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This paper is devoted to recent progress made towards the understanding of closed bosonic and fermionic
string perturbation theory, formulated in a Lorentz-covariant way on Euclidean space-time. Special em-

phasis is put on the fundamental role of Riemann surfaces and supersurfaces. The differential and com-
plex geometry of their moduli space is developed as needed. New results for the superstring presented
here include the supergeometric construction of amplitudes, their chiral and superholomorphic splitting
and a global formulation of supermoduli space and amplitudes.
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I. INTRODUCTION

Local quantum field theory o6'ers a remarkably suc-
cessful description of the electromagnetic, weak, and
strong interactions of the particles thus far observed.
The standard electroweak theory of Glashow, Weinberg,
and Salam, together with quantum chromodynamics, ac-
counts extremely well for the vast amounts of high-
energy particle accelerator data that have accumulated
over the past forty years. Unification of quarks and lep-
tons and of these three fundamental forces has been pro-
posed by Georgi, Quinn, and Weinberg (1974), and
several models have been constructed, amongst them the
unified theories of Georgi and Glashow (1974) and Pati
and Salam (1974). Though experimental evidence for the
predicted decay of baryons in these theories is still lack-
ing, there is a widespread belief that some type of
unification should take place. As far as the physics of
elementary particles is concerned, local quantum field

theory thus provides a consistent and predictable frame-
work.

Nature has provided us with one more force, however,
that of gravitational attraction. The theory of general re-
lativity accounts for this force, at a non-quantum-
mechanical level, as a manifestation of the curved
geometry of space-time. General relativity has been well
tested on the cosmic scale, but has not yet been incor-
porated in a consistent scheme based on local quantum
field theory. An overview of some of the attempts at the
quantization of gravity may be found in Hawking and Is-
rael (1979). Better yet, a natural goal would be to unify
the four fundamental forces of nature into a single con-
sistent and predictive quantum theory. Though super-
gravity theories pioneered by Freedman, van
Niewenhuizen, and Ferrara (1976) and by Deser and Zu-
mino (1976a) seemed at one time good candidates for
such a unification within the framework of conventional
quantum Geld theory, there are still problems with their
consistent quantization.

In a key development, Neveu and Scherk (1972) found
an effective Yang-Mills theory present in dual models,
and Yoneya (1973) and Scherk and Schwarz (1974) ar-
gued that dual models with their "string" interpretation
automatically contained a massless spin-2 particle, cou-
pling precisely as the graviton couples in general relativi-
ty. The picture of elementary particles, and in particular
the graviton, as pointlike objects with no internal struc-
ture could then be traded in for a theory in which ele-
mentary particles are thought of as one-dimensional
curves with infinitesimal thickness, or so-called strings.
Strings interact by joining and splitting. A unification of
a11 forces along these lines was proposed by Scherk and
Schwarz (1975). The length scale of such strings is set by
the only scale characteristic of quantum gravity: the
Planck length, which is on the order of 10 cm. It was
also discovered that standard fermions and gauge bosons
are automatically present in fermionic versions of the
dual string models such as those found by Ramond (1971)
and Neveu and Schwarz (1971). Furthermore, certain
truncations of this model were shown to exhibit a super-
symmetric spectrum by Gliozzi, Scherk, and Olive (1975,
1976), and the full supersymmetry was subsequently
proven in one of the first papers on modern string theory
by Green and Schwarz (1981). Soon thereafter the
famous type-I theory of open and closed superstrings and
the type-II A and B theories of closed superstrings only
were identified by Green and Schwarz (1982). The type-I
string possesses gauge symmetry from the outset, but the
type-II string does not. For the type-II string, Kitten
(1983, 1985c) argued that serious problems arise if one
wants to keep chiral fermion multiplets after
compactification to four dimensions. In 1983, Alvarez-
Gaume and Witten showed that rather generic anomalies
in gauge and gravitational symmetries cancel for the
type-II superstring. The discovery of the absence of
anomalies in the type-I superstring with gauge group
O(32) by Green and Schwarz (1984) sparked a great deal
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of excitement about the phenomenological possibilities of
that theory. The anomaly cancellation mechanism also
allowed a gauge group E8&E8, and a theory with this
symmetry seemed to be even more promising phenome-
nologically. A new type of string theory that encom-
passes this possibility —called the heterotic string —was
soon discovered by Gross, Harvey, Martinec, and Rohm
(1985a, 1985b). As these string models only seem to
make sense in higher dimensions, it is usually assumed
that the ground state rolls up in a tiny compact space in
all but four dimensions, an idea going back to Kaluza
(1921) and Klein (1926) and revived more recently in
Cremmer and Scherk (1977). Promisihg compac-
tifications and their phenomenological implications were
discussed early on by Candelas, Horowitz, Strominger,
and Witten (1985). Not only may superstrings contain
the right particles, they also present strong evidence for
being consistent, unitary, and predictable quantum
theories of all .particles and forces in nature. In a sense
these string theories appeaz even healthier than quantum
field theory itself, as calculations of scattering amplitudes
do not seem to require renormalization, they are just
finite. At least those are the indications gotten from
analyses to tree level and sometimes to one-loop order in
string perturbation theory.

It is obviously an important question whether the indi-
cations of one-loop finiteness and unitarity persist to all
orders in perturbation theory. Most of the present re-
view will be explaining the general framework for pertur-
batively calculating scattering amplitudes in string
theories as we understand it today. One might compare
this program with the derivation of the Feynman rules in
a quantum field theory, to any order in perturbation
theory. It has become clear that string theory offers a
challenge with sometimes intricate but generally beauti-
ful mathematical concepts, and we shall acquaint the
reader gradually with the geometry that enters the per-
turbative methods, along with the physical ideas in-
volved. Perhaps string perturbation theory does not pro-
vide us with sufhcient Aexibility and insight into ques-
tions of compactification and symmetry breaking, and a
more general scheme is needed, Many attempts in this
direction have been undertaken, and though their discus-
sion would take us too far away from the mainstream of
this review, we shall periodically indicate connections
with such investigations.

Because of the almost unique nature of consistent
string theories and the occurrence of surprising anomaly
cancellation mechanisms we may expect a very simple
but fundamental principle to underlie their existence.
Such a principle remains to be fully uncovered. There is, ,

however, a recurrent theme that sharply distinguishes
strings and pointlike particle theories. With pointlike
particles, there is a geometrical distinction between free
propagation of particles and their interaction. The dy-
namics of the freely moving particle and of the interac-
tion of several particles are separate components of the
theory: in particular, the smooth world lines of free

propagation experience a "singular" joining at the in-
teraction point. The nature of the interaction is an addi-
tional input in the theory. An interaction occurs at a
geometric point, and if it were observed from a different
Lorentz frame, geometrically speaking the poirit of in-
teraction would be unaltered [Fig. 1(a)]. In a theory of
say, closed strings, formulated in a Lorentz-covariant
way, two strings may touch at one instant and merge into
one string, but the interaction point is not geometric, "
as observation from different Lorentz frames will lead to
different geometric locations of the interaction point
[Fig. 1(b)]. The local dynamics of the string does not de-
pend on whether there are interactions or not. In a
Lorentz-covariant formulation, the action of the interact-
ing string is the same as that of the free string. The to-
pology of the worldsheet swept out by the strings alone is
able to inform us that the strings interact. Thus the in-
teraction appears global and smeared out. " This was
known already in the days of the old dual models; there
one noticed that the form factor of a string indicated
nothing hard to scatter off, and this is clearly important
for its nice short-distance properties.

From the point of view presented above, string
theories describe surfaces moving in a target space-time,
with no local interaction on the worldsheet. String in-
teractions result from nontrivial topology of the surface;
in particular, connectedness is related to the degree of in-
teraction, boundary curves to initial and final strings, and
the number of handles to the number of loops in an
analogous dual or Feynman diagram representation. The
formulation in which this topological and geometrical
character of string amplitudes is manifest is that of Po-
lyakov (1981a, 1981b), originally proposed mainly as a
model of random surfaces. It provides a natural frame-
work for maintaining reparametrization and conformal
invariance, which are crucial symmetries of string
theories, and further elucidates the role of the critical di-
mension. Actually, the conformal invariance properties
in two dimensions are very restrictive, as was realized by
Kadanoff (1969) and Polyakov (1969), who used it to de-

FIG. l. Interactions of particles and of strings: (a) The point of
interaction to two pointlike particles is geometrical and in-
dependent of the I orentz frame of observation; (b) the point of
interaction of two strings is not geometrical and depends on the
Lorentz frame of observation.
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velop the conformal bootstrap program. More recently,
conformal field theory in two dimensions has been the
scene of an intense independent development, sparked by
the work of Belavin, Polyakov, and Zamolodchikov
(1984) and its unitary restriction discovered by Friedan,
Qiu, and Shenker (1984) and constructed explicitly by
Goddard, Kent, and Olive (1986).

Though the table of contents should facilitate the
reader's access to this review, we should like to sketch
the broad outlines of our approach. We shall be consid-
ering only closed-string theories, first the closed oriented
bosonic model of Virasoro (1969) and Shapiro (1970),
generalizing the original open-string model of Veneziano
(1968), then the type-II and heterotic superstrings. In
many ways, the modifications required for open strings
are of a purely technical nature, and we shall provide a
few key references to the work on open strings when ap-
propriate.

In keeping with manifest Lorentz invariance, we use
the Polyakov formulation. Scattering amplitudes are
evaluated perturbatively in the loop expansion. To order
of h loops, the answer reduces to an integral over moduli
space (or supermoduli space for superstrings) of an in-
tegrand consisting of determinants of certain operators
and correlation functions. Great effort is devoted to
evaluating these quantities and the moduli measure ex-
plicitly, first with the help of real geometry of moduli
space, then with the help of complex geometry, leading
us to make contact with the more algebraic conformal
field theory formulation. Scattering amplitudes in the
light-cone gauge have been investigated by Mandelstam
(1973a, 1973b, 1974a, 1974b, 1974c, 1986a, 1986b).

A word about references may be in order. Within the
field of string perturbation theory about Aat Minkowski
or Euclidean space-time, we have attempted to include
many published references and preprints that are of
direct relevance to the approach adopted here. Unfor-
tunately, however, it has become exceedingly dificult to
keep track of all the literature, and we present our apolo-
gies to those authors who feel their work has not been ap-
propriately referenced. At places where we discuss con-
nections with separate fields of investigation such as
string field theory, propagation in nontrivial backgrounds
and compactifications, open strings, universal moduli
space, Grassmannians, etc. , we shall quote only some of
the earliest papers.

Finally, a number of reviews have been published over
the past years. Some of the earlier work appears in Ales-
sandrini, Amati, Le Bellac, and Olive (1971), Schwarz
(1973), Frampton (1974), Mandelstam (1974a), Rebbi
(1974), Veneziano (1974), and, perhaps the most accessi-
ble, Scherk (1975).

More recent reviews are those of Schwarz (1982),
Green (1983), a reprint collection by Schwarz (1986), a
book of Green, Schwarz, and Witten (1987), and a num-
ber of conference proceedings, including conferences held
at Argonne (edited by Bardeen and White, 1985), Santa
Barbara (edited by Green and Gross, 1986), and San

Diego (edited by Yau, 1987). Polyakov's viewpoint and
strings in other contexts than grand unification are in his
book: Polyakov (1987b).

II. THE CLOSED ORIENTED BOSONIC STRING

The evolution of a closed string sweeps out a
worldsheet, which is a two-dimensional surface embed-
ded in a target space-time. The worldsheet is bounded by
the position curves of the initial and final strings, and its
handles indicate the creation and annihilation of virtual
pairs. Thus the worldsheet is similar to a Feynman dia-
gram in which propagator lines are replaced by cylinders
and a loop now corresponds to a handle [Fig. 2(a)]. In
this review we shall consider only S matrix elements, for
which the initial and final strings are on shell and set at
infinity. Under conformal transformations, which are the
crucial symmetries of the theory, such a worldsheet can
be transformed to a compact surface with a number n of
points removed corresponding to the external string
states. Such points are called punctures [Fig. 2(b)]. In

{c)

FIT+. 2. The five-point function to two-1oop (h =2) order, with
incoming and outgoing strings represented as (a} ful1 boundary
curves; (b) punctures; (c) vertex operators.
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the path-integral quantization procedure, the scattering
amplitude is obtained by summing over all surfaces with
n punctures and integrating at the punctures against the
wave functions of the string states. Alternatively, we can
rely on a string analog of the Lehmann-Symanzik-
Zimmermann (LSZ) reduction formalism of quantuin
field theory, which gives on-shell scattering amplitudes in
terms of vacuum expectatioo values of a time-ordered
product of fields. The worldsheet is viewed then as a
compact surface without punctures, but with insertions
of local operators with the quantum numbers of the
external string states. These operators are called vertex
operators. In this formulation, the amplitude is obtained
by summing over all compact surfaces and over all possi-
ble locations of the vertex operators [Fig. 2(c)]. The
equivalence between the two formulations, together with
the relation between the wave functions and vertex
operators, will be discussed in detail later in Sec. II.L,
and for the time being we shall adopt the vertex operator
appi oach.

For closed oriented strings, the worldsheet is a com-
pact orientable surface. At the h-loop level, there is to-
pologically speaking only one such surface, which is a
sphere with h handles. The number h is often referred to
as the genus of the surface. Equivalently, we can classify
the topology of the surface M by its Euler characteristic
X(M), defined as

In the presence of a metric g „on the surface M, the
Gauss-Bonnet theorem asserts that X(M) can be evalu-
ated from the Gaussian scalar curvature R,

X(M)= f d g&gR (2.2)

This formula can also be viewed as a topological con-
straint on the curvature of a surface of given gengs.

We haye already mentioned that conformal invariance
plays a key role in string theories, and this issue will be
discussed in detail as it emerges again and again in the re-
view. It may be helpful to note at this point that two sur-
faces that are topologically equivalent may still not be
equivalent as surfaces with complex structures. It is the
space of complex structures on a given topological
surface —the moduli space —which Hes at the center of
string perturbation theory.

As we progress, more facts about geometry of surfaces
will be introduced as we peed them.

X(M) =f —e+u,
where f, e, and u are, respectively, the number of faces,
edges, and vertices of any triangulation of M. The rela-
tion between X(M) and h is readily seen to be

(2.1)

(1971):

INo(x") = Tf d g&h (2.3)

Here g = ( g', g ) are coordinates on M, and x ~( g ),
p=l, . . . , d describe the propagation of a string in a
space-time of dimension d. The metric G„,(x) in space-
time should ultimately arise dynamically as excitations of
the x"(g), but in string perturbation theory it is taken
just as a background metric which satisfies the string
equations of motion. The embedding x" then-induces a
metric h „on the worldsheet given by

h „=i3 xl'B„x'G„(x), (2.4)

and h =det(h „) (see Fig. 3). Finally T has dimensions
of inverse length squared (or equivalently mass squared)
and is called the string tension. It is simply related to the
Regge slope parameter n' of dual-model theory by
T = 1/2a'.

The field equations for x" implied by the Nambu-Goto
action have two constraints expressing the vanishing of
the worldsheet stress tensor. These constraints may be
obtained as field equations directly if an intrinsic metric
g „ independent of h „ is introduced. This leads to the
formulation of Polyakov (1981a). Its action is that of a o
model with space-time as the target Riemannian mani-
fold and the key property of reparametrization invari-
ance on the worldsheet:

R4

I,(x~,g.„)= f d'g&g g-"a.x~a„x.G„.(x) . (2.5)
8m.

Classically the Nambu-Goto and the Polyakov actions
lead to identical dynamics. Quantum mechanically it is
not known whether the corresponding theories are
equivalent, mainly because the string theory obtained
from IN& is hard to quantize unambiguously. The main
advantages of the Polyakov action are that there is a
clear distinction between the intrinsic geometry g „of
the worldsheet and its embedding in space-tjme, and that
the action is quadratic iq x s if 6„ is the Aat Euclidean
metric. This is the case we shall study in detail. Hence-
forth, we shall set the string tension to unity: T= 1.

The classical symmetries of Eq. (2.5) are as follows.
(i) The group Diff(M) of differentiable reparametriza-

A. Classical strings

A natural reparametrization-invariant action is the
geometrical area, as proposed by Nambu (1970) and Goto

FIG. 3. The worldsheet: with intrinsic metric g „(left); em-
bedded in the target space-time with the induced metric h

(right).
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tions, or diffeomorphisms of M. Their action on the
coordinates of the surface is given by g ~g™(g),and
the action on the metric is also familiar from general re-
lativity:

(2.6)

6g „=26o.g „, 6x"=0 . (2.8)

(iii) For fiat target space-time, 6 is the Minkowski
metric i)„„. The group of Poincare transformations in
the target space-time is

x"—+A"~ +x~(), g„A"„A ~ ——g„q . (2.9)

Most of the time, we shall assume analytic continuation
to imaginary time, so that the metric of the target space-
time is Euclidean; it would then be more appropriate to
call this the group of isometrics of Oat d space.

It is useful to remark that some diffeomorphisms
preserve the angles and are thus conformal reparametri-
zations. On the other hand, as the Weyl transformations
merely rescale the metric, all Weyl transformations are
conformal.

The action (2.5) had actually been considered before
Polyakov in the context of two-dimensional supergravity
by Brink et al. (1976) and by Deser and Zumino (1976b).

Notice that both the actions IN~ and Ip involve only
the intrinsic geometry of the string, with no reference to
the extrinsic curvature experienced by the string. This
appears to be the appropriate setting for a string model
of elementary particles. However, if string theory is to be
viewed as an effective theory' of flux tubes in QCD or of
the Ising model, the extrinsic curvature corrections
should be taken into account. Such a model has recently
been proposed by Polyakov (1986), but we shall not dis-
cuss it here.

We shall also constantly make use of standard
differential and Riemannian geometry. Some key formu-
las are collected in Appendix A. Fuller accounts can be
found in Spiv ak for differential geometry, Weinberg
(1972) for general relativity, and Bott and Tu (1983) for
topological aspects.

Diffeomorphisms connected to the identity form the
smaller group Dift'o(M) and are generated by continuous
vector fields 5v =g™—g . The corresponding
infinitesimal changes in the fields are

5g „=7 (5v„)+V„(5v ), 5x"=5v 8 x" . (2.7)

(ii) The group Weyl(M) of all rescalings of the metric
by (M-dependent) positive real functions. These transfor-
mations do not move the points of M and act
infinitesimally as

originally proposed by Hsue, Sakita, and Virasoro (1970)
and by Gervais and Sakita (1971b). In the Polyakov for-
mulation, this corresponds to treating both the x" agd
the worldsheet metrics g „as two-dimensional quantum
fields. For Aat Euclidean space-time, the x" are free
fields and their path integrals Gaussian, so the crucial
part will be the path integral over metrics g „.

The functional integral approach requires the addition
to the Polyakov action of all possible renormalization
counterterms consistent with the symmetries of the
theory. In general, Weyl invariance is broken upon
quantization in view of the conforrnal anomaly, ' so we
must include Weyl-noninvariant counterterms as well,
and the most general local action compatible with
reparametrization invariance is

I(x",g „)=Io(x",g „)+AX(M)+goI d g' g . (2.10)

The Weyl invariance lost in the action because of pp can
actually be restored in the critical dimension d =26. We
shall derive this crucial fact in detail later, and for the
moment restrict our discussion to why we should have
Weyl invariance at all. The standard philosophy is
roughly as follows. Weyl and reparametrization invari-
ance make up for three degrees of freedom, exactly the
number in the metric g „. The only true degrees of free-
dom are then those of the d x" fields, with of course the
two constraints implied by the equations of motion of
g „. Thus with Weyl invariance the quantum string has
(d —2) degrees of freedom, precisely the number of the
classical string. Note that the requirement of having the
same number of quantum and classical degrees of free-
dom is assumed from the start in the light-cone formula-
tion of Goddard et al. (1973) and Mandelstam (1973a,
1973b, 1974). Actually Polyakov (198la) originally pro-
posed his model precisely with the objective of obtaining
a consistent quantum theory without Weyl invariance.
The scale factor develops, then, an effective dynamics
that is described by the Liouville theory. Ult&mately, the
constraint of Weyl invariance must be arialyzed in the
light of the unitarity of the theory, as we shall discuss in
Sec. I!.G.

Now the physical quantities of interest are the parti-
tion function

(2.1 1)

(which can be identified with the space-time integral of
the target space-time cosmological constant) and on-shell
scattering amplitudes, obtained by inserting vertex opera-
tors V;

B. Quantization

Quantization may be performed by summing in the
functional integral over all closed compact surfaces, as

With dimensional regularization, for example, Weyl symme-
try would be destroyed away from two dimensions.

Rev. Mod. Phys. , Vol. 60, No. 4, October 1988
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Here JV denotes a normalization factor to be specified
later on. In Sec. VIII a detailed discussion of vertex
operators for on-shell physical particles will be presented.
For the time being, it may be sufFicient to say that they
are typically of the form

V(k",x "(g}}=P(E,Dx "(g))e '"'"'~', (2.12b}

where P(e,Dx") is a polynomial expression in the deriva-
tives of x and c. is a polarization tensor. This form is dic-
tated by the symmetries of the action, and a key require-
ment is Weyl invariance after inclusion of anomalies.
The lowest mass levels will turn out to be

k =2, V(k")=e'"

k =0 V(k")=s ~ "8 x"8 x e'"" (2.12c)

where the first corresponds to the tachyon, and the
second corresponds to c,„symmetric traceless, the gravi-
ton; c.„antisymmetric, the antisymmetric tensor field;
c.„pure trace part, the dilaton.

The integration measures Dg „and Dx" are deter-
mined by requirements of symmetry and locality. The
construction of Dg „will be discussed in the next sec-
tion. For Dx", the measure is completely determined
once one has a metric function on the space of small vari-
ations 6x", so that one can measure lengths and angles
and hence volumes. This metric on the space of embed-
dings x" is unique due. to Poincare and reparametrization
in variance,

ll5x "II'=f d'g&g 5xj"5xi' . (2.13)

It induces an inner product, which we denote by
(5x,

I
5x2 ). Note that it is not Weyl invariant, a proper-

ty providing another explanation .for the Weyl anomaly.
Since, however, the measure involves a product over an
infinite number of variables, there may be some ambigui-
ty in defining it from Eq. (2.13). This is resolved by the
principle of ultralocality as stated by Polchinski (1986),
which asserts that since the measure is a pointwise,
reparametrization-invariant product over the worldsheet,
any ambiguity must also be a reparametri-
zation-invariant pointwise product. In particular, no
derivatives should occur, and the only ambiguity can re-
side in a factor of the form

exp —p', f d'gV'g
M

(2.14)

for some constant p&. In particular, no constant other
than 1 in front of the exponential is allowed, since this
could not be written as a pointwise reparametrization-
invariant product over the surface-. Upon substitution
into functional integrals, Eq. (2.14) results in just a shift
in the counterterm po in Eq. (2.10). Ultimately, in the
critical dimension d=26, the net counterterm will be
fixed by requiring Weyl invariance, so the measure asso-
ciated with Eq. (2.13) will in effect be unique. Henceforth
we shall assume that such a counterterm has been fixed,
and we shall not exhibit the area term any longer. This

argument applies equally well to the case of any space-
time metric G„(x) as long as it is independent of the
derivatives of x".

The main issue, then, is to evaluate the functional in-
tegrals in Eqs. (2.11) and (2.12a). The integral in xl' is
easily perfarmed once we have specified the measure aris-
ing from Eq. (2.13). First, we write the action Io using
the scalar Laplacian 6 on the Riemann surface:

Io(x",g „)= (x
I
5 x ),1

8m'
(2.15)

where

&gg™B„.
g

(2.16)

Next, the x variable is divided into the constant zero
mode x0 of the Laplacian and all other modes x'" or-
thogonal to it: x"=xg+x'" with (xo I

x') =0. Upon
splitting the functional integral accordingly, we have

—I (x,g) —(x'
I
6 x')/8m

Dx "e ' = Dx I0 Dx '"e

fDx~~ —II~II'~s~ (2.18)

is a local product over the worldsheet, with no deriva-
tives of the metric entering. Consequently it must be the
exponential of the worldsheet area, which may be ab-
sorbed into the po coefficient in Eq. (2.10). Let us now
split up this integral as we did before:

Dx) e —Il~ II'/8~

—Ilxoll2/8m. —
II 'll /8m

Dx)0 Dx '"e,

' d/2

D iP —Ilx'll 2/8m (2.19)

If, in addition, we note that JDxg=Q, the volume of
space-time, then we finally obtain

8 2 —d/2

d'g&g
(2.20)

If, instead of considering the contribution to the partition
function as we did above, we also have a sequence of ver-
tex operators, then the space-time volume element should
be replaced by the total momentum conservation 5 func-
tion, resulting from the xg integral over the exp(ik x)
factors in the vertex operators (2.12b).

We turn to the more difBcult task of integrating over
metrics in Eqs. (2.11) and (2.12a) in the next section.

=(d t'b, )
—""

g

X f dX~() fDx'"e ~~ ~~ (2.17)

With the principle of ultralocality, one deduces that the
Gaussian integral
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C. Worldsheet metrics and deformations
of conformal classes

(RangePi) =KerPi . (2.26)

(2.21)

The arbitrary constant c will not appear in any physical
answer, so we shall set it to zero. Associated with the
norm is an inner product on the space of metric deforma-
tions, which will be denoted by (5g,

I
5gz). The mea-

sure Dg „will be the one associated with Eq. (2.21) (for
c=O), with the usual harmless ambiguity which ultralo-
cality fixes to be of the form (2.14). To determine the
form of the final answer for Eqs. (2.11) and (2.12), we as-
sume momentarily that all possible Weyl and reparametr-
ization anomalies will cancel and ask whether all modes
of g „can be gauged away with the help of reparametri-
zations and Weyl transformations. The number of de-
grees of freedom is the same (3 for g „, 1 for Weyl, and 2
for reparametrizations), and it is a classic theorem of
Gauss that in any simply connected patch on the surface
the metric can indeed be made Euclidean by such trans-
formations. Whenever the topology is nontrivial, howev-

er, the reparametrizations of different patches need not
match and there may be topological obstructions. To see
this, we note that the joint action of reparametrizations
and Weyl transformations on the metric is given by Eqs.
(2.7) and (2.8),

5g „=(25o+V~5u )g „+(P,5u) (2.22)

where the operator P, sends vectors into symmetric
traceless two-tensors,

We now fix the topology, i.e., the number of handles of
the worldsheet M. Let A, =

l g „on M I be the space of
positive worldsheet metrics. An infinitesimal deforma-
tion 6g „ofa metric is a symmetric two-tensor, and the
natural norm for 6g „ is

ll5g..ll'= J d'P'g(cg "g"'+g 'g"'»g. .5g„

The first two spaces on the right-hand side of Eq. (2.24)
consist of modes that can be gauged away by combined
Weyl and reparametrization symmetries. The dimension
of the remaining space is finite, and we shall now deter-
mine it.

The way to determine the number of zero modes of
these operators is to appeal to an index theorem, which
gives the difference between the number of zero modes of
the operator and its adjoint in terms of a topological in-
variant. The problem is then reduced to a similar one for
the adjoint, which often may be solved by independent
methods such as vanishing theorems. In the present case,
zero modes of P& are just reparametrizations inducing
only trace changes in the metric, in other words, confor-
mal Killing vectors; the topological invariant is the Euler
characteristic, and the index theorem reduces to the fol-
lowing version of the Riemann-Roch theorem:

dim KerP, —dim KerP, =37(M) . (2.27)

This relation will actually follow from the short-time
heat-kernel expansion in Sec. II.F, as we shall see later.
For the sphere, the conformal Killing transformations
form the Mobius group

z~(az +b) l(cz +d),
a b

HSL(2, C),

so that dimKerPi ——6; for the torus, it is the group of
translations that has dimension 2. For genus )2, there
are no conformal Killing vectors on a surface without
boundary. It is easy to provide a proof for the case of
metrics of constant negative curvature R. As we shall in-
dicate in the next section, any metric on a surface of
genus )2 can be brought back to this case by a Weyl
transformation, and the dimensions of these kernels are
not changed. A conformal Killing vector 6v satisfies
(P, 5u) „=0,and upon difFerentiation one gets

(P, 5V) „=V 5u„+V„5v —g „V~5v (2.23) VqV 6v~= —R6v~ .
q

(2.28)

I5g „J= I5o.g „I e RangeP, SKerP, , (2.24)

where the action of P, on symmetric traceless two-
tensors is given by

(P, 5g) = —2V"5g „ (2.25)

and we have used the result that, under the inner product
(

I ), we have the identification

and describes the traceless piece of the deformation com-
ing from reparametrization by the vector field 6v

Clearly the total trace piece can always be eliminated
without topological obstruction by a Weyl transforma-
tion alone. Thus the only metric deformations 6g „ that
are not gotten by reparametrization and Weyl transfor-
mation are in (RangeP, ) . This means that any deforma-
tion 6g „ is given by the decomposition orthogonal un-

der Eq. (2.21):

Integrating versus 6v over the surface, one finds

IIV 5u II' —ZII5u II'=0, (2.29)

so that 5u~=O for R & 0. Using the index theorem (2.27)
and the above counting of conformal Killing vectors, we
conclude that

0, h=0,
dim KerP& —— 2, h =1,

6h —6, h &2.
(2.30)

Thus we expect the partition function and scattering am-
phtudes to reduce to finite-dimensional integrals over
spaces of the corresponding dimensions. Elements of
KerP i are called real quadratic differentials or moduli de
formations, and parametrize infinitesimal deformations of
conformal classes of metrics.

The space of conformal classes of metrics is a vast sub-
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ject in the mathematics literature, going back as far as
Riemann. For modern texts, we shall refer systematical-
ly to the books by Schiffer and Spencer (1954), Ahlfors
(1966), Siegel (1970, 1971, 1973), Griffiths and Harris
(1978), Abikoff (1980), Farkas and Kra (1980), Beardon
(1983), and the survey articles of Bers (1972, 1981). In
the physics literature, moduli parameters appear impli-
citly in dual-model diagrams. A lucid geometric account
in this early phase is that of Alessandrini (1971)and Ales-
sandrini and Amati (1971). For light-cone diagrams,
moduli parameters were essentially introduced by Man-
delstam (1973a, 1973b). The above approach to quadra-
tic differentials appears in Alvarez (1983); the detailed
mathematical treatment is given by Fischer and Tromba
(1984a, 1984b, 1984c).

moduli space will have the structure of an orbifold. A
more detailed discussion of some of these issues will be
taken up in Sec. IV. As defined above, both Teichmiiller
and moduli space come equipped with a natural metric
given by Eq. (2.21). The reason is that . Diff(M) acts
isometrically on Af„„„so that the natural metric on
A,„„„canbe pulled back to either space under the action
of this isometry. This metric on Teichmiiller and moduli
space is called the Weil-Petersson metric.

To conclude this section we now verify that th'e
tangent space to Teichmiiller and moduli space is the
space of quadratic differentials KerP~&, as may be expect-
ed. In fact under any deforination 5g „ofmetrics (see
Appendix A) the curvature changes by

5R = ——,'g "5g „R ,'V~V—p(—g "5g „)+—,'V V"(5g „) .

D. TeichmQller and moduli spaces (2.34)

cr=R R e 2 (2.31)

In the absence of anomalies, the string path integrals in
Eqs. (2.11) and (2.12) should reduce to integrals over the
space of inequivalent metrics under the combined Weyl
and reparametrization symmetries. The discussion in the
preceding section has shown that this space is locally a
finite-dimensional manifold of dimension 0, 2, and 6h —6
when h is 0, 1, and )2, respectively. -We still need a glo-
bal description, taking into account the fact that Diff(M)
acts on the space of metrics by isometrics but Weyl(M)

.does not.
A natural way to do this is to make use of the key fact

that for any metric g, on M there exists a unique scal-
ing factor e such that g „=e g has constant cur-
vature R =1 when h=0, R =0 and Area(g)=1 when

g g
h=1, and R = —1 when h )2. [Note that the sign of

g
the curvature must be consistent with the Gauss-Bonnet
theorem of Eq. (2.2).] This is equivalent to the fact that
the Liouville equation,

and, in particular,

T~(JRi, ) =KerPti (2.35)

Thus the Weil-Petersson metric can be described as fol-
lows: to determine the norm of a tangent vector to
Teichmuller or moduli space, represent it by a quadratic
difFerential 5g „. Then its norm is given by Eq. (2.21),
taken with respect to a metric g of constant curvature.

Other slices for ALI, will also prove useful in treatments
of string path integrals. For example, one can choose in-
stead metrics that are Aat everywhere with Dirac singu-
larities for the curvature at a finite number of points, so
that the Gauss-Bonnet relation is satisfied. From the
point of view of complex analysis, one can parametrize

This shows that a deformation 5g „ in KerP& does not
change the curvature and hence is tangent to Af,„„„
Combining this with Eq. (2.24) yields (see Fig. 4)

T (JM„„„)= I V (5u„)+V„(5u ) I KerP,

admits a unique solution. Thus

JR„„„=Ig; R =const as above) (2.32) OrbitS Of Diff' (M)

is a well-defined global slice for the Weyl group without
any complication of the type discussed by Gribov (1978).
It naturally carries the metric (2.21), since Af„„,„ is a sub, -

space of Af We may n. ow define Teichmiiller "TI, and the
moduli space JKI, of Riemann surfaces of genus h by

with

'Ti, ——At„„„/Diffo(M),

JNh ——JR„„„/Diff,(M) = Th /MCGh,
(2.33)

MCGh ——Diff(M) /DiffO(M) .

Teichmuller space Yz will turn out to be a complex man-
ifold topologically equivalent to (R+ )& R) " . The
mapping class group MCG& is a discrete group, which
acts holomorphically with fixed points, however. Thus FIG. 4. KerP~&, tangent to moduji space.

onst
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moduli by period matrices (see Sec. VI.D). Different ex-
plicit parametrizations of moduli space will be discussed
in Sec. IV.

It may be helpful to discuss at this point the distinction
between Teichmiiller and moduli spaces as far as string
amplitudes are concerned. String amplitudes will reduce
to integrals over Teichmuller space in the absence of
DifFO(M) anomalies, which are just perturbative gravita-
tional anomalies. Elements in the mapping class group
can be viewed as "large" reparametrizations. Only in the
absence of global gravitational anomalies will string am-
plitudes reduce to integrals over moduli space.

For the bosonic string we can adopt throughout mani-
festly reparametrization-invariant methods of regulariza-
tion such as g-function and short-time cutoff heat-kernel
regularization. Thus neither perturbative nor globa1
gravitational anomalies will occur, and physical quanti-
ties can all be expressed as integrals over moduli space.
For fermonic strings, absence or cancellation of such
anomalies is a highly nontrivial matter, and the famous
constraints of modular invariance are just the require-
ment of absence of global gravitational anomalies when
large reparametrizations act on various choices of homol-
ogy bases. We shall discuss these issues in greater detail
when they arise later.

BZ

Bz

Bz T„... , . (2.39)z'

Thus the invariant quantity characterizing such a tensor
1s

T, ,(dz) (dz )"; (2.40)

m n

this will also be called a tensor of weight (m, n) In p.
ar-

ticular, the space of tensors of weight (I,O) will be denot-
ed T, and the space T' is often referred to as (sections
of) the canonical bundle E of the Riemann surface M.
On a tensor T(dz)" in T" the covariant derivative decom-
poses into

transformations, it characterizes the metric up to Weyl
transformations and reparametrizations. This produces a
one-to-one correspondence between points in moduli
space and complex structures on M.

In the presence of a complex structure, tensors on M
can be decomposed into tensors of weight (m, n), with m
lower z and n lower z indices. The behavior of a tensor
under an analytic coordinate transformation z ~z'(z) is
given by

m

E. Complex structures, tensors, covariant
derivatives, and differentials

With Weyl and reparametrization invariance, the key
geometric object on the worldsheet is not really the
metric g „, but rather the complex structure J " it
defines,

V T(dz)"dP=V,"T(dz)"+'+V,"T(dz)"dz .

The first term above defines an operator

Pn. Tn Tn +1
Z-

V,"(T(dz)")=(g„)"
&

((g")"T)(dz)"+'n ~

(2.4l)

(2.42)

with e&2 ———c2&
——1. We can. readily check that

J "J„~=—V, V' J "=0 .

(2.36)

(2.37)

The second term, on the other hand, depends only on the
conformal class of the metric and defines the key opera-
tor of the theory, namely the Cauchy-Riemann operator
a. =v",

c)„: T"~
t ( n, I ) tensors I,

We may also define holomorphic and antiholomorphic
functions on M by the Cauchy-Riemann equations

J "B)„f=t df, J "B„f'= —t Bf . '
(2.38)

In any local coordinate patch, one can render the
metric conformally flat by a reparametrization, so that
ds =2g dz dz, at least locally. This choice of coordi-
nates exhibits the residual invariance under analytic
reparametrizations z ~z'(z), where z' is an analytic func-
tion of z. Thus M can be covered by coordinate charts
with holomorphic transition functions and is consequent-
ly a Riemann surface. Since J is Weyl invariant, and
since it transforms as a tensor under general coordinate

We see that the above definition of moduli space [Eq.
(2.33)] is equivalent to the definition of moduli space as
the set of equivalence classes under Diff(M) of the space
of complex structures:

JNh ——[J ", ;J ~J "=—5 "I/DifF(M) .

5„(T(dz)")= (dz)"dz .
Bz

(2.43)

(2.44)

On each tensor space, there exists a unique inner prod-

~The operators V," and V; differ from those introduced by
Alvarez's {1983)only because our T" is Alvarez's 'T

The B„operators are intrinsically associated with moduli
parameters and, in fact, holomorphically depend on
them. Consequences for string amplitudes of this crucial
property will be discussed at length in Sec. VII.

When we use the metric to change tensor weights from
(m, n) to (m —n, O), the operator B„goes into an opera-
tor

V'„: T"~T" ', V'„(T(dz)")=g" T(dz)"--a
az
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uct of tensor fields T1, T2 ET",

( T,
~
T, ) =Id'zV'g (g")"Ti T, , (2.45)

one (except for spinors where there are no zero modes for
even-spin structures):

and one can obtain the adjoint operator in the usual way:
dim Ker V,n = 1, dim Ker V'„= 1 . (2.52)

(pz )t pn —i (2.46)
For the sphere, there are no holomorphic forms, so that

We shall also make use of the Laplace operators

g(+ ) 2Vz V n g( —) 2Vn —1Vz
n n+1 z& n z n (2.47)

The operator 6'„' is exactly 2B „Bn, while 6',+' will cor-
respond to 2B„+,8 „+, after identification of (n,0) forms
with (n + 1,1) forms.

To make contact with the space of "real" two-
component tensors, we set T"T n=S', and the covari-
ant derivatives on this space act by

Pn: S"~S"+', Pn =V,"eV' „,
Pt. Sn+ i Sn Pt (Pz P —n —i

)

(2.48)

It is easy to see that P, is the operator of Eq. (2.23).
Similarly, the Laplacian on scalars introduced in Eq.
(2.16) is given by

g(+ ) g( —)
g 0 (2.49)

dim KerV',"—dim Kerg'„+ i
———,'(2n + 1)g(M) . (2.50)

This formula will be proven at the end of Sec. II.F. Since
V' „ is the complex conjugate of V,", we may restrict our
attention to the case n )——,'. By an argument similar to
that given in Sec. II.C to show that KerP, =0 for h & 2,
one shows that for h & 2

dim KerV,"=0, for n )1,
dim KerV, =1,
dim KerV'„=dim KerB„

=(2n —1)(h —1) for n ) —,',
dim KerV1 ——dim KerB& ——h .

(2.51)

For the torus, the dimension of every kernel is exactly

30imensions of kernels of operators with complex indices are
uriderstood to be complex dimensions, whereas those of kernels
of real operators are understood to be real.

It should be borne in mind that even though these
operators were first defined on tensor fields with n in-
teger, one may in fact generalize this construction so as
to allow for spinors and spinor tensors for which n is a
half-integer. A proper definition of some sign ambigui-
ties requires the notion of spin structure, which will be
introduced in Secs. III.A and VI.F.

Zero modes of these operators are of great interest in
string theory, since they are potential sources of
anomalies. First of all, we have the following generaliza-
tion of Eq. (2.27):

dim KerV,'=2n +1 for n ) ——,',
dim KerV'„=0 for n )—,

' .
(2.53)

(p~P)= J d zp, 'P„. (2.54)

As one can see, these dimensions involve only topological
information. Note that, in the case of differentials of
weight —„the index theorem yields no information. To
obtain the dimensions for the torus we have just used
Liouville's theorem, whereas for the sphere we used
Lichnerowicz's theorem on the absence of harmonic spi-
nors on the sphere. For genus h )2, topological informa-
tion is insufficient to determine the number of holo-
morphic —,

' differentials. In Sec. VI we shall see that
indeed the number of holomorphic —,

' differentials de-

pends on the spin structure for h & 1 and also on the
moduli for h )3.

It is convenient to single out now the differentials of
special significance in string theory. We shall encounter
holomorphic 1-forms or Abelian differentials of the first
kind col belonging to KerV1, whose integrals are the stan-
dard Abelian integrals of the first kind. There are h of
these, and they generate the first cohomology group of
the Riemann surface. One also has meromorphic 1-
forms with one double pole (Abelian differentials of the
second kind) or with two simple poles of opposite resi-
dues (Abelian differentials of the third kind). There is a
differential in each case, and it is unique up to addition of
holomorphic difFerentials. These facts about mero-
morphic forms require the full version of the Riemann-
Roch theorem (cf. Sec. VI.C), and their explicit construc-
tions in terms of the prime form will be given in Sec.
VI.F. Next we have the holomorphic quadratic
differentials belonging to KerV2 ——KerB2, of which there
are 3h —3 (complex ones). Together with their complex
conjugates, they span the space of Teichmiiller deforma-
tions, introduced in Sec. II.C and shown to be identical
to the tangent space to moduli space A, &. Finally, for
fermionic strings, of special importance will be the holo-
morphic —,-differentials, which are just zero modes of the
Dirac operator, the meromorphic —,-differentials, which
will be used to construct fermjon propagators, and the
2h —2 complex —', -differentials, which will make up the
odd variables of supermoduli space (cf. Secs. III.E, III.F,
and III.G).

To conclude this subsection, we introduce the concepts
of Beltrami differentials and quasiconformal vector fields.
Beltrami differentials span the space dual to holomorphic
quadratic differentials. Thus they are differential forms
of weight ( —1,1), of the form p =p 'dz(dz) ' and

p, '=0, and they can be integrated versus quadratic
differentials P =P„(dz):
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Note that the pairing depends only on the conformal
class and not on a particular choice of metric.

Beltrami differentials provide a natural parametriza-
tion of the metrics on the Riemann surface. If
ds =p(z)

~

dz
~

is a metric on M, any other metric can
be written as

ds2=g „dg dg"=p(z)
~

dz+p dz
~

(2.55) (a) (b)

with p real and positive and p a suitable Beltrami
differential. The role of Beltrami differentials is best ex-
plained in terms of the associated Beltrami equation

i)-w =p- cl wz (2.56)

At least for sufticiently small p, this equation may be
solved perturbatively in p, and a solution is known al-

ways to exist locally. It can be written as

FIG. 5. Quasiconformal vector fields v: (a) generating
stretches; (b) generating twists; (c) generating shifts of the
cylinder.

tinuity for the quasiconforrI1al vector fields generating
stretches (a), twists (b), or shifts (c) of the cylinder. Their
analytic expressions are

u~, ~

—— H [a —Re(z)],z+z
2a

w (z, z ) =z +v'+0 (v')

where the vector Geld v' is defined locally by

V, v'=p, ' .

(2.57)

(2.58)

+
u ~b~ i ——H [a —Re(z)],

2a

z —z . 8(z+z)
(c) 2

+

(2.59)

Since ds =p(z)
~

dw/dz
~ ~

dw ~, Eq. (2.57) means
that the metric ds comes from the metric ds by a Weyl
transformation and a local reparametrization, and we
have just restated the familiar fact that locally all confor-
mal structures are the same. The Beltrami equation
(2.56) takes real meaning only when we consider it in a
global context. Indeed, whether it admits a global solu-
tion would tell us whether ds and ds define the same
conformal structure. There are several ways of express-
ing this more concretely: we could view Eq. (2.56) as
defining a family of reparametrizations u' on local coor-
dinate patches, which, however, may not match. Wheth-
er they do can be measured by a vector-valued Cech
cohomology class (see, for example, Sec. VI.A). This is
the point of view of Kodaira-Spencer deformation
theory; or, using uniformization (Sec. IV.A), we can
represent M as cosets M/I and M/I and solve Eq.
(2.56) for a solution u' which may not transform equivari-
antly; or, finally, consider solutions of the Beltrami equa-
tion which may have discontinuities. The last approach
is the one we shall often adopt, with the vector fields v'
admitting jump discontinuities along closed curves on the
surface M when p deforms the complex structure. Vec-
tor fields of this type can be chosen to induce shifts,
stretches, and twists. The corresponding transformations
z —+ w (z, z ) are called quasiconformal transformations,
and we can in this way parametrize all deforrnations of
complex structures by Beltrami differentials.

As an example of such vector fields, we may consider a
piece of a surface that is a cylinder with Euclidean
metric. Such configurations occur in Fenchel-Nielsen
coordinates, in the light-cone diagrams of Mandelstam
(1974a, 1974b, 1974c), or in the closed-string sector of the
open-string field theory of Witten (1986a, 1986b), and
they were explicitly given in O'Hoker and Giddings
(1987). In Fig. 5 we illustrate the contours of discon-

where o. is the radius of the cylinder, h~ is its height, a is
a parameter specifying the location of the discontinuity,
and H is the Heaviside function.

It may be helpful at this point to clarify the tensor
structure of moduli space. If we represeI1t y conformal
structure rn by choosing a representative rlietric g, there
is very little difference between Beltrami differentials and
quadratic differentials, since we can raise and lower in-
dices using g,, to pass back and forth between the two
notions. However, if we do not make such a choice, it is
the Beltrami differentials that should be viewed as
tangent vectors to moduli. In fact, Eq. (2.56) sliows how
to deform holomorphic structures without any choice of
metrics. Since we still have to take into account
reparametrization invariance, we see that

[Beltrami diff'erentials [
IRangeB, on vectors[

The pairing (2.54) exhibits, then, the quadratic
differentials as cotangent vectors to moduli space. We
now have a different way of explaining why this distinc-
tion disappears when a metric g on the worldsheet is

chosen. Such a metric provides a pairing on tensors, and
hence on the tangent space to moduli at m. With this
pairing, covariant and contravariant tensors on moduli
space can be identified. This is why quadratic
differentials appeared earlier [cf. Eq. (2.35)] as tangents to
mo dull.

F. Determinants and Weyl anomalies

We now study the behavior of the determinants of the
Laplaci@ns 6'„—+' under a Weyl scaling. These operators
in general can have zero modes, which require special
care. Let
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N„+ =diitn Ker( V'„+ i ) =dim Kerb, '„+ ',
N„=dim KerV'„= dim Kerh'„

(2.60)
51ndet&P

I
P„&=5trln&P~

I Pt, &

(2.61)

and let P. be a basis for KerV'„and g a basis
for Ker(V'„+, )t. From Eqs. (2.42) and (2.44), it is evident
that N„—do not change under Weyl transformations. In
fact, when one changes the metric from g „ to g „
=e g „,the PJ's do not change, whereas f =e2"

The regularized determinants can be defined by the
heat-kernel, short-time cutofF' procedure:

ln det'b, '„+—'= —f (Tre " —N„—) .

= g (2 —2n)&P
I

5o.g &, (2.66)

where we have used the fact that the basis P was chosen
orthonormal, With the analogous result for the zero
modes g, we find

det'~(-)
5ln

de«0,
I 0k &de«e.

I ep&

5V'„=—25o V'„,

5V',"=2n 5o.V,"—2ri V',"5o. ,

5b, '„-'=2(n —1)5ob.'„'+4n V," '5oV-'„, -(2.62)

5b, '„+'= 25ob—, '„+' 4n V'„—,5o V," 2n b. '„—+ '5o,

so that, for example,

Deletion of the zero modes from the determinant is indi-
cated by a prime and requires the subtraction of the con-
stants N„*, which makes the integral converge at t = Do.

Upon performing an infinitesimal Weyl transformation
5o, we have

tg(+ )

51ndet'b, '„—'= f dt Tr(56'„—'e "
) .

The changes in the covariant derivatives and Laplacians
follow from

~g(+ )

Tr5o.e

~g( —)

Tr5o.e

f d g&g5o

+ f d g&gR5o+O(s),
12~

2.68)

f d g&g 5o.

+ f d p gR5o+O(E),
12m

one finally obtains

det'a(„-)
5ln

det& 4, I Wk &de«0
I itp&

f d g&g5o

=2(n —1)Tr5o.e 2n T—r5o e . (2.67)
From the short-time expansions of the heat kernels, de-
rived in Appendix B.

( )
tg( —)

Tr(55'„'e "
) =Tr[2(n —1 )5crb'„'e

tg(+ )

2n5ob—'„+',e "-'] .

Here we have used the rearrangement formula e
= Ae . Thus we get

(2.63)

f d g&g R5o. . (2.69)

Putting all together and integrating the infinitesimal
Weyl transformation using Eq. (2.31), one finds

det'a( —'
n

de«0, I 0k &,de«0. I 0p&,
]g( —)

5 ln det'b'„'= f dt Tr[2(n —1)5o.b, '„'e

]g(+ )—2n5 bo, '„+', e "-'] .

The t integral is easily carried out, and one obtains Here the Liouville action is

det'b'„'-'

det& 0, I 0k &;de«f. I 0p&;
—2(6n +6n +1)SL(o.)

Xe

5 ln det'b, '„'=—2(n —1)Tr5o e

]g(+ )

+2n Tr5oe (2.64)

As t~~, the heat kernels reduce to the projection
operators onto KerV'„and Ker(V'„), respectively. Thus
we have

SL(o.)= f d P g [—,'g™Bo.8„o+p, (e —1)
12& M

(2;71)

detP1P1
' 1/2 1/2

detP1P, 26s (~)

+R o].
In particular, the formulas needed for bosonic string
theory are given by

lim Tr5o.et~ oo
(2.65)

On the other hand, the change in the finite-diinensional
determinants of products of zero modes is given by

Sm. det'6

f
8~ det'6

f d2(+

1/2
—S (o)L

(2.72)
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=det(cv,
~
cv»&, . (2.73)

We are now also in a position to prove the Riemann-
Roch theorem [Eq. (2.50)]. First we have

dim KerV,"—dim KerV', + &

——dim Kerh'„+ ' —dim Kerh', +'&

In the expression for the scalar Laplacian, we have delet-
ed the determinant of holomorphic Abelian diAerentials

col, because it is Weyl invariant all by itself, as can be
seen from its explicit expression:

det( cut
~

cu» )g =det f d g+g g I (cot ) (co» ) +C. c. ]

In our case, we have the coordinates o. and u, which are
functions on M, together with real coordinates m,
j =1, . . . , 6h —6 for S. Each element of S is a metric
g(m), and tangents to S are symmetric two-tensors f,
defined by

3h —3

5g(m)= g 5m»f, .
j=1

Thus the coordinate vectors along S are 5o.g, P, 5U, and

f . Since we are interested in computing the Jacobian at
an arbitrary point in A, , we shall apply the
diffeomorphism exp(5u) and the Weyl rescaling e un-
der which f scales as f, =e f. ». The measure is

(2.74) Dg, =Vol (g5cr, P, (5v),f, )Dcr Du dm, (2.75)

Letting E~O, we recover Eq. (2.50) in view of (2.68).
A standard reference on conformal anomalies is Cole-

man and Jackiw (1971),and a discussion of global and lo-
cal conformal symmetry is given by Polchinski (1988a).
The original calculation of the above Weyl anomaly is
due to Polyakov (1981a) and has been clarified by Di Vec-
chia et al. (1982a, 1982b), Friedan (1982), Fujikawa
(1982), Alvarez (1983), and Ambjg(rn et al. (1986); the ar-
ticles of Di Vecchia et aI. , Alvarez, and Ambjgrn et ar.
also treat the case with boundaries. The first careful ac-
count of the crucial zero-mode factors is that of Alvarez
(1983). Different aspects of Weyl invariance in string
theory were treated by Fujikawa (1987) and Tanii (1987).

G. Amplitudes as integrals over moduli space for h & 2

We finally come to a detailed discussion of cancellation
of Weyl anomalies. We shall deal with the case h )2 first
and present the cases of the torus and the sphere in the
next section. The only modification will involve the pres-
ence of conformal Killing vectors.

1. The quantum measure and conformal invariance

To carry out the Dg integral we parametrize the space
of metrics by g =exp(5u)e g, with g in a slice S
transversal to the orbits of Weyl(M) and of Diffo(M).
Such a slice may be taken, for example, within A,„„„,
which guarantees right away that it is transverse to
Weyl(M), by the uniqueness arguments of Sec. II.D.
Here exp(5u) denotes integrated elements of Diffo(M).
[Recall that; for a vector field 5u, the action exp(5u) on a
metric is to replace its value at a given point on M by its
value at the point on the integral curve of 6U, a unit of
time away. ]

The change of variables g ~(cr, u, g ) requires a Jacobi-
an which can be evaluated from the decomposition (2.24).

It will be helpful to keep the following picture in mind.
A Riemannian manifold, parametrized by a set of coordi-
nates x&, . . . , x„, is endowed with the standard volume
element &gd'x, which may be viewed as the volume
(with respect to this metric) of the n coordinate vectors.

and Pi, whose definition [Eq. (2.23)] requires a metric, is

always chosen with respect to g. Using the orthogonal
decomposition (2.24) of 5g „,we see that the first two en-

tries are orthogonal, and that the last one may be re-
stricted to the orthogonal projection of f onto KerPi
(see Fig. 6). When we use the orthogonality, the volume
then decomposes into a product, and we obtain

Dg „=Vol (g5cr)Volg(P, 5v)

&&,Vol (f lproj. KerPti)Dcr Du dm .

Ultralocality implies that the first factor is proportional
to a factor of the type (2.14) and may be ignored. More-
over,

Volg(P, 5u)=(detP, P, )'

Finally, recalling that KerP, was spanned by basis vec-
tors P, ,

de«f»
~ 4k &g

Vol (f, lproj. KerP, )=
det 4j ilk g

Putting all together, we have

det(fj
l yk )g

Dg „= i»~ (detP~Pi )' Do Dv dm . (2.76)

Ker P,

Range P~

FIG. 6. Orthogonal decomposition of f» =e f».
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The Weyl dependence of this measure is readily exhibited
if we notice that

mfadetP, P1

det(y,
~ y„),

1/2

265~(~) h-
Xe DoDu + dm

j=1
(2.77)

where

vjz=g f);;

are the Beltrami differentials corresponding to moduli de-
formations along the slice S. Using the Weyl rescaling
formulas of (2.72), we get

This is the desired result for h )2, and we shall see
that only a slight extension of it is necessary for A=0, 1;
the extension leaves the Weyl independence unaltered.
We now discuss the choice of the normalization factor A'

in Eqs. (2.11) and (2.12). There are three possibilities.
(a) The metric 6„ in I (x,g) is fiat Euclidean, in which

case the x" integration may be carried out, and we find
for genus h

6h —6 det(p. k )
(V, (k, ) . V, (k„))„=f Q dm ' f e-"(detP', I, )t" 8~2

det'd
—d/2

—13

(2.79)

Xe ' ((V, (k, ) V, (k„}» .

For d=26, we have Weyl invariance, and it is natural to set that A'=Vol(Diff(M)) X Vol(Weyl(M) }. Note that the in-
serted vertex operators are constructed in such a way that possible Weyl anomalies are required to cancel (see Sec.
VIII). Upon integrating out the reparametrization vector fields, we produce a factor of Vol(Diffo(M)), which partially
cancels the analogous factor in JV and, in view of Eq. (2.33), reduces the integral from Tt, to Att, .

det(tMJ
~
yk)

At„

8 2

X det'a ((V, (k, ) . . V, (k„)» .
g 1 nI

Here (( )) denotes the expectation value where only the x integral has been performed.
If we choose S to be a 6h —6 dimensional slice within JR„„„and transversal to the orbits of Diffo(M), the Weil-

Peterson measure d(WP) is related to the measure 1idm. on the slice S by

det(p.
~ yk ) 6h —6

(2.80)

and we conclude

(V; (k, ) . V, (k„))t,——e f d(WP)(detPtPt)'
h

8~ det'5
—13

((P; (k, ) . V; (k„)» . (2.81)

~[5u ~['= f d'g'&gg „5u 5u",

and consider the integral

m —A, )~5v j(

(2.82)

(2.83)

The principle of ultralocality implies that this integral
must be given by an expression of the form

exp —p2(A, )f d gVg
M

(2.84)

Observe that, unlike in gauge theories, the normaliza-
tion factor JV depends on the metric and has been placed
inside the functional integrals. The justification for the
above procedure may be given by appealing to the princi-
ple of ultralocality. Define a norm on vector fields 5U

analogous to Eqs. (2.13) and (2.21),

I

for some function tMz(A, }. As A, ~O, Eq. (2.83) tends to
Vol(Diffo(M)}, while (2.84) simply leads to a renormal-
ization of the area term in Eq. (2.10) analogous to the one
discussed in Eq. (2.14). Thus Vol(Diffo(M)) is in effect ir-
relevant. The same argument applies to Vol(Weyl(M)}.
As for the "volume" of the mapping class group (=cardi-
nality of MCGt, ), it does not depend on g „but only on
the topology. The only nontrivial volume element in JV is
that of the mapping class group, and it can thus be pulled
out of under the integration, just as in the case of gauge
theories, with the difference that the group is now
discrete. The net effect, as mentioned above, is to reduce
the integral over Teichmuller space to one over a funda-
mental domain for the mapping class group, which is the
same as moduli space.

