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The thermal boundary resistance present at interfaces between helium and solids (Kapitza resistance) and
the thermal boundary resistance at interfaces between two solids are discussed for temperatures above 0.1
K. The apparent qualitative differences in the behavior of the boundary resistance at these two types of
interfaces can be understood within the context of two limiting models of the boundary resistance, the
acoustic mismatch model, which assumes no scattering, and the diffuse mismatch model, which assumes
that all phonons incident on the interface will scatter. If the acoustic impedances of the two media in con-
tact are very different, as is the case for-helium (liquid or solid) in contact with a solid, then phonon
scattering at the interface will reduce the boundary resistance. In the limiting case of diffuse mismatch,
this reduction is typically over 2 orders of magnitude. Phonons are very sensitive to surface defects, and
therefore the Kapitza resistance is very sensitive to the condition of the interface. For typical solid-solid
interfaces, at which the acoustic irnpedances are less different, the influence of diffuse scattering is relative-
ly small; even for the two limiting cases of acoustic mismatch and diffuse mismatch the predicted bound-
ary resistances differ by very little ( 30%%uo). Consequently, the experimentally determined values are ex-
pected to be rather insensitive to the condition of the interface, in agreement with recent observations.
Subsurface (bulk) disorder and imperfect physical contact between the solids play far more important
roles and led to the irreproducibilities observed in the early measurements of the solid-solid thermal
boundary resistance.
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I. INTRODUCTION

The idea that a thermal resistance might exist between
liquid helium and a solid was first expressed as early as
1936. Kiirti, Rollin, and Simon (1936) assumed such a
thermal resistance to be small and therefore ignored it.
Only a few months later, Keesom and Keesom (1936)
recognized that the thermal resistance at the interface
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606 E. T. Swartz and R. Q. Pohl: Thermal boundary resistance

was "relatively very considerable, " but they too allowed
the idea to pass without further mention. In 1941, Ka-
pitza reported his measurements of the temperature drop
near the boundary between helium and a solid' when
heat flows across the boundary. More than ten years
later, Khalatnikov (1952) presented a model, an approxi-
mation to what is now known as the acoustic mismatch
model, to explain that a thermal resistance, the thermal
boundary resistance, occurs at boundaries to helium. In
the presence of a heat Aux across the boundary, this
thermal resistance causes a temperature discontinuity at
the boundary. This thermal boundary resistance (often
called Kapitza resistance) is defined as the ratio of the
temperature discontinuity at the interface to the power
per unit area Aowing across that interface. The acoustic
mismatch model, essentially in its modern form, was first
written down by Mazo arid Onsager (Mazo, 1955), in-

dependent of Khalatnikov's earlier version. The thermal
boundary resistance to helium predicted by this theory is
of the order of 10 K/(W/cm ) at 1 K, and varies as T
This magnitude would be disastrous because it would
severely limit attainable cooling powers and increase time
constants for reaching thermal equilibrium, thus compli-
cating the quest for experimentation at ever-lower tem-
peratures. Fortunately, the experimentally observed Ka-
pitza resistance was often as much as 2 orders of magni-
tude smaller near 1 K than that predicted using the
acoustic mismatch model. '

With more experimentation, patterns developed. Near
100 mK, the measured thermal boundary resistance was
only about a factor of 3 below the prediction of the
acoustic mismatch model, but above 100 mK the thermal
boundary resistance decreased significantly with respect
to the theory. However, results were generally irrepro-

ducible. In Fig. 1 are a few measurements of the Kapitza
resistance between He and copper versus temperature
between 0.1 and 2 K (Kapitza, 1941; Ciuan, 1962;
Johnson and Little, 1963; Anderson, Connolly, and
Wheatley, 1964; Folinsbee and Anderson, 1974). In or-
der to highlight the deviations from the T predicted
temperature dependence, we have plotted the thermal
boundary resistance as R Bd T . Also shown is the
thermal boundary resistance as calculated using the
acoustic mismatch model. The lower line, labeled di6'use

1000

acoustic mismatch

v 100—

e

diffuse mismatch
I ~ . I

0.1 1.0
Temperature (K)

~In the initial experiment the boundary was to a bronze wire

thermometer. In subsequent experiments the solid was a thin

platinum fibn on glass, and after that, Kapitza performed a
series of experiments on the thermal boundary resistance be-

tween copper and liquid helium.
The term anomalous Kapitza resistance is often used to refer

to the fact that the measured Kapitza resistance above 0.3 K is

much lower than that predicted with the acoustic mismatch
model. Although we are not yet able to calculate the Kapitza
resistance quantitatively, as will be reviewed below, we can un-

derstand the disagreement qualitatively. It often occurs that a

property is described as anomalous in the early phases of the
development of a Geld. The descriptor is then dropped once the

property is basically understood; the time has come for the
anomalous Kapitza resistance, and we shall avoid the term.

3Some of the behavior of the Kapitza resistance at millikelvin

temperatures, in ways unrelated to the contents of this review,
is also sometimes referred to as anomalous. In this regime, as
well, the Kapitza resistance can be orders of magnitude lower
than that predicted using the acoustic mismatch model; see the
review by Harrison (1979).

FIG. 1. A few examples of the measured Kapitza resistance be-
tween copper and He, multiplied by T to remove some of the
strong temperature dependence. Note the drop in RBd T' with

temperature above 0.1 K. The upper solid line is the prediction
of the acoustic mismatch model [500 K /{W/cm )]. The lower
solid line is the prediction of the diffuse mismatch model [2.8
K /(W/cm~)]. Both models will be discussed in detail in Sec.
II. The prediction of the diffuse mismatch model should not be
confused with the prediction of the "perfect match model, "oth-
erwise known as the phonon radiation limit, also discussed in

Sec. II. The curves are as follows: a, Folinsbee and Anderson,
1974; b, Anderson, Connolly, and %'heatley, 1964 (the kink is
not physics, but instead shows the typical irreproducibility of
the Kapitza resistance from run to run, even on the same sam-

ple); c, Johnson and Little, 1963; d, Guan, 1962; and e, Kapitza,
1941; Below 0.1 K, the measured thermal boundary resistance
is expected to approach the prediction of the acoustic mismatch
model, if the sample were an insulator with a clean, smooth,
and undamaged surface. The electrons in the copper contribute
to the transport even at these lowest temperatures by providing
a mechanism for phonon attenuation in the solid, due to the
electron-phonon interaction. This is discussed in Secs. II and
III. We know of no direct measurements of the Kapitza resis-
tance at temperatures below 0.2 K of an insulator with a
smooth, clean, and unstrained surface.
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mismatch, will be discussed shortly (Sec. II.D).
It was originally thought that the measured Kapitza

resistance was lower than that expected from acoustic
mismatch theory only at interfaces to liquid He. Then it
was found that the same enhanced transport existed at
interfaces to liquid He (Lee and Fairbank, 1959) and
even to solid He and He (Anderson, Connolly, and
Wheatley, 1964). Figure 2 shows results on liquid and
solid He in contact with copper. These data show yet
another surprising fact: Since the speed of sound in heli-
um is a strong function of pressure, the acoustic
mismatch model would predict a pressure dependence of
the thermal boundary resistance. However, this depen-
dence was found only near 0.1 K; around 1 K, the
thermal boundary resistance is almost independent of
pressure.

To understand the weakness of the pressure depen-
dence, and at least qualitatively the temperature depen-
dence, of the Kapitza resistance at temperatures between
100 mK and a few K, Challis, Dransfeld, and %'ilks
(1961) calculated the effects of the solid layer of adsorbed

helium present at helium-solid interfaces due to van der
Waals forces. They found the adsorbed layer to act as a
phonon-wavelength-dependent reAection-reducing coat-
ing, analogous to antireAection coatings in optics. The
boundary resistance was predicted to be unaffected. by the
layer at temperatures below 0.2 K, but to be reduced by
the layer at higher temperatures. However, the predicted
drop in the thermal boundary resistance was not enough
to explain the observations.

Haug and Weiss (1972) and Peterson and Anderson
(1973) independently explained the low magnitude of the
thermal boundary resistance at the lowest temperatures
(below or near 100 mK) by showing that thermal bound-
ary resistance is lowered because of attenuation of pho-
nons in the bulk solid near the interface, caused, for ex-
ample, by electrons or dislocations. Their analysis is val-
id at higher temperatures as well, but additional effects
usually dominate above 100 mK.

The common denominator in the experiments de-
scribed so far was that they all involved a boundary to a
quantum liquid or solid, and so quantum explanations
were sought. Reynolds and Anderson (1976, 1977) mea-
sured the Kapitza resistance between copper and solid
helium, hydrogen, deuterium, and neon, and observed
that the magnitude of the transport in excess of that pre-
dicted using the acoustic mismatch model appeared to be
proportional to the reduced quantum parameter of the
solidified gas. Maris (1979) also suggested that quantum
effects are likely to play a role in the Kapitza resistance.
However, Goodstein et al. (1981) concluded from pho-
non reAection experiments that the Kapitza resistance
was lower than predicted using acoustic mismatch theory
even at some interfaces between nonquantum solids,
specifically between sapphire and neon, argon, krypton,
or xenon. %"e also suggest that the degree of quantum
behavior is coincidentally large for exactly those ele-
ments for which the acoustic Inismatch model predicts
an extremely large thermal boundary resistance because
the elements with a highly quantum nature tend to be
light and soft. Therefore a given increase in the thermal
transport will appear more significant for the elements
with greater quantum nature, and there is less room for
increased transport for elements with lesser quantum na-
ture.

Later experiments showed conclusively that the condi-
tion of the interface is a critical factor determining the
thermal boundary resistance; scattering at the interface
somehow causes the drop in 8Bd T at interfaces to heli-
um above 0.1 K. At "perfect interfaces, " which were

FICx. 2. Measured Kapitza resistance between electropolished
copper and He, multiplied by T to remove some of the strong
temperature dependence (adapted from Anderson, Connolly,
and Wheatley, 1964). Note the similarity with the He data
(Fig. 1). The pressure dependence is seen well below 1 K, but
near 1 K the Kapitza resistance is nearly pressure independent.
The acoustic mismatch prediction for the low-pressure curve is
about 1200 K /(W/crn ). The diit'use mismatch prediction for
the low-pressure curve is about 2.7 K /(W/cm ).

4Reynolds and Anderson (1976 and 1977) define quantum
behavior using the reduced quantum parameter
A=h/(o. m ' c' ), where m is the atomic or molecular mass, h

is Planck*s constant, and 0. and c are constants from a Lennard
Jones-type potential. This parameter was introduced by de
Boer (1948).
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most closely approximated by crystals cleaved in situ in
liquid helium (Weber et al. , 1978a, 1978b), or laser-
annealed in situ in vacuum (Basso, Dietsche, and Kinder,
1984; Basso, Dietsche, Kinder, and Leiderer, 1984; Mok
et al. , 1986), the phonon transmission coefficients ap-
peared to come very close to those predicted by the
acoustic mismatch model, at least for phonons with fre-
quencies less than 300 GHz (or thermal phonons with
T(3 K). These experiments focused attention on the
state of the surface as crucial for the Kapitza resistance.
For example, in the temperature range between 100 mK
and a few K, coupling between helium and the solid
through surface waves was considered in connection with
surface roughness by Lapin (1969), Sheard and Toombs
(1972a, 1972b), Khater (1978), and Shiren (1981a, 1981b);
in connection with surface roughness and excitations in
the adsorbed helium film by Nakayama (1985a, 1985b,
1986); and in connection with surface resonant states by
van der Sluijs and van der Sluijs (1981a, 198lb, 1981c).
The eA'ect of coupling through tunneling states was cal-
culated by Kinder (1981).

In 1959, Little extended the acoustic mismatch model
to solid-solid boundaries. Experimental tests of this
theory showed that, in contrast to the Kapitza resistance,
the thermal boundary resistance between solids was often
actually higher than that calculated from the acoustic
mismatch model, but it was also poorly reproducible.
The most thoroughly studied interfaces were those be-
tween sapphire and indium (Neeper and Dillinger, 1964;
Wolfmeyer, Fox, and Dillinger, 1970; Park and
Narahara, 1971a, 1971b; Schmidt and Umlauf, 1976). In
these experiments, the indium was vapor deposited or ul-

trasonically soldered onto sapphire rods, the two rods
were pressed together with additional indium in between,
and the "sandwich" was annealed; a typical sample is
shown schematically in Fig. 3. The measured thermal
boundary resistance for diA'erent samples varied
significantly, depending on the details of the sample
preparation, but was typically a factor of 2 above the
thermal boundary resistance as calculated from acoustic
mismatch theory (see Fig. 4). The temperature depen-
dence was also not as expected from acoustic mismatch
theory; RBd T showed a tendency to increase above 1 K.
The magnitude and temperature dependence of the mea-
sured thermal boundary resistance suggested that the
physical contact between the indium and the sapphire
was not complete (Schmidt and Umlauf, 1976). Similar
measurements were made by Nitsche and Schumann
(1980; see also Sec. IV.B.2) of the thermal boundary resis-
tance between sapphire and lead. The results were much
closer to the prediction of the acoustic mismatch model,
both in magnitude and in temperature dependence. Mea-
surements by Sahling et al. (1981) of the thermal bound-
ary resistance between aluminum and sapphire showed
even closer agreement with the acoustic mismatch model,
given a proper interpretation of the measured tempera-
tures of the thermometers (see Sec. IV.B.2).

In order to ensure good physical contact, sandwiches

Heater

Sapphire

Thermometer
7'' Iea~

e ( j e~~ Indium

/ m!II~;d

Thermometer

Sapphire

Base Clamp

1cm

FIG. 3. Experimental geometry used for measuring the thermal
boundary resistance between indium and sapphire (Schmidt and
Umlauf, 1976). The indium is vapor deposited or ultrasonically
soldered onto each sapphire cylinder, and the coated cylinders
are vacuum melted together with a (few mm thick) disk of indi-
um between the cylinders.

of epoxy between Rat and polished pure metals were pro-
. duced (Matsumoto, Reynolds, and Anderson, 1977). At
about 100 mK, the measured thermal boundary resis-
tance at the two copper-epoxy interfaces agreed with that
predicted by the acoustic mismatch model. Above 100
mK, however, the total thermal resistance of the
sandwich contained 'large contributions from the phonon
scattering in the glassy epoxy, and the transmission at
the interfaces could not be deduced accurately. This
work established that solid-solid interfaces can be made
such that the thermal boundary resistance approaches an
agreement with acoustic mismatch theory, at least at low
enough temperatures.

The solid-solid thermal boundary resistance involving
thermal phonons with temperatures well above 1 K was
studied by Weis (1969). His boundaries consisted of thin
metal films vapor deposited onto dielectric substrates.
The film was used as both heater and thermometer, and
the substrate was typically kept at 4 K. In the time span
of & 100 nsec, the film was Joule heated to a temperature
between 1S and 300 K, after which its temperature was
allowed to stabilize and was measured. During this time

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989
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FICi. 4. Thermal boundary resistance between indium and sap-
phire multiplied by the cube of temperature to remove the
strong temperature dependence (adapted from Schmidt and
Umlauf, 1976). X, normal indium; ~ superconducting indium.
The two sets of data labeled B are for a roughened sapphire sur-
face. 3 and C are for smooth sapphire surfaces with different
indium thicknesses. Acoustic mismatch theory predicts a Aat
line at 20.4 cm K /W.

phonons radiated into the substrate, but did not have
time to be scattered back into the heater or to thermalize
in the substrate; therefore the substrate temperature
remained at 4 K. In Fig. 5 is a plot of data for a
gold/sapphire boundary obtained with this technique.
The film temperature is plotted versus film power; the
calculated film temperature, based on the power density
and the acoustic mismatch model, is shown as the solid
curve. To within the accuracy of the technique, theory
and experiment could agree at temperatures as high as
100 K.

Using a steady-state technique Swartz (1987) measured
the thermal boundary resistance from 0.6 to 200 K be-
tween metal films and the dielectric substrates onto
which the films were deposited. In Fig. 6 is a plot that
again demonstrates that at least below -40 K a very
close agreement with the acoustic mismatch calculation
was obtained. At higher temperatures, significant devia-
tions were found with this technique.

Although the experiments by Weiss and by Swartz

5This assumption may not be true for the very high frequency
(several THZ) phonons emitted from the film at temperatures
above -50 K, in which case the phonon scattering time can
drop well below a psec, especially if the dielectric is damaged;
see Secs. IV.B.4 and EV.C.2. This causes the film to overheat
because of the backscattered phonons, causing a temperature
rise in the crystal near the film.

FIG. 5. Temperature of two thin gold films deposited onto sap-
phire as a function of the power input per unit contact area.
The temperature of the sapphire is 4.2 K. For comparison, the
solid line is the prediction of the acoustic mismatch model as-
suming the phonon dispersion in the gold matches that of a
one-dimensional linear chain. Adapted from Herth and Weis
(1970).

confirmed the acoustic mismatch model over a wide
. range of phonon frequencies and for a large number of
solid-solid interfaces, they raised another problem: From
phonon reAection experiments it is well known that pho-
nons in the frequency range above a few hundred GHz
are strongly scattered at all but the most carefully
prepared surfaces (see, for example, Eisenmenger, 1986).
There was good reason to believe that similar scattering
would occur at the solid-solid interfaces studied by Weis
and by Swartz. In view of the dramatic inAuence of sur-
face preparation on the Kapitza resistance, should one
not expect similar effects in the solid-solid work above a
few K, where the heat is carried predominantly by pho-
nons with frequencies exceeding 100 GHz7 (See Fig. 6
for the conversion from phonon frequency to tempera-
ture. )

'

In order to estimate the effect of diffuse scattering on
the thermal boundary resistance, Swartz constructed a
model, the diffuse mismatch model, which represents the
limit of strong diffuse scattering. He assumed that all
phonons striking-the interface are scattered once (elasti-
cally) and are then emitted into the adjoining substances
with a probability proportional to the phonon density of
states in the respective substances. This diffuse mismatch
model leads to the lower line in Fig. 1, more than 2 or-
ders of magnitude lower. than the upper line correspond-
ing to the acoustic mismatch model for the Kapitza resis-
tance. For solid-solid interfaces, the effect of diffuse
scattering is minute, of the order of 10%%uo, in some cases
the diffuse mismatch model leads to a slightly higher
boundary resistance than that predicted using the acous-
tic mismatch model, and in some cases the diffuse
mismatch model leads to a slightly lower boundary resis-
tance than that predicted using the acoustic mismatch
model. Consequently, the good agreement with the
acoustic mismatch model in the work of Weis and Swartz

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989
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was fortuitous in the sense that the boundary resistance is
quite insensitive to diffuse scattering at solid-solid inter-
faces.

An understanding of thermal boundary resistance can-
not be complete without studying the evidence provided
by investigations of both Kapitza boundaries and solid-
solid boundaries. Each type of boundary provides its
own set of experimental challenges and its own set of ad-
vantages, and each can supply clues helpfu1 to the under-
standing of both. Kapitza boundaries can be studied
only at terpperatures below 4 K. They are extremely sen-
sitive to surface (and subsurface) conditions and thus

900 vd (GHz)

1
2

10'

~10

1 0 2

100 10 10
Temperature (K)

FIG. 6. Thermal boundary resistance between Rh:Fe and sap-
phire plotted log-log vs temperature. The surface of the sap-
phire substrate was as received (Syton-pohshed by the supplier).
The substrate was sequentially soaked in heated acetone, in a
heated 1:1:1 solution of NH4OH:H&02. H2O, and in distilled

H20, immediately before loading into a dc sputtering chamber
for the Rh:Fe deposition. The solid line represents the acoustic
mismatch prediction, the dashed curve the diffuse mismatch
prediction. Note the agreement over 6 orders of magnitude of
the thermal boundary resistance. The small rise in the bound-

ary resistance relative to the solid curve below a few kelvin is
due to the effects of incomplete electron-phonon thermalization
(the electrons are hotter than the phonons during the measure-
ment at temperatures below or about 1 K). See the caption of
Fig. 32 for more information. The enhancement of the mea-
sured resistance above 50 K is caused by substrate damage in
the sapphire, as discussed in Sec. IV.C.2 (from Swartz and Pohl,
1987). The frequency scale at the top of the graph marks the
dominant phonon frequency vd, =(90 GHz/K) T (Klitsner and
Pohl, 1987), i.e., the frequency of the phonons that carry most
of the heat at a given temperature T, in the Debye approxima-
tion.

afford a rich set of opportunities for the careful experi-
menter. That sensitivity, though, also makes interpreta-
tion of the data extremely di%cult and controversial. In
situ laser annealing and in situ cleaving have proven to be
powerful tools, providing a clean surface onto which
well-characterized defects can be introduced. Lowering
the temperature (thus lowering the average frequency
and raising the average wavelength of the phonons that
dominate thermal transport) has proven to be another
way to clean the slate so that the effects of added struc-
ture at the surfaces can be studied (Klitsner and Pohl,
1987). Solid-sohd interfaces have the technical difficulty
that perfect physica1 contact cannot generally be expect-
ed. They are, however, expected to be less sensitive to
details at the interface than Kapitza boundaries. Solid-
solid interfaces can be studied over the entire tempera-
ture range from millikelvins to hundreds of kelvins. At
the high temperatures, effects of dispersion, realistic pho-
non density of states, and inelastic scattering can also be
studied.

The main purpose of this review is to show that the
physics of phonon transmission at both types of boun-
daries can be qualitatively understood within a single
framework. At low enough temperatures (usually well
below 1 K), at sufficiently defect-free (i.e., "smooth") in-
terfaces, phonons are not scattered and therefore behave
according to the rules of classical continuum acoustics;
under these circumstances, the acoustic mismatch model
is a realistic model. At high temperatures (usually above
1 K) and at sufficiently imperfect interfaces, phonons will
not usually behave ideally; they will instead scatter. In
this case the diffuse mismatch model leads to a more real-
istic description of the measurements. Various sources of
the scattering will also be reviewed.

We shall not discuss the problems of thermal boundary
resistance at millikelvin temperatures, spin-spin thermal
transport, or thermal boundary resistance to sinters.
These issues are extremely important in the general un-
derstanding of thermal transport at interfaces in the re-
gime of temperatures below 100 mK. A review of these
issues is given by Harrison (1979). We shall consider
only interfaces in which the thermal transport on at least
one side is dominantly due to the lattice.

There have been several reviews of the problem of the
thermal boundary resistance. The classic first studies of
the many fascinating properties of helium were reviewed
by Keesom (1942) and Atkins (1959). A very complete
review of the early work on the Kapitza resistance, of the
original derivation of Kalatnikov, and of some of the first
experimental and theoretical attempts to understand the
observations was written by Pollack (1969). Later re-
views of thermal boundary resistance stressing mostly the
Kapitza problem have been written by Challis (196la,
1974), Frederking (1968), Cheeke (1970b), and Wyatt
(1980, 1981). For the solid-solid thermal boundary resis-
tance, Little (1959) reviewed the early data and extended
the acoustic mismatch model to solid-solid interfaces.
Reviews of the solid-solid interface thermal boundary

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989
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resistance have been written by Anderson (1976, 1981),
and Cheeke, Ettinger, and Hebral (1976). Reviews of the
use of heat pulses in the study of the interaction of pho-
nons with interfaces are given by Kinder, Weber, . and
Dietsche (1980), Goodstein et al. (1981), Eisenmenger
(1986), and Wybourne and Wigmore (1988).

In Sec. II of this paper, the thermal boundary resis-
tance will be carefully defined and many'of the subtleties
of the definition will be discussed. The problem of what
resistance is measured in an experiment will be con-
sidered in some detail, and the fundamentals of the
theories of thermal boundary resistance will be reviewed.
The reader will be referred to original papers for details
of calculations. In Sec. III Kapitza resistance measure-
ments and interpretations will be reviewed. Section IV
contains the work on solid-solid thermal boundary resis-
tance. Section V contains the conclusions.

II ~ MODELS FOR THE THERMAL BOUNDARY
RESISTANCE

A. Definitions and subt/eties of the measurement

In order to induce a heat liow Q in a material, we must
impose a temperature gradient 7 T. The ratio of the heat
How per unit area 3 to the temperature gradient is
defined as the thermal conductivity:

A=QI(AVT) . (2.1)

At low temperatures (in the boundary scattering regime),
the thermal conductivity is not well defined; it depends
on the geometry of the crystal, on the condition of the
surfaces (Casimir, 1938), and even on the condition and

In this section, we shall review the simplest models and
definitions needed for a fundamental understanding of
the thermal boundary resistance. In Sec. II.A we shall
discuss the definitions and the subtleties involved in such
things as measurement of temperature in nonequilibrium
systems (i.e., in the presence of a heat Aow and in systems
where the carriers may have long mean free paths). We
shall show that, even independent of experimental
di%culties the measurement of the thermal boundary
resistance is much more subtle than measuring the tem-
perature on two sides of an interface and dividing the
measured 6T by the power per unit area across the inter-
face. As these subtleties have led to much confusion in
the literature we have tried to discuss them very
thoroughly, using simple analogies to optics and black-
body radiation whenever possible. At the end of this sec-
tion, we shall critically analyze several experimental ar-
rangements. In Sec. II.B we discuss brieQy the model-
independent formalism used to calculate a boundary
resistance, and in Secs. II.C and II.D we discuss the
acoustic mismatch model and the di6'use mismatch mod-
el, respectively. In Sec. II.E we discuss the phonon radi-
ation limit.

geometry of the thermometers used for the measurement
(VanCleve, Klitsner, and Pohl, 1986; Klitsner et al.
1988). We shall see that all the insight necessary to inter-

pret thermal conductivity measurements at low tempera-
tures is needed as well in the interpretation of data on the
thermal conductance at an interface.

In order to induce a heat Sow Q across a boundary be-
tween two materials, there must be a temperature
difFerence b T between the two sides of the interface (in
addition to the temperature gradients in the adjoining
materials). The nature of this "temperature discontinui-
ty" is subtle, because both the presence of the interface
and the presence of a heat Aow make uncertain even the
definition of a temperature. This sublety will be ad-
dressed later in this section. The thermal boundary con-
ductivity hBd is defined as the ratio of heat fIow per unit
area A across the interface to the temperature discon-
tinuity 4T at the interface:

h ad
=Q /( A b.T ) . (2.2)

The calculation of the thermal boundary conductivity is
very similar to that of the thermal conductivity; the
thermal boundary conductivity is determined by the
number of carriers (phonons) incident on the interface,
the energy carried by each phonon, and the probability
that each phonon is transmitted across the interface. For
the thermal conductivity, the hard part is to determine
the mean free path, whereas for the thermal boundary
conductivity the hard part is to determine the transmis-
sion probability.

We have been careful to use the term conductivity, be-
cause the thermal boundary conductivity is geometry in-

dependent; doubling the area of the interface doubles the
thermal boundary conductance, not the thermal bound-
ary conductivity. Typically, the quantity used to de-
scribe the thermal transport across an interface is called
a thermal boundary resistance (not a thermal boundary
resistivity) and is defined as the inverse of the thermal
boundary conductivity. For historical reasons, the word
resistance is used because resistivity usually describes a
bulk property. Nevertheless, we believe that the term
resistivity would be more appropriate because the
thermal boundary resistance is a geometry-independent
property. As the terminology is generally accepted, we
shall not attempt to change it.

There is another reason why we chose to introduce the
thermal -boundary conductivity first and not its inverse.
Even interfaces between two identical materials will,
given the above definitions, have a finite thermal bound-
ary conductivity and therefore a nonzero thermal bound-

, ary resistance, even though there is nothing resistive
occurring at the interface. This can be understood by
considering the blackbody radiation analog shown in Fig.
7. Two black cavities are connected by a small hole.
One cavity is held at a temperature T2 and the other at a
lower temperature T, . We know that the heat Qow be-
tween them is given by

Q=o A(T2 —T", ), (2.3)
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Small aperture
with area A

Black cavity at
temperature T]

herrnometer 1

Thermometer 2

Black cavity at
temperature T2

The calculation of the heat transport between two
solids is complicated by the solids' having a different
0 ph „, furthermore, the transmission probability wil 1

generally depend on the side from which the phonon hits
the interface, the angle of incidence, the phonon frequen-
cy, the phonon polarization (longitudinal or transverse),
and the temperature of both sides of the interface. If the
transmission probability were to depend only on the side
from which the phonon was incident, then it would be
easy to write down the net heat transport Q,

(2.5)

FIG. 7. Blackbody picture to demonstrate that the thermal
boundary conductance is finite even in the absence of any resis-
tive mechanisms. Two black cavities, held at different tempera-
tures T& and T2, are connected via a small aperture with area
A. All phonons incident on the aperture transmit across the
aperture. The energy flux across the aperture is finite and given
by 4Ao. T'AT, for small temperature differences AT= T, —T&.
o. is the Stephan Boltzmann constant.

where o. is the Stefan Boltzmann constant and 3 is the
area of the aperture. The hole has no resistance, yet there
is a finite Aow of energy across it, determined by the
Planck density of photons at a given temperature. Thus
the fact that the conductance through the hole is finite is
not surprising; and that the resistance is not zero, al-
though seemingly counterintuitive, follows from its
definition as the inverse of the conductance. Conceptual-
ly, then, it is the thermal boundary conductivity which is
the fundamental quantity and which is most easily under-
stood.

