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A detailed survey of the technique of perturbation theory for nearly integrable systems, based upon the in-

verse scattering transform, and a minute account of results obtained by means of that technique and alter-
native methods are given. Attention is focused on four classical nonlinear equations: the Korteweg —de
Vries, nonlinear Schrodinger, sine-Gordon, and Landau-Lifshitz equations perturbed by various Hamil-
tonian and/or dissipative terms; a comprehensive list of physical applications of these perturbed equations
is compiled. Systems of weakly coupled equations, which become exactly integrable when decoupled, are
also considered in detail. Adiabatic and radiative eft'ects in dynamics of one and several solitons (both
simple and compound) are analyzed. Generalizations of the perturbation theory to quasi-one-dimensional
and quantum (semiclassical) solitons, as well as to nonsoliton nonlinear wave packets, are also considered.
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INTROOUCTION

It is commonly acknowledged that there are several ex-
actly integrable nonlinear equations that play an out-
standing role in physical problems: the Korteweg-
de Vries (KdV), nonlinear Schrodinger (NS), sine-Gordon
(SG), and several other equations. They are so important
because they furnish universal mathematical models for
some very general physical phenomena. For example,
the KdV equation describes, in a general form, competi-
tion between weak nonlinearity and weak dispersion,
while the NS equation describes the same competition for
envelope waves (see, for example, the Introduction in Za-
kharov et al. , 1980). Some other integrable equations are
universal as well. The SG equation is the simplest field
equation with a potential periodic in a field variable; the
so-called three- and four-wave systems are universal
models for describing resonant interactions between
several simple waves in a nonlinear medium; the
Kadomtsev-Petviashvily equation has the same universal
sense in two-dimensional problems as the KdV equation
in one-dimensional ones, and so on. However, in physi-
cal applications these equations usually stem from some
asymptotic expansions (e.g. , expansions in powers of a
wave's amplitude and wave number), so that actually
they are approximate equations. Generally, higher terms
of those expansions destroy the exact integrability.

Nonintegrable perturbations may also originate in the
interaction of separate normal modes of a nonlinear sys-
tem in the case when nonlinear self-interaction and linear
dispersion of each mode is suKciently strong, while their

mutual interaction is weak. In this situation, one deals
with coupled systems of nonlinear equations integrable in
a decoupled form, while coupling terms play the role of
nonintegrable perturbations. Terms that describe efFects
of external fields, inhomogeneities of a medium, and vari-
ous dissipative efFects are another source of nonintegrable
perturbation s.

All perturbations can be naturally divided into two
classes: Hamiltonian and dissipative. It is important to
note that, if a Hamiltonian perturbation does not depend
explicitly on time and spatial coordinates, the perturbed
equations conserve energy and momentum.

In many cases, the perturbing terms are small. %'e
shall call the corresponding equations nearly integrable.
To discuss effects produced by small nonintegrable per-
turbations added to integrable equations, let us recall
that the most remarkable property of exactly integrable
equations is the presence of exact solitonic solutions. As
we shall see below when discussing physical applications,
solitons correspond to localized excitations, which play
an important role in diverse physical problems described
by the corresponding equations. The existence of a one-
soliton solution is not itself a specific property of inte-
grable partial difFerential equations; many nonintegrable
equations also possess simple localized solutions that may
be called one-solitonic. However, these are integrable
equations only, which possess exact many-soliton solu-
tions. In most cases (including the KdV, NS, and SG
equations), many-soliton solutions describe purely elastic
interactions between individual solitons. The interacting
solitons recover their exact initial shapes and velocities
after a collision (interaction). The only result of the in-
teraction is a phase shift, the total phase shift of a soliton
induced by collision with any number of other solitons
being exactly equal to the sum of partial shifts that would
result from separate collisions with each of the solitons
involved (this property of exactly integrable systems is
commonly referred to as the absence of many-particle
efFects). [Nonetheless, in an exactly integrable system
describing resonant interaction of several simple waves, a
soliton may decay into a pair of other solitons (see, for
example, Zakharov et al. , 1980)]. In general, the concept
of a soliton retains its relevance after adding small nonin-
tegrable terms to exactly integrable equations, but the
evolution of a soliton may become quite complicated un-
der the action of perturbations. The inAuence of a small
dissipative perturbation is su%ciently obvious: it brakes
moving solitons and in addition, it damps oscillating soli-
tons (so-called breathers; see below). Effects generated by
conservative perturbations are more subtle. They do not
destroy or brake a nonoscillating soliton, but they may,
for example, render a collision of solitons inelastic owing
to the emission of quasilinear waves (radiation).
Perturbation-induced effects are of interest mainly be-
cause they represent physical phenomena that cannot be
comprised by exactly integrable models. In this connec-
tion, nearly integrable systems are of special concern, as
perturbation-induced efFects in those systems may be
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treated analytically. In the following section we shall
outline briefly the main techniques of analytical perturba-
tion theory for solitons.

Before we proceed further, two remarks are in order-

concerning the role of solitons in thermodynamics and
quantum physics. First of all, it is known that systems
described by the NS and SG equations are exactly inte-
grable in the quantum case as well as in the classical one.
Perturbation theory for quantum, nearly integrable mod-
els is of great interest. At the present time, this perturba-
tion theory exists only in its simplest semiclassical
(WKB) version. We shall review it in Sec. X. Second,
the thermodynamics of solitons was developed by many
workers, and, in fact, it constitutes a separate branch of
soliton science, which deserves a special review. In the
present survey, we touch lightly on thermodynamic prob-
lems in Sec. V when dealing with random perturbations.

A. Perturbation theory for nonlinear waves

Several difFerent approaches to the analytical descrip-
tion of soliton dynamics in nonintegrable systems are
known. One's choice of technique should be dictated by
the character of the problem under consideration. The
simplest are problems concerning the evolution of an am-
plitude and velocity of one soliton under the action of
dissipation. For problems of this sort, a simple approach
based on the so-called modified conservation laws is ap-
propriate: assuming, in the first approximation, an un-
perturbed instantaneous shape of a soliton, one finds
dissipation-induced rates of change of quantities that are
elementary integrals of motion of the unperturbed sys-
tem. In general, these are momentum and energy, ' for the
NS equation, one can also employ the so-called plasmon
number, discussed below (the KdV equation possesses an
additional integral of motion, a so-called mass, but this
integral cannot be employed for derivation of the
soliton's equations of motion; see Sec. VI.N). Then, ex-
pressing the elementary integrals of motion in terms of
parameters of the unperturbed soliton (amplitude, veloci-
ty, etc.), one obtains evolution equations for these param-
eters. This approach has been applied successfully to
various problems [see, for example, the papers of Ott and
Sudan (1969), Pereira and StenAo (1977), Christiansen
and Olsen (1982), Bergman et al. (1983), Levring,
Samuelsen and Olsen (1984)].

In the presence of Hamiltonian perturbations, the evo-
lution equations for the soliton parameters, which are
valid in the lowest approximation, can also be simply ob-
tained: one inserts an unperturbed one-soliton solution
into a full Hamiltonian of the system (including a
perturbation-induced part) and writes Hamilton s canoni-
cal equatiog. s of motion. In the framework of the Hamil-
tonian approach, such parameters as the soliton's veloci-
ty and amplitude play the role of canonical momenta,
and phase parameters are canonical coordinates. Quite
analogously, one may employ the Lagrangian approach
(Bondeson, Anderson, and Lisak, 1979); as a matter of

fact, these two approaches originate from the well-known
variational method of Whitham (1974) in general non-
linear wave theory. Finally, the Hamiltonian approach
can be readily modified to incorporate the case when a
perturbation contains both conservative and dissipative
terms. The Hamiltonian and Lagrangian approaches to
dynamics of solitons in nearly integrable systems was em-
ployed, for example, by Nozaki (1982) and Malomed
(1987d, 1987g, 1988d). In many cases, the simplest tech-
niques based on modified conservative laws or the
Hamiltonian/Lagrangian formalism apply to many-
soliton problems too. The simplest example is
dissipation-induced annihilation of a kink-antikink pair
in a perturbed SG equation (Pedersen, Samuelsen, and
Welner, 1984; Malomed, 1985).

The methods outlined above for deriving evolution
equations in lowest approximation become irrelevant
when one wishes to take account of efFects that arise in
higher orders of perturbation theory. Among these
efFects, physically interesting are perturbation-induced
emission of radiation by solitons and long-range correc-
tions to the soliton's shape. These problems can be
solved successfully by means of the so-called direct per-
turbation theory. In the framework of this approach,
original nonlinear equations are linearized on the back-
ground of an unperturbed solution to take a perturbation
into account directly. A basic technical ingredient of
direct perturbation theory is to find eigenfunctions of a
linear operator associated with the linearized equation.
The perturbation must be decomposed into a series based
upon a full set of those eigenfunctions. Then the first-
order evolution equations for the soliton's parameters are
obtained as a condition of the absence of secular terms.
As to emission of radiation from a soliton under the ac-
tion of perturbations, it can be investigated with the aid
of the Green's function (Eilenberger, 1977; McLaughlin
and Scott, 1978). It is well known that the Green's func-
tion can be constructed as a bilinear combination of
eigenfunctions of the linearized equation. Thus direct
perturbation theory requires the knowledge of exact un-
perturbed solutions and eigenfunctions of associated
linearized equations, but it does not require unperturbed
equations to be exactly integrable. As a rule, direct per-
turbation theory is applicable to one-soliton problems
only. Many-soliton problems can be considered provided
the solitons are slightly overlapped, or they move with
sufficiently large relative velocities (Sugiyama, 1979).
Under these conditions, the overlapping between solitons
is also treated as a perturbation.

Direct perturbation theory was first developed by L. A.
Ostrovskii and his colleagues; see the survey papers by
Gorshkov, Ostrovskii, and Pelinovsky (1974) and Gorsh-
kov and Ostrovskii (1981). A basis for the application of
direct perturbation theory to the perturbed SG equation
has been elaborated by Fogel et al. (1976), Keener and
McLaughlin (1977a, 1977b), and McLaughlin and Scott
(1978) (see also Mineev and Shmidt, 1980). Important
contributions to direct perturbation theory for the NS
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equations have been made by Keener and McLaughlin
(1977a) and Ichikawa (1979). It seems pertinent to men-
tion here as well the recent paper of Flesch and Trul-
linger (1987), in which a Green's function for a kink of
several nonlinear Klein-Gordon equations, including the
known P model, is constructed.

The most powerful perturbative technique is based on
the inverse scattering transform (IST). This technique re-
quires the unperturbed equation to be exactly solvable by
the IST, which restricts the range of applications, but en-
ables one to solve the most sophisticated dynamical prob-
lems. Perturbation theory based on the inverse scattering
transform was introduced by Kaup (1976, 1977a) and, in-
dependently, by Karpman and Maslov (Karpman, 1977;
Karpman and Maslov, 1977). An important contribution
to the development of IST perturbation theory has been
made by Kaup and Newell (1978a). McLaughlin and
Scott (1978) noted a link between this theory and the pre-
viously developed direct perturbation technique (for the
SG equation); they pointed out that, provided an unper-
turbed equation is exactly integrable, a full set of eigen-
functions of the linearized problem, necessary for the ap-
plication of direct perturbation theory, can be found in
the framework of the inverse scattering transform
(Ablowitz et al. , 1974). Early results of IST perturbation
theory have been reviewed by Karpman (1979a) and
Newell (1978a, 1979). Some additional results have been
collected in the book by Abdullaev and Khabibullaev
(1986).

Equations exactly integrable by the IST possess many
remarkable properties, such as Backlund transforma-
tions, the Painleve property, a possibility of presentation
in the Hirota bilinear form, and so on. Some of these
properties may be employed as a basis for constructing
alternative versions of the perturbation theory. For ex-
ample, Yajima (1982) has developed a perturbation
theory for the KdV equation based on the Hirota
method.

There also exists another approach to nearly integrable
systems with conservative (Hamiltonian time-
independent) perturbations which originates from the
well-known approach of classical mechanics: A per-
turbed system can be formally cast in unperturbed form
by an infinite array of canonical transformations. These
transformations constitute a series in powers of the small
perturbation parameter e. However, the series generally
diverges due to the appearance of small denominators in
higher orders. An analogous approach to nearly inte-
grable partial di6'erential equations was developed by Ko-
dama (1985a, 1985b, 1988c, 1987) and Menyuk (1986a,
1986b; see also Menyuk and Chen, 1985; Menyuk, Chen,
and Lee, 1985). In another context, this theme was
touched upon by Benilov and Malomed (1988). All these
authors cancel a perturbative term -e by means of a first
canonical transformation to arrive at a new effective per-
turbation -e (it is important that this transformation
encompasses both radiative and solitonic modes). How-
ever, the possibility of such a transformation does not

render meaningless the results obtained in first-order per-
turbation theory. Indeed, the transformation mentioned
changes the form of the solitons involved by quantities
—e (for instance, it may add a radiative component to a
soliton), while in physical problems we are interested in
interactions of solitons without initial radiative "tails."

The perturbative techniques discussed above suggest
that there are two di6'erent levels of problems concerning
dynamics of solitons in nearly integrable systems. Prob-
lems that can be formulated and solved in the adiabatic
approximation, which disregards emission of radiation
and perturbation-induced distortion of the shape of soli-
tons, may be classified as belonging to the lower level. As
a matter of fact, these problems are rather primitive
since, in the adiabatic approximation, solitons may be re-
garded as structureless particles. Problems dealing with
emission and related topics require more refined tech-
niques, and they may be classified as belonging to a
higher level.

B. Physical problems

In this section we enumerate physical applications of
the KdV, modified KdV, NS, and SG equations and de-
scribe factors that give rise to various perturbation terms
in those equations. Some additional examples will be
given below in Secs. III—XI in the context of particular
problems of IST perturbation theory. Magnetic systems
described by the perturbed Landau-Lifshitz equation are
discussed in Sec. XII, and physical applications of other
nearly integrable equations are mentioned very briefly in
the concluding section (Sec. XIII). We have tried to
make the list of physical systems comprehensive, al-
though we cannot be sure that no important item has
been overlooked.

From the discussion below of a large number of physi-
cal problems, it will be seen that perturbation theory is
fairly universal: One can distinguish few unperturbed ex-
actly integrable equations and several important pertur-
bating terms to them that occur in various problems.

1. Korteweg —de Vries and modified
Korteweg —de Vries equations

Among the three basic equations that we shall deal
with in the present paper, the KdV equation,

u, —6uu„+u„=eP(u),
where P (u ) is a perturbation and e is a small parameter,
was historically the first to appear in physical applica-
tions. Almost a century ago, this equation (with e=O)
was derived in the classic paper of Korteweg and de
Vries (1895) as a fundamental equation governing propa-
gation of waves in shallow water. More recently, the
same equation appeared in the theory of nonlinear ion
acoustic waves in cold plasmas [see, for example, Zabu-
sky and Kruskal (1965), Washimi and Taniuti (1966)].
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eP(u)= —au,
EP (u ) =yuxx

(1.2a)

(1.2b)

where a and y are small dissipative coeKcients (see, for
example, Kawahara and Toh, 1985a). In particular,
the KdV equation perturbed only by the term (1.2b)
(a=0, y &0) is commonly called the Korteweg-
de Vries —Burgers equation. This equation plays an espe-
cially important role in applications. In certain cases, the
coefficient y in Eq. (1.2b) may be negative. In those
cases, the perturbed KdV equation describes the develop-
ment of an instability [Kawahara and Toh, 1985b; in
such a situation, the higher stabilizing term ——u

must be taken into account (Toh and Kawahara, 1985)].
The term (1.2a) with a time-dependent a(t) of either sign
is physically meaningful too. According to Kakutani
(1971), Johnson (1973), Newell (1980), Knickerbocker
and Newell (1985), and others, this perturbation de-
scribes a variable depth in the shallow water theory;
a=const corresponds to a constant depth gradient. The
KdV equation with the dissipative term (1.2a) finds a
similar application in the description of nonlinear ion
acoustic waves in an inhomogeneous plasma [see, for ex-
ample, the paper by Chang et al. (1986)].

Landau damping acting upon nonlinear ion acoustic
waves in a plasma introduces a nonlocal dissipative term
of the form (Ott and Sudan, 1969; VanDam and Taniuti,
1973)

As the universal nature of this equation became clear, the
KdV equation was detected in a number of other physical
problems. As interesting examples, we can mention
quasi-one-dimensional solid-state physics [the theory of
chains of interacting atoms; e.g., Flytzanis, Pnevmatikos,
and Remoissenet (1985)] and nonlinear transmission lines
(e.g. , Yoshinaga and Kakutani, 1984). There is even a
problem from nuclear physics, in which a perturbed KdV
equation plays a central role (Hefter, Raha, and Weiner,
1985).

In all these applications, the KdV equation arises as an
approximate equation valid in a certain asymptotic sense
(see the preceding section). Taking account of additional
physical factors, one can obtain two diQ'erent kinds of
small perturbations for the KdV equation. First, the
higher nonlinear dispersion and the higher spatial disper-
sion add the terms e,u u and e2u, „„,respectively [see,
for example, Yoshinaga and Kakutani (1984); note that
the perturbation -e& does not break the exact integrabil-
ity according to Zakharov et al. (1980)]. Second, dissipa-
tion may give rise to the following two perturbing terms:

which is

6u i u ix + u i/xx +~]u z u px +~2( u i u 2 )x +&3u 2~~~ 0 i

(1.3)

where e„ez, and e3 are small parameters, while a, P, and

Vo may be arbitrary. This system describes, for example,
a resonant interaction of two wave modes in a shallow
stratified liquid (Cxear and Grimshaw, 1984; Cxear, 1985).
The conservative system of equations (1.3) and (1.4) is an
interesting object for application of the perturbation
theory.

To conclude our discussion of physical applications of
the perturbed KdV equation, it is pertinent to mention
the modified KdV equation

u, —6u u„+u„„=eP(u), (1.5)

which occurs, for instance, in the theory of quasi-one-
dimensional solids (atomic chains; see, for example, Flyt-
zanis, Pnevmatikos, and Remoissenet, 1985) and in
liquid-crystal hydrodynamics (e.g., Kamenskii and Ro-
zhkov, 1985). In addition, Eq. (1.5) arises in the special
situation when a coe%cient in front of the basic nonlinear
term in Eq. (1.1) vanishes. Examples are waves in shal-
low two-layer liquids (Kakutani and Yamasaki, 1978;
Helfrich, Melville, and Miles, 1984) and ion acoustic
waves in a plasma with negative ions (Watanabe, 1984) or
in a two-electron-temperature plasma (Tajiri and
Nishihara, 1985). In such a situation, a perturbation
from the KdV equation plays the role of that in the resul-
tant modified KdV equation, for example, a modified
KdV equation with Landau damping [Eq. (1.2c); see Ta-
jiri and Nishihara, 1985]. As is well known, the unper-
turbed modified KdV equation can be transformed into
the unperturbed KdV one by means of the Miura trans-
formation (Miura, 1968).

By analogy with the KdV equation, natural perturbing
terms to Eq. (1.5) are the higher dispersions u u or
u„and the dissipative terms (1.2).

2. Nonlinear Schrodinger equation

As we mentioned above, the NS equation

u2, —6pu2u2„+pu2 „—Vou2

+a[e,(u, u2)„+e2uiui +e3ui ]=0
(1.4)

+ oo

P[u(x)]= —I u(x')(x —x') 'dx', (1.2c)
iu, +u„„+2~u~'u =eP(u) (1.6)

where I is the symbol for the principle value of an in-

tegral. The same perturbation occurs in hydrodynamics
of stratified liquids (Ostrovskii, Stepanyants, and Tsim-
ring, 1984a).

In hydrodynamic problems, there occurs a coupled
system of two KdV equations, the most general form of

is a universal equation describing the evolution of wave
envelopes in a dispersive weakly nonlinear medium (see,
for example, Taniuti, 1974). Equation (1.6) finds an im-
portant application in plasma physics, where it describes
electron (Langmuir) waves (Asano, Taniuti, and Yajima,
1968; Ichikawa, Inamura, and Taniuti, 1972).

Another application is known in nonlinear optics,
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eP (u) =eius'u (1.7a)

with real e. This perturbation is known in nonlinear op-
tics (Pushkarov et al. , 1979; Kumar, Sarkar, and Gha-
tak, 1986). From the general viewpoint, it was con-
sidered by Kivshar and Malomed (1986c) and Nozaki
(1986). We shall also consider the more general perturba-
tion term

(1.7b)

with an arbitrary integer N ~ 2.
In applications to nonlinear optical fibers, an impor-

tant role is played by the perturbative terms ie&u„„„and
i ez( ~

u
~

u ) [or a more general combination
lE'p '( ~ul )„u +ie2 'u u *] with real e, 2. According to
Marcuse (1980) and Hasegawa and Kodama (1981), the
former term accounts for the higher spatial dispersion,
while the latter may be regarded as taking account of the
nonlinear dispersion of group velocity (DeMartini et al. ,
1967; Anderson and Lisak, 1983; Yang and Shen, 1984;
and Kodama, 1985d).

The NS equation perturbed by the dissipative terms

eP(u)= —ta, u,
eP(u)=ta2u „ia3~u~ u—,

(1.8a)

(1.8b)

with a„a2, and a3 real, occurs in hydrodynamics as a
generalized Cxinzburg-Landau equation describing the de-
velopment of instability of the Poiseuille ffow (Stewartson

where the function u (x, t) has the sense of a complex en-
velope of electromagnetic field, and Eq. (1.6) describes
self-modulation and self-focusing of light in a Kerr-type
nonlinear medium. The first papers devoted to the NS
equation in nonlinear optics appeared as early as 1964
(Chiao, Garmire, and Townes) and 1965 (Kelley). The
great current interest in this application was initiated by
the paper of Hasegawa and Tappert (1973), who predict-
ed solitons in nonlinear optical fibers with the aid of the
NS equation. [In the NS equation (1.6) describing an op-
tical fiber, the variables x and t have the sense of time
and spatial coordinates, in contrast with the usual nota-
tion. ] Another strong stimulus to research in this field
was provided by the concept of the soliton laser (Mol-
lenauer and Stolen, 1984; Haus and Islam, 1985).

Further, the NS equation occurs in dynamics of quasi-
one-dimensional ferromagnets with easy-axis anisotropy
(Corones, 1977; Lakshmanan, 1977). Other applications
are related to Davydov's solitons in molecular chains
(Davydov, 1979}, to slightly nonideal Bose gas with at-
traction (Lieb, 1963; Lieb and Leninger, 1963), to hydro-
dynamic description of nuclear matter (Heftner, 1985),
and so on. Dynamics of strong phonon beams in a solid-
state medium may also be described by the NS equation
(Tappert and Varma, 1970), as well as gravity waves on
deep water (Zakharov, 1968; see also Yuen and Lake,
1975; Hogan, 1985; Shivamoggi and Debnath, 1986}.

Proceeding to a description of the perturbations, it is
natural to start with the higher nonlinear-dispersion term

and Stuart, 1971), Couette-Taylor fiow (DiPrima, 1970;
DiPrima, Eckhaus, and Segel, 1971), and plane-parallel
ffow (DiPrima, Eckhaus, and Segel, 1971). It also arises
in plasma physics when one studies the interaction be-
tween Langmuir and ion acoustic waves, provided the ve-
locity V of the Langmuir waves is small in comparison
with the sound velocity c (Gorev et al. , 1976; Fabrikant,
1984; for this case, Gibbons (1978) has derived a nondis-
sipative perturbing term e[~u~ u„„+(~u ~)„u—

~u„~ u], e—( V/c), which may be regarded as combin-
ing nonlinear and spatial dispersion).

The Landau damping of Langmuir waves in plasmas is
an origin of other dissipative terms to Eq. (1.6). The
linear Landau damping gives rise to a linear nonlocal dis-
sipative term [cf. Eq. (1.2c)] with a kernel of a rather
complicated form (see, for example, Nickolson and Gold-
man, 1977). More interesting, for our purposes, is the
term

EP (u) = i a, u +—ee'"' (1.9)

[see also a more general perturbation in Nozaki and Bek-
ki (1984)]. For instance, this perturbation occurs in the
theory of charge-density waves when one considers a
small-amplitude localized dipolar excitation driven by an
external ac electric field (Kaup and Newell, 1978b). An
allied perturbation P = ~u~ exp(iQt ikx) de—scribes the
action of an external electromagnetic wave on Langmuir
waves in plasmas according to Galeev et al. (1975).

In a system with pumping (external driving force) of
the drift type and dissipation, nonlinear envelope waves
are described by the perturbed NS equation

iu, +u +2iu~ u =tyou+ty, u +iy2u„

where yo, y&, and y2 are real coeNcients of the pumping

eP [u (x)]= —eu (x)I iu (x') ~'(x —x') 'dx'

with a real small e, which describes the nonlinear Landau
damping (Ichikawa and Taniuti, 1973; Dysthe and
Pecseli, 1977; Ichikawa, 1979). The important difference
between this term and those of Eqs. (1.8) is the fact that
the nonlinear Landau damping conserves the so-called
plasmon number N= I" ~u (x)~ dx.

In the theory of nonlinear optical fibers, an important
role is played by the nonlinear dissipative perturbation
eP ( u ) = eu (

~
u

~
)„with positive real e, which describes

dissipation due to induced Raman scattering (Kodama
and Hasegawa, 1986; Kodama and Nozaki, 1987).

According to Stenffo (1988), a general envelope equa-
tion of the NS type may contain the additional term
P(u) =(u +u 'u, ). This term, with a small coefficient
in front of it, may be regarded as a new perturbation to
the NS equation. Stenffo (1988) has found an exact solu-
tion to the NS equation with this term which resembles a
quiescent soliton.

In certain problems a perturbation arises that com-
bines a dissipative term with an external time-periodic
drive:
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iu, +u =nu,

n„n„=—2(
~
u ~')„

(1.10a)

(1.10b)

where n (x, t) is the low-frequency field and u (x, t) is an
envelope of the high-frequency field, the sound velocity
being normalized to unity. In the subsonic case, when

group velocities of the high-frequency waves are much
smaller than the sound velocity, Eqs. (1.10) may be re-
garded as a variant of a perturbed NS equation.

Another interesting application of perturbation theory
for the NS equation is a system of coupled NS equations:

iu, +u„+2~u~' u=eP(u, u),

lut + uxx +2
I u

l
v =EP ( v, u ) (1.12)

where e is a small parameter. In particular, for two in-
teracting molecular chains (see, for example, Davydov,
1979) and for two weakly coupled wave modes in a non-
linear waveguide (Blow, Doran, and Wood, 1987; Trillo
et al. , 1988),

P(u, v)=e, u+eziui u+ (1.13)

where other nonlinear terms may be added. A similar
system describes interacting Langmuir and dispersive ion
acoustic waves in plasmas (Spatschek, 1978; Som, Gupta,
and Dasgupta, 1979). The same system with the addi-
tional coupling term eP (u, v) =i au * (e is real, and the as-
terisk stands for the complex conjugation) has been de-
rived by Akylas and Knopping (1986) in hydrodynamics
to describe generation of beach waves by an incident
wave.

Another coupling term,

P(u, u)=v „ (1.14)

(with a real e), arises when one studies two weakly cou-
pled long Josephson junctions (Mineev, Mkrtchyan, and
Shmidt, 1981); in Josephson-junction theory, the NS
equation describes a small-amplitude breather (bion); see
below.

and dissipation. This equation was derived by Vigdor-
cllik and Iofle (1988) to descilbe Illagiletostatlc solltoils
propagating at a ferromagnet-semiconductor surface,
pumped by a drift fIow of charge carriers in the semicon-
ductor.

In many physical problems, there occur interactions of
high-frequency and low-frequency waves. Examples are
the interaction of Langmuir and ion acoustic waves in
plasmas (Zakharov, 1972), of intermolecular vibrations
with sound in molecular chains (Davydov, 1979), of high-
and low-frequency acoustic gravity disturbances in an at-
mosphere (Stenflo, 1986), of surface and internal waves in
the ocean (Petrov, 1978), etc. In the simplest case, such
an interaction is described by the well-known system of
Zakharov,

3. Sine-Gordon equation

a. A single equation

The SG equation

u„—u „+sinu =eP(u) (1.15)

covers a vast area of physical applications. An early re-
view of these applications was that of Barone et al.
(1971; see also Scott, 1970). The earliest example is the
model of dislocations in solids put forward by Frenkel
and Kontorova (1938). Later, a similar model was pro-
posed by Frank and van der Merwe (1949) to describe a
chain of adsorbed atoms on a metallic surface.

A very important application of the SG equation takes
its origin in the theory of long Josephson junctions
(Josephson, 1962; see also Barone and Paterno, 1982; Li-
kharev, 1985; Lomdahl, 1985). In this case, u(x, t) has
the sense of a phase jump of the wave function of super-
conducting electrons across the junction, or, equivalent-
ly, u (x, t) gives the magnetic flux confined in the junc-
tion. Topological solitons (kinks) in the form of so-called
Auxons, i.e., quanta of magnetic Aux, have become a cen-
tral concept in the dynamical theory of long Josephson
junctions since the appearance of the paper by Fulton
and Dynes (1973).

The SG equation finds another important application
in the dynamics of quasi-one-dimensional ferromagnets
with easy-plane anisotropy. [Enz (1964), Mikeska (1978),
and Kjems and Steiner (1978) were the first to employ the
SG model for description of domain walls as topological
solitons in ferromagnets. ] The dynamics of weak fer-
romagnets (antiferromagnets) is also described by the SG
equation; see the papers of Zvezdin (1979) and
Bar'yakhtar, Ivanov, and Sukstanskii (1980), as well as
the review of Bar'yakhtar, Ivanov, and Chetkin (1985).
In "magnetic" applications, the dynamical variable
u (x, t) is proportional to an angle that determines local
orientation of the magnetization vector lying in a certain
plane. Quite analogously, the SG equation may be used
to describe the dynamics of quasi-one-dimensional fer-
roelectric systems (Pouget and Maugin, 1984, 1985a,
1985b).

Another physical application of the SG equation, of
great current interest, dates back to 1974, when Lee,
Rice, and Anderson demonstrated that the SG Hamil-
tonian arises naturally in a charge-density-wave (CDW)
system when the Peierls wave number is commensurate
with the inverse spacing of an underlying ionic lattice
(see also Fleming et al. , 1980). In this case, the variable
u (x, t) has the sense of a phase misfit between the elec-
tronic CDW and the lattice. In 1976, Rice et al. intro-
duced the concept of solitons into the phase dynamics of
CDW's in commensurate systems. Fukuyama (1978),
Griiner, Zawadowski, and Chaikin (1981), and Hansen
and Carneiro (1984) all noted that an effective commen-
surability, which again leads to the SG model, might be
induced in an incommensurate system by an ionic super-
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eP(u)= —yu, (y&0),
eP(u)=Pu„„, (P)0) .

(1.16a)

(1.16b)

For instance, in Josephson-junction theory, the term
(1.16a) accounts for the dissipative losses due to tunnel-
ing of normal electrons across the dielectric barrier,
while (1.16b) accounts for the losses due to a current
along the barrier (see, for example, Barone and Paterno,
1982). Dissipative terms in other problems have the
same form (1.16); however, one should remember that,
strictly speaking, this form is phenomenological, and the
genuine form of dissipative terms may be fairly compli-
cated (see, for example, McCumber, 1968, Stewart, 1968,
and Olsen and Samuelsen, 1984).

Another general type of dissipative perturbation is that
localized in space, eP(u)= —p5(x)u, (p) 0). This per-
turbation may describe, for example, a narrow region in a
long Josephson junction with locally enhanced dissipative
losses. It can be created by the action of a focused laser
beam on the junction (Chang, 1985), by imposing a short-
er resistor onto it (Akoh et al. , 1985), or by implanting a
microshort made of a normal metal (Kivshar and
Malomed, 1987c, 1988e).

Proceeding to Hamiltonian perturbations, let us first
consider the perturbed SG equation that takes its origin
in Josephson-junction theory. The most important non-

lattice with an expedient spacing.
At the same time, it is necessary to emphasize that,

while the existence of kinklike (topological) solitons in
real Josephson junctions, ferromagnets and ferroelectrics,
liquid crystals, and two-level resonant optical media
(references pertaining to the two latter subjects are given
below) is universally recognized, the existence of phase
solitons in the CDW systems (one-dimensional metals) is,
so far, a hypothesis (Krive, Rozhavskii, and Kulik, 1986).

Other applications of the SG equation have been made
to liquid crystals (Lin, Shu, Shen, Lam, and Yun, 1982;
Kamenskii, 1984; a short review of SG-type solitons in
liquid crystals was. given by Lin, Shu, and Xu, 1985), spin
waves in liquid helium (Maki, 1975; Maki and Kumar,
1976; Bullough and Caudrey, 1978), and self-induced
transparency of a two-level medium in nonlinear optics
(McCall and Hahn, 1969; Lamb, 1971). Finally, the SG
equation has some applications in hydrodynamics (Gib-
bon, James, and Moroz, 1979; Moroz and Brindley, 1981;
Coullet and Huerre, 1986) and even as a model of had-
rons (Uchiyama, 1976). To conclude the list of applica-
tions, it is pertinent to mention the ingenious mechanical
analog of the SG equation constructed by Scott (1969) in
the form of a chain of pendula suspended on a horizontal
elastic thread.

For our purposes, it is important that, in most applica-
tions mentioned above, formulation of physically mean-
ingful problems necessarily includes small perturbing
terms. Diverse problems give rise to various perturba-
tions P (u) in Eq. (1.15). First of all, dissipation is usually
described by the terms

(Barone and Paterno, 1982). The same term (1.17) de-
scribes an external drive in many other applications, for
instance, the external dc or ac electric field in a com-
mensurate CDW system (Maki, 1978), an external field of
electric or mechanical nature in models of the Frenkel-
Kontorova type (Braun et al. , 1988), a shear Iiow in
nematic liquid crystals (Lin, Shu, and Xu, 1985), etc.

Inhomogeneities of long Josephson junctions are
another abundant source of perturbations for the SG
equation. A weak inhomogeneity of the maximum
Josephson current density is described by the perturbing
term (Mkrtchyan and Shmidt, 1979)

P(u)=g(x)sinu .

In par ticular

P ( u ) =+5(x )sinu

(1.18)

(1.19)

corresponds to the so-called microresistor (+) and mi-
croshort (microshunt) ( —) (McLaughlin and Scott, 1978).
A microshort can be realized as a narrow bridge connect-
ing two bulk superconductors; a microresistor is a local
bulge of the dielectric layer that separates the supercon-
ductors. A periodic lattice of the pointlike inhomo-
geneities (1.19), described by the perturbation (1.18) with

g (x ) g =p 5(x an ), i—s of great physical interest too.
A lattice of pointlike microresistors (e) 0) is the only ex-
ample of a long periodically inhomogeneous Josephson
junction realized so far in an experiment (Serpuchenko
and Ustinov, 1987; see also Golubov, Serpuchenko, and
Ustinov, 1988, and Malomed et al. , 1988).

The same perturbation (1.19) describes a local magnet-
ic impurity in magnetic systems comprised by the SG
model (Bar'yakhtar, Ivanov, and Chetkin, 1985). As has
been demonstrated by Malomed (1988e} and Malomed
and Nepomnyashchy (1989b), a charged impurity in a
commensurate CD& system may give rise to a more gen-
eral perturbation P(u) =5(x)sin(u jM+8), where M) 1

is an integer, and 0 is an arbitrary parameter.
A nonuniformity of the dielectric barrier in a long

Josephson junction renders inhomogeneous two other
basic local characteristics of the junction, viz. , its local
inductance and capacity. According to Sakai, Samuel-
sen, and Olsen (1987), a perturbing term generated by a
small inhomogeneous part [-g(x)] of the local induc-
tance can be brought into the form P(u)=g'(x)u . A
capacity inhomogeneity is described by P(u)= (gx}«u
(see, e.g., Malomed and Ustinov, 1989b).

Another local nondissipative perturbing term P =5'(x)
in Josephson-junction theory can be generated by an
Abrikosov vortex lying in the junction s plane perpendic-
ular to its local dimension (Aslamazov and Gurovich,
1984); the same term describes a local deformation of a
CDW system (Brazovsky and Bak, 1978). However, a
more realistic configuration is that of an Abrikosov vor-

dissipative perturbation describes a uniform density of
the bias current (generally speaking, time-variable):

(1.17)
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tex lying in the junction perpendicular to its plane; in this
case an effective perturbation reduces to the form of Eq.
(1.19) (Golubov and Ustinov, 1988).

In many cases, it is necessary to consider the dynamics
of solitons (fluxons) in long Josephson junctions of a finite
length. Boundary conditions at a junction's edge may be
regarded as effective perturbations (Olsen et al. , 1986).
For example, a semi-infinite Josephson junction is de-
scribed by- the SG equation on the half-axis x )0 with
the boundary condition u ~„o=e, where e is a sum of
two terms accounting for current injection through the
edge x =0 and external magnetic field (Owen and Scala-
pino, 1967). Evidently, the corresponding dynamical
problem is equivalent to that on the whole axis
—~ & x & + ~ with the effective perturbation

P (u) =25(x),
if u (x) is defined on the negative half-axis according to
the rule u (

—x)=u (x). In this regard, it is pertinent to
mention the experimental work of Davidson et al. (1985),
in which a ringlike long Josephson junction with trapped
solitons (Iluxons) has been constructed. In the theoretical
model of the ringlike Josephson junction (e.g. , If, Soeren-
sen, and Christiansen, 1984; If et aI., 1985; Fordsmand,
Christiansen, and If, 1986; Kivshar and Malomed, 1986d,
1986e; Marchesoni, 1986a), the problem of boundary
conditions is absent.

In models of the Frenkel-Kontorova type, a weak
long-scale substrate potential eP(x) introduces the per-
turbative term —eP„'(x) into a corresponding SG equa-
tion (Fogel et al. , 1976; Malomed, 1987d). In particular,
P(x) = —sgn(x) gives rise to the perturbation (1.20). The
same term describes application of a pointlike electrode
carrying bias current to a long Josephson junction. In an
experiment, this was done by Akoh et al. (1985).

In many other physical problems, an external constant
or time-variable drive is accounted for by the perturba-
tive term

As to the easy-plane ferromagnets, in that system an
external ac magnetic field orthogonal to the easy plane is
described by the term (Kosevich et al. , 1983)

P (u) =f (t)si nu . (1.24)

Another important "magnetic" perturbation is (Eleon-
skii et al. , 1978).

P(u)=sin(2u) . (1.25)

It describes weak higher anisotropy in an easy-plane fer-
romagnet. The SG equation with the same effective per-
turbation appears if one considers a ferromagnet subject
to the action of a very strong dc magnetic field. In this
case, the former perturbing term (1.21) [with f (t)=1]
becomes, on evident rescaling, the basic term sinu of the
unperturbed SG equation, while the former basic term
becomes the perturbation (1.25). The same perturbation
(1.25) also occurs in Josephson-junction theory when one
deals with the Josephson effect in layered superconduc-
tors (Gvozdikov, 1988). Finally, in some problems of
CDW theory (Krive, Rozhavskii, and Kulik, 1986) and
field theory (Casher, Kogut, and Susskind, 1974) there
occurs an "exotic" perturbation P (u) =u.

In many problems, the usual SG model appears as a
continuum limit of an original discrete model (the
Frenkel-Kontorova dislocation model, adsorbed atomic
chains, CDW systems, etc.). The continuum approxima-
tion is relevant provided characteristic sizes of solitons
are much greater than the spacing of the underlying lat-
tice. In this case, "residual" discreteness can be approxi-
mately accounted for by a small perturbation in the con-
tinuum model; typical resultant perturbative terms are
Eq. (1.18) with g(x)=cos(2rrx/a) and with a ((I the
lattice spacing, and the higher spatial-dispersion term
—u„(Ishimori and Munakata, 1982; see also Peyrard
and Kruskal, 1984; Homma and Takeno, 1985; Willis,
El-Batanouny, and Stancioff, 1985; Stancioff et a/. , 1986;
Takeno and Homma, 1986a, 1986b; and De Lillo, 1987).

P (u) =f (t)sin(u /2) . (1.21)

In the case f=const, Eq. (1.15) with the perturbation
(1.21) is commonly called the double SG equation. It is
interesting to note that its mechanical analog, similar to
that of the usual SG equation mentioned above (Scott,
1969), has been constructed by Salerno (1985). In weak
ferromagnets f (t) is proportional to an external magnet-
ic field directed perpendicular to the x axis and aligned
with the magnetization vector at x =+~ (Zvezdin, 1979;
Bar'yakhtar, Ivanov, and Sukstanskii, 1980). An external
magnetic field perpendicular both to the x axis and to the
magnetization vector is described by the perturbation

b. Systems of coupled equations

u„—u„„+sinu =eU „,
U«

—
U +sinv =au

(1.26)

(1.27)

which describes two weakly coupled parallel long Joseph-
son junctions [Mineev, Mkrtchyan, and Shmidt, 1981;for

The perturbation theory for the SG equation is applic-
able to systems of weakly coupled equations of the SG
type. A simple and physically interesting example' is

P (u ) =f (t)cos(u /2), (1.22)

( )
d (r)

dt
(1.23)

and an external field directed along the x axis corre-
sponds to the perturbative term [Maugin and Miled,
1986; cf. Eq. (1.17)]

i Here and below [see Eqs. (1.28), {1.29); {1.28'), {129');
{1.30)—{1.32)] we write the systems of coupled equations in the
most symmetric form. In Secs. IV and VI we deal with nonsym-
metric generalizations of the systems (1.28'), (1.29') and
(1.28),(1.29).
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a more rigorous derivation of Eqs. (1.26) and (1.27), see
Volkov (1987)].

Two weakly interacting arrays of adsorbed atoms are
described by the system

u« —u„„+sinu =csin(u —v),

v« —v „+sinv=csin(v —u)

(1.28)

(1.29)

[Braun et al. , 1988; in general, the linear-derivative cou-
pling terms from the right-hand side of Eqs. (1.26) and
(1.27) (with another coupling constant) should be added
to Eqs. (1.28) and (1.29)]. Earlier, this same system (1.28)
and (1.29) appeared in the papers of Yomosa (1984, 1985)
and Homma and Takeno (1984) as a base-rotator dynami-
cal model of a double helix of DNA. Later, an alterna-
tive model of the double helix was put forward by Zhang
(1987):

u« —u„„+sinu = —csin(u/2)cos(v/2),

v« —v +sinv = —e sin(v /2)cos(u /2) .

(1.28')

(1.29')

The system (1.28') and (1.29') can be naturally called a
system of coupled double SG equations. Setting u =0 or
v =0 in Eqs. (1.28') and (1.29'), one arrives at the SG
equation perturbed by the term (1.21) with f =1, which
is a double SG equation. It is interesting that this system
gives rise to solitons with richer dynamics than the sys-
tem (1.28) and (1.29) (Malomed, 1987h). At the same
time, it is necessary to note that, as far as we know, soli-
tons have not yet been detected in experiments with
DNA molecules.

Our last example of a physically interesting subject for
the application of perturbation theory is the SG equation
coupled to two linear wave equations:

u« —u„„+sinu =e( V cosu + U sinu ),
V« —V =e(sinu )

U«UXX =e(cosu )x

(1.30)

(1.31)

(1.32)

According to Pouget and Maugin (1984) and Maugin and
Miled (1986), the system (1.30)—(1.32) describes the cou-
pling between polarization or magnetization waves and
sound in elastic ferroelectric or ferromagnetic systems,
U(x, t) and V(x, t) being, respectively, transverse and
longitudinal acoustic modes.

C. Experimental observations of solitons

To conclude the list of perturbed equations, it seems
relevant to mention several pioneering experiments in
which solitons described by the perturbed KdV, NS, and
SG equations have been observed.

Hydrodynamics. It is a commonplace to cite the obser-
vation of a large-amplitude soliton on a water surface by
Scott Russell in 1834 (Scott Russell, 1844). This soliton
is described by the KdV equation.

As we discuss in Secs. III.A, VIII.C, ag.d VIII.D,
scattering of a shallow-water KdV soliton by a depth in-

homogeneity gives rise to a number of interesting dynam-
ical effects. Some of these effects have been observed in
the experiments of Seabra-Santos, Renouard, and Tem-
porville (1987). In Secs. IV.C.1 and VII.F.1 we consider
the interactions of solitons described by a system of two
coupled KdV equations. Weidman and Johnson (1982)
observed similar effects in an experiment with a stratified
11quld.

Plasma physics. Different kinds of solitons are known
in plasma physics [see, for example, the reviews of Pecseli
(1985) and Petviashvili and Yan'kov (1985)]. From our
standpoint, the most interesting are the Langmuir and
ion acoustic solitons, described by the NS and KdV equa-
tions, respectively. Langmuir solitons in the form of cav-
itons, i.e., local regions from which the plasma is ousted
by the electromagnetic field, were observed by Ikezi,
Nishikawa, and Mima (1974), Kim, Stenzel, and Wong
(1974), and Wong and Quon (1975). In the presence of a
strong magnetic field, cavitons in a moving plasma were
observed by Antipov et al. (1976, 1977). Ion acoustic
solitons had been detected earlier by Ikezi, Taylor, and
Baker (1970) and Ikezi et al. (1971;see also the survey by
Tran, 1979). For applications of the perturbation theory,
of special concern are experimental investigations of ion
acoustic solitons in inhomogeneous plasmas (e.g., Chang
et al. , 1986). Another interesting perturbation-induced
effect is the acceleration of a Langmuir soliton (caviton)
under the action of nonlinear Landau damping (see Sec.
III.B). In an experiment, this effect was observed by
Watanabe (1977).

Solids. In elastic media, envelope solitons of the NS
type may propagate. They were observed, for example,
by Wu et al (1987) i.n the form of Aexural modes of thin
shells. Korteweg —de Vries type solitons in an elastic rod
were recently observed by Samsonov and co-workers
(Dreiden et al. , 1988).

As we mentioned in the preceding section, solid-state
physics gives rise to a number of nonlinear models in
which solitons of different types may occur. An interest-
ing example is the experiment of Harten et al (1985), in.

which direct observation of a soliton in a layer of atoms
adsorbed on a metallic surface was reported.

I.ong Josephson junctions. It was emphasized above
that long Josephson junctions are unique physical objects
for applications of the soliton theory. The first direct ex-
perimental observations of an isolated Auxon (equivalent
to a SG kink) were achieved, by means of different tech-
niques, by Matsuda and Uehara (1982), Matsuda and
Kawakami (1983), and Scheuermann et al. (1983) [a de-
tailed description of the techniques involved and experi-
mental results has been given by Pedersen (1986)]. A
very interesting object is a ringlike long Josephson junc-
tion. Such a junction with trapped Auxons was realized
in an experiment by Davidson et al. (1985), although the
observation of Auxons in this experiment was indirect.

Later, Akoh et al. (1985) constructed a device in
which details of the dynamics of an isolated Quxon could
be observed directly. In particular, acceleration of a
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fluxon under the action of the bias current, capture of a
fluxon by a loca1 inhomogeneity, and escape of the cap-
tured Quxon by a bias current pulse were observed.

Experimental techniques developed by the groups cited
above have made possible, as well, the direct observation
of interactions between fluxons. In particular, Matsuda
and Kawakami (1984) have observed a fluxon-anti6uxon
collision, while Fujimaki, Nakajima, and Sawada (1987)
observed a Quxon-antifluxon annihilation into a breather
and subsequent dissipation-induced damping of the
breather.

Magnetic systems. Commonly known domain walls in
ferromagnets and antiferromagnets may be regarded as
kinklike (topological) solitons. Their purport for experi-
ments with magnetic systems is evident. Dynamical
(nontopological) magnetic solitons are much more
diScult to observe, since they are strongly damped by
dissipation. However, some experiments with dynamical
solitons have been successful. For instance, Kalinikos,
Kovshikov, and Slavin (1983) were able to observe mag-
netostatic solitons directly in a thin film of a rare-earth
orthoferrite (an yttrium iron garnet film); later, nonlinear
excitations in the same system were discussed and detect-
ed indirectly by De Gasperis, Marchelli, and Miccoli
(1987). Gornakov, Dedukh, and Nikitenko (1984) ob-
served a solitonlike packet of spin waves propagating
along a plane domain wall.

Nonlinear optics. Single-mode nonlinear fibers (optical
waveguides) are remarkable physical objects for experi-
ments with envelope solitons of the NS type. The first
experimental observation of the optical solitons in fibers
is due to Mollenauer, Stolen, and Gordon (1980). They
detected one-soliton, two-soliton, and three-soliton states.
Later, Mollenauer and Stolen (1984) constructed a fiber-
based laser operating on soliton states (the soliton laser).
It is also relevant to mention that Salin et al. (1988) ob-
served a breatherlike oscillating bound state of two opti-
cal solitons. Finally, Krokel et al. (1988) and Weiner
et al. (1988) have observed the so-called dark solitons in
a fiber, i.e., a "dark spot" inside a broad light pulse. The
dark solitons are described by the NS equation "with
repulsion" [see below Eq. (9.1)].

As is well known, the NS equation describes, besides
the self-modulation of a nonlinear one-dimensional non-
stationary electromagnetic wave in an optical fiber, the
self-focusing of a nonlinear stationary two-dimensional
wave in a planar waveguide. In the latter case, a wave
envelope in the two-dimensional space (x,z) is described
by Eq. (1.6), where t must be replaced by z. Recently,
stable self-tra, pping of laser beams in a nonlinear planar
waveguide, which may be interpreted as the formation of
self-focusing solitons, has been observed in an experiment
of Maneuf, Desailly, and Froehly (1988).

Solitons also play an important role in other fields of
nonlinear optics. McCall and Hahn (1967, 1969) have
predicted and observed in an experiment optical solitons
generated by a resonant interaction of light with a two-
level medium (the so-called self-induced transparency).

Generally, this interaction is described by the exactly in-
tegrable Maxwell-Bloch equations. In the case when
broadening of a spectral line may be neglected, the
Maxwell-Bloch equations reduce to the sine-Gordon
equation. Driihl et al. (1983) have observed solitons in
Raman scattering. The Raman scattering is described by
an exactly integrable X-wave system, which also reduces
to the SG equation in a certain particular case.

Mechanical and electric models. To demonstrate soli-
tonic properties of the SG equation, Scott has invented
an elegant mechanical model in the form of a chain of
pendula connected by a long spring (Scott, 1969). This
model may also be used for studies of a perturbed SG
equation (see, for example, Cirillo et al. , 1981). A more
sophisticated mechanical model of an important variant
of the perturbed SG equation, viz. , the so-called double
SG equation (see Sec. IV.B.6), has been constructed by
Salerno (1985).

The study of wave propagation of nonlinear and
dispersive electrical transmission lines made up of I.C
circuits has received much attention since the pioneering
work of Hirota and Suzuki (1970) on simulation of the
Toda lattice. Such lines simulate the KdV system for
sufficiently long and weakly nonlinear waves if a continu-
um approximation is introduced. Experimental studies
of the KdV solitons have been performed by Kolosick
et al. (1974), Noguchi (1974), etc. On the other hand, the
propagation of envelope solitons, which are solutions of
the NS equation, has been studied on electrical transmis-
sion lines by Kiyashko et al. (1975), Sakai and Kawata
(1976), Y'agi and Noguchi (1976), etc.

Electrical transmission lines can be readily modified to
include various perturbing factors, e.g., dissipative losses
or local inhomogeneities [see, for example, Stepanyants
(1977) and Kako (1979)].

D. Aims and structure of the present work

Our basic aim is to present a detailed account of re-
sults obtained by means of the inverse scattering trans-
form and allied techniques in perturbation theory for
nearly integrable systems. In most cases, our purpose has
been not merely to give a formulation of a problem and
final results, but also to explain in sufficient detail the
method of solution if that method is nontrivial.

%'e have tried to make the present survey comprehen-
sive, for two reasons: First, we note that some signi6cant
results have been obtained repeatedly by different
researchers due to apparent lack of information on previ-
ous work; second, it seems to us that the main problems
in this field have already been solved, so that it is reason-
able to attempt a comprehensive survey. If the survey
seems lengthy, it is only because the number of physically
interesting problems considered by different authors is
large.

The rest of the paper is structured as follows: In Sec.
II we review very briefly the basic components of the IST
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technique and give, without detailed derivation, general
perturbation-induced evolution equations for the scatter-
ing data. These equations constitute the basis of IST per-
turbation theory. Sections III—VII are devoted to partic-
ular problems formulated in terms of the perturbed KdV,
NS, and SG equations. As can be seen from the Con-
tents, the problems are classified according to the number
of solitons involved and the fundamental character of the
problem, i.e., radiative problems are separated from adia-
batic ones. The next four sections deal with special im-
portant problems (see the Contents). Among these prob-
lems, especially fundamental and dii5cult is the genera-
tion of new solitons under the action of perturbations. In
Sec. XII we consider the perturbation theory for a more
complicated integrable equation, viz. , the Landau-
Lifshitz equation, which plays a very important role in
the dynamics of ferromagnets. Finally, in Sec. XIII we

briefly discuss results obtained for other nearly integrable
systems. We mention the following perturbed equations:
Maxwell-Bloch, X-wave, derivative NS, Boussinesq,
Benjamin-Ono, Joseph, Toda-lattice, Ablowitz-Ladik,
and Kadomtsev-Petviashvili. In addition, we mention re-
sults obtained by means of perturbation theory for KdV
and Toda-lattice equations with periodic boundary condi-
tions, and for fully quantum NS and SG models. The ap-
pendixes contain several lengthy formulas excerpted from
the basic text.

II. THE INVERSE SCATTERING TRANSFORM
AND PERTURBATION THEORY

A. General remarks

The inverse scattering transform (IST) was introduced
in the famous paper of Gardner et al. (1967). Further
advances in the use of this method were made by Lax
(1968), Zakharov and Shabat (1971), and Ablowitz et al.
(1973b, 1974). Today the method is well elaborated; de-
tailed accounts of it can be found in a number of books
(Lamb, 1980; Zakharov et al , 1980; Ab. lowitz and Segur,
1981;Calogero and Degasperis, 1982; Newe11, 1985; Fad-
deev and Takhtadjan, 1986). The basic idea of the IST is
to represent a nonlinear evolution equation for a function
u (x, t) in the form of the so-called (L, A) pair (Lax,
1968),

L, +[L,A ]=0, (2.1)

(2.2)

(2.3)

where A, is a spectral parameter (generally speaking, com-
plex), and ~II is often called a Jost function.

where I. and 3 are some linear operators with
coefficients dependent on the function u (x, t) and its
derivatives (see Secs. II.B—II.D). In other words, the
equation for u (x, t) is a condition of compatibility of the
auxiliary linear equations

The erst step in using the IST is to solve the direct
scattering problem, i.e., to find eigenfunctions of the
spectral equation (2.2) (in other words, to find scattering
data). Since coefficients of the L operator depend on the
function u (x, t), we can map this function into the
scattering data. In general, the scattering data consist of
two components S(A. ) and S„pertaining to continuous
and discrete spectra, n standing for a number of discrete
eigenvalue. Temporal evolution of u (x, t) generates evo-
lution of the scattering data via Eq. (2.3). The efficiency
of the IST rests upon the fact that the evolution of the
scattering data proves to be trivial; evolution equations
for S(A, ) and S„have the following general form (see par-
ticular examples below in Secs. II.B—II.D):

=iQ(A)S(,A, t),,at

dS„(t)
=O„S„(t),

dt

(2.4)

(2.5)

and, moreover, some components of Q(A, ) and Q„may be
equal to zero. So, to solve the Cauchy problem for the
underlying nonlinear evolution equation u, =F[u], we
should first find the initial scattering data S(k,, t =0)
and S„(t=0) corresponding to an initial condition
u (x, t =0), i.e., solve the direct scattering problem, then
find S (A, , t) and S„(t) (for arbitrary t )0) from the trivial
evolution equations (2.4) and (2.5) for the scattering data,
and finally reconstruct u (x, t) on the basis of S(k,, t) and

$„(t), i.e., solve the inverse scattering problem. In all

cases, the discrete-spectrum scattering data correspond
to solitons, and the continuous-spectrum scattering data
correspond to radiation.

An important component of the IST is related to varia-
tional derivatives 5S/5u (x) that can be explicitly written
in terms of the Jost functions and scattering data. With
the aid of these quantities, one can easily obtain a gen-
eralization of the evolution equations (2.4) and (2.5) for
the case when the original equations for u (x, t) contains a
perturbation, i.e., when it can be represented in the form

u, =F[u]+eP [u], (2.6)

where F[u] stands for the unperturbed part of the equa-
tion and P [u] is a perturbation (u may be a multicom-
ponent function). Indeed,

aS(A, , t) +
d

5S(A, , t)
at

y+~d 5S(A, , t) F[ ] I+~ 5S(A,, t)
5u(x, t) —~ 5u(x, t)

=iQ(A, )S(A, , t)+eI dx ' P[u] . (2.7)—co 5u x, t

Analogously one can calculate aS„(t)/at:

as„(t) 5S„(t)=Q„S„(t)+ef dx P [u] . (2.8)
at —oo 5u x t

If e is a small parameter, one may substitute the unper-
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B. Kortemeg-de Vries equation

For the unperturbed KdV equation [i.e., Eq. (1.1) with
e=O] the operators L and A in Lax's representation [Eq.
(2.1)] are

L = — +u(x, t),
BX

(2.9a)

3=—4 +3 u
BX

8
ax" (2.9b)

It is traditionally accepted that the spectral parameter
for the auxiliary linear equation (2.2) with the operator
(2.9a) be redesignated as A. =k . Since we are interested
in the wave potential u (x) decaying sufficiently quickly
as ~x

~

~~, the eigenfunctions of the linear problem (2.2)
can be chosen in the following form (the Jost functions):

4'"(x,k )=e '" +o(1) (x ~+ ~ ),
e' '(,k)= '" +o(1)

(2.10a)

(2.10b)

turbed u (x, t) and Jost functions into the right-hand side
of Eq. (2.7), which yields the perturbed evolution equa-
tions for the scattering data in the lowest approximation
of perturbation theory. Clearly, this procedure can be
iterated to yield higher orders of perturbation theory.
These ideas were independently put forward in two
pioneer papers by Kaup (1976) and Karpman and Maslov
(1977) [see also Karpman (1977)]. In the next three sub-
sections we shall examine perturbation theory technique
in more detail for the KdV, NS, and SG equations. We
shall concentrate on first-order perturbation theory. The
second order was developed by Maslov (1980) for the
KdV, modified KdV, and NS equations, and by Kivshar
(1984) for the SG equation.

a(k, t)=a(k, O), b(k, t)=b(k, O)exp(8ik t),
~„(t)= s(0), b„(t)=b„(0)exp(8x„t )

(2.13)

[cf. Eqs. (2.4) and (2.5)].
The inverse scattering problem itself is the problem of

reconstructing the wave potential u (x) on the basis of the
scattering data. For the KdV equation the problem is
principally solved by the relation

u(x, t)= —2 K(x,x;t),
dX

where the implicitly time-dependent function K(x,y)
satisfies the Gelfand-Levitan-Marchenko equation

K(x,y)+F(x+y)= f K(x,z)F(z+y)dz=O,

in which

@'"(x,k ) and of the Jost coefficient a (k) is that they can
be analytically continued into the upper half-plane of the
complex parameter k. The function a(k) may have zeros
on the upper half-plane at the purely imaginary points
k„=iIr„(n = 1,2, . . .). The set of real numbers
represents the discrete spectrum of the operator
defined by Eq. (2.9a). At the points k„ the two eigenfunc-
tions @'"(x,k) and 4' '(x, k) are linearly dependent,

C'"( x, k„)=b„%"'(x,k„), b„=b(k =i~„),
and they decay exponentially as ~x ~~ ~. The set of
quantities a(k) and b(k) with real k constitutes the
continuous-spectrum scattering data of the scattering
problem, and the set of real numbers ~„and complex
numbers b„constitutes the discrete-spectrum scattering
data. The time dependence of the scattering data ensues
from the second auxiliary linear equation (2.3) with
operator A from Eq. (2.9b):

and

'"(x,k)=e '" +o(1) (x —+ —~),
q&(2)(x k )

—ikx+

(2.11a)

(2.11b)

F(x)—= J e'" r(k)dk+ g277 , ia'(ix„)

a'(i~„)—:aa(k)

(2.15)

(2.16)

a(k) b(k)
b*(k) a *(k) (2.12)

and where the Jost coefficients a (k) and b (k) satisfy the
unitarity condition

As the operator (2.9a) is a linear operator of the second
order, the two sets of eigenfunctions (2.10) and (2.11) are
linearly dependent:

2

N"(x, k)= g T&(k)%'"(x,k), i =1,2,
1=1

where the monodromy matrix [T,.&(k)] has the well-
known form

r(k ):—b(k )/a (k) . (2.17)

u, (z) = —2~ sech z, (2.18)

where.

An important particular case is that of the
reAectionless potentials u (x) for which r(k) =0, and for
which the Gelfand-Levitan-Marchenko equation degen-
erates into a system of linear algebraic equations. This
class of potentials describes solitonic solutions of the
KdV equation. The one-soliton solution, with a single
zero of a (k) at the point k,:i ~, has the —form

(2.12')
z =~(x —g), (2.19)

The fundamental property of the functions 4' '(x, k ) and /=4~ t+$0. The scattering data and Jost functions cor-
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udx ———4 K +
00

n ——i
(2.20a)

responding to the potential (2.18) are given in Appendix
A.

As is well known, the KdV equation has an infinite set
of local polynomial integrals of motion (see, for example,
Zakharov et al. , 1980), which can be explicitly expressed
in terms of the scattering data. We shall need these ex-
pressions for the three elementary integrals of motion:
the "mass"

Ba(k, t) ie
( k k)

Bt 2k
(2.23)

=8ik b(k, t) — p*( k,—k),
. Bt ' 2k

(2.24)

a(lK„, lK„.) f [ 0 (X, lK~ )] dX
dt 2Kn oo .

(2.25)

following form for the perturbed KdV equation (1.1) in
the lowest approximation of perturbation theory:

JK(k) —= (2/m)lnlo(k) I',
the momentum

(2.20b)

P= ,' f—udx =—', g K„+f dk P(k), (2.21a)
00 0

X [a( k, i K—„)b„a

r(k) =(4/~)k'lnlo(k) I',
and the energy

(2.21b)

where

—P( k, iK„—)]
k =—ia.

rl

(2.26)

E=—f "(-'u'+u')dx= ——" g K'„+f "( (k)dk,
QO n=i

( (k) =(16/n-)k inly(k) I' .

(2.22a)

(2.22b)

In Eqs. (2.20) —(2.22) we have separated the contributions
of the solitons (g„) and that of the radiation, i.e., the
dispersive waves described by the continuous-spectrum
scattering data. From that viewpoint, the continuous
real spectral parameter k is, simultaneously, the radiation
wave number, and Eqs. (2.20b) and (2.22b) are the spec-
tral densities of the "mass, " momentum, and energy in
the radiation wave field.

The general evolution equations (2.7) and (2.8) take the

a(k', k)—= f (Il' "(x,k')4' '(x, k)P[u]dx,

p(k', k)—= f 4&"'(x,k')4' '(x, k)p[u]dx,

and where a'(i K„) is defined in Eq. (2.16). It can be seen
that the time dependence (2.13) of the unperturbed
scattering data immediately fo.'lows from Eqs.
(2.23)—(2.26) when one sets @=0.

C. Nonlinear Schrodinger equation

For the unperturbed NS equation [i.e., Eq. (1.6) with
@=0] the operators L and A have the matrix form (Za-
kharov and Shabat, 1971)

a
I

BX
u*(x)

(2.27)—u(x) i
BX

—4iz3+2~lu
I

+u*u —uu

—4iA, u+2iku„+iu „+2iu u*

—4iA, u* —Zii, u*+iu* +2iu* u

4i~' —2~lu I' —u„u*+uu„* (2.28)

The Jost functions for the real values of the spectral
parameter A, are defined by the boundary conditions [cf.
Eqs. (2.10) and (2.11)]

(Il~(X, A ) =e ' +O(1), X —++oo, (2.29)

where o3 is the Pauli matrix. The matrix Jost functions
(2.29) can be represented in the form

transforms it into
(2}Q

(2.31)

(2.30)
The rnonodromy matrix T relates the two fundamental
solutions %'+ and %'

where g and p are independent vector columns, and the
linear involution operation (designated by the tilde) act-
ing on the column

(X,A, )=%+(x,k)T(A, ) .

This matrix has the form

(2.32)
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a*(A, ) b(A, )

b—*(A,) a(A, )
(2.33)

where the two Jost coefficients a(A, ) and b(A, ) are related
by the unitarity condition

Ia(z) I'+ Ib(X) P= 1 (2.34)

[note the difference in the sign between Eqs. (2.12) and
(2.31)].

The vector Jost functions g(x, A, ), y(x, g) and the Jost
coefficient a(A, ) admit an analytical continuation into the
upper half-plane of the spectral parameter A, . The zeros
A,„=g„+iq„(n=1,2, . . . ) of the functions a(A, ) in the
upper half-plane give the discrete spectrum of the corre-
sponding linear problem (2.2), the Jost functions P(x, A,„)
and y(x, A,„)being linearly dependent:

f(x, A, )e'
b„P(x, A, „)e

, (A, —A, „)a'(A,„)
1 ~ r(A, ')g(x, A, ')e'

2~g —~ A,
' —A. + sO

(2.36)

0 & b (x A, )e
g(x, A,„)e "=

1 +g
=i (A, „*—A. )a'(A, )

1 f ~ r(A, )f(x, A, )e'
27Tl

n

where

(2.37)

a'(&„)—= [&a (&)/BA ]Ii

r(A. ) =b(A, )/a(A, ) .

(2.38)

Finally, the wave potential u(x, t) is expressed in terms
of the scattering data and solutions of Eqs. (2.36)
(2.37) as follows:

y(x, A,„)=b„f(x,A„) . ,

These functions decay exponentially as Ix I
~~.

The Jost coefficients a(A, ) and b(A, ) with real A, consti-
tute the continuous-spectrum scattering data, and the set
of complex numbers A,„and b„constitutes the discrete-
spectrum scattering data of the corresponding scattering
problem. The time evolution of these scattering data en-
sues from the linear equation (2.3) with the operator A

defined by Eq. (2.28):

a(A, t)=a(,A,, O), b(A, , t)=b(A, , O)exp(4iA, t),
(2.35)

X„(t)=A,„(0), b„(t)=b„(0)exp(4ik„t) .

The inverse scattering problem for the operator L, defined
by Eq. (2.27) reduces to a system of singular integral
equations,

where the upper index designates a component of the
vector column.

The refiectionless potentials u(x, t), for which b(A, ) =0,
are solitonic solutions of the NS equation. The
reAectionless scattering data with the single zero
A, , =/+i' of the function a(A, ) correspond to one soli-
ton,

u, (x, t ) =2iii exp( 2—i gx i P—)

cosh[2q(x —g) ]
where

(2.41)

/=4(g g—)t+ t't,op= 4gt+g—o . (2.42)

JV(A, )—:(1/n. )lnla(A, ) I (2.43b)

the momentum

P:i f u—u,'dx = —8 g g„g„+f P(k)dA, , (2.44a)

P(A, )
—= —2~(A, ) = —(2A, /rr)lnla(A, ) I

and the energy

(2.44b)

E=f"—(Iu. l' —lul')«
= 16+ ( ——,

' g„+g„g„)+f C(A)d A, ,
n

(2.45a)

6'(A, )
—=4A, 'A'(A, ) =(4A, '/~)lnla(A, )l (2.45b)

In Eqs. (2.43)—(2.45) we have separated the soliton con-
tribution (g„) from that of the radiative component
( Jd A, ) of the NS wave field described by the continuous-

spectrum scattering data. If we consider the radiation
component as a superposition of free waves governed by
the linear Schrodinger equation, the spectral parameter k
is, up to the multiplier —,', the wave number of the radia-
tion, and the quantities (2.43b), (2.40b), and (2.41b) have
the sense of spectral densities of the "charge, " momen-
tum, and energy carried by the radiation wave field.

When a perturbation is present in Eq. (1.6), the evolu-
tion equations (2.7) and (2.8) take, in the lowest approxi-
mation, the form [cf. Eqs. (2.23)—(2.26)]

The one-soliton Jost functions and the corresponding
scattering data are given in Appendix A.

Like the KdV equation, the NS equation possesses an
infinite set of local polynomial integrals of motion. We
shall need explicit expressions for the three elementary
integrals of motion: the "charge" (or "number of quan-
ta")

I
u I'« =4 g q. + f " ~(&)«, (2.43a)

N 6 EA, xu'(x, t)= —2 g, " g'"(x, g„)e
, a '( A,„)

+ . f r(A, )g'"(x, A, )e' "di, , (2.40)

= f d P[ ]g'"(,X)q"'(,X)
Bt —a)

+e*f dx P*[u ]Q' '(x, A, )y"'(x, A. ),
(2.46)
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ab(X, r) =4iA, b+e f dx P[u]ip'"(x, A, )g' '*(x,A, )at (X)

—e*f dx P*[u]y( )(x, A, )g")*(x,A, ),
(2,47)

Here I is the unit matrix, cT (a=1,2,3) are the Pauli rna-

trices, and A, is the real spectral parameter (0 ~ k & ~ ).
The boundary conditions for the wave potential are

u(x, r)~0 (mod 2~), u, (x, t)~0 at ~x~~~. The Jost
functions are defined as solutions of the linear equation
E%=0 with the boundary conditions

f dx IeP[u]g("(x, A,„)y( '(x, A,„)
(p+(x, A, )=exp —k(A, )cr3x +o(l), (2.53)

db„ =4i A,„b„dt

+e*P'[u]i)'j' '(x A, )

Xq")(x,X„)],

Here

Q' '(x A, )= [Ip' '(x A, )~/i( '(x A, )
a

—~(-)(x,~)y( )(x,~„)]~. . .

+, f dx teP[u]Q("(x, A,„)a A, n

+e'P*[u]Q( )(x, A,„)j .

(2.48)

(2.49)

where 0.
3 is the Pauli matrix, and

k(A, ) =A, —1/4A, . (2.S4)

y")(x,X)=@"'*(x,—X),

q")(x,X)=1i")*(x,—X),

Let us introduce the two vector columns P and ip accord-
ing to Eq. (2.30), and the involution operation according
to Eq. (2.31). The monodromy matrix'is defined by Eq.
(2.32) and has the form (2.33); the unitarity condition re-
tains the form (2.34).

The analytical properties of the Jost functions and the
definition of the discrete spectrum also coincide with
those for the NS equation, except for the additional
reduction imposed by the reality of u (x, t ):

where a'(A, „)is defined in Eq. (2.38).

D. Sine-Gordon equation

m =1,2, (2.SO)

For the unperturbed SG equation (1.15) with e=O,
Lax's representation can be conveniently written in the
form (see, for example, Zakharov et a/. , 1980)

[f,J]=0,

Ip'"(x, A, ) = —Ip'"*(x, —A, ), (2.55)

(p")(x,X)=~")*(x,—X),

a(A, ) =a'( —A, ), b(A)= b,
'( —A, )—.

The time dependence of the scattering data following
from the linear equation A 4=0 has the form

where

02I, =I —— A, — cosu 0.
3
— sinu

ax 2 4k 4A,

0i+ (u„—u, )
2

n a l 1 022 =I +— A, + cosu 0.3+ sinu
ax 2

(2.51)

a(A, t ) =a(A, ,, O),

b ( A, , t ) =b ( A, , 0 )exp [ —i co( A)t ], .

A,„(t)=A,„(0),

b„(t) =b„(0)exp[ i co( An) t ],— .

where

co(A, ) =A, +1/4A, . (2.56)

0 i+ (u —u, ) (2.52) The inverse scattering problem reduces to a system of
singular integral equations [cf. Eqs. (2.36) and (2.37)]:

ik(k)x/2 + n a ' n ik(A.
n )x/2 1 +~, P(A )4(X ~A, ) ik(k')x/2

b ~i(xA, )

, ci'(A, „l(A, —k„) 2+i — A.
' —

A, +io (2.57)

ik(A, „)x/2 m0 X& m Ik(A)x/2 1 , +ao r(k)4(X ~) k(A. ) /2e + dA, e' (2.58)
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where definitions (2.38) and (2.39) are used. The wave potential u (x, t ) is expressed in terms of solutions of the system
(2.57) and (2.58) as follows:

' cos( g /2) = ( —1 )~i + ~~~~
1 y "

itii2~(x Z )e ~ + diL yi2&(x Z )e i«~~~~ib„ ik(A. )x/2 1 ~ r(g)
, &„q'(A,„) ' " 2mi- (2.59)

As above, reflectionless scattering data [r(A. ) =0) give
rise to purely solitonic solutions, and zeros of the analyti-
cal function a(k) in the upper half-plane correspond to
solitons. The important'di6'erence from the NS equation
is that, due to the reduction (2.55), a zero lying at the
point X„must have a corresponding twin zero at the
point —

A,„. Consequently there may be zeros of two dis-
tinct types: individual zeros lying on the imaginary axis,
and twin zeros lying at the symmetric points
(+Rek,„+i Imk, „).

An individual zero at the point

A, ,=iv: v—'(I—+ V)/(1 —V) (2.60)

gives rise to a topological soliton usually called a kink:

uk(x, t)—:uk(z)=4tan '(e '),
z =(x —g)/+1 —V

(2.6 la)

g= Vr+go (2.61b)

where V, as in Eq. (2.60), is the kink's velocity ( V & 1),
and o =+1 is the kink's polarity (topological charge).
Solutions with o = + 1 and —1 are commonly referred to
as kinks and antikinks. Note that the set of the numbers
o.„ for all kinks constitutes additional information, which
should be added to the aforementioned scattering data to
completely specify a solution of the SG equation in terms
of the IST. The scattering data and Jost functions corre-
sponding to the kink solution (2.61) are given in Appen-
dix A.

A pair of twin zeros can be conveniently represented in
the form

A, , z=+ —,'&(1+V)/(1 —V)exp(ip),

0(p& —, V (1.2' (2.62)

This pair gives rise to the so-called breather solution,
which may be regarded as a bound kink-antikink state
moving with the velocity V and performing internal oscil-
lations with the frequency cosp:

sin(%' cosiu, )
ub, (x, t ) =4 tan tang

cosh z sing

z =(x —g)/Vl —V, g= Vt+ go,

0'=(r —Vx)/+I —V +bio .

(2.63)

(2.64a}

(2.64b)

The parameter p is the breather's amplitude: in the case
iM «1, Eq. (2.63) simplifies to

iub, (x, t ) =4p sin 1 — 4 sech(iMz ),
2

(2.65}

and in the opposite case g:—m /2 —p «1, Eq. (2.63) may
be represented in the form

u„,(x, t ) =4 tan '[g 'sin(g~Ii)sechz] . (2.66)

The approximate solutions (2.65) and (2.66) will hereafter
be called, respectively, a small-amplitude breather and a
low-frequency breather. In the limit case p=m /2 the ex-
act solution represented by Eqs. (2.63) and (2.64) becomes
(here we set V=O)

u =4 tan '(t sechx ) . (2.67)

Equation (2.67) may be interpreted as describing a
kink-antikink pair separated by the distance L„which de-
pends on the time t according to the following asymptot-
ic law valid as

~
r

~

~~:
(2.68)

=8+ V„(1—V„) ' +16+ V (1—V )
'~ sing

n m

+ f P(k)dk, (2.70a)

P(k) —= ln(1 —~&[A(k)]~ ),
k +1

(2.70b)

where k and A,(k) are related by Eq. (2.54). In Eqs.
(2.69a) and (2.70a) we have separated the contributions
from the kinks (g„), breathers (g ), and radiation

Note that a solution obtained from Eqs. (2.63) and (2.64)
(with V=O) by means of the analytical continuation
p=m/2+F8' (W«1) describes as ~t ~

—+ ~ a kink-
antikink pair with a relative velocity 8' the particular
solution (2.67) corresponds to W=O.

Like other integrable equations, the SG equation
possesses an infinite set of local polynomial conserved
quantities. We shall need explicit expressions for the two
elementary integrals of motion, viz. , energy E and
momentum P, in terms of the scattering data [cf. Eqs.
(2.20) —(2.22) and (2.43)—(2.45)]:

F.—= f dx[ —,'u, + —,'u„+(1—casu)]

=8+(1—V )
'~ +16+(1—V )

' sinp
n m

+ J 6(k)dk, (2.69a)

e(k ) =—(4/1r)ln(1 —~b [A(k)] ~ ),
P—: I dx il~ili
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(. J dk). The quantities (2.69b) and (2.70b) have the sense

of spectral densities of the energy and momentum carried
by the radiative component of the SG wave field, while
the continuous parameter k [see Eq. (2.54)] has the sense
of the radiation wave number. Analogously, the parame-
ter co defined in Eq. (2.56) has the sense of the radiation
frequency. Clearly, they are related by the dispersion re-
lation of the linearized SG equation, co =k +1.

When a perturbation is taken into account in Eq.
(1.15), the evolution equations for the scattering data
take the form [cf. Eqs. (2.46)—(2.49)]

liding solitons. The emitted radiation exerts reciprocal
influence on the emitting solitons. The most natural and
convenient way to take that influence into account is to
use conservation laws. For instance, calculating net ener-

gy emitted by colliding solitons, one can find a threshold
(maximum) value of their kinetic energy which admits
fusion of the solitons into a bound state on account of the
radiative losses.

