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This article presents a general overview of the problems involved in the application of the quantum princi-
ple to a theory of gravitation. The ultraviolet divergences that appear in any perturbative computation
are reviewed in some detail, and it is argued that it is unlikely that any theory based on local quantum
fields could be consistent. This leads in a natural way to a supersymmetric theory of extended objects as
the next candidate theory to study. An elementary introduction to superstrings closes the review, and
some speculations about the most promising avenues of research are offered.
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INTRODUCTION

The present work grew out of a graduate course held
in Madrid in the spring term of 1988. Perhaps the first
question to be addressed is the motives for such a course,
especially since, as we shall argue in detail later on, there
is no consistent quantum theory of gravity yet and, in
any case, it seems clear that its e6'ects in accelerators will
not show up until energies are attained of the order of the
Planck mass, M&=G ' =10' GeV, which are out of
reach now and even in the foreseeable future. And yet
the intellectual ehaHenge of combining the quantum prin-
ciple with the elegant theory of general relativity, based
upon general covariance, is so appealing that many great

physicists, from Einstein to Weinberg, including Pauli,
Feynman, Schwinger, etc. , have succumbed to the temp-
tation of speculating on this fascinating subject.

It has been proposed by Moiler (1952) and Rosenfeld
(1957), among others, that there is no need to quantize
the gravitational field; some support for this claim stems
from the fact that, in general relativity, gravity deter-
mines the structure of spacetime itself, the arena in
which all other fields must propagate. This extreme posi-
tion seems hardly defensible now, and indeed it has been
argued that it is inconsistent with the general theorem as-
serting the invariance of the S matrix under field
redefinitions (see Duff, 1981). There are further problems
when quantum interference problems are present, and
indeed, some experiments have been designed to settle
the issue (see Page, 1981).

On the other hand, the successes of the electroweak
unification in the standard Weinberg-Salam model render
unavoidable the speculation that further unifications
might be possible of all other fundamental interactions,
with or without intermediate steps. In the late 1970s and
early 1980s, starting with the idea of grand unification of
electroweak and strong interactions, this idea has been
forcefully pursued. Di6'erent kinds of problems led to
technicolor, supergravity, the revival of Kaluza and
Klein s idea of extra dimensions, and various combina-
tions of these. The outcome of this research is essentially
negative, from a theoretical point of view. There is no
single model that appears natural; there are no predic-
tions (except, in some cases, Weinberg's angle); the num-
ber of parameters is not reduced much, and one gets the
general impression that several beautifu1 ideas are per-
verted into extremely complicated models to accommo-
date some ugly facts. But the main problem is that there
is no known why to incorporate gravity in such a scheme.
The problem seems fundamental; there is no quantum
field theory of gravity with the properties thought
to be essential for consistency, such as unitarity,
renormalizability —or some related property, like finite-
ness or asymptotic safety —and Lorentz invariance in a
local inertial frame.

The present hopes lie in the theories of extended one-
dimensional supersymmetric objects: the superstrings
(see Green, Schwarz, and Witten, 1987, for a comprehen-
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sive introduction). Although extensive research in this
topic was only undertaken two years ago, it seems that
some theories, such as the ESXE8 heterotic string, are
finite (see some qualifications below) and as such, they
ofFer at least a consistent candidate for a quantum theory
of gravity.

One feels naturally anxious about the nature of the
answers given by superstrings to the old problems of
quantum gravity, such as the issue of the initial state of
the universe itself. Unfortunately, nothing is known at
present on this particular topic, due to our inability to
perform nonperturbative computations in superstrings
and to the well-known fact that all interesting solutions
of Einstein's equations cannot be reached by perturba-
tions of Hat spacetime.

Let us now briefly describe the contents of the present
work. In the first section, we provide what we have
called Feynman's theorem, though it is actually the col-
lective work of many people. We shall follow the ap-
proach of Deser (1970). The theorem essentially states
that the Fierz-Pauli theory of a spin-2 particle in Aat
spacetime is inconsistent when coupled to matter, and
the only self-consistent extension of it is general relativi-
ty.

In the second section w'e shall present some efFects of a
passive classical gravitational field acting as a back-
ground for a quantum field theory. The main nontrivial
phenomena are related to the structure of Hilbert space
in the presence of horizons, and essentially imply
Hawking's radiation in the case of a black hole. %'e shall
follow the approach of T. D. Lee and co-workers, show-
ing in detail how things work in a simple example. The
aim of this section is to take note of the importance of
nonperturbative efFects, which are neglected later on only
because of our present inabi1ity to compute them.

In Sec. III Einstein's theory is treated as an ordinary
gauge theory, and the perturbative computations of
't Hooft and Veltman, showing that pure gravity was
one-loop finite on shell, are worked out in some detail, as
are the two-loop computations of GorofF and Sagnotti
(1986), showing that even pure gravity is two-loop diver-

gent on shell.
In Sec. IV, the general problem of the ultraviolet diver-

gences of any quantum theory of gravity is presented, as
well as some of the attempts to tackle it, such as super-
gravity and Weinberg's idea of asymptotic safety.

Section V presents the canonical quantization of gravi-

ty based on the Arnowitt-Deser-Misner (ADM) Hamil-
tonian, making use of Wheeler's superspace (the set of all

possible three-metrics). In the case of closed universes,
the wave function in this representation obeys a function-
al equation; the %'heeler-De%'itt equation. An apparent
paradox is that there is no time variable in this formula-
tion; there is no concept of time in quantum gravity, a
point recently emphasized by Banks. Section VI shows
with great generality that Schrodinger's equation (and
the concept of time associated with it) follows from the
Wheeler-DCWItt equation in the semiclassical [Wentzel-

Kramers-Brillouin (WKB)] approximation.
A particularly important problem is that of the bound-

ary conditions of the Wheeler-DeWitt equation. It is ob-
vious that the wave function of the universe depends
strongly on these boundary conditions. In Sec. VIII,
Hartle and Hawking's proposal is studied, as well as
some speculative answers to the paradoxical fact that
"after" the Planck era (that is, at the beginning of the
usual studies of primeval cosmology) matter was in a
state close to thermal equilibrium.

In the final section, quantum gravity is put in the
framework of the currently fashionable theories of super-
strings, and some possible avenues for further progress
are indicated.

The aim of the present work is mainly pedagogical.
We have tried to develop in detail some simple examples
and give references for further results, although the latter
are by no means exhaustive. The interested reader is en-
couraged to study the excellent reviews of DeWitt (1979),
Isham (1976), and van Nieuwenhuizen (1987), where
many further references can be found.

I. SELF-CONSISTENCY OF THE FIERZ-PAULI
LAG RANG IAN

In this first section we shall explor'e another way (dis-
cussed, for example, by R. P. Feynman in his Caltech lec-
tures) of reaching the conclusion that general relativity is
the correct classical theory of gravity —that is, a way at
variance with the historical path followed by Einstein
and which is based on the equivalence principle [see, the
standard textbooks by Weinberg (1972) or Misner,
Thorne, and Wheeler (1973)].

If a particle physicist were to construct a field theory
of gravity in the 1980s, he or she could well start by pos-
tulating a particle Inediating the gravitational interac-
tion, called the graviton. This particle should be neces-
sarily massless, because gravity is a long-range interac-
tion.

This implies, in addition, that the particle must be a
bosoll (Iilasslcss fcl'II11011s pI oducc sliort-raIlgc 111tcI'ac-

tions). The spin cannot be zero, because it is easy to
show that this does not give the bending of light rays in
d=4 (essentially because this field can only couple to the
trace of the energy-momentum tensor). Nor can the spin
be 1, because this implies a difFerence in sign between the
forces acting on "charges" of the same sign and charges
of different signs (as is the case in electromagnetism).
This means that the simplest possibility is a massless par-
ticle of spin 2. The simplest way of writing a Lagrangian
for it (first noticed by Fierz and Pauli) is to consider a
symmetric tensor field h„. In order to reduce the'de-
grees of freedom (from 10 down to 2), we need some kind
of gauge invariance, with a vector gauge parameter, say
g„. Otherwise we would have the five degrees of freedom
of a massive spin-2 particle, plus the four of a vector par-
ticle, plus a scalar. The simplest invariant Lagrangian is
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5h„„=2~-'g,„„,—=~-'(a„g.+a,g„), (1.2)

where ~ is an arbitrary constant of mass dimension —1,
introduced to make g dimensionless. Later on, we shall
identify x with the inverse of the Planck mass:

= SING,
8m

Mp

where 6 is Newton's constant. %"e can also express the
Fierz-Pauli Lagrangian in terms of the convenient vari-
able

y~„=h„„—heal„

The answer is (denoting h =rl""h&„),

x=,(a.q„,a~q-+a. ha,~ )

—,(3a.ha.h +a.~„„a.+') .

The Euler-Lagrangian equations imply

D„;Ph.,=[(~„~.P q„.~ P)a-

+rl„„a ap+g pa„a,

-~„pa a.-~. apa„]h.,=o .

(1.3)

(1.4)

There is a "Bianchi" identity which assures transversality
of the operator D:

z=-, (a.h„„a h" —a.ha, h")
+-,(a~ha„h —a'h„„a,h~ ),

where all indices are contracted with Minkowski's
metric, q„, and this Lagrangian has the Abelian gauge
in variance

+q~ (r„.r.—r;„rp„)] (1.10)

(where I ~:—I ~i'z) is equivalent to the standard Fierz-
Pauli form (1.3).

The field equations stemming from Eq. (1.10) are

=a.r„„--,'(a„r„;gp+a„r;pqp) =o5S
JMV

5S
51„,

=2I " —I "g —I "g "—8 h" +8"h

+a h."+-,a.h&~. .

Together, they imply the useful equation

(1.12)

D„, ph p= Uh„, —a—a„h —a ap „——,'dphil„=O,

(1.13)

which is equivalent to (1.4), as can be easily seen by per-
forming the substitution y„,= —h„,+ —,'hg„, (y=h).

Now, we know that, in order to get consistency, Eq.
(1.13) must be complemented with the source term

must necessarily derive from a cubic Lagrangian. This
implies that its energy-momentum tensor is not 52T„„
but 53T„, and there is an infinite series to consider.
Vfhen this is done properly, we get Einstein s equations
in the end.

%"e shall actua11y follow here a simplified procedure,
due to Deser (1970), which avoids the necessity of sum-
ming the infinite series by making clever use of 6rst-order
Lagrangians. It is rather easy to check that the Lagrang-
ian

s'"= Jd' [h (a.r„.—a„r„)

gpD ap 0P.V (1.5) l
TPV TPV 2 T97PV 7 (1.14)

D„~h p=T„„, (1 6)

where T„ is a tensor characteristic of the matter Selds;
this tensor in general is not transverse, rendering Eq.
(1.6) inconsistent. The natural thing to do would be to
modify Eq. (1.16) by adding 5zT„„to the second member,

D„„Ph p=T„+5zT„, , (1.7)

where 5zT„, is the energy-momentum tensor of the
(quadratic) Fierz-Pauli field itself and there is the integr'a-
bility condition

a~5,T„.= a~T„, . — (1.8)

Now, we note that the new field equation (1.7), when
written in the form

(1.9)

This identity is precisely the source of trouble when cou-
pling the Fierz-Pauli field to any matter (still in Min-
kowski space), because the field equations would in that
case be of the form

where T„ is the energy-momentum tensor correspond-
ing to the Lagrangian (1.10).

A straightforward computation gives

v.„=tp„I ~ —I t „+o„
where

~„,=—as[ad„„(h" r~ —
—,'hr )+h„„r

—h„ I,—h I „+h P(l „p,+I,p„)

+h„i'(r „—I )+h i'(r „—I „)].

(1.15)

(1.16)

The essential point is that the action giving the correct
equations,

aPD„h p=~„ (1.17)

is

s=s'"+ Jd'xh~(r r —r rp )pv a Pp, av (1.18)

and it is easy to check that this extra term does not con-
tribute to the new energy-momentum tensor (if h" is in-
terpreted as a density), the reason being that it is already
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generally covariant without the need of introducing any
fictitious metric.

Now if one adds to the action a convenient surface
term, namely,

Jd x g" (8 I"„„—8 I „),

Ei EVENT
i HORIZON

one easily sees that the action can be reexpressed in terms
of the I and the new variable

g„:—q„+h„
S = Jd'x g&"(a.r„.—a,r„.+r„„r~~—r;„r~.), (1.21)

which is equivalent to the first-order form of Einstein s
Lagrangian, if one remembers that g is a density, i.e.,
equivalent to &gg~ .

It is remarkable indeed that a purely geometrical
theory such as general relativity can be obtained starting
from Aat-spacetime physics and imposing some con-
sistency requirements.

In Sec. IV we shall study a deeper justification for
Einstein's Lagrangian (stemming also from Feynman, but
expanded by Weinberg and others). To be specific, we
shall see that the dominant term in the long-wavelength
efFective Lagrangian of any possible quantum theory of
gravity is always the scalar curvature, leading thus to
Hilbert's Lagrangian.

II. QUANTUM FIELD THEORY IN THE PRESENCE
OF EXTERNAL GRAVITATIONAL FIELDS

The aim of this section is to introduce the reader to
some peculiar efFects on quantum fields in the presence of
external gravitational backgrounds.

These efFects are essentially nonperturbative in charac-
ter, but they are otherwise very simple, and they appear
already for free fields in a two-dimensional spacetime.
The essential feature here is the presence of horizons.

Let us briefiy recall what a horizon is [see Penrose
(1967) or Hawking and Ellis (1973), for a more extensive
discussion]. The "particle horizon" is a concept associat-
ed with a given observer (i.e., world line) at a given point;
it consists simply in the boundary between the set of par-
ticles seen by the observer, at the given point, and those
which are not seen there.

On the other hand, it can happen that some events will
never be observable by a particular observer at any event
of his or her history. The boundary separating those
from the observable events is called a "future event hor-
izon, " (a concept associated globally with the observer).
Not every spacetime has horizons; Minkowski spacetime,
for example, has neither event nor particle horizons. But
a generic spacetime will have them (see Fig. 1).

Quantum field theory in a curved background has been
developed by Parker (1968, 1969, 1971), Fulling (1973),
Davies (1975), DeWitt (1975), Wald (1975, 1980), Unruh
(1976), Hawking (1979), etc. There is a detailed historical
discussion in Birrell and Davies (1982).

We shall study here the simplest model with nontrivial

PARTIC
HORI2 0

FIG. I. A schematic illustration of the concept of a particle
horizon (the past light cone of P) and an evident horizon (the
past light cone of E).

behavior, namely a scalar field in two-dimensional space-
time, from the point of view of an observer in constant
acceleration (which, by the principle of equivalence, is
the same as a uniform gravitational field). We shall fol-
low the approach of Lee and collaborators (Friedberg
et a/. , 1986; see also Sanchez, 1987).

The action for the scalar field in M2 is

s = jdr dx~ ,'(a, ~)' ,-'(a.&)'—v(~)].— (2.1)

=1 1x =—coshg~, t =—sinhg~ . (2.2)

The four velocity is unitary u = —1, where
u"=dx"/d~, and the acceleration is constant in the
sense that a =g, where a"=d x"/d~, a~u„=0.

It is natural (for the observer) to work in comoving
coordinates t', x', defined by the equations

u' =1 u'=0 (2.3)

this gives easily the difFerential equations

,p Bt' Bt'u' =1= coshgv. + sinhg~,
Bt Bx

Bx Bx
u ' =0= coshg~+ sinhg~,

Bt Bx

(2.4)

or, equivalently,

ax ax at atx+t =0, gx+ gt =1-,
3t Bx Bt Bx

(2.5)

and it is a simple matter to check that the solution to Eq.
(2.5) is given by

X 1x =—eg coshgt' t =—eg sinhgt' .
g

(2.6)

We shall denote the original coordinate system (xt) by X
and the accelerating one by X~ —= (x't'), which is usually

On the other hand, the equation of the world line of
the accelerating observer is

Rev. Mod. Phys. , Vol. 61, No. 3, July 1 989
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S'[g]=f d8' f r dr —,'(B„y)

+ (a~)'+ v(q )
1

2r

(2.25)

The constant c" can be determined by imposing
&olo&=1:

&olo&= g &olq &&qlo&

I I

=Ic"I ' g &qile " 'lqt'i&&qtile " 'IqL&

(qle ~ Iq&= lim fJ(A) gdy;ea~0
(2.26)

and the boundary conditions are y(x', 8=0)=qt'i(x');
y(x', 8)=q L( x'); lim„@=0.

The simplest way to de6ne the functional integral
(2.24) is to consider a lattice A in the (x,y) plane, with
lattice spacing a

t= le"
I

'tre " '=1 .

To sum up, we have proven that

&olq~qL, &
=

(tre z~HR /g 1/2

where we recall that the the states are defined by

(2.31)

I t

(qLle " 'Iqt'i &= »m fJ'(»gdq;e (2.27)

=c lim f

+d'or,

e
&q=ole ~Hlq =o&

(2.28)

The Jacobians J(h) and J'(b, , ) can be eliminated by con-
sidering the ratios

qti Iqaqi. & =qii lqRqg & ~

qL, Iqaqt. & =qL, Iqti qL, & ~

Og lq~ &=q,'lq~ &,

&qual"qi=&qLlq~ .

(2.32)

Given by observable 0' in Rindler's space Xz, we have
seen that it depends only qti(x') and 5/5qti(x'). We
have then

—OH~ Ig

I

=c»m f Q dp;e ~

a~O

(2.29)

&OIDlo&=g(olqfq &('qfq'I&lq'q &&q'q Io&

=y &olqfq'&5q'q'&qflolq &,

Let us consider now the above expressions when 8=m,
in the limit p~ oo, and when q=o and q is related to qt'i

and qL by q(x) =8(x)qz(x')+8( —x)qL (x'). It is a sim-

ple matter to cheek that the two boundary conditions for
the functional integrals (2.28) and (2.29) now coincide:
when 8=0, x =r &0, y=O, which in turn means

q (x)=q~ (x'); and when 8=m, x = —r (0, y=o, so that

q =qL(x'). Besides, y(x,y =Phoo)=q=o. This means
that the two functional integrals (2.28) and (2.29) are pro-
portional. On the other hand, c/c'=1, because the left-
hand side of both equations is 1 w'hen q =q=O and

qz =qL =0. We have thus proven

&q=ole ~"Iq&
v-- (q=ole i'"lq=o&

(2.30)

In order to see the physical meaning of Eq. (2.30), it is
useful to realize that when p~ oo

&qle ~"Iq&= g &qlE&e ~ &EIq&

~e '(qlo&(olq & .

