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The Riemann problem for fluid flow of real materials is examined. An arbitrary equation of state is al-
lowed, subject only to the physical requirements of thermodynamics. The properties of the isentropes and
the shock Hugoniot loci that follow from conditions imposed on the equation of state are reviewed sys-
tematically. Important properties of these wave curves are determined by three dimensionless variables
characterizing the equation of state: the adiabatic exponent y, the Gruneisen coefficient I, and the funda-
mental derivative Q. Standard assumptions on these variables break down near phase transitions. The re-
sult is an anomalous wave structure: either shock waves split into multiple waves, or composite waves
form. Additional questions related to shock stability and nonuniqueness of the solution of the Riemann
problem are discussed.
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I. INTRODUCTION

Fluid dynamics has been the paradigm for systems of
hyperbolic conservation laws since the pioneering work
of Riemann (1860). It provides the motivation for many
of the central ideas in the analysis of quasilinear hyper-
bolic partial differential equations. Among them are the

following. (1) The need to consider discontinuous solu-
tions. Even with smooth initial data, the solution may
develop discontinuities within a finite time. (2) The need
to impose "entropy" conditions. %'ithout such condi-
tions, the initial value problem has multiple discontinu-
ous solutions. (3) The advantage in viewing solutions of
conservation laws in terms of elementary wave patterns,
such as shock and rarefaction waves. As a prototypical
example, Quid dynamics has inspired the important work
of Lax (1957) in generalizing concepts from Auid dynam-
ics to systems of hyperbolic conservation laws. It has
raised many interesting mathematical questions about
quasilinear partial difFerential equations (see, e.g. , Gel-
fand, 1959; Oleinik, 1965; and Lax, 1972).

The dynamical evolution of a Quid is determined by the
principles of conservation of mass, momentum, and ener-
gy. To obtain a complete mathematical description,
however, the conservation laws must be supplemented by
constitutive relations that characterize the material prop-
erties of the Quid. Material properties strongly inQuence
the structure and dynamics of waves in any continuum-
mechanical system; this inQuence is the focus of study in
this paper. Constitutive relations are understood. at the
most fundamental level for fluids, where they are embo-
died in an equilibrium equation of state (EOS), because
physical principles of thermodynamics impose stringent
constraints on the equation of state. Therefore it is im-
portant to explore the full range of physical phenomena
that occur in fluid dynamics and to discern the implica-
tions for general systems of conservation laws.

Riemann studied Quid dynamics through the shock-
tube experiment. More generally, a Riemann problem
for a system of conservation laws is an initial value prob-
lem such that the initial data are scale invariant (i.e., con-
stant on rays). Riemann problems play a key role in un-
derstanding the wave structure of hyperbolic partial
differential equations. They are important also for nu-
merical algorithms for solving these equations, such as
the Godunov method (Gudonov, 1959) and its descen-
dants (van Leer, 1979; Colella and Woodward, 1984;
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Colella, 1985), the random choice method (Glimm, 1965;
Moler and Smaller, 1970; Chorin, 1976; Plohr, 1988a),
and the front tracking method (Chem et al. , 1985;
Glimm et al. , 1985; Chem and Colella, 1987). This is be-
cause general Auid Aows may be pictured as nonlinear su-
perpositions of Riemann solutions. These solutions, in
turn, are composed of elementary waves that propagate
as separate entities. Elementary waves, whose interac-
tions are determined by Riemann problems, also reflect
the asymptotic behavior of general solutions. Therefore
the influence of an equation of state on the structure of
waves may be studied through Riemann problems.

In the simplest case, a polytropic ideal gas, the struc-
ture of elementary waves and the solutions of Riemann
problems can be determined analytically (Courant and
Friedrichs, 1948; Landau and Lifshitz, 1959). Bethe
(1942) and Weyl (1949) have extended this analysis to in-
clude more general equations of state. Physical princi-
ples of thermodynamics require the equation of state to
satisfy certain convexity constraints and to have ap-
propriate asymptotic properties. In the standard
analysis, however, certain conditions are imposed on the
equation of state beyond the demands of thermodynam-
ics. Weyl s conditions require the isentropes to be con-
vex and not to intersect in the pressure-volume plane;
Bethe's conditions are slightly weaker. For fluids satisfy-
ing the standard assumptions, a solution of a Riemann
problem for one-dimensional flow consists of a left-facing
shock or rarefaction wave, a right-facing shock or rare-
faction wave, and a co~tact discontinuity separating
them. The waves in a solution may be determined graph-
ically by intersecting wave curves in the pressure-velocity
plane. It follows from asymptotic properties of the equa-
tion. of state that a solution of a Riemann problem always
exists. Bethe imposed an additional condition on the
equation of state that is sufficient to guarantee uniqueness
of the Riemann solution. More generally, uniqueness of
solutions depends on the monotonicity of the wave
curves; conditions on the equation of state that are neces-
sary and sufficient for uniqueness of soluti'ons have been
analyzed by Smith (1979).

Even though the standard assumptions are valid for
real materials in most of the state space, they are not
universally valid. In particular, experiments (Duvall and
Graham, 1977) have shown that the additional assump-
tions of the standard theory are not satisfied by materials
near a phase transition. Without the standard assump-
tions, the wave propagation speed may not vary mono-
tonically along a wave curve, which results in anomalous
wave structures; waves that are composites of shock and
rarefaction waves (Wendroff, 1972) and shock waves that
split into multiple waves (Rice et al. , 1958). Similar
wave structures arise in scalar conservation laws (Gel-
fand, 1959; Oleinik, 1959), and their occurrence in gen-
eral systems of conservation laws has been studied (Liu,
1975). Thus several interesting physical effects are ex-
cluded when the standard assumptions are imposed.
This is an important point because many numerical algo-
rithms for solving Riemann problems (see, e.g., Colella

and Glaz, 1985; Dukowicz, 1985) make these, or
stronger, assumptions. Furthermore, numerical errors in
the equation of state are sometimes indistinguishable
from real physical effects, such as phase transitions,

This paper describes the wave structure in fluids
governed by the most general equations of state allowed
by thermodynamics. It offers a comprehensive synthesis
of the existing theory, together with several extensions.
The emphasis is on providing physical motivation for the
mathematical assumptions made about the equation of
state, and on clarifying the profound influence that the
EOS has on the qualitative structure of wave solutions.
The discussion includes relaxing the hypotheses in the
classical Bethe-Weyl analysis of shock waves; unifying
and extending the treatment of monotonicity properties
for shock curves and the relationship with uniqueness for
the Riemann problem; analyzing wave curves at points
where they suffer kinks caused by phase transitions; ex-
tending the Bethe-Wendroff theorem to composite waves
and applying 'it to wave speed diagrams; relating
nonuniqueness for one-dimensional Riemann problems to
instability of multidimensional shock fronts, as well as
identifying a thermodynamic criterion for stability; and
analyzing a model EOS that exhibits anomalous behav-
ior.

We begin in Sec. II with the mathematical description
of fluid flow and the constraints imposed by physical
principles. Included is a detailed analysis of the equation
of state: its characterization by dimensionless parame-
ters, the structure of its domain, and its local and asymp-
totic properties. Of particular importance is the relation-
ship between convexity and phase transitions. In Sec. III
the elementary waves that occur in fluids (the standard
rarefaction and shock waves, and the anomalous compos-
ite and split waves) are defined. Then we describe how
one-parameter families of elementary waves form wave
curves that are used to construct solutions of Riemann
problems. In Sec. IV we analyze the local structure,
asymptotic behavior, and monotonicity properties of the
Hugoniot 1ocus, as they are related to conditions on the
equation of state. The asymptotic behavior relates to the
existence of solutions of Riemann problems, while mono-
tonicity properties determine whether the solution is
unique. Anomalous wave behavior that is associated
with phase transitions is described in Sec. V. To obtain
physical solutions, standard elementary waves that are
unstable or inadmissible must be replaced by composite
or split waves; then Riemann problems can be solved us-
ing wave curves in the same manner as for the standard
case. In Sec. VI we discuss the relationship between
shock instability and nonuniqueness of solutions of
Riemann problems. One-dimensional solutions, when
treated as multidimensional solutions with planar sym-
metry, may exhibit instabilities unless the equation of
state satisfies an additional condition; this condition also
results in uniquenss for Riemann solutions. In Sec. VII
an example of an equation of state is presented to illus-
trate how seemingly reasonable models for real materials
may exhibit unphysical behavior. Determining the range
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of validity of an equation of state is important for numer-
ical calculations. In Sec. VIII we conclude by summariz-
ing our results and by mentioning several important open
problems. Three appendixes are included: Appendix A
summarizes the thermodynamic identities that are used
in the discussion of the equation of state; Appendix B de-
scribes some properties of rarefaction and shock curves
in the context of general conservation laws; and Appen-
dix C contains supplementary material on viscous
profiles for shock waves.

II. MATHEMATICAL FORMULATION AND PHYSICAL
CONSTRAINTS

A. Dynamical equations

In continuum mechanics the state of the material is
characterized by several macroscopic variables. The
principal ones are the mass density p, the specific internal
energy E, and the particle velocity u; in addition, there
may be internal state variables that describe the micro-
scopic structure of the material, such as the relative con-
centrations of phases in multiphase Aow. The evolution
of the material is governed by the equations of conserva-
tion of mass, linear momentum, and energy:

8 p+V (pu)=0

B,(pu)+V (puu)+VP=V X, ,

(2.1)

(2.2)

In this section we present the mathematical formula-
tion for a continuum-mechanical description of a Auid
material. There are two components in this description:
the dynamical equations and the constitutive relations.
The dynamical equations form a system of quasilinear
hyperbolic partial differential equations that embody the
conservation of mass, momentum, and energy. The con-
stitutive relations, i.e., the EOS, defines the equilibrium
thermodynamic properties of the material.

The qualitative character of the solutions of the con-
servation laws depends crucially on the thermodynamic
properties of the material. - Therefore we are careful to
determine the- constraints imposed on the EOS by the
postulates of thermodynamics and to describe the physi-
cal motivation for further assumptions. The local prop-
erties of the EOS are specified by dimensionless deriva-
tives of the energy function, while the global properties
are determined by the asymptotic behavior of the energy.

Our model for Quid Row neglects such physical effects
as viscosity, heat conduction, and radiation. As a result,
the dynamics require only partial specification of the
thermodynamics of the material, as contained in an in-
complete EOS. In practice the incomplete EOS is rarely
calculated from a complete, thermodynamically con-
sistent EOS, and it is diflicult to determine whether a
given incomplete EOS arises from one. Whether an EOS
correctly models a real material is, however, rejected in
the solutions of the conservation laws; this motivates our
study of wave structure in the Riemann problem.

B,p+ V.(pu) =0,
B,(p )u+ V (puu)+ V'P =0,
B,(pb )+V (p6'u)+ V (Pu) =0,

(2.4)

(2.5)

(2.6)

where I' is the equilibrium thermodynamic pressure. The
pressure must be specified through a constitutive rela-
tion, the EOS, which characterizes the Quid material.

Remark. A major theme of this paper is the way the
EOS affects Aow dynamics. The dynamics are not solely
determined by the form of Eqs. (2.4) —(2.6), but also by
properties of I'. For example, the equations for some
models of viscoelastic fiuids (Malkus et aI. , 1988; Plohr,
1988b) take a form identical to Eqs. (2.4) —(2.6), but the
domain of state space and the behavior of I' are different
from those of standard Quid dynamics. As a conse-
quence, the dynamical behavior differs significantly from
that of an ordinary Quid.

B. Equation of state

The thermodynamic properties of a material are embo-
died in the relation E =E( V, S) expressing the specific
internal energy E of an equilibrium state as a function of
the specific entropy S and the specific volume V=1/p.

B,(pb)+V (pA'u)+V (Pu)=V' (X u) —V.q, (2.3)

where 6 =
—,'~u~ +E is the total specific energy, P is the

pressure, X is the extra stress tensor (containing, e.g. , a
Newtonian viscosity term), and q is the heat fiux. These
equations are supplemented by dynamical evolution
equations for the internal state variables (for instance,
conservation of mass for each phase), and by constitutive
equations relating P, X, and q to p, E, u, and the internal
state variables.

For many applications the effects of viscosity, heat
conduction, radiation, chemical reactions, relaxation,
material strength, etc. , either may be neglected or are not
the focus of attention. In such situations it would seem
appropriate to take I' to be the equilibrium thermo-
dynamic pressure and to make the approximations X =0
and q=0. However, care must be exercised; the limitirig
equations admit solutions that do not resemble physical
solutions, so the equation must be supplemented with
conditions that exclude the unphysical solutions. These
extra conditions should mimic the physical effects that
are not fully modeled. In the standard theory of gas dy-
namics, simple rules such as the Lax (1957) characteristic
criterion, or the requirement that entropy should not de-
crease, su%ce to isolate physically reasonable solutions.
In general, however, more intricate admissibility criteria
are needed, such as requiring existence for viscous
profiles (see Appendix C) or stability with respect to mul-
tidimensional perturbations (see Sec. VI). No general
theory for defining appropriate conditions exists; this
remains an important open problem. Having said this,
we will restrict our attention to the inviscid How equa-
tions that model equilibrium hydrodynamics:
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Before formulating thermodynamic constraints on the
domain of definition, smoothness, and asymptotic behav-
ior of E, we introduce terminology for various derivatives
of E in terms of which we will express the constraints.

The pressure P=P(V, S) and the temperature
T = T( V, S) are given as first derivatives of E:

P(VS)= — and T(VS)=aE BE
BV s V

(2.7)

in accordance with the fundamental thermodynamic
identity

which involves a third derivative of E.
These quantities may be interpreted as characterizing

the behavior of isentropes.
(1) The adiabatic exponent

vap
P BV

a logP
alog V, (2.17)

is the negative slope of the isentrope as drawn in the
logP-log V plane. For V near Vo, the isentrope through
(Vo Po) is given approximately by

dE= —P dV+TdS (2.8)
VP =Po

Vo
(2.18)

(which combines the first and second laws of thermo-
dynamics). Higher-order derivatives of E also play an

important role in the Quid. dynamics of the material. As
described in Appendix A, any of the second derivatives
of the thermodynamic potentials may be written in terms
of quantities that are directly measurable, viz. , the
specific heats at constant volume and pressure,

V BTI = ——
Tav,

a logT
BlogV

(2.19)

where y is evaluated at (VO, PO); whence the name adia-
batic exponent. When y is a constant, as for a polytropic
gas, this relation holds exactly.

(2) The Griineisen coefficient

Cv=T and Cp=Tas BS
T pT P

the isentropic and isothermal compressibilities,

(2.9) is the negative slope of the isentrope in the logT-logV
plane. For V near Vo, the isentrope through. (VO, TO) is
given approximately by

- —r
1av
vap,

1av
and KT— (2.10)

V
To

Vo
(2.20)

and the coefFicient of thermal expansion,

1 av
V BT

(2.1 1)

where-1 is evaluated at (VO, TO), and this holds exactly
when I is constant. Therrnodynarnic identities imply
that the Gruneisen coeScient also measures the spacing
of the isentropes in the logP-log V plane:

Because two identities,

+s P VT Cv=1-
CpZT Cp

' (2.12)

ap v Bp
BE v T BS

PV alogP
T as

(3) The dimensionless specific heat

(2.21)

relate these five measurable quantities, only three of them
are independent.

We will find it convenient to work with the following
dimensionless combinations of second derivatives (Davis,
1985):

PV BT
T2 as

PV alogT
T as (2.22)

measures the spacing of the isentropes in the logT-log V
plane.

(4) The fundamental derivative
V BE 1

P BV2 P (2.13)
,

V' B'P
BP/BVl~ ' yP BV'

(2.23)

V BE PV
Tasav c K

PV BE PV
C~T

(2.14)

(2.15)

measures the convexity of the isentropes in the P-V plane
(Thompson, 1972). In particular, if 9)0, then the isen-
tropes are convex. The fundamental derivative can be re-
lated also to convexity of the isentropes in other planes:
using Eq. (2.17), one finds

Here y is called the adiabatic exponent, I is called the
Griineisen coefFicient, and g is a dimensionless specific
heat. A fourth dimensionless quantity that is important
is the fundamental derivative

y+1 ——v ay
y BV

(2.24)

B E/BV iq

B E/BV (s
(2.16) therefore the convexity of isentropes in the logP-logV

plane, i.e., the sign of
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B logP
(8 log V) s

B1'

BlogV
(2.25)

is determined by the sign of 0—
—,'(y+ 1). Similarly,

1 BP
yPV Bp

(2.26)

Cv= & C1 yo

yo
—1 yo

—1

1 1 1&s= KT =—,/3= —,
yoP' P' T '

(2.27)

so that

y=yp, I =yo 1, and g=yo 1 (2.28)

A polytropic gas is an ideal gas for which yo is a con-
stant. Thermodynamic stability, Eq. (2.32) below, re-
quires that yo ~ 1. In this case, E =Cv T and

S =Ci,ln(TV ' )+const. Thus the equation of state of
a polytropic gas is

VE =Eo
Vo

—(y —&)0 S
exp (yo —1)— (2.29)

for some constants yo, 8 Eo and Vo ~ In addition, from
Eq. (2.24) one finds that 9=—,'(yo+1). In Sec. II.F, the
incomplete form of the polytropic EOS,

so the convexity of isentropes in the P-p plane is deter-
mined by the sign of 9—1.

Remark. In applications to tiuid dynamics, y and 0
are most important. As will be shown in Sec. III, the adi-
abatic exponent. y is a dimensionless sound speed
(y=c /PV), while the fundamental derivative 0 deter-
mines how the sound speed varies across simple waves.
When y )0, the Quid equations are strictly hyperbolic;
when 9)0, they are genuinely nonlinear. The Griineisen
coe%cient I controls the mapping of isentropes into the
P-V plane; when I & 0, isentropes do not cross each other

'

in this plane. In Sec. IV we show that properties of
shock waves and rarefaction waves are determined solely
by y, I, and 0; the dimensionless specific heat g does not
affect the dynamics when heat conduction is neglected.

Example. The polytropic gas provides a simple analyt-
ic example of an EOS. For an ideal gas, PV and E are in-.
dependent of V at fixed T, according to the experiments
of Hoyle and of Joule-Thompson. It follows from the
fundamental thermodynamic identity, Eq. (2.8), that
PV=RT for some constant R. Then, using thermo-
dynamic identities, it can be shown that the measurable
quantities are determined by the ratio of specific heats,
yo=C&/Ci„which is generally a function of T:

adiabatic exponent y is not the ratio of specific heats yo
for a general EOS. In fact, Eq. (2.12) shows that
Ci, /Ci, =yg/(yg —I ). As will be seen, the adiabatic
exponent determines the speed of propagation of waves,
while the ratio of the specific heats cannot be determined
by measurements of Quid Aows in which viscosity and
heat conduction are negligible. For this reason, Cp/Ci
is not appropriate for characterizing the dynamical
response of a fiuid, and we prefer, following Davis (1985),
to make the above (arguably nonstandard) definition of
adiabatic exponent.

C. Thermodynamic constraints

The equilibrium states of the system are parametrized
by specific volume V&0 and specific entropy S ~0. On
this domain, the specific energy E =E ( V, S) is assumed
to be continuously differentiable and piecewise twice con-
tinuously differentiable. The graph of E defines the two-
dimensional manifold of equilibrium states. - The pressure
P and the temperature T are assumed to be non-negative;
consequently, E is monotonic in V and S.

Remarks (1) T. he justification for the assumed domain
and smoothness for E is discussed in Sec. II.D. Although
second derivatives of E may fail to exist at points along
certain curves (saturation boundaries), they are, never-
theless, piecewise continuous; at worst they suffer jump
discontinuities across these curves. Taking notice of this,
one should interpret in the sense of distributions the vari-
ous formulas that involve derivatives of E.

(2) The temperature can be negative in certain quan-
tum spin systems and in steady-state nonequilibrium ap-
plicatio'ns such as 1asers, but not in the classical Quid sys-
tems that we consider.

(3) The assumption that P ~ 0 excludes the possibility
that the material can support tension. This is appropri-
ate in regimes where the material is Quid, i.e., material
strength is negligible. When the material is solid, the hy-
drodynamic approximation may be inadequate. For in-

stance, solids can support shear forces and tension and
may not be isotropic because of crystal structure. In this
case, the extra stress tensor X cannot be neglected, and
extra internal variables (e.g., the strain) are needed. This
requires a more elaborate continuum model, such as a
viscoelastic or elastic-plastic model. Nevertheless, at
suKciently high pressures (far exceeding the yield
strength), the hydrodynamic approximation may be ade-
quate. This happens, for example, when metals are
driven by high explosives.

Thermodynamic stability requires that E be jointly
convex as a function of V and S. This implies that the
Hessian matrix of second derivatives of E is non-
negative:

P =(yo —1)E/V, (2.30)

will be seen to be adequate for the dynamics of a polytro-
pic gas.

E.emark. It should be emphasized, however, that the

BE BE
vBV' s

BE
BSBV

BS' v
' BV's

(2.31)
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This translates into the inequalities

g o0 y wO, and yg wI-

or, equivalently, .

Cy' Cp ' 0 and E~ ' KT' 0.

(2.32)

(2.33)

In particular, P and T are monotonic in V and S, respec-
tively.

Remarks (1.) Thermodynamic stability requires only
that y &0, but for most materials (and for polytropic
gases), y) 1. In this case, E is strictly convex in log V
along an isentrope.

(2) Thermodynamics places no constraint on the sign
of I . The inequalities (2.33) imply that I has the same
sign as I3. Thus I &0 when the material expands upon
heating at constant pressure, which is true in most situa-
tions. But for some materials, I is negative in portions
of state space. A notable example is water, which con-
tracts upon heating near 0 C and 1 bar (Bethe, 1942).

(3) Thermodynamics places no constraint on the sign
of Q. For many materials, away from phase transitions,

y ) 1 and varies slowly along the isentrope
( IB logy/8 log Vls I

« I), so 0) 1, according to Eq.
(2.24). In other words, isentropes are strictly convex in
the P-p plane, and the sound speed increases with density
along an isentrope. Moreover, some approximate
Riemann problem solvers (Colella and Glaz, 1985) are
based on these assumptions about y. Near phase transi-
tions, however, 0 can be negative.

(4) Because the arithmetic mean bounds the geometric
mean, the last inequality in (2.32) implies that —,(y
+g) III.

The third law of thermodynamics, as formulated by
Planck, states that the T =0 isotherm and the S =0 isen-
trope coincide. This implies Nernst s theorem, that the
entropy change in an isothermal process at T =0 is finite.
It also implies that the energy and pressure on the cold
curve (the T=O isotherm) are E, ( V)=1ims OE( V, S)
and P, (V)=lims OP(V, S), respectively. The tempera-
ture T=dE/BS

I v is non-negative, so the energy is mini-
mized on the cold curve, and we may write

E(V,S)&E,(V)=E;„+f P, (V')dV', (2.34)

with E;„=li ~mE, (V). The fact that the minimum

energy E;„is finite is known in physics as the "stability
of matter" (see Lieb, 1976). Since only difFerences in en-

ergy are important for fluid dynamics, we choose the ori-
gin for energy such that E;„=0.

Remarks. (1) The value of E;„is, in fact, significant
when the system contains several materials and chemical
reactions occur between them. In this case the value of
E;„ for each material must be chosen to be consistent
with the heat of formation of chemical compounds.

(2) When the S =0 isentrope coincides with the low-
pressure boundary of the domain in the P- V plane, the in-

equality P ( V, S) & P, ( V) holds. This is usually a valid as-

sumption.

(3) The coincidence of the T=O isotherm and the
S =0 isentrope implies that

8 logP 8 logP = —) +I'/g
slog V, alog V, (2.35)

at absolute zero. Hence I /g=O at T=O. Usually
C&—+0 as T—+0, so g = ~ and I may be nonzero at ab-
solute zero.

D. Domain of state space

The allowed states of V and S, as well as the properties
of E, are conveniently characterized using Legendre
transformations. More details about the following dis-
cussion are found in Appendix A [see also Wightman
(1979)].

In principle, the equation of state is determined from
(quantum) statistical mechanics. The starting point for
practical calculations of equations of state (Zel'dovich
and Raizer, 1966; More et al. , 1988) is usually the
specific Helmholtz free energy, which is related to the
specific energy through a partial Legendre transform:

F( V, T)= inf {E(VS)—TS I .
S

(2.36)

For simplicity, we imagine the constituent particles of
the material (molecules, atoms, or ions and electrons) to
be pointlike, with an interactive force that is strongly
repulsive at short distances and weakly attractive else-
where. (We only consider fluids in which constituent
particles do not bind. ) To construct the free energy, the
partition function is calculated for a box with volume V
containing X particles with average mass m, and the
thermodynamic limit is taken, i.e., V~~ and X~ ~
with V/%=IV. Our principal assumption, made pri-
marily for convenience, is that this limit exists for all
choices of V) 0 and T)0. Since C~= TdS/dTI z & 0, S
may be used in place of T as an independent variable. By
the third law of thermodynamics, T=O corresponds to
S =0. At the other extreme, we assume that S~~ as
T~ Oo with the volume fixed; this is reasonable because
at high temperatures the thermal energy of the particles
dominates their interaction potential energy, and the ma-
terial behaves as an ideal gas. Consequently, the domain
of definition for E comprises the quadrant S ~0 and
V) 0.

Remarks (1) For so.me physical applicatioris the
minimum attainable specific volume may be nonzero.
One example is from astrophysics: a neutron star
approximates "infinitely dense" matter for which
V~ V,„&0.

(2) At extremely high temperatures the thermal motion
is limited by the speed of light and the material must be
modeled by relativistic hydrodynamics. Furthermore, ra-
diation transport becomes important.

(3) Even though we focus on the dynamics of material
in a Quid state, we have set up the mathematical problem
as if Eqs. (2.4)—(2.6) and the equilibrium EOS were ap-

Rev. Mod. Phys. , Vol. 61, No. 1, January 1989



R. Menikoff and B. J. Plohr: The Riernann problem for fluid flow of real materials

propriate throughout state space, including regions
where the material is not Quid. This allows the initial
value problem to have a solution, for all time, and it
simplifies the statement and proof of mathematical
theorems on the wave structure. For the initial condi-
tions corresponding to a given application, one can exam-
ine the solution a posteriori to decide whether the Aow

has remained in a regime in which the Quid equations
and the EOS give an adequate model of the physical Bow.
For example, the solution does not model the physics
well when the material is solid and material strength is
important, or when the material is a rarefied gas (for
which the time needed to attain thermal equilibrium is
longer than the time scale of the flow problem). An alter-
native approach to the mathematical problem would lim-
it state space to comprise only the vapor and liquid
phases, but this would complicate all results because the
solution might hit the boundary of state space. The ap-
proach we follow is in the spirit of other physical
theories. For example, classical mechanics is a well-

posed, consistent mathematical model that approximates
physical reality well for a wide variety of problems, but it
is known to break down at small distances because of
quantum-mechanical efFects and at large velocities be-
cause of relativistic effects.

A convex function defined on a convex domain corre-
sponds naturally to a conjugate convex function, defined
on a conjugate domain, though the Legendre transforma-
tion. Corresponding to the convex function E is the
specific Gibbs free energy G, which is defined by

G(P, T) = inf [E(V, S)—TS+PVI
V, S

(2.37)

whenever P and T are such that the infimurn is finite.
The energy may be recovered from the Gibbs function
through the inverse relation

E ( V, S)= sup I G ( P, T) + TS PV I . — (2.38)
p, F

The geometry of the energy surface is intimately related
to properties of G.

First of all, E is jointly convex if and only if G is jointly
concave. Moreover, E is continuously differentiable if
and only if G is strictly concave. A point in the P-T
plane at which G is difFerentiable corresponds to unique
values of V and S, since V=BGidP~r and S
= —BG/BT ~+, whereas a point at which G suffers jump
discontinuities in its derivatives corresponds to a portion
of the S-V plane throughout which E depends linearly on
V and S. On most of its domain G is continuously
differentiable, but along certain curves, called coexistence
curves, G sufFers jump discontinuities in its derivatives.
Such singularities reAect the existence of phase transi-
tions in the material. For simplicity we limit the discus-
sion to a material that has three phases: solid, liquid, and
vapor. A prototypical phase diagram in the P-T plane is
shown in Fig. 1, (See, e.g. , Reichl, 1980, Chap. 4.) The
corresponding diagram in the S-V plane, constructed us-
ing the Legendre transformation, is shown in Fig. 2. The
phase diagram in the P-V plane, shown in Fig. 3, is also

~ critical
point

por pressure
curve

FIG. 1. Simplified phase diagram in the P-T plane.

useful.
Remark. Typical materials have many other phase

transitions. Polymorphic phase transitions, in which the
crystal structure of a solid phase changes, are most com-
mon. For instance, diamond and graphite are distinct
crystal structures of carbon. Other kinds of phase transi-
tions also occur, such as the superAuid transition in
liquid helium.

A point at which G is differentiable corresponds to a
pure equilibrium state; at a point on a coexistence curve,
by contrast, the material is a mixture of the pure phases
that border the point. End points of coexistence curves
are called critical points, and intersections of coexistence
curves are called triple points. Triple points, therefore,
correspond to three-phase mixtures, while other points
on the coexistence curve correspond to two-phase mix-
tures. A coexistence curve in the P-T plane expands to a
multiphase or mixture region in the S-V plane. Boun-

S-L

critical
point

Liquid

)I

Vapor

Solid

8-V
i'~

ay

+gqgi%'A
gg%%A%ii%1%%'A@A~

w'A&&

V

FIG. 2. Simplified phase diagram in the S-V plane. (Dotted
lines correspond to points on the coexistence curves in the I'-T
plane; the shaded region corresponds to the triple point. }
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FIG. 3. Simplified phase diagram in the P- Vplane. (Horizontal
lines in the mixed-phase regions correspond to points on the
coexistence curves in the P-T plane. )

daries between pure and mixed-phase regions are called
saturated phase boundaries or, more simply, saturation
boundaries. Triple points correspond to a triangular re-

gion; any other point on a coexistence curve corresponds
to a line segment (indicated in Fig. 2 by a dashed line seg-
ment). The slope of this segment coincides with the slope
of the tangent to the coexistence curve, according to the
Clausius-Clapeyron equation:

dP hS
dT „,„hV (2.39)

States in the triangular three-phase region are convex
combinations of the three pure states at the vertices of
the triangle; two-phase states are convex combinations of
the pure states at the end points of the line segment. We
assume all mixture ratios to occur physically. The
specific energy E depends linearly on V and S in three-
phase triangles and along two-phase line segments. In a
pure phase region the inequalities (2.32) are strict,
whereas in a mixture region yg=I . More precisely,
y=I'=g=0 in a three-phase region, while y or g, but
not both, may vanish in a two-phase region.