III. ADIASATIC DYNAMICS OF ONE SOLITON

f dx P[u]W(g, cr&p), (2.71) A. Korteweg-de Vries equation

1. Spatially homogeneous perturbations

f dx P[u] W(c7, y, @),

dk.
dt

db„
fli co( A—)b,

f dx P[u]W(g„,o &y„),

(2.72)

(2.73)

Evolution of a KdV soliton under the action of dissipa-
tive perturbations was the first particular problem inves-
tigated in the framework of perturbation theory. Evolu-
tion equations for the parameters lc and g of the KdV sol-
iton (2.18) can be easily derived from the general evolu-
tion equations (2.25) and (2.26) for the discrete-spectrum
scattering data with the use of the one-soliton Jost func-
tions (Al) and (A2) (Karpman and Maslov, 1977):

f dx P[u ]W(o iq&„,p'„b„g'„—), dK E +~ 2dz P(u )sech z,
dt 4K

(3.1)

(2.74)

where the Wronskian of the two columns g and y is
W(P, y) =P"'p' 'g' 'p"', and g„'—:[c)g(x,A. )/M. ]~&

d 2 e +
=4lc2 — f dz P(u)[z+ —,'sinh(2z)]sech z .

4K —m

(3.2)

E. Adiabatic and radiative effects

The natural separation of the discrete and continuous
spectra, i.e., solitonic and radiative degrees of freedom, in
the framework of the IST suggests an analogous separa-
tion of modes in the presence of perturbations. Of
course, in the latter case the separation may be only ap-
proximate; however, as the inAuence of emitted radiation
on solitons appears in second-order' perturbation theory,
in the lowest (first) approximation we may study
perturbation-induced dynamics of solitons ignoring exci-
tation of the radiative degrees of freedom. In this ap-
proximation, it is sufticient to take into account only the
evolution equations (2.8) for the discrete-spectrum
scattering data; corresponding evolution equations for
solitonic parameters are frequently called adiabatic
(Karpman and Maslov, 1977). Typical examples of adia-
batic effects are dissipative damping of a soliton, fusion
of colliding solitons into a bound state on account of dis-
sipative losses, and energy and momentum exchange in
three- (or many-) soliton collisions under the action of
conservative perturbations.

Typical radiative effects are energy emission by a soli-
ton moving in a potential relief or by a soliton oscillating
under the action of an external time-dependent field.
Another important effect is emission of radiation by col-

dK —CtK .
dt

(3.3)

Another important example is the so-called
Korteweg —de Vries —Burgers equation with the perturba-
tion (1.2b),

t 6 X + XXX 7 XX (3.4)

Insertion of the perturbation from the right-hand side of
Eq. (3.4) into Eq. (3.1) yields the following damping law:

dK — 16

dt
—PK (3 5)

As is well known (Karpman and Maslov, 1978; Kaup
and Newell, 1978a; Newell, 1980), a dissipative perturba-
tion acting upon a KdV soliton gives rise to a long shelf
of amplitude -e (see details in Sec. VI.N). Karpman and
Maslov (1978) have demonstrated that consistent descrip-
tion of the shelf requires the use of an additional term
tanh z in the square brackets on the right-hand side of
Eq. (3.2). However, mechanical insertion of this addi-
tional term into the soliton's equations of motion can
sometimes result' in contradictions; see the paper by
Malomed (1988b).

The damping law of the soliton's amplitude ensuing
from Eq. (3.1) is evident. For instance, for the perturba-
tion (1.2a) it has the form
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dK
Q)PK ~ Q) ~ 1.46 (3.7a)

(by implication p « lr ). Note that the dissipation (1.2a)
results in the exponential decay of the amplitude,
a(t)=zoexp( ,'at) [—see—Eq.(3.3)], while in cases. (1.2b)
and (3.6a) the decay law is algebraic: ~(t)-t '~ in
(1.2b), and Ir(t) —t ' in (3.6a) [see Eqs. (3.5) and (3.7a)].

In studying the propagation of internal-wave solitons
in a stratified liquid with an unstable shear fIi.ow, Os-
trovskii, Stepanyants, and Tsimring (1984a) encountered
the perturbative term (3.6a) with negative p. They
demonstrated that, in such a situation, the higher stabil-
iiing term

v I u„. .„(x—x')dx' (3.6b)

[and the term (1.2b)] should be taken into account. In
the presence of the term (3.6b), Eq. (3.7a) takes the form

dK
dt

= —c,pK —c2vK, c2 =2.56 . (3.7b)

While Eq. (3.7a) with p &0 describes explosive growth of
the soliton's amplitude, 1~(t)= —(c,p) '(to —t )

tv=~c, pi~(0)~ ', Eq. (3.7b) with p&0, v)0 has the
stable stationary solution Ico= Q —c,p/c2v.

Ostrovskii, Stepanyants, and Tsimring (1984a) have
also derived evolution equations for parameters of the
so-called cnoidal wave (a periodic chain of KdV solitons)
subject to the action of the dissipative terms (1.2a), (1.2b),
(3.6a), and (3.6b).

Another variant of a perturbed KdV equation is one
with slowly varying coefIicients:

v, +a(er)vv„+P(er)v „=0,
where e is a smaH parameter. As has been demonstrated
by Karpman and Maslov (1982), the substitution

It should be noted that the Korteweg —de Vries —Burgers
equation (3.4) has an exact solution in the form of the so-
called oscillatory shock wave, which may move with an
arbitrary velocity V. This wave structure is distinguished
by the boundary conditions u ( —~ )= —V/3,
u(+ co )=0 in the case V)0, and u( —~ )=0,
u(+ ~)=—V/3 in the case V&0. From the viewpoint
of the perturbation theory for solitons, the oscillatory
shock wave may be regarded as a bound state of a large
number of KdV solitons (see details in Karpman, 1979b).

Let us proceed to consideration of evolution of a KdV
soliton under the action of the linear Landau damping
described by the perturbative term

—p I u„(x —x') 'dx' (3.6a)

in the right-hand side of the KdV equation (where p is a
small parameter). According to Ott and Sudan (1969),
this perturbation gives rise to an evolution equation for
the soliton's amplitude K which can be represented in the
following form [cf. Eqs. (3.3) and (3.5)]:

t =I P(er')dr',
0

u(x, t ) = —,
'o.v(x, r), cr =a/p,

transforms Eq. (3.8) into the form of Eq. (1.1) with the
effective perturbation

P(u)=(o, /cr)u . (3.8')

2. Interaction of a Korteweg —de Vries soliton
with a moving dipole or a pump wave

The KdV equation with a moving dipole-type pertur-
bation on its right-hand side,

u, —6uu +u =@5'(x—Vt), (3.9)

has been the subject of intensive studies (Akylas, 1984;
Cole, 1985; Mei, 1986; Wu, 1987). Equation (3.9) is the
simplest model to describe propagation of unidirectional
disturbances produced by a small moving body in a shal-
low liquid layer. The variable u (x, t ) has the sense of an
elevation of a free surface. In this subsection we shall de-
scribe the interaction of a KdV soliton with a dipole

Karpman and Maslov (1982) have also developed a simi-
lar analysis for a NS equation with variable coefficients.

Another approach to Eq. (3.8), based upon the method
of matched asymptotic expansions, was put forward by
Grimshaw (1979a; see also Grimshaw, 1983) and Ko and
Kuehl [1978; later, Ko and Kuehl (1980) extended that
approach to a modified KdV equation with variable
coefficients]. Karpman and Maslov (1982) have demon-
strated that both methods yi|..ld the same results.

Another tractable case is that when coefFicients of the
KdV equation (3.8) change by a jump at some t =to:
a(t) =a+, and p(t) =p+ for t & to and t ) to, respective-
ly. As noted first by Tappert and Zabusky (1971) [see
also Johnson (1973), Zhong and Shen (1983)], this prob-
lem suggests direct application of the unperturbed in-
verse scattering transform: the wave field at t —tp = 0
must be considered, after proper rescaling, as an initial
condition for the unperturbed KdV equation at t —tp )0.
In particular, an initial soliton existing at t & tp,

u„~=12(p /a )~ sech [lr(x 4a p t)], —

[cf. Eq. (2.18)] may split at t ) to into several secondary
ones [plus a nonsoliton (radiation) component]. Tappert
and Zabusky (1971) obtained an expression for the num-
ber X of secondary solitons:

X=[—,
'

I +1+4(a+P )/(a P+) —1 I ],
where square brackets indicate the integer part.

Tappert and Zabusky (1971) mentioned that the same
approach could be applied to other integrable equations
with steplike coefFicients, e.g. , the NS equation. Later,
Djordjevic and Redekopp (1978) considered in this
manner the Joseph equation, which is an integrable gen-
eralization of the KdV equation.
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moving with a positive velocity V) 0. This discussion is
taken from the recent paper of Malomed (1988b).

Due to the positiveness of the dipole's velocity, it
moves in the same direction as the soliton (2.18), which
will be written in the form

u(x, t)= —2~ sech (a[x —g(t)]I, (3.10)

=4m
dt

(3.11)

The soliton-dipole interaction may be significant, provid-
ed the dipole's velocity V and the soliton's velocity 4~
are close. To consider that interaction by means of per-
turbation theory, one should assume e (& V . Then a
straightforward analysis yields the following evolution
equations for the parameters of the soliton:

d8
dt

=e V sinhg sech g, (3.12)

dt 2 2
(3.13)

where W=—4a —V, g=x(g —Vt) The d. ynamical system
(3.12) and (3.13) has the stationary point

W= Wo= — —,/=0 .
V

(3.14)

This stationary point corresponds to a soliton pinned by
the moving dipole. In the framework of the dynamical
system (3.12) and (3.13), the point (3.14) is a center if
e & 0, and a saddle in the opposite case. [It will be shown
in Sec. VI.M that, within the framework of the full equa-
tion (3.9), the pinned state of the soliton corresponding to
Eqs. (3.14) (with @&0) is subject to a radiative instabili-
ty. ] The eigenfrequency of small oscillations in the vicin-
ity of the center is 0= V ~ &—e/2. A phase plane of
the dynamical system (3.12) and (3.13) is depicted in Fig.
1. The boundary between free and trapped trajectories is
the separatrix (shown as a heavier line in Fig. 1), which is
approximately described by the equation

sinhg= (eV /& 2)'~ t . (3.14')

u, 6uu—+u = —au+bu +(fu) (3.15)

where, in the special case of a harmonic pump wave, f is
given by

f (x, t ) = V cos[co& (x —Wt )],
V being the pumping amplitude. Here t and x are the
spatial coordinate and transformed time, respectively.
As was demonstrated by Gasch et al. (1986), a KdV soli-
ton can only be generated and stabilized if the amplitude
of the pump wave V~ exceeds a threshold value (V~ ),z, .
Using the perturbation theory equations (3.1) and (3.2),
one can find

(V„),b, =(a —Wb+4b )/(co +b )' (3.16)

The perturbed KdV equation (3.15) was solved numeri-
cally by Gasch et al. (1986). They demonstrated that
Eq. (3.16) is in good agreement with the numerical calcu-
lations and, moreover, it describes experimentally ob-
served solitonic modes of a high-frequency ring resona-
tor.

Malomed (1988b) gives a full nonperturbative
classification of solitary wave profiles pinned by the di-
pole moving with the positive velocity. In particular, he
demonstrates that stationary pinned profiles exist in the
parametric range e & (2/3v 3)V . In the range
e) (2/3&3) V (as well as for V&0) there is no pinned
profile, and one may expect to observe emission of soli-
tons by the moving dipole. Such phenomena have indeed
been seen in numerical experiments; see the papers quot-
ed at the beginning of this subsection.

Another interesting example of KdV soliton dynamics
in the presence of an inhomogeneous perturbation was
con'sidered by Gasch et al. (1986). They showed that the
formation of stationary wave forms in a driven nonhnear
microwave resonator with dissipation can be attributed
to generation and parametric amplification of KdV soli-
tons by a pump wave traveling in the same direction as
the solitons. The interaction process and the soliton
propagation may be described in terms of the perturbed
KdV equation

B. Nonlinear Schrodinger equation

The general evolution equations for the parameters of
one NS soliton (2.41), analogous to Eqs. (3.1) and (3.2),
are

+ oo= —
—,'Re e dz P[u, (z)]e '~"+'&sechz, (3.17)

dt

FICx. 1. The phase plane of the dynamical systems (3.12) and
(3.13) describing the interaction of a KdV soliton with a moving
dipole.

=—,'Im e dz P[u, (z)] e '~ +'&tanhz
dt OO coshz

(3.18)
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zP[u, (z)]= —4g—,Re eI" dz — ' e"&"+'&
coshz

(3.19)

plitudes are

(5(2a3 —a2)+[5[5(2a3—a2) —96aia4]I ' ),2= 1

64+2

dh =4(g —i1 )

1 I I ~
d

1 —2'gx tailllz p [
2'g —oo COShZ

2lgA+JP (3.20)

= —2g(a, +—', uzi + —',a3i) ) ——,'a2i) V, (3.2la)

dV
dt

= ——+2' V. (3.21b)

Note that the dissipative terms -a, and -u3 in the first

approximation do not aA'ect the soliton's ve1ocity.
The case when the coefficient a, in Eq. (1.8) is negative

is also physically meaningful: it describes development
of a long-wave instability in a nonlinear medium. Inves-
tigation of the dynamics of the NS soliton (2.41) under
the action of this perturbation has demonstrated that, in
contrast with the unperturbed case, in which the soliton's
amplitude g and velocity —4g may take arbi-
trary values, in the presence of this perturbation
their stationary values are determined uniquely:
rP= —'a&/(a2+2u3) and /=0 (Pereira and Stenflo, 1977).
However, it is clear that the corresponding soliton is un-
stable, since as fx I

—+ ~, u(x, t) coincides asymptotically
with the unstable trivial solution u =0. At the same
time, it is interesting to consider the case in which a
metastable trivial solution is unstable against finite per-
turbations (a system with hard excitation). The simplest
model is (Petviashvili and Sergeev, 1984)

P(u)= —ia,u+ia, u„, +i~, fu I' —ia, fu I'u,

where all the coefficients a] to u4 are positive, and the
last term is necessary to provide global stability. It is
easy to determine that a hard excitation does indeed take
place under the condition

The simplest problem is the damping and braking of a
NS soliton (2.41) under the action of the dissipative per-
turbation (1.8). The resulting evolution equations for the
soliton's amplitude g and velocity V= —4g are (Ott and
Sudan, 1969; Karpman and Maslov, 1977; Nozaki and
Bekki, 1983)

(3.23')

where the upper and lower signs correspond, respective-
ly, to stable and unstable solitons (Malomed, 1987j). As
can be seen from Eq. (3.23), the condition
a3 ~ a2/2+ Q(6/5)a, a~, necessary for the existence of a
soliton, is more restrictive than the general hard-
excitation condition (3.22).

Recently, Joets and Ribotta (1988) observed a stable
solitonlike pulse of oscillatory convection in a layer of a
nematic liquid crystal heated from below. Malomed
(1988f) has interpreted this solitary pulse as a soliton in a
system with hard excitation [see also Thual and Fauve
(1988)].

The coefficient az in Eq. (1.8) may be negative too. In
this case, it is natural to assume a, =0, and it is necessary
to supplement the perturbation (1.8) by the additional
stabilizing term ia4u—„(a&)0). The corresponding
perturbation-induced evolution equations for the
soliton's parameters have been derived by Pismen (1987),
who demonstrated that in this case the perturbation may
support an equilibrium (stationary) soliton with a
nonzero velocity. %'ith a change of parameters aJ, bifur-
cations between the quiescent. and steadily moving equi-
librium solitons take place.

Another interesting example of a dissipatively per-
turbed NS equation is

iu, +u..+2lu I'u =au I fu(x')I'(x —x')-'dx',

dV d=Peg, ~ =0,
dt dt

(3.25)

where P—= (192/m. )g(3) =7.44. Thus nonlinear Landau
damping acts upon a soliton as a constant force. Analo-
gous results have been obtained by Kodama and
Hasegawa (1986) for the equation

(3.24)

where e is a small real parameter that describes the non-
linear Landau damping of the Langmuir wave envelope
(Ichikawa and Taniuti, 1973; see also Pecseli and Dysthe,
1977). Dynamics of one soliton described by Eq. (3.24)
was studied in the adiabatic approximation by Ichikawa
(1979). He derived the following evolution equation for
the soliton velocity and amplitude:

a, ~2+a,a, . (3.22) iu, +u„„+2I u f'u = —
—,'e I u f'u, (3.26)

d (3.23)

According to Eq. (3.23), the stationary values of the am-

As before, the solution (2.41) may exist with zero velocity
only, and the evolution equation for its amplitude in the
first order of perturbation theory is [cf Eq. (3.21.a)]

e being again a small real parameter. Equation (3.26) de-
scribes the evolution of an electromagnetic wave en-
velope in a nonlinear one-mode waveguide with regard to
nonlinear dissipation generated by the induced Raman
scattering. According to Kodama and Hasegawa (1986),
the evolution equations for the soliton's parameters are
[cf. Eq. (3.25)]
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dV d—128 ~~4 ~ —0
dt " ' dt

(3.25')

A problem of practical importance is to compensate
for dissipative damping of optical solitons in a
monomode fiber. According to Kodama and Hasegawa
(1982), this compensation can be realized by means of a
periodically acting stimulated Raman scattering. In the
simplest version, a conformable model is

iu, +u„„+2~ u~ u= —iyu+iya g 5(x —«)u,

(3.27)

the second term on the right-hand side accounting. for
the Raman pump. In Eq. (3.27), as well as in Eq. (3.26),
the variables t and x stand for the spatial coordinate and
time, respectively (not vice versa). Inserting the right-
hand side of Eq. (3.27) into the general perturbation-
induced evolution equation (3.17), one can see that the
chosen form of the pump term in Eq. (3.27) provides, on
average, exact compensation of dissipative losses for all
values of the soliton amplitude and velocity. Another
compensation model, based on the small-amplitude Ra-
man pumping wave, has been investigated numerically by
Dianov et al. (1985) and analytically by Kivshar (1988b).

When dissipation acts in combination with the external
time-periodic force [see Eq. (1.9)], a soliton may survive,
being locked to the frequency Q of the external force.
One looks for a perturbed solution for a quiescent soliton
in the form

exp[ i Qt ig( t )
—]

cosh[2'(t)x ]
(3.28)

where y(t) is a real phase [cf. Eqs. (2.41) and (2.42)].
Then Eqs. (3.17) and (3.19) reduce to the autonomous
dynamical system (Kaup and Newell, 1978a, 1978b)

which described parametric pumping by a time-periodic
external field in magnetic systems (Kivshar, 1988a). In
this case the soliton is taken in the same form as Eq.
(3.28), and the equations analogous to Eqs. (3.29) and
(3.30) are

de
dt

= —2ag —2e21 sin(2y),

dX 2

dt
=co —4g —e cos(2y) .

(3.34)

(3.35)

The dynamical system (3.34) and (3.35) has stable sta-
tionary points [cf. Eq. (3.31)]

1
( 1 )n( ++e2 ~2)1/2

Xn +n ++0 ~

(3.36)

(3.37)

where n =0,1, and where sin(2yo)= —a/e. Clearly a
stable soliton exists for

a(e((co +a )' (3.38)

[cf. Eq. (3.32)]. This problem is qualitatively difFerent
from that considered above: the dynamical system (3.34)
and (3.35) possesses, in addition to the stationary points
(3.36) and (3.37), the trivial stationary point 2I =0;
y =const, which is also stable under the condition

e & ( 2+~2)1/2 (3.39)

[note that conditions (3.38) and (3.39) are compatible].
This means that there is a separatrix on the phase plane
(g,y), which is a boundary between attraction basins of
the two types of stationary points [a dynamical system
with a qualitatively similar phase plane was investigated
earlier by Bogdan, Kosevich, and Manzhos (1985)].

Karpman and Maslov (1982) have demonstrated how
the perturbative approach can be applied to the NS equa-
tion with slowly varying coefFicients [cf. Eq. (3.8)],

dn=
dt

= —2ag+ —'me sing, (3.29) iv, +a(er)~u~ v+P(er)u „=0, (3.40)

d =0—4g
dt

(3.30)

(see a phase portrait of this system in the paper cited
above). The dynamical system (3.29) and (3.30) possesses
two stable stationary points actually equivalent to each
other:

0u(x, t) =
2

v(x, 'r), cT—:cfp,

where e is a small parameter. The substitution

t= I p(er')dr',
1/2 (3.41)

21„=—,'( —I )"&Q, y„=n~+ yo (3.31)
transforms Eq. (3.40) into the standard form (1.6) with
the perturbation

e,h, =2a1&Q/n .

A related problem is the perturbation

(3.32)

(n =0, 1), where singo=2a&Q/m. e. It follows from the
expression for yz that a stable soliton, frequency-locked
to the external ac force, exists provided the force ampli-
tude exceeds the threshold value (Kaup and Newell,
1978a, 1978b)

P(u)= — u
2 0'

[cf. Eq. (3.8')]. Cxrimshaw (1979b) investigated the one-
soliton dynamics governed by the same equation (3.40)
with slowly varying coefficients, with the aid of a multi-
scale expansion technique.

Another example of a NS equation with a variable
coefficient,

eP( u )=eu e —icxu (3.33) iu, +u„„+2~u ~
u =n(x)u, (3.42)
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C. Sine-Gordon equation

1. A kink under the action of spatially
homogeneous perturbations

As described in Sec. II.D, the sine-Gordon equation
admits two fundamental types of solitonic solutions: a
kink and a breather. For a kink the general evolution
equations for the SG discrete-spectrum scattering data
yield (Kaup and Newell, 1978a; McLaughlin and Scott,
1978)

dV ea +„P[u,(z)]
(1—V) i dz

dt 4 cos4z
(3.43a)

zP u, (z)= V — V(1 —V') f dz
'

. (3.43b)
dt 4 — coshz

is known in plasma physics, where it describes Langmuir
waves in a plasma with inhomogeneous density (see, for
example, Chen and Liu, 1978; Cow, Tsintsadze, and
Tskhakaya, 1982). In particular, assuming that the
profile n (x) is linear, n (x)=2ax, Chen and Liu (1978)
have demonstrated that the corresponding perturbed NS
equation can be reduced to the unperturbed one by
means of the transformation u =u exp[ —2i(atx

4a—t /3)], x =x+2at . In a more general case (d n/
dx %0), this perturbation is irreducible; for instance, a
soliton may perform small oscillations near a density
minimum described by n (x ) =Px, P)0. The oscilla-
tions may be regarded in the framework of an adiabatic
approximation similar to that described above (Cow,
Tsintsadze, and Tskhakaya, 1982).

(see Driihl and Alsing, 1986). In this notation, the unper-
turbed kink takes the form

u„(~,y)=4tan-'[e "&-~'], g—=~/4v'. (3.46)

In Eq. (3.46), the parameter v is related to the usual kink
velocity Vfrom Eqs. (2.61): v= —,'&(I+ V)/(1 —V).

General perturbation-induced evolntion equations for
the quantities v and g have been derived (by means of a
conformable variant of IST perturbation theory) by
Spatschek (1979).

Vo =o. 1+ 4
i &E
L

Analogously, for the constant field (1.21),
2 —1/2

2pV =o sgne 1+0

(3.47)

(3.48)

=—f +[uk(z)]sechz dz,
d~ 4

dg 1 e+ f z ff[uz(z)]sechz dz,
d w 4~2 8~2

where z=2v(y —g). Spatschek (1979) has also derived
general perturbation-induced evolution equations for
continuous-spectrum scattering data in the light-cone
coordinates.

A simple but physically important problem pertains to
the motion of the kink in the external field (1.17) or in the
field (1.21) in the presence of dissipation (1.16). In partic-
ular, if the external field (1.17) is constant, the kink may
move steadily with the velocity (McLaughlin and Scott,
1978)

2 —1/2

+ oo

P = — u, u dx = 8 V/'t/1 —V (3.44a)

However, there is a simpler and more popular approach
to evolution equations for a kink in the adiabatic approx-
imation. This approach is based on the use of modified
conservation laws (Christiansen and Olsen, 1982; Berg-
man et al. , 1983; Olsen and Samuelsen, 1983; Levring,
Samuelsen, and Olsen, 1984; Salerno et al. , 1985; Sakai,
Samuelsen, and Olsen, 1987). Taking, for instance, the
expression for the kink's momentum

When a kink moves steadily with velocity Vo, the energy
dissipation rate is equal exactly to the rate of energy in-
put from the external drive. If the external field (1.21)
contains a variable component, a kink's law of motion
can be found in the same manner as for the perturbation
(1.21) (Bar'yakhtar et al. , 1985). As to the perturbation
(1.17) with a variable f (t), to determine a law of motion
for the kink one should take into account that the full
wave field must be sought in the form

u(x, t)=uo(t)+ U(x, t), (3.49)
and using the perturbed SG equation (1.15), one can find

dP +~= —ef dx u, P[u] .
dt

(3.44b)

u,x+sinu =eII(u) (3.45)

Then, substituting into the right-hand side of Eq. (3.44b)
u(x, t) in the form of the unperturbed kink (2.61a), one
can express the right-hand side in terms of the kink's ve-
locity. Together with Eq. (3.44a), this yields a particle-
like equation of motion for the kink.

In some applications, a perturbed SG equation arises
naturally in the so-called light-cone coordinates
r= —,'(x+t) and y= —,'(t —x):

where uo(t) is a spatially uniform solution of the SG
equation far. from the kink, and U(x, t) is the kink proper
(Olsen and Samuelsen, 1983). The perturbed SG equa-
tion for the redefined wave field U(x, t) in the first order
in e takes the form

U„—U „+sinU=uo(t)(1 —cosU) . (3.50)

If, for instance, f(t) =cos(Qt), the transformation of the
original perturbed SG equation into the form of Eq.
(3.50) is actually equivalent to a change of the perturba-
tion parameter e in the resultant equation of motion for a
kink by the renormalized parameter e/~Q —1~. For the
near-resonant case, when

~
0 —1 I ((1, the renormalizing
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factor takes a more complicated form, which has been
calculated by Malomed (1987c) and will be given below in
subsection VI.C.1 [see Eq. (6.16)].

2. A kink under the action of spatially
inhomogeneous perturbations

In this subsection we shall deal with perturbing terms
of the form

uf(x t)= f+uk(x t' Vo) (3.54)

where uk is the SG kink (2.61a), and Vo is the equilibri-
um velocity (3.47).

Interaction between a Auxon and the microshort was
considered by McLaughlin and Scott (1978), who demon-
strated that the Quxon may be regarded as a particle of
mass m =8 with position g(t) moving in the repulsive po-
tential

P(u)= —h(x)G'(u) . (3.51)'
U(g') = —2e sech g (3.55)

Inserting Eq. (3.51) into the general adiabatic evolution
equations (3 43), in the first approximation in e one can
transform the kink's equation of motion into that for a
(generally speaking, relativistic) particle of mass m=8
moving in the potential

U(g)= J dx It(x)GI4tan '[exp(x —g')]] . (3.52)

The analogy between perturbed solitons and particles has
been stressed by many authors, including Kaup and
Newell (1978a), Gorshkov and Ostrovskii (1981), and
Bergman et aI. (1983).

a. A localinhomogeneityin a long Josephson junction

The perturbed SG equation

u« —u,„+sinu = f 1 u, —P5(x—)u, —+e5(x)sinu (3.53)

(with P=O) is a standard model of a damped dc-driven
long Josephson junction with a local inhomogeneity of
the maximum Josephson current density (McLaughlin
and Scott, 1978; see also Barone and Paterno, 1982, and
Likharev, 1985). In Eq. (3.53) f stands for the dc bias
current density, y is a phenomenological dissipative con-
stant, and e is a "strength" of the local inhomogeneity
[e)0 and e (0 correspond, respectively, to a microresis-
tor and microshort (microshunt)]. Local inhomogeneities
of a more general form may affect not only the local
value of a maximum Josephson current, which is ac-
counted for by the term —e' in Eq. (3.53), but also a local
value of the dissipative coefficient, which is taken into ac-
count by the term -p (p) 0). A local inhomogeneity of
this kind can be created, for example, by the action of a
concentrated laser beam on a long Josephson junction
(Scheuermann et al. , 1983) [Eq. (3.53) as a model of such
an inhomogeneity was proposed by Chang (1985)]. The
same model may be employed to describe a local inhomo-
geneity created by superimposing a short resistor on the
junction (Akoh et al. , 1985). Finally the model describes
a microshunt (i.e., a narrow bridge connecting two bulk
superconductors) made of a normal (nonsuperconduct-
ing) metal (Kivshar and Malomed, 1988e; Kivshar,
Malomed, and Nepomnyashchy, 1988). A fluxon in a
long Josephson junction is described by the following ap™
proximate solution to Eq. (3.53):

[cf. Eq. (3.52)] in the presence of a friction force
F&, = 8y—(d g/dt) and a constant driving force
F=2rro f. The driving force has its own potential

2vro f—g, so that the full effective one-fiuxon potential is

U«, (g') = 2e sec—h g 2mcr f—g . . (3.55')

the maximum (threshold) value f,z, of the bias current
density allowing the capture can be found in a very sim-
ple way by equating the kinetic energy of the free Auxon

Ez;„=4VO to the height Uo =2lel of the potential barrier
(3.55):

(3.57)

(McLaughlin and Scott, 1978). Kivshar and Malomed
(1988e; see also Kivshar, Malomed, and Nepomnyash-
chy, 1988) have found a dynamical correction to the ki-
nematic result (3.57):

(3.58)

This correction is much smaller than the basic expression
(3.57) due to the adoption of condition (3.56). The
significance of the correction (3.58) can be seen by com-
paring it with results of a direct numerical solution of the
equation of motion for a full equation of motion for a
fiuxon (see Fig. 2).

In contrast to the case of a microshort, calculation of
the threshold bias current density admitting the capture
of a Auxon by a microresistor must be based upon
dynamical considerations in the lowest approximation
(Kivshar and Malomed, 1988e; Kivshar, Malomed, and
Nepomnyashchy 1988). A microresistor gives rise to the
same one-fiuxon effective potential (3.55) with positive e.
Clearly, this time the potential is attractive irrespective
of the Auxon's polarity. The calculation relies upon the
same fundamental assumption (3.56). The threshold
value of f is determined by the energy balance in the fol-
lowing form: the total dissipative energy loss

(3.59)

Note that the repulsive character of the effective poten-
tial (3.55) does not depend on the fiuxon's polarity.

An important dynamical process is the capture of a
moving Auxon by a microshort. Under the condition

(3.56)
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The term (3.63) multiplied by a small e describes a local
inhomogeneity created by an Abrikosov vortex perpen-
dicular to the junction (Aslamasov and Gurovich, 1984).
It is easy to find that the perturbation (3.63) acts upon a
Auxon as an effective potential of the form

U( g') =2a e sech/ (3.64)

0 0.2 0.4 Q6
I

0.8
I

I.O

FICx. 2. The dependence of the threshold value f,h„of the bias
current density for capture of a moving Auxon by a microshort
on the parameters y and e: 6—= (m/2IeI)f, „, and 1 —=y&2/I@I.
Dot-dashed curve, Eq. (3.57); dashed curve, Eq. (3.57) with the
correction (3.58); solid curve, numerical results of Kivshar,
Malomed, and Nepomnyashchy (1988).

must be equal to the kinetic energy 4VO corresponding to
the velocity (3.47) with f=f,z, . Due to condition (3.56),
one may insert into (3.59) the law of motion

d =&e/2sechg,
dt

(3.60)

which corresponds to the motion of a Auxon with zero
velocity at infinity in the absence of bias current and dis-
sipation. Thus one can obtain

Ixz I
=8@~&~/2 (3.61)

and, inserting this expression into the energy balance
equation, one finds eventually

16&2 ~-,
thr &'Y (3.62)

P=5'(x) . (3.63)

Note that the threshold value (3.62) is much smaller than
that of Eq. (3.57). A correction to (3.62) has also been
found by Kivshar, Malomed, and Nepomnyashchy
(1988). These authors have demonstrated that the
analytical results are in very good agreement with nu-
merical ones.

In a real experiment, a microshort or a microresistor
may have a size comparable to the Josephson penetration
length, i.e., a length characteristic of a Auxon. In this re-
lation, it is meaningful to find the quantity f,&, for a
finite-size inhomogeneity. This has been done by Kiv-
shar, Kosevich, and Chubykalo (1988).

In the theory of long Josephson junctions there also
occurs another localized perturbation,

u« —u„„—sinu = —yu, f +e5(x)u„. — (3.65)

The last term on the right-hand side of Eq. (3.65) acts
upon a nonrelativistic Auxon as the effective potential

U(g) =4e tanhg . (3.66)

With regard to the presence of the terms —yu, f, the-
potential (3.66) creates an effective potential well that can
capture a moving Auxon. The threshold value of the bias
current density f, which admits the capture, has been
found by Kivshar and Malomed (19881) under the same
condition (3.56):

2

f,„,= /2e — ln(e/y ),

where the erst term takes its origin in a kinematic ap-
proximation analogous to that of McL'aughlin and Scott
(1978), while the second is a dynamical correction similar
to Eq. (3.58).

Another physically interesting problem is to find
threshold conditions for the capture of a Quxon by a
combined inhomogeneity described by the two terms —e
and -P on the right-hand side of Eq. (3.53). The most
interesting analytical results can be obtained under the
condition

[cf. Eq. (3.55)]. As follows from Eq. (3.64), in contrast
with a microshort or microresistor, the Abrikosov vortex
attracts or repulses a Auxon depending upon its polarity.
It is evident that in the case of attraction a Auxon may be
pinned by the vortex. Less trivial is the fact that there
also exists an equilibrium state in which two unipolar
Auxons attracted by the vortex rest at distances =in@
to the right and to the left of the vortex (Gurovich and
Mikhalev, 1987; in the case of an attractive microresis-
tor, such an equilibrium state is not possible). However,
this state has no physical meaning because it is unstable
against antisymmetric perturbations, i.e., shifts of both
Auxons to the left or to the right with the distance be-
tween them kept constant.

One can also find the threshold values of the bias
- current admitting the capture of a Auxon by the Abriko-
sov vortex. In the case of repulsion, f,h, coincides, in
the lowest approximation, with Eq. (3.57), while in the
attraction case dynamical consideration yields

f 2 —[1612( 1 )/~5/2]~3+&
According to Kosevich, Kivshar, and Chubykalo

(1987b) and Sakai, Samuelsen, and Olsen (1987), a long
Josephson junction with an inductance step gives rise to a
localized perturbation described by the following equa-
tion:
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p»v'! e!»y (3.67)

(Kivshar and Malomed, 1988e; Kivshar, Malomed, and
Nepomnyashchy, 1988). First let us consider the case
e &0 (a combination of a microshort with a dissipative in-
homogeneity). In this case the fluxon's law of motion in
the vicinity of the inhomogeneity takes the approximate
form th 0

d g P dg'

d)2

Integrating Eq. (3.68) yields

V(g)= Vo —(P/2)(tanhg+1) .

(3.68)

(3.69)

FIG. 3. The dependence of the threshold bias current density
f,i,„on the "strength" P of the dissipative part of the micro-
inhomogeneity in the case e & 0, P» v'e »y.

According to Eq. (3.69), as r ++ Oe t—he fluxon ap-
proaches the stop point

go =arctanh
2VO

~ 1 (3.70)

Note that Eq. (3.71) does not explicitly contain the pa-
rameter e; recall, however, that this result is true under
the condition (3.67).

Let us proceed to the case e & 0 (a "hybrid" of a mi-

croresistor with the dissipative inhomogeneity). We shall
assume that condition (3.67) holds. In this case we again
base our consideration on Eq. (3.70). The fluxon will be
captured provided ge (g,„,where g,„is the coordinate
of the maximum of the total efFective potential

U(g)= —2esech g—2mfg (3.72)

(we assuine cr =+1). The value g~,„ is defined by the
equation

nf =2etanhg', „(1—tanh g,„) . (3.73)

Setting g,„=ge, we obtain an equation for f,i„.
Straightforward analysis based on Eqs. (3.72) and (3.73)
yields the following results: if yP/e((&3 —1)/3,

provided Vo &P. We may regard the fluxon as captured
if the stop point lies to the left of the maximum g'=0 of
the repulsive potential (3.55) (for definiteness, we assume
o = + 1, i.e., the fluxon moves from left to right). So, f,i„
is determined by the condition g'0=0, or, with regard to
Eq. (3.47),

(3.71)

The full dependence f,i„(P) for fixed e and y (in the con-
sidered regime e) 0, P))v'e))y) is shown in Fig. 3. In
the picture, the value of f,s, corresponding to P=O is

(f i„)o=4(v'2y v'e/n)'~ In .the range Ve &&13&p
=(&3—1)e/3y the dependence is given by Eq. (3.74),
while at P & P, f„z, =—(f,i„),„; see Eq. (3.75). Note that,
as follows from Eq. (3.74), df, i„/2 P=0 at P=P, so that
the graph in Fig. 3 is smooth at the point P=P.

h A lattice of localinhomogeneities
in a long Josephson junction

A physically relevant generalization of Eq. (3.53) is

u« —u +sinu =e g 5(x —na )sinu f yu, , ——

(3.76)

which describes a long Josephson juntion with periodical-
ly installed micro-inhomogeneities (McLaughlin and
Scott, 1978). As far as we know, the first realization of a
long Josephson junction with a periodic lattice of mi-
croresistors (e &0) was achieved in an experiment per-
formed by Serpuchenko and Ustinov (1987) (see also
Golubov, Serpuchenko, and Ustinov, 1988), while a lat-
tice of microshorts has not as yet been constructed.
Motion of a fluxon in the model (3.76)- has been analyzed
by Malomed (1988a). The lattice gives rise to the
efFective one-fIuxon potential

f,i„=(yP/m )(3++1—4yP/e) .

At yP/e=(v'3 —1)/3 Eq. (3.74) attains the value

(f,„,),„=4@/3&3m,

(3.74)

(3.75)

U(g) = —2e g sech (g—an)
n = —oo

8e 2
)

z q 2K(q)
~a 1 a

at which the extrema of the potential (3.72) merge and
disappear, so that the value (3.75) is the threshold bias
current for

yp/e& (v'3 —1)/3 .

—K (q)E (q)+-a
2

(3.77)

where sn is the Jacobi elliptic sine, and the auxiliary
modulus q is uniquely determined by the equation
ma '=K(+1—

q )/K(q), K(q) and E(q) being the
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complete elliptic integrals. Equilibrium positions of the
Quxon are determined by the equation

(3.78)

Proceeding from Eq. (3.78), it is easy to find the static
quantity f„,which is a minimum bias current density
that causes a pinned Auxon to move:

2 ==2 16 eK (q)/qa

X[(1+q )(2—
q )(q —

—,')+(1+q —
q )

~ ] .

(3.79)

The threshold value f,)„defined as above can be found
under the assumption that the potential force corre-
sponding to Eq. (3.77) is much larger than the friction
force —Sy dgldt Fo.r a ~ 1, this requirement amounts
to the inequality y ((&~e~ [cf. Eq. (3.56)], while for a
((1 it is more restrictive. To find f, „)oneneeds a
threshold trajectory that connects two adjacent maxima
of the potential (3.77), the driving and friction forces be-
ing neglected. In the cases e(0 (the lattice of mi-
croshorts) and e) 0 (the lattice of microresistors), the
equations determining the threshold trajectory take the
forms, respectively,

2

V =e(1r /2) a sinh
Q

[K(q)q] (3.87)

on the lattice spacing Q is shown in Fig. 4. In the limit
Q ~~, when we return to an isolated local inhomogenei-
ty, Eq. (3.85) goes over into (3.57). As to (3.86), it gives
zero in the same limit. The reason is that the corre-
sponding nonzero expression (3.62) can only be obtained
in the next order with respect to the small parameter
y/&e. In the opposite limit a ~0, Eqs. (3.85) and (3.86)
become exponentially small in a

In an experiment, the values f,)„and f;„can be ob-
served as terminal points of two branches of a current-
voltage characteristic of the Josephson junction, i.e., the
dependence of the mean Iluxon velocity V (proportional
to dc voltage across the junction) upon the bias current
density f. In principle, one can find the whole current-
voltage characteristic, proceeding from the Auxon's equa-
tion of motion corresponding to the efFective potential
(3.77). In an analytical form, this can be done for a
model with the term e sin()rx )sinu instead of
eg„+ 5(x na) —isnuon the right-hand side of Eq.
(3.76) (we again assume y ((&e). This model has been
proposed by Mkrtchyan and Shmidt (1979). In the "non-
relativistic" range V &&1, the resultant current-voltage
characteristic can be written in a parametric representa-
tion (Malomed, 1988a)

dg' ' &2~a~ 2K(q)K qqsn , qdt a a 128 . mf =e a sinh
2 Q

[E(q)]'q '7' (3.88)

dg'+' &2e 2E (q)
dt a

K q qcll
a

(3.81)
where q is an auxiliary elliptic modulus. The current-
voltage characteristic (3.87) and (3.88) is monotonic; see
Fig. 5. The value

Expedient boundary conditions to Eqs. (3.80) and (3.81)
are, respectively,

8y 2e
thr .

a sinh(vr /a)
'=g(r = — )=0, g' '= g(r =+ )=a— (3.82)

corresponds to q= 1. As can be seen from Eq. (3.87), at

g(+ ) — g(+ )—Q (+ Q
(3.83)

The value f,)„ is determined by equating the dissipative
energy loss along the threshold trajectory,

'2

E;„=SyI dt=Sy I dg, (3.84)
I

thr

to the compensating work 2~fa of the bias current. In-
serting Eqs. (3.80)—(3.83) into (3.84) yields, for e(0 and
e&0,

E{—)

f ( ) d&ss

2mathr
2y&2iei 1+q

7TQ 1 g
(3.85)

E(+)
~(+ ) diss 4P + 26

thr SmJtr (3.86)

The dependence of the threshold values (3.85) and (3.86)

FICx. 4. The dependences (3.85} and (3.86} of the threshold bias
current density upon the lattice spacing a. At a —+ 00, Eq. (3.86}
vanishes, while (3.85) approaches the value (f,i„)0=(2yl
a)&2~ E~ corresponding to an isolated microshort; see Eq. (3.57).
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thr min

FIG. 5. The current-voltage characteristic (3.87) and (3.88) of a
long Josephson junction with a critical supercurrent density
subjected to sinusoidal modulation.

this value of q the mean velocity vanishes. The value f„
in this model can be found with no difficulty:
f„=4m e/a sinh (n. /a). As is shown in Fig. 5, the
range f,z, (f (f„is hysteretic, the arrows on the two
branches pointing out their sense. In the relativistic
range (1—V )

' ) 1 the current-voltage characteristic of
the present model practically coincides with that of the
homogeneous long Josephson junction.

It is also of interest to consider a model describing a
lattice of dissipative inhomogeneities (Kivshar and
Malomed, 1988e):

U(g)=2ecosOsech g+2esin8sinhgsech g; (3.90)

see Fig. 6, where, for convenience, the constant ecosO
has been added to the potential. In what follows we shall
assume, for definiteness, e) 0 (the case 8=0, e(0 men-
tioned above is then equivalent to 8=sr, e) 0). The po-
tential (3.90) has a minimum at the point g';„,

sinhg;„= —cot( 8/2 ), (3.91)

the external dc electric field (voltage), a is again a phe-
nomenological dissipative coefficient, and M is an integer
+ 1. A commensurate charge-density-wave system prop-
er corresponds to M ) 3 (see, for example, Horovitz,
1986), while the cases M= 1 and 2 correspond to a non-
commensurate system containing an ionic superlattice
that induces effective commensurability [the case M=2
was discussed by Fukuyama (1978); the SG model with
M= 1 was introduced by Hansen and Carneiro (1984) and
Apostol and Baldea (1985)]. In what follows we shall
concentrate on the case M= 1, following Malomed
(1988e); results for higher M are qualitatively analogous
(Malomed and Nepomnyashchy, 1989b).

Recall that Eq. (3.53) is a particular case of the model
(3.89) with M= 1 and 8=0 or m.. We shall demonstrate
that generalization to arbitrary 0 yields nontrivial results.

In charge-density-wave theory, a kink represents a
charged soliton (Griiner and Zettl, 1985; Horovitz, 1986).
A charged impurity, described by the term -e from the
right-hand side of Eq. (3.89) with M= 1, acts upon the
kink as an effective potential,

+ 00

u« —u„„+sinu = —yu, — g P„5(x —x„)u, e, —

(3.76')

and a maximum at the point g,„,

sinhg, „=tan( 0/2 ) .

The maximum value of U(g) attained at g=g, „is

(3.92)

where the lattice may be either regular or random (all P„
are positive). Kivshar and Malomed (1988e) have
demonstrated that in either case the average velocity
( V) of a fiuxon (here, averaging is realized with respect
to time) is related to the bias current density e according
to Eq. (3.47), where y must be replaced by y,s.=y+P/a.
Here I3 and a are the spatial averages of the inhomogenei-
ty "strength" and the lattice spacing (a —=x„+,—x„), re-
spectively.

U,„=e(1+cos8) . (3.93)

Using assumption (3.56), it is straightforward to find

c. Localimpuritiesin a commensurate
charge-density-wave system

A long commensurate charge-density-wave (CDW)
system with a localized impurity is described by the equa-
tion [cf. Eq. (3.53)]

u« —u„„+sinu = —e5(x)sin +8 f yu, — —
min

(3.89)

(Malomed, 1988e), where 8 is an effective coordinate of a
charged impurity relative to the underlying lattice, f is

FICi. 6. The shape of the effective potential (3.90). For
definiteness, the case 0 & 0 & m/2 is shown.
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f,h„= (2y/m. )&2e icos(8/2) i (3.94)

[cf. Eq. (3.57)]. The first dynamical correction to Eq.
(3.94) [analogous to correction (3.58) to Eq. (3.57)] has
also been found by Malomed (1988e). The corresponding
value of the energy EE dissipated by a kink moving ac-
cording to the threshold law of motion is [cf. Eq. (3.61)]

&E =Syne/2 cos(8/2)ln 1

cos (m/4+8/4)

+ —,
' (m+8)sin(8/2) (3.95)

The sign + should be taken opposite to the sign of the
kink's polarity o.. The reason for the polarity-dependent
character of AE is quite clear: kinks with opposite polar-
ities arrive at the point g,„from opposite directions and,
due to the asymmetry of the potential in the general case
(sin8%0; see Fig. 6), their laws of motion are different.
In general, when 8 is not too close to vr, Eq. (3.95) yields

fi~r =fi~r' 2?'~E/~'f ~—h,', (3.96)

where fIi„' is given by Eq. (3.94). The dependence of the
corrected expression for f,h, on the kink's polarity is a
new feature, absent in the particular case 8=0 [when Eq.
(2.10) goes over into (3.58)].

In the special case 8=m —6, b, & y&@,

f,„„=(y/~)[2(eh'+8myv'2e)]'~' . (3.97)

the threshold (maximum) value of the external drive f
which allows the capture of a kink moving with the equi-
librium velocity (3.47) by the potential trap (3.90):

In particular, at b =0 [wheu the maximum of the poten-
tial (3.90) disappears], one recovers Eq. (3.62).

The coordinate go of a kink pinned by the inhomo-
geneity is determined by equating the total force acting
upon it to zero:

2mo f — U(g) =0 .a (3.98)

a'U
0 ~

(3.99)

Inserting Eq. (3.90) into Eq. (3.99), one eventually finds
the relation between 8 and f,„ to be

At f=0 Eq. (3.98) has the two roots g=g, „and g=g;„
[see Eqs. (3.91) and (3.92)]. With an increase in f, de-
pending on the sign of of and the value of 8, these two
roots may remain, or two more roots may appear which
formally lie at infinity when f=0. In either case, half of
the roots correspond to stable equilibria of the kink, and
the other half correspond to unstable ones. With the fur-
ther growth of f, the stable and unstable equilibria will

inevitably merge and disappear in pairs. If, at f=0, a
CDW system contains a sufficiently large number of iso-
lated impurities, it is natural to suppose that all the kinks
are pinned, i.e., the solitonic contribution to the conduc-
tivity of the system is zero. With the. growth of f, the
pinned state of a given kink will disappear at some valuef,„which depends on 8, i.e., at f )f,„(8) the kink
will be a free charge carrier. Since a pinned state disap-
pears through a merger with an unstable equilibrium, at
f=f,„(8) Eq. (3.98) must have a double root, i.e., a
pinned state disappears at a point where

16cot'8= I[(9m'f', „+16~')' ' —5~f,„]/(2rrf, „)J
'X

I [(97r f + 16' ) 157rf ]/[(9' f + 16' ) 67Tf~gg] (3.100)

For a given f, kinks pinned originally by inhomogeneities with 8 such that f,„(8)&f become free. What, then, is the
fraction of free kinks for a given f, assuming that 8 is a random quantity distributed uniformly over the interval [0;2m]?
Analysis based on Eq. (3.100) with regard to necessary sign relations, and averaging over 8 yield the following expres-
sions for the density of free kinks n as a function of the external force (dc voltage) f: (a) in the range 0 &f & v'2/27m/vr

n (f)=noF(~f /e); (3.10la)

(b) in the range i/2/27m/m &f & (4/&27)e/~

n (f)=no[ —,
' —F(vrf /e)]; (3.10lb)

(c) in the range ( 4/)/72)e/m' &f & e/n

n (f)=no[ ,'+2F(mf /e)), —

where no is the total density of kinks of both polarities in the system, and the function F (x ) is

(3.101c)

F(x)= tan 'i —' I[+1+(3x/4) —5x]/(2x) J' [+I+(3x/4) —15x]/[+1+(3x/4) —6x]i .
2n 4

(3.102)
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The last pinned state disappears at f =e/m, i.e.,

n( f)—:no (3.101d)

3. Solitonic conductivity in a continuum model
of randomly inhomogeneous charge-density-vvave
systems and long Josephson junctions

at f & e/m. The full dependence n (f ) is depicted in Fig.
7.

The released kinks may be regarded as free provided f
exceeds the maximum value of the threshold force (3.94),

(f,h„),„=(2u/n ) t/2e, (3.103)

attained at 8=0. Due to assumption (3.56), this value is
small compared to the values f -e, a fact which is cru'-

cial from the viewpoint of the dependence (3.101) and
(3.102).

In an experiment, the dependence n (f), along with Eq.
(3.42), can manifest itself through the current-voltage
characteristic of the system, i.e., through an experirnen-
tally measurable dependence of the current

j=n (f)VO(f)

on the dc voltage f.
In fact, the model described above is a model of non-

linear dc conductivity of a quasi-one-dimensional CDW
system, which may be regarded as supplementary to the
better known model of Maki (1977) based upon calcula-
tion of a quantum production rate of kink-antikink pairs
in the external field. The present model can be extended
to include ac conductivity as well (Malomed, 1988e). It is
also worth noting that many real CDW systems should
be described by the overdamped SG equation (i.e., with

y »1, when the term u«may be neglected), rather than
by the usual SG equation (see, for example, Weger and
Horovitz, 1982; Horovitz and Trullinger, 1984). Calcula-
tion of the dc and ac conductivities along the lines out-
lined above can be accomplished within the framework of
the overdamped model (Malomed and Nepomnyashchy,
1989b).

a. General analysis

In real doped CDW systems the mean distance I be-
tween the charged impurities is small compared to the
kink's size, l «1 (Fukuyama, 1978). In this case Eq.
(3.89) with a large number of impurities may be approxi-
mated by the equation (Fukuyarna, 1978; Malomed,
1988e, 1989a)

Q 0
utt+7'u( ux~ +sinu +f =g)(x)sin +gp(x)cos

(3.104)

where g& 2(x) are Gaussian random functions determined
by the correlators

(3.105a)

& g, (x)g,(x') &
=

& g,(x)g,(x') & =Z'5(x —x'), (3.105b)

and where Z =e /(21). In what follows, Z will also be
regarded as a small parameter. The model (3.104) and
(3.105) with M=1, gz=O was proposed by Mineev,
Feigel'man, and Shmidt (1981) to describe a long Joseph-
son junction with maximum supercurrent density subject
to random modulation.

In many one-dimensional metals in which CDW con-
ductivity takes place dissipation may be very strong; see
Weger and Horovitz (1982), Horovitz and Trullinger
(1984). In this case, Eq. (3.104) must be replaced by its
overdamped version,

0 Q
yu, —u„„+sinu +f =g, (x)sin +$2(x)cos

(3.106)

Equation (3.106) with I= 1, $2=0 describes a randomly
inhomogeneous Josephson junction of the SXS type, i.e.,
two bulk superconductors separated by a thin layer of a
normal metal.

The solitonic ac/dc conductivity of the driven damped
and overdamped continuum models (3.104) and (3.106)
has been investigated by Malomed (1988e, 1989b). Here
we shall give the basic results.

An effective one-kink potential corresponding to these
models is [cf. Eq. (3.90)]

U(g)= f "dx g g;(x)U, (g—x),
i =1,2

0 +2/27 4//27
U, (z)=M Il+cos[M 'uk(z)]I,

Uz(z) =I I 1 —sin[M 'uk(z)]],

(3.107)

FICx. 7. The share of free kinks n (f)/no vs the external force
(dc voltage) f according to Eqs. (3.101) and (3.102). The graph
terminates at f=(2y/m)&2e, i.e, the maximum value of f,h, ,

'

see Eq. (3.94).

where uk(z) is the kink wave form (2.61). With an in-

crease in f, a given trapped kink escapes at some f =f„
and g=g„, at which d U/dg =0 [cf. Eq. (3.99)]. The
basic idea of the model is to find the fraction p(f) of
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points g„ for' which f„&f. Proceeding from the
probability-density functional for Gaussian random
fields,

P [g, 2(x)]-exp —f (2e 2) '[g, (x)+$2(x)]dx

one can readily find a probability distribution for the
quantity ~f„~ corresponding to Eq. (3.107) [a similar
problem was solved by Mineev, Feigel'man, and Shmidt
(1981)]:

p (f„)=2(2m/Ii )' e 'exp( 2mf„—/I, .Z ),
where

(3.108)

IJ =I . dx g [d~Uk(x)/dx J] (j= 1,2, 3) . (3.109)
k =1,2

Using Eq. (3.108), it is straightforward to find the above-
mentioned quantity p(f) of kinks released at a given f:

p(f) = f p (f„)df„=erf(v'2' /+I, e) . (3.110)
0

Further analysis difFers for the two models (3.104) and
(3.106).

FIG. 8. The solitonic current-voltage characteristic (3.114) and
(3.112) of the overdamped continuum model (3.106). The
dashed line depicts the solitonic current-voltage characteristic
j=no(m f/4y ) of the overdamped homogeneous system.

b. The overdamped continuum model

In the case of the overdamped model (3.106), we need
to take account of the fact that a released kink may be
trapped again in the vicinity of another point g„withf„)f. So, to find the density of free kinks that contrib-
ute to the solitonic conductivity, it is necessary to know
the maximum density n, (f) of kinks that may be trapped
at a given f. We know that n, (f) is proportional to the
density v of the points g„. It is easy to find
v=rf '(I3/I2), where I2 3 is defined in Eq. (3.109). The
conductivity problem may be considered in the one-kink
approximation provided the density n0 of kinks trapped
at f=0 is small, no « l. In this case the range of con-
cern is f ))Z, where one can easily obtain from Eqs.
(3.108) and (3.110)

The system becomes conductive at f =f0 such that

n, (fo)=no Accordin. g to Eq. (3.111),

fo=(Ii/2' )E 1nno ' . (3.112)

At f )fo the density of free kinks is n (f)=no —n, (f).
The mean velocity of a free kink in the overdamped mod-
el is given by the "nonrelativistic" limit of Eq. (3.47):

V(f) =~f /4y . (3.113)

Thus at f )fo the dependence of the solitonic current j
on the dc voltage f, i.e., the current-voltage characteris-
tic of the overdamped continuum model, takes the form

n, (f)=vp(f)

=(2~') '~ QI, I3/I2ef 'exp( 2m f /I, Z ) . —

(3.111)

j= V(f)[no —n, (f)]
=no(nf /4y) Il —exp[ —(4m fo/Iit )(f fo)]]—

(3.114)

The whole current-voltage characteristic is shown
schematically in Fig. 8. As follows from Eq. (3.114), the
transient region shown in Fig. 8 is 0 &f fo

& b,f—
=I,Z /4+ fo.

c. The damped continuum model

j= V(f )noIJ( f ) =noerf(v'2m f /QI, Z) (3.115)

in the range f -F. A full current-voltage characteristic
is hysteretic (Fig. 9): The branch describing Eq. (3.115)
(lower curve in Fig. 9) is observed if f increases from
zero, and the usual branch corresponding to p(f ) = 1

(upper curve in Fig. 9) is observed if f decreases from

Let us proceed to the model represented by Eq. (3.104)
with y (&Z. If the trapped kinks are distributed uniform-
ly at f=0, the fraction of free kinks at f)0 is equal to
p, (f) defined by Eq. (3.110). Let us formulate conditions
that guarantee that the released kinks will not be trapped
again. A potential hill of height U0 wiH trap a free kink
if f &y Uo; see Eq. (3.57). As can be seen from Eq.
(3.110), the range of basic interest is f -Z, so, to avoid re-
peated capture of the released kinks, we must require
that the values taken by ~g, 2(x)

~
be limited by some g

such that y g «e . Due to the assumption y «e, this
limitation is not significant.

A current-voltage characteristic determined by Eqs.
(3.110) and (3.47) takes the form [cf. Eq. (3.114)]
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no p, (f(}

FIG. 9. The hysteretic current-voltage characteristic of the
continuum model (3.104). The arrows indicate the senses of
di6'erent branches of the current-voltage characteristic.

FIG. 10. The dependence of the ac conductivity p on the fre-
quency co: (a) the model (3.104); (b) the overdamped model
(3.106).

large values f &)F. Iff increases along the lower branch
up to some f, -F, and then turns back, one will observe
an intermediate branch (dashed curve in Fig. 9) corre-
sponding to p=@(f, ). The current-voltage characteris-
tic shown in Fig. 9 terminates at f-yQg, where, as
described above, the kinks will be trapped by maxima of
the random potential.

It was implied tacitly that collisions between free kinks
and trapped ones do not release the latter. We shall
demonstrate in Sec. IV.B.6 that this is true under the
above assumption e))y if the kinks are unipolar; if both
polarities are present, one needs d)) y

Comparing the current-voltage characteristics shown
in Figs. 7 and 9, we infer that they are qualitatively simi-
lar, i.e., kinks trapped initially by an efFective disordered
potential escape gradually upon increase of the dc drive,
and the qualitative consequences of this escape seem in-
sensitive to details of the model.

d. ac conductivity

If the ac drive (ac electric field) f (t) =F cos(cot) is ap-
plied to the system described by Eq. (3.104) or (3.106), a
trapped kink oscillates in the vicinity of a local minimum

go of the potential (3.107) according to the equation

/+yes+(lc/8)(g —go)=(rc/4)F exp(icot), (3.116)

Strictly speaking, Eq. (3.117) is valid for co ((1. Otherwise,
as explained above in Sec. III.C.1, Fmust be replaced by the re-
normalized value I'z =I' (1—cu ) ', see Eq. (3.50). Accordingly,
the expressions for the ac conductivity p(co) given below must
be multiplied by (1—cu ) '. The near-resonant case

~
1 —co

~
&& 1 requires special consideration (see Secs. VI.C.1 and

VI.C.2 below). Analogously, in the overdamped model the re-
normalizing multiplier is (1+iyes)

where ic—:U"(go) (in the overdamped model, the term g'

is absent). A solution to Eq. (3.116) is

g=:- exp(icot),

:-=(n/4)(lc/8 co +iyc—o) 'F .
(3.117)

The ac current can be defined as follows [cf. Eqs. (3.114)
and (3.115)]: j(t)=J(co)exp(icot) =no(g}, where averag-
ing is carried out according to Eq. (3.105). The probabili-
ty density for the distribution of values a analogous to
Eq. (3.108) is

p(Ic)=2(2mI2) ' E 'exp( Ic /2I2Z ) —. (3.118)

Using Eqs. (3.117) and (3.118), it is possible to calculate
the ac conductivity,

p(co):—no(g/F }=inoco(:-/F) .

In particular,
1

p(co)=(2'/I2)' (noco/e)in[a /co (y +co )]

(3.119)

at co «e, and p(co)= i (m/4)noco ' at co—&)Z [Fig.
10(a)]. As a matter of fact, the latter expression pertains
to a homogeneous system. A maximum p -nor ' at-
tained at co = co —+e. For the overdamped model
(3.106), p(co) =(m /2y)no at yco &)F, and ~p(co) ~

=2(2m/I2)' (noco/Z)ln(Z/yco) at yco &&Z [Fig. 10(b)].
The frequency dependence of the ac conductivity is

qualitatively similar in a model of the doped CDW sys-
tem [Eq. (3.89)] with large mean distance between impur-
ities, l &) 1, discussed by Malomed (1988e, 1989a).

4. Adiabatic interaction of a periodic chain
of fluxons with a periodic lattice of impurities

A direct generalization of the one-kink solution to the
unperturbed SG equation describes a periodic chain of
unipolar kinks:
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Q =1T 2am X
, k (3.120)

accounting for the driving force is

Hf =ff u(x)dx

where am is the Jacobi elliptic amplitude, k is its
modulus (0&k&1), and g is an arbitrary phase constant.
The period of the chain is

L =2k%(k), (3.121)

where K(k) is a complete elliptic integral of the first
kind. In the limit k~1 the solution (3.120) goes over
into the usual kink (2.61a). In the opposite limit k ~0,
Eq. (3.120) describes a "closely packed" chain that is
close to a linear function:

2 k
u =~——(x —g) — sin

k 4
+O(k") .

2k
(3.122)

A moving chain can be obtained from Eq. (3.120) by the
transformation

dx +const .
+- ref g (3.126)

(H, +Hf )=0 . (3.127)

The value f„ is that at which two roots of Eq. (3.127)
merge and disappear. It can be found in an explicit form
for the particular case q= 1 [see Eq. (3.124)]:

4e (5k —2k —2)(1+k )+2(1+k —k )
i

7T P 27k

(3.128)

If a chain is pinned by a commensurate lattice, the corre-
sponding value of the chain's phase g is determined by
the equation

g~ Vt +$0 (3.123)

a =(p/q)L (3.124)

[where L and a are defined by Eqs. (3.121) and (3.76), and
where p and q are integers], it is necessary to find the
minimum (critical) value f„ofthe bias current density f
that frees the Auxon chain from the pinning lattice. To
tackle the problem, one uses the Hamiltonian of the
chain-lattice interaction,

(we consider only the nonrelativistic case V (& 1).
In the theory of long Josephson junctions, Eqs.

(3.120)—(3.123) represent a periodic chain of fiuxons. A
chain of arbitrary density I. ' can be created by a mag-
netic field H-I. ' applied to the junction. From the
practical standpoint, a periodic chain of Auxons is a more
important object than a solitary Auxon. Although the
chain is a multisoliton aggregate, we consider its dynam-
ics in the present "one-soliton" section of this paper since
we shall regard the chain as absolutely rigid, neglecting
its deformation under the action of perturbations. If per-
turbative parameters are small, this assumption is applic-
able for a "su anciently dense" chain, viz. ,
k (1—k ) '&1.

A physically important problem is the interaction of
the chain with a periodic lattice of impurities in a long
Josephson junction described by the model (3.76). Re-
cently, this problem was solved analytically and was real-
ized in an experiment with a real Josephson junction by
Malomed and Ustinov (1989). Here we give the main re-
sults.

First of all, let us consider the simplest static problem:
If the chain and the lattice have commensurate periods,
1.e.)

In particular, in the limit k —+0 one obtains from Eq.
(3.128)

f„=elmpk . (3.129)

If k is small (a "dense" chain), the value f„can be found
for arbitrary p and q:

2q 3

f = E'q k
4~p 4

(3.130)

In the particular case q= 1 Eq. (3.130) coincides with
(3.129).

To compare the theoretical results with an experiment,
it is necessary to express the modulus k in terms of p, q,
and the lattice spacing a according to Eq. (3.124). In par-
ticular, for k « 1 and q= 1, Eq. (3.129) can be cast in the
form

e 5 a1+
a 4 2' (3.131)

where by implication a «2'. Comparison of Eq.
(3.131) with experimental data has demonstrated a fairly
good agreement.

Malomed and Ustinov (1989) have also found a
minimum (threshold) value of f that admits free motion
of the chain through a commensurate lattice. For q= 1

and arbitrary k the problem is, in fact, equivalent to that
for one kink considered above [see Eqs. (3.85) and (3.86)].
For k &(1 (p and q arbitrary),

+ oo

H, = —2e g cn
an-

, k (3.125)

2(q —1)
4y'l. lq'

n'pk 4

where cn is the Jacobi elliptic cosine. The Hamiltonian where y is, as above, the dissipative constant.
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5. Long-scale envelope solitons in an array
of fluxons in a Josephson junction
with a periodic lattice of impurities

Huf I dx huf

h, ff
=

—,
' p( g+ g, )

—2' 'cn (g/k, k) —6g,
(3.132)

In the preceding subsection we considered an array of
Auxons [Eq. (3.120)], assuming it to be absolutely rigid.
Now, following the work of Malomed, Oboznov, and
Ustinov (1989), we shall demonstrate that a weak defor-
mation of such an array interacting with a commensur-
able lattice of defects according to Eq. (3.76) gives rise to
kinklike solitons of a new type.

%"e shall confine ourselves to the case in which q= 1 in
Eq. (3.124). Let us assume that the array is subject to a
long-scale modulation. To that end, we replace the phase
constant g in Eq. (3.120) by a function g(x, r) varying on a
large scale l »L, L being the spatial period (3.121) of the
array. Proceeding from the fIuxon-defect and Auxon-
current interaction Hamiltonians [Eqs. (3.125) and
(3.126)], and taking account of the SG Hamiltonian prop-
er Ho = f + „"dx ( 1 —cosu ), it is straightforward to find

an e6'ective Hamiltonian written in terms of the modula-
tion function g(x, t):

where p—:4k E(k)/K(k) is the mass density of the ar-
ray (3.120), and 6—: m—f/. [kK (k)] is the density of the
force exerted by the bias-current upon the array. The
Hamiltonian (3.132) gives rise to the equation

g«
—g, +4@a 'p 'k 'sn(g/k)cn(g/k)dn(g/k)

=p (3.133)

where sn, cn, and dn are the standard Jacobi elliptic
functions. The dissipative term in Eq. (3.133) [y is the
same as in Eq. (3.76)] can be derived by means of an
energy-balance analysis. Note that the nonlinearity in
the left-hand side of Eq. (3.133) is solely due to the
Auxon-defect interaction, and the limit (Swihart) velocity
Vs =1 is the same as in Eq. (3.76).

Equation (3.133) with 6 =y =0 goes over into the SG
equation in the limit k —+0. At finite k, the equation is
not exactly integrable. Nevertheless, it supports an exact
kinklike solution (an envelope soliton, or "superkink").
The quiescent "superkink" has the form

g(x)=kF(sin '[(1—k )cosh (2k 'i/e/apx)+k ] '~, k), —oo &x &0,
g(x)=2kK(k) —g( —x), 0&x &+~,

if e&0, and

(3.134a)

(3.134b)

g(x)= —kF(cos 'I(1 —k )/[cosh (2+I —k k 'i/lel/apx) —k ]]'~,k }, —~ &x &0,
g'(x ) = —g( —x), 0 & x & +~,

(3.135a)

(3.135b)

g(x =+ ~ )
—g(x =' —ao )=2kK(k)—:L, (3.136)

L being the period (3.121) of the underlying array of fiux-
ons. Thus the superkink may be interpreted as a hole in
the infinite array, i.e., a gap where one Auxon is lacking.
Quite analogously, a superkink of the opposite polarity,
which is given by the same solutions (3.134) and (3.135)
with the opposite sign, may be interpreted as a surplus
fluxon in the array. A moving superkink can be obtained
from Eqs. (3.134) and (3.135) by the Lorentz transforma-
tion.

In the case L »1 [see, however, the inequality (3.140)
below] one may regard the array (3.120) as consisting of
individual weakly interacting particlelike Auxons. This
is, in fact, a variant of the Frenkel-Kontorova model, and
the superkink may be identified with the well-known
dislocation soliton in that model; see, for example,
Pokrovskii and Talapov (1978).

Let us proceed to the case G, y&0. We shall be in-

if @&0. Here F(z, k) is an incomplete elliptic integral of
the first kind. The "superkinks" (3.134) and (3.135) are
distinguished by the property

X Iln[(1+@)/(1—k)]J (3.137)

if e) 0, and

Vo/(1 —Vo)=(n p/8)k [K (k)/E(k)](f'/y'le'I)

X (sin 'k) (3.138)

if e(0, where p is the commensurability index defined by
Eq. (3.124) (recall that we have set q= 1).

In Josephson-junction theory, the averaged quantity u,
is the voltage across the junction. Making use of the un-
derlying equation (3.120) with regard to Eq. (3.136) yields
eventually

u, =ZmVO jR, (3.139)

terested in the range f &f„[f„is determined by Eqs.
(3.128) and (3.131)],where the array as a whole remains
pinned. An energy-balance analysis neglecting a distor-
tion of the superkink s shape yields an equilibrium veloci-
ty Vo of the moving superkink [cf. the Auxon s equilibri-
um velocity, Eq. (3.47)]

V2O/(1 —Vo)=(~ p/2)k3[K (k)/E(k)](f /y e)
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where R is the total length of the junction. This equa-
tion, together with Eq. (3.137) or (3.138), gives a super-
kink current-voltage characteristic of the long Josephson
junction containing the pinned array of Auxons. It is
noteworthy that a single Auxon moving with velocity Vo

gives rise to the same current-voltage characteristic
(3.139).

In conclusion, let us estimate the limits of validity of
the envelope-soliton concept. According to Eqs. (3.134)
and (3.135), the size I of the superkink may be estimated
as follows: l -pk~e~ '/in[2(1 —k) ']. Comparing this
expression to the array's period [Eq. (3.121)] and making
use of Eq. (3.124) with q= 1, we conclude that the under-
lying assumption I, « I amounts to the requirement

(3.140)

This means that the array must be suHRciently dense.
The relevance of this kind of envelope-soliton analysis

has been supported by numerical simulations of both
Eqs. (3.76) and (3.133) carried out by Malomed,
Oboznov, and Ustinov (1989) [see also Ustinov (1989)].
It is interesting to note that, although Eq. (3.133) with
6 =y =0 is not exactly integrable, a numerically simulat-
ed collision between a superkink and a super-antikink
proves to be almost elastic for a fairly wide range of
values of the modulus k.

+
d g cosh/ cos(cosy'Il )I3—: d

cosh +tan p sin cosp+

XP[ub, (g, @)],
g sinhg sin(cosy%)

cosh /+tan p sin (cosy%')

cosh/ sin(cosy%')5=
cosh + tan p sin cosp+

XP[u, (g, +)] .

(3.147)

(3.148)

(3.149)

If the unperturbed internal oscillations of the breather
are much faster than the perturbation-induced changes of
the breather's parameters, one can readily derive evolu-
tion equations averaged in the unperturbed oscillations.
This has been done with the use of modified conservation
laws by Pagano et al. (1987).

The simplest problem is to calculate the rate of dissipa-
tive damping of the breather under the action of the per-
turbing term —yu, on the right-hand side of the SG
equation. The damping law takes a simple form for a
quiescent ( V=0) small-amplitude (p &(1) breather
(McLaughlin and Scott, 1978):

6. Perturbed dynamics of a breather

dp
dt

=e(1—V )' (4cosp) (3.141)

The dynamics of a sine-Gordon breather subjected to
the action of perturbations is more complicated than that
of a kink, General perturbation-induced evolution equa-
tions for the parameters p, , V, g, and 4 of the breather
(2.63) and (2.64) have been derived by Kosevich and Kiv-
shar (1982) and Karpman, Maslov, and Solov'ev (1983):

A more sophisticated problem is synchronization of a
breather by the external time-periodic force (1.17)
[f(t)=sin(cot), 0(co & 1] in the presence of dissipation.
The "small-amplitude" version of this problem reduces
to the one considered above in. the context of the NS
equation with the perturbation (1.9), where e is the same
as now, and 0—:1 —co. Like a small-amplitude breather,
a breather of a general form may be locked to the driving
frequency if e exceeds the threshold value (Lomdahl and
Samuelsen, 1986)

= —e(1 —V ) (4 cosp) I2,
dt

(3.142)
2y(1 —co )sin '(+1—co )

K(1 co ) E(1—co )— — (3.150)

= V+ e(1—V )(2 sinp) (I3 —V tanpI4 ), (3.143)

2 ~r2

dt
=(1—V )' cosy

—e(1 —V )'~ (4sinpcos p)

X[VcotpI3+(1 —V )cos pI„I5], (3.144)—

where g=sinpz,

where y is the dissipative constant, and &(z) and E (z)
are complete elliptic integrals of the first and second
kinds, respectively. The frequency-locking problem for
the perturbation (1.21) can be considered analogously. In
the "smaH-amplitude" limit the latter problem goes over
into a similar problem for the perturbation (3.33) con-
sidered above in the context of the NS equation.

A synchronized breather may also be supported by the
perturbation

+~ cosh cos cosy%
1 =

cosh /+tan p sin (cosy%)

/

P (u) =5(x)sin(cot), co & 1 (3.151)

XP [ub, (g, +)],
+ ~ sinh sin cosp%'

I2 =—— d
cosh (+tan @sin (cosp%')

XP [ub, (g, 'Il)],

(3.145)

(3.146)

[it is implied that the dissipation (1.16a) is present too].
Physically, this perturbation describes the action of an
oscillating magnetic field applied to the edge of a semi-
infinite Josephson junction (Olsen and Samuelsen, 1986b).
As has been demonstrated by Olsen and Samuelsen in the
paper just cited in the framework of the energy approach,
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the perturbation (3.129) supports a phase-locked. breather
with the internal frequency co if the perturbation ampli-
tude e exceeds the threshold value [for simplicity, it is set
P=O; see Eq. (1.16)]

1/2

sin '&I —~'.

Due to the threshold character of the excitation of a
breather by the driving force considered, this system is
hysteretic: depending on initial conditions, one will ob-
serve as a Gnal state either the synchronized breather or a
quasilinear standing plasma wave, which is an obvious
solution of the linearized SG equation with the perturba-
tion (3.151),

1 foxu, (x, t) = e ' sin(cot) .
2 1 Co

It is clear that a similar hysteresis takes place in a system
driven by the external force (1.17) with f (t) =sin(cot).

Constant perturbations, i.e., those described by Eq.
(1.17) or (1.21) with f (t) =1, can result in a decay of the
low-frequency breather (2.66) into a kink-antikink pair.
In other words, these perturbations alter the interval of
the breather's internal frequencies ~—:cosy equal to
0&co&1 in the absence of perturbations. According to
Karpman, Maslov, and Solov'ev (1983), for the constant
perturbation (1.17) the threshold (minimum) value of co at
which the breather does not decay is

FIG. 11. The shape, of the potential (3.153) for e&0: (a)
cos p ) 3 (b) cos p & —,

' . As can be seen from the tw o graphs, in

case (a) a bound state (at /=0) exists for positive e only, while
in case (b) there are two bound states at /=+go
—=+(sing, ) 'in[(tanp, +&tanp, —2)/&2] for e) 0, and one
bound state at /=0 for e (0 (Malomed, 1987d, 1987e).

cot] r
— ln + 1

~e 16
(3.152)

U(g) = —8e cotp cosh(sing/)

X [1+cot p cosh (sing/)] (3.153)

According to the paper mentioned, the breather may be

It is interesting to note that the same result, provided
in@ ')&1, has been obtained by Lomdahl, Olsen, and
Samuelsen (1984) in the framework of a very simple
"direct" approach. As to the perturbation (1.21), a simi-
lar result has been obtained by Kosevich and Kivshar
(1982).

It should be emphasized that, in the presence of the
perturbations mentioned, a breather is stable in the adia-
batic approximation only: In fact, it slowly decays due to
emission of radiation (see Sec. VI.F).

The interaction of a breather with a localized inhomo-
geneity requires special consideration. If the breather is
not close to a threshold of decay into a kink-antikink pair
(more accurately, we need cosp))e), it is natural to
average the perturbation Hamiltonian over the fast inter-
nal oscillations of the breather. As a result, for the per-
turbation e5(x)sinu [see Eq. (1.19)] one can obtain the
averaged effective interaction potential (Malomed, 1987d,
1987e)

considered as a nonrelativistic particle of mass
m =16sinp with the coordinate g(t) moving in the
potential (3.153). The shape of the potential is shown in
Fig. 11. Equation (3.153) can be readily generalized
for the more general localized perturbation
—e58(x)sin(u +8) [see Eq. (3.89)]:

U(g) = —8ecos8cotp cosh(sinpg)

X [1+cot'p cosh'(sing/) ]

If the frequency cosp of the internal breather becomes
sufficiently small -e, the averaging becomes irrelevant.
In this case the interaction of internal oscillations with
"external" oscillations of the breather as a whole near the
inhomogeneity may result in stochastization of the
breather's dynamics. This problem is analyzed in Sec.
V.E.2.

Firially, interaction of a moving breather that has a
sufficiently small value of cosp (i.e., a low-frequency
breather) with a localized inhomogeneity may result in
breakup of the breather into a kink-antikink pair. The
possibility of this inelastic process was erst noted by
Malomed (1985). This effect becomes most noticeable for
the perturbation P =5'(x) (an Abrikosov vortex inter-
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secting a long Josephson junction): According to Guro-
vich and Mikhalev (1987), this is possible provided
cos p & —,'eV, where Vis the initial velocity of the breath-
er.

