II"(2b,o/k~ T, ) —b,o/3, respectively, we can conclude
that a F(Q) in V3Si cannot have significantly more
weight at lower frequencies and less weight at higher fre-
quencies than our model (solid curve in Fig. 50), since
that would increase the value of the ratio 2h o/k~T,
above the observed upper limit of 3.8. This is borne out
in the tunneling experiment of Kihlstrom (1985). His de-
rived spectrum has a A, =0.9 and is quite close to a&F(co)
except for a slight shift toward lower frequency of the
lower-energy peak in the spectral density and some at-
tenuation of the high-energy peak. Results of thermo-
dynamic calculations [Mitrovic and Carbotte (1986)] for
this spectrum are given in Table IX (last column) and are
seen to be close to those of spectrum 1.

It is instructive to compare the value of
N (0)= 13.64 X 10' states/(spin meV cm ), obtained by
fitting the calculated zero-temperature thermodynamic
critical field to the experimental value, with other values
of N(0) in V3Si available in the literature. Muto et al.
(1979) have obtained from their experiments the value
28.27 X 10' states/(meV cm spin) for the fully dressed
electronic density of states N*(0)=N(0)(1+I,), where
we assumed that N(0) contains the renormalization by
the Coulomb interactions [Heine et al. (1966)]. If we
take A, = 1, this would give N(0) = 14. 14X 10'
states/(meVcm spin), in good agreement ( —5 percent)
with our value. Testardi and Mattheiss (1978) give the
experimental value 14.25 X 10' states/(spin meV cm ) for
nearly stoichiometric V3Si, again in excellent agreement
with our value for N(0). However, the band-structure
calculations give for N (0) in stoichiometric V3Si a value
that is about one-half of the above-quoted numbers.
Mattheiss et al. (1978) calculated N (0)=5.70 X 10'
states/(meV cm spin). Self-consistent augmented plane-
wave (APW) calculations by Klein et al. (1978, 1980)
give the similar result N (0)=6.99 X 10' states/(meV cm
spin). Using a linear combination of muffin-tin orbitals,
the self-consistent band-structure calculations of Arbman
and Jarlborg (1978) give an even smaller value
N(0)-4. 2X 10' states/(meV cm spin).

Testardi and Mattheiss (1978) have offered an explana-
tion for the large discrepancy in the values of calculated
N(0) and the one inferred from the experiments in V3Si
in terms of the rapid variation in N(F. ) around the Fermi
level. They assume that actual samples correspond to
V3 Si with small x &0. Then by assuming the rigid-
band model they conclude that the resulting shift (of
about 35 meV) in the position of the Fermi level in
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V2 94Si compared to its value in V3Si leads to a large in-
crease in X(0).

To end, it should be mentioned that the experimental

y value —70 mJ/(mol K ) has been obtained by analyz-
ing the normal-state specific heat using the formula
C(T)=yT+13T +aT (plus the requirement that at T„
the entropy in the normal state is equal to that in the su-
perconducting state). This procedure is, perhaps, more
appropriate for complicated solids such as V3Si, which
cannot be described by a Debye model (a=0). An
analysis of the specific-heat data, on the basis of
C(T)=yT+PT only, usually gives a smaller value for
y, between 55 and 62 mJ/(mol K ) [Muto et al. (1979)].

Other results for the thermodynamics in the A15 com-
pounds are discussed by Mitrovic, Schachinger, and Car-
botte (1984), and comparison with experiment is made
whenever possible. Good agreement is found. In some
cases difFerent spectra are examined for a particular ma-
terial so as to get some feeling for the dependence of the
result obtained on choice of spectral density. Prelimi-
nary results using a model a F(co) based on the phonon
frequency distribution in the Chevrel phase compounds
have also been obtained [Schachinger, Zarate, et al.
(1986)]. In this case, no tunneling results exist as yet. A
general conclusion of all this is that Eliashberg theory
with an electron-phonon kernel' applies equally well to
the A15 compounds and probably to the Chevrel phases.

would reduce to the k approximation. Instead, we
evaluate Eqs. (2.1) and (2.2) at n =1. Thus 6& is the con-
stant gap in Eq. (5.7a). The procedure is outlined in Ap-
pendix B. Essential to the approximations used is the re-
quirement T, /co&„«1. We have also assumed that coo is
suKciently large that m]„/~, &&1. Expansions near T,
give

bC(T) f ( )
'V Tc

where

b, C(T, )f—= =1.43 1+53
'V Tc

2
TQ ~]n

ln
~in ] 3Tc

(5.8)

(5.9)

g = —3.77 1+117
2.9T,

(5.10)

Material
3'Tc

H, {0)
hC(T, )

'Vo Tc
h, (0)

TABLE X. Superconducting properties: thermodynamic prop-
erties.

E. Approximate analytic formulas

So far, we have presented limited theoretical results
and have compared with experiment in specific cases so
as to illustrate the kind of agreement that can be
achieved between Eliashberg theory, with a tunneling-
derived spectral density, and experimental data. On the
whole, the agreement is very good and constitutes strong
evidence for Eliashberg theory with an electron-phonon
mechanism. We wish now to give additional theoretical
results for many more materials. We shall do this in the
context of approximate equations for strong-coupling
corrections of the kind already discussed for the gap-to-
critical-temperature ratio and shall not compare further
with experiment. Such formulas contain the single
strong-coupling parameter T, /co&„[Kresin and Par-
khomenko (1974, 1975); Marsiglio and Carbotte (1986)].
The gap is modeled by

60(T), ~co„~ & coo,

0, [co„j & coo, (5.7a)

Z, (T), [co„ f &co, ,
Z(co„)= '

1, i co„ i
) co, . (5.7b)

Here, mo represents roughly a few times the maximum
phonon frequency in the system. For self-consistency, we
would require A, (ice„—ice ) to be independent of n. This

Al
V
Ta
Sn
Tl
Tlo 9Bio
In
Nb (Butler)
Nb (Arnold)
V3Si 1

V,si (K.ihl. )

Nb (Rowell)
Mo
Pbo. 4Tlo. 6

La
V,Ga
Nb3A1 (2)
Nb3Ge (2)
Pbo. 6Tlo. 4

Pb
Nb3A1 (3)
Pbo 8T10 2

Hg
Nb, Sn
Pbo 9Bio
Nb3A1 (1)
Nb3Ge (1)
Pbo, sB&0.2

Pbo. 7B10.3
Pbo. 65B~O, 35

Pbo. 5»0. 5

Ga
Pbo. 75Bio.25

Bi

0.004
0.031
0.035
0.038
0.046
0.048
0.050
0.057
0.062
0.070
0.071
0.074
0.076
0.095
0.099
0.103
0.113
0.114
0.119
0.128
0.129
0.136
0.146
0.146
0.152
0.156
0.160
0.172
0.182
0.200
0.320
0.243
0.288
0.320

0.168
0.162
0.162
0.160
0.158
0.157
0.156
0.153
0.153
0.150
0.150
0.150
0.150
0.144
0.145
0.143
0.141
0.137
0.137
0.132
0.137
0.134
0.134
0.134
0.130
0.134
0.134
0.127
0.125
0.125
0.147
0.150
0.143
0.153

1.43
1.63
1.63
1.68
1.74
1.76
1.79
1.94
1.92
1.99
2.02
1.97
1.98
2.24
2.14
2.24
2.33
2.61
2.52
2.77
2.54
2.69
2.49
2.64
2.86
2.61
2.59
2.92
3.01
2.98
2.16
2.04
2.27
2.03

0.576
0.550
0.550
0.544
0.538
0.536
0.533
0.517
0.521
0.515
0.512
0.518
0.518
0.497
0.506
0.499
0.492
0.471
0.479
0.466
0.479
0.470
0.488
0.474
0.463
0.477
0.479
0.462
0.460
0.462
0.500
0.509
0.494
0.506

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



J. P. Carbotte: Properties of boson-exchange superconductors 1085

[see also Swihart (1963); Marsiglio and Carbotte (1986)j.
The general form of these equations is not new and has
been derived and used previously [Geilikman and Kresin
(1965, 1966); Masharov (1974a, 1974b); Kresin and Par-
khomenko (1974, 1975)]. What is new is our use of the
specific characteristic phonon energy co&„ in Eqs. (5.8) to
(5.10) and the suggested specific numerical coeKcients to
go along with our choice of average phonon energy.
These numerical coefficients are fif. to the numerous nu-
merical results listed in Table X; and so, Eqs. (5.9) and
(5.10), as well as other such equations to be introduced
later, represent well the data on real materials. The de-
rived equations are plotted in Figs. 53 and 54 along with
the numerical data. For clarity, experimental data have
been omitted, although the Eliashberg theory results are
found to be generally accurate to within 10 percent. We
note that there is some scatter in the exact numerical re-

suits, especially among the A15 compounds and Hg. In
the case of Hg, there is a very-low-frequency peak in the
a F(co) spectrum, so that the assumption ni &) T, for all

important ~ has broken down. In addition, we note that
the results from amorphous materials have not been plot-
ted. They are not at all well described by Eqs.
(5.8)—(5.10). They are included in Table X, where it is
seen that their values for T, /co, „are near 0.3. This value
is beyond the limit of validity of Eqs. (5.9) and (5.10), and
of others that will be presented later. More importantly,
however, the spectral shapes of a F(~) for these materi-
als is such that they are not even approximately de-
scribed by an Einstein spectrum with frequency coE =co&„
of the material. The opposite tends to be true for the
crystalline materials. Coombes and Carbotte (1986a,
1988) have analyzed in detail the dependence of the re-
sults on the shape of the spectral density. Some of the

-4.0

3.0—
~ M—Pbs Bi.p

-6.0

2.6—

ac(T, )

vTc -8.0

2.2—

I.S—
Nb —~

—In

-10.0

~~
I.4—

I I I

0.00 0.04 0.08 O.I2
Tc ~~in

I I I

O.I6 0.20 0.24

-12.0

FICx. 53. Specific-heat-jump ratio f=AC( T, )/(7'T, ) T,v/s~~,

The dots represent the accurate results from the full numerical

solutions of the Eliashberg equations. Experiment tends to
agree to within 10 percent. In increasing order of T, /co]„, the

dots correspond to the following systems: Al, V, Ta, Sn, Tl,
Tlp 9Bip &, In, Nb (Butler), Nb (Arnold), V3Si( 1 ), V3Si (Kihl. ),

Nb (Rowell), Mo, Pbp 4Tlp 6, La, V3G-a, Nb3A1(2), N13Cxe(2)„

Pbo. 6Tlp 4 Pb Nb3A1 (3) Pbo. 8Tlp p& Hg Nb3Sn Pbo. 9B10.1~

Nb3A1(1) Nb3Ge(1) Pbp 8Bip 2 Pbp 78io 3 and Pbp 65B1Q 35 The
drawn curve corresponds to AC( T, )/y T, = 1.43[1+53( T, /
co,„)2ln(co,„/3T, )].

O.O 0.04 0.08 0.12
T~/

0.16 0.20 0.24

FICx. 54. Negative specific-heat slope g at T, vs T, /co&„ for a
selected number of systems. Dots correspond to the results ex-
tracted from numerical solutions for D ( t)—:H, ( T) /H, (0)
—(1—t ) vs t, using the Eliashberg equations. In increasing or-
der of T, /co]„, the dots correspond to Tl, In, Nb3A1(2), Nb3Sn,
Pbp 9B1p ] Nb3A1(1) Pbp 881p 2 Pbp 7Bio 3, and Pbo 6,BiQ 35.
The drawn curve corresponds to g = —3.77[1
+ 117( Tco/~„) In(co~„/2. 9T, )]. The fit is remarkably good, con-
sidering the constraints on the coefficients.
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T2

H, (0)
Tc ~In

ln
3T.

(5.11)

scatter is also due to variations in p*. In any event, the
point of these equations is to describe the general trend of
superconducting properties as a function of strong cou-
pling. The result is a continual increase of both f and the
absolute value of g as T, / oc&„ increases from 0 (BCS) to
0.20. We note that there are signs of saturation in the
curves around T, /~&„=—0.2, and, in fact, it will later be
seen that as the coupling is increased further,
bC(T, )/(yT, ), for example, will eventually decrease to
values below 1.43.

The physical reason behind the increase in
b C( T, )/( y T, ) can be traced to the gap opening up more
rapidly just below T, as the coupling strength is in-

creased. The specific-heat jump, which is a measure of
steepness of the ascent of the gap, will increase as well.
The subsequent decline alluded to in the previous para-
graph is not physical; it is a result of having used y in-
stead of the Grimvall (1968, 1969) y(T, ).

Also derived in Appendix B are equations for two
more commonly used ratios:

H, (0)

dH, (T)
dT

=h, (0)=0.576 1 —13.4
3.5T,

(5.12)

These equations, along with numerical data for many real
materials, are plotted in Figs. 55 and 56. The first ratio is
rather well described by Eq. (5.11). The second exhibits
considerably more scatter. Both show indications of sat-
uration. The important point, however, is that the trend
for realistic spectral shapes is well described by these for-
mulas. Moreover, the deviation from BCS behavior is
relatively small ( —20 percent) in h, (0), as compared to
250/k~ T .

Tunneling junctions are sometimes dificult to fabri-
cate; hence, for some materials, an cz F(co) spectrum does
not exist. Moreover, for the same reason, the gap edge is
unknown as well. Hence over the years many formulas
[Toxen (1965); Padamsee et al. (1973); Stewart (1979);

0.17—

0.16

2
7Tc
H,'(0)

0.52
Nb (R)

0.50—

0.15—

Nb&sn, Hg

Nb~ALQ)~ gb G~(1)

0.48—

~ 4/ o~
Pb

Pbasa!m

I I I

0.04 0.08 0.12

Tc ~~lp

I

0.16
I

0.20 0.&4
0.42'

0
I

0.04
I I

0.08 O.l2 O.l6
~C /~)r

I

0.20 0.24

FIG. 55. Ratio y T, jH, (0) vs T, jco]„(see Fig. 53 for
identification of materials). The curve corresponds to
y T,'/H, (0)=0. 168[1—12.2( T, /ci), „)'ln( co,„/3 T, )].

FIG. 56. Ratio h, (0) vs T, j~]„(see Fig. 53 for identification of
materials). The curve corresponds to h, (0)=0.576[1—13.4( T, /coi„)'1n(coi„/3. 5 T, )].
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and Marsiglio, Coombes, and Carbotte (1987)] have been
developed, which estimate the gap edge given thermo-
dynamic properties, since these are often more easily
measured. These formulas are usually not reliable, as dis-
cussed recently by Marsiglio, Coombes, and Carbotte
(1987). The formulas in the previous section, however,
allow much more accurate determinations. The parame-
ter T, /co~„ is still unknown, but it can be determined
through one measurement, for example, of the specific-
heat jump, from Eq. (5.9). Equation (4.1) then allows for
an accurate determination of the gap ratio, 260/k&T, .
In Fig. 57, we plot AC/yT, versus 250/k~T, for many
crystalline spectra. The solid curve is determined
through Eqs. (5.9) and (4.1). Once again, amorphous ma-
terials tend to ruin the simple relation somewhat. What
is clear, however, is that with little error the specific-heat
jump of a material uniquely determines the gap ratio,
provided the material is crystalline, and has a value of
T, /co&„~ 0.2. Similar remarks hold for the other proper-
ties discussed.

While the solid curves of Figs. 53 and 57 certainly
represent well the trend in the data up to T, /coI„—=0.24, a

range which covers conventional superconductors, some
solid points do fall off the curve. This means that in
these cases the quantity considered is not completely
determined by the single strong-coupling parameter
T /et&& and depends on further details of the spectral
density. Full numerical calculations are required in such
cases in order to get quantitative answers. As they did in
the case of the ratio 260/k~ T„which we previously dis-
cussed, Coombes and Carbotte (1986a) have studied these
deviations in detail for thermodynamic properties. They
use model spectra based on real materials, but each is re-
scaled to get the same T, and T, /co&„as Pb. With these
spectra labeled with an asterisk, they recalculate the ther-
modynamics, which would not change if shape were
unimportant and T, /cu~„were the only significant param-
eter characterizing the spectrum. In Fig. 58, we repeat
our result for hC( T, )/(y T, ), but in the inset we show
how this ratio changes in the case of Pb when various
shapes are considered, namely, a delta function, Pb, Al,
Tl, Nb, Sn, In, Hg, Nb3Sn, Pb0 ~Bi05, and amorphous
Ga. It is seen that hC( T, ) /( y' T, ) can range from ap-
proximately 3.0 to 2.0 depending on shape. Therefore
shape dependence beyond that captured by m&„does come

3.0— ~1
~Pb Bi0.8 0.2

2.6—

QC
YTc

2.2—

Pb ~
—2.8

2.0— /~W
Nb(R)// Nb(A)

/p' In

Ga l.s—
Nb —a —Sn+
I,
n"

~~Hg
Nb~So

—2.6

—2A

Pb Bi 22
05 05

I.5

3.5
I

4.0
2Lp
k BTc

4.5 5.0
l.4—

I I I

0.00 0.04 0.08 O.l2
Tc ~~tn

Go ~

I

O.I6

—2.0

I I
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FIG. 57. Ratio AC/(yT, ) vs 260/k~T, . There is an almost
unique relationship between these two quantities for crystalline
materials. The amorphous materials ruin this universality. The
solid line corresponds to solutions based on Eqs. (5.8) and (4.1)
and, of course, represents the numerical data quite well. The
dashed line represents solutions for Einstein spectra with

0

FIG. 58. Normalized specific-heat jump at T„AC(T, )/(y T, )

as a function of T, /co~„. The insert shows results for
4C(T, )/(yT, ) using model-shifted spectra for the real metals
indicated. More specifically, a~F (co ) =BAOF ( bee ) where
uoF(co) refers to a specific material. The constants B and b
have been chosen in every case to get the same value of T, and
of u~„as apply to Pb.
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into play. Results for other thermodynamic indices, as
well as for more extreme shapes than those shown here,
can be found in the work of Coombes and Carbotte
(1988), to which the reader is referred.

F. Very strong coupling regime

So far, we have been interested exclusively in supercon-
ductors for which T, /~&„~ 0.24. In view of the existence
of the high-T, oxides, it is of some interest to extend the
range of T, /~&„considered to much higher values. To
accomplish this, we return to the scaling
aMF(co)=BaoF'(bee). For definiteness, we take for base
spectrum (denoted by a subscript zero) the spectral densi-
ty that was calculated by Weber (1987a, 1987b) for La-
Sr-Cu-O and change B to get different values of T, /co&„

ranging through the very strong coupling regime up to
T, /cot„= 1.4. Results [Marsiglio et al. (1987a)] are given
in Fig. 59 for b, C(T, )/(yT, ) against T, /co&„. It is seen
from this figure that as T, /cu&„ increases from 0, the nor-
malized jump also increases from its BCS value of 1.43
and that a maximum is reached (solid curve) around
T, /co~„=0. 2, which is near the end of the conventional
strong-coupling region shown in Fig. 53. After the max-
imum there is a steady decline towards lower values; at
T, /co~„=1.4 the curve has fallen way below 1 43. This is
an unexpected feature that can be taken as characteristic
of the very strong coupling regime.

One may well wonder if the shape of the curve ob-
tained for the variation of b, C(T, )/(y T, ) with coupling
strength is sensitive to the shape of the spectrum used.
To check on this point, we show on the same figure (59)
additional results based on the tunneling-derived Pb
spectrum (dotted curve). While the maximum in the
curve is now at slightly higher T, /co&„value and larger in
magnitude, the two curves are qualitatively similar. Akis
and Carbotte (1989a) have given a more detailed analysis
of this shape dependence and conclude that while shape
can be important, the main features of our results are not
changed.

Besides the normalized specific-heat jump at the criti-
cal temperature that we have just discussed, other quanti-
ties are of some interest. The dimensionless ratio
y T, /H, (0) is often discussed. Results are shown in Fig.
60. The solid line applies, as before, to the La-Sr-Cu-0
base spectrum, while the dotted line is for Pb. For this
quantity the results of the two models are closer than
those found for the specific-heat jump. As T, /co&„~0,
the value of yT, /H, (0)~0.168 (the BCS value). As
T, /co&„ increases, the ratio decreases, has a minimum
near T, /co&„=0.2 to 0.3, and then starts rising towards
values that can be as large as 0.4 for T, /co&„=1.6. Again
we note that all the conventional superconductors fall in
the small region before the minimum. Furthermore, we
stress that in the very strong coupling regime, Eliashberg
theory predicts a behavior for this ratio that is quite
different from what is found in the conventional case.
This should serve as a clear signature of a large electron-
boson spectral density at low frequency.

3.5

3.0 0.4

2.5

0.3

2.0

0
1.5 0.2

CV
V

c

1.0

0.5

0.1
~ ~ 0 ~ ~ ~

0.0 0.0 0.2
I

0.4
I

0.6
I

0.8
I

1.0
I

1.2 D.D
0.0

I

0.2
I

0.4
I

0.8
I

1.0 1.4

FICx. 59. hC ( T, ) /(y T, ) vs T, /ml„. As T, /col„ increases
beyond the conventional regime ( T, /co&„-0.25), the normalized
jump decreases to values lower than the BCS value.

FICx 60. y T, /H, (0) vs T, /co&„ in the very strong coupling re-
gime. The trend has reversed, as it did for the jump, and values
above that of BCS are found in this regime.
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In addition to the zero-temperature critical magnetic
field, we can consider its finite temperature counterpart
and introduce the deviation function D (t) [formula (5.4)].
In Fig. 61, we show results for the maximum or
minimum (or both) value of this function versus T, /coi„.
For values 0.2, the deviation function is positive
definite (the conventional strong-coupling regime), but as
T, /co&„ is increased beyond this range, the maximum in
D(t) peaks and then begins to drop. Eventually, both a
maximum and a minimum are present [5-shaped curve
for D (t)] and finally, there is only a minimum with D(t)
negative definite. We note that in the very strong cou-
pling limit, the minimum of D(t) can be very much
smaller than the BCS value of —0.037.

Another quantity of interest is the slope of the normal-
ized specific heat at T„namely, (dhC/dT)T /y, which

C

we show in Fig. 62 [Akis and Carbotte (1989b)]. It starts
at the BCS value of 3.77 achieved for T, /co, „=0and then
rises towards a maximum, which falls around the end of
the strong-coupling region. The absolute value of the
maximum depends significantly on the shape of the based
spectrum, while its position as a function of T, /co&„ is
much less sensitive. The solid curve for the La-Sr-Cu-0
spectrum peaks at about 11, to be compared with nearly
17 for a delta function [dashed curve; Akis and Carbotte
(1989a)]. As the coupling is increased further, the slope
drops and can fall below its BCS weak-coupling value, as
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FIG. 62. Specific-heat slope at T„T,[dhC(T)ldT)r ], nor-
C

malized to y T, as a function of the strong-coupling parameter
T, /co~„. The solid curve applies to a La-Sr-Cu-0 base spectrum,
while the dashed curve is for a delta-function model.
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FIG. 61. The maximum or minimum (or both when it is S
shaped) of the critical magnetic-field deviation function vs

T, /m~„. In the very strong coupling regime, the curve becomes
negative definite with minimum values that exceed the BCS
value in absolute terms.

was found for the normalized specific-heat jump. It is of
interest also to consider the slope normalized to the
jump, as this ratio is independent of the Sommerfeld con-
stant y, a quantity that is sometimes not well known,
particularly in the new oxide superconductors. This ra-
tio, which is given in Fig. 63, for a La-Sr-Su-O (solid line)
and a delta function (dashed line) base spectral shape as a
function of coupling strength, also exhibits a maximum
around the end of the strong-coupling range and then
drops at higher values of T, /coi„. For the largest value
shown, T, /m]„=1.2, it is, however, still larger than the
T, /coi„=0 limit, which is 2.66.

The results of Fig. 37 for 260/k~T, are in striking
contrast to those of Figs. 59 to 63. In the very strong
coupling regime, Eliashberg theory predicts a large
2ho/kz T, of the order of 10 or more while at the same
time b C( T, )/(y T, ) is much smaller than the BCS value
of 1.43, as is the slope of the specific-heat difference at
T„[dAC (t) /dt ], , /y. y T, /H, (0) is larger than 0.168.
In addition, D(t) is negative definite with a minimum
value much less than —0.037. These predictions are very
different from the pattern of behavior predicted and ob-
served in conventional strong-coupling systems.

To end this discussion of the very strong coupling re-
gime, it is of interest to show the value of A, that corre-
sponds to the results presented in Figs. 59—63. This is
given in Fig. 64 where the solid line is the A, versus
T, /co&„curve obtained on the basis of the La-Sr-Cu-0
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FIG. 63. Specific-heat slope at T„[db,C(T}jdT)r jT, normal-

ized to t e Jumph
'

AC ( T ) as a function of the strong-couplingC

parameter T, /~, „. The solid curve applies to a La-Sr-Cu-0
base spectrum, w i e e ah'1 th dashed curve is for a delta-function
model.

spectrum; the dotted curve is based on Pb. We see that
large values of k are implied. No attempt has been made
to see if such values are compatible with lattice stability.
They probably are not. C)f course, the bosons involved
need not be phonons. No specific choice is implied in
much of the work described, even though shapes are used
for the spectral density that are characteristic of lattice
vibrations. This was done only for convenience.

FICr. 64. k vs T, /~I„ for La-Sr-Cu-0 (solid curve) and Pb (dot-
ted curve) shaped spectra, with p* =0. l.

Vl. THERMODYNAMICS: SOME FORMAL RESULTS
AND APPLICATIGNS

A. Functional derivatives

To obtain the functional derivative of the critical-field
deviation function or of the specific heat, we need the
functional derivative of the free-energy diAerence be-
tween superconducting and normal state. The use of the
Bardeen-Stephen (1964) formula is not a very convenient
way to accomplish this, because it is not zero under vari-
ations of either A(ico„) or Z(ico„), and these variations
~ould need to be taken into account. Rainer and Berg-
mann (1974) noted that this difficulty could be bypassed
by using instead the %'ada (1964) formula given by

2&T g co„X(0)
co(l co„)

+co (ico„)+5 (ico, )

—(~T)
n, m

co( l co~ ) co( l com )

+CO (l CO„) +6 (l CO, ) +CO (l COm ) +6 (l COm )

Sgil(CO„COm ) A, (lCO„ lCOm )

A(i co„) A(i co )

+co (ico„)+b, (ico„) +co (ico )+b, (ico )

X[).(ico„—ico )
—p*H(co, —

~co ~)0(co, —~co„~ ] (6.1)

i )=co Z(ico ). Taking variations with respect to 6 or co and settmg eachwhere 5(i co„)=b, (ico„)co(ico„)lco„and co(ico„)=co„ ico, . a
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equal to zero gives, respectively, the Eliashberg equations (2.1) and (2.2).
The total variation of the free-energy difference with a F(co) is then given by [Marsiglio et al. (1986)]

5bF abF
5a F(co) „ak(ico„—ico )

8A (i co„—i co ) agF 5T+t
5a F(co) aT 5a F(co)

(6.2)

where the additional term enters because it is t and not T that is considered to be constant with respect to changes in
a F(co). The derivative of the free energy with temperature alone is given by

OAF M.( „—co )

aT „.ax(i~„—i~ ) aT
+

T
(6.3)

The first term in (6.2) which represents the explicit variation of bF with respect to variations in a F(co) and which we
denote by 56F/Sa F(co), can be obtained directly from (6.1), to get

1 56F
)2 ~&(0) 5a'F(co)

co(i co„) Co(ECO~ )

+co (i co„)+6 (i co„) +co (i co ) + b, (i co )

b(ico )b, (i co„)+
+co (ico„)+6 (ico„) +co (ico )+b, (ico )

—sgn( co „co )
co +(co„co )

(6.4)

and

1 ahF 26F
X(0) aT T

Co(t Co„)

+co (i co„)+b, (i co„) +co (i co )+6 (i co )

A(i co„) b(i co )+
+co (ico„)+b, (ico„) +co (ico )+b, (ico )

—sgn(co„co )

—4
~

~ (co„col ) co a F(co )dco
X

[co +(con
(6.5)

The functional derivative of the deviation function D (t) [Daams and Carbotte (1978)] is related to the functional deriva-
tive of the critical magnetic field H, ( T) which follows from that for b,Fbecause b,F= H, ( T)/Sm. —We have

5D(t)
5a F(co)

H (T) 5 H(T)
ln

H, (0) 5a2F(co) H, (0)
(6.6)

with

5H, ( T)

5a F(co)

—4~ 6AF
H, (T) 5a2F(co)

(6.7)

In Eqs. (6.6) and (6.7), the explicit variation with a F(co) could have been taken instead of the total variation. In addi-
tion,

aH, ( T)
aT

—4~ BAF
H, (T) aT

which is needed to go from explicit variation on a~F(co) to total variation.
Results for the functional derivative [Daams and Carbotte (1978)] of D (t) based on a Pb spectrum are shown in Fig.

