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A scheme that reduces the calculations of ground-state properties of systems of interacting particles exact-

ly to the solution of single-particle Hartree-type equations has obvious advantages. It is not surprising,

then, that the density functional formalism, which provides a way of doing this, has received much atten-

tion in the past two decades. The quality of the energy surfaces calculated using a simple local-density ap-

proximation for exchange and correlation exceeds by far the. original expectations. In this work, the au-

thors survey the formalism and some of its applications (in particular to atoms and small molecules) and

discuss the reasons for the successes and failures of the local-density approximation and some of its

modifications.
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I. 1NTRODUCTION

The description of many-particle systems has been an
important goal of physics during this century. Analytic
solutions of the Schrodinger equation are possible for a
few very simple systems, and numerically exact solutions
can be found for a small number of atoms and molecules.
However, most cases of interest, such as reaction surfaces
in chemistry or electron-electron interactions in solids,
require the use of model Hamiltonians or simplified com-
putational schemes. The recent progress in the calcula-
tion of the electronic structure of atoms, molecules, and
solids has emphasized, perhaps, how far we are from the
goal of being able to predict the physical and chemical
properties of many-particle systems with reliability and
without excessive computation. In theoretical chemistry,
for example, "tentative conclusions have been arrived at
on the basis of theories which were such a patchwork of
approximations that they appeared to have no right to
work" (Hoffmann and Woodward, 1968). The develop-
ment of schemes that provide useful information on real
systems continues, and it is the purpose of this paper to
describe one of them —the density functional (DF) for-
malism. We shall point out, in particular, the di6'erences
in perspective between this formalism and other methods
used to discuss many-particle systems.

If we wish to discuss the properties of an interacting
system, such as the electrons in a molecule or solid, it is
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690 R. O. Jones and O. Gunnarsson: Density functional formalism

natural to consider the many-electron wave function,
%(r„r2, . . . , r&), where the r, denote the particle coordi-
nates and spins. One of the earliest and most widely used
of all approximations for 4 is due to Hartree (1928), who
approximated the many-electron wave function as a
product of single-particle functions, i.e.,

+(rl r2 ' ' ' ) 01(rl) Cx(rN)

Each of the functions g;(r;) satisfies a one-electron
Schrodinger equation with a potential term arising from
the average field of the other electrons, i.e.,

(1.2)

Fermi (1928), who proposed a scheme based on the densi-

ty of electrons in the system, n(r). The Thomas-Fermi
scheme assumed that the motions of the electrons are un-

correlated and that the corresponding kinetic energy can
be described by a local approximation based on the re-
sults for free electrons, [n(r)j . The potential of the
system can be determined by solving Poisson's equation,
and the requirement of constant chemical potential leads
to the Thomas-Fermi equation for n(r) Al. though this
approach has only limited success in describing real sys-
tems, it is a prototype for later DF theories in its focus
on the density, i.e., the integrated quantity

n(r)=% Jdr2 Jdr+%*(r, r2, . . . , rz)

where the Coulomb potential 4, is given by Poisson's
equation

j= l,i&j
(1.3)

and V,„, is the potential due to the nuclei. Fermi statis-
tics can be incorporated into this picture by replacing the
product wave function by a single determinantal function
(Fock, 1930; Slater, 1930). This so-called Hartree-Fock
approximation leads to an additional, nonlocal exchange
term in the Schrodinger equation, but the single-particle
picture, with the wave function described in terms of or-
bitals with particular spins and occupation numbers, is
unchanged. The inclusion of Fermi statistics ("ex-
change" effects) improves the total energy calculation,
and the Hartree-Pock approximation remains an in-
dispensable benchmark in molecular physics ("We can
calculate everything, " Clementi, 1972), although extend-
ed systems such as solids remain a challenge.

The Hartree-Fock (or "self-consistent-field" ) calcula-
tions, and the very appealing picture that results from
them, are so familiar that it is sometimes overlooked that
the approximation behind them is not a particularly good
one. Coulson (1960) noted that "it is now perfectly clear
that a single configuration (Slater determinant) wave
function must inevitably lead to a poor energy. " The
lowest-lying configuration is generally only one of very
many with comparable energies, and a better approxima-
tion would result from taking a linear combination. Such
an approach, where effects beyond the Hartree-Pock ap-
proximation ("correlation effects" ) are included by im-

proving the many-particle wave function, is known as
"configuration interaction" (CI). It leads, in principle, to
the exact wave function from which most properties of
interest can be calculated. This is such an attractive goal
that much effort is expended in its pursuit. The explosive
increase in the number of configurations with increasing
electron number means, however, that only systems with
relatively few electrons can be calculated with high accu-
racy. Furthermore, the complexity of the resulting solu-
tions means that a simple interpretation of the results is
often dificult.

A different approach was taken by Thomas (1927) and

X% (r, rz, . . . , riv),

which may be easier to describe than the precise details
of the wave function +. The Thomas-Fermi method also
provides a well-defined model whose mathematical prop-
erties have received much attention (Lich, 1981, and
references therein).

Shortly after the original work, Dirac (1930) proposed
that exchange effects be included by incorporating a term
derived from the exchange energy density in a homogene-
ous system. The use of an approximate exchange poten-
tial in addition to the Hartree term in Eq. (1.2) was sug-
gested by Slater (1951a, 195lb) and by Gaspar (1954).
Gaspar adopted the Dirac approximation to the ex-
change energy and derived a slightly different exchange
potential by using a variational approach. He found that
solutions of the resulting equations for the Cu+ ion
reproduced the Hartree-Pock eigenfunctions and eigen-
values very well. This was an interesting demonstration
that an approximation based on results for a homogene-
ous system could give a satisfactory description even if
the density is very far from uniform. Slater used a simple
dimensional argument to show that the exchange poten-
tial in a system of variable density could be approximated
by a term with a local dependence —[n(r)]' on the
density. It is often overlooked that this dependence on
the density is a consequence of the concept of the "ex-
change" or "Fermi" hole, i.e., the region near an electron
that is avoided by electrons of the same spin, and not on
the exchange potential in a homogeneous system.

All the work mentioned above has been essential to the
development of modern density functional theory. As an
approximation to the full nonlocal exchange potential,
the simple local-density (LD) approximation has provid-
ed the basis for much of the work on the electronic struc-
ture of solids since the 1950s. The calculation of elec-
tronic band structures and quantities related to them is,
of course, one of the success stories of modern condensed
matter physics. The experience obtained in solving
Schrodinger-type equations with local effective potentials
and the improvement in numerical methods and comput-
ers during the past 30 years have been decisive in carry-
ing out density functional calculations in the last decade
ol so.

Rev. Mod. Phys. , Yol. 61, No. 3, July 1989



R. O. Jones and O. Gunnarsson: Density functional formalism 691

The demonstration that ground-state properties, par-
ticularly the total energy E of a system of interacting par-
ticles, could be related in a rigorous fashion to the densi-
ty distribution was given by Hohenberg and Kohn (1964);
the proof they gave has been simplified and extended by
Levy (1979). The formalism is, in principle, exact, and
the Thomas-Fermi equation may be derived from it as an
approximation. Its application to the total energy of the
interacting system results in a minimum principle, and
the determination of the energy of the ground state can
be found by the solution of single-particle equations
(Kohn and Sham, 1965). In practice, total energy calcu-
lations i equire approximations to be made for the
exchange-correlation energy E„,. Kohn and Sham
showed that the LD approximation

E„", = Jdr n(r)e„,[n(r)], (1.4)
FIG. 1; Spherically averaged density n(r) in ground state of
carbon atom as a function of distance r from nucleus.

could be applied to the limiting case of a slowly varying
density. Here e„,[n] is the exchange and correlation en-

ergy per particle of a homogeneous electron gas with
density n. The exchange contribution c.„has the same
form as that of Gaspar, and a variety of approximations
exists for the correlation term c, .

The limiting cases noted above are not realized in
atoms, molecules, or solids, and Kohn and Sham (1965)
commented that "we do not expect an accurate descrip-
tion of chemical bonding" with the LD approximation.
It is perhaps not surprising then that a decade passed be-
fore the first attempts were made to test its ability to de-
scribe the bonds between atoms. It is remarkable that
these attempts showed that the LD approximation could
reproduce many measurable quantities satisfactorily. In
particular, ground-state geometries, vibration and pho-
non frequencies, and moments of the density are general-
ly reproduced very well. In the space of the last 15 years,
the density functional formalism has become the basis of
most of the parameter-free calculations in extended sys-
tems and has found growing application to molecules and
clusters. Almost all of the calculations performed to date
have used the local-density approximation, Eq. (1.4), or
approximations related to it.

The practical necessity of approximating E„, leads to
an essential difference in perspective between the density
functional and the CI approaches. While the CI method
seeks an exact numerical solution of the Schrodinger
equation, which would yield exact answers for most
quantities of interest, even an exact solution of the densi-
ty functional equations can only reAect the accuracy of
the approximation for E„. We shall therefore pay par-
ticular attention to such approximations and to the possi-
bilities available for improving them. The central role
played by the electron density in this theory means that it
is important to have a clear picture of its nature. We
show in Fig. 1 the spherically averaged density in the
ground state of the carbon atom. The density falls mono-
tonically from the nucleus and does not show the radial
oscillations often expected. The charge density in small
molecules also tends to be relatively featureless, with

maxima at the nuclei, saddle points along the bonds, and
a generally monotonic decay away from both. Further-
more, the electron density in a molecule or solid shows
relatively small departures from the overlapped densities
of its atomic constituents. Energy differences, such as
binding, ionization, and cohesive energies, which form.
the main focus of this paper, result from subtle changes
in relatively featureless density distributions. It is clear
that it will not be easy to find a simple prescription for
determining such energy differences.

In view of the many applications of density functional
calculations, it is not surprising that there have been
many review articles (see, for example, Rajagopal, 1980;
Bamzai and Deb, 1981;Parr, 1983; Callaway and March,
1984; von Barth, 1984a, 1984b) and books (Lundqvist and
March, 1983; Dahl and Avery, 1984; Phariseau and Tem-
merman, 1984; Dreizler and da Providencia, 1985; Er-
dahl and Smith, 1987; March and Deb, 1987) devoted to
it. There have also been reviews of closely related fields,
such as strongly coupled plasmas (Ichimaru, 1982).
These represent a range of viewpoints and emphases, and
it is clear that an exhaustive survey of all aspects of den-
sity functional theory would be beyond the scope of a sin-
gle article. It may well be asked what purpose could be
served by adding to the present list of reviews. However,
density functional theory and some of its applications
have formed the basis of much of our own work for more
than a decade. Our views on the subject have evolved
along with the field, and we believe that it is useful and
interesting to discuss our experience and the viewpoint
that has resulted. Our focus is on problems that have in-
terested us most —particularly the local-density approxi-
mation and its modifications, and their applications to
atoms, molecules, and model solids —without, implying
in the least that these are the only (or necessarily the
most important) areas of interest. In spite of our own in-
terests in surfaces and chemisorption, for example, we
have said little about them. The past 10—15 years have
resulted in density functional calculations for a range of
systems and with a reliability anticipated by none. It has

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989



R. O. Jones and O. Gunnarsson: Density functional formalism

been an interesting and surprising story, and we hope to
give a feeling for both in this work. In a personal survey
of the field, it is natural that our list of references will be
selective and far from complete. The above reviews dis-
cuss other topics in more detail.

In Sec. II we outline the basic ideas of density func-
tional theory and discuss the Thomas-Fermi approxima-
ti.on as an example. In Sec. III we derive the single-
particle equations of Kohn and Sham (1965} and show
how the relationship between systems with and without
electron-electron interactions leads to an exact equation
for E„.This is useful in discussing the requirements that
must be satisfied by the approximations necessary in
practical calculations. In Sec. IV we survey the results
obtained using the local spin-density (LSD) approxima-
tions for a range of inhomogeneous systems —atoms,
molecules, and solids. The number of published applica-
tions has become so great that we focus on systems that
we believe illustrate points of particular importance. In
Sec. V we discuss the origins of the errors apparent in
LSD calculations and the results obtained using some
modifications of this approximation. The important and
still controversial question of the applicability of density
functional theory to excited states is considered in Sec.
VI, and the final section, Sec. VII, presents our percep-
tion.of the current situation and the future prospects of
DF calculations in diFerent areas.

II. THE DENSITY AS BASIC VARIABLE

In this section we show that ground-state (GS) proper-
ties of a system can be expressed as functionals of the GS
electron density; i.e., they are determined by a knowledge
of the density alone. The total energy E can be expressed
in terms of such a functional, and we show that E[n]
satisfies a variational principle. The Thomas-Fermi (TF)
model is a special case of this formalism and is derived as
an example. In view of the extensive study of the TF
scheme and its well-known deficiencies, we discuss im-
provements and illustrate the accuracy that can be ob-
tained for atoms, molecules, and simple metals.

A. The density functional formalism

representable" densities n(r), ' i.e., those which can be
obtained from some antisymmetric wave function,
P(r„r2, . . . , r&), Levy defined the functional

F[n]= min (gl T+ V„IQ&,
g~n

(2.2)

where the minimum is taken over all g that give the den-
sity n F[n] is universal in the sense that it refers neither
to a specific system nor to the external potential V,„,(r).
If we denote Eos, /os, and nos(r) to be the ground-state
energy, wave function, and density, respectively, then the
two basic theorems of DF theory are

E[n]=—fdr V,„,(r)n(r)+F[n])Eos (2.3)

for all N-representable n (r), and

f dr V,„,(r)nos(r)+F[nos]=Eos . (2.4)

To prove the variational principle (2.3) we introduce
the notation P";„(r) for a wave function that minimizes
(2.2), so that

Writing V=+; V,„,(r, ), we have

fdr V,„,(r)n(r)+F [n]= & g";„IV+ T+ V

(2.5)

I
V+T+ V„ll(

((q",„'IV+T+V„Iq",„'& . (2.7)

We subtract the interaction with the external potential
and obtain

(2.8)

.On the other hand, the definition of g;„' yields the re-
verse relation between the two sides of (2.8). This is pos-
sible only if

(2.9)

(2.6)

according to the minimum property of the GS. This
proves the inequality (2.3). Using the minimum property
once more we find

The basic theorems of the density functional formalism
were derived by Hohenberg and Kohn (1964). By extend-
ing an argument for independent fermions (Percus, 1978),
Levy (1979) provided a simpler and more general deriva-
tion, which we follow here. %'e consider N electrons
moving in an external potential V,„,(r), i.e., the Hamil-
tonian is

Then we have

Eos= f«V...(r}~os(r)+(yGslT+V„i&os&

ext n GS + min ++ ~ee min

= fdr V,„,(r)nas(r)+F [~os] (2.10)

H = T + V„+ g V„,(r, ), (2.1}

where T and V„are the kinetic and electron-electron
interaction operators, respectively. For all

'Hohenberg and Kohn (1964) worked instead in the space of
V-representable densities, i.e., those that can be realized for
some external potential V„,(r). This space is a subspace of N-

representable densities.
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This completes the proof of the basic theorems. An
important result also follows from Eq. (2.9). If the

Pl Gsground state is nondegenerate, g;„=/os. If the ground

state is degenerate, g;„' is equal to one of the GS wave
functions, and the others can also be obtained. The GS
charge density then determines the GS wave function(s),
from which all GS properties can be calculated. These
properties are therefore functionals of the density. This
theorem is the formal justification for working with the
density instead of the wave function.

These theorems provide a general method for calculat-
ing GS properties. If an approximation can be found for
F[n], we need to minimize E [n] in (2.3) for the potential
V,„,(r) of interest. This leads to corresponding approxi-
mations for Eos and nos(r) If.we also have an approxi-
mation to the functional X[n] describing some ground-
state property X, the same procedure leads to approxima-
tions for X.

B. The Thomas-Fermi approximation

1. The Thomas-Fermi equations

In this approximation, the electrons are treated as in-
dependent particles, and the electron-electron interaction
energy arises solely from the electrostatic energy

e f d f, n (r)n(r')
(2.1 1)

Furthermore, we assume that the kinetic energy is given

by

T[n]= fdrt[n(r)], (2.12)

1 A' k
t [n]=2 dk

(2~) Ikl ~ kF 2m
(2.13)

where t [n] is the kinetic energy density for a system of
noninteracting electrons with density n. This should be a
good approximation if n (r) varies sufficiently slowly in
space that an electron at point r sees an essentially homo-
geneous medium with density n (r). We have

has a minimum. The corresponding Euler equation is the
well-known Thomas-Fermi equation

', Ck—n(r) +e fdr', + V,„,(r)+A=0 ., n (r')
(2.17)

2. Modifications and improvements

We now consider improvements to the TF method. In
Eqs. (2.11) and (2.12) we introduced two approximations;
we consider them in turn. The kinetic energy was ob-
tained by assuming that the density has slow spatial vari-
ations. This may be improved (Hohenberg and Kohn,
1964) by considering a system with the density

The Thomas-Fermi method has been used frequently
in the past. The early work has been reviewed by
Gombas (1949) and by March (1957), with a review of ap-
plications to atoms and molecules by March (1981). The
TF method has been found to give a rough description of,
for example, the charge density and the electrostatic po-
tential. A number of theorems have been proved by Lieb
and co-workers (Lieb and Simon, 1973; Lieb, 1976, 1981;
Lieb and Thirring, 1976). In particular, it was shown
that the Thomas-Fermi scheme is exact in the limit of
infinite nuclear charge.

There are, however, severe deficiencies in the model.
The charge density is infinite at the nucleus, and it does
not decay exponentially far from the nucleus of an atom,
but as r . It has also been shown by Teller (1962),
Balazs (1967), and Lieb and Simon (1973) that TF theory
does not result in atoms binding to form molecules or
solids. Another serious defect is the lack of shell struc-
ture in the TF atom, which means that the observed
periodic variation of many properties with changing
atomic number cannot be reproduced. In fact, the atoms
shrink with increasing atomic number Z (as Z '~; Lieb
and Simon, 1973). Work has then focused on properties
that are relatively insensitive to these deficiencies (for ex-
ample, Alonso and Girifalco, 1977b; Jacob et al. , 1978;
Gross and Dreizler, 1979) or to modifications of the
method (e.g., Nordholm, 1987).

where 2(4~/3)kF/(2m ) =n This gives.

To[n) =Ck f d r[n (r)] ~ (2.14)

n (r) =no+An(r),

fdrhn(r)=0.

(2.18)

(2.19)

where Ck =3' (3m ) /10m.
We now minimize the functional E [n] under the subsi-

diary condition that the number of electrons is kept con-
stant:

To second order in ~bn(r)~/no, the kinetic energy can be
written

T [n]= T„+—,
' f dr f dr'K( ~r —r'~ )bn(r)An(r'),

drn(r)=N . (2.15) (2.20)

Using the method of Lagrange multipliers, we require
that

E [n]+AN = T [n]+E„[n]+fdr n (r)[ V,„,(r)+ A, ]

(2.16)

where T„=Ck Jdr[no] . Because of Eq. (2.19), there is

no first-order correction to (2.20); since we expand
around the result for a homogeneous system, we can as-
suine that K(r, r') depends only on the distance ~r —r'~.
The total energy of a system of noninteracting fermions
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in the presence of a weak external field V,„,(r) is then

E[n]=T„+,fdqK(q)~n(q)~'
1

2(2~)+,f dq V,„,(q)n(q),
1

(2m. )' (2.21)

where we have introduced the Fourier transform
n(q)= Jdrexp( —iq r)bn(r). Minimizing the energy
we find

n (q) = —V,„,(q)K(q) (2.22)

Thus we can identify —K(q) ' with the response func-
tion for noninteracting electrons,

mkF—K( ) '= — 1+ ~ln
2~2/2

(2.23)

where g=q/2kF and kF is the Fermi wave vector of a
system with density n. Since it may be difFicult to define
no in a real system we rewrite (2.20) as

T[n]=C„fdr[n(r)] ~'
0.0 0.5

q/2 k

,i' X=1

,' fd—rf—dRK[r,n(R)] n R+—

2

FIG. 2. Function K{q) as a function of q/2kF {solid curve).
The expansion {2.25) is also shown for A, = 9 and 1 {dashed
curves).

(2.24)

K (q) =K(0) y+ 3A,
2kF

(2.25)

Using this approximation we can extract a gradient
correction from the second term of (2.24):

T[n]=Ck fdr[ n(r)] ~ + fdr (2.26)

i.e., Eq. (2.25) leads to a second-order gradient correction
for T[n]. If we view (2.25) as a power expansion of K (q)
around q =0, we find X=—,

' and @=1. This result was

obtained by Kompaneets and Pavlovskii (1957) and it is
valid for spatially slow variations. On the other hand, we
can expand K(q) in the limit of large q (Jones and
Young, 1971), giving A, =1 and y= ——', . This result was
obtained by von Weizsacker (1935); it should be valid for
rapid but weak density variations. These two expansions
of K(q) are shown in Fig. 2, and it is clear why empirical

which is identical to (2.20) to second order in
~b. (nr)~/n o Altho. ugh Eq. (2.20) has been derived for
weak density variations, it should also be valid for strong
variations, provided the variations over the range of K
are small.

In Fig. 2 we show a plot of K(q). The rapid increase
for large q illustrates the large kinetic energy associated
with rapid density variations. Following Jones and
Young (1971)we approximate K(q) as

2

determinations of A, usually have values between —,
' and

unity.
K(q) has a logarithmic singularity at q =2k~, and one

should not expect an expansion in powers of q to con-
verge. It should be considered instead as an asymptotic
expansion that is valid in the limit of slow density varia-
tions. The gradient corrections generated in this way are
of second order in the density, and corrections of higher
order can be obtained using a method of Kirzhnits (1957;
see also Hodges, 1973). Tal and Bader (1978) have shown
that such corrections diverge for atoms. The inclusion of
the second-order gradient corrections removes several of
the defects mentioned above. For example, the charge
density is finite at a nucleus and decays exponentially far
from an atom. While this modification leads to binding
in N2 (Yonei, 1971), it fails to predict a maximum in the
binding energy of first-row dimers (Yonei, 1981). As an
example of the accuracy that can result, we show in
Table I the results of Wang et al. (1976), who calculated
the two lowest-order gradient corrections for atomic
(Hartree-Fock, hereafter referred to as HF) charge densi-
ties and compared the kinetic energies with HF values.
The inclusion of the lowest-order correction improves the
accuracy by an order of magnitude. The TF kinetic ener-

gy is smaller than the HF result in all cases considered.
In fact, Lieb and Thirring (1976) proved that the correct
kinetic energy is cTTF, where TT„ is the Thomas-
Fermi kinetic energy and c =0.277 (Lieb, 1976). Lieb
has conjectured that this inequality is valid for c = 1, im-

plying that the lowest-order gradient correction always
has the correct sign. However, the next correction, T4,
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TABLE I. Kinetic energy of noble-gas atoms. THF and Tp are the Hartree-Fock and Thomas-Fermi
results, and T2 and T4 the lowest-order gradient corrections. Tp, T2, and T4 are evaluated for the
Hartree-Fock (HF) density, the gradient terms using Eq. (2.26) with k= 9. The numbers in parentheses

are the percentage deviations from the HF results (after Wang, et al. , 1976).

Atom THF Tp Tp+ T2 Tp+ Tp+ T4

He

Ar

2.8617

128.SS

526.79

2752. 1

2.560S
{—10.S)
117.78
(—8.4)
490.62
( —6.9)
2594.2
{—5.7)

2.8785
(0.59)
127.79
( —0.54)
524.89
(—0.36)
2736.1

( —0.58)

2.9631
(3.54)
129.72
(0.96)
531.10
(0.82)
0.82
(0.29)

sometimes improves and sometimes worsens the agree-
ment. We note that Wang et al. (1976) used A, =—,

' in Eq.
(2.26), and that the use of A, = 1 would have led to large
errors in Table I.

The gradient expansion has been tested by Ma and
Sahni (1977) for a simple model of a metal surface, where
the density gradient can be varied continuously. The po-
tential is given by

kF3

V(z) = ze(z) .
2yF

(2.27)

e(z) is the step function, so that the potential is constant
inside the surface, while outside the surface it varies
linearly with the distance z from the surface. For large

yF the density gradients are very small; for yF =0 the so-
called infinite barrier model is obtained. For this model,
Ma and. Sahni calculated the change in the kinetic energy
when an infinite metal is cleaved into two semi-in6nite
systems. Their results are shown in Fig. 3. For small
density gradients (yF ~ 2), the diff'erence between the ex-
act and the TF values is not large, and the TF value is
improved systematically when the T2 and T4 corrections
are added. For small values of yF the errors are larger;
for yF close to zero the fourth-order correction was
found to be much too large, as was observed for several
atoms.

A diC'erent approach has been taken by Alonso and
Girifalco (1978), who expressed the kinetic energy of
noninteracting electrons in terms of the joint density ma-
trix and, for closed systems, derived an exact equation
containing the pair correlation function g(r, r'). If the
local approximation for g (r, r') is now introduced, the re-
sult of von Weizsacker (1935) is recovered. Alonso and
Girifalco proposed, however, a nonlocal approximation
for g(r, r') similar to the one used for the exchange-
correlation energy (Alonso and Girifalco, 1977a; Gun-
narsson et al. , 1977) and discussed in Sec. V. They
showed that this approach improves the TF result for Ne
substantially.

We have discussed so far how the treatment of the ki-
netic energy can be improved. The second major as-
sumption of the TF theory is that the electrons are in-

dependent. As noted above, Dirac (1930) proposed the
inclusion of an exchange term in the energy of the form

E„=Jdrn(r) E„[n(r)] . (2.28)

Here e„[n] is the exchange energy per electron of a
homogeneous electron gas with density n. This approxi-
mation is equivalent to the approximation (2.12) for the
kinetic energy. Correlation e8ects can be included easily
in the same way, so that one arrives at formula (1.4). The
accuracy of this formula is, of course, one of the main

OS 1
0

SLOPE PARAMETER y
F

FIG. 3. Surface kinetic energy for the model potential (2.27) as
a function of the slope parameter yF. The exact result

f El, (EXACT)] is compared with the Thomas-Fermi result
(Ek");with the lowest gradient expansion result (EI',"+Ek ') for
both A, = 9 and 1; and with the second-order gradient expansion

result (Ek"+Ek '+Ek ') {Ma and Sahni, 1977).
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subjects of this paper. Here we note only that the use of
the LD approximations (2.28) or (1.4) with the TF ap-
proximation leads to a discontinuous drop to zero of the
charge density in the outer regions of an atom. This
anomaly disappears if the gradient correction (2.26) is
used.

