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Nonzero neutrino masses would provide new, unique information on particle physics beyond the standard
model. Neutrino flavor oscillations provide the most sensitive method for directly testing for small neutri-
no masses. %'hen the oscillations occur in matter, a resonance can occur that dramatically enhances the
Aavor mixing and can lead to conversion from one neutrino Aavor to another. This is an attractive solu-
tion to the long-standing "solar neutrino problem. " The phenomenon of neutrino oscillations in matter is
reviewed. Analytic descriptions of the neutrino Aavor survival probability in matter are considered in de-
tail. A discussion is given for applications of neutrino oscillations in matter for the sun, Earth, superno-
vae, and the early universe.
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I. GENERALITIES

A. Introduction

It has been three decades since the possibility of neutri-
no oscillations was first suggested (Pontecorvo, 1958,
1969; Maki et a/. , 1962). Even though no firm experi-
mental evidence for their existence has been established,
the search for neutrino Aavor mixings has been conduct™
ed with ever -increasing vigor. The main reason for this
enthusiasm is that the idea seems extremely reasonable in
the framework of our current theoretical understanding
of elementary-particle physics.

Theoretically, in the standard model of particle phys-
ics, neutrinos are usually assumed to be purely left hand-
ed and massless. However, there is no compelling reason
to assume this. The standard model, with its numerous
arbitrary parameters, is considered by many as the low-
energy limit of a more complete theory. In such unified
theories, one generally. does have massive neutrinos. If
neutrinos are massive, then there should be a leptonic
mixing matrix corresponding to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The lepton-quark analogy is
now complete.

Experimentally, the phenomenology of light neutrinos
is very hard to distinguish from that of massless neutri-
nos. However, with small neutrino masses come small
neutrino mass difFerences and the possibility of macro-
scopic oscillation wavelengths. The phenomenon of os-
ciHation is very common in classical as well as in
quantum™mechanical systems. A familiar example is that
of Ko-Eo oscillations. Because of the CKM mixing ma-
trix, weak interactions induce transitions between Ko and
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Eo. Thus the mass cigcnstates are admixtures of Ao and
Ko. As a consequence, if we start with a beam of, say,
Ko, as it propagates in time it will oscillate between the
states E and K . However, there are some difFerences
bctwccn kaon and ncutI'1no osclllatlons. Ko-Ko mlxlng 1s

expected to be maximal, but the amplitude of neutrino
mixing is bounded by the lepton mixing matrix. Further-
more, the kaons decay while the lifetimes of neutrinos
with small masses are negligible.

Having established the qualitative aspects of neutrino
oscillations, it remains to treat the problem quantitative-
ly. Unfortunately, not much is certain about neutrino
mass and mixing parameters. Experimentally, - bounds on
the masses and mixing angles exist, but no definitive evi-
dence for a nonzero neutrino mass has been established.
Theoretically, there seems to be a consensus that the
"seesaw" model provides a nice explanation for why neu-
trino Inasses are small. Generally, this model gives a
hierarchy of neutrino masses and small mixing angles. In
the analysis to follow, we shall occasionally fall back on
this general expectation as a guide for discriminating be-
tween the many logical possibilities for neutrino mass
and mixing parameters.

So far, we have tacitly assumed that the neutrinos are
propagating in vacuum. Since the neutrino cross section
is proportional to GF, the mean free path of a neutrino is
so large that there seems little chance for the medium to
inhuence the neutrino propagation. This turns out not to
be the case, as pointed out by Wolfenstein (1978a, 1978b,
1979). The point is that for neutrino oscillations the
relevant quantity is the phase of the neutrino wave func-
tion. Since the phase is altered to order 6~ by the medi-
um, neutrino oscillations can be influenced greatly. As
we shall discuss later, the characteristic length for phase
alteration is about 10 cm, for a medium with a density of
1 g/cm, versus the mean free path, about 10' cm in the
same medium. Thus neutrino oscillations in an astro-
physical setting can be very difFerent from that in vacu-
uIn. Even more interesting is the fact that the oscilla-
tion efFect takes on a resonance form, as pointed out by
Mikheyev and Smirnov (1985, 1986a, 1986b). If the con-
ditions for a resonance are met, the neutrino flavor mix-
ing can become maximal. If the neutrino propagates adi-
abatically through the resonance, the initial flavor of the
neutrino is converted to another flavor. This is known as
the MSW (Mikheyev, Smirnov, and Wolfenstein) efFect.

A prime motivation for the study of neutrino oscilla-
tions has been the long-standing. "solar neutrino prob-
lem. " The theory of the dynamics of the sun has been in
place for -a long time and has settled down in the forIn of
a "standard solar model. " However, the Cl experiment
(Davis, 1988), which has been running for two decades,
has found a consistent discrepancy between ihe predicted
and the observed solar neutrino cruxes. During this long
period. , both the Cl experiment and the model of the
sun have undergone thorough reinvestigation. There ap-
pears to be a real efFect in the ratio of —,

' to —,
' between

measured versus predicted fIux. More recently, in the

water Cherenkov detector Kamiokande II, an upper
bound of about —,

' has been established for the same ratio
(Mann et al. , 1988). Among the many theoretical ideas
proposed, neutrino oscillations seem to ofFer the most
reasonable solution.

It has long been realized that vacuuIn neutrino oscilla-
tions could solve the solar neutrino problem. Vacuum
oscillations could reduce the solar neutrino Aux by —,

' or —„'

if the mixing were maximal between three or four Aavors,
respectively. This is somewhat distasteful since, as men-
tioned previously, the general expectation is that the mix-
ing angles are small. However, with the inclusion of
rnatter efFects, large-reductions are possible for very small
vacuum mixing. It turns out that for the solar neutrinos,
the resonance conditions would be met for a "v„"or a
"v " neutrino mass of 10 —10 eV and for mixing an-
gles sinO) 10 . Both of these quantities are easily
within the bounds of theoretical estimates. This is why
the neutrino oscillation, and, in particular, the MSW
efFect, is regarded as the most plausible candidate for the
solution of the solar neutrino problem.

There are other ways to solve the solar neutrino prob-
lem (for a short review see, e.g., Weneser and Fried-
lander, 1987) through extending the properties of neutri-
nos. One such proposal is to give the v, an extremely
large magnetic moment. Then the left-handed neutrino
that is produced can rotate into a right-handed neutrino
that does not interact in a detector. Another proposal is
that the solar neutrinos can oscillate into sterile neutrino
states. In general, these proposals require radical exten-
sions of the standard model, and we shall not consider
their details further.

There exists an earlier, methodical review of neutrino
oscillations in matter by Mikheyev and Smirnov (1987c).
In the short time since that review there has been consid-
erable progress. For example, the analytic description of
the MSW efFect has improved. There is a new, indepen-
dent measurement of the solar neutrino Aux, and the neu-
trinos have been detected from a nearby supernova.

' In
the present paper we have tried to give a comprehensive
review of neutrino oscillations in matter with an em-
phasis on practical, physical applications.

This review is divided into four parts. In Sec. I we
present a very brief overview of the current status of neu-
trino physics. Section I.B reviews the dominant theoreti-
cal Inodel for neutrino masses, the seesaw mechanism.
Section I.C summarizes the results of experimental limits
on neutrino masses. The remainder of the review con-
centrates on neutrino oscillations in matter.

In Sec. II we develop the tools to describe quantitative-
ly the MS& efFect. Section II.A reviews the theory of
neutrino oscillations in vacuum. Section II.B derives the
wave equation for neutrinos propagating in matter. The
next two sections then discuss analytical techniques for
solving this equation, for two neutrino fIIavors in Sec. II.C
and for three neutrino flavors in Sec. II.D.

In Sec. III we apply the result of Sec, II to difFerent
media and difFerent sources of neutrinos. Section III.A
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discusses resonant conversion of neutrinos in the sun and
the neutrino parameters that solve the solar neutrino
problem. Section III.B reviews rnatter-enhanced mixing
of neutrinos propagating through the Earth for various
sources of neutrinos. Section III.C discusses aspects of
resonant conversion of supernova neutrinos: what can be
learned from SN 1987A or possibly from the next super-
novas Section III.D reviews neutrino oscillations in the
early universe.

Section IV consists of a summary of our review, with
conclusions.

B. "Expected" neutrino parameters

+[(A +p;)'i +A]/2 . (1.2)

In the SUc( 3 ) X SUL (2) X U r(1) standard model the
neutrinos can be massless. When one considers exten-
sions of the standard model, such as in many unified
theories, the neutrinos usually pick up masses. Although
there are many schemes (Langacker, 1981) to explain
why these masses should be small, most are just varia-
tions on one basic theme —a seesaw mechanism (Gell-
Mann, et al. , 1979; Yanagida, 1979). To illustrate these
schemes and their predictions we shall discuss one simple
version of the seesaw mechanism. However, our exam-
ination of neutrino mixing in matter will not be restricted
to any particular neutrino mass mechanism. The discus-
sion here is meant to serve as a guide to what present-day
wisdom gives as the favored neutrino parameters.

For three generations of left- and right-handed neutri-
nos the seesaw mechanism suggests the following 6X6
neutrino mass matrix,

0 ma /2

ID /2 M~

Here mD is a 3 X3 Dirac mass matrix and M~ is a 3 X 3
Majorana mass matrix. The neutrino Dirac mass matrix
mD is expected to be similar to the quark and charged-
lepton Inass matrices, so the generation structure of the
known fermions implies that p3))p2)) p&, where p; are
the three eigenvalues of mD. mD can be diagonalized by
two unitary transformations Y and V, Yma V=p;6; .
Mz is a difFerent type of mass term that cannot occur for
charged fermions. This term breaks the global U(1) sym-
metry, the lepton number, and is expected to be generat-
ed at some large unification scale, A ))p;.

As an example, let us assume that there is only one
heavy scale and that M~ is diagonal, so that M~ =A
times the identity matrix. In this case the algebra
simplifies. The mass eigenvalues are given, in general, by

ly by the unitarity transformation 8' such that
O' M8'=diagonal. The matrix 8'is given by

Y 0 C S
—s c'

where Y and V are the matrices that diagonalize mD and
C=coso;5;., S=sin0;5J with tan28;=p;/A (see, e.g.,
Cheng and Li, 1980). The heavy neutrino coupling to the
charged weak currents is suppressed by sin8, =p;/A, but
the light-neutrino mixing matrix depends on cosO;=1
and hence is relatively unafFected by the seesaw mecha-
nism.

Since mD is expected to be similar to the charged-
fermion mass matrices, the light-neutrino mixing matrix
is expected to be similar to the Inixing matrix in the
quark sector. We shaH define the light-neutrino mixing
matrix as

so that the charged-lepton current is proportional to
l U;v;. Comparing this with the quark weak current,
we see from the above discussion that a reasonable
order-of-magnitude guess for the neutrino mixing matrix
1S

U=UKM (1.6)

where UKM is the Cabibbo-Kobayashi-Maskawa quark
mixing matrix. This neglects the mixing with the heavy-
neutrino states.

What to expect for the light-neutrino masses, Eq. (1.3),
is less certain than what to expect for the light-neutrino
mixings, Eq. (1.6). The largest uncertainty lies in what to
choose for the heavy-mass scale A. There are a number
of choices for the scale A, leading to diFerent values for
m;. If we take A to be 10' GeV, a typical grand
unification scale, and p3=m, then m3 =10 eV. This
mass value can be smaller or larger by several orders of
magnitude, since we may identify the large mass with
a A (assuming it is radiatively generated) or with

ApL~NcK ( =10' GeV). These mass values are thus easi-

ly compatible with the ranges required in the MSW
eFect.

Another uncertainty for the neutrino masses concerns
what to expect for the nature of the neutrino mass hierar-
chy. Equation (1.3) predicts that the light-neutrino
masses should vary approximately as the square of the
charged-fermion masses. However, this can change if
one does not make the assumption that Mz is a diagonal
mass matrix. Then the three light-neutrino mass eigen-
states that couple to the charged leptons would have the
approximate mass matrix

For the light eigenvalues this takes the approximate form m =mDM~ ma
—1 T (1.7)

m, =p;/A . (1.3)

The mass matrix M in Eq. (1.1) is diagonalized exact-

(see, e.g., Terry and Kuo, 1981). Structure in M~ would
change the predictions of Eq. (1.3). It is not unreason-
able to expect that a hierarchical structure in Mz could
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exist and that the variation of the light-neutrino masses
with the charged-fermion masses would be linear, cubic,
or something else. Such structure in MR would similarly
affect the neutrino mixing matrix. The hierarchy in mix-
ing angles expected in Eq. (1.6) could be increased or de-
creased, analogous to the change in the neutrino mass ra-
tio.

C. Experimental constraints on neutrino
masses and mixings

Here we shall give a brief review of the present experi-
mental limits on neutrino masses. %'e shall emphasize
limits on light neutrinos and shall not discuss limits on
heavy, fourth-generation neutrinos. For details on this
subject, see, e.g., Gronau et al. (1984); Gilman (1986);
Babu et al. (1989), and references therein. We shall also
not discuss limits on neutrino masses from cosmology.

1. Kinematic limits

A list of limits on neutrino masses from kinematics is
given in Table I. Here m(v ) denotes the mass of the
neutrino that couples dominantly to the charged lepton
of species a. The first four entries are from observation
of the electron spectrum from tritium decay. A nonzero
neutrino mass means that less kinetic energy is available
for the electron, so that the high energy end point of the
spectrum is decreased. The first entry in the table indi-
cates a possible nonzero neutrino mass observation by
ITEP (the Institute of Theoretical and Experimental
Physics; see Boris et al. , 1987). However, this possibility
has not been confirmed and, in fact, is barely compatible
with other studies of tritium decay; Zurich (Fritschi
et a/. , 1986), LANL (Los Alamos National Laboratory;
see Wilkerson et ar. , 1987), and INS-Tokyo (the Institute
for Nuclear Study —University of Tokyo; see Kawakami
et al. , 1987).

A limit. on m (v ) comparable to these comes from the
recent observation on neutrinos emitted from the super-
nova 1987A in the Large Magellanic Cloud. The neutri-
nos were detected with energies of tens of MeV on a time
scale of a few seconds. This agrees with the theoretical
models for supernova collapse. The hot neutron star pro-
duced just after the collapse of the core is expected to
thermally emit neutrinos with a temperature of a few
MeV on a time scale of a few seconds. If the neutrinos

5t=L5U=L5y/y =L(mIE) 5Elm . (1.8)

Taking 6t to be a few seconds and 5E =E= tens of MeV,
and using that the distance from the supernova to Earth,
L, is approximately 170000 light years, yields the limit
on the neutrino mass m given in Table I. This limit has
been much discussed in the literature and may be im-
proved by a factor of 2 to 4 if one incorporates specific
features of hot neutron star models. However, it is not
clear how reliable these models are.

The kinematic limits on m (v„) and m (v, ) are obtained
in a fashion similar to the limits on m (v, ) from tritium
decay. The limit on m (v, ) is from the study of the pion
spectrum of the decay ~—&5m+v, (Albrecht et al. , 1988).
The limit on m (v„) is from the study of the muon spec-
trum in m. ~p, +v„decay (Abela et al. , 1984).

2. Vacuum oscillations

A detailed theoretical description of vacuum oscilla-
tions will be developed in the next section. Here we
merely summarize the existing level of experimental sen-
sitivity in Fig. 1. The data are analyzed under the simpli-
fying assumption of only two neutrino Aavors, because no
firm evidence for neutrino vacuum mixing has ever been
found. The graphs plot the experimental constraints on
the effective two-Aavor mass difference versus mixing for
v, ~~v and v„+~v oscillations. Accelerators, nuclear
reactors, and cosmic rays are used as sources of neutri-
nos.

lo2 =

BNL

Io

Io2

p CCFR

E MULSiON
E53l ~ ~ p~X

P

lo

lo
C4

OP

Io

IO

had a mass, the signal would be distorted in time, since
the neutrinos are emitted with a range of energies and
hence a range of velocities. The difference in the time of
Aight 5t for two neutrinos emitted from the supernova
with different energies but the same mass is given by

TABLE I. Current experimental limits on the neutrino masses
from kinematics.

-I
Io

GOSGEN '
~

-4
Io
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17&m(v, ) &40 eV
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FIG. 1. Limits (90% C.L.) on v„~v„v,~v„and v, ~x (left)
and v„~x and v„~v (right). The allowed areas are to the left
of the curves (Eichler, 1988).
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3. Neutrinoless double-beta decay

If the neutrino has a Majorana mass, then lepton num-
ber is no longer a conserved quantum number. Decays
that violate lepton number can then occur and would be
evidence for a neutrino mass. One such decay that is
often sought is the neutrinoless decay of a nucleus with
two positrons emitted —neutrinoless double-beta decay.
Double-beta decay with two-neutrino emission is allowed
by lepton number conservation and has recently been ob-
served directly (Elliot et al. , 1987). Neutrinoless double-
beta decay enjoys a significant enhancement from phase
space over the lepton-number-conserving process. Thus
the failure to observe neutrinoless double-beta decay can
put meaningful limits on the neutrino mass. For a review
of the experimental constraints on double-beta decay see
Caldwell (1988).

The present limit on the neutrino mass from neutrino-
less double-beta decay is

second sum in Eq. (1.10) is obtained. The quantity o in
this sum is a nuclear scale that is not well calculated. A
naive estimate for it is 10 & o.(500 MeV.

Using the expression in Eq. (1.10) for the heavy-
neutrino contribution and o. =100 MeV, we see that lim-
its can be put on the electron-neutrino mixing matrix ele-
ment for heavy neutrinos with masses up to about 10
GeV. Thus one might suspect that double-beta decay
could be sensitive to the heavy neutrinos in the seesaw
mechanism. However, in the mechanism described in
Sec. I.B, there is an additional suppression of the heavy-
neutrino contribution in the Aavor mixing matrix. Using
Eq. (1.4) and taking a typical Dirac mass p; to be about 1

GeV, we find that, the largest heavy-neutrino mass A to
which double-beta decay is expected to be sensitive be-
comes about 100 GeV.

I I. THEOR Y

(m(v, )) & I eV . (1.9) A. Neutrino oscillations in. vacuum

The nuclear physics is quite complicated, so the exact
limit is uncertain by about an order of magnitude. How-
ever, the recent observation of double-beta decay with
neutrino emission should greatly help to decrease this un-
certainty. The quantity ( m(v, ) ) represents a sum of the
amplitude over all mass eigenstates that couple to the
electron. It is given approximately by

(m (v, )) =—g U„g;m;+ g U Jyjo /M. ; (1.10)

U„ is the mixing matrix between the electron neutrino
and the ith mass eigenstate, g; is the CP eigenvalue of
that eigenstate, m; and M,- are neutrino masses, and o. is
a hadronic mass scale. The first sum in Eq. (1.10) is valid
for light neutrinos; the second sum is valid for heavy neu-
trinos.

For light neutrinos, the dominant physical process is
similar to double-beta decay with neutrino emission; that
is, two neutrons decay, but now their two neutrinos an-
nihilate each other. The annihilation requires a Majora-
na mass term in the numerator of the amplitude, howev-
er, if the neutrino has a mass less than the inverse of the
nuclear radius, then the efFect of the mass in the denomi-
nator of the amplitude (neutrino propagation effects) can
be neglected. This is how the first sum in Eq. (1.10) is ob-
tained.

Neutrinoless double-beta decay invoked by a heavy
neutrino involves a dift'erent process (see the theoretical
review by Haxton and Stephenson, 1984). If the neutrino
mass is much larger than the scale of hadronic structure
o., then the neutrino annihilation is essentially a pointlike
process. The neutrino masses in the denominator from
the two neutrino propagators are no longer negligible
and now give a M in the denominator in addition to the
factor of M. in the numerator mentioned previously.
The efFective Lagrangian for this process involves two
pion fields and two electron fields. This is how the

Neutnno oscillations in vacuum have beeri extensively
reviewed by Bilenky and Pontecorvo (1977) and Bilenky
and Petcov (1987). In the following we shall briefiy sum-
marize the main results in this topic.

1. The standard model

In the standard model, neutrinos are massless, charge-
less fermions. They only interact with other particles via
the electroweak interactions. The efFective Hamiltonian
for weak interactions can be written as

H =(1/&2)GF( J,"J,„+JgJ~„), (2.1)

where GF=1.16637X10 GeV; J," is the charged
current

Jt'= (d s b)y"(1 y)E c +(e PF—)y"(1—y ) v„

(2.2)

+vyI'(1 —y )v —ey"(1 —y )e],
J~ =—'u y"u —

—,'dy"d —ey"e .

(2.3)

The weak charge current J," and the nonelectromagnetic
part of the neutral current, J~3, involve only the left-
chiral projection of the quark and lepton fields,

which is mediated by W exchange. J)v is the neutral-
current interaction mediated by Z exchange. By omit-
ting the heavy-fermion terms and using only the first-
generation fermions, the neutral current is

Jg=J~3 —2sin 0 J",

J3 =—,
' [ u y"(1—y )u —d y"(1—

y 5)d
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I'L =(1—y )/2. The right-handed fields enter only in
the neutral current through the part of it proportional to
the electromagnetic current J", . The amount of elec-
tromagnetic current in the neutral current is determined
by the weak-interaction parameter sin 0~. The current
experimental value for this parameter of the standard
model is sin 0~=0.228+0.0044.

In Eq. (2.2) K is the unitary Cabibbo-Kobayashi-
Maskawa quark mixing matrix. It arises because the
quarks are massive and the quark mass eigenstates are
not the same as the weak-interaction eigenstates. For
massless neutrinos the weak-interaction eigenstates can
be identified also as the mass eigenstates. Any unitary
transformation on the degenerate mass eigenstates is un-
measurable, and so one can define each charged lepton to
have only one neutrino associated with it. A conserved
quantum number can be defined for each generation—
electron number, muon number, and tau number.

