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Empirical evidence for the existence of pair fluctuations in rapidly rotating nuclei in connection with the
pair gap is reviewed. The quantities considered are single-particle energies (routhians) and alignments.
While the cranked shell model in the presence of static pair correlations provides an accurate description
of data at rotational frequencies below the critical frequency corresponding to the collapse of the static
pair gap, conspicuous discrepancies are found in the region of and above the pairing phase transition. In
_particular, a group of excitations is observed displaying lower excitation energies and smaller alignments
than those predicted by the cranked shell model. Such excitations can be characterized as behaving as if
the correlations induced by the presence of a pairing condensate were not totally obliterated after the
“phase transition.” A theoretical model, based on the renormalization of the single-particle motion mixed
by the coupling to pairing vibrations, is quite successful in explaining the overall trend of the data at rota-
tional frequencies larger than the critical frequency. Smaller alignments and excitation energies are corre-
lated with configurations displaying particle coupling schemes which profit most from fluctuations of the
pair gap about its zero equilibrium value. While this model reproduces many of the experimental features,
it still overpredicts the alignments by 2—3 units of # in the crossing region. Thus other degrees of freedom
(both static and dynamic), e.g., deformations, also must play a role at large rotational frequencies.
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. INTRODUCTION

It is well established that nucleons in nonclosed shells
can arrange their motion to produce collective nuclear
rotations. The associated Regge trajectory reveals a mo-
ment of inertia only half that of a system of independent
nucleons moving in a deformed potential. This reduced
moment of inertia is well accounted for assuming that
nuclei in their ground state are, as a rule, superfluid
(Bohr, Mottelson, and Pines, 1958).

Extending the analogy between the metallic supercon-
ducting state (Bardeen et al, 1957) and the nuclear
ground state, Mottelson and Valatin (1960) predicted
that the Coriolis and centrifugal forces in a rapidly rotat-
ing nucleus should be sufficiently strong to induce a tran-
sition from the condensed to the “normal” phase. It took
a quarter of a century to test this prediction experimen-
tally. Only recently have the heavy-ion accelerators, cap-
able of producing the critical angular momentum for this
phase transition, been coupled with arrays of high-
resolution Compton-suppressed germanium detectors
(Twin et al., 1983; Herskind, 1985), necessarily to detect
the electromagnetic radiation connecting the higher
members of the rotational bands.

In a finite system such as the nucleus, one does not, of
course, expect a transition with sharp singularities as in
macroscopic systems (Bohr, 1976), and consequently the
effect on the observables is more subtle (see, for example,
Mutz and Ring, 1984). On the other hand, the finite nu-
clear system provides the possibility of studying such a
phase transition in terms of the individual quantum
states, in the presence of strong fluctuations of the order
parameter. )

Fittingly, the first breakthrough was the experimental
observation by Johnson, Ryde, and Sztarkier (1971) of a
rapid increase in the moment of inertia at large angular
momentum, I=10-16#4. This phenomenon is often
called “backbending,” since the rotational frequency w,,
often decreases in the region of increasing moment of in-
ertia J, producing a plot of J(w,,) that “bends back.”
This behavior was correctly interpreted by Stephens and
Simon (1972) as the crossing of the ground-state rotation-
al band by a band whose intrinsic configuration has a
pair of excited, or ‘““aligned,” quasiparticles. In fact, the
band crossing or “backbend” occurs for the rotational
frequency at which the Coriolis and centrifugal forces
compensate the effects of pairing correlations for a given
pair of quasiparticles, as shown by Banerjee, Mang, and
Ring (1973). Thus ‘“backbending” is the result of the
“blocking” of pairing correlations for a specific pair of
time-reversed orbitals, not the collapse of the pairing gap
as originally proposed by Johnson, Ryde, and Sztarkier
(1971). Therefore, it can be considered the finite system
analog of gapless superconductivity found in metallic su-
perconductors (Goswami et al, 1967; Grin, 1974; Lin,
1974; Chu et al., 1975; Ragnarsson and Broglia, 1976).

Because of the low density ‘of single-particle levels
found around the nuclear Fermi surface, it takes about
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two band crossings (or the excitation of three to five

" quasineutrons or quasiprotons) to produce the transition

to the statically (neutron or proton) unpaired phase. Evi-
dence supporting the quenching of pair correlations at
large angular momentum has been obtained recently; see,
for example, Schuck et al. (1984), Bacelar et al. (1985),
and Garrett (1985b).

The second turning point in the study of the nuclear
pairing phase transition was the recognition by Egido,
Mang, and Ring (1980a, 1980b) that pairing correlations
vary smoothly in the vicinity of and above the critical ro-
tational frequency, and by Broglia (1985) and Broglia et
al. (1985, 1986) that pairing fluctuations are important
near and above the critical frequency. These two effects
have a common physical basis, namely, the finite number
of nucleons in the nucleus. They are equivalent to the ex-
tent that the consequences of dynamical pairing fluctua-

" tions can be described in terms of an effective pairing

gap.

The work of the Munich group, in particular was semi-
nal in the study of pairing phase transitions of systems
with a finite number of particles, where the fluctuations
play a central role; this was in part because techniques
were devised that allowed for detailed calculations of
realistic situations (e.g., Egido et al., 1985). Their main
result is that fluctuations dramatically affect the sharp
pairing collapse predicted by mean-field theories, a result
that has received complete confirmation since.

In this context it is also important to mention that,
while condensation only of Cooper pairs in s states of rel-
ative motion is observed in nuclei, clear evidence for a
strong d-state pairing (quadrupole pairing) also exists, as
indicated by Broglia, Bés, and Nilsson (1974) and Rag-
narsson and Broglia (1976). The associated pairing corre-
lations have been shown by Wakai and Faessler (1978),
by Egido and Ring (1984), and by Diebel (1984) to be less
affected by nuclear rotation than those arising from
monopole pairing. In particular, Diebel concluded that
quadrupole pairing is important in the calculation of the
crossing frequencies between the ground-state band and
the two-quasiparticle band. Recently it has been suggest-
ed by Bertsch, Broglia, and Schrieffer (1988) that
superfluidity with nonzero angular momentum may be
permitted in rotating nuclei, leading to a nuclear vortex.
However, it appears that the associated excitation energy
is too high to have observable consequences.

The most effective way to disentangle the roles played
by static and dynamic pairing correlations close to the
yrast line is by probing the nucleus with two-particle-
transfer reactions in heavy-ion collisions where the target
is Coulomb excited to states of high angular momenta
(Dasso et al., 1984; Broglia, 1985; Nazarewicz, Dudek,
and Szymarnski, 1985; Egido and Rasmussen, 1987).
These studies could reveal not only the magnitude, but
also the phase of the transfer amplitude (Canto et al.,
1987; Nikam and Ring, 1987; Nikam, Ring, and Canto,
1987; Vigezzi et al., 1988).

While for angular momenta smaller than the critical
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momentum associated with pairing collapse it is expected
that tunneling of s Cooper pairs essentially populates
only the ground state of the target nucleus, for rotational
frequencies higher than the critical, the tunneling
strength will be distributed over a wide range of energies,
associated with the fluctuations of the pairing gap around
the zero equilibrium value (Broglia and Gallardo, 1985;
see also Egido, Mang, and Ring, 1980a).

Situations similar to the one described above, but as a
function of the rotational frequency in gauge space—i.e.,
Fermi energy or number of particles—are well estab-
lished (see, for example, Broglia, Hansen, and Riedel,
1973, and references therein). On the other hand, al-
though much progress has been made in the experimental
study of Cooper tunneling following Coulomb excitation
(Guidry, 1986; Butler et al., 1987; Juutinen et al., 1987;
Wu et al., 1987, 1988), no clear picture of pairing col-
lapse has yet emerged from these studies, essentially due
to the complexity of the associated heavy-ion reaction
mechanism.

The dynamical interpretation of the stability of pairing
correlations has a counterpart in infinite systems vis-a-vis
the Meissner effect. The magnetic field is slowly expelled
from the interior of a large metallic probe as the transi-
tion temperature is approached from above. This
phenomenon, the analog of a reduction in the intrinsic
alignment in the paired nucleus, is in conflict with
theories that ignore fluctuations. Such theories predict
that the internal field will drop off sharply to zero at the
transition point. The onset of the Meissner effect has
been observed by Gollub et al. (1969).

Pairing vibrations were suggested by Bohr and Mottel-
son and introduced in nuclear physics by Bés and Broglia
(1966; see also Hogaasen-Feldman, 1961). For non-
nuclear superfluids these vibrations are hardly collective.
In the treatment of Anderson (1958) they are associated
with bound pairs appearing at the top of the pairing gap.

Pairing vibrations become strongly collective in near-
closed-shell nuclei where, because of the large gap exist-
ing in these cases in the single-particle spectrum of states,
the pairing interaction is unable to scatter time-reversed
pairs of particles across the Fermi surface. Thus a clear
distinction exists between particles and holes, and all the
collectivity of the time-reversal response function is con-
centrated in the pair-addition and pair-removal modes.
These modes, whose identity is not associated with a
given isotope, can be viewed as elementary excitations.
Pair vibrations were first observed by Bjerregaard et al.
(1966) in the transfer of two neutrons (a single Cooper
pair) leading to 2%Pb. Systematic evidence exists for this
mode throughout the mass table (Broglia, Hansen, and
Riedel, 1973).

In the case of rapidly rotating nuclei, in which the
scattering of particle pairs is hindered by the poor over-

lap existing between time-reversed single-particle orbit- -

als, the situation is quite different. While the system can
display important pair fluctuations, as shown by the
Munich group, the time-reversal strength is distributed
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over many states. Such a spectrum is typical of a collec-
tive mode in the presence of strong Landau damping
(Pines and Nozieres, 1966).. A situation similar to this,
although in the particle-hole channel, is found in the case
of the paramagnon in liquid *He (Baym and Pethick,
1975). In fact, the paramagnon is not a real, but a virtual
excitation with a diffusive motion. Although not directly
observed in the absence of a magnetic field, it has impor-
tant consequences for the specific heat (effective mass) of
the system. Similarly, even if pairing vibrations in the
unpaired regime of rapidly rotating nuclei cannot be ob-
served directly, their effects can still be detected by the
presence of configurations that systematically lie at lower
excitation energies and display less alignment than pre-
dicted by the cranked shell model.

The effects of a fluctuating pairing gap have previously
been considered at large rotational frequencies by the
Copenhagen group (Broglia, 1985; Broglia and Gallardo,
1985; Broglia et al., 1985, 1986; Szymarnski, 1985). These
effects have also been studied in the case of the superde-
formed band of *’Dy (Nazarewicz et al., 1987 Shimizu et
al., 1987). It was found that they affect in a major way a
variety of properties, in particular, the J‘!" moment of in-
ertia, in keeping with the fact that the superdeformed
configuration is associated with a large single-particle
gap, which allows for well-developed pairing vibrations.

In this paper, the pairing vibrational model is applied
systematically to the analysis of stably deformed ytterbi-
um isotopes, '*2-1Yb,, 4, for which the most complete
set of experimental data exists at angular momenta where
the static pairing gap is predicted to have collapsed.
Another interest in reviewing this mass region is the ex-
istence of a variety of detailed calculations (e.g., Banerjee
et al., 1973; Chu et al., 1975; Faessler et al., 1976; Egido
et al, 1980a, 1980b; Bengtsson and H&kansson, 1981;
Sugawara-Tanabe et al., 1981; Egido and Ring, 1982a;
Mutz and Ring, 1984; Egido et al., 1985, 1986; Egido and
Rasmussen, 1987). Stably deformed nuclei are chosen in
order to isolate as much as possible the effects of pair
correlations from the shape degrees of freedom. This
cannot be totally accomplished, not even in the case of
the ytterbium isotopes, as will be discussed below.

In Sec. III the pairing vibrational model (Bés and Bro-
glia, 1966) is recast in the formalism of the response func-
tion discussed in Sec. II. The parameters entering the
calculations are discussed in Sec. IV, and the model is ap-
plied to the high-spin data for the ytterbium isotopes in
Sec. V. The predicted two-nucleon-transfer response
functions are presented in Sec. VI, and the conclusions
are collected in Sec. VII.

Il. THE FORMALISM OF THE RESPONSE FUNCTION

In this section we briefly review the theory of the
response function and indicate how to calculate the
correlation energy of a many-particle system in terms of
this formalism. For additional information the reader is
referred to Pines and Nozieres (1966), Fetter and Walec-



134 Shimizu et al. : Pairing fluctuations in rapidly rotating nuclei

ka (1971), and Shimizu and Matsuyanagi (1984b, 1986).
The Hamiltonian describing the system,

H=H,+V, 2.1)

is the sum of an unperturbed single-particle term H, and
a two-body residual interaction V. The associated eigen-
states and eigenfunctions of H, and of H are denoted
E,,|®,) and E,|¥), respectively. From these quantities
one can define the correlation energy

Ecorr :E—EO . \ (22)

Turning on the interaction adiabatically and using
Feynman’s theorem, one obtains

E o= [ dA{ ¥ VIR (2.3)
0

where |W(A)) is the eigenstate of the A-scaled Hamiltoni-
an H(AM)=H,+AV.

We now diagonalize the Hamiltonian (2.1) in the
random-phase approximation. Furthermore, we write
the residual interaction as a sum of separable multipole-
multipole interactions,

V(RPA)=——%2XPQRQT, 2.4)
P
with
0,= 3 q,(ePalaf+H.c.=0]. (2.5)
a<pf

The vacuum state on which the quasiparticle creation
operators a ' act is the eigenstate of Hy, |®).

The unperturbed response matrix function associated
with the interaction (2.4) is defined as

q,(aB)q,(apB)
E,+Eg—o

q,(aB)g;(ap)
Ed+EB+w ’

R, (@)= 3

a<fB
(2.6)

where E , is the unperturbed single-particle energy of H,.
The random-phase approximation (RPA) response
function is given by

R=(1—Ry) 'R, 2.7

where R =(R ), R =(R,,), and Y =(8,,X,,)-
Making use of the above definitions, one can write

(‘I’(M|VI‘I’(M)RPA=—%fowdwilm{Tr[ﬁ“‘)(w)X]} ,

(2.8)

where &M is obtained from & by replacing y by Ay in
Eq. (2.7). ,

To carry out the integral numerically we smooth the
singularities of the integrand by analytically continuing
the function R*(w), that is, by replacing o with o+i8.
This procedure also leads to the retarded form of the as-
sociated Green’s function.

For practical reasons it is desirable to integrate over
the adiabaticity parameter A analytically. For this pur-
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pose we first diagonalize the unperturbed response matrix
R (w)y and obtain

A,(0)+iB,(w)=eigenvalue of [R(w)x] . (2.9)
When we define the function
= ! )
T(w)=Im ITrfO dAR (w)X]
A}(@)+B}(0)— 4,(0)
|B,(@)]

A,(w)
|Bp(a))|

arctan

=2

P

+arctan , (2.10)

'

Eq. (2.3) becomes
—_ L r=
Ecorr- 2ur fO doT(w) . (2.11)

The standard RPA expression for the correlation energy
is [cf. Eq. (2.2)]

1
Ecorr=3 [zwn— > (E,+Ep) |,
n

a<f

(2.12)

where w,, are the RPA eigenfrequencies. It can be shown
that Eq. (2.11) coincides with Eq. (2.12) in the limit
Im(w)=38—0.