Critical dimensions of string theory in a Aat Euclidean
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or Minkowski background have been obtained in a
variety of ways over the years. In the light-cone gauge, it
arises by insisting on Lorentz invariance, as pointed out
by Brink and Nielsen (1973), Goddard et al. (1973), and
Mandelstam (1974a, 1974b, 1974c). In the covariant ap-
proach, it appears by insisting on decoupling from the
scattering amplitudes of negative norm states, as ana-
lyzed, for example, by Brower and Thorn (1971). Notice
that, in our case, Weyl invariance will eliminate vertex
operators producing unphysical states as well. In Sec.
II.I we shall discuss how the critical dimension arises in a
treatment with ghosts.

The above formulas for the Polyakov measure were ob-
tained by D'Hoker and Phong (1986a) and independently
by Moore and Nelson (1986). They provide a starting
point for calculations of covariant multiloop amplitudes
in the bosonic string.

In the days of dual models, multiloop amplitudes were
considered by Kaku and Yu (1970), Lovelace (1970),
Alessandrini (1971), Alessandrini and Amati (1971), and
Kaku and Scherk (1971). These constructions were based
on the assumption that the on-shell scattering vertices
could actually be used as ofF-shell internal vertices, and
unphysical states were generally not projected out. These
shortcomings have been overcome more recently by
Montonen (1974) and Neveu and West (1987a, 1987b)
and through the introduction of ghost fields by Di Vec-
chia, Frau, et al. (1987a, 1987b) and Petersen and
Sidenius (1987). It seems, however, that a precise
definition of the integration region for moduli space is

not available in these approaches. In the light-cone
gauge, Mandelstam (1986a, 1986b) has also obtained ex-
plicit formulas for multiloop amplitudes. Finally, open-
string amplitudes in the Polyakov string have been dealt
with, for example, by Boulware and Newman (1986) and
Burgess and Morris (1987a, 1987b).

From the above point of view, it is natural to divide by
the volume of the mapping class group. This choice can-
not really be justified within the context of the Polyakov
ansatz; a further physical principle is required. This
principle is the unitarity of the scattering amplitudes. To
investigate unitarity, one may compare the Polyakov re-
sults with those of the manifestly unitary interacting
string picture of Mandelstam (1973a, 1974a, 1986a,
1986b). Such a study was carried out by D'Hoker and
Giddings (1987), and it was found that dividing out ex-
actly once by the volume of the mapping class group
leads to unitarity of all scattering amplitudes. For the
bosonic string, unitarity is of course formal because of
the presence of the tachyon. We shall come back to this
question in Sec. V.G.

(b) I(x",g) does not lead to a Weyl-invariant theory,
for example, when d is different from 26. The Do
integral is then not redundant, and the value JV
=Vol(Diff(M) ) is presumably the correct choice if a uni-

tary theory exists at all. Since all determinants are real,
there are no global gravitational anomalies, and we may
factor out the mapping class group by restricting in-
tegrals from Teichmuller to moduli space:

( V; (ki) V, (k„)).= g f d(WP) fDcr L)x"(detPiPi)'~ V, (ki) . V; (k„)e e
h=0

(2.85)

No satisfactory quantization of the Liouville model has
been achieved to date for closed strings, despite attempts
by D'Hoker, Freedman, and Jackiw (1983) and Braaten
et al. (1984). In the case of open strings alone, it seems
possible to obtain a tachyon-free string theory in special
dimensions 1, 7, 13, 19, and 25 with discrete mass spec-
trum, as discussed by Gervais and Neveu (1982, 1983,
1984, 1986), Marnelius (1983), and Bilal and Ger vais
(1987a, 1987b). An interesting proposal has been made
very recently by Polyakov. (1987a) based on SL(2,R)
current algebra.

(c) For general background metric G„(x) (and possi-
bly antisymmetric tensor and dilaton fields), insisting
upon Weyl invariance for the string tree-level theories
leads to equations for the background fields and for the
dimension of space-time. These equations were studied
by Friedan (1980), Lovelace (1984, 1986), Callan et al.
(1985), Fradkin and Tseytlin (1985a, 1985b), Callan,
Klebanov, and Perry (1986), 'and Fridling and Jevicki
(1986). The critical dimension d =26 emerges then as the
condition of vanishing of the first coeNcient of the dila-
tion P function. It is possible that the dimension of
space-time is dynamical, as suggested by Polyakov
(1986). The solutions to these equations provide possible

I

spaces for consistent string propagation. Higher string
loop effects will in general again spoil the Weyl invari-
ance, even if these background equations are satisfied.
Fischler and Susskind (1986a, 1986b) have, however, ar-
gued that such effects should be understood as loop
corrections to the string background equations of
motion. Explicit examples of how this might happen
have been presented for the open-string case by Callan
et al. (1987, 1988).

2. Scalar Green's function and amplitudes

The Green's function is defined by G (z, w)
= (x (z)x (w) ), and in locally conformal coordinates z,
with metric ds =p dz dz, satisfies

f d2z&g G (z, w) =0,
2&g

8,8, G (z, w) = —2~6(z —w) + d'z V'g
(2.86)

B,B G(z, w)=27r6(z —w) —~g a&1(z)(ImA)IJ'coJ(w) .
I,J

The "period matrix" QIJ is the matrix of periods of the
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Abelian integrals associated with col. It will be defined in
detail in Sec. VI.D. It is invariant under Diffo(M) and
Weyl(M), and characterizes the conformal structure of
the surface. In Eq. (2.86), the additional terms besides

the 6 functions result from projections on the spaces of
zero modes of V0 and V'„respectively. They break Weyl
invariance and, in fact, under scalings g =e g the two-
point functions will transform as

(2.87)G(z, w)=G(z, w) — fd u&g [C(z, u)+C(u, w)]+ . , z f f d u d y&g(u)&g(y)C(v y) .
d'z v~g fd'z&g

For coincident points, we may again regularize G(z, w) by a heat kernel with small-time cutoff procedure. The regular-
ized Green s function G„(z,z) at coincident points will satisfy a similar scaling law:

Gz(z, z)=G+(z, z)+2cr(z) — f d u&gG(z, v)+ . . 2 f f d u d y&g(u)&g(y)G(v, y), (2.88)
d'z&g fd'zv'g

with the key additional term a (z) on the right-hand side.
The. field x itself does not have a definite conformal di-

mension, but derivatives of x as well as exp(ikx) do, and
our task is to determine the (Weyl-invariant) forms. of
their correlation functions, taking into account proper
renormalization for composites such as exp(ikx). For ex-
ample,

(B,xB~x ) =B,B G(z, w)

is Weyl invariant in view of Eq. (2.87), and 8 x has con-
formal dimension (1,0). More subtle are correlation func-
tions of the operator

I

and equal to (k /2, k /2).
Although the scalar Green's function G(z, w) depends

in a more complicated way on the metric, the function
F(z, w) can actually be written explicitly in terms of the
prime form. In fact, Eq. (2.90) shows that F(z, w) is a
single-valued real symmetric expression, transforming in
each variable as a ( ——,', ——,

'
) differential. Furthermore, it

satisfies the equation

a, a lnF(z, w)=2+5(z —w) —m +col(z)(1m')IJ'coJ(z) .
I,J

All these properties characterize F(z, w) as

( )
k l2 ikx(z) (2.89) F(z, w)=exp —2m Im f co(1m') 'Im f co

W W

Since the exponential should be viewed as normal or-
dered, we can replace the Green's function at points (z, z)
and ( w, w ) by their regularizations, and we arrive at

( Vk(z) Vk.(w) ) =5(k +k')F(z, w)

F (z, w) = [p(z)p(w)]
(2.90)

)&exp[ —G(z, w)+ —,'Gz(z, z)+ —,'G~(w, w)] .

The crucial feature of F(z, w) is that it is Weyl invariant,
as can be deduced from Eqs. (2.87) and (2.88) and
behaves like

~

z —w
~

for z near w. Thus the conformal
dimension of the vertex operator Vk(z) is well defined

I

X ~E(z, w) ~'. (2.91)
I

Here, 0 is again the period matrix, and E (z, w) is a holo-
morphic ( ——,', 0) form in z and w with a single zero at
z =w, called the prime form. We shall define it in de-
tail in Sec. VI and give a representation for it in terms of

functions. At present, we need only the above-
mentioned properties.

The above Green's function allows us to evaluate the
scattering amplitudes very explicitly. Consider first the
insertion of an exponential factor, universal to all vertex
operators, leaving its position on the surface free. Thus
we deal with multiple insertions of Vk(z) of Eq. (2.89),

n n

(( Vk (zi) . Vk (z„)))=(2m) 5(k)exp ——,
' g k;.kJG(z;, zj)+ g —,'k; [lnp(z;) —G„(z;,z;)] (2.92)

Using Eq. (2.90) one may recast this solely in terms of F,

(( V, (z, ). . . V (z„))) = (2~)' 5(k) / F(z;,zJ )
'

(2.93)

In the special case of the tachyon, we have

V = f d z V (z), V„(z)=&g (z)e' '"",
with k„k"=2, and the above formula may be applied

I

directly.
For massless particles, one should rather start from the

generating function for amplitudes with one derivative on
X~

Vk (z, g )=exp[i k.x (z)+ g„B,x"(z)+g 8 x"(z)], (2.94)

so that amplitudes may be gotten from the above by re-
taining only terms linear in g and g. Since k =0, no p-
dependent prefactor occurs. Correlation functions of Vk
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may be worked out as easily as those of Vk. Let us just
notice here that such correlation functions are already
implicit in Eq. (2.93). Indeed, it suffices to replace g„by
the di6'erence between two momenta, taking their inser-
tion points infinitesimally far apart, so Eq. (2.93) may be
viewed as a generating function for all amplitudes. Its
Weyl invariance guarantees the Weyl invariance of the
original vertex operators, as will be explained in Sec.
VIII.

To conclude this section, we discuss the role of internal
loop momenta. In accord with the radial quantization
procedure, the momentum operator measuring the
momentum Aowing through a contour C is given by

PP = f c B,x "(z) .
2~ ' (2.95)

PP = f„B,x"(z), (2.96)

and amplitudes at fixed internal momenta (and fixed
genus h) may be introduced by inserting 5 functions in
the functional integral:

The internal (or loop) momenta may be defined as the
momenta flowing through the AI-homology cycles (see
Fig. 10 below)

8~ det'6
« V, . . . V„»(pg)=

d'gv'g

13

fDx+5 pg —f„Bx~ V, Ve
I,p

(2.97)

These amplitudes produce Weyl(M)- and Diffo(M)-invariant amplitudes after the Faddeev-Popov ghost determinant has
been taken into account, and as long as V& V„are physical vertex operators. However, we do not have invariance
under the full mapping class group because a choice of homology basis has been made. The full amplitude is of course
obtained after integrating over p,

« V, V„»=f dpi'« V, V„»(pg) . (2.98)

For the special case of exponential insertions, Eq. (2.97) is easily evaluated, and we get
Z.

« V, . V„»(pj')=(det 1m')' exp imp]'QIJpg. +2~ipg 'g k/' f coI

2

+ ~

E(z;,z )~. (2.99)

Later on we shall more fully explore the meaning of the
above formulas in function of the holomorphic structure
of moduli space.

The important observation that regularization pro-
duces a factor of o (z) leading to well-defined conformal
dimensions is due to Polyakov (1981a). It is the starting
point for determining the mass spectrum of the string by
requiring Weyl invariance, an issue that will be discussed
at length in Sec. VIII. The above careful discussion of
scaling laws for two-point functions taking into account
zero modes and global issues is due to Verlinde and Ver-
linde (1987a). They also point out that Eq. (2.90) can be
inverted, producing a formula of type (2.87) for the
Cxreen's function, with C(z, w) on the right-hand side re-
placed by lnF(z, w). The basic ideas and some examples
of radial quantization are in Fubini, Hanson, and Jackiw
(1973). Internal momenta are of course familiar from the
dual-model theories, but in the above form they were
rediscovered by Verlinde and Verlinde (1987b).

H. Amplitudes for tree and one-loop level

P j and P &P &
should be acting only on the reparametriza-

tions in (KerP i ) . It is convenient to treat the cases h =0
and 1 separately.

1. Tree-level amplitudes

For A=O, we have six real conformal Killing vectors
and no moduli parameters. The measure (2.76) must be
modified to

Dg =(det'P, P, )' D'U Do (2.100)

det'P )P)
det& P

1/2 1/2
det'P )P ) 26s (~)

de«q.
~ q, &

(2.101)

and hence

where the prime on D'U denotes the fact that it is re-
stricted to (KerPi) . Under a Weyl transformation we
obtain from Eq. (2.70) that

As was explained in Sec. II.C, the tree and one-loop
cases do not follow the pattern exhibited for h &2. The
main complication is that there now exist conformal Kil-
ling vectors g belonging to KerPi. Thus the operators

d «q. ~y, &,
Dg „=(det'P, P, )'

I 4p&"
—26SL(o-)

&e acr D'U (2.102)
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where all reparametrizations u are now included in
DU . Assuming that we work in the critical dimen-
sion d =26 and adopt the gormalization factor
JV'=Vol(Diff(M))&&Vol(Weyl(M)) as in Eq. (2.78), we
have a general formula for tree-level scattering ampli-
tudes:

( V; (k", ) . V, (kl')&=ce (& V; (k", ). . . V, (ki'))&

1
X A.

Vol(KerP, )
(2.104)

Here the symbol (( )) denotes again the fact that the
functional integral over x alone has been performed. The
determinants of 6 and P,P, are constants, since there

g
are no moduli parameters left, and their contribution has
been denoted by c. This constant has been computed by
Weisberger (1987a).

Of course, Vol(KerPi ) is infinite for the sphere, so the
above expression can be nonzero only if the vacuum ex-
pectation value of the vertex operators involves a similar
infinite factor. This can indeed happen because the ver-
tex operators are integrals over the sphere of local func-
tions:

Note that the above ratio of finite-dimensional deter-
minants is precisely the ratio of volumes of KerP, and
KerPi, so that we have for the analog of Eq. (2.77)

1 —2Q' (o )
Dg „= (det'P iPi )' e Dcr DU

Vol(KerP, )

(2.103)

so that the volume element on KerP1 is a constant times

z.d z.d zi j k

I
z; —z, I'I z, —zk I'I zk —z; ' (2.108)

where i,j,k denote any three distinct points among
1,2, . . . , n. The fact ghat three such points must be fixed,
and the appearance of the difference factors in Eq.
(2.108), are familiar from dual-model calculations.

To see how the volume of the conforma1 Killing group
is factored out, it is instructive to compute the scattering
amplitude for tachyonic particles only. In this case we
have UJ[s, Dx]=s in Eq. (2.105) with E constant and
k„k"=2. We need the Green's function G(z, z') for sca-
lars on the sphere. Due to the zero mode of 6, we can in-
vert b only on the space of functions orthogonal to con-
stants

This group acts freely on all the z~'s, and we may fix

three arbitrary distinct points with the help of a unique
Mobius transformation in PSL(2, C) and factor out the
PSL(2, C)-invariant volume. The latter is constructed by
recalling that, under the Mobius transformation of Eq.
(2.106), we have

dzj
dZJ ~

(cz +d)
(2.107)

z —z.J
(cz, +d)(cz, +d) '

V&(kj")=f d z~&g UJ[EJ,Dx]e (2.105)

b,,G(z, z')=4m5 (z,z')—
d'z&g

(2.109)

where U is a polynomial in derivatives of x and depends
linearly on the polarization tensor s (see Sec. VIII for
details). Since V~ is reparametrization invariant, it is
in particular invariant under the group PSL(2, C)
=SL(2,C)/I+1I of conformal Killing transformations,
acting on the coordinates z of the compactified plane
(i.e., the sphere) by Mobius transformations

%'ith the standard metric on the sphere

25
Mlt (1

I I

P)P

it is easily checked that

G(z, z') = —ln
(1+

I
z

I
')(1+

I

z'
I

')

(2.110)

(2.111)

azj+ bz-~ with ad —bc =1 .
czj+d

(2.106) Evaluating the contractions over x fields in Eq. (2.104),
we get

2d zJ n

« V(k, ) . V(k„)» =8 "(2m)"5(k) g f exp ——,
' g k; k G(z;, z )(1+

I

I2)2 2 ' J '' J (2.112)

where k =k, + . +k„ is the total momentum. From k; =2 and k =0, it follows that the (1+
I

z
I

) factors cancel
opt and we have

n 2k,. k.
((V(k, ) V(k„)»=s "(2m.)"5(k) Q f d z + Iz; —z

I

' 'exp g G(z;, z;) (2.113)

The singularity that arises from considering the Green's function at coincident points should be regularized in a
PSL(2, C)-invariant way. This requires setting G(z, ,z, ) to a constant independent of z;. This constant arises once for

4More accurately it should be understood as the volume of the corresponding Lie group.
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G(z, ,z;)
each vertex operator and thus efFectively modifies s to E=se " ' . The remaining expression in Eq. (2.113) is
PSL(2, C) invariant and thus divergent due to the infinite volume of KerPi. We now fix three points z„z,z„ i,z„and
isolate the invariant measure associated with them, as given in Eq. (2.108):

r

(( V(k, ) . V(k„)))=8"(2') 5(k) f dp
/
z„~—z„,

/ /
z„ i

—z„/ f
z„—z„

1&i & j&n

2k,. -k.
(2.114)

It is not hard to see that the object in large parentheses is PSL(2, C) invariant all by itself upon transformation of all z.
with j =1,2, . . . , n, so that the first integral yields Vol(KerP, ). It is customary to fix z„z——0, z„ i

——1, z„=oo, and
one then obtains with the help of Eq. (2.104)

tl —3

( V(k, ) . . V(k„))=ce c"(2,vr) 5(k) g f d z~
j=l

Introducing the generalized Mandelstam variables

1&i & j&n —1

2k,. k.
Iz; —z/I

' J . (2.115)

s, = —(k, +k )

we see that Eq. (2.115) is absolutely convergent only if each s; is below the tachyon threshold,

Re(s; )& —2,
and if

J' =1,j&g

The function elsewhere is defined by analytic continuation, which will introduce imaginary components to the ampli-
tude, so that it can obey the correct factorization properties. Note that, for real s;J, the amplitude (2.115) cannot be
correct for all ranges of s; ~, otherwise the full amplitude would be real, which is inconsistent with unitarity.

These closed-string amplitudes are analogous to those obtained by Koba and Nielsen (1969) for the open string. For
the three-point function we have

( V(ki ) V(kz ) V(ki ) ) =ce E (2m ) 5(k),

whereas for the four-point function we find the manifestly dual amplitude of Shapiro (1970) and Virasoro (1969),
2kl k~ 2k .k

( V(ki) V(k~)=ce E"(2n) 5(k) f d zi
~
zi

~

' '
~

1 —zi
~

(2.116)

(2.117)=ce E ~(2m) 5

where the Mandelstam variables for the four-particle am-
plitude are as usual denoted by s = —( k, +k z ),
t = —(k2+k3), u = —(ki+k3) . Identification of the
amplitude with a combination of I functions has also
freed us from the necessity for separate analytic con-
tinuation. The I function exhibits all the required fac-
torization properties. Factorization in the s channel at
the tachyon pole s ——2 imposes an additional relation
on the constants A, and E (recall that c was in principle
calculated),

(ce c, ) =8' ce

so that
2

e
8m

~Our convention for s has a —sign, because k; is really Eu-
clidean. Upon analytic continuation to Minkowski space-time,
s is the usual Mandelstam variable.

(k)
I"( —1 —s /2)I ( —1 —t /2) I ( —1 —u /2)

I (2+s/2)I (2+t/2)1 (2+u/2)
I

and the normalization c of the vertex operator is corn-
pletely determined by the unique coupling constant A, , as
pointed out by Weinberg (1985).

Our analysis has tacitly assumed that at least three ver-
tex operators were inserted. When no vertex operator is
inserted one should replace (2') 5(k) by the volume 0
of space-time; we have ((1))=1, and by virtue of Eq.
(2.104) the full amplitude vanishes. Physically, this indi-
cates that the space-time cosmological constant vanishes
at tree level. When one vertex is inserted, only one point
on the sphere can be fixed, and after fixing that point, one
should no longer factor out Vol(KerP, ), but rather the

(2.118) volume of the isotropy subgroup leaving that point in-
variant. If one chooses the fixed point at infinity, then
this subgroup is generated by translations, rotations, and
dilations in the plane and still has infinite volume under
the PSL(2, C)-invariant measure on this group, which
can be parametrized by two points z1,z2 in the plane.
The invariant volume element is then d z, d zz/

~
zi

Rev. Mod. Phys. , Vol, 60, No. 4, October 1988



E. O'Hoker and D. H. Phong: Geometry of string perturbation theory

—z2, whose integral indeed diverges. Thus the orle-

point function vanishes. Physically, this indicates that
Aat space-time is a tree-level solution to the string equa-
tions of motion. Finally, if two vertex operators are in-
serted, one should fix two points, aod it remains to divide
out by the volume of the isotropy subgroup leaving two
points invariant. When one fixes these points at zero and
inanity, the group is that of rotations and dilations and
again has infinite volume, so that the two-point function
also vanishes to tree level. Physically this means that
tree-level mass and wave-function corrections are absent.

Finally, as is well known from dual-model theory, the
amplitude (2.115) completely factorizes, a procedure that
may be used to compute amplitudes for particles other
than tachyons.

Tree.-level amplitudes in the Polyakov foi mulation
were studied by Nepomechie (1982} arid Aoymama,
Dhar, and Namazie (1986), and a prescription for liilking
their calculation to that of open strings (especially con-
venient for amplitudes of pirticles with spin) was sug-
gested by Kawai, Lewellen, and Tye (1986),

2. One-loop-level amplitudes

For h =1, we have two real modull 'T& 'P2 ance two real
conformal Killing vectors, and the measure (2.77) is thus
modified to

„, d«S, IP &

det 0, I kk
'"

(2.119)

where the prime on O'U denotes the omissioh of the two
conforma, l Killing vectors. Under Weyl rescaling, any
metric g can be mapped into a Bat metric g with unit
area, and in view of Eq. (2.70) the measure (2.119) be-
colnes

1 /2det'P )P)
d t( )

det(P Iki ~
det

Pa I 4p g —26$L(cr)

det it I qp

(2.120)

unit area (instead f d P&g =2v2), but because of Weyl

invariance this choice is equivalent. The space of all tori
obtained this way spans Teichmiiller space and is
parametrized by ~ in the complex upper half-plane
H= I ~=~, +irz, ~2~0I. In Sec. IV.A, we shall describe
an explicit construction of the Weil-Petersson measure
for a slice of unit area yielding

d (WP) =2
P2

(2, 122)

The torus obtained in this fashion is equivalent under
Diff(M) to any torus with modular parameter
r'=(a~+b)/(cr+d), ad be —=1, and a, b, c,d integers.
These transformations form a group PSL(2, Z). However
the group of "large" diffeomorphisms, i.e., the mappiiig
class group (or modular group for the torus), in addition
includes the transformation that Aips the sign of both
sides of the parallelogram, corresponding to the element

I of SL(2,Z}. Thus the full inodular group sliould be
taken to be SL(2,Z)=MCGi. Moduli space is obtained
from Teichmuller space by identification under the map-
ping class group. For simplicity, we still identify it with
the fundamental domain Af, , of PSL(2, R ),

m, =I~=~, +i~, with ~, )0, ——,'(~, (-,',
I ~I )1},

(2.123)

represented in Fig. 7 on the condition of including a fac-

Now Eq. (2.80) may be used to rewrite the ~ integral as
the Weil-Petersson measure, and the conformal Killing
determinants of Eq. (2.120) may be handled as for the
case of the sphere. Thus we obtain

Dg „= (det'P, P, )' e
Vol(KerPi )

-I/2 0 I/2 I

XDcr DU d(WP) . (2.121)

The standard representation of the torus is by a paral-
lelogram in the complex plane, with sides 1 and
~=~i+iw2 and Im(~) &0, periodic. boundary conditions,
and the Euclidean metric. This slice is actually not of

FICi. 7. A fundamental domain for PSL(2,Z), representing the
torus.
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tor of —,
' whenever we replace an integral over moduli

space by an integral over Af, . The Weil-Petersson mea-
sure d(WP) is clearly invariant under MCG„so it may
be projected down onto moduli space JM, . More on this

subject will be said in Sec. IV.B.
We are now in a position to write down the expression

for one-loop scattering amplitudes:

( V, (k, ) V, (k„))= f (det'P tP, )'~ det'b, (( V, (k, ) . V, (k„)))
1 n A( r2 ~ c 1 n Poi(KerP )

(2.124)

The determinants are evaluated in Sec. V.A, and one
finds

the standard 81 function for the torus, defined in Appen-
dix C,

(det'P, P, )'~ =det'26 = —,'det'b, (2.125) 8,(z+ 1,~)= —8,(z, r),
8,(z+~, r)=e ' ' 'V, (z, ~) .

(2.128)

det'b, =re
I
il(v)

where the Dedekind q function is defined in Appendix E
[Eq. (E9)]. The volume of Ker(P, ) is easily obtained,
since conformal Killing vectors on the torus are again
constants, and one finds Vol(KerP, ) =2~z, so that

—13

, (det'P ',P, )'" — det a
Vol(KerP, )

d2
)

i

—48

8ir'r' (4~'~ )" (2.127)

With the help of the transformation law of il(r) given in

Eq. (2.45), it is easy to check that Eq. (2.127) is invariant
under SL(2,Z) as expected, since the calculation was
manifestly repararnetrization invariant throughout. The
one-loop cosmological constant follows immediately,

d v 1 —48

~l 8' (~ ) (4vr v)'.
and it is divergent due to the preserice of the tachyon.

To obtain the scattering amplitudes, one needs the
Green's function G(z, z', v) satisfying Eq. (2.109), but now
for the torus. It may be obtained by the method of im-
ages or, equivalently, from the translation properties of

The only zero of 8,(z, ~) as a function of z is at z =0, and
hence

d, (z —z', r)—ln
8', (O, r)

(2.129)

satisfies the Laplace equation everywhere, except at
z =z', where it has the correct short-distance singularity.
It can be made single valued on the torus by the addition
of a function quadratic ih z —z':

G(z, z', r) = —ln
8,(z —z', ~)

(z —z —z'+z ')' .
8', (O, r)

(2.130)

Thus it is the unique candidate for the Green's function
on the torus, and indeed satisfies Eq. (2.109). Using a
translation-invariant cutoff when z'~z, one finds that
G (z,z;~) is independent of z and r It may be. used to re-
scale the coupling constant c to c., exactly as in the case
of the tree-level amplitudes.

As an example, we present the explicit expression for
the one-loop amplitudes for the scattering of tachyonic
states only. The measure is given by Eq, (2.124), and the
vertex operator part yields

n n

(( V(k, ) . V(k„)))=s"(2ir) 5(k) g f d z exp —g k, k.G(z, ,z;~)

n
A:,. k.=(2 )"~(k) "II fd', ?IF(;,)

' ' (2.131)

where we use the function F defined in Sec. II.G:

F(z, , z~ )=exp.~(z, —z; —z~+z )

2V2

6,(z; z, ,r)—
8', (0,~)

(2.132)

Putting all together, we obtain

2 n

&V(k, ) V(„k&)=~ (k")f "; '„~«.)~-"~ fd", gF(.„;)"". (2.133)
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I. Formulation with ghosts

In the presence of an infinite-dimensional symmetry,
factoring out the symmetry group and enforcing the
correct measure in loop amplitudes can also be accom-
plished by introducing Faddeev-Popov ghosts. Our pre-
vious discussion shows that for the first-quantized boson-
ic string this is not strictly necessary, and any scattering
amplitude can be computed without appealing to ghosts.
However, a ghost formulation will put at our disposal the
powerful tools of conformal field theory and exhibit the
key Becchi-Rouet-Stora-Tyutin (BRST) invariance.
These are also crucial ingredients in the construction of a
full-fledged second-quantized string field theory, as was
realized by Siegel (1985), Banks and Peskin (1986), Siegel
and Zwiebach (1986, 1987), Witten (1986a, 1986b), and
Neveu, Nicolai, and West (1986). Furthermore, in fer-
mionic string theories, ghosts will be indispensable, as
they will couple to fermion emission vertices.

Following the standard Faddeev-Popov procedure, we
replace the gauge parameter 5U' for reparametrization in-
variance by an anticommuting ghost field c'. Introduc-
ing its conjugate antighost field b„, we can now write
down the reparametrization ghost action:

Isi, (b, c)= d zing b„V'c'+c.c. ,
=1 2

2m
(2.134)

These amplitudes are divergent for all values of momen-
ta, due to the presence of the factor

I
i)(r) I, which

contributes a factor exponential in ~2 as v.2~0o. Ulti-
mately, this is connected with the presence of the ta-
chyon. Other manifestations of the instability of Min-
kowski space-time are the fact that the one-loop dilaton
tadpole [computed, say, from Eq. (2.133) by factoriza-
tion] is nonvanishing, indicating that the Minkowski
space-time is not a solution to the string equations of
motion to this order. Fischler and Susskind (1986a,
1986b) suggested that de Sitter space-time, on the other
hand, does solve the equations of motion to this order.

In the dual model of open strings, one-loop amplitudes
were considered by Gross, Neveu, Scherk, and Schwarz
(1970). The closed bosonic string amplitudes to one-loop
order were computed by Shapiro (1972), who also
correctly identified the fundamental domain for moduli
space (up to the above-mentioned factor of 2). In the new
era, they were reevaluated first by Polchinski (1986) and
subsequently by D'Hoker and Phong (1986a, 1986b) and
by Panda (1987). Investigations for open strings are
found in Cohen et al. (1987), Varughese and Weisberger
(1987), and Weisberger (1987a, 1987b), where it is argued
that the cylinder graph with boundary conditions may be
used as an off-shell propagator for closed strings.

llcll = fd'z&gg, c'c',

lib II'= fd"&g (g")'b,.b, ,——
(2.135)

are not Weyl invariant. We also have an important glo-
bal symmetry generated by

—iO +igc'—+e 'c', b„~e 'b„,
+iO-e'—+e 'c', b, —+e

(2.136)

Even though c' is formally the complex conjugate of c',
their analogs in Minkowski conventions would be in-
dependent. The metrics on the ghost space, however, are
only invariant under a U(1) subgroup of Eq. (2.136), gen-
erated by 0, =0, . Thus the ghost number current

j,= —b„c' (2.137)

3h —3fD(bbcc ) g b (z,. )b(z, )e (2.141a)

which can be evaluated to be

I detPi, (z )
I(det'P iP, )

( )
(2.141b)

where p are any basis of 3h —3 holomorphic quadratic
differentials. If we substitute this in the expression for
the Polyakov string measure (2.79), we obtain

det(p, I P„)
detpk(zj )

Z~= f dm, dm6/,

can be expected to be anomalous in the full quantum
theory. Indeed, in Appendix 8, a heat-kernel regulariza-
tion shows that

V'j, = ——', R . (2.138)

The integrated version of this anomaly agrees with the
index theorem of Eq. (2.50), which asserts that

8(c zero modes) —g(b zero modes)= —',X(M) . (2.139)

Now recall that the gauge-fixing operators P& and I'~&

decompose as P, =V,'V' „P,= —(72837, ), so that
the Faddeev-Popov determinant (detP, P, )' naively can
be represented as

fD(bbcc )e (2.140)

However, in the presence of zero modes this functional
integral would vanish. For convenience, let us restrict
our discussion to the case of genus h & 2, the case of the
torus requiring straightforward modifications. In this
case V', has no zero mode, while its adjoint Vz admits
3h —3 zero modes, namely the holomorphic quadratic
difFerentials (cf. Sec. II.E). To absorb these zero modes,
we need 3h —3 insertions. Thus the key nonvanishing
functional integral of interest is

which is Weyl and reparametrization invariant. The
Weyl symmetry again will be anomalous, since the natu-
ral metrics on the ghost field space,

X fD(bbcc)Dx'
3h —3

X ~ b(z, )b(z, ). '"""'+'-'" (2.142)
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In this expression it should be understood that for each
value of the 6h —6 moduli parameters m1, . . . , m6h
characterizes a background metric with respect to which
all the functional integrals and finite-dimensional deter-
minants are evaluated. The "matter" action is just the
Polyakov action [Eq. (2.5)] with the worldsheet metric as
background:

i.( )= ' fd" a, ~a,x (2.143)

(d«PtP )in
(2.144)

where we have used real quadratic differentials on the
right-hand side, to conform with Eq. (2.79). Thus the bo-
sonic string amplitude can also be written as

Zs= f dm, . dm3i, 3IVR' (2.145)

with

Finally Dx' denotes omission of the constant zero mode,
and z1, . . . , z3h 3 are arbitrary points on the surface M.

Other useful formulations of the string amplitudes are
also readily derivable from Eq. (2.141). . In particular,

3h —3 —I „(b, )
2

fDbDc + (p,
~

b)e

tangents to the slice for moduli. We shall see that this
procedure generalizes to the superstring as well.

The above formulas simplify to some extent if we
choose to represent moduli space by slices with Beltrami
differentials p, admitting jump discontinuities. As ob-

served earlier in Sec. II.E, a smooth Beltrami differential
cannot be represented as V, v' for a smooth vector field if
it deforms the conformal structure. However, deforma-
tions can be achieved with discontinuous vector fields
and Beltrami differentials. Thus let our slice satisfy

(2.148)

where v are quasiconformal vector fields, i.e., v are
smooth vector fields with a unit jump 6v' across a closed
contour C;. Contours generating a basis of quasiconfor-
mal deformations can be chosen in a variety of ways, for
which we refer, for example, to the discussion of Mandel-
stam diagrams (Sec. IV.G) and Fenchel-Nielsen coordi-
nates (Sec. IV.E) of deformations. If we substitute them
into fermionic functional integrals of the form (2.144), we
note that the 3h —3 insertions b(z ) can effectively be
viewed as holomorphic, because all 3h —3 factors are re-
quired to produce zero modes to compensate for the
ghost number anomaly. Thus the insertion becomes

f d z&g g"p' b„=f d z&g V'v b„

3h —38'= Db Dc Dx' p; b e

(2.146)

= f c dz b„5v = tt) c dz b„

and Eq. (2.146) reduces to

(2.149)

We have used the standard notation for the pairing be-
tween the b field and the Beltrami differentials

3h —3 —[I &(b, c]+r ~x]]IV= fDbD D '

i =1

( p~ b)=fdzp', b„. (2.147) (2.150)

Here the integral in x is assumed to have been split as
well into holomorphic and antiholomorphic parts, and
we have kept in 8' the holomorphic one. How this can
be done exactly requires careful treatment and will be
taken up in Sec. VII.

The above offers a remarkably simple procedure for
guessing the right measure: simply insert the right num-
ber of b's to absorb the zero modes, and pair off with the

I

If the worldsheet is viewed as a surface with punctures,
one may use the insertion of the operator identity

tt) c dw b (w)c'(z)=1, (2.151)

where C, is a small contour surrounding the point with
coordinate z. If we choose the points z to coincide with
the punctures (i.e., vertex operator insertions), then the
ghost formulation of Eq. (2.79) reads

(V (k) . V (k))= g e ~f [dm]fDx"fDcDcDbDbe
1

3h —3+ n

)&[V,. (k, ) . V, (k„)] g tt) dz b„f dz br, . (2.152)
j=1

Here the modified vertex operators are given by

V(k)= f d z c'c'U(e, x)e'"",

where the vertex operator without ghosts reads

V(k)= f d g&g U(e, g, x)e'"" .

(2.153)

(2.154)

The crucial role of ghosts in formulating string

theories emerged first out of Polyakov's original work
(1981a). The b, c system was explored further in Friedan
(1984) and string partition functions and amplitudes ex-
pressed in terms of ghost insertions in Friedan, Martinec
and Shenker (1986). Equation (2.152) in terms of inser-
tions of contour integrals was proposed by Martinec
(1986) and Giddings and Martinec (1986), who derived it
from a slightly different formalism of extended path in-
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tegrals instead of ghost insertions that we adopted here.
An alternative ghost action including the square of the
ghost current was considered in Freedman and Warner
(1986a, 1986b) and Freedman et al. (1987). Relations
with the harmonic gauge are discussed in Freedman, La-
torre, and Pilch (1988).

J. Conformal field theory

under a reparametrization z ~z+v'. On the other hand,
we can also write

(;z = fd'*&(;s(, *T*;, rtb(*, )rt (;))4m. l=1 i=1

1 5Zp
+ fd'z&g 5g"

Qg 5 zz

I(b, c)= f d z&gbVf „c .
2m-

(2.155)

Classically the theory is invariant under Weyl transfor-
Inations, so the stress tensor

T „=— —5I/5g
g

is traceless and given by

In the previous section we have presented string ampli-
tudes in terms of correlation functions of the matter
fields x" and the reparametrization ghosts b„and c'.
These are basic examples of conformal field theories, i.e.,
theories invariant under conformal transformations. In
two dimensions conformal invariance is an especially
powerful constraint, and we give now a brief discussion
of the properties of these conformal fields.

The discussion will actually be clearer from a more
general point of view, so we consider a theory of chiral
fermions b (dz)", c(dz)' " with action

N

jd zvg Uv* T„rt b(z ) n c(w))
i=1 i=1

&ZF
+ fd'z&gu'V'

Qg 5 zz
(2.159)

det'V'„
ZF=, g ( —1) 'det(II)k(z; )

det

The variation of Z with respect to the trace of g is deter-
mined by the conformal anomaly. As in the case of the
reparametrization ghosts, there will be a fermion number
violation, measured by the index of V1 „. If, say, n )2,
V; „will have no zero modes, while (V& „) will have
Y= ( h —1 )( 2n —1 ) zero modes. The only non vanishing
correlation function (2.157) must satisfy M =X+Y and
can then be expressed as

T„= nbB, c +—(1 n)(B,b)c—. (2.156) I+l ] y ~ ~ o, y lg
G(zt, wi ),

In particular, the equations of motion imply that T„ is
holomorphic. Quantum mechanically, the Weyl symme-
try is anomalous and will prevent the stress tensor from
being simultaneously covariant and holomorphic. This
can readily be seen from Ward identities for reparametri-
zation invariance. Indeed, if we insist on reparametriza-
tion invariance, the correlation function

M N
Z (z„.. . , wz)= fD(bc)e " ' + b(z, ) + c(w, )

(2.160)

where P„.. . , Pt are zero modes and G (z, w) is a propa-
gator for V'„. The zero modes and propagators are un-

changed under Weyl scalings, so

1 5 1 5 det'V'„
lnZF ———— ln

(2.157)

cn
Rg (2.16 la)

will transform by

5Z+ ——g (nV, u '+u 'V, )ZF
i=1

+ g [(1 n)V u '+ u —'V ]ZF
i=1

(2.158)

where the central charge —2c„ is given by

c„=6n —6n + I (2.16lb)

in view of Eq. (2.69). Equating the two expressions
(2.158) and (2.159) for the variation of Z~ under
reparametrizations gives

M N c M
V' T„+b(z, ) g c(w;) + V,RZF ——g [nV, 5(z, z,. )+5(z,z;)V, ]ZF

N

+ g [(1—n)V 5(z, w;) 5+(z, )wV ]Z~ .
i=1

In this expression, the Christoffel symbols have canceled out.
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This is an equation for ( T„+,b(z; )+, c(w,. ) ) which shows in particular that it is not meromorphic in z, with the ob-

struction arising precisely from the conformal anomaly. The equation can be solved using any propagator orthogonal
to the zero modes P„.. . , (I}3h 3 of V2. Such a propagator will satisfy

V'G,~ =2+5(g, z),
3h —3

V&6,~ = 2v—r5(g, z)+2~ g g+p~ &P, „,
a=1

where the p' are the dual basis of Beltrami differentials

Jd g g p, ,;lb, zz —&ab .

The first Ward identity for reparametrization invariance takes the form

M 3h —3 M N

T, rib(;)ri (-, ) —r ~ Jd...*«-"~(;T„n~(*,)ii (-, )l
1 1 a=1 1 1

ZF f d g gG~B&R+ g (nV, G„'+6„'V, )Z~+ g [(1 n)V —6„'+6„'V ]Z„.
i=1 i=1

A second Ward identity is obtained by differentiating the first with respect to g
' 5/5g . The result is

M 3h —3

T„T Q b(;) + (;) —P P, „fd'P gg~~p~
~

TgT +b(;) + (;)
1 1 a=1 1 1

(2.163)

M
Z~V 6„+ d g gG,&8&8+6,",V +2(V 6„)—g(nV, G„'+6„'V, )

24~
1

N M N—g[() — )V„G„'~G„'()„] T„„ii 6(*, ) ri (, )) . (2. (64)
1 1 1

We can now read off operator product expansions by
looking at short-distance z —zl, z —wl, z —m singulari-

ties. Since the Careen's function G„' is equal to
1/(z —z, ) up to smooth terms, the first and second Ward
identities lead to

I

where this time T,',"' is holomorphic. Note that as a re-
sult of the third operator product expansion (OPE)
above, T,',"' does not transform as a rank-two tensor.
Rather, under a holomorphic reparametrization, T,',"' will

transform with a Schwarzian derivative:

T b(g)

T„c(g)—

B~ b(g'),
(z —()

1 —n I
, + &g c(g),

(z —g)
(2.165)

Tchi Tchi
ZZ WW

d LO
S(w, z)=

dz

2
n

S(w, z),

(dw /dz) ——3 d N

dz

2
(2.167)

ZZ WW

2 + ~w Tuu
1

(z w)~ z —w

——,'c„(B —I"" )B„(B + I „)—
Z —M

Introducing the local counterterm B„r ——,'(I ) and

the chiral stress tensor

T,;"'=T..—,'c„~a.r„.——,(r:.)'],
we can rewrite Eq. (2.165) as

This is yet another way of expressing the fact that the
conformal anomaly prevents simultaneous holomorphici-
ty and covariance.

In the above discussion we chose to maintain manifest
covariance. If we had chosen instead to maintain mani-
fest holomorphicity, we could have defined the chiral
stress tensor by the following normal ordering procedure:

T

T;,"'= lim —nb(w)Bc(z)+(1 —n)Bb(w)c (z)

T(:kib ( g) , + &g b(g),
(z —g')

(w —z)
(2.168)

Tchi $ —n
B~ c(g),

(z —g)
(2.166)

—CnChl Chl 2 1 Ch1
Tzz Tuu g+ 2+ ~w Tww ~

(z —w) (z —w)

A routine calculation will again lead to the transforma-
tion law (2.167). Henceforth by stress tensor we shall ac-
tually designate the chiral one, which we denote simply
by T„. Similarly all composite operators requiring regu-
larization will be normal ordered as in Eq. (2.168), by
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splitting points and subtracting the singular part of the
OPE.

The stress tensor can be viewed as generator of local
conformal transformations FIG. 8. Deformation of contour integrals.

5,b(g)=pc . e(z)T„b(g) .
k 2+i

(2.169)

As such it will give rise to a Virasoro algebra with central
charge exactly the coefficient of the conformal anomaly.
In fact, if we introduce the Virasora generators j,b(w)-

—1 b(w),

it is easy to derive the OPE's:

. z m+1
o 2mi

the matrix elements will be given by

(2.170)
1j,c (w)- c(w),

Z —W

1
JzJw—

(2.175)

Finally the stress tensor T„can be recovered from the
number current. t,

T„=—,
' j,'+ —,

' Q(),j, , (2.176)

(2 171) and will satisfy the QPE

Here Co, is a curve enclosing both 0 and z (see Fig. 8).
Substituting in Eq. (2.171) the OPE of (2.166) yields

—cn[L,Lq ]=(m p)L —+p+ (m —m )5

(2.172)

Equations (2.166), (2.169), and (2.172) are the local equa-
tions characterizing a conformal field theory. In the case
at hand the b, c fields are primary fields of conformal
weights n and (1 n), r—espectively. They live on
Riemann surface M (more precisely are sections of the
line bundles K" and K' " where K is the canonical bun-
dle of M), and the global version of the operator product
expansions is given by the Ward identities (2.163) and
(2.164). The negative sign in front of c„ is due to the
quantization of b and c as fermions; it would be absent if
b and c were quaritized as bosons. This will be the case of
the superghosts of Secs. III and VIII.

The theory of b, c fields is actually completely charac-
terized by its current algebra. As pointed out before [Eq.
(2.134)] for the reparametrization ghosts, the theory ad-
mits a symmetry b~e' b, c~e ' c. The (chiral) fer-
mion number current j,= —bc is anomalous and satisfies

V,j,= ——,'(2n —1)&gR . (2.173)

b (z)c(w)- 1

z —w
(2.174)

7In such relations it should always be assumed that Y inser-
tions have been made to aPsorb zero modes and ensure a mero-
morphic propagator.

This can be seen by heat-kernel regularization exactly as
in Eq. (2.138), which corresponds to n =2. Integrating
this relation gives back the violation of fermionic number
Y=(2n —1)(b —1) determined earlier through index
theorems [cf. Eq. (2.139)]. From the short-distance ex-
pansion

1
zzJM

( )3 ( )Z
Jz (2.177)

where Q =(2n —1).
We turn now to bosons. The free scalar fields x" ofTer

the simplest example of a bosonic conformal field theory,
with the action that of the bosonic Polyakov string, the
stress tensor equal to

T„=——,((B,x") (2.178)

=iz —wi

= (b (z)c (w)b(z)c(w) ), (2.179)

so we expect exp[i(p(z)] to correspond to a fermion bilin-
With this we can exhibit a bosonic action that

will reproduce the current algebra of the b, c system:

I((p) = J d z((3,yd (p iQv g R(p) . —(2.180)

Here Q =2n —1. The necessity of including the curva-

and its central charge given by c =d. Strictly speaking,
we have (x"(z)x (w)) ——5" ln

~

z —w ~, so that x)"
does not have a conform@1 dimension. This is no hin-
drance, however, since fields built out of exp(ik "x„)and

B,x",i),x" do have well-defined dimensions, as we saw in

Sec. II.G. Chiral scalar fields with gravitational
anomalies will be defined in Sec. VII.B.

More sophisticated theories arise when the bosonic
fields cp are multiple valued and possibly coupled to a
background charge Q. Indeed, one of the fundamental
features of two-dimensional quantum field theory is the
Bose-Fermi correspondence, and the bosonization of the
chiral fermions b and c of ranks n and 1 —n discussed
above will lead precisely to such theories. Recall that for
free bosons

( .eiq&(z) —iy( w). ) ..e (cp(z)y(w) )
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ture term can be seen from several points of view. For
example, the symmetry b~e' b, c~e ' c should cor-
respond to the shift y —+y+0, in which case the curv-
ature term will produce the correct anomaly
Y=(2n —1)(h —1). The local version of this statement
is that the current j,= —I, d, cp will satisfy the same equa-
tiori as the fermion number current,

(2.181)

Moreover, the additional term —iQi3, @/2 that arises
then in the stress tensor

T„=——,
' (B,p) ——QB,g (2.182)

1
JzJw

( )2
t

(2.183)

also reproduce Eqs. (2.175) and (2.177).
We can now confirm that vertex operators correspond

to fermion bilinears by considering the OPE

T iqqt(w) q ('q +Q}/ iqy(w) . g iqqr(w)„e we
(z —w)

(2.184)
q iqq(w)

Z —M

iqy(w)
Jz

The background charge has shifted the conformal weight
of exp(iqip) from q /2 to q (q +Q)/2. Thus q should be
taken to be 1 and —1 for bb and cc, iri agreement with
Eq. (2.179).

We have up to this point discussed only the formal and
local aspects of the bosonic theories, unlike the fermionic
theories for which we started from global formulas before
examining singularities to obtain the local ones. Global
issues do play an important role here, however. In fact,
the operators exp(+iy) suggest that ip is an angle. The
correct statement on a worldsheet with nontrivial topolo-
gy is that dip is a closed but in general not exact form, so
that y is a multiple-valued function. This requires the
action I(y) to be suitably modified so as to be well
defined and the path integral Dcp over all configurations
to be correctly interpreted, as well. As usual with soli-
tons, dy can be characterized up to an exact form by its
winding numbers, .so By decomposes into a sum over sol-
iton sectors indexed by winding numbers. The required
machinery to do this as well as compute correlations and
establish bosonization will be developed iri Sec. VII. We
postpone uritil then a careful study of global issues.

The program of using conforrnal invariance to classify
critical points of statistical systems was pioneered by Po-
lyakov (1969). The importance of conformal (primary)
fields in string theory was recognized early on by Gervais

is precisely the modification needed to ensure that T„
obey the Virasoro algebra with the correct central charge
1 —3Q =c„. Similarly we can check that the operator
product exparisions

1
Tzzjw 3 + 2 jz

(z —w} (z —w)

and Sakita (1971a) and Andric and Gervais (1972). The
foundations of modern conformal field theory were laid
out by Belavin, Polyakov, and Zamolodchikov (1984).
Unitary conformal field theories with c ~ 1 were classified
by Friedan, Qiu, and Shenker (1984) and constructed ex-
plicitly by Goddard, Kent, and Olive (1986). Unitary
c =1 models were studied by Dijkgraaf, Verlinde, and
Verlinde (1988). Operator prodiict expansions for the
ghost system of the bosonic string appear in Friedan
(1984). Our treatment here is an adaption to the higher-
loop case of his arguments. Global versions of Ward
identities are also derived by Eguchi and Ooguri (1987)
and Sonoda (1987a). The stress tensor as a projective
connection is studied in Alvarez and Windey (1987) and
Dugan and Sonoda (1987). Bosonization of higher-spin
free fermions b, c is due to Marnelius (1983) and Friedan,
Martinec, and Shenker (1986). The corresponding boson-
ic system coupled to a background charge had appeared
earlier in the work of Dotsenko and Fateev (1984). The
importance of modular invariance in conformal field
theory was stressed by Cardy (1986), Gepner and Witten
(1986), Itzykson and Zuber (1986), Capelli, Itzykson, and
Zuber (1987) and Gepner (1987a, 1987b).

K. Becchi-Rouet-Stora-Tyutin (BRST)
invariance

We have seen in Sec. II.I that the Polyakov model for
the bosonic string can be represented as a sum over
moduli parameters of the full theory including ghosts
with action

I, , = f d z( —'B,x"a,x ~+b„V,c'+ b„V,c') .

(2.185)

In this formulation, the cancellation of the conforrnal
anomaly in the critical dimension d =26 corresponds to
the cancellation of the central charge in the total stress
tensor,

Ttot Tx + Tgh (2.186)

From Eqs. (2.156},(2.168), and (2.178), the stress tensors
for.the ghost and matter parts are given by the following
ordering prescription:

~ 1 dT„=lim ——B,x"0 x"+
w~z 2 (z —w}

T,~,"= lim —2b(w)B, c(z)—8 b(w)c(z)+
w~z (w —z)

The resulting centi al charges are c "=—c2
———13 arid

c =dc0/2=d/2, so that T,'," is now a globally defined
holomorphic rank-2 tensor. This is the property allowing
decoupling of physical states by Virasoro gauge condi-
tions.

As usual, the total action incorporating Faddeev-
Popov ghosts exhibits a new symmetry, known as BRST
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symmetry:

Sx~=7c a,x~, S"= —Xc'V,c,
(2.187)

ob„=—A [ ,'—a,—x"a,x "+c'V, b„+2(V,c')b„] .

The parameter k is infinitesimal and Cxrassmann valued.
The fact that these transformations indeed generate a
symmetry is read off from the transformations of the
matter and ghost parts separately,

sa, x~a x~=uv'c )a,x~a, x~+v, (~c a,x~a x~),
bb„V'c'= Xa,—x~a, x~V c' V,—(zc b„V c ) .

QBRsT I Phys) =0, (2.191)

As already noted in Eq. (2.174) it is essential in deriving
Eqs. (2.190) to have meromorphic propagators. This is
automatic in string theory, since the string measure in-
corporates exactly the right number of insertions to ab-
sorb the effects of ihe ghost zero modes.

At the classical level QBRsT is just a Grassmann quan-
tity that squares to 0. At the quantum level the operator
statement QBRST ——0 holds only in the critical dimension
d =26. In this case the Virasoro gauge conditions for
physical states translate into

The BRST current is

~BRsT czT~x+ & czTgh+ 3 (V )2 z

The ordering prescription is again taken to be

and states of the form

QBRsT I
anything ) (2.192)

JBRST ~ZTX + $ lim ~ NTgh+ ' 1 w

l8 ~Z (z —w)

2 a c +—'(V )c'.
z —w 2 Z

In view of the transformation. laws (2.167) for the stress
tensors, the BRST current will transform as a genuine
holomorphic rank-1 tensor. The corresponding BRST
charge is given by the contour integral

QBRST 0 2 A (2.189)
27Tl

where the contour surrounds insertions. From operator
product expansions, we can deduce that

are spurious and decouple from physical processes. In
other words, physical states should rather be viewed as
BRST cohomology classes, i.e., elements of the coset
space KergBRST /ImageQBRS

In the Polyakov path-integral formulation of strings,
the decoupling of spurious states (2.192) translates into
the fact that amplitudes with an insertion of the BRST
current around X arbitrary vertex insertions can be writ-
ten as total derivatives on moduli space. More precisely,
let V;(w; ) be vertices of conformal dimensions (A, ;,A, ; ), let
C be a contour surrounding w„. . . , wN, and1'

parametr'ize moduli space by coordinates mj,

MBRST~x")=c aux" ~

IQBRsT~c I =c Vzc

I QBRST bzz I Tzz

(2.190)

3h —3

Age = g 5m g,~p,j=1

where p'. are 3h —3 Beltrami differentials. Then

(2.193)

3h —3=X
a

(2.194)

This relation between BRST invariance and total
derivatives on moduli space can be easily seen from the
OPE's (2.190) and a deformation-of-contours argument
when the Beltrami differentials p'. , are generated by
quasiconformal vector fields as in Sec. II.I. In this setup
the insertions w1 remain separated from the supports of
p', We can deform the contour C „away from

the insertions ap.d pull it o6' the worldsheet, leaving in the
process only the residues at the 3h —3 insertions of b„.
By the third equation in (2.190) the residue is exactly an
insertion of the stress tensor T„. Such a term (pl, I

T„)
accounts for the piece of the right-hand side of Eq.
(2.194) that arises when adam„ lands on the action. In

I

general the vertices V1 will depend on the moduli param-
eters. Their variations with respect to the trace of the
metric cancel the variations of the volume forms in Eq.
(2.194). Finally their variations with respect to 5g"
proper are Dirac functions szpported only at w1. They
will vanish when paired with Beltrami differentials pk
arising from quasiconformal deformations, since these
are supported along disjoint contours.

This argument requires fnodifications if the supports of
the Beltrami differentials cover the whole surface. The
reason is that insertions of b„resulting from (p I

b„),
insertions of I'(w~) as well as points on the contour
C „,may come arbitrarily close together, invali-1~. N
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Z[x', b*,c*]=fD(xbc)e (2.195)

where the source Lagrangian is given by

dating operator product expansions such as (2.165) and
(2.190), where only two points come close. Ignoring this
effect would cause us to miss the variations with respect
to moduli of the vertex operators.

A thorough justification of deformations-of-contours
arguments along these lines seems quite involved at this
point. Instead, we shall present an alternative argument,
which does not rely on analyticity, and generalizes easily
to superstrings. In this formulation, the basic object is
the generating functional including ghosts and sources

The decoupling of spurious states in this formalism can
now be established. First observe that Ward identities
for BRST invariance can be stated as

QBRSTZ[x, b, c ]=0 (2.203)

for all values of the sources, and in the critical dimen-
sion. To show this, one must use the Ward identities for
reparametrization invariance, as well as for Weyl invari-
ance. The Weyl Ward identities are anomalous in gen-
eral, but in the critical dimension a cancellation of the
matter and ghost contributions reduces them to the naive
Ward identities, which are the ones needed to prove Eq.
(2.203). Furthermore, in an expectation value

I, = f d z&g (x*"x"+b*"b„+c,*c') . (2.196) &bBRsTV&= f Zd'm, &V, I
b &[~QBRsT& V]

The BRST charge Q, the partition function, and the
correlation functions can all be expressed in terms of
combinations of the operators,

1 5
v'g Sx*'

1 6
v'g nc,

*'

b„= '-
bb zzz

1 6
zz

(2.197)

acting on the generating functional. For example, the
partition function is given by

3h —3

Z„=f + d'm, &p, I

b )Z[x*,b*,c*]
h

(2.198)

and the expectation value of a general operator
V(x, b, c,g) is

3h —3

& V) = f + d m. & p I
b ) V(x, b, c,g)Z[x', b*,c*] .

5V=[AQBRsT, V(x, b, c,g)],
with the BRST operator given by

(2.200)

QBRsT = f d z v'g (x *c '8, x 2b *"g„—c—*c 'V, c ) .

The OPE of Eq. (2.194) is replaced by

[~QBRsT~ b (2.201)

and pulling through of the BRST contour can be justified
by the following commutation rules for the BRST
charge:

a
I &Pk I

b &~QBRsTI =
Bmk

5Pk-
+2f d zk f d zV'gb*" b, ,

(2.202)
II&~, lb& [&~ Ib), Q

(2.199)

The BRST transform of an operator V is then defined by

XZ[ x*,b*,c*] „. (2.204)

we may replace the commutator [A QBRsT V] by
A, QBRsT V and permute QBRsT through all b insertions to
obtain a total derivative on moduli. This establishes Eq.
(2.194)

Strictly speaking, BRST invariance is at this point
purely formal, since in principle it could be broken by
contributions from the boundary of moduli space. A
geometric-discussion of the boundary of moduli space is
provided in Sec. IV.H. For the bosonic string the ampli-
tudes diverge, and a proper discussion of BRST invari-
ance will require some renormalization (e.g., Fischler and
Susskind, 1986a, 1986b; Seiberg, 1987; Sen, 1987). For
superstrings where amplitudes are expected to be finite,
whether the boundary of moduli space does contribute is
a major issue, here as well as in questions of supersym-
metry breaking.