65 for three values of reduced temperature, namely, t =0. 15 (solid curve), t =0.6 (dashed curve), and t =0.96 (dashed-
double-dotted curve). While the amplitudes of these curves are dependent on the value of reduced temperature em-

ployed, the shape is not. The high-frequency modes have only a small effect on D (t) because the functional derivative is
small. It is positive so that such modes tend to increase D (t) slightly above the BCS result. By comparison, the modes
around (very roughly) 5T, have a much larger effect as they fall near or at the maximum in the functional derivative
curves. At still lower frequencies, the functional derivative is negative, indicating that D(t) is reduced by such low-

Rev. Mod. Phys. , Vol. 62, Ro. 4, October 1990



1092 han e superconductorsJ P Carbotte: Properties of boson-excha g p~ ~

tions with a (

$(l S„) CO( E CO m1 ~[~«T)», ] X(0) T

n, I Q8 ( i Cc)„)+4 ( & CO„~ & ~m
y 5a'F (co)

ran es in a F(co) can affec2 t D (t) in very i eren wU ff t ways. These functional
n D t and discuss the

des. Thus various frequency rang
8'ect of hydrostatic pressure on Df 1 h tl when we examine the e ect o yderivatives w&11 becom yomever useu s or yw

be ke t constant w en a infth ecr c ea e e h t k' gvaria-
idea of' optimum spectra.

f the s ecific heat and noting that t rs to e ept the functional derivative of the spec& c ea
F co) we have [Marsiglio et al. (19 )]

b(' ) b(i co )

+B, (icy„) +co (ice )+b, (icbm)CO i CO„

2co

~ +(~.
6T, 2cia' rx F( co' )d co'

T (~n ~m
~ 2F( ) [,2+( )]C

(6.9)

d in (6.9) is not theTh f tional derivative sndrcatee unc
normalizingonl one of interest. n ', norm gI this equation, we are norm

' '

g
2kiN(0)(1+A, ). This is, strictly spea-to y, which is —', m

T When the electron™boson jn-
r e we could use instead the temperature-

onl valid at low . en

dependent Sommerfeld constant y(T) given y
(1981). It is

Z(x)=@(9x ),
3 21+2.6u +16u u +4. 1u

(6.11)

I

the a roximationand suitably for our purposes, by th pp
[Kresin and Zaitsev (1978a, 1978b

(6.10)

kernel Z(x) can be written in termrms of a universalThe kerne x
rimvall (1981) or, more simplyfunction introduced by Grimva

I.5
z c(T),(~, )T,

Sa~ F{u)}

I.O
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of the s ecific-heat difference,FIR. 66. Functional derivative o e p
F co) for Pb as a function of reduce re-5[EC(T)/y T, ]/5a F(co, or

=3 5 T in agree-xirnum at T, occurs at ~ = . „inquency. The maximum a
or ~ the deriva-k-cou lin result. As co~Oor ~, e e

'
ment with the wea o p g

roaches zero, indicating that low- an ig-
are in the specific-heat jump. Asare ineffective in altering ephonons are in

re is lowered, the unctionaal derivative becomesthe temperature is
The curves shownnegative for the frequen y gc ran e of interest. e

=08(———),) t=09(. -) t= .correspond to t =1 (

t =0.5 ( ———.), and t ==0.1 ( —"—).
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5[6,C( T)/T, ]I(T)—:
5a F(co)

(6.12)

We note that for T=O, Z becomes 1 and y(T=O)
reduces to the more familiar equation for y. If we desig-
nate y, —:y(T, ), we get 1 55C(r) 1 b.C( T)

y, T, 5a2F(co) T, y, T, 5a2F(co)

6
5a F(co)

EC(r)
~C C

1 EC(t) &y( Tc ) By( T) 5Te

y, y T, Sa F(co) BT T 5a F(co)
(6.13)

Much simpler but approximate results for this func-
tional derivative have been obtained in a A, model by
Marsiglio and Carbotte (1985).

Results for 5(AC(t)/y, T, )/5a F(co) based on the
complete equations given in this section are found in Fig.
66 [Marsiglio et al. (1986)] for several values of the re-
duced temperature t. At t =1, the functional derivative
is positive definite and exhibits a single peak at an op-
timum frequency and goes to zero for both co~0 and
co~~. As the reduced temperature t is lowered, the
peak shifts to lower energy and drops in amplitude. At
sufticiently low t, part of the curve becomes negative and
a much more complex behavior is observed, particularly
in the small co region.

B. Application of functional derivatives
to Pb under pressure

d ln~, =7.49 X 10 bar
dp

(6.14)

and the high-energy longitudinal phonon peak according
to

There are many possible uses that can be made of these
functional derivatives. Here we describe their applica-
tion to the problem of shifts in thermodynamic and other
properties of Pb under hydrostatic pressure P as de-
scribed by Daams and Carbotte (1978). These authors
consider a model for the change in a F(co) under hydro-
static pressure based on the p =0 tunneling results. Un-
der pressure, the transverse phonon peak at lower energy
is shifted according to the measured value

time, the area under a F(co) is hardly changed, going to
4.063 from 4.032, as indicated in Table XI. To get the
measured reduction of T, to 7.088 K for p =2960 bars,
we need to additionally change p* from 0.15063 at zero
pressure to 0.15801 at 2960 bars. Having done this,
there remain no further adjustable parameters and expli-
cit predictions for the change in thermodynamic and oth-
er properties with pressure follow.

Before proceeding to a discussion of the implied
changes in H, (0) and D (t), it is important to note that
most of the change in T, is coming from the change in
p*. Since BT, /Bp* = —1.11 meV in Pb, a change in p*
of 0.007 38 gives a decrease in T, of 0.095 K, which is al-
most the entire measured change. This implies that the
changes in a F(co) in going from 0 to 2960 bars hardly
a6'ect T, . This can be understood with reference to Fig.
67 where we have superimposed on the same plot the
change b,a (co)F(co) versus co and 5T, /5a F(co) (dashed
curve). It is clear that a great deal of cancellation occurs
in the overlap integral.

6T;
b, T, =I b,a (co)F(co) dm

0 5a'F( co)
(6.17)

for b, T„and the integral (6.17) comes out to be nearly
zero (0.01 K).

On the other hand, the cancellation that occurs in the
overlap integral for the change in H, (0) will not be as
large as that for 5T, because the maximum in
5H, (0)/5a F(co) (solid curve in Fig. 67) is at lower fre-
quencies. From the change in a (co)F(co) alone we get a
change of —8 Oe in H, (0). The change due to p* can be
obtained from

d lncoI =5.8X10 bar
dp

(6.15) BH, (0) = —1602 Oe

Both values are obtained from an extrapolation to pure
Pb of data by Hansen et al. (1973) for PbIn alloys. No
further adjustment in shape is made. Finally, the scale
on the spectral density is altered to get the experimental-
ly determined value of

for Pb at zero pressure and is —11.8 Oe, which is equally
important to the change induced by the shift in spectral

TABLE XI. Parameters for Pb under pressure.

= —6. 185 X 10 bar
dp

(6.16) Pb(p=0) Pb(p =2960 bars)

for the change in k with pressure.
From Eq. (6.16) we get that A, at 2960 bars is 1.5195, to

be compared with 1.5477 at zero pressure. At the same

1.5477
4.032 meV

0.15063

—0.0282
+0.004

+0.007 38
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C. Application to specific-heat jump

lue of H (0) is 781 Oe at 2960 bars,density. The total value o
of 778 Oeto be compare wid 'th an experimental value of

[Daams and Carbotte (1978)].
To get the change in D ( t), we neeneed to work out

We now turn o e
'

t th idea of the existence of an op-
whichm s ectrum for thermodynamic properties, w ic

follows from a consideration of functiona e
'

al derivatives. In
Fig. 69, we show results for

5D(t)
b.rt (cu)F(ru) d cu5' F(ro)

(6.18)
6(1+A, )T,

b, C(T, )

TTc
(6.20)

at the temperature of interest aand add in

BD(t)
Ap .

Bp
(6.19)

in the case o so if Pb ( lid curve). lt is seen that this func-
es toward —~ at low co. T istional derivative diverges

divergence can be traced to our use of y in Eq.

0

on the same plotIn ig.F' 68 we have superimpose
and the functional denvative 5D (D t)!

5 F(co) for four temperatures. We note aCX 67

minima in these curves p ys la no role asq y
ro)F(co) is nearly negligible in that range

i e arl a rent deal of. At hi her frequencies there is clear y g
inte ral (6.18), indicating thatcancellation in the overlap integra

the change in D(t) is no t related to any prominent
(ru). To obtain the full change in D (t),change in a (ro)F(ru . o o

d to add on the effect of changes in p . awe need to a on
it is the changes innd Carbotte, however, find that it is ean ar o

rt~(ro)F(ru) that produce the most impim ortant decrease in
D(t), wit e ah th dditional decrease due to p* being of

The change in D (t) measured by Al-lesser importance.
terovitz and Mapot erh (1975) is somewhat larger than

1 What is more important herethe total calculated va ue. a
is that the data are well understood from functiona-

and the above discussion illus-derivative considerations, an
trates well the power of the technique.
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since 5y/5a~F(co) —I/co. If, instead, y, had been used,
the functional derivative would go smoothly to zero as
seen in Fig. 66. At higher frequencies, around m/T S, a
positive maximum occurs and then the functional deriva-
tive slowly decays towards zero as cu —+ oo. We have tried
many other realistic tunneling-derived spectra and find,
in all cases, the same shape for the functional derivative.
For example, the dotted line was calculated using the Al
spectrum given by Leung et al. (1976a, 1976b). It is very
close to the dashed line, which was calculated using a
two-square-well model for X(n —m). Details of the two-
square-well-model results can be found in the work of
Marsiglio and Carbotte (1985). In this simplified model,
no assumption is made about the shape of the spectral
density, except that all important phonon frequencies
should be much greater than several k&T, 's. This is the
usual BCS limit and applies to all weak-coupling systems.

From the above we conclude that the shape of
6[3C(T, )/(y T, )]!5aF(to) is fairly universal for realis-
tic values of ct F(co) (i.e., actual measured shapes for real
materials). This leads to the idea that in order to increase
b, C( T, )/(y T, ) for a given a F(ni), we should take
weight from some frequency where the functional deriva-
tive is smaller than its value at maximum, and transfer it
to the optimum frequency, keeping the total area under
rt F(co) constant. This suggests that to maximize
bC(T, )/(y T, ), for a given value of A = I a F(co)de,
we should use a delta function with all its weight placed
at the same Einstein frequency coz [Blezius and Carbotte
(1987)].

D. Optimum spectrum for jump

For a delta-function spectrum, the scaled equations
(2.45) and (2.46) hold, from which we can conclude that
5(i ni„)/ A is a function only of piE ——tuE /A and
T = T/A, as is Z—(iso„). Reference to the free-energy for-
mula yields immediately that [Blezius and Carbotte
(1987, 1988)]

I.O—
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/
/
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l
I
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I
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O

0.0 5.0 Io.o l5.0
/Tc
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where the function 0 is related to g, with t the reduced
temperature t =T/T„which is independent of A. In
particular, the specific-heat jump depends only on ~E /T,
for a specific choice of Coulomb pseudopotential p*.

In Fig. 70 we show results of calculations for the nor-
malized jump in the case of a delta-function base spec-
trum centered at co@ as a function of m&IT, (dashed
curve) for p* =0.051. What is plotted is

FICJ. 70. Value of —' hC {T, )/[y(0)T, ] (right-hand label) for an

Einstein spectrum as a function of coE/T, (dashed curve), where
co& is the position of the phonon frequency. The results are in-
dependent of the value used for the area ( 3) under the delta
function. The p* value was 0.051. The functional derivative
6[4 C( T)/( yT)] 5/a F(co) multiplied by (I+A, )T, {left-hand
label) for the case of a delta-function spectrum
e I'(~)= A6(co —co&), where co& is the frequency of the max-
imum in the dashed curve. It is negative definite and exactly
zero at the frequency co& of the optimum spectra. This indi-
cates a local maximum

~AF~ =N(0)A g(ni~, T), (6.21)
3.0— ~ ~

e

where g is an appropriate function related to the free-
energy. Thus the specific-heat di6'erence between super-
conducting and normal state is

d g(co~, T)
b, C(T)= —T = —TAN(0)

dT dT2

(6.22)

Fv
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and, therefore,

b, C(T) 3t d g(niE—, T )

2~ kii(1+2/co@) dT

But T, = Af(co@,p* ) so that we can finally write

AC(T, ) = Q(to~ /T„p*, t ),
'V Tc

(6.23)

(6.24)

FICy. 71. Maximum possible value for [AC(T, )/yT, ] as a
function of p*. The solid dots represent theoretical values for
the following materials in order of decreasing value of
b C( T, ) /[y T, ]: Pbp 7Bip 3 Pbp 6gBlp 35& Pbp sBlp p& Pbp 9Blp ~ &

Pb&

Pbo 8Tlo ~ Nb3Sn Nb3A1 Nb3Ge Pbo 6Tlo 4, Hg Pbo 75Bio 25,

Pbo 4Tlo 6, V3Ga, Pbo, Bio „La, Ga (amorphous), Bi (amor-
phous), V3Si, Mo (amorphous), Nb, In, Tl(j 9Bio „Tl, Sn, Ta, V,
Al (BCS).
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1096 J. P. Carbotte: Properties of boson-exchange superconductors

—,'b, C(T, )/(yT, ). We see that, on lowering the position
of the Einstein frequency in the delta function, the nor-
malized jump increases steadily until a maximum of 3.57
is reached at the optimum frequency for 6 E =4.55, after
which it drops rather rapidly towards very small values
as coE goes toward zero. This curve proves that, for a
delta function, there is an optimum frequency that max-
imizes the specific-heat jump and that the maximum in
this quantity is 3.57 (for p*=0.051) and is independent
of A. We can use functional derivatives to prove that
any other shape will lower hC(T, )/(y T, ). Returning to
Fig. 70, the solid curve is

( I+A)T, 5[6C(T, )/(y T, )]/5a F(co)

(left-hand label) for a model delta function
a F(co)= A5(co —co@), with co@ the frequency giving the
maximum of the dashed curve. It is clear from the figure
that the new functional derivative, which applies for the
delta-function base centered at co E=4.55, is now very
different from those found for realistic m F(co) spectra.
It is negative definite with value zero right at coE. This
proves that a delta function at coE gives a local max-
imum. Removal of some weight from the delta function
at coE and placing it at any other frequency reduces the

specific-heat jump. Our experience with realistic spectra
would lead us to believe that this is, in fact, an absolute
maximum. In Fig. 71 we show as the solid line the max-
imum value of b, C(T, )/(yT, ) obained for different
choices of p*. On the same figure, we have shown (dark
points) values for the same quantity obtained with realis-
tic spectra. They all fall below our theoretical local max-
imum, indicating that for physical systems, the solid line
is, indeed, an absolute maximum.

E. Specific-heat slope at T,

The functional derivative of the specific-heat slope at

6
5a F(co)

db, C(T)
dT

(6.25)

and of the normalized slope

5 T dAC( T)
5a F(co)

(6.26)

can easily be related to the equations introduced previ-
ously. As an example,

5 dhC(T)
5a F(co)

dbC(T) 1 5T, T, d 5gC(T)
i=i 1' 5a F(~) l' dT 5a F(co)

+c d b, C( T)
dT

6y
5a F(co)

(6.27)

Considerations of the shape of the functiona1 deriva-
tives similar to those just described have led Akis and
Carbotte [(1989a);Akis et al. (1989] to the idea of a max-
imum slope as well as a maximum normalized slope.
These are shown as a function of p* in Figs. 72 and 73,
respectively. The solid line gives the predicted maximum
while the solid dots apply to the real systems indicated in
the caption.

F. Critical field and deviation function

In Fig. 74 we present results for the functional deriva-
tive of H, (0) in the case of Pb (solid line) and Al [dotted
line; Blezius and Carbotte (1988)]. What is plotted is the
normalized quantity [(1+A, ) T, /H, (0)]5H, (0)/5a F(co)
against normalized phonon energy co/T, . We note that
both curves are positive definite, exhibit a maximum for
co/T, around 4 (3.4 for Pb and 4.5 for Al), and go
smoothly to zero as ~~0 and co~ Oc. Similar curves for
other materials, i.e., base spectra, are all found to exhibit
the same features and, in particular, to exhibit a most
effective frequency. This suggests once more that for a
given a F(co), we can increase the value of

I

H, (0)/&2%(0) by transferring weight from some arbi-
trary boson energy to the most effective frequency indi-
cated in the functiona1 derivative. For a fixed weight un-
der the spectral density A, a delta-function shape should
maximize H(0) &/2X(0). In this case, H, (0)/
[&2X(0) A ] depends only on co@/A or coF/T, and the
value of p* used. Moreover, as the Einstein oscillator
frequency coE is changed, we get a curve that mimics
closely the shape of the functional derivative curve as is
shown in the dot-dashed curve of Fig. 74 that gives —,

'

H, (0)/[+2K(0) 2] as a function of co@/T, . The max-
imum in this curve gives an upper bound on

H( )0/(V X2( )0A), and the frequency maximum (co@)
gives the optimum boson energy for a delta-function base
function. It is cuE =3.5T, .

We can verify that our delta-function model gives a lo-
cal maximum in function space by working out the func-
tional derivative of H, (0) with respect to a F(cu) for the
case function A5(co —co@). This functional derivative is
given by the dashed curve in Fig. 74. This curve peaks
exactly at coE =3.5T„which is precisely the frequency in
the delta-function base spectra density. Taking weight
out of the delta-function base and placing it at any other
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frequency coXcoz will therefore decrease H, (0)/
[&2N(0) a].

In Fig. 75 we have plotted our theoretical maximum
for H, (0)/[&2N(0) A] (solid curve) as a functon of p*
[Blezius and Carbotte (1988)]. On the same figure we
have also placed results for many real materials (solid
dots) as identified in the caption. All real systems fall
below the optimum curve, as they must. We turn next to
a discussion of the critical magnetic-field derivation func-
tion. The form of the functional derivative, given in Fig.
65 suggests that we can maximize the value of D(t) at a
fixed reduced temperature by shifting weight in a I'(co)
from co to the most effective boson energy cu/T, defined

by the maximum in oD(t)/5a F(ro). For a delta-
function spectral density, D(t) is completely independent
of A and a function only of roz/T, for a fixed value of
p*. This is illustrated in Fig. 76 where we plot the max-
imum in D (r) (dashed curve) as a function of co@/T, . At
sufficiently small and large frequencies, no maximum
occurs in D(t). It exhibits a minimum rather than a
maximum and so only a limited frequency region is
relevant. It is clear that as the Einstein frequency in the
base function is varied, an optimum Einstein frequency
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4.5

U

4.0
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FIG. 73. Maximum value for the normalized specific-heat slope
at T„[T,/b C(T, )][db C(T)/dT]r, as a function of Coulomb

C

pseudopotential p* (solid curve). The solid dots represent
theoretical values for the following materials in order of de-
creasing value of T [dAC ( T)/dT]z' /AC ( T ): Pbp sBlp p,

C

Pbp 7Bip 3 Pbp 9Bip l Pbp 65Bip 35 Nb3Al (1), Nb3Sn, Nb3Al (3),
Nb3Al (2), In, Tl.
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FIG. 72. Maximum value for the specific-heat slope at T, nor-
malized to ) T„namely, ( 1 /y)[dhC( T)/dT]r, as a function of

C

Coulomb pseudopotential p (solid curve). The solid dots
represent theoretical values for the following materials in order
of decreasing value of [dbC(T)/dT]r /y. Pbp 7Bip 3,

Pbp gBip 2 Pbp 65Bip 35, Pbp 9Bip ], Nb3Sn, Nb3Al (1), Nb3A1 (3),
Nb3 Al (2), In, Tl.

FIG. 74. Functional derivative of the thermodynamic critical
field H, (T) at zero temperature (T =0) as a function of fre-
quency cu normalized to the critical temperature T„ for Pb
{ ) and Al (. ~ . . ), a strong- and weak-coupling supercon-
ductor, respectively. The dashed curve ( ———) is the func-
tional derivative for the optimum Einstein spectrum. The dot-
dashed curve ( ——~ —) is,~H, (0)/[2N(0)]'~~A, which is di-

mensionless and independent of electron density of states X{0)
at the Fermi energy and of the area A under the spectral densi-
ty as a function of the frequency co& of the Einstein oscillator in
the model delta-function spectral density.
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FIG. 75. Maximum possible value of H, (0)/[2X(0)j' A as a
function of p . The solid dots are the theoretical values for the
following materials in order of decreasing H, (0)/[2%(0)]'
PbQ 6581Q 35' PbQ 781Q 3y PbQ &81Q z& PbQ 981Q 1, Nb3Ge,
PbQ 58iQ g PbQ 7581Q 25 81 (amorphous), PbQ, Tl, „Nb3Al,
Pb, Nb3Sn, PbQ 6TlQ 4, La, Hg, V,Ga, PbQ 4TlQ 6, Ga (amorphous),
Mo (amorphous), V,Si, Nb, Tl, In, TIQ98iQ „Sn, Ta, V, Al
(BCS).

cuz =4.8T, exists for which the maximum D (r) values, as
a function of t, which, as it turns out, occurs for t =0.65,
is itself a maximum. If we work out the functional
derivative 5D(t)/5rr. F(ru) for the optimum base function
obtained, i.e., for 35(co—

co@), we get the dotted curve of
Fig. 76, which is quite remarkable. It is negative definite
and exhibits a zero at a frequency that is exactly the fre-
quency of the base spectrum, namely, co+. This proves
that 3 5(cu —co+ ) gives a local maximum for D (t)

In Fig. 77 we plot our theoretical results for D(t) at
maximum as a function of Coulomb pseudopotential p*
(solid curve). On the same figure are shown (solid dots)
results for real materials. None come very close to our
theoretical maximum. For details of the systems used,
see the caption and refer to the discussion following Fig.
75 that deals with H, (0)[(/2X(0) A] instead of with
D (r).

Another dimensionless thermodynamic ratio that is
often introduced and discussed is yT, /H, (0) [Blezius
and Carbotte (1988)]. In BCS theory, this would be a
universal number equal to 0.168. To understand how
this quantity varies with details of the electron-boson
spectral density, we first work out its functional deriva-
tive. In Fig. 78 we show results for the normalized quan-
tity

( I +k) T, [y T, /H, (0)]'
5&x F(co)

as a function of the normalized frequency co/T, . The
solid curve is for Pb and is seen to have a negative
minimum at some intermediate frequency ~/T, =3.9.
While at higher frequency it remains negative and tends
to zero as ~-~ ~, at lower frequencies it cuts through the
horizontal axis at ~/T, =2. 1 and then diverges as 1/m
for co~ oo, which rejects the presence of the factor y in

yT, /H, (0). Shown also on the same figure are results2 2

for Al (dotted curve). The shape displayed is similar to
that for Pb, but the minimum is larger in absolute value
and occurs at co/T, =3.5 with zero at co/T, =1.8. It is
clear that in the region of the minimum an infinitesimal
change in the spectral density reduces yT, /H, (0) more
in the weak-coupling case of Al than in strong-coupling
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FIG. 76. Functional derivative of the thermodynamic critical
magnetic-field deviation function D (t) at the temperature corre-
sponding to its maximum value for Pb as a function of frequen-
cy normalized to the critical temperature (solid curve). The
functional derivative for the optimum Einstein spectrum is also
shown (dotted curve), as is the maximum value in D(t) for an
Einstein spectral density n F(~)= 2 5(m —~z ) as a function of
mE /T, (dashed curve). It is independent of 2, and at
su%ciently large and small ~~ no maximum occurs in D(t),
which is then negative definite.

FIG. 77. Maximum possible value of the magnetic deviation
function as a function of p*. The solid dots are the theoretical
values for different materials, in order of decreasing value of
D (t): PbQ 781Q 3, PbQ 6gBiP 3g, PbQ 881Q 2, PbQ 981Q ], Pb, PbQ 8TlQ 2,

Nb, Sn, Nb3Al, Nb3Ge, Hg, PbQ 6TlQ 4, V3Ga PbQ 4TlQ 6,

PbQ»BiQ», La, PbQ 58iQ „G-a (amorphous), V3Si, Mo (amor-
phous), Nb, Bi (amorphous), In, T1Q98iQ „Tl, Sn, Ta, V, Al
(BCS).
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Pb. This is not unexpected since in weak coupling T, is
exponentially dependent on A, while for strong coupling
the dependence is much weaker.

The dot-dashed line of Fig. 78 is our result for a delta-
function spectrum A5(ro —coz) as a function of roz!T, .
What is plotted is (4m/10)y'T, /H, (0). As expected, this
quantity follows closely the shape found for the function-
al derivative and does exhibit a clear minimum at a

FIG. 78. Functional derivative of the squared ratio of the criti-
cal temperature to zero-temperature critical magnetic field
H, (0) multiplied by the Sommerfeld constant y as a function of
frequency normalized to the critical temperature, for Pb
( ) and Al ( ), a strong- and weak-coupling supercon-
ductor, respectively. The same derivative for the opti-
mum Einstein spectrum is also shown ( ———), as is
(4n /1 0) )[ T, /H, (0)] ( ———~ ) for an Einstein spectral den-
sity u I'(co)= A6(cu —co+) as a function of co+/T, . It is in-
dependent of A.

G. Asymptotic limit

We turn next to the asymptotic limit A,~ ~ for ther-
modynamic properties. To calculate this asymptotic lim-
it, we need to know the free-energy difference between
superconducting and normal state AF(t), which is given
by the Bardeen-Stephen formula (5.1); we repeat it here
for convenience in a slightly different form. It is

Z~(i to„)s.= —2~T g co„Z (iro„)—
Q 1+a'(i~„)/~'„

X(+1+6, (iro„)lro„—1) . (6.28)

definite frequency ~z equal to 3.9T, . As before, the
minimum is independent of 3, the area under the spec-
tral density. With this base spectrum A5(co —coE), we
have calculated the functional derivative and have found
the dashed curve of Fig. 78. We note the functional
derivative is now positive definite for all frequencies and
exhibits a zero at exactly the frequency co =co&—the Ein-
stein frequency in the base delta function. Taking weight
out of the base delta function to place it at any other fre-
quency coWcoz will increase y T, /H, (0).

In Fig. 79 we show results for the minimum
yT, /H, (0) (solid curve) as a function of p* [Blezius and
Carbotte (1988)]. Again, on the same plot, we show re-
sults of Eliashberg calculations (solid dots) based on tun-
neling values of n F(co) for many real electron-phonon
superconductor s. They all fall above our minimum,
confirming our functional derivative arguments.
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From Eq. (2.28) it is clear that each of the two square-
root factors in (6.28) is independent of A, since it depends
only on the normalized dimensionless quantity b, (iro„)
and on 6, . Further, the superconducting-state renormal-
ization factor Z can be written as [Marsiglio et al.
(1989)].
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FICy. 79. Minimum possible value of y[T, /H, (0)] as a func-
tion of p . The solid dots are the theoretical values for the fol-
lowing materials in order of increasing value of
y(0)/[ Tt. /H~(0) ]: Pbp 6gBlp 3g, Pbp pBlp 3, Pbp sBip 2, Pbp 9Blp ],
Pb Pbp 8Tlp. 2 Nb3A1 Hg Nb3Sn Nb3Ge Pbp. 6Tlp. 4, V3Ga,
Pb, »Bip», Pb, 4Tlp „La, Pbp, Bip „Mo (amorphous), Nb,
V3Si, Ga (amorphous), Bi (amorphous), In, Tlp 9Bip „Tl, Sn, Ta,
V, Al (BCS).

ron men (&~n rom ) Qro 2 +b, ~(iro )

AF
X(0) g (t) = —,'A.cong (t), (6.30)

(6.29)

which depends on A, only in the second term, as does Z
which is obtained from (6.29) by setting b, (iro ) equal to
zero in the last two terms on the right-hand side. Qn in-
serting (6.29) into (6.28), it is clear that the A, dependence
in both Z and Z cancel, so that the expression in the
first large square bracket of (6.28) is material indepen-
dent. Thus the free energy scales like T, because of the
presence of an overall factor of T; so,
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d AI"
H, ( T)=& 8rtb, F—and b C( T)= —T

dT
(6.31)

so that the universal quantity g(t) as a function of re-
duced temperature (t) gives both H, (t) and b, C(t). The
results of our numerical calculations are given in Fig. 80.
Instead of g (t) itself, we have chosen to plot h, (t), the re-
duced thermodynamic critical magnetic field given by
Marsiglio et al (1989), as

h, (t)= H, (t)

dH, (t)
dt

(6.32)

which is simply the square root of the universal function

g normalized to its slope at t =1. The asymptotic-limit
field h, (t) is given as the solid curve of Fig. 80. It looks
very different from its behavior in BCS theory, in which

1.4

where g (t) is a universal function of reduced temperature
T/T, . This function, independent of any material pa-
rameters, can be calculated from the universal equation
(2.28) for b, (ice ) and from the free-energy difference
(6.28). The material-dependent parameter A, , which still
appears explicitly in both Z and Z, cancels in the corn-
bination needed in this formula.

The thermodynamic critical magnetic field H, (T) fol-
lows from b,F(t), as does the specific-heat difference
b C ( T). We have

case h, (t) has a negative curvature at all temperatures
and at t =0, h, (0)=0.576. By contrast, in the asymptotic
limit, h, (t) exhibits a large region of near linear depen-
dence below t = 1 and then shows the opposite curvature
bending upward as t decreases; it is still rising rapidly at
t =0.008. This is the lowest reduced temperature we
could handle in our numerical work, due to computer
time limitations. Consequently, we do not have informa-
tion on its zero-temperature behavior, because our work
is valid only for

&X, t »1, (6.33)

which precludes t =0. Equation (6.33) follows from our
initial approximation co@ ((2mT. We can rewrite H, (t)
in the form

H, (t)=&2mN(0) A, — th, (t)1 d&g(t)
CUE

dt

(6.34)

and find that its t~0 behavior is not singular because
condition (6.33) requires that I/(i/A, t) ((1. In addition,
we note that th, ( t) shown in Fig. 80 (dotted curve) is well

behaved even for t —+0. Thus the expression in the square
bracket of Eq. (6.34) is also well behaved in the range
v'A, t ))1. What we need to remember is that A, must go
to ao before t goes to zero for the condition &k t )) 1 to
be satisfied.