It should be mentioned that Egs. (2.11) and (2.12) con-
tain the mean-field contributions,

E=(Q|V|®))=—13Fx, 3 q;(aB)g,(aB),
p .

a<pf

(2.13)

i.e., the exchange (Fock) energy of the interaction V.
Therefore the “real” correlation energy E.,., induced
only by the dynamical effects, is

Ei—Ey - (2.14)

E

corr

The standard expression (Egido, Mang, and Ring, 1980b;
Ring and Schuck, 1980) for E_,,, is

Eow=—S0, S ¢*aB¢,(aB) <0,

n a<p

(2.15)

where @,(af) is the backwards-going amplitude of the
RPA solution. In the numerical applications we general-
ly use E,, rather than E_,, since we do not include the
exchange energy into the single-particle estimate of ener-
gy E, (Hartree-Bogoliubov approximation; see Sec.
II1.A).

In actual situations the RPA equations display a high
density of very closely spaced roots w,. Consequently
the calculation of E . associated with Eq. (2.12) is rath-
er tedious even for separable interactions. Making use of
a finite averaging parameter §=1Im(w), we find that Eq.
(2.11) leads to the desired result in an economic way.
Equation (2.11) is general and can be used to calculate
other correlation energies—for example, those associated
with the quadrupole interaction acting in the particle-
hole channel (Shimizu, 1987).
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1ll. MODEL OF PAIRING FLUCTUATIONS

The different observables are calculated in a quasiparti-
cle basis moving in a rotating system. The correlations
between the quasiparticles are taken into account in the
framework of the harmonic approximation (RPA) for
each rotational frequency.

A. Self-consistent cranked BCS model

Since we are mainly concerned with the effect of pair-
ing fluctuations in nuclei that display rather stable defor-
mations, no self-consistency condition is imposed on the
shape parameters. They remain fixed. The quasiparticles
interact through a monopole pairing force that is diago-
nalized in the RPA. Only the lowest rotational bands as-
sociated with a specific parity 7 and signature! «, for
which experimental information exists up to very high
spins, are considered. The standard adiabatic quasiparti-
cle basis described, for example, by Bengtsson and
Frauendorf (1979) is used in the calculations. It is ob-
tained by diagonalizing the Hamiltonian,

h'=hy—APT+P)— AN — 0, J,
- t t
=3 E,aja,+ 3 E.ala,, (3.1)
p B

which is obtained by the standard Hartree-Bogoliubov
procedure. In Eq. (3.1) k\def is the Nilsson Hamiltonian,
pi= 2i>0é;rclj is the monopole pairing operator, and
E, (Eﬁ) is the quasiparticle energy associated with the
state of the signature a=1 (—1).

The unitary transformation between the Nilsson basis
(with good signature) and the rotating quasiparticle states
U is given by

¢ = 2 Uip.ap+ 2 I_/lva; ’
u v

¥ = 4 3.2)
;= 2Vua,+32Ua, .
I v
The associated eigenvalue equation can be written as
€— wrotjx - k - A U V
—A —(etods—A) | |V T
UVI||IE 0

ISignature is the quantum number associated with a rotation
of 180° about the rotational axis, i.e., is the eigenvalue of the sig-
nature operator, R,=exp(—imJ,). A signature r can be
defined as r=exp(—inJ,)=exp(—ima), where I=a Mod 2
and a==1/2. The quantity a has been termed the “signature
exponent” by Goodman (1974). Following Bengtsson and
Frauendorf (1979) and others, we refer to a as the signature in
the present review.
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where

e=8;&; Jx=Jx(ij), A=8;A (3.4)
(Nilsson basis), and

E=$§,E, E=38,E, (3.5)

(rotating basis). The energy gap A and the chemical po-
tential A are self-consistently calculated at each rotation-

- al frequency, through the standard BCS equations

G(PT)=A,
(N)=N.

(3.6a)
(3.6b)

B. Correlation energy and dealignment
associated with pairing fluctuations

The unperturbed Hamiltonian appearing in Eq. (2.1) is

H,=E cpcs +h, : (3.7)
where
E&BCS = <ﬁdef—c‘)rot‘/ix ) —AZ/G (3.8)

is the standard cranked BCS routhian.
The residual interaction

v=—GP'P, ' (3.9
with

P'=pT—(P"), (3.10)
can be expressed in the form (2.4) according to

V:_%G 2 gﬂgﬂ_—g(ﬁ_ﬂmodel) ’ (311)

p==

with

~ 1 st. 5 a I =t 3

=—=(P"'+P), S_=—=(P'—P). .12
S+=75 1 ) 75 ) (3.12)

The quantity Q4= i>0l is half the number of
single-particle states in the model space considered. The
second term in Eq. (3.11) is an absolute constant so that
it is neglected in the following. The response matrix (2.6)
has, in the present case, dimension 2X2 and matrix ele-
ments

SE (S (uv) S (uv)S% (uv)
E,¥E, 4o |’

R++(Cl))=z
= E,tE;,~w
(3.13)

and similarly for R, (), R_,(w), and R__(w). The
quantities S (uv) and S _ (u¥) are defined by

S""(#V):—‘/l—— 2 (UiﬂViv+I/iu(_]iv) ’
2 i>0
(3.14)
—_ 1 i
S‘(MV) \/‘2" igo(Ulp.Uw Vzp,Vtv)
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The pairing correlation energy is now calculated mak-
ing use of Egs. (2.7)—(2.11) and (3.13). The resulting total
routhian is

E;ot=E,CBCS+Ecorr . (3'15)

The associated angular momentum around the axis of ro-
tation can be determined through the canonical relation

{0t =g sp)y lcor) (3.16)
where
oE,
IJ((SP):____C& (3.17)
0w o
and
oE
Jleorr) = o (3.18)
* awrot

C. Physical interpretation of /{¢°™)

It is instructive to examine the physical contents of the
derivative expression for angular momentum appearing
in Egs. (3.16)—(3.18). The left-hand term of Eq. (3.17),

I_,(CSP):<:]\X >CBCS s (3.19)

is the expectation value of the angular momentum in the
self-consistent cranked BCS state. The correlation con-
tribution (3.18) to the angular momentum contains a
variety of physical effects that go beyond those included
in the RPA. This is natural because taking derivatives
with respect to the angular momentum is equivalent to
making insertions of the external field J, in the corre-
sponding field-theory diagrams.

Assuming that the mean field is independent of w,,,
aside from the cranking term, we can express the quanti-
ty I f‘""") as the sum of three terms (see the Appendix),

I GUEy OFY (UNS (SO (3.20)

The quantity I\°® arises from the exchange contribution
[see Eq. (2.13)]. The first and the second terms have
been evaluated (Barranco et al., 1987) within the frame-
work of the nuclear field theory (Bortignon et al., 1977),
making use of the diagrams (a) and (b) shown in Fig. 1.
The first is associated with RPA ground-state correla-
tions, while the second is associated with renormaliza-
tions of the single-particle motion.

While the nuclear field-theory ‘expressions for diagram
(b) and I® coincide, only diagonal terms (a=/3) appear
in I'®. This difference is not expected to bring any new
physics into the problem. The term I(*) can be written as

IP=3 3 [ (a)+i,(y)]piay)p,lay), (.21
n a<y
where i, (a) is the single-particle alignment (¢ =y or ¥),
oE,
0w,

rot

i(a)=— (3.22)
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X o ___

(a) (b)

FIG. 1. Second-order processes in the coupling of vibrations
(wavy lines) and quasiparticles (solid lines). The external field
changing the motion of a quasiparticle as in (a) or exciting a
two-quasiparticle state from the vacuum (b) is the angular
momentum 7I,..

assuming the mean field to be constant.

The process of Fig. 1(a) leads to an effective change of
the BCS occupation numbers, depopulating states below
the Fermi surface and populating states above it. For
large values of w,, in the lower portion of a major shell,
this change in the occupancy parameters will lead to a
dynamical quenching of the angular momentum, as the
most aligned single-particle orbits lie below the Fermi
level.

Diagram (b) leads to an effective change in the single-
particle orbitals. In fact, both particles and holes are re-
normalized, due to coupling with the pairing modes, and
acquire an effective mass. Levels below the Fermi energy
become less bound, while those above it become more
bound, the summed effect being an increase of the level
density around the Fermi surface and, again, a depopula-
tion of levels lying below €p; see, for example, Mahaux et
al. (1985). Consequently, for nuclei in which the Fermi
surface is in the lower portion of a shell, a net dynamical
quenching of the angular momentum results.

While diagram (a) can be calculated by making use of
the RPA solutions, to calculate diagram (b) one needs to
go beyond the RPA, taking into account scattering ver-
tices. The particle-vibration coupling Hamiltonian is,
however, well determined once the RPA solution has
been worked out, and both diagrams can be calculated
with equal ease. They are also of the same order of per-
turbation. In fact, they constitute a set of sum-rule-
conserving graphs, in the sense of the Ward identity (see, -
for example, Schrieffer, 1964).

In the present calculations the contribution of diagram
(b) is, usually, much larger than that of diagram (a). This
can be understood in terms of the value of the energy
denominators (see the Appendix for details). For exam-
ple, we find (see Sec. V.C) that the terms I'®, I®) and
I{*® contribute about 20%, 70%, and 10% of the total,
respectively, for typical large rotational frequencies.

D. Limit @or= @crit

It is instructive to study the limit in which the BCS
pairing gap goes to zero. In this case (normal phase), the
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RPA response matrix decouples into pair-addition and
pair-removal components, that is,

TIR=R 4+ Ry . (3.23)

The quantities /2 ; and Ry are calculated with the help
of Eq. (2.7), making use of the unperturbed response
function

IM(kk ")|? M (T ")|?

Ryo)=| 3 ——F———+ 3 ,
kE'>£F Ek +EE,_“CO \itT'<8F E,+El—,+w

(3.24)
IM i) |M (kK ")|?
Rplw)=| 3 MU | s MKk
i7'<eFEi+ElT'_w kl?’>eFEk+EE’+w

The quantities M(kk ') and M(ii’) are the matrix ele-
ments of the monopole pairing operator P . The quasi-
particle energies are in the present case given by

€A, a=k,E'>eF,

E,= (3.25)

A—e, a=i,i'<ep,
where k labels a particle state, while i is a hole state. The
eigenvalues of the cranked Nilsson Hamiltonian 7, £
—a),ot./l\ . are denoted by &,.

In the vicinity of the critical frequency where the pair-
ing collapses (@, =), a perturbative treatment of the
BCS equation with respect to the parameter A=~0 may be
possible. Thus, in this limit, Egs. (3.6) reduce to

1
E=RA(C0=O)=RR(CO=O) N

0=
ow

(3.26a)

OR
dw
0=0 0=0
Equation (3.26a) shows that the o, for which A=0
coincides with the critical rotational frequency for which
the energy of the lowest pair-addition and pair-removal
modes becomes zero. Moreover, Eq. (3.26b) fixes the

(3.26b)

value of the chemical potential at the critical frequency. .

It is thus natural to use the value A determined by Eq.
(3.26b) after the pairing collapse.

Equations (3.26) were obtained starting from Egs. (3.6)
under the assumption that

A<<(Ey+Eg),(E;+E;) . (3.27)

In realistic situations, the sharp crossing of a given
configuration with the aligned quasiparticle states may
cause a sudden collapse of the pairing gap. In such situa-
tions condition (3.27) may not be fulfilled, and the critical
frequencies for which the pairing gap collapses and the
energies of the lowest pairing vibration modes become
zero may not coincide.

IV. DETAILS OF THE CALCULATIONS

The model discussed above has been applied to ytterbi-
um isotopes with neutron number N=92-99. The pa-
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rameters of the single-particle potential and of the residu-
al interaction used in the calculations are discussed
below, together with the accuracy of the approximations
used in the linear-response (harmonic approximation)
description of the correlation energy.

A. Parameters of the model

The Nilsson Hamiltonian is formulated as in Bohr and
Mottelson (1975). The parameters of the I-s and 2
terms, taken from Bengtsson and Ragnarssen (1985), de-
pend on the main oscillator quantum number N,.. The
ytterbium isotopes with N =92-99 are predicted to have
a sizable quadrupole deformation €, and nearly zero hex-
adecapole distortion. These parameters are expected to
be quite stable with respect to angular momentum and
configurations (Bengtsson, 1980; Bengtsson et al., 1983;
Shimizu and Matsuyanagi, 1984a; Bengtsson and Rag-
narsson, 1985). Note, however, the recent results of
Bacelar et al. (1987), who measured lifetimes in '%°Yb
and found that the B(E2) values decreased significantly
above I =267 in the yrast band. This variation can be
correlated with a change in deformation (Garrett et al.,
1988), as discussed in Sec. V.E.2. Although sizable, it is
considerably smaller than that expected for transitional
nuclei in this mass region. We have checked the effects
associated with these changes in deformation (Sec. V.E.2)
and found that, although the B(E2) values are
significantly affected, they hardly change the energy spec-
tra or the overall renormalization effect introduced by
the coupling of the single-particle motion to pairing vi-
brations. Consequently, and aside from !9°Yb, we have
used constant values of &, for all rotational frequencies
and configurations, and have set £, and y equal to zero.
The isotopic dependence of ¢, is taken from the systemat-
ics of Shimizu and Matsuyanagi (1984a) with a slight
modification to fit the experimentally deduced values for
168yb. These parameters, collected in Table I, are also
shown in Fig. 2.

The active subspace for the neutrons (protons) includes
all levels associated with the N, =4,5,6 (3,4,5) oscillator
shells. In this space, particles interact with a monopole
pairing force of strength

G,=20.5/4 MeV, G,=26/4 MeV . (4.1)

The associated neutron pair gaps for the ground states of
the ytterbium isotopes are compared in Fig. 2 with the
experimental odd-even mass differences obtained from
the most recent mass compilation (Wapstra and Audi,
1985). Monopole pairing strengths G,, giving slightly
larger A, values than the odd-even mass differences, were
chosen as a compromise with the prediction of the rota-
tional frequencies of the band crossings—see Sec. V.G.
This choice, however, is justified theoretically. Blocking
effects in the odd-N isotopes are predicted (Nilsson and
Prior, 1961) to produce about a 10% reduction in the
odd-even mass difference for this mass region.
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TABLE I. Quadrupole deformations and data sources for the ytterbium isotopes.

Neutron

Nucleus number €% Experimental data sources
12ypb 92 0.224 Mo et al. (1987)
183yb 93 0.232 Kownacki et al. (1983); Schuck et al. (1985)
1%4yb 94 0.240 Schuck et al. (1985); Jénsson et al. (1986)
165Yb 95 0.245 Roy et al. (1982); Schuck et al. (1984, 1985)
16Yb 96 0.250 Walus et al. (1981); Beck et al. (1987)
167yb 97 0.254 Roy et al. (1982); Baceler et al. (1985)
18yb 98 0.258 Bacelar et al. (1985)
19Yb . 99 0.260 Bacelar et al. (1985)

# From systematics of Bengtsson (1980) and Shimizu and Matsuyanagi (1984a) slightly modified.

B. Accuracy of the linear-response approximation

The merit of the response function technique [Egs.
(3.13) and (2.6)—(2.11)] is that all the RPA roots con-
sistent with the cranked BCS calculation can be taken
into account in solving the pairing problem. This is im-
portant, since the strength G of the pairing force depends
sensitively on the model space used in the cranked BCS
calculation. In the present cases (see preceding subsec-
tion), the number of the RPA roots amounts to about one
thousand.

The calculation of the response functions (3.13) [cf.
Eq. (2.6)] is very economical when a complex energy
®+1i8 is utilized. The smooth dependence of the correla-
tion energy, shown in Fig. 3, testifies to the stablhty with
respect to the averaging parameter 8.