Several modifications have been proposed to correct
for the absence of shell structure in the TF model.
Perhaps one of the best known is that used. by Gordon
and Kim (1972; see also Nikulin, 1971;Kim and Gordon,
1974; Clugston, 1978). In this model, the interaction en-

ergy between two closed-shell atoms or molecules is es-
timated by overlapping the HF densities of the free atoms
(or molecules) and calculating the energy using the TF
approximations (2.11) and (2.12) for the electrostatic and
kinetic energy terms and Eq. (1.4) for the exchange-
correlation energy. The energies of' the constituents are
estimated in the same way. In Table II we show that the
results obtained for the rare-gas atoms are in remarkably
good agreement with experiment.

Chelikowsky (1980) has introduced a pseudopotential
method to treat cohesion in simple metals. In addition to
the energy terms (2.11), (2.12), and (2.28), he also includ-
ed the gradient correction (2.26) for the kinetic energy.
Chelikowsky constructed a pseudopotential that, when
used with the above functional, reproduces the charge
density of a free atom outside the core region. Since the
pseudopotential was adjusted to a quantum-mechanical
atomic calculation, it contains implicitly some of the
shell structure. Finally, the parameter A, in Eq. (2.26) was
adjusted to yield the proper quantum-mechanical kinetic
energy for the free atom. If the pseudopotential and the
functional form are unchanged in the metal, it is straight-
forward to calculate properties such as the cohesive ener-

gy, lattice constant, and bulk moduli. In Table III we
compare the results found using this method with experi-
ment and with results of detailed calculations (see Sec.
IV). Although some of the trends are not reproduced
well, the overall agreement is good. It would be interest-
ing to see how well the method describes systems con-
taining atoms toward the ends of rows of the Periodic
Table. A similar approach based on an Ashcroft pseudo-
potential and a gradient expansion with X=1 has been
applied to simple metals (Lopez et al. , 1980; Lopez and
Alonso, 1981) and to simple and alkaline earth metal al-
loys (Iniguez and Alonso, 1981; Gonzalez and Alonso,
1982).

Ez —g a„e„—f dr nf(r)[ —,'q&f(r)+ V„f(r)]
n

+E„,[nf ]+E~, (2.29)

where nf is the sum of the densities of the fragments, yf
n

and V„, are the corresponding Coulomb and exchange-
correlation potentials, and E& is the internuclear repul-
sion. The Z„are eigenvalues of the potential

Various modifications of the TF method have also been
applied to the cohesion of some transition and noble met-
als (Alonso and Santos, 1977), to chemisorption and va-
cancy formation (Gollisch and Fritsche, 1979), and to
charge transfer in alloy formation (Alonso and Girifalco,
1977b). Although these modifications have been quite
successful in particular applications, further systematic
study is required. We note that the interaction between
two open-shell atoms in X2 (Yonei, 1971) required the
use of a self-consistent charge density and the gradient
correction for the kinetic energy. On the other hand,
Shih (1979) arrived at the opposite conclusion for the
Kim-Gordon description of the interaction between
rare-gas atoms. He found substantia11y worse agreement
with experiment if one used either a gradient correction
or the HF densities of the molecules, not of the over-
lapped constituents. Some aspects of the gradient expan-
sion have been discussed recently by Pearson and Gor-
don (1985) and by Perdew et al. (1988).

If we reduce the internuclear separation in systems
with fixed atomic orbitals, we find striking differences be-
tween closed-shell and open-shell systems. The kinetic
energy increases in the former, while the formation of
bonding molecular orbitals in the latter tends to lower
the kinetic energy. Thomas-Fermi theory leads to a ki-
netic energy increase when the internuclear separation is
reduced, while the gradient term tends to lower the kinet-
ic energy because of the reduced density variations in the
bonding region. These arguments suggest that it will be
diScult to find a modification of the TF method that de-
scribes bonding for different classes of systems.

The connection between the Kim-Gordon approach
and the density functional scheme has been studied by
Harris (1985). For weakly interacting fragments, i.e., for
systems where the density is close to the overlapped den-
sity of the constituents, it is possible to derive a simple
expression for the binding energy for a given geometry,

TABLE II. Binding energy e and equilibrium internuclear separation r for rare-gas dimers according
to Gordon and Kim (1972) and experiment.

e (X10 " ergs}

Molecule

Ar—Ar
Ne—Ne
Kr—Kr
He—He

Calc.

3.63
2.99
3.89
2.49

Expt.

3.70
3.03
3.95
2.96

Calc.

175
56
248
62.5

Expt.

195
63
273
16.5
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TABLE III. Cohesive energy of simple metals according to
Chelikowsky (1980), C; density functional calculations (Moruzzi
et ah. , 1978), MJW; Vosko and Wilk (1980), VW; and experi-
ment (6schneidner, 1964).

Metal

Li
Na
K
Rb
Cs
Be
Mg
Ca
Sr
Al

1.41
1.22
1.07
0.99
0.94

1.88
1.72

2.98

MJW

1.65
1.12
0.90
0.64

3.97
1.69
2.24
1.89
3.84

VW

1.74
1.21
0.96
0.76

Expt.

1.66
1.26
0.94
0.88
0.83
3.33
1.53
1.83
1.70
3.34

V(r) =y&(r)+ V„~(r)+ V,„,(r), (2.30)

where V,„, is the external potential. Aside from small
differences arising from differences in the description of
exchange and correlation, the expression derived by
Harris for the change in the energy has the same form as
that of Kim and Gordon. The important difference is
that the change in kinetic energy (for the case of bonding
between two atoms A and B with potentials V„and V~)
is

5T, =2 g 5e„—f dr n{r,)[V(r) —V~(r, )]
n

—f d r n (r2) [V(r) —V~ (rz) ], (2.31)

instead of the corresponding Thomas-Fermi equation.
In the case of He2, Harris found that the change in ki-

netic energy was remarkably similar using both these ap-
proaches, a result that warrants further study, since the
form of Eq. (2.31) does not suggest such a similarity.
Harris also applied his approach to Be2, C2, N2, F2, and
Cu2. The results are in satisfactory agreement with self-
consistent DF calculations, showing that the scheme pro-
vides a useful alternative for cases in which more detailed
calculations would be prohibitive.

A different viewpoint on the deficiencies of the TF
description of chemical bonding has been offered by
Nordholm (1987). The kinetic energy functional (2.13)
assumes that the electron density is able to fill all avail-
able phase space up to some energy EF with equal occu-
pancy of up and down spins, irrespective of whether
these parts of phase space are dynamically connected or
even accessible. Clear counterexamples are the hydrogen
atom, where there is only one type of spin, or widely
separated atoms, where the phase spaces for the atoms
should not be connected. It has long been known (see,
for example, Kauzmann, 1957) that such phase-space ar-
guments have an important effect in determining the sta-
bility of molecules. When two atoms are brought togeth-
er, the phase space for the electrons will initially increase
and the kinetic energy will decrease. Such "nonergodic"
effects are absent in standard TF theory. Nordholm has

provided a prescription for incorporating them into the
TF picture, and the initial results for small atoms are en-
couraging.

The problems with Thomas-Fermi-type approxima-
tions have led Herring (1986) to adopt a different starting
point in his search for procedures for calculating the
minimum kinetic energy consistent with a given particle
density. He proposed separating the kinetic energy into a
von Weizsacker term [A, = 1 in Eq. (2.26), but without the
Thomas-Fermi term] plus an appropriate correction
term. Herring (1986) gave an explicit equation for this
correction term in one dimension, and the approach gives
promising results (Herring, 1986; Herring and Chopra,
1988). It has not yet been extended to more than one di-
mension.

Finally, we note that the TF method cannot describe
magnetic systems, since it never predicts ferromagnetism
(Gunnarsson and Hjelmberg, 1975). Let us assume that
the TF energy minimization results in a finite-spin polar-
ization:

n+(r) —n (r)
g(r) =

n+ (r)+n (r)
(2.32)

where n+ (n ) is the spin-up (-down) density. If we then
tried a different solution with g(r) identically zero, but
with the total density unchanged, this would change only
the kinetic energy (2.14) and the exchange energy (1.4).
Electron gas calculations (see, for example, von Barth
and Hedin, 1972; Gunnarsson and Lundqvist, 1976)
show, however, tQat such a change would lower the total
energy, at least for systems with metallic densities. For
these systems, therefore, it is not possible to find a TF
solution with n+(r)An (r). This conclusion is not
affected by the lowest-order gradient correction.

III. DERIVATION OF SINGLE-PARTICLE EQUATIONS

A. Exact single-particle description
of a many-particle system

Z [n]=To[n]+ f dr n (r)[V,„,(r)+ —,'+(r)]

+E„,[n]; (3.1)

To is the kinetic energy that a system with density n

would have if there were no electron-electron interac-
tions, N is the classical Coulomb potential for electrons,
and E„, may be viewed as a definition of the exchange-
correlation energy. Although To is different from the

Practical applications of the formalism in the previous
section usually rely on approximations related to the
Thomas-Fermi approach; many of the drawbacks of this
method can be traced to the approximate treatment of
the kinetic energy. The task of finding good approxima-
tions to the energy functional is greatly simplified by us-
ing a different separation introduced by Kohn and Sham
(1965),

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989



698 R. O. Jones and O. Gunnarsson: Density functional formalism

true kinetic energy T, it is of comparable magnitude and
is treated exactly in this approach. The exact treatment
of To removes many of the deficiencies of the Thomas-
Fermi approximation, such as the lack of a shell struc-
ture of atoms or the absence of chemical bonding in mol-
ecules and solids. In Eq. (3.1) all the terms but the
exchange-correlation energy E„, can be evaluated exact-
ly, so that the (unavoidable) approximations for E„, play
a central role in the following discussion.

The variational principle applied to (3.1) yields

')500—

~ 1000—

500—

O,V

VV

(3.2)

where p is the Lagrange multiplier associated with the
requirement of constant particle number. If we compare
this with the corresponding equation for a system with an
effective potential V(r) but without electron-electron in-
teractions,

+ V(r) =p,
5n(r) 5n(r)

(3.3)

we see that the mathematical problems are identical, pro-
vided that

5E„,[n]
V(r) = V,„,+@(r)+

5n r
(3.4)

[——,'V~+ V(r)]f;(r)=e, 1t, (r), (3.5)

yielding

The solution of (3.4) can be found simply by solving the
Schrodinger equation for noninteracting particles,

X

I

FIG. 4. Relative magnitudes of contributions to total valence
energy of Mn atom (in eV).

the effective potential V(r) is local. With a local approx-
imation to E„„the equations present no more numerical
complications than the solution of Hartree's equations.
To illustrate the advantage of Kohn-Sham separation of
the energy, we show in Fig. 4 the contributions of the
valence electrons to the total energy of the manganese
atom. The valence kinetic energy To „, the electrostatic
interaction between core and valence electrons E,„, and
the electrostatic interaction between valence electrons
E„are all treated exactly. Only the exchange energy E„
and the even smaller correlation contribution require ap-
proximation. This is in marked contrast to the Thomas-
Fermi and related methods, where the large kinetic ener-

gy term is approximated.

n(r)= g ~g, (r)( (3.6)

B. Exchange-correlation energy E„,
It is necessary to satisfy the condition (3.4), and this can
be achieved in a self-consistent procedure.

The solution of this system of equations leads then to
the energy and density of the lowest state and to all quan-
tities derivable from them. The formalism has also been
generalized to the lowest state with a given set of quan-
tum numbers (Gunnarsson and Lundqvist, 1976). In-
stead of seeking these quantities by determining the wave
function of the system of interacting electrons, the densi-
ty functional method reduces the problem exactly to the
solution of a single-particle equation of Hartree form. In
contrast to the Hartree-Fock potential,

VH, y(r) =f «'VHF(r, r')y('), (3.7)

In this case E„, depends on the values of the quantum num-

bers. In varying the density we must remain inside the space of
densities corresponding to the given quantum numbers. Ap-
proximate methods for minimizing the energy functional inside

this space mere discussed by Cxunnarsson and t.undqvist (1976).
Unfortunately, these authors were misquoted by Kohn and
Vashishta (1983)on this point. Hq= —

—,'V + V,„,(r)+ Vq+kV„ (3.8)

The numerical advantages of the approach described
are obvious. EScient methods exist for solving single-
particle Schrodinger equations with a local efFective po-
tential, and there is no restriction to small systems. We
have noted, however, that the exchange-correlation ener-

gy E„, is defined as the difFerence between the exact ener-

gy and other contributions that may be evaluated numer-
ically exactly. In practice, it is necessary to make ap-
proximations for this term. To provide a perspective on
such approximations, we now examine E„, in detail.

The crucial simplification in the density functional
scheme is the relationship between the interacting sys-
tem, whose energy and density we seek, and the fictitious,
noninteracting system for which we solve Eqs. (3.5) and
(3.6). This can be studied by considering the interaction
A, /~r —r'~ and varying 1, from 0 (noninteracting system)
to 1 (physical system). This is done in the presence of an
external potential Vz (Harris and Jones, 1974), such that
the ground state of the Hamiltonian
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has density n (r) for all A, . The exchange-correlation en-

ergy of the interacting system can then be expressed ex-
actly in terms of an integral over the coupling constant A,

(Langreth and Perdew, 1975; Gunnarsson and Lundqvist,
1976; Harris, 1984a),

with

E„,= ,' f—drn(r) fdr'T,
~

n„,(r, r' —r),1

r —r'

n„,(r, r' —r)=—n(r') f dA[g(r, r', A. )—1] .

(3.9)

(3.10)

The function g(r, r', A, ) is the pair correlation function of
the system with density n (r) and Coulomb interaction
A, V„. The exchange-correlation hole n„, describes the
effect of the interelectronic repulsions, i.e., the fact that
an electron present at point r reduces the probability of
finding one at r'. The exchange-correlation energy may
then be viewed as the energy resulting from the interac-
tion between an electron and its exchange-correlation
hole.

Three observations should be made here. First, since
g(r, r') tends to unity as ~r —r'~~~, the above separa-
tion into electrostatic and exchange-correlation energies
can be viewed as an approximate separation of the conse-
quences of long- and short-range effects, respectively, of
the Coulomb interaction. We may then expect that the
total interaction energy will be less sensitive to changes
in the density, since the long-range part can be calculated
exactly.

The second observation (Gunnarsson and Lundqvist,
1976) arises from the isotropic nature of the Coulomb in-
teraction V„and has important consequences. A vari-
able substitution R=r' —r in Eq. (3.9) yields

E„,= ,' f drn(r—)f dR R —fdQn„, (r, R) . (3.11)

(3.13)

This leads to

E„,= — fdr n(r)( —)—',

r
(3.14)

showing that, provided the sum rule (3.12) is satisfied, the
exchange-correlation energy depends only weakly on the

Equation (3.11) shows that the exchange-correlation en-

ergy depends only on the spherical average of n„,(r, R),
so that approximations for E„can give an exact value
even if the description of the nonspherical parts of n„, is

quite inaccurate. Third, from the definition of the pair
correlation function, there is a sum rule that requires that
the exchange-correlation hole contain one electron, i.e.,
for all r,

fdr'n„(r, r' —r) = —1 . (3.12)

This means that we can consider —n„,(r, r' —r) as a nor-
malized weight factor and can define locally the radius of
the exchange-correlation hole,

details of n„, (Gunnarsson and Lundqvist, 1976). In fact,
we can say that it is determined by the first moment of a
function whose second moment we know exactly.

C. Some exact results and inequalities for E„,and V„,

V„,(r) = —V,„„—4(r) —e, ,
V (p(r)
2y r

(3.15)

where y(r)=[n(r)/2]' . In atoms with more than two
electrons, V„,(r) may be parametrized and varied until
the resulting density agrees with the exact distribution.
A similar comparison can be made between the LD
exchange-only potential and the HF value. Almbladh
and Pedroza (1984) found that, although E„,[n] is de-
scribed rather accurately by LD approximations (the er-
rors are of the order of 10%), errors in V„, are substan-
tially greater. This is illustrated in Fig. 5, where the LD
and exact V„are shown for He, Li+, and Be++. Al-
though the error in V„, results in a large error in the ei-
genvalue, a feature in atoms that we discuss below, we
see that the deviation of V„ from the exact value is
largely independent of the distance from the nucleus and
results in small errors in the LD density profile. As nu-
merically accurate densities become available for more
systems, such comparisons could be very valuable in un-
derstanding deficiencies in particular approximations and
in devising improvements.

As noted above, Lieb and collaborators have studied
the mathematical structure of the TF method in detail.
In an extension of this work, Lieb (1983) has addressed
the problems of analysis that arise in discussing Coulomb
systems, particularly those using the density functional
approach. Lieb noted that there are serious analytical
problems with density functional theory as described
above ("It is not my intention to present a brief for
Hohenberg-Kohn theory. "). Some of these appear in the

In systems where the exact wave function is known, it
is possible to determine not only the density, .but also the
correct forms of E„, and V„. Such calculations then
provide an additional perspective on both the density
functional and the Hartree-Fock approaches to electron-
ic structure calculations. Wave functions of sufficient
precision are known only for a few light atoms, but have
been analyzed with interesting results (Almbladh et al. ,
1983; Almbladh and Pedroza, 1984; Almbladh and von
Barth, 1985b). A comparison of the exact HF and local
densities, for example, showed that the LD results are
slightly better than the HF for 2s functions and only
slightly inferior for the ls shell (Almbladh et al. , 1983).
The resulting error in the Hartree potential is then rather
small.

The exchange-correlation potential V„, can be found
from the single-particle equation (3.5). In the case of the
He atom, with a single doubly occupied orbital with ei-
genvalue e;, the inversion of (3.5) is straightforward,
leading to
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original formulation of the theory (Hohenberg and Kohn,
1964), because it is now known that not every n (r) can be
found from the ground state of some external potential
V„,(r) (Levy, 1982; Lieb, 1983). This may be less serious,
since such densities cannot be obtained for physical sys-
tems. The formulation of Levy (1979) furthermore ex-
tends the range of definition of the functional F in Eq.
(2.2). Such problems are more serious in the Kohn-Sham
formulation, since we require that the density n (r) ob-
tained for interacting electrons in the external potential
V,„,(r) can also be obtained for noninteracting electrons
in some difFerent potential V'(r). If this requirement is
not fulfilled, To and E„cannot be defined. Levy and
Perdew (1985b) and Hadjisavvas and Theophilou (1984)

have shown, however, that one can solve the Kohn-Sham
equations to self-consistency to obtain the ground-state
energy of the real system, even if the density is not the
noninteracting ground state of some V(r). However, one
obtains a hole or holes below the Fermi level in the
noninteracting system.

In addition to pointing out di%culties in the formal-
ism, Lieb and co-workers have studied upper and lower
bounds of quantities of interest that may be described in
terms of n(r). We noted in Sec. II.B.2 that Lieb and
Thirring determined an upper bound on the kinetic ener-
gy, and Lieb and Oxford (1981) also found a lower bound
for the indirect part, E&, of the repulsive Coulomb ener-

gy for the charge density n&(r) belonging to a given state
g of Xparticles:

satisfies

IE&I ~ Cf dr n(r) ~3

(3.16)

(3.17)
~ ~ ~

0
~ ~

~ ~
0

C ~ ~ ~ ~

with C =1.68. This inequality applies, of course, to the
interaction energy, but a related inequality applies also to
E„. These inequalities, and possible extensions of them,
could be useful in testing and improving approximations
to E„,.

XGC'
D. Extensions to more general systems

~ ~ ~ t ~

~ ~ 0 ~ ~ ~
~ g ~

I ~ ~ ~ 4$a i

The derivation of single-particle equations can be gen-
eralized in a straightforward fashion to spin systems, to
finite temperatures, and to more complicated external po-
tentials. These cases are reviewed by Rajagopal (1980)
and by Kohn and Vashishta (1983), and we restrict our
discussion to an outline of the analogies with the above
quantities.

The extension to spin systems or an external magnetic
field requires the consideration of the spin indices o. of
the one-electron operators g (r). In the most general
case, this requires the replacement of V,„, by a spin-
dependent potential V,~(r) and the charge density n (r)
by the density matrix

0

~ ~
4

~ ~ ~ e ~
~ ~

~ ~

~ ~

(3.18)

All ground-state properties are functionals of the density
matrix p &, and E is stationary with respect to variations
in p &, provided (von Barth and Hedin, 1972)

g fdrp =N. (3.19)

FIG. 5. Exchange-correlation potential V„, (solid curve) and
local-density (LD) value (dashed) for He, Li+, and Be++. The
lengths are in units of atomic radii r, (0.929, 0.573, and 0.414,
a.u. , respectively). The radial density is also shown (dotted
curve). After Almbladh and Pedroza (1984).

The application of the variational principle requires that
p & be X representable, which is guaranteed for all non-
negative, differentiable p & that satisfy Eq. (3.19) (see Gil-
bert, 1975; Harriman, 1981; Lieb, 1983). The effective
spin-dependent potential in the single-particle equations
is
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yaP XC

5p p(r)
(3.20)

and the analog of the exact equation for E„, [Eqs. (3.9)
and (3.10)] is

E„,=—,
' g fdr n (r)

aP

(3.21)

The generalization to finite temperatures was provided
by Mermin (1965), who showed that, in a grand canonical
ensemble at a given temperature T and chemical poten-
tial p, the equilibrium density is determined by the exter-
nal potential V,„,. The exact equilibrium density mini-
mizes the grand potential:

0—=Trp 0—pX+ —lnp
1

(3.22)

where p is the grand canonical density-matrix operator:

p= exp[ P(H —p—N)]l[Tr exp —P(H pN)] . — (3.23)

To define the single-particle equations analogous to Eq.
(3.5), we can consider a fictitious system of noninteract-
ing particles with kinetic energy To and entropy So, both
of which can be calculated in a straightforward fashion
(Kohn and Vashishta, 1983). The single-particle equa-
tions have a potential of the same form as Eqs. (3.20) and
(3.21), but with E„, replaced by the exchange-correlation
contribution to the free energy.

Spin-dependent systems at finite temperatures can be
discussed by combining the above arguments (Gun-
narsson and Lundqvist, 1976). A current- and spin-
density functional theory for electronic systems in arbi-
trarily strong magnetic fields has been described by Vig-
nale and Rasolt (1988). Further extensions can be made
in the case of nonlocal potentials (Gilbert, 1975), and a
discussion of the relativistic formulation of the DF for-
malism has been given by Rajagopal (1980). There has
been much work on time-dependent density functional
theory, which is essential for problems such as optical ab-
sorption or frequency-dependent polarizabilities. Follow-
ing the work of Peuckert (1978), there have been a range
of developments; these are surveyed by Zangwill (1983)
and Bartolotti (1987).

equation for E„„we have shown that it is insensitive to
many of the details of the interactions in the system.
However, it is by no means obvious that E„can be ex-
pressed simply and accurately in terms of the density. To
illustrate, we show in Fig. 6 approximate densities for
metallic Fe and Cu, obtained by superimposing atomic
charge densities. We expect the correlation e6'ects for Fe
and Cu to be di6'erent, since Fe has a .partly filled 3d
band, while the Cu 3d band is full. Thus electron-hole
pair excitations within the 3d band are possible for Fe
but not for Cu. According to the theorem of Hohenberg
and Kohn (1964), the exact functional makes this distinc-
tion between Fe and Cu. The similarity of the Fe and Cu
densities shows, however, that the construction of ap-
proximate functionals is a nontrivial problem. A major
part of this paper therefore addresses the accuracy of ap-
proximate functionals.

The DF formalism shows that it is possible, in princi-
ple, to determine the total energy using a functional that
depends on the density alone and not the spin densities.
The task of finding good approximations to the
exchange-correlation energy is, however, greatly
simplified if the functional is expressed in terms of the
spin densities. This is the simplest way of satisfying the
requirement (Hund's rule) that a state with a larger spin
tends to be favored energetically. The importance of in-
cluding this spin dependence in approximate functionals
was observed early for the cohesive energy of alkali met-
als. In the LD approximation the cohesive energy of Na
is about 25% too large (Tong, 1972), although one might
expect the free-electron-like Na to be an ideal case for the
LD approximation. The inclusion of the spin depen-
dence by using the LSD approximation, however, was
found to improve the description of the unpaired electron
in the Na atom, thereby improving the cohesive energy
(4% error) of the solid (Gunnarsson et a/. , 1974). In this
section we focus on the results obtained using such ap-
proximations, though it is important to note that they

1.0

IV. LOCAL SPIN-DENSITY APPROXIMATION
AND ITS APPLICATIONS

In the previous section we have shown that the total
energy of a system of interacting electrons in an arbitrary
external field can be determined, in principle, by the solu-
tion of single-particle equations of Hartree-type. The
only term that cannot be determined exactly is the
exchange-correlation energy E„,. By deriving an exact

FIG. 6. Density of metallic Fe and Cu as a function of the ra-
dius r. The density n is expressed in terms of the parameter r„
where n =(4mr, /3)
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break rotational invariance in spin space and represent
an extension of the DF formalism.

The approximation used most widely in total energy
calculations is the local spin-density (LSD) approxima-
tion,

E„s = f drn(r)E„, [n&(r), n&(r)], (4.1)

A. Atoms

Atoms and ions are particularly useful systems for test-
ing schemes for energy calculations. Not only are the
calculations relatively simple to perform, but the experi-
mental information available on excitation energies is re-
liable and very extensive. The total energies of light
atoms and ions can be found from the measured ioniza-
tion energies. Extensive series of Hartree-Pock calcula-

where c,„,[n t, n &] is the exchange and correlation energy
per particle of' a homogeneous, spin-polarized electron
gas with spin-up and spin-down densities n

&
and n &, re-

spectively. There have been num. erous electron gas cal-
culations performed over the years, and parametrizations
of E„,[n&, ni] have been given by von Barth and Hedin
(1972), Gunnarsson and Lundqvist (1976), Vosko et al.
(1980), and Perdew and Zunger (1981), among others.
Different calculations lead to somewhat different results,
but aH are free of adjustable parameters. Widely used
also is the Xn approximation, which is obtained if c„, in

Eq. (4.1) is replaced by the exchange energy per electron
and multiplied by 3a/2, i.e.,

E = —
—,'aC fdrI[n&(r)] +[n&(r)] I, (42)

where C =3(3/4~)'~ . The parameter a has historical
origins (Slater, 1974), but the a dependence of energy
differences for a given atom or molecule is weak for
values near —,', the exchange energy value. Although
different electron gas parametrizations lead to similar en-

ergy differences, and Xo. energy difFerences depend only
weakly on a, there are systematic differences between the
two sets of calculations. Use of the latter approximation
leads to overestimates of the relative stability of states
with larger spin densities. This is apparent in excitation
energies in atoms and in molecules such as N2 and CO,
where molecular formation is accompanied by spin Aips.

tions can be used for comparison, and accurate CI calcu-
lations of the wave functions exist for some light atoms.
In extended systems, by contrast, it is only possible to
measure the total energy r'elative to the separated atoms,
and exact calculations of the wave functions are presently
out of the question. In most of the applications we focus
on energy differences.