The original SRST invariance of gauge-fixed Yang-
Mills theories was introduced by Becchi, Rouet, and
Stora (1976) and Tyutin (1975). That the BRST operator
of string theory is nilpotent exactly in the critical dimen-
sion is due to Kato and Ogawa (1983), who also gave the
interpretation of physical states as BRST cohomology
classes. BRST invariance of multiloop amplitudes and
deformation of contour arguments were stressed by
Friedan, Martinec, and Shenker (1986). Arguments
along these lines based on special meromorphic propaga-
tors are given in Sonoda (1987b). The setup in the func-
tional language with external sources which we presented
here to establish BRST invariance for the bosonic string
is due to Mansfield (1987). The corresponding Ward
identities are also given in Cohen, Csomez, and Mansfield
(1986).

The requirement that spurious states decouple is what
led originally to the discovery of the critical dimension,
and the fact that this decoupling can be carried out con-
sistently was one of the great successes of dual-model
theories. It was established by Brower and Thorn (1971),
Del Giudice, Di Vecchia, and Fubini (1972), and God-
dard and Thorn (1972). The BRST formulation can of
course be used to recapture many properties of the dual
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models in the operator formalism. A BRST proof of the
no-ghost theorem is given by Freeman and Olive (1986),
Frenkel, Cxarland, and Zuckerman, (1986), Spiegelglas
(1987), and Thorn (1987). A proof based on the Kac
(1983) determinant was given by Thorn (1984).

L. Formulation on surfaces with punctures

The main formula (2.79) for the scattering amplitudes
of n particles was derived in the vertex operator formal-
ism. In the introduction to this section, we saw that one
can also formulate string perturbation theory on surfaces
with punctures and wave functions. We now compare
the two formulations.

At the h-loop level, the worldsheet for the scattering of
n particles is a surface M with h handles and n punc-

I

X IV„(g ).-""'
(2.205)

This time the normalization JP' should be taken to be

JV =Vol(Diff(M*)) && Vol(Weyl(M*)) (2.206)

and 8',.(g;) are wave functions evaluated at the punc-
tures. In the critical dimension d =26, the amplitude
(2.205) reduces to an integral over the moduli space A,

& „
of Riemann surfaces of genus h and with n punctures:

tures g„.. . , g„. Quantization can be carried out as for
Eq. (2.12),

& V, (ki) V„(k„))*=f fDx "W, (g, )
I gmn

& V, (k, )
. V„(k„)) ' = f [dm *]

i~2
(det*P iPi )'

det& p. I yp&

det /~lofti
' '

Sm det'6
d'g&g

—13

« IV, (g, )

(2.207)

In appearance Eq. (2.207) is very similar to Eq. (2.79) of
the vertex operator formalism. However, the definitions
of the parameters m, Beltrami differentials p, and quad-
ratic differentials P& and det*PiP, in Eq. (2.207) have to
be adapted to the fact that the worldsheet M* is now
viewed as having punctures. First a moduli parameter
m* for JRh „will consist of a moduli parameter for
Jkfi, ——JR&, o and of n points on the surface. Thus m'
should correspond to m „.. . , m6h 6 and gi, . . . , g'„of n

points on the surface and the complex dimension of JRi, „
is

dim%& „——3h —3+n

(A more precise geometric description of Jki, „as a fiber
bundle over moduli space can be given by Teichmuller
universal curve constructions, which are treated in Sec.
IV, but we shall not need it here. ) The number of Bel-
trami differentials p is correspondingly increased to
3h —3+n. We can choose the slice representing JNh„so,
that the first Ip. I J i 3i, 3 Beltrami difFerentials arise
from a slice representing A1,h, while the remaining

I pp I p 3Q 3+ i 3Q 3+ are generated by vector fields
U which move the punctures by a unit displacement.
Similarly the P&'s are now holomorphic quadratic
differentials on the surface M . They can be divided into
earlier difFerentials I PJ I j i 3i, 3 which are holo-
morphic on the whole surface M, and n meromorphic
difFerentials Igp Ip 3h 3+i 3i, 3+ with each Pp hav-
ing a simple pole at g' . (Such P 's exist in view of the

8Objects considered on the punctured surface will be denoted
with an asterisk.

Meromorphic di6'erentials with a simple pole are precisely
dual to the reparametrization vector fields with a simple zero at
the puncture, so one need not consider differentials with poles
of higher order.

det& p. l P~) det& p,, l P„)

det&p
l P )

X
det&y, l y, )'" (2.208)

On the other hand, the Faddeev-Popov determinants are
related by

det&P
l P, )det&u,

l u, )
det*P &P&

——detP &P&
ldet 0, IV, )' (2.209)

In view of the support of U, it is easy to see that

n

det&u
l
u~)' '=5'" + g(g )+O(5'"+') .

i=1
(2.210)

Combining Eq. (2.208) with (2.209) and (2.210) and ab-
sorbing the factor 5 g (g ) into a redefinition of the wave
function, we arrive at

Riemann-Roch theorem, which we shall discuss later in
Sec. VII.C.) Finally, det'P, P, is the determinant of the
operator P,P, restricted to the subspace of vector fields

that vanish at the punctures. The reason is that the
"small" diffeomorphisms of the punctured surface m'
are the small diffeomorphisms of the full surface M that
leave the punctures fixed, and those are generated only
by vector fields in the above restricted subspace.

We can take the vector fields U to be smooth and sup-
ported in a neighborhood of small size 5 around each
puncture. Since p =V U', it follows readily that

&pp l P, ) =0. If the meromorphic difFerentials Pp are
chosen so that & P~ l Pp ) =0, we shall have
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—13

(2.212)

& V, (k, ) . V„(k„)&*=f [dm], (detP, P, )'~ det'6
det&Pg.

I kk & t, g2 8m.
~h, o det QJ ~ pk

' d 2/v'g

X fd'g, Vg(g, ) . fd'g„V'g(g„)« W(g, ) IV(g'„) » .

It remains to express the wave functions 8' in terms of the vertex operators for on-shell particle emission V. One
starts by considering a surface where the puncture is replaced with a boundary of finite size. The amplitude computed
by the insertion of a vertex operator is the same as the one computed on the surface with a boundary component and a
wave function gotten by doing the path-integral operator over a disc D (of radius 5), including the vertex operator, and
fitting into the boundary, as indicated in Fig. 9. Thus the wave function equals the integral over the disc with the vertex
operator inserted. This is easily computed, and we obtain

W'[x (o )]=f Dx "P(s,Dx)e " e

where the vertex operator was of the form

V(e, k, x ) =P (e, Bx )(g)e

Splitting x "(z,z ) into a harmonic piece x "(z,z ) with boundary values x "(0 ) and a fiuctuation y "(z,z ), we find

(2.213)

8'[x(o )]=fDy"P fs, Bx "+dy" ]e " " exp — f d gB y~B y„exp — fdn x "8 x„. (2.214)

1
X exp — dn x "8 x"

8m
(2.215)

The above arguments are due to O'Hoker and Giddings
(1987).

=JQ x(~)

FIG. 9. Relation between amplitudes computed by inserting
vertex operators and by giving wave functionals on boundary

. components.

Now since vertex operators are constructed so that they
are normal ordered, we should not contract two legs on
the same vertex. Hence if we let 6—+0, the Gaussian fac-
tor in Eq. (2.214) tends to 1, and we recover the desired
relation between vertex operators and wave functions at
punctures:

ik x ~(0)
W[x (0.)]=P[s,Bx "](0)e

III. CLOSED ORIENTED FERMIONIC STRINGS

Soon after the discovery of bosonic strings, it was real-
ized that worldsheet spinors (fermions) g" carrying a
space-time vector index p could also be incorporated in
the theory. As the number of negative norm states is
now doubled compared to the bosonic string, an addi-
tional local symmetry is required to deco uple these
states. Local supersymmetry, discovered in this context
by Gervais and Sakita (1971b, 1971c), is the appropriate
invariance to do this, and so from a geometric point of
view the starting point for the fermionic string is two-
dimensional supergravity as developed by Zumino (1974),
Brink, Di Vecchia, and Howe (1976), and by Deser and
Zumino (1976b). For a general reference to supersym-
metry and supergravity, we refer the reader to Ferrara
and Fayet (1977), van Nieuwenhuizen (1981), Wess and
Bagger (1983), Gates et al. (1984), Ferrara (1987), and
West (1987).

Whereas the original model of Ramond (1971)contains
space-time fermions, the model of Neveu and Schwarz
(1971)also incorporates space-time bosons. In both mod-
els, one has worldsheet local supersymmetry, and space-
time Lorentz invariance is manifest. These theories are
consistent only in ten space-time dimensions. Once the
Lorentz-covariant form. is known, one may construct the
associated light-cone gauge formulation. The light-cone
Ramond-Neveu-Schwarz (RNS) formulation was used in
a major development by Gliozzi, Scherk, and Olive
(1976), who suggested that the even G parity sector of the
Neveu-Schwarz theory together with a chiral truncation
of the Ramond theory —the so-called GSO projection—
yields a space-time supersymmetric spectrum. It took
several years before Green and Schwarz (1981) proved
the presence of a genuine supersymmetry by constructing
the supercharge using the fermion emission vertex of the
dual model. This fermion vertex had been introduced by
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Thorn (1971) and by Mandelstam (1973b) in the light-
cone formulation. Once the presence of supersymmetry
was established, Green and Schwarz (1982) discovered a
light-cone reformulation different from the Ramond-
Neveu-Schwarz theory. Here, only physical bosonic
space-time vectors and fermionic space-time spinors are
present, no GSO projection is needed, and space-time su-
persymmetry is manifest. It is known as the Green-
Schwarz formulation. Superstrings are classified into
three groups: type I, type II, and heterotic.

Type-I superstring theories contain both open and
closed unoriented strings. The open-string sector can
support non-Abelian gauge fields when one attaches
non-Abelian charges to the ends of the string.
Mathematically, such charges are incorporated through
the Chan-Paton rule, but factorization and duality limit
the gauge groups to be orthogonal or symplectic. Ulti-
mately it was discovered by Green and Schwarz (1984)
that only O(32) can yield an anomaly-free theory, and
thus the type-I superstring is unique. In a Minkowski
space-time low-energy limit, it reduces to an N = 1 super--
gravity plus Yang-Mills theory.

Type-II superstrings contain only closed oriented
strings, and the only freedom left is the relative parity of
the two gravitinos, producing the nonchiral type-IIA and
the chiral type-IIB theories. In a Minkowski space-time
low-energy limit, these theories reduce to N =2 super-
gravity without Yang-Mills multiplet.

Heterotic strings contain closed oriented strings only
and are obtained as a hybrid (hence the nomenclature)
between the type-II superstring and the closed oriented
bosonic string. This hybrid is possible because on closed
oriented worldsheets left- and right-movers are indepen-
dent degrees of freedom, except for their collective
momentum, to the point that one-half of one string
theory can be replaced by that of another string theory.
The 16 extra dimensions of the bosonic string component
are compactified and yield a Spin(32) /Z2 or E8 X Es
gauge groups only. In a Minkowski space-time low-
energy limit, it reduces to N =1 supergravity plus Yang-
Mills theory.

In this section we shall derive the basic formulas for
loop amplitudes for any of the above closed fermionic
strings. We shall always be interested in theories with
manifest space.-time Lorentz invariance, and hence work
with the covariant RNS and Polyakov formulations. As
a drawback, space-time supersymmetry will not be mani-
fest. From the worldsheet point of view, type-II theories
are formulated as N =1 two-dimensional supergravity
with "matter" multiplets x" and f", and a supergravity
multiplet consisting of a zweibein e and a two-
dimensional spin- —, gravitino field X . The worldsheet
matter action for these fields reads

I = I d g&g [ 'g "8 x~Bx„
4~

+0"y ~ 0, 0"y'y X—.~ x„
——,'g"y'y'X, (X„P„)]+EX(M).

(3.1)

Heterotic strings, on the other hand, correspond to N =—,
'

supergravity with the same position and supergravity
multiplets, except that g" and X are of definite chirality:

y'Q"=0, y'X =0 . (3.2)

For heterotic strings, the corresponding worldsheet ac-
tion is

+AX(M) .

—f"+X+e, d x„+P'y'c, 8 g')

(3.3)

Note that the internal degrees of freedom described here
by g' may alternatively be introduced as so-called left-
moving bosonic fields x'. This is the approach originally
taken by Gross et al. (1985a).

Spinors on a worldsheet of nontrivial topology must be
appropriately defined. Indeed their phase shifts under
parallel transport around closed loops are half of those of
vectors and hence are ambiguous. We shall see that for
closed oriented strings there are exactly 2 " consistent
choices of phase shifts for a worldsheet of genus h. Each
choice is called a spin structure.

A crucial issue for fermionic strings is the assignment
of spin structures. In the functional quantization formal-
ism, the GSO projection for the type-II string is enforced
by separating spinors of left chirality from spinors of
right chirality, assigning each group independent spin
-structures v and v, and summing over v and v. This is
the natural prescription to avoid global anomalies, since
no spin structure is preferred, and the mapping class
group will interchange them. That the spin structures
within each group must be the same is a requirement of
space-time Lorentz invariance. For the heterotic string,
Spin(32)/Zz symmetry forces the spin structures of all 32
p"s to be identical, whereas O(16)XO(16) possibly ex-
tended to E8&&E8 requires the spin. structures to be the
same within each group of 16 f"s, although the spin
structures for the two groups need not be equal (see Wit-
ten, 1985b; D'Hoker and Phong, 1986d; and Seiberg and
Witten, 1986).

In practice this principle of splitting left- from right-
movers requires more specific prescriptions. In fact, ac-
tions are formulated with a Minkowski signature on g „,
and we analytically continue to Euclidean signature. In
the Minkowski metric Q, f', X are Majorana-Weyl spi-
nors. In the Euclidean metric, however, there are no
Majorana-Weyl spinors, and the two chiral components
of a Majorana spinor are complex conjugates of one
another and must carry the same spin structure. To get
around this difficulty, we start from a real spinor (sum of
a Weyl spinor and its complex conjugate) and have to

In addition there are internal degrees of freedom, which
we represent by a fermionic variable g' also of definite
chir ality:

y'P'=0, a=1,2, . . . , P .
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separate only upon quantization the contributions of the
complex-conjugate factors. Each factor may then be
thought of as the contribution of one Majorana-%'eyl fer-
mion. A major difficulty in this task is caused by the
contributions of the bosonic fields x" and the terms
XX P+P, which must be separated as well. We shall see
in Sec. III;K below that this separation can only be en-
forced by introducing internal loop momenta pP, and
contributions of left and right spinors after assignment of
independent spin structures must be matched at the same
value of pj'. The precise prescriptions are given in Eqs.
(3.196)—(3.201). In Secs. VII.F and VII.G we shall dis-
cuss their relations with the holomorphic structure of
string amplitudes on supermoduli space.

When dealing with supersymmetric theories in general
and with two-dimensional supergravity in particular, one
may either use the component field formalism, in terms
of the fields defined above, or group difFerent component
fields that transform into one another under supersym-
metry transformations into the same multiplet or
superfield. The superfield formalism is more appropriate
for cancellation of local anomalies and enforcing the
correct quantum measure. The natural setting for super-
strings is X = 1 supergeometry, and the analog of
Riemann surfaces and moduli space will be super
Riemann surfaces and supermoduli space. The structure
of supermoduli space and its relation to moduli space are
of great importance, and we shall explore them in this
section as well as in Sec. VII. The superfield approach
will be taken as a starting point in Secs. III.B,
III.D —III.J, and III.L, and the component field formal-
ism will be related to it in Secs. III.C, III.K, and
III.M —III.P.

There are also string theories with larger worldsheet
supersymmetry classified by Ademollo et al. (1976a).
There is the X =2 superstring constructed by Ademollo
et al. (1976b) for which a locally supersymmetric formu-
lation was given by Brink and Schwarz (1977), which is
critical in two (complex) space-time dimensions; it was
recently explored by Cohn (1987) and D'Adda and Lizzi
(1987). There is an X =4 theory constructed by Ademol-
lo et al. (1976c) whose covariant formulation is due to
Pernici and van Niewenhuizen (1986) and that is critical
in -2 (quaternionic) dimensions. In the covariant formu-
lation these string theories involve also a nondynamical
gauge field on the worldsheet. String theories with gauge
6elds on the worldsheet have also been considered by
Tomboulis (1987) and Porrati and Tomboulis (1988).

A compendium of standard conventions and reference
formulas, including the Dirac matrices, is given in Ap-
pendix A.

group of a compact surface M without boundaries and
with h handles is given by

(3.4)

A canonical basis for this group is provided by closed
curves AI and BI, I =1,2, . . . , 6, with canonical inter-
section matrix

g(AI, AJ)=0, g (A~, Bq)=5IJ, g (BI,BJ)=0 .

(3.5)

Recall that the intersection form is antisyrnmetric. An
example of such an assignment of A and B curves is
given in Fig. 10. The choice of canonical basis is clearly
not unique. If (AI, BI) is a canonical basis, then so is
( AI, BI ) with

BI BIJAJ+ AIJ J& AI IJ J+CIJBJ (3.6)

where the (2h X 2h )-dimensional matrix

A B
M —

C D

belongs to the symplectic group with integer coefticients
Sp(2h, z). This group is the so-called Siegel modular

group or simply modular group. One may think of it as
being generated by 2m twists about A and B cycles. Such
2m twists about a closed curve are usually called Dehn
twists.

Actually, the modular group is a subgroup of the map-
ping class group encountered earlier. To generate the
mapping class group by Dehn twists, one needs twists
about A and B cycles, but also about curves "linking
consecutive handles" D„as indicated in Fig. 10.

The quotient of the mapping class group by the modu-
lar group is the so-called Torelhi group, which no longer
acts on the homology basis.

Using the canonical homology decomposition in A and
B cycles, we Inay cut the surface apart and represent it as
a simply connected region of the plane —the fundamen-
tal region —on which sides are pairwise identified. As in-
dicated in Fig. 11, it is convenient to perform this cutting
process loop by loop, so that the boundary consists of
unions of segments AIBI A I BI . Conversely, having
such a fundamental region, one may reassemble the sur-
face loop by loop, as shown in four stages in Fig. 12.

We now come to spin structures. In the Introduction

A. Spinors on a Riernann surface

Before constructing the amplitudes for fermionic
strings, it is useful to recall some standard terminology of
the theory of Riemann surfaces needed for a proper
definition of fermions on the surface. The first homology

Al

FIG. 10. A genus-2 surface with its canonical homology basis,
generated by closed curves 31 and 8I. The Dehn twist D has
also been indicated.
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A
I

+
~( B&

FIG. 11. A genus-2 surface cut along canonical homology cy-
cle. All cycles pass through a common point P.

we already mentioned that the phase shift of a spinor
after parallel transport along a closed curve should be
half that of a vector and is ambiguous. Thus spinors ex-
ist only on manifolds for which a consistent choice of
phases along all closed curves can be made. In general
there is a topological obstruction to doing this, which is
the second. Stiefel-Whitney class. For oriented surfaces,
however, this class vanishes and spin structures can be
visualized as follows. If we fix a reference spin structure
v, the phase shifts around each of the homology cycles
Al and. 8~ of any other spin structure wj.ll differ from
those of v by 0 or m.. Thus there are altogether 2"
different spin structures [see Atiyah (1971) and Da-
browski and Percacci (1986), and the discussion in Sec.
VI.F].

Each spin structure defines a distinct class of spinors,
which does not interact with the others, and a corre-
sponding Dirac operator. This implies immediately a
natural classification of spin structures into even and odd
ones, corresponding to the parity of the number of zero
modes of the Dirac operator. It will be seen in Secs. V.C
and VI.F that spin structures can be more conveniently
expressed in terms of multipliers or theta characteristics,
and that generically the number of Dirac zero modes is
always 0 to I. A di6'eomorphism of the worldsheet M
may transform a spin structure v into a different one v'.
Since the parity of Dirac zero modes is invariant, Diff(M)
will preserve the parity of the spin structure. It is an im-
portant fact that within each parity they can actually all
be permuted under the mapping class group. (If we
represent spin structures by theta characteristics, this
will follow at once from the transformation law of theta
functions; see Sec. VI.E and Appendix E.) This property
will fix the relative phases of Dirac determinants within
each group, and the relative phases between the two pari-
ties themselves wi11 ultimately be determined from factor-
ization requirements.

(c)

FIG. 12. Reconstruction of the genus-2 surface from the cut
representation: (a) gluing 8&+ and B, ; (b) gluing A ~+ and 3 &,

'

(c) gluing B2+ and B2,' (d) gluing A 2+ and 3 p .

B. N =1 supergravity, supercornplex structures,
and super Riemgnn surfaces

Locally, N = 1 superspace is parametrized by two
real g = (g', g ) or one complex coordinate
g'= ( 1/V2)( g'+i g ) and two real odd coordinates
8"=(8',8 ), or one complex odd coordinate 8=(1/
'/2t)(8'+i 8 ) and its complex conjugate 8. These coordi-
nates are collected into one supercoordinate
z = ( g', g; 8, 8), where the index M is a coordinate or Ein-
stein index. Correspondingly, we have the partial deriva-
tives BM =(r)/r)g, B/t)g;t)/t)8, B/88). We shall: also use a
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g)i)r V=8M V+inQM V .

In particular, on one-farms and vector 6elds we have
1

(3.7)

local U(1} frame with indices A =(z,z;+, —), where z
and z refer to the Uectoi representation of the U(l) frame
group and + and —refer to ihe spinor representation,
The correspozndjng lower-case latin and greek letters cor-
respond to the even and odd parts of these coordinates,
respectively.

The X =1 supergravity multiplet consists of the su-
perzweibein EM

" and the U(1) superconnection QM,
from which a U(1)-covariant superderivative 2)M may be
constructed. When this derivative acts on U(1) tensors V
of weight n, it is given by'

Equivalently —and more usefully —we may replace Eq.
(3, 1 la) by the constraint that the curvature R p be pro-
portional to (y, ) p, instead of T,b'=0. Thus Eq. (3.11a)
is equivalent to

R p
——i—(y5)„pR+, T p~ 0,——T p' 2(——y') p .

(3.11b)

Another way of looking at the latter constraints is that
they entirely specify the commutation relations between

and 2)p, so that with the help of Eq. (3.10) all com-
ponents of torsion and curvature can be computed in
terms of the single scalar superfield R+ . Thus, Eq.
(3.11) implies the torsion formulas

Z V"=a V" ( —)-—"V'E, "n Tb
~ =—(—yb )yR+ (3.12)

E.b=..", E.p=E."=0, E.'= ,'(y ) p.-
In differential form notation we have

Xl"=dz 2)M =d+infl with O=dz QM,

Tbc
2

abc(l 5) pR+—

and the curvature formulas

Rb i(y——5yb ) 2)sR+
(3.13)

and d stands for the ordinary dift'erential d =dz B~. We
shall mostly be using the covariant derivatives with U(1)
indices 2P& ——E„2)br, because they are manifestly
super-reparametrizatiop. invariant. It wi11 also prove use-
ful to employ the real operators

R,b
————s,b2PX) R+ ——,

) e,b(R+ )' .

All other components vanish. As a consequence of the
torsion constrain. s, one may express the components of
the superconneetion in terms of the superzweibein:

P„=2)+(E)I) (3.8) n+ zizE+M(—MME+~)E~+, n, =E+Ma~n+ .

acting on the direct sum of superfields of U(1) weights n

and —n, analogous to the operators P„of Sec. II. %'e
also introduce the Laplacians

1. Symmetries

(3.14)

(+ ) ~n +1/2~n ( —) ~n —(/2~n
n +~ & + (3 9)

so that (as we shall see later)

pt p ~(+)@g( —)

Ãg»s]=T~I &c+&«~a (3.10)

where [, j is understood to be a commutator except
when both A and 8 are spinor indices in which case it is
an anticommutator. The supergeometry may be specified
by imposing the standard torsion constraints

The Laplacian on scalar. superfields will be denoted by
o= -&o =C]o(+) ( —')

Torsion T&&" and curvature Rzz tensors @re defined

by

H~ ——E~™5EM (3.15)

Thus the symmetries af the supergeornetpy are as follows.
(i) Local U(1) transformations, forming a group sU(1).

These are generated by a real superfield I. acting by

E+ e+(i/2)Lg + ~n —i(n+ 1/2)L~ n inL+e
z eiLg z ~n e

—i(n —i/2)L~ n einL
. M M~ (3.16)

The supergeometry is invariant under transformations
that preserve the torsion constraints. We list them
below, together with their infinitesimal versions ex-
pressed in terms of the infinitesimal changes in the su-
perzweibejn H~

Tab Tap 0 Tap 2( Y }ap ' (3.11a)
EM —e ~ M ~ +M —+M+MI ~

and infinitesimal transformations given by

5EM"= E~ Ep "5L, 8„=—5LE„—(3.17)

U(1) weights are normalized so that n =1 ( —I) for a lower z
(z ) index; in Aat space, U(1) indices then agree with the conven-
tions used in Sec. II.

(ii} Super-reparametrizations, forming a group
sDiF(M). The infinitesimal ones are generated by super
vector fields 5V and are given by
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(3.18)

(iii) Super Weyl transformations, forming a group
sWeyl(M). These are generated by a real scalar
superfield X,

ZM =e'P',
EM =ex~'[P M+2 M(y, ) ~XlPX],

(3.19)

and induce the following transformation laws on the su-

peI connection, supercurvature, and superderivatives:

&M=&M+&M&. '&b&+& M(re) &P
R+ =e (R+ Zi—2)+2) X),
~n (n —1/2)X~ n —nX~~+ ——e +e

~n e
—(n+1/2)X~ n e+nx

(3.20)

The infinitesimal form of Eq. (3.19) reads

H. '=nrS. ', H.i'= ,'Sru. i',-
H. '=0, H. =(y. ) incor.

(3.21)

H, =2)+H+ +—R + H+ ', (3.22)

H,+ =2)+H+ + +2)+H +2) H+ +—R + H

50+ = ig)rH+—' iR+ H —'+ ,'(X/ H+')0 H—+'0—

2. Supercornplex structures

It will be useful to keep in mind that not all H's are in-
dependent due to the torsion constraints (3.11). The sim-
plest set of independent deformations is H++, H
and H . The other components can then be calculated
using the torsion constraints. To first order in H, we
have the general formula

5T„~ = —H„TDa +T~a HD +( —)'Ha TD~

&~Ha +—( —)'&aH~ +P~Ea
—( —)"Paz~'

where g~ =E„50M. These imply

H; =2)+H+'+2H++,

H, '=2)+H+ ',

and the fact that it depends only on the superconforrrial
class of Ez, i.e., it is invariant under the super Weyl
transformations' of (iii).

The almost complex structure JM of Eq. (3.23) may be
used to define complex or, in this case, superholomorphic
coordinates on the surface, provided this almost complex
structure is integrable. This is actually a consequence of
the superconformal fatness of two-dimensional super-
geometry. A direct check of integrability illustrating the
role of the torsion constraints is obtained by introducing
the following one-forms:

gM AM i. dZNJ M

gM d M+ d NJ M
(3.25)

by itself has only two independent components, in
view of Eq. (3.25). The almost complex structure JM is

integrable provided

d(M:—0 (mod g ) . (3.26)

which indeed yields Eq. (3.26) with the help of the torsion
constraints (3.11) and their consequences (3.12). Con-
versely, a supergeometry will support a complex struc-
ture only when the above torsion constraints are satisfied. .

Thus we may define superholomorphic and superan-
tiholomorphic functions by

JM"&Nf =»Mf JM &Nf = &&Mf—(3.28)

or, equivalently,

2) f=0, 2)+f=0.
The supersurface together with a supercomplex structure
JM wiH be called a super Riemann surface, although
strictly speaking the geometry of the supersurface is not
Riemannian, i.e., there is no metric for superspace. One
can verify that a super Riemann surface admits an atlas
of coordinate patches whose transition functions are su-
perholomorphic. This approach provides an alternative
definition of a super Riemann surface.

Using the explicit expression for JM in Eq. (3.23), as
well as the definition of the torsion T~c" of the N = 1 su-

pergeometry, we get

dgM ]
g PF zggE —(T +E M+ 2 zE M)

—1gPE -g~E (T +E ™-+T 'E M)

(mod g ), (3.27)

By analogy with two-dimens&onal geometry we intro-
duce a supercomplex structure

JM =EM'E. 'Eb "+&M (1'5). EP" (3.23)

which is a super-reparametrization tensor, and a local
U(1) scalar. The main properties of JM are

3. Flat and conforrnally flat superspace

Flat X = 1 superspace is given by the superzweibein

(3.29)

~M ~Pf MP P (3.24)
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and the superderivatives take the simple form

+0, 2) = +00
B0 Bz

(3.30)

Equivalently, liat superspace is characterized by
R+ ——0. Locally every supergeometry is superconfo|-
mal [i.e. , equivalent under a super Weyl and local U(l)
transformation] to fiat supergeometry. One can easily see
this directly from the equations characterizing super-
reparametrizations and by using the analogous result for
ordinary geometry, or by evaluating the supercomplex
structure tensor J~ of Eq. (3.23). Locally, then, Eq.
(3.28) is solved by

f=fo«)+0f i«»

C. Component formalism for N = 1 supergravity

To obtain a better understanding of supergeornetry and
supergravity, it should be useful to discuss the associated
component formulation. The passage from the superfield
to the comporient language requires the elimination of
the auxiliary fields required by the superfields. This is
usually accomplished by fixing the Wess-Zumino gauge
for the superzweibein. This gauge is defined by the con-
dition that in the expansion in powers of O we have"

where fo and f, are holomorphic in the ordinary sense.
Globally, however, there may be topological obstruc-

tions, and it will be necessary to introduce supermoduli
space, i.e., the space of iriequivalent superconformal
structures. We shall take up this issue in Secs. III.E and
III.G.

A complete local analysis of X = 1 two-dimensional su-
pergravity is due to Howe (1979). In particular, the fact
that any two-dimensional supergeometry is locally super-
conformally flat is due to him. The superfield formalism
and variations H„wr eeused by Martinec (1983) to
compute the super Weyl anomaly. The supercomplex
structure JM was introduced by O'Hoker and Phong
(1987a), who also showed that its integrability (vanishing
of the Nijenhuis tensor) is a consequence of the Wess-
Zumino torsion constraints. Interpretations of Wess-
Zumino constraints as reductions of 6 structures were
subsequently given by Giddings and Nelson (1988a).

The alternative approach to super Riem@nn surfaces
through superholomorphic function theory and charts as
in Eq. (3.28) was developed by Friedan (1986), Baranov,
Frolov, and Schwarz (1987), and Crane and Rabin (1987).
That the two classes of super Riemann surfaces coincide
was proved by Giddings and Nelson (1988a).

up to higher-order terms. A superzweibein can always be
brought to this gauge by a super-reparametrization,
which is obtained through algebraic equations alone.
The main ingredients of the supergeometry can then be
derived from the Bianchi identities and the torsion con-
straints. The results for their full O expansions are

E '=e '+Oy'7 ——OOe 'A,
2

E = ——,'X ——0~(y )g & ,'0~—(y—g)I~

+i 00[ ,'(y—)~Ap ——3X 2 ),
E„'=( y')„~0p,

E„=5„(1+i00A/4),

(3.32)

sdetE~ ——e 1+—,'Oy "7„——OOA +—,'OOc "X y57„

~m ~m ~ ~pq 1+m y5y +p

A= —iy5c. "D g„——,'y

Dm&n =~m&n+ p~m YPn '.

(3.33)

Notice that since E„ is basically the Kronecker symbol
between a p and an a index, the distinction between U(1)
and Einstein spinor indices is lost in Wess-Zumino gauge,
and O may be written either with a or p indices and
transforms as a spinor under U(i). It is also useful to
record the spinor components of the inverse su-

p erzweibeins,

E "=6 "+—,'O~y ~X "+iOOe ",
=0~y p+ —,'00(y"y ) rX„r,

where

(3.34)

\

ev 45vA+ '(y y~) vco — (& &
—) rX X

0 =co +—Oysg A —i Oy 5y A+i OOco
2

0„=—(y~)„~0iiA,

R+ ——A+O A +iOOC,
(3.36)

(3.35)

For the superconnection and supercurvature we have

a g a+ Ov& ea E a Ov&

esca

p p vp
(3.31)

C =R +—X,y'A+ —E' X,y p'b A + —,
' 2

ea ea
vp pv ~

QQQ g+Q
vp pv where

This is the correct choice provided —as eve have —the gam-
ma matrices are taken to be symmetric.

co, = ——,
' A co„——,'7 ysy„y A ——,'e„'c, eb

with R the curvature of the connection cu appearing in
Eq. (3.33):
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R =E, 8 6)„ (3.37) 5C = —(X~y y~g)(B 2 + —,'X A) i—gy D A

Thus the supergravity multiplet EM reduces to a
zweibein e ', a gravitino field 7, and an auxiliary field
3 which will not appear in the component Lagrangian.
Wess-Zumino gauge is left invariant under a subgroup of
all super-reparametrizations and local U(1) transforma-
tions, given by

5V =5U O—y g ,'—OO—X„y y "g,

5V"=p+ ,'8 (y—5)"i 28—y"gX„"+i8@",

I. =/ ——AOy5$+co„Oy"g+iOOT,

where we have used the abbreviations

——,'gyi'X C ——,
' A/A .

(iv) Weyl transformations, forming the group Weyl(M):

5e '=5o e

5X =—,'5o.X

(v) Super Weyl scalings:

5e '=0,
5X =y 5A, .

Finally we note that the "super Euler number" reduces
to the standard Euler number

0= Z)'s)'"P~. + 4X.(X X")' 0)——,'0~
X(M)= I d zER+ = I d g&gR, (3.38)

It is now straightforward to translate the symmetries
of the superzweibein into component language as well.
The super-reparametrizations relevant to the component
language are those that preserve the Wess-Zumino gauge
up to local U(1) and super Weyl transformations. They
decompose into reparametrization in variance and an
% =1 supersymmetry. Super Weyl transformations will
take us out of this gauge, so the component transforma-
tions written below are obtained only after compensation
by a super-reparametrization. and a local U(1) transfor-
mation taking us back to Wess-Zumino gauge.

(i) Local U(1) symmetry forming the group sU(1):

5e =lc be

5X = ——,
' ly5X

5A =0,
5~ =8 l .

(ii) Reparametrizations, forming Diff(M):

5e '= 5v "B„e '+ e„'0 5v ",
5X =5v "B„g +X„B 5v",

5~ =5v "a„~,
5')~ =5v Bncom +c0~0~5v

(iii) Local N = 1 supersymmetry:

e '=
5X = 2D g —iAy—
5A =/A,

l
5m =igy y&A+ —gy5X2

5A= —
—,'y g(B A + 'X A) —igC,

where the volume element on the superworldsheet is
given by

d zE=d gdOd8sdetEM (3.39)

The topology of the super Riemann surface is just that of
its "body" component when it is viewed as a De Witt
(1983) supermanifold, and hence the topological
classification is again by the number of handles, when the
surface has no boundaries.

The passage to Wess-Zumino gauge and the construc-
tion of the super Weyl symmetry has been carried out by
Howe (1979). The formulas of Howe have been repro-
duced here in Euclidean signature for convenience.

O. Path integrals for the RNS superstring

The superspace action for the Ramond-Neveu-
Schwarz string model is obtained by coupling scalar "po-
sition" superfields X", p = 1, . . . , d = 10 to two-
dimensional %=1 supergravity. The matter action is
then given by

I = Jd'zEZ) X"X)~ +AX(M)
8 P

J d zEX) X"2)+X„+AX(M) . (3.40)

We may decompose X" into components: X"
=x"+8 g"+i OOF", where x" and g" may be identified
with the fields occurring in Eq. (3.1) and F~ is an auxili-
ary field. The action (3.40) actually coincides with Eq.
(3.1) in Wess-Zumino gauge except for a term F . The
symmetries (i), (ii), (iii) of Sec. III.B of supe'rgravity will
become symmetries of I when X" is assigned the corre-
sponding transformation laws: X" is a local U(1), super
Weyl, and super-reparametrization scalar. In addition,
I is evidently invariant under space-time Poincare
transform ations if the target space-time is Aat Min-
kowskian. Imposing the above symmetries, we find that
the action (3.40) is unique.
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with the topology of the worldsheet fixed at h handles.
The delta function enforcing the torsion constraints [Eq.
(3.11)] is denoted by 5(T). It involves only algebraic
equations, which are linear in QM, so that the QM in-

tegral may be ignored once the torsion constraints have
been enforced.

Similarly, scattering amplitudes are obtained by in-
mtegrating the product of e by a number of vertex

operators, exactly as in the bosonic case. We shall not
reproduce the corresponding formulas here.

The integral assumes the existence of a local U(1),
super-reparametrization-invariant measure, not depend-
ing on derivatives. The unique choice for DX" comes
from the metric

ii5X"ii = f d zE5X"5X (3.42)

We can carry out the integration over X" in Eq. (3.41)
since it is Gaussian. As will be shown in Sec. III.E, how-
ever, the operator 2)+2)' '=

0 has zero modes. First,
there is the constant superfield corresponding to constant
x". For odd-spin structure, there will also be a Dirac
zero mode for P", but how many zero modes remain for
Hp may depend on the superconformal class. If there are
odd zero modes of o (analogous to Dirac zero modes),
then the partition function of Eq. (3.41) must vanish—
though of course correlation functions may be nonvan-
ishing. Thus the proper formula is obtained by omitting
only the constant zero mode, so that we obtain

8Z„=QfDEM "DAM5(T) sdet'
d zE

—d/2

(3.43)

Here Q is the volume of space-time, and the prime
denotes omission of the translation zero mode. Note that
the superfield X" depends on the spin structure, and
hence so does the superdeterminant.

The integration over supergeometries is considerably
more complicated. Since there are torsion constraints,
we have the choice of using the first- or second-order for-
malisms (see de Witt and Freedman, 1983). In the first-
order formalism, all 16 components of EM and all 4 of
QM are integrated over, subject to the torsion con-
straints, which may be represented by the use of
Lagrange multipliers. Alternatively, in the second-order
formalism, dependent degrees of freedom are completely
eliminated by use of the torsion constraints, and the in-

mTo quantize the theory we integrate e over all su-
pergeometries (EM",QM ) satisfying the torsion con-
straints and over all superfields X", and we sum over all
possible topologies of the super Riemann surface. Recal-
ling that this reduces to the sum over the number of han-
dles just as in the bosonic case, we may conjecture the
contribution to the partition function at h string loops,

Zh ——fDEM "DAM DX"5( T)exp( I [X—",E~ "]),
(3.41)

+c~(y5H )(y5H)], (3.44)

where c, and c2 are undetermined numerical constants,
analogous to c in Eq. (2.21). The measure on DEM will

always be understood as coming from this Inetric. Asso-
ciated with Eq. (3.44) is a quadratic form, constructed in
the standard way, and denoted by (Hi

~
H2).

Though super-reparametrization and local U(1) invari-
ant, ~~5EM ~~

fails to be super Weyl invariant, which will

give rise to the super Weyl anomaly, as we shaH see later
on. Super Weyl invariance is recovered for the fuH am-
plitude, as the anomaly from the matter determinants
and Faddeev-Popov ghosts cancel in the critical dimen-
sion d =10 and in the case of the heterotic string for
gauge groups of rank 16. The same will hold true for
possible (perturbative) gravitational and holomorphic
anomalies arising in connection with the chiral Dirac
determinants, as will be shown in Sec. VII. Of course, as
higher string loop e6'ects are considered and surfaces of
nontrivial topology are used, there may be global
reparametrization (or modular) anomalies. In the case of
heterotic strings, for example, they give rise to further re-
striction to the gauge group Spin(32) /Z2 and E8&& Es.

After all these symmetry groups have been factored
out, we should be left with a (finite-dimensional) integral
over the space of supergeometries that are inequivalent
under any of these transformations, and we are now go-
ing to identify this space, first locaHy in Sec. III.E and
then globally in Sec. III.G.

E. Deformations of supercomplex structures

The eftect on II& of combined super-
reparametrization 5V and U(1) and super Weyl trans-
formations M, and 6X is completely described by the ac-
tion on the independent components of H~ which were
identified in Sec. III.B:

tegration measure is restricted to the independent com-
ponents only. Though elimination of dependent degrees
of freedom can conveniently be achieved only if simul-
taneously a gauge condition is imposed (like Wess-
Zumino gauge), the dependent infinitesimal variations of
the supergeometry are easily determined, as was done in
Eq. (3.22). To write down the metric on the space of su-

pergeometries, infinitesimal variations are all - that is
needed; thus to construct the natural measure on the in-
dependent components of 5FM and 6AM, we recall that
the only independent components of H~ ——Eq 5EM
are H, y&H=(@zan)H ~, and H, the other com-
ponents being given by Eq. (3.22). The expression for
5AM can be determined from Eq. (3.14). Note that these
relations involve superderivatives of the independent
components. Thus, in order to obtain a metric consistent
with locality on the worldsheet, it is necessary to con-
struct it in terms of independent fields only. This metric
on Hz should be of the form

~~5EM "~~ = f d zE[E H 'Hp'+c, H Hp~
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H =5X+2) 5V

(y, ) PHp 5——L+(y, ) PXlp5V —5V Qc,
H. '=2) 5V'+2(y'). ,5V' .

(3.45)

This shows that K and y5H can be completely elim-
inated without any topological obstruction through a
super Weyl and local U(1) transformation. Since any-
thing proportional to a y matrix can also be eliminated
from H in a purely algebraic fashion, it is natural to in-
troduce

(P,5V).'= —(y, y') Peg V' (3.46)

in analogy with Eq. (2.23). Upon isolating the various
components we obtain

(P,5 V) '=2) 5 V', (P,5 V) '=0, (3.47)

and their complex-conjugate expressions. We observe
that the only nonremovable H's are those H 's not in
the range of Pi. At this stage in the bosonic case, we
concluded that the metric deformations 5g „not-in the
range of P& must belong to the orthogonal complement
of the range of P, . This step assumes that the metric
ii5gii is nondegenerate and (positive) definite.

For the superstring case, we see that the metric defined
in Eq. (3.44) is nondegenerate but fails to be definite (i.e.,
there exist H&0 with iiHii=0). When the metric is
nonde6nite, there may in general be elements belonging
to both RangePi and (RangeP, ), and the sum of these
two spaces need not span the full space of deformations
H

To analyze the structure of the complement of
RangeP„ let us investigate the intersection of RangeP,
and (RangeP, ) . Introducing the natural metric

ii5Vii = J d zE5V 5V (3.48)

on the space of tensor fields of weight n + —n, we readily
derive the identity

(H, iH, )=(P,5V, iP, 5V, )

=(5V,
i

P', P,5V, ) . (3.52)

If this inner product vanishes for all 6 V&, then
5 V2 H KerP, P„by nondegeneracy of (

i ) on the space
of all 5Vs. If the inner product ( i

) is to remain non-
degenerate upon restriction to RangeP„ then we must
also have H2=0, so that (3.51) holds. Thus the issue
here is the relation between KerPi and KerP, Pi. As will
become clear during our subsequent discussion, the case
of the torus is truly exceptional, and we shall treat it sep-
arately later on.

For h )2 and h =0, it will be shown in Sec. III.F that
KerP, =KerP, P„so that the intersection between
RangeP, and (RangeP, ) is the null vector only and the
sum of RangeP, and (RangePi) spans the full space of
y-traceless H 's. Putting everything together we obtain
the orthogonal decomposition

l H „~I = l 5X I @ l 5L ] e RangeP, e KerP, . (3.53)

The elements of KerP, will be termed superconformal
Killing vectors and those of KerPti super moduli deforma
tions or holomorphic superquadratic differentials

To gain further- insight into the nature of the super
moduli deformations of KerP„we rewrite Pi com-
ponentwise

(Pti@)'=2)+@', (P,4)'=2) (3.54)

and make contact with Wess-Zumino gauge by setting

C '=Op+80 +80 + «0 .

The result is

(3.55)

(Pid&)'=P +8 i/, +—A—Pp +8(D Pp+ ,'X, +/+ )—

Consider the element H, =Pi5Vi and Hz ——P,5V2 of
RangePi, and compute their inner product:

(RangeP, ) =KerP, ,

where

(P'H)'=(y y')P n H '.
(3.49)

(3.50)

3E+88 D,Q+ ,'X, +—D,gp+ ———A Pp

+iAQ + 'X, X +P (3.56)

Now assume that HE(RangeP, )A(RangeP, ), then we
have with the help of Eq. (3.49) that H=P, 5V and
PiH =0. Combining both, we obtain PiPi5V =0, and so
there must be an element 5 V not in KerP, which belongs,
however, to KerP, P, . Conversely, if the kernels are
equal, then such elements 5V&0 can belong to KerP, P,
and the intersection between RangePi and {Range Pi)
must be trivial:

KerP, =KerPiP, (RangeP, )A(RangeP, ) =IOI .

(3.51)

Equivalently, this means that the inner product (
i

)
remains nondegenerate upon restriction to RangeP, .

P, P+ ——0 and Piy2$p=O (3.57)

where P, , P, &2 are the operators (2.48) familiar from the
component formalism. The index theorem and a simple

The changes 6EM" solving these equations will in general
take us out of Wess-Zumino gauge, and a compensating
super-reparametrization and U(1) transformation is need-
ed, which, however, will not change the number of super-
moduli. Under the hypothesis that the space of in-
equivalent supergeometries (to be termed supermoduli
space later) is a supermanifold, we can determine its di-
mension at any point, and in particular at (e,X ) satis-
fying g, =0 and A =0, so that
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counting of ihe number of conformal Killing vectors and
spinors in each case yield the dimension of the vector
spaces KerP

&
and KerP &&2 [cf. Eqs. (2.50) and (2.51)j,

(00), h=0,
(6h —6, 4h —4), h & 2.

(3.58)

Here the two integers denote, respectively, the dimen-
sions for the even and the odd coordinates. More gen-
erally, operators P„acting on superfields of arbitrary
weight n ~ 0 can be introduced and expressed in terms of
the U(l)-covariant derivatives 2)" . In Wess-Zumino
gauge they will admit expansions similar to Eq. (3.56)
[see Eq. (3.66) below], and the previous arguments will
show that the number of zero modes is given by

t

(4n +2,4n), h =0,
dim(KerP„ 00), h &2,

(0,0), h =0,
dim(KerP„) = .

((4n +2)(h —l), 4n(h —1)), h )2.

The condition R+ ——0 is super-reparametrization and
local U(1) invariant, and this is exactly what is needed to
fix Wess-Zumino gauge, which we now do. In com-
ponents, the zero-curvature condition becomes

3=0,
A= —iy~c "D X„=O, (3.60)

where the components of the curvature were introduced
in Eq. (3.36). Note that in view of Eq. (3.37) the last con-
dition implies

For the case of the torus with h =1, it will be clear
that the arguments given in Sec. III.F in support of the
direct sum decomposition of Eq. (3.53) break down. In
short, the reason is that the natural choice for constant
curvature on the torus is zero curvature, so that the auxi-
liary field A vanishes and (3.51) does not hold. Actually,
the natural metric ~~H ~~

becomes degenerate on the torus.
Thus we would like to analyze the supermoduli problem
in a way that does not depend on this metric. Ultimately
we are interested in describing and parametrizing those
geometries which cannot be interrelated by super-
reparametrizations, local U(1), or super Weyl transfor-
mations, and we shall now attack this issue directly.

We start by considering the full supergeometry with
the torsion constraints. First, by a super Weyl transfor-
mation, we fix the curvature R+ to zero; the fact that
this can always be done will be shown in Sec. III.F. For
the torus, R+ ——0 cannot be chosen in a unique way
since this slice is left invariant under harmonic super
Weyl scalings satisfying

(3.59)

connection O, M. The remaining symmetries of this slice
are now local supersymmetry, local U(1) invariance, and
ordinary reparametrizations, whose actions were listed in
Sec. III.C.

However, on this slice, the form of the infinitesimal
versions of these transformations may be considerably
simplified. One finds that the effect of a reparametriza-
tion v", a supersymmetry g, and a local U(1) transforma-
tion l is given by

5e '=D ( U "e„')+ l E'i, e "+gy'y

5X = 2D —g ——,'lying

5co =8 l,
(3.62)

The action of the combined three symmetries is particu-
larly simple; in fact it is global and triangular in the fol-
lowing sense. The (modified) local U(1) transformation l
acts globa11y on all three fields in a we11-known way. The
supersymmetry g no longer acts on co, in contrast with

g itself. This implies that the supersymmetry also in-
tegrates to a global action on g, since the connection
D =8 + ,'ice —is invariant under g transformations.
Finally, ordinary reparametrizations act only on e ', and
again their global action may be exploited to choose a
global gauge for the "supertorus. " Since co satisfies Eq.
(3.61), local U(1) transformations I will eliminate all de-
grees of freedom of cu, except for the constant ones.
Note that constant l's have not been used to do so. Thus

is constant, and this is unchanged by supersymmetry
transformations g.

We model the torus by a square with sides of unit
length and opposite sides identified. If we assume that
not a11 components of co are multiples of 2~, so that D
acting on spinors has no zero modes, then all components
of 7 may be eliminated via supersymmetry transforma-
tions g. Similarly, all components of 5e are eliminated
and e ' may be chosen constant. Then, however, we
must have co =0 by its very definition in Eq. (3.33),
which is in contradiction with the original assumption,
and hence all components of ~ must be multiples of 2~.
By redefining all fields by multiplications by a simple
function, we may set cu =0 without modifying the origi-
nal boundary conditions. At co =0, the remaining com-
ponents' of e ' and 7 are easily found.

For even-spin structure, D has no zero modes on spin
fields, and we may set 7 =0 by supersymmetry and e
constant by reparametrization. There remain two
translations (or conformal Killing vectors), a constant

where we have introduced special combinations of loca1
U(1) and supersymmetry transformations, defined by

l = l+ v'co„,

~m~n ~n~m (3.61)

where m is the only nonvanishing component of the i2%'e count the number of real components here.
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e I 2 moduli 5e '
j e l odd moduli j, (3.63)

where I odd moduli j is zero for even-spin structure and
parametrized by y-traceless, constant 7 for odd-spin
structure.

Early investigations of supermoduli parameters and
their role in superstring perturbation theory are those of
D'Hoker and Phong (1986b), Friedan, Martinec, and
Shenker (1986), Moore, Nelson, and Polchinski (1986),
and Chaudhuri, Kawai, and Tye (1987).

F. Null spaces of superderivatives ahd Laplacians

U(1), and constant Weyl transformation, the latter two
eliminating two of the four degrees of freedom of e '. In
total we are left with two ordinary moduli, no odd modu-
li, and two translations as residual symmetries.

For odd-spin structure, D has zero modes on spinors,
and we may set 7 and t. ' only to a constant, but not
necessarily to zero. There remain two translations and
two constant supersymmetries (superconformal Killing
spinors), a constant U(1) and Weyl transformation, and
two constant super Weyl transformations as residual
symmetries. The constant super Weyl trpnsformations
are eliminated by making the constant 7 y-traceless,
and the U(1) and Weyl are used to restrict e ' to two
components. In total we are left with two moduli, two
odd moduli, two translations, and two supersymmetries
as residual symmetries.

To conclude, we obtain the decomposition

IH„j={5XjeIoLjeIRangeP, j

cian Oo and the Faddeev-Popov operator PtiPi and will

be essential to the analysis of the super Weyl and
superholomorphic anomalies later on.

To gain insight into the behavior of Ker2)" and
KerU'„', we note that the relation between the two ker-
nels does not depend on super-reparametrizations or lo-
cal U(1) transformations. Thus we may simplify the
analysis by working in Wess-Zumino gauge and by
choosing a slice for which 7 is y-traceless:

X +=, X, =0.
Z (3.64)

We shall see that generically the relation between these
kernels also does not depend on super Weyl rescalings.
We introduce the field V of U(1) weight n, and its corn
plex conjugate V of U(1) weight n:—

V= Vo+OV++OV +iOOV, ,

V= V +Ov +0 V +i80 V, ,
(3.65)

(Q" V) = V +8 —i Vi + nA Vo—

+0(D, Vo+ —,'X, + V+ )

+88 —(2n+1)A V ——,'X +X, V

.so that the U(1) weights of Vo, V+, V, and V, are n,
n + —,', n ——,', and n, respectively. (Or course these

discrepancies arise because we choose Wess-Zumino
gauge. ) We easily find that

In this section we examine the structure of null spaces
of superderivatives 2)+ and their associated Laplacians

'„—', as well as the relation between these null spaces.
Questions relating to these issues have already come up
in Secs. III.D and III.E with regard to the scalar Lapla-

+D. Vo —D-, V++I.n W- Vo

(3.66)

To compute '„'V, it is useful to evaluate

Jd&dOE2)+" V2)" V=e D, VOD Vo —
V+DERV+

—V D, V +—,'X +V+D, VO+ —,'X, D, VOV++ —,'X, V DrVO

+ 2g D VoV + V) —. AVo V& ——AVO +inAP+ V + —,'X, X +V+ V

—4X, X,-+ V V+ +in V+ A Vo+in VoA+ V (3.67)

The vanishing of O'„'V can then be gotten by variation with respect to V and one obtains

D,D, Vo+ —A V, ——A Vo in A+ V + ,'D, (—X, + V+ )+ ,'D~(X, V—)=—0,

D, V +—,'X, D, VO ——,'X, X +V+ =0,
D, V++snWV +snA Vo+-,'&, +D, Vo+-,'&, -X,+ V

(3.68)

V) ——AVo ——0.n

2
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960 E. D*Hoker and D. H. Phong: Geometry of string perturbation theory

These equations are still rather formidable, and we shall
take the following approach. We consider the case of
zero gravitino field X=O first, so that the equations
reduce to

D,D V0 ——0 or P„P„V0——0,
D V =0 ol P 1/2V =0

(3.69)
D V++inAV =0 or P„j&2V++inAV =0,

n
V) ——AV0 ——0.

2

These equations should now be compared with those ob-
tained from 2)" V=O in Eq. (3.66) at X=O, for which we
find

bounded degree. It is not hard to see that one could ex-
pand

V; = V '+ V '+ .
, 1 =0, 1,2, . . . , (3.71)

where the superscript denotes the degree of homogeneity
in g. Now from the previous arguments when X=O, we
know that for h )2 @nd n &0 or h =0 and n )0, there
are no solutions to order (0): V '=0. But if this is so,
the equation for V,.

' ' is the same as for V,
' ', since all the

perturbation terms are of order 7 at least, and so on.
One finds that V; must identically vanish as soon as V
has to vanish.

We shall now discuss the above relations between null
spaces for different genera. At this point, it is appropri-
ate to deduce some generalizations that will prove funda-
mental later on. For h )2 and A generic one has

D, V0 ——0 or P„V0——0,

(3.70)

Kerr'„+'=Kern" +'/22)" =Kern" =0, n )—,',+ +

Ker '„'=Kernel+ '/ 2)" =Ker2)" =0, n & ——,
'

(3.72)

D V+ =0 01 Pn ~ypV+ =0
n

V) ——AV0 ——0 .
2

The first and the last equations of (3.69) and (3.70) are
clearly equivalent.

Although the second and third equations in (3.69) and
(3.70) seem difFerent at first sight, we shall now show
that, generically, they will also be equivalent. Indeed, let
us derive an expression for the number of solutions
V &0 to (3.69). From D," ' V =0, we have

where P span a basis for KerD," ', and X is its dimen-
sion. In order for the third equation of (3.69) to be con-
sistent, A V must be in RangeD'+', or equivalently it
must be orthogonal to KerD,' ' . Thus the coefficients

p EC must satisfy

As for the kernel of the square of the Laplacian
2)" for n & —1

~n+1/2~n cion+1/2~n V 0 (3.73)

we can deduce using Eq. (3.72) that 2)+X)"+'/ 2)+ V=O,
and with the help of Eq. (3.72) again, . we find Xl+ V=O,
which implies that

Ker(2)" +' 2)" ) CKer2)" (3.74)

Since one manifestly also has the inclusion in the oppo-
site sense, these kernels are in fact equal to one another,
even though they need not be empty. Of course, one has
an analogous statement for the other Laplacian. Putting
these conclusions together, we have

Ker( 1+') =Ker(2) + 2)" ) =Kernel n & —1,
(3.75)

Ker( ( —))2 Ker(~n —1/2~n )2 Kergj n ) 1

In the case of the sphere h =0, the situation is precise-
ly reversed. It is the 2)" that have no zero modes for
positive n, and it is readily established that

Ker2)+ ——0,

Ker2)" =0,
n& ——1

2

n)—
2

(3.76)

and the number of nonzero solutions V to Eq. (3.69)
must be g(V &0)=dim Ker(P&~ AP ). Generically,
the matrix (P& ~

AP ) will be nondegenerate and thus
g( V &0)=0. For example, this will be the case when
A is any positive function.