Adding neutrino masses to the standard model in-
volves only minimal changes in the model. There are no
fundamental symmetries that prevent the neutrino from
having a mass. Whether or not the neutrino has a mass
is a question that must be answered experimentally. The
current experimental limits on the neutrino Inasses are
given in Sec. I.C. These mass limits are far below the
masses of the charged leptons.

If the neutrinos have mass, then in general the mass
eigenstates will not be the same as the weak-interaction
eigenstates. Separate electron, muon, and tau numbers
will not be conserved; however, the sum of the three, the
lepton number, will be conserved just as the baryon num-
ber is conserved in the quark sector. The leptonic
charged current will possess a unitary matrix U, analo-
gous to the Cabibbo-Kobayashi-Maskawa quark mixing
matrix K,

v„=U v2 (2.4)

where U transforms between the weak-interaction (Aavor)
eigenstates (v ) and the mass eigenstates (v;). Besides a
very small Higgs-neutrino interaction term, this change
in the charged current [Eq. (2.2)] will be the only
modification of the weak-interaction Hamiltonian due to
the addition of a neutrino mass. The neutral-current in-
teractions are unafFected, since they are Aavor conserv-
ing. For antineutrinos, there is an equation analgous to
Eq. (2.4) with the replacements v~v and U~ U~.

The neutrino masses, if they exist, are much smaller
than the charged-fermion masses. Because of this, neu-
trino propagation can have properties that are very
difterent from typical charged-fermion propagation.
When a neutrino is produced via the electroweak interac-
tions, it is in an interaction eigenstate. After production,
it propagates in its mass eigenstates. Because these bases
are not generally the same, the neutrino flavor will not be
conserved by propagation. For quarks, too, the interac-

tion and mass bases are not identical; however, because
the neutrino masses are small, this change in Aavor can
occur over a correspondingly large distance scale. That
this distance scale might be macroscopic and observable
was first suggested independently by Pontecorvo (1958,
1968) and Maki et al. (1962).

2. The neutrino wave equation

Neutrinos may have either a Dirac or a Majorana
mass, but for propagation of ultrarelativistic neutrinos
the full spin structure is not probed. The weak interac-
tions couple only to the left-handed component of the
neutrino field. For ultrarelativistic particles, chirality
conservation, which is exact for massless particles, is
good to order (m/E). Thus, for neutrino with E )&m, it
is only the propagation of the left-handed component
that is relevant. Eliminating the spin structure from the
propagation equation yields the Klein-Gordon equation,
whether the neutrino is a Dirac or a Majorana particle.
It follows that, in either case, neutrino propagation (or
neutrino oscillations) in the mass eigenstate basis is given
by

d+m' iv) = iv) .
dx dt

(2.5)

I
p dt

(2.6)

This equation describes the propagation of an ultrarela-
tivistic neutrino. For n flavors of neutrinos, ~v) is an n-

dimensional vector and m an n X n diagonal matrix.
In general, we want to solve Eq. (2.5) for the propaga-

tion of a neutrino state that is a linear combination of
several di6'erent mass eigenstates. %'e start by assuming
that all of the neutrino mass eigenstates have the same
three-momentum. This is clearly an approximation; in
general, one would expect the momentum and energy
eigenstates both to be nondiagonal. However, this ap-
proximation is accurate up to small corrections for ul-
trarelativistic neutrinos. To see this, one can repeat the
following analysis with the assumption that the energy is
diagonal; the results will be the same.

Assuming that all the neutrino eigenstates have the
same three-momentum, then the d /dx in the Klein-
Gordon equation is just proportional to the identity ma-
trix. This term will give an identical phase factor of all of
the mass eigenstates. Since overall phase factors of a
wave function are unobservable, we can drop this term
from Eq. (2.5).

Equation (2.5) can be simplified further. The Klein-
Gordon equation has two solutions corresponding to
waves traveling in opposite directions. However, once
we specify a neutrino's direction, the reAected solution
will not be relevant. Thus we can throw away the
reAected solution to get a first-order equation. Substitut-
ing in

~
v(t) ) =exp( —iEt)

~
v) =exp( —ipt)

~
v ) yields
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The term ip from the d /dx has been deleted from the
left-hand side of Eq. (2.6).

3. Solutions to the wave equation

The equation describing neutrino propagation, Eq.
(2.6), now resembles the Schrodinger equation. The solu-
tion for the neutrino wave function can be written for
two neutrino species as

l, (r))

l,(r) )

—iE t
1

0

0
—iE t

e

lv, (o) )

l,(0) ) (2.7)

where E, =(p +I; )' and m; is the mass eigenvalue of
m . As the mass eigenstates propagate, they each ac-
quire a difFerent phase. However, as mentioned before,
mass eigenstates are not, in general, the states that are
produced or detected. Neutrinos are produced or detect-
ed via the weak interactions; so the physical quantity that
one observes is the fIavor at the production and detection
positions. Equation (2.4) describes the mixing between
these two bases; choosing a parametrization,

(2.8)

Co —Sg
X

So Ce 0

2

=1—
—,'sin 28[1—cos(Ez E&)tj . —(2.9)

The last term in Eq. (2.9) describes Aavor oscillations.
We can define a wavelength for the oscillations,

&2 —E)=(m~+p')' ' —(I', +p')' '
=(m', —m', )/2p =2~/k .

For small neutrino masses the oscillation scale is macro-
scopic. For m 2

—m
&
= 1 eV and p = 10 MeV, A, =25m.

(2.10)

4. The classical probability

The oscillation wavelength is the scale on which quan-
turn interference occurs. Experimental searches for the
oscillation of neutrino flavor can probe small neutrino
mass difFerences where the oscillation wavelength is mac-
roscopic. However, it is all too easy to miss these in-
terference efFects. For instance, if the production or
detection positions extend over a distance much larger
than the wavelength, the phase information will be aver-

U —S C0 0

we can write the solution for the neutrino wave function
that describes a neutrino's production and detection. If
we produce an electron neutrino, the probability of
detecting this neutrino as an electron neutrino after a
time t, P(v, ~v, )= l(v, (t)lv,,(0)) l, can be written as

C& S6)
P(v, —+v, )= [1 0]

0 e

Ce ~e 10 lCe ~e
g2 C2 () 1 , g2 C2 0

—1 —
—,'sin 20 (2.11)

The classical probability is the product of the magnitudes
squared instead of the magnitude squared of the product.
Equation (2.11) is similar to Eq. (2.9), but the oscillating
term has been averaged out.

The explicit formulas in Eqs. (2.7)—(2.11) have as-
sumed that there were only two neutrino Aavors. How-
ever, it is known that there are at least three generations
of fermions. The generalization to more flavors is
straightforward. A useful parametrization of the mixing
matrix for three Aavors is (this is similar to Maiani's
V = I *U,5—+5/2)

U =exp(i/A 7 )I exp(i@7 5 )exp(i coA 2)

1 0 0 1 0 0
0 C~ S], 0 e' 0

0 —S~ C~ 0 0 e

C 0 S
0 1 0

0 C, 0 0

(2.12)

where the k's are the Gell-Mann matrices that corre-
spond to the spin-one matrices of SO(3). This type of pa-
rametrization is useful for discussing neutrino oscilla-

aged out. Or, for nonmonochromatic neutrino sources, if
the ne'utrino propagates for a distance I. much greater
than k, one may lose phase information by binning neu-
trino events with too large of an energy width,
oE/E & A. /L.

Phase information can also be lost in more subtle ways.
The previous examples assumed that the neutrino wave
was coherent. But the length over which the neutrino
wave is coherent will depend on the neutrino production
process. For example, as discussed by Nussinov (1976),
solar neutrino wave packets have a relatively short coher-
ence length of about d=10 cm. This is because solar
neutrinos are produced in the core of the sun where the
nuclei that emit them are undergoing rapid collisions.
The neutrino mass eigenstates will then be incoherent
after traveling a distance I. =d/(5P)=d(pk, ), where 5P
is the difFerence in velocity between the mass eigenstates.

If the phase information is lost, then the probability is
just the classical probability. The classical probability
can be calculated without using the equation for neutrino
propagation, Eq. (2.6). One need only know the mixing
matrix U between the two bases. The phase acquired
during neutrino propagation is averaged out; so we can
sum incoherently over the propagation eigenstates, the
mass eigenstates:

P( v~ v)= QP(v, ~v;)P(v; —+v, )
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+Re+ Up;Up&U*;U J
lWJ

Xexp[ —it(m; —
m~ )/2p] . (2.13)

The erst term is just the classical probability; all of the
phase information is in the last term. If we average out
the phase, the last term vanishes.

5. Unitarity constraints

Equation (2.13) satisfies the general constraints

P (v —+vp) = 1 (2.14)

tions because, for small angles, each angle corresponds to
mixing between two neutrino species.

One can write a general solution for the probability
without choosing a parametrization,

P(v ~i~&)= g U&;exp( iE;t—)U*;

is exactly analogous to the index of refraction of light
traveling through matter. However, the neutrino index
of refraction will depend generally on the Aavor-
electron and muon neutrinos will have diFerent indices
of refraction because the background matter contains
diFerent amounts of electrons and muons. If the neutri-
nos are massive, then neutrino Aavors will mix during
propagation. An index of refraction is similar to a mass,
and Aavor-dependent indices of refraction can enhance
neutrino Aavor mixing during propagation.

1. The induced neutrino mass

Using the standard model description of neutrino in-
teractions with matter, Eqs. (2.1)—(2.3), neutrinos will
scatter ofF' background rnatter via the charged current
and the neutral current. For normal matter, only the
charged current will alter the 'neutrino flavor content
during propagation. The neutral current is Aavor con-
serving and influences all neutrino flavors equally. But
the background electrons in normal matter will interact
via the charged current with electron neutrinos only.
From Eqs. (2.1) and (2.2),

(2.15)
GF

H = —ey"(1—
y )v, v, y„(1—y )e; (2.19)

and similar relations for antineutrinos. These just follow
from unitarity (and are also valid for neutrino oscillations
in matter). Other relations can be deduced from sym-
metries of the theory. Invariance under the combination
of discrete symmetries CRT yields the relation

P(v ~vp)=P(vii~v ) . (2.16)

If the mixing matrix is time reversal T invariant, then U
is real and

P(v ~vp)=P(vS~v ) (2.17)

P ( v, —+v, ) = 1 P( v, ~v„)= 1 —P(v„v,)——

=P( v& )v.

[since normal matter is typically not CP symmetric or T
symmetric, Eqs. (2.16) and (2.17) do not typically hold for
neutrino oscillations in matter]. If Eq. (2.17) is valid,
then the two unitary relations (2.14) and (2.15) are redun-
dant. Since T violations just introduce an extra phase,
(2.17) is also true for the vacuum oscillation probabilities
when the phase information is averaged out —the classi-
cal probabilities. For two Aavors there can be no T viola-
tions in the mixing matrix, so the unitarity relations give

Fierz rearranging of the spinors yields

GI;
H = —v, y"(1—y )v, ey„(1—y )e . (2.20)

(2.21)

For forward scattering of neutrinos oF electrons, the
electron momentum is unchanged. In the rest frame of
normal matter the electrons are typically unpolarized at
rest; so only the y component of the electron density can
contribute. The y y mixes "small'* and "large" com-
ponents of the electron spinor, so it does not contribute;
y is just 1 for the "large" component, so
ey (1—y )e =5„~,. N, is the number density of elec-
trons. For neutrino forward scattering, the interaction
term resembles an external potential for the left-handed
field, V=GFV2%, . The potential is positive, indicating
that the force is repulsive (Langacker et al. , 1983). Be-
sides this real part of the forward scattering, the optical
theorem tells us that there is also an imaginary term that
is proportional to the total cross section. Since this is of
order GF, it is typically negligible compared to the real
paI t.

Assuming a Dirac neutrino mass, the neutrino propa-
gation equation takes the form

B. Neutrino wave equation in matter

When neutrinos propagate through matter, the for-
ward scattering of neutrinos oF the background matter
will induce an index of refraction for the neutrinos. This

where v~ z= —,'(I+y )v. We now proceed to derive a

simple propagation equation for the left-handed fields
analogous to the vacuum case discussed in Sec. IJ.A.
If the variations of the electron density are small on
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(t)pt)"+2iVt) +m )vL =0 (2.22)

(the equation for relativistic right-handed states is the
free Klein-Gordon equation). The remaining discussion
is identical to the vacuum case. Assuming a common
three-momentum for the neutrino mass eigenstates, we
can efFectively just drop the O'8' term. Neglecting any
reflected solutions we use vI =exp( ipt)vt —to reduce the
di8'erential equation from second order to first order in
time. The neutrino propagation equation now has a form
analogous to Eq. (2.6), but within an added potential
term. In the flavor basis, where the potential is diagonal,
the propagation equation for two Aavors is

i —~v )= M'~v ),
dt 2p

'm) 0 0M= U 2 U+0 mz

(2.23)

U is the unitary transformation between the flavor and
mass bases, and A =2Vp =2v'2GFX, p (for antineutri-
nos, A ~—A and U~U*). Equation (2.23) was first
derived by Wolfenstein (1978a); for more recent deriva-
tions, see Bethe (1986), Halprin (1986), Chang and Zia
(1988), and Mannheim (1988).

A acts like an induced mass (squared) for the electron
neutrino from the propagation through a background of
electrons. Evaluating the expression, A =(10 eV) for
matter densities of 100 g/cm and neutrino energies of 10
MeV.

Equation (2.23) was derived assuming that the neutri-
nos had a Dirac mass. For a Majorana neutrino mass,
the derivation can be repeated to obtain Eq. (2.23). This

the seal~ of the neutrino de Broglie wavelength,
(1/VE)(dV/dt) «1, we can take iB"V= Vi 8" .For rela-
tivistic neutrinos and a small potential we can use

a„y&y'v~ =y'(a'y'+8'y')v, =y'(2a'y') v~ =28'v~ .

Then the propagation equation for the relativistic left-
handed states resembles the Klein-Gordon equation with
a small potential

equation is covariant under the transformation
U~SUS', where S and S' are diagonal matrices of
phases. Thus, as in the vacuum case, the extra phases
that a Majorana neutrino has in its mixing matrix are not
observable. It is not possible to distinguish between Ma-
joraria and Dirac neutrinos by their flavor mixing during
propagation.

Equation (2.23) is a familiar equation in physics. Be-
cause it is first order in time, as is the Schrodinger equa-
tion, there are many quantum-mechanical problems that
are described by this same equation. The equation can be
interpreted as describing spin precession in a magnetic
field (Mikheyev and Smirnov, 1986b; Kim et al. , 1988).
One of the most common occurrences of Eq. (2.23) is for
describing level-crossing phenomena. In this context,
Eq. (2.23) was solved by Landau (1932), Stueckelberg
(1932), and Zener (1932).

2. Corrections to the induced neutrino mass

The left-handed electron-neutrino potential (/2G~N„
which comes from charged-current interactions with
electrons, is the only relevant potential for neutrinos
propagating through typical matter, the Earth, or the
sun. However, for nontypical matter, during the early
universe or in the core of a supernova, other potentials
may be relevant.

Table II gives neutrino potentials from charged- and
neutral-current tree-level interactions with background
electrons, neutrons, protons, and also neutrinos (Notzold
and RafFelt, 1988). The top sign refers to neutrinos and
the bottom sign to antineutrinos. The terms in Table II
that are of order GF/M come from expanding the gauge
boson propagator. For charged-current scattering from
electrons at rest,

The top sign refers to positions, where k =I' +I', , and

the bottom sign to electrons, where k =P —I', . This

TABLE II. Potentials induced for a neutrino traveling through background matter. The upper sign
refers to neutrinos, the lower sign to antineutrinos. N& is the number density of fermion f in the back-
ground matter. For nonrelativistic background electrons, (E, )~—' I,.

Neutrino

flavor

Background
Aavor Potential V

Vp, V~

Ve~ Vp~ V~

&e~&I »~

Ve

gv 2G,E,
+GF(4sin28s +1)(N, N~)jv'2

~
— ((E, )N, +(E~)N~)

+GF(4 sin 8~—1)(N, —N, )/&2
+G~(N„—X„)/&2
+GFI,'1 —4sin 9~)(Np Np)/+2

8"f/ 26FE
+2&26F(X —X, ) — ~ ((E„)X + (E )N, )

+&26FI,
'N —N )
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sign di6'erence cancels with the leading-order sign change
between electrons and positrons. These sma11 terms
would be relevant if the first-order terms all vanished-
as in a CI' symmetric plasma that is similar to the condi-
tions of the early universe.

At tree level in the weak interactions, the muon- and
tau-neutrino Aavors acquire identical potentials in typical
matter. However, at the one-loop level, differences in the
charged-fermion masses induce different potentials for
these neutrinos. The di6'erence was calculated by Botella
et al. (1987) to be

36FI,
V(v ) —V(v )=+-- (X +Ã )ln

)M T 22m P Pl

2I

(2.25)

3. Numerical integration of the wave equation

The wave equation (2.23), with the correct expression
for the induced mass 2, fully describes the Aavor content
of a neutrino as it propagates through matter. However,
this equation can be dificult to solve when the induced
mass A varies as a function of the propagation distance.

The upper sign is for neutrinos; the lower sign is for an-
tineutrinos. Evaluating the expression, 2p [ V(v„)
—V(v, )]=—(3X10 CV) for matter densities of 100
g/cm and neutrino energies of 10 McV.

Tlic dcI ivatloii of Eq. (2.23) assumed thRt tlic bRck-
ground electrons were unpolarized. It is easy to relax
this assumption. Defining j,"= e y"( 1 —y )e, then for
electrons at rest j,"=X,(1,—2S, ), where S, is the aver-

age spin of the electrons normalized to —,'. Tlie induced
electron-neutrino mass 2 is then multiplied by the fact;or
(1+2S,.n ), where n„ is a unit vector in the direction of
neutrino propagation. For positrons, jp =Ã, ( —I,
—2S ).. It is interesting to note that a magnetic field in a
CI' symmetric plasma of electrons and positrons will not
1nduce a Get contribution to 3 fl om the polarizatioI]I.
For electrons the spin is parallel to the magnetic mo-
ment, while for positrons the spin is antiparallel. Thus
an external magnetic field mill cause the spins to align an-
tipara11el with no net, contr1but1on to A.

One particle that is col.mon to background rnatter but,

is not contained in Table II is the photon. For hot
media, specifically C.I' syrrimetric media simi1ar to the
early universe, it has been speculated that neutrino for-
ward scattering oA photons could contribute significantly
to the neutrino potential. However, a recent a1lalysis by
Nieves (1987), using gauge invariance and chirality, finds
that the photon contribution to the neutrino potential is
less than or of order, V =0 (aGF T P /M )IwIhere T is
the photon temperature. This is smaller by a power of o;

than the order GF/M contributions already calculated
in Table II; so the neutrino-photon interactions are not
important in the early universe.

ap np 4a(a +p )p——4ap (p ——
—,')=0,

a = [3 —(I 2
—m, )cos20]/4E,

P:=(m ~
—I, )sin2—0/4E .

(2.26)

Here P P(v, ~v, )=:-~v—-—, (t)~; the proper initial condi-
tions for producing an electron neutrino are

P (0)= 1, P(0) =0, P(0)= 2P—(2.27)

Equation (2.26) has fewer degrees of freedom and
should be slightly faster and more accurate to iterate
than Eq. (2.23). However, it may or may not be better to
use, depending on ihe situation. The original equation
has an advantage that depends on the unnecessary degree
of freedom. The unitarity condition provides a useful
check on the accuracy of the numerical integration. This
check can often save the programmer time and eAort.
For three neutrino Aavors, there is a single, real, fifth-
order diflerential equation for P analogous to Eq. (2.26).
However, this equation is definitely worse to use than the

Sections II.C and II.D concentrate on analytical tech-
niques for solving this equation. It turns out that the
wave equation can be accurately described analytically
for a constant density (Sec. II.C.1); a long, slow density
change (Sec. II.C.2); a long, smooth, monotonic, quick
density change; and a step-function density (Secs. II.C.3
and II.C.4). This is a fairly comprehensive set of solu-
tions; however, there are always conditions for which
they are not satisfactory. One example of such a situa-
tion is for neutrino propagation through the Earth.
There the density has some smoothly varying sections,
between abrupt density changes, with all of this structure
occurring on the same scale as the desired neutrino wave-
length. Then one is forced to fall back on direct numeri-
cal integration of the wave equation.

The wave equation can be written in difterent,
equivalent forms. Equation (2.23) is not necessarily in
the best form for numerical integration. Typically, in nu-
merical solving of differential equations, a specific appli-
cation [i.e., a specific A (x), m 2

—m „8,and E] will have
a specific, optimal form for the di6'erential equation. The
degree to which the programmer must optimize the form
of the wave equation depends on the desired accuracy of
the result. We shaH not discuss such matters here. In-
stead we present the wave equation in a form that has
fewer degrees of freedom and hence is faster to integrate
numerically.

For two flavors, Eq. (2.23) has four quantities that
must be carried along on each increment —a real part
and an imaginary part for each Aavor. However, not all
of these degrees of freedom are physical. There is a uni-
tarity constraint (see Sec. III.A.5) on the wave functions;
so we know that we can eliminate one degree of freedom.
The wave equation can be written in the form of three
rea1, coupled, f][rst-order differential equations or,
equivalently, as a single, real, third-order diA'erential

equation (Mikheyev and Smirnov, 1986b),
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three-Savor form of Eq. (2.23), because it is too long and
complicated to be practical.

C. Two-flavor solutions to the wave equation

As a first approximation we try to solve the neutrino
wave equation assuming that there are only two neutrino
ilavors (Wolfenstein, 1978a; Bethe, 1986; Mikheyev and
Smirnov, 1986a). This problem is simpler to solve than
the case of three neutrino Aavors, and it provides a useful
illustration of the kind of e6'ects that matter can have on
neutrino oscillations. In particular, one can get an al-
most total depletion of the average electron-neutrino Aux
with matter-enhanced oscillations and only two neutrino
flavors. This is in sharp contrast to vacuum oscillations
where, with two neutrino flavors, the maximum reduc-
tion achievable was only —,'. Thus two flavors are

f

suScient to explain the solar neutrino problem. Solu-
tions to the neutrino wave equation with three flavors
will be discussed in Sec. II.D.