The atomic density distribution shown in Fig. 1 makes
it clear that arguments based on small departures from
homogeneity cannot be applied. However, we have seen
in Sec. III that a partial cancellation of errors can be ex-
pected provided that the sum rule (3.12) is satisfied. This
is the case in both the LSD and Xa approximations, and
it is instructive to compare the form of the exchange hole
found in LSD calculations with that determined exactly,
i.e., in a Hartree-Fock calculation. This is shown in Fig.
7 for two representative values of r in the nitrogen atom,
and we see that the approximate and exact holes are
qualitatively different. In particular, the approximate
hole is spherically symmetric, while the exact hole is very
asymmetric. The spherical average is, however, remark-
ably similar, and the values of the exchange energy differ
by only a few percent. These results demonstrate clearly
that the large differences in the exchange holes arise al-
most completely from the nonspherical components,
which contribute nothing to the exchange energy. We
can expect that this will also be true if we include corre-
lation effects and if we apply the approximation to other
systems with inhomogeneous density distributions.

1. Total energies

The total electronic energy of an atom can be deter-
mined if all the ionization energies are known. We show
in Table IV the experimental total energies, the estimated
relativistic contributions to the total energy, the HF en-
ergies with relativistic corrections, and the LSD total en-
ergies for 6rst-row atoms. The LSD parametrization uses
the paramagnetic term of Hedin and Lundqvist (1971)
and the spin dependence of Gunnarsson and Lundqvist
(1976). There are several points of interest. First, both
the HF and the LSD methods lead to departures from ex-
periment that are much greater than would be acceptable
for any binding energies of interest. Both methods are
dependent on error cancellation for any estimate of ener-

TABLE IV. Total energies in first-row atoms (Ry). Experimental energies E,„p, and the estimated rela-
tivistic corrections AE"' are from Scherr et al. (1962); Hartree-Fock (HF) energies with relativistic
corrections EHF are from Clementi and Roetti (1974).

Atom

Li
Be
B
C
N
G
F

+expt

14.957
—29.339
—49.318
—75.715

—109.228
' —150.225
—199.618

—0.001
—0.004
—0.011
—0.025
—0.050
—0.090
—0.150

EHF

—14.866
—29.150
—49.070
—75.404

—108.856
—149.716
—198.982

I, nonrel~ LSD

—14.706
—28.909
—48.653
—74.958

—108.298
—149.064
—198.336

rel
Eexpt EHF

0.091
0.188
0.248
0.310
0.373
0.508
0.635
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gy differences. Second, the HF total energies are some-
what closer to experiment than are the LSD values. This
is also true for the LSD parametrizations of von Barth
and Hedin (1972), Gunnarsson and Lundqvist (1976), and
Vosko et al. (1980).

2. ionization energies

0.aoa
Rn„' t r, R) Rn„ lr. R

0.5-
0.02

R/o,
I

1.0 R/o 2.0

FIG. 7. Exact (solid line) and approximate (dashed line) ex-
change hole n„(r, r' —r) [Eq. (3.10)] for a spin-up electron in a
nitrogen atom for r =0.13 and 0.63 a.u. The top figure shows
the hole along a line through the nucleus and the electron. The
arrow indicates the nuclear position and r —r' =0 gives the elec-
tron position. The exact hole has a large weight at the nucleus,
while the approximate hole is centered at the electron. The
lower figure shows the spherical average of the hole around the
electron. The area under the curve is proportional to the ex-

change energy The . figure also shows the value of (1/R),
defined in Eq. (3.13).

The energy required to remove a single electron is
known accurately for most atoms (Moore, 1949, 1952,
1958). In Fig. 8 we compare the values for some light
atoms with HF values and with values calculated using
LD and LSD approximations. The calculated values are
found from differences between calculations for the
ground states of the atom and ion, respectively,
I&

=E0 E0 Agreement with experimental trends is

signi6cantly better using the LSD approximation than
with either the LD functional or the HF method. Cases
involving half-filled shells, in particular, are more accu-
rately given. An example is the break between N and 0
in an otherwise smooth curve. In N, the p electron re-
moved has its spin parallel to the others (pttt ~ptt),
whereas in 0 it is antiparallel (p&&t&~p&&t) and more

t row

0'
ui 5-

d row

OW 20—

2l --a-—~~
s k

p
~-.-~ —'—' ', ' Y6 27 28

22 23

.M' 3Q

29 10-

FIG. 8. First ionization energy of atoms in the local-density
(LD), local spin-density (LSD), and Hartree-Fock (HF) approxi-
mations compared with experiment. The numbers show the
atomic numbers of the atoms considered. For reasons of clari-
ty, the zero of energy is shifted by 5, 10, and 15 eV for the
second row, the third row, and the transition-element row, re-
spectively. The LD results for the first and second rows are in-
creased by an additional 2 eV.

0 I I I I I

Be' B' C+ N+ 0'
Li Be B C N

l I

F' Ne'
0 F

FIG. 9. The sp transfer energies h,~ for the first-row atoms and
ions: (a) experimental and local spin-density (LSD) results; (b)
Hartree-Fock (HF) and Xa results. The energies are in eV.
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weakly bound. The HF approximation, which neglects
correlations between antiparallel spins, does not describe
such energy diQ'erences accurately.

3. Transfer energies

When atoms bind to form a molecule or solid, there is
generally a change in the relative s,p, d, . . . , contribu-
tions to the wave function. Such energy transfers can be
studied directly in atoms by calculating the energy re-
quired to change an s electron into a p electron, for exam-
ple, the S(2s 2p ) ground state of N into the P(2s '2p )

excited state. Since these are the lowest-lying states of
these symmetries, density functional calculations are
justi6ed by the extension of Cxunnarsson and Lundqvist
(1976) to the original formalism.

In Fig. 9 we compare experimental sp transfer energies
for erst-row atoms and ions with the results of I.SD cal-
culations (Gunnarsson and Jones, 1985b). For atoms we
de6ne

b,p
=E(1s 2s2p" ') —E(ls 22s 22p" 2), (4.3)

with a similar definition for the ions. While the overall
trends are given well, the absolute deviations in AE, are
of variable quality, with particularly large deviations in
the cases of 0 and N. Shown also are the HF (Verhaegen
and Moser, 1970; Fraga et al. , 1971) and the Xa results.
The trends are given fairly well by these calculations;
however, there are significant errors, and the comparison
with experiment shows difFerences between the erst and
second halves of the row.

In Fig. 10 we show corresponding values for sd
transfer energies in iron-series atoms and ions (Gun-
narsson and Jones, 1985b). In this case we write

b,,d =E([core]3d" '4s') —E([core]3d" 4s ), (4.4)

with the definition for ions involving one less s electron in
each case. The trends are given well, but the LSD ap-
proximation overestimates the relative stability of

Ex t
2

I l I

(b)

I

Ca Cr Fe
V Hn

I

Ni
Co Cu

0—

-l—

-2—

( I l I I I I I

Co' Ti' Cr' Fe' Ni'Sc' V+ Mn' Co' Cu'

FIG. IO. The sd transfer energies A,d for (a) 3d atoms and (b) 3d ions. In the upper panels, local spin-density (LSD) and experiment
are compared; in the lower panels, Xa and Hartree-Pock (HF) are compared.
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configurations with more d electrons by —1 eV in the
atoms and by -0.5 eV in the ions. The deviations from
experiment are more systematic than for the HF values,
particularly for the break in the center of the series.
These results do not include relativistic effects. Hartree-
Fock calculations by Martin and Hay (1981) show that
such effects tend to stabilize configurations with larger s
occupancies for the iron-series atoms by -0.1 —0.3 eV.

Local spin-density calculations have also been per-
formed for other series of atoms (see, e.g., Harris and
Jones, 1979b; Jones, 1979; Glotzel, 1980). Although the
LSD approxim. ation gives a good description of trends in
all cases, there is a consistent tendency to overestimate
the stability of p or d occupancy relative to s occupancy,
and of f occupancy relative to d occupancy (Glotzel,
1980; see Fig. 11). The large overestimate (-2 eV) in the
rare earths should caution against overinterpreting the
results of LSD calculations on mixed-valent materials,
where 6d& is a quantity of interest. Essential to the
reproduction of the experimental trends is the use of the
spin-dependent LSD approximation. Qualitatively inferi-
or results are obtained using the spin-free (LD) approach.

The description of the trends in energy differences
given by the HF approximation is not as good as that
provided by the LSD approach. As noted in Sec. I, how-
ever, the CI method provides a systematic way of im-
proving on the HF wave function and energy by consid-
ering more than a single determinant. The present sys-
tems demonstrate that such improvements are by no

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb
I I I l l l I t l I

—0

0 0C1J

LaJ

l I I I l I I I I I I l I

Th Pa 0 Np PuAmCu Bk Cf Es FmNdNo

FICr. 11. The df transfer energies is+ [E(f" ds )—E(f" s ) j for rare-earth and actinide atoms (Glotzel, 1980).
The calculations (solid lines) are for spherically averaged densi-
ties.

means trivial, as shown by the results of Sasaki and
Yoshimine (1974) for first-row atoms. These authors
used an extensive basis set (35 orbitals, up to I =6, ex-
panded in terms of 47 Slater-type orbitals) and single,
double, triple, and quadruple excitations. For first-row
atoms, the calculated correlation energies are 3—5%
different from the experimental values, and 6, in carbon
is -0.1 eV in error. Bauschlicher and Shavitt (1978)
have studied the basis-set dependence of both the total
energy and the quintet-triplet splittings in carbon. To
compute the splitting to within 0.05 eV of the experimen-
tal value requires at least a triple-zeta basis with two sets
of polarization functions and CI with single and double
excitations. Reliable calculations of 6,d are even more
difficult to perform. Bauschlicher et al. (1982) found im-
proved results using CI calculations; however, the agree-
ment with experiment is noticeably better in the first half
of the iron series, Sc—Cr, where the two states in ques-
tion have different numbers of paired electrons, than in
Mn —Cu.

4. Multiplet structure

The calculation of multiplet structures using the densi-
ty functional formalism requires care. In the above dis-
cussion of the LSD approximation, the only input re-
quired to calculate the energy of the lowest-lyi. ng state is
the total density and the spin density. It is easy to find
cases, however, in which this leads to serious inconsisten-
cies (von Barth, 1979). In the ls2s configuration of He,
for example, the Mz = 1 and Mz =0 components of the S
state have different spin densities, and the LSD approxi-
mation splits the degeneracy by 1.82 eV. Furthermore,
the 'S and the M+=0 component of the S state have
identical densities and spin densities, resulting in an
artificial degeneracy.

Insight into such problems was provided by Ziegler
et al. (1977) and by von Barth (1979). Ziegler et a/. fo-
cused on the exchange energy, for which we have an ex-
act equation —analogous to Eq. (3.21)—in terms of the
pair correlation functions g &. The LSD approximation
assumes that g&& and g~~ are both unity. Since this is
true for states that can be represented by a single deter-
minant, Ziegler et al. suggested that LSD calculations be
performed only in such cases. In general, a single deter-
minant is not an eigenstate of L and S, and a multiplet
description requires a linear combination of deter-
minants. The total energy calculated from a single deter-
minant can be represented as a weighted sum of multiplet
energies. Provided that the number of determinants with
different energies equals the number of multiplets (a situ-
ation that by no means always holds), the energies of the
latter can be found. The justification of this technique re-
quires a generalization of density functional theory to
states of mixed symmetry (von Barth, 1979).

Initial tests of this scheme were encouraging, in that
some of the cruder defects of the LSD scheme were re-
moved. It is restricted, however, to those cases described
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above and cannot be applied in larger systems, where the
number of determinants with different energies is usually
less than the number of multiplets. Furthermore, Gun-
narsson and Jones (1980b) found that the lack of
electron-hole symmetry inherent in the LSD approxima-
tion in some cases led to significantly greater errors for
multiplet splittings in the second half of first-rom atoms
than for atoms in the first half. We return to this point in
Sec. V.A. 1.

Atomic multiplet structures also provide an interesting
point of comparison with experiment and with other cal-
culations. As noted by Slater (1960a), the HF method
leads to energy spreads of multiplets that are substantial-
ly greater than experiment. Wood (1980) has carried out
multiplet structure calculations for eight light atoms and
their ions using the Xa and LSD functional forms and
compared the results with experiment and with HF
values. The Xa scheme reproduces the HF splittings
well, essentially independent of the value of u used. The
LSD results are in good agreement with experiment, as il-
lustrated in Fig. 12 for I' and I'+. Wood observed that
all of these methods lead to unsatisfactory total energies.

1.0-

0.9-

0.7-

0 3 10.0ev 9.7 eV

0.2-

0.1—

0.0

HF Xo.

(a = 2/3j

1D&

Expt LSD

11.0eY'l1.0 eV

B. Molecules

The molecular calculations discussed below are a selec-
tion of the many that have been performed and serve to
illustrate the level of accuracy to be expected from LSD
calculations. Of particular interest is the question of
whether the single-particle DF method can give satisfac-
tory results in cases where the single-particle HF approx-
imation leads to qualitatively incorrect results.

In discussing the results of calculations using local-
density approximations, it is essential to separate the
consequences of the LD approximation from those of a
numerical nature. An important example is provided by
the many calculations of molecular and cluster properties
that have used the Xa approximation and the scattered
wave (Slater, 1974), or Korringa-Kohn-Rostoker, method
to solve equations of the form (3.5). In a number of
cases, such calculations gave spectacularly incorrect pre-
dictions of ground-state geometries, examples being a
repulsive energy curve in Cz (Danese, 1974; experimental
well depth 6.3 eV) and a linear geometry for HzO (Con-
nolly and Sabin, 1972; experimental bond angle 104.5').
These results, and some of the exaggerated claims by pro-
tagonists of the method, have not helped density func-
tional methods gain wide acceptance. However, scat-
tered wave calculations use an additional assumption in
evaluating the energy, namely, the muFin-tin approxima-
tion for the potential V(r) and the density n (r). This as-
sumes that the potential and density are spherically sym-
metric in spheres centered on the nuclei, and constant
elsewhere. It is a poor approximation in open systems
such as molecules, and it neglects the buildup of charge
density along the bond. On the other hand, accurate
LSD calculations for very small molecules, such as Hz

FIG. 12. Multiplet structures for P and P+ for Hartree-Fock
(HF), Xn (a= —), and local spin-density (LSD) calculations,
compared with experiment (after %'ood, 1980). The lowest lev-
els are set to a common zero.

and H3, showed that the LSD approximation gave very
good results for these s-bonded molecules (Gunnarsson
et al. , 1975; Gunnarsson and Johansson, 1976). There
are now several different numerical methods available
also for larger molecules that use the full potential (i.e.,
include non-muffin-tin components) but use different
basis sets (Slater-type orbitals: Baerends and Ros, 1978;
Gaussian-type orbitals: Dunlap et aI., 1979; Painter and
Averill, 1982, 1983; linearized muon-tin orbitals: Jones,
1982a; plane waves: Hohl et al. , 1988). It is encouraging
that these methods give similar results for the first-row
dimers, so that we may confidently ascribe remaining
discrepancies with experiment to the local-density ap-
proximation.

The single-particle picture basic to the DF formalism
is of particular value in discussing the results obtained.
In common with other methods of electronic structure
calculations (Mulliken, 1942; Walsh, 1953; Buenker and
Peyerimhoff, 1974), it is often possible to obtain insight
into bonding mechanisms by studying the variation of the
single-particle eigenvalues with changing geometry
(Walsh diagrams). If we assume that the atomic core
densities are frozen and do not overlap, the total energy
E can be separated rigorously into core (E, ) and valence
(E, ) contributions (Gunnarsson et al. , 1977a, 1977b).
The large contribution E, is geometry independent, and

E, is a functional of n, alone. It can be written in terms
of the valence eigenvalues of Eq. (3.5) as
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val z z
&,[~.1= gf.s.+I«ri. «) [e„[ri(r)1—s„,[~,(r)]I+f«~„(r)[-,'g „(r)+q,(r)+ V„,(r) —V(r)]+-, g

fl l@J

(4.5)

Here Z„—:Z, —Jdr n„(r) is the net charge on the core
of atom i (with atomic number Z;), and y„and y, are the
Coulomb potentials corresponding to n„and n„respec-
tively. The second term in (4.5) is small and slowly vary-
ing. Apart from the eigenvalue sum, the remaining con-
tributions to E„ increase as the atoms approach each oth-
er (Gunnarsson et al. , 1977a, 1977b). While the sum
over the eigenvalues cannot be identi6ed with the total
energy, the decreasing value of this term as the atoms ap-
proach is essential for a stable bond.

I

There is a corresponding underestimate in the ground-
state vibration frequencies. In cases where it leads to an
energy minimum, the HF approximation usually leads to
a small underestimate of r, . We note here that the dipole
moment of CO and its variation with internuclear separa-
tion are given significantly better by the LSD approxima-
tion than by the Hartree-Pock approximation (Gun-
narsson et al. , 1977a, 1977b).

2. Alkaline earth dimers

1. First-row dimers

TABLE V. Experimental and calculated well-depths for the ex-
perimental ground states of the first-row- dimers. Hartree-Fock
(HF) calculations for Be& give a purely repulsive energy curve.

Molecule Expt. ' LSDb Xab HF'

Hq
L12

Be&

82
C2
N2
02
F2

4.75
1.07
0.10
3.09
6.32
9.91
5.22
1.66

4.91
1.01
0.50
3.93
7.19

11.34
7.54
3.32

3.59
0.21
0.43
3.79
6.00
9.09
7.01
3.04

3.64
0.17

0.89
0.79
5.20
1.28

—1.37

'Huber and Herzberg (1979);Bondybey and English (1984), Be2.
Painter and Averill (1982).

'Total energies for experimental geometry from Cade and %'ahl

(1974).

Diatomic molecules of erst-row atoms have provided a
testing ground for numerous methods of electronic struc-
ture calculations, including density functional methods.
In Table V we compare measured well-depths (Huber and
Herzberg, 1979) for first-row dimers with values calculat-
ed using Hartree-Fock (Cade and Wahl, 1974), LSD, and
Xa (Painter and Averill, 1982) approximations. The HF
approximation leads to substantial underestimates of the
binding energies, particularly for singlet ground states.
The LSD values consistently overestimate the stability of
these molecules, although the deviations from experiment
are small for H2 and Liz. The overestimates are greatest
for molecules in the second half of the series. As noted
above, the LSD and Xa approximations give similar en-

ergy differences in cases where the change in spin density
on bonding is small.

The equilibrium separations calculated using the LSD
and Xa approximations are generally in good agreement
with experiment, with an overestimate of 1 —2 % being
common (Baerends and Ros, 1978; Dunlap et al. , 1979;
Jones, 1982a; Painter and Averill, 1982; Becke, 1986).

While the LSD and HF approximations generally lead
to similar bond lengths in first-rom molecules, there is a
striking difference in the case of Be&. Here, as in the oth-
er group-IIA dimers (Mgz, Ca&,Sr2, . . . ), the lowest-lying
state is 'Kg+[los( 1 4) lo „(1J, )]; i.e., there is an equal oc-
cupancy of bonding and antibonding orbitals. Hartree-
Fock calculations (e.g., Blomberg et al. , 1980) lead to
repulsive curves, and it has been the general view for
many years that binding, if present, must be due to polar-
ization (van der Waals) forces (e.g., Furry and Bartlett,
1931; Bender and Davidson, 1967; Jordan and Simons,
1976; Schaefer er al. , 1976; Miller et al. , 1977). The
bond strengths should then increase in the order
Be2~Mg2~Ca2, . . . , due to the corresponding increase
in atomic polarizabilities (Maeder and Kutzelnigg, 1976).
The earliest CI calculations supported this picture, with
Be2 having a very weak bond with an equilibrium separa-
tion near 9 a.u. (e.g. , Blomberg and Siegbahn, 1978).

The local-density approximation gives qualitatively
different bonding trends in this family of molecules
(Jones, 1979). The energy curves show minima in all
cases, and the equilibrium separations in Mg2 and Ca2
agree very well with measured values (7.351 and 8.083
a.u. , respectively). The bond length in Be2 (4.86 a.u. ) was
found to be much shorter than those of previous calcula-
tions. Most striking, however, is the variation in well-
depth shown in Fig. 13. The energy minimum in Be2 is
deeper than in Mg2, and the variation with atomic num-
ber parallels the irregular behavior observed in the bulk
cohesive energies (Fig. 13; Gschneidner, 1964; Moruzzi
et al. , 1978). The binding energies in the molecules and
solids are overestimated by the local-density approxima-
tion in those cases where experimental values are known.
The error is signi6cant in Be&, as we show in Table VI,
where we include the results of subsequent LD (Jones,
1982b; Painter and Averill, 1982) and CI (Harrison and
Handy, 1983; Lengsfield et al. , 1983) calculations, as well
as the gas phase experimental results of Bondybey and
English (1984). The experimental value of the equilibri-
um separation is in remarkably good agreement with the
density functional result, and the extensive CI calcula-
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tions reproduce both the well-depth and the equilibrium
separation satisfactorily. The Be& molecule has proved to
be a severe test of CI methods, since essentially all of the
correlation energy must be found in order to obtain a sa-
tisfactory energy curve.

The density functional picture of bonding in this series
is very different from that of weakly interacting closed-
shell systems bound by polarization forces. The plots of
the valence orbitals (Fig. 14) show that, except in He2,
there is a substantial overlap between the densities of the
two atoms. This is particularly true in Bez. It is also in-

teresting that the radial extent of the orbitals does not in-
crease smoothly with increasing core size, but shows
what might be termed a "secondary periodicity. " In Mg,

TABLE VI. Spectroscopic constants of Be& ('X~ ).

Expt. '
CIb
CIc
CI'
LD-LMTO'
LD-LCAO

r, (a.u. )

4.658
4.73+0.03
4.78
4.9
4.67
4.63

co, (cm ')

223.4

360
362

D, (eV)

-0.11
0.09+0.01
0.10(est)
0.04
0.48
0.50

'Bondybey and English (1984).
Lengsfield et al. (1983).

'Harrison and Handy {1983).
Blomberg et al. (1980).

'Jones (1982b).
Painter and Averill {1982).

He Be Mg Ca Sr Ba Ra

FIG. 13. Well-depths calculated for 'X~+ state of group-IIa di-
mers (solid line, left scale, Jones, 1979) and cohesive energies of
bulk materials (dashed line, right scale, Moruzzi et al. , 1978).
Corresponding experimental values (crosses) are given where
known (Gschneidner, 1964; Huber and Herzberg, 1979).

4
r {a,)

10

for example, the 3s orbital is relatively compact. The 2p
functions introduced into the core have no repulsive (or-
thogonalization) effect on the 3s function and are
sufFiciently extended that the increased core charge is in-

completely screened. A similar e6'ect is evident in Sr and
Ra, where 3d and 4f functions are present in the core for
the first time. The unoccupied p orbitals are generally
more extended than the s valence functions. Figure 14
shows that Be is an exception. There are no p states in
the core, and the e6'ective potential experienced by the 2p
state is more attractive. The similar extent of the 2s and
2p orbitals suggests that sp mixing will be favored.

The importance of sp hybridization is also evident in
the self-consistent valence eigenvalues e; for molecules in
this series (Jones, 1979). In He&, the o g and o „eigenval-
ues are remarkably symmetrical about the atomic eigen-
value. The wave-function overlap is very small, so that
the weak minimum in the energy curve may be con-
sidered a van der %'aals minimum. The Be2 eigenvalues
show a pronounced asymmetry; i.e., the eigenvalue sum
in Eq. (4.5) gives a bonding contribution. The Mg2
curves are more symmetric, but there is a net bonding in
the heavier molecules associated with the increasing im-
portance of sd mixing. This picture of bonding in these
molecules is very much in accord with the pseudopoten-
tial theory of cohesion in the bulk, namely, a stronger sp
hybridization in Be than in Mg, and the increasing im-

FIG. 14. Tails of valence wave functions for group-IIa atoms:
{a) s functions for the 'S(ns ) states; (b) p functions for the
'P{ns'np') state. The dashed curve is the 2p function of He
{1s2p). Also shown {arrows) are distances corresponding to half
the calculated equilibrium separation in each dimer {Jones,
1979).
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portance of sd hybridization with increasing atomic num-
ber. Few solid state physicists seem to be surprised by
the parallel between cohesion and binding energies shown
in Fig. 13.

It is encouraging that the bonding trends predicted by
the DF calculations, particularly the relative strength of
the bond in Be2, have been confirmed by both exhaustive
CI calculations and experiment. The picture provided of
the bond in these molecules is also simple and plausible
and has been taken over into the chemical literature by
Kutzelnigg (1984). However, there is a substantial
overestimate in the calculations of all bond strengths dis-
cussed here, as well as in most of the first-row dimers.
This is an important point, and we now return to it.

0
C

CL

0.75

0.50

0.25

3. Group-IVa molecules C, , Si,, C3 Sl3

0.50

The absence of core p states and the relatively compact
2p valence functions apply to all first-row atoms, not just
to beryllium. In fact, these atoms show qualitative
differences in their bonding properties from atoms in the
remainder of the Periodic Table. An example is given by
the group-IVa dimers C2 Si2, Ge2, Sn2, and Pb2, where
the last four have the same ground state
[ X g2cr (s1~„)], with an excitation energy to the 'X+
state ( lm„) of 1.0—1.5 eV (Harris and Jones, 1978a,
1979a). This is strikingly dift'erent from the situation in
C2, where the experimental ground state is 'X+ with ex-
citation energies (T, ) to the II„(2o. m„) and X states
of 0.09 and 0.80 eV, respectively (Huber and Herzberg,
1979). The C—C bond then shows a remarkable ease of
o. ~m„ transfer and substantially stronger m. bonds than
in the other atoms in this series.

