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The density distribution arising at the nonlinear stage of gravitational instability is similar to intermitten-

cy phenomena in acoustic turbulence. Initially small-amplitude density fluctuations of Gaussian type

transform into thin dense pancakes, filaments, and compact clumps of matter. It is perhaps surprising

that the motion of self-gravitating matter in the expanding universe is like that of noninteracting matter

moving by inertia. A similar process is the distribution of light reflected or refracted from rippled water.

The similarity of gravitational instability to acoustic turbulence is highlighted by the fact that late non-

linear stages of density perturbation growth can be described by the Burgers equation, which is well

known in the theory of turbulence. The phenomena discussed in this article are closely related to the

problem of the formation of large-scale structure of the universe, which is also discussed.
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where v(q) is the initial velocity. The simple form of Eq.
(1.1), which is linear in t, implies that each particle moves
with constant velocity. This is because the rnatter is
cold, so that its pressure and viscosity are negligible, and
because no forces are included.

The analysis of this trivial situation becomes more
complicated if one assumes (as we shall) that v(q) is not
necessarily a particular (smooth) function, but may be
given by a random statistical distribution.

The motion according to Eq. (1.1) gives rise to inter-
sections of trajectories and formation of regions of high
(or even infinite) density.

In the case of an ordinary gas subject to collisions, the
motion leads to the formation of shock waves and vari-
ous phenomena (such as heat conduction) related to the
subsequent heating of the gas.

Both processes are relevant to the formation of large-

l. INTRODUCTlON

Let us imagine a cold, homogeneous medium in the ab-
sence of gravitation with a given smooth velocity distri-
bution at an initial time t =0. Its motion is easily de-
scribed in Lagrangian coordinates. The actual position
(i.e., Eulerian coordinates x) of a particular particle is
given as a function of its initial (Lagrangian) coordinates

q and time t by

x(t, q) =q+t.v(q),
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scale structure in the universe that results from the pres-
ence of at least two distinct mass components. One of
them is supposed to be collisionless nonrelativistic matter
composed of weakly interacting massive particles such as
neutrinos, axions, photinos, etc. It is generally assumed
to comprise about 90%%uo (or even more) of the total mass
of the universe. The other component is an ordinary gas
of baryons amounting to less than about 10% of the total
mass.

In a collisionless medium of weakly interacting parti-
cles, multistream configurations may form. This means
that at a point with Eulerian coordinates I there are par-
ticles that have arrived from different points in Lagrang-
ian space with coordinates q, , q2, . . . , q„.These particles
have different velocities v„v2,. . . , v„,and this situation
differs from the initial state at t =0, in which the medium
is cold (zero temperature) and all particles having the
same coordinates also have the same velocities v(q).

The formation of multistream configurations and the
analysis of their properties is an excellent starting point
for the study of catastrophe theory, as developed by Rene
Thorn and Vladimir Arnold. It is a grave omission that
the Reuiews of Modern Physics has never given space to
this subject. However, there are others more expert in
catastrophe theory than- the present authors; it has,
moreover, received ample coverage outside the pages of
Reuietus of Modern Physics. In this paper we are con-
cerned with catastrophe theory only from the point of
view of mechanical problems. There is no sociology, no
psychology, etc.

Here we shall give detailed analysis of density inhomo-
geneity structures including both local and global proper-
ties arising in potential motions by pure inertia as well as
under self-gravity of moving matter.

Let us return to the particular example of freely-
moving collisionless particles and discuss the late stage
when most of the particles have experienced trajectory
intersections. The ultimate fate of the system at infinite
time is predetermined. If the initial velocity field satisfies
natural statistical properties, then the final state will be a
Maxwellian thermal equilibrium velocity distribution
with normal coarse-grained fluctuations in the density
and other common statistical properties.

However, there is an intermediate nontrivial stage:
After the birth of local singularities (we shall refer to a
continuous surface or a continuous curve with singulari-
ties on it as a caustic), regions of high density grow and
form a peculiar structure known by various names—
"cellular structure, " "sponge, " "foam, " etc. The main
feature of this structure is the existence of comparatively
thin layers and filaments of high density that separate
large regions of low density. In the layers and filaments
the Qow consists of many streams, whereas in the low-
density regions there is only one stream. Later all struc-
ture of this kind is destroyed.

In this paper we discuss this intermediate-stage struc-
ture. This study began as a treatment of a purely cosmo-
logical problem, that of large scale structure formation,
and we shall discuss cosmology in later parts of the pa-

per. For now, we mention just two points: First, the
kind of structure in question may have been found in the
spatial distribution of galaxies (Fig. 1). Second, it is very
probable that most of the mass in the universe is com-
posed of weakly interacting massive particles, which
form a collisionless medium filling up space.

But we must explain the use of the term "turbulence"
in the title. The classical concept of turbulence emerged
in connection with problems of Quid mechanics dealing
with the motion of an incompressible liquid. The condi-
tion of constant density leads to divergence-free Bow.
The velocity can be described as the curl of a vector po-
tential v=curl A.

Reynolds's astonishing observation performed more
than a century ago concerns the formation of irregular
eddies having intermediate sizes between large-scale
boundaries of the Aow and small scales dominated by
viscosity.

Let us consider the evolution of the flow (instead of
more familiar stationary flows). Starting from an initially
smooth, laminar flow, one obtains finally (formally in
infinite time) fluid at rest but at a somewhat higher tem-
perature. However, the intermediate behavior of the
liquid depends on the Reynolds number Re =I.U /v,
where I. and v are, respectively, length and velocity
scales of the Aow, and v is the kinematic viscosity of the
liquid. If Re is less than some critical value, the Aow
remains laminar for all time, but if Re is greater than this
critical value, the Aow becomes turbulent, and only. later
after damping has occurred will it again become laminar
before dying completely.

One of the authors remembers that about thirty years
ago the usual joke was to ask someone what turbulence
is. In 99%o of all cases, the answer was given by some ro-
tational hand waving instead of articulate words. Now a
highbrow theoretician would give an answer in terms like
"stochasticity, " "strange attractor, " "intermittency, "
etc. Moreover, at present one can speak about tur-
bulence in systems with a few degrees of freedom, in any
case greater than 1.5 (see, for example, Eckmann, 1981;
Ott, 1981). In mechanical problems, every degree of free-
dom is associated with one differential equation of second
order or two equations of first order. Stochasticity and
strange attractors arise in systems of three nonlinear
equations of first order, which gives rise to a strange frac-
tional number for degrees of freedom 1.5= —,'. From this
point of view, the approach to the evolution of density in-
homogeneities developed in this paper is undoubtedly the
restoration of the classical Reynolds viewpoint on tur-
bulence in a continuous medium. However, the struc-
tures arising in classical incompressible liquid turbulence
are not as clear as in our case of potential motions of a
collisionless medium. It is necessary to stress the essen-
tially nonlinear character of the phenomena in question,
which cannot be analyzed with spectral Fourier methods.

To make this clear, let us consider the hydrodynamic
Bow of a Quid with small pressure gradients and viscosi-
ty. Strictly speaking, one needs to have small deviations
of density, which will occur if the motion is quite subson-
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FIG. 1. The distribution of galaxies in a thin slice with 8"&a & 17"and 26.5 & $ 32'. 5 where a (right ascension) and g (declination)
are spherical coordinates (de Lapparent et al. , 1986). The positions of 1060 galaxies with mz & 15.5 and v & 15000 kms are indi-
cated. The scale shows the velocities of the galaxies, and their distances can be estimated assuming that the velocity and the distance
of a galaxy are related according to Hubble's law, v =Hpr (Hp =50A5p km s 'Mpc ').

ic, M &(1,where M =v/c, is the Mach number.
If the amplitude of the initial velocity distribution is

small, then the nonlinear terms in the gas dynamic equa-
tions are also small, and one can use the Fourier method
or normal mode analysis. Every mode will damp out due
to viscosity. Short waves are damped more quickly, long
waves survive longer. As a result of damping, the veloci-
ty field gets smoother. The final result is obvious: the
Quid is at rest in a state of thermal equilibrium (if even a
small amount of heat conduction is present) at some new
higher temperature, but, nothing particularly interesting
occurs in between.

Qualitatively new behavior of Qows in the case of large
initial velocity is associated with the nonlinear character
of the gas dynamic equations. The nonlinearity couples
difFerent modes. As a result, even with smooth initial
conditions, higher harmonics arise. Both the velocity
and the density distributions become steeper, at least in
some places, constituting a radical departure from the
linear regime.

Fourier analysis including nonlinear efFects in higher
orders shows the general trend of the evolution. Howev-
er, it loses the ability to describe the process quantitative-
ly. The main reason is that in the nonlinear regime the
distribution of phases of difFerent modes ceases to be sta-
tistically independent, even if it was at the linear stage.
At this stage, the Fourier spectrum is the unique statisti-

cal measure neither of velocity nor of the spatial density
distribution. The spectra of density fields with singulari-
ties (i.e., caustics) possess an abundant short-wave com-
ponent. However, the phases of the short waves are not
statistically independent, with the result that Fourier
analysis loses most of its appeal. Thus one is forced to
return to characteristics that were used by Riemann for
analysis of the formation of shock waves from large-
amplitude acoustic waves. Particle trajectories used in
the Lagrangian approach are the characteristics in pres-
sureless gas dynamics.

Let us return to turbulence in an incompressible liquid.
It is amazing that the turbulence discovered in experi-
rnents conducted more than a century ago remains one of
the most difficult phenomena to explain, in spite of the
fact that much has been done in an efFort to understand
it.

One approach to the problem is a drastic reduction in
the number of degrees of freedom. Generalized coordi-
nates are introduced that represent the amplitudes of a
few spatial movement patterns (normal or even "abnor-
mal" modes). As a result one can obtain a system of a
few nonlinear ordinary difFerential equations instead of
the partial equations of hydrodynamics. As we have al-
ready mentioned, a system of three nonlinear equations
of first order (1.5 degrees of freedom) can reproduce some
features of turbulence, e.g., stochastic aperiodic motion.
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r(t, q) =a (t)[q—b (t)s(q)], (1.2)

where, as in Eq. (1.1), r and q are Eulerian and Lagrang-
ian coordinates, respectively, a (t) is the cosmological ex-
pansion factor, b(t) is the growth rate of linear density
ffuctuations in the expanding universe, and s(q), which
can be expressed as the gradient of a potential
s(q)=V@(q), represents the spatial perturbation. The
first product on the right-hand side, a (t)q, is the unper-
turbed position. The growth function b(t) depends also
on the dimensionless mean mass density of the universe
0=p/p„, but in a ffat matter-donunated universe
(Q= 1), b (r) o:a (t). Unless the density perturbations are
nonlinear, 5p/p cc V's(q) cc V' 4 (q). The sign of the
second term in Eq. (1.2) is chosen to be negative by con-
vention in cosmology. Making a simple transformation

x=r/a (t), r=b (t), v(q) = —s(q), (1 3)

one easily obtains instead of Eq. (1.2)

x =q+ 7"v(q) . (1 4)

Since Eq. (1.4) is of the same form as (1.1), some features
of the motion of noninteracting matter in accordance

This phenomenon, unexpected up to the second half of
the twentieth century, has been called a "strange attrac-
tor." (It certainly attracts many theoreticians. ) But the
spatial patterns of turbulence are lost in the approach.

In this paper, spatial patterns are considered, though
at the cost of a considerable simplification of the prob-
lem. We begin with a simple system of noninteracting
particles, for which the nonlinear character of Eulerian
description is significant. Here nonstationary aspects of
the evolution of density inhomogeneities are considered
assuming specific initial conditions. Thus periodic solu-
tions have been excluded from the very beginning. All
these assumptions have been made in order to obtain
clear and definite statements concerning the spatial pat-
terns arising in the motion. The formation of a whole
spectrum of intermediate scales is the property that
unifies the motion of a collisionless medium with Rey-
nolds turbulence of an incompressible liquid. The under-
lying hope is that perhaps the spatial patterns in our case
will provide some inspiration in the study of turbulent
patterns in ordinary liquids.

The last point to discuss here is gravitation. One can-
not overestimate its importance in dealing with cosmo-
logical applications. The problem of force-free motion
stated at the beginning is related to the cosmological
problem only as the first, simplest step. In fact, small
density fluctuations grow in an expanding universe under
the action of gravity. This process is c'alled gravitational
instability.

It turns out that, at a rather late stage of the expansion
of the universe (which will be defined later), the matter in
the universe can be described as cold dust moving under
the action of gravity alone. At this stage, the motion of
each particle can be approximately described by a simple
law (Zeldovich, 1970),

with (1.1) persist in the case of gravitating systems.
Moreover, since the accelerations in gravitating systems
are caused by gradients of the gravitational potential, one
can assume that the velocity field is of the potential type

v=74 .

If rotations were initially present, they would be strongly
damped due to the expansion. This makes the analysis
more definite.

The simple formula (1.2), miinicking the motion of a
noninteracting medium, describes the motion of a gravi-
tating medium up until the stage of caustic formation. In
fact, one can reasonably speculate that the singularities
arising in both cases are of the same type. But the
motion of a gravitating medium soon becomes quite
diff'erent from the prediction of (1.2). As a result, the
final states of these two media are quite difFerent. It is
well known that a self-gravitating medium cannot
achieve thermodynamic equilibrium in an infinite
universe. The spectre of the thermal death of the
universe, often mentioned in the nineteenth century, no
longer haunts us. In the twentieth century it has given
place to the "Dracula" of collapsing black holes.

What is of practical importance for cosmology is the
speculation that the observed large-scale structure of the
universe (Fig. 1) (de Lapparent et al. , 1986; Postman
er al. , 1986; Tago et al. , 1986) represents an intermediate
stage, resulting from the gravitational instability of a
slightly perturbed density distribution. Depending on
the spectrum of the density fluctuations at the linear
stage (5p/p (( 1 }, the formation of structure may
proceed mainly in one of two ways: the first, known as
the "bottom-up" scenario, predicts the sequence
galaxies —clusters of galaxies-superclusters. The other,
known as the "top-down" scenario, predicts the opposite
sequence. We shall discuss these scenarios in more detail
later, but at present we wish to stress that the kind of
scenario depends on the kind of dark rnatter. The top-
down scenario takes place in a universe dominated by hot
dark matter composed of massive neutrinos with a rest
mass of about 30 eV (assuming they have such a mass)
(Doroshkevich et al. , 1981). The bottom-up scenario
takes place in a universe dominated by cold dirk matter
made of axions, photinos, or other exotic particles in-
vented by particle physics theorists, but not yet observed
in the laboratory.

In any case, one can observe the peculiar large-scale
structure in the universe because the universe is neither
too young (in which case it would not have had enough
time to develop) nor too old (because this structure does
exist at present).

Let us put this in terms of the anthropic principle:
Mankind could not have been created very early before
the formation of galaxies and stars, which need time for
density perturbation growth. But life emerged almost as
early as possible (on the cosmological scale of time) after
the birth of the sun, one of the typical second generation
stars. Later highly anisotropic superclusters (Fig. 1) will
be destroyed by gravitational forces that collect most of
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the galaxies into large clumps of much less anisotropic
shapes. Thus the only stage at which this structure can
be observed is its present, intermediate stage, when both
structure and observers exist.

Returning to the topic of our review let us formulate
the problems we wish to address and briefly repeat the
contents of this paper: In modern cosmology there are
two fundamental problems. The first is to understand the
physical nature of dark rnatter, and the second is to ex-
plain the type, spectrum, and amplitude of primordial
density fiuctuations, which finally result in galaxies arid
other large-scale structures. Both problems are closely
connected with our understanding of the nonlinear evolu-
tiori of density inhomogeneities.

In this context, among the most interesting observable
structures in the universe are superclusters of galaxies.
(For a review of supercluster properties see Oort, 1983.)
The superclusters of galaxies and voids in between are
the largest density inhomogeneities, having sizes of more
than 30 Mpc ( —10 cm) (1 Mpc = 10 pc =3 X 10 cm).
Superclusters are nonlinear (5plp) 1) but still nonre-
laxed systems preserving some information about the
spectrum of initial (i.e., linear) density perturbations. In
addition, they are the obvious place to look for the
inhuence of dark matter, which is most important on
large scales.

We shall discuss the formation of large-scale structure
based on gravitational instability. This phenomenon, as
well as its importance for cosmology, was already under-
stood by Newton. However, to be fair we ought to rnen-
tion that, since Newton's time, other mechanisms of
structure formation have been suggested.

One of these invokes the hypothesis of cosmic strings
(not be confused with superstrings), which represent to-
pological distortions of space-time possessing a high en-

ergy density (Kibble, 1976; Zeldovich, 1980; Vilenkin,
1981, 1985; Rees, 1986; Turok, 1986). Actually, in the
model of structure formation based ori this hypothesis,
the phenomenon of gravitational instability is also used.
The essential difference of this model from the one we
shall discuss is the non-Gaussian character of the initial
perturbations.

