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Thermodynamic states are assumed to be characterized by densities. Recent ergodic-theory results on the
evolution of densities are used to give a unified treatment of the origin of classical nonequilibrium thermo-
dynarnic behavior. Asymptotic periodicity is sufBcient for the existence of at least one state of (metasta-
ble) thermodynamic equilibrium and for the evolution of the entropy to a relative maximum that depends
on the way the system is prepared. Ergodicity is necessary and sufhcient for a unique state of thermo-
dynamic equilibrium to exist. Exactness, a property of chaotic semidynamical (irreversible) systems, is
necessary and su%cient for the global evolution of the entropy to its unique maximum for all initial states.
Since all of the laws of physics are formulated as {reversible) dynamical systems, it is unclear why entropy
is observed to approach a maximum. Setting aside the possibility that all of the laws of physics are in-
correctly formulated, it is demonstrated that either observation of a subset of the complete dynamics
(trivial coarse graining) or interactions with an external heat bath (addition of noise) may induce exactness
with a consequent evolution of entropy to a maximal state.
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It is not very difficult to show that the combination of the
reversible laws of mechanics with Gibbsian statistics does
not lead to irreversibility but that the notion of irreversibil
ity must be added as a special ingredient. . . .

the explanation of irreversibility in nature is to my
mind still open.

Bergmann (1967)

I. INTRODUCTION

This work examines the dynamical foundations of the
evolution of entropy to maximal states. This is accom-
plished through an application of recent results in ergod-
ic theory to so-called chaotic dynamical systems. As
such it is an extension of the work 'of Khinchin (1949),
Dugas (1959), Kurth (1960), Truesdell (1960), Farquhar
(1964), O. Penrose (1970, 1979), Lebowitz (1973), Mackey
(1974), Wehrl (1978), and Prigogine (1980). An easily ac-
cessible and enjoyable account of the issues of ergodicity,
mixing, and coarse graining in classical statistical
mechanics can be found in Lebowitz and Penrose (1973).

In no sense is it the intent of this paper to develop sta-
tistical mechanics as a subject. This is done rather nicely
from several points of view in a variety of graduate-level
texts [Kestin and Dorfman (1971), Pathria (1972), Reichl
(1980), Ma (1985), and Cxrandy (1988) are representative
of some of the more interesting and thought-provoking of
these]. Rather, the aim is to understand the basic issues
that must be answered before any satisfactory statistical
mechanics can be constructed.

What are the basic issues? Although moderately easy
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to state, they are not so easy to resolve. First is the fun-
damental question of what guarantees a state of thermo-
dynamic equilibrium, and what is required for this state
to be unique. Second, what is the proper mathematical
analog of the experimentally determined entropy? What
properties does the mathematical entropy have at states
of thermodynamic equilibrium? Third, what dynamical
properties must exist to ensure that, starting from any in-
itial condition, system entropy will evolve to a state of
thermodynamic equilibrium (either relative or absolute)?
And finally, what must be assumed concerning the dy-
namics of models of real physical systems in order that
they display this evolution of system entropy as do the
experimental systems they are designed to mimic?

It is the thrust of this paper that one of the primary is-
sues that any successful statistical mechanics must ad-
dress is the origin of the second law of thermodynamics.
The second law of thermodynamics comes in so many
forms that it is often confusing to understand precisely
what a given author intends by the use of this term. To
make matters explicit I distinguish four versions of the
second law of thermodynamics.

Let STD(t) denote the thermodynamic entropy at time
t. The weakest form of the second law is the zero-order
second law,

STD(t)=SrD(t') for all times t, t' ',

so the entropy difference AS=STD(t') STD(t) sat—isfies
AS:—0.

In this form the system entropy remains forever fixed
at the value with which the system is prepared, be it by
nature or by an investigator.

The next strongest form is called the first-order second
law,

STD(t) & STD(t') for all times r & r' .

Thus with this form the system entropy may increase and
AS ~0.

Following the first-order Arm we have the stronger as-
sertion, the second-order second law,

STD(r) &STD(t') for all times t &r',

and at least one

lim STD(t) =STDt~+ oo

exists. Thus bS(t) =STD(t) —STD ~0 and

lim b,S(t) ~0 .

In this case we may definitely assert that system entro-
py -converges to a steady-state value STD, which may not

be unique. If it is not unique it characterizes a metasta-
ble state.

The final, and strongest, form of the second law of
thermodynamics is the most interesting and is the third-
order second law,

STD(t) STD(t') for all times t & t',

and there is a unique

lim STD —STIt~+ oo

for all initial system preparations. Under these cir-
cumstances,

lim bS(t) =0 .

In this case we know that the system entropy evolves
to a unique maximum value irrespective of the way in
which the system was prepared.

Because of the approach taken here, as contrasted with
most work on foundational questions in statistical
mechanics, and because of the nature of the material
presented, a brief outline of the main points that are
made will be helpful. Much of the background material
for the current work is in Lasota and Mackey (1985).

Section II introduces densities and the definition of the
Boltzmann-Gibbs entropy of a density. It is a simple
demonstration that the entropy of a density will assume a
maximal value if and only if the density is (in the termi-
nology of Gibbs) either the density of the microcanonical
or canonical ensemble. Further, it is demonstrated that
the Boltzmann-Gibbs entropy of a density will attain its
maximum if and only if the density is that of the micro-
canonical ensemble. Then it is shown that the mathemat-
ical definition of the Boltzmann-Gibbs entropy of a densi-
ty can be argued plausibly to coincide with the thermo-
dynamic entropy of a system characterized by that densi-
ty.

Section III introduces Markov operators. These are
linear integral operators that describe the evolution of
densities by dynamical or semidynamical systems. Fixed
points of Markov operators, known as stationary densi-
ties, define states of relative or absolute thermodynamic
equilibrium depending on whether there are multiple or
unique stationary densities. Thus a central question that
must be answered in any treatment of thermodynamics is
under what circumstance will the entropy change from
its original value, determined by the way in which the
system was prepared, to a final state corresponding to
one of these states of relative or absolute equilibrium.
Following this, the conditional entropy, a generalization
of the Boltzmann-Gibbs entropy, is introduced and
identified with ES. Under particular conditions the con-
ditional entropy is shown to have its maximal value of
zero if the stationary density of the state of thermo-
dynamic equilibrium is that of the canonical ensemble.
Then the distinction between reversible and irreversible
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systems is made. This is used to provide the not too
surprising proof that entropy is constant for reversible
systems (the zero-order form of. the second law). It is
only in irreversible systems that the entropy may increase
(first-order form of the second law). Thus irreversibility
is necessary but not suf5cient for the entropy to increase.
The section closes with a consideration of a particular
form of dynamical behavior, called asymptotic periodici-
ty, that allows the evolution of the entropy to at least a
metastable state of relative equilibrium (second-order
form of the second law).

Section IV introduces a special type of Markov opera-
tor, the Frobenius-Perron operator. Following illustra-
tive material demonstrating its utility in studying the
evolution of densities by a variety of dynamical and semi-
dynamical systems, we turn to a consideration of the con-
ditions that guarantee the existence of a unique state of
thermodynamic equilibrium. The necessary and
sufhcient condition for this existence is the property of
ergodicity, which may be shared by both reversible and
irreversible systems.

Section V presents the concept of mixing, introduced
in a qualitative sense by Gibbs, which is a stronger prop-
erty than ergodicity though it still may be shared by ir-
reversible and reversible systems. However, it is not
sufhcient to permit the entropy of a system to change
from its initial value.

Section VI is, in a sense, the core of this paper. There
we present results showing that, for systems with the
density of the microcanonical ensemble de6ning their
unique state of thermodynamic equilibrium, it is neces-
sary and su/Scient that the system have a property known
as uniform exactness in order for there to be a global evo-
lution of the entropy to its maximal value of zero.
Analogously, for systems whose thermodynamic equilib-
rium is characterized by more complicated (nonuniform)
densities, the necessary and sufhcient condition for the
global evolution of the entropy is a property known as f,
exactness. Both uniform and f„exactness are properties
that only irreversible systems may display and are neces-
sary and sufficient for the strongest (third-order) form of
the second law of thermodynamics to operate.

In a very real sense the results of Sec. VI raise as many
questions as they answer. Although providing totally
clear criteria for the global evolution of the entropy of a
system, at the same time these criteria suggest that all
currently formulated physical laws may not be at the
foundation of the thermodynamic behavior we observe
daily. This is simply because these laws are formulated
as (reversible) dynamical systems.

One possibility is that the current reversible, dynami-
cal system statements of physical laws are incorrect and
that more appropriate formulations in terms of irreversi-
ble semidynamical systems await discovery. Alternately,
other phenomena may mask the operation of these rever-
sible systems so they appear to be irreversible to the ob-
server. Sections VII and VIII explore this latter possibil-
ity.

Section VII examines two such phenomena that are
closely related. First we examine the effects of nontrivial
coarse graining of phase space, due either to measure-
ment error or to an inherent graininess of space that is
imposed by nature. It is easy to show that if we observe a
system with mixing dynamics, but operating in a coarse-
grained phase space, then the entropy of the coarse-
grained density will evolve to a maximum as time goes ei-
ther forward ( t ~+ oo ) or backward ( t ~—~ ). Thus,
though coarse graining induces entropy increase to a
maximum, it fails to single out any unique direction of
time for this to occur, illustrating that the origin of ir-
reversible behavior is not to be found in reversible dy-
namics operating in a coarse-grained phase space.

Second we explore the consequence of taking a trace,
in which we observe only some of the important dynami-
cal variables of a dynamics operating in a higher dimen-
sional space. In this case the total dynamics may be re-
versible and, consequently, have a constant entropy while
the entropy of the trace system may smoothly evolve to a
maximum (first-, second-, or third-order form of the
second law).

Section VIII examines the effects of external perturba-
tions on discrete and continuous time dynamics. This sit-
uation is usually called interaction with a heat bath. Un-
der very mild assumptions concerning the nature of the
perturbation, discrete time systems with the most unin-
teresting dynamics in the unperturbed situation will be-
come either asymptotically periodic or f, exact in the
presence of perturbations. Thus they will display evolu-
tion of entropy toward states of thermodynamic equilib-
rium (either second- or third-order forms of the second
law). In the latter part of this section we continue this
theme by examining the effects of white-noise perturba-
tions of continuous time systems whose dynamics are de-
scribed by systems of ordinary differential equations.
Again these perturbations induce f, exactness and the
consequent increase of the conditional entropy to its
maximum value of zero (third-order form of the second
law).

Although the material presented here is completely
confined to fundamental issues in classical statistical
mechanics, many of the results have quantum statistical
mechanical analogs derived from noncommutative ergod-
ic theory. Ruelle (1969), Thirring (1983), and Bratteli
and Robinson (1987), all touch on aspects of these prob-
lems.

II. MAXIMAL ENTROPY PRINCIPLES

A. Dynamics and densities

We start by considering a general system operating in
a phase space X. Qn this phase space we consider that
the evolution in time of our system is described by a
dynamical lcm S, that maps points in the phase space X
into new points, i.e., S,:X—+X, as time t changes. In gen-
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eral X may be a d-dimensional phase space, either finite
or not, and therefore x is a d-dimensional vector. Time t
may be either continuous (t&R) as, for example, it
would be for a system whose dynamics were governed by
a set of ditferential equations, or discrete (integer valued,
t&Z) if the dynamics are determined by discrete time
maps.

We only consider autonomous processes in which the
dynamics S, are not an explicit function of the time t, so
it is always the case that S,(S, (x))=S,+,,(x). Thus the
dynamics governing the evolution of the system are the
same on the intervals [O, t ] and [t, t+t'].

Two types of dynamics will be important in our con-
siderations. First we introduce the concept of a dynami-
cal system IS, I«z (or, alternately, t&Z for discrete
time systems) on a phase space X, which is simply any
group of transformations S, :X—+X having the two prop-
erties

(a) So(x)=x

(b) S,(S, (x))=S,+, (x) for t, t'eR .

Since, from the definition, for any t HR, we have

S,(S,(x))=x =S,(S,(x)),

it is clear that dynamical systems are inUertible or reversi-
ble since they may be run either forward or backward in
time. Systems of ordinary difFerential equations are ex-
amples of dynamical systems because of their reversibili-
ty. All of the laws of classical and quantum physics are
invertible and describe the behavior of reversible systems.

The second type of dynamics that is important to dis-
tinguish are those of semidynamical systems IS, I, &0,
which is any semigroup of transformations 5, :X~Xfor
which

(a) So(x)=x

(b) S,(S,.(x))=S,+,.(x) for t, t'PA+ (or X) .

The essential difFerence between the definition of dynami-
cal and semidynamical systems lies solely in the restric-
tion of t and t' to values drawn from the positive real
numbers, or the positive integers, for the semidynamical
systems. Thus, in sharp contrast to dynamical systems,
semidynamical systems are noninuertible or irreversible
and may not be run backward in time in an unambiguous
fashion. Examples of semidynamical systems are given
by noninvertible maps, delay difFerential equations, and
some partial difFerential equations.

In spite of the enormous significance of distinguishing
between dynamical and semidynamical systems later, ini-
tially no assumption is made concerning the invertibility
or noninvertibility of the system dynamics.

B. Densities and measures

For every initial point x, the sequence of successive
points S,(x ), considered as a function of time t, is called
a system trajectory. The state of a system at time t corre-
sponding to an initial point x is given by the value of
S,(x ). The usual way of examining the dynamics of sys-
tems is by studying the properties of individual trajec-
tories, but in keeping with the ergodic-theory approach
adopted here we opt instead to study the way in which
the system dynamics operate on an infinite number of ini-
tial points.

More specificaHy we will examine the way in which the
dynamics alter densities. What do we mean by a density?
Iff is an L ' function in the space X, i.e., if

J if(x)idx (~,
the»t is a density if «x) -O and Ilf II

= I &s usu» Ilf II

denotes the I ' norm of the function f,
flfll= I If(»idx .

The examination of the evolution of densities by system
dynamics is, as mentioned above, equivalent to examin-
ing the behavior of an infinite number of trajectories.
This viewpoint is fundamental and important to the un-
derstanding of the foundations of thermodynamics be-
cause of our assumption that densities characterize ther-
modynamic systems.

Postulate A. A thermodynamic system is a system that
has, at any giUen time, states dI'stributed throughout the
phase space X, and the distributions of these states is
characterized by a density f (x).

Given a density f, then the f measure pf (-A ) of the set
3 in the phase space X is defined by

pf(A)= J f(x)dx,

and f is called the density of the measure pf. The usual
l.ebesgue measure of a set 3 is denoted by pt (A), and
the density of the Lebesgue measure is the uniform densi-
ty, f(x)= I/pL(X) for all points x in the phase space X.
We always write pL (dx) =dx.

It is instructive to compare the approach used here
with that of Boltzmann and Gibbs in their treatments of
statistical mechanics. Both started from the assumption
that they were dealing with systems of dimension d =2s,
whose dynamics were described by s position variables x,.
and s momentum variables p;.

Boltzmann considered the basic phase space to be a 2s
dimensional space, which is usually called p space. He
then considered the evolution of a large number X of
identical particles, each with the same dynamics, in p
space. X is large and typically on the order of
Avogadro's number 6X 10 . The limiting case of X—+ ao

is the thermodynamic limit in which case the Boltzmann
approach considers the evolution of a density in p space.

Gibbs also considered X identical particles operating
with these 2s dimensional dynamics in a phase space
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(commonly called the I space) of dimension 2sN. He
then considered an infinite number of copies of this origi-
nal system and gave this construct the name ensembhe.
Thus Gibbs studies the evolution of the ensemble density.

Later it will become clear what types of systems may
be described by the evolution of densities. For now, how-
ever, if we accept Postulate A that such systems exist,
then it will be easy to examine the consequences of this
postulate. Virtually the entire rest of this paper is devot-
ed to the study of systems by the evolution of densities,
how the system properties determine the character of the
density evolution, and how this is translated into the be-
havior of entropy.

C. Boltzrmann-Gibbs entropy

Having postulated the existence of thermodynamic
systems that have a distribution of system states with
density f, we are now in a position to develop the physi-
cally useful concept of entropy as both Boltzmann and
Gibbs introduced the term.

In his celebrated work Gibbs, assuming the existence
of a density f of system states over the phase space X, in-
troduced the concept of the index ofprobability given by
logf (x), where "log" denotes the natural logarithm. He
then introduced a quantity H (f), which is the negative of
the phase-space average of the index of probability
weighted by the density f, i.e.,

A useful integral inequality is available from the Gibbs
inequality. Iff and g are two densities, and il(f (x)) and
g(g(x)) are both integrable, then we have directly from
(2.4) that

—J f(x)logf(x)dx & —I f(x)logg(x)dx . (2.5)

Only when f=g does the equality hold.

D. Maxima of the Boltzmann-Gibbs entropy

Armed only with the integrated version of the Ciibbs
inequality (2.5) we may immediately understand the ori-
gin of the classical Cxibbs microcanonical and canonical
ensembles as refIIecting simple manifestations of extremal
properties of the entropy.

1. Microcanonical ensembles

Consider a given space X with finite Lebesgue measure,

pL (X) & ~ [temporarily forego the normalization

pL (X)=1], and all possible densities f. Then the only
density that will make the entropy maximal is the uni-
form density given by the inverse of the Lebesgue mea-
sure of X. This is stated more precisely by the following.

