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The blue phases of cholesteric liquid crystals are liquids that exhibit orientational order characterized by
crystallographic space-group symmetries. We present here a pedagogical introduction to the current un-
derstanding of the equilibrium structure of these phases accompanied by a general overview of major ex-
perimental results. Using the Ginzburg-Landau free energy appropriate to the system, we first discuss in
detail the character and stability of the usual helical phase of cholesterics, showing that for certain param-
eter ranges the helical phase is unstable to the appearance of one or more blue phases. The two principal
models for the blue phases are two limiting cases of the Ginzburg-Landau theory. We explore each limit
and conclude with some general considerations of defects in both models and an exact minimization of the
free energy in a curved three-dimensional space.

CONTENTS

I. Introduction: Crystalline Liquids
II. Anisotropic Liquids

A. Nematics, cholesterics, and blue phases
B. Homogeneous versus inhomogeneous nematics
C. Uniaxial versus biaxial anisotropy
D. The helical phase of chiral nematics: Preliminary

remarks
E. The blue phases of chiral nematics: Preliminary

remarks
F. Line defects: General features
G. Line defects: A cautionary note

III. Experimental Overview
A. Introduction
B. Stability of the blue phases

C. Pitch dependence of the blue phases
D. Optical Bragg scattering
E. Other properties of the blue phases

1. Nonzero elastic shear modulus
2. Anomalous viscosity
3. Electric field e6ects
4. Direct smectic A —blue phase transition

F. Experimental determinations of structures
IV. Order Parameter and Free Energy

A. Dielectric anisotropy and the order parameter
B. Ginzburg-Landau theory
C. The bulk free-energy
D. The gradient free-energy
E. The full free energy: Some elementary features

1. The nematic limit: Infinite pitch
2. The second-order limit: Vanishing cubic term

F. The coherence length
G. The full free energy: Dimensionless variables

V. The Helical Phase
A. Instability of the uniaxial helix
B. The general helical order parameter
C. Some mathematical details

1. Minimization of the free energy for the helical
phase

2. Stationarity of the general helical order parame-
ter

385
387
387
388
388

388
389
389
389
391
391
391
392
393
394
394
394
395
395
395
395
399
399
399
400
401
401
402
402
402
402
403
403
403
404

405

VI. Blue Phases: The High-Chirality Limit
A. General features of the high-chirality limit
B. High-chirality order parameters: 0, 0, and hex-

. agonal
C. Structure and energetics of the high-chirality order

parameters
D. Icosahedral models of blue phase III
E. Importance of the high-chirality limit
F. The simple cubic 0 structure
G. The 0 and 0 structures in real space

VII. Blue Phases: The Low-Chirality Limit
A. General features of the low-chirality limit
B. Local order in the low-chirality limit: Double twist
C. The energetics of double-twist cylinders
D. Stable structures in the low-chirality limit
E. The 0,0, and 0 + structures
F. A calculation of energies of uniaxial structures

VIII. Blue Phases: Some General Theoretical Features
A. Can chiral ferromagnets have blue phases?
B. The residue of line defects in the high-chirality limit
C. Exact minimization of the free energy in a curved

space
Acknowledgments
Appendix A: The Parameters of Hornreich and Shtrikman
Appendix B: Trace Relations
Appendix C: Stability of the Gradient Energy
Appendix D: Estimating Physical Values Of a
Appendix E: Maximizing the Cubic Invariant
Appendix F: Elastic Constants in the Uniaxial Limit
References

405
406

408
409
410
411
411
414
414
416
417
417
418
420
421
421
422

424
426
426
426
427
427
428
428
428

I. INTRODUCTION: CRYSTALLINE LIQUIDS

They are totally useless, I think, except for one important
intellectual use, that ofproviding tangible examples of to-
pological oddities, and so helping to bring topology into the
public domain of science, from being the private preserve
of a few abstract mathematicians and particle theorists.

F. C. Frank (1983)

*Present address: Center for Science and International
Affairs, Kennedy School of Government, Harvard University,
Cambridge, MA 02138.

One of the great lessons of condensed matter physics is
that nature is more fertile than the human imagination in
devising mays for rnatter to organize itself into coherent
structures. Yet, given the initial clue from nature, the

Reviews of Modern Physics, Vol. 61, No. 2, April 1989 Copyright 1989 The American Physical Society



386 D. C. N/right and N. D. Mermin: Blue phases

human imagination has proved remarkably adept at
eventually inventing simple theoretical models that
display and illuminate strange new kinds of behavior.

Blue phases are a wonderful example of this process.
They have been known observationally for a hundred
years and have finally begun to be understood theoreti-
cally within the last dozen. Unlike some of the more
celebrated examples (e.g., superconductivity) they are not
yet of any technological interest. Indeed, the puzzle they
present is not widely known, and the apparent solution to
that puzzle has been found in a more thoughtful applica-
tion of existing theories, rather than through the intro-
duction of radically new ideas. They nevertheless deserve
to be brought to the attention of a wider community of
physicists for several reasons.

The phenomenon is both beautiful and extraordinary.
A blue phase can look like a stained glass window: an in-
tricate mosaic of bright colors. Photographs have served
as Christmas cards. The colors are produced by a collec-
tion of crystallographic domains that selectively Bragg-
reAect visible light. The blue phases are naturally occur-
ring crystals whose periodicity is on a scale of thousands
of angstroms, affording crystallographers an opportunity
to practice their art not in the x-ray, but in the optical
domain.

The existence of blue phases, however, requires a
redefinition, or at least a refinement, of the word "crys-
tal. " If the crystalline state is defined to be one with
discrete translational symmetry in three independent
directions, then the blue phases are indeed crystalline.
But conventional crystals are solid, and the discrete
group of translations is associated with the mean equilib-
rium positions of the constituent molecules, atoms, or
ions. Blue phases are liquid. The molecules are position-
ally disordered and have no fixed mean positions. The
discrete group of translations is associated with the spa-
tial pattern of molecular orientations.

Blue phases are liquid crystals. They can be poured
from one vessel to another. But unlike other liquid crys-
tals, which display a variety of translational and rotation-
al symmetries peculiar to the liquid crystal state, blue
phases have symmetry groups that are simply conven-
tional crystallographic space groups (in all cases reported
to date, members of the cubic crystal system in the ab-
sence of fields). They are therefore the only truly crystal-
line liquid crystals. In recognition of this, Frank (1983)
has proposed that they should be regarded as a fourth
class of liquid crystals, beyond Friedel's standard
classification into nematics, cholesterics, and smectics.
The term "crystalline liquids" might serve to make this
distinction and is certainly more accurate than "blue
phases, " since they can, in fact, show a whole rainbow of
colors.

Beyond their beauty and extraordinary structure, how-
ever, these crystalline liquids —the blue phases —also
have a powerful conceptual appeal. There is a simple
Cxinzburg-Landau free energy that appears to be rich
enough to encompass the phenomena in all their intrica-

cy. Since the relevant transitions are first order, the
mean-field minimization of that free energy may well give
an accurate enough picture of the blue phases without
the complications of fIuctuation effects that dominate the
behavior at second-order transitions. On the other hand,
the problem of minimizing that simple mean-field free en-
ergy has proved surprisingly resistant to theoretical
analysis. Structures favored by the bulk free energy do
not take full advantage of the possibilities for minimizing
the gradient free energy, and vice versa, with the result
that no exact blue-phase solutions have yet been found
even in this simple model.

This has resulted in two lines of attack that might at
first appear so different as to be viewed as competing
theories. One of our major aims in this review is to give a
single unified presentation of both approaches, to em-
phasize that they are simply different computational
schemes, appropriate in different limiting cases.

The first approach to be developed began with work by
Brazovskii and co-workers, and was subsequently refined
and developed by Hornreich, Shtrikman, and their colla-
borators (Brazovskii and Dmitriev, 1975; Brazovskii and
Filev, 1978; Hornreich and Shtrikman, 1979, 1980a,
1980b, 1981b, 1981c; Alexander, 1981; Alexander et aI. ,
1981; Kleinert and Maki, 1981; Hornreich, Kugler, and
Shtrikman, 1982; Grebel, Hornreich, and Shtrikman,
1983a, 1984; Wright and Mermin, 1985). It can be car-
ried out systematically when the gradient free energy
dominates (characterized, for reasons that will emerge
below, as the "high-chirality limit" ). Blue phases are
built out of a highly degenerate set of forms favored by
the gradient energies, with the bulk free energy treated as
a small perturbation that splits the degeneracy of these
forms, building them into a variety of crystallographic
structures.

The other approach, put forth by Meiboom et aI. ,
arises naturally when the bulk free energy is dominant
(which we shall characterize as the "low-chirality limit" )

(Meiboom, Sethna, Anderson, and Brinkman, 1981;
Meiboom, Samrnon, and Berreman, 1983; Meiboom,
Sammon, and Brinkman, 1983). Blue phases are built
from structures that locally minimize the bulk free ener-
gy, and the way in which these are put together from
point to point is determined by the weaker gradient free
energy. In this limit the system is characterized by
geometrical frustration: structures that are favored lo-
cally by the gradient free energy cannot be extended
throughout all of space, leading to intricate compromise
structures, the most favorable of which, again, appear to
have crystallographic symmetries.

The latter situation, in which local ordering is incom-
patible with global ordering, has recently received con-

The connection between these limits has also been noted by
Meiboom, Sammon, and Brinkman (1983), Grebel, Hornreich,
and Shtrikman (1984), and Belyakov and Dmitrienko (1985).
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siderable attention in various realms of condensed matter
physics (Frank, 1952; Frank and Kasper, 1958, 1959;
Kleman and Sadoc, 1979; Sadoc, 1980; Kleman, 1981,
1982, 1983, 1985; Steinhardt, Nelson, and Ronchetti,
1981, 1983; Nelson, 1982, 1983a, 1983b; Sadoc and Mos-
seri, 1982, 1984; Sethna, 1983, 1985, 1987; Renn and Lu-
bensky, 1988). From a conceptual point of view, one of
the most interesting things about the blue phases is that
in the low-chirality limit they provide an extremely sim-
ple example of a real system that unambiguously illus-
trates the physics and mathematics of geometrical frus-
tration.

In both cases singular line defects play an important
role, though they are interestingly disguised in the high-
chirality limit. A second reason for the intellectual in-
terest of blue phases (as noted above by Frank) lies in the
concrete illustration they offer of some of the more subtle
concepts arising in the topological theory of defects.

Our aim in this paper is to provide an elementary in-
troduction to our current understanding of the equilibri-
um structure of these phenomenologically and conceptu-
ally intriguing substances. In recent years there have
been several reviews of various aspects of theory and ex-
periment (Stegemeyer and Bergmann, 1980; Crooker,
1983; Barbet-Massin et al. , 1984a; Belyakov and Dmi-
trienko, 1985; Stegemeyer, Blumel, Hiltrop, Onusseit,
and Porsch, 1986; Cladis, 1987; Sethna, 1987; Hornreich
and Shtrikman, 1988a; Crooker, 1989). We therefore
view our task as primarily pedagogical. On the theoreti-
cal side we have tried to gather into a simple, accessible,
and unified presentation the many diverse strands that
make up our basic understanding of the blue phases. Our
discussion of experimental studies is intended primarily
to provide a brief historical survey and to give a per-
suasive selection from the compelling evidence establish-
ing those aspects of the phenomena central to our
current understanding. It is not our aim to give a sys-
tematic survey of either theory or experiment, and the
references we give are intended primarily to acquaint
readers with some of the major works in the field, for the
benefit of those wishing to explore the subject more
thoroughly.

We begin our introduction to blue phases in Sec. II,
with a brief review of the elementary concepts of liquid-
crystal physics essential to their description. We then
survey in Sec. III the major 'experimental facts with
which a model of blue phases must contend. In Sec. IV
we describe the simple Ginzburg-Landau theory in terms
of which both theoretical models of blue phases can be
viewed as different Hmiting cases. In Sec. V we apply the
model of Sec. IV to a detailed discussion of the helical
phase, indicating when its conventional description as a
uniaxial "cholesteric" is valid and when this picture is
significantly modified by biaxiality. In Sec. VI we de-
scribe the instability of the helical phase at high chirality
and survey the resulting blue phase models that emerge
in the high-chirality limit. In Sec. VII we turn to the
rather different approach to blue phases, based on "dou-

ble twist" and line defects in a uniaxial liquid, appropri-
ate when the chirality is not high. In Sec. VIII we point
out several features common to both the high- and low-
chirality descriptions, to emphasize that they are not
competing theories, but descriptions of the same
phenomenon in two different limiting cases. We end by
describing an exact minimization of the free energy in a
curved three-dimensional space.

II. ANISOTROPIC LIQUIDS

In this section we provide a brief introduction to the
relevant concepts and nomenclature of liquid-crystal
physics (for a general review, see for example, de Gennes,
1974; Stephen and Straley, 1974; Chandrasekhar, 1977).
Conventional nomenclature is not always well suited to a
discussion of blue phases. To avoid ambiguity we have
taken pains to use a precise, if slightly unconventional,
set of terms. Even readers conversant with liquid-crystal
terminology should therefore skim through the remarks
that follow.

A. Nematics, cholesterics, and blue phases

All of the phenomena we shall be describing take place
in liquids in which the mean molecular orientations are
able to acquire order, although the mean molecular posi-
tions are disordered. In the conventional liquid-crystal
classification scheme such anisotropic liquids are divided
into two categories: nematics and cholesterics. (There is
a third category, smectics, which will not concern us
here, in which there is also ordering in the mean molecu-
lar positions. }

A liquid crystal is nematic if the constituent molecules
have inversion symmetry, or if chiral molecules are
present but equally distributed among the two handed-
nesses (a "racemic mixture"), so the quid as a whole is in-
version symmetric. If the constituent molecules are
chiral and the two handednesses are not equally
represented, the liquid crystal is cholesteric. Blue phases
occur in the cholesteric class. Cholesterics are sometimes
called chiral nematics Nematics m. ay then be called ordi
nary nematics if one wishes to emphasize their nonchiral
character.

Unfortunately the term "cholesteric" is also widely
used with a more narrow meaning to denote the particu-
lar phase, which we shall refer to as the helical phase,
that chiral liquid crystals enter at temperatures more
than a degree or so below the transition from isotropic to
anisotropic liquid. This usage leads to no confusion
when the helical phase is the only ordered phase under
consideration. Many such chiral liquid crystals, howev-
er, display additional phases —the blue phases —at tem-
peratures immediately below the transition from the iso-
tropic liquid. Blue phases can be viewed as phenomena
taking place in cholesteric liquid crystals only if the term
"cholesteric" is taken in its broader sense of "chiral an-

Rev. Mod. Phys. , Vol. 63, No. 2, April 1989



388 D. C. Wright and N. D. Mermin: Blue phases

Our Nomenclature

MATERIAL:

ORDERED PHASES:

NEMA TIC

hematic

CHIRAL REMA TIC

Helical Blue

Conventional Nomenclature

MATERIAL

ORDERED PHASES:

NEMA TIC

hematic

CHOI ESTERIC

Cholesteric Blue

B. Homogeneous versus inhomogeneous nematics

The state of an anisotropic liquid is said to be homo-
geneous if the local anisotropy is identical throughout the
liquid in all respects, including orientation. The un-
strained equilibrium state of ordinary nematics is homo-
geneous. As we shall see, even in unstressed thermo-
dynamic equilibrium chiral nematics are inhomogeneous.

C. Uniaxial versus biaxial anisotropy

isotropic liquid. "
To avoid the confusion that a failure to distinguish be-

tween the broad and narrow meanings of "cholesteric"
can bring to a discussion of blue phases, we shall avoid
using the term "cholesteric" at all, except in contexts
where no possible ambiguity can result. We shall call the
nonchiral liquids "nematics" (or "ordinary nematics")
and shall call the chiral liquids "chiral nematics". In
this scheme, the two types of phases found in chiral
nematics are helical phases and blue phases.

Our nomenclature is summarized and contrasted with
the more conventional nomenclature in Table I.

mogeneous equilibrium structure induces a slight and
generally unimportant degree of biaxiality (Wulf, 1973;
Priest and Lubensky, 1974; Schroder, 1980; Yaniv et al. ,
1981; Chidichimo et al. , 1982; Yaniv, Chidichimo, and
Doane, 1983; Yaniv, Neubert, and Doane, 1983;
Hornreich and Shtrikman, 1984). Biaxiality does, howev-
er, play an important role in one limiting case of the gen-
eral theory of the blue phases of chiral nematics (what we
shall call the "high-chirality limit" ), and an understand-
ing of how biaxiality arises is important for understand-
ing the essential unity of all currently proposed models of
blue phase ordering.

The symmetry of the ordered phase need not directly
refIect the symmetry of the individual constituent mole-
cules. Molecules with arrow1ike symmetry, for example,
can form a uniaxial liquid with only rodlike symmetry if
the arrows are randomly oriented both parallel and anti-
parallel to the preferred direction. Similarly, molecules
with bricklike or even lower symmetry will form a uniax-
ial liquid if the distribution of molecular orientations has
uniaxial symmetry. For example, a Quid of bricks would
have uniaxial symmetry if the long axes of the bricks
were aligned with one another while the orientations of
the bricks about that direction were random. In both of
these examples the symmetry of the liquid is higher than
the symmetry of the individual molecules.

On the other hand, as we shall see in some detail, even
molecules with ideal rodlike symmetry can give rise to lo-
cally biaxial liquids if the distribution of molecular direc-
tions has a lower than rodlike symmetry (as is generally
the case for the local distribution in inhomogeneous
configurations).

Nematics (ordinary or chiral) are characterized as uni
axial or biaxial, according to whether the anisotropy of
the ordered liquid has a rodlike (cylindrical) or bricklike
symmetry. (In inhomogeneous nematics the characteri-
zation is based on the rotational symmetry of the local
configuration. ) No nematics are known with arrowlike
symmetry, in which one direction along the rod dift'ers
from the other. (This, of course, is the symmetry one
would find in a ferromagnetically ordered liquid, and in
Sec. VIII we shall find it interesting to contrast the be-
havior of the rodlike uniaxial nematics to hypothetical
arrowlike liquid ferromagnets. )

Almost aH nonchiral homogeneous nematics are uniax-
ial, though they have recently been synthesized with bi-
axial symmetry (Yu and Saupe, 1980; Bartolino et al. ,
1982). The helical phases of chiral nematics are generally
treated as uniaxial although, as we shall see, their inho-

The term "chiral nematic" is sometimes used to refer to bi-
phenyl compounds to distinguish them from derivatives of
cholesteryl esters, which were the original "cholesterics. " We
would propose calling both types of materials "chiral nematics"
and using the terms "biphenyl chiral nematics" and "cholesteric
chiral nematics" to make the chemical distinction.

D. The helical phase of chiral nematics:
Preliminary remarks

Although we shall subsequently characterize it in more
detail, it is useful to have at hand a preliminary descrip-
tion of the equilibrium structure assumed by chiral
nematics in the helical phase. This structure is inhomo-
geneous and locally uniaxial (except for a small degree of
biaxiality, often ignored, which we shaH examine in Sec.
V). A uniaxial structure is characterized at each point by
a single preferred axis, which we shall denote by a unit
vector n(r), known as the director. Because the local
structure is unchanged by a mirroring in the plane per-
pendicular to n, the vectors n and —n describe the same
configuration, and n should be regarded as a "headless
arrow. " This is a fact of central importance. If n had a
sense associated with it, for example, the line singularities
(see Sec. II.F below) would have a very different charac-
ter and, at least in one rather general model, there would
be no blue phases (see Sec. VIII).

The equilibrium state of an ordinary nematic is homo-
geneous: the director n does not vary with position (Fig.
1). The equilibrium helical phase of a chiral nematic is
inhomogeneous: n is everywhere perpendicular to a fixed
direction, the pitch axis 8, and is uniform in planes per-
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NEM ATIC
A

HEL ICAL

FICx. 1. The director field in the nematic and helical phases.
The director n is uniform in the nematic phase, while in the hel-
ical phase n twists along the pitch axis 8 and is constant in
directions perpendicular to Z.

helical phase; their detailed description will emerge in the
sections that follow. Not all chiral nematics have blue
phases. When they do occur, they are only found within
a degree or so of the transition from isotropic to aniso-
tropic liquid. At lower temperatures chiral nematics
have the helical phase as a stable equilibrium structure.

Because all chiral nematics with blue phases also. have
helical phases at lower temperatures, the blue phases of a
chiral nematic are sometimes characterized by properties
that are in fact only possessed by the helical phase of that
chiral nematic at lower temperatures. In particular, the
pitch of the helical phase, though it varies with tempera-
ture, does not vary significantly on a scale comparable to
the range of temperatures through which the blue phases
are stable (Fergason et al. , 1966). One often associates a
pitch with a blue phase, by which one means either the
pitch that would have been assumed by the helical phase
of the same material, were it stable in that temperature
range, or, what amounts to the same thing, the pitch as-
sumed by the helical phase at the temperature at which it
first becomes stable with respect to the blue phase.

On a more theoretical level, the pitch c@n also be for-
mally identified with a parameter appearipg in the free-
energy function characterizing a chiral nematic, indepen-
dently of whether that free energy favors helical or blue
phase ordering. Should the helical phase be favored, that
parameter is indeed its pitch. Should a blue phase be
favored, the parameter continues to be an important
characteristic of the material, though its geometrical
manifestation can be rather less direct.

pendicular to 8 (Fig. 1). As one inoves along d', howev-
er, the direction of n twists uniformly about 8 with a re-
peat distance po for n returning to n (which is therefore
twice the physical repeat distance, since n and —n
represent the same configuration). The distance po is
called the pitch of the helical phase (or the "cholesteric
pitch"). While the constituent molecules of chiral nemat-
ics are 10—50 A in length, the pitch is typically
thousands of angstroms.

If the z axis is taken along the direction d', then the an-
alytic form for the director in the equilibrium helical
phase is

F. Line defects: General features

Structures containing singular lines play a central role
in one limiting case of the general theory of blue phases
(low chirality), and the ghostlike residues of such line de-
fects can be identified in the other limiting case (high
chirality). A major basis for the conceptual appeal of
blue phases is that they provide a simple case study of
some of the more subtle aspects of the topological theory
of defects (see, for exainple, Mermin, 1979). A line defect

n(r) =x cosqoz+y sinqoz,

where the pitch po is given by

po=2~/qo .

(2.1)

(2.2)

The quantity qo is a measure of the "chirality" of the
nematic —a term we shall de6ne more precisely in Sec.
IV. Ordinary nernatics can be viewed as the limiting case
qo =0.

E. The blue phases of chiral nematics:
Preliminary remarks

The structures of blue phases are considerably'more in-
tricate and less we11 understood than that of the simple

FIG. 2. The director field in the neighborhood of a Zm disclina-
tion.
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FIG. 3. "Escape in the third dimension": by allowing the
director field to tilt out of the plane, the disclination of Fig. 2
can deform into a nonsingular configuration. The director at
the center of Fig. 3 is now aligned perpendicular to the plane.

is said to be unstable (or "topologically unstable" ) if the
liquid can continuously relax into a n on singular
configuration that difFers from its origina1 one only in the
immediate neighborhood of the formerly singular line.
Figure 2 shows an example of such an unstable singulari-
ty in a uniaxial nematic, the 2~ disclination (or "s= 1 dis-
clination"). The "2'" indicates that the director rotates
through a full 360 as the singular line is encircled; "dis-
clination" is analogous to the term "dislocation" in crys-
tals, but emphasizes that here the ordering that becomes
singular is orientational rather than positional. The de-
formation of the 2m disclination into a non singular
configuration is shown in Fig. 3. The process by which
the core is thus rendered nonsingular is called "escape in
the third dimension. "

A stable singularity of a uniaxial nematic —the m dis-
clination (or "s=

—,
' disclination") —is pictured in Fig.