The accuracy of the results is demonstrated in Fig. 4,
where the correlation energies for two configurations of
168yb calculated using Egs. (2.12) and (2.11) with §=80
keV are shown as a function of the rotational frequency.
The relative energies and frequency dependence are
essentially the same in both calculations, except near the

30 —

12 (L
3 T .
.
Z o 1 - & 25 —
3 /0/./
Q .
o8 q
o G205/ .20 [— =
1
< experiment
06 *i perimen |
. 1 s 1 "
92 96 100 92 96 100
N

FIG. 2. Ground-state BCS neutron pairing gap A, (left) for the
different even-A4 ytterbium isotopes. The BCS equations (3.6)
were solved for G,=20.5/4 MeV and for neutron numbers
N =092, 94, 96, and 98. The experimental odd-even mass
differences, calculated using the third difference formulation of
Bohr and Mottelson (1969) and the most recent compilation of
nuclear masses (Wapstra and Audi, 1985), also are displayed.
In the right-hand portion of the figure the quadrupole deforma-
tion parameters used in the calculations are shown.
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critical frequency, where the linear approximation itself
is not valid. We have used 6=Im(w)=280 keV in all the
results shown below.

C. Treatment of protons

The lowest proton band crossing is predicted to occur
at #iw.;=0.4-0.5 MeV for all the isotopes considered.
However, except for '2Yb (Mo et al., 1987), no proton
crossing is observed in the experimental data up to
#iw,,;~0.6 MeV. To account for this known deficiency in
the calculations we have extrapolated the calculated
quasiproton results for #iw ., $0.20 MeV to larger fre-
quencies, using the parametrization of Harris (1965),

I .(proton)=J{ o, +JP w3, . 4.2)

The extracted Harris parameters J§,J P are collected in
Table I1.

D. Dynamical and effective pairing gaps

Because the coupling of pairing vibrations to the nu-
cleons is nonadiabatic (Bés et al., 1970), it is not accurate
to express the associated renormalization effects through
a single effective parameter. Nonetheless, for a quantita-
tive measure of the relative importance of dynamical and

I
5; Wrot = 0.40 aa Wrot = 0.60
- 49 An=0303 7] ¥ 20200
Y
3
=
§ sl —| a8~ — a3k
w \
0
| -
50 | 47 | 42 |
05 (<] 9 05 o1 o 05 ol
Im (W) (MeV)

FIG. 3. Pairing correlation energies, E ., of the (+,0)
configuration of !®Yb as a function of the averaging parameter
8=Im(w) are shown for three different values of the rotational
frequency. The corresponding values of the static pair gap A,
calculated for each frequency are also given.
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FIG. 4. Comparison of the correlation energy as a function of
the rotational frequency for the (+,0) and (—,1) configurations
of 1%Yb in the normal phase for 8=Im(w)=80 keV and 0. The
curves labeled “exact” were calculated by the RPA dispersion
relation and by summing up the contributions from each root.
Within the framework of the linear approximation, these results
are numerically “exact.”

static pairing correlations we define a “dynamical pairing
gap” as

D=V G(—E o) . 4.3)

It is noted that the contribution of the pairing force to

the mean field, i.e., the exchange (Fock) energy, is not

contained in this expression [see Eq. (2:.14)]. The dynam-

ic neutron pairing gap for !%8Yb is compared in Fig. 5
~with the BCS pairing gap

A=G(PT)pes . ‘ 4.4)

The two quantities A and Ay, have similar vlaues only
for rotational frequencies between that of the two-
quasineutron excitation (#w,,;~0.26 MeV) and the criti-
cal frequency (#iw., ~0.45 MeV) for which A—0. In the
region of no quasiparticle excitations, i.e., fiw, <0.26
MeV, A is significantly larger than A,,. Consequently

TABLE II. Harris parameters [Eq. (4.2)] fixed by fitting the cal-
culated proton contribution to the angular momentum at
#iw.~0.2 MeV. These values are used to extrapolate the pro-
ton contributions to larger rotational frequencies—see Sec.
IV.C.

Nucleus JP MeV %) JP (MeV 7 3#%)
162y . 5.56 14.3
1683Yb 5.99 16.1
184y 6.43 18.1
165yb 6.75 19.5
166yh 7.07 20.8
167Yb 7.35 219
168yp 7.63 229
19Yb 7.83 23.7
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FIG. 5. Comparison of the calculated static (BCS) neutron pair
gap A, dynamic neutron pair gap Ay, and effective neutron
pair gap A.s for the lowest (m,a)=(+,0) configuration of
1%Ybgg. A, Agyn, and A, are defined by Egs. (4.4), (4.3), and
(4.7), respectively. A comparison of Ay, and A gives a measure
of the relative importance of dynamic and static neutron pair
correlations. The effective pair gap A 4 is constructed from the
RPA solutions, containing both static and dynamical pairing
effects, for comparison with the results of number-projected cal-
culations; see Sec. IV.D.

we do not expect pairing fluctuations to play a major role
in the superfluid phase. This expectation is confirmed by
the numerical results (Sec. V.E). The calculations also
show that, for values of the rotational frequency where
A S Ayy,, the situation is reversed and pairing fluctua-
tions dominate. .

It is important to underline the physical difference be-
tween the construct Ay, [Eq. (4.3)] and the quantity A
[Eq. (4.4)]. While Ay, cannot be measured directly, the
pairing gap A is specifically connected with two-
nucleon-transfer processes. In fact, the cross section for
the transfer of a Cooper pair between yrast states is pro-
portional to (A/G)? [see Broglia (1985), Broglia et al.
(1985), and references therein].

In this context it is appropriate to discuss the concep-
tual difference between the static pairing gap A, Eq. (4.4),
and the “pairing gap” calculated using number projec-
tion (Mang, 1975; Bengtsson and Hakonsson, 1981; Egi-
do and Ring, 1982a, 1982b; Bengtsson and Zhang, 1984;
Mutz and Ring, 1984; Canto et al, 1985). The latter
quantity Ayp is defined according to

Anp=G(xp{O|P TP|0)p)"?, 4.5)

where |0)yp is the number-projected Hartree-Fock-

Bogoliubov state. It should be noticed that |0)yp con-
tains the effects of pairing correlations that cannot be in-
cluded in the simple mean-field approximation. In this
sense, |0)yp corresponds, roughly speaking, to the RPA
vacuum state |0)gps. In order to make the analogy more
transparent, consider the explicit forms of both wave
functions in the simple situation of the absence of rota-
tion, where only the monopole pairing residual interac-
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tion is taken into account and the pairing correlation is
so weak that the BCS equation results in a zero static
pairing gap (normal phase). In such a case, |0)yp and
|0)gpa in the so-called quasiboson approximation take
the following forms [Ring and Schuck (1980), pp. 342 and
343]:

n

V.U
bk |HF) ,

>
ph Up Uh

(ciehe;c,)

|
0)p=N n§0 (n1)2
(4.6a)

10)gpa=N" 20711—! {zhz,,ucgcg)(c,;c,,)}"mp) ,
n= P

(4.6b)

where |HF) is the Hartree-Fock state and C; (C,) is the
particle (hole) creation operator. As can be clearly seen,
both states take into account the pp-hh correlations com-
ing from the pairing interactions. Note, however, that in
the case of |0)yp the (U, V) factors in Eq. (4.6a) are not
determined by the BCS equation, but instead are deter-
mined statically using the variational principle (variation
after projection). In contrast, for |0)gp,, the amplitudes
Z,, in Eq. (4.6b) are determined dynamically by solving
the RPA equation.

Noticing that |0)gps plays a similar role to that of
|0)nps We can define the “effective pairing gap” A.g,
which is an analogous quantity to Ayp in our
BCS + RPA approach. The effective pairing gap A is
defined by replacing |0)yp by |0)gps and using a kind of
symmetrization, i.e.,

Aer=G[+(rpaCOIP TP|0) rpa +rpaCOIPP T10) gpa) 172 .
4.7)

The reason for the symmetrization is as follows: In the
BCS + RPA formalism the quantities in Eq. (4.7) are cal-
culated by using the complete set of the RPA eigenstates,

RPA<O|ﬁTﬁ[O>RPA:IRPA<O|ﬁ|O>RPAIZ
+ X |RPA<n,|ﬁIO>RPAI2r
n'#£NG
(4.8a)
RPA(O|ﬁﬁT|O>RPA:|RPA<O|P\TIO>RPA|2

+ 2 |RPA<n|ﬁTIO>RpAIZ,
n#=NG

(4.8b)

where 3, .ng means that the symmetry-conserving
Nambu-Goldstone mode (the zero-energy pairing rota-
tion) should not be included. The first, Eq. (4.8a),
represents the part of the two-nucleon-transfer non-
energy-weighted sum rule associated with the pickup of
two nucleons from system A, while the second, Eq.
(4.8b), is that corresponding to the stripping. Physically,
there is no reason for preferring one to the other. The
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first terms in Eqs. (4.8a) and (4.8b) are approximated by
IRPA<OIﬁ TIO)RPAP: IRPA(O|ﬁ|0)RPAIZ

~|pcs{ 0P T]0) pes?
2

, 4.9)

which is proportional to the two-nucleon-transfer cross
section between members of the pairing rotational band.
The second terms in (4.8a) and (4.8b) are the sum of the
square of the spectroscopic amplitudes .associated with
the excitation of  the pair-removal modes
[In")=|n'(—=2))] and of the pair-addition modes
[In)=|n(+2))] of system A. The first term in (4.8)
with the approximation (4.9) measures the static distor-
tion of the pair field, while the second gives the sum of
the associated zero-point amplitudes. As the rotational
frequency approaches w_;, the first term goes to zero and
the zero-point amplitudes become relatively important.

Calculated values of A, Ay, and Ay for the
(m,a)=(+,0) band of '*Yby, are compared in Fig. 5. In
this calculation of A the non-energy-weighted sum of
the pair-transfer amplitudes appearing in Eq. (4.8a) is
calculated by using the response function technique.
This calculation is similar to that of Eq. (2.8) without A
integration, i.e.,

1S (KnlBT0o) >+ |<(n|P|0)|*)gpa
n#NG

_1lpe 1 :
=5 fwcmdwﬂlm[Trﬁ(w+18)] . (4.10)

Here 7R is defined through Eq. (2.7) in terms of the un-
perturbed pairing response function [see Egs. (3.13) and
(3.14)]. The low-energy cutoff w,,, is used for eliminating
the contributions of the Nambu-Goldstone mode, which
goes to zero energy at the critical frequency w_,, produc-
ing a divergence. As shown in Fig. 5, the behavior of A 4
as a function of @, is quite similar to that of Ayp, which
is shown in Fig. 6 (Egido er al., 1985; see also Egido and

10 T T T T T T T
168
Yb98 .
C— i
— . e
1 1 1 1 1
40 60

FIG. 6. The static (BCS) neutron gap A for the lowest
configuration of '®Ybgs, as calculated by Egido and Ring
(1984), making use of the Kumar-Baranger Hamiltonian, com-
pared with the pairing gap Apnp Obtained by the same authors,
using variation after particle number projection.



Shimizu et al. : Pairing fluctuations in rapidly rotating nuclei 141

Ring, 1982a, 1982b). Moreover, the value of A is never
quenched, staying at about 800 keV even after the static
pairing has vanished.  Although the quantity
xp{OIP TP|0)p in the definition of Ayp [Eq. (4.1)] can-
not be represented in the same way as Eq. (4.8), the anal-
ogy between |0)yp and |0)gpa in the simple case [see Eq.
(4.6)] and the similar behavior of Ayp and A4 as func-
tions of w,,, suggest that the Ayp contains a considerable
part of the zero-point fluctuations. In other words, the
static pairing gap A and the number projection gap Ayp
are conceptually different quantities and should not be
confused. For instance, the value of Ayp must not be
used as the pairing gap parameter appearing in the usual
cranked shell-model calculations. Similar results were
obtained by Nazarewicz et al. (1985).

We can make an analogy between Eq. (4.5) and the
case of surface distortions, in which the quadrupole fluc-
tuations are measured in terms of the matrix element of
the quadrupole operator

Q;p=(;p€0]Q0 2|0} ;5172 .

Here |0),, is the projected state, and IP denotes angular
momentum projection. Assuming I =0, one can write

10010 2|0}, o= |2<0|Q|0>p|2+ > |,(n [010)%.

4.11)

(4.11a)

The first term measures the transition within a quadru-
pole rotational band, being proportional to the static

quadrupole moment of the system, while the second term -

is proportional to the transition probability connecting
the ground ‘'state with the 8 or y vibration. When the
system becomes spherical, the first term is zero and the
second gives the transition probability to the single-
phonon quadrupole vibration. o

Summing up, the pairing phase transition is associated
with a spontaneous breaking of the symmetry and conse-
quently with a violation of the particle number conserva-
tion law. The associated Nambu-Goldstone mode in-
duces fluctuations of the order parameter that are pre-
cisely those needed to restore the symmetry, see Ander-
son (1958), leading to eigenstates of fixed particle num-
ber. The same result can be obtained by utilizing project-
ed wave functions displaying correct transformation
properties under rotations in gauge space.

E. The smoothening of the RPA correlation
energy and dealignment

The RPA correlation energy E .. defined by Eq. (2.11)
or (2.12) may be discontinuous in two situations: (i) at
band crossings and (ii) at the quenching of the static pair
gap. In general, I{°™ introduced in Eq. (3.18) is not
defined at such points. In the case of band crossings, two
situations can arise depending on the strength with
which the crossing bands interact. If the interaction is
weak, a sharp band crossing occurs. In this case the
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FIG. 7. Calculated routhians e’ (top) and alignments 7 (bottom)
for configurations of '*Yb: dot-dashed curves, (—0); double-
dashed curves, (—,1). The light and heavy curves indicate the
explicit calculations and the results of interpolation, respective-

ly.

physical observable remains continuous if the so-called
“diabatic quasiparticle basis” (Frauendorf, 1981) is fol-
lowed. Calculations based on this prescription lead to
sensible results (see, for example, Shimizu and
Matsuyanagi, 1982, 1983, 1984a, 1985). In this paper we
are mainly interested in the region of large rotational fre-
quencies. Therefore we need not worry about sharp band
crossings, since in this region the experimental routhians
and alignments are also discontinuous, if one follows the
yrast states.

On the other hand, the strong-interaction situation,
found, for example, in the first neutron crossing (“AB”
crossing) in '®Yb and in the superfluid-to-normal phase
transition, poses a real difficulty to the RPA. The poten-
tial energy surface as a function of the gap parameter be-
comes flat; thus the harmonic picture is no longer valid.
Number projection techniques (Mang, 1975; Faessler et
al., 1976; Bengtsson and Hékansson, 1981; Egido and
Ring, 1982a, 1982b; Bengtsson and Zhang, 1984; Mutz
and Ring, 1984; Canto et al., 1985) can be used to over-
come this problem. Likewise, the boson expansion ap-
proach leads to a satisfactory solution (Shimizu and Bro-
glia, 1988).

In this paper we are interested in making a systematic
comparison between theory and experiment and assessing
the role of the dynamical pairing degrees of freedom. In
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keeping with this goal, we shall use a simple interpolation
procedure (Bes et al., 1987). In Fig. 7 we show a typical
example of such an interpolated routhian e’ and single-
particle alignment i.

V. DISCUSSION OF CALCULATED QUANTITIES
AND COMPARISON WITH EXPERIMENTAL DATA

For some time both experimental evidence (Chapman
et al., 1983; Frauendorf, 1984; Garrett, 1984; Herskind,
1984; Bacelar et al., 1985; Schuck et al., 1985) and
theoretical calculations (Agarwal et al., 1983; Diebel,
1984) have indicated a quenching of static pair correla-
tions for stably deformed nuclei at the largest rotational
frequencies #w,,,. However, at these same values of 7w,
certain specific configurations, e.g., the lowest
(ma)=(+,00) [and to a lesser extent the (+,})]
configurations in rare-earth nuclei systematically are
depressed in energy and have smaller moments of inertia
relative to other configurations (Bacelar et al., 1985;
Garrett, 1985b; Zhang et al., 1986). These experimental
features are not predicted by cranking model calculations
(Bengtsson and Frauendorf, 1979; Frauendorf, 1982).
These results were successfully interpreted by Broglia
et al. (1986) and Broglia and Gallardo (1985) as the cou-
pling of the single-particle motion to pairing vibrations.
The model, which is physically equivalent to that dis-
cussed in the preceding sections, was applied to the
analysis of the experimental data associated with a cou-
ple of nuclei and only for o, > ;-

In the following subsections we apply the model de-
scribed in Secs. III and IV over the complete range of ro-
tational frequencies to the ytterbium isotopes (Z=70)
with N =92-99. The high-spin data for this isotopic
chain are the most complete available for well-deformed
systems (see Table I).