Our results for h, (t) or th, (t) cover the entire tempera-
ture dependence of the free-energy difference and so the
specific heat follows as well [formula (6.31)]. Evaluation
of the jump in b, C(T) at T, and of its slope gives, respec-
tively.

1.2

hC(T, ) 19 9
pT A,

(6.35)

1.0 d b.C(t) 39.2
dt yT,

(6.36)

0.8

0.2

While both the normalized jump and slope go to zero
as A, ~oo, their ratio remains constant. It is equal to
1.96, which is to be compared with a BCS value of 2.64.

It is interesting to get rough estimates for the two
quantities (6.35) and (6.36) using a single-Masubara-gap
approximation, that is assuming A(1)=5( T) and all oth-
er gaps to be zero. In this case, Eq. (2.1) gives, after not-
ing the symmetries b, ( n) =b, (n +1) a—nd co

= —~.+i(V*—=0)

0.0
0.0 0.2 0.6 1.0

b(n)Z(n)=vrT g [A(m n)+A(m +n —1)]-
m=1

FICx. 80. Reduced thermodynamic critical magnetic field h, (t)
(solid curve) in the asymptotic limit. The dotted curve is th, (t),
which is well behaved in the t ~0 limit. and so

h(m)

+co +b. (m)
(6.37)
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6(T)Z(1)=(m.T)[A(0)+A(1)]
i/(mT) +5 (T)

(6.38)

can be cut o6'at n = 1, as can be seen easily on expanding
the square root in the second bracket and noting the can-
cellation of the unit terms with all remaining terms pro-
portional to powers of b, (n ). On substituting (6.42) into
this equation, we get to order 6

Equation (2.2) requires a little more care. We can write it
as

Z(n)=1+ g [A(m n)——A( m+n —1)]

HATT

n m=1

AF
N(0)

4

[1+A,(1)]
2

HATT

2

(6.46)

+co +6 (m)

=1+ g [A.(m n) ——A, (m+n —1)]
m=1

1 h(m)
2 cpm

3 h(m)
8 COm

(6.39)

(6.40)

To obtain the gap to second order in (1 r), we—return to
(6.44) and expand the square root to second order to get

2 2
1 h(T) 1 1 b, (T) 2

2 wT 2 2 mT 1+t2

1 1 b,(T)
2 2 7TT

(6.48)

where use was made of (6.45). On expanding the right-
hand side, we get

2 2 2
1 h(T) ;= (1 t )+—(1 —t)—1

2 nT 2

The sum over m in the first term of the last curly bracket
in Eq. (6.40) must be carried out to infinity. It makes a
contribution of

from which we conclude that to lowest order

b, ( T) =2(1—r) .
mT.

(6.49)

n —1

A(0)+2 g A(m')
COn m'=1

(6.41) Substituting (6.49) back into the gap equation (6.48) gives
to second order

and so since (6.41) equals A, (0) for n = 1,

Z(1)=1+k(1)+
i/( vr T ) +b, ( T)

(6.42)

h(T) =2(1 —t)[1+(1—t) ]&T.
(6.50)

where we have reconstructed the square root from the ex-
pansion in (6.40) after taking out the constant term. Tak-
ing p*=0 for simplicity and combining (6.42) and (6.38)
gives an equation for the gap,

b(T)=QAco~&1 t [1—
—,'(1 t)] .— —(6.51)

Equation (6.50) needs to be substituted into (6.46) to get
the free-energy di6'erence, which is

A(0)+A(1) [A(0) —A(1)]7rT
+(AT) +b, (T) i (~T) +b, (T)

(6.43)

As we expect from our discussion in Sec. II on asymptot-
ic limits for the critical temperature, X(0) drops out of
Eq. (6.43), which can be rewritten as

hF
N(0)

(~T, )

Tc
2[1—(1—t)]

X 1— (6.52)

~( )2 2 2' TA, (1)
1+A,(1) (6 44) and works out to be

The critical temperature follows from (6.44) with T= T,
and b.(T)=0. Reference to (2.27) gives A(1)=2/(2rrT)
with T = T/"t/ 3 co@, and so we get

(6.53)

from which it follows that

AF 4(~T, ) [1—(1——t)](1 t)—2 2

N(0)

or T, = QWco~,2 1

(2'T, ) 2 vr
(6.45) b, C(T, )

QTc

12 d AC (t)
and'

dt yT,
48 (6.54)

a result already referred to in Sec. II.
In the one-Matsubara-gap model, the sum over n in

formula (6.28) for the free-energy difference b,F/N(0)
These rough values compare well with the exact results
(6.35) and (6.36).
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VII. THE UPPER CRITICAL MAGNETIC FIELD B. Reduction to BCS

A. General formulas

Schossmann and Schachinger (1986) have given formu-
las from which the upper critical magnetic field H, 2(T)
can be computed if the electron-phonon spectral density
and Coulomb pseudopotential are known for a particular
material. The formulas are valid for any impurity con-
centration described by t+ =1/2~& with ~ the scattering
time. In the weak-coupling limit, the equations of
Schossmann and Schachinger (1986) reduce to a renor-
malized form of the BCS theory of Helfand and Wertha-
mer (1964, 1966) and of Werthamer et al. [(1966); see
also Abrikosov (1957a, 1957b) and Gork'ov (1959a,
1959b)]. In the dirty limit, they reduce to well-known
formulas used by Rainer and Bergmann (1974) in exten-
sive calculations of the critical magnetic field for real ma-
terials in that limit [see also Werthamer and McMillan
(1967)].

The equations derived by Schossmann and Schach-
inger (1986) from which the second critical magnetic field

H, 2( T) follows at any temperature T and for any impuri-

ty content are

1=2rrT g (A, —p*)Re[[y '(to ) ~t—+]
rn =0

(7.2)

It is convenient to introduce into (7.2) the renormalized
quantities

H* =H/(I+A, )T, ,

vF* =vF/Q(1+A, )T, ,

(t+)"=t+/(I+X)T, ,

and obtain the universal relationship

(7.3a)

(7.3b)

(7.3c)

1+X ==2rtt g ReI [g '(to„) ~(t+)*] '—
I (7.4a)

P m=0

To reduce these equations to a form similar to those
derived by Werthamer et al. (1966) on the basis of BCS
theory, we need to apply the standard two-square-well
model for the n and m dependence of A, (n —m )

with cutoff at X, . In this approximation,
to„= co„(1+A,)+mt+sg neo„and Eq. (7.1a) reduces, with

Pauli limiting included, to the form

[A(n —m ) —p*]A(ice )
b, (ito„)=vrT g '[to(iso )] ~t+—(7.1a)

g(to )= I dq e ~ tan
o

with

to(i ro„)=co„+~T g A ( n —m )sgnco +nt +sgnto„
X

q&~*
(2m + 1)~t +~(t+ )*+iijsH*

(7.4b)

(7. lb)

Neglecting Pauli limiting, the factor g(to(iso„)) in Eq.
(7.1a) is

y(to(ito„)) = —f dq e ~ tan
2

V'~ 0
i
co ( E co„)/

The eigenvalue cx operating in the definition of g is relat-
ed to H, 2..

a( T) =
—,
' eH, 2( T)vt; (7.1d)

with e the charge on the electron and Uz the electron Fer-
mi velocity.

To include Pauli limiting, we only need to replace the
factor ~$(iso„)~, which enters the argument of the inverse
tangent in (7.1c), by

~co(iso„)
~

+i p&H sgnQ„,

where H is the external magnetic field and pz is the Bohr
magneton. This replacement, while simple, has the effect
of making the Matsubara gaps b, (iso„) in Eq. (7.1a) com-
plex.

with o."=
—,'eH*U~ and t = T/T, . To complete the set of

equations for H, 2, we note that the critical temperature is
given by

1+A,
(7.4c)= ln( 1.13', /T, ) .

p
Equations (7.4) have the same formal structure as those
given by WHH (Werthamer, Helfand, Hohenberg)
theory. Our equations differ from the BCS limit, because
they involve renormalizations in a*, vg, H*, and (t+)*.
In particular, it is important to note that the band-
splitting term in (7.4b) is given by ip&H and is, there-
fore, renormalized by a factor of ( )+A, )

' over its value
in BCS theory. For a fixed value of the external magnetic
field, this factor can greatly reduce the effect of Pauli lirn-
iting. It was noted in the extensive calculations of Orlan-
do et al. (1979) for Nb3Sn and V3Si that such a renormal-
ization factor greatly reduces the need to introduce spin-
orbit coupling, which traditionally is needed to reduce
the strong effect of Pauli limiting. In the work of Orlan-
do et al. (1979), a free-energy argument is advanced on
the basis of which they suggest the i p&H term should be
reduced by &1+X instead of the full 1+A, found here.
Thus, in a complete theory, the effect of Pauli limiting is
reduced even further over the semiphenomenological ap-
proach of Orlando et al. [see Orlando and Beasley
(1981)]. We shall return to this point later.
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C. Comparison vrith experiment in Nb

0.5 I I I
I

I I I I I
l

I I I
f

I I I

0.4

To begin our discussion of comparison with experi-
ment, we shall start with the case of Nb with 0.3 percent
X and a T, of 9.112 K [Schachinger, Prohammer, Seidl,
and Weber (1988)]. In Fig. 81, we compare theory with
experimental results (solid squares). No Pauli limiting is
included, and the best fit to the data is the solid curve,
which is computed on the basis of the strong-coupling
equations (7.1) with a F(co) taken from Robinson and
Rowell (1972). The value of mass renormalization,
A, =0.983, and the Fermi velocity, UF=0. 5X10 m/s,
were fitted to the initial slope of H, 2( T) at T, for an im-

purity content of t+ =0.76 meV. The agreement is good
and can be improved further if anisotropy is included in
the theory, as described by Prohammer and Schachinger
(1987) and used in Schachinger, Prohammer, Seidl, and
Weber (1988).

For comparison, we include results of three other cal-
culations. In the first two calculations, the Fermi veloci-

ty is kept fixed, as is the T, . In a first calculation, the
WHH theory is used without renormalization (I+A, ),
and this yields the dotted curve, which falls way below
the data. Of course, we really should have worked with
renormalized quantities as in Eqs. (7.4). If this is done,
the medium dashed curve results, and the fit to the data
is now much better, although still not at all as good as for
the full calculations. Thus differences remain between
full Eliashberg theory [Eqs. (7.1)] and the renormalized
version of WHH [Eq. (7.4)]. The remaining differences
can be reduced further if, in renormalized WHH, we
treat UF as an adjustable parameter and make a new fit to
the data. This gives the long dashed curve of Fig. 81,
which is now close to the solid curve and to the data.
The new Fermi velocity is now 0.478 X 10 m/s, which is
only slightly reduced from 0.5X10 m/s. These values
compare favorably with the band-structure result
0.62 X 10 m/s given by Mattheiss (1970), but are a little
low. A fit to a theory that includes anisotropy [Weber
and Schachinger (1988)] and therefore falls outside the
scope of this review gives 0.57X10 m/s [Schachinger,
Prohammer, Seidl, and Weber (1988)]. Our conclusions
from the above consideration is that strong-coupling
theory gives somewhat different results from renormal-
ized WHH, but that in Nb the difFerences are small if the
Fermi velocity is treated as an adjustable parameter and
interpreted as a renormalized quantity. When Pauli lim-
iting is needed, however, WHH theory requires
modification of the band-splitting term by, at the very
least, ( I+X) ', as we now explore further.

0.3

D. inclusion of Pauli limiting

0.2

0.1

0.0
0.0 2.0 4.0 6.0 8.0 I 0.0

Returning to Eqs. (7.4) for the renormalized WHH
equations, we see that they are universal, provided renor-
malized quantities are used. For a fixed impurity content
(t+ )*, they are unique for a given value of vF*. If, instead
of UF*, we consider the slope of the renormalized upper
critical field at T„namely,

dH, 2( T)

dT

FIG. 81. Comparison with experiment (solid squares) of the
upper critical field H, 2(T) in Nb with 0.3 percent N. The solid
curve is obtained from a numerical solution of the full equations
(7.1) based on a tunneling-derived electron-phonon spectral
density. The other curves are based on the simpler equations
(7.4). For the dotted curve, the same Fermi velocity is used but
no renormalization (1+A, ) introduced, so that this is the predic-
tion of a pure WHH (BCS) theory. The medium dashed curve is
computed in the same way, but the (1+X)factors are all includ-
ed so that the full renormalized WHH equations are used. Fi-
nally, the long dashed curve is obtained from the renormalized
%'HH equations with Fermi velocity Atted to the initial slope.
The agreement with experiment is not quite as good as for the
full Eliashberg equations, but it is not very diAerent.

we get a single curve for H, z(0) /[(1+ A, ) T, ] as a function
of H, 2/[(1+A, )T, ], which applies to all BCS supercon-
ductors including Pauli limiting. These curves are shown
as the solid and dashed lines in Fig. 82 for the clean and
dirty limit, respectively. If Pauli limiting is ignored,
H, z(0)/[(I+A, )T, ] is simply proportional to the slope
[dH, 2(t)/dt], , /[(1+A. )T, ]. This relationship corre-
sponds to the two straight lines, solid (clean) and dashed
(dirty), of Fig. 82 with slope 0.73 and 0.69, respectively.
This figure is very important since, given a value of the
slope at T„we can estimate the corresponding effect of
Pauli limiting. Without the electron-phonon renormal-
ization factor (1+1, ) included in such an analysis, we see
that the effect of Pauli limiting is much exaggerated,
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'Pa~c2 a*—ln(1. 13 X 2~t ) =Rettj 0.5+ +
6~2t(t+ )*

8(=S

clean (t'=O.O rneV)—l.5

(7.Sd)8CS
dirty(t'=500meV)

In the limit when the reduced temperature is small,
(7.5d) has the solution

I.O

V

C4o +z
H,*2= I(cup ) /[6'(t+)*] +ps] '/, (7.5e)clean

dir ty ( t = 50.0 meV )

) clean
) dirty (t =IOO.OmeV)

0.5
and the initial slope is found by differentiating (7.5d) with
respect to t:

I

lo.o
0.0

0.0 dH,*2

c2
24(t+)*

eVpt=1

~ 5.0
Hcp/(I+ X)Tc [T/K] (7.5f)

FIG. 82. Normalized zero-temperature upper critical field

H, 2(0)/[( )+A, ) T, ] as a function of the normalized initial slope
at T„[dH,2( t) /dt], & /[( 1+k) T, ]. The solid and dashed
curves were obtained using a renormalized BCS theory includ-

ing Pauli limiting and apply, respectively, to the clean and dirty
(I+=50.0 meV) limits. The straight lines result when Pauli
limiting is neglected. The upward- and downward-pointing
open (clean limit) and solid (dirty limit) triangles are results of
full strong-coupling calculations for V3Si with A, =1.0 and a
fictitious system with T, =35.0 K having the same shape
o.'F(Q) as that for V&Si, but with A, =1.6.

which can be inserted into (7.5e) to give

H,*, = [(0.69SH,*,)-'+(H,"„)-']-'". (7.5g)

The extreme Pauli follows for infinite slope H,*2—+ Oo:

1
c2, P (7.5h)or 1.32 T/K,

which is slightly different from the Clogston value ob-
tained from free-energy considerations. In that ap-
proach, we set the band-splitting energy equal to the BCS
condensation energy

P~H 2 t, N(0) = —,'N(0)(1+A, )(1.76) T, , (7.5i)
since we fall further to the right on the horizontal axis.

It is of some interest to reduce the renormalized WHH
formulas (7.4) in the dirty and clean limit. In the dirty
limit (t ~ ee ), we can rewrite

where N(0) is the single-spin electronic density of states
at the Fermi energy. This leads to

~c2,P 1.76 1 1.24

&1+AT, &2 ps ps
(7.Sj)g '(r7) ) = [(2m +1)crt+~(t+ )*+i@AH*]

X 1+
3~2(t +4 )2

as given by Orlando et al. (1979) and without a 1+1,
correction by Decroux et al. (1982). We see clearly that
free-energy arguments cannot be used to get the correct
numerical factor in such relationships or the right A. re-
normalization.

In the clean limit the situation is more complicated
mathematically, but Schossmann and Carbotte (1989)
have been able to establish that Eq. (7.5h) holds as well.
While the factor (1+A, )

' greatly deemphasizes the
effect of Pauli limiting and reduces the need to introduce
spin-orbit scattering, it is important to study strong-
coupling effects beyond this factor.

In order to estimate strong-coupling corrections
beyond the 1+A, rescaling that appear in the modified
BCS results, we calculated the reduced upper critical
magnetic field H,*2 =H, 2/[( I+A, ) T, ] as a function of the
reduced initial slope H,*2=H,2/[(1+A, )T, ] for several
cases. As was shown in the previous section, there is
only one such curve in BCS, given a fixed reduced impur-
ity concentration t + /[(1+ A ) T, ]. This is no longer the
case when realistic values for ct F(co) are taken into ac-
count. In Fig. 82, we show some of our results based on
the full strong-coupling equations (7.1a) to (7.1c). In one

(7.5a)

and get

1+1,
, =2~t g Re' (2m+1)~t+ipsH*

P m=o

R

3~(t+ )*
(7.5b)

which gives

1+X
~

~c 'PaH a*
g —p*

~

27rT 2nt 67r2t(t+ )*

1pgH
0.5+ +

2rrt 6~ t(t+)*

(7.5c)

where tt/(x ) denotes the digamma function. By assuming
co, to be very large, one can approximate the first digam-
ma function in (7.5c) by ln(co, /2~T). Furthermore, us-

ing the T, equation, we find
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calculation (triangular symbols pointing up), we have
used the electron-phonon spectral density a F(co) deter-
mined by Kihlstrom (1985) for V3Si from tunneling data.
The value of A, is 1.0, and we chose p* to give a T, = 17.0
K for this value of X. This corresponds fairly closely to a
sample studied by Orlando et al. (1979) with a fairly low
residual resistivity of 5.2 pQcm at 20 K, an estimated

0
mean free path of 95 A and an electromagnetic coherence
length of 56 A. In Fig. 82, two cases are considered. The
first is the clean-limit results with r =0.0 meV {open tri-
angles), which are seen to fall above the BCS clean-limit
curve but not by very much. In this case, strong-
coupling corrections beyond the very essential factor of
1+X, are not very pronounced. The same remarks apply
to the solid triangles describing the dirty limit. To get
larger corrections, we have arbitrarily increased the area
under the spectral density a F(co) of V3Si by multiplica-
tion by a constant amount to increase the corresponding
X from 1.0 to 1.6 and, at the same time, to raise T, to 35
K, which is not very different from the critical tempera-
ture found in La, s~Sro»CuO~ {ahigh-T, oxide supercon-
ductor). The clean-limit results are the open triangles
pointing downward in Fig. 82. We see that, in this case,
the deviations from BCS are much more significant than
for V3Si itself. This shows clearly that, in some cases at
least, it is necessary to perform a full strong-coupling cal-
culation based on Eqs. (7.1a) to (7.1c) in order to get an
accurate value for H, 2(0)/[(1+k)T, ]. Additional re-
sults for dirty samples (solid downward triangles) are also
given in Fig. 82 and compared to the BCS t+ =50.0 meV
curve. Again, significant corrections can arise, and this
should be kept in mind in the analyses of data.

Finally, we return to the solid and dashed lines in Fig.
82, giving H, ~(0)/[(1+A)T, ] as a f, unction of the initial
slope at T„H,2(t =1)/(1+k)T, . These straight lines

apply, respectively, to the clean and dirty limits in BCS
when Pauli limiting (band splitting) is ignored. The
bending over of solid and dashed curves away from these
straight lines gives the effect of band splitting. In the
work of Orlando et al. (1979), they quote for p HO,'z(T, )

in V3Si a value of 2.0 T/K. If we divide by 1+1,, we get
for the horizontal variable a value @OH,2( r = 1)/
(1+A, )T, —= 1.0 T/K, which indicates the Pauli limiting is
not a large effect in V3Si. This conclusion was also
reached by Schossmann and Schachinger (1986) on the
basis of detailed numerical considerations. In our case,
we need only realize that in this region the solid and
dashed curves do not differ very much from the corre-
sponding straight lines. If the (1+A, ) factor is ignored, a
very different conclusion is reached.

We now return to the complete equations (7.1) for H, z

without Pauli limiting and begin a derivation of strong-
coupling corrections.

E. Reduction to analytic form

We first study the dirty limit for which mt+ becomes
very large. This limit was considered extensively by

Rainer and Bergmann (1974). We obtain it here from Eq.
(7.1). Noting that, in this limit, Eq. (7.1b) becomes dom-
inated by ~t, we can assume that

I co(iso„)I )) 1 and can
expand the inverse tangent in (7.1c). Retaining only the
first two terms gives

(7.6a)

where Go(ice„) is given by (7.1b) without the fart term.
In Eq. (7.6a), it is justified to replace Ice(ice„)I in the
denominator of the last term by ~t+, which gives the fa-
miliar form

b, (iso„)=~T g [X(n —m ) —p*]
b(ice )

coo(iso )I+p '

(7.6b)

The new parameter p
' is

(7.7)

where reference has been made to (7.1d) and the diffusion
constant D = —,

' v+~ has been introduced. Numerical solu-
tions of (7.6) have already been obtained for many ma-
terials by Rainer and Bergmann. Our own more exten-
sive solutions will be presented shortly in graphical form.
Before doing this, we wish to derive approximate formu-
las for H, z that go beyond BCS theory and include a first
correction for strong coupling characterized by the single
strong-coupling parameter T, /co&„. The necessary alge-
bra is found in Appendix B.

Equation (B54) gives the slope of the critical magnetic
field at T, and reads

4T, 2T, T,
T, Ip" (T, )l= (1+&) 1+ 'd+4 ' d'

(mT,)2.
+ [2a(T, ) —,'b]—

In (7.8) we can approximate

1.13coI~
a ( T, )=-, A, ln

~In k~T,

(7.8)

CXp

b -=A, , and d=—o,4A, /co)„.
~in

Here we think of a&, a2, and o,4 as numbers to be fit to
results of exact numerical solutions of the full equations
(7.1a) to (7.1d) for a large number of known superconduc-
tors (tabulated in Table XII). Such a fit is necessary so as
to compensate for the errors inevitably made in reducing
the exact equations, which are very complicated, to the
simple form (7.8). In this way, we obtain for the slope of
H, 2 at T= T, the Anal equation
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with y=O. S77 the Euler constant. Substituting for b, d,
and a ( T, ), as before, we obtain, after fitting to exact data

T,
'
ln (7.9)

~T, (1+k)
H, 2(0)=

2e~(eD )
1+3.3

For T /ci)& =0 we recover the BCS result renormalized
by (1+A, ). Next, we consider the second critical magnet-
ic field at zero temperature, which is given approximately
by Eq. (B57) and is

—4. 8
~in

ln
C

(7.1 1)

The BCS limit results when T, /co, „=0 and is renormal-
ized by the (1+1,) factor. The reduced critical field at
zero temperature is defined by

2
MT.

2
3+—

4e~

(AT, )+ ', ~(T, )
——', b

4e ~

(7.10)

~T MT.
pd'(0) = (1+k) 1+ d

2e~ 4e~
h, ~(0) —=

H, 2(0)

dII, z
C CdT

T.=0.69 I —1.5
~in

T,
'

+2.0 ln

(7.12)

TABLE XII. Superconducting properties: upper critical field.

Material

Al
V
Ta
Sn
Tl
Tlo.9»o. i

In
Nb (Butler)
Nb (Arnold)
V3Si 1

V Si (Kihl. )

Nb (Rowell)
Mo

bo. 4Tlo. 6

La
V3Ga
Nb3Al (2)
Nb, Ge (2)
Pbo. 6Tlo. 4

Pb
Nb3Al (3)
Pbo. 8Tlo. 2

Hg
Nb3Sn
Pbo. 9Bio. 1

Nb3Al (1)
Nb,'G (1)
Pbo. sB&o.2

Pbo 7Bio 3

Pbo. 65Bio.35

Pbo. 5»o. 5

Ga
Pbo. 75Bio.25

Bi

0.004
0.031
0.035
0.038
0.046
0.048
0.050
0.057
0.062
0.070
0.071
0.074
0.076
0.095
0.099
0.103
0.113
0.114
0.119
0.128
0.129
0.136
0.146
0.146
0.152
0.156
0.160
0.172
0.182
0.200
0.320
0.243
0.288
0.320

0.000
0.219
0.119
0.114
0.130
0.112
0.1 «4

0.363
0.182
0.140
0.136
0.116
0.069
0.112
0.039
0.088
0.080
0.231
0.122
0.139
0.219
0.118
0.123
0.151
0.101
0.124
0.085
0.108
0.105
0.087
0.133
0.171
0.132
0.089

h, 2(0,0)

0.727
0.725
0.725
0.725
0.726
0.727
0.727
0.724
0.728
0.729
0.727
0.737
0.737
0.739
0.743
0.746
0.748
0.743
0.750
0.756
0.760
0.760
0.791
0.769
0.777
0.777
0.774
0.796
0.813
0,827
0.800
0.763
0.803
0.762

h, 2(0, 100)

0.690
0.667
0.666
0.662
0.658
0.659
0.657
0.648
0.652
0.651
0.646
0.659
0.659
0.647
0.657
0.658
0.656
0.643
0.649
0.643
0.664
0.652
0.690
0.670
0.661
0.679
0.679
0.679
0.691
0.709
0.793
0.745
0.774
0.767

k(0,0)

1.26
1.32
1.32
1.33
1.35
1.36
1.36
1.40
1.40
1.42
1.42
1.42
1.42
1.49
1.47
1.50
1.52
1.58
1.57
1.62
1.59
1.62
1.62
1.62
1.68
1.63
1.62
1.72
1.77
1.79
1.60
1.50
1.62
1.51

k(0, 100)

1.20
1.21
1.21
1.22
1.22
1.23
1.23
1.25
1.25
1.26
1.26
1.27
1.27
1.30
1.30
1.32
1.33
1.36
1.35
1.38
1.39
1.39
1.41
1.41
1.43
1.42
1.42
1.47
1.50
1.53
1.59
1.46
1.57
1.52
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where the numerical coefficients have been refitted to the
data rather than obtained directly from the values quoted
in (7.9) and (7.11). This increased the accuracy of the fit
for h,'z(0) to the exact numerical results obtained from
the full equation (7.6) for a large number of real super-
conductors for which the spectral density is known. The
data (solid dots) and our fit (solid line) are shown in Fig.
83 (see Table XII). We see that the fit is not very good
and that no single curve will describe all the data. In
fact, the dotted curve given by

h, z(0)=0.69 1— C —3.2
2T. ~In
ln

cubi 30T
(7.13)

is different from (7.12) and represents an almost equally
good fit. To get really accurate values of h,'z(0) it is clear
that full numerical calculations based on (7.6) are re-
quired. The differences from BCS are, however, never
large, and the derived formulas (7.12) and (7.13) do give
the general trend observed in Fig. 83.

For the clean limit near T, Eq. (862) gives

(mT, ) (~T, )

T, IH;,'(T, )l= ', (I+X)z 1+
7 3

2+ a(T, ) ——,'b
4

7 3
(7.14)

which can be put in the form

24 (~T, )'
T, IH;z'(T, )I=; (I+A)' 1+1.8

7 3 (eUFz)

Tc
2T. ~In—1. 1 lncoI„O.05 T,

(7.15)

where, to get a good fit to the numerical data for the many materials considered, it was necessary to introduce, on a
purely phenomenological basis, the additional linear term of weight 1.8T. /co~„. Such a formula was first derived by
Masharov (1974a, 1974b), who obtained, however, very difl'erent values for the numerical coeflicients, and the charac-
teristic boson energy entering his work was not well defined. Here it is the Allen-Dynes characteristic value co&„.

At zero temperature Eq. (B65) applies, and we have

~(0)= — e ~+ T(1+A, ) 1+ e ~T —+ e ~ AT — +
C c g 4 c

2y1—
4

a(T ) — b. —
c 3

(7.16)

which, after fitting to data, takes on the form

2T, (1+A.)H'(0)= — e ~+ 1+1.44
2 (eUF)

T. T.
+a7

~1n
(7.17)

where the coeKcient a7 is nearly zero, so b4 is irrelevant.
From Eqs. (7.15) and (7.17) and a new fit to the data for
h;z(0), we obtain

h;z(0) =0.727 1 —2.7
2

T. ~in
ln

co)n 20Tc
(7.18)

F. Ginzburg-Landau parameter

where no linear term is needed. The fit for h;z(0) is
shown in Fig. 84 and is seen to be quite good. Formula
(7.18) is almost quantitative in giving h, z(0) for all the
systems computed here (solid dots). Such a formula can
therefore be used with confidence in analysis of data.

k(0, 100)=1.2 1+2.3
2

Tc ~in
ln

~in 0.2Tc
(7.20)

%'e note that the thermodynamic critical field does not
depend explicitly on I. + for an isotropic superconductor.
H, (T) has been computed at T=O and at T=T, in Sec.
V, and simple formulas of the same form as those derived
here have been obtained so that the similar forms also ap-
ply to ~&.

In Fig. 85, we show our results for k(T=O, t+= 100.0
meV) obtained for many materials (solid dots) through
complete numerical evaluation of (7.1). Also shown is
our fit (solid line), which is described by the formula

H, z(T, t+)
~,(T, t+)=

v'2 H, (T)
(7.19)

The Ginzburg-Landau parameter vi(T, t+) for temper-
ature T and impurity concentration described by t + is re-
lated to H, 2 and to the thermodynamic critical field H, .