4(a). Because the local preferred direction turns only
through 180 as the line is encircled, escape in the third
dimension is no longer possible. Note that such a line de-
fect is only possible because of the identification of n and
—.n; if the order parameter were not a director but a vec-
tor, the line singularity of Fig. 4(a) would be the bound-
ary of an entire singular sheet, across which n turned
through 180'.

It can be shown that any stable line singularity in a
uniaxial nematic is equivalent to the m disclination, in
that it can continuously relax into a structure that has
the form of the ~ disclination in the neighborhood of the
singular line, without appreciably altering the configura-
tion far from the line. Figure 4(b) shows a superficially
distinct —m disclination. This configuration can be
transformed continuously into the ~ disclination of Fig.
4(a) by rotating the director at each point r by 180' about
an axis passing through r and parallel to the direction
shown in the figure. To perform this transformation only
in the neighborhood of the singularity, the director must
be rotated by an angle 8(r), where 8 approaches 180' as r
goes to zero, and vanishes as r goes to infinity.

Whether a given singularity is regarded as stable or not
(or whether or not two singularities are regarded as
equivalent) can depend on how one views the physical
system in which the singularities appear. By restricting
the set of configurations the system is allowed to assume,
one can stabilize unstable singularities; conversely, by ex-

ROTATION
AXIS

(b)

FIG. 4. (a) The director field in the neighborhood of a ~ dis-
clination; (b) the director field in the neighborhood of a —~ dis-
clination. This pattern can be continuously deformed into that
of (a) by rotating the director at each point r by 180 about an
axis passing through r and parallel to the axis shown. (During
the rotation the director will point out of the plane. )

panding the set, one can make stable ones unstable.
Consider, for example, the 2m disclination in the uniax-

ial nematic. If this structure appeared in a hypothetical
"x-y nematic" —one in which the director were required
to lie in a single plane (by boundary conditions or applied
fields) —then escape in the third dimension could not
take place and the singularity would become stable. On
the other hand, as we shall see in Sec. VIII, in a nematic
capable of assuming not only uniaxial but also general bi-
axial anisotropy the ~ disclination is no longer a stable
singularity, for it can acquire a nonsingular core by pass-
ing through biaxial forms, thereby "escaping into biaxial-
ity. "

This absence of stable line defects when biaxiality is allowed
might appear to contradict the esoteric fact that in "biaxial
nematics" there are four classes of stable line defects, including
three distinct classes of stable m. disclinations. There is no con-
tradiction, because these four classes are only stable in "hard"
biaxial nematics, which must have bricklike symmetry every-
where and are not allowed to be anywhere uniaxial. The biaxi-
ality we shall consider is always "soft"—the ration of the eigen-
values of the tensor order parameter (see Sec. IV) are not fixed.
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The only line singularities we shall be considering
below are the stable line singularities of uniaxial nemat-
ics, i.e., the m. disclinations. When we refer to line singu-
larities without qualification or elaboration, these are the
ones we have in mind.

G. Line defects: A cautionary note

and biaxial point of view in characterizing nematic singu-
larities. Since no stable line singularities survive when
the uniaxial class is expanded to allow for possible biaxi-
ality, this flexibility will not be the occasion for con-
fusion. When line singularities are mentioned at all they
must be uniaxial nematic singularities, and these come in
only one variety: the ~ disclination.

It is often a pedagogical error to draw attention to a
wrong way of looking at things, and the reader is there-
fore urged to ignore this subsection if its point is not im-
mediately evident.

The relative character of the stability or equivalence of
defects can give rise to considerable confusion in describ-
ing defects in the helical phase of chiral nematics, and
this confusion can turn into a major muddle if the blue
phases are incorrectly regarded, not as an independent
class of chir al nematics, but as a variant of the
"cholesteric" (in the narrow sense of "helical phase")
class, an error induced by a careless identification of the
broad and narrow meanings of "cholesteric" (see Table
I.)

Helical phases can be viewed as nematics with a very
special kind of inhomogeneity in the directional ordering.
If one required the director field locally to resemble the
helical structure, then the director field would be restrict-
ed to a subclass of all possible uniaxial nematic
configurations, with the result that the set of helical
phase defects would include many more types of stable
and distinct line singularities than would be the case if
the local configurations were unrestricted. (This is analo-
gous to restricting the director field to lie in a plane,
which gives rise to additional stable singularities com-
pared to an unrestricted nematic. ) Among the stable hel-
ical phase defects are several kinds of inequivalent dis-
clinations, as well as what are known as focal conic
singularities. When viewed as singularities in a (chiral)
nematic, however, every one of these helical phase de-
fects is either unstable —i.e., not a defect at all —or
equivalent to the unique stable m disclination.

In a similar way defects in the blue phase can either be
regarded as nematic defects or be classified by a scheme
based on the special inhomogeneity that blue-phase or-
dering imposes on the more general nematic anisotropy.
In neither case, however, is the special classification
scheme for the helical phase ("cholesteric defects")
relevant to the description of blue-phase defects.

We shall use only the simple classification scheme for
line defects in a nematic (which has only one type of
stable defect) whether we are dealing with ordinary or
chiral nematics, and whether the chiral nematics are in
the helical or the blue phases. We do this not only to
avoid ambiguity, but also because we shall be concerned
only with helical and blue phases in their unstressed equi-
librium configurations. We shall therefore have no need
for the complexities of the special helical or blue-phase
classification schemes.

We shall, however, allow ourselves both the uniaxial

III. EXPERIMENTAL OVERVIEW

A. Introduction

ISOTROPI C PHASE

BP QX {FOG)

-55OK-- BLUE
PHASE

HELICAL PHASE

FIG. 5. A schematic phase diagram showing the blue phases in
relation to the helical and isotropic phases as a function of tem-
perature. Not all three blue phases occur in every material.

Observations of the blue phase date back to the earliest
days- of liquid-crystal research. Stegemeyer and Berg-
mann (1980) note that Reinitzer, in his pioneering work
on liquid crystals, described seeing bright blue-violet
reAections on cooling liquid cholesteryl benzoate (Rein-
itzer, 1888), an effect now known to be characteristic of
the blue phase of this compound (see also Gray, 1956;
Gray and Winsor, 1974). Both Lehmann (1906) and
Stumpf (1911) observed similar phenomena in several
cholesteric compounds and proposed that this indicated a
new, thermodynamically stable phase at temperatures be-
tween the isotropic liquid and the helical phase. After
1911 interest in the phenomenon waned; Friedel de-
scribed it only in passing in his important 1922 review
(Friedel, 1922). The suggestion that the blue phase is
stable has been verified only within the past decade and a
half; until then the lack of experimental evidence for a
distinct, stable phase (e.g., latent heats or volume discon-
tinuities at the transition) led people to believe that they
were merely observing a metastable "modification" of the
helical phase, similar to the focal conic structure (for ear-
ly observations in recent times, see Gray, 1956, 1962;
Elser, 1966; Chistyakov and Gusakova, 1969; Saupe,
1969; Prince and Wendorf, 1971, 1972; Coates and Grey,
1973, 1975; Coates, Harrison, and Grey, 1973; Elser,
Pohlmann, and Boyd, 1973).
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Up to three distinct blue phases appear in a great
variety of chiral nematic compounds (see, for example
Coates and Gray, 1973; Coates, Harrison, and Grey,
1973; Elser et a/. , 1973; Johnson et a/. , 1980; Meiboom
and Sammon, 1980; Marcus and Goodby, 1982; Nicastro
and Keyes, 1983; Tanimoto et a/. , 1985; Chanishvili
et a/. , 1986; Keyes, 1987; Yang and Crooker, 1987,
1988), and the appearance of one or more blue phases
seems to be a general property of such systems when the
pitch is su%ciently short (typically less than 5000 A).
The two lower-temperature phases, called blue phase I
and blue phase II (BP I and BP II), appear to have cubic
structures in all samples studied, while the highest-
temperature phase, known as BP III (or historically as
the "blue fog"), appears to be amorphous (Fig. 5). These
phases exist only in a very small temperature range be-
tween the high-temperature isotropic phase and the low-
temperature helical phase. The width of' the entire blue
phase-region is typically only about one degree, though
typical transition temperatures are several hundred.

The most striking feature of the blue phases is the mo-
saic of bright colors they can display, in contrast to the
relatively featureless helical phase and isotropic liquid
(Chistyakov and Gusakova, 1969; Price and Wendorf,
1971; Coates, :Harnson, and Gray, 1973; Elser et a/. ,
1973; Marcus, 1981). The mosaic consists of brightly
colored wrinkled Aakes, or p/ate/ets, typically 100 pm in
size, that appear throughout the temperature range of
blue phases I and II, and which were originally incorrect
believed to be small randomly oriented domains of the
helical structure (Coates and Cxray, 1973, 1975). The
colors are often blues or violets, thus the name, but a
wide variety of colors can be seen, sometimes varying
considerably through the sample or shifting with temper-
ature (for color plates, see Elser et a/. , 1973; Stegemeyer
and Berg mann, 1980; Brinkman and Cladis, 1982;
Stegemeyer et a/. , 1986).

A second general feature of blue phases that any
theory of structure must explain is their effect on polar-
ized light. Like the helical phase, the blue phases are op-
tically active and therefore rotate the direction of polar-
ization of linearly polarized light, although with rotatory
powers that are orders of magnitude less than those of
the helical phase (Bergmann and Stegemeyer, 1978; Brog
and Collings, 1980; Bensimon et a/. , 1983). However,
unlike the helical phase, they are optically isotropic and
are not birefringent (Saupe, 1969; Pelzl and Sackmann,
1973; Bergmann and Stegemeyer, 1978; Demus et a/. ,
1978).

A number of experimental techniques, some of which
we discuss in detail below, have been used to explore the
blue phases in the effort to determine their structures.
We give here a brief overview of the major experimental

results on the blue phases. For more detailed reviews, see
for example, Bergmann and Stegemeyer (1978), Belyakov
and Dmitrienko (1985), Stegemeyer et a/ .(1986) and
Crooker (1989).

B. Stability of the blue phases

For many years the blue-phase region was believed to
consist of a single phase and was not regarded as thermo-
dynamically distinct, but merely as a metastable form of
the helical phase. The metastability argument was per-
suasive because the blue phase can supercool into the hel-
ical phase by several degrees, an amount often larger
than its entire range of stability, and within the super-
cooled range stirring can indeed induce a transition to
the helical state. [Supercooling of two to five degrees is
typical (see, for example, Collings and McColl, 1978;
Johnson et a/. , 1980), although supercooling of as much
as ten degrees has been observed (Chanishvili et a/. ,
1986).] Price and Wendorf (1971), however, found that
near the high-temperature end of its range of existence
the blue phase could not be induced to make such a tran-
sition, indicating that it was indeed stable at these tem-
peratures.

The blue phase Anally became generally regarded as a
distinct stable phase when Armitage and Price (1975,
1977) detected both a latent heat and a density change at
the blue-helical transition in several chiral nematics.
They measured a latent heat of the order of 0.01 cal/g, a
value only 3—10 % of the value at the isotropic-blue tran-
sition, which is more typical of liquid-crystal transitions.
In addition, they found volume changes at the helical-
blue transition that were extremely small but observable:
roughtly 0.01% (Armitage and Price, 1975, 1976). These
two results show that the helical-blue transition is (weak-
ly) first order, consistent with the supercooling eff'ects
seen at this transition.

Bergmann and Stegemeyer (1979a) later confirmed the
observations of Armitage and Price, and also discovered
a second speciAc-heat anomaly nearer to the transition to
the isotropic phase, indicating that the blue phase region
consisted of at least two distinct phases, BP I at lower
temperatures, and BP II at higher. They estimated the
latent heat at the BP I—BP II transition to be very close

5Somewhat earlier, in 1967, Barrall et al. measured the
specific heat and optical activity of cholesteryl myristate near
the helical-to-isotropic transition and reported observing a new
cholesteric phase, but did not identify it as the blue phase (see
also Arnold and Roedinger, 1968).

4Recently, a blue phase stable over a two-to-five-degree tem-
perature range has been reported (Chanishvili et al. , 1986).

Transitions between difterent liquid-crystal phases typically
have latent heats of 0.1 cal/gm and are much more weakly first
order than liquid-crystal —solid transitions, where latent heats
and volume changes are 50—100 times larger (Armitage and
Price, 1977).
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to the helical —BP I value. Unlike BP I, BP II does not
appear to supercool (Johnson et al. , 1980; Tanimoto and
Crooker, 1984).

Evidence for a third stable blue phase (BP III) was not-
ed soon afterwards by Stegemeyer and Bergmann (1980),
and by Marcus (1981),who called it the "blue fog" for its
featureless, blue-gray appearance (although in many ma-
terials it is transparent). Meiboom and Sammon (1981)
also detected this phase and found it to be much more
elusive than the other blue phases, appearing in very few
of their samples. It is found only in systems with very
short pitches, and typically exists over a range of less
than 0.05 K. Like BP I and II, BP III shows no
birefringence and exhibits selective reflection of circular-
ly polarized light and strong optical activity, suggesting a
local chiral structure with correlations over distances of
the pitch (Demikhov and Dolganov, 1983; Collings,
1984b; Kizel' and Prokhorov, 1984; Demikhov et al. ,
1985; Yang and Crooker, 1988). However, unlike BP I
and II, this phase appears to be amorphous and does not
exhibit Bragg scattering or platelets.

Optical measurements and direct observations of the
phase suggested that BP III was a distinct, stable blue
phase (Marcus, 1981; Meiboom and Sammon, 1981;
Demikhov and Dolganov, 1983; Hornreich and Shtrik-
man, 1983; Collings, 1984b). The stability became gen-
erally accepted following experiments by Coiling s
(1984b), who measured optical rotatory dispersion in the
phase, and by Kleiman et al. (1984), who measured heat
capacity, shear elasticity, and viscosity throughout the
blue phase region. While the helical-BP I, BP I-BP II,
and BP II—BP III transitions have been known for a

number of years to be first order, the nature of the BP
III—isotropic transition has only recently been resolved.
Thoen (1988), using his high-resolution calorimetry re-
sults (Fig. 6), was able to separate the latent heat at this
transition from pretransitional e6'ects and show that the
transition is weakly first order. As is evident from Fig. 6,
most of the latent heat evolved in going from the isotro-
pic phase to the helical phase is released at the BP
III—isotropic transition (see also Taborek, Goodby, and
Cladis, 1989).

C. Pitch dependence of the blue phases

Considerable experimental work has been done to un-
derstand the effect of pitch on the blue phases (Bergmann
and Stegemeyer, 1978; Finn and Cladis, 1981, 1982;
Keyes and Nicastro, 1981; Keyes, Nicastro, and McKin-
non, 1981; Flack and Crooker, 1981b; Her et al. , 1981;
Marcus and Goodby, 1982; Onusseit and Stegemeyer,
1982, 1983a; Nicastro and Keyes, 1983; Flack et al. ,
1984; Blumel and Stegemeyer, 1984b; Tanimoto, Crook-
er, and Koch, 1985; Blumel, Collings, Onusseit, and
Stegemeyer, 1985; Collings, 1986; Miller et al. , 1987;
Yang and Crooker, 1987). Drawing conclusions from
such experiments can be difBcult since the usual methods
of varying the pitch, i.e., varying chemical composition
or considering a series of compounds with closely related
molecular structures ("homologs"), can also change
properties of the system other than the pitch (e.g. , the
transition temperature to the isotropic phase can vary
considerably with the pitch in these systems). Some re-
cent studies, however, have varied the pitch by using a
series of mixtures of right- and left-handed versions of
the same material ("chiral-racemic mixtures"), which
should leave other properties largely unaffected (Marcus
and Goodby, 1982; Tanimoto et al. , 1985; Collings, 1986;
Tius et al. , 1987; Yang and Crooker, 1987).

Blue phases are found to appear only in systems with
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FIG. 6. High-resolution heat-capacity measurements for the
blue-phase region of cholesteryl nonanoate (from Thoen, 1988).
The latent heats measured at the transitions shown are 18+1
J/mol at helical —BP I, 5.8+0.5 at BP I—BP II, 1.9+0.5 at BP
II-BP III, and 170+15 at BP III-isotropic. Nearly 87% of the
latent heat is at the BP III—isotropic transition. The other la-
tent heats are atypically small for liquid-crystal transitions.
(Here R is the gas constant. )
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FIG. 7. A phase diagram of the blue phases as a function of in-
verse pitch for chiral-racemic mixtures of the compound CE5
(from Yang and Crooker, 1987).
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short pitch, typically less than 5000 A. As the pitch is
decreased, the temperature range over which the blue
phases are stable generally increases. A phase diagram as
a function of pitch in a series of chiral-racemic mixtures
of the compound CE5 is shown in Fig. 7. The disappear-
ance of BP II for large inverse pitch is observed in a
number of compounds homologous to CE5 (Yang and
Crooker, 1987); whether this is a general feature of blue
phases remains an open question.

D. Optical Bragg scattering

Many of the early experiments on the blue phases were
versions of experiments traditionally done on the helical
phase. In many cases, these experiments give results
similar to those found for the helical phase, indicating
that the local structure of the two is similar. These in-
clude, for example, measurements of the selective
reAection of circularly polarized light (Bergmann and
Stegemeyer, 1978, 1979b; Bergmann, Pollman, Scherer,
and Stegemeyer, 1979; Pollman and Scherer, 1979, 1980;
Stegemeyer and Bergmann, 1980; Tanimoto and Crook-
er, 1984; Bliimel et al. , 1985; Demikhov et al. , 1985), the
angular dependence of selective reAections (Flack and
Crooker, 1981a; Marcus, 1982c; Kuczynski, 1985a;
Heppke et a/. , 1987; Keyes, 1987; Yang, Crooker, and
Tanimoto, 1988), rotatory power (Bergmann and
Stegemeyer, 1978; Beevers et a/. , 1982; Demikhov and
Dolganov, 1983; Collings, 1984a, 1984b; Blumel et al. ,
1985), NMR spectra (Collings and McColl, 1978;
Samulski and t.uz, 1980; Shivaprakash and Prasad, 1982;
Grebel et a/ , 1983b; Y.aniv et al. , 1983), and observation
of Grandjean-Cano lines (Kuczynski and Stegemeyer,
1980; Stegemeyer and Bergmann, 1980; Feldman, Crook-
er, and Goh, 1987; Bliimel and Stegemeyer, 1988). Addi-
tional probes of these phases have included measure-
ments of thermal Auctuations (Marcus, 1984, 1985), index
of refraction (Pelzl and Sackman, 1973; Bergmann and
Stegemeyer, 1978), kinetics of the helical —blue phase in-
terface (Wiirz et al. , 1979), and optical measurements of
the order parameter (Marcus, 1982c; Barbet-Massin and
Pieranski, 1984, 1985).

Optical measurements, which have traditionally been
an important tool for studying liquid crystals, become
more informative with the possibility of optical Bragg
scattering off the crystalline blue phases BP I and II. Be-
cause the pitch of these systems is typically several
thousands of angstroms, they Bragg-scatter visible light
just as crystals scatter x rays, and many of the techniques
used in x-ray crystallography to determine crystal struc-
tures can be applied here.

Such scattering reveals three-dimensional periodic
structures with cubic lattices having lattice spacings on
the order of the helical phase pitch (see Sec. III.F). The
platelets that always appear in blue phases I and II are
interpreted as domains of blue phase ordering, their
differing colors arising from their different orientations to
the observer, which leads to Bragg refIection for different

wavelengths.
Marcus (1981) has given a detailed explanation of the

striking appearance of the blue phases I and II in terms
of their ability to Bragg-scatter visible light. To remove
background light and increase contrast, samples are typi-
cally placed between crossed linear polarizers; without
polarizers the Quid appears largely transparent. Viewed
in reflected light, BP I and II appear as a collection of
platelets suspended in a dark liquid. The platelets that
appear in these phases look like bright flakes of Inetallic
foil of various colors that nonetheless appear transparent,
a11owing- platelets below them to show through undimin-
ished. Regions between the platelets that appear dark in
reflected light are found also to consist of platelets that
are visible in transmission.

The platelets are interpreted as randomly oriented
domains of crystalline blue phase ordering, and their
bright colors arise from the Bragg scattering into the
direction of the observer of those wavelengths that satisfy
the Bragg condition. Platelets with different orientations
reflect different colors, and those that cannot satisfy the
Bragg condition at all will instead pass the incident light
and appear dark in reflection.

When these phases are viewed in transmitted light, the
situation is somewhat different. Since the system is be-
tween polarizers, the light reaching a platelet is linearly
polarized and can be considered to be the sum of equal
amounts of right and left circular polarizations. The
only light passing the second polarizer will be at those
wavelengths that have one component of circular polar-
ization Bragg scattered out of the incident direction.
The transmitted light wi11 therefore be those wavelengths
that satisfy the Bragg condition, and thus the color will
again depend on the orientation of the platelet.

Note that in reflection, if more than one set of Bragg
planes in a platelet satisfies the Bragg condition, different
colors will be scattered in different directions, but in
transmission they will be superimposed, giving a mul-
ticolored appearance. Notice also that if one platelet
overlaps another, but the two scatter at different wave-
lengths, then neither will affect the light scattered by the
other, and thus they will appear transparent. The plate-
lets probably appear as thin fakes in reflection because of
the strength of the Bragg scattering, which causes most
of the light to be scattered by a thin surface layer of the
domain.

E. Other properties of the blue phases

1. Nonzero elastic shear modulus

One of the hallmarks of a solid in contrast to a liquid is
its ability to resist static shears, i.e., the existence of a
nonzero elastic shear modulus. Since two of the blue

7Rotation of the plane of polarization of the light at wave-
lengths that are not scattered is at most a few degrees over the
thickness of the samples (0.2 mm) (Brog and Collings, 1980).
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phases have three-dimensional periodicity like crystals,
but nonetheless pour like liquids, one might ask what
elastic measurements would show for these phases. Mea-
surements of the response of the blue phase in a torsional
oscillator confirm the existence of a nonzero elastic shear
modulus, although with a magnitude on the order of 10
dyn/cm, roughly a million times smaller than that of
conventional solids (Cladis et a/. , 1984; Clark et al. ,
1984; Kleiman et al. , 1984). This value agrees with esti-
mates that follow from dimensional considerations (Clark
et a/. , 1984): One would expect an elastic modulus to be
on the order of Kq0 where K is an elastic constant from
the free energy describing distortions of the director field,
and qo

' is roughly a typical lattice constant for the blue
phases. For typical values of K and qo, Kqo is on the or-
der of 10 —10 dyn/cm .

Hornreich (1987) have recently studied the e6'ects of
fields theoretically using Landau theory.

One of the most interesting aspects of work in this area
is the appearance of new phases in the presence of an
electric field. In 1985, Hornreich, Kugler, and Shtrik-
man (1985a, 1985b) predicted a field-induced blue phase
with a two-dimensional hexagonal structure. Pieranski,
Cladis, and Barbet-Massin (1985) observed field-induced
transitions to a three-dimensional hexagonal structure
containing a screw axis, as well as a phase of tetrahedral
symmetry. Subsequent work has detected a number of
additional field-induced phases (Cladis et al. , 1986; Pi-
eranski and Cladis, 1987; Porsch and Stegemeyer, 1987;
Yang and Crooker, 1988).