Theorem 2.l. When pI (X) & ~, the density that max-
imizes the Boltzmann-Gibbs entropy is the uniform den-
sity

H(f ) = —I f(x)logf(x)dx .
1f„(x)= (2.6)

H(f)= J il(f(x))dx,

where the function q( w ) is defined by

q(w)= —w logw for w )0, and q(0)=0 .

(2.1)

(2.2)

The function il(w) is strictly concave; so il"(w) &0 for
all w )0. From this it is an immediate consequence that

This is now known as the Boltzmann-Gibbs entropy of a
density f, since the same equation appears in
Boltzmann's work (with the opposite sign), but the phase
space is different for Boltzmann (p space) and for Gibbs
(I' space). It is easily shown that the only function for
the index of probability that gives the requisite additive
property to make the entropy an extensive quantity is the
logarithmic function, and that it is unique up to a multi-
plicative constant (Khinchin, 1949; Skagerstam, 1974).

We formalize this by saying that if f is a density, then
the Boltzmann Gibbs entropy o-f the density f is defined

by

For any other density fXf„,H(f) & H(f, ).
Proof. Pick an arbitrary density f; so, by definition,

the entropy off is just

H(f ) & —I f(x)log g (x)dx (2.7)

H~we~er, with g(x)=1/pL(X) the integrated Gibbs in-
equality (2.5) gives

H( f) & —f f(x)log g(x)dx

= —log J f(x)dx,
pL (X) x

H(f )= —f log dx
1 1

xpLX pLX

or H (f) & log[1/pL (X)], since f is a density; the equality
holds if and only if f =f, . However, the entropy of f,
is easily calculated to be

ri(w) & (w —u)il'(u)+il(u) (2.3) 1
log

pI (X)
for all w, u )0. Combining Eq. (2.2) defining il with in-
equality (2.3) gives the so-called Gibbs inequality

w —w logw ~ U
—w logU for w, U )0 .

so H(f) &H(f, ) for any density f, or H(f) &H(f, ) for
fWf~. Clearly, if X is normalized so pI (X)= 1, then
H(f) &0.
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The uniform density f, defined by Eq. (2.6) is a gen-
eralization of the density of the microcanonical ensemble
introduced by Gibbs in his work on the foundations of
thermodynamics.

In the derivation of the density (2.6) maximizing the
entropy on a finite space, there was no need to refer to
the nature of the dynamics of the system generating the
density. This is in sharp contrast to the usual approach
in thermodynamics in which the dynamics are quite
specifically used to argue for the plausibility of the micro-
canonical density (2.6). The fact that a generalization of
this density. appears in such a natural way merely illus-
trates (1) the generality of both the density and the
method used to obtain it and (2) the fact that the ex-
istence of the density of the microcanonical ensemble is
quite independent of the system dynamics.

2. Canonical ensembles

Z —ie —va(x) (2.9)

where Z is defined by

Z= f e -"dx
X

and v is implicitly determined from

&a) =Z ' f a(x)e "dx .
X

(2.11)

Proof. The proof again uses the integrated Gibbs in-
equality. From (2.5), for densities f and f„

H(f) ~ —f f(x)logf, (x)dx
X

= —f f(x )[—logZ —va(x)]dx

=logZ+v f f(x)u(x)dx
X

=logZ+v(a) .
However, it is equally trivial to show that

H(f, ) =logZ+ v( a ) (2.12)

and therefore H( f) ~H(f, ), with the equality holding if

Even more interesting consequences can emerge from
the extremal properties of entropy that OC'er insight into
the basic foundation of thermodynamics of both classical
and quantum systems. In this section we state and prove
a simple theorem that allows us to derive all of the con-
ventional reversible thermodynamics in Sec II.D.

Theorem 2.2. Assume that a non-negative measurable
function a(x) is given as well as an average or expecta-
tion value (a ) of that function over the entire space X,
weighted by the density f:

(a) =f a(x)f(x)dx . (2.8)

(Note that (a) may be time dependent. ) Then the m»-
imum of the entropy H( f), subject to the constraint (2.8),
occurs for the density

and only iff=f~.
The choice of notation in Eqs. (2.9) and (2.10) was in-

tentional to draw the connection with the density of the
Gibbs canonical ensemble. Thus if X is the conjugate
position-momentum (q, p) space, a(x) is the system ener-

gy functional and (a ) the average (over the phase space)
energy of the ensemble, then Z, as given by (2.10), can be
identified directly with the partition function; the density

f, given in (2.9) that maximizes the entropy is to be
identified with the density of the Gibbs canonical ensem-
ble.

In deriving the density of the Gibbs canonical ensem-
ble, it is implicit in the writing of the average (u), Eq.
(2.8), over the entire phase space that if the density (2.9)
is to describe a state of thermodynamic equilibrium, then
the quantity a(x) must eventually be independent of time
at long times. An even more restrictive requirement
would be that a(x) be a constant of the motion. If a(x)
is identified with the system energy U, then we are deal-
ing with a system in which the energy is conserved.

It is easy to extend this theorem to the case in which
there are multiple known averages (a;). The resulting
density maximizing the entropy is a generalization of the
density of the grand canonical ensemble. Grad (1952)
and Jaynes (1957) have followed this procedure.

E. The thermodynamic connection

A11 of conventional equilibrium thermodynamics can
be derived from the density (2.9). Let us brietly see how.

The following is a fundamental assumption of thermo-
dynamics.

Postulate 8. There exists a one-to-one correspondence
between states of thermodynamic equilibrium and states of
maximum entropy.

If there is but one state of thermodynamic equilibrium
that is attained regardless of the way in which the system
is prepared, then this is called a globally stable equilibri-
um and is associated with a globally stable state of maxi-
mal entropy (third-order form of the second law). If,
however, there are multiple states of thermodynamic
equilibrium, each corresponding to a state of locally max-
imal entropy and dependent on the initial preparation of
the system, then we say that these are local or metastable
states of equilibrium (second-order, second law).

Given these observations, it is natural to examine the
consequences of assoc1atlng thc cqulhbrlum thermo-
dynamic entropy STD with the maximal Boltzmann-
Gibbs H given by (2.12):

H(f, )~STD .

Since we have not specified units for H, a multiplica-
tive constant c ' may be necessary, viz. ,

H(f, ) =S /TcD,

which implies from Eq. (2.12) that the equilibrium ther-
modynamic entropy is given by
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STD=c logZ+cv&a& .

If, as before, we make the associatiori of & a & with the
internal thermodynamic energy U,

and if v is associated with the inverse temperature

where k is Boltzmann's constant, then the entropy ex-
pression in (2.12) becomes

STD =c logZ+eU/kT

or

tie. Such is surely not the case. In actuality the hardest
aspect of the understanding of thermodynamics is con-
tained in Postulate A (which systems can reasonably be
described by densities) and Postulate B (which of these
systems, described by densities, will evolve toward equi-
librium in such a way that the entropy is maximized).
The advantage of the maximal entropy principle is that it
strips away all of the apparent mystery concerning the
definitions of the various ensembles and their correspond-
ing densities and allows one to focus attention on the na-
ture of the system dynamics necessary for guaranteeing
the evolution of the system entropy to its maximal value.
The remaining sections of this paper consider this prob-
lem.

TST'D =cTI ogZ+(c/k)U . (2.13)

If the constant c is taken to be identica1 with Boltzmann's
constant c =k, then (2.13) immediately becomes

III. REVERSIBLE ANI3 IRREVERSIBLE SYSTEMS:
6ETTING THE ENTROP Y TO INCR EASE

F= U —TST*D, (2.14) A. Markov operators

the fundamental equation of thermodynamics relating
the Helmholtz free energy

F= —kT logZ

to the internal energy U, temperature T, and equilibrium
entropy STD.

Thus, by the simple use of Postulates A and 8 in con-
junction with the identification of certain parameters and
functions with corresponding quantities of thermo-
dynamic interest, the fundamental relationship on which
all of the equilibrium thermodynamics is based is the re-
sult. This illustrates the general nature of the assump-
tions (Postulates A and B) that are sufficient to derive
thermodynamics and thus highlights the importance of
understanding the basis of these two postulates.

F. Maximal entropy principles

In every situation considered by theoretical physics, as
developed to this point in time, the evolution of densities
may be studied by the use of the linear Markov or
Frobenius-Perron operators. This is in spite of the fact
that the underlying system dynamics responsible for the
evolution of the density may be highly nonlinear.

The Frobenius-Perron operator, which is adjoint to the
more familiar Koopman operator (Koopman, 1931), de-
scribes the evolution of densities in systems for which the
dynamics are totally deterministic; i.e., the dynamics
evolve according to a very specific law that permits the
accurate specification of a system state at any point in
time.

As a special and familiar example in which the evolu-
tion of the density is described by the Frobenius-Perron
operator, consider a set of ordinary differential equations
operating in R ":

x,'=F, (x), i=1, . . . , d . (3.1)

As attempts to justify Postulate B on dynamical
grounds increasingly met with failure, more and more au-
thors tried to enshrine this hypothesis as a basic princi-
ple, often known as the maximal entropy princip/e. Tol-
man (1938) was the first to forcefully and clearly argue
for this point of view. His argument was that since the
techniques being used in thermodynamics were statistical
in nature, one had to have some principle that would
guide the selection of the proper density out of the unlim-
ited number of possibilities. The maxmimal entropy
principle certainly offers one such guide. Jaynes (1957),
Scalapino (1961), and Katz (1967) have written extensive-
ly on the use of the maximal entropy principle in refor-
mulating classical and quantum statistical mechanics,
and Lewis (1967) has tried to justify it on dynamical
grounds.

It may appear that the use of the maximal entropy
principle gives a great deal (thermodynamics) for very lit-

As discussed in Lasota and Mackey (198S), starting from
an initial density f, the evolution of the time-dependent
density f(t,x)=P'f(x) (here P —is a Frobenius-Perron
operator) is described by the genera/ized Liouville equa
tion

(3.2)

The Frobenius-Perron operator is a special type of the
more general Markov operator, which may be used in the
description of both deterministic and stochastic systems.
Since the first results on reversibility and irreversibility
that are of importance to an understanding of thermo-
dynamics can be stated for Markov operators, we start
with them and defer the formal introduction of the
Frobenius-Perron operator to the next section.

Any linear operator I".I.'~I. ' that satisfies
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988 Michael C. Mackey: The dynamic origin of increasing entropy

x,'=F;(x )+o (x )g;, i =1, . . . , d (3.3)

obtained when the system of ordinary differential equa-
tions (3.1) is perturbed by white noise g; of amplitude
o(x). Then, as discussed in Sec. VIII, starting from an
initial density f the evolution of the time-dependent den-
sity f(t,x)=P'f(x) (now P is a Markov operator)
satisfies a modified form of the generalized Liouville
equation,

af a f+; 1 a'(~'f )at, . ax; 2, ax;ax
(3.4)

known as the I'Okker-P/anck equation.
Markov operators have a number of useful properties.

The most important of these is that for all fHL' (and
not restricted to f & 0)

for all t ER and f &0, fEL' is called a Markou opera
tor. If we restrict ourselves to only considering densities
f, then any operator P which when acting on a density
again yields a density is a Markov operator.

As an example of a system in which the evolution of
the density is governed by the operation of a Markov
operator, consider the stochastic differential equations
(Lasota and Mackey, 1985)

(b) P'(P' f )=P'+' f for all t, t'ER (or Z) .

Clearly, allowing t, t' C R or Z is the origin of the reversi-
bility.

As an example of a reversible Markov operator, again
consider the evolution of the density f described by the
Liouville equation (3.2) for dynamics determined by the
system of ordinary differential equations {3.1). It is clear
in (3.1) that replacing t by t give—s dynamics described
by x = F,(x)—, but that the corresponding Liouville
equation is identical with (3.2).

However, if property (b) of a reversible Markov opera-
tor is replaced by

(b') P'(P' f )=P'+' f for all t, t'ER+ (or X),
then P' is an irreversible Markov operator.

The Fokker-Planck equation (3.4) associated with the
stochastic differential equation (3.3) is an example of an
equation governing the evolution of an irreversible Mar-
kov operator. Going through the same exercise of re-
placing t by —t in the stochastic differential equation
yields a new stochastic differential equation different
from (3.3) and a corresponding Fokker-Planck equation,

which is known as the contractive property of P'. This
contractive property implies that during the iteration of
two functions f„fz by a Markov operator P, the dis-
tance f=f i f2 between them—can only decrease and
will never increase.

With the concept of the Markov operator we can in-
troduce the important notion of a stationary density. If
some density f, satisfies P'f „=f„ for all t, then f„ is
called a stationary density of the Markov operator P'.
For the system of ordinary differential equations (3.1),
the stationary densities f„are given by the solutions of

a{f,F;) =0,
BX

while for the stochastic differential equations (3.3) the f„
are the solutions of

The importance of stationary densities comes from the
fact that the existence of a stationary density may be as-
sociated with a state of thermodynamic equilibrium.

In precise analogy with the definitions of dynamical
and semidynamical systems in the last section, we may
discuss reversible and irreversible Markov operators.
Given a Markov operator P', then P' is a reversible Mar-
kov operator if

(a) P f=f

S{x)='

2(1 —x) —'~x ~1 (3.5)

so x, +,=S(x, ), t & 0. This noninvertible transformation
is commonly known as the tent map after the appearance
of its graph.

To investigate how the tent map (3.5) transforms densi-
ties we first derive an expression for the operator P that
corresponds to this transformation. To do this, suppose
first of all that we started with some initial density f that
was transformed by one application of the map S into a
new density Pf. Then the fraction of the density Pf con-
tained in some interval [O,x ] is given by

P sds.
0

However, the points in [O,x] after one application of the
map S, and which have contributed to Pf, had their ori-
gin in the counterimage of the interval [O,x] under the
action of S. This is denoted by S '([O,x]) and defined
by S '([O,x])= Iy:S(y ) C [O,x ]I. With these comments
it must be the case that the fraction of the density Pf in
the interval [O,x ] is equal to the fraction of the original

that is difFerent from the original equation (3.4) since the
sign of the term arising from the noise is reversed.
Therefore the eff'ect of noise in the reversible system (3.1)
is to create a system in which the density evolution is
governed by an irreversible Markov operator (cf. Sec.
VIII.B).

To illustrate some of the concepts of this section, pick
the simple discrete time transformation

2x, O~x & —,',
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density f in the set S '([O, x ]), or that

f Pf(s)ds =f, f(s)ds .
0 s ([O,x])

For the tent map it is a simple calculation to show that
the counterimage of an interval [O,x] is given explicitly
by the union of two intervals:

S '([O,x])=[0,—,'x]U[1 —
—,'x, 1] .

Substituting this into the previous integral expression be-
tween f and P gives the result

f Pf(s)ds= f f(s)ds+ f f(s)ds .

joint intervals:

S '([O,x])= [0,—,'(1 —&(1—x )]U [—,'(1+&(1—x ), 1] .

+f( ,'+ —,'&—(1—x))] . (3.8)

It is straightforward to verify that the nonuniform densi-
ty

Thus the operator P corresponding to the quadratic map
(3.7) is

Pf (x)= 1 [f(—,
' —

—,'&(I —x))
4&(1—x )

Finally, differentiating both sides of this equation with
respect to x gives an explicit form for Pf in terms off:

f, (x)= 1

vr&x(1 —x )
(3.9)

Pf (x)=—,'[f( —,'x)+ f(1—
—,'x)] . (3.6)

This equation for the Frobenius-Perron operator Pf
for the tent map (3.5) is also an irreversible Markov
operator. It is a straightforward exercise to show that
the uniform density f, = 1 is a stationary density for the
operator P defined by (3.6), since it satisfies Pf, =f, .

Markov operators, reversible or irreversible, are quite
general. In many situations it is possible to talk about
the evolution of densities in physical systems by studying
the properties of special types of Markov operators such
as the Frobenius-Perron operator.

is a stationary density of P defined by (3.8).
Now consider the Boltzmann-Gibbs entropy of a densi-

ty evolving under the action of the operator P defined by
Eq. (3.8). Pick as an initial density f=1; so clearly
H(f )=0. Further, with this choice of initial density,
then from (3.8)

Pf (x)= 1

2 1 —x

so the Boltzmann-Gibbs entropy of Pf is given by

1 1 1H(Pf )=— log
0 2V1 —x 2V1 —x

B. Markov operators and conditional entropy

Before starting an examination of the behavior of the
entropy of a density under the action of a Markov opera-
tor, we introduce a generalization of the Boltzmann-
Gibbs entropy, the conditional entropy. The definition
can be motivated by examining the behavior of the
Boltzmann-Gibbs entropy when the system dynamics are
governed by the quadratic map

S(x)=rx(1—x) (3.7)

so

h '(x ) = —,
' —

—,'cos(m. x ) .

To construct the Frobenius-Perron operator P govern-
ing the evolution of densities by the quadratic transfor-
mation (3.7), proceed as for the text map. Given a set
[O,x ] and r =4, it is straightforward to show that the
counterimage of this set consists of the union of two dis-

operating on the phase space [0, 1] when r =4. (It is pre-
cisely for this value of r, and no other, that the map is
onto. ) This transformation, as the tent map, is not inver-
tible and indeed can be obtained from the tent map (3.5)
from S&=h 'oSToh, where S& and Sz denote, respec-
tively, the quadratic and tent maps, and the function h is
given by

h (x)=———sin (1 —2x);1 1

2 7T

=log2 —1 .