Before proceeding to a comparison of the theory with
experiment, it will prove instructive to consider the rota-
tional frequency and configuration dependence of the un-
perturbed single-neutron states and of the pair matrix
elements.

A. The unperturbed single-particle spectrum of states

The unperturbed single-neutron spectrum of states for
a quadrupole deformation €,=0.25 is shown as a func-
tion of the rotational frequency in Fig. 8. This deforma-

tion, which represents an average value for this string of -

ytterbium isotopes (see Table I), was used for ¢Yby in
the complete calculations. Most of the single-neutron
features for neutron numbers of 95-99, discussed by
Bacelar et al. (1985), are contained in this spectrum.

The deformation dependence of the single-neutron
states in a nonrotating system (i.e., the Nilsson states) is
shown in Fig. 9.
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FIG. 8. Cranked shell-model energies for neutrons ( 4 =~ 165) in
the normal (unpaired) phase, as a function of the rotational fre-
quency #iw,.. A quadrupole deformation e, of 0.25 and
modified-oscillator parameters from Bengtsson and Ragnarsson
(1985) were used. To the left an enlarged portion of the corre-
sponding Nilsson diagram, £,=0.2-0.3, is shown for orienta-
tion. The Nilsson model quantum numbers [ Nn,A]Q and the
level numbers used for identification in Fig. 10 are given for
fiw,o; =0 between the left and right portions of the figure: solid
curve, (m,a)=(+,1); short-dashed curve, (m,a)=(+,—1);
dot-dashed curve (rr,a)=(~,%); double-dashed curve, (7,a)
=(—,—14). In the Nilsson diagram, positive- and negative-
parity configurations are denoted by solid and short-dashed
curves, respectively.

B. Pairing matrix elements
Consider Egs. (3.3) for the normal phase:
(E—@poifx )G =€°G, (et w4, JH=E“H . (5.1
The resulting eigenstates can be written as

ljY=|ma=1)=3 Gi{IK)
K

and

IK) .

R ~.|

/)=|ma=—1)=3H
, k

The states |K ) and |K ) are Nilsson states with good sig-
nature,

Q,—1/2

Ky=Z=t=0™ e+ R8T 62

and

=_1__ _ Q,—1/2)———
|IK) 1/5[ [v,Q,)+(—1) |

v,Q,)]. (5.3

These states are related by time reversal. The violation
of this symmetry is measured by the deviation from unity
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FIG. 9. Nilsson diagram showing the single-particle energies as
a function of the quadrupole deformation &,. The modified-
oscillator parameters of Bengtsson and Ragnarsson (1985) are
used. The boxed area is shown enlarged in the left-hand portion
of Fig. 8 together with the Nilsson model parameters for these
configurations. Positive- and negative-parity configurations are
denoted by solid and dashed curves, respectively.

of the matrix element of the pair-transfer operator
MG )= 7'|P"|o)

S GLHL(KK'|P'0) . (5.4)
KK’

The monopole pairing operator can be written as

pl= 3 (wlrlva)cl Cl (5.5)

va,vB>0

where 7 is the time-reversal operator. One can thus write

(KK'|PT10)=(K'|7|K ) =85 - (5.6)

We note that the pair field coincides with the transfer
operator, which creates two particles in time-reversed
states. From Eq. (5.6) one obtains

M(j7)=3 GLHL (5.7)
K

which measures the pairing overlap between the orbitals
jand j'. :

The resulting pair matrix elements M (jj') shown in
Fig. 10 display conspicuous features. In particular for a
high-J shell (e.g., the i,3,, intruder orbit for rare-earth
neutrons) they show a marked oscillatory behavior as a
function of the rotational frequency when proceeding
from the completely paired limit (w,,;=0) to the limit of
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FIG. 10. Squared matrix elements of the pair operator [pairing
overlaps; see Eq. (5.7)] between normal single-particle states as-
sociated with active configurations for the ytterbium isotopes.
Values are tabulated as a function of the rotational frequency
for £,=0.25. The labels 0,1,2, . ..,9 indicate values of M 2 be-
tween 0.01 and 0.1, 0.1 and 0.2, 0.2 and 0.3,...,0.9 and 1.0. A
dot indicates M2<0.01. Minus and plus signs indicate matrix
elements connecting negative- and positive-parity states, respec-
tively. The numbers along the abcissa and ordinate count the
signature ——;— and +% levels, respectively, starting with level
number 1 at the bottom of the potential. This enumeration is
shown for #iw,,,=0 in Fig. 8. The loci of the Fermi level for

neutron numbers N =92 and 98 also are shown.

dominating Coriolis plus centrifugal force (w — )
(Broglia 1985; Broglia et al. 1985 1986; Nikam et al.
1986). This behavior is understood in terms of a semi-
classical model (Vigezzi et al., 1988) as well as a manifes-
tation of the Berry phase (Nikam and Ring, 1987).

For a normal-parity state (e.g., the N=35 negative-
parity neutron states in the rare-earth region), where
several shell-model configurations contribute, the de-
tailed behavior of the pair matrix elements M (jj’) is
more complicated, though the same general features are
seen.
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Two “hot” neutron orbits, which retain their paired
character at quite large rotational frequencies, are en-
countered (see Fig. 10) near the Fermi level for the ytter-
bium nuclei considered in the analysis. The 4 7[505] or-
bital is near the Fermi level at N=92, and the ;7 [521]
orbital is near Fermi level at N=98, see Figs. 8§-19.
These two orbitals, which retain sizable pair matrix ele-
ments up to #iw.,, =—0.40 MeV, will be important in many
of the calculated properties considered in the ensuing dis-
cussion. The small j, values for the 4 T[505] orbital,
which is pure %,y /,, is a result of a large 2. In contrast,
the small value for the {~[521] orbital is a consequence
of the small j value of this orbital, which at sizable defor-
mations is dominantly f5,, and p3,, (see Fig. 9). The an-
gular momentum vectors for these two orbitals are illus-
trated in Fig. 11, where they are also compared with that
of a highly aligned i;,, orbital. It must be remarked
that quadrupole pairing (Ragnarsson and Broglia, 1976;
Wakai and Faessler, 1978; Diebel, 1984) is expected to
modify the time-reversal properties, especially of the ob-
late 1 7[505] orbital (Garrett et al., 1982; Peterson and
Garrett, 1984), which has a different shape from the
neighboring orbitals. The i ~[505] orbital slopes upward
on the Nilsson plot (Figs. 8 and 9), in contrast to the
downward slopes of its neighbors.

C.. Quasiparticle energies

Single-quasineutron energies (in the rotating frame—
often called routhians), i.e., solutions of the eigenvalue
problem (3.3), are shown as a function of rotational fre-
quency in Fig. 12. The frequency-independent quadru-
pole deformation, €,=0.25, pair gap parameter,
A=0.15%wg=~1.1 MeV, and. Fermi level, A=6.56%w,,
used in this calculation correspond approximately to the

X X X

<

o) 4 Q Y4
- +
"2 [5211" 2" [660]

2" [505]

iy = 2.3 29 7.0

FIG. 11. Alignments of the intrinsic angular momentum j with
respect to the nuclear symmetry axis z and the rotational axis x.
Values are shown for the most aligned neutron configuration in
this mass region, %+[660], and the two least aligned
configurations near the Fermi surface for the light ytterbium
isotopes considered in these calculations, 1'7[505], and
“177[521]. It is these two last configurations that retain large
pairing matrix elements at large rotational frequencies; see Figs.
8 and 10. For the “—;—"’[521] configuration, which is strongly
mixed under rotation, j =3 and Q=% were assumed. Values of
Jx are also.given.
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An=6.56 hwg

e (huwp)

hw  (haw,)

FIG. 12. Cranked shell-model quasiparticle energy diagram for
neutrons ( 4 =165) in the superfluid phase as a function of the
rotational frequency #iw,,. The parameters used in the calcula-
tion are given in the upper right-hand portion of the figure.
Routhians e’ are calculated for the following values of (,a):
solid curves, (+,%); short-dashed curves, (+, —%); dot-dashed
curves (—,1); double-dashed curves, (—, —1). The alphabetic
labeling given for a few of the low-lying orbitals and summa-
rized in Sec. V.C of the text is that commonly used to denote
quasineutron configurations in this mass region; see, for exam-
ple, Bengtsson and Frauendorf (1979) and Riedinger et al.
(1980).

low-lying configurations of 1%°Yb—see Table I and Fig.
8. The calculation of the single-quasineutron spectrum
of states is essentially identical to a large number of other
cranking, or cranked shell-model calculations shown in a
variety of recent theoretical or experimental papers (see,
for example, Bengtsson and Frauendorf, 1979; Riedinger
et al., 1980, Roy et al., 1982, Bengtsson et al. 1986,
Jonsson et al., 1986). The alphabetic nonmenclature la-
beling the low-lying quasineutron configurations, also
shown in this figure, is that commonly used in the litera-
ture; see, for example, Bengtsson and Frauendorf (1979)
and Bengtsson et al. (1986). We shall often resort to a la-
beling of the states by the conserved quantum numbers of
the intrinsic configuration (parity 7 and signature a),
since such a labeling is also valid in the nonstatically

paired regime. For quasiparticles, the following
identifications can be made:
(+,4,=4,
(+,—1)»=8B,
(+,4),=C,
(M= (4, —1),=D,
(—,+h=E,
(—,—i)=F
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A detailed discussion of the nomenclature and the corre-
lation of theoretical quasiparticle orbitals to observed
configurations is contained in Bengtsson and Garrett
(1984) and Bengtsson et al. (1986).

D. Pair gaps and pair correlation energies

Self-consistent neutron pair gaps and RPA pair corre-
lation energies are presented in Figs. 13, 15, 17, 19, 21,
23, 25, and 27 for the chain of ytterbium isotopes that are
stably deformed and for which sufficient high-spin experi-
mental data exist to allow a comparison in the region of
the predicted quenching of the static neutron pair gap.
The isotopes '271Yb,, o, satisfy these criteria. Be-
sides the normal static pairing gap, this series of figures
shows the magnitude of Ay, as defined by Eq. (4.3).
E ., the total RPA pair correlation energy, and E.,, the

1.5 —[ T l T
162
>
() —
=
[
<
Adyn ]
[ ' I '
E ex
>
(4}
2
wl
_6 1 1 l i

0.2 04 06

FIG. 13. Comparison of calculated static pair gaps A and dy-
namic pair gaps Ay, (top portion) and of RPA correlation ener-
gies E ., and exchange (Fock) energies E., (bottom portion) as
a function of the rotational frequency #iw,, for a variety of
configurations in '2Yby,. A and Ay, defined by Egs. (4.4) and
(4.3), respectively, are discussed in Secs. IV.D and V.D.3. Like-
wise, E ., and E., are defined by Egs. (2.12) and (2.13), respec-
tively, and are discussed in Secs. II and V.D.3. Configurations
with (7,a)=(+,0), (—,0), and (—,1) are denoted by solid, dot-
dashed, and double-dashed curves, respectively. A detailed dis-
cussion of this nucleus is given in Sec. V.E.2.
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exchange (or Fock) energy expressing the mean-field con-
tributions to the RPA, are also given. These two quanti-
ties are defined in Egs. (2.12) and (2.13), respectively.

For completeness, the calculated routhians and align-
ments, including and not including dynamical pairing
effects, are compared in Figs. 14, 16, 18, 20, 22, 24, 26,
and 28 with the corresponding experimental quantities
for these same ytterbium systems, 927 1Yb,, 5. These
quantities are discussed in Sec. V.E.

1. Pair gaps in the even-even ytterbium systems

A significant decrease of the neutron pair gap (=400
keV) is predicted, independent of the magnitude of A, (at
@, =0), at the frequency of the excitation of the most
alignable pair of quasineutrons (i.e., at the AB quasineut-
ron band crossing). The pair gap for the lowest
(m,a)=(+,0) configurations, which becomes a two-
quasineutron configuration after this crossing, decreases
to the level of the lowest negative-parity configurations
[(—,1) or (—,0)] that also correspond to the excitation of
two quasineutrons ( AE or AF). Since the neutron pair-

without Fluctuations

e’ (MeV)
i (h)

with  Fluctuations

Experiment

L | 1
02 04 06 0.2 04 06
hw,er (MeV)

FIG. 14. Comparison of calculated and experimental routhians
for various configurations in 'Yby,: middle portion, with fluc-
tuations; top portion, without fluctuations; bottom portion, ex-
perimental routhians e’ (left-hand side) and alignments i (right-
hand side). The corresponding static and dynamic pair gaps are
shown in Fig. 13. Configurations are denoted as follows: solid
lines and filled dots, (+,0); dot-dashed lines and open triangles,
(—,0); double-dashed lines and filled triangles, (—,1). The cal-
culated and experimental values are referred to reference
configurations with constant moments of inertia of 62 and 66 #>
MeV !, respectively. This nucleus is discussed in detail in Sec.
V.E.2. The experimental data for '®2Yb are taken from Mo
et al. (1987). ’
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FIG. 15. Comparison of calculated static pair gaps A and dy-
namic pair gaps Agy, (top portion) and RPA correlation ener-
gies E,,, and exchange (Fock) energies E., (bottom portion) as
a function of the rotational frequency #w,, for a variety of
configurations in '®*Yb,,. See caption to Fig. 13 for additional
information regarding the quantities plotted in this figure.

ing gap decreases as a function of N between N=92 and
98 (see Fig. 2), the relative decrease in A, at this crossing
is larger for the heavier ytterbium isotopes.

Above this band crossing a significant isotopic depen-
dence is observed for the neutron pair gap. The value of
A, for (+4,0) is predicted to decrease slowly up to about
#iw,,,=0.34 MeV for '%Yb,; and '®Ybys and then to
plunge rapidly to zero. For '92Yb,, and ®*Yb,, the (+,0)
neutron pair gap parameter is observed to decrease more
gradually above the AB crossing, finally disappearing at
#iw ,,=~0.45 MeV. This behavior can be related to the
survival of pair correlations in the 4 ~[505] and +[512]
orbitals to rather large rotational frequencies—see Sec.
V.B. The i 7[505] and +7[521] “hot” orbitals are near
the Fermi level at N=92 and 98, respectively.

The neutron pairing gaps for the negative-parity
configurations are predicted to be nearly signature in-
dependent, as expected. The different negative-parity
quasineutron orbitals (E and F) that give different signa-
tures for these configurations when combined with orbit-
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FIG. 16. Comparison of calculated and experimental routhians
for various configurations in !**Yby,: middle portion, with fluc-
tuations; top portion, without fluctuations; bottom portion ex-
perimental routhians e’ (left-hand side) and alignments i (right-
hand side). The corresponding static and dynamic pair gaps are
shown in Fig. 15.- The experimental data for !*Yb are taken
from Schuck et al. (1985) and Jonsson et al. (1986). See the
caption to Fig. 14 for additional information regarding
definition of the quantities presented in this figure.

al A are related by time reversal. Therefore occupying
either orbital has a nearly identical effect on the pair gap.

