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. INTRODUCTION

We are considering the problem of heat transported by
conduction in which the heat pulses are transmitted by
waves at finite but perhaps high speeds. We are interest-
ed in applying some ideas that seem appropriate for
describing shear waves in liquids (Joseph et al., 1986) to
the problem of propagation of heat. In this theory, one
may have fast waves carrying small amounts of heat and
slower speeds carrying larger amounts of heat. In the
linearized theory, the heat flux is determined by an in-
tegral over the history of the temperature gradient
weighted against a relaxation function called the heat-
flux kernel. The area under the curve giving the mono-
tonic relaxation of the heat-flux kernel is the thermal
conductivity. The energetic effect of modes that decay
rapidly at times long for the fast modes and short for the
slow modes is absorbed by an effective thermal conduc-
tivity associated with the portion of the relaxation that
has already relaxed. The effective thermal conductivity
can be acknowledged explicitly in mathematical formula-
tion analogous to the well-known model of Jeffreys for
the stress and strain rate in liquids. In an idealized solid,
for example, thermal energy is transported by two
different mechanisms: by quantized electronic excita-
tions, which are called free electrons, and by the quanta
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of lattice vibrations, which are called phonons. These
quanta undergo collisions of a dissipative nature, giving
rise to thermal resistance in the medium. A relaxation
time 7 is associated with the average communication time
between these collisions for the commencement of resis-
tive flow. There are different times of relaxation, so that
the mean relaxation time 7 is not generally known.
Indeed, there may be a spectrum of relaxation times in
most solids giving rise to different speeds of propagation
of heat. For such solids, it would be more important to
know what modes carry the most heat, so we want the
dominant rather than the mean mode of relaxation.

The notion of an effective thermal conductivity and an
effective heat-flux kernel with related concepts for the
internal energy will be treated later. For now, it will
suffice to establish some common notations.

0 temperature

q heat flux

T relaxation time

k=k,+k, thermal conductivity

ky effective thermal conductivity
k, elastic conductivity

e internal energy

Y heat capacity

c wave speed

¢y sound speed

Cy speed of temperature waves,

second sound

Another group of notations, to be used later, is intro-
duced in Sec. VL.

In Secs. I-VII of this paper, we deal with linear
theories.! A heat-flux equation of the Jeffreys type can be
expressed as

IWe have tried to review all works on heat waves, linear and
nonlinear, in our chronology (Sec. VIII) of thoughts about heat
waves. It is certain that we have not found every reference and
equally certain that we have not missed many. Our reviews of
these papers are slightly personal; we took the liberty of ex-
pressing some opinions and some ideas of our own.

Copyright ©1988 The American Physical Society 41
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T%Stl+q=—kveffklive . (1.1)

ot
The physical ideas leading to Eq. (1.1) will be discussed in
Sec. VI. If k; =0, then Eq. (1.1) reduces to

L B (1.2)
ot

We shall call Eq. (1.2) Cattaneo’s equation. When 7=0,

Eq. (1.2) reduces to Fourier’s law and, if de =y d 6, as for

a solid, then the energy equation®

%f— = —divq (1.3)
leads to diffusion,

99 _ v, (1.4)

at

where k=k /y is the thermal diffusivity. The diffusion
equation has the unphysical property that if a sudden
change of temperature is made at some point on the
body, it will be felt instantly everywhere, though with ex-
ponentially small amplitudes at distant points. In a loose
manner of speaking, we may say that diffusion gives rise
to infinite speeds of propagation.

The temperature of a body is the macroscopic conse-
quence of certain kinds of vibratory motions, the motions
of molecules of a gas or the vibrations of a lattice in a
solid on microscopic scales. Heat is transported by
near-neighbor excitation in which changes of momentum
and energy on a microscopic scale are propagated as
waves.

An “inertial” theory of heat conduction can be ob-
tained from Eq. (1.2) in an appropriate limit 7— oo,
k — o, k /7= finite

Sq_ _ Vo
ot BV .
This shows already that a finite thermal conductivity
arises from damping. A wave, rather than diffusion,
equation is implied by Egs. (1.3) and (1.5),

(1.5)

2
? =c?V?% ,
where, assuming constant properties, c =V'k /7y is the
speed of the thermal wave. The wave equation has the
unacceptable property that wave pulses are propagated
without attenuation; even worse; we could never establish
steady heat flow with temperature varying from point to
point.

If no terms are omitted from Eq, (1.2), we may com-
bine Egs. (1.3) and (1.2) to form a telegraph equation,

(1.6)

.2Equation (1.3) is the energy equation for a rigid conductor.
Various other terms appear in the balance of energy for deform-
able bodies. Constitutive equations like Eq. (1.2) can be postu-
lated for both rigid and deformable conductors, but Eq. (1.3) ap-
plies only to rigid bodies.
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Equation (1.7) is hyperbolic and it transmits waves of
temperature with a speed ¢. The waves are attenuated as
a result of relaxation, and steady heat flow may be in-
duced by temperature gradients. It is obvious that
Cattaneo’s law has many desirable properties.

The development of ideas about heat waves is a stream
with many tributaries (see Sec. VIII for a chronology).
Two problems are the source of this stream: the problem
of infinite wave speeds and the problem of second sound.
The problem of second sound arose first in studies of
Tisza (1938) and Landau (1941) of heat waves in liquid
helium II. v

The problem that infinite speeds of propagation are
generated by diffusion evidently first appeared in the
work of Cattaneo (1948) and was apparently addressed
independently by Morse and Feshbach (1953) and Ver-
notte (1958a). Their objections to diffusion seem not to
have generated any resistance, and, as nearly as we can
tell, everyone agrees that heat pulses ought to be trans-
ported by waves. This does not mean that there are big
movements afoot to discard Fourier’s law. The relaxa-
tion time in Eq. (1.2) is thought to be very small in nearly
all practical and even exotic applications, so that as a
practical matter it is believed that we get Fourier’s law
even on the shortest time scales of our daily lives. In
fact, in our view, an understanding of times scales is the
central object of scientific investigations of heat waves,
and is only imperfectly understood.

Cattaneo’s equation (1.2) has been derived in different
ways by different authors. Derivations based on kinetic
theory can be found in the works of Maxwell (1867), Cat-
taneo (1948), and Grad (1958). Maxwell cast out the time
derivative because it ... may be neglected, as the rate
of conduction will rapidly establish itself.” In fact, the
works of Maxwell and Grad are rather more general than
Cattaneo’s, and they did not come to grips with the prob-
lem of heat propagation. ‘“More general” is not neces-
sarily “better.” Cattaneo’s equation is written down by
Vernotte (1958a) as the most obvious and simple generali-
zation of Fourier’s law that will give rise to finite speeds
of propagation. Rate laws like Cattaneo’s are very well
known and extensively used in the theory of viscoelastic
fluids and 'solids and in relaxing gas dynamics.

The time derivative in Eq. (1.2) can be described as a
thermal “inertia” [see Eq. (1.5)]. Nernst (1917) suggested
that in good thermal conductors at low temperatures
heat may have sufficient “inertia” to give rise to “oscilla-
tory discharge.” Onsager (1931) noted that the Fourier
law contradicted the principle of microscopic reversibili-
ty used in his thermodynamics, a contradiction that
“... is removed when we recognize that [the Fourier
law] is only an approximate description of the process of
conduction, neglecting the time needed for acceleration
of the heat flow” (Onsager, 1931, p. 419). A theory in
which “thermal” inertia is postulated in the context of a
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dynamical generalization of Onsager’s theory is given by
Kaliski (1965). After some approximations, he arrives at
a telegraph equation for the temperature. Earlier,
Nettleton (1960) postulated Cattaneo’s equation for
liquids and showed it to be compatible with irreversible
thermodynamics. Different modern authors have postu-
lated a constitutive equation like Cattaneo’s, or general-
ized forms of it, and derived consistency relations for one
or another form of thermodynamics; for example, see
Gurtin and Pipkin (1968), Miiller (1969), Meixner (1970),
Morro (1980a, 1980b), Coleman and co-workers (1982,
1987). One aim of the first and last mentioned authors
was to determine nonlinear effects, if any, on the propa-
gation of heat, with one result given by Gurtin and Pip-
kin and the opposite one by Coleman, Fabrizio, and
Owen (1982).

Boltzmann’s equation for the distribution function for
particles—molecules in a gas, electrons and phonons in
solids—plays an important role in the chronology of
thought about heat waves. It was first used by Ward and
Wilks (1952) to derive a wave equation for second sound
in helium II. Tavernier (1962) derived an equation like
Eq. (1.2) from Boltzmann’s equation using a finite
difference approximation to the collision term. Callway’s
approximation of the collision term with two relaxation
times forms the basis of the study of Guyer and
Krumhansl (1964) of the frequency window for the pas-
sage of temperature waves through dielectric crystals at
low temperatures (second sound). A more complete solu-
tion using eigenfunctions of the normal-process collision
operator was given by Guyer and Krumhansl (1966a).
This last paper and one by Kwok (1967) lead to different
macroscopic equations for heat flow and are based on
Boltzmann’s equation. Hardy (1970) solved the complete

linearized Boltzmann equation in terms of eigenvectors .

of the collision matrix, not only for normal processes but
with umklapp processes included. Maurer (1969) derived
a relaxation model leading to a telegraph equation for the
heat flux in metals from the quantum-mechanical form of
the Boltzmann transport equation. Beck (1975) wrote an
extended and critical review of the physics literature, in-
cluding applications of Boltzmann’s equation to second
sound and related thermal conduction phenomena.

It is perhaps important, and is certainly interesting,
that the telegraph equation, which is the simplest
mathematical model combining waves and diffusion, can
be derived as limiting cases in the problem of random
walks. The 1951 paper of Goldstein is evidently the first
effort in this direction. He treats several versions of the
problem of random walks in one dimension and derives
the telegraph equation with leakage from another. In
both cases, the directions in any two consecutive inter-
vals are correlated. If this correlation is relaxed, a
diffusion equation rather than a telegraph equation ap-
pears. Goldstein draws analogies between solutions of
the telegraph equation for heat conduction, but does not
suggest that the diffusion equation for heat ought to be
replaced. A similar analysis of a one-dimensional ran-
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dom walk with correlation, leading to yet another form
of the telegraph equation, in which first as well as second
spatial derivatives appear, was given by Weyman (1965).
His work was motivated by the desire to correct the
infinite propagation speeds associated with diffusion.
Turning now to second sound, we note that whereas
Cattaneo proposed to correct diffusion for effects associ-
ated with thermal inertia, which in gases could be expect-
ed to be important only for surpassingly small times,
Band and Meyer (1948), the same year as Cattaneo, and
Osborne (1950),.only two years later, proposed exactly
the same telegraph equation (1.7), but with the first time
derivative added to the wave equation to account for dis-
sipative effects in liquid helium II. We have just said that
in 1948 the diffusion equation was corrected for infinite
wave speeds by adding the second derivative, and the
wave equation was corrected for the lack of dissipation
by adding a first derivative. The Tisza-Landau predic-
tion of temperature waves in liquid helium II and the
subsequent verification of this prediction by Peshkov
(1944) and others stimulated interest among physicists in
propagation of waves of heat. This interest might have
waned if the phenomenon of heat waves were confined to
helium II. However, already in 1946, Peshkov noted that
“a gas of thermal quanta capable of performing vibra-
tions similar to those of sound should exist.” Not long
after, Ward and Wilks (1951) derived the Landau expres-
sion, ¢, =c, /V'3, for the speed of second sound without
recourse to a two-fluid model. In 1952, they derived a
wave equation for the propagation of second sound in a
phonon gas by neglecting dissipation and using

‘Boltzmann’s equation for the distribution function for

phonons. All of the work on heat waves since the early
studies of liquid helium II have been motivated in one
way or another by the problems of either infinite speeds
or second sound in solids, with one exception.

The exception is the molecular dynamic calculations of
wave propagation on a lattice of atoms under forces for
an iron alloy done by MacDonald and Tsai in the 1970s.
They were interested in extremely high temperatures and
pressure. Their approach is fundamentally different from
all the others. The degree of agreement between the usu-
al theories of second sound at low temperatures and their
computation of propagation on a lattice at high tempera-
ture, but short times, is astonishing.

Il. AN EFFECTIVE THERMAL CONDUCTIVITY
AND RELAXATION KERNEL FOR CONDUCTORS
OF THE JEFFREYS TYPE

Cattaneo’s equation (1.2) can be expressed as an in-
tegral over the history of the temperature gradient,

t—t'

——____I?_ t ’ ’
q vawexp VO(x,t')dt’ . 2.1

A more general form for the heat flux is

q=—f_t Q(t—t")VO(x,t')dt’ , (2.2)



44 D. D. Joseph and L. Preziosi: Heat waves

where Q(s) is a positive, decreasing relaxation function
that tends to zero as s — . Integral expressions like Eq.
(2.2) are used in Boltzmann’s theory of linear viscoelasti-
city to express the present value of the stress in terms of
past values of the strain or strain rate (Joseph, 1986).
Many different constitutive models arise from different
choices of Q(s). If Q(s)=k&8(s) where &(s) is a one-
sided Dirac delta function,

0
[ Tatsias=1,
0

then q=—kV6 is Fourier’s law. Gurtin and Pipkin
(1968) were the first to write Eq. (2.2), but under assump-
tions that disallow a delta function in the kernel. In this
case, Q(0), the instantaneous modulus, which we call the
heat rigidity, is bounded. Nunziato (1971) added a
Fourier term to Eq. (2.2), producing an equation that is
the same as Eq. (2.2) with a delta function in the kernel.

The thermal conductivity k is defined for steady tem-
perature in which 0(x,¢) is independent of ¢. In this case,
Eq. (2.2) implies that

q=—kVo, (2.3)
where
! ' r— *®
k—fﬁwQ(t‘t )dt fo Q(s)ds . 2.4)

Since k is given by the area under the curve, the slower
the relaxation for a given ridigity, the larger the value of
k.

It would be a miracle if for some real conductor the re-
laxation kernel could be rigorously represented by an ex-
ponential kernel with a single time of relaxation, as is re-
quired by Cattaneo’s model. The nature of the thermal
response, as we shall see, depends critically on what is as-
sumed about Q.

We may define a kernel of the Jeffreys type

ky _
Q(s)=k18(s)+——1_—e s/T (2.5)
where 8(s) is a Dirac delta function and k; and k, are
constants. The kernel Eq. (2.5) gives rise to a heat-flux
law of the Jeffreys type,

=t

k
q=—kVo(x,t)——= [ exp VO(x,t')dt’
T — 0

(2.6)

. in which an effective Fourier conductivity &k, is explicitly
acknowledged. Evaluation of Eq. (2.6) on steady flow
gives rise to

q=—(k{+k,)VO(x) . 2.7)
1t follows that thermal conductivity
k=k,+k, (2.8)

corresponding to (2.6) is the sum of an effective conduc-
tivity k, and an elastic conductivity
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k2=fo°°Q2(s)ds , 2.9
where
k _
Qz(s)=-7_iexp —T—S] . (2.10)

We call Eq. (2.5) a kernel of the Jeffreys type because it
is the integrated form of Eq. (1.2), and Eq. (1.3) is the
differentiated form of Eq. (2.5). It is perhaps necessary
to remark that the name Jeffreys is attached to Eq. (2.5)
by analogy; Jeffreys wrote these things about stress and
deformation, but said not one word about propagation of
heat.

All the foregoing will be generalized in Sec. VI. It is
necessary first to discuss some dynamic consequences of
our constitutive models (Sec. III) and to interpret our pa-
rameters in terms of the parameters used by physicists to
describe the propagation of heat at low temperatures. in
dielectric crystals (Sec. IV).

I1l. THERMAL RESPONSE OF CATTANEO-TYPE
AND JEFFREYS-TYPE CONDUCTORS TO A SUDDEN
CHANGE OF TEMPERATURE

The thermal response of motionless conductors follow-
ing from constitutive equations that have an effective
conductivity [Egs. (1.2) or (2.5)] is determined by a
second-order partial differential equation of the Jeffreys
type,

9% , 1030 _ , » 00

o1 + - 31 =c“V0+k,V ar
where c’=k/yr, k,=k,/y. When k;=0, Eq. (3.1)
reduces to a telegraph equation (1.7), which is a hyper-
bolic equation that allows for propagation of discontinui-
ties with constant speed c.