In this example, there is no interface except the imag-
ined one between the two cavities, and there is no tem-
perature discontinuity at that interface. However, the
photons incident on the interface from above have a fre-
quency distribution characteristic of the temperature T„
and the photons incident on the interface from below
have a frequency distribution characteristic of the tem-
perature T2. The temperature difference used in the
definition of the thermal boundary conductivity (or resis-
tance) is that between the photons (phonons) incident on
the respective sides of the interface.

The physics of phonon transport in bulk matter at low
temperatures, in the absence of scattering in the bulk, is
virtually identical to the physics of the blackbody photon
radiation. In fact, one can define an acoustic analog of
the Stefan Boltzmann constant o.

ph At low tempera-
tures, in isotropic condensed matter,

where a, 2 is the transmission probability from side 1 to
side 2, and o.; is the phonon Stefan Boltzmann constant
of side i. From this simple (and unrealistic) expression,
using the fact that there can be no net heat Aow if the
temperatures of the two sides are equal (the second law of
thermodynamics), it can be seen that o &a& .2=aza2
That is, in thermal equilibrium the number of phonons
leaving one side is the same as the number of phonons re-
turning from the other side. This result is still true if the
unrealistic assumption is removed, but generally even
more can be said: in thermal equilibrium, the number of
phonons of a given phonon state (polarization and wave
vector) leaving one side is the same as the number of pho-
nons returning from the other side into that state. This is
simply a statement of the principle of detailed balance.
That principle is a very powerful tool and can be used to
simplify transport calculations significantly, including the
calculation of the thermal boundary resistance.

Using that principle, it suf5ces to calculate the gross
heat transfer from one side of the interface at the two in-
cident phonon temperatures and to subtract to 6nd the
net heat transfer. The heat transport from the other
side of the interface need never be considered, and the
second law of thermodynamics and the law of detailed
balance are automatically satisfied. In nearly any experi-
ment, the net heat Aow across the interface is many or-
ders of magnitude smaller than the gross heat How. It is
thus justified to use the equilibrium phonon density and
the principle of detailed balance.

The fact that the thermal boundary resistance is
nonzero for the interface between identical materials, or
for that matter even for imagined interfaces, has led to
some controversy and misunderstanding. For example, it
might be asked whether, if one imaginary interface has a
nonzero thermal boundary resistance, then must not all
matter, which can be thought of as having an infinity of

(2.4)

Here, kz is Boltzmann's constant, A is Planck's constant
divided by 2m, and c; are the speeds of sound, one longi-
tudinal and two transverse.

%'e assume for purposes of this discussion that there are no
anharmonic effects (temperature dependence and not just fre-
quency dependence). Otherwise, although the second law and
the law of detailed balance are still true, the gross Qow from one
side will depend on the temperature and dynamics of the other
side, and the calculation does not simplify.
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imagined interfaces, have infinite thermal resistance~
This absurd query serves to point out the subtle nature of
the definitions. The fundamental property of an interface
is the thermal boundary conductivity, which is defined,
as above, as the ratio of the heat Aux across an interface
per unit area to the temperature diA'erence between the
distributions of phonons incident on the two sides of an
interface.

%'hile the problem of merely defining the temperature
on either side of an interface is nontrivial, the problem of
experimentally measuring that temperature without the
thermometer's a6'ecting that temperature is even more
challenging. Consider the blackbody analog again, but
separate the two cavities with a mirrored tube, as in Fig.
8. Consider an imagined interface at the center of the
tube, The photons traveling in an upward direction have
a Planck distribution with characteristic temperature of
the lower cavity, and photons traveling downward have a
distribution with the temperature of the upper cavity.
The mirrored tube does not afFect these distributions;
therefore, the two temperatures in the definition of the
thermal boundary conductivity at the imagined interface
are the temperatures of the two blackbody cavities.
These two temperatures are by no means the tempera-
tures that would be measured by infinitesimally sized
thermometers placed inside the tube on the two sides of
the interface (see Fig. 8). In fact, both of those thermom-
eters would measure the same temperature, namely, the
fourth root of the average of the fourth power of the tem-
peratures of the two cavities:

Black cavity at
temperature T,

Small aperture

Thermometer 1
Perfectly ~
specular
tube Thermometer 2

Black cavity at
temperature T2

FIG. 8. Blackbody cavities separated by a perfectly specular
tube. The placement of the thermometers shown is faulty; ideal
thermometers would measure a zero AT. If the ideal thermom-
eters in the tube are replaced with real thermometers, then the
real thermomenters will measure a nonzero hT, depending only
on the extent of the photon scattering at the thermometers. If
water is added to the lower cavity, so that the water level is be-
tween the thermometers, then the AT measured depends on
both the transmission coefficients and the geometry of the ther-
mometers; the thermal boundary resistance could not be
correctly deduced. If the thermometers were placed inside the
cavities in the positions outlined, even if the thermometers were
not ideal, the correct AT would be measured in all cases.

4 4 1/4
Tideel thermometer f 2( TI + T2 )1 (2.6)

This follows from calculating the temperature at which
the thermometer must equilibrate so that the net radia-
tion from the thermometer to the colder end equals the
net radiation from the hotter end to the thermometer.
The calculation is independent of the position of the ther-
mometer in the tube. Therefore, even in the presence of
a heat fIux, two infinitesimal thermometers on opposite
sides of the imagined interface would read ident''ca( tem-
peratures. Using these thermometers, then, one would
calculate an infinite therma1 boundary conductivity for
the interface, and thus a vanishing thermal boundary
resistance. The problem with these thermometers is that
they do not discriminate between photons traveling up-
ward and photons traveIing downward.

7The fact that thermal boundary resistances do not simply add
is not just a consequence of the definition. In general, the way
to calculate a thermal resistance is to assume a temperature
di6'erence at the ends of the system in question and then to cal-
culate the heat Aux. Consider a sandwich of one material be-
tween two identical materials. An incident phonon will set up
standing waves between the two interfaces, and the transmission
will depend on the ratio of the film thickness to the phonon
wavelength. Thus for no definition of a thermal boundary resis-
tance do series thermal resistances add.

If the lower cavity were filled with water to a level be-
tween the two infinitesimal thermometers of Fig. 8, there
woold be a temperature difFerence measured between
them, and that temperature difference would be due en-
tirely to the reflection of photons at the interface.
Simons (1974) calculated the temperature that would be
measured by such infinitesimal thermometers adjacent to
an interface between two solids, for the phonon analog of
this picture. He used the same assumptions concerning
the phonon transmission properties at the interface as in
the acoustic mismatch mode1. The integrals written
down and estimated by Simons were later evaluated nu-
merically for several interfaces by Katerburg, Reynolds,
and Anderson (1977). Phillips and Sheard (1976) used
path-integral techniques to solve the Boltzmann equation
for the phonon transport at interfaces, again attempting
to fix the "prob1ems" associated with the prediction of a
nonzero temperature discontinuity at an interface be-
tween identical solids. Only a one-dimensional model
was solved, due to the complexity caused by the formula-
tion of the problem in terms of adjacent infinitesimal
thermometers. This further justifies using the tempera-
tures corresponding to the distributions of the incident
phonons; apparently, for no other definition is the calcu-
lation of a thermal boundary resistance reasonably tract-
able.

To illustrate the experimental subtleties of ther-
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mornetry in systems with ballistic carriers, consider what
happens if the infinitesimal thermometers in Fig. 8 on
each side of the imagined interface are replaced by real
thermometers with nonzero size. The thermometers
affect the measurement by scattering the photons (pho-
nons), and thus the measured thermal boundary conduc-
tivity depends on the details of the thermometers. (This
is the same subtlety as in the measurement of thermal
conductivity in the boundary scattering regime. ) Now, if
the lower cavity in this picture is filled with water to a
level between the thermometers, the measured tempera-
ture difference between the two thermometers will be due
to the scattering from the thermometers as well as the
reAection from the interface; the transmission probabili-
ties at the interface are therefore nearly impossible to
deduce. Consider the alternate placement of the ther-
mometers in the outlined positions inside the cavities in
Fig. 8. Thermometers in these positions measure exactly
the temperatures of the cavities without affecting those
temperatures, largely independent of the size or geometry
of the thermometers. Thus, for this geometry, there ex-
ists an experimentally simple way to measure the ap-
propriate temperatures (the temperatures of the incident
phonons) without the measurements' aff'ecting those tem-
peratures. A similar discussion of the effects of ther-
mometry on the interpretation of thermal boundary resis-
tance data and on the correspondence between the calcu-
lations [specificall the calculation by Simons (1974)
versus the acoustic mismatch calculation] and the mea-
surements is given by Katerberg, Reynolds, and Ander-
son (1977).

In a real blackbody experiment, the mirrored tube is
never perfect; scattering from the surface of the tube will
increase the temperature difference between the black
bodies, just as a radiation shield would. In phonon sys-
tems, the analog of the mirrored wall is a crystal surface
or a surface of the container which confines helium. In
addition, phonons (especially those characteristic of tem-
peratures above a few kelvin) can scatter in the interior of
the crystals and the helium. Scattering in the bulk and at
the walls can affect the thermal boundary resistance mea™.
surement very significantly; the farther the thermometers
are from the interface, the greater is the effect of this
scattering on the measurement. There seem to be mutu-
ally conflicting requirements: (1) the thermometers must
be placed where they measure the temperature of the dis-
tribution of phonons incident on the interface without
affecting this distribution, and (2) the thermometers must
be placed as close to the interface as possible in order to
minimize the effects of unwanted phonon scattering.
Thus the geometry used to measure a thermal boundary
resistance is an important factor; an inappropriate
'geometry will produce a boundary resistance that does
not correspond to the accepted definition, or that has
been affected by thermal resistances in series with the
thermal boundary resistance. Below we shall consider
the possible geometries that satisfy these requirements.
We shall start by comparing the thermal boundary resis-

tance to the thermal resistance of bulk solids and liquids,
with the motivation that we must determine how close to
the interface the thermometers must be positioned.

Consider the magnitude of the thermal boundary resis-
tance relative to the thermal resistance per unit area of a
length of bulk material. For an imagined interface in a
dielectric, the transmission probability is unity, and the
thermal boundary resistance is exactly equal to the
thermal resistance per unit area of a length of the dielec-
tric equal to one phonon mean free path (Little, 1959).
Similarly, at a real interface between two solid dielectrics,
for which the mean transmission probability is on the or-
der of unity, the thermal boundary resistance is of the or-
der of the thermal resistance of a mean-free-path-long
section of either dielectric; this case is simply not very
different from the case of the imagined interface. Anoth-
er way to understand the comparison is that, for boun-
daries to dielectrics, the ratio of the thermal boundary
resistance to the thermal resistance of a mean-free-path-
long section of dielectric is the inverse of the average
phonon transmission probability from the dielectric side.
At boundaries to superAuid helium, since the phonon
transmission probability from the helium into a solid is
several orders of magnitude less than 1, the length in the
helium with thermal resistance comparable to the
thermal boundary resistance is several orders of magni-
tude greater than the phonon mean free path in the heli-
um. In addition, the predicted transmission probability
for phonons at helium-solid interfaces is much less than
unity, even from the solid side. At a boundary between a
dielectric crystal and helium, when the transmission prob-
ability is indeed small, even in solid dielectrics the length
with thermal resistance comparable to the thermal
boundary resistance is large compared to the phonon
mean free path in the dielectric. For temperatures under
a few kelvin, if one side of the interface is a pure, well-
annealed, crystalline metal (not superconducting), then,
given the high thermal conductivity of such metals (for
example, copper), the length in the metal with a thermal
resistance per unit area comparable to the thermal
boundary resistance is also large.

Given the comparison of the thermal boundary resis-
tance with the resistance of a given length of bulk materi-

This can be understood by considering the blackbody analo-

gy. The temperature difference is that between the cavities; the
phonons (photons) emitted by the upper cavity are thermalized
in the lower cavity. All phonons contributing to the heat Aux

are thermalized precisely once in the problem. Thus the resis-
tance is thermally equivalent to that of a section of bulk rnateri-
al in which the phonons scatter, on average, precisely once, i.e.,
to a section of bulk with length equal to one mean free path.

9The phonon mean free path in He, however, is extremely
short at temperatures above -0.2 K; therefore, the length in
'He with thermal resistance comparable to the thermal bound-
ary resistance is not long.
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al, we can start to discuss the placement of thermome-
ters. The criteria for the thermometers are as follows:
The thermometers must measure the temperature
characteristic of the phonons inc~dent on the interface
without affecting these temperatures, and the thermome-
ters must be placed close to the interface relative to the
length in the bulk having a thermal resistance equivalent
to the boundary resistance.

In pure metals, because electrons dominate the heat
transport and strongly scatter the phonons, the phonon
distribution is isotropic; the total phonon distribution
and the distribution of phonons incident on the interface
have the same temperature. Since electrons dominate the
thermal transport, phonon scattering at the thermometer
will not aft'ect the temperature measurement. Thus, for
pure metals, there are no obvious problems with ther-
mometry, at least at temperatures below a few K; the po-
sition of the thermometer on the metal is not critical. '

In superAuid helium, although the thermometers may
aftect the measurement as much as a mean-free-path long
section of dielectric, that resistance is small compared to
the thermal boundary resistance. The position of a ther-
mometer in thc supcIAuid is also not critical.

In boundary resistance measurements, the positioning
of thermometers usually is critical if one side of the inter-
face is a dielectric. At temperatures below 1 K, in dielec-
tric crystals, the mean free path is often determined by
the condition of the surfaces and the size and positions of
thermometers on the crystal, yet the thermometers must
be placed within a phonon mean-free-path length of the
interface. If the thermometers scatter phonons so strong-
ly that they strongly inhuence the mean free path, there
may be no reasonable place to put the thermometers. If
the average phonon transmission probability from the
dielectric is small, as is sometimes the case for boundaries
to helium, then the problem is alleviated. We have impli-
citly assumed that the phonon mean free path is large in
the die1ectric (for example, on the order of the width of
the samp1e). When that is not the case, for example, if

the dielectric is amorphous or at temperatures above I K
even in crystals, the length of dielectric with thermal
resistance equivalent to the thermal boundary resistance
will diminish. The same problem arises for any interface
above a few kelvin, because the thermal resistivity per
unit length of the bulk material increases rapidly with
temperature, and the boundary resistance decreases rap-
idly with temperature. If the material is noncrystalline, a
disordered, impure metal, or a superconductor, then the
bulk thermal resistance per unit length can be large com-
pared to the thermal boundary resistance even below 1

K. For these cases, the positioning of the thermometer
so that the above two criteria are satisfied becomes rather
dificult. Often complicated subtractions of bulk thermal
gradients from the measured ET between the thermome-
ters become necessary.

A conventional geometry used for measuring a thermal
boundary resistance is shown in Fig. 9. If one side of the
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Thermometer

e~ eg

M
Thermometer

Unfortunately, a complication can arise due to the transition
from phonon-dominated heat transfer across the interface to
the electron-dominated heat transfer in the bulk metal; the
capacity for transport between the two systems of carriers is
finite. At low enough temperatures, a thermal bottleneck arises
due to this finite electron-phonon thermal transport. Although
we shall not further address electron-phonon thermal transport
in this review, the problem can strongly acct or even dominate
measurements of thermal boundary resistance in certain re-
gimes (usually at temperatures well below I K and/or in very
small structures, such as thin films), and its understanding, at
least at a phenomenological level, is critical in order to avoid or
account for such e6'ects. For more information, see, for exam-

ple, Anderson and Peterson (1972), Perrin and Budd (1972a,
1972b), Perrin (1975, 1976), Murmann and Heber (1977),
Roukes (1985), Roukes, et al. (1985), Yoo and Anderson (1986),
and Swartz (1987), and references therein.

Base Clamp

1 cm

FIG. 9. Conventional geometry for measuring the thermal
boundary resistance. If both sides are dielectric crystals, then
this geometry is precisely analogous to the geometry of Fig. 8,
with the thermometers placed inside the tube. If one side is me-
tallic, then the electronic thermal transport causes the phonon
distribution to be much more isotropic, and only the thermome-
ter on that side measures the temperature that corresponds to
the accepted definition. In either case, the measured AT does
not correspond to the temperature drop used in the definition of
the thermal boundary resistance.
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interface is a pure, well-annealed metal, then, for temper-
atures below a few K, the placement of the thermometer
on that side of the interface can be accomplished without
introducing error, as explained above. On the dielectric
side of the interface it is essential to put the thermometer
well within a phonon mean-free-path length of the inter-
face, in order to eliminate a complicated subtraction of
the temperature gradient. However, in that case scatter-
ing at the thermometer itself influences the mean free
path. Even worse, the thermometer does not measure the
distribution of phonons incident on the interface, but a
combination of the distributions of phonons incident on
the interface and of phonons coming from the interface.
That is not the appropriate phonon distribution. As a re-
sult, the experimenter will measure a thermal resistance
smaller than the actual thermal boundary resistance.

As an example, consider the analysis of the thermal
boundary resistance between helium II and sapphire. If
we assume that the mean phonon transmission probabili-
ty from the sapphire side is correctly predicted using the
acoustic mismatch model, then the positions of the ther-
mometers are not critical. A problem with this analysis
arises if the thermal boundary resistance is not as high as
that predicted using the acoustic mismatch model, i.e., if
the mean transmission probability is not small, but is on
the order of unity. Then the position of the thermometer
on the sapphire is absolutely critical, as the thermometer
impedes phonons about as much as the interface in this
case, and because the thermometer measures not the tem-
perature of the incident phonons but that of a combina-
tion of the incident phonons from the sapphire and the
transmitted phonons from the helium. These subtleties
were overlooked in the analyses of the Kapitza resistance
data for sapphire (Gittleman and Bozowski, 1962) and
for LiF (Johnson and Little, 1963). It was concluded that
the mean transmission probability was nearly 100% for
phonons in these crystals (Cheeke, 1970b). We estimate
that, with a proper analysis of the experiment, the mean
transmission probability from the sapphire or the Lip
into the superAuid helium was closer to 70%, and not the
reported value of nearly 100%.

A geometry that can be used to measure the thermal
boundary resistance between a metal and a crystalline
dielectric, which does not sutter from these complexities,
is shown schematically in Fig. 10(a). Owing solely to its
position, the thermometer on the dielectric side of the in-
terface measures the temperature of the phonons incident
on the interface from the dielectric side. Phonons from
the interface do not aftect the thermometer because those
phonons cannot "see" the thermometer. A variation of
that geometry for two dielectrics is shown in Fig. 10(b).
However, for these geometries, there are still two prob-
lems: (a) producing interfaces between bulk solids for
which there is intimate contact over the entire area is ex-
tremely difficult, and (b) these geometries would not be
useful for temperatures exceeding a few K.

A practical design for the measurement of the thermal
boundary resistance at a solid-solid interface which in-
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FICr. 10. Experimental geometries for measuring thermal
boundary resistance. (a) Between a metal and a crystalline
dielectric. The thermometer on the dielectric side measures a
temperature corresponding to the distribution of phonons in-
cident on the interface. The phonon distribution on the metal-
lic side is nearly isotropic if the metallic thermal conductivity is
suKciently high, and thus the thermometer on the meta. llic side
measures the same temperature as ihe temperature of the pho-
nons incident from the metallic side. (b) Between two dielec-
trics, or across a dielectric-metal-dielectric sandwich.
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FIG. 11. Experimental geometry for measuring the thermal
boundary resistance between vapor-deposited thin metal films
and the underlying dielectric substrate over a broad tempera-
ture range. For adequate sensitivity, it was found that the ther-
mometers had to satisfy d lnR /d ln T & 0. 1 t', Swartz, 1987),
which for very pure metals holds only above about 10 K. For
the alloy Rh99 5FeQ 5 on the other hand, this temperature sensi-
tivity requirement is satisfied to well below 1 K (Rusby, 1975).

corporates these considerations is shown in Fig. 11
(Swartz and Pohl, 1986, 1987). Two closely spaced (-2
pm) metal strips with widths -2 pm are vapor deposited
onto a dielectric substrate. The temperature dependence
of the electrical resistance of each metal strip allows the
use of each strip as a thermometer. The interface studied
is that between one metal strip and the substrate under-
neath it. Through that strip, a heater current I is passed.
That current is also used to measure the resistance R and
thus the temperature of the strip; the heat developed is
Q=I R. The thermal boundary resistance between the
Joule-heated thermometer and the underlying substrate is
given by the ratio of the temperature difference AT be-
tween the strip and the substrate, and the power flowing
across the interface divided by the area of contact A. (A
is the product of the length and the width of the metal
strip. ) The temperature of the dielectric substrate under
the heated strip, needed to obtain hT, is determined by
measuring the temperature of the second thermometer
using a much smaller sensing current i, to avoid self-
heating.

In the geometry of Fig. 11, the temperatures of the
phonon distributions incident on the two sides of the in-
terface are measured, as required for the measurement to
correspond to the definitions (cf. Figs. 7—10). The tem-
perature of the distribution of phonons incident from the
metallic side of the interface is the same temperature as
that of the electrons in the film [see, however, the discus-
sion of electron-phonon coupling in Swartz (1987)]. This
temperature is uniform in the film due both to the high
electronic thermal conductivity in the film and to its
thinness (about 0.5 pm). Because of the proximity of the
two metal strips, the temperature of the phonons incident
on the heater film is the same as that of the phonons in-
cident on the thermometer film, at least at low tempera-
tures (in sapphire below 40 K), where the phonon mean
free path in the substrate is much larger than the ther-

mometer spacing. At temperatures above 50 K, the
difference between the temperature of the second ther-
mometer and the temperature of the substrate under-
neath the first thermometer must be calculated by in-
tegrating the Laplace equation (time-independent heat
equation). That temperature difference is small due to
the close proximity of the thermometers and the large
phonon mean free path in the substrate.

The small dimensions of the design have one further
advantage: above a few K, the thermal boundary resis-
tance is rather small and dropping as T . Therefore, in
order to generate a measurable temperature discontinuity
at an interface, a large heat fiux per unit area (thousands
of watts per cm at 100 K) is required. Such heat fluxes,
if maintained for any significant period of time, inevitably
induce large temperature gradients in bulk materials. If
the area of the interface is a significant fraction of a cm,
then the total heat required is large enough to overwhelm
most cryogenic systems. The way to avoid the large
power requirements is to reduce the area of the interface.

B. General considerations

We shall consider only the part of the thermal trans-
port across the interface that is due exclusively to pho-
nons. A phonon incident on the interface has only two
options: either it is transmitted or it is not. Classically
(or statistically) some fraction of the phonon energy is
transmitted; the transmission probability for phonons
will be called u. It will depend in general on the phonon
mode, wave vector, and frequency, and on the tempera-
ture. For simplicity, we shall assume both sides of the in-
terface to be isotropic and the transmission probability to
be independent of temperature. " The assumption of
isotropy allows us to write e as a function of the phonon
frequency co, the angle 0 between the phonon propaga-
tion direction and the normal to the interface, and the
phonon mode j. With the assumption that the transmis-
sion probabilities are independent of the temperature on
either side of the interface (and therefore are independent
of the presence of other phonons), we close our eyes to
the possibility of anharmonic interactions. The advan-
tage of this last assumption was stated in the last section,
namely, that the transmission probabilities from only one
side of the interface need to be calculated. That is, the
net heat flow from side 1 at temperature T& to side 2 at
temperature T2 is the difference between the gross heat
flow from side 1 to side 2, when side 1 has temperature
T&, and the gross heat flow from side 1 to side 2 when
side 1 has temperature Tz. Side 2 then need never be
considered. For Kapitza boundaries, if we choose the
helium to be on side 2, then the calculation looks much
like that for solid-solid interfaces.

~iThese assumptions are not essential, but a more general dis-
cussion in which the assumptions are relaxed would be unneces-
sarily complicated for this review.
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X a& z(8,g, co)

XcosOsinOdOdco . (2.7)

The gross heat current density from side 1 to side 2,
(1/A)Q 'j"'z(T), is the sum over all frequencies and in-
cident angles of the number of phonons with given fre-
quency and incident angles O and cp that are incident on a
unit area A per unit time, times the phonon energy
%co=Ac I k, times the transmission probability
a, z(8,j,co). Here j is the phonon mode, k is the pho-
non wave vector, c& J is the- phonon propagation velocity
in side 1 for phonons with mode j, and co is the phonon
frequency. The angles of incidence are y (azimuthal) and
8 (angle between the wave vector of the incident phonon
and the normal to the interface). Let c, 1cos8 be the nor-
mal component of velocity, d 0=d y sinO d O, and
N, (~, T) be the product of the density of phonon states
with given angles y and O, times the Bose occupation fac-
tor. Then the number of phonons with given frequency
and angles of incidence that are incident on the surface
area A per unit time is

Ni (rri, T)
dQc& . cosO .

4m

%'hen this product is integrated over all angles, the result
is c, N, (co, T). .

Therefore the gross heat current can be written as

Q ~ross( T) max

=
—,
' g f f Nl ~(co, T)ficocl

superposition of these possibilities. The transmission
probability is the total fraction of the energy transmitted
across the interface. ) Figure 12 shows these possibilities.
The angles of reAection or refraction, with or without
mode conversion, as well as the probabilities of each, are
determined by the acoustic analog of Snell's law for elec-
tromagnetic waves. Consider first a liquid-helium —solid
interface. Suppose a longitudinal phonon inside the heli-
um is incident on the interface, at an angle O;„ from the
normal to the interface, as in Fig. 13. If the result is a
transmitted longitudinal phonon in the solid, then we can
calculate the angle of transmission O„,„using Snell's law:

solidc(

c(

An analogous relationship holds if the transmitted pho-
non has a transverse polarization (i.e., the phonon is
mode converted on translnission), with the longitudinal
phonon velocity c&"" replaced by the transverse phonon
velocity c,' "". The transmitted angle cannot exceed 90.
Thus, for incident angles greater than the angles where
S1118;„eqllals (Cheiium/Csoiid) ol (Cheiium/C solid) the plOba-
bility of transmission to a longitudinal or transverse pho-
non vanishes, respectively. These are called the critical
angles. The set of all angles less than the largest critical
angle is called the critical cone. - Only phonons incident
from within this cone have a chance to be transmitted.
On the side with greater phonon velocities, there is no
critical cone; phonons with any incident angle have some

(The integral over azimuthal angles contributed 2~.)

Here, co&
'" is the maximum phonon frequency on side 1.

For small (Tz —Tl )/Tz, the thermal boundary conduc-
tivity can be written as

Q f'"z(Tz) —
Q f"'z(T, )

A (Tz —T, )
(2.8)

The problem is in principle solved if the transmission
probabilities are known.

C. The acoustic mismatch model

Calculating transmission probabilities between two
solids is not a simple problem. In the acoustic mismatch
model the only essential simplifying assumption is that
the phonons are governed by continuum acoustics and
the interface is treated as a plane. That is, phonons are
treated as plane waves, and the materials in which the
phonons propagate are treated as continua (no lattice).
For phonons with wavelength much greater than typical
interatomic spacings, this continuum approximation
niight be expected to be accurate. Given this (very
strong) assumption, there are only a few results possible
when a phonon is incident on the interface; the phonon
can specularly reflect, reQect and mode convert, refract,
or refract and mode convert. (That is, the final state is a

FIG. 12. Schematic of the many possibilities within the frame-
work of the acoustic mismatch model for phonons incident on
an interface. The picture simplifies if one of the sides is liquid
helium; there are no transverse modes on that side.
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in r
rcritical
angle

C;n (C tran (helium)

(so

FIG. 13. Incident and transmitted phonon angles, related ac-
cording to Snell's law. If the velocities and angles of the in-
cident and transmitted phonons are c;„, O;„, c,„,„, and O„,„, re-
spectively, then sinO;„/c;„= sinO, „,„/c,„,„.

chance for transmission. If a phonon with incident angle
0;„ transmits to a phonon with transmitted angle 8„,„
with probability a, then a phonon from the other side in-
cident on the interface with incident angle 0„,„ transmits
with the same probability o; back into a phonon with
transmitted angle 0;„. This follows from Snell's law and
is a consequence of the general principle of detailed bal-
ance. At a helium-solid interface, the critical angles (in
the helium) are on the order of 5'. (See, for example,
Haug and Weiss, 1972, or Peterson and Anderson, 1973.)

At solid-solid interfaces the critical angles are much
larger and there are several additional critical angles cor-
responding to incident slow and fast transverse phonons
transmitted with or without being mode converted.
Apart from that, the calculation is the same.

