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The old question of "How long does it take to tunnel through a barrier?" has acquired new urgency with
the advent of techniques for the fabrication of semiconductor structures in the nanometer range. For the
restricted problem of tunneling in a scattering configuration, a coherent picture is now emerging. The
dwell time &D has the status of an exact statement of the time sperit in a region of space, averaged over all
incoming particles. The phase times r$ and r'aa are defined separately for transmitted and reflected parti-
cles. They are asymptotic statements on completed scattering events and include self-interference delays
as well as the time spent in the barrier. Consequently, neither the dwell time nor the phase times can
answer the question of how much time a transmitted (alternatively, reflected) particle spent in the barrier
region. Our discussion of this question relies on a few simple criteria: (1) The average duration of a physi-
cal process must be real. (2) Since transmission and reflection are mutually exclusive events, the times ~&
and ~& spent in the barrier region are, if they exist, conditional averages. Consequently, they must obey
the identity v.D

= T~T+R~&, where T and 8 are the transmission and reflection probabilities, respective-

ly. The existence of this identity distinguishes tunneling in a scattering configuration from tunneling out
of a metastable state. (3) Any proposed ~T and ~& must meet every requirement that can be constructed
from rD. On the basis of (2), the naively extrapolated phase times, as well as the Buttiker-Landauer time,
must be rejected. The local Larmor times, as introduced by Baz, satisfy (2), but not every criterion of
type (3). The local Larmor clock is therefore unreliable. The asymptotic Larmor clock shows the phase
times, as it should. Finally, the inverse characteristic frequency of an oscillating barrier cannot always be
defined. It is shown not to represent the duration of the tunneling process. This leaves the dwell time and
the phase times as the only well-established times in this context. It also leaves open the question of the
length of time a transmitted particle spends in the barrier region. It is not clear that a generally valid
answer to this question exists.
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I. INTRODUCTION

The question loosely formulated as "How much time
does tunneling take?" is not new. Early answers were
given in the 1940s and 1950s (Eisenbud, 1948; Bohm,
1951; Wigner, 1955), with alternatives proposed in the
1960s (Smith; 1960, Baz', 1966a, 1966b; Rybachenko,
1966). The prospect of high-speed devices based on tun-
neling structures in semiconductors (see, for example,
Capasso et al. , 1986) has, in recent years, brought new

urgency to the problem. An understanding of the time-
dependent aspects of tunneling is clearly required for the
construction of a kinetic theory for such systems. The
simple question of tunneling times seems a natural one
from which to start. But simplicity can be deceptive:
Tunneling times have continued to be controversial
throughout the 1980s.

Ideally, a review on tunneling times should lay the con-
ceptual foundation for the subject, clarify real and ap-
parent contradictions, and point out current misconcep-
tions. It should discuss tunneling during escape from lo-
calized states as we11 as in a scattering context. Further-
more, it should include effects of dimensionality, of elas-
tic and inelastic processes, of induced space charge, and
other many-body effects. Potentially different charac-
teristic times for various aspects of tunneling processes
should be defined and discussed and their respective
ranges of validity carefully circumscribed. Finally, the
ultimate review should relate all this to existing numeri-
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cal and real experiments and point out remaining chal-
lenges. '

The scope of this review is much more modest. The
recent theoretical controversy on tunneling times has
evolved around seemingly simple notions on idealized
one-dimensional models in a scattering configuration.
Within this limited universe, convicting answers have
claimed general validity. In our opinion, a coherent pic-
ture of this restricted set of problems is emerging, and a
correspondingly restricted review can, it is hoped, serve
the useful purpose of removing some of the obstacles to
further progress.

In particular, we shall argue that two diFerent tunnel-
ing times are w'ell established and have well-defined and
complementary meanings. One of them, the dwell time,
provides an exact statement (in the context of scattering
of particles with fixed energy) of the time spent in any
finite region of space, averaged over all incoming parti-
cles. In this sense the dwell time can serve as a reference
point in any discussion on tunneling times. The weak-
ness of the dwell time is that it is a total average, with no
distinction between diFerent scattering channels.

The other well-established concept is that of the
asymptotic phase times describing completed scattering
events involving wave packets with a narrow energy dis-
tribution. Distinct phase times do exist for transmission
and reAection. On the other hand, each of the asymptot-
ic phase times includes, beyond free-particle motion out-
side the barrier, two contributions that cannot be disen-
tangled: the time spent in the barrier region, and the
self-interference delay during the approach to the barrier.
Since the status of the phase times is rather subtle, and
since, on this issue, much confusion exists in the litera-
ture, we discuss them extensively here.

A sizable literature exists on the mathematical aspects
of phase and dwell ("sojourn" ) times in the context of
scattering in three dimensions. [For a review, see Martin
(1981). For recent work, see, for example, Amrein and
Cibils (1987).] With one exception (Jaworski and
Wardlaw, 1988a), this has apparently been overlooked in
the recent controversy over tunneling times.

With their complementary strengths and weaknesses,

ice restrict ourselves to a few unsystematic pointers here:
There is a huge literature on the escape from local states. Re-
cent reviews are those of Hanggi (1986) and I eggett et al.
(1987). Similarly, a large number of papers consider eQ'ects of
dimensionality, elastic and inelastic processes. A qualitative
overview can be found in Capasso et al. (1986). Dynamic
space-charge e6'ects were first discussed in a tunneling context
by Jonson (1980). For an example of recent work, see Persson
and BaratoF (1988). Finally, several experiments have been
proposed and performed recently, in which time aspects of tun-
neling can be studied fairly directly. Examples are Gueret'et al.
(1988), Lucas et al. {1988),and Martinis et al. (1988).

~%'e use the term "channel" in the simple meaning of distinct
final states (transmission and refiection in one dimension).

I

V(x}

ikx

~ReiP e-ikx ~Teia, eikx

Xp

FIG. 1. Stationary scattering configuration. An arbitrary bar-
rier V(x) is confined to the x interval (b, a). For later use, a
larger interval (x&,x&), containing the barrier region, is indicat-
ed.

none of the above times can answer a more precise ver-
sion of the question from which we started: "When a
particle in a scattering configuration, and with given en-
ergy, tunnels through (or, is rejected from) a barrier,
how much time did it, on the average, spend in the bar-
rier region?" Several answers with a claim to general va-
lidity have been proposed: the extrapolated phase times
(Collins et al. , 1987; Hauge et al. , 1987; Teranishi et al. ,
1987), the time resulting from the Stevens procedure
(Stevens, 1980, 1983, 1984), various Larmor times (Baz',
1966a, 1966b; Rybachenko, 1966; Biittiker, 1983), a new-

ly proposed complex "time" (Sokolovski and Baskin,
1987), and the Biittiker-Landauer time (Biittiker and
Landauer, 1982, 1985, 1986; Biittiker, 1983).

We stress that we consider. scattering configurations
only, not escape from localized states. Let the wave
number of the incoming beam be k. We denote by

T(b, a;k. ) the average time spent in a barrier region
(b, a) (see Fig. 1) by particles that are ultimately transmit-
ted. Similarly, the time spent in the barrier region by
reAected particles is denoted by rid (b, a; k). The claim of
each of the above confiicting proposals is that of provid-
ing a well-defined general procedure by which ~T(b, a;k)
and rz(b, a;k) can be calculated, for arbitrary k and bar-
rier potential V(x). These times represent conditional
averages over mutually exclusive events. One can clearly
determine, without interfering with the tunneling process
itself, whether a particle is ultimately transmitted or
reilected. The dwell time ~D(b, a;k), on the other hand,
is the total average over all incoming particles of the time
spent in the barrier region. The conditional averages
must therefore, if they exist, obey the probabilistic rule
rD = TrT+R r&, where T(k) and R (k) = 1 —T(k) are the
transmission and reQection probabilities, respectively.
This requirement plays a crucial role as a consistency
check in our discussion. We do not know of a corre-
sponding requirement on the tunneling time in the con-
text of escape from a localized state. Although the two
types of tunneling processes are expected to be physically
similar, they are therefore not equivalent; results derived
in one context cannot automatically be used in the other.

In addition to this probabilistic requirement, we insist
that the average duration of a process be a real quantity.
The fact that complex "times" have proved useful in, for
example, discussions of adiabaticity (Sokolovski and
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Hanggi, 1988) does not imply that they are candidates for
quantities defining the duration of a physical process.

%'ith these requirements and with further consistency
tests, we in turn consider the above-mentioned proposals
for tunneling times. We conclude that they all suSer
from one logical Aaw or another, Aaws sufBciently serious
that they must be rejected as candidates for a generally
valid answer to the question posed. %'e stress that this
does not necessarily imply that these times are meaning-
less. Some of the proposals could well represent partial
answers, valid under given circumstances. This possibili-
ty will not be explored here.

In our attempt to convince the reader of the soundness
of the above conclusions, we shall, whenever possible,
supplement general arguments with simple examples.
We restrict ourselves to one dimension throughout. Cal-
culational details that can be found in the literature will
not be reproduced. We make no attempt at mathemati-
cal rigor. Qn the other hand, we have made an extra
e6'ort to be clear, also in circumstances where a complete
understanding is lacking. Apparent discrepancies will be
removed, and remaining difBculties pointed out. Only
passing reference will be made to numerical work (Bark-
er, 1985; Ravaioli ef; ah. , 198S; Jauho and Nieto, 1986;
Collins et al. , 1987; Jauho and Jonson, 1989a, 1989b;
Leavens and Aers, 1989a), in spite of its obvious intrinsic
value. Our main concern is conceptual clari6cation, and
even though numerical work has played an important
role as a guide for thought, it has not been suKciently
forceful, in this context, to close arguments.

In Sec. II the main contenders for tunneling times are
presented. The exact results that must be respected by
any interpretation are stated in Sec. III. Section IV is de-
voted to a discussion of the status and physical meaning
of the phase times, whereas Sec. V presents an alternate
view of oscillating barriers. In Sec. VI the reliability of
Larrnor clocks is discussed. We collect our conclusions
in Sec. VII.

II. THE MAIN CQNTENDERS

In this section we briefly summarize the arguments
leading to some of the expressions for tunneling times
proposed in the literature. Most of these concern elastic
tunneling, but we shall also discuss the interesting case,
introduced by Buttiker and Landauer, of tunneling
through an oscillating barrier.