When k540, Eq. (3.1) is parabolic and discontinuities
are smoothed by diffusion associated with the effective
thermal conductivity k,. If «;/7c2=1, then Eq. (3.1)
reduces to a diffusion equation

(3.1

<
Ky

9 _ 2 _ 06
=x,V°¢, d=—+ 2
ar Ve $7, 62
To understand well the difference between Eq. (3.1)
and the telegraph equation (1.7) to which Eq. (3.1)
reduces when k; =0, we consider the problem of the tran-
sient distribution in a semi-infinite heat conductor, x >0,
after a sudden change of temperature at x =0. We would
need to solve
0 1030 _ ,0%

a2
a2 1ot © ax?

20
“ ox 2

ot

>

0 when t=0 for all x =0,
6= i1 at x=0 when t=0,
0 at x=o0 .

(3.3)
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FIG. 1 Solution surface for Eq. (3.3) when «;=0.

This problem is the analog of Stokes’s first problem in
fluid mechanics. An extensive discussion of solutions in
this and more complicated cases can be found in recent
papers (Narain and Joseph, 1982; Joseph, Narain, and
Riccius, 1986); Preziosi and Joseph, 1987). It is enough
to note that, when x,=0, the discontinuity imposed by
the sudden jump of temperature at x =0 and ¢ =0 prop-
agates at constant speed as a discontinuity without
smoothing. The amplitude O(ct,t)=exp(—1¢/27) at the
shock front x =ct of the wave decays exponentially, as
shown in Fig. 1.

The wave propagation shown in Fig. 1 will not be pos-
sible when «;5£0. In this case, we get diffusion with im-
mediate smoothing of the wave and the information of a
change in the temperature at x =0 is felt everywhere im-
mediately. There is, of course, a singular perturbation
type of continuity with «, as it is increased through small
values from zero. For very small values of k,, the solu-
tion surface is almost as shown in Fig. 2, except that the
sharp front is rounded and 6 is not zero when x > ct,
t >0. The effect of a small «; at the shock front is to
smooth the discontinuity, creating a shock structure
whose thickness is proportional to 1/ k,x /k (see Fig. 2).
This type of smoothing is analogous to the smoothing by
viscosity of shock waves in gas dynamics. The speed of
the smoothing wave at small values of x is c. A small
effective conductivity will not extinguish effective wave

FIG. 2. Smoothing of a shock wave due to an effective conduc-
tivity, ¢ =(k /y )%, 8=(k,x /k)'"%.
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~crystals at low temperatures.
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propagation at small times and distances. Numerical
computations of solutions of Eq. (3.3) showing the effects
of changing k, have been carried out by Preziosi and
Joseph (1987).

IV. MACROSCOPIC EQUATIONS OF GUYER
AND KRUMHANSL FOR SECOND SOUND
IN DIELECTRIC CRYSTALS

Guyer and Krumhansl (1966a) have solved the linear-
ized Boltzmann equation for the pure phonon field in
terms of the normal-process collision operator. They
neglected electronic conduction, which would be impor-
tant in metals but not in dielectrics, and they neglected
other interactions in which momentum is lost from the
phonon system. Their goal was to identify the parame-
ters favorable to the passage of heat waves in dielectric
They found the following
macroscopic equations relating 6 and q:

30 , .. _ -
v, Tdiva=0, (4.1)
NC2
—aft1+ ve+ (V2q+2Vdivq) . (4.2a)

c? is the average (sound) speed of the phonons, 7 is a re-
laxation time for momentum-nonconserving processes
(the umklapp processes in which momentum is lost from
the phonon system), and 7y is a relaxation time for nor-
mal processes that preserve phonon momentum. In the
regime of low temperatures where Egs. (4.1) and (4.2a)
are to apply, the heat flux is proportional to the momen-
tum flux p, q=c?2p, of the phonon gas.

Of course, Eq. (4.1) is the usual energy equauon for a
rigid conductor and Eq. (4.2a) is a constitutive expres-
sion that is supposed to apply under particular conditions
specified in its derivation. ’

Equation (4.2) is close-to, but not the same as, a heat
flux equation (1.1) of the Jeffreys type, and it does not
reduce to Fourier’s law for steady flow. There is a new
law of heat conduction,

Tch

2
o+ —q=—2"v2q, divg=0. (4.2b)
TR

3
Here q is the momentum flux of a viscous fluid, and 8 is
like the pressure in an incompressible fluid. The heat
flow of Eq. (4.2b) is not necessarily down the temperature
gradient. Sussman and Thellung (1963) and Gurzi (1964)
have shown that, under conditions such that normal pro-
cesses dominate umklapp process, heat transport in a sta-
tionary temperature gradient is mainly convective and
due to a phonon drift of the Poiseuille flow type. The
conditions require that 7yQ <<1<<Q7g, where Q is a
frequency so that the second term in the above equation
is small. This new type of heat transport has subsequent-
ly been found experimentally in helium IV crystals by
Mezhov-Deglin (1964). Guyer and Krumhansl (1966b)
solved the steady-state problem for one-dimensional flow
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q=eg(r) in a cylinder with g(R ) where R is the radius
of the cylinder. They showed how 75 can be computed
from measuring the thermal conductivity when the 7
term is negligible.

We may learn something about the thermal response of
Egs. (4.1) and (4.2) by eliminating q. We find a diffusion
equation of the Jeffreys type (3.1),

%0 , 1 986 _ %, 30
+—Y =€ y2943 y2— | 4.3
dt?  Tg Ot 3';/V STNEY S “.3
with an effective thermal diffusivity
Ky Z%TNC2 . (4.4)

Equation (4.3) will not permit the propagation of waves
unless «;=0. When «,540, the last term of Eq. (4.3)
smooths discontinuities. Equation (4.3) with «,540 is not
hyperbolic and has the conceptual problems of diffusion
equations. A sudden change of temperature at some
point is felt instantly everywhere (see Fig. 2).

The thermal response of Eq. (4.3) to a sudden change
of temperature was described under Eq. (3.3). Small
values of 7y lead to small values of the effective
diffusivity. Evidently the diffusivity of normal processes
is a dominating feature of the thermal response, smooth-
ing discontinuities. When k; =0, we get a propagating
shock front with constant speed ¢ /V'3 whose amplitude
decreases like exp(—1t /27, ) where 7 is the relaxation
time for processes that do not conserve phonon momen-
tum. When 7y is small, the speed is unchanged at lowest
order, but a smooth layer (Fig. 2) of thickness
[(97y /57 )x]'/? replaces the shock. It appears that the
diffusivity of normal processes is even more effective
in destroying wave propagation than the so-called
momentum-nonconserving umklapp processes.

The effective conductivity can be associated with the
viscosity of the phonon gas which leads to the broaden-
ing of the thermal pulse in the experiments of Ackerman
and Guyer (1968) and to diffusive effects in the experi-
ments of Rogers (1971).

Sussman and Thellung (1963) and Kwok (1967) have
derived equations of the form (4.1) and (4.2) except that
they both have a term proportional to V20 in the energy
Eq. (4.1). Such a term appears to be inconsistent with
the balance of energy in rigid conductors. Guyer and
Krumhansl seem to indicate that the term arises from an
inconsistent approximation.

V. THE EQUATIONS OF GURTIN AND PIPKIN

Gurtin and Pipkin (1968) gave a general constitutive
theory for rigid heat conductors that propagate waves.
Their theory was an application of mathematical
methods then in use in continuum mechanics and ther-
modynamics. They said that their theory differed from
others “... in that the heat-flux, like the entropy, is
determined by the functional for the free energy.” Their
method required that they characterize domain space of
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functionals, and they chose the weighted L} space (Cole-
man and Noll, 1960). This is a space of functions of s
whose squares are integrable on s €[0, « ] against a de-
caying positive weight A(s) such that s2h(s) is inte-
grable. The Riesz representation theorem then implies
that linearized flux laws may be represented as in Eq.
(2.2), and application of Schwarz’s inequality then shows
that Q( )/h( ) must also be quadratically integrable
against A(s). This means that there can be no Dirac
measures in the kernel, so that an effective viscosity is
ruled out. Many other choices for the allowed domain of
functionals are possible, and each one leads to different
laws for heat conduction (Saut and Joseph, 1983).
Another method is to let the heat flux depend on the in-
stantaneous value of heat flux and the history of the heat
flux in the same L} setting. This is the method followed
by Nunziato (1971). In this case, it is not true that the
heat flux is determined by a functional of the free energy.

At the end of the analysis of Gurtin and Pipkin (1968),
after linearization, the expressions for the internal energy
e(x,t) and the heat flux q(x,¢) are

e(x,)=b+y0(x,)+ [ “F(s)0(x,t=s)ds (5.1
and
q(x,t>=—f0 Q(s)VO(x,t—s)ds , (5.2)

where F(0) and Q(0) are bounded, and 6 and V6 are qua-
dratically integrable functions of s on a weighted L}

space. The energy equation de/d¢t= —divq and Egs.
(5.1) and (5.2) imply that

3 90(x,t—s)
7/ a1 + f ———-ds

=[7ovox i —s)ds . (5.3)
After some manipulation Eq. (5.3) may be written as

3%0(x,t) 0(x,t) w . 00(X;t—s)
O (O +f0 Fi(s)===2——=

=QOV?0(x,0)+ [ “Q(s)V0x,t —s)ds . (5.4)

ds

Equation (5.4) is hyperbolic; discontinuities will propa-
gate with constant speed,

=V Q(0)/y . (5.5)

In the special circumstance under which the heat flux
and internal energy kernels are both exponential with

Q(s)=Q(0)e /", F(s)=F(0)e 5", (5.6)

we may simplify Eq. (5.4). First, we find with f=e—b
that |
af+f A 99—+[AF 0)+710,
Of g4 9, _
3t divq, 7 31 +q 7Q(0)Ve

After eliminating f and q from these equations, we find
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that
836 7/ 3%0 F) , y |86
Yot (0)+ LIl Fvoal et vl e
2
=Q(O)V2%‘?—+—Qw. (5.7)

- Equation (5.7), like Eq. (5.4), is a hyperbolic equation
with a constant wave speed given by Eq. (5.5).

Gurtin and Pipkin (1968) assumed conditions that im-
ply that Q(s) is a bounded kernel with no delta function,
as in Eq. (2.5), and that y5£0. If either of these assump-
tions is relaxed, hyperbolicity is lost. For example, if
¥ =0, then Eq. (5.7) reduces to a diffusion equation of the
Jeffreys type, and if, in addition, 7=A then

86 _ 0(0)
ar  F(0)

It could be argued that consistency requires that the
heat flux and the internal energy both depend on present
values or that they both do not. In either case, we lose
hyperbolicity and finite wave speeds. In Sec. VI below,
we first assume that they both are independent of present
values and show how the equations arising from this as-
sumption lead to an effective dependence on present
values.

V3 .

VI. ORIGIN OF EFFECTIVE CONDUCTIVITY,
EFFECTIVE CAPACITY, ELASTIC CONDUCTIVITY,
ELASTIC CAPACITY

Now we rewrite Eq. (5.1) as
e(x,)=b+ [ “E(s)0(x,t—s)ds 6.1)
and allow that
E(s)=y,8(s)+E,(s), (6.2)

where v is the effective capacity. [Clearly Eq. (6.1) is ex-
actly the same as Eq. (5.1) with y,=y, E,=F.] At the
same time, we write

Q(s)=k18(bs)+Q2(s) ,

where k,, as we already know, is the effective conductivi-
ty. We have

e—b=y,0(x,t)+ waEz(s)G(x,t——s)ds (6.3)
and
q=—k1V9(x,t)-fosz(s)VB(x,t—s)ds . (6.4
In steady flow,
e—b=(y,+y,)0(x),
—(k,+k,)VO(x) ,

where v,= [ *E,(s)ds is the elastic capacity, k,
=f(‘;°Q2(s)ds is the elastic conductivity, y=y;+7y, is
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the heat capacity, and y, is the effective heat capacity.

We may now express the energy equation de /9t = —divq
as
00(x,t) d0(x,t—s)
5 Ly J B )= s

=k, V20(x,0)+ [ “Q,(s)V0(x,0 —s)ds . (6.5)
Nunziato’s equation (6.5) is a generalized equation of the
Jeffreys type.

The presence of an effective conductivity in the theory
of heat transmission has exactly the same conceptual
problem as pure diffusion; there is an immediate response
to a disturbance at distant points. This conceptual prob-
lem is not relieved by diffusion equations of the Jeffreys
type even when the effective conductivity is small and the
diffusive response is wavelike (see Fig. 2).

We shall now adopt and pursue the view that ultimate-
ly there is no diffusion. This means that Q(0), the rigidi-
ty, is finite, but possibly huge, and that heat waves in or-
dinary materials at room temperature propagate with
finite but possibly huge speeds ¢=vV'Q(0)/y. In this
view, we are obliged to set the effective conductivity
k,=0.

An effective viscosity k;5£0 can be a useful concept
even if, strictly speaking, k; =0. To understand this, we
It is
all a question of time scales. In problems characterized
by one relaxation time, we mean to judge the time of
response of the material in terms of time units of an ex-
periment or another external process. There is an exter-
nal clock. In problems in which different substructures
in a material relax at different rates, we may judge fast or
slow for one relaxation process in terms of the clock
defined by another. In this case, there is an internal
clock.

The point made in the foregoing paragraph is illustrat-
ed by common ideas about heat conduction in solids.
Thermal energy is transported in a solid by two different
mechanisms: by quantized electronic excitations, which
are called free electrons, and by the quanta of lattice vi-
brations, which are called phonons. These quanta under-
go collisions of a dissipative nature, giving rise to thermal
resistance in the medium. The relaxation time 7 is asso-
ciated with the average communication time between
these collisions for the commencement of resistive flow.

The magnitude of the relaxation time has been estimat-
ed for particular types of collision processes. Peierls
(1955) states that at room temperature the longest col-
lision time occurs for a phonon-electron interaction and
is of the order of 107! sec, while the collision times of
phonon-phonon and free-electron interactions are both of
the order of 10~ 13 sec. However, these times are reduced
by imperfections and impurities (e.g., alloying substances)
existing in the medium, so that the mean relaxation time
7o is not generally known. It is obvious that 107 !! sec is
a long time relative to 10713 sec. We can ask, “What is
the effect of the modes that have decayed at t,>10" 1
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sec on the subsequent transfer of heat?”” The answer is
that these decayed modes continue to play a role, produc-
ing diffusion with an effective viscosity k, associated with
the (possibly small) area under Q(s), 0=<s <s* where
s*=0(107" sec).

The next point that needs to be made in our argument
motivating the introduction of effective moduli is about
the rigidity Q(0), which by hypothesis is finite. The heat
rigidity Q(0) can be determined from the speed
c¢c=V'Q(0)/y of heat waves. Another way to determine
Q(0) is through high-frequency small oscillations. In
looking at the problem of harmonic waves of frequency
, one finds that the complex conductivity

k* ‘ N N —iwsg
(@)= f o Q(s Je s
plays an important role. For small o, we get
k*(@0)=k+O0O(w) ,
where k is the area under Q. For large frequencies,

1
0)2

k*(m)=—f%+o . (6.6)

It would be very hard indeed to measure Q(0) with the
method of small oscillations. We would need to invent
devices to detect temperature oscillations in the range of
10'3 rad/sec. Even in dielectric crystals at very low tem-
peratures with electronic conduction suppressed, we
would need to be able to deal with frequencies of 10°
rad/sec or greater. In fact, the method of small oscilla-
tions does not appear to have an important place in the
measurement of second sound, and heat pulses, giving
rise to ¢, are used.

If we know the rigidity Q(0) and the conductivity
k= f o Q(s)ds, then we may compute a mean time

=k /Q(0)

of relaxation. For metals at room temperature, with =
small and k modest, Q(0) is huge. In this situation, the
theory of wave propagation is of no apparent practical
utility.

It is of interest to bring into play the idea of the inter-
nal clock leading to an effective thermal conductivity, an

effective relaxation kernel, and an effective time of relaxa--

tion 7,, We may imagine a relaxation function of the
type shown in Fig. 3. It has a fast relaxation followed by
a slow relaxation.

We next decompose the relaxation function into a fast
and a slow part,

Q(s)=0Q,(s)+Q,(s) . 6.7)
The decomposition is certainly not unique, but it is not
entirely arbitrary if fast and slow modes can be identified.
For example, in metals, we might put ;=107 !* sec and
7,=10" ! sec.