Given the assumption that continuum acoustics
governs the phonon system, the transmission probabili-
ties are determined by the acoustic analog of the Fresnel
equations. At a fundamental level, these are derivable
(using continuum acoustics) from a set of boundary con-
ditions. The normal component of displacernent must be
continuous at the interface; otherwise the interface would
separate. The tangential component of displacement
must also be continuous; otherwise the interface would
slide. The "normal component" of the stress tensor (i.e.,
the contraction of the stress tensor with the unit vector
normal to the surface) is a vector that is the force on the
surface. (This force is not necessarily in the normal
direction. ) It is this force that is continuous across the in-
terface. The proof is straightforward, given the formal-
isms of stress and strain tensors (see Auld, 1973). The in-

tuitive explanation is that, if the force on the surface is
not continuous, then the interface, having zero mass,
would have infinite acceleration. '

These boundary conditions (which follow from contin-
uum acoustics) have very important consequences; in
particular, the possibility of scattering at the interface,
whether elastic or inelastic, is implicitly ignored. Csiven
the assumption that continuum acoustics is applicable,
the transmission probabilities can (with effort) be calcu-
lated for any incident angle and mode. Once the
transmission probabilities are known, the sum over pho-
non states must be taken to calculate the gross heat
transport [Eq. (2.7)]. Transmission of phonons across the
interfaces is much more complicated than transmission
of signals in transmission lines because the phonon
transmission probability depends on angles of incidence,
because solids are anisotropic, because there are three
phonon modes, etc. The simplest picture derivable from
the acoustic mismatch model is that each material can be
ascribed an acoustic impedance equal to the product
Z;=p;c; of the mass density and the phonon velocity.
The formula for the transmission probability from side
i =1 to side 2 can be made to look like the formula for
transmission at a junction in a transmission line; for a
phonon with normal incidence, for example, the energy
transmission probability looks like

4Z2Z i

(Z, +Zi)
(2.9)

%'ith
m/2I"» = a, z(0, j)cos8 sin8 d 0,

o

Eqs. (2.7) and (2.8) can be rewritten as

(2.10)

dN (co T)

J

At low temperatures, the usual approximation of set-
ting the upper limit in the frequency integral to infinity is
made, and the integral can be done. [The integral turns
out to be the same one as in the calculation of the Debye
heat capacity (Debye, 1912).] The answer is

i2The intuitive explanation of the continuity of the force on
the interface was pointed out to us by one of the referees.

[see Little, 1959, Eq. (4), for example].
Several additional yet inessential assumptions are usu-

ally also made in order to simplify the calculations:
Solids are assumed to be isotropic Debye solids, with the
generalization that the longitudinal and transverse speeds
of sound are different. Then, for frequencies below the
Debye cutoP' frequencies, m;

'

~DcbY~( ~ T)d ~= co Qco

2' c i [exp(fico/kii T.) —1]
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~2 k~
15 J

2.04 X 10' gc I
. J

2sec 3 K
cm W/cm

T 3

(2.12)

2—3 Sec K3
cm

K
W/cm

We see, as noted earlier, that the boundary resistance
does not. vanish at imagined interfaces.

Another result of the above analysis is that the
transmission probabilities are independent of phonon fre-
quency for phonons with frequency less than the Debye
cutoff of the material with lower Debye cuto6', above the
lower Debye cuto6' frequency, the phonon transmission
probabilities are zero. This analysis ignores the eFects of
elastic anisotropy and phonon dispersion. A more gen-
eral treatment of phonon transport across solid-solid in-
terfaces, including the efFects of elastic anisotropy and
phonon dispersion within the acoustic mismatch model,
has been carried out by Weiss (1986). Young and Maris
(1986, 1988) have calculated the thermal boundary resis-
tance for a few specific solid-solid interfaces, using the
measured (or calculated) phonon densities of states and
phonon velocities.

The I"s have been calculated numerically and are avail-
able in the form of tables (Cheeke, Ettinger, and Hebral,
1976) and in the form of a computer (FoRTRAN) program
(Peterson, 1973).

Rnd can be approximated as ( —,'Cca) ', where C is the
Debye specific heat, c is the Debye phonon velocity, and
a is an appropriately averaged transmission probability.
As a special case of Eq. (2.12), consider what happens if
both sides of the interface are identical. Then the a's are
all unity and the I"s are all 0.5. Thus,

R d
— 1.02 X 10' pc &

.

J

must be calculated, '" and from that, only one I must be
calculated. In Khalatnikov's (1952) original work, he did
the zeroth-order approximation to the above result. He
calculated the normal component of vibration of a free
solid surface in equilibrium at temperature T, , due to
phonons' being rejected internally from that free surface.
Then he calculated the amount of energy that these vi-
brations would couple into the helium. Since that energy
is small, the error in initia11y assuming a free surface is
small, and the answer is about the same as that of the
above calculation.

2. A note on'He

We have not concerned ourselves much with the com-
plications introduced when calculating the thermal
boundary resistance to He. At temperatures above a few
hundred mK, the thermal conductivity of He is quite
low, and the thermal boundary resistance is thus difficult
to measure. Below a few hundred mK, He is a Fermi
liquid. Instead of phonons, the excitations in the He are
quantum excitations of the Fermi liquid, including
single-particle excitations called quasiparticles and col-
lective excitations called zero sound. Zero-sound excita-
tions act in some ways as phonons do (and can be of lon-
gitudinal or transverse nature). Semiclassical thermal
boundary resistance calculations, in many ways analo-
gous to acoustic mismatch model calculations, have been
performed, for example, by Bekarevich and Khalatnikov
(1960, 1961) and Gavoret (1965) and are based on Fermi-
liquid theory (Abrikosov and Khalatnikov, 1958). A ful-

ly quantum-mechanical calculation using a perturbation-
theory approach has been carried out by Toombs,
Sheard, and Rice (1980); it is based on Fermi-liquid
theory and on the earlier perturbation-theory calcula-
tions of the He Kapitza resistance by Rice (1971),
Sheard, Toombs, and Challis (1971), Rice, Sheard, and
Toombs (1972), and Rice and Toombs (1972).

D. The diffuse mismatch model

1. A historical note 1. Qualitative arguments

The approach taken in the above derivation is essen-
tially that of Mazo' (1955) for the Kapitza problem and
of Little for the solid-solid problem. Khalatnikov (1965)
performed the calculation from the helium side, which, if
only the Kapitza problem is considered, is a clever
shortcut: From the helium, there is only one Inode, the
longitudinal mode, so only one transmission probability

A crucia1 assumption made in the acoustic mismatch
model is that no scattering occurs at the interface. How-
ever, reAection measurements of heat pulses from free
solid surfaces have shown that they scatter high-
frequency phonons ( ~ 100 GHz) unless they are cleaved
in situ or laser annealed (Eisenmenger, 1986). The same
scattering occurs at helium-solid interfaces and leads to a
signi6cant reduction of the thermal boundary resistance

We should note that Mazo made a mistake in his original
1955 calculation, which resulted in a better agreement with the
data (Mazo, 1988; see also Anderson and Johnson, 1972). The
mistake did not qualitatively alter the general approach and
does not detract from the significance of his efforts.

This probability includes contributions from transmission
into transverse phonons as well as the contribution from
transmission into longitudinal phonons.
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by opening up new channels for heat transport, which is
discussed in Sec. III.B. The effect of phonon scattering
on the thermal boundary resistance has been explored by
Swartz (1987), who proposed what he termed the difFuse
mismatch model, to be reviewed below.

In the difFuse mismatch model the assumption of com-
plete specularity is replaced with the opposite extreme:
al/ the phonons are di6'usely scattered at the interface;
this leads to an upper limit of the effect that difFuse
scattering can have on the boundary resistance. In the
diffuse mismatch model, acoustic -correlations at inter-
faces are assumed to be completely destroyed by diffuse
scattering, so that the only determinants of the transmis-
sion probability are densities of phonon states and the
principle of detailed balance. The probability of
transmission is nonetheless determined by a mismatch—
that between densities of states.

The effect on the thermal boundary resistance of
diffuse scattering at the interface can be qualitatively un-
derstood with the following arguments. We shall assume
that scattering destroys the correlation between the wave
vectors of incoming and outgoing phonons. Simply put,
we assume that a scattered phonon forgets where it came
from. The probability that the phonon will scatter into a
given side of the interface is then independent of where it
came from. Instead, the probability of scattering into a
given side is proportional to the density of phonon states
on that side (see Fermi's "golden rule" ) and is also re-
stricted by the principle of detailed balance.

Before presenting the quantitative analysis, let us see
how much can be understood using only qualitative argu-
ments. Consider what happens at low temperatures ( —1

K) at a Kapitza boundary, say, between copper and heli-

um, if we assume the diffuse mismatch model. When a
phonon from the copper is incident on the interface it
must decide whether to forward scatter or backscatter,
and that decision is based only on the relative density of
phonon states into which the phonon can scatter. Since
there are vastly more phonon states of the initial phonon
frequency in the helium, ' that phonon will almost cer-
tainly forward scatter. If we assume the acoustic
mismatch model, that same phonon would almost cer-
tainly reAect due to the large acoustic mismatch between
helium and copper. Thus the effect of the diffuse scatter-
ing event is predicted to be large at a Kapitza boundary
(on the order of 2 orders of magnitude; see Fig. 1). At a
boundary between two solids with identical acoustic
properties, the transmission probability according to
acoustic mismatch theory is unity. The transmission
probability in the difFuse mismatch model is exactly 50%.
In this case, the boundary resistance is increased by

diffuse scattering; specifically, the boundary resistance is
doubled. At a more typical solid-solid boundary, the
mismatch in the acoustic properties is small (but not
negligible); roughly half of the phonons incident on the
interface are transmitted according to the acoustic
mismatch model. The mismatch in the density of pho-
non modes for most pairs of solids is also smaH, and
therefore, again, roughly half of the scattered phonons at
a solid-solid interface are transmitted. Thus the effect of
diffuse scattering at a typical solid-solid boundary is
small. For a pair of solids with relatively large
differences in their acoustic properties, such as lead and
diamond, the effect of diffuse scattering is to decrease the
thermal boundary resistance just as it does for Kapitza
boundaries (but to a much smaller extent). (A more
quantitative analysis follows, in which it will be shown
that difFuse scattering at typical solid-solid interfaces usu-

1

ally changes the thermal boundary resistance by less than
+30%%uo.) We can summarize these arguments by showing
qualitatively what a plot of the efFect of diffuse scattering
on the thermal boundary resistance might look like. In
Fig. 14 we plot the ratio of the (low-temperature) difFuse
therma1 boundary resistance Rd to the acoustic thermal
boundary resistance R, against a unitless parameter
which qualitatively represents the amount of dissimilarity
between the two materials making up the interface.
Think of this parameter as something like (pc),„/
(pc);„—1, where (pc ),„ is the product of the mass den-

sity and the Debye phonon velocity on the side where
this product is the greater. ' Figure 14 shows that
diffuse scattering increases the thermal boundary resis-
tance at interfaces between very similar solids, decreases
the thermal boundary resistance at interfaces between
rather different solids, and greatly decreases the thermal
boundary resistance at Kapitza interfaces, for which the
dissimilarity is extremely large.

The pressure independence of the Kapitza resistance at
temperatures above -0.3 K can be qualitatively under-
stood from the above simple arguments. For surfaces at
which there is significant phonon scattering, the proba-
bility of transmission for a phonon incident from the
solid is high because of the large density of phonon states
in the helium. Although that phonon density of states is
somewhat pressure dependent, changing the pressure
does not change the fact that the phonon density of states
in the helium is much larger than that in the solid.
Therefore, independent of pressure, almost all phonons
incident from the solid side are transmitted, and the pres-
sure has only a small effect on the Kapitza resistance.
We can also see from these arguments that the prediction

I The density of phonon states is proportional to co /c, where
op is the frequency and c the speed of sound. The speed of sound
in helium is on the order of 20 times lower than in most solids.
Thus the density of low-frequency phonon states in helium is on
the order of 10 as high as that in most solids.

6Unfortunately, there is no simple parameter that could be
used quantitatively in such a plot, because the acoustic and
diffuse mismatch models have different dependences on both the
mass densities and the phonon velocities. The above formula
for the parameter ignores the difference in the mass density
dependences of the two models.
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0 Dissimilarity

wave vector kf and mode jf are completely independent
of k; and j, . Simply put, the definition is that, after a
diffuse scattering event, a phonon loses the memory of
where it came from and what mode it was. (We shall as-
sume for simplicity that the scattering events are elastic,
i.e., that fico; =A'cof. ) This, like most definitions of a
diffuse scattering event, is quite restrictive. For example,
all correlations (except energy) between incoming and
outgoing phonons are ignored. All structure of the
scatterers is ignored. Yet the definition is useful for two
reasons: it allows a simple calculation, and it leads to in-
teresting results.

Because of this definition of diffuse scattering, the
transmission probability a; (m, k) for phonons from side
i, with mode j (longitudinal or transverse), and with a
given energy Ace, is independent of its wave vector and
mode:

a; J(co,k)=a;(co) . (2.13)

FIG. 14. Plot of the ratio of the diAuse mismatch model
thermal boundary resistance to the acoustic mismatch model
thermal boundary resistance vs the "amount of mismatch. "
The horizontal scale is qualitative and has arbitrary units; see
text. The leftmost dotted line exemplifies a solid-solid boundary
with relatively little dissimilarity, such as aluminum on quartz,
the middle dotted line exemplifies a solid-solid boundary with
large dissimilarity, such as platinum on quartz, and the right-
most dotted line marks the beginning of the region of extremely
large dissimilarity, as found in the Kapitza (liquid helium-to-
solid) case. The plot serves to summarize qualitatively the re-
sults of several calculations, including those in Table II. From
Swartz (1987).

of the diffuse mismatch model is insensitive to the specific
properties of liquid or solid helium. For that reason, it
would not be very useful to refine the calculation of the
diffuse mismatch model by using very precise estimates of
the helium excitation spectrum. For example, the ex-
istence of a large roton density of states in the helium
does not significantly change the value of the Kapitza
resistance predicted using the diffuse mismatch model.
Thus, for the purposes of the diffuse mismatch model, the
excitation spectrum can be represented using just the lon-
gitudinal speed of sound.

2. Quantitative analysis

The only aspect of the calculation of a thermal bound-
ary resistance using the acoustic mismatch model that
must be modified for the diffuse mismatch model is the
transmission probability. There are two inputs required
to calculate the transmission probability for the diffuse
mismatch model, namely, (I) the principle of detailed bal-
ance and (2) the definition of a diff'use scattering event at
an interface.

The following definition of diffuse scattering will be
used. A phonon with energy Ace;, wave vector k;, and
mode j, is diffusely scattered if the resulting phonon's

From our definition of diffuse scattering, it follows that'

a, (co)= I —a3;(co) . (2.14)

This equation states that (since a phonon forgets where it
came from) the probability of refiection from one side
must equal the probability of transmission from the oth-
er.

The number of phonons of energy Ace per unit area per
unit time leaving side i is

g f f dOcos8dgc; N, (co, T)a;(co) . (2.15)
0 0

Here, N; (co, T) is the density of phonons with energy irido

on side i with mode j at temperature T. [See also the ex-
planation of Eq. (2.7).] Because the transmission proba-
bilities are independent of incident angle, the angular in-
tegrals can be done immediately; the result is

pc; N; (co, T) a;(co) .
J

(2.16)

From detailed balance, this must equal the number of
phonons of energy Ace leaving side 3-1, per unit area per
unit time:

From this, we can solve for the transmission probabili-
ties:

g c3; .N3; J(co, T)

a;(co) = J

gc; N; (co, T)
(2.18)

We use the subscript 3-i to denote the side opposite to side i;
the side opposite side 1 is 2, and the side opposite to side 2 is 1.

g c; J.N, ~(co, T)a;(co) = g c3; ~ N3; (ro, T)[1—. a, (co)] .
J J

(2.17)
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We can now use this transmission probability to calcu-
late the net heat Aux, just as was done for the acoustic
mismatch model. We shall again make the Debye ap-
proximation (though again with the generalization that
the longitudinal and transverse phonon velocities are
different) for the phonon velocities and phonon densities
of states. Then we can write the transmission coe%cients

rz;(ro) =

l7J

—2
3 $7J

—2
Ci j

(2.19)

E7J

—2
C; j

Immediately from this,
2

J

—2
C3

J

pc, ,'
17J

(2.20)

In the low-temperature limit, the thermal boundary resis-
tance in the limit of diffuse mismatch can therefore be
written as

k4a 1

15 g32

—1—2
C3 —i,j

J

gc;
17J

2

1.02 X 10'

17J

J
—2

CE j

—2c3 ij

CIIlCIIl

sec2 W/cm
(2.21)

Thjs is the direct analog of Eq. (2.12).
The ratio of the diffuse thermal boundary resistance

Rd to the acoustic thermal boundary resistance R, is
(in the low-temperature limit)

Rd =2
gc, ) P, j
J

gc,
E7J

C3—i,j
J

(2.22)

This relationship was qualitatively shown in Fig. 14. A

To calculate the thermal boundary resistance, we can
start at Eqs. (2.10) and (2.11), since these are not specific
to the acoustic mismatch model. In the present case, we
know the transmission coe%cients and can calculate the
averaged transmission coefficients (the I; ):

—2C3; j
I, = f cosesin8deJ 0 C;

2

i7J
—2

C3 —i j

TABLE I. Mass densities and speeds of sound of several ma-
terials. These are required for calculating the thermal bound-
ary resistances in Table II. The properties of rhodium are from
Walker et al. (1981). The properties of helium are froxn Fol-
insbee and Anderson (1974). The properties of all of the other
materials can be found in Simmons and Wang (1971). L- and S-
denote liquid and solid, respectively, svp denotes saturated va-
por pressure, and atm denotes atmospheres of pressure.

Material

Aluminum
Chromium
Copper
Gold
Indium
Magnesium
Lead
Nickel
Platinum
Rhodium
Silver
Tungsten
Sapphire
Quartz
Silicon
Diamond
Calcite
CaF,
L- He (svp)
S- He (38 atm)
L-'He (svp)
L- He (27 atm)
S- He (38 atm)

Density
(g/cm')

2.70
7.19
8.96

19.3
7.47
1.7752

11.59
8.81

21.62
12.4
10.63
19.320
3.97
2.66
2.33
3.512
2 717
3.217
0.145
0.198
0.082
0.114
0.128

CL

(10 cm/sec)

6.24
6.98
4.91
3.39
2.699
5.940
2.35
5.63
4.174
5.83
3.78
5.248

10.89
6.09
8.970

17.50
6.75
6.92
0.238
0.540
0.194
0.390
0.580

CT

(10 cm/sec)

3.04
4.10
2.50
1.29
.905

3.298
~97

2.96
1.750
3.96
1.74
2.908
6.45
4.10
5.332

12.80
3.48
3.69

0.250

0.210

special case of Eq. (2.22) is the case of an imagined inter-
face (both sides of the interface are identical). Then, as
noted after Eq. (2.12), R, simplifies, and Rd /R, =2.
The only dependence on the mass densities in Eq. (2.22)
lies in the average transmission probabilities calculated
using the acoustic mismatch model (the 1;J above); there
is no mass density dependence in the diffuse mismatch
model. Because the acoustic mismatch model calcula-
tions (specifically the 1, ) must be performed numerical-
ly, the best. way to understand how the above ratio varies
with mass densities and phonon velocities is to compare
calculations of the boundary resistances for several inter-
faces. To do this, we have used the acoustic properties
listed in Table I for several solids and for the helium
liquids. Table II contains the calculated boundary resis-
tances (in the low-temperature limit); for the acoustic
mismatch model, we used the tables of Cheeke, Ettinger,
and Hebral (1976), and for the diffuse mismatch model,
we used Eq. (2.21).

At higher teInperatures, where there is a non-negligible
probability of excitation of phonons near the zone bound-
ary in at least one side of the interface, the realistic pho-
non dispersion and density of states must be considered
in the calculation; the Debye picture of the solid breaks
down. One way to extend the model is to calculate for
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each phonon state the transmission probability using the
exact phonon velocities and densities of states. Then the
integral over frequencies is nontrivial and must be done
numerically. To see the qualitative behavior of the
boundary resistance at high temperatures, for an inter-
face between solids in which one solid has much higher
Debye temperature than the other (e.g. , Rh:Fe on sap-
phire), we can assume the dispersion of a linear chain and
the appropriate cutofF frequencies for the side with lower
Debye temperature (e.g. , Rh:Fe). In this case the calcula-
tion of the transmission probabilities and the numerical
integration can be done relatively easily. The result of
this calculation (Swartz, j987) is used in this review as

.the prediction of the difFuse mismatch model in the plots
of the thermal boundary resistance at the Rh:Fe-sapphire
interfaces in Sec IV. The deviation of ABd from the T
behavior is seen at temperatures above about 60 K in Fig.
6 (see also Sec. IV). This is an effect of the phonon cutoff
frequency in the Rh:Fe. There is also a slight decrease in
8 ~d T at temperatures corresponding to the Rh:Fe zone
boundary, due to the increased phonon density of states
near the zone boundary. For a discussion of inelastic
scattering in the difFuse mismatch model, see Sec. IV.D.

E. The phonon radiation limit

The Kapitza resistance has always been found to be
lower than predicted by the acoustic mismatch model,
often by orders of magnitude (see Fig. 1). This had led to
the general question: What is the smallest thermal
boundary resistance that can be realized, i.e., what is the
maximum possible (phonon-dominated) thermal bound-
ary conductivity for an interface~ The answer erst pro-
posed was based on the so-called phonon radiation limit
(Snyder, 1970). In this limit, all phonons from the side
with the lower phonon density (the solid side at Kapitza
boundaries) are assumed to be transmitted. From the
side with higher phonon density (the helium side at Ka-
pitza boundaries), precisely enough phonons are
transmitted to satisfy the principle of detailed balance
and the second law of thermodynamics. That this is the
maximum transport which does not violate the principle
of detailed balance is clear; no more than all the phonons
from the solid side can be transmitted. This limit has
sometimes been called the "perfect match model, " a
misnomer, because it is not a model, but simply a limit.
There is no mention of the physics (or demon) which al-

TABLE II. Calculated low-temperature acoustic mismatch model thermal boundary resistances and
low-temperature diffuse mismatch model thermal boundary resistances for several interfaces. The num-

bers reported are Rzd T with units K /(W/cm ). The materials are assumed to be isotropic Debye
solids with the properties given in Table I. Note that the range of values is very limited, especially for a
given substrate. Note also that, for solid-solid interfaces, there is very little difference between the pre-
dictions of the two models, and that the diffuse mismatch model prediction can lie either above or
below the acoustic mismatch model prediction. The acoustic mismatch values were calculated using

the tables of Cheeke, Ettinger, and Hebral {1976). The diffuse mismatch values were calculated using

Eq. (2.21). The asterisks mark interfaces studied by Swartz and Pohl using techniques described in Sec.
IV. B.4. From Swartz and Pohl (1987). See Figs. 1 and 2 for the values of the Kapitza resistances to
copper.

AMM
Sapphire

DMM DMM
Silicon

AMM DMM

Aluminum
Chromium
Copper
Gold
Indium
Lead
Nickel
Platinum
Rhodium
Silver

21.0
18.5
18.5
18.9
20.4
18.8
19.7
20.8
20.8
18.2

Diamond

21.4
24.4
20.1

18.1
17.7
17.8
21.1

18.7
23.6
18.7

DMM

6.50
9.77
8.66
8.12
7.19
7.67
9.32

13.0
13.0
8.66

Calcite

10.8
13.8
9.43
7.48
7.10
7.14

10.5
8.10

13.0
8.06

1 1.8
14.5
14.3
15.8
12.1

12.8
15.5
21.3
19.2
13.8

CaF2

15.9
18.9
14.6
12.6
12.2
12.3
15.6
13.2
18.1
13.2

DMM

Aluminum
Chromium
Copper
Gold
Indium
Lead
Nickel
Platinum
Rhodium
Silver

78.0
60.0
61.3
60.3
88.0
75.0
61.3
60.5
62.0
61.5

67.4
70.4
66, 1

64. 1

63.7
63 ~ 8
67.1

64.7
69.6
64.7

5.19
8.33
6.77
7.98
5.51
5.85
8.40
9.31

10.9
6.51

9.29
12.3
7.95
6.00
5.62
5.67
9.01
6.62

11.5
6.58

6.06
8.24
6.94
7.70
6.26
6.34
8.47
9.39

10.2
6.71

9.89
12.9
8.56
6.60
6.22
6.27
9.62
7.22

12.1
7.19
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lows precisely the correct number of phonons to transmit
from the side with higher phonon density. The ratio
R~„I /R, can be interpreted as the fraction of the energy
transported across the interface to that incident on the
interface (from the side with lower phonon density). At
boundaries to helium this is an averaged transmission
probability for phonons incident from the solid side.
Also, at boundaries to helium, E. ,&

—E.d, and thus
Rd /R, can be interpreted in the same way.

In the previous section we discussed the difFuse
mismatch model, which for Kapitza boundaries leads to
a thermal boundary resistance nearly as low as that de-
rived from the phonon radiation limit. Unlike the pho-
non radiation limit, the diffuse mismatch model provides
physical justification for the high phonon transmission
probability from a solid into helium and at the same time
shows physically why the probability of phonon
transmission from helium into a solid is such that the
principle of detailed balance is satisfied. No demon is re-
quired. At the same time, the diffuse mismatch model
can be used to predict that the phonon transmission
probabilities at solid-solid interfaces are never vastly
higher than those predicted using the acoustic mismatch
model, but in some cases are slightly higher, and in other
cases are slightly lower. Experimental tests of this pre-
diction follow in Sec. IV.B.3.

In the following section, we shall review the studies of
Kapitza resistance. In many of these studies, compar-
isons have been made with the phonon radiation limit.
The difFuse mismatch model provides a justification for
such comparisons, because of the proximity of the pre-
diction of the diffuse mismatch model with this limit.

A. Techniques used

1. Steady-state measurements

In Fig. 15 is a diagram of a typical experimental ar-
rangement of Kapitza resistance above 1 K, following
Gittleman and Bozowski (1962). The helium is contained
in a thin-wall stainless or glass tube, which has negligible

E

PUMP
TUBE

LIQUID
HELIUM

ment of the Kapitza resistance, they did allow systematic
measurements on well-characterized surfaces and with
phonons having specific propagation directions. The re-
sults of these experiments relate directly to the proposed
phonon transmission mechanisms and in some cases sug-
gest new mechanisms. Therefore experiments on phonon
scattering at interfaces will also be reviewed here.

III. KAPITZA RESISTANCE

In this section, we shall first discuss the experimental
techniques used to measure Kapitza resistance, i.e., the
thermal boundary resistance between liquid helium and
solids. We shall review the data, note some trends in the
data, and discuss the mechanisms or "channels" for heat
Bow that have been proposed to explain the magnitude of
the resistance and its dependence on temperature, pres-
sure, and the physical condition of the solid surface.
Some of the effects to be understood have been shown in
the Introduction. For example, the Kapitza resistance
fails to approach the acoustic mismatch value even at 0.1

K (see Fig. 1), and the disagreement increases as the tem-
perature is raised toward I K. Moreover, the pressure
dependence is qualitatively as expected from the acoustic
mismatch model only well below 1 K (see Fig. 2); near 1

K, the Kapitza resistance is nearly pressure independent.
The condition of the surfaces has been seen to be very

important, but from the Kapitza resistance measure-
ments alone there was little chance of determining what
aspects of the surface conditions were important. Pho-
non scattering experiments were designed to study the in-
teraction of phonons at surfaces and interfaces. Al-
though these experiments did not allow a direct measure-

F'

ISOLATION
TUBE

SPECIMEM

VACUUM
CAN

~ T
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':::::::::,:::::',::::::::'~ T

FIG. 15. Schematic diagram of a traditional Kapitza resistance
experiment, adapted from Gittleman and Bozowski (1962).
Electrical leads for the heaters and thermometers are fed
through the vacuum chamber pump tube. The isolation tube is
thin-walled stainless steel to minimize spurious heat Aow. The
solid that makes contact with the helium is sealed into the isola-
tion tube in a superAuid leak'-tight manner, usually by either
soldering or epoxying. The helium bath is temperature con-
trolled by controlling the pressure over the liquid. Thermome-
ters are labeled T and the heater is labeled H.
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thermal conductance. The interface is that between the
helium in the tube and a material mounted into the tube,
usually with solder or epoxy. The helium is supplied
directly from a bath, which is temperature controlled by
controlling the pressure above the bath. The tube is iso-
lated from the bath by surrounding it with a vacuum
space. Heat is applied at the end of the sample, and ther-
mometers are mounted on the tube, on the sample, and in
the helium. The temperatures are extrapolated to the
boundary. Variations of this geometry have been used to
allow careful preparation of the surface [see, for example,
Snyder (1976)]. If the measured Kapitza resistance is to a
pure metal like copper, and the metal is not in the super-
conducting state, then temperature gradients in the metal
are usually small compared to the temperature discon-
tinuity at the boundary. Temperature gradients in the
helium are negligible if the helium is superAuid He. At
temperatures above the lambda transition, temperature
gradients in the helium are very large due to the low
thermal conductivity of the normal Auid; great care must
be taken to minimize the efFects of these gradients on the
measurement of the thermal boundary resistance.