Remarks (1) At suffic. iently high temperatures all ma-

terials vaporize and behave as a gas, while at low temper-
atures the binding forces between constituent particles
cause materials to solidify (except for He, which is a
superfluid near absolute zero at low pressures).

(2) When heat conduction, viscosity, and surface ten-
sion are neglected, the dynamical equations do not distin-
guish between gases and liquids; we therefore speak of
Quid dynamics. In fact, the distinction between the va-

por phase and the liquid phase is only qualitative because
the liquid-vapor coexistence curve ends at a critical
point: a Qow can continuously transform a material from
the liquid to the vapor phase, or vice versa, without
crossing a phase boundary.

(3) Because we are focusing on fluid dynamics and not

on the elastic-plastic properties of solids, we exclude the
region of state space corresponding to material in ten-
sion. Thus the domain of state space is the quadrant
P ~0 and T~ 0. To be consistent, we assume that the
solid-vapor coexistence curve ends at P =T=O with

dP/dT~„, „=O, and that the vapor saturation boundary
extends to V—+ ~ as P~0, as indicated in Figs. 1 —3.

(4) Phase transitions have important consequences for
the wave structure of the dynamical equations, as dis-
cussed in Sec. V. A point on the coexistence curve at
which dP/dTt„„=O corresponds to a line' segment in
the S-V plane along which y =0, so the conservation laws
are not strictly hyperbolic. Furthermore, y =0
throughout the three-phase regions corresponding to tri-
ple points, which are generic features of phase diagrams.
However, this loss of strict hyperbolicity does not have
the important consequences for the topology of wave
curves in compressible Quid Aow that it has for other
non-strictly-hyperbolic systems. In a sense, phase transi-
tions are removable singularities: G may be smoothed by
convolution with a non-negative mollification function to
obtain an approximation to the equation of state that ex-
hibits no phase transitions. This contrasts with the situa-
ton for incompressible three-phase How in petroleum
reservoirs, where the singularity cannot be removed
(Shearer, 1988).

E. Asymptotic conditions

The existence of solutions of the Riemann problem de-
pends on the asymptotic properties of the EOS. We will
not focus on this aspect of the problem as much as we
will on the uniqueness of solutions of the Riemann prob-
lem, which depends on local properties of the EOS. In-
stead we will assume simple conditions that are physical-
ly motivated for classical hydrodynamics and sufficient to
guarantee existence for the Riemann problem.

Since the space of equilibriu'm states contains the en-
tire quadrant V) 0, S ~0, all isentropes extend toward
the line V =0 in the P-V plane. Because y ~0, P is non-
decreasing as V~O along an isentrope. The first asymp-
totic condition assumes more strongly that

P(VS) as V 0. (2.40)

E/P —+0 as V—+0 . (2.41)

Proof. By the monotonicity of P, 0 ~ E( V)
+ Eo+P ( V)( Vo —V) when V ~ Vo. Therefore
0 ~ lim sup ~ o E ( V) /P ( V) ~ Vo. Now let Vo ~0.

The second asymptotic condition supposes that a11

Physically, this results from repulsive forces between
constituent nuclei and electrons at short distances. An
important consequence follows from

Lemma 2.1. Suppose P(V) ~0 and P'(V) ~0. Let
E(V)=ED —f P(V')dV', where Eo&'0 and Vo) 0. If

Vo

P( V)~ ~ as V~O, then
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isentropes extend to P =0:

P(V, S)—+0 as V~ co . (2.42)

This would follow, for instance, from the assumption that
T ( V, S)~~ as S—+ ~, provided I remains strictly posi-
tive in this limit. At high temperatures for fixed V, the
thermal kinetic energy dominates the internal energy,
which leads to dissociation of constituent molecules.
Then the material behaves as an ideal gas, which exhibits
the required asymptotic behavior.

Example. These asymptotic conditions are easily
verified for a polytropic gas. Along an isentrope,
P/Po=(VO/V)r, so assumptions (2.40) and (2.42) hold.
Furthermore, E/Eo=(VO/V)r ', so E/P=V/(y —1)
~0 as V~0; also, E/Eo =P /Po =exp[(y —1)(S
—So)/R] if Vis fixed, so condition (2.43) is true.

F. Incomplete equation of state

The system of equations [Eqs. (2.4) —(2.6)] describing
Quid How must be supplemented by a constitutive rela-
tion. For this purpose only a relation of the form
P =P( V, E) is needed; such a relation is called an incom-
plete EOS. The complete EOS, E =E( V, S), determines
the incomplete EOS by solving for S =S ( V, E) (which is
possible since T=dE/dS

~ ~ )0 unless S =0) and substi-
tuting for S in P=P( V, S). But an incomplete EOS does
not determine a corresponding complete EOS, as we now
show.

The derivative along an isentrope,

8 8 8
av, av BE, '

and the derivative

(2.44)

1 a a
T BS v aE v

(2.45)

are well defined by the incomplete EOS. Consequently,

v ap
av (2.46)

This can be justified by imagining the adiabatic expan-
sion of the Quid to large specific volumes: as the constit-
uents become farther apart, the forces between them be-
come weaker, so the pressure falls to zero.

The last asymptotic condition is that

E(V,S)~oo and P(V,S)~~ as S~~ . (2.43)

PV f"(S)
f '(S)

shows that concavity of S=S(V, E) is equivalent to

(2.49)

f"(S) ( . 2 T
mm (yg —I )

fixed S

(2.50)

A choice for the function f that satisfies these conditions,
i.e., one that yields a thermodynamically consistent EOS,
may not exist or may not be unique.

Example. The nonuniqueness in determining T and S
can be illustrated with a polytropic gas EOS, defined by
the incomplete equation of state P =(yo —1)E/V for
some constant yo) l. Equations (2.46) —(2.48) may be
used to calculate that yo coincides with the adiabatic ex-
ponent y, and that I =yo —1 and 9=—'(yo+1). One
choice for the entropy and temperature corresponds to
an ideal gas with constant specific heat Cz =R /(yo —1):

T =(yo —1)E/R, (2.51)

may be calculated. We require that the incomplete EOS
define a non-negative adiabatic exponent y, in accor-
dance with thermodynamic stability. Moreover, the in-
complete EOS determines the differential
TdS=dE+PdV, so that an entropy function may be
obtained by finding an integrating factor 1/T for the
differential dE+P dV. Such an integrating factor is not
unique, however, so there may be more than one com-
plete EOS corresponding to the given incomplete EOS.
In other words, an incomplete EOS determines the isen-
tropes (curves along which S is constant) through the
differential equation dE= —P dV, but it does not deter-
mine the values of S that label the isentropes. On the
other hand, the complete EOS must be thermodynami-
cally consistent, i.e., it must conform to the thermo-
dynamic constraints of Sec. II.C, and it may happen that
no choice of integrating factor yields such an EOS. To
check thermodynamic consistency, one must verify that
T) 0, that S =0 when T=0, and that S =S(V,E) is
concave.

Suppose one choice for the temperature and entropy, T
and S, has been found to satisfy T dS=dE+P dV. Al-
ternative choices for the entropy and temperature are
given by S=f (S) and T= T /f '(S) for an arbitrary func-
tion f. For thermodynamic consistency we require that
T=T/f'(S))0, the T=O isotherm and S=O isentrope
are identical, and g ) I /y, so S=S( V, E) is concave. In
particular, f (S) must not decrease with S if the original
choice of temperature is non-negative. Furthermore, the
formula

ap
aE (2.47.)

V Fo

ln
yo —1 Eo Vo

(2.52)

and

y+1 ——v ay
y BV

p ay
BE

(2.48)

This choice, however, does not satisfy the third law of
thermodynamics. A complete EOS for a polytropic gas
that does satisfy this law can be found by choosing the
entropy to be, for example,
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S =f (S)= —,'[S+(S +S )' ] (2.53)

II. ONE-DIMENSIONAL SCALE-INVARIANT FLOWS

In this section we study the structure of one-
dimensional Aows. These Qows idealize three-
dimensional Qow with planar symmetry. With the sym-
metry plane perpendicular to the x axis, the only nonzero
component of velocity is the x component u, and all vari-
ables are independent of y and z. Therefore the govern-
ing equations [Eqs. (2.4) —(2.6)] reduce to

p, +(pu )„=0,
(pu), +(pu +P)„=0,
( ,'pu +pE—),+[u( —,'pu +pE+P)] =0 .

(3.1)

(3.2)

(3.3)

We wi11 be concerned primarily with scale-invariant
solutions, since they form the components of the solution
of the Riemann problem. The scale invariance reduces
the partial differential equations to ordinary difterential
equations for smooth solutions and to algebraic equations
for discontinuous solutions. First we describe alternate
forms of the Qow equations that are satisfied by smooth
solutions (rarefaction waves). Next we examine discon-
tinuous solutions (shock waves and contact discontinui-

In this case the specific heat Cz tends to the constant
R/(yo —1) at high temperatures and to zero at low tem-
peratures. The transition is determined by the choice of
So. The requirement g ~ I /y leads to the constraint
So ) (&3/4)& yo/(yo —1).

For an inviscid, non-heat-conducting, nonradiating
Quid, only those quantities that are determined by the in-
complete EOS are relevant (Davis, 1985). For instance,
the temperature T, the entropy S, and the specific heat
C~ do not appear in the Quid equations in isolation. In
this light, the fIow dynamics are independent of the tem-
perature and entropy-related properties of the material
embodied in the specific heat g. It is important to notice,
however, that an incomplete EOS must derive from some
thermodynamically consistent EOS in order to be a phys-
ical constitutive relation. In the subsequent sections we
will implicitly assume that the incomplete EOS has been
obtained from a complete EOS that satisfies the thermo-
dynamic constraints.

As will be seen, the dimensionless quantities y, I, and
0 determine the structure of solutions of the Riemann
problem. The standard analysis of the Riemann problem
in gas dynamics by Weyl (1949; see also Courant and
Friedrichs, 1948) assumes that I )0 and 0)0. The
same conclusions were obtained by Bethe (1942) under
the weaker conditions that I ) —2 and 9)0. Wendroff
(1972) and Liu (1975) studied the Riemann problem when
9 may become negative, assuming that y ) I )0 and that
9 is smooth with isolated zeros along isentropes. In the
presence of phase transitions, all of these assumptions
may break down. We explain in the subsequent sections
how this afFects the wave structure.

ties). Combinations of smooth and discontinuous solu-
tions are then constructed (composite waves). Finally,
we define wave curves and explain their use in solving the
Riemann problem.

Remark. Other one-dimensional Qows of physical in-
terest are obtained by imposing difFerent symmetries or
further approxim. ations; these include spherically sym-
metric Qow and Qow in a duct with variable area. %'e
will not consider these fIows because the conservation
laws governing them have source terms, so that scale-
invariant solutions do not exist. [For special initial con-
ditions, however, they do admit other types of similarity
solutions, such as the Guderley (1942) solution for con-
verging spherical shock waves. ] Nevertheless, scale-
invariant solutions approximate the Qow for short dura-
tions even when source terms are present. They are use-
ful, therefore, in numerical algorithms.

A. Rarefaction waves

At a point where the solution is difFerentiable, Eqs.
(3.1)—(3.3) are equivalent to the Lagrangian equations

pV —u =0, (3.4)

pu+P =0,
p( —,

' u +E ) + (uP), =0 .

(3.5)

(3.6)

Here a dot denotes the convective derivative 8, +u 0,
which difFerentiates along the paths of particles in the
flow. These equations follow by using Eq. (3.1) in Eqs.
(3.2) and (3.3). By using Eq. (3.5) in Eq. (3.6), the latter
becomes pE+Pu„=0, and therefore, by Eq. (3.4),
E+PV=0. According to the fundamental thermo-
dynamic identity, it follows that TS=O, so entropy is
constant along particle paths in smooth Qow. In addi-
tion, we may evaluate

~ BP - BP . yP ~

BV, aE, V
(3.7)

c =VyPV, (3.8)

then P= —p c V. Therefore Eqs. (3.4) —(3.6) may be
combined into the equivalent characteristic form

P+cP +pc(u+cu )=0,
P cP pc(u —cu„)=0,——

E+PV=O .

(3.9)

(3.10)

(3.11)

Equations (3.9)—(3.11) involve the derivatives 8, +(u
+c Q„and 8, +u 8„, respectively, so that signals propa-
gate at the characteristic velocities u+c, corresponding
to right-facing (left-facing) sound waves, and u, corre-
sponding to particle paths.

The adiabatic exponent y is now seen to be a dimen-

where y' is the adiabatic exponent given by Eq. (2.46). If
we now define the sound speed c as
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sionless measure of the sound speed c. The sound speed
is real because y ~0, as required by thermodynamic sta-
bility. Moreover, sound speed is strictly positive, except
where y=O, which can happen only in three-phase re-
gions (i.e., triple points) and at special points in two-
phase regions. Away from such points, Eqs. (3.1)—(3.3)
form a hyperbolic system with distinct characteristic ve-
locities; thus the system of conservation laws is strictly
hyperbolic. Regions where y=O are called umbilic re-
gions. The occurrence of umbilic points in models of
three-phase Aow in petroleum reservoirs has led to
several striking phenomena (Shearer et al. , 1987; Isaac-
son, Marchesin, and Plohr, 1988a; Isaacson, Marchesin,
Plohr, and Temple, 1988; Isaccson and Temple, 1988a,
1988b).

We now restrict attention to scale-invariant, or self-
similar, solutions of Eqs. (3.9)—(3.11). Such solutions de-
pend on x and t only through the velocity variable
g=x/t when t) 0, i.e., they are constant along rays
through the origin in space-time. In this case,
tB, = —(3& and ta„=a,, so Eqs. (3.9)—(3.11) require that

determine the isentrope S =Sp through the initial state
using Eq. (3.17), and then calculate the particle velocity

& dP
u =up+

~o pc s=s,
(3.20)

c dc
r+ =u+

S=const
(3.21)

Of course, such a rarefaction solution is realizable in
space-time only if g=u+c varies monotonically across
the wave. The variation of the sound speed along an
isentrope is related to the fundamental derivative 9:

by integrating along this isentrope, where pc is given by
Eq. (3.18). Notice that the particle velocity varies mono-
tonically across a rarefaction wave.

Example. For a polytropic gas, the Riemann invari-
ants are r+ =u+[2/(y —1)]c. More generally, when
9 & 1, the sound speed c varies monotonically along an
isentrope, and Eq (3..19) together with Eq. (3.22) below
gives

(u +c g)(P~+—pcu ~ ) =0,
(u —c —g)(P& —

pcu&) =0,
( u g)(E~+ PV—

~ ) =0 .

These equations are satisfied if one imposes that

+pc =p(u —g),
+pc du +dP =0,
dE+P d V=0,

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

ac l a= 2pCav, ' al gv, log(yP V)

= —
—,'pc y —1 ——vay

y BV

= —pc(Q —1) . (3.22)

dg=d (u+c ) = +pcs d V=+0 dP/pc (3.23)

Combining this with du =+dP /pc = +pc d V shows that

with

ap
pC = av,

' 1/2

(3.18)

V
r+ =u+ pc dV

' S=const
(3.19)

is constant along right-facing (left-facing) rarefaction
curves, since along these curves dr+ =du+pc dV=du
+dP/pc=0. This gives a procedure for calculating the
rarefaction curve through an initial state (VO, EO, uo): first

Such solutions correspond to right-facing and left-facing
rarefaction waves, according to the choice of sign. The
quantity pc is the acoustic impedance; it plays the role of
the signal propagation speed in Lagrangian coordinates
when x is replaced by the mass coordinate x satisfying
dx =p dx.

Equations (3.16)—(3.18) are ordinary differential equa-
tions whose orbits in V-E-u space are called rarefaction
curves. The states in a rarefaction wave lie along a rare-
faction curve, with their dependence on g determined by
Eq. (3.15): g=u+c. According to Eq. (3.17) and the fun-
damental thermodynamic identity, the entropy S is con-
stant along rarefaction curves. Moreover, the Riemann
invariant

along a rarefaction curve.
This important relation implies that 9 never vanishes

inside a rarefaction wave. In the language of conserva-
tion laws, the sound-wave modes of Eq. (3.1)—(3.3) are
geuuinely. nonlinear if and only if 0 is of one sign
throughout state space. As mentioned in Sec. II, the
condition 9 & 0 is equivalent to convexity of isentropes in
the P Vplane. Whe-n Q)0, the Eulerian wave speed
u+c decreases monotonically with increasing specific
volume across a right-facing rarefaction wave. The La-
grangian wave speed pc varies in the same way, since Eq.
(3.22) may be manipulated to read

1 c)pc

Bp s
(3.24)

In the case Q&0, Eq. (3.23) dictates that an element of
fiuid is rarefied (i.e., its specific volume increases and its
pressure decreases) as it is overtaken by a rarefaction

~ wave. In the opposite case, 9'&0, the Auid element is
compressed by a rarefaction wave (the name "rarefac-
tion" notwithstanding).

The monotonicity of the wave speed is also reAected in
the convexity of rarefaction curves in the P-u plane.
Indeed, differentiating dP/du =+pc with respect to u

and using dV/du =+1/pc and Eq. (3.24) shows that
d P/du =pQ' along a rarefaction curve. Thus rarefac-
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tion curves are convex in the P-u plane when 0)0.
Remarks. (1) We notice that the sound speed c, by it-

self, decreases monotonically only if the stronger condi-
tion 9) 1 holds, according to Eq. (3.22). The condition
0) 1 is equivalent to convexity of isentropes in the P p-
plane.

(2) The pressure P is constant, so the sound speed is

zero, along a portion of an isentrope that lies in a three-
phase region. This portion therefore coincides with a
critical isotherm in the P-V plane. The fundamental
derivative 9 is undefined in a three-phase region.

(3) If the limit of 9 as V~ ao along an isentrope exists,
then the limit is greater than or equal to 1, since other-
wise Eq. (3.22) could be integrated twice to show that
E—+ —Do logarithmically as V~ ~. Suppose that in fact
Q&1+a&1 when V is large. Then Eq. (3.22) implies
that c —+0 as V~ ao, and Eq. (3.21) shows that particle
velocity at the back edge of a rarefaction wave remains
finite in this limit. Thus there is maximum velocity, the
escape velocity, that is attained as V~ ~ and P —+0.
For example, a rarefaction wave is formed when a piston
is withdrawn from a tube filled with gas; if the piston ve-
locity exceeds the escape velocity, cavitation will result.
The escape velocity is u =uo+[2/(y —1)]co for a po-
lytropic gas. This limit on the velocity attained in a rare-
faction wave implies that two wave curves of opposite
families might not intersect in the P uplane. T-o solve the
Riemann problem it is necessary, in general, to admit
solutions that contain a region of vacuum.

(4) Let us suppose that a rarefaction wave bounds a re-

gion of vacuum. Then the boundary is a particle trajec-
tory as well as a characteristic, so that the sound speed
must be zero. Therefore the vacuum is characterized by
the coincidence of all wave speeds. We notice that P =0
corresponds to the vacuum only because of the asymptot-
ic assumptions on the EOS. For some useful equations of
state (such as a stiff'ened gas; see Sec. VII), P =0 does not
imply that c =0. If the pressure is arbitrarily cut off at
zero for such an EOS, the equations of motion may drive
the flow out of the domain. In this instance, numerical
calculations may exhibit instabilities.

(5) The equations for two-dimensional steady superson-
ic (low are hyperbolic (see, e.g., Courant and Friedrichs,
1948; Whitham, 1974). For this system of conservation
laws, the simple waves (i.e., the analogs of rarefaction
waves) are Prandtl-Meyer fans. The condition 0)0 also
implies that this system of equations is genuinely non-
linear (Thompson, 1971).

B. Shock waves and contact discontinuities

—o hp+ A(pu ) =0,
—ob, (pu)+b, (pu +P)=0,
—oh( —,'pu +pE)+b[u( —,'pu +pE+P)]=0,

(3.25)

(3:26)

(3.27)

At a point where the solution has a jump discontinuity
propagating with velocity o., the Rankine-Hugoniot jump
conditions

corresponding to Eqs. (3.1)—(3.3) must hold; these jump
conditions reAect conservation of mass, momentum, and
energy through the discontinuity. Here the jump AA in
a quantity 3 is defined by AA = A+ —A, where A+ is
the limiting value of A on the right (left) of the discon-
tinuity. In addition, let A denote the average
3 =

—,'( A+ + 3 ) of A across the discontinuity.
Using the Leibniz rule b, (AB)=A.bB+AA B, one

finds Eqs. (3.25) —(3.27) to be equivalent to the Lagrang-
ian jump conditions

+mhV —Au =0,
+ m Au+AP =0,
+-mA( —,'u +E)+h(uP)=0,

(3.28)

(3.29)

(3.30)

Au =0 and AP =0, (3.31)

but V jumps arbitrarily; this solution corresponds to a
contact discontinuity.

(2) In case m )0,

p (u —0.)=+m=p+(u+ —o),
+ mhu+hP =0,
hE+PE V=0,

(3.32)

(3.33)

(3.34)

with
' 1/2

AP
AV

(3.35)

this solution corresponds to a right-facing (left-facing)
shock wave. Because the mass flux m is real,

APb V) 0 for such—a solution (i.e., the pressure must
increase across a compressive shock wave and decrease
across an expansive shock wave). Equation (3.34) is
called the Hugoniot . relation. The equations above
should be compared with Eqs. (3.15)—(3.18).

Given an initial state (VO, Eo, uo), Eqs. (3.33)—(3.35)
are algebraic equations for the locus of final states
(V, E, )cuonnected to the initial state by a shock wave.
This locus is ca11ed the shock curve. The shock curve
may be calculated using a procedure similar to that used
for rarefaction curves: first determine the relationship
between thermodynamic variables along the shock curve
using Eq. (3.34), and then calculate the particle velocity
from

P —Pou=u +
m

(3.36)

where m is given by Eq. (3.35). It is also useful to note
that Eqs. (3.32)—(3.35) may be manipulated to obtain the
relations

where m =+p(u —o)~0 is the mass Aux across the
discontinuity. The mass flux m is the shock propagation
speed in Lagrangian coordinates.

There are two types of (nontrivial) solutions of the
jump conditions.

(1) In case m =0,
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—,'(u —uo) =E—Eo+Po( V —Vo)

=
—,'(P —Po )( Vo —V),

o = (pu —pou o ) /( p —
po ),

P —Po =po(o —uo)(u —uo),

—,'(o —u) +H= —,'(o —uo) +Ho,

(3.37)

(3.38)

(3.39)

(3.40)

(pS), +(puS) =0; (3.41)

this follows from Eq. (3.11) combined with Eq. (3.1). En-
tropy is not conserved, however, across discontinuous
waves. In fact, an element of fIuid undergoes the change
in entropy

behind ~ahead + ~ (3.42)

when it is overtaken by a right-facing (left-facing) shock
wave. Therefore the second law of thermodynamics re-
quires that

—o b, (pS)+b, (puS) ™(St„h;„dS,h„d) 0 (3.43)

for a physically realizable shock wave.
For weak shock waves, i.e., when ES is small, the

Hugoniot relation (3.34) approximates the equation for

where H =E+I'V is the specific enthalpy. The last equa-
tion states that Bernoulli's law holds across a shock wave
in the rest frame of the shock front.

Remarks (1). Because there is no mass flow through a
contact discontinuity, it also may represent the interface
between materials with different equations of state.

(2) The jump conditions have useful geometric inter-
pretations in the P Vplan-e (see Cowan, 1958; Zel'dovich
and Raizer, 1966). In particular, —m is the slope of the
chord line drawn from (Vo, PO) to (V, P), which is called
the Rayleigh line; (u —uo) is the area of the rectangle
with opposite corners (VO, PO) and (V, P); and E Eo is-
the (signed) area of the trapezoid with corner points
( V0, 0), ( VO, PO), ( V, P), and (V, O}.

Not all solutions of Eqs. (3.32)—(3.35) represent physi-
cally realizable solutions. For instance, certain solutions
will be seen to violate the second law of thermodynamics,
which requires that entropy not decrease. The selection
of physically admissible discontinuous solutions is a deli-
cate matter. Ultimately it is determined by physical pro-
cesses obscured in the passage from Eqs. (2.1)—(2.3} to
Eqs. (3.1)—(3.3). In the standard theory of shock waves,
it suffices to rely on the second law of thermodynamics to
define admissible shock waves; however, this principle is
inadequate in general. A more stringent criterion is that
realizable shock solutions should admit viscous profiles,
as described in Appendix C. However, even this cri-
terion seems to fall short because, for some equations of
state, certain initial value problems have multiple solu-
tions. This situation will be discussed in Sec. VI.

For now we consider the implications of the second
law of thermodynamics for solutions of Eqs. (3.1)—(3.3).
Smooth solutions conserve entropy in the sense that

an isentrope, so the entropy change is small. More pre-
cisely, Bethe (1942) has shown (by repeatedly
difFerentiating the Hugoniot relation} that the entropy
change is

c2bS= —
—,'9 (b, V/V) [I+0(b,V/V)] . (3.44)

Weak shock waves therefore are compressive when
Qo) 0. In this case, only the compression branch of the
shock curve contains admissible weak shock waves; the
complementary branch is disallowed. At the same time,
only the expansion branch of rarefaction waves may be
realized physically. Thus, when Qo) 0, a weak elementa-
ry wave must be a shock wave if it is compressive and a
rarefaction wave if it is exp@nsive.

As will be seen in Sec. IV, an admissible weak shock
wave has the property that the flow ahead of it is super-
sonic relative to the shock front, and the Aow behind it is
subsonic. Geometrically this means that the characteris-
tics of the same family as the shock wave impinge on the
discontinuity on both sides, while the characteristics of
the opposite family pass through the wave. Lax (1957)
introduced this geometric criterion as an admissibility re-
quirement for discontinuous solutions of general systems
of conservation laws. The Lax characteristic criterion is
necessary for linear stability of shock waves (see Sec. VI),
so we will require that our solutions satisfy it. This cri-
terion, however, does not su%ce to resolve nonuniqueness
of solutions of the Riemann problem when the Quid is
governed by an arbitrary equation of state.

C. Composite and split waves

Having described the basic scale-invariant solutions of
the fluid equations, we now consider general scale-
invariant solutions. Such solutions may contain several
elementary waves, i.e., rarefaction waves, shock waves,
and contact discontinuities. A scale-invariant solution
may be decomposed into groups of elementary waves that
belong to the same characteristic family, since waves cor-
responding to the distinct characteristic speeds u —c, u,
and u +c move apart from each other as time progresses.
Groups of waves of a given family generalize the classical
simple waves, since the appropriate Riemann invariant is
piecewise constant across the group. Any scale-invariant
solution consists of left-facing waves separated from
right-facing waves by a contact discontinuity.

The simplest wave group consists of a single rarefac-
tion or shock wave, but more generally it may be formed
from many elementary waves. Although rarefaction and
shock waves are the only possibilities when isentropes are
convex and smooth, as in the standard theory, other
configurations of waves can occur if isentropes are not
convex. When several elementary waves propagate as a
single entity, they form what is called a composite wave
if they move apart from each other, the wave is said to be
split.

Two elementary waves of the same family may appear
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together in a scale-invariant solution only if their propa-
gation speeds are compatible: they may not approach
each other. The outer edges of a rarefaction wave propa-
gate with the characteristic speeds of the corresponding
states, and shock wave propagate with the speed of the
discontinuity; these speeds must be ordered monotonical-
ly across the wave. This principle extends the rule that
the characteristic speed must vary monotonically across
a rarefaction wave. To enumerate the possible composite
and split waves, we must determine the conditions under
which two elementary waves may be adjacent to each
other in the solution.

Let us suppose that two rarefaction waves appear next
to each other. Consider the Auid state between them. If
the isentrope through this state is smooth when drawn in
the P-V plane, then the sound speed, and hence the
characteristic speed, is uniquely defined for this state.
Therefore the neighboring edges of the two rarefaction
waves propagate at the same speed, with the result that
the waves are contiguous, and we regard the two waves
as forming a single rarefaction wave. On the other hand,
the isentrope may have a kink (a discontinuity in slope)
at.this point, as happens when it passes through a satura-
tion boundary (see Sec. V). In this case the sound speed
is discontinuous and the neighboring edges of the two
rarefaction waves propagate at distinct speeds. The
discontinuity in sound speed must be such that the waves
move apart, so the solution is split into separate rarefac-
tion waves.

Two adjacent shock waves are compatible only if they
split. (If they move at the same speed they may be com-
bined into a single discontinuity. ) Suppose the state that
lies between them has a well-defined sound speed. The
characteristic for this state cannot impinge on both
shock waves, so one of them violates the Lax admissibili-
ty criterion. This and other admissibility criteria, such as
stability, imply that such a configuration of two shock
waves cannot occur physically. When the sound speed is
discontinuous at the middle state, however, it is possible
for both shock waves to be physical. Solutions consisting
of two shock waves that move apart exist if the kink in
the isentrope is sufficiently large. This is the
phenomenon of shock splitting, which is discussed in Sec.
V.