The thermal conductivity of the conductor in Fig. 3 is
given by
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Q
Q (s)

’

FIG. 3. Example of relaxation function with a fast and slow re-
laxation. The time 7 locates the end of the fast relaxation.

k=k,+k, , 6.8)

where k,; is the area under the fast mode Q,(s) and k,
the area under the slow mode Q,, s = 7;. The fast relaxa-
tion will enter into the thermal response for times
71 =5 <7, as an effective thermal conductivity. We can
model the kernel in Fig. 3 by a double step as in Fig. 4
with k=k,+k, and k,=Q,(0)(r,—7;). For times
larger than T,, everything has relaxed into pure diffusion
with conductivity k. For the three-step kernel, we would
see an elastic response corresponding to the rigidity
Q,(0) in the time interval 0=s <7,. When 7,=5<7,,
the elastic response is to a rigidity Q,(0) smoothed in an
effective conductivity k; =Q,(0)7;. When 7, <s <73, the
elastic response is to a rigidity Q3(0) smoothed in an
effective conductivity k;+k,, k,=Q,(0)(r,—7;). For
s>7;, the evolution of the temperature change is
governed by pure diffusion with conductivity
k=k,tky,+k;, k3 =Q3(0)(13—7,).

The models using multiple steps of relaxation are
meant to be qualitative. In fact, deeper investigations of
these models raise difficulties on the mathematical side
and are difficult to interpret on the physical side when
the actual relaxation does not exhibit the plateaulike re-
gions shown in Fig. 3 and, in an exaggerated form, in Fig.
4. The effective viscosity k, is meant to represent all the
modes that have decayed so rapidly as to be useful only
as a delta-function contribution at the origin.

We are thinking of kernels for  which
Q(s)=Q,(s)+Q,(s) such that for some small time s,
Q.(50)/Q,(s9) << 1 such that Q,(sy)=Q,(0). At times
t > s, the integrand of the integral

fole(s)VG(x,t—s)ds , (6.9)
Q
Q;(0)
@ (0)
Tl T, <>S

FIG. 4. Double step of relaxation.



D. D. Joseph and L. Preziosi: Heat waves 49

is nearly zero and may be replaced by

~ [ " 0150, 1—s)ds . (6.10)
If 54 is small, t —s ~¢, and this reduces to
~VO(x,0) [ "0\ (s)ds =k, VO(x,1) . (6.11)
Hence
—q= fow[Ql(s)+Q2(s)]V0(x,t—s)ds
~k,VO(x,1)+ fO”QZ(s)ve(x,z—s)ds . (6.12)

Unlike the step relaxation, Q,(s) decays slowly for
0 <s <sq, but it decays. In fact, the decay of Q,(s) could
be relatively rapid on a time scale in which the fast
modes look as if they decayed in the distant past. It may
not be good to put the relatively fast decay of Q,(s) into
the delta function on time scales in which Q,(0) can be
viewed as an effective rigidity. We could judge whether
the relaxation of Q,(s) is fast or slow by an effective time
of relaxation given by

T=k2/Q2(O) .
If k, >k, then
=k/Q, ,

where k is the conductivity of the body in steady heat
flow.
A similar decomposition of the heat-capacity kernel

E(s)=E(s)+E,(s)

leads directly to Eq. (6.2), using identical arguments. Al-
most nothing is known about the memory dependence of
the internal energy. Without knowing more, it seems
sensible to assume that E(0) is bounded and to look for a
delta function in the relaxation of fast modes.

The idea behind the decomposition Eq. (6.7) and the
multiple steps is that an effective thermal conductivity
arises at times that are long relative to the relaxation
times of fast modes but short on the time scales charac-
terizing the relaxation of slow modes. It is natural to
represent these fast modes by a Dirac measure at the ori-
gin. This leads directly to Q,(s)=k8(s) and to the gen-
eralized Jeffreys equation with an effective relaxation
function Q,(s), effective rigidity Q,(0), and effective re-
laxation time 7=k /Q,(0).

Vil. SOLUTION OF CANONICAL PROBLEMS
FOR WAVE PROPAGATION

There are three canonical problems for wave propaga-
tion: (i) plane harmonic waves, (ii) propagation of weak
singularities; and (iii) propagation of strong singularities.
These canonical problems may each be framed as a prob-
lem of propagation into a semi-infinite region x >0 of
data prescribed at the boundary x =0 of a semi-infinite
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solid. The first problem is to find the plane-wave
response compatible with prescribed oscillation of the
temperature at x =0. The solution of this problem by the
method of plane harmonic waves is well known in electri-
cal engineering, polymer mechanics, and ultrasound and
is elementary. The solution of this problem when Eq.
(6.5) governs was given by Nunziato (1971).

A weak singularity is a jump in the first derivatives of
q or 6 while the functions themselves are continuous.
The method of weak singularities is the most readily un-
derstood method for generating characteristic curves in
quasilinear hyperbolic systems. Unfortunately, this
method is not useful when k540 in the sense that, after
doing it, we learn merely that the discontinuity we as-
sumed was, after all, not possible. For example, if q is
continuous and the Fourier law holds, then V@ must be
continuous. When k; =0, this method can be used to
solve the problem of following the jump, say, of the tem-
perature rate [36/9¢] which is prescribed at x =0 when
t=0. When k| =0 and the governing system is hyperbol-
ic, this jump will propagate. This type of analysis has
been performed by Achenbach (1968), Chen (1969), Chen
and Gurtin (1970), Nunziato (1971), and Morro (1980a,
1980b). :

A discontinuity in @ is stronger than a discontinuity in
00/9t. The problem here is to describe the response of
the semi-infinite solid to a sudden change of temperature
at x =0, as in Eq. (3.3). This problem can be solved with
Laplace transforms, and it has been solved with k; =0 by
many authors. The solution for propagation of higher-
order singularities can be obtained by differentiating the
solution of the problem corresponding to a discontinuity
one order lower (see property 4 below). For example, we
could prescribe 6(x,t) at x =0 as

0(0,1)= 0, t<0,
t>0,

9'(0)1’, (7.1)

and find 6(x,t) by Laplace transforms [see, for example,
Amos and Chen (1970)]. A temperature rate discontinui-
ty could then be obtained as the partial time derivative at
fixed x of the solution corresponding to Eq. (7.1). In the
same way, we can generate the solution for heat pulses
from the solution for a sudden change of temperature.
This method of bootstrapping solutions of problems with
discontinuous initial data by differentiation works for
linear problems even if k540, but, of course, waves prop-
agate only if k; =0. One of the main conclusions that
can be drawn from the bootstrapping argument is that,
when k| =0, the wave speed Eq. (7.9) and attenuation Eq.
(7.11) are the same for discontinuities of all orders. The
following argument shows that these formulas also hold
in the high-frequency limit of plane harmonic waves.

Nunziato (1971) looked for conditions on the real-
valued constants 7, ®, and £ such that

O(x,t)=0pexp(nx Jexpi(w—E&x)

can satisfy Eq. (6.3). For this it is enough that
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ioy*=—(E+in)’k*, (7.2)

where
w . def
k*=k1+f0 0,(s)e 'ds=k'(w)—ik"(w) ,

y*=y,+ fo“’E(s)e""wdsgy'(w)—iy"(m )
Equation (7.2) may be solved for the wave number §&,
E=[o(y'k"—y"k'+ AB)/24]'2 |
and the attenuation
n=—o(y"k"+y'k') 264, (7.3)

where A2=k'?+k" 2 B =y'2+y"2
The phase speed v(w) of the wave is given by

172
[0} 2042
= = 7;4
)=o)~ |7k —y "k + 4B 7.4)
For large w, we find that
5(0) (0)
k’=k‘~——QZ—2—+0(w”4), k"=,—Q~2———+0(w—3),
[0 (0]
and
y=y,—E (20) 1o, y'=E9 0.
w w

When k;#0 and o— », we find, to leading order, that
the phase velocity is given by
1/2

b=" 2];11‘0 +0(0™172) 1.5
with attenuation
7,0 172 -
= |2k, +0(0™1?). (7.6)

The speed and attenuation of plane harmonic waves of
frequency o is unbounded, proportional to V'w. Equa-
tions (7.5) and (7.6) are independent of Q,(s) and E,(s);
hence, as w— o0, Nunziato’s model reduces to Fourier
diffusion.

When k; =0 and w— 0, we find that

v=[Q,(0) /7],

>—_l _1/2E2(0)Q2(0)—7Q’2(0)
N="3%1 . Q%/Z(O)

(7.7)

’

with an error of order 1/w. The speed and attenuation of
plane harmonic waves of frequency w have finite limits as
w— . These limits are identical to the speed and at-
tenuation of shock waves and heat pulses. The heat-
capacity relaxation function has no effect on the speed
but does enter into the attenuation.

The difference between k=0 and k;>0 is the
difference between diffusion and waves, parabolic equa-
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tions and hyperbolic ones. We again draw attention to
the fact that, despite appearances, there is a sense in
which the limit k; —O is continuous; but it is a singular
limit, which gives rise to propagation of layers with
smooth but rapid variation, aping shocks.

We now consider the problem of the temperature dis-
tribution in a semi-infinite rigid conductor after a step
change of temperature. The mathematical formulation
of this initial-boundary-value problem is given by Eq.
(3.3) with Nunziato’s equation (6.5) replacing the Jeffreys
equation. This problem can be solved by Laplace trans-
forms. The solution is similar to that given in recent pa-

~ pers (Narain and Joseph, 1982; Joseph, Narain, and Ric-

cius, 1986; Preziosi and Joseph, 1987) for propagation of
shear waves into a liquid after a sudden increase in veloc-
ity. After making some obvious changes of notation to
convert their problem to ours, we find that
_ 1 y+ico dw
9(x,t)———2ﬂ_i fyw’_m explot —xn(co)]~w—
1,1 p=df -
R T EEAE)

X {sin[ét—xWT(E)]}, (71.8)

172
o]

k;(w)=fo°°Q2(s)e‘fmds =p(w)—iglw) ,

7, +75 (o)
nNo)=|——7"—

kitk3 (o)

Yi(w)= waEz(s)e_i“’sds-——r(w)—‘is(a)) ,

s
2

1/2
wE(E)=

172
(]ﬁ-f—r)z-i-s2
(kl'f'l’)z""q2

(y+r)g—(k,+pls
(k] +p )2+q2

172

The following properties can be deduced from Eq. (7.8).

(1) When Q,( )=0, k, =k and the rigid conductor fol-
lows the Fourier law. If, in addition, E( )=0 then
de=7 d6 and Eq. (7.8) reduces to the expression for the
error function describing the diffusive response to a step
change in temperature.

(2) When k; =0, Q,( )=Q( ) and we get waves of heat
which propagate with a velocity .

c=v0(0)/y . (7.9)

Near the trajectory x =ct, we have

O(x,t)~H(x —ct)0 x,% , (7.10)

where H(x) is a Heaviside function H(x)=0 for x <0,
H(x)=1for x >0, and

E,(0) o
=exp =220 Q'(0)

4 Q(0)

-x

0 2c

(7.11)

X
X, —
c
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The wave speed Eq. (7.9) is independent of the elastic
capacity E,(s), but the attenuation Eq. (7.11) depends on
E,(0). The speed and attenuation of impulsive waves is
the same as the phase and attenuation of harmonic waves
in the high-frequency limit @ — .

(3) When k, /k <<1, k =k, +k,, the effective conduc-
tivity gives rise to a shock structure in which a layer of
thickness v/ kx /k smooths the shock. The shock is en-
tirely smoothed at large x.

(4) The solution of the problem of the transmission of
heat in a semi-infinite solid following imposition of a
pulse of heat can be obtained by differentiating Eq. (7.8)
with respect to ¢3. The temperature field

9(x,t)=;lr—fomexp[—xW'"(g)]cos’[é‘—xWJr(é‘)]dg

(7.12)

satisfies Eq. (6.3), g(x,t)=0 when ¢t <0 for all x =20,
q(x,t)=0 for x — o0 and all ¢ >0, and

6(0,t)=5(t) ,

where 8(¢) is Dirac delta-function pulse. The solution of
the pulse problem with delta-function initial data is the
time derivative of the solution for a unit jump of temper-
ature because the delta function is the derivative of a
Heaviside function. ‘

(5) Renardy (1982) did an important study of the prop-
agation of shear waves in liquids. His work can be ap-
plied to the present problem when k;=0 and E,(s)=0.
If the rigidity Q(O0) is finite and the slope Q'(0)=— oo,
then the solution lies on a compact support, as in Fig. 1.
The support of the solution propagates with the usual
speed c¢=V'Q(0)/y; but discontinuous data are
smoothed, for clearly the amplitude 6(x,x /c) of the
wave behind the front vanishes. Renardy exhibited a
particular kernel of the type just described, which leads
to a C* smooth solution with a propagating support.
Renardy kernels are interesting for heat, because they al-
low for finite propagation speeds but do not allow discon-
tinuous temperatures.

Renardy kernels, like regular kernels, would be expect-
ed to give the large speeds of heat that are believed to
characterize heat propagation of solids. There should be
no difference between the two kernels at times long
enough for the fast modes to have relaxed. Both kernels
would give rise to equal-effective conductivities if the
area under the fast relaxing part of Q(s) were the same;
equal area means equal conductivity. The fast wave in
the effective theory is a precursor wave; the second wave,
which carries most of the heat, is smoothed under the ac-
tion of the effective conductivity of modes already re-
laxed. The smoothing action of the Renardy kernel
would work only at the front of the precursor wave.

Narain and Joseph (1983) showed that the effects of a
Renardy kernel at small times could be modeled by a reg-
ular kernel plus a small effective conductivity. If two
kernels Q(s) are globally the same, differing only in a
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small neighborhood of the origin of s, then the dynamics
to which they give rise is the same, except in a small
neighborhood of the shock front.

VIlIl. CHRONOLOGY OF THOUGHT
ABOUT HEAT WAVES

A list of papers on heat waves, arranged on a strictly
chronological basis year by year and alphabetically
within a given year, appears below. The contents of most
of the papers in the list are briefly abstracted. In some of
these abstracts, we participate more actively than in oth-
ers, making some interpretation, expressing opinions—
some critical—and occasionally suggesting a new idea or
direction.

Many different types of efforts are represented in these
papers: theoretical, mathematical, computational, and
experimental. There are theoretical approaches based on
kinetic theory, Boltzmann’s equation for a phonon gas,
molecular dynamics, thermodynamics, and educated
guesses based on postulating equations with properties
that are believed to be desirable. There are many
theoretical papers dedicated to predicting conditions of
temperature and frequency for which temperature waves
may be observed; others explain what is observed; still
others have more abstract goals not closely connected to
experiments. These are papers on the mathematical
properties of different models that have been postulated:
existence, uniqueness, stability, and properties. There are
computational papers showing how to solve particular
problems that could arise in one or another application.

Experiments showing heat waves have been successful-
ly carried out at low temperatures in liquid helium and in
certain dielectric crystals. It appears that the response of
dielectric crystals to oscillations in temperature is not
clear enough to use ultrasound and acoustic methods.
The experiments that appear to be successful use pulse
inputs whose harmonic content is not perfectly known.
In liquid helium II, there are very slow speeds, ranging
from zero at the A point 2.2 K to O(10* cm/sec) near ab-
solute zero. In dielectric crystals at low temperatures, all

.measured speeds are 0(10° cm/sec). In metals, where
- most of the heat is carried by electrons rather than pho-

nons, it is believed that heat waves travel at speeds of
O(10% cm/sec). Slow speeds in ordinary materials at
room temperature have never been measured, and, even
if they exist, they may be masked by diffusion arising
from an effective thermal conductivity associated with
modes of heat that have already relaxed.

An entirely different approach to the problem of prop-
agation of heat waves has been taken by Tsai and Mac-
Donald in a sequence of papers in the 1970s describing
the results of numerical simulations of lattice dynamics
using the equations of motion of individual atoms. They
do not linearize their equations and they take full ac-
count of the anharmonicity of the interatomic potential
for forces. Their results are extremely interesting be-
cause of the rich contact they make with second sound,
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theory and experiment, and with continuum theories re-
viewed here. Their calculation gives rise to new and
different features.