The rapid quenching of the static neutron pair gap in
the lowest negative-parity configurations of the even-even
ytterbium isotopes apparently is associated with the fact
that the excitation, or alignment, of the second most
alignable pair of i3,, quasineutrons (BC) forming four
quasineutron configurations ( ABCE or ABCF) destroys
the static neutron pair gap. It should be emphasized that
above this frequency we can neither use the familiar
quasiparticle language for neutrons nor talk of the align-
ment of a pair of quasineutrons. The neutron pair con-
densate from which the quasineutron pair is created sim-
ply does not exist in the absence of a static pair gap.
Indeed, band crossings associated with excitations of
pairs of quasineutrons apparently are absent at larger ro-
tational frequencies (Garrett, 1988; Riley, Garrett, Simp-
son, and Sharpey-Schafer, 1988). The relation between
the excitation of a pair of quasiparticles at a band cross-
ing and the enhanced two-nucleon collective transfer be-
tween pair-correlated configurations (see Sec. VI) is not-
ed. The occurrence of both effects depends on the ex-
istence of a pair condensate that can change particle
number without changing structure, and from which the
pair of quasiparticles can be created.
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FIG. 17. Comparison of calculated static pair gaps A and dy-
namic pair gaps Ay, (top portion) and RPA correlation ener-
gies E,,, and exchange (Fock) energies E,, (bottom portion) as
a function of the rotational frequency #w., for a variety of
configurations in '%®Ybys. See caption to Fig. 13 for additional
information regarding the quantities plotted in this figure.

A band crossing, however, will also be associated with
the quenching of the static neutron pair gap .if the
frequency dependence of the two-quasineutron
configurations (AE and AF) is significantly different
from that of the lowest unpaired negative-parity
configuration of the corresponding signature. This is ex-
pected to be the case, since moments of inertia are very
sensitive to pair correlations. We wish to emphasize that
this explanation of band crossing in the negative-parity
sequences of these even-even isotopes is different from
the conventional interpretation (see, for example,
Bengtsson and Frauendorf, 1979; Riedinger et al., 1980;
Jénsson et al., 1986) in terms of the alignment, or excita-
tion, of a pair of quasineutrons. Of course, the routhians
of these configurations, and hence the whole picture, will
be somewhat modified by dynamical pairing effects. Such
effects will smear, and perhaps shift, the band crossing;
however, it should not alter its occurrence.

The quenching of the static neutron pair gap, for the
negative-parity levels and the associated band crossing, is
predicted at about the same rotational frequency as the
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AB crossing in these even-even isotopes. This is contrary
to experiment. The frequencies of these band crossings
are somewhat increased when dynamical pairing effects
are included; however, they continue to be predicted too
low in the full calculations; see Sec. V.G. The reduction
of pair correlations in these negative-parity bands, and
the associated reduction of the band crossing frequencies,
by the occupation of -the two excited quasineutrons
(“blocking”) is probably overestimated. On a relative
scale, however, the isotopic dependence of the static pair
collapse in the negative-parity configurations can be un-
derstood and is in agreement with experiment.

The fact that the quenching of the static neutron pair
gap is predicted at lower rotational frequencies for the
negative-parity configurations of '*®Ybgg than for such
configurations in the other even-even ytterbium isotopes
is understood. The 17[521] “hot” quasineutron is excit-
ed in the negative-parity configurations of '®Yb. Indeed,
the band crossing in the negative-parity sequences of
168y} js observed at a lower rotational frequency than for
the other even-even ytterbium isotopes; see Sec. V.G,
Bacelar et al. (1985), and Jonsson et al. (1986).

2. Pair gaps in the odd-N ytterbium systems

At the lowest rotational frequencies the static neutron
pair gap parameter is nearly equal for negative- and
positive-parity configurations "in the odd-N ytterbium

~ systems considered. The magnitude is about midway be-

tween that of the zero- and two-quasineutron
configurations of the neighboring even-even ytterbium
isotopes. These systematics can be explained as follows:
At small rotational. frequencies both the positive- and
negative-parity configurations in the odd-N isotopes cor-
respond to single-quasineutron excitations. In contrast,
for the even-even ytterbium isotopes the low-lying
positive-parity configurations have no excited quasineut-
rons, while the negative-parity configurations have two.
Significant decreases are predicted in the static neutron
pair gap at the band crossings. In the negative-parity se-
quences the crossings correspond to the excitation of A4
and B quasineutrons (see Table III and Fig. 12).
Quasineutron 4 is already excited in the positive-parity
sequences; therefore the next most alignable pair of
quasineutrons (B and C) is excited at the band crossing
(see Grosse et al.,, 1973). For the positive-parity
configurations in '%Yby; and '$7Yb,, and the negative-
parity configurations in '*Ybgys and '%°Ybg, the excitation
of this additional pair of quasineutrons is predicted to
completely quench the static neutron pair gap. Thus the
associated band crossings would be. expected to corre-
spond to crossings between single-quasineutron bands
and unpaired bands. These crossings are predicted to
occur at rotational frequencies nearly identical to that as-
sociated with three-quasineutron crossings in neighbor-
ing odd-N isotopes, where the static neutron pair correla-
tions are not predicted to vanish for the three-
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‘FIG. 18. (a) Comparison of calculated and experimental routhians for various configurations in '**Ybys: middle portion, with fluc-
tuations; top portion, without fluctuations; bottom portion, experimental routhians e’ (left-hand side) and alignments i (right-hand
side). The corresponding static and dynamic pair gaps are shown in Fig. 17. The experimental data for '®Yb are taken from Walus
et al. (1981) and Beck et al. (1987). See the caption to Fig. 14 for additional information regarding the definition of the quantities
presented in this figure. (b) Comparison of routhians and alignments for the (+,0) configuration in '°Yb, calculated at a fixed defor-
mation £,=0.25 (solid curves) and with the self-consistent value of €,(w), shown in Table IV (dashed curves). (c) The routhians and
alignments for the (+,0) configuration in '**Yb with and without pairing fluctuations, compared with the experimental data: top por-
tion, calculated with constant deformation; bottom portion, calculated with changing deformation. (d) Comparison of the energy gap
A, and the correlation energy E.,,, for the (+,0) configuration of '°°Yb relative to the values at o,,,=0: solid curve, calculated keep-
ing the value of ¢, fixed at €,=0.250; dashed curve, calculated using the self-consistent value. (e) Comparison of measured (Bacelar
et al., 1987) and calculated (Garrett et al., 1988) B(E2)/B(E2),, ratios for the yrast decay sequence of '°*Yb. The predicted B (E2)
ratios correspond to the deformations of the minimum potential energy values [see Table V and Fig. 18(f)], calculated using the War-
saw Woods-Saxon code (Nazarewicz et al., 1985). Calculations are shown corresponding to predicted static and particle-number-
projected pair gaps. The predicted curves for #w,, > 0.45 MeV are dashed, indicating that effects corresponding to an unobserved
quasiproton band crossing have been removed from the calculations as described in Garrett et al. (1988) and Nyberg et al. (1988). (f)
Deformations of predicted minima in the potential energy surface for the yrast decay sequence of '°Yb as a function of #w,,. The
numbers accompanying the data points are #w,, values in MeV. These minima were calculated (Garrett et al., 1988) for full-
strength neutron pair correlations and without proton contributions using the Warsaw Woods-Saxon code described by Nazarewicz
et al. (1985).
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FIG. 19. Comparison of calculated static pair gaps A and dy-
namic pair gaps Ay, (top portion) and RPA correlation ener-
gies E ., and exchange (Fock) energies E., (bottom portion) as
a function of the rotational frequency #iw,, for a variety of
configurations in '®*Ybys. See caption to Fig. 13 for additional
information regarding the quantities plotted in this figure.
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FIG. 20. Comparison of calculated and experimental routhians
for various configurations in *Ybgg: middle portion, with fluc-
tuations; top portion, without fluctuations; bottom portion, ex-
perimental routhians e’ (left-hand side) and alignments i/ (right-
hand side). The corresponding static and dynamic pair gaps are
shown in Fig. 19. The experimental data for '®®Yb are taken
from Bacelar et al. (1985). See the caption to Fig. 14 for addi-
tional information regarding the definition of the quantities
presented in this figure.
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FIG. 21. Comparison of calculated static pair gaps A and dy-
namic pair gaps Ay, (top portion) and RPA correlation ener-
gies E.,, and exchange (Fock) energies E., (bottom portion) as
a function of the rotational frequency #iw,, for a variety of
configurations in '*Yby;. A and Ay, defined by Egs. (4.4) and
(4.3), respectively, are discussed in Secs. IV.D and V.D.3. Like-
wise, E ., and E,, are defined by Egs. (2.12) and (2.13), respec-
tively, and are discussed in Secs. II and V.D.3. Configurations
are given for the following values of (i, a): solid curve, (+, %);
short-dashed curve, (+, —%); dot-dashed curves, (-,%);
double-dashed curve, (—, — %). This nucleus is discussed in de-
tail in Sec. V.E.2.

quasineutron configurations. Thus it is probable that the
predicted quenching of the static pair correlations for the
negative-parity configurations in %°Ybys and *Ybg, and
for the positive-parity configurations of '*Yb,; and

Y7Yby, is associated with corresponding AB and BC or
AD quasineutron alignments.

It is not surprising that the neutron pair correlations
are predicted to be quenched in the three-quasineutron
configurations of 'Ybg,. The L7[521] “hot” orbital is
blocked, leading to reduced pair correlations for this de-
cay sequence (see Fig. 27). We have no simple argument,
however, explaining the predicted static neutron pair gap
for some of the remaining three-quasineutron configura-
tions and not for the others. The concept of a static neu-
tron pair gap for these three-quasineutron configurations
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FIG. 22. Comparison of calculated and experimental routhians
for various configurations in '*Ybe,: middle portion, with fluc-
tuations; top portion without fluctuations; bottom portion, ex-
perimental routhians e’ (left-hand side) and alignments i (right-
hand side). The corresponding static and dynamic pair gaps are
shown in Fig. 21. Configurations are denoted as follows: solid
lines and filled circles, (+,%); dotted lines and open circles,
(+, —%); dot-dashed lines and open triangles, (—',%); double-
dashed lines and filled triangles, (—,—%). The calculated and
experimental values are referred to reference configurations
with constant moments of inertia of 62 and 66 #* MeV ™!, re-
spectively. This nucleus is discussed in detail in Sec. V.E.2.
The experimental data for '*Yb are taken from Kownacki
et al. (1983) and Shuck et al. (1985).

is ambiguous, since the magnitude of the static gap is of
the order of the dynamic pair gap Ay, (see Figs. 21, 23,
25, and 27).

3. The dynamic pair gap Ag,, and the RPA
correlation energy E .,

The total RPA correlation energy E_,,, the exchange
Fock energy E.,, and the dynamical pair gap Ay, which
is proportional to the square root of the difference of
these two correlation energies [see Eq. (4.3)], are predict-
ed to be nearly independent of configuration and isotope.
The magnitude of Ay, decreases slowly from about
400-450 keV at #iw,,, =100 keV to 300-350 keV at 600
keV. This frequency dependence is slightly larger for the
heavier ytterbium isotopes.

The relative magnitudes of the static neutron pairing
gap A, and the effective dynamic neutron pair gap Ay,
give an estimate of the relative importance of static and
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FIG. 23. Comparison of calculated static pair gaps A and dy-
namic pair gaps Ay, (top portion) and RPA correlation ener-
gies E ., and exchange (Fock) energies E, (bottom portion) as a
function of the rotational frequency #w,, for a variety of
configurations in !%°Ybys. See the caption to Fig. 21 for addi-
tional information regarding quantities plotted in this figure.

dynamic neutron pair correlations. For example, it
makes little sense to discuss the effects of the static pair
gap when it is less than or of the order of the dynamic
pair gap. The effects of the dynamic pairing correlations
not only dominate at large rotational frequencies, but
they continue to exist up to very large rotational frequen-
cies (see Fig. 29).

As long as the static pairing gap has a sizable value
(AZ Agy,), the quantity E,, is essentially constant as a
function of #iw,,. It acquires a marked dependence on
#iw,,, for values larger than the critical frequency at
which the static pairing gap collapses. This dependence
leads to a dealignment of the single-particle motion [see
Eq. (3.18)]. Consequently the effects of the pairing fluc-
tuations are much more important after the static pairing
collapse. .

The constancy of E,, in the region of rotational fre-
quencies where A> Ay, testifies to the rigidity of the
pairing deformation. In this regime, a large fraction of
E . is associated with pairing rotations, in particular,
with the number-conserving collective mode. '
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FIG. 24. Comparison of calculated and experimental routhians
for various configurations in '*Yb,s: middle portion, with fluc-
tuations; top portion, without fluctuations; bottom portion, ex-
perimental routhians e’ (left-hand side) and alignments i (right-
hand side). The corresponding static and dynamic pair gaps are
shown in Fig. 23. See the caption to Fig. 22 for the definition of
the various quantities plotted in this figure. The experimental
data for '°Yb are taken from Roy et al. (1982), Schuck ez .al.
(1984, 1985).

E. Comparison of calculated and experimental
routhians and alignments

Routhians (i.e., excitation energies in the rotating sys-
tem) and alignments (i = —de’/dw) calculated with and
without the effects of pair fluctuations are compared with
the corresponding experimental quantities in Figs. 14, 16,
18, 20, 22, 24, 26, and 28. To magnify the details of the
calculated and experimental routhians and alignments in
the data figures, a “reference” configuration with con-
stant moment of inertia has been subtracted. [See
Frauendorf (1982), Bengtsson, Frauendorf, and May
(1986), and Zhang et al. (1986) for detailed discussions of
reference configurations.] Of course, this procedure
preserves the relative spacing of the routhians and align-
ments. The calculated routhians and alignments, which
in the region of the quenching of the static pairing gap
have been smoothed as described in Sec. IV.E, are re-
ferred to a configuration with J,=62 MeV ~'#%. The
effects of quasiprotons for the case of '®*Ybgg can be as-
certained by comparing the calculated routhians and
alignments of Fig. 20 with those of Fig. 30, which does
not include quasiproton contributions. The main effect
of the quasiprotons is a contribution to the moment of in-
ertia. Note that the reference configuration for the calcu-
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FIG. 25. Comparison of calculated static pair gaps A and dy-
namic pair gaps Ay, (top portion) and RPA correlation ener-
gies E,, and exchange (Fock) energies E., (bottom portion) as
a function of the rotational frequency #w,, for a variety of
configurations in *Yb,,. See the caption to Fig. 21 for addi-
tional information regarding the quantities plotted in this
figure.

lations of Fig. 30 has a moment of inertia J,=49
MeV ™ %2, while 62 MeV ~ %2 is the moment of inertia for
calculations including quasiprotons. ‘

The experimental data, also referred to a constant
moment-of-inertia reference (J, =66 MeV ™ #%), are tak-
en from the literature summarized in Table I. The exper-
imental reference, about 85% of the rigid-body value for
a deformed nucleus with a quadrupole deformation of
€,=0.25, corresponds to the average moment of inertia
of the negative-parity sequences at the largest rotational
frequencies (Garrett, 1985b; Zhang et al., 1986). The
remaining 15% contribution to the moment of inertia
corresponds to the reduction associated with proton pair
correlations. Indeed the moments of inertia of the least-
correlated configurations of the N=90 and 91 isotones
above the proton band crossings approach the deformed
rigid-body value (Garrett, 1985b).

There is a small difference, about 6%, between the
theoretical (J,=62 MeV~!#?) and the experimental
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FIG. 26. Comparison of calculated and experimental routhians
for various configurations in '¢7Yby;: ; middle portion, with
fluctuations; top portion, without fluctuations; bottom portion,
experimental routhians e’ (left-hand side) and alignments i
(right-hand side). The corresponding static and dynamic pair
gaps are shown in Fig. 25. See the caption to Fig. 22 for the
definition of the various quantities plotted in this figure. The
experimental data for '7Yb are taken from Roy et al. (1982)
and Bacelar et al. (1985).