Thus, for h&1 and n&0, we have established the va-
lidity of Ker2)" =Ker '„' at least at the special point
+=0. What happens when +&0? In this case, we shall
assume that g results from a finite-dimensional space
(parametrized by Grassmann-valued odd moduli) and we
shall assume that g is linear in these odd moduli
Clearly, then, the different unknowns will be functions of
P, but of course since there are a finite number of
Grassmannian g's, these functions are just polynomials of

and similarly for their squares. By analogy with the
higher-genus case, this implies the following identities be-
tween kernels of Laplacians:

Ker(~n+1/ gP ) =Ker~" n ) '

Ker(&n '/~" ) =Ker&", n & ——'
(3.77)

For the torus h =1, the nongeneric choice A =0 is
natural from several points of view, as was already noted
at the end of Sec. III.E. For A =0 and flat metric, a
direct inspection shows that

Ker( '„+') =
I V= Vo+OV++OV +i88V, ;

Vo, V+, V, constantsI,

Ker(H'„+') =Ker( '„+ ') 8 I V, =0I,
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Cl0V=c+Hil+ 0 21 (3.78)

with c constant and g a holomorphic spinor. For X=O,
one readily finds that i) =0, and integration over the sur-
face must yield zero because G0 is a derivative, so that

0= f d z ECi V =cf d'z E . (3.79)

Now, generically, the area Id z E will not vanish,

though of course it need not be of definite sign. For
constant-curvature geometries, indeed the area cannot
vanish because of the Ciauss-Bonnet formula for &he

Euler number of Eq. (3.38), when h&1, and similarly the
area will not vanish on any regular geometry. If that is
so, then the constant must vanish and VEKer ~. Vr"e

have thus established that

Ker(CI0) =KerCl0 . (3.80)

It will also be useful to simplify Ker(ClI/2') . Consider
one of its elements V,

g)0 col/2~0 ~1/2V (} (3.81)

Multiplying to the left by Xl'/ aiid using Eq. (3.80), we

get

~l/2~0 ~1/2 V 0

The spurious so1utions satisfy

(3.82}

Kerl)+ ——Ker(C3'„+')(l I V+ —OI .

On real fields, V equals V+ and will vanish in the last
case. For even-spin structure, all constant spinors vanish
as well.

For n =0, the above arguments do not apply. The A

term is absent in the third equation of (3.69), and at 7=0,
V is a Dirac zero mode. For odd-spin structure, there
exists at least one such zero mode, and so
KerCl01, '&Ker2) . Whereas Kerf)~+ reduces to constant
superfields (when acting on real superfields), Kernel&+' de-
pends on moduli through the dependence of the number
of Dirac zero modes on moduli, but may also depend on
the odd moduli. However, the following argument will
show that again Ker(CI0) =Ker 0 generically. Consider
the equation that must be satisfied by an element of
Ker(00) riot in KerU0:

Teichmiiller deformations, spanning KerP, . The space
of supergeometries of genus h, satisfying the torsion con-
straints (3.11) inequivalent under the symmetry groups
sDiff0(M), sWeyl(M}, and sU(1} is super Teichrhiiller
space

I EM, QM satisfying (3.11)I

I sDiff0(M) X sWeyl(M) X sU(1) I
(3.85)

The quotient of the full super-reparametrization group
sDiff(M) by sDiff0(M) is the ordinary mapping class
group MCGh (acting on surface with spin structuies) so
that we may define superrri oduli space as

s&, 1,
——s Tl, /MCGI, ,

MCG h
——sDiff( M ) /sDifF0(M )

=Diff(M) /DifF0(M) .

(3.86)

sA, h
——

I JM I /sDiff(M), (3.87)

ere ~m Jx = ~,M and t is understood that J
arises from a supergeometry satisfying the torsion con-
straints (3.11). There are now natural holomorphic coor-
dinates on ski&, as can be seen by exhibiting a natural
complex structure on it. The tangent space at J~ can
be identified with

T(s~h ) I JM JM 5JN + 5JM JN

on which there is a natural map

T(sJR1, )~T(s&h ), cf(5JM )=JM 5JI

whose square is minus the identity

dr (5J )=d(J 5J )= —5J

(3.88)

(3.89)

(3.90)

Thus 8 is an almost complex structure on sA, I, . It is ac-
tually integrable, as can be seen by considering the fol-
lowing one-forms:

The complex nature of saith can be seen by viewing it as
the space of superconformal classes Ind. eed, recall that
the complex structure on a super Riemann surface JM,
introduced in Eq. (3.23), is unchanged under sWeyl(M)
and sU(l) and that it is a tensor under sDiff(M). Thus we
have

X)'/ V=const, (3.83) (3.91)

and upon integrating over the supersurface, as in Eq.
(3.79), we find again that 2)' V=O. Hence we conclude

Ker(a', -/2')2 =Kern'" . (3.84)

r MN=dJMN+ie(dJMN) .

The exterior derivatives are easily obtained,

dr "= '(r '/l. F, +r—'/}, r, ), (3.92)

The nongeneric slices are always easily treated as limits
of generic slices.

G. Supermoduli space and its complex structure

In Sec. III,E, we identified the infinitesimal changes iri
the supergeometry of a super kiemann surface with

and the almost complex structure is integrable provided
dI vanishes where I =0, which is obviously the case.
Notice that this integrability condition uses only the fact
that J~ itself is a complex structure on the super
Riemann surface; it does not further depend on the tor-
sion constraints. One concludes that sA, z is a supercom-
plex (V —) manifold.
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A perhaps more concrete description of supermoduli
space may be given in terms of constant-(super)curvature
geometries. The key step in analogy with the bosonic
case is the choice of a slice for sWeyl(M') that generalizes
constant curvature. The correct choice is

R+ ——const . (3.93)

2i2)+2) X+A+ —e R+ =0 . (3.94)

This equation is locally soluble, and there is no topologi-
cal obstruction besides the Euler characteristic.

By restricting ourselves to the gauge slice R+
=const, we have eliminated the action of the super Weyl
group. To factor out the remaining symmetries we sim-

ply pass to cosets. More precisely, consider dz Q~ as
living in the space of one-forms modulo exact forms, and
set sJR„„„to be the space of constant R+ super-
geometries modulo all local U(1) transformations. We
can now define supermoduli space as the coset space

This slice is clearly invariant under super-
reparametrizations and local U(1) transformations. it
also has the advantage of implying that all components of
the torsion and curvature are constant, as one can readily
deduce from Eqs. (3.11)—(3.13). A simple interpretation
of Eq. (3.93) can be obtained in Wess-Zumino gauge. Re-
call that in this gauge R+ expanded in powers of 0 is
given by Eq. (3.36), so that A is constant, A =0, and
C=0. Finally we can also argue that (3.93) is indeed a
slice, in the sense that any supergeometry E~" can be
brought back to a supergeometry E~ satisfying Eq.
(3.93) by a unique super Weyl transformation. In fact
Eq. (3.20) shows that the parameter X of the transforma-
tion must satisfy a super Liouville equation,

dt
e "sTre (3.97)

U(1) transformations. We start by considering the Lapla-
cians Cl'„+ ' and CI'„~ of Eq. (3.9).

The local part of the super Weyl anomaly has been
evaluated by Martinec (1983). The zero modes for super-
determinants are, however, a nontrivial issue, since the
nonpositivity of the norms could cause the kernels of
(2)+2) ), 2)+X), and 2) to be distinct (cf. Sec. III.F).
Each of these spaces has its own transformation law un-
der super Weyl scalings, so it is important to determine
which one will combine with sdet(2)+I) ) to produce a
local anomaly. Another consequence of the nonpositivity
of the norms is that the Laplacians „need not be di-
agonalizable. In addition, even though they are the prod-
uct of an operator times its adjoint, they need not be pos-
itive. In fact, writing H„ in components, it is clear that
besides the standard Laplacians acting on ordinary func-
tions, there is also a piece behaving like a first-order
differential operator, so that the spectrum in general ex-
tends from —co to + ao. The square of 0„ is still not a
positive operator in general, but is at least bounded from
below. Strictly speaking, the last property has been
shown only on surfaces of constant curvature by Aoki
(1988), but is is clear that a continuous super Weyl trans-
formation may alter the lower bound, but will not send it
to —~. The heat kernel exp[ —t(U'„+—') ] may thus tend
to infinity as r +oo in an ex—ponential fashion, and /-
function regularization cannot be applied to define the
corresponding superdeterminants. We now provide a de-
tailed analysis of these issues. We define the superdeter-
minant through an exponential regulator, depending on a
complex parameter s,

in5'„—'(s) =ln sdet[( '„—') +s ]

sA, i,
——sAt„„„/sDiff(M) . (3.95)

From the orthogonal decomposition of I H& I given in
Eq. (3.53), it is evident that sJktI, is a supermanifold
whose tangent space at each supergeometry is

T(sA, „)=KerPt, (3.96)

so that its dimension is also given by Eq. (3.58) for h &1,
whereas for h = 1, the tangent space is I2 even moduli
e 'Ietodd moduliI.

The holomorphic structure 8 on supermoduli space
and its integrability are due to O'Hoker and Phong
(1987a).

which converges absolutely for Re(s) sufficiently large
and E&0. Throughout the complex s plane, 5'„—'(s) is
defined by analytic continuation. For constant-curvature
supergeometries 6'„—+' is meromorphic throughout C, and
this is enough to argue that 5',—+' will be meromorphic for
any supergeometry, as will become clear through the
super Weyl anomaly calculation. Thus, around s =0,
5'„—' will in general have the following behavior:

5„'—'(s)=s " sdet'(Cl'„—') +O(s " ), (3.98)

where N„—are positive or negative integers, formally cor-
responding to the difference between the number of even
zero modes and odd zero modes. This relation defines
the superdeterminant of ( '„—'), whereas the superdeter-
minant of '„—' itself is the square root

H. Determinants, super Wi yl and local U(1) anomalies sdet'(Cl'„+—')'=—(sdet'Z'„—+'P . (3.99)

In order to reduce the string path integrals over super-
geometries to integrals over supermoduli space, one
needs the behavior of the superdeterminants of the co-
variant derivatives with respect to super Weyl and local

To examine the behavior under super Weyl transfor-
mations of the determinants in Eq. (3.99), we determine
the super Weyl change of 5'„—' and analytically continue
to s =0. We shall restrict attention to '„+' and quote
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the results for U(„' at the end:

5 ln5'„+ '(s) =2f dt e

g(/(+ ))2
/sTr(5 (+) (+)e n

)

The changes of the superderivatives are given by

(3.100)

5Xl+ =(n ——,
' )5X2)+ —n2)"+5X,

52)" = —(n+ —,')5XX)" +n2)" 5X,

5 '„+-'=( —1+n)-5X '+-'+2nn"='"5XX" +n

so that'

(3.101)

t{[j(+ ))& ( + ))~ ,(
( —) )z

sTr(5 '„+'C3'„+'e " )= —(2n+1)sTr5X( „+') e " 2n —sTr5X(CI'„+'ized) e

g{/( + ))2 g g( ( —) )2
=(2n + 1) sTr5Xe " +2n sTr5Xe "+'"

9t Bt

Inserting this result into Eq. (3.100), one finds

(3.102)

oo —t(D„+ )51n5'„+'=2f dt e " (2n +1)—sTr5Xe " +2n sTr5Xe "+'~'
Bt Bt

(3.103)

Integrating by parts yields

t( (+))2 t(~( —) )2
51n5'„+'=2e "[(2n+1)sTr5Xe " +2n sTr5Xe "+'" ] ~,

"
, (&(+))2

+2s dt e "[(2n+1)sTr5Xe " +2n sTr5Xe "+'" ] . (3.104)

Since the expression is defined for Re(s) sufficiently large, the contribution from infinity in the first term cancels out, and
the remaining traces of heat kernels are well de6ned at s =0. In the second term, the only nonzero contribution can
arise in the limit where s —+0 if the integral produces a simple pole at s =0. To see whether this happens, we remark
that the general form of the contribution to the supertraces is t~e ', where p and A. are arbitrary and independent of s.
Substituted into the integral in (3.104), we find that such a contribution produces

s f dt e "t~e '=, 1 (p+ 1)+O(s) .
(s+A, )~+' (3.105)

One notices that, whatever the value of p, a nonzero result is produced as s~O only if A, =O. In the trace of the su-

perheat kernel, this results from the zero modes, so that p =0 as well. Collecting these results, we get

51nsdet' '„+'=—,'lim in5'„+'(s}
s~0

—~(a(+')'= —(2n+ 1)sTr5Xe " 2n sTr—5Xe "+'~' +(2n +1)sTr5X ~, ~ ~,~++2n sTr5X
~Ker(El„+ ) KCf'(G + & y2)

(3.106)

The terms involving E. on the right-hand side of Eq.
(3.106) are local functions of 5X in the limit where e~0,
and their expressions can be gotten from a short-time ex-
pansion of the super heat kernel, which is derived in Ap-
pendix C:

~(~(+ ))&

sTr5Xe " = —'
( —)" d ER 5X

4m
+—

+O(e),
(3.107}

sTr5Xe " =+i ( —. ) "fd zER+ 5X
4m.

+O(e} .

Notice that, due to worldsheet supersymmetry, there is
no term behaving like 1/c, as we had in the case of the
bosonic string.

The traces of 5X restricted to the kernels of zero

I

modes are familiar from the bosonic case, but much more
care is needed for the case of the superstring, due to the
fact that the kernel of the square of an operator may be
diA'erent from the kernel of the operator itself, as we have
seen in Sec. III.F.

For h &2 and n )—,', we have Ker(U'„+')~=0 according
to Eq. (3.72), and that Ker(CI', +'i&2) =Kerl)" +'~ ac-
cording to Eq. (3.75). The remaining trace can be linked
to the change in the finite-dimensional determinant of ele-
ments' 4J E Kerl)" +', using the fact that they scale as

' Note that the analogous calculation could have been per-
formed using local U(1) transformations of the superderivatives.
At this point one would have found that the contributions can-
cel and that the determinants are invariant.

Henceforth J,K stand for mixed indices J=(j,a),K =(k, b),
etc. , where j = l, . . . , 3h —3 and a = 1, . . . , 2h —2.
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Putting these together, we find (for h )2 and n & —,')

sdet '„+'
5ln =i ( —)'"f d'zE&+

sdet(NJ
~
Nx ) 4m.

(3.109)

It is straightforward to see that the same arguments ap-
ply for h =0, provided that n & ——,'.

For h & 2 and n & —1, exactly the opposite situation is
produced, and we have according to Eq. (3.72) that
Ker( '„+'i&&) =0 and Ker( '„+') =Ker2)+. The remain-
ing trace can now be linked to the change in the finite-
dimensional determinant of elements ql E Kernel+, which
scale as 4 =e" 4 . Thus

51nsdet(%~
~

'Pt3) =sTr5(%
~

ql&)

= —(2n+1) g (e.
~

5X
~
e.),

and putting all together, we find

(3.110)

—(n + 1/2)Xq)g=8 J o

5 ln sdet(4&J
~

@x.) =sTr5(@J
~

4'x )

2n —g (@J
~

5X
~
4J ) . (3.108)

where the local super Weyl anomaly is given by

S,L (X)= f d zE(2)+XX) X iR—+ X) (3.113)

and +J H Ker2)" + ' ~, except when n = ——,', where
4~E-Ker 0

' and 4 EKer2)+, except for n =0, where
O' EKer 0+'. Similarly, we can derive the super Weyl
anomaly for '„—' and find

sdet'
ln

sdet(@J
~
Nx )sdet(%'

~

0'ts)

sdet
=ln „—(1—4n)S,L (X) .

sdet(4~
~
4x )sdet(ql

~

qj&)

(3.114)

Here C&& EKer2)", except for n =0, where it belongs to
Ker o

' and ql HKer2)+ '~, except for n = —,', where it

belongs to Ker z+ '.
For the torus and a generic slice, it is clear that Eqs.

(3.112)—(3.114) hold as well. If, on the other hand, the
nongeneric slice 3 =0 is chosen, one should rather con-
sider sdet'( '„—') and divide by the determinants of inner
products of Ker( '„—+') .

l. Amplitudes as integrals over supermoduli

(3.111)

Similarly for the sphere, this formula will hold for n ) —,'.
The cases n =0 and n = ——,

' are symmetrical, so we
shall limit our discussion to n =0. The novelty here is
that one of the finite-dimensional traces is absent from
Eq. (3.106), the other one being taken over Ker( 0) .
Though Ker(Clo) might be larger than KerClo, it was ar-
gued in Eq. (3.80) that this is not the generic case. Since
the zero modes of 0 are super Weyl invariant, we readi-
ly deduce that Eq. (3.111) holds, but now with

CKerClo, which may be larger than KerX)+. Similar-
ly, since 4J EKer2)' scales as 4J ——e 4z, it is clear
that sdet(@J

~
4x) is super Weyl invariant, in analogy

with the finite-dimensional determinant over inner prod-
ucts of holomorphic Abelian diC'erentials in the bosonic
string. We might be tempted to call the —,

' di6'erentials

4z HKerl)' holomorphic super Abelian dtgerentials.
We may now collect all the above results for h &2 or

h =0 in one formula, and also integrate the infinitesimal
5X's to finite super Weyl transformations:

sdet' '„+-'
ln

sdet(C&z
~
@x )sdet(%

~
%'ts)

sdeta '„+'
= ln —( 1+4n )S,L ( X),

sdet(4J
~
@x )sdet(4

~ Pli)

(3.112)

With the above analysis of the space of super-
geometries, it is now easy to carry out the DEM in-

tegral. We shall limit ourselves to the case h &2 and
treat the sphere and the torus in Secs. III.L and III.M.
In parallel with the bosonic case, we introduce a slice S
of dimension (6h —6, 4h —4), transversal to the action of
sDiffo(M) within the space of supergeometries. We
parametrize the space of supergeometries by

XDXDLDV Q d (3.116)

The subscript in the inner product indicates which
superzweibein is used in the pairing of tensors.

The super Weyl dependence of the various ingredients
of Eq. (3.116) may be calculated in analogy with the bo-
sonic string case. First one uses the fact that

(3.115)

with E M in S and the exponentials representing the ac-
tions of the various symmetry groups. If mJ are coordi-
nates for the slice S, I'J are the corresponding coordinate
vectors in T(s&,„„„),and 4J is a basis for KerP„ then
the measure is obtained from the calculation of the Jaco-
bian factor associated with the change of variables from
EM to X, I, V, and mJ. With the orthogonal decompo-
sition of Eq. (3.53), this Jacobian can easily be worked
out, and we find

sdet(e' e FJ
~
4x )z

DE~ "——(sdetPi+ Pi )
'
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KerP, =Kernel+ e Ker2) (3.117)

and that if 4J CKerl)+' then 4z ——e'3~ 'z@JeKerl)+'.
Similar properties are easily derived for the local U(1)
transformations using Eqs. (3.15)—(3.17). As a result, one
finds that

transformations, it really runs over the coset space of all
X =1 supergeometries by these symmetries. The remain-
ing coset space coincides precisely with that of all super-
complex structures, and was termed supermoduli space
in Sec. III.G. Thus the domain of integration will be su-
permoduli space. The measure becomes

sdet(e' e FJ
~
@z)z——sdet(pJ

~
NQ) (3.118-)

DE~ a (sdetP t~P )1/ze ' DXDLDV
where the inner product on the right-hand side is now
evaluated with respect to the supergeometry E ~ . The

pJ are dual super Beltrami diA'erentials, in the sense of
Sec. III.J below. Their bosonic analog appeared in Secs.
II.E and II.G. Next, we recall from Sec. III.H the super
Weyl scalings relevant to superstring theory:

sdetP, P, sdetP, +P,
sdet(WJ

~ @J;) sdet(@
~

cp )
(3.119)

sdet'

sdet( 4
~

%'&)

sdet' 0 g (y)

sdet( 4
~
4&)

where + EKer
The first and second equations show that the nonlocal

X dependence cancels out of Eq. (3.116). The local
dependence on the super Weyl scaling X is canceled out
by putting contributions of the Faddeev-Popov and
matter determinants together, provided the dimension of
space-time is d =10. Since we are dealing with the type-
II string here, a potential local U(1) anomaly is canceled
between left- and right-movers on the worldsheet. For
the heterotic string, the absence of the local U(1) anoma-
ly will put further constraints on the theory, which will
be explained in Sec. III.N and amount to requiring the
gauge group to have rank 16. Vertex operators will be
determined so that the above symmetries of the measure
are preserved, after all anomalous contributions have
been taken into account.

Since the combined measure will be invariant under
super-reparametrizations, local U(1), and super Weyl

I

sdet(pJ
~
@~)

&& +dm~ .
sdet

(3.120)

Z„=nf gdm,
sdet C,

~
C~

Sm sdet'

d zE

X(sdetP, P )' (3.121)

As in the bosonic string, if we choose a slice within
s&,„„st, this measure is manifestly a coset measure on
sALI„which can be termed the super Weil-Petersson mea-
sure,

sdet& pJ ~
e~ &

d(sWP) = + dmJ .
sdet(4J 4~ )

(3.122)

We shall often refer to the right-hand side of Eq. (3.122)
as the super Weil-Petersson measure, even when the slice
does not lie within sA,„„„.Such slices, e.g., those that
depend holomorphically on supermoduli parameters, will
be important later.

%'e conclude this section by noting that on-shell
scattering amplitudes may be reduced in the same way to
integrals over supermoduli by insertion of the proper ver-
tex operators, as discussed in Sec. VIII. For the case of
bosonic vertex operator insertions, one finds in general

Now the last equation in (3.119) shows that in the critical
dimension d =10 the local super Weyl anomaly S,L (X)
disappears as well, to yield the formula

—5

sdet(pJ
~
4z ) 8~ sdet'

( V, (k, ) . . V„(k„))I,——f +dmJ
sdet C&J

~
4~ sdet 4 (sdetP, P, )' (( V, (k, ) . V„(k„)Bg,

(3.123)

where (( )) stands for the fact that only the X" integral
has been carried out (including the integration over all
X"zero modes).

J. Formulation with superghosts

theory. This will be fully achieved in the next section,
III.K.

Before deriving the superghost expression, we need a
better insight into the nature of superquadratic and super
Beltrami di8'erentials.

In this section the Faddeev-Popov determinant, to-
gether with the finite-dimensional determinants involving
super Beltrami and superquadratic'di6'erentials, is recast
in terms of a functional integral over superghost fields,
and a local action is obtained on the worldsheet. The
goal ultimately is to derive a formulation in Wess-
Zumino gauge closely related to that of conformal field

1. Superquadratic and super Beltrami differentials

Holomorphic superquadratic differentials @J are U(1)
tensors of weight —', and are solutions to

(3.124)
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Recall that in Wess-Zumino gauge Nz ——((J +0$~
+(3i/4)APJOO satisfies the equation

D~QJ+ —,'X+QJ =0,
(3.125)

where

Be
PK aIIr-

~X—
0 z

amPl~
(3.130)

D (hJ+ 2X,+D,JJ —', A —QJ ——0 .

When X=O, PJ and PJ are holomorphic —,
' and quadratic

differentials, respectively, so in that particular case we

may set P&
——P,'=0. The remaining components P, and

P' are then the standard holomorphic diff'erentials, and
their number is in accord with index calculations. They
are also naturally even Grassmann-valued elements.
Away from 7=0, the same number of solutions to Eq.
(3.125) exists, and here P, and P '. are even, .whereas P
and Pi are odd Grassmann elements. Putting all togeth-
er, we have 5h —5 holomorphic -super quadratic
differentials 4 J, 3h —3 of which are odd (4, ) and 2h —2
of which are even (N, ).

Super Beltrami differentials px with K = (k, b) are dual
to holomorphic super quadratic differentials and may be
normalized as

Clearly, pi and pb are even and correspond (for 7=0) to
the ordinary Beltrami differentials. '

From the duality of pz and 4 J, it follows that their
components are also naturally dual,

&v~ I
+.& = &vx I

+I &+ &I x I
+'& (3.131)

and for X=O the ordinary Beltrami differentials pj, and

pb are dual to the holomorphic quadratic and
differentials, respectively.

Finally, we introduce super quasi-conformal uector
fields associated with superquasiconformal transforma
tions. The superderivative of a super-quasiconformal
vector field is to be identified with the super Beltrami
differential, which lies in

T(sinai,

), and , may be viewed as
a deformation of the supercomplex structure,

(3.132)

(3.126)

so that there are again Sh —5 pz's, 3h —3 of which are
odd (pk) and 2h —2 of which are even (p, ). More gen-

erally, super Beltrami differentials may also be viewed as
inequivalent small deformations of the supergeometry of
a super Riemann surface, belonging to the tangent space
to supermoduli T(sJRi, ). (See the analogous discussion
for the bosonic case in Secs. II.D and II.E). It will be
convenient to introduce coordinates mz for supermoduli

space; mk should be thought of as ordinary even moduli
and mb as odd moduli. The small deformations ine-

quivalent under U(1), super Weyl, and super-
reparametrizations could be parametrized by the com-
ponent H ' (and its complex conjugate) according to Eq.
(3.45). Thus the super Beltrami differentials px. may nat-

urally be defined as

It is again useful to restrict our attention to the case of
Wess-Zumino gauge, and with Eq. (3.132) we find that
Vz must be of the form

with

V~ ——V~+ OV~ ——003 V~
2

p~ ——D V~+ —'g +D, V~+iA V~

Vx =D-, Vz+ 2&;+&re .1 j. 1 + 0
(3.133)

For 7=0, Vk reduces to the ordinary quasiconformal
vector field.

Super-quasiconformal transformations 8' can be
defined as satisfying the super Beltrami equation

(3.134)

(3.127)

It follows that super Beltrami differentials satisfy the in-
tegrability condition given by

for a general super Beltrami differential p= g gxpx.
When 7=0, it contains the ordinary Beltrami equation
for the body component of 8'.

~Pa gL ~PL+( )KL () (3.128)
2. Superghost expression for superdeterminants

It is instructive to look at this structure in Wess-
Zumino gauge, where we have

H '=9(e 5e '—857 +) . (3.129)

There is also a contribution from a Weyl transformation
of the form e, 5e ' which has been omitted from Eq.
(3.129) since it does not induce a motion in supermoduli
space. Thus, in Wess-Zumino gauge, the super Beltrami
differential may be decomposed as

To represent the Faddeev-Popov superdeterminants,
we introduce a ghost superfield C of U(1) weight —1 and
an antighost superfield 8 of U(1) weight —,', as well as
their complex conjugates C and B. We shall also assign
ghost charge 1 to C and B and —1 to C and B. The
relevant superghost action is

I„„(C,B)= Id'z E(B2) C+B2)+C) . (3.135)
2&

'5pI, has also been termed a super Beltrami di8'erentia1 in the
literature. We shall, however, reserve this name for pz.

Rev. Mod. Phys. , Vol. 60, No. 4, October 1S88



E. D'Hoker and D. H. Phong: Geometry of string perturbation theory 967

each of which is invariant under ghost number rotations,
super-repararnetrizations, and U(1) transformations, but
not under super Weyl rescalings. If we discard integra-
tions over zero modes (denoted by primed fields), we have
in a straightforward manner'

D(B'8'CC )e "" ' =(sdetP, Pi)'
—I ~(,C, B')

(3.137)

This integral involving the first-order action I,gz on the
odd (C) and even (8) superfields may be understood by
considering a toy example. Take the case of an odd
( C =c +Oy ) and an even (8 =/3+ Ob ) supervariable.

I

Clearly, I, b is super-reparametrization, local U(1), and
super Weyl invariant, provided 8 and C scale as C =e C'

and B=e ' ' B. We introduce functional measures
DC and DB through the metrics

II5CII'= fd'z E5C5C,
(3.136)

ll58 II'= fd"E»»,

The ordinary integral is easily evaluated, and we find

f dB exp i fdOBC = f db dPe' '

=Zrri 5( C), (3.138)

where 5(C)=5(c)5(y). Thus, carrying out the 8' and 8'
integrals in Eq. (3.137), one finds

fD(8'8')e "" ' =5(2) C)5(2) C), (3.139)

so that the C and C integrals produce precisely the Jaco-
bian factor as given by Eq. (3.137).

To obtain a representation including the finite-
dimensional determinants as well, we should integrate
over the zero modes of B. This can be done by adding to
the ghost action the coupling of B to super Beltrami
differentials, since these are dual to the zero modes. To
do so we introduce variables gK (gl, 's are odd, gb's even)
and evaluate the integral

g f d g fD(BBCC)exp I„„(C,B—)+ gg &p IB)+g &P IB)
'

(3.140)

in t;wo different ways. First, by separating B=B0+B into the zero-mode contribution B0 and the non-zero-mode con-
tribution B', we see that the term involving pz precisely couples only to B0, whereas I, 1 depends only on B'. Thus the
Bo arid 8' integrals separate. The 8' integral produces the infinite-dimensional superdeterminant as in Eq. (3.137). In
the Bo integral, we may decompose 80 onto @J (suitably normahzed): Bo——gz PJC&J, and since Bo is even, /3, is odd
and P even. The Bo and g integrals then reduce to

II fd&Kd/3Je» X(K&/K I+&&&&
sdet& pir I @J)

sdet& @K I NJ )
(3.141)

after restoring the normalization. Our second way of evaluating Eq. (3.140) is to carry out the g integral first. Putting
all together, we have

sdetP, P,
sdet&c~

I cK)

1/2

sdet&pz
I
NJ)= fD(BBcc)e "" ' g I 5(&pK IB)) I

(3.142a)

Since for IC =k, & pK I

8 ) is odd, the 5 function reduces to a linear function, so that equivalently

+5(&p IB))=+ &/ I» +5(&v IB)) (3.142b)

Thus we arrive at a general formula for the scattering amplitudes in terms of the superghosts, '

«(k ) . . &.(k. )&g= f, d'~ fD(»C)&«(k ). ~.(k. )&& Q I5(&/ b I») I' ll I &/ k I» I'e '.
h b k

(3.143)

Here, I is the full action I =I +I,gI, . As compared with
the ghost formulation of the bosonic string, an uriexpect-
ed novelty arises here. Whereas &pk I

8 ) amounts to an
insertion of the operator 8, the factors 5( & pb I

8 ) ) give
rise to a new type of nonlocal insertion. We shall come
back to this issue when dealing with the component for-
mulation.

For the sake of defiriiteness, we shall only consider the case
h & 2, where C has no zero modes. Otherwise, the C integration
must be similarly restricted.

Further reformulation is possible when representing
super Beltrami differentials in terms of super-
quasiconformal vector fields, through Eq. (3.132). Re-
marking that the B field is effectively holomorphic, we
have

& pK I
8 ) —f d z E2) (8VK ) .

Super-quasiconformal vector fields may be viewed as

Henceforth, we use the notation d'mK = QK dinKdinK.
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3. BRST symmetry

We begin by discussing the stress tensor. Super-
geometry is specified by only six independent fields, and
thus there are only six independent components of the
stress tensor, defined through an infinitesimal change in
the total action,

I= d E —,
' X" X„+8 C+8 C

(3.145)

5I —= d z E(H++ T+++H+'T, +1

+H 'T, +c.c. ) . (3.146)

The full action I is U(1) and super Weyl invariant, so we
must have T+ + =0, and since it is invariant under
super-reparametrizations 5V—,we also have T, +=0 at
the classical level. ' These symmetries will also be imple-
mented at the quantum level (in the critical dimension},
so we shall completely ignore the components T++ and

T, + and set them to zero. We shall also denote T, =T
and call this the stress tensor. Invariance under super-
reparametrizations 6 V' implies that T is conserved,

(3.147)

It is sometimes convenient to consider the matter (T
and superghost (T, h } contributions separately; they are
given by

(3.148)

and are classically conserved.
Once the local gauge symmetries have been fixed and

"super-reparametrizations" with a discontinuity 5 Vz
across a contour Cz. In that case, the inner products
further reduce to (for 8 =/3+ Ob + )

(p~ l
8 ) = tt) c dz(P5 Vg +b 5 Vl,

"
) +f c dz X, +P5 VJ

(3.144)
We shall not make use of this formulation at present, and
just point out that it should find use when dealing with
the equivalence between the Polyakov first-quantized
superstring, as we have discussed here, arid Witten's
string field-theoretic formulation of the superstring.

Faddeev-Popov ghosts introduced, the presence of the
original symmetries is revealed by the existence of BRST
symmetry. The total action I is indeed invariant under

5X"=A, CX)~XI"——,
' ~+CX)+X"+c.c. ,

5C =A, C2)+ C ——,'~+ C2)+ C, (3.149)

JU( i )
=2(X)+8 )C +382)+C (3.151)

is conserved: 2)~jU~, ~

——0.
The presence of BRST symmetry implies the existence

of certain Ward identities for the correlation functions,
assuming that these are taken with respect to a (physical)
BRST-invariant vacuum. In the case of the bosonic
string we presented two somewhat distinct methods for
handling these %'ard identities. In the first one, the
BRST charge was written as a line integral and analytici-
ty properties of the correlation functions were used to
"pull ofF the contour" and rewrite the full contribution as
a total derivative over inoduli space. The second method
did not rely on such analyticity properties and has a wid-
er range of applicability, though in the case where the
correlation functions possess analyticity properties, these
are not readily translated into this langauge.

For the superstring, as we shall see explicitly in Sec.
VII, the superghost correlation functions are mero-
morphic, but they possess in addition to the expected
poles some spurious poles, which in general have to be
taken into account in the analyticity arguments before
correct conclusions can be drawn. Maybe the use of su-
percontour integrals and superanalyticity on the su-
perworldsheet can get around this problem. For the time
being, we shall formulate the BRST Ward identities using
the Inore general functional treatment, where no analyti-
city properties are assumed. One derives such identities
on the generating functional, and by differentiating with
respect to the sources, one can obtain them for any corre-
lation function.

The starting point is the generating functional

where k is an odd constant parameter. Associated with
this symmetry is a current of weight —,',

j BRs T= C( T m+ 'T, h
—) ——'2)+( C(X+C )8 ), (3.150)

which is conserved: 2) jiiRsT=0. It was pointed out by
Friedan, Martinec, and Shenker (1986) that the super-
ghost system by itself also possesses an additional U(1)
symmetry, making it into an X =2 superconformal alge-
bra. The associated U(1) current

Z(X*,B*,C*)= JD(XBC)exp[ I(X,B,C)+I, (X,—B,C;X",B*,C*)],
I

(3.152)

where I is the total action of Eq. (3.145) and I, couples
the external sources X*, B*, and C' to the fields X, 8,
and C in a super-reparametrization and local-U(1)-
invariant way:

Compare with the bosonic string where Weyl invariance im-

plies that T,,=0.

I, =Id'z E(X*X+8*8+C*C+8'8+ C *C) .

(3.153)
Correlation functions are obtained by taking successive
functional derivatives of Z. We introduce the notation'

' Henceforth, we suppress the p index on the X field.
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1 5
E5II ' (3.155)

For example, the partition function, according to Eq.
(3.143), becomes

X=—,8 =—,C =— . (3.154)1 5 . 1 5 I 5
E 5X* E 5m* E 5C'

We shall also need the functional derivative with respect
to the supergeometry changes 0

AQBRsTZ(X*~8 *~C*)

(3.157)

—C*(C'I)+C' ——,'2)+ C'2)+ C')+ c.c.],
(3.158)

= f d mx fD (XBC )(5BRsTI& )e

A little algebra gives

QsRsT = f d z E[X*(Cl) +X 22)+ C2)+X ) 8 H

Zz ——f d mx Q i 5((px i
8 ) )

i

Z(X*,B*,C')

(3.156)

which yields almost the same BRST transfoImation laws
for the operators X, 8, and C as given in Eq. (3.149):

5X= [X,A QsRsv ]

=- A, C'2)+X ——,
' M+ C'2) ~X+c.c. ,

so that the operators with hats. e6'ectively play the role of
the quantum operators associated with the field.

The BRST Ward identities are derived on the assump-
tion that the measure D(XBC) is invariant under BRST
transformations (3.149), which will be true at the quan-
turn level only in the critical dimension. We then de6ne
the BRST operator

5C = [0&
A,g sRsT ]= A CXl + C 4 A2) + 02)+C

58 =[8&AQ nssT]= AH

(3.159)

As an interesting application, we may evaluate the BRST
behavior of an insertion occurring in the expressions for
the amplitudes '

[(px ~
B),AQ sRsT]=A, ( —) + f d zE, f d wE„B*(z)[H(z)plr(w)]B(w) (3.160)

where we have used the fact that

BfPlK
(3.161)

The (anti) commutator of this object with another insertion vanishes in view of the integrability conditions (3.128),

Heal&&;Hsxl&&& &.QaRsT&&=&. ~
—&'" +~ —&" &&)=0.

Bml - BI??K

We also have

[5((p
~
8) ),&Q „]=[(p

~

8 ),&Q „, ]5'((p
~

) ),

(3.162)

(3.163)

where the ordering of 5 and [ ] on the right-hand side is immaterial in view of Eq. (3.162). With the help of Eq. (3.162)
once more, we can now permute the BRST operator through all insertions,

5h —5 K' —1 5h —5

5((p ~))&g „=y [(p ])&g „]/ 5((p ~8))5'((p ~8)) g 5((p ~)) . (3164)
K K'= l K=1 K =K'+1

t

To deal with scattering amplitudes, we have to insert vertex operators for physical states. Furthermore, we must
show that a total BRST change in any vertex operator —which simply amounts to a gauge transformation in fiel
theory langauge —produces a vanishing contribution.

The physical veitex operators for the emission or absorption of bosonic particles in the functional formulation can be
taken to be super-reparametrization-, local-U(l)-, and super-Weyl-invariant vertex operators of the Polyakov string (to
be discussed fully in Sec. VIII) without any 8 or C insertions, and they are thus of the form V; (X',H ). It is not hard to
see that they are automatically BRST invariant (in the critical dimension) in the following sense:

[Xg,„„,V, (X',H)]Z(X*,B',C*)=O. (3.165)

To show this we need the Ward identities of the generating functional under super-reparametrizations, local U(1), and

20The subscript ~ ——0 sets a11 sources to zero.
C,

'—)+=1 when K=k and —I when K=b.
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super %'eyl symmetry. All of these are nonanomalous in the critic+1 dimension, as long as the sources remain orthogo-
nal to the zero mpdes of their corresponding fields. For ex@mple, it is straightforward to derive the super-
reparametrization Ward identity

d zE V' H V. ——' V'V.'X —V' V'X+ —'V+ V.'X Z X*,B*,C* =0 (3.166)

valid for arbitrary fields V' and V+. For later convenience, we have added the effect of a supplementary super Weyl
and local U(1) transformation of the second term. Evaluating Eq. (3.165) explicitly, we get

f d zE[ 8*—[H, V;]—(C'2)+X ——,'I)+C2)+X)V (X,H)]Z(X",B*,C*)=0 . (3.167)

Finally, we use the Schwinger-Dyson equation,

(8' —2) C')Z(X*,B",C*)=0,
in order to replace 8* in the first term of Eq. (3.167) by 2),C. Furthermore, since V' and V+ were arbitrary in Eq.
(3.166), we may choose V'=A, C and V+ =AX)+C and add Eq. (3.166) to (3.167). The exact cancellation shows that Eq.
(3.165) holds, so that any super-reparametrization-, local U(1)-, and super-Weyl-invariant vertex V, is also BRST invari-
ant.

To show decoupling of BRST charges, let us consider the amplitude with n —1 physical (BRST-invariant) vertex
operators V„.. . , V„1and one insertion of the BRST transform of an arbitrary operator V„,

& Vl Vn —1[~QBRST& Vn ] &h f~ d ~K II I
&( &VX I

8 & )
I VI . V. I[~QBRST& Vn ]Z(X

K
(3.168)

The BRST invariance of V, , i = 1, . . . , n —1 and of the generating functional allows us to move AQBRsT just to the right
of all 5-function insertions. With the help of Eq. (3.164), we can bring the resulting commutator [&ph. I

8 &, A, QBRsT]
completely to the left. But now the sources should be set to zero, and only the derivative with respect to IK remains
from Eq. (3.160), so that

with

sh —s

& V, V„,[Q,.„,V„]&„=f dim. y, IV.,

K'=1

K' —1 sh —5 sh —5

IV = g &(&lM IB&)~'(&P I 8&) g &(&lLI IB&) g 5(&P IB&)V, . V„Z(X',8', C*)
K =K'+1

(3.169)

Thus the insertion of BRST changes in arbitrary opera-
tors produces total derivatives on supermoduli space.
The total contributions then arise only from evaluating

at the boundary of moduli space. If the string
tllcoly satisfies all I'ts cqllatloIls of IIiotloll, l.c., 'thc back-
ground space-time is a solution to the "string field equa-
tions of motion, " then such contributions may be expect-
ed to vanish. However, when this is not the case cancel-
lation may be required with effects on surfaces of
different topology.

The use of superfield superghosts was proposed by
Friedan, Martinec, and Shenker (1986) and further
developed by Martinec (1987).

K. Chiral splitting in the component formalism

Though the expressions for the amplitudes obtained in
the previous section are complete, one may wish to
render them yet more explicit by working in the com-
ponent formalism. Actually this is where the calculation
for these amplitudes was performed in the first place. In
this section we shall treat the case of the type-II super-
string, postponing the discussion of the heterotic string

l

to Sec. III.N.
Upon choosing Wess-Zumino gauge, we find that the

superspace action (3.40) reduces to Eq. (3.1). We shall re-
call it here for convenience and display its dependence on
complex (chiral) fields explicitly. We shall also drop the
term proportional to the Euler characteristic, as well as
the one involving the auxiliary field F,

=I +I~+I' +I
where

I = f d g&gD, x"D x",
4m. Z Z

f d'ki g ( 4+D,4"+ 0"D.—0"»—
(3.170)

f d g&g (X +g+D, xI'+X, P" D,x"),

I' = f d'g&g X, X +Q+g"

This matter action could now be considered as a super-
gravity theory in its own right. For string theory, quanti-
zation would require integrating over the x", g", g
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and 7 fields in a reparametrization-invariant, local su-
persymmetric, and Weyl-invariant way. The difFiculty is
that it is impossible to define a workable measure for the
component fields that is local and supersymmetric;
indeed, the framework in which local supersymmetry is
manifest is precisely superspace. Thus, instead of taking
the action (3.170) as our starting point and quantizing it
directly, we shall rather begin with the superspace for-
mulation of the previous sections and project it down
onto Wess-Zumino gauge. Since it is most convenient to
perform such gauge choices in a local quantum field

theory, we see that the superghost formalism is most
practical in this respect. Notice that the choice of the

I

8 =p+ Ob +882+i 8883,
C =c+Hy+OC2+i OOC3

(3.171)

We also restrict 7 to be y-traceless, as may be done in
the critical dimension where the super Weyl anomaly
cancels. One then finds

Wess-Zumino gauge can always be implemented in a
purely algebraic way. After this has been done, the sym-
metries are those described in Sec. III.C.

We now restrict the superghost action I, s„(C,B) to
Wess-Zumino gauge as well. To this end, we decompose
the ghost superfields into components,

I,sh
—— d gv g —i83Cz+82 iC3+ —Ac +b(D c+ —,'X +y)+p —AC&+ ,'X +D—,c+D y+iA c

1 ~ ' i + 3l +C.C.

(3.172)

It remains to evaluate the contribution from the 5 functions on & px.
I
8 & in Eq. (3.142) to have the full ghost expression.

Since in Wess-Zumino gauge pk is given by Eq. (3.129), we see that 82 and 83 (and their complex conjugates) never con-
tribute to these inner products, and we have

&I x I
8 & = &V~ I

b &+ &P~ IP& (3.173)

(3.174)

Thus in the full 8 Cintegral-s in Eq. (3.142), the fields Bz, 83, C2, C3 and their complex conjugates are auxiliary and
never carry any derivatives. They may be integrated out explicitly, and ultralocality here says that the only e6'ect will
be a super area term, whose coefFicient is determined by super Weyl symmetry and is thus immaterial.

We end up with the following expression for the super Faddeev-Popov determinants in Wess-Zumino gauge:
' 1/2

sdetPiPi —I.ghsde«p
I

@ &= fD(bcpy)e ""g I &/ k I
8 &

I
'II

I &(&ub
I
8 &)

I

'
s et k b

where it is now understood that the field 8 in the prod-
ucts is restricted to B=p+Ob, the superghost action
takes on the simplified form

I

by

S „=,'by ', PD, c ——(D,P)c—. — (3.176)

0 1
Isgh Isgh +Isgh

Actually, we shall sometimes make use of the full current

where
S=—,'Q"+D,x"+S i—, , (3.177)

I, h
—— f d gVg (bD c+pD, y+c.c. ),

I,'s„——— f d g&g (X, Ss„+X, Ss„),
(3.175)

and the ghost supercurrent that is the 0-independent
piece of the super stress tensor T,sh of Eq. (3.148) is given

l

which is only the 7-independent part of the full super-
current (the 0-independent component of the stress ten-
sor T). We shall see later on that it is, however, all we
need.

We are now in a position to express the general super-
string amplitude to h-loop order (h &2) as an integral
over supermoduli, formulated in components

«(k ) . ~.(k. )& = f, d'~ fD(x@bcpy)p
I

&/ I» I' ll I~(&s IB&)l'1'(k ) . . V. (k. )e '
h k b

(3.178)

where I =I +I gh is the total action in components and
8 =P+Ob.

1. Chiral splitting of the matter integrals

In Sec. II.B, we have seen that physical vertex opera-
tors (for bosonic particles) do not depend on ghosts or su-

l

perghosts. Hence the amplitude (3.178) exactly as in Eq.
(3.174) is "chirally split" in terms of the chiral ghost
fields bcpy and bc/3y in the sense that there is no cou-
pling between the opposite chiralities of these fields. This
will be a crucial property in defining both the heterotic
and type-II strings and will manifest itself under the form
of superholomorphic factorization, as we shall see in Sec.
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VII. However, it is clear that this chiral factorization
does not manifestly hold for the matter part. Of course,
this could not have been expected in the first place, since
the x field is real and not chiral. Furthermore, the termI, bilinear in g, couples i)'j+ to i/ and seems to spoil
chirality. One of the main tasks of this section will be to
formulate a modified version of chiral splitting which
holds for the full amplitude.

To display chiral splitting of the matter part of the
functional integrals, one must integrate out the x field in
any amplitude. For simplicity we shall not consider full
vertex operators, but just insert the universal factors e'"
required by translation invariance, located at different
points on the surface. This may be thought of as a ta-
chyon operator whose position is not yet integrated over.
It is only technically harder to deal with the insertion of
full vertex operators. In Wess-Zumino gauge where auxi-
liary fields have been integrated out, we have

ik.X(z) ik x(z) ik.0$+(z) ik.0$ (z)
(3.179)

It is clear that the dependence on f+ and it is already
chirally split, so we shall deal with it later on. Notice
that the second and third exponentials on the right-hand
side are complex conjugates of one another only when k"
is purely imaginary. Of course, physically k)" is rather a
real vector, but we shall also see later on that from
several points of view k" should be analytically contin-
ued to imaginary values.

Thus we are ultimately interested in the integral

where

m'= —,' y k/'ky(x(z, )x(z, )),
i g—k/'(x "(z; )I' ), (3.185)

The next step is to single out the ingredients that are
not manifestly split. They will be expressed in terms of
correlation functions of the field o.~I where

o.II= d zX+ z + zcoI z (3.186)

A' =X'++X' —2~ Imo ~l(lmQ)lJ'Imcr~J,

(3.187)

where P is an arbitrary point on the worldsheet. The
combinations X+, X+, and L'+ depend analytically on
the z, and on Ql& and involve only the chiral fields i/~+,

X+ = gkf'ki'lnE(z;, zj ) (3.188)

Thus we find, using Eq. (3.182) and momentum conserva-
tion,

Z. Z ~

~o=Xo++Xo +2m g k/'k "Im f 'col(lmQ)lJ'Im f 'coJ,
ij P

Zl

Jy =~ +~ 47ri Im—o.y(lmQ)lJ' y k/'Im &I,
P

'kI" ~{ . ) —I —I' —I
(3.180)

6 (z, w) = (x (z)x (w) ), (3.181)

which is, however, not Weyl invariant as explained in
Sec. II.G, and it is appropriate to define the Weyl-
invariant combination F (z, w ),

—lnF(z, w) = 6 (z, w)+ —,'lnp(z)+ —,'1np(w)

—
~ Gg (z, z) —

2 GR ( w, w) (3.182)

leaving the Dirac fermion i/j+ integrals for later. We
have, however, included the I term here, because it will
naturally cancel some of the x integrals. The Green's
function for the x field is

g k/'f d zX, +(z)g" (z)B,lnE(z, z;),
4m, .

(3.189)
X'+ ——— f d z f d w X, +i/+(z)X +P+(w)32~'

(x+ (z)x+ ( w) ) = —lnE (z, w), (3.190)

&& c),c) lnE (z, w ) .

In practice, the expression exp(%++%++X'+) can be
viewed as resulting from contractions of an effectively
chiral field x+ (z) with effective propagator

Furthermore, recall that F(z, w) has a very simple
decomposition,

so that

exp(X++X++X'+)=(e ' + ' ) . (3.191)
lnF (z, w) = ln

~

E (z, w)
~

W —1
LO—2~ Im col(lmQ)IJ Im coJ,

Z Z

(3.183)

where E(z, w) is the prime form and QlJ the period ma-
trix.

The Gaussian integral is now easily performed, and
one gets

Finally, L,L, and L' are the complex conjugates
of X+, X+, and X'+ with the understanding that k/' is
taken to be purely imaginary.

Returning to Eq. (3.184), the amplitude A, can be
rewritten as

(2 )]Op(k) 8 rr det b,

f d'r&g

—5
Do+A+ A' (3.184)

In the remainder of this section, the lower index on g, + is
now an Einstein index, and repeated I,J, . . . indices are
summed over.
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—5

)io5(k) 8rr det

f d P~gdet ImQ

Xexp(Ão++X' +%++X'++X +X' )A',
(3.192)

and the remaining amplitude A„' is gotten by collecting
the pieces that are not yet manifestly chirally split. For
later convenience we have rearranged a factor of
det ImQ. Thus A„' is given by

/1 z. n Z.
A' =(detImQ) exp —2' Imcrfl+i g k/'Im f gaol (ImQ)IJ' Imo'iJ+i g kI'Im f 'roJ

i=1 j=l
(3.193)

(3.194)

We previously indicated a good reason for taking the external momenta purely imaginary. We now see that if k,I' are
all imaginary, A' admits a remarkable representation generalizing the one encountered in Sec. II.G:

2n z,.A' =f dye' exp irrp/QIJpJi'+2rrpf cril'+i g kPf 'gaol
i=1

Here pj' represent the internal loop momenta, and for consistency they have been analytically continued to imaginary
values as well —this has been indicated by the subscript ~ to the integral. Of course, the integral would not be conver-
gent, so it should be symbolically understood: the absolute value square is taken with p/' imaginary, but to evaluate the
integral one must analytically continue to real p/'.

The combination involving det 6 admits a splitting in terms of left- and right-movers on the Riemann surface as well

(up to an anomaly that will ultimately be cancelled, as explained in Secs. VII.A and VII.D),

8' det

f d g+g det ImQ
(3.195)

Taking this into account, it becomes transparent that the full amplitude —for fixed internal, imaginary momenta p/'—
has been split (or factorized) as a product of an expression involving chiral operators i/j+ and holomorphic z; =(z;, 8; )

times its complex conjugate.

A =(2m)' 5(k)f dpg9 (z;, P+, Q, X;p/')9, (z;,Q, Q, X;pj'), (3.196)

where the operator V„only depends on i/+, z;, and Q and not on i/, z;, or Q,
r

1 z.
7 (z;, i/t+, Q, X;pf)=[Z&(Q)] ' +E(z;,zi) ' 'e + +exp ivrp/'QIJpJ" +2vrp/' ol+i g k/'f coi

I+J I

(3.197)

In formulating the type-II superstring, it was necessary to sum separately over the spin structures of left and right
chiralities. This can now be easily achieved by evaluating the expectation value for the P+ and i/ fields separately on
each chiral component, each with its own spin structure. The two halves may then be brought back together for the
same value of pg' and the p/' integral carried out. Thus the amplitude for different left- and right-spin structures v and v
is a simple generalization 'of Eq. (3.196),

A„=(2')' 5(k) f dpgV„(z;, i/j+, Q, X;p/')V (z;, i/, Q, X;p/') . (3.198)

This entirely defines the rnatter contribution to the type-II superstring amplitudes involving only exponential insertions.
The contributions of higher vertex operator insertions (containing in addition derivatives of x) can be similarly evalu-
ated, and one arrives at an expression like (3.196), with V still chiral, but now also dependent on the derivative inser-
tions. We shall work out the amplitudes for the scattering of massless particles for tree level in Sec. III.L and one-loop
level in Sec. III.M.

Next, we must evaluate the amplitude for the full matter contribution, gotten by integrating out the Dirac fermion
fields l/j+ and g

n= fDt/&+DIP A, e "Q exp[ik/'0, $~+(z, )+ik/'0, $" (z; )], (3.199)

(3.200)

where it is understood that i/~+ and i/j" are endowed with spin structures v and v, respectively. With the help of Eq.
(3.198) we may rewrite this expression,

1

A =(2n. )'o5(k) f dp/'C, (z;, Q, X;p/')C (z;, Q, X;pg),

where
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1&,. ~ I& . n z,.

Cv(z, , Q, X;pg)=Cv[Z&(Q)] ' QE(z, ,z )
' 'exp irrpgAIJpJ"+2'iripj' g k," col

I (J i =1 P

C', = fDitiP+e

(3.201)

When the spin structure is even, there are generically no zero modes to the Dirac operator, and the Dirac propagator
is given by the Szego kernel (Secs. VI.F and VII.C),

6[v] f col, 0
S (z, w)= —(q (z)q (w)) = (3.202)

which. is meromorphic in z and w, and analytic in Q. As a consequence, the reduced amplitudes C of Eq. (3.201) are
analytic functions of z;, QIJ and they depend only on 7,+.

When the spin structure is odd, there is generically one zero mode h (z) to the Dirac operator, and the Dirac propa-
gator is not uniquely defined. One choice is to take the propagator orthogonal to the zero mode, which can be achieved
by demanding

h (z)h„(w)V'S' (z, w) =2~5 (z, w) —2'
V V

(3.203)

Since h (z) depends holomorphically on Q, S itself will not be holomorphic in fl. One can define an analytic propaga-
tor, at the expense of letting it transform with the wrong weight, and depend on an arbitrary point y on the Riemann
surface,

S (z, w)= 1

E z, w

g Blil[v] f co, I), col(y)
I W

y a,a[v](o,n)~, (y)
(3.204)

This propagator obeys

7'S (z, w)=2~6 (z, w) .

Actually, S' can be represented in terms of S,

h (z)h (w)
S'(z, w)= S„(z,w)+ —f d P f d Qh (P)h (Q)S (P, Q)

h Ih„
h (z) h, (w)f d P h (P)S,(P, w)+ f d P h (P)S,(P,z),

V V V V

(3.205)

and. does not depend on the extra point y any longer. S'
is antisymmetric in z and m, as expected, and orthogonal
to the zero mode. It is thus appropriate to write

S'(z, w)= —(i'' (z)i(i' (w)), (3.206)

where the prime on the fields stands for the fact that i'+
is considered in the space orthogonal to the zero mode.

Whereas for even-spin structure it was straightforward
to show the holomorphicity of C in z, , 0, and X, for
odd-spin structures there are several obstacles. First, the
Dirac determinant with zero modes removed is no longer
the absolute value square of a holomorphic function of
A. Second, the Dirac propagator S' orthogonal to zero
modes must be used to contract iI'j', and it contains
nonholomorphic dependences. We now show that a
careful treatment actually produces a fully holomorphic
amplitude C for odd-spin structure v.

It is convenient to recast the contribution
%++%++X'+ in terms of a contraction over the chiral

(3.207)

where the reduced amplitude A is given by

% = fDiti+e
llI 2vrpipv&~

" ik pe Q(z.).
i=i

D +exp —I@ + d zq" z + z (3.208)

and the source ri"(z) is independent of i'+,

rii'(z) = — X +[B,x+ (z) —2mpj'col(z)]
1

n

+i g kI"8;5(z —z;) . (3.209)

I

Bose field x+, as shown in Eq. (3.191).- Thus the ampli-
tude C becomes

Z.

C = Z~(Q) ' exp ivrpPAIJpj'+2rripgk('f col
P
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We now isolate the zero mode h, of g+,
h„(z)

P (z)=&.(z)g'+g'„(z), &,(z)=
h, [h

and 1l'+ is understood to be orthogonal to h„, so that the
functional integral simply splits,

I, ~—(g
~

p'+&

=+ (g"
~

h )(det'B) exp ,' f—fAS'g
p

The difference between S' and S consists of terms pro-
portional either to h (z) or to h (u). In view of the pre-
factor resulting from the zero-mode integration, such
terms cancel. Furthermore, multilinearity of the same
prefactor allows us to rearrange the normalization factor
ofh,

of massless external particles, as we shall see rebore explic-
itly in the case of one loop in Sec. III.M.

From inspection of Eqs. (3.200) and (3.201), it is clear
that the space-time amplitude corresponding to the chiral
half C, with v even, is space-time parity conserving.
External momenta and polarization tensors are contract-
ed only with the metric tensor of space-time —the Min-
kowski or Euclidean metric in this case.

On the other hand, from inspection of Eqs.
(3.207)—(3.210), we see that to the chiral half C with v
odd there corresponds an amplitude invariably contain-
ing a ten-dimensional space-time e or completely an-
tisymmetric tensor. It arises directly from the integra-
tion over the Dirac zero modes, which produces the
product of the ten components of a Grassmann-valued
space-time vector,

A,=g(q" ~h ) exp —,'f fgS rl
p V V

(3.210)

As we shall see in Sec. VII.A, the determinant factor now
precisely contains the correct zero-mode normalization
to make it the absolute value square of a holomorphic
function of 0, and S itself was of course holomorphic.
Thus we have established full holomorphic splitting of
the amplitudes with exponential insertions for even- and
odd-spin structures.