Their motivating applications lie in the realm of the
high temperature (10* K) and high pressures (100 GPa)
that would arise in laser pellet implosion experiments in
nuclear fusion research, in determining thermophysical
properties of materials used in nuclear reactors, in the
effects of cratering due to impact, and in other extremes.
They get wave propagation for these conditions. It looks
like second sound. Their work suggests that second
sound could be observed in many materials, at any tem-
perature, at time scales short enough to minimize damp-
ing. This conclusion is reached in different ways by near-
ly all workers in the field, starting with Maxwell. It sug-
gests a kind of time and temperature equivalence that is
well known in polymer physics. They also present some
interesting results about thermal wave propagation
behind strong shock waves and some other results, like
the impossibility of propagation of solitons in two or
more space dimensions. We think that their approach
should be developed further.

1867, J. Clerk Maxwell, Philos. Trans. R. Soc. London
157, 49.

Equation (1.2) is a truncated form of an equation (143)
derived by Maxwell, who cast out the time derivative
term with the casual remark that it . . . may be neglect-
ed, as the rate of conduction will rapidly establish itself.”
Maxwell never pursued analysis of short-time relaxation
effects. His book, Theory of Heat, is based on diffusion
and Fourier’s law. He did not note that diffusion is asso-
ciated with infinite speeds of propagation.

1917, W. Nernst, Die Theoretischen Grundlagen des n
Wiarmestatzes (Knapp, Halle).

Nernst suggested that at low temperatures in good
thermal conductors heat may have sufficient “inertia” to
give rise to oscillatory discharge.

1931, Lars Onsager, Phys. Rev. 37, 405.

Onsager argues that the Fourier law implies a contra-
diction to the principle of microscopic reversibility used
in Onsager’s thermodynamics, which

... is removed when we recognize that the (Fourier law)
is only an approximate description of the process of con-
duction, neglecting the time needed for the acceleration
of heat flow. This time ¢ is probably rather small, e.g., in
gases, it ought to be of the same order of magnitude as
the average time spent by a molecule between collisions.

The same smallness argument, resulting in the removal
of the second time derivative for the telegraph equation,
was also invoked by Maxwell (1967).

1938, L. Tisza, C. R. Acad. Sci. 207 (22), 1035.
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Tisza introduced superfluid helium II and two phases
of liquid helium; he also derived a wave equation for heat
and a formula for the speed of heat waves which predict-
ed extremely small wave speeds for the propagation of
heat in liquid helium II. This heat wave was called a
“second sound” by Landau.

1941, L. Landau, J. Phys. 5, 71.

Landau developed the two-fluid theory for liquid heli-
um II. He found two speeds, one for ordinary sound, one
for a second sound, which describe propagation waves of
temperature. He showed that the second sound speed de-
pends strongly on temperature, varying monotonically
between ¢, /V'3 where ¢, is the speed of ordinary sound
and zero at the A point 2.2 K. In Landau’s theory, there
is no damping or dissipation, and both sound speeds are
associated with wave equations rather than telegraph
equations. Propagation of Landau waves in helium II is
specifically a quantum phenomenon and does not imply
that transport of heat in ordinary materials should
proceed by wave propagation. Landau represented liquid
helium near absolute zero by a phonon gas of elementary
excitations. A compressional sound wave is propagated
through the phonon gas; then there will be periodic vari-
ations of the phonon density corresponding to tempera-
ture variations in liquid helium, that is, second sound.

Landau and the Russian workers who immediately fol-
lowed him seemed to think that propagation of heat was
a special phenomenon connected to phonon excitation.
No mention is made of the paradox of heat diffusion in
Landau’s early or later works.

1944, E. Lifshitz, J. Phys. 8 (2), 110.

The calculations of Lifshitz show that, in the usual
mechanical method of generating sound, the second
sound is masked by the ordinary one. On the contrary,
the plate with a periodically varying temperature radiates
an almost pure second sound. He also concluded that
conditions for observing second sound from the variation
in pressure are unfavorable and are extremely favorable
from the variation in temperature.

1944, V. Peshkov, J. Phys. 8, 381

Peshkov measured the velocity of the waves of temper-
ature in helium II and found waves of 19 m/sec at 1.4 K
close to the values 26 m/sec given by Lifshitz. The
phenomenon of second-sound propagation was not ob-
served above 2.2 K.

1946, V. Peshkov, in International Conference on Fun-
damental Particles and Low Temperatures, Cavendish
Laboratory, Cambridge, July 22-27, 1946: Report (Tay-
lor and Francis, London), p. 19.

Here Peshkov suggested that second sound might be
observed in crystals. He reasoned that Landau’s argu-
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ments about second sound were based only on the postu-
lated existence of a phonon gas. Thermal waves are asso-
ciated with compression waves in the phonon gas. Since
phonon gas excitation exists in any solid, second sounds
should be detectable in solids as well as liquid helium.
He points out that it will be necessary to experiment with
a crystal in which the scattering of phonons by inhomo-
genieties and irregularities is at a minimum. (This type
of process may possibly lead to a type of wave propaga-
tion associated with a telegraph equation.)

1948, W. Band and L. Meyer, Phys. Rev. 73, 226.

Band and Meyer follow an idea used by Einstein (1920)
to treat sound transmission in a disassociating gas and in-
troduce a time of relaxation in the equations for second
sound. This leads to a telegraph equation in which ¢ /V'3
is the sound of propagation of heat waves associated with
second sound. Analogies between second sound and or-
dinary sound are derived.

1948, Carlo Cattaneo, Atti Semin. Mat. Fis. Univ.
Modena 3, 3.

Cattaneo was the first to build an explicit mathemati-
cal theory to correct unacceptable properties of the
Fourier theory of diffusion of heat. The diffusion equa-
tion has the property that a heat pulse given at the sur-
face of a body is felt immediately at all parts of the body
no matter how distant. One says that the velocity of
propagation is infinite. Cattaneo uses arguments from
the kinetic theory of gases and a second-order correction
of this, of his own, to derive a rate equation for the flow g
of heat in one space dimension,

‘r% =—kq—k 200 ,
ot Ix
where 0 is the temperature, k is the conductivity, and 7 is
a relaxation time. Kinetic theory expressions for k and 7
are derived.
He writes the energy equation in one dimension

90 _9q
Vor  ox’
where 7 is the heat capacity of the gas. Equations (8.1)

and (8.2) imply that the temperature 6 and the heat flux
satisfy one and the same telegraph equation, e.g.,

2 2 2
30 _ k230 30

(8.1)

(8.2)

T =0. (8.3)
a? v ax? ot
The propagation speed associated with this equation is
c=Vk*/yr. (8.4)

Cattaneo does not refer to Maxwell’s (1867) work or to
other prior work like that of Landau (1941), in which
second sound is identified as wave propagation of heat.
In 1948, the work on second sound would have appeared
to be a special topic, lacking generality. Cattaneo re-
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stricted his attention to gases; no mention is made of
propagation of heat in liquids and solids. The mathemat-
ical consistency of his second-order approximation of the
kinetic theory has been challenged by Vernotte (1961)
and Kaliski (1965).

1950, K. R. Atkins and D. V. Osborne, Philos. Mag.
41, 1078.

Atkins and Osborne measured the velocity of second
sound in liquid helium and obtained the value 150 m/sec
at absolute zero, which is in agreement with Landau’s
prediction of ¢, /V'3 where c, is the velocity of ordinary
sound.

1950, D. V. Osborne, “Propagation of second sound
below 1°K,” Low Temp. Phys. NBS (US) Circular No.
519, pp. 139-144.

This paper looks to a mathematical frame for the ob-
servation that the velocity of second sound in liquid heli-
um II increases as the temperature is decreased below 2.2
K, but not to the exact value, speed of sound/V'3, pre-
dicted by two-fluid theory. Using the mathematics for
transmission line circuits, Osborne postulates, by analo-
gy, that the telegraph equation

3% , 196 _ ,0%

? - o1 c5 ax? (8.5)

governs where c, is the speed of temperature waves
known as second sound. He speculates that the first
derivative becomes important at very low temperatures
near zero, where viscosity or other dissipative effects
neglected in the two-fluid theory become important.

1951, Sydney Goldstein, Q. J. Mech. Appl. Math. IV
(2), 129.

Goldstein reports that most of the work in this paper
was done in 1938 and 1939 at Caltech. He treats several
versions of the random walk problem (drunkard’s walk)
in one dimension and derives the telegraph equation from
one limiting process and the telegraph equation with
leakage from another. In both cases, the directions in
any two consecutive intervals are correlated (the particle
is not completely drunk). If the correlation is relaxed, a
diffusion equation rather than a telegraph equation ap-
pears. He draws analogies between the solution of tele-
graph equations and heat conduction, but does not sug-
gest that the diffusion equation for heat ought to be re-
placed by a telegraph equation.

1951, J. C. Ward and J. Wilks, Philos. Mag. 42, 314.

Ward and Wilks derived the Landau expression ¢, /V'3
for the speed of second sound directly from a phonon gas
model without recourse to a two-fluid theory. Their
derivation is important because it implies that, since pho-
non gas excitations exist in any solid and some liquids,
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second sound should be detectable in liquids and solids as
well as in liquid helium. Their derivation gives no indica-
tion of the region in which the expression c,=c,/V'3
holds. They say it will fail if (a) the collisions between
phonons do not satisfy the conservation laws of energy
and momentum or (b) the excitations of the liquid cannot
be adequately represented by phonons.

1952, R. B. Dingle, Proc. Phys. Soc. London Sect. A
60, 374.

Dingle’s derivation has a different starting point from
that of Ward and Wilks (1952), who started with
Boltzmann’s equation. Dingle gets less precise results,
which agree with previous results within distinguished
limits. )

1952, J. C. Ward and J. Wilks, Philos. Mag. 43, 48.

In this paper, Ward and Wilks derive a wave equation
for second sound,

PE _¢i FE

32 3 dx;ox; 8.6)
where E is the momentum of localized phonons, f is the
distribution function for phonons, and ¢, is the speed of
sound. All phonons travel at a constant velocity ¢;. The
authors start with a Boltzmann equation for f and as-
sume that there are many phonon collisions in a distance
equal to the wavelength of any disturbance that may be
propagated.

1953, P. M. Morse and H. Feshbach, Methods of
Theoretical Physics I (McGraw-Hill, New York).

On p. 865 of this celebrated textbook, the authors
state.

As we have mentioned ... the diffusion equation
governing the transmission of heat in a gas is an approxi-
mation to the rather complicated motion of the gas mol-
ecules. One of the immediately obvious shortcomings of
the diffusion approximation is its prediction that the
temperature of a body will rise instantaneously every-
where (though not equally) if heat is introduced at some
point in the body ... . As such instantaneous propaga-
tion of heat is impossible, we must assume that the
diffusion equation is correct only after a sufficiently long
time has elapsed. This time depends naturally upon the
velocity of propagation of the heat, which in turn, de-
pends upon the mean free path A of the gas molecules.
The velocity of propagation of a disturbance in a gas is,
of course, the velocity of sound, ¢. Once the time re-
quired for the temperature to get to a point in question is
exceeded, we may presume that then the diffusion equa-
tions apply. The partial differential equation which in-
cludes this effect is

24 296 1 %9

Vgaat+c?at2' ;

We may also arrive at this equation from another point
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of view, by considering the change in the sound wave
equation due to absorption. We shall encounter this
equation when we consider the effects of resistive losses
in the vibration of a string and also the propagation of
electromagnetic waves in conducting media.

1958, H. Grad, in Handbuch der Physik 12: Thermo-
dynamics of Gases, edited by S. Fliigge (Springer, Berlin),
pp. 205-294.

The Cattaneo equation (1.2) is contained as a special
case of Grad’s Eq. (28.30), giving the heat flux from a so-
phisticated and elaborate study of the kinetic theory of
gases.

1958, P. Vernotte, C. R. Acad. Sci. 246, 3154.

Vernotte postulates a rate equation for the heat flux of
the type (2.2) and derives a telegraph equation for the
temperature.

1958 (July), C. Cattaneo, C. R. Acad. Sci. 247, 431.

Here Cattaneo gives a summary of his 1948 work,
noting his priority with respect to the 1958 work of Ver-
notte.

1958 (December), P. Vernotte, C. R. Acad. Sci. 247,
2103.

Vernotte cites some earlier statistical works on other
subjects which lead to a telegraph equation and acknowl-
edges the priority of Cattaneo.

1960, A. C. Eringen, Phys. Rev. 117, 1174.

Eringen finds a generalized law for heat conduction for
a solid with internal constraints o, which reduces to

Ayt —7)

i 1 t 1
B AL B> fOFq(X,T)e dr

in the linear isotropic medium. This is the first time a
history integral appears in the heat-flow equation, but it
does not lead to heat waves.

1960, R. E. Nettleton, Phys. Fluids 3, 216.

Nettleton assumes Cattaneo’s equation and shows that
it is consistent with irreversible thermodynamics. He ap-
plies Debye’s 1914 theory that heat in solids is carried by
longitudinal elastic waves to thermal conduction in
liquids. The speed of elastic waves is calculated for the
bulk modulus, which is assumed to be much larger than
the shear modulus. The modulus is associated with the
high-frequency limit of longitudinal waves induced by
small-amplitude oscillations. The dispersion relation for
these waves implies a wave so short that the continuum is
lost. Nettleton says that the elastic wave theory is con-
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sistent with the theory of Vernotte, i.e., Eq. (8.1), which
he interprets as a force-flux process linking two irreversi-
ble processes.

1961, P. Vernotte,; C. R. Acad. Sci. 252, 2190.

Vernotte calls attention to an inconsistency in
Cattaneo’s derivation of the heat law in which the
second-order correction of the Maxwellian distribution of
molecules is ignored.

1962, Jean Tavernier, C. R. Acad. Sci. 254, 69.

Tavernier derives a rate equation

s}
=—k grade—r—q R (8.7)
ot
where k is a conductivity tensor and 7 is a mean time of
relaxation, from a mathematical analysis of Boltzmann’s
equation,

ﬁ—i—u gradf=£ (8.8)

ot ot ’

coll

for the partition function f in the absence of external
forces. He approximates the collision term on the right-
hand side of Eq. (8.8) by .
S =fo
[u]
where f, is the equilibrium distribution corresponding to
the temperature at a point and 7 is a relaxation term for
particles with velocity u. Some details of the integrations
leading from Egs. (8.8) and (8.9) to Eq. (8.7) are given.
Tavernier indicates how a derivation, again leading to
Eq. (8.7), can be carried out for solids in which thermal
energy is transported by two types of particles, electrons
and phonons. Naturally, Eq. (8.7) leads to a telegraph
equation and a single speed for waves of heat.

> : (8.9)

1963, J. A. Sussman and A. Thellung, Proc. Phys. Soc.
London 81, 1122. .

From the authors’ summary,

The thermal conductivity of a perfect but finite crystal
is investigated at low temperatures when Umklapp pro-
cesses may be neglected. The sample is taken to be large
compared with the mean free path due to momentum
conserving phonon-phonon processes. A mean free time
approximation is used for the phonon distribution func-
tion and hydrodynamic equations for the phonon gas are
derived. Heat flow is shown to consist of two
contributions—one is the usual (diffusion-like) heat flow
and the other is due. to a drift motion of the phonon gas.
A temperature difference between the ends of a long
cylinder with a rough surface will lead to a Poiseuille
flow of the phonon gas. An abrupt change of tempera-
ture in the immediate vicinity of a surface through which
heat is flowing is obtained.

They derive the following set of linearized equations
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for the temperature perturbation 6(x,?) and local phonon
velocity u(x,?) in the limit of slow time variations:

§Q+a divu—bV?6=0,

ot (8.10)
du 2 . —
E-FdVG-—e(V + fVdiviu=0 (8.11)
where
T c¥c? riey+1oc
a=—°, p =12 Ti 21,f=2,
3 Ty c2+c3
cic? ¢3+2c3 ) 27'lc§+27'2c%
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Here T, is the reference tempgrature, (¢y,71) and (c,,75)
are longitudinal and transverse sound velocities ¢ and re-
laxation time 7. When dissipative effects are negligible,
7=b =e =0 and
2

96 =adV?0 ,

ar?
where ad is second sound. The authors say that Egs.
(8.10) and (8.11) should not be used to calculate attenua-
tion because of slowly varying terms that have been dis-
carded. The same system of equations [(8.10) and (8.11)],
but with different coefficients—a, b,d,e —was derived by
Kwok (1967) to discuss dispersion and damping of
second sound in solids.

Guyer and Krumhansl (1966) note that the V26 term of
Sussman and Thellung (and Kwok) is absent from their
equation and say that “This difference is an essential one
physically and arises from the linear energy-momentum
relation for a phonon gas.” The V20 term in (8.10) does
not arise in any other theory known to us and appears
strange.