IV. MANY-SOLITON ADIABATIC EFFECTS

A. Inelastic interactions of solitons
in dissipatively perturbed nonlinear
Schrodinger and sine-Gordon equations F.„„=8m'y+6vr p .

Then, equating E„;„to Eq. (4.1') yields

(4.1')

proximation Ek;„=28' . For the same reason, in the first
approximation one may describe the colliding kink and
antikink by the exact unperturbed solution (2.67).
Indeed, this solution describes a pair consisting of a kink
and an antikink with zero relative velocity at t = —Oo.

Due to mutual attraction, the kinks accelerate to "rela-
tivistic" relative velocities —1, and the presence of a
small nonzero initial velocity may be neglected. Insert-
ing Eq. (2.67) into Eq. (4.1) yields

1. Preliminary remarks
Wih, =2m&@ + (3/4)P (4.2)

Dissipative perturbations give rise to inelastic interac-
tions of solitons. in a direct way. In this section we shall
consider two typical interactions of this kind: fusion of
two free solitons into a breather, and breakup of a
breather into two free solitons due to collision with
another (fast) soliton. Both problems will be considered
within the framework of the SG equation perturbed by
the dissipative term (1.16a) and the NS equation with the
dissipative perturbations (1.8). Since the NS breather is a
less popular object than the SG, we shall also describe its
structure.

2. Fusion of a kink-antikink pair into a breather

The simplest perturbation-induced inelastic interaction
is the fusion of a free SG kink and antikink into a breath-
er (Kaup and Newell, 1978a). The basic characteristic of
this process is the maximum (threshold) value W,h„of the
relative velocity 8 of the colliding kinks allowing their
fusion. A natural way to find 8;h, is to employ the ener-

gy balance. Indeed, if one evaluates the collision-induced
dissipative energy loss Ez;„, the threshold velocity may
be found by equating Egjs to the kinetic energy Ekjg of
the kink-antikink pair before the collision. The expres-
sion for E~;„can be obtained directly from the Eq.
(2.69a) for the energy of the SG wave field, with regard to
the form of the perturbations (1.16):

4y 3/2 (4.3)

(we have set p=O). Equation (4.3) was obtained by
Malomed (1985b). Independently and a little bit earlier,
a similar expression was obtained by Pedersen et al.
(1984). Unfortunately, the latter paper contains a com-

(an estimate that W„h, —-y was first obtained by Kaup
and Newell, 1978a).

According to Eq. (2.60), a pair consisting of a kink and
antikink moving with small velocities W/2 correspond
to a pair of points A, , 2=(i/2)(1+ W/2) on the complex
plane of the spectral parameter A, , while the low-
frequency breather described by Eq. (2.66) with V=O
corresponds to the pair of points (2.62) with V= 0,
p=m. /2 —g. Trajectories of motion of the points A, , 2 on
the complex plane during perturbation-induced fusion of
the pair into the breather is shown in Fig. 12.

The result (4.2) has an important physical application
in the theory of long damped dc-driven Josephson junc-
tions. Indeed, the velocities of the steady motion of a
free kink and antikink (fiuxon and antifluxon) are, ac-
cording to Eq. (3.47), Vo=+vre/4 (we assume e&(y),
i.e., the corresponding relative velocity W =ere/2y
Equating this to Eq. (4.2), we see that a "fiuxon-
antiAuxon plasma" may exist provided the bias current e
exceeds the threshold value

f +~~ dE

(4.1)
I

2

Since the parameters y and p are small, W,h, will be
smaH too, i.e., one may employ the "nonrelativistic" ap-

0

The averaged potential of the interaction between a breather
and this type of local inhomogeneity is zero, in contrast with
the potential (3.153).

FIG. 12. Motion of the points A, , 2 in the complex plane of the
spectral parameter A, corresponding to the fusion of a kink-
antikink pair into a low-frequency breather.
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putational error, due to which the numerical coefticient
in front of y in that paper differs from ours in Eq.
(4.3).

Calculation of dissipative losses in the kink-antikink
collision has another interesting application, to the com-
putation of a one-fiuxon current-voltage characteristic of
a finite-length Josephson junction (Olsen et al. , 1986).
Indeed, reAection of a Auxon from a junction's edge may
be regarded as the collision of a Auxon with its "mirror
image. " In this case the genuine dissipative energy loss is
half the full loss (4.1'). Since the current-voltage charac-
teristic, in fact, rejects the dependence of the mean
Auxon velocity on the bias current e, it is clear that, for a
Anite-length Josephson junction, taking this loss into ac-
count results in a departure of the current-voltage
characteristic from that obtained in an infinitely long
Josephson junction [usually called a zero-field step (Ful-
ton and Dynes, 1973)]. A full analytical expression can
be found in the paper of Olsen et al. (1986), where the
effect of the unperturbed collision-induced phase shift on
the form of the current-voltage characteristic has also
been taken into account.

It is interesting to consider a full phase portrait of the
evolution of a kink-antikink pair in the presence of a
combination of perturbing terms (1.16a) and (1.17) with

f (t)—= 1. The solution of the unperturbed SG equation
describing a free kink-antikink pair in the rest reference
frame of its center of mass is (Zakharov et al. , 1980)

FIG. 14. The phase portrait of the evolution of the kink-
antikink pairs (4.4) and breathers (2.63) in. the coordinates (4.5)
for the SCz equation with the combined perturbation —yu, +e.
The points C and S are, respectively, a center and a saddle. The
bold separatrices of the saddle are boundaries between (1)
reflected, (2) captured, and (3) passing trajectories.

The perturbed phase portrait was constructed by
Karpman et al. (1983). They depicted only a part of the
portrait that represented breathers in the coordinates
(n~ =—cos)M, 4); see Eqs. (2.63) and (2.64). We find it more
visual to give the portrait in other coordinates,

u =4tan '[T(t)sech(x/+1 —V )j,
T(t)= V 'sinh(Vtl+1 —V ),

(4.4a)

(4.4b)

where the velocities of the kink and antikink at ted+ac
are + V. Note that the analytical continuation V~i cotp
transforms Eq. (4.4) into the quiescent breather (2.63) and
(2.64).

X

4 =o
(2

FIG. 13. The phase portrait of the kink-antikink pairs (4.4) and
breathers (2.63) in the coordinates (4.5) for the unperturbed SG
equation. The separatrix (bold line) corresponds to the solution
(2.67). The closed trajectories inside the separatrix correspond
to the breathers (2.63), while the open trajectories outside it cor-
respond to the free pairs (4.4). The point 0 is a center, in terms
of the dynamical systems theory.

FIG. 15. The phase portrait of the evolution of the kink-
antikink pairs (4.4) and breathers (2.63) in the coordinates (4.5)
for the SG equation with the combined perturbation
—yu, +@sin(u/2): (a) a&0; (b) e&0. The points S and Care
saddles and centers, respectively. The bold separatrices of the
saddles [in case (b)] are boundaries between (1) refiected, (2)
captured, and (3) passing trajectories.
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X=1n( T ++1+T ), X—= T/"t/1+ T (4.5)

where for a kink-antikink pair T is defined in Eqs. (4.4),
and for a breather [cf Eq (.2.63)]

T—:tang sin(4 cosy) . (4.6)

In particular, for the low-frequency breather (2.66) with
V=O,

T=g 'sin(gt) . (4.6')

3. Breakup of a breather due to collision with a fast kink

Once a breather has been created, it will be gradually
damped by dissipation [Eq. (1.16a)]. The damping rate
can be evaluated approximately with the aid of Eq. (4.1').
Indeed, in the first approximation the perturbation-
induced evolution of the low-frequency breather is dom-
inated by the overlap stage, i.e., a relatively short portion
(of duration —1) of the large period r=2~/g of the
breather's internal oscillations, when the kink and an-
tikink that are bound inside the breather are strongly
overlapping. At the overlapping stage, the low-frequency
breather may be approximated by the solution (2.67), i.e.,
a contribution from that stage to the dissipative energy
loss Ed;„per period r is twice Eq. (4.1') (the kinks over-
lap twice during a period). The binding energy Eb of the
low-frequency breather, defined as the double rest energy
of a kink minus the breather's total energy, is [see Eq.
(2.69a)]

Eb = 16—16 sinp =8( (4.7)

Thus the damping rate averaged over many periods may
be defined as follows 8(d(g )/dt) =16m y'/r, or

(4.8)

In these coordinates, one can depict both the breathers
and the free pairs on the same phase plane. For the un-
perturbed case y=e=O the phase portrait is shown in
Fig. 13 (Malomed, 1987d; 1987e). In the presence of the
aforementioned perturbation, the portrait takes the form
shown in Fig. 14.

A combination of the dissipative term —yu, and the
perturbation (1.21) with f (t) =1 also finds important
physical applications. For instance, this is the simplest
model of a weak ferromagnet in an external magnetic
field (Zvezdin, 1979; Bar'yakhtar et al. , 1980). Separate
phase portraits for pairs and breathers subject to the ac-
tion of this combined perturbation were constructed by
Kosevich and Kivshar (1982). In Fig. 15 we show the
portrait in the coordinates (4.5), which again enable us to
depict both the free pairs and the breathers on the same
phase plane. However, we must distinguish the two vari-
ants [Figs. 15(a) and 15(b)] corresponding to difFerent
signs of e.

The approach based on approximating the low-frequency
breather by the solution (2.67) will be repeatedly em-
ployed below.

In the presence of the same perturbation (1.16a) the
breather may decay into a kink-antikink pair due to a
collision with another kink (Malomed, 1985b). To con-
sider this process, we employ the general evolution equa-
tion (2.73), which takes the following form for a low-
frequency breather:

dt
e

—if'
4g

X J dx I'[u (x)][[/'"(x,A, =A, , )]

—[lp' '(x, A, =A, , )]'I,
(4.9)

1('2'(x, A, =A, , ) =—5 'exp( —x/2)l

X [exp(i(4)coshx+g 'sin(gV)e "],

b, =—cosh x+g sin (PP) .

(4.10b)

(4.10c)

Let us consider a collision of a quiescent low-frequency
breather with a fast ("ultrarelativistic") kink moving with
velocity V, 1 —V ((1. This condition greatly simplifies
further analysis. As was demonstrated by Malomed
(1985), in the first approximation in the small parameter
(1—V ) the full SG wave field splits into the sum of the
usual kink and breather wave forms:

u (x, t) =uk(x, t)+ub, (x, t) . (4.11)

Combinations of the Jost functions in the evolution equa-
tion (2.73) for both the breather and the kink may be tak-
en, in the same approximation, in the "one-particle"
form, ignoring the presence of another soliton.

The splitting of the wave field and combinations of the
Jost functions, introduced by Malomed (1985) in terms of
the inverse scattering transform, have, in fact, a simple
interpretation. If one considers a collision problem with
an "ultrarelativistic" relative velocity V, in the lowest ap-
proximation the unperturbed SG equation turns into the
linear d'Alembert equation, and particular shapes of the
solitons involved, formed by the full SG equation, play
the role of "initial conditions" for that e6'ective
d'Alembert equation. A wave field described by a linear
equation may be taken in the form of the linear superpo-
sition (4.11). The approximate splitting of the wave po-
tential and necessary combinations of the Jost functions

where A, i is defined in Eq. (2.60), g=ir/2 —p ((1,and the
relevant Jost functions can be cast in the form

P"'(x, A, =A, , )=—,'b, 'exp(x/2)

X [coshx —(i/g)sin(g%)e'~ exp( —x)],
(4.10a)
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are concepts that will be repeatedly invoked hereafter in
the context of the SG and other equations considered.

The evolution equation for the parameter g, when a
low-frequency breather collides with a fast kink in the
presence of a dissipative perturbation, takes the form
(Malomed, 1985)

d 2=
dt

rrcry—cos(g+)cosht/(cosh t + T ), (4.12)

where cr is the kink's polarity, and the quantity
T=g'—sin(g%) [see Eq. (4.6')] varies in time according to

=1 gT—
dt

(4.13)

kink

V
breather

kink-antikink
(o)

—t&0

t&0

If the parameter T is large, T ))1, i.e., sin (gVo)))g,
where %'o is the value of the breather's internal oscillation
phase 4 at the moment t=0 (when the kink's center
coincides with the breather's center), one may neglect the
change of T during the collision. In this case integrat-
ing Eq. (4.12) immediately yields the change of the quan-
tity g due to the collision:

kink

-w/2

breather

/2 kink

V

— t&O

t&0

a(g')= f '""(~'dt
dt

= —rr yo cos(g%'o)/(1+ To )' (4.14)

kink-antikink pair
(h)

where

T, =—sin(geo)/go (4.15)

In the opposite case, when To ~ 1, the evolution of T
should be taken into account. As can be seen from Eq.
(4.13), in this case we may write

FIG. 16. The breakup of a low-frequency breather due to col-
lision with a fast kink of polarity o. in the presence of the dissi-
pative perturbation —yu, . The figure represents u vs x: (a)
a &0; (b) o. )0. In both (a) and (b), the upper and lower pic-
tures correspond to initial and final states, respectively.

T =(To+t)

Inserting Eq. (4.16) into Eq. (4.12) yields

h(g ) = —2mya cos(g%'o)F(To),

where the even function is

F(To)= f cosht [cosh t+(To+t) ] 'dt

(4.16)

(4.17)

(4.18)

A collision with a fast kink may break a breather into
a kink-antikink pair if b(g ) (0, i.e., according to Eqs.
(4.14) and (4.17), if —o. cos(g4o) (0. The quantity g,h„
i.e., the maximum initial value go of g which makes the
breakup possible, corresponds to b, (g )= —

go, and, ac-
cording to Eq. (4.17),

[the multiplier cos(g%o) on the right-hand side of Eq.
(4.18) aft'ects only the sign of that expression since, at
To 5 1, ~cos(g%o) ~

is close to one]. In particular,

This value corresponds to the threshold binding energy
[see Eq. (4.7)] (Eb, ),h,

= —16rryF(To).
If g(g,h„ the collision breaks the breather into a

kink-antikink pair which corresponds to a pair of points

F(0)=1.35 . (4.19) k& 2= i/2+iS'/4 (4.20)

The asymptotic form of the function F ( To ) at large To
is F(T)=(m/2)(To+ I) '~ . Substituting this into Eq.
(4.17) recovers Eq. (4.14).

in the complex spectral parameter plane, 8'being the rel-
ative kink-antikink velocity. Thus the quantity (A,

&

—A.2),
which is real and equal to g for the breather, is imaginary
for the pair; see Fig. 12. The velocity 8'can be found
from Eq. (4.18) with regard to Eq. (4.20):

4If one set TO=0 in Eq. (4.14), one would obtain the value of
h(g ) corresponding to the value F(0)=~/2=1.57 instead of
Eq. . (4.19). Note that 1.35/1.57=0.86, i.e., Eq. (4.14) is, as a
rnatter of fact, relevant not only for To )& 1 but also for To (& 1.

~This condition implies that the escaping kink, which moves in
the same direction as the fast orie, has a polarity opposite to
that of the fast kink (Fig. 16).
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W = 8myF. ( To )—4' . (4.21) 4. The nonlinear Schrodinger breather and its stability
in the presence of dissipative perturbations

5—5 '=( W/go)sin+ . (4.22b)

The solution which describes the emerging kink-antikink
pair is [cf. Eq. (4.4)]

u =4 tan '[ W '[5 exp( —
—,
' W't)

'exp( —,
' Wt)]/coshx I,

(4.22a)
where 5 is a real constant determined by comparing Eq.
(2.63) (with the parameters /=go and 4=%0) to Eq.
(4.22):

0&/=(q, g, )—/2rt«l, rJ= ,'(rt, +—rt,) . (4.23)

Under this condition, the breather takes the form
(Malomed, 1985)

The NS breather consists of two solitons (2.41) with
zero velocities, i.e., g& =$2=0 (Zakharov and Shabat,
1971). We shall consider the most interesting case when
the amplitudes g& and g2 of the two solitons are close:

u (x, t) = —4rtg(y*, +y2 )[ly, +y2I +2/ cosh(4gx)]

X I [1+y,*y2 (y, +y, )(y,*+y2 ) ']cosh(2gx)+ [1—y*, y2 (y, +y2)(y,*+y2 ) ']sinh(2qx) ], (4.24)

where T=~/(8g g) . (4.28)

x =x, 2=+ 1n(ly, +y2I/g),
1

(4.26)

and the minimum of Iu (x, t)l is located at x=O. At the
maximum points Iu (x, 2, t) I =2g, while at the minimum
point Iu(x =O, t)l —g g. As follows from Eq. (4.26), the
size L of the breather is large,

y „(t)—:y „(0)exp( 4i g„—t),
n =1,2, y2(0)=1/y, (0), (4.25)

y, (0) being a real positive parameter.
The internal structure of the breather (4.24) and (4.25)

can be described as follows: the maxima of Iu (x, t)l are
located at the points

As can be seen from Eq. (4.27), the amplitude b,L of the
size oscillations is

&L =-,'g '»[(ly, l+ ly, l)'/(lygl —lypl)'] (429)

Thus the breather's structure is determined by the two
dimensionless parameters g and y&(0). In what follows
we shall concentrate on the most interesting case,
I

1 —y, (0) & g; otherwise, the two constituent solitons are
weakly overlapped during the entire period (4.28) [see
Eqs. (4.27) and (4.29)], and the breather's dynamics
reduce to a trivial superposition of the evolution of two
almost noninteracting solitons.

When

L =—
I x, —x z I

=—ln(
I y, +y 2 I /j) ))—,—1 1

(4.27) lyi(t)+y2(t)I &g (4.30)

i.e., the NS breather consists of two remote slightly over-
lapping solitons. The period T of internal oscillations of
the breather is

[which, of course, is not possible unless
I

1 —y&(0)l &g],
the breather's shape becomes more complicated than
(4.24):

u (x, t)= —4' exp( —2gx) Ig '[(y*, +y2 ) —(y f ) (y, +y2)exp( —4gx)]+2y,*[(l—2gx)+ Iy, l (1+2gx)exp( —4rjx)]I

X [1+& 'ly)+y21'exp( —4gx)+2ly)I'(1+8''x')exp( —4g»+ lyg I'exp( —8gx)] ' . (4.31)

As can be seen from Eq. (4.31), the two constituent soli-
tons strongly overlap as long as Eq. (4.30) holds, i.e. [see
Eq. (4.25)], during the time t -g per one period (4.23).

In the unperturbed case (e=O) the NS breather, in
contrast to the SG breather, is not a physically interest-
ing object, since its binding energy, as follows from Eq.
(2.45a), is zero. In the presence of dissipative perturba-
tions, there is no conserved energy, and the breather's
stability against decay into two solitons must be defined
dynamically [the breather's stability problem plays a
significant role, for instance, in the theory of optical soli-
ton propagation in a one-mode nonlinear waveguide; see,

(g +ig )
dt dt

=2tRJ[y J(t)C]MJ (4.32)

I

for example, Golovchenko et al. (1985), Wai et al.
(1986), Kodama and Nozaki (1987)].

Analogously to the case of the SG breather considered
above, the perturbation-induced evolution of a NS
breather is dominated by a strong overlapping stage
(4.30). The evolution equation (2.48) takes the following
form for the breather under consideration:

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



Y. S. Kivshar and B. A. Malomed: Solitons in nearly integrable systems 805

where

M~= f dxI[g'"(x)] eP[u(x)]
—[P"J'(x)]'e'P*[u (x)]],

and the Jost functions are

y,'"(x)=y—'"( x, ~=X, )=~ 'D„e

P,
' '(x )

—=f' '(x, A, =1,, ) =i 6 'D, e

where

Dii=Diz —1 g—'e-'& yi(yi+y2)

(4.33)

(4.34a)

(4.34b)

+ ly&l (1+4gx)exp( —4gx), (4.34c)

D2) =D22 =—g '(y ) +y2 )exp( —2gx)

+y& (1—4gx)exp( —2gx)

Due to the negativity of I2, the perturbation -a2, if it
dominates, will render the quantity (4.37) negative, i.e.,
according to Eq. (4.37), the quantity (A,

&

—
A,z) will be-

come positive. This means that (g, —qz) vanishes and
there appears g&

—$2%0. In other words, the breather
will decay into two solitons with equal amplitudes q and
with a relative velocity —(g, —g2). This explains the re-
sults of the numerical experiments performed by Pereira
and Chu (1979), who observed the stability of a NS
breather subject to the action of dissipative perturbation
-a&, and the decay into a soliton pair under the action
of a perturbation -o,2. Numerical data obtained in those
experiments clearly demonstrate that the perturbation-
induced dynamics of the breather are dominated just by
that stage of internal oscillations when the two constitu-
ent solitons are strongly overlapped.

+y;ly, l exp( —6gx),

b, = 1+& 'ly, +y, l'exp( —4gx}

(4.34d) 5. Fusion of a soliton pair
into a nonlinear Schrodinger breather

+2ly&l (1+8ri x )exp( —4gx)

+ly, l exp( —8qx) . (4.34e)

Inserting Eqs. (4.33)—(4.35) and the perturbation (1.8)
into Eq. (4.32), one obtains the following evolution equa-
tions for the parameters determining the breather's sta-
bility [cf. Eq. (4.12)]:

d
(ki —k)=O

(4.35)
ly, (t )+y,(t ) I

ly, (t)+y, (t)l
+rt g a~f.

J=2

where f~ are some regular functions of a rather cumber-
some form which take values —1 when their argument is
5 1, and vanish suKciently rapidly when the argument

becomes large. The change of the parameter g during
one overlapping can be obtained from Eqs. (4.35), just as
we obtained Eq. (4.14) from (4.12):

b, (g') = —a, f f, (t )dt

gz g a f f (t)dt . (4.36)
OO

g = —(A, , —A,z) /4g (4.37)

Numerical evaluation of the integrals I = I+ f (t)dt
demonstrates that these integrals are positive for j=1
and 3, and negative for j=2. Thus the perturbing terms
-a, and a3 from E'q. (1.8) render the breather stable,
while the term -a2 may break it into a pair of free soli-
tons. Indeed, g may be redefined in terms of the soli-
tons' parameters A,„=g„+i'„as follows [see Eq. (4.23)]:

a (4 )2gN!(N+1)! @
V (2N +2)! (4.38')

This result is nontrivial in the sense that it is stipulated
by the overlapping of the solitons; as is well known
(Karpman and Maslov, 1977), the amplitude of a single
NS soliton decreases under the action of a dissipative
perturbation, but its velocity remains constant in the first
approximation.

A threshold velocity for binding the colliding solitons
into a breather is defined by the condition V,h,

= —hV.
Equation (4.38) will not give an accurate calculation of
V,h„since it actually assumes lhVl ((V. However, one
may use Eq. (4.38) to obtain the estimate (Malomed,
1985}

As we have seen above, the perturbing terms -a, and
-a3 from Eq. (1.8), in contrast to the one -a2, do not
break the NS breather. Thus it is natural to assume, by
analogy with the situation for the perturbed SCi equation
considered above in Sec. IV.A.2, that a collision of two
NS solitons in the presence of perturbations which render
the breather stable may result in binding the colliding
solitons into a breather. In order to demonstrate this, we
shall consider the collision of two solitons with equal am-
plitudes g and small velocities +V. A simple investiga-
tion based on Eqs. (4.33) and (A5) yields the following
equation for the dissipative perturbing term
eP[u]= —ialu

l
u [see Eq. (1.7b)]:

d( V ) 4 z~+~ N!(N+1)'=a 4gdt
4

(2N +2)! cosh(4gz ) +cos%

(4.38)

where z(t)=—JOV(t')dt', and qI is a relative phase of the
internal oscillations of the two solitons ( —m. (4(m). It
follows from Eq. (4.38) that, when the initial velocity Vo
is sufficiently large (Vo))q a), the change of velocity
due to the collision is (Malomed, 1985)
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V,„,-q"&a (4.39)

[cf. Eq. (4.2)]. Recall that this estimate concerns the col-
lision of solitons with equal amplitudes. When the ampli-
tudes are dissimilar the threshold velocity is much small-
er.

6. Breakup of a nonlinear Schrodinger breather
due to collision with a fast soliton

Following the approach of Sec. IV.A.3, we now consid-
er the possibility of a breakup of the NS breather
(4.24)—(4.31) due to its collision with a fast NS soliton [see
Eq. (2.41)] in the presence of the dissipation described by
Eq. (1.8). We shall designate V and g3 as the fast
soliton's velocity and amplitude; it is assumed that V is a
sufficiently large parameter (see below). On this assump-
tion, one may expect the full wave form to split, in the
lowest approximation, into breather and soliton wave
forms [cf. Eq. (4.11)]:

u(x, t)=ub, (x, t)+u, (x, t) . (4.40)

In the same approximation, the Jost functions for a
breather and for a soliton may be taken in the "unper-
turbed" form [in contrast to the case of the SG equation
(Sec. IV.A.3), now not only the combinations of Jost
functions that enter the evolution equation (2.48), but
also the Jost functions themselves, are split]. Corrections
to Eq. (4.40) and to the "split" Jost functions are of order
V

—1

Our aim is to calculate the relative velocity 5V of the
solitons, which are the "splinters" of the breather broken
up by collision with the fast soliton. This quantity, to-
gether with the difference Ag of the amplitudes of the
splinters, can be obtained from Eq. (4.32):

,'AV+iA—g=—f dt
dt dt

2ig ' I —dt[y, (t)M, (t)

—y, (t )M, (t )], (4.41)

where M, and Mz are determined by Eq. (4.33). Insert-
ing Eq. (4.40) into the perturbing term —ia, u from Eq.
(1.8a), and that term into Eq. (4.41), one obtains diver-
gent integrals. In fact, to consider accurately the effect of
the perturbing term, one needs to go beyond the approxi-
mation afForded by Eq. (4.40). Then the integrals be-
come convergent, but the resultant expressions are very
ponderous. We shall give only the estimates,

EV, b,rt-ar)3V g ln( V /i7g3) .

Approximation (4.40) is sufficient to analyze the effects
produced by the perturbing term —ia3lu l u from Eq.
(1.8b). Details of the calculations are presented by
Malomed (1985). For the case ly, (t)+yz(t)l ))g [see
Eq. (4.24)], when the two constituent solitons inside the

breather are slightly overlapped at the moment of col-
lision, the result is almost trivial, since 6V and Aq are, as
a matter of fact, mere differences in the velocity and am-
plitude of each constituent soliton produced by their col-
lision with the fast soliton.

The strong overlapping case ly, (t)+y2(t)l 8 g is, how-
ever, nontrivial [see Eq. (4.31)]. In this case the result is
(Malomed, 1985)

aq=64q, qv 'g -'ag-(ly, +y,

ling),

4=~4n3nV '0 'a3g(lyi+y2I&k),
(4.42)

B. Many™soliton interactions in the presence
of conservative perturbations

As is well known (Zakharov et al. , 1980), in the ab-
sence of perturbations .the interaction of solitons results
only in their phase shifts, with the shift due to collision
with a pair of solitons being equal to the sum of partial
shifts resulting from separate collisions with each soliton
of the pair; this situation is commonly referred to as the
absence of many- (three-) particle efFects. It is, moreover,
easy to verify that the collision of two solitons in the
presence of a conservative perturbation does not cause
energy and momentum exchange between the solitons in
first-order perturbation theory. In the first order, ex-
change is possible in the three-particle situation: dealing
with the collision of a fast soliton with two slower ones,
we can calculate the changes in velocity of the three
"particles, " i.e., the changes of their energies and mo-
menta, using the energy and momentum conservation
laws (Kivshar and Malomed, 1986a, 1986b, 1987a). The
three-particle nature of this effect manifests itself in the
dependence of the exchanged energy and momentum on
the distance between the slow solitons at the moment of
their interaction with the fast one. The effect vanishes
when the distance tends to infinity. Three-particle effects
are of principal interest for field theory problems, as well
as for elucidating the very notion of a nearly integrable
system.

To analyze the nontrivial two- and three-particle
effects, it is necessary to employ as a zeroth approxima-
tion an exact, form of a two- or three-soliton solution,
since it will have a crucial effect during the period of
strong overlap between the colliding solitons. Interac-
tions between remote (weakly overlapped) kinks can be
considered more simply as an interaction between classi-
cal particles. In this connection, it is pertinent to men-
tion the early paper by Rubinstein (1970), who demon-

where the functions f and g, determined as certain in-
tegrals, take values of order one. In particular,

f (0)=0.428, f'(0)=0, g (0)=0, g'(0) =0.016 .

Recoil effects, i.e., changes in the velocity and ampli-
tude of the fast soliton, have also been investigated by
Malomed (1985).
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strated (prior to the discovery of the exact integrability of
the SG equation) that for two weakly overlapped kinks
an e6'ective interaction potential is U(r) =32e ", where r
(r »1) is the distance between the kinks. A general
quasiparticle description of systems of weakly overlapped
solitons has been elaborated by Gorshkov et al. (1974)
and by Gorshkov and Qstrovskii (1981). In that case,
proximity to exact integrability is not needed.

The results to be set forth in this subsection were ob-
tained by Kivshar and Malomed (1986a, 1986b, 1987a).

1. Two- and three-soliton collisions
in the sine-Gordon equation

a. Three-kink collision

In this subsection we sha11 deal with the perturbation
(1.25). We shall consider the interaction of the fast kink
(2.61) with a pair of slower ones described by the unper-
turbed solution [cf. Eqs. (4.4) and (4.22a)]

a iexp( —z i +D /2vi )+ cr 2exp( —z2 D/2—v2 )
u» (x, t) =4 tan

1—o,o 2b, ~exp( —z, —z2+D/2v, D/2—v~)

z„=v„(x—V„t), v„—:(1—V„) ', n =1,2,
biz =[vi(1+ Vi ) —vq(1+ V2)] [vi(1+ Vi )+v2(1+ V2)]

(4 43a)

(4.43b)

We assume that the slower kinks (4.43) are also relativis-
tic, i.e.,

1 —S' (&1 . (4.45)

As is shown by Malorned (1985; see also Sec. IV.A.3),
condition (4.44) provides for the "splitting" of the full
wave field [cf. Eq. (4.11)],

u =uf+u»+O(v '), (4.46a)

where v is determined in Eq. (4.43b). Analogously, con-
dition (4.45) provides for the "secondary" splitting of the
wave field. (4.43a) into two kink wave forms:

u»=(u»), +(u»)z . (4.46b)

As for the Jost functions, it was explained in the preced-
ing section that one may insert them into the adiabatic
equations (2.73) in the "one-particle" approximation for
each n =1,2, 3.

Using these simplifications, we obtain from Eq. (2.73)
an evolution equation for the fast kink,

dv e +~ sin[2u (x, t)]
dt 4 — coshz

and for the pair of slower ones,

(4.47)

where Vi = W, Vz = —W ( S' & 0) are the velocities of the
two kinks, cr i and o z are their polarities, and D (which
may be sign-changing) is the distance between them
determined as the difterence between coordinates of the
erst and second kinks at the moment t =0.

The evolution of a kink's velocity under the action of
perturbation (1.25) in the SG equation is determined by
Eq. (2.73). Explicit results can be obtained in the case

(4 44)

and Vz(t) of the two kinks according to Eq. (2.60). The
changes of these parameters due to the collision can be
found by direct integration of Eq. (4.48):

(4.49)

sin(2u) =sin(2uf )cos(2u»)+sin(2u»)

—2sin ufsin(2u») . (4.50)

Using Eq. (4.46b), one can analogously simplify the
second term from the right-hand side of Eq. (4.SO):

sin(2u» )=sin(2u» )icos(2u» )i+ sin(2u» ),
—2sin (u„)2sin(2u„), . (4;50')

Substituting Eqs. (4.SO) and (4.50') into Eqs. (4.48) and
(4.49), we arrive at the final expression,

b,A, , = ef (5),128
9v

where the odd function

(4.51)

f (5)=tahn5 sech 5(1—2 sech25),

and the parameter

D/2

(4.52)

(4.53)

characterize the degree of overlap between the slower
kinks at the moment of their colhsion with the fast one.
For the second kink, analogous consideration results in

Equations (4.48) and (4.49) contain spatial and time in-
tegratjons. To perform them explicitly, one should use
Eq. (4.46a) and, after simple transformations, insert the
perturbation sin(2u ) into Eq. (4.48) in the form

e
&

+ ~ sin[2u (x, t)]
4 " " —~ cosh[z„+ ( —1)"D /2v„] b.A,z= —

equi f (5) .8 4 (4.S4)

where A.„(t) are expressed in terms of the velocities Vi(t) Since, according to Eq. (4.45), I,, »1, we see from com-
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paring Eqs. (4.54) and (4.51) that

This distinction is connected with the fact that the veloc-
ity of the first kink is in the same direction as that of the
fast kink, while the velocity of the second kink is oppo-
site to that of the fast kink; i.e., with regard to Eq. (4.4S),
the efFective time of interaction with the fast kink is
much larger for the first slow kink than for the second
one.

The change in the fast kink's velocity can easily be
found with the aid of energy and momentum conserva-
tion. Indeed, the energy E and momentum P transferred
by the fast kink to the slower ones are

2

b E = 8 g [1—1/(4A, „)]b,A,„=8b, A, (,
n=1

2

P =8 g [1+I/(4A, „)]b,A,„=86k,, =b.E
n=1

(4.56)

(4.57)

[we have used Eqs. (4.51), (4.54), and (4.55) to neglect the
second terms in Eqs. (4.56) and (4.57)]. The change b,v of
the "relativistic parameter" of the fast kink can be ob-
tained from Eqs. (4.56) and (4.51): b.v= bE/8, or—

bv= — ef(5) .128
9v

(4.58)

As to the change in the velocity V itself, it can be easily
expressed in terms of b,v [recall v—= (1—V )

' ]: b. V
=Av/v . Analogously, the changes 6 V, z in the slow
kinks' velocities can be expressed in terms of hA, , z.

It is important that the function f (5) defined by Eq.
(4.52) vanishes when 5~ ~. This is a direct manifesta-
tion of the three-particle nature of the efFect considered.
It is also interesting to note that the function f (5) is odd,
i.e., depending on the sign of 5, the fast kink may either
lose or acquire energy due to the collision with the pair
of overlapped slow kinks. Finally, it is worth noting that,
as can be seen from Eqs. (4.51)—(4.54) and (4.58), the
effect does not depend on the polarities of the kinks in-
volved.

b. Collision of a kink ~ith a small-amplitude breather

Now let us consider inelastic adiabatic effects accom-
panying the collision of a kink with a quiescent small-
amplitude breather (2.65) in the presence of the same
conservative perturbation (1.25). We shall assume the
kink to be fast, i.e., v)) 1, which provides, as above, the
splitting of the wave field:

u (x, t)=uk+ub, +O(v '), (4.59)

where uI, and ub, are the wave forms of the kink and the
small-amplitude breather, respectively.

In terms of the inverse scattering transform, a small-
amplitude breather corresponds to a pair of symmetric
points A, , z =+A, '+ ik" on the complex plane of the spec-
tral parameter A, ; see Eq. (2.62). The perturbation-
induced evolution equations for the real parameters A,

'

and A,
" take the following form:

d~' = + oo= —(ep/8) f dx sin[2u(x, t)][psech(px)cos(t++0) —tahn(px)sech(px)sin(t+%0)] .
dt QO

t

+ QO

=(ep/8) f dx sin[2u (x, t)][sech(px)cos(t +'Po)+tanh(px )sech(px )sin(t +Co)]
dt 00

(4.60)

(4.61)

[recall that %o is the breather's internal phase at the mo-
ment of collision t =0; see Eq. (2.64b)]. Inserting Eq.
(4.59) into Eqs. (4.60) and (4.61) yields

bv = ——", nev 'sin(2 IIO)csch(m /p ),
bA, '= —b,v/4p, b.A,

"= —b v/2 .

(4.62)

(4.63)

The velocity 8' acquired by the breather due to the col-
lision, and the change Ap in the breather's amplitude are
(Kivshar and Malomed, 1987a)

8 =2AA, ', hp=2b, k" . (4.64)

bE =32(bi,"—phd, ')=32pbi, ',

It is easy to verify that these results [Eqs. (4.62)—(4.64)]
satisfy energy and momentum conservation. The energy
AE and momentum hP transferred by the fast kink to the
breather are

b,P =32p(bi, '+pb. A,")=32pb, A, '=bE

(b.E and b,P must coincide approximately because the
fast kink is relativistic).

Clearly, the results given by Eqs. (4.62)—(4.64) depend
critically on the value of the breather's phase %'0 at the
moment of collision (we saw an analogous dependence in
Sec. IV.A). A simple analysis of Eqs. (2.6S) and (4.62) re-
veals that the fast soliton loses energy provided
sin(2%'o) &0, i.e., if at the moment of collision the kink
and antikink inside the breather are moving to meet each
other; the fast soliton gains energy in the opposite case.
It is interesting to note that, as can be seen from Eq.
(4.58), the same is true for the collision of a fast kink with
a pair of slower kinks if the relative distance between
them ~5~ is less than ln(1+ &2).

Another noteworthy fact is the exponential smallness
of the results (4.62)—(4.64) in the parameter p '. As can
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be seen from Eqs. (4.60) and (4.61), the reason for this
smallness is that the breather's size l is large: I -p ' [see
Eq. (2.65)].

c. Collision ofa

kiri

with a low-frequency breather

We now proceed to the opposite case from that treated
in the preceding section, i.e., collision of a kink with a
low-frequency breather [Eq. (2.66)]. As was shown in
Sec. IV.A, collision of a low-frequency breather with a
fast kink in the presence of a dissipative perturbation
may result (in first-order perturbation theory) in the
breakup of the breather into a kink-antikink pair. %'ith
the same accuracy, this enelastic process cannot be gen-
erated by a conservative perturbation. Here we shall
consider the same process for the perturbed sine-Gordon
equation with the perturbation (1.25). We shall confine
ourselves to first order, but we shall take into account the
Arst order with respect to v ', whereas Sec. IV.A.3 im-
plied the zeroth order. in this small parameter.

The evolution equations for the parameters of the low-
frequency breather, A, , 2=+A'+i A,"[see, Eq. (2.62)], en-
sue from Eq. (4.9). When we make the familiar assump-
tion 1 —V «1, the combined Jost functions split, as
above, into those corresponding to tHe fast kink and to
the breather, written in Eqs. (B3) and (B4). Inserting
these "one-particle" Jost functions into Eq. (4.9), one can
use Eqs. (4.50) and (4.50') to cast the evolution equations
into the form [cf. Eq. (4.12)]

d (A.')
dt

=(16m/3v) T cosh t [cosh r —T2(t)]

and antikink emit radiation due to their overlapping
(see Sec. VII). The total emitted energy is E„d-e
(Malomed, 1985), and if it is larger than the total kinetic
energy Ek;„of the escaping kink and antikink, they will

again merge into a breather, i.e., the breakup will be
unobservable. If the kink and antikink inside the breath-
er overlap weakly at the moment of collision t =0, i.e., if
~cos+~-1, or, in terms of T(t), To = T (0)-g, the es-
timate for Ek;„, following from Eq. (4.65), is

(4.67)

(4.69)

At last, if the overlap at the moment of collision is
moderate, i.e.,

iT()[ &&1, (4.70)

it follows from Eq. (4.65) that a condition analogous to
(4.69) is

At the same time, for a "typical" initial condition that al-
lows the breakup, Ei,;„-g, so that we obtain from Eq.
(4.67) g-e/v, or E„;„-E/v «E„d-e . Thus we infer
that in the case

~ To~ -g ' the breakup is unobservable.
If the overlap inside the breather is moderate at the mo-
ment of collision, i.e.,

1& T,'«g ', (4.68)

a similar consideration enables us to rewrite the condi-
tion E, & Ez;„ in the form

X [cosh t+ T (t) —6T (t)cosh t]

X[cosh t+T (t)] (4.65)
v& [T,ie (4.71)

(4.66)

In this problem the most interesting three-particle
effect is not the exchange of energy and momentum as in
earlier problems, but the possibility of a breakup of the
low-frequency breather (2.66) into a kink-antikink pair.
However, one should keep in mind that the escaping kink

Therefore breakup may take place under condition
(4.68) or (4.70) supplemented by, respectively, Eq. (4.69)
or (4.71).

Let us continue the analysis, assuming that the break-
up is observable. As follows from the inequalities (4.68)
or (4.70), during the collision Eq. (4.6') reduces to Eq.
(4.16). Substituting Eq. (4.16) into Eq. (4.65) yields the
Anal result

A(A,
' )=(16m/3v)TO f dt cosh't[cosh t+(To+t) ][cosh t +( T+ot)"—6(TO+t)'cosh't][coshzt+(To+t) ]

(4.72)

[cf. Eq. (4.17)]. Note that, according to Eq. (4.72), b, (A,
'

)
is an odd function of To.

The breakup takes place if h(A,
'

) & —g /4 (see Sec.
IV.A.3). The threshold value of the binding energy, i.e.,
the maximum value at which breakup is possible, is
E,i„=32]6 (A,

'
) ~. If ~Z& ~

& [E,h, ~, the collision breaks the
breather into a kink-antikink pair described by the un-
perturbed solution (4.22a). The small relative velocity 8'
of the kink and antikink, together with the constant 5,

are determined by Eqs. (4.21) and (4.22b).
The sign of sin% plays an important role in the above

consideration. A qualitative picture of an inelastic kink-
breather collision for the two opposite signs of sin%' is
given in Figs. 17(a) and 17(b) (cf. Fig. 16).

If b, (A.
'

) )0, the above consideration may describe the
inverse process of fusion of a kink-antikink pair (4.22a)
into a breather [Eq. (2.66)] due to the collision with a fast
kink. In the absence of a third kink,

'

the conservative

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



810 Y. S. Kivshar and B. A. Malomed: Solitons in nearly integrable systems

V

kink

-wl

V

breather

kink-antikink pair

(o)

kink

— t& 0

V

t&O

—t&O'

where z —= (x —t)/')/1 —V, and Vis the relative velocity
of the breathers (we set V =1 in all expressions except for
1 —V ). The parameters pz and 0'02 in Eq. (4.73) are the
amplitude and initial phase of the second breather in its
rest reference frame.

The most interesting case is that when the internal
kinks are essentially overlapped inside both breathers at
the moment of collision; then the interaction is four-
particle indeed. In this case the change of parameter A, ',

of the first (quiescent) breather [cf. Eq. (4.72)] is

&(&i ) (tlv)[Fi( Toz )6 i( Toi ) crFz( T02 )Gz( Toi )]

(4.74)

where the functions E& 2 and 6& 2 are defined in Appen-
dix C, and

kink
breather cr—:sgn(sin%, )sgn(sinqlz) . (4.75)

-w/ v

kink
t&O

kink- antikink pair

(b)

FICz. 17. The breakup of a low-frequency breather due to its
collision with a fast kink in the presence of the conservative
perturbation I' =sin(2u ): (a) sgn{sin% ) = + 1; {b) sgn(sin%')
= —1. The figure represents u„vs x.

perturbation considered may cause fusion of the pair into
a breather on account of energy losses; see Sec. VII. In
contrast to radiative fusion, the mechanism considered
here is nonradiative: the surplus energy (which must be
shed in order for the pair to merge into a breather) is ac-
cepted by the fast kink.

The result (4.72) essentially depends on To, i.e., on the
value of %. This crucial dependence on + is also a
feature of the results set forth for a dissipative perturba-
tion in Sec. IV.A.3. However, the difFerence is that the
conservative perturbation results are not sensitive to the
polarity of the fast kink, while in the case of a dissipative
perturbation it was crucial.

The parameters To, and TO2 in Eq. (4.74) and 4i and %z
in Eq. (4.75) are the standard parameters defined for each
breather in its rest reference frame. Note that, according
to Eqs. (Cl) and (C2), F2/Fi ~0 when ~T02~~~, i.e.,
only the first term from the right-hand side of Eq. (4.74)
survives in this limit to recover Eq. (4.72) with the dou-
bled right-hand side. This is because a fast breather with
small overlap of the internal kinks is equivalent to two
fast independent kinks. If To& is not large, the marked
difference between Eqs. (4.74) and (4.72) is that Fz is an
even function of To, in contrast with the odd function

The quantity b, (A.z ) for the second breather can be ob-
tained from Eq. (4.74) by the obvious transposition

oi Toe. If

4b, (A, '2) & —g (j =1,2),
the jth breather decays into a kink-antikink pair. Thus
we see that, depending on the-values of the breathers' pa-
rameters Toi, T02, gi, $2, cr, three different scenarios are
possible: both breathers survive; one survives and one
decays; or both decay. The result of the inelastic col-
lision depends essentially on sgn(sin%'„).

2. Three-soliton collisions
in the nonlinear Schrodinger equation

d. Two-breather collision

X sech( sinp2z )], (4.73)

Now let us consider a collision between two fast SG
breathers. Since each breather is a "two-particle" bound
state, this collision may be interpreted as a four-particle
interaction. Here we shall concentrate on the collision of
two low-frequency breathers [Eq. (2.66)].

In the rest reference frame of one breather, the second
breather has the form [cf. Eqs. (2.63) and (2.64)]

uf' '(z) =4 tan '[tang&sin(cospzz+% 02)

I.et us consider the NS equation perturbed by the con-
servative term (1.7a). Note that if we derive the per-
turbed NS equation from the SG equation with the per-
turbation (1.25) as an equation for small-amplitude
breathers, we should substitute into Eqs. (1.15) and (1.25)

u (x, t) =exp( it) U(x, t)+ exp(i—t) U*(x, t)

(Kaup and Newell, 1978b; Newell, 1978a, 1978b). The
perturbing term (1.7a) arises as the third nonvanishing
term of the expansion of sinu and sin(2u) in powers of U.
At the same time, the expansions of the basic term sinu
and that of the perturbing term sin(2n) differ irremov-
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ably beginning just from the coefficient in front of the
third term, i.e., the NS perturbation (1.7) adequately
models the SG perturbation (1.25). We shall consider a
collision between a fast soliton (2.41) with velocity —4g
and amplitude g and two overlapped slower solitons with
velocities —4/i &=+4K and amplitudes gi and rtz. We
assume [cf. Eq. (4.44)]

rameters are hg, 2= f + dt(d g, 2ldt), etc. [see Eq.
(4.49)].

Inserting the split wave forms (4.46) into Eqs. (4.78)
and (4.79), one can cast the final expressions into a simple
form ig. two particular cases: if

(4.82)

g ))K, gg ))Kg „Kg2

and [cf. Eq. (4.45)]

(4.76) and if

n2=ni=—~ . (4.83)

K))g), q2 . (4 77) In case (4.82) the results are

The conditions listed in Eq. (4.76) provide for splitting of
the wave field analogous to Eq. (4.46a). Condition (4.77)
provides for "secondary" splitting [analogous to Eq.
(4.46b)] of u, i(x, t) into two solitonic wave forms (2.41)
with velocities —4/i 2= +4K, amplitudes i7i, q2, and
phase constants P, 2,xi z. As for the Jost functions, un-
der conditions (4.76) and (4.77) they split directly into
"one-particle" expressions (A4), in contrast with the case
of the SG equation, where only the combinations
W(f„,o,g„) were split [see Eq. (2.73)].

Substituting Eqs. (A4) into Eqs. (2.48) and (2.49) yields
the evolution equations for the parameters of the slow
solitons (j= 1,2) [cf. Eq. (4.48)]

dg,
=eiljlm f dx ~u (x, t)~ u (x, t)

dt QO

ag, =96eg', q,gg 'g, (5),
A/2= —96eg, qg' 'g, (5),
b,g= —192eq, g2Kg g, (5),
Ag) =Ag~=hg=0,

(4.84a)

(4.84b)

(4.84c)

(4.85)

where the odd function is

g, (5)=tahn5sech 5 (4.86)

(4.87)

[cf. Eq. (4.52)]. As above [see Eq. (4.53)], the parameter 5
characterizes the overlap between the two slow solitons
at the moment of collision (t =0), with their centers lo-
cated at the points x ] and xp '.

if.(x, t)
sinh[z (x, t)]e

cosh [z (x, t)]
(4.78)

It can be readily verified that Eqs. (4.84) and (4.85)
satisfy all the elementary conservation laws, the energy
AE, 2 and momentum AI', 2 acquired by each of the slow
solitons being

d Y/J. = —eg Re f dxu(x, t)~ u(x, t)—oo

ig. (x, t)
e

cosh[z~ (x, t)]
(4.79)

Ei = 32/ i&Kg
=i32 'ili'gp'gK/ gi(5) i

EE2 ——32g2Kkg2 kE i

b,P, = —8', b,g, = —3.2 g3ig2geg 'g, (5),
AP2 = —8rt2b, f2= b,P, . —

(4.88a)

(4.88b)

(4.89a)

(4.89b)
= —@Re f dx ~u (x, t)~"u (x, t)

dt oo

ig. (x, t)
xe

cosh[z (x, t)]

dpj =elm f dx~u(x, t)~ u(x, t)
dt oo

1 —2g xtanh[z (x, t)] g (~,)
X e' &'

cosh[z (x, t)]

(4.80)

(4.81)

and the same equations for parameters of the fast soliton
(j =3), where

g3 =g g3:7J z3(x, t) =2g(x +4gt —x ' ')

(x, t)=2gix+4(.g. re�)t+Pi . —

The full collision-induced changes in the solitons' pa-

The third elementary integral of motion of the unper-
turbed NS equation is the "number of plasmons" (Za-
kharov et a/. , 1980). The number of plasmons bound in-
side a soliton is N =4q . According to Eq. (4.85), the
quantities ¹ do not change in the approximation con-
sidered. Moreover, as can be seen from Eq. (4.89b), the
fast soliton does not exchange momentum with the slow
ones.

Comparing Eq. (4.84a) to Eq. (4.84b), we see that the
change of velocity is much larger for the first soliton, i.e.,
the one with the smaller amplitude [see Eq. (4.82)], than
for the second one [cf. Eq. (4.55)]. This is quite natural
because the soliton's width is -g ', hence the first soli-
ton is much broader, and its interaction time with the
fast soliton is much. larger too. Nonetheless, the changes
in the energies of both slow solitons are equal, as can be
seen from Eq. (4.88b).

Another feature we should note is that, pursuant to
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ax"'=0
6/=32@/ '(g2g +gz/2+3qii)2sech 5) .

(4.90)

Equations (4.84)—(4.89), as well as Eqs. (4.51)—(4.58), are
obviously three-particle results. At the same time, the
phase shift (4.90) contains, on a level with the three-
particle contribution b,$,23 vanishing at 5~ oo, a
perturbation-induced two-particle contribution from the
interaction of the fast soliton with the second slow soli-
ton [it dominates over a contribution from the interac-
tion with the first slow soliton due to Eq. (4.82)].

We now proceed to the case described by Eq. (4.83).
As above, in this case the amplitudes do not change,
while the velocities change as follows:

Eq. (4.84c), the change in the fast soliton's velocity is of
second order in g . Since this quantity is small, it seems
reasonable to evaluate the perturbation-induced phase
shifts of the fast soliton, using Eqs. (4.80) and (4.81):

cording to Sec. IV.A.6, three-particle effects, except for
the phase shift (4.93), are absent in the first approxima-
tion for a perturbation from Eq. (1.8b). This drastic
difference between the two problems may be interpreted
as a manifestation of the "coherent" nature of the NS
breather.

Nontrivial results were described in Sec. IV.A for the
dissipative perturbation corresponding to imaginary E in
Eq. (1.7). Comparing these results with Eqs. (4.91) and
(4.92), we notice a substantial difference between three-
particle effects caused by dissipative and conservative
perturbations: the latter result in changes of velocities,
while the former affect amplitudes.

Thus there is a strong difference between three-particle
effects for the relativistic SG kinks, treated in the preced-
ing section, and those for nonrelativistic small-amplitude
breathers equivalent to NS solitons.

bg= —192e8 ag g2(5),

b g, = bg, = 96m—8 qg 'g~(5),

(4.91a)

(4.91b) 3. Two-soliton collisions in the sine-Gordon equation in
the presence of an inhornogeneity

where this time the parameter characterizing the overlap
of the slow solitons at the moment of collision is
5—=20(x z'

' —x', ') [cf. Eq. (4.87)], and the odd function

g2(5) = [3(5—tanh5)coth 5—5]csch 5 (4.92)

[cf. Eqs. (4.S2) and (4.86).].
The energy exchanged between the fast soliton and the

pair of slow ones can be easily calculated with the help of
Eqs. (4.91) and (4.92) similarly to Eq. (4.88), while there is
no momentum exchange, as above. There are likewise no
changes in the number of plasmons.

Finally, the phase shifts for the fast soliton can be cal-
culated in the present case by analogy with Eq. (4.90):

a. Collision of free kinks

Following Kivshar and Malomed (1986b), we shall
consider the collision of two kinks described by the SCs
equation with the perturbation (1.19). The collision can
generate three-particle effects, since the inhomogeneity
plays the role of the third "particle. " The results take a
simple form in two particular cases. First let us consider
the collision of a fast kink with a slower one. Following
the approach set forth above, we obtain the collision-
induced changes b, A, 3, AA, , of the parameters (4.49) for the
fast and slow kinks:

ax'"=0
bp=64F.@ '[rl +8 /2+30 g3(5)],

(4.93)
b,A, 3

= —2e V, v, v3 'g, (5),
EA, , =2ekiv3 'gi(5),

(4.95)

(4.96)

g3(5) =cosh5 csch 5(5—tanh5) .

It seems natural to compare the results of Eqs.
(4.91)—(4.93), obtained with condition (4.83), with those
from Sec. IV.A.6. Indeed, in that section we actually
considered three-particle effects in the collision of a fast
soliton with a NS breather that might be regarded as a
system of two quiescent solitons (i.e., a=0 in present
terms), with the close amplitudes

where g, (5) is defined by Eq. (4.86). The parameter
5=—v, (xI ' —V,xP') characterizes the overlap between
the slow soliton and the inhomogeneity at the moment of
collision t =0. It is easy to verify that, according to Eqs.
(4.95) and (4.96), the total energy of the two kinks,

E=—8 g (A,~+ —,'k ),
j =1,3

is conserved, while the momentum hP absorbed by the
inhomogeneity is

(q, —il, )' «(g, +g, )' . (4.94) b,P =8@v, '(1 —V3)'~ g, (5) . (4.97)

Condition (4.94) plainly is similar to Eq. (4.83), while the
condition i'd=0, in contrast to Eq. (4.77), points up the
difference between the two problems (in particular, the
breather configuration substantially differs from a super-
position of two slow solitons, and the breather's Jost
functions do not split into one-soliton expressions). Ac-

Note that the expression (4.97) is odd with respect to 5.
The second explicitly tractable case is that when the

inhomogeneity is at I"est in the center-of-mass reference
frame of the two colliding kinks, i.e., their velocities are
opposite: V, = —

V2 = W [we do not require v
—1

=(1—W )'~ ((1].The result is
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(2/'t/ —g)in[ —,'(&+V' —g)], /&0,J (W5}= ~

(2/&g)cot '(bi&/), g) 0,
and

(4.99)

g—= —W D (2cr+b), b:2c—r+ W D

D+—=e'+oe '. (4.100)

Here cr =cr, cr3 is the relative polarity; 5—:xo/
(1—W )'~, where x~ is the distance of the inhomogenei-
ty from the center of mass of the two-kink system. Note
that in this case, as can be seen from Eq. (4.98), b.I' =0,
i.e., the inhomogeneity resting in the center-of-mass sys-
tem cannot absorb momentum (momentum nonconserva-
tion is possible in higher approximations unless xo =0).

The above results are equally applicable to the cases
e) 0 and e & 0. At the same time, a kink may be pinned
by the inhomogeneity only in the case e) 0, when the in-
homogeneity attracts kinks of both polarities, and the at-
traction potential is (McLaughlin and Scott, 1978)

U= —2esech g, (4.101)

where g is the coordinate of the kink's center. It is easy
to find the law of motion of a, pinned kink:

sinhg(t) =&(:2e—E)/E sin(VE t/2), (4.102)

where E is the pinning energy (0 & E 2e). The collision
of a fast kink with a pinned one described by Eq. (4.102}
may result in a simple inelastic effect: the kicking out of
the slow kink from the bound state. If the incident kink
is not too slow, we may use an expression for the
collision-induced phase shift b,g of the slow (pinned) kink
valid in the absence of perturbations (Zakharov et al. ,
1980):

b.A, 2
= —EA, i /4A, i,

(4.98)
eo W(1+ W)D+D

b, A, , = [6+(4o b—}J ( W, 5)],
2(2o. +b )

where

In the opposite case, when V3 is small, another notice-
able interaction may occur: reAection of the incident
kink from the bound one (without releasing the latter
kink), provided the kinks are unipolar. Note that the in-
homogeneity itself is attractive, and it cannot reflect a
kink. The maximum (threshold) value of V3 for which
reQection is possible can again be readily obtained by
means of energetic arguments: V,h,

= 4E.

b. Collision between a free fluxon

and one pinned by a localinhomogeneity

The collision between a free kink (Auxon) and a pinned
one, considered at the end of the preceding section, is of
practical interest for Auxons in a long Josephson junction
with a microshort or rnicroresistor. Inelastic interAuxon
interactions, such as release of a pinned Ouxon, trapping
of a Quxon, etc., can be employed to design logic ele-
ments of a Josephson computer. These interactions have
been studied in detail by Malomed and Nepomnyashchy
(1989a) with the use of both analytical and numerical
methods. The full picture of the interactions obtained in
that work is rather complicated. Here we shall describe
several representative particular cases in which the
analytical perturbative technique proves to be especially
useful. We employ the standard model [Eq. (3.53)] (with
P=O) of a damped dc-driven long Josephson junction
with a microinhomogeneity installed.

First let us consider the case in which two Auxons are
unipolar, and the pinned one. is bound by a repulsive in-
homogeneity (e&0). The full effective one-Auxon poten-
tial takes the form (3.55'), with the second term account-
ing for the driving force generated by the bias current.
The potential (3.55') is shown in Fig. 18. A quiescent
pinned fluxon rests at the point g;„which is the
minimum of the potential (3.55'). The distance l defined
in Fig. 18 can be easily found under the assumption
I »1:

b,g= —ln
1+(1—V )'

1 —(1—V )' (4.103) U

where V3 is, as above, the velocity of the fast kink. The
duration of the collision is —V3 ', which is much smaller
than the bound kink s oscillation period 4m /VE -e
[see Eq. (4.102)], hence one may neglect the change in the
pinned kink s velocity during the collision. Thus the col-
lision does not change the slow kink's kinetic energy, but,
according to Eqs. (4.101) and (4.103), its potential energy
does change by an amount b, U=U(go+6, g) —U(go),
where U(g) and hg are defined by Eqs. (4.101) and
(4.103), and where go is the value of the slow kink's coor-
dinate before the collision. So, it is evident that the
bound kink escapes provided hU)E, and it remains
bound when AU &E. This approach and the final result
are valid provided V3 ))&e.

FIG. 1S. The fu11 effective one-Auxon potential (3.55') with
e&0. The dashed straight line is the potential Ud, = 2~fgof-
the driving force.
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(4.104)

If the free Auxon is nonrelativistic, i.e., if its velocity far
from the pinned fluxon is Vo=mf/4y «1 [see Eq.
(3.47)], and its kinetic energy 4VO is larger than the
height 2l el of the effective potential barrier, the collision
will result in a shift b,g of the pinned fluxon which is
determined by the well-known unperturbed expression
[Zakharov et a/. , 1980; cf. Eq. (4.103)]

0

Ag= —ln(4/Vo) . (4.105)

The minus sign in Eq. (4.105) implies that the pinned
Auxon is displaced to the left, in terms of Fig. 18. Thus
the displaced Auxon acquires additional potential energy
hU = U(g;„+kg) —U(g';„). Neglecting dissipative

losses, we conclude that the energy gain AU is sufhcient
to release the pinned fluxon if hU) 2lel, i.e., if hg) l;
see Fig. 18. Using Eqs. (4.104) and (4.105), one can ob-

tain the condition under which the collision results in the
release of the pinned Auxon:

f &f',„",:—~[2~»(y/l~l)] {4.106)

The assumptions employed to derive Eq. (4.106) are sum-

marized by the double inequality

y in(y/e) «e«y . (4.107)

Let us emphasize that the inequalities (4.10'7) are needed
solely to warrant the particular analytical formula
(4.106); numerical investigation demonstrates that the
release efFect takes place over a m.uch broader parametric
range, and it is in qualitative agreement with the picture
described above.

In the range f & f'ih,' the collision is elastic, i.e., after
the collision one again observes a free Auxon and a
pinned one. However, there exists another threshold
value f,'h,'-y&

l el «f,'h,' [cf. Eq. (3.57)] such that in the
range f & fih,' both Auxons will find themselves pinned
after the collision. An exact value of f',h„' can be found
numerically.

In the case of an attractive inhomogeneity (e & 0), the
pinned Auxon is again displaced to the left, but this time
the distance I that provides the release of the pinned
fluxon is much smaller (Fig. 19). Accordingly, in the
present case (at least if e )y ), there must be a threshold
value fIh,'-y&e such that in the range f)fIh,' both
Auxons are free after the collision, and in the range

f &f,'h,' both are pinned (although the elastic collision

may take place in a narrow region off,h,').
Let us proceed to a collision between Auxons of oppo-

site polarities. From the viewpoint of Figs. 18 and 19,
the difFerence is that this time the free Auxon comes to
the pinned one from the right; accordingly, the pinned
fluxon displaces to the right. As can be seen in Figs. 18
and 19, the pinned Auxon will be released provided the
shift lb, gl exceeds the distance l' between the minimum
and maximum of the efFective potential. Straightforward
analysis demonstrates that for either sign of e the col-
lision is elastic if

FIG. 19. The same as in Fig. 18, but with e & 0.

(4.108)

and it results in release iff &f,'h,'. In the case of opposite
polarities a new inelastic interaction is possible, viz. ,
fluxon-antifluxon annihilation. The threshold value f,'h,'

of the bias current density that permits annihilation can
be found from the energy balance as above [see Eq.
(4.1')], with the difFerence that now the total kinetic ener-

gy of the two Quxons is twice as small. So, one can find

[cf. Eq. (4.3)]

f(2} 2(2y )3/2 {4.109)

The annihilation takes place provided f &f ',h2,'.
It should be taken into account that a pinned state of

one fluxon exists if f &f„=(4/3 ~v3)lel [for f &f,„ the
effective potential (3.55') has no local extrema]. Compar-
ing f„to Eqs. (4.108) and (4.109), we conclude that both
thresholds f,'h, ' exist if y&y, =2 X3 lel. If
y, &y &y2=——,'(lel/m), the threshold f,'i„' is absent,

i.e., a collision results in release for f &fIh,', and in an-

nihilation for f &f,'h,'. Finally, the threshold f,'h,' disap-

pears when y, exceeds y2. In the latter case, a collision
always results in annihilation.

A local inhomogeneity of another type in a long
Josephson junction can be generated by an Abrikosov
vortex crossing the junction. According to Aslamazov
and Gurovich (1984), this inhomogeneity is described by
the term e5'(x), which gives rise to the effective potential
[cf. Eq. (3.55)] U(g) =2eo sinhg, where o is the fluxon's

polarity. It is possible to consider the interaction be-
tween a free Auxon and one pinned by an inhomogeneity
of this type (Malomed and Nepomnyashchy, 1989a).
Qualitatively, the results do not differ from those de-
scribed above, except for the fact that in, the case of op-
posite polarities the threshold value f',h,

' defined above
proves to be less than fg,', provided y & (m /32)e [this
was not possible in the model (3.53)]. In this situation,
only the threshold f',h,

' actually exists, so that for f &f,'h,'

the collision is elastic, and for f &f',h,
' it results in an-

nihilation.
It was recently demonstrated by Gurovich and Mi-

khalev (1987) that the inhomogeneity e5'(x), in contrast
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to e5(x)sinu, admits a symmetric bound state of two uni-
polar Auxons attracted by the inhomogeneity. However,
these authors overlooked the fact that the state is unsta-
ble against antisymmetric perturbations, so that it is
physically meaningless.

4. Three-soliton collisions in perturbed Korteweg-de Vries
and modified Korteweg-de Vries equations

Three-soliton collisions may also be considered in the
framework of KdV and modified KdV equations with
various conservative perpurbations. For instance, if the
KdV equation arises as a result of an expansion in powers
of a wave amplitude, it is natural to inquire into eS'ects
produced by higher terms of the expansion. In the sim-
plest case this leads us to the following perturbed KdV
equation:

Qg 6QQ& +Q&&& =E'iQ Q& + 6'2Q Q& + (4.110)

3 2
KlK2

kx l 23 262 2 sech 6
K3

(4.111)

where 5=—2a.i(xoi —x02) is the relative distance between
the two slower solitons at the moment of their collision
with the fast one. If one considers the first term on the
right-hand side of Eq. (4.110) as a perturbation, analo-
gous calculations yield

As above, it is natural to consider perturbation-induced
three-soliton interactions. The "splitting conditions"
analogous to those employed above this time take the
form K3 »K2 »Kl, where Kl 2 3 are the amplitudes of the
solitons involved. Using these conditions, one can verify
that, in contrast with the situation for conservatively per-
turbed NS and SG equations, for Eq. (4.110) there are no
soliton amplitude changes induced by three-particle in-
teractions. This result, which directly follows from in-
spection of the perturbation equations, can be understood
with the aid of a simple kinematic consideration. The
perturbed Eq. (4.110) conserves three quantities: energy,
momentum, and the "mass" I+"u dx, so only a four-

soliton collision may result in a change of soliton ampli-
tudes in the adiabatic approximation. However, a three-
soliton interaction may give a nontrivial contribution to
the phase shifts. We have calculated the phase shift of
the soliton possessing the greatest amplitude. If, for in-
stance, a perturbation is represented by the second term
on the right-hand side of Eq. (4.110), the three-particle
contribution to the phase shift is

5. Stability of a nonlinear Schrodinger breather

Breathers have been observed in experiments with
soliton-carrying optical fibers (Mollenauer and Stolen,
1982), and the stability of breathers described by various
versions of the perturbed NS equation have been the sub-
ject of intensive studies (Pereira and Chu, 1979; Yajima
et a/. , 1979; Chu and Desem, 1985; Golovchenko et al. ,
1985; Malomed, 1985; Wai et al. , 1986). Numerical ex-
periments performed by Chu and Desem (1985),
Golovchenko et al. (1985), and Wai et al. (1986) have
demonstrated that a conservative perturbation may break
a breather into a pair of free solitons. Here we shaH con-
sider this problem for the NS equation with the model
perturbation (1.7a), which also occurs in nonlinear optics
(although does not play a physically important role; Ku-
mar et al. , 1986). The perturbation Hamiltonian corre-
sponding to Eq. (1.7a) is

H„„,=—f "dx iud' . (4.113)

which, in turn, is reduced to the KdV equation by the
well-known Miura transformation (Miura, 1968). If we
take as an initial condition for the "perturbed" equation
a three-soliton state of the unperturbed KdV equation,
this transformation will bring us to a perturbed three-
soliton state, i.e., the three-soliton state plus a contribu-
tion from the continuous spectrum. On the other hand,
it is well known that the interaction of a soliton with the
continuous spectrum results in some phase shift of the
soliton (see, for example, Martinez Alonso, 1985). It is
natural to assume that the "perturbation-induced" phase
shift (4.112) is a manifestation of that interaction.

Let us briefly adduce analogous results for the per-
turbed modified KdV equation

Qf 6Q Q~ +Q~~x
= E'Q Q~

As in the case of the perturbed equation (4.110), we
have three integrals of motion (energy, momentum, and
"mass"), and the interaction of three solitons may not re-
sult in a change of soliton amplitudes in the adiabatic ap-
proximation. As for the phase shift of the soliton with
the greatest amplitude (we again assume x.

3 ))a2 ))a., ), it
takes the form bx i23 3 e(~,~', /~3)sech"5, wh«e
5 —=2+&(xoi —

xp2 ).

2K lK2 2axl23= —4e, sech 6 .
K3

(4.112)
(H~„, )„i=(2' /15)eg =68eq (4.114)

For a pair of free solitons (2.41) with equal amplitudes g,
the quantity (4.113) takes the value

At the same time, it is well known that the KdV equation
with this "perturbation" remains exactly integrable (see,
for example, Zakharov et al. , 1980). Indeed, the linear
transformation Q =av +b, where b = —3/el, reduces Eq.
(4.110) to the unperturbed modified KdV equation,

It is natural to compare Eq. (4.114) with the quantity
(H „,)b, ensuing from Eq. (4.113) on inserting there the
expression for a breather with y, (t)+y2(t)=0, i.e., that
corresponding to the moment of maximum overlap be-
tween the two constituent so1itons:
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(H „,)„,=383eg (4.115)

Comparison of Eqs. (4.115) and (4.114) reveals that the
breather is stable provided e (0, and its binding energy is
(Malomed, 1988d)

Eb =—(H „,)„,—(H „„)~,= —315eg (4.116)

As another particular case, one may take the breather in
the weakly overlapping state (4.24). The corresponding
binding energy averaged in the fast intrasoliton oscilla-
tions proves to be (Malomed, 1988d)

(E ) slz&g4- 5 —2gL (4.117)

where L is the same as in Eq. (4.27) and it is assumed
that rtL )) l. Equation (4.117) corroborates that the
breather's stability requires e & 0.

In the theory of nonlinear optical fibers, an important
role is played by perturbations described by the Hamil-
tonians

+ oo

Hp~rI
= l E dX 0~x Q~

+ QO

Hp t=lE dx 0 Q 0

(4.118)

(4.119)

6. Solitons of the double sine-Gordon equation (wobblers)

Let us proceed to the perturbed double SG equation

0
u« —u +sinu =h sin —+eP(u), (4.120)

which account for, respectively, higher linear dispersion
of the fiber and the group velocity dispersion [see
Golovchenko et al. (1985), Kodama and Hasegawa
(1986), and BourkoÃ et al. (1987) and references therein;
a brief survey can be found in the paper by Kodama
(1985d)].

In contrast to Eq. (4.113), the perturbations (4.117) and
(4.119) give zero binding energy in the same approxima-
tion in which we have obtained Eqs. (4.114)—(4.117). So,
to investigate the stability of a breather in the presence of
perturbations (4.118) and (4.119), one needs to take into
account perturbation-induced corrections to the form of
the breather.

Another approach to this problem has been put for-
ward by Kodama and Hasegawa (1986) [see also Kodama
and Nozaki (1987)]. They took an unperturbed wave
configuration consisting of two solitons with equal veloci-
ties (which is just a breather), and calculated
perturbation-induced shifts of the soliton velocities using
first-order perturbation theory. One of their conclusions
was that the perturbations (4.118) and (4.119) shifted the
velocities of the solitons by di8'erent amounts, i.e., gave
rise to some relative velocity 6V, which had to explain
the breather's breakup. However, this explanation does
not seem reliable since, if one takes as an unperturbed
state a two-soliton configuration with relative velocity
—6V, the perturbation may cancel it and thus create a
new stable breather.

where P(u) is some additional perturbation, and where
both parameters e and h are small. An example is a weak
ferromagnet with a localized magnetic impurity
(Bar'yakhtar et al. , 1985):

P (u) =5(x)sinu (4.121)

and dissipation P (u ) = —u, .
Though the double SG equation is not exactly inte-

grable, it has an exact one-soliton solution (a 4m kink),
which in the case 0 & h « 1 has the form (Bullough
et al. , 1980)

u =4 tan '(&h /2sinhz ),
z=(x —Vt)/(1 —V )'

(4.122)

This may be interpreted as a bound state of two sine-
Gordon 2m kinks (Newell, 1977). As was demonstrated
by Newell (1977) [see also Burdick et al. (1987) and
Willis et al. (1987)], the 4m kink can exist in an excited
state, when the two internal 2~ kinks oscillate relative to
each other (Newell, 1977; Bullough et al. , 1980):

IV(t)sinhx
(4.123)

cosh'(t)

where

g(t) =a V2/h sin(Qt),

W(t)=&h/2+a cos(Qt), 0=v'h
(4.124a)

(4.124b)

and a is a small amplitude of the internal oscillations
(a «h). The excited 4~ kink is sometimes called a
wobbler (Bullough et al. , 1980). Equation (4.123) is writ-
ten in the wobbler's rest reference frame (V=O). The
solution (4.123) and (4.124) is approximate; since the
double SG equation is not exactly integrable, the
wobbler's internal oscillations slowly fade due to emis-
sion of radiation (see Sec. VII.E).

Proceeding to a study of adiabatic eff'ects produced by
the additional perturbation eP[u] in Eq. (4.120), let us
first consider the damping of the wobbler's internal oscil-
lations under the action of the dissipation eP = —yu, . It
is easy to find the energy of the internal oscillations,
E„,=a +O(a "/h). Energy balance yields the damping
law in the following form:

2=a = —8ya +O(ya /h) .
dt

(4.125)

Oscillations of a finite amplitude and their dissipation-
induced damping can be studied with the aid of general
adiabatic equations developed by Bullough et al. (1980).

The dissipatively damped double SG equation admits
stationary solitons of two types: quiescent unexcited 4m

kinks and the usual 2a kinks moving with the equilibri-
um velocity (3.48). It is pertinent to note that, as follows
from inspection of the form of these solitons, a collision
between 2m and 4m kinks is not possible.

Now let us consider a collision between an excited 4m.

kink moving with velocity V and a local inhomogeneity
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described by the perturbation (4.121). A slight generali-
zation of the approach developed by Kivshar and
Malomed (1987b} yields the following result: after the
collision, the 4m kink goes over into an excited state
(4.123) and (4.124) with amplitude

This means that, in the order considered ( —v, ' ), there is
no excitation of the internal degrees of freedom. In the
same order v ', a collision of three fast 4m kinks has no
adiabatic effect.

32Ve V 1 —Vz
h

(4.126) C. Interactions of solitons in systems
of coupled equations

The size of a moving 4nk. ink is —V 1 —V lnh
according to Eqs. (4.123}and (4.124), and the derivation
of Eq. (4.126) implies that the collision timer- V '+I —V lnh ' is much less than the wobbler's
internal oscillation period T =2m /A=2m 3/2 /h. [In the
opposite case (r«T), the result will be exponentially
small in r/T. ] Using the energy balance, it is easy to find
the 4m kink's loss of velocity due to the coHision:

b, Vz= — (1—V2)F(5;h),16eh

v1
(4.127)

and the change of the parameter v, of the first 4~ kink is

b,v)= 2, ~ F(5;h),16eh

( 1 V2 )1/2
(4.128)

where

a&(V')= (1—V') .
8

Collision of two unexcited 4~ kinks (in the absence of
additional perturbations) moving with velocities + Vmay
result in excitation of the internal oscillations by the
transfer of a part of their kinetic energy into internal de-
grees of freedom. This phenomenon has been revealed
numerically by Campbell et al. (1986). However, the
analytical calculation of Kivshar and Malomed (1987b)
has demonstrated that for "relativistic" 4~ kinks
[v=(1—V )

'~ &&1] there is no excitation of internal
oscillations, at least in order v '. In the same order, the
effect of a collision is nontrivial if it takes place in the
presence of the inhomogeneity (4.121). Let us consider
the case when one 4m kink is "relativistic" in the
inhomogeneity's rest reference frame [i.e.,
v, =(1—V&) '~ &&1] and when the velocity V3 of the
second 4m kink is arbitrary. Then the change in the ve-
locity of the second 4m. kink is

Systems of weakly coupled nearly integrable equations
(which become exactly integrable in a decoupled form),
such as coupled pairs of KdV, NS, and SG equations,
occur in a number of important physical problems.
These systems give rise to bisolitons, i.e., bound states of
two solitons belonging to different subsystems. Interac-
tions of bisolitons with each other and with ordinary soli-
tons gives rise to a new and interesting class of dynamical
phenomena.

1. Coupled Korteweg —de Vries equations

uj = —2a~sech [a.(x. —z. )], j=1,2,

dz1 2
dz

dt
=4P~ —V

(4.129)

(4.130)

We shall confine ourselves to the case in which the ampli-
es Kl 2 0 the unpe tu bed so to s a e equa

~1 2
=~+ A, , 2, where ~=const, and the perturbation-

induced variable parts A, , 2 are small compared with ~.
To form a bound state, we need the unperturbed veloci-
ties to coincide:

In this subsection we shall consider the system (1.3)
and (1.4), which, as was mentioned in the Introduction,
describes two resonantly interacting normal modes of
internal-gravity-wave motion in a shallow stratified
liquid. Gear and Grimshaw (1984; Gear, 1985) have
demonstrated that two solitons belonging to diff'erent (u,
and u2) subsystems can form a leapfrogging bound state
that moves with some common velocity and that has
internal oscillations. The effect has been explained in the
framework of perturbation theory by Malomed (1987g)
and Kivshar and Malomed (1989d).

In the decoupled case (e, =e2=e3=0), the two solitons
take the form

sinh5 cosh5(2 —h sinh 5)
(2+h sinh 5)

4a, =4p~2 —Vo, (4.131)

and 5 is the distance between the collision point (i.e., a
point at which the centers of the colliding 4m kinks over-
lap) and the point x =0 where the inhomogeneity is lo-
calized.