4. Direct smectic A —blue phase transition

2. Anomalous viscosity

Measurements in chiral nematics of anomalously large
bulk viscosities in a narrow temperature range near the
helical-isotropic transition have existed since the 1930s
(for references, see Stegemeyer and Pollman, 1982; see
also Yamada and Fukada, 1973; Keyes and Ajgaonkar,
1977). Stegemeyer and Pollman (1982) measured the
bulk viscosity as a function of temperature near the tran-
sition to the isotropic phase in two chiral mixtures by
studying Aow through millimeter-sized capillaries. By
varying the composition of these mixtures, and thus the
pitch, they could produce closely related materials that
differed in whether or not they exhibited blue phases.
They found that in those mixtures with blue phases, the
viscosity is anomalously large in the blue phase region,
climbing sharply to a factor of up to 10 times its value in
the helical phase as the temperature is raised, and drop-
ping back in the isotropic phase. Since peaks were only
observed in mixtures exhibiting blue phases, they con-
cluded that the increase in viscosity was due to the pres-
ence of the blue phase ordering.

3. Electric field effects

Several groups have studied the effects of electric fields
on the blue phases (for a review of work up to 1986, see
Stegemeyer et al. , 1986), including field-induced transi-
tions (Armitage and Cox, 1980; Finn and Cladis, 1982;
Heppke et al. , 1983, Stegemeyer and Porsch, 1984; Ziolo
et al. , 1986; Porsch and Stegemeyer, 1987; Stegemeyer
and Spier, 1987; Yang and Crooker, 1988), field-induced
optical birefringence and other efFects on optical proper-
ties (Beevers et al. , 1982; Heppke et al. , 1983, 1985a,
1985b, 1987; Porsch et a/. , 1984; Gerber, 1985; Pieranski
and Cladis, 1986; Porsch and Stegemeyer, 1986), the
faceting and orienting of single crystals in a field (Pieran-
ski, Cladis, and Barbet-Massin, 1986; Pieranski, Cladis,
Garel, and Barbet-Massin, 1986), and the effects of time-
varying fields (Gleeson et al. , 1985). Lubin and

In at least one material, a transition has been observed
directly between BP I and a smectic A phase, without an
intermediate helical phase, as usually occurs (Onusseit
and Stegemeyer, 1984; Stegemeyer et al. , 1986). This
was found by mixing cholesteryl myristate with a materi-
al that has only a smectic phase. At low concentration of
the smectic material, the sample showed a transition
from the blue phase to a helical phase and finally to a
smectic A phase as the temperature was decreased. As
the concentration of the smectic material was increased,
the temperature range over which the helical phase ap-
peared decreased and finally disappeared altogether.
This observation strengthens Frank's proposal (1983)
that the blue phase be considered as a new class of liquid
crystals, distinct from nematics, cholesterics, and smec-
tics.

F. Experimental determinations of structures

Determining the structures of the blue phases has been
a major focus of both experimental and theoretical work,
Since the energy difFerences are small between the vari-
ous structures emerging from the theory, one might ex-
pect that different structures would be seen depending on
details of the chemical composition of the system or the
method of preparation of the sample. Experiments have
been conducted on a large variety of materials exhibiting
blue phases, however, and most if not all of these systems
seem to indicate a single space group describing BP I and
a second describing BP II. There are currently no com-
pelling theoretical grounds for this uniformity. We out-
line below the techniques that have been used to explore
the structures, noting at the end the conclusions of these
studies as well as some of the evidence contradicting
these assignments.

Several models have been proposed for BP III (see Sec.
VI and VII), but little is known about its structure except
that it appears to be amorphous, lacking long-range
translational symmetry, and that locally it has a chiral
structure, as evidenced by selective reAection of circular-
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FIG. 8. Bragg scattering in the blue phases (from Meiboom and
Sammon, 1980). The traces (made at successively higher tem-
peratures, as marked) show the intensity of the light transmitted
through a "powder" of randomly oriented platelets in a mixture
of cholesteryl nonanoate and cholesteryl chloride, normalized
to transmission in the isotropic phase. As expected for a
powder sample, Bragg scattering leads to steps rather than
peaks in the transmitted intensity. The single step in traces
below 84.8'C indicates the helical phase. Three steps resulting
from BP I are visible in the trace at 8S.1'C (marked by the
upward-pointing arrows and indexed to a bcc lattice), while a
single step from BP II appears in the trace at 85.26 C (marked
by the downward-pointing arrow).

ly polarized light and optical activity (Demikhov and
Dolganov, 1983; Kizel' and Prokhorov, '1984; Collings,
1984b; Demikhov et a/. , 1985; Yang and Crooker, 1988).
Estimates of the extent of long-range order in this phase
from optical rotatory dispersion spectra (Collings, 1984b)
and the width of selective refiection peaks (Demikhov
et al. , 1985; Yang and Crooker, 1988; Yang, Crooker,
and Tanimoto, 1988) gives values of a few pitch lengths.
A considerable amount of the ordering within the blue
phase region must take place at the isotropic —BP III
transition since nearly 90%%uo of the latent heat of the series
of blue phase transitions between the helical phase and

'

the isotropic phase is given off at this transition (see Fig.
6). Freeze-fracture electron micrographs of BP III in the
material CE4 appear to show a disordered packing of
filamentary objects (Zasadzinski et al. , 1986). While it is
tempting to interpret these images as evidence that this
phase consists of a tangle of low-energy cylinders of or-
dered material {the "double-twist cylinders" of Sec. VII),
one expects such cylinders to have diameters not much
less than a quarter pitch (Hornreich, Kugler, and Shtrik-
man, 1982), which is considerably larger than the struc-
tures seen in the micrographs. The correct interpretation
of these data is thus unclear.

Measurements of selective refiection (Bergmann and
Stegemeyer, 1978, 1979b; Bergmann, Pollman, Scherer,
and Stegemeyer, 1979; Pollman and Scherer, 1979, 1980;
Stegemeyer and Bergmann, 1980; Demikhov et al. , 1985;
Bliimel et al. , 1985) and rotatory power (Bergmann and
Stegemeyer, 1978; Beevers et al. , 1982; Demikhov and
Dolganov, 1983; Collings, 1984a) show that the two
lower-temperature blue phases (BP I and BP II), which
exhibit three-dimensional periodicity, also have local
chiral structures with pitches on the order of the pitch of
the helical phase that appears at lower temperatures. By
studying the wavelength and angle dependence of Bragg
scattering, Marcus (1982c) was able to infer that BP I
and BP II exhibit long-range order extending over dis-
tances of at least 50 lattice spacings. As early as 1969,
Saupe (1969) pointed out that the lack of birefringence
observed in these phases suggests an underlying cubic
structure and proposed a possible structure having body-
centered-cubic translational symmetry and a lattice con-
stant on the order of the helical pitch.

The translational symmetry of the blue phases was first
probed by optical Bragg scattering by Meiboom and
Sammon (1980, 1981), who recorded steps in the intensity
of light transmitted through a sample composed of a
"pounder" of randomly oriented platelets in a mixture of
cholesteryl nonanoate and cholesteryl chloride (Fig. 8),
and by Johnson, Flack, and Crooker (1980) who studied
Bragg reflections in mixtures of biphenyls CB15 and E9
(Fig. 9). These experiments showed that both BP I and
BP II in these systems had either simple cubic (sc) or
body-centered-cubic (bcc) translational symmetry, and
gave a lattice constant of roughly the helical phase pitch
for a bcc lattice, or half the pitch for sc. However, be-
cause the Bragg powder patterns of sc and bcc match up
to seven reAections —more than have been observed—
other techniques must be used to distinguish them.

Several groups have borrowed techniques from con-
ventional crystallography to determine the lattices.
Onusseit and Stegemeyer (1981, 1983b) (in cholesteryl
nonanoate) and Marcus (1982b) (in two mixtures of
cholesteryl compounds with nematic E7) grew large
defect-free platelets of BP I and BP II and were able to
infer the translational symmetry from the morphology.
Onusseit and Stegemeyer found strong evidence for sc
symmetry for BP II of their material, while Marcus was
able to show that BP I in his sample was bcc and BP II
was sc (see also Nicastro and Keyes, 1982; Bliimel and
Stegemeyer, 1985; Stegemeyer et a/. , 1986; Yang and

8Evidence presented in this paper and in Her et al. (1981) for
the existence of two BP II phases is now believed to be due to
compositional separation of the mixtures used (Marcus, 1982a).

Recall that the pitch, as de6ned in Eq. (2.2) for the helical
phase, is actually twice the physical repeat distance of the heli-
cal phase, since n and —n are equivalent configurations of the
director field.
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FIG. 9. The wavelength of Bragg peaks in a mixture of CB15
and E9 in which the platelets have been aligned by the sample
preparation (from Johnson, Flack, and Crooker, 1980). (Here 8
is the Bragg angle and n is the index of refraction; all data were
measured for 0=m/2. ) The single line at low temperature arises
from the helical phase. The three lines at higher temperatures
indicate BP I (note the supercooling of the BP I below the
helical —BP I transition at 33.6'C) and are marked by the index-
ing to a bcc lattice. At higher temperatures, a discontinuous
jurnp in wavelength is observed at the transition to BP II, in
which two Bragg peaks were observed.

T~(P2, 3), 0'(P432), 0 (P4232), 0 (P4332), 0 (P4, 32)]
and four with bcc translational symmetry [T (I23),
T (I2&3), 0 (I432), 0 (I4,32)]. In order to determine
which of these groups actually describe the' observed
phases, a number of properties of BP I and BP II have
been examined. These include measurements of the
Mueller matrix, which describes light scattering
(Hornreich and Shtrikman, 1981a, 1983; Flack, Crooker,
and Svoboda, 1982; Gorman and Crooker, 1985); circular
dichroism (Kizel' and Prokhorov, 1983, 1984); Kossel di-
agrams (Cladis et a/. , 1986; Pieranski and Cladis, 1987;
Jerome et al. , 1988); electric field effects (Lubin and
Hornreich, 1987); intensities of Bragg reflections
(Meiboom, Sammon, and Berreman, 1983; Berreman,
1984; Grebel et al. , 1984); and the ratio of the blue phase
lattice constant to the helical-phase pitch (Hornreich and
Shtrikman, 1980a; Cxrebel et a/. , 1984; Belyakov and
Dmitrienko, 1985). These results indicate that in the ma-
terials studied, BP I has a bcc 0 (I4&32) structure, and
BP II has a sc 0 (P4232) structure (for detailed discus-
sions of the considerations leading to these conclusions,
see Meiboom, Sammon, and Berreman, 1983; Grebel
et ai. , 1984; Belyakov and Dmitrienko, 1985; Stegemeyer
et al. , 1986; Crooker, 1989).

Crooker, 1987). Recent electron micrographs of freeze-
fractured samples of BP I in an E9-CB15 mixture show
periodic features that have been interpreted as evidence
of bcc symmetry (Costello et a/. , 1984; Berreman et al. ,
1986). Kuczynski (1985a) measured the angles between
the Bragg planes in BP II of MMBC and deduced that it
has a single cubic lattice.

Since BP I and BP II have cubic symmetry and are
chiral, the possible space groups they can have are re-
stricted to six with sc translational symmetry [T (P23),

%'e label space groups by both their SchonAies and their In-
ternational labels (Sands, 1969; Hahn and Vos, 1987; BurzlafF'

and Zimmerman, 1987). The SchonAies notation is X, where X
is a letter (possibly subscripted) denoting the point group, and n

is a number assigned by SchonQies that labels the various space
groups with point group X. Here T denotes tetrahedral symme-
try, and 0 denotes cubic (octahedral) symmetry. The Interna-
tional notation is Fjkl where F gives the translation symmetry
of the system (8=sc, I=bcc, F =fcc) and the integers j, k, and
l denote rotational symmetry axes of 2m/j, etc. A j-fold axis
with inversion is written j, and a screw axis consisting of a rota-
tion by 2m /j followed by a translation through a fraction p /j of
a lattice vector along the rotation axis, is written j~ ~ The easiest
way to understand a space group is to see an object having the
symmetries described by the group. Figures 19—22 illustrate
the space groups 0' and 0'.

FICx. 10. Single crystals of BP I, showing well-defined facets (cf.
Fig. 11) (from Cladis, Pieranski, and Joanicot, 1984). Single
crystals up to 0.1 —0.2 mm have been grown.
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One of the most striking of the experimental results
has been the observation of three-dimensional single crys-
tals of BP I and II showing well-defined facets (Cladis
et al. , 1984; Barbet-Massin et al. , 1984a, 1984b); Bliimel
and Stegemeyer, 1984a; Pieranski, Barbet-Massin, and
Cladis, 1985; Pieranski, Cladis, 6arel, and Barbet-
Massin, 1986; Stegemeyer et a/. , 1986, 1988; Pieranski
and Cladis, 1988) (Figs. 10 and 11). Single crystals of BP
I have been grown up to 0.1-0.2 mm in size, and their
morphology in conjunction with light scattering results
has been interpreted by these groups as strong evidence
for assigning the space group 0 to this structure. The
faceting in BP II indicates cubic symmetry but does not
specify the space group.

The other experimental technique that has been impor-
tant in determining the blue phase structures has been
optical Bragg scattering of polarized light. Such scatter-
ing can give a considerable amount of structural informa-
tion, since optical wavelengths, which are on the order of
the blue phase lattice constant, are much larger than the
size of the constituent molecules and can therefore probe
macroscopic properties of the system, such as the polari-
zability. As a result, these techniques are sensitive to the
tensor nature of the order parameter. This is in contrast
to x-ray scattering, in which the scattering essentially
occurs from single electrons, and which is therefore not
sensitive to properties of the system as a whole. Such
scattering can therefore only probe scalar quantities,
such as the mean density.

Extinctions in the scattering of the polarized light can
provide distinct signatures of the space groups of these
structures. The selection rules for such scattering have
been calculated for the appropriate space groups
(Hornreich and Shtrikman, 198 la; Belyakov et al. , 1982;
Grebel et al. , 1983a; Belyakov and Dmitrienko, 1985)
and have been used by a number of people to help identi-

fy the space groups of the blue phase structures
(Hornreich and Shtrikman, 1981a, 1981c; Flack and
Crooker, 1981b; Belyakov et al. , 1982; Nicastro and
Keyes, 1982; Grebel et a/. , 1983a, 1984; Kizel' and Pro-
khorov, 1983, 1984; Meiboom, Sammon, and Berreman,
1983; Tanimoto and Crooker, 1984; Kuczynski, 1985a,
1985b; Yang and Crooker, 1987; Keyes, 1987). Even
when such scattering does not uniquely specify the full
space group, it can still sometimes be used to distinguish
sc and bcc lattice symmetry.

The results of Bragg scattering of polarized light for
BP I have supported the evidence from morphology and
other experiments that this phase has bcc 0 (I4i32)
symmetry. The situation for BP II, however, is more
puzzling. A simple cubic lattice is indicated for BP II by
morphology (Qnusseit and Stegemeyer, 1981; Marcus,
1982b; Stegemeyer et al. , 1986, 1988; Yang and Crooker,
1987; Pieranski and Cladis, 1988) as well as a variety of
other results (Kizel' and Prokhorov, 1983, 1984;
Meiboom, Sammon, and Berreman, 1983; Grebel et al. ,
1984; Kuczynski, 1985a; Blumel and Stegemeyer, 1988;
Jerome et al. , 1988). The results of scattering studies
with polarized light, however, are inconsistent with the
selection rules of a simple cubic lattice (Hornreich and
Shtrikman, 1981a, 1981c;Belyakov et al. , 1982; Tanimo-
to and Crooker, 1984; Kuczynski, 1985a, 1985b; Yang
and Crooker, 1987; Keyes, 1987), and the question has
been raised whether there may be difticulties in applying
the selection rules. The effects of multiple scattering
(Crooker, 1985) and local biaxiality (Belyakov et al. ,
1982) appear not to account for the diff'erences, and this
discrepancy remains an open question.

We stress that while in many materials BP I and BP II
appear to have space groups 0 and 0, there are
currently no compelling theoretical grounds for exclud-
ing the appearance of di8'erent structures in other materi-

(c)

FIG. 11. The shape, proposed by Blumel and Stegemeyer (1984a) and by Barbet-Massin, Cladis, and Pieranski (1984b), for the BP I
single crystals, showing tbe two-, three-, and fourfold symmetry axes (ef. Fig. 10). These groups argue that such a crystal shape indi-
cates a structure with 0 (I4&32) symmetry. From Barbet-Massin el al. , 1984b.
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als.
In Secs. VI and VII we shall discuss forms of the order

parameter that may describe the real space structures of
the blue phases.

IV. ORDER PARAMETER AND FREE ENERGY

A. Dielectric anisotropy and the order parameter

Unlike ferromagnetic ordering, which is characterized
by a vector property (the spontaneous magnetization),
the directional ordering in nematic liquid crystals,
whether ordinary or chiral, is characterized by a tensor.
In the special case of uniaxia/ nematics the tensorial
character of the order is distinguished from vector order-
ing only by the (very important) fact that n and —n
represent identical configurations. In order not to preju-
dice the possible forms of anisotropy, however, one
should form. ulate the problem in terms of a general ten-
sor' order parameter, which may or may not assume a
uriiaxial form in the equilibrium state.

At the transition from isotropic to anisotropic liquid,
the form of the local dielectric constant changes. In iso-
tropic liquids the tensor dielectric constant reduces to a
scalar:

s; =
—,'tr(s)5;,

In anisotropic liquids, however, we have

e,"—
—,'tr(e)5, =Q,"&0 .

(4.1)

(4.2)

Q; =y(n;n —
—,'5; ). (4.3)

Thus the order parameter is indeed determined by a vec-

The ordering in an anisotropic liquid is thus accom-
panied by the appearance of a symmetric (since c,;J is
symmetric), traceless [as an immediate consequence of
the definition (4.2)] tensor Q.

The tensor Q is generally taken as the order parameter
characterizing nematic ordering. Any other tensor ex-
hibiting the anisotropy would do as well, and another
common choice is the anisotropic part of the magnetic
susceptibility. The dielectric anisotropy is a particularly
natural choice, since it is directly related to the light
scattering experiments.

In homogeneous anisotropic liquids the dielectric ten-
sor (and hence Q) is independent of position. Although
the helical and blue phases of chiral nematics are inho-
mogeneous, the length scale of the inhomogeneities is
large compared with atomic lengths. As a result, the re-
lation between the electric 6eld E and the electric dis-
placement 0 is local, and one cari therefore define a
position-dependent dielectric constarit and dielectric an-
isotropy, s;J(r) and Q, (r).

The anisotropy at r is uniaxial if Q(r) has two degen-
erate eigenvalues, and biaxial if all three eigenvalues are
distinct. If n(r) is the local preferred direction in a uni-
axial liquid, then the tensor Q(r) has the form

tor n, but is independent of its sign. The uniaxia1 aniso-
tropy is said to be prolate or oblate according to whether

y is positive or negative.
In the helical phase with the pitch axis along z, the

director n(r) has the form (2.1), which gives for the
dielectric anisotropy [Eq. (4.3)]

1

6

Quh ~ 0

0

0 0 cos2qoz sin2qoz 0

0 +—'y sin2qoz —cos2qoz 0

0 —1 0 0 0

(4.4)

(The superscript stands for "uniaxial helix. "}
The first term in Eq. (4.4) gives the k =0 Fourier com-

ponent of the anisotropic part of the dielectric constant
and therefore governs the direct transmission of light
through the liquid. It describes birefringence with the
optic axis along the pitch axis z. The second term is re-
sponsible for Bragg reAection with a change of wave vec-
tor of magnitude 2qo along the pitch axis.

B. Ginzburg-Landau theory

A description that does take into account fluctuations has
been given by Brazovskii and co-workers (Brazovskii, 1975;
Brazovskii and Dmitriev, 1975; Brazovskii and Filev, 1978).
For a brief summary of this approach, see Crooker (1983).

Equilibrium structure is determined by minimizing the
free energy. In a Ginzburg-Landau theory of nematics
(ordinary or chiral) this free energy is the volume integral
of a free-energy density that is a simple local function of
the tensor order parameter Q and its derivatives. Two
sets of terms in the free-energy density are distinguished:
terms containing derivatives of the order parameter make
up the gradient free-energy density, while terms that do
not, make up the bulk free-energy density.

Both sets of terms are expanded in powers of the order
parameter Q. The expansion is usually taken far enough
to ensure thermodynamic stability, but no farther. To
achieve stability against unbounded growth in the ampli-
tude of the order parameter it is necessary to retain terms
through the fourth order in the bulk free energy. Stabili-
ty against unbounded gradients is achieved by retaining
terms through the second order in gradients, and these
gradient energies are taken only to quadratic order in Q.

Because, as we shall see, the transition to the aniso-
tropic state is first order, we shall describe the ordering
with a simple mean-field theory without worrying about
fluctuation corrections. " On the other hand, because of
this first-order character, one must keep in mind the pos-
sibility that terms beyond leading order in Q may play a
significant role (see Appendix F). In spite of this, most of
the analysis we describe below will be based on minimiz-
ing the very simple Ginzburg-Landau free energy de-
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scribed above, since the structures it reveals almost cer-
tainly have a wider validity, and even that problem turns
out to be quite difficult for chiral nematics. '

The source of this difFiculty is that the bulk and gra-
dient free energies of a chiral nematic are separately min-
imized by di8'erent forms of the order parameter. The
bulk free energy favors a uniaxial Q, while the gradient
free energy is minimized by a strongly biaxial form. Far
below the transition temperature the bulk free energy
dominates and the uniaxial helical phase is favored, but
nearer to the transition the competition between bulk
and gradient energies can lead to some rather intricate
compromise structures. These are the blue phases.

C. The bulk free-energy

The only rotational invariants of a traceless three-
dimensional tensor are tr(Q ), tr(Q ), or functions of
these two. Through fourth order the general form of the
bulk free-energy density is therefore'

fb„ik=ctr(Q ) V'6b tr(—Q )+a[tr(Q )] (4.5)

2There is some evidence (Poggi, Atten, and Filippini, 1976;
Poggi, Filippini, and Aleonard, 1976) that the quartic bulk free
energy fits the properties of an ordinary nematic quite well in a
temperature range of more than a degree below the transition,
i.e., throughout the temperature range in which chiral nematics
can have blue phases.

For the relation between the free-energy parameters used
here and those of Cirebel, Hornreich, and Shtrikman (1983a),
see Appendix A.

%'e define the coefficient of the cubic term with the expli-
cit factor of V'6 to simplify subsequent expressions [be-
cause of relations such as (4.7) below that hold for trace-
less matrices]. The quartic term can also be written as
2a tr(Q ), since any traceless 3 X 3 matrix satisfies
tr(Q )= ,'tr(Q —) (see Appendix 8).

Stability requires the coefficient a to be positive. Since
the term in b is the only term in the bulk or gradient free
energies that is odd in Q, changing the sign of b simply
changes the sign of the order parameter Q that minimizes
the full free energy. In studying the minimization prob-
lem it therefore suffices to consider non-negative b with
the understanding that, depending on the actual sign of
b, either Q or —Q is to be interpreted as the dielectric
anisotropy. The sign of Q is such as to make tr(Q ) posi-
tive or negative, depending on whether b is positive or
negative. The parameter c can have either sign. In the
limit of a second-order transition (b =0), fb„,k starts to
favor a nonzero Q when c changes from positive to nega-
tive.

%'hen we need to consider the temperature dependence
of the free-energy parameters, we shall assume that the
only significant variation can be taken to be that associat-

then we have simply

tr(Q ) =A, , tr(Q ) =(1, /v'6)cos38 . (4.7)

Since 0 appears only in the cubic term, which is propor-
tional to —cos30, for any value of A. the minimum is
achieved by taking cos30 to be 1. The choice 0=0 clear-
ly gives two degenerate eigenvalues, and one easily
verifies that the other two choices simply give permuta-
tions of these same three eigenvalues.