What happens for full-Aedged scatteririg amplitudes-
say, of massless particles' There are further obstacles in
principle to chiral splitting. Foremost among these is the
fact that the superderivatives that enter the vertex opera-
tor construction themselves involve fields of both chirali-
ties. This can be seen directly from Eq. (3.66), and is ac-
tually already familiar from the study of the superstring
action which involves the chirality-violating term
XXiP+P Thus the e. xtension to higher vertex operators
of the property of chiral splitting is nontrivial. In the
case of massless external particles, we have checked that
chiral splitting holds in exactly the same way ps for sim-
ple exponential insertions, with the additional property
that if g is the source term to 2)+X and g to 2) X, then
there will be holomorphic dependence on g as well. We
shall not reproduce these calculations here, but postpone
to the one-loop case the treatment of amplitudes of mass-
less bosons and the proof of their chiral and holomorphic
splitting properties. A general proof of these properties
will be given elsewhere (D'Hoker and Phong, 1988a).

2. Spin structure versus space-time parity

It is interesting to examine the space-time character of
the various amplitudes we have evaluated. Clearly, we
have not directly dealt with physical external particles,
but only with exponential insertions, but the observations
listed below in fact easily extend to the case of any type

with g„=(g„~ h, ). All remaining contractions of
space-time indices are done with the ten-dimensional
metric tensor. Thus the chiral amplitude C, for v odd is
space-time parity violating —actually parity odd.

This means that the fuH amplitudes for the type-II
superstring will be parity conserving if left and right
worldsheet chiralities are endowed with either both
even-spin or both odd-spin structure, and will be parity
violating if the spin structure parities are opposite. Of
course this reasoning has assumed that the vertex opera-
tors themselves do not involve the v symbol, as is indeed
always the case for low enough mass level (m & 12); if it
is present, the assignments should of course be reversed.

L. Tree-level amplitudes for the type-II superstring

In this section we present a reasonably complete dis-
cussion of the tree-level calculation of superstring ampli-
tudes. To remain specific, we shall deal with the tree-
level case of the type-II superstring, determine the mea-
sure, factor out the superconformal Killing vector fields,
and evaluate the three and four massless boson scattering
amplitudes.

For h =0, there are six real conformal Killing vectors,
four conformal Killing spinors, and no sgpermoduli pa-
rameters. The measure must thus bc modified to

DEMDQM5(T)=(sdet'P+P )' D'V DXDL, (3.211)

where the prime on D'V denotes the fact that it is re-
stricted to the complement of the KerP, . As in the bo-
sonic case, a super Weyl transformation X brings out the
following dependence:

DE~ "DO~5( T)= (sdet'P, P) )
'

Vol(KerP, )

&&e DXDV DL . (3.212)

Assuming that the correct procedure is to divide by the
factor of sJV= Vol(sDiff) X Vol(sWeyl) X Vol(sU(1) ), one
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obtains the formula for the tree-level scattering ampli-
tudes

( V (k, ) . . V„(k„))= ce (( V, (k, ) . . V„(k„)))

transformations (3.215) with T satisfying (3.218) are su-
perconformal. The weight under which the difference
transforms is easily derived, and we have

1
X

Vol(KerP, )
(3.213)

z12

(cz, +d +P8, )(cz2+d +P192)
(3.219)

where the symbol (( )) denotes the fact that the func-
tional integral over X alone was performed. The deter-
minants of 2)+2) ' ' and P 1+8, are constants, since there
are no supermoduli, and we denote their e6'ect by c.

Similarly the line element transforms as

dzdx~dX=
(cz+d +PO)

and the volume element as

(3.220)

3. Superconforrnal transformations

U a
8'= w, T = c

b a
d P
6

(3.214)

To make contact with X =1 superspace, we introduce
the projective coordinates

on which GL(2
~

1) acts by super Mobius transformation:

az+b+oO yz+5+ AOz~ O~
cz+ d +p9 ' cz+d +/N

(3.215)

To obtain a superconformat transformation T, we must
transform the line element d z =dz + O d O into itself up to
a conformal scaling. Equivalently, "the quadratic form"

z, 2 —z, —z2 —O1O
U1W2 U2W1 —P1$2

W1W2
(3.216)

should transform into itself up to a conformal scaling.
This is uniquely achieved when the orthosymplectic form

The next issue we must settle is the volume of KerP, .
To analyze this, we must write down the invariant
volume element on this space. The supercoeformal in-
variance group is isomorphic to complexified OSp(1, 1)—
the superconformal extension of PSL(2,C) defined in Eq.
(2.106). To see this, we start with homogeneous coordi-
nates (U w g), where latin (greek) variables describe
(anti-commuting) commuting variables. On this triplet,
we have a natural action of GL(2

~

1) T: 8'~ TW,

dzhdO —+ (3.221)cz+d +P19

Elements in OSp(1, 1) are in unique correspondence with
a triplet of points in the superplane (z „0,), (z2, 82),
(Z3, 03) obeying one single (Grassmann-valued) con-
straint. The counting works out because OSp(1, 1) has
three commuting and two anticommuting parameters.
The constraint is an Osp(1, 1)-invariant Grassmann-
valued function, dependent on three points (Aoki, 1988),
given by

z12O3+Z31O2+ 23O1+ O1O2

(Z, 2Z23Z31 )
(3.222)

dz 1 dz2dz3d Oid O2d O3

(z,2z23z3, )
1/2 (3.223)

is invariant under OSp(1, 1). The invariant volume ele-
ment induced on OSp(1, 1) is obtained by multiplying it
by the 5 function of the constraint 5(b, ) =b. :

dz 1 dz2dz3d O1d O2d O3
dp= 1/2

(Z12Z23Z31 )
(3.224)

The natural value for b, is of course 0, which implies that
one O is dependent. With this value for 6, it is easy to see
that there is a unique correspondence between triplets of
points satisfying b, =O and elements of OSp(1, 1), so that
the latter may be accordingly parametrized.

In particular, the volume element on OSp(1, 1) may be
calculated in this fashion. We already know from Eqs.
(3.219) and (3.220) that the six-dimensional volume ele-
ment

0 +1 0
K= —1 0 0 (3.217)

0 0 1
2. Evaluation of correlation functions

is left invariant under T:

T KT=K . (3.218)

Note that the transpose of a matrix T is defined by

c y
d 6

—a —p A

so that (TR') = W T, and sdetT =sdetT. Thus the

To calculate the correlation functions of a sequence of
vertex operators, we would need the Green's function for
the super Laplacian on the sphere. However, the Weyl
invariance of the measure and the correlation functions,
as well as the conservation of momeritum, imply that one
may instead work on the superplane after a stereographic
projection, exactly as in the bosonic case. Here, the
propagator is very simple,

G(z, z')= —ln(
~
z —z' —68'

~
+c. ), (3.225)
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and e is understood to be infinitesimal. The vertex opera-
tors will be described extensively in Sec. VIII. Here we
shall provide an example involving the simplest possible
physical vertex operator: the one for bosonic particles at
zero-mass level k =0,

V(e, k)=ge„f d zEX)+X"gl X"e'" (3.226)

describing the graviton, the antisymmetric tensor field,
and the dilaton. The polarization tensor e, is under-

pgp
stood to be transverse in k, and the vertex is effectively
normal ordered. To compute correlation functions of
several of these vertices, it is useful to recall a trick
known. from the bosonic string. It consists of introducing
a source for both X and its derivatives, and then isolating
the correct expansion coe%cient when developing in
powers of the source. The key observation is that we
may formally write c, , =g„g, where g„and g are
Grassmann-valued vectors. By linearity of any ampli-
tude in the c, . 's, clearly any e . can be written as a for-

p, ;p P. 'g P
mal sum, but we shall not explicitly need this construc-
tion. Once this has been done, we may introduce a gen-

I

eralized vertex

V*(g,g, k)=g f d zEe + (3.227)

whose g' coefficient is precisely V(E, k). Thus we shall
perform our calculations on V*, introducing a different
set of g's for every e of V and selecting the correct term
in the expansion in g's.

"We thus calculate the n vertex correlation function
starting from the V operators,

=g fd"z, . d E(exp Jd zd"(zlX (z)l,
(3.228)

n

J"(z)=g (ikt'++2)'++/";Xi' )5 (z, z;) . ' (3.229)

By completing the square in the expectation value, we get

where the source can be read off from the definition of

n

exp f d z J"(z)X„(z) =(2m. )' 5(k)exp 0„——,
' g k; k G(z;, z )

i&j =1
(3.230)

Here the terms with i =j are independent of momenta k and of the coordinates z, . Their contribution is absorbed into
an overall normalization factor for each vertex, which will be omitted here:

n

( ik; g—JIB~ —ik, gild —
—,'g, .g 2)'+21+ ——,'g, g 2)' 2)~ ——,'g, g,2)'+2Y ——,'g, g Xl' %~~)G(z;, zj ) .

i&j= 1

(3.231)

For tree-level amplitudes, we work on the superplane and we use the Crreen's function of Eq. (3.225). Thus we have
(with 0;~ =6l; —8, )

2Y+ G ( z;, z )=—0;
2V G(z;, z )=—

V

2)'+2)J+G(z;, zj)=—,2)' XV G(z;,zj)=-
Z/J

2)'+XV G(z;, z )=0, 2)' 2)~~G(z;, z )=J0 .

(3.232)

Actual calculations of the above from Eq. (3.225) would yield additional 5(z;,z ) functions, which in the tree-amplitude
calculations disappear in view of analyticity in the external momenta. Thus we ar'e effectively left with

n

+&k 0, '+ik 0, '+'0 0, +'0 0, (3.233)

We now work out the three-point amplitude first and separate Q„as a function of g's and g ( 9„=Q~ + Q~ ):

12 12 13 13 23 023 . 1, 1 . 10(—i +kl 'g2 +k2 gl +kl 'g3 +k3'gl +k2'$3 +k3'g2 —lgl'g2 —lpl'g3 —i/2'g3
12 12 Z13 Z13 Z23 Z23 Z12 Z13 Z23

(2.234)

In evaluating exp(Q„), one retains terms proportional to $,$2/3; however, the term with three 0 s vanishes because

This is equivalent to the old argUment of the "cancelled propagator. "
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Z23

(3.235)

012023031—0. Thus one is left with

Pl 02 813 823 02 03 812 813 01 03 812 823
exp(~()-i + kl g3 +k2.(3 + k2.01 + 3.01 + 1.4 +k3.4

Z12 Z13 '23 . Z12 13 13 12 Z23 . .

Using transversality and momentum conservation, we have k2 g3 k 1 g3 etc so that

1
exp( 0()- i- [f, g2 k, -(3(z23813+z31823)+cyclic perm. ] .

12 23 31

Now there is a remarkable identity:

Z23813+Z31823 —Z2381+Z3182+Z1283+ 818283—(Z12Z23Z31 )
1/2

where 6 was the OSp(1, 1)-invariant function introduced in Eq. (3.222). Thus

(3.236)

(3.237)

{{V(E„k, ) V(e„k, ) V(e„k, ) » =4(2~)"&(k)f Z12Z23Z31 I $I 2~3
(3.238)

where

{V(e„k, ) V(e k ) V(e,k ) & =4(2m )' 5(k)E, ' 's ' 'e ' 'X„„„&
(3.239)

The factors 6 and 6 appeared rather magically in the. course of the above calculation. Actually, one never needs to
isolate 6 or 6 explicitly, provided one makes the following choice for the gauge fixing of the superconfor. al group:

z1 ——0, z2 ——1, z3 ——oo, 01, 02=0, 03=0 .

The variable 5 in this gauge takes on the expression 6= —01, so that fixing the superconformal gauge is performed
upon removal of

d z, d z2d 02d z3d 0

12 23 31

the factor of 6 being taken care of automatically by the 01 integration.
To compute the four-point amplitude, we shall make use of the above gauge from the outset. We choose z =z, ,

z2 —0 z3 —1 z4 (x) 01 02 03 04 0, and then have

012
~4 +kl 4 + 2 01 +k1 03 +k3 01 +k1 04 +k4 01 +k2 03 +k3 02

Z12 Z21 Z13 Z13 Z14 Z14 Z23 Z23

02 02 . 1 . 1 . 1 . 1 . 1 . 1+k2.$4 +k4 g2 +1/1 g2 +1/1 g3 +lgl'g4 +&$2 (3 +~(2'g4 +i /3 g4
Z24 Z24 Z12 z13 Z14 Z23 Z24 Z34

It is easy to see that exp( 94~) contains no terms with 4k's because there are only two 8's. Thus

(3.240)

1
exP(&4)= 01 024 04

12 34

1
+01 k4 4 +&1 0402 4

Z 13Z24 Z14Z23

0201+ k 02 kl'kk2 k4 +k, $4k2 g3
Z 12Z 13Z24 12 14 23

+perm. (3.241)

In principle, one should now multiply this whole expression by the one involving the j s, perform the integrals over z
and 0, and regroup terms, clearly a feudal task. The calculation is enormously simplified by the factorization properties
of the Veneziano integra1s.

Recall that we have the ordinary integrals

d z g g 21 21 I( —1 —2 —8) I(1+3)l(1+8)z z (1—z) (1—z)
I ( —W)N —8) 1(~+~+2) (3.242)

provided A —A and 8 —8 are integers, which is always the case in string theory. Using the reciprocity formula for I
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functions,

r(z)l.(i —z)= .
sinmz

(3.243)

and the fact that A —A and B —'B are integers, we see that this expression is actually symmetric under ( A, B)~(A, B ),
as one might expect from complex conjugation. More importantly, the answer factorizes into a product of factors, each
dependent only on the parameters for either the z or z coordinates. This product property implies that one need only
consider, say, the z coordinates to find the full amplitude, which by the same token will also completely factorize as a
function of g's and g's. An analogous formula is derived for the superintegrals we need:

2

d 8 [8 8 ]'[8 8 ]' ","(1— ) (1— ) =( —2')' '(+2')' ( A ) ( + A) +
B) I (A +8+1+a) (3.244)

Here a and a are either 0 or 1, and the integrals are symmetric under (a AB)~(a AB ) using Eq. (3.243) and the fact that
A Band —A Bare—integers. With the help of Eq. (3.244), it is now straightforward to evaluate the four-point func-
tion,

( V(E„k, ) V(E2 k2) V(E3 k3) V(E4 k4) & =(2~)' 5(k)g f d z d 82
~ z]z

~

'
~
z, —1

~

"e

2 105 k 4 r( —s/2)l ( —t/2)r( —u/2), ]1,22,33,44K E
I (1+s/2)I (1+ t/2)I (1+u/2)

(3.245)

Using the abbreviation i for p; to save some writing we have Kp „„p—E1234 and E is then given by

K ]234 —( st7I]37$)4 su g]4 /23 tu ]1]2tI34) —s ( k, k 3 f24+ k 2k 4 g]3 k ]@4]]23

krak

3 g]4)
4 2 3 1 3 2 4 1

+t(k3k4q]3+k3k] f24 k2k] f34 k3k4g]2) u(k]k4g23+k3kpg]4 k]k2 f34 k3k4g]Q)1 3 4 2 4 3 1 2 2 3 4 1 4 3 2 1 (3.246)

We conclude this subsection by remarking that by su-
perconformal invariance, the zero-, one-, and two-point
functions of the superstring all vanish. The fastest way
of obtaining this result is by remarking that SL(2, C) is a
subgroup of the superconformal group, and that the
respective subgroups leaving 0, 1, or 2 points fixed a11

have infinite volume, so that the amplitudes vanish.

I

The presence of conformal Killing vectors and spinors re-
quires the insertion of the ghost c and the superghost
5(yo) where yo is the zero mode (for odd-spin structure).
Thus

= f dms fD(xgbcPy)J, J V, . V„e
'1

(3.248)

M. One-loop amplitudes for the type-ll superstring
When v=(1, 1) is odd, we have

2 =bc5(PO)5(yo), (3.249)
To deal with one-loop amplitudes, it is convenient to

return to the component formulation of Sec. III.K. On
the torus, there are four spin structures, one odd corre-
sponding to periodic)&periodic boundary conditions for
all worldsheet spinors, and three even-spin structures,
containing at least one antiperiodic boundary condition.
For even-spin structure, there is one complex modulus
and one complex conformal Killing vector. For odd-spin
structure, there is in addition an odd modulus and a com-
plex conformal Killing spinor. It will be convenient to
represent a spin structure by its corresponding charac-
teristics v=(a, b). Here a and b take the value 0 or 1 ac-
cording to whether the boundary conditions are an-
tiperiodic or periodic, respectively, about A and B cycles.
Left and right chiralities will be endowed with separate
spin structures v and v. Thus it is appropriate to decom-
pose the one-loop amplitude as follows:

where po and yo are the zero modes of the corresponding
fields. If v is even, on the other hand, the po and yo
modes are absent and we have

(3.250)

and J' is the complex conjugate of 2„, considered for
spin structure v.

We shall now evaluate this expression for the case of
bosonic vertex operators. In this case, the vertex opera-
tors are independent of the ghosts, and this integral may
be performed separately. Both ghost chiralities may be
integrated over independently, and one recovers the for-
rnulas derived earlier. For even-spin structure v

A, „=f D (bcPy )bce

&V, . V„&=pc (V, V„& (3.247)
1 det'V', (detV' ]&2) (3.251)
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whereas for odd-spin structure

A, „=f D(hcavy)bc5(/30)5(yo)e
(1, 1)

=det'7', (det'(p", q2)(, ',
)
——1 . (3.252)

det'(I(" ) =—'21(r)

Here A is a normalization factor for conformal Killing
vectors and spinors, and is given by the area of the
worldsheet: A =2&2. Unity results in Eq. (3.252) be-
cause the operators V', and V' »z are identical on the
torus (with Euclidean metric) when both have periodic.
boundary conditions.

It .is straightforward to evaluate [for these and the
matter determinants (3.257) below, we refer the reader to
Sec. V.A]

(detP~) = ', v~(1, 1),8[v](0,r)
7l 7

det'Q+

(h ih)

(3.257)

for the torus, since there is only one X. Further, when
there are Dirac zero modes (for odd-spin structure), the
last expectation value involves an integral over all of
them. Finally, the determinants of the Dirac operators
are understood to be primed with the zero mode h fac-
tored out when the spin structure is odd, and to have no
such modifica'tion when the spin structure is even.

We have the explicit formulas

and for even-spin structure v

8[v](0,~)
—1/2 v

( )
(3.2S3)

Considerable simplification occurs upon putting the
matter A and ghost A, h parts together to obtain the
full amplitude A =A, &&A, „~A., h..

Notice that the superghost part of the amplitude is in-
dependent of the supermodulus g. Recall indeed that the
Faddeev-Popov operator could be separated into I'1 and

P, &z without cross terms (see Sec. III.E).

n

A=fD(x1t)bcI3y)ge ' "' J J e

=—(21r)' 5(k)M, M f dp "Vg

For even-spin structure, we have

(3.258)

1. Exponential insertions

A =fD(x1if)+e ' " 'e (3.254)

where X"=x"+9$P+ +9/" +i 99F"and I is the matter
action in components. It is implicit that left- and right-
spin structures are fixed to be v and v. Using the results
of Eqs. -(3;196) and (3.197), we have

A = (2')' 5lk)
(Imr )

5
det'@

(h ~h)

det'Q+
5

Next, we evaluate the matter contribution, and again
use the results of Sec. III.K. Recall that in principle all
vertex insertions for bosonic external particles could be
obtained from the insertion of (unintegrated) exponential
factors. Thus it is best to evaluate these first, since they
are simplest. Consider the amplitude

6[v](0,r).
~(&)12

whereas for odd-spin structure

M(1 1]=1

(3.259a)

(3.259b)

where S (z, w) is the Dirac propagator, given by the
Szego kernel

8[v](z —w, r)6', (O, r)
S (z, w)=

a[v](o, r)y, (z —w, r)
(3.261)

It may also be useful to recall that the prime form E
takes on a simple form for the torus,

It remains to evaluate V . Here again, we distinguish be-
tween even- and odd-spin structure.

For even-spin structure, X+ and o" vanish, and

rte ' ' + ') =exp —,'Xk; k, P;& s(zz, (', , , .

i=1 V

(3.260)

X f dp "7',(z, , 9, , p"r)9'(z, , 9, , v ,p"), "

where the reduced chiral amplitude V' is given by

(3.25S) 8,(z —w, r)
E(z, w) =

8I(0,r)
(3.262)

k,. -k.2 =Q E(z;,zj) ' 'exp(imp"rp" +.i2mp"k/'z, )

l(J

Clearly, it is advantageous to define the "chiral X propa-
gator" in analogy with Eq. (3.190),

n

X e + exp ik,~O, ~+ z,
i=1

(3.256)
G (z, w)=G, (z, w)+9, 9 S (z, w),

G, (z, w) = —lnE(z, w),
(3.263)

The contribution of X'+, present in Eq. (3.196), vanishes so that
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2 =exp ip"~p"+i2mp" gk/'z, —g k; k.G (z;,z ) where
E(J

(3.264)
v, =(a,b+a+1), v, =(a,b+a+1),
v =(b,a), v, =(b, a) (mod 2) .

=G (z, w)+ G (z, w) — (z —w —z+w)
2V2

(3.265)
and it is well defined on the surface, though no longer
meromorphic. The last term arises because of the x zero
mode. No analogous terms arise for the Dirac propaga-
tor because for the even-spin structure there are no Dirac
zero modes. Notice also that since the auxiliary field F"
in X"has been set to zero from the outset, we do not pick
up a 5-function contribution to the propagator. Analyti-
city in the external momenta justifies dropping such
terms, as long as the propagator is evaluated between
vertex operators, as will always be the case here.

For odd-spin structure, X+ and (7" do contribute;
however, since they are linear in 7, each of them can only
be contracted with the exponential insertion. The 1E+
propagator S, orthogonal to the constant-zero mode of
g, is given by

So(z, w) =So(z, w ) ——(z —w —z +w ),
'T2

8', (z —w, r)
So(z, w) =

8i z —w, r

(3.266)

Here we have abbreviated the odd-spin structure by
0=(1,1). It is easy to see that this is a well-defined func-
tion on the torus. The full propagator for odd-spin struc-
ture is then given by

G(i ])(z,w)=(X(z)X(w))
= Go(z, w)+Go(z, w)

where

(z —'w —z+w —8,9 +8,8„)
'r2

Go(z, w)=G, (z, w)+8, 8 So(z, w) .

2. Modular invariance

We now discuss the coefBcients C occurring in the
summation over spin structures. 6 is manifestly modu-
lar covariant, as may be seen by using Eq. (E5): the only
eff'ect of a modular transformation on 6 is to permute
the spin structure according to the modular group,

G (z —z', 88', ~+1)=G „(z—z', 98';r),
(3.267)

z —z' 00' =G (z —z', 88', r),
7 7 'T V V

Note, however, that E (z, w) is multivalued around 8 cy-
cles on the surfaces. The full propagator for the X field is
simply related to G:
G (z, w)=(X(z)X(w))

=( V, (k, ) . . v„(k„)), (r) .

Hence modular invariance of the full amplitude requires
the following choice for the constants C

1
C(] Q) C(Q ]) , C (] Q) C (Q ]) ,

(3.269)
w~v. +1, C(Q &)

———
C(Q Q), C (0 i)

—— C (Q, Q)

and this should hold for all v and v. Note that, since the
odd-spin structure (1,1) transforms as a singlet under the
modular group, the relative magnitude with even-spin
struct'ures is not fixed by modular invariance. It should
be determined by factorization, in the limit where the
torus degenerates to the sphere.

3. Three- and four-point amplitudes for massless bosons

Though the prescriptions given above are complete
and explicit, it'may be instructive to work things out for
an example. Let us consider scattering amplitudes with
massless external particles only (the graviton, dilaton,
and antisymmetric tensor field). Such operators are pro-
duced by the generating vertex V*(g,g;k) introduced in
Eq. (3.227). As in the case of tree level, the amplitude
(3.228) is expressed through Eqs. (3.230) and (3.231), but
the propagator is now understood to be 6, of Eq.
(3;265).

For even-spin structure, we consider the chirality-
conserving form first and then split it to obtain the chiral
amplitude. The relevant superderivatives are

2)~+G (z;,zj ) =2)~+G (z;,z) )+ 8~(z, —zi —z;+z~ ),
92

2)'+XV+6 (z;,zi) =2)'+2Y+G (z, , zj )+ 8;8, ,
'T2

(3.270)

2)'+2/ G (z, , z))= — 8, 9~2''

Note that the odd-spin structure is transformed into it-
self. This at once implies that the vertex operator con-
tractions (( V, (k, ) - V„(k„))) are also modular in-

variant in this sense. Modular invariance of the full am-
plitude ( Vi(ki ) V„(k„)) will be achieved provided a
choice for C is made that is consistent with modular in-
variance. It is easily checked that the measure in Eq.
(3.258) transforms correctly under modular transforma-
tions, except perhaps for a constant phase:

( Vi(k, ) V„(k„)) (r+1)
= ( —I )'+'( V, (k i ) V„(k„)), (r),

(3.268)

&V, (k, ) V„(k„)).. ——
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Again, we have neglected all 5(z, , z, )'s, because they do
not contribute to the amplitude in view of analyticity in
the external momenta. Thus we may separate Q„of Eq.
(3.231) into two chiral parts expressed only in terms of
the chiral propagator G (and its complex conjugate) and
a mixed part, which we shall call 0', :

g„——,
' g k, .k, G, (z;,z, )

i+J
= 0&+9&+0

——,
' g k, k, [G,(z, , z, )+G,(z, ,z, )], (3.271)

i+J

where the chiral part is given by

g-„=g [ ik; gj—l)J+G, (z;, zj. ) ——,'g; g,2)'+l)J+G, (z, , z) )]
l+J

(3.272)

and g~ is its complex conjugate (for imaginary k/'). The
mixed part can be simplified with the use of rearrange-
ments familiar from Sec. III.K:

g [—Im(g'e; )+ik/'Imz, ]
2 1

Following the derivation of Sec. III.K, we may introduce
the loop momenta p" and write

e "=(r2)5f dp"
~
exp[ i vrp "rp"

+ 2rrp "( —g";e;+ikt"z; )]
~

modes. Inserting, for example, a massless vertex eats up
two zero modes. However, one fermion mode is also
eaten up by fixing a conformal spinor gauge for the su-
persymmetry operator. One more is produced by the
presence of the superrnoduli parameters. A11 zero modes
must of course be killed, so naively the lowest number of
vertex operator insertions necessary to make the ampli-
tude nonzero is five. However, overall momentum con-
servation implies that this amplitude also vanishes, and
one has to go to six external particles to obtain a nonzero
contribution from the odd-spin structure.

We first show that the zero-, one-, two-, and three-
point functions vanish identically. This fact is based
upon two fundamental observations. For three or fewer
external massless particles, one always has k; k. =0 for
all i and j, so that P„only involves Q~, which depends on
the derivatives of 6 only. These derivatives are given by

n', G( z, , z, ; r)=e,s.(z, ,z, )+e, a, G, (z, ,z, ),
(3.276)

X' n, G.( z, , z, ; r)= —S.(z, ,z, )+e,e, a, a, G, (z, ,z, ) .

The partition function and the one- and two-particle am-
plitudes all vanish simply by the use of the famous Jacobi
identity of (El 1) and the assignments of the coefficients
C

g C B,i, (0,r)"=0, v=(a, b), v=(a, b ) . (3.277)

For the three-point function one uses, in addition to the
above, the facts that

(3.273)

Thus the full amplitude (still for even-spin structure) may
be recast in a familiar form,

( V*, V„*) =(2m)' 5(k)M M f dp "V,P, , (3.274)

where

7 (z, , k, g, r;p")

=exp imp r+2mp~( —pe;+ikpz, )

g C g,„(0,r) 2)+G (1,2)X)+G,(2, 3)2)+G,(3, 1)=0,
(3.278)

g C„B,b(0, r) 2)+G (1,2)2)+G (2, 1)2)+G,(3, 1)=0,

which are equivalent —in component language —to the
equations

g C D,i, (0, r) S (z, z~ )S,(z~ —z3 )S (z3 —z, ) =—0,
(3.279)

g C g, i, (0,r) S,(z, —z2)S (z2 —z, ) =0 .

——,
' g k,. k, G (z, ,z, )+9& . (3.275)

l+J

Of course this amplitude should now be integrated over
moduli space. .

To evaluate the zero-, one-, two-, three-, four-, and
five-point amplitudes, the above is in fact enough, for
only the even-spin structures contribute to their ampli-
tudes. Indeed, for the odd-spin structure the Dirac
operator has one (chiral) zero mode for each dimension
of space-time d =10; there is thus a total of ten zero

I

All these identities are easily proven with the help of Eqs.
(3.277) and (E7').

The calculation of the four-point function is more in-
volved, and 8-function identities are heavily used. There
are three types of terms: those with four factors of k,
those with two factors of k, and those without explicit k's
at all contracted onto the polarization tensors. Our first
task is to show that the terms with four factors of k can-
cel after summation over all spin structures. One needs
the following Riemann-type identity:

g C B,b(0, r) 2)'+G (l,i, )2)+6 (2, i~)2)+G„(3,i3)2)+G (4,i4)

=e, e, e, e, gC B,b(0, r) S (l,i, )S (2,i2)S (3, i3)S (4,i4) . (3.280)
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To establish this, use the representation (3.276) for the derivatives: terms with four G
&

s cancel because of (3.277), terms
with three G, s due to transversality, and terms with two or orie due to (3.279). Permutations (1,2, 3,4)—+(i„i2,i3, i~)
which leave one or more points fixed need not be considered, as their contribution cancels due to transversality of the
polarization tensors. The remaining riine permutations cancel in view of the Riemann identity (E7 ).

Now we calculate the terms with two momenta k; it is useful to take an example. Consider terms arising as the
coefficient of

gt k4 k, 04 k;,

where i3 and i4 are difFerent from three and four, respectively. The spin structure sum is then again simplified, with the
help of the Riemann identities, and one finds

gC t) (0, )2)+2)+G,(1,2)2)+G (3,i3)X)+G (4, '4) ff [1+k;.k 8;0 S (',j)]
V 1 (J

=0,. 8, g C 8 (0,~) S,(1,2)S,(3, i )S (4, i ) g ( ), (3.281)

where the last factor arises from the expansion of the su-
perspace Green's function. Since we must end up with
four 8's, the product Q; ~

produces only terms with two
0's, so that the answer will be a linear function of s, t, and
u. With some further use of the Riemanp identities, one
can evaluate it rather easily, and one finds

01 02( A /3
'k

1 g4'k 2 +0 g3 'k
2 /4

'k
t ) (3.282)

where the reduced amplitude is given by

da, =f "; ', f d'z, d'z, d'z, d'z,~i 2r~ (r2)

F
(3.284)

We have used identity (E9) and we have abbreviated
FJ =F(z;,zj), where the function F was defined in Eq.
(2.91) or (3.183). Overall translation invariance on the
torus allows us to integrate over one of the four positions,
so that we may set z4 ——0 and

—s/2
1 d V 2 2 2 +12F34At= f 5 f d zid z2d z3

At, (z )5 13F24
—t/2

F23F14
X

F13F24
(3.285)

which agrees with the classic formula derived in the
operator formalism.

Several remarks ar'e in order here. First, it is remark-
able that the kinematical form for the one-loop amplitude
coincides with that for the tree-level amplitude. Second,

Upon inspection, one notices that this result is i'eminis-
cent of the tree-level answer obtained in Eq. (3.246). One
can now easily complete the analysis by checking that the
other terms also have the same form as the gree-level
answer. Thus our final expression for the one-loop four-
point function in the type-II superstring is

(V(E»k, ). - V(e~, k~))=g 5(k)A e"e s e

XK,234ET 2 3-„, (3.283)

I

our calculation of the one-loop four-point amplitude is
perhaps more involved than when it is performed in the
light-cone operator formalism. However, it has to be re-
called that the corresponding calculation in the light-
cone formulation was simple only for graphs with very
few external legs, ultimately becoming unwieldy for
graphs with more than six legs. In our covariant RNS
formulation, the difticulty increases, but only slightly so.

4. Higher-pownt amplitudes and odd-spin structure

Let us now come back to the case of odd-spin structure
and derive explicit formulas for scattering amplitudes of
massless particles. There are three additional complica-
tions as compared to the even-spin structure case. First,
we have an odd modulus to integrate over (constant X),
second there is a (constant) Dirac zero mode, third since
there is a Dirac zero mode, the chiral amplitude analo-
gous to P (but now with massless vertex insertions) is no
longer holomorphic in ~ and X, but there are mixed
terms. We shall tackle these issues by evaluating the
matter contribution of the path integral with generating
functions for massless operators inserted at points z;, 0;,
which we do not integrate over.

We begin with the nonchiral amplitude for odd-spin
structure

n

M =+,s„fD (x g ) + exp( ikt'X" +P2)+X"
i=1

X")e ™ (3.286)

Recall that the superghost contribution was unity for
odd-spin structure: A, h

——1.
Care has to be taken to include the full superderiva-

tives in this expression, since the 7 field does not vanish
now. To be specific, if X"=x"+ggt++ gg" +i 88F", we

get
2)+X= g++iOF+0(B,x+ —,'X, g )

+ee( ——,'X, +X,-y +-,'X, -a,x+D, q )

(3.287)
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A = (2m. )' 5lk)
(rq)'

&& f Di/j+DP e

)& exp — ( Imo "+ik/'Imz, )
2~ ~ 2

'T2
(3.288)

and 2) X is its complex conjugate.
Integration over the x fie1d is performed as before, and

we find a complicated expression due to the presence of
several cont;ributions from the vertex. However, there is
a remarkable partial cancellation with the it+- and i/

dependent terms in the vertex, which considerably
simplifies the final answer. Some further partial contrac-
tions of fermionic insertions ultimately lead to

~o, +r' +z', +x'

Note that X+ and X+ are independent of the fermion
field, whereas X+ is chiral in the sense used throughout.
We have also defined

o."= f d zX, ++~(z) —gee, .
1

(3.290)

Since X, + is a constant, only the zero mode i/o of i/

contributes to o~. Notice that the amplitude A is chiral-
ly split in f+ and i/t, except for its zero modes. Thus it
is necessary to isolate these zero modes explicitly, which
is achieved by splitting i/+ ——it++i/t+. The contractions
of the nonzero modes must then be performed with the
propagator So of Eq. (3.266), which is indeed orthogonal
to constants. Ope readily finds that

We have also used the following abbreviations:

X+ = g k; kjlnE (z, ,z~ ),

Z' = y [ e, e.g; g a, a, lnE(z, ,z )

A. = (2ir)' 5(k)(1m') 'e

n
U

p.~OV. + U @~Op

X fdic "di/ "e + e ' (3,291)

—2ik; gje)a, lnE(z;, z )],
J

(3.289)
where we use the abbreviation v i'=ik/'8, +pe, ,

ik/"8; g"+(z, )

Pe; f d w X, +y" (w)a, a lnE(z, , w)

[—Im(pe; )+ik/'Imz;
l

+(u/'X ++u ", X, )Imz, ]' . (3.292)

+Pi/" (z, )

k/" f d2w
X, +i+/j( w) alnE(z, , w)

Contraction of the i/+-dependent terms X+ produces
also a chiral part X+———,

' (/+X+ ), where all the i/ con-
tractions have been carried out with the propagator 50
instead of S0. This function is explicitly given by

X+——g ,'u/'u"S—o(—z,, z )+ ul'pe Xr+ d w a, a lnE(z;, w)SO(z;, w)4~'»
v/'k "X + d w a lnE (z, , w)SO(z;, w) (3.293)

(3.295)

where

gp~ g( —ge, +ik/'z, ——X, +u/'z, ) . — (3.296)

The nonrpanifestly chiral terms arising in the full con-
traction have been lumped into Z. Now we see that the
amplitude again splits when we introduce the internal
momenta p". Putting all these together, we find

A, =(2ir)' 6(k) f dp" f d /~~de ~P()P(), (3.294)

where the reduced chiral amplitude V0 is given by

So=exp X+ X++ X+++imrp +2~p "g~.
+pop, y p,

'

Note that the presence of the zero-mode integral ensures
that g,.v/' vanishes at all intermediate steps in the deriva-
tion of those formulas. Furthermore, it guarantees that

be invariant under overall translations in z, , as it
should.

This answer looks rather complicated, but in fact the
combination of X+, X+, and X~+ can be obtained from a
very simple recipe. Start with the functional integral
(3.286), but instead of using full superderivatives 2)+ and

, rather use the flat superderivatives 8+ and 8 alone,
and use the propagators 60 and S0 instead of the full
propagators. Also ignore all possible complications that
could arise because of zero modes to the various fields.
Thus we can symbolically write
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Ik,I'X~ +g~a X~
exp(X++X++%3+ ) = e P e ' + ' + +

i=1

(3.297)

where all the fields and propagators are now "chiral"

X+ =x++8+~,
8+X~+ =Q++8B,x+,
(x (z)x (w)) = —lnE(z, w)=G, (z, w),

( y (z)q (w) ) =B,lnz (z, w) =S (z, w) .

(3.298)

In fact, one may also introduce a fu11 chiral superfield
propagator, including thy eFects of the supermodulus

Go(z, w) = (X+ (z)X+ (w) ) t„ii

N. Heterotic strjngg

The'heterotic string was constructed by Gross, Har-
vey, Martinec, and Rohm (1985a, 1985b, 1986) as a hy-
brid of one chiral half of the type-II string (say left
chirality) and one half of the closed bosonic string,
compactified on a 16-dimensional torus T' . As a string
theory, it lives in ten space™time dimensions, and we may
alternatively regard it as a theory of ten bosonic degrees
of freedom x", ten Majorapa-Weyl worldsheet spinors

hatt~+
(left chirality), and a number of fields representing the

internal degrees of freedom. These could be 16 bosonic
(right-chirality) x or, when fermionized, 32 right-
chirality Majorana-Weyl spinors g' . It is in terms of the
latter that we had written the heterotic string worldsheet
action of Eq. (3,3). We shall repeat it here for conveni-
ence:

8,(z —w —8,8,Y.)= —ln
Bi(0,~)

(3.299) Im =IH+I
(3.301)

where 7.=r X,+(8,+—8„). The amplitude is then given

by

X+ +J '+ +X+= —,' (ikt—'+pB'+ )(ikj"+gjd~~ )

IH = f d'P g ( D,x"D,x" g"+D, itjl+—

+X +Q+D,x"),

XGO(z;, zj) . (3.300)
where I, is the action for the internal degrees of freedom,

One-loop amplitudes for four-graviton scattering have
been computed in the operator formalism by Green and
Schwarz (1982) and Schwarz (1982) for the type-II string.
Space-time supersymmetry breaking to one-loop order
was investigated by Rohm (1984). For the heterotic
string, one-loop four-point functions were calculated by
Gross et al. (1986} and Yashikozawa (1986, 1987) for
gauge bosons, Sakai and Tanii (1987) for gravitons, and
Cai and Nunez (1987) for gravitons, gauge bosons, and
antisymrnetric tensor fields. The first two works rely on
the operator method, the third on path integrals. Our
present method based on path integrals is more compli-
cated than the operator method for a small number of
external states (up to six), but it remains tractable as that
number increases.

Issues of modular invariance are addressed by Witten
(1984), Arnaudon et al. (1987), Gliozzi (1987), and
Parkes (1987). Generating functions for anomalies as
modular forms are introduced in Schellekens and Warner
(1986, 1987), Pilch, Schellekens, and Warner (1987), and
Witten (1987). Nonrenormalization theorems were stat-
ed in Martinec (1986) and shown explicitly to apply in
the one-loop case by Tanii (1985, 1986), and Namazie,
Narain, and Sarmidi (1986). The hexagon anomaly was
shown to vanish to one loop in the heterotic string for
gauge groups Spin(32)/Z2 and E, )&E, by Gross and
Mende (1987a). The "supertheta" function of Eq. (3.299)
also occurs in Freund and Rabin (1988).

Open-string amplitudes to one loop are discussed in
the report of Schwarz (1982) and more recently in
Frampton, Moxhay, and Ng (1985), Clavelli (1986),
Frampton, Kikuchi, and Ng (1986), Burgess (1987), and
Kostelecky, Lechtenfeld, and Samuel (1987).-

I, = ' f d'gv'gD, x'D,x, a=1, . . . , 164' (3.302b)

when written in bosonic representation, and it is under-
stood that orily the chiral halves of the bosonic contribu-
tions are kept. This action exhibits X=—,

' local super-

symmetry invariance and may be quantized as a super-
gravity theory in its own right. In Sec. III.N. 1 we shall
give a brief account of this approach, without entering
into any details. Instead we shall rather study the
heterotic string as a cross bleeding of half a type-II string
and half a (partially) compactified bosonic string. An ad-
vantage of the latter approach is that we can gain direct
information about the torus T' or, equivalently, about
the lattice" A out of which the torus is constructed:
T =A /A. This second approach will be discussed
more extensively in Sec. III.N.2. Incidentally, it has al-
ready been stressed, when discussing super Weyl
anomalies, that in a worldsheet chirality-nonconserving
theory, super Weyl invariance must cancel for both left
and right chiralities separately. This is equivalent to can-
cellation of super Weyl and local U(l) anomalies of the
whole theory. Clearly, this requires that 16 internal bo-
sons x' or 32 internal Majorana-Weyl fermions g' be
present, as discussed before, when the critical dimension
is d =10. The structure of the lattice A is at this point

24%'e shall always assume t;hat A is indeed 16 dimensional.

I,=f d. /zan'g ( g' D,—p' ), a =1, . . . , 32
4m-

(3.302a)

when written in fermionic representation, and
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left open, and will be narrowed down —through in-
sistence on modular invariance —to the root lattice of
E~X E~ or of Spin(32)/Z2.

1. N =—' supergeometry

superspace is parametrized by two commuting
coordinates g and g and one anticommuting 0, collected
into a supercoordinate z = ( g, g, 0). The U( 1) frame is
similarly reduced to A =(z,z, + ). Covariant derivatives,
torsion, and curvature are defined as in Eqs. (3.7) and
(3.10), but the torsion constraints (3.11) are now restrict-
ed to the A =(z,z, + ). Using the Bianchi identities, one
then has

A
++ + + ++

T,+ = ——R, R, = —2)+R

++
(3.303)

I = d dO sdetE~ +X" X"+4' +4'

(3.304)

where X" is the even superfield X"(g, g; 0)=x"+0$+
and 4' is the odd superfield 4'=f' +OF', with P~+ the
space-time fermions, P' the internal fermions, and F' an
auxiliary field.

N =—,
' supergeometry was investigated by Hull and

Witten (1985), Brooks, Muhammad and Gates (1986),
Gates, Brooks, and Muhammad (1987), Nelson and
Moore (1986), and Evans and Ovrut (1986a, 1986b, 1987).

so that all components of the torsion and curvature are
expressible in terms of R, . The transformation laws of
these fields under super-reparametrizations, super Weyl
transformations, and local U(l) transformations may be
readily obtained by restriction of the N = 1 case, and we
shall not rewrite them here.

A dificult feature of the X =—,
' supergeometry is that

the supercurvature field R, now has U(1) weight- —,
' and

is antjcommuting, so that there is no sense to setting it to
a constant other than zero. In view of the super Gauss-
Bonnet formula analogous to that for X = 1 super-
geometry, R should not vanish whenever X(M)&0.
Asking R to be covariantly constant now leads to non-

trivial differential equations. Thus it is not clear in the
case of heterotic geometry how the geometric ideas dis-
cussed in the case of X = 1 supergeometry can be imple-
mented; as a rnatter of fact, it is not clear that they can
be.

The superspace action for the heterotic string is

are described by independent degrees of freedom, sharing
only their common overall momentum. The notion of
left- and right-movers may be understood on a compact
surface with a metric of Euclidean signature as analytic
and antianalytic, or for ferrnionic degrees of freedom of
course as left and right chirality. Unfortunately, the no-
tions of left- and right-movers or analytic and antianalyt-
ic are defined only when the fields satisfy their equations
of motion. They do not a priori make sense in a function-
al integral formulation where all fields are to be integrat-
ed over. This is especially a problem for the bosonic
fields x"or x' which are real.

In our discussion of the type-II string, we have already
had to separate left- and right-chirality components in
order to endow them with separate spin structures. We
have actually achieved much more. When loop momenta
pj' are fixed,

'
and for a fixed point in supermoduli space,

the integrand splits as a function that is analytic in the
period matrix QIJ, analytic in the positions of the vertex
insertions z, , and dependent only on 7 +, times its com-

plex conjugate. This chiral splitting at fixed internal
momenta will be reconsidered in much more detail in
Sec. VII and identified there with holomorphic splitting
at fixed internal momenta on supermoduli space. The
holomorphic structure of supermoduli space is that intro-
duced in Sec. III.G, and it will be shown in Sec. VII that
QIJ and 7,+ are holomorphic coordinates for superrno-

duli. This holomorphic splitting points to a way of iden-
tifying the contributions of the right-movers in the bo-
sonic x~. In fact, the closed bosonic string amplitudes
could be split in a similar fashion, even though x" is not
a chiral field. Again, at fixed internal momenta, the in-
tegrand is the absolute-value square of a function analytic
in QIJ and in the positions of the vertex operator inser-
tions z;. (Of course we will have to check that this kind
of splitting continues to hold when the closed bosonic
string is compactified on a torus T'6.) The right-movers'
contributions can now be taken to be the antiholomor-
phic factor. The vertex operators (at fixed positions) for
the heterotic string are similarly constructed of half a
type-II vertex and half a bosonic vertex. Actually, this is
not quite so, because each contains pieces of both chirali-
ty. However, in the end, all pieces can be put together
and split when the internal momenta on the string are
kept fixed.

Thus the recipe for heterosis will be to take the left
chiral half of the type-II string and the right chiral half
of the bosonic string at the same internal momenta and to
multiply them together and integrate over the internal
mom enta.

That this prescription is the correct one is confirmed
by the fact that it alone will reproduce quantized 1V =—,

'

2. Heterosis

The fundamental idea behind heterosis is that the left-
and right-moving degrees of freedom on the worldsheet

~5Reca11 that the complex conjugate is in general evaluated for
a di6'erent spin structure. Also recall that all momenta-
internal pf and external kf' have been analytical—ly continued
to imaginary values.
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supergravity from the chirally split type-II superstring.
Indeed, the amplitudes for the heterotic geometry may be
gotten by setting 7 + —0, so that we can read off from
Eq. (3.196) that an exponential insertion would give

%'= fdf fDP'e ~exp g r), P g e"'

g i);h (z;) (det'P+)

AH =(2')' 5(k) f dpg9 (z;,g+, Q, X;pP) Xexp +—,
' g g;giS (z;,zi)

'
(3.310)

X,o(z;, Q;p j') = Z~(Q) ' +E (z, ,z. )
'

X exp i mp j'Qlzpg

Z

+2~tpgkt'f m,
P

(3.306)

The symbols are the same as in the case of the type-II
string analysis of Sec. III.K.

We shall now derive an expression for the contribution
to the amplitude %,6 of the internal degrees of freedom.
We begin with the fermionic representation, described by
the action (3.302a). For convenience, we shall consider
its complex conjugate, so as to obtain %,6 directly. We
shall also restrict ourselves to considering only insertions
of g' and not its derivatives, which is enough for the case
of vertex operators for massless particles. Furthermore,
all 32 fermions f' are decoupled from one another, so we
shall evaluate the contributions of a single one first, en-
dowed with spin structure v. Actually, the 32 fermions
were understood to be Majorana-Weyl, which is not real-
izable on a worldsheet with Euclidean signature. Thus
we shall pair them two by two and endow these with the
same spin structure. We then have

g, P(z,. ) I&-
i =1

(3.307)

For even-spin structure, this integral has no zero
modes, and we get

X'=(detB+ ) exp +—,
' g r);riJS (z;, z~ ), (3.308).

where S is the Dirac propagator already encountered in

Eq. (3.202) and given by the Szego kernel. The Dirac
determinant will be evaluated using bosonization
methods in Sec. VII, and we just quote here the answer
from Eq. (7.61):

(det@+ )„=Zt,(Q) '8[v](O, Q), (3.309)

very much in analogy with the one-loop formula of Eq.
(3.253).

For odd-spin structure, there is generically one zero-
mode h, and the chiral Dirac propagator is given by Eq.
(3.206). Thus

X%,0(z, , Q;pf )%,6(z, , Q ), (3.305)

where V was defined in Eq. (3.197) and the ten-
dimensional chiral bosonic amplitude is given by

where (det'g +) is the chiral half of (det'B/(h,
~

h ) ),.
Due to the overall factor linear in g, S in the exponen-
tial is equivalent to S (z, w) of Eq. (3.204) in view of Eq.
(3.205), so that Eq. (3.310) is analytic in z;, g;, and A, but
also well defined on the surface.

Now that we have evaluated the contribution of a sin-
gle (complex) fermion, it remains to put the 16 copies to-
gether. This must be done in a modular-invariant
fashion. Recall that in the type-II string one had to sum
independently over the spin structures assigned to left
and right chirality. Each chirality sector was responsible
for a space-time supersymmetry, all by itself, so that the
theory exhibits N =2 supersymmetry. In the heterotic
string, left and right chiralities are very difterent objects,
and one could sum separately over the spin structures of
left and right chirality, where right chirality now encom-
passes the internal degrees of freedom. One might also
imagine linking the spin structure sum for left and right
chirality. . In the latter case, it should be expected that
space-time supersymmetry would be destroyed; This
leaves open a vast class of possibilities, which is narrowed
down by the requirement of modular invariance and spin
statistics. Seiberg and Witten (1986) have argued that
modular invariance requires the fermions g' to have the
same spin structure in groups of eight (or four of our
complexified ones). This eight is familiar from the modu-
lar transformation properties of the 8 function, which al-
ways involves an eighth root of unity. This indeed occurs
when the f's all carry a space-time index. However, in
that case, they describe both bosonic and fermionic
space-time degrees of freedom. Since internal g"s should
describe only space-time bosonic degrees of freedom, the
P"s should actually have the same spin structure in
groups of 16 (or eight of our complexified ones). Hence
the internal degrees of freedom must exhibit a symmetry
that contains SO(16)X SO(16).

When the spin structure of left and right chirality are
intertwined in a nontrivial fashion, one will in fact obtain
an SO(16)X SO(16) string that is modular invariant (at
least to one loop) but not supersymmetric. This type of
string theory was investigated by Dixon and Harvey
(1986), Seiberg and Witten (1986), and Alvarez-Gaume
et al. (1986). Its compactifications were explored by
Ginsparg and Vafa (1987).

On the other hand, if spin structures for left and right
chirality are summed over independently, then N = 1 su-
persymmetry is maintained. The general expression for
the internal amplitude is

x„=y c (3.311)
Vl V2
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Under a modular transformation

A 8
M=

even- and odd-spin structures are mapped into them-
selves, so we may limit our discussion to the even case.
Hence

M(Si6) =[det(CQ+D)] g C (XM ) (XM )

V) V2

the closed bosonic string on a torus T', the x'(z) field is
no longer single valued, but is- shifted by a lattice vector
of A as z moves around a homology cycle,

x'(yz) =x'(z)+ T', T' HA .

We may interpolate T' with the use of a harmonic func-
tion T' (z) and introduce a single-valued field y ',

x'(z) =y'(z)+ T'(z) .

Hence we can represent the differential dx' as

V
1 V2

dx'(z) =dy'(z)+ g [ml'hl'(z)+ nl'hl (z)],
I

(3.317)

Ca~ —I— a~ —1—C
Vl V2 lYl Vl jV VP

(3.312)

(3.313)

where h and h are harmonic (real) one-forms, normal-
ized to

f „hJ"= f ~ h 1 = 5qq, f ~ h J = f ii h~" =0 .

for all M. If v&&V2, then let M fix v, ; This reduces the
modular group from Sp(2h, Z) to Sp(2h —2, Z). This is
enough for us to see that

I

C—— =C ~ if v2&vi&v 2V~ V2

Since C is symmetric, all off-diagonal elements in C must
be equal. On the other hand, taking v, =v2, we see that
all on-diagonal elements must be equal as well. Thus
there are two independent solutions. All C are equal

for all V& and v2, and

The vectors mI and nI belong to A and determine the
winding number of the Riemann surface in T' . The ac-
tion in a given topological sector is now easily computed,
and one finds

I, ( x)=I„( y)+ 2
(nI mkAxl)(™f),)~z'(nz AJLml—') .

(3.318)
We are now going to make the following assumptions
concerning mI and nI and the lattice they lie on. First,
we assume that mI and nI run throughout the full lattice.
Hence, if A, are the 16 basis vectors generating A, then

2

g (S~)'
V

(3.314a)

or all off-diagonal elements of C vanish, so that

(3.314b)

In the latter case, we see that all g"s are endowed with
the same spin structure, thus exhibiting Spin(32) symme-
try.

Now let us consider the one-loop partition function
only, and evaluate the above partial amplitudes:

g (%—) =Boo(0 r)+Boi(0 r)+8', 0(0 r) (3.315)

1+240+ o3(n)e' "", o (n)= g d
n d]n

(3.316)

which is the theta function for the root lattice of E8.
Hence %,6 is the amplitude for the group E8)&E8, and
N', 6 for Spin(32)/Z2.

Next we derive an expression for the contribution of
internal degrees of freedom to the same amplitude X&6 in
terms of the bosonic variable x'. When we compactify

This is a modular form of weight 4. With the help of
Jacobi's theorem on the number rz(n) of representations
of an integer n as a sum of four squares r~(n)=8o, (n)
one easily finds that the above sum of three theta func-
tions equals

where mI and nI run over all integers. We shall denote
the lattice metric by g &

——A, .A,&, and furthermore restrict
ourselves to lattices for which the volume of the unit cell
is one: detg &

——1. Finally, we assume that the entries of
g & are integers; since detg &

——1, this means that g ~ also
has integer entries. When all the above requirements are
met, then the amplitude

iKx (z) —I
(3.319)

This formula is a special case of toroidal compacti6cations
considered in collaboration with V. Periwal.

will be Weyl invariant, provided the external momenta
satisfy K, =2 so that the lattice must be even. The lattice
metric g &

can now be viewed as the Cartan matrix of a
Lie algebra, and since g & is symmetric, the possible Lie
algebras are SO(2n) and E or products thereof. The am-
plitude A is easily worked out:

2

A =(2')' 5(K)J dPJ g % &„(z,, Q, Pf) . (3.320)
aI ' ~l I

Here 5I and 5I' are half-order characteristics and take
values 0 and —,'. The reduced amplitude is given by
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5' KK i- 5 i

(z;, Q;Pj')=Zq(Q) ' g E(z;,z )
' 'exp imPI'QlqPJ'+2niPI K; f col 8A 5,. K f col, Q . (3.321)

l (J P - - P

Here the theta function for the lattice A with characteristics 5I and 5I- is defined by

5t
(zI Q)=Xexpl'~(mI +51 )Qug p(mj+5z )+2~&gp'(mr+51 )(51' +zJ )] . (3.322)

Under a modular transformation, we have

D5' —C5" 5'
((CQ+D) 'z, Q')=([det(CQ+D)] e' ' + ' 'BA 5„(z,Q),

where the image of 0 under the modular transformation Q' is given by

Q'=( A Q+B)(CQ+D)

Moreover, A' is the lattice dual to A and

/=exp( i~5' —B D5' im—5" A C5"+2mi5' BTC5") .

To have modular invariance, one clearly requires that the lattice be self-dual, A'=A, and that (=1. The latter must
hold for all modular transformations. The lattice must also be even, and this restricts the choice to ESXE8 and
Spin(32)/Z(2) and causes the characteristics to vanish: 5'=5"=0.

O. Inverse heterosis and general structure af amplitudes

Although the heterotic string was originally defined as the hybrid between a chiral half of the type-II string and
another chiral half of the bosonic string, we have repeatedly witnessed the. emergence of simplicity when working with
the heterotic string directly. When calculations are initiated with the heterotic string action IH of Eq. (3.301), using
vertex operator insertions of the heterotic string for the relevant chirality, the final amplitude could be directly recast as
an integral over internal momenta of the known ten-dimensional bosonic right-chirality part, times the left chirality of
the heterotic string —alias the type-II string. Thus it appears that in practice the simplest way to compute in the
heterotic or in the type-II superstring is to begin with Eq. (3.301) and, for fixed internal momenta, to decoinpose the am-
plitude into left- and right-chirality components.

Scattering amplitudes at fixed internal momenta, fixed supermoduli, and fixed spin structure are easily defined by in-
serting the constraints fixing the various internal momenta as in Eq. (2.97) for the bosonic string:

&)=fD( @b ~&) II I
& I» I'II I5(& I») I'v .v. 'Il5 0

k b , I 2'
(3.323)

This amplitude is Weyl invariant, local U(1) invariant, local reparametrization invariant, and local supersymmetry in-
variant. However, it is not modular invariant because we have picked out a preferred homology basis. Modular invari-
ance is, however, recovered for the full amplitude after integrating over pg,

( V, . . . V„)=f d mx f dye( V, . V„)(mx, m~;pj') . (3.324)

The key feature of amplitudes at fixed momenta is that they will factorize as

( V, V„)(m~, m~;pg)=(2')'05(k)
I
V,(mx, z, , g;pg) I

(3.325)

where V is holomorphic in moduli QIJ, odd moduli gr, positions of vertex operators z, , and parameters of the vertex
operators g;, and depends on left-chirality spin structure v. When dealing with the heterotic string, there is an analo-
gous statement,

Here

—.'Pe)= fD( eb P1') rl I
& I» I'II5(& I»)V V. 'll5 0, d, " s'P—

- k b ,I ~ 2&

(3.326)

. . V„)(, ;Pg)=(2 )"5(k)&„(,;,g;Pg)&(, ;,g;Pj"), (3.327)
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where V, is the same as in Eq. (3.325). Since X is a
known quantity, independent of supermoduli, we see that
all the information of the type-EI or heterotic strings is
contained in the heterotic amplitudes.