For measurements using He, a different experimental
geometry is used in order to reduce the volume of He re-
quired, to keep He from escaping, and to minimize the
temperature extrapolation errors caused by the very low
thermal conductivity of the liquid. In Fig. 16 is an exam-
ple of a geometry for measuring the Kapitza resistance
between copper and He or (with some modification) He
from about 50 mK to nearly 1 K (Anderson and Johnson,
1972). The cell is designed with a very narrow space con-
taining the helium to minimize both the thermal resis-
tance and the heat capacity of the helium. The thermal
resistance measured is the total of the resistance of the

fill port
upper plate

outer seal

~ I&111111

QW/Nr/Ãr/XXX

H~ ~

111111/Ii~! .

IIIIIIIII&

1 clTl

lower plate

FIG. 16. Improved geometry for measuring the Kapitza resis-
tance to He or to He. The temperature di6'erence between the
closely spaced copper plates is measured, corresponding to the
sum of two boundary resistances. The purpose of the guard
ring is explained in the text. The gap between the guard ring
and the lower plate is sealed with epoxy. Thermometers are la-
beled R and heaters H. Two fi11 ports are used to allow a check
of the continuity of the ce11 and fill line. Adapted from Ander-
son and Johnson (1972).

metal-helium boundary, the resistance of the helium, and
the helium-metal boundary, i.e., the thermal resistance
between the upper plate and the lower plate in the figure.
The upper plate mounts to a dilution refrigerator and the
lower plate to a calibrated thermometer. The guard ring
is kept at the temperature of the lower plate by supplying
whatever heat is necessary. By controlling the tempera-
ture of such a guard ring to match that of the lower
plate, heat How from the lower plate to the guard ring is
eliminated; therefore the only heat Row from the lower
plate must be across the helium. The use of such a guard
ring thus allows a mechanically robust cell to be used
without the fear of extraneous heat Aow around the
edges. This design allows the measurement of the Kapit-
za resistance at helium pressures up to about 30 or 40
atm [see Folinsbee and Anderson (1974)j.

2. Second-sound transmission measurements

The propagation of heat in helium by second sound al-
lows an ac measurement of the Kapitza resistance. %'hen
a second-sound wave is incident on a thin foil with negli-
gible heat capacity, that second-sound wave would
transmit directly through the foil if the Kapitza resis-
tance were zero. Because of the Kapitza resistance,
though, most of the second-sound wave is rejected. The
amplitude of the transmitted or reAected second-sound
wave can be used to deduce a Kapitza resistance. This
was first recognized by Osborne (1951),but the transmit-
ted wave was too weak to be detected with the given sen-
sitivity of his apparatus. An improvement in the ap-
paratus was made by Brow and Osborne (1958), and pre-
liminary Ineasurements of the Kapitza resistance to
copper were made. Further experimental refinements
and a more complete series of experiments were made by
Challis and Sherlock (1970). Their experimental ap-
paratus is shown in Fig. 17. Two second-sound resona-
tors are coupled through a thin foil. The drive cavity is
driven at the first or second harmonic, usually a few hun-
dred hertz. Resonance is indicated by a maximum in the
signal from a thermometer at the opposite end of that
cavity, near the foil. The second (detector) cavity is
brought into resonance by adjusting the length of the
cavity. The boundary resistance can then be deduced
from the ratio of the temperature oscillations and the
quality factor of the detector cavity.

Katerberg and Anderson (1981) made significant im-
provements on the second-sound technique for measuring
Kapitza resistance and pointed 'out a serious Aaw in all of
the earlier second-sound Kapitza resistance measure-
ments. They noticed systematic di6'erences between the
second-sound Kapitza resistance data and the dc Kapitza
resistance data, namely, that the second-sound data had a
stronger temperature dependence. This they attributed
to a thermal communication between the two cavities via
the bath. This communication is made possible because
of the small holes connecting the cavities to the bath, as
indicated in Fig. 17. By eliminating the thermal com-
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munication between the cavities and measuring the Ka-
pitza resistance of a single sample using both techniques
(dc and second sound) on the same sample, with the same
experimenta1 setup in the same cooldown, they were able
to demonstrate that the second-sound technique was
equivalent to the dc technique and that there is no fre-
quency dependence of the Kapitza resistance at frequen-
cies up to about 1 kHz. They were also able to reproduce
the systematic difference in the measurements by reintro-
ducing the connecting hole to the bath. Because of this
investigation, the results of all prior second--sound Kapit-
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resonator
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resonator
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second
sound
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FIG. 17. Experimental geometry for using the transmission of
second sound to determine the Kapitza resistance across a
superAuid/ metal-foil boundary. The second-sound heater is a
planar-wound Constantan wire resistor, mounted directly above
the base of the drive resonator. The thermometers are quartz
plates painted with Aquadag colloidal graphite. Adapted from
Challis and Sherlock (1970).

za resistance data must be viewed with the knowledge
that there are likely to be systematic errors affecting the
magnitude and temperature dependence of the results.

B. Experimental results and analyses

In conventional boundary resistance experiments, it is
dificult to modify the surface in situ; it is even dii5cult to
characterize the surface of the solid without that
surface's changing in the time between characterization
and measurement. For these and other reasons, few
boundary resistance experiments have been performed
during the past decade. Nevertheless, because so many
measurements were done prior to that time at boundaries
to many different metallic and dielectric solids, there is
much that can be learned by a survey of those results.
Several such surveys have been made; to avoid repetition,
we shall refer to these surveys and cite many of the origi-
nal studies only in the final list of references.

1. Experimental results

The measured thermal boundary resistance between
helium and a given solid at a given temperature (say, 1 K)
can vary by an order of magnitude or more. %'e shall not
present the specific data, as they have been collected in
many earlier reviews. [The values for copper or lead
have been reviewed by Pollack (1969) and Snyder (1970).
See also the reviews by Cheeke (1970a, 1970b), Challis
(1974), and Harrison (1974).] Instead of presenting these
data directly, we shall discuss some of the trends. In
many of the experiments, the effect of damaging or oxi-
dizing the surface of the solid was ambiguous. It was
even observed (Challis, 1968a, 1974) that the lowest Ka-
pitza resistances corresponded to samples with the least
damaged surfaces, contrary to the present understanding.

In spite of the confusion and experimental irreproduci-
bility, there were definite trends in the data for different
solids. For example, Challis (1968a) showed that the
dependence of the boundary resistance on the Debye
temperature of the solid (at 1.5 K) is approximately
linear, not cubic, as predicted using the acoustic
mismatch model. In 1974, Challis showed in another
survey that the average phonon transmission probability
(from the solid side into the helium at 1.5 K) is propor-
tional to the Debye speed of sound in the solid (it should
be inversely proportional, according to acoustic
mismatch theory), and inversely proportional to the mass
density of the solid. ' These trends imply that the
boundary resistance to dense, soft (low-Debye-
temperature) solids will be much closer to the prediction

The linear dependence of the transmission probability on the
sound velocity of the solid is nearly equivalent to a linear
dependence of the boundary resistance on the Debye tempera-
ture.
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FIG. 18. Plot of the reduced thermal boundary resistance I' as
a function of TOD. The stars indicate measurements between
the solid and liquid He. From Harrison (1974). The data are
from: CPA (Vilches and Wheatley, 1966), CMN (Harrison and
Pendrys, 1973), Cu (Challis, Dransfeld, and Wilks, 1961;
Johnson and Little, 1963, Anderson, Connolly, and %'heatley,
1964; Anderson and Johnson, 1972); Hg (Neeper, Pearce, and
Wasilik, 1967), In and Alz03 (Gittleman and Bozowski, 1962),
Pb (Challis, 1962; Quan, 1962; Challis and Cheeke, 1965), Au
(Johnson and Little, 1963; Whelan and Osborne, 1968), Ag (Cle-
ment and Frederking, 1966), Sn (C)'ittleman and Bozowski, 1962;
Guan, 1962), Nb and Al (Mittag, 1973), Ni (Guan, 1962;
Cheeke, Hebral, and Richard, 1973), Co and Fe (Cheeke, He-
bral, and Richard„1973), quartz (Challis, Dransfeld, and Wilks,
1961),W, Si, and LiF (Johnson and Little, 1963), KC1 (Johnson,
1964).

of acoustic mismatch theory than will be the boundary
resistance to light, hard (high-Debye-temperature) solids.
This trend is independent of whether the solid is metallic
or dielectric. Some noteworthy examples: the phonon
transmission probability from LiF into helium (Johnson
and Little, 1963) and A1203 (sapphire) into helium (Git-
tleman and Bozowski, 1962) were both measured to be
about 70go at 1.5 K, according to the analysis in Sec.
II.A (see also Cheeke, 1970b).

Harrison (1974) noted an interesting trend similar to
the above observations made by Challis. He plotted the
reduced boundary resistance I' (reduced logarithmically
so that a value of 1 corresponded to the acoustic
mismatch model and a value of 0 corresponded to the
phonon radiation limit) versus TBD, the product of the
temperature and the Debye temperature of the solid.
Harrison's plot is reproduced as Fig. 18. For a given
solid (see also Figs. 1 and 2), RBdT drops from near the
acoustic mismatch prediction at low temperatures to-
ward a very low value at higher temperatures. By plot-
ting the reduced boundary resistances versus TBD, all
the data follow approximately the same curve. This
means that the boundary resistance to solids with high
I3ebye temperatures, like sapphire or LiF, will drop rela-
tive to the acoustic mismatch model at lower tempera-
tures than will the boundary resistance to softer solids,
such as lead or mercury. These trends are very perplex-
ing.

2. Analyses

The analyses of many of the existing Kapitza resis-
tance data often involve the proposal of a new transmis-
sion mechanism or "channel. " No single channel can be
responsible for all the observations; rather, for a given
observation, several channels may contribute, and for
different interfaces different channels may be important.
We shall discuss the proposed channels separately and
shall mention the experimental evidence that the channel
does promote phonon transmission. A few of the calcula-
tional techniques will be discussed in simple terms, but
for details we shall generally refer the reader to the origi-
nal papers.

a. Boundary layers

At the interface between liquid helium and a solid, due
to the van der Waals interaction between the helium and
the surface of the solid. , the first few monolayers of heli-
um are under great pressure (tens of atmospheres). As a
result, the first few monolayers are solid. In addition, the
density near the wall falls off gradually to the bulk heli-
um density in the next several monolayers. The total
thickness of the denser layer of helium at the interface is
on the order of 30 A (Franchetti, 19S6). One of the first
attempts to explain the difference between the observed
Kapitza resistance and that calculated using acoustic
mismatch theory involved the idea that this layer would
form efFectively an antirefiection coating (Challis,
Dransfeld, and Wilks, 1961). For long-wavelength pho-
nons (wavelength in the layer much longer than the
thickness of the layer), the eft'ect of the dense layer would
be small, but for shorter-wavelength phonons (wave-
length in the layer comparable to four times the layer
thickness), the layer could greatly enhance transmission.
Challis et al. calculated the effect of such a boundary lay-
er. They found that, at low enough temperatures, the
phonon wavelengths are long enough to be unaffected by
the boundary layer, but as the temperature approaches
about 0.5 K, the effect of the boundary layer becomes
significant. If the thermal boundary resistance is plotted
as R~dT versus temperature, then the effect of the
boundary layer is seen as a drop in the boundary resis-
tance at temperatures above a few tenths of a kelvin.
Challis et al. also explained the pressure independence of
the Kapitza resistance at temperatures above a few
tenths of a kelvin by observing that the pressure in the in-
terfacial layer (due to van der Waals attraction) is very
large and is independent of the pressure in the bulk. At
low temperatures, where the boundary layer is unimpor-
tant, the pressure dependence is unaffected by the layer,
but at temperatures where the layer is important, the
pressure dependence is reduced. Although these theoret-
ical predictions agree qualitatively with the data, the pre-
dicted drop in RBd T is much smaller than the measured
drop in the boundary resistance.

Two conclusions follow from this work. First, any
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theory of Kapitza resistance must account for the effects
of the boundary layer. Further, there must be mecha-
nisms in addition to acoustic mismatch and boundary
layer effects, and these mechanisms further enhance the
transport across interfaces. Many of the mechanisms dis-
cussed below specifically involve the boundary layer or
exc1tat1ons ln 1t.

b. Attenuation

The effect of scattering in any system is to weaken con-
servation laws and boundary conditions. This general
principle also applies to Kapitza boundaries. Consider
what happens when a phonon from the helium (or in gen-
eral from the side of the boundary with lower phonon ve-
locities) is incident on an interface from outside the criti-
cal cone (see Fig. 13). The phonon will be totally inter-
nally refIected. In order to satisfy the boundary condi-
tions, an evanescent wave is generated at the interface;
the amplitude of the evanescent wave decays exponential-
ly into the solid. If the evanescent wave scatters in the
solid, then it can couple energy across the boundary.
Thus a totally rejected phonon can end up being
transmitted. Physically, this effect can be accounted for
by including a classical attenuation of the phonons. That
makes the wave vectors complex. In order to satisfy the
boundary conditions, the resulting equations to be solved
are complex, but can be solved on a computer. The effect
of the attenuation is always to reduce the thermal bound-
ary resistance and broaden the critical cone; the magni-
tude of the reduction of the thermal boundary resistance
increases with the amount of attenuation. Since the criti-
cal cone lies on the side with the lower acoustic im-
pedance, scattering only on the side with the higher
acoustic impedance is important. (There are no evanes-
cent waves on the same side as the critical cone. ) This
approach was taken independently by Peterson and An-
derson (1972, 1973) and Haug and Weiss (1972). For an
interface between liquid helium and a pure and well-
annealed metal, let us assume that the attenuation in the
metal is due to electron-phonon scattering. Then the at-
tenuation length varies as T ', as does the dominant
phonon wavelength. The enhancement of the transmis-
sion depends only on the ratio of the attenuation length
to the dominant evanescent wave penetration. The dom-
inant evanescent wave penetration is about the same
length as the dominant phonon wavelength. Since both
this length and the phonon attenuation length vary as
T ', the boundary resistance still has a T temperature
dependence; the prefactor is lowered due to the attenua-
tion. As much as a factor-of-3 reduction of the Kapitza
resistance can reasonably be explained by considering the
effects of attenuation. This argument has been used to
explain the magnitude of the low-temperature asymptotic
limit of the thermal boundary resistance relative to
acoustic mismatch (see Figs. 1 and 2). Since this
enhancement is classical and acoustic in nature, it can be
considered to be part of a more general acoustic

mismatch model. In fact, the term modified acoustic
mismatch model is often used to refer to this more gen-
eral model. There is little controversy surrounding the
validity of the effect of phonon attenuation described in
the modified acoustic mismatch model. ' As with the
effect of boundary layers, the effect of attenuation is to
lower the predicted boundary resistance toward the mea-
sured boundary resistance. In this case the boundary
resistance in the limit of low temperatures (below 0.1 K)
can now be qualitatively understood, although the
amount of phonon attenuation near the interface has not
yet been experimentally measured independent of the
boundary resistance.

If a measurement of the Kapitza resistance to a well-
polished dielectric crystal were performed at low enough
temperatures (-0.1 K), then, because of the absence of
electrons, the phonon attenuation should become negligi-
ble, and the phonon wavelength would be much larger
than the solid helium layer thickness. Therefore the
boundary resistance should approach the prediction of
the acoustic mismatch model. No such experiment has
been undertaken; performing such an experiment suc-
cessfully (measuring the appropriate temperature distri-
butions and avoiding stray resistances and conductances)
would be quite challenging.

In a series of experiments to test the modified acoustic
mismatch model, Folinsbee and Anderson (1974) were
able to fit at low temperatures (T-0.03—0.3 K) the
low-pressure Kapitza resistance (for both He and He)
to a variety of metals, with the phonon attenuation in the
metal as a parameter. Then, without changing that pa-
rameter, they were able to predict the Kapitza resistance
to the same samples at higher pressures. Unfortunately,
there was no experimental or theoretical method for veri-
fying the value of the phonon attenuation determined by
the fits to the low-pressure data. Nonetheless, the suc-
cess of these experiments was strong evidence for the va-
lidity of the modified acoustic mismatch model. Rawl-
ings and van der Sluijs (1979; see also van der Sluijs and
Alnaimi, 1976a, 1976b, and Alnaimi and van der Sluijs,
1973, 1974, 197S) also supplied data in support of the
effects of attenuation and scattering from dislocations in
the metal, although quantitative analyses were not per-
formed and the temperature range of measurement was
very limited (1.2 —2 K). At temperatures above 0.3 K,
the pressure dependence of the thermal boundary resis-
tance (see Fig. 2) was much weaker than expected. This
indicates that the boundary conductivity is dominated by
some other mechanism (such as the eff'ect of the bound-
ary layer; see above).

Vuorio (1973) objected to the replacement of the phonon
scattering with a classical attenuation length. However, the cal-
culations of Peterson and Anderson (1973) have been consistent
with a great many measurements made at Illinois and else-
where, and little controversy remains about the usefulness of
the modified acoustic mismatch model.
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Opsal and Pollack (1974) calculated the combined
efFect of phonon attenuation and the helium boundary
1ayer. Thus they could qualitatively explain the bound-
ary resistance in the low-temperature limit, i.e., the drop
in R~d T with increasing temperature, as well as the de-
crease in the pressure dependence above a few tenths of a
kelvin. However, this is still insufhcient to explain the
measurements quantitatively.

c. Conduction electrons

In addition to the above effects of electrons in metals
attenuating phonons and therefore broadening the criti-
cal cone, other effects of electrons on the thermal bound-
ary resistance have been suggested. For example, an
electron rejecting off the boundary between a metal and
an insulator can cause the boundary to recoil, thus radi-
ating phonons in the same manner as in the original
Khalatnikov (1952) calculation. This channel was con-
sidered by Little (1961c, 1962), Andreev (1962a, 1962b),
and Challis and Cheeke (1968), and was calculated to be
a small effect, at most of the same order as the elastic
channel at Kapitza boundaries, and negligible at solid-
solid boundaries.

Experimentally, the role of electrons can be measured
at a Kapitza interface to a superconductor. When the
metal is in the superconducting state, the electrons play
little or no role, as in irisulators or semiconductors at
su%ciently low temperatures. Application of a magnetic
field to drive the superconductor normal allows the elec-
trons to contribute to the thern1al transport across the in-
terface. The effect of the magnetic field can be significant
[see the review by Cheeke (1970b) on the Kapitza resis-
tance between lead and He]. However, the very low
electronic thermal conductance in superconductors and
the strong phonon scattering at defects near strained in-
terfaces can make an accurate Kapitza resistance mea-
surement very dificult; the resulting errors, which affect
only the measurements of the Kapitza resistance to su-

perconductors, are likely to have been much larger than
the direct electronic contribution to the interfacial trans-
port when the metal is driven normal. Thus these mea-
surements were inconclusive.

Wagner, Kollarits, and Yaqub (1974) and Wagner and
Yaqub (1975a) performed measurements of the boundary
resistance between single-crystal gallium and superAuid
helium ln a magnetic fiel us1Ilg thc second-souIld tech-
nique (see Sec. II.A.2). The effect of the magnetic field
was quite complex, ' the boundary resistance initially
dropped with increasing field at low fields and then in-
creased, saturating at about four times its zero-field value
at a field of about 4 kG. This indicated that in gallium
electrons dominate the thern1al transport across the in-
terface. (It seems unlikely that the phonon transport
could be significantly affected by the magnetic field. ) Be-
muse the electronic properties are anisotropic and the
electrons apparently affect the Kapitza resistance, one
might expect an anisotropy in the Kapitza resistance. In

a follow-up experiment, Wagner and Yaqub (1975b) ob-
served no anisotropy in the magnitude of the Kapitza
resistance to gallium, but they did observe an anisotropy
in the temperature dependence of the Kapitza resistance
to gallium. Wagner and Yaqub (1975a) also measured
the magnetic field dependence of the Kapitza resistance
to copper and found negligible transverse field depen-
dence for fields up to 4 kG. We know of no other mea-
surements of the magnetic field dependence of the Kapit-
za resistance. No specific mechanism was suggested that
could cause the electrons in gallium to affect the Kapitza
resistance so dramatically. We note that the second-
sound technique used to measure these field dependences
(see also Wagner, Kollarits, Wilkes, and Yaqub, 1975)
was Ilawed as described in Sec. II.A.2 (see Katerberg and
Anderson, 1981). We would expect the Ilaw in the mea-
surement technique to affect the magnitude and tempera-
ture dependence systematically, but it might not affect
relative measurements. It is therefore dificult to ascribe
the dependence of the Kapitza resistance of gallium on
magnetic field to systematic errors, especially as the Ka-
pitza resistance to copper showed negligible magnetic
field dependence. The strain dependences also described
in the above papers (including strain in single-crystal
metal foils increases the Kapitza resistance) are similarly
difficult to interpret.

Halbritter (1979) suggested a relationship between the
observed rf losses at nonideal metal surfaces and inter-
faces and the observed phonon scattering at such inter-
faces. The coupling arises because electrons can be local-
ized in, for example, oxide layers at the metal surface.
Phonons incident on these localized electrons cause them
to vibrate and generate rf fields, which interact with oth-
er localized electrons. The result is strong diffuse scatter-
ing. (See also Halbritter, 1974, 1981.) Farmer, Rogers
and Buhrman (1987) have studied the effects of individual
and coupled electron traps in thin oxide layers and have
proposed models for the microscopic interactions; this
may also relate directly to diffuse phonon scattering.
Singh, Lehndorff-Junges, and Dransfeld (1984) observed
an anomalously high polarizability of thin adsorbed films
of helium on sapphire. This polarizability must arise
from excitations in the helium layer. In this case, there
are probably no electrons localized in traps in the helium
layer, but the nature of the excitations in the helium layer
may be sin1ilar to that of the traps in the oxide layers.

d. Surface roughness

The acoustic mismatch theory assumes perfect, planar
interfaces. Real interfaces are usually quite rough on the

O

scale of hundreds of A, i.e., the typical phonon wave-
length in solids at 1 K. The effect of that roughness on
the transmission of phonons-at Kapitza boundaries has
been studied theoretically by Lapin (1969), Sheard and
Toombs (1972a, 1972b; see also the discussion below of
the perturbation-theory approach to Kapitza resistance

Rev. Mod. Phys. , Yol. 61, No. 3, July 1989



E. T. Swartz and R. O. Pohl: Thermal boundary resistance 631

analysis), Khater (1978), Shiren (1981a, 1981b), and
Nakayama (1985a, 1985b, 1986). One effect of the rough-
ness is to couple bulk phonons (or other excitations} on
either side of the interface with surface or Rayleigh
waves. The phonons with wavelength comparable to the
characteristic dimension of the roughness are most
strongly scattered. The e8ect of surface roughness on the
thermal boundary resistance can be understood as fol-
lows: A phonon incident on the interface can, among
other things, be reflected, be transmitted, or excite a sur-
face wave. The probability of transmission through the
acoustic mismatch channel may be small. If the phonon
excites a surface wave, then that wave will eventua11y
scatter, coupling to an excitation in either the solid or the
helium. The physics that governs the direction' into
which the Rayleigh wave scatters is no longer acoustic
mismatch; the probability of transmission (relative to the
initial incident phonon that coupled to a Rayleigh wave)
may be much 1arger than the acoustic mismatch proba-
bility of direct transmission.

Using reasonable parameters describing the roughness
of polished copper, Shiren (1981a, 1981b) was able to fit
(from 0.2 to 1 K) the thermal boundary resistance be-
tween He and copper measured by Anderson, Connolly,
and Wheatley (1964). (The data are shown in Fig. 2.) In
his calculation, Shiren assumed the helium to be an ideal
liquid and therefore neglected viscosity and other chan-
nels, e.g., boundary layer e6'ects. Recently, Nakayama
(1985a, 1985b, 1986}performed a similar calculation in-
volving bulk phonons converting to surface phonons
(Rayleigh waves) because of surface roughness. These
Rayleigh waves then interacted with defects (e.g., tunnel-
ing states) in the adsorbed helium boundary layer
(Nakayama, 1976a, 1976b, 1977, 1978), resulting in
transmission of energy across the interface. The calculat-
ed transmission probabilities can be made to agree with
the measured- transmission probabilities both in magni-
tude and frequency dependence for temperatures between
about O. I and 1 K, using reasonable parameters describ-
ing the surface roughness and the properties of the heli-
um layer. These calculations account for many of the ob-
servations and effects that are generally accepted and
that must be included in any realistic model: Real sur-
faces are rough, and the coupling to Rayleigh waves is
certainly a significant factor in phonon transmission.

There is much work to be done before the thermal cou-
pling across interfaces via Rayleigh waves is quantitative-
ly understood; there Inay be several additional mecha-
nisms coupling Rayleigh waves to phonons or other exci-
tations in the solid, to excitations in the helium film, or to
bulk phonons in the helium. There have been many
theoretical studies of the coupling between Rayleigh
waves and phonons or defects; see Maradudin and Mills
(1968), King and Sheard (1969, 1970), Steg and Klemens
(1970), Nakayama and Sakuma (1971, 1976a, 1976b),
Sakuma (1972, 1973), Sakuma and Nakayama (1974),
Maradudin, Mills and Wallis (1976), and Narita, Sakuma,
and Nakayama (1978).

e. Localized states at theinterface

All nonacoustic channels invoked to couple phonons
across a boundary require excitations at the interface
which couple to phonons on both sides of the interface.
In the case of surface roughness, the excitations are inter-
face waves, which are always present at interfaces. Other
models that follow very closely this general scheme start
with the assumption that the surface contains a large
density of defects and impurities. Vuorio (1972) modeled
these low=energy vibrational modes at the interface by as-
suming a layer of loosely bound solid at the interface.
Gel'fgat and Syrkin (1978) showed that a layer of loosely
bound impurities on the surface could increase phonon
transport across the interface by coupling through sur-
face waves. Similarly, van der Sluijs and van der Sluijs
(198la, 1981b, 1981c; see also Jones and van der Sluijs,
1973; van der Sluijs, Jones, and Alnaimi 1974; van der
Sluijs and Alnaimi, 1976a, 1976b) modeled the defects as
localized masses and springs. These defects and impuri-
ties promote. the coupling between bulk phonons and sur-
face acoustic waves, which couple to the phonons in the
helium. The model has not been worked out quantita-
tively in three dimensions, due to the complications in-
troduced by the inc1usion of phonon attenuation and
boundary layers.

If resonant defect states are replaced with tunneling
states, the result is a model proposed by Kinder (1981),
and Kinder and Weiss (1986). Kinder ignores the effects
of phonon attenuation and helium boundary layers and
assumes the entire enhancement in phonon transmission
probability to be caused by tunneling states at or near the
interface. He calculates explicitly the transmission
coe%cients assuming a given set of tunneling densities
and energies. To do this, Kinder calculates the efI'ective
classical (complex) impedance at the interface due to the
tunneling states and does a classical transmission calcula-
tion. The model predicts a saturation of the enhanced
phonon transmission probability at high phonon intensi-
ties. The model also predicts a lower transmission proba-
bility for norma11y incident transverse phonons relative
to obliquely incident transverse phonons, due to the re-
duced normal stress at the interface. For supporting ex-
perimental results, see the phonon scattering experiments
of Schubert, Leiderer, and Kinder (1980, 1982), Basso,
Dietsche, and Kinder (1984, 1986), Kinder, De Ninno,
et al. (1985, 1986), and Koester, et al. (1986), to be dis-
cussed in Sec'. III.C, below. Although some of the pre-
dictions of the model have been observed experimentally,
in order to fit the data it was necessary to assume an un-
realistically high density of tunneling states (see, for ex-
ample, the remarks by Nakayama, 1985b).

f. Excltationsin the helium boundary layer

Another coupling mechanism, suggested by Johnson
and Little (1963; see also Anderson and Johnson, 1972),
is that phonons from the solid can directly desorb or ex-
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cite helium atoms in the boundary layer. This mecha-
nism cannot be effective without the inAuence of other
mechanisms, because if it were, it would be effective at
any Kapitza interface; however, at interfaces to in situ
laser-annealed silicon surfaces (discussed later in this sec-
tion), the transmission is not significantly enhanced (rela-
tive to the acoustic channel), even for phonons with fre-
quencies of several hundred GHz. Thus there must be
some unspecified defect at the surface (e.g. , roughness),
which either causes additional excitations in the bound-
ary layer or causes the phonons to couple more
effectively to the existing excitations in the boundary lay-
er, or both. Desorption of helium atoms from the bound
layer cannot explain the thermal boundary resistance be-
tween solids and solid helium, or the thermal boundary
resistance between solids and solid adsorbed hydrogen,
deuterium, neon, or argon (Taborek and Goodstein,
1981). Moreover, there is little or no change in the
transmission across a helium-solid interface when the
helium solidifies (Goodstein et al. , 1981). Therefore the
desorption or direct excitation of the helium atoms from
the interface cannot be the sole cause, but is at most a
contributing factor to, or an effect of, the enhanced pho-
non transmission mechanism.