1. Eigenvalues and eigenfunctions for fixed density

The effect of matter on neutrino propagation is con-
tained in the parameter A, given by

2 =2v'2G~N, E =2v 2GF( Y, /m„)pE, (2.28)

where 6+ is the Fermi constant, p the density, Y', the
number of electrons per nucleon, and m„ the nucleon
mass. A is the induced mass squared of the electron neu-
trino that arises from propagation through a background
of electrons. The neutrino propagation equation [Eq.
(2.23)], with c = 1 and t —+x, can be rewritten as

~e
l

dX +p

&e

M
2E

T 2
fO i

2E 0

0
U +

Pl 2.
A —AC2g

0
0 0

(X+ A)+1

4E

AS26) ~e
—A +AC26) v„

where 2=m&+m &, A=mz —m &, and C2=cos2O,
S2=sin2O. The part of the Inass matrix M that is pro-
portional to the identity matrix has been pulled out.

M can be diagonalized to find the instantaneous ei-
genvalues and eigenstates. Defining U and Mz, by

M 0

I

The mixing angle is modified substantially by the
coherent scattering of a medium. %Then 2 ~0, O ~O
and the mixing matrix is just the vacuum expression.
%Shen A &)6, O ~m/2. However, the most interesting
feature of-0 is its resonance behavior as a function of A.
This is exhibited in Fig. 2. The resonance occurs when

2UmM Um= 0 2.
A =Acos2O, (2.34)

the eigenvalues of the mass matrix M are

M~, = I(X+ 2)+[(2 bC2s) +(bS2s) ]' I/2 —.
(2.30)

~5A (
=b, sin28 . (2.35)

for which sin2O = l and neutrino mixing is a Inaximurn.
The half-width of the resonance is given by

The mixing matrix in the medium, U, can be
parametrized analogous to the vacuum mixing parame-
trization given in Eqs. (2.4) and (2.8),

1.0

0.8
cosO —sinO v,

s'nOm cosOm

(2.31)

0.6
E

CD

~~
0.4

The mass eigenstates in the medium are vz, . Here O is
the neutrino mixing angle in matter and is given by

tan28 =b, sin28/( —2 +b, cos28), (2.32)

or, equivalently,

sin 28 =(b, sin28) /[(A b, cos28) +(b, sin28) ] . —

(2.33)

0.0
10

A

FIG. 2. Plot of sin 28, where I9 is the e6'ective neutrino mix-

ing angle in matter, as a function of A, the induced electron-
neutrino mass. Here we take m 2

—m, =3.0 and sin 8=0.03.
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Thus, given the right conditions, coherent scattering off a
background can enhance neutrino oscillations maximally.

It should be emphasized that the resonance occurs
whether or not the mixing angle is small. The resonance
would not occur if 0)~/4 —the heavier mass eigenstate
coupled dominantly to the electron neutrino. In that
case the resonance would occur for antineutrinos, since
for antineutrinos the above formulas are changed by the
substitution c4 ~ c4 (see Sec. II.B). However, lt is gen-
erally expected that 0 is small, since this is what is ob-
served in the hadronic sector. The seesaw model of neu-
trino masses does not substantially modify this expecta-
tion (see Sec. I.B). Thus we shall often make the tacit as-
sumption that the resonance occurs for neutrinos.

Let us noW examine the experimentally observable
quantity P( v~ v), which is the probability for a pro-
duced v, to remain a v, after propagation. For a
constant-density medium the effective mass matrix is a
constant, independent of x; the instantaneous eigenvalues
and eigenstates are identical then for all x. This situation
is similar to the vacuum case, and so solving the wave
equation for a constant-density medium proceeds analo-
gously to the discussion in Sec. II.A for the vacuum case.
The vacuum solutions can be converted to the solution in
a medium by replacing the vacuum quantities with their
corresponding medium quantities: the vacuum masses
are replaced by the mass eigenstates of the effective mass
matrix in a medium, Eq. (2.30), and the vacuum mixing
angle is replaced by the effective mixing angle in matter,
Eqs. (2.32) and (2.33).

For example, the neutrino wavelength in matter fol-
lows from the neutrino wavelength in vacuum given by
Eq. (2.10), A, =4mE/b, . The induced mass A can be con-
verted to a characteristic length scale for the medium

Ao= 4~E/2 =—&27r/(G~N, ) . (2.36)

(2.37)

where Mz —M, was given in Eq. (2.30). ~e may now
deduce P(v, ~v, ) for a medium with a constant density
from the vacuum equations (2.9) and (2.10). Making the
appropriate replacements, 8—+ 8 and 3,~ (M 2

—M, )

(or, equivalently, k~A, ), the probability is given by

P(v, ~v, )=1—
—,'sin 28 (1—cos2mx/A, ) . (2.38)

The expression P (v, ~v, ) exhibits the typical form of a
mixing phenomenon as a function of x; it oscillates be-
tween its extrema with a period of k . As in the case of
vacuum oscillations, one often averages out the phase in-
formation, thereby arriving at the classical probability

For a medium with p=1 g/cm and Y, = —,', A,0=2X10
cm. The neutrino wavelength in matter is given in terms
of the difference in the mass eigenstates in matter,

=4~E/(M2 —M, )

P (v, ~v, ) = 1 —
—,'sin 28 (2.39)

This is the generalization of Eq. (2.11) with the replace-
ment 0~0

2. Medium with slowly varying density—
adiabatic approximation

In the previous section we have seen that both the
mass eigenvalues and the mixing angles become functions
of p. This has very interesting implications for neutrino
propagation in a medium with varying density. In actual
physical situations, the neutrino often moves from one
density to another. For instance, solar neutrinos and
neutrinos from collapsing stars are produced at high den-
sities and detected essentially in vacuum, after they have
traversed the star. For a medium with varying density,
however, the mass eigenstates we obtained are no longer
eigenstates of the Hamiltonian. Indeed, we may write the
neutrino propagation equation (2.29) in the form

. d Mi 0 vi
2

l (2.40)
dx vp

Um
2F. 0 M2

Here we have used the definitions in Eqs. (2.30) and
(2.31). Keeping in mind that U is now x dependent, we
may rewrite Eq. (2.40) as

l
dx

Mi 02

Umf Um
0 ~2 V2

(2.41)

M, /2E i d 8 —/dx v,

i d0m/dx M~/2E , v2
(2.42)

This last equation-follows directly from the substitution
of the explicit matrix U, as defined in Eq. (2.31), into
the second term in Eq. (2.41).

Note that neutrino oscillations depend only on the pa-
rameters d8 /dx and (M2 —Mf )/4E. The reason is
that we can always take out a common diagonal phase
factor exp[i(M&+M& )x/4E] from v, and vz, resulting
in the equation

v', —(M~ —M i )/4E

dx (Mq —M f )/4E v2

i d 8 /dx— v',

i d8 /dx

(2.43)

Here

v'&= exp[ i (M, +M—2)x/4E]v&

and

v2
——exp[ i (M ) +M2)x—/4E]v2

are equivalent to -v& and v2, as far'as oscillations are con-
cerned. Similarly, a diagonal phase factor from the
neutrino's three-momentum was dropped during the
derivation of the wave equation.
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From Eqs. (2.30) and (2.32), we have

(M2 —M, )=[(A —EC2s) +(bS2s) j'

d0m 1 b, sin20 dA
2 (A —b, C, )'+(b,S )' dx

(2.44)

(2.45)

The off-diagonal term in Eqs. (2.42) and (2.43) causes the
mixing of the states v& and v2. Thus, as stated previously,
the states v& and v2, which are instantaneous mass eigen-
states, cease to be eigenstates of the Hamiltonian when
d A /dx%0, or, equivalently, dp/dx&0.

Let us now consider the case in which p(x) is a slowly
varying function, so that d 0 /dx is small. More precise-
ly, we assume that ~d8 /dx

~
((~Mz —M, ~/4E =a/A,

which, in terms of the density, translates to

1 dX, 1 2m ~~o((
dx Sza X

(2.46)

Thus if the density is slowly changing, on a distance scale
of roughly the wavelength in matter, we may neglect the
off-diagonal term d8 /dx completely, and v, and vz be-
come eigenstates of the Hamiltonian. This is the adiabat-
ic approximation.

Adiabatic propagation through a medium with varying
density can have profound effects. For example, let us
consider an electron neutrino produced in the center of
the sun or in a collapsing star, where the density is high
enough to satisfy A ))h. At production the neutrino is
almost a pure mass eigenstate independent of the size of
the mixing angle [Eq. (2.33)]. As this neutrino moves
outward, A will decrease as the density decreases, and
the neutrino will eventually go through the resonance re-
gion, where A =6 cos28, and proceed out into the vacu-
um. If the density changes slowly enough so that the
propagation is adiabatic, the neutrino state will remain
the same mass eigenstate. However, as can be seen from
Fig. 3, the mass eigenstate that is dominantly a v, at the
high densities above the resonance is not dominantly a v,
below the resonance. The mass eigenstate that is dom-
inantly v, varies linearly with A, the induced mass of the
electron neutrino; so above the resonance this is the
upper mass eigenstate, but below the resonance it is the
lower mass eigenstate. For the electron neutrino pro-
duced in the star and propagating adiabatically, it
remains on the upper mass eigenstate, so that below the
resonance this same mass eigenstate is essentially in-

FiG. 3. Masses of two flavors of neutrinos as a function of A,
the matter-induced electron-neutrino mass. Here we take
m ~ =25m ]~ sin 0= 1 X 10

dependent of 3 and corresponds dominantly to a v„.
The dominant flavor of the neutrino has been changed as
it propagates through matter of decreasing density. This
is known as the MSW effect, after Mikheyev and Smirnov
(1985, 1986a, 1986b) and Wolfenstein (1978a, 1978b,
1979). See also Bethe (1986).

In the adiabatic limit it is easy to quantitatively de-
'scribe the MSW effect. The condition (2.46) implies that
the neutrino is propagating for many oscillation wave-
lengths. The phase information is then effectively lost
and the adiabatic neutrino probabilities are the classical
probabilities, similar to those of Eqs. (2.11) and (2.39).
Consider the evolution of a v, that is produced at some
density p, with the mixing angle L9 . The probabilities of
v, to be either v& or v2 are given by sin 0 and cos 0
respectively. Figure 3 shows the two states labeled as A

and B. Let us assume that, after production, a v, propa-
gates adiabatically until reaching a location for which
p=0 and the mixing angle is the vacuum angle. This
means that A (8) will simply propagate to the states A'
(B'). There the probability of v, or v2 to be a v, is given

by sin 0 and cos 0, respectively. In analogy to the vacu-
um case, Eq. (2.11), it follows that the propagation prob-
ability is, in the adiabatic approximation,

P(v, ~v, )=QP (v, ~v;)P(v; —&v, )

cos 8 sin 8 1 0
10

sin 8 cos8 0 1 sin8 cos8 0

=sin 8sin 8 +cos 8cos 8 =
—,'(1+cos28cos28 ) . (2 47)
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In Fig. 3 the points A (8) and A' (8') are above and
below the resonance, respectively. However, it should be
emphasized that the derivation of Eq. (2.47) is valid for
situations other than this. It does not matter whether a
resonance has been crossed or not. In general, if an elec-
tron neutrino propagates adiabatically from one region,
with mixing angle 8i, to another region, with mixing an-

gle 02, then

P ( v, ~ v, ) =—,
'

( 1+cos20, cos202) . (2.48)

For other discussions on adiabatic propagation, see
Wolfenstein (1978b), Barger et al. (1986), Messiah (1986),
and Balantekin et al. (1988).

3. Corrections to the adiabatic approximation

Equation {2.47) is a simple, analytic equation for the
survival probability of an electron neutrino propagating
through matter. It describes quantitatively the MSW
efFect. However, it is only valid when the matter density
is slowly changing, so that the adiabatic approximation is
valid. When this approximation breaks down, one must
go back and solve the wave equation. For a few specific
density distributions there exist exact solutions of the
wave equation, but in general the wave equation is not
solvable algebraically However, it is still possible to
derive for the survival probability a simple, analytic
equation that is accurate when nonadiabatic efFects are
important (Parke, 1986).

For a neutrino going through monotonically decreas-
ing density, like neutrinos coming from the sun, the adia-
batic approximation will break down when Eq. (2.46) ap-
proaches an equality. This equation follows from Eq.
(2.43) when

~
d 0/dx

~
becomes of the order of

{Mz —M, ) /4E. Equation (2.45) shows that for a
smoothly varying density, ~d0/dx

~
has a sharply peaked

maximum at the resonance, b, C2O =—A. (xo). At the same
time, according to Eq. (2.44), ~Mz —M, ~

is a minimum.

Therefore the condition for adiabatic transition, Eq.
(2.46), is most stringent at the resonance. Since

~A, /S2~ for 3 =b, Cz~, we may rewrite Eq. (2.46) in
the form

ES20
I &(y=-

2ECzs i dN, /N, dx
i o

(2.49)

The subscript 0 denotes that this quantity should be eval-
uated at the resonance; y is the adiabaticity parameter.

If @=1, there will be considerable corrections to the
probabilities obtained using the adiabatic approximation,
Eqs. (2.47) and (2.48). Such corrections will typically
occur only in a small region around the resonance densi-
ty, because the resonance is very narrow. Propagation
outside this region will be adiabatic and hence describ-
able by Eq. (2.48). If the nonadiabatic effects in this nar-
row region can be described simply, we can still patch to-
gether a simple equation for the total probability.

In Eq. (2.43), y of order 1 corresponds with the off-
diagonal elements becoming of order the diagonal ele-
ments. Thus the corrections take the form of "level
crossing, "where the state v, can cross over- to vz and vice
versa. This is analogous to a quantum tunneling efFect.
I et us denote by I', the crossing probability from vi to
v2.

(2.50)

Here, x+ refer to two faraway points on either side of the
resonance position, points where the adiabatic approxi-
mation is still valid. Unitarity for two neutrino fIavors
tells us that P, is also the probability of crossing from v2
to v, and that 1 —I', is ihe probability for v, or v2 to stay
in the same mass eigenstate.

Using I'„we can write a simple equation for
P(v, ~v, ) analogous to Eq. (2.47). Referring again to
Fig. (3), we see there is now a probability P, for state A

(8) to propagate to 8' ( A'). Thus we have

cos 6 sin 61

P(v, ~v, )=[1 0] sin 0 cos 0

I',
(1 —P, )

cos 0

sin 0

sin 9

cos 0

=—,
' + ( —,

' —P, )cos20 cos20 (2.51)

The correction to the adiabatic approximation is totally
embodied in the function I', . In the next section we shall
present some formulas for I', in terms of the neutrino pa-
rameters.

4. The probability for level crossing P,

Neutrino propagation is governed by the wave equa-
tion, (2.29). To obtain P„we must solve this set of cou-
pled equations under appropriate boundary conditions.
Unfortunately, these solutions must, in general, be ob-

I

tained numerically, -unless we approximate the density
N, (x ) by a simple function. However, because nonadia-
batic efFects are typically relevant only for a narrow
range of x around the resonance point, as discussed in the
last section, it may not be a bad approximation to use a
simple density distribution over this small range.

Such a solution was first worked out independently by
Landau (1932) and Zener (1932), after whom it is named,
and by Stueckelberg (1932). They were working on the
level-crossing problem in connection with atomic col-
lisions. Applying their results to neutrinos (Haxton,
1986; Parke, 1986; see also Oar et al. , 1987; Petcov,
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P, =exp ——y (2.52)

y is exactly the adiabaticity parameter de6ned in Eq.
(2.49). Thus when y )&1, P, =0, and we go back to the
adiabatic approximation. The exponential form for I', is
familiar from other quantum tunneling probabilities.
The small corrections to the standard form, Eq. (2.51),
first occur in the asymptotic expansion of the Weber
function at order ((9 /y ). These corrections are singular
in the extreme nonadiabatic limit, y —+Q. But since the
probability is bounded between 0 and 1„ they must cancel
with oscillating terms that have been dropped. It is to be
expected that the phase-dependent terms become very
important in the extreme nonadiabatic limit, since this is
comparable to the wavelength becoming large. These
phase eIIFects are discussed in the next section.

1987; and Toshev, 1988a, 1988b), we see that their solu-
tion is appropriate for a linear density change. This is a
natural first choice, since it corresponds to the first term
in a Taylor-series expansion about the resonance point.
In this case the solution of the wave equation (2.29) is
proportional to. a %"eber function. Imposing the proper
boundary conditions, expanding the %'eber functions
about the production and detection positions far from the
resonance, and dropping oscillating terms, we obtain the
solution for P (v, ~v, ). Up to small corrections,
P (v, ~v, ) has precisely the standard form given in Eq.
(2.51), with P, given by

1 A=5
InP = ——Im

A =AC20
[( A —b.C28)

+(b,S28) ]' dx . (2.53)

The + (
—

) sign is to be used for dA/dx (0 ( &0); it
simply determines the overall sign of Eq. (2.53) to be al-
ways negative. We may now write the crossing probabili-
ty I', for an arbitrary density profile in the form

(2.54)

where the function I', which reduces to unity for an ex-
actly linear density, can be calculated according to Eq.
(2.53). We give the function F in Table III for a variety

The Landau-Zener equation for P„Eq. (2.52), is sim-
ple and eQ'ectively accounts for nonadiabatic efFects in ar-
bitrary monotonically varying density distributions. It
allows easy numerical calculations and has been used by
most groups that calculate neutrino resonance e6'ects.
However, the accuracy of the LZ equation d:epends on
the presumed adequacy of the linear density approxima-
tion throughout the resonance layer, which is propor-
tional to sin28, as defined in Eq (2.35). For large 8, Eq.
(2.52) is thus expected to receive corrections for a general
density function.

For a medium with an arbitrary density profile, one
can generalize Eq. (2.52) in the form of a contour in-
tegral due to Landau (1932; see also Landau and Lifshitz,
1977),

TABLE III. Level-crossing probability I', for various electron-density distributions, as calculated by Landau's method, Eq. (2.53) (Kuo and Pantale-
one, 1988). The right-hand column is the natural logarithm of Pc divided by —m/2 and y, the adiabaticity parameter. A 0"' —=2+26& EN0") denotes
the nth derivative of 3 with respect to x evaluated at the resonance position 3 =b cos20. The coefficient of (tan20) in the series expression for the
power-law density is the product of two binomial coefficients.

Density distribution
r

c Landau )

—y(m /2)

a ~exp( —r)

A o=r

A ~1/r

3 =6Ia tanh(x//)+b]

1 —tan 8
1

(1—tan 0) /{1+tan (9)

{1/n)—1
'

2

2m m + Im=0

or, for small 1/n

{I —tan 8)(1—(I/n){ln(1 —tan 8}+I —[(I+tan 8)/tan 8]ln(1+tan 8)]+ )

or, for small (1+1/n)
[(I—tan 8) /{I+tan 8)](1—(I+ I n)/[ ( In(tan 8)—I+[(I—tan 8)/tan g]ln(1+tan 8)]]+ . }
or, for small ( —1+1/n)
[I—( —I+ I/n)[ ——' tan 8—In{1—tan 8)]+ .

j2

(b+a —C28)[C2e (b —a)]/(aS20)([(b —,
—a C2g) +Sq—a]' +[(b+a —C2a) +S2e]' —2a]

(w"')' ' as0 0 20
1 —— +3—

8 g (1) ( g (1) )2 g.(l)0 0, 0

+—A x+—A x+1 (4) 4 I (5) 5
24 0 120 0 g (5) g (4)g(2) {g(3) )2

192 (1) (1) 2 (1) 2
0 (~O ) {~O

{~0(2))4!t»„—105 -- + 105- +
{g(l))3

0 ( g(1) )4 g(1)
0 0
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of medium-density profiles. The adiabaticity factor y,
defined in Eq. (2.49), is difFerent for distinct density dis-
tributions. Furthermore, F can be given in closed form
only for a few specific density functions: A (x) propor-
tional to x, 1/x, exp( —x/I) (Pizzochero, 1987), and
tanh(x/l). However, an expansion in powers of sin 28
can be made for arbitrary A (x). It corresponds to an ex-
pansion of dx /d 3 around the resonance point,
A =5 cos20. One drawback of the expansion in sin 20 is
that it converges slowly for large angles. In this case
there is another expansion scheme, applicable when the
density distribution is of the form A (x) ~x . For arbi-
trary sin 28 one can expand F as a power series in 1/X,
(I+I/N), or (

—1+I/N). These expansions are also
given in Table III. The I/% expansion is particularly
useful for the calculation of crossing probability in stars.
It can be used for the case of the supernova neutrinos

where A (x) ~ 1/x approximately. It can also be used
for the sun to calculate corrections due to density devia-
tions from A (x) ~ exp( —x /1), which corresponds to
X~~. For details of this calculation see Kuo and Pan-
taleone (1989).

We now turn to another problem with Eqs. (2.52) and
(2.54). They are the leading exponentials in a semiclassi-
cal expansion. and, as such, are only valid if I', «1, or
yF ))1. In the extreme nonadiabatic limit, y —+0, there
are corrections to these formulas. To understand these
corrections we first calculate I', in the extreme nonadia-
batic limit. In this limit, corresponding to an abrupt den-
sity change, it is the Aavor eigenstates that are continu-
ous across the boundary. Let 9"' and 0' ' be the mixing
angles in matter before and after the sudden density
change. The amplitude for going from one mass eigen-
state to another is

Amp(v'" v'") =
E J

cosO' ' —sine' '

sine'" cose'"
(.

cos0 s1110
—sine"' cose"'

cos( 9(i) (9(2) ) sin( g() ) g(2) )

—sin(0(" —8( ') cos(8"'—6)(2) ) '

(2.55)

This corresponds to an equation for P, of

P, =sin (0"'—0' ') .