A. Elastic tUnneling

We consider (see Fig. 1) the one-dimensional case of an
arbitrary time-independent barrier V(x) localized on the
interval ( b, a ) We shall ass. ume that the stationary
scattering problem at any energy, E =Pi k /2m, has been
solved exactly, with a space-independent eff'ective mass m
for simplicity. The wave function has the form

e'""+&Xe' e '" x &b
jb(x;k)= y(x;k), b &x &a,

&Te' e'"" a &x

Here 8 (k) and T(k)=1—R(k) are the reQection and
transmission probabilities, respectively, and P(k) and
a(k) are the corresponding phase shifts. All these quan-
tities will be considered as known functions of k, as will
the wave function y(x;k) in the barrier region. For the
textbook example of a rectangular -barrier, everything
can be calculated analytically. This special case will be
used extensively for illustrative purposes. Consequently
we have, for easy reference, collected some results for the
rectangular barrier in Appendix A. For later conveni-
ence, we let b & 0 and a )0 (see Fig. 1) and introduce the
arbitrary interval (x „x2), which, except in special cases,
will be assumed to contain the interval (b, a).

B. The phase times

Let a wave packet with wave numbers distributed
sharply around a given k impinge on the barrier. The
rough argument giving the phase times can be formulat-
ed as follows. The transmitted packet is described by a
wave packet dominated by a small sei of Fourier com-
ponents of the form

v'T(k) exp[ia(k)+ikx iE(k)t /fi—] . (2.2)

Follow the peak x (t) of the packet. In the stationary
phase approximation it is given by

do, 1 dE
dk ~ A' dk

(2.3)

The tunneling process clearly causes a spatial delay,
5x =a'(k) =du/dk, and a temporal delay,

da 1 do.
dE U(k) dk

(2.4)

where u(k)=Pi 'dE/dk =8k/m is the group velocity.
For reasons that will become clear later, we prefer to use
the term "phase time" for the total time rf(x„x2,'k)
spent between x, &b, to the left of the barrier, and
xz )a, to the right of it. From Eq. (2A) it reads

The concept of a transmission time for a wave packet is pre-
cise only to the extent that the packet is sharp in k space. As an

illuminating contrast, consider a packet impinging on a double
barrier with two resonances of diferent lifetimes. For a packet
broad enough in its energy distribution to cover both reso-
nances, a characterization of the tunneling delay in terms of a
single {average) transmission time is, if formally possible, not
very meaningful from a physical point of view.

~The concept of a time delay is more subtle than one would
think [see Hauge et al. (1987), Jaworski and Wardlaw (1988a),
and Sec. IV.E].
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1rf(x„x2;k)= [x~ —x, +a'(k)] .
u k

(2.5)

Equation (2.5) is our expression for the classic phase time
for transmitted particles (Eisenbud, 1948; Bohrn, 1951;
Wigner, 1955). The reasoning for re(lected particles is
analogous, except that delays must be defined with
respect to a preference, which we choose to be ideal
reAection at x =O. The total phase time for reAection is
independent of this choice and reads

rf( x„x2,' k)= —[—2x&+P'(k)] .
1

(2.6)

Against this derivation one could object (Biittiker and
Landauer, 1982, 1985, 1986) that the peak is not a reli-
able characteristic of packets distorted during the tunnel-
ing process. Furthermore, it is not clear how to obtain
corrections for wave packets of finite but small width, o.,
in k space. In several recent derivations these objections
have been met. (Barker, 1986; Hauge et al. , 1987; Teran-
ishi ef QI. 1987; Falck and Hauge, 1988; Jaworskl and
Wardlaw, 1988a). For example, in Hauge et al. and
Teranishi et al. , the positions of wave packets are
identified with their centers of gravity, a much sturdier
characteristic than the peak. Explicit corrections to (2.5)
and (2.6) have been derived by Hauge et al. These
corrections are formally of O(o ), but as we shall see in
Sec. IV.E, the dominant among them is really of O(o ).

There is another objection against the derivation
sketched above. It does not reveal the asyrnprolic status
of the phase times: the fact that b —x

&
and x2 —a must

both be large compared to the spatial extent, roughly
-o. ', of the wave packets. This aspect of the phase
times will be discussed thoroughly in Sec. IV. Since the
asymptotic character is not apparent in Eqs. (2.5) and
(2.6), it is tempting to linearly extrapolate back to the
barrier region and introduce

brf (b, a;k ) = — [a &+a'(k)], —1

u(k)

br)(b, a;k)= —[ 2b+P'(k)] . —1

u(k)

(2.7)

(2.8)

In itself, there is nothing objectionable about this extra-
polation, and we shaH use it repeatedly. However, as will
be shown in Sec. IV, it is not correct to attribute to the
extrapolated phase times the physical meaning of the
time spent in the barrier region, as was done, for exam-
ple, by Hauge et al. (1987) and by Falck and Hauge
(1988).

A word of warning here: The term "phase times" has
been used in the literature for several related, but
diFerent, quantities. In this review, we shall stick to the

terminology that we believe most clearly rejects the un-
derlying realities. The term phase times will be reserved
for the asymptotic quantities rf(x„x2;k) and

rg(x&, x2', k ) of Eqs. (2.5) and (2.6), which are associated
with completed collisions on the (large) interval (x, , xz)
of wave packets, narrow in k space. (As will be argued in

Sec. IV, the addition of overbars, r f and rg, which
denote an average with respect to a narrow wave packet,
is asymptotically irrelevant. ) The term extrapolated
phase times will always be used for the quantities of (2.7)
and (2.8). These are not the same as the phase time de-
lays [such as Eq. (2.4)], since they include the barrier con-
tributions (a —0) /u and 2b—/u.

For later reference, we quote the results for a rec-
tangular barrier of height Vo =R k o /2m and width d,
for the opaque case, i.e., for T (k) —exp( —2~d ) « I
[where ir =ko —k =2m( Vo E)/—irt ]. The phase times
(2.7) and (2.8), extrapolated to the barrier region
( —d /2, d /2), give (see Appendix A)

hfdf(d;k)=Erg(d;k)=
A'ka

(2.9)

In other words, the linearly extrapolated phase times
grow inversely with k for small energies. One can view
(2.9) as the finite limit of these phase times as the thick-
ness d goes to infinity at axed k and ~.

C. The Stevens procedure

D. The dwell time

Smith (1960) introduced the dwell time rD as a mea-
sure of the time, averaged over aH scattering channels,
spent by a particle in a region of space. In our one-
dimensional case, the dwell time was erst introduced by
Biittiker (1983) and is defined as

ra(x„x~;k)= „ I dx~g(x;k)~
u k

(2.10)

with the understanding that the incoming Ilux is u (k), as
in Eq. (2.1). For a rectangular opaque barrier, the dwell
time in the barrier itself becomes (see Appendix A)

Stevens (1980, 1983) has suggested that the motion of
wave packets with a sharp front in x space can be fol-
lowed through the barrier region if one focuses on the
front of the main packet. In an approximate analytic
treatment of an otherwise exact formalism, he found that
when a packet with a sharp front enters the barrier, the
position of the front remains recognizable and moves
through the barrier with a velocity irta. /m. As a result,
one obtains the transmission time (2.18).

Quite apart from the problematic association of parti-
cle position with the front of a wave packet, several au-
thors have questioned these findings. Collins et al. (1987)
and Teranishi et al (1987) fou.nd that the terms kept by
Stevens are dominated by terms he neglected. In addi-
tion, Stevens's claims do not stand up under the numeri-
cal scrutiny of Jauho and Jonson (1989a). Although the
front of the initial packet used was sharp, no distinct
front traveling through the barrier could be detected.

We no longer consider the approximate version of
Stevens s procedure, intriguing as it was, a serious candi-
date for the calculation of the duration of tunneling.

Rev. Mod. Phys. , VoI. 61, No. 4, October 1989
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rid(d; k )= 2mk
ko'

(2.1 1)

In sharp contrast to the extrapolated phase times (2.9),
the dwell time vanishes with k for small energies.

1'B= BoZ

V(X)

S&T

~sz ~T

X

E. The local Larmor times
Xp
I

r T(x„x2;k)= lim (s )T/( —
—,'i}leo& ),

~, -0 (2.12)

Baz' (1966a) suggested an appealing thought experi-
ment (see Fig. 2) to measure separately the time spent in
di8'erent scattering channels: take advantage of the con-
stant Larmor precession of a spin in a homogeneous mag-
netic field by covering the region of interest with an
infinitesimal field B=Boz (so that only first-order effects
need be retained). With the incident spin- —, particles po-
larized in the x direction, the time spent in the field re-
gion should be proportional to the averaged spin com-
ponent (s~ ) of the particles emerging in the given
scattering channel. Rybachenko (1966) used the idea of
Baz' for the one-dimensional case of concern to us. With
the magnetic field covering the (x„xz) interval, the Lar-
mor time for transmission becomes

FIG. 2. Larmor clock. A weak homogeneous magnetic field,
8=80z, covers the x interval (x&,x2). The spin s of particles
entering the field region are polarized in the x direction. After
transmission beyond x =x2, the spin has developed small (aver-
age} y and z components, i s~ & r and & s, & r.

where ail =gttBo/2m. (Here g is the gyromagnetic ratio
and q the charge of the particle. ) The reflection time r s
is similarly defined with ( s~ )s replacing (s~ ) T.

Rybachenko (1966) derived formulas for HT and r R

for the general case envisioned in Fig. 2, with the mag-
netic field spanning the interval (x „x2 ) and with x, (b,
x2)a. In our notation, they read (Falck and Hauge,
1988),

i/YTr T(x, ,x2;k)= —(x~ —x, +a')+ [sin(P —2kx, ) —sin(2a —P+2kx2)],

rett (x „xz',k ) =—(
—2x, +P')+ [sin(P —2kx, ) —sin(2a —P+2kx2)]
1, i R

(2.13)

+ [sin(P —2kxi)+sin(2a —P+2kxz)] .
1

2ku i/X (2.14)

In both cases, the Larmor times equal the phase times

plus terms oscillating with kx& or kx2. The amplitudes
of the oscillating terms become large for small energies.
For a rectangular barrier, rt, (d)=ET(d)=++(d) (see

Appendix A), and consequently, the qualitative difference
between the extrapolated phase times and ~D carries over
to the Larmor times HT and Hit.