It is easy to verify that the change in total kinetic ener-
gy of the two wobblers corresponding to Eqs. (4.127) and
(4.128) is zero, i.e.,

d k 'j

dt
=2a "[2e3IQ(g) —( e, +e2+ 6e3)I, ( g) ],dt

i.e., ~ = Vo/4(P —1); see Eq. (4.130). Internal oscilla-
tions of a bound two-soliton state are described by an
equation for the relative coordinate /=a(z& —z2). The
general perturbation-induced evolution equations for the
pa~amete~s X1 ~2 z1 and z2

V2b V2
AE1+EE2 = 16 b vi+

(1 Vz )3n
=0. dz 1 =4~ + 8~A. , +eF ( g),

(4.132)

(4.133)
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dz2 d A2
=4K 13+8KP —Vo+ aeF (g),dt dt

where

(4.134)

Io(g)= [3$—3tanhg —gtanh g],
cosh gtanh g

(4.135)

I, (g)=, , ——", tanh'g+ 5 tanhg
cosh gtanh g

g(5 —tanh g)
cosh g

(4.136)

and F(g) is a certain function that rapidly decreases at
~g~

—+ Oo. For the sake of simplicity, we shall present fur-
ther results for the particular case ca= l. In this case the
evolution equation for the coordinate g ensuing from
Eqs. (4.132)—(4.136) reduces to an equation of motion for
unit-mass nonrelativistic particle in a potential whose
shape is shown in Figs. 20 and 21. In the case
e~+e2& —

—',e3 the potential has a minimum at /=0
[Figs. 20(a) and 21(a); in the case e3&0 it also has two
maxima at g=+g; see Fig. 20(a)]. In the opposite case
e, +Ez& ——', e3 the point /=0 is a maximum [Figs. 20(b)
and 21(b); in the case e3(0 the potential also has two
minima at g=+g; see Fig. 21(b)].

(b)

FIG. 21. The same as in Fig. 20, but with e3 & 0: (a)
e, +e, ) —,

' ie, i; (b) e, +e, & —,
' ie, i.

In the particular case e& =@2=0 the potential takes the
form shown in Figs. 20(a) (e3&0) and 21(b) (e3(0); in
this case

U(g) =32(1+13) ~(11cosh(+ cosh3$)
sinh g

—3 sinhg —sinh3$

and g =2. 1 (Malomed, 1987g).
The presence of trapped trajectories in the potentials

shown explains the existence of the stable leapfrogging
bisolitons. In particular, if the potential has a minimum
at /=0, the frequency of small oscillations in its vicinity
can be found in a general form (without assuming a= 1)
(Kivshar and Malomed, 1989d):

coo= —",,
'K (1+ap)[e3+—' (e,5+@2)] . — (4.137)

(b)

FIG. 20. The effective potential U(g) of the interaction be-
tween two solitons with nearly equal amplitudes described by
the system of coupled kdV equations (1.3) and (1.4) with a=1
and e3&0: (a) e, +@2) 263 (b) e&+@2& —2@3.

COo 64K2 E)K2 ( 3 e2+ 4E3 ) (4.138)

Note that in the case shown in Fig. 20(a) the oscillation
amplitude may not exceed the value g

So far we have dealt with two solitons whose ampli-
tudes K, and K2 were nearly equal. The case K, ))K2 (or
K2))K, ) is tractable too. According to Eq. (4.131), this
case implies K, = —Vo/4 (or K2= Vo/4P). The final ex-
pression for the frequency of small oscillations of a corre-
sponding bisoliton takes the form
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If the solitons' velocities do not coincide, there is no
bound state and, in fact, we are dealing with a collision
problem. Phase shifts of colliding solitons belonging to
different subsystems have been calculated by Malomed
(1987g) and Kivshar and Malomed (1989d). In contrast
with the case in which the solitons belong to one subsys-
tem, the presence of these phase shifts is a nontrivial
effect which is absent when the equations are decoupled.

Collision between a free soliton and a bisoliton may
give rise to other interesting effects. For example, con-
sider a free soliton with an amplitude ~' belonging to the
first subsystem. Then, in the lowest approximation, its
collision with a component of a bisoliton belonging to the
same subsystem results in an unperturbed phase shift of
the latter (Zakharov et al. , 1980),

(4.139)

Clearly, this is equivalent to a very quick shift of the rela-
tive coordinate g of the bisoliton from the equilibrium
position g =g,q

—=0 [Figs. 20(a) and 21(a)] or g =g, =+/
[Fig. 21(b)j to g=g, +~A, g, . When e3) 0, e, +e2) ——', e3

[Fig. 20(a)], the shift causes the decay of the bisoliton
into two free solitons provided b.g—=1~6,g&

)g . Accord-
ing to Eq. (4.139), this inequality is equivalent to the fol-
lowing limitation on the amplitude ~':

xtanh(g /2) ~a'~~coth(g /2) .

X = f "(lul'+ IUI')dx,

and the momentum of each subsystem, e.g. ,

P, = —i f dx(u„u* —u*u) .

In terms of the soliton parameters (j= 1,2),

(4.143)

(4.144)

It is easy to see that, with regard to Eqs. (4.145), the
changes (4.140) and (4.141) satisfy conservation of all the
quantities (4.142)—(4.144).

Under the action of the same perturbation, two soli-
tons belonging to different subsystems can form a bound
state (bisoliton). Designating 8=g, ri~,

—b,:——
—,
'

( V,
—Vz), y—=P, —$2, and 5:—2g(xo, —xo2), where xo.
(j = 1,2) are the initial soliton coordinates [see Eq.
(2.41)j, we obtain the following evolution equations (Kiv-
shar and Malomed, 1989f; see also Abdullaev et al. ,
1989):

d6 = —8gh, (4.146)

dA =2eq cosyI, (5),
dt

(4.147)

(4.148)

E = g( ——36ri +g, V ), P)= —
V~ri/, X=4+ gj. .

J J

(4.145)

2. Coupled nonlinear Schrodinger equations

dO =2eg sinyI2(5),
dt

where

(4.149)

In this subsection we shall look at the system of Eqs.
(1.11) and (1.12) coupled by the terms (1.13) or (1.14).
First let us consider the coupling (1.13) with ez=0,
e&

=—e%0 being a real constant (linear nonderivative cou-
pling). A natural problem is the collision between two
solitons with equal amplitudes g, =g2 =—g and velocities
V, = —V2 ——V belonging to different (u and U) subsys-
tems. Straightforward application of the general equa-
tions yields the following changes in amplitude and ve-
locity of the colliding solitons (Kivshar and Malomed,
1989e):

+e(uu "+uu')],
the total "number of plasmons"

(4.142)

6''IT Sln+p
b, q, = —aq, —=b,q =—, , (4.140)

4V cosh (~V/8g)

AVi =AV2= V
(4.141)

4g

In Eqs. (4.140) and (4.141) yo=PI ' —$2'
' stands for the

difference between the initial phases of the two colliding
solitons [see Eq. (2.41)]. The system considered con-
serves the total energy

Z =f dx [lu. I' —lul'+ Iu. I' —lul'

I)(5)—: 2
(tanh5 —5),

cosh6 tanh 5

Iz (5 ) —=25/sinh5 .

(4.150)

(4.151)

We assume that the amplitudes of both solitons are close
to a certain constant value g. Straightforward investiga-
tion of the dynamical system (4.146)—(4.149) demon-
strates that it has a family of stationary solutions,

d5=6=sing=O, y= —80'
dt

(4.152)

co = +471+26

co=+4ri[ ——', e sgn(cosy)]'~

(4.153)

(4.154)

As immediately follows from Eq. (4.153) and (4.154), Eq.
(4.152) is stable provided e )0 and cosy = —1.

Let us proceed to the system of NS equations coupled
by the derivative terms (1.14) with a real small coupling
e. In this case (in contrast with the preceding one), a col-

(in a stationary bisoliton state, the amplitude difference 8
may be an arbitrary constant, while the phase difference
y grows linearly with time). Investigation of the stability
of Eq. (4.152) demonstrates that small perturbations are
characterized by four eigenfrequencies:
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~ eV tanh(~V/8g)
2 COS+

128' cosh (m'V/8g)
(4.155)

However, the derivative coupling may give rise to a bisol-
iton. The evolution equations similar to Eqs.
(4.146)—(4.149) take the form (Kivshar and Malomed,
1988f)

d 5= —Sgh, '

dt
(4.156)

b, =See
V2

I, (5)+2' I3 (5) cosy,

lision between two solitons, in the adiabatic approxima-
tion, does not result in changes of their amplitudes and
velocities. The only result is a change of the internal
phases of both solitons by the amount (Kivshar and
Malomed, 1986c)

iui, +u,„„+lu, l u, +blu, l u, + i@ iu, —0, (4.165)

If co'& 0, the relative phase of the two solitons oscillates
with the frequency (4.164), while the relative distance 5
between their centers remains constant.

It is interesting to note that, in principle, a pair of soli-
tons belonging to the same subsystem may form a bound
state (breather) by the interaction of the solitons via their
"images" in a paired subsystem, ' the binding energy of
such a breather would be -e (recall that the binding en-
ergy of a breather described by the unperturbed NS equa-
tion is exactly zero). However, this problem remains to
be solved.

As an interesting example of a system of NS equations
coupled by nonlinear terms, let us consider a pair of cou-
pled nonlinear Schrodinger equations for Langmuir and
dispersive ion acoustic waves, derived by Bhakta (1987)
(see also Spatschek, 1978):

y= —2VS —8qO,
dt

9= 4ert I, (—5 ) cosy,
dt

where I, (5) is defined in Eq. (4.150), and

(4.157)

(4.158)

(4.159)

iu 2„+i Vu 2„+pu 2„„+ql u 2 l u 2 +b
l u, u 2+ i y 2u 2

=0,
(4.166)

where V, p, q, and b are, generally speaking, arbitrary pa-
rameters, p being always positive, and y, z are small
damping coefficients. In the same paper, Bhakta found a
solitonic solution of the form

I3(5)= 1
[3(sinh5 cosh5 —5)

2 sinh5 tanh5
—tanh 5(sinh5cosh5+5)] .

u, (x, t)= 2 (x —Vt) e xp(iso, t —ik, x),
u~(x, t)=&aA (x —Vt) exp(ito2t ik~x—),

(4.167)

0=4=5=0 (4. 161)

(4.160)

The system (4.156)—(4.159) has stationary solutions of
two types:

where cx is a constant, for the case y] =
@2=0 and demon-

strated that this solution minimized the energy of the sys-
tem. The real function A (z) is const X q sech(qz). Bhak-
ta (1987) also investigated the action of damping on the
soliton. He arrived at the inference that the damped soli-
ton had the form

with an arbitrary constant phase difference y, and

0=6=cosy=0 (4.162)
lu i l

=aii) sech(gz), lu2l =azgsech(gz), (4.168)

with an arbitrary constant relative distance 6 between the
centers of the two solitons.

The stability of the stationary solutions (4.161) against
small perturbations is determined by Eqs. (4.156) and
(4.157). The corresponding eigenfrequencies are

]./2
5V

co =+8'g
)~ E +3'g cos+

16
(4.163)

As follows from Eq. (4.163), the bisoliton is stable provid-
ed e cosy & 0. If the bisoliton is stable, the centers of the
two bound solitons may perform small oscillations rela-
tive to each other with frequency (4.163).

The stability of the stationary solutions (4.162) is deter-
mined by Eqs. (4.157)—(4.159), which yield three eigenfre-
quencies: co=0 and

a=(a2/ai) =(p b)/(q bp) . — —(4.169)

In fact, Eqs. (4.167)—(4.169) are only a particular case
of possible solitonic solutions to the system (4.165) and
(4.166). If one inserts into Eqs. (4.165) and (4.166) (with
yj=0)

uj(x, t) = AJ(z) exp[i'cojt+igj(z)],

j =1,2, z =x —Vt, (4.170)

where z =x —Vt, and the soliton's inverse width
remained constant, while the amplitudes a, z decayed ex-
ponentially. Unfortunately, these assertions were wrong.
Indeed, the derivation employed by Bhakta (1987) im-
plied that Eq. (4.168) was a solution to Eqs. (4.165) and
(4.166) if y =0 and a =const. However, it follows from
Eqs. (4.165) and (4.166) that this is true only in the case

co =+ 4e sing
l Vl g

V2 —3g I, (5)+2g I3(5)

(4.164)

where 2. and P are real functions, one obtains a system
of ordinary differential equations for the four functions
A, 2(z) and P, z(z) (Spatschek, 1978), straightforward
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qualitative analysis of which reveals that a full family of
solitons must contain solutions in which A i(z) and 2 2(z)
are not proportional to each other as in Eq. (4.167). If
one takes an initial soliton in the form (4.167), under the
action of the damping it will slowly evolve inside the full
family and, in general, there is no reason for it to retain
the form of Eq. (4.167) (Malomed, 1988c). Moreover, its
inverse width g will inevitably decay along with the am-
plitudes, as in the case of a single damped nonlinear
Schrodinger equation (Sec. III.B). To demonstrate this
point, let us consider the special case b =p =&q. In this
case Eq. (4.169) disappears, and Eqs. (4.165) and (4.166)
with y. =O have a family of solitonic solutions in the
form (4.167) with

A (z) =r)&2/(1+ra) sech(gz),

ki = —V/2, kq=( V —V)/(2p),

m2= k2 V+pco),

(4.171)

(4.172)

q= —2r)(1+ace) (y, +y2ea),—1 (4.173)

a=2(3 i yz)a . (4.174)

Plainly, Eq. (4.173) tells us that g cannot remain con-
stant.

Finally, the modified momentum conservation leads us,
irrespective of the particular form of the soliton ampli-
tude functions A i 2(z), to the conclusion that V remains
constant (Malomed, 1988c). Bhakta (1987) arrived at the
same conclusion assuming that the damped soliton re-
tains the form (4.167) and (4.168).

3. Coupled sine-Gordon equations

An important example of a weakly coupled system of
two SG equations is

—
q&«

—y,y, =sing+ f, +ccrc„„,

0« y2&, =»n4—+f2—+~ p.. .

(4.175)

(4.176)

According to Mineev, Mkrtchyan, and Shmidt (1981),
the system (4.175) and (4.176) describes two weakly in-
teracting parallel Josephson junctions, separated by a dis-
tance much larger than the Josephson penetration length.
The small parameter o. stands for a coupling constant.

This system was investigated by Kivshar and Malomed
(1988c). In the absence of perturbations (i.e., at
f~ =y =a=0, j=1,2), Eqs. (4.175) and (4.176) become
uncoupled exactly integrable sine-Gordon equations.

where co&, a, and g are arbitrary constants; it is impor-
tant that in this particular case, in contrast to the general
one, cc and g are both arbitrary; therefore the damped
soliton will retain the form of Eq. (4.167). Insertion of
Eq. (4.171) into the modified plasmon number conserva-
tion laws yields two damping-induced evolution equa-
tions (Malomed, 1988c):

j =1~2 (4.177)

where V. (j =1,2) are the fluxon velocities and cr =+1
are their polarities. The interaction between junctions
(aAO) distorts the form of the fiuxon; most important is
the "image" of the fiuxon (4.177) in the paired junction.
For instance, the "image". of the second fiuxon (j =2) in
the first junction is

2CXO 2sgl1Z2
y(z2) = [zpcoshz2

1 —V2

—sinhz2ln(2 coshz2 )], (4.178)

where z2 =—(x —V2t) /(1 —V2 )'
Adiabatic equations that describe the interaction of

two fluxons belonging to two different junctions can be
obtained in a simple way if one employs the energetic ap-
proach. Inserting Eq. (4.177) into a term of the Hamil-
tonian that accounts for the interaction between the two
junctions, i.e., H;„,=a f + dx y„g, yields equations of
motion for the centers of the two fiuxons gi and g'2..

kl rrf icr I

4
'Yi

Ao )op
( 1 —g/tanhg ),

sinh

(4.179)

d $2 ~f2crz dg2 cccricr2—
y2 + . (1—g/tanhg),

4 dt sinh

(4.180)

where g=g, —gz. Equations (4.179) and (4.180) are writ-
ten in the "nonrelativistic" approximation, i.e., for
(dgj/dt) ((1 (j =1,2). The simplest adiabatic effect
that can be described by these equations is the binding of
the two fiuxons into a bifiuxon (a bound state of fiuxons)
due to dissipative losses. We shall study this effect in the
most interesting case, '

when the uniform motion of the
free fiuxons is "nonrelativistic, " i.e., f ((y [see Eq..
(3.47)], and the coupling between the two equations is the
strongest perturbation in Eq. (4.176), i.e., ~a~ ))y, . Our
goal is to find a threshold condition admitting the bind-
ing of the two Auxons colliding with velocities V, 2

defined according to Eq. (3.47). Using the conditions
mentioned, we may consider the problem in the nearly
inertial center-of-mass reference frame (the braking time
of the center of mass will be much larger than the bind-
ing time). So, in the first approximation, we may neglect
the terms —f, y in Eqs. (4.179) and (4.180) to arrive at
the mechanical problem for a particle with reduced mass
m =4 moving in the effective potential

U(g) = —8acr icrzg'/sinhg . (4.181)

Clearly, the law of motion is determined by the energy
equation

The solutions corresponding to Quxons (or antifiuxons)
are [cf.

'

Eq. (2.61a)]

y (x, t)=4tan 'Iexp[cr. (x —V t)/(1 —V )'r ]I,
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2
d
dt

I

'2

+ U(g) =2VO, (4.182)

where Vo = V1 —V2 is the particle's velocity at infinity.
The cases of attractive (acr, crz )0) and repulsive

(ao,o.
z &0) potentials (4.181) are qualitatively different

(as well as the interaction of a fiuxon in a solitary junc-
tion with attractive or repulsive micro-inhomogeneities;
see Sec. III.C.2). In the former case we assume
yj&lal ))f~, which enables us to neglect the term 2VO
in Eq. (4.182). Then the law of motion of the two fluxons
may be represented in the form

d g, z ldt =+2&
I
a

I g/sinhg . (4.183)

To obtain the threshold condition for the binding pro-
cess, it is necessary to calculate the total dissipative ener-

gy loss hE during the collision between Auxons. The
threshold condition may be written as

AE ~ T, +T2 —Tb, (4.184)

—:(y, +yz) I dg=D (yi+yz)v lal (4.186)

where Ti, z 4Vi, z 77 f i, z yi, z ale tile kinetic energies2 2 2 2

of the two Auxons prior to the collision and Tb = 8 Vb is
the kinetic energy of an eventual bound state (biAuxon),
Vb being its equilibrium velocity analogous to V, 2. To
calculate Vb, let us note that the total driving force and
the friction force acting upon it are, respectively,
2 (d'or, f, +ozfz) and. —8V(y, +yz), so that

m aifi+azfz
V =—

4 /1+/2
The quantity AE can be calculated, with regard to Eq.
(4.183), as follows:

2

dg)AE= gy f ' dt
g=1

T, + T2 —Tb of kinetic energies as appear on the right-
hand side of Eq. (4.184) [cf. an analogous condition (3.57)
for trapping of the Auxon by a repulsive micro-
inhomogeneity],

r

fz 2 fiai+fzaz '
(yi+yz)'

provided the same assumption lal))y, z holds. The
latter inequality demonstrates that condition (4.188) is
less restrictive than (4.187).

The repulsive interaction of two Auxons (o,=o z,
a&0) in the particular case of two identical coupled
junctions [y, =yz in Eqs. (4.175) and (4.176)] with

f i Wfz was considered by Volkov (1987).
A biAuxon may have damped internal oscillations; in

particular, the frequency of small oscillations is
co = lal/3 in the attraction case, and co =irI(o,f,

ozfz)/8a—
l

in the repulsion case (the latter expression
is valid as long as it gives co «1). When there are no
internal oscillations, the distance between the two Auxons
bound into a bifluxon is go=(3~/4a) f,o, —fzozl for
attraction and go = ln

I
a /( f,o, —fz o z ) I

for repulsion [we
again regard (f, cr, —fzo z)/a as a small parameter].

There are other interesting adiabatic effects. One of
them is the capture of a fluxon moving in one junction by
a micro-inhomogeneity localized in another junction. If,
for example, the micro-inhomogeneity is repulsive, an in-
equality providing for the capture can be readily obtained
as in the case when both the Auxon and the inhomogenei-
ty belong to the same junction (see Sec. III.C.2).

Collision of a bifluxon with a free Auxon may give rise
to interesting inelastic effects (Kivshar and Malomed,
1988c). The simplest is the breakup of a biAuxon into a
pair of free Auxons. Indeed, the full potential U„,(g) of
the interaction between two Auxons bound into a biAuxon
is given by Eq. (4.181) plus a contribution from the bias
currents (Fig. 22),

where
U„,(g) = —8ao.g/sinhg —~(f, fz )g, —(4.189)

X

Sj.nhx

1/2

=15.02 .

Inserting Eqs. (4.185) and (4.186) into Eq. (4.184), we find
that, for attraction, binding takes place provided

where cr =—o ioz, f:o f (j =1,2). It i—s straightforward
to establish that, provided lal )) lf, fzl, the potential—
(4.189) has a local minimum at g=g;„and a local max-
imum at g=g, „separated by the large distance go deter-
mined by

exp(go) =
I 16Ia

I /[ir( f i fz )] I »[16Ia I /ri(f i
——fz )]

4D
2(f iai+fzaz)'

(yi+yz)'
(4.190)

(4.187)

Equation (4.187) is relevant if the potential force (-a)
acting upon the Auxons during their overlap is much
larger than the friction force -y V-y la I

', which ex-
plains the above assumption y « la I.

For repulsion (i.e., ao. ,o z &0), it is simpler to obtain a
binding condition: the height 8

I
a

I
of the potential bar-

rier must be larger than the same combination

bg, z=sgn(V, z
—Vz, ) in[4/(Vi —Vz) ] . (4.191)

For the sake of simplicity, in what follows we set
y1=y2 ——y. Then a straightforward analysis based upon

(for definiteness, we assume fi fz)0). On the other—
hand, a collision between two sine-Gordon kinks (flux-
ons) moving with nonrelativistic velocities VJ (VJ «1)
gives rise to unperturbed shifts b,gi z of the centers of the
kinks [cf. Eq. (4.103)],
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~max

two other types of inelastic interaction between the
biAuxon and the free Auxon are possible. If Ao ]o.2&0,
the Auxons with the polarities o

&
and o.3= —o.

] colliding
in the first junction annihilate (due to dissipative losses)
into a breather under the condition [cf. Eq. (4.3)]

I3f, +f I
&8v'3y (4.194)

Utot

I

I (

&min ~O
'

~max

so that eventually a free Auxon will remain in the second
junction and nothing in the first one. If Q.o.&a2(0 and

IaI ))y, the collision leads, under the same condition
(4.194), to another result ("recharge"): the two fiuxons in
the first junction switch roles, so that eventually there
will be a free Auxon with polarity o.3= +o-, in the first
junction and a biAuxon with the reversed sign of ao. &o.2

(ao,o2) 0).
Analogous consideration reveals that a collision be-

tween a biAuxon with au, o.2&0 and a corresponding
anti-biAuxon results in their dissipative annihilation pro-
vided

If, +f, I
8y'"— (4.195)

FICi. 22. The full potential of an interaction between kinks be-
longing to different junctions: (a) ao &o2&0; (b) ao. &o.2 &0.

Eq. (4.191) demonstrates that collision between a bifiuxon
with acr1o2) 0 [.Fig. 22(a)] and a free fluxon that belongs
to a jth junction (j=1,2) and that has the same polarity
o. as the corresponding component of the biAuxon re-
sults in a negative change b.g' in the relative distance g be-
tween the two Auxons bound into the biAuxon. As can be
seen in Fig. 22(a), a negative shift of g from the equilibri-
um position g;„cannot directly cause breakup of the
biAuxon. However, if

(4.192)

[see Fig. 22(a)], the bifiuxon will eventually decay. As
follows from Eqs. (4.190) and (4.191), the breakup condi-
tion (4.192) is equivalent to the inequality

(4.193a)

Equation (4.193a) neglects dissipative losses and assumes
the free Auxon to be nonrelativistic. These assumptions
require I

a
I

~ - y &&
I
a I. Bifiuxons with ao 1o z )0 are

more stable against collision.
In the opposite case, when the polarity o.

3 of the free
Auxon is —o.~, the situation is more complicated. If, for
instance, the free Auxon belongs to the first junction, and

f, ) If& I, the quantity b,g proves to be positive, hence
breakup requires b,g') go irrespective of the sign of
ao. ,o.2. The latter inequality reduces to

(371+f2)'l(f1 —fz )

&16y lInIaIln[16IaI/n(f, f1)]I . (4.193b)—
The inequality (4.193b) is relevant provided
a «y « IaI. However, in the present case (o.3= —o. , )

A colliding biAuxon and anti-biAuxon with ao. ,o.
2 & 0 be-

come, due to dissipative losses and under the same condi-
tion (4.195), a bifiuxon —anti-bifiuxon pair with ao 1o 2) 0.
Finally, a collision between two biAuxons with polarities
(o „oz) and (o „—o.2) gives rise to two free unipolar
Auxons in the first junction and dissipative annihilation in
the second junction, under the condition

If2 I

& 4&2y
Braun, Kivshar, and Kosevich (1988) have considered

a system of two SG equations coupled by both linear and
nonlinear terms [cf. Eqs. (4.175) and (4.176)]:

u« —u„+sinu = —Psin(u —U)+au —yu, +f,
(4.196)

U«
—U„„+sinu = —P sin(U u) —a—u —yu, +f .

(4.197)

This system describes two weakly interacting linear
chains of atoms adsorbed on a metallic surface. An
effective potential of interaction between two kinks be-
longing to different subsystems has the form

U(g') = —8ao, o z
S11111

+
3 [2(g—tanhg)cosh/

8

sinh g
—o. ,o2[2$—sinh(2$)+ g sinh g],

where g' has the same sense as in Eq. (4.181). Though the
system (4.196) and (4.197) seems more complicated than
Eqs. (4.175) and (4.176), interactions between kinks and
their bound states (bikinks) described by this system are
qualitatively similar to those described by the system
(4.175) and (4.176). In particular, a collision between a
bikink and a free kink or between two bikinks may give
rise to various inelastic interactions.
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The system (4.196) and (4.197) with f =@=a=0 has
also been proposed by Homma and Takeno (1983, 1984)
as a model of two interacting chains which constitute a
double DNA helix, u and U having the sense of torsion
angles of the two chains.

4. Coupled double sine-Gordon equations

u, component of the bikink [Fig. 23(a)]. Using the well-

known elementary interpretation of kink-kink and kink-
antikink collisions in the unperturbed SG equation (see,
for example, Zakharov et al. , 1980), we may say that in
the lowest adiabatic approximation the collision causes a
shift of the center of the bikink's u] component by
b,x =2lb, gaol, where b, go is the well-known phase shift
[Eq. (4.201)] resulting from a collision of two kinks in the
unperturbed SG equation. This means

The system of equations
b,x =41n[(1++1—W )/W] . (4.201)

u( up
u &«

—u, +sinu
&

=—sin cos (4.198)

u2 u)
1l gx~ +Q Sin@ 2

= sill cos
2

(4.199)

U(g) =4o eg coth(2$/+1 —V ), (4.200)

where a is the relative polarity of the kinks (we assume
that the kinks' centers are located at the point x =+/
and that they move with velocities +V). Note that
U(g') =4eo.

l gl for
l pl » 1, which coincides with the

effective interaction potential for 2~ kinks inside a wob-
bler (see Sec. IV.B.6).

First let us consider a collision between a quiescent
bikink (eo (0) and an unexcited 4m kink belonging to
the u& subsystem and moving with velocity 8'»&e.
Let the polarity of the 4~ kink be opposite to that of the

has been put forward by Zhang (1987) as a model of
long-wave excitations in a double DNA helix [in the par-
ticular case Q = 1 the same equations were proposed ear-
lier as a model of DNA by Yomosa (1984, 1985)]. The
variables u& and uz have the sense of the sum and the
difference of two angles that determine local orientation
of bases attached to the two helices. This model does not
coincide with the model of Homma and Takeno (1983,
1984) mentioned at the end of the preceding subsection.
As will be seen below, the difference between these sys-
tems is very important, and the dynamics of solitons de-
scribed by Eqs. (4.198) and (4.199) difFers drastically from
that described in Sec. IV.C.3. The parameter Q is, in
general, —1, while e «1 (Zhang, 1987).

The system (4.198) and (4.199) could be called a system
of two coupled double SG equations; it possesses richer
dynamics than many other nearly integrable systems.
Here we shall present the first results (Malomed, 1987h)
obtained from an investigation of the soliton dynamics
governed by Eqs. (4.198) and (4.199) in the simplest par-
ticular case Q = l.

First of all, each of Eqs. (4.198) and (4.199) has 4m-kink
solitonic solutions that can also exist in an excited (wob-
bler) form. In addition, the system possesses bikink soli-
tonic solutions that consist of two ordinary 2~ kinks be-
longing to different subsystems ( u, and u 2 ). Like a 4~
kink, a bikink may also exist in an excited state [an unex-
cited bikink was first described by Zhang (1987)]. Using
the assumption Q =1, it is easy to find the efFective in-
teraction potential of the two 2~ kinks inside the bikink:

Thus the collision under consideration entails a quick (by
virtue of the assumption W'»vs) shift of the ui 2m'

kink relative to its paired uz kink by the amount (4.201).
This means that after the collision the bikink remains
quiescent and, at the same time, it goes over into an ex-
cited state with an internal oscillation amplitude (defined
as the maximum distance between centers of the oscillat-
ing constituent kinks) equal to the expression (4.201); in
addition the bikink's center of mass shifts by —,'Ax. The
corresponding period T of the internal oscillations of the
excited bikink can easily be found on the basis of Eq.
(4.200) under the condition b,x » 1, i.e., according to Eq.
(4.201), l~l «IV'«1:

(4.202)

where A:—Ax is the oscillation amplitude. As for the

eaagg ~
I

I
I

(u&) bi kink2 x
(a)

4~ kink

(ul
W

/
I!

I

bikink

4m kink

FICi. 23. A collision between a quiescent bikink {eo.(0) and an
unexcited 4~ kink belonging to the u& subsystem and moving
with a velocity 8'&)&e: {a) the polarity of the 4' kink is op-
posite to that of the u I component of the bikink; {b) the polarity
of the 4m kink is the same as the polarity of the u I component.
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traveling 4m kink, in the lowest approximation it under-
goes no excitation, as the collision-induced shifts of both
its constituent 2m kinks are equal. Since, as follows from
Eqs. (4.200) and (4.201) (g=——,'b,x), the energy

D. Dynamics and kinetics of solitons
in the driven damped double sine-Gordon model

3. Introductory remarks

(1++1—W. ) + W I++I—Wbk =8lel ln(I++I—W )
—W

is expended on excitation of the bikink s internal oscilla-
tions, the kinetic energy of the moving 4m kink,
E4 = 16/+1 —W, decreases by the same b,E.

The situation is altogether different when the 4~ kink's
polarity coincides with that of the bikink s u, component
[Fig. 23(b)]. In the same approximation as above, the
collision of the nearest 2m. kink belonging to the 4m kink
with the bikink s u, component results in the stopping of
this 2m. kink, its whole momentum 8W/'(/I —W being
transferred to the bikink's u

&
component. Further kine-

matic analysis yields, with regard to Eq. (4.200), that
after the collision the centers of the bikink and wobbler
{the 4~ kink excited due to the collision) move with the
common velocity Q

1/(t 0~x +S1111E = E' SlQ f pgt (4.206)

As was mentioned in I.B.3.a, a fairly general situation
that gives rise to the SG model in solid-state physics is
that when a chain of interacting atoms is placed against a
spatially periodic sinusoidal substrate potential; In cer-
tain cases, an ionic lattice that gives rise to the substrate
potential may be subject to a period-doubling instability.
An example is the Peierls instability of one-dimensional
metals with the commensurability index M =2 (see, e.g.,
Kivelson, 1986). One would expect that in this situation
the substrate potential II(u), where u is a dynamic vari-
able of the atomic displacement type, would contain a
basic strong component IIO(u)=1 —cosu and a weak
subharmonic component II,(u ) =2e(1—cosu /2), where e
is a small parameter. Adding the dissipative term and an
external drive, we obtain the perturbed SCx equation
(Malomed, 1989)

W'= W(1++1—W ) . (4.203)

In the reference frame moving with the same velocity
(4.203), both compound solitons have internal oscillations
of equal amplitude,

I[(1++1—W )/2+1 —W ]'~ —1I,8
(4.204)

Wb; =&Q W/( +1+W + W) ) W' . (4.205)

In the case Q ( 1 the situation is more complicated. The
velocity Wb; [see Eq. (4.205)] proves to be smaller than
8",and so must result in a repeated collision.

Finally, a collision between two unexcited bikinks re-
sults (at Q =1) in only trivial phase shifts. This assertion
follows from the fact that one may represent such a col-
lision by setting u =+V, and it is obvious that the substi-
tution u =+U transforms the system (4.198) and (4.199)
(with Q = 1) into a single unperturbed SCx equation.

and both have the period (4.202). It is interesting to note
that in the nonrelativistic limit 8' «1 the original ki-
netic energy 88' of the moving 4m kink is divided, ac-
cording to Eqs. (4.200), (4.203), and (4.204), into four
equal shares, which go over into (1) the bikink s kinetic
energy, (2) the bikink s internal oscillation energy, (3) the
residual wobbler's kinetic energy, and (4) the wobbler's
interna1 energy.

In the more general case Q ) 1 [see Eq. (4.198)], the
mass of the bikink's u2 component is 8/v'Q; the
wobbler's velocity and internal oscillation amplitude
after the collision turn out to be equal to the same expres-
sions (4.203) and (4.204), while the bikink s velocity is

[cf. Eqs. (1.16a), (1.17), and (4.120)]. For definiteness, in
what follows we shall assume e and f to be positive.

In the absence of a driving force (f =0), Eq. (4.206) is
the double SG equation (4.120) with a damping term. As
was explained in Sec. IV.B.6, that equation supports soli-
ton solutions in the form of quiescent 4~ kinks (4.122)
and 2' kinks (2.61) moving with the equilibrium velocity
(3.48). For the time being, we shall rewrite the 2~ kink's
wave form as

u„=4 tan 'I exp[cr(x —Vot)(1 —Vo )
' ] I +2~m,

(4.207)

where m is an arbitrary integer. The results given below
were obtained by Malomed (1989b).

2. Two-soliton collisions

In the presence of a driving term, the 4m kink acquires
an equilibrium velocity Vo which, in the first approxima-
tion, coincides with Eq. (3.47). The 2~ kinks can be sub-
divided into two sorts, fast and slow, which correspond,
respectively, to even and odd m in Eq. (4.207). The equi-
librium velocities of the fast and slow 2m. kinks are o. Vf
and o. V,&, where o. is the polarity, and

Vr= I 1+[4@/(vrf +2e)] I
(4.208)

V~ =
I 1+[4y /(~f —2e)] J

'~ sgn(mf —2e) .

At f =0, the only possible collisions between kinks
moving with the equilibrium velocities are (1) a collision
between two unipolar 2~ kinks with values. of m differing
by one [see Eq. (4.207)], and (2) a collision between 2'
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kf+k, ]~K . (4.209)

The results of collisions of types (i) and (ii) crucially de-
pend on the sign of V,~

[see Eq. (4.208)]. In the case

kinks with opposite polarities o.. The eventual result of
the latter process is annihilation of the kink-antikink pair
into a breather, which is then damped by dissipation,
while the result of the former collision is fusion of the
two unipolar 2m kinks into a 4m kink (it will also have
damped internal oscillations). A collision between a
moving 2~ kink and a quiescent 4m kink is not possible.
In the presence of the drive (f )0), the following col-
lisions are possible: (i) fast 2m kink, fast 2' antikink; (ii}
slow 2m. kink, slow 2m antikink; (iii) fast 2m kink, slow 2m

kink (it is implied that the polarities of the two kinks are
like); (iv) 4m kink, slow 2m antikink (the opposite polari-
ties are implied); (v) 4' kink, 4m antikink. Other col-
lisions (e.g., between a 4' kink and a 2' kink with like
polarities) are impossible. In what follows, the abbrevia-
tion kf will stand for fast 2m. kinks, k,&

will stand for slow
2m kinks, and K will stand for 4~ kinks. The same abbre-
viations with overbars will denote the corresponding an-
tikinks.

The simplest collision is that of type (iii): As in the
case f =0, it always results in fusion of the two unipolar
2m kinks into a 4m kink of the same polarity,

tikink moving with velocities V, and Vz. The collision-
induced loss of the kinks' kinetic energy is given by Eq.
(4.211}. It is easy to see that in the lowest approximation
[in which Eq. (4.211) is relevant] the net collision-induced
dissipative loss of the kinks' momentum is zero. So, us-
ing energy and momentum balance, one can find the ve-
locities of the kinks V& z after the collision:

Vi, z =-,' I( Vi+ V2 }+[(Vi —Vz }' 2Ed-]'"I . (4.215)

—e/(2y)) . (4.216)

Analogous consideration of the collision between a 2~
antikink A moving with velocity (4.216) and a second 2m.

kink C moving with velocity V [Fig. 24(a)] leads us to
infer that partial annihilation (4.214a) takes place under
the condition ( V —V,'& ) & —,'Ed;„, or

This expression is valid in the nonrelativistic case
V& 2 &(1,which will be of basic interest below.

Now let us return to the type-(iv) collision. According
to Eq. (4.215), after the collision between the 2m. antikink
A moving with velocity —V,&

and the 2m kink 8 moving
with velocity Vo [Fig. 24(a)], the former acquires the ve-
locity

—V,', = —
—,'( I [(mf e) l.(2y—)] —

—,'Ed;„I '

vrf &2e (4.210)
u(x) vo —Vsl

the colliding kinks always annihilate into a breather. In
the opposite case, annihilation takes place if the net ki-
netic energy of the kinks before collision is less than the
collision-induced dissipative energy loss (4.1 ) with 13=0: (a)

+diss 8m y (4.211)

It is easy to see that in case (i) this condition amounts to

7rf +2m & 4my'",

while in case (ii) it amounts to

vrf —2m&47ry ~

(4.212a)

(4.212b)
(b)

u(x)

Vf

If the inequalities (4.210a) and, respectively, (4.212a) or
(4.212b) do not hold, collisions of type (i) and (ii) result in
the conversion of a fast kink-antikink pair into slow one
and vice versa: u(x)

27r

Vf

kf+kf~~k, )+k,] . (4.213)

A collision of type (iv) takes place under the condition
V+ V,] &Oor

vrf)e.
In principle, this collision may give either of two results:

(c) 0-

Vsi sl

K +k,i
—+kf,

K +k,)
—+kf+ k,)+k, ]

(4.214a)

(4.214b)

(see Fig. 24). To analyze the collision in detail, let us first
consider the interaction between a 2m kink and a 2m an-

FIG. 24. A collision between a 2~ antikink A and a 4m kink
consisting of two 2m kinks B and C: (a) the field configuration
before the collision; (b) configuration after the collision in the
case (4.214a) (partial annihilation); (c) configuration after col-
lision in the case (4.214b) (the breakup of the 4m. kink).
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rrf +a&10my / (4.217)

after collision with the 2n. kink C [recall that Vo is the
equilibrium velocity of the 4m kink approximately equal
to (3.47)]. The subsequent collision of the 2m antikink A

with the 2m kink D results in their annihilation under the
condition ( Vo —V') & —,'Ed;„; see Eq. (4.215). Quite
analogously, the 2~ antikink 8 annihilates with the 2m

kink C. Thus, using Eq. (4.218), one can find a condition
for complete annihi/ation of the colliding 4m kinks:

fy
—3/2&5 (4.219)

When fy / &4, the annihilation of the 4m kinks goes
another way: first the 2m kinks A and C are annihilated,
then B and D [see Fig. 25(a)j.

If condition (4.219) does not hold, a type-(v) collision
may give rise to an incomplete annihi/ation,

&+& ka+k„ (4.220)

[Fig. 25(b)], or be elastic: K +K ~K +K. In the former

u(x)
VO VO

(a) 2%

In the opposite case the breakup (2.214b) of the 4m kink
must take place. As a matter of fact, type-(iv) collisions
also result in partial annihilation when the inequality
(4.217) does not hold but when condition (4.210a) is valid:
in this case, the emerging slow 2m kinks 3 and C [Fig.
24(b)] will eventually annihilate.

Finally, let us proceed to the type-(v) collision [see Fig.
25(a)j. According to Eq. (4.215), the 2nan. tikink A ac-
quires the velocity

(4.218)

Quite analogously, the 2m antikink B acquires the veloci-
ty —V" after collision with the 2m kink C. Then it is
straightforward to obtain a condition for incomplete an-
nihilation: 8( V") & Ed;„, or, with regard to Eq. (4.221),

fy 3/2&@ (4.222)

where /=0. 73 is determined as a positive real root of the
equation 16$ —16$ —4g + 12$—5 =0. Thus incomplete
annihilation takes place in the interval 5 &fy / &8$
=5.84. However, the annihilation is, in fact, complete in
the whole range fy

/ &8$ if inequality (4.210a) holds.
In this case, the emerging slow 2m kinks A and C will
eventually annihilate [cf. the analogous situation ana-
lyzed above for a type-(iv) collision]. When fy ) 8$,
a type-(v) collision is elastic.

3. Kinetics of a rarefied soliton gas

A full picture of the inelastic interactions between
kinks is given in Fig. 26. In the parametric sector 1 in
Fig. 26, the inelastic nonannihilation processes (4.209),
(4.213), and (4.214b) take place simultaneously. In this
case, it is interesting to analyze the kinetics of a rarefied
soliton gas [investigation of the rarefied gas of the SG
kinks was initiated by Bishop et al. (1980) and Currie
et al. (1980); for the P model, it was begun still earlier
by Krumhansl and Schrieffer (1975)]. Assuming the gas
to be neutral on average, let us designate N, n&, and n, &

as
the densities of the 4m kinks, fast 2m kinks, and slow 2m

kinks, respectively. The densities of the corresponding
antikinks are the same. A system of kinetic equations
that take account of the inelastic collisions (4.209),
(4.213), and (4.214b) is obvious:

dX
dt
dna =( Vo+ V,i )Nn, +12V„n,)dt

= —( Vo+ V,i )Nn, i + ( Vr —V,l )nrn, ~, (4.223a)

case, the kink-antikink pair (B,D) is annihilated. Using
Eq. (4.215), it is easy to find a velocity V" of the 2~ kink
D after its collision with the 2m agtikink A moving with
velocity (4.218):

V"=
—,'([ Vo —( Vo —

—,'Ed;„)' ]

+t[VO+(Vo —
—,'Ed;„)' '] —

—,'Ed;„]' ') . (4221)

(b)

u(x)

0

—Vsl Vsl
—( Vr —V,l )nrn„2V„nr, —

dn sj =( Vo+ V,i)Nn, i 2V„n,j-dt

( Vf —V i )nin i +2 Vrn f

(4.223b)

(4.223c)

FIG. 25. A collision between a 4m kink and a 4m antikink: (a)
the Beld configuration before the collision; (b) the configuration
after the collision in the case (4.220) (incomplete annihilation).

The system (4.223) has the evident integral of motion
n =2X+n&+n, j, which may be called a net density of
the 2m kinks. Excluding the variable X by means of this
conservation law, it is straightforward to obtain a
dynamical system for the variables nz and n». That sys-
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tern has the unstable stationary point nf=n, &=0, X =n,
and the stable one

n „=n Q Vf( Vo + V i )[ Vo (+Vf +Q V ] )

+ V„(QVr —Q V„)

and a breather may result in breakup of the latter. How-
ever, it is possible to show that this process may be
neglected when analyzing the kinetics of a rarefied soli-
ton gas.

+2Vr+V, ) j
V. STOCHASTIC DYNAMICS OF A SOLITON4.224a

nf=+V»/Vrn„. (4.224b)

In other sectors of the parametric plane (Fig. 26), the
kinetics is trivial: All the kinks annihilate, except for sec-
tor 2, where the 4~ kinks survive.

The situation changes if one includes in the analysis
processes by which 2~ kink-antikink pairs are produced
by the external drive on account of quantum Auctuations
(Coleman, 1977; Maki, 1977; Katz, 1978) and/or thermal
functions (Wonneberger, 1980; Biittiker and Landauer,
1981a, 198lb; Marchesoni, 1986b). In this case, dynamic
equilibrium between pair production and annihilation
must set in.

According to Sec. IV.A.3, collision between a 2~ kink

A. Dynamics of sine-Gordon solitons
in the presence of thermal fluctuations

In the present section we survey only selected prob-
lems of the stochastic dynamics of solitons (those which
seem to us most interesting). A more comprehensive re-
view of this topic has been recently published by Abdul-
laev (1989).

1. Motion of a kink in the presence of thermal fluctuations

In this subsection we shall deal with the SG equation
perturbed by the term

eI' [u]= —yu, n(x,—t), (5.1)

-3/2
fy

10~
Wr~

'V~p l

�~/
where n (x, t) is a random driving force determined by
the Gaussian correlators

&n (x, t) & =0,
& n (x, t)n (x', t') &

= I 5(x x')5(t t'), ——
(5.2)

the angular brackets standing for averaging in the Auc-
tuations. The random driving force describes the cou-
pling of a corresponding physical system (e.g., a long
Josephson junction) to a heat reservoir. The loss term
yu, in Eq. (5.1) is intrinsically related to the thermal
noise term by the fluctuation-dissipation theorem (see, for
example, Trullinger et a/. , 1978; Buttiker and Landauer,
1980, 1981a, 1981b): I =2yk~ T, where T is the reservoir
temperature and kz is the Boltzmann constant.

The ft.uctuation dynamics of a kink has been studied, in
the framework of dift'erent approaches, by Salerno et aI.
(1984) and Kaup and Osman (1986). They have calculat-
ed the mean kinetic energy of a kink moving in the pres-
ence of thermal fIuctuations,

(5.3)

p -3/2

the mean energy per one-phonon mode,

and the kink's di6'usion coefficient

(5.4)

FIG. 26. A parametric diagram of the inelastic interactions be-
tween kinks. The parametric ranges where the annihilation
kf +kf ~0, annihilation k, ] +k, ]

—+0, partial annihilation
k„+K—+kf [Eq. (4.214a)], complete annihilation K+K~0,
and incomplete annihilation K +K~k„+k„[Eq. (4.220)] take
'place are shaded, respectively, by x x x, ///, —=,

I I I, and
I I I.

The figures in parentheses over straight-line boundaries between
different parametric ranges refer to equations that determine
these boundaries.

(5.5)

Note that the diffusion coefficient (5.5) is connected
with the kink's mobility in a viscous medium p, = 1/my,
where I =8 is the kink's mass, by the Einstein's relation
D =IJksT (Salerno et al. , 1984). The same expressions
(5.3) and (5.4) were obtained earlier on the basis of a clas-
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sical statistical-mechanics analysis of a dilute gas of un-
perturbed SG kinks (Bishop et al. , 1980).

All these results can also be obtained within the frame-
work of perturbation theory. In particular, Eqs. (5.3) and
(5.5) can be obtained with the aid of the general adiabatic
equations of motion (3.43a) and (3.43b). To this end, one
should insert the perturbation (5.1) into Eqs. (3.43a) and
(3.43b) and, using Eq. (5.2), derive a corresponding
Fokker-Planck equation. A stationary solution of that
equation can be readily found, and, in the nonrelativistic
limit kii T «m =8, it generates Eq. (5.3). To recover Eq.
(5.5) in a similar way, one may add an infinitely small
constant force f [see Eq. (1.17)] to perturbation (5.1) and
express the soliton's mobility in terms of a stationary
solution of the conformably modified Fokker-Planck
equation. Finally, resorting to the general evolution
equation (2.72) for the continuous spectrum, one can also
recover Eq. (5.4). The application of perturbation theory
to these problems is reviewed by Bass et al. (1988).

It is pertinent to note that Kaup and Osman (1986)
have also found correlation functions for Auctuation
corrections to the kink's form.

Sometimes, it is stated that a kink of the unperturbed
SCx equation, placed in contact with a thermal reservoir,
cannot undergo Brownian motion because the SG system
is completely integrable (Ogata and Wada, 1986). How-
ever, it has been demonstrated (e.g. , Marchesoni and
Willis, 1987) tha't the unperturbed phase shifts of the
kink scattered by thermal phonons (quasilinear wave
packets) gives rise to Brownian motion of the kink's
center governed by a corresponding Fokker-Planck equa-
tion, at least in the limit kz T «m, where m is the kink s
mass (in our notation, m =8). Of course, this inference
relies upon the assumption that the reservoir of phonons
has already been brought into a state of thermal equilibri-
um. In this sense, one may regard the perturbed SG
equation (5.1) as a phenomenological model of the unper-
turbed thermal SG system, the perturbing terms model-
ing the interaction with the thermal phonons.

B. Decay of a low-frequency breather
under the action of a random force

A low-frequency breather [Eq. (2.66)] is an object high-
ly sensitive to small perturbations, since they readily
break it into a kink-antikink pair. In this section we shall
consider the decay of a low-frequency breather under the
action of a random force, following Malomed (1987d,
1987e). First we consider the case in which the force
(1.17) is a random function of time only:

(f (t)) =0, (f(t)f (t')) =5(t t')— (5.6)

(randomly varying bias current in a long Josephson junc-
tion). The evolution equation for the breather's parame-
ter g [see the definition in Eq. (2.66)] corresponding to
the considered perturbation with an arbitrary function
f (t) has been obtained by Nozaki (1982):

g2
'tref ~(1 g2T2)(1+ T2)

2
(5.7)

where the quantity T is defined in Eqs. (4.4b) and (4.6')
[recall that negative g corresponds to a kink-antikink
pair (4.4) with V = —

g ]. Considering Eq. (5.7) as the
Langevin stochastic equation, and taking into account
Eqs. (5.6) and (4.6'), we arrive at the Fokker-Planck equa-
tion for the distribution function F (z, T; t), where z =g:

berger, 1980; see also Marchesoni, 1986b). Wonneberger
(1980) also calculated a preexponential factor. To esti-
mate the probability density for the birth of a kink-
antikink pair with a finite relative velocity, one should
add the pair's kinetic energy to E, .

For an overdamped SG equation (i.e., one without the
term u«) perturbed by the terms (5.1), the same problem
was considered by Biittiker and Landauer (1980, 1981a;
see also Biittiker and Landauer, 1981b, 1982). Their ap-
proach was also based on the Fokker-Planck equation,
and the same exponential factor exp( E, Ik—ii T) was ob-
tained.

2. Fluctuation-induced nucleation of solitons [( 1 T 2)1/2F]
at

+
aT

Analogy with the kinetic theory of first-order phase
transitions suggests that thermal fluctuations may gen-
erate new solitons, viz. , breathers or kink-antikink pairs.
If one regards the first-order (adiabatic) evolution equa-
tions for the soliton parameters corresponding to pertur-
bation (5.1) as Langevin equations, one can derive a con-
formable Fokker-Planck equation for a distribution func-
tion of those parameters. The Fokker-Planck equation
makes it possible to find a probability density (per unit of
time and length) for the production of a breather or a
kink-antikink pair. The activation energy E, for such
production is equal to the solitons' rest energy [i.e.,
E, = 16 sinp for a breather (2.63), and E, =16 for a pair].
If the thermal energy kz T is smaH, the probability densi-
ty contains a small exponent exp( E, /k&T) (Wonne-—

+(n e' /16)T (1+T )
Bz

+(~ e /8) [(1 zT )(1+T ) 'F] . —(5.8)
8

az2

The natural initial condition to Eq. (5.8) is

F(z, T;t =0)=(go/~)(1 —goT )
' 5(z —go),

go« 1 (5 9)

which describes an initial state with the definite value go
of g and with uniform distribution over the phase vari-
able sin (gT). The characteristic time tD of decay of
the breather can be estimated as the time necessary for
the diffusing distribution function F(z, T; t) to reach the
point z =0:
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tD-e g()(1+T ) . (5.10)

Though we cannot analytically solve the Fokker-Planck
equation (5.8) in general, an approximate solution can be
found for the case

where 8:—Ia e T /[8(1+T )]It; y= 1 z—T . As can be
seen from Eq. (5.7), at the point y =0, d(g )/dt =0.
This means that jp"F(y, t)dy should be an integral of
motion of the Fokker-Planck equation, i.e., Eq. (5.12)
should be supplemented by the boundary condition

tD «gp &
i.e.

& gp«e (S.1 1)

BF + 2F (5.12)

Indeed, condition (5.11) means that tD is much smaller
than the period of the breather's internal oscillations
r- 2m /g p. So, if one inquires into the evolution of the

distribution function over the times t-ta that are of
basic interest for the study of the breather's decay, the
unperturbed evolution described by the first term on the
right-hand side of Eq. (5.8) may be neglected. Then the
Fokker-Planck equation takes the form

y=0

The eigenfunctions of Eqs. (5.12) and (5.13) are

F„(O,y)=e y
'~ cos(2&coy ),

(5.13)

(S.14)

where cu is a continuous positive parameter. Decompos-
ing the initial condition (5.9) over the eigenfunctions
(5.14) at 8=0 and then performing the inverse transfor-
mation at 0&0 are straightforward. The eventual result
1S

F(z, T;t)=(g /p)e[(2/m )(1+T )(1—gpT ) '(1 zT )
'—]'i t

XexpI —(8/rr e T t)[2 T(z+—gp)]IcoshI(16/neT t)(1. +T )[(1 zT )(1——gpT )]'~
I . (5.15)

Equation (5.15) is valid at times t «gp, In the limit
T~O, Eq. (5.15) goes over into the well-known solution
of the diffusion equation:

F(z; t) =(gp/e)+2/mtexp[ —2(.z gp) /(n. e t)]—.

(5.16)

bation (1.17) with f (t, x) determined by Eq. (5.17) can
also be expressed in terms of Eq. (5.15).

If one wants to take the dissipation (1.16a) into ac-
count, the right-hand side of Eq. (5.7) should be supple-
mented by the dissipative term, which transforms Eq.
(5.12) into

The same problem can be considered for a perturba-
tion (1.21) with random f (t) (a ferromagnet in a random-
ly varying external magnetic field). In this case, the solu-
tion can be obtained from Eq. (S.15) by replacing e by

where

8 BI'
y +—,'I' +ayI'

Bg Bg
(5.19)

e,s= e[4T /rr (1—+T~)]

X [1+T '(1+ T )
' arcsinhT]

It is also worthwhile to note that the problem [in the
case of the perturbation. (1.17)] can be generalized for the
situation when f is a random function of both x and t
with the correlator

(5.17)

In this case the evolution equation for g takes the form

—/~=&1 g~T2 f dx f—(t,x) coshx[cosh(2x)

+1+2T ]

(5.18)

The solution of the corresponding Fokker-Planck equa-
tion reduces to Eq. (5.15) with e replaced by

e,s=e (2/m. )[1+T '(1+T )
' arcsinhT] .

The solution of the Fokker-Planck equation for a pertur-

y +( ,'+ay)F =0 . — (5.20)

The eigenfunctions of Eqs. (5.19) and (5.20) are [cf. Eq.
(5.14)]

F (g,y) =y '~ e '~,F, (
—co/a, —,', ay)e

where, F, is the Pochgammer function. The Anal expres-
sion for F (z, T; t) is very ponderous in this case.

C. Stochastic decay of a breather under the action
of a time-periodic external force

A time-periodic external Aeld acting upon a low fre-
quency breather may give rise to dynamical chaos (No-
zaki, 1982; Nozaki and Bekki, 1983). In this section we
give some results on this problem obtained by Nozaki

a =(16@/vr e )T [1+T '(1+T )
'~ arcsinhT],

with y the dissipative coeKcient. The boundary condi-
tion (5.13) is transformed into
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(1982) and Malomed (1987d, 1987e).
First let us consider the perturbation (1.21) with

f (t) =sin(cot). The perturbation-induced evolution equa-
tion for the parameter g takes the form

d
g =@sin(cot)+I g—T T

dt

X[(1+T ) '+T '(1+T )
~ arcsinhT],

(5.21)

where T is the same as in Eqs. (4.4b) and (4.6'). The con-
tribution from the perturbation to Eq. (4.6') for T may be
neglected. The evolution of g is dominated by the over-
lap stage, i.e, the relatively small part of the period
~=2'/g of the breather's internal oscillations singled out
by the condition T ~ 1, which means that the kink and
antikink inside the breather are strongly overlapped.
During the overlap stage g T «1, T=t [see Eq. (4.6')],
and Eq. (5.21) takes the form

g =@[sin(coT+5)]T

chastic (chaotic):

[g [ &cog(co)[ef . (5.28)

Stochastic oscillations of a low-frequency breather imply
the possibility of its stochastic decay (Nozaki, 1982).

The estimate (5.28) can also be obtained in another
way. Indeed, in the absence of perturbations the breather
solution with /=0 plays the role of separatrix on the
(T, T) plane: it separates locked trajectories from free
ones corresponding to kink-antikink pairs (Fig. 13). As is
known, a small perturbation generates a narrow stochas-
tic layer in a vicinity of the separatrix. A standard esti-
mate for the width of the layer coincides with Eq. (5.28).

Now let us proceed to the perturbation (1.17) with
f(t)=sin(cot). As was mentioned above, this problem
was considered by Nozaki (1982), who obtained an esti-
mate for the stochastic range by means of the resonance
overlapping criterion (Chirikov, 1979). Here we shall
give some additional results. As above, the evolution of
g is dominated by the overlapping stage. It is easy to ob-
tain from Eq. (5.7) with f (t) =sin(cot) an expression
analogous to (5.23):

X[(l+T ) '+T '(1+T )
~ arcsinhT],

(5.22)
4(g ) = —meKO(co) sin5, (5.29)

where 6 is the phase difference between the breather's
internal oscillations and the external variable field (1.17)
at the moment T=O of maximum overlap. So, taking
into account dT/dt= 1, one finds from Eq. (5.22) the
change of g 'generated by one overlap:

g„+,=g„meKO(co—) sin5„,

5„+,=5„+m(co/g„+, —1) .

(5.30)

(5.31)

where Ko is the modified Hankel function [Eq. (5.29) is
vahd provided co) ~g~]. Thus Eq. (5.29) brings us to the
IDap

where

g (co) —=2f dT [sin(coT)](1+ T2)

(5.23) Equations (5.30)- and (5.31) are a variant of the same
stochasticity-generating map that we have already en-
countered in the form (5.26) and (5.27). The estimate for
the stochasticity range is

X[T+(1+T )
'~ arcsinhT] . (5.24)

&(m /2)ieicoKO(co) . (5.32)

In particular, for co«1, g(co)=sr+(m /2)co sgnco
+O(co ), and for co))1,g(co)-exp( —co).

In contrast with g, the evolution of the phase
difference 5 is uniformly contributed to over the whole
period ~, so that the change of 6 per half-period between
two overlappings is

b, (5)=~(co/g —1) . (5.25)

Thus Eqs. (5.23) and (5.25) reduce the perturbation-
induced breather's dynamics to the discrete map

g„+,=g„+eg(co) cos5„,

5„+,=5„+sr(col/„+, —1),
(5.26)

(5.27)

where n is the number of overlaps. This map occurs in
plasma physics problems, and in that connection it has
been minutely studied by Zaslavskii (1985) and Zaslavskii
and Chernikov (1985). Using their results, one can im-
mediately obtain a qualitative estimate for the range of
the parameter g where the breather's oscillations are sto-

Cg

dt
=2y(1+T ) (1—

g T )

X [1+T '(1+T )
'~ arcsinhT], (5.33)

which generates the term

bd;„(g )= —my(m —g„)+O(yg2) (5.33')

In particular, at small co, Eq. (5.32) takes the form
& (m /2)co(into ') ~e~. Comparing this expression

with the estimate obtained by Nozaki (1982), we infer
that the estimation based on reducing the breather's dy-
namics to the map (5.30) and (5.31) enables us to catch
the logarithmic factor, the presence of which is a rather
subtle effect [the logarithmic factor, found by Malomed
(1987d, 1987e) was missing in the paper of Nozaki
(1982)].

If we take into account the dissipation (1.16a) on a lev-
el with the term (1.17) or (1.21), the right-hand side of
Eq. (5.22) is supplemented by the term
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on the right-hand side of Eq. (5.26) or Eq. (5.30). If y is
sufFiciently small, we may expect the dissipative term to
turn the Hamiltonian stochastic structure generated by
Eqs. (5.26) and (5.27) or (5.30) and (S.31) into a strange
attractor (see Izrailev et al. , 1981).

It is also pertinent here to mention the paper by Ab-
dullaev et al. (1985), in which the stochasticity range for
a breather subjected to the action of the perturbation

I' =sin(cot) sinu (5.34)

was estimated by means of the resonance overlapping cri-
terion. The same result can be obtained in another way
(Malomed, 1987d, 1987e). Indeed, in the new variables
x'=x [1—(e/2) sin(cot)], t'=t +e/2co cos(cot), Eq. (1.15)
with the perturbation (5.34) becomes, in the first approxi-
mation,

D. Stochastization of a nonlinear Schrodinger soliton
by a periodic external force

iu, +u +2lul u =iEie' '+ie2e2' '+iyu „.(5.38)

Taking the perturbed NS soliton in the form

u (x, t) =2g sech(2rix) exp[i(P —ir/2)],

they derived ihe first-order evolution equations

(5.39)

As shown in Sec. III.B, a NS soliton subjected to the
action of an external time-periodic perturbation is phase
locked to the external frequency, provided the perturba-
tion amplitude exceeds a threshold value -y, y being
the dissipation coefficient. Nozaki and Bekki (1984) have
considered the dynamics of a quiescent soliton described
by the equation

u, , —u„.„+sinu =(co@/2) cos(cot')u, (5.35) (5.40)
The right-hand side of Eq. (5.35) may be regarded as a
"dissipative" perturbation with a variable coefFicient.
Using Eq. (5.33'), we immediately obtain the map (pro-
vided co ((1)

~ = —
—,'yg' ——[e, sin(cot g)+e—2sin(2cot —g)] .

(5.41)

g„+,=g„+(rr /2)@co cos5„,

6„+,=5„+~(co/g„+,—1) .

(5.36)

Applying to Eqs. (5.36) and (5.37) the method employed
above for the investigation of Eqs. (5.26) and (5.27) and
(5.30) and (5.31), we obtain an estimate for the width of
the stochastic range generated by this map:

((~ /4)@co . This estimate coincides with that ob-
tained by Abdullaev et al. (1985).

One more problem of this kind arises when one consid-
ers a semi-infinite Josephson junction in an ac magnetic
field described by the unperturbed SG equation with the
additional constraint u (

—x)=u (x) and the boundary
condition u„(t,x =0)=e sin(cot), where e is the field am-
plitude. In this case a breather solution describes a
ffuxon pinned by the edge of the junction (x =0) (Olsen
and Samuelsen, 1986b). If the ffuxon's binding energy is
small, i.e., if it is described by a low-frequency-breather
solution, the oscillations of the Auxon may become sto-
chastic under the action of the time-periodic perturba-
tion. An estimate for a corresponding stochasticity range
has been obtained by Malomed (1987i):

I g I

(co
I
e

I
(for

co 1).
A more complicated (but, also more practically impor-

tant) problem allied to the one mentioned is to analyze
oscillations of a fIIuxon in a finite-length junction ac
driven at the edges [u„(x =0)=+u (x =L)=Esin(cot)].
The presence of the terms (1.16a) and (1.17) is assumed
too. By direct numerical simulations, Salerno et al.
(1989) have demonstrated that oscillations of the ffuxon
become chaotic via a sequence of Feigenbaum's period
doublings (Feigenbaum, 1978, 1979). Independently,
Malomed (1989d) has found analytically the underlying
regime of periodic oscillations and its first period-
doubling bifurcation.

The system (5.40) and (S.41) has two stable limit cycles:

7J 7]i+ 2 rr&2 cos(cot +pi )

cot gi+4rre2'gi siil(cot ++i )

(5.42a)

(5.42b)

and

rt= riz ,'rrF, cos(co—t ——y2),

P =2cot g2+ 4m E,rt2 s—in( cot —g2),

(5.43a)

(5.44b)

+ oo

ieo g exp(in—coot) . (5.45)

Note that the last term on the right-hand side of Eq.
(5.45) is equivalent to a periodic array of delta-function
pulses. In the case of Eq. (5.45), as well as in the case
(5.38), stochastization takes place when the perturbation

where ri =
—,'&jco, and sing = —(16y/3irej. )rid (j= 1,2).

The limit cycles (5.42) and (5.43) exist under the condi-
tions le', I

& (2y/3~)(jc )'" and leil+1~21((&~/~)(&2
—1). If either e, or e2 vanishes, one of the cycles disap-
pears and another shrinks into the fixed point (3.31). No-
zaki and Bekki (1984) have studied numerically the evo-
lution of the two limit cycles with an increase of the pa-
rameters e . In particular, they observed a period-
doubling bifurcation for the limit cycle (5.43) at
e, =@2=0.037 in the case y =0.05, co=1. After a series
of subsequent period-doubling bifurcations, they ob-
served the appearance of a strange attractor at
e&

=@2=0.0401.
In another paper, Nozaki and Bekki (1983) studied nu-

merically the stochastization of a soliton described by the
equation

iu, +u..+2lul'u =i (ei —~ilul')u +ie3u,
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parameter exceeds a certain small but finite critical value.
A similar problem was considered by Nozaki and Bek-

ki (1985) for the perturbation (1.9): They assumed that
the wave field was a superposition of the soliton (5.39)
and a long-wave component of radiation. Using second-
order evolution equations of perturbation theory
(Maslov, 1980), they derived a system of equations for the
parameters of the soliton and for the radiation amplitude,
taking account of the inhuence of radiation on the soli-
ton. Further numerical simulation revealed a sequence of
period doublings and chaos.

Calculating the integral in Eq. (5.49), one arrives at the
map [cf. Eqs. (5.30) and (5.31)]

E„+,=E„S—i/2E/epK, (coi/2/e)cos5„,

5„+,=5„+m(2'/QE„+, —1),
(5.50)

(5.51)

where 5 is the phase difT'erence between the kink's oscilla-
tions and the external variable force, while K& is the
modified Hankel function. Standard methods (Chirikov,
1979) yield the following estimate for the stochastic range
generated by the map (5.50) and (5.51):

E. Stochastic oscillations of a pinned soliton E & S~i/2/epK, (co/&2/e) . (5.52)

1. Stochastic escape of a pinned kink

Motion of a kink pinned by the attractive inhomo-
geneity (1.19) (with positive sign) can also become sto-
chastic under the action of an external time-periodic
field. To demonstrate this, let us consider the dynamics
of a kink in the presence of the combined perturbation

eI' =e5(x)sinu +(4/m)p sin(cot), e » ~p~, (5.46)

(a Josephson junction Quxon pinned by a microresistor
with superimposed ac bias current).

When p =0, the kink oscillates near the point x =0 ac-
cording to the law of motion

sinhg(t) =V(2e —E)/E sin(At), A= VE /2, — (5.47)

where E is the binding energy (0&E &2e). The kink's
motion may become stochastic under the action of the
forcing term in Eq. (5.46). The problem can be reduced
to the study of a map of the type considered above
(Malomed, 1987d, 1987e). Indeed, under the action of
the forcing term the kink's energy varies as

dE/dt = —8p sin(tot) .d
dt

(5.48)

bE = vSeE p J t si—(cont)/+1+ t/e2dt . (5.49)

Proceeding from the analogy with Eq. (5.21), it is easy to
establish that the evolution of E is dominated by a rela-
tively small part of the kink's oscillation period ~ when
the kink is sufficiently close to the point x=0: g (t) & 1.
The duration t of that part (which is analogous to the
strong overlap stage in the breather problem) is
t —1/v e «r/2=2@/i/E. Thus, by inserting the kink's
law of motion (5.47) into (5.48) and using the condition
E «e, we can calculate the change of E per one overlap
[cf. Eq. (5.23)]:

In particular, when co«V'e, Eq. (5.52) takes the form
E & Smplco, and in the opposite case co »V'e it takes the
form E & 40p(coi/e) ' exp( —i/2'/i/e). Note that,
when p =0, the phase portrait of the kink's motion in the
coordinates g, g coincides qualitatively with that shown
in Fig. 13, so that the stochastic layer can again be inter-
preted as arising from a former separatrix. Stochastic
motion of a weakly bound kink implies its stochastic es-
cape, just as stochastic oscillations of a weakly bound
breather imply its stochastic decay.

It is pertinent to note that stochastic oscillations and
escape of a bound kink under the action of a time-
periodic force have been observed in numerical experi-
ments by Fukushima and Yamada (1986, 1987).

2. Stochastic dynamics of a breather
interacting with a localized inhomogeneity

In contrast with the above problems, where stochasti-
zation was stipulated by the presence of external periodic
or random forces, a low-frequency breather subjected to
the action of the perturbation (1.19) furnishes an example
of an autonomous system that may demonstrate stochas-
ticity generated solely by its internal dynamics. At the
same time, estimating a range of stochasticity is an easier
problem in this case, since the perturbation is character-
ized by the single parameter e, while above we dealt with
two parameters, e and cu.

Assuming, for the time being, that the period
r=2vr/cosp of the breather's unperturbed internal oscil-
lations is much smaller than the characteristic time scale
t —

~e~
' of perturbation-induced motions, one may

represent the full Hamiltonian of the system, averaged in
the breather's internal oscillations, in the following form
[cf. Eq. (3.153)]:

(H )+II, =16sinp(1+ V /2) —4ecotp cosh/(1+cot p cosh P)

Secotp cosh/(—1+cot p cosh P) ~ [1—4cotp cosh/(1+cot p cosh P) ~

+2cot pcosh P(3+2cot pcosh P)j
Xcos[2(tcosp+%0)], P=g'sinp . (5.53)
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-log( i log( '

FIG. 27. The shape of the potential (5.54) when e (0, g ((1.

X[1+cot pcosh (/sing)] (5.54)

When g-&lel, one may expect the internal and ext«nai
oscillations of the breather around the point x=0 to
resonate. To estimate the range of the resulting stochas-
ticity, one may employ the time-dependent Hamiltonian
(5.53) (Malomed, 1987d).

Estimating is straightforward if e) 0. As can be seen
from Fig. 11(b) (Sec. III.C.6), in this case the efFective
particle oscillates inside either of two potential wells
U= —4ee'(4+e '), z = lpl

—in( ', which are
separated by the large distance L =2 in/ '. In this situa-
tion, the resonance overlapping criterion (Chirikov, 1979)
demonstrates the naive estimate g-&e to be quite accu-
rate.

In the opposite case e & 0 the particle travels in the val-
ley between two potential hills (see Fig. 27) separated by
the same distance L. Hence the external oscillation fre-
quency is smaller than in the above case: co-&lel/L.
Therefore a naive estimate of the range of stochasticity is
g~&l~l/L, i.e., g~&l~l/»(l~l '). However, det»led
analysis of the resonance overlap yields the more accu-
rate estimate /~&~el, the stochasticity for g-&lel be-
ing stipulated by overlaps of higher resonances with the
numbers m-1nlel ', while, in the case of e)0, m —1

were dominating.

Vl. ONE-SOLITON RADIATIVE EFFECTS

The first two terms on the right-hand side of Eq. (5.53)
give the averaged Hamiltonian (H) proper, and the
third term H, is the first oscillating correction to it. The
equations of motion corresponding to (H) describe a
particle of mass m = 16sinp moving in the potential (see
Fig. 27)

U = —8e cotp cosh(g sing)

presence of perturbations is small compared with the
plasma frequency (the minimum frequency of linear
waves) roo= l. However, when 0&1, emission plays an
important role. In the NS equation the frequencies of
linear waves occupy the spectral half-axis co=k ~0,
where k is the wave number. This means that emission
may be generated by motions of the soliton that have
positive frequencies Q&0. As for the perturbed KdV
equation, emission may be generated by periodic motion
of a soliton with an arbitrary frequency.

Dealing with radiation processes in one-soliton dynam-
ics, we encounter physical problems of three different
types: emission of radiation proper, localized corrections
to a soliton's form ("tails" ), and generation of new
(secondary) solitons. For problems of the first type, the
main point is to And a wave number of the emitted radia-
tion and the emission power, i.e., a rate of emission of en-

ergy. If the emission is not monochromatic, it is also in-
teresting to investigate its spectral composition, i.e., dis-
tribution of the emission power over the spectrum of the
emitted waves. For problems of the second type, espe-
cially interesting is the near-resonant case, when (for the
SG equation) the external frequency Q is close to the
plasma frequency ~o= l. In this case, the length of the
"tail" generated by the perturbation is much larger than
the size of the soliton.

This section is devoted to problems of the first two
types, which can be effectively solved by means of the in-
verse scattering transform (or alternative versions of per-
turbation theory for solitons). Consideration of problems
of the third type (generation of new solitons), which are
more peculiar and, in fact, are not amenable to solution
by consistent analytical methods, is deferred to Sec. VIII.

B. General formalism of the perturbation
theory for emission (sine-Gordon equation)

Prior to discussion of particular emission problems, let
us review the IST-based approach to those problems, fol-
lowing the paper by Malomed (1987d).

We recall that, . within the framework of the IST tech-
nique, the radiation wave function is described by the
complex Jost coefficient (the field amplitude) b (A, ), where
A, is a real spectral parameter; see Sec. II.E. Let us write
the perturbed evolution equation (2.72) for B (A, )
=b (A, )exp[i (A, + I/4A, )t] in the form

d8 + OO

=(iE/4)exp(icot) f dx P[u (x)]Q(x, h, )
dt oo

A. Preliminary remarks

eF (t, A)ex—p(i an't) (, co =A. + I /4A, ),
Q(x, A, )—:a (A, )[[i'"' (x, A, )] —['0' ' (x, A, )] I .

(6.1)

(6.2)

Perturbation-induced emission of radiation gives rise
to qualitatively new effects in one-soliton dynamics. As
has already been mentioned above, in the case of the SG
equation radiative effects are exponentially small when a
characteristic frequency 0 of the soliton's motion in the

F(t, A, )= g F„(il)exp( inst) . — (6.3)

The important case is that in which the function F(t, A, )

is periodic in t with a period 2m/0:
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Since the emitted waves have the plasma dispersion law
a =1+k, emission is generated by the terms of the
Fourier series (2.63) with n ) 1/Q. Let us consider the
contribution to the emission from one of those terms.
According to Eq. (2.69b), the spectral density of the radi-
ation energy may be expanded gs follows:

@(k)=(4/~) IB(X)I'+o(IB(z)I'), (6.4)

provided IB(A, )I «1 [A. is related to k according to Eq.
(2.54)]. The emission intensity is characterized by its
power, i.e., the energy emission rate. The emission power
spectral density 'N(k) is [with regard to Eq. (6.4)]

'N(k) =d 6'(k)/dt

W= f Mk)dk = W++ W

Wz =—8e n Q[(n Q) —1] ' IF (A+) I

(6.11)

where, according to Eq. (2.54), A,+=—,'[n A+V(nQ) —1]
and 8'+ stands for the powers emitted to the right and to
the left. In the resonant case n Q = 1+5Q, where
0 & I5A I

« 1, integrating the spectral density (6.11) yields

( W+ )„,=«2~'IF„(X+)I'I [25Q+v'4(5Q)2+ y']

X [4(5Q)'+ y']-'
I
'~' .

(6.12)

At y =0 Eq. (6.12) takes the form
=(8/m. )ReIB'(A. )[dB (A, )/dt]I . (6.5) (W )„,=4v'Z~'IF„(X )I'e(5A)/&5A (6.13)

According to the above, we keep only one term of the
series (6.3) in Eq. (6.1):

d B (A, ) = ~B (A, )+eF„(A,)exp[i (co—n Q)t],
dt 2

(6.6)

where we have also added a term generated by the dissi-
pation (1.16a). The solution to Eq. (2.7) is evident:

B (A, , t) =eF„(A )[(y/2)+ i (co nQ)]-
Xexp[i(co nA)t] . — (6.7)

Multiplying Eq. (6.6) by the complex-conjugate expres-
sion (6.7) yields

B'(A, )[ dB(A, )/dt] = —(y/2) IB (~) I'

[the same expression ensues from Eq. (6.11)]. The
difference between Eqs. (6.12) and (6.13) is significant
when 5Q & y. However, in this case the absorption
length of the emitted wave L -y '&5Q becomes of or-
der or smaller than its wavelength I —(5Q) ', so that
the underlying Eq. (6.1) describes, in fact, not emission
but oscillating corrections to the soliton's shape. This
question will be addressed in more detail in the g.ext sec-
tion.

In the absence of dissipation, the emitted energy is
transferred to infinity. Far from the emitting soliton, the
radiation field looks like a traveling monochromatic
wave. Calculating the energy Aux transferred by the
wave and equating it to W+, one readily finds the ampli-
tudes A+ of the emitted waves:

+(y/2)e [( y/2)'+(co nQ)'—]
&&IF„(&)I' . (6.8)

A~ =2W+/co+co —1 . (6.14)

The first term in Eq. (6.8) describes dissipative absorption
of the emitted energy, while the second gives the emis-
sion power proper. Inserting this term into Eq. (6.5), we
obtain

% (k) =(8e /'ir)IF„(A )I'(y/2)[(y/2) +(co—nQ) ]

(6.9)

In particular, when y~0, Eq. (6.9) goes over into

W(k) =8~'IF. (X)I'5(~ —«) (6.10)

As one sees comparing Eq. (6.9) to Eq. (6.10), dissipation
results in the "Lorenz broadening" of the emission spec-
tral line. The physical sense of this phenomenon is that,
due to dissipative absorption, the emitted wave is not
strictly monochromatic.

The radiation frequency co=nQ is related to the two
values of the radiation wave number k+ =++(nQ) —1

corresponding to waves emitted to the right (k+ ) and to
the left (k ). When nQ 1)1, both spe—ctral densities
(6.9) and (6.10) result in the same expression for the total
power:

C. Energy emission from a sine-Gordon kink
in external fields

The results set forth in this section were obtained by
Malomed (1987d, 1987e).