H, (f~g)= f g(x)g dx
x g(x)

= —f f (x)log dx .f (x)
X g(x)

(3.10)

The conditional entropy, we note, is always defined; i.e.,
H, is finite or equal to —ao, since g is a density and g is
bounded from above. As is evident from the defining
equation (3.10), H, (f ~g) measures the deviation of f
from the density g.

There are two important properties of H, (f ~g ).
(1) Since f and g are both densities, the integrated

Gibbs inequality (2.5) implies that H, (f ~ g ) 0. It is only
when f=g that the equality holds.

(2) If g is the constant density of the microcanonical

Obviously, H(Pf ) (H(f )=0, and the Boltzmann-Gibbs
entropy has decreased. This is clearly unacceptable if we
are to be able to draw a connection between the behavior
of the Boltzmann-Gibbs entropy and the behavior of
thermodynamic entropy.

The way out of this difhculty is simple and merely re-
quires the definition of a generalization of the
Boltzmann-Gibbs entropy called the conditional entropy.

If f and g are two densities such that supp f
C:supp g (suppf denotes the support off ), then the con-
ditional entropy of the density f with respect to the densi-
ty g is
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H(f, )=logZ+v(a) . (3.11)

Thus within the context of Theorems 2.1 and 2.2 we con-
clude that the conditional entropy will be zero whenever
the Boltzmann-Gibbs entropy is at its maximum value.

With only the few tools developed so far and our
identification of H, with AS, the behavior of the entropy
of a sequence of densities IP'f I evolving under the ac-
tion of a Markov operator may be examined.

The first result along these lines is a weak (first-order)
form of the second law of thermodynamics stating that
the conditional entropy is never decreasing, and is stated
more precisely as follows.

Theorem 3.1 (Voigt, 1981). Let P' be a Markov opera-
tor. Then

H, (P'f P'g ) & H, (f lg )

for all densities f and g.
Notice that in this theorem if g is a stationary density

of P', g =f~ where P'f „=f„then

H, (P'flf, ) H, (flf, ) .

Thus the conditional entropy with respect to a stationary
density is always a nondecr easing function bounded
above by H,„=H,(f, lf, )=0. In examining the be-
havior of H, (P'f

lf, ) we therefore know that it con-
verges as t —+ ao, though more information about P' is re-
quired to define the limiting value.

Furthermore, in the special case that the system is
operating on a finite space and the Markov operator P'
has the density of the microcanonical ensemble as a sta-
tionary density, i.e., P'1= j„ then this theorem implies
that

ensemble, i.e., g =1/pL (X) throughout the phase space
X, then H, (fig)=H(f ) —logpL(X). If the space is nor-
malized, then g =1 and H, (f lg ) =H, (f l

1)=H(f ). This
illustrates how the conditional entropy is a generalization
of the Boltzmann-Gibbs entropy.

From the definition of H, (f lg ) it follows that

H, (fig)=H(f)+ f f(x)logg(x)dx .
X

An elementary calculation using property 1 of H(fig)
shows that the second term in the rewritten form of
H, (fig), with f=g =f~, is just H(f, —) and that
H, (flf, )=0 when f=f~. These observations, in con-
junction with our formulations of the second- and third-
order forms of the second law, immediately suggest that
the conditional entropy R, can be interpreted as the en-

tropy difference AS. For example, under the conditions
of Theorem 2.2, the Boltzmann-Gibbs entropy H(f) is
maximized by the density f, given by Eq. (2.9) and

H = —log —& H(p'f ) &H(f )
1

max
pL (X)

for all t; so, once again, we have convergence of H(P'f )

to a maximum as t~ao.
To this point nothing has been said about the reversi-

bility or irreversibility of the Markov operator P' with
respect to the behavior of the entropy. However, this
distinction turns out to be crucial, since the entropy for a
reversible Markov operator is constant. More precisely,
for reversible Markov operators, we can state the weakest
(zero-order) form of the second law of thermodynamics
in the following theorem.

Theorem 3.2. If P' is a reversible Markov operator,
then the conditional entropy is absolutely constant for all
times t and equal to the value determined by the choice
of the initial densities f and g. That is,

H, (p'flP'g )=H, (fig)

for all t.
Proof Since .P' is reversible, by the previous theorem

it follows that

(pt+t fl pt+'t'g
) H (pt'ptf

l

pt'ptg )

&H, (P'flP'g) &H,

(fig�)

for all t„t'. Pick t'= —t so that for all times t

H,

(fig�

) H, (p'f
I
p'g )—H,

(fig�

)-
and therefore

H, (P'f lP'g ) =H, (f lg )

for all t.
From this theorem any system whose evolution of den-

sities is described by a reversible Markov operator has an
entropy that is forever fixed at a value determined by the
initial state. Or, put another way, the entropy is uniquely
determined by the method of preparation of the system.

In particular, for the system of ordinary differential
equations (3.1) whose density evolves according to the
Liouville equation (3.2), we can assert that the entropy of
the density P'f will be constant for all time and will have
the value determined by the initial density f with which
the system is prepared. This result can also be proved
directly by noting that from the definition of the condi-
tional entropy we may write

H, (f l f„)= —J f(x) log
R

when the stationary density is f~. DifFerentiating with
respect to time gives

H(P'f) &H(f)

for all non-negative f. Coupling this with the observa-
tion from Sec. II that on a finite space the maximum en-
tropy is H,„=—log[1/tML (X)] we have

df
1

f
kaid dt f„ (3.12)

or, after substituting from (3.2) for (Bf/Bt ) and integrat-
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ing by parts under the assumption that f has compact
support,

H, f B(f F)
dx .

dt zd f, , Bx;

However, since f„ is a stationary density of P, it is clear
from (3.2) that

the conditional entropy H, (f ~ f, ) is to be viewed as the
entropy production integrated over time. It is a trivial
consequence of Theorem 3.1 that cr +0 and that system
irreversibility is necessary (though not sufficient) for
o. &0.

C. Smoothing Markov operators and asymptotic
periodicity

and we conclude that the conditional entropy
H, (P'f

~ f~ ) does not change from its initial value when
the dynamics evolve in this manner.

Thus, not too surprisingly, we arrive at the general
conclusion that irreUersibility in system dynamics, as
reflected in an evolution of densities via an irreversible
Markov operator, is necessary for the entropy to increase
as the system evolves. %'e cannot, however, assert that
irreversibility is sufhcient to guarantee this, and indeed it
is not the case.

Based on much more specific assumptions, this result
was well known to the founders of modern thermo-
dynamic theory. Clausius (1879) and Boltzmann (1909)
tried to circumvent this clear problem associated with
the use of reversible (Hamiltonian) dynamics by their
Stosszahlansatz (molecular chaos) postulate. Further-
more, the argument used in the proof of Theorem 3.2 was
used, in a much more specialized form, by Loschmidt
(1876) in his Urnkehreinicand (objection based on time re-
versal) argument against the Boltzmann approach to sta-
tistical mechanics.

Spohn (1978) has put forward a slightly different inter-
pretation of the conditional entropy defined in (3.10)
when. g is taken to be a unique stationary density f, .
This is done by writing a (local phenomenological) bal-
ance equation for the entropy density S

dS
dt

= —J +0. ,

where J& is interpreted as an energy flow and o ( ~ 0) as
an entropy production. In the special case of a system
coupled to a reservoir at a single temperature he
identifies S with the Boltzmann-Gibbs entropy H(f ), the
entropy production o. with

and the energy flow J+ with

J&= I f(x)logf, (x)dx .
dt x

Next we turn to an investigation of a fascinating prop-
erty that may be displayed by the evolution of densities in
discrete time systems. This behavior, called asymptotic
periodicity, is the statistical analog for densities of the
more common periodicity found in some time series and
will allow us to prove a stronger (second-order) form of
the second law.

First, we must define what is meant by a smoothing
Markov operator. A Markov operator P' is said to be
smoothing if there exists a set 2 of finite measure and two
constants k & 1 and 6)0 such that for every set E with
pl(E)(5 and every density f there is some integer
to(f, E) for which

f P'f(x)dx ~k for t ~to(f, E) .

r
Pf(x)= g A,;(f)g;(x)+Qf(x) .

i=1
(3.13)

The densities g; and the operator Q have the following
properties.

(1) The g; have disjoint support (i.e., are mutually or-
thogonal); so g;(x )gj (x ) =0 for all i Wj

(2) For each integer i there is a unique integer a(i)
such that Pg; =g ~;~. Furthermore, ct(i)Aa(j ) for i'
Thus the operator P permutes the densities g;.

(3) JJP'Qf [(~0 as t~~ «&.
Notice from Eq. (3.13) that P'f may be immediately

written in the form

This definition of a smoothing Markov operator just
means that any initial density, no matter how small a re-
gion of the phase space X it is concentrated on, will even-
tually be smoothed out by P'. Smoothing operators are
important because of a theorem of Komornik and Lasota
(1987), first proved in a more restricted situation by Laso-
ta et al. (1984).

Theorem 3.3, spectral decomposition theorem
(Komornik and Lasota, 1987). Let P' be a smoothing
Markov operator. Then there is an integer r &0, a se-
quence of non-negative densities g; and a sequence of
bounded linear functionals k;, i =1, . . . , r, and a bound-
ed linear operator Q:I.'~L ' such that for all densities f,
Pf has the form

These relations follow immediately as a special case of
the definition of the conditional entropy if one takes
g =f, , writes (3.10) in the form

P

P'f(x)= g A,;(f)g,~, ,(x)+Q,f(x), t EN,
i=1

(3.14)

H(f)= —f f(x)logf, (x)dx+H, (f~f ),
and takes the time derivative. Thus in this interpretation

where Q, =P' 'Q, ~~Q,f~[~0 as t~~, and
a'(i ) =a(a' '(i ) ) = . The terms in the summation
of (3.14) are just permuted by each application of P'.
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Since r is 6nite the series t'

f, (x)=—g g, (x), (3.16)

g A,;(f)g, ,(x)
i=1

must be periodic with a period T ~ r!. Further, as

[a'( I ), . . . , a'(i) I

(3.15)
where r and g;(x ) are as in the Komornik-Lasota
theorem. It is easy to see that f„(x ) is a stationary den-

sity, since by Property 2 of the Komornik-I. asota
theorem we also have

is just a permutation of 1, . . . , r the summation (3.15)
may be written in the alternative form

, ,g, (x ),
i=1

where a '(i ) is the inverse permutation of ct'(i ).
This rewriting of the summation portion of (3.14)

makes the efFect of successive applications of I' complete-
ly transparent. Each operation of P permutes the set of
scaling coeflicients associated with the densities g;(x)
(remember that these densities have disjoint support).

Since f is finite and the summation (3.15) is periodic
(with a period bounded above by r!), and

~~ Q,f ~~

—~0 as
t~ oo, we say that for any smoothing Markov operator
the sequence [P'f I is asymptotically periodic

One of the interesting interpretations of Eq. (3.14) is
that any asymptotically periodic system is quantized
from a statistical point of view. Thus if t is large enough,
which simply means that we have observed the system
longer than its relaxation time so

(~ Q,f ~~
is approximately

zero, then

r
P'f(x)= g A.;(f)g, ,

(x) .
i=1

Asymptotically, P'f is equal either to one of the densities

g; of the iih pure state or to a mixture of the densities of
these states each weighted by A, , (f ). It is important also
to realize that the limiting sequence [P f I is, in general,
dependent on the choice of the initial density f.

How would the property of asymptotic periodicity be
manifested in a continuous time system? If t is continu-
ous, t ER+, then for every t we cari find a positive in-
teger T and a number 8& [0, 1 j such that t = T+8.
Then, asymptotically

r
P'f(x)=P (P f)= g A,;(P f)g T( )x.

i=1

Now, however, the discontinuous permutation of the
densities g; that occurred in the discrete time situation
will not take place. This is because these densities have
disjoint support and there is therefore no possibility of a
continuous movement of the densities through a continu-
ous permutation of their associated scaling coefricients.
Thus in the continuous time case we expect that there
will be a constant (in time) asymptotic limiting density,
generally dependent on the initial density f, that contin-
ues to display the quantized nature characteristic of the
discrete time situation.

Asymptotically periodic Markov operators always
have at least one stationary density given by

Pf, (x)=—g g ~;~(x);
I =1

thus f, is a stationary density of P'. Hence for any
smoothing Markov operator the stationary density (3.16)
is just the average of the densities g,

To examine the properties of asymptotically periodic
systems, choose a simple generalization of the tent map
(3.5),

S(x)= .

1
QX 8+2, O~X & 1

0
1a(1 —x), 1 ——&x & I,
a

(3.17)

where 1&a &2.
To investigate how the map (3.17) transforms densities

we must first derive an expression for the operator I' that
corresponds to this transformation. Proceeding exactly
analogously as in the early part of this section when the
tent map was introduced, it is a simple calculation to
show that the Frobenius-Perron operator corresponding
to (3.17) is given by

1 1 1Pf (x)=—f 1 ——x +f 1 ——(2—x) ls(x)
a Q a

(3.18)

f, (x)=r 1 „(x)+sly(x ), (3.19)

where r= —,'(2++2), s= —,'(1++2), and the sets A and B
are defined as A =[0,2 —i 2j and B=[2—&2, 1], re-
spectively Picking .this f, (x) as an initial density sim-

ply results in a string of densities all equal to the starting
density. However, this is in sharp contrast to what hap-
pens with an initial density fo(x)=1. In this ease, the

where the set B=[2—a, lj. We set ls(x)=1 if x&B
and 1~(x)=0 if x EB. The sequence of densities [P'f I
generated by the Frobenius-Perron operator correspond-
ing to the tent map is asymptotically periodic with period
T=2", n =0, 1, . . . , for 2'i &a ~2'i (Dorfle, 1985;
Lasota and Mackey, 1985). The quadratic map (3.7) is
asymptotically periodic for a variety of values of r &4
(Lorenz, 1980).

To illustrate analytically the eventual dependence of
the sequence [Pf I on the initial density f for asymptoti-
cally periodic systems, pick a =/2, which is the upper
boundary of the range of a values for which (3.17) is
asymptotically periodic with period 2. For this value of
a, the stationary density (3.16) satisfying Pf, =f~, where
P is given by (3.18), takes the explicit form
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first iterate f i =Pfo is given by

f, (x ) =—1 q (x )+—lii(x ),1 2 (3.20)

and iteration of f, (x) leads, in turn, to an f2(x)=1;
thus the cycling of densities repeats indefinitely with
period 2.

The fact that asymptotically periodic Markov opera-
tors have a stationary density given by (3.16) does not
guarantee the uniqueness of this stationary density. Re-

gardless of whether or not they have unique stationary
densities, they have the important property that their
conditional entropy is an increasing function that ap-
proaches a maximum. This result is formulated more
precisely in the following.

Theorem 3.4. Let I' be an asymptotically periodic
Markov operator with stationary density f„=(1/r )g g;.
Then the conditional entropy H, (P'f lf, ) of P'f
with respect to f, approaches a limiting value

H,„(f,f, ) ~0, where

H,„(f,f, )= —g J k;(f)g;(x)log QA, , (f)g, (x) dx .1

X x

Pvoof. Since P is asymptotically periodic, the representation of the spectral decomposition theorem 3.3 is valid, and
more precisely Eq. (3.14) for P'f. Write Eq. (3.14) in the form

P'f (x ) =S,(f,x )+Q'f (x ),
where S,(f,x) denotes the summation portion of (3.14). Remember that since P is asymptotically periodic, for large
times t, llQ'f ll

=0 and thus P'f(x )=S,(f,x ); so the long-time conditional entropy is given by

S,(f,x)
H, (P flf )= I S (f»)log dx=H, (S (f)lf. ) .

However, S,(f,x) is periodic with finite period T. Since by Theorem 3.1 we also know that H, (P flf„) H, (flf, )

(the conditional entropy can never decrease), it follows that the approach of H, (P'f
lf, ) to H, (S, (f ) lf„)must be uni-

form; even though S,(f,x ) is periodic with a finite period T, IV, (S,(f )lf„)is a constant independent of t. In fact, we

have

H, (St(f)lf, )= 1 g A;(f)g;(x)log g ~;(f )g;(x) dx =H„(f f,—) ~01

x,.
' ' f (x)

for large t. The nonpositivity of H,„(f,f„) is a conse-
quence of (2.5).

This result is the strongest (second-order) form of the
second law of thermodynamics that we have yet encoun-
tered. It demonstrates that as long as the density in a
discrete time system evolves under the operation of a
Markov operator that is smoothing, the conditional en-

tropy of that density converges to a maximum. Howev-
er, there are two important facets of this evolution that
should be recognized.

(1) The convergence of the entropy is only due to the
fact that

ll
Q'f

ll
~0 as t ~~ in the representation (3.14)

of the Komornik-Lasota theorem 3.3.
(2) The maximum value of the entropy H,„(f,f, ) as

made explicit by the notation, is generally dependent on
the choice of the initial density f and thus the method of
preparation of the system.

To illustrate the evolution of the conditional entropy
of an asymptotically periodic system we return to our ex-
ample of the tent map (3.17) with a =&2. For this value
of a, a stationary density f, is given by Eq. (3.19). If we

pick an initial density given by f~, then the conditional
entropy H, (P'f, lf, )=0, its maximal value, for all t.
However, if we pick an initially uniform density fo = 1

then it is straightforward to show that

H, (fo lf, ) =H, (fi lf, ) = —0.014 79,

where f, =Pfo is given by Eq. (3.20). Thus by choosing
an initial density fo(x ) =1 of f, (x ) given by (3.20), the
limiting conditional entropy approaches a value less than
its maximal value of zero.