&v~ I
» = &s b I

P& (3.334)

independent of mb, so that pb ——0. This choice is justified
by considerable simplifications in the superghost inser-
tions in the ghost functional integral. We now have

P. Picture-changing formalism

I =IH+Isgi (3.328)

with IH given in Eq. (3.301) and I, i, that of Eq. (3.175)
but with p=y =0. It will be convenient to express it as

Since all the information for the type-II and heterotic
strings can be extracted from the study of the heterotic
string (at fixed internal momenta), we shall restrict our
attention to the heterotic string, keeping in mind that we
may always fix the internal momenta preserving all sym-
metries but modular invariance. The formula for the am-
plitudes is then given in Eq. (3.178), where the heterotic
string action is

By construction, the only thing that depends on odd
moduli is 7 in the action, so that the odd moduli are
easily integrated out. One finds

& Vi . V„&(mx. ) = f D (x PbcPy )

o
&& Vi V„e

(3.335)

The product

I'=I0 — d gg +S
2m Z

(3.329) Y, =5(&p III &)&p IS& (3.336)

with
is a BRST invariant, of ghost number 1, and can formally
be thought of as the BRST transform of the step function

ID= f d g&g ( ,'D, x"D x—" ,'P~+D g—~+—+bD,c Y„,=5, H(&p„
I
p&), (3.337)

+bD, c+pD~y )

and the full supercurrent

(3.330)

S = ,'g"+D, x" (D,P—)—c ', PD, c—+ ,'—by—. (3.3—31)

It is always understood that anomalies are appropriately
canceled by the presence of the internal degrees of free-
dom that we suppress here.

There is a BRST invariance inherited from the type-II
string, and obtained by restricting Eq. (3.149) to left
chirality only, using the bosonic BRST for the right com-
ponents. In particular,

5BRSTp (3.332)

so that the full supercurrent is BRST invariant.
We shall now follow the treatment of Verlinde and

Verlinde (1987a, 1987b) in order to make contact with
the formulation of conformal field theory, usually ex-
pressed in terms of picture-changing operators. For the
time being, our considerations will be local on moduli
space; we shaH need a better understanding of moduli
space, and of its connection to supermoduli space, before
being able to attack the global issues in Sec. VII. Local-
ly, we can choose a slice for supermoduli space in which
the super Beltrami differentials are of a special type. We
assume that

though of course the step function is not well defined.
From these quantum-number considerations, and the
BRST invariance of l; it is natural to guess that it is a
generalization of the picture-changing operator. Indeed,
for general pb, the operator F is nonlocal, but if we
choose

p„(z)=5(z zb)— (3.338)

Y(zb)=5(P(zb))S(zb)=e ' S(zi, ), (3.339)

where o (z) is the bosonic field of Eq. (8.42). The expres-
sion for the general amplitude becomes

& V, . V„&(mx. )=f D(xgbcPy)

XII I &~k I» I'

then it becomes local. Since zb are points that could de-
pend on moduli, they should properly be viewed as sec-
tions of the universal Teichmuller curve of Sec. IV.H.
This bundle has no global smooth sections, which is
another reason why these considerations should be con-
sidered as local on small patches of moduli space. Boson-
ization of superghost arguments, which we shall not
present here (see, however, a brief discussion in Sec.
VIII.E), give further evidence that this local version pre-
cisely coincides with the picture-changing operator of
conformal field theory,

2h —2

X— = g mbpb
b=1

(3.333)
X+ Y(zi, )V, . V„e

bwhere mb are the odd moduli and pb are super Beltrami
difFerentials independent of mb. We can take the metric (3.340)
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This amplitude is formally BRST invariant. There are
two issues that should, however, . be investigated. The
first is the usual possible contributions from the bound-
ary of moduli space. The second is what happens when
we make a dift'erent choice of insertions zb, as will even-
tually be required by the topology of the universal
Teichmuller curve. Using BRST arguments, Verlinde
and Verlinde (1987) have argued that the difference will
then be a total derivative on the patch where both zb and

zb are well defined. The efFects of such total derivatives
will be discussed in Sec. VII.G.

The prescription for the superstring multiloop measure
based on BRST invariance and picture-changing opera-
tors is presented by Friedan, Martinec, and Shenker
(1986) and Martinec (1987). In the path-integral formu-
lation, that the ghost insertions can be recast as picture-
changing operators [cf. Eq. (3.336)] was recognized by
Witten (1986) in a superstring field theory context and
later by Verlinde and Verlinde (1987). The last authors
also provide key formulas for the conformal field theory
of the superghosts and their bosonization.

IV. PARAMETRIZATIONS OF MODULI SPACE

In the previous sections we have considered the string
partition function and scattering amplitudes as integrals
over the moduli space A, & of compact Riemann surfaces
or over the moduli space JN, h „ofRiemann surfaces with
n punctures as in Sec. II.J. These finite-dimensional
spaces so far have been given abstract definitions as coset
spaces, and it is im.perative to describe them in a concrete
manner, i.e., to provide some insight into their coordi-
nates, curvatures, and function theory. A diverse choice
of such parametrizations is available, and we shall here
only describe some of those that have been used for the
description of closed-string theory.

First, Riemann surfaces of constant curvature may be
uniformized by the round sphere, the Euclidean plane, or
the upper half plane. The natural geometry induced on

by such representation is by the Weil-Petersson
metric. One of the remarkable aspects of the Weil-
Petersson geometry is the abundance of completely expli-
cit formulas, especially concerning the available coordi-
nates and curvature formulas. In particular, we shall see
how the Fenchel-Nielsen coordinates provide an elegant
parametrization of Teichmuller space and yield explicit
formulas for the Weil-Petersson geometry, though it is
hard to identify moduli space, i.e., a fundamental domain
for the mapping class group. If one is willing to formu-
late string theory on surfaces with at least one puncture,
then the recently developed Penner decomposition
(Penner, 1987a, 1987b) provides interesting formulas for
the Weil-Petersson geometry on moduli space directly,
identifying the boundaries of At& „as well.

The parametrization of moduli syace with at least two
punctures by Mandelstam diagrams has been discovered
through string theory. In many ways, this is the parame-
trization diametrically opposed to constant curvature,

since the curvature of Mandelstam diagrams vanishes
everywhere except at some isolated interaction points
where it is a Dirac 5 function.

Another parametrization of the moduli space of sur-
faces with at least one boundary component, or in gen-
eral for open strings, is provided by the open-string field
theory of Witten (1986a, 1986b); in the mathematics
literature it has been discussed independently in the work
of Thurston (1980) and Bowditch and Epstein (1988). In
a sense, it is analogous to the Penner decomposition,
though it does not require constant curvature. We shall
not discuss it further here, and instead refer the reader to
the work of Witten (1986) and Cxiddings, Martinec, and
Witten (1986), where these constructions were discussed.

Finally, Riemann surfaces may be parametrized by
their h &h complex symmetric period matrix with the
advantage of making the dependence on the complex
structure of moduli space manifest. Every h &(h complex
symmetric matrix is not, however, the period matrix of a
Riemann surface. The issue of which matrices do arise as
period matrices of a Riemann surface (the so-called
Schottky problem) still raises di%cult questions. Actual-
ly, we shall deal with the complex structure of moduli
space in its entirety in a completely separate section, VI.

A. Uniforrnization for constant-curvature geometry

Given a compact Riemann surface M of genus h and a
metric of constant curvature R (recall that any metric is
Weyl equivalent to a constant-curvature metric), it fol-
lows from the Gauss-Bonnet formula for the Euler num-
ber of the Riemann surface that R must be positive for
h =0, zero for h = 1, aod negative for h )2. For
definiteness, we shall normalize the metric so that R is 1,
0, or —1, respectively, for the three cases.

The uniformization theorem states that M is isometric
to a coset M/T, where M is the simply connected cover-
ing of M, and I is a discrete subgroup of the isometry
group of M, isomorphic to the first homotopy group of
M:

Furthermore, the corresponding simply connected sur-
faces are unique for h =0, h = 1 and h & 2, respectively,
and are given by

the sphere C U I ~ j, ds =4(1+
~

z
~

2) dz dz, with
R =1, isometry group: SU(2);

the plane C, ds =2 dz dz, with R =0, isometry group:
z~az+b,

~

a
~

=1;
the upper half plane, H= Iz =x +iy,y & Oj,

ds =2y dz dz, with R = —1, isometry group: SL(2, R).
Actually, for compact surfaces, -I should have no fixed

points inside M (note that I may have fixed points on the
real line if M =H). Thus, for h =0, I must be trivial, so
for genus 0 there is only one sphere. We shaH now study
the cases for h = 1 and h )2 separately in the following
sections.
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B. The genus-1 and genus-2 cases
and hyperelliptic surfaces

In the case of genus 1, moduli space and the Weil-
Petersson metric can be identified easily. In fact it is
readily seen that the only discrete fixed-point free sub-
groups of the isometry group of the plane are those gen-
erated by two translations, in two different directions if
the quotient space is to be compact. Choosing two gen-
erators, we may characterize the complex structure by
their ratio w, which may be assumed to satisfy Im~&0.
Different choices of generators lead to changes in
which are generated by the transformations w-~ —1/~
and ~-~w+ 1. Thus the Riemann surface M can be
identified with a parallelogram of sides 1 and r, with op-
posite sides identified, Teichmuller space is just the upper
half-space H=Iri+irz, r2&'OI, and the mapping class
group is SL(2,Z). Up to a factor of —,'[cf. Eq. (2.123)],
moduli space corresponds to a fundamental domain for
SL(2,Z) within H, which can be taken as (see Fig. 7)

Rer
I

& —,',
I
~

I
& I I . (4.1)

Note that SL(2,Z) admits fixed points, which will be cru-
cial to the determination of phases of chiral determinants
and space-time supersymmetry.

A quadratic differential on M must then be of the form
2Re(5vdz ), with 5x a complex constant, and the in-
duced deformation of complex structures is

I
dz

I
~

I
dz

I
+2 Re(5Ic dz ) =

I
dz+5I~ dz

I

~

+O(5a. ) . (4.2)

This means that the complex coordinate z has undergone
a "quasiconformal" deformation,

Each partition of the branch points into two sets of
h + 1+2k and h + 1 —2k points correspond to a spin
structure whose parity is that of k. The spin structures
corresponding to k =0 and 1 are the nonsingular ones,
where the Dirac operator has exactly no zero modes and
one zero mode. More generally, k is the order of vanish-
ing of the 8 function with characteristics at z =0.

The set of hyperelliptic surfaces is a subvariety of
moduli space of dimension 2h —1 and hence is of rgea-
sure zero for genus h )3. At genus 2, however, every
surface is hyperelliptic, and Eq. (4.5) is a good represen-
tation of a generic h =2 surface. Thus we have for genus
2

y =(z —ai )(z —a2)(z —a3)(z —a&)(z —a5)(z —a6),2=

(4.6)

but of course, it should be realized that three distinct
points can be fixed at will, so that we may set a4 ——0,
a5 =1, a6 ——cc. There then remain three complex coordi-
nates: the three moduli of A12. The cut sphere is
represented in Fig. 13, and the ramification points are ex-
actly labeled by the a s. Actually, each distinct
geometry of the cut plane provides a different Riemann
surface, i.e., a different point in A1,2, and if all a „a2, and

a3 run throughout C, JMz is covered 61=720 times.
Holomorphic and meromorphic differentials for h =2

are completely explicit in this reprepentafion, and we
have
~ two holomorphic Abelian differentials

(4.7)

three holomorphic quadratic differentials

z~z+ 6~z, (4.3) z~ '(dz) j=1,2, 3, (4.8)

and hence the new Riemann surface should be represent-
ed by a parallelogram of sides 1 + 5~, r+ 5~r, and the
new ratio is (r+5xr)/(1+5~). In particular

I
5r

I

'=4
I
5~

I

'r2' and»nce 112 Re(5«z ')ll~wp

=8
I

5i~ I, it follows that

ds =2
I
5r /r2, (4 4)

which is invariant under the mapping class group
SL(2,Z).

At higher genus, such a simple parametrization is gen-
erally not available. However, when a surface can be
represented as a double covering of the sphere —and is
so-called hyperelliptic —then of course we have a polyno-
mial equation for it, of the form a5

y =P(z), (4.5)

where P(z) is a polynomial of degree 2h +2 (or 2h + 1 if
one point is sent to oo). For the torus, this provides a
representation familiar from 'the theory of elliptic func-
tions.

Spin structures have a simple classification for hyperel-
liptic surfaces. Such surfaces have 2h +2 branch points.

FIG. 13. Representation of a genus-2 surface as a square-root
branched covering of the sphere (stereographica)ly projected
onto the complex plane).
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~ six holomorphic —, difFerentials, each corresponding to
an odd-spin structure

U, =Q(z —a, )/y(dz)', i =1, . . . , 6 (4.9)

with single zeros at z =a;,
0 no holomorphic —, difFerentials with even-spin struc-
ture,
0 two holomorphic —', difFerentials for each spin structure.
An odd-spin structure is just a selection of a branch point
a;, arid the two holomorphic —,

' difFerentials are
3/2 3/2

tegrated, and we obtain the hyperbolic distance, given by
I

d (z, z') & 0, coshd (z, z') =1—'2 . (4.13)
(z —z')(z —z ')

(z —z)(z' —z ')

Now since try & 2, y is conjugate within SL(2,R} to a
pure dilation:

1Z~e Z

whose fi~ed points are the origin and infinity, neither of
which belongs to H. The scaling parameter l is actually
the shortest distance between any z 6H and its image yz:

( )i/2 dz

3'
, z(z —a )'" dZ

lr = inin d(z, yz ) .
zEH

(4.14)

Even-spin structures are partitions of the six branch
points into two sets 3 and B of three elements each, And

the holomorphic —', difFerentials are then

3/2

( a )1/2

a,. e ~

A natural inetric on the surface is obtained by using
the holomorphic —,

' differentials

ds'=
[ v, v,'

i

', (4.10)

C. The higher-genus case

For h &2, I is a subgroup of PSL(2, R) and its ele-
ments y act onz&Hby

Z~gz = az+b a by=, , ad bc =1 . (4.11)—
CZ +d

All y's (except for the identity) act without fixed points,
which requires that y be hyperbolic, i.e.,

which has a double zero at a; and a; or a fourth-order
zero at a, if i =i '.

The above techniques extend to the case of hyperellip-
tic surfaces at higher genus as well, in a straightforward
fashion, but we shall not discuss these here.

Fork on explicit formulas for two-loop amplitudes in-
cludes that of Belavin et al. (1986), Kata, Matsuo, and
Odake (1986), Moore (1986), and Lebedev and Morozov
(1987). Conformal field theory on hyperelliptic surfaces
has been dealt with by Zamolodchikov (1987). Two-loop
studies were also carried out for the fermionic strings by
Atick, Rabin, . and Sen (1987), Atick and Sen (1987a),
Moore and 1VIorozov (1987), Morozov (1987), Parkes
(1987), Lechtenfeld and Parkes (1988).

On the surface M, the points z and yz are identified under
the action of I", so the geodesic from z to yz is closed on
M, and it belongs to the homotopy class of m, (M) corre-
sponding to y. Thus lz is the length of the shortest
closed geodesic within the homotopy class of y.

The group I is generated by its Fuchsian transforma-
tions around a canonical homology basis, say of A cycles
and B cycles, so let us denote the corresponding genera-
tors by y„and yti for I =1,2, . . . , h. Actually, these

I I
generators are only determined up to an overall isometry
~~ofH,

and the product of their commutators over all 3 and B
cycles is the identity [the corresponding homotopy class
of ~, (M) is trivial]

h

AlyBly A~ yBI
—1

I = 1

(4.1S}

Since each generator depends on three real parameters
(say a, b, and c), there are in total 6h real parameters,
minus 3 for the global isometry and 3 more for the con-
straint, so altogether we are left with 6h —6 parameters.
Not surprisingly, this is exactly the dimension of
Teichmufler and moduli space.

Does this means that we have an explicit parametriza-
tion of Teichmiiller or moduli space? Suppose we pick
y„: 's and yti 's hyperbolic and satisfying Eq. (4.15); this

I t

can rather easily be done and implies some restrictioris on
the parameters of these matrices. Still, products of the
y ~ and yet's need no longer be hyperbolic, leading to fur-
ther restrictions on the parameter space for these ma-
trices. The result for the 6h —6 dimensional parameter
space is a region of R with a highly dented bound-
ary. The corresponding coordinates are the so-called
Fricke-Klein (1926) coordinates.

More oui Fricke-Klein coordiriates can be found in
McKean (1972), Harvey (1978), Bers (1981),and Bers and
Gardiner (1986).

~
try

~
&2 for all y6I —{1I . (4.12)

Such groups are called Fuchsian groups of the first kind
We always choose representatives y w'ith try & 0, without
loss of generality. The Poincare metric on H may be in-

l3. Normal coordinates in the higher-genus case

For Riemannian manifolds there is a natural way of
parametrizing a local neighborhood of a given'point by
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tangent vectors at that point. In fact, to a tangent vector
corresponds simply the point a unit amount of time away
on the geodesic tangent to that vector. These are usually
called normal coordinates and can be constructed as fol-
lows in the case of moduli space. Consider a fixed com-
plex structure which will be identified with a Fuchsian
group of the first kind. A tangent vector to moduli is a
quadratic differential. P (equivalently a harmonic Bel-
trami differential P=gy with y =Imz), the geodesic with
initial velocity P a one-parameter family of Fuchsian
groups I,. The I,'s can be obtained by solving the Bel-
trami equation

w =Cps w (4.16)

cu~p ——g &dt ddt (4.17)

since its (3h —3) Power is the desired volume form.
Normal coordinates for the Weil-Petersson metric

were introduced by Ahlfors (1966). A modern account
including a detailed analysis of second variations of the
area element of the surface under quasiconformal defor-
mations (4.16) is that of Wolpert (1986). Normal coordi-
nates for general Riemannian manifolds are also useful in
background field calculations. See, for example,
Alvarez-Gaume, Freedman, and Mukhi (1981).

E. Fenchel-Nielsen coordinates

We now describe briefly Fenchel-Nielsen coordinates
which are real coordinates for Teichmuller. space. Al-
though the complex structure is not evident in this sys-
tem, they have the advantage of presenting Teichmuller
space as (R)&R+) and of providing a particularly
simple formula for the Weil-Petersson Kahler form. To
define these coordinates, one makes use of the following
construction. Consider the maximal set of closed, nonin-
tersecting geodesics on a given surface M. It is clear that

for a mapping w sending 8 into itself, and setting
I', =w 'I w. Here we have extended p, by p(z)=!u,(z)
for z in the lower half-space. A related construction put-
ting the complex structure of inoduli better in evidence is
based on extending p to be 0 instead. The resulting w

will then no longer preserve the real axis, so that 8 will

be deformed into a quasi-half-space and I into "quasi-
Fuchsian groups. " Despite this difference ig emphasis,
the two ways lead to the same deformation, since the w's

obtained either way differ only by a holomorphic map-
ping. Note that w is not conformal, and that this con-
struction is the natural generalization of that described in

Eq. (4.3) for the torus. Choosing now an orthonormal
system of quadratic differentials P, a = 1, . . . , 3h —3,
and repeating the construction for P= g i t P we

can parametrize a neighborhood of I by (r ) H C " . In
this coordinate system the Weil-Petersson metric will

satisfy Brg & ~

t- ——8 g & ~ r ——0, which implies in particu-

lar that it is Kahlerian. We shall be especially interested
in the Kahler form

3h —3 nonintersecting cIosed geodesics may always be
drawn on a surface of genus h (see Fig. 14 for an exani-

ple). It is not hard to see that any additional closed geo-
desic has to intersect at least one of the 3h —3 initial
ones. Thus the maximal number is 3h —3; let us call
their lengths l;, i = 1,2, . . . , 3h —3. Along each of these
geodesics, we may now cut the surface apart and reglue it
after a relative twist by an angle 0;. For the range

0(I;( oo, i =1,2, . . . , 3h —3,
—oO (g. ( 00

(4.18)

3h —3

cowp ——g I,dl hd9, ,
j=1

(4.19)

so that the Weil-Petersson measure is completely explicit
and given by

3h —3

d(WP)= + l.dl d6 (4.20)

This very geometric viewpoint is also natural to path-
integral quantization. In particular, D'Hoker and Phong
(1986c) have exhibited string determinants in terms of
these coordinates and Careen's functions on pants. These
in principle can be built of prime forms on hyperelliptic
surfaces and may ultimately lead to rules for string am-
plitudes more closely analogous to the usual Feynman
rules of field theory. The main difhculty of this approach
is that the action of the mapping, class group on the
Fenchel-Nielsen coordinates and on the pant decomposi-
tion is extremely complicated, and unless some more
direct way of representing this action can be found, their
usefulness as a characterization of moduli space is un-

clear.
This decomposition is reminiscent of the division into

4

7% l

I

~e!~I!
gz

FIG. 14. Decomposition of a surface of genus 3 into four
"pants" and corresponding Fenchel-Nielsen coordinates.

these parametrize precisely one copy of Teichmuller
space. Surfaces with nodes arise at the boundary of this
domain when one of the I s goes to zero. Notice that the
3h —3 closed geodesics divide M into 2h —2 surfaces of
genus 0 with three discs removed, which are called pants.

Now it is not dificult to see that the hyperbolic struc-
ture on a pant can be characterized by the lengths of the
three boundaries. In fact, each pant can be viewed as
built out of two copies of right hexagons (whose corners
have 90' angles), and hexagons are characterized by three
alternate sides. The gluing of these pants involves the
relative twist of an angle 9; along each geodesic.

The Weil-Petersson Kahler form has been shown to
take the simple form
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primitiUe graphs brieAy discussed in the days of dual
models by Gross and Schwarz (1970). In fact, it is quite
tempting to construct a fieldlike theory this way, without
propagators, however. Indeed, take the pant and now
sew enough pants together so as to reconstruct the
desired string diagram. Unfortunately, this approach
does not seem to work, for essentially the same reasons as
are given above: though one formally obtains the mea-
sure and the integrand, naive sewing will also yield an
infinite factor in front, which is basically the cardinality
of the mapping class group. One would have to factor
out the proper (infinite) combinations right away, and
this seems rather hopeless. The latter idea was explored
by D'Hoker and Gross; similar attempts at string field
th'eory based on pants may be found in Tseytlin (1986).

Equation (4.19), which shows that Fenchel-Nielsen
coordinates are canonical coordinates with respect to the
symplectic structure defined by Weil-Petersson Kahler
form, is due to Wolpert (1982, 1983). These references
also contain a great deal more on the interplay between
the symplectic geometry of Teichmuller space and the
hyperbolic geometry of the surface.

F. Penner decomposition

The component connected to the identity SO+(2, 1) of
SO(2, 1) leaves & invariant and acts isometrically. The
metric induced on & by the flat Minkowski metric has
curvature —1. Actually, there is a simple correspon-
dence between the complex upper half-plane
H= Iz =x+iy HC, y )0] and &, given by

I x
~2

A + y ~3
A + +y

y
'

2Ay
'

2Ay
(4.22)

where A is an arbitrary constant )0 and the hyperbolic
metric on H is linked to the inner product on & by
coshd = —g g'. The geodesics of H, half-circles centered
on the real line and arbitrary radius, are mapped onto the

Recently, another description of the Teichmuller space
TI, „of Riemann surfaces endowed with constant-
curvature metrics has emerged. However, this construc-
tion works only when there is at least one puncture, so
that n ) 1. The Penner decomposition exhibits a simple
behavior under the action of the mapping class group, so
that it may be used to describe the corresponding moduli
space JR& „ofpunctured surfaces. In addition, the Weil-
Petersson Kahler form admits an explicit representation,
and there is a reasonable description of the boundary of
the fundamental domain of moduli space. In practice, we
shall here restrict ourselves to Riemann surfaces with
only one puncture, the generalization to the case with
more punctures being straightforward.

One starts by representing a two-dimensional hyper-
bolic geometry by one copy & of the two-sheeted hyper-
boloid in R, endowed with the Minkowski inner product
g.g'=g'g'+ g'g' —g'P' for g=(g', g', g'):

(4.21)

geodesics of &, hyperbolas lying in planes that pass
through /=0; see Fig. 15.

For every element of A, I, &, we have a representation of
m&(M) into SO+(2, 1) by a Fuchsian group I", and the
Riemann surface is represented by M=&/I . The posi-
tive light cone is given by

L+ = Ig&R, g (=0, g') 0I . (4.23)

Now consider a Riemann surface with one puncture P, so
that I has a parabolic generator y~CSO+(2, 1), corre-
sponding to that puncture. A parabolic element &1 is
characterized by the light ray in L+ it leaves invariant,
and we may pick a particular point z in L, + on this ray to
represent yz.

A geodesic of & that starts at P and returns to P is
called an ideal arc. The total length of an ideal arc is
clearly infinite, but we shall now give a natural regulari-
zation. We draw a small circle around the puncture, or-
thogonal to all geodesics emanating from P; this circle,
denoted by h, is called a horocycle and is characterized by
its length (see Fig. 16 for the torus). If we had several
punctures, each of them would inherit a horocycle. The
horocycle defines a small disc with puncture P, and this
disc may be viewed as the coset of & by the cyclic group
generated by yz. The hyperbolic length of a geodesic c
starting at P and returning to it, as measured from its in-
tersections v ith the horocycle h, is now finite and denot-
ed by dz(c). As the radius of the horocycle tends to zero
(h ~P), this length again diverges, but the difference be-
tween the lengths of two geodesics c, and c2 converges,

A(c, )
lim exp[dI, (c, ) dz(c2)]= — . (4.24)
h~P A.(c2 )

7An element y&1 of SO+(2, 1) is hyperbolic, parabolic, or el-
liptic provided the eigenvector with eigenvalue 1 lies outside
L+, on L+, or inside L+.

FIG. 15. Hyperbolic geometry as constructed from the three-
dimensional hyperboloid %. A geodesic y is the intersection of
& with a plane through the origin.
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FIG. 16. An ideal triangulation of the once-punctured torus.
The ideal arcs are C&, C&, and C3. The horocycle h is also indi-
cated.

If y(c) denotes the element of SO+(2, 1) describing the
ideal arc c starting at P and returning to it, and g is the
element of L+ fixed by yz, then one can show that the A,

lengths are given by

countable set of faces, each of which is the convex hull of
a finite number of points. Hyperbolicity of I guarantees
that any face of BK intersects L+ in an ellipse. Each
edge of a face determines a geodesic in & and hence an
ideal arc in MI, &. The collection of ideal arcs in Mz &

arising from all edges of faces of BK is a disjointly embed-
ded collection 6 of arcs in M& &

connecting punctures, so
that MI, &

—b, is simply connected. The homotopy class
of such a family of arcs is called an ideal ceO decomposi-
ti on 'Th.us with each I H'Tz, we have associated an
ideal cell decomposition h, (I ) of MI, ,

A cell decomposition C of T» is obtained by consid-
ering the collection of

C(b, )= II H V'z, such that 5(I ) belongs

A, (c)=—g.[y(c)g] . (4.25) to the class b. [ (4.27)

Each length A, (c)=A, „(c)depends on the Fuchsian group,
and the lengths are natural coordinates in the sense. that
elements y of the mapping class group act simply on
their ratios,

A, ~ (c, ) g (~
—'c, )

(4.26)
*„(cq) A, r(g 'c2 )

It is the purpose of this construction to use the A, lengths
as coordinates for moduli space.

1. ideal triangulations

One obtains an ideal triangulation 5 of the Riemann
surface MI, & by considering a maximal family of disjoint-

ly embedded simple ideal arcs 5, so that no component of
M~ i

—6 is a mono-gon or bi-gon.
Thus an ideal triangulation is a decomposition of MI, ,

by ideal arcs into regions whose double is a sphere with
three punctures. It is easy to see that 6h —3 ideal arcs is
the maximal number, and they divide the surface into
4h —2 triangles, whose corners are all identified with the
puncture P (see Fig. 16). Now given MI, , with its horo-
cycle around the puncture P, the A, lengths of an ideal tri-
angulation provide a one-to-one and onto map between
V'I,

&
(together with its horocycle length) and R~+, under

which the ideal arcs c &, c2, . . . , cq of 6 are sent into
A, (c, ), A, (cz), . . . A,(c ). Here q=6h —3, but recall that
only ratios of A, lengths had a geometrical meaning, so
that actually only 6h —4 independent values survive, ex-
actly the number of moduli of JR&, . (If we had n punc-
tures, there would be 6h —6+3n ideal arcs, dividing the
surface into 4h 4+2n tria—ngles. )

and 6 ranges over all ideal cell decompositions of Mz, .
Each C(b. ) is contractible, and C is a mapping-class-
invariant decomposition.

The action of the mapping class group on 6 is generat-
ed by the following operation on two consecutive trian-
gles with edges [a, b, e] and Ic,d, e J of 5, , where the side
e is common. Consider the quadrangle [a, b, c,d, e] with
one diagonal e. Remove e from the quadrangle and re-
place it by the other diagonal f; this yields a new triangu-
lation 6'. The corresponding A, lengths are polynomially
related:

A(e)A(f) =A(a)A(c)+A(b)A(d) . (4.28)

When Teichmuller space is described in terms of the A,

coordinates, a cell C(b, ) is described by the following in-
equalities. Let I a, b, e [ and [c,d, e ] be two consecutive
triangles as before and let Ia,p, e] and Iy, 5, c, ] be the X

lengths of their sides; then we have

a+p)y, a+y)p, p+y)a,
as well as

(4.29)

0&sgn(a +p —c, )K(a,p, c, )

+sgn(y +5 —E )K(y, 5, E)

K(a, /3, y) =[(a+/3 —y)(a+y —p)

X (p+ y —a)(a+p+ y ) ]'i' .

(4.30)

With the help of this cell decomposition and the action of
the mapping class group, Penner has succeeded in com-
puting the orbifold Euler number of moduli space All,
and rederived the well-known formula of Harer and Za-
gier (1986),

2. Ideal cell decompositions X(A,„,)=g(1 —2h ), (4.31)

We now define a slightly refined decomposition of Mz &

into triangles, which will naturally induce a mapping-
class-group-invariant cell decomposition on TI, ,

Consider the orbit I z for z H L + and z invariant under
the parabolic element y~, and consider its convex hull K,
which is I invariant. The boundary BK consists of a

where g(z) is the Riemann zeta function.

3. Integration over moduli space

There also exists a method for integrating forms in-
variant under the action of the mapping class group, in
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2c[G]

I 6 DG
(4.32)

terms of integrations over cells whose edges satisfy the
nonlinear inequalities above. The triangles are assembled
into "fat graphs" 6, which describe concisely the homo-
topy classes b, and thus the cells C (6) of Tl, i. The for-
mula for the integration of a top-dimensional form of co

of Jkh, is particularly elegant:

Zo= 0 7i

(8

8,

I(85

I( I(

r aq
P4

Ql

Y3 T4 +6

where DG is the region of integration described by the
nonlinear inequalities for the fat graph 6, and the sum is
over all 6 with trivalent vertices only. E[G]=1 when 6
has two vertices and is hyperelliptic, and E[G]=0 other-
wise. 1 (6) is the isotropy group of the cell correspond-
ing to the fat graph. G (i.e., the combinatorial factor fa-
miliar from Feynman diagrams).

The Weil-Petersson measure can be obtained from the
Weil-Petersson Kahler form in the standard fashi'on, and
the latter is given in terms of the real (positive) A, lengths

I a, P, y I assigned to each vertex I a, b, c J of G by

cowp ———2 g (d lna h d lnP+d lnP h d lny

+d lny hd ina), (4.33)

where the sum runs over all vertices of G. This formula
results from Wolpert's explicit expression for the Weil-
Petersson Kahler form as a function of geodesic lengths.

For the mathematical literature, we refer the reader to
Epstein and Penner (1988), and Penner (1987a, 1987b).
The original proof of Eq. (4.31) is in Harer and Zagier
(1986). A recent survey is that of Harer (1982, 1985).

To conclude, we remark that the Penner decomposi-
tion method has been used in string theory applications
in only one instance so far, even though it allows for
some of the most explicit and calculable formulations of
the integration measure on moduli space (see Gross and
Periwal, 1988).

G. Mandelstam diagrams

The formulation of string theory in the light-cone
gauge by Goddard, Goldstone, Rebbi, and Thorn (1973)
has led Mandelstam (1973a, 1973b, 1974a, 1974b) to in-
troduce the interacting string picture. In this picture,
freely moving strings propagate as cylinders and split and
join at definite light-cone interaction times ~„and the in-
teraction vertex (at least for the bosonic string) is just the
overlap integral between initial and final strings. In the
light-cone picture, the radius of an intermediate cylinder
corresponds to the p+ component of the momentum of
that string, so that the sum of all radii remains conserved
as a function of light-cone time. We shall, however,
abstract the diagram from the momentum conservation
issue and simply keep the same geometry. Such diagrams
will be referred to as Mandelstam diagrams, and a typical
example is presented in Fig. 17.

As a Riernann surface, the number of internal slits cor-
responds to the genus h, whereas the number of cylinders

FIG. 17. A Mandelstam diagram for a surface with n = 5 punc-
tures, genus h =2, with the corresponding coordinates.

0, a = 1,2, . . . , 3h + n —3, twist angles,

al, I =1,2, . . . , h, internal momenta,

a, p=1,2, . . . , n, external momenta .

(4.34)

The remarkable fact, implicit in the work of Mandelstarn
(1986a, 1986b) and proven by Giddings and Wolpert
(1987), is that natural ranges for r„g, and al, as well as
fixed n 's, provide a single cover for the moduli space
ALI, „of surfaces of genus h and with n punctures, with
residues a~ prescribed at the punctures Q;. The proof
proceeds along the following lines.

The quintessential property of a Mandelstam diagram
(as is of course the case for the light-cone gauge in gen-
eral) is that it admits a globally defined light-cone time ~,
and so the differential d~ is exact. The o. direction, on
the other hand, is not global, first because on each
cylinder o. is not single valued, and second because there
is a separate o. variable for each cylinder. However, the
differential do. . is well defined on each cylinder separately
and is single valued there. It is thus natural to introduce
the light cone coordinate w =~+i a, whose differential is
well defined,

co =dw =d w+ i d o (4.35)

Of course, w does not define a smooth coordinate in the
neighborhood of an interaction point wo. Smooth holo-
morphic coordinates z may be introduced in the neigh-
borhood of w0 by mapping the region into a planar re-
gion

W —Wp =(Z —Zp )
2 (4.36)

8Arguments along somewhat different lines were presented by
Taylor (1987).

running off the ao corresponds to the number of punc-
tures n. Clearly, then, the Mandelstam diagram can only
describe surfaces with at least two punctures. In view of
the results in Sec. II.I., however, the Polyakov integrals
may be reformulated on sorfaces with punctures.

The coordinates labeling the diagram for genus h and n

punctures are (see again Fig. 17)

a =1,2, . . . , 2h +n —3, interaction times,
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In any case, it is clear that ~ vanishes at the interaction
points and is nonvanishing everywhere else on the sur-
face. Since the radii of the outgoing cylinders are a, we
also have

1 n

27Tl
~ around g ~=p& +p =0

~ (4.37)

so we may view co as having a simple pole at the puncture

Q~ with residue a~.
Since co is a (1,0) form, Bco is a metric on the surface.

It is Aat Euclidean everywhere, except at the interaction
points, where all the curvature of the diagram is concen-
trated:

&g R (z) = 2' g— 5(z P, ), — (4.38)

where g, =co,co, .
Now notice that cu has purely imaginary periods

around any homology cycle, since ~ is single valued.
Thus for every Mandelstam diagram there exists a unique
holomorphic Abelian differential co, with purely imagi-
nary periods, and with residues a at the puncture Q .
Conversely, every such holomorphic differntial co deter-
mines a metric Bcu and hence a unique Riemann surface.

For a general Riemann surface (not necessarily viewed
in the Mandelstam picture) there exists an analogous
holomorphic differential. It is constructed out of the
meromorphic Abelian differentials of the third kind
cop&(z) with simple poles at P and Q of residues 1 and
—1, respectively. Such a differential is defined only up to
holornorphic differentials cur, but a unique co~& (z)
emerges if one demands that all its periods be purely
imaginary:

Ref „co~& Re)i——i co~& ——0 .I I (4.39)

Actually, if X interaction times coincide, one will have
to introduce z through

w —ceo =(z —zo) N

I SSI& I=. l, . . . , h

t)), =cocop p, a = 1, . . . , 2h + n —3,
(4.41)

where I'o, I'„.. . , Pzh+, 3 are the interaction points of
the diagram. The poles of the meromorphic (third)
Abelian differentials ~p& are precisely canceled by the
zeros of co, so that P, and Pl are holomorphic on the n-

punctured surface.
Holomorphic —,

' differentials for even-spin structure v

and a generic point on JRh „are constructed as follows.
There are no holomorphic —,

' differentials on the underly-

ing compact surface (the analogs of col), and there is a
unique meromorphic —, differential [the so-called Szego
kernel of Eq. (3.202)] icp(z) =S (z, P) with a single simple
pole at I'. %'e obtain the 2h+n —3 holomorphic
differentials as

struction all its periods are imaginary.
Thus on every Riemann surface there exists a unique

holomorphic differential cu with residues n at the punc-
tures Q~ and with purely imaginary periods. Conversely,
such a differential defines a metric and hence specifies the
Riemann surface uniquely.

The proof is completed by setting the two unique
differentials cu equal to one another.

Actually, this proof also informs us immediately about
the natural range of parameters mentioned above. The
difFerential co will be completely specified once the
"geometry" of the Mandelstam diagram is given. But
there are redundancies in the parametrizaiion of the
geometry which yield the same geometrical configuration
of the diagram. Clearly, these are the only restrictions on
the range of the parameters.

Another remarkable property of the Mandelstam dia-
gram representation is that quadratic and —,

' holomorphic
differentials admit an explicit representation in terms of
the canonical differential u and h holomorphic first-
Abelian differentials col, I=1, . . . , h.

Holomorphic quadratic differentials are given by

Then co is given by
n —1

p, =corp, a =0, 1, . . . , 2h +n —3, (4.42)

co(z)= g ppcog g (z),
p=1

(4.40)

and

P —P~, =a, p =1, . . . , n

Po ——P„=O .

with the coefficients P expressed in terms of the residues
a:

where again the pole of ~ is canceled by the zeros of ~.
Holomorphic —', differentials for odd-spin structure v

and a generic point in JMh „are obtained as follows.
There is now a unique holomorphic —, differentia1 h on
the underlying compact surface (the analog of col), and
there is a unique meromorphic —, differential

vz&(z) =S (z;P, Q), with simple poles of opposite residue
1, —1 at P and. Q (the analog of cop&). We again obtain
2h + n —3 holomorphic —,

' differentials as

As a differential on the surface with punctures
Q„.. . , Q„, co is of course holomorphic, and by con-

p~=coKp p, a =1~. . . , 2h +pl —3

P2h +n —3 Nh ~

(4 43)

Only vs coincide here; the interaction points may well be
distinct.

In Sec. V.Cx, we shall make use of these constructions to
exhibit certain simple relations between ghost and matter
determinants on Mandelstam diagrams.
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H. Universal Teichmoller curve and compactification
of moduli space

1. Teichmuller curve

(g, g) C MXJR

g

(4.44)

In the product space M XA, we shall view the pairs (g,g)
and (g', g') as equivalent if there is a reparametrization of
M sending simultaneously g —+ g' and g ~g ', or if g
equals g' and g and g' differ only by a Weyl scaling.
Denoting this equivalence by Diff(M) X Weyl(M), we can
now define the universal Teichmiiller curve as the fiber
bundle

(M XJK)/Diff(M) X Weyl(M)

At /Diff(M) X Weyl(M)
(4.45)

We note that the original bundle (4.44) is trivial, but it
follows, for example, from curvature computations (4.47)
below that bundle (4.45) is not. In fact, the universal
curve does not admit any global continuous sections.
Nevertheless, local sections exist and are important: for
example, in a basis of —', diff'erentials p, (z) =5(z —z, ), the
points z, should be reviewed as local sections of the
Teichmuller - curve. Another useful property that
emerges out of the construction (4.44) and (4.45) is that
vector Gelds on moduli space have a lifting to vector
fields on the Teichmiiller curve: the natural lift g ~(g, g )
of Eq. (4.44) is invariant under Diff(M)XWeyl(M), and
hence makes sense as a lifting from Jki, to Cz. I.iftings
are needed to have a proper notion of derivatives of
point. s of the surface M with respect to moduli parame-
ters,

In the above construction the holomorphic structure of
the Teichmiiller curve is not manifest. However, if we

This follows from results of Johnson (1980), as pointed out
by E. Miller.

%'e conclude this section by discussing the geometry of
the (universal) Teichmiiller curve. This is the fiber bun-
dle over moduli space whose fiber above a given point in
moduli space (a given complex structure m) is just the
Riemann surface with this complex structure m. (See
Fig. 18.) Its interest to us stems from the close connec-
tion between its curvature and the curvature of deter-
minant line bundles over moduli space (Sec. VII) and,
even more importantly, from the fact that it provides the
proper setting for certain gauge-fixing procedures in the
superstring.

The formal construction of the universal Teichlnuller
curve is the following. Let At be the space of all metrics-

g on a fixed topological surface M and consider the fibra-
tion

FICx. 18. The Teichmuller curve and its sections for the moduli
space of surfaces of genus h.

represent a Riemann surface by a domain Do in the
upper half plane H and extelid the Beltrami diA'erentials

cp to be zero in the lower half plane, then Do will be de-
formed "holomorphically" to another domain
D,„=w(D )0by quasiconformal solutions m of the Bel-
trami equation (4.16). As p vary over a small neighbor-
hood of 0 ig. C, this provides an embedding of a
small neighborhood of the fiber corresponding to Do in
the Teichmiiller curve into C" XC. %'e have just
presented a very rough description of the Bers embed-
ding, which endows the Teichmuller curve with a holo-
morphic structure. It is instructive to realize the lifting
discussed in -the preceding paragraph in the Bers embed-
ding. If p is a tangent vector to moduli space at
M=H/I, let w,„again be the solution to Eq. (4.16),
which fixes 0, 1, and oo. The vector field

d
EP l3z

is defined on the upper half plane, but cannot be viewed
as a vector field on the surface M, since the arbitrary
choices 0, 1,co prevent it from transforming equivariantly
under the group I . On the other hand, at each point z of
M the vector field on thy universal Teichmuller curve

8 . 8
dc. '"

o Bz "Bzc=O
'(4.46)

will be equivariant and hence well defined. The
correspondence p~~„ is the lifting we are looking for.
This means that in the Hers realization, as we deform the
complex structure along p, the fundamental domain wi11
be deformed as well. Each point in the fundamental
domain describes, then, a path in C "

)& C, whose
direction is the vector field r„of Eq. (4.46). We observe

-that ~ is a smooth vector Geld on the universal curve,
while the related quasiconformal vector field V' of Sec.
II.I is a vector field on the surface M which cannot be
smooth if p is a nontrivial deformation.

It is evident that any choice of metrics on Riemann
surfaces can be viewed as a metric on the vertical bundle
above the Teichmuller curve, i.e., the bundle of tangent
vectors to the fibers of the Teichmiiller curve. In general
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on the universal Teichmuller curve, a vielbein for the
latter will consist of Ir~ I and i)/Bz, this last vector field

being viewed as a vector field along each fiber. The cur-
vature 0 is now given by

Bz

2 0,&, =0,
(z —z) Bz

(4.47)
Q(r, rk)=2(5+2) '(rj rk) .

Here 6 is the Laplacian on scalars. From this it is easy
to deduce the higher powers of the curvature tensor and
.the characteristic classes

iA
K~ =

fiber 277
(4.48)

of the Teichmiiller curve. In particular, one readily finds
the first Chem class of the vertical line bundle

a metric and a holomorphic structure will then determine
a unique connection by the requiren|ents of unitarity,
hermiticity, and that its (0,1) component agree with the 8
operator (cf. Sec. VI.A). If we choose constant-curvature
metrics on the surface M, the curvature of the corre-
sponding connection on the Teichmuller curve can be
computed explicitly. Since the curvature can be viewed
as a Hermitian 2-form, it can be described by its values
on pairs of vielbein vectors for the Teichmuller curve.
Since a vielbein for moduli space is provided by a basis of
Beltrami difFerentials p, j = 1, . . . , 3h —3, which lifts to
vectors

string amplitudes as integrals over the Teichmiiller curve
and its generalizations is quite convenient in many
respects.

2. Compactification of moduli space

Finally, we come to the issue of the boundary of modu-
li space, of which mention has been made in connection
with BRST invariance (Secs. III.J—III.P), and whose role
will emerge more clearly in connection with tlniteness of
string amplitudes and supersymmetry breaking.

That moduli space Afh is not a space without boundary
is not evident from the definition we adopted in Eq.
(2.33). However, for genus h =1, we have an explicit
representation of Ai i as a fundamental domain for
SL(2,Z) within the upper half space, which admits a nat-
ural one-point compactification. For higher genus h &2,
the Fenchel-Nielsen coordinates of Sec. IV.E for
Teichmuller space provide a simple explanation: the
boundary of Teichmuller space consists of the surfaces
where one of the 3h —3 geodesics has been pinched to a
point (see Fig. 19). This is the basic geometric principle
underlying the 0eligne-Mumford comp actificatio of
moduli space, where one adjoins to the regular Riemann
surfaces the divisor 6 of Riemann surfaces with nodes.
A Riemann surface Mo with nodes is a surface with spe-
cial points p; called nodes, around each of which the sur-
face is conformally equivalent to two discs with their
centers identified. If the coordinate of the node is 0, such
a neighborhood of the node can be given by

(4.50)

2~We ~

fiber
(4.49)

where cowp is the Weil-Petersson Kathler form encoun-
tered in Eq. (4.17). This result will help us later (cf. Sec.
VII.E) to identify the precise form of the holomorphic
anomaly from the determinant line bundles formalism.

The Teichmuller curve is the natural setting for a care-
ful treatment of derivatives of differentials with respect to
moduli parameters. Indeed such differentials can be
viewed as sections of tensor powers of the vertical line
bundle over the Teichmuller curve. If metrics are chosen
to represent conformal classes (as is usually done in
gauge-fixing the superstring), these bundles will be en-
dowed with a metric as well, and hence with a connection
in the presence of a holomorphic structure. If we wanted
to differentiate in the moduli direction, p, it would suKce
to again lift p to a vector field along the fiber of the
Teichmiiller curve by the natural lift, and differentiate
along that vector field using the connection we just dis-
cussed. This procedure can be applied, for example, to
the —,

' ditt'erentials X, needed to absorb the superconfor-
mal ghost zero modes.

%e also note that the Teichmuller curve can be viewed
as the moduli space of surfaces with one puncture, al-
ready encountered in Secs. II.L and IV.F. Formulating

(b)
FIG. 19. The boundary of moduli space —surfaces with nodes:
(a) pinchirig a cycle homologous to zero: (b) pinching a cycle
not homologous to zero.
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This neighborhood can be viewed as the end product of a
degeneration of regular holomorphic neighborhoods in-
dexed by a parameter t,

~

r
~

& 1 tending to 0:

e, =I(zw); ZLD=t, /t [ & /z
/

&1, /t
/

& /LU
/

&1I

(4.51)

For each fixed t, Vl, can be viewed as an annulus, or
equivalently a cylinder. The principle of the "plumbing
fixture" is that the degeneracy family %, of cylinders can
be fitted in a family of regular Riemann surfaces M„
which terid to M0 as t~0. More precisely, let M& and
Mz be two regular Riemann surfaces of genUs i and h —i
and p, and pz be points on M& and Mz, respectively. If
z; are holomorphic coordinates around p; and D, are the
discs I ~

z;
~

& 1 I, we can remove the smaller discs
I ~

z;
~

&
~

t
~

'
J and join the remairiing points of Mi

and Mz by attaching them both to the plumbing fixture
R, in the following manner;

z, iii D, is identified with (z=z„w =r/zi) in Vl, if

z2 m D2 is identified with (z =t/z2, w =z2) in 6', if

This gives us a family of regular Riemann surfaces M,
of genus h which tend to a Riemann surface M0 with
node p =p, ,pz. This type of degeneration corresponds to
pinching to a point a cycle homologous to zero [Fig.
19(a)]. Holomorphic parameters for moduli space near
such a moduli boundary point M0 are the moduli paraW-
eters for Mi and Mz the points p& and pz, and the pa-
rameter t characterizing the annulus Vl, . Of these, t
should viewed as the parameter transversal to the bound-
ary of moduli space, while the others parametrize the
boundary itself. If we choose instead to pinch a cycle
that is not homologous to zero [Fig. 19(b)], then we can
repeat essentially the same plumbing fixture construction,
starting this time with a regular Riemann surface M of
genus h —1 with two marked points p& and pz. Again
coordinate discs D;=I ~z,

~
&1I around p, are intro-

duced, smaller discs I ~
z,

~
&

~

t
~

'
) are removed, and

the above construction yields a "bridge" between the
remaining parts of D;. The resulting surfaces M, now
have genus h and tend to a surface M0 with node
p =p&,pz. Holomorphic coordinates for moduli space
are the moduli parameters for M, the points p, and pz,
and the parameter t, which is again the transversal coor-
dinate. The two types of degenerations can equivalently
be distinguished by whether removal of the node at the
end disconnects the surface or not. In either case, the
plumbing fixture construction shows explicitly that the
behavior of M, outside of %, is independent of the degen-
eration taking place within B,.

Viewing 6 as arising from regular Riemann surfaces by
pinching closed curves to a point, it should be evident
that there are nevertheless restrictions as to which and
how many curves can be pinched simultaneously. For
h )2, in the Fenchel-Nielsen picture, it is any number of
3A. —3 defining geodesics. More formaHy, one requires

where the generic surface M in 6; has exactly one node
separating it into two components of genus i and h —i,
while h0 consists of degenerations that do not disconnect
the surface. The divisors b, k define cohomology classes
in H6h 8(Aih). If [cowp] is the cohomology class ob-
tained by Poincare duality from the Weil-Petersson
Kahler form, it is a rema'rkable theorem of Harer (1985)
and Wolpert (1987) that (ho, . . . , b, [l, ypl [cowp]) is actual-
ly a basis for H6& 8(Wz).

A last fundamental feature of degenerations is that the
universal Teichmiiller curve extends to a holomor-
phic fibration over the compactified moduli space JNhif,
the fibers above the locus 6 are the corresponding sur-
faces with nodes. That the total space of the fibration has
no singularities (by opposition to the fiber) can be intui-
tively seen from the degeneration picture provided by Eq.
(4.51): the total space there can be viewed as the perfect-
ly regular two-dimensional complex variety

I(z ~ t) z~ =r (4.53)

whose projection by (z, w, t)~t just ceases to be a sub-
mersion at t =0. The compactified uhiversal Teichmuller
curve has been used to investigate the asymptotic behav-
ior near the boundary of moduli space of the string in-
tegrand. It is likely that its potential applications to
string theory have not been exhausted.

DifFerential geometric constructions of the umversal
Teichmuller curve seem to have started with Earle and
Eells (1969). The Hers embedding is described in Hers
(1973). The curvature of the (uncompactified) universal
curve given in Eq. (4.47) is due to Wolpert (1986). A
more recent treatment extending to the curvature of sur-
faces with nodes over the Diligne-Mumford
compactification (see Sec. IV.H) is

'

that of Wolpert
(1988). The role of the universal Teichmiiller curve in
Grothendieck-Riemanri-Roch constructions is explained
in detail by Nelson (1987a). Although we do not need
them here, it may be worth reporting that the curvature
of inoduli space with respect to the Weil-Petersson
Inetric is completely known. DiA'erent methods of calcu-
lation are given in Royden (1985), Siu (1986), Tromba
(1986), Wolpert (1986), and Wolf (1986).

V. EVALUATION OF DETERIVIINANTS

Determinants of Laplacians and 8 operators for the
torus can be expressed in terms of the Dedekind eta func-
tion g(~) and special values of the theta function 8(z, r).
For higher loops, this can be generalized in a number of

that the surfaces with nodes have at most as many con-
formal Killing vectors as the regular surfaces that con-
verge to them. The compactification JNh, of AC I, obtained
in this manner is called the moduli space of stable curves.

The compactification locus b, =%ah —At, h is a divisor
with normal crossings. It is reducible and can be written
as

(4.52)
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ways. If we choose to represent the conformal class by a
constant-curvature metric, then the natural function is
the Selberg zeta function Z(s). We shall show in this
section that all the determinants of Laplacians needed for
quantization are given by special values of Z(s). This
will allow a simple analysis of the asymptotic behavior of
the string integrand near the boundary of moduli space,
confirming the presence of a tachyon in the bosonic
string spectrum, and clarifying the respective roles of
worldsheet and space-time supersymmetry in finiteness
issues. It is di%cult to extract the determinants of chiral
8 operators in this approach, if only because hyperbolic
geometry and Selberg zeta functions are defined by real
quantities. Actually, even an appropriate definition of a
chiral determinant is problematic. The proper resolution
of these issues requires a study of holomorphic anomalies
and bosonization, and will lead to expressions for chiral
determinants in terms of Riemann theta functions. A full
account will be provided in Sec. VII.

Mandelstam diagrams are another convenient way of
representing (punctured) Riemann surfaces. Although
we shall not evaluate the determinants for Mandelstam
diagrams individually, we shall show that remarkable re-
lations hold between determinants of diFerent U(1)
weights. - Such relations are usually required to relate the
light-cone gauge to the Polyakov formulation.

A. One-loop formulas

g (pi+ 1,gz) = —9 (gi, gz)e
'ill V2y(pi+xi, gq+r2) = —q)(gi, g2)e

(5.1)

We begin with the simpler case of one loop, which will
serve as an introduction to the more complicated formu-
las required for multiloops. Recall that a complex struc-
ture for a torus is characterized by a lattice Z+~Z in the
complex plane, and that moduli space AL, is
H/PSL(2, Z), with H= Ir=r, +irz, r2&OI. The key
forms on moduli space are the Dedekind eta and the the-
ta furictions defined in Appendix E, which transform ac-
cordirig to the Jacobi rule of Eqs. (E4) and (E10). ' For
ferinion determinants, a spin structure has to be
prescribed. There are four spin structures v=(vi, v2),

.v, 2
——0, 1 corresponding to the boundary conditions

we find the eigenvalues of 8,

2 7T
[(n, + —,——,v, )r—(n2+ —,——,v~)],1 1

~2

and zeta-function regularization ' produces

ln det BB=—g'(0)+2 ln g(0),
~2

g(s)= g I(n, + —,
' ——,'v, ) r2

(5.3)

+[(ri, +—,
' ——,'v, )r, n, ——,

'—+ —,'v2] I

—z ——,'+ —,'vz] I (5.4)

where the contour surrounds the real axis once in the
counterclockwise direction. The contour may be restrict-
ed to the line infinitesimally above the real axis, the other
contribution being related to the complex conjugate. In
turn, this contour can be deformed into an integration
along both sides of a vertical cut in the upper half plane,
starting at (n i+ —,

' ——,
' vi)r + —,'vz ——,'. When v&(1, 1) it is

straightforward to see that g(0) =0, whereas for v=(1, 1)
we have g(0) = —1. Furthermore

g'(0) = g 21nI exp[2~i(n, + —,
' ——,'vi)7

+mi(v2 1)]—. 1 I +—c.c. ,

with the appropriate subtraction when v=(1, 1). Using
the product representation (E6) from Appendix E for the
theta function, and (E10) for the eta function, we find

(O, r)
det, ( —5B)=

ri(r)
v&(1, 1),

det'( —KB)=r2
~

ri(r) ~, v=(1, 1),

which is absolutely convergent for Re(s) & 1. When
v=(1, 1), it is understood that the summation does not
include n i ——n2 ——0. The n2 sum may be represented by a
contour integral

g(s)= g fcdz, I(n, + —,
' ——,'v, ) r2

e
n&

+[(n, + —,
' ——,'v, )r,

The relevant operators become

a= —2aa, P'P, =2S,
0 a'

Pi/2 =

Introducing the basis

(5.2)

where the ~2 factor above comes from the term propor-
tional to g(0), which contributes only when there are
zero modes. We observe that since the left-hand side is
reparametrization invariant by construction, this result
can be used to derive the usual transformation law for
the g function under modular transformations. Separat-
ing out the holomorphic factors where appropriate gives

det'b, =rP g(r)
~

„=exp 2vri (n i+ —,
' ——,

' vi)g'

[n2 —(n, + —,
——,v, )r,

1
1 1

'T2

+ l
——,'v2]k'

det'B=r2/2mB', (O, r)/r)(r), v=(1, 1),
det B=B (O, r)/il(r), v&(1, 1),

'See the opening remark of Sec. V.E.