While the pronounced difference between C—C and
Si—Si bonds is well known, it is not easy to find a discus-
sion of the reasons in the chemical literature. Density
functional calculations for the heavier elements of a
group (e.g. , Si, Ge, Sn, and Pb in group IVa) are not
significantly more difficult than those in the first row
(e.g. , C), so they provide an ideal means for studying
these differences. In Fig. 15 we show the tails of the
valence orbitals in the group-IVa atoms. The secondary
periodicity noted above in group-IIa atoms is even more
apparent here. The s and p functions in Si are remark-
ably similar to those in Ge, for example, because the rela-
tively diffuse 3d core density in Ge imperfectly screens
the additional nuclear charge. This is reflected in the
very similar properties, such as ground-state. geometries,
of these two elements. The special status of the first-row
atom (C) is again apparent, in that the maxima of the ra-
dial s and p functions occur at almost the same distance
from the nucleus. The behavior of the self-consistent ei-
genvalues of the X state in C2, Si2, and Ge2 are shown
in Fig. 16. As expected from the above discussion, the
Siz and Ge2 eigenvalues are very similar.

The qualitative differences between the multiplet struc-
tures of C2 and the other molecules can now be under-

0.25-

3 4
r {a,)

5 6 7

FIG. 15. Radial valence functions for group-IVa atoms: (a) s
functions', (b) p functions.

stood. The 'X+ state obtained by placing four electrons
in the m„orbital has a very similar energy to the X
state obtained by transferring two electrons to the 2'
orbital. The eigenvalues in Fig. 16 show that occupancy
of the latter orbital will be favored in the heavier dimers,
which is consistent with the relatively compact atomic p
functions in C and the stronger ~ bonds that result. The
consequences for the formation of simple saturated mole-

-0.25-

-0.5—

Si 3p

C 2p

Ge 4p

-0.75-
Si 3s

Ge 4s

-1.0-tX

lit

-1.25-

C2 Si2

C 2s

Ge2

5
r (a, )

5

FIG. 16. Self-consistent eigenvalues for 'Xg state of C2, Si2,
and Ge2. Also shown are the valence eigenvalues for the isolat-
ed atoms. The arrows denote the calculated equilibrium separa-
tions in each case.
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cules has been discussed by Harris and Jones (19'79a; see
also Harris, 1984b).

The trimers of carbon and silicon are interesting, both
individually and in comparison. In agreement with the
predictions of Walsh (1953) for triatomic molecules with
12 valence electrons, the ground state of C3 is linear.
However, the bending frequency is remarkably low
(co, =63 cm ', compared with 667 cm ' for CO@), and it
has been a challenge to reproduce this. Hartree-Fock
and CI calculations have been performed by Liskow
et al. (1972), who found a pronounced sensitivity to
basis-set choice. The results of the most extensive calcu-
lation are shown in Fig. 17. The calculated value of ~,
(69 cm ) is in good agreement with experiment, but the
binding-energy curve has a most unusual form, described
by the authors as a square well with a dimple" for bond
angles a between 160' and 180. This potential is highly
anharmonic with very irregular spacings between the vi-
brational levels. Shown also are the results of multirefer-
ence double-excitation CI (MRD-CI) calculations of
Peric-Radic et al. (1977). While these calculations pro-
vide a very good description of the stretch vibration fre-
quencies of low-lying states (see also Romelt et al. ,

1978), the force constant for symmetric bending is an or-
der of magnitude too high. The results of density func-

f

tional calculations (Jones, 1985a) are also shown in Fig.
17. The energy curve shows no sign of the very unusual
structure found by Liskow et al. , and the vibration fre-
quency (-75 cm ') is much closer to experiment than
the MRD-CI value. The LSD calculations have also
been performed for low-lying II ( A &+ Bz),
11„( Ai+ 8i), II, and II„states. The parameters

defining the energy surfaces are in reasonable agreement
with available experimental information.

The silicon trimer has received considerable attention
recently. The results of density functional calculations
(Jones, 1985b) are shown in Fig. 18. The ground-state
energy surface is remarkably Oat and, in contrast to
%'alsh's rules, does not have its minimum for a linear
geometry. The density functional calculations predict a
bond angle of —85, with a bond length of 4.21 a.u.
Similar values are found by calculations using Hartree-
Fock plus many-body perturbation theory (80.6, 4.08
a.u. , Diercksen et al. , 1985; -78, 4.09 a.u. , Raghava-
chari, 1985) and CI calculations (78.1', 4.08 a.u. , Grev
and Schaefer, 1985). Several of these calculations, in-

cluding the DF work, find a second state ( 3 z, D31, ) with
an energy very close to that of the '2

&
minimum. It is

reassuring that several independent calculations for this
molecule produced such a consistent picture of the
ground-state energy surfaces, particularly in the absence
of experimental information.

The comparison between the results obtained for C3
and Si3 is very interesting. %"e have noted that the I.SD
calculations for C3 reproduce the known features of the

energy surfaces of low-lying states satisfactorily. The ex-
citation energies to the II„(1.76 eV) and 'II„(2.56 eV)

are, however, less than the experimental estimates (2.10
and 3.06 eV, respectively), and comparable discrepancies
can be expected in similar molecules. It is important to
note also that the strengths of all the bonds in C2, Siz, C3,
and Si3 are overestimated by —1 eV in the LSD calcula-

5-

2.08
2.l7

2t6 + ~o~~O—
t I

180 150 120

&ccrc («gI
FIG. 17. Energy curves for bending vibration in C, . The solid
curve shows Hartree-Fock (HF) results for r cz =2.41 a.u.
(Liskow et a/. , 1972); the crosses, multiple-reference double-
excitation CI (MRD-CI) values for rcc =2.423 a.u. (Peric-
Radic et al. , 1977). Local-density (LD) results are given by cir-
cles, and the optimum bond length for each bond angle, u«c, is

also shown (Jones, 1985a).

60

0.22
I

90 120 150
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l

') 80

FIG». 18. Energy surfaces for ground state of Si3. The optimum
bond length for each bond angle cps;s;s; is also shown.
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tions. It is also noteworthy that Walsh's rules do not
predict the correct ground-state geometry for Si3. In
fact, much of the understanding and most of the predic-
tions concerning chemical bonding are based on the ex-
tensive experience available from molecules containing
first-row atoms. The discussion above shows, however,
that the absence of p states in the core makes these atoms
far from typical for the periodic system as a whole.
Heavier atoms, such as Si, also have more important con-
tributions from d functions; this contributes to the ap-
parent tendency of Si to favor bent geometries.

4. Iron-series transition-metal dimers

The dimers of iron-series elements K~Cu have pro-
vided instructive tests of calculational methods, including
density functional methods with the LSD approximation.
LSD calculations of low-lying states of all these mole-
cules were described by Harris and Jones (1979b), and
this field has been surveyed in extensive reviews by
Salahub (1987, transition-metal atoms and dimers) and by
Morse (1986, a thorough survey of known information
about transition-metal clusters in general). For mole-
cules at the ends of the row —K2, Ca2 and Cu2 —the na-
ture of the bond is relatively simple; the vibrational spec-
tra have been measured in detail. It is only recently that
detailed information has become available about the oth-
er members of the series, and more work remains to be
done. The most remarkable feature of the measured
binding energies in this row is the pronounced minimum
at the center. This is similar to the situation in the
cohesive energies of the bulk metals. Griffith (1956)
showed that the latter could be understood in terms of a
competition between the effects of bonding, spin, and the
sd promotion energies; Harris and Jones (1979b) used a
similar picture for the dimers. "Bonding" in this context
means the tendency to occupy levels that are bonding
combinations of orbitals on the two atoms, while the
"spin" contribution means the preference (Hund's multi-
plicity rule) to occupy states with high spin degeneracies.
The balance between these two effects is particularly im-
portant near the center of the row, e.g. , Cr2.

We have seen that LSD calculations give a very good
description of the bonding in H2 and Li2', this is also true
in K2 and in Cu2. For the other members of this series,
the number of low-lying states is large and all methods of
calculation pose problems. We shall illustrate these
problems by discussing Cu2 and Crz.

The Cu atom has a single 4s electron outside the 3d'
shell (ground state S,&z) and has obvious similarities to
an alkali atom. Although Pauling (1983) has proposed
that Cu—Cu is a triple bond based on the configuration
3d 4s4p for each atom, most of the evidence indicates a
4s o. ('X+ ) single bond in the ground state. It has been
shown that a carefully constructed pseudopotential in-

TABLE VII. Spectroscopic constants of Cu2 ('X~+ ).

Experiment

r, (a.u. )

4.1947'

co, (cm ')

264.55'

D, (eV)

1.97

Density functional
LMTO-GL'
LGTO-VWN
AG-VWN'
AG-Xo.'
num-Xn f

4.30
4.18
4.10
4.12
4.20

280
248
330
290
286

2.30
2.40
2.65
2.16
2.10

Ab initio
HFg

CISDg
SD(CI)'
SD(CI) + Q'
POLCI'
CIj
CAS SCF
CEPA-1g
CPF"

4.61
4.578
4.37
4.42
4.38
4.44
4.54
4.62
4.29
4.23

198

228
220
219
227
200

242

0.51
0.56
0.15
1.51
1.61
1.99
2.07
1.25
1.80
1.84

'Huber and Herzberg (1979).
Hilpert (1979). Mean of second- and third-law values.

'Harris and Jones (1979b).
dRadzio et al. (1986).
'Painter and Averill (1983).
Delley et al. (1983).
gWerner and Martin (1985).
"Scharf et al. (1985).
'Bauschlic'her (1983). Q denotes Davidson correction.
'Bauschlicher et al. (1983).
"Shim and Gingerich (1983).

corporating core-valence polarization effects results in an
excellent description of the Cu2 bond (Stoll et al. , 1984;
Flad et al. , 1985, and references therein). The picture of
the copper atom with essentially one valence electron
means that the extension to larger clusters is straightfor-
ward and should lead to reliable results (Flad et al. ,
1985).

There have been many calculations of the binding-
energy curve for Cu2, and a selection of the results is
shown in Table VII. The density functional results show
a fairly consistent picture. Improved basis sets lead to
somewhat greater bond strengths and slightly shorter
bonds. The binding energies found with the Xu function-
al are consistently lower than those found using electron
gas functionals and are in better agreement with experi-
ment. The LSD calculations show a clear tendency to
overestimate the bond strength, although the overall
description of binding is good. Ziegler et al. (1981) have
shown that relativistic effects in Xo. calculations result in
a reduction of r, from 4.27 to 4.23 a.u.

The results of ab initio calculations for Cu2 are also
shown in Table VII. Regardless of basis set used,
Hartree-Pock calculations result in a bond that is sub-
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stantially longer than the experimental value and weaker
than the measured value by —1 eV. An accurate treat-
ment of Cu2 requires a large basis set and must allow
correlation between all 3d and 4s electrons. Scharf et al.
(1985) used a size-consistent coupled pair functional
(CPF) method with relativistic corrections and a basis set
that included g functions. The agreement with experi-
ment is very good. Relativistic and unlinked cluster con-
tributions were also studied by Werner and Martin
(1985). The calculated spectroscopic constants are in
good agreement with experiment.

The calculations on the copper dimer produce a re-
markably consistent picture of the 'X+ ground state.
Hartree-Fock calculations underestimate the binding en-

ergy by —1 eV and overestimate the bond length by
more than 0.3 a.u. DiAerent schemes for including corre-
lation lead to improvements in both quantities; the most
extensive calculations give very good binding-energy
curves. LSD calculations lead to satisfactory bond
lengths and small overestimates in the dissociation ener-
gy. As in the case of H2 and Li2 (see Table V), the use of
the Xa approximation for E„, [Eq. (4.2)] leads to lower
dissociation energies than those found with electron gas
parametrizations [Eq. (4.1)]. In Cuz the difference is
0.3—0.5 eV.

The situation in Crz is very complicated. The ground
state of the chromium atom has a high spin degeneracy
( S, [3d(1'ltd t)4s(1)]), so that at large separations
there is a large spin contribution to the total energy. If
the symmetry of the molecule is assumed to be D
there is a relatively simple picture of the main contribu-
tions to bonding. The occupancy of levels that are bond-
ing combinations of the atomic orbitals favors a strong
bond at relatively short internuclear separation. An ex-
ample is the 'X+[7o 5cr„3m„2w 16 ], where all the
bonding orbitals are occupied. On the other hand,
Hund s multiplicity rule notes that states with high-spin
degeneracy are favored, an extreme case being the single
occupancy of all levels derived from the sd shell ('3X+).
In Cr2, the balance between these two tendencies is par-
ticularly delicate, as shown by the LSD calculations of
Harris and Jones (1979b). A variety of states has similar
energies.

In order for LSD calculations to give a satisfactory
description of the ground state, however, it is necessary
to lower the symmetry to C „i.e., allowing explicitly
the antiferromagnetic ordering of the spins on the two
atoms. The results of several groups who incorporated
this extension are shown in Table VIII; further discussion
is found in Painter (1986). It is apparent that a very good
description of both bond length and vibration frequency
is possible. The well-depth found in LSD calculations is
an overestimate, a situation that is becoming rather fa-
miliar. In contrast to the first-row dimers, Xo; and LSD
calculations lead to quite diferent spectroscopic con-

stants in Cr2. The Lo. bond length, in particular, is much
greater.

The Crz molecule has proved to be a source of great
difficulty for ab initio methods of electronic structure cal-
culations, even after the experimental spectroscopic con-
stants became available. Restricted HF calculations for
the 'X+ state (Wolf and Schmidtke, 1980; Goodgame and
Goddard, 1981; Atha and Hillier, 1982) indicate a
minimum at a short internuclear separation, but with an
energy far ( —20 eV) above the energy of the separated
atoms. Unrestricted HF calculations (Goodgame and
Goddard, 1981;McLean and Liu, 1983) lead to improved
energies, but give no indication of a minimum in the
binding-energy curve. The work of McLean and Liu also
showed that the energy is strongly dependent on the
choice of basis set, with f and g functions playing an
unusually important role. Complete active space self-
consistent-field (CASSCF) calculations (Walch et al. ,

1983, 3088 configurations) also give no minimum; Walch
and his colleagues estimated that such calculations would
require many millions of configurations to produce
reasonable agreement with experiment. It is then not
surprising that more modest attempts to calculate corre-
lated wave functions (Table VIII) show no signs of con-
vergence. For example, the generalized valence-
bond —van der Waals (GVB—vdW) calculations of
Goodgame and Goddard (1981, 26512 configurations)
lead to a very long and weak bond. These authors have
proposed a semiempirical extension (Goodgame and
Goddard, 1985) in which some atomic Coulomb integrals
are adjusted to reproduce the correct atomic electron
a%nities. This resulted in a second minimum in the
binding-energy curve. They also reinterpreted the exper-
imental data of Kant and Strauss (1964) to give a revised
value of D, of 2.0+0.3 eV, so that their calculated value
(1.86 eV) is within the error bars. The recent work of
Hilpert and Ruthardt (1987) provides a more precise ex-
perimental value (1.44+0.02 eV), which seems to ques-
tion the reliability of the recent modifications. The CI
calculations of Kok and Hall (1983, 3250 configurations)
give good results for r, and co„but the absence of proper
dissociation in this calculation indicates that the binding
energy (not given) would be unreliable.

5. Triatomic group-Vl molecules 0,, SO2, S3, SOS

As a further example, we study the energy surfaces of a
family of triatomic molecules containing oxygen and
sulfur, each with 18 valence electrons. The ground states
of O3 and SO2 are known to have ' A

& (Cz, ) symmetry,
with similar bond angles (116.8 and 119.4', respectively).
The absorption spectrum of ozone has also been studied
in detail, particularly for uv radiation. However, detailed
experimental information on the excited-state energy sur-
faces is not available for any of these molecules, and
theory has played an essential role in developing our un-
derstanding of them. It is worth noting that the HF ap-
proximation gives a qualitatively incorrect ordering of
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the low-lying states of 03, since there are two
configurations with substantial contributions to the
ground-state wave function. These systems then provide
ideal tests of schemes for incorporating correlation
effects. Attention has been focused in the past on the
presence of two minima in the 'A, energy surfaces and
on the energy difference between them.

In Fig. 19 we show the energy surfaces for low-lying
states of (a) O3 and (b) SO2. The ground-state geometries
are reproduced very well, and the excitation energy be-
tween the two 'A, minima (1.4 eV) is in reasonable
agreement with the most recent CI calculations, which
give results between 1.0 and 1.4 eV (Jones, 1985a). In
both molecules the bond lengths increase in the order
x 'A, ~1 B,~1 B2~2 '3, , and the bond angles in
the order 2'3, ~1 B2 x 'A& 1 B,. However, there
are qualitative differences between the energy ordering of
the states in 03 and SO&. In particular, the excitation en-
ergies of the low-lying triplet states are substantially
greater in SO2 than in O3, and the energy separation be-
tween the two 'A, states (4.1 eV) is almost three times as
large.

The bonding trends in these two molecules have been
discussed elsewhere (Jones, 1985a), where the qualitative

differences are related to the higher-lying valence p eigen-
value in sulfur. The ground state (x ' A, ) has the valence
configuration 1a23b24a, 2b &' single excitations give
states with symmetries 1 Bi (4ai~2bi) and 1 B~(la2
~2bi). The 2'2, state corresponds to the excitation
(3b2 ~2b i ). The la2 and 3b2 orbitals receive significant
contributions only from the outer (oxygen) atoms; the
corresponding eigenvalues show similar trends (Jones,
1985a). By contrast, the 4a i and 2b, eigenvalues have a
strong contribution from the central atom (0 in 03, S in

SO2). Since these lie highest among the valence eigenval-
ues mentioned above, it is not surprising that the eigen-
value spread is much larger in SO2. Assuming that the
density distributions are similar in the different states, we
can see from Eq. (4.5) that the energy difference between
them will be rejected in the difference in the eigenvalue
sum. This is consistent with the relative stability of the
ground state in SO2, it also explains the large excitation
energy of the 2 'A, state in SO2, since this state corre-
sponds to a double excitation to the high-lying 2b, orbit-
al.

This simple picture can be checked by comparing the
S3 (Jones, 1986a) and the SOS molecules (Jones, 1986b),
where the change from trimer to mixed molecule reverses

TABLE VIII. Spectroscopic constants of Cr& ('Xg+ ).

r, (a.u. )

Experiment
3.17,'" 3.1725'

co, (cm ')

470'

D, (eV)

1.56+0.3, 1.44+0.02'

Density functional
LSD-BH
LSD-VWNg
GTO-VWN"
GTO-Xa"
GTO-Xa'

3.21
3.2
3.17
5.10
5.20

450
470
441

92
110

1.80
2.80
2.6
0.4
1.0

Ab inito
RHF"
RHF"
GVB"
GVB-vdWk
MCSCF'
GMO-CI
MGVB"

2.95
& 1.5
6.14
5.78
5.93
327
3.04

750

70
110
92

396

0.13
0.3,
0.14

1.86

'Efremov et al. (1978).
Michalopoulos et al. (1982).

'Bondybey and English (1983).
Kant and Strauss (1964).

'Hilpert and Ruthardt (1987).
Delley et al. (1983). Local spin-density parametrization of von Barth and Hedin (1972).
Bernholc and Holzwarth (1983). Pseudopotential calculations.

"Baykara et al. (1984).
'Dunlap (1983). 'X+, i.e., no inversion symmetry.
"Wolf and Schmidtke (1980).
"Goodgame and 6oddard (1981).
'Atha and Hillier (1982).

Kok and Hall (1983).
"Goodgame and Goddard (1985). Shorter of two minima.
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the order of change in the central atom (S~O). The
ground state of S20 has the asymmetric bent structure
S—S—0, with asso= 1 18.26 (Tiemann et al. , 1974).
Nevertheless, LSD calculations (Jones, 1986b) indicate
that the SOS molecule should be bound, and it may be
observable as a metastable state. The calculated energy
surfaces for low-lying states of S3 and SOS are shown in
Fig. 20. In addition to the states considered in O3 and
SO2, we include the 1 A2 and 2 8& states, which corre-

spond to (3bz —&2b, ) and (laz3b2~&b&) excitations
from the ground state.

The 6rst interesting result is the near degeneracy be-
tween the two ' A, minima in S3, where the calculations
place the ring structure less than 0.1 eV below the open
form. The energy separation between the "open" and
"ring" structures in this molecule provides a sensitive
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FIG. 19. Energy surfaces for x'A& (circles), 1'8& (crosses),
1'8& (squares), and 2'3& {triangles) states of (a) 03 and (b) SO&.
For each bond angle a we show the bond length that optimizes
the energy.

FIG. 20. Energy surfaces for low-lying states of (a) S3 and (b)
SOS. The optimum bond length for each bond angle a is also
shown.
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FIG. 21. Self-consistent eigenvalues for the uppermost valence
orbitals in S3 and SOS. For each bond angle a, we show the re-
sults for the optimum bond length.

test of molecular structure methods. Rice et al. (1986)
have shown that the D» state lies lower in both HF and
CI single and double excitation (CISD) calculations (by
0.40 and 0.10 eV, respectively), while the relative stability
is reversed in CASSCF and multiple reference MR-CISD
calculations (0.39 and 0.36 eV, respectively). Similar re-
sults have been found by Ahlrichs (1986), who observed
difFerent ground states for CISD (D3h) and CPF (C2„)
methods. As in the comparison between C3 and Si3, the
O3 and S3 results indicate a tendency of second-row
atoms to favor bent geometries. A contributing factor is
the increased importance of d functions in this row. The
second striking feature is the closed ground state found
for the SOS molecule.

In Fig. 21 we show the self-consistent single-particle ei-
genvalues for the uppermost valence orbitals in S3 and
SOS, calculated for the optimum geometries shown in
Fig. 20. As may be expected from the above discussion,
the 4a

&
and 2b

&
orbitals, which receive an important con-

tribution from the central atom, lie lower in SOS than in
S3 so that the triplet states and the ring ' A, state will be
stabilized relative to the open 'A, state. This is fully
consistent with the calculated energy surfaces.

The single-particle picture means that excitation ener-
gies between states can often be associated with simple
changes in the occupation numbers. This is useful if we
calculate the energy surface for one state (e.g. , the
ground state) and note the geometries where the single-
particle eigenvalues are degenerate. The energy surfaces
for the ground state and the state corresponding to the
change in occupation numbers should then intersect near
this geometry. Such arguments must be treated with

caution, particularly if electron transfer results in a
change in spin degeneracy; however, the results are re-
markably consistent with the calculated excited-state sur-
faces in all molecules discussed in this section. It can be
seen that the LSD calculations give a very good descrip-
tion of the energy differences between different states of a
given molecule. Nevertheless, the energies required to
break all the bonds in this family are overestimated by
-2 eV. The combined molecular dynamics-density func-
tional scheme discussed below (Sec. IV.C.3) has been ap-
plied to some molecular systems, and we give some exam-
ples there.

C. Extended systems

In this section we consider some examples of extended
systems, paying particular attention to the elements we
have considered above —erst-row atoms, simple metals
(e.g., the alkaline earths), group-IV elements (C, Si, Ge),
3d transition elements, and the group-VI elements (S, Se).
We focus on the LSD description of the geometry and
the cohesive energy of these materials. For the metallic
elements with atomic numbers less than 50, nonrelativis-
tic LSD calculations within the muffin-tin approximation
have been performed by Moruzzi et al. (1978).

1. Crystalline solids

a. Alkali and alkaline earth metals

The cohesive energies calculated by Moruzzi et al.
(1978) are compared with measured values in Table III..

The cohesive energies of the group-IIa elements are also
plotted in Fig. 13. In the case of Li, similar results have
been found by Callaway et al. (1983). Vosko and Wilk
(1980) showed that the dependence of the cohesive energy
on the choice of the electron gas parametrization was of
the order of 10 mRy in the alkali metals; we also show
their results in Table III. It is apparent that cohesion in
these solids is described very well by the LSD approxima-
tion, as are the trends in the alkaline earths. However,
the calculations overestimate the strength of the binding
in the latter, as we have already seen in the dimers of
these elements. The overestimate is greatest in the case
of Be. Trends in the lattice constants are described very
well. In the case of the alkalis, the LSD calculations un-
derestimate the bond lengths by a small amount.

b. C, Si, Ge

There have been numerous calculations of the cohesive
properties of diamond, silicon, and germanium; selected
results are compared with experiment in Table IX.
Different methods of calculation and different electron
gas parametrizations lead to variations in the calculated
lattice constants, cohesive energies, and bulk moduli.
While there is a tendency for the calculated cohesive en-
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TABLE IX. Ground-state properties of diamond, Si, and Ge: lattice constant, a; cohesive energy, E„
and bulk modulus 8.

Experiment'
ASA HLb
pseud-W'
ASA-BH
BH'

a (a.u. )

6.740
6.67
6.807
6.709
6.744

Diamond

E, (eV)

7.37
8.5
7.58
8.43

a (Mbar)

4.43
4.90
4.33
4.64
4.42

Experiment'
ASA-HL'
pseud-VP
ASA-BH"
pseud-CA'

10.26
10.22
10.30
10.29
10.20

Silicon
4.63
4.8
4.84
4.94
5.28

0.99
0.98
0.98
0.95
0.94

Experimentg
ASA HLb
pseud-W'
pseud-CA

10.68
10.78
10.69
10.58

Germanium
3.85
3.6
4.02
4.67

0.770
0.660
0.730
0.730

'Cited by McMahan (1984}.
Glotzel et al. (1980). Atomic sphere approximation (ASA) with interstitial spheres.
Yin and Cohen (1981). Pseudopotential, local spin-density exchange+ signer correlation.