I', =cos 8 . (2.57)

When this value is substituted in Eq. (2.51), one has
P(v, &v, )=1—

—,'sin —28, which is just the vacuum oscil-
lation equation given in Eq. (2.11). This is expected,
since the extreme nonadiabatic limit„y —+0, corresponds
to the neutrino vacuum oscillation wavelength growing
larger than the dimension of the star; matter effects
should then be negligible.

It is now clear what is wrong with Eqs. (2.52) and
(2.54). In the limit y ~0, P, ~ 1, in contrast to
P, ~c 0o,saccording to Eq. (2.57). This deviation be-
comes substantial when the mixing angle 8 is large. To
remedy this, we may resort to solving the neutrino wave
equation directly. This can be done for density functions
A (x ) proportional to exp( —x /l ) (Kaneko, 1987;
Toshev, 1987b; Ito et a/. , 1988; Krastev and Petcov,
1988b; Petcov, 1988a), tanh(x/))) (Notzold, 1987a), 1/x
(Kuo and Pantaleone, 1989), and, of course, x. For a

For a continuous, monotonic, quickly varying density
(such as occurs in a star), the nonadiabatic region en-
larges to extend far above and below the resonance as we
approach the extreme nonadiabatic limit, @~0. In this
case, 9"'~m'/2 and 0' '~9 [quantitatively, for
A (x) ~x, these limits are smoothly approached in the
extreme nonadiabatic limit for X & —

—,
' or 1 &%, as can

be derived from Eq. (2.46)]. Thus

linear density function the change in density is never fast
enough for the extreme nonadiabatic limit, Eq. (2.57), to
apply [see comments before Eq. (2.57)j. For the other
three cases, the solutions can all be cast in the following
form for the crossing probability:

F
exp ——yF —exp ——y2 2

(2.58)

1 —exp ——y2 Sg2

Here, the function F can be read from Table III. Equa-
tion (2.58) reduces to Eq. (2.54) for yF)) l. In the limit

y —~0, it reduces to Eq. (2.57). It is free of the inadequa-
cies of Eq. (2.52) or (2.54) and is suitable for general use.
Indeed, Eq. (2.58), with the function F given in Table III
has been suggested as an ansatz for an arbitrary density
distribution (Kuo and Pantaleone, 1989).

In practice the difference between using Eq. (2.52),
(2.54), or (2.58) may not be very important for actual ap-
plications. Consider the neutrinos from the sun. It may
be that the neutrino parameters fall in regions where the
differences of the equations are never significant. Furth-
errnore, the experimental measurements must be folded
in with uncertainties in the neutrino spectra, the cross
section, and the detector eSciencies. All of these can
have uncertainties larger than the differences discussed
above. Thus for numerical calculations the choice
among the various equations may be dictated more by
ease of use than by accuracy.
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5. Phase effects

One problem with using an average probability like Eq.
(2.51) occurs when the distance between the resonance
position and the source (or detector) becomes small. For
solar neutrinos this occurs as the resonance density ap-
proaches the central neutrino production region. The
phase generated during the propagation between the
source and the resonance can be important if the propa-
gation through the resonance is nonadiabatic. Equation
(2.51) was derived assuming that this phase was large and
hence effectively irrelevant. As the phase becomes small
and the neutrino production point approaches and moves
through the resonance point, P, changes drastically. For
a neutrino produced well below the resonance region, lev-
el crossing cannot occur and neutrino propagation will
again be adiabatic; P, =0. Thus the equations for P, dis-
cussed in the previous section must be modified to ac-
count for this situation.

One possible solution to this problem is to fall back on
numerical integration of the wave equation [or the
conffuent hypergeometric functions (Haxton, 1987a)]
when phase effects are relevant. However, this method
requires much more effort than is called for at this time.
For solar neutrinos, nonadiabatic propagation near the
solar core occurs only when the vacuum mixing angle is
very small, sin8=10 . Hence the errors in Eq. (2.51),
because of phase effects, are relevant for only a small re-
gion of parameter space, since the resonance region is
typically relatively narrow. A crude but reasonably
effective way to account for the neutrino production
point moving though the resonance region is to modify
P, by multiplying by a theta function,

P, ~P, =6( A —b, C2s)P, , (2.59)

6. Properties of the average probability P (v, ~v, )

The function P(v, ~v, ) is the single most important
quantity in a neutrino oscillation analysis. It is used to
relate directly the experimental data with the neutrino
parameters. In the previous sections we obtained an
algebraic formula for the average probability P(v, —+v, ).
For a neutrino produced in the sun, at a density where
the mixing angle is 0, and detected in vacuum where
the mixing angle is 0,

so that P, is zero if the neutrino is produced below the
resonance point. Here B(x) is 0 for x (0 and 1 for x )0.
Above the resonance point the simple equations dis-
cussed in the previous section that ignore phase effects
are used for P, .

For other discussions of these phase effects see Kuo
and Pantaleone (1987a), Mikheyev and Smirnov (1987b),
and Krastev and Petcov (1988a). For a discussion of
phase effects due to density Auctuations see Schafer and
Koonin (1987).

P (v, ~v, ) =—,'+ [—,
' —B( A b—C2&)P, ]cos20 cos28

(2.60)

In a physical measurement, P(v, ~v, ) is folded in with
the Aux and the cross section by integration over the neu-
trino energy. In this section we shall discuss in detail the
behavior of P(v, ~v, ) as a function of the neutrino pa-
rameters m 2

—m
&

and 0 and especially as a function of
the neutrino energy E.

We first examine the energy dependence of cos20, the
cosine of twice thc mixing angle at t11c productloIl point.
This function enters in the adiabatic formula Eq. (2.47) as
well as the corrected equations (2.51) and (2.60). The
mixing angle in matter is given by Eqs. (2.32) and (2.33).
All of the energy dependence in these equations enters
through A [Eq. (2.28)] in the combination

( A DC~0) = (2—&2G~N, ~~E —b C2s )

—:2&2G~N,
~ p(E E„),—.

6 cos20
2&KG,N, ~,

(2.61)

Here N, ~z is the density at the production point, and Ez
is defined to be the energy at which ( A —b, C2&) =0. At
this energy, the neutrino is produced exactly at the center
of the resonance, 8 =m/4, so that cos2(9 =0. For
E (E~, the neutrino does not go through the resonance
but is produced below it. Then 0 ~0 away from the
resonance, and the oscillation probability approaches its
vacuum value, P (v, —+v, ) = 1 —

—,
' sin 28. For E )Ez, the

neutrino does go through the resonance and the MSW
effect can operate. Then 0 —+m/2 away from the reso-
nance, and the adiabatic oscillation probability (P, =O)
approaches P(v, —+v, )=sin 0. Thus E„ is the energy
that is on the threshold between no matter effects and
adiabatic resonant conversion (the MSW eff'ect). Hence
Ez denotes the adiabatic threshold energy.

This transition between no matter effects and resonant
conversion, which is described by the adiabatic approxi-
mation, is a very abrupt function of energy. For small
angles, the resonance is very narrow and neutrino pro-
duction can quickly move through it. The threshold en-

ergy Ez is directly proportional to the vacuum mass
difference h. It is relatively insensitive to the vacuum
mixing angle, since cos20 is approximately 1 for small
angles.

Now we examine the energy dependence of the nonadi-
abatic correction P, . Whether one uses the LZ equation
(2.52) or the exponential equation (2.58), all of the energy
dependence is contained in the adiabaticity parameter y;
y has an explicit factor of the energy in the denominator,
but ~dN, /N, dr ~o is also, in general, E dependent. This is
because ~dN, /N, dr~io is evaluated at the resonance, and
the resonance location is energy dependent, since it is
determined by the condition A (x)=b, cos28. However,
for %, an exponential function, as is approximately valid
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with the sun, dX, /X, dr is a constant, independent of X.
In this case the dependence of I', on E is simply given by

EXA

2
'Y=

(2.62)
~csin 20

4 cos28
~
dN, /%, dr

~ 0

1 .0 I I I I I I III I I I I I I llI I I I I I I It( I I I I I I I
II

I I I I I I I
II

I I I I I I II

0.8

The nonadiabatic correction I', depends on ENA only,
where NA denotes "nonadiabatic. " For E « ENA,
I', ~0 and we recover the adiabatic limit. In the extreme
nonadiabatic limit, E))ENA, the survival probability
P(v, ~v, ) approaches the vacuum equation, as dis-
cussed previously. Thus ENA is the energy scale for the
transition between the adiabatic and the nonadiabatic re-
gions.

The nonadiabatic transition in P(v, —+v, ) at E~ is
different from the adiabatic transition at Ez. The width
in energy of the nonadiabatic transition is controlled by
the exponential function, not by the width of the reso-
nance. Moreover, ENA is much more sensitive to the
vacuum mixing angle than is E„. For small angles, ENA
varies as 0, while E& is a constant.

The survival probability P (v, ~v, ) is plotted in Fig. 4
for neutrinos produced in the sun for typical choices of 6
and 0. The range of neutrino energies for which conver-
sion from one flavor to another occurs is

0.2

I t I I I llll

io-' ioo
I I IIIiI I I I I IIIII I I I I IIIII I I I I IIII

SO~ &03 &04 &05

F CMev)

FICx. 4. Probability of a v„produced at the center of the sun,
reaching the Earth as a function of energy. We used Eqs. (2.51}
and 4,

'2.58) with F=1—tan g and the values 5=3X10 ' eV
and sin 0=0.05.

neutrino decouples so that the two-flavor solution indeed
suffices. For further discussion of the three-neutrino
problem, see Kuo and Pantaleone (1986, 1987a, 1987b);
Baldini and Giudice (1987); Kim et al. (1987a); Petcov
and Toshev (1987); Toshev (1987a); Zaglauer and
Schwarzer (1987, 1988); Mikheyev and Smirnov (1988);
Petcov (1988d).

ENA (2.63)
1. General formalism

Outside this region, P(v, ~v, ) approaches the vacuum
oscillation expression, 1 —

—,
' sin 20. Inside, P ( v, —+v, )

has a Aat region with

P(v, ~v, )~sin 8 .

D. Three-flavor solutions to the wave equation

The previous section concentrated on neutrino oscilla-
tions with only two fIavors. Since it is known that at
least three flavors of neutrinos exist, this analysis can
only be valid if the "third" neutrino decouples or if the
three-flavor solution can always be reduced to an
"equivalent" two-flavor solution. However, this need not
occur. The three-fIIavor problem can be qualitatively
different from the two-flavor problem. We shall explicit-
ly solve the three-flavor problem; then we shall examine
the differences between two- and three-Aavor oscillations
in matter and the conditions under which the "third"

. d 1

2E

m, 0 0
(2.65)

2E
U 0 0 U

0 0 m3

0 0
+ 0 0 0

0 0 0

Without loss of generality, we assume m 3 )m 2 )m
The 3 X 3 mixing matrix U was defined in Eq. (2.12),

Let us begin by writing the neutrino propagation equa-
tion for three Aavors, which is a straightforward generali-
zation of Eq. (2.29),

U= exp(iitji7)l exp(i@A, , ) exp(icok2)

C C
—C@S„e' —S~S C e

S~S„e' —C~S C„e

C S„
C~C„e' —S~S S„e

—S~C„e' —C@S S e

S

S@C„e

C~C„e

(2.66)
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This parametrization is convenient for two reasons.
First, the angles g, y, and co can be associated with oscil-
lations of the 2-3, 3-1, and 1-2 neutrino states. In addi-
tion, the order of the product submatrices is important.
It is chosen so that we can rotate away the angles f and
the phase 5 without afFecting 2, the induced mass of the
electron neutrino. Thus the efkcts of a medium only
enter the propagation through the remaining two mixing
angles: cu and cp. These two mixing angles are the param-
eters that determine the mixing between the electron neu-
trino and the mass eigenstates. If the electron neutrino is
the component that is produced and detected, as for solar
neutrinos, then these two mixing angles are the only ones
that are relevant.

2. Eigenvalues and eigenfunctions for fixed density

The exact eigenfunctions and eigenvalues of M can be
obtained analytically (Barger et al. , 1980; Zaglauer and
Schwarzer, 1988). Since the characteristic equation is cu-
bic, however, the physica1 implications are far from
transparent (and nonadiabatic effects are not easily incor-
porated). For this reason we shall develop approximate
solutions whose physical meanings are easy to decipher.
One can gain some idea of the solution by referring to
Fig. 5, where the mass eigenstates are plotted as a func-
tion of A. In this plot small mixings and a hierarchy of
vacuum mass values are assumed. We see that there are
two regions where the levels almost cross. Thus there are
two resonances. They occur when A, the induced
electron-neutrino mass, approaches one of the heavier
neutrino masses. The lower resonance is at 3 =mz,
while the higher resonance occurs when 3 =m 3.

We now turn to the mass matrix M and develop ap-
proximate solutions near the resonances (Kuo and Pan-
taleone, 1986). To study the lower resonance we rotate
the fiavor basis by exp( —iyA, ~)I exp( i gA7) to —obtain
the transformed mass matrix

M:—exp( i@A5)I ex—p( i gk7)M exp—(igi7)I

X exp(ipse, 5)

FICx. 5. Masses of three flavors of neutrinos as a function of 2,
the matter-induced electron-neutrino mass. Here we take
m, =5m

&
=25m „~U2~ = 5 X 10,and

~ U„( =5 X 10

+[(AC —b, C2 ) +(bS2 ) ]'i I/2,
X —m +AS

(2.68)

and the mixing angle

sin2co =ES, /[(AC„—AC2 ) +(&S2 ) ]' (2.69)

Comparing this with Eq. (2.67), we see that the flavor
eigenstates are related to the mass eigenstates in matter
by

(2.70)

with

decoupled neutrino and a 2 X 2 submatrix of the form of
Eq. (2.29). To zeroth order in AS2 /2m 3, we find the ei-
genvalues

A+= I(X+ AC )

X—AC2„+2AC AS2

AS2„X+AC2

AS2

0

2(m3+ AS„)

(2.67)

U = exp(i gk 7 )I exp(iyA 5) exp(i co A ~ ) . (2.71)

Thus, while g and g maintain their vacuum values, the
angle co rotates (=n/2) as in the case of the two-
neutrino resonance. The position of the resonance is at

Here X=m 2 +m ], 6:—m 2
—m, , C2—:cos2co, etc. Near

the lower resonance, 3 =A. The term AS2+ can be
treated as a perturbation if it is small compared to
m 3 X. In this case the matrix 3f breaks apart into a

(2.72)

We now turn to the higher resonance with 3 =m 3. In
this case it is more convenient to rotate the flavor basis
by I exp( i gi,7), —

M:—I exp( i @A~ )M exp(—i QA, 7 )I

=1
2

AC +2m 3S +23
AS2„C

(m 3
—A/2)S2

AS2„C„
r+aC,„

(m 3
—A/2)S2„

—ES „S
AS +2m3C

(2.73)
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where A=—{X—b, Cz ). We may now treat b,Sz„as a per-
turbation. To zeroth order in AS2„/2m3, M again
takes the form of a decoupled neutrino and a two-
neutrino mass matrix. The eigenvalues are

A+=((m 3+4/2+ A )

w'+no'& a"—sz",
where A ""' is the value of A at the lower (higher) reso-
nance and 5A" ' is the width of that resonance. These
quantities can be found from the approximate equations
near each resonance,

+t[A —C2 (m3 —A/2)]

+ [(m ', —A/Z)S, „]'I'")/Z,
(2.74)

A'=bC2 /C, 5A'=bS2 /C

A"=(m2 —A/2)C, ~, 5A"=(m3 —A/2)S2~
(2.80)

A~ =(2+ b, C2„)/2,
while the mixing angle is

sinzq& =(m 3
—A/2)S2„/I [ A —C2 (m 3

—A/2)]

+[{m —A/2)S ] I'

For small angles, Eq. (2.79) takes the form

( I+O(8, @) .
mg m)

For m3 ))mz ))m „Eq. (2.79) takes the form

(2.81)

(2.75)

Thus the mass eigenstates are now related to the flavor
states by

(2.76)

&=exp(igk7)I exp(iy (2.77)

The angle qv goes through the resonance at

A =C2 (m3 —A/2) . (2.78)

Corrections to the solutions for Eqs. (2.68)—(2.72) and
(2.74) —(2.76) can be obtained easily by using perturbation
theory; this is discussed in Kuo and Pantaleone (1987a).
The corrections vanish when the mass scales separate and
the mixing angle between v, and the nonresonant neutri-
no vanishes.

The above analysis shows that, for many natural
choices of masses and mixing angles, three-neutrino oscil-
lations in matter separate into two resonances, each
resembling a two-flavor resonance. The resonances occur
when the induced mass of the electron neutrino, A, be-
comes degenerate with a heavier mass state. Then a
small vacuum mixing between the electron neutrino and
the heavier mass eigenstate can become very important.
This is true for more than three Aavors, and the approxi-
mate analysis can easily be generalized. For three neutri-
nos, with small vacuum mixing, the resonances are an e-2
(or, approximately, e-p) resonance when A =m z and an
e-3 (or, approximately, e-w) resonance when A =m 3. We2

shall refer to these as the lower (I) and higher (h) reso-
nances, respectively.

This approximate formalism assumes that there are
two separate resonances and calculates the masses and
mixing angles in matter near each resonance as a func-
tion of A. The validity of this assumption depends on
the vacuum mass and mixing angles, since they deter-

-mine the location and width of the resonances. The
matter eftects enter only through A; so the resonances
are well separated when

2 1I fP23 3 .
(2.82)

co and cp are the mixing angles in matter given by Eqs.
(2.69) and (2.75), respectively. Away from the resonances
co, y and U take on simple asymptotic values (see
Table IV). These and other results are easy to read from
the simple, approximate formalism.

3. Medium with varying density

The solutions presented in the previous section give
the mass eigenstates in matter for a particular fixed A.
For neutrinos propagating through matter with changing
density, A depends on x, and the neutrino propagation
equation (2.65) is difficult to solve. If we denote the ei-
genvalues of the mass matrix M by A&, A2, and A3, then,
in complete analogy with Eq (2.41), we have

TABLE IV. Elements of the mixing matrix in matter as a func-
tion of A =2&2GFX,E. A" (A') is the value of A at the e-~
(e-p) resonance.

Matrix elements

in matter A —+0 A'«A «A"

I

UmI2

IUmI2

IUmI2

0
I U, I'+

I U,.I'

cp is the angle associated with the e-3 mixing. Equation
(2.82) depends on our definition of the width of the reso-
nance but, to leading order, Eqs. (2.81)—(2.82) are both
independent of the small parameters. The two equations
are similar in that once we have small mass ratios or
small mixing angles, the constraint on the other parame-
ters is rather weak.

The approximate equations are easy to use. For two
well-separated resonances we combine the leading-order
expressions from each resonance to get a general formu-
la. The mixing matrix that relates the mass and Aavor
eigenstates can be obtained by combining Eqs. (2.71) and
(2.77) to get

U = exp(i/A, 7)1"exp(iy A, 5) exp(i co A,2); (2.83)
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l
dX

Ai 0 0 Vi

0 A2 0 —(U ) i U v22E dx
0 0 A3

(2.84)

A, /2E —i(den /dx )

i (den Idx ) A /2E

i cosco (dy Idx) i —sinco (dy Idx)

i sinco (dy Idx)

A3/2E

V2

i —cosco (d y /dx) vi

(2.85)

Thus, as in the case of the two-flavor problem, the adia-
batic approximation consists in completely ignoring the
term ( U )t(dU /dx).

The adiabatic approximation receives corrections near
the resonances. At the lower resonance, (de /dx) is
sharply peaked; crossing may occur between levels 1 and
2. At the upper resonance, co =m/2 and (dy /dx) is
sharply peaked; so any crossing occurs between levels 2
and 3. For the average probability P(v, —+v, ) in a medi-
um with a rnonotonically decreasing density, we may
again use the arguments leading to Eq. (2.51). Figure 5

shows that the probabilities for the state at production
positions A, 8, and C to be v, 's are

I U, 3 I, I U, 2 I, and

I U„ I, respectively. Similarly, at detection positions A',
8', and C', the probabilities of these states to be v, 's are
given by the vacuum values U,3, I U,2I, and U„ I

.
The propagation of the states will be along the mass ei-
genva1ue curves, except near the crossing points. If we
denote by P,h and P,' the crossing probabilities at the
higher and lower resonances, respectively, then, for in-
stance, the probability of state 3 going to 8' is
P,"(1 P,'). Follo—wing the propagations of each of the
states, we obtain

IUm 2

P(v, -v, )=[IU„I'IU„'IU„I']X'X' IU;, I'

I

Uml2

X =
1 —P,'

pl
0

1 —P, 0

0 1

(2.86)

1 0
0 1 —P,"
0

0
ph

ph

where P,'=8(AC —bC2 )P,' and P,"=8[2—(m3
A/2)C2„]P,", analogou—s to the two-flavor expression in

Eq (2.60).
The quantities in the above formula can easily be ex-

tracted from the expressions in Sec. II.D.2. An approxi-
mate expression for the mixing matria in rnatter has al-
ready been given in Eq. (2.69) with (2.75) and (2.83).
From these latter two equations come definitions of the
energy scales E~ and E~ for the lower and higher adia-
batic threshold energies

b, C2„/C
2&2G~N, I p

(m 3
—A/2)C2

2&2G~N, I p

(2.87)

2S2„
4 IdN, /N, dx Io C2

h
ENA

2'Y =

(m 3
—A/2) Sz

4
I dN, /N, dx

I o C2„

(2.88)

The masses and mixing angles are as defined in Sec.
II.D.2. These nonadiabatic parameters can be used with
either the LZ expression for the crossing probability, Eq.
(2.52), or the ansatz density equation (2.58). If the latter
equation is used for the crossing probabilities, then the
vacuum mixing angle that occurs in the exponents of Eq.
(2.58), outside the adiabaticity parameter, is given by the
corresponding three-Aavor vacuum angle. For the lower
(upper) resonance the mixing angle co (y) is used. With
this natural prescription the survival probability
P (v, ~v, ) goes to the vacuum oscillation probability in
the extreme nonadiabatic limits.