1. The resonant case

u(x, t)=U(x, t)+u' '(t), (6.15)

where u' '(t) is a solution of the perturbed SG equation
far from the kink. In the non resonant situation,
u' '(t)=e(1 —Q ) 'cos(Qt). Insertion of Eq. (6.15) with
this u' '(t) into the SCx equation with the perturbation
(1.17) transforms it into the SG equation for the function
U(x, t) with the renormalized perturbation [cf. Eq.
(3.50)]

Let us start with the perturbation (1.17). Inserting it
(as well as any perturbation that is nonvanishing at
IxI —+ ao ) into Eq. (6.1), one will encounter a divergent in-
tegral. To circumvent this difhculty, we substitute into
Eqs. (1.15) and (1.17) [cf. Eq. (3.49)]
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ePz =e cos(Qt)(1 —cosU), e—: E=
a —Q' (6.16)

[for the particular case Q=0, the transformation of per-
turbation (1.17) into (6.16) was first performed by Olsen
and Samuelsen (1982)]. In the resonant case 0=1+50,

~
5Q

~
&& 1, the function u ' '( t) takes the form

u' '(t) =a cos(Qt +5/), (6.17)

a [(50+a /16) +y /4]=e /4 . (6.18)

where 5P is some phase shift and a is determined by the
equation ensuing from the nonlinear resonance theory
(Landau and Lifshitz, 1973),

W„,=&2a 50'I[250'++4(50') +y ]

X [4(50 P+y']-'I'" . (6.23)

The emitted waves have the frequency (defined with
respect to the unrescaled time t) co=0, the wave num-
bers

Qt is replaced by (1+50')t'+5/, where t' and 5Q' are
defined in Eqs. (6.20) and (6.21). In the resonant case, the
first order of perturbation theory is sufhcient, which im-
plies setting g= V=O in Eq. (6.22). Then application of
Eqs. (6.3) and (6.12)—(6.14) yields the following results.
The kink emits energy symmetrically to both sides, the
total emission power being

The renormalized perturbation corresponding to Eq.
(6.17) is k =+v'250', (6.24)

Pz =a cos[(1+50)t +5/](1 —cosU)

+(a l2)cos [(1+50)t+5$]sinU
—yU, +O(a ) . (6.19)

x'=x(l —a l8), t'=t(1 —a l8), (6.20)

i.e., we must replace the frequency detuning 5Q by

5Q'=5Q+a /8 . (6.21)

From the other side, higher-order corrections to resonant
emission are negligible provided a «v 50'. Thus, in
the range a «5Q'«a, these corrections are still im-

material, while the difference between 5Q and 5Q' should
be taken into account.

In contrast to the original perturbation (1.17), the re-
normalized ones (6.16) and (6.19}do not generate diver-
gencies. In particular, inserting Eq. (6.16) into Eq. (6.1)
yields (for one kink)

dt
B(A, )=(ice/4)k(A, +v ) '(1+ V)

X[(1+V) /4 —A, (1—V) ]

Xcsch(uk+I+ V'/2)cos(Qt)exp(i~t ikg), —

where v= —,'V'(1+ V)/(1 —V), V(t) and g(t) are the
kink's velocity and coordinate, and k and co are related to
A. according to Eqs. (2.54) and (2.56).

The expression for dB/dt corresponding to the reso-
'nant renormalized perturbation (6.19) can be obtained
from Eq. (6.22) in an evident way: e is replaced by a, and

On the right-hand side of Eq. (6.19), we see two terms of
second order in a: (a /4)cos[2(1+50)t +25]sinU and
(a /4)sin U. The former term might result in a paramet-
ric resonance (see below), but it proves that this term
does not meet particular conditions necessary to give rise
to a parametric resonance, i.e., in the first approximation
it may be omitted. As to the latter term, it may not be
ignored. Indeed, to exclude it accurately, we must
rewrite the equation in the rescaled variables

and the amplitude (at y =0) A+ =a. Note that emission
takes place under the condition 5Q' & 0, while 5Q may it-
self be negative.

Let us describe the dependence of the emission power
(6.23) on the frequency detuning 50. First of all, in the
range 50))max[e ~;yI the solution of Eq. (6.18) is
a = (e/250 ), and Eq. (6.23) takes the form
W,„=e /+8(50) . At 50-1 this equation agrees with
the nonresonant solution 8'-e . Further, the inhuence
of dissipation may be neglected provided y «e . Then
Eq. (6.23) simplifies to

W„,=a i/250' . (6.25)

g(t) =(ma/4}cos[(1+50)t +5/] . (6.26)

We can see that in the resonant situation the kink's oscil-

This expression is valid as long as a «5Q', in the oppo-
site case a second-order contribution should be taken into
account.

The emission power determined by Eqs. (6.18) (with

y =0), (6.21), and (6.25) grows monotonically with the
decrease of 5Q, attaining the value W,„=4v'10e at
50=50;„—= —3(e/16) . In the range 5Q&50;„ the
dependence a (5Q) determined by Eq. (6.18) becomes
two valued (Landau and Lifshitz, 1973). Accordingly,
the dependence W(50) is hysteretic in this range [Fig.
28(a)]. The "natural" branch of the dependence a (50),
corresponding to our slowly turning on the perturbation
(1.17) at a fixed value of 50 & 5Q;„, results in values of
a such that 50' is negative [see Eq. (6.21)], so that the
"natural" branch of the dependence W„,(5Q) is
8' „=0. The second branch, corresponding to our slow-

ly changing 5Q from 5Q & 5Q;„ to 5Q & 5Q;„at a fixed
value of e, remains monotonicaHy growing. Some hys-
teretic phenomena in the resonant range

~
50

~
&& 1 (at

50 &0) have been observed in numerical experiments (If
et al , 1985; Christia. nsen, 1986; Fordsman et al. , 1986).

The radiative energy dissipation rate 8"„,is physically
interesting if it exceeds the rate 8'd;„of direct energy dis-
sipation. To calculate 8'd;„, we need the kink's adiabatic
law of motion corresponding to the perturbation (6.16):
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Wres

max

(b)

-{SQ) 0

FIG. 28. (a) The dependence of the resonant emission power on
the frequency detuning 5Q; (b) the same dependence for the
parametric resonance. In the hysteretic range (a) 5Q &(5Q);„
and (b) 5Q & —(5Q)0, the solid line 8' „=0stands for the "nat-
ural" branch of the dependence 8'(6Q), and the dashed line
stands for the second stable branch corresponding to slowly
varying 5Q (a) from 5Q) (5Q);„ to 5Q &(5Q);„or (b) from
5Q& (6Q)0 to dQ& (5Q)oat fixed e.

lation amplitude is much larger than the nonresonant
amplitude, which is -e/Q for Q & 1. The energy dissi-
pation rate corresponding to Eqs. (6.19) and (6.26) can be
readily calculated: 8'd;„=4m. a y. Comparing this with
Eqs. (6.23) and (6.25), we infer that W'd;„« W'„, for all
values of 5Q if e »y, and for 5Q »y if e & y .

These results may be employed to interpret the nurner-
ical experiment performed by Olsen and Samuelsen
(1986a), in which the dynamics of a kink on an oscillating
background was studied in the framework of the unper-

I

b (A, ) = ia A—[y 2i (2A ——5Q') ]
X exp[ i (I+5Q—')t' i5$]—, (6.27)

where A—:k —
—,', and we employ the rescaled time (6.22)

[5$ is the same as in Eq. (6.17)]. Next, inserting Eq.
(6.27) into the IST equations (Zakharov et al. , 1980), one
can find corrections to the Jost functions, and then the
corrections 5 U (x, t) to the kink's shape. The resulting
expression for 5U(x, t) contains terms of two types:
some that are localized in the same range (of width I.—1)
as the kink's "core," and others ("tails" ) that have an
anomalously large length L »1. The "tails, " which ap-
pear only in the resonant case, are of primary interest. In
the range !x!))1 (far from the kink's "core"), they take
a relatively simple form [we set cr = + 1 in Eq. (2.61)]:

turbed SG equation. The numerical data of Olsen and
Samuelsen (1986a) show that the kink emits radiation.
To find the corresponding emission power within the
framework of our approach, we consider small oscilla-
tions of the background uo(t) =a sin[(1 —a /16)t]
+O(a ), where a «1 is an arbitrary small amplitude,
and insert into the unperturbed SG equation
u =uo(t)+ U(t, x), which brings us to the effective per-
turbation (6.19) with y =0, 5Q = —a /16. Plainly,
5Q'=a /16 & 0, and the emission does indeed take place.
Equations (6.25) and (6.24) give the emission power
W«, =a /2&2 and the radiation wave numbers
k =+a/2&2. Finally, the amplitude A of the emitted
waves is equal to a according to Eq. (6.14).

%ith the increase of the dissipation coefficient y, the
hysteresis in the dependence W„,(5Q) relaxes, and the
location 5Q,„of the absolute maximum of W„,(5Q)
shifts to larger 5Q. At y =(3&3/64)e the hysteresis
disappears. However, at y +e we have 50'&y, so that
the notion of emission becomes irrelevant, and the real
effect of a resonant perturbation is to form oscillating
corrections to the kink's shape. For the nonresonant
case the corrections have been investigated by Kivshar
(1984). However, the resonant case requires special con-
sideration.

The resonant variant of Eq. (6.22) yields

5U(x, t)=a expI —y[+y +4(5Q') +25Q'] ' !x!/&2IcosI[+y +4(5Q') +25Q']' !x!/V2—(I+5Q')t' 5$I, —

(6.28)

cf (t) =co+@,cos(Qt) . (6.29)

Under the combined action of the constant bias current
and dissipation, a kink moves with velocity (3.47). If the

As can be seen from Eq. (6.28), at y-5Q' the length of
the tail I -y ' »1 is indeed of the same order as the
radiation wavelength l —(5Q') ' [see Eq. (6.24)].

A more general formulation of the emission problem is
related to the perturbation (1.17) with f (t) taken in the
form

u =co+a sin[(1+5Q)t]+U(t, x), (6.30)

where a is determined by Eq. (6.18) with e replaced by e,

I

ac component (the second term) is present in Eq. (6.29),
the moving kink emits radiation. For the nonresonant
case the corresponding emission problem was considered
by Mineev and Schmidt (1980). Here we shall brieAy
consider the resonant case, following Malomed (1987d).

To renormalize the perturbation, we insert into the
perturbed SG equation
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W;.,=2a'l V, l(1 —V,') . (6.31)

Note that here we do not require the condition 6Q'&0.
Neglecting dissipative absorption of the emitted wave, it
is easy to find its amplitude [cf. Eq. (6.14)],

and 50 replaced by 50+@0/4. The "renormalized" per-
turbation takes the form (6.19) with the additional term
—(eo/2)sinU, i.e., this time 5Q'=50+a /8+@0/4. Us-
ing Eqs. (6.1) and (6.11), we conclude that, unlike the
above problem ( VO=0), where two waves with the wave
numbers +k were emitted symmetrically to both sides,
here, in the first approximation, resonant emission is
represented by one wave with wave number
k = —50'/Vo, the corresponding emission power being

a =2(V e —16y —850) . (6.37)

I'R =a sin[(1+50)t +(m. /4)sgnx +5/](1 —cosU)

+ i/2a cos[( 1+50 )t +5P ]5'(x )

+(a /2)sin [(1+50)t+(m/4)sgnx

+5/]sinU —y U, . (6.38)

With a decrease in 5Q, the zero root becomes unstable
just at 50=(50)o—=+e —16y /8, when the root (6.37)
arises (Landau and Lifshitz, 1973}.

Inserting Eqs. (6.34) and (6.36) into Eq. (1.21) results,
with regard to the term U'„', in the renormalized pertur-
bation [cf. Eq. (6.19)]

a'=ZW„. /I Vol =4a'(1 —V'o) . (6 32) As follows from Eqs. (6.38) and (6.37),

2. The parametric resonance 50'=50+a /8= —,'+e —16y —50 (6.39)

u(x, t)=U(x, t)+u' '(x, t), (6.34)

where the background solution u' '(x, t) satisfies the
equation

u,', '+yu, ' '+sinu' '= ——(sgnx)sin[2(1+50)t]u' '.

Here we consider the emission of radiation by a kink
under the action of perturbation (1.21) with

f (t) =sin(Qt). This problem exhibits the following pecu-
liarity: in the high-frequency case 0 1, analysis in the
first order of perturbation theory, analogous to that
developed for perturbation (1.17) by Mineev and Schmidt
(1980), yields dB/dt=O The. emission appears if one
takes into account the perturbation-induced small oscilla-
tions of the kink: g(t)= —(e/20 )sin(Qt). Then the
emission power is (Malomed, 1987d, 1987e)

8'=(m e"/80+40 —1)sech (~}/40 —1/2), (6.33)

and the radiation frequency is 20 (we assume 0& —,'),
while in the case of perturbation (1.17) W-e and the ra-
diation frequency is Q.

Perturbation (1.21) gives rise to parametric resonance
at the frequencies 0=2(1+50 ) /(Zn + 1), where
n =0, 1,2, . . . , and l5Ql « l. In the simplest case,
n =0, we insert into Eqs. (1.1) and (1.21)

8'=(e —850)v'(e —450)/2 . (6.40)

When 50 decreases from (5Q)o to —(5Q)0, the emis-
sion power (6.40) grows monotonically from zero to
W,„=2@2@~ [Fig. 28(b)]. In the range 50& —500
the root a=0 again becomes stable (Landau and Lifshitz,
1973), and the dependence 8'„,(50) becomes hysteretic;
the "natural" branch, corresponding to our gradually
turning on the external field at a fixed 60& —6QO, is
8' „=0. Another branch, that corresponds to our slow-

ly changing 50 from 50& —5Qo to 50 & —500 at a
fixed value of e, is depicted by the dashed line in Fig.
28(b).

Let us proceed to a more general problem, in which
the external field contains both variable and constant
components. It is convenient to write f (t) in the follow-
ing form:

[see Eq. (6.21}]. Equation (6.39) determines the wave
numbers of the emitted radiation according to Eq. (6.24).
Proceeding to evaluation of the emission power, we set
y=O. Substitution of Eq. (6.38) into Eq. (6.1) results
eventually in an equation differing from Eq. (6.25) by the
multiplier z'. Thus, using Eqs. (6.38) and (6.39), one finds

the emission power

(6.35)
f (t) =vreo/2+ e,cos(Qt) (6.41)

The sign multiplier on the right-hand
Eq. (6.35) is stipulated by the fact that at
sin(u/2) =cos( U/2)u' '/2, and at lxl = oo,
= —sgn(ox) (for definiteness, we set o.=+1).
tion to Eq. (6.30) is

side of
+~+00~
cos( U/2)
The solu-

[cf. Eq. (6.29)]. The constant field, acting in combination
with the dissipation (1.16a), causes the kink to move with
mean velocity (6.30). In the nonresonant situation, the ac
field [the second term on the right-hand side of Eq.
(6.41)] generates emission at the wave numbers

u' '(x, t) =a sin[(1+5Q)t +(m /4)sgnx +5/], (6.36) k, 2
=(0Vo+QQ + Vo —1)/(1 —Vo ) . (6.42}

where 5$ is some phase shift, and the amplitude a is
determined by the equation of the nonlinear parametric
resonance theory, which has two roots (see Landau and
Lifshitz, 1973): a =0 and

It is straightforward to evaluate the emission powers
8', 2 corresponding to the wave numbers (6.42)
(Malomed, 1987d, 1987e):
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—(~2E2/8) V2 [0+V (02+ V2 1 )1/2]

X(0 + Vo —1)

Xsech [(n/2. )[QVO+(0 + Vo —1)'/ ]

X(1 V2 )
—1/2I (6.43)

eP =(~e/2)cos(Qt)sin Q

2
(6.47)

the same final expression (6.46) is valid in the low-
frequency case 0 ((e

provided I VO I
»

I e& I.
Now let us consider the perturbation (1.21) and (6.41)

in the resonant case 0=2(1+50), I50I « 1. The ampli-
tude of the e8'ective perturbation and the eC'ective detun-
ing 50' are determined by Eqs. (6.37) and (6.39) with e
replaced by eI and 5Q replaced by 50+neo/8. :

a =
2 [(ef—16y ) '/ —8(50+n.eo/8 )],

50'=50+a /8= —,'(e& —16y )'/ —neo/4 —50 .

The radiation wave number is the same as above:
k = —50'/Vo. As to the emission power and squared
a'mplitude of the emitted wave, the expressions for them,
written in terms of a, Vo, and 5Q', differ from Eqs. (6.31)
and (6.32) by a factor of —,', just as in the problem with

Vo =0 (see Sec. IV.C.1).

3. The low-frequency case

Though equations of the type (6.22) were obtained in
the first order of the perturbation theory with respect to
the radiation, for low-frequency adiabatic motion these
equations make it possible to calculate emission intensi-
ties that are exponentially small in v e or e due to the
presence of the multiplier

exp[ —ikg(t)], (6.44)

g(t) = —0 'sin 'I(me/40)cos(Qt)

X[1+(nE/40) ] '/
J . (6.45)

After substituting Eq. (6.45) into Eq. (6.22), we need to
evaluate the Fourier coefficients F„of the time-periodic
function F (A, , t) defined in Eq. (6.1). In the low-frequency
case 0« 1, we are interested in large n & 1/Q. Inserting
Eq. (6.45) into Eq. (6.44), which is a multiplier in F(A, , t),
one notes that, provided 0 « I@I, an integral determining
F„(A,) has the saddle point at cos(Qt) =+4in0 /ne, dis-.
tinguished by the condition k dg/dt +n 0=0. ' Evaluat-
ing the integral by means of the steepest-descent method,
one can find

provided the adiabatic law of motion g(t) takes the per-
turbation into account exactly. For perturbation (1.17)
with f (t)=cos(Qt), the adiabatic law of motion is (set-
ting y=0)

4. Emission from a kink accelerated
by a constant external force

Equation (6.46) above does not depend on the frequen-
cy Q. Therefore it is natural to consider the case 0=0,
i.e., emission from a kink moving under the action of the
constant driving force 2~@. In the adiabatic approxima-
tion, the corresponding law of motion for the kink as
t —+ ao takes the asymptotic form

V(t)=1 —8(~et) '. (6.48)

Insertion of Eq. (6.48) into the general equation (6.22)
and subsequent evaluation of the final amplitudes of the
emitted radiation

+~ dB (k)
Bf—= dt

dt
(6.49)

8(k)=16m exp( 8/r/IeI —) . (6.50)

Note that Eq. (6.50) features the same exponential small-
ness as Eq. (6.46). As to the instantaneous value of the
energy emission rate, it can be estimated as follows:

W- IeIexp( —8/n. I@I) . (6.51)

For the perturbation (6.47) with 0=0, the same formulas
[(6.50) and (6.51)] are valid.

Another problem of the same kind may be found in the
equation

Q~~ =sinQ 6'Q~, E'P 0, (6.52)

which, according to Driihl and Alsing (1986), is a partic-
ular model of stimulated Raman scattering in a dissipa-
tive medium, where e is a small dissipative coefficient.
The change of variables x =r+y, t =+(r—y) trans-
forms Eq. (6.52) into the perturbed SG equation

u« —u +sinu =e(u„+u, ), (6.S3)

where the lower and upper signs correspond to the so-
called scattering and superradiance cases, respectively
(Driihl and Alsing, 1986). The perturbation on the
right-hand side of Eq. (6.53) acts on a kink as an external
force, and the kink's corresponding equation of motion
takes the form

yield the following expression for the spectral density of
emitted radiation (2.69b) (Malomed, 1987h):

W=(&3m. )IeI / exp( —8/~I&I) . (6.46)
V= —e(1+V)(1—V') .

dt
(6.54)

Then, for the perturbation (1.21), which we find con-
venient to rewrite herc as

The associated emission problem was considered by
Malomed (1987h). First of all, in the superradiance case
[the upper signs in Eqs. (6.S3) and (6.54)], the perturba-
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tion on the right-hand side of Eq. (6.53) becomes, when
we insert the kink's wave form,

D. Energy emission from a kink scattered
by inhomogeneities

u —u, =2i/(1+ V)/(1 —V)sech
x —g( t)
&I —V'

(6.55)

and the kink's asymptotic law of motion ensuing from
Eq. (6.54) is

Before consideration of particular physical problems, it
is pertinent to discuss a general methodological issue
common for perturbations I' that do not vanish at u=0,
e.g.,

1+V(t) =(2et) (6.56)
P =5(x), P =5'(x),
P =sin(u /M +0)5(x)

With the use of Eqs. (6.55) and (6.56), one can obtain a
final result analogous to Eq. (6.50): = (cos0 sinu /M —2 sin8 sin u /M)5(x)

8(k) =const X exp( —
~
k

~
/e) (6.57) +sin85(x), P =f'(x).

(the radiation is emitted backwards, which means k (0),
where const is independent of k and e.

The scattering case [the lower signs in Eqs. (6.53) and
(6.54)] gives more interesting results. Here the perturba-
tion takes the form [cf. Eq. (6.55)]

'I

u +u, =2&(1—V)/(1+ V)sech
x g(t—)

&I—V'
(6.58)

and the asymptotic law of motion is [cf. Eq. (6.56)]

1+ V(t) =—,'exp( 4et) . — (6.59)

@(k,t)= ""' e'"e t — ln~k~, (6.60)

where 0(z) is the standard Heaviside step function.
Equation (6.60) is valid even at the stage 8(k, t) ~ 1, when
the waves emitted by the kink and enhanced by instabili-
ty cannot be regarded as linear.

Finally, let us consider the equation

u« —u„+sinu = —o.u, cosu, 0 & n « I, (6.61)

which describes the evolution of transverse phase modu-
lations of parallel rolls in a low-Prandtl-number convec-
tive layer subject to resonant spatially periodic forcing
(Coullet and Huerre, 1986). The equation of motion for a
kink takes the form dV/dt =(a/3)(1 —V ) V; as t —+0O

it actually coincides with Eq. (6.59): 1 —V( t)
= —,'exp( —2at/3). However, substituting the right-hand
side of Eq. (6.61) into Eq. (6.59) yields dB/dt=0, i.e., ra-
diative effects may arise only in higher orders of the per-
turbation theory (Malomed, 1987h).

The important difference between the scattering and su-
perradiance cases is the fact that for scattering the emit-
ted waves are themselves unstable within the framework
of the corresponding variant of Eq. (6.53), the instability
growth rate being equal to e for k —+ —~. Taking this
fact into account and using Eqs. (6.58) and (6.59), one can
obtain the following expression for the emitted energy
spectral density as a function of time and wave number
(k&0):

In first order in e, this substitution transforms the origi-
nal equation for u (x, t) into the renormalized one for
U(x, t) [cf. Eq. (6.17)]:

U„—U„„+sin U =2e Uo(x)sin
U

Unlike the original equation, the renormalized one does
not result in divergencies

1. A local inhomogeneity

Let us consider radiative effects accompanying the in-
teraction of a kink with a local inhomogeneity described
by the perturbation (3.89) with M= 1,

P= —5(x)sin(u+8) .

First we consider the case when the kink's velocity V is
suf5ciently large, V ))e. Due to this assumption, we
may neglect a perturbation-induced disturbance of the
kink's law of motion. The spectral density of the total
energy emitted by the kink during its interaction with the
inhomogeneity has been calculated by Malomed (1988e)
[in the particular cases 0=0 and m the result was ob-
tained earlier by Kivshar (1984)]:

6(k)= me(1 —V ) [co(k)—kV]
4V'

X sin 8csch [++I—V co(k)/2V]

a+I —V co(k)+cos Osech (6.62)

with a random function f (x) (see Secs. VI.D. l —VI.D.3),
and so on. In all these cases, Eq. (6.1) takes the form
dB/dt =e' 'F(t, A, ), where the function F(t, l, ) has
nonzero limits as t~+~, and ~F(t =+~)~
= ~F(t = —~ )~. Clearly, direct integration of this equa-
tion is not possible due to divergence. This difhculty can
be surmounted as proposed by Malomed (1987d): if the
perturbation has the form P =g(x), one must look for a
solution to the perturbed SG equation in the form
u(x, t)=U(x, t)+euo(x), where uo(x) is a background
solution [cf. Eq. (6.16)] defined by the linearized equation

uo +uo=g(x)
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where co( k) =—t/1+ k . Note that, according to Eq.
(6.62), when 1 —V « 1 almost all the energy is emitted
backwards, and C(k) takes a maximum value v,„-e at
k ——(1—V )

'~ . The corresponding total emitted en-

ergy E, —= j+ 8(k)dk can be explicitly evaluated in the
two limiting cases: V «1 and 1 —V «1. In the form-
er case, E, is exponentially small, max

,

Fdr

—e'exp( —~/I V/ ) (6.63)

(Kivshar, 1984), and in the latter case it takes the form
(Malomed, 1988e)

E =—'e Vl —V (1+sin 8) . (6.64)
2

VO

Though E, cannot be explicitly found for arbitrary V,
it is clear that it, as a function of V, takes a maximum
value

FIG. 29. The effective force (6.66) braking the kink's motion vs
V . The graph terminates at V =e/2, since for smaller V the
kink will be captured by an inhomogeneity.

(E, ),„=a(8)e (6.6S)

at some V = V,„(8), where the functions a(8) and
V,„(8) take values of order one ( V,„&1) and are in-

dependent of the parameters of the problem.
Equations (6.63)—(6.6S) can be applied to the descrip-

tion of a long Josephson junction (8=0 or n) and of a
long CDW system (arbitrary 8) with periodically or ran-
domly installed local impurities of the type (3.76).
Indeed, if the mean distance between neighboring impuri-
ties is l (we assume l ))1), the effective averaged force
that brakes the motion of the kink is

F„,= (,E, ) /l + 8y V/+1 —V (6.66)

where (E, ) stands for the averaged energy emitted by
the kink during its interaction with an individual impuri-
ty, and the second term in Eq. (6.66) is a contribution
from the direct (nonradiative) friction, y being the dissi-
pative constant. Under the condition 8y I « e ., the
dependence Fb, ( V ) ensuing from Eqs. (6.63)—(6.66)
takes the form depicted in Fig. 29. For a given driving
force 2rjf, the kink s equilibrium velocity Vo is deter-
mined by an intersection of the curve in Fig. 29 by the
horizontal line Fb, =2~f. Plainly, the intersections with
the segments of the curve that have a positive slope (solid
line in Fig. 29) give rise to stable equilibrium motions,
while intersection with the negative-slope segment
(dashed line in Fig. 29) gives rise to an unstable motion.
A current-voltage characteristic of the system, i.e., the
dependence f ( Vo) in the case of a long Josephson junc-

tion, or the dependence Vo(f) in the case of the CDW
system, generated by the dependence Fb, ( V ) shown in

Fig. 29, is hysteretic in some range F;„&f &f „,
( Vo);„&Vo &(Vo),„; see Fig. 30 (Mineev, Feigel'man,
and Shmidt, 1981;Malomed, 1988e).

Now let us brieAy consider the case V «e. Here ra-
diative losses are exponentially small in &e. An interest-
ing methodological problem is to And a maximum
(threshold) velocity V,h, for a kink that admits its capture
by the inhomogeneity (in the absence of direct dissipa-
tion, i.e., at y=O). For the particular case 8=+ this
quantity has been found by Malomed (198S):

V,h, =2 ' &Pre exp( —2v'2/e) . (6.67)

vo

0 min

(o)-

For a more general case (arbitrary 8), the exponential
factor in Eq. (6.67) changes to exp[ —2&2/e/~sin(8/2)

~ ]
(Malomed, 1988e).

As was mentioned in Sec. III.C.2.c, in the theory of
CDW systems a local perturbation (3.89) also naturally
arises with an arbitrary M ~ 2:

A small part of the energy emitted may be expended on exci-
tation of a small-amplitude breatherlike (oscillating) localized
mode pinned by attractive (e&0) inhomogeneity (the mode is
described in detail in VI.H.2 below). This problem was con-
sidered in different contexts by Nakamura (1978), Yoshida and
Sakuma (1978, 1982), %'atanabe and Toda (1981), Klinker and
Lauterborn (1983),and others. We shall not dwell on it here.

o
thr max min mQx

FIG. 30. The current-voltage characteristic following from Fig.
29.
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P = —5(x)sin +8Q

M

Malomed and Nepomnyashchy (1989b) have shown that
when e« V «1 the total emitted energy exhibits the
same exponential smallness (6.63). The case of the oppo-
site limit 1 —V «1 is more interesting. The corre-
sponding spectral density of the energy emitted by a kink
moving across an inhomogeneity has the form

r

m(1 —Vc )'
6'(k) =

4 sech t/1+ k
V4, 2V,

(6.69)

6'(k) = 8( —k), and, second, at 1 —V —+0 the total emit-
ted energy does not fall as (1—V )' but, instead, grows
-(1—V )

'~ . For instance, in the case of the inhomo-
geneity from Eq. (3.65) generated by an inductance step,
P =5(x)u, the spectral density of the emitted energy has
the form

1 ee(k)=—
~ k +1

+ vr(2@ +1)
sin cos

M
'+

M

The corresponding dependence of the total emitted ener-

gy E, = f+ 8(k)dk on Vc is shown in Fig. 31. In the
range e « Vo « 1, the dependence takes the form

+O(&1—V'), (6.62')
E, =4~i/2e Vc ~ exp( —ir/Vo), (6.70)

where it is implied that the kink s wave field at x ~+ ao

takes the asymptotic values 2mn and 2m(n +1.); see Eq.
(4.207). Note that Eq. (6.62'), in contrast with (6.62),
does not depend on the sign of k, i.e., the radiation is
emitted symmetrically to the left and to the right. In-
tegration of the spectral density (6.62') yields the total
emitted energy

r

E =e sin —cos 8+i . 2
m. z ir(2n+1) --

2
em M M

+O(&1—V ) .

and in the range 1 —Vo « 1

E, =8m /(1 —V')'~ (6.71)

As can be seen from Fig. 31 and Eqs. (6.70) and (6.71),
the dependence is monotonically growing [the same per-
tains to the perturbation (3.63)]. Note that the same
inference follows from the numerical results of Sakai,
Samuelsen, and Olsen (1987). In Sec. III.C.2 we con-

(6.64')

Equation (6.64'}, in contrast with (6.64), does not vanish
at (/1 —V ~0. The main terms of Eqs. (6.62') and
(6.64') vanish at M= l. This means that, in accordance
with Eq. (6.64), E, -t/1 —V for M= l.

In some applications, an inhomogeneity also arises that
can be described by the term P(u) =5(x). In particular,
it describes injection of bias current into a Josephson
junction through a localized region (experimentally this
has been realized by Akoh et al. , 1985). In the early pa-
per by Eilenberger (1977), the radiation wave field emit-
ted by a kink interacting with this local inhornogeneity
has been found by means of the Green's-function tech-
nique. The spectral density of the energy emitted by a
kink moving across such an inhomogeneity has been
found by Malomed (1987d) (for 1 —V &(1):

ire k (t/1+ k —k }

1+k [k +(1—V ) 'j

X csch t/1 —V
2

(6.68)

An important difFerence between this equation and Eqs.
(6.62) and (6.62') is that this time almost all the energy is
emitted forwards. The total emitted energy is
E, =0.79m '}/1 —V .

In Sec. III.B, we also dealt with the inhomogeneities
(3.53), (3.63), and (3.65). The energy emitted by a kink
scattered by one of these inhomogeneities (Kivshar and
Malomed, 1988e, 1989f; Kivshar, Malomed, and Nepom-
nyashchy, 1988) shows two significant differences from
Eq. (6.62): first, the spectral density is symmetric,

0 0.5 I Vo

FICx. 31. The normalized total energy emitted by a kink mov-
ing past the inhomogeneity described by Eq. (3.65} (and induc-
tance step in a long Josephson junction) vs the kink's velocity
~o.
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sidered a generalized local defect in a long Josephson
junction described by a linear combination (3.53) of the
perturbing terms 5(x)sinu and P5(u)u, . It proves that
phases of the plasma waves (radiation) emitted by a mov-
ing Auxon under the action of each of these two terms
differ by 7r/2, so that a full expression for the emitted
spectral energy density is the sum of Eqs. (6.62) and
(6.69), the latter being multiplied by Vo [Kivshar and
Malomed, 1988e; the spectral energy density (6.69), cor-
responding to the perturbation 5(x)u, must be multi-
plied by Vo in order to correspond to I' =5(x)u„because
u, = V,u„].

It is relevant to mention here that McLaughlin and
Scott (1978) proposed employing emission of plasma
waves by a Auxon moving through a periodic lattice of
microshorts [see the model (3.76)] in the design of a mi-
crowave Josephson generator. The results given above
suggest that a periodic lattice of dissipative micro-
inhomogeneities [described by the model (3.76') with
P„:—P, x„+,—x„—=a] would be a better basis for the gen-
erator. Using Eq. (6.69) multiplied by Vo(u, = Vou~), it
is easy to find the energy 8'„d emitted by a moving kink
per unit of time (the power of the one-fluxon generator).
In the most interesting case ya «13« fa ((1,
W„,d=27rpf. As the power absorbed by the dissipation
is Wd;» =27rfVo = 27rf (in the case under considera-
tion 1 —Vo (& 1), the efficiency of the generator is

W„d /Wd;„-I3 (Kivshar and Malomed, 1988e).
Finally, let us consider the local inhomogeneity de-

scribed by the perturbing term e5'(x). According to As-
lamazov and Cxurovich (1984), this term describes an

2. A spatially periodic or random inhornogeneity

Analysis of the energy emission of a kink moving
across a localized inhomogeneity gives us a basis for con-
sideration of a periodic lattice of inhomogeneities. The
simplest model of a spatially periodic inhomogeneity is
based on the perturbed SCx equation

u„—u +sinu =e sin(vx)sinu . (6.72)

Emission of radiation by a kink within the framework of
this model was considered by Mkrtchyan and Shmidt
(1979), Kivshar (1984), Malomed and Tribelsky (1989),
and others. In the lowest approximation, emission takes
place under the condition V &(I+~ ) ', the radiation
wave numbers being

k, 2=(1—V ) '[V a++ V (I+a ) —1] . (6.73)

The emission powers corresponding to the wave numbers
(6.73) are

Abrikosov vortex lying across a long Josephson junction.
The same term describes a local lattice deformation in a
CDW system (Brazovsky and Bak, 1978). In the limit
1 —V &&1, a kink moving across a local inhomogeneity
of this type emits energy in the backward direction, the
total emitted energy being E, =Is (1—V ) ', where
(Kivshar and Malomed, 1989f)

I=—16f x (1+x ) csch (m.x)dx=0. 005 .
0

W, 2=(7r /8)(1 —V ) e (1+~ )[v+2+(I+~ )V —1] [~++(I+~ )V —1]

X[(1+~ )V —1] '/ sech [(7r/2)(1 —V )
' v++(1+v )V —1] . (6.74a)

The dependence of the net emission power W„,—= Wi+ W2 on the velocity of the kink is shown in Fig. 32(a). As can be
seen, there is no emission at V & Vo—=(I+~ ) ', and W„„diverges —[(1+~ )V —1] ' at V —Vo~+0. However,
at small ( V —Vo) the regularizing role of dissipation must be taken into account. The following regularized expression
for W„, has been obtained by Malomed and Tribelsky (1989):

W«, =(7r/4v 2)e yx (I+a )
'/ sech —+1+i~ [(y~) +4(1+~ ) (5V) ]

X[+(yl~) +4(1+x ) (5V) —2(1+v )5V] (6.74b)

where 5V= V —V0, and it is implied that the dissipative
term —yu, is added to the right-hand side of Eq. (6.72).
Both Eqs. (6.74a) and (6.74b) take the same asymptotic
form in the overlapping region ( 1+Ii' )(yx) (&5V« Vo.

W«, =(7r/4'i/2)x ( 1+v )

I

difFerence in the region 0&5V«yw(1+~2)
the former diverges -e (5V) '/ at, 5V~0, the latter
remains finite and takes the maximum value

W (33/4 /27/2) 9/2( 1+~2)—i/4

X sech —)/ 1+~ e (5V)
2

(6.75a)
at

X sech —+I+i~ (e /&y)
2

(6.76a)

At the same time, Eqs. (6.74) and (6.76) exhibit a drastic 5 V =5V,„—:(y /2&3 )~(1+~ )
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In the region 5V&0 the dissipationless approximation
(Mkrtchyan and Shmidt, 1979) yields W„,=—0, while the
regularized expression (6.74b) remains finite in this region
too. In particular, at pi~(1+a ) '(& —5V&& Vo [cf. Eq.
(6.75a)]

W„,=(~/2 ~ )y~ (I+a )

Xsech —+1+jr e (5V)
2

(6.75b)

The full regularized dependence W„,(5V) in the region
~5V~ && Vo is shown in Fig. 32(b).

Finally, in the ultrarelativistic region 1 —V «1 the
net emission power defined by Eq. (6.74a) takes the
asymptotic form

W„,= W~=(me/4) (1+a2)(1—V2)2 .

At V close to Vo the radiative braking force 8;„/V
acting upon a kink has a sharp maximum. This must

give rise to a well-pronounced peak at V= Vo on the
one-kink velocity-drive characteristic V(f) of the driven
damped system described by Eq. (6.72) with the addition-
al terms yu—, f o—n the right-hand side (where f is the
drive). That peak and the hysteretic transitions between
it and the usual (dissipation-dominated) branch of the
velocity-drive characteristic have been investigated in de-
tail by Malomed and Tribelsky (1989). In particular, ' a
stable piece of the characteristic V(f) near V = Vo lies in
the region 5V (5V,„[see Eq. (6.76b)], while the piece
in the region 5V) 5V,„ is unstable. Note that the cor-
responding dependence W„,(5V) [see Eq. (6.75b)] at
5V & 5V,„does not exist at all in the dissipationless ap-
proximation.

A more realistic model of a lattice of inhomogeneities
is described by the SCx equation with the perturbation

2m'
n sinu .

K

ot

0

In general (for an arbitrary value of the spacing parame-
ter 2m. /a. ), an exact calculation of the energy emission
rate is not possible. In the limit K)) 1 this model proves
to be equivalent to Eq. (6.72), with e replaced by 2e'.
However, as can be seen from Eq. (6.74), in the limit
K)) 1 the energy emission rate is exponentially small. In
the opposite limit, K«1, one can find the energy emis-
sion rate using Eq. (2.64) (with 8=0) pertaining to an iso-
lated local inhomogeneity. Using these ideas, Kivshar
and Malomed (198S) considered radiative braking of a
kink moving with a certain initial velocity through a lat-
tice of inhomogeneities. They obtained estimates for a
total braking time and for a total distance traveled by the
kink.

Let us proceed to the case when a kink moves through
a random relief of inhomogeneities. The simplest model
is based upon the perturbing term ef (x)sinu, where f (x)
is a random Gaussian function subject to the correlation
relations

tot
(f (x) ) =0, (f (x)f(x') ) =5(x —x') (6.77)

[cf. Eqs. (3.104) and (3.105)]. This model was analyzed
by Mineev, Feigel man, and Shmidt, (1981) in relation to
the theory of long inhomogeneous Josephson junctions
[generalization to the case of a Gaussian f (x ) with a
nonzero correlation radius was considered by Kivshar,
Konotop, and Sinitsyn (1986)]. The spectral density of
the emission power is

OX

W(k) = '
(k V —&1+k')'

16V

vr 1 —V'
X sech +1+k

2V
(6.78)

FIG. 32. The kink s net emission power vs its velocity in the
model (6.72): (a) the dissipationless approximation (6.74a}; {b)
the regularized dependence given by Eqs. (6.741), (6.7Sa), and
(6.7Sb). The values 8',„and 5V,„are given by Eqs. (6.76a)
and (6.76b), respectively.

where V is the kink's velocity (it is assumed that V )&e).
The total emission power W—= f +"„%'(k)dk can be cal-
culated, as usual, in the two limiting cases:
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2

V
—9/2e —m/ v

for e((V ((1,and

W=(2/~ )e +1—V2

(6.79)

(6.80)

If the one-soliton emission spectrum is described by a
spectral density 'lV(k) [see, for example, Eqs. (6.78),
(6.81), and (6.82)], the partial emission power pertaining
to the nth spectral line is

KE'
'LV(k) = exp — (1+k /2)

V3 2V
(6.81)

and the corresponding total emission power is
W=2n. e V ~ exp( —n. /2V). When 1 —V &&1,

'N(k)=sr 'e (1—V )(1+k ) (6.82)

and W =@ (1—V ). Equation (6.82) difFers froin (6.78) in
its symmetry with respect to the change k —+ —k and in
the fact that the main part of the emission power is con-
centrated in the spectral range k . & 1, instead of
k'-(1 —V')-'.

for 1 —V «1. As can be seen from Eqs. (6.79) and
(6.80), the dependence W(V ) is increasing at small V2

and decreasing at small (1—V ), so that W( V ) must at-
tain a maximum value at some intermediate V . Analysis
of the kink's law of motion with regard to this cir-
cumstance has led Mince v, Feigel'man, and Shmidt
(1981) to the inference that, provided the level of direct
dissipative losses be sufficiently low, the dependence of
the equilibrium kink s velocity on the driving force (usu-
ally described by the constant perturbing term f ) is hys-
teretic (cf. the similar analysis in Sec. VI.D. 1 and Figs. 29
and 30).

As another example of a random potential relief, we
can take the perturbing term ef'(x)—, where f is the
same random function as in Eqs. (6.77) (Malomed,
1987d). When e« V «1, the spectral density of the
emission power is

I'Wk =(co„—1)'i )+W(k = —(noh —1)'i )I .

(6.85)

An important particular case is that in which the one-
kink emission spectrum is discrete itself [as, for instance,
in the model (6.72)]. In this case, Eq. (6.85) gives zero if
co„does not coincide with the discrete frequency Q of the
one-kink spectrum, and infinity if co„does coincide.
However, this singular behavior will be smoothed if one
takes account of the regularizing effect of the dissipation
described by the perturbing term —yu, . The corre-
sponding general formula is [cf. Eq. (6.85)]

W„=(2mnV) '+co„—1Wny[(y/2) +(co„—II) ]

(6.86)

where 8'z is the one-Auxon emission power concentr'ated
at co =A in the absence of dissipation, and where it is as-
sumed that the detuning (co„—fl) is small. Since both
the eigenfrequencies (6.84) and 0 are functions of the
kink's velocity V, the quantity (co„—0) may become zero
at some discrete values V„of V. For instance, the fre-
quencies that correspond, according to the dispersion re-
lation 0 =1+k, to the wave numbers (6.73) are

Q, z= [a++V (1+~ ) —1],V

and the equation co„=Q] 2 determines the spectrum of
velocities (Golubov and Ustinov, 1986, 1987):

1 —V„=(L/2rrn) (4rrnz/L —1 —~ ) . (6.86')

3. A ringlike system with inhomogeneities

The emission problem for a kink in an inhomogeneous
system acquires specific features if we consider a ringlike
system, i.e., a system of finite (but large) length L subject
to the periodic boundary conditions

u (x +L)—:u (x) . (6.83)

Given the characteristics of a one-kink emission in an in-
homogeneous infinite system, what will be the emission in
a finite-length ring system? A solution to the problem
has been offered by Malomed and Tribelsky (1989) [see
also Malomed and Ustinov (1989b)]. Due to the periodi-
city condition (6.83), a finite-length system is equivalent
to an infinite system containing a chain of kinks with the
large period L. The amplitude b (X) of the total emitted
radiation is the sum of amplitudes emitted by separate
kinks. Summing yields the following results: emission is
concentrated at the discrete frequencies

+C„(V —V„) (6.87)

At those values V„of the kink's velocity which provide
the coincidence of co„and Q, a radiative braking force
acting upon the kink will have a sharp maximum. Golu-
bov and Ustinov (1986, 1987) have pointed out that, from
the viewpoint of Josephson-junction theory, this reso-
nance will show itself through peculiarities of the
current-voltage characteristic of the junction at voltages
corresponding to the velocities V„. This prediction has
been corroborated in an experiment of Serpuchenko and
Ustinov (1987) [see also Golubov, Serpuchenko, and
Ustinov (1988)].

Equation (6.86) provides a detailed description of the
peculiarities mentioned. Indeed, according to the above,
we may rewrite Eq. (6.86) in the form

W„=(2mn V) '+co„—1

Vco„=—2mn, n ~ no=(2mL/V) . (6.84)
where C„ is a constant —1. The corresponding energy
balance equation is

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



846 Y. S. Kivshar and B. A. Malomed: Solitons in nearly integrable systems

2~fV =8y V'(1 —V')-'"+ W„ (6.88)

Vn

0
!

I

fmax
p

FIG. 33. The near-resonance dependence of a Auxon's velocity
V on the driving force f ensuing from Eqs. (6.87) and (6.88}.
The upper (dashed) branch is unstable, while the lower (solid)
one is stable.

(f is the driving-force constant perturbing term in the
SG equation). The dependence V(f) ensuing from Eqs.
(6.88) and (6.87) is shown in Fig. 33, where the quantityf,„ is -e'ly.

Finally, it is worth noting that a similar analysis ap-
plies to a ringlike system with several kinks trapped, pro-
vided the overlap of the kinks may be neglected. For this
situation, Malomed et al. (1988) have predicted and
shown in an experiment strongly pronounced peculiari-
ties of the current-voltage characteristic of a long inho-
mogeneous Joseph son junction containing several
trapped Auxons. In this experiment, as well as in the
above-mentioned experiment of Serpuchenko and
Ustinov (1987), the periodic spatial inhomogeneity was
realized as a regular lattice of pointlike microresistors
[described by the model (3.76)].

The amplification of emission intensity due to in-phase
coherent superposition of waves emitted by different Aux-
ons has been called superradiance (Malomed et al. ,
1988). In the experimental work of Monaco et al.
(1988), superradiance was realized in a simpler sense, as
the in-phase superposition of electromagnetic radiation
emitted by solitary Auxons moving synchronously in
several long parallel Josephson junctions.

Coherent antiphase superposition of emitted waves re-
sults in suppression of the emission instead of
amplification. The corresponding kinematic relation
differs from Eq. (6.86') by the change 2~n~2vrn+vr
(Malomed and Tribelsky, 1989). However, antiphase su-
perposition is of less physical importance since, in gen-
eral, -when the emission spectrum contains many frequen-
cies, suppression of one of them does not give a strong
effect. An exception is the case in which the suppressed
frequency co is resonant (~co —

1~ &&1): As was shown in
Sec. VI.C.1, the resonant frequency gives a dominant
contribution to the net emission power.

Similar effects have been observed in the numerical ex-
periments of Mistriotis et al. (1988) with a Morse or

Toda lattice closed into a ring and containing a mass im-
purity. These experiments showed that a moving soliton
suffers anomalously fast decay due to resonant excitation
of linear waves by periodic collisions of the soliton with
the impurity.

It is necessary to note that the above resonant kine-
matic relations (6.86') ignores the inAuence of the inho-
mogeneity on propagation of the linear waves emitted.
As has been demonstrated by Malomed and Ustinov
(1989b), this influence becomes important if the emission
frequencies co„are suSciently large. In that case, one
must take into account not only the defect-induced per-
turbation of the local maximum supercurrent density ac-
counted for by the term e,5(x)sinu [see Eq. (1.19)], but
also changes of the local densities of the junction's induc-
tance and capacity, described by the terms A@5(x)u„[see
Eq. (3.65)] and @35(x)u«, respectively. For instance, in
the case @3=A„F2=0, the coefticient R of reAection of
the linear waves from the pointlike defect, defined as the
ratio of an energy Aux carried by the reAected wave to
that transferred by the incident wave, is (Malomed and
Ustinov, 1989b)

R =ek /(4+@k )

where k is the radiation wave number (A@2 = 1+k2).
Thus the defects become impenetrable for the emitted
waves (1—R «1) if elk ))1. Large wave numbers of
emitted radiation correspond to a Auxon velocity
sufficiently close to the Swihart (limit) velocity Vs„= l.
In this limit, the local defects remain "transparent" for
the Auxons, while the emitted waves see the junction as
divided into short junctions of length a [a—:2m /~, cf. Eq.
(6.72)]. The corresponding resonant kinematic relation
analogous to Eq. (6.86') depends on two integers m, n:
V „=el.(m In), provided a.m ))1 (Malomed and
Ustinov, 1989b).

Another circumstance complicating one's interpreta-
tion of the experimental data is the fact that; usually, real
long Josephson junctions are linear with reAected edges,
but not circular. %"hen the junction is itself homogene-
ous, the edges give rise to another interesting dynamical
effect if an external dc magnetic field h is imposed. A
corresponding model is based on the SG equation with
the right-hand side —yu, f [see Eqs. (1.16a) an—d (1.17)],
supplemented by the boundary conditions u (x =0)
=u (x =l)=h, where 1))1 is the length of the junction
(Olsen et al. , 1986). Depending on the polarity, a Auxon
sees the reAecting edge as a potential hill or well of height
or depth 4vrh. The Auxon cannot be rejected (with a
change of polarity) from the edge corresponding to the
potential hill if the hill's height exceeds the Auxon's ki-
netic energy. In this case, the Auxon cannot perform the
usual shuttle oscillations described by Fulton and Dynes
(1973). However, if h is sufficiently large (and lies beyond
the range of applicability of perturbation theory), another
mode of motion, called the first Fiske step, is possible:
the numerical experiments of Dueholm et al. (1981),
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Erne and Ferrigno (1983), and Soerensen et al. (1983)
have demonstrated that the Auxon first moves in one
direction, then, at an edge, it decays into plasma waves
which travel in the opposite direction, and at another
edge they reunite into a Auxon.

the type (6.90).
An important example (Malomed, 1987d; Kivshar and

Malomed, 1988b) is the emission problem for a kink os-
cillating near the local attractive inhomogeneity (1.19)
according to

E. Exponentially weak emission from a kink
oscillating in a potential well

d g
2

2 3/2

f (lip) . (6.89)

Above we encountered an example of exponentially
weak emission from a kink oscillating with a small fre-
quency coo«1 [see Eq. (6.46)]. In this section we shall
consider this phenomenon in a general form, following
the paper by Malomed (1987i). We shall assume that a
kink oscillates in an effective potential well of charac-
teristic size ~ '~1, so that its adiabatic equation of
motion coincides with that of a relativistic unit-mass
particle moving under the action of the force
F(g) = —(mF. /4)f (~g):

sinhg(t) =V(2e —E)/E sin(Qt), Q=, (6.92)

where E is the binding energy (0 & E & 2e ) (in this
case a.-l). Straightforward calculations yield the fol-
lowing results. The basic part of the emission is concen-
trated at the frequencies co =&2E ([I/&2E ]+m),I = 1,2, 3, . . . , the corresponding powers being

w =(&6/647T)E ~ ([1/'t/E ]+m)

X(m —
I I/&E I )

'~ B ([I/'i/E. ]+m), (6.93)

where B:(&2e —VE )I—(&2F+&E ), and IxI—:x
—[x]. For the typical values E —e (not E « e), the total
power can be expressed in terms of the standard special
function (Bateman and Erdelyi, 1953) &b(z, s, a)
—:g„" oz "(a+n)

This equation can be generated, for example, by the per-
turbation eP =(ir/2)ef (~x)sin(u/2) which arises in a
variant of the Frenkel-Kontorova model if the substrate
potential contains a subharmonic component
-ef(~x)cos(u/2) modulated on a large spatial scale
-sc ' (cf. the model dealt with in Sec. IV.D).

Iff (0)=0 and ef '(0) & 0, the kink may oscillate with a
low frequency Q —&e~ and an arbitrary amplitude a && 1

near the bottom of the well (=0. According to Sec.
VI.B, the intensity of emission at the frequency nQ
(n ) 1/Q) is determined by the squared nth Fourier
coefficient F„of the periodic function F(t, k, ) from Eq.
(6.1). Since the frequency Q is small, we are interested in
an asymptotic form of F„ for large n. The smallness of
the quantities F„ in this range is determined by the pres-
ence of the rapidly oscillating exponent

8'= g 8'
m=1

-(&e/64m)EB ' ' . +"@(B —' 1 —
I I /i/E I ) .

(6.94)

Because B&1, we may say that the result (6.94) is ex-
ponentially small in t/E, i.e., in &e. It is easy to see that
Eq. (6.94) is in accordance with the general formula
(6.91).

Clearly Eqs. (6.93) and (6.94) are applicable provided
8'&&EQ-E . As is shown in Fig. 34, this condi-
tion is not met in close proximity to the points
I/&@=&2(1—B)(1+B) 'n, where n are large integer
numbers, when the corresponding multiple frequencies of

exp[in Qt —ikg(t)] (6.90)
+tot

in an integral that defines F„. Therefore F„may be es-
timated by means of the steepest-descent method. The
result proves to be qualitatively different in two different
cases. If a periodic solution g(t) to Eq. (6.79) (the kink's
law of small oscillations), analytically continued to the
complex half-plane Imt&0, has a singularity at some
point to [in this case the estimate Imto =in(1/aa)+0(1)
is valid with logarithmic accuracy], the energy emission
rate (emission power) is exponentially small

gr (&&)c/ (6.91)

with some positive C —1. If singularities of the analyti-
cally continued function g(t) lie at infinity, the emission
power contains, besides the main factor (6.91), an addi-
tional factor [ln(ea. ) '] ~ ' with some positive S—1.
In most cases, one can discern these two possibilities
directly, analyzing a corresponding equation of motion of

FIG. 34. The dependence 8;„(1/&e), when the parameter
B—= (&2e—&E )j(&2e+&E ) is fixed. The dashed envelope
line is W«, = o ctnXse' B "+ "' ' ' [see Eq. (6.94)j.
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the kink's motion 2n Q get too close to the plasma fre-
quency (spectral gap's edge) coo= 1.

Equations (6.93) and (6.94) are also inapplicable when
E (&e (the case of a weakly bound kink). In this case the
emission of radiation is dominated by a relatively small
part of the half-period r/2=2m /v'E of the kink's oscil-
lations, singled out by the condition that the kink be
suf5ciently close to the emission-generating inhomogenei-
ty: g (t)(1. The duration of that part is
t —1/v'e «~/2. Therefore, in the first approximation in
the small parameter E/e, we may calculate the energy
emitted during one half-period of the kink s oscillations
as the energy emitted during infinite time by a free kink
moving past the inhomogeneity with zero velocity at
infinity, i.e., with E=O. The corresponding spectral den-
sity and total emitted energy have been calculated by
Malomed (1985). Dividing them by the half-period
2m/v'E, we find the spectral 'density of the emission
power and the total power:

%'(q) =~ 'i 8eE exp[ —2i/2(1+q~/2)/v'e],

W=(2' /i/m)v'E e ~ exp( —2~ 2/e) .

(6.95)

(6.96)

Note that these expressions, as well as (6.94), are ex-
ponentially small in v'e. As can be seen from Eq. (6.95),
the emission power is concentrated in the spectral range
q -i e. In the approximation considered, the radiation
spectrum (6.95) is continuous. In reality it is discrete,
with the frequency gaps between neighboring lines
b,co-b, (q )-i/E &(i/e, and Eq. (6.95) should be re-
garded as a version of the genuine spectrum smoothed on
a scale hco, &E &(b,co(&i/e.

F. Emission from a low-freqoency sine-Gordon breather

Existence of exact breather solutions is a distinguish-
ing feature of exactly integrable systems. While the ex-
istence of stationary one-soliton solutions (for instance,
kinks) does not purport exact integrability, it is generally
bcllcvcd that only lntcgrablc systems possess exact oscil-
latory states (breathers) which lose no energy through
emission (see, for example, Bullough et al. , 1980; Eleon-
skii et al. , 1984). It is natural to expect that a perturbed
equation has solutions which, being locally close to exact
breathers, slowly fade due to energy emission. The prob-
lem of evaluation of a perturbation-induced rate of ener-

gy emission is of fundamental interest. In this section we
shall set forth results obtained so far for low-frequency
breathers (2.66) (g « 1) and also for general-form breath-
ers (2.63) of nonsmall amplitudes (tang —1).

First we consider, following Kivshar and Malomed
(1987d, 1988d) radiative damping of a low-frequency
breather under the action of perturbation (1.19),
P =5(x)sinu, assuming that the breather is quiescent and
its center coincides with the location of the inhomogenei-
ty (x=0) described by the perturbation (1.19).

The emission power is concentrated at the radiation
frequencies

A=(I[1/g]+2m+1+ —,'[1—( —1)(' &)]I—:0, (6.97)

where [ ] represents the integer part, and m =0, 1,. . . .
The emission power corresponding to the mth frequency
(6.80) is

( e2g2/4)[Q /( Q2 1 )1/2]e ~
~
G j2

where

G—:0 (a b—) —0 (a —5b ) 4b-
a =1+i (0 —1)'~ (b /0 ),
b —= [(n' —1)'"+i]'/n'

(6.98)

(6.99)

Equations (6.98) and (6.99) seem rather cumbersome,
and they would be far more cumbersome for perturba-
tions other than (1.19). However, we can develop a
simpler approach for calculating the total emission rate

dg/dt = W„„(g)/16$, (6.100)

where E& =8/ is the binding energy. Indeed, the energy
emitted during one half-period r/2= ~/g of the
breather's oscillations is dominated by a relatively small
portion of the half-period, when the kink and antikink
bound inside the breather are strongly overlapped. The
duration of that portion is —1, and during it the breather
solution (2.66) may be approximated by the limiting form
(2.67). So, in the first approximation in g, the spectral
density of the energy emitted by the breather during a
half-period can be calculated as that emitted by the
kink-antikink pair (2.67) during an infinite time:

A(k)=(~e /4)Q(k)(1+k ) 'exp( —2+1+k ), (6.101)

where

Q(k):—(17k +86k +72)—(72+50k )+1+k
It should be noted that the above approach has yielded
the discrete (but sufficiently "dense" ) emission spectrum
given by Eqs. (6.98) and (6.99), while the present approxi-
mation misses the discreteness of the spectrum and gives
its smoothed continuous version (6.101). However, this
approximation is suKcient to find 8;„. Indeed, the total
energy corresponding to Eq. (6.101) is

E„,= J @(k)dk =Pe (6.102)

where numerical integration yields p=0.69. Since the
duration of the half-period is n. /g, the total emission
power is

W„,=E„,/(m/g) =(P/~)ge (6.103)

W...:=y W
m=0

which is of basic physical interest since, through energy
conservation, this total emission rate determines the
breather's radiative damping rate dg/dt: dE&ldt = W,
or
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Then, inserting Eq. (6.103) into Eq. (6.100), we obtain tion frequency)

d g/dt = (P/16m. )e (6.104) 2—i (mZ/3)Vco —1 csch(m +co —I /2p)sin r

For other perturbations calculations are more lengthy.
For example, the perturbation (1.25), P =sin(2u), yields
for E«, Eqs. (6.103) and (6.104) with p=9.89 (Malomed,
1985).

For a breather of a general form, when the parameter
tanp is neither large nor small, accurate evaluation of the
radiative decay rate poses severe technical difFiculties.
However, on a level of estimates, it is possible to develop
a general description of the perturbation-induced evolu-
tion (radiative decay) of the breather, starting from an in-
itial state in the form of a low-frequency breather and
Qnishing at the fInal asymptotic stage of decay as a
small-amplitude breather (Kivshar and Malomed, 1987d).
According to Eq. (6.104), the breather remains low fre-
quency during the time t ~ t, -e for the perturbation
(1.25), and i & ti —10 e for (1.19). For a general-form
breather (tanp-1), an estimate yields W-e, so that the
duration t2 of this stage of the breather's evolution is also

2

The subsequent radiative decay of the resultant small-
amplitude breather, which is a problem of principle in-
terest [Segur and Kruskal (1987); Kivshar and Malomed
(1988a)], will be described in detail for various particular
perturbations in the next section. To conclude this sec-
tion, we estimate the time dependence of the characteris-
tic radiation amplitude A. On the time scale t t„t2,
the radiation energy E„„grows with time as 8't-e t,
and the length I of the spatial region occupied by the ra-
diation grows as I —Vg, t —kt —t, where Vg„=k /+ I +k
is the group velocity and characteristic radiation wave
numbers are k —1. Thus we arrive at the estimate
A —QE„&II -e, which is independent of time. At
times t )&e, when almost all the energy of the initial
breather has already been converted into the radiation
energy (E„~= 16), this energy remains almost constant,
while the length I continues to grow -t, so that at this
stage

Xe "sin(Ot)e' '+ (6.105)

8 being defined in Eq. (6.16). Rather unexpectedly, all
the higher terms of the expansion (6.105), though propor-
tional to growing powers of p, yield contributions to
dB/dt of the same order as the first term explicitly writ-
ten in the right-hand side of Eq. (6.88). With regard to
this circumstance, we obtain the following results: if 0
belongs to the interval

n &Q(n+1, n =0, 1,2, . . . , (6.106)

the main (most intensive) emission takes place at the fre-
quency

co= ~n
—0+—,'[1+3(—1)"]~, (6.107)

the emission power being

8'=(~C„Z/3) co+co —lexp( —a+a) —I/p), (6.108)

8'2 =2&3(m Coe/3) exp( —v'3~/p)

=(2m /3' )e exp( i/3'/p, ) . — (6.109)

where C„are some coefFicients depending on n and, gen-
erally speaking, on co. Thus the coefFicients C„are con-
tributed to by all the terms of the expansions (6.105).
However, numerical coefFicients in front of contributions
from higher terms rapidly decrease with the growth of
the term's number, and for n ~2 the coefncients C„are
determined, with satisfactory accuracy, by the contribu-
tion from the first term of Eq. (6.105): CO=3, C, =O,
C2=1. Values of these coe%cients can be calculated ac-
curately by means of a more laborious method of Segur
and Kruskal (1987) which is based on matched asymptot-
ic expansions.

The case of the constant external field (1.17) (A=O) is
covered by Eqs. (6.107) and (6.108) with n =0 [see
(6.106)]; in particular, the corresponding radiation fre-
quency is co=2, and the emission power

G. Radiative decay of a small-amplitude
sine-Gordon breather in external fields

1. Nonresonant case

Proceeding to a study of perturbation-induced emis-
sion from the small-amplitude breather (2.65) (Malomed,
1987d), we first consider the perturbation (1.17),
P =f (t), with f (t)=sin(Qt) (Malomed, 1987d, 1987e).
As in the one-kink problem, we need to renormalize the
wave field according to Eq. (6.15). Then, substituting the
renormalized perturbation (6.16) [or (6.19)] into the basic
formulas (6.1) and (6.2), we obtain in the nonresonant
case co —1 ~ 1 (where co= +k + 1 is, as before, the radia-

ez —=3e/1280 .

=ez U'+O(e~ U ), (6.110)

(6.111)

The perturbation on the right-hand side of Eq. (6.110)

The case of the constant external field (1.21)
[P =sin(u /2)] requires special consideration. In view of
p « 1, we expand the perturbation: sin( u /2) =u /2
—u /24+u /3840 —.. . . The first two terms of the ex-
pansion may be comprised in analogous terms of the ex-
pansion of the unperturbed SG equation by means of the
renormalizing transformation u = U ( 1 —3e/16),
x =X(1+1 le/32), t = T(1+ 1 le/32). The renormal-
ized equation is

UTT
—Uzz+sinU=e[sin( U/2) ——'„'sin U+ —,', U cosU]
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generates an emission at the frequency co=3, the emis-
sion. power being

W3=(36&2/5)vr e exp( 2—/2'/p) . (6.112)

As in the above problem, higher terms of the expansion
(6.110) give contributions to W3 of the same order as
(6.112), but with smaller numerical coefficients.

2. Resonant case
In the resonant case l5Ql «1 (5Q:—Q —1), contribu-

tions to the emission power from higher terms of the
I

above-mentioned expansions in powers of p are imma-
terial. Due to the presence of the breather's internal fre-
quency cob, =cosp=1 —p /2, the efII'ective perturbation
(6.16) may generate resonant emission at two frequencies:
Q and 2mb, —Q, the corresponding radiation wave num-
bers being k =25Q' and k = —2(5Q'+p ), where, as
above, 5Q'=Q+a /8 [see Eq. (6.21)], and a is defined
by Eq. (6.18). The final expression for the emission
power (for the sake of simplicity, we set the dissipative
constant y =0, but generalization to yAO is straightfor-
ward) is (Malomed, 1987d, 1987e)

W=(era) I&28(5Q')(5Q') (p +25Q') csch (mv'5Q'/2/p)

+ —,', 8( —5Q' —p )V2l5Q'+p l[25Q'/(25Q'+p )] csch (m+IQ'+p I/2/p)J, (6.113)

where 8(z)=1 if z)0, and 8(z)=0 if z(0. Equation
(6.113) is valid provided l5Q'l «1, but the relation be-
tween the small quantities 5Q' and p may be arbitrary,
and, in contrast to the resonant-emission problem for a
kink, we do not need a «6Q'. Note that, unlike the
nonresonant expressions (6.108), (6.109), and (6.112), Eq.
(6.113) in general is not exponentially small in p.

For the time-dependent perturbation (1.21),
P =sin(Qt)sin(u/2), the low-frequency case p /2(Q
«1 is the resonant one due to the presence of cob, . The
resonant emission takes place at wave numbers
k =++2Q —p, the emission power being (here we again
set y=0)

W=(meQ/4) (2Q —p )
' sech (7r+2Q p. /2—p, )

(6.114)

(Malomed, 1987d, 1987e). As in Eq. (6.113), W in Eq.
(6.114) is not exponentially small in p.

Following the approach of Malomed (1987d, 1987e),
let us consider emission of radiation by a small-amplitude
breather under the action of the time™dependent external
field (1.21), P =f (t)sin(u/2), with random f (t) defined
according to Eq. (5.6). The total averaged emission
power is dominated by the resonant Fourier components
of the random field. As one can conclude from the
preceding subsection, for the perturbation (1.21) these are
the low-frequency components (Q((1). In the present
problem, it is convenient to calculate the spectral density
of the emission power defined with respect to the radia-
tion frequency: 'N(co)—:'K(k)(dk/der), where %V(k) is
defined in Eq. (6.5). Calculation of 'N(co) coincides, actu-
ally, with the calculation of the emission power (6.114),
with (co —1) playing the role of (Q —p /2):

The singularity of Eq. (6.115) at co —1 =0 will be
smoothed if one takes into account dissipation [cf. the re-
lation between Eqs. (6.13) and (6.12)]. However, the total
averaged emission power converges despite the singulari-
ty:

( W) = f ("Wc@))dco= —,', e p (6.116)

Note that the integral (6.116) is dominated by the reso-
nant spectral range (co —1)-p « 1; that is why ( W) is
not exponentially small in p [compare Eqs. (6.108),
(6.110), and (6.112) to Eqs. (6.113) and (6.114)]. If the
dissipative term —yu, is taken into account, Eq. (6.116)
remains valid provided y «p .

H. Radiative decay of a small-amplitude breather
interacting with a localized inhomogeneity

1. Weak perturbation

In this subsection we shall consider the dynamics of a
breather interacting with the localized inhomogeneity
(1.19), P =5(x)sinU, following the approach developed
by Malomed (1987d, 1987e). First of all, we must de-
scribe the breather s dynamics in the adiabatic approxi-
rnation. To that end, we employ the Hamiltonian for-
malism. The full Hamiltonian of the breather (2.63) in
the presence of the perturbation (1.19) can be readily
found in the first approximation [see also Eq. (S.53)]:

H =16sinp (1+V /2) —8ecot psin %cosh P

X(sin %+cot p, cosh P)

(6.117)

2

X +(co—1) sech (~&co—I /&2p) .
2

(6.115)

where P=gsinp (we assume V «1). Then the equa-
tions for the canonical variables (Zakharov et al. , 1980)
4 V, 16p, 4P, and —4 take the form

dt
=cosp+eS(tanp/cos p)sin 4 sech P, (6.118)
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dp
dt

= —(E/2)S tan p sin(2%)sech P,
d dV
dt ' dt

= V, =@Stan p. sin qitanhp,

(6.119)

(6.120)

where

S=(tan p sin qi sech p —1 )(tan p sin 4 sech /+1)
The motion of the small-amplitude breather (p «1)

described by Eqs. (6.118)—(6.120) may be naturally
represented as a slow perturbation-induced motion of its
center of mass on a background of fast internal vibra-
tions. The simplest way to describe the center-of-mass
motion is to average the Hamiltonian (6.117) with respect
to the internal vibrations:

(H) =16(p—p l6)+8p, V 4' s—ech (px) . (6.121)

Further, Eq. (6.121) yields the averaged correction
( b,cob, ) to the unperturbed frequency cob,

' =cosp = 1
—p /2 of the internal vibrations:

(bcob, ) = —(ep/2)sech (pg) . (6.122)

sech [pg(t)] =2E/I (4' +E)
—(4' —E)cos[(v'pE /2t) ] I .

(6.123)

Here E is the pinning energy (0 & E &E,„=4' );-
E =E,„corresponds to the ground state g( t) =0.

In this subsection we assume

We shall consider the case e&0 only, when, as can be
seen from Eq. (6.121), the inhomogeneity attracts the
breather. The Hamiltonian (6.117) brings us to the law of
motion

emission spectrum also contains the wave numbers
k„=n }/2' p—ep—, n =3,4, 5, . . . , the correspond-
ing emission powers being proportional to P" [in the case
n =2 we return to Eqs. (6.125}and (6.126}].

If one takes into account corrections -p, the addi-
tional emission takes place at the frequencies

co'„'=3+nv'pE/2, n =0, 1,2, 3, . . . . (6.127)

X[625+ —", (E .„—E)'/(E .„+E)'] . (6.128)

In contrast to the emission problems for a small-
amplitude breather considered in Sec. VI.G, here correc-
tions of higher orders in p yield relatively small contri-
butions to 8', on the other hand, in the present case the
nonresonant emission power is not exponentially small in

p [compare Eq. (6.128) with Eqs. (6.108), (6.110), and
(6.112)]. It is also possible to find the emission power
corresponding to the central line of the multiplet, i.e., to
the frequency (6.127) with n=0:

Wo '=(3v'2/16m )ep E[16K(p)+9E(p)] (6.129)

where P:(E,„E)/E—,„—, K(P) and E(P) are the
complete elliptic integrals. For the unsplit singlet (the
ground state E =E,„), both Eqs. (6.128) and (6.129)
yield the same Wo '=625(3i/2/16)e p . With an in-
crease inP, the total power (6.128) subsides monotonical-
ly. It is also interesting that at E—+0,

Wo '/W' '=(2048/1331m )Q E/E, „l n(E/E, „),
i.e., the central line of the multiplet becomes relatively
weaker.

It is possible to find the total emission power 8' ' for the
entire multiplet (6.122):

W' '=(3/16&2)F. p, &E

e ((Sp (6.124)

k =2&2ep p ep, — — (6.125)

and the emission power is

W' "= ( FP p ) k '[(k +5p l2) I(k +p ) ] (6.126)

[the superscript (1) indicates that the radiation frequency
co=+1+k is close to one; cf. W' ' below]. The emis-
sion considered exists provided k &0, i.e., according to
Eq. (6.125), p &(17+12&2)e . This inequality may be
regarded as compatible with Eq. (6.124). Due to the in-
harmonicity of the small oscillations [see Eq. (6.123)], the

to provide that perturbation-induced corrections to the
breather's shape are small ("weak perturbation"); the
case when the inequality (6.124) does not hold will be
considered in the following subsection.

The superposition of slow external oscillations (6.123)
and fast internal vibrations may result in resonantlike
emission of long-wave radiation. We shall consider only
the case of small oscillations: P:(E,„E)I— —
(E,„+E)«1. Then the radiation wave number [with
regard to Eq. (6.122)] is

2. Strong perturbation

u(x =+0)=u(x = —0),
u„(x = —0)—u (x =+0)=@sinu (x =0) .

(6.130)

Following along the lines of the asymptotic method
(Kosevich and Kovalev, 1974, 1975; Eleonskii et ai. ,

1984), we look for a solution to the SG equation with the
boundary conditions (6.130) in the form expanded in
powers of the small amplitude p,

u (x, t) = 2 (x)cos(cot)+8 (x)cos(3cot)+

where

(6.131)

Let us proceed to the opposite case from Eq. (6.124)
("strong perturbation;" Kivshar and Malomed, 1988b).
In this case, the shape of a small-amplitude breather is
essentially different from (2.60). Indeed, according to Eq.
(1.19), the shape is determined by the unperturbed SG
equation with the boundary conditions
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A (x)=pA, (x)+p A3(x)+. . .

B (x)=p B3(x)+ . (6.132)

Substituting Eqs. (6.131) and (6.132) into the unperturbed
SG equation yields in the first approximation the relation

co =+1 —p = 1 —p /2,
and the equation for A i(x):

d A, /d(px) —A, + —,'A, =0 .

(6.133)

(6.134)

(a)

The solution to Eq. (6.134) bounded at infinity is well
known:

A, (x)=4sech[p(x +xo)], (6.135)

where x o is an arbitrary constant. Substituting Eq.
(6.135) into Eqs. (6.131), and then Eq. (6.131) into the
boundary conditions (6.130), we obtain the solution in the
form (b)

u (x, t) =4p sech[p( lxl +xo )]cos(cot),

where xo is now determined by the relation

(6.136) -xO XO

tanh(px0 ) =e/2p . (6.137)

2

u (x, t) =4p sechz 1+ (2—sech z)
36

2

X cos(cot) — cos(3cot)sech z
12

In the next approximations, substituting Eqs. (6.131) and
(6.132) into the SG equation enables us to express the
functions A3(x), B3(x),. . . in terms of A&(x) (see Kose-
vich and Kovalev, 1974). However, in the approximation
-p, , we cannot satisfy the boundary condition (6.130),
since we have no more arbitrary parameters in the solu-
tion if we admit only functions vanishing at

l
x

l
~ m . It

is known (Kosevich and Kovalev, 1975) that, to resolve
this problem, one should supplement the solution (6.131)
and (6.132) by traveling waves escaping from the breath-
er. So, with accuracy up to the terms -p, the full solu-
tion takes the form

The energy Fb, of the breather can be easily calculated in
the approximation corresponding to Eqs. (6.136) and
(6.137):

Eb, =16(p—e/2) . (6.142)

One can find the rate of energy emission from the breath-
er in an approximation corresponding to Eqs.
(6.138)—(6.140):

JV—= dE„,/dt = —J—dx (u, u„), (6.143)

where the angular brackets stand for the time averaging.
The result is

FIG. 35. The shape of the breather (6.138)—(6.140): (a) e&0;
(b) e &0. The dashed line corresponds to the first approxima-
tion (6.136) and (6.137). The solid line is wavy due to the radia-
tion part of the wave field [the last term on the right-hand side
of Eq. (6.138)].

+ A cos(v'8lxl 3cot), (6.138)

where co is determined by Eq. (6.133),z—:p( lx l+xo ), and
PT — 2[ 2

( /2 )2]3
8v'Z

(6.144)

Ao= —
—,'ptanh(pxo)sech (pxo) . (6.139)

the radiation frequency being co =3.
Particularly, in the limiting case

Within the present accuracy, Eq. (6.137) for xo is re-

placed by

tanh(pxo)= I 1+p [ —",,' ——3(e/2p) ]I . (6.140)

p& l~l/2. (6.141)

The form of the "distorted" breather (6.138)—(6.140) for
the two cases e50 is depicted in Figs. 35(a) and 35(b).

One should keep in mind that Eq. (6.137) has no real
solution, i.e., the breather does not exist, unless

0 & v=p —e/2 «e/2
the breather (6.136) takes the form

u (x, t) =4v exp( —
pl xl )cos(cof t),

cuf =1—e /8,

and, according to Eqs. (6.142) and (6.143),

Eb, =16v, W=(3X625/8v'2)e v

(6.145)

(6.146)

(6.147)
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log tl
(~ log t&)

log t& log t

(e is real). Clearly, Eq. (6.149) conserves "the number of
plasmons" X= f+ ~u~ dx. When the soliton, moving
with velocity V, is scattered by an inhomogeneity de-
scribed by the function f (x), it will emit some of the
"plasmons" bound inside it. For a localized function
f (x), a general expression for the spectral density (2.43b)
of the emitted plasmon number has been calculated un-
der the condition V ))eq by Kivshar, Kosevich, and
Chubykalo (1987c, 1987d):

X f dx I dx'f(x)f(x')e'~' ""

FIG. 36. Evolution of a breather's frequency co—:cosp over a
large time scale under the action of radiative damping. The
characteristic values of the frequency are cof =cof,„,]=1—e /8
[this corresponds to the breather (6.146) with the zero ampli-
tude v=p e/2=0—]; cof —co,-e . It is assumed that the initial
frequency coo lies in 'the region ~e~ &&coo && l.

where

n I,",(X)=(~/V')P2(z)

V2
Xsech m A, — +g

16

(6.150)

(6.151)

i.e., the parameter v defined in Eq. (6.145) plays the role
of the breather's effective amplitude. The effective am-
plitude fades, according to Eqs. (6.147), as

P(A, )—:4[(A.+V/4) +tl ]/V . (6.152)

dv/dt = —(3X625/128'/2)e v (6.148)
1. An isolated inhomogeneity

As we see from Eq. (6.148), v fades as I/+e t, provid-
ed t))e

Now, combining the results of Sec. VI.F with those of
this section, we can depict in a general form (Fig. 36) the
perturbation-induced evolution of a breather interacting
with a localized inhomogeneity (Kivshar and Malomed,
1987d). In Fig. 36, where the breather's frequency is
shown as a function of time, t3 —e stands for a charac-
teristic time of evolution during which the breather s am-
plitude p falls to a level p-e, so that the perturbation be-
comes "strong" in the sense specified above; co, is a
characteristic internal frequency attained by the breather
ai t -t, .