Another model is based upon the hypothesis that col-
lective supernova explosions may provide an enormous
amount of energy (Ostriker and Cowie, 1981; Carr and
Ikeuchi, 1985; Weinberg et al. , 1988). In this inodel,
thermal and gas dynamic phenomena play a much more

important role than they do in the traditional instability
picture.

Without criticizing the cosmic string and explosion
scenarios, we must state that, to our mind, the gravita-
tional instability model is better developed at present,
and —what seems even more important —it is based on
initial conditions whose statistics can be specified unique-
ly.

An additional motivation for discussing nonlinear
gravitational instability is its similarity to turbulence and
different synergetic problems that have recently been
clarified. One can characterize the phenomena discussed

in this paper as a whole as the "physics of gravitating
media. " However, we should stress that they have little
in common with those discussed in the well-known book
by Friedman and Polyachenko (1984), since in our review
we shall consider neither spiral galaxy structures nor oth-
er related problems.

We begin with a detailed discussion of the nonlinear
phenomena occurring in noninteracting media, where
every Quid particle moves owing to inertia, starting from
the simplest one-dimensional motion. Two- and three-
dimensional systems are then considered. It turns out
that, even in this oversirnplified approach, nontrivial
efFects arise like caustics, peculiar cellular structures, and
so on. What is even less trivial is that similar structures
arise from the growth of density perturbations due to
gravitational instability in the expanding universe. We
discuss this and conclude the review by application of
these phenomena to the observed large-scale structure of
the universe.

II. ONE-DIMENSIONAL MOTION
QF NONGRAVITATING MATTER

In this section we shall study the motion of matter
without any interaction at all. As we shall see, this pro-
cess is an excellent starting point for an analysis of the
more complicated process of the growth of density per-
turbations under the action of gravitational instability.

An additional simplification is gained by considering
one-dimensional Aow. As will be shown later, locally
one-dimensional motion is generic at the beginning of the
nonlinear stage in real two- and three-dimensional Qows,
when caustics (i.e., surfaces of infinite density) and shock
fronts form. As a result, the first objects formed at the
nonlinear stage are "pancakes. " Some of the general
properties of pancakes can be analyzed in the one-
dimensional case.

A. Early nonlinear stage

1. Zero-temperature collisionless matter

The simplest problem we begin with is the one-
dimensional motion of a zero-temperature, collisionless,
continuous medium.

Suppose that at the initial time t =0 the density of
matter is homogeneous, i.e., p(x, 0) =po, and let
u(x, 0)=uo(q) be the initial velocity field. Here q can
also be interpreted as a Lagrangian coordinate: x =q at
t =0.

In this case one can easily find the position of every
particle in terms of the Eulerian coordinates at any time

x(q, t)=q+t. uo(q) .

At t )0, the density of matter becomes inhomogene-
ous. Using the mass-conservation law p(x, t)dx =podq,
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one can calculate the distribution of density as a function
of the Lagrangian coordinate q,

1+t.a(q)p(q, t)= (2.2)

where a(q)=duo/dq. .To find the true density distribu-
tion in Eulerian space, one needs to invert Eq. (2.1) to ob-
tain q. (In the general case, this cannot be done analyti-
cally. ) An additional useful function is the initial velocity
potential 4c(q) =IUodq .In terms of the potential

Uo=d@o/dq, a(q)=d 4o/dq2, and p=po/
(1+t0 4o/dq ).

At the linear stage [at small t while ~t a(q)~ ((1]Eq.
(2.2) for the density can be simplified to

p( q, t) =pc[1 t .a—(q) ] . (2.3)
X

Incidentally at this stage x =q, and Eq. (2.3) also gives
the real distribution of density in Eulerian space. Thus
the function a(q)=duo/dq =d &bo/dq reproduces the
density distribution at the linear stage.

In the course of time, the amplitude of the density per-
turbations grows and the linear equation (2.3) becomes
invalid. One must use the general equation (2.2), which
predicts that at time

t (q) = —1/a(q) (2.4)

the density at the point with Lagrangian coordinates q
becomes infinite. In corresponding points of Eulerian
space there are caustics.

One can easily see from Eq. (2.4) that the first singular-
ities arise locally at the negative minima of a(q). Im-
mediately after that two neighboring points achieve
infinite density and become the boundaries of regions
with three-stream fiows (Figs. 2 and 3). These events are
evidently consequences of the motion of particles, in that
the velocities are constant in time but varying from point
to point. After some time rapidly moving particles begin
to catch up and outstrip the slow ones.

In the vicinity of a negative minimuin of a(q) (in La-
grangian space), two neighboring points exchange their
positions for the first time. As a result, a density singu-
larity arises in Eulerian space at the corresponding time
(Fig. 2).

As a mechanical problem, the calculation of the densi-
ty distribution in the vicinity of the singularity is fully
determined by the initial conditions, i.e., the initial veloc-
ity distribution vo(q). What is particularly important
here and later is that we consider generic velocity fields
only. A typical and practically interesting example of
such a field is the velocity distribution given by a finite or
infinite trigonometric sum

FIG. 2. The formation of a pancake begins with the develop-
ment of a singularity in the density distribution. It has a partic-
ular form p cc ~x ~

~' in the vicinity of x =0 and is schematica1-

ly illustrated in panel {a). Exactly at the time of the singularity
formation, the velocity field develops a vertical tangent at the
position of the singularity. This is schematically illustrated in

panel {1).At x =0, dU /dx = ~.

Nk

Uz(q)= g Vkcos(kq +yk),
I& =1

(2.5)

where VI, and yI, are random, statistically independent
numbers, and Nk can be infinite in the case of a conver-
gent series.

FIG. 3. Density and velocity distribution a short time after
pancake formation. The boundaries of the three-stream How re-
gion are indicated by dashed lines. Inside the three-stream re-
gion in the vicinity of the border p cc ~x —x, ~
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To analyze the structure of the singularity, one has to
expand uo(q) in a Taylor series in the vicinity of the mini-
'ma of a(q). If for convenience we put the origin of coor-
dinates at the point in question, we obtain in the generic
case

uo(q) = —ao q
——

q +1 3

0
(2.6)

where —ao=a(0) and where lo is the spatial scale of the
velocity 6eld; the term of second order in q is absent,
since we are considering a minimum point of a(q).

Using Eqs. (2.1) and (2.2), one easily obtains for the
density distribution at to = 1/ao (Fig. 2)

' —2/3
Po Xp(t, x)=
3

lxl «Io, (2.7)

2 1o
3

x= —2 =+—
3 V'3

3/2 (2.8)

At any —x, (x (x, the equation x =q+t, uo(q) has
three solutions, q&, qz, q3, implying that at every point x
there are three particles having diFerent velocities (Fig.
3). The mass of the three-stream flow region increases
proportionally to (At/to )', and therefore the mean den-
sity of the region is

where po is the initial density. Thus in the generic case
the erst singularity is of the power-law kind. By the way,
the mass in the immediate vicinity of the singularity is
small,

b, m =I p(x)dx ~ e'i3 .

This singularity is instantaneous. Immediately after
forming it disappears, and two singularities of another
kind arise in its place. The region of three-stream flow
emerges in between (Fig. 3).

Shortly after, at t1=to+At, the Lagrangian and Eu-
lerian coordinates of the singularities are, respectively,

+ o At/
'1/2

qs=+ ~ to

u(q)= —a& q ——q +
1

(2.11)

where I, is a typical space scale of the velocity field.
Generally speaking !&+Io [see Eq. (2.6)], but commonly
I1-Io.

Similar calculations give in the immediate vicinity of a
singularity

' —1/2

p(ro&x) =2po
1

(2.12)

where to =1/a, and x is the distance from the singulari-
ty. This equation again gives the sum of the densities due
to two singular streams in the region of three-stream
flow. Outside this region there is an in6nite jump in the
density distribution (Fig. 3).

It is instructive to illustrate the process of overshoot-
ing and the formation of three-stream Qows by a three-
dimensional phase diagram u =u (x, t). In Fig. 4 the sur-
face u =u (x, r) is shown in the vicinity (both in space and
time) of the point of overshooting. This phenomenon is
well known in catastrophe theory as "Whitney's cusp. "
At t ( to, the function u =u (t, x) is single valued, but at
t & to it is triple valued.

The growth of density inhomogeneities at the non-
linear stage is connected with a rapid increase in the
short-wavelength part of the spectrum, which reflects a
steepening of the density distribution. However, at the

singularities. This kind of singularity is even weaker
than the previous one, and the mass in its vicinity is

X

b, m =J p(x)dx ~ e'~
$

Equation (2.10) can be used only for a short time after
the origination 'of a three-stream Bow region. About a
given point, the velocity can be expanded in the form

r

P3 =3Po
tp

(2.9)

A simple calculation yields the approximate density
distribution near the singularities in the three-stream
How region

r ~ 1/6
2 xs

p(to+ b.t, hx) =po
Io

—2/3 . —-1/2
hx

(2.10)

where b,x = lx —x, l is the distance from the nearest
singular point. This equation actually represents the sum
of two streams having singularities at x„the inhuence of
the third stream, having finite density, is small near the

FICx. 4. Velocity distribution U =U(x, t ) in the shape of
Whitney's cusp, in a region of pancake formation (in space-time
coordinates).
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final stage before the formation of singularities, the effect
of coordination of phases is probably more important.
The following example illustrates this statement.

Let the initial velocity distribution be of the simple
sinusoidal type,

x(t, q)=q —tsinq . (2.13)

At to=1 at the origin x =0 the first singularity arises.
At t &to=1 one can easily calculate the coeScients of
the Fourier expansion,

p

4
6
to
l5
4Q

p (t,x) po+ g pj (t)coskx
k=1

p, (t) =27„(kt),
where J'k(kt) are Bessel functions. The growth of the
amplitudes is shown in Fig. 5. At t «1, pk ~t, mean-

ing that higher harmonics increase faster than lower
ones; however, at any t 1 they satisfy the inequality
pk+, (t) (pk(t). It is worth mentioning that at t —1 the
growth of the amplitude of the first wave even slows
down compared with the extrapolation of the linear
theory. Thus the formation of singularities is not caused
by catastrophic growth of the amplitudes of short waves,
as one might think, but rather due to coordination of
phases.

The formation of singularities in the density distribu-
tion is a consequence of the two principal assumptions
we have made. The medium was supposed to be (i) con-
tinuous and (ii) of zero temperature. Weakening either
assumption eliminates the singularities. In a discrete sys-
tem, the number of particles in the vicinity of singulari-
ties is proportional to the mass, i.e., finite. The inhuence
of a small initial velocity dispersion is discussed in the
next section.

2. The role of velocity dispersion

Qualitatively it is easy to understand the effect of ve-
locity dispersion on the density distribution by recogniz-
ing that calculating the density at a given point of Euleri-
an space (and at a given time) means geometrically map-
ping the phase curve v = u (x, t ) onto the x axis.

Singularities arise at those points where the curve
u (x, t) has a vertical tangent (Figs. 2 and 3). Thus densi-
ty singularities occur due to the singular character of the
initial phase density. An initial state with a thermal ve-
locity dispersion is given by a strip of finite width in the
phase space rather than a line. Its effective width is pro-
portional to the velocity dispersion. Under a mapping,
the phase strip produces no singularities.

Let us consider this question quantitatively (Shukurov,
1981; Zeldovich and Shandarin, 1982b; Kotok and Shan-
darin, 1987). In the initial state with constant density
(except for thermal fluctuations), a smooth velocity field
is given by u =u (q) [Eq. (2.6)]. The thermal velocity dis-
tribution function is assumed to be independent of the
spatial coordinates

f (t =0, x, uth)
=f o(v th) .

Now let us follow the motion of a stream with a given
value of thermal velocity. Its initial density is
dpo=pofo(u, h)du, h. The motion of this stream does not
depend on the others and js given by

x(t, q, v,h)=q+t[u(q)+u, „].
In any particular stream, u, h is constant and therefore

does not inhuence the time of focusing or whether singu-
larities will form. The only effect arises in the coordi-
nates of singularities occurring in different streams. A
stream with thermal velocity u,h has a singularity at dis-
tance u,hto from the singularity of the "main" stream
with u,„=O[here to is the time of singularity formation
(2.4)].

Hereafter the velocity dispersion characterized by the
dimensionless parameter ~ is assumed to be small,

g &o
K=- « 1

Io

where

2 = 1 2v thf o(u t )duty
Po

At the time to= —1/ao [Eq. (2.4)] the density of every
stream is given by Eq. (2.7),

—2/3
Po uth/o

dp(x, vth ) = f0(vth )duth (2.14)

FIG. 5. Evolution of the amplitudes of the main and higher
harmonics during the formation of a singularity in density dis-
tribution (Fig. 2). The numbers of the harmonics are indicated.

Thus the full density can be found by integrating (2.14)
over u,h. Assuming that fo(u, h) is a smooth function
with a maximum at u, h =0, one easily finds the maximum
density at the singular point of the "main" stream
(u,„=O),
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Po 2/3 01
pmax

=
a

—2/3

where
—2/3 ' —2/3

f0( Uth )dU th

A similar estimate of the maximum density at the bound-
ary of a pancake gives

,
' —1/2

p ~2P

3. Gas

(2.15)

Now let us consider the motion of an initially cold gas.
As before, in the initial state the gas density is assumed
to be constant and initial velocity is assumed smooth.
The temperature and pressure are taken to vanish.

The motion of cold gas is like the motion of a cold col-
lisionless medium until the first singularities arise. This
stage is described by Eqs. (2.1)—(2.3). However, streams
of gas cannot penetrate through one another. Gas layers
will run into their neighbors, which results in the forma-
tion of shock waves, since in a cold gas the speed of
sound is equal to zero and therefore the velocity of the
gas is supersonic-in unshocked gas.

Just after the formation of the first singularities [Eq.
(;.7)] at to = —1/ao, two shock-wave fronts arise inoving
in opposite directions relative to the shocked gas. Simple
calculations show that in an ideal gas with adiabatic in-
dex y =C /C„the shock fronts move as

' 1/2 - '3/2
+y —1 y+2 i bt

&s1 +
3 0

X

where lo and to are parameters defined earlier in Eqs.
(2.4) and (2.6). It turns out that the pressure of the
shocked gas at small ht remains approximately constant
(Fig. 6),

y+2 lo
Psh

=
6 Po (2.16)

The distributions of density and temperature of the
shocked gas are

—2/3
Po y+1 xP=
3

r

~ y+2 y —1

R 2 y+2

1/3 ' 2
lo

tp

X

lo

' 2/3 (2.17)

where p is the molecular mass of the gas, and R is the
universal gas constant.

It is interesting to compare the thickness of the
shocked gas 2x,h in Eq. (2.15) with the thickness 2x, of
the three-stream Row region formed in the case of a col-

FIG. 6. Distributions of pressure (p), density (p), and tempera-
ture ( T) a short time after the formation of a gas pancake.

lisionless medium according to Eq. (2.8). Assuming the
same initial velocity, we find that both quantities depend
on same values lo and to and. therefore their ratio is a
constant determined only by y,

Xsh y (y+2)1/2
2

is related to that of the collisionless medium inside the
three-stream Row region p3 by Eq. (2.9),

which equals about 0.64 in the case of y =—,'. The mean
density of the shocked gas,

3Po
Psh
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psh

P3
(y —1)Pgo

Pcmo

4. Sticky dust

Finally we consider the case of sticky dust. This is the
natural limit of a gas system if y —+1, i.e., of an iso-
thermal gas at T =0.

After formation of the first singularity of the kind (2.7)
at the origin, a 5-function singularity develops (Fig. 7).
The density behaves like

' 1/2
ht

p =2polo 5(x),
tp

with its total mass increasing as (ht/to)' . Thus the
growth of the masses of the three-stream Aow regions in
the cases of a collisionless medium, of shocked gas, and
of sticky dust is the same:

where pgo and p, o are the initial densities of the gas and
the collisionless medium, respectively.

At the shock front, the density jumps by a factor of
(y+ 1)/(y —1), and from Eqs. (2.16) and (2.17) the pres-
sure and temperature both fall to zero: the velocity of
the gas before entering the shock wave is

1/2 z
. 1/2

~sh + @+2 ~o ht
t 3 to to

and

5k o: ff (x)e'""dx . (2.18)

Sometimes other characteristics of the Gaussian random
field are used, like an autocorrelation function or a
structural function, but all of them are uniquely related
to the spectrum.

clumps of singularities at the moment in question.
Mathematically this came from using the local velocity
field in the form of Eqs. (2.6} and (2.11). The absence of
the term proportional to q does not change the internal
structure of nonlinear clumps of matter but brings them
to rest. For generic initial conditions [e.g. , given by Eq.
(2.5)] the nonlinear clumps of matter are never at rest but
have finite velocities. This results in collisions and the
merging of clumps.