The survival probability given in Eq. (2.86) is plotted
for solar neutrinos in Fig. 6 for a typical choice of the
neutrino parameters. Comparing with the corresponding
probability function for two flavors, as in Fig. 4, we see
that they are different. For three neutrino species, con-
version of one Aavor to another (the MSW effect) occurs
over two different energy ranges,

E3 +E +ENA~ EA +E +ENA (2.89)

analogous to the two-Qavor definitions in Eq. (2.61). The
superscript i (h) denotes the lower e-p (higher, e-r) reso-
nance. These are the energy scales where each of the two
resonances occurs at the neutrino production position.

Expressions for the crossing probabilities P," and P,'
also follow from analogy with the two-flavor derivation.
An adiabaticity parameter can be defined at each reso-
nance from Eq. (2.85). Evaluating them at their respec-
tive resonances gives

I
ENA
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FIG. 6. Probability of a v„produced in the sun, reaching the
Earth as a function of energy, Eqs. I,'2;54} and {2.86). Here we
take three flavors and m3 = 1.2X 10 eV, m2 = 1 X 10 eV,
m, =0,

I U, z I

=5 X 10, and I U„ I

= 5 X 10 . The solid line is
for a neutrino produced at the center of the sun; the dashed line
is for neutrinos produced with the p-p distribution predicted by
the standard solar model.

A simplification in the descriptio~ of neutrino oscilla-
tions occurs for neutrinos from astrophysical sources like
the sun or a supernova. The emitted neutrinos are typi-
cally of low energy —tens of MeV or less. A neutrino
with energies less than IIO6 MeV has insufhcient energy
to produce a muon in a collision with a proton or neu-
tron, so that it is impossible to differentiate between a v„
or v . The measured neutrino Aux can then only be
discriminated into the electron arid the sum of the
nonelectron neutrino Auxes. Furthermore, because astro-
physical sources of neutrinos are at low energies, any p
or w neutrino Aavors are produced equally via the neutral
current. Using these two observations we can simplify
the expressions for the effect of neutrino oscillations on
the astrophysical neutrino Auxes. The neutrino Aux of
species a at the Earth, I', can be expressed in terms of
the initially produced neutrino Aux of species I3, Fp, as

one for each resonance. The Qat minima of P(v, —+v, ) in

these two regions correspond to adiabatic propagation
through the higher and lower resonances, respectively.
Substituting in Eq. (2.86) the values of y and co inferred
from Table IV, we And

P(v, ~v, ) I U, 3l'

P (v, v, ) I U„I'(I U, il'+ I U, ~l')+
I U, 31',

(2.90)

Eg 4 E ((ENA

This should be compared to the case of two-Aavor oscilla-
tions, for which P ( v, —+ v, )~sin 9, according to Eq.
(2.64).

Outside the regions defined by Eq. (2.89), the survival
probability approaches the vacuum oscillation equation

P(v, ~v, ) =+I U„l

F =QP(vp~v )Fp,
p

(2.93)

F, =F, —[1 P(v, v, )](F,——F ),
F„+F,=2F +[1 P(v, ~v, )]—(F, —F—„) .

(2.94)

where P(vp~v ) is the probability that if species P is
produced in the astrophysical object, then species o. is ob-
served on the Earth. Both the I"s and I' 's are, in princi-
ple, functions of time and energy, and the P's include
matter and vacuum oscillation effects. However, all the
I"s for neutrino oscillations are constrained by the uni-
tarity conditions given by Eqs. (2.14)—(2.18). When we
combine these constraints with the two observations that
followed from the neutral-current interaction of neutri-
nos, that I „=F„=—I' and that the only detectable Aux is
I'„+F,we get

=1—2(IU, I'+IU, I' —IU, I'

(2.91)

4. Three flavors versus two flavors

(2.92)

Comparing the two-Aavor and three-Aavor electron-
neutrino survival probabilities, we see that they appear
quite different. However, for the realistic situation in
which the experimental information on the neutrino Aux
is quite limited, it is often sufficient to represent the sur-
vival probability by the slightly simpler two-Aavor
description. We shall describe the conditions under
which this is appropriate.

It should be noted that, in the limit of small mixing an-
gles, Eq. (2.86) can be shown to reduce to the intuitive re-
sult [Kuo and Pantaleone, 1987a, Eq. (3.35); Mikheyev
and Smirnov, 1988]

P (v, ~v, ) =P "(v, —+v, )P'(v, ~v, )+0(
I
U„.

We see that the only relevant oscillation probability for
solar or supernova neutrinos is P ( v, ~v, ), even for three
neutrino flavors.

The above argument is equally valid for antineutrinos,
and the relations between the produced and the detected
Auxes are identical to the above expressions, with the
neutrinos replaced everywhere by antineutrinos. For an-
tineutrinos the only relevant probability is P(v, —+v, ).
These two probabilities, P(v, ~v, ) and P(v, ~v, ), are
thus the only quantities that must be specified to deter-
mine how neutrino oscillations mix the Auxes.

For experiments with a limited energy resolution,
P ( ~v)vcan sometimes be represented as an
"effective" two-Aavor expression. For instance, if an ex-
periment only measures a constant P(v, —&v, ), this can
easily be described by a constant region of a two-flavor
probability formula like Eq. (2.51) with an appropriately
chosen vacuum mixing parameter. Observing a change
in P(v, —+v, ) with energy would allow the fixing of a
mass scale in a two-Aavor analysis and would possibly
even show the effects of more than two Aavors. At an en-
ergy threshold in P( ~v),vthere are deviations from
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the two-Aavor description that depend on the mixing be-
tween the electron neutrino and the nonresonant mass
eigenstate.

For example, let us define R to be the ratio of
P(v, ~v, ) inside the energy range of resonant conver-
sion (the MSW probability) to P(v, -~v, ) outside that
range (the vacuum oscillation probability). For two neu-
trino species, the ratio is, using Eqs. (2.64) and (2.11),

sin 92—
1 —sin 28/2

sin 0
1 —2 sin 8(1—sin 8)

(2.95)

However, for three flavors we have two difterent expres-
sions, one for each resonance. For the higher resonance,
sin28 corresponds to sin p= I U, 3I [see Eqs. (2.66) and
(2.77)]; using Eqs. (2.90) and (2.91) results in a ratio hav-

ing the form

1 —z(IU„I'+ IU, 3I' —IU„I'—IU„I'—IU„I'IU„I') '

, (1+2IU„I'+ . ) .

(2.96)

In the last expression we have expanded in terms of off-diagonal mixing matrix elements in order to write the expression
as an effective two-fIavor quantity times a correction term. For the lower resonance, sin j9 corresponds to
sin co=

I U, zl /(1 —
I U, 3I ) [see Eqs. (2.66) and (2.71)];using Eqs. (2.90) and (2.91) results in a ratio of the form

IU, I'(1 —IU, I')+IU„I'
1 —2(

I U,21'+
I U, 31'—

I U, p
I' —

I U, 3I'—
I U, 21'I U, 31')

'

I U„l'/(1 —
I U„l')

1 —2[ U„l'/(1 —
I U, 31')][1—

I U, 21'/(1 —
I U, 31')]

(2.97)

For both resonances, the correction term vanishes when
the mixing matrix element between the electron neutrino
and the nonresonant neutrino vanishes. Thus a careful
measurement of a single energy threshold could show the
effects of three flavors if the electron neutrino coupling to
the nonresonant neutrino is large.

A straightforward way to see the effects of three
flavors would be to observe two resonant energy regions
for neutrino conversion. For instance, if one observed a
P(v, —+v, ) that was peaked at some energy, that would
require a description in terms of more than two flavors.
Such a case is shown in Fig. 6. For typical neutrino pa-
rameters, the two energy ranges where Aavor conversion
occurs may be very close to each other, even overlapping.
The assumption of a hierarchy of masses does not imply
a relation between ENA and E~. These two energy scales
depend on different properties of the medium: the former
on the rate of density change and the latter on the max-
imum density. If parts of both of these flavor conversion
energy ranges lie in the range of experimental sensitivity,
then it will not be possible to reproduce three-fiavor os-
cillations by an equivalent two-flavor oscillation.

III. APPLICATIONS
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solar model, which quantitatively describes all aspects of
the sun: radius, luminosity, temperature, density distri-
butions, etc. There are, however, few significant tests of
the model. Most solar observations are sensitive only to
surface conditions —it takes millions of years for a pho-
ton to diffuse from the core of the sun to the surface. To
test the solar core, where the nuclear reactions occur, one
must measure the Aux of particles produced in the core
that do not diffuse out of the sun but instead pass
through the sun without scattering —neutrinos. The
neutrino spectrum given by the standard solar model is
shown in Fig. 7 and Table V. For a recent review of the
standard solar model see Bahcall and Ulrich (1988).

A. The sun

O.l &0

NKUTRlgo ENERGY (MeV)

The standard solar model goes back 50 years to Bethe's
(1939) detailed formulation of the nuclear reaction cycles
involved in the stellar transformation of hydrogen into
helium. These cycles still form the basis for the present

FIG. 7. Solar neutrino spectra predicted by the standard solar
model (Bahcall and Ulrich, 1988). The neutrino Auxes from
continuum sources are given in units of number per cm per
second per MeV, and the line cruxes are given in number per
cm per second, both at a distance of 1 AU.
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TABLE V. Solar neutrino reactions, Auxes, and 3o. uncertainties (Bahcall and Ulrich, 1988).

Solar reaction

p +p ~'H+e++ v
B~ Be*+e++v

13N 13C+ + +
15O 15N+ + +
p+e +p~ H+v
Be+e —+ Li+v

Ev, max
(M'eV)

0.420
14.02
1.199
1.732
1.442

0.862 89.6%
0.384 10.4%

Flux
(10" cm 's ')

6.0(1+0.02)
5.8 X 10 (1+0.37)
6.1 X 10-'(1+0.50)
5.2 X 10-'(1+0.58)
1.4 X 10-'(1+0.05)
4.7 X 10 '(1+0.15)

"Cl
(SNU)

0.0
6.1

0.1

0.3
0.2
1.1

Total 6.6(1+0.02) 7.9( 1+0.33 )

1. Calculating the solar neutrino capture rate

%'ith neutrino mixing, the capture rate observed in a
terrestrial neutrino absorption experiment, like the Cl
experiment, is given by

capture rate =g f dE (P(E) )o.(E)p, (E);
l

(3.1)

o (E) is the cross section for neutrino capture and y; (E)
the neutrino (lux spectrum (Fig. 7). (P(E) ) is the neutri-

This was the central motivation behind the Cl solar
neutrino experiment, which began operation in 1967
(Davis et al. , 1968). In this experiment, electron neutri-
nos are captured by the Cl atoms in a tank ulled with
perchloroethylene (C2C1&), and Ar is produced at a rate
of about one atom every three days. About once a month
the Ar atoms are extracted from the tank and "count-
ed" by observing their decay. However, for the past 20
years (Davis, 1988) this experiment has yielded a result
that is 2.1+0.3 SNU (solar neutrino units, 1

SNU=10 /(target atom) sec, which averages about —'

of the expected capture rate given in Table V. This is the
so-called solar neutrino problem.

Neutrino mixing can easily explain the solar neutrino
problem. The neutrinos produced by the sun are all one
favor, v, . The Cl experiment is only sensitive to one
Aavor, v, . Neutrino mixing will cause the v, to leak into
other Aavors that cannot be detected by the experiment;
hence the measured Aux will be less than the total neutri-
no flux. Considering only vacuum effects, the amount of
mixing with other Aavors is expected to be small, since
the analogous hadronic mixings are small (Sec. I.B).
However, Mikheyev and Smirnov (1986a) first suggested
that matter effects, which can enhance neutrino mixing
and also give resonant conversion between neutrino
favors, provide a natural solution to the solar neutrino
problem. The solar neutrinos that are observed on Earth
come from near the center of the sun. The solar density
falls off smoothly from the center (approximately as an
exponential); so the probability for a v, produced in the
sun to reach the Earth, P(v, ~v, ), has large energy
ranges where resonant conversion of neutrino Aavor can
occur, as described in Sec. II.

no conversion probability averaged over the distribution
of neutrino production in the sun, 4;(x),

(P(E))= f d x P(v, —+v, )(E,x)N;(x) . (3.2)

The phase-averaged probabilities derived in Sec. II are
quite appropriate for describing P(v, ~v, ) through the
sun. This is because there are typically many oscillations
between neutrino production and a resonance, and again
between the resonance and detection. Hence the phase
information from before and after resonance is easily lost
[as assumed for Eq. (2.51)]. In particular, propagation
after a neutrino resonance in the sun is always many os-
cillation wavelengths because the Earth-sun distance is
many times the solar radius; the solar radius is roughly
the maximum-size neutrino vacuum wavelength for
which resonant conversion in the sun can occur. This
observation is important for adiabatic resonant transi-
tions. For those cases there is no level crossing, so the
phase associated with the production-to-resonance prop-
agation is added directly to the phase associated with res-
onance to detection. This total phase is always large, be-
cause of the large sun-Earth separation, and hence unob-
servable. The only time any phases might be observable
is for propagation between the production and a nonadia-
batic resonance. This does not occur frequently, since
the neutrino wavelength at the solar core is about
10 R„i„X[(100g/cm )/p], much less than typical so-
lar scales. The rare case in which the production point is
not many oscillations from a nonadiabatic resonance
point is discussed explicitly in Sec. II.C.5.

To use the phase-averaged probability for P(v, ~v, ),
Eq. (2.60), to describe neutrino propagation through the
sun, a crossing probability must be specified. For
0.75&x =R/R„...&0.25, the electron-density distribu-
tion in the sun is given approximately by (Bahcall and
Ulrich, 1988)

where %~ is Avogadro's number per cm and the loga-
rithm is base 10. The last term is quite small; so the den-

sity decrease is approximately exponential, and Eq. (2.58)
is the appropriate choice for the crossing probability P, .

log(n /X~ )=2.32 —4. 17x —0.000 125/[x +(0.5) ],
(3.3)
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The averaging over the production position, Eq. (3.2),
produces relatively minor changes in the survival proba-
bility. This is because neutrino production occurs dom-
inantly in a small region at the center of the sun. The
standard solar model (Bahcall and Ulrich, 1988), gives
the distance scales for neutrino production, @;(x), rang-
ing from about 0.05R „&„for 8 neutrinos to 0.1R„&„for
pp neutrinos. Referring to Eq. (2.60) for the probability,
we see that P(v, ~v, ) depends on x, the production po-
sition, in two different ways. The mixing angle at the
production point depends on the density there and hence
on position through p(r). The theta function in Eq.
(2.60) also depends on the production position. Further-
more, Eqs. (2.51) and (2.60) are modified if a neutrino is
produced on the far side of the sun and travels inward
through two resonances before emerging from the pro-
duction zone. Then the matrix representing the level-
crossing probability is effectively doubled,

(1 P,)— (1 P, )—P,
(1 P, )—P,

(1—P, ) P,P,

[1—2P, (1 P, )]-
2P, (1—P, )

2P, (1 P,)—
[1—2P, (1 P, )]—(3.4)

The net effect on the equation for P(v, —& v, ) is to replace
P„ the probability of level crossing at the resonance, by
2P, (l P, ). The—results of averaging over the produc-
tion region can be seen from Fig. 6, where they have been
plotted on the same graph as the case @;(x)=5 (x). The
adiabatic threshold is modified slightly, since the reso-
nance then occurs near the production position. The
largest finite production size effects occur for the pp spec-
trum.

The cross sections for neutrino absorption as a func-
tion of energy, cr(F), are difficult to determine accurately.
They are evaluated by a combination of nuclear model
calculations and laboratory-measured transition rates.
Extensive laboratory measurement of the relevant nu-
clear transition rates have been performed for the Cl
experiment's cross section. This cross section has been

der(v„e)+ [1—(P(Z) ) ]
e

(3.5)

where do/dE, is the differential cross section of v-e

scattering, and E, is the electron kinetic energy. This
differential cross section is easily calculated from the
standard weak-interaction model given in Eqs. (2.1)—(2.3)
and is free of the nuclear model uncertainties associated
with the absorption cross sections.

NL +gz 7

P1e V

I,E,
E2

do
dE,

go= g8X 10 cm (3.6)

gI =(+—,'+sin Oii, ), g~ =sin Oii

The upper sign applies to v, -e scattering, the lower sign

checked by exposing the Cl detector to a radioactive
source. However, the cross sections for most of the other
proposed neutrino detectors are much more uncertain.
For example, the absorption cross section for the geo-
chemical Mo experiment, which may soon yield results
(Cowan and Haxton, 1982; Wolfsberg et al. , 1985), is un-
certain by about a factor of 2. The estimated event rates
and their uncertainties for many experiments are shown
in Table VI. The energy dependence of the absorption
cross sections for the present and for many of the pro-
posed solar neutrino experiments can be found in Bahcall
and Ulrich's (1988) Table IX [see also Mathews et al.
(1985), Grotz et al. (1986), and Parke and Walker
(1986)].

Neutrino-electron scattering experiments, such as
Kamiokande II, are different from neutrino absorption
experiments. They have the advantages of detecting neu-
trinos with some information on their time, direction,
and energy. The electron energy spectrum of verve
elastic scattering is given by

T

do(v, e)
g I dE y;(F) (P(E))

v, min e

TABLE VI. Properties of proposed solar neutrino experiments. E,h„ is the threshold energy.

Experiment

Cl(v, e ) Ar
'Cxa(v, e) 'Eye

'Br(v, e) 'Kr
SMo(v, e) Tc

205T1( e ) 20spb" In(v, e)" Sn
H(v, e )pp

H(v, v)np
"Ar(v, e) 40K*

v-e scattering

Type

radiochemical
radiochemical
radiochemical
geochemical
geochemical
direct counting
direct counting

direct counting
direct counting
direct counting

Event rate
(SNU)

7.9+2.6
132+20
27.8+17
17.4+18

263
639
6.0+2.1

3.0
1.7+0.6
0.35

(MeV)

0.814
0.236
0.459
1.74
0.043
0.12
1.44

(6.44)'
2.2
5.885

Main
source

sB

pp, Be
Be,'8

sB

pp
pp

sB

sB
sB
sB

'Assumed threshold for calculation of event rate.
This value is only from 8 neutrinos.
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to v„-e scattering (here v„represents either the p or r
neutrino); for v-e scattering, gL and gii are interchanged.
The cross section for v„-e scattering is approximately

7 smal ler than that of v, -e scattering. Thus neutrino-
electron scattering experiments are primarily sensitive to
electron neutrinos, as is the Cl experiment. In fact, the
electron recoil spectra for v„-e scattering is so similar to
that of v, -e scattering that the two are indistinguishable
in a solar neutrino experiment (Bahcall, 1987; Bahcall
et al. , 1987). A v„ fiux from the sun cannot be dis-
tinguished from a small v, Aux by neutrino-electron
scattering.

The spectra for the neutrino Auxes from the sun are
shown in Fig. 7. The solar reactions that produce the
neutrinos are shown in Table V along with the maximum
energy of the reaction. The electron-absorbing reactions
produce neutrinos with discrete energies. The spectra for
a positron-emitting reaction is

y(E, ) ~E w, (w, —1)'i F( —Z, ;«„,w, ) . (3.7)

Here w, —=[1+(E,„E)/m—, ] is the positron energy;
F is the Fermi function (Bahcall, 1978; Bahcall et al. ,
1982), usually only a small correction. For the neutrinos
from the 8 reaction there is an additional correction due
to the broad character of the Be state {Bahcall and Hol-
stein, 1986).

2. iso-SNU contour plots

E;„=0.81 &E & 14 MeV=E (3.8)

Introducing x =E/E, „,x;„=E;„/E,„,we have

x;„&x&1 . (3.9)

The neutrino Aux of a continuous spectrum is given ap-
proximately by x (1—x) . The detection cross section
for the 8 neutrinos is given roughly by o. ~ x for
x &0.5, and by o. o- x for x & 0.5. Neglecting finite pro-
duction size e6'ects, we see that the total capture rate is
given by

I=f dx P(x)x (1 —x)
min

(3.10)

with N=4. 8 or 5.5 for x & 0.5 or x & 0.5; P (x) is given by
Eq. (2.60) and for small angles takes the form

It is fashionable to evaluate Eq. (3.1) numerically and
to make a contour plot of the result. The plots usually
assume two neutrino Aavors and show the percent reduc-
tion in the capture rate, as a function of neutrino param-
eters, rn2 —m

&
vs sin 20. In order to "understand" such

plots, we shall derive approximate analytic expressions
for the contours that solve the solar neutrino problem,
the neutrino parameters that reduce the Cl capture rate
by —'. These approximations should give results accurate
to about 10—20%%uo.

The Cl detector is sensitive to neutrino energies in
the range

where 8 is the theta function and Ez and ENA are given
by Eqs. (2.61) and (2.62). The first term describes the adi-
abatic threshold and the second term describes the nona-
diabatic threshold.