Cheeke, Hebral, Richard, and Turkington (1974) ob-
served the temperature jump at an interface between heli-
um and copper or between helium and lead to depend
nonlinearly on the heat Aux across the interface. This
was later studied for interfaces between helium and
copper or helium and silver by Rawlings and van der
Sluijs (1977, 1978a, 1978b), van der Sluijs (1979), and
Bishop and van der Sluijs (1980a, 1980b), who suggested
that the nonlinearities (and time dependences) were
caused in a layer of the superAuid near the surface.

There have been many theoretical studies relating to
the effect of the van der Waals bonded surface helium
layer and excitations in it. Challis and Toombs (1971;
Toombs and Challis, 1971) investigated theoretically the
interaction. between continuum states of independent
helium atoms and the van der Waals attraction at the
solid surface. Toombs, Sheard, and Rice (1972) con-
sidered the effect of He adsorption and desorption on
the energy transfer between a solid and He. Long (1974)
and Long, Sherlock, and Wyatt (1974) suggested that sur-
face phonons (Rayleigh waves, which coupled to bulk
phonons in the solid through an unspecified mechanism)
were responsible for the coupling to the excitations of the
helium atoms in the boundary layer. Cheeke and Et-
tinger (1976, 1979, 1980) and Guermeur and Jacolin
(1977) investigated the effect of phonon attenuation in the
bound helium layer on the phonon transmission into the
layer. Maris (1979) investigated generally the effect of ex-
citations in the helium (in the bulk as well as in the
bound layer) on phonon transmission and derived a set of
sum rules that govern the transmission probabilities un-
der ideal circumstances. The sum rules of Maris are not
valid once either the phonons or the excitations in the
helium have a finite lifetime. Thus the effects of phonon

scattering at the surface of the solid from defects at the
surface of the solid (such as roughness, tunneling states,
and resonant states) are excluded. Haug, Sigmund, and
Weiss (1987) investigated the effect of the finite lifetime of
the excitations in the helium boundary layer. They found
that the shorter the excitation lifetime the greater is the
effect on the phonon transmission probability. They in-
vestigated the effect of roughness on the atomic scale, but
not the (much more important?) effect of roughness on
greater length scales. Nakayama has investigated the
effect on the Kapitza resistance of localized excitations
(two-level systems) in the helium boundary layer coupled
through Rayleigh waves, which couple through surface
roughness to bulk phonons in the solid. (See the discus-
sion of the effects of surface roughness. )

g. Perturbatlon-theory approach

The transmission due to the acoustic mismatch chan-
nel is small compared to the transmission caused by im-
perfections at the interface; these imperfections are thus
hardly a perturbation. However, if the transmission is
treated as a perturbation of the phonon reAection from a
free solid surface (as is done in Khalatnikov s initial cal-
culation in 1952), then both the acoustic channel and the
other channel can be treated as perturbations and the
procedure will have the potential to be at least qualita-
tively correct even at interfaces where, say, 30% of the
incident phonons from the solid are transmitted. One
way to treat the perturbation is to use a transfer Hamil-
tonian. This is the approach taken by Sheard and
Toombs (1972a, 1972b), Sheard, Bowley, and Toombs
(1973), and Sluckin, Sheard, Bowley, and Toombs (1975)
to study the transmission from superAuid He to a solid.
Their approach allows inclusion of the effects of any type
of defect for which a transfer Hamiltonian can be defined
and even appears to have the potential for studying the
interaction of different transmission channels. The
equivalence of the perturbation approach with the acous-
tic approach was implicitly shown by Khalatnikov (1952)
and Mazo (1955), since their treatments gave essentially
the same answer.

Sheard and Toombs (1972a), using their transfer Ham-
iltonian approach, first established the equivalence with
the acoustic mismatch results and then calculated the
effects on the transmission of both point-defect scattering
and hard-sphere defect scattering at the interface. The
idea was. to model the effects of mass defect scattering
and scattering due to surface roughness on scales larger
than atomic scales, respectively. The result due only to
the hard spheres was a boundary conductance h &d,

"Bd (cD«i )(Ph ~P) .

For the total boundary conductance the classical result
must be added. The mass densities of the solid and liquid
are p and pI„respectively, and cD and cI, are the Debye
phonon velocity in the solid and the longitudinal phonon
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velocity in the helium. Sheard and Toombs's calculated
dependence of the phonon transmission on the phonon
velocity in the solid and on the mass density of the solid
was consistent with the dependences observed in the data
(cf. Challis, 1974). Moreover, the dependence on the
liquid density resulted in a pressure dependence closer to
what is seen experimentally.

For short-wavelength (high-frequency) phonons Sluc-
kin et al. (1975) calculated the effect of roton excitation,
dispersion, and multiphonon, multiroton, and phonon-
plus-roton excitation. They found very sharp transmis-
sion peaks near the phonon maximum and roton
minimum of the superfluid dispersion curves (the
transmission approaches unity in these peaks). The
effects of multiple excitations were calculated to be small.
Toombs and Bowley (1973) extended the above perturba-
tion treatment to all orders, calculating the exact
quantum-mechanical analog of classical acoustic
mismatch theory; their results confirmed the classical
.treatment for long-wavelength phonons.

For interfaces to He, analogous perturbation treat-
ments have been carried out (Toombs, Sheard, and Rice,
1980; see also the earlier work by Rice, 1971; Sheard,
Toombs, and Challis, 1971; Rice, Sheard, and Toombs,
1972; Rice and Toombs, 1972). The transmissions due
both to individual quasiparticle excitation and to zero-
sound excitation have been calculated and compared.
Comparison with the semiclassical Boltzmann equation
approach of Bekarevich and Khalatnikov (1960, 1961)
was made by Sheard, Toombs, and Challis (1971); if
Fermi-liquid effects are ignored in the perturbation ap-
proach, then the two approaches are equivalent, although
Sheard, Toombs, and Challis point out that Fermi-liquid
effects should not be ignored.

h. Quantum effects specific to the Kapitza problem

It has been noted that the large drop of Rzd T with in-

creasing temperature in the range from 0.1 to 1 K has
been observed only at interfaces to quantum materials,
such as the helium liquids, and to solid hydrogen or neon
(Buechner and Maris, 1975; Reynolds and Anderson,
1976, 1977). It certainly cannot be ruled out that the
quantum aspect of helium plays some role in this behav-
ior, but there remains little reason to believe that the
quantum nature of helium is the. dominant cause of
enhanced phonon transmission at Kapitza boundaries.

One of the first attempts to explain the existence of a
temperature drop at an interface between superAuid heli-
um and a solid involved the two-Quid model of superAuid
helium. The idea was that conversion from superAuid to
normal Quid at the boundary could take place only at a
finite rate (Landau, 1941). For more detailed discussions,
see Kronig and Thellung (1950), Gorter, Taconis, and
Beenakker (1951), Ginzburg and Sobaynin (1976), and
Onuki (1984). The effect of such a finite conversion at
the interface has recently been seen as a singularity in the
Kapitza resistance near the superAuid transition temper-

ature (Duncan, Ahlers, and Steinberg, 1987). The singu-
larity has a width of only a few mK, and at its peak con-
tributes about 10% of the measured boundary resistance.

Saslow (1973) discussed the effects of shear-wave dissi-
pation on the thermal boundary resistance to He or He.
These efFects, although not specifically quantum, depend
on the fact that both are liquids. Saslow did not explicit-
ly include the efFects of defects at the interface; on
defect-free surfaces, such as in situ laser-annealed silicon
and in situ annealed NaF, the phonon transport across
the liquid-solid interface is not significantly greater than
that predicted by the acoustic mismatch model. More-
over, at temperatures above 1 K the phonon transport
across interfaces between helium and solids does not
significantly depend on whether the helium is liquid or
solid. Therefore dissipation in the liquid cannot be criti-
cal.

i. Spin-spin and size effects at mK temperatures

In the He Kapitza problem, the fact that the He has
a nuclear spin allows a transport channel not available in
the He Kapitza problem. The boundary resistance be-
tween He and magnetic solids can be several orders of
magnitude lower than that expected from acoustic
mismatch alone, and the temperature dependence of the
magnetic transport is much weaker than T . In fine
metal sinter s used because of their large surface-to-
volume ratio, the Kapitza resistance at millikelvin tem-
peratures can also be unexpectedly low due to finite size
effects and collective excitations of the sinter. These
effects are dominantly responsible for allowing transfer of
heat in the millikelvin regime. The physics of these phe-
nomena is complex and exciting, but is outside the scope
of this review. A review of the heat transfer between
helium and solids below 100 mK is given by Harrison
(1979).

C. Phonon scattering at surfaces and interfaces

From Kapitza resistance measurements, we have seen
that low-frequency phonons (f ((100GHz), correspond-
ing to temperatures much lower than 1 K, and dominant

0
phonon wavelengths much greater than 500 A in solids)
appear to transmit across polished surfaces according to
acoustic mismatch theory (modified to include the effects
of attenuation by electrons in the metal), whereas high-
frequency phonons ( T + 1 K) are transmitted more readi-

ly than allowed by this theory. Typical models of the
Kapitza resistance at these elevated temperatures involve
the scattering of a phonon at the interface due to an in-
teraction with an excitation at the interface. The out-
come of the scattering, particularly whether the scatter-
ing is forward or backward, determines the extent of its
effect on the thermal boundary resistance. Therefore
much can be learned from phonon scattering experiments
on well-characterized surfaces.
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The experiments reviewed here can be divided into two
groups —phonon-pulse experiments, in which the pulse is
detected after partially reAecting from a surface or par-
tially transmitting across it, and thermal conductance
measurements, in which the thermal conductance of a
dielectric crystal is measured at temperatures low enough
that the phonon scattering dominantly occurs at the sur-
face (the Casimir regime); the measured thermal conduc-
tance can then be related to the probability of scattering
at the crystal surfaces. With both types of experiments,
well-characterized surfaces have been studied, and results
analogous to ideal acoustic behavior have been observed.
Also with both types of experiments, near-ideal surfaces
have been modified by the deposition of films of different
materials and of varying thickness in situ at low tempera-
tures; the effect of the added films on the phonon scatter-
ing at the surface has been studied. Similarly, by com-
paring the phonon scattering at uncharacterized surfaces
with that at weH-characterized surfaces, it is possible to
derive information about the nature of the uncharacter-
ized surfaces.

We shall review the experimental techniques and tech-
nical considerations for these two types of experiments.
Then experiments on near-ideal surfaces and the effects
of added defects on the phonon scattering at these sur-
faces will be reviewed. We shall discuss the question:
Which properties of the added films are important in
causing phonon scattering, i.e., what are the relevant
scattering mechanisms? In addition to the experiments
with well-characterized surfaces, there have been many
other studies of the interactions of heat pulses with in-
completely characterized surfaces, which will subse-
quently be reviewed. These experiments were designed to
study specific questions about the nature of phonon
scattering and its relationship to the Kapitza resistance.
For example: What is the angular dependence of the
scattering probabilities? What is the angular dependence
of the phonon transmission probability at a helium-solid
interface? What is the dependence of the phonon
reAection probability (from the solid side of a helium-
solid interface) on the amount and state of the helium on
the solid's surface?

1. Phonon-pulse techniques

Figure 19 contains a schematic of an experimental
geometry used in heat-pulse experiments (from Marx and
Eisenmenger, 1982). A thin-film generator and a detector
are deposited onto one side of a crystalline dielectric sub-
strate, such as silicon, quartz, or sapphire. The generator
may be a Joule-heated thin film or a Josephson junction,
and the detector may be a fast bolometer, such as a su-
perconducting thin film ai its transition temperature, or
another Josephson junction. The sample is cooled to a
low temperature, usually near 1 K. The experiment is
performed by pulsing the generator and detecting the
phonons that have reAected from the prepared surface.

The signal is recorded as a function of time. If the

Pump

Substi'ate

Generator Detector

FIG. 19. Experimental geometry used for measuring reAection
of phonons from a prepared crystal surface, adapted from Marx
and Eisenmenger (1982). The reAected phonon spectrum can be
measured before and after modifications are made to the sur-
face.

crystal is isotropic, then the detected signal may be de-
scribed as follows: The first phonons to reach the detec-
tor are the specularly rejected longitudinal phonons,
with detected pulse width ideally about the same as the
generator pufse width. The difFusely scattered longitudi-
nal phonons reach the detector as a broad tail, starting
with the specular peak. The fast and slow transverse
phonon peaks occur during the diffuse longitudinal tail
and are followed by their corresponding diffuse tails.
Often the fast and slow transverse phonon peaks are not
separately resolvable. Additional peaks correspond to
phonons that were mode converted upon specular
reAection. The individual mode-converted peaks (longi-
tudinal to fast transverse versus longitudinal to slow
transverse, for example) are not usually resolvable; they
show up as a peak between the longitudinal peak and the
transverse peak(s). The mode-converted peak is usually
broader than the other peaks. The shape of the detected
signal will be discussed in greater detail when we discuss
the effects of phonon focusing.

The reflecting surface can be modified in several ways,
for example, by coating it with helium, from fractions of
a monolayer to bulk liquid. The reflecting surface can
also be coated with other adsorbed gases or metals, it can
be heated to remove the gases, or it can be laser annealed
or cleaved in situ to remove defects as well as adsorbed
gases.

The analysis of the signal depends on several factors
like the properties of the generator, detector, and the
crystal used and their geometries and orientation. Before
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discussing the data, we shall outline some of the factors
that enter the analysis and that affect how the measure-
ments are made.

a. Emitted phonon frequency spectrum
from Joule-heated thin films

The phonon spectrum emitted by a Joule-heated thin
metal film is, to first order, the blackbody spectrum at the
temperature of the film times the transmission probabili-
ty for phonons incident on the substrate from the film.
According to acoustic mismatch theory, the transmission
probability is independent of the phonon frequency;
therefore the spectrum should not be distorted by
transmission from the film to the substrate. We shall
show in Sec. IV.C that at nonideal solid-solid interfaces
the transmission probability for high-frequency phonons
( & a few hundred GHz) is not correctly predicted using
the acoustic mismatch model; the error can be as large as
a few tens of percent (but not much more), depending on
the materials on each side of the interface. Thus, if one
uses the acoustic mismatch model to calculate the tem-
perature of the film, the result will be in error by as much
as 10%%uo or 20%.

There is another problem, though, namely, that the
temperature of the film is not well defined, i.e., the tem-
perature of the electrons in the film and the temperature
of the phonons in the film are not necessarily equal. Ra-
diation of phonons by metallic films and the effect of in-
elastic scattering of electrons at impurities in the film are
discussed by Maris (1979). The emitted phonon spec-
trum of a metal film during an intense heat pulse is calcu-
lated by Perrin and Budd (1972a, 1972b) and Perrin
(1975, 1976, 1978). A special case, the steady-state solu-
tion for small power inputs (b, T ((T), is explicitly solved
by Swartz (1987). The general effect is that the emitted
phonon distribution is distorted; the emitted phonon
spectrum will contain more high-frequency phonons than
does a blackbody distribution. There is significant uncer-
tainty in the spectrum because of the unknown strength
of the electron and phonon scattering mechanisms in the
film. Murmann and Heber (1977) measured the phonon
spectrum emitted from Joule-heated metal films and
verified qualitatively the predictions of Perrin, and Perrin
and Budd. If the metal film is deposited on a glassy sub-
strate, or if there is significant frequency-dependent pho-
non scattering in the substrate near the surface, then this
scattering can affect the phonon distribution during a
heat pulse; see Bron and Cxrill (1977a, 1977b), Schaich
(1978, 1984), Bron, Patel, and Schaich (1979), and Wilson
and Schaich (1984). The steady-state solution is also dis-
cussed by Jackie (1972) and by Matsumoto, Reynolds,
and Anderson (1977).

Yet another effect that causes uncertainty in the emit-
ted phonon distribution is that of the finite thickness of
the film on the longer-wavelength phonons. When the
thickness of the film approaches the dominant phonon
wavelength at the temperature of the film, then the finite

thickness of the film will infIuence the emitted phonon
spectrum. This is discussed by Frick, Waldmann, and
Eisenmenger (1975).

%"e estimate that the result of these complications
(diffuse scattering, nonequilibrium between electrons and
phonons, and film size effects) is that the emitted phonon
frequency spectrum (amplitude, frequency dependence,
and center frequency) is uncertain by at least a few tens
of percent.

b. Phonon emission and detection
using Josephson junctions

The use of superconductors as incoherent phonon gen-
erators and detectors was first demonstrated by Eisen-
menger and Dayem (1967). Kinder (1972a, 1972b) ex-
tended the usefulness of the technique by demonstrating
that the sharp edge of the phonon bremsstrahlung spec-
trum (the relaxation phonons discussed below) could be
used to produce an emitted phonon spectrum that can be
modulated in a narrow band around a single, tunable fre-
quency. In Fig. 20 is an energy-level diagram of a biased
superconductor-insulator-superconductor junction in
which the two superconductors are made of the same
metal. The structure is made using thin films deposited
onto the substrate to be studied. When the applied bias
energy eV exceeds the gap 2A, pairs can cross the barrier
and split. There are two processes by which phonons can

E
&

„——ev-23,

FEG. 20. Josephson junction phonon generation by quasiparti-
cle relaxation (E„I, eV —25) and recombination (Ep& 2A).
The bias voltage must exceed the gap', eV ) 25. The shaded
area represents the electron density of states. Adapted from
Eisenmenger (1976b).
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FIG. 21. Josephson junction phonon detection of phonons with
Eph & 2h by quasiparticle generation and subsequent tunneling .
Here the gap exceeds the bias; eV & 24. Adapted from Eisen-
menger (1976b).

be emitted: recombination and relaxation. Recombina-
tion phonons have energy no less than 26 and relaxation
phonons have energy no greater than eV-25. The relaxa-
tion phonons are often called bremsstrahlung phonons.
The energies of the recombination phonons are strongly
peaked at 25, and the energies of the relaxation phonons
are peaked at eV-26. There are several reviews of the
phonon generation processes in tunnel junctions, includ-
ing those by Long (1973), Eisenmenger (1976a, 1976b,
1981), and Kinder (1985). The efficiency of the phonon
generation process has been a topic of several studies (see
Trumpp and Eisenmenger, 1977, and the above reviews).
Figure 21 contains an energy-level diagram of the same
Josephson junction as Fig. 20, this time biased below the
gap 2A. A phonon with energy at least as great as 2A
can break a pair, which can then contribute to the tun-
neling current across the junction. Such junctions thus
serve as detectors of phonons with energy greater than
the cutoff 2A. The phonon detection sensitivity of tunnel
junctions is discussed by Trumpp, Epperlein, and
Lassmann (1972). Both the generation and the detection
of phonons by tunnel junctions are afFected by the uncer-
tainty of the transmission probability across the interface
between the junction and the substrate. Another phonon
loss mechanism includes reabsorption of phonons in the
film; see the above reviews. The frequencies correspond-
ing to the energy gaps in the commonly used junctions
are 26(aluminum) =72.5 GHz, 26(tin) =285.5 GHz, and
2b.(lead) =653 GHz (Eisenmenger, 1976a).

c. Effect ofphonon focusing on the detected
signal

In an isotropic medium with generator and detector de-
posited as in Fig. 19, the expected response of the detec-
tor to a pulse at the generator is relatively simple. The

specularly reflected phonons that reach the detector have
the shortest path length and therefore reach the detector
first. There will be several distinct peaks, corresponding
to the longitudinal, fast transverse, slow transverse, and
mode-converted phonons. Crystals are generally not iso-
tropic, however, and that fact leads to several complica-
tions. The phonon wave vector and the group velocity
(the direction of energy transport) are not parallel. There
can be directions in which a disproportionate fraction of
phonons are "focused, " i.e., phonons within a large solid
angle in k space have a group velocity direction lying in a
small solid angle in group velocity space. For informa-
tion on phonon focusing, see, for example, Taylor, Maris,
and Elbaum (1971), Northrup and Wolfe (1979), Marx
and Eisenmenger (1982), McCurdy (1982), and Maris
(1986). Because of phonon focusing, a phonon
generator-detector pair deposited on a real crystal will
have a more complex response than described above. If
the measurement is made with sufFicient time resolution,
there will be additional structure (Taborek and Good-
stein, 1979, 1980a, 1980b, 1980c). The diffusely scattered
phonons, which were expected to arrive at the detector as
a broad background, arrive at the detector as a sharp
structure; this structure was at first misinterpreted as be-
ing due to specular phonons. In addition, the peaks due
to the specular phonons are modified due to phonon
focusing. A Monte Carlo analysis of the detector signal
must be made to determine the measured ratio of specu-
lar to diffuse reAection at the surface (see Basso,
Dietsche, Kinder, and Leiderer, 1984; Basso, Dietsche,
and Kinder, 1986; Eisenmenger, 1986, and references
therein).

d. Effects of generator and defector efficiencies

The detected phonon signal in a real heat-pulse experi-
ment is afFected not only by the complexities of the pho-
non interactions at the surfaces and interfaces, but also
by the complexities of the phonon generation and detec-
tion processes. It is difIicult to calculate these efFiciencies
quantitatively and include them in the analysis; instead, a
constant efFiciency of the generation-detection process is
assumed. This makes the absolute magnitude of the sig-
nal an unknown. Nevertheless, the shape of the detected
signal contains the desired information. From the shape, -

i.e., the relative sizes of the peaks and the background, or
through curve fitting using a Monte Carlo analysis, the
ratio of specularly to diftusely scattered phonons is deter-
mined. This ratio should be independent of the magni-
tude of the detector and generator efIiciencies, but will
not necessarily be correctly calculated if the detector
efFiciency is frequency dependent or dependent on the
amplitude of the pulse. For small enough pulse powers,
the dependence of the detector signal on phonon-pulse
amplitude should be negligible, but tunnel junction detec-
tors, for example, are certainly' not frequency indepen-
dent, as discussed above. If the scattering at the surface
is elastic, then the diffusely scattered phonons have the
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same frequency dependence as the specularly reflected
phonons, and the detector's frequency dependence is
unimportant. If, on the other hand, there is any frequen-
cy downconversion (or upconversion) on scattering, then
the diffusely scattered phonon frequency distribution
may be shifted to a different region of the detector
response function. In that case, the calculated ratio of
diIFuse to specular scattering will be in error (Taborek
and Goodstein, 1981). If there are frequency shifts on
refIection, different types of detectors which respond
differently at different phonon frequencies, may report
different diffuse scattering ratios. This effect affords a
method for detecting the presence of inelastic scattering
(Taborek and Goodstein, 1981). See Fig. 26 below and its
discussion for an example of the use of detectors with
different frequency response to observe inelastic scatter-
ing. (In that case, downconversion is detected in the
transmitted phonons. )

Another potential source of error in the determination
of the diffuse scattering ratio is the angular dependence
of the phonon generation and detection. Ideally, one as-
sumes that the generator emits phonons with a cosine
distribution (Lambert's law) and the detector absorbs
phonons with a probability independent of the incident
phonon angle. The generator and detector are thin films

deposited onto the crystal; for a phonon to be generated
or detected, it must cross the solid-solid interface be-
tween the film and the crystal. This process can be
modeled using the acoustic mismatch model to determine
the angular dependence of the generator and detector, as-
suming all phonons with a given frequency actually
entering the detector contribute equally to the signal.
Even this analysis has rather severe limitations, as the as-
sumption of acoustic mismatch behavior at such a solid-
solid interface is not necessarily a good assumption (see
Secs. II and IV). Thus there is no reliable way to deter-
mine the angular dependence of the generation and
detection processes, and this, too, adds to the uncertainty
in the calculation of the diffuse scattering ratio in a heat-
pulse experiment.

Often in heat-pulse experiments, because of these un-
certainties, the analysis is comparative; the conclusions
are that a particular in situ modification of the surface or
interface has decreased or increased the amount of diffuse
scattering. Usually, the sUrface starts as having extreme-
ly low diffuse scattering, as with, for example, a laser-
annealed surface (Basso, Dietsche, and Kinder, 1984;
Basso, Dietsche, Kinder, and Leiderer, 1984; Mok, et ah. ,
1986) or a surface cleaved in vacuum (Weber et al. ,
1978a, 1978b). On these nearly perfect surfaces, the ab-
sence of diffuse scattering can be detected with a resolu-
tion of about a percent (see Eisenmenger, 1986, and refer-
ences therein), essentially unafFected by the above con-
siderations.

Thermometer

V 4 y Heatel'
g

H cate l'

eg
Base Clamp

FIG. 22. Experimental geometry used to measure thermal con-
ductance in the boundary scattering regime (from Klitsner,
1987). The two-heater method is drawn, although it is rigorous-
ly equivalent to the two-thermometer method (Klitsner et ah. ,
1988).

is at the boundaries of the crystal. In the experimental
configuration shown in Fig. 22, the thermometers used to
measure the thermal conductance of the sample are not
infinitesimal. Were they, and were the scattering at the
boundaries entirely specular, then the conductance would
diverge. Instead, a finite AT is measured because of the
phonon scattering at the thermometers. If the scatter-
ing at the boundaries were entirely diffuse, then the con-
ductance would approach the Casimir value, independent
(almost) of the scattering at the thermometers. The finite
dimensions of the thermometers, the sample geometry

2. Thermal conductance measurements

In nearly perfect dielectric crystals at temperatures
typically below 1 K, the dominant scattering of phonons

~ Because the conductance depends on the sample geometry,
the state of the surfaces, and the positions and geometry of the
thermometers, the thermal conductivity is not well defined;
hence the term conductivity is avoided (Klitsner et al. , 1988).
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dependences, and the effects of phonon focusing can (and
must) be dealt with using a Monte Carlo calculation
(Klitsner et aI. , 1988); using the results of that calcula-
tion, we can calculate the probability for diffuse scatter-
ing at the boundaries from the finite thermal conductance
measured in a real experiment.

Because the thermal conductance technique is a
steady-state technique, the efficiencies of the generators
and detectors (heaters and thermometers) do not aff'ect

the measurement. Moreover, the generated and detected
phonons have a distribution perturbed only slightly from
the equilibrium phonon distribution in the crystal, and
thus whether or not the scattering at the surface is elastic
should not be important. In determining the probability
for diffuse scattering from these experiments, one as-
sumes the scattering to be independent of the phonon's
incident angle and the scattered phonon to be emitted
with a cosine distribution. &These assumptions are
equivalent, because of detailed balance. ) The probability
of diffuse scattering at the surface that best fits the data
depends on this assumption, but the change in the fit of
the diffuse scattering probability caused by assuming any
other reasonable angular dependence (such as scattering
of normally incident phonons with greater probability) is
on the order of 10%. Any contribution from bulk pho-
non scattering (which should be small) so far has been in-
cluded in the baseline diffuse scattering probability at the
clean, unmodified surface; thus the measurements pro-
vide an upper bound for the diffuse scattering ratio at
that surface. One advantage of the thermal conductance
technique for studying phonon scattering at surfaces is its
insensitivity to generator and detector efIiciencies.
Another advantage is its high sensitivity to difT'use

scattciiIig; an uppcI bound on thc diffusc scattering pIob-
ability at a polished silicon surface has been measured to
be about 0.1 fo at 0.1 K. This resolution is obtainable be-
cause of the large number of rejections a phonon must
make in traversing the length of the sample (Klitsner
et al. , 1988).

3. Phonon scattering results and interpretations

a. Thermal conductance

A number of experiments have been performed on
clean surfaces which, at low enough temperatures, scatter
phonons only very weakly, but which scatter phonons at
higher temperatures; i.e., phonons with higher frequen-
cies and shorter wavelengths. By starting with such
well-characterized surfaces, one can learn a good deal by
studying the effects of specific types of added defects on
the phonon scattering at the surfaces. We shall discuss
first a systematic study, using thermal conductance, of
the effects of deposited thin films on the phonon scatter-
ing at silicon surfaces (Klitsner and Pohl, 1984, 1986,
1987; Klitsner, 1987; Klitsner et al. , 1988). From this
study and an earlier study of the thermal conductance of

polished sapphire (Pohl and Stritzker, 1982), it has been
concluded that surface roughness even of very low ampli-
tude causes strong geometric and Rayleigh scattering,
suggesting that surface roughness could be a very impor-
tant transmission channel in the Kapitza resistance.

The surfaces of a single-crystal silicon rod were Syton
polished ' and then cleaned, thermometers, and heaters
were mounted, and the assembly was mounted onto a di-
lution refrigerator. The thermal conductance of the sam-
ple (with thermometer clamps) was analyzed as discussed
above with the following results: Phonons with frequen-
cies well below 100 GHz diffusely scattered at the sur-
faces with a probability on the order of 0.1%. Phonons
with frequencies approaching 100 GHz scattered with
probability on the order of a few percent, and the scatter-
ing probability increased strongly with frequency above
100 GHz. In these experiments, the silicon surface was
made to be nearly ideal for thermal phonons by lowering
the temperature to well below 1 K, thus lowering the
dominant phonon frequency to well below 100 GHz, and
raising the dominant phonon wavelength in the silicon to

0
well above 600 A. At these temperatures, the dominant
phonon wavelength greatly exceeded the characteristic
size of any imperfections at the surfaces, whatever they
were; the scattering from these relatively minute imper-
fections became almost undetectable.