The e6'ect of the choice of the initial density aQ'ecting

the limiting value of the conditional entropy can be made
even more dramatic, as illustrated by choosing an initial
density

fo(x ) = 1+ 1„(x)
v'2

2

totally supported on the set A. In this case,

f, (x)=Pf0(x) =(1+&2) ls (x ),
and f2

=f0, f3
=f„etc.; so once again the densities cy-

cle between fo and f, . However, the limiting value of
the conditional entropy is given by

H, (f0 lf, )=H, (f, lf, )= —log(2)

= —0.693 1S .
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Thus with three dift'erent choices of an initial density fo
we have shown that the conditional entropy of the
asymptotically periodic system (3.17) may have at least
three dijfterent limiting asymptotic values.

IV. ERGODICITY: GUARANTEEING A UNIQUE STATE
OF THERMODYNAMIC EQUILIBRIUM

To formalize the concept of the Frobenius-Perron
operator introduced in the previous section, a fcw con-
cepts must be introduced. A transformation S, is said to
be measurable if S, '(A)C:Xfor all 3 C:X. Furthermore,
given a density f, and associated measure p„, a measur-
able transformation S, is nonsingular if p, (S, (A))=0
for all sets A such that p, ( A ) =0.

If S, is a nonsingular transformation, then the unique
operator P':L, ~I defined by

f P'f(x)dx= I, f(x)dx
S, '(A)

(4.1)

is called the I'robenius-Perron operator corresponding to
S.

From our comments of Sec. III and the formal
definition, if f is a density, then Eq. (4.1) defining the
Frobenius-Perron operator has a simple intuitive inter-
pretation. We start with an initial density f and in-
tegrate this over set B that will evolve into set 3 under
the action of the transformation S,. However, set B is

S, ( A ). This integrated quantity must be equal, since S,
1s nonsingular, to thc integral ovcl sct 2 of thc density
obtaiiied aftei one applicatloll of S( to f. This filial densi-

ty is P'f.
The fact that the Frobenius-Perron operator is unique

is a straightforward consequence of the Radon-Nikodym
theorem. It is clear from the definition that the
Frobenius-Perron operator is a Markov operator, and so
P' is a linear contracting operator. Moreover, if f ~0,
then P'f ~ o and IIP'f II

= Ilf II
~ »nai» it is easy «show

that 1f S~~ =Sp ' S]„and P and P arc, rcspcctlvcly,
the Frobenius-Perron operator corresponding to S„, and
S„then P"'=P'o . o P'=-(P')".

Sometimes (as for the examples of the tent and quadra-
tic maps of Sec. III) the implicit defining equation (4.1)
for the Frobenius-Perron operator allows one to write P
explicitly. A general formula, vahd for higher-
dimensional spaces X =R" when S, is invertible, may be
derived by a change of variables in the definition of the
Frobenius-Perron operator to give

pf(S, '(&))=pf(&)

for all sets A. Measure-preserving transformations are
necessarily nonsingular. Since the concept of measure
preservation is not only dependent on the transformation
but also on the measure, we alternately say that the mea-
sure pf is invariant with respect to the transformation S,
if S, is f-measure preserving. For example, we can say
either that the tent map (3.5) preserves the Lebesgue
measure or that the Lebesgue measure is invariant with
respect to the tent map. In an entirely analogous fashion
we say that the quadratic map (3.7) with r =4 preserves
the measure defined by

p, (x)= f, (s)ds =———sin (1—2x),x $ ]
0 2

where the density f is the stationary density (3.9) of the
Frobenius-Perron operator P, given by (3.8), correspond-
ing to the quadratic map. We also express this by saying
that the measure p~ is invariant with respect to the quad-
ratic map. We note that the quadratic map does not
preserve the Lebesgue measure and that p~ is just the
function h of Sec. III used in transforming between the
quadratic and tent maps S& =p, ST p~.

It is possible to make an interesting connection among
states of thermodynamic equilibrium, invariant measures,
and stationary densities of the Frobenius-Perron operator
through the following theorem.

Theorem 4.1 (Lasota and Mackey, 1985). Let S, be a
nonsingular transformation and P' the Frobenius-Perron
operator associated with S„. Then there exists a state of
thermodynamic equilibrium whose density f„ is a sta-
tionary density of P' if and only if the measure p~,

p, (A)= I f, (x)dx,
A

is invariant.
This theorem is interesting in the following sense.

Since the density maximizing the entropy must be an
equilibrium density in a state of thermodynamic equilib-
rium, if the densities are evolving under the action of a
Frobenius-Perron operator P' then it is clear that the
equilibrium density must also be a stationary density of
P'. In particular, the density f, = 1 of the microcanoni-
cal ensemble corresponds to a state of thermodynamic
equihbrium if and only if the system dynamics preserve
the Lebesgue measure. That is, systems preserving the
Lebesgue measure may be appropriately described by the
microcanonical ensemble. Of course it is important to
realize that this theorem says nothing about either the
uniqueness of this state of thermodynamic equilibrium or
of the invariant measure corresponding to it.

P'f (x)=f(S,(x) )J '(x), (4.&)
B. Recorrence

where J ' is the Jacobian of S
Given a density f and associated measure pf, then a

measurable transformation S, is said to be f-measure
preserving if

For nonsingular transformations S, with an invariant
measure operating in a phase space X, a point x in a sub-
set A of the phase space X is called a recurrent point if
there is some time t )0 such that S,(x) is also in A. An
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important result, which deals with recurrent points, has
become known as the Poincare recurrence theorem.

Theorem 4.2 (Poincare recurrence theorem). Let S, be
a transformation within an invariant measure p~ operat-
ing in a finite phase space X, p, (X)( ~, and let A be a
subset of X with positive f, measure. Then there exists a
point x in 3 that is recurrent.

Proof [adapted from Petersen (1983)]. Assume the con-
trary, i.e., that there are no recurrent points in A. This
then implies that S, '( A ) A A =S for all times t &.0, and
thus that S, '(A)AS, '(A)=(ZI for all positive times
tWt . However, since S, is measure preserving, this im-
plies that p, (S, '(A)}=p (S, '(A)} and this, coupled
with the pairwise disjoint nature of the sets S, '( A) and

S, '(2), leads to

g p„(A)= g p, (S, '(A))=p
t=0 t=—0

U S, '(A)
t=O

~p (X) ~ oo

The only way in which this inequality can be satisfied is
for p, ( A) to be zero, which is a contradiction. Thus we
conclude that A contains recurrent points.

It is interesting that the proof of the Poincare re-
currence theorem also demonstrates that the set of non-
recurrent points has measure zero; so almost every point
is recurrent. Furthermore, repeated application of the
theorem tells us that a recurrent point of A will return to
3 infinitely often.

Following Loschmidt's (1876) objections to
Boltzmann's attempt to justify thermodynamics, this re-
currence result was used by Zermelo (1896) as the basis
for an attack on Boltzmann's celebrated H theorem con-
cerning the behavior of the entropy. In what has become
known as the Wiederkehreinwand (objection based on re-
currence), Zermelo argued that, because of recurrence,
almost all points would constantly revisit the same areas
of phase space and thus it would be impossible for the en-
tropy to ever monotonically increase to its maximum.

Zermelo was right in his. assertion that the entropy of a
system whose dynamics are governed by Hamilton's
equations, or any set of ordinary di8'erential equations for
that matter, cannot change, as we have proved in Sec.
III.B. He was wrong, however, to base his argument on
the result of the Poincare recurrence theorem. The falla-
cy in the argument is to be found in his implicit assump-
tion that densities (on which the behavior of the entropy
depends) will behave as points and also be recurrent as,
perhaps, in the spectral decomposition theorem of Sec.
III. Just because points are recurrent, densities need not
be; indeed, in Sec. VI we give a necessary and su%cient
condition for the entropy of a system to increase to its
maximum that is completely compatible with the Poin-
care: recurrence theorem.

C. Ergodicmty

We are ready to begin consideration of the characteris-
tics any dynamical system or semidynamical system S,
must have to guarantee that there exists a unique state of
thermodynamic equilibrium that maximizes the entropy.
The density maximizing the entropy should also be an
equilibrium density, so our search is really one for the
properties of S, necessary to guarantee that a density f,
is a stationary density of the Frobenius-Perron operato~
corresponding to S„ i.e., P'f, =f, , and that f, is the
only stationary density.

We start by defining a few new terms, given, as usual,
dynamics described by a transformation S,. First, any
set A such that S, '(A)= A is called an invariant set.
Given a density f~ on a space, X, any invariant set 2
such that p, (A)=0 or p, (Xy A)=0 is called trivial A.
nonsingular transformation S, is said to be f, ergodic if
every invariant set 3 is a trivial subset of the phase space
X; i.e., either p„(A)=0 or p, (X&A)=0. If the phase
space is finite and f~ is the uniform density of the micro-
canonical ensemble, then we say that S, is uniformly er
godic instead off, ergodic.

Probably the simplest example of a physical system
that is ergodic is a one-dimensional harmonic oscillator
(O. Penrose, 1979); but to illustrate the property of ergo-
dicity, we consider a simple dynamical system in which
momentum (p) and position (q) evolve according to

di'=a, q=p, amp,
dt ' dt

(4.3)

on a unit torus (doughnut). Imagine cutting the torus
apart in both directions and laying it down on the plane
so that we have a phase space X=[0,1)X[0,1). Then,
starting from any initial point (qo, po ) in X, the trajectory
emanating from that initial position is given by

p(t)=po+at, q(t)=qo+Pt (modl), (4.4)

as depicted by the solid lines in Fig. 1.
If either a or p is irrational, then (4.3) is an example of

a uniformly ergodic transformation (Arnold and Avez,
1968). If, instead of examining the behavior of a single
trajectory we look at the motion of many initial condi-
tions located in some subset of the phase space X (as an
approximation to the behavior of a density), then we ob-
tain the behavior of Fig. 2 in which is shown the first six
interactions of an initial 10" points located in the subset
[0, —,', ]X [0, —,', ] by the uniformly ergodic transformation

S(x,y)=(&2+x, &5+y) (modl) .

obtained from Eq. (4.4) by restricting the time t to the set
of non-negative integers and picking a=i/2, p=V5.
This clearly illustrates an important property that ergo-
dic transformations may display, ' namely, nearby initial
conditions always remain close to one another in spite of
the fact that in the limit as t ~ ao the entire phase space
has eventually been visited.

This example of an ergodic transformation (if a and/or
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FIG. 1. Single trajectory of the ergodic system (4.3) in (p, q)
phase space, . starting from the initial point (po, qo ); a =&2 and
f3=&5, thus ensuring uniform ergodicity. The numbers indi-
cate successive po'rtions of the trajectory and the arrows show
the direction.

I

(a)

I

(e)

(c)

p are irrational) can also be viewed as a Hamiltonian sys-
tem

dp BH dq BH
dt t)q dt t)p

where the Hamiltonian H is given by M = —aq+Pp.
However, that substitution of the explicit expressions for
p(t) and q(t) from Eq. (4.4) into the Hamiltonian gives
SE =ppo —aqo, and thus the "energy" of this ergodic sys-
tem is forever determined by its initial values.

By themselves, neither the definition of ergodicity nor
its illustration is terribly instructive with respect to the
question of how one might prove ergodicity and the rela-
tion of ergodicity to the existence of stationary densities
and to states of thermodynamic equilibrium. However,
the following result makes the connection between the
property of ergodicity and the uniqueness of a state of
thermodynamic equilibrium clear.

Theorem 4.3 (Lasota and Mackey, 1985). Let S, be a
nonsingular transformation and P' the corresponding
Frobenius-Perron operator. S, is f~ ergodic if and only
if P' has a unique state of thermodynamic equilibrium
with associated stationary density f„P'f,=f, .

What does this result, in conjunction with Theorem
4.1, tell us? First consider the microcanonical ensemble
with its uniform density. Then a given dynamical system
or semidynamical system S, will be measure preserving
with respect to the Lebesgue measure if and only if the
uniform density of the microcanonical ensemble is a sta-
tionary density of the Frobenius-Perron operator corre-
sponding to S, . Furthermore, from Theorem 4.3 the uni-
form density of the microcanonical ensemble will be the
unique stationary density of P' if and only if the system
S, is uniformly ergodic. Hence the existence of a unique
state of thermodynamic equilibrium, characterized by the
uniform density of the microcanonical ensemble that
maximizes the Boltzmann-Gibbs entropy to zero, is total-
ly dependent on the operation of a uniformly ergodic
dynamical system or semidynamical system that
preserves the Lebesgue measure.

In the more general case, the nonuniform density f, of
the canonical ensemble that maximizes the conditional
entropy will be the unique density corresponding to a
state of thermodynamic equilibrium if and only if it is the
stationary density of the Frobenius-Perron operator cor-
responding to an f„ergodic system S, with respect to
which the measure

p, (A)= f f, (x)dx

0

FIG. 2. Iteration of 10 initial points concentrated on a small
region of phase space by a discrete time version of (4.4); values
for a and P are the same as in Fig. 1.

is invariant.
Thus in complete generality ergodicity is necessary and

sufficient to guarantee the existence of a unique state of
thermodynamic equilibrium characterized by maximal en-
tropy. That this unique state exists is, of course, only half
of the picture, for we must also understand what kind of
systems can evolve to that state.

To conclude this section we state one last theorem con-
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cerning necessary and sufficient conditions for the f, er-
godicity of a transformation St.

Theorem 4.4 (Lasota and Mackey, 1985). Let S, be a
nonsingular transformation and P' the corresponding
Frobenius-Perron operator with stationary density f, )0
for all points in the phase space X. Then S, is f, ergodic
if and only if IP'f I is Cesaro convergent to f, for all
densities f, i.e., if

1

lim —g (P f g ) = (f, ,g )
t k

in the discrete time case, or if

lim —I (P'f, g )dt = (f„g)
T

T~co T 0

in the continuous time case, for all bounded measurable
functions g.

Our identification of states of thermodynamic equilib-
rium with densities, in conjunction with the contents of
Theorems 4.3 and 4.4, shows that f, ergodicity, Cesaro
convergence of IP'f I to f, , and the uniqueness of a
state of thermodynamic equilibrium with density f~ are
all equivalent.

(a)

(b)

0

l
(c)

0

I

(e)
r.r,r r
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o ~
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V. MIXING: BEYOND ERGODICITY
BUT NOT FAR ENOUGH

A. Mixing

FIG. 3. Iteration of 10 initial points under the action of a uni-
formly mixing transformation. Note the development of the
threadlike structures.

Gibbs (1902) realized that ergodicity, while necessary
and sufficient to guarantee the existence of a unique state
of thermodynamic equilibrium characterized by a sta-
tionary density f„was inadequate to guarantee the ap-
proach of a system to that equilibrium. As a conse-
quence he qualitatively discussed a property stronger
than ergodicity, which is now called (strong) mixing
This was subsequently developed mathematically by
Koopman (1931),Hopf (1932), and von Neumann (1932).

Let S, be an f, -measure-preserving transformation
operating on a finite normalized [p, (X)=1]space. Then
S, is called f„mixing if

lim p, (A flS, '(8))=p, (&)p, (&)
t —+ oo

(5.1)

for all sets A and 8. If f, is the uniform density of the
microcanonical ensemble, then in analogy with our
definition of ergodicity we say that S, is uniformly mix
ing.

To see how f, mixing works examine Fig. 3 where the
evolution of 10 points by the uniformly mixing transfor-
mation

S(x,y) =(x +y, x +2y) (modl)

is shown in the phase space [0, 1]X [0, 1]. In contrast to
the uniformly ergodic transformation of Fig. I, the mix-
ing transformation here acts to very quickly spread the

S(x,y)= .
(2x, —,'y), O~x ~

—,',
(2x —1,—,'+ —,'y), —,

' (x ~ 1 . (5.2)

To see pictorially how the baker transformation works,
consult Fig. 4(a) where the space X is indicated as a
hatched region. The first operation involved in the appli-
cation of S, shown in Fig. 4(b), involves a compression of
X in the y direction and a concomitant stretching in the x
direction by a factor of 2. Finally, in Fig. 4(c), this de-
formed area is divided vertically at x = 1, and the right-
hand portion is placed on top of the left-hand portion to
give the final result of one application of 5 to the entire
space X. Since it is clear from this geometric construc-
tion that the counterimage of any rectangle 2 in X is
again a rectangle or a pair of rectangles with the same to-
tal area as 3, the baker transformation S is measurable
and preserves the Lebesgue measure.

To further illustrate the operation of the baker trans-

initial set of points throughout phase space in threadlike
structures.

As a second example of a uniformly mixing transfor-
mation we introduce the baker transformation, so called
because of the similarity of its operation to the kneading
and folding operations involved in the preparation of pas-
try dough. We take the phase space X to be the unit
square X = [0,1]X [0,1] and define the baker transforma-
tion by
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formation and to show that it is in fact uniformly mixing,
consider Fig. 5(a) where two sets A and 8 of the phase
space X are indicated with pL (8)= —,'. By taking repeat-
ed counterimages of 8 with the baker transformation we
find that after r counterimages (three are shown), S '(8)
consists of 2' ' vertical rectangles of equal area whose
total area is pL(8). Clearly the measure of the set
2 C:S '(8) approaches pL(B)12 in the limit as t be-
comes large and the condition (5.1) defining f~ mixing is
satisfied. (A more mathematical proof with less insight is
possible by analytically calculating the successive coun-
terimages. )

If, instead of running the baker transformation back-
ward we run it forward in time [Fig. 5(b)J, then the be-
havior is remarkably similar to that found for counterim-
ages. Namely, after t applications of the baker transfor-

mation S'(8) consists of 2' horizontal rectangles whose
measure is equal to pl (8). It is this characteristic of
mixing transformations that gives rise to the thready be-
havior seen in Fig. 3.