The familiar formula is

Here k(T, t+) =~i(T, t+)I~,(T„t+). The fit is satisfac-
tory. In particular, the only odd point is for Ga, which is

amorphous. It clearly follows a different law than the
one indicated in Eq. (7.20).

In Fig. 86 we show additional results for the
Ginzburg-Landau parameter at zero temperature, but
now in the clean limit. The solid curve is given by
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k(0, 0)=1.26 1+12 Tc ~in
ln

~In 2Tc
(7.21)

and fits the data on real materials (solid dots) reasonably
well, although there are some fluctuations ofT' the curve.
The overall trend is, however, well captured by our two-
parameter fit (7.21).

The various approximate relations derived here and in
the previous work on thermodynamic properties imply
that, to a good approximation, spec16c relationships exist
in Eliashberg theory between the various quantities con-

~In
ln

2T.
(7.22)=3.53 1+12.5

Comparison of Eqs. (7.21) and (7.22) leads to the relation-
ship

250 =2.9k(0, 0)—0. 13
8 c

(7.23)

sidered. For example, in Sec. IV, we have already seen
that the ratio of the zero-temperature gap edge to the
critical temperature is given by [Eq. (4.1)]

T,
'

between k(0, 0) and 2b, o/ks T, . The fit of the numerical
data on real materials to this law is shown in Fig. 87.
The agreement is very good. Many other such relation-
ships are implied although they are, in general, somewhat
more complicated and will not be exhibited explicitly.

0.72— G. Very strong coupling limit

0.70—

So far, we have only considered the conventional
strong-coupling regime for the upper critical field, which
ends around T, /co&„0.25. We next want to consider

h (O,t =IOO)

0.82

0.68 '44 4

Nb&Sr)

0.66— +~ Nb(R)

Tl
h ~(o, t =0) Hg ~

0.78—

0.64—
~ 4—Pb

I l I I

0.0+ 0.08 O. I2 O. I6

Tc ~~»

t

O.ZO 0.24
0.76—

Pb

FIG. 83. Reduced quantity h, &(0)=—h, 2(0, t+ = 100 meV) vs
T, /co]„. In increasing order of T, /co]„, the solid dots correspond
to the systems for Al, V, Ta, Sn, Tl, Tlp 9Bip ] ln Nb (Butler),
Nb (Arnold), V3Si (1), V,Si (Kihl. ), Nb (Rowell), Mo, Pbp 4Tlp 6,
La, V3Ga, Nb3A1 (2), Nb3Ge (2) Pbp 6Tlp 4, Pb, Nb3A1 (3),
Pbp 8Tlp 2 Hg Nb3Sn Pbp 9Bip ] Nb3A1( 1 ) Nb30'e( 1 )

Pbp 88ip 2, Pbp 7Bip 3, and Pbp 6&Bip». See Table XII for
details. Two curves are drawn: The solid one corresponds
to h dz (0)=0.69) [1—1.5 T, /co, „+2.0( T, /co, „) 1 ( n/c0o. 8 T, )].
The dotted curve corresponds to h, z (0)=0.69
[1—T, /co, „+3.2(T, /co~„)'1n(co~„/30T, )]. Note that the correc-
tions from BCS are small. Moreover, the variation in possible
parameters used in the fits indicates that the scatter in the data
is much too large to be described by a single curve. It is clear,
however, that there is a small decrease initially, followed by
corrections that are positive with respect to the BCS value.

Nb~A)(?)
4

0.74—

0.72

Nb (R)

Tl 811

I

0.04

~—V~si (Kihl. )

I I I

O.OS O. I 2 O.I6
Tc~ ~n

I I

0.20 0.24

FIG. 84. Reduced ratio h;2(0) vs T, /co]„. See caption of Fig. 83
and Table XII for more detailed identification of materials
(solid dots). The curve corresponds to h;2(0) =0.727[1—2. ( 7, Tco/~„) 1n(co~„/20T, )]. There is a very tiny initial de-
crease from BCS as T, /~&„ is increased above 0.
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the very strong coupling region defined by larger values
of the strong-coupling index T, /m». We start by
defining a strong-coupling correction factor for H, z(T)
by Marsiglio and Carbotte (1987a, 1988b),

H„(T,t+)=q„(T,t+)H c'(T r+)
C2

(7.24)

where the impurity parameter t+ has been made explicit.
We are interested first in gH (T, t ) at T=O and T= T,

C2

and for t+=0 (clean limit) and t equal to some high
impurity concentration (dirty limit). It is sufficient to
take t+=100.0 meV. Results for g~ are given in Fig.
88 as a function of coupling strength T, /co&„ for two
diFerent base spectra, namely, La-Sr-Cu-0 and Pb. Fig-
ure 88(a) applies to a La-Sr-Cu-0 spectrum and shows

(T, t+) for T= T, and T=O and t+ =0.0 in one case

(clean hmit) and t =100.0 meV in the other (dirty lim-
it). The differences between these two cases are not large,
particularly for gH at T, . We note, also, that because

C2

measures deviations from BCS, which corresponds
C2

to T, /co ~iO, the correction factor qH will tend to-
C2

wards 1 in this limit for any temperature or impurity

concentration. As T, /co, „ increases, gH first increases,
C2

and for small values of T, /cubi„a ( T, /nii„) 1n(coi„/bT, ) ex-
pansion applies with b a constant. This is the conven-
tional strong-coupling regime previously described.
Most known electron-phonon superconductors fall in this
range. As T, /coi„goes beyond roughly 0.25, the situation
changes. The coefficient g~ first exhibits a maximum

C2

and then starts to drop. By the time T, /coi„ is of order 1,
the value of ga has dropped to well below 1; this

C2

surprising result could not have been guessed from an ex-
trapolation of what is known in the conventional case for
which g~ is always greater than 1 [Marsiglio and Car-

C2

botte (1987a)]. Thus the very strong coupling regime is
distinct from the conventional regime and also from
BCS.

To be sure that the results of Fig. 88(a) are not strongly
dependent on the base spectrum used, we have carried
out additional calculations using the Pb a F(co) as the
base electron-phonon spectral density instead of that for
La, S~Srp &~Cu04. These additional results are presented
in Fig. 88(b). It is clear that the differences between the
Pb-based results and those based on La& 85Srp )5Cu04 are

1.8—

g(o, t =Ioo)

gb&Sn, Hg ~

Pb

1.7—

k(a, t'=o)

1.6—
~ ~ o

Pb& Hg, Nb Sn

1.5—

—Y&Si (Kihl. )

Y~S i (Kihl )

I

I l

O.Q4 O.OS 0.12 0.16

T(:/~)ri

I I

0.20 0.24

1.3

I I I

0.04 0.08 O. IZ O. I6
~c ~~i.

I I

0.20 0.24

FIG. 85. Ratio k(0, t =100 meV) vs T, /co]„. See caption to
Fig. 83 and Table XII for detailed identification of materials
(solid dots). The curve corresponds to k (0, 100)= 1.2
[1+2.3( T, /cot„) In(co,„/0.2T, )]. A linear term is not needed for
a good fit.

FIG. 86. Ratio k(0, t+ =0 meV) vs T, /m]„. See caption to Fig.
83 and Table XII for detailed identification of materials
(solid dots). The curve corresponds to k {0,0)= 1.26
[ 1 + 12( T /ct)i ) 1n(coi /2T )].
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never great. While acknowledging that there are indeed
small quantitative differences that come from the very
different shapes of the two base spectra, we can safely
conclude that shape is not an essential feature in deter-
mining the qualitative behavior of gII as a function of

c2

T, /co&„. Thus we expect that any reasonably shaped
spectral density that corresponds to a value T, /co&„=—1

will give a value of gI&, of order 0.2,.
c2

In Fig. 89 we show results for the reduced temperature
(t —= T/T, ) dependence of the normalized upper critical
field h, z(t, t+ ) defined by [a generalization of (7.12)j

h, 2(T, t+):—

shown later when a scaling theorem is proved. Each
curve is labeled by the actual value of OE /T, used. In all
our runs, the critical temperature T, was set equal to 1.0
meV (11.605 K) and 3 varied. We note that h, 2(0) in-
creases considerably as AE/T, decreases and that the
Anal few curves acquire an important positive curvature
at intermediate values of the reduced temperature t
range. This is the distinct signature of the strong-
coupling regime.

In Fig. 90, we show results for h, 2(t=0. 1), which
should be close to h, ~(0), as a function of T, /co@ for both
clean (solid curve) and r =100.0 meV (dotted curve).
After a very small initial drop, both curves show an in-
crease through the conventional strong-coupling regime

The normalization with the slope of H, 2 at the critical
temperature T, means that h, 2 itself is independent of the
choice of Fermi velocity and therefore depends only on a
a F(co) and the value used for p*.

In Fig. 89, we use the clean limit (+=0.0 meV and a
delta-function base spectrum a F(co)= A5(co —Az) with

p =0.1. The results are independent of 3, as will be

j,5 I l I
j

I I I
I

4 I l
i

I I i

0.5

l.8— (b)
0 I I I I I I I I I I I I I I I I I I i 1

I.5 i i
i

j I I
f

I 1 I
i

I i I
f

4 I I ) I I I

k(o, t =0)

l.6— 0.5

/~
//

/o

Nb (R)

/g
~b(A)

c'-i.

V,Ta

I

4.0
I

4.5
"8 rc

FIG. 87. Ratio k (0, t + =0 me V) vs 2hp/k~ T, . Equations
(7.21) and (7.22) suggest that 2hp/k& T, =2.9k (0,0)—0. 13.
This curve is drawn with a solid line and describes the data
(solid dots) extremely well. See caption to Fig. 83 and Table
XII for full identification of the materials used (solid dots).

0
0 0.2

I

0.4 0,6
i e/&&n

I I I l I I I I I I

0.8 l.2

FIG. 88. (a) The strong-coupling correction parameter
( T, t+ ) is displayed for T =0 and T = T, and for t+ =0 and

c2

100 meV. We have used the spectrum calculated by Weber
(1987a 1987b) for Lai 8gSlp igCu04 with p* =0.1. T, was held
fixed at 96 K by scaling the spectrum in height, while the
abscissa was scaled in order to sweep through the values of
T, /m~„displayed in the figure. All correction parameters
display the same qualitative trend. In the conventional strong-
coupling regime (T, /m~„~0. 2), all the corrections are greater
than 1, and modest. However, in the very strong coupling re-
gime (T, /co~„=1), the corrections differ substantially from uni-

ty and are less than 1. No significant qualitative difference is
noticeable between t+=0 meV and t+=100 meV. (b) The
same results are displayed as in (a), but for a Pb spectrum. No
qualitative change from (a) is observed, indicating that the re-
sults noted in (a) are not very model dependent.
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1.4

1.2

1.0

O.S

0.6

0.4

0.2

0.0 0.0 0.2 0.4
t=T/T

0.6 0.8 1.0

followed by a maximum, after which the curve drops to-
wards a saturation value, which appears to be about
=0.57 for the clean case. We shall have more to say
about this when the asymptotic limit of h, 2(0) is studied.

The Crinzburg-Landau parameter a
&
( T, t +

) [Marsiglio
and Carbotte (1988b)] can also be calculated in the very
strong coupling case. We first consider the two limits
T=O and T=T, for t+=0 and t =100 meV. Results
for g„(T,t+ ) are presented in Fig. 91 as a function of

1

T, /cu&„. We note first that all curves start at value 1 at
T, /co, „=O, which corresponds to BCS theory. As T, /co, „
is increased, both g (O, t+=0), the dotted curve, and

1

q, (O, t+ =100 meV), the solid curve, begin to increase,
1

reaching a maximum before starting to drop towards a
value that is slightly above 0.4 and 0.3 at T, /co&„= 1.2 for
t+ =100.0 meV and t+ =0.0 meV, respectively. This be-
havior is the opposite of that found in conventional
strong couplers, which all fall in the region before the

FIG. 89. Reduced temperature (t) variation of h, &(t) for several
values of a delta-function base spectra, namely, O, F/T, =1.0,
1.6, 2.0, 3.0, 4.0, 5.0, and 10.0. The curves are for the clean lim-

it, and the BCS value at t =0 is 0.73, which falls near our curve
for Qz/T, =10.0.
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FIG. 90. Reduced upper critical magnetic field at reduced tem-
perature t =0. 1 as a function of T, /u& =0.183&A, for the clean
limit t+ =0.0 (solid curve) and t+ =100.0 meV (dotted curve}.

FIG. 91. (a) The strong-coupling parameter g, ( T, t +
) is

1

displayed for T=0 and T= T, for two impurity concentrations
t+=0 meV (clean limit) and t+ =100 meV (dirty case). The
base spectrum used for the electron-phonon spectral density
was that for La&»Sr015Cu04 as calculated by %'eber. The
abscissa in the figure is the parameter T, /co~„with ~~„a charac-
teristic phonon energy -first introduced by Allen and Dynes
(1975). The conventional strong-coupling regime includes only
the first part of the curve for T, /col„& 0.25. (b) Same as (a), but
here the Pb spectrum is used for the base electron-phonon spec-
tral density of our model.
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I I I
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I I I

Pb (i' =.1)

I
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~ ~ I

system 1

1.8

maximum in the curves of Fig. 91. In contrast to this,
the curves for il (T„t+) denoted by short and long

I

dashes for t+ =100.0 meV and t+ =0.0 meV, respective-
ly, are nearly identical, show no maximum, and are both
decreased to less than 0.3 at T, /~, „=1.2. The results of
Fig. 91 are not very dependent on the shape of the as-
sumed reference spectrum a F(co), as can be seen when
Fig. 91(b) for a Pb base is compared with 91(a), which ap-
plies instead for a La-Sr-Cu-0 base. The fact that the
di6'erences are small gives us confidence in the universali-
ty of the qualitative behavior of the curves presented.

Next we consider the parameter ki(t, t+) (previously
denoted by k }, which gives the temperature variation of
~& normalized to its value at the critical temperature T, .
Results for the temperature dependence of k, (t, t+=0)
and k, (t, t+ = 100) are found in Figs. 92(a) and 92(b), re-
spectively. The three systems identified as 1 (solid curve),
2 (dotted curve), and 3 (dashed curve) correspond to
T, /coi„= l. 14, 0.86, and 0.57, respectively, for a Pb-based
spectrum and 1.19, 0.83, and 0.60 for a La, 85Sr0»Cu04
base. The BCS temperature variation is also shown for
comparison and is seen to be completely di6'erent from

the very strong coupling case. While the details of the
calculated t variation depend somewhat on the base spec-
trum used, the general trend is roughly the same in the
two cases.

H. Asymptotic limits

We next consider asymptotic limits. We start with the
dirty-limit case, represented by the superscript "di," for
which Eq. (7.6b) applies. It is convenient and conven-
tional to transform Eq. (7.6b) through the change

h(i co„)
b(ice„)—:

[co (iso„) i +p
(7.26)

=rtT g [A(n —m }—p*]b,(iso ),
m

(7.27)

where use was made of Eq. (7.1b) with the crt+ term set
equal to zero. In Eq. (7.27), the term n =m on the right
cancels against the similar term on the left-hand side;
hence both sums can be restricted to mWn only. This
means that the term A,(0)=A, does not appear in Eq.
(7.27). If for the spectral density we take a delta-function
model of weight A centered at the Einstein frequency coE
and define B =B/Q AcoE, as before, for any quantity B
we arrive at

which, when substituted into Eq. (7.6b), gives

[k( n —m ) =A(i e—i„—, ice ) ]:

Z(ice„) ~Ice„~I+mTg A(n. —m )sgnco„co +p '

CO

II

1.6

A
1.4

1.2

1
(b)

A. (m )= [see Eq. (2.27)]
2

(2vrT) m

for m %0 and at

dl oo

A(m n)(1 —6„)—+L(m+ n 1)
m =1

(7.28)

2
C)
C)

II+

1.5

FICx. 92. (a) The reduced quantity k&( T, t+ ) =~,{T, t+ )/
~&( T„t+) as a function of reduced temperature (t = T/T, ) for
the clean limit t+ =0. We show curves based on the La-Sr-Cu-
0 and Pb spectra in the very strong coupling limit, which we
compare with BCS. For Pb the three systems —1, 2, and 3—
correspond, respectively, to T, /~~„=1.14, 0.85, and 0.57. For
La-Sr-Cu-O, T, /cu&„equals, instead, 1.19, 0.83, and 0.60, respec-
tively. (b) Same as in Fig. (a), but here t+=100 meV, which
corresponds to a reasonably dirty sample.

—5„2m —1+2 g A.( m ')
m'=1

eH, 2( T)D—:g(T)=

HATT

KT
(7.30)

where g( T ) is some well-defined universal function of the
dimensionless temperature variable T. In agreement with
our previous result of Sec. II, the critical temperature is
obtained by setting g(T, ) =0. This gives T, =0.2584 or

T, =0.183co~&k (7.31)

[see Eq. 2.29]. From numerical solution of the universal

(7.29)

where we have set p' =0 for convenience. Noting (7.28),
we see that Eq. (7.29) makes no reference to material pa-
rameters. It will yield a universal material-independent
eigenvalue of the form
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equation (7.29) for values of T below T„we obtain al. (1988) obtain, without proof, the result

H, 2( T)= k(t ) = '
cozv A, k(t ),~Te 0. 183m.

(7.32) H, 2(0)=
1.QST, 0. 198mEX' v'X, =

eD eD
(7.34)

where k(t ) is a universal function of the reduced temper-
ature and is related to g( T). For t near 1, our numerical
work gives

(7.33)

which agrees well with the results of Bulaevskii et al.
[(1988);Bulaevskii and Dolgov (1987a, 1987b)]. Equation
(7.32), however, gives results for any finite temperature
t & 0, provided the approximation ~E &&2~T is satisfied.
Referring to Eq. (7.31), we can transform this condition
to read v'A, t »1. Instead of plotting the numerical re-
sults for k(t), which defines H, 2(T) through (7.32), we
have chosen to present instead our results for
h, 2(t)= 0447 .k(t). This is shown as the solid curve in

Fig. 93. This curve is really very different from the usual
weak-coupling curve for'the reduced upper critical field,
which has downward curvature. In our case, h, 2(t) is

nearly linear over a large range of reduced temperature
near t =1 and then shows a divergent behavior as t~0.
Strictly speaking, our technique of solution does not per-
mit us to reach the t=O limit, because the condition
v A, t »1 must always be met. For T=O, Bulaevskii et

p =7TT 2 —1
(2m T)

(7.35)

from which it follows that

and so find that h, 2(0)=0.45''A, . The I, dependence in
(7.34) is certainly consistent with our result that
h, 2(0)~ ~ in the limit of infinite A, . Moreover, the re-
sult h, 2(0)=0.45+A, is confirmed in the numerical work
of Schossmann et al. (1988), who have calculated H,"z(0)
numerically as a function of T, /coE up to a value of
about 1.4. Noting that T, /co@=0. 183&A,, we see that
this corresponds to v'A, —=7.7, which extends beyond the
numerical work of Bulaevskii et al. (1988). While it is
certainly true that, in this range of A, values, h~&(0) ap-
pears to vary like v A, with coefficient -0.43, we may not
yet be in the asymptotic limit. Certainly, for any finite
impurity concentration, we shall see later that we need to
go to much higher values of k in order to achieve the
asymptotic limit.

An approximate analytic form for H, z(t) can be ob-
tained from Eq. (7.29) if we keep a single Matsubara gap,
namely, the I= 1 term. When this is done, we get

5.0

T~ = coEv k
2&

and that

(7.36a)

(7.36b)

4.0
so,

for t)0 . (7.36c)

V
~&

4

3.0

2.0

This result (dotted curve) is compared with our exact nu-
merical results (solid curve) in Fig. 94. The two curves
are surprisingly close. In particular, these both diverge
like 1/t as t ~0, but with different coefficients.

The arguments used to reduce Eq. (7.1) when crt is
finite are similar to those used in the previous section but
somewhat different in details. We start by writing

~co(iso„)~ =vrTA, + ~co, (iso„)~ (7.37)

with

~,(im„)=~„+~T g k(n —m )sgnco +~t+sgn(co„) .

0.0 0.0 0.2 0.4 0.6 0.8 1.0
(7.38)

FIG. 93. Asymptotic value (A, —+DO) of reduced upper critical
field h„(t) in the dirty limit (solid line) as a function of reduced
temperature for t )0. The dotted curve applies to any finite im-
purity concentration and is related to h, 2{t)by h;2(t) =th,",'(t).

For A, ~ ~, we have

+TED,

&& ~co, (iso„)~ for any finite im-
purity concentration (7rt+). If it is further assumed that

TA, »v'a, as will be verifi. ed later, the same expansion
of the inverse tangent as we used in the previous section
can be used with the result that
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1114 J. P. Carbotte: Properties of boson-exchange superconductors

5.0 Near t = 1, i.e., around the critical temperature, we get

(7.42)

a$
V

~ &
~ W

4.0

3.0

which agrees well with the result of Bulaevskii et al.
(1988), provided we assume they have mistakenly left out
a factor of m.

It follows from (7.41) and (7.42) that the clean-limit re-
duced critical magnetic field is given by

(7.43)

2.0

1.0

Numerical results for h;z(t ) based on the universal equa-
tion (7.29) are shown as the dotted line in Fig. 93. We see
that this curve appears to define a well-behaved function
of t for small t, so it can safely be extrapolated to t =0 to
get h;z(0)=0. 57. While we have worked only in the re-

gion &A, t )) 1 and hence t )0, we see that the zero-
temperature value of H;~ (0) can be obtained from our ex-
trapolated h;z(0) to get

0.0 0.0 0.2 0.4 0.6 0.8 1.0
7.64~ T, A,H" (0)=

eUZ
(7.44)

FIG. 94. Reduced upper critical magnetic field h,"2(t) vs re-
duced temperature t (solid curve) compared with the simple
form —,

' (1/t —t) (dotted curve).

(7.39)

If we define

where the superscript cl stands for the clean limit, we re-
cover the equation for the dirty limit with the eigenvalue

p
' replaced by p", from which we immediately conclude

that p"=p ', this means that

H" (T)= eDH '(T)
eUF

Substituting (7.32) into (7.40), we find

This result is in serious disagreement with that found by
Bulaevskii et al. (1988), who get h;2(0)—= 1.5 from their
numerical work. The problem can easily be traced to the
fact that, at &A, —5. 5, which is where these authors stop
their calculations, we are, in reality, still far from the
asymptotic limit. This is illustrated in Fig. 90 where we
showed h, z(t =0.1) as a function of T, /co@=0. 183&A,.
We see that for both the clean limit (solid curve) and for
t+ =100.0 meV (dotted curve) the curves do not reach
their asymptotic limit until beyond T, /coE —10, while
Bulaevskii et al. stop around 1, which is close to the
maximum of the clean-limit curve. This maximum value
is almost a factor of 3 larger than the asymptotic value of
0.57. We also note that, while for small A, clean and
1+ =100 meV curves can diAer significantly, the two
curves tend towards the same value as k gets large. This
is to be taken as a numerical illustration of the theorem
we proved previously, namely, that for A,~ ~ the results
do not depend on impurity concentration if finite.

We next consider our approximate analytic model
solution obtained by using a single-Matsubara-gap ap-
proximation. We get from (7.40) and (7.35)

so that H, z(T) in the A,~ ~ limit is determined by the
same universal function k ( t ) previously introduced, ex-
cept for a numerical coeKcient and an extra factor of the
reduced temperature t. The impurity content ~t+ has
also dropped out. The condition ~TA, ))~t+, which is
implied in our derivation, can be rewritten as
&A, A, t ))t+ /co@. If we think of taking A. to ~ by having
A fixed and co@~0, we write &A, t ))t+ /A, which is al-
ways satisfied for any finite t+ for sufficiently large k. If,
instead, coE is fixed and 3 ~cc, we can again have

t &)t /mE for any fixed value of t+.

from which we find for t near 1

6~ A, T
H (0)=-

eUI;

(7.46)

(7.47)
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It;z'(t) =
—,'(1 —t') . (7.48)

which gives h;z(0)=0. 5 instead of the exact result of
0.57. In addition, our approximate h;z(t ) is

Eq. (7.1) can be rewritten in the form

0= gE„Z
m

(7.50)

Comparison of this last result with our exact numerical
calculations is given in Fig. 95. We see a remarkable
agreement between approximate and exact calculations,
except near t =0.

Finally, we note that for any t, H;z(t) ~A, for a fixed
coz', hence &a ~A, . The condition ~TA, ))+a, which we
assumed to be satisfied at the beginning of our derivation,
can be rewritten (dropping all numerical factors) as
&A, t ))1, a condition which was assumed to hold in our
derivation of the dirty-limit critical magnetic field. No
further restriction is implied.

I. Functional derivatives

A„=b,„(ico„)[y '(co(ico„)) crt+]— (7.49)

1.0

We now work out the functional derivative of H, z(T)
with respect to the spectral density a F(co), since it is
useful in many contexts. To proceed, it is convenient to
make a transformation from b.(ico„) to 6„ through the
equation [Marsiglio, Schossmann, Schachinger, and Car-
botte (1987)]

which is a set of linear homogeneous algebraic equations
with kernel K„given by

K„—7TT A, (leo„ i co ) p

6„
[y '(co(i co„)) vrt+—]&T

(7.51)

5A

Sa F(A)

5K,
Y 6,

Sa F(fl
M„gb,„' b,

n, m

(7.52)

where 5/5 F( fI ) denotes the explicit variation on
a F(Q), keeping a and T constant.

Referring to Eq. (7.51), we can write

5K, 2A= T
~5a F(Q) II +(co„—co )

5„By(co(ico„)) Sco(i co„)

y (co(ico„)) Bco(ico„) 5a F(A)

This kernel depends explicitly on a F(Q), the tempera-
ture T, and the parameter o,', which is related to H, 2

through Eq. (7.1d). Since Eq. (7.51) is symmetric, it fol-
lows directly that

0.8

with

(7.53)

0.6

c)y(co(t co„))

Bco( i co„)

1(co(ico„))
sgnco n

co (i co„)
a$
V

~ IH

where we have defined an integral function (related to the
exponential integral)

0.4 I(co(ico„))= dx
1+ax/co (ico„)

in terms of which we can rewrite (7.53) in the form

(7.55)

0.2 5K„ = T
5a F(A) 0, +(co„—co )

0.0 0.0 0.2 0.4 0.6 0.8 1.0
fi„ I(co(i co„))

(8(l&„))M (i&„)

FICx. 95. Asymptotic value (A,~~ ) of the reduced upper criti-
cal magnetic field h;2(t) in the clean limit (solid curve) as a
function of reduced temperature (t) compared with the simple
form —'(1—t') (dotted curve).

2Q sgnco co

Xg
~ 0 +(co„—co )

(7.56)

We also need to work out the change in E„with o.',
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which is

5„ I(rr(i co„)) —1
2ay(co(i co„)) co(i co„)y(co(ico„))

Everything is now explicit, and formula (7.52) can be
evaluated from the solutions to Eqs. (7.1a)—(7.1c).

In Fig. 96, we show our results for
T, 5H, ~( T) /5aF(Q) in the case of pure Nb at various

values of the reduced temperature t =T/T, . The hor-
izontal scale is phonon energy in units of T„namely,
co/T, . We note that at very low energies the curve shows
a sharp and steep rise toward infinity. This can be inter-
preted to mean that very low frequency phonons act
similarly to ordinary impurities, leading to an increase in
the upper critical field H, 2(T). This feature is absent in
the dirty-limit theory of Rainer and Bergmann. [For
work including Pauli limiting see Schossmann, Schach-
inger, and Carbotte (1987).]

Often one prefers to work with a normalized critical
field h, 2(t) rather than with H, 2(T). By convention, H, 2

is normalized to T, times the absolute slope of H, 2 at T,
and is written in terms of the reduced temperature
t = T/T, .

Functional derivatives can be taken at constant abso-
lute temperature T or at constant reduced temperature
t = T/T, . These are not the same but are related. Here
we wish to keep "t" constant. We note first that [using
the notation 5Q—= (T, /Q)(5Q/5a F), where 5/5a F
denotes that t is kept constant]

3

0.1
~O

t = 0.05

0.05-

0

43/Tc

10

dH, z(T)
dT

T

5a F(A)
d H, 2(T) 5T,.

dT T, 5a F(Q)

FIG. 96. Functional derivative of the upper critical magnetic
field H, 2(T) with respect to a F(A) (multiplied by T, ) for five
different reduced temperatures, t =0.05, 0.25, 0.5, 0.8, and 0.9.
The plots are for the clean limit (t+ =0) and apply to Nb. The
phonon frequency (co) on the horizontal axis is normalized to
T, . Plots for other materials are qualitatively similar. Note the
sharp rise at low frequencies preceded by a substantial dip,
features that are not found in the dirty limit.

dH, 2(T)
5h„(t ) =5H„(t ) —5

dT
C

(7.58)

We also have

dH, 2( T)+
5a F(Q)

(7.59)

To evaluate (7.58) requires a knowledge of the functional
derivative of the slope of H, z( T ) at T, which is related to
the temperature derivative of the functional derivative of'

H, z( T) given by Eq. (7.52). Thus we can write

5H, ~( T)

5a F(Q)
5H, ~( T) dH, ~( T) T 5T,+ (7.60)'
5a F(Q) dT T, 5a F(O)

Combining (7.59) and (7.60) with (7.58) leads to the final
equation

T, 5h, 2(t)

h, &(t) 5a'F(A)
T, 8H, z( T) 5T, T dH, 2( T)

H, ~(t) 5a'F(ft) 5a'F(O) H, ~(T) dH, ~(T)
dT T

d H, 2(T)

dT

dH, 2( T)
dT

SH, ~( T)

Sa F(Q)
(7.61)
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In their paper, Marsiglio, Schossmann, Schachinger, and
Carbotte (1987) also give extensive results for functional
derivatives of II,2 within the X model and compare
with exact results. The equations obtained are rather
long. The reader is referred to the original paper for de-
tails.