It is not only the spin components in the plane orthog-
onal to the field that are affected (see Fig. 2). The spin,
originally polarized in the x direction, has a probability
of —,

' of being spin-up or spin-down with respect to the

field. As pointed out by Biittiker (1983), the spin-up
component will be preferentially transmitted [except un-

der those special circumstances when dT(k)/dk (0]. As
a result, (s, )T=O(Bo)=O(coL ). In fact, with opaque
barriers, (s, ) T ))(s~ ) r. This led Biittiker to introduce
the Larmor "time"

I

with a corresponding equation for r,tt. The basis for an
interpretation of these objects as times intrinsically
characteristic of the tunneling process is not clear. Nev-
ertheless, let us note that for an opaque rectangular bar-
rier, one has

r,T(d;k) =— (2.16)

(~')'=(+, )'+(+,)',
and similarly for rs . Since, with opaque barriers,
&s, &r ))&s, &r,

(2.17)

difFerent from both the extrapolated phase time (2.9) and
the dwell time rD =ST of (2.11). Biittiker (1983) finally

introduced a third set of Larmor "times, "which we shall
call the Biittiker-Landauer time r . For transmission,
it is defined as

(2.15) ~L trtd

fi~
(2.18)

Since only terms linear in ~L contribute to the Larmor times,
orbital e6ects of O(co& ), which would render a one-dimensional
treatment impossible, can be ignored.

68uttiker (1983}used the term r„, rather than r " This nota-.
tion tends to confuse the issues involved [see Collins et al.
(1987), Biittiker and Landauer (1988), Falck and Hauge (1988),
and Lowe and Collins (1988}].

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989
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F. A comptex time '
$V~ cos &ut

7 (x;, t;;xf tf)=(r i[x( )]) (2.20)

in which x ( ) is an arbitrary path between the given end
points. Sokolovski and Baskin showed that, in general,

is complex. For the scattering process described in
Fig. 1 and Eq. (2.1), it is given by

1.r =l'Iftdx, 7.g =l'Itf dx — . (2.21)
51nA ti . 51nB

n 5Vx '
n 5V(x)

Here A =&Te' and 8 =MR e'~ are the scattering am-
plitudes for transmission and reAection, respectively; Q
can be identified with the interval (b, a) or, alternatively,
the interval (x „x2); and 5/5V(x ) is a functional deriva-
tive. The authors found a close connection between ~
and the local Larmor times,

(2.22)

A corresponding connection was found for 7.z. A com-
plex Larmor time equivalent to rT (apart from an arbi-
trarily chosen sign), was introduced by Leavens and Aers
(1987a; see also Leavens and Aers, 1988).

As stressed by Sokolovski and Baskin (1987), there is
nothing unique about their quantum generalization
(2.20). The requirement that r reduce to r,i in the clas-
sical limit is met by any number of alternatives to (2.20).
One trivial example: replace the right-hand side of (2.20)
by its real part. This would identify r with r . A
second example: replace the right-hand side of (2.20)
by its absolute value. This would amount to an
identification of ~ with v.

Elegant as it is, the Sokolovski and Baskin procedure
remains purely formal. It can only be given physical con-
tent through connections to clearly defined model situa-
tions. The relations (2.22) to the local Larmor times pro-
vide one example of this. We shall give another example
below.

A similar, but not identical, complex "time" had been
introduced previously by Pollak and Miller (1984) and
Pollak (1985) and associated with the kinetics of chemical
reactions. For a discussion of the relation between these
complex times, see Leavens and Aers (1987a).

There is no doubt that complex quantities with ihe di-
mension of time can be useful theoretical objects. For an
example, see Sokolovski and Hanggi (1988), where adia-
batic criteria are discussed. Nevertheless, common sense

In a recent elegant paper, Sokolovski and Baskin
(1987) proposed a formal generalization of the classical
time concept to the quantum domain and explored its
consequences. For one-dimensional motion, their expres-
sion for the classical time spent in a region Q reads

r,"i[x(t)]=f dt f dx 5{x—x(t)), (2.19)
t

where x(t) is the classical path from the initial point
x; (t; ) to the final one xf (tf ). A natural quantum general-
ization of (2.19) is the path-integral average

-d/2

E- hm

d/2

FIG. 3. Rectangular oscillating barrier. In the barrier region
( —d/2, d/2), the scattered particles can absorb or emit modu-
lation quanta A'co, resulting in sidebands with energies E+nh'cu.

The first sidebands are indicated.

dictates that to the question of the duration of a tunnel-
ing process, the answer, if it exists at all, must be a real
time.

G. The BGttiker-Landauer time

So far, only time-independent barriers have been con-
sidered. However, the papers that stimulated much of
the recent interest in tunneling times were those of
Biittiker and Landauer (1982, 1985, 1986), in which they
studied tunneling through a rectangular barrier with a
small oscillating component added to the height (see Fig.
3),

V(t)= Vo+ V, cosset . (2.23)

The incident particles, with energy E, can absorb or emit
modulation quanta A'iu during the tunneling process,
leading to the appearance of sidebands with energies
E+nA~. To first order in V&, only the neighboring side-
bands with energies E+A~ appear. Buttiker and Lan-
dauer showed that for an opaque barrier, with frequen-
cies not too high (iit'co small with respect to E and
Vo E), the relative s—ideband intensities are

2

exp +co
A~

'2

(2.24)

The technical critique, voiced by Collins et al. (1987), of the
work by Buttiker (1983) and Buttiker and Landauer is unfound-
ed. See the comment by Buttiker and Landauer (1988) and the
reply by Lowe and Collins (1988). See also Leavens and Aers
(1988) and Styfvneng and Hauge (1989). The interpretational
controversy is the subject of this review.

where A+
&

are the sideband transmission amplitudes,
and Ao is the transmission amplitude of the unperturbed
problem.

Clearly, Ax/md is the characteristic frequency separat-
ing the low- and high-frequency domains in (2.24), and
Buttiker and Landauer identified md /Ax with the traver-
sal time for tunneling. For opaque barriers, rT of (2.18)
has this form. More generally, on the basis of the co~0
limit of I+1(co) for an arbitrary rectangular barrier,
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Buttiker and Landauer identified their tunneling time
with rz, as defined by (2.17).

Elsewhere (Stgvneng and Hauge, 1989), we have gen-
eralized this model to arbitrary Vo(x). We find a simple,
general connection between the co —+0 limit of the relative
sideband amplitudes 3+& and B+i, and Sokolovski and
Baskin's complex "time" w, namely,

(2.25)

These connections provide an alternate interpretation of
in terms of a concrete physical model. Clearly, the

relative sideband intensities are, quite generally, given by
~, i.e., by r . Whether this fact warrants an interpre-

tation of r as the duration of the tunneling process is a
different matter. We shall return to this point in Sec. V.

Ill. SGME EXACT RESULTS

In Sec. II several sharply contrasting results for an
opaque barrier were quoted: the extrapolated phase time
Ar$ of Eq. (2.9); the dwell time rD of (2.11), which in this
case equals the local Larmor time r T, and the Buttiker-
Landauer time rT, essentially given by r,r of Eq. (2.17).
Clearly, these times describe, at best, different aspects of
the tunneling process. Before attempting an interpreta-
tion that brings the various proposals into perspective,
we shall, in this section, list some exact results that any
such interpretation must respect.

A. The dwell time

over scattering channels, there would not be much room
for discussion.

B. Mutually exclusive events

We consider the status of the dwell time as well estab-
lished. However, it is not a priori clear that the total
average represented by ~D can be distributed over the
different scattering channels in a unique manner. This
might be possible quite generally, or only under restric-
tive conditions such as those given in Sec. IV.B. In any
case, a necessary (but not sufficient) requirement for
meaningful general expressions for ~z and ~T is

7D R7+ + T7+ o (3.1)

This is a direct consequence of the fact that an incident
particle, in the one-dimensional tunneling configuration
of Fig. 1, ends up as either reAected or transmitted.
These mutually exclusive events, in the sense of Feynman
and Hibbs (1965), exhaust all possibilities. There is no
obvious candidate for a fundamental relation like (3.1) in
the context of tunneling out of a localized state. The
problems of defining tunneling times in the context of
scattering configurations and in the context of escape
from localized states are in this sense qualitatively
different.

We have deliberately left vague the specification of the
various times in Eq. (3.1), but will return to specific cases
below. However, behind the statement (3.1) lies the
premise that all three times are related to the same well-
defined physical situation. Section IV.B will show that
this proviso is not as trivial as it seems.

In Hauge et al. (1987), erroneous statements were
made on the status of the dwell time. The source of the
confusion will be made clear in Sec. IV.B. As pointed
out by Leavens and Aers (1989a), the methods of Smith
(1960) and Hauge et al. (1987) can be used to prove that
the dwell time (2.10), for arbitrary x, and xi, is precisely
what it claims to be: the average time spent by particles
on the interval (x „x2), when no attempt is made to dis-
tinguish between scattering channels. Aside from stan-
dard technicalities, the proof by Leavens and Aers con-
tains one conceptual step that can be considered open to
challenge. For this reason we present their arguments in
Appendix B. We stress, however, that we are in com-
plete agreement with Leavens and Aers on this point and
shall henceforth treat the dwell time (2.10) as an exact
statement of the time spent on the interval (x „x2), aver-
aged over all incoming particles.

The interval (xi,x2) may be large or small, it may in-
clude or exclude the barrier, or it may be an infinitesimal
one deep inside the barrier, as it is for the cases studied
by Kotler and Nitzan (1988) and Leavens and Aers (1988,
1989b). This versatility makes the dwell time a useful
tool for testing some of the general claims made in this
field. If the dwell time, in addition, could be distributed

C. Three identities

Sokolovski and Baskin (1987) proved the following
identity connecting the dwell time ~~ and the complex
times z:

(x„x2;k)=R(k) ~( „x~;k)+T(k) T( i, 2, k) .

(3.2)

O=R (k)r ii (x „xz',k )+T(k)r,T(x i,x2, k ) . (3.4)

From the definition (2.15) of r, one recognizes (3.4) as an
equation of conservation of angular momentum. This
was already pointed out by Biittiker (1983). The identity
(3.3) was derived independently by Falck and Hauge
(1988).

In our use of Eq. (3.2), we shall assume that the interval
(x„x2)=Q either covers the barrier region (b, a), i.e.,
x, (b, x2&a, or does not overlap with it. Taking the
real and imaginary parts of (3.2), using (2.17), one finds

rD(xi, xz,'k ) =R (k)r z(xi, x2', k)+ T(k)+z (xi,xz,'k ),
(3.3)
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A third identity, closely related to one found by Smith
(1960), is (Hauge et al. , 1987)

rD(x„xz , k') =R(k)rg (x „x2,'k )+ T(k)rf (x „x2,k )

+ sin(P —2kx, ) .&R
(3.5)

Identities (3.3) and (3.5) are straightforward conse-
quences of the Schrodinger equation. Their interpreta-
tion is less trivial, however. We come back to this in
Secs. IV and VI.