&q'q lo&=—g, (qflolq, '&
2sttg /g

(

( 2m' /g i/2—
—2mH~ /gtroe

—2~a„' ggtre
(2.33)

This means that in the ground. state of the Hamiltonian
in X, any observation in Rindler's space always gives the
same results as if the system were in thermal equilibrium
with P=2~/g.

This result can easily be extended to an arbitrary num-
ber of dimensions, as well as to fermionic 6elds. The
black hole situation originally considered by Hawking
can be treated using similar techniques; the details can be
found in the literature. Instead of dwelling upon this
type of extension, we have preferred here to elaborate a
bit more on the relationship between operators de6ned
inside and outside Rindler's space.

Let us consider an arbitrary function of q and 5/5q;
with each of these, we can associate two operators:

This means that
IR =—I (qt'i, 5/5/a ), IL I (qL, 5/5qr'. ), ——(2.34)

t

(q~ Ie ' 'lqa &
=c"(olq & .

so that Iti lies inside Rindler's space, while X' and IL lie
outside it.
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One may ask whether we can associate any operator II
outside XR with another one Jz defined inside Rindler's
wedge Xz such that their action on Minkowski vacuum
is ihe same:

y(x', 0)= g (2cok )
' (ak+akt)fk(x'),

p(x', 0)= gi(cok/2)'~ ( —ak+ak)fk(x'),

(2.44)

(2.45)

(2.35) where the canonical commutations reduce to

It is actually very easy to check that the answer to that
question is in the afhrmative and that the operator Jz is
given explicitly by the formula

lak ak )=&kk' lak ak'l

The inverse expansion, using qR (x') =—yfx', 0);

(2.46)

g=e II e (2.36)
1s

pR (x', 0)= =i 5/5qR (x'),

&qRqL IIL Io &
=&&qL Il'Iqr', & &qRqL, Io&,

&qRql. I JR IO& =&&qR l&R IqR &&qRqL, IO&,
(2.37)

which means, using Eq.(2.31), that the equality (2.36) to
be proved is equivalent to

Let us quickly prove Eq. (2.36). Using a complete basis,
we can write

r

Qk 2~k k + QR + +
00 ~k 5qR(x'}

fk
1 5

00

(2.47)

(2.48)

&qL II'Iql. & &qR Ie ' 'Iqr. &

=&qRI&RlqR &&qRle
" 'lqL&

On the other hand,

&qgll'Iqg &=&q~lllqg &,

(2.38)

(2.39}

which explicitly shows that both ak and ak fuM11 Eq.
(2.34). This means that we can apply the theorem (2.35)
to them and write

(2.49)

(2.50)

where the vectors on the left-hand side are eigenvectors
of qL, whereas those on the right-hand side are eigenvec-
tors of g, in both cases with identical eigenvalues. By
realizing now that

&q' IIlq' &—:&q'lI lq' &

where we have adopted the representation in which ak
and a„are real, so that ak =a„,and aL =a (qL, ,5/5qL ).T=

It is useful to introduce another accelerating system
XL, which lies outside the original Xz, when viewed in
Minkowski space X, the new system has an acceleration
of the same magnitude but opposite direction to X~,

we get

mH~ /g —m'Hg /g
e I=Je

gxL gx~x:———e coshgt, t—:——e sinhgt . (2.51)

the result we wanted to prove.
A further point we may want to clarify is the corre-

sponding behavior for states other than the vacuum. In
order to do that we shall introduce a convenient oscilla-
tor expansion of the 6elds, namely,

q)(x, O)= g (2Qk) 'i (3k+ Ak)Fk(x), (2.40)

It is easy to check that XL covers the left wedge of Min-
kowski space (see Fig. 3) and that the corresponding
event horizon is given by x = —ltl.

Using a straightforward extension of Eq. (2.35), inter-
changing the roles of Xz and XL, we get the reciprocal of
Eqs. (2.49) and (2.50):

p (x,O) = g i ( ,'Qk )'~ ( —Ak—+Ak )Fk(x),
k

(2.41)
(2.52)

Fk(x)Fk (x)dx =5kk (2.42)

where IFk(x) I is any given orthonormal set of functions, In the particular case of a massive free 6eld, the
Euler-Lagrange equation in XR, Eq. (2.10), takes the
form

I. ~k ~ ~k' l ~kk' ( ~k ~ ~k'1 —0 . (2.43)

and Qk are nonzero constants. The canonical cornmuta-
tion relations are now easily seen to imply

—a'.q+a', q+e' 'm'q =O.

A convenient choice for the basis Ifk J is then
r

d +~ 2e2gx f —~2f

(2.53)

(2.54)

In Rindler's wedge X', we can introduce a similar expan-
sion~

r

because then the Hamiltonian in Rindler's wedge reads
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ofresponds to an "equivalent temperature"
kT = fia /2mc —1200'C.

Now, it is known (both theoretically and experimental-
ly) that circulating electrons become polarized, but not
fully so. In a very interesting paper, Bell and Leinaas
(1983) have examined the possibility that the residual
depolarization could be regarded as a thermal e6'ect asso-
ciated with the centripetal acceleration of the electrons in
the ring. Although their conclusion was affirmative (with
some nuances), more work is needed to order to settle the
issue.

III. EINSTEIN GRAVITY AS A GAUGE THEORY.
PERTURBATIVE RESULTS AT
ONE AND TWO LOOPS

FIG. 3. The two Rindler wedges Xz and XL.

H„' =y~„(akak+-2} .

By using the general expression

e ae =e a

(2.55}

(2.56)

(2.57)

(2.58)

which, by using the identity

A,a~a~ Ra~a~
a, e ' '=e ' '(Aa2t+a, ), (2.59)

where a
&

and a& are two independent oscillators,
[a i,a2] =0, admits the following formal solution:

7TCOk /g
10) =cexp g e "

agkar. k IOI g ),
k

(2.60)

with N—:a a, we can work out Eqs. (2.49) and (2.50) to
read

In this section we shall first show how, in a certain
sense, Einstein's theory of general relativity can be
viewed as the gauge theory of the Lorentz group, O(1,3)
(in another sense, it can also be considered as the gauge
theory of the group of spacetime translations, which are
equivalent to arbitrary diffeomorphisms).

We shall then apply the standard technology
developed in the 1970s to quantize an arbitrary gauge
theory, as found in standard textbooks, with the single
minor modification (which proves technically very con-
venient) of using the background field method from the
very beginning. This will allow us to reproduce the
famous result of 't Hooft and Veltman, in which it was
found that pure gravity was on-shell one-loop finite.

Unfortunately this result is no longer true, even at
one-loop order, when the coupling to matter is con-
sidered, except (as we shall see in the next section) in the
case of supergravity. Neither is pure gravity finite to two
loops, even on shell, as has been recently proved by
Goroff and Sagnotti (1986).

This set of results (obtained from the most simple-
minded, perturbative approach, forgetting all we have
learned in the preceding section), forces us to face seri-
ously the problem of the ultraviolet divergences of any
quantum theory of gravity based on a local quantum field
theory. This will be done in Sec. IV.

where 101& ) is the state satisfying

A. Gravity as a gauge theory
2.61

The physical meaning of Eq. (2.60) is that the Min-
kowski vacuum can be expressed as a coherent state of
Cooper pairs of left and right quanta. It is that peculiar
structure that lies behind Hawking's radiation and
Bogoliubov's transformations.

A natural question to ask is whether we can seek for an
experimental confirmation of these eQects. In some of
the big particle accelerators such as the LEP machine at
Geneva, one expects a I.orentz factor y —10 and a bend-
ing of R -3.1 km, such that the acceleration of a typical
electron will be of the order a -3X 10 ms, which cor-

x'"=x"—P'(x)+O(g ) . (3.1)

It is a simple matter, by working out the transforma-
tion rules of the metric tensor, to check that

In a certain sense, Einstein s general relativity is in-
variant under arbitrary diffeomorphisms (the subtleties
contained in the above imply that, for example, there are
no global conserved quantities associated with that in-
variance). The local form of an arbitrary diffeomorphism
is JUSt
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5g„,—=g„' (x') —g„,(x)=$(g)g„,

=p—a~„.+g„,a,p+g „a„p . (3.2)

This immediately implies that the symmetry group is
non-Abelian, when we use

Before proceeding, let us notice that when the theory is

formulated in this way there is a manifest gauge invari-
ance. It is indeed obvious that the metric g„does not
define the vierbein uniquely: if e „is any given solution
of Eq. (3.7),

(3.3)

On the other hand, if we are interested only in pertur-
bations around Bat space, the natural variable to use is

h„„,defined as in Sec. I

e~a La eb
b

is another, as long as L H 0(3, 1), that is,

a ba.bL .L d=n. d .

(3.1 1)

g„=q„+~h„
The transformation rule (3.2) implies now

5h„=$(g)h„, +2m 'g(„,) .

(3.4)

(3.5)
co' =L coL '+LdL (3.12)

Now, it is well known that, given any gauge symmetry,
there is a gauge field associated with it. In our case, this
field is called the "spin connection, "and it transforms as
any other gauge field,

Incidentally, we now see clearly that only the second,
Abelian part of the complete symmetry was present in
the Fierz-Pauli Lagrangian we considered in Sec. I.

It is in this sense that we may say that Einstein s gravi-
ty is the gauge theory of the group of spacetime transla-
tions or, more precisely, of spacetime diffeomorphisms.

We shall consider next a slightly different viewpoint,
based upon Cartan's formulation of general relativity,
which, in addition to furnishing a new perspective on the
problem, is the only known consistent way of incorporat-
ing fermions into general relativity. We shall have oc-
casion to do that in Sec. IV, when introducing supergrav-
ity.

Let us first review Cartan's approach (see Eguchi
et a/. , 1980, Choquet-Bruhat et al. , 1982). The starting
point is the introduction of a tetrad, usually called a vier-
bein in d =4, or a vielbein in d )4, which defines an iner-
tial frame at each point of spacetime. It is technically
easier to start from the duals, and consider the one-forms

and it is a simple exercise to check that it transforms like
e under gauge transformations

T'=I T . (3.13)

On the other hand, we know that from any gauge field
we can construct the field strength, transforming as a ten-
sor. In our case, this is called the "curvature, "

R =dco +co @co =—R e Aeb b e b 2 bt 1

and is such that under a Lorentz transformation

(3.14)

R'=LRL (3.15)

Let us remark, in passing, that Eqs. (3.12) and (3.14)
imply the Bianchi identities

The gauge-covariant derivative of the Uierbein (which
ls a two-form) ls called the tolsloll,

Ta dna+~a p &b ] Ta eb p ec
b =2 bc

e'= e'„dx", (3.6)
dna+~~ p Tb ga p eb (3.16)

a b
ggbe P V gPV

gPvea eb ~ab
iM V

(3.7)

(3.8)

where a, b, c, . . .=0, . . . , 3 are "Oat" or "Lorentz" in-
dices, to be distinguished from the usual p, v, . . . called
"curved" or "Einstein's" indices. The vierbein is, in a
sense, the square root of the metric:

It should by now be plain that the spin connection can
well have a dynamical meaning (as is indeed the case in
supergravity), that is, its value is to be computed from
the field equations.

In Einstein's theory, though, this connection is fixed to
what is called the "Levi-Civita connection, " defined by
the conditions

The inverse e, =—e,"8„is defined by co(~b) Oy T 0 (3.17)

e,"=g,bg" e (3.9) which in turn imply

and it is obvious that co'b„(e)=e' eb'.„. (3.18)

e "e =5 b.
a p a (3.10)

The idea of Cartan's approach is to refer all physical
quantities at a given spacetime point to the vierbein lo-
cated at that point (Cartan's repere mobile). This is actu-

ally, as we have already said, the way fermions are intro-
duced into the theory.

In supergravity one never has to specify the aftine
spacetime connection I „;only the spin connection ap-
pears. It is always possible, though, to define the affine
connection by postulating that the tetrad is covariantly
constant, namely,

(3.19)
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P

PP pp
(3.20)

where I„ I are Christoffel symbols of the second kind.

When this last equation is solved using the Levi-Civita
spin connection co~ "(e), one gets the standard metric con-
nection in general relativity,

It turns out that the convenient gauge fixing is the
"background gauge fixing"

O'=Dp( A)Q'~, (3.26)

and it is a simple exercise to check that the whole action
is invariant under background gauge transformations, if
we let the sources transform also in the adjoint,

gJc ycabJ
p ap b

Now, by standard manipulations, from the partition
function Z—:e ' we can obtain the effective action,
which will now be a functional of the background field A

and the "classical" field

B. The method of the background field

This technique has proved to be extremely useful when
working with gauge theories, because it aHows full use of
the symmetry properties of the classical Lagrangian
when performing quantum computations. It was intro-
duced by DeWitt (1965) and has been improved upon by
many people since (see references in Abbott, 1981, whose
approach we follow in this quick overview).

The starting point is to introduce into the functional
integral the sum of a background variable 3 and a quan-
tum field Q. The functional integral is performed with
respect to the quantum fields only. This means that the
partition function wi11 depend on the background vari-
able A (as well as the sources). To be explicit, we start
from

(3.28)

The explicit formula is given by Legendre's transforma-
tion,

r(g, a)=—w(z, w) —fJ;g&. (3.29)

It should be plain that the effective action is invariant
under the transformations (3.24), with the classical field

Q in place of the quantum variable Q. Thus we see that
1 (Q =0, A ) is a gauge-invariant function of A. This is
the result we announced at the beginning of this section:
the quantum effective action has the same (gauge) sym-
metries as the classical Lagrangian.

It is possible to relate the background field effective ac-
tion I (0, A ) to the ordinary effective action in a peculiar
gauge, by identifying the classical field in this new gauge
with the background field.

We shall not dwell upon this any longer, but refer the
reader to the literature for more details. Perhaps it is
worth mentioning, in closing, that by using this tech-
nique i.t is possible to avoid completely the gauge-fixing
parameter renormalization, due to the fact that neither
ghosts nor quantum fields get renormalized.

Z(J, A)= f2)Q det exp i fX(A +Q) — 6'56 1 .2

5co 20,'

(3.21)+J„'Q„'

where 6' is the gauge fixing and co are the gauge param-
eters. The complete gauge symmetry is

(3.22)5( A„'+Q„')= f,b, co ( A„'+Q„'—)
—c)„co' .

It is perhaps worth stressing that 2 does not need to
be a solution of the field equations.

There are two important particular cases. The first is
the "quantum variations, "defined by 6A =0, such t

5Q„' = f,„,co"( A„'+Q—„')—c)„co'

hat.
C. The one-loop computation of 't Hooft and Veltman

(3.23)

(these are the variations to be used in computing the
Faddeev-Popo v determinant). The second invariance
corresponds to the "background variations, "

"og„' = f.I„~'Q„'—
(3.24)

%'e shall start from Hilbert's Lagrangian

1
&g (R —2A)

2K

and consider the background field expansion

(0)g„=g„+h„

(3.30)

(3.31)

D (A)Q„=B Q„+i[A,Q„] . (3.25)

which are such that the quantum fields transform as the
adjoint. This means that the corresponding background
covariant derivative is

where, as we have already emphasized, it is not necessary
for g„' ' to be a solution of Einstein's equations. The re-
sult, up to second order in h, and omitting total deriva-
tives, is

—21c'&=&g' '[ —2&(1+—'h ——'h ~h p+ 'h')+R'o' ——'hR' —'+h pR'0'~ —R' '(-'h' —-'Ii hp )P a. 8 2 p 8 g p

—hp hP R ' + 'hh R' 'P ——'c—) hP c)"h p+ —'c) hell'h ——'c)phci hPI'+ —'c) h PP P] (3.32)
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The Lagrangian, written in this way, induces tadpole
contributions (because it contains terms linear in Il). The
standard way to remove tadpoles is to perform a field
translation, h„~h +5h„, and choose 5h„ in such a
way as to cancel all linear terms in the Lagrangian. This
gives precisely the mass shell condition for the back-
ground field:

g (0) l g (0) (0) ~ (0)
~p 2 gap ap . (3.33)

X =&g ( —R —
—,'B„q&g"'B,q)) . (3.34)

The original work of 't Hooft and Veltman was based
upon two theorems attributed to 't Hooft, which we shall
prove before tackling the most complicated Lagrangian
(3.34) [the reader is strongly encouraged to study
Veltman's (1976) review, where he or she will find many
details we are unable to reproduce here].

The first of 't Hooft's theorems deals with the La-
grangian, written in Minkowski spacetime,

X(y)= d„qr,'r}l'p; +—2q&,'Nl'd„y + lp,'M,"lp (3.35)

and asserts that the one-loop counterterm is given by

(3.36)

When the background metric is fiat (corresponding to
Minkowski spacetime), this equation is consistent only
with zero cosmological constant. Conversely, this im-
plies that when AAO, one is forced to consider a non-
trivial spacetime as a. background, in such a way as to
satisfy Eq. (3.33).

Our aim in this section is to study the divergences of
the Einstein theory as given by Eq. (3.30). With almost
no extra work we can consider a scalar field coupled to
gravity (when A=O). This means that we are interested
in the Lagrangian

P P)l ilPl Plj PJ (3.40)

and Q is given by Eq. (3.38). Now, it is easy to check that
the Lagrangian (3.39) possesses the (fake) O(N) gauge
symmetry

g
—Ag A

P„~e AP„eA+(r}„e A)eA,

(3.41)

which implies

and, in the infinitesimal form, reduces to

(3.42)

5y= —Ay,

&Q=[g AI

5P„=[P„,A]+d„A .

(3.43)

As we have repeatedly emphasized, this means that the
counterterms (that is, the pole terms in the dimensional
regularization method) must be invariant as well. This
implies

X,',"„„„,=ciTrg +c2TrG„G" (3.44)

I d p 2l17 2 16l1T

p4 n —4
™

c
™

This means that the counterterm must be of the form

In order to determine the coefFicients, it is sufFicient to
compute a couple of diagrams; for example, from Fig. 4,
which is proportional to

Mi(k)MJ;. ( —k)
d p

p (p+k)
we learn that the divergent part of the integral is propor-
tional to

G„.=—2a,„N., + [N„,N, ],
Q=M —N N"—8 N" .P P

(3.37)

(3.38)
1 1

( —)—
2 (2m) i

—16Sm.4
trM

The proof proceeds by first noting that the Lagrangian
(3.35) has a gauge invariance. This means that, if the
background field method is used, the counterterms must
also possess this symmetry, and this fact greatly reduces
the available counterterm candidates. (Because we are
working to one-loop order, they must be constructed out
of terms of dimension four. ) This restriction in the
present case leads us to consider the most general coun-
terterms as an arbitrary combination of the two terms ap-
pearing in Eq. (3.36). The coeKcients are then fixed by
considering particular diagrams.