(8.12)

1963, Marvin Chester, Phys. Rev. 131, 2013.

In this paper, for the first time, the work on the hyper-
bolic equation following from Cattaneo, Vernotte, etc., is
brought together with work on the second sound. Ches-
ter follows the idea of Peshkov and Ward and Wilks that
second sound will appear in any material that can be
modeled as a phonon gas, including some solids as well as
liquid helium. He postulates the Cattaneo rate equation
(1.2). He says that wave propagation will be important
when

and diffusion will dominate when the inequality is re-
versed. He reexpresses the criterion just mentioned with
a critical frequency

Yy L
¢ 2w’
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diffusion for lower frequencies, waves for higher frequen-
cies.

He obtains two expressions for the wave speed ¢, and
after equating these, he calculates 7; one value
o, =Vk/ry comes from the telegraph equation, and
another ¢, =c, /V'3 follows from the same kind of phys-
ics when the transport of heat occurs via the phonon gas.
The sound speed c¢; of phonons in liquid helium arises
when phonons are viewed as gas particles, each of which
moves with the same speed ¢, but in a random direction.
The average root-mean-square velocity of a group of pho-
nons in one particular direction is ¢, =c¢, /V'3. Hence

ci=k/ry=c?/3, (8.13)

giving 7 in terms of ¢,.

1964, B. Boley, in High Temperature Structures and
Materials, edited by A. Freudenthal, B. A. Boley, and H.
Liebowitz (MacMillan, New York), pp. 260-315.

Boley points out that, in most practical conduction
problems, the effects of relaxation and hyperbolicity im-
plicit in Cattaneo’s model are negligible.

1964, R. A. Guyer and J. A. Krumhansl, Phys. Rev.
133, 1411A. -

From the authors’ summary,

In this paper the dispersion relation for second sound
in solids is derived. The starting point of the analysis is a
Boltzmann equation for a phonon gas undergoing a tem-
perature perturbation 86,exp(k-x+ wt); the Callaway ap-
proximation to the collision term is employed. We ob-
tain a dispersion relation which explicitly exhibits the
need for a “window” in the relaxation time spectrum.
Further, the dispersion relation shows that measurement
of the attenuation of second sound as function of fre-
quency is a direct measurement of the normal process
and Umklapp process relaxation times. We derive mac-
roscopic equations for energy density and energy flux
and show their relation to the macroscopic equation
with which Chester has treated second sound.

The Callaway approximation is a more sophisticatéd
difference approximation, using two times of relaxation
for the collision term in the Boltzmann equation, than

the one-term approximation used in the work of Taver-
nier (1962),

ON N—N, N-—Ny

. b
ot .. TN T

(8.14)

where N, N,, and N, will be.functions of position, wave
number, and time. N, N,, and N, are, respectively, the
distribution function of the phonon system, the distribu-
tion function of a uniformly drifting phonon gas, and the
local equilibrium distribution function; 7y and 7, are re-
laxation times for normal and momentum-nonconserving
processes. Guyer and Krumhansl derive a macroscopic
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equation for the temperature,

3% , 1 36 kv20
—+———[1—tiory +0(H)+ - -~ =0,
o2 7o ot [ tioTy+0O () ] 7

(8.15)

where y is the specific heat, k is related to the thermal
conductivity, and ¢ is the product of a frequency and a
mean relaxation time. The dispersion relation
f(k,w)=const for this equation exhibits a window for
the passage of second sound. Equation (8.15) is in the
complex domain and is equivalent to two real second-
order equations. This is the first theory with more than
one time of relaxation. A more complete solution of the
linearized Boltzmann equation is given by Guyer and
Krumbhansl (1966a).

1964, E. W. Prohofsky and J. A. Krumhansl, Phys.
Rev. 133, 1402A.

The authors present a theory that models solids with
periodic structure by phonon dynamics. The theory is
based on two relaxation times, one -associated with
momentum-preserving phonon interactions, called nor-
mal collisions, and the other with losses of momentum,
called umklapp collisions. The theory is motivated by
gas dynamics, with a body force proportional to velocity,
which represents frictional damping and leads to a tele-
graph equation. The mathematical basis of the study is a
linearized Boltzmann equation. The conditions necessary
for the occurrence of second sound in solids are exam-
ined at some length. The results indicate that second
sound can propagate at frequencies greater than the re-
ciprocal umklapp relaxation time and smaller than the
reciprocal normal relaxation time; the solutions are the
same as those for normal thermal conductivity.

1965, S. Kaliski, Bull. Acad. Pol. Sci. XIII (4), 211.

Kaliski derives a telegraph equation by assuming (1)
finite propagation velocity as an axiom and (2) that the
equation governing heat conduction is a second-order
partial differential equation of local character (not his-
tory dependent). To derive this equation, he modifies
Onsager’s symmetry relations to implement Onsager’s
idea of thermal inertia.

1965, A. V. Luikov, Inghenernb-ﬁzicheskiﬁ Zh. 9, 287.

From the author’s summary,

On the basis of the phenomenological theory—the
thermodynamics of irreversible process—and using par-
ticular data of kinetic and statistic theories, a consistent
description is presented of transfer phenomena: heat
conduction which accounts for a finite heat-propagation
velocity, relaxation of stresses in visco-elastic bodies,
moisture transfer in capillary-porous bodies, as well as
turbulent transfer processes. Particular solutions of a
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hyperbolic mass-transfer equation in porous bodies are
given.

The irreversible thermodynamics used generalizes
Onsager’s thermodynamics [cf. Nettleton (1960), Kaliski
(1965)].

1965, H. D. Weyman, Am. J. Phys. 35, 488.

Weyman derives a telegraph equation as a continuous
limit from the random walk problem when the number of
steps increases without bound. Further assumptions are
required to obtain diffusion. He does not mention the
earlier work of Goldstein (1951), which treats a similar
problem. In Goldstein’s problem, the center of mass of
particles does not move, while in Weyman’s it does. The
limiting equations are different; Weyman also gets first-
derivative terms in time 96 /9t and in distance 96 /9x.

1966, C. C. Ackerman, B. Bertman, H. A. Fairbank,
and R. A. Guyer, Phys. Rev. Lett. 16, 789.

These authors used a pulse technique to measure the
speed of temperature waves in solid helium. This was the
first apparently successful measurement of second sound
in a solid. '

1966, J. P. Brazel and E. J. Nolan, in Proceedings of the
6th Conference on Thermal Conductivity, Dayton, Ohio,

. 1966, edited by M. L. Minges and G. L. Denman
(U.S. Air Force Materials Laboratory, Materials Appli-
cations Division, Dayton), p. 238.

Brazel and Nolan applied Cattaneo’s equation (1.2) to
determine whether temperatures or heat flux overloads
due to non-Fourier effects might produce structural de-
fects. They considered the problem of a step jump in the
heat flux and showed that these effects can be important
when the heat flux is large in the hyperbolic theory, high
transient temperatures would develop (see Mauer and
Thompson, 1973).

1966, J. B. Brown, D. Y. Chung, and P. W. Matthews,

Phys. Lett. 21, 241.

Here propagation of heat pulses in dielectric materials
is discussed for the low-temperature limit, where the
mean free path is limited by the dimensions of the sam-
ple. Experimental results for liquid He II and for an
Al,O; crystal are compared with a theoretical prediction
from a solution of the telegraph equation in which the re-
laxation time and conductivity are theoretically deter-
mined with no adjustable parameters. The authors find
that the telegraph equation ... accounts very well for
the experimental results of liquid He II at 0.25°K and
may also apply to heat pulse. propagation in Al,O; crys-
tals if additional assumptions are made.”

1966a, R. A. Guyer and J. A. Krumhansl, Phys. Rev.
148, 766.
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The linearized Boltzmann equation for the pure pho-
non field is solved formally in terms of the eigenvectors of
the normal-process collision operator. The solution is
summarized by the two macroscopic equations (4.1) and
(4.2) relating 6 and the heat flux q.

The paper by Hardy (1970) is an extension in some
sense of the approach here. Hardy formally solves the
complete linearized Boltzmann equation in terms of the
eigenvectors of the collision matrix, not only for normal
processes, but with umklapp processes and imperfections
included.

1966b, R. A. Guyer and J. A. Krumhansl, Phys. Rev.
148, 778.

Steady one-dimensional solutions q(r)=e, g (r) of Egs.
(4.1) and (4.2) are derived in a cylinder of radius r =R
with g (R)=0. When the 73 term is negligible (umklapp
processes are negligible relative to normal ones), their
solution reduces to Poiseuille flow of the phonon gas.
The authors derive a formula for thermal conductivity
for this solution and use it to discuss and classify four
different regions of heat transport: ballistic, Poiseuille
flow, Ziman, and kinetic. If the conditions for Poiseuille
flow are realized, a simple measurement of 7, becomes
possible, and second sound will propagate.

1967, M. Kranys, Nuovo Cimento B 50, 48.

This paper may be the first to look at heat propagation
in a relativistic setting. The idea is that signals should
not propagate with speeds larger than the speed of light.
This requirement is not satisfied in theories that use
Fourier’s law.

Kranys proposed a relativistic generalization of
Cattaneo’s law, and his system does not give rise to prop-
agation at infinite velocity. Kranys wrote a number of
works on this subject, which are mathematically satisfac-
tory from most points of view. Maugin (1974) remarks
that Kranys’s earlier heat-flow equations are not properly
invariant in the sense of Oldroyd (the equation is not

" form invariant to observers in different frames that move

as rigid bodies).
(1977).

For more recent works see Kranys

1967, P. Kwok, Physics 3, 221.

Kwok uses the Boltzmann equation for phonon distri-
bution functions to study the acoustic-phonon collective
mode or second-sound mode in nonisotropic solids. Ex-
pressions for-the velocity and damping of the second
sound are given in terms of acoustic-phonon spectra and
their relaxation spectra. Kwok derives the macroscopic
equations (8.10) and (8.11).

1967, H. W. Lord and Y. Shulman, J. Mech. Phys.
Solids 15, 299.

‘The Cattaneo rate equation for heat (1.2) “... which
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includes the time needed for acceleration of the heat
flow” replaces the Fourier law in a theory of thermoelas-
ticity. Onsager’s 1931 work is mentioned first in this pa-
per. Lord and Shulman are the first to introduce a tensor
of relaxation times and to view the problem of second
sound as a problem of anisotropic thermoelasticity. This
point of view, which is only implicit in their paper, is
developed fully in the paper by Pao and Banerjee (1973).

1967, E. B. Popov, J. Appl. Math. Mech. (USSR) 31,
349.

This paper and that of Lord and Shulman (1967) are
the first applications of the rate equation (1.2) for heat
transport to problems of thermoelasticity in the linear
approximation. The equations of thermoelasticity are
coupled; temperature gradients force deformation gra-
dients and vice versa. Temperature waves force stress
waves and vice versa. )

1968, J. D. Achenbach, J. Mech. Phys. Solids 16, 273.

The propagation of discontinuities of the stresses and
the temperature is studied in a one-dimensional medium
in which displacement and temperature fields are coupled
and the heat flux is governed by a rate equation (1.2) of
the Cattaneo-Vernotte type. Achenbach finds that there
are two waves, a mechanical wave and a thermal wave,
and he derives expressions for the two wave speeds in
terms of the elastic constants. Similar results were ob-
tained by Popov (1967) and Lord and Shulman (1967).

1968, C. C. Ackerman and R. A. Guyer, Ann. Phys.
(N.Y.) 50, 128.

Ackerman and Guyer apply the criteria for second-
sound propagation to solid helium and LiF crystals.
They report experimental data for heat pulses in helium
crystals that give rise to (1) values of thermal conductivi-
ty in agreement with steady-state measurements at tem-
peratures above the conductivity peak, (2) speeds of prop-
agation, wave forms, and multiple reflections expected of
second sound at temperatures below this peak; they also
derive an equation for a temperature pulse whose center
of mass travels with the speed of second sound, which is
broadened by N-process scattering when the temperature
is below the peak. The magnitude of the broadening is
temperature dependent. This effect is used to calculate
7y. The values of 7y found from these unsteady pulse
experiments agree with values obtained from steady
Poiseuille flow measurements.

1968, C. P. Enz, Ann. Phys. (N.Y:) 46, 114.

From the author’s summary,

A description of propagation of heat and other
thermal quantities in terms of lattice dynamics and of en-
semble techniques is developed. First-a general method
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for the construction of the microscopic energy, energy
flux, and momentum densities is presented. Then the
density matrices describing local thermal equilibrium, lo-
cal phonon drift, and their perturbation by dissipation
are discussed. For this purpose an effective Liouville
equation is derived. In this formalism the Boltzmann
equation. does not occur explicitly so that the hydro-
dynamical balance laws are additional assumptions. The
ensuring dispersion laws already given earlier are de-
rived. In particular two types of second sound called
“driftless” and “drifting” are found, and it is concluded
that the recent discovery of this phenomenon is of the
“drifting” type, while the realizability of the “driftless”
type is uncertain.

Enz derives a theory that expresses the propagation of
macroscopic thermal quantities such as local tempera-
ture, phonon drift, heat, and heat capacity in terms of the
microscopic quantities of lattice dynamics. This paper is
the first to identify two different temperature waves, with
different speeds. He says that the two second sounds are
encountered under different conditions, distinguished by
frequency and temperature. ‘Driftless” second sound is
associated with convection which, in the case of heat
transport in a stationary temperature gradient, is due to a
phonon drift of the Poiseuille flow type. Drifting second
sound seems to be what is observed in experiments,
whereas observations of ‘“driftless second sound” are
different, because it occurs only in high frequencies and is
associated ' with a situation in which heat conduction
dominates.

1968, M. E. Gurtin and A. C. Pipkin, Arch. Ration.
Mech. Anal. 31, 113.

Gurtin and Pipkin set up a theory for heat conduction
using constitutive assumptions that lead to finite wave
speeds and disallow effective thermal conductivity. The
idea is to regard the heat flux as determined by the histo-
ry of the temperature gradient, as in the modeling of
viscoelastic materials with instantaneous elasticity. The
instantaneous elastic part means that the heat-flux func-
tional is always finite, even at the initial instant where it
gives rise to a finite wave speed. This assumption also al-
lows them to regard the heat flux as determined by a
functional of the free energy. They make assumptions
that lead to the conclusion that waves traveling in the
direction of the heat-flux vector propagate faster than
waves traveling in the opposite direction. They show
that their assumptions about the heat-flux functional im-
ply that the linearized constitutive equation for the heat
flux q has the form

axn=—[" Qu—rvex,dr,

where the kernel Q(0) has a finite instantaneous value.
They also introduce an internal energy functional that
depends on the history of temperature and the heat flux
in a differentiable way, so that the only scalar invariant
q-q (and not V' q-q) for an isotropic material must appear
linearly; it vanishes under linearization.
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1968, F. R. Norwood and W. E. Warren, Q. J. Mech.
Appl. Math. 22, 283.

Norwood and Warren solve some problems of ther-
moelasticity for step inputs using Laplace transforms on
Cattaneo’s equation and the equations of Lord and Shul-
man (1967). No numerical results for applications are
discussed. ‘

1968, R. J. von Gutfeld, in Physical Acoustics: Princi-
ples and Methods, edited by W. P. Mason (Academic,
New York/London), Vol. V, pp. 233-292.

The measurement of heat pulses in solids was made
possible by a technology associated with transmission
and detection of heat pulses at low temperatures. The
technology is described and values for the speed of heat
waves in different dielectric crystals—quartz, sapphire,
NaCl, KCl, GeSi, NaF, and solid helium—are given.
They are all of order 10° cm/sec. Some results for metals
are reported. Electrons are important carriers of heat in
metals, and they transmit heat more rapidly than the
phonons that dominate heat transmission in dielectrics.
Von Gutfeld reports speeds of O (10® cm/sec) in gallium.

1969, C. C. Ackerman and W. C. Overton, Jr., Phys.
Rev. Lett. 22, 764.

These authors report an experiment using heat pulses
in which the speed of temperature waves was measured
in solid helium-3.

1969, K. J. Baumeister and T. D. Hamill, J. Heat.
Transfer 91, 543.

Baumeister and Hamill solve the problem of the tem-
perature in a semi-infinite x > 0 solid following a sudden
change of temperature at x =0 when the heat flux is
governed by Cattaneo’s equation (1.2). A mistake in this
paper is corrected in Vol. 93, 126 (1971).