For two IIIavors and small angles, we see from Eq.
(3.11) that there are two solutions to the solar neutrino
problem {Bethe, 1986; Mikheyev and Smirnov, 1986a;
Rosen and Gelb, 1986). The first one corresponds to hav-
ing the energy range (E;„&E(E,„)straddle the adia-
batic transition region with exp( EN&—/E)(&1. Then
all neutrinos with E &E~ are converted. The rate from
the Cl experiment then determines one parameter, E~.
As was shown by Bethe (1986), one may use Table V and
Eq. (3.10) to find

E& =6 MeV, 6=1.0X10 eV (3.12)

We have used Eq. (2.61) and N, ~ p =99 g/cm .
With two fiavors there is a second solution (Mikheyev

and Smirnov, 1985; Kolb et al. ; 1986, Rosen and Gelb,
1986); when the energy range (E;„&E(E,„)overlaps
the nonadiabatic region near EN~, so that P(x)
=exp( —xN~/x), xN~ =EN~/E, „. Here it is mainly
the neutrinos of lower energy that are converted. For the

Cl experiment, this means that the detected neutrinos
almost all come from the 8 source. Since the 8 contrib-
utes 6.1 SNU, the experimental result of 2.1 SNU is ob-
tained by demanding that

f dx x (1 —x) exp( —xN~/x)
m 1 tl

f dx x (1—x)'
min

=21=exp( —x NA /xM ) = 6. 1
(3.13)

Here we have used the fact that the function x (1—x )
is sharply peaked at x~ =N/(N +2). Taking N =5.5,
we find that xN~ =0.5 or, using Eq. (2.62) and
(dN/N dr )0=3 X 10 ' eV,

ENA=10 MeV,

5 sin 20=4 X 10 eV
(3.14)

These values agree with the numerical calculations.
We have thus seen that each of the above small-angle

solutions determines only one parameter —E~ in the adi-
abatic solution and E~A in the nonadiabatic solution.
For large angles, there is a third solution. This corre-
sponds to having E„&E;„&E & E „«ENA. Here
P, ~O, P(v, —+v, )=sin 0 [see Eq. . (2.64)]. Thus, for the

Cl experiment, one has sin 0= —,', and neutrinos of all

energies are depleted equally.
These three solutions are obtained by analytic methods

and are useful in understanding the problem and the nu-
merical calculations. Similar analyses can be carried out
for the other experiments. However, for experiments

P(v, —+v, ) =6(E„E—)+6(E E—
& )exp( E—N~/E),

(3.1 1)
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with thresholds much lower than the Cl experiment,
the neutrino spectra become complex and the results of
analytic analyses are not very accurate. The above
analysis can also be extended to the more general prob-
lem with three neutrino Savors (Kuo and Pantaleone,
1987a).

Figure 8 shows contour plots for the Cl and 'Ga ex-
periments, assuming only two neutrino species. The con-
tours approximately form triangles with each side of the
triangle corresponding to one of the approximate analyt-
ic solutions derived above: the upper contour corre-
sponds to the adiabatic solution, the lower left contour
corresponds to the nonadiabatic solution, and the right-
hand contour corresponds to the large-angle solution.
Where two different types of solutions intersect, there are

often extra corrections that must be taken into account.
The corner of the triangle where the nonadiabatic and
large-angle solutions intersect is the parameter region
where the corrections to I', given in Table III and Eq.
(2.58) are important. The corner of the triangle where
the adiabatic and nonadiabatic solutions intersect is the
parameter region where the phase effects discussed in
Sec. II.C.5 are important.

Comparing different contour plots, we see that the
'Ga contours are shifted down with respect to the Cl

contours, because the 'Ga experiment has a lower
threshold and hence is sensitive to lower energy scales.
A contour plot for the total reduction of a H20 experi-
ment would almost exactly overlap those of the Cl ex-
periment, because the two are sensitive to neutrinos in
approximately the same energy range. For other contour
plots see Bouchez et al. (1986), Mikheyev and Smirnov
(1986a), Parke and Walker (1986), and Dar et al. (1987).

Figure 9 shows contour plots for the Cl experiment,
assuming three neutrino species. For three neutrino
species, P(v, ~v, ) depends on four parameters —two
mixing parameters and two mass parameters. In order to
make a two-dimensional plot, there must be two con-
straints among these four parameters. We have chosen
both the mixing angle and the masses to be hierarchical,
in accordance with theoretical expectations as discussed
in Sec. I.B. For other three-Aavor plots, see Kuo and
Pantaleone (1986, 1987a), Baldini and Csiudice (1987),
Kim et al. (1987a, 1987b), Kim and Sze (1987), and Za-
glauer and Schwarzer (1987, 1988).

10 10 lg 10 1(f 1.0
sin (28)/eos(28)

10--

OOe++eo

10 ="
4 & Oreeyee ~~W

10 '=

10',
10 10 ' 1g-

' ' ' ' ""
""(28)/«s(28)

10'

FICi. 8. Iso-SNU contours for the (a) Cl, and (b) 'Cia experi-
ments (Baltz and Weneser, 1988b). It is assumed that there are
only two flavors.

3. New experiments

One must be cautious in accepting the MSW effect as
the solution to the solar neutrino problem. The predicted
solar neutrino Aux is based on the intricate standard solar
model, which could be inaccurate. Since the 8 neutrino
Aux is very sensitive to the solar core temperature, a
slight modification of the solar model can lead to dramat-
ic changes in the predicted Aux. Thus more experiments
are needed to test whether neutrino mixing, and in par-
ticular the MSW effect, is the correct solution to the solar
neutrino problem. We shall describe the different ways
that matter-enhanced mixing of solar neutrinos could be
observed experimentally.

The most straightforward test of flavor mixing, be it
matter enhanced or just vacuum, is to look for v„or v
neutrinos in the solar neutrino Aux. This would be un-
mistakable evidence for neutrino mixing. In principle,
neutrino scattering off electrons is sensitive to all flavors,
and a comparison between the Aux measured by this
method and the Aux measured by a method sensitive only
to v„ like the Cl experiment, could test for new neutri-
no Aavors. However, the v, has an electron-scattering
cross section that is 7 times that of v„or v . Thus statist-
ical and systematic errors render it extremely dificult to
confirm the presence of new flavors in the solar neutrino
Aux via electron scattering. However, future, more sensi-

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



964 T. K. Kuo and J. Pantaleone: Neutrino oscillations in matter

IO

IO

IO
IO IO IO

my�(eV )

Io

IO

{b)
IO IO

10

- IO'

IO

—IO

Io' IO
2

I Uepl

IO

FIG. 9. Iso-SNU contours for the ' Cl experiment (Kuo
and Pantaleone, 1987a). Three flavors are assumed and typical
constraints are taken on some of the parameters: I', a)
~U2( =5X10 and (U, 3( =1X10 '; (b} (m, /m, }

tive detectors like Super Kamiokande (32 ktons; see
Suzuki, 1987), Icarus (3 ktons; see Bahcall et al. , 1986),
or LVD (2.8 ktons; see Alberini et al. , 1986) may be able
to accomplish this. Another process sensitive to all neu-
trino Aavors is the excitation of nuclear energy levels via
neutral-current neutrino scattering. This cross section is
equal for all neutrino species. This method could be im-
plemented on deuterium in the planned Sudbury Neutri-
no Observatory (1 kton; Chen, 1985; Aardsma et al. ,

1987), and it has also been discussed for a detector based
on "B (Raghavan et al. , 1986; Raghavan and Pakvasa,
1988). Failure to find new neutrino fiavors when study-

ing the same energy range in which there is an alleged de-
pletion of the v, Aux would kill the MSW explanation of
the solar neutrino problem.

Another way to test for flavor mixing in the solar neu-
trino Aux is to observe solar neutrinos in a different ener-
gy range, one which is less sensitive to details of the stan-
dard solar model, This is the basis of 'Ga radiochemical
experiments, which are presently under construction
[SAGE (60 tons), Barabanov et al. , 1985; GALLEX (30
tons), Kirsten, 1986]. These experiments are primarily
sensitive to low-energy neutrinos, which come from the
basic pp solar reaction. Most other experiments are sen-
sitive to higher-energy neutrinos, which come from
different solar reactions. If the 'Ga experiments were to
yield results different from the standard solar model pre-
dictions, it would indicate either neutrino Aavor mixing
or a radical departure from the standard solar model.
However, if the 'Ga experiments were to yield results
consistent with the standard solar model, it would not
eliminate the MS% solution of the solar neutrino prob-
lem, since resonant conversion is energy dependent. In
particular, the v, Aux would not be distorted in the ener-

gy range of the 'Ga experiment if an adiabatic threshold
occurred in the range of the Cl experiment. Then
lower-energy neutrinos like those detected by the 'Ga
experiment would be essentially unaffected. On the con-
tour plots, this possibility corresponds to the top of con-
tours of the Cl "triangle" overlapping a region on the
'Ga plot where there is very little reduction.

This indicates yet another way to test specifically for
the MS W effect in solar neutrinos —by looking for
unusual energy dependences in the solar neutrino fiux.
While the magnitudes of the cruxes predicted by the stan-
dard solar model are uncertain, the shapes of the energy
distributions are very well known. Distortions in these
energy distributions from the energy-dependent probabil-
ity, y, (E)~y, (E)&I'. (F)), would be unmistakable evi-
dence for matter-enhanced mixing. The MSW effect can
produce large energy thresholds in the electron-neutrino
Aux, which, in principle, are detectable. Unfortunately,
this is experimentally diKcult, since it requires very good
energy resolution, which is typically sacrificed because of
the low counting rate. Moreover, the MSW effect may
solve the solar neutrino problem without a MSW energy
threshold overlapping with the narrow range of energies
to which a detector is sensitive.

Another way to test specifically for matter-enhanced
mixing of solar neutrino flavors is to look for a temporal
variation in the Aux. A difference between the daytime
and nighttime v, cruxes would unmistakably indicate that
the neutrinos were undergoing matter-enhanced mixing
during propagation through the Earth. Experimentally,
the Cl detector is incapable of measuring this
difference, but with a minor upgrade it may be capable of
measuring it in the future. Constant monitoring is a
feature of the Kamiokande HzO Cherenkov detector and
is also a feature of most proposed experiments; so tem-
poral effects should be well measured in the future. Un-
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fortunately, matter-enhanced mixing in the Earth only
occurs for a narrow range of neutrino parameters. This
range is much smaller than the corresponding range of
parameters for propagation through the sun, as will be
discussed in the next section. A failure to observe a day-
night effect would not eliminate the MSW solution of the
solar neutrino problem.

There are other solar neutrino detectors under con-
sideration besides the ones mentioned above. Two low-
temperature detectors have been proposed: a crystalline
silicon detector (Cabrera et al. , 1985) and a liquid-
helium "roton-multiplier" detector (Lanou et al. , 1987).
In addition, detectors based on neutrino capture by 'Br
and "5In (Bellefon er al. , 1985; Booth, 1987) have been
discussed. Table VI shows the capture rates for proposed
solar neutrino detectors. For other discussions of future
experiments, see Flaminio and Saitta (1987), Friedlander
and Weneser (1987), or Bahcall, Davis, and Wolfenstein
(1988).

B. Earth

1. Calculating neutrino propagation through the Earth

In Sec. II, approximate analytic solutions to the neutri-
no propagation equation were derived for matter that
was slowly or smoothly changing in density. These solu-
tions were applied to neutrinos propagating through the
sun. Neutrinos propagating through the Earth may also
undergo matter-enhanced neutrino mixing. However,
the Earth's density does not always change smoothly. At
the surface of the Earth, the average density changes
abruptly from 0 to 3 g/cm . The interior of the Earth
consists of two regions of slowly varying density —the
core and the mantle —with an abrupt density change be-
tween them. The mantle is 3000 km thick and the densi-
ty increases from 3 to 5.5 g/cm . The core has a radius
of 3400 km and the density varies from 10 to 13 g/cm
(for a detailed distribution see Stacey, 1985).

The neutrino wavelength in matter is the relevant dis-
tance scale with which to decide whether or not the
matter is slowly varying. This is given by Eq. (2.37). The
largest rnatter effects on neutrino mixing occur near the
resonance, and there the equation for the wavelength in
matter takes a particularly simple form,

0 Earth 5 g /cm
(3 1 5)

A 3

sin2I9 sin20

The oscillation wavelength is at a maximum at resonance
and, at resonance, the oscillation wavelength in the Earth
is greater than or of the order of the radius of the Earth.
Since the density jumps abruptly on this scale, the solu-
tions to the neutrino propagation equation for slow,
smooth density changes, which were derived in Sec. II,
are not valid. Furthermore, because the total propaga-
tion distance for neutrinos in the Earth will typically be
less than or of the order of the wavelength in the medi-

um, the phase information will be very important. Clas-
sical probabilities will not be an accurate solution to the
wave equation, even over those regions where the density
is approximately constant. Thus for neutrinos propaga-
ting through the Earth, the only way to accurately solve
the neutrino propagation equation (2.23) is via numerical
methods, as discussed in Sec. II.B.3.

The range of neutrino parameters for which there is

significant mixing enhancement during propagation
through the Earth is easy to estimate. For significant
Aavor oscillations to develop, the propagation distance
must be greater than about a quarter of a wavelength.
This condition, with Eq. (3.15) for the wavelength, gives
us a lower limit on the mixing angle. For the longest
propagation distance possible through the Earth, 2A E„,&,
and the largest densities possible, 13 g/cm,

0&0.05 . (3.16)

The limit is more severe for neutrinos propagating
through the Earth on shorter trajectories, especially so
for those paths that only go through the low-density
mantle.

There is also an upper limit for the vacuum mixing an-
gle. The mixing enhancement from matter vanishes for
large vacuum angles. There is no enhancement when the
electron neutrino is dominantly the heavier mass eigen-
state, 8 & m/4.

The neutrino mass differences that can undergo
significant mixing enhancement from matter can also be
estimated. From the resonance condition A = (m z—m, )cos28, Eq. (2.34), the range of densities in the
Earth give rise to a range of neutrino masses where max-
imum mixing enhancement may occur,

0 3X10 eV m2™
& 1X10 eV

10 MeV E 10 MeV
(3.17)

Here we have taken cos2L9= 1.
This range of masses is much smaller than the corre-

sponding one for the sun. Because of this, the effects of
three Aavors are less likely to be relevant for neutrino
propagation through the Earth than they were for neutri-
no propagation through the sun. If neutrino vacuum
mixing is as small as naively expected, then the effects of
three flavors will only be important when the neutrino
goes through both resonances. It is unlikely to have
m 3

—m
~

and m z
—m, lie in the range given by Eq. (3.17)

(see Sec. I.B).
The above estimates will help the reader to "under-

stand" the results of numerical calculations. Another
feature of the numerical calculations can be understood
with some simple observations. Neutrino propagation
through the Earth is qualitatively different from propaga-
tion through the sun. The matter distribution encoun-
tered during propagation through the Earth is sym-
metric, first increasing then decreasing, while solar neu-
trinos encounter purely decreasing density in the sun.
Thus we do not expect the type of fIavor conversion that
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occurs in the sun to occur in the Earth. This can be
made quantitative with the following approximations.
Since most of the numerical calculations involve some
averaging over different neutrino trajectories and ener-
gies, we make the approximation that we can average
over the neutrino phase at the midpoint in the symmetric
matter distribution. The neutrino transmission probabili-
ties then satisfy the Schwarz inequality, if we ignore
time-reversal violating phases:

P(v ~vp) ~P(v ~v )P(vtj~vp) . (3.18)

2. Solar neutrinos

The range of parameters that give significant enhance-
ment of neutrino mixing in the Earth, Eqs. (3.16) and
(3.17), is much smaller than, and lies well within, the
similar range of parameters for neutrinos in the sun.
This is because the sun has a much larger radius and be-
cause the range of densities in the sun encompasses that
of the Earth. Since the electron neutrinos may be con-
verted by the solar medium into other flavors, these other
neutrinos may also be converted back by propagation
through the Earth. This effect has been discussed by
several authors: Bouchez et al. (1986), Cribier et al.

I

For two flavors this gives that the minimum of
P(v, ~v, ) is —,. This is also the minimum for vacuum
oscillations.

(1986, 1987), Ermilova et al. (1986), Baltz and Weneser
(1987, 1988b), Dar and Mann (1987), and Hiroi et al.
(1987a, 1987b).

The solutions for P(v, ~v, ) derived in Sec. II for neu-
trinos propagating through the sun can be modified to in-
corporate the effects of propagation through the Earth.
For two Savors with only solar-medium effects, Eq. (2.51)
describes P(v, ~v, ). Since passage through the Earth
occurs only at the end of the neutrino's Aight, only the
last matrix in Eq. (2.51) need be altered. This last matrix
converts from the incoherent mass eigenstates to the
flavor eigenstates, at the detector position. (We remind
the reader that, for the relevant range of neutrino mass
differences, the Earth-sun separation is many oscillation
wavelengths; it is a good approximation to take the neu-
trino mass eigenstates to be incoherent. See Sec. III.A. )

To include propagation through the Earth in Eq. (2.51),
we replace the last matrix with

(1—P~ )

(3.19)

Here PE is the propagation probability for mass eigen-
state v& to travel through the Earth and to be observed as
a muon neutrino. It must be obtained by numerical
methods. Equation (3.19) uses the two-Aavor unitarity
relations: PF =P(v~~v, ) =P(v, ~v ) =[1 P(v, —v, )]-
= [1 P(vz +—v„)], —Sec. II.A. The new propagation
probability, including the Earth effect, is

Cg So
~ )=I 1 0] ~2

Om Om

(1 P~)—Ps

(1 Ps)—(1 —P~ )

PE

PE

(1—Pg )

=
—,
' + [ ,' (P~+P~ 2—P—~P~ ) ]cos26— (3.20)

where C& =cos 0, S6) =sin 0, and Pz is the proba-
bility for level crossing in the sun. The generalization of
Eq. (3.20) to three flavors is straightforward.

The trajectory of a solar neutrino through the Earth is
constantly changing, primarily because of the Earth's ro-
tation, but also because of the orbit of the Earth around
the sun. Thus PE is not a static quantity, unlike all the
other terms in Eq. (3.20). The nature of PF's variations
with time are precisely calculable, once given the Earth' s
density distribution. Thus this may provide a new exper-
imental signal for ascertaining the solution to the solar
neutrino problem. Timing capabilities could be an im-
portant part of a solar neutrino experiment if the neutri-
no parameters were such [Eqs. (3.16) and (3.17)] as to
give rise to significant mixing enhancement in the Earth.

The classic Cl experiment is almost a static experi-
ment (Fig. 10). The Ar atoms are Aushed from the tank
and counted only every couple of months. This pro-
cedure averages out any day-night changes, but not
necessarily the seasonal variations in the data taken over
the last 20 years. A calculation by Mikheyev and Smir-

nov (1987b) finds that the largest seasonal Earth e6'ect
possible has an amplitude of about 0.7 SNU. This is not
too much larger than the error of the total average of the

Cl data, 2.1+0.3 SNU. Thus it is not possible to put
significant limits on neutrino parameters by this method.
An earlier calculation by Cribier et al. (1986, 1987)
found a much larger seasonal variation.

These calculations are di%cult, since the numerical in-
tegration through the Earth must in turn be averaged nu-
merically over the diurnal variations. The calculations
are also site specific, since the neutrino trajectories de-
pend on the latitude of the solar neutrino detector. The
farther the detector is from the equator, the more the tra-
jectories miss the high-density core of the Earth, Trajec-
tories through the core produce the largest mixing
effects.

A diurnal variation of the electron-neutrino Aux would
be much larger than the corresponding seasonal varia-
tion. Experiments with continuous monitoring of the
neutrino Aux could hope to see this variation, however,
radiochemical experiments can also test this possibility.
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FIG. 10. Iso-SNU contours for the ' Cl experiment, labeled by
SNU values. Includes Earth eFect averaged over the year (Baltz
and Weneser, 1988b).

FIG. 12. Night minus day contours (solid) for the Cl experi-
ment, labeled by SNU values. The band between the dotted
contours is the region consistent with the existing experimental
result of 2.1+0.3 SNU (Baltz and Weneser, 1988b).
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FICx. 11. EA'ect of the Earth on the ' Cl capture rate for
(mz, —m &)=1.5X10 eV and sin 20=0.4. R =ratio of mea-
sured capture rate to the standard-solar-model prediction;
dashed line is the average. The time scale is the diurnal varia-
tions averaged over the year (Mikheyev and Smirnov, 1987b).

The Cl experiment could be upgraded to allow separa-
tion of day- and night-captured Ar atoms. Figure 11
shows a calculation for the diurnal variation in the Cl
capture rate. Figure 12 shows a numerical calculation of
the range of neutrino parameters that give a diurnal
effect. It agrees with our qualitative estimates from Eqs.
(3.16) and (3.17), using the fact that the average neutrino
energy to which the Cl experiment is sensitive is about
10 MeV.

3. Atmospheric neotrinos

Primary cosmic rays interact in the atmosphere, pro-
ducing a flux of neutrinos from the decay of pions, kaons,
and muons. The Aux is small, but it has been observed in
large detectors where it is the primary background for
proton-decay experiments. The neutrinos are produced
all over the Earth's surface; by observing the angle of the
neutrino one can infer the distance traveled since produc-
tion and hence be sensitive to neutrino oscillations. Since
these paths go through the Earth, one is, in fact, sensitive
to neutrino mixing in matter. Matter effects on atmos-
pheric neutrinos have been discussed by several authors
[Carlson (1986), LoSecco (1986), LoSecco et al. (1987),
and Auriemma et al. (1988)j.

The atmospheric neutrino fIux has been calculated by
many groups; for some recent results see Volkova (1980),
Bugaev et al. (1986), and Ciaisser et al. (1988). The cal-
culations are quite involved and often differ on the order
of 30% or more in their predictions for the magnitude of
the cruxes. The atmospheric neutrino Aux peaks at about
50—100 MeV, with F =10 (m ssrGeV) ', and falls off
at roughly E . The Aux varies in time with the solar
wind; its angular dependence is different at each location
(because of the Earth's magnetic field), and it contains a
combination of v„v„, v„and v„. These properties, plus
low statistics, combine to make atmospheric neutrinos a
difIicult source to exploit for the study of neutrino prop-
erties.

However, it may be possible to reduce or avoid some of
these uncertainties. The Aux calculations tend to agree
on their predictions for the ratio of neutrino flavors (Fig.
13). Naively one expects twice as many muon neutrinos
as electron neutrinos, since the pions and kaons decay
primarily to muons. However, at high energies not all of
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the muons decay in Aight, thus increasing the ratio; at
low energies the neutrinos come mainly from muon de-
cay, so the ratio approaches 1. By comparing this ratio
for up-going and down-going neutrinos, many uncertain-
ties cancel out and it may be possible to put some con-
straints on neutrino parameters.