D. Symmetry relations

For arbitrary symmetric potentials V( —x)= V(x), it
can be shown that (Falck and Hauge, 1988)

rg( —x,x;k)=rf( —x,x;k) . (3.6)

Similarly, one has

Hz ( —x,x;k ) =r z.( —x,x;k ) = rD ( —x,x;k ), (3.7)

where the last equality follows from (3.3). For the special
case of a rectangular barrier, Eq. (3.7) was found first by
Biittiker (1983). As a contrast, Leavens and Aers (1987a)
showed, by an explicit example, that Eq. (3.7) breaks
down for asymmetric potentials.

lV. THE STATUS OF THE PHASE TIMES

A. Asymptotic versus local times

One source of confusion in this field has been the lack
of distinction between times, such as the dwell time
rD(x&, xz,'k ), that can be defined locally (for arbitrary
x, and xz), and times that are essentially asymptotic
in character. The phase times rg(x„x2', k) and
~$(x„x2',k) are in the latter category. They are derived
(Barker, 1986; Hauge et al. , 1987; Teranishi et al. ,
1987; Falck and Hauge, 1988; Jaworski and Wardlaw,
1988a) as asymptotic characteristics for completed
scattering events involving wave packets narrow (width
o) in k space. Such packets are necessarily wide (width
~cr ') in x space, and the asymptotic phase times, con-
sequently, can only be derived for b —x, ))o. ' and
x2 —a))o '. Typical results from numerical experi-
ments (with a fairly large o ) are sketched in Fig. 4. Since
in Eqs. (2.5) and (2.6), the phase times are linear in x,
and x2, it is tempting to linearly extrapolate them back
to the scattering region (b, a), as was done in Eqs. (2.7)
and (2.8). This formal device does not alter the status of
the phase times: they remain asymptotic results.

(c)

FIG. 4. Sketch of typical results for ~g( xt)
~

from numerical
solutions of the scattering problem: {a) the initial wave packet
moving towards the barrier, (b) strong interference e6'ects as the
packet moves into the barrier region, (c) the final state,
transmitted and reAected wave packets leave the barrier region.

that the standard interpretation of the dwell time must be
wrong. Leavens and Aers (1989a) subsequently proved
that the dwell time does indeed give the time, averaged
over all scattering channels, spent in any correspondingly
given region of space. They also pointed out the error in
the argument of Hauge et al. : Those authors had at-
tached physical significance to the extrapolation from
(2.5) and (2.6) to (2.7) and (2.8) by assuming the motion to
be that of free particles everywhere outside the barrier re-
gion. This is correct on the far side of the barrier. The
dwell time calculated for an interval beyond x =a
confirms (see Sec. VI) that the particle moves with con-
stant velocity U(k). During the approach to the barrier,
however, the incoming part of the wave function inter-
feres with the rejected part, and free particle Inotion
cannot be assumed all the way up to the barrier.

Because of the way the phase times are constructed,
with completed scattering events within (x„xz), one can
use free motion for both incoming and rejected particles
when x (x, . Furthermore, averaging the identity (3.5)
over an initial packet of the small k width, o., one finds,
when averaged quantities are distinguished by a bar,

rD(x „x2;k ) =R (k)r g (x„x2;k )+T(k )r f (x„x2;k )

—f dk sin(P —2kx, )+O(cr) .1

B. Consistency with Eq. (3.1)

On the basis of the apparent contradiction between
(3.1) and (3.5), Hauge et al. (1987) erroneously concluded

(4.1)

Clearly, the direct average of (3.5) gives, e.g., R rg rather
than Erg, which appears in Eq. (4.1). However, the
di6'erence between these expressions is easily shown to be
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of O(o). Since ~xi~))o, the last integral in (4.1) is
negligible. In fact, the definition of the phase times as
pertaining to completed collisions is tantamount to a re-
quirement that the integral in (4.1) be negligible. Thus
for the phase times one has

7.D(x „x2,k ) =R (k)r g (x „xi,k )+ T(k)r 'I'r(x „xz,k ),
(4 2)

in agreement with Eq. (3.1). It is this type of asymptotic
relation that is, under precisely specified conditions,
proven in the mathematical literature on scattering in
three dimensions (see Martin, 1981). As will become
clear in the following subsection, the overbar is essential
on rD Fo.r the remaining quantities in (4.2), one would
make asymptotically negligible errors, of 0(cr), by re-
moving the overbars.

We have thus shown that when the asymptotic nature
of the phase times is taken into account and the corre-
sponding integration over narrow packet has been car-
ried out, the apparent confiict between Eqs. (3.1) and
(3.5) no longer exists. On the other hand, the conflict be-
tween (3.1) and (3.5) is real, when used with x, =b and
x2=a and with the extrapolated phase times (2.7) and
(2.8). In conclusion, Eq. (3.5) can be used to attack nei
ther the status of the dwell time nor that of the asymptot-
ic phase times. It can be used (Leavens and Aers, 1989a)
to show that the extrapolated phase times do not
represent the time spent in the barrier region.

C. Physical interpretation

We shall now' carry the argument of Leavens and Aers
(1989a) one step further and cast the identity (3.5) in a
form that suggests an appealing picture for the physical
content of phase times.

The dwell time on the interval ( I.,x i ), to th—e left of
the barrier, clearly diverges as L~ ~. Subtraction of
the time due to free motion of incoming and rejected
particles leaves a finite (positive or negative) excess dwell
time b.rD(x &xi', k). At fixed k it can be calculated ex-
plicitly:

brD(x &x)', k)

= lim —f dx[~e'""+v R e'~e '""~ —(1+R )]L~oo U —L

where we, in the limit L —+ ao, have neglected' the term
-sin(/3+2kL ). Equation (4.3) shows that the oscillating
term in (3.5) is a dwell time associated with interference
e6'ects in front of the barrier. The phase times do not os-
cillate with k. Subtraction of pieces corresponding to
free-particle motion on the intervals (x„b) and (a,x2)
amounts to extrapolation of the phase times back to the
barrier region. One easily finds, using (4.3), that Eq. (3.5)
can be written

BED(x &b;k)+rD(b, a;k)
=R (k)b, rg (b, a;k )+T(k)b, rg(b, a;k ), (4.4)

where the linearly extrapolated phase times are those of
Eqs. (2.7) and (2.8).

Equation (4.4) suggests a simple physical interpretation
of these phase times. The second term on the left-hand
side gives the time spent in the barrier itself. The first
term represents the delay (positive or negative) due to in-
terference between the incoming and reflected waves.
Consistent with this interpretation is the fact that no in-
terference term comes from the far side of the barrier.
However, one should realize that no distinction between
reAected and transmitted particles was made in the above
argument, as it pertains to the left-hand side of (4.4). In
general, no such distinction can be made in the context of
the dwell time. This important reservation mars an oth-
erwise appealing interpretation.

D. Two clear-cut examples

There are two simple but illuminating cases for which
the above reservation becomes irrelevant. The first is
that of an infinitely thick barrier. In that case, when
E ( V0, all particles are reflected and no ambiguity with
respect to scattering channels exists. Let, for simplicity,
the barrier be rectangular, spanning the interval (O, d)
with d ~ co, and with height V0. For E ( V0, one clearly
has that exp( —2&cd)~0; the results for an opaque bar-
rier apply. Using the relations (2.9), (2.11), (4.3), with
x

&
=0, and Eq. (A3), one easily shows that

rD(x )0)=2 E
UK V0

(4.5)
V0 —E

ArD(x &0)= b,rg .
0

R
sin(P —2kx, ),

ku
(4.3) These simple results shed light on some of the controver-

sial issues regarding tunneling times. The apparent con-
tradiction between the extrapolated phase time, increas-

It is interesting to note that Smith (1960), for the very similar
case considered by him, dispensed with the oscillating term by
arbitrarily averaging over x&. In our opinion, only a wave-
packet argument can consistently lead to Eq. (4.2).

Note the close correspondence between the definition of the
excess dwell time and that of the linearly extrapolated phase
times.

'oThis can be justified formally when one considers the station-
ary case as the o.—+0 limit of an approach based on wave pack-
ets and takes the I.—+ ~ limit first. In the mathematical litera-
ture, the corresponding limit is "weak" and appeal is made to
the Riemann-Lebesgue lemma.
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T(k) = 1

1+(co/u )

%co /mu
Arf =br) =

1+(co/u )

(4.6)

First, the transmission probability (4.6) is less than unity
and depends on the strength of the 6 function. But more
important is the fact that the extrapolated phase times
(4.7) can be identified unambiguously as self-interference
delays here, since no time is spent in the barrier region in
this special case. Such delays were observed by Elberfeld
and Kleber in the case of a sharply defined k. "
For small energies, Eq. (4.7) gives b,r~=(fi/mco)u
=(2/kod)u ', which agrees with (4.5), when kod takes
the role of ~.

One interesting consequence of (4.7), in confhct with a
naive classical picture, should be noted. The delay due to
self-interference is the same for reAected particles, which
pass through the interference region twice, and for
transmitted particles passing only once. One might be
tempted to conjecture that this is true for symmetric bar-
riers in general. Such a conjecture, combined with Eqs.
(3.6) and (4.4), would imply that both reflected and
transmitted particles spend the dwell time in the barrier
region. However, the precise equality of these two delays
most likely reflects the special nature of the 5 function.

That the interference effect could not be seen with wave
packets of moderate extension in x space is not surprising, in
the light of the discussion in Sec. IV.B.

ing with U '-k ' for small energies, and the dwell time
in the barrier, decreasing like E/U -k, is resolved. The
extrapolated phase time, extracted from a description of
the completed scattering event, consists of two contribu-
tions: the time spent in the barrier region, rD (x )0), and
the delay in front of the barrier, b, rD(x &0), due to self-
interference, For small energies, the latter is clearly the
dominant one.

It is worth noting that rD(x &0), according to the
definition (2.10), essentially measures the particle density
in the barrier. Since all particles are rejected here, a
given one may or may not enter the barrier and contrib-
ute to rD(x )0). How to proceed from (4.5) to a state-
ment about typical velocities of those particles that do
enter the barrier is therefore not clear.