Remark In multidim. ensional flow, the subsonic j
supersonic admissibility criterion does not imply that two
shock waves of the same family must collide; steady-state
Bows with several shock waves of the same family are
possible. This is because the fIow in the directions
tangent to the shock fronts Inay cause the particle trajec-
tories to converge and diverge, resulting in transonic
Aow, just as in a nozzle. This occurs when a supersonic
gas jet is injected into a medium with lower ambient pres-
sure (see, e.g., Adamson and Nicholls, 1959).

The same considerations imply that a shock wave may
be contiguous to a rarefaction wave only if the shock
wave propagates at the same speed as the rarefaction
edge. Such a shock wave is said to be sonic, since it
moves at the speed of sound relative to the Quid on one

Eo =E( VO, S, ) (3.45)

0V

up=u, -+ Pc dV z (3.46)

where S~ =S( V~, E~ ), and then solve Eqs. (3.34)—(3.36)
together with the sonic condition

I =PpCp (3.47)

to determine the state (V, E,u). (A geometrical interpre-
tation of the sonic condition is given in Sec. IV.C.)' As
Vp is varied, this procedure defines a one-parameter fami-
ly of simple composite waves.

In addition to simple composite waves, it is possible for
multiple rarefaction and sonic shock waves to propagate
together as a single entity. Such complex composite
waves arise when isentropes alternate from convexity, to

side. We refer to a wave configuration combining a sonic
shock wave with a rarefaction wave as a simple compos-
ite wave. A rarefaction wave and a shock wave also may
be split from each other if the state between them lies on
a saturation boundary.

As will be seen, sonic shock waves cannot occur if isen-
tropes are convex. The possibility of composite and split
waves therefore requires anomalous behavior of the isen-
tropes: loss of convexity or kinks. In the standard
theory, when isentropes are convex and smooth, only in-
dividual rarefaction and shock waves may arise. When
phase transitions are present, however, composite and
split waves are important features of the Quid Aow.

In solving the Riemann problem it is advantageous to
construct one-parameter families of scale-invariant
waves. The shock curve based on a given initial state is a
locus of shock waves; similarly, a rarefaction curve is a
family of rarefaction waves, each corresponding to a seg-
ment of the curve. Shock curves and rarefaction curves
also determine families of split shock and rarefaction
waves. To construct a locus of simple composite waves,
we combine the differential equations for a rarefaction
curve with the Rankine-Hugoniot jump conditions, as
follows.

A simple composite wave consists of a rarefaction
wave adjoining a sonic shock wave. - To establish nota-
tion, let the rarefaction wave correspond to states along
the rarefaction curve bet'ween ( V„,E, , u ~ ) and

(VO, Eo, uo), and let (V, E, u) be the state on the opposite
side of the shock wave from (Vo, Eo, uo). Families of
composite waves may be constructed by allowing either
(V, ,E, , u, ) or (V, E, u) to vary: either the shock wave is
fixed and the rarefaction wave is changed, or vice versa.
In the first case, (V„,E„u,) is varied along a rarefaction
curve, so this type of composite locus involves the same
equations as for rarefaction curves. When ( V, E, u) varies,
however, ( Vo, Eo, u o) must also vary, since the shock
wave joining these states is required to be sonic. The
state (VO, Eo, uo) follows the rarefaction curve, so we may
parametrize the composite locus by Vp. we set
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concavity many times. In general, therefore, a scale-
invariant wave of a given family may be split into several
waves, each being a complex composite wave. The im-
portance of composite and split waves for Auid dynamics
is discussed at length in Sec. V.

Remark. Analogously, composite waves may arise in
two-dimensional steady supersonic Aow. Such a wave
consists of an oblique shock wave followed by a compres-
sive Prandtl-Meyer fan.

D. Wave corves and the Riemann problem

The Riemann problem is the initial value problem with
scale-invariant initial data. In one dimension, the initial
data consist of distinct constant states on the left and
right of a jump discontinuity. Because the equations are
scale invariant and the initial data are scale invariant, the
solution is expected to be scale invariant. (Otherwise the
scale invariance would be a "broken-symmetry, " in the
parlance of physics. ) In fact, the Riemann problem may
be solved by piecing together the elementary scale-
invariant solutions (rarefaction waves, shock waves, and
contact discontinuities) that were constructed in Secs.
III.A and III.B. In solving the Riemann problem, wave
curves play a central role; such a wave curve consists of
states connected to a given initial state by a scale-
invariant solution. Here we describe wave curves for the
standard theory, 0) 0, and outline the modifications
needed for arbitrary equations of state. The results are
proved in Secs. IV and V.

The solution of the Riemann problem consists of a
left-facing wave separated from a right-facing wave by a
contact discontinuity. Given the left and right states in
the initial data, a contact discontinuity must be con-
structed such that the states on its two sides are connect-
ed to the left and right initial states by left- and right-
facing waves. Because the jump conditions satisfied
across a contact discontinuity are Au =0 and 4P =0, the
states on the two sides project to the same point in the
P-u plane. This fact considerably simplifies the solution
of the Riemann problem. Define the right wave curve for
a fixed initial state to comprise states that are connected
to it by a right-facing wave, with the initial state lying on
the right side of the wave; define the left wave curve in
the symmetric manner. Then the solution of the
Riemann problem may be found by constructing the left
and right wave curves starting at the left and right initial
states, projecting them onto the P-u plane, and finding
their intersections. An intersection point determines two
states, corresponding to left- and right-facing waves, that
lie on the respective wave curves and have the same pres-
sure and particle velocity, thus forming a contact discon-
tinuity. In essence, the Riemann problem is reduced to
constructing wave curves.

Remarks (1) The syste. m of three conservation laws
for one-dimensional Auid dynamics behaves as if it were a
system of only two equations because the characteristic
speed for contact discontinuities is linearly degenerate.

(2) This procedure for solving the Riemann problem
also works when the left and right initial states corre-
spond to materials with different equations of state. We
emphasize that a wave curve depends on the EOS as well
as the initial state.

Because of Galilean and parity invariance of the Auid
equations, wave curves have some symmetry properties:
the wave curves for two initial states with the same ther-
modynamic state but different particle velocities are re-
lated by incrementing the velocities, and the left wave
curve is the reAection of the right wave curve through
the plane u =uo. Therefore we may restrict attention to
right-facing waves for initial states with uo =0.

In the standard case, 0) 0, wave curves are particular-
ly. simple, as will be proved in Sec. IV. The Bethe-Weyl
theorem shows that a point on the shock curve satisfies
the thermodynamic admissibility requirement S & So pre-
cisely when the wave is compressive, i.e., the state behind
the wave has higher pressure. At the same time, the
characteristic speed decreases monotonically across the
rarefaction wave if and only if it is expansive. The key
properties of the elementary waves are as follows: (1)
The Aow ahead of a shock wave is supersonic relative to
the shock front, and the fiow behind is subsonic. (2)
Rarefaction waves move with the characteristic velocity.
As a result, two waves of the same family must overtake
each other, so wave splitting and composite waves do not
occur. Therefore wave curves consist of shock waves on
the compressive branch and rarefaction waves on the ex-
pansive branch when 9)0.

The asymptotic behavior of the EOS implies that
~
u

~

~ ~ and P~~ along the compressive branch of the
shock curve, and that the expansive branch of the rare-
faction curve extends to P=O. In general, though, u

tends to a finite limit, the escape velocity, as P~O along
an isentrope. Therefore wave curves are continuous and
semi-infinite. As a result, there are five possibilities for
the solution of the Riemann problem, as illustrated in
Fig. 4. When the wave curves for the left and right ini-
tial states intersect, the left- and right-facing waves may
be either shock waves or rarefaction waves. If the wave
curves do not intersect, the solution is slightly different
from the usual form: it contains two rarefaction waves
that reach to the state P =0, separated by region
throughout which P =0, V=- oo, and u is undefined.
Such a solution corresponds physically to the opening of
a void, or a vacuum, in the material. (For fiuids this pro-
cess is called cavitation, while a solid is said to spall. )

Provided one allows for the formation of voids, the solu-
tion of the Riemann problem always exists when 9)0, as
a result of the asymptotic properties of the EOS.

The uniqueness of the solution to the Riemann prob-
lem is related to the monotonicity'of wave curves in the
P-u plane. When the wave curves are strictly monotonic,
dP/du )0 for the right wave curve and dP/du (0 for
the left wave curve, they can intersect only at one point
and the solution to the Riem@nn problem is unique. If
the wave curves are not monotonic, more than one inter-
section is possible for some initial conditions and the
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FIG. 4. Possible solutions of Riemann problems.

FIG. 5. Nonuniqueness of solutions of a Riemann problem
when the wave curve is not monotonic in the P-u plane.

solution to the Riemann problem is not unique. Such a
situation is depicted in Fig. 5. The asymptotic behavior
of wave curves implies that there must be an odd number
of solutions. Rarefaction curves are always monotonic,
since dP/du =+pc, but shock ciirves need not be so.
Even when Q)0 and I )0, additional conditions (de-
scribed in Sec. IV) must be satisfied by the EOS in order
that the solution of the Riemann problem be unique.

When a general EOS, not satisfying 9)0, is con-
sidered, the Riemann problem may be solved in the same
manner by employing wave curves that allow for split

waves and composite waves. Here we outline the results
presented i' Sec. V. Near its initial state, a wave curve
still consists of a branch of shock waves on one side and
rarefaction waves on the other. The rarefaction branch
must end, however, at the first place that 9 vanishes; the
wave curve is then continued by a locus of composite
waves. Similarly, the shock branch ends if the shock
wave becomes sonic, and this branch is followed by a
locus of composite or split waves. Further transitions to
different types of waves may occur along a wave curve.
These transitions correspond to points where the propa-
gation speed of the last wave in the composite, i.e., the
characteristic speed for rarefaction waves and the propa-
gation speed for shock waves, reaches a minimum or
maximum, respectively. This is because the charactistic
speed must vary monotonically across rarefaction waves,
and because the monotonicity of shock speed is related to
the existence of viscous profiles for shock waves. With
the incorporation of these new types of waves, wave
curves are again continuous and semi-infinite, and a solu-
tion to the Riemann problem always exists. As before,
the uniqueness of the solution to the Riemann problem
depends on the monotonicity of wave curves.

To summarize, the solution of the Riemann problem
may be reduced to constructing wave curves whose
asymptotic properties are related to existence of solutions
and whose monotonicity is related to uniqueness of solu-
tions. The assumptions made about the asymptotic be-
havior of the EOS imply that a solution of the Riemann
problem always exists, but additional conditions must be
satisfied by the EOS in order for the solution to be
unique. Without these additional conditions, it is an
open problem as to how the nonuniqueness of the
Riemann problem is resolved. The resolution of
nonuniqueness must incorporate additional physics that
is not contained in the simplified equations used to model
the dynamics of the system.

IV. PROPERTIES OF SHOCK CURVES

The structure of wave curves, and therefore the solu-
tion of the Riemann problem, depends on the geometry
of rarefaction and shock curves. In the standard case
when 9)0, as will be proved in Sec. IV.B, all states on
the expansion branch of the rarefaction curve correspond
to physically realizable rarefaction waves, and all states
on the compression branch of the shock curve corre-
spond to physical shock waves; these two branches con-
stitute the wave curve. In this case, the questions of ex-
istence and uniqueness for the Riemann problem may be
answered by establishing some geometrical properties of
shock curves.

More generally, a wave curve is the locus of states
(V,S,u) that are joined to a fixed initial state (Vo, So, uo)
by scale-invariant solutions corresponding to a given
wave family. A wave curve comprises rarefaction, shock,
and composite waves, as described in Sec. III.D. Por-
tions of it coincide with shock and rarefaction curves,
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A. Local structure

A shock curve comprises states satisfying the
Rankine-Hugoniot conditions. Because of Galilean and
reAection covariance of the Auid equations, we may re-
strict our analysis to shock curves of right-facing waves
for which the initial state lies on the right side of the
wave, so that (Vp, Sp, up) is the state ahead of the wave
and (V, S,u) is the state behind. (The left shock curve for
an initial state is simply the reAection, through the plane
u =up, of the corresponding right shock curve. ) The
state ahead of the shock wave is regarded as being fixed,
so the notation used in Sec. III will be modified slightly:
the jump 63 in a quantity A is defined to be
b, 3 = A —Ap, and the average is A =

—,'( 3 + Ap ).
The key to analyzing the shock curve is first solving

the Hugoniot relation

AE+PAV=O, (4.1)

and the properties of these curves largely determine the
structure of the wave curve. In the present section we
will concentrate on the properties of shock curves.

After establishing some local and asymptotic proper-
ties of shock curves, we study the structure of wave
curves when Q&0. The main result is the Bethe-Weyl
theorem, generalized to allow arbitrary values of I .
Then we systematically derive monotonicity properties of
shock curves. These properties are used to establish cri-
teria for the equation of state that guarantee uniqueness
of solutions of the Riemann problem, following ideas of
Smith (1979). We will also use the geometrical properties
of shock curves in the next section when we study wave
curves in the general case when 0)0 is not assumed.

plane, we will find it convenient to map the locus onto
other thermodynamic planes. The most important is the
P-V plane, even though we do not require that I )0 and
thus allow the energy to be multivalued 'as a function of P
and V. It follows from Eq. (4.1) that the Hugoniot locus
lies in the quadrant —AEAV ~ 0, and equality holds only
if V= Vo and S =So. Furthermore, convexity of E im-
plies that —PAV+TAS~AE~ —PohV+ToAS, which
when combined with the Hugoniot relation yields the in-
equality EPb. V~—2 maxI —TbS, Tp, hS I. Thus the
Hugoniot locus lies in the quadrant —APAV~O, where
again equality only holds for the trivial solution (except
in the rare circumstance that the initial state lies in a
mixture region where y =0). In particular, the mass flux
defined by Eq. (4.2) is real all along the Hugoniot locus.
Consequently there is a one-to-one correspondence be-
tween solutions of the Hugoniot relation and solu- .

tions of the Rankine-Hugoniot jump conditions, Eqs.
(3.25) —(3.27).

Suppose ( V, S) is on the Hugoniot locus, so that
h ( V, S)=0. Suppose, too, for thh moment, that P is con-
tinuously differentiable at ( V, S). By the implicit function
theorem, the Hugoniot locus is a one-dimensional mani-
fold (i.e. , a curve) in a neighborhood of (V, Q, provided
that the derivative of h is not zero; otherwise the Hugoni-
ot bifurcates at (V, S). According to the fundamental
thermodynamic identity and the relation
V dP= —yP d V+ I T dS, the difFerential of h is

dh = 1+—'I TdS ——' + PdV . (4.6)
2 V 2 ~ V P

Therefore bifurcation occurs at a point on the Hugoniot
locus if and only if

since other quantities of interest may be determined
afterward:

1+ r ~V =0 ~ d ~V+ ~P =0,an (4.7)

m =( aPyxv)'"—,

u =up+bP jm,
o. =uo+ Vom =u+ Vm

(4.2)

(4.3)

(4.4)

The Hugoniot locus is the set of solutions of the Hugoni-
ot relation, i.e., the projection of the shock curve onto
the thermodynamic variables. For a fixed initial state
( Vp Sp) we define the Hugoniot function by

h ( V, S)=E( V, S) Ep+ —,
' [P ( V, S)+—Pp]( V —Vp),

(4.5)

where Ep=E( Vp, Sp) and Pp=P( Vp Sp). The Hugoniot
locus is then the solution set of the equation h ( V, S)=0.

Remark. On occasion it will be useful to consider the
state (V, S) to be fixed and to allow (Vp, Sp) to vary. This
locus of initial states that are connected by a shock wave
to the given final state is called the backward Hugoniot
locus.

In addition to studying the Hugoniot locus in the S-V

or equivalently

V AP , hP=P= 2I (4.8)

In particular, the Rayleigh line must be tangent to an
isentrope, by the first equality. Thus bifurcation occurs
only when m =pc, or equivalently o.= u +c, so that the
shock wave is sonic.

If (V, S) lies on a saturation boundary, the usual formu-
lation of the implicit function theorem does not apply.
However, the energy surface corresponding to the pure
phase can be extended across the saturation boundary as
a twice continuously differentiable function (physically
corresponding to a supersaturated metastable phase), and
the arguments above then give the branch of the Hugoni-
ot locus in the pure phase. The branch in the mixed
phase is constructed similarly, and the branches join to
form a piecewise continuously di8'erentiable curve. Bi-
furcation may occur only if Eq. (4.8) is satisfied in the
limit as the saturation boundary is approached from one
side or the other, or if one of the branches is tangent to
the saturation boundary. (The behavior of Hugoniot loci
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near saturation boundaries is treated in more detail in
Sec. V.A. )

Near a bifurcation point, the Hugoniot locus is deter-
mined by the Hessian matrix h" of second derivatives of
h, assuming it to be nondegenerate (i.e., to have no zero
eigenvalues). It is reasonable to assume that bifurcations
occur only at isolated points where the Hessian matrix is
nondegenerate (so that h is a Morse function); this is be-
cause if h were degenerate, a small perturbation of the
EOS would make it nondegenerate. If the signs of the ei-
genvalues of h" are the same, the bifurcation point is an
isolated solution of the Hugoniot re1ation, while, if the
signs are opposite, the Hugoniot locus crosses itself
transversally at the bifurcation point, with tangent direc-
tions determined by the eigenvectors of h ".

Bifurcation does not seem to occur for physically real-
istic equations of state, although it does play a role in
other types of Auid fIow, such as immiscible three-phase
liow (Shearer et al. , 1987). There are several situations in
which bifurcation is not possible. For instance, in the
standard case when 9)0, the Bethe-Weyl theorem (see
below) precludes any shock wave from being sonic.
Another sufficient condition that excludes bifurcation is
2y) I )0, according to Eq. (4.8); the first inequality,
called the weak condition in Sec. IV.C, is expected to
hold for most real materials. A bifurcation point on the
Hugoniot does occur, however, in the model EOS dis-
cussed in Sec. VII; this is an unphysical aspect of that
model. In this paper we will presume that bifurcations
do not occur.

The Hugoniot curve nearly coincides with an isentrope
in the vicinity of the initial state: Eq. (3.44) shows that it
has second-order contact with the isentrope S =So.
Therefore the Hugoniot locus near the initial state may
be parametrized by specific volume V. It follows from
Eq. (4.2) that m has the limit mo =poco as S~So along
the Hugoniot. Moreover, twice differentiating the rela-
tion hu = —m 6V with respect to V and using
du = —pc d Vshows that

dm du du dpc z

dV, dV' „dV' dV

at (VO, SO) . (4.9)

In particular, m =m o+ —,
' (pc —poco) =

—,
' (poco+ pc) for

weak shock waves. When Qo) 0 the Mugoniot locus is
convex in the I'-V plane near the initial state; so since
—I is the slope of the Rayleigh line, the inequalities
poco & m &pc hold on the compression side, where
V & Vo and S)So. By Eq. (4.4), Lax's characteristic cri-
terion (Lax, 1957),

the wave is supersonic (~uo —co~ & co) and the liow
behind it is subsonic (~u —o

~
)c). Geometrically, both

characteristics impinge on the shock front from ahead,
while one characteristic enters and one leaves the shock
front from behind. These conditions, which have been
shown to hold for weak waves, are necessary, but not
sufficient, for the stability of the shock waves of arbitrary
strength, as will be discussed further in Sec. VI.

B. Asymptotic properties

+ —,'[P( V, S)+Po]( V —Vo) . (4.12)

Since Q)0, isentropes are strictly convex in the P V-
plane; consequently,

—,'[P(V, S)+Po]( V —Vo) ) I P( V', S)dV'
Vo

(4.13)

when V) Vo. In addition, E( VO, S) E( VO, SO)) 0—when
S So, since T)0. As a result, hs(V))0 when V) Vo
and S)So. Similarly, hs( V) &0 when V& Vo and
S ~SO. Therefore the roots of hs occur with V& Vo
when S)So, and with V) Vo when S & So.

Differentiating Eq. (4.11) yields

h'(V)= ——' P P — — (V —V )
BI'

S BV 0
S

(4.14)

and

A fundamental result concerning the structure of
Hugoniot loci is the following characterization:

Theorem 4.1 (Bethe, 1942; Weyl, 1949). The Hugoniot
locus through an initial state (Vo, SO) intersects each isen
trope at least once Moreouer, if 0) 0 along an isentrope,
then the Hugoniot locus intersects it exactly once; in this
case, V& Vo and ~u cr

~
&c—if S)So, while the opposite

inequalities hold ifS &So.
Proof. Let hs be the Hugoniot function restricted to

the isentrope with entropy S:

hs( V) =E(V,S) Eo+ —,'[—P( V, S)+Po]( V —Vo) . (4.11)

From the asymptotic properties (2.40) and (2.41) it fol-
lows that hs( V)~—~ as V~O; and since
hi, (S))—Eo+ —,'Po(V —Vo) when V) Vo, hs(V)~+ ~
as V~~. By continuity, therefore, hs has at least one
root, so that the Hugoniot locus intersects the isentrope
at least once.

Assume now that 9)0. Notice that hs may be written

hs( V) =E( VO, S)—I P( V', S)d V' Eo—
0

uo+co &o. and u &o. &u+c, (4.10)
0 I'

hs(V)= —'(V —V )
S

(4.15)

for the admissibility of shock waves is satisfied on the
compression branch when 9'0) 0; similarly, this criterion
and the entropy condition S ~SO are satisfied on the ex-
pansion branch V) Vo when Co&0. Lax's criterion im-
plies that, relative to the shock front, the Aow ahead of

Because of the convexity of the isentrope, hs is strictly
concave when V& Vo and strictly convex when V) Vo.
This implies the uniqueness of the root of hs.

Furthermore, hs(V)) 0 at the point where hs( V)=0.

Rev. Mod. Phys. , Vot. 61, No. 1, January 1989



R. Menikoff and B. J. Plohr: The Riemann problem for fluid flow of real materials 93

Equation (4.14), combined with Eqs. (3.34), (3.31), and
(3.18), shows that

hs( V)= —
—,'p (V —Vo)[c —(u —o. ) ])0 . (4.16)

Therefore ~u
—o.

~
&c when V& Vo, and ~u

—o
~
)c when

V) Vo. U
Remarks. (1) The original proofs of this theorem in-

volved different arguments. The proof by Bethe (1942) is
valid for I ) —2, and the proof by Weyl (1949) is valid
for I )0. Our proof makes no assumptions about I.
Anomalies that occur when I changes sign are discussed
in Sec. V.C.

(2) The proof of the theorem may be extended to show
what happens when 9 is allowed to change sign. In this
instance, the number of times the Hugoniot locus inter-
sects an isentrope is no more than 1 plus the number of
sign changes of 0 along that isentope. Moreover, inter-
sections of the Hugoniot with an isentrope S)So may
occur with V) Vo. Such an intersection corresponds to a
shock wave that rarefies the Quid even though it increases
entropy; this type of wave will be discussed in more detail
in Sec. V.B. Furthermore, the possibility arises that the
Hugoniot locus has a disconnected branch or loop. The
weak condition, which is discussed below, excludes this
from occurring. Thus when the weak condition holds,
the Hugoniot locus is a single curve connected to the ini-
tial state, but it might not be parametrized by entropy.

(3) This theorem has a geometric interpretation: the
isentropes foliate state space, and the Hugoniot curve is a
continuous cross section of this foliation when 0)0.

(4) Notice that the Hugoniot locus intersects the S =0
isentrope, i.e., the cold curve, at a finite specific volume
V„,which depends on ( Vo, So) and satisfies

E, ( V„)—E,+-,' [P, ( V„)+P,]( V„—V, ) =0 . (4.17)

Thus E~E,(V„) and P +P, (V ) as S~O—along the
Hugoniot curve.

For real materials, the condition Q&0 is satisfied only
in restricted regions of state space, so the second half of
the Bethe-Weyl theorem might seem to have limited ap-
plicability. Nevertheless, its proof has important conse-
quences for most materials. Consider strong, compres-
sive shock waves, viz. , those with large entropy S and
with V& Vo. Typically T( V, S)) T( VO, S)~ oo and
P( V, S))P( VO, S)~~ as S~~, so that states with
large S and V& Vo have uniformly high temperatures
and pressures. Most materials vaporize and behave as an
ideal gas under these conditions. (This is discussed in
Sec. IV.C.) When S is large, therefore, an isentrope is ex-
pected to be convex for all V& Vo. The proof of the
Bethe-Weyl theorem then shows the compressive branch
of the Hugoniot locus intersects an isentrope with large
entropy exactly once, and that ~u cr

~
&c for the corre-—

sponding shock wave.
We now draw some conclusions from the Bethe-Weyl

theorem under the assumption that 9')0 throughout
state space. First of all, the Hugoniot locus does not bi-

furcate because shock waves cannot be sonic. Thus the
Hugoniot locus is a continuous curve consisting of a sin-
gle connected branch, which may be parametrized by S,
0 ~ S & ao. Because the entropy must not decrease across
a physical shock wave, i.e., S ~SO, only the compression
branch (V & Vo) of the Hugoniot corresponds to physical
shock waves. On the other hand, only the expansion
branch (V& Vo) of the isentrope S =So corresponds to
realizable rarefaction waves, as follows from Eq. (3.23)
with 9)0; this branch may be parametrized by V& Vo.
The union of these two branches is the wave curve.

As described in Sec. III.D, the asymptotic behavior of
wave curves determines whether solutions of the
Riemann problem exist. By the asymptotic property
(2.43) of the EOS, P~ oo and E~ Oo as S—& ~ along the
shock branch of a wave curve. Therefore Eqs. (3.37) and
(3.38) show that

I
u

~

~ ~ and lo I
~~ as S~~. More-

over, the asymptotic condition (2.42) shows that P~0 as
V~ ~ along the rarefaction branch of a wave curve. (As
mentioned in Sec. III.A, however, ~u~ may remain bound-
ed as V~ &n along the rarefaction branch. ) These
asymptotic properties of wave curves, which hold when
0)0, guarantee that any Riemann problem has at least
one solution. This solution consists of left- and right-
facing waves, which are either compressive shock waves
or expansive rarefaction waves, separated by a contact
discontinuity or a vacuum region.

Remarks (1) W. hen 9)0 does not hold, the structure
of the wave curve is more complicated. Nevertheless, the
arguments just given usually extend to the general case.
As discussed above, strong compressive waves are shock
waves. Therefore the compressive branch of a general
wave curve eventually coincides with the Hugoniot locus
and has the same asymptotic behavior as when 9)0.
Moreover, the expansive branch usually extends to P =0.
We conclude that a solution of any Riemann problem ex-
ists and has the standard structure, except that the left-
and right-facing waves also may be composite or split
waves.

(2) Equations (3.37)—(3.39) show that

E + ,'u, P~po—uo—, and u ~(1—palp)o (4.18)

=—'(b, V) d 6V
=(hV) m dm . (4.19)

Thus the shock speed o. and the negative slope m of the
Rayleigh line both increase as the shock strength in-
creases. In particular, m )m o

=poc 0. Equivalently,
o & uo+co, i e., ~uo

—o.
~
)co, when S &So. In the

Galilean frame in which the shock wave is stationary,

in the limit of strong shock waves, S~~. (More pre-
cisely, the ratios of the sides approach unity. )

When 0)0, the Hugoniot locus is parametrized by the
mass Aux m, and hence the shock speed o. =u~+ Vom, as
well as by the entropy S: diff'erentiating Eq. (4.1) and us-

ing the fundamental thermodynamic identity shows that

T dS= —,'AP dV —
—,'AV dI'
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therefore, the How is supersonic ahead of the wave and
subsonic behind the wave. Consequently, the Lax admis-
sibility conditions (4.10) are equivalent to the entropy cri-
terion S)So for arbitrarily strong shock waves, provided
that Q) 0.

Remark. The Galilean frame in which uo=0 is espe-
cially convenient for experimental work with shock
waves. Shock Hugoniot data is often presented in plots
of the shock speed U, =o. versus the particle speed

U~ =u, as measured in this frame (Marsh, 1980). The in-

tercept of this curve at U =0 is U, =co. As seen from
the asymptotic relations (4.18), U, is proportional to U

in the strong shock regime, U ~ ao, with proportionality
constant determined by the limiting compression ratio.
(In fact, for many materials the U, —U relation is very

nearly linear for pressures up to several megabars. How-
ever, the slope of the curve in this range is not the
asymptotic slope. ) The Lax conditions require that
co & U, and U & U, & Up+c. In general, however, there
are no inequalities relating c to U or U, . For a polyto-
pic gas in the strong shock limit,

d V= — 1+-'r Vd~hV
2 (4.21)

along the Hugoniot locus. Foi weak shock waves, then,
specific volume decreases with increasing shock strength,
as is consistent with the standard theory. Once this
choice has been made, the variation of other quantities
with shock strength is determined. First of all, by equat-
ing dh in Eq. (4.6) to zero, one finds that

T dS= ——' y+ — PV da, AV V4P
V PkV

[c —(u —o. ) ]da . (4.22)

[To be precise, a is defined by Eq. (4.22) when the quanti-
ty in large parentheses in Eq. (4.21) vaiiishes. ] Thus S in-
creases with shock strength along the compression
branch if and only if c )

~
u —o ~; i.e., the fiow is subsonic

behind the shock. Futhermore, the identity V dP
= —yP dV+I T dS shows that

1/2 dP= y ——'I Pdo .KP
2 p

(4.23)

y+1 (4.20)

Therefore c & U when 1&y&2, whereas c) U when

y) 2; c ( U, when 1(y (2+i/5, whereas c) U, when

y )2+ v'5. Furthermore, c ) U, occurs for weak shock
waves in the model described in Sec. VII. The results of
these examples may be stated another way. For a right-
facing wave, the subsonic/supersonic condition implies
that the speed of the fast characteristic relative to the
shock front increases across the wave: u +c —o.)0)uo+co —o. However, the speed of the slow charac-
teristic relative to the shock front, u —c —0., may either
increase or decrease.