In Fig. 97 we show results for the functional derivative
of the reduced critical field h, 2(t) at several values of the
reduced temperature t in the pure limit for the case of
Nb. All curves are small at the highest frequencies con-
sidered and exhibit a very broad and large maximum at
lower energies before falling through zero and becoming
very large and negative, a feature that is missing in the
dirty limit. As the temperature is increased, the low-
energy node moves towards higher frequencies and the
amplitude of the maximum in the functional derivative is
suppressed. We conclude from these features that low-
frequency phonons always reduce the normalized critical
field h„(t), while phonons between roughly ru=2T, and
8T, increase its value.

In Fig. 98, we show results for the functional deriva-

3

~O
O

0.3

0.2-

0.1

-0.1
0 10

(b)

0.3

&) cs O.l

~O 3
0.2

005-

43/Tc

10

-0.1,
0

u/Tc
10

FICx. 97. Normalized functional derivative [T, /h, 2( t) ]
X [5h,2(t)/5a F(co)] of the reduced critical field

h, 2(t) = ,H(t)2~T/, [dH, z( T)/dT]r
~

for various reduced-
C

temperature values t =0.1, 0.25, 0.5, and 0.8 in the pure limit
t+ =0 for Nb. The horizontal scale is phonon frequency (co)
normalized to T, . Note the attenuation of the peak as the tem-
perature is increased. It shifts to slightly higher energy, as does
the node at lower co, after which the functional derivative de-
creases sharply toward —~ .

FIG. 98. (a) Normalized functional derivative [T, /h, 2(t)]
X [5h,z(t)/5a'I' (co)] of the reduced critical field

h, 2(t)=H, 2(T)/~T, [dH, 2(T)/dT]r
~

for various impurity con-

centrations (+ =0.0, 10.0, and 100.0 meV at the reduced tem-
perature t =0.05 for Nb3Sn. The horizontal scale is the phonon
energy (co) normalized to T, . Note the increase in the size of
the peak as t+ increases, as well as the shift of the low-
frequency node toward co=0. In the extreme dirty limit of
Rainer and Bergmann the curve goes to zero from above at
co=0. (b) Same as (a), but for Nb.
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1118 J. P. Carbotte: Properties of boson-exchange superconductors

tive of h, z(t) as a function of impurity concentration for
one low value of t =0.05. Figures 98(a) and 98(b) apply
to Nb3Sn and Nb, respectively. We note that, particular-
ly at high phonon energies, the functional derivatives are
base dependent. For Nb3Sn they remain positive, while
for Nb they can sometimes be negative. Both sets of
curves exhibit large maxima at intermediate frequencies
before they pass through zero and fall toward —oo at the
lowest frequencies considered. As the impurity concen-
tration is increased, the zero moves toward lower ener-
gies so that all low-energy phonons would increase h, z(r)
(r =0.05) in the very dirty limit considered by Bergmann
and Rainer. Furthermore, the prominent maximum in
the curves becomes larger with increasing t+, indicating
that phonon effects are stronger in this region in the dirty
limit than they are in the clean limit.

0.08

0.06

0.04

CD

II 0.02

0.00

C)

-0.02II

CD

-0.04

-0.06

-0.08
0

I
I
I
I
I
I

47 TE/ c 7.0

uE/T, = 4.8
4J TE/ c = 2.6

~ ~ ~
~ ~

~ ~

~ ~ ~
~ ~

~ ~
~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

I

15 20

J. Optimum spectrum

We now turn to the problem of optimum spectrum for
II,2 and related quantities. We will be interested in op-
timum spectrum for z)~ (T, r+) in the clean and dirty

limit for T=o and T=T, . From (7.24), which defines

, we find for T =0
c2

FIG. 99. Functional derivative 5q~ vs co/T, for the case with
c2

T =0, t+ =0.0 meV, and p* =0.15 is plotted for three different
6-function spectra, a I'(co)= 36(co—mE), where co+ is the Ein-
stein frequency. The solid curve is negative definite and peaks
at exactly zero when cu=cuz. This indicates a local maximum.
The dotted curve has the peak in 5qH occurring above co+/T„c2

and the dashed curve has 6g& peaking below co&/T, .
c2

5q„(o,r+) =5H„(o,r+) —5HBcs(0, &+),

5H,',"(O,I+ =0)=25T, +25(1+X),

5H,'zcs(O, I+ ~ ) =5T, +5(1+X),
(7.63)

(7.64)

where the first functional derivative is known from our
previous work and the second can be obtained by
di(ferentiation of (7.17) with T, /coi„=o in the clean limit
and (7.11) in the dirty limit. Such a procedure gives
[Akis et al. (1988)]

believe that qII will exhibit a maximum at some energy
c2

Te /~in=0. 2 or &1n/Te 5. This is confirmed by
our functional derivative plots. We find, for a base spec-
trum with co@/T, =4.8 in the case of H(0, 0) and 6.7 for
H, z( T„ t + =500), that the corresponding functional
derivative (solid c2 curve) is indeed negative everywhere
and exactly zero right at the base Einstein frequency, in-
dicating a local maximum has been achieved. The values

with

(7.65) 0.08

0.06 ————-~ /TE c = 8.4
For T = T„we get

5zl (T„r+)=5H,', (T„r+)—5H,",cs(T„r+) . (7.66)
0.04

CD

0.02

"''''''' 4J TE/ c = 4.5
ME/Tc 6.7

5H,'z (T„r =0)=5T, +25(1+A, ) (7.67)

Again, the first functional derivative is known from our
previous work, and the second can be calculated from
(7.15) and (7.9) in the clean and dirty limit, respectively,
to get

0.00

-0.02
C)

+ -0.04

-0.06

~ ~
~ ~ ~ ~ ~

~ '~ ~ ~ ~ ~

and

5H,' (T„ t+ oo )=5(1+1,) . (7.68)

-0.08

-0.10
0

I

15 20

In Figs. 99 and 100 we plot 5z)H (0,0) and
c2

5zlII (T„t+=500 meV), respectively, as a function of
c2

co/T, for three different base delta functions as labeled in
the caption. An examination of Fig. 88 would lead us to

FIG. 100. The same as Fig. 99 except that now T=T, and
t+ =500.0 meV.
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at maximum obtained are given in Table- XIII, and the
results are plotted in Figs. 101 and 102 for i}H (0, t+ =0)

c2

and il~ (T„ t+ =50), respectively, as a function of p*.
c2

On the same plot are also shown results for real materials
(solid dots), which all fall below our maximum, as expect-
ed.

While we have not stressed it, all these results are in-
dependent of the area 3 taken for the delta function, be-
cause a scaling theorem similar to that proved for the
thermodynamic properties also holds for H, 2. The proof
is given here to be complete. For a delta-function spec-
trum, we can put Eqs. (7.1) and (7.2) into the form

1.5 I

1.4

1 \3

C)
II

+
1e2

C)

1.0

~ ~

2COE
b, (ice„)=~T g —@*8(co,—Ice

I
A)

CO F +(Ci) CO„)

I I I I I l I I I

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

P

h(co )
X

'(co(iso )) rrt +—

2coE
co(ice„)=co„+~T g sgn(co )

co E +(co co„)

(7.69) FIG. 101. Maximum possible value of gH with T=O and
c2

t + =0.0 me V plotted as a function of p*. The solid dots
represent theoretical values for real materials.

+~t +sgn(co„) (7.70) a=H(co~, t +, t,p*), (7.72)

with T = T/A, co~ = co~ /A, co„=co„ /A, co(i co„)
co(iso„)—/A, t + = t+/A, Z(ice„—) =b, (iso„)/A, and final-

ly, Y(~.}—= AX(~. }.
From Eq. (7.1c) for y( co(i co„)), one can see that

g (co(ice„)) has the same form as y(co(ice„)}, except that
one must replace a with a=a/A and co(ice„) with
co(ice„). In writing the equations in terms of the barred
quantities, we have removed the dependence on 2 except
for a very small dependence in the cutoff'associated with

p, *. Leavens (1977) followed a similar approach for T,
and, following him, we likewise ignore the small correc-
tion required. Given this, T, and o, become completely
independent of 3 and are only functions of coE, t, and
p*. We can therefore write

where t = T/T, . Here, F and H represent universal func-
tions that can be determined from Eqs. (7.69) and (7.70)
and from the definition of g(co(iso„)}. In Eq. (7.72), the
I; parameter falls out in the clean limit while the depen-
dence is trivial in the dirty limit and does not appear at
all in (7.71) as it drops in the T, equations. Using Eqs.
(7.71) and (7.72), we find that T, is proportional to A and
H, z(T) to A . From this, one can also conclude that
dH, 2( T)/dT is proportional to A.

1.5

T, =F(co~,p*) (7.71)
1.4

1\3

TABLE XIII. Calculated maximum value for the strong-
coupling parameter g& for temperature T=O and T=T, and

c2
for three different impurity concentrations: namely, t + =0.0
(clean limit), t+ =50.0 meV, and t+ =500.0 meV (dirty sample).
Rows 1 to 3 apply to different values of the Coulomb pseudopo-
tential, namely, p* =0.0514, 0.15, and 0.25, which should cover
the physical range.

C)

II
+ 1.2

1.1

1.0

T
p* t+

0.0514
0.15
0.225

1.36
1.39
1.41

T.
0

1.24
1.27
1.28

0
50

1.30
1.32
1.33

T.
50

1.34
1.37
1.39

0
500

1.32
1.34
1.35

T.
500

1.39
1.42
1.43

I I I I I I I I t

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

P

FIG. 102. Maximum possible value of gH with T=T, and
c2

t =50.0 meV, plotted as a function of p . The solid dots
represent theoretical values for real materials.
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VIII. OPTICAL PROPERTIES

A. Formalism

J„(q;cv)=—K (q;cv) A (q;cv), (8.1)

where p=1,2, 3 corresponds to components x,y, z of the
vector J, and q and cu are momentum and frequency, re-
spectively. In Eq. (8.1), 2 (q;cv) is the vth component of
the vector potential A describing the electromagnetic
field. IC (q; ~v) is a tensor that gives the current-

The electromagnetic properties of a BCS superconduc-
tor were already discussed in the original paper of Bar-
deen, Cooper, and Schrieffer (1957). Later, Nam (1967a,
1967b) extended the work to Eliashberg theory. Based
on a Kubo formula, he gave complicated but general
equations for the current response to an arbitrary exter-
nal electromagnetic field and also provided some limited
numerical results. In particular, for Pb he calculated the
zero-temperature, frequency-dependent conductivity.
The calculations were later reconsidered and extended by
Swihart and Shaw [(1971); Shaw and Swihart (1968)].
Using the same general formalism, based on the
imaginary-frequency-axis Matsubara approach, Blaschke
and Blocksdorf (1982) computed the surface resistance of
several superconductors. The temperature dependence of
the dc Josephson current in a superconductor-insulator-
superconductor (SIS) tunnel junction was measured and
calculated by Lim et al. (1970) in Pb and calculated by
Vashishta and Carbotte (1973) in Pbo 9Bio, . The
temperature-dependent electromagnetic coherence length
was estimated by Kerchner and Ginsberg (1973) using
full Eliashberg gap solutions. As well, its zero-
temperature reduction over the BCS value was con-
sidered. A related quantity, the zero-temperature reduc-
tion in the dc Josephson current, was discussed by
Ginsberg et al. (1976) and by Vashishta and Carbotte
(1973). Blezius and Carbotte (1986) have calculated the
temperature-dependent London penetration depth for
several impurity concentrations in V3Si. Much more ex-
tensive calculations of ferromagnetic properties have
been carried out by Blezius et al. (1988), who considered
the London penetration depth, the electromagnetic
coherence length, and the dc Josephson current for an
SIS junction, a quantity also related to the local penetra-
tion depth. Their aim was to calculate these quantities
for many different materials from a knowledge of their
spectral density a F(tv) and Coulomb pseudopotential

p . In addition, they derived, from microscopic theory,
simple semiphenomenological formulas involving the sin-

gle parameter T, /m&„and fit the unknown coe%cients in

the resulting form to the real-material data, so as to pro-
vide a simple but useful approximate formula for strong-
coupling corrections.

Within linear-response theory, the Fourier transform
of the current density [Nam (1967); Scholten et al.
(1977)] is

response function and is the Fourier transform of the
current-current correlation function.

The electromagnetic properties that interest us here
can be expressed in terms of the kernel K&,(q;cv) of Eq.
(8.1). For example, the zero-frequency penetration depth
that describes the penetration of a static magnetic field
into the surface of a bulk superconductor is given, for the
case of specular reflection, by (Nam (1967a, 1967b)

CQ 1
A,(T)=— dq

q +K q;0 4' (8.2)

where isotropy was assumed and the temperature depen-
dence of the penetration depth has been made explicit.
Note that we have taken the frequency ~—+0 limit of
(8.1), which describes the static situation. Simple explicit
equations for A.(T) are possible in limiting cases. In the
dirty limit, the mean free path (l) of an electron can be
reduced greatly because of the increased scattering by
impurities. In that case, the electromagnetic response be-
comes local and only the q ~0 limit of K(q;0) is needed.
Carrying out the integration in Eq. (8.2), we get

—1/26 (i'„)
A, , ( T)= 4~cr ~ T g„=) co„+6 (i cv „)

(8.3)

which depends only on the Matsubara gaps A(its„). In
Eq. (8.3), the subscript "i" stands for local limit, and cr~
is the normal-state conductivity due to impurity scatter-
ing only. It is given by

o~= ', N(0)e v~r—~, (8.4)

When nonlocal effects are important, it is necessary to
introduce the Pippard or London limits characterized,
respectively, by A, ((g(0) and A, ))g(0). The Pippard
limit is determined through Eq. (8.2), where most of the
contribution comes from the q~oo region of the in-
tegral. The result is

A~(T)= 4
3 3

5 (iso„)—e'T g
vF m „=~ co„+6 (iso„)

—i /3

(8.6)

where n is the free-electron density and I the electron
mass. Equation (8.6) is clearly related to the local limit
and therefore need not be discussed further here. The

where as before N (0) is the single-spin electronic density
of states at the Fermi surface; e, the charge on the elec-
tron; UF, the electron Fermi velocity; and ~„, the impuri-
ty lifetime. The local limit, for which Eq. (8.3) holds, is
characterized by the condition g(0) ))l, where g(0) is the
zero-temperature coherence length that will be intro-
duced shortly. Except for an appropriate change of the
proportionality constants in Eq. (8.3), A. l (T) also gives
the critical dc Josephson current [J,(T)] observed in a
superconductor-insulator-superconductor (SIS) tunnel
junction (Nam 1967a, 1967b):

A,((0)
(8.5)

l
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London limit, which depends mainly on the q ~0 limit of
the electromagnetic response function is given by Nam
(1967a): 0.05-

AL(T)= 4~N(0)e uFT 0.00

-0.05

where we see that the renormalization factor Z (i co„)
now enters explicitly, in contrast to the situation that
arises for local or Pippard limit.

The final quantity of interest is the electromagnetic
coherence length g( T), which describes the nonlocality in
the electromagnetic response of a superconductor and is
given by

I

-O. lo

—o. I 5

-0.20—

qE(q, 0) 3~
hm

q ~ K (0,0) 4g( T)
(8.8) -0.25 ( 1 I I I I

0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 l.o
( T»c)

A&(T) P T)
AL (T) l

(8.10)

where we have introduced the mean free path l =vz~&.
Local and London penetration depths and the coher-

ence length follow directly for a given spectral density
a F(co) and Coulomb pseudopotential p, from numeri-
cal solutions of Eqs. (2.1) and (2.2) for the Matsubara
gaps h(i co„) and renormalization factors Z (i to„).

B. Comparison with experiment for V3Si

To illustrate the good agreement that can be achieved
with experiment, we consider, in some detail, the case of
V3Si. Christen et al. (1984) have measured the tempera-
ture variation of the London penetration depth for this
material. Their results are presented with error bars in
Fig. 103 in the form of [A(0)/A(T)] —(1 —t") where the
two-Quid-model prediction has been subtracted out. We
see first that the two-Quid-model temperature variation
does not apply for V3Si. In addition for comparison, we
show BCS results (the solid curve with solid dots). These
were obtained from our computer programs using the
spectrum a F(co) of aluminum with Eq. (8.7) evaluated
exactly from numerical solutions of (2.1) and (2.2). We
verified in this way that our programs are capable of
reproducing exactly the BCS results. These results clear-

and, more explicitly [Lemberger et al. (1978); Blezius
and Carbotte (1986)],by

oo b, (iso„)
2 „=&Z(iso„)[co„+b, (icy„)] ~~ ~

6 (ice„)

„=) co„+5 (i co„)2

A comparison of Eqs. (8.3) and (8.7) with (8.9) shows that

FIG. 103. Strong-coupling difference from the two-Quid predic-
tion of the inverse square of the London-limit penetration depth
normalized to its zero-temperature value as a function of tem-
perature normalized with respect to the superconducting criti-
cal temperature. The solid curve is both Al and the BCS pre-
diction; the dot-dashed curve is pure Kihlstrom (1985) V3Si; the
short-dashed curve is Kihlstrom (1987) V,Si with impurities in
the amount prescribed by Christen et al. (1984); the dotted
curve is pure Bangert et al. (1985) V3Si. The data with error
bars are those of Christen et al. (1984).

ly do not agree with the measured temperature variation.
Three other calculations were carried out, all based on
(8.7). The first two were based on the spectrum a F(co)
measured by the tunneling spectroscopy by Kihlstrom
(1985). The results are the dot-dashed curve for the clean
limit and the dashed curve when a mean free path of 28
nm is included in the calculation. This case agrees very
well with experiment and is a little better representation
of the data than the pure case. The value l =28 nm is
from Christen et al. (1984) and corresponds to an impur-
ity scattering time 1/~&=0. 485 meV. The final curve
(dotted) was obtained when the a F(co) of Bangert et al.
(1985) was used. This spectrum is not considered to be
realistic and does not give agreement with experiment. It
is included mainly to illustrate that any arbitrary shape
spectrum will not lead to good agreement with data. Our
general conclusion is that for V3Si the temperature varia-
tion of the penetration depth is well described by Eliash-
berg theory and is in significant disagreement with BCS.

We turn now to the absolute magnitude of the coher-
ence distance, g(0). For a mean free path of 28 nm, for-
mula (8.9) yields a value of 5.11 nm for a value of Fermi
velocity of 1.31X10 cm/s taken from the report of Or-
lando et al. (1979), which agrees as well with the value
found by Muto et al. (1979), accounting for the renor-
malization factor of (1+A, ). The value of g(0) quoted
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above compares well with 5.6 nm, quoted by Orlando
et al. (1979), and 4.9 nm, by Muto et al. (1979), and is
about 15 percent larger than would be predicted by a re-
normalized BCS theory. In this case, g(0) is given by the
formula fiv~/[mbo(1+k)], which can easily be evalu-
ated. Our conclusion is again that Eliashberg theory
works better than does BCS in predicting the measured
value of g(0) for V3Si.

Josephson curent follow from a knowledge of

5 (ice„)
I, =mT g,=i ai„+b, (ice„)

(8.11)

For T near T„we can neglect the n dependence of
A(iso„), since the sum in (8.11) converges, and get for our
model gap I& =~60(T)/8T. To lowest order in (T —T, ),
we get from Eq. (819) of Appendix 8

C. Reduction to approximate analytic forms (8.12)

Besides exact numerical solutions of Eqs. (8.6), (8.7),
and (8.9), we also want to consider approximate analytic
solutions that contain a first correction for strong-
coupling corrections to the HCS result for the corre-
sponding quantity. To obtain such approximate equa-
tions for the above mentioned electromagnetic proper-
ties, we follow our previous work on thermodynamic
properties and use the same simple step model for the
gap 6 and for the renormalization Z, as described in Ap-
pendix B.

Both the local-limit penetration depth and the dc

with t ==T/T„ the reduced temperature. Reference to
Eqs. (817a) and (817b) gives, after some simple algebra,

I"(T, )

G(T, )

2(~T, ) 1+ a(T, )
6

7 (3)

4 2—+ b
3 7g(3)

(8.13)

On substituting Eqs. (825) and (826) into (8.13), we get

1. 130))~
1.71 ln

k~T,
(1.57)

0.')
(8.14)

where n& and o,2 are to be treated as arbitrary parame-
ters.

For T =0, the sum over Matsubara frequencies in
(8.11) can be replaced by an integral, and, ignoring the co

dependence of the gap, we get

=—bo(T =0),
4oN 4

(8.15a)

where b, (TO=0) is given in Appendix 8 [Eq. (840)].
Combining this with (8.14) and fitting to numerical data
yields

y, (0) =0.376 1 —1.5

tion was done for a delta-function spectrum. Exact nu-
merical results in this case are shown as the dashed line
in Fig. 103, which is Inore quadratic near T, /co]„=0.
The need for a linear term seems therefore to be due to
the frequency spread that occurs in real spectra. As a
last point, we note that amorphous Ga falls way oA the
main-trend curve. This is not surprising, since such a
spectrum exhibits considerable weight at low energies;
and hence our approximation v/T, ))1 does not apply
for all important frequencies (v).

%'e next consider the London-limit penetration depth.
In analogy with the procedure followed for the local lim-
it, we start by introducing a dimensionless quantity IL ( T)
dependent only on the solutions of the Eliashberg equa-
tion (2.1) and (2.2). That is, we write

~In
ln

4T,

(8.15b)

(T)
II (T)=

—3X(0)e Ug

In Fig. 104 (solid dots) we show results for
yt(0) /[ T, ~y&'( T„)~ ] in real materials (see Table XIV)
based on tunneling-derived kernels, complete numerical
solutions of the Eliashberg equations (2.1) and (2.2), and
the exact evaluation of formula (8.13). The solid line in
Fig. 103 is a visual best fit through the exact numerical
data of the form (8.15b). The above derivation did not
give a linear term. It was added on, purely on a phenom-
enological basis, so as to get a really good fit. It appears
to be necessary so as to compensate for the approxima-
tions made during the derivation of (8.14). The deriva-

oo 6 (iai„)

i Z(iso„)[co„+6 (ice, )] ~

7$(3)&o( T)
It (T)=+

8( 1+A, )(vr T)
(8.17)

For T near T„the sum in (8.16) is sufficiently convergent
that we can replace X(ice„) in each term by its n =1
value ( I+A. ). For a constant gap model, we get
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T,yL(T, )

4N(0)e UF

2(AT, )
1+ a(T, )

6
7 3

4 2+ (8.18)
3 7g(3)

this integral,

II 0= 1

2'(0) (8.19)

Tc

The quantity Zs(0) is calculated in Appendix 8 for our
model solution, and Eq. (836) with co =0 gives

2bo 1 (~T )
Zs(0) =(1+A ) 1 — [ct ( T, ) b]—

(2m)2 1+A,
where use was made of formula (8.13) and the definition

yL ( T) —=A,l ( T). A similar formula was derived by
Masharov (1974a, 1974b) using very difFerent methods.

At zero temperature, we get, converting the sums to
integrals in Eq. (8.16) and ignoring the co dependence in

(8.20)
Using Eqs. (8.18), (8.19), and (8.20), we get, on substitut-
ing for ct (T, ) and b given by Eqs. (825) and (826), re-
spectively, and Atting to real-material data,

yl. (0) =0.SO 1 —2.0

0.40

0.38—

0.36

—11.0

(8.21)

TABLE XIV. Superconducting properties: optical properties.
0.34

y~(0)

~, ly,'(Tc)l

Material g(0, t+ =0) yi(0) yc {0)
g(T„t+ =-0) T, ly/(T, )l T, lyL(T, )

0.30

0.28

0.26—

0.24—

/
Pb

/
Ga

0.22—

0.200
I I I

0.04 0.08 O.I2 O.I6

TC "(n

I

0.20 0.24

FICx. 104. Ratio y, (0) /T, yl(IT) vis T, /co, „. The materials, in
increasing order of T, j~&„, are Al, V, Ta, Sn, Tl, Tlo 9Bip l, In,
Nb (Butler), Nb (Arnold}, V,Si(1), V3Si (Kihl. ), Nb (Rowell),
Mo Pbp 4Tlp 6 La V3Ga Nb3A1 (2) Nb3Ge(2) Pbp 6T10 4 Pb
Nb3A1(3), Pbp 8Tlp 2 Hg Nb3Sn PbQ 9Bip l, Nb3A1( 1 },
Nb3Ge( 1 ) Pbp 8B10 2 Pbp 7Bip 3 and Pbo 6,Bip 35 Amorphous
Ga has also been included and deviates substantially from the
trend. The solid curve corresponds to yi (0)/T, lyi'( T, ) l

=0.376[1—1.5T, /co, „—. 7(T6, co/, „) ln(co, „/4T, )]. Note that a
linear term has been required for an accurate fit. The dashed
curve corresponds to a series of Einstein spectra with p, *=0,
the model spectra upon which our derivations are based. The
trend is quite similar to that of the real materials. However, the
initial decrease from BCS is more quadratic, and hence no
linear terms would be required. Thus it appears that the e6'ect
of the realistic shapes used has been to produce a linear correc-
tion below the BCS value.

Al
V
Ta
Sn
Tl
Tlp 9B10 l

In
Nb (Butler)
Nb (Arnold)
V3Si 1

V3Si (Kihl. )

Nb (Rowell)
Mo
Pbo. 4Tlo. 6

La
V3Ga
Nb3A1 (2)
Nb3Ge (2)
Pbo 6Tlo 4

Pb
Nb3A1 (3)
Pbo. 8T10.2
Hg
Nb3Sn
Pbp 98ip l

Nb3A1 (1)
Nb3Ge (1)
Pbp 8Bip 2

Pbp 7Bio 3

Pbp. 65B10 35

Pbp 5Bip 5

Ga
Pbp 75Bip 2

Bi

0.004
0.031
0.035
0.038
0.046
0.048
0.050
0.057
0.062
0.070
0.071
0.074
0.076
0.095
0.099
0.103
0.113
0.114
0.119
0.128
0.129
0.136
0.146
0.146
0.152
0.156
0.160
0.172
0.182
0.200
0.320
0.243
0.288
0.320

1.330
1.293
1.292
1.286
1.278
1.277
1.273
1.261
1.260
1.253
1.251
1.255
1.254
1.233
1.244
1.234
1.228
1.211
1.215
1.195
1.219
1.204
1.215
1.214
1.193
1.217
1.218
1.193
1.186
1.194
1.359
1.342
1.326
1.380

0.376
0.351
0.352
0.346
0.340
0.338
0.334
0.321
0.322
0.315
0.314
0.317
0.315
0.294
0.301
0.294
0.286
0.271
0.274
0.260
0.269
0.262
0.269
0.262
0.253
0.262
0.262
0.245
0.239
0.237
0.250
0.274
0.252
0.265

0.500
0.454
0.454
0.445
0.434
0.431
0.425
0.405
0.406
0.395
0.393
0.397
0.395
0.363
0.374
0.363
0.352
0.328
0.333
0.310
0.328
0.316
0.326
0.318
0.302
0.318
0.320
0.293
0.284
0.283
0.340
0.368
0.333
0.366
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Results of exact numerical solutions for the many real
materials (solid dots) identified in previous sections are
shown in Fig. 105. A reasonable fit to this data can be
obtained only if an additional linear term is introduced
phenomenologically as before. The solid line of Fig. 104
corresponds to the form (8.21), which is our final result
for strong-coupling corrections.

We note, finally, that the Pippard-limit penetration
depth was not explicitly commented on because it does
not lead to new results. If we introduce Z~(T)—:A,~ (T),
it follows that

Z, (0) y, (0)

T, lz, (T, )l T, ly,'(T, )I
' (8.22)

b, (i co„)
7Tt+

+co„+6 (ico„)
(8.23a)

a quantity already plotted in Fig. 104. In addition as Eq.
(8.10) shows, the coherence length is closely related to
the local and London limit. Before giving results, it is
useful to consider the effect of normal impurity scattering
on the gap and renormalization factor, as impurities can
enter electromagnetic properties.

No impurities have been included explicitly in the
Eliashberg equations (2.1) and (2.2). To include them re
quires adding to the right-hand side of Eq. (2.1) a term of
the form [Daams and Carbotte (1981)]

and in Eq. (2.2),

17Tt+
+co„+6 (ico„)

(8.23b)

with t =1/2m~& where ~& is the impurity lifetime. On
substituting the modified equation (2.2) into Eq. (2.1), we
see that, for an isotropic superconductor, the two impuri-
ty terms cancel in the combined equation for the Matsu-
bara gaps. This cancellation agrees with Anderson's
theorem [Anderson (1959)], which states that T, is
unafFected by normal impurities in an isotropic supercon-
ductor. Of course, when anisotropy is included, the
theorem no longer holds, and the effect of normal impuri-
ties is to wash out the anisotropy. In the dirty limit, we
recover isotropy.