The behavior of the uniformally mixing baker transfor-
mation as time runs either backward [Fig. 5(a)] or for-
ward [Fig. S(b)] simply reAects the fact that the relation
(5.1) could equally well be written as

lim p~( A AS, (B))=p, ,( A )p, (B) .

This is a consequence of the fact that S, is f, - me as ure

preserving
A third example of a mixing transformation in a con-

tinuous time system is given by a model of an ideal gas in
which the position of the ith particle is denoted by a posi-
tion vector x,. and a velocity vector U,.; so y, =(x, ,y,. ) is a
point in R . It is assumed that the particles in the gas
are physically indistinguishable from one another, and
that the gas is so dilute that for any bounded region of
the phase space there are at most a finite number of parti-
cles present at any given time. Under the assumption
that the particles move with constant speed and do not

s-' (B) s(s)
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Pllllllllllllli~

I /2

Ylli
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0

Yz

l s-~(B)

&lfllfffflfffIffy

~ffflffffllfffffz

lffffffffffffffz
Fllllflllllllllz

s'(a)
l

YJZJJIJYXjj jJ'/8/f 8/2
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YZ2'NXJYJ'/ZZZSi
YAXZDDZNZN'///i
AV//N J///AV/ZZJJ
YJZDA DN JVfVDX

(c) 0 (b)

FICx. 4. Operation of the baker transformation. See the text for
details.

FIG. 5. Behavior of an initial set B under backward (a) and for-
ward (b) iteration by the uniformly mixing baker transforma-
tion, and the generation of the thready behavior as seen in Fig.
3. See the text for more discussion.
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interact, the transformation describing the evolution of
this system is given by

S,(x, u)=(x+ut, u) . (5.3)

with a suitably defined initial function P(t'), t'H [ —1,0].
It is known that this equation, with a mixed feedback
function of the form f(z)=zl(1+z"), n )0, may have
numerical solutions that are stable, periodic, or chaotic
(Mackey and Glass, 1977; an der Heiden and Mackey,
1982). an der Heiden uses a piecewise constant mixed
feedback function f of the form

a, z&1,
f(z)= c, 1&z&b,

d, b(z,
identifies the sequence of times t; such that x (t; ) = 1, and
derives an analytic map S relating successive diiT'erences
in crossing times, 6, =t2 tz —i

b,;+i=S(d;) .

He has proved that for some parameter values (a, b, c,d)
the Frobenius-Perron operator P corresponding to S is ei-
ther asymptotically periodic or mixing.

It is a straightforward consequence of the definition
that f„mixing implies ergodicity. Furthermore, an f, -

measure-preserving transformation S„with associated
Frobenius-Perron operator P' and stationary density f„
is f, mixing if and only if the sequence I P f I is weakly
convergent to the density f, for all initial densities f. If
f, = 1, then P' is uniformly mixing if and only if jP'f ] is

I

The surprising result is that this simple system of nonin-
teracting particles is in fact f„mixing (Losota and
Mackey, 1985).

There is a whole class of continuous time systems of
importance in classical mechanics that are mixing. These
systems, known as geodesic Aows on manifolds with neg-
ative curvature, have been intensively studied by Anosov
(1963, 1967) and discussed in Arnold and Avez (1968)
and Abraham and Marsden (1978). Sinai (1963, 1970)
has shown that the Boltzmann-Ciibbs model of a dilute
gas (spherical molecules with totally elastic collisions) is
an example of this type of system and is thus mixing.

an der Heiden (1985) has studied the delay difFerential
equation

dx =a[f(x(t —1))—x (t)]

As usual, given a measure p, the scalar product of an
l. ' function f with a bounded measurable function g,
denoted by (f,g &, is defined by

(f,g &
=f f( )g(x)p(dx) .

Gibbs (1902), Krylov (1979), and many later authors
have emphasized the importance of mixing for the under-
standing of thermodynamic behavior. Indeed, at first one
might think that this weak convergence of the sequence
[P'f I to the density f„ofthe canonical ensemble, or to
the density f, =1 of the microcanonical ensemble, no
matter what initial density f was chosen, would be exact-
ly what is required to guarantee the approach of the en-
tropy (conditional or otherwise) to its maximum. Such is
not the case.

It is most certainly true that mixing'is necessary for
this convergence of the entropy, but it is also not
suScient, as we show in Sec. VI. As a simple illustratiori
of this fact we again return to our example of the uni-
formly mixing baker transformation. The baker transfor-
mation (5.2) is clearly invertible, so

'(
—,'x, 2y), 0 &y & —,',

S '(x,y)= .
( —,'+ —,'x, 2y —1), —,

' (y & 1, (5.4)

and we may apply Eq. (4.2) directly to obtain an expres-
sion for the Frobenius-Perron operator corresponding to
S. The only other fact that we must use is that S
preserves the Lebesgue measure so J '=1, which is easi-
ly verified directly from (5.4). Thus

Ps f(x,y)=
f (;-'x, 2y), 0&y &

—,',
f ( ,'+ ,'x, 2y —1), ——,

' (—y&1;

so F1=1, and thus the density of the microcanonical
ensemble is a stationary density of Pz.

Since the stationary density of Pz is the uniform densi-

ty (it is easily proved that f~
= 1 is the unique stationary

density) we may calculate the entropy of Pzf as

weakly convergent to the density of the microcanonical
ensemble for all initial densities f.

This is expressed more formally in the following.
Theorem 5.1 (Lasota and Mackey, 1985). Let S, be an

ergodic transformation, with stationary density f, of the
associated Frobenius-Perron operator, operating in a
phase space of finite f, measure. Then S, is f„mixing if
and only if t P'f ] is weakly convergent to f„i.e.„

lim &P'f, g & =(f„g & .

H(Ps f)= —f ff ( —,''x, 2y)logf( —,'x, 2y)dx dy —f f f( ,'+ ,'x, 2y —l)logf( —,'+ —,'x—,2y——1)dx dy .

A change of variables on the right-hand side in the two
integrals gives

H(Ps f)=H(f),
and we have proved that H(Pzf)=H(f) for all positive

I

times t and all densities f. A simple extension of this ar-
gument extends the result to negative times when the
baker transformation is being run backward. Thus the
uniformly mixing baker transformation has an entropy
that is constant for all of time and which is equal to the
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(g) t= -I

2 2

and (3) XEA.
We use the notation S,(A ) = (S,( 2):A HA I,

t =0,+1,+2, . . . , where A. is a o. algebra. Then if S, is
an invertible transformation operating ori a normalized
space, and both S, and S, are f, -measure preserving,
S, is said to be a E automorphism if there is a o algebra
AQUA such that (1) S,(AO)HAD; (2) the cr algebra
defined by

(d) t= 2
I

2

2
I

2

PIC». 6. Behavior of an initial nonuniform density for backward
and forward iteration of the baker transformation. See Secs.
V.A and VII.A for a discussion of the corresponding changes in
entropy.

entropy of the initial density f with the system was
prepared.

This is simply illustrated in Fig. 6. At t =0 we prepare
the phase space with an initial density

is trivial in the sense that it only contains sets of f, -

measure 0 or 1; and (3) the smallest o algebra containing

U S,(A, )t=0

is identical to A.
Kolmogorov automorphisms have behaviors stronger

than mixing in that if a transformation is a K automor-
phism, then this also implies that it is f, mixing
(Walters, 1982). The other property of K automorphisms
that is important for thermodynamic considerations is
that, since they are f, -measure preserving, they have a
unique stationary density f, . However, since they are
invertible, the entropy of a K automorphism is identically
equal to the initial entropy determined by the initial den-
sity with which the system is prepared. In fact, our fa-
miliar example of the baker transformation, which we
have used to illustrate uniform mixing, is an example of a
Kolmogorov automorphism (I.asota and Mackey, 1985).

where X, =[0,—,') and X2=[—,', 1]. Then the entropy of
the initial state is

Vl. THE GLOBAL EVOLUTION QF ENTROPY
TQ ITS MAXIMUM

H(fo)= ——„'(log—,'+Slog —,') = —0. 13 .

After one application of the baker transformation [Fig.
6(c)] we have

f, (x,y)= —,'lr (y)+ —,'li, (y),

where F, = [0,—,
' ) and I'z = [—,', 1]. It is a trivial matter to

show that H (f, )
—=H(fo ). Further applications of the

baker transformation yield H (f, ) =H (fo ) [Fig. 6(d) for
t =2], which also holds for negative times [Fig. 6(a) for
t = —1] since the baker transformation is invertible.

B. Kolrnogorov autornorphisrns

In this section a concept that will be used later is
brieAy intoduced, namely, that of Kolmogorov automor-
phisms, or K automorphisms. We first introduce the no-
tion of a o. algebra A, , which is a collection of subsets of
X such that (1) if A HA, the Xg A EA; (2) given a se-
quence of subsets of X, I 2; I, A; HA, then

A. Exactness

To extend the catalog of irregular behaviors that trans-
formations may exhibit we define the concept of exact-
ness.

If S, is an f, -measure-preserving transformation
operating on a normalized phase space X, then S, is said
to be f, exact if

for all sets A of nonzero measure. If f, is the uniform
density, f„=1, then we say that S, is uniformly exact

To understand the nature of exactness, it is important
to realize that reversible systems cannot be exact. To see
this, note that for a reversible f, -measure-preserv-
ing transformation S, we have p~(S, ( A ) )
=p, [S, '(S, ( A ) )]=p, ( A ). Thus the definition of ex-
actness is violated.

A demonstration of the operation of an exact transfor-
mation, similar to that for ergodicity and mixing, is help-
ful in showing how exact systems operate. Figure 7
shows the IIirst six iterates of 10 points randomly distri-
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buted in [0, —,', ]X [0, —,'0] under the action of the uniformly
exact transformation

S (x,y) = (3x +y, x +3y) (mod 1 ) . (6.1)

It is clear that the behavior is quite different from an f~
mixing transformation. Under the action of an exact
transformation an initial set A is very quickly dispersed
throughout the entire phase space X.

A second example of a uniformly exact transformation
is given by the tent map originally introduced in Sec. III,
Eq. (3.5). The tent map preserves the Lebesgue measure;
if we start with an initial set 8 =[O,bj, then a simple
geometric argument (try it) suffices to show that after a
Snite number of iterations pl (S,(B))=1 and the trans-
formation is uniformly exact. A more precise proof can
be carried out using the.behavior of the evolution of den-
sities by the Frobenius-Perron operator contained in
Theorem 6.1 below.

Exact systems are important for an understanding of
how convergence to a stationary density f~ of the canon-
ical ensemble may be reached in a way that is an exten-
sion of mixing. To be specific, we have the following.

Theorem 6.1 (Lasota and Mackey, 1985). If S, is an

f, -measure-preserving transformation operating on a

finite normalized phase space X and I" is the associated
Frobenius-Perron operator corresponding to S„ then 5,
is f, exact if and only if

f —+ oo

S(x)=2x (mod 1 ), (6.2)

which is a special case of the r-adic transformation
S(x)=rx(modl) when r is a positive integer. The dyadic
transformation (6.2) is clearly not invertible. A simple
calculation shows that it preserves the Lebesgue measure
so the constant density f, =1 is a stationary density.
The counterimage of an interval [O,xj under the action
of the dyadic transformation is

S '([O,x])= [0,—,'x ]U [—,', —,'+ —,'x];

i.e., IP f I is strongly convergent to f„ for all initial
densities f.

This theorem ofFers a necessary and sufhcient condition
for the exactness of S, in complete analogy with the pre-
viously presented necessary and sufhcient ergodicity and
mixing conditions.

As an illustration of Theorem 6.1, consider the dyadic
transformation

so the Frobenius-Perron operator corresponding S is
given by

Psf(x) =
—,'[f ( —,'x)+f ( —,'+ —,'x)] .

~ ~ g ~ g ~ ~ ~
~ i $ ~ ~ ~ ~, o~

Ca +g 4+ ~
~ ~ ~ eye ~t ~ rig

~ ~ 1 ~ ~ ~ ~ 4

.~ . ~
~ ~

~ ~ ~ O' Q ei ~ r~ ~ y 0 ~ )' e ~ g~o

It is obvious that I'&1=1. By an inductive argument,
Psf can be written in the form

(e)
1

—:—

P.. .g ~. ~ ' ~ ~ . ~ ~ ~

% 4 & ~ ~ ~
~ 4 04

In the limit as t —+ (x), the right-hand side of this equation
simply becomes the Riemann integral af the density f
over [0,1], i.e.,

1
lim Psf(x)= I f(x)dx =—1 .t~~ 0

(c)
~ ~

~ ~

J oAe 4+

(&)

g. ' f.

~ ~ * ~ ~ Cg

~ ~ ~ r ys
~ ~ ~ u r ps r ~

FIG. 7. Behavior of an initial 10 points under the action of the
uniformly exact transformation (6.1). Note in particular how
rapidly these points spread throughout the phase space without
developing the threadlike structures seen in Fig. 3 for a uni-
formly mixing transformation.

Therefore the dyadic transformation is uniformly exact,
and precisely the same argument generalized in a trivial
way extends to the r-adic transformation when r & 2 is an
integer.

%'e can use this same technique to show that the tent
map (3.5) is uniformly exact. Further, the uniform exact-
ness of the tent map implies the f, exactness of the
quadratic transformation (3.7), with f, given by Eq.
(3.9), through the following result for one-dimensional
maps.

Theorem 6.2 (Lasota and Mackey, 1985). Let
T:[0,l]~[0,1] be a nonsingular transformation, f, be a
positive density an (a, b), and S:[0,1]~[0,1] be a
second transformation defined by S =h 'o T A where

h(x)= J f, (y)dy, a (x (b .

Then T is uniformly exact if and only if S is f„exact.
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The f, exactness of a transformation implies that it is
f„mixing. To show this it suffices to remember that,
from the Cauchy-Holder inequality, for a sequence of
functions If, I we have

I

Thus the c»v«gence « IIf, —fll «z«»mp»es that
(f, f,g—) also converges to zero; strong convergence
therefore implies weak convergence. As a consequence
f, exactness implies f, mixing, just as f, mixing im-
plies f, ergodicity.

We have so far defined three diQ'erent types of irregular
behaviors that f, -measure-preserving transformations
may display: ergodicity, mixing, and exactness. Further-
more, in each case we have been able to make strong
statements about the types of convergence of iterates of
densities by the Frobenius-Perron operator toward the
stationary density characterizing a state of thermo-
dynamic equilibrium that one should find. Since
Frobenius-Perron operators are specialized Markov
operators, there is a certain logic to extending these con-
cepts to Markov operators. Thus 1et I".be a Markov
operator and assume that P' has a stationary density f, .
Then we say the following.

(a) P' is f, . ergodic if IP'f I is Cesaro convergent to
f, for all initial densities f.

(b) P' is f, mixing if I P'f I is weakly convergent to f,
for all initial densities f.

(c) P' is f, exact if IP'f I is strongly convergent to f,
for all initial densities f.

Operators P' that are f, exact have been called strong
Markov operators by Misra et al. (1979) and monotonic
Markov operators by Goldstein et al. (1981). Since
strong convergence implies weak convergence, which, in
turn, implies Cesaro convergence, for Markov operators
we have immediately that f, exactness implies f, mix-
ing imphes f, ergodicity.

B. The local evolution of entropy to a maximum

This section is devoted to a statement of a sufficient
condition for the entropy of a sequence of densities evolv-
ing under the action of a Markov operator to approach a
relative maximal value. That is, we have a suNcient coll-
dition for the second-order form of the second law of
thermodynamics.

Theorem 6.3 (Lasota and Mackey, 1985). Let P be a
Markov operator working in a normalized measure
space, and assume that there is a stationary density f~ of
I'. If there is a constant c & 0 such that for every bound-
ed initial density f

for suKciently large t, then I" is asymptotically periodic
and

lim H,.(P'f ~f, )=HI,„(f,f„)~0 .
g —+ oo

This theorem assures us that if we are able to find some
time t, such that the conditional entropy is bounded
below for times I; & t i, then the entropy is evolving under
the action of an asymptotically periodic Markov operator
and, as a consequence of Theorem 3.4, the conditional
entropy of P'f approaches a maximum that is generally
dependent on the initial density with which the system
was prepared.

C. The strong (third-order) version of the second law
of thermodynamics

Our next iesult is much stronger in that we consider a
Markov operator P that has a stationary density f, that
is not necessarily constant, thus corresponding to the
density of the canonical ensemble, and define a simple
necessary and sufhcient condition for the conditional en-
tropy to go to its absolute maximal value of zero. Thus
we are o6'ering necessary and su%cient conditions for the
second law of thermodynamics to operate in its strongest
possible (third-order) form. Namely, we have the follow-
1ng.