Similar relations for dE and dT follow from the funda-
mental thermodynamic identity and the relation
(PV/T)d T = I P d V+—g T dS:

T

dE = ———'(y —I ) PV daP, AV
P 2 V

(4.24)

dT= I —
—,'g —

—,'(yg —I ) Tda .AP, 2 AV
(4.25)

The mass Aux m, the particle velocity u, and the shock
speed 0. are defined along the Hugoniot locus through
Eqs. (4.2). A simple calculation using Eqs. (4.21) and
(4.23) yields

C. Monotonicity properties P VAP
dm =podo =— y + m deP b, V

(4.26)

Uniqueness of solutions of the Riemann problem de-
pends on the local geometry of Hugoniot loci. To under-
stand this geometry, we establish criteria under which
various quantities parametrize the Hug oniot locus.
Throughout this section, points where the Hug oniot
locus intersects a saturation boundary, as well as bifurca-
tion points, will be excluded from consideration. Behav-
ior near saturation boundaries is studied in Sec. V.A,
where results similar to those of the present section are
proved.

At points where the pressure is continuously
differentiable (i.e., away from saturation boundaries), the
Hugoniot locus may be parametrized smoothly by a sin-
gle variable, which we regard as measuring shock
strength. A convenient choice of the shock strength pa-
rameter a is given by requiring that

and

du —
—,
' y —I AP VhP P

P~V d- (4.27)

These formulas lead to some interesting relations. For
example, Eqs. (4.21) and (4.23) show that

V dP
P dV ~ 1+—,'I AV/V ' (4.28)

which implies that I may be determined along a Hugoni-
ot locus from measurements of the slope of the Hugoniot
and the sound speed. Equation (4.28) may be rewritten as
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dP b,P yP b,P
dV

h
bV V hV

I+-'r
2

(4.29)

Under the assumption that 9 & 0, these conditions are re-
lated in the manner suggested by their names; this rela-
tionship is a consequence of the following result.

Lemma 4.3 (Smith, 1979). If 0 & 0, then

which relates the slopes of the Hugoniot, Rayleigh line,
and isentrope. Similarly, Eqs. (4.23) and (4.27) combine
to give a formula for dP/du ~h. For later purposes it is
convenient to express this quantity in terms of dP /d V

~ t,

y & ,'PV-/E .

Proof. Notice that limi E( V, S)&E;„=0,so

E ( V, S) & I P ( V', S)d V' .

(4.32)

(4.33)

dP m

du
h dP/dVit,

(4.30)

As another example, combining Eqs. (4.22) and (4.26)
demonstrates that

Since isentropes are strictly convex when 9 & 0, the in-
tegral may be bounded below by the area of the inscribed
triangle with hypotenuse tangent to the isentrope at
( V, P); thus

TdS=(b, V) m dm (4.31) f P( V', S)d V'& —,'P( V, S) '

i

= ,'PV/y—,

along the Hugoniot locus. An important consequence is
the following.

Theorem 4.2. At a point on a shock curve where it is
smooth, the followt'ng conditions are equivalent: (a) the
entropy S is an extremum; (b) the mass flux m is an ex
tremum; (c) the shock speed cr is an extremum; (d) the
slope of the Rayleigh line is an extremum; (e) the Ray
leigh line is tangent to the Hugoniot locus; (f) the Rayleigh
line is tangent to an isentrope; (g) ~u

—o~=c (i e , th. e.

shock wave is sonic). When these conditons hold, the
Hugoniot locus is tangent to an isentrope. Conuersely, con-
ditions (a) —(g) are true if the Hugoniot is tangent to an
isentrope and 1 &0 at this point.

Proof. Conditions (a) and (b) are equivalent by Eq.
(4.31). Conditions (b) and (c) are equivalent because
o up + Vpm, and (b) and (d) are equivalent because
—m is the slope of the Rayleigh line. Since the Ray-
leigh line is a chord on the graph of the Hugoniot, the
equivalence of (d) and (e) is a geometrical fact; analytical-
ly it follows from differentiating the difference quotient.
Conditions (d) and (f) are equivalent by Eq. (4.26). Final-
ly, conditions (fl and (g) are equivalent because

dP/dV~s=p —c and bP/b V=m =p (u——o ),
Conditions (e) and (fl imply that Hugoniot is tangent to

an isentrope. Conversely, the identity I T dS= V dP
+y P d V shows that the entropy along any curve in the
P-V plane is an extremum at a point of tangency with an
isentrope, provided that I &0. Cl

Remark. A variant of this theorem that holds even
when the Hugoniot intersects a saturation boundary is
proved in Sec. V.A.

Several conditions on the EOS were introduced by
Smith (1979) in analyzing the uniqueness of the Riemann
problem. They are also important for discussing mono-
tonicity of thermodynamic and hydrodynamic quantities
along the Hugoniot locus. The conditions are

I ~ PV/E (strong condition),

I ~ y+ —,'PV/E (medium condition),

I ~ 2y (weak condition) .

(4.34)

so E(V,S) & ,'PV/y. —H

Corollary 4.4. If Q&0, then the strong condition im
plies the medium condition, and the medium condition
implies the weak condition.

Remarks (1) W. e emphasize that Eq. (4.32) and the
preceding corollary may not be true if 9 & 0 is violated.

(2) Smith defined his strong condition to be I (y. In
contrast to the conditions above, it is not directly related
to monotonicity of a variable along the Hugoniot, so we
prefer the definition above. Although Smith's strong
condition neither implies, nor is implied by, our strong
condition, it does imply the medium condition. The
equivalent condition BP/8 V~z (0 was first employed by
Bethe (1942), who showed it to be sufficient to obtain
uniqueness of the Riemann problem, assuming 9 & 0 and
1 & —2. Wendroff (1972) and Liu (1975) also used this
condition in studying the Riemann problem when 9 may
be negative.

Smith's conditions are local conditions on the EOS.
Their importance derives from their relation to the
monotonicity of quantities along the Hugoniot locus.
Smith (1979) recognized the relationship between unique-
ness of solutions of the Riemann problem, which is essen-
tially a question of monotonicity of u and P along wave
curves, and the medium and weak conditions. More gen-
erally we have the following.

Theorem 4.5. At a point on the compression branch of
the Hugoniot, in the direction of increasing shock strength,
(a) V decreases monotonically if the strong condition
holds; (b) E and u increase monotonically if the medium
condition holds; (c) P increases monotonically if the weak
condi tion holds.

Proof. According to Eq. (4.21), V decreases monotoni-
cally with a if 1+ ,'1 hV/V &0. Since AV=hE/——
P )0 on the compression branch, the strong condition
implies that

gV P E —E P E —E
1+—,'1 = 1 —— & 1 —— & 0; (4.35)

V V P+Po E P+Po
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(yPV/T)dT=I VdP+(yg —I )TdS (4.36)

shows that T increases monotonically if 6 )0, I ~ 0, and
the weak condition holds.

(3) The specific enthalpy II=E+PV satisfies the iden-
tity dH= T dS + V dP. Therefore it increases with shock
strength if 0 & 0 and the weak condition holds.

(4) The behavior of the sound speed c along the
Hugoniot is determined by the dim ensionless third
derivative

V BE 1 ~+PV By
2yT BSBV2 2 y BE

(4.37)

which may be calculated knowing only the incomplete
EOS. Since & may be written

1 Bc 1 Bc g T Bc

2y BE 2yT BS 2y PV BT

this establishes (a). Results (b) and (c) are proved by
analogous arguments. U

Remark. In Sec. V.A it is shown that this result
remains true at points where the Hugoniot locus inter-
sects the saturation boundary.

Other monotonicity results may be derived.
(1) The Bethe-Weyl theorem implies that S and o in-

crease monotonically along the Hugo niot, provided
Q&0.

(2) The temperature T increases monotonically along
the compression branch of the Hugoniot if the condition
I &

—,'g holds, as is seen from Eq. (4.25). This condition
also implies the weak condition, since yg ~ I . Alterna-
tively, the identity

,'PV dy=[y—&—I (9—
—,
' )]TdS

+[9—
—,'(y+1)]VdP . (4.43)

Comparing this with Eq. (4.40), we see that y need not
vary monotonically along the Hugoniot locus even if c
does. In fact, y decreases with shock strength when a
strong shock wave causes gas molecules to ionize and dis-
sociate.

(2) The variation of I with V along an isentrope is re-
lated to & just as the variation of y with V is related'to

—BlogP/BlogV~, &y, so isentropes in the P V-plane
cross curves of constant c with greater negative slope.
The lower bound 0& —BlogP/B log V~, is equivalent to
the condition y& & I ( 9—1) used above, provided %& 0.
For a polytropic gas, %=9—1 and I =y —1, so that—BlogP/B log V~, =1. For most real materials, away
from phase transitions, I )0, y) 1, and y varies slowly.
In this case, Eqs. (2.24), (4.37), and (4.42) imply that
9) 1, &)0, and —BlogP/BlogV~, &0, Therefore we
expect c to be monotonically increasing with shock
strength for most real materials in their pure phases
when the weak condition holds.

The sound speed does not always vary monotonically,
however. For instance, if there is a sonic point on the
Hugoniot locus (which requires that 9&0 somewhere),
then c must lose monotonicity; this is described in more
detail in Sec. V.C. Another exception (see Sec. V.D)
occurs when isentropes cross (which requires that I &0).
In addition, there is a region in which c decreases with
shock strength in the model EOS analyzed in Sec. VII.

Remarks. (1) The variation of y is given by

(4.38)

&)0 if and only if c increases with temperature. The
coefficient & enters the thermodynamic identities

—V =2y9 —y(y+1),ay
av, (4.44a)

(1/2y )dc'=MT dS —
( 0—1)P d V,

—,'dc =[yA' —I (0—1)]TdS+(0—1)V dP,

(I /2y)dc = [y&—I (0—1)]PdV+&VdP .

(4.39)

(4.40)

(4.41)

—V =2y&—I (I"+1) .
Br
aV, (4.44b)

In addition, notice that I = —
( V/T )BT/BV ~s and that

=1+ V 'y =y —I-(~—1)/~.
8lo V ()V

(4.42)

When I )0, 0 & 1, and gf) 0, we have the upper bound

In order that c should increase monotonically along the
Hugoniot, it is necessary to assume that 9 & 1, because
dc/da~ —Bc /B V~+ =(0—1)c in the limit of weak
shock waves. According to Eq. (4.39), one sufficient set
of conditions for c to increase with shock strength is that
9) 1, &)0, and the strong condition holds. For exam-
ple, these conditions hold for a polytropic gas. By Eq.
(4.40), another set of sufficient conditions is that g& 1,
y&) I (0—1), and the weak condition holds. To under-
stand these conditions better, observe that the definition
c =yPVand Eq. (4.41) show that

()2T

2/T () V2
(4.45)

Consequently, T is decreasing and convex as a function
of V along an isentrope when I )0 and &)0. This is
the analog of having P decreasing and convex as a func-
tion of V along an isentrope when y )0 and 9') 0. Con-
versely, if I (0 in some bounded region, but I becomes
positive asymptotically as V—+0 and V—+~ along an
isentrope, then &)0 is violated.

(3) Besides 9' and &, there are two other third deriva-
tives of E. One is related to BI /BS~ v, and the other to
Bg/BS~ i, . For our purposes these additional derivatives
are not important.

Examples of Hugoniot loci corresponding to the Smith
conditions are sketched in Fig. 6. In these examples we
have assumed that 9)0. The strong condition [Fig. 6(a)]
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0

(a) Strong Condition

~0
V

(b) Medium Condition

-0

(c) Weak Condition

0—

~ I~ I I~ I I I II I I I I I I

II~IIIIIIIIJII ~ I I

V
(d) Violates Weak Condition

FIG. 6. Hugoniot locus in the P- V and P-u planes.

P [ V —V, (E)]= (yo —1)E (4.46)

to leading order in the virial expansion, where V~ is the
effective excluded core volume and yo is a constant.
Furthermore, as E~ao the constituents may approach
each other more closely, .so V~(E) decreases as E in-

creases. It follows that

I'V —r=— I'V dV. ~0.
yo

—1 E dE
(4.47)

Thus the strong condition holds in the strong shock lim-
it. Equation (4.47) also implies that

is satisfied by polytropic gases, for which I =PV/E.
addition, the strong condition typically holds in the limit
of strong shock waves, as we now argue. Because of the
high temperatures behind strong shock waves, the ma-
terial behaves as an ideal gas. More precisely, the
thermal kinetic energy dominates the internal energy of
the constituents at large temperatures for fixed V, so that
the material behaves as a'gas of weakly interacting parti-
cles with strongly repulsive cores. In this case, argu-
ments similar to those leading to the van der Waals ap-
proximation show that the EOS is given by

VaP
(y —1)—I = —— —1= ~0, (4.48)PBV @ V —V~

so that I ~y —1 as T~ao at fixed V. (In Sec. VI we
will see that this is required for stability of strong shock
waves in more than one dimension. ) Moreover, PV/T
for an ideal gas remains bounded in this limit, so the first
equality in Eq. (4.22) implies that a~ oo as S~ oo along
the Hugoniot locus. In the limit of infinitely strong
shock waves, therefore, V decreases to its limiting value,
and all thermodynamic variables have the same asymp-
totic behavior as for an ideal gas. Observe that this result
requires rather special assumptions on the EOS.

Remark. To be precise, the discussion above requires
more careful consideration of the physics. At very high
temperatures atoms are completely ionized, so that the
material is a plasma of electrons and ions. The dominant
interaction is the Coulomb force, which has a long range
of inAuence. However, because of Debye-Hiickel screen-
ing, the interaction is effectively short range (Landau and
Lifshitz, 1958). Therefore the argument above, which as-
sumes weakly interacting particles, is essentially correct.

For moderately strong shock waves, however, real
gases typically violate the strong condition, even away
from phase transitions. This is because the temperature
behind a shock wave may be higher enough to cause dis-
sociation and ionization of the molecules in the gas.
Below the dissociation (ionization) threshold, energy is
absorbed by vibrational (electron excitation) modes; so a
large increase in the internal energy corresponds to only
a small increase in the pressure. Thus b, V=A,E/P—
grows quickly and the material is "soft," i.e., has a low
sound speed. When the threshold has been surpassed,
the dissociation or ionization leads to more constituent
particles, and a large increase in pressure behind the
shock yields only a small increase in the internal energy.
Therefore b, V=BE/P dec—reases, and local extrema in
the specific volume result. Multiple extrema may occur,
each corresponding to a different internal modes.

The medium condition [Fig. 6(b)] is important because
it implies uniqueness of the solution of the Riemann
problem when 9)0, as discussed in Sec. III.D. We will
see in Sec. VI, however, that the medium condition does
not guarantee stability of shock waves in more than one
dimension. When the medium condition is violated but
the weak condition holds [Fig. 6(c)], there are multiple
solutions for certain Riemann initial data. The weak
condition does exclude secondary bifurcations, as men-
tioned in Sec. IV.A. It also excludes the Hugoniot locus
from having loops and disconnected branches. All real
materials known to us satisfy the medium condition, with
one possible exception: there is experimental evidence
that shock waves in liquids with large heat capacities are
unstable (as three-dimensional fronts) near the liquid-
vapor phase transitions (Thompson et al. , 1986); these
materials may satisfy the medium condition but violate
the stability condition (Sec. VI), or they may only satisfy
the weak condition. We know of no evidence that the
weak condition is ever violated [Fig. 6(d)].
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Remarks. (1) Smith (1979) has given examples of equa-
tions of state for which each condition is violated. How-
ever, his examples do not necessarily satisfy the thermo-
dynamic stability requirements g &0 and g & I /y. He
did not take specific heat into account because it does not
a6'ect the dynamics.

(2) If d V/da ~ 0 and I & —2, then V/Vo & I /(I +2).
The maximum compression ratio is therefore given in
terms of the limiting value of I . In the limit of strong
shock waves, I ~y —1, and the limiting compression ra-
tio takes the same form as for polytropic gases:
Vo/V —&(y+1)/(y —1). From Eq. (3.32) it follows that
lu crl & lu—o

—o lI /(I +2). In particular,
c & luo —o lI /(I +2) & —,'1 lu —uol when the state
behind the shock wave is subsonic and I &0. Similarly,
(1+—,'I )lu —uol & lo —uol & lu —uol whenever dV/
de&0 and I & —2.

The previous theorem states that the Smith conditions
are sufficient for Inonotonicity of variables along the
Hugoniot locus. In a sense, these conditions are also
necessary, as we now describe. The key idea, due to
Smith (1979), is to study the limit of strong shock waves.
Suppose, for instance, that the strong condition is violat-
ed at some point (V,S): 1 & PV/E. Fixing this state, we
consider its backward Hugoniot, i.e., initial states
( VO, SO), Vo & V, whose Hugoniot loci contain (V,S). In
the limit of strong shock waves, So~0, the specific
volume tends to a limit V that depends on (V, S); also,
PO~P„=P, (V ) and EO~E„=E,(V„). We assume,
for the moment, that P =0 and E =0. Then

av r E —Eo PE —Eo1+-,' I =1—— & 1 ——
V V P+Po E P+Po (4.49)

and the last expression can be made arbitrarily small by
taking So close to zero. Thus there are initial states
( VO, SO) for which 1+—,'I;hV/V is negative near ( V, S);
since this quantity is positive for weak shock waves, the
specific volume cannot be monotonic all alorig the
Hugoniot through ( Vo, So), according to Eq. (4.21).
When P &0 or E &0, 1 must violate the strong condi-
tion to a more extreme degree, I &(P+P„)V/
(E —E ), in order for this argument to work. For sim-
plicity we state the following theorem; it is proved using
arguments similar to those just given.

Theorem 4.6. Suppose that Po —+0 and Eo —+0 as
So —+0 along the backward Hugoniot of a state (V,S).
Then there exists an initial state (VO, SO) such that mono
tonicity along the Hugoniot is violated at (V,S) for these
variables: (a) V when the strong condition is violated; (b)
u and E when the medium condition is violated; (c) P
when the weak condition is violated.

Remarks (1) We emp.hasize that violating a monotoni-
city condition at a point does not mean that all Hugoniot
loci that contain this point are nonmonotone. For in-
stance, a Hugoniot locus whose initial state ( VO, SO) is
close to ( V, S) is monotone near ( V, S). The theorem only
shows that the Hugoniot for some initial state loses

monotonicity.
(2) One may ask whether the condition

I ~ (P +P ) V/(E E—), which is weaker than
I ~PV/E, is sufficient for monotonicity of V along the
Hugoniot locus. In this case, Eq. (4.35) is replaced by

gV I. E —Eo P+P E —Eo1+ iI
V V P+Po E —E- P+Po

V —Vo

V —V
(4.50)

Thus the proof is as before so long as Vo & V for Vo
along the backward Hugoniot of the state (V,S). This ex-
tra condition is satisfied provided Vo increases monotoni-
cally along the backward Hugoniot, which is true if, for
example, I &0 everywhere (since then 1+—,'I AV/V&0
when b, V &0). Similar statements hold in regard to the
monotonicity of other variables.

(3) When the entropy increases along the Hugoniot
curve (e.g. , 0 & 0) and I"& 0, the thermodynamic identity
1 T dS=yP dV+ V dP shows that dP/dct (0 and
d V/d a & 0 are incompatible. It follows, then, that
monotonicity along the Hugoniot is lost first in V, then in
u and E, and finally in P. Similar results were obtained
by Hayes (1958).

(4) As a consequence of the asymptotics of the wave
curve in the P uplane, i-.e., P~~ as lul~~, the
Riemann problem must have an odd number of solutions.
When the medium condition is violated, so that mono-
tonicity in u is lost, the Riemann problem for certain ini-
tial data has three solutions. When the weak condition is
violated, so that monotonicity is lost first in u and then in
P, the Riemann problem for certain initial data has five
solutions.

Finally, we observe that Eqs. (4.21)—(4.28) may be used
to obtain geometric interpretations for local extremum of
the hydrodynamic quantities along the Hugoniot locus.
This is based on some simple geometric relations: Con-
sider a curve in the x-y plane; then (1)f=Ay /hx has an
extremum if and only if dyldx=b, y/b, x(2) g=b,xb,y
has an extremum if and only if dy/dx = —hy/hx; (3)
h = ( b,x ) /b, y has an extremum if and only if
dy /dx =2' /Ax. These relations are obtained by
differentiating the definitions of f, g, and h.

Proposition 4. 7. Consider a point where the Hugoniot
locus is smooth (a) In the P V. plane, dm =0 -if and only
if dP/BVlh =bP/AV; du =0 if and only if
BP/BVlt, = AP/b, V. (b) In the P—uplane, dm =0 -if
and only if BP/Bu lh =bP/hu; dV=O if and only if
BP/Bu lI, =2bP/Au. (c) In the V-u plane, dm =0 if and
only if Bu /BVlh =b,u /b, V; dP =0 if and only if
au/a Vl„=2xu/SV.

Proof. The results follow from Rankine-Hugoniot for-
mulas. For (a) use I = EP/AV and (bu)—= bPEV;—
for (b) use m = AP/b u and 6, V= —(hu ) /bP; for (c) use
m = —b, u /6 V and AP = —

( b, u ) /b, V. CI

For a general EOS, the Hugoniot locus is not known
analytically, as it is for a polytropic gas. Computing
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solutions of the Rankine-Hugoniot conditions usually re-
quires an iterative method to determine the solution of
nonlinear equations. Typically the state of the Quid
behind the shock is to be calculated once the value of one
quantity behind the shock, together with the state ahead
of the shock, has been specified. The iteration algorithm
is much simpler if this quantity varies monotonically
along the Hugoniot locus; in fact, some algorithms re-
quire convexity of this quantity as a function along the
Hugoniot. As -we have seen, however, some variables,
such as V, need not be monotonic, let alone convex.
Thus the monotonicity conditions are important in
designing numerical algorithms, as well as for uniqueness
of solutions of the Riemann problem.

V. ANOMALOUS WAVE STRUCTURE
CAUSED BY PHASE TRANSITION

The behavior of the isentropes and the Hugoniot loci
in the I'-V plane is the key to determining the structure
of scale-invariant waves. In the case of an isentrope, this
is because its negative slope —BP/BV~s in this plane is
the square of the acoustic impedance, (pc ), which
governs the propagation of waves. In particular, the
variation of the characteristic speed along a rarefaction
curve is proportional to 0 P/BV ~s. Changes in the con-
vexity of an isentrope thus result in the formation of
composite or split waves. Furthermore, the behavior of
isentropes is rejected in the behavior of Hugoniot loci.
Su%ciently large changes in convexity of isentropes lead
to sonic points on Hugoniot loci, which give rise to corn-
posite waves or split shock waves. Generally speaking,
anomalous wave structure is associated with loss of con-
vexity.

One consequence is that wave curves may have multi-
ple branches, which leads to nonuniqueness of solutions
of Riemann problems. The nonuniqueness is a result of
using idealized evolution equations that neglect certain
physical effects, such as viscosity and heat conduction.
In the standard theory, nonuniqueness o'f the wave curve
is resolved rather easily by the entropy condition or the
Lax characteristic criterion. The nonuniqueness in
anomalous cases must be resolved by accounting for ad-
ditional physics effects that become important, such as by
requiring the existence and stability of viscous profiles for
shock waves. This is also important for computations: a
numerical algorithm, e.g., a Gnite difference scheme, is
deterministic and leads to a definitive result, but not
necessarily the correct answer if subgrid effects are im-
portant but are modeled inadequately.

Phase transitions in the Quid are a principal cause of
nonconvexity, since the sound speed in a mixed-phase re-
gion is smaller than in the pure phase. This phenomenon
is the object of study in the present section. We must
emphasize, however, that we have made an assumption
that generally is inappropriate when the Quid undergoes
a phase change: the pressure appearing in the dynamical
equations is the equilibrium pressure. The use of the

equilibrium pressure is tantamount to assuming instan-
taneous transitions. In actuality, the transition from one
phase to another does not take place instantaneously, and
the Quid is out of equilibrium during the transition. If
the time for transition between phases is short relative to
the time scale of the Aow, an equilibrium model may be
adequate. (Even in this case, though, the flow may be
profoundly affected by the dynamics of the transition. )
When the transition time is not short, account must be
made for nonequilibrium phenomena. We regard the
present paper, in which the Quid is assumed to be always
in thermodynamic equilibrium, as a step towards con-
structing and analyzing models that account for non-
equilibrium effects.

Let us mention some qualitative phenomena caused by
phase transitions. If a shock wave initiates a phase
change, it cannot be regarded as a simple jump discon-
tinuity. Immediately behind the wave the Quid is in a
metastable state; farther downstream the Quid relaxes to
an equilibrium state. For example, in a transition from a
vapor to a liquid, the vapor is supersaturated initially and
then condenses as the shock wave passes. Thus a discon-
tinuity is followed by a relaxation wave (see, e.g.,
Zel'dovich and Raizer, 1966) in which the fiuid returns to
equilibrium. The further the Auid is out of equilibrium,
the faster is the relaxation. There are several situations
in which such internal structure for shock waves is cru-
cial.

(1) Shock waves in supersonic How through nozzles,
such as wind tunnels and jet engines, may cause conden-
sation of a supersaturated vapor (e.g. , water vapor).
These waves are called condensation shock waves.

(2) A detonation wave is a shock wave followed by a
narrow zone in which chemical reactions occur (Hayes,
1958; Fickett and Davis, 1979). The reaction may be re-
garded as a relaxation process starting from a metastable
unreacted state to a fully reacted equilibrium state. The
precise manner in which the chemical reaction proceeds
has important consequences for the dynamics of the
wave; thus the reaction zone may not be ignored even if
it is thin. For instance, both the reaction rate (Fickett
and Davis, 1979) and the propagation speed of a detona-
tion wave (Bdzil and Stewart, 1986; Jones, 1987, 1989;
Bukiet, 1989) are affected by the curvature of the wave
front (in contrast to ordinary shock waves). The steady
portion of the reaction zone may end at a sonic point in.

which the Quid is only partially reacted; in this case,
determination of the state behind a detonation wave re-
quires more information than simply the equilibrium
EOS for the reaction products.

(3) The van der Waals EOS provides a standard analyt-
ical EOS that exhibits a phase transition. In portions of
state space, however, the van der waals EOS does not
conform to the requirements of thermodynamic stability.
Unless the Maxwell equal-area rule is applied to modify
the EOS, van der Waals loops cause the sound speed to
be imaginary and the Quid equations to be of mixed
hyperbolic/eliiptic type. If the van der Waals equation
of state is adopted, then the pressure that appears in the
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system of conservation laws is not the equilibrium pres-
sure. However, one may regard the van der Waals EOS
as providing a dynamical model for nonequilibrium phe-
nomena. Admissibility conditions for shock waves in a
van der Waals Quid were analyzed by Shearer (1983) and
Slemrod (1983). All of these cases are excluded in this
paper by assuming an equilibrium EOS.

Near a phase transition, the standard assumption
about the equation of state, viz. , convexity and nonover-
lap of isentropes, may be violated. In this section, we
first determine the behavior of isentropes and Hugoniot
loci in the neighborhood of phase transitions. In particu-
lar, the results in Sec. IV.C about monotonicity are gen-
eralized to account for kinks in the Hugoniot loci at satu-
ration boundaries. Then these results are applied to
determine the structure of wave curves in three situa-
tions: (1) when the wave curve crosses the saturation
boundary and has kinks; (2) when the wave curve passes
near the saturation boundary and loses convexity; and (3)
when I may vanish, so that the entropy is multivalued in
the P- V plane. Finally we summarize these results.

A. Behavior of isentropes and Hugoniot loci
at saturation boundaries

T S H

Vapor

~~ l CO

p
0cj

rn ~

2-phase
mixture

The nonanalytic behavior of the equation of state
caused by phase transitions is a principal source for loss
of convexity. This is illustrated in Fig. 7, in which an iso-
therm (T), an isentrope (S), and a Hugoniot locus (H) are
drawn passing through a saturation boundary in the P-V
plane. The qualitative features of this diagram are
justified by the following considerations.

A single point on the coexistence curve in the P-T
plane (Fig. 1) corresponds to a line segment of mixed
states in other thermodynamic planes. Thus isotherms
and isobars coincide in the mixed phase; in particular,

isotherms are horizontal in the P V plane (Fig. 3). An
isotherm drawn in this plane therefore has a kink
(a discontinuity in slope) at a saturation boundary, as
indicated in Fig. 7. Correspondingly, an isentrope also
has a kink, which may be expressed as a jump in the
sound speed c and in the adiabatic exponent
y = —( V/P)dP/d VIs.

C Cm
2 2

2
cm

y ym 2 T dS
y VDP

= yg —I' ~ 0, (5.1)

where the subscript I indicates that the quantity is eval-
uated in the mixed phase, and all other quantities are
evaluated in the pure phase. (We refer to Appendix A
for derivations of this and other thermodynamic results
used in this section. ) This important relation shows that
the sound speed is always smaller on the mixed-phase
side of the saturation boundary. (It is an example of Le
Chatelier s principle. ) In Fig. 7 the isentrope has a shal-
lower slope in the mixed phase, in conformity with this
discontinuous drop in sound speed. According to Eq.
(2.24), the jump in y entails a 5-function singularity in
the fundamental derivative Q. The coefficient of the 6
function is non-negative if and only if the isentrope is
convex at the saturation boundary.