The surfaces of the silicon were then modified by de-
positing in situ thin films of varying thicknesses of hydro-
gen, deuterium, or neon onto the silicon sub strates.
Again, by lowering the temperature to well below 1 K,
Klitsner was able to observe the onset of diffuse scatter-
ing at the coated surfaces; at low enough temperatures
(the minimum temperature of measurement was about 50
mK), the scattering from the films was small, but as the
temperature was increased, the scattering from the films
increased, often with a sharp onset. Depending on the
film thickness and species, and on the deposition condi-
tions, the films were made to possess islandlike structure
or to be continuous. The dominant phonon wavelength
at the onset temperature of diffuse scattering in all cases
corresponded to the characteristic dimension of the film,
whether it was the island diameter for discontinuous
films or the thickness for the continuous films. The
sharpness with which the scattering increased as the tem-
perature increased correlated with the film structure; the
onset of the scattering for the continuous, disordered
films was broad, whereas the onset of the scattering for
the islandlike films was sharp.

Other types of films studied included oxides, ion-
implanted regions, and thin metal films, in addition to
the adsorbed gas films. Surprisingly, the scattering rate

0
Syton is a colloidal suspension of -400-A silica particles in

a (slightly basic) chemical etch. Syton was developed for polish-
ing silicon; it is surprisingly effective in polishing materials
much harder than silica, for example, sapphire and boron-
carbide {Fischer et al. , 1987).
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reached a limit when the film thickness was no more than
a few times the dominant phonon wavelength in the film
(at a given temperature). Plotted in Fig. 23 are the efFects

0
of discontinuous 2- and 60-A films of vapor-deposited
gold, of 10- and 70-A films of adsorbed neon that are be-

0
lieved to be discontinuous, and of a 10-A film of adsorbed
neon that is believed to be continuous, on the phonon
scattering rate at a silicon surface. (The thicknesses

800
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I I

Casimir limit
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I
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FIG. 23. Inverse phonon mean free path l ' vs temperature for
a series of deposited films, with average film thickness as indi-
cated, on polished silicori. l is defined through the gas kinetic
equation A= —'Ccl, where A is the measured thermal conduc-
tivity, C is the Debye specific heat, and c is the average speed of
sound. The solid curves are for the clean surface. The gold film
data use the left y axis, and the neon film data use the right y
axis, displaced for ease of comparison. The gold films were ob-
served to be discontinuous using scanning electron microscopy.
The continuous neon film (c) was deposited with the silicon held
at 4 K and the discontinuous neon film (d) was deposited with
the silicon held at 1 K. Note the abrupt onset of scattering in
all of the discontinuous films (including both gold films) and the
lack of a defined scattering onset temperature for what is be-
lieved to be a continuous film. The thick-layer scattering limit
for the neon film at 1 K is about 06 cm '. If acoustic
mismatch theory is used to determine which phonons enter the
film, and all phonons scatter in the film, then the predicted
thick-layer limit is about 0.5 cm . Adapted from Klitsner and
Pohl (1987).

given are averages. ) Discontinuous gold films with thick-
ness on the order of one monolayer caused the surface to
become almost completely diffuse around 1 K, as indicat-
ed by the data approaching the line labeled Casimir.
Even neon films only a few monolayers thick caused the
silicon surface to become significantly diffuse. The sharp-
ness in the onset temperature indicates that the film is
indeed discontinuous. The sharpness of the scattering
threshold for the discontinuous films also depends on the
distribution of island sizes in the film. For a narrow dis-
tribution of island sizes, like that seen in the gold films,
the scattering onset should be (and was) sharp. For con-
tinuous films, the onset temperature was more gradual;
see Fig. 23.

The gold films and several other continuous and
discontinuous metallic films were characterized using a
scanning electron microscope in order to verify the corre-
lation between the nature of the film and the nature of
the scattering threshold. By comparing plots of the
scattering rate versus temperature for many different
films with the structures of the films, Klitsner showed
that the scattering rate curve could be used qualitatively
to determine the nature (continuous or islandlike), acous-
tic properties (large or small acoustic mismatch to sil-
icon), and thickness (by the scattering threshold tempera-
ture if the film is continuous) of an unknown film, such as
an adsorbed gas. This work showed that the phonon
scattering from geometrical imperfections, such as
roughness, adsorbates, or deposited films, is very large.
Such strong sources of diffuse scattering at interfaces
must be understood, particularly because diffuse scatter-
ing and enhanced phonon transmission are synonymous
in the Kapitza problem.

The work of Klitsner and Pohl suggests that there
should be correlations between phonon scattering at sur-
faces and the dominant longitudinal and transverse pho-
non wavelengths. The diffuse scattering above 1 K seen
by Klitsner and Pohl has been seen universally; long-
wavelength phonons scatter with lower probability than
short-wavelength phonons. (Historically, this observa-
tion has usually been stated in terms of the dominant
phonon frequency. ) Since the longitudinal phonon veloc-
ity is higher than the transverse phonon velocities, for a
given frequency (i.e., for a given temperature in experi-
ments using thermal phonons), longitudinal phonons
have longer wavelengths than transverse phonons. In the
temperature range of the onset of scattering, we would
therefore expect longitudinal phonons to transmit across
a helium-solid interface with smaller probability than do
transverse phonons, although at higher temperatures we
would not necessarily expect any polarization depen-
dence because a11 phonons wi11 be scattered. That is pre-
cisely what is seen: for example, from heat-pulse
reflection experiments (Buechner and Maris, 1975, 1976)
it was found that both longitudinal and transverse pho-
nons have a smaller reAection probability at high temper-
atures than at low temperatures, but the onset of the re-
duced reAection probability was seen for the transverse
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phonons at lower temperatures (frequencies) than it was
for longitudinal phonons. This supports the idea that the
scattering was more geometry dependent than frequency
dependent. Similarly, Guo and Maris (1972, 1974) found
that for phonons emitted from a source with temperature
under 10 K (dominant phonon frequency about 900
GHz) the transverse phonons showed significantly
greater enhanced transmission than did the longitudinal
phonons. The same was seen by Kinder and Dietsche
(1974) for phonons with frequency less than 870 GHz
(corresponding to a temperature of about 10 K). On
"dirty" silicon surfaces, Kinder et al. (1985, 1986) ob-
served that the onset of enhanced transmission for longi-
tudinal phonons occurred at a higher temperature than
for transverse phonons; well above the longitudinal onset,
both phonon modes transmitted with equal probability.
The phonon temperatures were not precisely known, but
the longitudinal transmission onset apparently occurred
below 1 K. The observation that the transmission proba-
bilities for longitudinal and transverse phonons are about
equal at temperatures well above the phonon scattering
onset has been made by several others as well: Swanen-
burg and Wolter (1973) and Horstman and Wolter (1977)
studied the transmission of phonons from silicon to heli-
um (via second sound) for heater temperatures between
10 and 20 K and found no polarization dependence. Ta-
borek et al. (1981c) found that the transmission probabil-
ities from sapphire into helium were polarization in-
dependent, regardless of whether the interface was to
bulk liquid helium, through thin films of adsorbed helium
into dense gaseous helium (which supported sound in the
gas), or through thin films of adsorbed helium into low-
pressure gaseous helium (in which the helium atoms trav-
el ballistically). No estimate of the phonon frequencies
or the dependence on phonon frequency was reported in
this case, but we calculate that the power density in the
film (-20 W/mm ) should have heated the film to about
20 K. (The absolute transmission probabilities were not
determined in these cases; only that the probabilities
were independent of polarization was determined. )

Polished sapphire surfaces have also been studied using
thermal conductivity techniques. %'ybourne, Eddison,
and Kelly (1984) and Eddison and Wybourne (1985)
found that annealing the sapphire surface in a hydrogen
atmosphere at 1200 C produced a surface that scattered
only a small fraction of the incident phonons at tempera-
tures near 1 K, but no quantitative analysis of the diffuse
scattering fraction was performed. A 0.3-pm epitaxia1
layer of silicon deposited onto the sapphire was found to
difFusely scatter almost all of the phonons that entered
that layer, assuming the transmission into the silicon was
governed by acoustic mismatch. Wigmore (1971), Wy-
bourne, Eddison, and Kelly (1984), and Eddison and Wy-
bourne (1985) suggested that vibrating dislocations were
the cause of this surface (or slightly subsurface) scatter-
ing. They suggested that the phonons that entered the
silicon layer were scattered by the large density of dislo-
cations in the strained silicon layer. They compared this

scattering to the scattering from an uncoated but heavily
damaged sapphire surface known to contain a large den-
sity of dislocations (as well as cracks, pits, surface rough-
ness, etc.).

b. Heat-pulse reflection

Using phonon-pulse reflection experiments, researchers
have been able to characterize several surfaces in terms
of their -tendency to scatter phonons. Two of the most
striking surfaces characterized are in situ laser-annealed
silicon (Basso, Dietsche, Kinder, and Leiderer, 1984;
Mok et al. , 1986) and in situ cleaved sodium fluoride
(Weber et a/. , 1978a, 1978b). These surfaces showed al-
most no diffuse scattering of phonons at frequencies up
to several hundred GHz. Moreover, the effect of cover-
ing these surfaces with helium was immeasurable, indi-
cating that the transmission into the helium was not
more than 1%. This upper bound in the transmission at
several hundred GHz was nearly as low as the transmis-
sion predicted using the acoustic mismatch model (espe-
ciaHy once the effects of the antireAection boundary layer
and dispersion in the helium were considered). These ex-
periments proved that nonacoustic phonon transmission
is not observed at all surfaces, and therefore must be due
to some sort of nonideal aspect of the surface.

Once the technique of producing nearly perfect sur-
faces by laser annealing had been proven, there were
many opportunities for using in situ modifications of
these surfaces to study the effects of specific defects, us-

ing phonons with frequencies in excess of 100 GHz. The
effect of deposited layers of gold was studied by Basso,
Dietsche, and Kinder (1984, 1986). The e8'ect of ad-
sorbed water was studied by Koester et al. (1986). As lit-
tle as 0.2 monolayers of gold, and even less water, were
enough to produce significant diffuse scattering at the
surface. By adding helium to the chamber, experi-
menters were able to reduce the rejected signal by the
amount transmitted into the helium. The reAection from
the clean laser-annealed silicon surface was unaffected by
the addition of helium to the surface, consistent with the
behavior expected from the acoustic mismatch model.
On the surfaces with the added layers of gold or water,
adding the helium appeared to reduce the reAected signal
by removing essentially all of the diffusely scattered pho-
nons. Thus the diffuse scattering at the surface was again
equated with phonon transmission into the helium.

In these experiments, the phonon generators and
detectors were tunnel junctions. The signal could be
measured as a function of phonon frequency by modulat-
ing the bias voltage, thus allowing a type of phonon spec-

~~Di8'use scattering of on the order of 1%% of the incident pho-
nons is resolvable with this technique. {see, for example, Basso,
Dietsche, Kinder, and Leiderer, 1984; Basso, Dietsche, and
Kinder, 1986; Eisenmenger, 1986; and references therein).
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troscopy to be performed. Koester et al. (1986) found a
scattering maximum at the as-received silicon surface at
about 285 GHz. After the silicon surface was laser an-
nealed, the feature at 285 GHz vanished. No features in
the scattering as a function of frequency were seen when
water was adsorbed onto this laser-annealed surface. Us-
ing a similar phonon spectroscopy technique, Koblinger
et al. (1983, 1984) detected a strong threshold in the pho-
non transmission at a tin- He interface at about 85 GHz
and several transmission maxima at higher frequencies.

Burger, Eisenmenger, and Lassmann (1984) have
characterized sapphire surfaces with various surface
preparations using heat-pulse techniques. Sapphire sur-
faces polished with 500-A alumina suspended in water or
paraffin oil were found -not to scatter phonons with fre-
quencies up to 285 GHz. '

Syton-polished (see footnote
21) sapphire surfaces were found to scatter phonons of all
frequencies above several tens of GHz, whether or not
the surface had already been polished with alumina. Us-
ing the same techniques, Burger, Lassmann, and Eisen-
menger (1985) found that Syton-polished silicon surfaces
scattered few phonons with frequencies less than 85
GHz, but strongly scattered phonons with frequencies
over 280 GHz. bin Rani et al. (1988) characterized sap-
phire surfaces using very fast (of —12 nsec duration) heat
pulses before and after ion bombardment (with aluminum
ions having an energy of 40 keV and at doses of 1X10'
and 5 X 10' per cm ). Their sensitivity to ion bombard-
ment damage at the surface was comparable to or better
than the sensitivity of Rutherford backscattering. They
were able to observe a diminished specular reAection of
each phono n polarization with increasing ion dose.
Northrop and Wolfe (1984) showed for sapphire surfaces
that the phonon image pattern from a reflected heat pulse
could also be used to differentiate between specularly and
diffusely reflected phonons (for each phonon polarization
independently).

Heat-pulse experiments have shown that it is only the
diffusely scattered phonons that are transmitted with
probability enhanced relative to the acoustic mismatch
model (see, for example, Taborek and Goodstein, 1981).
This was seen by comparing the detected phonon signals
from a pulse rejected from a free surface with the signal
from a surface covered with helium. A careful analysis
showed that the specular part of the signal is unaffected,
whereas the diffuse part of the signal is almost entirely re-
moved due to phonon transmission into the helium. The
analysis is not trivial because phonon focusing causes the
diffuse phonon peaks to be sharp and to be easily con-
fused with the specular peaks.

its value at bulk helium coverage, all in the first three
monolayers (see, for example, Guo and Maris, 1974;
Kinder and Dietsche, 1974). This implies that the diffuse
transmission process has nothing to do with the proper-
ties of bulk liquid (or solid) helium. In particular, it has
nothing to do with phonons in the bulk liquid. If the sur-
face is covered with bulk liquid, then it is likely that the
phonons carry away the energy deposited into the helium
side of the interface, but the coupling between phonons
in the solid and phonons in the liquid is not direct.

If a surface is covered with three monolayers of heli-
um, and enough power is deposited into that film for a
long enough time (from an intense phonon pulse from the
crystal), then the finite heat capacity of the film could
eventually cause a saturation effect in the enhanced
transmission. That is, the film would heat and the
transmission would change. This question has been stud-
ied by Taborek et al. (1981a, 1981b). They used the
power-sharing geometry (see Fig. 24) and found the usual
three-layer effect when they used short pulses (150 nsec)
with heater power density of 0.2 W/mm . At the same
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c. Transmissioninto thin films of helium

In heat-pulse reflection experiments, it is usually seen
that only a few monolayers of adsorbed helium are re-
quired to reduce the signal; more helium has little addi-
tional effect. The rejected signal as a function of helium
coverage drops from its value at no helium coverage to

FIG. 24. Power-sharing geometry. A voltage pulse causes the
heater temperature to rise and emit phonons, detected by the
detector underneath. Helium is added to the chamber above
the heater and the experiment is repeated. The resulting
difference in the detector signal is due to phonons being
transmitted across the heater/helium interface. Adapted from
Taborek et al. (1981a, 1981b).
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heater power, using pulses lasting about 100 times as long
(12 p,sec), the effect of three monolayers on the reAection
was almost insignificant. The reason is that the helium
film will heat to the temperature of the heater film in that
time, and thus no significant further net transport can re-
sult. This experiment does not contradict the previous
results. The reported existence and semiquantitative
analysis of saturation effects can be used to determine
whether an experiment will be affected by finite thickness
of the helium layer. The phonons that enter the film
need not desorb helium from the interface to cause satu-
ration; they must merely heat the film. If, instead of a
helium film, the solid is covered with bulk liquid, then
the saturation effect is absent. This is because transport
of heat from the helium side of the interface into bulk
liquid is very eScient, especially if the helium is
superfIuid. Therefore the power density required in a
given time period to cause saturation at an interface to
bulk helium is much larger than the power density re-
quired in the same time period to cause saturation at an
interface to a film of helium only a few monolayers thick.

Anderson and Sabisky (1970, 1971) observed transmis-
sion maxima for monochromatic phonons incident on an
interface between a cleaved crystal and a helium film
when the film thickness was- an odd multiple of a quarter
of the phonon wavelength. The phonon frequency for
this experiment was between 18 and 58 GHz. To mea-
sure the transmission maxima, Anderson and Sabisky op-
tically detected the spin temperature of divalent thulium
dopants in CaF2, SrF2, and BaF2. The spins generated
and absorbed monochromatic phonons at an EPR fre-
quency, tuned using a magnetic field. Anderson and Sa-
bisky (1967, 1968, 1970, 1971) called this system a spin-
phonon spectrometer. Although a quantitative transmis-
sion coeKcient could not easily be derived from such
measurements, the observation indicated that at least
some of the phonons were behaving according to classical
acoustics. Wyatt, Lockerbie, Mills, and Sherlock (1972)
calculated the phonon transmission from a crystal
covered with a helium film; the results agreed with the
experimental results of Anderson and Sabisky.

A similar experimental technique was used by Sabisky
and Anderson (197S) to measure the phonon reAection
coefIIicient from SrF2 into liquid helium from 15 to 315
GHz. They observed a drop in reAectivity from 98% at
20 GHz to under 50% above 120 GHz. The decrease
was enhanced and a resonance was observed at 85 GHz
when the surface was exposed to pump oil vapors.
Blackford (1972) observed phonon interference effects for
helium films deposited on silicon monoxide films using
Josephson junctions as phonon generators and detectors.
The maximum phonon frequency used was 130 GHz.

d. Inelastic scattering results

The angular dependence of the transmission of pho-
nons at a Kapitza boundary has been measured by Sher-
lock et aI. (1972, 1975), Lockerbie (1978), and Wyatt and

Page (1978). See also the review by Wyatt (1981). The
experimental setup and some of the results are shown in
Fig. 25 (Wyatt and Page, 1978). The critical cone on the
helium side of the interface is evident in the angular
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FIG. 25. Measured angular dependence of the transmission of
phonons from NaF into helium and transmission of phonons
from helium into NaF. The central peak corresponds to the
classical (acoustic mismatch) channel, and the broad back-
ground that contains most of the phonon Aux corresponds to
the phonons in nonacoustically transmitted channels. The hor-
izontal scale is not quite linear. A cartoon of the experimental
geometry is in the corner of each graph. The solid black rectan-
gles represent bolometers made with Aquadag colloidal graph-
ite, and the outlined rectangle represents a goM thin-film heater
(the phonon generator). The cubelike object is the NaF crystal,
and the slide-shaped object is a Melenex strip (a glass substrate).
In. "from NaF to helium, " the generated phonons travel
across the NaF to the NaF-helium boundary. Those phonons
transmitted to the helium are detected after traversing the heli-
um to the Aquadag bolometer painted on the front surface of
the glass substrate. In "from helium to NaF, " the phonons gen-
erated in the thin gold film on the glass substrate first encounter
a gold-helium Kapitza boundary, then traverse the helium and
encounter the helium-NaF Kapitza boundary. Those which are
transmitted into the NaF are detected using another Aquadag
bolorneter painted on the back surface of the NaF. Adapted
from Wyatt and Page (1978).
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dependence of both the emitted phonons from the solid
(cleaved NaF) and the incoming phonons from the heli-
um. The shape and width of the peak are consistent with
the modified acoustic mismatch model (inclusion of pho-
non attenuation in the acoustic mismatch model, dis-
cussed earlier in this section); only a very small amount
of phonon attenuation near the interface is needed to fit
the data. The broad angular background in the phonons
emitted from the solid dominates the energy transport;
this is the channel not explainable using acoustic
mismatch theory. Figure 26 compares the angular distri-
bution as measured using a bolometer for detection with
that using an Al. tunnel junction for detection. The
bolometer, which has phonon-frequency-independent
sensitivity, measures a relatively higher background than
the tunnel junction, which is sensitive only to phonons
with frequency greater than about 90 GHz. This implies
that the background phonons have lower frequency than
those in the central peak. Therefore, in this experiment,
the nonacoustically transmitted phonons, which are
known to have been scattered, must have been inelastical-
ly scattered (downconverted) as they entered the bulk
helium. This downcon version has been verified by
Wyatt, Sherlock and Allum (1982), who measured the
temperature of phonons emitted from a thin-film heater
into liquid helium and compared them to the tempera-
ture of the heater. Figure 27 shows the results. The pho-
nons emitted have a temperature of up to a factor of 3
lower than the heater; the temperature of the emitted
phonons appears not to exceed about 0.7 K, independent
of the temperature of the heater. The fact that the angu-
lar background of Fig. 25 for the phonons entering the
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crystal "from helium to NaF" is not as large as that for
phonons emitted from the solid is further evidence for
phonon downconversion; the phonons emitted from the
heater on the glass substrate facing the crystal are down-
converted as they enter the bulk helium, and therefore,
when they are incident on the crystal, have a smaller
chance of nonacoustic transmission. This downconver-
sion process is not efFective in reducing the background
in the case of phonons going "from NaF to helium, "
presumably because the surface of the Aquadag bolome-
ter is so poor that even the 1ow-frequency phonons are
transmitted and detected.

Upcon version and downconversion upon refIection
have also been seen by Kinder and Dietsche (1974) and
Dietsche and Kinder (1976a, 1976b). The frequency con-
version process has also- been observed in connection
with time delays between generated and detected phonon
pulses (Weber, Dietsche, and Kinder, 1977).

Challis, Ghazi, and Wybourne (1982), Challis, Ken-
muir, Heraud, and Russell (1986; see also the reviews by
Challis, 1983, 1986), and Kenmuir, Challis, Heraud, and
Russell (1987) used a thermal conductivity technique to
detect inelastic scattering at the surface of a doped sap-
phire bicrystal held in vacuum. The energy levels of the
impurities (Fe in one end of the crystal and V in the oth-
er) could be tuned with a magnetic field. The impurities

FICi. 27. The calculated temperature of a heater {upper curve)
compared with the measured temperature of the phonons emit-
ted from that heater into helium. The phonons have downcon-
verted by the time they eriter the bulk superAuid. The tempera-
ture of the phonon pulse was determined using a time-of-Aight
measurement, taking advantage of the frequency dependence of
the phonon propagation velocity in superAuid helium at high
pressures. Adapted from Wyatt, Sherlock, and Allum {1982).

FIG. 26. Comparison of the angular distribution of phonons
transmitted across a NaF/helium interface, measured using an
aluminum tunnel junction, with that measured using a bolome-
ter. The two curves have been normalized at the peak. The rel-
atively small background measured with the tunnel junction
(which is insensitive to phonons with frequency less than
4.2Ek&/R= -90 CxHz) indicates that the phonons in the back-
ground are downconverted to below this frequency. Phonons in
the peak, are not downconverted. Adapted from Wyatt and
Crisp (1978).

~ The experimental asymmetry between "from helium to
NaF" and "from NaF to helium" is subtle because, in both, the
detected phonons have crossed from solid to liquid and then
from liquid into a second solid {as well as crossing a solid-solid
interface). The difterence is the quality of the second Kapitza
interface, where phonons are incident from the helium. In one
case .the second interface is a helium-NaF interface, which is
relatively defect free. In the second case, the second interface is
between helium and a painted-on Aquadag bolometer.
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burned a hole in the phonon spectrum in the presence of
a thermal current, and that hole was detected by moni-
toring the thermal conductivity while tuning a frequency
of the second dopant to the hole frequency. %"hen the
frequencies matched (called a frequency crossing), the
scattering due to the second dopant was minimized be-
cause phonons of that frequency were already depleted.
If the phonons equilibrated (i.e., if there was inelastic
scattering), then the efFect of frequency crossing on the
thermal conductivity was reduced. In this experiment,
the inelastic scattering in the bulk was very small; thus
thermalization of the phonon spectrum had to occur at
the surfaces if at all. By using thermometers at several
positions along the length of ihe bicrystal, Challis et OI.

could monitor the decay of the hole. It was found that
the scattering from the (fine, ground, i.e., very rough and
damaged) surfaces was predominantly inelastic, deduced
from the fact that the inelastic decay length was equa1 to
the diameter of the bicrystal.

D. Summary

Below 0.1 K, the Kapitza resistance to polished metal
surfaces approaches the value predicted using the acous-
tic mismatch model as modified to account for the eA'ects
of phonon attenuation largely due to conduction elec-
trons. It should be noted that measurements of the Ka-
pitza resistance to single-crystal dielecirics at tempera-
tures well below I K, where this kind of phonon attenua-
tion does not exist, have not been performed. At temper-
atures above a few tenths of K, the efFects of the helium
boundary layer, and of imperfections in or near the inter-
face, become important. The Kapitza resistance at 1 K is
afFected by many conduction channels and is typically
about 2 orders of magnitude smaller than that
predicted using the acoustic mismatch model. The keys
to these mechanisms lie in understanding phonon scatter-
ing at surfaces and interfaces. Experiments designed
specifically to study phonon scattering at surfaces have
become very powerful tools for unraveling the mysteries
of the Kapitza resistance.

IV. SOLID-SOLID THERMAL BOUNDARY
RESISTANCE

The extension of the acoustic mismatch model to
solid-solid interfaces by Little (1959) laid the foundation
for the theory of solid-solid thermal boundary resistances
and stimulated experimental studies. On the basis of Ka-
pitza resistance studies, one might have expected similar
surprises for solid-solid interfaces. Much of the early ex-
perimental work was done for practical reasons, for ex-
ample, to find out the thermal resistance of a joint in the
structure of a cryostat, and to determine how to control
and minimize that thermal resistance.

A. Metallic contacts

Some of the early work was done on metal-metal inter-
faces, which have the advantage of good bonding. The
interfaces produced by soldering metals together are
mechanically sound; the two metals are in intimate con-
tact. For contacts between normal meta1s, the electrons
very efFectively carry heat across the interface and short
out the boundary resistance. However, when one or both
of the metals is in the superconducting state, the trans-
port by electrons is significantly reduced, leaving pho-
nons as the dominant carriers across the interface.
Moreover, an interface to a superconductor (such as a
solder) can be manipulated with a magnetic field; the
magnetic field drives the joint normal and thus allows the
electronic contribution to the thermal transport. Unfor-
tunately, the electronic transport is difticult to eliminate
completely; alloying, the possibility of trapped magnetic
ftux, and the nonzero probability of electrons tunneling
through the layer or breaking pairs in the layer can all
cause the electrons to carry heat across the interface.

Measurements were made on copper-lead and copper-
tin interfaces between 1.3 and 2.0 K (Barnes and Dil-
linger, 1963, 1966), and copper-lead-copper sandwiches
at temperatures between 1.3 and 4.0 K (Challis and
Cheeke, 1963, 1964). At the lowest temperature of mea-
surement (1.3 K), the boundary resistance at the copper-
lead interface was usually higher than the acoustic
mismatch value. The discrepancy was attributed to
stress and dislocations near the interface that caused ad-
ditional phonon scattering. Measurements were not tak-
en at low enough temperatures to see whether these
efFects would diminish as the thermal phonon wave-
lengths increase. The temperature dependence of the
thermal boundary resistance (approximately T ) indi-
cated that the contribution of the electrons to the trans-
port became significant at the highest temperatures of
measurement (-2 K); at 2 K the thermal boundary resis-
tance was usually lower than the acoustic mismatch
value. For the copper-lead-copper sandwiches, the
boundary resistance depended on the thickness of the
lead layer. For the thick layers ( —200 pm), the scatter-
ing in the stressed. lead layer caused the total thermal
resistance to exceed the thermal resistance predicted us-
ing acoustic mismatch theory by about a factor of 3 at
1.3 K. The temperature dependence was typically
stronger than T, so that at 4 K the total thermal resis-
tance was comparable to or less than the prediction using
acoustic mismatch theory. For thin lead layers (-40
pm), the stresses in the lead were less evident and the
thermal resistance was less than that predicted using
acoustic mismatch theory by about a factor of 2, presum-
ably due to the contribution of the electrons to the
thermal transport. The boundary resistance of the
copper-tin joints (Barnes and Dillinger, 1966) was mea-
sured to be lower than the acoustic mismatch value by a
factor of about 2. Again, the di6'erence was attributed to
electron thermal transport across the interface. The
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boundary resistance was found to be very sensitive to an
alloyed layer near the interface; the originaHy reported
boundary resistance (Barnes and Dillinger, 1963) was
slightly higher than the acoustic mismatch value.

Alloying and phase separation have been observed at
copper-solder-copper joints. These cause additional pho-
non scattering in the solder, which cannot be calculated
from the bulk thermal properties of the solder (Steyert,
1967). Steyert measured the boundary resistance of
copper-solder-copper sandwiches from 0.06 to 1.0 K us-
ing several types of solders. The results were generally
within a factor of 4 of acoustic mismatch; the joints
thought to be entirely superconducting had a boundary
resistance higher than acoustic mismatch, and ap-
proached the acoustic mismatch results only at the
lowest temperatures measured (about 60 mK). This sug-
gested that the extra resistance was due to excess phonon
scattering near the interface due to stresses and defects.
These effects diminished with decreasing temperature.