With cos38 equal to 1, fb„&i,depends only on A. :

fb ik=cA bA +Ok (4.8)

or, equivalently,

fb„,k=aA, [(k—b/2a) +c/a b /4a ] .— (4.9)

Since the zero of free energy is defined to be that of the
isotropic liquid (A, =O), the bulk free energy will favor or-
dering when it can be negative for some nonzero A, . It is
evident from Eq. (4.9) that as c drops (i.e., as the temper-
ature drops) this can first happen when c is less than a
critical value

co =b'/4a

at which point A, can acquire the nonzero value

A,o=b/2a =+co/a

(4.10a)

(4.10b)

If b were zero, the bulk free energy would favor order-
ing when c became negative, the order parameter would
grow continuously from zero, and the transition would be
second order. Because b is in general nonzero, ordering
occurs for positive c (i.e., at a higher temperature) and
with an order parameter that jumps discontinuously to a
nonzero value. Thus when ordering is driven entirely by
the bulk free energy (which is the case in ordinary nemat-
ics, as noted below) then the nonvanishing of the
coefficient b of the cubic term is responsible for the
transition's being first order.

Note that if fb„ii, were a more general function
g(tr(Q ), tr(Q )) of the two independent invariants, as
would be the case for a strongly first-order transition,
then the above argument would still favor a uniaxial or-
der parameter, unless g(x,y) had its minimum in the in-

ed with the change in sign of c. We shall thus take c to
drop linearly with decreasing temperature through a
range that includes the value 0, while regarding b and a
as temperature independent. Much of what we have to
say, however, will be independent of how c, h, and a vary
with temperature.

A nonvanishing cubic coefficient b leads to a bulk
free-energy density that is minimized at any point by a
uniaxial tensor —i.e., the minimizing traceless symmetric
matrix Q has a pair of degenerate eigenvalues. To see
this let the eigenvalues of the general traceless symmetric
Q be —s, t, an—d s+t. If we define A, (non-negative) and
8 by (Freiser, 1970)

A, cos8= +3/2(s + t), A, sin8= &1/2(s —t), (4.6)
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terior of the range of allowed values, ~y ~

~ x ~ /v'6
determined by Eq. (4.7).

D. The gradient free-energy

To second order in gradients and second order in the
symmetric traceless tensor Q, there are just four rotation-
ally invariant quantities:

(V;gjk )(V;Q,k ),
(V;Q;k )(V, gjk ),
(V;QJ„)(VJQ;„),
E,p«V QJ')Qk. .

(4.1 1)

We employ the usual convention of summing on repeated
indices.

With the understanding that indices appearing only
once within a squared quantity are also to be summed on
after the squaring has been done, we can simplify the first
line of Eq. (4.11) to

(V;Qjk )' . (4.12)

With the additional understanding that indices appearing
twice within a squared quantity are to be summed on be-
fore the squaring is done, we can also simplify the second
line of Eq. (4.11) to

gradient-independent piece K i q o tr( Q )—i.e, we have
found it convenient to incorporate into fs„da piece bor-
rowed from fb„ik.

In the absence of more accurate information about the
relative values of E

&
and Kp, it is sometimes convenient

to investigate the specific model in which Kp=K&. This
simplification is known as the "one-constant approxima-
tion. "

If Ki and Ko are both positive, then fs„,d is evidently
non-negative and assumes its minimum value (zero) for
any order parameter that satisfies the linear condition

VXQ= —2qoQ, (4.16)

since the vanishing of V.Q is a consequence of Eq. (4.16).
Since (4.16) is linear, linear combinations of solutions are
also solutions; this underlies the method of constructing
blue phase structures in the high-chirality limit.

In Appendix C we show that stability of the full (gra-
dient plus bulk) free energy requires E, to be positive and

Ep to be greater than —
—,
' K, . We also show that

throughout this range of stability the gradient free energy
remains non-negative and minimized by order parame-
ters that satisfy Eq. (4.16).

The condition (4.16) that the order parameter Q mini-
mize the gradient energy (4.14) is uniquely satisfied (to
within an overall rotation) by a structure proportional to

Q,,"=Re[(x—t'y), (x —iy) e ' ]
(V;Q) ) (4.13) =(x,x~

—y, yJ )cos(2qoz)
The third line of Eq. (4.11) differs from the second by a

total derivative and therefore, when integrated, gives a
contribution to the total free energy differing only by a
surface term. Since we shall be concerned only with the
limit in which surface energies are negligible compared
with bulk effects, this term need not be separately con-
sidered.

The final line in Eq. (4.11) contains the antisymmetric
third-rank tensor c; k, which changes sign under spatial
inversions; the term is therefore allowed only in chiral
nematics.

It is convenient to express the gradient free-energy
density as a linear combination of these three indepen-
dent terms of the form

fs„d= —,'&i [(V XQ);I+2qog;J ] + —,'Ko[(V Q),. ]2, (4.14)

where the tensor V'X Q and vector V.Q are defined by

(VXQ);1=a;„V,Q,J, (V Q); =Vi QJ, (4. 1. 5i

The terms in gradients in Eq. (4.14) are identical (ex-

cept for a harmless integration by parts) to the three in-

dependent terms described above. The corresponding
three independent parameters are taken to be two elastic
constants, K& and Kp, and an inverse length qp named in

anticipation of its identification as the wave vector in Eq.
(2.1) that characterizes the helical phase of the chiral
nematics. To ensure that the gradient energy is non-
negative we have also added to f „d the additional

+(x,y, +y, x, )sin(2qoz), (4.17)

or by linear combinations of such structures. Note that
the form (4.17) is identical to the dielectric anisotropy
(4.4) in the uniaxial helical phase except for the absence
of the k =0 Fourier component. Like (4.4), Q

" is con-
stant in directions perpendicular to the pitch axis z and
rotates uniformly along z. Point by point, however, it is
strikingly different. The eigenvalues of Q

" are 1, 0, and
—1. It is thus, in a sense, maximally biaxial: while uni-
axial structures have two degenerate eigenvalues and
maximize ~tr(Q )~ for given tr(Q ), the structure Q "
minimizes it. Because of this, a single term of the form
(4.17) does not take full advantage of the possibilities for
minimizing the bulk free energy, as we shall note in some
detail in Sec. VI. We refer to the order parameter (4.17)
as the "biaxial helix. "

E. The full free energy: Some elementary features

To determine the equilibrium structure of a chiral
nematic we must minimize the full free energy F, which
is the volume integral of the free-energy density

f=fgrad+fbulk

=
—,'K, [(VXQ), +2qog;~. ] + —,'Ko[(V Q), ]

+c tr(Q ) —&6b tr(Q )+a[tr(Q )] . (4.18)
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Because the gradient and bulk free energies favor
different strucutres, this minimization problem has not
been solved. The body of theoretical literature on possi-
ble equilibrium blue phase structures offers testimony to
its intractability. Two simple solvable limiting cases are
worth noting at the outset, however. '

1. The nematic limit: Infinite pitch

When q0=0 the gradient free energy (4.14) attains its
'minimum value of 0 for any constant tensor Q, regardless
of its form. Minimizing the bulk free energy (4.5) then
requires that form to be uniaxial, and we recover the
equilibrium structure for the ordinary (nonchiral) nemat-
ic: a homogeneous uniaxial structure.

2. The second-order limit: Vanishing cubic term

With this definition of A, the value of the bulk free energy
(4.5) is simply given by Eq. (4.8). When c =co it follows
directly from Eq. (4.10) that to leading order in 5A, the
cost in bulk free energy is

5fb„,„=(b/4a )(M, ) (4.21)

The cost in gradient energy [in the one constant approxi-
mation, where f „dbecomes simply (V;Q~k ) ] is

&fs„d= —,'K, (VM, ) (4.22)

V 5A, =BR,/g

where the coherence length g is given by

(4.23)

If 5A, is constrained to be nonzero in a region, its relax-
ation back to zero will be governed by the condition for
minimizing 5f,

F. The coherence length

It is useful to define a coherence length g characteriz-
ing an ordinary (q0=0) nematic at the temperature at
which the first-order transition from the isotropic liquid
takes place (c =co). Suppose we force the amplitude of
the order parameter to deviate slightly from the value ko
that minimizes the free energy:

—1

Q= — 0
6

0

0 0
—1 0, A, =AO+6A, .
0 2

(4.20)

When b =0 the bulk free energy depends only on
tr(Q ), and it is minimized by any Q with the appropriate
value of tr(Q ), regardless of the value of tr(Q ). If fb„~k
is to be minimized everywhere, then tr(Q ) must be in-
dependent of position. As it happens, although the biaxi-
al helical structure (4.17) that minimizes the gradient en-
ergy does depend on position, its square does not:

[(Q ") ];~ =A, (x;x +y;y ) . (4.19)

Thus tr(Q ") =2k, , so that for b =0 Q
" can minimize

the bulk as well as the gradient free energy with a suit-
able choice of the constant amplitude A, .

It seems likely that the equilibrium order parameter is
uniquely of this form (to within a rotation) in the b =0
case. A competing structure would have to be a linear
combination of Q

" and its rotations (to minimize fs„d)
that continued to have position-independent tr(Q ) (to
minimize fb„ii,). Although no such structure is known to
us, we are unaware of a proof that none exists.

With the exception of the "curved-space" solution de-
scribed in Sec. VIII, these extreme cases exhaust what is
known precisely about minima of the full free energy.

G. The full free energy: Dimensionless variables

It is convenient to rescale the quantities appearing in
the free energy (4.18) to focus attention on a small num-
ber of important dimensionless parameters. We define a
dimensionless free-energy density y, effective tempera-
ture ~, order parameter y, and length scale r' as follows:

y=(a /b )f, r=(a/b )c,
y=(a/b)Q, r'=2qor .

(4.25)

This rescaling is singular in the limits b —+0 and qo~0.
It is therefore unsuitable for describing the two cases dis-
cussed above in which the exact free-energy minima are
known. Except for these limits, however, the new vari-
ables do provide the natural scales of energy density,
temperature, and length for a discussion of the blue
phases.

In terms of the dimensionless variables of Eq. (4.25),
the dimensionless free-energy -density becomes

O'= 0'grad+ 0'bu&k ~

(ps„d=~ [[(VXX),)+X;J] +v1[(V y);] j,
q,„,„=r tr(y') —&6 tr(y')+ [tr(y') l' .

(4.26)

Here ~ is the positive dimensionless parameter given by

a=(aK, qo/b )'~ =qog=2~$/po, (4.27)

(4.24)

The length g provides an important scale in chiral as well
as in ordinary nematics. We shall continue to refer to
this particular combination of free-energy parameters as
the "coherence length" even when qo is nonzero (or when

Ko differs from K, ).

In Sec. VIII we shall note a curious maneuver whereby the
full problem can be solved, but in a space with an unphysical
geometry. rI=KO/K, . (4.28)

where po is the pitch [Eq. (2.2)], and g is the ratio of the
bending energy coefBcients,
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We adopt the convention that lengths are to be measured
in units of 1/2qo, which gives r and r' the same numeri-
cal values, permitting us to drop the primes. On this
length scale the pitch is given by

po =2'/qo =4m(1/2qo) =4m . (4.29)

The coherence length g is typically on the scale of
0

molecular dimensions (10—50 A), except near a second-
order transition, while the pitch po is typically 10 to 10"
0
A. Therefore ~ will be small, except in chiral nematics
with very short pitch and/or near a transition from the
isotropic phase that is only weakly first order.

Following Grebel et al. (1983a) we call the dimension-
less parameter ~ the "chirality. " The chirality is the cru-
cial dimensionless parameter in a chiral nematic; typical
values are roughly in the range 0.01—0.5 (see Appendix
D). The Ginzburg-Landau theory gives blue phases for
arbitrarily high chirality, all the way down to chirality
that is low (but not arbitrarily low). The theoretical
description of these phases takes on instructive but very
different forms in these two limits. We therefore examine
the two cases separately in Secs. VI and VII, returning to
what they have in common in Sec. VIII.

Before doing this, however, we must examine more
carefully the helical phase, which is always the stable
equilibrium phase favored by the free energy (4.26)
suSciently far below the transition from the isotropic
liquid.

curl and divergence, it follows directly from the form
(4.26) of the gradient free energy that if y=y""+6y, then
to linear order in 5y,

5 Jyd r=5 Jps„dd r=2Ir Jtr(g 5y)d r . (5.1)

This can be made negative by choosing 5y ~ —y . Thus
g"" has a linear instability against a decrease in the rela-
tive weight given to the position-independent matrix y
in the superposition (4.4).

The source of this instability is easily understood. In
the helical phase the neighborhood of any point is not
isotropic in the plane perpendicular to the director n,
since n twists about the pitch axis as one moves from the
point iri that direction, while remaining unchanged in the
perpendicular direction. There is therefore nothing in
the symmetry of the local configuration to support the
uniaxiality of y, and relaxation of the order parameter to
acquire at least a small degree of biaxiality should be the
normal state of affairs.

B. The general helical order parameter

To assess the extent of this instability toward biaxiali-
ty, it is useful to consider the family of order parameters
given by assigning arbitrary weights to the constant and
biaxial components of y"":

0 0

V. THE HELICAL PHASE

y's'= V6A, cos8 0 1 06

The uniaxial helical structure (4.4), which is generally
taken to be the order parameter in the helical phase of
chiral nematics, is never in fact a minimum of the full
free energy. We now examine why it fails to give a
minimum, and construct the correct helical phase order
parameter. In doing this we shall be led rather naturally
to the kinds of structures that have been proposed as
models for the blue phase order parameters.

A. instability of the uniaxial helix

We remarked in Sec. I that there was no symmetry-
dictated reason why a uniaxial liquid with anisotropic
spatial inhomogeneity should not acquire a degree of
biaxiality. The uniaxial helical structure is, in fact, un-
stable against becoming biaxial, and is therefore not a
stationary point of the full free energy. This can be seen
as follows.

Since y"" does minimize the bulk free energy, to linear
order the change in free energy induced by a small
change 5y can only come from the gradient free energy.
Now the structure (4.4) of the uniaxial helical order pa-
rameter is a superposition of a position-independent ma-
trix g and the structure y " that satisfies the stationary
condition (4.16) for the gradient free energy (in rescaled
form, VXy= —y). Because y, being constant, has zero

cosz sinz 0
+ (A, /&2)sin8 sinz —cosz 0

0 0 0
(5.2)

&q & =(-2~'+r)&'+X' X'cos38—+,'~ A, cos28 . (5.3)

Here and elsewhere we shall use angular brackets to
denote an average over the entire volume of the liquid:

&q'&—= ~ J q'd ". (5.4)

The last two terms in Eq. (5.3) explicitly display the com-
petition between the biaxial form (cos38=0, cos28= —1)
favored by the gradient free energy and the uniaxial form
(cos38= 1, cos28= —

—,
'

) favored by the cubic term in the
bulk free energy.

If 8 and A, are chosen to minimize Eq. (5.3), then the
order parameter (5.2) can be shown to make the full free

With 8=2m. /3, y' ' has the form of the uniaxial helical
order parameter (4.4) (with y =&3/2A, ). The linear in-
stability causes 8 to drop below 2m/3. When 8 reaches
vr/2, then y' ' becomes proportional to the biaxial helical
order parameter (4.17) favored by the gradient energy
alone.

With the order parameter (5.2) the total free-energy
density (4.26) takes on the form
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1[1 4«2+(1+ 4«2)3/2] (5.5)

and the value of the parameter 0 at the transition is given
by

energy (4.26) stationary against arbitrary traceless sym-
metric variations 5y. (We defer this demonstration and
other mathematical distractions to Sec. V.C.) Thus al-
lowing the helix to become biaxial completely repairs the
linear instability of the uniaxial helix.

The nature of this new helical stationary point depends
on the value of the dimensionless parameter «=qog
defined in Eq. (4.27). Some of the most important
features of the minimum of (5.3) can be given simple
analytical expressions. We give the details of the minimi-
zation in Sec. V.C, and present here only the results.

When K& —', the transition to the helical phase is first
order. The transition temperature is

with —,
' —i.e., provided the coherence length is small com-

pared with the pitch. Should, however, the coherence
length be comparable to the pitch then the degree of
biaxiality in the helical phase order parameter can be
significant. Above the critical value of K= —', the transi-
tion changes from first to second order, and at the transi-
tion the order parameter is the biaxial helix, Eq. (4.17).
We shall show in Sec. VI, however, that when K exceeds
—, this transition to a biaxial helix —the most stable form
of the helical phase —has already been overtaken by
transitions to phases with much more intricate struc-
tures. These are the blue phases.

We conclude this section by fiHing in some of the omit-
ted mathematical details underlying the above con-
clusions. Readers interested only in the conclusions
themselves can go directly to Sec. VI.

cos28 = ——'(1+—'«)'
2 3 (5.6) C. Some mathematical details

cos38, =1—
—,'«+0(«), (5.7)

When K=O we recover the behavior of an ordinary
nematic: a first-order transition at ~, = —,

' to a strictly
uniaxial phase (cos28= —

—,', cos38=1). The deviation of
cos38=&6trg l(try )

~ from unity is a direct measure
of the extent to which y deviates from uniaxiality (see
Sec. IV.C). For small « it follows from Eq. (5.6) that, to
leading order in K,

1. Minimization of the free energy for the helical phase

%'e parametrize the amplitude A, of the order parame-
ter in the free energy (5.3) by

A, = 6K slnhcx (5.8)

It is easy to show that for any a, the free energy is mini-
mized by taking 0 to satisfy

cos0 ———' tanh —'a (5.9)
so that deviations from uniaxiality are, by this measure,
only of fourth order in «(and with a rather small
coefficient). As a result, even when « is as large as 0.5, we
still have cos38, =0.99, and even K=0.75 only reduces
cos38, to 0.95.

Thus for K significantly less than unity the order pa-
rameter is predominately uniaxial, and the first-order
transition is to an essentially uniaxial helical phase, with
just a trace of biaxiality induced by the twist of the direc-
tor. This is consistent with the fact that chiral nematics
of large pitch (small «) enter an essentially uniaxial heli-
cal phase directly from the isotropic liquid, without
displaying blue phases.

As K grows toward —,
' the transition temperature ~,

drops monotonically, and the value of cos26, drops fur-
ther below the uniaxial value —

—,', reaching the value —1

(cos38, =0) when «reaches —,'. At this point 2; reaches
zero, the transition changes from first to second order,
and at the transition the order parameter is a pure biaxial
helix. The transition remains second order for K greater
than —,

' even though there is a nonzero cubic term in the
free energy (Brazovskii and Dmitriev, 1975; Hornreich
and Shtrikman, 1979, 1980a, 1980b; Kleinert and Maki,
1981;Grebel et a/. , 1983a).

Thus the character of the helical phase depends criti-
cally on the value of K. There will be a first-order transi-
tion to an order parameter that is very close to the con-
ventional uniaxial helix, provided K is smaH compared

or, equivalently,

cos28= —
—,'(1+sech —,'a) . (5.10)

When 0 has this minimizing value we express the free en-
ergy in terms of

u =sinh —a .2]
2

The result is

(5.1 1)

—,'«[(~l«)u+(el«+ —,'« —
—,')u

+(—'« ——')u +—'«u ] .9 3 9 (5.12)

q)'= —,'«(u+ —,')[—4«u +(—4« —1)u+2~I«] . (5.13)

Since u is non-negative, the vanishing of y gives a quad-
ratic equation for u, . A second quadratic equation

When K exceeds —,
' the free energy cp is clearly non-

negative for positive ~, but can become negative for nega-
tive ~ and small enough u. There is therefore a second-
order transition at ~=0. Since u is zero at the transition,
a is also zero, and hence (5.10) gives the condition
cos20= —1 that characterizes the biaxial helix.

To explore the erst-order transition when K is less than
—,', note that at such a transition there will be a nonzero
value u, at which y and its first derivative vanish. As it
happens, y' has the simple factorization
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comes from the fact that, if p and y' both vanish at u„so
does (y/u )'. Thus u, satisfies the pair of quadratic equa-
tions

~4K u, +( 9a —1—)u, +2r/v =0,
$ppgg2+(4~2 2 )Q +(r/K2+ 1~2 j

) 03 C 9 3 9 4

(5.14)

Eliminating the quadratic term between these two gives

u, =18~/v —4v + 9
4~ +3 (5.15)

If this value of u, is substituted back into either of the
equations in (5.14), we get the equation for the first-order
phase boundary given in (5.5). Using this relation to
eliminate ~ from Eq. (5.15) gives

u = [1—4~ +(1+—"a )' ]
3

c 4 2 3 3 (5.16)

%'ith this result, Eqs. (5.9) and (5.11) then lead directly to
the expression (5.6) for cos28, in terms of ~.

2. Stationarity of the general helical order parameter

The general helical order parameter y' ' makes the free
energy stationary over all linear combinations of

—1 0 0 cosz sinz 0
0 —1 0 and y "= sinz —cosz 0
0 0 2 0 0 0

(5.17)

Since the stationary condition against general variations
6g is linear in 5y, it is easy to show that for y' ' to satisfy
the general stationary condition, it is enough for it to be
stationary against traceless 5g that are orthogonal to the
space of helical order parameters in the sense that they
satisfy

«r(y'&y) }= ( tr(y "&y) }=0 . (5.18)

VI. BLUE PHASES: THE HIGH-CHIRALITY LIMIT

If the stationary points given by the helical-phase or-
der parameter (5.2) were the true minima of the free ener-

gy, then chiral nematics would behave as follows.
(1) Well below the transition from the isotropic phase

the order parameter would be essentially the uniaxial
helix that minimizes the bulk free energy, modified by a

Computing the general stationary condition from the
explicit form (4.26) of the free energy p, one easily estab-
lishes [as a direct consequence of the fact that VXy' ',
V y' ', and g' ' can all be expressed as linear combina-
tions of g', g ", and the unit matrix] that when y is a
linear combination of the two forms (5.17), every term in
the general stationary condition is proportional either to
(tr(5g) },which vanishes, or to one of the two expres-
sions required by Eq. (5.18) to vanish.

slight degree of biaxiality induced by the local anisotropy
associated with the twisting of the director.

As - the temperature rose two cases would be dis-
tinguished depending on the value of the chirality sc.

(2a) a. & —,'. Helical ordering would disappear through a
first-order transition back to the isotropic liquid. When
the chirality ~ was significantly less than one, the degree
of biaxiality would still be slight, even at the transition.
At larger ~, biaxial corrections to the purely uniaxial
helix would become more pronounced as the transition
temperature was approached.

(2b) ~) —,'. Helical ordering would disappear through a
second-order transition back to the isotropic liquid. At
the transition the order parameter would have the "maxi-
mally biaxial" form Q

" that minimizes the gradient free
energy [Eq. (4.17) or (5.17)].

The behavior described in (1) is in fact the observed be-
havior of chiral nematics. The helical phase is always
stable more than a few degrees below the transition from
the isotropic liquid (unless, of course, it is preempted by
phases with positional ordering, such as smectic or crys-
talline phases).

The behavior described in (2a) is also the observed be-
havior of chiral nematics with sufBciently large pitch
(low chirality). These liquids undergo first-order transi-
tions directly from the isotropic liquid to the helical
phase without passing through any other intermediate
structures.

Type (2b) beh~or, characteristic of helical phases of
short pitch (high chirality), is never observed. When the
pitch is short the second-order transition to the ordered
phase is always replaced by a series of first-order transi-
tions to a set of intermediate phases —blue phases —that
intervene between the isotropic and helical phases. As
we shall see, the chirality x does not have to be very high
(or even larger than unity) for this to take place. Two
rather di6'erent descriptions of blue phase ordering have
been put forth, which are best viewed as the natural
points of view to take when the chirality is high or low.