It also may be shown that I is discontinuous at a satu-
ration boundary:

r r (5.2)

where g= —(V/P)dP/dVI„, measures the slope of the
saturation boundary in the P-V plane. Assuming that I
and I are nonzero, either the isentrope is tangent to the
boundary on both sides (y=g=y ), or it crosses
transversally through the boundary (y&g and y &g).
In the latter case, noting that the isentrope may be
parametrized by V, geometrical considerations show that
g —y and g —y must have the same sign, so that I and
I have the same sign. Furthermore, since y ~y, ei-
ther g'&y and II I

~ Ir, or g(y and II I

~ IrI.
It is useful to classify a point on a saturation boundary

as being normal if the isentrope through it is strictly con-
vex there, and as being retrograde otherwise. Equivalent-
ly, a point is normal if the isentrope passing through it
crosses from the mixed to the pure phase, so that the
sound speed increases as the density increases. In Fig. 7
the saturated vapor boundary is shown as being retro-
grade, while the saturated liquid boundary is normal.
According to this definition, retrograde behavior of satu-
ration boundaries (usually) leads to anomalous wave
structure. In studies of liquid-vapor phase transitions
(Thompson et al. , 1986), the dimensionless quantity

V
BT dS' Bv. dP ... ' (5.3)

FICx. 7. Isotherm ( T), isentrope (S), and Hugoniot locus (H) in
the I'-V plane near a phase transition. It is possible for the in-
tersection of H and S to lie inside mixed-phase region.

called the retrogradicity, is introduced. To see how r re-
lates to the behavior of the saturation boundary, we ex-
press r as
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(5.4)

(xo,yo )
By

f(x,y),

is shown to be a contraction mapping, so that it has a
unique fixed point y =y(x) for x close to xo. The same
proof works in the present case if P„ is defined instead by

P (y)=y —C 'f(x,y); we omit the details. Since Bf IBy
is bounded away from zero, we can solve the differential
equation da/dx =(Bf/By) ' subject to a(xo)=0. In-
vert the relation a=a(x) to obtain x=x(a), and let
y=y(a)=y(x(a)). Then dx/da=Bf/By, and dy/da

Bf IBx follows from df Id a =0.
Proposition 5.2. Consider a point where the Hugoniot

locus intersects a saturation boundary. Assume that on
each side of the saturation boundary the bifurcation condi
tion Eq. (4.8) is uiolated and the Hugoniot locus is not
tangent to the boundary. Then the Hugoniot locus may be
parametrized by shock strength a, satisfying Eqs. (4.21)
and (4.22), in a neighborhood of the intersection point

Proof The normals dh an. d (dh ) are not opposite in

by using thermodynamic identities and Eq. (5.3). Sup-
pose that at a point on the saturation boundary the
mixed phase has higher density than the pure phase at
the same pressure, as is true along the saturated vapor
boundary of the liquid-vapor transition (Fig. 3). Then
the geometry implies that the point is normal if and only
if 0&('&r; by Eqs. (5.4) and (5.1), this is equivalent to
r ~0. Similarly, a point is normal when r ~0, provided
that the pure phase is the higher-density phase, as along
the saturated liquid boundary. The saturation boun-
daries for the liquid-vapor transition are usually normal,
but in fluids with high heat capacity, a portion of the sa-
turated vapor boundary may be retrograde (Thompson
et al. , 1986). Such a situation is indicated in Fig. 2 by
the portion along which dS ld V

~ „,& 0. Furthermore,
saturation boundaries for liquid-solid transitions and for
polymorphic transitions are often retrograde.

We now consider the behavior of a Hugoniot locus as
it passes through a saturation boundary. The results of
Sec. IV.C were proved under the assumption that the
pressure was continuously differentiable. When the pres-
sure has a jurnp discontinuity in its derivative, we require
a slight generalization of the implicit function theorem.

Lemma 5.1. Suppose that f is continuous on a neigh
borhood of a point (xo,yo) for which f(xo,yo)=0. Sup-
pose also that for each x, (Bf/By)(x, y) exists for almost
every y, and that there are constants c and C such that
0 & c & Bf /By & C. Then there are piecewise continuously

differentiable functions x and y such that x(0)=xo,
y(0)=yo, and f(x(a),y(a))=0 for sufficiently small a.
Moreouer, the parametrization may be chosen such that
dx Idct =BfIBy and dy Idct= —BfIBx whereuer the
derivatives exist.

Proof. In the standard proof of the implicit function
theorem, an auxiliary function P„,defined by

—1

direction (since the Hugoniot locus is not tangent to the
boundary), so there is a coordinate direction dy such that
Bh /By is positive on both sides of the saturation bound-
ary. If a complementary coordinate direction dx is
chosen such that the Jacobian determinant of the map
from'(x, y) to ( V, S) is —V/T, the parametrization by a
in the lemma is equivalent to Eqs. (4.21) and (4.22), as
seen from Eq. (4.6). H

By utilizing this result in the arguments of Sec. IV.C,
the monotonicity results are seen to hold even at satura-
tion boundaries. In particular, if the weak condition
I ~2y holds, pressure increases with shock strength
along the Hugoniot locus. Such a situation is shown in
Fig. 7.

In analogy with g and r, let us define

V dP r I 6P—/P
P dV q 1+—'I bV/V

(5.5)

to measure the slope of the Hugoniot locus in the P-V
plane. Combining this with Eq. (5.2) implies that

1+—' I
I 2 V

1+ 'I . (5.6)

Notice that 1+—,I V/V&0 if and only if g is finite (i.e.,
the Hugoniot locus is not vertical); this follows from Eq.
(5.5) because bifurcations are excluded. Assuming, then,
that g and g are finite and that I and I are nonzero,
the Hugoniot locus must either be tangent to the bound-
ary (/=/=A ) or cross transversally through the bound-

ary (g&g and g &g), just as in the case of isentropes.
(We have not precluded the possibility that the Hugoniot
locus is vertical on one side and tangent on the other. )

The manner in which the Hugoniot locus suffers a kink
at a saturation boundary may be determined using Eq.
(5.6). For example, we have the following.

Proposition 5.3. Suppose that the volume decreases with
shock strength along the Hugoniot locus near a point on
the saturation boundary, and suppose that
dP /d V ~„, dP /d V

~ i,
—has, the same sign as

dP /d V
~ „, BP /B V

~ s o—n each side of the saturation
boundary. Then the Hugoniot locus kinks in the same
direction as does the isentrope; i e , dP/dV . ~.i, is la—rger
in the pure phase.

Proof. Because the Hugoniot locus is parametrized by
V, 1+—,

' I 5V/V & 0 on both sides of the saturation

boundary, and simple geometrical considerations imply
that g

—g and g —g have the same sign. By hypothesis,

g —r and g —g have the same sign, and so do g —r and
In the case when g & r, therefore,

~
I

~

&
~
I

~

with I and I having the same sign; consequently, Eq.
(5.6) implies that g

—g & g —
g & 0. Similarly,

—g'& 0 in the alternative case g & r . In both
cases g&g . Cl

The following variant of Theorem 4.2 is true even at
points where the Hugoniot locus intersects the saturation
boundary.
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Theorem 5.4. Suppose that the weak condition holds at
a point on the compression branch of a shock curve. Then
the following conditions are equiualent: (a) the entropy S
increases with shock strength; (b) the mass flux m in
creases with shock strength; (c) the shock speed cr increases
with shock strength; (d) the negatiue slope of the Rayleigh
line increases with shock strength; (e) dP/—dVI& &0 or

AP/—AV & dP—/dViI„; (f) b,P/—AV & dP—/dVis;
(g) ~u c—r ( &c (i e ,. th. e fi'ow behind the shock wave is sub
sonic)

Proof. The proof is based on the same relations in-
voked in the proof in Sec. IV.C. In proving the
equivalence of (d) and (e), notice that Eq. (5.5) may be
used to show that

dI'
dV

H)

Rg

V
(a) Standard case (b) Anernslous case at

phase transition

FICs. 8. Hugoniot loci, Rayleigh lines, and isentropes for the
standard and anomalous cases at a phase transition.

(5.7)

The weak condition implies that y —
—,
' l'5I'/P & 0 on the

compression branch, so that dm /da) 0 is equivalent to
having the bracketed quantity positive, which is
equivalent to condition (e). CI

There is an important consequence of this theorem.
Suppose that the Hugoniot locus intersects the saturation
boundary and that the isentrope through this point has a
kink such that it lies below the Rayleigh line on both
sides of the boundary; then the wave speed has a local
maximum along the Hugoniot curve at the saturation
boundary. When this occurs, anomalous wave structure
results. This result is a form of the Bethe-%'endro6'
theorem described below.

The situation just described occurs in Fig. 7 at the sa-
turated vapor boundary. [See also Fig. 8(b) below for a
more detailed picture. ] Because the isentrope in the
mixed phase lies below the Rayleigh line, the entropy de-
creases along the Hugoniot locus after reaching a max-

imum at the saturation boundary. Therefore the Hugoni-
ot locus lies below the isentrope in the mixed phase near
its intersection with the boundary. Eventually the
Hugoniot locus crosses above the isentrope as the shock
strength increases; here we have shown the crossing to
occur outside of the mixed-phase region, but it could
have occurred inside the vapor dome.

B. Anomalous wave structure caused by kinks

Kinks in isentropes and Hugoniot loci have conse-
quences for wave curves. To illustrate this, we consider a
material with a liquid-vapor phase transition and assume
that a portion of the saturated vapor boundary is retro-
grade. We also assume, for simplicity, that both l" and 9
are positive away from the saturation boundary. (Of
course, 9' has a 5-function singularity with a negative
coeNcient along the retrograde portion of the saturation
boundary. )

First consider the compression branch Ho of a
Hugoniot locus through an initial state 0. Normally the
locus appears as in Fig. 8(a): the Rayleigh line R,
through a state 1 on Ho lies above the isentrope 5& and
below the Hugoniot locus H& that form the wave curve
starting at state l; this follows from part (f) of Theorem
5.4. If the shock wave from state 0 to state 1 were fol-
lowed by a shock wave from-state 1 to another state on
the compression branch of H &, the second shock would
have a steeper Rayleigh line and hence a faster wave
speed; therefore it would overtake the first shock wave.
In this sense, shock waves in the standard case are stable
against splitting.

If, however, Ho intersects the retrograde portion of the
saturated vapor boundary at state 1, the situation may be
different, as can be seen geometrically in Fig. 8. Suppose
that the kink in the isentrope through state 1 is severe
enough that it lies below the Rayleigh line R, in the
mixed phase. Then the compression branch H& of the
Hugoniot locus through state 1, being tangent to this
portion of the isentrope, lies below 8 &, as shown in Fig.
8(b). Furthermore, H, lies above the continuation of Ho
through the saturation boundary because the entropy
maximizes at state 1 along Ho. The entropy continues to
decrease along Ho until a state 3 is reached at which Ho
is tangent to the Rayleigh line R3, whereupon the entro-
py increases again.

Consider the state 2 at which the extension of the Ray-
leigh line R, intersects H, . (This intersection must exist
because of our assumptions about the asymptotic behav-
ior of the equation of state. ) The state 2 also lies on Ho,
as follows from

Proposition 5.5 (Triple Shock Rule) Consider a syst. em
of conservation laws u, +f(u) =0. Suppose that the state
u

&
is connected to the state uz by a shock with speed s, and

that u 2 is connected to the state u 3 by a shock with the
same speed s. Then u

&
is connected to u3 by a shock with

speed s.
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Proof. Add the Rankine-Hugoniot equations
—s(u2 —u, )+f(u2) —f(u, )=0 and —s(u3 —uz)
+f(u, ) —f(u2)=0. CI

In contrast to the standard case [Fig. 8(a)], the anoma-
lous case [Fig. 8(b)] allows for splitting of shock waves
(Rice et al. , 1958; Zel'dovich and Raizer, 1966). A state
b along H, between states 1 and 2 corresponds to a shock
wave that propagates more slowly than does the shock
wave joining states 0 and 1, so that the two waves may
coexist in a scale-invariant solution. In this limited
range, therefore, split shock waves are possible. For
states above state 2, though, shock splitting is disallowed,

,just as in the standard case.
Remarks (1) T. he lead shock wave, joining states 0 and

1 in the vapor phase, is called the precursor, in analogy
with the elastic precursor that occurs in an elastic-plastic
material that is shocked beyond its elastic limit. The
second shock wave carries the Quid from pure vapor
(state 1) to a mixed liquid/vapor or a pure liquid state
(state b). The transition between the different phases
does not occur instantly, so that the second shock wave is
smeared more than the precursor when relaxation e6'ects
are taken into account.

(2) When the time scale for achieving thermodynamic
equilibrium is long, the flow may carry material past the
saturation boundary along a metastable isentrope for the
pure phase. For example, the metastable Quid may be a
superheated liquid or supercooled vapor. When a shock
wave causes a nonequilibrium state to occur, shock split-
ting does not occur at the saturation boundary (Chaves
et a/. , 1985; Meier and Thompson, 1985). In addition,
the latent heat or volume change at a phase transition
may lead to a self-sustaining wave similar to a weak de-
tonation (Rabie et al. , 1979).

(3) Experiments measure the shock speed U, =o and

the particle speed U =u (in the Galilean frame where

u0=0) as the driving pressure is increased. When the
shock wave splits, only the precursor is measured. As
plotted in the U, -U plane, the data consist of two
disconnected portions, the first corresponding to shock
waves between states 0 and 1 and the second to shock
waves above state 2; split shock waves between states 1

and 2 are measured as the precursor shock wave from
state 0 to state 1. Therefore a phase transition stands out
as a discontinuous jump in the particle speed in such a
plot (Marsh, 1980).

(4) An interesting question is whether state 2, where
the Hugoniot loci Ho and H, intersect, lies inside or out-
side the mixed-phase region.

The possibility of shock splitting leads to branching of
the wave curve and nonuniquenes for solutions of the
Riemann problem. Indeed, the compression branch of
the wave curve through state 0, which starts as the
Hugoniot locus Ho may be continued past state 1 in two
ways. The first way is to continue along Ho. Notice that
even though the entropy decreases between states 1 and

3, the entropy change across the corresponding shock
waves is still positive (at least near state 1), so that the en-

tropy inequality (3.32) required by thermodynamics is
satisfied. The second way to continue the wave curve is
to follow H, until state 2 is reached, and then to switch
back to following Ho. States along the protion of H

&
be-

tween states 1 and 2 correspond to shock waves that split
at state 1. These waves, too, satisfy the entropy inequali-
ty, since the entropy change results from the second
shock wave in addition to the lead shock wave from state
0 to state 1; thus the entropy of the final state increases
monotonically along this alternative continuation of the
wave curve.

This branching of the wave curve causes nonunique-
ness for the Riemann problem. For example, consider a
state a along Ho between states 1 and 2, as shown in Fig.
9. The Riemann problem with state a on the left and
state 0 on the right has a solution consisting of the direct
shock wave connecting these states. This same Riemann
problem, however, has an alternative solution consisting
of a (relatively weak) left-facing shock wave, a contact
discontinuity, and a split pair of right-facing shock
waves. To see this, we look in the P-u plane.

The qualitative behavior of the relevant curves is
shown in Fig. 9. In particular, the shock curve Ho lies
below H& in the P-u plane: at state 1 in the P-V plane,

go (g, =y; combining this with Eq. (4.30) implies that
dP/du ~& (p, c =dP/du ~1, . Therefore the curve H, of

0 1

left-facing shock waves (which is the re(lection of the
curve of right-facing waves) intersects II, at some point
b. This point corresponds to two states, b and b', that
are connected by a contact discontinuity. Thus the direct
shock wave from state 0 to state a may split into two
right-facing shock waves (from state 0 to state 1 and from
state 1 to state b), a left-facing shock wave (from state a
to state b ), and a contact discontinuity (joining states b

and b').

splits 8ta c

intersection
only in P-u
projection
of

, R
H,
R,

Ha

V

FIG. 9. Shock splitting at a phase transition caused by a kink
in the Hugoniot locus.
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Another feature of Fig. 9 warrants explanation: in the
P-u plane, but not in the P-V plane, the Hugoniot locus
H& eventually crosses above Ho again. In the limit of
strong shock waves, P~po(1 —po/p) 'u according to
Eq. (4.18), and the compression ratio p/po approaches a
limiting value (I +2)/I that is independent of the initial
state, as argued in Sec. IV.C. Since p& & po, therefore, the
pressure grows faster along Hi than along Ho, as a func-
tion of u; thus H& crosses Ho again in the P-u plane. No-
tice, however, that having Ho and H, cross in either the
P-u or P-V plane need not imply that they cross in the
other plane, unless the point of crossing corresponds to a
shock with the same speed as the shock wave from state
0 to state 1.

Remark. This asymptotic behavior has an interesting
consequence. When one shock wave overtakes another,
the result is a shock wave and a reflected wave. In gen-
eral the reflected wave may be either a rarefaction or a
shock wave, depending on whether the state behind the
overtaking shock wave lies above or below the Hugoniot
of the lead shock wave, as drawn in the P-u plane. When
the overtaking shock wave is strong, however, the

asymptotic behavior implies that the reflected wave must
be a rarefaction wave.

The nonuniqueness of solutions of the Riemann prob-
lem may be resolved in several ways. First of all, notice
that the entropy is decreasing along Ho between states 1

and 3, so that by Theorem 5.4 the flow behind a shock
wave on this portion of the curve is supersonic. Shock
waves in this range therefore violate Lax's characteristic
criterion. Physically, such shock waves are unstable with
respect to small perturbations of the initial data, as will
be shown in Sec. VI. For instance, if the discontinuity in
the initial data is smoothed, the dynamics causes the
profile to steepen into the configuration of shock waves
predicted by solving the Riemann problem using split
shock waves. However, this argument does not resolve
the nonuniqueness for shock waves between states 3 and
2.

Another way to resolve the nonuniqueness is to consid-
er physical effects that become important at the shock
front but which have been neglected by modeling the dy-
namics using Eqs. (2.4)—(2.6). For example, viscosity and
heat conduction terms involve two spatial derivatives and
therefore are dominant near the discontinuity; they act to
smear the front. Physically realizable solutions should
arise as limits of solutions of the more complete equa-
tions as the viscosity and heat conduction coefFicients
vanish. When the solution consists of a single shock
wave, one expects it to arise as the limit of traveling-wave
solutions of the system of equations with viscosity and
heat conduction. A traveling-wave solution approaches
two asymptotic states as x —++Do, and these states must
satisfy the Rankine-Hugoniot conditions with the speed
being the propagation speed of the traveling wave. If two
states satisfying the Rankine-Hugoniot condition are the
asymptotic states for some traveling wave, then the shock
wave is said to admit a viscous profile. Only these shock

waves are physically admissible.
The construction of traveling waves leads to a system

of ordinary differential equations that can be studied by
generalizing the phase-plane analysis of Weyl (1949).
(See Appendix C for a review of this subject. ) Intersec-
tions of the Hugoniot locus and the Rayleigh line are
critical points of the ordinary differential equation and,
therefore, the only possible asymptotic states for travel-
ing waves. A critical point has a stable (unstable) mani-
fold for each characteristic speed smaller (larger) than
the shock speed. For instance, if a right-facing shock
wave obeys the Lax criterion, the state behind the shock
wave is a critical point with one. stable and one unstable
manifold (since the Aow is subsonic), while the state
ahead is a critical point with two stable manifolds (since
the Row is supersonic).

When the speed of the traveling wave corresponds to a
state a along Ho between states 3 and 2, the Rayleigh line
intersects the Hugoniot locus at four points, which corre-
spond to two saddle points and two attracting nodes. We
show in Appendix C that there is no orbit for the ordi-
nary differential equations that connects state 0 to state
a; rather, state 0 is connected to the critical point be-
tween states 0 and 1. Consequently, shock waves to
states on Ho between states 3 and 2 do not admit viscous
profiles and are not physical. On the other hand, shock
waves from state 1 to states on H, do admit profiles, as
does the shock wave from state 0 to state 1. Therefore
the physical wave curve between states 1 and 2 comprises
split shock waves along H, and excludes points along
Ho. By invoking physical admissibility criteria, then, the
wave curve no longer branches, and solutions of the
Riemann problem are unique (in this case).

An analogous wave structure occurs along the expan-
sion portion of the wave curve. (See Zel'dovich and
Raizer, 1966, Chap. XI, Sec. 20.) Suppose that the isen-
trope through an initial state 0 in the liquid phase inter-
sects the saturated liquid boundary at state 1 and then
the retrograde portion of the saturated vapor boundary
at state 2. At state 1 the isentrope has a kink but remains
convex, so that the sound speed decreases, although
discontinuously. Therefore the wave curve continues
past state 1 by following the isentrope, but a point a be-
tween states 1 and 2 corresponds to a pair of rarefaction
waves that split at state 1. The characteristic velocity at
the end of the first rarefaction, which connects state 0 to
state 1, is larger than the characteristic velocity at the be-
ginning of the second rarefaction, which connects state 1

to state a. The constant state 1 on the saturation bound-
ary separates the two rarefaction waves.

At state 2, however, the sound speed increases discon-
tinuously, so that the wave curve cannot continue along
the isentrope past state 2. Instead the wave curve is con-
tinued using composite waves that are based on the rare-
faction waves already constructed. At first the composite
waves comprise a split rarefaction wave, such as that cor-
responding to state a, followed by a shock wave to a state
b in the vapor phase. This shock wave is sonic at state a,
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and it acts to rarefy the fluid. (If state a is near to state 2,
the proof of Theorem 5.4 may be used to show that a son-
ic shock exists and that entropy increases across it; the
construction may be continued by moving state a back
along the rarefaction, ) The sonic condition implies that
the Rayleigh line for the shock wave is tangent to the
isentrope at state a and guarantees that the shock wave
propagates together with the second rarefaction wave as
a single entity. In contrast with the standard case, the
entropy is increased by waves on the expansive branch,
since they cross a retrograde saturation boundary.

As the pressure of the Anal state b is lowered, the inter-
mediate state a moves back along the isentrope. This
continues until either the shock wave becomes sonic at
state b or state a reaches state 1. In the former case, the
wave curve continues by following the isentrope through
state b. The wave structure is as follows: a rarefaction
wave connecting states 0 and 1, a constant state 1, a rare-
faction wave connecting states 1 and a, a shock wave
from state a to state b that is sonic at both of these states,
and a rarefaction wave connecting state b with another
state c. Because the Aow is sonic both ahead and behind
the shock wave, the last three waves in the composite
propagate together. The presence of the shock wave in
the composite wave causes the entropy of the isentrope at
state b to be higher than the entropy of state 0. In the
later case, the wave structure consists of the rarefaction
wave between states 0 and 1 separated by the constant
state 1 from a shock wave from state 1 to state b, since
the second rarefaction wave has disappeared. As the
pressure of state b is lowered still further, either the
shock wave becomes sonic at state b, in which case the
wave curve is continued in the manner just described, or
the shock speed increases to coincide with the charac-
teristic speed at the end of the first rarefaction; i.e., the
shock wave is sonic at state 1. In this last case the wave
curve continues with simple composite waves: a rarefac-
tion wave connecting state 0 to a state in the liquid
phase, followed by a sonic shock wave that vaporizes the
Quid. In addition, the initial rarefaction wave may disap-
pear as the pressure of the final state is lowered, whereu-
pon the wave-curve follows the Hugoniot through state 0.
Eventually, though, the shock speed must stop decreas-
ing; the wave curve then follows an isentrope.

Thus even in the presence of phase transitions a wave
curve along which the entropy is nondecreasing can be
defined by using composites as elementary waves. Be-
cause the resulting wave curve is continuous, the graphi-
cal analysis'of the Riemann problem proceeds in the usu-
al manner.

FIG. 10. Nonconvex isentropes.

R4;,
) 3

ite

1 soAIc

EOS exhibits a region around the vapor dome in which
0 (0 (see Cramer and Sen, 1987). When this occurs the
wave speed need not be monotonic along Hugoniot loci
and isentropes, and the construction of the wave curve
must be modified. 3ust as in Sec. V.B, additional wave

types are possible and wave curves may branch. The
wave structure when the isentropes are not convex was
studied by Cowperthwaite (1968) and Wendroff (1972).
Here we discuss the properties important for the
Riemann problem when I & 0 but 0 & 0 is violated.

A typical Hugoniot locus for this case is sketched in

Fig. 11. The following are the important features. Let
Ho be the Hugoniot locus through the initial state 0.
Following along Ho in the direction of increasing P and
decreasing V, there is a state 1 at which the Hugoniot

C. Anomalous wave structure caused by smooth loss
of convexity

Even if an isentrope does not cross a saturation bound-

ary, it may be distorted if it passes near a phase transi-
tion. This may cause the standard assumption on the
EOS, 9 & 0, to break down within a pure-phase region, as
illustrated in Fig. 10. For example, the van der Waals

V

FIG. 11. Hugoniot loci for an anomalous equation of state
(0)0 is violated).
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at a sonic point, as follows from differentiating Eq. (3.34)
twice. Because sonic points are local extrema in entropy,

sonic

subsonic '= su

sonic

ersonic :='subsonic characteristic
velocity

. wave speed

entropy

Hp, the isentrope S&, and the Rayleigh line R& are all
tangent. According to Theorem 4.2, this is a sonic point
and a local maximum in entropy. As the shock strength
is increased further, the wave speed and entropy decrease
until a state 4 is reached, where another Rayleigh line R4
is tangent to Hp. This is also a sonic point, but now at a
local minimum in entropy. [The entropy at state 4 may
be greater than the entropy of the initial state 0, however;
in this case these shock waves would be admissible ac™
cording to the entropy condition (3.43).] Also of interest
is the state 3 where R

&
intersects Hp a second time: the

propagation speeds for the shock waves to states 1 and 3
are equal. The characteristic velocity, the shock velocity,
and the entropy, as plotted along Hp, are sketched in Fig.
12 in accordance with the following result.

Theorem 5.6 IBethe Wendr-o+ (Bethe, 1942; Wendroff,
1972, Isaacson, Marchesin, and Plohr, 1988b)j. Consider
the Hugoniot locus through a state up. I.et cT and A

denote shock and characteristic speeds along this curue,
and let an ouerdot denote differentiation with respect to
shock strength. Assuming that the locus does not bifurcate
at a point u, then the following are equiualent: (a) o =0;
(b) A=o; , (c) S=0 In .this instance, I,—o., o, and S all
vanish to the same order, and the locus is tangent to a
rarefaction curve

Proof. See Appendix B. 0
At a sonic point, the Hugoniot locus is tangent to an

isentrope; therefore dS =0 and Eq. (3.23) holds:

d(u+c)= —pcQdV .

It follows from this equation, the Bethe-Wendro6'
theorem, and Fig. 12 that Q(0 at the first sonic point,
because locally k and V are decreasing. The same result
can be obtained by noting that

2 dp pVp —V
T =—'( Vo

—V) = g (5.9)
dv2 dv2

subsonic
sonic characteristic

velocity
wave speed

entropy

the sign of 9' alternates at successive sonic points; and
since the Rayleigh line is tangent to the Hugoniot locus
at a sonic point, the curvatures of the Hugoniot locus
and the isentrope have the same sign in the P- V plane at
a sonic point (assuming that the weak condition holds).
In the degenerate case when Q=O at a sonic point, the
entropy has an inAection point instead of a-local ex-
tremum, as illustrated in Fig. 13.

When the weak condition holds, V decreases with
shock strength at all sonic points, since—dP/d V~I, = b,P/b. V—& 0. It follows from the relation
(b,u ) = bPA V —that the particle velocity increases
monotonically along Hp, as seen from Fig. 11. In order
for A, =u+c to coincide with 0. at state 1, therefore, the
sound speed must decrease with shock strength as state 1

is approached. [Another way of seeing this is from Eq.
(4.39): c must decrease at the sonic point because 0 & 1.]
This confirms the remark Inade in Sec. IV that neither A,

nor c need vary monotonically along the portion of the
wave curve corresponding to shock waves. In addition,
d P/du ~z &0 near the sonic point at state 1, since the
Rayleigh line is also tangent to the Hugoniot locus in the
P-u plane; therefore the Hugoniot locus may lose convex-
ity in this plane, too. This may cause difhculty for nu-
merical algorithms that solve the Riernann problem using
iterative methods to find intersections of wave curves.

As in the case when the isentrope loses convexity be-
cause of a kink, the wave curve between state 1 and state
3 is branched. The resulting nonuniqueness of solutions
of the Riemann problem is resolved by considering the
existence of viscous shock profiles, just as in Sec. V.B.
The wave curve is formed by following a segment of
shock waves along Hp up to the sonic point at state 1,
and then following a segment of composite waves until a
state 2 at which 5'=0. Each composite wave consists of
the sonic shock wave to state 1 adjoined by a smooth
compressive wave that lies along the isentrope S&. Be-
cause 0 (0 along the isentrope from state 1 to state 2, the
compressive wave does not steepen to form a shock wave.
Beyond state 2 a second sonic shock wave is formed.
Composite waves are then of the form sonic
shock/compressive wave/sonic shock; this is sketched in
Fig. 14(a). Both ends of the compressive wave are sonic

shock
strength

shock
strength

FIG. 12. Entropy, wave speed, and characteristic velocity
along a Hugoniot locus for an anomalous equation of state
(0& 0 is violated).

FIG. 13. Entropy, wave speed, and characteristic velocity
along a Hugoniot locus for an anomalous equation of state
(5'=0 at a sonic point).
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0—
rarefaction

sonic

shock

2j' sonic

3~ rarefaction
X

S2
0 iII

4

1

~ 3
1

So

(b) Composite consisting of rarefaction-sonic shock-rarefaction

FIG. 14. Composite wave.

relative to the adjacent shock waves and so move with
the corresponding shock velocities. Thus the composite
wave propagates as.a single entity. As the pressure along
the wave curve is increased, the second shock wave be-
comes stronger and the compressive wave weaker. When
the compressive wave vanishes, the two shock waves
move at the same speed; this occurs at state 3. The wave
is analogous to the double-shock structure that occurs
when the Hugoniot locus has a kink [Fig. 8(b)j. The
wave curve then continues with a branch of shock waves
along IIo. If there were additional oscillations in 9 about
zero, then the pattern of composite waves would repeat:
shock, compression wave, shock, compression wave, etc.
Notice that the entropy increases monotonically along
the wave curve just constructed.

Remarks. (1) The smooth compression waves are sim-

ple waves across which one of the Riemann invariants is
constant. Analogously, one of the Riemann invariants is
piecewise constant across a composite wave, with the
jumps occurring at the sonic shock waves.

(2) In a numerical calculation, a composite wave con-
sisting of a shock/compression wave may not be distin-
guishable from a shock wave that has been smeared out
by lack of grid resolution and artificial viscosity.