(5.5)
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The contributions of left-movers can be identified with
those of 0 operators. The above formulas actually deter-
mine the functional determinants only up to global
phases independent of the moduli parameter ~. Recall
that spin structures can be divided into two groups,
characterized by the parity of the number of zero modes
of the Dirac operator. The mapping class group will per-
mute all of them and hence determine the phases within
each group. The relative phases of the two groups should
be determined by factorization requirements. For one
loop, the odd-spin structure v=(1, 1) does not contribute
to the partition function because the zero mode of the
Dirac operator decouples from the supermoduli modes,
and modular invariance forces a combination of phases
for the remaining three even-spin structures which pro-
duces 0 by the Jacobi identity. This vanishing of the
cosmological constant can be viewed as a consequence of
space-time supersymmetry (for details see Sec. III.M).

One-loop determinants for the bosonic string were
evaluated by Polchinski (1986) and for the fermionic
string by D'Hoker and Phong (1986b) and Namazie,
Narain, and Sarmidi (1986).

B. Multiloop formulas and Selberg zeta functions

Z(s) =
y primitive k =1

n =0, 1. (5.6)

Here the primitive y denotes simple closed geodesics on
M, I is the length of y in the hyperbolic metric, and
v(y ) H I+1 I is determined by the spin structure. In more
algebraic terms, we view the worldsheet as H/I, with I
a Fuchsian group with compact quotient. A primitive y
is then an element of I that cannot be written as a power)2 of any element, lr is equal to cosh '(try/2), and
v(y) is a Z2-valued character of the group I CSL(2, R)
which projects onto I C:PSL(2,R). If we recall that the
complex parameter r for the torus is just y+i/l in
Fenchel-Nielsen coordinates, there is evidently a close
similarity between Eqs. (5.10) and (5.6), with the
diff'erence, however, that Z(s) is real and that there are
many more geodesics on a hyperbolic surface. Although
we use the same symbol Z (s) for the various Selberg zeta
functions, it should be clear that the definition (5.6) with
n =0 is to be taken when dealing with bosons, while
n = 1 corresponds to fermions.

The function Z(s) will converge for Res~ 1, admit a
functional equation similar to the Riemann zeta function,

Z(1 —s) =x (s)Z(s),

In this case a complex structure on the worldsheet M
can be represented by a metric of constant negative cur-
vature —1, and an analog of the theta function is provid-
ed by the Selberg zeta functions

and extend to an entire function in the s complex plane.
In terms of Z(s) the functional determinants appearing
in the quantum superstring measure were evaluated by
D'Hoker and Phong (1986d), Fried (1986b), and Sarnak
(1987);

detb, = e Z'(1),

detP, P, =e ' Z(2),
C1/PldetP, q~P, q2

——e Z ( —,'),
(5.7)

with

Cn (2n —2m —1)ln(2n —m) —(n + —,
'

)
0&m & n —1/2

+2(n —[n])(n + —,
' )ln2m. +2/'( —1) .

C. Hyperbolic geometry on a Riemann surface

In the remaining subsections of Sec. V we shall discuss
the mathematical ingredients necessary to an understand-
ing of Eq. (5.7). Some fundamental facts about Fuchsian
groups I C:PSL(2,R) with compact quotient are the fol-
lowing. Elements y of I all have traces

~
Try

~

greater
than 2 and are conjugate within SL(2,R) to a dilation

I
zi e yz. The dilation coefficient follows from the hyper-
bolic distance d (z, z') defined in Eq. (4.13):

Here X is the number of zero modes of the chiral Dirac
operator. In general it depends on the spin structure as
well as on the complex structure. This will be discussed
at length in Sec. VI.F.

The Selberg zeta function was introduced by Selberg
(1956) and appeared in evaluation of determinants in the
work of Ray and Singer (1971, 1973). A good review of
its properties can be found in Hejhal (1976a, 1976b). Spe-
cial cases of Eq. (5.7) have been obtained by Baranov and
Schwartz (1985), D'Hoker and Phong (1986a), Fried
{1986a), Ciilbert {1986),Kierlanczyk (1986), and Nama-
zie and Rajeev (1986). Various relations between Selberg
zeta functions were discussed by Beilinson and Manin
(1986) and by Voros (1987). The case of worldsheets with
boundary is treated in Blau and Clements (1987). Super-
determinarits on super Riemann surfaces of constant su-
percurvature were related to super Selberg zeta functions
by Aoki (1988) and by Baranov, Manin, Frolov, and
Schwartz (1987). Character-valued generalizations of the
Selberg function in which v(y) is the character of an
Abelian group have been related to determinants on
Riemann surfaces with an Abelian orbifold as target
space-time by Periwal (1987). Finally, Mandelstam
(1986a, 1986b) also used Selberg trace formula techniques
to relate determinants to the partition function of the old
dual models. The superstring case is discussed by Mar-
tinec (1987).

s —1/2x(s)=exp 4'(h —1)f dyy tg~y
0

mind(z, yz)=l~ . (5.8)
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The number of simple closed geodesics of length smaller
than 1 is asymptotically given by l 'e [1+0 ( 1 ) ] as
I~ Oo. For a fixed I, the set of lengths is bounded from
below by some smallest length l0 ~ 0.

Next a tensor f (z)dz "dz™on H =H/1" may be
identified with a function f (z) on H transforming under
r as

f (yz) =(«+d)'"(cz+d)' f (z)

a b
for y= d E-PSL(2, R) . (5.9)

There is no ambiguity for n+ I integer, but for n half-
integer (which corresponds to spinor fields) the sign of
the trace of y matters, and we must introduce a multi-
plier v(y}H I+1I for yC:SL(2, R) projecting onto I .
The condition (5.9) is then replaced by

f (yz)=v(y)""+ '(cz+d)'"(«+d)' f (z),

h (z) on 1" with suitable decrease at infinity we can associ-
ate the Poincare series

81, (z)= g [v(y)] '~+q'(cz+d) ~(cz+d) qh(yz),

(5.15)

which will then be an automorphic form of weight (p, q).
In particular, we may construct the heat kernels for
operators on H/I from heat kernels for the correspond-
ing operators on H. In view of Eq. (5.14), the key in-
gredient is then the heat kernel g„'(z,z') for D„—on H,
which has actually been computed by McKean (1972),
Hejhal (1976b), and Fay (1977}:

—ti4 —b /4t
g„'(z z') = db

(4~t )'~~ v'coshb —coshd

a b

d er. (5.10)

coshb /2
coshd /2

(5.16)

In the number theory literature, functions f (z) satisfying
Eq. (5.10) are called automorphic forms. Their spaces
are denoted by T" and carry the natural inner product

where T2„(t) is the 2nth Chebyshev polynomial and d is
the hyperbolic distance between z and z'. As a conse-
quence the heat kernel for b, '„+—' on S(n) is given by
e '"'"—"K '(z, z') with

(5.11) 'n
Z —PZ

'n

which is just an inner product of the form (2.21) or (2.45)
in terms of the constant-curvature metric
ds =2y dz dz. Similarly, from Eqs. (2.42) —(2.44), the
covariant complex derivatives V'":T"—+T"+ ',
V'„:T'~T" ' become operators on automorphic forms:

(5.12)

K„:S(n)—&S(n +1), IC„=(z —z)B/Bz+n,

L„:S(n )~S ( n —1), L„=(z —z )B/Bz —n,
(5.13)

which are isomorphic to T", (7", and V„ through the
isometry T"Hf~y" fHS(n). The Laplacians 6'„—' on
T" reduce to operators on S(n),

D„+n (n+1)—

with

D„=y dB 2iny(B+cT—) .

Note that D„ is real: D„=D

(5.14)

It will usually be simpler to work with the space
S(n)=T" ' " and the Maass operators K„and L„
defined by

yz Z

Xg„'(z,yz') . (5.17)

(Observe that K„' is of weight n in z', but of weight n in-
z. )

The trace of the heat kernel is given by

—f. w'+)
Tr(e "

) =e '"'"+—"f dx dy y K„'(z,z)
H/I

(5.18)

and can be computed through Selberg trace formula
techniques. The method roughly goes as follows. The
heat kernel K„'(z,z) is a sum over elements of 1, which
can be classified into conjugacy classes and elements in
their centralizers. If I p is the conjugacy class of 13, then
the integral over H /I of the sum over elements
k E I /I & can be viewed as the integral over a fundamen-
tal domain of I p. But I

& is cyclic and of the form

{y~, p EZ I for some primitive element y. Since the heat
kernel in the upper half space is invariant under SL(2,R),
we may now conjugate y within SL(2,R) to a dilation,
choose a fundamental domain for I" to be of the form

{—co &x & oo, l &y & e'), and carry out the integrals ex-
plicitly. Using the generating function for Chebyshev po-
lynomials, we obtain

D. Poincard series, heat kernels, Selberg trace formulas

To construct automorphic forms we rely on the
method of images. More precisely, with any function

John Fay has kindly pointed out to us that the discrete series
thai occurs in his expression for g' is erroneous and should be
deleted, so that one indeed obtains Eq. (5.16).
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t~(+)
Tl(e " )=e ~ ~~I (r)+e —tn~n 1)In(r)

oo e
—'/4

2 zIn(t) y y (~ )2' e
—Pl/4t

sinhpl /2 4i/2rt

(5.19)

I,"(t)= iX(M)
i

(2
[

n
[

222, 1)e& I I

—
&&

I I
— —»I

(5.20)

0&m( ~n
~

—1/2

—t/4 g
—b /4t

+ X(M)~ —,, f db . „cosh(~n
~

—[~n ~])b.
2 2rr 3~2 o smhb /2

Here y and y
' are counted as distinct primitive ele-

ments. We have singled out the contribution I,"(t) of the
identity element in the Poincare series, which encodes all
the short-time information of the heat kernel. Note that
I"(t) depends only on whether the field is a tensor or a
spinor, and otherwise not on its weight n.

From Eq. (5.20) we can obtain the number
—ts(+)

2V„+—[=lim, Tr(e " )] of zero modes of b, '„+—'. Since
—tb,

lNo is just 1 and Tr(e ' ') is certainly bounded as
t ~ oo, it follows that I (t)~1 and

~

I' (t)
~

(O(e '
)

as t ~ oo. W can now combine this with asymptotics for
I,"(r) to deduce that 2V„+ =0 for n & —,', X, =2h,
2V„=(2n —1)

~

X(M)
~

for n & —', . The number X,&2

=X+&/2 of zero modes of the Dirac operator'satisfies no
such simple formula, since it depends in general on both
the spin' and the complex structure [cf. Eq. (2.51) and
Sec. VI.F].

Automorphic forms are discussed by Ford (1951).
Fay's formula for the heat kernel appeared in Fay (1977).
The Selberg trace formula was introduced by Selberg
(1956) and applied in McKean (1972) and McKean and
Singer (1967) for the scalar Laplacian. An extensive dis-
cussion is in Hejhal (1976b). The above generalization
based on Maass operators and Fay's formula (5.16) ap-
peared in D'Hoker and Phong (1986d). The generaliza-
tion to the case of the superstring is discussed by Aoki
(1988).

I

With the above formulas for the heat kernel, it is simplest
to adapt to our context the elegant method of Fried
(1986a). Set

M„—(s)= f dt t' 'e "'" "I(t—),
0

M„+—,(s) = f dr t' 'e '"'"+—"—I"(t),
0

(5.22)

+
Cn =Cn, C~ =C~ (5.23)

with c„as in Eq. (5.7). Returning to g
—„(0)we decompose

it as

g„—(0)= lim [M„—(s) —1 (s)g„+—(0)+a„—I (s) ]
s~0

and choose a„—so that M„+—, (s) —a„—I (s) will be holo-
morphic at s =0. From Eq. (5.20) we see readily that a+
should be taken as the constant term in the short-time ex-
pansion of e ""—""I,"(t) for n & ——,', while a„should be
the constant term in the short-time expansion of
e '"'" "I,"(t)—(2n —1)

~

X(M)
~

for n &1. [Thi's dis-
tinction is based on the asymptotic behavior for large t of
e ""—""I,"(t), which is at most -r '~ in the first case
while it is (2n —1)~X(M)

~

in the second case. ] The exact
value at s =0 of M„—,—a„—1 (s) —=c„—

~
X(M)

~

can actually
be computed to be

E. Zeta-function regularization + lim [M„—(s) —a„—I (s)],
s~0

(5.24)

g„—(s) =Tr'(6'„+—')

f dt t' '[Tr(e "
) —2V„—] .=

r(s) o

(5.21)

The determinants will be evaluated through zeta-
function regularization,

det'b, '„—' =exp[ —g„—(0)],
where the zeta function is known to be holomorphic near
s =0 by the general theory of functional determinants.
To express it in terms of number-theoretical zeta func-
tions, rewrite t' ' in Eq. (5.22) in terms of its Mellin
transform, change the order of integration, and evaluate
the integrals explicitly to obtain

M„—(s)= dan[A(A+2
~

n+ —'
~
)] 'g v(y) "~ e ~" +'"+—'~ ''=

r(1 —s) o 2 sinhpI /2

z'(A, + (
n+ —,

'
~
+ —,')f di[A(X+2

~

n+ —,
'

~
)] + "—

2 +2
(5.25)

The result from zeta-function regularization differs from that of small-time cuto8'by harmless factors involving the area and the
Euler characteristic of the worldsheet, and thy number of zero modes.
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I"0 = 1, P'1 = 1

r„=O for n) —,, r„=O for n & —, .

(5.26)

This cancellation of the poles leaves us with

M„—(s) —I (s)g„—(0)+a„+—I (s) i,
( —)= —ln Z" (~n+ —,'~+ —,')

p
—

l

(5.27)

and thus

(5.28)

This formula includes Eqs. (5.7) as special cases.
In the mathematical literature, zeta-function regulari-

zation of determinants goes back to Ray and Singer
(1971). The above techniques were used to evaluate
determinants by Fried (1986a, 1986b), D'Hoker and
Phong (1986a, 1986d), and Sarnak (1987).

F. Asymptotics for determinants

Physical quantities are given in string theory by in-
tegrals over moduli space. The integrands have no singu-
larity inside, so the only possible divergences must come
from their asymptotic behavior near the boundary of
moduli. The importance of boundary contributions has
emerged before in Sec. II.K in our discussion of BRST
invariance. As explained in Sec. IV.H, this boundary
corresponds to the length of some closed geodesic on the
worldsheet tending to 0, and our first task is to study the
behavior of the determinants (5.7) in such a limit. As ex-
pected. , the partition function for the bosonic string wiH

diverge. For the fermionic string the evidence suggests
that the contribution from some spin structures will
diverge as we11, so that finiteness of superstring ampli-
tudes (if true) must result from delicate cancellations be-
tween various spin structures.

This is the key relation linking the heat kernel and Sel-
berg zeta functions, allowing us to determine the poles at
s =0 of M„—(s) in terms of the order of vanishing r„o—f
Z(s) at s=

~

n+ —,
'

l
+ —,'. In fact, for small E&0 we can

split the integral representing M„—(s) into an integral over
A. ~ c. and an integral over A, ~ E. The first is holomorphic
at s =0 and behaves like —r„+—/s+r„ln —

~

n+ —,
'

~

+r„+Inc+—O(s.) for n+ —,'&0, and like —r„/2s+—r„—Ins
for n+ —,

' =0. Since the pole of the second integral must
cancel that of I (s )[g„—(0)—a „—], it follows that
r„=a„"——g„—(0—) for n+ —,'&0, r,—=2[ti„——g„—(0)] for
n+ —,'=0. Now it is easy to see that g„+—(0) equals the
difference between the constant term in the short-time

expansion of Tr(e "
) and the number of zero modes

Recalling the definition of a,—and the formulas for
X,+—we obtain at once

~ —1/2 2% —1/2 ~ ~ 1/2 2+ 1/2
+ +

In view of Eqs. (5.7) the asymptotic behavior of the ab-
solute values of the determinants of string theory reduces
to that of special values of Selberg zeta functions. Let l0
be the length of the closed geodesic y0 that is being
pinched. We begin by noting that the asymptotics of its
contribution to Z(s) for v(yo)=l can be determined
from the Jacobi identity,

(1—e ')-lo '+'~ exp( —~ /6lo) . (5.29)
jc =1

Z(s) —lo '+'exp( ~ /31O), Re—(s) & 1 . (5.30)

The cases of d "Z(s)/ds" for Re(s) (1 are more difficult,
since analytic continuation is needed to define these
values. It is a good heuristic principle, however, that up
to smaller factors the asymptotics of d "Z (s)/ds" (k is the
first integer for which the derivative does not vamsh) are
given by the same formula (5.29) coming from the asymp-
totics of the terms in Z(s) involving the pinching geo-
desics. This heuristic principle is justified by the precise

FIG. 20. Hyperbolic geometry of a collar.

For values of Re(s) & 1 this actually gives already the
asymptotics for the full Z(s). The key to understanding
this lies in the collar phenomenon when a geodesic tends
to O. As l0 tends to 0, a collar, i e., a region
di6'eomorphic to a cylinder, around the geodesic will
stretch out with its length of the size of ln1/l0. Outside
the co11ar the area and diameters remain bounded in-
dependently of lo (see Fig. 20). (Note that this is con-
sistent with the fact that the area must remain constant
for hyperbolic metrics of fixed negative curvature. ) It is
also indicated by the plumbing fixture constructions of
Sec. IV.H. This suggests dividing the remaining geo-
desics in the infinite product defining Z(s) into two
groups. The first group consists of the geodesics not in-
tersecting y0. Their contributions will tend to the special
value of the Selberg zeta function of the punctured sur-
face obtained at I0=0. These are well behaved and will
merely contribute an asymptotic constant. The second
group consists of geodesics intersecting y0. Since these
geodesics must cross the collar, their lengths must go to
~, and hence their contribution will tend to 1. (Strictly
speaking, before these lengths increase they may first de-
crease due to the fact that they may wrap around y0 a
large number of times. ) Thus recalling that yo and yo

'

are counted as distinct primitive geodesics in the Selberg
zeta function we deduce that
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formula for Z'(1) obtained recently by Gava et al.
(1986), Wolpert (1986), and Hejhal (1987):

Z'(l)-lo 'exp( —~ /3lo)
0(k„(1/4

(5.31)

Here A,„are the eigenvalues of the Laplacian on scalars
on the Riemann surface. It is known from work by
Schoen et al. (1980) and Dodziuk et al. (1986) that there
are at most 4h —2 eigenvalues that are less than —,', and
that the lowest eigenvalues A,„are of the size of the sum
of lengths of closed geodesics disconnecting the surface
into (n + 1) components. Thus for a closed geodesic yo
of the type in Fig. 19, A, , is of the order of lo. (Observe
that this does not contradict the fact that the diameter of
the surface is of the order of 1nl/l0. The reason is that,
in the hyperbolic metric, the area element of a cylinder
grows exponentially. More precisely, in the energy in-
tegral the contribution from the complement of the collar
remains bounded, while by conformal invariance the col-
lar contributions are the same as an energy integral for a
Euclidean cylinder of radius 1 and length —1/lo. ) Thus
the additional factors involving A,„ in Eq. (5.31) are of
lower order than the main terms.

In the presence of a spin structure v(y ) with
v(yo) = —1, the asymptotics of the contributions from yo
to.Z (s) become

—(s+k)lo n /12lon 1+e ' -e
k=1

(5.32)

and the above arguments apply when Re(s) & 1. No pre-
cise asymptotics such as those of Eq. (5.31) have been es-

tablished rigorously for d ' 'Z(s)/ds ' 'I, 1&2 at the
present time. There is, nevertheless, a general method
that should give good information in principle on any
Z'"'(p) for Re(p) & 1. This method, based on functional
equations, goes back to Lavrik and was suggested in this
context by Goldfeld, Roughly speaking Z' '(p) can be
obtained by integrating Z(p+s)/s on a vertical line far
to the right in the s plane, and shifting the liqe of integra-
tion far to the left, picking up the only pole in
Z(p+s)/s at s =0. The functional equation for Z al-
lows us to rewrite the integral on the fear left as an in-
tegral on the far right, where the infinite products for Z
converge absolutely and collar arguments are valid.
Asymptotics follow in principle by expanding the zeta
functions into Dirichlet series in l. Applied, for example,
to Z'(1), this method gives back Eq. (5.31) with the pre-
cise factor gk, „replaced, by O-(l ') for any E&0. For
Z' '( —,') we expect it to confirm the heuristic principle
stated above again, with a possible uncertainty of
O(lo ').

In the above we have written down formulas for the
pinching of only one geodesic. It should, however, be
evident that they can be extended to the case of several
pinching geodesics, and that the maximum number of
geodesics that can be pinched independently is 3h —3.

Before returning to string partition functions, we will

need one more ingredient, namely, the asymptotic behav-
ior of the Weil-Petersson measure. Recalling the
correspondence between the complex coordinate t
defining the divisor 5 of Riemann surfaces with nodes
and the length of a pinching geodesic,

t
I

-exp( 2'—/lo ), (5.33)

For the bosonic string, the partition function is the in-
tegral over moduli of

exp[cX(M)]Z'(I) ' Z(2)d(WP), (5.35)
I

which in view of Eqs. (5.30)—(5.35) behaves up to smaller
factors as

(5.36)

This is the double-pole behavior obtained by Belavin and
Knizhnik (1986) using essentially holomorphicity and
characteristic classes arguments. A rigorous treatment
along Selberg zeta-function lines as above may be found
in Wolpert (1987).

Assuming the heuristic principle stated in the previous
paragraph for asymptotics of Selberg zeta functions
beyond Re(s) & 1 and neglecting the factors arising from
supermoduli in the superstring functional integrals, we
can derive similar asymptotics as well for fermionic parti-
tion functions. The importance of spin structures then
becomes manifest, since the asymptotic behavior of fer-
mionic determinants can change drastically if the sign of
parallel transport around y0 is Hipped. Thus for
"wrong-spin structures" we cannot have cancellation be-
tween bosonic and fermionic determinants and must
hope instead for a cancellation between the various spiri
structures. In physical terms, this means that finiteness
of superstring theories must come here from space-time
supersymmetry rather than worldsheet supersymmetry.
Some of these issued have also been addressed by Iengo
(1987) and Bonini and Iengo (1987a, 1987b).

G. Determinants en Mandelstam diagrams and unitarity

We have shown in Sec. II.L that Polyakov string am-
plitudes may be obtained in two di6'erent ways, yielding,
however, the same answer. In the first approach,
reparametrization-invariant vertex operators that satisfy
certain Weyl invariance conditions are inserted on a com-
pact surface, and their positions are integrated over. To
obtain the full amplitude, one sums over all (inequivalent)
compact surfaces of a given number of handles. In the
second approach, one sums instead over surfaces of a
given number of handles, with each vertex operator re-
placed by a puncture on the surface. Thus one sums over
all surfaces of given genus h and given number of punc-

we note that the Weil-Petersson metric is described near
b, by Masur (1976),

(5.34)

Rev. Mod. Phys. , Vot. 60, No. 4, October 1988



1008 E. D'Hoker and D. H. Phong: Geometry of string perturbation tbeory

1. The spin-1 ghost determinant

Recall the quadratic holomorphic differentials on the
Mandelstam diagram that were produced in Sec. IV.G'.

0a =~~I,P. ~ a =1, . . . , 2h +n —3,
(5.37)

where cu, coI, and co& z are the canonical differentials,
0 a

Abelian of first and third kind, respectively. Using the
Riemann bilinear relations of Appendix D, it is easy to
compute the corresponding inner products,

&616& =4lm&IJ &(t'114. & =0
Pb

&P, 1$& &=2Ref cl)p p:26p (P PI, ),
(5.38)

tures n, corresponding to n vertex operators.
Now it must have become clear from Secs. IV.F and

IV.G that very nice parametrizations are available for
surfaces and their moduli spaces as soon as one allows for
at least orie puncture. Here, we shall only consider the
case of Mandelstam diagrams, for which it was proven in
Sec. IV.G that with their natural ranges of parameters,
the Mandelstam diagrams parametrize the moduli space
JR& „ofsurf'aces with n punctures precisely once.

This important result would be even more useful in
string theory if the measure and the integrand for the
scattering amplitudes were to assume a relatively simple
and explicit form. We shall not analyze this question in
full here, but restrict ourselves to showing the following
important simplifications that occur when evaluating
ghost determinants on the Mandelstam diagrams. The
determinant for the spin-1 ghost, together with its finite-
dimensional determinant involving holomorphic quadra-
tic differentials, is simply given in terms of the deter-
minant on spin-0 scalars. Similarly, the determinant for
the spin- —,

' superghost is simply related to the Dirac
determinant.

lengthy argument, given in D'Hoker and Giddings
(1987), allows one to find that

det& p 1(tp& =(8m)"(4m) "+" det(ImQ) . (5.41)

Next we evaluate the infinite-dimensional Faddeev-
Popov ghost determinant det*P iP„considered on those
reparametrization vector fields V' and V' that vanish at
the punctures and are regular anywhere else. With the
help of the canonical difFerential co=co,dz, such vector
fields may be rewritten in terms of scalar fields P,

(5.42)

provided the scalar field P vanishes at the interaction
points P, where co, also variishes. Provided P is continu-
ous at the punctures, V' will automatically vanish there.
Away from interaction points and punctures, the opera-
tors P,P, and 6 coincide, since the metric is Euclidean.
Actually, the only reason they differ is that they act on
vectors and scalars, respectively. But we have estab-
lished above a correspondence between these two, and so
the determinaIlt of P &'P

~
oo vector fields vanishing at

punctures equals the determinant of 6 vanishing at the
interaction points (again indicated by an asterisk),

(det*P, P )' =det*b, . (5.43)

This is easily evaluated with the functional integral repre-
sentation by inserting delta functions of the scalar field at
the interaction points:

( dets g )
—1/2 f~y —( P ~

6P) /Beg( y(P

X&($(Pi )) o(p(P, i, ~„3)) . (5.44)

Delta functions can be represented by their Fourier
transform, the constant P mode can be integrated out,
and the remairiing Gaussian integral (with source at P, )

evaluated in terms of the Green's function G~ (P„P&)
0

satisfying Eq. (5.39), and one finds

where 0 is the period matrix and 6 is symmetric in P,
and PI, . Actually, the function G~ (P„Pi, ) is a Green's

function for the scalar Laplacian on the Riemann sur-
face, as can be seen by considering

(det*P&P )' =det*b.

8n det'b, detGp (P„PI, ) .

a
kpGp (P Q) = —2 ri)p g(P)

BP

=2m. [&(P,Q) —6(P, Po ) ] . (5.39)

Having the inner products between P s, it is straightfor-
ward to compute the finite-dimensional determinants

(det& P 1$&& )' =2"det(1m')detGP (P„P&), (5.40)

where the latter determinant is taken of a
(2& +ii —3) X(2h +n —3) matrix. Similarly, the finite-
dimensional determinant involving the Beltrami
diA'erentials p can be evaluated by using the quasicon-
formal vector fields listed in Eq. (2.59). A somewhat

(5.45)

It is instructive to combine this answer with that of the
finite-dimensional determinants in Eq. (5.40):

det P,Pi
de«ka I kp&

Sm det'6

f d g&g det ImQ

The equivalence of the above determinants, togethet with
the equivalence of the formulations with vertex operators
and with punctures was obtained by D'Hoker and Gid-
dings (1987) and was used to establish equivalence be-
tween the Polyakov approach and the interacting string
picture. Since the latter is (formally) unitary by
construction —recall it has a tachyon —this establishes
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the unitarity of the Polyakov approach. A direct com-
parison was also made by Sonoda (1987b).

)

2. The superghost determinant for even-spin structure

p, =colcp, a =1,2, . . . , 2h +n —2,
Q

(5.47)

For even-spin structure and a generic point in moduli
space, thert: is a unique meromorphic —,

' differential
the Szego kernel —with a single pole at P,

(dz)'"S,(z, P) =op(z)-
z —P

and on a Mandelstam diagram with canonical diffeIential
m, the holomorphic —,

' forms are given by

Combining it with the expression for the finite-
dimensional determinants, we find

1/2det*P i/2P ~/2 =detj3 .
det(p,

~ p„)
(5.54)

3. The superghost determinant for odd-spin structure
I

For odd-spin structure 5 and a generic point in moduli
space, there is one holomorphic —,

' differential h& and a
unique meromorPhic —,

' differential Kp& with simPle
poles at P and Q and unit residue at P. Holomorphic —,

'

differentials on the Mandelstam diagram are given by (see
Sec. IV.G)

as was shown in Sec. IV.G. The matrix of inner products
of mKp with P not necessarily at an interaction point is
closely related to the Dirac Green's function

p =Qj+p p y ~=l&~&. . . ~2h +6 —3
a a+1

P2a —~ —2 —~"S .
(5.55)

S (P, Q) = ( coKg
~

coKp ) =I (coco) Kplc~ (5.48)

with

g = V~y263 V' (5.49)

In conformal coordinates the Dirac operatoi is given by

Actually, the meromorphic differential lcpp. (z) depends
both og. an auxiliary point R, where it has a zero, and on
the spin structure. We shall denote such a difFerential (in
particular the one exhibited in Sec. VI.F) by
Ss(z, P, R, P'), and reserve for lcp& the one that is orthog-
onal to h&.

Icpp (z) =S&(z,P, R, P') —3 (P, R, P')h&(z)

so that

(5 50) aiid

I (coco)' (z)hs(z)Ss(z, P, R,P')
A (P,R,P') = („„) (5.56)

B@pS(P, Q) = (coco) '~ (P—) (coco) '~2(P)a

Blcp(z)
X coB z K z

hP

=2~(coco) ' (P) lc&(P)

=4''5'(P, Q) .

Thus we obtain

det(p,
~ p& ) =(2'�) +" detS(P„P& ),

(5.51)

(5.52)

Note that the normalization ( hs
~
hs ) is independent of

P,R,P'. Now Icp& satisfies two essential equations (they
can be established using the results of Sec. VI.F),

h6(P)
lcpp (z) =5 (z —P) —5 (z P')—

2~ c)z hs(P') '

(5.57)
hs(z)hs(P)

lcpp(z)= —5 (z —P)+, , (coco)' (P) .

It is now easy to show that the inner product between —,
'

differentials produces a propagator for the square of the
Dirac operator:

(det*P, ~2P, ~2)' '=( «dB ) etd(SP„P )b. (5.53)

a formula very similar to Eq. (5.40).
The infinite-dimensional determinant for the super-

ghost det'P»2P, /2, considered on spinor fields that van-
ish at the punctures, is also easily computed, since it can
be related to the Dirac determinant det*Q over spinor
fields that vanish at the interaction points. We shall not
repioduce this calculation hgre and only quote the
answer,

S'(P, Q) = (co~(ig
~

coKpp')

COG) Z Kg@I Z Kpp~ Z (5.58)

This is seen by applying a derivative in P:

S'(P, Q) = (coco) (z)Icing (z) icpp. (z) .
BP BP

(5.59)

Using the second equation in (5.57) and the orthogonality
of K&& and h &, we get

3~In Sec. VI.F we shall write down this differential explicitly in
terms of 6 functions.

35In Sec. VI.F we shall give explicit formulas for both these
diA'erentials in terms of 6 functions.
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8@i,S'(P, Q) =2rr(coco) ' (P) icing, (P),a (5.61)

and using the first equation in (5.57), we get

zz zzBPt S'(P, Q)=4m~6 (P, Q) 4~ —8 (P, Q')

(5.62)

Thus the matrix of inner products of all holomorphic —,
'

differentials is given by

det( p, ~ pb ) = ( h s ~

h s) det S'( P„Pb), (5.63)

where the last determinant is over a (2h +n —3)
&& ( 2h + n —3 ) matrix. It should be noted that the
Green's function S' depends on the auxiliary points I"
and Q' and that one has the property

S'(P', Q}=S'(P, Q') =0 (5.64)

for fixed P' and Q'. Computing the infinite-dimensional
determinant

(det*P, q2P, r2 )' =det*8 (5.65)

is done by functional integral methods again, and it is a
matter of patiently sorting out the zero-mode contribu-
tion and using Eq. (5.64) to obtain

(det*Pi&2P, &z)' =hs(P')hs(Q')(det'g )

S'(P, Q) = 2—vr(coco)' (P)icing. (P) .
as

Applying now the Dirac operator as in Eq. (5.51), we find

A. Line bundles, Chem classes, and curvature

Let M be a smooth manifold. A line bundle L on M is
an assignment of a one-dimensional complex vector space
L, to each point z of M. Sections of I are then functions
assigning an element of L, to each z. The vector spaces
L, should fit together smoothly, and we enforce this in
two stages. First locally, i.e., for all z in small coordinate
charts IB I for M, the set IL, I,~~ should just become

a
isomorphic to a product C &&B, so that a section f of L
on B should reduce to a smooth C-valued function f
on B . Second, there should exist smooth nowhere-
vanishing complex functions P &

defined on B AB& so
that the f 's arising from a section f of L are character-
ized by the condition

f =P pfts on B ABt3 . (6.1)

Clearly the P ti themselves must satisfy the consistency
condition

(6.2)

They are called transition functions and describe L com-
pletely. Examples of line bundles are the space T" on
Riemann surfaces M, encountered earlier in Sec. II.E,
where L, is the ( n)th power —of the tangent space to M
of z, and transition functions are (c}z /c}zti) " with z, zti
coordinate systems for the patches B and B&. A more
sophisticated example relevant to anomalies is that of
determinant bundles. Here the manifold M is, for exam-
ple, the space of metrics on a surface, and the vector
space Lg at a metric g is

)&detS'(P„Pb ) . (5.66) (lllsx Kerf )
—ig (111sx +erg t )

Combining this result with the finite-dimensional deter-
minant of the holomorphic —, differentials, we obtain the
remarkable relation

det*P Pin in det B
h (P')h (Q') .

d«&p.
~
pb&

(5.67)

Vl. COMPLEX GEOMETRY OF MODULI SPACE

In this section, we present the necessary mathematical
background for the study in Sec. VII of the holomorphic
structure of strings. A key ingredient is the topology and
geometry of line bundles, so we begin with a short survey
of their formalism. Accessible full treatments of the
theory of line bundles over Riemann surfaces are provid-
ed by Gunning (1966, 1967), Hirzebruch (1966), and
Griffiths and Harris (1978). The basic mathematical
references for Secs. VI.D —VI.F are Fay. (1973) and Mum-
ford (1975, 1983).

A more detailed treatment with appropriate regulariza-
tions is in D'Hoker and Phong (1988b). Equations (5.54)
and (5.67) are crucial ingredients in a unitarity proof of
the fermionic string in component language (D'Hoker
and Phong, 1988).

Capy —Cpyg +Cyga —
Cheap (6.3}

Since the 11 & are defined only modulo 2rrin t3 with n p
integers, we should identify two sets c~&~ and c~p~
differing by elements of the form

n&&+ npx —n ar (6.4)

Coefficients (c &~) satisfying (6.3) are called closed cocy-
cles, while those that can be written in the form (6.4) are
called exact cocycles. The space of closed cocycles modu-

For chiral anomalies, M is instead the space of vector po-
tentials 3„,and L~ at A„ is similarly built out of zero

modes for the Dirac operator coupled to A„and its ad-
joint. In these situations we note that the number of zero
modes may jump, and it is a subtle issue to define proper-
ly the transition functions. This fact has important
ramifications that will be discussed at length in Sec.
VII.E.

Our next task is to introduce a topological
classification of line bundles over a manifO1. For this
write the transition functions as P &

——exp(g &); then Eq.
(6.2) is equivalent to g &+/& —f &

2@i(c t3
——). The in-

tegers c &~ satisfy
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lo the exact ones is the second (Cech) cohomology group
H (M, Z) (with coefficients in Z), and our discussion has
shown that to each line bundle L on M corresponds an
element of H (M, Z), usually denoted c, (L) and called
the first Chem class (or topological charge) of L

The line bundles we need usually have more structure,
whether it be under the form of a metric, a holomorphic
structure, or a connection. A metric on L is a set of posi-
tive functions g satisfying g =

~ P & ~ g&. Thus a
metric on L is a metric on each fiber L, varying smoothly
with z and does not involve any metric on the manifold
M itself. Given a section f of L, g f f is then a scalar
on M which represents the modulus squared of f at each
point. It will sometimes be denoted by )~f ~~

. The line
bundle M is said to be a holomorphic line bundle if the
manifold M is a complex manifold, and the transition
functions P &

are holomorphic functions on M. A can-
nection is simply a U(1) gauge field on M, i.e., a collection

transforming as 2„=3 &
—a„in/ & under

change of coordinate patches. There are of course many
connections, but in the presence of a metric and a holo-
morphic structure on M there is a unique connection
compatible with them both. To see this, let z~ be holo-
morphic coordinates on M and observe that, for any sec-
tion f of L, (af /az ) satisfies Eq. (6.2), since P & is
holomorphic. Thus

(Vf) = )faz~
(6.5)

makes a well-defined section of L. The covariant deriva-
tives V fare determ. ined next by the requirement that

(6.6)

for any sections f and f', which implies that

V f = . lng
a

a, +, g. f. . (6.7)

%'e have actually seen this process at work before when
dealing with the spaces T". They are holomorphic line
bundles over the Riemann surface M, and Eqs. (6.5) and
(6.7) are just extensions to this more general case of the
constructions of covariant derivatives in Sec. II.E.

Since the connection is Abelian, the curvature F„ is a
2-form on the manifold M. It is immediate that the only
nonvanishing components are

that Eq. (6.9) is independent of the choice of f.
Finally, the Gauss-Bonnet theorem and the anomalous

fermion number currents of Sec. II.I have taught us that
there should be a direct link between topology and in-
tegrals of curvature. The proper generalization to the
present context can be based on the DeRham theorem
and formulated as follows. Recall that the kth DeRham
cohomology group HDR(M) is defined by

HDR(M) = Iclosed k-formsI /Iexact k-forms[, (6.10)

where a form P is closed if dg=0 and exact if P=dg for
some globally defined (k —1) form P. The DeRham
theorem asserts identity between these groups and real
Cech cohomology groups H "(M,R ) defined by real cocy-
cles c . . . with conditions generalizing Eqs. (6.3)

1 @+1
and (6.4). Since we shall need only the case k =2, we
shall restrict ourselves to this case to simplify the discus-
s10n.

Let [F] be an element of HDz(M) with representative a
closed 2-form F. On small patches 8 we can write
F=d A for some one-forms 2 . On B 0B&, A

can in turn be written as

—Ap ——dk p (6.11)

for some functions A, p. The class of the real cocycle
c~&z ——k~&+A,&z

—A,~z can be checked to depend only on
[F] and defines an element of H (M, R). According
to the DeRham theorem this correspondence
[F]~[c &r] is an isomorphism HDR(M) —+H~(M, R).

Returning now to any U(1) connections A„on L [not
necessarily the one singled out by metric and complex
structures as in Eqs. (6.5) and (6.6)], we see that the cur-
vature form F„ is clearly closed and thus defines a De-
Rham cohomology class [(i/2m)F] in HDR(M). Retrac-
ing the above steps, we see that the 2 in this case can be
taken to be the connection forms (i /2'�)3 dx", the g &
become (1/2mi )1ng p in view of Eq. (6.11), and thus the
cohomology class [(i/2m)F] actually coincides with the
first Chem class c, (L).

To make contact with Gauss-Bonnet theorems, we ob-
serve that cohomology classes [F] in HDR(M) are charac-
terized by their integrals JCF over two-dimensional cy-
cles C. When the dimension of the manifold M is two
and M is compact and connected, M itself is the unique
such cycle, and the integrals give topological numbers
and hence multiples of the Euler characteristic,

F,„-=a'(lng. )/az, ar„- . (6.8) ci(L)= f F . (6.12)
A convenient way of phrasing this in completely intrinsic
terms is the following: let f be any nonvanishing holo-

. morphic section of L, i.e., a section for which the f s are
holomorphic functions. Then the curvature of L is the
(1,1) form given by

(6.9)

Here d =0+8 is the splitting of the exterior derivative in
the presence of a complex structure, and it is obvious

That was essentially the content of equations such as
(2.2), (2.27), and (2.50). In particular, we see that the
Chem class of the canonical bundle E is c, (K)=2h —2,
and more generally c i (T")= n (2h —2).

B. The Jacobian variety of a Riemann surface

In this section we specialize to the case where the base
manifold M is a Riemann surface and provide a
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classification of holomorphic line bundles on M.
Recall from Sec. VI.A that line bundles on M are dis-

tinguished already by their first Chem classes, which are
elements of H (M, Z ). For compact two-dimensional
surfaces, H (M, Z) =Z, so that bundles are first indexed
by integers. Next, bundles with the same Chem class
may be topologically but not necessarily holomorphically
equivalent, i.e., the smooth sections are in correspon-
dence but not the holomorphic ones. Thus we introduce
the Picard varieties

Pied ——
I line bundles L on M with c, (L)=d I . (6.13)

It will turn out that the Picard varieties for various
values of d are very similar, so we shall often concentrate
on Pic0, which is usually called the Jacobian variety of M
and is denoted by J(M). There are several ways of
describing the Jacobian, each suitable for a different pur-
pose, so we give them in turn.

First we observe that the space of all holomorphic line
bundles on M can be conveniently viewed as a Cech
cohomology group, albeit with coefficients that are not
integers. More precisely, given a holomorphic line bun-
dle L, recall that its transition functions P & satisfy Eq.
(6.2) and note that bundles L' whose functions P'& are of
the form

P'p ——P ph hp
' (6.14)

&-~+ &nr &-r =0— (6.1S)

for holomorphic nonvanishing functions h have their
holomorphic sections f ' in one-to-one correspondence
with those of L: f ' = h f . We shall not distinguish be-
tween such bundles I and I.'. If we introduce the Cech
cohomology group H '(M, 0 *

) "with coefficients in
0*" as the class of (multiplicative) holomorphic cocyles

P & satisfying Eq. (6.2) modulo the exact ones h h& ', we
see that H'(M, O" ) is just the space of holomorphic line
bundles on M.

To single out the Jacobian variety from within
H'(M, O*), we begin by defining the first Cech cohomol-
ogy group H'(M, O) with coefficients in 0 in analogy
with the previous discussion: H'(M, O) is the space of
(additive) holomorphic cocycles g p satisfying

In the mathematical literature, the above arguments are
summarized by saying that the short exact sequence of
sheaves

exp
0~2wiZ —+0~ 0*~0

leads to a long exact sequence in cohomo1ogy,

c,

(6.17)

I(0,q) forms co on M with Ro=OI

I exact forms Fs I

be the (O, q) Dolbeault cohomology group. When q =1,
we can associate with an element [6]of H '(M) an ele-
ment of H'(M, O), very much as in the earlier DeRham
discussion: on patches B write 8=Bs . Clearly

s„—s& is——a holomorphic function on B AB& satis-

fying the additive cocycle condition (6.15). Moreover,

g p is an exact cocycle if and only if g &
——h —h& for

some holomorphic h, so that s —h is then a globally
defined function s on M still satisfying Bs=e, which
Ineans that e is 8 exact. Thus we have a correspondence
H '(M) +H'(M, O ),—which is an isomorphism by
Dolbeault's theorem. Similarly the cohomology groups
H i(M) and Hq(M, O) can be shown to be isomorphic.
Since for q =2 and M a Riemann surface there are no
(0,2) forms, we conclude that H (M, O)=0, which is the
statement we made in the previous paragraph.

It is actually more convenient to view H '(M) as the
dual of H (M, K), which is defined to be the space of
holomorphic sections of the canonical bundle K, in other
words, the space of Abelian differentials on M. This du-
ality arises from the natural nondegenerate pairing

+H'(—M, Z)~H'(M, O) +H—'(M, O*)~ H (M, Z)

~H (M, O) —+

which terminates, since H (M, 0 ) =0, as we shall see
below. Equation (6.16) follows at once.

Our next description of the Jacobian variety is based
on rewriting the Cech cohomology group H'(M, O) as
the dual of the space of holomorphic one-forms on M.
The key tool is the Dolbeault theorem, which is the ver-
sion of the DeRham theorem that applies to the 8 opera-
tor instead of the exterior derivative. Let

H ' (M)XH (M, K)~C,
(e,~) I er, ~,

(6.18)

where the right-hand side makes sense intrinsically since
e h co is a (1,1) form. Thus another formula for the Jaco-
bian of M is

J(M) =H (M, K)+ /H '(M, Z ) . (6.19)
'\

We now pass to a, description of the Jacobian in terms
of curvature and holonomy. The key observation here is
that a line bundle I. has zero Chem class if and only if it
admits a metric whose holornorphic connection has iden-
tically va)iishing curvature. That the existence of such a
metric implies that c,(L)=0 is an immediate conse-

J(M) =H'(M, O)/H'(M, Z) . (6.16)

360* usual1y stands for "germs of holomorphic nonvanishing
functions. "

0 denotes the space of germs of holomorphic functions.

modulo exact cocycles, i.e., those of the form 8 —8& for
holomorphic e.,e,.

There is then a natural mapping H'(M, O)
~H'(M, O*) given by P &

——exp(f p). In view of Eq.
(6.15), the Chem class of bundles in H' (M, O*) arising.
from this map must be 0. Furthermore the kernel of the
map is evidently given by integer-valued cocycles itt &,

naturally called the first Cech cohomology group
H'(M, Z ). The net outcome is the fundamental equation
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quence of the Cxauss-Bonnet formula (6.12). Conversely
let g be any metric on L, and look for a factor e so that
the curvature of g=e g will be 0. This means that
2BBcr = —(curvature of g), an equation that can be solved,
since the right-hand side is orthogonal to constants again
by the Gauss-Bonnet formula. %'e also note that a
metric with zero curvature is unique up to constants.
This follows from the simple fact that the ratio of two
metrics with the same curvature must be the exponential
of a harmonic function.

Now let L be a line bundle with c, (L)=0, equipped
with the unique fI.at metric as above. Let A„dx"= A, dz
be the corresponding connection. Flatness is a local
statement, and all such bundles L are locally the same.
Globally, however, there are holonomy issues, and it is
the values of parallel transport around closed cycles in M
that completely determine the complex structure of L.
More precisely, we introduce the following version of the
familiar Wilson loop observable of gauge theories:

W(y)= f&A, dz (mod Z) . (6.20)

J(M) =H (M; R ) /H'(M, Z) . (6.21)

Another useful characterization of the Jacobian is in
terms of divisors. The basic construction is the following.
Given a point w of the surface M, we let z be a holo-
morphic coordinate centered at w, Bp a small disk
around w, and 8 =M& Iw I. A line bundle [ic] can
now be defined by taking z as a transition function be-
tween 80 and 8„. Thus a holomorphic section f of [w]
is just a pair fo,f„ofholomorphic functions on BO,B„
satisfying fo=zf . In particular, the constant holo-
morphic function 1 on MgIw I gives rise to the holo-
morphic section 1( )

defined by f =1 and fo ——z. Note
that this section has a simple zero at w. Furthermore,
the first Chem class ci[w] is equal to 1. This corre-
sponds to the simple fact that the logarithm of the transi-

The function W(y) is real and can be interpreted as a
phase shift. Indeed, if we parallel transport a vector
around y, it will return with a phase shift of 2miW(y).
Since the curvature of A, dz is zero, it follows from
Green's formula that W(y) depends only on the homolo-

gy class of the cycle y. In other words, W should be
viewed as a real cohomology class, an element of
H'(M;R)/H'(M, Z).

We have thus associated an element 8' of
H'(M;R)/H (M, Z) with each line bundle L with
c&(L)=0. Conversely, given W, we can construct L by
taking the line bundle with constant transition functions
exp[ —2miW( A;)], exp[ 2~i W(B;—)] across the cuts.
Since 8'is trivial as a cohomology class if and only if L, is
trivial as a line bundle (if W is trivial, we can construct a
covariantly constant section of L by parallel transport on
the cut surface; the triviality of 8' guarantees that this
section has no jumps across the cuts; the reverse state-
ment is obvious), we have a third description of the Jaco-
bian variety,

tion function is multiple valued in Bp AB and changes

by (2+i) X 1 as we go around a small circle
l
z

~

=const
in Bp AB . This argument can easily be made rigorous

by taking a refinement of the covering [80 8 J and re-
tracing the definition of Chem classes of line bundles.

More generally, given a formal expression of the form

J(M)= Idivisors [Xn;w;] with Xn; =OI . (6.23)

As a by-product of the above discussion we have the use-
ful fact that the difference between the number of zeros
and the number of poles of a meromorphic function must
be 0, and more generally, for a section of a line bundle L,

g(zeros) —g(poles)=c, (L) . (6.24)

G. Index and Riemann-Boch theorems

The basic operator on a line bundle I on a Riernann
surface M is the Cauchy-Riemann operator Bl:L

D= g n;ic, positive or negative n; integers,
i=1

(6.22)
we can take holomorphic coordinates z; centered at w, ,
small disjoint disks 8; around w, , and set
8 =MR Iici, . . . , w&I. The line bundle [g;,n;io;] is
defined by the covering IB„.. . , B&,8 l and the tran-

sition functions z; ' on the overlap 8 AB;. Holomor-
phic sections of [Xn;w;] are now holomorphic functionsf„.. . , fz,f„on Bi, . . . B&,B, respectively, satisfy-

ing f; =z;
'f„. The holomorphic function 1 on

M& Iic„.. . , ic~] thus extends to a meromorphic sec-
tion of [g~, n; w; ] that has a pole of order n; at w; if n;
is negative. The multiple yaluedness of the transition
functions z;

' adds up to a net value of g+
& n; for the

Chem class of [g; & n;w;].
The above construction will yield a trivial line bundle

provided the expression g+, n; w; is the set of zeros and
poles of a meromorphic function P, counted with their
multiplicities. Indeed P

' l(z„) is then a holomorphic

nowhere-vanishing section of [Xn;w;], and a line bundle
with a nowhere-vanishing global section is evidently
trivial. Similarly the line bundles arising from two for-
mal expressions D and D' differing by the zeros and poles
of a meromorphic function will be isomorphic. Thus we
define a divisor [D] to be a class of expressions (6.22)
mod ulo such zeros and poles, and actually have a
correspondence between divisors and line bundles. Every
line bundle L does arise in this manner, since with L we
can associate the divisor of zeros and poles of one of its
meromorphic sections. It will be shown later from index
theorems that such sections do exist, and it does not
matter which one we choose, since the divisors of two
sections will differ only by the zeros and poles of their
quotient, which is a meromorphic function.

In this way we obtain another description of the Jaco-
bian:
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~Lg K. It will be important to determine the number
of its zero modes, i.e., the number of holomorphic sec-
tions of L. When L is a bundle T" of spinors, these are
the zero modes of the Dirac operator (coupled to various
vector potentials), and we determined them through in-
dex theorems and heat kernels in Secs. II.E and V.D.
Here we discuss the version that applies for general L.

In the presence of a metric on L, 8L has an adjoint
BI:LK +L—which is just BIf= V,f—where V is the
holomorphic connection determined by the metric on L
[cf. Eq. (6.7)]. The index theorem familiar from the study
of chiral anomalies suggests that the index of BL should
be the integral over M of a polynomial in the curvature
of L and M. Since the dimension of M is 2 and curva-
tures are 2-forms, we must have a linear function of
c, (L) and X(M). Comparing with Eq. (2.50) and recal-
ling that c, (T")= —nX(M), we arrive at

dim KerBL —dim KerB I ci(L)+——,'X(M) .— (6.25)

It will be useful to reformulate this result independent-
ly of any metric g on L and just in terms of 0 operators.
For this we appeal again to a duality statement known as
Serre duality,

(KerBL )X(KerB ~ )—+C,

(f dz, e dz ) —+ Ife dz dz .
(6.26)

The right-hand side is well defined for f and e in L and
L . This pairing is nondegenerate, since the vanishing
of (6.26) means that e dz is orthogonal in the Hilbert
space sense to hf dz. Since f dz is in the kernel of VL
if and only if hf dz is in the kernel of V'

&

——B

our assertion follows. The index theorem (6.25) becomes

dim KerBL —dim KerB ~

——ci(L)+ —,'X(M)

and as such is known as the Riemann-Roch theorem.
We now illustrate the use of the Riemann-Roch

theorem by deriving the existence of meromorphic sec-
tions of various line bundles. First recall that we claimed
in Sec. VI.B that any holomorphic line bundle L admit-
ted meromorphic sections. To see this, apply Eq. (6.27)
with L replaced by Ls [nw] where w is some fixed point
and n is an integer taken so large that the right-hand side
of Eq. (6.27) becomes positive. In particular, L[ n]w

admits some holomorphic section s. But then s 1I „„~is a
meromorphic section of L.

Next we investigate meromorphic differentials on M,
i.e., sections of K. The case of Abelian (i.e. , holomor-
phic) differentials has already been considered several
times (Secs. II.E and V.D) and follows from Eq. (6.27)
with L =trivial bundle. There are h Abelian differentials

co&, . . . , co&. Turning to the meromorphic ones, we shall

establish the existence of meromorphic differentials with

simple poles at exactly any two given points m, and m2,

or a double pole at any given w. We apply Eq. (6.27)
with L=[—w, —w2]. Since L has Chem class = —2

and admits no holomorphic sections, it follows that

+ )x =h + 1. There must exist some section f
1 2

of [w&+w, ]@K that will complete 1( +1 2

I(„+„)noh into a basis for KerB( + )~z. Evidently
2 1 2

1( lf is then a section of K, with at most simple
1 2

poles at m, and F2, and in fact exactly simple poles at
both points (if it had a pole at only one point the residue
there would vanish, since we can integrate the differential
on a closed contour and deform it away). It is now not
dificult to see that by scaling and adding a suitable com-
bination of Abelian differentials, we can produce a
unique co having simple poles at m&, mz with residues

1 2

+1, and vanishing 3 periods. These co are the nor-
1 1

malized differential of the third kind, encountered al-
ready in Sec. IV.G. Finally the above arguments can be
modified to produce a meromorphic differential co with
exactly one double pole at m. These are called
differentials of the second kind. It is not, however, true
that there exist di6'erentials with poles of any order at a
given point. Certain orders n, , . . . , n„(k (h —1),
which are called Weierstrass gaps, may be missing.

D. Period matrix and Abel map

The above concepts take a very concrete form if we
choose a homology basis ( AJ, BJ ) satisfying the canoni-
cal relations (3.5). To a choice of homology basis corre-
sponds a choice of basis co &, . . . , co& of Abelian
differentials, defined unambiguously by the requirement

K ~JKJ (6.28)

The period matrix 0 is then the h &(h complex matrix
with entries

+JK +KJ ~

ImQ is positive definite .
(6.30)

The space of all h && h matrices satisfying these conditions
is called the Siegel upper half space. We note that it has
complex dimension h (h+ I)/2, while the subspace of all
period matrices of Riemann surfaces has dimension at
most 3h —3 (for h )2), in fact exactly 3h —3, as period
matrices actually characterize complex structures.

Next recall that the Jacobian variety of M can be
viewed as the coset space H (M, K)+lH'(M, z). Since
we have chosen a basis co„.. . , co& of Abelian
differentials, a cycle C in H (M, z) can be identified with
its vector of periods ( f ceo„. . . , f ceo& ) and hence with

a point on the lattice Z +AX . Thus the Jacobian
variety becomes

J (M) =C"y(Z"+ nZ"), (6.31)

(6.29)
I

Two crucial properties of period matrices are the bilinear
relations of Riemann (see Appendix D for a proof), which
in particular imply that
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which is evidently a complex torus of dime@sion h.
Observe that a change of homology bases preserving

the intersection numbers (3.5) is effected by a modular
transformation

in Sp(2h, z). Under such a transformation the period
matrix changes as

Q'=( A Q+B)(CQ+D) (6.32)

It is evident that the lattice Z"+QZ" is then unchanged,
which confirms the intrinsic meaning of the Jacobian
(6.31).

We can now construct explicitly the correspondence
between the divisors and elements of the Jacobian
variety, and in particular embed the surface M itself
within J(M) (see Fig. 21). Since J(M) is a torus, its func-
tion theory can be built op modular forms, and this fun-
damental embedding will allow us to study function
theory on M through modular forms.

Fix a point z0. Then for d points z&, . . . , zd in M, the
Abel map is defined by

Z ] Zd

I(z, + +zd)= co+ . . + co,
ZO Zo

(6.33)

where the addition signs in the argument of I are urider-
stood in the divisor sense. The right-hand side represents
an h-dimensional vector, with co denoting the h vector of
Abelian differentials (co„.. . , noh ). Evidently tltere is an
arbitrariness in the choice of integration paths, but this
leads only to an ambiguity of the form of a lattice point
in Z"+QZ, so that the Abel map I is single valued in
the Jacobian variety. Actually I is naturally defined on
divisor classes in the sense that I(Xz —Xw&)=0 if and
only if z. , wI are the zeros and poles of a meromorphic
function. This statement is usually known as Abel's
theorem, for which we refer the reader to Appendix D.
The Abel map I viewed as a map from divisor classes to
the Jacobian variety becomes one-to-one and onto when
restricted to the space of divisors with zero Chem class.
This is the explicit correspondence between such divisors
and the elements of a complex torus that we are looking
for, although, strictly speaking, we have not as yet
checked that under this identification I(D) does go-
over to the line bundle admitting D for divisor. This will
follow most easily from theta-function constructions to
be outlined in the next section.

We note that the Abel map I can be viewed as well as a
map from the space of the bundles, since with each line
bundle L we can associate I(D) where D is the divisor
class of L. We shall use indiscriminately both symbols
I(L) and I(D) to denote this same point on the Jacobian
variety.

If we restrict I to single points I(z)= I; co, we obtain

a one-to-one map of the surface M. This embedding is
not completely free of any choices, since it depends on
the base point z0. This results in an arbitrary translation
within J(M), which may serve as justification for. some
formulas we shall encounter later.