To summarize, soldered interfaces and interfaces to su-
perconductors provided a qualitative verification of
acoustic mismatch theory and, in particular, provided
the experimental parameters needed for the design of
cryogenic equipment. Quantitative verification of acous-
tic mismatch theory at metal-superconductor interfaces,
however, proved to be dificult due to heat transport by
electrons, alloying, and phonon scattering by stresses in-
herent in interfaces between two bulk solids.

B. Metal-insulator contacts

1. indium on sapphire

To eliminate the effects of electronic transport and in-
terfacial a11oying, interfaces between indium and sap-
phire were studied. Indium adheres relatively well to
sapphire when ultrasonically soldered or vapor deposit-
ed. Neeper and Dillinger (1964), Wolfmeyer, Fox, and
Dillinger (1970), Park and Narahara (197la, 1971b), and
Schmidt and Umlauf (1976) used the conventional
geometry, which parallels the geometry for a thermal
conductivity experiment (Fig. 3). Interfaces were
prepared by ultrasonically soldering indium to sapphire
and then vacuum casting an indium rod or another
indium-coated sapphire rod to the result. The boundary
resistance in these experiments ranged from 30% higher
than that predicted using acoustic mismatch theory to
four times the predicted value. In the latter case (Wolf-
meyer, Fox, and DilHnger, 1970) the sapphire surface had
a rough, ground finish. The measured thermal boundary
resistance in these experiments typically had a tempera-
ture dependence of —T . Schmidt and Umlauf ar-
gued that the poor reproducibility was caused by damage
in the sapphire near the surface resulting from the ul-
trasonic soldering. The sapphire surface was severely
damaged and the indium was driven into the resulting
cracks. In order to avoid this damage, Schmidt and Um-

lauf (1976) made sapphire-indium-sapphire sandwiches
by vapor depositing the indium onto the end faces of two
indium rods and vacuum casting the rods together with a
thin additional foil of indium. This had the advantage of
eliminating the damage from the ultrasonic soldering.
The measured thermal boundary resistance was typically
1.5—2 times the predicted acoustic mismatch value, again
with a T temperature dependence, with a(3, and
with poor reproducibility (Fig. 4).

In the measurements of the thermal boundary resis-
tance at superconductor-metal interfaces, driving the su-
perconductor normal had a large effect on thermal trans-
port because electrons were then allowed to participate
(see, for example, Challis and Cheeke, 1964, and refer-
ences therein). At metal-dielectric interfaces the contri-
bution of electrons to thermal transport is much smaller
and more subtle. Khalatnikov (1952), Little (1961c,
1962), Andreev (1962a, 1962b), and Challis and Cheeke
(1968) have all calculated that the efFect of electrons cou-
pling energy across a metal-helium interface should be
small. The effect of e1ectrons coupling with phonons
across a metal-dielectric solid-solid interface should be
small for the same reasons. It was thought that this
could be checked by observing the difference in the
thermal boundary resistance at an indium-sapphire inter™
face when the indium was driven normal by a magnetic
field. The thermal boundary resistance was observed to
decrease when the indium was driven normal; the effect
ranged from a few percent for the ultrasonically soldered
interfaces (Neeper and Dillinger, 1964; Park and
Narahara, 1971a, 1971b; Schmidt and Umlauf, 1976) to
10—30% for the deposited and cast samples (Wolfmeyer,
Fox, and Dillinger, 1970; Schmidt and Umlauf, 1976).
The largest effect was observed when the indium was de-
posited onto rough, i.e., not optically polished, surfaces.
The fact that the effect of driving the indium normal was
not reproducible indicates that the efFect is probably not
intrinsic. A simple explanation of the effect is that when
the indium is superconducting, the electrons in the indi-
um are not available to transport heat, and thus the
thermal conductivity of the indium is affected. Although
that can be accounted for, the additional scattering from
stresses and defects in the indium near the interface can-
not be. The effect of such scattering is greater for the su-
perconducting indium than for the normal indium. It is
reasonable that the rough interfaces would show the larg-
est effect.

Thus the apparent failure to eliminate the effects of in-
terfacial stresses and damage rendered these data largely
ineffective in determining the magnitude of an ideal
thermal boundary resistance.

2. Lead Bnd aluminum on sapphire

Nitsche and Schumann (1980) measured the thermal
boundary resistance at an interface between bulk lead
and sapphire. The lead was vapor deposited and then
cast onto the sapphire without breaking vacuum. The
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measurement was similar to that described in Fig. 9, ex-
cept that differential thermocouples were used instead of
resistance thermometers. The thermal boundary resis-
tance could be reliably measured from 2 to 25 K, and
below —10 K the temperature dependence was very
nearly T . Above 25 K the determination of the
thermal boundary resistance was unreliable due to the
large temperature gradients in the lead. Because of the
arrangement of the thermometers (see the discussion of
Fig. 9), the prediction of the acoustic mismatch model
for the thermal boundary resistance measured at this in-
terface is about a factor of 2 lower than that predicted us-
ing the Little (1959) calculation. The calculation by
Simons (1974) more closely models the geometry used by
Nitsche and Schumann (see also Katerberg, Reynolds,
and Anderson, 1977). The intuitive explanation is as fol-
lows: Since most of the phonons incident from the sap-
phire side are transmitted (and are replaced with lower-
temperature phonons incident from the lead side), the
thermometer on the sapphire side measures a tempera-
ture that is a weighted average of the temperature of the
phonons incident on each side. (The weighting somewhat
favors the temperature of the phonons incident from the
sapphire side. ) Hence the measured AT is lower than
that predicted using the Little calculation of the acoustic
mismatch model (by almost a factor of 2). For tempera-
tures below 7 K the thermal boundary resistance mea-
sured by Nitsche and Schumann (1980) was within about
10% of the value predicted using the Little (1959) calcu-
lation of the acoustic mismatch model. This value is,
however, nearly twice that predicted using the Simons
(1974) calculation; hence the data appear to agree with
the acoustic mismatch model more closely than they ac-
tually do (the measured resistance being larger than ex-
pected). One might suspect problems with differential
thermal contraction causing stresses and causing the lead
to pull away from the sapphire. Although the lead-
sapphire interface reportedly had small bubbles where
the lead did not make contact (these were accounted for
in the data), the lead was apparently well bonded and did
not pull away. However, the surface of the sapphire had
been polished with 3-pm diamond abrasive before the
deposition and casting of the lead. We believe, on the
basis of the phonon reAection studies of Burger, Eisen-
menger, and Lassmann (1984) and of thermal boundary
resistance measurements by Swartz and Pohl (1987; see
also Sec. IV.C), that such diamond-polished sapphire sur-
faces are strong scatterers of phonons, and the subsurface
region of the sapphire is badly damaged by such treat-
ment. Interfaces where the sapphire was polished with
even coarser diamond abrasive were observed by Nitsche
and Schumann to have a higher thermal boundary resis-
tance than that predicted using the acoustic mismatch
model (Little version), by a factor of 3 when the sapphire
was polished with 30-pm diamond abrasive, and by a fac-
tor of about 6 when the sapphire was polished with 125-
pm diamond abrasive. The temperature dependence
below 7 K was again nearly T . This could not be due

to scattering at the interface (see Table II), but must have
been due to phonon-frequency-independent scattering in
the damaged sapphire subsurface. We suppose that the
polishing caused the sapphire to have a large density of
macroscopic cracks, which could cause frequency-
independent scattering. In none of the measurements did
the state of the lead (superconducting or normal) have a
significant efFect on the measured thermal boundary
resistance. This probably indicates that the lead was not
highly stressed near the interface.

Thus the thermal boundary resistance between lead
and sapphire had a T temperature dependence and a
magnitude that appeared to agree remarkably well with
the acoustic mismatch model. However, we suspect that
the analysis was Aawed and the data were afFected by the
roughness of the interface.

Sahling et al. (1981) measured the thermal boundary
resistance at an interface between bulk aluminum and
sapphire at temperatures between 0.1 and 6 K. Single
crystals of aluminum were grown onto sapphire surfaces
in vacuum. The bonding between the aluminum and sap-
phire was apparently very goo'd; attempts to separate
them inevitably resulted in the destruction of the sap-
phire. The measurement technique was that of Fig. 9;
the temperatures were detected using resistance ther-
mometers. The reported thermal boundary resistance for
the aluminum in the normal state was about half of the
value predicted using the acoustic mismatch model (Lit-
tle calculation). The temperature dependence at temper-
atures below 2 K was nearly T, and between 2 and 6 K
there was only a small rise in R&d T with increasing tem-
perature. However, as for the lead-sapphire data of
Nitsche and Schumann (1980), the calculation of Simons
(1974) more closely models the experimental geometry.
If we use the same argument for the analysis of the tem-
perature of the thermometer on the sapphire, we can
conclude that the measured thermal boundary resistance
very nearly agrees with the prediction of the acoustic
mismatch model. The sapphire surface preparation was
very similar to that of Nitsche and Schumann (1980).
Even for the samples that used their smoothest sapphire,
the roughness may well have played a role in phonon
scattering at (and underneath) the surface of the sap-
phire. For the temperature range of the measurement
(below 6 K), the roughness in their best samples probably
caused the phonons to be scattered only once at the inter-
face, and this should not have affected the thermal
boundary resistance significantly (see the discussion of
the diff'use mismatch model). The thermal boundary
resistance was observed to be larger for interfaces where
the sapphire was polished with coarser diamond abrasive,
similar to the increases in the thermal boundary resis-
tance at the lead-sapphire interface when the sapphire
was roughened. The efFect on the thermal boundary
resistance of roughening the sapphire was smaller at in-
terfaces to aluminum than it was at interfaces to lead.

To summarize, the thermal boundary resistance be-
tween normal aluminum and sapphire measured by Sahl-

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989



E. T. Swartz and R. O. Pohl: Thermal boundary resistance 647

ing et al. (1981) was seen to agree remarkably well with
the acoustic mismatch model when the temperatures are
interpreted correctly, and the observed temperature
dependence was very close to T at temperatures below
2 K. These measurements appeared to present a very
convincing verification of the acoustic mismatch model
at solid-solid interfaces, although we emphasize that the
measurement is insensitive to any diffuse scattering that
might have occurred at the interface.

Sahling et al. (1981) reported the interesting observa-
tion that the measured thermal boundary resistance at
the aluminum-sapphire interfaces increased dramatically
when the aluminum was allowed to superconduct.
Azd T increased with decreasing temperature below 0.7
K and reached a maximum at about 0.13 K, where it was
nearly 100 times as large as at 1 K. Below 0.13 K,
8 zd T decreased with decreasing temperature. This
peak in the apparent thermal boundary resistance was ex-
plained as an effect of nonequilibrium between the un-
paired electrons and the phonons in the aluminum near
the interface, using the theory of Zelikman and Spivak
(1979). The error in the extrapolation of the temperature
to the interface is large because the temperature profile in
the aluminum is very nonlinear near the interface. Yoo
and Anderson (1986) explained the large observed peak
in the thermal boundary resistance at such an interface
with a model that also included the effect of scattering
from lattice defects in the aluminum. They also observed
and explained a similar large peak in the observed
thermal boundary resistance at an aluminum-epoxy-
aluminum sandwich. The peak was absent at tin-epoxy-
tin interfaces. Using surface superconductivity as a ther-
mometer, Ridner, Martinez, and de la Cruz (1975;
Ridner, de la Cruz, and Martinez, 1980) measured the
difference between the extrapolated temperature (of the
electrons) and the measured temperature at an interface
between lead and sapphire (and at lead-helium inter-
faces). The error in the extrapolation should be much
larger at an aluminum-sapphire interface; a similar mea-
surement for that interface would be very helpful.

3. Epoxied contacts

The total thermal resistance of a copper-varnish-
dielectric joint typical of that used to adjust sample-to-
bath thermal relaxation times for specific-heat measure-
ments of dielectric crystals was measured by Harrison
(1968) to be —1000T K /(W/cm ) between 0.05 and 2
K. This value was surprisingly reproducible and has
been used successfully for many years at Cornell to esti-
mate this kind of thermal anchoring. The thermal
boundary resistance, calculated using the acoustic
mismatch model for this arrangement, is about 2 orders
of magnitude smaller than the empirical result. This
demonstrates that thermal contact at solid-solid inter-
faces can suffer considerably due to imperfect contact un-

less very special care is taken. Anderson, Salinger, and
Wheatley (1961) succeeded in making a copper-(X-

grease) —(chromium potassium alum) joint with total
thermal resistance of -30T K /(W/cm ), which is
much closer to the value predicted for such a joint using
the acoustic mismatch model. The temperature range of
the measurement was from 0.03 to 0.15 K. The reason
for their success may have been lower difFerential thermal
contraction at the joint, which resulted in lower stress
and thus less damage, possibly a magnetic channel for
thermal contact, or greater care in the preparation of the
interfaces.

Epoxies can be used to bond two materials thermally
as well as mechanically. Often, though, the thermal con-
ductivity of the epoxy limits the thermal contact. At
temperatures well above a few K, the thermal conductivi-
ty of epoxies can be improved by adding a filler of materi-
al with high thermal conductivity, such as a fine powder
of copper, silver, or sapphire. At temperatures near or
below a few K, the thermal boundary resistance between
the particles and the surrounding epoxy matrix elimi-
nates the thermal benefit of adding the filler; the filled
epoxy can then have a lower thermal conductivity than
the unfilled epoxy because heat is transported less easily
across the interfaces and through the particles than it is
around the particle (Anderson and Rauch, 1970). From
the thermal conductivity of the filled epoxy, the thermal
boundary resistance between the particle and the epoxy
can be derived (Anderson and Rauch, 1970; Schmidt,
1975). This deduced thermal boundary resistance is con-
sistent with direct measurements in the temperature
range of 1 —4 K (Schmidt, 1974; see also below). See also
the work by de Araujo and Rosenberg (1976a, 1976b) and
Garrett and Rosenberg (1974).

Several direct measurements of the boundary resis-
tance across individual metal-epoxy interfaces were per-
formed by Peterson and Anderson (1972), Schmidt (1974,
1977), Reynolds and Anderson (1975), and Matsumoto,
Reynolds, and Anderson (1977). They used variations of
the experimental arrangement used for the indium-on-
sapphire interfaces (shown schematically as the inset in
Fig. 28). The sapphire rods were replaced with rods of
high-purity copper (or some other metal), and the indium
was replaced by a layer of epoxy with well-defined thick-
ness. Thermometers were placed on the copper rods as
close to the interface as possible, and the sum of the
thermal boundary resistances of the copper-epoxy and
the epoxy-copper interfaces was measured. The copper-
epoxy-copper geometry has some advantages over the
sapphire-indium geometry. The epoxy layer can have a
well-defined thickness and still be very thin, —10 pm.
The copper has a very high thermal conductivity, making
bulk temperature drops in the copper unimportant, and
the electrons, which dominate the heat transport in the
copper, thermalize the phonons so that the thermometers
measure the appropriate temperature distributions.
Moreover, the quality of the interface between the epoxy
and the copper is apparently quite good; the results were
reproducible. Using this geometry, Matsumoto et al.
(1977) found that the acoustic mismatch model agreed
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FIG. 28. Measured total thermal resistance R of two copper-
epoxy-copper sandwiches, multiplied by the cube of tempera-
ture, plotted log-log vs temperature: 0, for a "thick" epoxy lay-
er (about 80 pm); o, for a "thin" epoxy layer (about 16 pm);
dashed line, the sum of the acoustic mismatch thermal bound-
ary resistances and the thermal resistance of the thin epoxy lay-
er per unit area (the low-temperature limits agree with the
acoustic mismatch prediction); solid lines, a calculation in
which the total thermal resistance is calculated more realistical-
ly; see text. A schematic of the experimental geometry is shown
in the inset. Adapted from Matsumoto, Reynolds, and Ander-
son (1977).

with the low-temperature limit (near 0.1 K) of the mea-
sured thermal resistance for copper-epoxy interfaces (see
Fig. 28). However, above 0.05 K, the measured thermal
resistance rose dramatically relative to the acoustic
mismatch model; at 0.1 K the measured thermal resis-
tance was more than a factor of 2 too high, and by 1 K
the measured thermal resistance was more than 100 times
as large as acoustic mismatch theory predicts for the in-
terfaces alone. Much of the added thermal resistance
could be accounted for by simply adding- the bulk
thermal resistance of the epoxy, but, as discussed in Sec.
II, thermal resistances do not simply add. Therefore a
more careful calculation had to be done (Matsumoto,
Reynolds, and Anderson, 1977). In this calculation, the
phonon transmission probability through the sandwich
was calculated by modeling the thermal resistance at the
interfaces with a single mean free path and adding this
scattering rate to the known scattering rate in the epoxy.
Due to its amorphous structure, the epoxy acts as a low

pass filter, allowing only the lowest-frequency phonons
(f ~ 25 GHz) to pass easily through the sandwich; the in-
terfaces contribute significantly to the total thermal resis-
tance only for these low-frequency phonons. The result
of their calculation was consistent with the data (see the
solid lines in Fig. 28).

Using a Boltzmann equation approach, Ja,ckle (1972)
calculated the phonon transport across an interface be-
tween a metallic film and an amorphous solid (with large,
frequency-dependent phonon scattering rates), including
the eQ'ect of a small inelastic scattering rate in the glass.
He found that the spectral redistribution of the phonons
in the glass caused a significant contribution to the
eA'ective boundary resistance, in agreement with the ob-
servations and calculations of Matsumoto, Reynolds, and
Anderson (1977).

In spite of their success in modeling the thermal be-
havior of the metal-epoxy-metal sandwiches, only below
0.05 K could Matsumoto, Reynolds, and Anderson accu-
rately deduce from the total temperature drop the
thermal boundary resistance at the interface. These mea-
surements are the first quantitative verification of the
acoustic mismatch model, although only for a limited
temperature range. Another advantage of this experi-
ment was that the analysis of the thermometry was
unambiguous because the thermometers were attached to
normal metals, where the electrons therrnalized the pho-
nons and also minimized thermal gradients (see Sec.
II.A).

4. Metal films on dielectrics

In the early 1960s there was significant interest in the
thermal time constants of structures made from thin
films because of their application to superconducting de-
vices, specifically cryotrons. In a typical geometry, a su-
perconducting bolometer film (usually tin, indium, or
lead) was deposited onto and covered by a SiO insulating
film. In some cases another superconducting film, oxide
layer, and heater were deposited on top. The thermal
conductance across one or more of the bolometer-oxide
interfaces was then deduced from the measured thermal
decay time for the layered structure and the calculated
heat capacity of the bolometer (Jones and Pennebaker,
1963), or from a dc temperature difFerence between two
bolometers (Dorey, 1965; Griftiths and Watton, 1966). In
all cases, the measured thermal boundary resistances
were about a factor of 2 or 3 higher than predicted using
acoustic mismatch theory. The temperature range of the
experiments was typically 1.5 —4 K; in this interval, the
temperature dependence of the measured thermal bound-
ary resistance was weaker than T . In all these experi-
ments, in series with the boundaries there was a relatively
thick (several thousand A thick) amorphous oxide film
that is now known to introduce a significant thermal
resistance, even greater than that calculated using the
low thermal conductivity of the bulk oxide (Matsumoto,
Reynolds, and Anderson, 1977; Swartz, 1987; Swartz and
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Pohl, 1987). In the pulsed experiments, the necessity of
calculating the heat capacity of the thin film introduced
an additional uncertainty. As a result, these measure-
ments were inconclusive.

The use of thin films to measure thermal boundary
resistance has many advantages, such as reliability and
quality of the interface. The first direct measurements of
the thermal boundary resistance between a single thin
metal film and a single-crystal dielectric were performed
by Holt (1966). The temperature range of the experiment
was from 1.5 to 4 K. The temperature of the Joule-
heated thin film was measured by epoxying a small car-
bon thermometer to its free surface. The thermal bound-
ary resistances between films of tin and quartz or sap-
phire substrates were more than factor of 3 higher than
the prediction of acoustic mismatch theory at 1.5 K, and
the temperature dependence was T —T . Better
agreement with acoustic mismatch theory at 1.5 K was
obtained for gold films on sapphire when the film was
fired onto the substrate, but the temperature depen-
dence was still T . We suggest as an additional
difFiculty the use of, an epoxied-on thermometer, which
can induce stresses in the film under the thermometer be-
cause of differential thermal contraction. This can affect
the measurement, and can even lead to poor thermal and
mechanical contact between the thermometer and the
thin film.

von Cxutfeld, Nethercot, and Armstrong (1966) depos-
ited a thin-film metal heater/bolometer (pure indium or a
lead-bismuth alloy) onto single-crystal sapphire or
quartz, and measured the thermal relaxation time of the
film. The measurement could be performed at only one
temperature, the critical temperature of the bolometer
film. To deduce the thermal boundary resistance from
the measured thermal time constant (r=RC is the prod-
uct of the heat capacity of the thin film and the thermal
boundary resistance between the film and the substrate)
required a calculation of the heat capacity of the thin
film. At -8 K, the measured thermal boundary resis-
tance between a Pb9g 58i, 5 thin film and sapphire fell
30%%uo above the prediction of acoustic mismatch theory.
The boundary resistance between the same film and
quartz was a factor of more than 2 above the prediction
of acoustic mismatch theory. These results were attribut-
ed to graininess in the film causing reduced contact area.
The measured thermal boundary resistance at about 3.8

~4This temperature dependence, also seen in the
indium/sapphire data, is consistent with the idea that the
longer-wavelength (lower-temperature) phonons are less sensi-
tive to the imperfections at or near the interface than are the
shorter-wavelength phonons. See also the discussion by Little
( l 959, and see footnote 27) concerning the wavelength-
dependent effects of imperfect (spatially intermittent) mechani-
cal contact.

25"Firing" probably refers to some high-temperature heat
treatment of the sample after the film deposition.

K between an In94Sn6 thin film and quartz matched the
prediction of acoustic mismatch theory within the experi-
mental uncertainty. The same film on sapphire had a
thermal boundary resistance about 30% lower than the
prediction of acoustic mismatch theory.

If, instead of measuring the relaxation time, one mea-
sured the temperature of the film during the pulse (but
only after the film reached a steady-state temperature),
then the thermal boundary resistance could be deter-
mined directly without a calculation of the film's heat
capacity. If, in addition, the bolometer were replaced
with a thin-film thermometer that was sensitive over a
wide temperature range, then the thermal boundary
resistance could be directly measured over a correspond-
ingly wide temperature range. These considerations were
the motivation for the experiments we describe next.

Wigmore (1972a, 1972b) evaporated a thin-film (Con-
stantan) heater onto a polished and cleaned MgO sub-
strate. The MgO was doped with Fe + resonant scatter-
ers. The temperature of the MgO was maintained at
about 2 K, and the heater was Joule heated with a known
power input, varying from 2.5 to 150 W/cm, for a frac-
tion of a microsecond. Phonons were detected by
measuring the ESR signal of the Fe + (tuning the reso-
nant frequency of the Fe + with the magnetic field) to
determine the distribution of phonons emitted by the
Constantan film, and therefore the film temperature.
During the short pulse the MgO did not have time to
heat; its temperature remained constant, and therefore
the distribution of phonons incident on the Constantan
film from the MgO had a temperature equal to the initial
temperature of the system. This statement can be made
more quantitative: since phonons traveled ballistically in
the MgO for significant distances, they had insufFicient
time during the duration of the pulse to propagate in the
MgO to a scattering site, scatter, and propagate back to
the film. Therefore the distribution of phonons incident
on the film from the MgO during the pulse was
unaffected by the pulse. The temperature rise during the
pulse could be calculated by assuming that acoustic
mismatch determined phonon emission from the Con-
stantan film into the MgO substrate. The measured pho-
non distribution agreed with the calculation to within the
experimental scatter, estimated to be about 5%%uo (see Fig.
29). These were among the first experimental results at
any temperature above 1 K that were clearly consistent
with the acoustic mismatch model.

In the technique introduced by Weis (1969), the tem-
perature of a thin film deposited onto a dielectric sub-

~ The possible exception would be if some scattering centers
were concentrated very near the interface, as would be the case
if the substrate surface were rough or strained. At low temper-
atures (~ 1 K), the dominant phonon wavelength may be long
enough to ignore such damage, but at sufficiently high tempera-
tures we expect to see effects of this scattering on the tempera-
ture of the pulse-heated film. This is discussed below.
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FIG. 29. The measured temperature of a Constantan film on
MgO vs power per unit area in the film. The solid line is the
calculated film temperature assuming the acoustic mismatch
model. Adapted from Wigmore (1972a, 1972b}.

strate is measured during a heat pulse by measuring the
resistance of the film itself, using the fact that the heater
film terminates the transmission line (coaxial cable) used
to carry the heater current to the film. (Because the
pulse is so short, transmission-line effects must be con-
sidered, including the effect of electrical impedance
mismatch, which causes reAection of the pulse. The
physics is analogous to the reAection of a phonon at an
interface with an acoustic impedance mismatch. ) The
rcAection of the heat pulse from the terminating resis-
tance is a function of the resistance R of the heater and
of the impedance Z of the coax (typically SO 0):

rejected voltage amplitude R —Z
incident voltage amplitude R +Z

The film is a pure metal; therefore its resistance is tern-
perature dependent, but only above T-15 K, and there-
fore only above 15 K can the reAection of the pulse be
used to determine the temperature. The experiment is
not done with a small AT, but usually in the limit where
the substrate temperature is small compared to the tem-
perature of the film. The film temperature is measured as
a function of the heater power per unit area. One point
that is worth repeating is that, even though this heat-
pulse method uses short pulses to heat the sample, it is
still essentially a dc technique, as is Wigmore s technique.
During the pulse, the film does reach a steady tempera-
ture. The pulse must be short only in order that the ex-
tremely higher powers needed to produce the tempera-
ture rise in the film do not integrate to a large energy in-
put into the crystal. By keeping the substrate at 4 K or
less, one ensures that the energy is ballistically radiated
away from the interface. In short, the problem of the
high power requirement is solved by performing the en-
tire experiment in & 100 nsec, and the problem of deter-
mining temperature gradients in the substrate is solved
by keeping the substrate at 4 K, so that temperature gra-

dients are negligible.
With this technique, phonon transport across inter-

faces at temperatures above 15 K (although not below be-
cause of insensitivity of the thermometers) could be stud-
ied. On some interfaces, experiment and theory agreed at
temperatures up to about 100 K (for example, Herth and
Weis, 1970; shown earlier in Fig. 5). This technique al-
lowed the acoustic mismatch model to be checked on a
broad range of interfaces at high temperatures. For de-
tails and for comparisons with theory, see Herth and
Weis (1969, 1970); Weis (1969, 1972); Cheeke and Mar-
tinon (1972), Cheeke, Hebral, and Martinon (1972, 1973),
Kappus and Weis (1973), Rosch and Weis (1977, 1978),
and Martinon and Weis (1979).

The remarkable success of the acoustic mismatch mod-
el in predicting these results indicates that high-quality
interfaces can be made by evaporation onto clean, pol-
ished crystal surfaces. The failures of many previous
researcher s to obtain agrcemcnt with thc acoustEC
mismatch model, which was reviewed above, now appear
to have been caused by imperfect interfaces or damage in
the near-surface regions. However, the agreement be-
tween the acoustic mismatch model and the heat-pulse
data of Weis et al. and of Wigmore seemed to be too
good, given the evidence from Kapitza resistance data
and phonon reAection experiments that even microscopic
imperfections strongly affect heat transport. Thus the
apparent quantitative success of the acoustic mismatch
model in these heat-pulse experiments had to be viewed
as a mystery. By using the diffuse mismatch model, it
can now be understood why the effect of diffuse scatter-
ing at a solid-solid interface should be very small. In
fact, evidence for the inAuence of diffuse scattering can
indeed be seen in the data of Weis and co-workers. In
Fig. 30, we show the measured radiation temperature for
copper, gold, and lead on diamond. The dashed curves
indicate the predicted temperatures based on the acoustic
mismatch model. For copper, the radiation temperature
exceeds the prediction, indicating a larger boundary
resistance; for gold, the agreement is satisfactory, and for
lead the boundary resistance is smaller than predicted.
This behavior agrees at least qualitatively with the pre-
diction of the diffuse mismatch model (see Table II):
Diffuse scattering should raise the boundary resistance
for copper on diamond, should have no effect for gold on
diamond, and should lower the boundary resistance for
lead on diamond.

Before the smallness of the efFect of diffuse scattering
at solid-solid interfaces was recognized, the apparent
agreement between the heat-pulse data and the acoustic
mismatch model prediction at temperatures above 10 K
triggered more detailed calculations of the acoustic
mismatch model solid-solid thermal boundary resistance,
which included the effects of phonon focusing and more
realistic density of phonon states at high phonon frequen-
cy (see, for example, Weis, 1986). However, if the pho-
nons are scattering at the interface, the assumptions of
these calculations are not valid. We hope that the
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machinery-used in the calculations will soon be used to
predict accurately the thermal boundary resistance for
the diffuse mismatch regime, or better yet, for even more
realistic models.