A connection may be drawn between the present situa-
tion and that in Sec. V.B by considering 9 to become
more negative over smaller regions, i.e., to develop a 5-
function singularity. Then the isentrope develops a kink
and the compression wave shrinks to zero strength. To
distinguish between these cases experimentally, it is
necessary to measure the pressure profile to detect the
compression wave. In practice this is diScult to accom-
plish: most experiments only observe the first shock
front.

An analogous wave structure occurs along the expan-
sion portion of the wave curve, as illustrated in Fig.
14(b). The wave curve follows an isentrope until Q=O.

V d PbS= — ' (b, V/V) I 1+O(b.V/V)),4'T dV
(5.10)

as can be shown by repeatedly differentiating Eq. (3.34)

Loss of genuine nonlinearity then causes composite
waves to be formed, each consisting of a rarefaction wave
followed by a sonic shock wave that rarefies the Quid fur-
ther. Thus the Rayleigh line for the shock wave is
tangent to the isentrope at its initial state, the enc} of the
preceding rarefaction. Such a shock wave increases the
entropy because 0 &0, according to Eq. (3.44). Since the
Aow behind the shock wave is subsonic, the wave curve
continues with a segment of composite waves by weaken-
ing the rarefaction wave and strengthening the shock
wave until the fIow behind the shock wave is sonic; at
this point the Rayleigh line of the shock wave is tangent
to the isentropes at both the initial and the final state.
The wave curve then continues with a composite of the
form rarefaction/sonic shock/rarefaction. As in the pre-
vious section, the shock wave jumps over the region with
9 & 0, and the second rarefaction wave in the composite
wave lies on an isentrope with higher entropy than does
the first rarefaction wave.

Remarks. (1) Composite waves also occur in the
mathematical theory for a scalar quasilinear hyperbolic
partial differential equation (Gelfand, 1959). The sonic
condition is replaced with the condition that the chord
line is tangent to the flux function. For scalar conserva-
tion laws, therefore, the Aux function plays the role of the
isentropes. An entropy condition that guarantees
uniqueness for solutions of the Cauchy problem has been
given by Oleinik (1959). The wave curve that obeys the
entropy condition is constructed from convex hulls of the
Aux function.

(2) Under the additional assumptions that y) I )0,
Liu (1975) has shown that the construction we outlined
with composites leads to a smooth wave curve, and that
there exists a unique solution to the Riemann problem.
The construction to obtain a single-branched wave curve
utilizes an extension of the Oleinik entropy condition:
the slope of the Rayleigh line varies monotonically along
the Hugoniot locus for any shock wave occurring on the
wave curve. In addition, Liu (1976) has shown that only
those shock waves that satisfy the Liu-01einik criterion
have a viscous profile. The existence of shock profiles as-
sociated with viscosity and heat conduction is the basis of
an extended entropy condition, as discussed in Appendix
C. An alternative proof of the uniqueness of solutions of
the Riemann problem, under di6'erent assumptions, has
been given by Sidorenko (1982).

We have been assuming that 0)0 at the initial point
for the wave curve. In this case the wave curve starts
with shock waves for V( Vo and rarefaction waves for
V) Vo, according to the local theory of Lax (1957). If
9 &0 at the initial point, then the wave curve starts with
smooth compressive waves for V& Vo and shock waves
that rarefy the Quid for V& Vo; this is a consequence of
Eq. (3.44). When Q=O at the initial point,
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and using the fundamental thermodynamic identity.
Consequently, the wave curve either starts with shock
waves in both directions or rarefaction waves in both
directions, according to the sign of d P/d V ~s.

As we have seen, waves can be combined to form a
single-branched, continuous wave curve even when g) 0
is violated, The graphical analysis of the Riemann prob-
lem using wave curves is as before.

54 3 21

O~
+

D. Overlap of isentropes in the P-V plane

Near a phase transition, the coefficient of thermal ex-
pansion P, or equivalently the Griineisen coefBcient
I =f3V/(CVKT), may be negative. A notable example is

water near freezing. We have shown in Sec. IV.B that
the Bethe-Weyl theorem does not require I to be posi-
tive. Here we discuss some unusual behavior that does
occur if I )0 is violated.

When I =(V/T)BP/BS~ v changes sign, S is mul-

tivalued if considered to be a function of P and V. To un-
derstand this geometrically, - consider the equation of
state to be a surface in P-V-S space defined by the
single-valued function P=P( V, S), as illustrated in Fig.
15. An isentrope is the projection onto the P-V plane of
the intersection of this surface with a plane S=const.
Changes of sign in I lead to folds in this surface, which
cause the isentropes to overlap in the manner of Fig. 16.
(The projection has the topology of a fold catastrophe.
See, e.g., Gilmore, 1981.) The set I =0 is a smooth,
closed curve in the S-V plane, but its projection has
cusps; its interior is the region in which the isentropes
are multivalues. The number of isentropes that intersect
in the P-V plane depends on the number of folds in the
EOS surface: for the surface of Fig. 15, the region where

(3)

3

V

FIG. 16. Isentropes when I )0 is violated. It is possible for
different isentropes to pass through each cusp.

I & 0 is crescent shaped, and up to three isentropes may
intersect.

Remark. Notice that when I &0 on a bounded set,
there must be a region of state space in which the sound
speed decreases with increasing entropy. To see this,
consider the temperature as a function of volume along
an isentrope; notice that I = —(V/T)BT/dV~s and that
the sign of &=(2@T) 'Bc /BS~ & determines the con-
vexity of this function, according to Eq. (4.45). If the
isentrope passes through the region where I &0, then
convexity of T cannot be maintained a11 alo'ng it, so that
the sound speed must decrease somewhere.

Suppose that a Hugoniot locus passes through a region
where I &0. Then the change in sign of I affects the
manner in which the Hugoniot locus, the isentrope, and
the Rayleigh line intersect, as illustrated in Fig. 17. At a

S1 H S

V

H crosses
only in P
projection
phase spa
not in ful
P-V-E spa

HS

S3

S2

S1

0

FIG. 15. Anomalous equation of state surface in P-V-S space
(I )0 is violated). The surface exhibits the topology of a fold
catastrophe.

V

FIG. 17. Hugoniot locus and isentropes for an anomalous
equation of state (I crosses zero).

Rev. Mod. Phys. , Vol. 61, No. 1, January 1989



R: Menikoff and B. J. Plohr: The Riemann problem for fluid flow of real materials 109

point where I =0, the Hugoniot locus and the isentrope
are tangent, as seen from the identity VdP= —yPdV
+I T dS. Nevertheless, it does not follow that the entro-

py is a local extremum, in contrast to the normal case
when I &0; thus the Rayleigh line is not necessarily
tangent to the isentrope, and the shock wave is not neces-
sarily sonic (cf. Theorem 4.2).

E. Summary of anomaIies

The results of this section show that the assumption
9'&0 is necessary for the standard theory. This assump-
tion excludes real physical phenomena that occur in na-
ture, namely, phase transitions. The theory of elementa-

ry waves can be generalized to avoid this assumption by
considering split shock waves, composite waves, and
shock waves that rarefy the Auid. Nonuniqueness of
solutions caused by branching of the wave curve is
resolved by requiring the existence of viscous shock
profiles. As a consequence, the entropy does not decrease
along the wave curve as the wave strength increases. (In
particular, the entropy may increase on the expansive
branch because of shock waves that rarefy the tiuid. ) The
wave curve may be used in the standard manner to ana-
lyze the existence and uniqueness of solutions of the
Riemann problem. Existence of a solution follows from
the asymptotics of the EOS, while uniqueness depends on
monotonicity of the wave curve as drawn in the P-u
plane. Anomalous wave structures have been observed
experimentally (see the references in Zel'dovich and
Raizer, 1966; Thompson et a/. , 1986; Kutateladze et al. ,
1987). There is no anomaly in the wave curve when the
other assumption of the standard theory I & 0 is violated.

Remarks (1) W.e have not analyzed the conditions on
the equation of state that guarantee the composite por-
tion of the wave curve to be monotonic; this is an open
question.

(2) The anomalous structure of the wave curve has im-

plications for numerical algorithms. Clearly, methods.
based on Riemann solvers (Godunov methods, the ran-
dom choice method, and front tracking) need to account
for the anomalous wave structure, but finite difference
methods, which rely on artificial viscosity to capture
shock waves, are also affected. For example, the artificial
viscous pressure usually is nonzero only in compression.
When 0 &0 and shock waves that rarefy the fiuid occur,
artificial viscous pressure is needed instead for expansive
waves.

VI. SHOCK INSTABILITIES AND NONUNIQUENESS
OF SOLUTIONS

In previous sections we have studied wave
configurations in one spatial dimension. Such waves
arise from physical waves in three spatial dimensions by
imposing the constraint of planar symmetry. This con-
straint may preclude modes of instability for. the waves
that are fundamentally multidimensional. Thus a one-

—1+R +1+2M, (6.1)

where M is the Mach number of the Qow behind the
shock, relative to the front, and R is a quantity analogous
to —M that is related to the Hugoniot locus:

—M =m /(BP/BV~s),

R =m /(ar/av~„),

(6.2)

(6.3)

with the mass iiux m being defined in Eq. (3.35). Geome-
trically, M is the ratio of the slope of the Rayleigh line
to the slope of the isentrope, and —R is the ratio of the
slope of the Rayleigh line to the slope of the Hugoniot.
Fowles and Houwing (1984) have pointed out that the
same condition is obtained from Whitham s rule (Whit-
ham, 1974) for a shock moving in a tube of varying area,
in that these inequalities are equivalent to having shock
waves slow down when they diverge and speed up when
they converge.

Remarks By Eq. (4.24.) the ratio R is

V gP 1+—,'I b V/VR=-
P hV y —

—,'I hP/P
(6.4)

Thus —R approaches 1 in the limit of weak shock waves
as does M; moreover, the difference between —R and
M vanishes as the square of the shock strength. The ar-

I

dimensional wave may be stable with respect to one-
dimensional perturbations of the Aow and yet be unstable
when embedded in three dimensions. In this section we
survey some results about stability of shock waves with
respect to multidimensional perturbations. The stability
conditions may be related to the monotonicity properties
of the Hugoniot locus, and thereby to nonuniqueness of
solutions of the one-dimensional Riemann problem.

Shock-tube experiments have shown that typically a
planar shock front is very stable (see, e.g. , Van Moorhem
and George, 1975). Physically the reason is as follows
(Whitham, 1974). If the shock front is perturbed, the
leading or convex part of the disturbance behaves like a
diverging wave, while the lagging or concave part of the
disturbance behaves like a converging wave. For an ideal
gas a similarity solution was derived by Guderley (1942).
This solution has the property that converging shock
waves strengthen and speed up, whereas diverging shock
waves weaken and slow down; moreover, energy con-
siderations suggest that this property is very genera1.
For a perturbed shock front, this mechanism implies that
the leading disturbance moves more slowly and that the
lagging disturbance moves more quickly. Thus the shock
front tends to recover from any perturbations: the front
is stable.

More generally we may ask whether multidimensional
stability is related to thermodynamic properties of the
equation of state and the shape of the Hugoniot locus.
For an arbitrary EOS, a linear stability analysis for a pla-
nar shock front was performed by D'yakov (1954) and
Erpenbeck (1962). They found that the shock front is

stable if and only if
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gP )0
dP

(6.S)

gurnents of Sec. IV.C show that for most materials R ap-
proaches 0 in the strong shock limit.

The first inequality relates the slope of the Hugoniot
curve to the slope of the Rayleigh line. It is equivalent to
part (e) of Theorem 5.4 and, thereby, to having the entro-

py increase with shock strength and to having subsonic
fiow behind the shock (at points on the compression
branch where the weak condition holds). As discussed in
previous sections, this condition may be violated near
phase transitions, leading to splitting of shock waves and
branching of wave curves. In this case a shock wave is
subject to multidimensional instabilities when the Aow

behind it is supersonic, independently of one-dimensional
admissibility criteria. In general, Eq. (4.28), together
with Eqs. (4.23) and (4.26), shows the first inequality in
(6.1) to be equivalent to

P
H0

U

(~) Shock splits into 2 shocks
c

s pl its
to

2", 2
/

0

splits
to ~ C

3t P 3
0

Hp constant u

H1 Hp constant u

so that the shock speed must increase with pressure along
the compression branch.

In a similar fashion, Eq. (4.28), combined with Eqs.
(4.23), (4.27), and dP /du

~ s =m /M, shows that the
second inequality is equivalent to

()Q ~ BQ
(6.6)

—1+R +1, (6.7)

was obtained by Fowles (1976) by considering the
reAection of acoustic waves that overtake a shock wave
in one dimension. These inequalities result from requir-
ing that the acoustic reAection coefticient should not

In particular, this inequality can be violated only if the
Hugoniot locus is not monotonic in the P-u plane; i.e.,
the medium condition must be violated. Gardner (1963)
and Erpenbeck (1963) pointed out that when inequality
(6.6) is violated the single shock wave can split into alter-
native wave configurations, which consist of a shock
wave accompanied by another wave moving in the oppo-
site direction. This second wave may be either (a) a
shock wave or (b) a rarefaction wave, as illustrated in
Fig. 18. We show in Appendix C that it is possible to
have viscous profiles for the shock waves in each of the
three alternative wave configurations, so that the
nonuniqueness of solutions of the Riemann problem can-
not be resolved on this basis. On one hand, the
configuration with two shock waves exhibits a peak in
the pressure profile similar to that in Fig. 9, and the
propagation speed of the shock wave is maximal. On the
other hand, the configuration with a shock wave and a
rarefaction wave minimizes the entropy production. We
have no criterion for deciding which of the
configurations is preferred in nature, but numerical ex-
periments of Wendroff (1988) indicate that the
configuration with two shock waves is more stable.

A more restrictive condition for shock stability,

Hp

0 S)
U

(b) Shock splits into shock and rarefaction

FIG. 18. Shock splitting when BP/Bu ~s )—BP/Bu ~I, .

(6.8)

as follows in the same manner as inequality (6.6). Thus
uniqueness of solutions of the Riemann problem is lost
when one-dimensional acoustic waves are amplified upon
reAection from a shock wave.

A more elaborate Inultidimensional analysis by Kon-
torovich (1958) and Fowles (1981) leads to an even more
restrictive condition for shock stability. This condition
can be expressed as bounds on the slope of the Hugoniot
locus in the P-Vplane,

1 —M —( Vo/V)M—1~R ~
1 —M +(Vo/V)M

or in the P-u plane,

(6 9)

V0BP m 0 2

Bu „(V /V)M' V
(6.10)

[The pair of inequalities (6.9) is equivalent to the pair
(6.10), but the first inequality in (6.9) is equivalent to the
first in (6.10) only when dP/du ~&

)0.] Fowles obtained
this result by computing when the amplification
coeKcient for reAection of oblique acoustic waves be-
comes singular. This implies that an infinitesimal pertur-

exceed unity. The second inequality in (6.7) is fulfilled if
and only if
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tan 8=

where qo is the magnitude of the Aow speed ahead of the
stationary shock wave, and U, is the normal propagation
speed of the shock wave in the laboratory frame
(poU, = b,P/b, V). Th—e general form of a shock polar
diagram is shown in Fig. 19. Notice that there is a Inax-
imum angle i9 „through which the flow can turn, and
that there is a distinguished point at which the flow
behind the shock wave is sonic.

The multidimensional stability criterion (6.9) may be
shown to be equivalent to having the sonic point occur

Cross Node
reflected

acoustic wave

maximum
turning
ang le

0

FIG. 19. Shock polar diagram and the corresponding two-
dimensional wave pattern when the multidimensional stability
criterion is violated.

bation in the Aow behind the shock wave causes a finite
disturbance; in other words, acoustic waves can occur
spontaneously. Thus a shock is unstable to the formation
of transverse waves along its front when the bounds in
(6.10) are violated.

The stability inequality (6.9) may be understood heu-
ristically from the point of view of two-dimensional ele-
mentary waves (Glimm et al. , 1985). Such waves are
steady two-dimensional flow fields consisting of oblique
shock waves, contact/slip discontinuities, and Prandtl-
Meyer fans centered at a point of interaction, which is
called the node. Elementary waves may be constructed
and classified (Glimm et al. , 1985) with the aid of shock
polar diagrams (Courant and Friedrichs; 1948), in which
the turning angle 0 of the Aow is plotted as a function of
the pressure behind an oblique shock wave (Grove, 1988):

2 2
—1, (6.11)

poqo
—hI' U,

on the shock polar diagram at a lower pressure than does
the maximum turning angle; this follows from Eq .(6.11)
and some tedious algebra. When the stability bound is
violated, i.e., the sonic point occurs above the point with
maximum turning angle, the instability modes may be
determined from the geometry of shock polar diagrams.
Consider a weak (i.e., acoustic) shock wave impinging on
a strong shock front from ahead; Fig. 19 depicts this situ-
ation. The intersection point of these waves is termed a
cross node (Glimm et al. , 1985). State 0 is ahead of the
strong shock and state 1 is behind it, while state 2 is
behind the acoustic wave', the shock polar diagram is
drawn for the reference frame in which the intersection
point is stationary. The interaction can result in a strong
transmitted shock wave from state 2 to state 3 and in a
reAected rarefaction wave from state 1 to state 3. A
reflected rarefaction wave is possible only when state 1

both lies above the point of maximum turning angle and
is supersonic, which requires the violation of the stability
bound. Furthermore,

'

as the strength of the acoustic
wave diminishes (state 2 approaches state 0), state 3 ap-
proaches state 4 and the wave configuration becomes a
Mach configuration with a reflected rarefaction wave of
nonzero strength; the reflection coefficient is infinite.
Thus a weak perturbation of the strong shock wave can
result in a significantly different wave pattern. Since an
arbitrarily small perturbation causes the Mach node to
form, the transition can occur spontaneously and the
shock is unstable as a two-dimensional front. Thus a
two-dimensional instability is realized as a weak rarefac-
tion propagating transversely along the shock front.
Similarly, an acoustic wave overtaking a strong shock
wave from behind (forming an overtake node) also excites
this instability.

Remarks. (1) The qualitative picture described above
has been demonstrated by Majda and Rosales (1983,
1984) using a nonlinear asymptotic perturbation analysis.
They show that when the stability condition is violated,
arbitrarily small, smooth disturbances evolve dynamical-
ly into the Mach configuration described by the shock
polar analysis.

(2) The higher-pressure solution corresponding to state
5 in Fig. 19 is possible, but experiments indicate that the
lower-pressure solution occurs physically (cf. Henderson,
1966, 1967). The lower-pressure solution causes the
infinite reflection; nevertheless, this solution may form
continuously in the following manner. Consider the de-
velopment of the interaction as the angle between the
acoustic wave and the shock wave varies. Changing the
angle changes the node velocity and, thereby, the in-
cident Mach number, which determines the shock polar
analysis for the incident shock wave. For some angle, the
sonic point occurs at the maximum turning angle, so that
the strength of the reflected wave vanishes. As the angle
is changed, this wave strength increases continuously
from zero.

(3) The rarefaction curve is guaranteed to intersect the
incident shock polar analysis if state 1 is suKciently close
to the sonic point. This follows because
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dP/d 0=pc'M'(M' —I ) (6.12)

as M &1 at the initial point on the reAected wave curve,
so that the rarefaction portion of this curve starts inside
the shock polar,

(4) The wave configuration shown in Fig. 19 answers a
question left open by Glimm et al. (1985): a cross node
with a refIected rarefaction is indeed possible, provided
that the equation of state violates the Kontorovich
bound. This possibility was not demonstrated to occur
by Glimm et al. (1985) because only the polytropic gas
equation of state was used to construct examples.

The second inequality in (6.9) is equivalent to

dm y —(I +1)bP/P )
dP

q y+bP/P (6.13)

Therefore compressive multidimensional shock fronts are
stable (Fowles, 1981) if and only if the fiow is subsonic
behind the front and

y ~ (I +1)(1 Po/P) —. (6.14)

This condition is the basis for a result analogous to
Theorems 4.5 and 4.6.

Theorem 6.1. The stability condition is sufhcient for
multidimensional stability of compressive shock waves and
for monotonicity of u along Hugoniot loci Furth. ermore,
if Po —&0 as So —+0 along the backward Kugoniot of a
state (V, S), then the stability condition is also necessary
for multidimensional stability of all shock waves that con
neet to this state.

Proof. The stability condition implies Eq. (6.14) and,
therefore, multidimensional shock stability, provided
that P Po. It also implies the medium condition, so
that u varies monotonically along Hugoniot loci. If the
stability condition is violated and the backwards Hugoni-
ot extends to Po =0, then there is an initial state (VO, SO)
such that Eq. (6.14) is violated; in this case the shock
wave connecting (VO, SO) to ( V, S) is unstable as a mul-
tidimensional front.

We also point out that the multidimensional stability
condition precludes bifurcations on the compressive
branch of the Hugoniot locus:

2y )y ~ (I"+1)b,P/P ) I AP/P, (6.15)

so that the bifurcation condition Eq. (4.8) cannot hold.
This holds irrespective of the value of 9'.

The stability condition is very stringent. In particular
it is stronger than the medium condition, so that it
guarantees uniqueness of solutions of the Riemann prob-
lem when 9)0. It is possible, however, for the stability
inequality (6.10) to be violated even if g) 0, the particle
velocity increases monotonically along the Hug oniot

Notice that sulriciently weak shock waves (P=PO) are
stable.

Let us introduce the thermodynamic condition

I ~ y —1 (stability condition) .

locus, and the shock wave admits a viscous profile. We
infer from this result that shock instability becomes a
problem before multiple solutions of the Riemann prob-
lem occur, and that the existence of a shock profile is not
sufficient as an admissibility condition. Notice, however,
that the linear stability analysis leading to the criterion
(6.10) approximates the shock front as being infinitely
thin. A more satisfactory analysis would examine stabili-
ty of traveling-wave solutions of the viscous equations
with respect to multidimensional perturbations.

Remarks. (1) For a polytropic gas the stability condi-
tion is an equality. In the limit of high temperatures, the
EOS approximates a polytropic gas EOS. Numerical er-
rors in the EOS may cause the stability condition to be
violated to a slight extent. This would cause the Hugoni-
ot loci to approach the maximum compression ratio from
below, instead of from above as it should (see Sec. IV.C).
In numerical algorithms, the multidimensional instability
may be controlled by smoothing operations, such as
artificial viscosity in finite difference schemes, or redistri-
bution of the front points in front tracking methods.

(2) A mathematically rigorous perturbation analysis of
shock instability for general hyperbolic partial
differential equations has been performed by Majda
(1983). One-dimensional viscous profiles for weak shock
waves have been shown to be nonlinearly stable by Liu
(1986).

(3) A similar transverse instability is known to occur in
detonation waves; the transverse wave takes the form of a
standard Mach configuration (with a refiected shock
wave) (Strehlow, 1970; Fickett and Davis, 1979; Majda,
1987). The instability mode can be understood heuristi-
cally by adapting the shock polar analysis that was dis-
cussed for shock instability. Consider perturbing a de-
tonation front by an acoustic wave. Because of the dy-
namics in the reaction zone, the higher-pressure solution
in the wave curve analysis may occur (state 5 in Fig. 19).
For a supersonic point (state 4) whose pressure is slightly
below the pressure at the maximum turning angle, the
higher-pressure solution converges to a Mach
configuration with a rejected shock when the strength of
the acoustic wave vanishes. Again the reAection
coefficient is infinite, and the node can appear spontane-
ously.

(4) In the shock polar diagram of the standard Mach
configuration, the rejected wave curve leads from a point
below the sonic point to a point above the maximum
turning angle. When the sonic point is below the max-
imum turning angle, the minimum strength (i.e., pressure
difFerence) for the refiected wave is nonzero. As the sonic
point approaches the maximum turning angle, the
threshold strength for the reAected wave decreases, so
that a smaller perturbation can trigger the formation of a
Mach configuration. In this case, the shock front may be
linearly stable to infinitesimal perturbation, but unstable
to finite perturbations that exceed a small threshold.

(5) As reported by Thompson et al. (1986), recent ex-
periments on shock waves in fluids with large heat capa-
cities show evidence for transverse instability near phase
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transitions. In addition, experiments have observed
transverse instability of shock waves in gases (Griffiths
et al. , 1975; Glass and Liu, 1978); here the instability ap-
pears to be associated with the ionization and relaxation
processes behind strong shock waves, i.e., nonequilibrium
e6'ects.

(6) Analogous stability results for shock waves in rela-
tivistic fluid dynamics have been obtained by Russo and
Anile (1987).

(7) The transverse instability was not discovered by the
linear analyses of D'yakov and Erpenbeck because the
normal modes and boundary conditions that they con-
sidered are not compatible with outgoing planar acoustic
waves.

Finally, we mention additional questions concerning
the Riemann problem. Very little is known about the
solution of the Riemann problem in more than one di-
mension. A classification of stable configurations (ele-
mentary waves) under reasonable assumptions was ob-
tained by Glimm et al. (1985). This work may be gen-
eralized to weaken the physical assumptions and to in-
clude the additional wave types that occur because of
phase transitions. Moreover, nonuniqueness of Quid Aow
occurs in other situations. In two dimensions, a well-
known case is a shock reAecting o6'a wedge; for some ini-
tial conditions, both regular and Mach reAections are
possible (Hornung, 1986). Understanding the two-
dimensional Riemann problem is a step toward determin-
ing what additional information is needed to resolve this
and other cases of nonuniqueness in fIuid Aow.

Vll. A MODEL EQUATION OF STATE

In numerical calculations of Quid Bow, the EOS can be
specified by an analytical formula, an empirical fit, or a
table. When the Aow enters a region of state space out-
side the range of validity of the numerical EOS, the com-
putation can become unstable or give unphysical results,
through no fault of the computer code. Thus the EOS
should be regarded as input data whose correctness must
be assured.

Because of experimental difficulties, data for the equa-
tion of state are available in only a limited region in state
space. As a result, the range of validity of a numerical
EOS is known only approximately. The domain of an
EOS can be delimited by checking for thermodynamic
consistency. However, this approach is insufficient when
only an incomplete EOS is specified, as is frequently the
case for ideal fluid How. Thus it is important to under-
stand the wave structure in order to discern potential
difficulties in numerical computations. In this section we
illustrate, with a simple analytic example, the anomalous
shock behavior that can arise from a seemingly reason-
able numerical EOS.

We consider a mode;1 for a metal consisting of a
Gruneisen EOS together with a linear fit for the shock
velocity as a function of the particle velocity (Rice et al. ,
1958). A Gruneisen EOS reduces a function of two vari-

ables to linear corrections about a reference curve
parametrized by one variable. Using the definition (2.47)
for the Gruneisen coefficient, a first-order Taylor expan-
sion in the internal energy about the reference curve
yields

P ( V E)=P„r( V) + [E—E„—r( V) ] .I
(7 1)

This is an adequate approximation when in the Aow the
state of the Quid is near the reference curve. For exam-
ple, in the absence of viscosity, heat conduction, and
shock waves, the reference curve may be taken as an isen-
trope. /

The reference curve is chosen frequently to match ex-
perimental data. High-pressure data that are available
for solids lie along a single shock Hugoniot for which the
initial state is at standard temperature and pressure. For
many metals, the shock and particle velocity are ob-
served to be related linearly up to a pressure of several
megabars:

0 =co+st (7.2)

We assume that s ) 1 in order that 'o ) u for all u, as re-
quired by mass conservation. The shock state is then
determined from the Hugoniot jump conditions to be

co( Vo —V)
Pi, ( V) =Po+

[ Vo —s( Vo —V)]

Ei, ( V) =Eo+ ,' [Pi, ( V)+ P—o](Vo —V),

(7.3)

(7.4)

where Vp Ep and I'p are the initial-state conditions. At
the initial state, a good approximation (Rice et al. , 1958)
is

I =2s 1 (7.5)

We consider the EOS in which I is a constant indepen-
dent of V and E.

This model EOS has the following limitations:
(A) The reference curve is based on a single shock

curve, which has a maximum compression ratio of

~p s
V s —1

(7.6)

Hence Eqs. (7.3) and (7.4) are only meaningful for

s —1 Vo(V~ ~o
s

(7.7)

c (V,E)=ch(V)+I (I +1)[E Eh(V)], —

where the sound speed along the Hugoniot curve is deter-
mined from

Remark. As V approaches the maximum compression,
I'& and Ez approach infinity. For V beyond the max-
imum compression, Eqs. (7.1), (7.3), and (7.4) lead to a
negative compressibility.

(B) The sound speed is given by
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2
cl, ( V)

V

1

( Vo —V) —1 +(Pq —Po)
h

(7.8b)

Thus if one extrapolates E too far below Eh, the sound
speed becomes imaginary, which means that the
compressibility is negative and hence unphysical.

In general, for the Gruneisen EOS, it is useful to ex-
press the sound speed along the Hugoniot curve in terms
of the particle velocity. From Eqs. (7.3), (7.8b), and the
relations

V

Vo

cr u u
and

co

Vo/V —1

s —(s —1)VO/V
' (7.9)

we find that
2

CA

Cp
1+(s —1)

Cp

1+(s —1 ——'I )
u

2
Cp

1+2$
co.

+~r
Cp

(7.10)

Thus cz is a cubic polynomial in u. Furthermore, Eq.
(7.5) implies that s —1 —

—,'I = —
—,', so that the coefficient

of the cubic term in u /co is negative. A sketch of CI, as a
function of u is shown in Fig. 20. The sound speed is
imaginary and the adiabatic compressibility is negative
when

Hugoniot and the sound speed behind the shock may be
used to determine I on the shock Hugoniot.

(2) There are two common ways in which E &Ez(V)
may occur: first, when a shock wave is followed by adia-
batic compression (e.g. , when a gas is compressed be-
tween two plates that have been set into motion impul-
sively); second, when numerical errors are caused by
insufficient resolution (as in finite difference calculations
near boundary layers).