In this section we consider the asymptotic approach of
the process toward its final state and examine the statisti-
cal properties of density distributions at the late state.
Some of these properties depend on the statistics of the
initial state. In order to describe a random initial state,
we assume that it is specified by a particular —but ex-
tremely important —class of Gaussian random fields.
The distribution function of such a field is Gaussian and
its spatial statistical properties are uniquely specified by a
spectrum 51, that is the ensemble mean square of the
Fourier transform of the random function in question,

1. Collisionless medium

B. Late nonlinear stage

From the discussion above, we learned that, starting
from similar. initial conditions, the motion of the three
kinds of medium in question (collisionless medium, gas,
sticky dust) develops nonlinear structures of diff'erent

types: caustics, shock waves, or films of infinite density.
In considering the structure of nonlinear things, we used
for simplicity a coordinate system moving at the speed of

Here we consider one-dimensional random initial ve-
locity fields U (q) =d4/dq such that the velocity poten-
tial C&(q) is a Gaussian random function specified by the
structural function

K(q}—:([@(q,) —@(q, +q)]~) .

It is assumed that at small q K (q) has the form

K(q)= —
q

——q +2 & 4

2 8

(2.19)

In this case one can calculate the distribution function
G (p, t) of the density at the nonlinear stage as a function
of t (Saichev, 1976). Its asymptotic behavior is of partic-
ular interest:

3 ~'

2 Po 1
G(p, t)= exp&3Br' p 3Br'

(2.20)

FIG. 7. Density distribution after the formation of a pancake in
sticky dust. At the origin there is a 5-type singularity.

The slow decrease of G(p, t) at p~ oo (as p ) is related
to the existence of singularities of the kind p~x ' . As
we shall see, the mean number of singularities per unit
length tends toward saturation at t ~

Another interesting characteristic of the nonlinear
stage is the mean number of streams at one point of Eu-
lerian space:
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(N&=1+ +1 2Bt2 23 1

2 3 3 24 gt' (2.21)
smoothing time for the pressure can be quite different
from that of density and temperature.

At first glance it seems peculiar that (N & is greater than
1, even at infinitely small t.

The explanation of this is that the Gaussian character
of the potential @(q), as well as its derivatives, results in
the existence (with, however, exponentially small proba-
bility) of points with a very large velocity derivative
du/dq =d @/dq .

It should be mentioned that at rather small t, whenever
(N &

~ 2, one can estimate, using Eq. (2.21), the fraction
of Eulerian space with three-stream flows. In. this case
one can neglect the region of five or more stream Aows
and write

(N&=pi+3p3 pi+p3=1

3. Sticky dust

As we have just seen, density inhomogeneities in either
a collisionless medium or a gas decrease as taboo. The
evolution of cold sticky matter is quite different, and as
we shall see it is at least qualitatively like the evolution of
self-gravitating matter in an expanding universe. The
density distribution of matter becomes less homogeneous
in the course of time. The portion of matter merged into
5-function-like clumps gradually increases, as well as the
mean mass of these clumps.

The evolution of density inhomogeneities in matter can
be followed in detail because they are described by the
well-known Burgers equation (Burgers, 1948, 1974),

where p, and p3 are the probabilities that at a point tak-
en by chance there are one or three Aows, respectively.
Therefore

BU Bu
+U =vV u

Bt Bx
(2.22)

p, =-,'((N &
—1) .

In the case under consideration, the mean number of
singularities per unit length is given by

o&4 1c(t)= —exp —
zO~ 7T So. t

Here cr =(a & and oi=((da/dq) &. At t~~ the
number of singularities tends to the number of zeros of
a(q) =du /dq, which can easily be seen from Eq. (2.2).

These results show that at Bt =1.5, the total fraction
of Eulerian space with three-stream Qows becomes equal
to about 50%%uo. At t~bo the mean number of Bows at
every point increases as (N & ~Bt, which results in a
Maxwellian velocity distribution. However the density
fluctuations are non-Gaussian unless coarse graining is
applied, because the singularities never disappear.

2. Gas

supplemented by the equation of continuity

Bp 8
Bt Bx

+ (pu)=0

and the assumption of a homogeneous density distribu-
tion at the initial time p(x, t =0)=po=const (Gurbatov
and Saichev, 1981).

The Burgers equation contains an arbitrary parameter
that can be interpreted as the coefficient of viscosity.
However the manner in which v comes into Eq. (2.22)
implies the model description of viscosity rather than a
physical one. This is the reason why we entitle this sec-
tion "Sticky dust" instead of "Viscous matter. " Cold,
sticking matter is described in the limit v—+0, and we
shall concentrate our attention on this case. The term on
the right-hand side with any nonvanishing value of v, no
matter how small, prevents penetration of one stream of
matter through another.

Again it is convenient to use the velocity potential

ae(x, t)

In analogy with the collisionless case discussed above,
gas pancakes form, moving as if the initial velocity field
were of a generic type. Due to their motion the gas pan-
cakes occasionally experience collisions that result in the
merging of regions of shocked gas and perhaps the for-
mation of new shock-wave fronts.

The intermediate state seems not to be very simple.
Chaotic shock waves with progressively decreasing am-
plitudes gradually transform into random sound waves
(acoustic turbulence), propagating in a gas of constant
mean pressure but possibly of inhomogeneous mean den-
sity and temperature. However, if one takes into account
even a small viscosity and thermoconductivity, one easily
finds the final state: a gas at rest, whose density is con-
stant and equal to that of the initial state and whose tem-
perature can be easily calculated from the energy conser-
vation law. Probably it is worth mentioning that the

with

N(x, t =0)=@0(x) .

Making the Hopf-Cole substitution

u(x, t)=- 2v BU

u(x, t)=

x —
q G(x, q, t)

exp—oo t 2v

G(x, q, t)
exp — ' '

dq
00 2v

(2.23)

we can reduce the Burgers equation to a linear equation
of diffusion with respect to U: BU/Bt =vV' U. Its solu-
tion, transformed back to the velocity, is
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where

G (x, q, t) =C&0(q ) + (x —q)

In the case of infinitely small v describing cold, sticky
matter the largest input into integrals (2.23) comes from
the vicinity of the smallest minimum of 6 (x,q, t). In this
case one can transform Eq. (2.23) into the much simpler
approximate form

U(x, t)= x —
q (x, t)

or into the physically more transparent form

x =q+tuo(q), (2.24)

V; = @0(q ) —@0(q;)

which clearly coincides with Eq. (2.1)'. At small r, deriva-
tives of U are small and the right-hand term in Eq. (2.22)
has practically no effect. Therefore its solution in the
form (2.24) cannot be doubted, as every particle moves by
inertia. Later the situation becomes more complicated.
Formal use of Eq. (2.24) apparently predicts overshoot-
ing, i.e., in some regions one point x corresponds to three
(or even more) points with different q (q„q2,q3 ).
Actually, only one of them (say with q =q& ) can be at
this point. Two others with q =qz and q =q3 run into a
5-function concentration of matter at a previous stage.
At all points q „q2,and q3, G (x,q„t)has minima, but at

q& the minimum is the smallest: 6(x,q~, t)&6(x,q2, r)
and 6(x,q„t)&G(x,q3, t).

After merging into a 5-function-type singularity (at
v~O), two other points with q =qz and q =q3 move
differently than is prescribed by Eq. (2.24). The motion
of 6-function density peaks is determined by the rnomen-
turn conservation law. These peaks moving with
different velocities merge with each other, swallowing the
matter in between and thus growing more massive.

With increasing time, minima of G(x, q, t) approach
minima of the initial velocity potential No(q). Thus the
minima of 40(q) eventually determine the positions of
density peaks in Eulerian space.

More precisely, the coordinates X; of density peaks
can be found from the equation

6(XJ,q;, r)=G(X, ,q, r), (2.25)

where q; and q. are the coordinates of two minima of
6(x,q, t). As mentioned above, at large t they are close
to the minima of C&0(q). When two peaks merge, the
deeper of the two minima survives (the principle of least
action works), and the other one does not inAuence the
motion of density peaks afterwards.

At large t, the Eulerian coordinates of density peaks
X,J and their velocity V;. are given approximately by the
following equations:

q;+q-

(2.26)

FICs. 8. Three drawings illustrating the geometrical technique
for finding the positions of particles and clumps of mass in the
sticking dust model at different times. This method is based on
the procedure of constructing parabolas tangential to the initial
velocity potential provided that crossings are not allowed. The
coordinate of the contact point indicates the Lagrangian coordi-
nate of the chosen particles, while the apex of the parabola
shows the Euler'ian coordinate of the particle. If the parabola
has two contact points simultaneously, this means that both
particles have come to the same point at this time. All the
matter between these particles has been "squeezed" into the
same point. The position of the apex shows the position of the
clump. (a) At small t parabola p= —(x —q) /2t+H (dashed
lines) is narrow and it can touch potential 4O(q) {solid line)
without crossing it. The top of the parabola shows the current
position x of the particle with Lagrangian coordinate q (the
coordinate of the contact point). (b) Later the parabola be-
comes wider and can touch No(q) at two points simultaneously:

q &
and q2. This means that all particles in between (q & q q2 )

have stuck together in the top point x. Parabolas touching @0
at only one point show the positions of points which have not
yet stuck. (c) At large t the parabola becomes so wide that it
can touch 40 only in the vicinities of the deepest minima.
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where q; and qj are the Lagrangian coordinates of two
minima determining the position of the peak. There is an
interesting geometrical technique for visualizing the
search for the minima in question (Fig. 8).

Let us consider the function @0(q) and imagine a para-
bola

p(x, q, t)= — +H(x —q)
2t

(2.27)

III. TWO- AND THREE-DIMENSIONAL MOTION
OF NONGRAVITATIONAL MATTER

The principal new features of two- and three-
dimensional motions are connected with the geometry of
the density distribution. At the linear stage the density
distribution can be called "structureless. " A good exam-
ple of what we mean by that is a smooth scalar Gaussian
field. Later, however, at the nonlinear stage, structures
with nontrivial geometry arise. Again we begin with the
case of a collisionless, continuous medium.

'A. Collisionless medium

The motion of every particle is described by Eq. (1.1).
However, in contrast to the one-dimensional (1D) case,
the 2D and 3D cases require us to distinguish between
different types of initial velocity field:

potential v(q) =grad@(q),
vortex v(q) =curlq'(q),
mixed v(q) = A grad@(q)+8 curial(q),

which at a given t and x is gradually elevated by chang-
ing H from H = —00 to some value Ho where the para-
bola p touches the curve 4&o(q). At large t, p is very shal-
low and therefore touches Co(q) at points lying close to
the minima of @0(q). Actually, these minima are the
deepest ones. Coordinates in the above equation are the
positions of the peaks of p, where p touches 40(q) in two
points q; and q simultaneously. The mass of the peak is
equal to po(qj —

q; ), and the momentum equals

po Uo q q=po +o q. +o (2.28)
l

Thus the above equation for the velocity of the peak is
just the expression for the momentum-conservation law.
This geometrical technique is a vivid method of search-
ing for minima of G(x, q, t), and it is also applicable at
earlier stages. It is presented in more detail in the book
by Burgers (1974) and the paper by Gurbatov and
Saichev (1981).

Finally we note that the motion of sticking matter re-
sults in the formation of 5-function-type peaks of density
accumulating most of the mass. They move gradually
and merge into more massive peaks. At large t, this pro-
cess is governed by the spatial distribution and by the
statistics of the deepest minima of the initial velocity field
potential 4o{q).

where A and 8 are constants.
Keeping in mind applications to the gravitational in-

stability process, we shall discuss mainly the potential
case.

Using the mass-conservation law, one can obtain an ex-
plicit expression for the density as a function of the La-
grangian coordinates and time,

p(t, q)= P-o

BU;
5,k+t

qk

(3.1)

where po is the initial density, assumed to be constant;
5;k =1 if i =k and 5;k =0 otherwise A.s v(q) is a poten-
tial vector field, Eq. (3.1) can be written in terms of the
eigenvalues —a(q), —p(q), and —y(q) of the symmetric
tensor

Bqk Bq;.Bq„
(3.2)

p(t, q) = Po

[1—ta{q)][1—tP(q)][1 —ty(q)]
(3.3)

The eigenvalues a, P, and y govern the local contraction
(or expansion} of matter along three orthogonal direc-
tions corresponding to the eigenvectors. To visualize this
one can imagine the deformation of the small sphere
placed into the point in question. By the 'time t, the
sphere becomes an ellipsoid with axes ro(1 ta), —
ro(1 tp), and ro(1 —t—y), respectively (here ro is the ini-
tial radius of the sphere).

At the linear stage, when ~ta~ &&1, (tp~ &&1, and
~ty ~

&& 1, Eq. (3.3) can be simplified to

p( t, q }=po[1+ t (a+p+ y ) ] . (3.4)

Thus, at the linear stage, the spatial structure of the den-
sity distribution is given by the trace of the deformation
tensor,

d;;= —(a+p+y) .

Locally the first singularity p= ~ arises at the positive
maximum a of the function a(q) at the time t =1/a~.
It is worth mentioning that in the generic case cz is never
equal to p or y at the maxima. Therefore the first singu-
larities originate from a locally one-dimensional contrac-
tion of matter.

At the time t =1/a the density becomes singular at
a single point q=q where a=max. After a short time
ht has elapsed, the density at this point again becomes
finite, but it becomes infinite at the surrounding surface
a(q)=1/(t +ht) &a . In Lagrangian space the level

(the negatives are used for historical reasons). We as-
sume that they are ordered in every point of Lagrangian
space,

a(q) ~ P(q) and P(q) ~ y(q) .

Equation (3.1) then becomes
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surfaces of a in the vicinities of maxima are ellipsoids
with three different but comparable axes. In Eulerian
space, surfaces of infinite density (caustics) have a quite
di6'erent shape (Fig. 8). This occurs partly because the
motion [Eq. (1.1)] conserves continuity but has one axis
much smaller than the two others. The inner structure of
the region surrounded by the caustic is similar to that be-
tween two singular points in the 1D case discussed be-
fore. In cosmology these regions of three-stream How in
3D are known as "pancakes" (Zeldovich, 1970). Their
similarity to 1D "pancakes" (i.e., three-stream fiow re-
gions), on the one hand, and 2D or 3D pancakes, on the
other, is not only qualitative; the density profiles near
singular points obey the same power laws. At the mo-
ment of origin of a pancake t =1/u the mean density in
a small sphere of radius r centered on the singular point
is p(r) ~ r [see Eq. (2.7)], and near most of singular
points on the pancake surface p(r) ~ r ' [see Eq. (2.10)
or (2.12)]. However, the pancake surface is not smooth
but itself has a singular curve (Fig. 9). In the vicinity of
this curve, thc density incrcascs as p c( P'

In the course of time the pancake grows both in size
and in mass. The thickness of the pancake increases with
time as d cc(ht/t ), as in the 1D case [Eq. (2.8)], and
its diameter grows as D ~ ( b, t /r )

' . Thus, just after
formation, the pancake is infinitely thin: d/D cc (ht/r )

at At~0. This is connected with the fact that, being a
phase velocity, the growth rate of the diameter
dD/dt ~ At ' is infinite at At —+0. This velocity is not
related to the velocity of the Quid relative to the pancake
center along the same direction. The latter depends pri-
marily on the other eigenvalues p and y and therefore
can be either positive or negative. This short description
summarizes the main properties of pancakes arising as a
result of generic potential flow.

B. Similarity with geometric optics

It is quite easy to demonstrate that the 2D motion of
collisionless media is similar to the propagation of light
in geometric optics (see, for example, Zeldovich,
Mamaev, and Shandarin, 1983).

Let us consider a horizontal, transparent plate il-
luminated from below by columnated light (Fig. 10). The
plate has a Aat base at the plane r =0 and a smoothly

FIG. 10. The scheme of an optical experiment simulating the
formation of the cellular structure in 2D.

r(z, q) =q+zs(q),
where

(3.5)

(3.6)

varying thickness specified by a function h =h(x, p).
When the rays pass through such a plate they are
deAected somewhat differently at different points. We
denote the deAection angle by s, which determines the
direction of the ray after passing through the plate. All
deAection angles are assumed to be small and the plate to
be thin. The two-dimensional coordinates of the ray
entering the plate at the point with coordinates
q=(q„q2)depend on z and are

(n is the refractive index of the plate, which for simplici-
ty is assumed to be independent of the wavelength of
light). Putting the screen at some distance z from the
plate, one will see an inhomogeneous distribution of
brightness. Denoting the brightness by the same letter as
the density of Quid in the mechanical case, one obtains

FIG. 9. A surface a =const in the vicinity of o; =max, both in

L (Lagrangian) and E (Eulerian) spaces at time t = 1/a. At this
time the surface cx =cqnst is a caustic in E.