To be explicit, the Lagrangian (3.35) can be rewritten
as

(3.39)

where

and since the only term quadratic in M in the counter-
term Lagrangian [Eq. (3.44)] is that stemming from trQ,
this implies that el=1/2E. Similarly one learns that
cz = 1/12E. Of course, this method allows for many con-

p+k

FIG. 4. A diagram corresponding to the order M contribution
to the vacuum energy.
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(3.45)

Let us check, for example, the coe%cient of the term
QR. In order to do thati, t suffices to consider a particu-
lar background, namely,

g„=g„g(x)—:i)„[l—f(x)] .

The original Lagrangian (3.44) reduces now to

X= tp*F rp+2q&*(FX„+ 2a„F)a"tp—+ tp*F Mtp

(3.46)

(3.47)

in such a way that with the substitution y' —+cp F we
can use our preceding theorem, with

M'=FM,

sistency checks to be performed.
The second of 't Hooft's theorems is a curved-space

generalization of the preceding one. That is, we consider
the Lagrangian

X=&g ( a—„y*gl' a rp+2tp*X"a rp+tp*Mtp),

and the theorem asserts that the one-loop counterterm
Lagrangian is given by

+—'(a"a h ) ] (3.50)

so that, substituting the expression for h and perform-
ing a comparison with the terms R and R„R", ex-
panded to second order in h, we learn that

+counter= [ &zR + 6o Rp~R —3R )]
C

(3.51)

These two (rather easy) computations suffice to estab-
lish Eq. (3.45).

Let us finally, after this long detour, return to the
problem of the full quantized gravitational field, con-
tained in the Lagrangian (3.34).

The full gauge invariance

5g„,=$(g)g„„5y=S(g) pt (3.52)

[it is easy to check that in Eq. (3.52) all ordinary deriva-
tives can be replaced by covariant ones], when applied to
the background field expansion

This means that the counterterm Lagrangian to (3.49}
is given by

counter 2 [ p4() ( +to ( pa )

+—' h 8"B~h ——'B 8 h "~B~B~h"
30 Pv 60 a v pP

X„'=X„+-,'F-'a„F .
(3.48)

g =g„+h„, y=y+P (3.53)

The other unknown coefBcient in the counterterm La-
grangian (3.45) can be obtained by computing one dia-

gram in another particular case; for example, X =M =0
and

g„=q„+h„

gives the general expression

5(g„+h„„)=gV (g„+h„)+(g„+h„)VQ
+(g +h }V/

5(tp+P)=@V (@+/) .

The Lagrangian then reads

J = a tp'a"tp+a—„tp*h "'a tp,

where

(3.49)

The quantum variations correspond to

5g =5tp=O,

5h„=@Vh„+2(g(„+h„)V,g (3.54)

h =h ——'h

The terms of O(h ) in the Lagrangian do not contrib-
ute to this order, because we know that the general coun-
terterm (3.45) must be of dimension 4, which means that
it is quadratic in the gravitational background field.

Now, let us consider a diagram with two h vertices
(Fig. 5) whose divergent part is proportional to

„T„T I „p"(p+k)'p (p+k)~h„.h p f d'p

54=@V,(4+0»
and the background ones to

5g„=$(g)g„„, 5tp= S(g)tp,

5h„=S(g)h„„, 5$=$(g)ttp .

(3.55)

(3.56)

Substituting the expansion (3.53) into the gravitational
scalar field Lagrangian (3.34), and keeping terms up to
second order in the fields, we get, using partial integra-
tion,

z =vg [ R ,'a„~ g ~ a.~—,'—hR—,'a„q g ~ a.—q h—+h—.&—R,+,'h„.a~q a ~ a„yg ~ a.q ,'a„y—a.~(g ~ h 2—h~)—
—ta q)a y(h ~h~ —thh" ) ——'a pgI' a p —

( th —th h~)(R+ ta tpg~ a tp) hphpR +2thhpR ~

+—,'V+~V hp+ ,'(a„h) + —,'V h ~V h—&]+O(rp,h, rp h, tph ) . (3.57)
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p+k

+counter [+720 )io ap +I( pf'g A )
E

—
—,', Ra„gg" a y+2(v„v "q&) ] . (3.66)

As usual, tadpoles are absent when the background
fields g and y obey the classical equations of motion:

FIG. 5. An (h ") contribution to the vacuum energy. VpV
"y=0,

R„,'Rg——= ,'V„—y—V,p+ —„'g„(V yV y) .
(3.67)

The quantum gauge invariance conveyed by Eqs. (3.54)
must be broken, as usual, by a gauge-breaking term.
There are many ways to do this; one of the most con-
venient is the use of the Dc Donder gauge, defined by the
gauge function

C, =+g (V h)' —
—,'a h Qa„gr—)e," . (3.58)

The gauge-fixing term in the Lagrangian will thus be

—
—,
'c2= —

—,'+g (v h~„——,'a„h)(v' h "—
—,'a"h)

+Vg (V,he~ ,'a~h )y—a„~

—
—,'&g 0'a„ya„yg ~ . (3.59)

The ghost Lagrangian is obtained in the standard way
by performing a quantum gauge transformation. We
find, up to first order in the gauge parameter, and omit-
ting terms containing h or P,

M, =&g e,"(V~V„g +V V~(„VV~(' —ya„q ) . —

(3.60)

When the whole system is on shell [that is, when the
preceding equations (3.67) are used], the whole counter-
Lagrangian reduces to

~(1) g R 2
counter (3.68)

This implies, in particular, that for pure gravity, when
R =0, this counterterm vanishes. This is the famous re-
sult of 't Hooft and Veltman. Until recently it was un-
known whether this finiteness property was related to
some mysterious symmetry in the purely gravitational
sector.

We should like to stress, in closing this section, that
the general form of the divergent part of the one-loop
e8'ective action for pure gravity is, by symmetry con-
siderations,

l "'=f d(vol)(a&R +a~R""R„,+a3R" )'~R„

which can always be recast in the form

I'"= d vol c,R +c2R" R„

This means that the ghost Lagrangian is

Ash„, = g rl"(V V~g„—R „aq)a„@)r—l (3.61)

+c3(—4R" )' R„,
+16R"R„,—4R )] . (3.69)

On the other hand, the quadratic part of the total La-
grangian, including the gauge-6xing term, is

z,„.,=&@( ,'v p.pv h—,+—,'vp v h ,'a„-yg ~ a,y——

+ ,'hp XP"hp+—PF phP~+ ,'PZP), (3.62—)

where the operators X, Y; and Z are given by

p+av = 2g vV 0' aV'+ 4ga V O'Vv9'

On the other hand, it is well known that one of the
nontrivial topological invariants of any even-dimensional
manifold is the Euler characteristic, which according to
the Gauss-Bonnet theorem is related to the Euler class as

y(M)= f e(T(M)) .

In four dimensions this gives

1
y(M) =

2 e,~dR, i, h R,d
32m'

——'g g" V yV cp+-'g ~" V yV

——'g Pg "++—'g P~ " R —
—,'g PQ "

f d(vol)(4R p sR Pr
128m

—16R pR P+4R ) (3.70)
(3.63)

We thus see that the infinite part can be rewritten as
7 p=-,'g pV V rp

—VpV

Z= —
Vpq VP9 .

(3.64)

(3.65)
) R +c2R ~Rp~ +c3+ ~ (3.71)

This Lagrangian is already of the general form (3.44),
so that we can apply the second of 't Hooft's theorems,
and after a rather lengthy computation, we get

Actually, only c3 is physically meaningful; the other
two- coeKcients c

&
and c2 are gauge dependent. The

breakthrough of 't Hooft and Veltman consisted mainly,
from this point of view, in determining the coe%cient c3.
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D. The two-loop computation of Gorofl' and Sagnotti

The well-known algebraic complications of gravity
prevent any straightforward extension of the preceding
techniques in order to perform the two-loop computa-
tion. For example, the extension of 't Hooft's theorems
to two-loop order, for renormalizable interactions, re-
quires the consideration of some 50 invariants. Still, in
order to compute the e6'ective action of quantum gravity,
nonrenormalizable interactions need to be considered as
well.

In a remarkable paper, Goroff' and Sagnotti (1986)
were able to perform the two-loop computation in the
case of pure gravity. They eliminated counterterm dia-
grams altogether and accounted for them by means of
proper subtractions in the integrals that occurred in the
Careen's functions being calculated.

They also used a technique borrowed from Kaluza-
Klein theories, and combined the metric tensor g„with
two real vector ghosts coming from fixing the general
coordinate gauge freedom into a six-dimensional metric
tensor.

On the other hand, they wrote specific programs in the
C language and claimed to gain in this way a factor of
about a thousand in speed with respect to the general-
purpose programs.

As usual, in the background field method, the first
thing to do is to list the relevant invariants of dimen-
sionality 6 in our case. This was done by Kallosh (1974)
and van Nieuwenhuizen et ai. (1977). The list reads as
follows.

IV. ULTRAVIOLET DIVERGENCES IN A
QUANTUM FIELD THEORY OF GRAVITY

The fact that the gravitational coupling constant sc has
mass dimension —1 means that a Feynman diagram of
order N carries a momentum integral of lr fp"+
where A is independent of ¹ This is the typical behav-
ior of nonrenormalizable theories. (When the mass di-
mension of the coupling constant is positive, the theory is
super-renormalizable; when the coupling constant is di-
mensionless, the theory can be renormalizable in the usu-
al sense. )

Although it was known for a long time that gravity
could not be renormalizable in the usual sense, 't Hooft
and Veltman's computation, as described in the preced-
ing section, raised a hope that the theory was actually
finite, thanks to the action of some unknown symmetry.
Goro6'and Sagnotti's computation shows that this is not
the case.

Another cherished hope stemmed from the extension
of the Coleman-Mandula theorem by Haag, Lopuzanski,
and Sohnius (1975), allowing for fermionic symmetries of
the S matrix.

The simplest supersymmetric Lagrangian, correspond-
ing to the Wess-Zumino model (see Van Nieuwenhuizen,
1977, for a thorough discussion) reads

(4.1)

and the global supersymmetry associated with it is

5A =—
A, , 5B = ——Ey, A, , 5A, = —,'8( A iBy, )e, —(4.2)

l

Ii=7 RV"R, I2=R, I3=V„R pV"R

I =RR R P I=R R R Py I =R PR yR4 ap & 5 ay p5 6 a p y

7 apy5 8 apyc 5

9 y5 e+ ap &

10 apy5

(3.72)

The last two, I9 and I&0, are the only ones that do not
vanish on shell. They are, however, linearly dependent
modulo terms vanishing on shell.

The final outcome of the calculation of the only
gauge-independent coeNcient is

5X=B„E", I "=—
—,'ey"[P(& —iy, B)]& . (4 3)

One can easily -compute Noether's current using stan-
dard techniques. The result is

5 Eej"=g 5y —K"=——[8( A i y,B )]y"A, , —
5 (4 4)

and the associated supersymmetric charge is

Q= fd'x j',

where the parameter c. is a peculiar one, being an an-
ticommuting c number, transforming as a Majorana spi-
nor, and with mass dimension —

—,'.
Under the symmetry (4.2) the Wess-Zumino Lagrang-

ian transforms into a four-divergence:

I' '= — d(vol)R ~ sRr Rr209 I

2880(4~)4 E y5 pcs ap ' (3.73)

which obeys the super-Poincare algebra

I Qa Qbl 1 (yacc
—1)abP (4 &)

This result shows that pure gravity is two-loop diver-
gent, even on shell, so that there are no hidden sym-
metries operating on the gravitational sector. As we
shall see in detail in the next section, this fact carries
heavy consequences for the ultraviolet behavior of any
quantum field theory of gravity.

[Q',P„]=0,
[Q' ~„.l=(~„.)'bQ"

where C is the charge-conjugation matrix,

(4.6)

(4.7)
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(4.8)

where

R(e, co) =e e""R „(co),

and the covariant derivative of the gravitino is defined
with respect to the spin connection:

D P =(d + 2' "cr „)g
The action (4.8) is invariant under the local transfor-

mation s

5e'„=—,'sY'g„, 5$„=D„(co(e,g))E,

where the gauge connection is given on shell by

(4.9)

(4.10)

that is, in addition to the usual Levi-Civita term, there is
another term, which corresponds to the torsion induced
by the gravitinos.

It is not difticult to check that under the variations
(4.9), the supergravity Lagrangian (4.8) varies into the
following total derivative:

5X =B„K", K"= eY"a ~Di g— (4.11)

A.s is well known, all supersymmetric theories (and, in
particular, supergravity) get a very improved ultraviolet
behavior from bosonic-fermionic cancellations. In the
background field method, this means that local super-
symmetry severely restricts the number of available
counterterms.

It is even possible to improve upon that by imposing
several supersymmetries on the theory. In d =4 dimen-
sions it is believed that the maximum possible number is

rrl v g[Yp~Yv] .

We thus see that the supersymmegric charge com-
mutes, with spacetime translations [Eq. (4.6)]. On the
other hand, the commutation with the angular momen-
tum gives a term proportional to the charge itself [Eq.
(4.7)]; it is this commutator which defines the spinorial
character of the charge. Finally, the anticommutator of
two charges is proportional to a translation [Eq. (4.5)].

This last property implies that if we want to construct
a locally supersymmetric theory (i.e., supersymmetric
when B„E&0, this theory will necessarily contain the
gauge theory of the translations, -i.e., general re1ativity.
This is the reason for the name supergravity. The gauge
field corresponding to supersymmetry will have, as usual,
a world index p, in addition to all other indices of the pa-
rameters c corresponding to the symmetry. This means
that it is a vector spinor (Rarita-Schwinger) field g„, usu-
ally called a gravitino.

To be specific, the gauge action of simple supergravity
is

X =8, because for N & 8 we would have two gravitons,
not to mention a spin- —', particle, for which no known
consistent interaction exists.

For %=1 supergravity, one expects two-loop finite-
ness. For %=8 supergravity, there are candidates for
counterterms from seven loops onwards.

There is a famous argument, using superspace tech-
niques, asserting that higher-loop divergences should be
absent in supersymmetric Yang-Mills theory if the num-
ber of loops L, the spacetime dimension D, and the num-
ber. of supersymmetric charges X are in the relation

2X —1
(4.12)

The corresponding relation for supergravity is

(4.13)

This latter relation would imply that no divergences
appear at the first six loops in perturbation theory for
X = 8 supergravity in D =4.

Marcus and Sagnotti (1985) have claimed explicit con-
tradiction with Eq. (4.12) when studying the ultraviolet
behavior of X =4 supersymmetric Yang-Mills theory in
d & 4. This fact, combined with Goroff and Sagnotti's re-
sults, casts serious doubts on the chances of X =8 super-
gravity to be a finite theory. For this to be the case, the
coefficients of the allowed counterterms for L &7 should
all be zero. This could only be explained by some un-
known symmetry different from supersymmetry. But this
hypothetical symmetry should also be present in the
purely gravitational sector; this probably contradicts
Goroff and Sagnotti's results, although. a fully general
proof does not exist yet.

On the other hand, if we accept the theorem of Haag,
Lopuzansky, and Sohnius (and it seems difficult to cast
serious doubts on it), supersymmetry is the biggest possi-
ble symmetry of the S matrix. This means that it is al-
most certain that there is not a single quantum field
theory of gravity that is either renormalizable or finite, at
least in the perturbative sense.

Many different alternative solutions for this problem
have been proposed; among them let us briefly mention
resummation methods of Feynman diagrams; the idea of
composite gravitons; nonlocal field theories; nonunitary
quadratic Lagrangians resting on some unknown general-
ization of the Lee-%'ick mechanism, etc.

Perhaps the most interesting of all these proposals (un-
til superstrings arrived) was Weinberg's "asymptotic safe-
ness. " And this in spite of the fact that, as far as we can
tell, there are no consistent asymptotically safe theories
in d =4. By definition, a theory is said to be asymptoti-
cally safe if all the "essential" coupling parameters ap-
proach a fixed point as the momentum scale correspond-
ing to the renormalization point goes to infinity. Essen-
tial parameters are those combinations of the coupling
constants that do not change when a point transforma-
tion is performed on the fields.
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The very definition of an asymptotically safe theory
implies that the coupling constants must lie on the ultra-
violet critical surface of some fixed point, /3;(g*)=0.
The number of free parameters in an asymptotically safe
theory is thus equal to the dimensionality of the ultravio-
let critical surface of the corresponding fixed point.

In the neighborhood of the fixed point g*, we can write
for the dimensionless quantities

y(M)= f d(vol)R .
1

4m
(4.20)

subject to renormalization in 2+v dimensions, even for
c~O, in order for the Green's functions to be analytic at
c=0, and this in spite of the fact that the Hilbert action
in d =2 is a topological invariant, proportional to Euler s
characteristic

g;(p) —=p 'g;(iM)

the differential equation

g;(p) =&;,(g, (/J, ) g,*)—,d
8p

(4.14)

(4.15)

This is due to the fact that, in applying the functional
formalism to general relativity, we should modify
Hilbert's action by adding a surface term (see Ciibbons
and Hawking, 1977)

(4.21)

where the matrix B;. is given by the first derivative of the
/3 functloii:

(4.16)

The general solution of Eq. (4.15) can be written as

w here the term 4 is, as advertised, a total derivative
designed in such a way that I.&H is a function only ofg„
and its first derivatives,

4=d„(g~ g""B„gs, gg""—dig,

(4.17) (4.22)

where V and k solve the eigenvalue problem for the ma-
trix B:

B"V =A. VlJ J E l
(4.18)

We thus see that the dimensionality of the ultraviolet
critical surface is equal to the number of negative eigen-
values of B,".

Now, it is well known that any quantum field theory
always has a fixed point at the origin, g

' =0 [this is be-
cause of the fact that if the essential couplings vanish at
one renormalization scale p, they must vanish at all p,
implying that /3;(g =0)=0]. The matrix 8 in this case is

BEJ elf 5' ~ (4.19)

The ultraviolet critical surface of the origin then con-
sists of all theories with d; )0 [when d,. =0 (which corre-
sponds to renormalizable interactions), it is also neces-
sary that the second derivative of the /3 function be nega-
tive definite, i.e., that the theory be asymptotically free].
The main interest of Weinberg s proposal, then, lies in
the possible existence of another fixed point, at g 'WO.