While the impurity contribution drops out of the gaps
b.(ico„), it remains in the renormalization Z(ico„). For
A, &( T), Eq. (8.3) applies and only the b, (i co„}are required,
so that adding impurities to our equations changes noth-
ing. This is not surprising, since the local limit is derived
under the assumption that l ((g(0), i.e. , the dirty limit is
already built in. It is then only consistent that adding an
additional mt+ term in the Eliashberg equations them-
selves makes no difference. The situation is different in
the London limit, for which Eq. (8.7) applies. Z(ico„)
enters explicitly and the mt+ contribution in a modified
equation (2.2) will affect the answer. In fact, in the dirty
limit with crt —+ ec, the new term (8.23b) in the Z chan-
nel will dominate, and it is appropriate to replace Z(i co„)
in Eq. (8.7) by Z(ico„)=mt+/"}/ co„—+ b, (ico„), giving

0.45—

yL(0)

Tel vL{Tc)l

4 X(0)e
~t + „ i co„+b. (i co„)

(8.24)

0.40—

0.35—

~Nb (R)
0jo

The constant in the definition of XL (T} is simply 4mo&,
with o~ given by Eq. (8.4). The London penetration
depth in the dirty limit reduces to the local-limit result
[Eq (83}l

Equation (8.10) gives a relationship between coherence
length and the ratio of local-to-London penetration
depth; thus g(T) will depend explicitly on impurities. In
fact, Eq. (8.9) in the dirty limit gives

0.30— UF
g(T) = =U~vtc —1—.

2m't
(8.25)

l I I I

0.04 0.08 O. l2 O. l6 0.20 0.24
Tc /~in

FIG. 105. Ratio yL(0)/T, lyl (T, )I vs T, /co, „. See caption of
Fig. 104 for identification of materials. The solid curve cor-
responds to yI(0)/T, Iy/( T, ) I

=0.5[1 2T, /co, „—11(T,/—
co~„) 1n(co,„/4. 5T, )].

The coherence length becomes the mean free path.
Results for the ratio g(0)/g( T, ) for real materials are

shown as solid dots in Fig. 106. These results were ob-
tained from exact numerical calculations based on Eqs.
(2.1) and (2.2) without an explicit crt term (clean limit)
and on the prescription (8.9). The solid curve represents
our best visual fit to the data. It is given by
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= 1.33 1 —0.83g(0)
C

gq (T, )=1—16
2

C ~In
In

3.5T,
(8.28)

—0.75
~in C

ln +0.4
3.8T,

(8.29)

(8.26)

Note that (8.26) was not derived directly from our previ-
ous fits to y& and yJ even though the exact relationship

gg (T, )=1—2. 5

q~(0) = 1+11 +1.5
4.2T,

(8.30)

(8.31)

holds. A new fit to the data on g(0)/g(T, ) itself was
done to increase accuracy.

It is a simple matter to extract from previous work
strong-coupling corrections to the various quantities of
interest rather than concentrate, as we have done, on di-
mensionless ratios. If we define as before gz as the
strong-coupling correction to a given quantity B,
8 =8 q~, we can find, after a suitable fit to data,

g~(T, )=1 +1 7 ln +1.5
3.4T,

T.
(8.32)

D. Very strong coupling limit

%'e have chosen not to show fits in these cases, as such
graphs are becoming repetitive. The above equations
hold approximately only for the conventional strong-
coupling regime for which T/co1„~0.25.

gq (0)=1+1.3
L

I.35

(8.27)
As for other quantities previously considered, it is of

interest to go beyond the conventional range and consid-
er much higher values of T, /co&„, which we call the very
strong coupling regime. In Figs. 107-109 we show our
results for re (T) at T=O and T=T, ;r)z (T) at T=0
and T = T, ; and rI&( T) at T =0 and T = T„respectively,
up to T/co „t=4. .0In the case of q& (T, ), the initial

I

drop as T, /cu&„ increases from zero eventually stops when
a minimum value is reached, after which this coeScient
starts to grow and ends up to be greater than 1. This is
in contrast to the behavior found for qz (0), which sim-

ply increases monotonically with some sign of saturation

g(0)
c&

1.5

I.25—
~ Nb(R)

~'4

V&Si (Kihl. )

1.4

1.3

l.20—

Pb 1.0
/

0.9

I.I 5
0

I I I I

0.04 0.08 0.12 0.I6
Tc /~in

I I

0.20 0.24
0.8

0.0
1

1.0
l

2.0
Tcf~)n

3.0 4.0

FICx. 106. Ratio g(0)/g'( T, ) vs T, /co, „. See caption to Fig. 104
for identification of materials. The curve corresponds to
g(0) /g( T, ) = 1.33[1—0.83T, /co, „—0.75( T, /co, „)'In(co)„/40T, )].

FICr. 107. Strong-coupling correction gz (T) for the local-limit
I

penetration depth A.I(T) at T =0 (solid curve) and T = T,
(dashed curve), as a function of coupling strength T, /co~„.
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1.0 1.0

0.8 0.8

0.6 E 0.6 BC

0.4 0.4

0.2

0.0 0.0
I

1.0
I

2.0
I

3.0 4.0
0.0 0.0

I

0.2 0.4 0.6 0.8 1.0

FIG. 108. Strong-coupling correction gq (T) for the London-

limit penetration depth kL(T) at T=O (solid curve) and T= T,
(dashed curve), as a function of coupling strength T, /co&„.

FIG. 110. Temperature variation of the square of the inverse
local penetration depth at temperature T normalized to its
value at zero temperature for several values of the coupling
strength T, /co~„, namely, 0.0 (BCS), 0.115, 0.333, 1.092, 4.083,
and 7.307.

occurring when T, /co&„gets very large. A feature of the
curve of rI& (T, ) that is worth noting is that it initially

drops very sharply and then levels o6' to a nearly con-
stant value. By contrast, gz (0) shows much less varia-

L

tion initially. The curve for g&( T, ) shows signs of satura-
tion after a fairly rapid increase with increasing value of
T, /co&„at lower values of this parameter. Finally, the
curve for g&(0) is nearly linear and its absolute value be-
comes remarkably large.

The complete temperature variation of A, &( T) and
A,L (T) in the very strong coupling regime is also of in-
terest. These are shown in Figs. 110 and 111, respective-

ly, in the format [A,(0)/A, (T)] . For the local limit, the
curves erst deviate from BCS by showing an upward
bulge at all temperatures, but as the coupling is increased
a reverse trend is seen in which the tendency is for the
curve to fall below BCS at small reduced temperatures
and above at the higher values of t. The low-t behavior is
fairly Oat even for T, /co&„=7.3. For the London limit,
the situation is similar at small values of T, /~&„ in the
sense that the deviations from BCS are positive; but for
large values of T, /co&„, the curves start deviating nega-

25.0

20.0
1.0

BCS
""""-".T /v =0 115

T /4)) =0.333c ln

-- —-T /~, =1.092c )n

— --. - T /~, =4.083c )n

15.0
0.8

0.6

10.0
0.4

5.0
0.2

0.0
0.0

I

0.2 0.4 0.6 0.8 1.0

0.0 0.0
I

1.0
I

2.0
Tc/4'&n

I

3.0 4.0

FIG. 109. Strong-coupling correction q~(T) for the coherence
length g(T) at T=O (solid curve) and T= T, (dashed curve), as
a function of coupling strength T, /col„.

FIG. 111. Temperature variation of the square of the inverse
London penetration depth at temperature T normalized to its
value at zero temperature for several values of the coupling
strength T, /col„, namely, 0.0 (BCS},0.115, 0.333, 1.092, 4.083,
and 7.307.
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tively from BCS for the entire temperature range. In
fact, at very large values of T, /co&„, they change curva-
ture and look completely di6'erent. The expected Bat re-
gion at small t, which is taken to be representative of an
s-wave superconductor, is missing.

E. Asymptotic limit

Finally, we turn to asymptotic limits. We shall consid-
er both exact numerical results for &A, t )) 1 and also the
one-Matsubara-gap analytic results. We start with the
analytic results first. From Eq. (6.51), we have that the
gap b, ( T) goes like Q A co@(1—t)' for t ~ 1, which is
the only regime of interest in the one-gap model. Refer-
ence to Eq. (8.3) for A, &(T) gives

A,L '(r) = g '(t) .Ikt2wT,
(8.40)

and have reintroduced Planck's constant A' and the per-
meability p0. As the temperature is lowered, the one-gap
model becomes less valid and our full numerical calcula-
tions cannot be compared with any analytic qualitative
result. Because Fig. 112 shows that g (t) becomes rather
flat as t —+0, it seems reasonable to extrapolate to zero
temperature from our lowest temperature, which was
t =0.01. If we do this, we get g (0)=0.67.

The London penetration depth given by the full equa-
tion (8.7) can also be related to the universal function
g (t) given in (8.38). Referring to (8.35), we obtain, in the
asymptotic limit

(T)=4o~co@&A(1 t), —t~i . (8.33)
Note the extra factor of t in the denominator of (8.40).
Thus

To get the London limit given by (8.7) is not quite so
direct, as we need Z(1) as well as the gap. But from Eq.
(6.42), we know that as A, =A,(0)~ oo

&n AL(t) =1.274A&t g(t),

where

(8.41)

Z(1) -=
+(~T) +b, (T)

so that Eq. (8.7) gives

(8.34)

A=O. 5317X 10 m

1/2
1022

,

cm

A~ (t)=4 —(1—t), t~l .
ne 1

Dl A,
(8.35)

Finally, from (8.10), it follows that

UFA
g(t)= . . . t~l .

COg

(8.36) 3.0

We can also get exact numerical results for these quanti-
ties provided &At)) 1 is. assumed. In that case, b, (T) is
independent of any material parameter and can be solved
for from Eq. (2.28). If we write Z(n)= f„(t), we ca—n
rewrite (6.48) for A,

&
as

2.5

2.0

A cogo'~
A, , '(t)= — g '(t)

2

with the universal function

f„'(&)
g '(r)=4~T, t g

„=&f„'(t)+(mT, t)'(2n —1)'

(8.37)

(8.38)

1.5

1.0

0.5

A, co~
o~ A,((t)—v'2

1/2

g(t)
Po

7 33X10- g(t) ™Vm

&nm
(8.39)

The function g (t) is plotted in Fig. 112 where its inverse
is also shown and is seen to go to oo as t~1. We find
numerically that g (t)=9.64(1 r) for t near 1, —which
is to be compared with the one-gap model which gave
5.66(1 t), where we hav—e noted that

0.0 0.0 0.2
I

0.4 0.6
I

0.8 1.0

FIG. 112. Universal dimensionless function g (t) (solid line),
which determines the texnperature dependence of the local
penetration depth in the asymptotic limit. The inverse function
g '(t) (dashed curve) is also shown. %Phile our calculations are
valid only for &A, t ))1, and so t &0 for any large but finite
value of A, , the curves for g and g ' are Oat over a large temper-
ature range around t~0; so the value of g(0) can probably be
obtained safely by extrapolation of our lowest temperature re-
sults (t =0.01) on the assumption that at yet lower tempera-
tures the behavior does not change unexpectedly.
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But T, =0.183&A, coE and so

(8.43)

cal" limit is TA, &)t + for which the electron-boson
scattering dominates over any impurity scattering.

Finally, we look at the asymptotic limit of the coher-
ence length given by Eq. (8.10). Noting that as A,~ ao,
Z (i~„)can be approximated by Eq. (8.34), we obtain im-

mediately

2.0

0.87uFA
g(t) =

EX3/2I.
(8.44)

0.0
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I

0.6 0.8 1.0

FIG. 113. Universal dirnensionless function &t g(t) (solid line)
and its inverse (dashed line) that determine, respectively, the re-
duced temperature dependence of the London penetration
depth and of its inverse. The calculations are valid only for
&k t ))1; so for any large but finite value of A, , we need t )0.
Nevertheless, the curve for &t g(t) indicates that as t~0, this
function appears to go smoothly to zero as 0.67 &t at least up
to t =0.01.

which is to be contrasted with the approximate result
(8.36) valid only for t = 1 and, in which case, the numeri-
cal factor is 1 rather than 0.87. We note that (8.44) was
derived (as for all other formulas in this paper) under the
approximation +A, t ))1, so that the 1/t factor is not a
problem.

IX. IVIAINLY ABOUT THE OXIDES

A. Phonons and high T

is the classical penetration depth first introduced by Lon-
don. The function v t g(t) is given in Fig. 113 as is its
inverse. The very low temperature dependence of this
function is very interesting. While our work is restricted
to the asymptotic region with &A, t )) 1 and so to t )0
for any large, but fixed value of k, we see again that
&t g (t) appears to be well behaved as t ~0 and seems to
go towards zero. On the other hand, the inverse func-
tion, and therefore A, L '(t), goes to ~ like 1/&t as t —+0.
This is a completely different behavior from BCS and is
characteristic of the asymptotic limit. It is valid for any
finite impurity content and does not map directly into
our previous results for the local limit. A word of ex-
planation is perhaps in order. If we assume ~t+ to dom-
inate in the Z(icy„) channel, then, as we have demon-
strated, the London limit goes into the local limit. But in
the asymptotic limit, we first assume A, —+ oo,' and so any
added ~t+ term in the equation for Z(ice„) can be
dropped because the second term in

Z(iso„)=1+
'1/ co „+6 „

+ g A(m n)—
~n mAn +co +6

An argument that is often put forward as evidence that
a phonon mechanism cannot be operative [Anderson
(1987); Anderson et al. (1987)] in the oxide superconduc-
tors, in contrast to conventional cases, is based on the
simple BCS equation (2.12) for T„which we repeat here:

k& T, = 1.13hz@,exp
1+A,

p
(9.1)

The critical temperature k&T, has units of energy, and
Eq. (9.1) shows that its scale is set by the characteristic
exchange boson energy m, . Thus if the factor co, were to
be replaced by an electronic energy that is measured in
eV rather than by a phonon energy with magnitude of or-
der 10 meV or so, the critical temperature could be much
larger than for a phonon mechanism. This argument, of
course, assumes that the range of possible values taken
up by the exponent (1+A, )/(A, —p*) in Eq. (9.1) is rough-
ly comparable for diA'erent classes of materials with
different mechanisms. That this be so is not at all
guaranteed. While the above argument is appealing, it is
important to realize that a phonon mechanism cannot be
ruled out on the basis of the size of T, alone. We have al-

ready seen in Sec. II, and it is worth repeating here, for
emphasis, that for a phonon mechanism with optimum
frequency co@=d (p,

*
) A, T, =c (p,

'
) A, and A.

' =2 A /coz
=2/d (p* ). For p* =0.1,c (p* ) =0.175, and d (p*)
=1.3, which implies A, =1.54 and a T, value of

+ 7Tf
1

Q —2+F 2
(8.42) T, = ' co+ =0.135coz .

c (,u*)
d (p*)

(9.2)

dominates over the last because TA, &)t + for finite t+.
It is a question of which limit is taken first. The "physi-

In the oxide superconductors, the phonon spectrum ex-
tends up to 100 meV, and formula (9.2) gives T, =160 K
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assuming, of course, that the coupling is strong (large A)
and exclusively to these high-energy phonons. While an
A =-77 meV is very large compared with our experience
in conventional cases, the necessary value of A, is modest
and not unusual.

There are other ways to achieve a high value of T,
within a phonon model. For a start, an electron-phonon
spectral density a F(co) has been calculated by Weber
(1987a, 1987b) for the case of La-Sr-Cu-O. The calcula-
tions are based on the first-principles energy-band results
of Mattheiss (1987) and the nonorthogonal tight-binding
theory of lattice dynamics developed by Varma and
Weber (1979). This framework is highly sophisticated
and has proven quite successful in describing the A15
compounds (Weber, 1984a, 1984b). The spectrum ob-
tained in this way is shown as the dashed curve of Fig.
114. It gives a value of T, equal to 36 K for a standard
value of p*=0.13 and the value of k=2. 6. This last
quantity is somewhat larger than that found in conven-
tional cases, but not unreasonably so.

Ashauer et al. [Ashauer, Lee, and Rammer (1987);
Ashauer, Lee, et al. (1987); Rammer (1988b, 1989)] have
done may additional calculations of T, applicable to the
oxides within an electron-phonon framework [see also
Marsiglio and Carbotte (1987c)]. They employ a variety
of possible choices for the spectral density, and some of
their results are given in Table XV. Besides the result
based on Weber's spectrum mentioned above, they con-
sider using for a F(co) a constant, chosen to give a
T, =35 K, times the measured incoherent inelastic
neutron-scattering generalized phonon frequency distri-
bution G(r0) obtained by Renker et al. (1987). Addition-
al measurements have been done by Ramirez, Batlogg,

o( F(u)
I

I
) 1

)
I

I I

I

I

j
I

I
I

I
I
I
I
I
I

I
1

I I

I I
I
I

TABLE XV. Phonon models for oxides.

Weber
n F(co)

35
91

2.6
8.6

0.13
0.13

Generalized
phonon frequency
distribution G(co)

35
35
91
91

1.2
1.9
3.4
5.3

0
0.2
0
0.2

B. Oxygen isotope effect for La-Sr-Cu-0

Aeppli, et al. (1987a) and by Brun et al. (1987) for the
La-Cu-0 family; and by Renker et al. (1988), Rhyne
et al. (1987), Bruesch and Buhrer (1988), and Strobel
et al. (1988) in the Y-Ba-Cu-0 family.

The G (ro) (solid curve) is compared with Weber's
a F(ro) (dashed curve) in Fig. 114. The solid curve is
considerably harder than the dashed curve which,
displays much more weight at lower energies. For the
harder spectrum, we see in Table XV that the A, value re-
quired to get 35 K is only 1.2 for p'=0. 0 and 1.9 for
p* =0.2, to be compared with 2.6 when Weber's calculat-
ed spectrum is used. At the present time there is little
compelling evidence to prefer one spectrum over the oth-
er. Having said this, we point out that the calculations of
Weber predict a lattice instability near La& 85Srp i5Cu04
that is not observed. This is a limitation of his work that
we shall return to later. If we consider the case of a 90-K
superconductor, Table XV shows that a very large value
of A, is needed for a scaled Weber (1987a, 19878b) spec-
trum (8.6) while a value of A, =3.4 is sufficient when G (co)
is used instead. Even smaller values of A, result if the
coupling to the higher-energy modes in G (co) is preferen-
tially emphasized. To our knowledge there exist no
rigorous calculations at present that rule out such values
of A, on the basis of lattice stability. It is clear therefore,
from the above, that values of T, of the order of magni-
tude seen in the oxides with present maximum of 125 K
can naturally be accommodated within Eliashberg theory
and a pure phonon model, taking note that the theory it-
self does not address the important question of lattice sta-
bility. The need for a new mechanism, if it is required
and indeed it is, is to be found elsewhere.

50

hw [meV]
100

FIG. 114. Spectrum E (dashed curve) is the theoretical Eliash-
berg function for La&»Sro»Cu04 calculated by Weber (1987a,
1987b). Spectrum A (solid curve), which is given by compar-
ison, is based on the generalized phonon frequency distribution
G(m) of Renker et al. (1988) and gives T, =35 K with p =0.0
[from Ashauer, Lee, and Rammer, {1987)].

An argument that is often put forward against an
electron-phonon mechanism for the oxides is the partial
isotope effect on the oxygen (P,„). This quantity has now
been measured by several authors and a useful surnrnary
is found in the recent paper by Katayarna-Yoshida et al.
(1988). We consider first the case of La-Sr-Cu-O, and
later we shall deal with Y-Ba-Cu-O. The oxygen isotope
efFect in La-Sr-Cu-0 appears to have first been reported
almost simultaneously by Batlogg, Cava, et al. (1987),
who find f3,„=0.16+0.02, and by Faltens et al (1987). .
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In this second paper, the authors find considerable varia-
tion with sample, P,„=0.22 in one case and /3, „=0.13 in
another. Their final conclusion is that P,„ is not smaller
than 0.10 and may possibly be as large as 0.37. A subse-
quent determination by Bourne et al. (1988) reduces
the unertainty in the previous work and finds

/3, „=0.14+0.08. On the other hand, zur Loye et al.
(1987) quote a value of /3„=0.31. It is clear from this
summary that P,„ in La-Sr-Cu-Q is significant and prob-
ably of the order 0.2.

Weber [Batlogg, Kourauklis, et a/. (1987)] has calcu-
lated the oxygen isotope effect in La-Sr-Cu-0 on the basis
of his model electron-phonon spectral density. He finds
that changing all the isotope masses on the oxygens in
the Cu-0 planes gives a theoretical value of P,„=0.3,
which is 50 percent larger than our preferred experimen-
tal value although, as we have seen, one experiment gives
a value that is even larger than the theoretical estimate.
It is important to understand clearly that it cannot be
concluded from this 50-percent discrepancy that another
mechanism besides phonons must be operative in this
system. All it means is that, in Weber's spectrum, there
is more coupling to the oxygen modes than is indicated in
present experiments. In principle, any value of P„be-
tween 0 and 0.5 is compatible with a phonon mechanism,
since its actual value depends on the relative coupling to
oxygen as opposed to other modes. For P,„=O there is
no coupling to oxygen, while for /3, „=0.5 there is no cou-
pling to the remaining modes.

C. Analysis of partial isotope effect

A detailed theoretical discussion of /3, „has been given

by Ashauer, Lee, Rainer, and Rammer (1987). These au-
thors introduce a function B(co) that is an integrated
dift'erential isotope coefficient /3(co) defined by

8 (co) = f den'/3(co'),

where /3(co) is given by (2.63) and represents the contribu-
tion to the isotope effect comining from the phonon
modes that fall in the energy range between co and
co+dco. Thus B(co) gives the contribution coming from
all the phonon modes between (co and oo ).

In Fig. 115, we display the results obtained by
Ashauer, Lee, and Rammer (1987) for a 35-K supercon-
ductor. The curves shown all occur in pairs, with the
solid lines applying to a model with p'=0 and the
dashed curves for p*=0.3. The first set of two curves la-
beled by A035 and A335, with the first digit referring to
the value of p* and the last two to the T, value, makes
use of the measured phonon frequency distribution G(co)
for La-Sr-Cu-0 shown in Fig. 114 (solid curve).

From the definition (9.3), B (0) corresponds to the total
isotope effect, which is exactly —,

' for the model with

p =0.0 and somewhat less for p =0.3. As co is in-
creased, 8 (co) must decrease, and the value at
m/co „—=0.5 is taken by Ashauer et al. as representative

8 (~)
.2—

.2
I I I

max

FIG-. 115. Calculated isotope effect for a 35-K superconductor.
The function 8 (co) yields the total isotope effect at m/co „=0.0
and the oxygen isotope effect at m/co „=—0.5 (chain-dotted
curve). Different curves refer to diAerent model spectra as
defined in Ashauer, Lee, and Rammer (1987a) with p =0 (solid
curves) and p* =0.3 (dashed curves). From Ashauer, Lee,
Rainer, and Rammer (1987).

of the oxygen isotope effect on the assumption that all
the phonon modes in G (co) beyond this frequency
represent oxygen motion. This would be the case for a
light mass in a one-dimensional lattice. Some evidence
for this separation can be found in the Born —von
Karman analyses of Renker et al. (1987) based on the
generalized phonon frequency distribution in La-Sr-Cu-0
shown in Fig. 114 (solid curve). While approximately
true, such an idea is not borne out in detail in the shell-
model calculations of de Wette et al. (1988), who find
that some shifting in the lower frequency range always
accompanies an oxygen mass change. This is also found
in the work of Weber (1987a, 1987b). Keeping this limi-
tation in mind, we, nevertheless, proceed with the model
suggested by Ashauer et al. because several important
points about the partial oxygen isotope effect can be nice-
ly illustrated within this model.

First, for a model based on a constant times G(co),
which weighs all phonon modes equally, the partial iso-
tope eA'ect /3, „ is considerably less than the value obtained
in Weber's model and is, in fact„ lower than the experi-
mental value. Since at this point there is no compelling
reason to favor one spectral density over the other, as we
have alrady stated, it is clear that to get a model a~F(co)
with an oxygen isotope effect equal to the measured
value, it is only necessary to assume that the oxygen
modes in G(co) (assumed to be all phonons above 50
meV) are somewhat more strongly weighted in a F(co)
than are the remaining modes. This could easily be ar-
ranged but is premature since the experimental value of
/3, „remains somewhat uncertain as these are difficult ex-
periments. Furthermore, an infinite number of choices
are possible. In model 8 of Fig. 115, the coupling to the
oxygen modes is reduced even further, compared with
model A and with Weber's spectrum. This, of course,
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gives an even smaller value of /3, „and is of little interest
as a quantitative model for La-Sr-Cu-Q. It does serve to
emphasize, however, that the existence of a very small
isotope effect /3, „on the oxygen mass alone is in no way
inconsistent with phonon superconductivity. It simply
implies that the coupling to these modes is small. Qf
course, if the high-energy phonon modes are not impor-
tantly involved, we can expect that fairly large values of
k are needed compared with a model in which we are
mainly coupled to these modes. This is indeed so for
model B compared with A for which A, =1.3 and 2.0
when p*=0.0 and. 0.3, respectively. These values are to
be compared with 1.2 and 1.9 for model A and the still
much smaller values associated with model 0, in which
we assume coupling only to the oxygen modes beyond 50
meV in G(co), and for which A, =0.4 and 0.9, respective-
ly. For such a model (D), the oxygen isotope effect is
large (see Fig. 115), as we might have expected, and is
about 0.37 for p =0.3. It is also equal to the total iso-
tope effect. This value for /3„, is small compared with a
typical value of /3 for conventional strong coupling. This
is not surprising, however, since in model D A, is relative-
ly large. In such a case, we expect from Fig. 115 a value
of /3„, significantly suppressed below 0.5.

It is clear from the discussion so far that La-Sr-Cu-0
has a significant phonon contribution but that a unique
model for the electron-phonon spectral density cannot be
deduced from a knowledge of /3, „alone in the absence of
additional constraining information. Knowledge of the
total isotope effect would help, although some important
ambiguity would still remain, as we shall soon illustrate.
In any case, to our knowledge, the La and Cu partial iso-
tope effects have not been measured for La-Sr-Cu-O. In
Weber's model, one gets /3L, =0.02 and /3c„=0. 165 for a
total isotope effect of /3„, =0.49, which is conventional
for a strong-coupling superconductor with A, =2.6 and
p*=0.12. There is nothing unusual with these values
and we have a definite prediction that could be tested.
Even ='f all partial isotope effects were known experimen-
tally, there would sti11 be many ways of modifying the
calculated ci F(co) of Weber to accommodate wide varia-
tions in these coe%cients.

It might be argued that a pure phonon model could be
eliminated if /3„, were found to be wildly reduced from
0.5, but this could, alternatively, simply indicate a very
large value of p*, as we saw illustrated in the case of
model I3.

D. Isotope effect in joint mechanism

An alternative way of obtaining a reduced value for
/3„„would be to introduce a joint phonon-plus-excitonic
mechanism. Here we use the word excitonic in a very
general sense and include any boson-exchange mechanisn
in which the bosons involved do not depend on the isoto-
pic mass M. If they are assumed to be of high energy
compared with T„as seems reasonable, we can accom-

modate them in our theory through an effective p' that is
negative and represents the sum of the pairing potential
for the additional mechanism %(0)V and the Coulomb
repulsion p*, namely,

(9.4)

For p,*&=0, we get a total isotope effect of /3„, =0.5; for

p ff dominant over the phonon part, /3„,=—0.0. In be-

tween, any value of /3„„can be reached. At the present
time, isotope effect measurements, while helpful and of
interest, do not differentiate clearly between a large p*
and a joint mechanism; we need to examine other evi-
dence, such as the observed thermodynamics and other
properties of the superconducting state, to distinguish be-
tween various possibilities. Before doing so, it is impor-
tant to point out that other more exotic effects than the
ones considered here can affect the isotope coefficient /3,

although, at present, our knowledge of these is at best
qualitative.

E. Other problems with isotope effect

Energy dependence in the electronic density of states
X(e) on the scale of co, can have an important influence
on superconductivity [(Lie and Carbotte (1980); Mitrovic
and Carbotte (1983a, 1983b)] and, in particular, on T, .
This is easily understood within BCS theory. In this
model, the pairing potential is taken to be a constant V
within +%co, of the Fermi energy, and only those elec-
tronic states that fall within this energy range participate
in the superconducting state. If X(e) is constant over

Ace„ the information on the states involved is carried
by the factor X(0) but, at the very least, some average of
%(e) in the interval (

—fico, to fico, ) is needed when %(e)
varies. As m, changes because of changes in ionic mass

M, this average will change, since different values of
X(e') will be involved. The isotope effect will therefore
be changed by X(e) and depend on the detail of its ener-

gy variation [Combescot and Labbe (1988)].
Another effect not included in Eliashberg theory that

can change the isotope coeKcient are anharmonic correc-
tions. These have been discussed most recently by
Dreschsler and Plakida (1987, 1988). A related effect,
but more specific to the oxides, has been described by
Phillips (1987). On the other hand, Fisher et al. (1988)
have considered how zero-point motion can change /3.

All these are interesting possibilities, but the theory of
these effects is not yet well developed and much work
remains to be done before a definitive assessment of their
relative importance is available.

We turn next to other properties of the superconduct-
ing state. For this task we shall start with Weber's spec-
trum even though, as we have pointed out, it predicts an
oxygen isotope effect about 50 percent larger than the
measured value. Other deficiencies of the model have
been summarized by Pickett (1989). Here we mention
only one. It predicts a structural transition just beyond
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the composition 15 percent Sr to be due to a soft breath-
ing mode, while Birgeneau et al. (1987) find that it is due
to a soft tilt mode. Nevertheles, Weber's a F(co) can still
serve as a useful basis for a first attempt at a comparison
of predicted superconducting properties with experimen-
tal results with an aim at obtaining information on mech-
anism. Schossmann, Marsiglio and Carbotte (1987)
present results of extensive calculations of this kind,
which we now review.