Theorem 6.4 (Lasota and Mackey, 1985). Let P' be a
Markov operator operating in a phase space X. Then the
conditio nal entropy of P'f with respect to a. density f,
goes to its maximal value of zero as I; —+ oo,

lim H, (P f If, ) =0
f-~ oo

if and only if P' is f, exact.
A simple example of this theorem is given by the qua-

dratic map (3.7), which is f~ exact by Theorem 6.2 and
thus has a smooth increase of the conditional entropy to
zero at long times, irrespective of the initial system densi-

This theorem is remarkab1e in thai it sets forth neces-
sary and sufficient cnteria for the operation of the strong
est form of the second iaiu of thermodynamics, namely, for
the entropy of a system to globally converge to its maxi-
mal value regardless of the way in which the system was
prepared. The only requirement that the system must
satisfy is that the density must euolue under the action of
an exact operator. If this operator is a Frobenius-Perron
operator, then the dynamics must be f, exact. Since f„
exactness implies f, ergodicity, the state of thermo-
dynamic equilibrium characterized by the density f, is
Unique.

There is an obvious simple corollary to this theorem
concerning the behavior of the Boltzmann-Gibbs entropy
of systems operating in a finite normalized phase space
when the stationary density is that of the microcanonical
ensemble f, =1. Namely, we have the following.

Coroh/ary 6.5. If P is a Markov operator operating in a
finite normalized phase space X, then the Boltzmann-
Gibbs entropy of P'f approaches its maximal value of
zeI 0 as f ~ oo, i.e.,
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lim H (P 'f ) =0,

if and only if P is uniformly exact.
Thus the Boltzmann-Gibbs entropy will converge to its

maximal value of zero if and only if the density of the mi-
crocanonical ensemble is a stationary density and the sys-
tem evolves under the action of a uniformly exact Mar-
kov operator P. As before, ergodicity of I' guarantees
that the uniform density of the microcanonical ensemble
is the unique state of thermodynamic equilibrium, while
the uniform exactness of I' guarantees that the entropy
will approach its maximum value of zero regardless of
the way in which the system is prepared. Both the r-adic
transformation and the tent map are uniformly exact by
our previous observations, and thus display a smooth
evolution of their Boltzmann-Gibbs entropy to zero for
all initial system states.

Thus, for finite normalized spaces,

P' is uniformly exact~ lim H(P'f)=0,

while, in general,

P' is f, exact lim H, (P'f
~f, ) =0 .

t —+ oo

These results point out a very interesting property of
the entropy Uis-i-Uis the common notion that maximal
entropy should be associated with maximal disorder or
minimal structure. Experimentally, what we measure is
that the entropy of a system evolving in time goes to a
maximum. However, in the course of any experiment,
the dynamics are the ultimate selector of the proper f,
with respect to which the conditional entropy is "com-
puted" by the system evolution. This state of maximal
entropy, in turn, corresponds to a state of thermodynam-
ic equilibrium and in no way makes a judgment about
whether this state is totally structureless (f, = 1) or
highly ordered. Any apparent inconsistency between a
state of maximal entropy and a nonuniform f,%1 comes
exclusively from the erroneous identification of f, =1 as
the preferred state of thermodynamic equilibrium. This
stems from the long historical preoccupation of trying to
find a rational foundation for thermodynamics in the sta-
tistical mechanics of Hamiltonian systems, which do
preserve the Lebesgue measure and for which the atten-
dant density f, = 1 is a stationary density.

With the results of this section giving necessary and
sufFicient conditions for the approach of system entropy
to a maximum, one might think that our quest for the
dynamical foundations of thermodynamics and the func-
tioning of the second law was at an end. However, this is
far from the reality of the situation, as a moment' s
refIection reveals.

Here it has been demonstrated that it is only through
the operation of irreuersible f~ exact systems that the en-

tropy will increase to its maximal value. Further, given
the observation that dynamics are the ultimate deter-
minant of the stationary density f„, that this corre-
sponds to a state of thermodynamic equilibrium, and that

since states of thermodynamic equilibrium depend on a
variety of parameters (temperature, pressure, etc.), we
must conclude that the corresponding f, must also de-

pend on these parameters as must the underlying dynam-
ics. Given these results, we are now faced with another
problem, since all of the laws of physics are framed in
terms of reversible or invertible dynamical (as opposed to
irreversible or noninvertible semidynamical) systems that
are independent of these external parameters.

This dilemma seems to have at least two solutions; ei-
ther (1) or (2).

(1) The laws of physics are at present incorrectly for-
mulated. R. Penrose (1979) has argued quite lucidly and
simply for this point of view, basing his thesis on CPT
violation in K meson decay. Per (1977) makes a similar
point, basing his argument on the neglect of time delays
in the usual formulations of physical laws. Davies (1974)
and Gal-Or (1974, 1981)have extensively examined possi-
ble sources of time asymmetry in physics, primarily from
a cosmological and electromagnetic perspective.

(2) There is some efFect, neglected up to this point in
our considerations, that alters the behavior of a dynami-
cal system to give rise to the observed behavior.

The remainder of this paper is devoted to an explora-
tion of the second of these possibilities only, as the first
involves a drastic restructuring of the entire formulation
of classical and quantum physics.

In the next section we start by examining the closely
linked concepts of coarse graining and traces. Nontrivial
coarse graining, in spite of the fascination that it has held
for decades as a potential source of irreversible thermo-
dynamic behavior, is unable to stand as a viable candi-
date because it induces an increase in entropy to its maxi-
mal value of zero regardless of the direction of time (for-
ward or backward). However, a more extreme form of
coarse graining, known as a trace and involving the ex-
istence of hidden variables, is able to induce truly irrever-
sible thermodynamic behavior.

Vll. COARSE GRAIN1NG AND TRACES

A. Coarse-grained entropy

In calculating the entropy from the defining equations,
it has been assumed that the dynamical variables were
known with infinite precision. As a consequence, the
density f corresponding to a given thermodynamic state
would also be known precisely. %'hile this is the situa-
tion when an analytic form for the density is available, in
the world of experiment the reality is that the density f
(or, more usually, some functional of f) is either mea-
sured or estimated.

Several consequences may ensue from this. The first
and perhaps most obvious is that due to errors (arising,
for example, from measurement impreciseness or numeri-
cal roundoff in computer experiments), f will not be
known exactly but will be known only to some level of
accuracy.
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Alternately, it is entirely possible that nature may have
introduced an inherent graininess to phase space, render-
ing the absolute determination of dynamical variables,
and thus densities, impossible. Many have suggested that
perhaps there is an elementary fundamental volume in
position-momentum space whose measure corresponds to
Planck's constant. This would be entirely in keeping
with other apparently fundamental indivisible units in
the real world.

To examine the e6'ect of such imprecision in the mea-
surement of dynamical variables on the estimation of the
entropy, we introduce the concept of the entropy of a
coarse-grained density, or more briefly, the coarse-
grained entropy. This concept seems to have been quali-
tatively discussed first by Gibbs (1902) and quantified by
Ehrenfest and Ehrenfest (1959). Denbigh and Denbigh
(1985) have considered aspects of the effects of coarse
graining on the behavior of entropy.

Coarse graining is carried out by first partitioning the
phase space X into discrete cells 3; that satisfy

It is noteworthy that for any density f the Boltzmann-
Gibbs entropy of the coarse-grained density may be
greater than the entropy of f, or, more specifically, the
following.

Theorem 7.1. For any density f and any nontrivial
partition A; of the phase space X, H (f ) & H (f 's).

Proof. This is quite straightforward to prove using the
integrated form of the Gibbs inequality (2.5). First, by
use of the indicator function 1~ (x), we may write

H (f)= —f f (x)logf(x)dx

= —g f f (x) l~ (x)logf (x)dx
I

& —g f f (x)1„(x)logg(x)dx,
X

for g (x) an integrable density. Pick g (x)= (f &; so that

H( f) & —g log( f &, f f (x)1„(x)dx

U A, =X and A,. U A, =S .
l ling

(7.1)
= —+log(f &; f f(x)dx

t

There is no unique way in which such a partition IA;I
may be formed, but we require that the partition be
nontri vial with respect to some measure p so
0 &p( A; ) &p(X) for all values of i. For every density f,
within each cell 2, of this partition, we denote the aver-

age off over A; by (f &;,

(f &;
= f f (x)p(dx);

p A.
(7.2)

so the density f coarse grained with respect to the par-
tion 3, is given by

f"(x)=g (f &;I& (x) . (7.3)

Clearly g; (f &;p( A,. ) = 1, and it is important to realize
that f's is constant within each cell A;, having the value
given by Eq. (7.2).

Therefore, if given a partition A; satisfying (7.1) (non-
trivial with respect to Lebesgue measure), a density f,
and a coarse-grained density f' defined by Eqs. (7.2) and
(7.3), then the Boltzmann-Gibbs entropy of the coarse-
grained density f's is given by

The demonstration is almost trivial since, from (7.3) and
the definition of the entropy, we have

H(f's)= —f g (f & l~ (x) log g (f&1„(x) dx
I l

= —g (f &, f 1~ (x)log g (f &,. 1„(x) dx
l 1

= —g (f & f log g (f & 1 z (x) dx
E

t l

= —g (f &;p (A;)1 g(f &;

= —g (f &;p (A;)log(f &;

=H(f's),
and the assertion is proved.

Thus the effect of any imprecision in the estimation of
a density f characterizing a system, no matter what the
origin, will be to either increase the entropy of the es-
timated (coarse-grained) density H (f's) above its actual
value H (f), or leave it unchanged.

Precisely analogously to the way in wh&ch the entropy
of the coarse-grained density was derived, it is easy to
show that the conditional entropy off 's with respect to a
second density g, also coarse grained with respect to the
partition 3, , is given by

H, (f"lg")=—g & f &;pz(A;)log
l l

It is equally easy to show that H(f~g) &H, (f' ~g's) for
all densities f and g and nontrivial partitions A; of the
phase space X.

Therefore, in general, coarse graining of the phase
space, and the consequent coarse graining of a density,
mill either increase the entropy or leave it equal to its value
before coarse graining

Now assume that the phase space X is Anite and nor-
malized and that an initial density f evolves under the
action of a Markov operator to give the sequence (P'f &.

In analogy with (7.3), the coarse-grained P'f is given by

(P'f (x))"=g (P'f &;1 g 1„(x),

where

(P'f &= f P'f(x)dx .
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It is important to realize that we are assuming that the
Markov operator operates without any error on the den-
sity f, and that the coarse graining arises because of our
inability to precisely measure dynamical variables and,
consequently, densities, for whatever reason. The con-
verse situation in which we may measure densities with
infLnite precision, but the dynamics always work with
some error, are considered in Sec. VIII where we consid-
er system interactions with a heat bath.

An example is helpful in illustrating the effect of
course graining, and we return to our previous example
of the baker transformation in Fig. 6, with fo given by
Eq. (5.5).

Consider first of all the situation in which the partition
(fQ)]=(fo)2=1

and thus H(fos' )=0. However, following one applica-
tion of the baker transformation [Fig. 6(c)],
H (f2s' ) = —0. 13 and, finally [Fig. 6(d)], H (f2s' ) =0.
On the other hand, after one application of the inverse of
the baker transformation [Fig. 6(a)], we have
H(f s'i )=0. Alternately, if we choose the partition to
be IAz, A2I =IXi,XzI, then it is easy to show that
H(fo ' )= —0. 13 while H(f si )=H(f i

' )=H(f2 ' )

=0.
These simple computations illustrate the following

effects of coarse graining in this reversible system.
(1) The entropy of the coarse-grained density ap-

proaches the equilibrium entropy for both positive and
negative times.

(2) This approach any not be monotone [compare
H(fos' ) with H(f is' )].

(3) The approach is not necessarily symmetric with
respect to a reversal of time [compare H(f' 'i ) with
H(f is' )].

(4) The approach may be dependent on the partition
chosen (compare X vs I').

Coarse graining has interested numerous authors since
the concept was first introduced by Gibbs (1902, pp.
148—150) with the observation that coarse graining of a
mixing system should lead to an increase in the entropy
to its maximal value, as we have just illustrated. To
prove this, assume that P' is an f„mixing Markov
operator and rewrite the definition of an f„mixing Mar-
kov operator in the equivalent integral form

lim f [P'f (x)]g (x)dx = f f„(x)g(x)dx . (7.4)
taboo X X

If we pick g(x) =1& (x)/pL ( A;), then Eq. (7.4) becomes
l

lim f [P'f (x)]l z (x)dx
taco pl A; x

1 f 1„(x)f~(x)dx .
pL Ai x

The left-hand side of this equality is (P f );, while the
right-hand side is identically equal to (f, );. Thus

lim (P'f ), =(f„);
so

lim g (P'f );1„(x)= g (f„);I g (x) .
1 l

Finally, from the definitions of (P'f)'s and f;~ it follows
that

lim (P'f)'s=f s .

Since the same result would hold if g(x) were a simple
function, it will also be true for all bounded measurable
functions g. Finally, if P is also reversible (as for the
baker transformation), we have proved the following.

Theorem 7.2. If P' is an f, mixing Markov operator
with a unique stationary density f~ and A, is a nontrivi-
al partition of the phase space X, then

lim (P'f)'s= f's
t~+ oo

for all initial densities f, where

f '„(sx)= g (f, ); 1 ~ (x) .

As a consequence of this result we have the following.
Corollary 7.3. If P' is a reversible f, mixing Markov

operator with a unique stationary density f„and A; is a
nontrivial partition of the phase space X, then

lim H, ((P'f)'
~f' )=0

t~+ oo

for all initial densities f.
For uniformly mixing systems operating in a normal-

ized 6nite space„ it is an easy consequence of these results
that, after coarse graining of the phase space, P'f will, ap-
proach the density of the microcanonical ensemble and
the Boltzmann-Gibbs entropy will approach its max-
imum value of zero.

Given the fact that the result of Corollary 7.3 was
clearly known by Gibbs, though not proved with rigor, it
is surprising that the effects of nontrivial coarse graining
have had, and continue to have, so much attention as
possible sources of irreversible thermodynamic behavior.

Even setting aside the lack of irreversibility in the be-
havior of the coarse-grained entropy, it is important to
realize that the rate of convergence of the entropy of the
coarse-grained densities that Corollary 7.3 guarantees
will, in general, depend on the way in which the coarse
graining of the phase space is carried out. Experimental-
ly, if entropy increases to a maximum only because we
have reversible mixing dynamics and coarse graining due
to measurement imprecision, then the rate of conver-
gence of the entropy (and all other thermodynamic vari-
ables) to equilibrium should become slower as measure-
ment techniques improve. Such phenomena have not
been observed. Thus it seems likely that nontrivial
coarse graining plays no role in determining thermo-
dynamic behavior, even if the coarse graining is external-
ly imposed by nature in the form of an inherent graini-
ness or unitary cellularity of phase space.

B. Traces

As an alternative to course graining we now explore
the consequences of a reversible dynamics in which not
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all dynamical variables are observable. Essentially this
means that we have a dynamical system operating in an
m-dimensional space, but are able to observe only n & m
of these variables. That is, we observe only a trace of its
operation in an n-dimensional space because (m —n) of
the variables are hidden to us, e.g. , because either we do
not know about them or we do not have the technology
to measure them.

To make these ideas more precise we return to a brief
consideration of dynamical systems that were first for-
mally introduced in Sec. II. If we have a dynamical sys-
tem S, operating in some phase space X, then only three
possible types of trajectories may be observed. Either (1)
the trajectory is a single fixed point x, such that
x, =S,(x, ) for all times t; (2) the trajectory of S, is a
nonintersecting curve, which we express as S,.(x)WS,-(x)
for all times r' and t" that are not equal; or (3) S, has a
periodic trajectory, so S,(x)=S,+„(x) for all times t and
all points x in some subset A of the phase space X. In
this case we say that the trajectory has period co.

The only possible type of intersecting trajectory that a
dynamical system may have is a periodic one. To demon-
strate this, we assume that for some point x in the phase
space I we have S, (x)=S,. (x) for a time r" & t' Apply.
S, , to this relation and use the definition of a dynamical
system to obtain

S, , o S,.(x)=S,(x)=S, , o S,-(x)=S,+(, , )(x) .

With co=t" t') 0, we hav—e arrived at S,(x)=S,+ (x)
for all times t.

However, we often observe (apparently) nonperiodic
intersecting trajectories, and it is not terribly difricult to
understand how they might arise. As a simple example, a
periodic or aperiodic trajectory of a three-dimensional
oscillator might display an intersecting trajectory in a
two-dimensional projection of its phase space.

As alluded to earlier, this projection is called a trace, a
concept that is made more precise by the following. Let
X and Y be two topological HausdorF phase spaces,
y:Y—+X a given continuous function, and S, :Y~ Y a
dynamical system operating in the phase space Y. A
function h:R ~X is the trace of the dynamical system if
there is a point y in the space F such that h (r) =y(S, (y) )
for all times t.

Given the fact that intersecting but nonperiodic trajec-
tories are often observed in data, one is naturally led to
wonder under what circumstances such a trajectory can
be viewed as the trace of a higher-dimensional dynamical
system. It is actually easy to give a surprising answer to
a much more general question. Every continuous func-
tion in a space X is the trace of a single dynamical system
operating in a higher-dimensional phase space Y. More
precisely, we have the following theorem.

Theorem 7.4 (Lasota and Mackey, 1985). Let the
phase space X be an arbitrary but topological Hausdor6'
space. Then there is a second phase space Y, also topo-
logical and Hausdor6; a dynamical system S, operating
in Y, and a continuous function cp: Y~X such that every

continuous function h:R ~X is the trace of S, . That is,
for every h there is a point y in the phase space Y such
that h (t) =y(S, (y)) for all times t

There are important consequences for the behavior of
the entropy when one is considering the entropy of the
trace of a dynamical system.