The second example is that of a 5-function barrier.
Nontrivial results for time-dependent versions of this
model have been established recently by Teranishi et al.
(1987), Elberfeld and Kleber (1988), and by Scheitler and
Kleber (1988). In this context, we shall need only simple
results for the stationary case. In the equations for the
general rectangular barrier in Appendix A, let d ~0 and

Voodoo in such a way that Vod=(A ko/2m }d=A'co is
kept constant. This 5-function limit yields, with
u(k)=A'k/m,

Consequently, we can see no reason to trust the above
conjecture.

E. Scattering of packets with Snite width

In this subsection we shall discuss the eft'ects of a
small, but finite, k width on the scattering process. Our
aim is to further clarify the status, not apparent from the
derivation in Sec. II.B, of the asymptotic phase times and
their extrapolated counterparts. The essential content of
our remarks is contained in the thorough discussion by
Jaworski and Wardlaw (1988a). The simplified style will
be closer to that of Hauge et al. (1987).

Two technically very difFerent derivations (Falck and
Hauge, 1988; Jaworski and Wardlaw, 1988a) of the
asymptotic phase times for wave packets narrow in k
space lead to essentially the same' results,

r'rr(x„x2, k)=T(k)u(k) '[x2 —x, +a'(k)]/T(k),

(4.8)

r$( x„x;2 k)=R( k) u( k) '[ —2x&+P'(k)]/R(k) .

(4.9)

In (4.8) and (4.9), the overbars denote an
average with respect to the initial wave packet, i.e., with
respect to the distribution I'I(k}=~p(k)~ /2', where
p(k)= fdx e '"'g(x, t =0) is the Fourier transform of
the initial packet. Both derivations are similar in one
crucial respect: They invoke completed scattering events.
Consequently, b —x

&
and xz —a must both be sufficiently

large to accommodate wave packets of spatial extent
-o '. Formally, the results (4.8) and (4.9) apply to any
initial packet, wide or narrow in k. However, to make
sure that one does not average over physically quite

The expressions found by Jaworski and Wardlaw (1988a)
focus on transmission and reAection delays, with free-particle
motion of the initial wave packet used as a reference. The ini-
tial packet is prepared far from the barrier, and the arrival
times for transmitted and reAected particles are measured by
idealized detectors at x2 and x&, respectively. Their fo'rmulas
have a quite different appearance, but they can be shown to cor-
respond closely to Eqs. (4.8) and (4.9). The minor differences
that do exist can be traced to the fact that the Ciedanken experi-
ments basic to the two calculations, while similar, are not iden-
tical. The results of Hauge et al. (1987) and Teranishi et al.
(1987) are (before extrapolation) similar to (4.8) and (4.9), but
only asymptotically equivalent, as o.—+0. See also Jaworski and
Wardlaw (1988b). Barker's (1986) derivation dispenses with the
interference terms in a manner equivalent to an asymptotic ar-
gument, plus subsequent linear extrapolation. It seems fair to
say that all these derivations of the phase times yield asymptoti-
cally equivalent results as cr ~0.
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di6'erent processes, ' and since this review focuses on
scattering at (essentially) given energy, we require that o.

be small in the sense that

(4.10)

with kI =k.
One can rewrite (4.8) in terms of the probability distri-

bution associated with the transmitted packet,
PT(k) =PI(k) T(k)/T(k),

rf( x„x2,. k)= Jdk Pr(k) —[x2 —xi+a'(k)] . (4.11)

+0(o') . (4.12)

With the o. 's defined as the corresponding mean-square
deviations, we can interchangeably use the widths of the
initial, aI =—o. , and transmitted, o.T, packets, since their
difference is of 0(cT ). The two averages are related by

T'(kI )o
kT=kI 1+ —+0(cr ) .

kI T(kI )
(4.13)

Similar equations can be written for the reAected packet.
For example, the average k is given by

T'(kI )o.
(4.14)

where we used R'= —T'. [As a check, to 0(o ), (4.13)
and (4.14) give kI = TkT+Rkz. ]

All the corrections to rf in Eq. (4.12) are formally of
0(cr ). This is clearly also the actual order of the last
two corrections in (4.12), since their coefficients are of
0(1). However, the correction rf kT o is larger, due to
the fact that the derivations of (4.8) invoke completed
scattering events and therefore require x2 —x „and thus

re, to be large, at least of 0(cr '). The leading correc-
tion to rf is therefore of 0(~x2 —x, ~cr )=0(cr). It van-
ishes linearly' as the k width of the wave packet tends to
zero.

An example of how different physical mechanisms can con-
spire to give startling and potentially confusing results is found
in Fig. 3 of Leavens and Aers (1989a). By respecting both in-
equalities of (4.10), one avoids such pitfalls.

~~To make sure that x2 —x& &&o. ' as a~0, one could, of
course, let x 2

—x
&

=co "+", where e is a constant and

0(s & 1. This would make the leading correction in (4.12) of
O(~xz —x, ~cr )=O(cr' '). It would still vanish with o, albeit

slower than linearly.

With PI(k), and thus PT(k), sharply peaked in the sense
of (4.10), one can expand (4.11) to get

r

07.$(x„x2;k)=ry(x„x~;ki ) 1+—2-
kT

a"(kT)
+—'a"'( k ) cr

k T

In the strict limit cr —+0, as the corrections to err and
rg vanish, t'he asymptotic phase times tend to infinity.
However, their linearly extrapolated counterparts tend to
the finite limits, ' hap and br). This should be clear
from Eq. (4.4). The physical content of the above state-
ments is this: When the wave packets stretch out in x
space as o.~O, the self-interference delays contained in
b,

r'errand

Ar$ do not grow beyond bounds, but tend to
finite limits. It is worth repeating, however, that, except
in special cases like the one discussed in Sec. IV.D, one
cannot, in the asymptotic results b,r'ir and b,rg, separate
contributions from self-interference delays and time spent
in the barrier region.

To give a feeling for some of the issues involved
when the wave packets have finite width, Fig. 5 gives
a schematic representation in the (t,x) plane of the
transmission event. The barrier appears as the hatched
region between x =b and x =—a. The initial packet starts
at xo and moves, on the average, ' along the solid line
characterized by kr. Its extrapolation into and beyond
the barrier region is dotted. The transmitted particle
emerges along the dot-dashed line of slope kT, which is
extrapolated backwards as a dotted one. Figure 5 im-
mediately shows that the delay time, defined with free-
particle motion as a reference, is a cumbersome concept
here. It will depend on x2, due . to the diQ'erence,
kT —kI=O(o. ), in slopes. The total transmission time,
given by Eq. (4.8), is free of this difficulty.

Inspection of Eq. (4.8) for the transmission time shows,
with reference to Fig. 5, that the transmitted particle,
prior to the collision, should be represented by the
dashed line, of slope kT, and not by the solid line. (The
time r f therefore roughly equals t2 —r, .) As a result of
this, r'ir is invariant with respect to a displacement' of
the barrier. This important subtlety was pointed out by
Jaworski and Wardlaw (1988a). It can be interpreted'" as
follows: The fact that the particle is transmitted, not
reAected, amounts to a measurement. This measurement
adds to our information about the particle. Consequently
one should, after the fact, think of the transmitted parti-

'~Except, perhaps, in very special limiting cases [see Garcia-
Calderon and Rubio (1989)].

Since it is U ', not U, that appears under the integral sign in
Eqs. (4.8) and (4.9), it would, strictly speaking, be more ap-
propriate to base the discussion on k ' rather than k. For
small o., the corresponding corrections would be the same as
those in (4.13) and (4.14), except for a sign change. The message
of Fig. 5 would remain the same.

i7The displacement is arbitrary as long as the condition of a
completed scattering event within (x „x2) is not violated.

In Jaworski and Wardlaw's view, the invariance inherent
in Eq. (4.8) favors the statistical interpretation of quantum
mechanics.
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FIG. 5. Center-of-mass motion in the (t,x}plane. The hatched
area between x =b and x =a represents the barrier region. The
solid line emanating from (O,xo) represents the center-of-mass
motion of the initial packet. Its extrapolation is dotted. The
dot-dashed line on the far side of the barrier represents the
center-of-mass motion of the transmitted packet, with a dotted
backward extrapolation. The dashed line from (O,xo) gives the
center-of-mass motion of the initial packet, filtered through the
transmission probability T(k). It is parallel to the dot-dashed
line. The difterence kr —kr is exaggerated for clarity.

cle as being represented by the initial packet fiitered'
through the transmission probability T(k), even prior to
the collision.

The center-of-mass clock, discussed by Hauge et al.
(1987) and by Teranishi et al. (1987), takes the initial
packet, i.e., the solid line in Fig. 5, as representing the
transmitted particle prior to the collision. As a result r $
is set roughly equal to t~ —t'„rather than to t2 —t]. As
exp1ained above, this is inconsistent with a correct inter-
pretation of quantum mechanics (even though the numer-
ical error vanishes in the o.—+0 limit). The center-of-
mass clock, however, is relevant for explaining the results
of numerical "experiments, " in which the act of observa-
tion has been trivialized: It amounts to nothing more
than the reading of computer printouts.

A11 the points made above apply equally to the case of
refl.ection. However, there is one additiona1 point to be
made: The reliection time r g of Eq. (4.9) depends on the
position of the barrier. Clearly, if the barrier is moved
down the line, it takes longer to get there and back.

FinaHy, Fig. 5 shows that the asymptotic phase times
are sharp, with absolute corrections of O(cr ). The slopes
of the various lines differ by O(o. ). Their lengths are of
O(o '). Absolute uncertainties are therefore of O(o ).

F. Are the asymptotic times, in principle„sharp.

The considerations above showed that, theoretically,
the asymptotic phase times are sharp within a margin of

~9The fact that both the solid and the dashed lines in

Fig. 5 emanate from xo is therefore, in general, a minor

oversimplification.

V. AN ALTERNATE VIEW OF THE OSCILLATING
BARRIER

In a separate publication (Stdvneng and Hauge, 1989),
we have discussed in detail the oscillating-barrier prob-
lem introduced by Biittiker and Landauer (1982, 1985,
1986). Here we focus on those aspects that are important
for the corresponding time interpretation.