F. ThermodYnamics for La-Sr-Cu-O,
experimental uncertainties

In Table XVI, we enter the values obtained for certain
conventional parameters useful in characterizing the
spectrum and also give results of Eliashberg calculations
for the dimensionless quantities 260/kz T„
DC(T, )lyT„yT, /H, (0), and h, (0). These are the
gap-to-critical-temperature ratio, the specific-heat jump
normalized to its "normal-state value, " the Sommerfeld
constant y times the square of the critical temperature
divided by the square of the zero-temperature therrno-
dynamic critical magnetic field, and the reduced thermo-
dynamic critical field, respectively. Also entered in
brackets for comparison are the BCS values. On compar-
ison of these two sets of values, we conclude that if La-
Sr-Cu-0 is a phonon superconductor, it will behave in a
significantly different way from a BCS superconductor,
and if the apppropriate quantities are measured, we
should be able to get important information on mecha-
nism. Unfortunately, the experimental situation is far
from satisfactory at this time. First, all properties in-
volving normal-state Sommerfeld constant y have not
been measured with any reliability because y is di%cult
to obtain. The critical temperature is suKciently high
that the normal-state specific heat at this temperature is
dominated by the phonon contribution, which is not well
known since a Debye model is not adequate. Further-
more, the critical magnetic fields are so large at low tem-
perature that it is impossible to force the material to be-

come normal and hence to measure y directly. Another
possibility is to use the Pauli susceptibility. Unfortunate-
ly, a Stoner enhancement factor also enters this quantity
[Salamon and Bardeen (1988)], which is not well known
but may be large. In a recent estimate, Jaffe (1989) sug-
gests that it could be as large as a factor of 2. The de-
rived electronic density-of-states factor is therefore quite
uncertain. Yet another method is to derive y from the
slope of the upper critical magnetic field, but this also re-
quires an analysis, which can lead to significant errors, as
we shall discuss in some detail later. Furthermore, there
is no consensus, at the moment, as to the exact experi-
mental value of the slope, as can be seen in Table XVII
(see also Table XVIII) for Y-Ba-Cu-O).

The general conclusion of all this is that y is not well
known at the moment because of experimental uncertain-
ties and because of the need to extract it indirectly from
data through a model-dependent analysis. A similar situ-
ation holds for the ratio 250/k&T, . Considerable con-
troversy remains about the value of the gap, as can be
seen in Table XVII where we have compiled data as of
the spring of 1988 [Marsiglio (1988)]. Inclusion of more
recent data does not change the general picture. Far-
infrared measurements tend to give values of the gap ra-
tio near BCS although Timusk and Tanner (1989) have
presented arguments that appear to invalidate much of
the analysis on which these values depend. In general,
tunneling measurements give values that are rather
higher, although there are a few exceptions. Another
problem is that La-Sr-Cu-0 is very anisotropic in its
normal-state properties, so the gap is expected to be
highly anisotropic, making it dificult to compare experi-
mental results with the theoretical prediction of Table
XVI. Another difficulty with tunneling is that the coher-
ence length perpendicular to the CuO planes is very
short, and tunneling typically probes only within one
coherence length of the surface. Qn this scale, the sur-
face could well not be representative of the bulk. In view
of these limitations, it may not be surprising that tunnel-
ing results tend to be quite erratic, even from measure-

TABLE XVI. Characteristics and predictions based on Weber's spectrum for a I' (co) in La-Sr-Cu-O.

Tq /cubi„

35 K 22.0 meV 14.0 meV 0.23 6.1 mJ/(molK )

bC(T, )

XTc

2.8{1.43) 5.3{3.54)

7Tc
H (0)

h, {0)

0.124(0.168) 0.48(0.58)

AC(T, )/T,

17 mJ/(molK )

dH {T) mT
dT T, K

17
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ments at diAerent spots on the same sample. Anomalous
structure is also seen in some I-V curves, and the gap
edge is never completely well defined with some leakage
current into the gap region, of origin as yet uncertain. In
some interpretations, the far-infrared measurements also
give significant absorption below twice the gap value
where there should be none. This possibly indicates the
existence of states within the gap, which would make any
interpretation of the data less clear. For all these reaons,
no definitive conclusions can be reached at this time
based on the theoretical predictions of Table XVI. All
that can be said, after careful consideration of the avail-
able data, is that 260/kz T, in La-Sr-Cu-0 is possibly
lower than the 5.3 value predicted on the basis of
Weber's spectrum [Carbotte and Marsiglio (1989)]. This

would favor a joint phonon-plus-exciton mechanism as
does I3,„, in one interpretation at least. It could also
mean that a harder spectrum is favored over that calcu-
lated by Weber, as is indicated from inelastic incoherent
neutron measurements of the generalized frequency dis-
tribution 6 (co).

The specific-heat jump at T, [AC(T, )] has been mea-
sured by several groups. There is, unfortunately, consid-
erable disagreement for this measurement as well (see
Table XVII). It is clear that there is significant sample
dependence. This is exemplified by the fact that while
the normal-state resistivity remains linear up to T, in
some samples, in others there is an upturn before the ma-
terial becomes superconducting. Furthermore, many of
the experimental results were obtained on polycrystalline

TABLE XVII. Experimental results for LaSrCuO.

(a) Cheap to critical temperature ratio
260

Reference
k~T,

(b) Slope of the upper critical field

/H, ', (T, )f

(T/K) Reference

2.4
1.6-2.7

2.5

2.9-4.5
5.2-9.1

& 4.5

5—8.7
4.07—4.78

4.5-5.8
3—6

3.5-4.0

0.7-2.7
8—18

2.6
1.3+0.2

5
47

7+2
2 (c axis)

(b) Slope

'(T/K)

2.2-5.0
1.51
1.7

2.7-6.0
0.3[/, 4l

1.8
2.13

1 ~ 3-4.0
2

Walter et al. , 1987
Sulewski, Sievers, et al. , 1987
Schlesinger, Collins,
Kaiser, and Holtzberg, 1987

Bonn et al. , 1987
Hawley et al. , 1987
Kirtley, Tsuei, Park, Chi,
Rozen, and Shafer, 1987

Pan, Ng et al. , 1987
Ekino et al. , 1987
Moreland, Clark et a/. , 1987
Leiderer et al. , 1987
van Bentum,

van de Leemput et al. , 1987
Degiorgi et al. , 1987
Naito et al. , 1987
Sulewski, Noh et al. , 1987
Lee et al. , 1987
Zavaritzky et al. , 1987
Sato et al. , 1987
Pan, Ng, and de Lozanne, 1987
Schlesinger, 1987

of the upper critical field

Reference

Orlando et al. , 1987a
Kwok et al, 1987
Okuda et al. , 1987a
Kobayashi et al. , 1987
Hidaka, Enomoto, Suzuki, Oda,

and Murakami, 1987
Nakao et al. , 1987a
Capone et al. , 1987
Osofsky et al. , 1987
Zavaritsky et ah. , 1987

(c) Specific-heat jump at T,
hc(T, )

T.
mJ

Reference
mol K

7.6+ 1.8
20+5

16.8
8.8

22-26
11

9.9
10+2

6.5

Batlogg, Raminz et al. , 1987
Dunlap et al. , 1987
Decroux et al. , 1987
Finnernore et al. , 1987
Kitazawa, Atake, Ishii et al. , 1987
Uchida, Takagi, Kitazawa,

and Tanaka, 1987; Uchida,
Takagi, Hasegawa et al. , 1987

Phillips et al. , 1987
Rarnirez, Batlogg, Aeppli et al. , 1987
Bourne, Zettl et al. , 1987

(d) Band-structure density of states
x, (EF)

states
Reference

eV Cu-atom spin

0.66
0.6 (0.95)'

0.82
0.82

0.62 (1.08)'
0.83
1.03

Mattheiss, 1987
Freeman et al. , 1987
Temmerman et al. , 1987
Takegahara et al. , 1987
Papaconstantopoulos et a/. , 1987
Fujiwara and Hatsugai, 1987
Oguchi, 1987

2.1+0.1 Braginski et al. , 1987
2.2 van Bentum, van Kempen et a/. , 1987

2.0—3.7 Renker et al. , 1987

'With doping x =0.15.
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samples. There is evidence that while the superconduc-
tivity is bulk, it is not, by any means, always 100 percent
bulk. There can be both metallic and insulating com-
ponents present. Moreover, the granularity of the sam-
ples can vary, and this feature can afT'ect superconducting
properties. Keeping these limitations in mind, on careful
analysis of the available data given in Table XVII, which

covers the period up until the spring of 1988 only but is
sufhcient for our present purpose, Carbotte and Marsiglio
(1989) come up with a preferred experimental value of 17
mJ/(molK ) for bC(T, )/T, in La-Sr-Cu-O. This value,
however uncertain, can be used in conjunction with our
theoretical prediction of b, C(T, )/yT, =2.8 to extract a
value of the normal-state Sommerfeld constant and use it

TABLE XVIII. Experimental results for YBaCuO.

(a) Gap-to-critical-temperature ratio
26o

Reference
B Tc

(b) Slope of the upper critical field
/0,', (z;)

~

(T/K) Reference

3.5+0.3
3.5

3.7-5.6
1.6-3.4
2.3-3.5
2.5-4.2
1.3+0.2

3.3
3.2
11

4.5—6.0l
3.9—4.8//

4.8
3.8—4.5

10
13

3.9
3.2+0.4

7—13
3.5

5+0.2
3.4+1.S
4.8+0.5

—8

75
3.9
3.8

(b) Slope
)H,', (z;)]

(T/K)

1.3 (50%)
3 (10%)

2.S (50%)
1.2
2.4

2.3~~, 0.46—0.7ll
4.6 (10%)
0.6 (0%)

1.25
3.8 (50%)

1.0 (1 %%uo)

'y=0. 1.
'y=0. 2
'y =0.S.

Genzel et al. , 1987
Thomas, Bhatt et al. , 1987
Kirtley, Collins et al. , 1987
Kirtley, Collins et al. , 1987
Thomas, Ng et al. , 1987
Wrobel et al. , 1987
Lee et al. , 1987
Vuong et al. , 1987
Bonn, Greedan et a/. , 1987
Ng et al. , 1987
Kirtley, Collins et al. , 1987
Kirtley, Collins et al. , 1987
Moreland, Ekin et al. , 1987
Ekino and Akimitsu, 1987
Iguchi et al. , 1987
Kirk et al. , 1987
Crommie et al. , 1987
van Bentum, van Kempen et al. , 1987
Escdero et al. , 1987
Thomas, Ng et al. , 1987
Polturak et al. , 1987
Lyons et a/. , 1987
Barone et al. , 1987
Schlesinger, Collins, Kaiser,
and Holtzberg, 1987
Zavaritsky et al. , 1987
Tulina et al. , 1987
Bazhenov et al. , 1987

of the upper critical field

Reference

Wu, Ashburn et a/. , 1987
Wu, Ashburn et al. , 1987
Ramirez, Batlogg, Cava et al. , 1987
Muto et al. , 1987
Muto et al. , 1987
Worthington et al. , 1987
Junod et a/. , 1987
Junod et al. , 1987
Song et al. , 1987
Takita et al. , 1987
Takita et a/. , 1987

2.35 (50%)
0.37l (50%)

1.95ii (50%)

2.2 (50%)
1.8 (50%)

2.2—3.6 (50%)
1,75 (50%)
5.3 (10%)

3ii, 0.9i (100%)
1.27 (50%)
4.7 (90%)

1.9+0.2
1.3 (50%%uo), 5 (onset)

1.9 (50%)
2.9 (50%)
5.3 (90%)

3+0.3

Okuda et al. , 1987b
Hidaka, Enomoto, Suzuki, Oda,
Katsui, and Murakami, 1987

Hidaka, Enomoto, Suzuki, Oda,
Katsui, and Murakami, 1987

Apfelstedt et al. , 1987
Nakao et a/. , 1987b
Fuller et al. , 1987
Schinder et al. , 1987
Schinder et al. , 1987
Iye et al. , 1987
Takabatake et al. , 1987
Ousset et al. , 1987
Braginski, 1987
Orlando et al. , 1987b
Panson et a/. , 1987
Orlando et al. , 1987c
Orlando et al. , 1987c
Laborde et al. , 1987

(c) Specific-heat jump at T,
AC(T, )

T.
mJ

Reference
mol K

18
15.5
1.32

16
7

11+2
23+5

13
20

Nevitt et al. , 1987
Inderhees et al. , 1987
Zhaojia et al. , 1987
van Miltenburg et al. , 1987
Kitazawa, Atake, Kisho et al. , 1987
Li et al. , 1987
Ayache et al. , 1987
Junod, Bezinge et a/. , 197
Beckman et a/. , 1987

(d) Band-structure density of states
%~(FF )

states
eV Cu-atom spin

Reference

1.5 Mattheis and Hamann, 1987
0.56 (0.4)' (0.26) Massida et al. , 1987

1.1 (0.92—0.97)' Herman et al. , 1987
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to investigate the consistency of the data with strong-
coupling theory. The value of y extracted in this way is
6.1 mJ/(molK ), which is consistent with some of the
other estimates found in the literature. We can calculate
from y a value for the single-spin electronic density of
states N(0) at the Fermi energy. A useful formula to ac-
complish this aim is

( 0 )
states

eV f.u. spin

0.212 mJ
1+X mol K

The value for N(0) obtained from (9.5) for our favored
vallle of 1 is N(0) =0.36 states/(eV f u. spin). If we as-
sume that all the important electron-electron correlation
effects are included in the band-structure calculations for
La-Sr-Cu-O, we can compare the above value with band-
structure results. The band-structure density of states, in
the parent undoped compound La2-Cu-04, has been ob-
tained by several groups, and some results are summa-
rized in Table XVII. A first objection to this table is that
band structure predicts a metal with half-filled band,
while, experimentally, LazCuO4 is an antiferromagnetic
insulator. However, as doping is introduced, the metallic
stage is reached before superconductivity sets in, and it
can be argued that band-structure theory then becomes
valid. From Table XVII, it is clear that there is general
agreement that N(0) -=0.65 states/(eV f.u. spin) when the
doping is not accounted for. Two values entered in
brackets in Table XVII(d) include doping in a rigid-band
model. Freeman et al. (1987) and Papaconstantopoulos
et al. (1987) find for La, s5Sro»Cu04 0.95 and 1.1

states/(eV f.u. spin), respectively. These values are 3
times larger than our value estimated on the basis of
specific-heat data and Weber's u E(~) spectrum. This
argues for a smaller X value in La, 85Sr0»Cu04, which
could -be achieved through a hardening of the electron-
phonon spectrum with more coupling to the higher fre-
quency modes than is indicated in Weber's work, or it
could mean that we have a joint phonon-excitonic mech-
anism. The first possibility is rather mundane in the
present context, and the theory developed in previous
sections would apply without modification. It is, howev-
er, probably not consistent with the measured partial iso-
tope effect on the oxygen. If we assign no errors to the
numbers used in the analysis, which we certainly cannot,
this first possibility would also require rather small values
of A, for a T, of 36 K, but it remains a possibility, consid-
ering the uncertainties that persist in the data. The
second possibility of a joint phonon-plus-excitonic mech-
anism is more interesting and will be studied in some de-
tail. Before doing this, we describe the extraction of y
from critical magnetic-field data to stress the difhculties
with such analysis.

The upper critical magnetic field has been measured
near T, by many groups. Again, as Table XVII indi-
cates, there is significant variation in the slope at T,
[

",II( 2)T] not only from sample to sample, but also de-
pending on whether the onset or midpoint of the resistivi-

ty drop is used. Strictly speaking, the onset point should
be used, but the polycrystalline samples and the possible
fluctuations above T, complicate this simple prescrip-
tion. Moreover, anisotropy [Teichler (1977)] now plays a
more significant role, as measurements on single crystals
indicate. We proceed, nonetheless, with the isotropic
theory, noting that simple modifications are required to
treat an anisotropic electron gas.

The measured slope can also be used to give an in-
dependent estimate of the Sommerfeld constant y
through the relation [Carbotte and Marsiglio (1989)]

H,'2 ( T, ) = —4.48 X 10 yp(A cm)qH ( T, ) (Oe K ');
(9.6)

p(Ocm) is the residual resistivity in Acm. The factor
( T, ), first introduced by Bergmann and Rainer

c2
(1973), takes into account strong-coupling efFects. It
remains within 30 percent of unity for a moderate
strong-coupling material and so is not an important fac-
tor in this regime. The problematic factor is p(0cm).
Normally, the residual resistivity is found by measuring
the zero-temperature normal-state resistance, ' in this
manner, the phonon-assisted resistance is removed. This
is impossible, however, in the oxides; moreover, extrapo-
lation is difficult —the linear resistivity behavior is not
well understood, and sometimes there is a sharp rise just
before T, . In some resistivity measurements, the extra-
polation would cause p(T =0) to be very near to zero,
which is not understood. Kwok et al. (1987) used p(T, )

in their analysis and obtained @=4.9 mJ/(molK ). A
linear extrapolation to zero temperature gives a resistivi-
ty of just more than half that at T„so that we get y =8
mJ/(molK ), assuming (gH =1 for LSCO). This is in

c2

reasonable agreement with our previous estimate for y.
It is clear, however, that considerable uncertainty
remains in such analyses.

G. Joint mechanism

Excitonic superconductivity was first suggested as a
theoretical possibility in 1964 by Little (1964) and
Ginzburg (1964a, 1964b). The idea is very similar to that
involving phonons, except that the polarization leading
to an attractive interaction is not due to a movement of
the ions themselves but rather to movements of electrons
(say, on the ion cores perhaps not within the supercon-
ducting Cuo planes). This polarization will result in a
net positively charged region of space to which a conduc-
tion electron will be attracted. Little (1964) envisioned a
one-dimensional geometry with conduction chains along
side "exciton" chains. The two types of electrons (con-
duction and those that produce the excitons) are then
physically separated from one another. Ginzburg (1964a,
1964b, 1965) considered a two-dimensional geometry
with a metallic layer sandwiched between two dielectric
layers. This geometry was later investigated in detail by
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Allender et al. (1973), within the Eliashberg formalism.
There are many objections to the idea of excitonic super-
conductivity, which have been neatly summarized by Lit-
tle (1987). We shall not reiterate them here, but simply
note that many can be overcome under the proper condi-
tions. Perhaps the most serious problem is that vertex
corrections may become important [Migdal (1958a,
1958b); Grabowski and Sham (1984)], since the ratio of
the electron mass to exciton mass is no longer small. We
shall nonetheless proceed, following Allender et al.
(1973), and ignore this complication.

The most compelling reason for considering excitonic
superconductivity is associated with this last problem, in
that the mediating boson (exciton) now has an electronic
energy scale. Hence, in the simple BCS picture, T, will
be significantly enhanced because the prefactor is now
co,„))coD. Theoretical work [see the many articles in
XOUel Superconducti ui ty edited by Wolf and Kresin
(1987)] has also suggested the possiblity of excitonic su-
perconductivity in the high- T, oxides [Gallo et al.
(1987); Yu et al. (1987)]. Several experiments have indi-
cated that excitons may be playing a role in these materi-
als. Far-infrared optical meaurements [Etemad et al.
(1987); Herr et al. (1987); Kamaras et al. (1987); Oren-
stein et al. (1987)] reveal an increased absorption at high
frequencies (0.44 eV in YBCO and 0.37 eV in LSCO),
which may be due to an exciton mode being present.
Moreover, the presence of the increased absorption has
been shown to be strongly correlated with the presence of
superconductivity in the material [Varrna et al. (1987);
Timusk and Tanner (1989)].

In what follows, we scale down the electron-phonon
spectrum calculated by Weber while, at the same time,
we increase the excitonic contribution, which we model
by an Einstein spectrum located at co„=500 meV. The
relative weighting of the phonon (A, ) and exciton (A,„)
contributions are then adjusted, keeping T, =36 K. We
have used p"(co, =1.53 eV)=0.15. The results for the
isotope effect coefficient /3, „are illustrated in Fig. 116 as
a function of X„/k„,. We note that when only phonons
are present (k,„/A,„,=O),P„ is near 0.275, whereas,
when only excitons are present, the isotope coefFicient ap-
proaches zero, as is expected. In these calculations, we
have used Weber's calculated spectrum with ' 0 replaced
by ' O in the planes. We also note that, had the isotope
coefficient been measured to be near zero, the phonons
could not have played a significant role, since the in-
crease in P,„ from zero is relatively steep. The value for
the pure phonon case would be slightly higher, except
that there is a p present. The small maximum near
k,„/X„,=O is indicative of the fact that as k„ increases
from zero it initially has the effect of representing a nega-
tive p and hence tends to cancel some of the effect of the
existing p*. The manner in which the isotope effect was
calculated followed the method used by Rainer and Cu-
letto (1979). They kept the cutoff in the b. channel fixed
and simply shifted the frequencies in the a F(v) spec-
trum downwards in inverse proportion to the square root

0.3

0.2

'0 0.2 OA 0.6 0.8 I.O

FIG. 116. Isotope-etfect coe%cient p,„vs 1,,„/A, ,„„with
p, *=0.15 for a combined phonon and exciton spectrum. This
calculation uses %'eber' spectral functions with and without ox-
ygen replacement in the Cu-0 planes. The experimentally mea-
sured, preferred value P,„=0.16+0.02 gives rather stringent
constraints on the possible value of k,„/k„, within this model.

TABLE XIX. Results for joint mechanism.

Property

AC( T, )/y T,
y T,'/0, '(0)
h, {0)

BCS

3.53
1.43
0.168
0.576

6=k,„/k„,

5=0.5
4.0
1.7
0.153
0.55

5 =0.25

44
2.1

0.140
0.52

6 =0.0
5.3
2.8
0.124
0.48

of the mass change. This method contrasts with the
more complicated procedure [Leavens (1974)] of refer-
ring the cutoff to the phonon spectrum so that p* ac-
quires an artificial mass dependence through its cutoff'.
We have the added advantage of having Weber's more
accurate calculation of the phonon frequency shifts at
our disposal as well.

Figure 116 allows us to decide on the ratio of mph to
in LSCO on the basis of the isotope-effect measurement
alone. Taking into account the axial-site oxygen isotope
effect, we require /3, „=0.14 in Fig. 116, which determines
A,„/X„,=0.5. This choice will depend somewhat on our
choice for p' and co„, as well as the manner in which we
simply scaled Weber's a F(v) spectrum. However, for
definiteness a.nd for purposes of illustration, we fix

X„/X„,=O. 5 and investigate other properties. Results
are summarized in Table XIX for this value of X„/A,„,
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FIG. 117. 260/k&T vs X,„/k„, for the combined phonon-
exciton model considered in the text. A choice of X,„/A, , =O. S

implies 260/kz T, =4, which is in better agreement with far-
infrared measurements of the gap edge than a pure phonon
model with Weber's calculated a F(m).

FIG. 119. Phonon contribution (A.~h) to the total mass renor-
malization as a function of k,„/A,„, for a combined phonon-
exciton model.
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FIG. 118. Normalized specific-heat jump at T„AC(T, )/y T„
as a function of A,„/A,„,for a combined phonon-exciton model.

and compared with neighboring cases.
Figure 117 displays the gap ratio 2ho/k~ T, as a func-

tion of Rex/stot Again in the pure phonon case, we have
simply Weber's spectrum, so that the results of the previ-
ous section apply, and 26o/k~ T, =5.3. In the other ex-

tr erne, a purely excitonic mechanism implies that
T, /~~„=0.006, so that a BCS result will be achieved.
Our choice of A,,„/A, , implies that 2b,c/kii T, =4 (see
also Table XIX), which is certainly in the thick of things,
as far as experiments go (see Table XVII). This and ensu-
ing results will diA'er slightly from those of Marsiglio
et al. (1987b), where the choice of A,,„/A,„,=0.4 was
made based on the calculated full isotope efT'ect. The nor-
malized specific-heat jump hC(T, )/y T, is illustrated in
Fig. 118; A,,„/A, „,=0.5 implies AC(T, )/yT, =1.7 (see
also Table XIX). Here, again, we cannot check this
against experiment, but instead rely on it to determine y.
We use, once again, the experimental value
b, C(T, )/T, =17 mJ/(molK ) (see Table XVII), so that

y = 10 mJ/(mol K ). To determine the density of states,
we need to know A,«t. Figure 119 illustrates A, ~h versus
A.,„/A,„„, from which A,„, can be determined for
k,„/X„„=O.5. We find A,„„=O.9. Using Eq. (9.5), we find
X(0)=1.12 states/(eVf. u. spin). This value is far more
consistent with the values 0.95 and 1.08 determined
through band-structure calculations than the value deter-
mined directly from Weber's spectrum (0.36 in the same
units), and hence lends support to the combined phonon-
exciton model for LSCO. The degree of agreement can
be varied, however, by adjustment of choice of A,,„/A, t
and by variation of p*, not to mention the choice of the
experimental value of AC(T, )/T, . What is clear, how-
ever, is that significant improvement has been achieved
over the pure phonon model.

While the possibility of a combined phonon-exciton
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model looks very promising, the existing experimental in-
formation is not sufhcient to rule out entirely a pure pho-
non model, which remains a distinct possibility for
La-Sr-Cu-O.

H. Specific to Y-Ba-Cu-Q

We now turn to the case of Y-Ba-Cu-O with a critical
temperature of 96 K. Weber and Mattheis (1988) have
calculated the electron-phonon mass renormalization for
this case. Varma and Weber's (1979) technique of
nonorthogonal tight-binding theory of lattice dynamics
[see also Weber (1984a, 1984b)] based on the band-
structure calculations of Mattheiss and Hamann (1987)
was applied with the result that A, is found to be quite
small, perhaps of order 0.5, and leads to, at most, 19—30
K for T, . For a critical discussion of the limitations of
the work of Weber and Mattheiss (1988) and for refer-
ence to other relevant articles, the reader is referred to
the review of Pickett (1989). The failure of present state-
of-the-art numerical calculations of the electron-phonon
interaction can be taken as the first indication that some
other mechanism is operative, although the phonons can
be expected to play some role since the value of A, is not
likely to be insignificant. An independent determination
of k from consideration of resistivity data gives smaller
values of order ~0.21 for Y-Ba-Cu-O and ~0. 1 for
La-Sr-Cu-0 [Gurvitch and Fiory (1987a, 1987b); Gur-
vitch et al. (1988)].

In the absence of a successful calculation of the
electron-phonon spectral density in Y-Ba-Cu-O, which
gives a T, of 96 K, we can begin our discussio. ; of ther-
modynamic properties on the basis of Weber's spectrum
for La-Sr-Cu-O scaled upward by a constant amount to
get the measured T, . No new calculations are needed,
and we can rely on the results obtained in the previous
sections in the limit of very strong coupling. Noting that
T, /co~„=0. 22 for La-Sr-Cu-O, we expect it to be =0.6
for Y-Ba-Cu-O on the assumption that the electro~-
phonon spectral density is not too diAerent in shape from
the dashed curve of Fig. 114. In Fig. 38, we showed
260/k~T, as a function of T, /cu, „and conclude that this
dimensionless ratio should be about 7 in this material. In
Table XVIII we show a compilation of early experimen-
tal results for this quantity by Marsiglio (1988). As for
La-Sr-Cu-O, there is a great deal of variability from one
experiment to the next and no firm conclusion can be
made. Some experiments show large values, while others
favor a BCS-like 260/k&T„which is expected if some
high-energy electronic boson-exchange mechanism is
operative.

The data on the specific-heat jurnp also does not help
in sorting out which possibility T, /~&„-0.6 or 0.0 is the
correct one. In fact, from one curve for AC(T, )/yr,
versus T, /co&„ in the very strong coupling limit shown in

Fig. 59, we expect this dimensionless ratio to be close to
the BCS value in both limits. Of course, we cannot easily

compare with experiment, as the Sommerfeld constant y
is not well known experimentally at this time for the
same reasons as we have discussed for La-Sr-Cu-O. Un-
der such circumstances, we can use the theoretical value
for Ac ( T, ) /T, to estimate the electronic density of
states at the Fermi energy and compare with results of
band-structure calculations.

In Table XVIII we have compiled some early results
for the jump divided by T, [Marsiglio (1988)]. Again
there is a great deal of scatter, but a preferred value
might be 15 mJ/(molCu-atom K ). If we use this value
of AC ( T, ) /T, with b C ( T, ) /y T, =f =—1.43, we obtain
X(0)(1+A,) =2.2 states/(eV Cu-atom spin). Table XVIII
also lists some values of X(0) calculated from band struc-
ture. With A, =0.5, we would obtain N (0)—1.5

states/(eV Cu-atom spin) in agreement with the upper
limit of the calculated values (see Table XVIII). Higher
values of A. would violate the BCS assumption. With

f =2.8, X(0)(1+A)=1.1 states/(eVCu-atom spin).
Choosing A, = 1.5 —3.0 gives X(0)—0.28 —0.45
states/(eV Cu-atom, spin), which agrees with Massidda
et al. (1987) values including doping. Finally, to
represent the very strong coupling limit, we use the
X=30 spectrum. Then, f=0.6, so that X(0)(1+A.) =5.3

states/(eV Cu-atom spin) and hence X(0)=0.2
states/(eV Cu-atom spin). This is just below the range in-

dicated by Massidda et al. (1987) calculations with dop-
ing.

On the basis of the existing data, then, it is not possible
to favor one or the other of these possibilities. Many un-

certainties exist in the analysis itself. The bulk specific-
heat capacity should be used, whereas most of the mea-
surements were performed on polycrystalline samples
with Meissner efIects as low as 25 percent at low temper-
atures. Moreover, Deutscher et al. (1980) have noted
that granularity in a sample tends to reduce the specifc-
heat jump [Ebner and Stroud (1985)]. Finally, anisotropy
is known to reduce the jump as well. All of these eA'ects

point toward larger y values than is obtained in this
analysis, and hence, larger mass renormalization, which
would favor the very strong coupling limit. However,
Fermi-liquid eA'ects have been ignored, and these may
also play a large role in contributing to a mass renormal-
ization. Finally, the disagreement in values for %(0) pro-
duced by band-structure theorists is also disturbing and,
at this stage prevents this sort of analysis from being
quantitative.