If we have a dynamical system S, operating on Y, then
the entropy is always identically equal to the entropy of
the initial density, since it is impossible for the entropy of
a reversible system to change (Theorem 3.2). However,
this is not the case for the entropy of the density evolving
under the action of a trace of a dynamical system if the
trace is intersecting and nonperiodic. Thus we have the
following result.

Theorem 7.5. Let the phase spaces X and Y be topo-
logical Hausdor6' spaces and h:R ~X be an intersecting
and nonpenodic trace of a dynamical system S,:Y—+Y.
Then the entropy of densities evolving under the action
of the trace h is either constant or increasing.

Proof. The proof rests on the trivial observation that if
h is intersecting and nonperiodic, then at every intersec-
tion point x on the trajectory h the inverse h '(x) is not
unique. Therefore the trace h is the trajectory of a semi-
dynamical system, and since semidynamical systems are
irreversible, from Theorem 3.1 the entropy is either can-
stani or increasing.

Thus the simple act of taking a trace of a dynamical
system (with time-independent entropy) may be sufficient
to generate a system in which the entropy is increasing.
Of course, we do not know what the limit of this increase
may be, and the entropy may certainly approach a limit
considerably less than its maximal value.

However, there are certain types of traces for which
much more can be said about the behavior of the entro-
py. To see how this works we introduce the notion of a
factor of a transformation. I et X and Y be two diferent
phase spaces with normalized measures p~ and v~
and associated densities f~ and g„respectively, and

T, :X—+X and S,:Y—+ Y be two measure-preserving trans-
formations. If there is a transformation y:Y—+X that is
also measure preserving, i.e., if v, (y '(A))=p, (A) for
all subsets 3 of the phase space Y, and such that
T, && y = y&& S„then T, is called a factor of S, .

From this definition the trajectory of the factor T, is a
trace of the system S, . The connection between these
concepts and the behavior of the entropy is furnished by
the following theorem due to Rochlin (1964).

Theorem 7.6 (Rochlin, 1964). Every f~ exact transfor-
mation is the factor of a X automorphism.

The transformation y involved in our discussion of fac-
tors and traces is precisely what Misra et al. (1979) and
Misra and Prigogine (1981) refer to as a projection opera-
tor in their work on the generation of irreversible behav-
ior from reversible dynamics. The Rochlin theorem 7.6
serves as the analytic link in their work between reversi-
ble K autornorphism and f, exact transformations (or
strong or monotonic Markov operators).

As noted in Sec. V, since K automorphisms are inverti-
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Liouville equation =

Reversible
= baker transformation

ble, their entropy is forever fixed at its initial value by
Theorem 3;2. Qn the other hand, by Theorem 6.4 and
Corollary 6.5, we know that the entropy of an f, exact
transformation, which by the above theorem is the factor
of a K automorphism, increases smoothly to its max-
imum value of zero irrespective of the initial density with
which the system was prepared. Hence for this particu-
lar case we have a much stronger result than covered by
Theorem 7.5.

As a simple example of these points, again consider the
baker transformation, which is a K automorphism. We
have shown directly that the entropy of the baker trans-
formation is absolutely constant and equal to the value
determined by the choice of the initial density. However,
if we simply take the x portion of the baker transforma-
tion, it is a factor and is identical to the dyadic transfor-
mation T(x) =2x(modl), introduced in Sec. VI, which is
uniformly exact and whose entropy smoothly increases to
zero by Corollary 6.4. Goldstein and Penrose (1981)
have called this entropy a type of coarse-grained entropy.

There is a connection between the efFects of coarse
graining the phase space and taking the trace of a
dynamical system. In nontrivial coarse graining, we lose
some information about the exact values of the dynamical
variables. One could easily imagine the situation in
which we have m vanables, of which n were measured
with infinite precision, and (m n) of the—m were mea-
sured with some error. Thus the act of taking a trace is
just a more extreme case of coarse graining in which we
are not able to measure any of the (m n) variabl—es; i.e.,
the partition is trivial.

Viewed from this perspective, it is surprising that there
is such a difFerence between the results of a nontrivial
coarse graining of the phase space (no induction of ir-
reversible thermodynamic behavior), and examining only
the trace of a dynamical system operating in a higher-
dimensional space than our observations permit. Howev-
er, it is precisely trivial coarse graining. of a phase space
in which the evolution of densities is governed by the
Liouville equation (3.4) that leads to the Boltzmann equa-
tion and its successful predictions of the behavior of di-
lute gases. The Boltzmann equation describes the behav-
ior of a density evolving under the action of a factor of
the original dynamics. Thus there is a strong analogy be-
tween the dynamics of the Liouville equation and of the
Frobenius-Perron operator for the baker transformation,
while the dynamics of the Boltzmann equation are ana1o-.

gous to those of the Frobenius-Perron. operator corre-
sponding to the dyadic' transformation:

VIII. INTERACTIONS WITH A HEAT BATH

This section examines the consequences of hiving a
deterministic transformation experience a perturbation
from some outside source. Thus we are starting to con-
sider open systems, the mathematical analog of the in-
teraction between a system and a "heat bath. " Discrete
time systems are considered first in Sec. VIII.A, followed
by continuous time systems with dynamics described by
ordinary difFerential equations in Sec. VIII.B.

A. Open discrete time systems

Assume that, in genera1, a system evolves according io
a given transformation S(x, ). The qualifying phrase "in
general" means that the' transition x, ~S(x, ) occurs
with probability (1—e). In addition, with probability E,
the value of x, +& is uncertain. If x, =y is given, then, in
this case, x, + l may be considered as a random variable
distributed with a density K (x,y), which depends on y.

One interpretation of this process is that c corresponds
to the degree of coupling between the system under study
and ihe heat bath. If this is the case, then the parameter
c can be thought of as a number related to the ratio of
the fundamenta1 frequency of operation of the basic
deterministic system FD to the frequency of the outside
perturbation coming from the heat bath FI. Thus when

FD «FI„r.= 1 and the system operates almost as a. ran-
dom walk, while with FL, &&FI„we have z=O and the

. system evolves almost completely deterrninistically. We
will refer to the situation in which 0 & e & 1 as "loose cou-
pling, " while for c.=1, in which the inAuence of the
external system is always experienced, we will speak of
strong (or continuous) coupling. However, as will be-
come clear in Sec. VIII.A.3, precisely the same formula-
tion may be interpreted in a totally difFerent fashion.

1. An operator equation

The first step in the study of this process is the deriva-
tion of an equation for the operator I" that gives the
prescription for passing from the density f, of x, to the
density f, +, of x, +,. Assume that the dynamics of our
system operate in a phase space X (with positive measure,
of coul'sc), wlllc11 ls soII1c nlcaslllablc subset of R, and
that the dynamics S are nonsingular.

If the density f, of x, is given, we wish to know the
probability that some point x, +, is in a subset 3 of the
phase space. Clearly, x, + l may be reached in only one of
two ways: deterministically with probability (1—E) and
stochastically with probability c. In the deterministic
casex, +, ——S(x, ) and

Trace Trace ProbD(x, +, H A ) = ProbD(S (x, ) H A ) . (8.1)

Boltzmann equation = = dyadic transformation
Irreversible

The index X) denotes the deterministic situation. From
the definition of the Frobenius-Perron operator, the den-
sity of S (x, ) is Ps f, and, as a result,
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Proba(S(x, ) H A ) = f Ps f, (x)dx . (8.2) P«bp(x, +, & ~)= f P«bp(x, +, C Al x, =y)f, (y)dy .

If the stochastic perturbation occurs, and if y =x„then

Probp(x, +,P A ix, =y) = f K (x,y)dx .

(P denotes the perturbation. ) Since x, is a random vari-
able with density f„it is also the case that

Combining this relation with the previous one gives

Probp(x, +, & 2)= f f K(x y)f (y)dy dx .
X

From Eqs. (8.1)—(8.3) it follows that

(8.3)

Prob(x, +, H A)=(1 —e)ProbD(x, +, H 3)+eProbp(x, +, H A)= f (1 E)P—s f,(x)+ef K(x,y)f, (y)dy dx .
X

Since A is an arbitrary subset of the phase space, the den-
sity f, +, exists whenever f, exists and is, in fact, given

by

f, +,(x)=(1 s)Ps f, (—x)+Ef K(x,y)f, (y)dy .

Thus the full equation for the operator P describing the
evolution of densities in this mixed system operating with
both deterministic and perturbed elements is

I'f (x)=(1 c, )P& f (—x)+c,f K(x,y)f (y)dy . (8.4)

It is straightforward to show that the operator defined by
(8.4) is a Markov operator.

In investigating the properties of the evolution of den-
sities by the operator equation (8.4), and the consequent
behavior of the entropy of these densities, some mild re-
strictions on both the transformation S and the kernel E
are required. First, assume that the deterministic trans-
formation S satisfies

)S(x)] ~a, )x[+a, (8.5)

throughout the phase space, where ao &1 and a, are
non-negative constants. Second, since for fixed y, K (x,y)
is a density, it clearly satisfies

K(x,y)~0 and f K(x,y)dx =1 .

These conditions in conjunction with the requirement
that K be measurable means that K is a stochastic kernel.
Furthermore we shall always assume that for every y &0
there is a 6 & 0 such that

f K (x,y)dx ~ y,
for every y in X and subset E of X with p(E) (5, i.e., K is
uniformly integrable in x. Finally, it will always be as-
sumed that with bo + 1 and b, non-negative constants,

xK xydx~b y+b, . (8.6)

2. Noise-induced effects in loosely coupled
discrete time systems

We are now in a position to state our main results con-
cerning the behavior of the entropy of a discrete time

This condition is automatically satisfied if ihe phase
space X is bounded; but if it is unbounded, then (8.6)
prevents divergence of the trajectories tc infinity.

deterministic system coupled to a heat bath. The first of
these guarantees the existence of at least one state of
thermodynamic equilibrium and the evolution of the con-
ditional entropy to a maximum, though not necessarily to
zero, in the presence of noise. Thus the following result
is equivalent to the second-order formulation of the
second law of thermodynamics.

Theorem 8.1 (Lasota and Mackey, 1987). If S is a non-
singular transformation that satisfies (8.5) and K is a uni-
formly integrable stochastic kernel satisfying (8.6), then
for 0&e~ 1 the operator I' given by (8.4) is smoothing,
and thus asymptotically periodic, whenever ao(1 —e)
+boa. & 1.

Therefore, for any closed system whose dynamics
evolve through the action of a nonsingular transforma-
tion S satisfying (8.5)„placing it in contact with a second
system whose efFect on the first is a perturbation charac-
terized by a kernel K satisfying (8.6) leads automatically
to a situation in which the resulting open system is
asymptotically periodic regardless of the nature of the
original closed system S. Further, since this procedure
induces asymptotic periodicity, we know that at least one
state of thermodynamic equilibrium, characterized by a
stationary density f„exists and that the conditional en-

tropy H (P f tf„) is an increasing function with a limit-
ing value given by H,„(f,f, ), as defined in Theorem
3.4.

Under certain circumstances involving loose coupling
to a heat bath, there are even stronger results concerning
the behavior of the entropy, corresponding to the third-
order formulation of the second law of thermodynamics.
One such case is as follows.

Assume that the value of ihe perturbation to the sys-
tem S coming from the heat bath (when it occurs) at time
t + 1 is independent of the value of x, . Then the stochas-
tic kernel K(x,y) is independent of y, and the kernel is
simply K (x,y) =g (x), where g is the density of the per-
turbations g, . In this case, with the external perturba-
tions independent of the state of the system 5, the pertur-
bations g, could be interpreted as completely stochastic
or as coming from another deterministic system. They
could even be viewed as the trace of some deterministic
system whose Frobenius-Perron operator has g as its
unique stationary density. This is a slightly difterent situ-
ation from that explored in Sec. VII, where we con-
sidered the efFect on the behavior of the entropy of only
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examining the trace of a system. Now we are considering
the situation which could be interpreted as the perturba-
tion of a system by the trace of another system.

In this case, the operator equation (8.4) takes the sim-
ple form

Pf (x)=(1 e)P—s f (x)+eg(x), (8.7)

and there are some surprising consequences of making
the loose coupling independent of the state of the system
S. Namely, the following.

Theorem 8.2 (Losta and Mackey, 1987). If P is the
operator defined by (8.7), then IP'f I is f, exact.

Thus, by the simple expedient of loosely coupling a
system to a heat bath such that the system experiences
perturbations that are independent of the state of the sys-
tern, there will be a unique state of thermodynamic equi-
librium, and the conditional entropy of the coupled sys-
tem will globally converge to zero regardless of the na-
ture of the original system S. In fact, it is even possible
to write the unique stationary density f~ of the operator
P in Eq. (8.7), characterizing the thermodynamic equilib-
rium, as

3. Strong coupling and additive noise

A much different interpretation of this perturbation at
random times of a deterministically operating system is
possible and related to strong coupling (E= 1) between a
deterministic system and an external source of noise.

We consider the following. Take the quantities
to be d-dimensional random vectors and let

the phase space X be R ". Then for a given I g't I and a dy-
namics S of two variables, S:R XR"—+E, we may as-
sume that the system goes from x, =y to xt+&=S(y, gt).
Let K(x,y) be the density of S(y, gt ). Then the density
will always exist if S(y,z) as a function of z is nonsingu-
lar. If this is the case, then Eq. (8.4) with E= 1 describes
the evolution of the densities corresponding to

xt+i=S(x„gt) . (8.8)

These external perturbations, appearing through the

I gt J, could be entering the system in a variety of ways,
for example, through fluctuations in coeScients or in a
multiplicative fashion as

xt+, =gtS(xt) .

To give a concrete and commonly considered example,
suppose that the noise is additive, S(y, z)=S(y)+z, so
(8.8) becomes

f —g ( 1 e)kPkg
k=0

To show that this is the unique stationary density, note
that since (((1—e)"P"g() «(1—e)"[igi[ by the contractive
property of Markov operators, the series in f„ is abso-
lutely convergent. Therefore substitution of the expres-
sion for f, into Eq. (8.7) shows that Pf, =f„. -

xt+, =S(xt)+gt . (8.9)

Pf (x ) =f „f (y)g(x —S (y) )dy . (8.10)

For the special case of additive noise, a comparison of
Eqs. (8.10) and (8.4) shows that (8.10) can be derived in-
dependent of any assumption concerning the nonsingu-
larity of S. Furthermore, in this case the condition given
by Eq. (8.6) reduces to

(8.1 1)

Thus we have an immediate corollary to Theorem 8.1 for
systems with noise added, as in (8.9).

Corollary 8.3 (Lasota and Mackey, 1987). If S (non-
singular or not) is a transformation operating in the
phase space R, satisfies inequality (8.5), and experiences
an additive perturbation [as in Eq. (8.9)] with a finite first
moment, then the sequence IP'f I, where P is the Mar-
kov operator defined by Eq. (8.10), is asymptotically
periodic for all densities f.

Hence for all situations in which perturbations are
added to a transformation S, the efFect is to induce
asymptotically periodic behavior regardless of the nature
of the original unperturbed dynamics S (remember that S
may even be singular). Because of this, we also know
that noise induces at least one state of thermodynamic
equilibrium, whose stationary density is given by Eq.
(3.16), and guarantees the smooth approach of the condi-
tional entropy to a maximum (Theorem 3.4).

For some transformations, the induction of asymptotic
periodicity by the addition of perturbations would not be
at all surprising, ' e.g., the addition of a stochastic pertur-
bation to a transformation with an exponentially stable
periodic orbit gives asymptotic periodicity. However,

It is rather surprising that a dynamics of the form de-
scribed by Eq. (8.9) may also appear as the consequence
of taking a factor or trace (Lasota and Mackey, 1989).
To illustrate this point we once again return to the baker
transformation introduced in Eq. (5.2). As pointed out in
Sec. VII.B, the x portion of the baker transformation
has a trajectory determined by x, +,= T(x, ) where
T(x)=2x (modl). As a consequence, the baker transfor-
mation (5.2) can be rewritten in the equivalent form

xt+1 T(xt)t yt+1 2yt+kt 1

where gt= —,'1(,&2,)(xt). From classical results of Borel,
the gt defined in this way are independent random vari-
ables. As a consequence, if we take only the y factor of
the baker transformation, we end up with a dynamics de-
scribed by an equation that is simply a special case of
(8.9). Thus taking a trace of a dynamical system in two
different ways may yield results with quite different inter-
pretations.

If the sequence [gt I of random variables in Eq. (8.9)
has a common density g, then x, + „subject to the condi-
tion that x, =y, has the conditional density g(x —S (y) );
and since E(x,y) =g(x —'S(y) ), Eq. (8.4) becomes
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the surprising content of Theorem 8.1 (and Corollary 8.3)
is that even in a transformation that has aperiodic limit-
ing behavior, the addition of noise will result in asymp-
totic periodicity.

This phenomenon is easy to illustrate by considering

x, +i=S(x, ) (modl), (8.12)

5-

(c]

where S(x)=ax+I,, 0&a(1, and 0(A, &1. This map
is an example of a class of transformations considered by
Keener (1980). From the results for general Keener
transformations, there exists an uncountable set A such
that for each X in A the rotation number corresponding
to the transformation (8.12) is irrational. For each such
A, the sequence Ix, ] is not periodic and the invariant lim-
iting set

A S'([0,1]) (8.13)
k=0

is a Cantor set. The proof of Keener's general result
oIIII'ers a constructive technique for numerically determin-
ing values of k that approximate elements of the set A.