(i) The high-chirality behavior is given by a model of
the blue phases developed in detail by Hornreich and
Shtrikman (1979, 1980a, 1980b, 1981b, 1981c), following
a line of attack erst developed by Brazovskii and Dmi-
triev (1975). (See also Grebel, Hornreich, and Shtrikman,
1983a, 1984; Kleinert and Maki, 1981; Wright and Mer-
min, 1985.) The blue phase structures developed in this
model can be viewed as expansions about the relatively
simple blue phase order parameters that can be derived
in the limit of infinite chirality.

(ii) The low-chirality behavior is described by a model
put forth by Meiboom, Sethna, Anderson, and Brinkman
(1981), subsequently developed by Meiboom, Sammon,
and Brinkman (1983), and Meiboom, Sammon, and
Berreman (1983). Although there exists no expansion
about zero chirality (where there are no blue phases),
their model is best characterized as a low-chirality
theory, with the proviso that "low" means low enough
for the helical phase to be only weakly biaxial, as is the

Rev. Mod. Phys. , Vol. 61, No. 2, April 1989



406 D. C. Wright and N. D. Mermin: Blue phases

case even when ~ is close to unity, as noted in Sec. IV.
We describe the high-chirality approach in- this section

and the low-chirality in the next. We stress at the outset
that these are not two competing theories of blue phases,
but two methods for extracting blue phase structures
from a common theoretical starting point (such as the
Ginzburg-Landau theory of Sec. IV), depending on
whether or not ~ is large. In Sec. VIII we note that al-
though the structures emerging from the two approaches
appear to be quite diferent, upon more careful examina-
tion one can find features of each present in the other, in
just the forms one would expect in view of the diferent
sizes of sc.

A. General features of the high-chirality limit

In the limit of large lr the free energy (4.26) is dominat-
ed by the gradient free energy. As discussed in Sec. IV,
the gradient free energy is non-negative and is given its
minimum value of zero by the biaxial helix (4.17) or by
any linear combination of biaxial helical order parame-

. ters difFering from one another by translations and/or ro-
tations. This high degree of degeneracy follows from the
linearity of the minimization condition (4.16), which in

terms of the dimensionless quantities (4.25) has the form

VXX (6.1)

The role of the bulk free energy in the large-~ limit is
simply to reduce this degeneracy by selecting the most
favorable such linear combination. As ~~ ~, the prob-
lem therefore reduces to that of minimizing the bulk free
energy in the space of order parameters that are linear
combinations of biaxial helices. In this limit the helical-
phase order parameter becomes a single biaxial helix.
Thus as K~ ~ the question of whether the chiral nemat-
ic can support phases other than the helical phase
reduces to the question of whether linear combinations of
the biaxial helical order parameter can have lower free
energy than a single biaxial helix.

One sees immediately that, for a su%ciently small posi-
- tive reduced temperature ~, a single biaxial helix cannot
in fact be the best choice. This follows directly from the
forin (5.17) of the biaxial helical order parameter, which
implies that tr(y ") =0. As a result the bulk free energy
(4.26) for positive r is positive for a biaxial helix of
nonzero amplitude. Qn the other hand, any linear corn-
bination of biaxial helices with a nonzero cubic bulk free
energy will, with a suitable choice of amplitude, yield a
negative free energy for small enough positive r, since (a)
with an amplitude of appropriate sign the cubic term will
be negative, (b) with an amplitude suKciently small the
cubic term will dominate the quartic, and (c) with a posi-
tive value of z su%ciently small the cubic term will also
dominate the quadratic.

Hence any linear combination of biaxial helices with a
nonvanishing cubic bulk free energy gives an order pa-
rameter with lower free energy than the isotropic or heli-
cal phases for suKciently small positive z, and it is among

&(«y')'& ~((try'&)' (6.2)

gives a lower bound for this term. The quartic free ener-
gy can achieve this lower bound with a single biaxial
helix, which has a position-independent value of try
The helical phase is therefore the favored form at
su%ciently low temperatures in the high-chirality limit. '

Thus the high-chirality limit provides in a very simple
way for the existence of blue phases (phases with a non-
vanishing cubic invariant which are therefore not of sim-
ple helical symmetry) between the high-temperature iso-
tropic phase and a stable low-temperature helical phase.

B. High-chirality order parameters:
Q5, Q8, and hexagonal

In the high-chirality limit the nonhelical phases exist-
ing in the neighborhood of the transition will have an or-
der parameter given by a linear combination of biaxial
helices of the form [Eq. (4.17)]

y;,"=Re[(a—ib);(a —ib), e"'"], (6.3)

where a, b, and c are any triad of orthonormal vectors
obtained by a (proper) rotation of x, y, and z.

Suppose we have found a linear combination of biaxial
helices that has a nonzero value of ( try & (and is there-
fore stable for some positive r). It is useful to scale out
the amplitude dependence of the cubic term by express-
ing it in terms of the value of the quadratic term

)"—= «rX'& (6.4)

and defining a cubic invariant P by

A «6—= «rX'& (6.5)

In the infinite-~ limit, the helical structure will remain biaxi-
al for all ~ below the transition. For any finite v the order pa-
rameter will, of course, become predominantly uniaxial for
suKciently negative ~, as discussed in Sec. V.

these that we must look for candidates for the blue
phases in the high-chirality limit. Before embarking on
the search, we note two general points.

(1) Because the gradient energy of a linear combination
of biaxial helices vanishes, the argument that there are
linear combinations with negative free energy for
suSciently small positive ~ is independent of the value of
the coeKcient ~ multiplying the gradient free energy.
But we found in Sec. V that when ~ exceeded —', , no heli-
cal phase could have negative free energy for positive ~,
whatever the degree of biaxiality. This already estab-
lishes that nonhelical phases will be stable for positive ~,
not only as i~ —+ ~ but for any l~ greater than —', . (We shall
shortly push the critical value of 1~ lower than this. )

(2) As the temperature drops and r becomes more and
more negative, the order parameter grows, and eventual-
ly the quartic term becomes the dominant term in the
bulk free energy. The Schwarz inequality
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The &6 appears in Eq. (6;5) so that if y were independent
of position the largest possible value of (try ) for given
(try ) would be given by p= 1 [see Eq. (4.7)]. Since this
maximum value is only achieved by a uniaxial g, the
closeness of the cubic invariant p to unity can be viewed
as a measure of the extent to which the tensor y succeeds
in attainirig the uniaxial form favored by the bulk free en-
ergy.

In a similar way, we define a quartic invariant a by
writing the quartic term as

ay"—((«y') ), (6.6)

and note that a attains its minimum value of unity for a
single biaxial helix, so the extent to which u exceeds uni-

ty is a measure of the damage done to the quartic free en-

ergy by forming a linear combination of biaxial helices.
The values of a and p depend on the particular linear

combination of biaxial helices making up the order pa-
rameter g. Given a particular form, the free energy then
depends only on the overall amplitude y:

pr +a) (6.7)

This can first become negative for some y when ~ drops
below the critical value:

~, =p /4a . (6.&)

1 1—(u, v, O), —( —u, O, w), (0, —U,
—m) .1.

2
'' '

2
'' '

2
(6.9)

The form of the order parameter immediately below the
transition from the isotropic phase is therefore the one
with the highest value of p /a.

A superposition y of biaxial helical order parameters
y" of the form (6.3) for many difFerent orthonormal
triads a, b, and c will give for try a sum of terms with

spatial dependence proportional to e"+'+' ",where c,
c', arid c" are among the set of wave vectors in the super-
position. The spatial average of the cubic term, and
hence the cubic invariant p, can only be nonzero if the
set of wave vectors appearing in the superposition con-
tains at least one group of three that add up to zero. To
maximize the transition temperature ~, we would there-
fore like a superposition composed of many trios of wave
vectors that sum to zero (to maximize p) but that does
not give an excessively large quartic invariant a.

As pointed out by Baym, Bethe, and Pethick (1971)
and subsequently rediscovered by Alexander and
McTague (1978), an extremely efficient way to achieve
many such trios of unit wave vectors is to take a linear
combination of twelve (110) directions, since there are
eight distinct trios summing to zero, given by the eight
ways of assigning u =+1, U =21, w = El (see Fig. 12) to
the trio

(b)

FICx. 12. {a) The set of (110) wave vectors that generate the
bcc 0' and 0' structures. (b) These vectors form eight distinct
trios that sum to zero, which can contribute to the cubic term
in the free energy.

of a body-centered cubic lattice with conventional cubic
cell of side a=4m/+2 (or a =pc/v 2 in dimensional
units, where pc=2~/qo is the pitch). Minimizing the
bulk free energy over a linear combination of twelve such
biaxial helices yields two different sets of amplitudes and
phases, both of which give the resulting structure cubic
point group symmetry. These two order parameters have
the bcc space groups' 0 (I432) and 0 (I4&32). We give
a detailed description of these two cubic order parame-
ters in the remainder of this section, after remarking on
the roles they play in the high-chirality limit of the
theory.

The 0 structure has the largest value of v, =p /4a of
any linear combination of biaxial helices anybody has yet
proposed and is believed (though this has not been prov-

These twelve unit wave vectors point along the twelve
nearest-neighbor directions of a face-centered-cubic lat-
tice with conventional cubic cell of side &2. The real
space structure therefore has the translational symmetry

6For an introduction to space-group notation, see footnote 7
in Sec. III.

Rev. Mod. Phys. , Vol. 61, No. 2, April 1989



D. C. Wright and N. D. Merrnin: Blue phases

—l.O

tures (see Fig. 13).
Although it is never stable in the high-chirality limit,

the 0 structure is still of considerable interest since,
starting from both the high and the low chirality limits,
theoretical evidence has been presented in favor of a
structure with 0 symmetry at physically accessible
values of the chirality (and no physical blue phase struc-
tures with 0 symmetry have been found). We therefore
describe all three of these structures below, indicating
some of the details that underlie the results we have just
described.

—l.2
—

I 50 —Ioo —50 C. Structure and energetics
of the high-chirality order parameters

FIG. 13. A plot of the free energies of the 0, 0', and 0', hex-

agonal, and helical structures for negative ~ in the high-
chirality limit. Energies are normalized to the magnitude of the
energy of the 0' structure. Values of the transition tempera-
tures are given in Table IV.

The 0 and 0 structures are superpositions of twelve
terms with unit wave vectors along the twelve [110]
directions:

(6.10)

en) to give the true form of the ordered state into which
the isotropic liquid first condenses in the high-chirality
limit. As r drops below r„however (but before the heli-
cal phase has acquired a lower energy than the 0 struc-
ture), the free energy of the 0 structure drops below
that of the 0 . Only at still lower values of ~ does the
free energy of the helical phase finally become lower than
the free energy of either of these cubic phases.

Thus within the restricted family of order parameters
with cubic symmetry, the high-chirality limit provides a
simple model of two distinct blue phases intervening be-
tween the isotropic and helical phases. The 0 structure,
however, is never stable in this limit. With six coplanar
wave vectors that are 60 apart one can build a structure
with hexagonal symmetry that has a lower free energy
than the 0 structure throughout the region in which the
0 structure is favored over the 0 . This hexagonal
structure remains lower than 0 throughout the range in
which the 0 structure is lower than the helical phase,
eventually itself losing to the helix at still lower tempera-

I

6y'= «rx'& =-,' g lg. l',
n=1

where

~(n) 1g (a(n) Eb(n)) (a(n) 1b(n)) eic(") r
1J 2 P2 l J

The orthornormal triads consisting of the vectors

a'"' and b'"' =c'"' X a'"'

(6.1 1)

(6.12)

0n+6 (6.13)

The order parameter specified in this way yields the fol-
lowing values for the bulk free-energy terms [Eqs.
(6.4) —(6.6)]:

(6.14)

are given in Table II.
The g„arecomplex numbers characterized by a phase

and a real amplitude. Although all amplitudes are the
same in the cubic structures, we allow for the possibility
of amplitude variation because this permits the proper-
ties for the hexagonal structure to be extracted from the
same general expressions. Reality of the order parameter
y requires that

6&tr~ &
= Re(23+5&'g')(~4~5~6+~2(3 ~4+~) ~3~5+~)~2 (6.15)

6
~)"=

& «n')'& =)"+
2 04

41 2 2 lk I'
l 0. I' —2&(141' lk) I'+

I /51' I &21'+
I
g61' lg31')

m =1n &m

e(04450102 +06040301 +05060203 ) (6.16)

To construct structures with cubic symmetry we give
all the g„the same modulus:

[where the value of the modulus is set by Eq. (6.14)]. As

l

we show in Appendix E, the cubic invariant P achieves
its maximum when the phases of all the g„arezero. The
resulting order parameter (as we shall see below) has the
symmetry of the body-centered-cubic space group
0'(I432). This choice, however, is least favorable for
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a(n) /2~ (n)

TABLE II. The vectors used in calculating the 0' and 0' or-
der parameters.

TABLE IV. Transition temperatures between various phases in
the high-chirality limit. The phase heading each column is
stable over the phase given on the left above the indicated tem-
perature and unstable below that temperature.

1

2
3
4
5
6

12&n )6
Z

a(n —6)

y+z
z+x
x+y
z —y
x 'z

y —x
(n —6)

Cubic (0 )

Hexagonal
Cubic (0')
Helical

0.198 8
0.146 7
0.083 52
0

—7.3456
—18.606
—23.866

—52.732
—32.032 —27.829

Isotropic Cubic (0') Hexagonal Cubic (0 )

& ~& = —(u'/4~)lt('7/u ),
where

u =9P /8a

(6.18)

(6.19)

TABLE III. The values of the cubic and quartic parameters p
and a, and the transition temperature ~, from the isotropic
phase for the 0', 0, hexagonal, and helical structures.

Structure r, =p'/4a

the quartic invariant a, which from Eq. (6.16) can be
shown to be minimized by taking all the phases to be
m. /2. With this choice of phase, the resulting structure
has the symmetry of the bcc space group 0 (I4,32).
(For graphic representations of the structure of the order
parameter in the 0 structure, see Barbet-Massin and Pi-
eranski, 1985.)

The structure with hexagonal symmetry has values of
P and a that are each intermediate between the extremes
given by the two cubic structures. In the hexagonal
structure g„g2,and g3 are zero. The phase-dependent
quartic terms then vanish, and g4, $5, and g6 can be given
the phases (

—1+i&8)/3 that maximize the one surviv-
ing cubic term in Eq. (6.15).

In Table III we give the values of the cubic and quartic
parameters P and a that Eqs. (6.15) and (6.16) give for
these three structures, together with the value of the
transition temperature from the isotropic phase,
r, =P /4a. We also give the corresponding values for
the high-chirality form of the helical phase (which corre-
sponds to taking only a single pair of nonzero g's).

Of these three structures, 0 has the highest transition
temperature from the isotropi. c phase. Although nobody
has proven that there is no linear combination of biaxial
helices with a -higher v., than the 0 structure, none has
yet been found, and 0 is therefore the currently accept-
ed model for the structure of blue phase II in the high-
chirality limit.

One can compute the free energy of each of these
structures as ~ drops below t, by minimizing the free en-

ergy (6.7) with respect to the amplitude y. The result is

P(z)=z —z+ —,'[1+(1—4z) i ] . (6.20)

[the a~ 1,P~O limit of Eq. (6.18)].
The free energy of a nonhelical structure characterized

by particular values of the invariants P and a rises above
that of the helical phase when the free energy (6.18) be-
comes higher than (6.21). This occurs when the tempera-
ture drops below

rh, &;„=—(P /8a)[9a —I+(3a+ I) ~ ]/(a —1)2 . (6.22)

Note that if the quartic invariant a is close to the
theoretical minimum of unity, then such a phase will be
stable over the helical phase for a considerable range of
negative ~.

In Table IV we give for the three nonhelical phases the
values of the transition temperatures (6.22) to the helical
phase, as well as the transition temperatures at which
their free energies (6.18) cross. The phase heading each
column is stable over the phase given on the left above
the indicated temperature, and unstable below that tem-
perature (see Fig. 13).

Pending the discovery of still more favorable linear
combinations of biaxial helices, the current theoretical
description of the high-chirality limit is therefore as fol-
lows.

On lowering the reduced temperature ~ from the iso-
tropic phase, at v.=0.1988 there is a transition from the
isotropic liquid to a blue phase (BP II) with the body-
centered-cubic space group 0 . This remains stable until
a temperature ~= —7.3456, where there is a transition to
a blue phase (BP I) with planar hexagonal structure. The
hexagonal structure remains stable until ~= —32.032, at
which point the transition to the ordinary helical phase
occurs. If only the two cubic phases are considered, the
sequence is an isotropic-to-0 transition at v.=0.1988, an5

0 -to-0 transition at ~= —18.606, and an 0 -to-helical
transition at ~= —27.829.

The corresponding expression for the high-chirality form
of the helical phase is simply

(6.21)

Cubic (0 )

Hexagonal

Cubic (0')
Helical

23&2/32 = 1.0165
—=0.843 15

32 0.625
0

—= 1.2995

384
= 1.2,135

384 1.1693
1

0.198 77
0.146 66

0.083 52
0

D. Icosahedral models of blue phase III

The only suggestion that has been put forth for a
high-chil;ality model of BP III is that it has the- transla-
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TABLE V. The values of the cubic and quartic parameters P
and a for two models having icosahedral symmetry. The
"edge" model consists of a single set of wave vectors, which lie
along the edges of an icosahedron, while the "edge-vertex"
model has in addition to these a set lying along the vertex direc-
tions. Since the edge-vertex model has a nonzero gradient free
energy, the transition temperature is not given by P /4a.
Source: Rokhsar I,'1987).

Structure

Edge
Edge-vertex

0.721
1.010

1.528
1.516

r, =P /4a

0.0851

the absence of external fields, we confine our attention
below to cubic structures.

FIG. 14. The wave vectors of the icosahedral edge model.
They lie along the light lines in the figure. The additional wave
vectors in the edge-vertex model lie along the lines connecting
the center of the icosahedron to its 12 vertices. The additional
triangles of wave vectors that can be formed as a result of in-
cluding the vertex vectors consist of two vertex vectors and one
edge vector, an example of which is shown in dark lines.

tional symmetry of an icosahedral quasicrystal (Filev,
1986; Hornreich. and Shtrikman, 1986a, 1986b, 1987;
Rokhsar and Sethna, 1986). The argument for this is
that the set of 30 wave vectors directed along 15 twofold
axes of an icosahedron contains a great many trios that
sum to zero (Fig. 14), giving a cubic bulk free energy that
might compete favorably with that of the bcc phases.
(This structure is known as an "icosahedral edge model, "
since the wave vectors are parallel to the edges of an
icosahedron. ) Calculations analogous to those just de-
scribed, however, show that the quasicrystalline order
parameter always has a higher free energy than one of
the above-mentioned crystalline structures in the high-
chirality limit.

The bulk energy of this structure can be improved con-
siderably by adding a set of twelve more wave vectors ly-
ing along the six fivefold axes of an icosahedron ("vertex"
directions), with length chosen to form additional trios
that sum to zero with the 30 original wave vectors (see
Fig. 14). This leads to a cubic and quartic invariant com-
petitive with the 0 structure (see Table V). This ar-
rangement requires, however, that the two sets of wave
vectors diff'er in length by S%%uo, which for large a. imposes
a considerable penalty in gradient energy.

The cubic and quartic invariants for these icosahedral
structures are shown in Table V. Whether an icosahedral
phase might be stable as the chirality drops remains an
open question, although Hornreich and Shtrikman (1987)
have shown that including up to five sets of wave vectors
in the free energy does not stabilize the structure with
respect to 0 .

Since no blue phases have been reported with
icosahedral symmetry, or with hexagonal symmetry in

E. Importance of the high-chirality limit

The high-chirality limit is quite far from the physical
range of x, which is very roughly in the range 0.01—0.5
(see Appendix D). The limit is nevertheless of interest
for several reasons:

(1) It provides a rigorous proof (within the Landau-
Ginzburg theory) that one or more thermodynamically
stable phases with nonhelical symmetry do indeed inter-
vene between the isotropic liquid and the conventional
helical phase for appropriate values of ~. We have noted
that this proof continues to hold all the way down to the
value ~=1.5, at which the transition from the isotropic
to the helical phase changes from second to first order.
We can use the high-chirality form of the 0 structure to
extend this critical value of the chirality still lower.

Because a linear combination of biaxial helices with
unit wave vector makes the gradient free energy vanish,
the free energy of such a structure will have the form
(6.7) even for finite values of lr. The high-chirality 0
structure will therefore continue to be stable at a temper-
ature above that of the helical phase until the first-order
transition temperature (5.5) to the helical phase rises
above the temperature 0.19877, at which the 0 struc-
ture first appears. This does not happen until ~ drops to
0.469 45, which lies at the high end but within the physi-
cal range of values.

(2).The high-chirality limit provides the basis for an ex-
pansion in I/a . The infinite-chirality solutions are all
linear combinations of the rotations and displacements of
a single form [Eq. (6.3)] with unit wave vector. In the
infinite-chirality limit the bulk free energy merely splits
the degeneracy of this family of solutions. When it. is
treated as a perturbation of order I/lr, the bulk free en-
ergy also mixes into the order parameter correction
terms with nonunit wave vectors that are linear combina-
tions (higher harmonics) of the unit wave vectors that ap-
pear in the infinite-chirality form. The correction terms
generated in this way will in general differ from the biaxi-
al helical form [Eq. (6.3)] in overall structure, as well as
in wave vector.
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F. The simple cubic 02 structure

Consider an order parameter of the form

(6.23)

where the y'"' are again as in Eqs. (6.11) and (6.12) but
with the six wave vectors c'"' along the six (100) direc-
tions. If all the amplitudes g„have the same magnitude

y, then for suitable choice of origin (depending on the
phases) the resulting order parameter can always be. put
in the form

(1+R+R )Re[(x+iy)(x+iy)e "],1

v'6 (6.24)

where R is a 120' rotation about the [111]direction. This
has the real-space form

Xzz cosy —cosx, pe siIlz (6.25)

the other components being given by cyclic permutations
of x,y, z. This structure has space group 0 (P4232).

Because this structure contains no trios of wave vec-
I

Nobody has yet systematically carried through this
procedure even to first order. Grebel et al. (1983a, 1984)
have explored a restricted family of order parameters
given by adding to the infinite-chirality superposition of
biaxial helices, structures that continue to have the biaxi-
al helical form, but with additional wave vectors c corre-
sponding to the first three higher harmonics of the unit
vectors appearing in the infinite-chirality order parame-
ter. (They also allow for an overall rescaling of the mag-
nitude of the fundamental wave vector. ) Their structures
can be viewed as trial functions in a variational pro-
cedure, and they reduce to about 0.3 the value of x, above
which blue phases can rigorously be shown to intervene
between the isotropic and helical phases.

(3) The methods appropriate to the high-chirality limit
also suggest other structures that, though clearly not
favored at infinite x, can play an important role at physi-
cally relevant values. The most important of these is a
structure with the simple cubic space group 0 (P4232),
which we describe in Sec. VI.F below.

(4) The high-chirality forms of the 0 and 0 struc-
tures have an interesting real-space form, which is highly
suggestive of the kinds of structures put forth by
Meiboom et a/. , which can be viewed as approaches to
the blue phase from the low-chirality limit. We discuss
this in some detail in Sec. VI.G below.

G. The 0 and 0 structures in real space

We can write Eq. (6.10) for the order parameter y in
the equivalent form

6
Re y y'"'.

v'3 (6.26)

Since the amplitudes g„ofthe y'"' are independent of n

for both the O,and 0 structures, the symmetry exhibit-
ed by Table II permits us to express Eq. (6.26) as

Re(1+R+R )(y~ ~+/~6~)1

V3
(6.27)

where R is a 120' rotation about the direction x+y+z.
The structure g' '+g' ' can be read off from Table II:

tors adding to zero, the cubic invariant P vanishes. The
quartic invariant n, however, has the remarkably small
value of —,"„only8.33% higher than the minimum of uni-

ty achieved by the helical order parameter. This should
be compared with the quartic invariants for the 0, hex-
agonal, and 0 structures, which exceed the minimum by
16.9%, 21.4%, and 29.9%. As a result, this simple cubic
structure will have a lower free energy then either of the
bcc forms at low enough temperatures, even though it
will always lose out (though not by much) to the helix.