"McMahan (1984). ASA with interstitial spheres.
'Christensen et al. (1987).
Hybertsen and Louie (1984). Ceperley-Alder functional.
Cited by Hybertsen and Louie (1984).

ergies to increase as time passes and basis sets improve,
the overall trends are unambiguous. Lattice constants
and bulk moduli are given remarkably well, and the
cohesive energies are overestimated by up to 1.0 eV.
Phonon frequencies have also been calculated using the
so-called frozen phonon approach, where a static distor-
tion corresponding to the phonon is built into the lattice
and the total energy and atomic forces are calculated for
the corresponding supercell. In this way phonon fre-
quencies can be obtained for particular points in the Bril-
louin zone. As an example of the results, we show in
Table X some phonon frequencies for Si and Ge. The re-
sults of these parameter-free calculations diA'er from ex-
periment by only a few percent. -

c. Transition elements

The ground-state properties of 3d and 4d transition
elements have been studied in detail by a variety of densi-
ty functional calculations. Moruzzi et al. (1978) showed
that the calculated lattice constants and-bulk moduli are
generally in satisfactory agreement with experiment.
However, the cohesive energies of the 3d transition ele-
ments are overestimated substantially, particularly at the
center of the series. The inclusion of spin in the LD cal-
culations leads to improved lattice constants and bulk
moduli, but does not improve the unsatisfactory descrip-
tion of E, . In Fe, Co, and Ni, for example, the calculated
cohesive energies (6.26, 6.48, and 5.70 eV, respectively)

TABLE X. Comparison of calculated and experimental phonon frequencies (in THz) of Si and Ge at I"
and X. The values for fF {f„)were obtained from energy (force) calculations. The deviations from ex-
perimental values are given in parentheses. After Yin and Cohen (1982).

fE
fF
fexpt

fz
fF

expt

LTO(I )

15.16( —2%)

15.53

8.90( —2%)
8.89( —3%)
9.12

LOA(X)

Si
12.16( —1%)
11.98( —3%)
12.32

Ge
7:01(—3%)
6.96( —3%)
7.21

TO(X)

13.48( —3%)
13.51( —3%)
13.90

7.75( —6%}
7.78( —6%)
8.26

TA(X)

4.45( —1%)
4.37( —3%}
4.49

2.44(2%)
2.45(2%%uo)

2.40
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are much greater than the measured values (4.31, 4.41,
4.43 eV). The one-particle-like nature of the Kohn-Sham
equations (3.5) makes it possible to derive a Stoner-type
theory (Vosko and Perdew, 1975; Gunnarsson, 1976;
Poulsen et al. , 1976), which includes correlation efFects
and provides explicit equations for the Stoner parameter.
This parameter-free theory predicts correctly the pres-
ence or absence of ferromagnetism for systems such as V,
Fe, Co, Ni, and Pd; it also gives reasonable magnetic mo-
ments (Gunnarsson, 1976). Full-band-structure calcula-
tions support such a Stoner theory and give moments in
very good agreement with experiment [Callaway and
Wang, 1977 (Fe); Wang and Callaway, 1977 (Ni); Moruz-
zi et al. , 1978j.

2. Polymers

Polymers, besides having interesting and important
properties, are test systems for a whole range of theories,
particularly in statistical mechanics. The study of their
electronic structure and properties has been the subject
of much attention. It is obvious, however, that some of
the standard methods are inappropriate. Hartree-Fock
methods are known to have serious defects in extended
systems, and configuration-interaction calculations are
generally impracticable. It is possible to consider the
structure and properties of short chains, however, and
this has been done with success. On the other hand, the
above examples have shown that density functional
methods provide a convenient parameter-free scheme for
calculations on extended systems and give remarkably
good descriptions of trends in atomic properties. Poly-
mers provide a link between these two limits and are
ideal candidates for LSD calculations. Springborg and
Andersen (1987) have developed a scheme for calculating
the electronic structure of infinite chains in a helical
structure, which can be used to describe many simple po-
lymers. It has been applied to linear carbon chains
(Springborg, 1986a), to polyacetylene (Springborg,
1986b), and to polymeric sulfur and selenium (Springborg
and Jones, 1986, , 1988). An interesting example is pro-
vided by S,which allows comparison with the results of
calculations of other sulfur-containing molecules.

As shown in Fig. 22, the helical geometry can be de-
scribed by the internuclear separation r, the bond angle
a, and the torsion or dihedral angle y. An alternative
parameter set is r, the translation along the axis of the
helix h, and the rotation angle u. Special cases are the

linear chain with u =2m and the planar zigzag with u =m.
With a single atom per unit cell, the position of the nth
atom in cylindrical coordinates is given by

hR„=(x,y, z)= r cosu, r sinu„, —u +z
u

u„=nu+y .
(4.6)

If the solutions of Eq. (1) are written in terms of local-
ized functions, P„L(r), where I.—= [l,m], we may con-
struct Bloch functions:

tg(r)= lim y e' ""q„L(r),2%+1 „
(4.7)

where

fTke
u U

(4.8)

0.8-

X

x ((i 48,97)

x (4.39,85)

X

(Ii,li 0,93)x

~
(4.37,91)

& 0~-

0.2-

(4.44,98)

(4.06;82

The basis functions, i'„L (r), are the localized muffin-tin
orbital functions used in earlier calculations.

A detailed search of a three-dimensional coordinate
space for geometries ranging from linear (u =2~) to pla-
nar zigzag (u =yssss=~) to spirals with asss between 80
and 120' results in the energy surfaces shown in Fig. 23
as a function of o,sss. The energy surface is remarkably

0-
l l

80 90

X
(422,86.5 x

I

100 110

~sss[«9~

.07,85)

120

FICx. 22. Structural parameters of a helix with one atom per
unit cell.

FICi. 23. Total energy surfaces (relative to ground-state
minimum) of sulfur helix as a function of bond angle vasss.
Values of (rss~yssss) are also shown.
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flat near its minimum ( r ss =4.22 a,u. , vasss
= 109

yssss =86.5'), so that the agreement with experiment
("ss=3 90 a.u. , asss=106 0 ~ yssss=85 3', Donohue,
1974) is then satisfactory. The second minimum in Fig.
23 corresponds to the geometry rss =4.37 a.u. ,

sss 83 5 and pssss 91 . This structure has a rota-
tion angle U (124 ) that is significantly greater than that of
the ground state (107 ). The increased compression along
the axis is accompanied by an increase in the radius of
the helix and a small change in the torsion angle ( -4.5 ).
Evidence for the relative compactness of the structure at
the second minimum is the reduction in the second- and
third-nearest-neighbor distances (5.81 and 7.05 a.u. , re-
spectively) compared with the ground-state values (6.88
and 8.87 a.u. ). The calculated torsion angles for both
minima are similar to the "normal" value for sulfur
bonds (100') predicted by Pauling (1960).

The geometrical structures, the projections along the
helical axis, and the calculated energy bands for both
minima are shown in Fig. 24. The energy gap between
occupied and conduction bands is -2 eV in each case.
Since the LSD approximation usually leads to modest un-
derestimates of band gaps, a single snlfur helix in the
ground state should be insulating. The calculated dissoci-
ation energy per bond in the sulfur helix (-2.3 eV) is
also greater than the experimental estimates ( —1.5 eV;

see Tobolsky and MacKnight, 1965).
The planar zigzag and linear structures have energies

comparable to the ground state, but both lead to unfilled
bands. In the zigzag structure we find a minimum energy
for I"ss =4 2'7 a u- and +=109 5 The bond angle» very
similar to that in the ground state, and the energy is only
-O.OS eV higher. The energy surface is extremely Oat in
the neighborhood of the zigzag minimum.

The energy surfaces in Fig. 23 show similarities with
the corresponding results for S3. Bond lengths increase
as the bond angle is reduced, and the energy curves near
the minima for open structures are flatter than those in
the others. There are, however, differences between S3
and S . Small changes in bond angle in the latter can
correspond to large changes in geometry, since yssss can
also change, generally increasing with decreasing bond
angle. Furthermore, symmetry does not require an ener-

gy minimum for a bond angle of 60' in the helix, where a
larger bond angle (83.5') is favored because of the repul-
sion between next-nearest-neighbor nuclei. The calculat-
ed bond lengths are longer than in S3.

There have been a few calculations for polyacetylene
taking the full three-dimensional nature of the system
into account, using a plane-wave basis (Vogl et a/. , 1988;
Vogl and Leising, 1988) or the linear augmented plane-
wave method (Ashkenazi et al. , 1987). These calcula-
tions indicate that the dimerization of polyacetylene is
substantially underestimated in the local-density approxi-
mation (LDA). Furthermore, as for other nonmetallic
systems, the band gap is found to be too small.

3. Molecular dynamics —clusters
and disordered materials

0.5 0

k (it/v)

0.5

FIG. 24. Geometries (eleven bonds) and electronic band struc-
tures of S:(a) calculated ground-state geometry; (b) at second
minimum in Fig. 2. The projections along the helical axis and
the atomic eigenvalues are also shown.

The calculations of the energy surfaces of polymeric
sulfur lead to interesting results. However, they also
show that it is difTicult to study energy surfaces that are
so Bat that local minima correspond to quite different
and possibly unexpected geometries. The location of the
minima in energy surfaces is a general problem, and its
complexity is demonstrated in the work of Hoare and
McInnes (1983), who studied clusters of up to 13 atoms
interacting with pairwise Lennard-Jones forces. As the
cluster size grew from % =6 to %=13, the number of
minima increased from 2 to 988, with signs of an ex-
ponential increase. In fact, Wille and Vennik (1985a,
1985b) showed that, for clusters of identical particles in-
teracting with a pairwise potential, there is no known al-
gorithm for which the ground-state energy —and hence
the structure —can be found with a polynomial time
dependence. In the language of the specialists, the prob-
lem belongs to the class NP complete (non-deterministic
polynomial time complete; see Garey and Johnson, 1979)
and may be viewed as "intractable. " The determination
of ground-state structures by locating and ordering all
the local energy minima is then an impracticable proposi-
tion for all but the simplest systems. It is certainly sober-
ing to discover that the mathematicians can prove that
your basic problem cannot be solved.
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In systems where the ground state is unknown or
where there are many local minima, it is essential to de-
velop alternative methods for finding solutions that are
near to optimal. Kirkpatrick et al. (1983) noted the con-
nection between statistical physics and the minimization
of a function of many variables and suggested "simulated
annealing" based on a Monte Carlo samp1ing as a gen-
erally applicable way of findin such solutions. It has
been shown recently (Sasaki and Hajek, 1988) that this
approach can lead to nearly optimal solutions of special
XP-complete problems in polynomial average time.

Molecular dynamics (MD) provides an alternative to
Monte Carlo methods. Car and Parrinello (1985) showed
that it could be combined e8'ectively with the density
functional scheme to search large regions of con-
figuration space and locate the deeper energy minima. It
allows temperature-dependent e6'ects to be studied by a
method that is free of the common assumptions about the
nature of the interatomic forces. The DF scheme is well
suited to calculations of forces, as shown, for example, by
the work Harris et al. (1981), Satoko (1984), and Averill
and Painter (1986).

In the MD/DF approach, the density functional equa-
tion for the energy E is viewed as a function of two inter-
dependent sets of degrees of freedom, the single-particle
functions I i{j;j and the ionic coordinates [Rl j. The ener-

gy minimization is performed by using dynamical simu-
lated annealing techniques to follow the trajectories of
l g; j and I RI j given by the Lagrangian:

with the average value of the classical kinetic energy cor-
responding to the ion motions; the variation of this tem-
perature a11owed the study of a variety of thermal treat-
ments, including annealing and quenching. In Fig. 25 we
compare the pair correlation functions calculated for
liquid and amorphous forms of Si with available experi-
mental results. The differences between the phases are
striking, and the agreement between theory and experi-
ment is astonishingly good, when one considers that the
only piece of structural information used in the calcula-
tions was the volume of the unit cell. The phonon spec-
tra can also be calculated and appear to be at least as
good a description of the measured phonons as otherwise
available (Car and Parrinello, 1988).

A further example of the usefulness of this technique is
provided by the work on small clusters of S and Se by
Hohl et al. (1987a, 1988). The efFect of the cores is
represented in this case as well by a pseudopotential; the
simulated annealing technique was used to find the struc-
tures with the lowest energies. As an example, we show
in Fig. 26 the way in which the structure of the Sez mole-
cule develops from an almost linear geometry to the
stable structure. The time between successive plots cor-
responds to approximately 500 time steps of 3.4X10
sec each. It is important to note that there are very
many structures that correspond to local energy minima,
and the ability to vary the average kinetic energy of the
ions enables one to find the structure with the lowest en-

X= g p, f dr~i/, 'f, )

l

+ g ,' M, R 2I E—[I g; j, —I RI j j

theory——expt

+ gA;, f dr/;1(' —5;
lJ

and the corresponding equations of motion

(4.9)

pP;(r, t)= —
~

+ g Aikgk(r, t),
5$'(r, t)

(4.10)

orphous

Here Mr denote the ionic masses, p; are fictitious
"masses" associated with the electronic degrees of free-
dom, overdots denote time derivatives, and the Lagrang-
ian multipliers A," are introduced to satisfy the orthonor-
mality constraints on the P;(r, t). From these orbitals
and the resultant density n(r, t)=g;~P;(r, t)~ we deter-
mine E, which acts as the classical potential energy in the
Lagrangian (4.9). The artificial second-order Newton's
dynamics for the electronic degrees of freedom, together
with the assumption p; &(Mr, electively prevent transfer
of energy from the classical to the quantum degrees of
freedom over long periods of simulation.

One of the first applications of this technique was to
the study of liquid and amorphous Si (Car and Parrinello,
1987a, 1988). These authors associated a temperature

theory

t t
—-- expt

I I

T=2200 K

T=l700 K

{b } liquid
I

6

FIG. 25. Pair correlation function g (r) for (a) amorphous and
(b) liquid Si (after Car and Parrinello, 1987).
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FIG. 26. Deformation of Se5 linear chain to the calculated
ground-state structure (Hohl et aI., 1987b).

ergy in a relatively straightforward fashion. Of particu-
lar interest are the results obtained for small sulfur clus-
ters, as it is here that the structural information on small
clusters is most detailed. Sulfur crystallizes in many
more forms than any other element, and most of the
structures are ringlike clusters. Known structures are
reproduced very well, and the predictions for the un-
known structures should be reliable.

A Anal example is provided by work on the molecule
S70. This molecule belongs to the family of sulfur ring
molecules with an oxygen atom outside and can be
prepared in single crystal form. Calculations of Hohl
et al. (1989) have shown that the cyclic structure, with
the oxygen atom in a bridge position, corresponds to a
stable minimum in the energy surface. In Fig. 27 we fol-
low the motion of the molecule for 1200 time steps (each
of 1.7 X 10 ' sec) at a "temperature" (mean kinetic ener-
gy of the ions) of 2000 K. It is remarkable that the oxy-
gen atom moves outside the ring. Further motion and
cooling results in the structure shown in Fig. 27(j), the
lowest energy structure found in the simulation. The
agreement with the experimental structure is very good
(Hohl et al. , 1989).

FIG. 27. Structural changes in S70 at T=2000 K. (a) —(i) Evo-
lution of the "ring" structure into the "intermediate" structure
{Hohl et al. , 1989). The interval between each frame is 150 time
steps, each of 1.7X10 ' sec. (j) The ground-state structure
from the same perspective.

V. LOCAL SPIN-DENSITY CALCULATIONS —SOURCES
GF ERROR, MODIFICATIONS

The results of the previous section have demonstrated
some persistent, even systematic, errors in LSD calcula-
tions of energy difterences in a variety of systems. In the
present section we shall use the results of a simple model
calculation to obtain insight into the sources of these er-
rors and to describe some of the modifications of the
LSD approximation that have been developed to over-
come them. We have noted that the LSD approximation
usually describes the experimental splitting well and that
the Xn method (with a= —', ) gives splittings close to the
results of the Hartree-Fock (HF) approximation (von
Barth, 1979). We therefore focus on the exchange ener-
gy, where the presence of simple explicit formulas greatly
simplifies the discussion.
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The exchange energy can be expressed in terms of ex-
change integrals (Slater, 1960a, 1960b),

(5.1)

where W; and N are HF orbitals. Such an integral de-
pends strongly on the nodal structure of N; and N . For
instance, if +, and 4~ have different l and I quantum
numbers, the integrand oscillates and I," is reduced.
Since the LSD and Xa approximations are expressed in
terms of the charge density, they cannot be expected to
include the effects of the nodal structure in a precise way.
In fact, the values of o. needed to describe the atomic ex-
change energies show substantial variations for different
orbitals (Lindgren and Schwarz, 1972).

As an example, we consider the sp transfer in an I"

atom, where an s& electron is transferred to a p& orbital
(Jones and Gunnarsson, 1985; Gunnarsson and Jones,
1985b):

Is 2s(1'J, )2p(11111)~ls 2s(T)2p(1'1'till) . (5.2)

The change in the exchange energy due to this process is
(Slater, 1960b)

b,E = —
—,', G (2p, 2p)+ —,'G'(2p, 2s),

where the Slater integrals G are defined by

(5.3)

G "(i,j)=e f dr r f dr'(r')i

X y, (r)y&(r)y, (r')@J(r') . (5.4)

Here r & (r & ) is the smaller (larger) of r and r', and y, (r)
is the radial part of 4;(r). The first term in Eq. (5.3) is
the exchange interaction between a p electron withI = —1 and two p electrons I =1 and 0. The second
term is the interaction between an s electron and two p
electrons. The integrand of (5.1) corresponding to the p-p
interaction has two nodal planes as a function of r, while
there is only one nodal plane for the s-p interaction,
which is larger as a result. Using realistic values for the
Slater integrals, we find that AE -6 eV. The Xa calcu-
lation, however, gives similar radial extents for the s and

p orbitals. If the radial parts are identical and we neglect
small nonspherical corrections, the Xa approximation
predicts that the exchange energy is unchanged by the sp
transfer. It is not surprising then that the Xu prediction
for the sp transition energy differs from the HF result by
6 eV. The Xo, and the LSD approximations give similar
sp transfer energies in this case. The deviation between
the LSD result and experiment is, however, reduced to
2.6 eV, since the large change in the exchange energy is
partly compensated by a change in the correlation ener-
gy. Below we discuss several cases in which similar er-
rors occur.

A. A simple model problem

We have performed extensive LSD and Xcz calcula-
tions for atoms and compared the results with HF calcu-
lations and experiment (Gunnarsson and Jones, 1985b).
The differences between the Xa and HF results are
reproduced remarkably well by model calculations where
we isolate the effects of the I dependence of the orbitals
by assuming that the s, p, and d orbitals have the same
radial dependence. With this assumption G depends
only on k. For the 3s orbital in Ca we find the numerical
relations

and

G1 G2
Go

0.680 0.516
G3 G4

0.414 0.344
(5.5)

fdr E, [n (r), 0j =0.451G (5.6)

where n(r) is the charge density due to a Ca 3s electron.
Similar coefficients are obtained for the orbitals of other
elements of the iron series. The unphysical self-
interaction —G /2 is canceled to within about 10%. In
Fig. 28(a) we compare the Xa and HF exchange energies
as a function of the number X of spin-up electrons. In
the HF case the shells are filled in the order s, p, d, and
within each shell in the order nz, I —1, . . . , —m. In the
Xo.'case the small nonspherical contributions are neglect-
ed. The Xcx and HF results agree remarkably well. The
results are consistent with the finding (Schwarz, 1972)
that HF exchange energies in atoms are reproduced for
values of a slightly larger than —', . Figure 28(b) shows re-
sults for the interelectronic exchange energy, for which
the self-interaction has been subtracted. With the filling
order s, p, d, the Xcx and HF results are in rather good
agreement, with the magnitude of the Xu results being
somewhat larger. Figure 28(b) also shows results for oc-
cupations where a subshell is left empty. This does not
inhuence the Xo. results in the present model, but it has a
strong effect on the HF results. For instance, the curve
"s shell empty" is lower than the curve corresponding to
the s, p, d filling, since the p-p exchange interaction is
smaller than the s-p interaction. It follows from the
orthogonality of the HF orbitals that the exchange hole
contains one electron; a similar sum rule is also satisfied
by the LSD and the Xu approximations (Gunnarsson and
Lundqvist, 1976). Aspects of orthogonality and node for-
mation are then included in all these schemes, although
Fig. 28(b) shows that the sum rule does not guarantee a
good description.

This model problem illustrates two important con-
clusions: (1) If we occupy the orbitals with the minimum
number of nodal planes consistent with the Pauli princi-
ple, the trends in the interelectronic exchange energies
are reproduced well by the Xn approximation. The abso-
lute value is overestimated in all the systems we have
considered. (2) The energy for the transfer from such a
state to a state with one additional node is often underes-
timated substantially in the Xo, approximation.

Rev. Mod. Phys. , Vol. 63, No. 3, July 1989



722 R. O. Jones and Q. Gunnarsson: Density functional formalism

1. First-row atoms bE;„,=E;„,(N = 1 ) +E;„,(X=m —1)

In Fig. 9 we showed results for 6, for first-row atoms
and ions. It can be seen that the LSI3 approximation
agrees well with experiment for Li-N and for Be+-0+,
while there are large deviations for 0, F, F+, and Ne+.
A comparison of the Xo.'and HF shows a very similar
trend, supporting our focus on the comparison of the Xo,
and HF calculations. The sp transfer in Be-C and B
N+ involves a spin Aip. The weaker spin dependence in
the LSD approximation therefore leads in these systems
to substantially larger values for 6, than in the Xu ap-
proximation. This effect accounts for the substantial
correlation contribution to the sp transfer energy for
these systems.

We now interpret these results using the model calcu-
lation described above. For the atoms Be-C, a 2s(1)
electron is transferred to a 2p (1) orbital. If the number
of valence electrons is m, the change of the interelectron-
ic exchange energy due to the sp transfer is

—E„;„„(X=I). (5.7)

In this case all energies refer to the filling order s, p.
From Fig. 28(b) we therefore expect the Xa approxima-
tion to give rather good results, and this is confirmed in
Fig. 9(b). For N-F, a 2s($) electron is transferred to a
2p($) orbital. The change of the interelectronic ex-
change energy of the spin-down electron system is

hE, ;„,=E„;„,(X=m —4)

E, ;„—,(X=m —4, s shell empty) . (5.8)

For the nitrogen atom, X =1 and Fig. 23(b) predicts an
accurate result, while for 0 and F it predicts large errors,
in agreement with the results in Fig. 9(b). Thus Be-C il-
lustrate conclusion (1) and 0-F conclusion (2). We note
that the large variation in the error across the row is due
to the difterent types of configurations involved and not
to intrinsic differences between the atoms.

For the ionization of a first-row atom, we can similarly
express the change in the exchange energy in terms of the
energies in Fig. 28. This shows that only energies for
configurations with the filling s, p are involved, consistent
with the good agreement between the Xa and HF results
and between the LSD results and experiment for the ion-
ization energy.

In the HF approximation, configurations such as
2s'2p' and 2s'2p have the same multiplet structure,
with the splitting determined by the same linear corn-
binations of Slater integ rais. In this sense, these
configurations show electvon-hole symmetry. This is not
present in the Xa and LSD approximations (Gunnarsson
and Jones, 1980b), although an ad hoc modification of the
LSD approximation leads to similar errors for the 2s'2p '

and 2s'2p configurations. The errors due to the lack of
the electron-hole symmetry can also be analyzed in the
above framework. It is interesting that for all cases in
which the errors were found to be large, configurations
with a filling order other than s, p, d are involved.

C
X

2

FICz. 28. Exchange energies in model described in text. {a)E„
(dashed curve) and E„"(solid curve) as a function of the num-
ber X of electrons (in units of —Go); (b) the interelectronic ex-
change E;„, for the Xcz and Hartree-Fock (HF) approxima-
tions. gn the HF approximation we show the dependence for
di8'erent schemes of occupying the orbitals.

2. Iron-series atoms

Figure 10 shows results for 5,d for the neutral atoms
and for the ions. As for the first-row atoms, the devia-
tions between the Xa and the HF approximations are
similar to the ones between the LSD approximation and
experiment. The overall trends are reproduced well by
the Xa and LSD approximations; the break in the middle
of the series, due to the filling of the spin-up d shell, is de-
scribed well. For the neutral atoms, however, there are
substantial differences between LSD-expt and Xe-HF,
which are approximately constant across the series. For
the ions this difference is much smaller.

To understand these results, it is helpful to study first
the Mn atom, which provides a particularly simple exam-
ple. In the transition
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[core]3d( 1' 1'11'1')4s(11)—+[core]3d( 71111'l)4s(1)

(5.9)

the only spin-down valence electron is transferred from a
4s to a 3d orbital. Within the Xo. and HF approxima-
tions this electron has no exchange interaction with any
other valence electron, and these approximations might
be expected to give similar results. Figure 10 shows,
however, a di6'erence of about 2 eV, which can be traced
to the description of the exchange interaction between
the 3d spin-down electron and the 3s3p core. Figure
28(b) shows that this interaction should be described fair-
ly well, and the relative error is only —13%. The abso-
lute error is nevertheless substantial, because the 3d elec-
tron has a similar spatial extent to the 3s and 3p electrons
and interacts strongly with them. For all the other atoms
the Xa result is also influenced by interaction with other
valence electrons, but the eIII'ect is not large and the net
error is relatively constant across the series. For the
ions, the 4s electron removed has spin-up, and its interac-
tion with the 3d electrons plays a more important role.
The error in the 4s-3d interaction tends to cancel part of
the error in the 3d core interaction, thereby explaining
the smaller errors for the 3d ions (Gunnarsson and Jones,
1985b).

3. Small rnolecules

0.06

0.04
3~u

—0.02—Q

X
LLj
cg

0.00 =

-0.02

FIG. 29. Difference AE (R) between the exchange energies in
the Xu and Hartree-Pock approximations as a function of the
internuclear separation R for di6'erent states of the Liz mole-
cule. For the ground state the equilibrium separation is R =5
a.u. The dashed curve shows the result for two free Li atoms.
All energies are in Ry.

The ground state of Hz and the alkali dimers is a
'&g [o's(T l)] bond between the valence s orbitals. The
strength of the bonds in Hz and Li2 is shown in Table V.
This is another case in which the Xo: approximation
reproduces the HF result well and the LSD approxima-
tion is in satisfactory agreement with experiment. This
shows that the Xo, approximation gives a good descrip-
tion of the changes in the self-interaction during the for-
mation of this o. bond, and that the LSD approximation
accounts for the substantial change in the correlation en-
ergy.

The X„+[os(T)o.„(1')] state is repulsive, except for a
weak minimum at large distance. It may appear that this
should be a more favorable case for the LSD approxima-
tion than the 'X+ state, since the correlation energy is
small and there is no spin Aip involved in the bond for-
mation. However, the LSD approximation overestimates
the binding energy by 0.5 eV. We have studied this ques-
tion in a model problem and traced the error to the in-
terelectronic interaction (Gunnarsson and Jones, 1985b).
For small internuclear separations, the o, orbital goes
over to a p orbital. The o. -o.„ interaction therefore
shows similarities with the s-p interaction described
above, with a moderate overestimate of the interelectron-
ic exchange energy in both cases. A similar situation
occurs in He2 and for the group-IIa dimers, for which the
LSD approximation overestimates the bond strengths
(Sec. IV.B.2). These examples also illustrate our con-
clusion (1).