The result (2.24) shows convincingly that, for an
opaque barrier, the relative sideband intensities I+, (co)
are governed by a single characteristic frequency [at least
over the range of frequencies in which (2.24) is valid]. In
particular, the low-frequency limit gives

BLV)~TI g. , (0)= (5.1)

2oThe above arguments for a sharp distribution apply to the
asymptotic phase times rf and rg. It is possible that a deeper
understanding of the issue of local tunneling times can emerge
from a study of their distribution, to the extent that this concept
can be given a meaningful definition. Tantalizing results in this
direction can be found in the works of Leavens (1988), Persson
(1988), and Schulman and Ziolkowski (1989}. However, since
we find fault with all suggested procedures for calculating the
average of local times, it seems premature to comment on their
distribution.

O(o ). But is a correspondingly sharp measurement of
the asymptotic times possible, even in principle? Local-
ized ideal counters (Jaworski and Wardlaw, 1988a)
measuring arrival times will (at least in a naive interpre-
tation) produce a distribution of the asymptotic tunneling
times rejecting the spatial extent of the wave packets.
Consequently, they could yield a distribution of tunneling
times of width -o. '. If no other experiments were con-
ceivable, the status of asymptotic times would be doubt-
ful. However, as shown in Falck and Hauge (1988; see
Sec. VI below), the asymptotic Larmor clock yields Eq.
(4.8) as well. A precise measurement of (s~ ) for a
transmitted spin- —, particle, initially polarized in the x
direction, would therefore give the phase time. At first
sight, since single measurements of s must yield A/2 or
—A/2, this also seems to result in a wide distribution of
times. One could avoid this by following the suggestion
of Baz' (1966b) and letting the spin be classical. Howev-
er, even for a quantum-mechanical spin- —,

' particle, the
spin components are given by expressions of a form indi-
cated by (2.12) and (6.1). That is, the uncertainty in the
components, and therefore in the direction of the spin, is
given by the uncertainty in k. Operationally, nothing
prevents us from determining that direction (see Fig. 2)
with an idealized Stern-Gerlach apparatus. Thus the
width of the distribution of phase times around their
mean is proportional to o, not to o. ' [see also Soko-
lovski and Baskin (1987) on this point].
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I', (~) I'—, (~)
F(co) —= = tanh(corBTL) .I+, (co)+I, (co)

(5.2)

This result for opaque barriers leads naturally to the
following definition of the characteristic frequency co,
separating the high- from the low-frequency domain: '

which can be taken as a general definition of ~
(Biittiker and Landauer, 1985), equivalent to that of
(2.17). Qn the other hand, the relative sideband asym-
metry reads

l5

~ 10—o
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E
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I I I I
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I I 1 I
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I

Vo= 0.250 eV

E =O. I15eV
m"= 0.07 m,

BL
T

J /(dc

I

j

I I 1 I

iF(co, ) i—:tanh1 =0.76. . . , (5.3)

which yields co, =(rT ) '. This shows that, with opaque
barriers, the sideband asymmetry is governed by the
same quantity, ~T, that determines the co~0 limit. It is
tempting, then, to identify ~z-" as the duration of the tun-
neling process itself.

On closer examination, however, the rationale for this
identification becomes less clear. Buttiker and Landauer
(1985) derived exact expressions for the sideband ampli-
tudes A+, (co) and 8+, (co) to first order in V„and for
general rectangular barriers. The full expressions are
complicated and a detailed discussion of them dificult.
For opaque barriers, I+&(co) simplifies to (2.24). In the
5-function limit, d —+0, Vo~ac, V& ~ac, with Vod=A'co
and Vid =Ac1 constants, the expressions again simplify.
One finds

I+) (co)= C1

2(U +C )i/2
o J

2
. E+

2 tPlco
(5.4)

C1

2( U 2+ 2 )1/2
d

U2+C2 )1/2
SI

2A
(5.5)

Comparison between (5.4) and (5.5) shows that, whereas
the characteristic frequency ~, separating the high- and
low-frequency domains remains Anite, the Buttiker-
Landauer time ~z- vanishes as d ~0. The two concepts
are therefore qualitatively diferent, in spite of the fact
that they coincide in the case of opaque barriers. Equa-
tion (5.4) also shows that co, ' cannot, in general, be inter-
preted as the duration of the tunneling process. Regard-
less of whether it is given by ~T, the duration of the tun-
neling process must vanish in this case. Note that the
sign of the sideband asymmetry in (5.4) is the opposite of
that in (2.24).

0
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FIG. 6. Comparison between the inverse characteristic fre-
quency co, and the Biittiker-Landauer time for transmission,
rz, in a GaAs/A1GaAs/GaAs structure. We define co, by
i(Ir+, I, }/(—I+, +Ir, )i = =tanh1=0. 76. . . . For our

C

choice of energy, I=0.115 eV, co, is not defined in the d inter-
val (11 A, 55 A). For thick barriers, rz."—co, '=O(d '). As
d ~~, rT"=md /Asc. When d ~0, on the other hand,

-md/Rk —With . the choice E= Vo/2, one has k =~, and
the two limiting slopes of rz"(d) coincide. Even so, rT (d) is
not a straight line.

One could object to our use of the 6-function barrier in
the arguments above on the grounds that it is a nonphysi-
cal special case. We have therefore investigated barriers
of increasing thickness d and with typical GaAs, AloaAs
parameter values, i.e., m =0.07m, (where m, is the bare
electron mass), and Vo =0.23 eV. For the somewhat ar-
bitrary choice E = Vo/2=0. 115 eV, ~BT" was determined
numerically from Eq. (A7) as a function of d. The exact
expression for A+, (co) found by Biittiker and Landauer
(1985) was used, together with the definition (5.3), to
determine co, ', also as a function of d. The results are
shown in Fig. 6. In a d interval (11 A, 55 A) no solution
for cu, exists. This can be understood simply. The 5-
function result (5.4) indicates that thin barriers have a
sideband asymmetry sign opposite of that for opaque
ones. This implies that the cu dependence of the asym-
metry is very weak for an intermediate range of d values.
To reach the relative asymmetry tanh1 =0.76. . . , which
defines ~„one needs to go to large co. However, the
lower sideband exists only as long as iilco &E (Jauho and
Jonson, 1989b). Definition (5.3) therefore does not yield
an co, for barriers of intermediate thickness. One cou d
try to repair this by changing definition (5.3) somewhat,
but ihe qualitative conclusion remains unchanged: Since
the asymmetry is very weak for intermedi. ate d, no m, can

Clearly, nothing dramatic happens at precisely ~=co, . A
number of alternate definitions yielding characteristic frequen-
cies of the same order of magnitude are equally plausible.

Our results at this point are consistent with the general ones
by Sokolovski and Hanggi (1988).

Since free-particle motion outside the barrier is assumed,
realism dictates that the energy should not exceed the optical
phonon threshold, E-0.04 eV. At this threshold ~„as defined
by Eq. (5.3), does not exist in the d interval (7 A, 165 A). This
interval includes essentially all barriers of physical interest.
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be meaningfully defined in that range. The identification
of co, ' with the duration of the tunneling process cannot
be generally valid.

How, then, should the results for the opaque barrier be
viewed'? Biittiker and Landauer (1985) stress the energy
sensitivity as a dominating feature of tunneling through
such barriers. They provide the following appealing pic-
ture of the sideband asymmetry of Eq. (2.24). To lead-
ing order, one has for the transmission probability
T(E+ Itch) —T(E) exp(+267 md /AK). Assume Iiow tllat
the upper sideband is dominated by particles that, upon
entering the barrier, immediately absorb a modulation
quantum Ace and, with this added energy, proceed to tun-
nel through the entire barrier. This picture is consistent
with (2.24). The corresponding picture for the lower
sideband would be one in which the modulation quantum
is emitted as the particles leaves the barrier. Again, this
is consistent with (2.24): The lower sideband is governed
by [exp( —comd/A'ic) —1] =1, i.e., by T(E) rather than
by T(E—fico).

The precise duration of the tunneling process never
enters the above argument. The precise energy sensitivi-
ty of T(E) does. One might be tempted to link the two
by a relation of the type ~DE-A. However, the example
of the 6-function barrier and the results in Fig. 6 show
that no straightforward general relation exists between
the duration of the process and the characteristic fre-
quency separating the high- and low-frequency domains.
We propose instead that (2.24) should simply be accepted
as an expression of the nonlinear response of the tunnel-
ing probability to the available energy quantum.

The above arguments alone do not exclude the possi-
bility that the Buttiker-Landauer times ~z and ~z" are
generally valid expressions for the duration of tunneling
processes. However, this is ruled out by their failure to
obey relation (3.1).

Both the inverse characteristic frequency and the
Buttiker-Landauer times fail to satisfy necessary condi-
tions on general expressions for the duration of tunneling
processes. That does not imply that they are uninterest-
ing quantities. For example, since ~, characterizes the
coupling between the tunneling process and other degrees
of freedom, it is, in contexts in which it can be meaning-
fully defined [see, for example, Bruinsma and Bak (1986)],
expected to play a more important role than the intrinsic
tunneling times.

Vl. THE I ARMOR TIMES

A. The asymptotic Larmor clock

k, violate the uncertainty principle. The premise for the
local Larmor clock, as introduced by Baz' (1966a), is
therefore an unproven extension of classical ideas into
the quantum realm

On the other hand, the Larmor clock can also be based
on wave packets (Falck and Hauge, 1988). That clock
was shown to be reliable in an asymptotic sense, with a
magnetic field covering an interval (x„x2) sufficiently
wide to accommodate completed scattering events. For
the transmission time from x, to x2, through a barrier
with transmission probability T(k), this asymptotic Lar-
mor clock gives the result (4.8),

rT"=T(k)u(k) '[x2 —x, +a'(k)]/T(k)=r f, (6.1)

with the analogous equation for the asymptotic reflection
time re given by (4.9).

B. The local Larmor clock

Let us take a closer look at the local Larmor times.
There is no disagreement that a finite z component of
transmitted or rejected spins is a result of the energy sen-
sitivity of the tunneling probability, and that
(s, ) T )) (s~ ) T with opaque barriers. Nor is there
disagreement that, for the case discussed in Sec V, the
characteristic frequency is determined by rT —--r,T when
the barrier is opaque. In spite of this, no forceful argu-
ment has, in our opinion, been advanced for the general
identification of r,r (or r,r ) with the intrinsic duration of
a tunneling process. Qn the contrary, for the case of the
asymptotic Larmor clock (Falck and Hauge, 1988), it is
easy to see that r,T is unrelated to the time aspects of the
completed process. Furthermore, the r, 's do not obey a
relation of the form (3.1), but rather the conservation law
(3.4). These facts do not exclude the possibility that in a
carefully delimited set of circumstances r,T has the
meaning of the duration of a tunneling process. So far,
however, no argument exists that, with explicit limita-
tions, sho~s this.