When sc is less than infinity, this very siInple 0 struc-
ture acquires additional Fourier components through the
process of higher harmonic generation described above.
The biaxial helical structure, on the other hand, does not
acquire additional wave vectors when perturbatively
modified by the bulk free energy. The new Fourier com-
ponents of the 0 structure produce a nonvanishing cu-
bic invariant, which makes it more stable than the helical
phase at high temperatures and high chiralities (certainly
at ~ in excess of 1.5, the value at which the helical phase
finally acquires a nonvanishing cubic term at its transi-
tion temperature).

The small quartic term of the 0 structure raises the
possibility that it might, as the chirality dropped, also be-
come more stable than the 0, 0, or hexagonal struc-
tures. From the perspective of the high-chirality limit it
is these considerations that form the basis for the possi-
bility (supported by the detailed calculations of Grebel
et al. ) that there might be regions of the ~-r phase dia-
gram where the stable equilibrium nonhelical phase is a
descendant of the high-chirality 0 simple cubic form,
rather than any of the forms (bcc or hexagonal) that are
stable at infinite chirality.

y' '+y' '=g(C +iS )I C„[zz ,'(xx+y—y—) i(zx+x—z)/+2] — —S„[y(z—ix/+2)+(z —ix/V 2)y]I, (6.28)

where C =cos(x/&2), S„=sin(x/&2), etc. Note that
the form of Eq. ' (6.28) in the 0 case (g=i~y~') differs
from the 0 form (g=y~) only by a factor of i, which
has the sole effect of shifting the phase of the factor

I

C +iS by m. /2, i.e, the 0 form of Eq. (6.28) can be con-
structed from the 0 form by shifting it by a distance
m'/&2 —a quarter of the conventional cubic cell —along
the y axis.
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Setting g= ~y ~
and taking the real part of Eq. (6.28), we

find for the 0 structure

y(1+A +R ')
I C„C,[zz —

—,'(xx+ yy)]

points generated from the origin by the translational
symmetry). This is a necessary feature of any order pa-
rameter with 0 symmetry, since the points where three
fourfold axes intersect have full cubic symmetry, but

—
—,'S„S(xy+yx)

+C S (zx+xz)/&2
—S„C(yx+ zy) /&2 I. (6.29)

The corresponding expression for y' ' is given by re-
placing C„and S with —S and C, respectively. Note
that prior to the symmetrization about I+y+z, Eq.
(6.29) has a fourfold symmetry axis parallel to z and pass-
ing through x =y =0, so that the 0 version has such an
axis passing through x=0, y=~/&2. Because of the
bcc translational symmetry in the x-y plane, these four-
fold axes are repeated in the positions shown in Fig. 15(a)
for 0 and Fig. 16(a) for 0 .

After the symmetrization about x+y+x, these axes
are distributed as in Figs. 15(b) and 16(b). It is clear from
these figures that they remain fourfold axes in the 0
structure, but in the 0 structure they are now 4i axes;
i.e., after rotation through 90' about the axis a transla-
tion along the axis of —, of the cubic cell is required to
bring the structure back into self-coincidence. This is the
basis for the identification of these structures with
0 (I432) and 0 (I4,32), these being the only two bcc
space groups that contain fourfold axes and have no im-
proper elements (a necessary feature for the symmetry
groups of structures with a definite chirality).

The explicit symmetrization specified in Eq. (6.29) is
(o')easily carried out to find y' ', and the corresponding ex-

plicit form for the 0 structure can be found directly
from the result, provided we keep track of the C's and S's
that came, under the symmetrization, from the Cy s and
S 's in Eq. (6.29); we can do this by continuing to keep

~o')them on the right in every term. We then have for y'

y(2c„c,—c', c,—c,c.),(o')
12

g y
= —y(+2C S, —+2S,C —S S ),

(6.30)

with the remaining matrix elements being given by cyclic
permutations of x,y, z.

(o') ~The corresponding structure for y' ' is given by re-
placing the right-hand C or S in each term by —S or C,
respectively:

y( —2C.S, +C,S, +C,S.),
12

y(&2C C, +&2S,S, —S Cy) .
&12

(6.31)

Note that every matrix element of the 0 structure van-
ishes at the origin (and therefore at the bcc lattice of

FICx. 15. Fourfold axes in the 0' structure in real space. {a)
The dark lines are the fourfold symmetry axes of the expression
in Eq. (6.29) prior to symmetrizing about x+y+z. The light
lines indicate the edges of the unit cell, which has lattice con-
stant 4n. /&2 in dimensionless units. (b) After symmetrizing
about x+y+ z, the lines in (a) remain fourfold axes.
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there is no nonzero traceless symmetric tensor with cubic
symmetry. The 0 structure has no points of fuH cubic
symmetry, and it is easily established that there are no
points where all matrix elements vanish.

Thus from the point of view of the tensor order param-
eter, the 0 structure (and any structure with 0 symme-
try) necessa'rily contains a bcc lattice of point defects—
points at which the entire order parameter vanishes—
while the 0 structure is free of defects. This is reflected
in the fact that the quartic invariant a, a measure of the
mean-square fluctuations of tr(y ), is 1 l%%uo larger for the
0 structure than it is for the 0 . The 0 structure is
still favored at the highest temperatures, because of its
more favorable cubic bulk free energy, but as the temper-
ature drops the energetic cost of its point defects be-
comes prohibitive and it eventually loses out to 0 .

Because the bulk free energy favors a uniaxial order
parameter y with positive try (see the discussion in Sec.
III), it is instructive to look for regions in which the 0
and 0 structures have this character. The only regions
in which symmetry requires the 0 structure to be uniax-
ial are along the four threefold axes. (The fourfold axes
in the 0 structure are screw axes and therefore do not
require a uniaxial structure. ) Along the line x =y =z, it
follows from Eq. (6.31) that the diagonal elements of

' vanish, while its off-diagonal elements are given by

(&2——'sin&2x ) . (6.32)xy yz zx

As symmetry requires, this is indeed uniaxial with (111)
as the preferred direction, and (as symmetry alone does
not require) with the cubic invariant positive, as favored
by the bulk free energy.

The 0 structure has both threefold and fourfold axes.
Along the threefold axis x =y =z it follows from Eq.

(o')(6.30) that the diagonal elements of y' ' vanish, while
the off-diagonal elements are given by

y(o ) —y(o ) —y(o ) — yg2
s ~ s

xy yz zx ~12 x (6.33)

It is interesting to note (we shall return to this point iri
Sec. VIII) that although this order parameter is indeed
uniaxial with (111)as the preferred direction, as symme-
try requires, its sign is opposite to that favored by the
bulk free energy, so that as far as bulk free energy is con-
cerned it has the worst possible form (compare the discus-
sion of the bulk free energy in Sec. III). (There are simi-
lar disadvantageously uniaxial lines in the 0 structure,
which are somewhat less straightforward to extract: they
are very near the fourfold screw axes, spiraling around
them. )

The favorably uniaxial lines in the 0 structure are the
fourfold axes. Along the line x =y =0, for example, Eq.
(6.30) gives

(b) ~(o~) V (1 ( ) ~{o ) ~(o ) — 2~(o )
zz ~ 12 z & xx yy zz (6.34)

FIG. 16. Fourfold axes in the 0' structure in real space. (a)
The dark lines are the fourfold symmetry axes of Fig. 15(a)
shifted by a quarter of the lattice constant along the y direction,
as appropriate for the 0 structure. (b) After symmetrizing
about x+y+ z, the lines in (a) become fourfold screw axes.

and the diagonal elements vanish. This is everywhere
favorably uniaxial, although the order parameter van-
ishes at the origin (where the fourfold axes meet) as re-

(o') ~

quired by symmetry. The amplitude of y' ' is largest at
the point zl&2=vr, i.e., when z is at the center of the
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square surface of the cubic conventional cell.
It is instructive to examine the order parameter at

points in the cubic cell near these face center points of
most favorable bulk free energy. If x and y are not zero,
but small, then to linear order in x, y, and 5z =z &—2',
the order parameter at the point (x,y, z) is given by

4 0
0 —2

2y —. 2x

2y

2x

As one moves away from the center of the face this struc-
ture remains uniaxial to linear order, the local preferred
axis being

n=z+ —,'(yx —xy)

or, in cylindrical coordinates, to linear order,

n=z cosqr —z X r sinqr,

(6.36)

(6.37)

with q =
—,', or, in dimensional units, q =—,'qo.

To summarize, the 0 structure is the most favorable
high-temperature form for a blue phase in the high-
chirality limit. In the neighborhood of the points where
this structure is favorably uniaxial and with largest am-

plitude, it is locally uniaxial, with a director of the form
(6.37).

The form (6.37) has been called "double twist" by
Meiboom et al. (1981),and it plays a central role in their
model of blue-phase structure in the low-chirality limit,
to which we now turn.

vene between the isotropic liquid and the helical phase.
There also exists, at least in principle (it is very cumber-
some to execute in practice), a completely systematic ex-
pansion in 1/x giving the corrections to any infinite-v
structure as the chirality drops.

In the extreme low-chirality limit, on the other hand,
the manner in which the degeneracy is split can rigorous-
ly be shown to lead uniquely to the helical phase at all
temperatures: there are no blue phases when a.=O (con-
sistent with the experimental fact that blue phases are
not observed in chiral nematics of large pitch). There is,
however, currently no computation of any rigorous
nonzero lower bound for v, . Nor is there a systematic
small-~ expansion scheme for computing the structure of
blue phase order parameters.

Nevertheless the low-chirality limit enjoys two consid-
erable advantages. Typical rough values of x seem to be
in the range 0.01—0.5 (see Appendix D), which is certain-
ly on the low-chirality side. The low-chirality limit also
has the great conceptual advantage of providing a very
simple and appealing physical picture of why chiral
nematics should prefer blue phases to the helical phase
near the transition temperature. This picture forms the
basis for a differerit phenomenological approach to blue
phases when the chirality is small, which permits the
computation of the stability of various blue phase forms,
compared with each other or with the helical phase. The
picture even lends insight into the structure and meaning
of the blue phase forms that emerge from the analysis ap-
propriate to the high-chirality limit.

Vll. BLUE PHASES: THE LOW-CHIRALlTY LfMIT A. General features of the low-chirality limit

In the high-chirality limit (a ~ ~) discussed in Sec. VI,
the role of the bulk free energy is only to select the most
favorable form out of the large degenerate family of or-
der parameters that minimize the dominant gradient free
energy.

This situation is reversed in the low-chirality limit
(a~O), where the bulk free energy dominates. As noted
in Sec. IV, the bulk free energy is minimized by taking
the order parameter to be uniaxial (with the appropriate
overall amplitude). Thus minimizing the dominant terin
in the free energy again results in a highly degenerate
family of possible farms, since the bulk free energy is
indifferent to any spatial variation in the direction of the
preferred axis n. This degeneracy is now reduced by the
gradient free energy.

The analysis of the degeneracy splitting is quite
different in the two limits. In the high-chirality limit, a
rigorous derivation of which structures are the most
favorable has yet to be given, although it is known that
the helical phase is not the lowest-energy structure. The
current best guesses, described in Sec. VI, lead to two dis-
tinct blue phases before the temperature drops to a point
where the helical phase is finally stable. These conjec-
tured forms do provide rigorous upper bounds to the
critical chirality ~, above which blue phases must inter-

Underlying the low-chirality arialysis is the fact that
the bulk free energy, which dominates in the low-
chirality limit, favors a uniaxial order parameter. The
simplest way to take this into account is to limit the fami-
ly of possible order parameters to those of the strictly
uniaxial form [Eq. (4.3)]:

—A, (3n;n —5; ),
6

(7.1)

where both the director n(r) and the overall amplitude
A, (r) are allowed to vary with position.

The uniaxial ansatz (7.1) is routinely made in the treat-
ment of nonchiral nematics and in most discussions of
the helical phase of chiral nematics ("cholesterics"). As
we emphasized in Sec. V, however, the order parameter
will not be strict1y uniaxial if nonuniformities in the
director field n(r) or the amplitude A, break the local
symmetry about the direction of n. When a is small,
however, the degree of biaxiality induced by these nonun-
iformities will be slight, because of its large cost in bulk
free energy. The spirit of the low-chirality limit is simply
to ignore this slight biaxiality induced by the nonunifo-
mities, taking as a first approximation an order parame-
ter y lying within the restricted uniaxial family (7.1). A
more refined subsequent calculation could then allow the
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structures determined in this way to relax into biaxiality.
Except in the cores of the defects that turn out to play an
important role in these structures, this refinement will be
of minor importance. One is, in any event, assured that
the free energies computed under the uniaxial ansatz are
upper bounds to the free energies of the forms assumed
when relaxation into biaxiality is allowed.

In describing the theory of the low-chirality limit we
shall make the simplifying "one-constant approxima-
tion, " taking the ratio g=KO/Ki [cf. Eqs. (4.28) and
(4.26}] to be unity. This makes the analytic structure of
the theory considerably more transparent, but as noted in
Sec. IV, it has no physical basis (see Appendix F). The
simplification is made in the expectation that the physics
will be similar in the general case; detailed computations
suggest that this is true (Meiboom, Sammon, and Berre-
man, 1983; Meiboom, Sammon, and Brinkman, 1983),
and the conceptual points revealed by this simplified case
are certainly more generally applicabl'e.

Within the ope-constant approximation the general
gradient free-energy density (4.26) has the form

7 Xn= —
—,'n, (7.7)

which also causes the first {splay) term to vanish. Our di-
mens1onless length scale is such that 2qo is the unit of the
wave vector [cf. Eq. (4.25)], so that in dimensional units
Eq. (7.7) becomes

I

term becomes a total derivative, which can be converted
to an unimportant surface term when the system is large.
The structure of n is therefore entirely determined by the
remaining expression in curly brackets. This is the sum
of three nonnegative terms, which are just the splay,
bend, and twist terms in the Frank free energy that un-
derlies the familiar elasticity theory of "cholesterics. *'

This set of terms, and thus the entire gradient free ener-
gy, is minimized by the uniaxial helical phase: for the
second (bend) term to vanish, V Xn must be parallel to n;
for the third (twist) term also to vanish, the amplitude of
V'Xn must be —

—,'. The vanishing of both terms thus re-
quires n to satisfy

qg„d=~ I[(VXX)~+X)] +[(V X);] I
V'Xn= —qon . (7.8)

= '[(V, X,k )(V,X,k )+2 tr(XV XX)+trX'

+V;(X;„VJX)„—X)„V~X;„)]. (7.2)

This condition is satisfied by the director field (2.1) of the
uniaxial helical phase:

The last set of terms in the second form is a total deriva-
tive, which therefore gives only a surface term when y is
integrated to give the total free energy. In the limit in
which surface energies are negligible compared with bulk
effects (or for any periodic structure), this term can be ig-
nored. We can therefore take the gradient energy in the
one-constant approximation to be simply

g„d=~[(V,:xjk){V;x~k)+2tr(xVXx)+trx ] . {7.3)

If the order parameter has the uniaxial form (7.1), then
the gradient free-energy density (7.3) can be expressed in
either of the equivalent forms

or

y „d=a[(VA, ) —
—,'A, +3k, (V;nj+ —,'e,j„nk) ] . (7.5)

The accompanying bulk free-energy density [Eq. (4.26)],
when the order parameter has the uniaxial form (7.1), is
just

q
=~X' —X'+ A,

4 (7.6)

As a~O, the bulk free-energy density (7.6) dominates
the total free energy. The amplitude k is thus required
everywhere to have the fixed amplitude A,o that minimizes
Eq. (7.6). If A, is constant, the first two terms of the gra-
dient free-energy density (7.4) give a constant. The third

y „d=a((VA, ) +—,'A. +3k, V'. [(n V)n —n(V'. n)]

+3A~j(V n)z+[nX(VXn)] +(n VXn+ —,') I)

(7.4)

n(r)=xeosqoz+ysinqoz . (7.9)

It can be shown (Wright, 1983) that Eq. (7.9) gives the
unique minimum to the Frank free energy to within an
overaH rotation.

There are thus no blue phases when K=O. %hen K 1s

small but nonzero, the phenomenological theory of the
low-chirality limit continues to take the free-energy den-
sity to have the uniaxial form (7.4) [or the equivalent Eq.
(7.5)] and (7.6) under the assumption that relaxation into
biaxiality will give only small corrections that can be
computed at a later stage.

How, then, can the free energy of such uniaxial struc-
tures be reduced below that of the helical phase? The
only obvious clue provided by Eq. (7.4) is that any such
structure must have a nonuniform amplitude A, , since the
proof that the helical phase gives the minimum when
v=O uses only the uniformity of A, in that limit. [Indeed,
Eq. (7.4) deinonstrates that among uniaxial phases with
uniform A, , the helical phase is the most favorable what-
ever the value of a..] Since any reduction in energy below
the helical phase can only come from the third term in
Eq. (7A), it follows from integrating that term by parts
that any phase more stable than the helical must contain
regions in which (n.V)n —n(V'. n} is directed along the
gradient of the amplitude A, . Meiboom et al. (1981) and
Sethna (1985) give an interesting and important interpre-
tation of this condition, which we return to at the end of
this section, after considering a much more direct hint of
how uniaxial structures can acquire a free energy lower
than the helical phase, provided by the alternative form
(7.5) of the free energy.
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B. Local order in the low-chirality limit: Double twist

According to Eq. (7.5) the local gradient free-energy
density is everywhere bounded below by the value
—

—,'~ A,o, a value that is lower than the value —K Ao as-

sumed at every point in the uniaxial helical phase. This
lower value is attained at points where VA, vanishes and
where the director field satisfies the condition

J+ 2~&Jk k (7.10)

V, V';n +—,'c,-.kV, nk =0 . (7.1 1)

But using Eq. (7.10) to evaluate the second term in (7.11)
gives

(7.12)

which is inconsistent with the integrability conditions
that V', V; n should be symmetric in i and s.

One can, however, satisfy the condition (7.10) along
lines, and by continuity the local bulk free-energy density
will then be lower than that of the helical phase in some
neighborhood of those lines as well. A particularly sim-
ple way to do this, with a clear and plausible physical
motivation, has been given by Meiboom et al. (1981),and
forms the basis for all models of blue phases in the low-
chirality limit. Consider the director field given in cylin-
drical coordinates by

n=zcos —,'r —P sin —,'r . (7.13)

One easily calculates that

(7,:n +—,'e; kn„)=
—,'+(sin —,'rlr) —sinr/2r, (7.14)

which does indeed vanish on the axis of the cylinder
(r =0), but not in its immediate neighborhood.

Thus if VA, is small, in the neighborhood of r =0 the
structure (7.13) has a more favorable free-energy density
than the helical structure (7.9). At large r, where P varies
slowly with position, the director field (7.13) locally ap-
proaches the helical one, and it can be viewed as the re-
sult of wrapping the planes of constant n in the helical
structure (7.9) into cylinders.

Meiboom et al. characterize the configuration (7.13) of

We can conclude at once that no unit vector Geld can
satisfy the condition (7.10) throughout all of space, for if
there mere such a vector field, we could pick the ampli-
tude A, to have the constant value ko and arrive at an in-

tegrated tota/ free energy lower than the helical phase,
contradicting the fact that the helical phase has the
lowest free energy among uniaxial structures with con-
stant amplitudes.

This conclusion can also be reached more directly.
The question of whether the local vector field specified by
Eq. (7.10) can be defined throughout a region of space is
just the question of whether the differential equation
(7.10) can be integrated to give a nonsingular vector field

n(r) throughout the region. If Eq. (7.10) did hold in a re-
gion, then we could take a second derivative to get

FICi. 17. The dark lines show the orientation of the director
field of "double twist" given by Eq. (7.13). The configuration is
cylindrically symmetric around r =0, which is at the center of
the figure.

the director near the axis of the cylinder, r =0, as one of
double twist (Fig. 17). Their terminology refers to the
fact that near r =0, n twists along all directions perpen-
dicular to itself (and in particular it rotates along both of
a pair of orthogonal directions —thus "double twist"), in
contrast to the helical structure in which n twists only
about a single direction, the pitch axis, and is uniform
along directions perpendicular to the pitch axis.

If one thinks of the constituents of a chiral nematic as
being screwlike objects and asks for the most eScient
way to pack a group of such "screws" about a central
one, the local arrangement that takes Inaximal advantage
of the helical symmetry of the screws is clearly one of
double twist. This is preferable to a "helical" arrange-
ment in which the axes of the neighboring screws twist
only in one direction, remaining parallel to the central
screw in the other.

As we have seen analytically, however, and as is evi-
dent when contemplating a collection of screws, double
twist cannot be extended to fiH a region of space. As a
result, if we attempt to build a structure consisting of lo-
cal regions of approximate double twist, the interpolating
regions must necessarily be less favorably aligned. It is
therefore possible that the locally less favorable helical
arrangement may still turn out to give the best overall
configuration. ' Whether a structure with local regions
of double twist can be stable with respect to the helical
phase is thus a question of whether the free-energy gain
over the helical phase from the local double-twist regions
more than o6'sets this increase in free energy outside of
the regions of double twist. The contribution to the gra-
dient energy of such unfavorable regions can be reduced
by decreasing A. in these regions, which is why A. is neces-
sarily nonuniform in such structures. Variations in A, ,
however, force one to pay a price in bulk free energy,
which penalizes any deviation from k=ko. Since the en-
ergetics are dominated by the bulk free energy as re~0,
there will be a threshold value of x below which such
variations are too costly and no blue phases are possible.

As we shall see in Sec. VIII, this is indeed true for chiral fer-
romagnets, in which the locally ordered state always loses to the
helical phase.
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Even if such locally ordered nonhelical structures are
stable in some parameter range, as the temperature
drops, the cost in bulk energy of the regions between the
double twist will increase and the helical phase will be-
come favored. We would therefore expect these nonheli-
cal phases to exist only near the transition to the isotro-
pic phase. This is just the behavior of the blue phases.

C4

l

0.5

0.0

C. The energetics of double-twist cylinders
-0.5

To sharpen this intuitive picture of the blue phase
structures in the low-chirality limit, we must specify the
shape of the local regions of double twist used to build
these structures. A particularly simple region can be
formed by noting that although perfect double twist can-
not exist in a region, the director field (7.13) has a favor-
able free energy in a significant neighborhood of r=0.
Thus nearly perfect double twist can clearly be extended
along the z axis to form an extended cylinder with per-
fect double twist along the entire axis, and a very favor-
able free energy near the axis. The specific proposals that
have been made for blue phase structures consist of cun-
ning arrangements of such "double-twist cylinders" in
periodic arrays. '

We therefore consider cylinders consisting of the
double-twist director field (7.13), with amplitude A, con-
stant out to some radius R, and zero beyond. To esti-
mate the radial extent of a double-twist cylinder we com-
pare its local free energy with that of a helical order pa-
rameter at points that are not on the axis of perfect dou-
ble twist. The double-twist (dt) configuration (with the
c.instant amplitude A,o that minimizes the bulk free ener-
gy) will have a lower free-energy density than the uniaxi-
al helix (uh) wherever the gradient free-energy density
[Eq. (7.5)] is lower than the uniform value —,'ko assumed
by the uniaxial helical order parameter. The diiT'erence
between these free-energy densities is just (Fig. 18).

y '(r) y""=3k [0(V;n +—,'E, knk—) —. —,']
=—,'A,o[(sin —,'r /z'r ) —2 sinr /r ] . (7.15)

Thus the local free energy of the double-twist cylinder
lies below that of the uniaxial hehx until tan —,r becomes
equal to r, i.e., until the distance from the axis has grown
to r =2.331 or, in dimensional units, qor =1.166. At this
distance the director has rotated over 60 (66.78 ) from
the cylinder axis. If the one-constant approximation is
not made (i.e., if il is not equal to unity), an additional

Cladis, carel, and Pieranski (1986) co'nsider distortions of
the blue phases in an electric field, and interpret their results as
evidence against the model of BP I consisting of such cylinders.
Finn and Cladis {1982)have proposed an emulsion model of the
blue phases based on spheres of local ordering, although there
have been no detailed studies of the energetics of such struc-
tures.