(3) When the Row enters regions outside the range of
validity of the EOS, numerical calculations can be ex-
pected to yield inaccurate results. In particular, if the
flow enters a regime where the sound speed is imaginary,
then the numerical algorithm may fail catastrophically.
For the model EOS considered here, we see that there are
indeed regimes of V and E where this occurs. Before a
catastrophic failure occurs, however, the flow may enter
a regime where certain wave structures, such as shock
waves, are unstable because of the EOS (as in Sec. VI).

(C) For weak shock waves (u /co « 1), the sound speed
is given by

cl, =co+(2s —1)u+O(u ), (7.12)

u +ch =co+2su+O(u ) ~ o =co+su . (7.13)

That d (u +c)/do =2 at the initial state is a consequence
of the general result that

according to Eq. (7.10). Thus co is the sound speed for
the initial state; this is consistent with weak shock waves
being acoustic waves. Furthermore, 'the characteristic
speed for weak shock waves is greater than the shock ve-
locity:

u (3s —1)+[(3s —1) +4s]'~
Co 2$

(7.11) o = —,
' [(u +c),„„d+( u +c)b,„;„d] (7.14)

The corresponding bound on V follows from this inequal-
ity and Eq. (7.9).

Remarks. (1) Equation (7.8b) can be used in the other
direction: experimental measurements of both the shock ch =co+(2s —1)u+O(u ) ~o =co+su . (7.15)

for weak shock waves. In addition, the sound speed
behind the shock wave is initially greater than the shock
velocity:

( h/ 0) 2
(0 -u)

stability

oint

personic
ind shock

egative
re s s i b i I i t y I

I+2 (7.16)

Remark. The initial behavior or weak shock limit of
this model is physically consistent, but it is not a realistic
model for a metal because elastic properties have been
neglected. Only well above the yield strength does a met-
al behave as a fluid.

At the point where c& =0, the characteristic speed is
less than the wave speed because o )u. Therefore there
must be a sonic point on the shock Hugoniot. The sonic
point, u +CI, =o., occurs at

0/Co

FIG. 20. Sound speed vs particle velocity along the principal
Hugoniot locus for the model equation of state.

At this point, u/co=2, cl, /co=2s —1, and cr/c0=2s+1.
In addition, because d (ch /co) /d(u /co) = —2(2s —1)
&0, the sonic point occurs af)er the maximum in the
sound speed along the Hugoniot curve. Beyond the sonic
point, the flow is supersonic behind the shock wave; thus
the Lax characteristic criterion is violated and the shock
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$2p

~V' s

d ch( V)

dV V2
r(r+1)

h

r(r+1)(r+2)
V2 V

(7.17)

The third term is zero on the reference curve, while the
second terin is negative because

r

1 d (Ph —Po )P+ =—(P P)—(V——V)
dV 2 dV

&0,

(7.18)

as follows from the convexity of Ph(V). At the sonic
point,

and

2s+1
0 9+ch- ch2$1 (7.19)

dch cr d (ch/co) cr~
2(2s —1),d V Vo d (u /cii) Vo

so that the first term in Eq. (7.17) expands to

1 d ch
2 V2

(7.20)

wave is unstable.
Furthermore, the sonic point is also a point of sec-

ondary bifurcation. In fact, the second branch of the
shock Hugoniot is the line in the P- V plane given by Eq.
(7.16). Because of the bifurcation, the usual results—
that the Rayleigh line and the shock Hugoniot are
tangent at the sonic point, and that the Aow behind a
shock wave is subsonic when the wave speed increases-
do not hold.

At the sonic point, 9 &0. We will demonstrate this by
showing the isentrope to be concave. , The second deriva-
tive is given by

(E) Finally, it has been shown by Fowles (1981) for the
model EOS that the criterion for two-dimensional stabili-
ty, Eq. (6.10), is violated for

SV) V0 .s+1
This occurs when u /co ) 1. Because

d (ch /co )
=3s(s —1))0,d(u/co) u=c,

(7.23)

(7.24)

T dS=dE+P dV . (7.25)

The solution of this equation is given as follows. Let

=V"E+ dV V Ph V ——Eh V
I

the two-dimensional instability occurs before the max-
imum in ch. It thus provides the most stringent limit on
when the model is unphysical. The limit occurs when
c =&2sco, cr =(s+1)co, and Ph =Po+(s+1)co/Vo. At
this point, the adiabatic exponent is y=2s(s+1)yo/
[1+(s + 1)yo], where yo= co /(Po Vo ). Beyond this
point, numerical instabilities in two-dimensional calcula-
tions are expected.

Remarks. (1) For a typical metal like steel (Marsh,
1980), p~=7. 91 g/cm. , co=0.462 cm/ps, s =1.42, and'
P0=10 Mbar. At the initial point, the EOS is very
sti6; with y0=1.7X10 . The model EOS breaks down at
o = 1.12, cm/ps and P =4. 1 Mbar.

(2) The strong, medium, and weak conditions of Sec.
IV are all violated because y ~0 and I is a constant. As
a result, it is possible to describe a foamed metal (Mader,
1970) by choosing an initial specific volume Vo greater
then the normal initial volume V0.

(3) Another way to understand the anomalous behavior
of this incomplete EOS is to try to determine a consistent
entropy and temperature function. To do this, we write
the fundamental thermodynamic identity as

= —4sch/V &0 . (7.21)

Therefore 8 P /B V
~ s & 0 and hence 9 & 0 at the sonic

point.
(D) Before the sonic point is reached, the sound speed

has a maximum. The maximum, dch /du =0, occurs
when

= V"[E—Eo —Po( Vo —V)]

+c JdVV 1 ——2 r Vo —V
0 2 V

V0 —V
X

[ Vo —s( Vo —V)]
(7.26)

u 3s —Ss+ 1+(9s —18s + 13s —4s + 1)'

C0 3s (s —1)

(7.22)

[Note that if I is an integer, the integral is a sum of
terms of the form J dx x /(x +a), which may be calcu-
lated analytically. ] Then

It follows from Eq. (7.8a) that Bc /BE~ V=I (I +1);
hence Bc /OS~V)0. Thus when the sound speed is a
maximum along the Hugoniot curve, Bc /BV~s) 0, so
that 9 & 1. Although thermodynamics does not preclude
having the sound speed decrease with density, it is unusu-
al. It is an indication that this EOS no longer models a
simple metal.

&=f(a),
T= V "/f'(a),

(7.27)

(7.28)

where f is an arbitrary function. The simplest choice
f(a) =a results in T being independent of E. This leads
to C~= ao, which is unphysical; it also violates the third
law of thermodynamics, that the T=O isotherm and the
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S =0 isentrope coincide. Thus more information is need-
ed to determine a complete EOS, e.g. , TI, ( V). However,
thermodynamics further restricts f. The dimensionless
specific heat at constant volume is

P =I op(E E„—) —(I o+1)P„. (7.31)

If we define P =poco/(I o+1)—Po and E„=Eo
+POVo —co/I o, then the stiffened gas EOS may be ex-
pressed simply as

f"PVr+i
T2 BS f' (7.29) (Often the energy offset E„ is irrelevant, so that the

stiffened gas is defined by the two parameters I o and
P .) We note that the fundamental thermodynamic pa-
rameters for a stiffened gas are

In order that T )0 and g )0, we require that f be in-
creasing and concave: f') 0 and f"(0. If one solves
Eq. (7.1) for E in terms of P and substitutes the resulting
expression into Eq. (7.26), one obtains an expression for
the isentropes in the P-V plane, as parametrized by a.
However, if one analyzes the asymptotic behavior as V
approaches the maximum compression ratio, one finds
that the isentropes end at P =0 with a positive slope, as
illustrated in Fig. 21. This behavior results because
Ei, ( V) grows much faster than the energy as V decreases
along an isentrope. Consequently, the large energy extra-
polation for the pressure in Eq. (7.1) leaves the range'of
validity of the model. In addition, we note that before y
becomes negative, the inequalities (2.32) for thermo-
dynamic stability are violated. The anomalous behavior
of the model EOS is a consequence of the loss of convexi-
ty and positive slope of the isentropes as V approaches
the maximum compression ratio.

(4) When variations in the density are small, the
Gruneisen EOS may be linearized to obtain a. "stiffened
gas" EOS (see, e.g. , Harlow and Amsden, 1971). More
generally, a stiffened gas EOS approximates any equa-
tions of state near a reference state (Vo, Eo):

(7.32)

y=(I o+1)(1+P /P),
0=1+—,'I o,

S=f((P+P )V ' ) .

(7.33)

(7.34)

(7.35)

A stiffened gas reduces to a polytropic gas when P =0
and E =0. For some materials, however, P can be
quite large; examples are water and metals, for which P
is on the order of megabars. According to Eq. (7.33),
c =(I o+1)(P+P )V; therefore, when P„ is large, a
stiffened gas models materials with a sound speed that is
insensitive to changes in pressure. Despite the extra pa-
rarneter P, Riemann problems may be solved for a
stiffened gas just as easily as for a polytropic gas (Plohr,
1988a). Therefore the stiffened gas EOS is useful as a
simple, analytical approximation to an arbitrary EOS,
obtained by locally fitting P and its two first derivatives,
y and I . The local wave structure is qualitatively
correct provided that Qo has the same sign as 1+—,'I o.
We mention also that isentropes are given byP(V, E)=P +(y I )P V (p—p)+I p —(E E)—

=(Po —I opoEo)

+ [c,' —r,(E,+P, V, )](p—p, )+r,pE (7.30)

to within errors that are quadratic in p
—

po and E —Eo.

—(r,+&)
Ps( V) = P„+al oV—

Es( V) =E„+P V+a V

(7.36a)

(7.36b)

S3

S2

P I I I I I I I III I I I I I I I Z I I I

0

S)

Vo
V

FKx. 21. Principal Hugoniot locus and isentropes for the model
equation of state.

The isentrope through the initial state corresponds to
z ro

having ao=coVo'/[1 o(l o+1)]. Thus a stifFened gas
represents the first-order expansion of Eq. (7.26).

It is clear why the model EOS breaks down. As the
temperature increases with shock strength, the EOS
should approach a polytropic gas with y ~—', and I ~ 3.
The linear o.-u relation has correction terms, and I is not
constant. In fact, by choosing I =( V/Vo)I o with
I O=2s —1, one can show that c& increases Inonotonically
along the principle Hugoniot curve, that the Aow behind
the shock wave is subsonic, and that the multidimension-
al stability condition is satisfied. Therefore this small
change in the EOS removes the unphysical anomalies in
this example.

Remarks. (1) In numerical finite difference schemes,
shock waves are smeared by artificial viscosity. For the
model EOS, we can explicitly calculate the shock profile
in the presence of viscosity but no heat conduction, fol-
lowing the results of Appendix C. From Eq. (C23) it fol-
lows that the shock profile, extending from the initial
state Vo to the final state V& in the P-V plane, is given by
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( Vo —V)
p( v) =p„(v)+,'r

Pp( Vf ) —Po Ph(V) Po—
X

V —V0, f V —V-0
(7.37)

VIII. SUMMARY

The wave structure in Quid Aow depends crucially on
the equation of state characterizing the material. This
dependence is rejected in solutions of one-dimensional
Riemann problems. Such solutions are. constructed using
wave curves, which pararnetrize stable, scale-invariant
elementary waves. For real Quid materials, the class of
elementary waves includes composite and split waves in
addition to shock and rarefaction waves. Existence of
solutions for the Riemann problem depends on global
properties of wave curves, while uniqueness of solutions
depends on monotonicity properties. In turn, the struc-
ture and behavior of wave curves is determined by prop-
erties of the equation of state.

The equation of state affects wave curves through its
influence on isentropes and Hugoniot loci. Global prop-
erties of wave curves follow from physically reasonable
assumptions about the asymptotic behavior of the equa-
tion of state, while the influence on local structure is

If the sonic point is beyond the final shock state, this
pressure profile is monotonic, and it lies between the
Hugoniot curve and the Rayleigh line. Beyond the sonic
point, the system of ordinary differential equations for
the shock profile has a third critical point caused by the
secondary bifurcation in the Hugoniot curve. The shock
profile cannot be extended beyond V/VO= I /(I + 1), so
that the corresponding shock waves are inadmissible. In
numerical calculations with artificial viscosity, the shock
profile is not resolved. If Eq. (7.37) is followed, then the
peak pressure exceeds the final shock pressure when the
EOS breaks down (i.e., when c (0); this is because the
slope of the shock profile coincides with that of the isen-
trope at the final state. Most likely, numerical oscilla-
tions occur when a shock profile does not exist.

(2) One common approach to expanding the region of
validity of an EOS is to patch together different models.
It is important to require more than continuity for
P(V, E). If the partial derivatives of P are not continu-
ous, then the isentropes have kinks. This leads to anorna-
lous wave behavior similar to what occurs at phase tran-
sitions, as described in Sec. V. In finite difference calcu-
lations, the How may carry the fluid state past these
boundaries sufficiently fast that difficulties are avoided.
Other methods that rely heavily on Riernann solvers may
have difficulty with the anomalous wave structure caused
by artificial kinks in the numerical EOS. Similarly, for
tabular equations of state, simple linear interpolation is
not sufficient: the interpolation scheme must enforce
that P and its derivatives be continuous in order to avoid
numerical difficulties with Riemann solvers.

characterized by three dimensionless parameters: the
adiabatic exponent y, the Gruneisen coefficient I, and
the fundamental derivative O'. Thermodynamic con-
sistency and stability place some restrictions on these pa-
rameters, but preclude neither anomalous wave structure
nor nonuniqueness of solutions of the Riemann problem.

When 9 is assumed to be positive, the wave curve con-
sists solely of shock and rarefaction waves. This stan-
dard assumption breaks down when the fluid undergoes
phase transitions. As a result, the wave propagation
speed fails to vary monotonically along wave curves,
leading to the formation of composite and split waves.
When anomalous waves occur, the physical admissibility
of solutions is no longer determined by the increase of
thermodynamic entropy; other more refined criteria,
such as the existence of viscous profiles for shock waves,
must be employed. Monotonicity properties along the
Hugoniot loci, which afFect uniqueness of solutions of the
Riemann problem, depend on the relationship between y
and l. Uniqueness is also related to whether shock
waves define stable solutions of the Quid equations in
physical three-dimensional space; multidimensional sta-
bility may be formulated as a condition on the equation
of state.

Fluid dynamics provides an enlightening example in
the study of systems of hyperbolic conservation laws.
When the standard mathematical assumptions on the
equation of state are relaxed, solutions exhibit a rich
wave structure that reAeets the spectrum of phenomena
occurring in general systems. These phenomena are ob-
served experimentally, ' indeed, phase transitions are a
generic property of real materials, not mathematical
pathologies. They are important also for numerical
simulation of fluid Aow. The equation of state is input
data for a numerical computation, so it must correctly
model the behavior of the material; otherwise solutions
that are wrong both quantitatively and qualitatively will
result.

There are several interesting open questions.
(1) A general multidimensional Riemann problein is an

initial value problem with initial data that are constant
along rays. Because the equations are scale invariant,
one expects the solution to be scale invariant, so that the
space and time variables may be replaced by fewer scaled
variables (see, e.g., Jones et al. , 1951). The reduced sys-
tem has source terms and is of mixed type: far from the
origin the system is hyperbolic, but elliptic regions may
occur near the origin. Solutions are expected to consist
of several interacting elementary waves together with
outgoing radiation waves.

Focusing on the elementary waves reduces the dimen-
sionality of the problem further; for instance, elementary
waves for two-dimensional Riemann problems are con-
structed by solving one-dimensional Riemann problems
in which rarefaction waves correspond to Prandtl-Meyer
fans, shock waves to oblique shock waves, Hugoniot loci
to shock polar diagrams. This approach was used by
Glimm et al. (1985) to classify the elementary wave
configurations for polytropic gases. Such solutions are
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particularly important for numerical calculations using
front tracking (Chem et al. , 1985; Glimm et al. , 1985).

The interactiori arid bifurcation of elementary waves is
determined by solving multidimensional Riemann prob-
lems. Here an analogy with particle scattering is helpful
(Glimm and Sharp, 1986). This analogy can be extended
to shock formation, which corresponds to pair produc-
tion, and to m.etastable interactions of waves (an example
being double Mach refiection), which are similar to
bound states. Other examples occur when incident shock
waves reQect from contact discontinuities; for experimen-
tal data illustrating this phenomenon, see, e.g., Abd-El-
Fattah and Henderson (1976). Thus solving multidimen-
sional Riemann problems would illuminate the physical
structure and interaction of waves, in addition to serving
to improve numerical algorithms.

(2) A question that is related to multidimensional
Riemann problems is the effect of curvature of a detona-
tion front on its propagation speed. This has been par-
tially analyzed by Bdzil and Stewart (1986), Jones (1987,
1989), and Bukiet (1989).

(3) For higher-order nuinerical algorithms (e.g.,
Godunov schemes), it is important to generalize the
Riemann problem to include initial value problems in one
dimension with piecewise linear initial data. It is also im-
portant to analyze the Riemann problem for conserva-
tion equations with source terms (e.g. , those accounting
for geometrical effects). Several authors have addressed
these issues for one-dimensional probleins (see, e.g., Liu,
1979; Le Floch and Raviart, 1988).

(4) Understanding the nonuniqueness of solutions of
the Riemann problem is an important problem. This is
expected to involve additional physics. Fluid dynamics is
well suited to this task because the additional physics is
understood, and because it is possible to verify theory
with experiments. The additional physics may involve
viscosity and heat conduction, or perhaps nonequilibrium
relaxation phenomena.

(5) Two important aspects of real materials have been
neglected in this study. First, phase transitions involve
nonequilibrium or relaxation effects that are similar to
chemical reactions (see, e.g., Rabie et al. , 1979; Chaves
et al. , 1985). Second, material strength must be con-
sidered when the material is solid. The Riemann prob-
lem for elastic materials is partially understood (see, e.g;,
Tang and Ting, 1987; Plohr and Sharp, 1989). Account-
ing for these phenomena is of great interest.
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APPENDIX A: THERMODYNAMIC IDENTITIES

To formulate the thermodynamic constraints on the
equation of state, we have used various results from clas-
sical thermodynamics. In this appendix we summarize
these results.

The principle thermodynamic potential is the specific
internal energy E =E ( V, S) expressed in terms of the
specific volume V and the specific entropy S. The funda-
mental thermodynamic identity (which follows from the
first and second laws of thermodynamics) defines the
pressure P and the temperature T as derivatives of E:

dE=TdS —P dV; (A 1)

P and T are assumed to be positive, continuous functions.
Moreover, thermodynamic stability requires E to be con-
vex, as discussed below.

Three other thermodynamic potentials are related to E
through Legendre transformations:

F(V, T) =specific Helmholtz free energy

=inffE( V, S)—TSI,
S

G(P, T) =specific Gibbs free energy

=inf I E( V, S)—TS +PV I,
V, S

H ( P, S) =specific enthalpy

=inftE(V, S)+PVI .

(A2)

(A3)

(A4)

These thermodynamic potentials correspond to
parametrizing the space of equilibrium states with
different independent variables. When the changes of
variables are locally invertible (i.e., away from phase
transitions), the potentials are simply

F=E —TS, G =E —TS+PV, H =E+PV . (A5)

In terms of these potentials, the fundamental thermo-
dynamic identity is expressed as

dF= —S dT —PdV,
dG= —S dT+ V dP,
dH=TdS+VdP .

(A6)

(A7)

(A8)

Notice, also that the specific entropy S may be expressed
in terms of the specific volume and specific energy,
S =S(V,E), since T=BE/BS]i )0.

The fundamental measurable quantities are

Cz =specific heat at constant volume
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= TBSIBT
i v,

Cz =specifi heat at constant pressure

K~ = isothermal compressibility

(A9)

(A 10)

(A11)
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Kz = isentropic compressibility

= —(1/v)av/aP ls,
p=coefficient of thermal expansion

=(1/v)av/aTI, .

(A12)

(A13)

a—s/avl, =a'z/avaT = a—P/aT),
p—/KT = (—P/T)I /g,

a—s/aP I,=a'G/aPaT =av/aT I,
=Pv=( v/T)r/(yg —r'),

(A24)

(A25)

They are related by the two identities

Ks p2VT

K, '
C,K,

Cv

Cp
(A14)

= I /(PKs ),
I =Griineisen coe%cient

=p V/(C~KT ),
g =dimensionless specific heat

(A15)

As a result, they can be expressed in terms of the three
dimensionless quantities

y =adiabatic exponent

aT/aPI, =a'H/aPas=av/asl,

=PTV/Cp =( T/P)l /y,
a'E/av'I, = —aP/avl, =l/( VK, )

=(P/V)y,
a'E/as'I, =aT/asI, =T/c,

=(T /PV)g,

a'I /av'I, = »/a—vl, = 1/(vK, )

=(P/v)(yg —r')/g,
a'F/aT'I, = as/aTI—,= c,/T—

(A26)

(A27)

(A28)

(A29)

=PV/(CqT), (A17) (Pv/T—')/g, (A30)

as follows:

PV 1

T g
PV y
T yg-r

(A18)

(A19)

a'G/aP"'I, =a v/» I,= —vK,

(v/P) g—/(y g r'), —

a'G/a T'I, = as/a TI,—= c,/T—
= —(PV/T') y /( yg —r'),

(A31)

(A32)

K,=—' g
P yg p2

=11&s=——
P y

1

T yg —r'

(A20)

(A21)

(A22)

a'a/aP' I, =a v/aP I, = —vK,
= —

( v/P)1/y,
a'H/as'I, =aT/asl, = T/c,

= ( T'/Pv)(y g —r') /y .

It is also useful to note the relations

(A33)

(A34)

All second derivatives of the thermodynamic poten-
tials may be expressed in terms of the fundamental
measurable quantities. These identities are derived by
algebraic manipulations of differential calculus formulas
relating changes of pairs of independent variables: let x,y
and z,y be pairs of independent variables; then

a log P /a log Vl s = —y,
a logP/a log vl, = —(yg —r') /g,
a logP/a logTls =y/I

a log T/a log Vl, = —r,
a log T/a log VI, =(yg —r')/r .

(A35)

(A36)

(A37)

(A38)

(A39)
B

Bz

Bx
Bz Bx

(chain rule),

B . Bx B B+ (chain rule),
By By Bx By

For example, from Eqs. (A35) and (A36) and the inequali-
ties (A46) below, it follows that isentropes intersect iso-
therms in the P- Vplane with greater negative slope.

In terms of the independent variables V and S, the
differential relations may be summarized as

Bx By Bz = —1 (cyclic rule) .

The identities are as follows:

dE = —P dV+ T dS,
VdP= —yPdV+I TdS,
(PV/T)dT= —I PdV+gTds .

(A40)

(A41)

(A42)

aT/a vl, =a'E/a vas = —aP/as I,
pT/( C~KT )= ——

( T/V)l

When P and V are chosen as independent variables
(which is possible, locally, in regions where I &0), the

(A23) ' differential relations may be written
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I dE=(y —I )P dV+ V dP,
I T dS=yP dV+ V dP,
I (PV/T)dT=(yg —I )PdV+gVdP .

(A43)

(A44)

(A45)

The differential relations for other choices of independent
variables may be obtained from those above by simple
algebraic manipulations.

Thermodynamic stability requires that the specific
internal energy E be jointly convex in V and S; i.e., the
Hessian matrix of second derivatives is non-negative.
This translates into the inequalities

g 0, y 0, yg&I

or equivalently

C, '&C, '&0,

E~ '&ET '&0 .

(A46)

(A47)

(A48)

In particular, —,'(y+g)~ ~I ~, since the arithmetic mean

bounds the geometric mean. The other thermodynamic
potentials are related to E through Legendre transforma-
tions, so they also have convexity properties. For in-
stance, G is jointly concave in P and T; in fact, G is strict-
ly concave because E is continuously differentiable. In
addition, F and H are convex (or concave) in each argu-
ment separately, but not jointly, since they are only par-
tial Legendre transformations of E. Furthermore, ther-
modynamic stability is equivalent to joint concavity of
the entropy S =S ( V,E).

A pure state is an equilibrium state that cannot be
decomposed as a convex combination of other equilibri-
um states. A pure state is therefore an extremal point on
the convex energy surface; i.e., the inequalities (A46) are
strict. A mixed state, on the other hand, may be written

matrix is identically zero in a
g =y=I =0.

Although the derivatives of G,
discontinuous across a coexistence
dG/dT~„, „=—S+ V dP/dT ~„,„ is
the Clausius-Clapeyron relation

three-phase region:

viz. , V and S, are
curve, the quantity
continuous, so that

dP bS
dT, ,„EV (A50)

After expressing the partial derivatives in these equations
in terms of dimensionless parameters and noting that
yg —I vanishes in the mixed phase, Eqs. (A51) and
(A52) may be combined to show that

ym ~2 T dS
2

(A53)

where the subscript m denotes the mixed phase, and all
other quantities are evaluated in the pure phase. Thus at
a saturation boundary the sound speed is greater. in the
pure phase than in the mixed phase. In the same fashion,

holds (with 6 denoting the jump across the phase transi-
tion). The latent heat of the phase transition is
L =AH =TAS.

A boundary of a mixed-phase region, as drawn in the
P-V plane, is called a saturated phase boundary or, sim-

ply, a saturation boundary. Since V and T are continu-
ous across a saturation boundary.

0= b, (d T/dP I „,„)
=a(aT/as ~, )ds/dp ~...+&(aT/ap ~, ), (A5»

0=A(d V /dP i „,)
=a(av/as~, )ds/dp~. ..+a(av/ap~, ) . (A52)

V =(1—a) Vo+av, , S =(1—a)so+as, ,

E =(1—a)EO+aE, ,
(A49)

0=b (dS/dP
~ „,)

=a(as/av~, )dv/dpi„, +a(as/ap~, ) (A54)
for some cz, 0&+&1, in terms of distinct equilibrium
states 0 and 1. Since the energy surface is convex, all
states on the line segment given by Eq. (A49) with arbi-
trary a, 0&a(1, lie in the manifold of equilibrium
states. In the mixed-phase region, therefore, the energy
surface has zero curvature in at least one direction, so
that the determinant of the Hessian matrix vanishes:
yg=I . All points on such a line segment (i.e., an edge
in the energy surface) correspond, under the Legendre
transformation, to the same value of P, T, and G. A
two-phase state is a mixed state that has a unique decom-
position in terms of two pure states. In a two-phase re-
gion, g and y may vanish (although not simultaneously).
A two-phase region maps to a coexistence curve in the
P-T plane, along which G has jurnp discontinuities in its
derivatives. A three-plane state has a unique decomposi-
tion in terms of three pure states. An open region in the
V-S plane, throughout which E is linear (i.e., a face in the
energy surface), lies in a three-phase region and corre-
sponds to a triple point in the P-T plane. The Hessian

may be manipulated to demonstrate that

I y &0, (A55)

where

V dP
P dV

(A56)

BT dS
BV dP

(A57)

Because mixtures of two pure states lie along an isobar,

measures the slope of the saturation boundary in the P-V
plane; the last inequality is true because the isentrope
crosses through the saturation boundary.

A dimensionless quantity that characterizes the behav-
ior of isentropes relative to the saturation boundary is the
retrogradicity r, which is defined by
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yg —r T dS
r y- PvdT ... (A58)

has the same sign as the slope of the saturation boundary,
as drawn in the S-T plane. Similarly, the identity
dS =dS IdTlt, dT+ dS IBPl TdP and Eq. (A5.5) imply
that

~P/~Tl s y /r
dP/dTl. ..„y Ir

y ym

the Clausius-Clapeyron equation may be written
dP/dTl„, „=(dSIBvl&); as a result, Eqs. (A25) and
(A26) show that

providing that r;(u) and gp are chosen such that

A, ,'(u)r;(u) =1,
A.;(up) =gp .

(87)

(88)

Indeed, Eqs. (85) and (87) say that I,;(u)&= 1; thus the in-
itial conditions, Eqs. (86) and (88), give that
A.;(u(g))=g. Therefore Eq. (84) follows from Eq. (82).
Integral curves of Eq. (85) define the rarefaction curves
of the ith family. The states u on the rarefaction curve
starting at u o comprise a rarefaction wave solution,
which may be realized in space-time by inverting the
equation x lt =A, (u). Note, however, that it is not possi-
ble to satisfy Eq. (87) at points u where

(A59)
A.';(u)r, (u) =0 . (89)

Consider a point on the saturation boundary where the
mixed phase has higher density. than the pure phase at
the same pressure (such as at the saturated vapor bound-
ary). Then geometrical considerations show that
0~ g~ y, i.e., r ~0, if and only if the isentrope through
this point crosses from the mixed phase to the pure phase
as the density increases. This is the normal situation, but
some phase transitions, such as vaporization in Auids
with high heat capacity and polymorphic transitions in
solids, cause isentropes to cross in the opposite direction,
which is called retrograde behavior.

APPENDIX B: WAVE CURVES
FOR GENERAL CONSERVATION LAWS

In this appendix we consider the properties of rarefac-
tion, shock, and composite curves for a general system of
conservation laws. In particular, we prove the Bethe-
Wendroff theorem. (For more details see, e.g. , Wendroff,
1972; Smoller, 1982; Isaacson, Marchesin, and Plohr,
1988b.)

The equations we consider are of the form

V
u= v, h(u)=

V

—,'v2+E
f (u)= P(V E)

vP( V, E)

(810)

where Vis specific volume, v is particle velocity, and E is
specific energy. Then we find

1 0 0
h'(u)= 0 1 0

0 v 1

and (811)

We refer to this locus as the inQection locus (of the ith
family); rarefaction waves cannot contain a point of
inAection. Away from the inAection locus the ith family
is said to be genuinely nonlinear.

Example. %'e consider one-dimensional gas dynamics
in Lagrangian coordinates. The quantities appearing in
Eq. (Bl) are

h (u), +f(u) =0, (81) 0 —1 0

where u belongs to a domain 2)L:I", and h and f take
values in I". This system is assumed to be strictly hyper-
bolic; i.e., there are n distinct eigenvalues A,;(u) and cor-
responding right and left eigenvectors r, ( u ) and l; ( u );
i =1, . . . , n, satisfying

f'(u)= P~ 0 PE

vPv P vP

where

P, =aP Iavl, = (y r)P/v, — —

[—A. , (u)h'(u)+ f'(u)]r, (u) =0,
I;(u)[ —

A,;(u)h'(u)+ f '(u)] =0 .