It is actually possible to prove that the existence of a
theory which is renormalizable and asymptotically safe at
a spacetime dimension D„ indicates the existence of a
fixed point near g*=O with a finite-dimensional critical
surface for at least a finite range of dimensions D &D, .
[The reader is strongly encouraged to look at the proof of
the above, as we11 as many other interesting fine points,
in Weinberg's (1978) article].

Now, it is not difficult to prove (see Gastmans et al. ,
1978; Christensen and Duft; 1978) that there is an asymp-
totically safe theory of pure gravity in d =2+E dimen-
sions, with a one-dimensional critical surface. The
reason is that the gravitational coupling constant K is

It is plain that this addition has no effect whatsoever
when we restrict our attention to metrics that vanish fast
enough at infinity. In the functional integral, however,
we must, in principle, integrate over all metrics obeying
an adequate set of boundary conditions in Euclidean
spacetime, and the contribution of this term is, in gen-
eral, non-negligible.

In the case of interest, when d =2, this means that the
most general Lagrangian has two independent couplings

(&g R —N) — &g R, (4.23)
16~60 16~+o

implying, in particular, that Go is an independent essen-

tial coupling, even though Fo is not.
Nevertheless, having an asymptotically safe theory at

d =2+v does not necessarily mean anything for d =4, at
least until the problem of performing the corresponding
dimensional continuation is solved (which is far from
true at present).

There are instances (Smolin, 1982) where some sys-
tematic resummations of the perturbative series can be
done. When one has N copies of free fermionic matter,
for example, with Lagrangian

R+ gQ;BQ; —
—,'A, ,

a 1/X expansion in the manner of 't Hooft leads to the
result that the renormalized theory is identical to one of
the quadratic Lagrangians considered by Stelle (1977),
namely,

1
XREN R —A +—C

2K

where C &&&
is the Weyl tensor.
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(
4 4 Q

)
9

32~ 12g~

Actually, Smolin's calculation shows that the compu-
tability of the theory is due to the existence of a nontrivi-
al fixed point given by

should be remarked here that a cosmological constant
has a negative eigenvalue, because d (A) =2.] It is natu-
ral to assume that the couplings lie in the infrared critical
surface of the origin.

Now the behavior of a typical coupling constant in the
vicinity of the infrared fixed point, g; =0, is

where d.
g;(p)-(M;/p) ', (p &&M;), (4.25)

2x. f"&gR +— (4.24)

including terms of dimension 2, 4, 4, and 6. Physics at
long wavelengths is controlled by the limit p~0 due to
the fact that all terms in the Lagrangian are nonrenor-
malizable, while all eigenvalues of

Bgj g, =0

1 =cNA, A, =XgA
2K

A typical disease of quadratic Lagrangians is that there
is a spurious pole in the propagator which, as shown by
Tomboulis (1977), introduces acausal behavior into the
graviton propagator. The problem is actually a serious
one: if the physical part of a propagator falls off faster
than 1/q as q ~ Oo, there must be a pole in the propa-
gator whose residue is not real and positive [this is a
consequence of the Kallen-Lehman representation
Jdm p(m)/(k +m ) [with p&0 by unitarity]. If we

insist upon the theory s being unitary, the spurious singu-
larity must be displaced off the real axis by some general-
ization of the Lee-Wick (1969) mechanism and then
necessarily the theory will be acausal (see also Coleman,
1969, and Boulware and Gross, 1984).

To summarize, the prospect of finding a perturbatively
consistent quantum theory of gravity based on relativistic
local fields appears rather dim for the time being, and no
modification of the theories at hand could presumably
make their ultraviolet behavior any better than that of
supergravity. It is still true that nobody has found any
divergence in the latter theory, and it could actually be
finite. But the existence of possible counterterms, when
combined with the absence of any unexpected symmetry
in the purely gravitational sector, makes the finiteness of
supergravity a highly improbable event. This is the main
theoretical motivation for turning to superstrings as the
only available candidate for a consistent theory.

We shall present, in closing this section, Weinberg s
proof that the dominant term at long wavelengths is al-
ways the Hilbert Lagrangian, provided that the underly-
ing fundamental theory of gravity is asymptotically safe.

The general form of the Lagrangian, with counter-
terms included, is

&g R f&g R f '&—g R,R"'—1 —
2

2K
pv

where I; are an unknown set of integration constants,
constrained by the fact that g;(p) must lie on the ultra-
violet critical surface of a fixed point g*.

In the natural case in which none of the parameters
defining the critical surfaces takes on very large or small
values, this means that there is a characteristic energy
scale M such that

d ~

g, -M ', (4.26)

gN;d; . —

This in turn means that the contribution of such a graph
will be suppressed by a factor (1/rm ), that is, that the
leading diagrams for rm »1 will be those correspond-
ing to the smallest value of X.

On the -other hand, standard topological arguments
provide the relationship

N=gN;(5; —2)+2L+E —2, (4.27)

where 5; is the number of derivatives appearing in the
vertex i, I. is the number of loops, and E is the number of
external lines. This is turn guarantees that, for a given
number E of external lines, the dominant diagrams in the
long-wavelength regime r)&m ' are the tree graphs
(L =0), constructed purely from the Hilbert term (small-
est 5;).

It is perhaps worth remembering that when we com-
pute the metric produced by a mass m, we also pick up
another factor of G '~ m =m /m for each coupling of
those external lines to the mass. The only reason why the
exchange of trees of gravitons with E )2 has a macro-
scopic effect is that cosmic masses are so big that

and, applying this to Newton's constant, we get the result
that M =m .

Consider now a connected Green's function for a set of
gravitational fields at points characterized by a typical
spacetime separation r. We shall be careful to define the
renormalized coupling parameters g;(JM) at renormaliza-
tion points with momenta of order 1/r (and not mz ).

The coupling constants in a graph with ¹ vertices of
type i, yield a factor proportional to N powers of m~ ',
where

are positive. This in turn means that the fixed point at
the origin is entirely repulsive in the ultraviolet (p~ ao)
or, what is the same, is infrared attractive (p —+0). [It is not small.

rmp mp
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V. CANONICAL FORMALISM:
THE WHEELER-DEWITT EQUATION

Ever since the first serious attempts to quantize gravi-
ty, the canonical formalism has been one of the most im-
portant avenues of research (see DeWitt, 1964, for a very
nice historical introduction and a clear exposition of the
material of this section). The canonical approach always
starts with a generalization of time. Let us cut the space-
time by an arbitrary spacelike hypersurface X,

x =x (x') .

We have then, at each point in the surface X, a basis con-
sisting of three tangent vectors g; =a;x and the unit
normal vector n: n g; =0; n = —1.

Let us now foliate our spacetime by deforming X in a
continuous way. This gives us a one-parameter family of
hypersurfaces x =x (x', t).

The deformation vector

ax (x', t)=x
Bt

connecting the points with the same label x' on two
neighboring hyper surfaces can be decomposed with
respect to the basis vectors t n, P) .

The components N and X' were called by Arnowitt,
Deser, and Misner (ADM, 1962) the lapse and the shift
functions. Their physical interpretation stems from the
1+3 form of writing the spacetime metric:

ds~= (N dt) +g—, (dx'+N'dt")(dx'+N'dt) . (5.1)

One can imagine spacetime foliated by a family of hy-
persurfaces t =const; N(x)dt would then be the lapse of
proper time between the upper and the lower hypersur-
face. On the other hand, the shift function can be
thought of as giving the correspondence between points
in the two hypersurfaces; x'+dx'+X'dt in the lower hy-
persurface would correspond to the point x '+ dx ', t +dt
in the upper one. From this point of view, the fundamen-
tal defining equation (5.1) is nothing more than
Pythagoras' theorem.

Another concept we need to introduce before embark-
ing on a technical discussion is that of extrinsic curva-
ture. This is a concept relative. to an embedding (as op-
posed to the Riemannian curvature, which is an intrinsic
property), and it intuitively measures the relative defor-
mation of a figure lying in the given spacelike surface X
when each point in the figure is carried forward a unit in-
terval of proper time normal to the hypersurface out into
the enveloping spacetime manifold (see Misner, Thorne,
and Wheeler, 1973).

Another intuitive concept is given by the formula re-
lating the spacetime covariant derivative to quantities
defined on X:

n +(3)I ~e
J &J 2n

The extrinsic curvature can be obtained from the lapse

and shift functions by the fundamental expression (this is
what in old-fashioned difFerential geometry was called
the second differential form)

g¹~k+XI,), — (5.3)

[we shall consistently use the notation '4'V (q )=(q ). ,
' 'V;( + ) =(q )~;]. The well-known formulas of Gauss and
Codazzi express the four-curvature in terms of intrinsic
three-geometry and extrinsic curvature. An exceedingly
useful formula is York' s:

x = —-'s(n)g"' (5.4)

the 6rst of which is equivalent to the Einstein-Hamilton-
Jacobi equation

—in i 5~ 5~ in
( 2gpqgrs gprgqs ) s: e +g

5gpq Ugrs
(5.6')

where S is the classical action. This equation wi11 reap-
pear later on, when we perform the semiclassical approxi-
mation in the functional integral. Let us now implement
the canonical formalism. The conjugate momenta are

51. ; 5I.
5(N 0)

'
5(N;0)

(5.7)

These are the primary constraints (they are also first
class; see Hanson, Regge, and Teitelboim, 1976). The
other momenta are

5L, &y(lC'J g'JE) . — —
5(g;, 0)

(5.&)

The corresponding Hamiltonian is

H =fd'x(~a~+~'a~, +~'Ja~,, L,)—
= Jd x(qraoN+n'aoN;+N%+ Nip'), (5.9)

where the two quantities & and y' are given by

By using ADM's 1+3 splitting, we can reexpress the
Hilbert Lagrangian as

Z =&g Z =N&@(J: X'f r.C.
'+—"'Z )

—2a, (v'7 x)+2a, (&7 (zN

(5.5)

where y =det' 'g;J. The last two terms are total deriva-
tives so they can be dropped when performing a canoni-
cal analysis. This gives

r= fN&t (X,,Z'~ Z'+"'It—)d'x . (5.6)

The classical equations stemming from Eq. (5.6) are

g
' ( —,'(trn. ) —trm )+g' R =0,

77 J =0
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(5.10)

[N, n'] = i5(x, x'),

[X;,~~(x')]=i5, jn(x, x'),

[g;j(x),n. '(x')]=i5(x, x') —,'5I 5 " .

(5.16)

2—n"
~,
= —2m."j—g "(2g,, „—g,„,)m'" . (5.11)

We now get possible (secondary) constraints by impos-
ing the condition that the' time derivative of the primary
constraints should also vanish. This is fundamental in
order for the constrained structure of our system to be
maintained in the course of dynamical evolution. In our
case, this forces the (first class) secondary Hamiltonian
constraint IHXO —iaxO

g j(x,x)=e' " gj(0, x)e (5.17)

A paradox that has been with us for some twenty years
by now, which was first pointed out by Komar (1967), is
that the constraint equations (5.5) seem to imply that
nothing ever happens in quantum gravidynamics; that is,
that the quantum theory of gravity is necessarily a static
one.

Schrodinger's equation actually implies

&=0, (5.12) But the Hamiltonian constraint (5.5) on physical states
means that

N —C(x)-0, N, —C, (x)-0, (5.13)

On the other hand, since the B~ and B~; are multi-
plied by m and m, their Poisson bracket with anything
may be ignored (they are first-class quantities, in Dirac's
language).

One may choose as a gauge condition any second-class
constraint,

& pig;j(x', x)lg& =
& Plg;, 10,x)lit & (5.18)

One can always interpret this constraint, however, as say-
ing only that the coordinate labels x" are irrelevant for
the quantum dynamics of the gravitational field. We
shall elaborate upon this in the next section.

The q representation (usually called the "metric repre-
sentation") of the basic commutator relations (5.6) is

for example, or whatever other gauge choice may turn
out to be convenient for the particular problem at hand.
These conditions are equivalent to

(5.19)

The second of the Hamiltonian constraints, y;=0, in
this language simply means

K =0 8.(&gg'j) =0 (5.14)

and correspond merely to restrictions on the coordinates;
they have no physical content a priori.

The quantization procedure now amounts to imposing
the constraints as operator restrictions on the physical
Hilbert space:

~l@&=~'l@& =ml@& =y'l@& =0. (5.15)

There are some factor-ordering problems (which can
be solved in a number of ways) in establishing the fact
that the constraints are consistent with each other. It
should, however, be stressed that the "solutions" of the
factor-ordering problem are only formal, in the sense that
the commutators of the constraints are not well defined
in the absence of a regularization procedure consistent
with the symmetries of our problem.

A large share of the work in quantum gravity since the
pioneering approach of Dirac (1948, 1949) has been de-
voted to this (or some related) problem, in the hope that
quantum gravity could still be consistent if an adequate
(nonperturbative) approach were taken. Although we
can boast of no definitive conclusions, this continues to
be an exciting line of research today. We encourage the
reader to study the excellent reviews of Kuchar (1981)
and Isham (19&1), in which this point of view is forcefully
defended.

The canonical commutation relations are

=0 , (5.20)
5g;,.

that is, invariance under three-dimensional
di6'eomorphisms. Physically, this amounts to saying that
the state wave function g depends only on the intrinsic
(coordinate-invariant) three-geometry. All dynamical in-
formation is thus realized in the set of possible three-
geometries. In the compact case, this set is just
Wheeler's superspace A1, .

The only remaining equation (from which all dynamics
should be derived) is the first Hamiltonian constraint. In
the q representation, this is just the Wheeler-DeWitt
equation, the generalization of Schrodinger s equation to
the gravitational case. To be explicit,

where the metric in JR is

(5.21)

—1/2
Gijkl 2 Y (gikgjl +gilgjk gij gkl ) (5.22)

It is actually not difficult to check that the manifold At
is a six-dimensional one, with a hyperbolic signature of
the type ( —1, +1 ). A typical timelike displacement is
provided by a pure dilation of the three-dimensional
metric.

It proves convenient to introduce the timelike coordi-
nate
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(
32

)
) /2y 1/4

as well as any other five coordinates g orthogonal to it.
The covariant metric in Jkt then takes the form

0

—,', O'G AB
(5.24)

where

Gwa =«'Y ~w ~F ~a'Y (5.25)

is the corresponding metric in the five-dimensional mani-
fold M, with coordinates g . Actually, M is geodesically
complete, noncompact, and indeed difFeomorphic to Eu-
clidean five-dimensional space. In fact, M can be
identified (DeWitt, 1964) with the coset space
SL(3,R )/SO(3).

On the other hand, the physical manifold AL is not
geodesically complete. It can be easily proven that all
geodesics in JR ultimately hit a frontier of infinite curva-
ture.

The existence of this timelike coordinate g in A1, sug-
gests that a corresponding intrinsic time exists, so that
the Wheeler-DeWitt equation does indeed have a non-
trivial dynamical content. In terms of these coordinates,
it reads

G AB + 3g2(3)~ q[ ] 0g2 g2 f gAf gB

(5.26)

g„= 1+ M"&) e„+O(r-2),

p'Jg;J =O(r ),
p —pg"=0( ) .

This state of a6'airs has been summarized by Wheeler
by saying that Heisenberg's uncertainty principle
prevents us from specifying the extrinsic curvature, if we
choose to assign any value to the intrinsic three-
geometry. This means that (a p nori) there is'no space-
time, there is no time, there is no before, there is no after.

An exceedingly convenient new set of variables has re-
cently been introduced by Ashtekar (1987); let us brieAy
describe them. We shall consider, for simplicity, com-
pact hypersurfaces X only.

The configuration space C is the space of all positive
definite metrics g; on X with appropriate asymptotic be-
havior. The phase space I is the cotangent bundle over
C. This means that a point of I is a pair (g, .,p' )slatisfy-

iilg

not to be thought of as spinor variables, since we do not
yet have a connecting or "soldering" form o.;, . Of
course, given a specific o, we are back to the standard
spinorial scenario. The metric g," is now to be thought of
as a secondary object, derived from. the primary dynami-
cal variable o.;, via

b a
IJ M Jb

The extended phase space I will now be obtained by
fixing, outside some compact region in X, a soldering
form o', (and its inverse cr;, ") whose connection D is
Aat:

~l b — 1+ 0 O~l b+O(&
—2)M(0, )

This is our new configuration space.
The momentum conjugate to the soldering form 0', is

a density of weight 1, I;, , whose index structure is op-
posite to that of 0', and ~hose fallo6'is given by

Tr M;o'= O(r ) .

Now, in the transition from C to C, we have added
three new degrees of freedom to our configuration space.
This means that we now have three new constraints,
whose physical meaning is that they generate small (i.e.,
tending to zero at infinity) SU(2) gauge transformations
on the basic dynamical variables.

Let us now fix a point (lr, M) of I . We can then intro-
duce two connections —D, which act on tensor and spinor
fields on (X,o. ),

+ l b—DX, =DR, , W,, kb,v2
where D,- is the connection that annihilates the given o,
and where ~,- is given by

"=3/gh ' (M +—'trM "
)

It is convenient (in order to stress the analogy with or-
dinary gauge theories) to work with connection one-
forms 2,, in place of derivative operators. Let us there-
fore Ax a fiducial connection 8; which commutes with
Hermitian conjugation and has zero internal curvature:
we set

+g b b+ ~ b
Ia ~ia — .—~iav2,

where ~,-, are the spin connection one-forms of D.
We shall use either + A or A as one of our new vari-

ables. They are the analogs of the holomorphic represen-
tation of the harmonic oscillator

%'e now extend this space in order to incorporate spinor
fields. Let us consider, in addition to the tensor fields

lgT ". . . . on X, objects such as

A,
' "b . . . „' ~ . . . l with internal SU(2) indices

1 m J& 'Jq

a&, . . . , a„and b&, . . . , b . These internal indices are

z =q3/mo3+ip/&mo3 .

It is quite easy to check that + A (or A ) are commut-
ing variables,

I
+ 2 (x), + 3 (y) I =0,
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and if we define

—i b g 1/2 i boa oa

then

I
+—A, crl =+ —5 .