1969, P. Chen, Z. Angeu. Math. Phys. 20, 448.

Chen applies the method of propagating discontinui-
ties to the equation of Gurtin and Pipkin [our Eq. (5.4)].
He finds the wave speed Eq. (5.5) and the decay constant
Eq. (7.11), even though he works in the frame of weak
discontinuities in which 30 /9¢, rather than 0, is discon-
tinuous. He also gets geometric factors for the decay in
the jump of 36 /3¢. He obtains Eqgs. (7.10) and (7.11), giv-
ing the form of the wave at the front [see also Amos and
Chen (1970)].

1969a, N. Fox, Int. J. Eng. Sci. 7, 437.

This paper develops a nonlinear constitutive theory for
thermoelasticity, which extends the linearized theory of
Lord and Shulman (1967). The material time derivative
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dq/dt of the heat flux q is assumed to depend on defor-
mation gradients, q, the temperature 0, and temperature
gradients. Fox uses techniques of continuum mechanics
to reduce this general dependence to a more explicit form

" in which

—d—gw—Wq=b ,

i (8.16)

where W is the skew-symmetric part of the velocity gra-
dient Vu and b is an isotropic vector-valued function of
the variables in the above list, which reduces to

%—Wq=aq+/3V9 :

Here a and f3 are functions of 7" and joint invariants of q
and V6. The term W(q is necessary to make the constitu-
tive equation invariant under superposition of rigid rota-
tion of the body as a whole and, of course, W=0 for sta-
tionary rigid bodies. Some restrictions stemming from
thermodynamics are also discussed. The invariant form

—%%=%€tl+(u-V)q—Wq
appears first in this paper. Fox gives some simple exact
solutions of the equations in this theory.

Fox did not completely solve the invariance problem.
Using Oldroyd’s method, we express q(x,?) in terms of
time-independent coordinates £. Thus

q=q;(£,0a'(&,1)=q"(&,Da,(&,1) ,

where a’=0x/d£; are the contravariant base vectors and
a;=09¢; /9x are the reciprocal vectors. The motion of
these vectors describes the motion of material point &
through space. Invariant rates are the time derivatives of
q with respect to this body-fixed frame. They are not
unique: ‘

(8.17)

Dq_3q
Dt at !
or : (8.18)
aq; .
Dq_%
Dt at

The derivatives of the base vectors are ignored. Now, the
substantial derivative of q following the motion is

dq(x(&0,0) _dq | 3qTdq
dt dt ox At |-

Thus we may differentiate the two representations of q,
using

dal_ . 494 _ g
a7 Ta La;,
where L=Vu, to get
dq _Dgq -
dt Dt +Lq contravariant
and (8.19)
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49 _Dq _y710 covariant

dt Dt 9 ’
The rates D /Dt are called convective derivatives, and
they are properly invariant. Any linear combination of
these derivatives is also properly invariant, and the form
given by Fox is the linear combination for which

w=4LL-L7).

The problem of invariant derivatives has many different
solutions.

1969b, N. Fox, J. Inst. Math. Its Appl. 5, 373.

This paper is like the previous one by the same author,
with an extended derivation using thermodynamics and
invariance to obtain some restrictions on the constitutive
equations for the title problem in solids and elastic fluids.
The resulting theory is nonlinear and implicit, with many
unknown functions of the dependent variables. The pa-
per is motivated by problems in helium II; to treat these,
the author linearizes his equations, and Cattaneo’s equa-
tion comes out. He applies his equations to the Fountain
effect and second sound. The theory for helium does not
appear to be successful and is superseded by a later pa-
per, Atkin, Fox, and Vasey (1975).

1969, M. J. Maurer, J. Appl. Phys. 40, 5123.

Maurer points out that the theoretical foundation for
application of Cattaneo’s model (1.2) to solids should fol-
low along lines laid down by Tavernier (1962), who used
the linearized form of Boltzmann’s transport equation
with quantum-mechanical effects neglected [see also
Guyer and Krumhansl (1964)]. In the paper, a time-
dependent relaxation model for the heat flux in metals is
derived from the quantum-mechanical form of the
Boltzmann transport equation. The phonons are as-
sumed to be in thermal equilibrium at all times, and the
Lorenz approximation is used to treat electron-phonon
interactions. Maurer comes up with Eq. (8.2) as the
governing equation once again. He gets an estimate of
10~ sec for the relaxation time in monovalent metals.

1969, 1. Miiller, Arch. Ration. Mech. Anal. 34, 259.

Miiller derives Cattaneo’s equation from a formulation
of the thermodynamics of irreversible processes in the
relativistic case.

1970, D. E. Amos and P. J. Chen, ASME J. Appl.
Mech. 37, 1145.

These authors solve Eq. (6.5), using Laplace trans-
forms, when the boundary x =0 of the semi-infinite plate
is suddenly heated to f(¢). They do a short-time expan-
sion under the integral to find that near the shock front
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O(x,t)~f(x —1/c)0 x,% , (8.20)

where 0(x,x /c) is given by Eq. (7.11).

1970, D. B. Bogy and P. M. Naghdi, J. Math. Phys. 11,
917.

Bogy and Naghdi find that within the framework of
rate-dependent constitutive assumptions for the tempera-
ture in a rigid conductor, thermal waves can occur in the
finite theory, but not in the corresponding linearized
theory.

1970, B. Bertman and D. J. Sandiford, Sci. Am. 222,
92. ‘

This is a popularized summary of research on heat
waves in dielectric crystals at low temperatures. The ar-
ticle could be used as a starting place for getting ac-

.quainted with the ideas of quantized lattice vibrations

(phonons) and normal and umklapp processes.

1970, P. J. Chen and M. E. Gurtin, Z. Angew. Math.
Phys. 21, 232.

Here Chen and Gurtin extend part of the theory of
Gurtin and Pipkin (1968) to deformable media. They
show that there exist two speeds of propagation for ac-
celeration waves: the “first sound speed” is mechanical
in nature and lies near the isothermal and isentropic
sound speeds of the material, while the “second sound
speed” is associated with a predominantly thermal wave.
Their results generalize some of Achenbach’s (1968) to
the nonlinear case and to a more general constitutive
equation. Their analysis (and Achenbach’s) are restricted
to one space dimension. They say that “The extension to
three space dimensions is, aside from notational
difficulties, entirely elementary.”

1970, R. J. Hardy, Phys. Rev. B 2, 1193.

From the author’s summary,

It has been suggested that two types of second sound,
“drifting” and ‘““driftless,” are possible in dielectric crys-
tals. ‘The conditions for the existence of these two types
of second sound are obtained both from a' heuristic
analysis of the problem and from an exact solution of the
complete linearized Boltzmann equation. The exact
solution is given in terms of the eigenvalues and eigen-
vectors of the collision matrix, with the effects of normal
processes, umklapp processes, and imperfections includ-
ed. It is shown that to get drifting second-sound
normal-process scattering must dominate so that crystal
momentum is approximately conserved while to get
driftless second sound, the scattering must be such that a
uniform energy flux will decay exponentially. These con-
ditions for the two types of second sound are not mutual-
ly exclusive. It is found that normal-process scattering
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need not dominate for second sound to exist, but that
only when it does dominate, is second sound likely to be
observable. The relaxation times for both types of
second sound are shown to be the same and equal to the
reciprocal of smallest nonzero eigenvalue of the collision
matrix. An expression is given for a lower limit on this
relaxation time. :

According to Hardy, second sound will be said to exist
when an accurate description of variations of the local
temperature requires the use of the telegraph equation
(1.7), where 7 and c are the relaxation time and propaga-
tion velocity of second sound, respectively. In fact,
Hardy’s analysis identifies three distinct propagation
speeds rather than the two mentioned in his summary.
He raises the possibility of even other types of second
sound:

If none of the conditions for the existence of second
sound discussed here are satisfied for a particular materi-

al and temperature range, it does not follow that the ap-

plicability of the diffusion equation for heat extends to

arbitrarily rapidly varying processes. It means only that
the range of applicability of the diffusion equation can-
not necessarily be extended by simply adding on a term
which changes it to a damped wave equation. Nothing

in the present discussion excludes the possibility of there

being even more types of second sounds than the three

suggested here.

1970, H. E. Jackson, C. T. Walker, and T. F. McNelly,
Phys. Rev. Lett. 25, 26.

1970, H. W. Lord and A. A. Lopez, Acta Mech. 10,
85. :

This paper discusses the expected speed of second
sound without considering the effect of thermal expan-
sion, which is treated by Pao and Banerjee (1973).

1970a, M. McCarthy, Int. J. Eng. Sci. 8, 467.

McCarthy develops an abstract theory of materials
with memory in which the response functionals are as-
sumed to depend on the histories of the deformation gra-
dient temperature and integrated history of the tempera-
ture gradient.

1970b, M. McCarthy, Proceeding of Vibration Prob-
lems Warsaw 11 (2), 123.

Here McCarthy applies his equations to a one-
dimensional problem of propagation of first-order waves.
The results are essentially the same as those presented by
Chen and Gurtin (1970). ‘

1970, J. Meixner, Arch. Ration. Mech. Anal. 39, 108.
The problem of heat transmission is treated using the
author’s formulation of irreversible thermodynamics. He

derives Eq. (5.3) of Gurtin and Pipkin and claims (p. 120)
that his theory shows that ... Q(s) is an even positive
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definite function with mean value zero.”

1970, T. F. McNelly, S. J. Rogers, D. J. Channin, R. J.
Rollefson, W. M. Goubau, G. E. Schmidt, J. A.
Krumhansl, and R. O. Pohl, Phys. Rev. Lett. 24, 100.

These authors present data for very pure NaF which
show the behavior of incipient second sound. They also
report results of experiments on NaF, Nal, and LiF crys-
tals of modest chemical or isotropic purity in which heat
propagates as diffusion governed by Fourier’s law or in
the form of longitudinal and transverse elastic waves
(ballistic propagation), probably arising as waves of
thermal contraction or expansion induced by pulsed
heating [cf. Tsai and MacDonald (1976)]. They say that
as Ty is increased (decreasing temperature), the pulse
should continue to speed up and eventually disappear
into ballistic propagation. Perhaps this is not correct be-
cause their Eq. (4.3) indicates dominating diffusive effects
of normal processes when 7 is large.

1971, S. H. Chan, M. J. D. Low, and W. K. Mueller,
Am. Inst. Chem. Eng. J. 17, 1498.

These authors solve a problem using the telégraph
equation. They claim that thermal waves in solids may
be of importance in catalysis.

1971, 1. Miller, Arch. Ration. Mech. Anal. 41, 319.

Miiller develops a thermodynamic theory for thermo-
elastic materials which leads to finite speeds of propaga-
tion of temperature disturbances and a symmetric heat
conductivity tensor. He derives a telegraph equation
(4.36) for the heat conducted in a body of uniform densi-
ty at rest.

1971, J. W. Nunziato, Q. Appl. Math. 29, 187.

The equations of Gurtin and Pipkin (1968) are general-
ized by allowing the heat flux to depend on the present
value of the temperature gradient, as well as its history,
as in Eq. (6.4). No physical or philosophical argument is
presented for this interesting generalization. Nunziato

‘proves that solutions of the initial history problems are

unique when, in our terms,
[k,>0, y>0, F(0)>0]
or '
[k,=0, y>0, Q(0)>0, F(0)=0] .

He derives our equations (7.1)—(7.7) and he gets the
formulas for the speed and attenuation of jumps in
906 /3t, as in Chen (1969).

1971, S. J. Rogers, Phys. Rev. B 3, 1440.

From the author’s summary,
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The propagation of short thermal pulses has been
studied in very pure samples of NaF, Li’F, and Nal in
various crystallographic directions. In each of these
crystals the flow of heat at high temperatures is by
diffusion, and at the lowest temperatures, by the direct
flight of phonons from heater to detector. In the ballistic
region, the elastic anisotropy gives rise to a channeling
of mode energy into certain preferred directions. Over a
limited intermediate temperature range, the effect of
normal-process scattering on the propagated heat pulse
has been observed in NaF and Li’F: In the best NaF
crystals the pulse velocity approaches the expected
second-sound velocity. The observations can be ex-
plained satisfactorily in terms of the hydrodynamics of a
weakly interacting phonon gas. Computer solutions gen-
erated to fit the observed thermal pulse shapes suggest
that in NaF, the mean free path for normal-process
scattering can be represented by Iy =1.42X10°T """ ¢m
in the temperature range 10-20°K.

The hydrodynamic equations just mentioned are Egs.
(4.1) and (4.2) of Guyer and Krumhansl. Rogers remarks
that the telegraph equation, which arises when 7, =0,
cannot describe the transition with decreasing phonon-
phonon interaction from the second to the first sound re-
gime. He says that the 7y terms were essential for his ex-
periments.

1971, D. H. Tsai, “An atomistic theory of shock
compression of a perfect crystalline solid,” in “Accurate
characterization of the high pressure environment,” NBS
Spec. Publ. 326, edited by E. C. Lloyd (Natl. Bur. Stand.,
Washington, D.C.), pp. 105-123.

Tsai reports on a molecular dynamic calculation [see
Tsai and MacDonald (1973)] of the propagation of a
strong shock wave in a two-dimensional lattice. It was
shown that an energy relaxation process occurred behind
the shock front in such a way that the thermally relaxed
region propagated in a wavelike mode, with a velocity
less than the shock velocity. This led to the speculation
that second sound was being observed under high-stress,
high-temperature conditions.

1972, J. M. Finn ahd L. T. Wheeler, Z. Angew. Math.
Phys. 23, 922.

Finn and Wheeler thought it desirable to give a proof
that the Gurtin and Pipkin equation allows wave propa-
gation. They prove that initial history problems are
unique when k; =0, y >0, Q(0)>0, Q'(0)<0, F(0)>0.

1972, A. E. Green and K. A. Lindsay, J. Elasticity 2, 1.
Another generalization of thermoelasticity, which
leads to a symmetric heat conduction tensor and to
Cattaneo’s law (in the isotropic case), is derived using a
generalization of an entropy production inequality of

Muiller (1971).

1972, V. Narayanamurti and R. C. Dynes, Phys. Rev.
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Lett. 28, 1461.

These authors measured the pulse speed of tempera-
ture waves. For example, at 6=3.4 K, ¢,=(7.8%0.5)
X 10* cm/sec.

1972, A. Nayfeh and Nemat-Nasser, Z. Angew. Math.
Phys. 23, 50.

Nayfeh and Nemat-Nassar study wave motions in a
semi-infinite isotropic elastic body under a step change in
the temperature and heat flux at x =0, when the heat
flux is given by Cattaneo’s law. They obtain a solution
using the Cagniard-DeHoop method, which is a method
for manipulating Laplace transform into transforms of
known functions.

1972, Y. Taitel, Int. J. Heat Mass Transfer 15, 369.

Taitel solves the telegraph equation in a thin layer sub-
jected to a step change of temperature on both sides. The
transient temperature may momentarily, exceed the
boundary temperature, as well as the initial temperature
of this layer. Taitel expresses surprise at this well known
and perfectly acceptable feature of amplitude reinforce-
ment from left and right traveling waves.

1973, C. E. Beevers, Acta. Mech. 17, 55.

Beevers assumes a Cattaneo’s law as modified for in-
variance by Fox (1969), who replaced the partial time
derivative with a corotational one. He writes a general
nonlinear system of equations governing thermoelastic
dilatational waves. The linearized equations he then ob-
tains are close to but not the same as those of Lord and
Shulman. He then uses a stability argument based on
ideas about wave hierarchies introduced by Whitham.
He shows that some materials will be unstable by this cri-
terion if the theory of Lord and Shulman is used, but all
materials in his theory are stable. He also considers
strong dilatational shock waves and derived equations for
the extended heat conduction law.

1973, M. J. Maurer and H. A. Thompson, J. Heat
Transfer 95, 284.

Maurer and Thompson use Cattaneo’s equation (1.2) to
calculate thermal stresses in a solid subjected to a sudden
change in heat flux. They correct a misleading discussion
by Brazel and Nolan (1967) concerning the use of
Catteneo’s equation (1.2) to derive boundary conditions
for this problem. They show that a correct model leads
to high momentary temperature due to a step jump in
heat flux.

1973, Y. H. Pao and D. K. Banerjee, Lett. Appl. Eng.
Sci. 1, 35.