0 i I I i I i I I I I i I I 1

0 I 2

FICx. 18. A comparison of the gradient free-energy density of a
double-twist configuration (y ') and the uniform helical struc-
ture {cp"")for two values of q, the ratio of elastic constants. The
point r =0 is the center of the double-twist pattern.

term —,'Ao(rj —1)sin ( —,'r)/r must be added to Eq. (7.15).
For g=3, the radius at which y ' equals y"" is reduced to
qor =0.8180, at which point the director has rotated to
nearly 47' (see Fig. 18). Physical values of il seem to fall
roughly in the range 1 —3 (Appendix F).

D. Stable structures in the low-chirality limit

Equation (7.15) for the. energy difference demonstrates
that imperfect local double twist is preferable to the heli-
cal phase out to a significant distance from the axis of
perfect double twist, but it also confirms the general re-
sult that in the absence of variations in the amplitude A,

the helical phase must have the lowest total free energy
for a su%ciently large sample. To see this, note that the
di6'erence in total free energy per unit length in a
cylinder of radius R is given by

', mA, O I r dr [(sin —,
'—r / —,

' r ) —2 sinr /r ] . (7.16)

The Grst term in the integrand is everywhere positive and
gives a contribution that diverges logarithmically- with
large R. The second term, which is responsible for dou-
ble twist being favored locally for small r, gives a bound-
ed oscillatory contribution with increasing R, and there-
fore for large enough R the free-energy difference be-
comes positive, and the helical phase is indeed favored
over a single double-twist cylinder.

Can this relative stability be reversed by diminishing
the amplitude A, of the doubly twisting order parameter
with increasing distance R from the axis'? Since the heli-
cal phase is locally favored over the double-twist cylinder
beyond a certain distance, this can be achieved with a
single cylinder only if the amplitude becomes vanishingly
small at large R, and only if the isotropic phase (which is
what a zero-amplitude order parameter describes) has
lower free energy than the helical phase. Hornreich,
Kugler, and Shtrikman (1982) have answered this ques-
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tion, showing for a range of ~ that at temperatures just
above the isotropic-helical transition a single double-
twist cylinder of variable amplitude can become stable:
the fact that its local free energy is significantly lower
than the helical phase near the cylinder axis is enough to
give a structure of lower total free energy than the isotro-
pic phase, even after paying the free-energy cost of a
nonuniform amplitude that falls to zero away from the
axis."

One can then construct stable structures out of many
such cylinders, Aoating apart from each other in a sea of
isotropic phase. A collection of such double-twist
cylinders that does not possess a periodic structure is an
appealing model for the amorphous BP III (Marcus,
1981; Hornreich, Kugler, and Shtrikman, 1982; Kleman,
1982). If the cylinders are arranged periodically, the ex-
istence of stable isolated cylinders can form the basis for
a kind of "tight-binding" blue phase model. With ap-
propriately oriented cylinders, the amplitude A. would not
have to drop to zero in regions where the director field
matched smoothly between nearby cylinders. This would
reduce both the bulk free-energy cost of these regions
and the surface energy of the cylinders, thereby further
stabilizing the structure. Nobody has attempted directly
to build such a "tight-binding" model into a computa-
tional scheme, but it provides an intuitive picture of the
general strategy pursued in constructing low-chirality
blue phase models: the idea is to arrange double-twist
cylinders in ways that minimize the unfavorably aligned
regions between the cylinders.

Since the local free energy in a double-twist cylinder
still compares favorably with that of the helical phase,
even when the director has turned as much as 45 —60'
from the cylinder axis, the diameters of the constituent
cylinders can be of the order of the cholesteric pitch,
which is indeed the scale of characteristic blue phase lat-
tice constants. The extensive range of angles the director
can make with the axis within the radius of favorable free
energy leaves room for considerable imagination in in-
venting efficient packings of such cylinders.

posed competing configurations. Consider three families
of cylinders with mutually orthogonal axes in which the
director in each cylinder double twists out to an angle of
45 with its axis. Such cylinders can be woven into a
periodic array with simple cubic translational symmetry
and the space group 0 (P4232), as shown in Fig. 19.

This arrangement succeeds in filling at least 58.9%%uo

(3m/16) of space with regions whose free-energy density
is lower than that of the helical phase. Furthermore, the
directors match at the points of contact between
cylinders, thereby doing no violence to the gradient free
energy. One pays a price for this admirable arrangement
in the interstitial regions about the (111)directions, and
a rather extensive numerical computation is required to
determine whether there are values of ~ for which this
strategem will succeed in making a simple cubic blue
phase stable over the helical phase.

Independent of such a calculation, however, one strik-
ing feature of the arrangement stands out. . In the vicinity
of four of the eight body diagonals emerging from the
center of the cubic cell [the dark lines in Fig. 20(b)] there
is no way to interpolate uniaxial material without result-
ing in a singularity in the director field. This is easily
verified by attaching "arrowheads" to the directors,
keeping track of their orientations as one encircles such a
line, and noticing that when one returns to the starting
point the direction of the "arrow" is reversed. This is the
topological signature of a (stable) rr-disclination line (Fig.
4). (The other four body diagonals also lie in regions of
unfavorably oriented material, but the arrows come back
to their original positions, so the field is not singular. )

For this particular structure, a nonuniform amplitude
X is necessary not only to do better than the helical
phase, but also to avoid an infinite free energy, for within
the restricted family of locally uniaxial order parameters
it is impossible to avoid a divergent gradient energy at
the core of a m disclination, unless the amplitude is al-
lowed to vanish, giving a nonsingular core of isotropic
liquid.

E. The 0', 0 —,and 0 + structures

The first such arrangement was proposed by Meiboom
et al. (1981) (this was prior to the demonstration by
Hornreich et al. that a single cylinder could be stable
and was the first suggestion that local double twist is the
key to understanding blue phases). Their structure illus-
trates most of the pertinent features of subsequently pro-

Usi:ng a strictly uniaxial double-twist cylinder, they 6nd that
for sc) 0.39 there is a range of temperatures in which isolated
cylinders are stable when the helical phase is also restricted to
be purely uniaxial. When the helical phase is allowed to be-
come biaxial, the range shrinks to 0.5 & ~ & 1.49. Allowing the
double-twist cylinder to acquire biaxiality would extend this
range.

FIG. 19. The arrangement of double-twist cylinders in the 0
structure. The director at the surface of each cylinder makes an
angle of 45' with the cylinder axis.
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Other proposed weavings of cylinders of double twist
into cubic structures contain similar unavoidable net-
works of line defects. For example the cylinders can
again be arranged with mutually orthogonal axes and
with the director twisting out to 45', but woven into the
body-centered-cubic array with space group 0 (I4,32)
(see Fig. 21) (Meiboom, Sammon, and Berreman, 1983).
(This structure has been called "0 " to distinguish it
from another structure having 0 symmetry, described
below. } Now the highly favorable regions of doubly
twisted structure fill only 29.45% of space (3ir/32).
Perhaps more advantageously, however, the defect lines
are now well separated [see Fig. 22(b)], lacking the net-
work of nodes [at the center and corners of the cubic cell .

of Fig. 20(b)] characterizing the 0 structure.
Because threefold axes in difFerent directions do not in-

FIG. 21. The arrangement of double-twist cylinders in the 0'
structure. As in the 0 structure (Fig. 19), the director twists
out to 45' at the cylinder surfaces.

tersect in the 0 structure, one can entertain a second
possibility with 0 symmetry (called "0 +"), in which
the double-twist cylinders are along ( 111) directions,
and the defect lines lie along the (100) directions (see
Fig. 22) (Hornreich and Shtrikman, 1981a, 1981b). This
difFers from 0 by interchanging the position of the
double-twist cylinders and the defect lines. This possibil-
ity appears attractive since the cylinders fill more than
two-thirds (68%=m.&3/8) of the liquid. The director in
each cylinder double twists to an angle of 54.7'

~~r i i

I I fdf jm 7

(a)

FICx. 20. (a) The cubic unit cell of the 0 structure in a distort-
ed view that allows the sides to be seen. The parts of the
double-twist cylinders contained in the unit cell are shown. By
attaching "arrow heads" to the director as shown and keeping
track of the orientation as one traverses a path surrounding one
of the (111) lines, one finds that four of the eight such direc-
tions are m disclinations, which are shown as the cube diagonals
in (b).

FIG. 22. The unit cells of the 0 structures. For 0, the posi-
tions of the double-twist cylinders are shown in (a) (cf. Fig. 21),
with the positions of the resulting defect lines shown in (b). In-
terchanging the positions of the cylinders and defects gives
0 +. The, arrangement of double-twist cylinders in 0 + is
shown in (b), with the arrangement of defects shown in (a). In
this structure the director at the surface of each cylinder makes
an angle of 54.7' with the cylinder axis. Reproduced from
Meiboom, Sammon, and Berreman, 1983.
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[—,'cos '( —
—,
' )] at the surface of the cylinder, which is less

than the angle of 68.78 at which the local free-energy
density of double twist (for g = 1) ceases to lie below that
of the helical phase.

F. A camculation of energies of uniaxial structures

Meiboom, Sammon, and co-workers (Sammon, 1982;
Meiboom, Sammon, and Her reman, 1983; Meiboom,
Sammon, and Brinkman, 1983) have carried out detailed
computer calculations to determine the free energies of
these structures in the uniaxial limit over a temperature
range of a degree below the transition to the isotropic
phase. In these calculations, they consider a vector field
that is constrained to have the symmetry of one of the
structures described above, and numerically relax the
configuration to minimize the gradient energy (7.4). The
vector Geld is taken to have a constant amplitude that
drops abruptly from unity in the ordered regions to zero
in the defect cores. The cost of a defect is estimated from
experimental quantities: the bulk free-energy cost of the
disordered core is estimated from typical measured
values of the entropy of transition of nematic com-
pounds, and the gradient energy at the interface between
the defect core and the ordered region is estimated from
measured values for the surface tension. The values of
the measured quantities they use are consistent with a
value of ~ in the physical range. Their calculations are
carried out for q = 1 and 3.

Su%ciently near the transition to the isotropic phase,
their calculations show that all of the structures men-
tioned above, as well as a uniaxial structure they consider
with 0 symmetry, become stable with respect to the hel-
ical phase. As expected from the energetics of double-
twist cylinders (Fig. 18), the free energies of the struc-
tures are considerably lower for g= 1 than for g= 3.

For both values of g, the 0 structure has the least
favorable energy of the four structures they consider.
For g= 1, their calculations show that the 0 and 0
structures are very close in energy near the transition,
with the 0 + structure 10—20% higher in energy. For
temperatures more than about 0.5 'C below the transition
from the isotropic, the 0 structures appears unambi-
guously to be the lowest-energy phase. For g= 3, 0 and
0 + are found to be very close in energy over the range
calculated, with 0 somewhat lower in energy. These
findings are in agreement with the observed structures
described above in Sec. III.F. Note that the energetic
preference of 0 over 0 provides a warning that con-
sidering merely the packing fraction of double-twist
cylinders may not be a good indicator of relative energies
of structures. The unfavorably aligned regions between
cylinders are apparently much more costly in 0 than
in 0'

The calculation of Meiboom et al. strongly suggests
that models of the type discussed can indeed be stable
with respect to the helical phase over some range of tem-
perature near the transition to the disordered phase.

= —3v2 J VA, [(n V)n —n(V n)], (7.17)

which, as noted above, is the only one that can stabilize
blue phases over the helical phase. This term does indeed
give a negative contribution in regions containing the ap-
propriate kind of line singularities. Consider a line
defining the z axis in the neighborhood of which the
director has the form

n=x cosP+y sing, (7.18)

where P is a function only of the polar coordinate 0. One
easily verifies that (n V)n —n(V n) is along the radial
direction with amplitude —(1/r)dgld8. It follows that
a ndisc—lina. tion, in which P= —0/2 and A, grows with
r from zero on the singular line to its bulk value, will
make a negative contribution to Eq. (7.17). If the chirali-
ty is low enough that bulk free energy dominates, it is
reasonable to expect the region of reduced A, to be
confined to the core of such a line singularity rather than
distributed more widely (at lower cost in gradient ener-
gy). Meiboom et al. (1981) treat X as constant and equal
to its uniform bulk value except for a cylindrical core re-
gion about the defect lines which is excluded from the in-
tegration, its contribution being replaced by a term giv-
ing a phenomenological estimate of the positive core en-
ergy. The integral in Eq. (7.17) then becomes an integral
over th'e surface of the cylinder and contributes a nega-
tive energy —3K X m per unit length to the line defects.
The combined contribution of these two terms can be
viewed as an eQ'ective energy per unit length for the de-
fect lines, which, if negative, can stabilize such a network
over the helical phase.

Although blue phases can be stable at moderately low
chirality, it cannot be too low. Thus this argument,
while suggestive that the nonuniformity in k required to
stabilize a blue phase might be concentrated into line de-
fects (as it would have to be at zero chirality), does not
establish that it must be. Sethna (1985) has developed a
systematic approach to low-chirality chiral nematics
based on a model elastic energy for which the only way to
exploit the extra term in Eq. (7 4) is through line defects.
In this model the interesting complementarity in the pa-

However, because of the way the calculation estimates
the cost of defect cores, its detailed results for the relative
stability of the structures should be viewed with some
caution (for example, cf. Cxerber, 1984). Moreover, the
details of which structures appear in a physical system
may depend on the physical parameters of the system.
There is, of course, no guarantee that the most favorable
structure is among those investigated to date.

All of these locally uniaxial models for the blue phases
are characterized by interweaving cylinders of double
twisting material threaded by networks of line defects.
Meiboom et al. (1981) and Sethna (1985) argue that such
networks are an inherent feature of blue phases, being
driven by the free-energy term [cf. Eq. (7.4)]

3~2f A, V.[(n V)n —n(V'. n)]
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per of Meiboom et al. (1981) can be made rigorous: blue
phases can be viewed either as networks of disclination
lines (which necessarily imply regions of double twist) or
interwoven double-twist cylinders (which necessarily im-
ply disclination lines).

In terms of the order parameter we use here, however,
we are aware of no general topological proof that line de-
fects should necessarily accompany double-twist
cylinders, or vice versa. There are, however, several
theoretical indications in addition to the original argu-
ment by Meiboom et al. (1981) and Sethna (1985) that
the appearance of singular lines is more than just an ar-
tifact of the particular structures so far proposed. These
considerations are not special to the low-chirality limit,
and we examine them in our concluding section.

The gradient energy analogous to Eq. (7.3) for the tensor
order parameter (in the corresponding one-constant ap-
proximation) is simply

ys„d=~[(V;0 )(V;o )+o"VXo+ —,'0 ] .

With o given by Eq. (8.1) we have

(8.2)

nematic. But it follows on rather general grounds that
there is no way at all to weave a network of such
cylinders that does not cost more in the interstitial re-
gions than is gained in the regions of double twist.

The chiral ferromagnetic order parameter is simply a
vector o., which we can decompose into an amplitude A,

and a unit vector n, analogous to the corresponding
quantities for the uniaxial chiral nematic:

(8.1)

Vill. BLUE PHASES: SOME GENERAL
THEORETICAL FEATURES

In this concluding section we examine three aspects of
the blue phase structures which, while of some interest in
themselves, also provide evidence that the line singulari-
ties that emerge in the low-chirality models of the blue
phase may indeed be expected on more general grounds.

y,',d =~ [A'(V,, n, + —,'E,,„n„)'+(VX)] . (8.3)

We have added the superscript "fm" for purposes of
comparing this gradient energy for the vector ferromag-
net with the corresponding two terms from the gradient
energy (7.5) for the tensor order parameter of a chiral
nematic in the uniaxial limit [the —

—,'A, appearing in Eq.
(7.5) can be absorbed in the quadratic term of the bulk
free energy]:

A. Can chiral ferromagnets have blue phases'2 p",',d=31~ [A, (V;n + ,'E, kn„—)+ —,'(VA, ) ] . (8.4)

Consider a chiral anisotropic liquid in which the order
parameter is not a traceless symmetric tensor, but a vec-
tor, as in a ferromagnet. This is a conceptually interest-
ing case, because the major difference between a vector
order parameter and the traceless uniaxial tensor order
parameter that prevails in the low-chirality limit is that
in the vector case there are no stable line defects. The m

disclinations appearing in the low-chirality models of the
blue phases cannot be constructed with a vector order
parameter without introducing singular planes across
which the directions of the arrows reverse. Thus the
packing of double-twist cylinders described above cannot
be realized for a vector order parameter, without such
energetically expensive structures. On the other hand,
any structure without m disclinations that can be made
out of a director can be mimicked with a vector.

It is therefore interesting to note that at the phenome-
nological level of the Landau theory, in which our whole
treatment of chiral nematics has been framed, one can
prove in the analogous theory of chiral ferromagnets that
the equilibrium phase is always the helical one. Double-
twist cylinders are, of course, locally just as advanta-
geous in the chiral ferromagnet as they are in the chiral

2 Very recently, Hornreich and Shtrikman (1988b) have given
a topological argument that such defects are inherent to struc-
tures with space groups 0' and 0, but that they are not re-
quired in structures with space group 0'.

qr „d=~,A, (V;n + ,'E; knk) +irz—(VA,) (8.5)

with

K2 =K„ ferromagnet,

K2= 3 Ki, nematic
(8.6)

The two cases differ only in the relative weight as-
signed to the first term, which favors double twist, and
the second, which penalizes amplitude variations. Am-
plitude variations are three times as costly, on the scale
of double-twist energies, for the ferromagnet as they are
for the nematic. Remarkably, this is just enough addi-
tional cost to demonstrate that chiral ferromagnets can-
not have blue phases. This conclusion follows from the
easily established identity

In both cases the full free energy consists of yg„d plus
terms in A, without gradients which can be associated
with the bulk free-energy density. This bulk free-energy
density alone will be minimized by picking the appropri-
ate (constant) value for the amplitude A, . In the case of
the tensor order parameter- we found that the gradient
free energy was not necessarily minimized by a structure
with constant A,—a fact essential for the possible stability
of blue phases. In the case of the vector order parameter,
we can reach quite a different conclusion.

We can examine both the tensor and vector cases to-
gether by considering a gradient energy of the form
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+—,'aiA. +(a2 —~, )(VA, ) (8.7)

The term in large square brackets is a sum of three non-
negative terms, each of which vanishes in the helical
phase if A, is uniform. In the nematic the coe%cient of
the term in (VA, ) is negatiue, leaving open the possibility
of a nonhelical phase with nonuniform amplitude. But in
the ferromagnet the coefficient of the term in (VA, ) is
zero. Thus the uniform helical phase minimizes the gra-
dient as well as the bulk free energy, and blue phases can
never do better, even though double-twist cylinders con-
tinue to be locally favorable, as is clear from Eq. (8.3).

It is a remarkable fact that the energetics of the Lan-
dau theory of the chiral ferromagnet refiect the topologi
cal constraints on the order parameter by permitting a
proof that in this system, which cannot support ir dis-
clinations, blue phases are never favored over the helical
one. We are unaware of any deep reason why this should
work as neatly as it does.

B. The residoe of line defects in the high-chirality limit

In the low-chirality limit the order parameter y is tak-
en to be a traceless symmetric uniaxial tensor. The local
order parameter is thus completely specified by the three
numbers that specify the preferred axis a and the overall
amplitude A. (which will be positive or negative depend-
ing on the sign of the cubic invariant in the free energy).
More generally, and especially in the high-chirality limit,
the traceless symmetric order parameter y is not con-
strained to be uniaxial, and one requires the full five num-
bers (six for a symmetric tensor minus one for the con-
straint of zero trace) to specify its local value. The
geometric spaces representing the possible values of the
order parameter in these two cases —the "order-
parameter spaces" —have very di8'erent topological
properties, with important implications for the kinds of
line defects that can exist in either case. '

A region contains a line defect if the only way to main-
tain continuity of the order parameter on a closed path
encircling the region as the path shrinks to a point is by
allowing the order parameter to go to zero somewhere on
the surface swept out by the shrinking path. Therefore,
if we do not allow the order parameter to vanish, i.e., if
we exclude the value zero from the order-parameter

The discussion that follows is not intended to serve as a care-
ful introduction to the topological theory of defects, but to re-
mind readers acquainted with that subject of some of the
relevant ideas, and to try to convey to unacquainted readers
some rough indication of what is at stake here. For an intro-
duction to the topological theory of defects, see Mermin (1979).

mfa, (V;n + ,'—s;knk) +a+z(VA, )2

=alii, [(V.n+n VA/A. ) +(n VXn+ —,
')'

+[nX(VXn)+VX, —n(n V)API

space, then a path encircles a defect if it is impossible to
maintain continuity of the order parameter on the path
as it shrinks to a point.

This criterion can be expressed- in terms of the topolo-
gy of the order-parameter space: a system has no topo-
logically stable line defects if and only if any closed path
in the order-parameter space can be continuously shrunk
to a point. (Such a space is called "simply connected. ")

The order-parameter space for a uniaxial tensor con-
sists of a three-dimensional space excluding the origin,
with every point identified with its inversion through the
origin: the configuration represented by amplitude A, and
direction n can be represented by the point r =A,n in the
order-parameter space, and since n and —n specify the
same tensor, r and —r must be identified. Such a space
has precisely one class of closed paths that cannot be
shrunk to a point —namely, those connecting any point
ro with its negative —ro. (Such a path is closed because
ro and —ro represent the same value of the order parame-
ter; in contrast, closed paths connecting any point ro to
itself can be shrunk to a point. ) If the values of the order
parameter on a closed path in the nematic form such a
path in the order-parameter space, then the path in real
space must encircle a m. disclination.

On the other hand, the order-parameter space for a
general traceless symmetric nonzero tensor consists of all
of a five-dimensional space (to specify each of the five in-
dependent components of the tensor) except for the ori-
gin (which would represent the zero tensor). Every point
in this space corresponds to a distinct tensor order pa-
rameter. As a result, the only closed paths connect a
point to itself, and since the absence of the origin clearly
cannot prevent these from being shrunk to a point in
more than two dimensions, there are no line defects. -

We illustrate this with a simple example. Write a biax-
ial tensor Q as a sum of uniaxial tensors

Q,) =A,[(n, n —
—,'5;J )+e(m, mj —

—,'5; )], (8.8)

Q;. =A,(-,' 5;.—z;zJ. ) (8.9)

near P (since 5; =m;mj. +n;n +z;zj ), which is constant
and therefore has a vanishing gradient. Thus allowing Q
to become biaxial can remove the singularity without re-
quiring the amplitude A, to vanish.