(Jo=66 MeV ~'%#?) references. The moment of inertia for
the ground state calculated by the Inglis formula with

~ reasonable values of the deformation and pair gap param-

eters systematically underestimates the experimental
value (Nilsson and Prior, 1961; Dudek et al., 1980). In
contrast, the moment of inertia calculated using the
Nilsson potential without pairing overestimates the
rigid-body value because of the momentum-dependent /2
term (Andersson et al., 1976; Neergard et al., 1977,
Bengtsson et al., 1978). In the present calculations, the
Nilsson potential is used, but the normal phase is realized
only for neutrons. Moreover, the proton contribution is
not treated fully microscopically in the high-frequency
region (see Sec. IV.C). Therefore it is an open question
why the theoretical reference underestimates the experi-
mental one. In order to obtain the correct value, a more
satisfactory treatment of protons is needed.

1. General effects of pair fluctuations
on routhians and alignments

The general effect of pair correlations on the routhians
is to give a more positive slope, i.e., less alignment
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FIG. 27. Comparison of calculated static pair gaps A and dy-
namic pair gaps Ay, (top portion) and RPA correlation ener-
gies E.,, and exchange (Fock) energies E., (bottom portion) as
a function of the rotational frequency #w,, for a variety of
configurations in %°Ybg. ‘See the caption to Fig. 21 for addi-
tional information regarding quantities plotted in this figure.

(i=—de'/dw) and a smaller moment of inertia. The
moment of inertia corresponds to the curvature of
e'(w,,). Let us consider as an example the case of the
ground-state band of the even-even isotopes. In this case,
the static pair gap is large. Hence the moment of inertia
and the alignment are small. [The positive slope of the
e'(w.) plot, i.e., i <0, is a result of a reference appropri-
ate to nonstatistically paired neutron configurations.]
Above the band crossing the slope of the (+,0) yrast se-
quence decreases as a result of increased alignment and
momenta of inertia.

In addition to an unpaired spectrum of single-neutron
states such as that shown in Fig. 8, two effects of pair
correlations must be considered in a discussion of the
routhians and alignments: (i) the self-consistent calcula-
tion of the static neutron pair gap and (ii) the role of pair
fluctuations. Predictions of a larger static pair gap for
the (+,0) sequence than for the negative-parity sequences
-in the even-even isotopes give a lower energy and a small-
er alignment and moment of inertia for the (+,0) se-

Rev. Mod. Phys., Vol. 61, No. 1, January 1989

i(h)

e’ (Mev)

; -0} (o)
Experiment 10. — o g/
| | | I a2
02 04 06 02 04 06
hawrot (MeV)

FIG. 28. Comparison of calculated and experimental routhians
for various configurations in '®Ybg,: middle portion, with fluc-
tuations; top portion, without fluctuations; bottom portion, ex-
perimental routhians e’ (left-hand side) and alignments i (right-
hand side). The corresponding static and dynamic pair gaps are
shown in Fig. 27. See the caption to Fig. 22 for the definition of
the various quantities plotted in this figure. The experimental
data for 'Yb are taken from Bacelar et al. (1985).

quence. Pair fluctuations extend such features to larger
rotational frequencies. Indeed, the systematically ob-
served lower excitation energy and smaller alignment and
moment of inertia for the (+,0) sequence than for either

TABLE III. Identification of quasineutron configurations with
the various decay sequences.

Quasineutron configuration®

Decay sequence Below band  Above band
(m,a) crossing crossing
Even-even (+,0 ob AB
isotopes (—,0) AF AFBC*
(—,1) ‘ AE AEBC*®
0dd-N (+,4 4 ABC*®
isotopes (+,—1) B BAD°®
(=, 1) E EAB®
(——1) F FAB®

?Labeling of quasineutron configurations given in Fig. 12.
®Even-even ground-state vacuum configuration. No excited
quasiparticles.

¢Quasineutron configuration not valid when A—0. See Sec.
V.D.
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FIG. 29. The calculated static neutron pair gap A, dynamic
neutron pair gap Ay, and total angular momentum component
along the rotational axis I, for the lowest (+,0) configuration
of '8Yby are extended to large rotational frequencies,
#ir;=0.9 MeV. [A and Ay, are defined by Egs. (4.4) and (4.3),
respectively]. Note that Ay, continues to large values of #w,q,
and that the intrinsic alignment (see Fig. 31 and Sec. V.E) in-
creases at large #iw,,.

negative-parity sequence, (—,0) or (—,1), which extend
to very large rotational frequencies (see Figs. 14, 16, 18,
and 20), can be viewed as evidence for the existence of
neutron pair fluctuations. Such effects will also shift pos-
sible crossings between the routhians of the (4,0) and the
negative-parity sequences to larger rotational frequencies
and will result in larger relative alignments for these
crossings. The largest such effects will occur for a max-
imum separation in rotational frequency of the quench-
ing of the static neutron pair gap for the (+,0) and
negative-parity sequences, i.e., %Ybg,.

Similar general arguments can be advanced for the
odd-N isotopes. The effects, however, are more subtle.
The configuration dependence of the static neutron pair
gap is predicted neither to be as large nor to persist for as
large a frequency range as for the even-even isotopes (see
Figs. 21-28).
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2. The routhians and alignments of even-even
ytterbium isotopes

182yp,, (Figure 14). The calculations with pair fluctua-
tions predict the absolute magnitude of the (+,0) routhi-
an reasonably well. The routhians of the negative-parity
sequences at large rotational frequencies, however, are
predicted 300-400 keV too low. Removing pair fluctua-
tions from the calculations produces even poorer agree-
ment. This significant discrepancy is attributed to the
single-neutron spectrum of states (see Sec. V.E.4). The
predicted band crossing in the (+,0) sequence at
#iw.;=0.42 MeV is not observed in experiment. The
band crossing observed at fiw,,, =0.46 MeV, attributed to
the excitation of a pair of quasiprotons, since it occurs in
all sequences, is not included in these calculations. In
summary, the agreement between theory and experiment
for '%2Yb is the poorest of all the even isotopes studied.
In the absence of pair fluctuations the disagreement is
even worse.

1%4yby, (Figure 16). The calculations with pair fluctua-
tions reproduce the experimental routhians and align-

leeYb9B

2 e no prolons | o= =
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FIG. 30. Comparison of calculated and experimental routhians
for various configurations in ®®Yb,g in the absence of proton
contributions: middle portion, with fluctuations; top portion,
without fluctuations; bottom portion, experimental routhians e’
(left-hand side) and alignments i (right-hand side). The neutron
static and dynamic pair gaps for this nucleus are shown in Fig.
19, and the corresponding calculations including static proton
contributions are shown in Fig. 20. The calculated and experi-
mental values are referred to reference configurations with con-
stant moments of inertia of 49 and 66 #> MeV !, respectively.
The experimental data for '®Yb are taken from Bacelar et al.
(1985).
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ments quite well, except for the (+,0) sequence at
fiw,;>0.38 MeV and the persistent problem in the
lower-frequency portion of the negative-parity sequences,
which is particularly bad for this isotope.
crossing predicted in the (+,0) configuration at
fiw,,=0.35 MeV is not observed. Comparisons (Riley
et al., 1987) with heavier N=94 isotones (Dracoulis
et al., 1983; Chapman et al., 1986; Frandsen et al.,
1986; Blume et al., 1987) indicate that this crossing may
occur in '%*Yb with a large interaction strength at larger
rotational frequencies. This problem produces a large
discrepancy in the alignments for the (+,0) sequence at
large rotational frequencies. Both the predicted align-
ment and the energy splitting between the two signatures
of the negative-parity sequences become progressively
poorer at small rotational frequencies. This discrepancy
for the N=94 isotones (Jonsson et al., 1986; Blume
et al., 1987) has been attributed by Garrett (1984), Chap-
man et al. (1986), and Jonsson et al. (1986), to octupole
correlations. Without neutron pair fluctuations both the
predicted magnitude and relative spacings of the '**Yb
routhians are in poorer agreement with experiment.

1 66Yb96 (Figure 18). Lifetimes have been measured by
Bacelar et al., (1987) for the yrast configuration of '°Yb.
The B(E2) values extracted from these experimental
data can be understood in terms of a decrease in the
quadrupole deformation of the nucleus [see Figs. 18(e)
and 18(f)]. The associated values of the quadrupole de-
formation parameters are shown in Table IV (see Garrett
et al., 1988, and Nyberg et al., 1988).

In keeping with these results, and in order to check the
effect of deformation on pairing fluctuations, we have
made two sets of calculations. In one, displayed in Fig.
18(a), the deformation parameter was kept constant. In
another, the deformation was changed as a function of
the rotational frequency [see Figs. 18(b)-18(d)]. In this
case only the results associated with the (+,0)
configuration are shown, since lifetimes have only been
measured for the yrast configuration.

From the results shown in Figs. 18(b)—18(d) we see
that deformation effects are rather small. In fact, they
lead to changes of the order of 200 keV in the case of the
routhians and of less than 1.5% in the case of alignments.
The systematic 200-keV discrepancy between the theoret-
ical and experimental routhians at large rotational fre-
quency is a result of the absolute value of the ground-
state energy. The calculation of the energy of this
configuration, which is taken as the zero for all routhi-
ans, is more uncertain than the relative value of the
routhians in the less correlated regime. The effect of neu-
tron pair fluctuations is a renormalization of the align-
~ ments and improves the agreement with the experimental
values for #w,,,=0.26-0.32 MeV. For both constant
and changing deformation the corrections induced by vi-
brations of the pair field yield important corrections to
routhians and alignments, leading to an overall consisten-
cy in the description of the experimental findings.

168Yb98 (Figure 20). The relative agreement between
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The band:

TABLE IV. Rotational frequency dependence of the deforma-
tion corresponding to the minimum potential energy for the
yrast (+,0) decay sequence of '°°Yb. From Garrett et al.
(1988).

#io,or €, v (deg)
0.00 0.261 . 4.0
0.05 , 0.261 3.9
0.10 0.268 '35
0.15 0.264 2.9
0.20 0.267 1.9
0.25 0.251 2.4
0.30 0.247 2.0
0.35 0.236 4.8
0.45 0.230 3.8
0.50° 0.225. 6.4

2 Equilibrium deformation obtained from excited quasiproton
excitations due to the unphysically low #w., of the predicted
quasiproton band crossing; see Sec. IV.C. For detailed discus-
sion, see Nyberg et al. (1988).

the calculated routhians, which include neutron pair fluc-
tuations, and experiment is excellent; however, the
ground-state calculation is about 400 keV too high—see
the comments on the ground-state calculation for '®°Yb.
Both the relative values of the routhians and the align-
ments, or moments of inertia, are significantly improved
by including the effects of neutron pair fluctuations.

3. The routhians and alignments of odd-N
ytterbium isotopes

183Ybgs (Figure 22). The calculations that include pair
fluctuations are in very good agreement with the experi-
mental data at small rotational frequencies and repro-
duce the relative spacing of the experimental routhians at
large frequencies. However, at large rotational frequen-
cies the experimental routhians slope upward, i.e., corre-
spond to less alignment or a smaller moment of inertia.
This is not predicted; however, an ad hoc larger refer-
ence moment of inertia could bring the calculations into
agreement at large #iw,,. The observed alignments in all
configurations at large rotational frequencies are the
smallest measured for the odd-N ytterbiums considered.
Similarly, these configurations are also less aligned than
the negative-parity configurations in the even-even ytter-
bium isotopes at similar frequencies. Neither the ob-
served crossings in the positive-parity sequences nor the
predicted ordering of the signatures of the negative-
parity sequences (‘“signature inversion”) (Kownacki
et al., 1983) are correctly predicted. Indeed, the lower-
ing of the (—, —1) and sequence relative to the (—, 1) se-
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quence, which also is unique for N=93, indicates a domi-
nance of f,, relative to hy,, in the wave function of
these configurations (Kownacki et al., 1983). The in-
clusion of configuration-dependent (self-consistent) pair
correlations and pair fluctuations does not alter the rela-
tive signature splitting for this configuration, except at
very large rotational frequencies. Including neutron pair
fluctuations improves the agreement with data for the
large-frequency moments of inertia and the crossings in
the positive-parity sequences.

165 Ybys (Figure 24). Several experimental features are
not predicted by theory. The relative positioning of the
routhians at large rotational frequencies is not predicted
correctly. Just as for !92Yby, the negative-parity states
occur too low relative to the positive-parity states. This
deficiency of the parametrization of the modified oscilla-
tor potentials of Bengtsson and Ragnarsson (1985) was
noted previously and corrected by a small modification of
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the spin-orbit parameter for the N=6 neutron shell
(Bacelar et al., 1985). The rotational frequencies of the
crossings in the positive-parity sequences are under-
predicted, and the predicted crossing at #w,,=0.48
MeV, the result of the quenching of the static neutron
pair gap, is not observed up to #w,,,=0.53 MeV. Like-
wise the energy splitting between the =1 and —1 sig-
natures of the positive-parity sequences is overpredicted.
This discrepancy, which becomes even worse in '¢7Yb,,
and '®Ybgy,, is resolved (Shastry et al., 1987) in self-
consistent shape calculations. Pair fluctuations, however,
do improve the agreement for the moments of inertia, the
rotational frequencies of the band crossing, and to a
lesser extent the relative energies of the positive and neg-
ative sequences.

157Yby, (Figure 26). The relative positions of the
positive- and negative-parity sequences are predicted
quite well; however, the signature splitting in the

TABLE V. Experimental estimates of apparent alignments and parameters assumed in the analysis.

Nucleus (m,a) K*® I range® fiw range® io°

162Yb, (+,0) d
(—,0) 2 22-28 0.35-0.43 5.2(0.2)
(—=,D 2 23-24 0.37-0.45 5.0(0.4)
163Y by (+,1) ’ 0.5 22.5-30.5 0.38-0.49 1.2(1.4)
(—,3) 1.5 22.5-30.5 0.38-0.48 —1.10.2)
(=—1 15 23.5-29.5 0.40-0.47 —4.4(1.0)
164Y by (+,0) 22-32 0.39-0.50 —6.6(2.2)
' (—,0 2 22-30 0.34-0.48 8.0(1.4)
(—,1 2 23-31 0.38-0.48 2.9(0.9)
165Y bys (+,5 1.5 22.5-28.5 0.37-0.45 5.7(0.0)
(—=,3) 2.5 22.5-28.5 0.36-0.42 2.100.2)
(—,—4 2.5 21.5-29.5 0.35-0.45 1.6(0.4)
166Y by (+,0) 0 22-32 0.37-0.50 0.7(0.7)
(—,0) 2 24-32 0.38-0.48 3.2(0.2)
(—,1 2 25-33 0.34-0.49 2.7(1.2)
7Y by, (+,1) 1.5 24.5-34.5 0.40-0.53 2.1(0.9)
(=3 0.5 24.5-34.5 0.39-0.51 2.2(2.4)
168 Y bgg (+,0) 0 22-30 0.38-0.51 0.2(0.2)
(—,0) 2 24-30 0.38-0.45 2.4(1.1)
(—,1 2 25-35 0.38-0.52 4.4(0.5)
19Y bgg (—,4) 0.5 22.5-34.5 0.36-0.52 1.100.4)

2 K value assumed in analysis.

® Angular momentum and rotational frequency range of data used in analysis.
¢ Apparent alignment (see Sec. V.F and Fig. 31). Uncertainty (in parentheses) extracted from data.
4 Value varying rapidly in frequency range of interest.
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positive-parity sequences is greatly underpredicted (see
preceding paragraph). The absolute value of the routhi-
ans at large rotational frequencies is overpredicted by
about 300 keV. As for 'Yby, and ¥ Ybyg,, this feature is
attributed to the ground-state calculation. Again, includ-
ing pair fluctuations reduces the prediced alignments and
moments of inertia at large rotational frequencies, which
not only improves the absolute agreement with experi-
ment at the large rotational frequencies for the reference
choice but also produces an improved relative agreement
for these quantities between small and large rotational
frequencies.