Pao and Banerjee derive a linearized, anisotropic
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theory of thermoelasticity. Four modes and speeds are
found for waves in dielectric crystals—two quasilongitu-
dinal and two quasitransverse modes. These waves can
be identified either in terms of strains or in terms of
change of temperature. The second quasilongitudinal
mode, which has no counterpart in the isothermal or adi-
abatic theory of acoustics, is the second sound. A one-
dimensional analysis for heat pulses in NaF crystals was
carried out, and the results agree favorably with experi-
mental observation.

1973, R. Nachlinger and L. Wheeler, Q. Appl. Math.
31, 267. '

These authors prove that solutions of the initial-value
problem for Nunziato’s equation (6.5) are unique when
k>0, y>0 or k;=0, y>0, Q(0)>0 (cf. Nunziato,
1971). ’

1973, J. W. Nunziato, SIAM J. Appl. Math: 25, 1.

Nunziato here improves the result in his 1971 paper,
proving uniqueness when k,; =0, y >0, ¢(0)>0.

1973, D. H. Tsai and R. A. MacDonald, J. Phys. C 6,
L171.

The formulation of the three-dimensional problem and
the method of solution were basically the same as in the
two-dimensional problem studied by Tsai (1971). The
equations of motion of the individual atoms defining the
lattice were solved on computers. The equations of
motion were obtained from an interatomic potential,
which was fitted to the elastic properties of a iron (body-
cubic centered) and to the data of the pressure-induced
phase transformation from « iron to ¢ iron (Chang,
1968). The potential was strongly anharmonic.

Tsai and MacDonald use a semi-infinite lattice z =0 di-
vided into period filaments in the form of semi-infinite
bars of square cross section, formed by laying cubical
blocks (5X5X5) of unit cells. Each cell has five atoms,
four in the corners, one in the center. - Filaments are
joined -together in x,y planes by cyclic or mirror bound-
ary conditions. One-, two-, or three-dimensional prob-
lems can be studied on this lattice. The dimensionality is
altered by setting the y motion to zero for a two-
dimensional system and both x and y motion to zero for a
one-dimensional equation.

The shock wave is driven into a semi-infinite lattice by
the collision of this lattice with its image across z =0, as
the two move toward each other. Average kinetic and
potential energies, stress components, and density of lat-
tice planes are obtained from the numerical analysis. Re-
sults are presented for average kinetic energy (propor-
tional to the kinetic temperature) and the longitudinal
component of the stress S,,. Both quantities experience
a sharp rise at the start and propagate as waves. Behind
the shock front is a region of thermal relaxation, which

Rev. Mod. Phys., Vol. 61, No. 1, January 1989

increases with time because it propagates more slowly
than the longitudinal wave of S, at the front. The au-
thors write,

Our view of the mechanism of thermal relaxation in
the shock-compressed solid is as follows: The shock
front extends over about five lattice planes only. Its
steepness is due to anharmonicity of the interatomic po-
tential. Because of this steepness, only the very-highest-
frequency oscillations are excited, and these oscillations
must share their energy with oscillations at other fre-
quencies in order to reach thermal equilibrium. This is
the thermal relaxation process we observe. In a disper-
sive lattice, the high-frequency oscillations propagate at
a lower velocity than the shock front. Since the energy
content of the thermally equilibrated region is concen-
trated in the higher frequencies, the thermally equilibrat-
ed region must trail farther and farther behind the shock
front as time increases. Thus dispersion is the underly-
ing mechanism for our temperature wave. Since disper-
sion is a property of the lattice, we conclude that our re-
sults will hold for all time and are not transient effects
due to the starting condition.

We believe that our results constitute a natural exten-
sion of the experimental and theoretical results of second
sound in crystals from the conventional low-
temperature, low-pressure régime to the high-pressure,
high-temperature régime. Both cases deal with
momentum-conserving interactions of lattice waves and
with propagation of thermal energy in a wavelike mode.
We consider the discussion of low-temperature second
sound in terms of phonons to be a matter of convenience.
Under our conditions of high temperature, large anhar-
monicity, it is more convenient to discuss the problem in
terms of simple classical-mechanical concepts. Another
point of contrast is that dispersion may be neglected in
the low-temperature case since only very-low-frequency
phonons are excited, whereas in the case of shock
compression, dispersion is all-important. We conclude
that second sound is a more general property of a solid
than the earlier low-temperature studies would suggest;
it arises from the close coupling between atoms. :

1974, D. K. Banerjee and Y. H. Pao, J. Acout. Soc.
Am. 56, 1444,

From the author’s summary,

As motivated by the recent discovery of heat pulses
propagating in dielectric crystals at low temperature, a
continuum theory of thermoelasticity, which is modified
to include the effect of thermal phonon relaxation, is ap-
plied to investigate the propagation of plane harmonic
waves in unbounded anisotropic solids. Four charac-
teristic wave speeds are found, three being analogous to
those of isothermal or adiabatic elastic waves; the fourth
wave, which is predominantly a temperature distur-
bance, corresponds to the heat pulses, known also as the
second sound. Velocity, slowness, and wave surfaces of
the thermoelastic waves are analyzed and are illustrated
with numerical and graphical results for NaF and solid
helium crystals. A new definition of the group velocity
for waves in a dissipative and dispersive anisotropic
medium is proposed and is calculated and compared
with the energy transport speed of thermoelastic waves.
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This work is based in part on a generalization of the
Cattaneo equation appropriate for anisotropic solids,

129 4 q=—kve,
at
where T and k are relaxation time and conductivity ten-
sors of second order (cf. Tavernier, 1962). The analysis is
illustrated by calculating and constructing velocity, slow-
ness, and wave surfaces for two crystals: (1) sodium
fluoride, which represents the cubic class, and (2) solid
helium four, which typifies the hexagonal class of crys-
tals.

1974, V. A. Bubnov, Int. J. Heat Mass Transfer 19,
175. :

Bubnov studies the motion of isotherms in a conduct-
ing body, deriving a formula for the speed of isotherm
propagation along the normal. The derivation follows
along lines evidently introduced by Predvoditelev (1970),
who represents the manifold of thermal states by temper-
ature 6(x,t) and thermal conductivity k(x,¢) surfaces.
Some mathematical operation with these concepts leads
to a nonlinear wave equation. Bubnov assumes a rela-
tionship between the propagation speed and thermal
diffusivity and he studies a few special cases. The result-
ing equations seem to require nonconstant conductivity
k(x,t), if a constant speed of propagation is assumed.
Bubnov also gives a derivation of the telegraph equation
for heat transfer in gases, using Maxwell’s method. The
paper is a source of references to some Russian literature
that appears not to have been translated.

1974, P. Chen and J. Nunziato, Z. Angew. Math. Phys.
25, 791. :

Chen and Nunziato consider the Gurtin-Pipkin theory
and use the second law of thermodynamics to show that
F(0),0(0),—Q’(0) are =0 and

k= fo“’Q(s)ds >0.

1974, B. DeFacio, J. Math. Phys. 16, 971.

This paper develops the same theory as is offered by
Roetman (1975). The author evidently got the idea from
Roetman in a private communication. DeFacio is very
confused. He says wrongly that the work of Gurtin and
Pipkin (1968) leaves open the question of obtaining heat
propagation at a finite speed in linear media. The devel-
opment of a singular perturbation theory for reducing
the telegraph to a diffusion equation is a wasted effort,
producing neither man nor beast.

1974, G. Lianis, Arch. Ration. Mech. Anal. 55, 300.

The author builds a theory in a frame that is attached
to the particle while it does not rotate with respect to the
inertial space. The treatment is formal and the resulting
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equations abstract.

1974, F. Mainardi, “On thermal waves in the general
theory of heat conduction with finite wave speeds,” un-
published talk delivered at the CISM Symposium on
Thermomechanics in Solids, Udine, Italy.

Mainardi was the first to use the method of ray series
for hyperbolic, one-dimensional problems in the Gurtin-
Pipkin (1968) theory.

1974, G. A. Maugin, J. Phys. A 7, 465.

From the author’s summary,

A heat-flux constitutive equation is derived in three
approximations from a general functional constitutive
equation which describes heat conduction in so-called
‘simple’ thermodeformable media in general relativity.
The three approximations correspond to materials hav-
ing a so-called ‘fading memory,” an ‘infinitely short
memory,” and materials of the ‘rate-type,” respectively.
The first approximation leads to an integral constitutive
equation which, after inversion of the integral operator,
yields a differential law that: (i) exhibits the relaxation
process needed to guarantee a propagation of heat dis-
turbances at a speed smaller than that of light; (ii) is
essentially spatial; (iii) satisfies the requirements now im-
posed in continuum physics, in particular, the principle
of objectivity as formulated by the author or the rheologi-
cal invariance of Oldroyd. The equation obtained has
the same three-dimensional limit as the spatial part of
Kranys’ equation for rigid heat conductors. However,
Kranys’ equation was not objective.

1975, R. J. Atkin, N. Fox, and M. W. Vasey, J. Elasti-
city 5, 237.

These authors derive a continuum theory in which an
additional vector field is introduced to represent the flow
of microscopic excitations from which second sound is
thought to originate. An effective conductivity actually
appears in their equations [the last term in their (4.3) and
the first in (4.6)]. When the effective conductivity is zero,
their linearized equations reduce to those given by Lord
and Shulman (1967).

1975, C. Barnabes, Nuovo Cimento B 28, 377.

From the author’s summary,

This article is a study of elastic media in general rela-
tivity; it is based on a relativistic generalization of the
functional constitutive equations of continuous media of
Truesdell and Noll. We show that it is possible to give a
definition of hyperelasticity in general relativity, on con-
dition that the existence of a reference state of minimum
free energy is postulated. This approach allows us also
on the one hand to study the case of relativistic elasticity
under high pressure (cf. certain stellar models), and on
the other hand to study thermoelastic media without the
paradox of infinite velocity of heat conduction.

1975, H. Beck, in Dynamical Properties of Solids, edit-
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ed by G. K. Horton and A. A. Maradudin (North-
Holland, Amsterdam), Vol. 2, p. 205.

This is a review of the work of physicists on second
sound and thermal conductivity. It is probably the most
complete reference for microscopic theory used to pre-
dict frequency and temperature windows for the passage
of second sound. Macroscopic equations are not treated.
Problems of heat transmission in ordinary materials at
room or high temperatures are not considered.

1975, M. S. Kazimi and C. A. Erdman, J. Heat
Transfer 97, 615.

Kozimi and Erdman use Cattaneo’s equation (1.2) to
determine the interface temperature of two suddenly con-
tacting semi-infinite bodies. This work is motivated by
the correlation between the instantaneous interface of
two suddenly contacting liquids and the potential for rap-
id development of spontaneous nucleation in the cooler
liquid. The time for which non-Fourier effects are impor-
tant is assessed. The estimation of time is frustrated by a
lack of information about wave speeds.

1975, 1. F. 1. Mikhail and S. Simons, J. Phys. C 8, 3068
(Part I); 3087 (Part II). .

Mikhail and Simons undertake a theoretical study of
Boltzmann’s equation for a phonon gas which models
dielectric crystals with negligible electronic contribution.
In contrast to previous works, they do not assume a con-
stant thermal phonon relaxation time, independent of the
wave number k. They note that in the majority of pho-
non interaction mechanisms 7/k~"=const with n > 1.
They find a dispersion relation for propagation of plane
waves when the wave-number dependence of thermal re-
laxation time for phonons is accounted for. In Part I,
normal processes are neglected, 7y =0. The dependence
of relaxation times on phonon wave number implies that
Cattaneo’s equation or the Egs. (4.1) and (4.2) of Guyer
and Krumbhansl cannot yield a dispersion relation for
harmonic waves that holds over a broad range of wave
frequency.

Of particular interest are the results of the analysis of
plane waves in Sec. VII of this paper. The dispersion re-
lations given there might hold over a broad range of fre-
quency by suitable choices of the memory kernel. In this
approach, we would abandon single relaxation times and
look for a spectrum, which may depend on phonon wave
length, perhaps only weakly. No work has been done fol-
lowing this line of thought.

1975, E. L. Roetman, Int. J. Eng. Sci.‘13, 699.

Roetman writes down the equations for continuum
mechanics when the constitutive equation for heat is pro-
portional to the gradient of the pressure, as well as the
temperature, and he arrives at a hyperbolic equation for
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the temperature. No argument is presented for why the
heat flux should depend on the pressure.

1976, T. T. Kao, AIAA Journal 14, 818.

One-dimensional propagation of coupled stress and
temperature waves in a Cattaneo-type conducting de-
formable semi-infinite solid, subject to a sudden jump of
heat flux at the boundary x =0 at r =0, is solved with
Laplace transforms. The concern is that ... under
sufficiently high flux conditions, this jump in surface tem-
perature may result in very severe thermal stress at the
surface” (cf. Maurer and Thompson, 1973, and Brazel
and Nolan, 1967). There are two stress waves and a tem-
perature wave. The fast wave and the thermal wave trav-
el together. Since some of the thermal and mechanical
wave parameters are independent, it is not possible to or-
der the wave speeds. Strangely, Kao chooses the sound
wave as the slower one.

1976, G. Lebon and J. Lambermont, J. Méce. 15, 579.

Lebon and Lambermont obtain Cattaneo’s equation
from a thermodynamic argument in which the entropy is
assumed to depend on the temperature, using the method
of Onsager’s nonequilibrium thermodynamics.

1976, A. V. Luikov, V. A. Bubnov, and I. A. Soloviev,
Int. J.’Heat Mass Transfer 19, 245.

This group discusses the theory set out in the paper by
Bubnov (1974), showing how it leads to variants of the
telegraph equation that are well posed as initial-value
problems.

1976, R. A. MacDonald and D. H. Tsai, Thermal Con-
ductivity 14, 145.

Initially, the lattice is in thermal equilibrium. There is
a Maxwellian distribution of atomic velocities with an
equipartition of kinetic energy in the x,y,z degrees of
freedom and when the energy density constant, etc., lat-
tice is said to be in thermal equilibrium. The first ten lat-
tice planes are heated quickly to a temperature 7, and
maintained. Waves of stress and density propagate into
the lattice with the speed of sound. These waves are gen-
erated by a thermal expansion of the lattice due to sud-
den heating of the ten lattice planes (thermoelastic cou-
pling). There is also evidence for second sound, but it is
heavily damped. The temperature profiles are for the ki-
netic temperature of a plane defined as m (v?) /2k where
m is the mass of an atom, {v?) the average of the veloci-
ty squared over the plane, and k is Boltzmann’s constant.
MacDonald and Tsai fit diffusive curves computed by
finite differences from a theory using Fourier’s law to the
numerically computed data, and they obtain a value of
thermal conductivity of about 1 of the measured value
for an iron alloy with parameters closest to those used in
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the experiment.

It would be interesting to fit their numerical results to
a non-Fourier model, say Cattaneo’s model, with two pa-
rameters, conductivity and a relaxation time.

1976, D. H. Tsai and R. A. MacDonald, Phys. Rev. B
14, 4714.

To form a heat pulse, energy is added to heat the first
ten planes rapidly from O to 800 K, hold the high temper-
ature for a time, then remove heat rapidly to a fixed tem-
perature. The duration of this pulse is 407 where 7
=0 (10713 sec). Various waves shown in Fig. 5 propa-
gate. They find that the pulse propagates into the lattice
as a combination of stress waves and heat waves superim-
posed on a diffusive background. The second sound wave
is a composite of several waves.

D. D. Joseph and L. Preziosi: Heat waves

The results shown and explained in the caption are for
very short times, 7=0 (10713 sec). Tsai and MacDonald
later compare their results for high temperatures with
the experiments of McNelly ez al. (1970) on NaF crystals
at low temperatures and say (MacDonald and Tsai, 1978,
p. 18),

That our results for an intense heat pulse can be scaled
(by factors of 10° in both time and distance) to corre-
spond to the experimental results under low temperature
implies that the relative damping of the waves must also
scale in some manner. In both cases damping has been
minimized: in our case by the short time of calculation
and in the experiment by careful choice of conditions so
that momentum-conserving scattering processes (N pro-
cesses) dominate momentum-nonconserving processes (D
processes). In neither case has damping been investigat-
ed. The fact that we observe second sound and diffusion
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FIG. 5. Evolution of kinetic temperature profile K as a function of lattice plane number and time 7 for 7;=0 K, mirror boundary
conditions, and three-dimensional lattice. L,, L,, S,, H,, H;, H,,, H,, and H; label features in the profile moving with constant ve-

locity. From Tsai and Ma.cDonald, 1976.
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implies that our time observation is near the limit of the
frequency window where relaxation times for N and U
processes are comparable. This is apparently the case
also in the experiments where a diffusive temperature
rise is observed.