Po
p(z, q) =

[1—za(q)][1 —zP(q)]
(3.7)

where a(q) and /3(q) are the principal curvatures of the
surface h =h (q). Of course, they are equal to the eigen-
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values of the tensor 8 h /Bq, Bqk.
Comparing Eqs. (3.5) and (3.7) with (2.1) and (2.2) or

with (1.1) and (3.3), one immediately notes the similarity
of the optical example to the mechanical problems dis-
cussed before. The plate thickness h is analogous to the
velocity potential, and the vertical coordinate z is analo-
gous to the time.

With obvious modifications one can consider the
reAection of light from a curved surface instead of the
propagation of light through a transparent plate.
Perhaps everyone has observed the peculiar pattern of
bright spots at the bottom of a shallow pool of water or
at a bridge vault emerging on a sunny day when sunlight
refracts or refiects at the surface of rippled water (Fig.
11). This pattern resembles a distorted honeycomb struc-
ture, in which large dark regions are separated by bright,
relatively narrow "walls. "

An essential feature of optical systems is the potential
form of initial perturbations; the potential is the function
defining the refracting or reAecting surface. If the sur-
face is curved along one direction only [h =h (x)], then
such a system simulates the one-dimensional motion of a
collisionless medium.

The structure discussed above is an example of inter-
mediate asymptotics. At z~ ~ after many intersections
of the rays of monochromatic light the distribution of
brightness on the screen represents a speckle field, i.e., a
nonstationary (at given z), spotty distribution of bright-

FIG. 11. Distribution of brightness on the screen in the optical
experiment shown in Fig. 10.

ness caused by the wave nature of light (see, for example,
Baranova et a/. , 1983).

C. Motion as mapping and catastrophe theory

From the mathematical point of view both the motion
of collisionless particles in mechanics and the propaga-
tion of rays of light in geometrical optics are a one-
parameter (t or z) family of dift'erentiable mapping.
After a time t, the mapping assigns a point with coordi-
nates q in Lagrangian space (L) to its final position x in
Eulerian space (E).

The case of particular interest is the gradient mapping
having the form q ~Of /Bq.

For sufficiently short times t, the mapping is one-to-
one. However, as we have already seen, as time passes
the particles begin to overtake one another and the map-
ping develops singularities. Surfaces of infinite density
arise in E. This means that infinitely close particles from
L, arrive at the same point in E.

The very-well-known example of the focusing of light
rays at a single point by a spherical lens is not typical
from our point of view because it is the result of a very
special (not generic) initial field s(q). In generic cases the
set of singular points forms a caustic, i.e., a closed sur-
face in 3D or a closed line in 2D. In turn caustics also
have singularities like cusps; however, overly complicat-
ed singularities are unstable. Infinitesimal, smooth varia-
tions of the function defining the mapping cause the de-
cay of unstable singularities into stable ones.

Generic (i.e., stable) caustics in one-, two-, and three-
dimensional space have only standard singularities. It is
not easy to imagine even the simplest caustics in. 3D.

The simplest mathematical models for singularities are
called normal forms. They give a local field 4&(q) [Eq.
(1.4)] in the form of elementary polynomials containing a
few parameters. The singularities arise at critical values
of these parameters.

In 1D motions of collisionless media, there are only
two kinds of generic singularities, A z and A 3 according
to Arnold's classification (Arnold, 1972, 1982, 1986).
The former is the boundary of pancakes and can exist at
any moment of time. The latter exists only at particular
moments when a pancake originates. In 2D and 3D
there are a few more kinds of singularities as well as
metamorphoses. All of them are known for the gradient
mapping. One can find their normal forms in the paper
by Arnold (1982) or in the book of Arnold, Gusein-Zade,
and Varchenko (1985).

It is interesting that the points of the potential field
C&(q) giving the mapping (1.1) are specified by conditions
with a very simple geometrical meaning (Arnold et al. ,
1982; Rozhanskij and Shandarin, 1984). To discuss this,
one needs to use the following quantities. Differentiating
the scalar field N(q) twice, one can find a tensor field

d;1, (q) = —8 4'/Bq;Bqk, three fields of its eigenvalues
A,;(q) = Ia(q), P(q), y(q) I, and eigenvector fields
p"(q)=lp' '(q);p' '(q);p'r'(q)I belonging to these ei-
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genv@lues. As before, the eigenvalues are supposed to be
ordered in every point: a )P and P)y.

The origin of the pancakes is connected with the
metamorphosis specified as A3(++ ) and takes place at
the positive maxima (as we consider t )0) of the greatest
eigenvalue a(q).

The newborn pancake is bounded by a caustic which is
the map in E of the level surface a(q) =const. Almost all
points of this surface are singularities of the kind A 2 dis-
cussed before. The exceptions are points A3 forming the
edges of the pancake. In L (i.e., Lagrangian space),
points A 3 are specified by the condition that the vector
p' ' and the level surface a(q) =const touch. Sets of A3
points form surfaces. At any moment t, the level surface
a(q) = 1/t cuts out the line on the surface A i. The map
of this line in E (i.e., Eulerian space) is the edge of a pan-
cake.

There are also points where the vector p' ' is tangen-
tial to the surface A3 (i.e., the set of points A3). They
are classified as A4 and are called "swallowtail" points.
In I., the set of such points forms lines. The swallowtail
points play an important role, connecting pancakes in the
joint cellular structure.

Finally, vector field It, ' '(q) is tangential to lines A4 in
individual points called A 5.

Some types of singularities are situated at a set of indi-
vidual points. They form at individual moments of time
and are called metamorphoses of caustics, as they are
subsets of caustic surfaces. An example of metamor-
phoses are the maxima of a(q) [called A3(++)], where
pancakes originate. In the saddle points of a(q) [called
A3(+ —)] pancakes merge with each other.

Conditional maxima of a(q) lying on lines A4 [called
A„(+)] are points where "swallowtail singularities"
originate. In the conditional minima of a(q) lying on A~
[called A4( —) ] two swallowtails conjoin.

It is worth recalling that we consider events only at
t & 0; thus points of positive n are under consideration.

The regions of positive a in L can contain the region of
positive p, which by our definition is not greater than a.
There are also regions of positive y within the positive p
region. In all of them there are similar singularities
defined by similar conditions involving level surfaces of
p(q) and y(q) corresponding to fields of eigenvectors It, 'i '

and It,'r', These fields give rise to their singularities even
later. If the initial potential @o(q) (1.4) is a smooth
Gaussian random field, then the fractions of matter pass-
ing through the a, p, and y caustics (i.e., caustics related
to a, p, and y) are, respectively, about 92%, 50%, and
8%,' these numbers are the fractions of the volume where
a, p, and y are positive (Doroshkevich, 1970). In 2D the
area with a)0 is about 79%, and with p) 0 is about
21%. These numbers are given again for Gaussian fields.

We have briefly discussed the singularities connected
with only one of three eigenvalues at the given point.
However, in 3D there is a set of points forming lines
where a=p or p=y (note that points with a=p=y do
not exist in generic fields). These lines give rise to singu-

larities specified as D4, of which there are two kinds:
D4+, also called "purse" or "hyperbolic umbilic" singu-
larities in catastrophe theory, and D4, called "pyramid"
or "parabolic umbilic. " Io addition there are points
D&(+ ) and D4( —) on lines D~ where singularities of cor-
responding kinds onginate and conjoin. Finally there are
also points on lines D5 where metamorphoses of D~+ into
D4 and vice versa take place.

This short enumeration gives the full list of kinds of
singularities and metamorphoses arising in generic 3D
potential Bows. They are examples of perturbation
growth in a zero-temperature collisionless medium.

One can find more details in papers by Arnold (1972,
1982, 1986), Arnold et al. (1982), and Rozhanskij and
Shandarin (1984).

D. Topology of the regions of rnultistreatn flaws

The first regions of three-stream Bows originating as
pancakes grow rather quickly in diameter. Some of them
change their shapes by means of the swallowtail
metamorphosis, and the process of conjunction begins.

Relatively quickly the regions of multistream Bow
form a joint structure. Probably the most familiar 2D ex-
ample of such a structure is the bright pattern mentioned
above that sometimes occurs at the bottom of a shallow
pool of water due to refraction of initially parallel light
beams by a rippled surface. Regions where three or more
beams of light fall are generally brighter. The boundaries
between bright and dark regions are especially bright,
since they are caustics.

Our ideas about network structure have come from the
impression that the dark regions are generally separated
from one another, despite the fact that the total area oc-
cupied by them is greater than that of the bright regions.
In contrast, the bright regions form a connected cellular
structure.

If the plane were divided into bright and dark regions
by chance one might naturally expect regions occupying
less area to be separated.

Let us discuss this question in detail. It turns out that
a good statistics characterizing the topological properties
of random fields is percolation statistics (Zeldovich,
1982a, 1983; Shandarin, 1983b; Shandarin and Zeldovich,
1983, 1984).

The natural example to start the discussion is a smooth
random Gaussian field. This is a good approximation to
the brightness distribution at small distances from the
rippled surface of water or for the density distribution at
the linear stage. In both cases it is supposed that the re-
fracting (or refiecting) surface or the potential generating
the initial velocity field is a Gaussian random function.

Let us divide the space in 30 (or the plane in 2D) into
two kinds of regions: "bright" region. s where the Gauss-
ian field f is greater than some level f, and "dark" re-
gions with f &f, . Generally speaking, the structure of
regions of both kinds is pretty coxpplicated. There can be
large bright "continents" with dark "lakes" and bright
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"islands" in the lakes or vice versa. Apparently these
structures change with changing f, .

By definition we shall call regions of one kind "con-
nected" if they percolate. This means that there is an
infinite cluster between the clusters in question. (Accord-
ing to percolation theory, every individual region
separated from others is called a cluster. ) An infinite
cluster means a connected region that cannot be con-
tained in a sphere of finite radius.

In the case of 2D Gaussian fields there is percolation
along (say) bright regions if,the total area occupied by
them exceeds about 50%%uo. (However, this has not been
strictly proven. ) There is a possibility that the percola-
tion threshold is somewhat higher (50+@.)%. In the
range from (50—e)% to (50+a)% neither bright nor
dark regions percolate (Menshikov et al. , 1986). It
should be noted that this does not break symmetry be-
tween bright and dark regions, because in this range nei-
ther phase percolates.

The question becomes more complicated in 3D. There
are three possibilities: (1) the dark phase percolates but
the bright one does not, (2) vice versa, and (3) both bright
and dark phases percolate. Thus there are two thresh-
olds in the fraction of volume occupied by one of the
phases when transitions from (1) to (3) and from (3) to (2)
take place. In the case of Gaussian random fields, a
phase occupying less than about 16%%uo of the total volume
does not percolate; otherwise it does percolate (Skal
et a/. , 1973). It is worth mentioning an interesting coin-
cidence: 16% is also the fraction of the total volume in
which the Gaussian field exceeds the lo. level above the
mean value.

These numbers seem to be in general agreement with
intuitive ideas about random fields, at least in 2D. But
this picture clearly is unlike the nonlinear distributions of
brightness (Fig. 11) or density (Fig. 12) having non-
Gaussian types, where in contrast to the Gaussian case,
bright and dense regions percolate occupying markedly
less area than dark or rarified ones.

With Gaussian fields, one can speak of structures asso-
ciated with two phases of the volume, a "bright" phase in
which f)f, and a "dark" phase in which f (f, . Non-
Gaussian fields, however, can also possess structures of
some kind, being in a sense independent of the chosen
level of f, . The idea is to use percolation thresholds as
statistical parameters characterizing the topological
properties of a non-gaussian random field (Shandarin,
1983b). Starting from a very high level and lowering it,
one can find the volume fraction U& occupied by. bright
regions (where f)f„atthe percolation threshold).
Keeping in mind the limiting case UI~O for a three-
dimensional cobweb, we find it natural to specify the ran-
dom field in question as a network structure if U, (0.16.
If the other percolation transition that stops percolation
along a dark region (where f(f,2) takes place at
vz &0.84, then the random field can be specified as a cel-
lular structure. Again we have an evident limiting case
of a honeycomb structure with infinitely thin walls where
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FICx. 12. Distribution of particle density at the early nonlinear
stage in 2D: (a) poor resolution (Shandarin, 197S); (b) Ane reso-
lution (Buchert, 1988).

U2 —s0. If the field is positive (f)0), as with density or
brightness distributions there are additional natural pa-
rameters at the thresholds. They are the fractions of
mass (or light) in bright regions at the percolation thresh-
olds. The larger they are, the more distinct the structure.

Returning to the formation of structure at the non-
linear stage of the evolution of density perturbations, let
us recall that the process begins from the origin of three-
stream Aow regions. Their boundaries in E are mappings
of the level surfaces of o. in L, which can be directly seen
from Eqs. (3.2) and (3.6). In contrast to perturbations
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5p/p, which are a Gaussian random field where regions
of positive (5p/p) 0) and negative (5p/p &0) perturba-
tions occupy equal volumes (or areas in 2D), regions of
positive a occupy about 79% of the total area in 2D and
about 92% of the total volume in 3D (Doroshkevich,
1970). Both numbers are somewhat greater than the per-
colation thresholds in Gaussian fields (50% in 2D and
84% in 3D); thus it is safe to suppose that regions of pos-
itive o. percolate in I.. In contrast, regions of negative a
do not percolate.

What is extremely important is that the mapping (1.1)
from I to E is continuous. This means that every two
neighboring points in L remain neighbors in E. (The
converse, incidentally, is not true. } Therefore the map-
ping (1.1) conserves the topology. Every closed line in L
is transformed into a closed line in E.

As we have learned, during the growth of density inho-
mogeneities, the regions of positive o generally contract
and the regions of negative a expand. Thus the regions
of negative a remain isolated and increase their fraction
of volume. This is the main qualitative reason for the
formation of cellular structure at the beginning of the
nonlinear stage (Zeldovich, 1982a).

Assuming that the Geld of a has about the same per-
colation thresholds as a Gaussian Geld, one can find that
the fraction of volume necessary for percolation is about
16%, and this threshold in terms of a means that
a&a, 6% 2oz [here od=((B 40/Bq;Bqk) ) is the
dispersion of the deformation tensor components (3.2)].
Using this estimate one can calculate the time when these
level surfaces become caustics, t = 1/a&6%. At this time,
the mean density perturbations [predicted by linear
equation (3.4)] reach a value of only about
5p/p=((5p/p) )' —1. This means that percolation
along multistream low regions arises at the very begin-
ning of the nonlinear stage. At this time the fraction of
the total volume occupied by them in E is 2—3 times less
than 0.16, and this produces the impression of very dis-
tinct network structure. Similar estimates are also possi-
ble in 2D, where the threshold is a =~5O% 0 75cTd.

In considering the evolution of density inhomo-
geneities in a collisionless medium, one must not use
these simple arguments for too late times. The reason is
that the contraction of a volume element ceases after
passing the singularity and begins to expand. Ultimately
it results in expansion of the multistream flow regions to
the total volume. It is even very doubtful that cellular
structure (in the above sense) can be formed by multi-
stream flow regions in a collisionless medium in 30.

By contrast in sticky matter, cellular structure arises
quite easily. This will be discussed later when we consid-
er a self-gravitating medium and cosmology,

IV. GRAVITATING MATTER. COSMOLOGY

Surprisingly, the above consideration of examples of
motion in different media (collisionless particles, gas,
sticky particles) in the absence of gravitation turns out to

be a very good preparation for the study of nonlinear
gravitational instability on the scale of clusters and su-
perclusters of galaxies. For physicists having interests
far from astronomy and cosmology, we recall that clus-
ters and superclusters of galaxies, along with the voids
between them, are the principal elements of the large-
scale structure of the universe. The scales in question are
from about 1 Mpc =3X 10 cm to a hundred or perhaps
a couple of hundred Mpc. On the scale of these giant
structures, even dark matter galaxy halos having typical
sizes of several tens of kiloparsecs can be considered as
point concentrations of mass. On the other hand, large-
scale structure is still much less than the horizon scale
@to —10 Mpc; therefore, for the description of motions
that result in large-scale structure formation, one can
safely use a Newtonian description of mechanics and
gravitation (Bonnor, 1957; Peebles, 1980; Zeldovich and
Novikov, 1983).

The problem of large-scale structure has at least two
aspects. First, to describe and explain the present large-
scale structure one needs to develop a nonlinear theory of
gravitational instability that becomes important at a re-
cent epoch, say at z —5. [Here z is the redshift and is
used to indicate the epoch in cosmological evolution; at
present z =0, while at the big bang z —+ Oo. The overall
size of the universe at epoch z is (1+z) times less than
now. ] Considering the smaller scales of galaxies, one
must remember the importance of gas. dynamic and
thermal processes in the baryon component.