In recent years there has been progress in the under-
standing of atmospheric neutrino Auxes. Table VII com-
pares the number of atomspheric neutrino events predict-
ed to occur in various proton-decay experiments with
those actually observed. The agreement is surprising.
But there is some recent disagreement between the at-

TABLE VII. Number of atmospheric neutrino interactions in
various "proton decay" detectors.

Detector Exposure (kT yr) Measured Calculated

KGF
NUSEX
Frejus
IMB
Kamiokande

0.28
0.41
0.6
3.8
1.5

23
37
65

401
181

17
37
60

403
170

mospheric neutrino Aux observed by Kamiokande and
those predicted (Hirata et al. , 1988b). However, with
the increasing amount of experimental feedback, it may
soon be possible to have con6dence in the magnitude of
the atmospheric neutrino Auxes and their ratios.

There are two methods for detecting the atmospheric
neutrino Aux. One method is to observe the neutrino Aux
directly by requiring the neutrino interaction to be con-
tained within the detector volume. Both electron and
muon neutrinos are detected and can be resolved.
Averaging the Aux over a solid angle to improve statis-
tics, one can compare the ratio of upward and downward
neutrino fluxes, (U, /U„)/(D, /D„), to search for neutri-
no oscillations. This method is sensitive to atmospheric
neutrinos with energies of 0.2—1 GeV. There the in-
crease in the neutrino Aux at low energies
(dN/dF. ~E ) balances with the threshold for pro-
ducing muons. Tau neutrinos that may have been pro-
duced by oscillations are generally not detectable. The
energy threshold for producing tau neutrinos lies above
the sensitive energy range in a region where the neutrino
Aux is very small.

The atmospheric neutrino flux is unusual in that it is
made up of an assortment of neutrinos: electron and
muon Aavors, particles, and antiparticles. Thus, unlike
solar neutrinos, the Aux may be sensitive to neutrino
propagation probabilities other than P(v, ~v, ). The
upward-going neutrino Aux of Aavor o., U, in terms of
the downward-going neutrino (lux of Ilavor P, D&, is
given by

I.IO-

U, =D,P(v, ~v, )+D„P(v„~v,),
U„=D,P(v, +v„)+D„P(v„~v„—),
U, =D,P(v, ~v )+D„P(v„—+v, ) .

(3.21)

IO IO

FIG. 13. Ratios (a) ( v, +v, ) /( v„+v~) and (b) v /v for the at-
mospheric neutrino Aux (Gaisser et al. , 1988). In (a) the crosses
represent an earlier calculation. In (b) the electron-neutrino
upper band is for solar minimum and the lower band is for solar
maximum. The vertical size of each band reAects the
differences among different locations. The top of each band is
for Soudan and the bottom for Kamioka.

Unitarity will not reduce all the probabilities down to
one unknown probability unless one ignores U, and as-
sumes there are only two Aavors. For antineutrinos,
there is an analogous set of equations. We remind the
reader that P(v ~v&) and P(v ~v&) are, in general,
quite difFerent; one is enhanced by matter efFects and the
other is suppressed.

A contour plot for direct detection of the atmospheric
neutrino Aux, assuming only two Aavors, is shown in Fig.
14 (Carlson, 1986). The location of the contours agrees
with the qualitative estimates of Eqs. (3.16) and (3.17) us-
ing the given energy range of sensitivity. If the detector
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cannot resolve neutrinos from antineutrinos, and if
P(v, ~v, )=0, then the values for the contour labels
should be reduced by about 10%.

The other method for observing the atmospheric neu-
trino fiux is to detect it indirectly by observing the muons
produced in the rock surrounding the detector. This has
been analyzed for the MACRO detector (Longo et al. ,
1987) by Auriemma et al. (1988). This method should
have a higher event rate because of the larger mass avail-
able for neutrino interactions, but only the muon-
neutrino fiux is observed. Thus an accurate knowledge of
the magnitude of the atmospheric neutrino Aux is crucial.
This method is sensitive to higher-energy neutrinos than
the erst method because higher-energy muans travel far-
ther and are more likely to be detected, muons with ener-
gies below 2 GeV are probably not detectable. For
muons in the range 2 —10 CxeV, it may be possible to dis-
tinguish the charge of the muon, allowing separation of
neutrino and antineutrino Auxes. Above 10 CieV the neu-
trino and antineutrino rates are probably not separable.
Figure 15 compares the neutrino parameter limits achiev-
able by this method with those achievable by other
methods.

4. Accelerator neutrinos

There has been speculation in the past on constructing
accelerators for shooting neutrino beams through. the
Earth (De Rujula et a/. , 1983). In the study of matter-
enhanced neutrino mixing, accelerator neutrinos would
have several advantages over natural sources of neutri-
nos. The Aavor and magnitude of the neutrino fiux
would be known accurately. The energy range of the
neutrino Aux could be made very narrow, b.E/E (&1,
and the neutrino energy could be varied. The accelerator
would be a static, point 'source of neutrinos. All of these
features would be improvements over natural neutrino
sources like the sun or cosmic rays.

10 10

sin (28)
10

FIG. 15. Comparison of the limits on neutrino parameters
achievable by (a) accelerators; by (b) reactors; and by atmos-
pheric neutrinos with an underground detector for (c} high-
energy muons (10 GeV & E„},(d) low-energy muons (2 & E„&10
GeV), and (e) contained neutrino events. Curve (f) is the region
of parameter space that solves the solar neutrino problem.
From Auriemma et al. (1988).

Such a neutrino source could be used to study the den-
sity distribution of the Earth (Ermilova et a/. , 1986;
Nicolaidis, 1988). In the calculations above, a model for
the density distribution was assumed, but there are large
uncertainties in this model. The density could be in-
ferred from matter-enhanced. mixing effects. For a par-
ticular neutrino energy, the mixing is a moment of the
density distribution. If neutrino mixing were observed
for several energies, the moments could be used to recon-
struct the density.

As argued previously, phase effects are especially im-
portant for the Earth and necessitate numerical solutions
to the wave equation. All of the advantages of accelera-
tor neutrinos over natural sources increase the impor-
tance and observability of neutrino phase efFects.
Averaging over the rnovernent, distribution, energy, and
variability of the neutrino source would be tremendously
reduced or eliminated. If phase effects are resolvable,
then it could be possible to observe directly a time-
reversal (T) violating phase in the neutrino mass matrix.
As shown by Kuo and Pantaleone (1987b) and by
Krastev and Petcov (1988c), matter enhancement of mix-
ing angles also enhances the effects of a T violating phase
in the mixing matrix. If the neutrino parameters are
such that both the "v,-v„" and "v, -v," resonances occur
in the Earth, then T violation effects are doubly
enhanced. A T violating phase could only be isolated
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from T violating matter efFects for neutrinos going
through a medium with a symmetric matter distribution,
like the Earth.

C. Supernovae

The recent observations of neutrinos from a supernova
(Bionta et al. , 1987, 1988; Hirata et al. , 1987, 1988a; see
also Alekseev et a/. , 1987 and Dadykin et al. , 1987)
have implications for astrophysics and particle physics.
They have confirmed the qualitative ideas on the dynam-
ics of supernovae. One application of this is to place lim-
its on exotic particle physics scenarios such as significant
energy loss from axion emission during the collapse, large
neutrino magnetic moments, a nonzero neutrino charge,
diQ'erent gravitational couplings for photons and neutri-
nos, and others. The recent observations also promise
the possibility of future observations of supernova neutri-
no emission, thus opening a new area of astronomy.

The observations of neutrinos from a supernova are
also sensitive to the somewhat less speculative idea of a
nonzero neutrino mass. A relatively large electron-
neutrino mass would afFect the kinematics of neutrino
propagation; however, this is ruled out because the time
dependence of the observed signal agrees roughly with
expectations, as described in Sec. I.C.1. Small neutrino
masses, with their accompanying mixing of the difFerent
neutrino Auxes during propagation, could also have an
efFect on the neutrino signal. In order to interpret the ob-
servations, the uncertainties in supernova dynamics
must, if possible, be disentangled from the efFects of neu-
trino propagation.

Besides the possibility of matter-enhanced oscillations,
all supernova neutrinos are sensitive to a new range of
parameters associated with vacuum oscillations. For a
supernova 100000 light years from Earth, and neutrino
energies of tens of MeV, the neutrinos will undergo vacu-
um oscillations if the mass difFerence is greater thanI 2

—I
&
) 10 eV . This is more than 10 orders of

magnitude smaller than the analogous mass difFerence for
solar neutrinos (and is well below the estimates of neutri-
no mass expected in grand unified theories). Thus detec-
tion of supernova neutrinos may ultimately provide the
best possible limit on small neutrino masses, if no evi-
dence for neutrino mass is found.

In Sec. III.C.1, we shall brieAy review aspects of stellar
collapse that are relevant for neutrino emission. In Sec.
III.C.2 we shall illustrate how neutrino oscillations can
mix the neutrino Auxes by calculating how this can
change the expected number of neutrino events observed
in a H20 Cherenkov detector. In Sec. III.C.3 we shall
compare these expectations with the neutrino detection
of the supernova 1987A and see what conclusions can be
drawn. In Sec. III.C.4 we shall brieAy indicate how neu-
trino mixing could be relevant for supernova dynamics
and vice versa.

lations (see, e.g. , Bethe, 1984; Mayle et al. , 1986; Wilson
et a/. , 1986; Schramm, 1987; Brown et a/. , 1988; for an
introduction to supernovae see Shapiro and Teukolsky,
1983). The source of energy for a supernova is the gravi-
tational collapse of a 1 —1.5 solar mass core, from one
supported by electron degeneracy down to a mass sup-
ported by neutron degeneracy —a neutron star (or possi-
bly down to a black hole). This releases about 3X10
ergs, 99% of which is emitted from the supernova over a
few seconds as neutrinos.

There are two mechanisms by which neutrinos are em-
itted from a supernova —neutronization and thermal
emission. Neutronization occurs first and results from
electron capture onto nuclei and free protons; hence it is
responsible for a Aux of v, . Since electron capture de-
creases the degeneracy support of the initial core, a large
burst of v, is expected to occur during infall, which
occurs on a time scale of 10 s. After infall, the densi-
ties are large enough to trap the neutrinos in the col-
lapsed core. Any remaining trapped neutronization neu-
trinos slowly difFuse out while the newly produced hot
neutron star thermally radiates more neutrinos. This
thermal neutrino emission proceeds via the annihilation
of real and virtual e+e pairs, producing vV pairs of all
Aavors, and is expected to occur on a difFusion time scale
of a few seconds. The relative importance of these two
processes, thermal and neutronization, is not well known.

The relative magnitudes of the difFerent Auxes in pure-
ly thermal emission are less uncertain. Since they are
produced in pairs, the magnitude of the neutrino and an-
tineutrino Auxes are equal for each Aavor. Since v„and
v production and scattering only proceed via neutral-
current processes, these Auxes are identical. Further-
more, the thermal electron-neutrino Aux will be some-
what larger and have a smaller temperature than the oth-
ers. This is because the production and scattering cross
sections are larger for electron neutrinos than for the
others; so more electron neutrinos are produced and they
are in equilibrium out to a larger radius where the tem-
perature is smaller.

We will take the Auxes, neutronization and thermal, to
be given by static Fermi-Dirac distributions with zero
chemical potential. This is an approximation since, in
difFusing out of the star, the neutrinos can last scatter
from a range of depths with a range of temperatures. But
it should be a good first approximation for the thermally
emitted neutrinos. For the neutronization neutrinos it
will be a worse approximation, but it is probably better
than taking a single typical energy. The initial tempera-
tures T and the relative total luminosities of the initial
thermal Auxes, I, are taken to be values typical of
theoretical supernova models before the supernova detec-
tion (Mayle et al. , 1986),

T'=T'=3 MeV,a' e e

1. Supernova models and the expected neutrino fluxes

%'e begin by summarizing some of the general features
of stellar core collapse that are relevant to neutrino oscil-

I. ' =L, ' =I.' T'=T'=6 M V,

T,"=3 Mev,

(3.22)
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where the superscripts t and n denote thermal and neu-
tronization, and the subscripts e, x, and a denote the
neutrino flavors electron, muon or tau, and any flavor, re-
spectively. The present state of supernova modeling is
such that the thermal temperatures in Eq. (3.22) are
probably uncertain by about SO—100%. The neutroniz-
tion temperature is even more uncertain; it could be
much larger. This uncertainty is partly because of the
lack of supernovae close enough to observe, but also be-
cause of the dificult nature of the calculations.

In addition to the neutrino temperatures and luminosi-
ties, we also need the matter density distributions
through which the neutrinos propagate, in order to cal-
culate the effects of matter on neutrino Aavor conversion.
Immediately after the core of a supernova collapses,
model calculations generally yield a density function in
the core and mantle of the form

p(r)=C/r, 10 &p& 10' g/cm

with C varying weakly with r over the range

1 & C /10" g & 15

(3.23)

(for later numerical calculations, we will take C from
Wilson et al. , 1986).

2. Neutrino mixing effects
on H, O Cherenkov detector results

The survival probabilities for supernova neutrinos are
qualitatively similar to those of solar neutrinos. Neutri-
nos are in equilibrium at densities greater than about
3X10" g/cm; so, as they leave this region, they travel
through a gradually decreasing density and, as described
in Sec. II and in Sec. III.A for the sun, the v, could un-
dergo a resonant conversion. However, unlike the sun,
supernova neutrino Auxes contain more than just v, . For
v„resonant oscillations are not expected to occur for
typical neutrino parameters (as in Sec. I.B). Moreover,
the v„and v cruxes are expected to be equal, and so the
possible resonant conversion due to radiative corrections,
Eq. (2.25), will have no effect. Qf course, oscillations in
vacuum are relevant for all species of neutrinos and an-
tineutrinos as they propagate from the supernova to the
Earth. Thus we shall examine the effects of mixing on all
of the neutrino flavors.

In order to make quantitative statements about oscilla-

(3.24)

This will be a measure of oscillation effects while many of
the details of the supernova model will cancel out in this
ratio. We choose a water Cherenkov detector in antici-
pation of Sec. III.C.3. We note that, as was discussed in
Sec. II.D.4, only P(v, —+v, ) or P(v, —+v, ) is needed in
this calculation.

There will be more than one type of R to calculate. In
a water Cherenkov detector there are two kinds of neu-
trino events which can be distinguished from each other.
One type of event is inverse beta decay, on the hydrogen
nucleus in H20, where the positron is emitted almost iso-
tropically,

o(v, +p)=89X10 cm (E„/10 MeV) (3.25)

The other type of event is neutrino-electron scattering,
which is extremely directional, as given in Eq. (3.6).

The cross section for inverse beta decay is about 2 or-
ders of magnitude larger than the electron-scattering
cross section. This is partially ameliorated by two facts:
H20 contains five times as many electrons as it does H
nuclei, and electron scattering can occur for all flavors
while inverse beta decay occurs for only electron antineu-
trinos. Inverse beta decay is still expected to be the dom-
inant signal, but the electron-scattering signal is only
down by about 1 order of magnitude.

These two classes of events, directional and isotropic,
combined with the two supernova emission processes,
give us three relevant A's to calculate. There are two A' s
for thermal emission, one for directional and one for iso-
tropic events, arid one R for the directional events from
neutronization. We are assuming that the neutronization
and thermal events are discernible by their timing, the
neutronization events occurring predominately before the
thermal. This should be an adequate erst approximation.

Using the formulas for the fluxes, Eq. (2.94), the equa-
tion for the first ratio, the R for the directional events
from neutronization, s

tion effects on supernova neutrinos and what the relevant
neutrino parameters are, we shall now work through
some explicit examples. We calculate the total number of
events expected in a water Cherenkov detector with and
without oscillations and define ths ratio to be A,

No. of events in detector with oscillations
No. of events in detector without oscillations

fdE F, "[1 P(v, ~v, )]f e[—do(v +e)—do(v, +e)]
Ad=1+-- fdE F,"fado'(v, +e)

(3.26)

Here f edo denotes an integral over electron energies
(from 0 to E ) of the difFerential cross section times E, the
detector efficiency, a known function of E, ; v represents
either v„or v, . To calculate how Rd" depends on neutrino
parameters, we must first specify some relevant quanti-

ties. We use the detector eKciency of Kamiokande
(Hirata et al. , 1987). To fix the neutrino flux we use a
static Fermi-Dirac distribution, as discussed in the previ-
ous section. For P(v, ~v, ) we use the three-flavor ex-
pression of Eq. (2.86) (the two-flavor approximation, as
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will be made clear, is worse for supernova neutrinos than
it was for solar neutrinos; see Fig. 16). This probability
depends on four independent neutrino parameters; so, in
order to make a two-dimensional plot, we constrain two
of the four parameters consistent with the theoretical ex-
pectations of grand united theories, as discussed in Sec.
I.B. Using these, we get contour plots for Rd, as given in
Fig. 17 (this graph is qualitatively similar to the graphs
showing the effects of three-Aavor neutrino oscillations
on the solar neutrino flux).

The range of neutrino parameters for which oscilla-
tions can affect the supernova Aux is amazingly large be-
cause of the large range of densities in the supernova.
The central region has Rd =0.14, which is just the ratio
of v to v, cross sections. However, there is some uncer-
tainty in the contours, especially in the extreme parts of
the graph. The upper part of Fig. 17 depends on the den-
sities of the supernova near the core, which are being
produced during infall. The extreme bottom of Fig. 17
depends on the outermost 1ayers of the supernova and
may be sensitive to H2 shell mass loss by the progenitor.
In addition, we have neglected the effects of propagation
through the Earth on the supernova neutrino mixing. As
to the effect of three Aavors, for most reasonably expect-
ed neutrino parameters the two energy ranges where
flavor conversion occurs overlap, as shown in Fig. 16. To
a good approximation, the top, horizontal contours of
Fig. 17 are given by E~ =constant, where E~ is the adia-
batic threshold of the lower, e-p resonance. Similarly,
the lower, diagonal contours of Fig. 17 are given by
(ENA) +(EN~) =constant, where EN~ is the nona-
diabatic threshold energy of the upper, e-r (lower, e-p)
resonance. A general expression for the nonadiabatic
50% contour is m2 ~ U, 2~ +m3

~ U, 3~ =8X10

eV . This expression comes from the overlap of the
Landau-Zener probability factors of the upper e-~ times
the lower e-p resonances [see Eq. (2.92)] and is applicable
when E ).E~ ~,„or, equivalently, using typical core den-
sities and neutrino energies, when m3 & 200 eV.

Solar densities occur in the supernova models at solar
distance scales. Thus there is some overlap of the nona-
diabatic contours of the supernova with the nonadiaba'tie
solutions to the solar neutrino problem. The amount of
overlap depends on our assumed supernova parameters.
The bottom part of the adiabatic contour is sensitive to
H2 shell mass loss by the progenitor; shell mass loss will
raise the contours in this region. Furthermore, the nona-
diabatic contours are sensitive to the assumed tempera-
ture of the neutronization Aux; an increase of the temper-
ature by a factor of 2 will raise the contours by a factor
of about 2. In addition, the overlap occurs when the
same resonance dominates for both the solar and the su-
pernova resonances. This is most naturally the case
when the resonance that occurs at solar densities is the
heaviest possible resonance. Any heavier resonance
would almost certainly occur in the higher densities of
the supernova and would tend to dominate the situation
because it would occur first and because it would be ex-
pected to satisfy more readily the adiabatic criterion.
This is the situation in Fig. 17 where the e-~ nonadiabatic
solar and supernova contours overlap, but the solar e-p
nonadiabatic contours lie inside those of the supernova
contours. Only in the case of very small

~ U, 3~ when the
e-r resonance decouples, m P U, z~ )&m 3~ U, 3~, can there
be some overlap of the solar and the supernova e-p nona-
diabatic contours.

The calculation of R for the directional events from
thermal emission, Rd, is similar to the previous case.

fdE [1 P(v, —+v, )J(—F, ' —F, ') f a[do(v +e) —do(v, +e)]+(v~V)

f dE, F, 'f Edo(v, +e)+2F„'fEdo(v„+e)+(v —+v)
(3.27)

Now there is more than one flavor of initial Aux present,
and oscillations can either increase or decrease Rd. Rd is
more sensitive to the details of the supernova model than
is Rd, because we must specify the temperatures and the
relative magnitudes of each produced flux [Eq. (3.22)].
Generally, it is found that oscillation effects are not large
(=20%%uo) for this type of event, and we will not detail the
analysis here (Kuo and Pantaleone 1988).

The calculation of R for the isotropic events follows
from

fdE Eo.(v, +p)[1 P(v, ~v, )](F ' —F~')—
R '=1+

fdE c,o.( v, +p )F, '

(3.28)

As in the previous case, more than one species is present;
so the calculation of R will again depend on the temper-

I.O—
EA

I I

g u
ENA

0.8

0.6

Q.a—

0.2—

QO I I I % I I I 1 l I

IO IO IO IO IO IO IO IO IO IO IO

E(MeV)

FIG. 16. Probability of a v, , produced in a supernova, reaching
the Earth as a function of energy. Here we take three neutrino
flavors and "typical" vacuum parameters, m2 —m, =10 eV,
pn~ —m2=6. 3 eV2,

~
U z~ =5X10,and

~ U3~ =5X10 . The
adiabatic ( A) and nonadiabatic (NA) energy thresholds for the
e-~, upper (u), and e-p, lower (I), resonances are shown.
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atures and relative magnitude of. the thermal cruxes.
Here the probability P(V, —+v, ) is most likely insensitive
to matter effects and only depends on vacuum oscilla-
tions, which are independent of energy. This assumption
allows us to easily evaluate R . Taking the supernova pa-
rameters given, we find

R =1+[1 P(v, —+V, )]8,'—,

8,'. =0.20 Kamiokande,

B,'=4. 5 IMB .