I. Emission from a nonlinear Schrodinger soliton and
sine-Gordon breather scattered by local inhomogeneities

In this section we shall deal with a soliton described by
the conservatively perturbed NS equation

For an isolated inhomogeneity, f (x)=5(x), the spec-
tral density (6.150) reduces the form e n I,'z(A. ), where
n '„'d(A, ) is defined in Eq. (6.151). It is relevant to note
that, .in fact, the same problem can be formulated as the
emission of plasma waves from a small-amplitude breath-
er described by the perturbed SG equation

u« —u„+sinu =@5(x)sinu . (6.153)

Within the framework of this formulation of the prob-
lem, the spectral density 6'(k) of the emitted energy has
been calculated by Malomed (1987d) for two cases:
V «ep and p « V &1. In the former case,

6'(k)=v'8e/p, exp[ t/2/ep —(k +p )], (6.154)

and the total emitted energy is

E—:j 6'(k)dk

=t/m(32e p)' exp( —t 2p/e) .

In the latter case

iu, +u +2~u~ u = ef(x)u—(6.149) 6(k) = (1—V')8( —k)
V2

7As a matter of fact, the breather (6.146} is a well-known
inhomogeneity-pinned localized solution of the linearized SG
equation with the linearized perturbation (1.19). Excitation of a
localized mode of this type as a result of a kink-inhomogeneity
collision has been studied, in different contexts, by Nakamura
(1978), Yoshida and Sakuma (1978, 1982a, 1982b), Watanabe
and Toda (1981),Klinker and Latterborn (1983), and others.

Xsech [+(1+k )(1—V ) —1], (6.155)
2pV

and

4pe2+1 V2/V2 (6.156)

Since p is a small parameter, one can see from Eq. (6.155)
that the emitted energy is concentrated in a narrow spec-
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tral range of width Ak —p near the point
k = —V/t/I —V . It is evident that in the nonrelativis-
tic limit V ((1 Eq. (6.156) coincides with an analogous
expression ensuing from Eqs. (6.151) and (6.152).

Coming back to the formulation based upon Eq.
(6.149), it is convenient to describe the scattering by the
reAection coe%cient R, i.e., the relative number of
plasmons bound initially inside the soliton and eventually
emitted backwards. According to Kivshar, Kosevich,
and Chubykalo (1987c),

R =R =e'/V' q'«V' (6.157)

' 7/2

R =vrRO — e r2, a=4'/V, r)2» V2 . (6.158)

Note that Eq. (6.157) coincides with the reflection
coe%cient for the monochromatic wave described by the
linearized equation (6.149). The full dependence R (r)/V)
is shown in Fig. 37. Similar numerical and analytical re-
sults have been obtained by Li et al. (1988).

Using the conservation of the plasmon number and en-

ergy, Kivshar, Kosevich, and Chubykalo (1987c) have
found the changes in the amplitude and velocity of the
soliton due to radiative losses accompanying the scatter-
1ng.

In addition, scattering of a slow soliton ( V ((E7)) has
been considered, and a threshold velocity that admits ra-
diative capture of the slow soliton by the attractive inho-
mogeneity (e&0) has been found [Kivshar, Kosevich,
and Chubykalo, 1987c; cf. Eq. (6.67)]:

V„„,=&2ir(e/i)) ~ exp( —2i/i)/e) .

To conclude the discussion of this problem, let us con-
sider, within the framework of the SG equation, radiative
effects accompanying the collision of a moving small-
amplitude breather with the localized dissipative inhomo-
geneity described by the perturbing term —e5(x)u,
(e &0) (Malomed, 1987d). The expression for the spectral
density of the emitted energy valid in the case V ))p
difFers from Eq. (6.155) by the multiplier (1—V )

and by the fact that the multiplier 6I( —k) is absent, i.e.,
in this case the energy is emitted symmetrically to the left
and to the right. Accordingly, the total emitted energy is
2(1 —V )

' times that of Eq. (6.156).

2. A system of inhomogeneities

R ' =2RO 1+ . cos(2d)
smh 2ad

(6.159)

where Ro is defined in Eq. (6.157), and d =a V/2. In the
limit ad~0, Eq. (6.159) goes over into that for the
linearized Eq. (6.149). In the opposite case (i) » V ),

Let us proceed to the case when the function f (x) in

Eq. (6.149) describes two localized inhomogeneities,

f (x)=6(x)+5(x +a) (Kivshar, Kosevich, and Chu-
bykalo, 1987d). If the distance a between the two inho-
mogeneities is not large in comparison with the soliton's
width -g ', one can observe nonlinear interference in
the scattering process. Under the condition of weak non-
linearity g « V, the resultant reAection coe%cient
takes the form

( ) (I)
cos( —,'a d+y)

R ' '= 2R (i) / V) 1+
(1+ )i/4

(6.160)

where c =2ai) lvr, y =—,'tan 'c, and R (il/V) is defined in

Eq. (6.157). The dependence of R' ' on the quantityd:—aV/2 is shown in Fig. 38. Similar results have been
obtained by Li et al. (1988).

Kivshar, Kosevich, and Chubykalo (1987d) have also

(~)

Ij JLJ J
I

d a

2R

FIG. 37. Normalized refiection coefficient for the NS soliton vs
the parameter a—:4g/V. Ro" is the reQection coefficient for a
linear wave packet of the same spectral composition as the soli-
ton; a, =0.178.

FIG. 38. ReAection coefficient for the NS soliton as a function
of the quantity d =a V/2 in the case of two identical pointlike
impurities (it is assumed that cz:—4g/ V ))1}. R ' " is the
reAection coefficient for an isolated pointlike impurity.
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considered emission from the soliton scattered by a regu-
lar or random set that contains a finite number of the lo-
cal inhomogeneities.

J. Nonlinear Schrodinger soliton in a model
of a nonlinear fiber with dissipation and pumping

The investigation of conditions for propagation of soli-
tons in one-mode optical fibers is of significant current in-
terest (see, for example, Kodama, 1985a, 1985b, 1985c,
1985d). The essential circumstance is the presence of dis-
sipation, which causes damping of a soliton. To compen-
sate for dissipative efFects, it was proposed to use periodic
pumping in the spatial coordinate. In the simplest case, a
waveguide with dissipation and pumping is described by
the NS equation with the perturbation (Kodama and
Hasegawa, 1982)

u, iu ——2i~u~ u =yu —I+r g 5(t —nr)

(6.161)

where u (x, t) is the complex envelope of the electromag-
netic field, t and x have the sense of the spatial and time
variables (note the difference from the usual notation), y
is the dissipation constant, ~ is the spatial period of the
pumping, and we assume that the dissipation and pump-
ing may be regarded as smail perturbations, i.e., y~&&1
and y/g «1. The ratio of the coefficients in front of
the two terms on the right-hand side of Eq. (6.161) is
chosen so that it provides, in the first approximation with
respect to the two small parameters mentioned, full corn-
pensation of the dissipation for all values of the soliton

I

(6.162)

With regard to the inhuence of the dissipation, between
the pulses b (A. ) evolves according to

b(A, , t)=b(A, , O)exp( yt+4il, r) .— (6.163)

Proceedings from Eqs. (6.162) and (6.163), one can find
the amplitude b( A, r ) for 'a, n arbitrary value of t,
nr & i &(n +1)r, as the sum of an infinite geometrical
progression:

amplitude g and velocity V (Kodama and Hasegawa,
1982). At the same time, it is clear that, under the action
of the pumping pulses, a soliton generates radiation in
the form of small-amplitude electromagnetic waves,
which can be received as "noise" when using the fiber as
an optical communication line. In this section, following
the approach of Malomed (1986a, 1987a), we give an ex-
pression for a stationary level of radiation in the case of
one soliton propagating in the fiber, and we demonstrate
that the ratio of the number of light quanta scattered in
the form of radiation to the number bound inside the sol-
iton is y~/2, i.e., small due to the conditions adopted.
This means that an optical communication line operating
with solitonic pulses may be e%cient indeed.

Applying the general IST evolution equation (2.47) for
the radiation amplitudes to the perturbed system (6.16),
one can find an increment of the radiation field amplitude
b (A, ) generated by the soliton under the action of the nth
pumping pulse:

b.„b ( A, ) = —m.yr sech[sr( A, + V/4) /2g ]

X exp[ 4i (g—+ V /16+XV/2), nr] .

b(A, , t)= g [b,„b(A)]exp[( —y+4iA)(t (n ,
——m)~)]

m=0

my~ se—eh[a(A, + V/4)/2g][1 —exp( {
—y+4i [g +(I,+ V/4) ] jr)]

Xexp[( —y+4iA, )(t nr) 4i(g +—V /16—+ VA/2)nr] . (6.164)

Qf principal concern are the occupation numbers of the radiation modes (the spectral density of the number of light
quanta) JV(A, ) defined according to Eq. (2.43b). As follows from Eq. (6.164) with regard to the condition yr «1, in an
equilibrium state the occupation numbers take the stationary values

JV(A. )=(m/4)(yr) {sech [~(A,+ V/4)/2g] j/sin {2[g +(A, + V/4) ]rj, (6.165)

2[g +(A, + V/4) ]w=mq+P/2, (6.166)

where ~P~ &&ry and q is an integer, it follows from Eq.
(6.164) that

provided ~sin{2[v/+(A, + V/4) r] j ~
))y~. If this condi-

tion does not hold, i.e.,
quent pumping, i.e., with ~q )&1, is the most interesting
one. In this case Eqs. (6.165)—(6.167) describe a spectral
wave packet whose center lies at the point 1,= —V/4 and
whose width is ~A, + V/4~ —g. As can be seen from Eq.

JV(A)=n(yr) [(y,r) +. P ]
Xsech [n.'(/mq 2rri /(2riV2r)] . —(6.167)

The regime of the soliton s motion with sufficiently infre-

8As follows from the form of Eq. {6.161), it is convenient to
.follow the evolution of a wavetrain in the spatial coordinate t
instead of the temporal one x (Kodama and Hasegawa, 1982;
Kodama, 1985a, 19851).
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form Davydov solitons with sound in molecular chains
(Davydov, 1979). Other examples stem from geophysical
hydrodynamics, e.g., interaction of hf and lf gravity-wave
perturbations in an atmosphere (Stenfio, 1986}. The sim-
plest model of these interactions is the Zakharov system
(Zahkarov, 1972) [see also the survey papers of Shukla
(1983), Goldman (1984), and Pecseli (1985)]:

(6.169)

(6.170)

FIG. 39. The spectral composition of radiation (occupation
numbers of the normal radiation modes) for ihe steady regime
of motion of a soliton in the model (6.161) of a pumped-damped
nonlinear optical fiber: solid curve, the exact equations (6.166}
and (6.167); dashed curve, the averaged expression (6.168).

where u (x, t) is the complex envelope of the hf field and
n (x, t) is the real (acoustic) field.

The exact solitonic solution of the system (6.169) and
(6.170) is

u =(1—V )'~ 2irisech[2il(x —Vt)]

X exp [iVx /2+ i (4i) —V /4 )t],

where q and V are the soliton's amplitude and velocity
(V ( I). The system (6.169) and (6.170) also has exact
solutions describing free acoustic waves:

(6.166), inside the packet the spectral density n (A, ) has a
large number —~g of sharp maxima separated by the in-
tervals bA, -(ilr) '; the width of each maximum is
6k-y/q «AX due to the underlying condition y~&&1
(Fig. 39).

If one sums up the occupation numbers instead of sum-
nung the amplitudes [see Eq. (6.164}],one obtains the ex-
pression

JV(k)=—ir ' g ~b,„b(A, )~ exp( —2}rm)
m=0

=(ir/2)yr sech [( ir/2)(A, + V/ )4/v ]), (6.168)

which describes the smoothed spectral structure of the
wave packet (see the dashed curve in Fig. 39). When cal-
culating integral characteristics of the packet, for in-
stance, the total number of light quanta scattered in the
radiation field, X„d=—J + "JV(A, )d A., the smoothed spec-
tral density (6.168) yields the same results as the exact ex-
pressions (6.165)—(6.167). In particular, N„d =2yril.
Comparing this to the number X„&=4g of quanta bound
inside the soliton (Zakharov et al. , 1980), we conclude
that. in the stationary regime X„.d is indeed much smaller
than X„&.. %„d/X, &=yz/2«1.

u =0, n =n, =n(x—+r) . (6.172)

From the viewpoint of both plasma physics and molec-
ular chain theory, the interaction of a soliton with an
acoustic wave is of direct physical interest. According to
Shul'man (1981), the system (6.169) and (6.170) is nonin-
tegrable. Therefore the interaction is inelastic: the soli-
ton graduaHy decays into hf radiation. We shall study
this process in the situation in which it may be treated in
the framework of perturbation theory, i.e., when the
acoustic wave's amplitude 3 is sufficiently small:

(6.173)

(the subsonic regime). Following Malomed (1987f,
1988d), we shall investigate the decay in two situations
corresponding to physically diferent problems: interac-
tion of the soliton with a periodic monochromatic acous-
tic wave and with a random acoustic wave field.

Moreover, we shall assume, as is often admitted, that the
soliton's velocity V and the emitted wave's group velocity
V, are smaH as compared to the sound velocity, which is
equal to one in the present notation:

K. Radiative decay of an envelope soliton
Under the action of a soUnd wave

Envelope solitons originate in an interaction of high-
frequency (hf) waves with low-frequency (lf) acoustic-type
waves. Familiar examples are the Langmuir wave —ion-
acoustic wave interaction in plasmas (Zakharov, 1972)
and the interaction of intramolecular vibrations which

3. Decay of a soliton under the action
of a monochromatic acoustic wave

To apply perturbation theory to the system (6.169) and
(6.170), let us represent a general solution to Eq. (6.170),
which is linear in n (x, t}, in the form n =n, +n2, where a
general solution n, (x, t) to the homogeneous equation is
an acoustic wave field n„(x, t), and a particular solution
n 2 to the inhomogeneous equation may be represented as
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n, = —2lul'[1+0( V'}] . (6.175)

n = —2lul'-+n. , (6.176)

into Eq. (6.169), we arrive at the perturbed NS equation

Using the underlying condition (6.174), we may omit the
term V in Eq. (6.175) [the role of an additional perturba-
tion generated by that term in Eq. (6.177) below will be
discussed later]. Thus, inserting

center of the soliton (x=0) relative to the soliton's inter-
nal oscillations, and where, for definiteness, we set k) 0.
Inserting the perturbation from the right-hand side of
Eq. (6.177) into the general perturbation-induced evolu-
tion equation (2.47) for the radiation amplitudes B(i,, t),
and assuming the soliton to be quiescent, one obtains

dB
dt

=(im/8) Ak (A. +g ) 'sech[m(k+2K, )/4']

iu, +u, +2lul'u =n„(x, t)u . (6.177)
Xexp(iI[k —4(A, +vg')]+@ ]) . (6.179)

n„(x,t) = A cos(kt —kx +{I)o), (6.178)

where Po is a phase shift of acoustic oscillations in the

Now, with regard to the assumed condition (6.173), it is
natural to employ IST perturbation theory.

I.et us take the acoustic field (6.172) in the form of the
monochromatic wave

Using Eq. (6.179), we can find the emission intensity in
the same way as in Secs. IV.B and IV.C, where emission
problems described by a perturbed sine-Gordon equation
are dealt with. To that end, let us integrate Eq. (6.179),
the right-hand side of which should be multiplied by
exp(at) with an infinitely small a) 0. As above, this
trick implies adiabaticaHy turning on a perturbation that
was absent at t = —ao. Thus we get

B*(A,t)= —
, (m/8)Ak (A, +ri ) 'sech[~(k+2K)/4i)]I[k —4(A, +i) )]+iaI 'exp( iI[k ——4(A, +i) )]t+PoI ) .

(6.180)

Then, inserting Eq. (6.179) and (6.180) into the equation

(6.181)

where. JV(A, ) is the plasmon number spectral density
defined according to Eq. (2.43b), and making use of the
relation Hm 0(y+ia) =P(1/g) —in5(y—), where I' is
the symbol of the principal value, we find

d
JV(k) =

—,'(rtAk) sech [n.(k +2k, )/4']

i

i.e., the values A, &0 and A, )0 correspond to the waves
emitted to the right [with the intensity (dN/dt)+] and to
the left [with the intensity (dN/dt) ]. As can be seen
from Eq. (6.184), the intensity of the waves emitted for-
ward, relative to the sound velocity, is greater than that
of the waves emitted backwards. It follows from Eqs.
(6.185) and (6.186) that the underlying condition (6.174)
takes the form i) & k/4 « —,', .

Using the conservation of the total plasmon number,
we can find the soliton's decay rate dg/dt. Indeed, the
number of plasmons bound inside the soliton is X„&=4q
(Zakharov et al. , 1980), so that

X5[A, —(k/4 —i) )] .

The total plasmon number emission rate is

(6.182)
dg 1 dX
dt 4 dt

(6.187)

= f dA, A'(A, )=
dt — dt dt +

dN
dt

(6.183)
where dN/dt is defined by Eqs. (6, 183) and (6.184). Ac-
cording to the above condition g & k/4, it is natural to
distinguish between "heavy" solitons (i) —i/k ) and
"light" ones (i) «v'k ). We can estimate a characteris-
tic time 7 ) for the decay of a "heavy" soliton into a
"light" one, using Eqs. (6.187), (6.183), and (6.184):

Xsech (}/k —4' +k)
4g

(6.184)
(6.188)

2X =+&k 4q'. — (6.185)

The group velocity of the emitted hf envelope waves is

V, = —4A. , (6.186)

As can be seen from Eqs. (6.182)—(6.184), the emission
takes place provided k )ko:—4g, and it is concentrated
at two points of the spectrum,

As for the "light" soliton, Eq. (6.187) for it takes, with
regard to Eqs. (6.183) and (6.184), the form

dt
= ——'(irA /8) k exp[ —ir(v'k —k)/4i)]

(recall 0(k ((1). Integrating this equation gives the
eventual expression for the soliton's decay rate at the late
stage:
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g=m&k /41n(kA t) . (6.189)

Far from the soliton, the emitted hf envelope wave looks
like the monochromatic wave

infer that the delta functions in the expressions for the
spectral density of the emission rate are "smeared" as fol-
lows [cf. Eqs. (6.9) and (6.10)]:

u =a+exp[ —i (4A+t —2K+x)] . (6.190) 5(A —4A, )~m. 'y/[y +(fl —4A, ) ];
Equating the plasmon number Aux j+ = —4k+a+ carried
by the wave (6.190) to the emission rate (dX/dt)+ [see
Eqs. (6.183) and (6.184)], one can find a general expres-
sion for the amplitude of the emitted wave,

dX
dt +

(6.191)

As is well known, monochromatic traveling waves are
unstable in the framework of the full NS equation (Benja-
min and Feir, 1967). During the time r2-a+ they must
decay into secondary solitons with amplitudes -a+.
One may expect those secondary solitons to decay in turn
under the action of the acoustic wave, and so on, but we
shall not consider that stage of the process.

To conclude this subsection, let us consider the
influence of dissipation on emission of radiation by a soli-
ton under the action of a nondissipative perturbation. In
many cases, linear dissipation can be adequately account-
ed for by the combination of the two terms,

2. Decay of a soliton under the action
of a random acoustic wave field

We define a random acoustic wave field by the random
initial conditions n (x, t =0)=no(x), n, (x, t =0)=ma(x)
subject to the Gaussian correlations:

(no(x)) =0, (mo(x)) =0,
(no(x)no(x') ) =no5(x —x'),
(mo(x)mo(x')) =mo5(x —x'),
(no(x)mo(x') ) =0 .

(6.197)

this phenomenon may be called Lorenz broadening. Its
physical sense is that, due to dissipative absorption, the
emitted wave's amplitude decreases when moving away
from the soliton, hence the wave is not quite mono-
chromatic (this interpretation has been proposed by V. E.
Zakharov).

~diss = Vo+ +'Vl+xx& 'Vo + O& 'V l + O (6.192)

on the right-hand side of a perturbed NS equation [see
Eq. (1.8)]. In the absence of dissipation, the basic emis-
sion equation {2.47) may be written in the general form
[see, e.g. , Eq. (6.179)]

The parameters n o and Io will be assumed small:
mo «g, no «g . The random initial conditions give
rise to acoustic wave packets with both possible values of
the group velocities c l 2

=+I:

dB (A, )

dt
=ef (A. )exp[i(A —4A, )t], (6.193)

+
n„(x,t)= g I dq A (q)exp[i(c, qt —qx)] . (6.198)

j=l

dB (A, ) 2

dt
yB (A, )+ef (A—, )exp[i(Q —4A, )t], (6.194)

where y
—=yo+4g y, . Designating B (A, )e r'—=B(A, ), let us

rewrite Eq. (6.194) in the form

where Q is an emission frequency. The dissipative per-
turbation adds one more term to the right-hand side of
Eq. (6.193):

The correlations (6.197) result in the following correla-
tions for the spectral amplitudes A.{q):

(~,(q)) =0,
( ~, (q)& (q')) =( /2)( — /q )5(q —q'), (6.199)

(A, (q)A, (q'))=(A (q)A (q'))
dB *(A, )

dt
=ef'(A. )ei'exp[ i (0—4A, —)t] . (6.195) =(~/2)(no+mo/q )5(q —q') .

Multiplying Eq. (6.195) by the evident solution of this
equation,

B(k)=[i (0—4A, )+y] 'ef (A ) 'eep[x+i (A 4A2)t], —

we obtain

—' " IB(z)l'=Re " B(X)
2 dt dt

The expression for dB/dt analogous to Eq. (6.199) is

dB
dt

=(iver/4)(A+g

),
X I dq q sech[m. (q+2A, )/4g]

2

X g A ( ~)qe xpiI[c q
—4(A, +il )]tI .

=e'l f (A ) I'e"'y/[y'+(n —4y')'] . (6.196)

Coming back from B(A, ) to B(A, ) and comparing Eq.
(6.196) to nondissipative equations of the type (6.182), we

(6.200)

Integrating Eq. (6.200) in the same way as when proceed-
ing from Eq. (6.179) to (6.180), we get
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X I dq q sech[m(q +2k, )/4']
2

X g A~*(q)I[c q
—4(A, +vP)]+iaj

XexpI i [c—q
—4(A, +&I )]tI .

(6.201)

Finally, multiplying Eq. (6.200) by Eq. (6.201) and
averaging the product according to Eqs. (6.199), we find
the averaged emission rate spectral density:

=2 mReB*A, —

= 16m ( A, + r) ) [n o +m 0 /16( A, + i) ) ]

X g sech I(~/2g)[A, +2cJ(A. +q )]I .

(6.202)

Thus the emission induced by the random acoustic field
is described by the smooth spectral density (6.202). It is
necessary to remember that, as was mentioned above, the
results obtained with the framework of the perturbated
NS equation (6.177) are applicable to the underlying sys-
tem (6.169) and (6.170) provided A, « —,', . As can be seen
from Eq. (6.202), when g~ 1 the spectral density is
smeared over a broad spectral range A, ~ g, i.e., in this
case the transformation of the system (6.169) and (6.170)
into Eq. (6.177) is meaningless. If i1 « 1, Eq. (6.202) has
exponentially sharp maxima at the spectral points
A,
'"=—2c g, A,

' '= —c /2. The latter point lies out of
the range of applicability of Eq. (6.177), while in the vi-

cinity of the former point Eq. (6.202) takes the form

2

X g sech'[m(k+2c, i7')/2g] . (6.203)

does not hold.
Of course, one should bear in mind that Eq. (6.204) de-

scribes the soliton's decay induced by the long-wave com-
ponent of the random acoustic wave field [as can be seen
from Eqs. (6.201)—(6.203), the dominant range of the
acoustic wave numbers is ~q~ -g &&1]. A possible con-
tribution from a short-wave component is not covered by
Eq. (6.177).

Decay of the soliton under the action of a localized
acoustic wave packet has been studied by Malomed
(1987f, 1988d) too. In this case, the soliton loses only a
small share of the plasmons bound inside it. Radiative
decay of a Langmuir soliton under the action of other
perturbations, viz. , external electromagnetic waves and
nonlinear Landau damping, was also studied (Malomed,
1988d).

To conclude our discussion of the dynamics of solitons
described by the Zakharov system (6.169) and (6.170), it
is pertinent to note that perturbation theory based on the
proximity of the system to the exactly integrable NS
equations under the "subsonic" condition (6.114) can be
applied to other problems, e.g. , to an inelastic colhsion of
two solitons in the absence of free acoustic waves
(n„=0). In this case a small parameter of the perturba-
tion theory will be V [see Eq. (6.175)], and the perturba-
tion I' =n2(x, t)u will be nonlocal, since nz(x, t) is deter-
mined by the equation (n2)„=—2(~u~ )«(see also Gib-
bons, 1978). Following this approach, it is interesting to
consider, for example, the emission of acoustic waves by
colliding soliton's [such an effect was observed in numeri-
cal experimental by Degtyarev, Nakhan'kov, and Ru-
dakov (1974)]. Within the framework of perturbation
theory, explicit evaluation of the total emitted plasmon
number and its spectral density is possible provided the
amplitudes of the two colliding solitons are equal, i.e.,
g1=q2=g. , and their velocities V, = —V2 =—V lie in the
interval q « V «1 (cf. a similar problem concerning
the emission of radiation from colliding solitons con-
sidered in Sec. VII.B.2).

Using Eq. (6.209) and the conservation of the total
plasmon number, we can find the averaged soliton decay
rate [cf. Eq. (6.177)]:

= —2m (mo+16g no)g, (6.204)

i.e., at the late stage (when g « mo/4no) the soliton de-

cays according to the law g(t) =i)oexp( —2n m ot), which
is much faster than Eq. (6.189).

The important feature distinguishing Eq. (6.204) from
(6.187) is the absence of exponential smallness. The
reason is that, no matter how small the soliton's ampli-
tude g, there are long-wave components of the random
wave field with wave numbers q for which the
exponential-smallness condition g «q [see Eq. (6.184)]

L. "Cherenkov" emission from a soliton in a system
of two coupled sine-Gordon equations

q'xx q tt 'Ylq't S'nq'+f i ++'4x

a'y„y, aby, =—b'sing+—f,b+aq„„.
(6.205)

(6.206)

The parameters a and b ( —1) are equal, respectively, to
the ratios of the Swihart velocities and Josephson

A soliton described by a system of two coupled equa-
tions may demonstrate a specific type of emission, viz. ,
"Cherenkov" emission. As a physically important exam-

ple, let us consider a system of two weakly coupled per-
turbed SG equations, which describes a pair of two weak-

ly interacting parallel Josephson junctions, the distance
between the junctions being much larger than the Joseph-
son penetration length (Mineev, Mkrtchyan, and Shmidt,
1981):
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penetration lengths of the two junctions, while a « 1 is a
small coupling constant. Let us suppose, for definiteness,
a & 1. Then the equilibrium velocity of a fluxon moving
in the second junction,

V2=[a +(4yz/m. f2) ] (6.207)

[cf. Eq. (3.47)], may be larger than the Swihart velocity
(=1) of the first junction. In this case, the motion of the
fluxon will be accompanied by Cherenkov emission in the
first junction, generated by the "tachyonic" motion of the
fiuxon's image (4.178) in the first junction (Kivshar and
Malomed, 1988c). The corresponding energy emission
rate is

2m+ V
W( V2) =

( V2 —1)

7T [1 («2) ]
X sech

( V~ —1)
(6.208)

2' V2f2
=8y 2 V2 + W ( V2 ) . (6.209)

Equation (6.207) for the fiuxon's equilibrium velocity
must be corrected on account of the radiative energy
losses given by Eq. (6.208). The corrected energy balance
equation, which determines the equilibrium velocity,
takes the form

Inserting Eq. (6.208) into Eq. (6.209), we obtain the equa-
tion

y2 aV2

[1 (uV )2]1/2

ma [1 (a V )2]1/2
+ sech

b2( V2 1)2 2b ( V2 1)1/2

(6.210)

As is well known, the fluxon s equilibrium velocity is pro-
portional to the voltage across the junction, so that Eq.
(6.210) is, in fact, the I V(cu-rrent-voltage) characteristic
of a long Josephson junction with a trapped Auxon in the
presence of a weakly coupled corresponding junction
(Fig. 40). As Fig. 40 shows, the differential I Vcharac--
teristic df2/d V2, as a function of V2, may acquire two
extrema (local maximum and minimum) in the range
1 & V2 &a ' on account of the "Cherenkov correction, "
provided a is sufficiently large.

In principle, Cherenkov emission is also possible in a
system of two coupled KdV equations, provided the signs
of the solitons' velocities in the two subsystems are oppo-
site, and in a system of coupled NS equations, provided
the signs in front of the linear dispersion terms are oppo-
site.

M. Radiative instability of a Korteweg —de Vries soliton
pinned by a moving dipole

In Sec. III.A.2 we demonstrated that a moving point-
like dipole described by the perturbing term e5'(x —Vt)
in the KdV equation [see Eq. (3.9)], with e negative and V
positive, may trap a soliton with the amplitude
a=i V/2. The trapped (pinned) state is stable in the
adiabatic approximation. Here we shall show, following
Malomed (1988b), that this state is subject to a radiative
instability. The instability is possible because the energy

F. =I ( —,'u +u + —,
' Vu )dx +au, (6.211)

oo x =Vt

conserved by Eq. (3.9), is not positive definite. A gen-
eral solution to the soliton's adiabatic equations of
motion (3.12) and (3.13), which describes oscillations of
the pinned soliton, can be written in the following ap-
proximate form:

sinhg=v '( —
—,'eV —v )' sin(vt), (6.212)

FICx. 40. The I-V (current-voltage) one-Auxon characteristic
(6.210) of the model (6.205) and (6.206) of two weakly coupled
long Josephson junctions. The dashed line depicts the usual
one-fiuxon I Vcharacteristi-c [Eq. (3.47)] of a long Josephson
junction in the absence of a coupled junction.

where v is the frequency taking the values 0&v~v, „=i/ —e/2V / [here v=v, „and v=0 correspond, re-
spectively, to small oscillations near the equilibrium posi-
tion (3.14) and to the separatrix (3.14')]. The value of the
energy (6.211) corresponding to the solution (6.212) is

9Equation (3.9) can be represented in the explicitly Hamiltoni-
an form u, =(B/By)(5E/5u), y

—=x —Vt.
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E(v)= V ' v (6.213)

On the other hand, calculation of the rate 8' of energy
emission from the oscillating soliton yields the result ak-(l Vlr)-' . (6.219)

lision) the spectrum's width exhibits a power smallness
only:

W(v)=(8&-2e'V ) (
—ev —2v )

X ( F V3/2+ 6v2)

The energy balance equation is

dE(v)
( )

dt

(6.214)

(6.215)

The drastic distinction between Eqs. (6.218) and (6.219) is
stipulated by the phase shift b,g=4tan '(2a. /Vl Vl) of
the emitted wave (6.217) induced by the collision of the
emitting dipole with the soliton.

N. Decay of a Korteweg-de Vries soliton
into a shelf under the action of a dissipative perturbation

where v,„ is defined above. The solution (6.216) implies
that the soliton is at rest [in the position (3.14)] at
t = —ao, remains in an oscillatory state at t &0, and be-
comes free at t=O. If one takes an initial state with a
small oscillation amplitude Ao—=(v,„—vo)'~ v,'„&&1
(vo is an initial value of v), the pinned soliton will escape
during the finite time t =2lel '1nAO '. lt also follows
from Eq. (6.216) that, in terms of the phase plane shown
in Fig. l, the center corresponding to the equilibrium po-
sition (3.14) turns into a slightly unstable focus with the
imaginary part of the eigenfrequency Q(ReQ =v,„),
ImQ=@/4&0. However, one should bear in mind that,
if the Burgers dissipative term yu„(with y )0) is added
to the right-hand side of Eq. (3.19), the eigenfrequency
will acquire the additional imaginary part —,y V)0, so
that the pinned state of the soliton may be genuinely
~table if

I ~l & y V.
To conclude this section, it is relevant to mention a

somewhat surprising result obtained by Malomed (1988b)
for the case V& 0, when the moving dipole emits a quasi-
linear wave

u = A cos(8k r +2kx) (6.217)

with the wave number 2k =v' —V and amplitude
A =—', e

l Vl
' [the phase velocity —4k of the emitted

wave (6.217) coincides with the dipole s velocity V]. If a
soliton (2.18) with an amplitude ~ collides with the emit-

ting dipole, the monochromatic emission spectrum ac-
quires some finite width hk. If we designate t=O the mo-
ment of collision, i.e., the moment when the pointlike di-
pole overlaps with the soliton's center, the width hk of
the collision-induced spectrum is exponentially small at
t~ —~ (i.e., long before the collision), in accordance
with the fact that the soliton's wave form decays ex-
ponentially at large distances:

Ak -exp[ —2~(4~ —V)t] . (6.218)

On the other hand, at t~+ oo (i.e., long after the col-

Inserting Eqs. (6.213) and (6.214) into Eq. (6.215), one
can solve the resultant evolution equation for the param-
eter v. The eventual expression for v(t) can be represent-
ed in the form

,'et =in—[(v,„+v)/(v, „—v)]+2&3tan '(&3v/v, „),
(6.216)

The KdV equation was derived first to describe the
evolution of disturbances in a shallow liquid layer. If the
layer's depth is nonuniform, one encounters the KdV
equation with an eA'ective dissipative perturbation EQ,
where e is proportional to a small gradient of the layer's
depth [e)0 corresponds to a growing depth; see details
in Knickerbocker and Newell (1985)]. Application of the
standard formulas of the adiabatic approximation for the
KdV soliton to the present perturbation yields the well-
known evolution equation for the amplitude K of the soli-
ton,

dK —GK
di 3 (6.220)

At the same time, the present perturbed KdV equation
gives rise to the following exact evolution equation for
the "mass" M = f + "u (x)dx:

dM = —eM .
dt

(6.221)

Since the soliton's mass M„&=—4K, the two equations
(6.220) and (6.221) are in evident contradiction. The
problem is resolved if one takes into account the mass of
the radiative component of the wave field. That com-
ponent is generated (emitted) by the soliton under the ac-
tion of the perturbation. The problem of generation of
the shelf has been considered, on the basis of IST pertur-
bation theory, by Kaup and Newell (1978a) and Newell
(1980). According to those works, the structure of the
shelf can be described directly with the use of the basic
perturbation-induced evolution equation (2.24) for the
spectral amplitude b (k) of the radiation wave field. Om-
itting immaterial details, the form of the shelf at the
times vo « t « l el

' (where i~o is the initial soliton am-
plitude) is very simple: in the region 0 & x & I ( t)

fO4v (—r)dr the wave field is approximately uniform,
u = —(e/3)v(t), while outside this region u (x) may be
set equal to zero. Here x=0 is the initial coordinate of
the soliton, I (t) is the distance traveled by the soliton up
to the moment r, and v(t) evolves in time according to
Eq. (6.220). It is obvious that the described structure of
the shelf is in accordance with Eq. (6.221). When @&0,
the shelf will decay into secondary solitons at larger
times r ~

l el '. That problem is discussed in more detail
in Sec. VIII.C.

The problem of a perturbation-induced shelf genera-
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tion by a soliton arises also in the framework of the KdV
equation (3.8) with variable coefficients. As we have
demonstrated in Sec. III.A. 1, following the paper by
Karpman and Maslov (1982), that equation can be
transformed into the standard perturbed form (3.8') so
that the problem can be attacked as explained above.
Another approach to the formation of the shelf, based on
the method of matched asymptotic expansions (without
resorting to IST perturbation theory), has been developed
for Eq. (3.8) by Ko and Kuehl (1978). The same ap-
proach for a modified KdV equation with variable
coef5cients has also been developed by Ko and Kuehl
(1980).

VII. MANY-SOLITON RADIATIVE EFFECTS

during the collision of two SG kinks amounts to addi-
tional phase shifts. Nontrivial e6'ects arise if one takes
into account emission of radiation accompanying the
two-kink collision. In this section we shall consider this
problem for the perturbation (1.25), and an analogous
problem (radiative effects in a two-soliton collision) for
the NS equation with the perturbation (1.7a). Results on
these problems have been obtained by the authors (Kiv-
shar and Malomed, 1986a, 1986c, 1987a). It is relevant
to note that, in relation to applications to nonlinear op-
tics, the latter problem was solved numerically by Cowan
et al. (1986); unfortunately, detailed comparison between
those numerical results and our analytical results is not
possible since the numerical results were presented by
Cowan et al. (1986) in the form of pictures only.

A. Preiiminary remarks

In the study of radiative e8'ects accompanying two-
and many-soliton interactions, one comes across prob-
lems of two types: emission of quasilinear waves and pro-
duction of new (secondary) solitons. As in the one-
soliton case, problems of the first type are solvable by
means of IST perturbation theory or other versions of
perturbation theory for solitons, while problems of the
second type are not amenable to solving by analytical
methods. The reason is the same as in the one-soliton sit-
uation (see Sec. VIII). Therefore, as in that situation,
production of new solitons in many-soliton problems
should be studied numerically. For instance, one may ex-
pect that a kink-antikink collision in a SG system with a
small Hamiltonian perturbation may give rise to the
emission of small-amplitude breathers [conversion of a
kink-antikink pair into a pair of breathers has been ob-
served in numerical experiments performed by Campbell
et al. (1986) for the double SG equation].

1. Sine-Gordon kinks

In this subsection we shall be concerned with the case
in which the relative velocity V of the colliding kinks is
sufficiently close to the maximum velocity V,„=1,i.e.,
v=(1 —V )

'~ &) l. It is natural to assume as above
(see Sec. VI) that radiation is absent prior to the collision,
i.e., b(l, , t = —ao )=0. Then the spectral density of the
emitted energy A'(k) can be calculated as in the one-
soliton case (see Sec. IV.A). Calculations are facilitated
by the fact that, due to v)) 1, we may (as in Sec.
IV.B.l.a) take the field potential in the form (4.46a), i.e.,
as the sum of the potentials of solitary kinks. Using this
"split potential, " one obtains [recall that we are dealing
with the perturbation (1.25)]

B. Energy emission from colliding solitons (7.1)

As we have already mentioned in Sec. IV.B, the only
adiabatic efII'ect generated by a conservative perturbation where A, = —,'(k ++I+@ ) [see Eq. (2.54)], and

~Q(A, )~ sinh [(~/2v)(A, —o,o2/4A, )]
J(A, )—=

A, (A, +v ) (1, +1/16v ) sinh (m.A, /v)sinh (m/4Av)

Q (lt, )—:A,
' /4 —1 liA, v/12 —

A, v i Av/3 ——5A, ,v /4+7ilv/12+5, A, v /16 —iA, v /48

+A, v /64 —11:Xv/(3X2' )
—2

(7.2)

(7.3)

Note that J(A, ) possesses the symmetry property

J(A, ) =J(l/4k) . (7.4)

As can be seen from Eq. (7.4), with regard to Eq. (2.54),
the density 6'(k) possesses the symmetry property
6'(k) = 8( —k), i.e., equal portions of energy are radiated
to the left and to the right.

The dependence 6(k) is plotted in Figs. 41(a) and 41(b)
for the cases o.&o 2= —1 and o.&o.2= + 1, corresponding,

respectively, to the unlike and like polarities of the collid-
ing kinks. The maxima of the spectral density lie at the
two symmetric points (see Fig. 41) k =+k,„—+v. The
maximum value of 8(k) is the same for both cases (a) and
(b): C,„=8(+k,„)-ev . In the case o,cr2= —1 the
value 60—:8( k = 0) is, according to Eqs. (7.2)—(7.4),
Bo-e2v, while in the case o,o2=+1, 80=0 [Fig.
41(b)]. The function 8(k) falls exponentially at k »v:
8-exp( —m~k~/v), while in the range 1&(k ((v it has
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(o) which provides that the total emitted momentum is zero.

max 2. Nonlinear Schrodinger solitons

—
Kmox Kmax

(b)

We shall consider only the case in which the ampli-
tudes g of the two colliding solitons are equal [cf. Eq.
(4.83)]. We shall also assume the solitons' velocities +4/
in the center-of-miss reference frame to be large, g» il,
i.e., as usual, the two-soliton Jost functions and the wave
potential split into "one-particle" expressions. Assuming
radiation to be originally absent, one can calculate the to-
tal spectral density of the energy emitted during the col-
lision [recall that the radiation wave number is k =2k, ,
and that we are dealing with the perturbation (1.7a)]:

max 2 2

-Kmax Kmax
(7.9)

FICi. 41. The spectral density of the energy emitted by colliding
SG kinks in the presence of the perturbation {1.25): {a) a kink-
antikink pair; {b) a kink-kink pair.

F(z) =(rr/15)Q (z)(z i) s—ech(vrz/2),

G(z)—:(2~ /9)(g/g) exp( —mg/g)Q(z)(z +1)
(7.10a)

a power asymptotic form 8-e k' /v' . The total emit-
ted energy E, can be found from Eqs. (7.1)—(7.4):

E, —= J 6(k)dk =Ei o io 2E—
where

Ei=e v A+O(e v ),
E2=a v B +O(e v ),

(7.6)

(7.7)

(7.8)

According to Eq. (7.4), the momentum density (7.8)
possesses the obvious symmetry property

P(k) = —P( —k),

and the constants A and B are defined as some integrals
equal approximately to A =8.78, B = 1.10.

An interesting property of Eqs. (7.5)—(7.7) is that, in
the erst nonvanishing approximation in v ', the total
emitted energy does not depend on the relative polarity
o.&o.2 of the two kinks. This is somewhat similar to the
famous Pomeranchuk theorem asserting the asymptotic
equality of total sections for scattering of particles on
particles and particles on antiparticles (Schweber, 1961).

Finally, the momentum density P(k) of the emitted
wave field can also be found with the aid of Eq. (2.70b):

Xsech(mz/2),

Q (z)—:49z +156z +45 4iz(z —+9) .

(7.10b)

(7.10c)

The parameter b,P=P, —
P2 in Eq. (7.9) is the phase

difFerence between the two solitons at the moment of col-
lision. As can be seen from Eqs. (7.9) and (7.10), the radi-
ation spectral density maxima lie at the points
A, =+A, ,„=+/+0(g), the maximum value being

(7.1 1)

The radiation energy is concentrated in the spectral
range —g in the vicinity of the points A, =+A, „
=+/+0(il). Outside this range, the spectral density
falls exponentially as exp[ —(ri /g) ~/+A,

~ ]. Note that Eq.
(7.9) is symmetric with respect to changing the sign of A, ,
which evidently reAects the symmetry between the left
and right directions in the present problem. A general
form of the emitted energy spectral density described by
Eqs. (7.9)—(7.11) is shown in Fig. 42.

The term in curly brackets in Eq. (7.9) which depends
on b,P is exponentially small compared to the first two
terms, which are independent of b,P. In Eq. (7.9) we have
neglected terms containing faster dependencies on b,P,
since they are exponentially small in comparison with
those taken into account. As we see, at g~ ~ the emit-
ted energy does not depend on the parameter hP. This
inference is even stronger than the above "Pomeranchuk
theorem" for the SG kinks: while their relative polarity

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



Y. S. Kivivshar and B. A. Malomed: Solitons in nearly integrable systems

solitons driven by the perturbations (3.24) or (3.26) [see
Eqs. 3.25) and (3.25')]. It has been demonstrated that,
while a single soliton persists in the presence of those dis-
sipative perturbations (Malomed, 1988d), collision-
induced losses result in complete decay of a rarefied gas
of solitons into radiation.

C. Fusion of a kink-antikink pair into a breather

FICy. 42. T. 42. The spectral density of the energy emitted by colliding

(1.7a).
NS solitons (with V))g) under the action of th t bo e per ur at&on

o is the sign parameter assuming only two values +1, AP
is a continuous parameter.

The total emitted energy E, is determined by the for-
mula (2 45a).

E, —:I A'(A, )dA,

= Ae g +E g g e ~ "(8, cosbP+B2 sink/) .

(7.12)

Here 3 8 and 8d 82 are numencal constants determined
by some integral representations; cf. Eq. (7.5). Their a-
proximate values are 2 =690.5, B,=1200.5, 82=173.3.
It iis interesting to note that, as can be seen from E .

, E, does not vanish at g~ ~. In this respect, the
NS equation difFers from the sine-Gordon equation, in
which the total emitted energy falls to zero with the
growth of the relative velocity [see Eqs. (7.5)—(7.7)].

The spectral density of the emitted wave momentum,
according to Eq. (2.46a), is P(A, ) = —(2A, ) '6(A, ), and the
spectral density of the emitted charge ("number of parti-
cles") is JV(A, )=(2A, ) B(A, ), according to Eq. (2.43b).
The totaltal emitted momentum is, clearly, zero, and the to-
tal emitted charge is X, =E, /4g .

The fact that the emitted radiation consists of two
wave packets traveling with mean group velocities

g,
=——4A, close to the solitons' velocities +4/ is a conse-

quence of the underlying assumption g))g. Using this
assumption, one can arrive at a f 11

(Malomed, 1989c): In the first approximation, the net
charges X+ of a soliton and a radiative wave packet trav-
eling to the right, and of those traveling to the left, are
conserved separately, although, of course, only their sum
is an exact integral of motion. This fact makes it possible
to calculate collision-induced losses of the solitons' am-

p itudes, 5 = ——'', Xd, g+= —
—,(%, )+, even in the case when the

collision is not symmetr'ic (for instance, if the solitons'
amplitudes are difFerent). Going this way, Malomed
(1989c) lilvestlgated radiative losse ll f

(7.13)

where the constant a=2.224. As to ths o e spectra compo-
sition of the emitted radiation, the energy is concentrated
in t e range of the radiation wave numbers lkl ~1. The
collision of two kinks, in contrast with a kink-antikink
collision, cannot result in fusion. It h b das een emonstrat-
ed by Malomed {1985)that in the case of a small relative
velocity 8' the total energy emitted by two colliding uni-
polar kinks is exponentially small in m.

The collision-induced emission and the related fusion
problem were extensively studied numerically by
Ablowitz, Kruskal, and Ladik (1979), Peyrard and Re-
moissenet (1982), Campbell et al. (1983), Peyrard and

ampbell {1983),Campbell and Peyrard (1986) C b 11amp e
e a . (1986), and Belova and Kudryavtsev (1988) within
the framework of nonintegrable models. An important
example is the so-called y model,

(7.14)

this equation admits an exact kinklike one-soliton solu-
tion). Campbell et al. (1983) [see also Belova and Ku-
dryavtsev (1988)] have determined several threshold ve-

collision results in annihilation (fusion) if the relative
velocity 8' lies inside any of th

2 2 2 2 2
o e intervals

are nondestructive. Campbell and Peyrard (1986) have
developed a semianalytical approach that enables them
to explain the existence of the "windows" (that approach
is not related to IST perturbation theory). Similar nu-
merical results have been obtained by Peyrard and Re-
moissenet (1982), Peyrard and Campbell (1983), and
Campbell et al. (1986) for a strongly perturbed SG equa-
tion. In the papers mentioned, a semianalytical approach

Collision of a kink with an antikink described by a
conservatively perturbed SG equation may result in
fusion of the kink-antikink pair into a breather. This

P
process was iscovered in the numerical experiment fenso

eyrard and Campbell (1983). Independently, the prob-
lem was considered by Malomed (1985) within the frame-
work of the perturbed SG equation with the term (1.25).
The analytical calculations involved are extremely pon-
derous; therefore we shall give here onl fi I 1

e basic characteristic of the process is the maximum
(threshold) relative velocity W of the 11'd',h, o e co i ing kinks
which permits the fusion. It can be presented in the form

W,„,=(ae) +O(e ),

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



Y. S. Kivshar and B. A. Malomed: Solitons in nearly integrable systems

to an explanation of those results has been developed too.
Since the SG equation with the perturbation (1.25) and

Eq. (7.14) are time reversible, it is clear that, in principle,
the inverse process is possible: a weakly bound (approxi-
mate) breather may decay into a kink-antikink pair under
the action of incident radiation. For the SG equation
with the perturbation (1.25), this process has been studied
in detail by Malomed (1985).

8 sinhx
u =4tan

cosh+
(7.19)

where

by Newell (1978a, 1978b), the 4' kink can also exist in an
excited state, when the internal 2m. kinks oscillate relative
to each other:

D. Radiative effects in fluxon-antifluxon collisions
in long Josephson junctions

y =a &2/csin( &et ),
8'= Ve/2+a cos(&et),

(7.20a)

(7.20b)

A standard model of a dc-driven damped long Joseph-
son junction (see Barone and Paterno, 1982; Likharev,
1985) is

u„—u +sinu = f —y—u, . (7.15)

Recall that the equilibrium velocity Vo of a fluxon (kink)
described by Eq. (7.15) is given by Eq. (3.47). Emission of
energy in the Auxon-antiQuxon collision has been studied
by Kivshar and Malomed (1986d, 1986e). In the "ul-
trarelativistic" limit f ))y, when, according to Eq.
(3.47), 1 —Vo « 1, the spectral density of the emitted en-

ergy takes the "self-similar" form

and where a is a small amplitude of the internal oscilla-
tions [Eqs. (7.20) are valid provided a «e]. The excited
4m kink [Eqs. (7.19) and (7.20)] is sometimes called a
wobbler (Bullough et a/. , 1980). Equation (7.19) is writ-
ten in the wobbler's rest frame of reference ( V=O).
Since the double SG equation is not exactly integrable, it
is clear that Eqs. (7.19) and (7.20), unlike (7.18), may pro-
vide an approximate solution only. In fact, the wobbler's
internal oscillations slowly fade due to emission of radia-
tion.

The combination of the Jost functions which should be
inserted into the general formulas (6.1) and (6.2) takes the
following form for the wobbler (7.19):

C(k) =y4f 'F (ky If ) . (7.16) I[qj' '*(x t A, )] —[4""*(x,t;A, )]2I

The dependence (7.16) coincides qualitatively with that
shown in Fig. 41(a). In particular, k,„-fIy,

,„-y If, @0-y /f . The total emitted energy is

E, =(4/rc) Dy If+0(y If ), (7.17)

where D =0.568. It is interesting to note that both per-
turbing terms on the right-hand side of Eq. (7.15) give
contributions of the same order to Eq. (7.17).

In a homogeneous long Josephson junction, the
collision-induced radiative losses are always much small-
er than the direct dissipative losses, so that radiation-
dominated Auxon-antiAuxon annihilation is not possible.
Kivshar and Malomed (1986f) have studied in detail radi-
ative efFects accompanying a Auxon-antiAuxon collision
in an inhomogeneous long Josephson junction, demon-
strating, in particular, that radiation-dominated annihila-
tion is possible if the inhomogeneity is sufticiently strong.

exp[ —ik (A, )x]

sinh x+—cosh y
~ 2 2 2

X sinh x +—cosh y
2 2 A+i/2

A. —i/2

4

Using this expression, we find that, in the first approxi-
mation, the emission spectrum consists of discrete lines
corresponding to the emission frequencies

32e (co —1)

co =&
I@no+2m+1+ —,'[1+(—1) ']I,

where no=[1/&e], m =0, 1,2, . . . , and [ ] stands for
the integer part. For the mth spectral line the emission
power is (assuming e «a «+e)

E. Emission from a wobbler co cosh —(co —1)'i

As is weH known, the double SG equation, i.e., that
with the perturbation (1.21), f (t) =1, is not exactly in-
tegrable. Nevertheless, it has an exact one-soliton solu-
tion (a 4nkink), which in. the case 0 & e « 1 has the form
(Bullough et al. , 1980)

u =4 tan '(&e/2 sinhz),

z = (x —Vt) /(1 —V )
'c (7.18)

This may be interpreted as a bound state of two sine-
Gordon 2~ kinks (Newell, 1978b). As was demonstrated

(7.21)

(Kivshar and Malomed, 1987b). Since we assume a /e to
be a small parameter, Eq. (7.21) is exponentially small
( -exp[ —(2/+e) ln(a /v'e)]) in +e. For the same
reason, the total emission power g 8' is dominated by
8'0. Using energy conservation, we can write an equa-
tion to determine the fade rate of the wobbler's small os-
ciHations. Indeed, the energy E„,of the wobbler's inter-
nal oscillations can be easily calculated to be a, i.e.,
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d 2 3 «o2

(a )=—Wo ——e —1
dt 2

2/i p

(7.22)

As can be seen from Eq. (7.22), the small internal oscilla-
tions of the wobbler fade very slowly, which accords with
the numerical observations of Bullough et al. (1980).

Now let us consider, following Malomed (1987h), the
radiative damping of large-amplitude internal oscilla-
tions, a ))&e. The two constituent 2' kinks inside the
wobbler, separated by a large distance g, may be con-
sidered as relativistic particles with masses I =8 in-
teracting via the attractive potential

U(g) =2eg . (7.23)

The oscillation frequency co is related to the amplitude a,
i.e., the maximum distance between the oscillating 2~
kinks, as

co=m&e/v a(8+ca) . (7.24)

The radiative energy losses are dominated by the relative-
ly short stage of the oscillation period 2m. /co when the
two kinks are strongly overlapped. At that stage, we
may regard the 2m kinks as free, moving with velocities
+V determined by the energy balance, 16/+1 —V
=2ea; see Eq. (7.23). Calculations analogous to those
that yielded the results set forth in Sec. VII.B give the
following expression for the spectral density of the ener-

gy emitted during the collision between the two 2m kinks:

processes. First, the collision of two solitons belonging
to the same subsystem can result in generation of radia-
tion in a second subsystem where solitons are absent.
Second, interaction of solitons belonging to difFerent sub-
systems can result in emission of radiation in both sub-
systems. Moreover, under certain conditions uniform
motion of one soliton may be accompanied by
Cherenkov-type emission in another subsystem (see Sec.
VI.I.).

1. Coupled Korteweg —de Vries equations

Leapfrogging motion of solitons in the pair of coupled
KdV equations (1.3) and (1.4), investigated in Sec.
IV.C.1, is accompanied by the emission of radiation.
This efFect was revealed numerically by Gear and
Grimshaw (1984) and Gear (1985). Within the frame-
work of IST perturbation theory the efFect has been in-
vestigated by Malomed (1989d) and Kivshar and
Malomed (1989d), whose analysis is based on
perturbation-induced evolution equations for the ampli-
tudes 8 (k, t) of the radiation part of the wave field in the
two subsystems (j =1,2). The amplitudes 81(k, t) are re-
lated to the standard Jost coefficients b (k, t) defined in
Sec. II.B as follows: 8 (k, t)=bj(k, t) exp(8ik t). The
evolution equation for the case of equal soliton ampli-
tudes is

~4 '~
&

—8 'k~[e3+ —,', (e, + ez) ]g(t)e

16me (1—V )k

[1+k (1—V )]
(7.25) +O(g, (i~, —~~) ), (7.28)

provided 1 —V «1, i.e., ea ))4 [in this case co=a/a;
see Eq. (7.33)]. Integration of Eq. (7.25) yields the total
emitted energy

E, =2f 6(k)dk =167rCe /+I —V, (7.26)

where C—:si(m ) —mci(vr) =0.06. Using Eqs. (7.24)—(7.26)
and energy conservation, we can find the law of radiative
damping for the wobbler's large-amplitude oscillations:

da/dt = —nCe (7.27)

F. Radiative effects in systems of coupled equations

The same expressions (7.23)—(7.27) pertain to radiative-
ly damped large-amplitude internal oscillations of a
breather described by the double SG equation, i.e., a
bound state of the 2' kink and 2' antikink [the dynamics
of this breather have been studied in the adiabatic ap-
proximation by Kosevich and Kivshar (1982)].

Finally, Eqs. (7.25) and (7.26) multiplied by four give
the radiative energy losses during a collision of two unex-
cited wobblers (4rr kinks) moving with the velocities +V.

where g—=ir(zi —z2) is the dimensionless distance be-
tween the centers of the two solitons (see Sec. IV.C.1),
and where it is assumed that we are considering small os-
cillations, i.e., g «1. The evolution equation for j=2
can be written analogously. Our aim is to find the emis-
sion power, i.e., the energy emission rate. According to
Eq. (2.22b), for l8 l

«1 the spectral density of the radi-
ation energy can be cast in the form

8, (k) =(16/~)k'18, (k) I' . (7.29)

Using Eqs. (7.29) and (7.28), we can calculate the spec-
tral density of the emission power,

'N, (k) = 6', (k)
dt

d8, (k)
=(32/m )k"Re 8 i (k) (7.30)

To do this, we shall follow the approach of Sec. VI.A.
Inserting Eq. (7.28) into Eq. (7.30), we assume that the
solitons perform small oscillations,

/=a sin(coot),

Interaction of solitons in coupled systems of nearly in-
tegrable equations gives rise to new types of radiative

where a « 1, and where coo is determined by Eq. (4.137).
Eventually, we find
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'N, (k)=( —,', akcoo) [@3+—,'0(e, +ez)] 5 k —
z

(7.31)

plasmons emitted in both subsystems [recall that we are
considering a collision of two solitons with equal ampli-
tudes zl and velocities + V (Kivshar and Malomed,
1986c)]:

According to Eq. (7.31), the total emission power is

W, =I lV, (k)dk

16=—( —,",, )3(e,+ez+ 10@3)

X(e&+e'z+ —,'e3)a a (1+13a) . (7.32)

22 2

JV)(A, ; V, il) =
V [(A,—V/4) +zl ]

X(A +B +2ABcosbg),

JVz(A, ; V, z)) =JV, ( —A, ; V, zl) =JV, (A, ; —V, il),
where A and 8 are the following real functions:

(7.35)

(7.36)

For the second subsystem (j =2) the formulas are simi-
lar.

Far from the soliton, the emitted wave looks like

u, = A
&

cos(8$3t +2/x),

ah ( b)—
sinh(ma/2) cosh(mb/2)

f (c)h (+d)
sinh(mc/2) cosh(md/2)

(7.37)

where the angular brackets indicate averaging in fast os-
cillations like cos(8$ t +2/x). The energy balance equa-
tion W, = V„,&h & yields

A f =W, /(4v go) . (7.33)

If two solitons with equal amplitudes ~ collide (instead
of forming a bound state), the relevant quantity is the to-
tal emitted energy E,m (instead of the energy emission
rate). When the relative velocity W of the colliding soli-
tons is much smaller than ( V„&)

&
=4~, calculations yield

F12
E,~ — Wa. [C,(a+f3) +Cza(a+f3)+C3cK ]

(7.34)

where a= —,', (e, +ez), C, =1.20, Cz=2. 95, C3=2.78.
Malomed (1987g) and Kivshar and Malomed (1989d)
have also calculated the spectral density of the emitted
energy.

2. Coupled nonlinear Schrodinger equations

I.et us consider two NS equations coupled by the
derivative linear terms (1.14) with a small real coupling
coefficient e. As has been demonstrated in Sec. IV.C.2, in
the adiabatic approximation collision of two solitons be-
longing to di6'erent subsystems does not result in changes
of the solitons' amplitudes and velocities. Therefore it is
of interest to 6nd collision-induced radiative losses.
Straightforward calculations yield the following expres-
sions for the spectral densities JV, z(A, ; V, il ) of numbers of

where the wave number 2/=co/4a. ; see Eq. (7.31) (in the
rest reference frame of the bound state's center of mass, a
wave frequency corresponding to this g coincides with
co). To find the wave's amplitude A „we may employ the
energy balance. Indeed, a soliton moving with velocity
V, &=4~ leaves behind an emitted wave field with the
averaged energy density

&h &=&-,'uz+u3&=gzaz

h (x) and f (x) are the polynomes

h (x)=x +( V/2z))x+1, f (x)=i) x —2z)(A, —V/2),

a =(A, +A, V/2 —7V /16+ii )/z)V,

b = + ( 1, —
A, V/3+ 5 V /16+ z) ) /i) V,

c =+(A, +A, V/2+ V /16+i) )/z)V,

d =+(1, —AV/2 —3V /16+i) )/i)V .

(N, ), =(Nz), =24. 64m zl =—N, (7.38)

Quite analogously one can calculate the spectral densities
of the energies emitted in both subsystems and (in the
limit il (( V) the total emitted energies,

(E, )i=(E, )z ——E, =(V /4)N, (7.39)

Note that, as in the case of a collision of two fast solitons
described by a single perturbed. NS equation, the expres-
sions (7.38) and (7.39) do not depend on the phase
difFerence b,P of the colliding solitons (a correction
dependent on b,p is exponentially small in V/zI ).

Using conservation of the total energy E] +E2 and to-
tal plasmon number X&+%2, and taking account of the
circumstance that, due to symmetry, the changes of
parameters of the two solitons are related by
b,zl&=b, zlz=hz), hV, = b, Vz —hV (this is true i—n the-
limit z1 ((V, when the dependence on b.p disappears), we
find

b, i)=N, , 5V =
—,', (N, /i7 V) .

In principle, one can also And the rate of radiative
damping for an oscillating bisoliton, but that quantity
proves to be exponentially small in the oscillation ampli-
tude.

The total emitted plasmon numbers

(N, z), =I dA A', z(A)

can be found explicitly from Eqs. (7.35)—(7.37) in the limit
q«V:
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3. Coupled sine-Gordon equations

In this subsection we shall consider radiative eAects ac-
companying collisions between kinks described by the
systems of coupled equations (4.175) and (4.176) and
(4.196) and (4.197). Results for the system (4.175) and
(4.176) have been obtained by Kivshar and Malomed
(1988c), and for (4.196) and (4.197) by Braun, Kivshar
and Kosevich (1988). First let us consider collisions of
Auxons in the system of two weakly interacting parallel
long Josephson junctions described by the system (4.175)
and (4.176). If the fluxons belong to the same junction
we mean a Auxon-antiQuxon collision, while in the case
when they belong to dift'erent junctions either polarity of
the Auxons relative to each other is possible.

In the former case a distinctive feature of the problem
is that colliding Auxons generate radiation in both junc-
tions. In their own (the first) junction, the emission is
generated on account of the perturbing terms f—and
—y, y&, in the corresponding perturbed SG equation
(Kivshar and Malomed, 1986e). This emission has been
discussed in Sec. VII.D. Here we shall consider the
perturbation-induced emission of radiation in the corre-
sponding (second) junction where there are no fluxons.
The corresponding emitted energy can be calculated ex-
plicitly in two limiting cases. In the first, as in Sec.
VII.D, the colliding fluxon and antifluxon are "relativis-
tic," vi =1—Vi ((1, i.e., f, ))yi. Calculations yield
the following spectral density of the emitted energy:

~'a sinh'[( ~/2v, )+1+k ]
62(k) =

4v, sinh [(m./2v&)(+1+k +k)] sinh [(vr/2vi)(+1+k —k)]
(7.40)

where Vi is the equilibrium velocity (3.47) and k is the
radiative wave number. The total emitted energy can be
readily obtained from Eq. (7.40):

(E, )z
——f 6'2(k)dk =—43a v, . (7.41)

In the second tractable limiting case, f i ((y& (i.e.,
V, «1). Then calculations for the spectral density of
the emitted energy yield

~3izz( 1 Vz )2

e, (k)=
( Vz

—V, ) sinh (m~, /2) cosh (mx.z/2)

Az(k)=6, (k; V, ~~V2),

where

&, =(1—V', )'"(&1+k'—k Vz)/I Vz —Vi l,
~,=(1—V', )'"(&1+k' —k Vi )/l Vz —Vi l,

(7.44)

(7.45)

gz(k)= j dx [1—V 1+k (sinhx)(tanhx)]

Xexp( —ikx —coshx'i/1+k )

and the total emitted energy is

(E, )2=38.4a

(7.42)

(7.43)

and where V, z are determined according to Eq. (2.47).
The total emitted energies can be calculated in the same
two limiting cases described above: 1 —

V~ &&1 (we as-
sume Vi Vz (0) and a « ( Vz —Vi ) (& l. In the former
case

(E, ), =8m vz/(3vi),
(7.46)

As we see from Eqs. (7.40) and (7.42), when v, )) 1 (fast
fluxons) the emitted energy is concentrated in the short-
wave spectral range k ~ v&, while in the case V& &(1
(slow fluxons) it is concentrated in the long-wave range
k

It is pertinent to note that, provided (E, )z defined in
Eq. (7.43) is larger than the total kinetic energy 8V, of
the colliding Auxon and antiAuxon, the radiative losses
considered will result in Auxon-antiAuxon annihilation
into a breather.

When the colliding Auxons belong to diA'erent junc-
tions, the emitted energy can be found explicitly for all
values of the Auxons' velocities unless the relative veloci-
ty 8'= V] —V2 is very small, 8' ~0. . If 8' ~a, the
collision may result in radiative fusion of the Auxons into
a bifluxon (dissipative fusion was considered in Sec.
IV.A.2).

Straightforward calculations yield the following ex-
pressions for the spectral densities of the energy emitted
in both junctions:

(E.m)2=8'i vi/(3v2)

where v, = (1—V ) '~, j= 1,2. In the latter case,

(E, ), =(E, )2=16rr a ( Vz —V, )

X exp( 2nll Vz —V, l)—. (7.47)

Equations (7.44)—(7.47) demonstrate the same qualitative
features as (7.40)—(7.42).

Similar results can be obtained for the system (4.196)
and (4.197), except for the fact that, for small relative ve-
locity, the total energy emitted by colliding kinks belong-
ing to the difFerent subsystems is -exp( —4m/l Vi —

Vz l )

instead of exp( —2m'/l Vi —Vz l ) in Eq. (7.47).
Finally, let us consider the system of two coupled dou-

ble SCx equations (4.198) and (4.199) with Q =1. In Sec.
IV.C.4 we considered internal oscillations of a bikink de-
scribed by this system. For small-amplitude oscillations
the rate 8' of radiative energy losses is exponentially
small, 8'-a""" '. The case of large-amplitude oscilla-
tions (ea ))4) is more interesting. As has been demon-
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strated by Malomed (1987h), radiative damping of these
oscillations is described by the same expressions
(7.25)—(7.27) as pertain to the radiative damping of large-
amplitude oscillations of a wobbler or a breather de-
scribed by the single double SG equation. Moreover, Eq.
(7.26) multiplied by four gives the total energy loss ac-
companying a collision between an unexcited wobbler
moving with velocity V ( 1 —V « 1 ) and another unex-
cited wobbler or bikink moving with velocity —V. A col-
lision between two unexcited bikinks is not accompanied
by the emission of radiation because, as explained in Sec.
IV.C.4, this collision can be described by the unperturbed
SG equation.

4. The coupled sine-Gordon-d*Alembert system

The system of coupled equations

It is noteworthy that in real elastic ferromagnets the
sound velocities are quite small compared to the max-
imum magnon velocity, i.e., the assumption SL,Sz « 1 is
indeed relevant. As can be seen from Eq. (7.52), this cir-
cumstance may render the radiative energy losses
significant. Using Eq. (7.52), one can find a threshold
condition for kink-antikink annihilation into a breather
as a result of sound emission.

Let us proceed to the opposite case, when kinks collid-
ing with velocities + V are "ultrarelativistic" (1—V
«1). In contrast to the similar problem considered in
Sec. VII.B.1 for the single SG equation perturbed by the
term (1.25), this time the result depends substantially on
the relative polarity o. of the colliding kinks. In the lon-
gitudinal ( U) subsystem, the spectral density of the emit-
ted energy is

(k)=(m'/2)a (1—V ) k cosh (m.k+1 —V )

P« —P „+sing = aU„si—ng PV„c—soP,

U« —SL2 U „=—a(cosP)

V« —ST U =P(sing)„

(7.48)

(7.49)

(7.50)

Xcsch (ok+1 —V )

for o.= —1, and

6'+(k)=(m /2)a (1—V ) k csch (mk+1 —V )

(7.53)

(7.54)

2 2

4'(k)=2' + k csch(~k) .
SI. ST

(7.51)

The total emitted energy corresponding to Eq. (7.51) is

E, —:f 8(k)dk =(m /2) + (7.52)

describes nonlinear magnetization waves in an elastic fer-
romagnet (Maugin and Miled, 1986) and similar waves in
an elastic ferroelectric system (Pouget and Maugin, 1984,
1985a). Here U(x, t) and V(x, t) stand for the longitudi-
nal and transverse acoustic wave fields, respectively, SL
and ST are the corresponding sound velocities, and a and
p are regarded as small coupling constants. Radiative
effects (Cherenkov emission) accompanying the motion of
a single kink (domain wall) in the P subsystem can be an-
alyzed as in Sec. VI.L. Here we shall concentrate on
effects produced by a collision between two kinks [in the
adiabatic approximation, the collision has been con-
sidered by Pouget and Maugin (1985a)]. Clearly, the sim-
plest and most important collision-induced radiation
effect is the emission of transverse and longitudinal sound
waves in the V and U subsystems. Since Eqs. (7.49) and
(7.50) are linear d'Alembert equations, the emitted wave
fields can be calculated in a straightforward way with the
aid of the Green's function for the d'Alembert equation
(Pouget and Maugin, 1984). Here we present the expres-
sions for the emitted energy found by Kivshar and
Malomed (1989fl.

First let us consider a kink-antikink collision with zero
relative velocity at infinity. Using the corresponding ex-
act unperturbed solution (2.67), one can calculate the
spectral density 6 ( k ) of the emitted energy, where k is
the sound wave number. In the case SL,Sz- «1 it takes
the form

for o.=+1. The corresponding total emitted energies
are

(E, ) =(a /6)(1++ /21)+1 —V

(E, )+ =(a /6)(1 —2m /21)+1 —V

(7.55)

(7.56)

It follows from these expressions that

(E, )+/(&, ) (7.57)

Thus, according to Eq. (7.66), in the present problem a
kink-antikink collision gives rise to much stronger emis-
sion than does a kink-kink collision.

In the transverse ( V ) subsystem, this property shows
itself in an even more pronounced form. For o = —1,

(k)=(vr /2)P (1—V ) k csch (nk+1 —V ) (7.58)

[cf. Eq. (7.53)], and

(E, ) =(n/42)P +1—. V (7.59)

[cf. Eq. (7.55)], while for o. =+1, 6+(k) is zero in the ap-
proximation considered. A nonzero result arises if one
takes into account the first correction in the small param-
eter ST.

8+(k)=2m P ST(1—V ) k csch (m.kV 1 —V ), (7.60)

(E ) =(8/77 )p S +1—V (7.61)

According to Eqs. (7.59) and (7.61), this time
(E, )+/(E, ) -ST [cf. Eq. (7.57)]. It should be noted
that, from the physical viewpoint, both cases o.=+1 are
possible. Indeed, in a real (damped) system kinks must
be driven by a force produced by the additional perturba-
tion -sin(P/2), which describes an external field applied
to the system (Pouget and Maugin, 1985b). In view of
this fact, it is easy to see that a collision between
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two kinks specified by the boundary conditions
P(x = —~ ) =P(x = + ~ ) corresponds to cr = —1, while
a collision specified by ~ P(x = + ~ )

—P(x = —oo ) ~

=4~
corresponds to o.=+1.

i =(2A, —
~q~ )8+(2ikq —p)A,

dt

i = —(2A, —
~q~ )A —(2ilq*+p*)B

(8.1)

(8.2)

Vill. CREATION OF SOLITONS
BY A PERTURBATION

A. General discussion of the problem

As was mentioned in Sec. VI, in general the problem of
the creation of solitons under the action of a perturbation
is not amenable to solution by existing analytical
methods. In terms of IST perturbation theory, the
reason can be explained as follows. The birth of a new
soliton purports the appearance of a new zero of the for-
ward scattering amplitude a(A, ) at some (generally speak-
ing, complex) value A,o of the spectral parameter A, (see
Sec. II). It proves that, in the vicinity of the point ko, the
effective parameter of a perturbative expansion is not
simply e, but rather e/I, in the case of a perturbed KdV
equation (Karpman and Maslov, 1977; in this case new
solitons appear with an infinitely small amplitude, i.e., at
AD=0) or e /(1, —Ao) for perturbed SG and NS equations
(Kivshar, 1984). In the case of a SG equation, the
newborn soliton are breathers with an infinitely small
amplitude, which correspond to a pair of points
Ao=+ —,'&(I+ V)/(1 —V), where V is the velocity of the
breather; in the case of a NS equation, A,o may be arbi-
trary real, which corresponds to an infinitely-small-
amplitude soliton with velocity V 4XO. Thus at
A, —+A,o an effective perturbative parameter becomes large,
and perturbation theory becomes irrelevant.

Due to these difficulties, the generation of new solitons
is often studied by means of numerical methods (Patoine
and Warm, 1982; Akylas, 1984; Malanotte-Rizzoli, 1984;
Bussac et al. , 1985; Cole, 1985; Ertekin, Webster, and
Wehausen, 1986; Kaup and Hansen, 1986; Mei, 1986;
Wu, 1987). Nevertheless, there have been attempts to de-
velop a qualitative analytical description of these physi-
cally important phenomena (Karpman and Maslov, 1978;
Wright, 1980; Kivshar, 1984; Kaup, 1986). Here we shall
set forth the ideas of Kaup and Hansen (1986), which are
rather close to the technique of IST perturbation theory.

Kaup and Hansen (1986) considered the NS equation
on the semiaxis x ~ 0 with a prescribed boundary value
u (x =0, t) =q (t) As usual, .the NS equation is re-
presented as a condition of compatibility of the two
linear equations (2.2) and (2.3) with the operators I. and
A defined by Eqs. (2.27) and (2.28). However, this time
the auxiliary scattering problem (2.2) must be considered
on the semiaxis (0, + oo ), instead of the whole axis
( —~, + ~ ). According to Kaup and Hansen (1986), this
distinction from the standard situation means that the
trivial evolution equations (2.3S) for the scattering ampli-
tudes a (A, ) and b (A, ) are replaced by the equations

where 8 (k, , t) = b(A, , t) exp(2ii, t), A (l, , t)=a(A, , t)
Xexp(2ii, t), and p(t) —= u (x =0, t). Though the quanti-
ty q(t) is specified by the boundary condition, p (t) is not
known a priori, and it can be found only together with a
full solution of the boundary problem under considera-
tion, so the inverse scattering transform for this problem
cannot be cast in a closed form. The idea of Kaup and
Hansen (1986) is to set p (t) =0, which is sometimes sug-
gested by the results of numerical simulations. Then the
usual technique can be applied, provided the linear sys-
tem (8.1) and (8.2) with p(t)=0 and given q(t) can be
solved analytically. A comparison of results obtained by
means of this approach with numerical data has con-
vinced Kaup and Hansen (1986) that good qualitative
and satisfactory quantitative agreement can be achieved.
Earlier, Kaup and Neuberger (1984) (see also Kaup and
Hansen, 1987) developed a similar approach for a Toda
lattice with a boundary condition.

In the next two sections we shall consider some special
soliton generation problems, which can be analyzed in
terms of a more consistent perturbative technique.

B. Generation of solitons by a pulse of an external force

1. Generation of fluxons by a bias current pulse
in a semi-infinite Josephson junction

In this subsection we shall deal with the model of a
semi-infinite Josephson junction put forward by Sakai
and Samuelsen (1987),

u« —u„+sinu = —yu, +h (t)5(x), (8.3)

where the additional condition u ( —x) =u (x) is implied
(only the range x ~0 is physical). The term h (t)5(x) on
the right-hand side of Eq. (8.3) describes a bias current
injected through the junction's edge (x =0), h (t)
=ho+ f (t), where ho is a permanent component and the
function f (t) describes a short pulse. Sakai and Samuel-
sen (1987) considered a pulse of a triangular form, and
they have demonstrated numerically that, for sufticiently
large ho, the pulse gives rise to a Auxon escaping from
the edge of the junction. They also developed an analyti-
cal approach which, however, did not seem reliable. In
an experiment, the generation of a Auxon by a bias
current pulse was observed by Sakai et al. (1984, 1985a,
1985b).

Here, following Kivshar and Malomed (1989a), we
shall describe a consistent analytical approach to the
birth of a Auxon for small ho and a boxlike pulse
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T«1, sc, T-1 . (8 5)

K(
u(x, T)=

2
x sgnx

+-,'(x + T) 1+ (x —T) sgn(x + T)

When one assumes the conditions (8.5), during the time
0 & t & T of the action of the bias current pulse one may
neglect the term sinu in Eq. (8.3). The corresponding
linear inhomogeneous d'Alembert equation has the fol-
lowing solution at the moment t = T (see Fig. 43}:

;i,z ikT BT yBT . BT
2 2 4 2

cos + sin

gk ' BT B= +~
1 —y (8.8)

Due to the adopted additional condition u ( —x):—u (x), a
fiuxon in a real semi-infinite junction (x )0) corresponds
to a kink-antikink pair on the whole axis
&x & + ~. The threshold for the birth of the first kink-
antikink pair is reached when the quantity a (k =i) van-
ishes. As follows from Eq. (8.8), the pair exists in the
parametric range

+—,
' (x —T) 1 — (x + T) sgn(x —T)

~~, ~
T & 2n.(1+y T)+ 4T

(8.9)

(8.6)

KI yT
u, (x, T)= 1 — [sgn(x + T)—sgn(x —T)] . (8.7)

4 2

Using the wave form (8.6) and (8.7) as an initial condi-
tion for the unperturbed SG equation (the pulse is
switched off at t ) T), one can solve the direct scattering
problem (2.2) and (2.27) approximately for these initial
conditions under the assumptions (8.5). The Jost
coefficient a(A, ) [defined in Eq. (2.12)] corresponding to
these initial conditions may be calculated explicitly for
k (A, )

—=A,
—1/4A. « ~, —T

u(x,T)

Quite analogously, one can find thresholds for the birth
of a larger number of fiuxons (Kivshar and Malomed,
1989a).