In Fig. 5, L, is a longitudinal stress wave generated by
thermal expansion by heating the first ten planes. L, is
the corresponding wave of compression generated by re-
moving heat. S, is a transverse stress wave. The stress-
induced pulses are not in local thermal equilibrium;
equipartition has not been achieved (see MacDonald and
Tsai, 1976, for the definition of thermal equilibrium), but
they generate their own temperature waves H;,H,, ,H,.
These waves are bounded by the straight lines H; and
H;, whose slope gives wave speeds. H; propagates with
velocity C;/V'3, where C, is the speed of the longitudinal
stress waves L, and L,, and C,/V'3 is also the speed of
the wave front H,. H, propagates the speed C,/V'3,
where C; is the speed of shear waves. H,, propagates
with velocity C,, /V'3, where

ci=3¢7/3¢"
j J

is an average of the longitudinal and transverse velocities,
as discussed in the theory of second sound in a Debye
solid generated by a heat pulse (Sussman and Thellung,
1963). H, propagates with a velocity lower than H.
This broadening of the pulse may be due to diffusion, as
in the experiments of Ackerman and Guyer (1968).

The correspondence between the theory and calcula-
tions of this paper for high temperatures at short times
and, to some degree, the experiments on second sound in
helium II and dielectric crystals at very low temperatures
and longer time, is astonishing. This suggests that some
ideas of time and temperature equivalence, which are
well known in polymer physics, may also be relevant.

(8.21)

1977, M. Kranys, J. Phys. A 10, 1847.

A phenomenological, general-relativistic theory of dis-
sipative elastic solids whose equations form a hyperbolic
system is proposed. The nonstationary transport equa-
tions for dissipative fluxes containing new cross-effect
terms, as required by compatibility with irreversible ther-
modynamics, have been adopted. The complete system
of special-relativistic propagation modes of an elastic
solid is determined from the linearized equations. There
are four mutually distinct nontrivial propagation modes,
two for longitudinal waves and two for transverse waves.

1977, A. Nayfeh, AIAA Journal 15, 957.

One-dimensional propagation of coupled stress and
temperature waves in a Cattaneo-type conducting de-
formable solid, subject to a delta-function heat source
q8(x)8(¢) at the boundary x =0 at ¢t =0, is solved with
Laplace transforms. The governing equations differ
slightly from those used by Kao (1976), and the initial
conditions are different. '
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1977, M. H. Sadd and J. E. Didalke, J. Heat Transfer
99, 25. .

Sadd and Didalke were the first to consider this prob-
lem, and they give a solution for a step change of temper-
ature in terms of Laplace transforms, which shows im-
portance at very small times locally, near the front.

1977, D. C. Wiggert, J. Heat Transfer 99, 35.

Wiggert applies the numerical method of characteris-
tics to find solutions of the telegraph equation. Two sam-
ple calculations are given.

1978, V. K. Agarwal, J. Elasticity 8, 171.

Agarwal solves the problem of wave propagation for
prescribed-time harmonic surface waves using the equa-
tions of Lord and Shulman (1967), on the one hand, and
Green and Lindsay (1972), on the other. The two
theories agree when some parameters are put to zero.

1978, R. A. MacDonald and D. H. Tsai, Phys. Rep.
46, 1.

This is a review paper covering results on stress waves,
thermoelastic coupling, heat waves, and thermal conduc-
tivity, which have been discussed in the earlier papers.
In addition, the authors note that

In one dimension it is shown that energy sharing be-
tween modes of vibration is difficult; therefore it is
doubtful that the soliton concept is a useful one in non-
linear problems where thermal relaxation is involved. In
two and three dimensions, energy sharing occurs readily.

1978, R. K. Miller, J. Math. Anal. Appl. 66, 313.

Miller obtains existence, stability, and asymptotic sta-
bility results for Nuziato’s equation under certain techni-
cal conditions. Basically, he establishes that history
value problems for Nunziato’s equations always have a
unique generalized distribution solution that depends
continuously on the initial history and on heat sources.

1978, S. Simons, Phys. Lett. A 66, 453.

Simons shows that Catteneo’s equations may be in-
correct when the heat carrier’s relaxation time is wave-
number dependent. To do this, he writes the solution for
a plane wave as a Fourier transform and finds an expres-
sion for the heat flux from the energy balance. Then he
uses dispersion relations derived by Mikhail and Simons
(1975,1) to invert the transform and to obtain heat-flow
laws, for long waves. This approximate procedure never
gives rise to Cattaneo’s law or the associated telegraph
equation. He derives a number of curious partial
differential equations corresponding to different assump-
tions about the wave-number dependence of the phonon
relaxation times.
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1978a, R. Swenson, Am. J. Phys. 46, 76.

Swenson modifies the heat-flux law so that it depends
on the history of the temperature gradient (2.2). There is
basically nothing new in this paper, and the author did
not know the works that preceded his (see Agarwal,
1981, for a critical review).

1978b, R. Swenson, J. Non-Equil. Thermodyn. 3, 39.
1979, V. K. Agarwal, Acta Mech. 31, 185.

The propagation and stability of harmonically time-
dependent thermoelastic plane waves of assigned frequen-
cy in the theory of Green and Lindsay (1972) are treated
and compared with theory of Lord and Shulman (1967).
The two theories are the same when some parameters
have special values. Plane thermoelastic waves in the
theory of Green and Lindsay are always stable, according
to a criterion given by Whitham and applied previously
by Beevers (1973) to the theory of Lord and Shulman.

1980a, A. Morro, Rend. Semin. Mat. Univ. Padova 63,
169.

1980b, A. Morro, Arch. Mech. Warszawa 32, 145.
1980, G. Seifert, Q. Appl. Math. 38, 246.

Seifert studied a one-dimensional version of the prob-
lem treated by Miller (1978) and obtained asymptotic sta-
bility for the zero solution when there are no sources and
k >0, F(0)> 0 in Nunziato’s model.

1981, V. K. Agarwal, Am. J. Phys. 49, 503.

This is a short general review of the literature meant to
correct omissions of Swenson (1978a, 1978b). Agarwal
says, “There are several ways of obtaining the finite prop-
agation speed for thermal disturbances in isotropic,
homogeneous, and rigid solids. Many theories exist, but
as yet there is no consensus as to which is the theory.”

1982, B. D. Coleman, M. Fabrizio, and D. R. Owen,
Arch. Ration. Mech. Anal. 80, 135.

Here Coleman, Fabrizio, and Owen use the same Cat-
taneo law [Eq. (8.21)] as do Banerjee and Pao (1974), but
they allow the matrices of relaxation times and conduc-
tivities to depend on temperature. Using their formula-
tion of thermodynamics and some approximations (pp.
141 and 142) for the thermodynamic variables in which
powers of the invariants q-q greater than one are neglect-
ed they find that the time derivative of the internal ener-
gy is given by

¢=(y+q-A'q)0+2q-Aq, , (8.22)

where 7, A, and A’=d A /d6 depend on 6,

Rev. Mod. Phys., Vol. 61, No. 1, January 1989

2 —1
Ag)=— & d_ |k {OITO)

2 dé 6?

The nonlinear part is determined by the temperature
dependence of the parameters of Cattaneo’s law (8.21). A
system of four first-order quasilinear partial differential
equations [given as Eq. (10.16) by Coleman, Fabrizio, and
Owen, 1986] in the three components of q and 6 is im-
plied by the energy balance [Egs. (1.3)and (8.22)],

T(6)q+q+k(0)V6=0,
divg+[y(0)+q- A'(8)]6+2q- A(8)3=0 .

(8.23)

Coleman and Owen (1983) studied the one-dimensional
version of Eq. (8.23) to determine when the system gives
rise to hyperbolicity. This analysis gives rise to formulas
for the slope dx /dt of characteristics in the (x,?) plane,
giving the nonlinear wave speed of hyperbolic waves.
From this formula, they conclude that second sound
should propagate faster against the heat flow than with
it.

In all of the papers by Coleman et al., deformations
are set to zero, as is appropriate for rigid bodies at rest.
They say (1982) that

The reader may observe that the form of the relation

. is not invariant under a time-dependent change of
frame. This lack of frame invariance is shared by several
of the constitutive relations we shall discuss here but is
not important for the problems we treat. Each constitu-
tive relation we shall present requires only slight
modification to be rendered frame invariant. For exam-
ple, the equation

(q—Wq)+q=—«kg

is invariant under all time-dependent changes of frame
when W is set equal to either the velocity gradient or its
skew part, the vorticity tensor. Our discussion will be
confined to rigid bodies, and hence any motion of the
materials to be described must be such that the velocity
gradient is a skew tensor.

It could be argued that in the case of second sound, a
dielectric crystal at temperatures near the one for which
conductivity is maximum should not be modeled as a rig-

-id body, but as a phonon gas. This point of view has

been adopted in many studies, and a good discussion of it
can be found in the (1966b) paper of Guyer and
Krumhansl. In fact, Guyer and Krumhansl (1966a, p.
773) note that the fluid velocity u of the phonon gas is re-
lated to the heat flux

=7/T0
3

where T, is an average temperature in the range of tem-
peratures in which second sound will propagate. In this
case, the appropriate nonlinear generalization of
Cattaneo’s law is '

q u, (8.24)

T(0)29 + q=—k(6)V6 ,

Dt (8.25)
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where

Dq _3q .

Dt ot +(u-V)q+Wlulq .
Here W[u] is the velocity gradient or the negative of the
transpose of this gradient [see our summary of Fox
(1969a)] or any linear combination of these. Each invari-
ant derivative gives rise to a different constitutive law,
and, at present, we know of no criterion of choice. If we
use Eq. (8.24), then

_D_‘in‘l+_3__(q.v)q+}—3?—-W[q]q . (8.26)
0

Dt 3t yT,
This again gives rise to a quasilinear system.

1982, L. M. deSocio and G. Gualtieri, Q. Appl. Math.
41, 253.

These authors do not refer to the earlier work of Sadd
and Didalke (1977) and appear to have come to this prob-
lem independently. They give an approximate solution
for a sudden change of the heat flux, such that melting
occurs.

1983, D. W. Barcléy, T. B. Moodie, and R. J. Tait, Int.
J. Eng. Sci. 21, 663.

The authors demonstrate that wave-front expansions
for the analysis of transient phenomena are far from ade-
quate back of the wave front. Padé approximations are
used to try to extend the series solution.

1983, B. D. Coleman and D. R. Owen, Comput. Math.
Appl. 9, 527.

1983, T. B. Moodie and R. J. Tait, Acta Mech. 50, 97.

The problem of a step change of temperature at the
boundary of a semi-infinite rigid solid is solved for the
linearized Gurtin-Pipkin theory using a ray series ap-
proach.

1983, B. Vick and M. N. Ozisk, J. Heat Transfer 105,
902.

Vick and Ozisk consider heat propagation in a semi-
infinite medium with volumetric energy sources using the
Cattaneo law. They say that

When a concentrated pulse of energy is released, the
temperature and the heat flux in the wave front become
severe. For situations involving very short times or very
low temperatures, the classical heat diffusion theory
significantly underestimates the magnitude of the tem-
perature and heat flux in this thermal front . . . .

They reduce their equations to parameter-free form
and, in this way, avoid the problem of choosing a relaxa-
tion time.

1985, R. P.. Sawatzky and T. B. Moodie, Acta Mech.
56, 165.
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The problem of one-dimensional wave propagation in
deformable elastic solids on a half-space is solved by ray
series, using the linearized theory of Chen and Gurtin
(1970).

1985, A. Solomon, V. Alexiades, D. Wilson, and J.
Drake, Q. Appl. Math. 43, 295.

Solomon et al. derive an equation for the motion of
the interface containing a term absent in earlier work,
which they claim is in error. This missing term appears
to be important, as it balances against the speed of the
small waves. They pose, but do not answer, the following
questions.

(a) What is the form of a well-posed problem?

(b) On what basis can we assign a value to the time
derivative of the temperature at the initial time, as re-
quired for solving a hyperbolic equation of second order?

(c) What is the nature of the “temperature” that obeys
the telegraph equation?

(d) What happens if the phase-change front moves at a
speed greater than the characteristic signal speed? Is this
at all possible?

(e) Is the model of physical relevance?

1986, G. V. Caffarelli and E. G. Virga, Boll. Un. Mat.
Ital., Ser. 6, SA, 33.

1986, B. D. Coleman, W. J. Hrusa, and D. R. Owen,
Arch. Ration. Mech. Anal. 94, 267.

~ This paper is about the global existence and asymptot-
ic behavior of continuously differentiable solutions of Eq.
(8.23) for an appropriate class of smooth initial data.

1986, B. D. Coleman, M. Fabrizio, and D. R. Owen, in
New Perspectives in Thermodynamics, edited by J. Serrin
(Springer, Berlin), p. 171.

1988, B. D. Coleman and D. Newman, Phys. Rev. B
37, 1492.

From the authors’ summary,

The phenomenological relations usually employed to
describe second sound in pure nonmetallic solids at tem-
peratures 0 near that at which the thermal conductivity
attains its maximum value were recently found to imply
a quadratic dependence of the internal energy density e
on the magnitude of the heat flux ¢, ie., e;=e(6)
+a(0)q® The coefficient a(6) can be calculated from
measurements of the temperature dependence of the
speed 0(0) of second-sound pulses in media for which
the unperturbed temperature field is uniform. The stud-
ies of second-sound pulses in NaF crystals by Jackson,
Walker, and McNelly and in Bi crystals by Naray-
anamurti and Dynes yield a(0)>0 and da(6)/d6<0.
The theory of pulse propagation along temperature gra-
dients is examined here in detail. For a(6)>0 the
theory implies that a small pulse propagating in a body
conducting heat will travel more slowly in the direction
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of heat flow than in the opposite direction. The magni-
tude of the effect is estimated for NaF and Bi crystals.

1987, J. M. Greenberg, IMA J. Appl. Math. 38, 1.

The questions raised by Solomon et al. (1985) motivate
this paper. Greenberg notes that

Most formulations of melt problems for hyperbolic
models insist on continuity of the temperature across the
melt interface, and a number of investigators have ob-
served that this insistence leads to mathematical
difficulties. In this paper an alternative model is ex-
plored, where continuity of the temperature at the melt
interface is not imposed. Instead, we insist that the re-
laxation process describing the relation between heat flux
and temperature gradient be interpreted as a conserva-
tion equation that must hold across a melt interface.
With this formulation, we are led to a solvable problem
with desirable asymptotic properties.

It may be possible to obtain the continuity of tempera-
ture together with hyperbolic models like Gurtin’s and
Pipkin’s, using a singular kernel of the Renardy type
(Sec. VII).

IX. CONCLUDING REMARKS

The ideas of this paper form a conceptual framework
for the discussion of heat waves in materials of hetero-
geneous microstructure, each with its own time of relaxa-
tion, as in the case of electronic and lattice contributions
to heat transmission in metals. If most of the heat is
transported by the more slowly relaxing structures, the

fast relaxation will give rise to small, effective conductivi--

ty, singularly perturbing wave propagation. The slow re-
laxation is a time unit for an internal clock against which
fast relaxations are timed. This point of view shows how
an effective conductivity leading to diffusion arises out of
rapidly damped waves.

The internal energy, like the heat flux, may be viewed
in a “viscoelastic” setting with the present value of the
energy determined by a weighted integral of the history
of the temperature. Consistent with this point of view is
the notion that the heat capacity arises as an effective
value from the decay of fast modes. Next to nothing
(maybe nothing) is known about the history dependence
of the internal energy.

The finite speed of heat waves is a satisfactory resolu-
tion of the paradox of infinite speed for diffusion. But, as
a practical matter, huge speeds and rapid relaxation re-
store diffusion even on the scale of the response time of
modern oscilloscopes. Heat waves have been observed,
but only in the relatively exotic situations of second
sound in helium II and in certain dielectric crystals at
low temperatures.

In principle, finite wave speeds can be measured in any
material at times shorter than the effective time of relaxa-
tion into diffusion. The molecular dynamic calculations
of MacDonald and Tsai suggest a time-temperature prin-
ciple, well known in polymer physics, in which long
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times at low temperatures are equivalent to short times at
high temperatures. Unfortunately, these short times are
found to be too short to measure with the techniques we
know today.
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