This means that o. may be thought of as being "canoni-
cally conjugate" (in the sense of Poisson brackets) to —A.
The basic new variables of Ashtekar are, then, (o, + A )

or (o., A ).
Qur old constraints (5.10) and (5.11), as well as that re-

sulting from the extension from I to I", namely,

c,~ t t, ~~~ ™t,j~ 0,
are equivalent to

tro. 'o. J —F; =0,
tro. ' —+F; =0,
—Do. ' 0a

where the field strengths

are more or less equivalent to the (anti-)self-dual part of
the Weyl tensor and, consequently, —2; is a potential for
the (anti-) self-dual curvature.

We observe the remarkable fact that the constraints
are riow, at worst, quadratic in each of the basic vari-
ables. The whole system of constraints bears an amazing
analogy with the corresponding one in a non-Abelian
gauge theory: o. is the analog of E, and defining
—8', b= c.'J~ —F.k ", the gravitational constraints read

—D E' =0i a

There is also a simplification in this set with respect to
the old ADM variables, in the sense that the structure
functionals depend at most quadratically on the basic
variables o. ' and +—3;. It is not dif5cult to compute the
Hamiltonian in the new variables, HT( o'—,

+—.
A~ ), whose

numerical value op physical states yields precisely the
ADM energy and the ADM three-momentum.

There is a good deal of current work following in
Ashtekar's path: for example, Rovelli and Smolin (1988)
have succeeded in constructing a new representation of
canonical quantum general relativity, called the "loop
representation, " in which exact, nonperturbative solu-
tions to the constraints may be explicitly obtained. The
whole idea of the loop representation, in turn, was sug-
gested by Jacobson and Smolin's (1988) discovery (using
Ashtekar's variables) of a set of solutions of the
Wheeler-DeWitt equation related to loops. We feel how-
ever, that this type of approach is not yet ripe for a syn-
thesis, although further breakthroughs may well be ex-
pected from it.

Much of the rest of this work will depend upon the
Wheeler-DeWitt equation (5.11). Let us see now how
this equation may be derived from a very diFerent
viewpoint, basic upon a formal functional approach. In-
cidentally, when considering this approach (see, for ex-
ample, Hawking, 1984a, 1984b), it is essential to include
the surface term P we introduced at the end of Sec. IV,
which is nothing more than the integral of the extrinsic
curvature, that is, the trace of the second fundamental
form.

It seems reasonable to make the ansatz (see Fig. 6)

(5.27)

where P is the generic name for any matter terms that
may be presented. The complete action is

trE XB=0,
trE.E XB=0 .

The whole algebra of constraints can be summarized as
follows: let N stand for the triplet (N, , N', and N), and
define

Cg~(a, +—2)—:6 . tr I g 'N ~Do '

l X

+To 'o ~ —F; +N'o J—+F,:. .

We find, then,

I CS Cu I =C~

where we have defined

P = [M N] +gN'MJ*F

g(MN' NM')[o —~, F; ],"—, — .

P = $(N)M+ $(M)N, —
P'= —$(N)M' 2(NBJM MB~X )t—ro 'cr ~ —.

FIG. 6. The three-space X in the boundary of a four-
dirnensional domain. The fields at the boundary are fixed at the
values g",y.
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2

S=— I 2K&yd x
16m am

vol R —2A+ I. g,

(5.28)

/

rrl
If one cuts the spacetime manifold M at the surface X,

one obtains a new manifold M bounded by two copies X
and X ' of X. One then defines p(gy, g'y') as the path in-
tegral over all fields on M which agree with the given
values on X and X'.

If the surface X does not divide M into two parts, the
manifold M will be connected (see Fig. 7).

This means that p will correspond to the density ma-
trix of a mixed quantum state (Hawking, 1987).

On the other hand, if the surface X does divide M into
two parts, then the manifold M will consist of two
disconnected parts M+ and M and the path integral
for p will factorize (see Fig. 8),

p=4+(g;, v»f (a,' v') -.

If the matter fields are CP invariant, then P+ =f
and 1t =g* is called the wave function of the universe,
which would then be in a pure quantum state. It is some-
what disturbing to consider the natural possibility that
the universe may turn out to be described by a density
matrix. Hawking has argued that this can be contem-
plated as a generalization of the concept of inclusive ex-
periment in ordinary quantum mechanics.

In the ADM notation, when the hypersurface satisfies
t =const, the action reads

2 'I

S= ' d'x&yX K, K'~ K'+"'~ ——2A —'
16m /J Plp

FIG. 8. The disconnected cut spacetime manifold
M=M+ UM

is supposed to depend only on the intrinsic geometry of
X. This means that

(5.30)

This is essentially the Wheeler-DeWitt equation, because

6S =&=—&y K'&K, K'+'"Z ——2A-
5N

p

(5.31)

where T„ is the Euclidean energy-momentum tensor of
the matter fields, projected in the direction normal to the
surface.

In order to reobtain the Wheeler-DeWitt equation one
must first realize that

As we have already seen, a variation of the lapse function
N on the surface pushes it forward or backward in time.
Now, the wave function must be independent of time; it

6S ~p
&y(K;.—g; K),

so that in the q representation

(5.32)

—1/2 ij
7tlp

X=— p g
$g lj (5.33)

16m ig2 5
&j ~ ~ jj 2@Jg ~ kl

Alp og og
(5.34)

Equation (5.10) reduces then to the Wheeler-DeWitt
equation in the presence of matter fields:

FIG. 7. The cut spacetime manifold M in the connected M.

+y' ' 'R —2h+
2 T„(y,5/5p)

Alp
/=0.

(5.35)
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The corresponding equation for the shift vector ¹ is

&S —s
5N,

(5.36)

which implies on1y the invariance of the wave function
under di8eomorphisms.

By construction, the wave function we have used up to
now, f[g;~,y], vanishes for the metrics g;, which are not
positive definite. This fact led Hartle and Hawking
(1983) to propose the use of other variables in the wave
function, namely, to represent

%[g;J,K,p]= f2)g„,e (5.37)

where S is the action appropriate to the situation in
which E—the momentum conjugate to y' —and

g,"—the three-metric up to a conformal factor —are
fixed on the boundary, rather than g;. itself.

It is easy to show that the two representations are re-
lated by a Laplace transform:

'PI g;, &.v l= f &r'"4[g;, , ml exp

ly fashionable "no-boundary" proposal of Hartle and
Hawking until Sec. VII.

Neither have we discussed in detail the measure to be
used in the functional approach. A preliminary discus-
sion can be found, however, in the very careful analysis
of Fradkin and collaborators.

The most important drawback of both the canonical
and the functional approach is that each rests upon
Hilbert s action, which, as we saw in detail in Sec. IV,
has uncontrollable ultraviolet divergences. Moreover, it
is not clear that any quantum field theory one could im-
agine would be able to describe quantum gravity in a con-
sistent way. Nevertheless, for a wide class of theories,
the dominant terms at long wavelengths are the Hilbert
Lagrangian (plus some quadratic pieces in the case of
superstrings). The results of Secs. V, VI, and VII, then,
can at best be taken as an indication of the type of things
one should expect in this semiclassical regime.

Vl. THE SEMICLASSICAL APPROXIMATION:
SCHRODING ER'S EQUATION

m
x yE.

12m
(5.38)

Let us return to the Wheeler-DeWitt equation,

Wx)~y&=0. (6.1)

This approach stems from the fact that under a confor-
mal transformation

2g =0 gp

the Euclidean gravitational action transforms as

(5.39)

m
S[g]=— ' fd(vol)[RQ +6(VQ) —2AQ ]

16m

+floyd x2QK (5AO)

It is of course possible to divide the space of all metrics
g„ into equivalence classes under conformal transforma-
tions. At a given equivalence class, we can rotate the
contours of integration over the conformal factor at each
point, so that it is parallel to the imaginary axis. This
makes the kinetic term for the conformal factor positive.
On the other hand, when A) 0, the other terms get a
positive contribution in the infinity in Q space. It is then
likely that the path integral over the conformal factor
will converge. It has also been claimed that the positive
action theorem indicates that the path integral over the
conformal classes wi11 also converge.

The attentive reader should, of course, have noticed
that we have carefully avoided any discussion of the class
of metrics on which the functional integrals are done.
This problem is equivalent to that of finding boundary
conditions for the %"heeler-De%itt equation. This is a
notoriously difBcult question, because we do not have any
experimental indication whatsoever as to what those
boundary conditions should be. On the other hand, it is
the most important question, because it determines the
wave function of the universe.

We shall postpone a detailed discussion of the current-

y"+f (x)y =0, (6.2)

or, assuming the exponential form y =e'&,

iver" y' +f =0 . —

When the second derivative y" is small enough, this

Time does not appear in this equation at all. Indeed,
from the quantum gravity point of view, physical time
measurements are correlations between two physical ob-
jects, the system and the clock, which must necessarily
interact; they are then both included in the Hamiltonian
density (6.1), which by definition includes everything in
the universe.

The question of the meaning of time in quantum gravi-
ty is one of the issues on which there are profound diver-
gences of opinion between the experts in the field. Some
authors, like Kuchar" (1981), seem to think that the
"quantum gravity concept of time" should be somehow
related to the hyperbolic character of the Wheeler-
DeWitt equation and, in particular, to the timelike coor-
dinate introduced in Eq. (5.23). Other authors, like
DeWitt (1965), Lapchinsky and Rubakov (1979), etc.
have, on the contrary, suggested that time is a semiclassi-
cal concept, which cannot be extended to the quantum
gravity domain, that is, to the region in which Iluctua-
tions of the gravitational field are important. Recently
Banks (1985) has made this idea explicit, by performing
the semiclassical (WKB) expansion of the Wheeler-
DeWitt equation.

We shall begin by reminding the reader of the WKB
solution of a given second-order differential equation of
the form
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has the solution q&'=+&f, and ip itself is given by
qp=+ . %'e can improve upon this by actually corn-

puting the second derivative corresponding to this solu-
tion, y"=+f'l2&f, and substituting it into the
differential equation for y. The result is

pl e

y' =f+i' " —=f 1+
2f 3/2

so that the improved value of y is
\

y=+ +—ln

We thus conclude that the WKB solution of the original
differential equation (6.2) is given by

r

y-f ' C+ exp i f&f +C exp i f &—f
(6.3)

where C+ and C are arbitrary constants.
Before applying this set of ideas to the Wheeler-

DeWitt equation, it will prove convenient to rewrite it
with the physical constants made explicit:

— m'&) ("'Z —A)+W ~y) =O .
m,

' 5g;, 5gki

(6.4)

We now make the WKB exponential ansatz

In the spirit of the long-wavelength WKB approxima-
tion, we should neglect the last term in Eq. (6.8), both be-
cause it contains two derivatives of g, and because it has
a factor of m in front. The Wheeler-DeWitt equation
now reduces to

5's 5s
iG,Jki pi+ +& gi =0 .

gij gkl g (kl gij )

(6.9)

Let us call gvv the solution of Eq. (6.9) when & =0,
which is a van Vleck determinant, and look for a solution
of (6.9) of the form

iti=itvvX . (6.10)

A straightforward computation shows that the
Wheeler-DeWitt equation (6.9) reduces to

2iG; ki +& y=o,5y 5S
g(kl gij )

(6.1 1)

which is actually equivalent to Schrodinger's equation,
written in a somewhat unusual form. In order to see this,
let us define a function r(x), in the neighborhood of the
point z, by the relationship

One of the erst things we notice is that the terms in m

cancel as long as the —until now arbitrary —function S
in (6.5) obeys the Einstein-Hamilton-Jacobi equation:

G. +& ("'z —A)=0.ijkl g

A straightforward computation shows that

(6.5) l 5g. .(z) 5S= —
G;Jki

— 5(x,z) . (6.12)

and

im 's im 's 5|1'i
=im e ~,+e

5gkl 5gkl 5gkl
(6 6)

Assuming that the function y depends on r(x) only
through g;, Eq. (6.11) then reduces to

(6.13)

im2s 4 5S 5S imps= imp e
5giJ5gki 5glJ5gkl 5gkl 5giJ

im s
+im e

5@J

, 5s+im e +e
5g'J 5gkl 5g J 5gk!

(6.7)

Substituting Eq. (6.7) into the Wheeler-DeWitt equa-
tion (6.4) one gets, ordering the terms according to the
powers of the Planck mass they have in front,

5g,J (x)= —2K J (x)5N(x) +Vi,.5N i . (6.14)

which is the Tomonaga-Sch win ger generalization of
Schrodinger s equation to the case of local time varia-
tions.

It is actually possible to show that the time variable
~(x), which was introduced in Eq. (6.12) in a somewhat
ad hoc manner, is nothing more than the lapse function
X(x) in the familiar ADM forinalism. Indeed, we have
seen in Sec. V that the transformation law of the metric
can be expressed in terms of the lapse and shift functions
by means of the extrinsic curvature:

~Ski S;, -

5'S 5S 5fi 5S 5fi
5g'J5gkl 5gkl 5g J5g'J 5'gkl

On the other hand, the second fundamental form and
the classical action obey the relationship

6S
Gijkl e +ij

ogkl

+& g, + G;Jki =0 . (6.8) This means that the defining equation for z(x), Eq.
(6.12), can be rewritten as
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5gij(z) 1 5gij(z)—K j5(x,z) =— 5(x,z) =—
2 5%x ' 2 5r(x

which has the obvious solution r(x )=N(x ), confirming
the character of the time variable of the construct r(x ).

Let us now see what happens when the Wheeler-
DeWiit equation is treated exactly, that is, when the
terms of O(m~ ), neglected in Eq. (6.9), are restored.
The first thing to observe is that there is an additional
term to consider in Eq. (6.9), namely,

5gij 5gkl 5g(ij 5gkl) 5+ij 5+kl

(6.15)

It appears then that we get a second-order equation for
the physical quantity g. The derivatives of the van Vleck
determinant gvv can be eliminated by using the defining
relationship (6.9), so that 1t~vv formally disappears in the
final equation for g.

This means that, from this point of view, beyond WKB
there is nothing similar to Schrodinger s equation, and
there is no simple and natura1 notion of time itself. This
of course provides yet another answer to the old question
of what happened before the Big Bang: this is a question
without meaning, because quantum fluctuations invali-
date the notion of time itself.

Vll. SOME SPECIFIC BOUNDARY CONDITIONS.
TOY MODELS IN QUANTUM COSMOLOGY

We shall finally in this section face the thorny problem
of the boundary conditions for the Wheeler-DeWitt equa-
tion. The importance of this question from the physical
point of view can be easily appreciated by considering the
following facts.

The initial state in the standard cosmological scenario
(see, for example, Weinberg, 1972), that is, the state of
the universe at the earliest time to which we can extrapo-
late back with some confidence in the laws of physics, is
always taken as a thermal mixed state. This could either
be literally true (after all, we are not aware of any exact
result forcing the universe to be in a pure quantum state)
or it cou1d be considered an approximation to a highly
excited state.

On the other hand, when implementing semiclassical
approximations, the correct superposition of WKB wave
functions is usually determined, by matching the WKB
wave function to a solution that is valid in the small-
volume region where the WBK approximation breaks
down.

Banks (1985) claims, that, in the simple examples he
has studied so far, there is always a preferred "simple"
solution of the Wheeler-DeWitt equation, which corre-
sponds to a minimal excitation of the matter fields. It is
not clear at all, then, how quantum gravity manages to
produce the "observed" initial state in cosmology.

As we have already remarked, we want to stress the

fact that the solution of the Whee1er-DeWitt equation
gives the entire history of the universe; if one changes the
boundary conditions, everything changes.

The first (and currently most popular) proposal we
shall examine in detail is the "no-boundary" one, first
formulated by Hartle and Hawking (1983). They claim
that it~[g, y] should be given by the functional integral
over all compact metrics and field configurations that
have X as the boundary. Moreover, the corresponding
metric in X is precisely the prescribed g, and the same
occurs with the matter fields. This boundary condition
has sometimes been justified on the grounds of simplicity:
for example, Hawking himself says ".. .what could be
more reasonable than the boundary condition that the
universe has no boundary'7"

Another argument that has been used in support of
Hartle and Hawking's boundary conditions is that they
are a concrete proposal, which allows for explicit calcula-
tions to be made. Although this is undoubtedly true, it
should be kept in mind that other precise proposals are
possible, and calculations have been made (notably by the
Stanford group) with different sets of boundary condi-
tions. Eventually, of Course, all consistent alternatives
should be exp1ored, and the question will be settled in the
end by means of observations.

One of the main differences between the Hartle-
Hawking and Stanford boundary conditions stems from
the fact that the latter do not allow for changes in topolo-

gy in defining the functional integral. This means that
only one topological sector at a time is included in the
measure 2)g. This question has to do with the problem of
unitarity of quantum gravity (see Hawking, 1983; Gross,
1984a, 1984b; 't Hooft, 1986). It has indeed been claimed
that in quantum gravity it is possible for pure states to
evolve into mixed quantum states, in such a way that a
generalization of the S matr'ix, the superscattering opera-
tor, becomes necessary.

The main argument used by Hartle and Hawking for
the presence of nontrivial topological sectors in the func-
tional integral is that one can approach arbitrarily well a
nontrivial metric by a trivial one. Still, it should be
remembered that the standard (Gross and Witten, 1986)
argument for including nontrivial gauge sectors (instan-
tons) in the functional integral for a gauge theory is pre-
cisely that they are necessary to keep unitarity, because
the vacuum is connected with an instanton —anti-
instanton pair; thus cluster decomposition implies that
the amplitude (vacuum/instanton) must be different from
zero. It is an obvious contradiction to include those sec-
tors in quantum gravity if all we get from them is a viola-
tion of unitarity (see Gross, 1984a, 1984b; Banks, 1985).

There is a trivial sense in which in the presence of
gravity a pure state can evolve into a mixed state, name-

ly, when a black hole is formed in the course of the
dynamical evolution of the physical system. The density
matrix in this case is obtained by summing over all possi-
ble black hole states; this is a situation closely analogous
to the "inclusive experiments" (see Sec. II).
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Z( A ) tr
—A v/Sm (7.1)

which admits the obvious functional representation

But the suggestion of Hawking and co-workers is that
one should include in the Euclidean path integral every
possible topology ("virtual black holes" ). The main argu-
ment in support of this claim is that one can pass on a
continuous way from one topology to another, with the
action remaining finite. (This would not continue to be
the case, however, if the action contained terms quadra-
tic in the curvature. )

It is precisely the contribution of complicated topolo-
gies (already suggested by Wheeler many years ago, and
named by him "spacetime foam") which can be interpret-
ed in a causal way at the price of giving up the standard
unitary evolution in quantum mechanics.