In addition to Auxons, the bias current pulse generates
radiation (plasma waves) described by the Jost coefficient
b (A, ) defined in Eq. (2.12). In particular, at the threshold
for the birth of one fiuxon [i.e., when Eq. (8.9) takes the
form of an equality],

b (A, ) =b (k) = i 1 ——ikT
2

T &pTcos +.+
4

(8.10)

for k « T '. Using the general expression (2.69) for the
total energy of the radiation wave field and Eq. (8.10),
one can show that the share E„/E„, of the total energy
input from the pulse that is expanded on the birth of the
Auxon at the threshold is very small: Ez =8;

E...=(4/~) I lb(k)I'dk
2

&
(T-x) 1 & u

b
T 0 T

dk —const/T,

(a)

and Es/E«, —T.
So far, we have neglected the dissipative term in Eq.

(8.3) (at times t & T) and the presence of the permanent
bias current h0. Further analysis demonstrates that in

the presence of dissipation the generated Auxon indeed
escapes provided its initial velocity V0 exceeds the criti-
cal value

ut (x,T)
I

( yT)I—
( Vo)„=y lniho i

(8.11)

According to Eq. (8.8), the initial velocity of the creat-
ed Auxon may be represented as

V =(ko —1)/k (8.12)

(b)
where ko (ko & 1) is a root of the equation a (iko ) =0:

0 yBT
ko = B 1 + tan(B—T/2 }

BT . BT2++tan

FICi. 43. The wave-field configuration created by the pointlike
pulse (8.4) and (8.5).

If Vo is less than the value (8.11) (in particular, if
y in~ho~ ') 1), the fiuxon returns eventually to the edge
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of the junction and annihilates there due to dissipative
losses.

Quite similarly, one can find thresholds for the
creation of one or more breathers by the bias current
pulse (Kivshar and Malomed, 1989a). Physically, a
breather describes an oscillating Auxon pinned by the
edge of the junction. However, this problem is less im-
portant, since the breather will eventually be damped by
the dissipation.

I

)

-L/2-T -L/2 -L/2+7

0{x,T)

U (x,T)

1

L/2-T L/2 L/2+7 x

2. Generation of magnetic solitons by a broad field pulse

A quasi-one-dimensional easy-plane ferromagnet in the
presence of a strong constant magnetic field FI (lying in
the easy plane) and an additional variable field h (x, t) is
described by the following perturbed SG equation for the
orientation angle u (x, t) of the magnetization vector ly-
ing in the easy plane (Kosevich et al. , 1983; Lyubchan-
sky et a/. , 1987):

(b)
-L/2-T -L/2 -L/2+1 L/2-T L/2 L/2+7 x

FIG. 44. The wave-field configuration created by the broad
pulse (8.4') with T((1, L ))T.

[cf. Eq. (8.3)], where y is an angle between the vectors H
and A. in the easy plane. An interesting physical problem
is related to a field pulse of the form [cf. Eq. (8.4)]:

h(x, t)=0 for t (0 and t )T,
fx/ ~L/2,

h(x, t)= .
0, 1x1 &L./2

(8.4')

for 0(t (T. The initial conditions are the same as
above, u (x,O) =u, (x,O) =0, and we assume again T (& 1

[see Eq. (8.5)]. The important difference between this
problem and the preceding one is that this time the pulse
is not pointlike. %'e shall concentrate on the case of a
broad pulse, L ))T [the results given below were ob-
tained by Kivshar and Malomed (1989b)].

The solution of the problem follows closely the pattern
described above: using T (( I, we solve an eA'ective inho-
mogeneous d'Alembert equation on the time interval
0 ( t (T. The form of the functions u (x, T) and u, (x, T)
found from that equation is shown in Fig. 44, where we
have made use of the assumption I && T. The subsequent
solution of the direct scattering problem for the unper-
turbed SG equation yields the result [cf. Eq. (8.8)]

sk a'T4
a (k) =e'" ~ cos(aL) — 1+ sin(aL)

2v 24

(8.8')

where a =hosing, v =k /4+a T /16, and we assume
tang))T/L. Analysis of the equation a(k)=0 with
a (k) defined by Eq. (8.8') leads to the conclusion that a
breather (i.e., magnetic soliton) is generated under the
condition

aI T )2m . (8.13a)

u« —u „+[1+Ii(x, t) cosy]sinu = yu—, +h (x, t) sing

(8.3')

With an increase in the parameter aI.T, a kink-antikink
pair (i.e., two domain walls of opposite polarities) may be
generated instead of a breather. The velocities + V of the
kink and antikink are determined by Eq. (8.12):
V =(k —1)/k, where this time k (k ) 1) is a real root
of the transcendental equation

Z cotZ = —[(aLT/4) Z]' [1+—,',—(aT ) J,
(8.13b)Z: ,'L [(aT—/—2) —k ]'~

Further analysis of Eq. (8.13b) demonstrates that the
kink-antikink pair is generated under the condition
aLT&F(L), where F(L) is a certain monotonically
growing function that is determined by Eq. (8.13b) on re-
placing Z ~ ,' i/F (L ) 4L, —aLT~F—(L ) [the term
(aT ) gives a small correction]. ' For L ~ ce,
F(L)=2L+4rt /L, F(0)=2ir, and F(L))2L for all
values of L [cf. Eq. (8.13a)].

The inhuence of dissipative losses on the evolution of
the generated solitons can be investigated as in the
preceding subsection. In particular, the threshold condi-
tion (8.13a) takes the form

aLT )2m(1+y T) .

C. The spectral singularity in the perturbation theory
for the Korteweg-de Vries equation and the problem
of multiple soliton production

The presence of the multipher k ' in the
perturbation-induced evolution equation (2.23) for the
continuous-spectrum scattering data gives rise to the
well™known divergence in the perturbation theory for the
KdV equation (integrals over the spectral parameter k
diverge at k —+0). We shall consider this problem for the
perturbed equation
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u, —6uu +u„=—@[a(u+2xu ) —P(2u+xu )],
(8.14)

where e is a small parameter, while a and P are arbitrary.
In the particular case P=2a the perturbation on the
right-hand side of Eq. (8.14) goes over into that described
by Eq. (1.2) (with a& =0). This perturbation has the sense
of dissipation or pumping, respectively, in the cases
eo. &0 and ea) 0. It has been demonstrated by Newell
(1980) that, in the latter case, at times t ((~e~ ' the
divergence results in formation of a long shelf on the
background of the soliton. It was speculated that at
larger times the shelf would decay into "secondary" soli-
tons, but this stage was not subjected to accurate investi-
gation. In this section we shall present the recent results
of Benilov and Malomed (1988), which give some addi-
tional insight into the problem.

It is important to note that some kinds of perturba-
tions do not give rise to divergence (Karpman, 1978). In
particular, when a=0 divergences are absent at least in
the first order of the perturbation theory. Another re-
markable property of this particular case is its exact in-
tegrability (Calogero and Degasperis, 1982): Eq. (8.14)
with a=O has the exact (L, A ) pair

—4 „+ u+ g eu„—k 4=0,
n=1

(8.20)

4, —2 u+ g e"w„+2k
n=1

+ u+ g e"w„4=0.
n=1

(8.21)

data. This seems to be the cause of the appearance of
divergences in this case. Note that at a =0 (the
divergence-free case) the efFective potential in the "per-
turbed" (L, 4) pair (8.15) does not grow at x ~+~ and,
accordingly, no divergences appear in the perturbation
theory.

Of course, in the integrable cases a=O and p=O the
perturbatio~ theory is not needed at all. Let us see how
to construct a divergence-free perturbation theory for a
generic (nonintegrable) perturbation of the type (8.14).
The above observation suggests that in this case the L,

equation should be properly modified on a level with the
A equation. A natural way to realize this idea is to con-
struct an (L, A) pair for Eq. (8.14) in the form of a power
series in e [something like this was also discussed by Ko-
dama (1986) and Menyuk (1986a, 1986b)]:

—e..+[u —k'exp( —2pt)]% =0,

0', —2 u — x +2k exp( 2/3t)—

(8.15)
Straightforward calculations yield the following expres-
sions for the two lowest terms of the series:

A
u =2k (p —a)t ——x1 (8.22)

+ u — 9=0.X (8.16)
w, =4k (a P)t ——x—,

There is another integrable case, p=O (Calogero and De-
gasperis, 1982), the corresponding (L, 3) pair being

uz= —2k (P—a) t + ,'aPtx+U, —

w2=4k (a p) t + ,'a—ptx+v, —

(8.24)

(8.25)

+ u — x —k exp(2@at) 0'=0, (8.17)
where the function U (x, t) satisfies the linear equation

ql, —2[u +2k exp(2@at)]'0„+u„4=0 . (8.18) U, +6( u u )„+U,„,=9a/3t (xu ), . (8.26)

Nevertheless, formal application of the standard pertur-
bation theory to the latter case entails the appearance of
the divergence.

The starting point of the present consideration is the
fact that when p=O the form of the scattering data
defined by the unperturbed L equation [see (2.9a)] is
drastically distinct from that defined by the "perturbed"
equation (8.17). Due to the infinite increase of the
efFective potential u, s = u +@ax /2 in Eq. (8.17) at
x —++ 00, a discrete spectrum is absent, and the reAection
coef6cient satisfies the equality

[all information about u(x) is mapped into the phase
argr (k) of the reQection coefficient]. On the other hand,
treating the "integrable" perturbation ea(u +xu ) in the
spirit of the standard perturbation theory, one would em-
ploy the unperturbed I. equation and, consequently, a
quite inadequate approximation of the genuine scattering

It is easy to see that the eff'ective potential in Eq. (8.20)
contains the term -x already in the first order of the
perturbation theory [see Eq. (8.22)]. The only exception
is the case a=O [the same pertains to the second order;
see Eq. (8.24)]. It is remarkable that, as mentioned
above, this is actually the only case when divergences do
not appear in the standard perturbation theory.

A correct version of perturbation theory could be
based upon a truncation of the series in Eqs. (8.20) and
(8.21). However, due to the secular dependence of u„
and w„on t [see Eqs. (8.22)—(8.26)], such truncated ex-
pansions cease to be applicable at times t ~ ~e~ '. On the
other hand, comparison of Eqs. (8.20)—(8.26) in the exact-
ly integrable cases with the corresponding exact (L, 3)
pairs (8.15) and (8.16) and (8.17) and (8.18) demonstrates
that one may hope to sum up all the secular terms into
something like exp[of (a, t)t]. However, this program
remains to be completed.

At the same time, there is a simpler approach to the
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problem. It is easy to see that the transformation

t ~t = ( 3Pe ) '[1—exp( —3Pet) ],
x ~x =x exp( p—et),
u ~u =u exp( 2—pet)

(8.27)

eliminates the second term on the right-hand side of Eq.
(8.14):

u,——6u u„+u „=y(t)(u+2u x ),
y(t)=——ea/(1 —3ept) .

(8.28)

(8.29)

In contrast to Eq. (8.14) with P=O, Eq. (8.28) is not ex-
actly integrable due to the presence of the time-
dependent coefficient y(t). Nevertheless, if the charac-
teristic time scale of a solution that we are interested in is
much smaller than the characteristic time during which
tlic coefficien p(t ) Rltcis slgmflcalltly, wc I11Ry tlcRt Eq.
(8.28) in the adiabatic approximation, i.e., first assume
y=—const and write a corresponding exact solution, and
then insert into it the function (8.29) instead of const.

To illustrate this scheme, let us apply it to the follow-
ing exact solution of Eq. (8.28) with y =-const (Calogero
and Degasperis, 1982):

' 2/3 ' I /3

u —— — U — x —z (t ),p(t ) (8.30)

U(y, p) =—2p[2 Ai'(y)Ai(y)+p(Ai(y) ) 6 (y)]G (y),

(8.31)

G (y) = [1+p(Ai'(y) ) —
py (Ai(y) ) ] (8.32)

where Ai(y) is the Airy function, and z(t)
=-zo exp( —2yt), p(t)=poexp( 2yt). Repl—acing in the
latter expressions the constant y by the function (8.29),
one obtains

z ( t )=z, (1 —3ept )
' /3t',

p(t ) =po(1 3cPt)—
EquatloIls (8.30)—(8.33) give Rn Rppl oxiII1Rtc solutloI1 to
Eq. (8.27) provided ~c~t))1. According to Eq. (8.27),
this condition makes sense only for the case ep(0, i.e.,
for a pumping-type perturbation, when it means simply
~eit))1. Thus, in contrast with the standard perturba-
tive technique (Newell, 1980), which is relevant for the
early stage of evolution (iEit ~1), this approach works
at the late stage and is meaningful only for the pump-
ing case. In particular, the approximate solution
(8.30)—(8.33) may be interpreted as describing the genera-
tion of an infinite number of new solitons [see a graph of
the function U(y, p) in Calogero and Degasperis, 1982] at
the late stage of evolution of an initial profile uo(x).
Note, however, that, due to the property
f U(y, p)dy =0, the initial profile must be restricted
by I+"uo(x)dx =0. Earlier, the singularity of the per-
turbation theory was interpreted by Wright (1980) just as
a manifestation of the production of new solitons.

D. Transformation of a Korteweg-de Vries soIiton
passIng 8 zero-dlspersIon point

In Sec. III.A. 1 we mentioned the KdV equation (3.8)
with variable coefficients. The important particular case
is that in which either coefficient a or p vanishes at some
t =to (in what follows we set to=0). An example is an
equation describing the propagation of disturbances in a
two-layer shallow liquid with the ratio of depths of the
two layers subject to a long-range modulation (Kakutani
and Yamasaki, 1978; Helfrich, Melville, and Miles,
1984). The same equation describes ion acoustic waves in
a plasma with negative ions, the ion density being slowly
modulated in space (Watanabe, 1984). In both these
models, there are critical values of the relevant parame-
ters (for instance, the ratio of the two depths in the two-
layer liquid equal to one) at which the coefficient a in
front of the nonlinear-dispersion term uu„ in Eq. (3.8)
vanishes. It has been demonstrated in the papers men-
tioned that, generally speaking, in this case the higher
nonlinear term u u must be taken into account. So we
arrive at a modified KdV equation with variable
coeScients:

u, —6a(t)uu„—6yu u +u, „=0. (8.34)

Here we regard the coeScient in front of u„, as con-
stant. To describe phenomena related to the vanishing of
the coefFicient o:, we set a—= —t. %'e assume that at t (0
there is one soliton, and we are interested in the result of
its transformation induced by a change of the sign of o;.
The problem has been studied numerically by Helfrich,
Melville, and Miles (1984) and analytically by Malomed
and Shrira (1989), whose consideration is based upon the
two exact integrals of motion of Eq. (8.34), viz. , the mass

M= I u(x)dx (8.35)

(8.36)

+a(a —4/K ) (8.37)

where ~ is the soliton's amplitude.
A general sketch of the evolution of the initial soliton

pulse is as follows: due to vanishing of o, , the amplitude
K varies in time, and, simultaneously, the soliton gives
rise to a long small-amplitude shelf (cf. Sec. VI.N). The
evolution law for the amplitude, valid as long as the
sohton's amplitude remains much greater than that of
the shelf, follows from Eq. (8.36) (for sufficiently small y,
the soliton's momentum is I', I = —,'K a ):

K(t) =Ko[a(t)/ao] =Ko(t /to) (8.38)

For a =const, the one-soliton solution to Eq. (8.34) is [cf.
Eq. (2.18)]

u~~) — 4K (a 41 K )

X Icosh[2K(x —4K t)]
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0 (8.40)

The momentum concentrated in the shelf is of the same
order as the soliton's momentum at Itl =t„

'", so that at ltl & t„Eqs. (8.38) and (8.40)
are not valid. Nevertheless, using the natural assumption

I to IKo» 1 (8.41)

(this means that the frequency co„i-Ko of the initial soli-
ton is much greater than the inverse evolution time

I tol ), one can verify that Eq. (8.39) for the final length
of the shelf remains valid, and the shelf's amplitude takes
the final value

u (o) =(i/14/3)(Ko/I to I')'" . (8.42)

The results (8.39) and (8.42) are also valid if y =0 in Eq.
(8.34).

It is important to note that the sign of u (t) [see Eqs.
(8.40) and (8.42)] is opposite to that of u„~ [see Eq.
(8.37)]. Therefore, after the change of sign of a, the shelf
may be regarded as an initial wave-field configuration
that will give rise to new (secondary) solitons. The polar-
ity (sign) of the secondary solitonic wave field is reversed
from that of the initial soliton (8.37). Let us assume that
at t )0 the coefficient a(t) attains, sufficiently quickly, a
certain constant value nf &0. Then the number X of
secondary solitons can be found easily if one treats the
shelf as a rectangularlike initial pulse. Using Eqs. (8.39)
and (8.42), one obtains

cv'= (~/14/~')K'"Q
I to I I af I

. (8.43)

[recall that we have set a(t) = —t; to & 0 is an initial mo-
ment, and Ko =K—(to)]. The distance l(t) traveled by the
soliton is simultaneously the length of the shelf generated
by it (cf. Sec. VI.N). As follows from Eq. (8.38), the total
length of the shelf is

l (0)=4J Ki(t)dt = —,Kohl to I (8.39)
to

Next, using mass conservation (for sufficiently small y,
the soliton's mass is M„i= —2u 'K), one can find the
value u (t) of the wave field inside the shelf [in the first
approximation, the shelf is uniform, i.e., u (t) does not
depend on x]:

solitons with reversed polarity. This inference does not
depend on the presence of the additional term yu u„ in
Eq. (8.34), provided y is sufficiently small.

Malomed and Shrira (1989) have also considered the
case when the linear-dispersion coeflicient P(t) in Eq.
(3.8) changes the sign. It is convenient to set I3(t) = —t.
Then the evolution of the soliton's amplitude takes the
opposite form from Eq. (8.38),

K(t) =Ko(to/t)'" (8.46)

Using Eq. (8.46), it is possible to demonstrate that, con-
trary to the preceding case, the shelf generated by the
soliton has the same polarity as the soliton. This implies
that, after the change of sign of P (at t )0), the shelf will
not give rise to secondary solitons. Instead, it will de-
grade into quasilinear (dispersive) waves. Thus a change
of sign of the linear-dispersion coefficient in the KdV
equation results in the decay of an initial soliton.

Malomed and Shrira (1989) have considered analogous
problems for a NS equation and a Burgers equation with
variable coefficients. In those cases, only decay of a NS
soliton or Burgers shock wave, respectively, will take
place if a dispersion coefficient changes its sign.

IX. NONSOLITON AND "SEMICLASSICAL"
WAVE TRAINS

In this section we shall deal with perturbation-
dominated dynamics of two special types of nonlinear
wave packets: nonsoliton (dispersive) ones and the so-
called semiclassical wave trains (Zakharov et al. , 1980),
i.e., those containing a large number (X))1) of solitons.
We shall be primarily concerned with the two different
NS equations,

iu, +u +21u I u =i eP ( u ) . (9.1)

Equation (9.1) with the upper and lower signs in front of
the nonlinear term on the left-hand side is often referred
to as the nonlinear Schrodinger equation "with attrac-
tion" [NSE(+ )] and "with repulsion" [NSE( —)]. Of
greatest interest is the dissipative perturbation (1.8),
which, for the time being, we shall write in a more con-
venient form,

The amplitude of the nth soliton (1 & n & X) is ~P = —~ u + -,
' e u..—2~i I

u I'u . (9.2)

K„=en /I (0)= (7~/12)(Kol to I ) 'n . (8.44)

Setting n =X in Eq. (8.44), one finds the maximum am-
plitude,

K~ = (7 x 14' "/12)Ko
I to I Q lcxf I (8.45)

Even if the coefficient a(t) does not attain a constant
value sufficiently quickly, the qualitative inference
remains true: the change of sign of the nonlinear-
dispersion coefficient in the KdV equation results in the
transformation of an initial soliton into a set of secondary

The perturbation (9.2) occurs in a number of physical
problems mentioned in Sec. I.B.

Dissipative eAects are of special concern near the
linear instability threshold, where e, changes sign. [At
ei &0 the trivial solution of Eq. (9.1) u =0 is unstable
against small long-wave perturbations; in such a situation
the term —ie, u on the right-hand side of Eq. (9.1) de-
scribes linear pumping. ] Therefore we shall pay basic at-
tention to the case e& =0.

Just as the NS equation is a universal one for describ-
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Q] 6QQ~ +Q~~~
= 6)Q +

~ 62Q~~ 863Q
3 (9.3)

naturally arises when one takes dissipation into account.
The parameters e„e2, and e3 in Eq. (9.3) have the same
sense as in Eq. (9.1), and the linear instability threshold
corresponds again to e, =O. Equations of the type (9.3)
occur in various physical problems (see, for example,
Kawahara and Toh, 1985a, 1985b); of special interest is
the particular case of Eq. (9.3) with e, =@3=0 (the KdV-
Burgers equation).

ing one-dimensional weakly nonlinear envelope waves
(see, for example, Taniuti, 1974), the KdV equation (as
mentioned in Sec. I.B) appears as a universal equation in
the theory of weakly nonlinear waves in media with weak
dispersion (see, for example, Zakharov et al. , 1980). The
dissipatively perturbed KdV equation,

1. A general case

n (A, ) =—in[1 —
~
b (A, ) ~ ],1

(9.4)

g(A, )=argb(A, ) . (9.5)

The unperturbed evolution equations for the quantities
(9.4) and (9.5) are trivial (Zakharov et aI , 198.0);

In the spirit of IST perturbation theory, let us proceed
from Eq. (9.1) to the evolution equations for the quanti-
ties n (A, ) and hatt(A, ), which, in the absence of perturba-
tions, have the sense of canonical actions and angles (Bul-
lough et al. , 1982; Malomed, 1982, 1986b). As is well
known (see, for example, Zakharov et a/. , 1980), these
quantities can be expressed in terms of the continuous-
spectrum scattering data:

dn =0, dg 4&2
dt ' dt

(9.6)

A. Nonlinear Schrodinger and sine-Gordon wave packets

In Secs. IX.A and IX.B we shall consider the evolution
of dissipatively damped nonsoliton wave packets. In this
context, of basic interest is the study of the asymptotic
(t ~ oo ) stage of the evolution. The results presented in
these sectioris were obtained by Malomed (1986b, 1987j).

Qp, 0 x lp
uo(x)= ~

0, x &Oorx)lp, (9.7)

yields for the NSE(+) (Zakharov et al. , 1980)

The values of n (A, ) are determined by initial conditions.
For instance, the simplest localized initial condition,

n (A, )=—ln(1+ Isin [lo(A, +ao)'~ ]I/[A, /ao+cos [lo(A, +ao)'~ ]) ) .1
(9.8)

In the case of a localized initial condition of a more gen-
eral form than Eq. (9.7), the same qualitative inference is
true as follows from Eq. (9.8): the size Ao of the wave
train in A, space is

(9.9)
a (x, t)=—~u(x, t)~ = n(A, =——x/4t),1

4t
(9.13a)

I

the asymptotic stage of the evolution commences (Za-
kharov et al. , 1980): at distances x ))t the wave train
may be represented in the form

and in the spectral range ~A,
~
8 Ao the actions take the

values
P(x, t)—:argu (x, t)

n(A, ) ~loao, (9.10)
X + 'n ( A, = ——x /4t )ln( t Ao ) .
4t (9.13b)

where lp and ap are the characteristic size and amplitude
of a wave train in x space at the initial moment. It is
easy to verify that, provided aolo ~ 1, the estimates (9.9)
and (9.10) pertain to the NSE( —) as well.

In this subsection we shall deal with wave packets con-
taining no solitons. For the initial configuration (9.7) the
condition for absence of solitons takes the form

aplp &m/2 . (9.1 1)

t ))Ap (9 12)

For initial conditions of a more general form this relation
takes a similar form aplp & const, where const is —1. For
the NSE( —) we shall also presume aolo ~ l.

As the wave packet does not contain solitons, it
spreads under the action of dispersion. At times

In A, space, the range x ))t corresponds to A, ))t
In this range the quantities n (A, ) have a direct physical
sense: They are occupation numbers of normal modes
(Zakharov et al. , 1980).

The small dissipative terms in Eq. (9.1) result in the
slow decay of the wave field, i.e., slow decrease of the ac-
tion variables n (A, ) (Bullough et al. , 1982; Malomed,
1982). Equations describing the perturbation-induced
evolution of the quantities (9.4) and (9.5) at the asymptot-
ic stage (9.12) have been derived (assuming ez=O) by
Malomed (1982). These equations have a rather cumber-
some form. However, it has been demonstrated by Bul-
lough et al. (1982), with the aid of the adiabatic invariant
theorem, that in the ense ez =e3 =0 the evolution equa-
tion for n(A, , t) averaged over the rapid unperturbed
phase oscillations takes a very simple form,
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dn
2E')n

dt
(9.14)

Substituting Eq. (9.13) into the right-hand side of Eq.
(9.1), we notice that, on proceeding from u (x, t) to
n (A, , t), the perturbing terms -e2, e3 reduced to the one-e, with the effective coefficient ( e, ),s = ( e2/2) A,

(9.15)

The exact solution of Eq. (9.15) is

+ (e3/2t) n, i.e., the averaged evolution equation for
n (A, , t) corresponding to the perturbed NS equation (9.1)
with ei =0 takes the form (Malomed, 1986b)

dn
dt

= —e A. n —(e It)n

n (A., t)=n o(A)Ie xp[
—ezA, (t —to)]J II1+e 3no(A)e , xp( 'e2X tp)[E(EPtp') E(EpA, t)']J (9.15')

where t) to, no(A)=n(A, , t =tp), and E(z)
—:—f "e 'dt/t. Equation (9.15) and the solution (9.15')

make sense if the moment to satisfies Eq. (9.12). At the
same time, it is natural to take to as a moment when the
perturbation effects are stroll immaterial, i.e.,

I

the type (9.18)—(9.21), which describes a small-amplitude
wave packet, may be explicitly written in terms of the ini-
tial data np(A, ) pertaining to an initial state with a
nonsmall amplitude [see Eq. (9.17}].

The wave train (9.18) and (9.20) is structured as fol-
lows: at times t & (e2Ap)

1 « toAo &«2 e3noln(toAo) «1 .

Then we may set

n p(A, )= n(A, , t =0),

(9.16)

(9.17)

n (1,, t) = np(A, ) l[1+e3no(A, )ln(t Ap)],

a'(x, t)=(4t) 'n, ( x/4t)—
X [1+e3no( —x/4t)ln(tAo)]

(9.22)

(9.23)

where it is implied that at the moment t=0 we have a
wave packet of a general form, with a nonsmall ampli-
tude -ao. Using Eq. (9.16} and the evident asymptotic
formula E(z)=ln(z '), valid at small z, one can write
Eq. (9.15') in a simple form that does not contain the
auxiliary quantity to:

l —Aot (9.24)

(provided t ))lo/Ap), while the wave train s size A in A,

space remains constant: A =Ao. At larger times

so that the wave train's size I in x space grows with time
as in the absence of perturbations:

n (A, , t) = np(A, )[e xp( ezkt)—], t »(e,A'o) (9.25)

X I 1+@3n o(A, )l n[(t Ao)/(1 +Ezra, t)]J ' . (9.18)

This expression was obtained in the logarithmic approxi-
mation, i.e., it was assumed

the size of the wave train's "head" [described by Eq.
(9.22) in A, space] decreases:

(9.26)

ln(t A', )»ln(t, A', );
1ne2

' ))ln( to Ap ),
(9.19) and in x space, where the "head" is described by Eq.

(9.23), its size increases with time more slowly than
(9.24):

which is compatible with the condition (9.16).
Let us proceed to an investigation of the approximate

solution (9.18). The solution in x space corresponding to
(9.18) can be immediately obtained with the aid of Eq.
(9.13a):

a (x, t)=(4t) 'np( —x/4t)[exp( —e2x /16t)]

X I 1+e3no( —x/4t)ln[t Ao/(t+ezx /16)]}

(9.20)

I -4( t /e )
'~ (9.27)

while the . ranges (~,t) ' &&A,'& A', and 16t i@2 &&x
5 Aot in the x and X spaces, respectively, are occupied

by an exponentially small "tail." It is important that the
size of the "head" (9.27) is always much bigger than the
size of the internal range x ~t, where the asymptotic
formulas (9.13) and (9.14) are inapplicable.

As can be seen from Eqs. (9.22) and (9.23), at the final
stage of evolution, determined by

The expression for the phase P(x, t) corresponding to Eq.
(9.20) can be easily written in the range ezx « t: ln(tAp) ))(e3np) (9.28)

P=x l4t +(2@3) 'ln[1+e3np( —x/4t)ln(tAo)] . (9.21)

It might seem that the above consideration makes no
use of the exact integrability of the unperturbed NS equa-
tion, and that analogous calculations could be accom-
plished for a small-amplitude wave train in any weakly
nonlinear system with dispersion. However, it is only in
the case of a nearly integrable system that a solution of

a'(t) = [4e,tin(t A', )] (9.29)

n (t)=[e3ln(tAo)] (9.30)

the quantities a (x, t) and n(A, , t) inside the 'head" be-
come independent both of the initial data np(A, ) and of x
or X, respectively:
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2. A threshold for soliton creation

The analysis developed in the preceding subsection is
irrelevant if initial conditions are taken at a threshold
corresponding to the birth of a soliton with an infinitely
small amplitude. For instance, in the case of the initial
conditions (9.7), this threshold corresponds to the values
of the parameters ao and Io subject not to the inequality
(9.11),but to the relation

aolo=m/2 .

As can be seen from Eq. (9.8), in this case

no(A, ) =—ln(ao/A, ) (9.32)

in the range A. ((ao. The solution (9.18)—(9.27), ob-
tained under the condition (9.11), is inapplicable in the
case (9.31) because of the logarithmic singularity in Eq.
(9.32). This singularity is inherent in any initial state cor-
responding to a soliton creation threshold. Here we shall
concentrate on the evolution of a wave packet with the
initial data (9.32). We shall be concerned with the spec-
tral range over which threshold eff'ects must be substan-
tial. [According to Eqs. (9.31) and (9.32), ao plays the
role of the initial size of the wave packet in A, space. ]
This range is equivalent to the x-space range x «aot .

Direct substitution into the unperturbed NSE(+ )

demonstrates that this equation possesses the following
solutions: in the range x » t ln(tao) (hereafter to be
called the external region),

a2=(4mt) 'ln(t ao/x ),
ln(tao) »e3 '

[cf. Eq. (9.28)], and at this stage

(9.41)

In A, space the external region is 1, » t 'ln(tao). Us-
ing Eq. (9.13), we obtain from Eq. (9.38) the expression
for the occupation numbers in this region:

n (A., t) =n. '[exp( —e2X t)][ln(azo/A2)]

X I 1+(e3/2m )[in(ao/A, )]

Xln[A, t a 0/(I+a 2A, t) I
' (9.39)

[cf. Eq. (9.18)]. To obtain the expression for n (A, , t) in the
internal region, one should take into account the fact
that the logarithmic singularity at A, =O [see Eq. (9.32)]
must persist, since it may be interpreted as an infinitely-
small-amplitude soliton [recall that the condition (9.31)
defines the soliton creation threshold], and it is well
known that the dissipation in Eq. (9.1) damps the soliton,
but cannot eliminate it (Karpman and Maslov, 1977;
Kaup and Newell, 1978a, 1978b). Thus we obtain in the
internal region

n (A, , t)=m '[ln(ao/A, )]/[1+(e3/2n)ln (tao)] . (9.40)

As can be seen from Eq. (9.40), the size of the wave-train
"head" in A, space and x space is the same as in the "un-
derthreshold" situation (9.11), i.e., given by Eqs. (9.26)
and (9.23). However, in the present case the structure of
the "head" diff'ers from Eqs. (9.22) and (9.23). In particu-
lar, the final stage [see Eqs. (9.28) —(9.30)] commences in
the internal region (which always lies inside the "head")
at times

P=x /4t+ [ln(t ao/x )]ln(x ao)
1

4m.
(9.34)

a ~(t) = [2e3t ln(tao )]

n (A, , t)=(2/e3)[ln(ao/A, )]/ln (tao) .

(9.42)

(9.43)
[cf. Eqs. (9.13) and (9.14)]; in the range x ((t (hereafter
to be called the internal region),

a =(4n.t) 'in(tao),

P=(4~) 'In (tao)+x /4t x l[4t l—n(tao)] .

(9.35)

(9.36)

a =(4~t) '[ln(t ao/x )]exp( —e2x /16t)

X Il+(e3/2m)[ln(t ao/x )]

Xln(t aox )/(t+e2x /16) I
' (9.37)

In the "underthreshold" problem (9.11), the internal re-
gion is that where the asymptotic stage of the unper-
turbed evolution has not as yet commenced.

The perturbed solution corresponding to the unper-
turbed one (9.33)—(9.36) has a form that can again be
checked by direct substitution into the perturbed Eq.
(9.1) (as before, we consider the case @i=0): in the exter-
nal region,

ln(t ao/x ) »(2mle3)/1n(x ao),
ln(t A, ao) »(2~/e3)/1n(ao/A. ),

(9.44)

(9.45)

i.e., the beginning of the Anal stage in the external region
depends on x or A, , in contrast with Eqs. (9.28) and (9.41).

At the final stage, Eqs. (9.37) and (9.39) go over into

a (x, t)=[2e3t ln(x ao)] (9.46)

Unlike Eqs. (9.29) and (9.42), Eq. (9.46) depends upon x.
Thus we have described the evolution of the local am-

plitude a (x) (in x space) and occupation numbers n (A, )
(in A, space). Evolution of the phase P(x) can also be
efFectively described (Malomed, 1986b, 1987j).

3. Sine-Gordon wave packets

As we see, Eq. (9.42) does not coincide with Eq. (9.29),
and Eq. (9.43), unlike Eq. (9.30), depends on A, . In the
external regions of the x and A, spaces, the final stage is
characterized by the conditions

[cf. Eq. (9.20)], and in the internal region

a =(4nt) '[1 (t n)]a/o[1+(e /2+3)l (tano)] . (9.38)
Now let us proceed to the dissipatively perturbed SCz

equation
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u« —u +sinu = —e(1+a cosu)u, +ezu,„, , (9.47) Ko -min I +ao~ aolo (9.53)

which occurs in the theory of long Josephson junctions
and in the theory of convection. [The first term on the
right-hand side describes, according to Levring et al.
(1984), dissipative losses due to tunneling of normal elec-
trons across the barrier with regard to interference with
the superconductive tunneling current; in the theory of
convection, according to Coullet and Huerre (1986), it
describes the propagation of transverse modulations in a
system of forced convective rolls in a low-Prandtl-
number liquid. ] In the absence of perturbations
(E=E2=0), the nonsoliton wave field is described at large
times by the asymptotic formulas (Zakharov and
Manakov, 1976; Newell, 1978b) analogous to Eqs. (9.13}
and (9.14),

—x )&t (9.54)

may be represented by a slowly varying amplitude a (x, t)
and a rapidly varying phase P(x, t) (Zakharov et al. ,
1980),

u (x, t) =a (x, t)cosP(x, t),
P(x, t) =(2/3 )( x!t)'—+
a (x, t)=(12t) 'n(k =&—x/12t )

(9.55)

(9.56)

(9.57)

[cf. Eq. (9.9}]. The asymptotic stage begins at t ))Ko [cf.
Eq. (9.12)]. At this stage, the unperturbed wave field in
the range

u =a(x, t)sing(x, t),
a (x, t)=(16/t)(A, +I/4A, )v(A, ),
P(x, t)="~ t —x +2 2

(9.48)

(9.49)

(9.50)

[cf. Eqs. (9.14) and (9.13)]. Here n (k) are the action vari-
ables that are expressed in terms of the continuous-
spectrum scattering data (2.12) [cf. Eq. (9.4)]:
n(k)=(2kln)in[1+~8(k)~ ]. The values of n(k) in the
spectral range k ~ Ko can be estimated as

where v(A, ) is expressed in terms of the continuous-
spectrum scattering data (2.33), v(k) =(1/2m)in~a (A, ) ~

and

A, =——,'(t —x)/(t+x) (9.51)

[v(A, )=v( —
A, ) due to the reality of u (x, t); see Eq.

(2.55)]. At the asymptotic stage, the nonlinear terms in
Eq. (9.47) may be expanded to cast this equation in the
form

Q~~ +Q 6 Q = 6')Q f +62Q)~x E'3Q Dg
3 2 (9.52a}

where e, =e(1+a) and e3
———(e/2)a (we assume

a & —1). Inserting Eqs. (9.48)—(9.51) into Eq. (9.52a) and
performing calculations analogous to those described in
Sec. IX.A. 1, one obtains the evolution equation for v(A, ):

= —2[ei+(A, +1/4A, ) ez+(4/t)(A, + I/4A, )v]v .

(9.52b)

B. Korteweg-de Vries wave packets

If we deal with an initial condition for the perturbed
KdV equation (9.3) in the form of a localized nonsoliton
wave packet of amplitude -ao and size -lo [cf. Eq.
(9.8)), the size of the wave packet in the space of the spec-
tral parameter k (related to the linear spectral problem
employed for solving the unperturbed KdV equation; see
Sec. II.B) is, provided aol o

~ 1,

Equation (9.52b) is siinilar to Eq. (9.15), and all subse-
quent considerations of the perturbed SG equation (9.47)
can be developed by analogy with the perturbed NS
equation (9.1). Particularly, the threshold for creation of
a sohton in the NS equation corresponds to the threshold
for the birth of a breather in the SG equation.

n (k) 5 aolo . (9.58)

In the absence of perturbations, the quantities n (k)
remain constant [cf. Eq. (9.6)]. The dissipative perturba-
tions in Eq. (9.3) result in an evolution equation similar
to Eq. (9.15):

= —2e, n —Se2k n —(e3/St)n (9.59)

which is equivalent to the x-space region (9.54).
As in the case of the perturbed NS equation (9.1), dissi-

pation produces nontrivial effects near the linear instabil-
ity threshold, i.e., when e, =0. Then the solution to Eq.
(9.59) coincides, with logarithmic accuracy [which in the
present case implies ln( tKo ) &)ln( toKo ) 1n(Ko le~ )

))ln(toKo ); cf. Eq. (9.19)],with Eq. (9.18):

n ( k, t) =no(k) [exp( e2k t)]—
X I I+e3no(k)ln[tKol(1+e2k t)]I ' . (9.61)

Despite this coincidence, in the present case the evolu-
tion of a wave packet essentially differs from that of Eq.
(9.1). As can be seen from Eq. (9.61), at times

t »(e,K'o) (9.62)

[cf. Eq. (9.25)], the size K of the wave train in k space is
[cf. Eq. (9.26)]

(& t)
—i/2 (9.63)

i.e., comparing Eq. (2.63) to Eq. (9.60), one sees that at
times t )&@2 the "head" as a whole lies outside the re-

[the derivation of Eq. (9.59) involves averaging with
respect to the fast unperturbed oscillations; see Eqs.
(9.55) and (9.56)]. Equation (9.59) is relevant in the k-
space region

(9.60)
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gion where Eqs. (9.55)—(9.57) and all the above con-
siderations hold. The evolution of the wave train in x
space also reveals an important difference from the case
of the NS equation: Substituting Eq. (9.61) into Eq.
(9.57), one can see that at times t ((ego) ' the size of
the "head" grows similarly to Eq. (9.24), /-Kot, while at
times (9.62) l becomes constant,

I-e '

1n contrast with the 1ncrcaslng slzc rcpl cscntcd by Eq.
(9.27).

C. "Semiclassical" wave packets

In this section we shall study, following Malomed
(1987j), the evolution of a "semiclassical" wave-train
solution to Eq. (9.1), which can be represented in the
form

Iq„»1 (9.73)

[lii„may be regarded as a large "semiclassicality param-
eter"]. The amplitudes il„vary in time according to the
perturbation-induced equation (2.48).

Inserting into Eq. (2.48) the perturbation from Eq.
(9.66), we note that, by virtue of Eq. (9.72), the term
e2u may be neglected in comparison with e3 I u I u. Ac-
cording to Zakharov et al. (1980), under the condition
(9.72) the Jost functions that enter Eq. (2.48) can be
found explicitly in the semiclassical approximation

[which is stronger than Eq. (9.65)], a quasiclassical wave
packet may be approximated by a nonlinear superposi-
tion of a large number of solitons with di6'erent ampli-
tudes t4 (n is the soliton number) and zero velocities,
where the solitons' characteristic size q„' is much less
than the size I of the whole wave train:

u(x, t)=a(x, t)exp i fp(x, t)dx (9.64)
p'"(x, il„)=const Xq 'cos f q dx (9.74)

Ia„.I «m»I lal', lalp'j . (9.65)

Hele, it is convenient to iewi'lte Eqs. (9.1) and (9.2) iil
the form [cf. Eqs. (1.8)j

where the real local amplitude a (x, t) and wave number

p (x, t) are assumed to be slowly varying functions of x:

f' '(x, ii„)=constX [iu (x)qj

X qsin fqdx +il„cos fqdx
J

where

iu, +u..+2lul'u = i e, u +—e,u„.—ie, lul'u . q (x, il „)—:[ I
u (x) I' —il'. ]'~' (9.76)

Inserting Eq. (9.64) into Eq. (9.66) results, with regard to
Eq. (9.65), in a system of quasilinear first-order equations,

af = a@~ 2+a~ 6')a 6'3a 6'2'

p, = —2' +4aa (9.68)

In the case of the NSE( —) [the lower sign in Eq. (9.68)],
this system is hyperbolic, and the method for solving it is
well known (Whitham, 1974). Two families of corre-
sponding characteristics on the (x, t) plane are deter-
mined by the equations

dx dx=2(p —a), =2(p +a) .
dt

(9.69)

Evolution of a and p along the characteristics is governed
by the ordinary difFerential equations

Inserting Eqs. (9.74) —(9.76) into Eq. (2.48), we can cast
the integral

M„—:f dx I [/"'(x, ii„)] (e,u +2e3lul u)

—[y"'(x,g„)]'(e,u*+2e3lul'u') j (9.77)

in Eq. (2.48) into the form
x&(q„)

M„=—(const) f dx u (x)[lu (x)l —il„]
1 ~n

X [e,+2~, lu (x)I']
&

(9.78)

where the points x, 2(il„) are determined by the equation

I
u (x) I

=vl„. In the logarithmic approximation, i.e.,
regarding 1n(lil„) as a large parameter [see Eq. (9.73)]
and neglecting corrections of the relative order
—[ln(lil„)] ', the integral (9.78) can be readily simpli-
fied to

(2a —p) = —2@|a—2e3a —2ezap

(2a +p) = —2e,a —2e3a —2e,apz .

(9.70)

(9.71)

M„=—(const) (e, +2e3il„)
x&( vp„)

x f dx u (x)[lu (x)l' —il'. ]
1 ~n

(9.79)

Equations (9.69)—(9.71) solve, in principle, the evolution
problem for the NSE( —

) quasiclassical wave packet.
For NSE(+) the system of Eqs. (9.67) and (9.68) is el-

liptic. However, in this case one can employ IST pertur-
bation theory. According to Zakharov et al. (1980), un-
der the condition

Now let us note that the adiabatic invariant theorem ap-
plied in the Sec. IX.A to the occupation numbers of a

10The semiclassical approximation for the Zakharov-Shabat
linear system X%=A% with the operator f given by Eq. (2.27)
has been developed in detail by Lewis (1985).
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small-amplitude nonsoliton wave packet may, as well, be
applied to solitons, for which the action variables are the
quantities 4'„(Bullough et al. , 1982). Thus, at e3=0,
the evolution equation for the amplitudes g„averaged
over the rapid phase oscillations reduces to [cf. Eq.
(9.14)]

'9n = 2&i'9n . (9.80)

According to Eq. (9.79), for e&WO the dissipation con-
stant e, in Eq. (9.80) should be replaced by the effective
constant (e, ),s—=e, +2eiil„, and the final equation for rl„
takes the form (in the logarithmic approximation)

u (x =0)= —(e/2)cos(cot), (9.84)

subject to the additional constraint

where the amplitude (e/2) of the drive is, in general, a
sum of two terms accounting for injection of an ac bias
current (with frequency co) into the junction through the
edge x =0, and/or an external ac magnetic field (with the
same frequency co) applied to the junction.

Equations (9.83) and (9.84) are equivalent to the per-
turbed SG equation

u« —u „+sinu = —y u, +e5(x)cos(cot),

lxl (, (9.85)

d il„=—2(e, +2ei7l„)g„. (9.81) u( —x)—=u(x) . (9.86)

It is opportune to note here that, according to Eq.
(3.2la), the amplitude of an isolated soliton varies in time
under the action of dissipation according to the same
equation (9.80) if e2=e3=0. However, if @3%0, the evo-
lution equation for the one-soliton amplitude ensuing
from Eq. (3.21a),

dI;
il = —2g( e, + —"e2g2), (9.82)

D. Resonant absorption of energy
by a semi-infinite Josephson junction

Interaction of an external radio-frequency field with a
semi-infinite damped Josephson junction occupying the
half-axis x ~ 0 is described by the perturbed SG equation

u« —u»+sinu = —yu„x &0,
with the boundary condition

does not coincide with Eq. (9.81). The difFerence between
Eq. (9.81) and Eq. (9.82) is stipulated by the overlapping
of a given soliton with other solitons inside the "semiclas-
sical" wave packet.

I.et us note that if we considered, instead of Eq. (9.1), a
NS equation with a conservative perturbation [e.g., with
the term elul u describing the higher nonlinear disper-
sion], the integral analogous to M„[see Eqs. (9.77) and
(9.78)] would be equal to zero, while the contribution
from the same conservative perturbation to the quasilin-
ear equations (9.67) and (9.68) for the NSE( —) would be
diferent from zero.

The study of the evolution of a "semiclassical" wave
packet is also meaningful for the perturbed KdV equa-
tion (9.3). It is natural to take as a zero-order approxi-
mation an exact multiphase solution. General equations
describing the evolution of parameters of that solution
under the action of dissipation have been derived by
Krichever (1988). Note that evolution of a one-phase
(Whitham's) wave packet in the E d V equation under the
action of dissipation has been studied in detail in numeri-
cal simulations of Avilov et al. (1987).

It has been demonstrated by Glsen and Samuelsen
(1986b) that under the condition ate&1 the model (9.85)
and (9.86) admits hysteresis: there may be two stable
states, one corresponding to small-amplitude quasilinear
plasma oscillations with the frequency co, another corre-
sponding to oscillations of a fluxon (magnetic quantum
flux) pinned by the edge of the junction. Due to the con-
dition (9.86), an oscillating pinned fluxon is approximate-
ly described by a breather solution of the unperturbed SG
equation.

The aim of the present section is to find, following
Malomed (1987i), the rate of energy absorption by a
semi-infinite Josephson junction in the near-resonant
case,

co = 1 +0, l
II

l
« 1, (9.87)

a 0
=8( k —2Q —y /4k ), (9.89)

and the wave number k is determined by the equation

32(k ) —640(k ) —e (k ) —16Qy (k )
—2y~=O

(9.90)

[recall that II:—to —1, IIII(&1]. In what follows, we
shall confine our attention to the case of weak dissipa-
tion, y«maxI lel, lQlI. Then the roots of Eq. (9.90)
may be approximately written as

k =0++0 +e /32

k223 =( —80++640 2e )y /e—

(9.91)

(9.92)

when the external drive frequency ~ is close to the
junction's plasmas frequency mo=jl, and the results of
Samuelsen and Qlsen (1986b) are inapplicable. We shall
also consider the case in which the external drive con-
tains both dc and near-resonant ac components.

The external drive supports a small-amplitude plasma
wave, which can be represented in the form

u (x t)=a e r' ' "sin(cot —klxl+5„, )+O(ao),
(9.88)

where 5,=tan '(y/2k ),
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(There is also a fourth root, the twin to k„which is al-

ways negative. ) The roots k2 3 are positive provided

Q &Q,„,=——I~I/4y'z . (9.93)

According to Eq. (9.89), the corresponding values of the
squared amplitude are

(ao)(=8( —Q++Q +e /32), (9.94)

(ao)2 3=2[—8Q+e /(8Q++64Q —2e )] . (9.95)

The dependence of the squared wave number and ampli-
tude on the resonance frequency detuning Q is shown in
Fig. 45. The intermediate branch k2(Q), (ao)2(Q) corre-
sponding to an unstable solution, is depicted by a dashed
line in Fig. 45.

At Q~ ~ (in fact, at Q && Ie I ), we have the single root

u„&(x,t)=(e/2+1 —co )exp( —+I—co Ixl)cos(cot) .

(9.101)

dt o
=y I u, (x)dx, (9.102)

or as the energy fiux carried by the traveling wave (9.88)
at the point x =0 (Malomed, 1987d, 1987i),

(9.103)

Let us proceed to evaluation of the absorption rate of
external field energy by the semi-infinite Josephson junc-
tion. For the plasma-wave solution (9.88), this quantity
can be found in two diferent ways: as the energy absorp-
tion rate proper (Olsen and Samuelsen, 1986b),

k, =2Q, (a o), =e /8 . (9.96) where V, =k /~ is the group velocity of the plasma wave
and

In this limit, the solution (9.88) goes over into the non-
resonant driven plasma wave & I &

= &-'u'+-'u'+(1 —cosu) & (9.104)

k) =~'/641QI, (uo)i.——16IQI+~'/8IQI, (9.98)

k2 =16IQly'«', (uo)2=16IQI —e'/8IQI, (9.99)

u &(x, t) =(e/2)/co 1)exp( ——a Ixl )

X sin( cot —+co —1 I x I ),
where z:—yco/2+co —1. In the opposite limiting case
Q &0, IQI » Iel, Eqs. (9.91), (9.92), (9.94), and (9.95) take
the asymptotic form

dE —2Qo (9.105)

Equations (9.102) and (9.105) yield the same final ex-
pressions for the energy absorption rate: For the solution
(9.91) and (9.94),

is the SG Hamiltonian density, with the angular brackets
in Eqs. (9.103) and (9.104) standing for time averaging.
In the lowest approximation, inserting Eq. (9.88) into Eq.
(9.103) yields

k', =y'/8IQI, (a';), =~'/8IQI . (9.100)

T

=(lel/&2)(+Q +e /32 —Q)' (9.106)
dt

In this limit, the solution (9.88) and (9.98) goes over into
the nonresonant breatherlike equilibrium solution, while
Eq. (9.88), with k and aD from Eqs. (9.100), recovers the
nonresonant smaH-amplitude plasma oscillation solution
(Olsen and Samuelsen, 1986b)

and for (9.92) and (9.95),

=(2y/Iel)( —Q++Q —e /32) i
dt

(9.107)

K

Note that, when y=O, the expression (9.107) becomes
zero, while the one (9.106) remains finite. In this case,
the absorbed energy is not dissipated, but expanded on
the generation of a plasma wave emitted by the edge of
the junction. The same pertains to the nonresonant
driven plasma oscillations: For the nonwave solution
(9.101) (co & 1), Eq. (9.102) yields

K
2
ehr

I

'0
Qehf

(0) &b)

"ee

dE
dt

=-y(@co/4) (1—aP) (9.108)

FIG. 45. The dependence of (a) the plane wave's squared wave
number k and (b) the plane wave's squared amplitude ao on the
resonance frequency detuning for the model (9.83) and (9.84).
The numbers 1, 2, and 3 refer to the three branches determined
by Eqs. (9.91), (9.92), (9.94), and (9.95). The threshold value of
the detuning Q,I„separating the nonhysteretic region from the
hysteretic one is given by Eq. (9.93), and, according to Eqs.
(9.91) and (9.95), (ao),„,=v riel, (k'),„„=&Zy'/Iel.

while for the wavelike one (9.97) (co & 1) both Eq. (9.102)
and Eqs. (9.103), (9.104) yield

dE =e co/8+co —1 .
dt

(9.109)

In the limit y=0, the absorption rate (9.108) vanishes,
while (9.109) remains finite.

Let us brieAy consider a generalization of the above re-
sults for the case when the external drive contains both
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ieoi'»8e . (9.111)

A plasma-wave solution to Eq. (9.110) is sought in the
form

u (x, t) =(eo/2)e ~"~+a (x)sin[tot —P(x)] . (9.112)

Inserting Eq. (9.112} into Eq. (9.110) yields a system of
two equations,

a +2Qa —a/2+ a + 'go~ac 2~~~=0,

aP „+2a„g +ya =0 .

(9.113)

(9.114}

Due to Eq. (9.111),at ~x~ &&1 a relevant solution to Eqs.
(9.113)and (9.114) may be taken in the form of Eq. (9.88),
where ao is related to k according to Eq. (9.89). At

a (x) =aoexp[(eo/32)e
—

I l]

((}(x)=P +k~x~,
(9.115)

with the same ao and k. Inserting Eqs. (9.115) and (9.89)
into the boundary condition u (x =0)= —

—,
' [eo

+icos(cot)] [cf. Eq. (9.84)] yields, in the lowest approxi-
mation, the equation for k:

"(k2—2Q —y'/4k~)-~ =.2/8+32k~ (9.116)

and the expression tango= —eo/16k. In the limit y ~0,
the physical root (k»0 of Eq. (9.116) takes the form
(Fig. 46)

k (Q)=
—,', I 64Q —eo/8+ [(64Q+ eo/8 ) + 128m ]' ~ I,

Q» —4e /eo, (9.117)

0, Q& —4e /eo.

In this limit, the dependence ao(Q) resulting from substi-
tuting Eq. (9.117) into Eq. (9.89) is (Fig. 46)

dc and near-resonant ac components, i.e., the driven
semi-in6nite Josephson junction is described by the equa-
tion [cf. Eq. (9.85)]

u« —u„„+sinu = —yu, + [ec+ecos(cot)]5(x), (9.110)

where, as above, co=l+Q, ~Q~ &&1. We want to look at
the case when the dc component is relatively strong,

—,
'

I [(64Q+e20/8) +128m ]' —(64Q+eo/8) J,
ao(Q)= Q» —4e /eo, (9.118)

64m /ep, 0& —4e /ez .

In the same approximation one can readily find ihe ener-

gy absorption rate, substituting Eqs. (9.117) and (9.118)
into Eq. (9.105). If one retains corrections -y to the
above expressions, the breaks in the dependences (9.117)
and (9.118) (Fig. 46) get smoothed; however, in any case,
the presence of the relatively large dc component in the
external drive removes the hysteresis, as can be seen by
comparing Figs. 46 and 45.

E. Variational approach to propagation
of a nonsoliton pulse in the unperturbed
nonlinear Schrodinger equation

In the theory of nonlinear optical fibers described by
the NS equation, an important problem is the evolution
of an initial pulse

u (O, x) =Nosechx exp(ibox ), (9.119)

where bo is the so-called chirp parameter (Anderson,
Lisak, and Reichel, 1988). A significant difficulty stems
from the fact that the direct scattering problem for the
unperturbed NS equation with the initial condition
(9.119) cannot be solved exactly, unless bo is zero. A
"semiclassical" approach to this direct scattering prob-
lem was developed by Lewis (1985); her approach aimed
at ending a threshold for the birth of a soliton from the
chirped pulse (9.119). Anderson, Lisak, and Reichel
(1988) have put forward another approach based on vari-
ational methods. Although it was applied to the unper-
turbed NS equation, it seems pertinent to give here their
basic ideas.

They look for a solution in a form that ignores separa-
tion of the solitonic and radiative components of the
wave field:

u (t, x) =N(t) exp[ib (t)x ]sech[x/a (t)] . (9.120)

Insertion of the assumed wave. form (9.120) into the La-
grangian for the unperturbed NS equation and applica-
tion of a direct variational procedure yield the evolution
equation for the parameter a (t),

K
2

00

22
) ——

da
dt

2 24Xo
(a —1)— (a —1) 2bo, —2

m2 m2

(9.121)

(0)

04 /4
2 4

0
0 (2 /~) 2

0

(b)

and three separate equations for other parameters defined
by Eq. (9.120):

b (t) =— lna (t), ~N (t)
~
=Noa (t),1 d

2 dt
(9.122}

FIG. 46. The dependences {a) k (Q) and (b) ao(Q) for y —+0 in
the madel (9.110). The condition (9.111)is assumed to hold. dt

arg% = ——'a +—'X()a
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X. SEMICLASSICAL QUANTIZATION
OF PERTURBED SOLITONS

As is often emphasized, in the first order in perturba-
tion theory a soliton seems like a classical particle in an
external field (Kaup and Newell, 1978a). This analogy
can be extended to incorporate the simplest quantum
effects. Semiclassical (WKB) quantization of time-
periodic solutions of classical wave equations (in particu-
lar, of the SG equation) is based on the Bohr-Sommerfeld
quantization rule,

f dt f dx u, (x, t)=2nny, (10.1)

where T is a period of the solution, n is a large quantum
number, and y is a small coupling constant (as usual, we
set A'=1) (Rajaraman, 1982). Following these ideas, in
this section we shall consider quantization problems both
for a pinned oscillating kink and for a small-amplitude
breather with internal oscillations in the presence of a
perturbation. Moreover, we shall offer (also from a semi-
classical viewpoint) an interpretation of classical energy
emission rates (discussed in the preceding sections) as
finite widths of quantized solitonic levels.

As far as we know, perturbation-induced corrections
to SG soliton quantum spectra have been considered only
by the present authors (Malomed, 1987d, 1987e; Kivshar
and Malomed, 1988b). However, the problem of calcu-
lating a probability for perturbation-induced under-
barrier decay of a weakly bound (low-frequency) breather
into a kink-antikink pair has been widely studied (e.g.,
Coleman, 1977; Maki, 1977; Sitar and Chang, 1978;
Katz, 1978; Krive and Rozhavskii, 1980). In the lowest
approximation, one may solve this problem by consider-
ing the two kinks as a pair of bound particles, i.e., the de-
cay probability P is

Anderson, Lisak, and Reichel (1988) have demonstrated
that agreement between the results obtained from Eqs.
(9.120)—(9.122) and numerical data is good. They have
also proposed a "phenomenological" method to separate
solitonic and radiative components contained in the
broadening pulse (9.120). It is clear that the variational
approach can be readily generalized to take account of
possible perturbative terms in the NS equation.

A. Quantization of a pinned kink

Let us now consider quantization of the law of motion
(5.47) of a pinned kink oscillating near an attractive inho-
mogeneity. In the particlelike approximation, a kink is
equivalent to a particle moving in the potential wall
U(g)= —2esech g. The quantized levels of the renor-
malized energy E =E/—y are well known (see, for exam-
ple, Landau and Lifshitz, 1974):

T 2

E„=—&2e-—(p) 1 — np
y 4

where y is the same nondimensional coupling constant as
in Eq. (10.1). However, the analogy between a kink and a
particle is not exact. It is violated if one takes into ac-
count perturbation-induced corrections to the form of
the kink,

u =u' '+u"' (10.3)

where uk
' is the kink's wave form (2.61a) valid in the

adiabatic approximation. According to Kivshar (1984)
(see also Kosevich and Kivshar, 1982), the correction is
determined by the general formula

u"'= ——f (A, —
—,'+iA, tanhz)(A, + —,')

7T

X b (A, , t)exp[i (A, —I /4A, )x ], (10.4)

. M(A, , t) ie(~2+, )
2 . ~+ 1

dt 4 ' 4A,

X (tanhg/cosh/)(A, —,'+i At—hen) .,

(10.5)
After inserting the law of motion (5.47) into Eq. (10.5), it
is natural to single out two qualitatively different parts on
the right-hand side. The first, which we shall call the
nonresonant component, yields the oscillating part of
b(A, , t),

b (A, , t) = —,'erik(A+—,') , (I, —,'+i i, t——hen),

provided (dg/dt) «1, where z =x —g and b (A, t) is t, he
Jost coe%cient defined in Sec. II.D. For the perturbation
(1.19), evolution of the function

8 (1,, t) —=b (A, , t)exp[i (A, + 1/4A, )t]

is determined by an equation that follows from Eq. (2.72):

P-exp( —S/y), X ( tanhg/cosh/), (10.6)

where S is an effective classical action for the correspond-
ing trajectory of the under-barrier tunneling. Recently,
Krive, Malomed, and Rozhavsky (1989) have considered
the problem of creation of kink-antikink pairs by an
external field in an inhomogeneous SG model, e.g. , the
one (3.76) (with a )&1). It has beeen demonstrated that,
at e 1, the lattice of inhomogeneities strongly facilitates
the pair creation, and at suKciently large e the creation
rate ceases to be exponentially small. z=x —g, (10.7)

which determines the correction u "' to the kink form via
Eq. (10.4) (Kivshar, 1984),

eo sinhg

2 coshz cosh g

X [8(x)(1—e 'coshz —e ~coshg+x)

+0( —x)(1—e'coshz —e ~cosh/ —x)],
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where 8(x) is the Heaviside step function. The second
part of Eq. (10.5) yields a secular term. In fact, it gives
rise to the emission of radiation. Inserting the corrected
kink wave form with regard to Eqs. (10.7) into (10.4), and
then Eq. (10.4) into the semiclassical quantization rule
(10.1), we find (Kivshar and Malomed, 1988b)

Above we dealt with a quiescent breather. However,
in the limiting case (6.145) the asymptotic approach
developed in Sec. VI.H.2 can be generalized to describe
small oscillations of a breather near an inhomogeneity.
These oscillations will be called external to distinguish
them from the internal oscillations of the breather. A
corresponding solution u (x, t) has the form

y n =4(V2e —V'E )+E'"F(v'2e/E ),
where

F(x)=1—x+x /4 ——(4x —I)(/x —1
2

(10.8) u (x, t) =41JJsech(p~ ~x~+QJ )cos(cot), j =1,2,

where j=1 for x&0, and j=2 for x&0,

pj =e cosh/1 /(sinhP, +sinh(t z),

(10.14)

(10.15)

+—x ln(x++xz —1) . (10.9)

Equation (10.8) can be rewritten in a form that explicitly
separates the quantum-mechanical spectrum (10.2) and a
small field correction to it

E(0)+E(1)
n n n

E( ) ~(E(0))zP[(2 / E(0))i/z]
tl 2 n n

(10.10)

I (n, m)=W /2([1/'(/E ]+m+1)co= W (10.11)

The semiclassical formula (10.11) is applicable provided
An «n. For the present problem, this condition means
e»y/4.

From the semiclassical viewpoint, the expression for
the partial energy emission rates 8' given in Sec. VI.E
[see Eq. (6.93)], with E replaced by E„' 'y, determines the
rate I (n, m) of the radiative transition from the nth
quantized level to the level with number
n —2([1/")/E ]+m +1):n bn:— —

and the parameters P are specified below.
Small oscillations of a breather near an inhomogeneity

can be described by setting (t')i z=P+P(t), f«P, where P
is a constant and 1t) is a slowly varying function of time.
Inserting this into Eq. (10.15), we obtain expansion for

p~ '.

p ——=+—tanhg+e(1+/)e ~+O(eitj e ~)1,2 2 2

(10.16)

[recall that, due to the limit specified by Eq. (6.145),
exp( —2P) = (p —e/2) /e is a small quantity].

The underlying SG equation with the perturbation
(1.19) corresponds to the following Lagrangian expanded
in powers of the wave field up to u terms:

I = ,' I —dx[u,—u —u + —,', u +eu 5(x)] . (10.17)

Inserting Eqs. (10.14), (10.16), and (6.133) into the La-
grangian (10.17) yields the expression for the effective po-
tential energy U(f) of the small external oscillations
averaged over the rapid internal oscillations:

B. Quantization of a breather
U(g)=12e g e (10.18)

1. A pinned breather

—p(o)+ p(1) (10.12)

In Sec. VI.H.2 we described a small-amplitude breath-
er strongly distorted due to the presence of the perturba-
tion (1.19). Inserting the breather's wave form (6.136)
and (6.137) into the Bohr-Sommerfeld quantization rule
(10.1), we find the spectrum

To find the efFective kinetic energy T, we note that
differentiating Eq. (10.16) yields, in the lowest approxi-
mation, dp/dt =(e/2)dgldt Insertin. g this into the La-
grangian (10.17) brings us to the averaged expression

T -4~e —4 d 2b
(10.19)

dt

Using Eqs. (10.18) and (10.19), we immediately find the
frequency y of the small external oscillations:

where (M(„)=y n /16+ e/2, and
~2 3~2

—2(t) (10.20)

The expansion (10.12) is relevant provided 1 « n «p
As to the emission power (6.144), from the semiclassi-

cal viewpoint it gives the finite width of the discrete lev-
els (10.12) stipulated by the possibility of radiative transi-
tion n ~n —3, the transition rate being I = 8'/3y [see
Eq. (10.11)].

Since, according to Eq. (10.16), exp( —2P) =(p e/2)!e, —
where p stands for the mean value of p-, which is the
same for j= 1 and 2, we may finally write Eq. (10.20) in
the form

E=3E p 2
(10.21)

It is important to note that, because Eq. (6.145) is the
limiting case, y «e . Indeed, the above consideration
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actually implies that pj(t) and P (t.) vary in time adiabat-
ically slowly over a background of rapid internal oscilla-
tions. One can verify that, within the accuracy to which
Eqs. (10.18) and (10.19) have been calculated, this as-
sumption is warranted simply by the condition g «e .
That is why a consideration of small external oscillations
can be performed self-consistently only for the limiting
case (6.145).

From the semiclassical viewpoint, the "external" osci1-
lations of a breather as a whole result in splitting of each
internal oscillation level (10.12) into a band of "finite-
structure" levels,

E„=n +my, (10.22)

where m is the quantum number of the external oscilla-
tions (in the semiclassical case I ))1). Accordingly,
each emission line corresponding to the radiative transi-
tion n ~n —3 between internal oscillation levels will ac-
quire "fine structure" corresponding to the radiation fre-
quencies 3+Amp, where each line of the "fine structure"
is generated by a transition (n, m)~(n —3, m —Am) be-
tween the split levels (10.22). These transitions may be
considered semiclassically provided Am « m,

In conclusion, we note that the analogous quantization
problem for external oscillations of a breather with p &&e

was considered by Malomed (1987d).

In the latter case [P =sin(u/2)j one should employ
the renormalized equation (6.110). The necessary correc-
tion is

U'"=120eiip sint sech (px),

which yields the correction to the spectrum

p'„"=—(5/2')e (yii)' .

(10.26)

(10.27)

Equations (10.25) and (10.27) are valid provided n ))1
and p„«1. It is clear that distortion of the breather's
spectrum by other perturbations, e.g., P =sin(2u), can be
considered quite analogously.

In the absence of perturbations, the breather's energy
levels are (Rajaraman, 1982) E„=(16/y) p~ ~, hence the
perturbation-induced shifts of the levels are E„"'

=(16/y)p'„". There also exist additional contributions
to E„"originating directly from the perturbation Hamil-
tonian, but for both perturbations considered the addi-
tional contributions are much smaller than those given
above.

Finally, the emission powers (6.109) and (6.112) with

p =p„may be interpreted from the semiclassical
viewpoint as the radiative transition rates I [see Eq.
(10.11)]. In the case (6.109), I 2= 8'2/(2y ) for the transi-
tion n ~n —2, and in the case (6.112), I'3= W3/(3y) for
the transition n —+n —3.

2. A breather in external fields

Let us consider how a small-amplitude breather's semi-
classical spectrum is perturbed by the terms e and
csin(u/2) on the right-hand side of the perturbed SG
equation. For the former term the calculations are
straightforward: using p «1, we expand the renormal-
ized perturbation (6.16) and the unperturbed part of the
SG equation to arrive at

U —U +U ——U+. =—U+3
tt xx 6 2

(10.23)

U( )+U( )+ (10.24)

Inserting Eq. (10.24) into Eq. (10.1) yields, in the first
nontrivial approximation,

p„= —(83/27X 16 )e (yn)

(o)+ (j)=Pn Pn (10.25)

where the second term is the perturbation-induced
correction to the spectrum of the small-amplitude breath-
er.

From (10.23) one easily obtains the perturbation-induced
correction to the form of the quiescent small-amplitude
breather [see Eq. (2.60)j:

U(x, t) =4p sint sech(px)+4ep [1—
—,'cos(2r)]sech (px)

+—", e p sint sech (px)+

Xl. QUASI-ONE-l3IMENSIONAL
SINE-GOR l3ON SOLITONS

A. Formulation of problems

The multidimensional SG equation

u„—Au +sinu =0

without extrinsic perturbations, where 6 is the two- or
three-dimensional Laplacian, is not integrable. [The sta-
tionary version of the two-dimensional SG equation,
—Au +sinu =—0, admits the so-called Hirota bilineariza-
tion. Due to this fact, the equation mentioned possesses
a number of nontrivial solutions. The simplest one is
u =4tan '[(e +e~)/(I+e"+~)] that describes a non-
linear superposition of orthogonal quasi-one-dimensional
kinks (Hirota, 1973).] At the same time, the time-
dependent two-dimensional SG equation is of evident in-
terest from the viewpoint of physical applications. [Two
applications, namely, large-area Josephson junctions and
axisymmetric magnetic domain walls, were discussed by
Maslov (1985).] That is why this equation has been a
subject of intensive studies (Olsen and Samuelsen, 1980,
1981; Christiansen and Lomdahl, 1981; Geicke, 1983,
1984; Maslov, 1985; Malomed, 1987c). The three-
dimensional case is of less significance for applied phys-
ics, but it is interesting as a field-theory model (Bogolyub-
skii and Makhan'kov, 1976, 1977).

In the rotationally symmetric two-dimensional case
and the spherically symmetric three-dimensional case,
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Eq. (11.1) takes the form

u« —u„„+sinu =(D/r)u„, (11.2)

where r is the radial coordinate and 3+1 is the spatia1
dimension. Because the characteristic length L, of a spa-
tial pattern described by Eq. (11.2) is small in comparison
with its characteristic radius R, the right-hand side of
Eq. (11.2) may be treated as a small perturbation, i.e., the
pattern itself may be regarded as quasi-one-dimensional.
Then it is natural to introduce the local coordinate
x =r —R, rewriting Eq. (11.2) in the form

u« —u „+sinu =(D/R)u (11.3)

where D /R plays the role of the small parameter e from
Eq. (11.1), and I' [u] is u„. Equation (11.3) possesses ap-
proximate solutions in the form of kinks (2.61a) and
breathers (2.63) with parameters slowly evolving in time
under the action of the perturbation. From the
viewpoint of the original multidimensional equation
(11.1), these solutions describe rotationally or spherically
symmetric quasi-one-dimensional solitons. They have
been studied both numerically and analytically by Bogo-
lyubskii and Makhan'kov (1976, 1977), Olsen and
Samuelsen (1980, 1981), Christiansen and Lomdahl
(1981),Geicke (1983, 1984), Maslov (1985), and Malomed
(1987c). In particular, it is well known that a kink col-
lapses (shrinks) under the action of "surface tension. "
According to the numerical results, the ultimate stage of
the kink's collapse is accompanied by intensive emission
of radiation (Bogolyubskii and Makhan'kov, 1977; Chris-
tiansen and Lomdahl, 1981; Geicke, 1983), so that after a
few reflections from the center the whole kink's energy is
transformed into radiation energy. It is interesting to
note that, according to results of numerical simulations,
in the two-dimensional case the reAection of a collapsing
annular kink from the center is very imperfect. In the
three-dimensional case the refIections seem suKciently
perfect, but with the pecularity that the kink is refIected
without the change ofpolarity. This fact was qualitatively
explained by Geicke (1983).

The decay of a shrinking kink into radiation is con-
sidered analytically in Sec. XI.B. It turns out that, some-
what unexpectedly, in the three-dimensional situation the
analytical approach based on the perturbation theory for
solitons is applicable during the entire collapse time if the
initial energy of the kink is large. In the two-dimensional
situation, the perturbative approach becomes invalid at
the terminal stage of the collapse; however, the duration
of that stage is exponenti. ally small. The opposite prob-
lem, i.e., expansion of a ringlike kink of small initial ra-
dius with sufficiently large initial energy, has been con-
sidered by Malomed (1987c).

Section XI.C is devoted to ringlike breathers. As is
known, the ultimate stage of their evolution may be ei-
ther contraction (shrinkage) or expansion, depending on
initial conditions [Olsen and Samuelsen (1980, 1981)].
An analytical criterion that enables us to distinguish be-
tween the two possibilities has been obtained by Maslov

(1985). Here we shall concentrate on a more subtle efFect
revealed in numerical experiments of Olsen and Samuel-
sen (1980, 1981), viz. , decay of a collapsing breather into
a kink-antikink pair. It is important to note that this de-
cay takes place long before the end of the shrinkage pro-
cess, so that after the decay two distinct kinklike and an-
tikinklike ring waves are well seen in the numerical data,
both shrinking independently. The evolution of a kink-
antikink pair originating from a decaying breather was
also investigated by Malomed (1987c).

As was mentioned above, real physical systems are de-
scribed by a SCs equation with extrinsic perturbations
eP [u], e.g. , with the dissipative term P = —u, . It is clear
that with decrease of R, i.e., at a sufticiently late stage in
the shrinkage of a ringlike soliton, this term is dominated
over by the eiFective perturbation (D/R)u from Eq.
(11.3). The same pertains to the majority of other extrin-
sic perturbations listed in Sec. I.B. However, in physical
problems one also encounters dissipative terms of the
difFusion type [see Eq. (1.16b)]. The SG equation with
this term is

u„—Au+ inu =ecru„e&(l . (11.4)

Unlike the usual dissipative perturbation, this one essen-
tially afFects the final stage of the shrinkage. The corre-
sponding problem is considered in Sec. XI.D. We infer
that a ringlike breather, shrinking in the presence of the
dissipative perturbation (11.4), ultimately assumes some
value po-1 of the amplitude p, where po is independent
of e. In Sec. XI.D, we also consider the collapse of a
ringlike soliton described by the NS equation with a dis-
sipative perturbation analogous to that in Eq. (11.4):

iu, +au+2~u~'u =ieau (11.5)

[see Eq. (1.8b)]. This problem is of interest in relation to
the Langmuir collapse problem in plasma physics (Za-
kharov, 1972; Budneva et al. , 1975).

Extrinsic perturbations that describe rotationally sym-
metric stationary external fields (in the two-dimensional
case), along with the perturbing term from Eq. (11.2),
may generate an efFective potential well to trap a ringlike
kink (Christiansen et al. , 1981). This kind of problem
was studied in detail by Maslov (1985). In Sec. XI.E we
brieQy review his results.

Finally, Sec. XI.F is devoted to an analysis of radiative
damping of small-amplitude long-wave oscillations of a
slightly bent quasi-one-dimensional kink.

The results put forth in Secs. XI.B—XI.D were ob-
tained (except for those explicitly attributed to other au-
thors) by Malomed (1987c).