Figure 29 shows the results of a model calculation for
Li2, using Slater orbitals for the description of the

valence orbitals. The figure compares the deviation
hE (R) of the Xo. exchange energy from the HF result
as a function of the internuclear separation R. The devi-
ation of a given curve from the ground-state curve ('Xg+,
thick curve) gives the error in the corresponding excita-
tion energy. The curves fall into two groups. For the
states X„+, 'X+ 6„, and H„, the integrand in the
relevant exchange integra1 has one nodal plane. The de-
viation from the dashed line in Fig. 29, representing the
error for separated atoms, shows that the magnitude of
the interelectronic exchange energy is moderately overes-
timated. Since the number of nodes is the minimum con-
sistent with the Pauli principle, this is in agreement with
conclusion (1). For the remaining states II and X the
integrand of the exchange integral has two nodal planes.
As one expects from conclusion (2) in Sec. III, the magni-
tude of the interelectronic exchange energy is overes-
timated greatly in these cases. The remaining first-row
diatomic molecules were discussed by Gunnarsson and
Jones (1985b).

It is interesting to ask how the inclusion of correlation
inAuences the discussion, since many of the transitions
discussed here involve substantial changes in the correla-
tion energy. When these changes are related to changes
in the spin density, the LSD approximation often pro-
vides an adequate description, examples being the atoms
Li-C in Fig. 9. For cases in which differential correlation
eAects are not related to large changes in the spin densi-
ty, however, the LSD approximation can fail badly. An
extreme example is the sp transfer in F, which involves a
change in correlation energy of about 3 eV, which is al-
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most entirely absent in the LSD approximation. An ex-
act HF calculation together with an LSD description of
correlation is therefore not a general alternative.

We have demonstrated that the nodal structure of the
wave functions can have a great effect on the accuracy of
the LSD approximation, and we have identified classes of
problems in which the LSD results must be treated with
caution. For states with the minimum number of nodal
planes consistent with the orthogonality of the orbitals,
the LSD approximation usually leads to a moderate
overestimate of the exchange-correlation energy. For
states with additional nodal planes the exchange-
correlation energy is often greatly overestimated. In
atoms, the depopulation. of s orbitals can lead to large er-
rors; similar effects may be expected in bonding situa-
tions in which sp or sd hybridization reduces the s occu-
pancy.

A comparison of the results of density functional and
Hartree-Fock calculations is the basis of recent work of
Cook and Karplus (1987). They noted that some of the
most serious errors in HF calculations occur because the
single-determinant molecular wave function does not in
general aHow a molecule to dissociate into neutral atoms.
Expanding a single-determinant HF wave function in
terms of atomic orbital determinants typically results in
high-energy ionic configurations. The HF energy curve
then rises too steeply and to an asymptote that is too
high. A detailed study of some low-lying states in Oz
showed that much of the error in the HF calculations
could be explained in this way. In contrast, the DF for-
malism focuses on the density, i.e., the square of the wave
function; both the "covalent" and the "ionic" contribu-
tions produce densities characteristic of neutral atoms.
In particular, the LSD approximation can describe the
dissociation of a diatomic molecule, if an "antiferromag-
netic" spin polarization is allowed.

B. Modifications to local-density approximations

It is natural that there have been many subsequent sug-
gestions for correcting some of the defects of local-
density calculations. In the remainder of this section, we
discuss representative examples of three types: (1) those
based on the exact equation of the exchange-correlation
energy [Eq. (3.9)]; (2) those derived from self-interaction
corrections; and (3) those developed from a wave-vector
analysis of the exchange-correlation energy.

1. Approximations based on an exact equation for E„,

The equation for the exchange-correlation energy [Eq.
(3.11)] shows that the difFerences between the exact and
the approximate exchange holes are largely due to the
nonspherical components of the hole. Since these do not
contribute to E„„ total energies and total energy
differences can be remarkably good, even in systems
where the density distribution is far from uniform. In the
LD approximation we assume that the exchange-
correlation hole n„,(r, r —r') depends only on the charge
density at the electron. It would be more appropriate to
assume (Gunnarsson et a/. , 1976, 1979) that n„, depends
on a suitable average n (r),

n„,(r, r' —r)=n(r) JdAIgi, [r r', A—, n(r ,}] 1I —. (5.12)

It is possible to choose the weight function that deter-
mines n(r) so that the functional reduces to the exact re-
sult in the limit of almost constant density. Approxima-
tion (5.12) satisfies the sum rule (3.12). Somewhat
diferent prescriptions for the weight function have been
proposed (Gunnarsson et a/. , 1976, 1979; Alvarellos
et a/. , 1986). The approximation gives improved results
for total energies of atoms, but otherwise has not been
tested extensively.

An alternative approximation is obtained if we keep
the proper prefactor n(r') in Eq. (3.10), leading to the
so-called weighted density (WD) approximation:

The early work of Hohenberg, Kohn, and Sham intro-
duced the local-density approximation, but it also point-
ed out the need for modifications in systems where the
density is not homogeneous. One modification suggested
by Hohenberg and Kohn (1964) was the approximation

E„,=E„", —
—,
' Jdr Jdr'K„, r r',n—

n„,(r, r' —r) =n (r')G [rr —r'r, n(r)], (5.13)

where n(r) is chosen to satisfy the sum rule. (3.12) (Alon-
so and Girifalco, 1977a, 1978; Gunnarsson et al. , 1977,
1979). Different forms have been proposed for G(r, n).
We now discuss an analytic form (Gunnarsson and Jones,
1980a), which is computationally simpler and can be
chosen to give exact results in certain limits. We assume
that

X [n (r) n(r')]— (5.10) G(r, n)=C(n)I 1 —exp[ —A(n)/~r~ ]], (5.14)
where the kernel K„, is related to the dielectric function
of a homogeneous medium. This approximation is exact
in the limit of weak density variations

n (r) =no+ bn (r), (5.11)

where rb, n(r)r ((no, but the results for real systems are
not cncoul ag1ng. For fI'cc atoms thc cncrgy 1s infinite
(Cxunnarsson et a/. , 1979), indicating that the sum rule
(3.12}is not satisfied. n drG r, n = —1, (5.15)

where C and A, are parameters to be determined. The
functional G behaves as err for large distances, which
is needed to obtain an image potential. For a homogene™
ous system with density n, we require that the model
functional should both fulfill the sum rule for n(r)=n
and give the exact exchange-correlation energy. This
leads to two equations
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e 1dr 6 r, n =c„n
2 I

(5.16)

which are sufhcient to determine the two parameters
C ( n ) and A(n, ).

This functional is exact in several limiting cases: (1)
for a homogeneous system; (2) for one-electron systems,
such as the hydrogen atom, where it gives an, exact can-
cellation of the electron self-interaction; (3) for an atom,
where it gives the correct behavior of the exchange-
correlation energy density far from the nucleus,
s„,(r) = e /—2r; (4) for far outside the surface, where it
gives the image potential s„,(z)= —e /(4z). The LSD
approximation gives qualitatively incorrect answers for
cases (3) and (4), and the cancellation in case (2) is only
approximate. Since (2) is satisfied, this approximation
provides a "self-interaction correction" in the sense that
we shall discuss below. In Fig. 30 we show an applica-
tion of this approximation to the total energy of atoms.
The errors in the WD approximation are about an order
of magnitude smaller than those in the LSD approxima-
tion. However, the sp and sd transfer energies are disap-
pointingly little improved over LSD results.

The position of the image plane at a surface has been
calculated within the WD approximation in two ways:
(1) from the asymptotic behavior of the exchange-
correlation potential (Ossicini et al. , 1986); (2) from the
centroid of the image charge (Ossicini et a/. , 1987). The
second calculation appears to be more reliable. Borstel
et al. (1981) and Przybylski and Borstel (1984a, 1984b)
have used variations of the WD approximation in studies
of Rh, Cu, and V. For Rh they found that the WD ap-
proximation correctly shifts unoccupied bands upward.
For Cu they obtained an improved description of the d
band and the Fermi surface, while for V the errors in the
LSD approximation for the Fermi surface were substan-
tially overcorrected. For semiconductors it was found
that there is either only little (Si, Hybertsen and Louie,
1984) or no (GaAs, Manghi et al. , 1983) improvement
over the LSD approximation for the band gap.

The weighted density models provide a link between

c,„, the density-density correlation function, and the
response function of a homogeneous system. By using
these equations and the Auctuation-dissipation theorem
[which relates the structure factor to the static local-field
correction to the random-phase approximation (RPA)],
Chacon and Tarazona (1988a) proposed recently a self-
consistent scheme for determining properties of the elec-
tron liquid. Results for correlation energies are in good
agreement with other calculations, and the surface ener-

gy values are close to the LD results (Chacon and Tara-
zona, 1988b).

Perdew (1985) and. Perdew and Yue (1986) have stud-
ied the exchange hole using a second-order gradient ex-
pansion. The hole has a spurious, undamped, long-range
oscillation. Perdew imposed the condition that the ex-
change hole never be positive and cut it off at a radius
where the sum rule (3.12) is satisfied. Integrating this
modified exchange hole [see Eq. (3.9)] led to greatly im-
proved exchange energies for atoms.

2. Self-interaction corrected approximations

In the DF formalism each electron interacts with itself
via the Coulomb electrostatic energy. This nonphysical
interaction would be canceled exactly by a contribution
from the exchange-correlation energy in the exact for-
malism. In the LSD approximation this cancellation is
imperfect, but numerically rather good. To illustrate, we
consider the H atom (Gunnarsson et al. , 1974). For this
one-electron system the electron-electron interaction en-

ergy should be zero. The electrostatic energy is about 8.5
eV, which in the LSD approximation is canceled to about
95% by the exchange-correlation energy (8.1 eV).

The incorrect treatment of the self-interaction in ap-
proximate functionals has led a number of people to con-
sider self-interaction corrected (SIC) functionals. Such a
correction was studied in the context of the Thomas-
Fermi approximation (Coulson and Sharma, 1962), the
Hartree approximation (Cowan, 1967), the Hartree-Slater
approximation (Lindgren, 1971), and the LSD approxi-
mation (Perdew, 1979; Zunger et al. , 1980; Perdew and
Zunger, 1981). Within the LSD approximation the SIC
functional takes the form

0.10

uj
0.05

a

LSD / WD
+sic +LsD[p~(r)'pi(r)] X ~

iver

where ELsD is the LSD energy functional and

5 = J dr J dr' +E"sD( 0) (5.17)

Be 8 C N 0 F Mg Ar

FIG. 30. Error in the total energy of a free atom as a fraction
of the exchange-correlation energy in the local spin-density
(LSD) and the weighted density (WD) approximations (see Gun-
narsson and Jones, 1980a)..

is the self-interaction correction (SIC) for the orbital i
with spin o and charge density p, (r). The first term in
(5.17) is the self-interaction energy; the second is the LSD
approximation to the exchange-correlation energy of a
fully spin-polarized system with density p, (r). This
functional is exact for a one-electron system. It leads to
the equation
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g2
V + V(r)+ Vs' (r) g; = g A, ;,y.

where V(r) is the efFective potential (3.4) entering in a
normal LSD calculation and Vs' (r) is additional poten-
tial resulting from the term (5.17). This potential is orbit-
al dependent, and the Lagrange parameters k; must be
introduced to ensure that the solutions y, (r), sometimes
referred to as "local orbitals, " are orthogonal. The SIC
approximation is not invariant under a unitary transfor-
mation of the orbitals, and Harrison (1983) found that
the results for atoms depend on whether one uses orbitals
in the spherical harmonic set (s,p„po,p „.. . ) or in the
Cartesian set (s,p„p,p„. . . ). Pederson et al. (1984,
1985) and Pederson and Lin (1988) proposed that the lo-
cal orbitals leading to the lowest total energy should be
used. This leads to the requirement (Pederson et al. ,

1984) that

(5.18)

One can also introduce a set of orbitals satisfying (Peder-
son et al. , 1984, 1985)

g2
V' + V(r)+hV, . ' (r) g,. = P E; g

l

The potential felt by the orbitals P; =g M, cp is ex-

pressed in terms of the local orbitals qo

b, V;' (r)g; = gM, V. ' (r)y (r) .

From the condition (5.18) it follows that the matrix E, .

can be diagonalized. The resulting orbitals are referred
to as canonical and correspond to the solutions of the
normal LSD equations. The corresponding eigenvalues

E, satisfy the relation BE/Bn, =e; [cf. Eq.. (6.2) below;
Pederson et al. , 1985] and they are interpreted as excita-
tion energies. For extended systems these eigenvalues
provide a band structure.

We now turn to the application of SIC-LSD calcula-
tions to specific systems. Calculations for atoms have
been performed by Perdew (1979), Zunger et al. (1980),
Gunnarsson and Jones (1981),Perdew and Zunger (1981),
Harrison (1983), Harrison et al. (1983), Heaton et al.
(1986), and Pederson and Lin (1988). The errors in the
total exchange and correlation energies are much less
than those obtained with the LSD approximation. For
Ne, for instance, the exchange energies are 337.8, 297.6,
and 329.5 eV in the SIC-LSD, LSD, and exact calcula-
tions, respectively (Perdew and Zunger, 1981). The cor-
responding correlation energies are 11.4 (SIC), 19.9
(LSD), and 10.0 eV (exact). Unfortunately, ionization
and transfer energies of atoms are not generally better in
the LSD-SIC approximation, at least if nonspherical
corrections are neglected. The improved total energies in
SIC calculations can be traced, in fact, to a much better
treatment of the innermost core electrons (Gunnarsson
and Jones, 1981), which play a relatively minor role in

most chemical and physical processes of interest.
The exchange-correlation potential usually becomes

' more attractive and the eigenvalues are lowered when the
SIC is introduced. Lindgren (1971) compared the Xa
(a= —', ), SIC, and HF approximations for atoms and
showed that the SIC approximation gave exchange-
correlation potentials and eigenvalues in substantially
better agreement with the HF results than those obtained
with the Xa approximation. Similarly, Perdew (1979),
Zunger et al. (1980), and Perdew and Zunger (1981)
showed that the SIC-LSD eigenvalues are in much better
agreement with experimental ionization energies than the
LSD eigenvalues. Since atomic excitation energies are
most reliably calculated from total energy differences, the
significance of these observations is not immediately ob-
vious. It is, however, an interesting question how these
effects inhuence the eigenvalues in solids, where the ei-
genvalues are traditionally interpreted as excitation ener-
gies.

In the application of SIC to solids, the choice of orbit-
als in Eq. (5.17) is an important question. If Bloch orbit-
als are used, the SIC is zero, while localized orbitals give
a finite correction. The requirement that the energy
should be minimized with respect to the orbitals y re-
moves this arbitrariness, but it is dificult to implement
for solids. Much of the work for solids has therefore re-
lied on particular forms for y, e.g. , atomic orbitals or
some type of Wannier orbitals. Heaton et al. (1983)
studied Ar and LiC1 crystals expressing the SIC in terms
of approximate Wannier functions. The band gap was
found to be substantially better than that in the LSD ap-
proximation. For LiCl the band gap is 10.6 (SIC), 6.0
(LSD), and 9.4—9.9 eV (expt. ); for Ar it is 13.5 (SIC), 7.9
(Xa,a= —', ), and 14.2 eV (expt. ) (Heaton et al. , 1983;
Heaton and Lin, 1984). In these systems the great im-
provement of the gap is related to an improvement of the
eigenvalues for the corresponding free atoms.

A longstanding problem in the DF formalism is the
description of localization, for instance, in a Mott insula-
tor or in the n-y transition in Ce due to the Kondo effect.
For systems with a half-filled band the LSD approxima-
tion can describe localization effects as a transition to a
magnetic state. If the system is completely polarized, the
bonding and antibonding orbitals are equally occupied
and the contribution of this band to cohesion is lost. The
system can then also open up a gap. The Mott transi-
tions in solid H (Kelly et al. , 1982; Min et al. , 1986),
MnO (Andersen et al. , 1979), and a phase transition in
Am (Skriver et al. , 1978) have been described in this
way. For a general band filling, however, the LSD ap-
proximation cannot describe such localization effects,
while this is possible in the SIC approximation (Svane
and Gunnarsson, 1988a).

Due to the orbital dependence of the SIC potential,
broken-symmetry solutions for the local orbitals can be
found where each one-particle solution localizes at a par-
ticular site and experiences a more attractive potential at
this site. Depending on the strength of the hopping in-
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tegrals and the Coulomb repulsion on the site, such a
solution may or may not remain locahzed in a self-
consistent treatment, as one expects for a system with a
Mott transition. These arguments do not assume any
particular band 61ling. The method has been applied to
the one-dimensional Hubbard model, for which the exact
solution is known (Lieb and Wu, 1968). The band gap,
the total energy, the local moment, and the momentum
distribution are described substantially better than in the
LSD approximation (Svane and Gunnarsson, 1988a).
The comparison of SIC, LSD, and exact band gaps in
Fig. 31 illustrates the large improvements resulting from
the SIC approximation. In these calculations it is essen-
tial that the SIC equations are allowed to determine the
localization of the one-particle solutions (local orbitals)
and that no particular assumption about the extent of the
solutions is made.

The tendency to antiferromagnetic moment formation
can be underestimated severely by the LSD approxima-
tion. One example is the one-dimensional Hubbard mod-
el mentioned above, and another is provided by the high-
T, superconductors, where the Stoner parameter I is at
least a factor 2—3 too small (Zaanen et a/. , 1988). Svane
and Gunnarsson (1988b) performed calculations for a
simple model of La2Cu04, which includes the important
x -y orbital of Cu and the 2p orbitals of 0, pointing to-
ward the Cu atoms. It was found that the tendency to
antiferromagnetism is greatly enhanced in SIC, com-
pared with the LSD approximation, and that the experi-
mental moment may even be overestimated by SIC.

3. Wave-vector analysis

In an early calculation of the correlation energy of an
infinite electron gas, Nozieres and Pines (1958) demon-
strated the advantage of separating contributions from
regions with different momentum transfers. This ap-
proach has been followed by Langreth, Perdew, and co-

l.00

workers in the present context. Their starting point is
also Eq. (3.9), expressed in reciprocal space (Langreth
and Perdew, 1975, 1977):

E„,= I E„,(k)k dk,
2m

(5.19)

(5.20)

X[&(r')—(8'(r') & ]& e'""
(5.21)

As in Eqs. (3.9) and (3.10) there is an integration over the
coupling constant A, ; an external, A,-dependent potential is
introduced to keep the density A. independent. The densi-
ty operator is given in given by 8'(r), and ( &I is the ex-
pectation value evaluated for the coupling constant A,.
The equivalence to Eq. (3.9) follows from the relation
between the Fourier transform of SI (k) and
(8'(r)&i(n(r')&Ig(r, r', k). Equation (5.19) makes it pos-
sible to discuss the contributions to E„, from Auctuations
of different wave vectors k. Such an approach was used
by Nozieres and Pines (1958) for the homogeneous elec-
tron gas. It is useful that different approaches can be
used for small and large values of k and that exact results
can even be found for k =0 and k —+ ~ in certain cases.
Langreth and Perdew (1975, 1977) applied this approach
to the surface energy of some simple model surfaces to
discuss the LD approximation. Since this work later
developed into a new general approximation (Langreth
and Mehl, 1981, 1983; Perdew, 1986), we describe it
briefly.

For the infinite barrier model considered by Langreth
and Perdew (LP), where the potential is assumed to be
constant inside the surface and infinite outside, a many-
body . calcula'tloI1 witl1111 tile RPA (Wlkbol g aIld
Inglesfield, 1975) showed that the contribution bE„,(k)
to the surface energy behaves as

(5.22)

0.00
0.00 1.00 2.00 3Q0

Ul4t
400 5Q0

FIG. 31. Band gap Eg for the one-dimensional Hubbard model.
The hopping parameter is t and the on-site Coulomb interaction
is U. The antiferromagnetic (AF) local spin-density (LSD), the
self-interaction corrected (SIC), and the exact results are com-
pared (Svane and Cxunnarsson, 1988a).

) (k)= 2k~k bE„,(k)1

2~2
(5.23)

for small values of k. Here co is the bulk-plasmon fre-
quency and co, =co~/&2 is the surface-plasmon frequen-
cy. The divergent result (5.22) contrasts with the LD
result for small k (a constant), but the efFect of this
difference is strongly reduced by the volume element k
in Eq. (5.19). Since short wavelength fluctuations are in-
sensitive to density variations, the LD approximation
gives the exact result for large values of k. In Fig. 32 we
show results for
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-
I

).5 —!

I I I
l

I I I I mensionless quantity in parentheses has a LD contribu-
tion —c„/c. , which is of the order 1 for typical densi-
ties, and a correction term 58'. Langreth and Mehl as-
sumed that, apart from the local Fermi wave vector the
system could be characterized by a single inverse length
scale q. For a surface, the characteristic length is the
healing length of the surface layer; for a tightly bound
atomic orbital, it is the size of the orbital. Langreth and
Mehl also assumed that

lO 2

5W[kF]=Z(kF, q) q

kF
(5.25)

0.5

where the quantity q /kF was factorized out to show
that the LD approximation becomes exact when q ~0,
and defined

l&kF(r) I 1
~

V'n(r)
~q(r)—=—

2 kF(r) 6 n(r)
(5.26)

0.5
/2k F

FICx. 32. Wave-vector analysis of the surface energy AE„,
= f d (q/2kF)y(q) in the random-phase approximation for the

infinite barrier model with r, =2.07. The local-density result is
given by the solid curve, the k~O result [Eq. (5.22)] by the
dashed-dotted line, and the interpolation by the dashed line.
After Langreth and Perdew (1975).

as a function of k/2kF, where kF is the Fermi wave vec-
tor and y(k) has been defined so that the surface energy
is the area under y(k). The solid curve shows the LD re-
sult, using RPA data for homogeneous electron gas to
define the LD approximation. The figure also shows an
extrapolation of the exact result (5.22). Langreth and
Perdew interpolated between the exact k =0 result and
the k —kF LD result; the resulting surface energy agreed
well with the exact RPA result. The dashed curve is
therefore probably a good approximation to the exact
y(k) in RPA and suggests that the LD approximation
works well for values of k that are not too small. The
LD approximation, however, fails qualitatively for small
values of k, although the consequences for the surface en-

ergy are relatively small. In view of the good result for
the interpolation procedure, it would also be interesting
to apply an approach of this type to other systems. The
method relies, however, on the knowledge of the small-k
result (5.22) and on the interpolation method. A more
general approach was provided by Langreth and Mehl
(LM; 1981, 1983).

Following LM (1983) we write

Z(kF, q)= f z(kF, q, k)dk,
0

(5.27)

divided z into an exchange z and a correlation z, contri-
bution, and introduced a simple approximation based on
an analysis by Langreth and Perdew (1979, 1980, 1982)
for z(kF, q, k).

Here we follow Langreth and Vosko (LV, 1987), who
studied an almost homogeneous electron gas with the
density

1n(r)=no+ —g 5n&e'~', (5.28)

where

~n(r) —
np~ ((np (5.29)

and Q is the volume of the system. The correction to the
LD approximation is given by (Sham and Kohn, 1966)

nE„= y PC„,(Q) —SC„,(0)]~nno~', (5.30)

where K„ is determined from the dielectric function

4~e' Xp(Q)
s( )=1-

Q~ 1 —K„,(Q)gp(Q)
(5.31)

where y0 is the response function for noninteracting elec-
trons. The function K„, was rewritten as

For su%ciently slowly varying densities the gradient ex-
pansion is correct. Since q -0 for such a system, the gra-
dient expansion is recovered by the choice (5.26) of LM if
Z(kF, q =0) is given the appropriate value. To deter-
mine the q dependence of Z(kF, q), LM used a wave-
vector analysis of the type described above,

E„,[kF]= 3 fdr kF
4~

+6W[kF], (5.24)
Ex

2

K„,(Q) —K„,(0)—: Z(k/, Q)Q
8kF4

(5.32)

where the local Fermi wave vector kF(r) = [3~ n(r)]'~ is
used as the basic variable instead of n(r). The electron
gas exchange energy c has been factorized out; the di-

It is now clear that for Q-O, the LM formula (5.25)
gives the exact result for the density (5.28), if
Z ( kF, O) =Z( kF, 0). HowcvcI, fol a den'stty wltll vcl y
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weak variations of the type (5.28), the prescription (5.26)
for q gives a poor estimate. For finite values of Q the LM
functional is therefore not exact even for densities of the
type (5.28) and (5.29). Langreth and Mehl argued that
this is irrelevant since the approximation in practice has
to be applied to systems with much stronger density vari-
ations than (5.29).

Langreth and Vosko calculated the wave-vector
decomposition of the correlation part of Z,

4V 3 —2+3 k/kTF
7

TF
(5.36)

where kTF is the Thomas-Fermi wave vector. This inter-
polation formula is shown by the dashed curve in Fig. 33.
The function z„(kI,Q, k) grows linearly with k for small
k and has a weaker dependence on Q than does z, .
Langreth and Mehl then used the Q=O result and in-
tegrated Eq. (5.36) to obtain

Z, (k~, Q)= I z, (k~, Q, k)dk (5.33) —2 k /kTF 7
Z(k~, q) =2e (5.37)

for large densities. The result is shown in Fig. 33. lt is
striking that z, becomes very small for k (Q. Langreth
and Mehl therefore proposed the simple approximation

z, (kF, q, k) =z, (k~, O, k)e(k —k, ), (5.34)

where 8 is the step function and k, is a cutoff of the or-
der q. They proposed

k, =6fq, (5.35)

where f is an adjustable parameter of the order —,', which
will be fixed to a particular value to be used for all sys-
tems. To simplify the use of the approximation, they also
introduced an interpolation formula for z„

4.0

1.0

0.5
kfY/k

I.O

FIG. 33. Wave-vector decomposition of Z, (kF, Q) [Eq. (5.33)]
for the almost homogeneous density (5.28) and (5.29) for
different values of Q. The unit of Q is kFz. /&3. The curve la-
beled GRAD shows the corresponding result for the gradient
expansion; the dashed curve {LM) shows the result for the inter-
polation formula (5.37). The LM (Langreth-Mehl) approxima-
tion consists of truncating the dashed curve at k =k, —Q.