The picture one gets, then, is that spacetime should ap-
pear quasiflat at long wavelengths, but with a very com-
plicated topology and curvature structure in the short-
wavelength regime, due to the contribution of the gravi-
tational instantons.

Hawking (1978) has proposed a ingenious construction
to estimate which topologies give the dominant contribu-
tion to the gravitational partition function. He considers
the "volume canonical ensemble, "defined by

On the other hand, the Hirzebruch signature is the
difFerence between the number 82+ of self-dual harmonic
two-forms, and the number 82 of anti-self-dual ones,

&=82 —82+ (7.6)

S= ~c = V1/2
A

(7.7)

The Atiyah-Singer index theorem applied to solutions
of Einstein's equations gives

The Stiefel-Whitney classes, finally, are Z2 cohomology
classes, and it can be proven that 8'2=0 determines
whether the manifold admits a spin structure.

What Hawking proposes, then, is to restrict our atten-
tion to simply connected compact four-manifolds. The
case for that is not very convincing, and indeed we may
quote him as saying that "To argue that one should not
consider non-simply connected manifolds because they
are not classifiable may sound a bit like looking for one' s
key under the lamp-post because that is the only place
where one would be able to see it."

In the classical approximation, the dominant contribu-
tion to the path integral will come from metrics close to
solutions of the Einstein equations with A term. By di-
mensional arguments one expects

Z(A)= f2)g exp —S[g]— V[g] .A
(7.2) d( ol)(C C ~ +—'A )

1

32~2 aPy5 3

The number of gravitational states with four-volumes be-
tween V and V+d V will then be given by the inverse La-
place transform,

C' Im =R'k~ — (RL 5~ R$5~—1

n 2

+R' 5'k —R' 5jk)

(7.8)

N(V)= f Z(A)e dA .
16m i

(7.3) + ggJ
(n —1)(n —2)

We want to compare the contribution to X from
di6'erent topologies. Now, it is well known that one can-
not classify the topologies of four-dimensional manifolds,
even in the compact case (this means that there is no al-
gorithm for deciding whether two such manifolds are
homeomorphic). One can "almost" do this, however, if
the manifold is simply connected (which excludes
toruses, for example).

To be specific, except in the case in which the Euler
characteristic y and the Hirzebruch signature ~ are in the
relation g=2+v, one can prove that g and ~ characterize
the manifold up to homotopy, if the second Stiefel-
Whitney class 8'2 =0.

We recall (see Eguchi et al. , 1980) that the Betti num-
bers B~ of a manifold are the number of independent har-
monic p forms. The Euler characteristic is the alternat-
ing sum of Betti numbers

If n ~ 4, a space with C =0 is conformally Aat,

f d(vol)C &rs*C ~r
48~

Using Eqs. (7.8) and (7.9), one gets the inequality

2q —3[r[ & 32c
3

(7.9)

(7.10)

When y is large, one expects c =dy'/, with d ~ 3'/ /4.
One can interpret these results by saying that one has g
gravitational instantons, each of which has an action of
the order of L, , where the typical size L —V'

The dependence of the one-loop partition function Z
on A comes from scaling arguments,

(7.1 1)

y=80 —8)+82—83+84 . (7.4)
where the exponent is related to the trace anomaly by

For a compact manifold, 80=84=1 and 8& =83 by
Poincare duality. If, moreover, the manifold is simply
connected, 8

&
=83 =0, so that in this case

y= f d(vol) C &
C"~~s+ A

53 g 763
720m 540m

(7.12)

y=2+82 . (7 5) The volume partition function, on the other hand, can
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be estimated by

Z(A)= A

Ao

r
. eby/A (7.13)

of an observable

(7.15)

where b =sad and AD is related to the normalization
constant p. If one uses this as input in a saddle-point
computation of N( V) in Eq. (7.3), one gets

r

Ao

b&/As+ VAs/Se (7.14)

The dominant contribution to N(V) will come from to-
pologies for which dN/dy=0. If one assumes y=ay,
with a a constant, one gets, if Ao ~ 1, that Az -Ao. This,
in turn, implies y=hV, where the constant of propor-
tionality, h, depends on Ao. This means that the dom-
inant contribution to N( V) comes from spaces with one
gravitational instanton per volume h

The presence of this foamy structure of spacetime will
have consequences for the propagation of particles.
Strange processes are possible in principle, such as
charge nonconservation caused by some particles falhng
into a virtual black hole and coming out again as
different species of particles. It is diScult, however, to
provide quantitative estimates. John Ellis and co-
workers (1984) have been able, in a remarkable paper, to
rely on experiments to put some constraints on any possi-
ble violation. of quantum mechanics (due to the foam or
to any other reason).

The first system they consider in detail is the interfer-
ence of a slow neutron beam, in which the beam' is split
into two components, which travel different paths and
are eventually allowed to interfere. This measurement
corresponds to computing the expectation values Tr(Op)

where 0 is a relative phase depending on the experimen-
tal setup. A simple model of quantum-mechanical viola-
tion leads to the introduction of three parameters (for
two-dimensional systems) a, p, and y such that quantum
mechanics is recovered when a =P=y =0.

A rather simple computation leads to

Tr(Op) =
—,'+ —,'e (' +r' )'cos(b Et+8) . (7.16)

The fact that at most a 20% attenuation of the in-
terference pattern has been observed when the beam trav-
els for t —,' sec puts the constraint at

a+y ~2X10 ' sec . (7.17)

lM ——I
2

lM ——I12 2 2

If we define

jM ——I
2

(7.18)

P11 P12

.P12 P22.
(7.19)

in the CP eigenstates (K„E2) basis I'K, z=&1/2(E +K )], then the model of Ellis et al. predicts
that for large t, p decays exponentially to

The second system considered in this context is the
KpE p system, which is described by the phenomenologi-
cal Hamiltonian

—(i/2)(ImI &2+2p) —ImM&2

—,'AI +ihM

(i/2)(ImI ~2+2P) —ImM,2, ), 4PImMi~ bM/Ar+P
,'ar+t. aM I—srI

(i/2)ImI )2
—ImM, 2

—,'AI —i AM

(7.20}

which no longer represents a pure state, but a mixture of
EL beam plus a low-intensity Es beam (hM:—ML —Ms,
sr=—r, —r, ).

The CP-violating charge asymmetry 5 is given by

5-2 Res = ( 3.3+0.12}X 10

and the theoretical phase of s (43.7') with the experimen-
tal value for the CP-violating parameter

r(~ 1 v) —1(n.+1 v)
I ( 1+ )+I ( +1 )

(7.21)
A (K~ m+n )

A (Ks ~m. +m )

Apart from a term proportional to p (which can be
shown to be negligible), p, 2 is just the usual CP impurity.
parameter c.. We can then compare the experimental
value for 5,

In+ I'=p22=IsI'+
IarI

to get a bound on y,
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y (2X IO ' GeV,

which is about the same as the one derived from neutron
interference.

From a difFerent, more general, viewpoint, what
Hawking proposes implies a new evolution law for the
density matrix, namely,

Gli &=g(i)li &,

then the preceding equation reduces to

BC ~(gB +gC g A gD }

(7.32)

(7.33)

continuous symmetry, with generator 6, namely,
T=e ', and with a basis where G is diagonal,

p(t) D=$ D„(t)p"B(0) .

The standard evolution in quantum mechanics,

(7.23) When $ factorizes, this in turn implies the much stronger
constraint

i P=[Hp],. Bp (7.24)

corresponds to the particular instance

S(t )
—e lHf

$ "BC (t ) =S"c(t )SB (t ),
(7.25)

(7.26)

$C B(t)—g B

$A D $B C
8C AD

(7.27)

(7.28)

In order to see a specific example of a nonfaciorizable
$ matrix, consider a system whose Hilbert space is a
direct product, H =HA XH„ in such a way that the vec-
tors are represented by ~

Aa ). Let us assume, moreover,
that the time evolution from the initial states

~
Aa );„ to

the final state
~
Aa ),„,is unitary,

) &a).„,=S"' (7.29)

If it is further assumed that only observables in HA are
measurable (as is only natural in the presence of hor-
izons), we get the dollar ($) matrix by summing over all
possible ~

a ) states in the out state:

D ySAa SD (7.30)

It may seem that the superscattering operator is a
harmless generalization of the usual S-matrix approach,
potentially useful in quantum gravity. This is not the
case, as Gross ha's emphasized, and for nonfactorizable $
matrices the connection between symmetry principles
and conservation laws is lost. In particular, the fact that
a theory is invariant under spacetirne translations does
not generally imply the conservation of energy. Let us
see how this comes about.

The natural definition of "symmetry" in this context is
a unitary transformation of the density matrix which is
preserved under time evolution. Denoting the transfor-
mation by T, this is equivalent to

(such that a pure state, with p "B-5"B, never evolves
into a mixed state}, but in the general case the dollar ma-
trix would not be factorizabl, although conservation of
probability (Trp=1) and Hermiticity (p=pt) imply the
restrictions

p'Af(GA ) =$"Ac p Df «D» (7.34)

which is a rather weak condition in the general case.
Even when this condition is implemented for every func-
tion f, one gets the condition

Ac @GA Gc}5(GA GD } (7.35)

In ordinary quantum mechanics, where $ factorizes, a
symmetry 6 always implies a conservation law, in the
sense that every function f(G} is time independent. We
see that this is not the case anymore for a generic $.

It is only natural to resist as strongly as possible the in-
troduction of a concept that violates our most cherished
beliefs in quantum mechanics. Moreover, the case for $
is not really compelling; indeed, some explicit computa-
tions by Gross, using Euclidean instantons in multidi-
mensional theories as a model for the spacetime foam,
did not show any loss of quantum coherence whatsoever.
The issue is ultimately to be decided by observation,
difficult to imagine as that might be. It is very exciting in
this context that recently Coleman (1988a, 1988b) has
suggested that gravitational wormholes were responsible
for the observed smallness of the cosmological constant.
In a very interesting paper, Adler (1988) has generalized
the argument, showing that it is very general one indeed.

Let us consider the low-energy e6'ective action, where
we have integrated out all frequencies greater than a
given value, say A:

SA g. ~ e
—s[g y]

E&A
(7.36)

(we denote collectively by q& all matter fields). Given the
fact that S,z is an eff'ective action, it is not expected to be
a local functional, but can have nonlocal terms as well
(coming, among other things, from fluctuations in the
spacetime topology at Planckian energies). This means
that in general we shall get something of the type

S,~= — JR d(vol)+F~( V),A

2K
(7.37}

S' -Big; —g )

(because in this case [G,S ]=0).
On the other hand, the necessary condition for a func-

tion f( G } to be time independent is

$A D TA TB' $A' O-'TC' T D (7.31)
where Vis the spacetime volume

In the physical more important situation when T is a V= Jd(vol)
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and I'( V) is a nonlinear function. (In the particular case
considered by Coleman, wormholes produced a quadratic

1'/2 )

It is not dificult to show that the form of S,~ is
preserved when we change the cutoQ' mass A to a lower
A' (infrared stability). The full partition function will
now be

Z= f 2)g2)ye =f dp(A)e ', (7.38)
E&A

where g and y are the background fields and, as long as
dp(A) is smooth and nonvanishing at A=0 (which is the
case for a generic FA, except in the linear case), we can
show that

so that

AG
(7.39)

Z= f d (A) 3'/AG (7.40)

(7.41)

Substituting this in the Wheeler-DeWitt equation, one
gets the desired boundary conditions.

Let us now study in detail some toy models.

which means that A=O completely dominates all other
contributions to the partition function.

The general conclusion of this short discussion is that
the whole topic in a highly immature stage, in which
several contradictory approaches are equally acceptable.
We shall not take sides here but present results obtained
using several of the currently popular models.

Even within a given set of boundary conditions one has
to tackle the problem of the infinite number of degrees of
freedom of quantum gravity. One of the things that can
be done is to study di6'erent kinds of toy models. One '

can, for example, include only spacetimes obeying certain
symmetry restrictions (characterized by a finite number
of parameters). These toy models, first introduced by
Misner (1972), are sometimes called "minisuperspace
models. " Within this framework, there is a very simple
relationship between the boundary conditions in the
functional integral and those in the Wheeler-DeWitt
equation. Actually, the simplest method for obtaining
the latter is to perform the semiclassical approximation
to the functional integral and to express the WKB super-
position in the form

where

0' 7TPl3 P

and dQ3 is the line element on the three-sphere, S3. The
corresponding action is given by

T 2
1 X a da 2 4S=—- d~- a +Ra
2 a Xd~ (7.43)

where the parameter A, is the square of Hubble's con-
stant, and is given in terms of the cosmological constant
by

A
A, =o =H2 2

3
(7.44)

The Wheeler-DeWitt equation reduces now to an ordi-
nary di6'erential equation of the form (neglecting the
factor-ordering ambiguity)

a —a +La g(a)=0.1 1 8 8 2 4

2 a Ba Ba
(7.45)

In our case, according to the interpretation given ig
Sec. VI, the wave function of the universe g(a ) is given
by a path integral over all compact metrics of the form
(7.42) which are bounded by a three-sphere of radius a.

The semiclassical WKB approximation, in our case,
will be given by the solution of the classical 6eld equa-
tions with cosmological constant:

ds =o [d~ +a (r)dQ3] . (7.46)

1 [1+(1—0 a )3/2]
3H

(7.47)

Hartle and Hawking have shown that the dominant
contribution does actually come from the solution with
greater action, so that

It is well known that when the cosmological constant
is positive, A)0, any solution of Einsteins equations
that is nonsingular, geodesically complete, and positive
definite is necessarily compact. Moreover, its four-
volume is bounded by the solution with maximum sym-
metry, which corresponds to a four-sphere S4 of radius
R =A ' (Fig. 9).

Here there are two solutions, according to the two
ways shown in Fig. 9 of fitting a given S3 into a given S4
corresponding to the classical actions

g(a)-Noexp [1—(1—H a ) j3H
(7.48)

A. The de Sitter model of Hartle and Hawking

ds =o[N(~) d~ +a(r) dII3],. (7.42)

Let us assume that our "minisuperspace" is defined by
homogeneous, isotropic manifolds such that the Euclide-
an histories with the same symmetries which enter into
the sum defining the wave function are the Riemannian
spaces of the form

In the asymptotic domain Ha « I, this reduces to the
simple form

g(a)-Noexp(a /2) . (7.49)

On the other hand, if a )H. ', one has to be more
careful, and it proves convenient to use the K representa-
tion introduced in Sec. VI. The Anal result is
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where g is related to the scalar Geld by

r= 'v&2
CT

(7.55)

The Wheeler-DeWitt equation (7.45) separates; there are
solutions of the form

FIG. 9. The two possible ways of fitting a three-sphere into a
four-sphere.

g(a, y) =C(a)f(y),
where f obeys the harmonic-oscillator equation

, +x' f=Ef

(7.56)

(7.57)

f(a)- Nz 1 (Ha —1)~
exp cos

3M

(7.50)

This means that f is just the harmonic-oscillator wave
function with eigenvalue E=n+ —,'.

The ensuing equation for C„(a ) is then the two-
dimensional Schrodinger's equation with potential (see
Fig. 10)

If this form is introduced into the %'heller-De%'itt equa-
tion, and then the resulting equation is solved for the pre-
factor A, the result is

3 -a (aH))1) . (7.51)

d$2 =cT2( dr 2+0 2d f12)

where the scale factor takes the value

(7.52)

This means that the wave function is normalizable in this
case.

In order to interpret physically the wave function
(7.48) and (7.50), one must consider the classical pseudo-
Riemannian solution with positive cosmological con-
stant. The one with the maximum amount of symmetry
is just de Sitter space (see, for example, Hawking and
Ellis, 1973),

V(a)=a —Aa (7.58)

It is plain that when E & V,„=I/4A, there is tunneling
between the bound and unbound solutions.

In this model it is natural to expect a wave function
such that, in the classical limit, it represents a universe
expanding from Q=0 up to a maximum value Q& and
then collapsing back to Q =0, but with a very small am-
plitude for tunneling through the barrier to a de Sitter-
like state of indefinite expansion.

In order that such a state provide an acceptable model
for the observed universe, the conditions ~A~ &10
and n )a[ =10 must hold (because we know that the
age of the universe is about 10 Planckian times).

The state actually selected by the Hartle and Hawking
boundary conditions is that with n =0,

a =H 'coshHt . (7.53) 2 /2f(x)-e ' " . (7.59)

It represents a sphere S that collapses from infinite ra-
dius down to a minimum radius of H ' at time t =0, and
then expands again forever in an exponential way.

Now, when a &H ' the WKB wave function (7.48) is
exponential in the scale factor Q. This corresponds to a
classically forbidden region. On the other hand, when
a )H ', the WKB function (7.50) oscillates. This corre-
sponds to a classically allowed region. All this led to
Hartle and Hawking to assert that "the wave function
provides its own interpretation. "

Confronted with this discrepancy, Hartle and Hawking
suggest that n =0 should be regarded as )he "ground
state, " but that the universe we happen to live in is a
linear combination of excited states with n )0. Among
other things, this implies that we lose any ability to pre-

V(a }

B. The effect of conforrnally invariant scalars
in the toy model

& a a
Q

2 Q BQ BQ
—a +A,a — +y g(a, y)=0,

~X

The simplest complication that can be introduced into
the preceding model is a scalar field y which takes con-
stant values on the spatial S3 sections.

The Wheeler-DeWitt equation now reads
I

I

Q~

l

f
I

Qg

(7.54) FIG. 10. The effective potential for the scale factor a.
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dict the quantum state of the universe because of the ar-
bitrariness present in the phases. They interpret this set
of problems as a consequence of the fact that the field
considered is conformally invariant, which means that it
does. not couple to the single gravitational degree of free-
dom present in the toy model, which is a conformal one.
This leads in a natural way to the introduction of a new
model including a massive scalar field g minimally cou-
pled to the gravitational field.

At any rate, we can see that the exponential factor
(7.59) implies certain correlations between matter and
geometry, namely, large y at small a and vice versa. This
is actually the type of correlation one expects in classical
evolution. The factor @(a) suppresses correlations for
a & H ' but is not very important for a & H

The classical solution of Einstein s equations compati-
ble with our minisuperspace assumptions is de Sitter
space. The region a &H ' is thus a classically allowed
region, a )H ', and the wave function oscillates propor-
tionally to cosS, where S satisfies the pseudo-Riemannian
Hamilton- Jacobi equation.