Second, to study density inhomogeneities at the non-
linear stage, one needs to know the primordial distortions
of homogeneity of the universe. It is generally accepted
that these distortions arise as quantum fluctuations in the
inflationary universe (see, for example, Peebles, 1984b;
Kofman and Linde, 1987). Later, at .the Friedmann
stage, the relevant perturbations exist in the form of
standing waves having random phases. Although pertur-
bations of gravitational wave types must be present in the
universe, they exert no influence upon the formation of
large-scale structure. We mention the problem of pri-
mordial fluctuation origin only because its solution is
unavoidable in the full theory of structure formation.

A. Dark matter in the universe

Astronomers encountered the problem of dark matter
about half a century ago while studying the dynamics of
rich clusters of galaxies (Zwicky, 1933). Recent investi-
gations have shown that luminous matter of all kinds, in-
cluding stars, gas, and dust, comprises only a small frac-
tion of the total mass of the universe (see, for example,
recent reviews by Einasto et al. , 1987, and Trimble,
1987). Basic arguments for the existence of dark matter
come from data about the rotation of spiral galaxies and,
as we have already mentioned, about the motions of
galaxies in clusters of galaxies. Fast rotation of hydrogen
clouds far outside the luminous discs of spirals, as well as
high-velocity dispersion of galaxies in clusters, indicates
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deep gravitational potential wells. Neither in individual
galaxies nor in clusters can the strength of the gravita--
tional field be explained by the luminous matter.

The theory of nucleosynthesis in the framework of big
bang cosmology puts severe limits on the mean density of
baryons. The theoretical predictions of the abundances
of light elements H, 0, He, He, and Li can be recon-
ciled with observations only in a low-baryon-density
universe, Qi, h 50

~ 0. 14 (Olive et al. , 1981), where

Q&=P&/p„, p„=3HO/8mG=5X10 it~0 gcm, and
h50=HO/(50 kms 'Mpc '). The dimensionless param-
eter Q characterizes the overall geometry of the Fried-
rnann universe and its future fate. If the total value
Q, & 1, the universe is closed and eventually will cease to
expand and finally collapse. The cosmological model
with the critical value of the total mean density Q, =1
(p, =p„) is the fiat Friedmann-Robertson-Walker
universe, which will expand forever; observations restrict
15h50 S2, and thus Qb ~0. 14.

However, if most of the mass of the universe is in
baryons, one encounters serious difBculty in explaining
the observed structure formation. The observational
upper limits on anisotropies of the microwave back-
ground radiation, b.T!T6 3 X 10 over the range of an-
gular scales from minutes to quadrupole (see, for exam-
ple, Melchiorri et al. , 1986), impose very strong restric-
tions on the type, spectrum, and amplitude of density
fluctuations at the decoupling epoch (Sec. IV.F). These
restrictions are especially severe in open universes (Guyot
and Zeldovich, 1970). In addition, the theoretically very
attractive and popular model of the inflationary universe
predicts a flat universe Q, =l. The cosmological con-
stant A can also contribute to Q, if A&0. However the
A term does not help to solve the problem in question,
since it,was devised to describe a model with homogene-
ous density pA=c A/8m G

Thus, on the basis of the arguments mentioned above,
astrophysicists have come to the conclusion that the
most probable candidates for constituents of dark matter
are weakly interacting massive (i.e., m &0) particles
(Marx and Szalay, 1972; Cowsik and McClelland, 1973;
Szalay and Marx, 1976). At present they dominate the
mean density of the universe, possibly amounting to as
much as QDM-0. 9-0.99. They interact solely due to
gravitation and thus can in6uence the dynamics of galax-
ies or more massive objects.

Current theories of elementary particles suggest a
lengthy list of weakly interacting particles as possible
candidates for dark matter. There are neutrinos of elec-
tronic or other kind (if they possess masses about 10—100
eV), photinos (supersymmetric partners of photons), ax-
ions (pseudoscalar bosons suggested by theorists to avoid
strong violation of CP symmetry in strong interactions),
and others in the list (for reviews, see Primack, 1986, and
Turner, 1987).

The microwave background radiation, with a tempera-
ture T& =2. '7 K., gives Q&=10 . If neutrinos are rnass-
less (and cannot cluster), they also contribute about

Q —10 and therefore are unimportant as candidate
constituents for dark matter in this case.

At late stages when nonlinear e6'ects become impor-
tant, weakly interacting particles behave like collisionless
dust. The baryon component, which plays a crucial role
in the formation of galaxies and stars, is a perfect gas at
pregalactic stages. Thus all examples discussed above are
related to some extent to the problem of large-scale struc-
ture formation. As we shall see, gravitational attraction
sometimes can be approximately described by sticking of
particles.

B. Linear gravitational instability

5k~k at k~k, (4.1)

Here k =2~a(t)/A, is the comoving wave vector, while
k, corresponds to the horizon at the epoch of equality,
when the density of radiation is equal to the density of
nonrelativistic matter (Sec. IV.D). However, the shape of
the spectrum at shorter scales k & k, crucially depends
on the kind of particle dominating the mean density of
universe.

Large-scale density inhomogeneities grow with time
under the action of gravity (Lifshitz, 1946; Lifshitz and
Khalatnikov, 1963). The microwave background radia-
tion data on angular anisotropies show that, at the epoch
of the last scattering at zd -1400, when radiation decou-
pled from matter, the density distribution of the universe
was almost homogeneous, 5p/p & 1, and its evolution is
perfectly described by the linear theory given in text-
books on cosmology (see, for example Peebles, 1980; Zel-
dovich and Novikov, 1983). Here we briefly mention
only some results of linear analysis relevant to our topic.

Evolution of density fluctuations depends both on
epoch and on scale. This results in changing of the spec-
trum of density Auctuations. In turn the shape of the
spectrum at the dustlike stage determines the essential
features of nonlinear processes resulting in the origin of
galaxies and large-scale structure.

In accord with a widely accepted idea, we assume that
the primeval perturbations originated at the inAationary
stage (Starobinsky, 1980; Guth, 1981; Linde, 1982, 1984).
They seem to have been generated as null quantum Auc-
tuations (i.e., irreducible at T=O) of a scalar field or
metric. The idea of null quantum fluctuations was first
suggested by Sakharov (1965), in the framework of the
presently unacceptable model of a cold universe (not to
be confused with the cold dark matter universe). The
most attractive idea seems to be that of simple adiabatic
density perturbations (Harrison, 1970; Zeldovich, 1972).
In this case the long-wave part of the density perturba-
tion spectrum at the linear stage after, say, decoupling is
independent of the kind of weakly interacting particles
that constitutes the dark matter and obeys a simple
power law,
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C. Hot and cold dark matter

The most important characteristic of weakly interact-
ing particles during the linear evolution of density per-
turbations is the value of their thermal velocities. This is
because all density perturbations with scales less than the
horizon size damp completely at the relativistic stage due
to free streaming (Doroshkevich et al. , 1981). In con-
trast, once nonrelativistic they begin to slow down and
quickly become a cold-dust-like medium. At this stage
surviving density perturbations grow at the rate 5p/p ~ a
if nonrelativistic particles dominate the mean density;
otherwise perturbations, while not completely damped,
remain only stagnant (Guyot and Zeldovich, 1970;
Meszaros, 1974). To summarize, one can conclude that
all perturbations with scales smaller than the horizon
damp when weakly interacting particles become nonrela-
tivistic, and the spectrum of perturbations acquires a
sharp cutoff at short wavelengths.

The value of the cutoff scale is a very important pa-
rameter characterizing the formation of large-scale struc-
ture, as it determines the scale of the first nonlinear
clumps (i.e., inhomogeneities attaining 5p/p & 1) and the
time sequence of the formation of large-scale objects.

Neutrinos are an example of hot dark matter (HDM),
as they become nonrelativistic at a rather late stage,

1+z.=6X10'—
30 eV

(4.2)

M. -2X10I5
30 eV o, (4.3)

where MO=2X10 g is the mass of the Sun. M can be
expressed through fundamental constants M =mp}m
[here mp&=(A'c/6)' is the Planck mass; Bisnovatyi-
Kogan and Novikov, 1980].

HDM cosmological models lead to the so-called "top-
down" scenario for large-scale structure formation. This
means that the first objects to form are pancakes of su-
percluster sizes, and gal'axies form later by fragmentation
of the pancakes (Sunyaev and Zeldovich, 1972;
Doroshkevich and Shandarin, 1974; Shandarin et aE.,
1983; Silk et al, 1983; Zeldovich, 1984). One particular
variant of the HDM model assumes that particles are un-
stable, with a lifetime —3 X 10 yr (Doroshkevich and
Khlopov, 1984), resulting in somewhat better agreement
of the Inodel with observations.

In cold dark matter (CDM) cosmology, the scale of the
cutoff in the spectrum of perturbations is too small to be
of any importance for large-scale structure formation. A
cutoff of small scale can happen for either of two reasons.
First, the mass of particles might be so large that they be-
come nonrelativistic very early. Second, there are parti-
cles like the axion that never were in thermal equilibrium

where z, is the redshift and m is the neutrino mass in
eV. At this epoch the horizon scale corresponds to the
typical size of large-scale structure and in mass units is
about

—2

and thus have a very low thermal velocity dispersion
despite their small masses.

In CDM models the formation of astronomical objects
begins with globular star clusters with a mass of about
10 Mo, later, galaxies form, and finally clusters and su-
perclusters. This is the "bottom-up" scenario (Gott and
Rees, 1975; Peebles, 1980; Blumenthal et al. , 1984; Pri-
mack and Blumenthal, 1984).

Warm dark matter (WDM) models have also been sug-
gested, with a cutoff in the density perturbation spectrum
in the range of galaxy masses. However, at present
WDM models seem to be unpopular, mostly due to the
lack of good candidate particles (see, for example, Pri-
mack, 1986).

D. Equality epoch

( 1+z,q ) = 10 Qh ~0( 1+0.68K ), (4.4)

where X is the number of massless neutrino species.
The mass of particles contained in the horizon size
volume is about

M,q=10' (Qh5O) Mo

and the comoving linear scale is

R,q
=40(Qh 5O )

' Mpc .

(4.5)

(4.6)

It is interesting to note that M, is close to M for m
several tens of eV. Thus in a neutrino-dominated
universe the spectrum of density fluctuations has practi-
ca11y only one scale.

There is another epoch in the history of the universe
that is also important from the point of view of the evolu-
tion of density perturbations. At this time the density of
the nonrelativistic component becomes equal to that of
the relativistic component. Earlier the universe is radia-
tion dominated, while later it becomes matter dominated.
(Detailed discussions of the question, including other
possibilities, can be found in the review of Poinarev and
Khlopov, 1985.)

In a radiation-dominated universe, perturbations on a
scale larger than the horizon grow as a . In contrast, the
growth of perturbations [or nonrelativistic weakly in-
teracting particles with wavelengths shorter than the
horizon experience stagnation (Guyot and Zeldovich,
1970; Meszaros, 1974). This effect produces a bend in the
spectrum of density fluctuations from the initial power-
law index n to n —4 at the scale of the horizon at the
equality epoch (Peebles, 1980). A detailed consideration
has shown that the standard inflationary spectrum (the
so-called Harrison-Zeldovich spectrum), having a
power-law form in long waves 5k ~ k (k &k,q), acquires
the form 5k ~ k ln k (at k &&k,q ) (Primack and
Blumenthal, 1984; Starobinsky and Sahni, 1984).

The transition from radiation to matter domination
takes place at
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E. Spectrum of density fluctuations at z &zeq $2 1
k

ln (1+Bk)
2 (4.9c)

In this section we present the results of calculations of
the density Auctuation spect;rum for weakly interacting
particles after they have passed the epoch of equality. As
a very crude approximation to the spectrum, one can see

T

5k=A X

at k&k,k

eq

k
k,

0 atk &k,

at k, &k&k (4.7)

where k, and k are related approximately to M, and
M as M-pk; M denotes the mass of matter within
the horizon when weakly interacting particles become
nonrelativistic. In the case of HDM there is no branch
with k slope as M -M,q.

Equation (4.7) gives only a qualitative description of
the spectrum. Accurate numerical calculations of the
HDM spectrum were c@rried out by Bond and Szalay
(1983), who also provided an analytic expression to ap-
proximate the numerical results,

k =0.49Aohioo Mpc
(4.8a)

=4.8
30 eV

Mpc .

Similar numerical calculations of the spectrum of density
Iluctuations in CDM were performed by Peebles (1982a),
Blumenthal and Primack (1983), Bond and Efstathiou
(1984), and Starobinsky and Sahni (1984).

There are also a few analytical approximations of these
results. One of them is as follows (Peebles, 1982b,
1984a):

Sk 0:k/(I+ak+pk ) (4.9a)

where a=24(8/h~o) Mpc, B=42(8/h~o) Mpc, and 8
=T„o/2.7 K. Another approximation, suggested by
Bond and Efstathiou (1984) in a slightly more general
form, is

where h, oo =Ho/(100 km s 'Mpc '). Another approxi-
mation of the same numerical data was suggested by
Doroshkevich (1984),

&2k oc
k

(1+k g )'
(4.8b)

ln(1+Bk )

(Ak)

F. Decoupling epoch

At early times the temperature in the universe was so
high that ordinary baryonic rnatter was in a completely
ionized state. In the course of expansion the temperature
decreased, and at about T=4000 K (i.e., at zd —1400)
atoms of hydrogen formed and the baryonic gas became
practically neutral. This cosmological recombination is a
very important event from the point of view of inhomo-
geneity growth.

Before recombination at z & zd the highly ionized
baryonic gas was strongly coupled with the background
radiation, which caused very high elasticity, so that the
speed of sound was about the speed of light. As a result,
baryon perturbations with scale less than the horizon
could not grow —in other words, the Jeans scale was ap-
proximately the same as the horizon.

After recombination, neutral' baryonic gas decoupled
from the radiation. The Jeans mass fell to about 10 Mo,
and all perturbations of larger scale could grow due to
gravitational instability. .

After decoupling, the amplitude of the baryonic per-
turbations grew rapidly to match that of the dark Auc-
tuations (Grishuk and Zelovich, 1981).

In the case of HDM the scale of perturbations is much
greater than the Jeans scale, and therefore one can
neglect the temperature of the matter. In the linear re-
gime, density perturbations of a cold medium (T =0 and

p =0) grow in a self-similar manner (Doroshkevich and
Zeldovich, 1964),

5p r
p a(t2) '

I

b(t2) gp
b(ti) p

r
a(t, )'

where a(t ) is a scale factor and b(t) describes the growth
of the amplitude, to be discussed later.

It is not diFicult to analyze the next approximation,
taking into account the gas pressure in the limit

where A+ 12.38 y' h 5O Mpc; B=7.30 g' h 50 Mpc;
g=Q„,

& 0/Qr 0. This last approximation correctly repro-
duces the limiting cases both at k ~0 and k ~ oo.

It is worth stressing that the transition from one stage
to the other occupies a range of more than two orders of
magnitude in k.

&k~ 2z
( I+ tzk +Pk ' +yk )

with a=6.81 Mpc, p=721 Mpc', y= 161 Mpcz, and
1 =(Qh s08 )

The approximation proposed by Starobinsky and Sahni
(1984) is

In this model, initially recombination proceeds in accord with

the equilibrium Saha equation. Later noticeable deviations con-
nected with the structure of hydrogen atom levels become im-

portant (Peebles, 1968; Zeldovich et al. , 1968). However, this is
unimportant for the growth of density fluctuations.
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X/A, z »1 (Zeldovich, 1982b).
Let us introduce a new function V(r/a, r ),

5p r=b(t)%
p a'

r rK ——
a a

I

a
1 3

, , t& d r
a

where

dt .

An important result of the study of linear evolution of
density perturbations after decoupling is that both dark
matter and baryonic inhomogeneities on scales larger
than about 10 Mo enter the nonlinear regime simultane-
ously.

V. APPROXIMATE SOLUTION OF NONLINEAR
GRAVITATIONAL INSTABILITY

We begin by discussing the nonlinear stage of gravita-
tional instability within the HDM model.

The approximation of a cold medium (i.e., with T =0)
is appropriate in this case, as there are practically no per-
turbations on scales smaller than M -2X 10' Mo (4.3),
and the Jeans mass is much less.