These remarks carry over to the Buttiker-Landauer
times. In general, wz and ~~" are hybrid quantities,
rejecting a combination of time and energy aspects of
the tunneling process. '

They violate (3.1) and therefore
cannot be general expressions for tunneling times.

This leaves us with the reading of the local Larmor
clock r~, as introduced by Baz' (1966a). In, the context of
stationary scattering states, the reliability of this clock
remains conjectural. A conjecture can be correct, of
course, and r does meet one stringent test: The identity
(3.3) has precisely the form (3.1) required by transmission

The basis for the Larmor clock, as sketched in Sec.
II.D, is the statement that inside a homogeneous magnet-
ic field a spin will precess at a constant rate. Outside it
will not precess at all. This is an elementary truth in
classical physics. However, in quantum mechanics the
situation is complicated by the fact that "inside/outside"
statements, in the context of scattering states with fixed

4We use the term local as opposed to asymptotic in this re-
view. Both Kot1er and Nitzan (1988) and Leavens and Aers
(1988, 1989b) use the term in a stronger sense {see Sec. VI.D).

25It is precisely that combination, in fact, which determines
the sideband intensities of Sec. V in the ~~0 limit.
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and reAection being mutually exclusive events. What to
make of the symmetry relation (3.7) is less clear.

The identity (3.3) shows only that a necessary, not. a
sufficient, condition has been met. Closer inspection of
the Rybachenko (1966) formulas for H~ and Hz, (2.13)
and (2.14), does not strengthen one's confidence in these
local Larmor times. How can the reAection time depend
on the position, at x2 &a, of the far end of the magnetic-
field region, when a reAected particle never moves
beyond the barrier? What do the sine terms in (2.13) and
(2.14) represent?

Partial answers to these questions can be found in the
rederivation of the Rybachenko formulas by Falck and
Hauge (1988). There the sine terms are depicted as re-
sults of new events made possible by the O(col ) refiection
probability inherent in any step in the magnetic field. As
examples, the term -R' sin(2a —p+2kxz) in r 7 of
Eq. (2.13) represents the event sketched in Fig. 7(a),
whereas the term -R ' sin(p —2kx, ) in H~~ of Eq. (2.14)
represents the event of Fig. 7(b). The manner in which
these terms contribute to r is rather subtle, however.
They do not give the duration of the events. Qualitative-
ly, this is seen as follows: The field splitting, of O(coJ ), of
the transmission amplitudes and free propagators of the
direct process carries the information of the Larmor pre-
cession. In the events of Fig. 7, the reAections at x2 and

x, already give factors of O(col ); the Larmor splitting, of
total O(a~I ), is therefore neglected for consistency. Then
what do these extra terms represent? Let us consider
some simple examples.

C. Three simple examples

There are very few cases in which the predictions of
the local Larmor clock can be tested against exact re-

suits. The reason is obvious. The dwell time is the only
exact statement available about local times. For cases in
which R =0, or T=O, the identity (3.3) shows that
r =~D. Our two first examples are of this kind.

(1) Free particle (R =0). In this trivial case,

r T(x„x2,k)=rD(x„x2, k)=(x2 —x, )lu(k) .

Edge reAections at x2 and x, , like those in Fig. 7, only
contribute to (s ) T to O(coL ) and are thus irrelevant.

(2) The infinitely wide barrier of Sec. IV.D (T=O).
Let the magnetic field cover an interval (x„xz) entirely
to the left of the barrier. The corresponding local Lar-
mor time can then be found as a difference between two
expressions of the form (2.14), with R = 1,

r z (x „x3;k ) =—(x~ —x
&
)+ [sin(P —2kx i )

2 . 1

=rD(x„x3,'k),

—sin(P —Zkx
& ) ]

(6.2)

=1
HyT(x3 x2 k )=—(xz —x3 )

U

+ [sin(2a —P+2kx& )
&R
2kU

where the last equality can be checked by direct integra-
tion, similar to Eq. (4.'3). This result shows that the sine
terms are of physical relevance here: They take care of
the interference efFects not contained in the first term.

None of these examples address the crucial question,
since the identity (3.3) guarantees the accuracy of the lo-
cal Larmor clock when R =0 or T=0. The question is
whether the local Larmor times represent a reliable dis-
tribution of the average ~D over the two scattering chan-
nels when 0& T &1. We therefore turn to our third ex-
ample.

(3) An arbitrary barrier with the interval (x3,x2) en-

tirely to the right of it. Subtraction of two versions of
(2.13) gives

Xi a
I

Xp
I

—sin(2a —P+2kx2)] .

The dwell time, on the other hand, gives

T
rD(X3, xz', k)= —(xz —x3) .

U

(6.3)

(6.4)

Equation (6.4) gives the time spent on (X3,X~), averaged
over all incoming particles. For this special case one can,
in addition, unambiguously define a dwell time ~D on
( x 3 x 2 ), conditional on the particles having tunneled
through:

(b)

7 D =—(x —x ).D T 2 3 (6.5)

FIG. 7. Two interference terms contributing to the local Lar-
mor times: {a) an extra reflection from the right end, at x =x2„
of the magnetic-field region, {b) an extra reAection at the left
end, at x =x &, of the field region.

2 This example has been found independently by Leavens and
Aers {1989b).
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Clearly, the local Larmor time, if reliable, should coin-
cide with this conditional dwell time. Equation (6.3)
shows that it does not. Here, the sine terms associated
with Fig. 7(a) introduce spurious efFects, of the same or-
der as the conditional dwell time, due to the O(mL )

reAectivity at the field steps at x2 and x3. Identity (3.3) is
still obeyed, saved by equally spurious contributions (os-
cillating between positive and negative values) to
HyR(x3, x~;k).

Rather than take the above example as evidence
against the reliability of the local Larmor clock, Leavens
and Aers (1989b) speculate that it could be a manifesta-
tion of quantum nonlocality. In our opinion, there is no
need for such speculations, since the mechanism behind
the oscillating terms has been identified as the O(coL )

reQectivity of the field steps at x3 and x2, this mechanism
has been shown (Falck and Hauge, 1988) to quantitative-
ly account for the spurious terms.

D. Some further calculations

Let us, for the moment, pretend that no conceptual
difficulties exist in connection with the local Larmor
times H~ and r, . Returning to the Sokolovski-Baskin for-
mulas (2.21), we note that the spatial region 0 is arbi-
trary. Furthermore, the form of (2.21) implies that the
contributions to the complex "times" ~T and ~z from
different spatial regions are additive. From this it follows
that contributions to 7 = ~r ~

= ~r —ir, ~
are, in gen-

eral, not addit'ive. Exceptions are circumstances under
which the imaginary part of ~ completely dominates the
real part (or vice versa). Kotler and Nitzan (1988) con-
sidered such a case and studied the connection between a

, associated with a region deep inside the barrier, and
the corresponding contribution to the transmission prob-
ability.

Now let d Q=dx be a differentially srnal1 region some-
where within the barrier. Using the relations (2.22), one
can construct the corresponding differential Larmor
times d+T and dr, T. From these one can formally con-
struct inverse speeds, U T'=dr rldx and u,T'=dr, T/dx,
that vary from point to point inside the barrier. Leavens
and Aers (1988, 1989b) discuss these concepts analytical-
ly and numerically. They compare results for a sym-
metric double barrier at resonance, when ~T is real, with
results for a corresponding single barrier, for which &T is
complex. In spite of the fact that the Larmor "times" H
do not obey (3.1), whereas r do, Leavens and Aers find

that it is u, T, not U z-, which shows the more "reasonable"
behavior. (For detailed argumentation, the reader is re-
ferred to the papers in question. ) In a single barrier, U, T
is approximately constant through the barrier, whereas
u T is strongly x dependent. In fact, it becomes exponen-
tially large in the middle of the barrier, exceeding the
speed of light already for barriers with a thickness of
about 6 A in their numerical example. They also find

that even when the Schrodinger equation is replaced by
the Dirac equation, u„z-, averaged over the barrier, can
exceed the speed of light for sufFiciently thick barriers.
This is contrasted with the symmetric double barrier at
resonance (when rT is real): For that case Leavens and
Aers prove, on the basis of the Dirac equation, that
VyT (C.

Intriguing as these results may be, their relevance is
less than clear. As the discussion above (Secs. VI.B and
VI.C) shows, the concepts on which the results are based
are of dubious validity in this context.

E. Status

We have found one clear-cut example showing that, in
the context of scattering states with fixed k, the local
Larmor time H is not always reliable. On the other
hand, the identity (3.3) guarantees the validity of r for
cases in which R =0 or T=0. Whether there are cir-
cumstances beyond these special cases in which the local
Larmor clock can nevertheless be trusted is not known.
It is therefore not clear how to interpret results that take
the validity of the local Larmor clock, and its Buttiker-
Landauer generalization, as their basic premise (Leavens
and Aers, 1987b, 1988, 1989b; Kotler and Nitzan, 1988).

Vll. CONCLUSIONS

In this review we have discussed the issue of tunneling
times in the context of scattering in one d.imension. Vari-
ous general procedures, proposed over the years for cal-
culating the transmission and reAection times in this con-
text, have been critically examined. Our conclusions are
as follows.

(1) The dwell time rD of Eq. (2.10) offers an exact local
statement on the time spent in any region of space, aver-
aged over all incoming particles. This status, discussed
in Appendix 8, makes the dwell time a useful tool for
checking general claims in the field. On the other hand,
the dwell time cannot distinguish between reAected and
transmitted particles.

(2) Since reAection and transmission are mutually ex-
clusive events, transmission and reflection times are, if
they exist, conditional averages. Consequently, they must
obey a probabilistic rule of the form (3.1), ~D=Trz
+R~z, where T=1—R is the probability of transmis-
sion. This relation plays a key role in our discussion. It
does not apply in the context of escape from a localized
metastable state. Although physically similar, the
tunneling-time issue in that context is not identical to the
one considered in this review. We do not comment on it
here.
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(3) All asymptotic treatments of tunneling in which
completed scattering events are considered give results
that converge on the classic phase times (2.5) and (2.6) as
the width of the wave packets, o., in k space tends to
zero.