(82) and

(83) P, =aP/aEl, =r/V.

u(gp) =up, (86)

A smooth, scale-invariant solution u of Eq. (81) de-
pends on t and x only through the combination g =x It; it
therefore must satisfy

[—gh'(u)+f'(u)]up=0 . (84)

This can be achieved by solving the initial value problem
for the difFerential equations

u&=r;(u), (85)

The eigenvalues and eigenvector's for this system are

A, , = —c/V, k&=0, X3=c/V, (812)

r, =( —1,A, ,P) (813)

l, =(Py, A, ,
—vPE, PE ), (814)

with c/V=( P~+PPz)' =(yP—IV)'~ . Furthermore,
A, zr2 =0 and
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V

(815)

:(u, o.)~—cr[h (u) —h (up)]+f (u) —f(up) . (817)
The projection of this zero-set into 2) gives &(up). No-

tice that if h (u~ )&h(up) for some u, H&(up), then the
corresponding speed o., is uniquely determined; thus the
projection is one to one at such points.

Suppose that H„(u, ,o, )=0 for some u„and 0, .
0

Then the implicit function theorem guarantees that the
zero-set of H is a one-dimensional manifold in a neigh-

LCO

borhood of ( u „,cr „),provided that H„' (u „o,) has rank

n Otherwis. e, the zero-set bifurcates at (u ~, cr „). Since

dH„(u, , cr, ) = —[h (u, ) —h (up )]do.

for i =3 and 1, respectively. Thus the i =2 family is
linearly degenerate; it corresponds to contact discontinui-
ties. The other two families are genuinely nonlinear
when 9&0; they correspond to sound waves.

A scale-invariant solution u of Eq. (81) in which a
jump discontinuity occurs at velocity g=o must satisfy
the Rankine-Hugoniot conditions

—crbh (u)+b f (u) =0 (816)
across the jurnp. %e use the notation AA for the jump
63 =. 3 —Ao in a quantity 3, where A~ and A are the
limiting values on the two sides of the discontinuity.
(Later we will consider Ap to be fixed as A varies. ) The
Hugoniot locus &(up) through up comprises states u

satisfying Eq. (816) for some 0.
The Hugoniot locus &(up) can be constructed by

finding the zero-set of the function H„defined by

H„N X R~R"

neighborhood of u ~ unless conditions (1) and (2) fail.
Example. For Lagrangian gas dynamics, H„(u, o ) =0

reduces to the standard Rankine-Hugoniot conditions. If
u is a point on the Hugoniot locus through uo, then
o =A,;(u) and 1;(u)[h (u) —h (up)] =0 if and only if

V AP, AP=y =-'r
PAV ' P (820)

l;(u)[h (u) —h (up)]=0 . (821.)
Although the secondary bifurcation locus is a prominent
feature for some systems of conservation laws, it seems to
be the empty set in the case of fIuid fIows of real materi-
als.

Remark. Secondary bifurcation does occur in the ex-
ample of Sec. VII. This is one of its unphysical features.

The structure of the Hugoniot locus &(up) for u close
to up is well known (Lax, 1957): there are n branches of
solutions u, which emanate from uo in the directions
tangent to r;(u), i =1, . . . , n Away f.rom bifurcation
points, &(up) may be parametrized by a single variable,
for instance, arc length; we let an overdot denote
differentiation with respect to this parameter. Then
differentiating Eq. (816) yields

Condition (819) was identified by Wendroff (1972),
who assumed it to be true in his application to gas dy-
namics. [He assumes the sufficient conditions y ) I )0;
cf. Eq. (820).] It is violated in certain models of immisci-
ble three-phase flow (Shearer et al. , 1987), where it is
called secondary bifurcation [the name primary bifurca-
tion being reserved for the bifurcation of &(up) at the
trivial solution, u =up and cr=A, ;(up) for some i] W.e
therefore de6ne the secondary bifurcation locus to
comprise pairs of states (u, up) such that u&up,
H„(u, o. )=0 with o =A, ;(u) for some i, and

+[—o,h'(u, )+f'(u, )]du, (818)

(u, g ) has rank n if either (1) cr, does not coincide

with any eigenvalue A,;(u, ), or (2) cr, =A, , (u, ) for some i,
but

—o Ah (u)+ [—oh'(u)+ f '(u)]u =0;
similarly,

iVhh(u) ——2c'rh'(u)u+[ —oh "(u)+f"(u)] u

(822)

l, (u, )[h (u, )
—h(up)]~0 . (819)

Furthermore, Eq. (818) implies that the u component of
the tangent vector must be nonzero if h(u„)&h(up).
Therefore the Hugoniot locus &(up), which is the pro-
jection of the zero-set, is a one-dimensional manifold in a

+ [—o h '( u ) +f '( u ) ]ii =0 . (823)
Consider taking the limit as u approaches uo. Equa-

tion (822) implies that o =A, ;(up ) and u
~ „„is a multi-

0

pie of r, (up) for some i From Eq.. (823) multiplied by
l, ( up ), one finds that

l;(up)[ —A, ;(up)h "(up)+f"(up)] (u ~„=„)
u =u 0 l, (up)h'(up)ui „

This may be compared with the formula obtained by differentiating Eq. (82):
—A, ,'(u)uh'(u)r, (u)+ [—A, ;(u)h "(u)+f"(u)] ur, .(u)+ [—A,;(u)h'(u)+ f '(u)](r,.(u) ) =0, (825)

so

A, ,'(up)u ~„

l, (up)[ —
A, ;(up)h "(u„)+f"(up)] u ~„„r;(up)

I (up)h (up)r (up)'
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Consequently,

o ~„„=—,'A, ,'(u, )u ~„ (827)

For weak shock waves, therefore, cr =—,
' [k;(uo)+A. ;(u)].

Such a relation between wave and characteristic speeds
is conveniently illustrated in a wave speed diagram,
which shows the shock speed cr(u;uo) and the charac-
teristic speed A,;(u) as a function along a portion of the
Hugoniot locus (schematically depicted as the u axis).
Figure 22 indicates the situation for u near u 0.

When u&uo, Eq. (822) shows that if o =0, then
o. =A,;(u) for some i. Moreover, multiplying Eq. (822) by
l;(u) yields

—dl;(u)bh(u)+[A, ;(u) —cr]l;(u)h'(u)u =0 .

Thus if cr=A, ;(u), then o =0, provided (u, uo) is not a
point of secondary bifurcation. In either case, si is a mul-
tiple of r, (u), so that the Hugoniot locus is tangent to a
rarefaction curve. By induction, A,;(u) —o and c'r vanish
to the same order at such a point, as seen by
difFerentiating Eq. (828) multiple times. These results,

'

which generalize a theorem of Bethe (1942), were demon-
strated by Wendroff (1972). We refer to this result as the
Bethe-Wendro6' theorem. The relation between wave
and characteristic speeds is indicated in Fig. 23.

Not all solutions of the Rankine-Hugoniot conditions
correspond to physically realizable shock waves; thus a
criterion must be supplied to define admissible solutions.
For this purpose, Lax (1957) introduced a mathematical
analog of the thermodynamic entropy that supplies an
admissibility criterion for gas dynamics. A conservation
law

e (u;u o)

kf (u&

FICz. 23. Shock speed, characteristic velocity, and entropy
change along a Hugoniot. locus for states u near u~, where
o.(u +,uo) =A, ;(u + ). The ith family wave speed is assumed to be
genuinely nonlinear at u~. The shock speed and entropy also
may have a local maximum instead of the local minimum
shown.

A mathematical entropy consists of such a conservation
law, consistent with Eq. (Bl), that satisfies an additional
assumption that

U"(u) —U'(u)[h'(u)] 'h "(u) &0 (831)

as a quadratic forin. [In the common situation in which
h (u) =u, this assumption reduces to U"(u) & 0, i.e., strict
convexity of U.] Whereas the Rankine-Hugoniot condi-
tions [Eq. (816)] are satisfied across a discontinuous solu-
tion, the entropy change 6U, defined by

U(u), +F(u) =0 (829)
5U= —ob, U(u)+bF(u), (832)

is satisfied by all smooth solutions of Eq. (81) if and only
if

F'(u)=U'(u)[h'(u)] 'f'(u) .

k; (u)

-" e(uu OI

) . (uolI

need not vanish; its sign will be used to determine admis-
sibility.

Example. For Lagrangian gas dynamics one takes
U(u)= —S(V,Z) and F(u)=0, where S is the thermo-
dynamic entropy. Inequality (831) requires that S be
strictly concave in V and E, and that BS/BE

~ r

=1/T&0. The quantity —5U is the jump in S multi-
plied by the mass Aux.

DifFerentiating Eq. (832) along the Hugoniot locus
gives

(5U) = ohU(u)+[ ——o U'(u)+F'(u)]u

rarefaction S

= —crhU(u)

+ U'( u )[h '( u )] ' [—o.h '( u )+f '( u ) ]u,
so Eq. (822) shows that

(5U)'= —cr Ib, U(u) —U'(u)[h'(u)] 'bh(u)] .

Thus

(833)

(834)

FIG. 22. Shock speed, characteristic velocity, and entropy
change along a Hugoniot locus for states u near uo. The ith
family wave speed is assumed to be genuinely nonlinear at uo.

(5U)"= cr'Ib, U(u) —U'(u)[—h'(u)] bh(u)]

+cr(U'[h'] ')'(u) utah(u) . (835)

The limits of Eqs. (834) and (835) yield (5U) ~„„=0
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and (5U)"
~
„„=0. In addition, differentiating Eq.

0

(835) once more and evaluating at u =uo shows that

=cr~„ „ t U"(u) —U'(u)[h'(u)] 'h"(u)I (ui„ „ )

with (837)

Based on inequality (831), we conclude that the entropy
change 6U has cubic behavior near a genuinely nonlinear
point uo, this is illustrated in the wave speed diagram,
Fig. 22.

Furthermore, the convexity condition (831) guarantees
that the quantity in curly brackets in Eq. (834) is strictly
positive when u &u 0. Consequently, (5 U )

' =0 if and

only if o. =o, and an induction argument shows that
(5U)' and cr vanish to the same order (cf. the Bethe-
Wendroff theorem). This behavior is illustrated in Fig.
23.

Similar results may be obtained for waves that are
composites of discontinuous and smooth waves. A sim-

ple composite wave consists of a rarefaction wave bor-
dered by a jump discontinuity that propagates at charac-
teristic speed. Let the states in the rarefaction portion of
the composite wave be uo(g) for g between go and i},
where uo satisfies (uo)&=r;(uo) with A, '(uo)r;(uo)=1, as
in Eqs. (BS) and (87). Let u denote the state on the oppo-
site side of the discontinuity from uo(rl). Then )i,;(uo(i}))

is the propagation speed of the (discontinuity in the)
composite wave, and the Rankine-Hugonoit conditions
are satisfied across the discontinuity:

—cr(g)[h (u) —h(uo(i}) }]+f(u) —f(uo(il) }=0

o.(u, u+) satisfies )i,;(u )=cr(u, u+)=)t. (u+); i.e.,
the discontinuity propagates at characteristic speed with
respect to both its left and right states. Then the zero-set
bifurcates only if (u, uo(g)) is a two-sided contact and ei-
ther (u, uo(g)) is a point of secondary bifurcation or
uo(g) is a point of infiection.

Additionally, Eq. (838) implies that the u component
of the tangent vector to the zero-set must be nonzero if
h (u, )&h (uo). [We assume that the rarefaction curve on
which the composite locus is based does not cross the
infiection locus, so that o'(ii)&0.] Therefore the com-
posite locus, which is the projection of the zero-set, is a
one-dimensional manifold except at bifurcation points.

Away from points of bifurcation, the composite locus
may be parametrized by a single variable. Differentiating
Eq. (837) with respect to this variable reproduces Eq.
(822), again because uo lies along a rarefaction curve and
cr=A, ;(uo). Similarly, if 5U corresponds to the discon-
tinuity in the composite wave, then Eq. (834) holds. By
the same arguments as before, the conclusions of the
Bethe-Wendroff theorem extend to composite loci. We
summarize these arguments by stating the following.

Theorem B.I (Bethe Wendrojj-). Consider the Hugoniot
locus through a state uo or a composite locus based on a
rarefaction of the ith family Assume . that the locus does
not bifurcate at a point u. Then the following are
equivalent: (a) o =0; (b) A.J(u) =o' for some j; (c)
(5U) =0. In this instance, )i, (u) —cr, o, and (5U) all
vanish to the same order, and the locus is tangent to a
rarefaction curve of thej th family

This theorem, and its depiction using wave speed dia-
grams, are basic tools for constructing wave curves for
general systems of conservation laws (Isaacson, Mar-
chesin, and Plohr, 1988b).

Given the rarefaction curve on which the composite
wave is based, the composite is specified by u and g satis-

fying Eq. (837). We therefore define the composite locus
based on the given rarefaction curve to consist of states u

such that Eq. (837) holds for some g. The composite
locus may be obtained by finding the zero-set of the func-
tion that appears on the left-hand side of Eq. (837) and

projecting it into 2).
Notice that the differential of the left-hand side of Eq.

(837) is

—[h (u ) —h ( u o(q) ) ]cr'( g)d g

APPENDIX C; SHOCK PROFILES
AND ADMI SSIBILITY CONDITIONS

Nonuniqueness of solutions of the Riemann problem
can be resolved in some cases by requiring that shock
waves arise as limits of solutions of more complete equa-
tions. When heat conduction and viscosity are included,
physical shock waves are limits of traveling-wave
profiles. Here we recount the analysis by Weyl (1949)
and Gilbarg (1951)of shock profiles for fiuid dynamics.

The equations of motion are

c},p+V (pu) =0,
+[ cr(7J)h'—(u)+ f'(u)]du (838)

(Cl)

because [—A, , (uo)h'(uo)+f'(uo)](uo)&=0. By the im-

plicit function theorem, then, the zero-set is a one-
dimensional manifold, except when o. ( q ) =kj ( u ) for
some j and either lJ(u)[h(u) —h(uo(q))]=0 or
cr'(g) =)i,,'(uo(g))r, (uo(g) }=0. (In general, j may be

different from i; in gas dynamics, however, j must be the
same as i )To phrase th.is another way, define a two-
sided contact discontinuity to be a solution (u, u+ ) o
the Rankine-Hugoniot conditions such that the speed

c},(pu)+V (puu)+VP=V X,
B,(pb')+ V (p6u)+ V.(Pu) =V' (X.u) —V.q,
where the heat Aux is

q = —It'V'T

and the extra stress arises from viscosity:

X;, =g(V u)5; +g[c};u +i} u; ——', (V u)5J];

(C2)

(C3)

(C5)
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g, i), and a are the coefficients of bulk viscosity, shear
viscosity, and thermal conductivity, respectively, which
are assumed to be non-negative.

For one-dimensional Aows, these equations become

It is convenient to change variables from u and T to V
and T, since the equation of state is independent of u.
Straightforward manipulations of Eqs. (C6)—(C8) lead to
the equations

p, +(pu )„=0,
(pu), +(pu +P)„=(p'u„)

( —,'pu +pE), +[u( —,'pu +pE+P)]„

(Cl')

(C2')

+my' =J[P+m V],, dV
dx

(C13)

+ =J[E—
—,'m V + V(P0+m Vo)] . (C14)

K dT

=(p'uu )~+(aT ) (C3')

where p'=(+ —43') is the dynamic viscosity. In addition,
the energy equation (C3') may be replaced by the equa-
tion

KT~
(pS), + puS+ T

T.
'=" (u. )'+

- T " T
(C3")

for the entropy. The right-hand side represents the en-
tropy production; it is non-negative, in accordance with
the Clausius-Duhem inequality.

Let the state variables be denoted by Z = ( V, T, u ).
The shock profile is determined by a traveling-wave solu-
tion, which takes the form Z=Z(x crt). As x—=+ca,
the solution tends to the states on the left and right of the
shock wave; let Zo denote the left (or initial) state, and
let Z„denote the right (or final) state. Substituting
8, = crB„—into Eqs. (Cl') —(C3') and integrating from
—~ to x, we obtain the ordinary di6'erential equations
for the shock profile:

V V

dx T T (C15)

where V=(V —V, )/V„T=(T T, )/T—„and

1 2 yg —I P
m

mp' g V

m I PV
K gT

1 I P.
mp' gV

m PV
K gT

(C16)

with all matrix elements evaluated at the critical point.
Two important quantities are

+T A
1 m2 yg —I P +mPV

mp' g V K gT ' (C17)

1 PV 2 yP'"" p-gT V
(C18)

To analyze this system, it is important to characterize its
critical points. Near a critical point ( V„T,), Eqs. (C13)
and (C14) may be expanded to first order to yield

p(u —o ) = + m =const,

, du+ m J[u ]+J[P)=p'
dx

(C7)
Simple algebraic manipulations show the discriminant of
A to be positive:

+ m J[-,' u +E]+J[uP] =p'u +al du dT
(C8)

where we use the notation J[A]= A —Ao for the jump
in a quantity A. The constant m )0 will be seen to be
the mass Aux. Moreover, Eq. (C3")becomes

2 '2
d ~ dT u' du 1 dT+mS —— +K
dz T dx T dx T dx

disc A = (Tr A) —4 det A

yg —r' Pmp™ g V

4 I P )
pK g

m PV
K gT

(C19)

Therefore the eigenvalues of A are real.
In Eq. (C18), the bracketed quantity may be expressed

The final state Z, as well as the initial state Zo, is a
critical point of these equations; taking the limit as
x —+Do we obtain

2 3'P 2m — =p [(u —o) —c ] .
V

(C20)

p „(u „—o. ) = + m =po( u o cr ), —

+ mAu+hP =0,
(C10)

(C 1 1)

(C12)+ mb( —,'u 2+E)+b(uP) =0,
where b, A = A —A o. Thus Z and Zo satisfy the
Rankine-Hugoniot relations for the wave speed o., and m
is the mass Ilux. The upper (lower} choice of sign corre-
sponds to right-facing (left-facing) shock waves. Because—m is the slope of the Rayleigh line, critical points for
the ordinary di6'erential equations are intersections of the
Hugoniot locus with the Rayleigh line.

—=p (u —o) —c 1— (C21)

Because thermodynamics requires that yg ~ I
+Tr A) 0 and the eigenvalues of A are both negative

Thus det A is positive or negative according to whether
the Aow at the critical point is supersonic or subsonic rel-
ative to the wave speed o.. For subsonic How, det A &0
and the eigenvalues of A have opposite signs: a subsonic
critical point is a saddle point. Similarly, the bracketed
quantity in Eq. (C17}may be expressed as
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P=Po+m (Vo —V) (C22)

and

E =Eo+( Vo —V)[PO+ —,'m ( Vo —V)] (C23)

along CT. These curves intersect precisely at the critical
points.

The tangents to these curves may be calculated using
thermodynamic identities to express dP and dE in terms
of d Vand dT:

r

2I P 2 yg —I P
gT g V

(C24)

(positive) when the fiow is supersonic and the wave is
right-facing (left-facing). Thus a supersonic critical point
is an attractive (repulsive) node. To summarize, we have
proved the following.

Theorem C.J (Weyl, 1949). Suppose that the shock lay-
er is caused by Uiscosity and heat conduction. Then the or-
dinary differential equations for the shock profile with a
given wave speed have the following properties: (a) The
critical points are the intersections of the Hugoniot locus
with the Rayleigh line (.b) 2 subsonic critica/ point is a
saddle point (c) 2. supersonic critical point is an attractive
(repulsive) node for a shock wave that faces right (left).

Remark. In the proof given by Weyl, two assumptions
are made on the EOS: I )0 and 9') 0. The first, I )0,
is for convenience; it allows the use of P and V as in-
dependent variables, but it is not crucial. The second,
9 & 0, guarantees that Eqs. (C13) and (C14) have exactly
two critical points. We emphasize that Theorem C.1

holds for any EOS and for any number of critical points.
Of course, the EOS affects the existence and nature of
critical points.

Let us first consider the standard case 9') 0, in which
the negative slope of the Rayleigh line, m, increases
monotonically with shock strength. Then the ordinary
differential equations for the shock profile have only two
critical points. For a left-facing shock wave, the initial
shock state is a repelling node, while the final shock state
is a saddle point. Because the ordinary differential equa-
tions are autonomous, the shock profile defines a trajecto-
ry in the V-T plane. If a smooth vector field on the whole
plane has only two critical points, a repulsive node and a
saddle point, then topological considerations show that a
trajectory exists connecting the critical points. In the
present application, the domain is the subset of the plane
defined by the physical constraints V) 0 and T ~ 0; thus
more analysis is required to demonstrate the existence of
a shock profile. The existence of connecting orbits for
Eqs. (C13) and (C14) may be proved using the arguments
of Gilbarg (1951). This proof assumes that only two crit-
ical points occur but the following discussion shows how
it may be generalized to the situation where the Rayleigh
line intersects the Hugoniot locus at more points.

The principal idea is to exploit the curves C i, and C T
along which dV/dx and dT/dx vanish, respectively.
Thus C i, satisfies the Rayleigh line equation

and

PVd
gT

——1 P+Po+m (Vo —V) dV=OI

along C i, and C T, respectively. Assuming that I )0, we
see that the coefficients of dT in Eqs. (C24) and (C25) are
positive, so that C i, and C T can be parametrized by V.

Thus

dT T gT 2 yP
dV p V IP V

(C26)

and

dT T gT=I —+ [P,+m (V, —V) —P] .
dV p V IP (C27)

Observe that the argument makes no assumption about
9' and that it applies even if there are more than two crit-
ical points, as in Fig. 24. The Rayleigh line provides a
natural ordering for the critical points. Because the
curves Ci and CT are parametrized by V, they pass
through the critical points in accordance with this order-
ing; moreover, the critical points alternate between being
saddle points and nodes. Notice that dV/dx )0 above
C i and dT/dx & 0 below C T, so that it is impossible for
a trajectory leaving state 0 to connect to any other criti-
cal point with smaller specific volume and higher temper-
ature than state 0. Furthermore, the fina1 shock tempera-
ture is higher than the initial shock temperature; this is
because isentropes intersect isotherms with larger nega-
tive slopes in the P Vplane (assuming -that I )0), and be-
cause shock waves increase the entropy. Consequently,
state 0 is connected by a trajectory only to the first criti-

At a critical point, dT/d—V~c =I T/V&0; further-

mo«, dT/dV—~@ & dT/dV—~c if the critical point is

a supersonic (m &yP/V), and the opposite inequality
holds if it is subsonic.

Consider the case of a left-facing compressive shock
wave, with the subsonic state 0 ahead (on the left) of it.
Let state 1 be the first critical point with Vi ( Vp ~ We as-
sume that this state is not sonic, so that it must be super-
sonic. According to the inequalities above, C r is seen to
lie below Ci, for V, & V& Vo in both the V Tand P V--
planes. In particular, P &Po+m ( Vo —V) along CT, so

dT/dV~c —&0 between states 0 and 1; i.e., C T may be
T

parametrized by T. Furthermore, the signs of dV/dx
and dT/dx, which are determined by the sectors defined
by C v and CT, dictate that the'vector field point in the
positive T direction on C r and in the negative V direc-
tion on P~. Thus the vector field points out of the region
J7 bounded by Cr and Cr between Vo and Vi. The
analysis of Gilbarg now demonstrates that a trajectory
connecting state 0 to state 1 exists and lies in the region
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=0

V

FIG. 24. Topology of trajectories for the shock profile equa-
tions in the P-V plane when the Rayleigh line intersects the
Hugoniot locus at four points.

cal point with smaller volume.
Summarizing these results, we have the following.
Theorem C.2 (Gilbarg, 1951). Suppose that state 1 lies

on the compressive branch of the Hugoniot locus for state
0, ivith the flow supersonic at state 0 and subsonic at state
1. Assume that any other intersection of the Rayleigh line
with the compressive branch occurs at higher pressure than
state 1; also assume that I )0. Then there exists a unique
shock profile connecting state 0 to state 1. Furthermore,
state 0 is not connected to any other higher-pressure criti-
cal point.

Remarks. (1) Liu (1976) has proved a version of this
theorem that allows 9)0 to be violated: a (unique)
viscous shock profile exists if and only if the Liu-Oleinik
admissibility criterion holds (i.e., for each state on the
Hugoniot locus between the initial and final shock state,
the Rayleigh line lies entirely above the Hugoniot locus
in the P-V plane). His proof assumes that there is no heat
conduction. When both viscosity and heat conduction
are present, Gilbarg's result has been extended to this
case by Pego (1986).

(2) This result is consistent with, but more general
than, the Lax characteristic criterion (Lax, 1957). This
criterion, which requires the Aow to be supersonic ahead
and subsonic behind, excludes only one of the two inad-
rnissible final states in Fig. 24.

(3) Let us label the four critical points along the Ray-
leigh line as 0, 1, 2, and 3. The triple shock rule, Propo-
sition 5.5, implies that states 2 and 3 are connected by a
shock wave, and Theorem C.2 implies that this shock
wave has a viscous profile. Thus trajectories connect al-
ternate pairs of critical points. We emphasize that the
theorem does not require that 9)0; it requires only that
the critical points alternate along the Rayleigh line be-
tween being saddle points and nodes.

(4) Since the trajectory lies in region %, the com-
ponents of the vector field do not change sign. Therefore

Pr =p'Cr/i~ . (C28)

The extreme cases are Pr =0, when there is heat conduc-
tion but no viscosity, and Pr = ~, when there is viscosity
but no heat conduction.

When Pr =0, the shock profile lies along CV, i.e.,
along the Rayleigh line. At the initial state 0, which is
supersonic, m ) BP /8 V

~ s, whereas th—e reverse in-

equality holds at the subsonic state 1. Therefore the isen-

trope must be tangent to the Rayleigh line at some inter-
mediate point, and there is an entropy maximum in the
interior of the shock profile. However, the limit Pr ~0 is
generally. singular. In fact, dT/dV ~& may vanish at a

point where the right-hand side of Eq. (C14) does not, in

which case a continuous shock profile would not exist.

V decreases and T increases monotonically along the
shock profile. It then follows from Eq. (A45) that P in-
creases monotonically along the shock profile, and from
Eq. (C6) that u varies monotonically. We will see below
that S varies monotonically if the viscosity is large,
whereas it does not if the heat conduction is large. If, in
addition, 0) 1 and &)0 in region %, then c increases
monotonically along the profile. This, in turn, implies
that the characteristic speed u —c varies monotonically.

(5) Any point along the Hugoniot locus satisfies Eq.
(C23), provided that —m is reinterpreted as the slope of
the line connecting it to state 0 in the P-V plane. Conse-
quently, for each V between Vo and Vi, E is larger on C T
than it is on the Hugoniot locus; this is because the
Hugoniot locus lies below the Rayleigh line to state 1.
Therefore CT lies above the Hugoniot locus in the T V-
plane (independently of the sign of I ). In particular, the
proof of Theorem C.2 shows that the shock profile lies
between the Hugoniot locus and the Rayleigh line in the
P-Vplane, provided that I )0.

(6) The present analysis depends crucially on the form
of the vector field in the shock profile ordinary
difFerential equations. Here the parabolic terms result
physically from viscosity and heat conduction. Other
forms have been used in connection with van der Waals
EOS by Shearer (1983) and Slemrod (1983). The allow-
able form for the "viscosity" terms that give rise to shock
profiles has been analyzed by Pego (1984).

(7) The existence of viscous shock profiles for strictly
hyperbolic, genuinely nonlinear systems of conservation
law satisfying an entropy condition has been proved by
Mock (1980).

(8) For a shock wave to occur physically, its viscous
profile must be stable under perturbations. One-
dimensional viscous profiles for weak shock waves have
been shown to be nonlinearly stable by Liu (1986). A fur-
ther requirement for the profile is that it be stable as a
multidimensional front (cf. Sec. IV).

We conclude by discussing two special cases. Equa-
tions (C13) and (C14) show that dT/dV, and therefore
the shock profile, depends on p' and ~ only in the ratio
p'/~. A dimensionless form of this ratio is the Prandtl
number:
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(See Gilbarg, 1951; Zel'dovich and Raizer, 1966.) This
occurs, for instance, for sufficiently strong shock waves in
polytropic gases with 1&@&3. If a continuous profile
for Pr =0 fails to exist, then for small, nonzero values of
Pr we expect the profile to consist of a thin viscous profile
with a wide thermal precursor. Thus there would be two
distinct length scales: a short length scale determined by
viscosity and a long length scale determined by heat con-
duction.

In the other extreme, Pr~oo, the shock profile lies
along C T. Equation (C9) shows that the entropy in-
creases monotonically, m dS/dx ~0, so that the shock

. profile remains between the initial and final isentropes in
the P Vplan-e. In addition, the differential of Eq. (C23),
combined with various thermodynamic identities, shows
that

dP /d V—=y P /V + I [Po +I ( Vo —V) P) / V—. (C29)

If I )0, then the shock profile lies below the Rayleigh
line, so that dP/d V )—0; i.e., the pressure varies mono-
tonically along the profile. Furthermore, dP /d V

yP/V at c—ritical points: the shock profile is tangent
to the isentropes at the initial and final states.

Finally, we note that Pego (1986) has constructed an
equation of state with an unusual property. For this
EOS, isentropes are nonconvex, so that the wave curve
includes shock waves that rarefy the Quid. Pego proves
the existence of such an expansive shock wave that has a
unique profile when Pr is sufficiently large (i.e., when
viscosity dominates) but fails to have a profile when Pr is
sufficiently small (i.e., when heat conduction dominates).
However, no attempt was made, in constructing this ex-
ample, to ensure that thermodynamic stability (yg ~ I )

holds.
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