19yby (Figure 28). The comparison between experi-
ment and theory is quite similar to that for '7Yb. The
relative energies of the routhians are well reproduced,
but the absolute value at large rotational frequencies is
predicted about 200 keV too large and the signature split-
ting for the positive-parity sequences is underpredicted
except at large rotational frequencies. The effect of neu-
tron pair fluctuations is not only to improve the agree-
ment between experimental and theoretical alignments,
but also to improve the relative energies of the positive-
and negative-parity routhians. The reduction of the
positive-parity routhian relative to that for the negative-
parity sequence is a result of the ‘“blocking” of the contri-
butions of the “hot” orbital (see Secs. V.B and V.D) for
the negative-parity sequence.

4. Summary of the experimental comparisons
for individual isotopes

Including the effects of neutron pair fluctuations pro-
duces an improved agreement with experiment.
Specifically, in the weakly and nonstatically paired region
less alignment is predicted. The predicted reduction, as
large as six units (more typically three to four units) in
the vicinity of the quenching of-the static pair gap, de-
creases to about one or two units at fiw.,=0.6 MeV.
The pair fluctuations also smear the large rotational fre-
quency band crossings and shift these crossings to larger
frequencies. The sizable isotopic, configuration, and ro-
tational frequency dependences of these effects depend on
the detailed time-reversal response of the single-neutron
configurations near the Fermi level.

Many of the remaining discrepancies between experi-
ment and theory, identified in Secs. V.E.2 and V.E.3, are
“old friends” attributed to effects not included in the
present calculations: e.g., uncertainties in the spectrum
of single-neutron states, configuration-dependent nuclear
shapes, quadrupole pairing, quasiproton alignments, and
octupole correlations.

F. Apparent alignment /,

The total angular momentum of a nuclear state is a
measurable quantity. The separation of the angular
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momentum into collective and single-particle (aligned)
components, however, is ambiguous. Only the relative
alignments between known configurations can be deter-
mined from experiment. Therefore the absolute align-
ment can only be obtained at small rotational frequencies
in even-even isotopes where the experimentally measured
ground-state configuration is a good approximation of
the quasiparticle vacuum.

Another quantity related to the alignment can be ex-
tracted from experiment—the intercept on the w,,=0
axis of an extrapolated line with the local dynamic mo-
ment of inertia (Bohr and Mottelson, 1981),

I @) =dI, /dw,qy . (5.8)

The definition of this quantity, iy, which can be con-
sidered an apparent alignment, is illustrated in Fig. 31.
Alternatively, the apparent alignment can be formulated
(Garrett, 1985a; Riley et al., 1987) in terms of the
difference between the kinetic and dynamic moments of
inertia J! and J'?, respectively,

iO(wrot):mrot[J(l)(wrot)_J(z)(wrot)] ’ (5.9)
where

J(l)(wrot)=Ix/mrot M (510)

I, (h) ; : . [
T—ZO

w](z)

. |
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FIG. 31. Pedagogical figure illustrating the definition of ap-
parent alignment (see Sec. V.F.). Apparent alignment (i,), the
;=0 intercept of an extrapolation of the local dynamic mo-
ment of inertia J?', can be defined as the difference between the
kinematic J"), and dynamic moments of inertia—see Eq. (5.9).
The various quantities entering this definition are indicated in
the figure. The I,(w,,) data shown for the ground-state (—, %)
configuration of *°Er,, are from Simpson et al. (1984).
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This relation is obtained when the relation given for I, in
Fig. 31 is divided by w,, and J'! is inserted for I, /..
Note that in general i, is frequency dependent. Thus the
apparent alignment contains the same information as the
difference between the kinetic and dynamic moments of
inertia. Similarly, the condition of classical-like rotation
(i.e., I, =w,J'?), which has been observed at large rota-
tional frequencies for the (4,0) sequences of a variety of
nuclei  (Pakkanen et al., 1982; Chapman et al., 1983;
Price et al., 1983; Bacelar et al., 1985), is equivalent to
iy =0 or equal kinetic and dynamic moments of inertia.
Apparent alignments extracted from experimental data
and calculations for ytterbium isotopes are compared in
Fig. 32. In some cases experimental and/or calculated i,
are sensitive to the choice of #iw,,;. Only the well-defined
experimental cases are shown. The angular momentum
and rotational frequency ranges for the experimental
values of i are given in Table V. The rotational frequen-
cy range for the calculated values is chosen to be 0.4-0.5
MeV, roughly corresponding to that of experimental
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FIG. 32. Comparison of experimental (top) and calculated (bot-
tom) apparent alignments i, for various configurations in even-
A (left) and odd-A (right) ytterbium isotopes. The angular
momentum and rotational frequency ranges for the experimen-
tal values are given in Table V. The frequency range for the
calculated values, #iw,,=0.4-0.5, is chosen to correspond
roughly to that of the experimental values. The quantum num-
bers identifying the decay sequence for which i is extracted are
given in the figure. Apparent alignment is defined in Sec. V.F
and Fig. 31. Experimental and theoretical values are compared
in Sec. V.F.
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values. The symbols are bracketed when the extraction
of iy is w dependent. In the extraction of these values the
regions of obvious band crossing were avoided. Details
of the criteria used to establish these experimental values
are discussed by Riley et al. (1987).

The apparent alignment is not systematically zero, nor
is ip =0 expected from calculations that include or do not
include neutron pair fluctuations. If pairing fluctuations
are neglected, the calculated values of i, are systematical-
ly larger than those shown in Fig. 32. The overall magni-
tude of the predictions is in reasonable agreement with
experiment.

Certain systematic experiment trends are also predict-
ed. The apparent alignment of the (+,0) configuration is
systematically smaller than that of the negative-parity
configurations of the same isotope or those of the neigh-
boring odd-N isotopes. That is, for #w,,=0.35-0.50
MeV, the most correlated configuration (see the routhi-
ans of Figs. 14, 16, 18, and 20) has the smallest apparent
alignment. The isotopic dependence, however, is at vari-
ance with the predictions, indicating the presence of oth-
er frequency-dependent quantities that also contribute to
the apparent alignment. For example, in %*Yb,, octu-
pole correlations for the (—,1) sequence (Jénsson et al.,
1986) and a strongly interacting band crossing for the
(+,0) sequence (Riley et al., 1987) are thought to be im-
portant.

G. Band crossing frequencies and critical
frequencies of pairing collapse

The rotational frequency of the crossing between rota-
tional bands based on different intrinsic configurations in
a decay sequence is a well-defined experimental quantity
(Bengtsson and Frauendorf, 1979; Garrett et al., 1981;
Garrett, 1983; Jénsson et al., 1986). Though these cross-
ings are shown in the experimental and theoretical
routhians and alignment plots as a function of 7w,
(Figs. 14, 16, 18, 20, 22, 24, 26, and 28), it seems ap-

‘propriate to collect this information into a single plot—

see Fig. 33.

1. The AB neutron crossings

The lowest-frequency band crossing in the (+,0) band
(—,4) sequences is unambiguously associated with the
alignment, or excitation, of the most alignable pair of
i13,» quasineutrons (Stephens and Simon, 1972;
Bengtsson and Frauendorf, 1979; Garrett et al., 1981),
i.e., those labeled 4 and B in Fig. 12—See Table III.
Though the rotational frequency of this crossing (often
called the AB crossing) is systematically underpredicted
in the present calculations by 10-20 keV, the observed
(Garrett et al., 1981) reduction of the crossing frequency
in the (—,1) sequence of the odd-N system is repro-



Shimizu et al. : Pairing fluctuations in rapidly rotating nuélei 159

Experiment
T T T T T
4 AB Crossing 7 [ BC Crossing N
i 1
3 ¢ — — —
;———9—0/
. 4|
S
- v (-0
2k o (+,0) - a (- 1)
o (-, v2) A (+.02)
— | s | 1 L
3
- Theory
g AT T I
4
o
3 | A
/
AL /
3 — — A’// \\ﬁ/ —
C S~ i ‘\'7\
o~ /’/ N *
2+ i Yo - - —
| " 1 | | L | |
92 26 100 92 96 100
N

FIG. 33. Comparison of experimental (top) and calculated (bot-
tom) band crossing frequencies corresponding to the alignment
of pairs of i;3,, of quasineutrons: left-hand portion, alignment
of the lowest-frequency pair ( AB crossing); right-hand portion,
alignment of the next lowest-frequency pair (BC crossing). See
Sec. V.G for definitions of the various band crossings and a dis-
cussion of the comparison between experiment and theory. The
quantum numbers identifying the decay sequences in which the
crossing occurs are given in the figure.

duced. This crossing frequency reduction is the result of
the “blocking” of the pairing contributions from the oc-
cupied single-quasineutron orbital in the odd-N isotopes.
That is, the crossing in the even-even system is a zero- to
two-quasineutron crossing, whereas in the odd-N ytterbi-
ums the crossing is between one- and three-quasineutron
states. Improved absolute agreement for these crossing
frequencies could be obtained by an ad hoc increase in
the neutron monopole pairing strength G,, at the ex-
pense of overpredicting the neutron pair gap A,, as ex-
pressed by the odd-even mass difference; see Fig. 2.
Indeed, the choice of G, =20.5/A4 MeV was made as a
compromise, to slightly overpredict the odd-even mass
difference and to slightly underpredict these crossing
frequencies—see Sec. IV.A.

In the present analysis only a monopole pairing force is
included in the calculations. However, it is known
(Wakai and Faessler, 1978; Diebel, 1984) that including
the quadrupole pairing interaction increases the frequen-
cy of the crossing. The physical basis of this result is
probably the fact that Cooper pairs associated with a
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quadrupole pairing force carry angular momentum and
therefore are less sensitive to rotational effects.

2. The BC neutron crossings

In the low-lying negative-parity two-quasineutron
bands of the even-even ytterbium isotopes and the low-
lying positive-parity bands of the odd-mass ytterbium
isotopes, one quasineutron of the most alignable pair of
(A or B) is occupied. Therefore the excitation of the
most alignable pair of quasineutrons (A4B) violates
(Grosse et al., 1973) the Pauli principle. The excitation
of another less alignable pair (e.g., the BC or AD pair
shown in Fig. 12) at larger rotational frequencies is
allowed—see Table III, and Bengtsson and Frauendorf
(1979), and Riedinger et al. (1980).

In the presence of a static neutron pair gap with its as-
sociated quasineutron excitations, these quasineutron
alignments correspond to crossings between two- and
four-quasineutron bands in the even-even ytterbium iso-
topes and to crossings between one- and three-
quasineutron bands in the odd-N isotopes. However, the
self-consistent calculations of the neutron pair gap (see
Sec. V.D and Figs. 13, 15, 17, 19, 21, 23, 25, and 27) pre-
dict that the static neutron gap should vanish for some of
these three-quasineutron configurations and for all the
four-quasineutron configurations. Therefore, as dis-
cussed in Sec. V.D, the band crossings predicted to occur
in these decay sequences in some cases may be associated
with crossings between statically paired quasineutron and
unpaired neutron intrinsic configurations. This picture is
further complicated by the presence of dynamical pair
correlations in the absence of a stable static pair gap and
by interactions between the various configurations.

The rotational frequencies of such band crossings in
negative-parity sequences, (—,0) and (—, 1), of the even-
even ytterbium isotopes are compared with those of the
lowest positive-parity sequence, (+,%), of the odd-N iso-
topes in the right-hand portion of Fig. 33. Except for the
crossing in the (—,1) sequence of !%*Ybg,, where octu-
pole correlations are thought to be important (Jonsson
et al., 1986) at large rotational frequencies, the relative
configuration and isotopic dependence of the crossing
frequencies are correctly predicted. However, the abso-
lute magnitude of the crossing is systematically under-
predicted by from 20 to 70 keV. If fluctuations in the
neutron pair gap were ignored, the agreement would be
even poorer—see Secs. V.D.1 and V.D.2.

The underprediction of these crossing frequencies is a
serious deficiency of the model. Whereas an ad hoc in-
crease of the neutron pair strength G, would improve the
situation for these crossings, the magnitude necessary to
correct this discrepancy would overpredict both the
odd-even mass differences and the frequency of the AB
crossings (Garrett, 1982; Roy et al., 1982). It is likely
that including the quadrupole pairing interaction would
alleviate the difficulty, as has been shown by Diebel
(1984) for the AB crossing. '
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3. The frequencies of static neutron pairing collapse

In contrast to the band crossings discussed in the
preceding paragraphs, the critical frequency associated
with the collapse of the static neutron pair gap, .y, is
not well defined in the experimental routhians. There is
experimental evidence (e.g., Garrett, 1984; Bacelar et al.,
1985; Zhang et al., 1986) indicating that static neutron
pair correlations are quenched at the largest rotational
frequencies. However, both the frequency dependence of
the pair gap and pair fluctuations “smooth” any discon-
tinuity in the experimental routhians associated with this
collapse.

Though an accurate experimental definition of w_j; is
at present difficult, this quantity does have a well-defined
theoretical interpretation. Above this critical frequency
the pairing is dominated by dynamical effects, including
both a change in the two-nucleon transfer strength func-
tion from one characteristic of pair rotations to one
characteristic of pair vibration and the disappearance of
the band crossings corresponding to excitations of pairs
of quasineutrons (see Sec. VI). Coulomb excitation com-
bined with two-nucleon transfer may allow an experimen-
tal determination of w,,. It, must be admitted, however,
that such data are neither easy to obtain nor easy to in-
terpret.

Though band crossings are not a continuous function
of rotational frequency, the systematic absence of quasi-
particle crossings at large rotational frequencies argues
for the normal phase. Indeed, no quasineutron band
crossings are observed in the ytterbium isotopes at
i, > Ao, Neither are quasineutron band crossings
observed (Riley, Garrett, Simpson, and Sharpey-Schafer,
1987) above the BC and AD crossings for recent studies
of the erbium isotopes *’Ery; and !'®°Ery, (Deleplanque
et al., 1987; Simpson, Riley, James, et al., 1987), even
though these data extend to fiw,,,=~0.70 MeV (see Fig.
34).

The predicted values of w;, as defined in Figs. 13, 15,
17, 19, 21, 23, 25, and 27, are collected in Fig. 35. The
various features of these critical frequencies are discussed
in Sec. V.E.

VL. THE TIME-REVERSAL RESPONSE -
TWO-NUCLEON-TRANSFER PROCESSES

Though pairing fluctuations smooth the correlation en-
ergy in the region of the transition between the normal
and superfluid phases (see the preceding section), a
marked change is predicted to occur in the two-nucleon-
transfer response function with zero angular momentum
(L=0) at w,;;. Examples of these response functions [see
Eq. (5.6)] are shown at a variety of rotational frequencies
in Figs. 36, 37, and 38 for '**Yby,, 1"Yby;, and ®¥Yby,,
respectively; the associated transfer processes are sche-
matically summarized in Fig. 39.
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FIG. 35. Critical rotational frequencies w,,; at which the static
neutron pair gaps are predicted to collapse, shown for various
configurations of even-A (left portion) and odd- A4 (right por-
tion) ytterbium isotopes. The various configurations are
identified in the figure. These systematics are discussed in Sec.
V.G.3.
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FIG. 36. Calculated two-neutron-transfer response functions
for the lowest (+,0) configuration (left portion) and lowest
(—,1) configuration (right portion), for 1**Yb,, shown as a func-
tion of the excitation energy relative to the yrast configuration,
E,—E,,, for various values of the rotational frequency #iw,:
solid curves, pair-addition modes; dotted curves, pair-removal
modes. An averaging parameter Im(w)=200 keV was used in
these calculations. The corresponding static neutron pair gap
A, is given for each rotational frequency. The dramatic change
in the response function, noted between the superfluid and nor-
mal phases, is discussed in Sec. VI.