The growing mode of density perturbations can be de-
scribed with good precision by the approximate solution
(Zeldovich, 1970)

r(q, t ) =a(t)[q —b(t)s(q)], (5.1)

where r are the Eulerian coordinates of the particle at
time t having unperturbed Lagrangian coordinates q at a
time when a =1; a(t) is a scale factor describing the
Hubble expansion of the universe. It is convenient to use
a normalization a =(1+z) ' (z is the redshift), so that
a =1 at the present time with z =D. The spatial structure
of the initial perturbations is described by the potential
vector field

s(q) =V4'0(q),

where @o is proportional to the fluctuation of the gravita-
tional potential y, at the linear stage which is the princi-
pal quantity to study at an early stage of infiation (Kof-
man and Shandarin, 1988). The density perturbations at

and assume that it changes slowly with t. Then using the
equation for linear evolution one can find

2
&s

,V„.%,
a

where c, ( t ) is the speed of sound. The solution of this
equation is

the linear stage are related to the vector field s(q) as
5p/p~Vs(q). The function b(t) is the growing solution
for the amplitude of density Quctuations in linear theory
at the matter-dominated stage. In a fiat universe (0= 1),
b(t) cc t ~

A. s was pointed out in the Introduction, one
can easily modify Eq. (5.1) to describe the motion of a
noninteracting medium and use most of the results ob-
tained in the first part of the paper. For instance, one
can easily find an expression for density as a function of t
and Lagrangian coordinates similar to Eq. (3.3),

d2b 1 da db 1 d2a

dt a dt dt a dt2
(5.3)

which is well known in the linear theory of gravitational
instability (Lifshitz, 1946; Liftshitz and Khalatnikov,
1963). If 0&1, b (t) is a rather bulky expression (see, for
example, Peebles, 1980; Zeldovich and Novikov, 1983),
inconvenient for analytical work. However, in open
models b can be approximately written as a simple func-
tion of z,

bo
b(z) = 1+coz

co =2. SQO/( I + 1.SQO ),
(5.4)

which has a precision not worse than about 15', for
0-01 ~ Qo~ 1

There is a rather simple estimate for the self-
consistency of the approximate'solution (5.1) (Doroshke-
vich et al. , 1973). Equation (5.2) gives the density distri-
bution as a function of t and q. However, one can calcu-
late the density distribution indirectly using the Poisson
equation. To do this, let us find the acceleration field tak-
ing the second derivative of Eq. (5.1), w(q, t) =d r/dt,
and then evaluate the density using the Poisson equation
p(q, t). If Eq. (5.1) were an exact solution, both ways
would give the same result p(q, t)=p(q, t). In fact they
are difFerent, since (5.1) is not the exact solution of gravi-
tational instability. It has been shown that the self-
consistent part of Eq. (S.l) can be considered as a sub-
class of exact solutions with restricted initial conditions
(Buchert, 1988). However, Eq. (5.1) is approximately
correct for generic initial conditions, and therefore p and

p are close for a rather long time, even at the nonlinear

p('q, t)= po

a [1—b(t)a(q)][1 b(t)P—(q)][1—b(t)y(q)]
(5.2)

where a, J33, and y are again the eigenvalues of the defor-
mation tensor Bs, /Bqk.

The first distinction of the approximate nonlinear
theory of gravitational instability from the linear theory
is that it predicts the formation of the first nonlinear
objects from the high peaks of a(q) instead of
(5p/p)(q) ~ (a+13+y ), as in the linear theory.

In the general case of a Friedmann rnatter-dominated
model with arbitrary 0, the function b(t) is the growing
solution of the equation
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stage, when both p and p are large. While p and p are
not very different, the precision of approximation (5.1)
can be estimated by the dimensionless ratio

which after simple calculation can be expressed as

5= —b J2+2b J3,
where J2 =up+ ay+ py and J3 =apy are the invariants
of the tensor Bs;/Bqt, . It is interesting that 5( 1, even iri

the vicinity of the centers of pancakes and even at p~ ao

(as well as p~ ~ ).
It is worth remembering that in spite of the formal

similarity of Eq. (5.1) to inertial motion, it describes the
motion of matter until it reaches the boundaries of pan-
cakes under the action of gravity in an expanding
universe. If there were no gravitational interaction (say,
an imaginary medium of test particles), density perturba-
tions would not grow in an expanding universe, as their '

velocities would be decreased by the expansion.
Comparison of the approximate solution with the re-

sults of direct numerical simulations under the same ini-
tial conditions have shown that at the beginning of the
nonlinear stage it gives the general distribution of density
very well (Doroshkevich et a/. , 1980; Efstathiou and
Silk, 1983). The approximation fails first in the regions
of multistream Bows. Nevertheless it remains qualita-
tively true for a while after the formation of pancakes.
Moreover, it is worth stressing that the character of the
first two singularities arising at the nonlinear stage (i.e.,
A 3 and A 2) is not changed in a self-gravitating medium
(Roytvarf, 1987, 1988).

At present Eq. (5.1) is also used for calculation of the
initial stage in numerical simulations of gravitational in-
stability and large-scale structure formation, for which it
is advantageous to start the simulation from a rather late
stage when Sp/p-0. 2-0.5, to save computational time
(Doroshkevich et al. , 1980; Klypin and Shandarin,
1981).

If the reader has been convinced that approximation
(5.1) is at least qualitatively true at the beginning of the
linear stage, he or she can apply the results of preceding
sections where nonlinear effects in noninteracting media
were studied.

where po is the mean density when a = 1, a is the scale
factor, and thus po/a is the mean density at t. It turns
out that in 1D both (5.1) and (6.1) are exactly true until
the formation of the first singularity.

Later Eq. (5.1) becomes progressively worse at describ-
ing quantitatively the motion of matter; however, it con-
tinues to be qualitatively correct for a while. The ex-
trapolation of Eq. (5.1) predicts very fast growth of the
thickness of the pancake, but direct numerical simula-
tions (Doroshkevich et al, 1980; Melott, 1982a, 1982b,
1983a; Kotok and Shandarin, 1987), as well as theoretical
analysis (Dekel, 1983; Filmore and Goldreich, 1984),
have shown that the thickness increases much more slow-
ly with time (Fig. 13). The comparison is made at equal
values of a (in an expansion universe) and t (in the case of
a noninteracting medium). Then, at about a=2.4 (the
formation of the first singularity takes place at a = 1),
qualitative differences from a naninteiacting medium
arise. In a gravitating medium a region of five-stream
Bows orginates. It turns out that the gravitational attrac-
tion does not allow the streams moving in opposite direc-
tions to go too far. The particles slow down and then
start moving in the opposite direction. As a result the
thickness of the pancake grows relatively slowly in
comoving coordinates. The same is also true in gas sys-
tems (Doroshkevich and Shandarin, 1973; Shapiro et al. ,
1983).

Thus in a gravitating medium even without collisions
there is effective sticking after the formation of multi-
stream flows. Another illustration of this effect is Fig. 14
(Doroshkevich et al. , 1980), where, at some moment of
time after overshooting, the dependence of the Lagrang-
ian coordinate q on the Eulerian one x is shown. It is evi-
dent that in the case of physical sticking into an infinitely
thin layer, instead of a wavy curve there would be a verti-
cal line.

I.O—

Vl. GRAVITATIONAI STICKING

To discuss this effect let us return to the discussion of
the evolution of a 1D sinusoidal perturbation (2.13) in a
collisionless medium:

x ( t, q ) =q b( t)sinq . —

Before overshooting occurs, the density is given by

p(q, t)= Po

a [1—b(t)cosq]
(6.1)

FIG. 13. Growth of pancake thickness with a in gravitating
matter: solid line, a 1D numerical simulation; dashed line, an
extrapolation of Zeldovich's solution. The sizes are given in
terms of the wavelength.
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l.o

q 05—

therefore thermal velocity dispersion hardly inAuences
the density distribution. On the other hand, the Burgers
equation does not lead to multistream Qows. In the
frame of this approximation we have to neglect the inner
structure of pancakes and of other objects.

As before we shall consider the evolution of density in-
homogeneities in coordinates comoving with the Hubble
expansion of the universe,

x=r/a(t) .

Instead of the full velocity we shall use only a part called
the peculiar velocity,

0
G.5 I.O

X

FIG. 14. Illustration of "gravitational sticking. " The depen-
dence of a Lagrangian coordinate on an Eulerian one is shown
in gravitating collisionless matter at an advanced. nonlinear
stage. The positions of singularities coincide with points where
BU/Ox=Do. At these points the number of streams also in-

creases by 2 (10 numerical simulation). The dashed line shows
the dependence q(x) for sticky matter.

As we shall see in the next section, this effect permits
one to use the Burgers equation to extend the analytic ap-
proximate solution to later nonlinear stages. Finally it is
worth stressing that the effect of gravitational sticking in
collisonless media has also been observed in 2D and 3D
numerical experiments (Doroshkevich et al. , 1980; Kly-
pin and Shandarin, 1981).

clp a 1+3 p+ ~xpv=o ~Bt a a

dv a 1+—v = ——V'„W,
dt a a

V 4=4rrga [p(x, t) —p(t)] .

(7.1)

Here the index x indicates that the spatial derivatives are
taken with respect to x, N(x, t) is the perturbation of
gravitational potential that is generated by density per-
turbation [p(x, t )

—p(t) j, and p is the mean density.
Let us use the approximate solution (5.1) to calculate

explicitly the velocity

v=abs{q)

and gravitational acceleration field

(7.2)

av=u ——r=a dx/dt .
Q

In these variables the system of equations describing the
evolution of density inhomogeneities is (see, for example,
Peebles, 1980)

Vll. THE LATE STAGE OF NONLINEAR
GRAVITATIONAI lNSTABlLlTY dt

=(ab ab )s(q) . — (7.3)

What happens to pancakes and other structures later?
The question seems to be somewhat academic for the
HDM model, as it concerns the future. However, in the
CDM model the first pancakes (formed, by the way, only
in the dark matter component) are of very small sizes, as
mentioned above; the formation of large-scale structure is
the result of later nonlinear evolution of density inhomo-
geneities.

In this section we describe an attempt to extend the
nonlinear approximate solution (5.1) using the additional
idea of gravitational sticking discussed above (Gurbatov
and Saichev, 1984; Gurbatov et aI. , 1984, 1985, 1989;
Shandarin, 1987, 1988; Kofman and Shandarin, 1988).
Mathematically this sticking is described by the well-

known Burgers equation (Burgers, 1948, 1974).
First we show how the Burgers equation comes out of

the familiar equations describing the evolution of density
inhomogeneities in the hydrodynainical approximation.
%e need not concern ourselves with a hydrodynamic
description of collisionless dark matter, as it is cold, and

Expressing s(q) from Eq. (7.2) and putting in into Eq.
(7.3) we get

dv
dt

ci bV+ . V
a

(7 4)

+(8V )8=0 . (7.5)

Using q =a p instead of p we get the system

at/ +V„(ill)=0,
B8 +(8V )8=0,

(7.6)

instead of the original one (7.1). The second equation
does not depend on g and has an evident solution con-
necting Lagrangian and Eulerian coordinates of particles,

Now let us introduce new variables: b instead of t and
8=v/(ab) instead of v. The second equation in system
(7.1) becomes (Shandarin, 1988)
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x =q+ b Bo(q) . (7.7)
p(x, q, b)= — +H(x—q)2

2b
(7.12)

This solution, except for the notation, coincides with Eq.
(5.1), which is not surprising at all, as transforming Eq.
(7.1) into (7.6) we have used the acceleration field deter-
mined from (5.1). Thus the solution of the system (7.6) is
physically equivalent to Eq. (5.1).

The next step consists in a modification of the second
equation of system (7.6), inserting the term vV„Bmodel-

ing artificial viscosity,

+(8V'„)8=vV'„0. (7.8)

with a known general solution. Returning to the velocity
field we have

f exp — 'q' d'qG(x, q, b)
(7.9)

where

G(x, q, b ) =@0(q)+ (x—q) (7.10)

and @0(q) is the potential of the initial velocity field,

8(q)=V 40(q) . (7.11)

In analogy to the 1D case, the main input into in-
tegrals at given a and I comes from the vicinity of the ab-
solute negative minimum of G(x, q, b ) taken as a function
of q.

There is a convenient geometrical procedure for
finding the velocity field in Eulerian coordinates based on
solution (7.9). It can be shown that the coordinates q of
the absolute minimum of G(x, q, b) [Eq. (7.10)] are the
coordinates of the point where the hypersurface No(q) is
touched by a 3D paraboloid

Assuming that the viscosity coeScient v is small, v~O,
let us consider what has changed with the medium
motion due to this term. At v~0 the viscosity influences
the motion nowhere except at the places of sharp velocity
changes. They are the regions of pancake formation.
This artificial term prevents the formation of multistream
Aows. Instead of layers, thin sheets arise. We note that
the smaller v is, the thinner the sheets are.

The essential advantage of the Burgers equation is that
it has an exact solution for the potential velocity field.
Generalization of the solution from 1D to 3D was carried
out by Kuznetsov and Rozhdestvensky in 1961. Using
the Hopf-Cole substitution in vector form (cf. Sec. II.B.3)

6';(x, b ) = —2v lnU(x, b)
a

BXI.

one gets a linear diffusion equation

when H grows from —ao.
Considering potential @o(q) as a statistically homo-

geneous and isotropic smooth Gaussian random field, let
us qualitatively describe the evolution of the velocity field
with time. We note that the condition of smoothness re-
quires that the spectrum of @o(q) decrease steeply
enough at short wavelengths (i.e., at k ~ oo).

The curvature of the paraboloid p(x, q, b ) changes with
time. At small b the paraboloid is very narrow, but later
it becomes more shallow.

When b is small the paraboloid can touch every point
of C&o(q) in sucli a way that it intersects 4o(q) at no other
points. This is the linear stage of the evolution of density
perturbations. At this stage there is a one-to-one
correspondence between q (i.e., the contact point) and x
(i.e., the top of the paraboloid).

Thus it is possible to find the velocity field 8(x,b ) in E
space, since at a point x=q+b8o(q) the velocity is
8(x,b ) =do(q).

However, later points of x appear where the pa-
raboloid p(x, q, b) touches @0(q) at several points of q
(generally speaking at different values of H). It occurs
when in the collisionless case multistream Rows would
arise, that is, at the nonlinear stage of evolution. From
Eqs. (7.9), (7.10), and (7.12) it can be seen that only con-
tact points at the lowest values of H must be considered.
Geometrically this means that only points q where the
paraboloid p(x, q, b) touches the hypersurface No(q)
without interacting are allowed. The other points have
stuck in sheets previ6usly.

The positions of the paraboloid where it has two con-
tact points with @o(q) at the same H are of particular in-
terest. In such a position the paraboloid indicates with
its vertex the points lying on sheets of infinite density (at
v~0). The velocity field breaks the continuity at these
points. These sheets originate as small pieces of surfaces,
but later they grow and join with others, forming a cellu-
lar structure. The ribs of the structure are the set of top
points of the paraboloid where it touches the hypersur-
face No(q) at three points simultaneously. In turn the
ribs join in knots, which are those points of paraboloids
tops which touch 4&o(q) in four points simultaneously.

According to the sticking model, the matter that sticks
into sheets partly' reduces the velocity component normal
to the sheet but continues to move along the sheet. It
moves into the ribs and then along the ribs until it comes
to the knots. Qualitatively similar predictions are given
by the model based on the process known as Voronoi
tesselation (Icke and van de Weygaert, 1987). The model
looks quite promising, but unfortunately in the present
form it ignores both the difference in expansion rates of
voids and the evolution of their sizes with time.

The sticking model in its present form cannot describe
the inner structure of dense regions, sheets, ribs, or
knots. It is designed to provide the masses, positions,
and velocities of knots and other elements of the struc-
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ture (Gurbatov and Saichev, 1984; Gurbatov et al. , 1984,
1985, 1989). The first results of 2D numerical calcula-
tions (Kofman et al. , 1989) show good qualitative agree-
ment of the sticking model with X-body simulations. In
the course of time the fraction of mass that has not en-
tered dense regions, that is, that remained in voids, grows
smaller, and the total mass contained in knots becomes
greater. The knots and other elements of the structure
move and merge into more massive knots. This stage
naturally describes the well-known hierarchical cluster-
ing process (see, for example, Peebles, 1980). Physical
analysis of the process of merging of two clusters of col-
lisionless particles (White and Rees, 1978; McGlynn and
Fabian, 1984) has shown that they quickly lose their
identities and become a single cluster. The same is true
in the case of merging of many clusters (Carnevali et al. ,
1981). Thus the sticking model is qualitatively correct in
its description of this process.

Let us return to our geometrical procedure of inserting
paraboloids into the hypersurface C&0(q). It is quite evi-
dent that at large b(t), when the paraboloid is very shal-
low, it touches 40(q) only in the vicinities of the deepest
minima. Therefore all information about integral param-
eters of knots (i.e. , their masses, coordinates, and veloci-
ties) can be inferred from distribution of minima in the
initial potential 40(q ).

At present the statistical properties of peaks of a scalar
Gaussian random function have been carefully studied
from the point of view of large-scale structure formation,
but in a different context (Doroshkevich, 1970; Peacock,
and Heavens, 1985; Bardeen et al. , 1986; Couchman,
1987). At the linear stage, the potential @0(q) and densi-

ty perturbations 5p/p relate as

8 40(q)

p Bq

which in particular leads to the following relation be-
tween the spectra:

Here 6k is the spectrum of the potential +o(q), and g is
as usual the spectrum of 5plp [see Eq. (9.1)]. Naturally
the influence of long waves is stronger in 6& than in 5&.