Although LV performed this analysis for the high-
density limit, they argued that the curves z(kF, Q, k) are
not very different for metallic densities, except for some
rapid variations as a function of k, which give a small nu-
merical contribution. An important question is the ex-
trapolation from the results for weakly varying densities
(5.28) and (5.29) to realistic, strongly varying densities.
For instance, it has been found that apparently reason-
able extrapolations (Kohn and Sham, 1965) of the exact
result (5.30) can give infinite results for finite systems
such as atoms (Gunnarsson et al. , 1979). It is probably
significant that LM focused on the suppression of contri-
butions from small k, which also applies to real systems
with strong density variations. One example is a metallic
surface, as illustrated by the result y(k)-k [Eqs. (5.22)
and (5.23)]. Langreth and Mehl also showed that for a
finite system the corresponding contribution goes as k .
While the definition (5.20) of q is somewhat arbitrary, q
enters the final result for Z(k&, q) via k, . Since it is mul-
tiplied by f, some of this arbitrariness can be compensat-
ed for by an appropriate choice off.

The value of f was determined by studying small
atoms and the linear potential model of a surface (Sahni
et a1. , 1977). Since f-0.13—0. 14. was the optimum
value for a surface and f-0.15—0. 16 best for atomic to-
tal energies, LM proposed the value f =0.15. Later,
Langreth (1984) argued for f =0.17. This work has been
extended to spin-polarized systems by Hu and Langreth
(1985; see also Rasolt, 1977). A method was also pro-
posed for separating the exchange and correlation ener-
gies (Langreth and Mehl, 1983). Perdew (1986) proposed
an alternative equation for the correlation energy. This
equation is based on an analysis similar to that used in
the LM approach, but it uses a different separation of the
exchange and correlation energy and attempts to include
correlation effects beyond the RPA. The wave-vector
analysis of Langreth and Perdew and the LM functional
have been criticized by Rasolt and Geldart (1986a,
1986b), who noted that the nonuniform electron gas has
an exchange-correlation hole that is both long range and
sensitive to the nature of the inhomogeneity. Since the
long range is a property of the macroscopic system, these
authors believe that corrections to the LDA based on
electron gas data should be restricted to extended (bulk
and surface) systems. For further references and a more
detailed discussion of these points, see Rasolt and Crel-

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989



730 R. O. Jones and O. Gunnarsson: Density functional formalism

dart (1986a, 1986b, 1988) and Langreth and Vosko
(1988). A survey of approximate exchange-correlation
functionals is provided by Geldart and Rasolt (1987).

The LD approximation can now be discussed in the
light of these results. In Eq. (5.24) the LD contribution is
of the order unity, as is the coefficient Z(k~, q) in the
correction term. The correction term is therefore small if

q(r) 1 ~Vn(r)~

k~(r) 6 kF(r)n (r)
(5.38)

a criterion that is a factor 6 smaller than the one normal-
ly used for the LD approximation. Langreth and Mehl
concluded that the large reduction rejects factors (such
as the sum rule and spherical average discussed in Sec.
III.B) that make the LD approximation more accurate
than was originally expected. The criterion (5.38) is
satisfied reasonably well for most systems of interest, in
contrast to the criterion where the factor —,

' is missing. It
is now also possible to discuss the traditional gradient ex-
pansion, where Z(k~, q) =Z(kF, O). As can be seen from
Fig. 33 this is a poor approximation unless q «kTF.
Langreth and Mehl suggested the criterion

6q (r)
~
Vn (r)

~

kTF kTF
(5.39)

which is normally not fulfilled for real systems.
Before turning to applications of this model, it is in-

teresting to note the recent work of Kleinman and Lee
(1988), who evaluated K„(Q) [Eq. (5.32) for exchange
onlyj for a screened interaction exp( —A, ~r' —r~). They
found that the limits Q~O and A, ~O do not commute.
This ambiguity may be traced to the spurious undamped
oscillation in the gradient expansion for the x hole far
from the electron it surrounds. Alternatively, it may be
cast (Perdew and Wang, 1988) as a discrepancy (at A. =O)
between the zero temperature limit (T—+0) and T=0.
The gradient expansion used above (see also Sham, 1971)
is recovered when either T=0, Q~O is followed by
A, ~O or A, =O, Q~O is followed by T~O. A coefficient

as large (Antoniewicz and Kleinman 1985) is

recovered when T =0, X~O is followed by Q —+0. It is
not clear at present which coe%cient should be favored in
real systems.

We now discuss some of the results found so far with
the LM model. Langreth and Mehl (1981, 1983) and Hu
and Langreth (1985) showed that the total energy of
atoms is much better than in LD results, as found in oth-
er nonlocal schemes. Pedroza (1986) compared the densi-
ty obtained in the LD and the LM approximations with
accurate configuration-interaction calculations. The den-
sity is already rather well described in the LD approxi-
mation, and the LM scheme gives further improvement.
Removal energies of valence electrons in atoms were cal-
culated by Langreth and Mehl (1981, 1983) and Hu and
Langreth (1985). Again the LSD approximation gives
rather accurate results in most cases; further improve-
ments were found in the LM approximation.

In Table XI we show binding energies for some dia-

TABLE XI. Dissociative energies (eV) for some diatomic mole-
cules in the Langreth-Mehl (LM) and local spin-density {LSD)
approximations compared with the experimental values (Becke,
1986). The results (Kutzler and Painter, 1987) using the gen-
eralized gradient expansion approximation (GGA) (see Perdew,
1986, and Perdew and Yue, 1986) are also shown.

Hq

Li2
Be&

Bq

C2
N2
02
F2

Expt.

4.8
1.1
0.10
3.0
6.3
9.9
5.2
1.7

4.9
1.0
0.56
3.9
7.3

11.6
7.6
3.4

LM

5.0
0.6
0.36
3.3
6.1

10.2
6.4
2.4

GGA

3.2
6.2

5.9
2.2

tomic molecules, calculated by Becke (1986). The LSD
approximation generally overestimates the binding ener-

gy, and in some cases—e.g. , N2, 02, and F2—the over-
binding is appreciable. In these cases the LM approxi-
mation gives a substantial improvement. Similar results
were obtained by Kutzler and Painter (1987), who em-
phasized the corrections due to the nonspherical density
of the free atoms. These corrections are very small for
the first-row atoms in the LSD approximation, but non-
negligible in the LM scheme. Kutzler and Painter also
showed that the generalized gradient expansion (GGA)
of Perdew (1986) and Perdew and Yue (1986) led to im-
proved agreement with experiment, particularly for Oz
(see Table XI). Almbladh and von Barth (1985c) applied
the LM functional to the sp transfer energy of a fluorine
atom. As noted previously, this quantity is very poorly
described in the LSD approximation (error -2.6 eV),
and the LM functional gives only a small improvement.
This is not surprising, since the large error in the LSD
approximation arises from its failure to take properly
into account the nodal structure of the orbitals (Gun-
narsson and Jones, 1985b). It seems unlikely that a func-
tional with a simple dependence on the density, like the
LM functional, can correct for this failure.

The effect of the LM potential on the band structure of
V and Cu has been studied by Norman and Koelling
(1983), who found that the 3d-like states are shifted up-
ward by the LM potential, so that the Fermi surface is
improved in V but not in Cu. The deviation between the
band structure and the photoemission results also in-
creased somewhat for Cu. von Barth and Car (1982) cal-
culated the band gap of Si and found that, as in the LD
approximation, the band gap is about a factor of 2 too
small. It is not clear whether the underestimation of the
gap in the LD and LM functionals is due to a discon-
tinuity in the exchange-correlation potential, which
would clearly not be described in functionals of the LD
and LM types, or to a less satisfactory description of the
r dependence of the exchange-correlation potential. The
cohesive properties are improved compared with the LD
approximation. The cohesive energy of Si, for instance,
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FIG. 34. .Correlation energy contribution to the dissociation
energy of some dimers. The local spin-density (solid line), the
Langreth-Mehl (dashed line), and the empirical (circles) results
are shown (after Savin et al. , 1986).

4. Combination of density functional
and configuration-interaction methods

The above discussion has shown that it is unlikely that
one can find a simple modification to the local-density
description of exchange and correlation that will describe
energy differences reliably. The energy difFerence result-
ing from the promotion of an s to a p electron in the

is 4.89 eV compared with the experimental result of 4.63
eV and the LD result of 5.19 eV. von Barth and Pedroza
(1985) also found an improvement in the cohesive energy
of Be. The LM result is 3.20 eV, the experimental result
is 3.32 eV, and the LD result is 3.65 eV.

An alternative to the normal treatment of exchange
and correlation in the SDF formalism is to treat the nu-
merically large exchange energy exactly and to include
correlation via an approximate functional. In the LSD
approximation, this approach is questionable, since the
correlation energy is overestimated by a factor of 2 or
more; a treatment of both exchange and correlation in
the LSD approximation is usually preferred. Langreth
and Mehl (1983) showed that their separation of ex-
change and correlation yielded greatly improved results
for the total correlation energy of atoms, and Pedroza
(1986) obtained very accurate results for the electron den-
sity of some small atoms. Savin et al. (1984) found that
the total correlation energy of many small rnolecules is
greatly improved over the LSD approximation. The
correlation contribution to the dissociation energy is of
particular interest and is shown in Fig. 34. While the im-
provement for this correlation energy difference is much
less pronounced than for the total correlation energy, the
results are better than LSD values. The errors remain
substantial and are not, in general, smaller than the LM
errors in the exchange and correlation contribution to
the dissociation energy (see Table XI). In these cases the
exact treatment of the exchange energy together with the
present partitioning of exchange and correlation does not
seem to reduce the error in the dissociation energy.

Auorine atom is an example in which the nature of the
wave function plays a central role. It is natural to ask
whether a combination of DF and CI methods can lead
to a systematic improvement in such cases.

Lie and Clementi (1974a, 1974b) showed that the addi-
tion of local-density correlation energy to the results of a
CI calculation with a few configurations resulted in a sa-
tisfactory description of some small molecules. In the
same spirit, Savin (1988a) developed a scheme that has
some important advantages and provides, in principle, a
systematic method for improving on DF results. We
have seen that the arguments of Levy (1979) allow us to
determine the exact wave function and other quantities
such as the exact first-order density matrix, the natural
orbitals (Lowdin, 1955), and the energy. The same argu-
ments can be applied to a trial wave function restricted to
a single determinant, resulting in the Hartree-Fock ener-

gy and wave function. The difference between the two
energies is the correlation energy (Levy, 1987).

In Savin's (1988a) scheme, the correlation energy is
split into two parts. One 'is determined by a CI calcula-
tion in the space of all natural orbitals with occupation
numbers beyond a given threshold (v), the remainder
from a DF calculation with an appropriate (v-dependent)
equation for E„. In the limit of large v one would get
the combination of HF+ DF, while in the other extreme
a CI calculation is needed. The approach has been ap-
plied successfully to a number of interesting cases, in-
cluding the sp transfer energy in Ne+ (Savin, 1988b). In
this case, an MCSCF (multiconfIguration SCF) calcula-
tion with the sp and s p d configurations gives, on in-

'cluding the M shell, a correlation energy of 0.320 a.u. for
the s p state and 0.426 a.u. for the sp . The DF contri-
butions are 0.146 and 0.177 a.u. , respectively. The calcu-
lated transfer energy is then 0.977 a.u. , within 0.3 eV of
the experimental value. %'hile this method cannot be
viewed as a general solution to the problems we have dis-
cussed, it does address the "near-degeneracy"
problem —cases in which a qualitative description of the
wave function requires more than one determinant—
while maintaining the advantages of the density function-
al description of "dynamic" correlations.

VI. EXCITATION ENFRGIES

The DF formalism has been designed to give ground-
state (CiS) properties. In many situations we are, howev-
er, interested in the excitations of the system, and it is an
important question to what extent these can be obtained
within the DF formalism. We now discuss methods for
calculating such properties, ranging from those that are
rigorously justified within the DF formalism to ones
~here the justification is essentially empirical.

A. The meaning of the eigenvalues

The eigenvalues of the Kohn-Sham equation (3.5) enter
the formalism as Lagrange parameters, due to the re-
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quirement that the orbitals g, (r) be orthogonal. The pos-
sible physical meaning of the eigenvalues is therefore not
immediately obvious. In Hartree-Fock theory the eigen-
values acquire a meaning through Koopman's theorexn,
which states that

HF z,
E, = (n„. . . , n;, . . . , n~)

0 —Z (k, E(k)) & EF--- Vxc~E.

E(ni, . . . , n; 1). . . , ny) (6.1)

where E;
" is a HF eigenvalue and E(n„. . . , n~) is the

total energy of the system with the occupation numbers
n &, . . . , n&. This theorem requires that the other orbit-
als do not change when the occupancy n, is reduced, and
it identi6es c; " with the energy required to remove an
electron from the orbital i. The corresponding theorem
is not, in general, valid in the DF formalism, where one
finds (Slater, 1974; Janak, ,1978) that

-3—

s;(n, , . . . , n~)=
BnE.

The total energy difference in Eq. (6.1) can then be writ-
ten as

E(n„. . . , n;, . . . , n~) E(n„.—. . , n; —1, . . . , n~)

~ ~ ~ ~ ~ ~ ~ ~

1

dn8;(n „.. . , n, +n —1, . .. . , n~) . (6.3)
0

In contrast to Eq. (6.1), Eq. (6.3) has a formal justification
only if the occupation numbers in (6.3) refer to the
ground states of the systems with M and M —1 particles,
where M = g n;; i.e., E; should refer to the highest occu-
pied eigenstate in the M-electron system. Within the ex-
act DF formalism, Eq. (6.3) can be simplified by using a
result for the highest occupied orbital

FIG. 35. Self-energy X (solid curves) and the exchange-
correlation potential V„, (dashed curves) for a quasiparticle
with momentum k in a homogeneous system with the density
n ( 3 m r, )

' . The re su 1ts are expressed in units of the Fermi
wave vector k& and the Fermi energy E+.

electron gas (Hedin and Lundqvist, 1969). The exact en-
ergy of a quasiparticle with momentum k is given by

t

E(k)= +X(k,E(k)), (6.5)
2m

where X(k, co) is the self-energy. In the LD approxima-
tion we associate, for the moment, E(k) with the eigen-
value s(k),

E~(n„. . . , n~ n) e—~(n,—, . . . ) n~ —1),
0(n ~1, (6.4)

f2I 2

s(k) = + V„, ,2~ (6.6)

which was derived by Perdew et al. (1982) by using the
T~0 limit of the finite T theory. Inserting (6.4) in (6.3)
we can see that in the exact DF formalism the highest ei-
genvalue gives the ionization energy of the system (or
work function for a metal; see Perdew et al. , 1982; Levy
et al. , 1984; von Barth, 1984b; Almbladh and von Barth,
1985b). For most approximate functionals, however, Eq.
(6.4) is not valid for localized states, and the ionization
potential is then not equal to E(n~= 1). We also em-

phasize that the arguments above only give significance
to the highest occupied eigenvalue.

B. Two limiting cases

Although the above arguments are well known, it is
standard practice, in particular for solids, to interpret all
the eigenvalues as excitation energies, since in many situ-
ations there is no simple alternative. To obtain an idea of
the errors introduced in such an approach, we discuss
two limiting cases: the homogeneous electron gas and a
free atom. Figure 35 shows results for the homogeneous

where V„only depends on the homogeneous density n.
Figure 35 shows the self-energy X[k,E (k) j contribution
to the quasiparticle energy according to an accurate cal-
culation (solid curve) and the exchange-correlation po-
tential (dashed curve). Since the LD approximation gives
the exact V„ in this case, the dashed curve also
represents the exact DF result. The deviations to the
self-energy are therefore due to the fact that, in general,
the DF eigenvalues are diff'erent from excitation energies.
The highest occupied eigenvalue s(k~), however, agrees
with the exact result. The figure also illustrates that the
deviation is not very large for the occupied eigenvalues
and for states not very far above the Fermi energy. On
the other hand, the exact curve goes to zero for large
values of k, in marked contrast to the constant LD result.
This is of particular importance in calculations for low-
energy electron diffraction (LEED), extended x-ray-
absorption fine structure (EXAFS), and inverse photo-
emission, where these states are sampled.

Another limiting case is a free atom, where the
charge-density variations are very large. %'e have seen in
Sec. III that accurate results for V„. have been calculated
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for small atoms (Smith et al. , 1979; von Barth and Car,
1982; Almbladh and Pedroza, 1984) using densities ob-
tained from accurate many-body calculations, e.g., a CI
calculation. Using a parametrized form of V„, the densi-
ty is calculated and the procedure repeated until the
correct density is reproduced. Figure 36 shows the V„,
as well as the correlation potential V, =—V„,—V ob-
tained by Almbladh and Pedroza (1984). The exact
correlation potential shows a pronounced nonmonotonic
behavior, and Levy and Perdew (1985a) have shown that
V, cannot be monotonic in a tightly bound closed-shell
atom. As for the simple case of an H atom (Gunnarsson
et al. , 1974), the exact potential is more attractive than
the LD potential, but the deviation is rather constant
over the range where the electron density is large. The
LD approximation. therefore reproduces the electron
density well for Be (Almbladh et al. , 1983). The DF ei-
genvalues calculated (Almbladh and Pedroza, 1984) for
the accurate V„, are shown in Table XII for a Be atom.
These eigenvalues are compared with the LD and HF ei-
genvalues as well as with the corresponding excitation
energies. The highest occupied (2s) DF eigenvalue agrees
with the lowest ionization energy, in agreement with the
exact result mentioned above. The HF eigenvalue is
somewhat too high (0.9 eV) and the LD eigenvalue is al-
most 4 eV too high, a result that is typical for atoms.
The DF 1s eigenvalue is about 8 eV higher than the cor-
responding ionization energy, while the LD 1s eigenvalue
is about 19 eV higher. In this case the large deviation be-
tween the LD 1s eigenvalue and the corresponding exci-
tation energy is therefore largely due to the LD approxi-
mation itself. Similar conclusions were reached by Per-
dew and Norman (1982), following a numerical study of

0
-0.1-

0.2

TABLE XII. Energy eigenvalues (in eV) compared with excita-
tion energies for a Be atom. The density functional (DF) eigen-
value refers to an accurate calculation of the V„,.

1s
2s
2p

DF
—115.10

—9.32
—5'.7

LD

—104.94
—5.60
—2.1

HF
—128.78

—8.42

Excitation
energy

—123.6
—9.32

atoms in the exchange-only approximation.
It is interesting that the unoccupied 2p orbital is bound

(sz~ (0), although the negative Be ion does not exist,
providing a case in which an unoccupied orbital is too
low in energy. Finally, we emphasize that the rather
poor results obtained in the LD approximation are due to
the association of eigenvalues with excitation energies.
For atoms there is no reason to treat the eigenvalues as
excitation energies, since we can perform total energy
difFerence or transition-state calculations, as discussed
below. We have seen (Sec. IV.A) that the agreement with
experiment is general1y satisfactory.

C. The ESCF

There are basically two classes of methods for calculat-
ing excitation energies. In Sec. VI.E we shall discuss cal-
culations based on the Dyson equation and the fact that
the self-energy entering this equation is a functional of
the density (Sham and Kohn, 1966). Here we focus on
another class of methods where the ground-state scheme
is applied to both the excited state and the ground state,
and the energy difFerence is calculated. This approach is
referred to as the ASCF scheme, since it is based on the
energy difFerence between two self-consistent-field (SCF)
calculations. The application of the DF formalism to the
excited state can be justified if applied to the lowest state
for a given set of quantum numbers (Gunnarsson and
Lundqvist, 1976). In many cases, however, the scheme is
applied to states for which no justification has been

'
given.

As an example we consider the transition 1s~2p in a
hydrogen atom:

Exact
—-- LD

b.E ( is ~2p) =E (2p) E( ls), — (6.7)

\ ~ ~ ~ ~ ~ ~
~ \ ~ ~ ~

r (a.u.)

FIG. 36. Accurate exchange-correlation potential V„, corn-
pared with the local density (LD) V„, for Be. The dotted line
gives the radial density. The upper part of the figure gives the
correlation potential (Almbladh and Pedroza, 1984).

which is of interest in optical absorption. The use of the
DF form. alism for the excited 2p state is justified since
this is the lowest state with I' symmetry. As discussed in
Sec. IV.A.3, this approach often gives satisfactory re-
sults. For the application to atomic multiplets, the accu-
racy of the results is usually improved greatly by using
the method of Ziegler et al. (1977) and von Barth (1979),
as discussed in Sec. IV.A.4.

For the practical calculations of energy difFerences,
Slater's transition-state method (Slater, 1974) is useful.
This method follows from Eq. (6.3) by replacing the in-
tegral by the value of the integrand at the middle of the
interval:
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E(ni, . . . , n;, . . . , njv) —E(ni, . . . , n; —I, . . . , n~)

=E;(n; —0.5) .

This formula has the advantage that the eigenvalues are
often numerically much smaller than the total energy; the
numerical accuracy required is therefore lower. If the
state i refers to an extended state in an infinite system,
the eigenvalues are independent of a change in the occu-
pation numbers of the order 1 for approximate function-
als such as the LD functional. In such a case we can use
the eigenvalue for the occupation number n, in Eq. (6.8),
which then goes over to Koopman's theorem. The eigen-
values are then directly related to excitation energies and
support the common interpretation of band-structure cal-
culations for solids. It should be emphasized, however,
that no justification has been given for using the scheme
for the excited state(s) involved in most applications of
Eq. (6.8). A rigorous justification for the calculation of
excited states is given in the method of Theophilou
(1979); see also Hadjisavvas and Theophilou (1984, 1985);
Theophilou (1987). If one wishes to discuss the M
lowest-energy eigenstates for a system of X electrons, it is
necessary to consider a subspace S of Fock space spanned
by the M-state vectors of lowest energy. If the M lowest
eigenstates of H are P„.. . , P~, then the trace of the
Hamiltonian matrix is the sum of the eigenvalues for the
exact states in S,

D. Discontinuity in the exchange-correlation potential

In the previous section we used the fact that in simple
approximations, such as the LD approximation, the ei-
genvalue for an extended state in an infinite system does
not change with a change in the number of electrons of
the order one. This follows, since the charge density then
has a change of the order 1fV, where V is the volume of
the system. As V goes to infinity the change in the Har-
tree potential goes to zero. The same is true for any
exchange-correlation potential with a simple, explicit
finite range dependence on the density. It was, however,
realized by Perdew and Levy (1983) and by Sham and
Schliiter (1983) that this need not apply to the exact po-
tential. Actually, in addition to an r-dependent change
of the order 1/V of the exchange-correlation potential
when one electron is added to the system, there could be
a finite change 5 independent of r, since this would be
consistent with a change in the density of the order 1/V.
This observation has important consequences for the
band gap of a semiconductor or an insulator, as discussed
below.

%'e first relate the band gap to ground-state energies,
so that all quantities are well defined withi~ the DF for-
malism. The band gap E is defined in terms of the ion-
ization potential I and the a%nity energy 3 as

E ==I —A

(6.9)
—:[E,(M —1)—E, (M)] —[E,(M) —E, (M +1)],

(6.11)

where E, are the energies corresponding to P;. By
separating the external potential V„, from the Hamil-
tonian H, one can prove that trs(H ) is a functional of the
density operator; we denote this functional Es[n]. Theo-
philou showed that this functional obtains its minimum
value if the subspace on which it is evaluated coincides
with the space spanned by the exact eigenstates. As in
the case of the formalism described in Sec. III, this
minimum principle can be used to find a set of single™
particle equations and their eigenfunctions u, .

The first step then in determining the excited-state en-
ergies is to solve for the ground-state energy Ei. We may
then consider the density,

1
c4 = f df s~+i(M +f)= 8~+i(M +i) )

(6.13)

where 0 & il, il' & 1. It then follows that (Perdew and
Levy, 1983; Shan and Schliiter, 1983)

Eg =8~+,(M+il') —E~(M —il)=be+A, ,

where

(6.14)

where Ei(X) is the ground-state energy of the X-electron
system. We now use Eq. (6.2) to relate I and A to the ei-
gen values:

1I = —f df eM(M —1+f)= —EM(M —i7), (6.12)

b, c, =sM+, (M) —eM(M) (6.15)

(6.10)

and determine E1+E2 by minimizing the functional
Es[n]. This procedure may then be continued for as
many excited states as desired. A major drawback here,
as in the discussion of Gunnarsson and Lundqvist (1976)
for the excited states of a particular symmetry, is that
nothing is known about the state dependence of Es[n]
For large systems with very many low-lying states, this
method becomes impracticable.

is the eigenvalue band gap in the calculation for the M-
electron system. Here we have used the result (6.4) that
the eigenvalues only change when the number of elec-
trons N goes from M —0 to M +0. Equation (6.14) states
that, due to the possible discontinuity 5 in the V„, the
true band gap can be different from the exact DF eigen-
value gap Ac. It is now well established that the LD ap-
proximation gives too small band gaps for semiconduc-
tors. It is then an interesting question whether the exact
DF formalism would give a AE substantially closer to E,
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so that the poor band gap in the LD approximation is
due to the LD approximation itself (i.e., a poor descrip-
tion of the r depe'ndence of the exchange-correlation po-
tential) or to the discontinuity.

The discontinuity can be large for free atoms (Perdew
et a/. , 1982; Almbladh and Pedroza, 1984), as illustrated
by Table XII. Since a negative Be ion cannot be formed,
the amenity energy of Be is zero. The discontinuity must
therefore shift the 2p eigenvalue from —5.7 eV to the
vacuum level, when one electron is added to the system.
The intriguing question is if the discontinuity can also be
nonzero for an infinite system. By considering a solid in
the limit of a very large lattice parameter, Perdew and
Levy (1983) and Almbladh and von Barth (1985a) showed
that this is the case. A simple example is the half-filled
one-dimensional Hubbard model (Gunnarsson and
Schonhammer, 1986), where the occupancies of the spin-
up and spin-down s orbitals are 0.5. The exact DF poten-
tial is therefore site and spin independent, and the DF ei-
genvalue spectrum is the same as that for noninteracting
electrons. The eigenvalue gap is therefore zero. The
half-filled one-dimensional Hubbard model is, however, a
Mott insulator for all values of Ult) 0, where U is the
Coulomb integral and t is the hopping integral. In this
case the gap is therefore entirely due to the discontinuity,
independent of the value of r (or the lattice parameter).