The phase times obey the identity (3.5), which seems to
contradict the basic probabilistic rule (3.1). However,
this contradiction is only apparent. When the status of
the phase times, as relating to completed scattering
events, is taken into account and the corresponding in-

tegration is performed over wave packets narrow in k
space, (3.5) turns into (3.1) within corrections of O(cr).
The rule (3.1) is therefore obeyed in the appropriate
asymptotic sense.

However, if the extrapolated phase times (2.7) and (2.8)
are interpreted as the time spent in the barrier region, -the
conflict between the corresponding version of (3.5) and
(3.1) becomes real. The reason for this conflict is that the
extrapolated phase times are not determined only by the
time spent in the barrier. They also include the delays
due to self-interference during the approach to the bar-
rier. These two aspects of phase times cannot, in general,
be separated. An exception is offered by the illuminating
examples discussed in Sec. IV.D. The first of these re-
moves the apparent contradiction between the extrapo-
lated phase times and the dwell time for opaque barriers.

(4) The dwell time and the asymptotic phase times pro-
vide reliable and complementary information on time as-
pects of the tunneling process. However, neither can
answer the more specific question: When a particle in a
scattering context, and with a given energy, has tunneled
through (alternatively, has been reflected from) a barrier,
how much time did it, on the average, spend in the bar-
rier region?

The various candidates for general answers to this
question have also been critically examined. All have
been found to suffer from one logical Aaw or another,

Aaws suKciently serious that they must be rejected.
(5) The extrapolated phase times, (2.7) and (2.8), and

the Biittiker-Landauer times, defined by (2.1-7) or,
equivalently, by (5.1), both fail to satisfy the necessary re-
quirement (3.1).

(6) The approximate version of the procedure for cal-
culating tunneling times, suggested by Stevens, does not
stand up under analytic and numerical scrutiny.

(7) We agree with the interpretation proposed by
Biittiker and Landauer of their results for the opaque, os-
cillating barrier, except with regard to the duration of the
tunneling process. We have shown, by the example of
the 5-function barrier, that no direct relation exists be-
tween that duration and the characteristic frequency of
an oscillating barrier. For barriers of intermediate thick-
ness, a characteristic frequency cannot even be meaning-
fully defined.

(8) Although the complex "time" introduced by Soko-
lovski and Baskin has proved useful, for example, in clar-
ifying relations between various suggested tunneling
times, it cannot be taken seriously as a quantum generali-
zation of the "classical" concept of time. The duration of
a process, quantum or not, must be a real quantity.

(9) The local Larmor times r of (2.12) do obey the
probabilistic rule (3.1). Consequently, their claim in this.
context is that of distributing the dwell time correctly be-
tween transmitted and reflected particles. We have con-
structed a counterexample showing that this claim can-
not always be true. The region of validity of the local
Larmor clock is, as a consequence, unknown.

The reliability of the asymptotic Larmor clock, on the
other hand, has been demonstrated. However, it does
not produce essential new information: It shows, as it
should, the phase times.

(10) The logical status of the main contenders for
tunneling-time expressions is summarized in Table I. Al-
though a number of apparent paradoxes have been

TABLE I. Logical status of the different tunneling times. For definitions, references to the text are given. Direct relations between
different times are pointed out. Requirements met are listed in the three right-hand columns. Irrelevance on the basis of preceding
entries is denoted by a dash. All candidates below the dashed line fail one requirement or other. The two survivors —the dwell time
and the asymptotic phase times —have complementary strengths and weaknesses.

Definition
equation Relation

Characteristics
Distinct

transmission
and reAection

Local
definition
possible Real

Requirements

Obey
(3.1)'

Consistent with
rD always

Dwell time, ~D

Asymptotic
phase times, v~

(2.10) No Yes Yes

(2.5), (2.6) Yes No Yes Yes Yes, Sec. IV.B

Yes'
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
Yes

(2.7), (2.8)
(2.12)
(2.15)

(2.17), (5.1)
(2.20)

No
Yes
No
No
Yes

PL —/ro/

r"=r, —z'r,'Biittiker-Landauer, r
Sokolovski-Baskin, ~ No, Sec. VI.C

'(3.l) reads v& = Tv &+A~&.
After appropriate average over wave packet has been taken.

'By formal extrapolation of ~".

WWO & W 'W &»W WW'W WWW WWWWW 0 & W W W W W W & WW WWWW WW W W WW A W & & \ W W «W W W

Extrapolated
phase times, bc~

Loca1 Larmor, H» No, Sec. VI.C
Local Larmor, r,
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resolved and a clearer picture of the relative merits of the
various proposed tunneling times has emerged, the
specific question quoted under point (4) remains open. It
is not clear that a general answer to this question exists.

(11) This does not necessarily imply that the various
proposals for the duration of a tunne1ing process are
uninteresting or experimentally irrelevant. For example,
the inverse characteristic frequency of an oscillating bar-
rier is, when it exists, clearly important; it gives the
characteristic time scale of the coupling between the tun-
neling process and other degrees of freedom. The fact
that this time scale has not been convincingly identified
with the duration of the tunneling process does not de-
tract from its importance.

In one special case the extrapolated phase time, the
dwell time, the local Larmor time, and the Biittiker-
Landauer time all agree: For a symmetric double-barrier
structure at resonance, they all reduce to a result that
essentially equals the lifetime of the metastable state.

(12) One final comment: At this stage one could
choose to continue the search for a general answer to the
question posed under point (4). Alternatively, one could
turn to tunneling experiments now in progress with the
aim of thoroughly understanding the temporal aspects of
the individual experiments. At the present time, the
latter strategy seems to us the more promising one.
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APPENDIX A

We present for reference (Biittiker, 1983; Biittiker and
Landauer, 1985) some results for the rectangular barrier
of height Vo and width d. A particle with energy
E =iit' k /2m ( Vo has the tunneling probability T(k):

T(k)=4k It /D=1 —R(k),

a(k)+kd =P(k)+—
2

2 2
sc —k——tan tanh(lrd )2k~

(A3)

[2ttdk (~ —k )+kosinh(2lcd)],

(A4)

with D given by (A2). The dwell time in the barrier re-
gion is

rD(d;k) = [2~d(l~ —k )+kosinh(2ttd )] . (A5)

The Larmor times r r =r ti coincide with the dwell time
(A5) in this symmetric case. The quantity r, z reads

mko
[(a —k )sinh (~d )+(Irdko/2)sinh(2vd )],

15K D

(A6)

and, finally, the expression for the Biittiker-Landauer
time for transmission is

rz"=,
&

[(lr k)lr d +—ko(1+a d )sinh zd

+k od (Ir —k )sinh(2xd ) ]'~ (A7)

APPENDIX 8

In the following we sketch a derivation of Biittiker's
Eq. (2.10) for the dwell time. This derivation is due to
Leavens and Aers (1989a). While we agree with Leavens
and Aers at this point, their derivation has been (private-
ly) criticized as essentially amounting to no more than a
plausible definition. Consequently, we highlight the step
where disagreement is possible.

Consider a particle described by a wave packet i/(x, t)
scattered oft' some barrier V(x) on the x interval (b, a).
Initially, the packet is somewhere to the left of the bar-
rier. Eventually, the rejected and transmitted parts of
the packet will move ofF' towards —~ and + Oo, respec-
tively. The probability of finding the particle on an arbi-
trary fixed interval (x „xz ) at time t is

[This is the only result sensitive to the location of the
barrier. A shift to ( —d /2, d /2 ) would amount to
/3~/3 —kd in (A3)]. The linearly extrapolated phase
times (2.7) and (2.8) read, with d =a b, —

b r't'r( d; k ) =Erg (d; k )

where (Bl)

D=4k l~ +kosinh (~d), (A2)

and Vo E=iii (ko —k )/2m—=Pi ~ /2m. With the bar-
rier located at (O, d), the scattering phases are

when the packet is assumed to be normalized to unity.
The statement (Bl) is nothing but the standard proba-
bilistic interpretation of quantum mechanics. %'e now
take one crucial step beyond this and assert that the aver-
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age time spent on (x „x2)by the particle described by the
packet 1b(x, t) is

iD(x„x2)=f dt P(t;x„x2) .
0

(82)

If some probability measure over possible trajectories
is given, one can, in classical mechanics, derive an equa-
tion for the probability distribution over times spent on
the interval (x„x2). From the first moment of this dis-

tribution, a relation corresponding to (82) can be derived.
Ho~ever, in quantum mechanics, a path-integral formu-
lation based on probability amplitudes does not, in gen-
eral, produce a probability distribution for the time spent
on (x „x2). On the other hand, a statement on the aver-

age does not require all the information contained in a
full probability distribution. The fact that an unambigu-
ous distribution cannot be constructed does not imply
that a statement about the average is false.

Our position, and that implicit in the derivation of
Leavens and Aers, is that when P(t;x„xz) is reliable, so
is (82). Equation (82) is a purely probabilistic state-
ment, independent of the details of the theory underlying
P(t;x „xz). We warn the reader, however, that this view

is not universally accepted.
If (82) is accepted, what remains in the derivation of

Eq. (2.10) for the dwell time are technicalities, which we

now sketch. Insert (82) into (81) and decompose the
initial wave packet into scattering states, so that

f(x, t)= f—y(k)ib(x;k)exp( ifik t/2m )—, (83)
dk
2%

= f dt f dx f y*(Q —q/2)y(Q+q/2)

X g*(x;Q —q/2)f(x; Q+q/2)

—i figqt /m

Integration over t gives 2'(m /fiQ )5(q). Finally, integra-
tion over q and relabeling Q ~k lead to

iD(xi, x2)= f—~y(k)~ f dx ~1b(x;k)~ . (85)
2n. u (k)

27The rigorously inclined reader will enjoy modifying the ar-
gument to suit personal taste.

where 1b(x;k) is given by (2.1). When 1b(x, 0) is assumed
to be (essentially) zero for x )x„ the lower limit of in-

tegration in (82) can be replaced by —oc. Thus, replac-
ing the integrals over k and k' by integrals over
Q =(k+k')/2 and q=k —k', one has

~D(x„x2)

Since FD(xi, x2) is an average over an arbitrary initial
wave packet with probability distribution ~y(k)~ /2ir
over wave numbers, the average time spent on the inter-
val (xi,x2) for particles in a scattering state g(x; k ) is

1
rD(xi, x2, k) = f dx ly(x;k ) ~',

X)

which is Biittiker s Eq. (2.10) for the dwell time.
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