The beginning of the nonlinear stage is characterized
by formation of sheets and ribs. At this stage the growth
of the typical knot mass is determined mostly by the pro-
cess of mass Aow from sheets and ribs into knots. In later
stages most of the mass is already in the knots, and the
growth of the characteristic mass of the knots is the re-
sult of merging of smaller ones.

Theoretically it is interesting that in spite of the fact
that the knots are a point mass concentration [at v —+0
in Eq. (7.8)], they can effectively collide and merge in ac-
cord with the sticking model. This property is connected
with the potential character of the motion.

Now let us discuss the growth of the typical mass of
knots at the late nonlinear stage in the case of a simple

power-law spectrum of the linear density perturbation

5k ~k" at k —+0 .

This of course means that

g2 kn —4

(7.13)

In the case of rather Hat spectra —1 ~ n ~ 1, the charac-
teristic mass of clumps m, &

grows as

b 6/(n +3)I 7 (7.14)

in complete accord with the prediction of linear theory
(Peebles, 1980).

However, at n & 1 the sticking model predicts a
di8'erent law for mass growth,

m, i(b) cc b (7.15)

independently of n (Gurbatov et al. , 1984, 1985, 1989).
On the other hand, the linear theory of hierarchical clus-
tering gives the same rate (7.14) for 1 &n &4. Earlier it
was found (Press and Schechter, 1974; Doroshkevich and
Zeldovich, 1975) that due to nonlinear generation of
long-wavelength perturbations (even at the linear stage,
i.e., while 5p/p & 1) with the spectrum 5k o: k", there is a
limit law for the growth of a typical cluster mass
m, &

~ a at n )4. Thus for large spectrum indices n & 1

there is a disagreement between the predictions of the
linear theory of hierarchical clustering and the sticking
model based on the Burgers equation.

It is interesting that, according to the sticking model,
the limit law for the mass growth depends on the dimen-
sionality of the space,

rn, i(b)a:b"/ at n ~n„=4—d, (7.16)

VIII. NUMERICAL SIMULATIONS

Numerical simulations of nonlinear gravitational insta-
bility in collisionless rnatter are of great importance both

where d= 1,2,3 is the dimensionality of the space.
In 1D numerical simulations (Kotok and Shandarin,

1988), it was observed that there is nonlinear generation
of the long-wavelength part of ihe spectrum having the
slope 5I, ~ k . This is in perfect accord with early results
(Press and Schechter, 1974; Doroshkevich and Zeldo-
vich, 1975), but the growth rate of this part of the spec-
trum confirms the prediction (7.16) for the 1D case.

The sticking model indicates a more complicated pro-
cess of clustering in the case of negative spectrum indices
at n & —1 in Eq. (7.13). The reason is that the statistical
characteristics of the potential @0(q) peaks are con-
trolled by the long-wavelength part of the spectrum
5k ~k 5k. At n (—1 the spatial distribution of high
peaks of No(q) cannot be considered homogeneous. If
one assumes that spectrum 5k cc k "

( n & —1 ) turns over
at some k =kb bearing 5k ~ k with m & —1 at k & kb,
then the clustering process in the range k & kD will de-

pend on the scale kb.
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m (r —r;)F;=6m, g [(r —r )'+s']'~' ' (8.1)

where m, is the mass of the ith particle, 6 is the gravita-
tional constant, and c is the length of softening of force at
small distances introduced to avoid the calculation of ar-
bitrarily large forces between close particles. The main
disadvantage of this method is that it takes a great deal
of.time to calculate the forces; therefore typical numbers
of particles in the simulations are only several thousand.

Most studies of the hierarchical clustering scenario
have been done on the basis of this technique (Fall, 1978;
Aarseth et a/. , 1979; Efstathiou, 1979; Efstathiou et a/. ,
1979; Gott et a/. , 1979; Turner et a/. , 1979; Gott, 1980)
as well as some investigations in the pancake scenario
(Frenk et a/. , 1983; White et a/. , 1983, 1984; Dekel,
1984, 1985; Dekel and Aarseth, 1984).

Another method for calculating gravitational forces
also actively used in the simulation of large-scale struc-
ture formation is the CIC or PM technique. It was first
used for numerical study of collective phenomena in a
rarefied plasma (Eastwood, 1976). In this method a regu-
lar spatial mesh is introduced to calculate a smooth den-
sity distribution, which in turn is used to calculate the
gravitational potential. Usually the potential is comput-
ed by using a fast Fourier transform (FFT). Then the

for understanding the physical process and for the study
of large-scale structure formation. At present numerical
simulations are widely used to model individual objects
like galaxies and clusters of galaxies. Here we briefly dis-
cuss simulations of large-scale structure as a whole.

The characteristic feature of numerical simulations of
large-scale structure is that they are based on.collisionless
models. Gas dynamics and thermal processes are essen-
tial on the scale of galaxies or smaller. The structure of
rich clusters and superclusters of galaxies depends mostly
on gravitational processes in the collisonless dark com-
ponent. However, 1D gas dynamic simulations have
been carried out within the framework of a baryon-
dominated universe or of the HDM model (Doroshke-
vich and Shandarin, 1973; Bond et a/. , 1983; Shapiro
et a/. , 1983).

A general scheme for numerical simulations of gravita-
tional instability in collisionless matter is as follows. A
model consists of N bodies generally of equal masses that
move in the gravitational Geld generated by their own
distribution. There are two principal steps: (1) calcula-
tion of the forces acting on every particle and (2) calcula-
tion of new positions and velocities that the particles ac-
quire in a small interval of time due to action of those
forces. Repeating these steps many times one can follow
the evolution of the system.

There are three methods for calculation of forces used
at present: (1) PP (particle-particle) scheme, (2) CIC
(cloud in cell) or PM (particle-mesh) scheme, and (3) P M
(particle-particle/particle-mesh) scheme.

In the PP method the force acting on particle i is cal-
culated as a sum of forces exerted by other particles,

gravitational forces are calculated by means of numerical
differentiation and interpolation. The Fourier transform
assumes periodic boundary conditions that effectively
simulate infinite space. It should be noted that the num-
ber of particles need not be equal to the number of mesh
zones. the optimal choice of differentiation scheme al-
lows the spatial resolution of 1 —2 mesh periods (Melott,
1986). The PM method is considerably faster than the
PP method, and typically simulations are performed with

, 32 or 64 particles and a comparable number of mesh
zones.

In cosmology this technique was first introduced by
Doroshkevich et a/. (1980) for analysis of 1D and 2D
models. Later 3D models were also developed (Klypin
and Shandarin, 1981; Shandarin 1983a). At present it is
widely used for analysis of different scenarios of large-
scale structure formation (Centrella and Mellot, 1983;
Melott, 1983b; Melott et a/. , 1983; Miller, 1983; Bouchet
et a/. , 1985; Hansel et a/. , 1985; Melott and Scherrer,
1987; Centrella et a/. , 1988).

So far, the best spatial resolution has been achieved
within the framework of the P M method. This method,
which uses both the FFT technique for the long-range
gravitational field and the interaction with a few nearest-
neighbor particles, is calculated directly as in the PP
method (Efstathiou and Eastwood, 1981). A detailed
comparison of PM and P M methods was made by
Efstathiou et a/. (1985); see also Centrella et a/. (1988)
and Melott et a/. (1988).

Perhaps the most important parameter characterizing
the capabilities of a numerical model is the ratio, between
the largest and the smallest scale it reliably deals with.
Another very important parameter, partly related to this,
is the number of particles in the simulation. The record
spatial range covered, 2 —2.5 orders of magnitude in
length scale, was achieved in P M simulations (Efstathiou
et a/. , 1985); recently even A, ,„/A. ;„=600has been re-
ported (Davis, 1987).

Unfortunately even this range cannot cover the range
of large-scale structure, say, between galaxies (-10 kpc)
and the largest observed inhomogeneities (-100—300
Mpc) (Kopylov et a/. , 1984; Batuski and Burns, 1985;
Tully, 1987)'. Taking into account that to obtain reliable
statistic of large-scale objects one needs probably even
larger simulation "boxes," it becomes clear that the re-
sults of numerical simulations must be interpreted very
carefully.

The essential feature of the evolution of inhomo-
geneities in collisionless dark matter is the extreme weak-
ness of the process of pair relaxation caused by the enor-
mous number of particles. For instance, if the mass of
rich clusters consists mostly of neutrinos with a mass of
about 30 eV then the total number of neutrinos is about
10 . As was mentioned above, the typical number of
particles in numerical simulations is about 10, which is
incomparably less. Thus one Inust take special precau-
tions to avoid an artificial effect of pair relaxation in the
numerical simulations. From this point of view, the PM
method is the safest.
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Many numerical simulations have been carried out
with an initial Poisson distribution of particles inside a
sphere. In most cases initial peculiar velocities were tak-
en equal to zero. This initial state supposes that the ini-
tial density perturbation spectrum is Aat: 5k ~k or
5X/X OCR ' . Moreover, it assumes that there were
some nonlinear perturbations on small scales R (n
from the very beginning.

A more Aexible method for generating the initial state,
proposed by Doroshkevich et al. (1980) is based on the
approximate solution (5.1). A quasihomogeneous distri-
bution of particles is generated by putting them on a reg-
ular cubical mesh. Then the coordinates and velocities
are perturbed by using Eq. (5.1), which generates the
growing Inode of density perturbation with a chosen
spectrum and amplitude. Another advantage of this
technique is the possibility of starting with a relatively
large initial amplitude of density perturbations
(5p/p-O. Z —0.5), since approximation (5.1) has a very
good precision at this stage. As a result one saves com-
putational time.

Up to now, numerical simulations have been per-
formed to study different aspects of large-scale structure
formation mostly in HDM and CDM scenarios based on
the assumption that the initial perturbations are Gauss-
ian in character (references mentioned above). However,
first attempts have been made to simulate large-scale
structure formation in the framework of the explosion
scenario (Saarinen et al. , 1987) and in the model of
cosmic strings (Melott and Scherrer, 1987).

The development of numerical simulations has brought
the study of large-scale structure formation to a qualita-
tively different level. At present in many cases the results
of numerical simulations provided the decisive arguments

FICr. 15. The level surface p=2. 5p at the early nonlinear stage
in a gravitating collisionless Inedium (3D numerical simulation).

against some models suggested to explain large-scale
structure formation. The reason is that only by means of
numerical simulations can one quantitatively compare
the predictions of the model with the observational data.

In addition, numerical simulations have provided in-
teresting new results concerning nonlinear processes in
self-gravitating systems.

First they have confirmed the theoretical conclusion
that structure in a density distribution having the appear-
ance of irregular cells or filaments naturally arises at the
nonlinear stages if the spectrum of the linear density per-
turbations falls off steeply enough with decreasing wave-
length. Within the class of power-law spectra a falloff
steeper than k ' is probably required.

2D and 3D numerical simulations have shown that
pancakes and filaments (Fig. 15) that formed at the begin-
ning of the nonlinear stage in HDM models remain thin
compared to their diameters. Their distortion with time
is caused by matter motions along pancakes into fila-
ments, and later along the filaments into clumps.

In fact, the idea of cellular structure in the density dis-
tribution originated on the basis of the numerical simula-
tions made by one of the authors (S.S.) in 1975. The first
picture of 2D nonlinear structure was published in a re-
view by Doroshkevich et al. (1976).

Numerical simulations have also shown that pancakes,
filaments, and the whole cellular network structure exist
only at an intermediate epoch. Finally, practically all the
mass becomes concentrated in separate clumps, which in-
crease in mass due to continuous merging.

IX. STATISTICAL ANALYSIS OF
LARGE-SCALE STRUCTURES

The essential feature of the structures discussed above
is that they arise from a random Gaussian field of small
density (and/or velocity) perturbations. One cannot in
principal obtain information about cosmological density
fluctuations at the linear stage in the region correspond-
ing to that observed at present. Perhaps in a few years
radio astronomers will succeed in piecing together a 2D
map of the microwave background temperature distribu-
tion in the sky. This would enable us to estimate the den-
sity perturbations 5p/p at zd —10 with much better
confidence than now, but only in the regions where galax-
ies cannot be observed at present. Thus we come to the
conclusion that the only relation connecting initial
(linear) density fluctuations with observed structures in
the galaxy distribution is of statistical character (for de-
tailed discussion see Sazhin, 1985; Zabotin and Naselskii,
1985; Bond and Efstathiou, 1987; Vittorio and
Juszkewicz, 1987).

Recently many statistical approaches have been sug-
gested, describing the large-scale structure of the
universe to supporting or rejecting various theories pro-
posed to explain the formation of this structure. To dis-
cuss all of them one would need to write an additional re-
view that probably would be of length exceeding the
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A. Correlation analysis

At linear stages the density perturbations are assumed
to be a random Gaussian field arid therefore the full sta-
tistical information about them is contained in the spec-
trum 5k = ( ~5k~ ), where

51,= (x)e'""d x .1 5
k y y

(9.1)

Here V„is a large volume in which the distribution can
be considered statistically homogeneous. It is important
that 5k have statistically independent phases if 5p/p is a
Gaussian field. The other statistically equivalent charac-
teristic of Gaussian random fields is a two-point correla-
tloll function g(x ),

(9.2)

which is related to 5& by means of the Fourier transform

V„
g(x)= f 5 e '""d k

(2m )
(9.3)

present one. Therefore we have chosen only a couple of
approaches to illustrate the problems arising in this field.

One of the methods is the very-well-known correlation
analysis, whose application to large-scale structure for-
mation has been extensively elaborated, primarily by
Peebles and his collaborators (see Peebles, 1980, and
references therein). At present it has become a routine
test for any theory of large-scale structure formation.

The second is a statistical technique based on cluster
analysis, often referred to as precolation analysis. The
importance of this method for' the problem has been em-
phasized by the authors (Zeldovich, 1982a; Shandarin,
1983b; Shandarin and Zeldovich, 1983).

In discussing both methods we intend only to give the
main ideas; as we have pointed out, the problem of sta-
tistical analysis of large-scale galaxy distribution war-
rants a much more detailed discussion.

5p =n [1+g(r)]5VI5V2, (9.5)

where 5p is the probability of finding simultaneously two
objects (say, galaxies) in two small volumes 5V, and 5V2
separated by distance r; n is the mean number of objects
per unit volume. A similar equation defines the three-
point correlation function g(r12, r23, r31),

5p =n [1+g(r12 )+g(r23 )+g(r31)

tistically complete description of the density distribution.
Moreover, there is no one-to-one correspondence be-
tween the spatial density distribution and its spectrum.
By adjusting the phases one can get quite different (by
visual appearance) spatial distributions with the same
spectrum 5k. Therefore at this stage the two-point corre-
lation function g(x) also does not contain the full statisti-
cal information about such random fields. In principle
one needs correlation functions of higher orders: three-
point, four-point, etc. The full (infinite) set of these func-
tions does contain all statistical characteristics of an arbi-
trary random field. However, from the practical point of
view, dealing with a function of many variables is not a
very pleasant job unless it has a trivial structure. There-
fore correlation functions of orders higher than three are
rarely used (however, see, for example, Peebles, 1980).

In practice the situatiori is not all that bad. It turns
out that obtaining even a two-point correlation function
in the theoretical models that reasonably matches the ob-
servational one is very dif6cult. Therefore in contem-
porary cosmology any theory suggested to explain large-
scale structure formation must agree with the correlation
properties of the observational galaxy distribution. The
most comprehensive discussion of these questions known
to the authors is given in the book by Peebles (1980) and
in the review by Fall (1979). Taking this into account we
give just a short summary of results and problems that
have to be solved.

The two-point correlation function g(r) for pointlike
objects (sometimes they can be galaxies or even rich clus-
ters of galaxies) is

Clearly the reverse is also true, 4( r12 r23 r31 ) l5 V15 V25 V3 (9.6)

5O= + f g(x)d x .
nV„

(9.4)

For point distributions like the distribution of galaxies
in space, the right-hand side of Eq. (9.4) acquires the ad-
ditional evident term 1/(n V„),where n is the mean den-
sity of pointlike objects.

The beginning of the nonlinear stage is characterized
by the appearance of pancakes, filaments, and compact
clusters. This phenomenon is known as intermittency,
and with its advent the density perturbations are no
longer Gaussian. The phases in the Fourier transform
(9.1) cease to be statistically independent. In this case
neither the spectrum nor the correlation function is a sta-

or higher-order correlation functions.
There is one specifically cosmological problem for the

calculation of correlation functions. To evaluate them
one needs to measure the galaxy distance. At present,
most distances of' galaxies are estimated using the Hubble
relation u =Hor, where u is the radial velocity of a
galaxy, r its distance, and Ho the Hubble constant. This
method su6ers principally from irreducible errors caused
by the peculiar velocities of galaxies. In this connection
one must remember that the inhomogeneous distribution
of .galaxies in space is caused by their peculiar motions,
i.e., motions additional to their Hubble motions.