One drawback of the heat-pulse technique introduced
by Weis was that measurements at temperatures below 15
K were inaccessible to his thin-film thermometers, and
thus no connection to work at lower temperatures could
be made. Another problem was that the thermal bound-
ary resistance was obtained by taking the derivative of
the measured temperature rise versus the power input,
which led to a very large uncertainty, given the large
scatter in the data. Furthermore, the assumption that
the substrate temperature is unaffected by the heat pulse
may not be valid at the highest heater powers, due to the
possibility of phonons scattering back into the heater
from imperfections in the substrate. Another simple way

to understand the backscattering effect qualitatively is to
add to the thermal boundary resistance the thermal resis-
tance caused by scattering in a thin, damaged region near
the surface of the crystal (see Cheeke and Martinon,
1972; Martinon and Weis, 1979). As an example, Fig. 31
contains the thermal boundary resistance data for nickel
on sapphire (Herth and Weis, 1970); above about 50 K,
the temperature of the film greatly exceeds the predicted
temperature assuming the acoustic mismatch model, also
shown in Fig. 31. The prediction of the diffuse mismatch
model is only slightly different from that of the acoustic
mismatch model for nickel on sapphire (see Table II);
therefore diffuse scattering at the interface cannot be
used to explain these data.

Further evidence for strong phonon scattering in
near-surface regions was presented by Wybourne, Eddi-
son, and Wigmore (1985) and Wybourne and Wigmore
(1986). They observed time delays in very short (-1
nsec) phonon pulses due to phonon scattering in a thin
region between a metal heater and a polished sapphire
substrate. The time constant for the heating of the film
was much longer than the pulse duration; this was attri-
buted to the very strong phonon scattering in the layer
just underneath the film. Bron and Grill (1977a, 1977b)
and Bron, Patel, and Schaich (1979), using longer (25 —20
nsec) and very intense (up to several kW/mm ) pulses in
a thin-film heater, observed the effects of strong
frequency-dependent scattering at frequencies above 1

THZ. The effects of frequency-dependent phonon
scattering and of inelastic phonon scattering in the sub-
strate on the time evolution of the phonon distribution in
the metal film are discussed theoretically by Schaich
(1978, 1984) and Wilson and Schaich (1984).

In order to resolve the transition at solid-solid inter-
faces from acoustic mismatch behavior expected at low
temperatures to diffuse mismatch behavior expected at
high temperatures, a new technique was required with
which boundary resistance between a thin metal film and
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FIG. 30. The measured temperature of different metal films on
diamond, vs power per unit area in the film. The data are
shown as shaded regions; the widths of the regions indicate the
extent of scatter. The dashed lines represent the prediction of
the acoustic mismatch model including the estimated (and
small) effect of dispersion (using dispersion of a linear chain).
Adapted from Kappus and Weis (1973).

FIG. 31. The temperature of three nickel films on sapphire vs
power per unit area in the film. The temperature of the sap-
phire was 4.2 K. The dashed lines represent the prediction of
the acoustic mismatch model, including the estimated (and
small) effect of dispersion (using dispersion of a linear chain to
approximate the dispersion in the nickel). Adapted from Herth
and Weis (1970).
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a crystalline dielectric substrate could be measured over
the temperature range from below 1 K to over 100 K.
Such a technique has recently been developed (Swartz,
1987) and is described in Sec. II (see Fig. 11). The
thermal boundary resistance between Rh:Fe and polished
sapphire, measured with this technique in the tempera-
ture range 0.6—200 K, is shown in Fig. 6 (Swartz and
Pohl, 1987). The excellent fit with the solid curve, calcu-
lated using the acoustic mismatch model (containing no
adjustable parameters), again seems to suggest that it
does correctly predict transport across this solid-solid in-
terface below about 40 K. Other metal-substrate inter-
faces (for example, Rh:Fe on quartz, Al on quartz and
sapphire, and Pt on sapphire) have also been studied with
this same technique; the data agree with the acoustic
mismatch model in a similar way for all the samples
(Swartz, 1987). The asterisks in Table II indicate inter-
faces that have been studied with this technique.

C. Evidence for diffuse scattering
at solid-solid interfaces

0

rate of about 40 A per second onto the sapphire sub-
strate, which was kept at 1100 K during deposition to an-
neal the film during its growth, thereby reducing stresses.
The two narrow, parallel strips were then lithographical-
ly patterned on the film, and the boundary resistance be-
tween the film and the substrate was measured as de-
scribed in Sec. II. The results are plotted in Fig. 32 as

R~d T in order to emphasize any deviations from a T
behavior. The solid curve is the acoustic mismatch mod-
el prediction, and the dashed curve the diffuse mismatch
model prediction. The calculations are described in Secs.
II.C and II.D.2.

We would expect the acoustic mismatch model to hold
at suKciently low temperatures, and the effects of diffuse
scattering at the interface to start to become visible at
some higher temperature. From Fig. 32, we see just that;
the onset of diffuse scattering is seen at about 7 K. The
quantl tative agreement between the diffuse mismatch
model and the data between 10 and 25 K is probably for-
tuitous, given the simplicity of the model.

1. T &30 K: Specular versus diffuse

Using the diffuse mismatch model as an upper limit for
the effect of diffuse scattering at solid-solid interfaces, we
have shown (see Table II) that difFuse scattering does not
have nearly as striking an effect on the solid-solid
thermal boundary resistance as it does on the Kapitza
resistance. Nevertheless, diffuse scattering at solid-solid
interfaces should be observable, if sufmicient care is taken
in the measurement. On the basis of thermal conductivi-
ty and phonon reflection studies, we expect that at low
enough temperatures (~ 1 K), corresponding to low dom-
inant phonon frequencies (8 100 GHz) and long dom-

0
inant phonon wavelengths (several hundred A in crystal-
line dielectrics), difFuse scattering at a well-prepared,
smooth interface should be rare; at high enough tempera-
tures ( ) 3 K; )300 GHz), we expect that specular
scattering should be rare. Therefore, even without a firm
prediction of the magnitude of the effect of diffuse
scattering, a transition in the thermal boundary resis-
tance from the value predicted using the acoustic
mismatch model to another value should mark the onset
of diffuse scattering. The only measurements with the
accuracy, temperature range, and resolution required to
look for such a transition are those using deposited thin
films of Rh:Fe on sapphire or quartz (Swartz and Pohl,
1986, 1987; Swartz, 1987).

The surface of a sapphire substrate was polished with a
series of suspensions of alumina powders; the alumina

0
particle size of the last step was 500 A. Then the sample
was Syton polished (see footnote 21) for 2 h. Afterwards,
the sapphire was annealed in a hydrogen atmosphere at
1470 K for 30 min. According to Eddison and Wy-
bourne (1985, and Wybourne, 1986), this procedure
should produce an almost atomically smooth sapphire
surface. A Rh:Fe film was then sputter deposited at a

Rh: Fe on AI20g
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FIG. 32. Thermal boundary resistance between Rh:Fe and hy-
drogen chemically polished sapphire: solid curve, prediction of
the acoustic mismatch model; dashed curve, prediction of the
difFuse mismatch model. The measured boundary resistance for
this and the following three figures depends linearly on the mea-
sured widths of the Rh:Fe strips. We estimate the uncertainty
of the widths at about 5%. In these plots of the boundary resis-
tance between Rh:Fe and sapphire or quartz (except the log-log
plot of Fig. 6), the thermal resistance resulting from the finite
thermal transport between the electrons and the phonons in the
Rh:Fe film has been fit and subtracted from the data. The
analysis is discussed by Swartz (1987). The expected tempera-
ture dependence (R,~ T ) of the electron-phonon thermal
resistance was clearly seen in the data for all the samples, but
the prefactor R,~ was reproducible only to within a factor of 2
or 3 from sample to sample. R,~ was on the same order as that
for a thin film of copper, measured by Roukes (1985); see also
Roukes et al. (1985).
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In order to show that for temperatures less than about
7 K phonons interact specularly at the interface between
Rh:Fe and hydrogen-polished sapphire, Swartz and Pohl
(1986, 1987) deposited Rh:Fe onto sapphire treated with
each of the following polishing techniques: alumina pol-
ishing, Syton polishing, and hydrogen polishing. In addi-
tion, a diamond-polished (0.2 pm) sapphire surface was
tested. The Syton- and alumina-polished samples are
compared in Fig. 33. As suggested by Eisenmenger
(1986), we see that the Syton-polished surface is a strong
diffuse scatterer of phonons even at 1 K (90 6Hz),
whereas the alumina-polished surface does not diffusely
scatter phonons any more strongly than the hydrogen-
treated surface, (see Fig. 32). The boundary resistance to
the diamond-polished surface is shown in Fig. 34. In this
case, as expected, there is strong diffuse scattering down
to I K; the thermal boundary resistance never does ap-
proach the acoustic mismatch value, but instead remains
at the diffuse mismatch prediction to the lowest tempera-
tures measured.

There is, however, one observation that does not fit
into the picture presented here: the specular-to-diffuse
transition seen in the hydrogen-polished sample should
not be present in the Syton-polished or diamond-polished
samples, if the analysis is cornpetely accurate; yet in both
cases there is an indication of the same feature. This
phenomenon remains unexplained.

While for the Rh:Fe-sapphire interfaces diffuse scatter-
ing leads to a small increase in the thermal boundary
resistance, in agreement with the theory, for Rh:Fe-
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quartz interfaces, the effect of diffuse scattering should be
vanishingly small (see Table II). Figure 35 contains the
measured thermal boundary resistance for that interface.
The quartz surface was Syton polished. There is no hint

FIG. 34. Thermal boundary resistance between Rh:Fe and
diamond-polished sapphire. The efFects of the electron-phonon
thermal resistance have been subtracted. Solid curve, predic-
tion of the acoustic mismatch model; dashed curve, prediction
of the diffuse mismatch model. From Swartz (1987).
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FIG. 33. Thermal boundary resistance between Rh:Fe and
Syton-polished sapphire, and between Rh:Fe and alumina-
polished sapphire. The efFects of the electron-phonon thermal
resistance have been subtracted. Solid curve, prediction of the
acoustic mismatch model; dashed curve, prediction of the
diffuse mismatch model. From Swartz (1987).
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FIG. 35. Thermal boundary resistance between Rh:Fe and
quartz. The solid curve represents both the diffuse mismatch
model prediction and the acoustic mismatch model prediction;
they coincide in this case. Note the quantitative agreement
with either prediction at temperatures up to over 15 K, indicat-
ing that diffuse scattering, which must be present at some tem-
perature well below 15 K, has no efFect at this interface. From
Swartz (1987).
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of any effect of diffuse scattering; the absolute magnitude
of the thermal boundary resistance lies right on the solid
curve at temperatures up to 15 K. The solid curve is the
prediction of the acoustic mismatch model (which is the
same as the prediction of the diffuse mismatch model at
this interface). This absence of any indication of the
effect of diffuse scattering is perhaps the most compelling
evidence for the validity of the diffuse mismatch model,
since it is quite unlikely that the Rh:Fe-quartz interface
could be smooth even for 20-K phonons. As predicted,
diffuse scattering simply does not affect the boundary
resistance at this interface.

2. T&30 K: Substrate damage

I.et us now turn to temperatures greater than 30 K.
Here we see the strong increase in R zz T with increasing
temperature (see Figs. 6 and 32—35). We believe that this
increase is not intrinsic to the boundary resistance, since
it is far greater than can be explained by any improved
calculation of the thermal boundary resistance. Our ar-
guments are as follows. There is little difference between
the predicted thermal boundary resistances of the acous-
tic and diffuse mismatch models; therefore, elastic
scattering produces little uncertainty in the calculation.
Conceivably, other effects could significantly affect the
theory, such as discreteness of the lattice (Steinbriichel,
1976; Lumpkin, Saslow, and Visscher, 1978}and phonon
dispersion (Weis, 1979, and references therein). These
effects decrease the transport across the interface at tem-
peratures above 30 K, but not enough to explain the ob-
servations. Even though elastic anisotropy has a strong
eft'ect on heat-pulse reliection data (Taborek and Good-
stein, 1979, 1980a), it has only a small quantitative eft'ect

on the. thermal boundary resistance. Poor interface qual-
ity, such as incomplete contact, decreases the transport
across interfaces, but this effect should lead to an in-
crease in the thermal boundary resistance by a constant
factor over the entire temperature range. Phonon at-
tenuation near the interface (the modified acoustic
mismatch model, discussed in Secs. II and III}always in
creases transmission across an interface. In addition, that
increase is small at solid-solid interfaces and competes
with scattering at the interface. Koos et al. (1983) used a
phonon imaging technique to observe an unusual angle-
dependent phonon transmission at a copper-sapphire in-
terface. They concluded that, because the copper film
was weakly bonded to the sapphire, there existed a mech-
anism that coupled longitudinal phonons in the copper
near the mode-conversion critical cone to transverse pho-
nons in the sapphire via evanescent longitudinal pho-
nons. This mechanism also increased transmission and

However, at temperatures below a few K, the e6'ect of im-
perfect contact diminishes as the phonon wavelength becomes
much larger than the spacing between points of contact between
the solids (Little, 19S9).

hence could not be responsible for the rise of the bound-
ary resistance at temperatures above 30 K.

Given no reasonable intrinsic mechanism, we conclud-
ed (Swartz and Pohl, 1986, 1987; Swartz, 1987) that the
explanation of the strong increase in RB~T above 30 K
must involve phonon scattering caused by damage in the
substrate near the interface. The thermal resistance
caused by this scattering is not experimentally separable
from the thermal boundary resistance.

This increase in R~~T above 30 K was largest for the
diamond-polished sapphire; in this sample we concluded
that the final polishing step caused extensive damage
both to the surface of the sapphire and to the region un-
derneath the surface of the sapphire. The samples with
the smallest upturn in RB&T were the Syton-polished
and the hydrogen-polished samples. These two samples
apparently had very difFerent surfaces (the Syton-polished
surface scattered low-frequency phonons much more),
but in neither sample is the region underneath the surface
likely to have been damaged as severely by the final pol-
ishing treatment as by the diamond polishing. (Both hy-
drogen and silica are softer than sapphire. ) The
alumina-polished sample seemed to mirror the Syton-
polished sample; the surface of the alumina-polished
sample was apparently smoother, according to the low-
frequency phonons, but the region underneath the sur-
face of the alumina-polished sample was apparently more
damaged, judging by the stronger upturn in Rn&T (see
Fig. 33).

Understanding and controlling subsurface damage,
such as cracks, dislocations, and grain boundaries, is crit-
ical to the understanding of transport in films and small
structures. Because such damage has a large effect on the
measurement of transport across interfaces, we can use
this transport to study the damage. It seems reasonable
to model the damaged layer as a highly disordered region
0f the substrate with thermal properties like those of
amorphous solids. We deposited amorphous silicon diox-
ide layers of thicknesses varying from 70 to 1150 A onto
Syton-polished sapphire substr ates using plasma-
enhanced chemical vapor deposition. Afterwards, Rh:Fe
films were deposited onto those layers and the efFective
thermal boundary resistance of the sandwich structure
was measured; see Fig. 36. Also shown in the figure are
the data for the diamond-polished sample and for a sap-
phire sample that was bombarded with 500-V Ar+ ions
before and during deposition of an aluminum film. The
solid curve is the diffuse mismatch prediction for a single
interface between Rh:Fe and sapphire (which is about the

~~We suspect that the coupling mechanism is strongly related
to the mechanism of the modified acoustic mismatch model
(phonon attenuation near the interface) because that also leads
to strong transmission near the critical cone.

2 The term "eftective thermal boundary resistance" is used be-
cause the measured values include the thermal resistance of the
silica films.
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FIG. 36. The measured total effective thermal boundary resis-
tance for a series of interfaces with oxide interlayers of varying
thickness: Q, thermal boundary resistance between Rh:Fe and
diamond-polished sapphire; 0, thermal boundary resistance be-

tween aluminum and sapphire when the surface of the sapphire
is damaged by Ar+ ion bombardment; solid curve, thermal
boundary resistance at a single Rh:Fe/sapphire interface pre-
dicted using the acoustic mismatch model. The boundary resis-
tance between aluminum and sapphire is about the same as be-
tween Rh:Fe and sapphire (see Table II); the solid curve thus
also represents the predicted boundary resistance at a single
aluminum/sapphire interface. From Swartz (1987).

same for aluminum on sapphire; see Table II). If we use
the diffuse mismatch model and assume that phonons are
not scattered in the silica layer, then the thermal resis-
tance of the two interfaces is about 1.5 times that of a
single interface. Even the thinnest silica layer caused
significantly more phonon scattering than the damage
from the diamond polishing. From Fig. 36 one sees that
the effect of the diamond polishing is equivalent to a

0
glassy layer of the order of about 30 A thick. We expect
that the damage in the sapphire from the diamond pol-
ishing extends significantly deeper than this. Thus, while
the thermal resistance caused by the imperfect surface
treatment may well swamp the intrinsic thermal bound-
ary resistance, this added thermal resistance is small

0
compared to the thermal resistance caused by a & 100 A
glassy interlayer.

A common method of promoting film adhesion is to
etch (Ar+ ion bombardment) the substrate by sputtering

20 50 100
terrtperature (K)

200

FIG. 37. Thermal conductivity of thin amorphous SiOz layers
derived from measurements shown in Fig. 36. The solid curve
is the thermal conductivity of bulk amorphous Si02 (Cahill and
Pohl, 1987). Note the drop in thermal conductivity with in-

creasing film thickness, indicating an increase of disorder with
increasing film thickness (Swartz and Pohl, 1987).

immediately prior to the film deposition (Maissel and
Glang, 1970, pp. 6—41). Two methods of producing
glassy excitations in quartz are neutron bombardment
(see, for example, Gardner and Anderson, 1981; Laer-
mans, 1985; de Goer, 1986) and electron bombardment
(Vanelstraete and Laermans, 1986). We might expect
Ar+ ion bombardment to have a similar effect on the
outer layer of the bombardment substrate. Then, there is
no longer a well-defined interface; there is instead a layer
of bombarded sapphire between the metal and the sap-
phire. The thermal resistance of the aluminum-
(bombarded sapphire) —sapphire sandwich has nearly the
same magnitude as the thermal resistance of the Rh:Fe-

O

silica-sapphire with the thinnest silica layer (69 A). We
expect that the damage from the bombardment extends
on the order of 50—100 A into the sapphire. Thus the
damage in the sapphire layer must be very severe, it
scatters phonons as much as if it were amorphous. These

The effects of bombarding substrates before and during
deposition are quite complex. See, for example, Dautremont-
Smith and Feldman (1985) or Rossnagel and Cuomo (1987) and
references therein.
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findings suggest that the price of improving mechanical
contact by sputter etching is a weakening of the thermal
contact.

From the data shown in Fig. 36 the thermal resistance
of the silica layers was determined; from that, their
thermal conductivity was determined by subtracting the
thermal resistances of the interfaces; see Fig. 37. While
this procedure is somewhat uncertain, since these
thermal resistances do not simply add (see Sec. II, foot-
note 7), this procedure should lead to negligible errors for
the thickest films, since they almost completely dominate
the measured total thermal resistance above approxi-
mately 20 K. Yet the thermal conductivity obtained for
the 1150-A thick film differs from the known values for
bulk silica (solid curve in Fig. 37) by the largest amount.
We believe that the only way in which the thermal con-
ductivity of an amorphous solid can be lowered below its
bulk value in this temperature range is through micro-
scopic Aaws like cracks or voids, which significantly in-
crease the distance heat must travel. We conclude that
these measurements indicate the presence of such defects
in our silica films. See Cahill et al. (1988) for further dis-
cussion of the thermal conductivity of thin films. In the
very-large-scale integrated circuit industry, one of the
problems associated with miniaturization is heat removal
from the devices and the interconnecting thin films. The
glassy layer often used between successive layers in. the
circuit is expected to create a thermal bottleneck. The
effect of interfaces and in particular the effect of the
unexpectedly low thermal conductivity of the glassy in-
terlayers on heat removal from integrated circuits is dis-
cussed by Swartz (1987) and Swartz and Pohl (1987).

D. Inelastic scattering

If the temperature is much lower than the Debye tem-
peratures of both solids, then the thermal boundary resis-
tance at a solid-solid interface is not sensitive to whether
a scattering event is elastic or inelastic. The reason is
that the phonon density of states on both sides of the in-
terface has the same frequency dependence (-co ) for
low frequencies (much smaller than the Debye cutoff fre-
quencies). Therefore the probability of scattering for-
ward or back is independent of frequency. ' At higher
temperatures, however, where the density of states no
longer varies as co, at least on one side of the interface,
inelastic scattering can have a large effect. For example,
at an interface between lead and diamond at tempera-
tures above 80 K, a majority of phonon modes excited in
the diamond have frequencies above the maximum fre-

This does not mean that inelastic scattering at solid-solid in-
terfaces cannot be probed at low temperatures. See, for exam-
ple, Challis, Ghazi, and Wybourne (1982), Challis (1983, 1986),
and Challis, Kenmuir, Heraud, and Russell (1986) for a experi-
mental arrangement that is sensitive to inelastic scattering at
solid surfaces at temperatures low compared to the Debye tem-
perature of the solid. This experiment is discussed in Sec.
III.C.3.d.

quency in the lead. All of these phonons must be
rejected at the interface if inelastic processes are not al-
lowed. If, on the other hand, they can be downconvert-
ed, the resulting phonons will be predominantly transmit-
ted. Thus one of the ways that inelastic scattering at
solid-solid interfaces can be observed is through a de-
crease of the thermal boundary resistance below the
values predicted by either the diffuse or the acoustic
mismatch model, when the temperature is comparable to
the Debye temperature of the softer solid. The effect
would be pronounced if the Debye temperatures of the
two solids are very different and if one of the Debye tem-
peratures is very low. It can be argued that the theoreti-
cal predictions of both the acoustic mismatch model and
the diffuse mismatch model are too uncertain near room
temperature to make such an observation meaningful.
However, the magnitude and, in particular, the sign of
the uncertainty are such that any observation of
enhanced transport (lower boundary resistance than pre-
dicted using either model) is likely to be evidence for in-
elastic scattering. We cannot think of any mechanism
other than inelastic scattering which would significantly
decrease the boundary resistance at temperatures near
the Debye temperature. See the above discussion of sub-
strate damage at temperatures above 30 K for examples
of ways that the boundary resistance might be increased
in this temperature range.

In the previous subsection, we saw that for most thin-
film/substrate pairs at temperatures above 40 K, in-
dependent of measurement method, the heat transport
across the interface is less than that expected from either
boundary resistance model (acoustic or diffuse
mismatch). However, evidence for inelastic scattering
may have been seen in heat-pulse experiments on
gold/diamond and lead/diamond interfaces (see Fig. 30)
in which the heat transport exceeded the expected values.
We suggest that some of the phonons in the diamond
which would be rejected in the absence of inelastic
scattering are being transmitted after having been scat-
tered inelastically.

There are two more cases in which heat transfer
greater than that predicted has been observed: Young
et al. (1986) measured the thermal boundary resistance
between gold and vitreous silica at room temperature us-
ing picosecond pulsed-laser techniques. They concluded
that their measured value was a factor of 2 below their
prediction based on acoustic mismatch. In the second,
evidence was found in the thermal boundary resistance
between a deposited film of gold and sapphire (Swartz
and Pohl, 1986, 1987) from 10 K to about 300 K. At low
temperatures (below 50 K) the measured thermal bound-
ary resistance was a factor of 3 higher than that predict-
ed using either diffuse or acoustic mismatch, presumably
due to a small effective area of contact (thin films of gold
adhere very poorly to most substrates). In spite of this
enhancement of the thermal boundary resistance (which
was not seen for any of the other film-substrate pairs), the
measured boundary resistance at room temperature was

Rev. Mod. Phys. , Vol. 61, No. 3, July 1989



E. T. Swartz and R. O. Pohl: Thermal boundary resistance

only about 40% higher than the theoretical prediction.
If the area of contact is normalized so that the low-
temperature boundary resistance matches the acoustic
mismatch model prediction, then at high temperatures
the boundary resistance is about a factor of 2 lower than
expected, in general agreement with the results of both
types of pulsed measurements described above.

E. Epitaxial films

In the work reviewed above, none of the solid-solid in-
terfaces studied are ideal on the atomic scale. Certainly,
characterization of intentionally added defects and other
sources of scattering would be easier for a nearly atomi-
cally perfect interface, such as an interface grown using
molecular-beam epitaxy. Only certain combinations of
solids can form an epitaxial interface, the most common
combination being GaAs/A1GaAs used in superlattices.
Narayanamurti et al. (1979) studied the phonon
transmission in a direction normal to the layers through
a GaAs/AlGaAs superlattice with 100 interfaces. The
phonon frequencies used ranged from 75 GHz (the detec-
tor was an Al tunnel junction) to 285 GHz (the generator
was a Sn tunnel junction). They found selective transmis-
sion consistent with classical Bragg scattering, or stop-
bands. Although precise calculation of the average
transmission coefFicient of the phonons at a single inter-
face is dificult from the data, the diffuse scattering at
each interface must have been negligible in order to have
observed the stopband.

Using phonon imaging techniques (see, for example,
Wolfe, 1980, or Northrop and Wolfe, 1980), Hurley et al.
(1987) and Tamura, Hurley, and Wolfe (1988) observed
the phonon transmission through a 40-period (80-
interface) Ino, gGap sgAs/A1As epitaxial superlattice for
arbitrary phonon propagation and polarization, for pho-
non frequencies in the range of 700—900 GHz. The fact
that such high-frequency phonons would travel through
so many interfaces with negligible diffuse scattering indi-
cates that these interfaces are also nearly ideal. Hurley
et al. (1988) used the same technique and frequency
range to observe phonon stopbands in an epitaxial Fi-
bonacci superlattice with over 750 interfaces.

Data on phonon interaction with epitaxial interfaces
are essential to the understanding of phonon scattering,
yet it is apparently limited to the above studies. For ex-
ample, as far as we know, there are no studies of the in-
teractions of phonons at a single epitaxial interface and
no studies of interactions at epitaxial interfaces with in-
tentionally added defects. Such studies would certainly
be valuable.

In a similar experiment, Koblinger et al. (1986) observed
phonon stopbands for normal incidence in amorphous (not epit-
axial) Si02/Si superlattices.

F. Summary

Below approximately 30 K, the solid-solid thermal
boundary resistance can be well described with either the
acoustic mismatch or the difFusive mismatch model. The
reason why either model works well is that the effect of
diffuse scattering at the interface is small, in contrast to
the liquid-helium —solid interface. This good agreement
between theory and experiment is dependent on good
contact between the two solids, resulting, for example,
from the evaporation of one substance onto the other;
early reports of evidence for disagreement between
theory and experiment are explained through imperfect
contacts. The difference between acoustic and diffuse
transmission has been observed in one case, namely, for
the interface between iron-doped rhodium (Rh:Fe) and
sapphire.

Above 30 K, the observed thermal boundary resistance
can be as much as an order of magnitude larger than that
predicted by either theoretical model and also depends
on the surface treatment of the substrate. Evidence has
been presented that this additional resistance cannot be
associated with the interface itself, but must be caused by
disorder in the subsurface region. This region scatters
high-frequency phonons as effectively as an amorphous

0

layer approximately 50 A thick. However, the dominant
carriers of heat below 30 K, which have frequencies less
than -3 THz, are little affected by this disorder. In-
dependent evidence for this disorder is lacking at this
time. In particular, the nature and extent of the damage
are unknown.

V. CONCLUSIONS

Almost five decades after its discovery, the Kapitza
resistance, i.e., the thermal boundary resistance between
a solid and liquid helium, is still not fuHy understood.
The acoustic mismatch model suggested by Khalatnikov
and independently by Mazo provides a fundamental,
qualitative explanation. However, it provides only an
upper limit to the resistance. There are many different
mechanisms that can lead to a reduction of the Kapitza
resistance, and in most real cases the resistance results
from several mechanisms acting simultaneously. A lower
limit of the Kapitza resistance is given by the difFuse
mismatch model, whi. ch assumes that all phonons are
scattered at the interface. It leads to a thermal boundary
resistance between typical solids and liquid helium that is
several orders of magnitude smaller than that predicted
using the acoustic mismatch model. The observed Kapit-
za resistances always lie between these two limits.

For solid-solid interfaces, the two theoretical limits of
the thermal boundary resistance, based on the acoustic
mismatch and the diffuse mismatch model, differ typical-
ly only by a small fraction ( (30%%uo). Therefore the ex-
perimentally observed thermal boundary resistances
agree well with either model. . Significant deviations are
probably the result either of partial contact or of bulk
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disorder in the near-surface region. Independent evi-
dence for this disorder is not available at this time. Con-
sidering its importance for heat transfer across interfaces
near and above room temperature, an understanding of
this disorder is highly desirable.
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