To obtain quantitative results in a general situation,
Sham and Schliiter (1983) used the Luttinger-Ward
(1960) many-body equation for the grand canonical po-
tential to derive a formula for the discontinuity. This
formula gives (incorrectly) zero discontinuity (Gun-
narsson and Schonhammer, 1986; Schonhammer and
Gunnarsson, 1987). A diFerent equation for the discon-
tinuity was derived by von der Linden and Horsch
(1988), but it is hard to use in practice since it requires
the exact V„,. Most attempts to determine the discon-
tinuity (Godby et al. , 1986; Gunnarsson and Schon-
hammer, 1986) have used a different approach. First the
density is determined from a many-body calculation, the
V„, that reproduces this density is then found, and Ac. is
determined from the eigenvalue spectrum. A comparison
with the gap E, determined from a many-body calcula-
tion or experiment, gives an estimate of the size of the
discontinuity.

Godby et al. (1986) used the so-called CrW approxima-
tion (Hedin, 1965), where the self-energy is approximated
to lowest order in the screened interaction. They calcu-
lated the self-energy for Si and obtained a gap in good
agreement with experiment. The V„corresponding to
the GW self-energy was then calculated approximately
and found to give an eigenvalue gap Ac close to the LD
value. Godby et al. (1986) concluded that the LD ap-
proximation gives an excellent approximation to the V„
of the M-particle system and that the poor gap in the LD
approximation is due to the discontinuity.

Gunnarsson and Schonhammer (1986) and
Schonhammer and Gunnarsson (1987) considered a sim-
ple model consisting of a finite linear chain with two lev-

Q) 2V7

CJl

-6—

-8—
Excitotions c;DF c; LDA

FIG. 37. Eigenvalue spectrum (c;) and the corresponding exci-
tation energies for a semiconductor chain with nine atoms. Eg
shows the exact band gap (Gunnarsson and Schonhammer,
1986).

els per atom. The nearest-neighbor hopping, the on-site,
and the nearest-neighbor Coulomb interactions were in-
cluded. For this model it is also possible to study the
inAuence of the poor gap and the discontinuity on impur-
ities. While it is unclear to what extent the conclusions
of this simple model also apply to Si, for example, it has
the advantage of being an exactly solvable nontrivial
model. For appropriate parameter ranges this model
gives a Mott insulator or a charge-density-wave-like
ground state. In these cases the discontinuity was found
to be quite important. For parameters more appropriate
for a semiconductor the discontinuity is, however, very
small. Thus this model contains both the limit where the
poor band gap in the LD approximation is due to the
discontinuity and the limit where it is due to the approxi-
mation itself.

This model also shows that an approximate many-body
scheme can give an excellent approximation to the band

gap, but nevertheless overestimate the discontinuity
greatly (Gunnarsson and Schonhammer, 1987a). Fur-
thermore, the LD approximation cannot give a very ac-
curate exchange correlation potential for a number of im-

purities in semiconductors, since it predicts incorrectly
that there is no well-localized state in the gap, so that a
qualitatively incorrect spin density must follow
(Schonhammer and Gunnarsson, 1987). As an example
of the results obtained in this model, we compare in Fig.
37 the eigenvalue spectrum in the exact DF formalism
(E;DF) and in the LD approximation (E;LD) with the
corresponding exact excitation energies (Excitations).
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The figure illustrates that the eigenvalue gap in the exact
DF formalism is almost exactly equal to the exact band
gap; i.e., the discontinuity is small in this case. The LD
eigenvalue gap is much smaller than the exact DF eigen-
value gap; i.e., the LD approximation itself is rather
poor. It is remarkable that the exact DF eigenvalues
away from the gap also agree rather well with the corre-
sponding excitation energies, although these eigenvalues
have not been shown to have any meaning.

E. The Dyson equation approach

The second class of methods for calculating excitation
energies is based on the Dyson equation (Hedin and
Lundqvist, 1969):

f2
P + V(r) Pk(r)+ fdr'X(r, r';Ek)$1, (r')

whereV(r) is the Hartree potential from the electronic
and nuclear charge and X(r, r', Ek) is the self-energy
operator. The self-energy is a nonlocal, complex, and
energy-dependent operator, which in general is very
dificult to calculate. However, there have been several
recent calculations of X, in most cases using the GW ap-
proximation (Hedin, 1965), for covalent crystals (Brener,
1975a; Strinati et al. , 1980, 1982; Hybertsen and Louie,
1985a; Godby et al. , 1986; von der Linden and Horsch,
1987), for simple metals (Northrup et al. , 1987), and for
ionic crystals (Brener, 1975b; Hybertsen and Louie,
1985b). The agreement with experiment is encouraging
and this approach is promising for systems where the cal-
culations are feasible. The direct calculation of the self-
energy falls outside the scope of this paper, and we dis-
cuss here only the usage of the Dyson equation in the
spirit of the DF formalism.

The DF approach to the Dyson equation is based on
the observation by Sham and Kohn (1966) that X is a
ground-state property and can therefore be expressed as a
functional of the density. Sham and Kohn (1966) further
argued that (1) X(r, r', E) has a short range; i.e., that X is
small if ~r —r'l ~2~/kF, where kF is the Fermi momen-
tum corresponding to the local density, and (2)
X(r, r', E —V(ro)) depends only on the density in the
neighborhood of ro=(r+r')/2. The Hartree potential
V(ro) is introduced in the energy argument of X to make
X independent of a constant shift of V(r). Sham and
Kohn (1966) argued that, because of property (2) above,
one can make a local-density approximation for X and re-
late it to electron gas data,

X(r, r';Ek ) =Xh [r—r', E„—p+pq [n (ro)], n (ro)],
(6.17)

where Xh and ph are the self-energy and chemical poten-
tial, respectively, of the homogeneous system. There are
di8'erent ways of choosing the energy argument in XI, in

Eq. (6.17). The choice used here was recommended by
Hedin and Lundqvist (1971), based on an analysis of the
vertex function. The approximation (6.17) still leads to a
nonlocal potential, and the calculations are nontrivial.
To further simplify Eq. (6.17), Sham and Kohn (1966) ex-
pressed Pz as

Pq(r)=&(r)e' "'
and assumed that A (r) and p(r) have a weak variation
over the range of X&, which is of the order 2m/k~ ac-
cording to property (1) above. This assumption yields

f dr' XI, l r —r', E& p+ p—z [n (ro)],n (ro) ] P& (r')

=Xh Ip (r), Ek p+p—&[n (r)],n (r)]Pk(r) . (6.19)

The magnitude of the local momentum p(r) is deter-
mined from

E(p, n (r ) ) =Ek p+—p[n (r)],
where E(p, n) is the energy of a quasiparticle with the
momentum p in a homogeneous system with the density
n. This way of determining the momentum was advocat-
ed by Hedin and Lundqvist (1971),who also provided nu-
merical data for X&. The self-energy has now been
simplified to a local but energy-dependent potential,
shown by the soIid curves in Fig. 35. The energy depen-
dence is weak close to the Fermi energy, where one may
simplify the potential further by replacing Ek with p in
the energy argument in Eq. (6.20). Then the potential
reduces to

Xh[p(r) Ea p+pa[n(ro)l n(r))

Xh Ip(r»Vh [n (ro)] n (r) I —= V-

The ground-state potential V„and the quasiparticle en-
ergies Ek then coincide with the LD potential and eigen-
values in the ground-state scheme, which provides some
support for interpreting the eigenvalues as quasiparticle
energies. We emphasize, however, that this result is
based on several approximations and requires
justification in real systems. In particular, it has been
shown in Sec. VI.B that the LD eigenvalues in atoms can
deviate appreciably from the quasiparticle energies.

At this point a comment amount the Fermi surface
(FS) is appropriate, since there are in principle two FS's
in the formalism. The solution of the Dyson equation
(6.16) leads to the quasiparticle (QP) FS, and the solution
of the Kohn-Sham (KS) equation (3.5) leads to a second,
which we refer to as the KS-FS. It is a longstanding
question whether the two surfaces, obtained using the ex-
act self-energy and the exact exchange-correlation poten-
tial, respectively, are identical. We note that the approx-
imation (6.21) is exact for quasiparticles at the Fermi sur-
face, and that the two FS's are identical for the homo-
geneous electron gas. The latter can be proved by notic-
ing that the approximations (6.17) and (6.19) are exact for
the electron gas or by referring to the spherical symmetry
of the system and Luttinger's theorem (Luttinger, 1960).
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To study the Fermi surface for an inhomogeneous sys-
tem, Schonhammer and Cxunnarsson (1988) studied a
two-dimensional Hubbard model, introducing a density
functional formalism for this model. Because of the sim-
plicity of the model the exact KS-FS could easily be cal-
culated. The self-energy to second order in the Coulomb
interaction U was calculated and the corresponding QP-
FS was obtained. In the limit of a small U the self-energy
and the QP-FS calculated this way become exact. Figure
38 shows the deviation between the two FS's for a Hub-
bard model with nearest- (t, = —1) and second-nearest-
(t2 =0.3) neighbor hopping and a band filling of 0.3 elec-
trons per spin and atom. Although the Fermi surfaces
are very similar for this model, they are not identical,
showing that the experimentally measurable QP-FS and
the KS-FS are not generally the same. Another coun-
terexample has been found be Mearns (1988).

We now discuss the approximations (6.17), (6.19), and
(6.21) introduced above and the attempts to avoid some
of them. The first approximation is the use of electron
gas data for the self-energy in Eq. (6.17), which is
equivalent to the LD approximation for the ground-state
potential. To be specific, we discuss this approximation
in the context of Si, for which there are several different
types of calculations. The accuracy of the LD approxi-
mation is sometimes discussed in terms of the strength of
the density variations. Wang and Pickett (1983) and
Pickett and Wang (1984) pointed out, however, that a
solid like Si differs from the electron gas not just by being
inhomogeneous but also by having a energy gap. To test
the effect of the energy gap, they considered a homogene-
ous model electron gas with an energy gap E~. Thus they
shifted the unoccupied states in the normal electron gas

by a constant energy Eg, where E was defined as the
average direct gap of (in this case) Si. The dielectric
function of the model was assumed to be given by the
dielectric function of Levine and Louie (1982). This
function is related to the Lindhard dielectric function in
such a way that the imaginary part is zero for co(A,EI;,
where EI; is the Fermi energy of the electron gas. The
parameter A, was adjusted to describe the static dielectric
function of Si. With these model assumptions the self-
energy was calculated in the GW approximation (Hedin,
1965). The approximations (6.17)—(6.20) above were then
used with this model self-energy replacing Xh in (6.17).

In Fig. 39 their quasiparticle band structure is corn-
pared with the LD energy eigenvalues and with some ex-
perimentally known energies and energy differences. The
figure shows a substantial improvement over the LD re-
sults. For the indirect gap, Wang and Pickett (1983) ob-
tained the value 0.93 eV, which is smaller than the exper-
imental result of I.17 eV but larger than the LD result of
0.56 eV. The main reason for the improvement over the
LD result was found to be the energy dependence of the
self-energy. As discussed above, the energy dependence
of the electron gas self-energy is very weak over the ener-
gy range discussed here. The use of Eq. (6.19) with elec-
tron gas data therefore gives very similar results to the
LD ground-state scheme (Pickett and Wang, 1984). The
model electron gas with an energy gap, on the other
hand, giv'es an appreciable energy dependence and raises
doubts about the use of the approximation (6.17) together
with electron gas data for semiconductors and insulators.
von der Linden et al. (1986) further emphasized the im-
portance of the different spatial character of the wave
functions corresponding to the top of the valence band
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FIG. 38. Deviation AkF(y) of the Fermi-surface (FS) radius
kF(y) between the quasiparticle FS and Kohn-Sham FS as a
function of the angle y for small values of U, where y is the an-
gle to the k axis. Because of the symmetry of the Fermi sur-
face, results are shown only for 0 ~ y ~ ~/4. The lattice pararn-
eter is a and the same energy unit has been used for U, t &, and
t2 ~

FIG. 39. Quasiparticle (QP) energies of Si (solid 1ines) accord-
ing to the calculation of Pickett and Wang (1984) compared
with the local-density (LD) energy eigenvalues in the ground-
state scheme (dashed lines). Dots and arrows indicate experi-
mental quasiparticle energies and energy differences (Pickett
and Wang, 1984).
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FIG. 40. Extremal Fermi-surface areas for difT'erent high-
symmetry planes in Cs. The figure compares the local-density
eigenvalue results (L), the results using the nonlocal potential
(6.17) (XL), and experimental results (GT) (MacDonald, 1980).

and the bottom of the conduction band. This inAuences
the self-energy in a way that is not fully included when
the approximations (6.17)—(6.20) are made, whether the
normal electron gas or the Wang and Pickett (1983) mod-
el electron gas is used.

The second approximation is the %KB-type assump-
tion in Eq. (6.19), which converts the nonlocal potential
into a local energy-dependent potential (6.19). This ap-
proximation has been discussed by Rasolt and Vosko
(1974a, 1974b) in the context of the alkali metals. These
systems have almost spherical Fermi surfaces. The small
deviations from sphericity predicted by the LD ground-
state eigenvalues are, nevertheless, as much as a factor of
2 larger than the experimentally measured ones (Rasolt
and Vosko, 1974a, 1974b). Rasolt and Vosko argued that
this is due to the approximation (6.19). Model calcula-
tions (Rasolt and Vosko, 1974a, 1974b; Rasolt et al. ,
1975; Nickerson and Vosko, 1976) indeed showed that
the distortions are reduced when the approximation
(6.19) is removed. Realistic calculations for the alkalis
have been performed by MacDonald (1980), who calcu-
lated the ground-state density in the linearized augment-
ed plane wave (LAPW) method. The wave functions
were then expanded in plane waves, and the expectation
value of the self-energy (6.17) was evaluated. In this way
the deviation between the nonlocal potential (6.17) and
the local potential (6.19) was included to lowest order. In
Fig. 40 the results for Fermi-surface extremal areas are
shown for different high-symmetry planes in Cs. The
figure illustrates how the distortions from sphericity in
the LD approximation are reduced by about a factor of 2
when the nonlocal potential (6.17) is used. The latter re-

suit is in satisfactory agreement with experiment. These
results also suggest that the approximation (6.19) should
be used with caution.

F. Comparison of eigenvalues and experimental
excitation energies

Above we have discussed the approximations
(6.17)—(6.21) leading to the ground-state LD potential
V„. %'e now take a more empirical approach and com-
pare band-structure calculations based on the LD V„
with experimental excitation energies. One may expect
the LD band-structure approach to fail when the correla-
tion effects are very different from the electron gas corre-
lations. For instance, in semiconductors and insulators
the correlation effects tend to be weaker than in the elec-
tron gas. The self-energy of the unoccupied states there-
fore tends to be less negative than for the occupied states,
leading to too low energies of the unoccupied states in
band calculations (see Fig. 39). For metallic systems the
correlation effects should be more important than in the
electron gas if the system has a narro~, partly filled band.
The bandwidth 8' and the effective Coulomb interaction
U are then relevant parameters, and the correlation
effects should be very important if U ))8'.

It is interesting to consider the 3d series, where the
3d-band width decreases as the atomic number increases.
According to band calculations (Andersen and Jepsen,
1977) the d-band width, defined as the square root of the
second moment, is 4.6, 4.1, 3.6, and 2.7 eV for Fe, Co,
Ni, and Cu, respectively. At the same time the effective
3d Coulomb interaction increases along the 3d series.
According to the interpretation of Auger spectra (An-
tonides et al. , 1977) the value of U is about 8 eV for Cu,
4 eV for Ni, and small for Fe and Co. We would there-
fore expect the agreement between the LD eigenvalues
and the excitation properties to worsen along the 3d
series. This has been studied by Eastman et al. (1980),
who compared angle-resolved photoemission data with
LD band calculations (Moruzzi et al. , 1978) and found
that the ratio of the theoretical to experimental width of
the occupied 3d band is about 1.1, 1.2, 1.45, and 1.1 for
Fe, Co, Ni, and Cu, respectively. For the exchange split-
ting the theoretical to experimental ratio was found to be
about 1.0, 1.2, and 2.2 for Fe, Co, and Ni, respectively.
Thus the results for Fe, Co, and Ni are in agreement with
the qualitative arguments above. Cu is discussed below.

To illustrate further the good results obtained for Fe,
we show experimental and theoretical results for some
critical points in the Brillouin zone in Table XIII. The
calculation of Moruzzi et al. (1978) was based on the
paramagnetic potential of Hedin and Lundqvist (1971)
and a spin dependence based on a RPA scaling. The cal-
culation of Wang and Callaway (1977) used the potential
of von Barth and Hedin (1972). For Ni there is substan-
tial disagreement, and it is necessary to use a more de-
tailed many-body treatment (Liebsch, 1979, 1981; Penn,
1979;Treglia et al. , 1980). In spite of the relatively large
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TABLE XIII. Critical-point energies and exchange splittings

5,„, for Fe. The experimental results (Turner et al. , 1984) are

compared with local-density calculations by Moruzzi et al.
(1978) and Wang and Callaway (1977) (WC).

Point

r, »
I"25

y

I
HING)

p4$
P3)
NI )
N2)
N4)
~exc
Izs
H)p
P4
N2

Moruzzi

8.42
2.48
0.97
5.17
3.50
0.68
5.24
3.65
0.72

2.03
1.46
1.55
1.83

8.12
2.25
0.86
4.50
3.17
0.53
4.75
3.27
0.69

1.82
1.51
1 ~ 34
1.65

Expt.

8.15+0.20
2.35+0.10
0.78+0. 10
3.80+0.30
3.20+0. 10
0.60+0.08
4.50+0.23
3.00+0. 15
0.70+0.08

2.08+0. 10
1.30+0.30
1.35+0.10
1.60+0. 15

U/W ratio for Ni, ground-state properties, such as the
cohesive energy, the lattice parameter, the bulk modulus,
and the magnetic moment, are described with an accura-
cy comparable to that for 3d elements with smaller
values of U/8'. For Cu, where the 3d band is essentially
filled, the bandwidth is in fair agreement with experi-
ment. If a 3d electron is removed in a photoemission ex-
periment, the system is left with essentially one 3d hole.
Therefore many-body effects play a relatively small role
for photoemission from Cu, while they are important for
Auger processes involving two 3d holes. Nickel has 3d
holes even in the initial state, and final states with two 3d
holes on the same atom are important in photoemission.
For Fe and Co, on the other hand, U/W is too small to
give large many-body effects on the bandwidth and spin
splitting.

Although the many-body eA'ects in photoemission are
reduced for systems with a filled 3d band, we note that
the description of the 3d-band position becomes gradual-
ly worse as the localization of the 3d state increases. The
state becomes more atomiclike, and we have seen that the
LD eigenvalues reproduce atomic ionization energies
poorly. As a resUlt, the 3d bands of Cu, Zn, and Ga are
0.5 eV (Jepsen et al. , 1981), 2 eV (Himpsel et al. , 1980),
and 3 eV (Moruzzi et al. , 1978; Chiang and Eastman,
1980) too high, respectively. This is to be compared with
the deviation of 6 eV between the 3d eigenvalue and the
experimental 3d ionization energy for a free Zn atom.
Even for Ga, where the calculated bandwidth is very
small (-0.5 eV), the deviation between the eigenvalue
and the measured 3d ionization energy is far from the
atomic limit. This can be understood in terms of extra-
atomic relaxation (Lang and Williams, 1977). Assume
that the 3d hole created in Cxa in photoemission is local-
ized on one atom. Using the transition-state idea, the
binding energy is then predicted by the 3d eigenvalue cal-
culated with the 3d occupancy 9.5 on that atom. The
lowering of the 3d eigenvalue relative to the band-

structure calculation provides an estimate of the error
made by using the band-structure eigenvalue to describe
the ionization energy of a state that is assumed-to be well
localized. While this also applies to a free atom, the 3d
hole in the solid is screened by a 4p electron. Thus the
lowering of the 3d eigenvalue when the occupancy is re-
duced from 10 to 9.5 is smaller than that for the atom,
since for the solid the 4p occupancy increases by =0.5.
In this respect the atomic limit is reached when the po-
tential from the screening electron is negligible compared
with the 3d Coulomb interaction.

A more extreme case is provided by the 4f band in Ce.
Here the values of U and 8'are about 6 and 1 eV, respec-
tively, and U ))W (Gunnarsson and Schonhammer,
1987b). Experimentally the 4f spectrum is spread out
over about 8 eV, much greater than the 1-eV broad 4f
band in the LD approximation. Nevertheless, the topolo-
gy of the LD (exchange only) Fermi surface of CeSn3 is

claimed to be in good agreement with experiment, even
though the low-T specific heat is wrong by a factor of 7
(Koelling, 1982). The results for the heavy-fermion sys-
tem UPt3 are even more remarkable. The heavy fermions
are related to the 5f band, which in terms of the U/W
value should be between the 3d and the 4f series. Wang
et al. (1987) found that the LD approximation gives a
Fermi surface in fairly good agreement with experiment,
although shifts (a few mRy) had to be applied to the
different bands. The agreement with experiment was lost
if the 5f electrons were forced into the core with the oc-
cupancy 2 or 3. On the other hand, for the related sys-
tem UPd3, agreement with experiment was obtained only
when the 5f electrons were treated as corelike (Norman
et al. , 1987). As for CeSn3, the calculated specific heat
(factor 30; see Strange and Cxyorft'y, 1985) and efFective
masses (factor 20; see Wang et al. 1987) are much too
small for UPt3. The reasons for the accuracy of the LDA
Fermi surface for UPt3 have been discussed by Zwicknagl
(1988), who concluded that the LDA would not give
good Fermi surfaces for systems where the Kondo tem-
perature is smaller than the crystal-field splitting.

G. General remarks on eigenvalue distributions

Although the eigenvalues c, of the Kohn-Sham equa-
tions (3.4)-(3.6) have no direct physical significance, the
above discussion has shown their usefulness. Their sum
is also an important contribution to the total energy and
has proved valuable in discussing molecular bonding
(Sec. IV). We close this section with some remarks on ei-
genvalue distributions in general.

The eigenvalues of complex systems have been the sub-
ject of much discussion during the past 40 years (see, for
example, Wigner, 1951, 1967, and Dyson, 1962), and
some remarkable results have been found. For a classical
Coulomb gas of X unit charges on a ring, for example,
Dyson (1962) found that the distribution of the positions
of charges at finite temperature T is identical to the dis-
tribution of eigenvalues of a random matrix. Different
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forms of randomness (e.g. , "orthogonal" or "unitary" en-
sembles), which might apply to different systems, corre-
spond simply to different values of T. This remarkable
result gives a physical feeling for the concept of "repul-
sion of energy levels. "

In the present review we have focused on atoms, mole-
cules, and solids, which are generally quantum, nonin-
tegrable systems for which little theory is available.
However, a careful analysis of rare-earth atoms and ions
(Camarda and Georgopoulos, 1983) showed that the pre-
dictions of the orthogonal ensemble are well satisfied un-
der certain conditions. They found, for example, that the
eigenvalue spectra of Tb I for total spin J =—', and parity
H = —1 has. a particularly simple form, and that there are
both long- and short-range correlations. These and other
experimental observations on complex atoms and nuclei
support the predictions of random-matrix theory that the
eigenvalue spectra of real systems (and hence the eigen-
value sum) have features that are both simple and univer-
sal.

The local-density approximation, which is exact for a
homogeneous system, can give remarkably good results
in systems i'ar from homogeneity. This can be under-
stood in terms of the exchange-correlation hole, so that
E„is remarkably insensitive to details of the approxima-
tions necessary to evalua, te it. The above observations in-
dicate that other contributions to the energy are surpris-
ingly insensitive to the assumption concerning the in-
teractions in the system. They are further evidence
against the common argument that the local-density ap-
proximation cannot be expected to work for inhomogene-
ous systems.

Vll. CONCLUDING REMARKS

The use of the electron density as a basic variable has a
long history in the calculation of electronic properties.
We have traced this path from the Thomas-Fermi
method through the approximate exchange potentials of
Slater and Gaspar-Kohn-Sham to the density functional
formalism. Against the initial expectations of Kohn and
Sham (1965), the local-density approximation (and its
spin analog, the LSD approximation) has been remark-
ably successful in describing the ground-state properties
of a great range of physical systems. Molecular ground-
state geometries, in particular, are very well described
from the simplest diatomic molecules to infinite chains in
polymers. The equilibrium geometries of many extended
systems are also reliably treated. This has been a great
boon for the solid state theorist. The familiar approxi-
mations of the last 30 years (e.g. , n '~

) not only seem to
"work, " but they at last have a sound justification in
terms of a variational principle involving an (admittedly
poorly known) energy functional. It is understandable
that many solid state theorists are satisfied with this situ-
ation and are somewhat uncritical of the approximations
used.

We have seen, however, that the LD and LSD approxi-

mations, while giving a very satisfactory description of
binding trends, can yield an unreliable description of the
actual binding energies and their differences. The devia-
tions from experimental values are far from trivial, being
-2 eV in the dissociation energies of 02 and 03. This
sort of error is quite unacceptable, and we have surveyed
some of the attempts to understand the origin of these
discrepancies and to correct for them. While there are
now some indications that a significant part of the error

, comes from the inability of the LSD approximation to
describe (obviously nonlocal) exchange energy
differences, it does not seem to us that any simple
modification of the LSD form will lead to accurate
answers in general. Nevertheless, the forms proposed by
Langreth and Mehl and by Perdew have given improved
energy differences in a number of cases. In spite of the
difhculties, the LSD method is the most practicable
parameter-free scheme for studying the electronic struc-
ture of complicated systems. It has advantages over
some more traditional methods (e.g. , configuration in-
teraction) not only because of its numerical efficiency but
also because of the absence of problems with size con-
sistency. Other approaches —such as the GW scheme de-
scribed in Sec. VI.E, the local approach (Stollhoff and
Fulde, 1980) or the quantum Monte Carlo method (see,
for example, Fahy et al. 1988; Hammond et al. , 1988;
Bachelet et al. , 1989)—are promising, but await applica-
tion to systems of the complexity discussed above.

We noted at the beginning of this review that the DF
formalism, with the LSD approximation for exchange
and correlation, has exceeded all the expectations of a de-
cade or so ago. Not only have we seen a great range of
applications, but some of the early criticism of the for-
malism has been answered by theoretical developments.
The method will doubtless remain a widely used,
parameter-free method for electronic structure calcula-
tions. It can be expected to give a reliable description of
many structures and of trends in bonding characteristics,
and to complement the more traditional schemes of
molecular physics and quantum chemistry. It remains an
important challenge to solid state physicists and chemists
to seek further for ways to improve on the local-density
results. We hope that this article will encourage not only
new applications but also further work toward this goal.
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