We shall not dwell upon this any longer, but move on
to one of the models of the Stanford group. We refer the
interested reader to the by now abundant literature ex-
plaining how it is possible to get inflation along the
preceding lines.

C. A cosmological model of Banks

The boundary conditions are now difFerent: one takes
space to be compact and connected, with the topology of
the three-sphere S3 or the three-torus T3, and one does
not allow for changes in the topology.

Moreover, we now parametrize the WKB solutions of
the Wheeler-DeWitt equation in the following way: in or-
der to find the amplitude f[g,j], we first solve for the
unique spacetime metric g & connecting g;J on X with an
arbitrary g;J on X'. The general semiclassical solution
will be then given by the formal linear combination

1 8 1 8—m ~i A iu + V(g)u— (7.61)
m,' au'

In the region in which V(rl)) m~ ~A~ —which in Fig.
11 happens for g) g—there are classical solutions of the
equations of motion. The wave function will still be con-
centrated near g=u =0 (actually, when the scalar field is
not present, the only consistent solution of the Wheeler-

DeWitt equation is g=e ~, but there will be a
very small amplitude to tunnel into the classically al-
lowed region g) g. This means, in particular, that the
large-u, classical regions are correlated with displace-
ments of the scalar field from this minimum into a region
where V&m~)A~.

Let us now recall some elementary facts about multidi-
mensional tunneling (Coleman, 1985). It is well known
that, if the barrier j.s high and wide enough, the tunneling
phenomenom can always be described in the WKB ap-
proximation. Moreover, the wave function in the tunnel-
ing region is concentrated along a one-dimensional path
in configuration space called the most probable scape
path, which is an instanton, that is, a finite-action solu-
tion of the Euclidean equations of motion. The instanton
pierces the barrier and penetrates into the classica11y al-
lowed region at a particular point in configuration space,
say qo. When the WKB approximation remains valid in
this classically allowed region, the wave function there is
a WKB function based on the classical solution with ini-
tial conditions q(0) =qo, q(0) =0.

This then, is, the way in which the constants C„[g] in
Eq. (7.60) are to be determiried. In other words, this
proves that the universe after the tunneling event wi11 be
described by a single WKB wave function.

Moreover, the classical equations in the large volume
have a large cosmological constant. In the event that the

4[g]-f dg g C.[g]4,—„fg] . (7.60)

The unknown coeScients C„are determined by match-
ing the WKB solution to another solution of the
Wheeler-DeWitt equation valid in the small-wavelength.
region (depending then upon the unknown short-distance
physics). It is plain that unless the coefficients C„[g] are
peaked around a particular initial condition g, the result-
ing wave function (7.50) will not have a simple semiclassi-
cal interpretation.

Banks (1985) proposes to have a large, negative cosmo-
logical constant, so that 6~A~=1. The only matter
present is a scalar field g, with potential V(il ).

Representing —somewhat formally —the Wheeler-
DeWitt operator corresponding to the volume of the
compact spatial geometry, v, and the spatially constant
mode q, we get FICx. 11. The potential corresponding to the scalar field g.
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scalar field has a fiat enough potential, this situation will
continue for a long time, and the exponential expansion
of the universe will inAate all traces of the initial condi-
tions so that they will eventually disappear from a typical
horizon.

The initial conditions of the classical regime are then

g =go ) g, g =0' (most of the g; are determined by the
constraints).

We are assuming that

qo))m~, V(go) —~A~m —Am

The classical equations are

FICJ. 12. The etfective potential for the second scalar g.

jj+3Hj———BV
an

(7.63)

where H is the Hubble constant, H—:R/R. As the
universe expands, the energy in the scalar field goes to
zero and H decreases. If the potential is very Rat, this
process is very slow; actually, H= —

—,
' j when k =0 and

V'=0. This means that, as advertised, a Hat potential
will indeed lead to a long period of inAation with a slowly
decreasing cosmological constant. (This is of course due
to the fact that q=g, the point at which the total cosmo-
logical constant is zero, is not assumed here to be a
minimum of the potential; this is the standard fine-tuning
problem. ) In Banks's model the potential must be Rat
enough for at least the entire observed history of the
universe to fit into the period in which the cosmological
constant is small but H has not yet reached zero.

This is not the only problem with the present model,
though. We must actually explain where all the matter
in the universe comes from. The reason is that, whatever
the initial state of the said matter, it will presumably set-
tle down rather quickly into a state that locally resembles
the de Sitter invariant state. Banks's proposal is to use
some sort of first-order phase transition to generate the
required energy. (It is also necessary to make sure that
the cosmological constant at the time the transition
occurs is small. Otherwise a new inAationary phase will
destroy everything again. )

A concrete mechanism could include two scalars, the
old one and another one, say g. We shall assume that
there is a coupling Rg so that there can be a curvature-
induced first-order phase transition in this sector. The
form of the potential is shown in Fig. 12.

At early times in the classical period, the cosmological
constant is large in absolute value. This means that the
Rg term will dominate. As the scalar q slowly relaxes,
the eA'ective cosmological constant will decrease, and the
origin will become metastable. In this model one pro-
duces a whole set of bubble universes, and in this set
there are universes that resemble the observed one. One
can easily compute, however, that the number with
A=0. 8p, is smaller than the number with A= —10p, by
a huge factor, e' . This means that the typical bubble

VIII. QUANTUM GRAVITY IN THE GENERAL
FRAMEWORK OF SUPERSTRING THEORIES

Superstring theories (see G.reen et al. , 1987, for a
comprehensive review) are theories of one-dimensional
extended objects, which, when evolving in spacetime,
span a two-dimensional surface, the world sheet.

In the bosonic case (which is the one we shall use for il-
lustrative purposes), the action is taken as proportional
to the area of the world sheet. In first-order formulation
this is equivalent to the action used by Polyakov:

8= ——f d o&gg ~g„ t)~ "t)&x (8.1)

where a,13=1,2 are indices on the world sheet, with

has a negative cosmological constant, almost large
enough to cause gravitational collapse. As Banks himself
acknowledges, this is a death blow for his model.

Let us say, in concluding this section, that, in spite of
the very ingenious eForts of many people (including Har-
tle and Hawking as leaders of one of the most active
groups), it is fair to say that there is not a single cosmo-
logical model valid in the quantum regime. This should
not be surprising; as we saw in the preceding section, we
do not understand quantum gravity even perturbatively,
and quantum cosmology is still more dificult, being
essentially nonperturbative.

One could even argue (see, for example, Barbour and
Smolin, 1988) that we do not have an acceptable mea-
surement theory for solutions of the Wheeler-DeWitt
equation, and we therefore do not know whether or not
quantum mechanics can be sensibly applied to the
universe as a whole (see also Vilenkin, 1988).

Several interesting proposals have nevertheless
emerged about the way in which the (unknown) short-
distance physics of quantum gravity could lead to the
"initial" conditions of the standard cosmological
scenario, which, to a very good approximation, is just a
thermal density matrix for the matter quantum fields in a
curved background.
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metric tensor g &, and p, v=0, . . . , 25 are coordinates in
the external 26-dimensional Minkowski spacetime. The
quantity T= 1/2~ca' is the string tension.

Let us think about closed strings (it turns out that they
are the most interesting ones from the physical point of
view). The world surface is then a world tube. More-
over, the interactions are purely geometrical, so that the
decay of one string into a final state composed of two
strings will be represented by the "pants" world sheet
(see Fig. 13).

A peculiar thing that we can observe immediately from
the figure is that there is not a well defined Lorentz-
invariant notion of the point at which the splitting
occurs. This is to be contrasted with the analogous in-
teraction in field theory, in which this point is well
defined. There is, then, intuitively some hope a priori
that the absence of a well defined splitting point would
smear out the local (ultraviolet) divergences in field

theory.
We have advertised repeatedly that superstrings were

the only present hope for constructing a consistent quan-
tum theory of gravity (at least using perturbative expan-
sions, the only fully understood for the time being). But
what has gravity to do with strings? Before answering
this question, we need to introduce some technical tools.

A. Gravity from strings

FICx. 14. Spacetime diagram corresponding to the free propa-
gation of a closed string.

equivalent to an arbitrary analytic function. One can
take advantage of this in order to cast the form of the
tree world surfaces in a canonical form.

Let us assume, for instance, that we have an initial
state consisting of a closed string in the infinite past, and
that the final state is another closed string. The tree
world sheet (that is, the simplest topologically) for this
process will simply be a cylinder (Fig. 14).

The corresponding metric is (R =1)
ds =dz +dy, —~ (z ( ~, 0+y(2w . (8.3)

The action (8.1) has a large set of invariances; besides
two-dimensional di6'eomorphisms, it is invariant under
Weyl rescalings

2gap= gap .

This invariance is usually referred to as the conformal in-

variance on the world sheet. When complex coordinates
are used, an arbitrary conformal transformation is

If we now perform a change of variables z=logr and
simultaneously a Weyl rescaling with Q=r, we get

ds =y ds =dr +r dy, 0~ r (~, 0~y(2~, (8.4)

that is, the metric on the plane. Note that the initial
string state is now mapped in the single point r =0 (see
Fig. 15). We shall represent this point as a circle with a
cross in it, to remind ourselves that we have to insert a
local operator with the quantum numbers of the string
state that was mapped into that point (they are called
vertex operators).

We can also map this surface into a two-sphere by
another conformal transformation:

FIG. 13. Spacetime diagram showing the splitting of one closed
string into two closed strings.

FIG-. 15. Another representation of the free propagation of a
given string, conformally equivalent to the one in Fig. 14.
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the exponential must be an operator of dimension 2 for
the vertex to be invariant. Now, it can be easily comput-
ed, using the techniques of conformal field theory, that

( ()e —i ()) ~z~
k/ (8.8)

where d, is the anomalous dimension of the operator.
This means that

d, =k /4, (8.9)

so that in order to have an invariant vertex operator (8.7)
we need

FICx 16. Yet another (conformally equivalent) representation
of the propagation of Figs. 14 and 15.

k =8, (8.10)

which corresponds to a tachyon (m = —k ).
We now see clearly that we can construct other vertex

operations. For example,
8p' + p' Jcp8$ (1+r /a )

(8.5) V" = f d crB~"() x'e'" (8.11)

with the representation shown in Fig. 16.
We can always map a tree world surface into a two-

sphere with a certain number of vertex operators VA(k )

in it, corresponding to the old external states (see Fig.
17). The general expression for a tree amplitude is then
of the form

VD= f d aB~„.B xi'e'" (8.12)

The exponential must now have dimension zero, so
that this operator corresponds to a massless particle.
This is the graviton vertex operator. There are other
massless operators, such as that for the dilaton,

x o., w g po, ~
and that corresponding to the antisymmetric tensor,

V Pv f d 2 a/3g Pg+ v ikx (8.13)

X exp f d o&gg ~(3~"B)3x„

X g VA(k;). (8.6)

It can be easily proven that the vertex operator must
be SL(2, C) invariant (this is the actual symmetry of the
vacuum in any two-dimensional conformal field theory;
see Belavin et a/. , 1984). This means that, in particular,
the vertex operator has to be invariant under dilatations
z'~Az (z —=o +ir). That is, if we make the ansatz

V= fdr+h„V(r), (8.14)

This completes the list of massless particles in the
closed-string theory. %'e have thus seen that gravitons
appear naturally as possible states of closed strings.

Let us now consider a planar world sheet for scattering
of open strings (Fig. 18). We can map this into a disc
with the external states on the boundary (Fig. 19).

Now the vertex operator must be given by something
of the form

V= d ze (8.7)
where ~ is the convenient parameter on the boundary of
the world sheet. This means that V(r) must now have di-
mension l. If we write

A) k) p,

FIG. 17. A diagram representing the scattering amplitude cor-
responding to external string states A, k„A2k2, . . . , A k„.

FIG. 18. The simplest diagram describing the scattering of two
open strings.
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y(()=[ . . +ig.(x)a (+ ]I&&,

(t(-()=[ . —ig (x)a, + ]IQ&,

5h" =((}'"P')+((}("g'),
u~.=a(~g )+a(~g.),

(8.19)

FIG. 19. A diagram conformally equivalent to that in Fig. 18.

which is just the Abelian gauge transformation corre-
sponding to the Fierz-Pauli field.

It is quite easy to write an action for hi" and b" that
is invariant under Eq. (8.19). The result one gets by a
straightforward computation is just the linear part of

f d(vol) R —2R, R
1

(8.15)

we find that the anomalous dimension of the exponential
is now d, =k /2. This means that for a spin-zero parti-
cle, 8'=1,

S=f d(vol)(p(} P 2$R—) . (8.20)

which is nonlocal. 'We can rewrite it in a local form by
introducing a local scalar field (()(x), the dilaton, such
that

V= d~ he' (8.16)
It is quite easy to check that the dilaton is nothing more
than the coefficient of a ghost state in the string field:

and k =2, corresponding again to a tachyon. For a
spin-one particle, W"=dx "/dr. This means that k =0,
and we have a massless vector particle. Any two-index
object will have positive mass, and thus cannot represent
gravity. Cxravitons are not found in the open-string sec-
tor of superstrings.

Actually, one can prove not only that gravity appears
naturally in string theory, but also that the gauge sym-
metries include those of general relativity (see Peskin,
1987).

Let us consider a closed-string field C&[X"(o )]. Ex-
panding this field, with the restriction I.o =I o, one gets

N=[ . . —(t(x)(b (c (+c (b ()+ . . ]IQ& . (8.21)

Another way of getting general information about the
gravitational behavior of string theories is to study the
conformal consistency conditions. The coupling of gravi-
tons and antisymmetric tensor particles to closed strings
is given by the linear part of the expression

fXx exp — f d z[G„,(x)(},x "(}x'

+a„.(x)a,x~a x"

+h„(},c'+ —43b„c'() P(x)]

4[ x(a )]=[ ((t(x)+t" (x}a",a ', + ]IQ &,
l

where IQ & is the vacuum defined by

In&=c(c(I0& .

(8.17) +H. c.

By computing the corresponding BRST charge

Q= f c(z)(T + —,'T '),
27Tl

(8.22)

(8.23)

We can decompose t" into its symmetric and antisym-
metric parts:

t"'=h '+b"'(x)

where

T"=—
—,G„.(x)a,x~a,x.+-,'a,'yIx),

and imposing Q =0, one gets the conditions

Now, the gauge symmetry of string field theory is

5C)[x(o.}]=L „&b(„)[x(o)]+L „C)(„)[x((r)],

where the Virasoro operators are defined by

(8.18)

R„, ,'H„) H, +2V—q—V (5+V)„H„, 2(V)„P}Hq "=0—,
(8.24)—V (t+(V„()() —

—,'R+ —,', (H„ i ) =0

(where H=d8 —co3); these conditions follow from the
variational principle,

„( )= . "+'T'"'( )
dz

2&l
5f d(vol)[R+(V„(t) —

—,', H ]=0 . (8.25)

and the gauge parameters @„[x((T)]are functions of
X~(o ). We have, for example,

The preceding Lagrangian (8.20) is just the linearization
of (8.25), although the precise relationship between the
two is not fully understood.
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B. Modular invariance

In order to perform functional integrals like (8.6) to
compute physical quantities, one has to solve the gauge-
Axing problem for the diffeomorphism and %'eyl groups.
This is completely analogous to a similar computation in
an ordinary gauge theory. ) But when this is done, it is
still necessary to sum over nondiffeomorphic surfaces.
This fact is the origin of the celebrated modular invari-
ance, which is responsible for the (probable) finiteness of
string theories, as well as for the cancellation of
anomalies in them.

Let us first consider the case in which the world sheet
has the topology of a torus. This corresponds to genus
one, that is, y=O.

For a general Riemann surface, the parameters that
characterize conformally inequivalent structures are
called Teichmuller parameteis, and, in the case of the
torus, there is only of these, ~=~, +i~2, ~2 O. We can
get an intuitive feeling for the meaning of ~ by the follow-
ing construction: we take an arbitrary torus (Fig. 20) and
we cut it along one of the homology generators (i.e., the
circle a in Fig. 20). Before closing it again, we perform
an arbitrary twist on one of the edges. The new torus is
not di6'eomorphic to the one before unless the twist is a
multiple of 2m, in which case it is known as a Dehn twist
and generates diffeomorphisms riot connected with the
identity. We can identify ~& with the twist, and ~z with
the length of the other homology generator b.

Another way of visualizing this construction is to con-
sider the lattice in the upper half-plane H, gerierated by
(1,~) (see Fig. 21). This means that we identify
z-z+1-. z+z. One might think that all we have to do
now, after we have computed the physical amplitude for
a given value of v; obtaining M(~), say, is to integrate it
on the upper half-plane H. Actually, things are a little
more complicated, because if we did that, we would have
been overcounting: there are many different values of r
which give rise to the same torus.

It is indeed rather easy to check that ~ and w',

FIG. 21. The representation of a twisted torus as a lattice in the
z plane.

The group I—:SL(2,z)/zz is usually called the modu-
lar group, and it is actually generated by the Dehn twists,
which in the present notation correspond to discrete
translations T and inversions

Tz =1+z, Sz= —1/z . (8.27)

Under an arbitrary transformation g Em,

This means that there is a natural invariant measure,
usually called the Poincare measure, namely,

d7 )de
22

(8.28)

The last property we shall need of the modular group
is the concept of the fundamental region, F. By
deAnition, F is the set shown in Fig. 22. It has the prop-
erty that any point in H can be mapped into I' in a
unique way by a transformation of I . This means, in
particular, that

a~+6
S =gV=

o'7+ d
(8.26)

where g ESL(2,z) (a, b, c,d H z, ad bc = 1), both—give
rise to the same lattice in H and then, also to the same
torus. One should somehow implement a generalization
of the Faddeev-Popov Inethod for the present situation in
order to avoid overcounting.

—1/2

F

1

I

l

I

1/2

FIG. 20. The standard homology basis for the genus-l surface.
FICi. 22. The fundamental group for the genus-1 modular
group I .
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(8.29)

Vfe are now in a position to implement our solution to
the overcounting problem. I.et us assume that the ampli-
tude can be represented as

(W

(8.30)

Then, when M(r) is modular invariant (and only in this
case), we can write

~= g f M(r)= g f, M(r)
y&r r ~2 r&I r2

FIG. 23. The exponential mapping from the w plane to the z
plane.