I. Isotope effect for Y-Ba-Cu-0

The oxygen isotope eAect in Y-Ba-Cu-O seems to have
been measured first by Batlogg, Kourouklis, et al.
(1987c) and by Bourne, Crommie, et al. (1987b). In the
first paper, a change in T, of less than 0.2 percent is ob-
served on replacement of 75 percent of ' O by ' O
(/3„.=0.0+0.02), while the second, by the Berkeley
group, finds P,„=O.O+0. 027. Later, a new determination
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an effective negative p*,z approximation and, instead of
quoting p,*z and the associate cutoff, we simply use T,0 as
the parameter. Here, T,0 is the critical temperature that
would result if we have only an excitonic mechanism and
so Xph 0. In Fig. 120, we show results for the total iso-
tope effect of a 96-K superconductor as a function of
phonon energy coE and three different values of excitonic
contribution, namely, T,O=71. 1 K (solid curve), 81.4 K
(dashed curve), and 91.7 K (dot-dashed curve). As T,o is
dccicascd, thc phonons play a IDore significant role in T,
and must account for an ever increasing difference
(96—T,o) K. As we would expect, the isotope effect is
also increased. What is, perhaps, somewhat surprising is
that the total P is not a rapidly increasing function of de-
creasing coE for a given value of T, . In fact, the curves
are rather Aat and completely different from the corre-
sponding variation in k h

=—k, which we show in Fig. 121.
In this case, A, is seen to remain small if mE is large even
for T,0=71.1 K; but as cuE decreases below 20 meV, the
rise of k is very rapid and its value can be larger than 1.
It is important to note also that even for A, = 1, which im-
plies quite a significant coupling to the phonons, P can
still remain small and below 0.05, which is smaller than
our preferred experimental estimate of 0.1 or even a little
larger. This is contrary to the expectation of Pattnaik
and Newns (1989). For this to occur, however, it is
necessary that the electron-phonon coupling be dom-

inantly with low-energy phonons around 5 meV in the
specific example considered in the figure.

In Fig. 122, we show the normalized specific-heat jump
at T„bC( T, )/y T, as a function of phonon energy for a
96-K superconductor in a combined pho non-exciton
model. Again, solid, dashed, and dot-dashed curves ap-
ply to T,0=71.1, 81.4, and 91.7 K, respectively, with the
last cases certainly not inconsistent with the presently
available isotope-efFect data. It is seen that if the phonon
contribution is mainly from coupling to phonons above
20 meV, we do not get significant differences from pure
BCS. If, however, the coupling is predominantly to
modes around 10 meV, the calculations predict that
b, C ( T, ) /y T, can fall significantly below BCS, a predic-
tion that is consistent with our previous, very strong cou-
pling results for a single-mechanism case. In both calcu-
lations, T, is of the order of coE. This can occur because
T, is large due to a very large electron-phonon interac-
tion or because it is mainly due to some excitonic contri-
bution. The behavior of most other dimensionless ratios
is found to be similar and opposite to usual strong-
coupling behavior. An exception is the gap-to-critical-
temperature ratio 2b.o/k~ T„which we show in Fig. 123.
In this case, we always obtain values above the BCS value
of 3.54. For large values of coE, the deviations are small
for each of the cases considered and, in fact, remain fairly
small until mE is around 20 meV, in which case
26 0/ka T, can start rising quite significantly, particularly
if T,0 is not too near T, and there is significant room for
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FIG. 122. Normalized specific-heat jump at T„AC( T, )/'y T„
as a function of phonon energy mz for a 96-K superconductor
with combined exciton-phonon mechanism. For labels on the
curves, see Fig. 120.

FIG. 123. Dimensionless ratio of gap to critical temperature
25O/kz T, as a function of phonon energy uE for a 96-K super-
conductor with combined exciton-phonon mechanism. For la-
bels on the curves, see Fig. 120.
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a phonon contribution.
A general conclusion from all this is that a supercon-

ductor with high T, and small but finite total isotope
effect which is described through a joint phonon-plus-
exciton mechanism can show interesting deviations from
pure BCS behavior that could be looked for. Unfor-
tunately, the data in Y-Ba-Cu-0 are not suKciently well
defined to allow any definitive conclusion at this time.
The variability of the data and the lack of any consensus
represent a serious problem in comparisons between
theory and experiment.

K. Slope of specific heat at T,

A quantity of particular interest that needs to be men-
tioned is the specific-heat jump and its slope near T, .
Another is the temperature dependence of the London-
limit penetration depth. The slope of the specific-heat
jump near T, has been measured in recent experiments
[Junod et al. (1988); Loram and Mirza (1988)] and has
been found to be particularly sharp. The dimensionless
ratio of slope to jump, which is independent of value of
the Sommerfeld constant y can be as high as 14. We
have seen in Sec. VI, Fig. 73, that such a large value is in-
consistent with the theoretical maximum of about 5,

which comes from Eliashberg theory, whatever the size,
shape, or origin of the kernels entering the isotropic ver-
sion of these equations. It is certainly also consistent
with the pure BCS behavior expected for a pure excitonic
superconductor and must be taken as a puzzle at this
point.

L. Temperature dependence of penetration depth

The story on the temperature variation of the London
penetration depth is different. Strong-coupling calcula-
tions for this quantity have been presented by Blezius
et al. (1988) and by Rammer (1988a). Measurements us-
ing muon spin relaxation are numerous. Some are by
Gygax et al. (1987), Aeppli et al. (1987), Kossler et al.
(1987), Harshman er al. (1987, 1989), Cooke et al. (1988,
1989), Kie(1 et al. (1988), Naughton et al. (1988),
Schenck (1988), and Lichti et al. (1989). Alternative
techniques can also be used. See, for example, Fiory
et al. (1988) and Mitra et al. (1989).

In Fig. 124, we reproduce the strong-coupling results
obtained by Blezius et al. (1988) and the comparison
with the data of Kiev' et al. (1988) for Y-Ba-Cu-O. What
is plotted is the deviation of the penetration depth in the
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FICi. 124. Temperature dependence of the London penetration depth deviation function [At(0)/At(T)]2 —(1—t ) as a function of
reduced temperature t = T/T, for a model of Y-Ba-Cu-0 based on a rescaling of Weber's e F(co) for La-Sr-Cu-0 with T, /e~„=0. 6.
The solid curve is in the clean limit and the dotted curve is for t+ =20.0 meV. The data are by KieA et ah. (1988).
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London limit from the two-Auid-model prediction, name-
ly,

(9.7)

A, (0)
A, (T)

vs T/T, . (9.8)

Also shown in the figure are the BCS dirty- and clean-
limit curves. The data (+) certainly fall outside the re-
gion defined by the two weak-coupling (dashed line)
curves, but do fall between the strong-coupling curves
(solid line) for clean (lower curve) and dirty (upper curve)
limit, respectively. More recent data from muon spin-
relaxation measurements at the Clinton P. Anderson
Meson Physics Facility (LAMPF) at Los Alamos [Lichti
et al. (1989)] fall nearly on the dirty-limit strong-
coupling curve of Rammer (1988a) and are above the
two-Quid prediction. On the other hand, the data of
Fiory et al. (1988) and of Mitra et al. (1989) show a BCS
weak-coupling behavior. These data are more consistent

1.2

where t —= T/T, is the reduced temperature. The calcula-
tions are for a strong-coupling model with T, /co~„=0. 6,
a value suggested previously. We see good agreement
with experiment for an impurity content represented by
t+ =20.0 meV. We note that the observed and calculat-
ed deviations fall below the two-Auid model except,
perhaps, near zero temperature.

In Fig. 125, we show a similar comparison between an
independent strong-coupling calculation by Rammer
(1988a) and the data of Harshman et al. (1987). What is
plotted is

2

with the idea of a joint phonon-plus-electronic boson-
exchange mechanism. The data that agree with pure
strong-coupling calculations have the problem that the
measured value for the total isotope eAect is violated. As
a general conclusion, we see once more that present data
show too much variation to be useful in differentiating
with certainty between various models.

X. CONCLUSIONS

For conventional superconductors, Eliashberg theory
with tunneling-derived kernels yields a remarkably accu-
rate description of the observed thermodynamics and
other properties which, in general, are found not to obey
BCS universal laws. The theory also allows for the intro-
duction of concepts such as functional derivatives with
respect to the spectral density ct F(co), which fall outside
a BCS description. Interesting questions, such as the
eAectiveness of a particular frequency co on T, or some
other property, can be addressed and answered.

Application of the concepts of Eliashberg theory (with
single or joint mechanism) to the high-T, oxides is incon-
clusive at the present time, mainly because of the large
variation that exists in the data. With better data, it
should be possible to say something about mechanism
and discover the energy scale associated with the pairing
interaction.
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APPENDIX A: FUNCTIONAL DERIVATIVE
OF T, WITH a2F(co} IN

TWO-SQUARE-WELL MODEL

0.
.6 .8

T/T
1.0 We begin with the linearized form of the Eliashberg

equations (2. 1) and (2.2) using A„=b(ice„)Z(ice„) and
6„=—co„Z (i co„). They are

FIG. 125. Temperature dependence of the magnetic penetra-
tion depth in weak- and strong-coupling theory. The dashed
curves labeled by "weak dirty" and "weak clean" correspond to
BCS. The two-fluid-model result (1—t } is also shown and
compared with the strong-coupling results (solid curve) labeled
by "strong dirty" and "strong clean. " The data with which
[A,(o)/A, (T)] is compared are from Harshman et al. (1987).

6„=~T,g[k(m n) —p*(co„)]—

co„=co„+~T,g A(m n)sg (neo )—
(A 1 )

(A2)

Rev. Mod. Phys. , Vol. 62, No. 4, October 1990



J. P. Carbotte: Properties of boson-exchange superconductors

with A(m —n) =—A(ico —ico„). Consider a system for
which the base ccoF(co) is augmented by a term of
e5(co —coo) with e —+0. In this case

term, gives

g —p ~m

1+&
2cop

A, (m n)——+A, (m —n)+ e
coo+ ( co„co )

(A3) 2cop'ITT 6'

+ '
X1 + A, coo+ (co co

where we will treaf. the first term in the two-square-well
model (or A, model), while the second is infinitesimal
and can be accounted for exactly. In the A, model

x —p* f
I+~ (A6)

g A, (m n)sg—n(co )

The first term in (A6) is independent of n and denoted by

6, while the second is proportional to e and denoted by
@55„. beget

has (2n —1) terms that do not cancel in pairs, and so we
get for (A2)

2cop&T.
1+~ m coo+(con corn )

p fm
1+&

with

Ico„l =(1+X)Ico„I+of„ (A4)

and

(A7)

2coosgn(co„co )
f„=vrT, g

m coo+(con corn )
(A5)

(6+@6',

1+X

Substituting (A4) into (Al), retaining only the lowest-
order terms in e, and applying the k model to the finite

Substitution of (A7) into (A8) gives the eigenvalue equa-

tion

2cop
1=~T, ~ g +e(AT, ) g z1+A, lcljm I

1+A coo+(co co )

A,
—p* fm' 1 1

1+& l~ I l~ ll~ I
1+~ (A9)

When @=0 (A9) reduces to the usual BCS equation for T, , namely,

(A10)

where superscript "0" denotes the case of no perturbation. In the second term, on the right-hand side of (A9), we can
use unperturbed quantities everywhere, since the entire equation is already proportional to e. In addition, if the sum
over m is performed first, the second term in the curly bracket can be reduced using (A10). On changing the left-hand
side of (A9) to T, through Eq. (A10), we arrive at the result

T, +6T,
ln

To
6T,
TP

C

e(~T, ) 2cop 1 1 fm'

1+~ ~o+(~

Finally, reference to (A5) gives

5T, 6T,=—lim
6a F(coo)

T~ 2' 0(~T, ) g1+~ mm' coo+ (corn corn')

sgn( co co )
(A12)

where we have dropped the superscripts "0",as they are
no longer needed. Finally, introducing the dimensionless
parameter 0:—np/T„we arrive at

G(Q)= g
~ 0 +4' (m —m')

6T,
yacc F(coo)

G(A)1

1+1, (A13)
1 sgn(2m —1)(2m ' —1)

with the universal function (A14)
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G(Q)= g 4A

i + 2+4~2n
(A15)

The term m'= I drops out of the double sum in (A14)
because in that case the term in the curly bracket is ex-
actly zero. It is convenient to rewrite (A14) in the form

APPENDIX B: DERIVATION OF
STRONG-COUPLING CORRECTIONS

In this appendix we outline in detail the derivation of
strong-coupling corrections. It is divided into two sec-
tions. The first describes the derivation of thermodynam-
ic properties. In the second section, critical magnetic-
field properties are derived.

El 2 1 +
n 2m —1 (2m —1)

(A16)
1. Therrnodynarnics

O' T Tc

which is our final formula. The B, 's are just numbers,
and the first few terms in (A15) give 6 (II) qualitatively.

Equations (2.1) and (2.2) are expanded near T, (small
):

Zs(co„)h(co„)=~T
m= —X +].0

~o 1 ~~o
k( l co„ l co~ ) 1

3 ~o+-
CO m

(81)

Zs(co„)=Zlv(co„)

+ I 2vdvcc F(v)
Q)~ 0

0 sgnco~

m= —lv +1v +(cdm con)

1 ~o 3 ~o+—
63

(82)

Here the subscript 5 (X) means superconducting (nor-
mal), and 1Vo=cdo/2nT+ —,

' enumerates the Matsubara
frequencies in the sums. However, the convergence is
sufFiciently rapid that Xo can be replaced by infinity. The
summations are folded to the domain [0, ~]. In the Z
channel [Eq. (82)], this procedure results in sums like

1 1
i X2i —1222

, co
' (co +a„)

1 4~m ~n«=4~T X 2; 1 2 24.=, cd
' (co +a„)

(84)

(85)

1 1
2i —1 (v2+ 2 + 2)2

4' M
X 1+ +

( 2+ 2 + 2)2 (83)

Here, a„=v +co, , and i = 1,2, 3, . . . . In accordance
with the remarks made above, only i =1,2 are required
in Eq. (84) and all i can be neglected in Eq. (85). These
are readily evaluated in terms of digamma functions,
which can then be expanded as follows:

Noting that co„=nT(2n —1), and only small n is re-
quired, one sees that terms of 0 ( T, /v) have been
neglected, consistent with our assumption, T, ((v.
These terms would contribute, however, in the free-
energy formula [Eq. (5.1)], to 0(T, /v) and hence should
be retained. Howver, for the sake of simplicity, and since
coeKcients will be fitted to numerical data in the end
anyway, we have dropped them. The required sums are

2
U =—

1 4
an

1.13a„
ln

k~T
1

2

7 g(3) 1

2 (AT)' a,

g(3) is the Riemann zeta function [g(3)=1.202 ]. It
is easy to show V, =0 ( Tlv ) . Equation (82) becomes

1.131/ v +co„
Zs(co„)—Zlv(co„) = —b.o(T)I 2v dv n F(v) ln

0 (v2+~2 )2 T

+ b,o(T) I 2vdvcl F(v)
(~T)' (v +co„)

(87)

At this point we also write the expansion for the Bardeen-Stephen free-energy formula:
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FsFiv "
1 ~o

N (0) N(0), 4 ai3

1 ~02
2—+T g [Zs(m) —Ziv(m)]

2 co~
(8&)

As will be seen below, the variation of Ziv(co ) with m is
not large. In the first sum we can safely replace Z~(m)
by its constant value at, say, I =1. However, in the
second sum, the first term is nonconvergent with a con-
stant value for Zs(m) —Ziv(m); hence the n dependence
must be retained in Eq. (87). It will be dropped, howev-
er, in the argument of the logarithm, to facilitate the cal-
culation. An identical expansion can be performed for
Ziv(n), with the result

Ziv(ai„) = 1+iI.——,'(m T) [(2n —1) —1]

l. 13a„(~T)2P= ln

7 g(3) 1

4 (mT) a

1.13a„

31 g(5) 1 7 g(3} 1

4 (~T)' a„'

2~n

a' '
n

(814a)

(814b)

(814c)

(814d)

X f 2vdva F(v)
0 V

(89) Q2 =Q3 =O(1/a„) . (814e)

The constant value to be used in the first term of Eq. (88)
now depends on our choice of n. For n = 1, there is a no
strong-coupling correction; Z~ =1+A,, which is the k
result. For higher value of n a strong-coupling correc-
tion results. We prefer to use the former value, since it is
exact for n =1. This is seen most readily from the exact
equation for Ziv(co„):

a(T)—= J 2vdva F(v) 41n
oo 1 1.13v

0 gT
(815a)

b(T)= J 2vdva F(v)
0 4 (815b)

We evaluate Eq. (811) for small n (specifically, n = 1) and
define

HATT

n —1

Ziv(co„)=1+ A(0)+2 g A(m)
~n m=1

The gap equation (Bl 1) becomes [using Zs(n = 1)]
(810)

1 =F ( T)+b OG ( T) +boJ ( T), (816)

In fact, our choice for Z~ will be consistent with our use
of the zero-temperature Sommerfeld constant y in the ra-
tio b, C ( T, )/y T, . This choice also omits strong-coupling
corrections arising from electron-phonon coupling at
nonzero temperatures, as described by Grimvall (1968,
1969, 1981)and Kresin and Zaitsev (1978b).

Similar remarks apply to the b, channel. Equation (Bl)
can be reduced to

where

1 13''in

1+k ks T
T2

[a (T) 4b], —
1+A.

'
3

(817a)

7 g(3) +3 a(T), 3, b

1+1, 8 AT 2 2 1+A, ' ' 1+A,

(817b)

Zs(n )&0=&0 I 2v d v a F(v) [P, +Q, —
—,
' 60(P2+ Q2 )

+ —,'bo(P3+ Q3 )],
(811)

where

93 g(5)
1+A, 128 (~T)4

63 g(3} b

32 (~T}2 1+k

93 g(5) b

128 (gT) 1+A.

(817c)

2mT 1
(812)

The T, equation is given by 1 =F ( T, ), with the result

and

P

T, = 1.13m&„exp
(mT, )

1 — [a(T, ) —4, b]

2~T 2

Qi g 2i —3 2 2 3=i ai (co +a„)

These sums are

(813)
(818)

This is not an accurate T, equation, but it will prove use-
ful later. The gap parameter (near T, ) is obtained from
Eq. (816}:
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Ao(T) =—

+ (T —T, )

1 1.13va(T, )= I 2vdva F(v) ln
~in 8 Tc

A ) 1.13')~
2

~1"
kg Tc

(825)

(819)

where it is understood that the derivatives are with
respect to temperature, and the functions are evaluated
at T, . Equation (819), along with Eq. (87), is to be sub-

stituted into Eq. (88). Summations in the second term
are required, but of the form encountered previously,
( U, ). The result is and

b=
CO

(826)

The first equality follows for a given spectrum from the
mean value theorem of calculus; n& can be chosen to
compensate for the averaging. The second equality fol-
lows from the definition of co~„[Eq. (2.16)]. Similarly,

1 I+A,
X(0) 2 A,

[AOK ( T ) +—', b ol. ( T)],
where

(820)
0'3 1.13M) 1.13')

c(T )= A ln — ln
BTc 3 BTc

In Eq. (827), the weak-coupling T, equation can be used:
TFO( T)

K(T)=GO(T) — c(T)—a(T)+-1+k 4
(821a) 1 ~ 13~In 1+k

(828)

The result is an equation of the form

3 Go(»
L ( T)=Jo( T)+- a(T)

2 1+k 2

A new strong-coupling correction, defined by

f =1.43 1+ MT.
2

z, ln
1.13')~

Z2

c(T)=J 2vdva F(v) ln
oo 1 2 1. 13v

0 k~T

is required. The "0" subscripts in Eqs. (821) signify that
the strong-coupling corrections in Eqs. (817) are not
present. The specific-heat difI'erence near T, is given by
the thermodynamic formula

hC(T)= —T
dT2

Z3

1.136))n
ln I,T;

(829)

We note that for a 5-function spectrum, the a, ,P, =1,
and in fact we expect that even for realistic spectra,
o., =P&=1. With this approximation, z& =5.9, z~ =5.3,
and z3=0.2. Hence we drop the last term in Eq. (829).
Equation (829) becomes

so that after some tedious algebra, one obtains

b, C(T)
'V Tc

where f and g are defined below.
To simplify the formulas for f and g, we write

(824)

b, C(T, )

g Tc
= 1.43 1+a]

CO)~

2
~In

ln
b, T,

(830)

7g(3) ' 7g(3)
(83 la)

1
b& = exp1.13

3 7g(3) 7j(3) 7g(3)

24 8
(83 lb)

Equations (831) are not used to determine a& and b&.
Rather, they are fit to numerical data (Table X). The re-
sult is a, =53 and b, =3. We note that for a, =p3=1,
Eqs. (831) yield a, =58 and b, =2, remarkably close to

I

the accurate fit Similarly for g we obtain
2

T. ~]n
g = —3 77 1+a2 ln

~in b2T;
(832)
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where a~ and bz are functions of a, and P3. The fitted
values are a 2

= 117 and b 2
=2.9, whereas our estimates

would be (fortuitously) a~ = 117 and b~ =3. 1.

b. T=0

At zero temperature the Eliashberg equations are
modified according to the prescription 2rrr g„—+ f dco.

The equation for Zs(co) is folded to the domain [0, ~],
with the result that it can be written

retained in Eq. (836), except in the logarithm, once
again. One can argue that a more appropriate frequency
at which to evaluate ZJv(co), and subsequently b, (co), is

Ao, the gap edge, since this defines the gap edge. Howev-
er, it must be kept in mind that this calculation is on the
imaginary axis, so that corrections proportional to co ac-
tually have the opposite sign from the correction on the
real axis [since co = —(ico) ]. Hence it is more accurate
to evaluate at ~=0.

The gap channel is treated similarly, with the result

Zs(co)=1+4 f vdva F(v)( 3, + A2),
0

where

oo 1

+co' +60 (co +a o )

and

(833)

(834a)

Zs(0)ho=ho f 2vdva F(v)(33+ A~),
0

where

1

+co' +Do co +ao

(838)

(839a)

4' co 1

(i Q ~g+~P ( /2+a 2 )4

Here again ao —= co +v . The results are

(834b) dQ) 4' coA4=
+co'~+ Q~ (co +a() )

(839b)

1
1

2a0

o 2ao
ln —1

ao
(835a)

Evaluation of these integrals is straightforward. Combin-
ing with Eq. (836) evaluated at co =0, we obtain

1 M

ap
(835b)

1+k
Ap =2']~exp

3 ~o1+— (a ——'b)
2 k

(840)

Other contributions are of higher order. The net result is

Zs(co) =Z~. (co)+b.()f

Here, a and b are the same functions (within BCS) as in
the previous section (evaluated at T=T, ). Combining
Eq. (818) with (840), we obtain

(836)

'T, '
=3.53 1+a3

L

~1n
ln

b3T,
(841)

Z&(oo) can be evaluated exactly:
where

a3=[—,'(3.53) +~ ]cc, (842a)

Z~(co)=1+ f 2dva F(v)tan
CO 0 V

(837)

Recall that we have used a, constant model for h(oi) and
Zs(co). Hence it should not matter at what frequency we
evaluate Eq. (837), as long as it is small. However, there
is a dependence, and once again we will choose co=0.
Then Zz(0) =1+A,, and there is no strong-coupling
correction. This is again consistent with use of the Som-
merfeld constant y in the ratio y T, /H, (0), for example.
Note, moreover, that for evaluation of the free-energy
difference, the co dependence for Zs(co) —Z~(co) must be

—,', ( 3.53 ) + ',ir-
exp —'(3 53)'+ir' (842b)

The values first fit by Mitrovic, Zarate, and Carbotte
(1984) are a3 = 12.5 and b3 =2 (see Table IV). The values
we would obtain by setting o., = 1 are a3 = 14.5 and
6 3 2.9, which again are not much diferent from the
best fit.

The free-energy diA'erence at T =0 within our model is
written

2= —J dco Z~(co) +co +50+ —2co + [Zs(co) —Z~(co)](+co + 6()—co)
N(0) o +co +6
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In the first term, Z~(co)=1+A, is used. In the second,
Eq. (836) must be used to retain convergence. The in-
tegrals are easily performed with the result

2' T 1

—i co' co +a,
(850a)

= —
—,'( I+A, )ho 1— (844) 2~T 4~n

=i co' (co +a, )
(850b)

XTc =0.168 1 —a4
H, (0)

2T. ~&n
ln

b4T,
(845)

where

Then, using y = ,'ir —X(0)(1 +A. ) along with Eq. (841), we

obtain

1 1.13v
lnI', 1

(AT) 1.13v 1

kiiT 3

These are evaluated in terms of digamma functions and
expanded in powers of ( T/v) . The result is

04 = 29CX1 ' A3 (846a)
1
2

2T (rrT)
v

(85 lb)

I
b4 = expI. 13

34. 1a2 —3. 1a i
—3. 1a 31n/3~

2.9(x1 —3. 10.3

The fits to numerical data give a4 = 12.2, b4 = 3; the esti-
mates are a4 =26, b4=2. 9, in error by a (more realistic)
factor of 2. The ingredients are also present to calculate
the reduced thermodynamic critical field,

h, (0)=H, (0)/T, ~H,'(T, )~. ~e obtain an equation,
2

h, (0)=0.576 1 —a, ln, (847)
~in 5 Tc

(AT)
v

(851c)

1=F(T)+ G(T),
2m T(1+k)

where F ( T) is given by Eq. (817a), and 6 ( T) is defined

2T d — T2 b

2 1+2 1+k I+X

Using similar definitions as in Part 1 of this appendix, we

obtain

with a At a5 = 13.4 and b5 = 3.5. We note that the prop-
erties b C/yT„yT, /H, (0), and h, (0) are not indepen-
dent, Rutger's relation provides the thermodynamic
identity

—1/2

A new moment is required,

~2+
p v2

(853)

AC
h, (0)= 4~

H, (0) yT,
(848)

2. Upper critical magnetic field
(dirty limit)

Our choices for the various coeScients do not satisfy Eq.
(848) exactly to O(T, /co, „) . Hence, when manipulating
the final equations [Eqs. {830), (841), (845), (847)], all

terms should be retained.

and will lead to a strong-coupling term that is linear in

T, /co~„. The derivative p ( T, ) is easily obtained from Eq.
(852). The result is

(~T, )+ [2a(T, )
—,'b]—

(854)

a. T—Tc b. T=0

We use the same model as that used in Part 1. More-
over, near T„p(T) is very small. A folding of the sum-
mation in Eq. (7.6b) to positive m gives the equation

(I+A, )ho=bof 2vdva F(v)
(1+A)ho=bo f 2vdva F(v)I(v, p), (855)

The same prescription is used as before; the limit co~0
is used, with the result

where

(849)

1 II(v, p)= deu'-
to +v co +p(0)

1 v + ~ p(0) P (0) v

v p(0) 2 v v p(0)
{856)
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and p(0)—:p(0)/(1+A, ). Using the T, equation (818), we

easily obtain
1 =F ( T)+a( T)G ( T),

where now

(860)

T &T.
p(0) = (1+k) 1+ d

2er 4er G(T)= ~( ) ~ + 7
g(3)

b + 1 a(T)
12 (srT)~ 1+/ 12 1+/ 3 1+/

+3
2 4er

(srT, )'
+

. 2 2
&T.

d

e2r 4a(T, ) — h-
4e 3

(857)

and ct( T) —=ct(T)/(1+k) . We find

T, l~'(T, )l =
7g(3 )

(AT, )
X 1+ 2+ a(T, )

4
7 (3)

where y=0. 577. . . is Euler's constant. Equations (854)
and (857) are readily combined; using (825) and (826)
along with d =o,'4A, /co~„, we obtain an equation of the
form

8——b
3

(862)

T
02

~tn
h, 2(0, ao ) =0.693 1 —a,

~In

~In
ln

biT, b. T=0

(858)

An Einstein model gives a
&
=0.61, a 2

= 11.3, and

b, =3.7. The fitted parameters are considerably
different, as indicated in Sec. VlI.

In the limit co —+0 we find

1+A.= f 2vdva F(v)I(v, a(0)), (863)
a(0)

where

3. Upper critical magnetic field (clean limit)
0 ~'+V' 0 CO

(864)

a. T Tc

Near T„expansions similar to those in the dirty limit

apply, since cr( T) is small. We obtain the equation

1+A, =- f 2vdva F(v)[P, +Q, —
—,'a(T)(Pz+Q2)],

(859)

where the P, and Q; are the same as those defined in Eqs.
(812) and (813). Using Eqs. (814) we obtain

This double integral cannot be done analytically. How-
ever, as was done by Marsiglio, Schossmann, Schach-
inger, and Carbotte (1987), we use the approximation

1 1

1+k +
which was found to be quite accurate. Here, the constant
c will contain strong-coupling corrections and is given by
c =V ct(0) e r~~ '. Within BCS, c =(rr/2)e r T, .
The integral is now elementary. We obtain

a(0)= — e + T 1+ e T —+ e AT — +c c g 4 c

2r
1—

4
(865)

4a(T ) — b—
C

Hence h, z(0, 0) is of the form

h, ~(0, 0 ) =0.727 1+a,
~}n

2
C ~In

ln
b2T,

a2
~In

(866)

An Einstein model gives a, =2.8, a2=6. 25, and b2=3.
The parameters determined through a fit to numerical
data are very different: a, =0, a2=2. 7, and b2=20. We
have found that the linear term is not required.
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