For o, < @, only the transitions between yrast states
carry strength, while a strong fraction of the strength is
expected to go into pairing vibrational states for
W > Ori- This pattern is typical of a transition between
pairing rotational and pairing vibrational schemes (Bés
and Broglia, 1966; Broglia et al., 1968, 1973) and reflects
the transition from the superfluid to the normal phase.

A similar conclusion can be obtained from the results
of Nikam et al. (1987). From Fig. 1 of this paper the
ratio of two-particle-transfer. cross sections connecting
yrast states at fAw~0 and 0.5 MeV is
(<A 42814 330/1¢ 4 +2ST 4) 3 o=(2)2~0.1.
This is typical of a superfluid-to-normal pairing phase
transition.

However, we note that the pattern emerging from
these results for the normal phase is quite different from
that observed in closed-shell nuclei like 2°*Pb, where a
large single-particle gap exists between empty and occu-
pied states and where the lowest pair-addition and pair-
subtraction modes are the only low-lying collective
states.

In the cases shown in Figs. 36-38 the pair-addition
and pair-removal strengths are distributed over many
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FIG. 37. Calculated two-neutron-transfer response functions
for the lowest (—l—,%) configuration (left portion), and lowest
(—,1) configuration (right portion), of '’Yby; shown as a func-
tion of the excitation energy relative to the yrast configuration,
E,—E,, for various values of the rotational frequency fic:
solid curves, pair-addition modes; dotted curves, pair-removal
modes. See also caption to Fig. 36.
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solid curves, pair-addition modes; dotted curves, pair-removal
modes. See also caption to Fig. 36.
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FIG. 39. Schematic figure, from Broglia and Gallardo (1985),
depicting. the rotating frequency dependence of two-neutron
transfer from a nucleus with N —2 neutrons to one with N neu-
trons. The two ordinates denote excitation energies in nuclei
with N —2 and N neutrons. The numbers indicate relative
two-neutron-transfer strength to yrast and excited levels shown
by the arrows. Below the critical frequency @, for the ex-
istence of static neutron pairing correlations, the transfer
strength is concentrated in an enhanced yrast-to-yrast transi-
tion, whereas above it the transfer strength is divided between
the yrast and two-particle, two-hole states.

states. This is because the collective pairing vibrations
suffer very strong Landau damping.? That is, in the ab-
sence of a shell gap, the fluctuations of the pairing gap
are trapped between closely spaced poles (unperturbed
response function), and a transition almost on the energy
shell can occur to uncorrelated two-particle or two-hole
states. A situation similar to this one, although in the
particle-hole channel, is the case of paramagnons (spin
vibrations) in liquid *He. These excitations propagate in
a continuum of uncorrelated particle-hole excitations and
consequently are strongly damped (see Fig. 40).

It is expected that, in two-nucleon-transfer reactions
between heavy ions, the deformed superfluid system will
be Coulomb excited to the critical frequency before the
pair of particles is transferred. Thus in principle it
should be possible to observe the changes of the response
function with w,, shown in Fig. 39. Results of experi-
ments of this type are becoming available. Figure 41
shows results (Guidry, 1986; Juutinen et al., 1987) for
the two-nucleon pickup double’ differential cross section
associated with the reaction '®>Dy—'®Dy* induced by
8Ni and !'%Sn. Although much work remains to be done
in connecting the experimental findings with the detailed
nuclear structure properties of the nuclei involved in the
reaction, it seems possible to interpret the main experi-

2In nuclei, because of the finite density of particle-particle and
hole-hole levels in which the pairing modes can decay, one
could better talk about splitting of the original strength.
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FIG. 40. Schematic representation of the dispersion relation as-
sociated with the paramagnon (left) and with the plasmon
(right). The hatched area corresponds to unperturbed particle-
hole excitations. The spin-spin interaction in *He giving rise to
the spin vibration is attractive and the corresponding phonon
encounters from the outset a continuous background. This is
responsible for the existence of strong Landau damping. Con-
versely, in the plasma oscillations the residual interaction is
repulsive. This, combined with the fact that the screening of
the Coulomb field produced by the ions gives a finite mass (gap)
to the plasmon, has the consequence that this mode moves away
from the continuum of particle-hole states, and the only damp-
ing it has in the corresponding region of k values is due to the
coupling to 2p-2h states. This coupling is very small because of
the strong correlation existing between the particle and the hole
in the plasmon.

mental pattern as shown in Fig. 42. In addition to the
L =0 transfer associated with the excitation of pair vibra-
tions and pair rotations, particle-hole states with a
variety of angular momenta, for example, 3 and y vibra-
tions, octupole surface modes, etc., also will be excited.
In Fig. 42(a) we have depicted the situation expected in
the case of a target nucleus displaying a rather stable
pairing gap as a function of the rotational frequency
(hard superconductor), while in Fig. 42(b) is shown the
situation for a nucleus displaying a weak pairing gap.

Before ending this section we believe a couple of re-
marks are in order. In fact, the question still - exists
whether the crucial frequencies for inducing the collapse
of the pairing gap can be reached, even with the heaviest
projectiles. Even if this is possible, the experiment will
detect at best a transient phenomenon, instead of a “stan-
dard” phase transition. The collision time for bombard-
ing energies of a few MeV per nucleon is =10~ 2! sec.
Typical values of the pairing gap A are about 1 MeV, also
leading to a characteristic time of the order of 102! sec.
Thus the question is the following: will the critical field
have enough time in such a reaction to destroy the pair
correlations?

Vil. SUMMARY

In rapidly rotating nuclei a pairing phase transition is
expected, typically for rare-earth nuclei at frequencies of
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FIG. 41. Comparison of the measured total excitation energy
as a function of the y-ray multiplicity (proportional to the an-
gular momentum) for the two-neutron-transfer reaction
182Dy 19Dy * induced by 345-MeV *®Ni (top) and 637-MeV
1168n (bottom). The figure is taken from Guidry (1986).

0.3-0.4 MeV. It could be specifically probed in the
transfer of two particles after Coulomb excitation, in a
collision between heavy ions. The neutron pair conden-
sate, apparently, ceases to exist after the excitation of a
few (three to five) quasineutrons. No single parameter
aside from possibly the two-nucleon-transfer cross sec-
tion definitively characterizes this phenomenon. Neither
is it always associated with quasiparticle excitations. In-
stead, a variety of effects appear in the gradual change of
the coupling scheme taking place as a function of #w_ in
the vicinity of the pair phase transition. Some of these
processes are depicted in Fig. 43 for the yrast config-
uration of '¥Ybyg, a typical even-even rare-earth isotope.

A decrease of the static neutron pair gap to about half
of its value at #iw,,, =0 is associated with the band cross-
ing corresponding to the excitation of a pair of i3,
quasineutrons. This crossing occurs at #iw,~0.27 MeV
for a typical light even-even rare-earth isotope. For
larger frequencies the magnitude of the pairing matrix
elements continues to decrease as the time-reversed states
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FIG. 42. Schematic representation of two particle pickup pro-
cesses populating even-even nuclei in the presence of (a) a
strong pairing gap and (b) a weak pairing gap. Although the
target nucleus is assumed to be superfluid at small anglular
momentum, it is represented as a normal system with two parti-
cles in the level just above the Fermi energy for the 4 =B —2
system. This coupling, which eventually is reached at large an-
gular momentum, is used to indicate the three types of states
that can be excited in the final nucleus by two-nucleon transfer,
namely, the yrast states (pair rotations), pair vibrations (2p-2h
states), and particle-hole excitations. The intensity distributions
as a function of angular momentum expected in the presence
(and absence) of strong pairing correlations are indicated for
pair rotations and pair vibrations by the projected spectra in the
left (and right) positions of the figure.

become progressively more orthogonal, leading to an
effective screening of the pairing coupling constant. The
quenching of the static neutron pairing gap becomes total
at fiw,,~0.3-0.4 MeV, without, in general, the oc-
currence of any further distinct band crossing.

At frequencies above that of the pairing phase transi-
tion, pairing fluctuations are found to be important. In
contrast, they play essentially no role for those frequen-
cies for which the pairing gap has a sizable value.

These results for pair correlations are little affected by
the changes in deformation taking place as a function of
the rotational frequency, at least in the ytterbium iso-
topes. This is because the fluctuations of the pairing gap,
which are strongly dependent on the average density of
pairs of single-particle levels with opposite signature
around the Fermi energy, are rather insensitive to the ac-
tual quantum numbers of the associated orbitals. This
result does not imply that changes in the deformation
with angular momentum are not important. What it says
is that pairing fluctuations are very strong in nuclei rotat-
ing with frequencies above the critical frequency for
which the pairing gap collapses. It thus confirms what
was already known from the systematic study of two-
particle-transfer reactions of normal systems like the lead
isotopes close to their ground state.

At rotational frequencies larger than the critical value,
pairing fluctuations lead to dynamical changes in the oc-
cupation of single-particle orbitals, resulting in a decrease
of the alignment. This dealignment, which is borne out
by experiment, is as large as six units (more typically
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FIG. 43. Schematic figure showing predicted frequency depen-
dences in the region of the “decline and fall” of the static neu-
tron pair gap: top, the static pair gap; middle, the routhian
(rotating-frame excitation energy); bottom, spectrum of single-
neutron states. The parameters shown correspond to the yrast
configuration of '%®Ybyg, a typical mid-rare-earth even-even nu-
cleus, and do not include the ‘effects of pairing fluctuations.
Calculated values of the squared matrix elements of the pair
operator [see Fig. 10 and Eq. (5.7)] are also shown in the upper
portion of the figure, for configurations near the N =98 Fermi
level at #iw,,,=0.2, 0.3, and 0.5 MeV. The spectrum of single-
neutron states (bottom portion) differs from that shown in Fig.
12, since the neutron pairing gap is varied as a function of #w,,,
for the present calculation. The predicted band crossing fre-
quency (fiw...), corresponding to the excitation of a pair of
iy3,, quasineutrons, and the predicted critical frequency (#icw.,;;)
for the disappearance of the static neutron pair gap are also in-
dicated for reference. Similar predictions for -this and other
configurations and isotopes of ytterbium are shown in Figs.
13-30 and are discussed in Sec. V.E.
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three to four units) for the ytterbium isotopes near the
critical frequency and decreases to one or two units at
the largest rotational frequencies (#iw,,~0.6 MeV). The
configurations displaying a coupling scheme most resem-
bling that described by the BCS wave function, e.g., the
lowest (m,a)=(+,0) configuration, are most strongly
affected by fluctuations of the pair density. At the same
rotational frequency, other configurations, e.g., (—,0)

~and (—,1), are considerably less affected by pairing fluc-

tuations. In the limit of small rotational frequencies,
these configurations evolve to two-quasiparticle states
relative to the (+,0) vacuum configuration. Consequent-
ly the associated coupling schemes exploit pair correla-
tions less favorably than do the coupling schemes of the
lowest (+,0) configuration.

The two-neutron-transfer strength is also predicted to
be modified by pairing fluctuations. This strength, which
in the static paired region is concentrated in the yrast-
yrast transition, for w,, > @, is spread over a variety of
low-lying states, no simple distinguishable neutron pair
vibrational mode being predicted. Detailed experimental
information on these processes is badly needed to check
the predictions quantitatively.

The pairing vibrational model has a number of
successes to its credit, but is not quantitatively correct in
several cases. Other effects, like changes in deformation
with rotational frequencies or state-dependent pairing
correlations—e.g., quadrupole pairing—are likely to
play a role.
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APPENDIX: APPROXIMATE EXPRESSION OF /{°™)

In order to derive the explicit form of I\°°™ defined by
Eq. (3.18), we start from Eq. (2.12),

1
Ecorrzz {Ea’n_ 2 Eaﬁ’
n

a<f

, Eup=E,+Eg. (A1)

As is usual, the RPA eigenvalue equation is expressed in
the matrix notation by

¥n
, (A2)

where ¢, (aB) and ¢, (af) are the forward and the back-
ward amplitudes and K is the RPA energy matrix. In the
separable-force representation of the residual interaction
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equation (2.4), the RPA energy matrix is expressed as

K=K, +K, , (A3)
with v
E 55,05, 0
Ko( aB;,uv) = 0 Eaﬁsaysﬁv
(A4)
A B
K[ = B* A*
A (aBuv)=—

2 qup(aﬁ)q; (,U»'V) N
P

(AS5)
B(aB;uv)=— 3 X,9,(aB)g,(uv) .
p

To derive Eq. (A1), the eigenenergy should be expressed
as

, [
0,=X,KX,, X,= ¢ (A6)
n
Thus by using the Feynman theorem we have
Iieom=— [ S (XKX,)— 3 ELg - (A7)
a<p

Here the primes indicate the derivative with respect to
the rotational frequency w,,. The first term on the
right-hand side of Eq. (A7) is decomposed into two parts
according to Eq. (A3). The evaluation of the first term
leads to

2<X*K0Xn>— > 2 Elvt (@B, (aB)

n (l<
+iaBp,(afB)]
=3 Ept23 3 EperaBe,(aB),
a<f n a<p

(A8)

where in the third line we have used the completeness re-
lation of the RPA amplitudes. The second part arising
from K; of Eq. (A5) can be calculated similarly, and we
obtain

S (XK X, )=S 4'(aB;aB)

n a<p

+23 3 [A,’f(n) > q,(aB)g,(ap)
p n a<fB

+H.c. ] R (A9)
where A,(n) is the particle-vibration couplmg vertex
defined by
A(n)=x, EB[q;(aB)l/J,,(a[g’)—qp(aB)qon(aﬁ)] . (A10)
a<
Finally, from Egs. (A7)-(A9) we have
I;corr)zl(a)+1(b)+1(ex) (A11)
X X X ’
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with
I®=—3 3 EXoeiaBp,(aB), (Al2a)
n a<p
IP=—33 3 [Akn)g,(aBlg,(eB)+H.c.],
n.p a<pB
(A12b)
I¥=—13% A'(aB;aB)
a<pf
=1y EBXP[q;,(aB)q;‘(aB)+H.c.] . (Al20)
p a< )

So far no approximations have been made. In order to
make the connection to the diagrammatic expression, we
neglect the self-consistency of the mean field and consid-
er the single-particle potential to be a constant function
of w,,. In this approximation, the derivatives are easily
evaluated. It can be shown that

E,=—JBaa)=—i(a), (A13)
(A)

) =1 (B) Ix Wﬁ)_ -

g,(aB) ) Ey:qp ( E,+E, (a<f3) (A14)

where the matrix elements J, (4) , Iy (B) etc., are defined by

J.= 3 U PaBalaf+H.c.1+ zﬂB(aB)a Tag .

a<pf

(A15)

Similarly for the one-body operator Q\p entering in the
separable-force representation of V'

QP S (q(A’aTa};%-H.c.)—i— Eq:,B)(aB)aLaB . (A16)
a<f aff
Here q[;EqLA) in Eq. (2.5). Notice that only the first

term in Eq. (A16) is taken into account in the RPA or-
der. Moreover, the forward and backward amphtudes
are expressed by

A (n)g (aB)
= Y A
lpn(aB) % Ea+EB_a)n ’
A(n)g* (aB) (A17)
n a
Jaf)=—3 =i

“ E,+Egto,

Now it is easy to see, by combining Eqgs. (A12) and
(A13)-(A17), that three terms of I\°°™ in Eq. (A11) cor-
respond to diagrams in Fig. 1 (see Sec. III.C and Barran-
coet al., 1987).
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