6f=vol(I )f 2 M(r),
F

(8.31)
1/2

f(w)~ g(z(w)) =e g(z(w))
8z
8M

(8.35)

and by defining

A~ physical: (8.32)

so that, when 6o. =2m, 6m =2m/, implying

P(a +2m ) = —g(o ) .

we have solved the overcounting problem.
It is worth stressing that the dangerous (r2 —+0) ultra-

violet region, corresponding to very small toruses, is not
included in the fundamental region I'. This means that
superstrings cannot have ultraviolet divergences. They
can, however, possess infrared ones (corresponding to
xi~ co), which physically indicate (as is indeed the case
for the bosonic string) the pr'esence of tachyons in the
spectrum.

This is the (oversimplified) argument explaining why
there is a hope of obtaining a consistent quantum theory
of the gravitational field from superstrings. Supersym-
metry, however, did not play any role in it, although it is
believed to be essential for finiteness. Let us present now
a slightly more technical argument (although still not
rigorous), which is essentially due to Martinec (1986).

The generalization of the action for a supersymmetric
string is

(8.33)

In order to describe the fermions in the theory properly,
we need to introduce two types of them (corresponding
to the different spin structures one can define on a torus).
The Neveu-Schwarz field P" is a conformal field of di-
mension —,', so that its Fourier expansion is

This sector corresponds to physical bosons.
On the other hand, the Ramond sector is periodic in o.

and corresponds to physical fermions (in order to be able
to implement supersymmetry, we should have fermions
and bosons both with the same boundary conditions).
This, in turn, implies that the Ramond fermions g"(z)
must be antiperiodic on circles around the origin. The
Ramond vertex must then be an operator that creates the
branch-cut structure of Fig'. 24. The remarkable thing is
that both the spin operators on the world sheet and the
Ramond states that they create transform as d =10
spacetime spinors.

The supersymmetry charge will be given by a Ramond
vertex operator ai zero momentum,

GZ /2. V mini~—(" z)
27Tl 27Tl

(8.36)

This expression suggests an intuitive argument for
nonrenormalization theorems. Let us assume that Vs(z)
is the vertex operator corresponding to a specific boson
state and that it can be written as a supersymmetry varia-
tion of a fermion vertex operator:

—k —i /2

k= —~
(8.34)

The Neveu-Schwarz field is single valued in ihe z
plane, provided that K Hz+ —,'. If we undo the conformal
transformation from m =~+io. to z =e, we have the sit-
uation shown in Fig. 23. The conformal properties of
transformation imply

FIG. 24. The branch cut generated in the z plane by a (Ra-
rnond) fermion vertex.
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Vii(z)=[Q&, VF(z)]= f . q~(w)VF(z) .
did

27Tl
(8.37)

The contour of the variable w is a closed path in a com-
pact Riemann surface. By pushing this contour to the
"other side" of the Riemann surface and contracting it
there to zero, we can show that the expectation value of
Vz vanishes (Fig. 25). This would prove to all orders in
perturbation theory (that is, for surfaces of arbitrary
genus) the vanishing of the tadpole for the particle corre-
sponding to Vs (there are some subtleties, associated
with the cut corresponding to the fermion operator).

A rather similar "hand-waving" argument can be
oQ'ered for the vanishing of the vacuum energy, simply by
representing one propagator as a sum over states and as-
suming that, o6' shell, those states form boson-fermions
pairs. This allows one to represent the fermionic states
as commutators with bosons, leading to the cancellation
shown in Fig. 26 (see Peskin, 1987).

In the case of a general Riemann surface of genus g,
one usually defines the Abelian differentials co;=f;(z)dz
such that the integrals on the 2g nontrivial cycles of 0'
are

(8.38)

FIG. 26. Martinec's (1986) intuitive argument for the cosmo-
logical constant to be zero in supersymmetric strings.

where ~ (Im~) 0) is the period matrix of the Riemann
surface X (see Alvarez-Gaume, 1986, for an elementary
exposition of the relevant mathematics). The modular
group (or mapping class group) Q(X) is the group of
disconnected diA'eomorphisms of X,

diff'+( X )

diffo(X)
(8.39)

The elements of Q(X) are all generated by Dehn or
"Lickorish" twists around homotopically nontrivial
closed curves on X. It is easy to see that the matrix
M(ar ) representing the action of Dr (the
diffeomorphism defined by a twist around the curve y) on
H, (X,E) is a nonsingular element of the symplectic group
sp(2g, m). There are, however, Dehn twists around homo-
topically nontrivial, but homologically trivial, curves.
These map to the unit matrix in the symplectic group
and constitute what is called the Torelli group, r( X ).
One has, therefore,

Q(X) =sp(2g, z) . (8.40)

The space of al1 period matrices is usua1ly called
Siegel's upper half-plane & and has complex dimension

g (g + 1 ) /2.
If we denote by S the space of all metrics on X, the

Teichmuller space is de6ned as the space of orbits under
the Weyl rescalings and di6'eomorphisms connected with
the identity

S
wODi6' (8.41)

The moduli space is the space of orbits under Weyl re-
scalings and diffeomorphisms,

S
wSDiff 0(X) (8.42)

FIG. 25. Martinec's (1986) intuitive argument for the non-
renormalization theorem in supersymmetric strings. [For example, in the trivial case of the torus rg i=H,
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Q(X)=1, Mi =H/F-F, which is essentially the funda-
mental region of the modular group we mentioned in Eq.
(8.29).]

It can be proven that the complex dimension of A, is
3g —3 for g ~ 2. This means that, although every
Riemann surface is represented by a point in

g

sp(2g, Z)

the space A,g is, in general, much smaller than A.~, ex-
cept for g =2, 3, for which they are essentially equivalent.
This means that for g ~ 4 there is no known parametriza-
tion of the moduli space AL, so that the question of the
finiteness of string amplitudes cannot even be posed in an
unambiguous way. Some general conclusions can be
drawn, however. It seems that the ultraviolet behavior of
a given amplitude is determined by the boundary of the
moduli space, that is, those points in JRg which corr'e-

spond to degenerate Riemann surfaces with smaller
genus (if a zero homology cycle is pinched off) or more
complicated configurations (when a nonzero homology
cycle is pinched ofF).

To summarize the status of the question: although
there are straightforward generalizations of the one-loop
argument in an intuitive sense (e.g., Martinec, 1986), the
general multiloop amplitude is not known in a mathemat-
ically precise enough manner to allow us to settle the
problem of finiteness in one sense or another. No incon-
sistency has been found in the theory up until now, to the
author's knowledge, and this is not a small success for a
theory incorporating quantum gravity.

R„,=O) an action of the form R +aR&„R"'+bR would
be transformed into R itself, plus higher-order terms,
by the field redefinition 5g„,=aR„+cRg„, where
c =(a +2b)/(2 —d).

This means, among other things, that on the linearized
Einstein shell one cannot tell apart the actions R +o,"6
and R +n'R„PR" ~. A further point of interest is
that, from the cr model /3-function approach, the
coefficients of R„R" and R are regularization depen-
dent.

Gross and Witten (1986) have studied the tree approxi-
mation to the graviton scattering in Type-II superstring
theories, and they have concluded that it is reproduced
by a Lagrangian of the type

S= fd(vol)(R + Y),

where

(8.45)

(8.46)

and the definition of the tensor t is through

Qdetl"F"„=t ' (8;47)

It should perhaps be stressed that from the world-sheet
o-model point of view, an n-loop contribution to P gives
an interaction of dimensionality R ".

Recently, Gross and Sloan (1987) have found the (very
complicated) low-energy efFective Lagrangian for the
d = 10 heterotic string, which reproduces four-point
scattering amplitudes including terms of order cx' .

C. Gravity in the long-wavelength limit D. Primordial superstrings

The low-energy (a'E ~0) limit of superstrings is an
ordinary field theory because, when the string tension
tends to infinity, the strings degenerate into points, and
the eQ'ect of the extended structure is negligible.

It is of some interest to check what type of action gives
the superstrings for the purely gravitational part of the
action. As we have already seen, the dominant part is al-
ways given by the Hilbert action; but there are quadratic
corrections, which are given by (Deser, 1986)

I.,~=R +A,a'6, (8.43)

where 6 is the two-dimensional integrand of the Euler
class, dimensionally continued to d = 10,

G =&g (Rq pR" ~ 4R„„R"'+R ) —. (8.44)

The coefficient A, is equal to 2 for the bosonic string, A, = 1

for the heterotic string, and X=O for the Careen-Schwarz
superstring. The action (843) is determined so that it
will reproduce the u' correction to the four-graviton am-
plitude, through the sum of a four-point contact term
coming from 6 alone and graviton exchange Born terms.

The famous 't Hooft and Veltman redefinition theorem
says in our case that on the Einstein shell (that is, when

If the superstrings are indeed to be taken as serious
candidates for a theory of all known interactions, they
should also predict a cosmological scenario that is both
compatible with the observations and free of the prob-
lems of the present models. This means, in particular,
that it should be possible to analyze the big bang singu-
larity, and the theory should be able to predict the behav-
ior of the universe at pre-Planckian "times".

Our present inability to perform nontrivial computa-
tions, however, prevents any serious attack on these
problems, in which, as a rule, strong gravitational fields
are present. Several speculative scenarios have appeared
(see, for example, Alvarez, 1985; Brandenberger and
Vafa, 1988) which provide natural means by which
strings could avoid the primordial singularity. ) What one
would like to have, however, is an intuitive picture of the
pregeometry associated with superstrings. That is, if we
accept the point of view that the metric of spacetime is a
string condensate, and that for big enough energies the
spacetime continuum is no longer the appropriate arena
for the dynamics, then we would like to picture very-
high-energy gravitational dynamics in some way or other
(see Alvarez, 1988). The best we can do for the time be-
ing is to reinterpret the spacetime coordinates as two-
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dimensional fields in a given (dynamically determined)
conformal field theory. These fields will integrate them-
selves into a four-dimensional manifold only if the high-
frequency modes are integrated out (see Friedan and
Shenker, 1986). Although this program is very appeal-
ing, it is fair to say that no concrete results have as yet
been produced.

We can, then, in a more modest vein, try to figure out
which could be the behavior of strings at very high
energies —but still in the perturbative sense. There are
two ways in which this has been done. The first is the
Axed-angle scattering of superstrings; the second is the
study of the high-temperature limit.

When one studies high-energy, fixed-angle scattering
(see Gross, 1988) one finds an infinite number of linear re-
lations between scattering amplitudes of diA'erent string
states, valid order by order in perturbation theory, for ex-
ample:

A, (p, ) =+ V, (XI'„D,p, ) A „,„„,„(p; ) . (8.48)

They connect amplitudes involving particles of
diA'erent —and arbitrary high —spin. This means that
we will get conserved charges with arbitrary high spin.
This, in turn, means that either the Coleman-Mandula
theorem does not work or that the 8 matrix is trivial.

This approach has been criticized by Veneziano (1988)
on the grounds that large classical gravitational phenom-
ena occurring at large impact parameters (b &R, ) A,, )

contribute to fixed-angle scattering and that, at smaller
values of the impact parameter b, strong gravity eAects
should dominate the scattering, with possible formation
of black holes, horizons, etc. Besides, one of the hy-
potheses of the Coleman-Mandula theorem, namely, par-
ticle finiteness, is not obeyed here, because we have an
infinite number of massless states in the n'~oo limit.
Nevertheless, unclear as they are, these results strongly
point to a kind of partonlike behavior of quasifree con-
stituents in the high-energy limit.

The study of strings at finite temperature (see Alvarez
and Osorio, 1988, and references therein) immediately re-
veals that the asymptotic mass spectrum of strings al-
ways grows exponentially,

co(m)=coo(m&a') 'e (8.49)

with a, b)0 dependent on the particular string being
considered, and so the usual canonical equilibrium will
not be well defined for temperatures greater than TII, the
Hagedorn temperature T)T~, because only when
T & TH does

There are then several possibilities (depending essen-
tially on the subdominant exponent a). In particular,
when z ( T)= ~ if T ) TH but limF ( T) ( ~, a phase tran-
sition usually exists. This is exactly what happens for
theories of closed superstrings (such as the heterotic
string). A good analogy here is that of quantum chromo-

dynamics (@CD), in which there also exists a phase tran-
sition at T-m„between the confined and unconfined
phases of quarks and gluons. The study of this hypothet-
ical phase is of the utmost importance, since it will
presumably dominate the dynamics of the initial state of
the universe itself.

A very interesting fact, first unveiled by Atick and
Witten (1988), is that in the high-temperature limit (keep-
ing g T constant) the free energy grows like T (instead
of the usual behavior in quantum field theory, F-T ).
Specifically, the number of degrees of freedom seems to
correspond to a lattice of two-dimensional quantum field
theories.

Although this result is quite puzzling, and not well un-
derstood, it supports the results of Gross and Mende
(1988) in the sense that it seems to imply simpler physics
at very short distances. More work is needed before the
physical implications of these approaches can be as-
sessed. We are desperately lacking adequate techniques
to deal with the most interesting problems in gravitation
from the point of view of superstrings.

E. Random surfaces

Accepting, for the sake of the present discussion, as an
established fact that superstrings indeed provide a con-
sistent candidate for a quantum theory of gravitation, we
should like to get a feeling for what short-distance gravi-
tational physics would be like. Unfortunately, for even a
mildly interesting situation (and of course for any cosmo-
logical problem) we cannot rely on perturbation theory
(especially around the Minkowski metric). And the fact
is that perturbative computations are the only ones we
know how to do in superstrings, and even those are not
fully understood for arbitrary genus. It is clear that, in
order to get some intuition about the picture of quantum
gravity provided by superstrings, we need first to develop
an understanding of nonperturbative superstring physics.
This could perhaps be provided by string field theory, or
by the infinite-genus approach, but no mechanism seems
to work well enough at the present time to allow us to
perform detailed computations. In ordinary quantum
field theory, discretization and Monte Carlo simulations
have provided useful information of a nonperturbative
character. We want to analyze in this last subsection
what has been done in this direction in string theory over
the last few years.

The problem of defining a lattice theory of random sur-
faces is a notorious one. Durhuus et al. (1984) have
defined the Euclidean action of a random surface im-
mersed in the lattice as its total area. They found that
this implies that the surfaces degenerate into noninteract-
ing branched polymers, so that the continuum limit is a
free Aeld theory.

Gross and co-workers have proposed to use triangulat-
ed random surfaces instead. In order to lay the ground-
work for physical intuition, let us first consider the case
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N i N 6
z= d X; .exp —— 3 6j

i j =1 i,j =1 a=1
(8.50)

where 3 (5) is the area of the triangle b„and thus the ac-
tion equals the area of a triangulated torus with N
points.

This measure is concentrated on tori - of area
D(N 1)/2 wit—h Iluctuations of order N, and is there-
fore equivalent for large X to a microcanonical measure.
Moreover,

g X,

&x'& —= -'
2

2 2/X H 4/dH
(8.51)

can be taken as a-loose definition of the Hausdorff dimen-
sion (because in the large-N limit this means that
&x'&=~

The result of a rather simple computation in the
D~ (x( limit (in which the path integral is dominated by
the saddle point) is

of random walks. The Haussdorff dimension is d~=2.
This means that the size of a typical closed random curve

1/dHof length L grows as L =+L for large L.
Actually, the trivial infrared behavior of spin systems,

as well as the triviality of a relativistic scalar field when
d )4, is basically a consequence of the fact that two ran-
dom walks never intersect when embedded in a space of
d ) 2dH =4.

In the triangulated random-surface model of Gross
(1984b) the action is taken as the sum of the areas of the
triangles that tesselate the surface. We shall represent
the points on the surface (see Fig. 27) by X;J where
i,j =1, . . . , X form a hexagonal lattice and we impose
periodic boundary conditions: X; . +N =X,+N =X,
Now, each point X, is a vertex of six triangles (two-
dimensional simplices) labeled b, ;J, a= 1, . . . , 6. The ex-
plicit formula for the partition function will be

s, —= y I~(s)l~, (8.53)

and the corresponding partition function reads

g (13)=f + dA(i)e '5(A(i )), (8.54)

where io is some arbitrary but fixed vertex in T, so that
the 5 function removes the translational zero mode and
dA (i) is the Lebesgue measure in R

The main result of Ambj@rn et al. is that for any tri-
angulation T either we have g (f3) = ao or there exists an
integer Xd + depending only on the Euler characteristic of
the surface, such that for X ~ Nd +

(y (~((i ),

This obviously means that the Hausdorff dimension is
infinite, d~ = ao, because it grows more slowly than any
power of N. Incidentally, the divergence in Eq. (8.31) is
nothing else than the usual logarithmic infrared diver-
gence of two-dimensional massless fields, always present
in the infinite-volume limit.

This result strongly suggests that string theories, and
perhaps gauge theories as well, are nontrivial in all di-
mensions, because the upper critical dimension would be
2dH —~ .

This approach has been severely criticized by Ambj@rn
et al. (1985). Actually, they were able to prove a rather
general theorem. Let us use the letter T to denote tri-
angulations, that is, connected, two-dimensional, abstract
simplicial complexes, and let 5 denote a triangle (that is,
a two-simplex); i, j, and k denotes vertices (0 simplices),
and (ij) the edge (one-simplex) connecting i and j if i and

j are endpoints of an edge, that is, if i and j are nearest
neighbors in T.

Consider a closed triangulated surface A, given by the
mapping of the vertices of some fixed triangulation T into
the Euclidean space R". The action considered by Gross
and co-workers is

&X'&- lnN'.
4~

ANT

(8.52)

f ~d&() y I&()l
g (13) (cT

Xe ~5(A(io))= ~ .
—ps

(8.55)

This shows that the surfaces have spikes growing out
of them. Of course, it is then difficult to attribute a
meaning to

j = C.INSTANT

L2( T):— (x ~((') (8.56)

[where U(T) is just the number of vertices in Tj as the
typical linear size of the surface for a given triangulation
T, because one could equally well use

FICi. 27. A triangulation of a two-dimensional surface.

L~(T) —= (, (x ~(( ) (8.57)
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(In the random walk problems it does not matter which
value of N is used. ) This in turn makes highly suspect
Gross's definition of the HausdorfF dimension and all
physical results based in it.

Some alternative models have been proposed by
Ambj@rn et al, with partition functions defined as

g(P)= g g (P)p(T), (8.58)

where the sum ranges over the set ~& of all closed tri-
angulations with Euler characteristic g, and p( T) is a
weight factor, given by
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