B. Collapsing ringlike kink

1. Adiabatic approximation

Let us consider the kink (2.61) described by Eq. (11.3)
with the initial conditions V(0) =0, R (0)=Ra, where Ro
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is assumed to be large, Ro &&1. Using energy conserva-
tion and neglecting radiation e6'ecis, it is straightforward
to obtain a solution describing the shrinking kink (Glsen
and Samuelsen, 1980, 1981). In the two-dimensional case
(D= 1),

R =cocos(t/Ro), V =sin(t/Ro),

and in the three-dimensional case (D =2),

Z =Z,cn(v'2t/Z„l/&2), V'=1 —Z'/~', ,

(11.6)

(1 1.7)

where cn(z, 1/&2) stands for the elliptic cosine. It is ob-
vious that emission of radiation should become essential
at the final stage of the collapse, when R «E.o. Intro-
ducing the shifted time ~:=- t —to, where to is the moment
of collapse, one can simplify the solutions (11.6) and
(11.7) at the final stage:

1 —V=(r/R ) (11.8)

~=V'I —V'/Z —~r~a '/Z, .
- (11.9)

It is natural to suppose that the quantity e defined in Eq.
(11.9) must be an effective parameter of the perturbation
theory, and to base our consideration solely on the condi-
tion e &(1. Proceeding from the estimate (11.9), we
might expect this condition to be valid in the two-
dimensional case (D= 1) provided Ro ))1, and even to be

self-llllpl ovlllg ill tllc 'thl cc-dlmcnslonal case (D=2) .
As we shall. see below, taking emission into account
modifies these estimates.

where R = —r (the shifted time r takes negative values).
Tllc sollltloll (2.61R) CRI1 plovlclc Rn RpploxlIIlatc descrip-
tion of a ringlike kink if the kixik remains quasi-one-
dimensional, i.e., if its width I -+1—V" is much smaller
than R. According to Eq. (11.8),

sech(Irk+1 —V2) .
d 2R

"' (11.13)

To find the total amplitude of the emitted wave field,
which determines the radiation energy according to Eq.
(2.69), we should integrate Eq. (11.13) over time. Howev-
er, prior to performing the integration, w'e should take
into account the difFraction divergence of the circular (or
spherical) waves emitted by the ringlike kink. In order to
compensate for the divergence, we should integrate over
time the renormalized quantity

G8 D/2 d8
d'T

(11.14)

Next we substitute into Eqs. (11.13) and (11.14) R =
and the explicit dependence of Vl —V on r. In an ap-
proximation disregarding the energy emission, this
dependence has the form (11.8). We assume that the ra-
diative energy losses modify it as follows:

1 —V =(r /Ro) /C (r), (11.15)

where C(r) is a function depending not on r itself, but
solely on 1n(R 0 /r ). Inserting Eq. (11.15) into Eq.
(11.13) and Eq. (11.13) into Eq. (11.14), we calculate

dB(k) (11.16)

in the logarithmic approximation, i.e., regarding
in(R 0/r ) as a large parameter,

8(r, k)= Sv'CZD" /v'k, (11.17)

(negativeness of k implies that the energy is emitted pri-
marily backward relative to the kink's direction of
motion), and in the range k ))1 a calculation of the in-
'tcglal 1I1 Eq. (1 1.10) y1clds

2. Energy emission from a collapsing kink

In the present case, the general evolution equation
(2.72) of the perturbation theory for the emission prob-
lem takes the form

(D /4~ )
l(I,+ 1/@alt

S = g ( —1 )J(2j + I )
'~ =0.86 .

i=a
Using Eq. (2.69b) for the radiation energy spectral densi-
ty, one can find the total emitted energy as a function of
time:

X I dx u, I [/' ' (t, x;A, ) j —[P"' (t,x;A, )j ) . max
&, ( )=(4/ ) I„'"i&(,k)~'d~k~ .

min
(11.18)

(11.10)

The spatial integral in Eq. (11.10) can be calculated in a
general form; however, it considerably simplifies when we
are dealing with the final stage of the shrinkage, i.e.,
when 1 —V «1. Indeed, it will be seen below that in
this situation the radiation energy is concentrated in the
spectral range

(11.11)

As follows from the above, k;„—1 and k,„—(1—V )
' —C(r)(RD/r) . These estimates are sufficient

for calculating the integral over k with logarithmic accu-
racy. Inserting Eq. (11.17) into Eq. (11.18) yields

E, (r)=8~z~'CZDin

The corresponding wave-number range 1s

k—:P~
—I /4A, ——I /+ I —V (11.12) where

(11.19)
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8CRO+ S CRoln(RO/r )=8RO (11.20)

%'ithin logarithmic accuracy, we may drop the first term
on the left-hand side of Eq. (11.20) to arrive at

C =(2/D)l~l '/ln(RO/r ) (11.21)

Substituting Eq. (11.21) into Eq. (11.15), we obtain the
final result:

Vl —V =(D/2)lzl (lrl/Ro )in(RO/r ) . (11.22)

Accordingly, the share of the initial energy that remains
as the energy of the kink is

—
«

(11.23)

z:— —— +4i m
dx(4x —n ) dXX

(4x +m )cosh(x ) (4x +w )cosh(x )

Now we can write the energy balance equation, i.e., that
the kink energy plus the emitted energy are equal to the
initial energy of the kink. Using Eqs. (2.69) and (11.19),
we obtain

C. Decay of a collapsing ringlike breather

To describe decay of a breather, we need evolution
equations for its parameters. In general, we are deahng
with a breather moving with velocity V, see Eq. (2.63).
Maslov (1985) has derived equations averaged with
respect to the breather's internal oscillations for a mov-
ing breather in the laboratory reference frame. However,
here we find it more convenient to introduce a local
frame accompanying the breather. In the accompanying
coordinates, the breather is permanently quiescent, while
the perturbation on the right-hand side of Eq. (11.3} is
I.orenz transformed to

u„—u„+sinu = u + u, (11.25)
D VD

R 1 —V
'

R 1 —V

(we do not introduce new definitions for the transformed
coordinates x, t, since in what follows we shall not deal
with the laboratory coordinates). It is assumed that V) 0
in the case of shrinkage, 'i.e., that there will be inward
motion of the ringlike breather. The perturbation-
induced evolution equation for the parameter g from Eq.
(2.66} is

The results (11.22) and (11.23) are self-consistent as long
as the quantity e =I/I. —+ I ——V /R is small. Using Eq.
(11.22), we obtain the estimate

(11.24)

Here the difference between the two cases D= 2 and 1 is
evident. In the former case, e is a self-improving parame-
ter, i.e., it deer'eases when ~~0. In the latter case, e
ceases being small at exponentially small lrl, i.e., when
1n(RD/r ))Ro. Pursuant to Eq. (11.23), by that time
the kink retains a share of the initial eriergy c-Ro '.
The subsequent evolution of the two-dimensional (D= 1)
shrinking kink cannot be studied within the framework
of the perturbation theory, since the kink is no longer
quasi-one-dimensional. In this connection, it is pertinent
to mention the paper by Geicke (1983) in which the
difference between the collapse of three- and two-
dimensional ringlike kinks is discussed.

One should bear in mind that the perturbative ap-
proach developed here is not completely consistent, as we
do not take into account the inAuence of the perturbation
on the emitted waves. Actually, they might form a new
soliton. Indeed, refIection of a kink retaining a part of
the energy of the collapsing kink, and appearance of a
pulson localized near the origin have been observed in
numerical experiments by Bogolyubskii and Makhan'kov
(1976, 1977), Christiansen and Lomdahl (1981), and
Cxeicke (1983, 1984)." However, these phenomena can
scarcely be considered from the standpoint of perturba-
tion theory.

««It, is interesting that, according to those numerical data, in
the two-dimensional case the pulson is much more stable
against decay into radiation than in the three-dimensional case.

=—'}/1 —V [1—ln(T+Vl+ T }/TV1+ T ] .
dt R

(11.27)

Then, the evolution equation for the mean radius R,
which is always assumed to be measured in the laborato-
ry coordinates, is

dR z= —v/&1 —v,
dt

(11.28)

where we have taken into account the relativistic time
contraction in the moving reference frame. The half-
period of the breather's unperturbed internal oscillations
is, according to Eq. (2.66),

8=m. /g . (11.29)

As can be seen from Eqs. (11.26) and (2.66), during al-
most the entire half-period (11.29), when T -g and
the two kinks inside the breather are slightly overlapped,
the right-hand side of Eq. (11.26) is small, -g . The only
time this is not true is during the relatively short period
t —1, when T 51 and the internal kinks are strongly
overlapped. The evolution of g is dominated by that
small portion of the half-period (Malomed, 1985). On the
other hand, it follows from Eq. (4.13) that, as long as
T ( 1, we may set T= t Thus the chang. e 5(g ) of g per

2VDR
—

1( 1 V2) —1/2( 1 g2T2)( 1 + T2) —1

dt

X [1+in( T +V 1+T )/TV 1+T ] . (11.26)

Here T(t) is the variable defined in Eq. (4.6'). The
breather's velocity V (which now is the accompanying
frame's velocity relative to the laboratory frame) evolves
accolding to the 1elat1v1stlc velocity composition law:
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half-period (11.29) can be calculated as
n (r) =—I g(t')dr'=1 &, , t

7T 0
(11.40)

= —~'D V/R &1—V' . (11.30)

In contrast to g, the evolution of Vis contributed to by
the entire half-period, i.e., the change of V during the
half-period is

X=n(r )=(4/3~'"D)Rg". (11.41)

As follows from Eq. (11.41), the change 5go of go result-
ing in one additional half-oscillation is

The total number of half-oscillations performed during
the time (11.37) is

5V:—j dt =mD+ I —V /R g .
0 8t

(11.31) 8g, = (~'"D/2)(+g~ )-' (11.42)

g„+i
=g„rl D V—„/R,

V„+,= V„+m D /R g„+, .

(11.32)

(11.33)

Note that, proceeding from Eqs. (11.30) and (11.31) to
Eqs. (11.32) and (11.33), we presumed V„((1;this is the
case of most interest.

An estimate based on Eqs. (11.32) and (11.33) shows
that the number 1V of half-oscillations performed by the
breather prior to its decay is large provided

Therefore, designating as V„,g„ the values assumed by
the variables V and g by the end of the nth half-period,
we reduce the breather's dynamics to a discrete map en-
suing from Eqs. (11.30) and (11.31):

=2m D(+go/R) . (11.43)

The time of the last half-oscillation m /g„, [see Eq.
(11.29)] is added to the total decay time, and this incre-
ment is beyond the scope of the averaging method.
Nevertheless, for typical values g„,-Qg /0R the addi-
tional time t,~~—:m/g„„-R '

go
'~ is, due to the condi-

tion (11.34), much smaller than the time (11.37):

However, the breather's dynamics possesses an esseri-
tial peculiarity that is missed on averaging. According to
Eqs. (11.32) and (11.38), the residual value g'„s of the
quantity g corresponding to the last half-oscillation be-
fore decay lies within the interval

0 & g„,& ( g„s),„:(m D /—R ) VD

Rgo )) I . (11.34)
t ~ /tD —(Rgo ) '-X '(&1 . (11.44)

(=go (mD /4R —)r

V =(D/R)r .

(11.35)

(11.36)

As follows from Eq. (11.35), the moment of decay (i.e.,
that at which g becomes zero) is

tD=+go/rr(2R/D) . (11.37)

If, on the contrary, R go
& 1, then X- 1, and the decay

problem can be solved by iterating the transformation
(11.32) and (11.33). The resultant formula becomes intri-
cate even for %=3. The opposite case, when Eq. (11.34)
holds, i.e., 2V &)1, is of more interest since it is "typical. "
In this case, it seems natural to approximate the map
Eqs. (11.32) and (11.33) by difFerential equations treating
n as a continuous variable. This procedure eventually re-
covers the averaged equations of Maslov (1985). Solving
these equations is straightforward:

On the other hand, the estimate (11.44) is irrelevant for
sufficiently small values of g„,. If, for instance,

(vr D /4)—(/OR ) ('11.45)

the breather's lifetime is, on account of t,. ~~, at least two
times as large as the mean time (11.37). Thus we con-
clude that, with the relative "frequency"

~ =—0 res/( Pres)max

=(~'"D/8)(R g,'")= (6iV)-', (11.46)

initial conditions occur that correspond to long-lived
breathers. In other words, inside each interval (11.21),
corresponding to a given number X of complete half-
oscillations, there is a relatively narrow subinterval of
width Ago=A, go generating long-lived breathers.

Then, according to Eq. (11.36), the velocity at the mo-
ment of decay is

l3. Collapsing solitons in a dissipative medium

VD = V(t =tD) =2+$0/vr . (11.38)
3. A kink-antikink pair and a weakly bound breather

AR = —J Vdt =(2/riD)g, R «R .
0

(11.39)

The change of R during the time (11.37) is negligible:
As was explained in Sec. XI.A, significant physical in-

terest attaches to the dissipatively perturbed sine-Gordon
equation (11.4). First of all, let us write the evolution
equations for the velocity and mean radius of one kink (in
the laboratory coordinates):

Finally, the number n of complete half-oscillations treat-
ed as a quasicontinuous function of time is

dV D=—(1—V ) ——'eV,
dt R 3 (11.47)
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dR = —V
dt

(11.48) =
I (2D/4)( V/+1 —V )

The simplest way to derive Eqs. (11.47) and (11.48) is to
employ the energetic approach (Olsen and Samuelsen,
1981). Here, as in the preceding section, we assume V to
be positive for inward motion (shrinkage). The asymp-
totic form of the solution to Eqs. (11.47) and (11.48) at
the final stage of the shrinkage differs essentially from
that obtained by Olsen and Samuelsen (1980, 1981), and
Maslov (1985) for the unperturbed SG equation:

—(2e/3)[(1+2V )/(1 —V ) ]J(1+ZT )T

(11.53)

It can be verified that, as long as ZT ~ 1, the dissipative
term in Eq. (11.53) is immaterial. Therefore we shall
proceed directly to the case ZT ))1. Simplifying Eq.
(11.53) and using Eq. (11.51), we obtain

1 —V = ——', (2D —1) 'e~, (11.49)
Z-' = —-'(4D —3)lrl-'

87"
(11.54)

where we have again introduced the shifted time ~ dis-
cussed in Sec. XI.B (v&0). Note that, according to Eq.
(11.49),

+1—V /R -&e/v, (11.50)

where, as in the preceding section, we do not introduce
new definitions for the coordinates in the moving frames,
i.e., r (which again takes negative values) is hereafter un-
-derstood as the shifted time measured in the accompany-
ing reference frame.

In what follows, we shall consider a slightly overlap-
ping kink-antikink pair and a slightly bound breather.
As follows from Eq. (11.27), in both cases the law of
motion of the pair or breather approximately coincides
with that of a solitary kink, and the internal dynamics
(conversion of the breather into the pair and vice versa)
may be considered on the background of the kinklike
motion of the breather's or pair's center of mass. There-
fore, in what follows we use the law of motion (11.51).

The dissipative terms for right-hand side of Eq. (11.4),
being Lorenz transformed to the accompanying frame,
generate some new terms. The evolution equations for a
pair or a breather are dominated by the terms written
below:

D
Q~~ Qx +SlnQ

=e'(1 —V )
~ [(1+2V )u,„+V u, ,] .

(11.52)

As was mentioned in Sec. II.D, a solution of the unper-
turbed SCi equation describing a kink-antikink pair may
be obtained from the low-frequency breather solution
(2.66) by analytical continuation g +if In th—e pr.esent
case, the equation for the parameter Z = —

g derived, as
in Eq. (11.47), by means of the energetic approach is

i.e., the quasi-one-dimensional approximation is invalid
at very small times lrl & e.

Proceeding to a consideration of a kink-antikink pair,
we again find it convenient to employ the accompanying
reference frame instead of the laboratory frame. The law
of motion for a kink in an accompanying frame can be
easily obtained from Eqs. (11.49) and (11.28):

(11.51) where we assume 1 —V'«1. For the case of a weakly
bound breather, we may insert into Eq. (11.55) the solu-
tion (2.67). Straightforward calculations yield

5E~;„=—Srr e(1 —V ) (11.56)

At the same time, according to Eqs. (11.30) and (4.7), the
energy change (per half-period) due to the perturbation
(11.25) is

5E=8Dm /(R+1 —V ) . (11.57)

Thus, using Eq. (11.49), we can calculate the ratio

5E/5E~;„=2D/3(2D —1) . (11.58)

Clearly, both for D =1 and for D =2 this ratio is less
than one, i.e., the binding energy of the breather in-
creases under the combined action of the perturbations
(11.25) and (11.52).

2. A small-amplitude breather

As we have just demonstrated, in presence of the dissi-
pative perturbation (11.4), a collapsing weakly bound
breather undergoes "internal collapse" too: its binding
energy grows, or, in other words, its amplitude p [defined
in Eq. (2.62)] decreases. Thus there are two alternative
possibilities: the breather's internal collapse may develop
unrestrictedly, so that p —+0 when R —+0, or p may tend
to a finite limit value po & m /2. To treat this problem, we
shall consider here the case of p «1 [a small-amplitude
breather; see Eq. (2.65)]. Using an approach based on en-
ergy and momentum conservation, one can obtain equa-
tions for p and the breather's velocity V:

As can be seen from Eq. (11.54), for both cases D = 1 and
2, the quantity Z decreases with time. Moreover, due to
the divergence of f dr/v, it is clear that the pair will

eventually fuse into a breather.
The next natural step is to investigate the evolution of

a low-frequency breather in the presence of dissipation.
The dissipative energy loss per half-period of the
breather's oscillations can be found directly from Eq.
(11.52) and the SG Hamiltonian [see Eq. (2.69a)]:

5E~;„=—e(1 —V') ' f dr f dx(3g',„+g'„),
(11.55)
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dp~ =Dp/R —ep/(I —V ),d~
(11.59) d V 16D 2,4

d~ 3R
(11.63)

=(D/3R)p (1—V ) —e . (11.60) The equation for R is obvious:

The forrnal solution to Eqs. (11.59) and (11.60) is

1 —V2= er—/D, p =p,o =(3—/2D)(2D+1) . (11.61)

This solution has no direct meaning, as the value po does
not satisfy the underlying condition po«1. However,
Eq. (11.61) implies that if we take a breather with initial-
ly small amplitude p « 1, the amplitude will grow
despite the presence of the dissipation. This suggests
that, at the final stage of collapse, the amplitude of the
dissipatively damped breather assumes an asymptotically
constant nonzero value po. Since the ratio (11.58) and
the formal value (11.58) of po do not depend on e, it
seems likely that the genuine value of po does not depend
in e either. Therefore, the quasi-one-dimensionality con-
dition +I—V «R for a dissipatively damped breather
of a.general form is the same as that for a kink [see Eq.
(11.50)]: lrl «~.

To conclude this discussion of collapsing breathers, it
should be noted. that quasi-one-dimensional breather
solutions to the SG equation are unstable against trans-
verse perturbations (Ablowitz and Kodama, 1980), while
kinks are stable (Scott, 1976). For the decaying breathers
considered in Sec. XI.B, this instability is immaterial: it
is easy to estimate the characteristic development time of
the instability to be larger than the breather s dissocia-
tion time. However, for breathers with p-1, the insta-
bility is critical, and it will eventually break the rotation-
al (D =1) or spherical (D =2) symmetry of the problem.
Fimte curvature of the ringlike breathers does not re-
move their transverse instability. At the same time, the
dissipation considered above may stabilize the breathers
if the parameter e is of order one. Of course, perturba-
tion theory is not, strictly speaking, applicable to such a
situation, but we may hope that the perturbative ap-
proach is not quite irrelevant, even for e-1, since po
does not depend on e.

3. Collapse of a dissipatively damped
nonlinear Schrodinger soliton

dg D V
d~ R II6 3

Vg —8eg + (11.62)

A small-amplitude breather in the nonrelativistic case
(V «1) is equivalent to a NS soliton. In this sense, the
dissipatively damped NS equation (11.5) corresponds to
the dissipatively perturbed SCx equation (11.4). In addi-
tion to its relation to the SG equation, the multidimen-
sional NS equation has an even more important applica-
tion, namely, to the problem of Langmuir collapse in
plasma physics (Zakharov, 1972; Budneva et al. , 1975).

Evolution equations for the amplitude and velocity of
the NS soliton (2.41) resulting from the perturbed equa-
tion (11.5) take the form

dR
dt

(11.64)

(here the time r again is negative). It immediately fol-
lows from Eqs. (11.62) and (11.63) that

d
(

2 3 V2) ]g 2( 2 3 V2)
16 3 16

i.e., the quantity g —
—,', V tends to zero, and at the final

stage of the collapse we may set

2 —3 V2
16 (11.65)

Then Eqs. (11.62) and (11.63) reduce to one equation,
which, with regard to Eq. (11.64), can be written as

dV = —DV/R —eV 2

dR
(11.66)

The solution to Eqs. (11.66) and (11.64) is, for D =2,
V= —(eR ) ', R =&

,2r/e—; (11.67)

and for D =1,
V= —[16' In(RO/R )]

R =Q —4~/[e In(ro/r) ]
(11.68)

E. Ringlike solitons in external fields

As we have seen in Sec. XI.A, a ringlike kink described
by the pure multidimensional SG equation (11.1) always
collapses, and almost all of its energy turns into radia-
tion. The situation may alter due to the presence of ex-
trinsic perturbations in the SCx equation. Maslov (1985)
has considered the perturbed equation

(it is assumed that lrl « lrol, R «Ro
l
). The underlying

quasi-one-dimensional approximation is valid if the size
of the soliton is small compared with R. According to
Eq. (11.67), in the three-dimensional case the ratio

'/R -e is always small. In the two-dimensional case,
according to Eq. (11.68), 2) '/R —min(RO/R), i.e., the
approximation is violated at exponentially small R, when
ln(RO/R) ~ e

It is well known that the quasi-one-dimensional NS
soliton, like the SG breather, is unstable against trans-
verse "snakelike" perturbations (Zakharov and Ruben-
chik, 1973). Though in the present problem the collapse
takes finite time (in both perturbed and unperturbed
cases), one can ascertain that in either case the collapse
time is much larger than the characteristic time for de-
velopment of the instability. However, just as we did
when investigating the SG breather, we may expect the
dissipatively damped collapsing NS soliton to be stable if

Rev. Mod. Phys. , Vol. 61, No. 4, October 1989



Y. S. Kivshar and B. A. Malomed: Solitons in nearly integrable systems 893

a W(u)
u —Au+sinu =—

tt (11.69) PN 1 —b(1 —V ) I eR &
(1 V2)1/2 1 —b (1 V2)1/2

(11.78)

where W(u) stands for the density of a perturbation
Hamiltonian. Particular examples o6'ered by Maslov
(1985) are W' =f (a large-area Josephson junction
with uniformly distributed thermocurrent) and W'
= —h sin(u/2) (a weak magnetic field acting upon a
large-area quasi-two-dimensional weak ferromagnet).

For the general equation (11.69), Maslov (1985) has de-
rived the following adiabatic evolution equations for the
kink's velocity V and center-of-mass coordinate R:

D+1
Pg=— D Ps . (11.79)

peg =—ps
S

(11.80)

A kink that possesses the positive energy Ek )H, may ei-
ther expand monotonically to infinity or shrink monoton-
ically (see Fig. 47). The speed of expansion (shrinkage)
takes a minimum value at R =p~ ~,

1/(D + 1)

dV D 2= ——(1—V )+a(1—V )
2 3/2

dt R

=V[1+b(1—V )],dt

where

O +ooa:—— W'(uk )sechz dz,

(11.70)

(11.71)

(11.72)

If Ek &H„ the kink exhibits a return e6'ect: when R
reaches a certain value p;„(p,„), the shrinkage (expan-
sion) stops and changes to expansion (shrinkage). Kinks
possessing negative energy cannot collapse: their
minimum size is p;„)p, [Fig. 47(a)]. As follows from
Eq. (11.75), the quantities p;„,„are roots of the equa-
tion

g +co
b =— W'(uk )z sechz dz, (11.73)

R D+1 R 1 E
p, D p, D H,

(11.81)

and uk(z) is Eqs. (11.72) and (11.73) is the kink wave
form (2.61).

Calculation of the kink energy

Ek =2 m I r dr ,'(u, +—u„)+2sin —+ W(u)
pmin, max 1+ 1

kE
p, H,

(11.82)Ek &H, ;

Here the upper and lower signs correspond, respectively,
to p;„and p,„. Equation (11.81) yields for D = 1

]/2

yields

2D+' RD
(1 V2)1/2 b(1 V2)

V2)1/2 D + 1 E &HsK

(11.74)

Using Eqs. (11.70) and (11.71), it is easy to verify that
dEI, /dt =0. Therefore the phase trajectory equation
may be written as

Ek( V, R) =ED, (11.75)

where Eo is the initial energy of the kink. Following
Maslov (1985), we shall give a general qualitative descrip-
tion of the kink's motion ensuing from Eqs. (11.69),
(11.70), (11.74), and (11.75).

First let us consider the case a &0. In this case the
phase plane (V, R) has a singular point of the saddle type,
V= V, =0, R =p„where

V

, V

O&EK&H

Pma

K Hs

(a}

/
/

Pmin

0 &EK& Hs

&0

R

D D
p, =—(1 b)=——

a a
(11.76}

R

The saddle's separatrix is defined by Ek(V, R)=
where

(b)

r

1 —Q 2 +77 D
ps

It lies in the region of positive energies

(11.77)
FICx. 47. Phase trajectories of the radial motion of the ringlike
SCi kink described by Eqs. (11.74) and (11.75): (a) a&0; (b)
a & 0. The parameter a is defined by Eq. (11.72).
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for D =2

Pmln, max =
2

+COS
ps

2 1 k+ COS
3 3 H,

1/2

Pmln

0 & E„&H, , (11.83)
1/2

=-'+ cosh -'cosh ' 1—
2 HS

Pmax 1 k
cosh 3cos

ps H,

1/2

Ek &0 . (11.84)

When a &0 the energy Ek is always positive. This time
the phase plane has no stationary points [Fig. 47(b)];
however, formally we may again introduce the quantities

p, (which is negative now) and H, by Eqs. (11.76) and
(11.77). Then Eq. (11.81) keeps its validity. For D =1,
the quantity H, is negative, and p „is defined by Eq.
(11.82), where the upper sign should be chosen. For
D =2 (H, )0), one finds

F. Radiative damping of small long-wave flexural
oscillations of a quasi-one-dimensional kink

tt ~ex +SlnQ +yy (11.88)

is stable against two-dimensional perturbations (see, for
example, Scott, 1976; Newell, 1980). Therefore a reason-
able problem is to study long-wave oscillations of a
quasi-one-dimensional kink with a slightly bent "crest"
(Malomed, 1987h). A solution is looked for in the form
(2.61a) with g'=g(t, y) and V= V(t,y), where a charac-
teristic scale L, on which the functions g(y) and V(y)
vary, is sufBciently large, I. ))1. The evolution equa-
tions are

V, =(1—V )/@+VV g
(11.89)

As was mentioned above, a kink regarded as a quasi-
.one-dimensional solution to the two-dimensional SG
equation

2 cosh

Ek )H, . (11.86)

A small-amplitude standing-wave solution to Eqs. (11.89)
may be sought in the form

g(t, y) = g:-2„+,(t)sin[(2n +1)ky],
(11.90)

In the limit W~O, the stationary point (if any) goes to
infinity, and, proceeding from Eq. (11.75), one recovers
the earlier result of Samuelsen (1979):

D —~ D(1 V2 )
—i/2

Pmax 0 0 (11.87)

where Ro and Vo are the initial radius and velocity of an
expanding ringlike kink, and pmax is the maximum radius
at which the expansion changes to shrinkage. In the
above formulas, Eq. (11.87) corresponds to the limit
Ek/H ~0.

In a later paper, Maslov (1988) has considered extrinsic
perturbations of a more general form (explicitly depen-
dent of r), which admit, instead of the saddle point in the
(V, R) phase plane, a center, i.e., small oscillations of a
ringlike kink near a suitable equilibrium position. Such
oscillations have been revealed in a numerical experiment
by Christiansen et al. (1981).

Anisotropic (azimuthal) oscillations of an annular kink
in a rotationally symmetric potential well near the stable
equilibrium position R =R o can be analyzed too
(Malomed, 1989c). For the azimuthal disturbances
M (8)-cos(n 8), where 8 is the angular coordinate, and
n is an integer, the oscillation frequencies are
m„=coo+n Ro, coo being the frequency of the axisym-
metric oscillations found by Maslov (1988). Typically,
coo-R o

' ))R o . The quasi-one-dimensionality require-
ment imposes on n the restriction n «Ro. So, the az-
imuthal contribution to the oscillation frequency may be-
come significant at Ro «n «Ro.

The linearized equations (11.91) describe the small oscil-
lations

:-i=a cos(kt), Vi ==i, (11.92)

where a is an arbitrary small amplitude. The general
method developed in Sec. VI.E can be applied in a
straightforward manner to obtain the following estimate
for the power of the energy emission (per unit length of
the kink's "crest") which accompanies the small flexural
oscillations (11.90) and (11.92) JV-(ka)""" "
const-1. Note that, in the present case, the small pa-
rameter k plays the role of both e and w dealt with in Sec.
VI.E.

It is pertinent here to mention a similar problem for a
quasi-one-dimensional soliton of the exactly integrable
Kadomtsev-Petviashvili (KP) equation. Long-wave
Aexural oscillations of the soliton "crest" were con-
sidered in the adiabatic approximation by Ostrovskii and
Shrira (1976). Later, Shrira (1980) proposed an effective

V(t,y)= g V2„+,(t)sin[(2n+1)ky],
n=0

where k « 1. Inserting Eq. (11.90) into Eq. (11.89)
yields, in the lowest approximation, two equations,

dV1
1

k2~ +k2V2 ~1-1 ~

(11.91)
2= V1+ —,'k V, :-,+ V,

dt
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Burgers equation to describe the nonlinear long-wave
flexural oscillations. Pesenson (1983) evaluated an
effective coefticient of dissipation in that equation, ac-
counted for by the radiation losses.

The methods developed in the papers mentioned apply
not only to the KP equation, but, as well, to any admit-
ting a stable quasi-one-dimensional soliton. As concerns
the KP equation proper, Zakharov (1975) has obtained
an exact solution of the problem (including the emission
of radiation) by means of the IST.

It is noteworthy that, in contrast to Eq. (11.92) for the
SG kink, the emission power for the KP and allied soli-
tons performing Aexural oscillations is not exponentially
small. The reason is the absence of a gap in the spectrum
of linear waves described by the KP and allied equations.

In conclusion, let us mention a recent result of
Malomed (1989c) concerning a stationary shape of a
curved quasi-one-dimensional kink Inoving with a con-
stant velocity V under the action of an external drive
(1.17) or (1.21) [f(r)=1] and dissipation (1.16a). For an
arbitrary V from the interval V„& V & 1 [Vo is the equi-
librium velocity (3.47) or (3.48) of the driven one-
dimensional kink], there exists a stable U-like profile.
The angle o. between the velocity vector and asymptotes
of the profile is related to V as follows:
V = Vo(1+cot a). The interval Vo & V & 1 corresponds
to 0 & cot a & 4y/me [for the drive (1.17)]. For
cot a) 4y/7re, there exists a stable stationary X-shaped
profile moving with a velocity V& 1. The unperturbed
SG equation admits a similar "tachyonic" (V) 1) stable
solution produced by the substitution

u(x, y, t)=u(y, r=—( Vt —x)( V —1) '
) .

Xll. PERTURBATION THEORY FOR SOLITONS
OF THE LANDAU-LIFSHITZ EQUATION

A. Preliminary remarks

In this section we consider a number of problems relat-
ed to the dynamics of nonlinear magnetization waves in a
biaxial ferromagnet. The Landau-Lifshiftz (LL) equa-
tion, which describes the nonlinear dynamics in this mag-
netic system, is completely integrable by means of a
specific version of the IST based upon the Riemann prob-
lem. Therefore, a perturbation theory for the LL equa-
tion can be based upon this technique. A general ap-
proach to the analysis of perturbation-induced effects in a
biaxial ferromagnet resembles that developed above (see
Sec. II). We shall brielly describe the inverse scattering
transform for the LL equation and the perturbation
theory for it. As examples, we shall present a number of
problems that are interesting from a physical viewpoint.
These problems are related to the perturbed dynamics of
domain walls and magnetic soliions in a biaxial fer-
romagnet. All the dynamical processes considered in this
section find their analogs in the previous sections devoted

to perturbed NS and SG equations. It is necessary to
mention that, in many particular cases, the LL equation
degenerates into the NS and SG equations, as will be
shown below.

The perturbation theory for the LL equation describ-
ing a ferromagnet with a biaxial anisotropy was elaborat-
ed by Kivshar et al. (1985a, 1985b), and Kivshar, Kose-
vich, and Potemina (1986) [see also Potemina (1986) and
Kivshar (1989)].

B. Dynamical equations for the magnetization 5eld
in a ferromagnet

In the macroscopic theory of ferromagnetism, the
magnetic state of a crystal is described by the magnetiza-
tion vector M=(M„M2, M3), while dynamics and kinet-
ics of a ferromagnet are determined by variations of its
magnetization field.

The magnetization of a ferromagnet M(x, t) as a func-
tion of space coordinates and time is a solution of the LL
equation (Landau and Lifshitz, 193,5),

2@0—[MXH,s], (12.1)

where po is the Bohr magneton. The effective magnetic
field H,z is equal to the variational derivative of the mag-
netic crystal energy with respect to the vector M:
H,&= —6E/5M. The magnetic crystal energy E is as-
sumed to be a functional of M(x) and its spatial deriva-
tives. Different presentations of the function E for fer-
romagnets and antiferromagnets are discussed in detail in
the book by Akhiezer et al. (1967). Equation (12.1) has
an integral of motion (M ) ==MD=const, the angular
brackets standing for the spatial average. In the ground
state, the quantity Mo coincides with a so-called spon-
taneous magnetization M0=2pP'/a, where S is the
atomic spin and a is the interatomic spacing.

In general, the magnetic energy is E=E„,+E„where
E„is an exchange energy and E, is a magnetic anisotro-

py energy. Below we shall set

f ~ BM BMd3
k ~+k +k

(12.2)

If E, =O, a crystal is called an isotropic ferromagnet.
The anisotropy energy of a biaxial ferromagnet can be
written as

E, = —
—,'p, fM, d x ,'p3 fM—3—d x . (12.3)

In the limit P&=0 we have a uniaxial anisotropic fer-
romagnet: When p3 )0, the anisotropy is of the easy-axis
type, and when p3&0 it is of the easy-plane type. We
shall consider one-dimensional ferromagnetic systems
only.

If we measure the space coordinate x and time t in
units of lo—:(a/p3)' and coo '=(2pop3MQ/A') ', respec-
tively, .we obtain from Eqs. (12.1)—(12.3) the well-known
one-dimensional equation
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S, = [SX S ]+[SXJS]+eR(S) (12.4)

C. Inverse scattering transform
for the Landau-Lifshitz equation

First of all, let us briefly describe the IST technique for
the LL equation based on the Riemann problem. The
L-A pair for the LL equation (12.4) with e=O has been
found independently by Borovik (1979) and Sklyanin
(1979). They have also constructed a direct scattering
problem for the LL equation and have found an infinite
series of integrals of motion. The inverse scattering prob-
lem was solved with the aid of the Riemann problem by
Mikhailov (1982) and Rodin (1983) (see also Rodin,
1984). Recently the inverse scattering problem was for-
mulated by Borisov (1986) [see also Mikhalev (1989)] in
its classical form, i.e., in terms of equations of the Mar-
chenko type. To develop the perturbation theory, it is
convenient to use the IST based on the Riemann problem
(Kivshar et a/. , 1985a, 1985b).

for the normalized magnetization vector S=M(x, t) /Mo,
where the matrix J=diag(J„J2, J3) is related to the an-

isotropy constants. In particular, we may choose
J =diag(0, (, 1+(), where g—= ~P, ~P3 (f3, &0). Equation
(12.4) with e=O is exactly integrable by means of the IST
technique (Borovik, 1979; Sklyanin, 1979). The addition-
al terms (-e) on the right-hand side of Eq. (12.4) de-
scribe various perturbations, e.g. , magnetic impurities,
external fields, dissipative losses, etc.

It is important to note that the SG and NS equations
may also describe a magnetic system in a proper limit.
The SG equation can be obtained from the LL equation
in the limit J1 « J2 &J3, when the oscillations of the vec-
tor S are localized near the easy plane yz. Let us denote

Si = —p/R, S2 =+1 p /R —sing,

S3=+1—p /R cosy,

and x=&R y. Then, as R ))1, Eq. (12.4) with e=O
turns into the SG equation,

p, =
year

—
—,
' sin( 2y ),

if the combinations R (J3 —Jz), ( J3 —J, )/R, (J2 —J, )/R
in the limit E. » 1 take finite values equal to one.

In a similar way, the NS equation can be obtained
from Eq. (12.4) in the limit J, =J2 &(J3, when the oscil-
lations of the magnetization vector S are located in the
vicinity of the vacuum state S(x, t)=(0,0, 1). Let
g(x, r) =&8 exp(iyRr)(S, +iS2), t =&R r, and J3 —Ji

J3 J2 =yR . Then, in the limit R » 1, we obtain for
the complex function g the NS equation

iq, +y„.+(y/2)~q~'q=o.

Thus the LL equation is the most general exactly inte-
grable equation describing a one-dimensional ferromag-
net.

3
i —g b~(A)o+, &(S~) e ter

a,P, @=1

3
2—i+a (A, )So (12.6)

where e ~&& is the totally antisyrnmetric tensor,
o (a=1,2, 3) are the Pauli matrices, and w (A, ), a (A, ),
and b (A, ) are certain functions of the spectral parameter

They may be takeo in the form of elliptic functions
(Sklyanin, 1979),

w, (A ) =p ns(A, , k), w2(A. ) =p ds(A, , k ),
w3(A, ) =p cs(A, , k ),

(12.7)

where (0&k (1)
k =V (J2 —Ji ) /( J3 —Ji ),
p=-,'&J3 —Ji ~

(12.8)

The coefticients m include two parameters p and k iri-

stead of the three J, because adding a constant to all the
J does not change the equations of motion (12.4). Since
the coefficients w (A, ) are double-periodic functions of
the parameter A, ,

w (A, +4mK+4niK')=w (A, ),
it is sufhcient to consider A, inside the rectangular

fReg &2K, [lmz[&2K',

where K(k) is a complete elliptic integral of the first

kind, and K'(k)=K(+1 —k ).
There are two difFerent types of physical boundary

conditions for Eq. (12.4):

S(x, t) —+(0,0, 1) at x ~+ oo (12.9a)

or

S(x, t)~(0,0, +~) at x~+ao, (12.9b)

where ~=+1. Boundary conditions of the 6rst type cor-
respond to breatherlike solutions usually called magnetic
solitons. The second type distiriguish kinklike solutions
that are usually called domain walls in magnetic models.
In order to develop a perturbative technique for domain
walls, we present the IST formalism for the boundary
conditions (12.9b).

Let us introduce two fundamental eigenfunctions (Jost
functions) of the L operator (12.5) according to the
asymptotics [i~ is the same +1 as in Eq. (12.9b)]

The LL equation (12.4) with e=O may be represented
as a compatibility condition L, —A + [L, A ]=0 of two
equations for 2 X 2 matrices II(x, t; A, ):

3
O'„=L%, f= i—g w (A, )S o

a=1
(12.5)

%,=9%,
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lim 4'+(x, A, )=exp[ —icr3/cw3(A)x],
Q~+ oo

lim 4 (x,A)=, exp[io3Kw3(A)x]cr2

T(A, ) =
a(A, ) —b(A, )

'

b'(A, *) a'(A, ')
The Jost functions may be presented in the form (2.30)
and (2.31), where

f(x,k)=,. ~ 0 exp[ i/cw—,(A)x], , x~+ oo,
'P2

y(x, A, )—= ~ 0 exp[i/cw3(A, )x] . x~ —ao .

for the contours ImA, =O; Imi. =2E''. These functions
are connected by the transition matrix I/, (x, A, )

(x,k) T(A, ), where [cf. Eq. (2.33)]

It is possible to prove that these functions can be analyti-
cally continued into the domains R+ at K =1 or R+ at
~= —1, respectively, where

=IlRe, l
&2K,0&1m'&2K'I,

=
I lRe~l &2K, —2K'&Imp&0],

and the functions f+ are (4K, 4K') periodic. Hence the
function a(A, ) admits analytical continuation into
R+(/c= 1) or R (/c= —1)t.

If a ( A, ) vanishes at the points A, =A.ok (0 & ReA, ok
& 2K,

0 & /c Iml ok
& 2K'), a (A, ) also vanishes at the points

Ok 2K, k2k —A.ok +2sK', 3k Xok 2K +2lK',
At the zeros of a(A, ), the matrices f+ are degenerate, and
their columns are proportional to each other:

—2li~t{/3(A{)k )Xf+ (x ~ok ) bkf + (x ~ok )e

i.e.,

It is easy to prove that the following relations for
4+(x, A, ) are valid:

o 2++(x, A, )o 2
=4+(x, A,

*),
cr3%+(x, A)o 3=.+%'+(x, A, +2K),
cr 3II/+(x, A, )cr 3 =+'I/+(x, A,

* 2iK—),
which entails

a (A ) = —a(A+2K), a*(A ) = —a *(A,'+2iK'),

b(A)= b(A +2 K), b(A, )=b'(A, *+2iK') .

'p(x ~ok ) bk P(x ~Ok ) (12.12)

Aok(t)=kok(0)' a(X t)=a(A, 0)

b(A, , t) =b (A,, O)exp[ 4i/cw, (A)—w2(A, )t],
bk(t) =

b/, (o)exp[ —4i/cw ) (~ok )wp(~ok )t ] .

(12.13)

The magnetization field may be found from the relations
(Kivshar et al. , 1985a, 1985b)

The set of quantities ta(A, ), b(A), Ao.k, and bk, where
k =

I 1,2, . . . , XI, constitutes a complete and indepen-
dent set of scattering data. Its dependence on time can
be found from Eq. (12.6),

Following Mikhailov (1982) and Rodin (1983), we
define the functions

go~S =f+(x,O)o3f+'(x, O) (/c=+I), (12.14a)

f+ (x, A, ) =q/ (x, A, )T+ (A, )exp[i/cw3(A, )xo 3],
(12.10) g cr S = f (x, O)o.3f (x—, O) (/c= —1) . (12.14b)

a(A) 0
+' '= b*(~*) 1

a'(A, *) b(A, )
T (A)=

(12.11)

f (x, A, ) =exp[ —i/cw3(A )xo 3]T (A )%' (x,X),
on the contours I,=IX,:lRek,

l
&2K, ImA, =OI and

I ~
=

I ~:
l
Re~ I

& 2K, Imk, =2K' I. Here

So, the Cauchy problem is solved if the functions
f+(x,O) (/c= 1) or f (x,O) (/c= —1) are known.

It is important that a matrix which conjugates the
piecewise analytical solutions f+ along the contours I

& 2

can be represented in terms of the scattering data. It fol-
lows from Eqs. (12.10) and (12.11) that (Iml, =0)

f (x, X)f+(x, k, )=G(x, t;A, ),
(12.15)f (x, A, 2iK')f+(x, A—+2iK')=,G(x, t;g+2iK'),

where

b (A., t)exp[2i/cw3(A, )x ]

b (A, , t)exp[ —2i/cw3(A, )x]
(12.16)

This is a classical Riemann boundary problem on a
Riemann surface. In the present case, this surface is a
torus, since all the functions in Eqs. (12.15) and (12.16)
are double periodic.

I

The Riemann problem (12.15) and (12.16) may be
solved as follows (Mikhailov, 1982; Rodin, 1983; Kivshar
et al. , 1985a, 1985b, 1986). Let us represent a solution of
the Riemann problem as
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f+=f"+f+ f =—f f"— {12.17) After determination of f+, it is necessary to solve the
regular Riemann problem (detf 'i. %0),

Here f denotes a meromorphic function on a torus, and
f" is a solution of the regular Riemann problem
(detf"„%0). Then the problem splits into two separate
pairs: construction of f+ and f+. The functions f+ are
related to exact X-soliton solutions of the LL equation,
and f"+ describe excitations of a continuous spectrum
(spin waves). The former functions have been construct-
ed by Mikhailov (1982) and Rodin (1983, 1984) for the
boundary condition (12.9a). These functions have a stan-
dard polynomial representation. They may also be ob-
tained by the so-called "dressing method" (see, Borisov,
1983).

f' (l, lf"+(A, )=G(x, t;A, ), (12.18)

where

G(x, t;A)=f+(A)G(x, t;A, )[f+(A, )j

Using the Cauchy-type integral on a torus (see Kivshar
et al. , 1985a, 1985b, 1986; Kivshar, 1989), we reduce the
problem (12.18) and (12.19) to a Fredholm integral equa-
tion. For example, at K =1

,' f'+ (A, )[I—+G '(A, )]=fo+ —.I„dpIN, (p &)f+—(p)[I —G '(p)]+&~(p —&)cr,f+ (p)[I —G '(p)]cr3I,
Kl

(12.19)

where I =I &UI 2 and I is the unit matrix. The func-
tions X, (A, ) and X2(A, ) are kernels of the Cauchy repre-
sentations for the matrices f+(A, ). Their explicit form is

%, (A, ) = —,
' [ns(A, , k) +ds(A, , k) ][1+en(A, , k) ],

X~(A, ) = —,
' [ns(A, , k)+ ds(A, , k) ][cn(A, , k) —1] .

(12.20)

A similar integral equation can be obtained for the case
K — 1.

For subsequent calculations, it is important to relate
ihe physical quantities, e.g. , the energy, to the scattering
data. According to the IST formulas (Sklyanin, 1979),
the energy of the LL equation can be presented as fol-
lows:

I

where [, ] stands for the matrix commutator, S' '

stands for an unperturbed solution of the LL equation at
e=O, and the function f, (x,O)—:f+(x, A, ) —I can be
found from the Fredholm integral equation (12.19) and
(12.20):

f, (x,O)= — .f„dp[X,(p)G, (p)
1

2&l

+X (p2) r cG3, (p) r c]3.

Xi (p ) and X2 (p ) are defined in Eq. (12.21), and
Gi(p)—:G '(p) I [see Eq—. (12.18)]. The functions

G, ( p ) and f, are of order e.

E= 4ipica—'(A, =O) a(A, )

Using the expression for a(A, ),

lna (2, ) =lna, (A, )

+ . f dp cs(p AiicO—)ln,
—la(p)l

2&l 0

[where a, (A. ) is the soliton part of a {A,)], one can present
the radiation part of the energy E, in the form [cf. Eq.
(6.4)]

E, = f dA icosi(A)tc~(A)lb(A, t)12 .
&P 0

Equation (12.21) is used for calculation of radiation-
induced e8'ects in the perturbed LL equation.

First-order corrections S"' ( —e) to the magnetization
field can be found from Eqs. (12.14). After straightfor-
ward calculations, one can obtain (Kivshar et al. , 1985a,
1985b; Kivshar, 1989)

D. Perturbation-induced evolution equations
for scattering data

According to the general ideas of the perturbation
theory for solitons developed in Sec. II, for the perturbed
LL equation (12.4) we shall use the scattering-data repre-
sentation. The evolution equations for the scattering
data in the presence of perturbations can be presented as
follows [cf. Eqs. (2.7) and (2.8)]:

=[X,&oj+ef dx gR (S)- ', (12.23)

where X stands for any functional of scattering data, &
is the Hamiltonian of the unperturbed LL equation [Eq.
(12.4) with e=O], and [, I stands for the functional
Poisson brackets,

+~ 6F 56[F,GJ = — dx e,,k- Sk(x),

gS'"cr =rc f, ( Ox), QS' 'cr

e,"k being the totally antisymmetric tensor.
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Let us consider the full set of scattering data for the
LL equation. By means of direct calculations, one can
obtain the relation IX,&oI =(dXidt), o, which means
that the first term on the right-hand side of Eq. (12.23)

I

Ba(A., t) . + ~= —ie f dx WIQ(x, A, ),%(A, )y(x, k)I,
Bt oo

describes the unperturbed evolution of the scattering
data [see Eqs. (12.13)]. Calculating the variational
derivatives with the aid of the IST technique, we obtain
(Kivshar et al. , 1985a, 1985b, 1986; Kivshar, 1989)

(12.24)

Bb(k t) . . += —4i aw, (A ) w~(A ) b(A, , t) is—f dx WIR(A )y(x, &),Q(x, &)J, (12.25)

f dx W I P(x, A.k ),A(&k )y(x, A, k )],dt g (gk)

dbk Ef +co
4 +wi(~k )w2(~k )bk + i g f dx WIy (~k ) bk0 (~k )'+ ~k y x'~k )dt 0 Ak —co

(12.26)

(12.27)

where we have introduced the notation

3

%(A, )= g w (A, )R (S)cr (12.28)

for- the components of the perturbation vector. In Eqs.
(12.24) —(12.27), WI g, yI stands for the Wronskian

[in Eq. (12.32) we choose 2=diag(0, (,1+/)]. The pa-
rameter x =+1 is the polarity of the domain wall, and the
angle y (y =const in the case @=0)determines the orien-
tation of the magnetization vector S in the plane orthog-
onal to the anisotropy axis (0,0,1). According to Eq.
(12.31), the width of the domain wall is -g, and its ve-

locity is
WIN yI =detIP y)

= tP' "(x,A, )y"'(x, A, ) —y"'(x, A, )y' "(x,A. ),
irr(y) lrgsiny cosyVy=
P y) &I+g cos'y

(12.33)

and

y (X, )=[ay(x, ~)pa~], ,

(12.29) Simple calculations yield the energy En=2/(y) of the
domain wall. The dependences of the velocity V(y) and
energy Eo(y) are shown in Figs. 48(a) and 48(b), respec-

To calculate the variational derivatives in Eqs,
(12.24) —(12.27), we have employed the relations a(A, )
= WI f,y I and b (A, ) = WI y, @I.

Equations (12.24) —(12.29) are the perturbation-induced
evolution equations for the scattering data. They consti-
tute the basis of the soliton perturbation theory [cf. Eqs.
(2.23) —(2.26), (2.46)—(2.50), and (2.71)—(2.74) in Sec. II
for the KdV, NS, and SG equations].

E. Dynamics of a domain wall in the presence
of perturbations

1. Adiabatic equations for domain-wall parameters
and a correction to the domain-wall shape Vm

The one-soliton solution of the LL equation describes a
domain wall in a biaxial ferromagnet [S=(Si,S2,S3)],

5& +iS2 =e '~sech', S3 =K tanhz,

where

(12.30) ( b)

z =g(y)x ar(y)t =g(y—)[x —X(t)],
g(y)=—+1+icos y,
r(y) = —g siny cosy

(12.31)

(12.32a)

(12.32b)
FIG. 48. The energy (a) and velocity (b) of a domain wall [de-
scribed by Eqs. (12.30)—(12.33)] vs the orientation angle y.
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tively. It is important to note that the energy has a max-
imum E~=2&1+g at q&=0, which corresponds to the
energy of the Neel-type domain wall. A domain wall
with y=+m/2 is usually called a Bloch wall. Its energy
equals 2 in our notation. As is depicted in Fig. 48(b), the
function V(y) is monotonic.

The one-soliton solution (12.30) to Eq. (12.32) gives
rise to the Jost functions

E' +~
dz R (z)sechz,

2

zR (z)= V(g)— dz
dt 2g3(~) —~ coshz

R+(z)+ "dz .
2g(y) — sinhz

(12.39)

(12.40)

exP[ iw—3(A. )Kx ] ez/2
g, (x, A, ) = (12.34)

where

exp[iw3(A. )Kx ]
y, (x, A, ) =

&2 coshz
e

—z/2

a (A, )e'~ (12.35)

where a(A, ) is the Jost coefficient

w3(A, )K+ ig(y)/2
a(A, )= —w, (A, )cosy+ iw2(A, )sing

(12.36)

The function a(A, ) has two complex zeros, Az (k =1,2)
lying on the hne A, =2iK' and separated by the distance
2E. The zeros are roots of the equation

w3(Ak)= iKg(y)/—2, k =1,2 .

At A, =A, k the Jost functions are

(12.37)

exp[ —g(y)X/2]x, A.k &2 coshz

exp[/(y)X/2]
&2 coshz

(12.38)

and Eq. (12.12) is valid, b„=e xp[g(y) X] being the Jost
coeKcient of the discrete spectrum.

According to the basic idea of the perturbative tech-
nique based on the IST, we consider the domain wall's
parameters y and dX/dt as slowly varying functions of
time. Inserting Eqs. (12.34) —(12.38) into Eqs. (12.26) and
(12.27) yields the adiabatic equations for these parame-
ters:

(12.41)

dEO/dt =ef dx IR(S) [SXdS/dt]I,

which is equivalent to Eq. (12.39). To obtain corrections
to the adiabatic approximation, one should use the
perturbation-induced evolution equations (12.24) and
(12.25). For example, for the one-soliton solution, Eq.
(12.25) can be represented as follows (with accuracy up to
terms -e):

Bb(k, , t) 4i Kw, (A, )—wz(A, )b (A, , t )

where

+eU(A, ,y)e (12.42)

and the physical relation R S=0 is used.
The adiabatic equations (12.39) and (12.40) may also be

derived by means of direct perturbation theory similar to
that developed by McLaughlin and Scott (1978) for the
SG equation. For a ferromagnet with anisotropy of the
easy-axis type, the derivation has been performed by
Borovik et al. (1984) (see also Potemina, 1986, and Kiv-
shar, 1989).

Equation (12.39) governs the evolution of the domain-
wall energy. Indeed, Eq. (12.4) gives rise to the evolution
equation

U(A, ,y)= f dzta*(A. )e '[iw, (A, )R, (z) —w2(A, )R2(z)]
+a

2g(y)
2i ~zm3(A, )/g'(y)—a(A)e'[iw&(A, , )R &(z)+w2(k)R2(z)] —2iw3(A, )R3(z)Ie ' sechz . (12.43)

S'"=[AXS"'],
where

(12.44)

Kivshar et al. (1985a, 1985b, 1986) have calculated a
correction S'" to the domain-wall shape (12.30) with the
help of the Riemann problem. The result follows from
the general formula (12.22) and may be written

g3 =Re I b ( A, , t)exp[ 2i Kw3( A—, )x] ] .

(12.45b)

(12.45c)

g& + ig2 = ,'a (k) [b *—(A,, t )e'exp[2i Kw 3 (A, )x]

—b(A, , t)e 'exp[ —2iKw3(A, )x ] I sechz,

2k

,„dp w (p)g (p), (12.45a) The evolution of b(.i,, t) is described by Eq. (12.42) writ-
ten in the same approximation.
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2. Interaction of a domain wall with an inhomogeneity where

Let us consider interaction of the domain wall (12.30)
with a local magnetic inhomogeneity in the presence of a
magnetic field h =(0,0, h ) and dissipation. This problem
is described by the perturbation

eR(S)= [SXh]+y[S X S, ]

+eo[SX(f,(x)S„) ]+f2(x)[SXiS], (12.46)

G, (y)= —,'[(i, i—, )sin'y+(i, i—, )cos y],

lg l i P'(g)
G2(y, X)=

cosh [g(y)X

tanh[ g( y )X]—Gi pX
cosh [g(y)X]

(12.49)

+ =h yr(y) —~g(y)Gi—(g)dt cosh [g(y)X]
dX = —V(y)[1 —Gz(p, X)],

(12.47)

(12.48)

where y is the dissipation constant, f, (x) and f2(x)
characterize the inhomogeneity, and the diagonal matrix
i=diag(i„iz, i3) characterizes the infiuence of the inho-
mogeneity on the anisotropy constants. The case of a
slowly varying inhomogeneity was considered by Kivshar
et al. (1985a, 1985b; Kivshar, 1989), who showed that
energy emitted in the form of spin waves (linear magnetic
excitations) by a moving domain wall is exponentially
small.

For a local inhomogeneity one should take
fi(x)=f2(x)=5(x). Inserting the perturbation (12.46)
into the right-hand side of Eqs. (12.39) and (12.40) yields
a system of two adiabatic equations:

[for simplicity, we present results for the case @0=0only;
more general equations can be found in the paper of Kiv-
shar (1989)].

When h =0 and i, =i2 =i3 =0, the. dynamics of the
domain wall are rather simple: under the action of dissi-
pation, the parameter y changes from the initial value
y=O, which corresponds to the maximum energy [Fig.
48(a)], to a final value y=+m/2 corresponding to the
minimum energy. According to Fig. 48(b), the corre-
sponding initial and final values of the domain-wall veloc-
ity are zero, while at 0 ( t ( ao the velocity is not zero.

The stable solution in a dissipative system is a Bloch
domain wall corresponding to y=+vr/2. The Neel wall
is unstable. Under the action of a constant magnetic field
h=(0, 0, h), the steady-state motion of a domain wall is
characterized by the equilibrium velocity [cf. Eq. (3.48)]

Vw= I'(V'w) =
2 h,

T

h

2 h,
1+. 1—

2 i 1/2 —1 ' —1/2
h

h,
(12.50a)

where

tanyii = ——[h, +(h,' —h')' ],1

and

h, =yg/2 . (12.50b)

Equation (12.30) with the velocity (12.50a) is usually
called a Walker domain wall.

It is interesting that for h )h, the motion of the
domain wall is oscillating,

tang= —I(h —h, )'« tan[(h —h, )' (t to)] —h, j
—.

1

—w/2

«Aj)
In the limit g «1 but for h —1, similar oscillations were
investigated by Sl'onczewski (1972) within the framework
of another approach.

In the presence of an inhomogeneity, Eqs. (12.47) and
(12.48) take a more complicated form, and it is difficult to
find their exact solutions. However, one can gain consid-
erable information about the dynamics of the domain
wall by looking at the phase plane of the dynamical sys-
tem (12.47) and (12.48) (Figs. 49—51). Stable stationary
points of this system correspond to states in which the
domain wall is pinned by a local inhomogeneity. The

FIG. 49. The phase plane of the dynamical system
(12.46)—(12.48) for h =0.
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pinned states exist provided

~h~ (ho—= (2/3 ~ )e, e—:—,'(i3 i—2) . (12.51)

The phase plane is shown in Fig. 49 for the case A =0, in
Fig. 50 for the case 0 (:h (h„where h, is defined by Eq.
(12.50b), and in Fig. S 1 for h )h, (we assume Ii, (ho).

A full analysis of the phase plane has been carried out
by Kivshar (1989). In his paper, the threshold value of
the external magnetic field admitting the capture by a lo-
cal inhomogeneity of a domain wall moving with velocity
(12.50a) has been calculated in the McLaughlin-Scott ap-
proximation (McLaughlin and Scott, 1978):

h, h, =2h, &A —I /A, 2 =g[(1+@/2) —1]

[cf. Eq. (3.57)].
The perturbation-induced evolution of the Jost

coefficient b (A, , t ) governed by Eq. (12.42) gives rise to ra-
diative efT'ects accompanying the scattering of the domain
wall by the local inhomogeneity. The spectral density of
the energy emitted by the domain wall has been calculat-
ed with the use of Eq. (12.21) by Kivshar (1989) (the full
expression is very ponderous). In particular, for a small
domain-mall velocity, V= V =h/A, , the total emitted
E, energy is exponentially small [cf. a similar result

$= rr/2

FIG. 51. The same as in Fig. 49, but for h, (h (hp.

(6.63) for a SG kink]. This means that the threshold ve-
locity for radiative capture of the domain wall by a local
inhomogeneity (in the case h =0, @=0) should be ex-
ponentially small in &e. The calculations of Kivshar
(1989) yield

E, = (2&re/g)( 1+g) i (2+g)

X exp I
—[(1+g) /ge]'~ I

[cf. Eq. (6.67) obtained by Malomed (1985b) for a SG
kink interacting with an attractive local inhomogeneity
(1.19)].

3. Emission from a domain wall oscillating
under the action of an ac magnetic field

FICi. 50. The same as in Fig. 49, but for 0(h (h, .

Let us consider the emission of spin waves from a
domain wall under the action of an additional variable
magnetic field, h=(0, 0, h (t)), h (t)=ho+hisin(Qt). In
the limit V))+Ii „the perturbation-induced change in
the mean velocity of the domain wall is small, and it may
be neglected. The ac component of the field gives rise to
oscillations in the domain wall with the frequency Q. If
II) coo( V), where the function coo( V) =co+ k Vis shown in
Fig. S2, the emission of spin waves takes place (see the
shaded range in Fig. 52). This problem was first con-
sidered by Kivshar et al. (1985b) and treated in further
detail by Potemina (1986).
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tu = cuo(V}

The inhuence of radiative energy losses on the experi-
mentally measurable dependence V(ho ) (the domain-wall
mobility) is also discussed by Kivshar (1989).

The case of ho =0 (a pure ac field) required special con-
sideration. In this case the result is zero in the lowest ap-
proximation. To calculate the emissi. on power, one needs
to take into account small oscillations of the domain wall
under the action of the ac field. Kivshar (1989) has ob-
tained an expression for the emission power which is of
the fourth order in e instead of the common second order
[see Eq. (6.33) for a SG kink oscillating under the action
of a pure ac field (1.21)].

0 vm )vs

FIG. S2. The spin-wave dispersion law in terms of the wave fre-
quency co and group velocity V. Emission of spin waves takes
place in the shaded range.

F. Inelastic interaction of domain vralls

The interaction of domain walls of opposite polarities
may be inelastic (see the analogous problem for SG kinks
formulated in Sec. IV.A.2). This process is characterized
by the maximum (threshold) value h, h, of the external
field h allowing the fusion of two domain walls into a
magnetic soliton. A natural way to find h, h, is to employ
the energy balance. Indeed, the LL equation (12.4) gives
rise to the energy equation

=of dxIR(S) [SXS,]I, (12.54)

In the region lzl ))I, an asymptotic form of the emit-
ted wav e field can be presented as [us

—=Bc@0(k) /
~klk=k ]»

2D n sech( ok+ /2g ).
coo( k+ ) l V —

us
—

l

where E is the magnetic energy,

E=
—,
' f dx [S + (I3 I, )S i + (I—3 I2 )52 ], —

The expression for the dissipative energy loss Ed;„can be
obtained directly from Eq. (12.54) with regard to the
form of the dissipative perturbation in Eq. (12.46):

X 3 2
—(@++I I )' cosN+—i

(k+ +I, —I2 )' sin&&+
(12.52) Ed;„=yf dt f dx[SXS, ] (12.55)

where

mhQV

4g(Q +coo)'i

Inserting an unperturbed expression that describes the
pair of domain walls with opposite polarities into Eq.
(12.55) [see, e.g. , Kosevich et al. (1983)], one can find
(Kivshar and Kosevich, 1986)

5ti = tan '(Q/too),

C&+ =+[coo(k+ )t —k+x+5„] arg(ik—+ —g)

+arg[ —cosy(k+ +I3 I,)'— 2myg E 1

&I+/ &I+/
(12.56)

~k+
W(Q) =2D g l V —u

+—
l

'sech- (12.53)

+i sing&( k+ +I3 I2 )], —

and k+ are defined by

k+ V+Q —a)o(k+)=0 .

The emission power 8'(Q)=dE, /dt can be calculated
with the help of Eq. (12.21):

where E(z) is a complete elliptic integral of the second
kind. The threshold magnetic field can be calculated by
equating Eq. (12.55) to the kinetic energy Ei,;„ofthe pair,
which is

Ek,„=2V /$=2h /gy

(it is assumed that h /X is small). The final result is (Kiv-
shar and Kosevich, 1986)

]. /2

[cf. Eq. (6.43) obtained by Malomed (1987d) for an analo-
gous problem formulated in terms of the SG equation].

2my E 1

&1+/ &I+/ (12.57)
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G. Perturbation-induced damping of a magnetic soliton

As has been demonstrated above, a pair of domain
walls with opposite polarities may annihilate into a mag-
netic soliton under the action of dissipative losses. It is
clear that a magnetic soliton undergoes dissipative damp-
ing. General formulas describing magnetic solitons in bi-
axial ferromagnets are rather cumbersome (see Kosevich
et al. , 1983). That is why we shall present results only
for a small-amplitude magnetic soliton. A small-
amplitude- quiescent magnetic soliton can be represented
in the following form:

h, =&,+"
2 3

I+&
2

isotropy axes.
The dynamics of domain walls and magnetic solitons

in the presence of additional exchange dissipation (12.62)
have been investigated by Bar'yakhtar (1985),
Bar'yakhtar, Ivanov, and Sukstanskii (1986), Bar'yakhtar
et al. (1986), and Kivshar and Soboleva (1988). In par-
ticular, the maximum value of the external magnetic 6eld
admitting steady motion of a domain wall is [cf. Eq.
(12.50a)]

S= (sinO cosy, sinO sing, cosO),

where

O
2

tan —= —[1+g sin (coot +go) ]sech (px ),
2 1+/

P =hv'1+//(1+//2),
tan(p=&1+gtan(coot+go) .

(12.58)

(12.59)

(12.60)

In the presence of conservative perturbations, e.g.,
weak inhomogeneities, a magnetic soliton will be damped
by radiative losses. According to Eq. (12.21), the spectral
density of the emission power Inay be represented in the
form [cfEq. (6.5) for a perturbed SG equation]

dh(A, )

dt

The small parameter 6=—mo
—cu is proportional to the

soliton amplitude and also characterizes its width -p
In this approximation, the magnetic-soliton

frequency coo=&1+/ coincides with the limiting fre-
quency of spin waves, which have the dispersion law

co2= (1+k )( 1+g+ k ) .

Straightforward calculations using Eq. (12.54) yield the
law of dissipative damping for the amplitude of a mag-
netic soliton:

A=A(0)exp[ —4ycoo(1+//2)t] .

This result was obtained by Bar'yakhtar (1985) (see also
Bar'yakhtar et a/. , 1986) for the case of a uniaxial fer-
romagnet (g =0).

Dissipative damping of a moving magnetic soliton was
studied by Bar'yakhtar et al. (1986) for /=0. The main
difFerence between this problem and the analogous one
for a SG breather is that the magnetic soliton may be ac-
celerated by a dissipative force. This is due to the non-
monotonic dependence V (E) for the biaxial ferromagnet.

The parameter y in Secs. XII.D and XII.F described
the relaxation term in the Gilbert form. As was pointed
out by Bar'yakhtar (1984), generalized phenomenological
equations for the magnetization field should include re-
laxation terms generated by both relativistic and
nonuniform-exchange interactions. The latter interac-
tion gives rise to the dissipative constant y, a, where a is
the lattice spacing. In certain cases, a full system of
dynamical equations for the magnetization vector M, al-
lowing for variation of Mo, reduces to the LL equation
(12.4) for the unit-length vector S with perturbation
terms (12.45) and

eR(S)=y, a [SX [SX (S~ —(S&e&+S3e3)„jj, (12.62)

where e, and e3 are unit vectors directed along the an-

w, (A, )w~(A, )Re 8(A, t )*,

where

8(A, , t)=b(A, , t)exp[4ivw&(A)m2(A, )t] .

The spectral parameter A, (0~A, ~2E) is related to the
spin-wave wave number, k =tU3(k).

Let us consider the radiative damping of a magnetic
soliton pinned by a local magnetic impurity correspond-
ing to the perturbation eR(S)=5(x)[SXiS], where the
matrix i =diag(i„i2, i3) describes a local perturbation of
the magnetic anisotropy. Straightforward calculations
based upon the general ideas outlined in Sec. VI yield the
following law of radiative damping for a small-amplitude
magnetic soliton (Kivshar, 1989):

b(t) =6(0)[1+-,'b, ' '(0)Crj

where b, is the same as in Eq. (12.61) and

C=—(i2 i)) g /2m(1+—g)(1+//2) .

Some other problems in the perturbed dynamics of
magnetic solitons have also been considered by Kivshar
(1989).

Xlll. CONCLUSlON

To conclude this presentation of the results of IST per-
turbation theory, it is fitting to discuss feasible directions
that further development of the theory may take. First
of all, one many consider one-dimensional systems de-
scribed by perturbed equations close to exactly integrable
models that are distinct from the KdV, modified KdV,
NS, SG, and LL equations. For instance, the important
phenomenon of self-induced transparency in nonlinear
optics is described by an exactly integrable Maxwell-
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Bloch system, which degenerates into the SG equation in
a certain particular case (McCall and Hahn, 1969; Lamb,
1971). A perturbation theory for this system has been
elaborated by Kaup (1977b). Perturbative treatment was
also developed by Ablowitz and Kodama (1979), who
have demonstrated the instability of a quasi-one-
dimensional kinklike soliton of this system against trans-
verse long-wave perturbations.

Another important exactly integrable system which
finds applications in plasma physics and nonlinear optics
is the coupled system of dispersionless equations describ-
ing the interaction of N (N ~ 3) simple waves. A pertur-
bation theory for it based upon the IST technique was
worked out by Kaup (1986) for the case JV =3. As a par-
ticular physical problem, he considered the infIuence of a
relaxational (dissipative) term. The same problem was
solved by Driihl, Carlsten, and Wentzel (1985) within the
framework of a simpler approach based on the energy
balance equation (modified energy conservation, in terms
of Sec. I). An interesting version of a perturbed three-
wave system was derived by Verheest (1987) to describe
the simultaneous generation of third and second harmon-
ics in nonlinear optics. Another nonintegrable perturba-
tion of the N-wave system was studied numerically by
Bol'shov et al. (1985).

One more example is the so-called derivative NS equa-
tion

u, +(~u~ u)„+iu„„=eP(u),
which has applications in plasma physics. Wyller and
MjeAhus (1984) developed an adiabatic variant of IST
perturbation theory for this equation and considered dis-
sipative damping of one soliton.

The exactly integrable Boussinesq equation

1 4
ft xx 3 xxxx 3( xx

plays an important role in the hydrodynamics of a deep
stratified liquid (Benjamin, 1967; Ono, 1975). An impor-
tant distinctive feature of this equation is the fact that its
one-soliton solution,

u„)=2A [1+[A (x —At)] ]
=', (13.1)

where A is an arbitrary soliton amplitude, is of an alge-
braic type, in contrast with the exponential KdV soliton.

occurs in hydrodynamics and plasma physics (see, for ex-
ample, Whitham, 1974), one-dimensional solid-state
physics (Flytzanis, Pnevmatikos, and Remoissenet, 1985),
models of long molecules DNA (Scott, 1985); nonlinear
elasticity (Soerensen et al. , 1984), and so on. The usual
KdV equation can be derived from the Boussinesq equa-
tion in an approximation that takes account of waves
traveling in one direction only. A perturbation theory
for this equation was developed by Grimshaw (1970) and
Scott (1985).

The exactly integrable Benjamin-Ono equation,

u, +2uu +m. ' I u„„(x')(x'—x) 'dx'=0,

A perturbation theory for a soliton described by the
Benjamin-Ono equation with variable coefIicients [analo-
gous to the variable-coeKcient KdV and NS equations
(3.8) and (3.40)] has been worked out by Grimshaw
(1980). In the same work, damping of a soliton under the
action of friction or radiation losses (the latter being
caused by a special perturbation) was also analyzed. An
evolution equation for the amplitude 2 of the Benjamin-
Ono soliton (13.1) damped by various dissipative terms
has been derived by Ostrovskii, Stepanyants, and Tsim-
ring (1984b). More general rational solutions to a per-
turbed Benjamin-Ono equation have been studied by
Birnir and Morrison (1985).

%'ith regard to the system of coupled KdV equations
(1.3) and (1.4), it is relevant to mention the papers of Liu,
Kubota, and Ko (1980) and Liu, Pereira, and Ko (1982).
They studied leapfrogging dynamics of solitons in a sys-
tem of two' coupled Joseph (intermediate-depth) equa-
tions describing resonant interaction of two internal
waves in a finite-depth stratified liquid (the Joseph equa-
tion is exactly integrable, and it comprises, as limiting
particular cases, the KdV and Benjamin-Ono equations).

An important example of an exactly inte-
grable discrete system is the Toda lattice, which consists
of particles interacting through exponential pairwise po-
tentials. Perturbation theory for this system has been
developed by many authors. A general formalism of IST
perturbation theory has been elaborated by Yajima
(1979), who has also considered, as a particular example,
the scattering of a soliton by a mass impurity in the lat-
tice. ReAection of a soliton from an impurity was con-
sidered by Klinker and Lauterborn (1983). In a series of
papers, Kaup (1984, 1987), Kaup and Neuberger (1984),
and Kaup and Hansen (1987) developed a semi-analytical
approach to a forced Toda lattice that has much in com-
mon with IST perturbation theory. As another example
of the perturbation theory for nearly integrable discrete
systems, we can mention the paper of Vakhnenko and
Gaididei (1986). With the aid of the Lagrangian formal-
ism, they studied the evolution of a Davydov soliton in a
molecular chain described by equations close to the ex-
actly integrable discrete Ablowitz-Ladik model (Ablowitz
and Ladik, 1975, 1976).

As is well known, exact methods that. are akin to the
IST have been developed for various integrable equations
with periodic boundary conditions (see, for example, Za-
kharov et al. , 1980). Some work towards constructing a
perturbation theory for these systems has also been done.
In particular, Krichever (1983, 1988) has elaborated a
general mathematical basis of perturbation theory for the
KdV equation with periodic boundary conditions [see
also Maslov and Dobrokhotov (1982), who studied the
perturbation-induced evolution of parameters of a finite-
band solution to the KdV equation with the aid of
Whitham's averaging method]. Geist and Lauterborn
(1986) investigated numerically the decay of a soliton in a
periodic Toda lattice containing a heavy-mass impurity.

Another feasible way of extending IST perturbation
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theory is to apply it to two-dimensional integrable sys-
tems. Two well-known two-dimensional equations arnen-
able to solution by the IST are the Kadomtsev-
Petviashvili (KP) equations,

(u, —6uu —u„„) =+3u

They are as general in the two-dimensional case as the
KdV equation is in one dimension (see, for example, Za-
kharov et al. , 1980). The KP equation with the upper
sign on its right-hand side has stable quasi-one-
dimensional solitons of the KdV type (see also the end of
Sec. XI.F). The equation with the lower sign has two-
dimensional algebraic solitons (so-called lumps), while its
quasi-one-dimensional solitons are unstable. For the
latter equation, an IST perturbation theory was
developed. by Benilov and Burtsev (1986). As an applica-
tion, they have considered dissipation-induced damping
of a lump (of course, this particular problem can be
solved by means of simpler methods).

It would be interesting to develop an analog of IST
perturbation theory for exactly integrable quantum sys-
tems. It is well known that the quantum NS and SG
models are exactly integrable (see, for example, Rajara-
man, 1982). In Sec. X we have given an account of per-
turbation theory for the semiclassical SG system. There
are few papers in which analysis of perturbations goes
beyond the framework of the semiclassical approxima-
tion. de Martino, de Siena, and Sodano (1985) have
demonstrated that in cel tain cases a fully quantum
model based upon the double SG equation (1.21) (with

f==1) is exactly equivalent to the unperturbed SG quan-
tum model. Yamamoto (1986) considered eff'ects pro-
duced by a local perturbation of the type (1.19) in the
quantum SCx system at a special value of the coupling
constant (when the unperturbed system is equivalent to a
free Fermion gas). Konishi and Wadati (1986) con-
sidered perturbation-induced decay of a soliton in a fuHy

quantum NS system. Finally, it is pertinent to mention
the paper of Robnik (1986), who considered, in a general
form, the problem of eliminating a small perturbation in
a nearly integrable quantum system (with a purely
discrete spectrum) by means of canonical transforma-
tions. He has demonstrated that this is possible in the
first order of perturbation theory.
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APPENDIX A: ONE-SOLITON SCATTERING
DATA AND JOST FUNCTIONS

where g and z are the same as in Eq. (2.19).
XS equation. The scattering data corresponding to the

one-soliton solution (2.41) are

a (A, )=(A, —A, , )(A, —A, *, )

b (iE, t) =0 (A, is real),

A, , =/+i', b(A&)=exp(2rig+iP),

and the corresponding Jost functions are

(A3)

g(x, A, )=(A, g+iri)—
/+i ri ,t—anhz

iriexp( 2i gx ——iP)sechz

y(x, A)= (A, (+i ,g—)'
r

i riexp(2igx +i/)sechz
X exp( i kx)— ,

A, —ig —ig tanhz

(A4)

In Eqs. (A3) and (A4), P and g are the same as in Eq.
(2.42), and z —=2g(x —g).

An important generalization of Eqs. (A3) and {A4) has
been obtained by Satsuma and Yajima (1974). They have
taken the initial condition

uo(x) =ia sech(bx)exp(ikx),

which is more general than that corresponding to the sol-
iton (2.41), and (2.42) at t=0 (the parameters a, b, and k
are independent). The scattering data corresponding to
this generalized wave-field configuration are

a (A, ) = I (q) /[I (q —N)I (q +N)],
b (A, )=i' 'I (q)l ( —q)/[I (N)1 (

—N)],

q =—'+(i/2b){k' —2A, ), N =a lb,
where I (q) is the gamma function. The zeros of the

KdV equation. The scattering data corresponding to
the one-soliton solution (2.18) are

a (k) =(k —k, )(k+ki )

b (k, r) =0 (k is real),

k, =i~, b (k, , t) =exp(2~$),

and the corresponding Jost functions are

N'"(x, k)=(k+i~) '(k —i~tanhz)exp( —ikx),

(A2)

4' '(x, k) =(k +i~) '(k i' ta—nhz)exp(ikx),
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function a (A, ) lie at the points q
—X =n (n

=0,+1,+2, . . . ). The number of zeros, i.e., the number
of solitons contained in the initial wave-field
configuration, is [N + —,'], where the brackets indicate the
integer part.

SG equation. The scattering data for the one-kink
solution (2.61) are

—o.v sechz
y(x, A),=(A+, iv) 'exp[ —

—,'ik(k)x]

(A7)
Here k (A, ) = A,

—1/4A, , g is the same as in Eq. (2.6lb), and
z—= (x —g)(1 —V )

a (A, ) =(A, —A, , )(A, +A, , )

b(k, , t) = 0 (I, is real),

A, , =iv, b(A, , )=icr exp[/(l —V ) '~z],

and the corresponding Jost functions are

A, + iv tanhz
g(x, k) =(A+iv, ) 'exp[ ,'ik(A—)x],

(AS)

(A6)

APPENDIX 8: SCATTERING DATA AND JOST
FUNCTIONS FOR A SINE-GORDON BREATHER

For the breather solution (2.63) and (2.64),

a(A, )=(k—
A, , )(A, —A2)/(A, —

A, *, )(A, —A~ ),
where A, , 2 are defined in Eq. (2.62). The following ex-
pressions for the quantities b, =b(A, ,

—), bz = b (A.2)
b*(A, ,—), and for the corresponding Jost functions are

presented, for example, by Karp man, Maslov, and
Solov'ev (1983) (see also Kosevich and Kivshar, 1982):

b, =2ik, ,tanhp a'(A, , )exp[it cosp (1—V )
' —i(A, ,

—1/4A, , )go],

g'"(x, A. ) =sin(2p) ~A, , ~3Ii ~A, , ~cosh(zsinp) sin(4cosp)

+A [cosp cosh(zsinp) cos(%'cosp)+sinp sinh(zsinp) sin(+cosp)] I /b,
g' '(x, A)=~A, , ~ icos p(A, —

~A, , ~
)cosh (zsinp)+sin p(A, +~A, , ~

)sin (%cosp)

+ ,'icosi—n(2,p)[cosp sinh(2z sinp) —sinp cos(2% cosp)] I /6,
where

b, =—( A, +A, , )( A, —A, *, )[cos p cosh (zsinp ) +sin p sin ( 0'cosp ) ]exp [ i ( A,
—1/—4A, )x /2],

~A, , ~

=
—,'[(1+V)/(1 —V)]'

[see Eq. (2.62)], and where z and 4 are the same as in Eq. (2.64).

(B2)

(B3)

APPENDIX C: FUNCTIONS F, 2 AND G, 2 FOR EQ. (4.74)

The functions F, z and G, 2 that enter Eq. (4.74) are

F,(TO)=32f dz(TO+z) cosh~z[cosh z —(T +oz) ] [cosh z+(To+z) )

F2(TO)=TO f dzcoshz[cosh z+(To+z) —6(TO+z) cosh z][cosh z —(To+z) ][cosh z+(To+z) ]

G, (TO)=TO f dz cosh z[cosh z —(To+z) ][cosh z+(To+z) —6(TO+z) cosh z][cosh z+(To+z) ]

G2(TO)= f dzcoshz[cosh z+(To+z) +70(TO+z) cosh z —28(TO+z) cosh z

—28(TO+z) cosh z][cosh z+(To+z) ]

(C 1)

(C2)

(C3)

(C4)
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