The results of numerous estimations of galaxy correla-
tion functions (e.g. , Totsuji and I( ihara, 1969; Davis and
Peebles, 1983; Einasto et al. , 1984) can be briefiy summa-
rized as follows:
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r
with r =10A5O' Mpc and @=1.8,

in the range

0.2h 5o' Mpc ~ r ~ 20h 5o' Mpc

(9.7)

+k, (r3i C, (riz)] (9.8)

with Q = 1 (Davis and Peebles, 1983).
The first surprise is that g (r) is well described by a

single power law, both in g ))1 and in g &1 regions.
However, one might think that the former is determined
by nonlinear effects and the latter is connected with the
type of initial density perturbations spectrum.

Another surprising fact emerges when the correlation
function of rich clusters is taken into account. It turns
out that it has the same power-law form, but with the
correlation scale r, (distance, at which /=1) five times
greater,

(9.9)

with r, =50h&~' Mpc and @=1.7—1.8. However, this
takes place in a different range of scales,

10h 5O' Mpc ~ r ~ 150h 5O' Mpc .

Although the cluster correlation function is much larger
than that of galaxies, as was discovered many years ago
(Hauser and Peebles, 1973), the possibility of its approxi-
mation by a power law was found only recently (Bahcall
and Soneira, 1983; Klypin and Kopylov, 1983; Bahcall
et al. , 1986).

A very interesting suggestion was made by Kaiser
(1984) to explain the difference between galaxy and clus-
ter correlation functions. He pointed out that if some
random Gaussian field 4 has correlation, then the corre-
lations between peaks of the field will be stronger. More-
over, the higher the peaks the stronger the correlation.
Numerical simulations of nonlinear gravitational instabil-
ity have qualitatively confirmed this effect; they have
failed, however, to explain the observed difference be-
tween r~ (9.7) and r, (9.9) (Shandarin and Klypin, 1984;
Barnes et al. , 1985). A possible explanation of the
disagreement between the theoretical prediction and the
numerical results was proposed by Coles (1986).

On the other hand, evidence has appeared (Einasto
et al. , 1986) that the galaxy correlation radius rs grows
with the volume studied. If this result (still unconfirmed
by other astronomers) is true, it at least reduces the
discrepancy between r and r, .

at r )20h 50' Mpc, g~ ~

& 0. 1 (Davis and Peebles, 1983).
The three-point correlation function g(r, z, rz3, r» ) [Eq.

(9.6)] can be approximated with rather good precision by
the equation

Ariz r23 r31) ~u (rlz)k (r23)+k (r23)k (r31)

B. Percolation analysis

An immediate visual impression of the light distribu-
tion in optical experiments (Figs. 10 and 11), density dis-
tribution in 2D (Fig. 12), or density distribution in 3D
(Fig. 15) is that the regions of high density form a single
connected system. Similar ideas arise if one observes the
galaxy distribution in a thin shee (Fig. 1). However, one
would wish to confirm intuitive impressions by some
quantitative characteristics. Qne of the most appropriate
techniques sensitive to such structures seems to be per-
colation analysis.

At present, percolation theory is used in many
branches of physics, although mainly for purposes other
than pattern recognition (Shklovski and Efros, 1979;
Stauffer, 1985). Initially it was suggested as a method of
descriptive statistics in cosmology by one of the authors
(Shandarin, 1983b) and later it was developed and used in
a series of papers (Zeldovich et al. , 1982; Bhavsar and
Barrow, 1983; Melott et al. , 1983; Shandarin and Zeldo-
vich, 1983; Einasto et al. , 1984; Dekel and West, 1985;
Klypin, 1987).

Previously in Sec. III.D we mentioned the application
of the percolation method to an analysis of continuous
distributions (say, density p). Choosing some level p, one
can divide the whole volume onto regions of two kinds,
"dense" with p) p, and "rarefied" with p &p, . Then the
fractions of volume as well as of mass contained in one of
the components at two percolation thresholds can be
used as the quantitative parameters characterizing topo-
logical properties of non-Gaussian random fields.

Astronomy of course gives us discrete distributions of
galaxies in space. Qne could smooth out the pointlike
galaxy distribution by means of a Gaussian "smoothing"

/2. r
window e ' or something similar and afterwards use
the continuous distributions. But there is a direct
method for treating discrete distributions.

Let us begin with a discussion of an idealized system of
particles (i.e., pointlike objects) in an infinite volume, as-
suming that the mean density of particles n is finite.

Taking some radius r one can construct clusters of
points according to two principles: (i) all particles
separated by a distance less then r are "friends, " and (ii)
"the friend of my friend is my friend. " Thus one can
travel from any point of a chosen cluster to every other
belonging to the same cluster, making several "leaps"
(from point to point), each no longer than r. On the oth-
er hand to jump from one cluster to any other one has to
make a "leap" longer than r. The number of particles in
any given cluster may be arbitrary from 1 to ~.

Generally speaking at arbitrary r there are clusters
consisting of various numbers of particles. The distribu-
tion of cluster populations may or may not include a
cluster of infinite numbers of particles depending on r.
At some critical value r, a transition takes place from a
distribution without an infinite cluster to that with an
infinite cluster. This transition is commonly referred to
as "percolation. " At r (r, percolation does not occur,
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whereas at ~ ) r, it does. Instead of the dimensional pa-
rameter r, a dimensionless parameter

8 = 4mr3n (9.10)

is generally used in percolation theory. It has a transpar-
ent interpretation as the mean number of particles in a
sphere of radius r.

It seems surprising that the critical value of the per-
colation parameter has not been calculated analytically
even for a Poisson distribution of particles. It was es-
timated numerically for a finite number of particles
(X, —1000—4000) in a cubical volume (Skal, Shklovski,
and Efros, 1973) to be

8,"'=2.7 . (9.11)

We note that 8,' ' depends on the dimensionality of
the space. In 2D it is about 4. One can easily infer that
in 1D the term "percolation" has no sense, at least for a
Poisson distribution of particles, since there are gaps be-
tween points of any sizes with small but finite probability.

Now let us go back to 3D. It is quite natural to sup-
pose that if the particles tend to cluster around some
lines or surfaces forming, respectively, a connected net-
work or cellular structure, then the percolation parame-
ter 8, would be less than that for a Poisson distribution
8,' '. On the other hand, if the particles tend to cluster
in separated clumps, then 8, &8,' '. The situation would
be more complicated if both tendencies were present.
However, in any case the inequality 8, &8,' ' can be con-
sidered as a manifestation of the presence of a network
structure in the particle distribution.

How to estimate 8, using existing samples of galaxies
poses a practical problem. Originally a very simple tech-
nique was used (Shandarin, 1983b; Einasto et al. , 1984).

A sample of galaxies was studied in a region of cubic
shape, and the percolation parameter 8, was estimated
when the diameter of the largest cluster reached the size
of the cube. However, most galaxy samples are carried
out in conelike regions where this simple technique fails
(Bhavsar and Barrow, 1983). Dekel and West (1985) also
mentioned the dependence of the percolation parameter
8, on the number of galaxies in the sample.

The first problem can be solved by using a more
elaborate technique to estimate 8, (Klypin, 1987). Kly-
pin suggested using a known approximate asymptotic
formula for growth. of the mass (i.e., the number of parti-
cles, since they may be treated as identical) of the infinite
cluster (in practice of course the mass of the largest one)
at the percolation threshold 8 =8,+58. Another useful
parameter is the mean mass of all clusters except the
largest one. Its asymptotic behavior is also approximate-
ly known. It turned out that these parameters are less
sensitive to the shape of the sample volume. In fact they
are complementary, since one of them uses information
about the largest cluster and the other one about all clus-
ters except the largest one. The results obtained by Kly-
pin shown in Table I generally con6rm the earlier con-
clusions of Shandarin (1983b) and Einasto et al. (1984).

There is definite evidence for the existence of large-
scale structure in the galaxy distribution, resembling a
network of filaments or even ari irregular cellular struc-
ture, which is in agreement with the visual impression.
We infer this conclusion basically from the fact that 8,
for the galaxy distributions is signi6cantly less than
8,' '=2.7, in spite of the rather large dispersion of 8, for
diff'erent samples and even for the same sample analyzed
by dN'erent methods.

The simulated samples (A) and (I) are given to illus-
trate the idea of using the percolation parameter 8, as a

TABLE I. The critical percolation parameter 8, =
—,mr, n estimated by different methods for observa-

tional and simulated distributions (Klypin, 1987). (0) is the catalog of galaxies with M ~ —19.5 (Einasto
et al. , 1984); (G80) and (G160) are catalogs of galaxies of different depths (80h50' and 160h 50' Mpc).
{A) is a simulated catalog {adiabatic fluctuations with hot dense matter). (I) is a simulated catalog {iso-
thermal fluctuations) (Dekel and West, 1985). (CO) and (Cl) are catalogs of clusters of galaxies {richness
class R ~ 0 and 8 & 1, respectively).

Catalog

Objects

Shape of
region

Number of
objects

, galaxies
M & —19.5

cube

G80

galaxies
M + —18.5

cone

576

G160

galaxies
M + —19.5

cone

1356

A

points

cube

64

points

sphere

CO

clusters
8+0
cone

190

clusters
8+1
cone

110

jP a
C

Lmax

M,
„

1.0 1.8
0.5
0.5

1.6
0.37

0.5;1.4;2.5
1.1
1.2

4.1

3.4
4.0

3.9
2.7
3.1

'The last three rows show the critical percolation parameter 8, estimated by using the length of the
largest cluster (indicated as I. ,„),or its mass (M „),and the mean mass of all clusters except the larg-
est one ( (I) ), respectively.

Rev. Mod. Phys. , Vol. 61, No. 2, April 1989



216 S. F. Shandarin and Ya. B. Zeldovich: Large-scale structure of the universe

quantitative parameter sensitive to the topology of the
density distributions.

Model (A) represents a "classical" example of network
structure, while model (I) displays a clumpy distribution
without noticeable connections between clumps.

lt is interesting that the sample of clusters of galaxies
displaying a similar power-law two-point correlation
function [see Eqs. (9.7) and (9.9)] possesses diff'erent per-
colation properties from those of the galaxy samples.
However, recently Tully (1987) found that in his sample
of rich clusters percolation is attained more easily than in
a Poisson distribution.

The dependence of B, on X, discussed by Dekel and
West (1985) can be useful, since they found that it is
difFerent for difFerent kinds of geometry (filaments, layers)
dominant in the galaxy distribution (Shandarin and Zel-
dovich, 1986).

Not pretending to give a comprehensive review of sta-
tistical methods proposed to study large-scale galaxy dis-
tribution we mention also extensive analysis of the topol-
ogy of large-scale structures (Gott et al. , 1987; Weinberg
et al. , 1987; Melott et al. , 1988) and an attempt to mea-
sure the fractal dimensionality of large-scale structures
(Jones et al. , 1988).

X. SUMMARY

At present the density distributions of dM'erent com-
ponents constituting the mass of the universe may be
characterized as intermittent.

A large fraction of baryonic matter (-0.5) is contained
in stars occupying a total volume of only about 10 of
the volume of the universe. Smoothed over the typical
galaxy scale (- 10 kpc = 3 X 10 cm), the contrast in

baryon density decreases considerably but still remains
very high (the fraction of the total volume of galaxies
amounts to no more than about 10 ). The interniittent
character still holds when the smoothing scale reaches
the value of the mean galaxy separation (-5 Mpc), but
the contrast in density falls to about 3-10. Smoothed
over such a scale, the baryon density distribution could
become similar to the density distribution of dark matter.
If so, regions of high-density dark matter must have the
shape of pancakes or filaments. Moreover, it is very like-

ly that these objects form some kind of connected struc-
ture generally referred to as the network or cellular
large-scale structure of the universe.

Actually the bulk of our information about large-scale
structure is based on the study of the distribution of
galaxies in space, and thus we come to the question:
what degree of confidence do we have that the distribu-
tion of galaxies is similar to that of dark matter? Twenty
years ago the reply would probably have been that galaxy
distribution in space repeats the distribution of the total
density. At present the problem does not seem simple at
all. The admission that we have no clear ideas as to how
the two distributions are related is now characterized by
the term "biasing" (a tendency for clustering to be

stronger for one component). Probably all suggested
types of biasing agree that galaxies formed in regions of
high-density dark matter. However there are two possi-
bilities: (a) Galaxies have a stronger tendency to cluster
than does dark matter, or (b) vice versa.

In the HDM model galaxies form in pancakes only
where the conditions are particularly favorable, primarily
because the density is higher. However, outside pan-
cakes the decrease in mass density hardly exceeds 10% of
the mean value (Zeldovich and Shandarin, 1982a;
Holfman et al. , 1983; Melott, 1985) .while the relative
density of galaxies can be much less.

In the CDM model, galaxies arise before superclusters,
but they have to do so inhomogeneously, otherwise the
model would contradict the observations; in particular,
the existence of huge voids between galaxies (Kirshner
et al. , 1981). The model needs to invoke the hypothesis
of biasing which, roughly speaking, states that galaxies
form only in the peaks of total density. Numerical simu-

lations including this hypothesis have shown a pretty
good agreement between the simulated and observed
large-scale structure (Davis et al. , 1985; White et al. ,
1987). However, the question inevitably arises, what is
the physical mechanism for this biasing? The problem
has been addressed in several papers (Rees, 1985;
SchaefFer and Silk, 1985; Silk, 1985; Dekel and Silk,
1986), but it would be premature to say that is solved

(Peebles, 1986).
Another basic question is, what determines the present

scale of the large-scale structure, i.e., the sizes of super-
clusters and voids? Does it occuf as an effect of the non-
linear feedback due to release of nuclear energy in stars
in the process of galaxy formation (Ostriker and Cowie,
1981) or was this scale somehow imprinted in the linear
density fluctuations and the present large-scale structure
is the manifestation of this scale?

The analysis presented above has shown that if the
spectrum of density Auctuations in the linear approxima-
tion possesses a cuto8'at short waves it results in the for-
mation of filament structure at the beginning of the non-
linear stage. The steeper the cutoff, the more distinct the
structure becomes. The crucial question of the nonlinear
theory of gravitational instability is: what is the critical
slope of the spectrum (assuming for simplicity that the
spectrum obeys a power law) that separates the pancake
scenario from hierarchical clustering?

The generally accepted answer to this question might
be stated as foHows: if the slope is steeper than 5k ~ k
at k & k„then the pancake scenario takes place; other-
wise the hierarchical clustering picture is inevitable. The
current nonlinear theory presented above gives a some-
what different answer. It states that pure hierarchical
clustering takes place only if the spectrum falls off at
short waves no steeper than 5k ~ k '. In the intermedi-
ate range (i.e., 5k oc k" and —3 (n (—1), the nonlinear

process of gravitational clustering possesses the features
of both scenarios; it proceeds as a bottom-up sequence
similar to hierarchical clustering, but large-scale pertur-
bations inhuence the nonlinear evolution of much smaller
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clumps, resulting in the formation of some kind of net-
work structure analogous to the pancake picture. Prob-
ably for this reason power-law spectra 5& ~ k" with spec-
tral indices in the range —3(n (—I are the most
difficult to analyze, both theoretically and numerically.
However, in the (currently most popular) CDM model,
this kind of spectrum is predicted in the range from
galaxies to superc1usters of galaxies.

In this review we have tried to call attention to the
similarities between nonlinear gravitational instability in
collisionless dark matter filling an expanding universe
and nonlinear evolution of inhomogeneities of various
kinds: brightness distribution in geometrical optics, col-
lisionless noninteracting medium, and sticky dust. The
nonlinear stage of gravitational instability possesses
prominent features known as intermittency which are
typical for various non-Gaussian random fields. These
phenomena are well known in hydrodynamical and
acoustic turbulence, nonlinear di8'usion, and generation
of magnetic fields (Barenblatt, 1978; Kravtsov and Orlov,
1983; Zeldovich et al. , 1987). These states of intermit-
tency arise as a result of the nonlinear transformation of
Gaussian random fields considered in synergetics; howev-
er, in the cases mentioned above, the role of initial condi-
tions is much stronger.

In the Introduction two questions were asked: (i) what
is the physical nature of the dark matter in the universe
and (ii) what kinds of perturbations disturbed the perfect
homogeneity of the universe at early stagese

At present there are no final answers to these ques-
tions. One of the most promising ways to solve these
problems is to study the large-scale structure of the
universe, which probably arises as a result of nonlinear
gravitational instability.
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