(3.29)

We note that B,'. is always positive for the given' superno-
va parameters. The isotropic cross section increases fas-
ter with energy than the directional cross section; so B,'
is more sensitive to the small amount of a higher-
temperature Aux that oscillation adds. IMB's thfeshold
is much larger than the temperature, so there the expect-
ed number of events is very sensitive to the
temperature(s) of the Ilux.

Summarizing, Eqs. (3.26) —(3.29) illustrate how mixing

FIG. 17. Contour plot of Rd", ratio of the number of events with
oscillations to those without for directional events from neu-
tronization, for the Kamiokande detector. Here we use three
Aavors and "typical" constraints on the relevant neutrino
vacuum parameters: m

&
=0, (m3/m2) =250, and (

~ U, 2~ /
~ U, 3~ )=100. The dashed lines show. the (3o ) solutions to the
solar neutrino problem. The shaded regions are excluded by
reactor oscillation experiments where we have taken
i U„,f'= i

U„i' (Sec. I.C.2).

can alter the total number of neutrino events in a detec-
tor. Equation (3.26) shows that mixing will always de-
crease the electron-scattering signal from the neutroniza-
tion neutrino Aux, up to a factor of about —,

' for resonant
conversion in matter. The largest effect on the thermal
neutrino events occurs in the neutrino absorption detec-
tion. For detectors with high thresholds, R,' can be siz-
able, as in Eq. (3.29). Unfortunately, one expects no reso-
nant conversion for antineutrinos.

3. The neutrino observation of supernova 1987A

We turn now to a discussion of the recently detected
neutrinos from the supernova 1987A and the implica-
tions there might be for neutrino mixing. The effects of
matter-enhanced mixing on supernova neutrinos have
been discussed by many authors (Bethe, 1986; Mikheyev
and Smirnov, 1986b, 1987a; Arafune and Fukugita, 1987;
Arafune et al. , 1987a, 1987b; Lagage et al. , 1987; Mina-
kata et al. , 1987; Notzold, 1987b; Walker and Schramm,
1987; Wolfenstein, 1987; Kuo and Pantaleone, 1988; Mi-
nakata and Nunokawa, 1988; Rosen, 1988)

The observed neutrino signal consists of 11 events in
the Kamiokande data (Hirata, 1987, 1988a) and eight
events in the IMB data (Bionta et a/. , 1987) [reports of
supernova neutrinos in LSD (Dadykin in et a/. , 1987)
and Baksan (Alekseev et a/. , 1987) will not be included in
our discussion]. The first event in the Kamiokande data
appears to be a directional event. Subsequent events are
consistent with mostly isotropic events (originally it was
thought that the second event was also directional, but
subsequent analysis has shown it to be otherwise; see
Hirata, 1988a). The angular distribution of the IMB data
shows some limited directionality (Bratton et a/. , 1988);
however, the events can be interpreted as isotropic.

It is tempting to attribute the first event in
Kamiokande to v, emitted during neutronization. How-
ever, this interpretation is uncertain. There is a probabil-
ity of roughly [(20vr/180) /4]=0. 03 that an isotropic
event will lie in the forward 20 degrees and look like a
directional event. The expected number of neutroniza-
tion events in Kamiokande is highly model dependent;
estimates lie in the range 0.01 to O(1) (Arnett, 1987; Sato
and Suzuki, 1987; Cooperstein in Brown, 1988). With
neutrino resonant conversion, Eq. (3.26) indicates that
the expected event rate becomes even smaller, reduced by
a factor of —,'. Thus neutrino parameters that yield maxi-
mal suppression are disfavored, but by an amount that is
at most this factor, —,'.

The disfavored range of neutrino masses and mixings is
quite large. In particular, the reduction is near maximal
for most of the parameter region that solves the solar
neutrino problem. For Fig. 17 this includes all of the e-p
resonance solution (adiabatic, nonadiabatic, large angle,
and Earth eFect) and the e ~ adiabatic solution; however,
this situation is more general than Fig. 17. As long as
there is a hierarchy of masses and mixing angles (as ex-
pected from grand-unification-theory seesaw mecha-
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nisms), and
~ U, 3 ~

does not vanish, then only the e-r nona-
diabatic solution to the solar neutrino problem is not
completely disfavored (Kuo and Pantaleone, 1988;
Rosen, 1988). This solution is partially suppressed, but
we note that the supernova contours in this region de-
pend sensitively on the amount of Hz shell mass loss (Mi-
nakata and Nunokawa, 1988) and the temperature of the
neutronization Aux. Thus they are especially dependent
on supernova models and so cannot be excluded. If we
relax the assumption of a hierarchy of masses and mixing
angles, there is another region of neutrino parameters for
which the supernova neutronization fl.ux is not substan-
tially suppressed. For these parameters, neutrino conver-
sion does occur in the supernova, but there is a. reconver-
sion during propagation through the Earth (Arafune
et al. , 1987a, 1987b; Lagage et al. , 1987; Minakata
et al. , 1987; Notzold, 1987b). Since the supernova ener-
gies are about twice as large as ihe solar neutrino ener-
gies, this parameter region is similar to the solar-Earth-
efFect region, but with the contours shifted up by a factor
of 2. However, for this solution to be viable, an unex-
pected arrangement of the neutrino parameters is re-
quired and the flavors with which the v, resonates in the
supernova and in the earth must be the same. While this
is not a bad assumption for solar neutrinos, it is a worse
assumption for supernova neutrinos. Because of the
higher densities in a supernova (the induced mass at trap-
ping densities is about 200 eV), the heaviest neutrino will
always dominate the flux, since it will be the first to un-
dergo resonant conversion; that resonant conversion is
likely to be adiabatic (Fig. 17). Furthermore, one naively
expects that the heaviest neutrino also has the smallest
coupling to the electron neutrino (Sec. I.B). However,
the reconversion in the Earth requires a large mixing an-
gle, sin 20 & 0.2 for less than 50% suppression. Thus the
reconversion of the supernova effect by the Earth is pos-
sible, but it requires an unusual neutrino parameter ar-
rangement.

We now consider events that may have originated from
the thermal phase. They appear to make up the majority
of the data sample. As far as the directional events in
Kamiokande are concerned, from Eq. (3.27), oscillation
does not have any major impact on them. The v, (isotro-
pic, thermal) events can, however, be enhanced substan-
tially by mixing. Large changes in the number of events
are possible if the vacuum angles are large or if there are
unusual neutrino parameter arrangements where reso-
nant conversion could occur for v, . To resolve purely ex-
perimentally the mixing of v from uncertainties in T,
one must fit the isotropic spectrum with the Aux de-
scribed in Eq. (2.94). There are at least four parameters
to be extracted —the temperatures and the magnitudes of
the v, and v fluxes (and more parameters if the Aux dis-
tribution is not exactly Fermi-Dirac). The small number
of events and the sensitivity to the experimental e%ciency
make it impossible to do this reliably (Bahcall, 1987;
Kahana et al. , 1987; Krauss, 1987). More statistically
significant Ats can be obtained if one makes assumptions

to constrain some of these four parameters. If mixing is
neglected and the data are fit to a single temperature, a
value of the initial temperature T'=5 MeV is indicated.
Since this is larger than the value in Eq. (3.22), it suggests
the possibility of some neutrino mixing (we note that the
predicted neutrino temperatures of supernova models
after SN 1987A have increased). If one assumes the
values in Eq. (3.22), then a value of P(v, —+V, )=0.30
yields a fit to the data that is better than the single tem-
perature fit. %'ith the present uncertainty in supernova
models, neither P(V, ~v, ) nor the Aux temperature can
be obtained without making assumptions.

Summarizing, although the relative diff'erence between
fluxes of different neutrino faavors is expected to be large,
because the expected absolute neutrino Auxes are uncer-
tain by a large percentage and because only a small nurn-
ber of V, were detected, it is not possible to significantly
constrain neutrino mass and mixing parameters from the
neutrino detection of SN 1987A (except for a large, kinet-
matic mass limit). A future supernova may yield impor-
tant information on neutrino flavor mixing if future ex-
periments are sensitive to many different neutr1no
specleS.

4. Supernova dynamics and neutrino mixing

The dynamics of a supernova are very sensitive to
small details. Because neutrinos account for almost all of
the energy released, the dynamics depend sensitively on
the properties of neutrinos. Here we will qualitatively
describe some of the ways that neutrino mixing can
inhuence supernova dynamics and attempt to identify the
relevant range of neutrino mass and mixing parameters.

In a supernova, neutrino mixing becomes relevant for
flavor-dependent scattering processes. We can thus ig-
nore neutral-current effects. Only mixing between v,
(v, ) and v,„(v„) or v, (v, ) needs to be considered. Furth-
ermore, the typical neutrino wavelength in a medium
[Eq. (2.36)],

Ao=4~E /A =&2rr/(p, G~), (3.30)

/, =1/(p„o „~,„„)=1/(p„G&E ), (3.31)

where p„~,~
is the nucleon (electron) density. Thus we

may ignore phase eff'ects and, to a very good approxima-
tion, use classical probabilities for describing neutrino
mlxlng.

Using the neutrinosphere density of about 3X10"
g/cm, we may consider the cases of "light" and "heavy"
neutrinos, depending on whether neutrino resonances
happen outside or inside the neutrinosphere, respectively.

Outside the collapsed core, the escaping neutrinos can
deposit energy on the surrounding matter and contribute

is much shorter than the nonforward, flavor-dependent
scattering length

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



T. K. Kuo and J. Pantaleone: Neutrino oscillations in matter 975

10&m2 (300 eV; (3.32)

for the range of mixing angle given in Fig. 17,

sin 20) 10 eV (3.33)

For such a "light'* neutrino, the supernova will be
enhanced.

Inside the collapsed core there is a large degenerate sea
of trapped electron neutrinos. This acts to prevent fur-
ther neutronization and helps to keep the nucleons in
large nuclei, thereby enhancing neutrino trapping. These
things are crucial to the "prompt" supernova mechanism
where the kinetic energy of the material surrounding the
core comes primarily from the "bounce" of a large core.
A paper by Fuller et al. (1987) and unpublished calcula-
tions by Cooperstein (Kahana et a/. , 1987; Brown et al. ,
1988) suggest that a resonance inside the core would be
fatal to the prompt supernova mechanism. An adiabatic
resonance inside the core would occur for a "heavy" neu-
trino mass in the range

300 eV&m2 &2 keV (3.34)

and neutrino mixing parameters approximately the same
as those given by Eq. (3.33) (we note that in the core
there is a contribution to the induced electron-ne'utrino
mass due to background electron neutrinos, see Table II).
Thus for a "heavy" neutrino, the supernova will likely
not occur.

It is to be hoped that neutrino mixing will be incor-
porated in future supernova calculations, so that its
quantitative impacts can more accurately be assessed.

D. Early Universe

There is a long history of using the success of big-bang
nucleosynthesis to constrain the properties of neutrinos.
The standard model of the early universe successfully
predicts the primordial abundances of H, He, "He, and
Li. These predictions are sensitive to neutrinos because

(1) the neutron-to-proton ratio is fixed by neutrino decou-
pling from beta equilibrium with the nucleons and (2) the
expansion rate of the universe at that time is dominated
by the neutrino energy density. A famous example of
such a constraint on neutrino properties is the limit on
the number of light-neutrino Aavors to be less than or

to the supernova explosion. This is especially important
for the so-called delayed shock mechanism (Bethe and-
Wilson, 1985; Wilson, 1985). If neutrino mixing occurs,
the temperature of the v, and v, fIuxes will increase, with
a corresponding loss in luminosity [Eq. (3.22)]. The cross
sections for charged-current processes are strongly
dependent on the neutrino energy, and this tends to
enhance the energy deposition. For adiabatic resonant
conversion to occur outside the neutrinosphere and be-
fore the typical region where the shock may stall (Fuller
et al. , 1987), we have

equal to 4. Thus it is a reasonable question to ask what
types of constraints big-bang nucleosynthesis places on
neutrino oscillations.

1. Changes in the 4He abundance

The expansion of the universe causes the density to
monotonically decrease; hence a resonant conversion of
neutrino species as described in Sec. II is possible.
Matter-enhanced neutrino oscillations in the early
universe have been considered in detail by Langacker
et al. (1987). They estimate the maximum possible
change in the He abundance from matter-enhanced os-
cillations. Here we describe the physical scenario and
quote their results.

As the early universe cools, the neutrino interaction
rate falls below the expansion rate of the universe at a
temperature of a few Me V. The tau and muon
(anti)neutrinos only interact via the neutral currents, so
they decouple first at a temperature of about 5 MeV. The
electron (anti)neutrinos can scatter off the electron back-
ground via the charged current, so they decouple a little
later at a temperature of about 3 MeV. At temperatures
around 1 MeV, the electrons and positrons annihilate
out. The nucleons decouple from beta equilibrium with
the neutrinos at a temperature of about 0.7 MeV.

Because the electron (anti)neutrinos decouple later
than the others, they are heated to a slightly higher tem-
perature as a result of early e e annihilation. Thus
there is a difFerence generated between the electron
(anti)neutrino and muon or tau (anti)neutrino densities.
A resonant conversion between these neutrino Aavors
would interchange the number densities and hence afFect
the subsequent nucleosynthesis. To have an efFect, the
resonant conversion must occur at a temperature after
the density difI'erence is generated, 3 MeV, but before the
neutrinos decouple from beta equilibrium, 0.7 MeV.

The change in the He abundance F can be ascribed to
two difFerent types of deviations from the standard nu-
cleosynthesis model. One type of deviation is that the
neutrino temperatures are altered by resonant conver-
sion. This can lead to a change of the He mass fraction
of at most 5F= 1.0X 10 . The other type of deviation
from standard nucleosynthesis is that there may now be
generated a di6'erence between the v, and v, densities.
Assuming that only the neutrino, and not the antineutri-
no, densities undergo resonant conversion leads to a
change of the He mass fraction of at most
6K=1.4X10 . The inferred primordial He mass frac-
tion is F=0.24. Thus matter-enhanced resonant conver-
sion in the early universe produces only small deviations
from the standard nucleosynthesis predictions.

2. Neutrino propagation in the early universe

Despite the small size of the changes found above, it is
interesting to consider neutrino oscillations in the unusu-
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al environment of the early universe. These considera-
tions might be relevant for using standard big-bang nu-
cleosynthesis to constrain more exotic neutrino physics
than considered above. For instance, resonant conver-
sion into a sterile neutrino species (Kristev et al. , 1986)
or magnetically induced helicity oscillations (Fukugita
et a/. , 1988) depend on the matter-induced neutrino po-
tentials. Thus we shall make some brief comments on
neutrino propagation through a medium like the early
universe.

The medium of the early universe is very different from
the relatively normal matter in the sun or a supernova.
In the early universe, the particle and antiparticle densi-
ties are expected to be equal up to about 10 ', which is
roughly the present-day ratio of baryons to photons.
Thus there is a cancellation to order 10 ' for the in-
duced mass of the neutrino (see Table II). At this level,
effects that are higher order in GF may be relevant, since
Gz T = 1O ' for T= 3 MeV. Examples of such effects
are nonforward neutrino scattering, photon™neutrino
scattering, and radiative corrections to neutrino-electron
and neutrino-neutrino scattering. If these corrections do
not cancel out in a CP symmetric plasma, then they may
be comparable to the leading-order term. In general,
these effects have not been calculated precisely.

One type of correction that has been calculated comes
from nonzero-momentum transfer in the leading-order
process (Notzold and Raffelt, 1988). These corrections
were discussed in Sec. II.B.2 and are given in Table II.
The terms are of order 3(T/M~) =10 ' for T=0.5

MeV. They do not vanish when the plasma is CP sym-
metric and the particle and antiparticle densities are
equal.

Nonforward neutrino scattering can also be very im-
portant, since it does not cancel in a CP symmetric plas-
ma. By the optical theorem, it leads to an imaginary part
in the forward-scattering amplitude and hence in the
matter-induced mass A. Before neutrino decoupling,
nonforward neutrino scattering keeps all neutrino species
in equilibrium; hence any neutrino mixing is irrelevant.
After decoupling, one expects nonforward neutrino
scattering to have little effect on resonant conversion. To
see this explicitly in terms of the imaginary part of the in-
duced mass, we note that decoupling occurs when
1/(No. ))A; the neutrino scattering length is greater
than the radius of the universe. However, for resonant
conversion to occur, the adiabatic condition can be writ-
ten as 8 ) A,„„=4vrE/(b, sin26)); the radius of the
universe must be greater than the oscillation wavelength
at resonance. Combining these two conditions and writ-
ing them in terms of A yields Im(A) &hsin20. Thus
after decoupling, we should expect little effect on reso-
nant. conversion from an imaginary part of the induced
mass which is smaller than the smallest scale in the prob-
lem, the mass splitting at resonance.
IV. SUMMARY AND CONCLUSIONS

Neutrino Aavor mixing offers the most sensitive
method to determine the masses and mixing angles of the

neutrinos. The appeal of this method is enhanced by the
recent discovery that matter (MSW) effects can alter neu-
trino Aavor mixing in dramatic ways. The electrons in
normal matter give rise to a difference in the index of re-
fraction between electron neutrinos and muon or tau neu-
trinos. This difference can lead to significant changes in
the Aavor content of the neutrino after it has propagated
through enough matter, typically an astrophysical length
scale. The resulting neutrino Aavor mixing takes on a
resonant character and is fundamentally different from
vacuum Aavor mixing. In a constant-density medium,
two neutrino Aavors can mix maximally at the resonant
density even if the vacuum mixing angle is quite small.
In a medium with smooth, monotonically varying densi-
ty, total conversion from one neutrino species to another
can occur as the neutrino propagates through the reso-
nant density. It results in a drastic reduction in the ini-
tial neutrino Aavor content, something which is impossi-
ble to accomplish by propagation in vacuum for any mix-
ing angle. Thus matter effects must be accounted for
when considering neutrino Aavor mixing during propaga-
tion, and, in fact, they provide a useful too1 for probing
new ranges of neutrino parameters.

A quantitative description of resonant neutrino con-
version can be done very precisely. Although numerical
integration of the propagation equations is always an op-
tion, it is rather cumbersome due to the necessity of in-
tegrating the result over the neutrino energy and due to
the desire to know the result for many different neutrino
masses and mixing parameters. Fortunately, numerical
integration of the wave equation is seldom necessary,
since resonant conversion can be described quite accu-
rately in an analytic fashion for any number of neutrino
Aavors. Although phases are essential for the very ex-
istence of the MS%' effect, almost all of its applications
can be described in terms of the much simpler classical
probabilities. Then the electron-neutrino survival proba-
bility, P(v, ~v, ), factors into independent probabilities
at the production, resonance, and detection regions. The
probabilities at the production and detection positions
are given by the (matter-dependent) mixing matrices at
those points. The description of the probabihty in the re-
gion around the resonance point, P„can be borrowed
(with some important modifications) from other areas of
physics. The mathematics of the MSW effect is identical
to that of the level-crossing problem in atomic and nu-
clear physics. Thus one can be very confident in the
basic description of the MS& effect.

Once we have the function P(v, ~v, ), it is straightfor-
ward to use it in physical applications. The most impor-
tant application is to electron neutrinos produced in the
sun, since they have been studied theoretically for several
decades and experimentally for two decades. The MS&
effect offers a reasonable solution to the long-standing so-
lar neutrino problem —that the solar neutrino signal ob-
served in the Cl detector is about —,

' of the predicted sig-
nal. This solution is relatively insensitive to neutrino pa-
rameters. For two Aavors, it works for neutrino mass
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differences and mixing angles spanning a range of rough-
ly 10 4&m&2—ml &10 eV and 10 &sin 0&O(1).
With three flavors, there are generally two neutrino reso-
nances that can deplete the v, Aux, with each resonance
somewhat similar to the two-flavor case. It is well to
keep in mind that there are many possibilities for which
the two-Aavor solution cannot account, especially when
one tries to combine the Cl data with other future ex-
periments.

The MS%' solution to the solar neutrino problem is
very appealing theoretically. It is very much in line with
expectations of our current understanding of particle
physics. Nevertheless, one Inust not lose sight of the fact
that many other possibilities exist, not the least of which
is that given a slight change in the standard solar model,
things can be drastically different. Thus more experi-
ments are needed to test whether neutrino mixing, and in
particular the MS%' efFect, is the correct solution to the
solar neutrino problem.

The most straightforward test of Aavor mixing, be it
matter enhanced or just vacuum, is to look for v„or v, in
the solar neutrino Aux. The heavy-water detector, a "B
detector, and possibly the liquid-argon detector or a very
large H20 Cherenkov detector, should be capable of do-
ing that. One may also look for clues in the neutrino en-
ergy spectra. The gallium detector and the water
Cherenkov detector can be used for these purposes. De-
viation from the expected neutrino energy spectra would
be an unmistakable sign of matter effects. An even more
dramatic effect would be a diurnal variation due to the
neutrino passing through matter in the Earth. However,
it should be emphasized that such variations can only
occur if the neutrino parameters fall in a rather narrow
range.

Besides the solar neutrinos, one could also look for
Aavor mixing in the atmospheric neutrinos. In addition,
the recent detection of neutrinos from SN 1987A offers
new ways to study neutrino mass and mixing parameters.
Supernova calculations are still not accurate enough to
offer detailed constraints. However, with improved
theoretical models and experimental techniques, the next
observation is likely to be extremely informative and
valuable.

The future holds considerable promise for improving
our knowledge of neutrino mass and mixing parameters.
New experiments sensitive to the various neutrino
sources are under construction and many more are being
discussed. Neutrino propagation through matter pro-
vides a tool for probing a range of neutrino mass and
mixing parameters that are not accessible by any other
means and offers an attractive solution to the long-
standing solar neutrino problem. The range of neutrino
masses that are explored using this technique is theoreti-
cally very interesting, since similar values follow natural-
ly from simple extensions of the standard model. It is to
be hoped that the phenomenon of neutrino mixing will
shortly lead us to a definitive and quantitative under-
standing of neutrinos.
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