How can one relate the view of blue phases in the low-
chirality limit —uniaxia] structures permeated by a net-
work of line defects —to the more general picture of a
tensor order parameter incapable of supporting such de-
fects'? If one takes the view that uniaxiality is the normal
state of aftairs, i.e., that low chirality is the physically
pertinent limit, then the two points of view are reconciled
when one takes into account the relaxation into biaxiality

where m and n are orthogonal vector fields in the x-y
plane. If the vector field n has a stable singularity at a
point P, and Q is restricted to be uniaxial (s=O), then
gradients of Q will diverge at P unless the amplitude A, of
Q vanishes at that point. But if e is allowed to grow to
unity in the neighborhood of P, Q will have the form
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induced by spatial nonuniformities in the director n.
We noted in Sec. V that if n(r) varies in the neighbor-

hood of a point ro in a way that breaks the local rotation-
al symmetry about n(ro), then the order parameter at ro
will be unstab1e against acquiring a certain degree of
biaxiality. In the low-chirality limit this relaxation into
biaxiality will be negligibly small, except in regions where
the spatial variation of n is very large (Meiboom, Sam-
mon, and Brinkman, 1983). As the cores of line defects
are approached in a strictly uniaxial phase, the gradients
of n become arbitrarily large, so relaxation into biaxiality
will occur in the cores no matter how low the chirality.
Indeed, this is a far better solution to the core problem
than remaining uniaxial with a vanishing amplitude,
since a biaxial core, though it has a higher bulk free-
energy density. than a uniaxial phase of nonzero ampli-
tude I,, is stiH energetically favored over an isotropic
(A, =O) core, which makes no attempt at all to lower the
bulk free energy by ordering.

It is important to note that one can identify the net-
work of line defects characteristic of the low-chirality
limit even in structures that are not nearly everywhere
uniaxial. Corresponding networks can be found in the
significantly biaxial order parameters characteristic of
the high-chirality limit, notwithstanding the, fact that a
biaxial order parameter supports no line defects. The
trick is simply knowing what to look for.

From the general point of view the order parameter is
a real traceless symmetric tensor y. It therefore has real
eigenvalues and three orthonormal eigenvectors, and
since g is nonzero but has zero trace, at least one of these
eigenvectors is associated with a positive eigenvalue. If
the largest positive eigenvalue is not degenerate, then it
belongs to a unique eigenvector, which we call n in anti-
cipation of its identification below with the usual director
in the uniaxial low chirality limit. Because y(r) has no
line singularities, neither can the vector field n(r) unless
there are lines along which the largest eigenvalue of y is
degenerate. In the neighborhood of such lines, a small
change in g can change which eigenvalue is the largest,
and therefore induce a large change in n.

But if the largest eigenvalue of y is degenerate, then
the three eigenvalues are in the ratio 1:1:—2. Thus y is
uniaxial, bgt with the wrong (negative) sign for tr(g ).
(Recall from Sec. IV that for given try the bulk free en-

ergy assumes its extreme values for a uniaxial y, being
minimum or maximum according to whether try is posi-
tive or negative. ) Thus the lines along which n becomes
singular are lines of maximally unfauorable bulk free en-

ergy, for the given value of try .
We can thus associate with a biaxial tensor order pa-

rameter which is entirely free of line singularities a direc-
torlike unit vector field n(r), which can have line singu-
larities, along which the (well-behaved) tensor order pa-
rameter is uniaxial.

These unfavorably uniaxial lines in the high-chirality
form of the order parameter are nothing but the residues
of the cores of the line singularities that can exist undis-

guised in the low-chirality limit. To see this, imagine a
uniaxial configuration supporting a conventional stable
disclination such as one might find in a low-chirality
nematic (a m disclination). As noted above, in the im-
mediate vicinity of the core of the disclinatiop a non-
singular biaxial core will be preferable to a completely
disordered core of isotropic Quid. Far from the core the
order parameter (being a uniaxial tensor with the favored
sign for the cubic invariant) will indeed have a unique
largest eigenvalue belonging to an eigenvector that is just
the ordinary director n(r). Since the core lies within a m

disclination, but the tensor order parameter is not singu-
lar in the core, we know from the above argument that
within the core there must be a line along which the Quid
is uniaxial with the unfavorable sign for the cubic invari-
arit.

Now imagine turning up the chirality and letting the
nematic adjust its configuration. As long as the largest
eigenvalue remains nondegenerate in a region, the direc-
tor field will evolve continuously into the field of the
eigenvector belonging to that largest eigenvalue. Because
the evolution is continuous, that field will continue to
have a m disclination, and therefore at its core there must
continue to be a line of unfavorably uniaxial material.

Thus if blue phases are characterized by a network of
disclinations, as suggested by considerations appropriate
to the low-chirality limit, one might expect to find similar
structures even in the high-chirality limit, in the form of
lines of unfavorably uniaxial material. In Sec. VI we not-
ed precisely this behavior in the most favorable (body-
centered-cubic 0 ) structure currently known for the
infinite chirality l-imit. The 0 structure has favorably
uniaxial lines along (100) directions, but unfavorably
uniaxial lines along (111)directions. The latter lines we
now recognize as the signature in the nonsingular biaxial
structure of what would become, with decreasing K, the
biaxial cores of uniaxial disclination lines.

Furthermore, in the vicinity of the favorably uniaxial
lines in the high-chirality 0 structure, one finds [see
Eqs. (6.34)—(6.37)l that the structure of the order param-
eter is precisely that found in the vicinity of the axis of
the double-twist cylinders that are locally favored in the
low-chirality limit [though with a local pitch that is 50%
larger (q =

—,'qo)].
Thus the two most characteristic structures of the

low-chiralj. ty models —double-twi. st cylinders and m

disclinations —can be unambiguously identified in the
more systematic, but physically less pertinent high-
chirality limit. This suggests that the defects that turn
up in the structures guessed for the low-chirality limit
may be inherent in the problem. It also suggests that
even though sc is not large, the structures emerging in the

Hornreich and Shtrikrnan (1988b) argue that such defects
are topologically necessary in the 0' and 0 structures, but not
in the 0' structure.
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high-chirality limit already embody much of the per-
tinent physics and can serve as alternative starting points
for more accurate investigations.

C. Exact minimization of the free energy
in a curved space

One can also gain some insight into the role of defects
in the blue phases by looking at them from a rather
di6'erent point of view, as examples of "geometric frustra-
tion" (Meiboom et al. , 1981; Kleman, 1982; Sethna,
1983, 1985, 1987; Sethna, Wright, and Mermin, 1983;
Dubois-Violette and Pansu, 1988). A simple prototype
of this phenomenon arises when one attempts to tile the
plane with regular pentagons. In contrast to what hap-
pens with regular hexagons, if one starts trying to tile
with pentagons one quickly runs into trouble: one can
surround the first one with five adjoining neighbors, but
already gaps are opened up between the neighbors, lead-
ing to even worse irregularities in the next layer [Fig.
23(a)]. The impossibility, for purely geometric reasons,
of extending the preferred local ordering throughout a
large region is reminiscent of the impossibility of extend-
ing perfect double twist through a region, as noted in Sec.
VII.

The resemblance goes farther than this. The tiling
problem with pentagons is solved if one moves it from a
plane to the surface of a sphere of the appropriate radius:
a regular dodecahedron can be viewed as a perfect tiling
of the sphere with regular pentagons on its curved sur-
face [Fig. 23(b)]. Interestingly, the corresponding prob-
lem for blue phases can also be solved in an appropriate
curved space, but because the blue phase structure is in-
herently three-dimensional, the space required is the
three-dimensional surface of a four-dimensional sphere
(Sethna, Wright, and Mermin, 1983). For the appropri-
ate choice of radius, perfect double twist can be extended
over the whole surface, and in doing so one succeeds in
minimizing the full free energy cp=yg„d+yb„]k.

To show this we rewrite the gradient free-energy densi-
ty once again, this time casting Eq. (7.3) into the form

explicitly in Eq. (8.15) below], in anticipation of the fact
that in a curved space both the components of a tensor
and the basis vectors must in general vary with position,
making it necessary to distinguish between the gradient
of the components and the components of the gradient.
[The relation between the two is given in Eq. (8.16)
below. ]

We wish to minimize Eq. (8.10) not in ordinary three-
dimensional Euclidean spgce, but in the curved three-
dimensional surface S3 of a sphere of radius a in four di-
mensions. %'e introduce ordinary Cartesian coordinates
in the four-dimensional space, so that S3 consists of the
set of points (xo,x, ,x2, x3) with x„x„=a. (Our summa-
tion convention is that repeated greek indices are
summed from 0 to 3, and repeated roman indices from 1

to 3.)
For each point (xo,x„x2,x3) on S3 we define the unit

radius vector

2 i j 2
%grad (Xij;k+ 2EiksXsj + zEjksXsi ) (8.10)

[This differs from Eq. (7.3) by an extra —,'try, which can
be absorbed into a redefined yb„&k. One can also relax the
one-constant approximation by adding to Eq. (8.10) a
term ao(y;~. J ) without altering the curved-space solution
described below. ] We have changed the notation for gra-
dients in Eq. (8.10), replacing Vky, z

with y;J. k [defined

For studies of geometric frustration in other systems, see for
example Frank (1952), Frank and Kasper (1958, 1959), Klernan
and Sadoc (1979), Sadoc (1980), Klernan (1981, 1983, 1985),
Steinhardt, Nelson, and Ronchetti (1981, 1983), Sadoc and Mos-
seri (1982, 1984), Nelson (1982, 1983a, 1983b), Renn and Luben-
sky (1988).

FIG. 23. (a) An example of geometric frustration in Oat, two-
dimensional space. If we consider the pentagonal tiles to
represent some preferred local order with pentagonal syrnme-
try, then the observation that pentagons cannot tile a plane il-
lustrates the fact that local pentagonal order cannot be extend-
ed throughout a region without introducing defects. (b) By
working in an appropriately curved space, the incompatibility
between local and global order can be removed.
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e' '=(1/a )(xp, x „xz,x3 ) (8.11)

and introduce three additional orthonormal vectors e"',
c' ', and e' ' tangent to S3—i.e., orthogonal to the radius
vector c

This cancellation is most expeditiously established by
working with the three Pauli matrices o, about which it
is only necessary to know that they are 2 X 2 traceless
Hermitian matrices satisfying

e"'=(1/a)( —x)rxp~x3~ xz) r

e' '=(1/a)( —xz, —x3,xp, xi),
e' '=(1/a )( —x3,xz, —x „xp),

satisfying

o'oj=5; +is; „o".
%'e then define a set of four matrices H by

(8.12)
~'=&a', )'= 1, . . . , 3,

(8.17)

(8.18)

and note that it follows from Eq. (8.17) and the traceless-
ness and Hermiticity of the Pauli matrices that

(P) e(v) e(P)e(v)ea eu pv (8.13) —'tr(H) r'=5 (8.19)

(0 {j)
Xpv &ig e p e v (8.14)

The gradient of g in S3 at any point is given by simply
projecting the four-dimensional gradient into the tangent
3-space at the point

(i) (j) (k) ~g(j k =ep ev e~ (8.15)

The three e" at any point form an orthonormal basis for
the local 3-space tangent to S3.

We define a field of traceless symmetric 3-tensors y„
on S3 by giving the components of such tensors in the
orthonormal 3-basis for the local tangent space, c":

With this apparatus at hand, the basis vectors c' ' can
be written as

(8.20)

Since ~ = 1, it follows directly that e' ' is indeed the radi-.
al unit vector (1/a) (xp, x„xz,x3). Using the multiplica-
tion rule (8.17) for the Pauli matrices one can easily veri-
fy that Eq. (8.20) gives the explicit forms (8.12) for the
other e". All of the pertinent properties of the e( ' can
be established directly from Eq. (8.20). Note first that it
follows from Eq. (8.19) that

Substituting in Eq. (8.14) and writing V'k=e'"'V, we
have, with the aid of Eq. (8.13),

e(a)e(t)) —] tr(e(a)~)t(e(P) )p p & p V

and hence, from Eq. (8.20), that

(8.21)

(8.16)

Note that in addition to the first term that gives the
derivatives of the components of y familiar from Qat-
space calculations with a position-independent set of
basis vectors e", there are two additional terms ("con-
nection coefficients") in Eq. (8.16) as a result of the fact
that variations in y can also be produced by variations in
the local 3-basis (Aris, 1962; Misner et ai. , 1971; Schutz,
1980). The reason the full free energy can be explicitly
minimized in the appropriately curved space is that it is
possible to curve the 3-space so that these additional
terms in Eq. (8.16) precisely cancel the two terms con-
taining e in Eq. (8.10), as we shall show.

But

e(a)e()i) =(1/a 2) tr(ra)trj3(x r)r)(x ~v)t
p p 2 p

(x&7 )(xvr ) =(xp+ix&o' )(xp ixkcr")

=~o+x.x =a

(8.22)

(8.23)

and therefore

e(a)e()g) 1 tr(&a)tg
p p aP & (8.24)

as required.
To evaluate Eq. (8.16) we also require the form for

e„"Vk e„'', which we can easi1y work out more generally:

e„' 'e'~'V, e'~' =(1/2)tr(e„' 'H)t(e'~'V, )(e()r'r )

=(1/2a)tr(e„' 'H)tv'(e'~'r ) =(1/2a )trw (e'~'r')(e( 'H)

=(1 /a2)tr re(x H)(x r ) (r )/a =(1 /2a)tr .err( r) (8.25)
/

Specializing this to the three vectors in the tangent space,
we have

to be a =2 (or, in dimensional units, a =1/qp), then we
have simply

e "e' 'V' e'"'=(1/2a)i tro "oJo'
P V V P 2 2

pgrad (ViXjk ) (8.27)

=(1/a)skj; = —(1/a)e; k . (8.26)

Evaluating the gradient free energy (8.10) with Eqs.
(8.26) and (8.16) we find that if we pick the radius of S3

This is evidently minimized simply by taking the g;j to be
(arbitrary) constants. [Note that this conclusion is not al-
tered if the one-constant approximation is relaxed to in-
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elude the additional term ~o(y; . ), since Eqs. (8.26) and
(8.16) give y;~. ~

=V~y,j.] Since the bulk free energy is en-

tirely local, it is unafFected by the move to a curved space
and continues to be minimized by a uniaxial tensor of the
appropriate overall amplitude. We conclude that the full
free energy y =yg„d+crab„&k is minimized by any tensor g
whose components in the basis of the e" are of the form

(3n, n —5;, ),
6

(8.28)

for arbitrary constant n, and constant amplitude A, (with
the magnitude that minimizes the bulk free energy).

It follows from Eq. (8.26) that the gradients of the vec-
tor field n satisfy the double-twist condition (7.10) euery
where on S3, for we have

(~) (k)
71; .~

=V; 71J. +e p V
~
e p (8.29)

Since real chiral nematics are not found on the surfaces
of four-dimensional spheres of radius 1/go =p/2~, these
facts are of more conceptual than practical interest. Real
chiral nematics can be viewed as systems that are frus-
trated by the misfortune of having to exist in a space in-
compatible with their energetic demands, which favor
double twist at all points. The disclinations that show up
in both the low and (properly interpreted) high-chirality
models of the blue phases can then be viewed as the inev-
itable consequences of having to tear apart the ideal
curved-space structure if it is to be fIattened into ordi-
nary space (Kleman and Sadoc, 1979; Sadoc and Mosseri,
1982; Kleman, 1983; Sethna, 1983, 1985, 1987). They are
thus as natural to blue phases as the disclinations that
arise from fIattening out a dodecahedron are to doomed
attempts to tile a plane perfectly with pentagons.

Although the curved-space model is highly suggestive
that double twist is the natural state of the chiral nemat-
ic, it does not without further (difficult) analysis shed any
light on whether or not the traumatic consequences of
Aattening will preserve anything of the local double twist
in the ensuing Aat-space structures. Just as pentagons in
fI.at space always have the option of settling into a regular
periodic array that makes no attempt to optimize the lo-
cal energy, so chiral nematics in Aat space can always set-
tle for the helical phase.

The chiral ferromagnet serves here as a cautionary
demonstration that the most favorable Aat-space
configuration may make no attempt to reproduce the
ideal curved-space structure, for the fields e" are globally
well defined on S3 and can therefore define a vector as
well as a tensor order parameter. The equilibrium state
of the chiral ferromagnet on S3 is therefore also a state of
perfect double twist, but the result established in Sec.
VIII.A above shows that none of the. double twist sur-
vives in the Aattened state, which achieves its equilibrium
in the conventional singly twisting helical form.

It seems appropriate to conclude on this abstract four-
dimensional note our exposition of the current theoreti-
cal understanding of blue phases, those "tangible exam-

ples of topological oddities" that "help to bring topology
into the public domain of science. "
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APPENDIX A: THE PARAMETERS
OF HORNREICH AND SHTRIKMAN

Our definitions of the parameters of the Ginzburg-
Landau theory differ in some cases from those used by
Hornreich, Shtrikman, and co-workers. We give here the
relation between these two sets.

Hornreich-
Shtrikman

Wright-
Mermin

Elastic constants

Bulk free-energy
constants

Chirality
Inverse helical pitch
Coherence length
Reduced temperature

C)

cp
a

K(Hs)
—,'q, =d/(2c, )

4
—,'t

—,'E i

—,'(Eo —K, )

2c

2K(WM )

qo =2~/go

++K(WM)

APPENDIX B: TRACE RELATIONS

Given an n X n matrix Q, one can construct only n in-
dependent scalars from Q. In particular, tr(Q') for all
s )n can be expressed in terms of those tr(Q') with s ~ n
We' give here a general method of determining these rela-
tions.

We start by generating the trace relations when the
n X n matrix M is Hermitian. Begin with the identity
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e tr }n(1—AM}

for A, & 1/m, „,where m,
„

is the largest eigenvalue of
M. Expanding the logarithm, we get

oo gg
det(1 —r(.M) =exp —g tr(M')

s=i ~

the trace relations also hold for }Lt=i, for which M =Q.
For example, if M is 3 X 3, the vanishing of the

coefficient of A. in Eq. (82) gives

0= —~tr(M )+—,'(trM) + —,'trMtr(M )

—
—,'(trM) tr(M) + —,', (trM)

( —1)'=X tl
tr(M')

s=i ~
(82)

whIch for trM =0 gives

tr(M") =
—,'[tr(M )] (85)

The left-hand side is an nth-order polynomial in A, , and
hence the coeS.cients of iV for s &n on the right-hand
side must vanish term by term. These conditions give the
desired relations.

To show that these relation. s hold for an arbitrary n X n
matrix Q, let

APPENDIX C: STABILITY OF THE GRADIENT ENERGY

We shall show that the gradient free energy

Fg= Jdr[ ,'Ir:i(V—XQ+2qoQ) +—,'Eo(V Q) ] (Cl)

Q+Q + Q —Q
2 2l

(83)
is non-negative throughout its region of stability and is
minimized by F =0. To do this, we Fourier-transform

so that M is Hermitian when p is real. The trace rela-
tions (82) now hold identically as polynomials in the real
variable p. (The trace relations are homogeneous, so the
restriction on the largest eigenvalue is no longer impor-
tant. ) Since polynomials are analytic functions, however,

Q(r) =—ge'"'Q(k),1
(C2)

where Q( —k)=Q(k)' since Q(r) is real, and recast Eq.
(Cl) in the form

F, = f«f, = &Ilg 2ig.,—l'&i(k+2qo)'+ Ig +»Q., l'&, (k —2q, )'

+2IQ+ I'[(&i+2&0)k'+12&iqo]+ Ig., —ig„l'[&i(k+4qo)'+(&}+2&0)&']
+

I g..+ig,.I'[&,(k —4q, )'+(x, +zsc, )k'] I, (C3)

where Q+ =Q +Q~~, and in each term of the summa-
tion the z axis is taken along k.

From Eq. (C3) it is obvious that Fg is non-negative as
long as

K) ~0 and K)+2KO 0,
while if either of these conditions is violated, Fz becomes
unbounded below. We emphasize that this instability is
an instability against gaining unbounded gradients, and is
not a trivial amplitude instability which would be cured
by including a bulk free energy.

One can also determine from Eq. (C3) the unique (to
within rotations) structure that minimizes Fg To mak.e
F vanish, we must set k =+2qo, Q =+2iQ, and

Q+ =Q„,= Q~, =0 in (C3). This gives the Fourier com-
ponents of the biaxial helical structure given in Eq.
(4.17).

Q,, =A, (n, n, —
—,t5,J), (D2)

yielding

where a and b are the quartic and cubic terms in the bulk
free energy, K& is the elastic coeKcient in the gradient
free energy, and qo is 2m over the helical phase pitch.
Typical values of the -pitch of chiral nernatics that show

0
blue phases are in the range 1000—6000 A, giving qo
roughly in the range 10 —10 cm '. Various groups have
measured elastic constants for nematics (see Appendix
F). From these, one finds that typical values of Ki lie in
the range 10 ' —10 ' J/cm.

While measurements of the bulk free-energy parame-
ters a and b are not available for chiral nematics, we can
use values measured for ordinary nematics to estimate K.
To compare Eq. (4.5) for the bulk free energy with exper-
iment, we insert a uniaxial form for the order parameter

APPENDIX D: ESTIMATING PHYSICAL VALUES Of x

tr=(Ir, qoa/b )'~ (D 1)

Equation (4.27) gives the chirality tt in terms of physi-
cal quantities as

The bulk coefBcients have been determined by Stinson
and Litster (1970) for the nematic compound MBBA, and
by Poggi, Filippini, and Aleonard (1976) for the two com-
pounds MBBA and HBN. From these, one finds that
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a/b =5.3 J 'cm for MBBA and a/b =2.0 J 'cm for
HBN.

Combining these ranges of values of a, b, 4, , and qo
gives values of sc roughly in the range 0.01—0.5.

APPENDIX E: MAXIMIZING THE CUBIC INVARIANT

recovered (to within a surface term) from the gradient
free energy [Eq. (4.14)) for the full tensor order parame-
ter by taking Q to be uniaxial with a constant amplitude:

Q;J cc(n, n —
—,'6,") .

Comparing the resulting equation to Eq. (Fl), one finds

In this appendix, we show that the cubic invariant P in
Eq. (6.15) is maximized by taking all the coefficients g„to
be real. This requires maximizing the function

g =cosa+ cos13+cosy +cos5

subject to the constraint

a+P+y+5=4@+2Irn,

(El)

where y is the phase of (23+5v 8i ). This leads to the
condition

sina =sinP =siny =sin5 =-
A, , (E3)

where k is a Lagrange multiplier.
Note that given a set of values of a, I3, y, and 5 satisfy-

ing the stationary condition (E3) and constraint (E2), the
values Ir —a, Ir —p, Ir —y, and m. —5 also satisfy the sta-
tionary condition and constraint but change the sign of g.
We therefore need consider only g ~ 0.

To within permutations of a, P, y, and 6, there are
only three possible solutions to Eq. (E3):

(a) a=P=y=5 -g =4icosa~,

(b) a=P=y, 5=It—a —=-g=2~cosa~,

(c) a=P, y=6=Ir —a—g=0 .

(E4)

APPENOIX F: ELASTIC CONSTANTS
IN THE UNIAXIAL LIMIT

The usual Frank free energy used to describe chiral
nematics has the form

—,'k, (V'.n) + —,'k, (n.V Xn+qo) +—,'kb[n X(V'Xn)]

For case (a), Eq. (E2) requires ay+(n/2)n, so t.hat
~cosa~=cosy (for n even) or ~cosa~=sing (for n odd).
Since cosy&sing&0, the maximum value is given by

g =4 cosy.
For case (b), Eq. (E2) gives a=2' Ir/2+urn, so that-

~cosa~=sin2y. This leads to g=2sin2q&=4cosysinqr,
which is less than 4 cosy.

Thus g is maximized by a=P=y=5=y, which re-
quires that the products of g„'sin Eq. (6.15) be real. This
can be achieved by taking all the g„'sto be real.

k, =K),
k, =kb =

—,'(KI+Ko),
(F3)
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