The transformation (8.12) satisfies the conditions of
Corollary 8.3 and is, therefore, an ideal candidate to illus-
trate the induction of asymptotic periodicity by noise in a

transformation whose limiting behavior is quite erratic in
the absence of noise.

To be specific, pick u= —,
' and use the results of Keener

to show that A, = —,", is close to a value in the set A for
which the invariant limiting set (8.13) should be a Cantor
set. Asymptotic periodicity is illustrated by studying

x, +,=(ax, +A, +g', ) (modl ), (8.14)

where the g, are random numbers uniformly distributed
on [0,8]. Figure 8 shows the eFect of this stochastic per-
turbation for 0= —,', and these values of a and X. Figures
8(a)—8(c) show the densities obtained after 10, ll, and 12
successive interactions of an initially uniform density
f (x)=1 on [0,1]. The thirteenth density is identical with
the tenth, the fourteenth with the eleventh, etc., thus in-
dicating that the sequence of densities is asymptotically
periodic with period 3. The bifurcation behavior of these
densities as a function of ihe noise amplitude (9 has been
studied by Provatas and Mackey (1989).

4. f * exactness induced by additive perturbations

The fact that additive noise in a system strongly cou-
pled to its environment can induce asymptotic periodici-
ty is important for the understanding of how the cou-
pling of a system to a heat bath may cause the entropy to
become an increasing function of time. However, under
certain circumstances there are even stronger results con-
cerning the effects of additive noise. Namely, additive
noise may induce f, exactness with a consequent in-
crease in the conditional entropy to its maximal value of
zero corresponding to the strongest (third-order) form of
the second law of thermodynamics.

This is given in an extension of Corollary 8.3 that, in
conjunction with Theorem 6.4, gives a sufhcient condi-
tion for additive noise to cause the conditional entropy to
approach zero. This result is as follows.

Theorem 8.4 (Lasota and Mackey, 1987). Assume that
the transformation 5:R"~R" and the density g of the
perturbation satisfy inequalities (8.5) and (8.11). Further
assume that there exists a point zo in the phase space R"
and a number

PlaO+a )rO&--
1 a 0

such that

5-
g(x) &0 for ~x —zo~ +ro . (8.15)

Then the Markov operator defined by Eq. (8.10) is f„ex-
act.

B. Open continuous time systems

FICx. 8. Noise-induced asymptotic periodicity in the Keener
map (8.12}. See the text for parameter values and further dis-
cussion.

1. An evolution equation

Section III.B considered the behavior of the entropy of
densities evolving under the action of flows governed by
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the system of ordinary difFerential equations

x,'=F, (x), i =1, . . . , d

known as a diffusion term.
Equation (8.20) can also be written in the equivalent

form

operating in some region of k" with initial conditions
x;(0)=x;o. Here we examine the behavior of the sto-
chastically perturbed analog

d
x =F,(x)+ g cr,.-(x)gi, i =1, . . . , d

j=l
(8.16)

with the same initial conditions, where o;i(x) is the am-
plitude of the stochastic perturbation and pi =du~/dt is
a "white-noise" term that is the derivative of a Wiener
process.

Equation (8.16) is a stochastic difFerential equation. As
in the case of a nonperturbed system of ordinary
diff'erential equations, if the functions F;(x) and o';J(x)
satisfy I.ipschitz conditions

Bu =L+u,
Bt

where the operator L+ is given by

dL+= —g F;(x)+—g a;J(x) .
i=1 ij=1 i j

The backward Eolmogorov equation is

Bu =L u,

where the operator

L = —QF, (x) +—g a;(x)

(8.21)

(8.22)

(8.23)

(8.24)

and

IF;(x)—F;(y)l ~Llx —yl, x,yeR", i =1, . . . , d

Prob(x (t) EB}=f u (t, s)ds . (8.17)

We set

d
a;-(x)= g o;k(x)cr k(x),

IG =1
(8.18)

which is easily shown to be non-negative, and assume a
stronger condition, known as the uniform parabolicity
condition:

d d

a; (x)A, ;XJ )p g A,;, (8.19)

where p) 0. If the a; (x) satisfy the uniform parabolicity
condition (8.19) and if they and the F~(x) are continuous
and C, then u (t,x } exists and is difFerentiable.

The evolution equation for the density u (t, x) is given

by

B[F,(x)u] 1 d 8 [a,"(x)u]+—Q . (8.20)Bt,.
1 BX; 2; ~

i BxiBx.

This evolution equation is known variously either as the
Fokker-Planck equation or the forward Kolmogorov equa-
tion and will be the foundation for our investigations into
the effects of noise on the evolution of densities in sys-
tems whose dynamics are described by ordinary
differential equations. The erst term on the right-hand
side is usually called a drift term, while the second is

lo;, (»—o;, (y)l ~Llx —yl, x,y&R", i j =1, . . . , d,
where L )0, then Eq. (8.16) has a unique solution (Gikh-
man and Skorokhod, 1969).

Now we turn to a consideration of the equation that
governs the evolution of the density function of the pro-
cess x(t) generated as the solution to the stochastic
differential equation (8.16).

This density, denoted by u (t,x), is defined by

is adjoint to L+. Remember that for any two L' func-
tions u and v, operators L+ and L that are adjoint to
one another satisfy

f,v(L+u)dx =f,u(L v)dx .

2. Solutions of the Fokker-Planck equation

If the stochastic differential equation (8.16) has an ini-
tial condition x(0) and an associated initial density g,
then the solution u(t, x) of the Fokker-Planck equation
satisfies u(O, x)=g(x). Further, if the solution of the
Fokker-Planck equation (8.17) can be written in the form

u (t,x)=f I (t,x,s)u (O,s)ds,
R

(8.25)

where the kernel I is independent of the initial density
u (O, x) and lim, o u (t,x) =u (O, x), then u (t,x) is said to
be a generalized solution of the Fokker-Planck equation.
Under some standard regularity conditions on the
coeScients of the Fokker-Planck equation the general-
ized solution is unique. Since u is a density, the general-
ized solution corresponds to the evolution of the system
to a unique thermodynamic state.

From Eq. (8.25) for the generalized solution, a family

I P'J, &0 of integral operators can be defined by

P f(x)=f(x), P'f(x)= f „I (t,x,s)f(s)ds .
R

(8.26}

If the generalized solution is unique, then the operator P
is a Markov operator.

It is instructive to compare the dynamical equations
for densities evolving under the action of continuous
Qows in the noise-free and noise-perturbed situations.
For the noise-free closed system in Sec. III.A, the evolu-
tion of the Frobenius-Perron operator P' is determined
by the partial difFerential equation (3.2), the Liouville
equation. When the very same system is subject to exter-
nal noise from the environment, then the evolution of the
Markov operator P'f is governed by the Fokker-Planck
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equation (8.20), which is just the same as the noise-free
equation (3.2) with the addition of the difFusion term.

dr q d0=r(c r—), —=2m,
dt

(8.29)

3. The behavior of entropy

(8.27)

where a and P are positive constants, is involved with a
suScient condition stating that the evolution of densities
by the Fokker-Planck equation is described by an f, ex-
act Markov operator. Specifically we have third-order
form of the second law.

Theorem 8.5 (Lasota and Mackey, 1985). Assume that
there is a unique generalized solution of the Fokker-
Planck equation and that there exists a I.iapunov func-
tion V satisfying (8.27). Then the Markov operator P'
defined by the generalized solution of the Fokker-Planck
equation and given in (8.26) is f~ exact, and the condi-
tional entropy H, (P'f

~f, ) approaches its maximal value
of zero as t~ao.

It is a rather simple demonstration that the unique sta-
tionary density f„defined by

lim P'f (x)=f, (x),
t —+ oo

the existence of which is guaranteed by this theorem, is,
under the conditions of the theorem, given by the
(unique) solution of the elliptic equation

B[F;(x)u] 1 d 8 [a;J(x)uj
(8.28)

As a simple example of the application of Theorem 8.5,
consider the two-dimensional oscillator system

In Sec. IV.C we showed directly that the entropy of a
closed continuous time system with dynamics described
by ordinary difFerential equations was absolutely constant
and equal to the entropy of the initial density with which
the system was prepared. As pointed out, this result is
not surprising, since dynamics described by ordinary
differential equations are reversible; Theorem 3.2 shows
that the entropy is constant for all reversible systems.

%'ith the material of the previous sections we are now
in a position to examine the effects of perturbations on
the entropy of these continuous time reversible systems.

In presenting our first result we introduce the concept
of a Liapunou function, by which we mean any function V
with the following properties.

(1) V(x)) 0 for all x.
(2) lim~„„V(x)=
(3) (BV/Bx; ) and (8 V/Bx;x ) are continuous for

ly J 1) ~ ~ ~ y do

(4) V(x) &Ke " and ~BV(x)/Bx; &Ke ~ ~, where K
and M are positive constants.

The existence of a Liapunov function V that satisfies
the differential inequality

BV " BV~
a,~(x) + g F;(x) & —aV(x)+P,

in (r, 8) space. The system (8.29) is an example of a sys-
tem with a supercritical Hopf bifurcation. For c &0 the
origin r~ =0 is the globally stable steady state, while for
c & 0 all solutions are attracted to the limit cycle defined
by r = &c . Following Mackey et al. (1989) we consider
the effects of noise in the analogous one-dimensional sys-
tem

dx =x(c —x ),dt
(8.30)

dx
dt

=x(c —x )+o.g; (8.31)

so there is always a positive probability that x (t) may
take on negative values, starting from a positive position,
and vice versa. Therefore it is natural to consider this
problem for —oo &x & ao.

The stationary solution of the Fokker-Planck equation
corresponding to (8.31) is

ePx (2c —x )/4c
&e (8.32)

where p=2c/o . The normalization constant Ki always
exists and thus the f, (x) defined by (8.32) is a stationary
density. To use Theorem 8.5, let V(x)=x so V is a
Liapunov function. Inequality (8.27) becomes

2o + (2c +a )x —2x &P .

This is clearly satisfied for arbitrary fixed a&0 and
sufficiently large /3) 0, thus proving the f, exactness of
the generalized solution of the Fokker-Planck equation
corresponding to Eq. (8.31) for additive noise applied to
the system (8.30). As a consequence of this we also know
that the effect of the additive noise has been to induce the
conditional entropy to approach its maximal value of
zero.

In Fig. 9(a) we graph the location of the maxima of the
stationary density given in Eq. (8.32) as a function of the
parameter c. As might be expected on intuitive grounds,
for c &0 the stationary density f, (x) has a single max-
imum centered at x =0, the location of the globally
stable steady state of the unperturbed system (8.30).
Once c )0, the stationary density f, (x ) shows two maxi-
ma centered at x =+&c, the locally stable steady states
of Eq. (8.30), and a local minimum at the unstable steady
state x =0. Thus, if we were to calculate various system
averages and plot them as a function of the parameter c,
a qualitatively similar pattern would emerge. If, for ex-
ample, the parameter were to be viewed as related to sys-

obtained by ignoring the angular coordinate 0 in Eqs.
(8.29). For Eq. (8.30), when c &0 all solutions are at-
tracted to the single steady state x~ =0. Further, when
c )0 the steady state x, =0 is unstable and x (t)~v'c, if
x (0)=xo )0, while x (t)~—&c for xo & 0.

In the presence of additive noise, the stochastic
differential equation corresponding to Eq. (8.30) is
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—+I+(1+c)'~, for xo & —x~

x (t)~ ~ 0, for —x, &xo &x,
Vl+(1+c)'~, for x+, &xo,

where x+, =+I+(1+c)'~ and x~ =+1—(1+c)'~.
For c & 0, the steady state x~ =0 becomes unstable, and
this tristable behavior gives way to a bistability such that

—V 1+(1+c)'i, for xo &0,x(t)~
+1+(I+c)'~, for xo)0.

The stochastic differential equation corresponding to
Eq. (8.33) is

dx =x(c+2x —x )+op .2 4

dt
(8.34)

As before, we consider this'problem for —Dc &x & Oo.

The stationary solution of the Fokker-Planck equation
corresponding to the stochastic differential equation
(8.34) is

egx (3c+3x —x )/6c
2e (8.35)

FIG. 9. Locations of the maxima (solid lines) and minima
(dashed lines) in the stationary densities of the noise-induced f~
exact systems (8.31) and (8.38). The behavior in (a) as a function
of the parameter e is like that seen in second-order phase-
transition curves, while that of (b) is like that observed in first-
order phase transitions. See the text for more detail.

tern temperature or pressure, the resulting graph has the
characteristics of a second-order phase transition
(Horsthemke and I.cfever, 1984). It is important to real-
ize that this appearance is due exclusively to the presence
of the additive noise in the system.

The addition of noise to continuous time systems may
result in different types of behavior similar to those found
in first-order phase transitions, as illustrated by consider-
ing a second system

dr =r(c+2r —r ), =2~,4 dO
dt

which has a subcritical Hopf bifurcation at c = —1. As
in the previous example we treat the effects of noise in
the one-dimensional system

where P is as before, and-again X2 always exists. There-
fore f, (x) is a stationary density. Furthermore, use of
the same Liapunov function allows us to apply Theorem
8.5 to prove the convergence of the conditional entropy
to zero.

The differences between these two systems immediately
become apparent in Fig. 9(b), which again shows the lo-
cation of the maxima of the stationary density (8.35).
For c & —1, the stationary density f, (x) has a single
maximum located at x =0, the globally stable steady
state of the unperturbed system (8.33). For —1 &c, &0,
where the tristable behavior occurs, the stationary densi-
ties still have an absolute maximum at x =0, but they
also display maxima at x =++1+(1+c)'~ that become
progressively more prominent as c increases. Finally, for
c &0 the stationary density has absolute maxima located
at x =++I+(I+c)'~ and a local miminum at x =0.
Translated into the language of a phase diagram, this be-
havior is precisely what is found in first-order phase tran-
sitions.

A second theorem giving a strong (third-order) version
of the second law may also be established. This is given
in the following.

Theorem 8.6. Assume that there is a unique general-
ized solution (8.25) to the Fokker-Planck equation (8.20),
and that there is a unique stationary density

dX =x(c+2x —x ) .2 4

dt
(8.33)

Then

lim u (t,x)= lim P'f'(x) =f„(x) .
t —++ oo t —++ oo

The solutions of Eq. (8.33) have the following behavior.
For c & —1 all solutions x (t)~0 regardless of the initial
condition xp ~ However, for —1 & c &0 there is a trista-
bility in that

lim H, (P'f
~f, ) =0 .

t —++ oo

Proof. From Eqs. (3.13) and (8.21) and from the ad-
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jointness of I.+ and I, , we may write

u
u L, log fdt x

(8.36)

However, it is easy to show that

Q

u

Again using the adjointness of I + and I, and the fact
that since f, is a stationary density it satisfies Eq. (8.28),
or L+f, =—0, we finally have

dH, 1 ~ f,
dt 2 x u

X dx . (8.37)
8 u

Bx.

Since the a; satisfy the uniform parabolicity condition
(8.19), we have

tX. SUMMARY

Here we have identified thermodynamic states with
densities and shown how the evolution of these states
may be studied by an examination of the evolution of
densities under the action of integral operators. Station-
ary densities of these operators correspond to states of
thermodynamic equilibrium. Invoking a maximum en-
tropy principle, we have demonstrated that the entropy
will have an absolute maximum if and only if a thermo-
dynamic state is characterized by a generalization of the
density of the microcanonical or canonical ensemble. Er-
godicity of the system dynamics has been shown to be
both necessary and sufficient for the existence of a unique
state of thermodynamic equilibrium. Alternately, the dy-
namic property of asymptotic periodicity may imply that
there are multiple states of relative thermodynamic equi-
librium.

with the equality holding if and only if u =f„.
It is interesting that if we write a; (x)=o h (x) where

0 ~ h (x) ~ 1, then Eq.. (8.37) can be written as

dH, =o. K,
dt

where K ~0. This clearly shows how the rate of conver-
gence of the conditional entropy to zero is dependent on
the amplitude o. of the noise.

With respect to the question of convergence, asyrnptot-
ic periodicity has been shown to bc sufticient for the con-
vergence of the entropy to a relative maximum that will,
in general, depend on the way in which the system is
prepared. The much stronger property of exactness is
both necessary and su%cient for the global convergence
of the entropy to its maximum value.

Given the dual observations that exactness is a proper-
ty that only irreversible systems may have and that all of
the laws of physics are framed in terms of reversible sys-
tem dynamics, a clear problem exists with current at-
tempts to formulate a satisfactory statistical mechanics.
The first possibility is that the laws of physics are in-
correctly forInulated, which is not considered further
here. Three alternate possibilities are considered.

In the first we show that if the system dynamics are at
least mixing, then nontrivial coarse graining of the phase
space will lead to a situation in which the entropy will
evolve to its maximum value, but it will do so irrespective
of the direction of time. In the second, closely related to
the first, we consider the possibility that we have access
to only a restricted number of the dynamical variables
(trivial coarse graining, or taking the trace of a larger dy-
namics) and show that under this circumstance the entro-
py may appear to evolve to a relative or absolute max-
imum. In the third and last possibility we examine the
CC'ects of interactions with a heat bath. Under a variety
of circumstances this may lead either to asymptotic
periodicity and a consequent increase of the entropy to a
relative maximum, or to exactness and the global in-
crease of thc cIltI'opy to aIl absolute maxiInum.
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