Finally, it is not dificult to establish the following use-
ful formula for the variation of the period matrix as we
deform the complex structure by a Beltrami differential:

5Qlg = —i Id z p ci)lcd-g (6.34)

E. Theta functions

The Jacobi theta function is defined by

8(g, Q)= g exp(eri'Qn+2vrin'g), /AC
n ez"

It satisfies the heat equation

(6.35)

4ni + 8(g, Q) =0
IJ I J

and the key transformation laws

i'i(/+M+ QN, Q) =exp( vriN'QN —2vriN'g g—(g, Q)

(6.36)

for M and X vectors of integers. This periodicity up to a
factor with respect to the lattice Z"+QZ" shows that
8(g, O) should be viewed as a holomorphic section of a
line bundle over the Jacobian variety, a line bundle whose
holonomy around the cycles of J(M) is defined by the
factors in Eq. (6.36). It can be shown that this bundle—
called the 8 line bundle —admits in fact (up to multipli-
cative constants) only one holomorphic section,
represented by the theta function.

Although theta functions are strictly speaking sections
of line bundles, we can easily manufacture meromorphic
functions on J(M) out of them. For example, it is easy
to check that

Q DIVISOR

, 8(/+a, , Q)
n

+ 8(g+b, , Q)
with g a; —g b; =0 (mod Z"),

Jacobian (M)

FIG. 21. The embedding of the Riemann surface into the Jaco-
bian by the Abel map.

8
1

8(/+a, O)
6(g+b, Q) '

a2
in'(g, Q),

ag'ag'

are periodic and hence functions on J(M). To go further
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we need a detailed knowledge of the zero set of 8((,Q),
and more precisely of its intersection with the image of
the Abel map. Such information is provided by the
niemann vanishing theorem.

Let 6, the "vector of Riemann constants, " be defined

by
g+ f co, Q (6.40)

Finally, the equation 26 =I(K) suggests that b, is inti-
mately linked with the square root of K, in other words,
bundles of spinors. We shall discuss this aspect in
greater detail in the next section.

It is now easy to see why functions such as

(6.37)

Then
~2b, =I (K),K =canonical bundle;
~8((,Q)=0 if and only if g=h —I(z, + +zh &) for
any h —1 points z„.. . , z&, in M;
~6{/+I(z),Q} either vanishes identically as a function
of z, or else has exactly h zeros z1, . . . , z& characterized
by the equation

I(z, + . . +zh)=——g+b, . (6.38)

where z, +. . . +zz is a so-called special diuisor, i.e.,
must contain all the poles of soIne nonconstant mero-
morphic functjon. A general divisor w, + . - +wI, in

general will not satisfy this property, and the set of spe-
cial g's above (6.38) is a strict analytic subvariety of the
Jacobian. Points w for which hw is special are called the
8'eierstrass points. From the Riemann-Roch theorem, w

is a Weierstrass point if and only if tIiere exists a holo-
morphic Abelian differential vanishing to order h gt w.
Weierstrass points carry a lot of information about the
complex structure of M. It is known that there are none
in genus h ( 1 and exactly 2h +2 when M is hyperellip-
tic. In this case they can be viewed as the branch points
of M, when represented as a double covering of the
sphere. More generally a theorem of Hurwitz asserts
that the number of %"eierstrass points is between 2h +2
and h (h —1).

The last statement in the Riemann vanishing theorem
provides an explicit answer to a question of Jacobi, name-
ly, given g in J(M), find h points z&, . . . , z& so that

I(z, + . . +zh)=g. (6.39}

For generic g the desired points z&, . . . , zz are obtained
simply by translating by —/+5 the image by the Abel
map I of the Riemann surface M, and taking its intersec-
tions with the zero set 0 of the theta function. This in-
vertibility of Eq, (6.39) for generic g is usually referred to
as the Jacobi inversion theorem and will play a key role
in the study of Bose-Fermi correspondence in Sec. VII.

The zero set of 8((,Q) is called the 6 divisor. Note that
it is well defined as a subset of the Jacobian, thanks to its
periodicity.

We pause to discuss briefly some ramifications of the
Riemann vanishing theorem. The points g for which
6((+I(z),Q)=0 as a function of z are rather special,
and can be shown to coincide with points of the form

g= 6—I(z, + +zl, ),

will be the main ingredient in the construction of propa-
gators. Indeed, if g is in the zero set of 8(g, Q), then w

must be among the h zeros zi, . . . , zI, of this function.
If, say, w =z&, Eq. (6.38) will reduce to

h —1 z,.

X f, ~J= 4J+~J ~ (6.41)

which shows that the points z1, . . . , z& 1 are actually in-

dependent of w and depend on g alone. Since the func-
tion 8(g, Q) is even, we can interchange the roles of z
and w and conclude that - there exist points
z„.. . , zh „w„.. . , wh, depending on g such that

z =w,
z

g+ co, Q =O~. or z is among z„.. . , zI,
N (6.42)

or w is among w1, . . . , w&

d

g+ f co, Q

f(z) =
xV g+ f a), Q

i=1 l

(6.43)

where g is chosen so as not to have the functions involved
vanish identically, 8(g) =0, and the paths of integration
are yet to be described. A natural way of prescribing the
paths is to choose one same path from zo to z, and link it
to fixed paths a,. and P; from z; to zo, and from w; to zo,
respectively. Under changes of the path from z0 to z the
transformation laws (6.36) show that f (z) may change by
integral powers of

d

exp —2rri g coJ — coJa. p.i=1 l

(6.44)

By hypothesis the expression in the exponential is a lat-
tice point in Z"+QZ" for any paths a;,P,. from z; and z;
to zo. By adding, if necessary, appropriate multiples of
the homology basis cycles Az, BJ, we may make sure that
it actually vanishes. Thus f (z) is a single-valued mero-
morphic function on M and has exactly the desired zeros

Thus B(g+ J 'co, Q) has the key property of essentially

vanishing only along the diagonal. It j.s still multiple
valued as a function of z and w, but this difficulty can
often be overcome as before, by taking suitable ratios.

As a simple illustration we can produce explicitly the
meromorp hie function with given divisor
z, + - . . +zd —(wi+ . +wd) under the condition of
Abel's theorem, i.e., that I(z, + +zd ) = I(w i

. . +wd ). A candidate is
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and poles.
Next, we should like to construct explicitly sections of

any line bundle in the Jacobian of M. For this it is most
convenient to introduce the theta function with charac
terI,sties,

8[5](g,Q) = g exp[xi(n +5')Q(n +5')
n ez'

+2rii(n +5')(/+5")]
=exp[rri 5'Q5'+2~i .5'(g+ 5") ]

x &(g+ Q5'+5", Q) (6.45)

for any characteristics 5= [&-] in (0, 1) ". It is readily seen
that the transforination laws are

Given [5], we can now construct three different objects
that describe in different ways the same line bundle
with zero Chem class: —(5"+Q5') H C"/Z" +QZ";
sections f defined by holonomy conditions
(5', 5")H+'(M, R)/H (M, Z) around the AI, BI cycles

f z+J
I

rI

f z+ I =e 'f(z);
(6.47)

8[5] g+ f co, Q

&[0] g+ I co, Q
(6.48)

To see that they indeed correspond to the same line
bundle, it suKces to observe that the expressions in Eq.
(6.48) transform as (6.47) when z is transported around
each cycle Al or Bt, so that (6.48) is a section of the line
bundle with holonomy (5', 5"). Furthermore, its divisor
can be read off from the Riemann vanishing theorem:
the zeros z &, . . . , z& and poles m „.. . , m& must satisfy

I (z, + . . +Zi, ) = —g —(5"+Q5')+ b, ,

I(w, + . +Wh)= —g+b, ,

and hence

(6.49)

I(z, +. . . +zh —w, —.. . —wh)= —(5"+Q5')

as predicted,
In Sec. VI.B, we gave several equivalent descriptions of

the Jacobian variety of M as a set, but it was not so clear
exactly how to pass from one description to another for a
specific element L of J(M). Equations (6.46)—(6.48) pro-
vide a satisfying answer to this question, and allow v.s as

8[5](g+M+ QN, Q) =exp[ miNQ—N 2miN(—/+5")
+2mi5'M]8[5](g, Q),

(6.46)
6'+M ' 5'

(g, Q) =exp[2mi5'N]8 5„(g,Q) .

well to characterize a line bundle in J(M) by its charac-
teristics [5].

F. Spin structures, Dirac zero modes,
and the prime form

The previous sections have provided a thorough inves-
tigation of line bundles with zero Chem class. Fermionic
strings, however, involve spinors on the worldsheet M,
i.e., sections of square roots of the canonical bundle K.
Such square roots are called spin bundles and must have
Chem class

c, =—,'c, (IC)=h —1 .

We have argued elsewhere (Sec. III.A) that there are 2 "
distinct spin bundles. They form a finite set inside the
(2h)-dimensional Picard variety Pic& i of line bundles of
Chery class h —1.

Now the Picard varieties Pied for difFerent values of d
are very similar in structure, but there is no natural
correspondence between ther@ without making some
choices. One way of obtaining a correspondence is to
single out a specific element within Pied, so that other
elements of Pied can be identified by their differences
from the chosen element. Since these differences must
have vanishing Chem classes, this provides us with an
isomorphism between Pied and the Jacobian variety.

It is remarkable that once a homology basis Al, BI has
been chosen, we have in fact a particular spin structure
So determined by the basis. The key to this phenomenon
lies in the fact that there is a natural correspondence be-
tween spin bundles and symmetric translates of the 8
divisor:

S spin bundle& —&translate of e divisor by I(S)—6,
(6.50)

I spin bundlesl+-+Isymmetric translates of GI .

Here by a symmetric subset of the Jacobian variety, we
mean a subset invariant under g~ —g. To establish Eq.
(6.50), we begin by noting that a line bundle admits holo-
morphic sections if its divisor is positive and, in particu-
lar for line bundles I. of Chem class h —1, if its divisor is
of the form z, + . +zh, . In view of the Riemann-
Roch theorem, L will admit holomorphic sections if and
only if L, K does. In other words,

[L]=zi+ ' ' ' +zp i [L 3'E]=wi+ ' ' +wh

In 'particular, for each z„.. . , zi, i, there exist
w, , . . . , m&, so that

I«)—I(zi+. . . +Zh i)=I(wi+ . +w~ i) .

For a spin bundle S, I(K)=2I(S), so this equation be-
comes

I(S)—I(z, + . . +z, , )

= —[I(S)—I(w, + . +wi, , )],
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which just means that 0+I(S) 5—is symmetric. Since
6(g, Q) is an even function, the e divisor itself is sym-
metric. Furthermore, it is not dificult to show that the
only way of obtaining a symmetric translate of 8 is actu-
ally to translate it by half-lattice points, i.e., points of the
form —(5"+Q5') where 5', 5" are half-integers. There
are thus exactly 2 " symmetric translates, so the above
correspondence is one-to-one and onto. In particular, to
the 8 divisor itself must correspond some specific spin
bundle Sp, and this is the one we are looking for. Note
that it satisfies I (SO ) =b„but depends only on the homol-

ogy basis, not on the choice of base point I'p.
With the choice of the spin bundle Sp we can identify

the 3acobian variety and the Picard variety Pich, via

EJ (M)~SO 5~i H Pici,

while spin bundles So[s-] within the Jacobian are given

by (So@[s-]) =K. This means that [s. ] must be a half-
integer point, in agreement with the discussion based on
symmetric translates of the 8 divisor. Observe that, for
spin bundles, the theta function with characteristics
satisfies

&[5)(—g, Q) =( —1) 8[5](g,Q), (6.51)

In other words, 6"+05' is in the 8 divisor,

8[5](0,Q) =0,
in view of the Riemann vanishing theorem.

This characterization suggests strongly that the num-
ber of zero modes is just the order of vanishing of the
theta function. This is, for example, in the same spirit as
Selberg zeta-function-type formulas derived earlier for
regularized determinants and can actually be proved with
further work. In particular, for spin bundles it confirms
that the parity of the number of zero modes is the same
as the parity of the spin structure, and that. generically
there is no zero mode for the even-spin structures and ex-
actly one for the odd ones.

which shows that spin structures can be divided into two
groups, the even and the odd ones, depending on whether
46'5" is an even or an odd integer. Simple counting
yields 2" '(2"+1) even-spin and 2 '(2"—1) odd-spin
structures. This parity will reQect itself in the number of
zero modes in the Dirac operator.

We can now characterize within Pic& j those line bun-
dles which admit holomorphic sections. Of course, when
we have a spin bundle, the Dirac operator reduces to the
8 operator, and holomorphic sections are simply Dirac
zero modes. The description is actually very simple: a
line bundle SOII [5] in Pich, admits zero modes if and
only if its divisor is of the form z

& + - . +zh, for some
points z&, . . . , z& &. Taking the Abel map and recalling
that I(So)=b„ I([5])=—(5"+Q5') [cf. Eqs. (6.47) and
(6.48)], we obtain

—(5"+Q5')+6 I(z, + +z—I, , )=0 .

We turn next to the remaining fundamental ingredient
in the construction of chiral fields on a Riemann surface,
namely the prime for'm.

Let [5] be an odd-spin structure and assume that we
are in the generic case where 8[5]((,Q) vanishes exactly
to first order at (=0. This means that the Dirac opera-
tor has exactly one zero mode, which we can construct
explicitly. For this consider the holomorphic Abelian
differential

h

cps(iJ)= g [5](O,Q)col(w) . (6.52)

hs(w) =Ques(w) (6.53)

is well defined and holomorphic, and in fact is a section
of the spin bundle corresponding to 5. We may now gen-
eralize the construction (6.40) to obtain the prime form

N

hs(z)h&(w)
(6.54)

The prime form E(z, ut) can be viewed as a ( ——,', 0) form
in each variable on the universal covering of the surface
M, whose transformation laws can be easily read off from
Eq. (6.46). The introduction of the factors hs(z)hs(w) in

Eq. (6.54) has several beneficial eff'ects: E(z, w) has the
correct U(1) weight for inverses of fermion propagators,
is actually independent of the spin structure 5 we selected
originally, and vanishes only when z =ur.

When the point z is moved around an Al cycle once, E
is left invariant up to a + sign, whereas when it is moved
around a 81 cycle one, it transforms as

E(z, w)~ —exp irrQII 2vri f—col E(z, w—) . (6.55a)
Z

It is important to note that the prime form depends on
the choice of homology basis and will transform under
modular transformations as

E( wz)~e pxrri f co(CQ+D) 'C f co E(z, w) .
Z Z

(6.55b)
Meromorphic differentials, whose existence was estab-

lished in Sec. VI.C through indirect index theorems argu-

We claim that it vanishes to second order at (h —1)
points z, , . . . , z&, and that these points are determined
by I(z, + . +zz i)=b, —5. To see this, let
m, z„.. . , z& &

be the h zeros of the function
8[5](f'cD, Q). Thus Riemann's theorem implies that
the stated relation holds, and in particular z&, . . . , z&

are independent of u. Taking the differential of
8[5](j' co, Q) with respect to w at z =w yields cps(w),
which must then vanish at z&, . . . , zh, . Since co& is an
Abelian differential, its divisor is the divisor of the canon-
ical bundle. This fact together with Eq. (6.24) readily im-
plies that the missing (h —1) zeros of cos are again
z&, . . . , z& &, which is the desired statement. Since the
zeros of cu& are double, the spinor,
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ments, can be written very simply in terms of the prime
form. In fact,

E(z, w, )
co (z) =d, ln (6.56)

is a difFerential of the third kind with zero 3 periods and
residues +1 at w

&
and W2, while

co (z) =d, lnE (z, w)
8

1 Bw u) =u)i
(6.57)

col(z) =cot(w)c), B lnE(z, w ),4~ 5

g 5g"

E (z, x ) = ——,
' [co,~ ( w ) j

g 6g

(6.58)

Finally, we discuss degenerations of Riemann surfaces
in terms of plumbing fixtures (see Sec. IV.H), period ma-
trices, and prime forms. Recall that there are two cases,
distinguished by whether the plumbing fixture Vl, used to
model the degeneration process disconnects the Riemann
surfaces M, or not. In the case where it does, let M& and
M2 be the components of the complement in M, of the
plumbing fixture Vl„and let M, and M2 be the com-
ponents of M0 in the degeneration limit. Then the nor-
malized basis of Abelian difFerentials cot(z) will approach
the combined bases of Abelian differentials cot (z, ),

1

1&I, &i, co, (z, ), i +1&I,&h, of the surfaces M, and
2

M2. More precisely, we have

is a difFerential of the second kind with zero 3 periods
and a double pole at w, . Similarly, propagators can be
constructed out of the prime form, but we shall return to
this issue later.

All variations with respect to moduli parameters can
be deduced from the following variational formulas for
the Abelian difFerentials and the prime form:

8(D„Q)~8(D,—d,p, , Q, )8(D2 —d~p2, Ai) . (6.61)

In particular, the Riemann - class factorizes as
b, (t)—+b, &+A,&+pi 2. As for the prime form E(z, w), it
will behave as z —w when both z and w are in the plumb-
ing fixture, and otherwise

E(z„w)~E, (z„pi )wt

E(z2, w )~E2(z2,p2)t

E(z»z2)~Ei(z&, pi )E2(p2, zz)t

(6.62)

co'h(z)=co~ p (z)+tci)i, (z)+O(t ),
(6.63)

where Qz is a meromorphic differential with poles at pI
and pz of order three. It follows that the period matrix
of M, can be written as

P2
QIJ(M) f col

n, =
co& lnt +const

+O(t), (6.64)

for z, EM and w in the plumbing fixture. Here of course
the E s denote the prime forms of the surfaces M;.

In the case in which the complement M,
' of the fixture

remains connected [Fig. 19(b)], the normalized basis of h

Abelian diff'erentials col(z) for the degenerating surface
M, will approach the normalized basis co&,

I =1, . . . , h —1 for the limiting surface M, while co't, (z)
wiIl tend to the Abelian differential of the third kind
co„(z) [Eq. (6.56)j, with poles at z =p, and p2. On M,

'

one can give precise asymptotes,

coi(z) =col(z) + ,' t[cot(—p, ) —col(p2 )]

&([~~ (z) —co~ (z)]+O(t ),

col (z)+ ,'tarot (p, )co„' (z)—+O(t ) for z&M'(,

4t~l (p, )co~ (z)+O(t —) for zCM~, (6.59)

and similarly for col (z, t) with the roles of M, and Mi in-
2

terchanged. Here eo' (z) are the Abelian differentials of
the second kind on M;, with double pole at w [cf. Fq.
(6.57)]. The terms O(t ) are holomorphic differentials
whose limits t O(t ) may have a pole of order at most 4
at p& and p2. Integrating over basis cycles gives the
asymptotic behavior of the period matrix of M„

(6.60)

where 0; are the period matrices of M;. Next, if D, is a
divisor on M, with -zero Chem class, which decomposes
into D, =D, +D2+D with D, , D2, and D& divisors on
M&, M2, and 'M, of degrees d, , d2, and d, respectively,
then the theta function will factorize as

with I &I,J &h —1. The asymptotics of theta functions
and the prime form can now be derived in analogy with
the previous case.

A detailed discussion of theta functions, the prime
form, and their degeneration is to be found in Fay (1973).
In the physics literature, the characterization of line bun-
dles with holomorphic sections by the theta divisor ap-
pears in Alvarez-Craume, Moore, and Vafa (1986).

VII. HOLOMORPHIC STRUCTURE OF STRINGS

A fundamental principle underlying theories of closed
oriented strings is that massless fields in two dimensions
decompose into independent left- and right-movers. The
independence is maintained at the interacting level, since
the action is still the free action, and the presence of in-
teractions is only indicated by the topology of the
worldsheet. This principle is crucial in the construction
of fermionic strings: in the type-II string we have to
separate the contributions of left- and right-movers to as-
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sign them independent spin structures, while in the
heterotic string we have to amalgamate the left-movers of
the fermionic string with the right-movers of the bosonic
string. For bosonic strings, separation of the left- and
right-movers is not required, but it should remain a use-
ful property of the partition function. A careful treat-
ment of this chiral splitting and of the related issue of
internal loop momenta has been provided in Secs. III.K
and III.O.

A key observation due to Belavin and Knizhnik (1986)
is that separation of left- and right-movers on the
worldsheet can be translated into holomorphicity of the
string integrand on moduli space. In fact, if Z is the par-
tition function of a conformal field theory with respect to
a background metric ds =pdzdz and we deform the
background metric by a Beltrami di6'erential p, then

2

5„5 lnZ= f d zv'gg"

x Jd~w &g g p, 'p„( T„T~ )„„„.-
Thus the vanishing of ( T„T )„„„would imply that Z
is the absolute value squared of a holomorphic function
on moduli space.

Anomalies in principle could spoil this picture. Recall
(Secs. II.I and II.J) that the bosonic string is built out of
the conformal systems of the matter fields x",
p= 1, . . . , d and ghost fields b, c. If we consider; say, the
x" fields alone, reparametrization invariance and separa-
tion of left- and right-movers (in Euclidean signature,
holomorphic and antiholomorphic) cannot be achieved
simultaneously, the obstruction being the nonvanishing
central charge in the Virasoro algebra. This means that
(T„T~ )„„„'develops a Schwinger term that prevents

the vanishing of 66 lnZ. The same is true for the isolated
b, c system. For the combined x",b, c system, however,
the anomalies should cancel in d =26, and it is after can-
cellation that the string partition function should split
into a holomorphic factor times its antiholomorphic con-
jugate on moduli space. Earlier expressions for the bo-
sonic string such as (2.145) should be understood in this
sense.

A complete analysis of the second variation 65 1nZ was
carried out by Belavin and Knizhnik (1986). Besides jus-
tifying the above principles, their results also provide a
basis for investigating the holomorphic structure on
moduli space of the conformal field theories encountered
earlier in Secs. II.I and II.J. In particular, they can, be a
starting point for a detailed study on higher-genus sur-
faces of the Bose-Fermi correspondence of two-
dimensional field theory.

In Sec. VII.A we provide an exposition of the holo-
morp hie anomaly formula of Belavin and Knizhnik,
based on heat-kernel regularization. This leads to their
characterization of the string partition function as the
unique (up to constants) holomorphic nonvanishing sec-
tion of a line bundle over moduli space. Sections VII.C
and VII.D are devoted to bosonization, following Ver-

linde and Verlinde. They culminate in complete expres-
sions for correlation functions of bosons and chiral fer-
mions in terms of the prime form. In Sec. VII.E a
geometric interpretation of the holomorphic anomaly is
given in terms of curvature of determinant line bundles.
This refines the Atiyah-Singer (1984) interpretation of
chiral anomalies as nontriviality of these bundles. There
the bundle was that of Dirac operators over the space of
vector potentials modulo gauge transformations. Here it
is the bundle of 0 operators over moduli space. The key
new feature is the existence of a new metric built out of
regularized determinants, the Quillen (1984) metric, so
that nontriviality of the line bundle can be measured at
the level of differential forms (rather than Chem classes)
by the curvature and holonomy of its connection.

The determinants for Dirac and gauge-fixing operators
obtained this way in terms of theta functions encode
nicely their dependence on spin structures. They also al-
low a simple study of degeneration behavior. However,
the resulting expressions for string scattering amplitudes
are still somewhat formal, since they require a convenient
parametrization of period matrices within the Siegel
upper half 'space. It is possible that recent solutions of
the Schottky problem based on the KP hierarchy may be
helpful in this context, but the issue has not been fully ex-
plored as yet.

In Sec. VII.F we investigate the superholomorphic
structure of superstrings, following D'Hoker and Phong
(1987b). There is indeed a superholomorphic anomaly,
which cancels in the critical dimension d = 10 and for the
heterotic string with rank 16 gauge groups. Thus we
may hope that the superholomorphic structure of super-
moduli space will impose powerful constraints on the
superstring. The full consequences will require a better
understanding of superalgebraic geometry, which is being
developed by many authors. Finally, in Sec. VII.G we
provide a detailed comparison of chiral splitting, holo-
morphic splitting, and holomorphic splitting at fixed
internal momenta. A crucial ingredient in this compar-
ison is a supersymmetric extension 0 of the period ma-
trix Q. One of the major difticulties encountered in mul-
tiloop amplitudes has been the fact that supermoduli
space does not seem to have a natural projection onto
moduli space. The existence of 0 indicates that such a
projection exists if we represent supermoduli by IQ,X}
and moduli by I 0},though it need not coincide with the
standard idea of split supermanifolds. The matrix 0, may
ultimately be the way to express superstring amplitudes
in terms of modular forms.

A. Holomorphic anomalies

There is a simple way of viewing the holomorphic
anomalies .we shall discuss in this section as chiral
anomalies. In fact, if we wish to consider the chiral ver-
sion of the fermionic theories (yazd)", c(dz)' " of Sec.
II.J, quantization will demand a suitable notion of a
determinant for the chiral operator V'„. Now deter-
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ds =p
i
dz+p dz

i

' (7.1)

parametrize deformations of a fixed conformal structure
ds =p

~

dz
~

. The corresponding deformation of V'„ is

6V'„=p 'V'+n V'p, ' . (7.2)

Since p, ' constitutes the holomorphic coordinates for
moduli space near p ~

dz ~, the fact that 5V'„depends
only on p, ' and not p, ' means that V'„depends holo-

morphically on moduli parameters. Thus a chiral theory
of b, c fermions requires a reparametrization-invariant,
holomorphic square root of det'6(„), with suitable
modifications necessitated by absorption of zero modes.

If we choose to maintain manifest reparametrization
invariance, say by a heat-kernel regularization, we shall
see that we cannot extract a holomorphic square root on
moduli space, as may naively have been expected from
the previous discussion. A local "holomorphic anomaly"
is measured by

minants of chiral operators make sense only as sections
of line bundles, as we shall see in Sec. VII.E. To obtain a
scalar we could try instead to construct an appropriate
square root for the nonchiral determinant of
V'„V'„=6„'. The phases of such square roots are arbi-
trary, however, and can only be determined by requiring
further that the dependence on moduli of detV'„mimic
that of V'„ itself. To understand this dependence, let

]g(+ )

5„ln det'6'„+'= f dt tr(5„b, '„+'e "
) . (7.5)

Now the operators b'„+' and 6'„+'1 are not in general in-
vertible on the entire function spaces of rank n and n + 1

tensors, so it is appropriate to single out their kernels by
introducing the projection operators

II+ 1+ 2D n +1(6(—)
) 1D n onto ~erD n

Z

(7.6)
II„+,——1+2D "(b,'+') 'D" +' onto KerD" +'

Z Z

Hence we decompose the trace as follows:

(+) -'~'" (g(+ )

r5~~+ 'e " = —2

,~( —)—2 tr5„D,D, e "+'

]g(+ )= —2 tr5„D,D, e " (1—II+ )

—2 tr5„D,D~e "+'(1—II„+,) .
(7.7)

Since, on the space complementary to their kernel, the
Laplace operators are now invertible, this equals

(7.8)

det'b, („+—'

6„5 ln
det(p,

~ pb )det(g,
~ pb )

(7.3)
Thus

5„ln det'6'„+'= —2 tr5„D,D, (b, '„+')

and has a very similar structure to the conformal anoma-
ly. We turn now to its evaluation. We shall work with
Lorenti-covariant derivatives D,", D " on tensors of
weight n,

D,"=e, (8 +intro ),

~g(+ )

Xe " (1—II„+)

—2 tr5„D,D (b, '„+', )

(7.9)

~ dt —~&(+)
ln det'b, '+ '= — (tre " —X+ )n n (7.4)

and a change with respect to p produces

a(.+'= —2D" +'D,",
Z

g( —. ) 2Dn —1Dn
n z Z

instead of the covariant derivatives V„, since this setup is
more convenient for the generalization to superholo-
morphic anomalies in Sec. VII.F. Recall that deter-
minants are defined by

5e = du e""5Ae"1

0
(7.1 1)

With the help of these and some straightforward algebra,
one finds

Then we evaluate the second derivative with respect to p.
Two formulas come in handy:

5„(1—II+)= 2D, (b, '„', ) —'5 D, H++O—(5„D,),
(7.10)

5 (1—II„,) = —2II„,5„D,(6'„+') 'D +O(5„D,),
as well as

~g(+ ) ~g( —)

5„5„1ndet'6'„+'= —2 tr(5 D, )D, (b, '„+') 'e " (1—II+ )—2 tr(5„5„D,)Dz(h'„+', ) 'e "+'(1—II„+',)

—2 tr5„D, II„+,5„D,(b, '„+ ') '(1 —II~+ ) —2 tr5„D~(1 —II„+,)(b, '„+'& ) '5„D,II+

—cue( —' —~(1—u)~(+)
+2ef du tr5„D,e "+'5 D, e (7.12)

For brevity, we shall denote D, =D," and D =D'+ '.
z z
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Here we have made use of the fact that within finite-dimensional traces, the heat kernel for short time c reduces to the
identity operator. The presence of nonlocal contributions in the first four terms on the right-hand side reminds us of
the fact that it is natural to work with determinants divided by normalizations of zero modes, as in the case of the Weyl
anomaly. The changes of the finite-dimensional determinants under 5„and 5 are obtained as follows. Let P. span a

basis for KerD" +' and i)j, a basis for KerD,". It is easy to show that

5„5 In det(P, .
l P„&=2(5 5„P, l P &+ (5 P l

(1—II„+,)
l 6„P, & .

From D,"+ 'P . =0, we deduce

5 D" +'y +D,"+'6 y =0
P Z J Z P J

and hence

(1—II„-,)
l 6„y, & =2D, (~'„+')-'6,D +'

l y, ),

(7.13)

(7.14)

5 5„1ndet(P
l Pi, &=2(5 5„P, l P,. &

—2trlI„+,5 D,"(1—II+)(6'„+') '6„D~"+'

and similarly

5 5„1ndet(g,
l g„&=2(5 6„P, l g, &

—2trII+5„D" +'(1 —II„+,)(6'„+', ) '6 D," .

We may recast Eq. (7.12) in the form

det'a'+' Eg(+)
5 5 ln = —2tr(5 5„D,"+')D,"(b.'„+') 'e " (1 —II+)

det(P, l Pk det P. l g,
g( —)—2tr(5 6„D,")D,"+'(~'„-+',)-ie ' "+'(1—Ii„-+,)

—2(6,-6„y, l P, &
—2& 6„-6„g. l g. &

1 . —.[i-u)~(+)
+2p du tr5 D'+ 'e "+'5 D,'e

0 P Z p Z

(7.15)

(7.16)

(7.17)

The next crucial observation is that the only way the
operators and zero modes can depend on p and p, simul-
taneously is through a conformal change, as we indicated
when we first wrote down the corresponding di5'erential
operators. Denoting this Weyl scaling by 6o., we have

5 6„D"+'= —(n +2)6oD~" +'+(n+1)D,"+'5o,

5 6„D,"=(n —1)6oD," nD,"6o', — '

p P Z

and correspondingly

5 6„PJ.= —(n + l)5crg

5„6 it, =n5og, .

(7.18)

(7.19)

Jd g&g 5o

6 +6 1 Jd g&gR6o+O(E),

which is precisely the effect of the conformal anomaly on
the determinant of 5',+' [see Eq. (2.69)]. For a deforma-
tion of the form (7.1) 6cr=pp. Thus the only term that

With the help of these, we see that the first four- terms on
the right-hand side of Eq. (7.17) reduce to

~g( —) ~g(+ )

n tr6o-e "+'—(n +1)tr5oe

I

remains is the integral over u in Eq. (7.17), and this term
is both local on the worldsheet and, as can be seen from
its definition, reparametrization invariant. Thus we may
evaluate it locally on the Riemann surface, its
reparametrization invariance guaranteeing that these lo-
cal contributions will fit together consistently. Since we
work only up to a Weyl anomaly, we can in fact work
around Aat space, and the calculation is then easily per-
formed. Putting all together, one finds

det'a'„+—'

6 6„1n

2

Jd g&g (V',pV'p+2Rpp) .

(7.21)

We note that this second variation corresponds to the
particular choice of variations p l

dz
l

~p
l
dz -+p dz

l

Clearly we can accompany this variation with any addi-
tional Weyl scaling without changing the complex struc-
ture, so strictly speaking the holomorphic anomaly is not
intrinsic and must be considered modulo the conformal
anomaly.

We can now give a complex analytic characterization
of the bosonic string partition function. In view of Eq.
(7.21), the function
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det'60F= fd'g&g det( co,
I
co, )

det'a' —'
2

det(P,
I P )

(7.22a)

S =(P, /i h $3i, 3)(CO, /i . h COi, ) (7.22b)

is the square modulus of a holomorphic function on
moduli space, as long as the Abelian differentials col and
quadratic differentials P, are chosen to depend holo-
morphically on moduli parameters. Stated as generally
as that, such choices are not possible globally on moduli
space. A weaker choice is, however, possible, which is
dictated by the structure of Eq. (7.22) and suffices for our
purposes. Let E and A be the maximum wedge powers
of the spaces of quadratic differentials and Abelian
differentials, respectively. Since these spaces vary holo-
morphically with moduli, they should be viewed as mak-
ing two holomorphic line bundles over moduli space.
Given a holomorphic section s of Ks A ', we can write
it locally as

discovered by Belavin and Knizhnik (1986). In retro-
spect, related issues'had occurred earlier in the work of
Schwinger (1951), Coleman, Gross, and Jackiw (1969),
and Quillen (1984) on two-dimensional Dirac operators
coupled to vector potentials. Equation (7.23), which
makes no reference to regularized determinants, ap-
peared in Belavin and Knizhnik (1986) and also in Host
and Jolicoeur (1986) and Catenacci et al. (1986). It is the
starting point for several expressions of the string parti-
tion function in terms of modular forms and theta func-
tions, e.g. , Beilinson and Manin (1986), Belavin et al.
(1986), Manin (1986), Moore (1986), Dugan (1487), Moro-
zov (1987a, 1987b). Other expressions in terms of theta
functions can be derived from chiral bosonization formu-
las below, as indicated in Sec. VII.D. Applications to
chiral determinants are considered in Knizhnik (1986a,
1986b, 1987). A careful discussion of the extensions of
the Hodge and canonical bundles to the compactified
moduli space Jkh is provided in the review of Nelson
(1987a).

and the function F in Eq. (7.22a) depends only on s and
not on the particular factorization into P, and col. We
can now apply a theorem of Mumford (1977) which
guarantees the existence of the weaker choice we referred
to earlier, namely, that of a global nowhere-vanishing
holomorphic section s of Kg A ' . In other words, nei-
ther line bundle K nor A is trivial over moduli space, but
K(3A ' is. If s is a global section of KA ', the func-
tion F will be globally defined on moduli space and hence
must be constant. Writing s as in Eq. (7.22b), we note
that det(col

I
coJ ) '

p, h . A$3h 3 is now a well-
defined global (6h —6) volume form over moduli space,
which coincides in local coordinates with the measure
[dm]det(iM

I (t)k )det(col
I ~J ) ' of Sec. II.G. Thus, up

to a Inultiplicative constant c, the bosonic string partition
function can be rewritten as

Z —c f~ jt i /i /i (53h 3det(col
I ~J )

'h

a formula that is manifestly conformally invariant.
The line bundles A and K are usually called, respec-

tively, the Hodge bundle and the canonical bundle of
module space.

In the Deligne-Mumford compactification A, &, one ad-
joins to moduli space the divisor [b, ] of Riemann surfaces
with nodes. Both the canonical bundle K and the Hodge
bundle admit natural extensions to A, h, the first as the
canonical bundle of At&, and the second as the line bun-
dle of dualizing differentials. A characteristic class com-
putation then shows that E (3 A ' over A, I, is actually
not trivial and admits [ —2A] as divisor. Since the com-
ponents of 6 are-independent and F is nowhere vanishing
on the interior of JMz, it follows that F must have a
second-order pole along A. Physically, this pole corre-
sponds to the presence in the string mass spectrum of the
tachyon.

Holomorphic anomalies in string theory were

B. The free scalar field

We now begin a detailed study of the conformal fields
introduced in Sec. II.J. The simplest field is a free scalar
boson x, with action

I„(x)= f d z B,xB,x .

Its two-point function G(z, ui)=(x(z)x(u~)) is familiar
from Sec. II.G. Recall that it is not Weyl invariant, so
that x (z) does not have a well-defined conformal dimen-
sion. However, both O, x and the vertex operator

( z ) pq /2e iqx ( z)

are well-behaved conformal fields in view of Eqs. (2.87)
and (2.90), and have conformal dimensions (1,0) and
(q /2, q /2), respectively.

Finally, we can now address the issue of chiral scalar
fields. In the presence of the holomorphic anomaly dis-
cussed in Sec. VII.A, the partition function of x is not the
absolute value squared of a holomorphic function on
moduli space. Nevertheless we can define the partition
function Z& ' of a chiral scalar field by

fDxexp — ' fd'za, xa x
4m

=
I Z~ '

I
e (det 1m') '~, (7.24)

where SI (p) is the Liouville action in conformal gauge
with ds'=p dz dz,

SL(p)= f d z B,lnpB, lnp .

In this way, Zz will be holomorphic on moduli space, al-
though it has both local and global gravitational
anomalies, as indicated by the presence of the Liouville
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aetio@ and det ImQ.
It is easy to determine the variation of Z~ with respect

to ~oduli, since it reduces to the expectation value of the
chiral stress tensor T„ofEq. (2.178),

(7.25)

—iver(m +Qn)I(ImQ)IJ'coJ+c. c. , (7.30}

and the soliton contribution to the action is

Abelian differentials, co&, . . . , ~I, , it is easy to write down
such forms P

I „=—(m+Qn)(IrnQ) '(m+Qn) . (7.31)
Equation (2.90) for the propagator and chiral renormal-
ization procedure yields

T„=——,
' lim B,B„lnE(z, w)— 1

Z~LU (z —w)

This means that the stress tensor is the third Taylor ex-
pansion coefficient of the expansion of E for z near w,

E(z, w)=z —w+(z —w) T„+O(z —w) ) .

C. Spin- —' bosonizatign

In this section and those that follow, we shall solve
completely the theory of circle-valued bosonic fields. The
formulas we shall derive for correlation functions will be
explicit enough to allow us to identify them with the cor-
responding correlation functions for chiral fermions. We
begin with the simplest case of no background charge Q,
where the action reduces to

We shall illustrate the procedure with an explicit cal-
culation of the partition function. In this case the contri-
bution to tile Dx llltegral Is (87' det ks/ Jd zi g )

while the sum over soliton sectors produces the factor

2g exp ——(m +Qn )(ImQ) '(m +Qn ) . (7.32)

i (2+5"+en RCQ}k (7.33)

If we now rewrite the summation over n, k as the summa-
tion over integers p, q and half-integers 6' with
p+q+25'=n, p —q=k, we recognize the sum over n, k
as

This actually is a sum over all spin structures of theta
functions evaluated at 0. To see this, we rewrite the sum-
mation index m as 2(k+5") with 5" half-integer valued
and apply the Poisson summation formula to get;

(det ImQ)1/2 g g e
—m'~(irnn)n/2e —mk(imn)k/2

5" n, k

I (p)= Jd z B,yB rp . (7.28)

J

The first task is a suitable indexing of the soliton sector.
Recall that &p is to be thought of as circle valued, i.e., d y
is a closed 1-form that is not necessarily exact [note,
however, that the action I (y) in Eq. (7.28) is unambigu-
ous, since it can as well be written as the integral of the
(1,1) form By h By, after splitting dy as Bp+B(p]. Up to
exact forms, a closed 1-form is characterized by its wind-

ing numbers along cycles of the homology basis

Thus the final formula for the circle-valued bosonic 5,eld
with vanishing background charge is

Zii —g Zji
6

where

—]. /2

2/lnI = g dip, '2'irmI = f ii d(pI I
8~ det'6

Zg f d z&g detImQ
~
6[5](0,Q)

~

. (7.34)

If we fix once and for all a set of closed 1-forms P „with
precisely winding numbers mI and nr, dip can be unam-
biguously written as

dp=P „+dx, (7.29)

where x is a genuine single-valued scalar, completely
determined by the familiar normalization requirement

fd zV'gx =0, needed to remove the zero mode of the
scalar Laplacian. Since the action I (y) then splits com-
pletely as

I„(y)=I (P „)+I (x)=I „+I„(x),
the path integral becomes

ge ™JDxe
rn, n

which is tractable. With the canonical basis choice for

Clearly, both Zz and ZF vanish when there is a Dirac
zero mode, so we discuss only generic even-spin struc-
tures, in which case

ZF =(detb, I/2') . (7.35)

To compare Eq. (7.34) with (7.35) it suffices to compare
their variations with respect to the background metric.
Since determinants are regularized by heat kernels, they
are manifestly reparametrization invariant. Modular
anomalies could come from changing the basis of Abelian
differentials and hence changing Q, but this is compen-

We can compare this expression with the partition func-
tion of the chirally symmetric fermion theory with spin —,

(cf. Sec. II.J):

Z 6 P e —I(b, c)+c.c.
F —

g e
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sated by the theta factors, which render Eq. (7.34) modu-
lar invariant. . Finally, the conformal and holomorphic
anomalies of both expressions have the same coe%cient
c1&2 ————,'co ————,'. This means that the two expressions
differ by a multiplicative constant depending only on the
genus A. When h =1, explicit calculation of the fermion-
ic determinants shows that the constant is one, and the
general case ca,n be determined by letting both sides de-
generate.

The 'bosonic theory thus corresponds to a sum over
spin structUres of the fermionic ones. Such a sum should
be expected, since it is hard to imagine a particular spin
structure being preferred by the bosonic theory.

Correlation functions can be evaluated in the same
way. Let the metric in conformal gauge be ds =p dz dz,

I

and set
—I (y)

Zs(zi ~ ~ wM)= fDq e

X +p' '(z;)e
1

M
X gp' '(w;)e

1

In each soliton sector {m, n ) we cari replace q&(z,- ) —q&( w; )

by
z.

y(z;) —y(w;)= f p „+x(z;)—x(w;),

so that the full functional integral over Dy becomes

m, n

e "exp[ vn(—m +An)(1m') 'I(Xz, —Xw;)+c.c]fDx e ' +p' (z;)e ' +p' (w; )e

x g ~
8[5](Xz,—Xw, , &)

~

'

E(z, ,z ) g E{w;,w }
(J /(J

g E(z;, w~)

(7.36)

where we have fallowed common practice in writing

g z; —g w, for I (Xz, —Xw; ) when no confusion is possi-
ble.

We should like to arrive at a chiral form of bosoniza-
tion. If 5 is a generic even-spin structure, 8[5](0,0) will
not vanish, and the contribution of 6 to the above sum
can be rewritten as

Za I ~a(zi

where we have introduced the "normalized" amplitudes

8[5] gz, —gw, , Q
As'z w

6[5](O,Q)

+ E(z, ,z, } ff E(w;, w )
~(J &&J

+E(z;, w )
(7.37)

This expression transforms for each z, as a section of the
spin bundle corf'esponding to 6. As a section of z1, say, it

with I{Xz;—Xw;) the Abel map defined in Eq. (6.33).
The contributions of the scalar 6eld x have been calculat-
ed before and can be written in terms of the prime form,
while a similar Poisson summation argument cari be ap-
plied to the sum over the soliton sector. The result is

' —1/2
8~ det'b

Zii(z„. . ~ wM ) = f d z&g detlmQ

has "physical" zeros and poles at z2, . . . , zM and
m „.. . , tL)M, respectively. Since the Chem class of a spin
bundle is h —1, it must have unphysical zeros p„.. . , pz
as well, as determined by the divisor equation

M M h

I g z, —g w;+ g p„=I(divisor of 5),
2 1 1

(7.38)

1 8[5](z —w, Q)
E(z, w) 8[5](0,A)

and the correlation functioris (7.39) become

detSs(z, , w~) .

(7.40)

Taking M =2 and comparing with Eq. (7.37} gives Fay's
trisecant formula,

By the Jacobi inversion theorem, Sec. VI.E, the pI, 's are
completely determined by the z, 's and w s.

Let us now examine the structure of correlation func-
tions of the theory of chiral fermions b, c of rank —,', ——,',
with spin structure also 6. The operator product expan-
sions of Eq. (2.166) simply say that

~ ~

~

Af M

ii ~(, ) ii.t, )) n.3w
i =1 i=1

also transforms in z, as a. section of the spin bundle 5,
and it also has zeros at z2, . . . , zM, poles at m1, . ; . , wM.
The unphysical zeros must coincide with those dictated
by Eq. (7.38). Thus the fermionic correlation function
agrees with the bosonic one given by Eq. (7.37).

Bosonization will yield theta-furictioh identities if
correlation functions for the fermionic system can be
evaluated independently. For the spiri- —,

' system we can
produce explicit propagators using the prime form. If 6
is a generic even-spin structure, there is no zero mode.
The fermionic propagator is given by the so-called Szego
kernel

S,(z, w) =(b(z)c(w) )
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8[5](z, +z2 —w, —w2, 0)6[5](O,Q)E(z„z2)E(w„wz)=8[5](z, —w„Q)8[5](z2—wz, Q)E(zz, w, )

&& E(z „wz ) —(z, ~z2 ) . (7.42)

This is known to be a rather remarkable identity, since it
does not hold for theta functions defined out of arbitrary
matrices A in the Siegel upper half space. It relies heavi-
ly on the fact that A is the period matrix of a Riemann
surface.

For odd-spin structures 5, we have to modify Eq. (7.37)
as a candidate for normalized amplitudes, since the theta
function will vanish at 0. In this case we replace
1/8[5](O, Q) in Eq. (7.37) by (det lmQ) '~ . Generally
there will be exactly one Dirac zero mode h&(z), which
we actually constructed in Sec. VI.F. To evaluate the
fermionic correlation functions, we normally have to pro-
ject out this zero mode. As in the case of the scalar
Green's function [see Eq. (7.25)], this will spoil the mero-
morphicity of the propagator. In practice it is more con-
venient to work with the following propagator, which
was already encountered in Eq. (3.204):

y a,a[5](z —w, n)~, (y)
Ss(z, w)=

E(z, w) g 818[5)(O,Q)~1(y)
(7.43)

where y is an arbitrary point on the surface M where h&

does not vanish. This propagator is meromorphic with a
simple pole at z=m. Its drawback is that it is multiple
valued and strictly speaking should be viewed as defined
on the universal covering of M. This multiple valued-
ness, however, will disappear from the correlation func-
tions

+ b(z;) + c(w;) = g ( —1)"+'hs(zk)hs(w&)
1=1 i =1 k I

&(detS&(z;, w ) .
i~k

- j&I

(7.44)

D. Higher-spin bosonization

We now come to the general circle-valued Bose field
coupled to a nonvanishing background charge Q. An

These can now be checked to coincide with the above
prescription for the bosonic amplitudes.

Bosonization in field theory goes back to Skyrme
(1961, 1962), Coleman (1975), Mandelstam (1975), and
Witten (1984). For the ghost system, it was considered
by Marnelius (1983). As discussed earlier in Sec. II.J, the
equivalence of the fermionic b, c and bosonic y systems
was suggested by Friedan, Martinec, and Shenker (1986)
based on current algebra. The proof for spin —,

' was given

by Alvarez-Gaume, Moore, 'and Vafa (1986) and Host and
Nelson (1986) using the Belavin-Knizhnik theorem. A
different argument based on explicit computation of the
expectation values of the stress tensor of both theories
can be found in Sonoda (1987c). Chiral bosonization as
presented here and in the next section is due to Verlinde
and Verlinde (1987a). These formulas for chiral ampli-
tudes are among the most powerful tools in the study of
string amplitudes available today.

iQ— J d'z&g Ry+ I ds ky
cut

4h

+ X &kV V'k)
27T k 1

(7.45)

where we have fixed a base point Po and cut the Riemann
surface along homology cycles to a polygon M,„, with 4h

boundary curves as in Appendix D (see Fig. 11). The
pk's are the corners of M,„„ the Ak's are given by

/2 —k —2~1k where the 6k s are the inner angles
at the corners pk's, and the Ik's are integers chosen to
satisfy g l& ——h —1. Finally, k is the geodesic curvature.

Since the geodesic curvature transforms as
k =e B„cr+e k under Weyl scalings g=e g (here

8„ is the normal derivative), and Weyl scalings preserve
angles, I&(y) is easily seen to be invariant under scalings.
If we let 6- denote the angle that the boundary curves
make with a fixed given direction, and ds denote arc
length, then the form d8 —k ds, which is defined origi-
nally only along boundary curves, extends to a 1-form in
a two-dimensional neighborhood of each curve. Further-
more, its exterior derivative is just the curvature form.

We can now verify that the action I&(cp) is also invari-
ant under changes of the base point and of the curves a, ,
b; chosen to cut open the surface M. This follows by in-
tegrating the form (d6 —k ds)y along the closed cycles
a; —a;, b, —b, if a, , b, is another choice. Finally, it will
emerge as the result of explicit calculations below that
the correlation functions of the theory will be indepen-
dent as well of the choice of integer /k's (see Fig. 22).

With the proper definition for the action, we can now
proceed very much as in the study of spin- —,

' bozoniza-
tion. On a typical. soliton configuration y(z) = f pcs;, the
contribution to the action of the background charge Q
can be evaluated to be

—Qf co;
(h —1)P

(7.46)

This follows by observing that, since the action is Weyl
invariant, its value can be calculated using the (singular)
metric ds2=

~
so

~

dz dz where so is a meromorphic sec-
tion of the spin bundle So, determined by the Riemann
class A. The curvature reduces to a combination of
Dirac measures, and the Gauss-Bonnet theorem will

especially lucid treatment has been given by Verlinde and
Verlinde (1987a). We shall follow them and limit our-
selves to some clarifying comments on their work. Recall
that a naive action leading to the right current algebra
has been written down in Eq. (2.180). It suffers, however,
from ambiguities, since y is multiple valued. The
prescription is to replace it by

I&(y)= Id z B,gad, y
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0
e e

where H(z) is the coupling of the vertex operator to the
background charge

H(z) =p' (z)exp f d y)/g R (y)lnF(z, y)
4m

(7.49)

and U(g) is the general form of the Liouville action

U(g)= — f d x d yVgR(x)&gR(y)lnF(x, y) .
96~

(7.50)

FIG. 22. Integrating an Abelian differentia gives a function
with jump discontinuities at the cuts.

yield Eq. (7.46) with the right choice of integers Ik s. If
we consider a correlation function of the form

M+Y; ( )

Zii(zi, . . . , w )= g p(z)e
i=1

X ii p' ")w, )e
' "'

)
(747)

j=l
with Y=(2n —1)(h —1) and decompose a ' soliton
configuration as dy=P „+dx, P „as in Eq. (7.29), then
the contribution of the multiple-valued piece of cp is

g e "exp (m +Qn )(ImQ)

XI gz, —gw~ —Qh

Applying the Poisson summation formula as in Sec.
VII.C we can rewrite this as

(det ImQ)' g l
6[5](z)

l
exp[ —2m Imz(ImQ) 'Imz],

Combining Eqs. (7.47) and (7.48) then gives a completely
explicit form for the correlation functions of the Bose
theory. To establish the desired Bose-Fermi correspon-
dence, it suffices as before to compare the anomaly struc-
tures of both theories, as well as the zeros and poles of
the chiral correlation functions.

Now the chirally symmetric correlation functions of
the fermionic theory

ZF'" (zi, . . . , wM)= fD(bbcc)

X g b(z, )b(z, )
1

&C + c(w, )c(wj).
1

—I„(b,c)+c.c.
&pe

(7.51)

can be exhibited as the square of Eq. (2.160) in Sec. II.J.
This form is manifestly reparametrization invariant and
carries conformal and holomorphic anomalies with cen-
tral charge c„=6n —6n +-1. This means, as explained in
Sec. II.J, that there is a convict between holomorphicity
and covariance, so that the chiral fermionic amplitudes
Zg(z„. . . , w~) we shall produce must have a gravita-
tional anomaly. More specifically, they will be defined by

Z„" (z„.. . , w~)= lZF(z„. . . , wM) l'e """"',
(7.52)

where SL (p) is the Liouville action in conformal gauge,

where SL(p)= f d z B,lnpc}, lnp, (7.53)

—3g'U& )

+H~(w )
(7.48)

z=I gz; —gw —Qb,

Turning to the contributions of the scalar field x, we be-
gin by noting that the boundary and corner terms in the
action I&(x) cancel for x single valued. The coupling to
the background Q results only in the term Q&g Rx in the
action, and path integrals can be evaluated as in Sec.
VII.B. The result is

—i~2 + F(z, ,z, ) + F(w;, w )
8& det 60

rrF(;. , )

and ZF will be holomorphic with zeros in z, at
z2, . . . , z~+z and poles at w &, . . . , w~.

Thus we must rewrite the bosonic amplitudes arising
from Eqs. (7.48) and (7.47) under the form (7.52). First
we note that conformal and holomorphic anomalies arise
from the regularized determinant of A0 and the factors
H(z)exp[ —3/(h —1)U(g)] for each insertion. Using the
Polyakov and Belavin-Knizhnik formula for det'A0 and
standard variational formulas for the curvature, we find
that the central charges for both anomalies add up to
——,'+ —,'Y'Q/(h —1)= ,'+3Q /—2—=6n 6n+1. —This
suggests extracting out the Liouville action for each in-
sertion,
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3 3 2m' 2H(z)exp — U(g) =exp — SL (p)+ Im I col(ImQ)zz Im I coJ
I
cr(z)

I

h —1 h —1 h —1 (h —1)z (h —1)z
L

(7.54)

Here it is o(z) that is invariant under Weyl scalings,
holomorphic with respect to both z and moduli parame-
ters, but not single-valued on the surface M. It is mul-
tivalued around B cycles,

o (z') =o (z)exp +7n (h —'1)QII —2m i coI
(h —1)z

(7.55)

and transforms as a tensor of rank h/2. The ratio
cr(z)/cr(w) can be written in terms of the prime form

side is a form of rank n in each z;, and 1 —n in each w;.
Furthermore, as a form in z, it has zeros at
z2, . . . , zM+z, poles at w1, . . . , WM, and additional un-

physical zeros, p1, . . . ,ph, fixed by the Jacobi inversion
theorem,

M+Y M

I(Pl + ' ' +Ph )=I g Zi g Wj
2 1

—Qb+(divisor of 5) .

o.(z)
cr( w)

Z —g pl+6 E( )

E(z&q; )
(7.56)

Those are exactly the zeros and poles of the chiral fer-
mionic correlation functions in Eq. (7.52); We conclude
that

ZF(z„,wM)=Zq(Q) '8[5](Z,Q)
where q1, . . . , qh are arbitrary points on M. It is useful
to know the variations of o.(z) with respect to the moduli
parameters,

lno. (z)= I [c) in'( w, z )]
g Qg~~ 2 h —1

—8 lnitj(w, z)I,

IIE(' ') IIE(
l (J l (J

II E(z;, w )

IIcr(z; )
X

IIcr(w, )
(7.61)

g(w, z ) =cr(w )E(w, z )" (7.57)

za(zi wM)= 2 I zh, (» I

'I ~a(zl wM) I'
. 6

. With Eq. (7.54) we can now express the bosonic ampli-
tudes (7.47) in the desired form:

with z given in Eq. (7.60). When n is an integer we can
evidently ignore spin structures and set 5=0. Finally, an
explicit and manifestly holomorphic expression for
Zz(Q) can be found by noting that, when n =1,
ZF'='(z„. . . , zh, w ) can be expressed easily in terms of
Z~(Q),

—2e„SXe (7.58) ZF" ='(z„. . . , zh, w) =detco, (zj )Za(Q) (7.62)

Sm det'ho
I
z~(Q)

Jd g&g detImQ

—sL (p)L

(7.59)

and A~ are chiral amplitudes:

II E(z, , z, )II E ( w;, w~ )

A ~(z, , . . . , wM)=6[5](z, Q) E zI, W~

z= gz; —g wj —Qb, .

(7.60)

Direct inspection of Eq. (7.60) shows that the right-hand

where Zz(Q) ' can be interpreted as the partition func-
tion of a chiral scalar field,

Applying Eq. (7.61) gives an equation from which we can
deduce Zz(Q). Thus Eqs. (7.61) and (7.62) provide a
complete solution to the chiral fermion system b(dz)",
c (dz)

It is now simple to write down a holomorphic square
root for the Polyakov bosonic string partition function in
the critical dimension d =26. Recall that the partition
function is given by Eq. (2.142) and becomes, in terms of
the chiral fields discussed above,

Z= detImQ ' F hF,
n =2ZF (Zl, . . . , Z3h 3)F=P, A . A$3h 3 Z~(Q)

clet
~ zh

Substituting in Eqs. (7.61) and (7.62) yields an expression
for Z entirely in terms of the prime form.

As we have seen in Secs. III.J and III.K, the super-
ghosts P and y arising from gauge-fixing local supersym-
metry are commuting fields. Still, a useful bosonization
procedure has been proposed by Friedan, Martinec, and

Rev. Mod. Phys. , Vol. 60, No. 4, October 1988



E. O'Hoker and D. H. Phong: Geometry of string perturbation theory 1029

Shenker (1986), which expresses /3 and y in terms of an-
ticommuting fields g and r) and a commuting field o.,

P=e' B,g, y=e
As pointed out by Verlinde and Verlinde (1987b), opera-
tor product expansions indicate that

I

8(P(z))=.-"", ~() (z))=."',
g(z)=H(P(z)), g(z)=B,y(z)6(y(z)) .

General correlation functions for these fields are then
given by

n

8[5](—yi +Xx —Xy +Xqz —2b, )

(
n+1
rr &( )rI~(y, )rr

k g a[S](—x, +Xx —Xy+Xqz —2S)
i=i

g E(x;,x;.) rr E(y,y')

+E(x;,y, )+E(z,z, )
' '+o(z )

ij k&1 k

The reference here, as weH as for Sec. VII.C, is Ver-
linde and Verlinde (1987a, 1987b). A difFerent proof of
bosonization based on Arakelov metrics and Quillen
-geometry is given in Alvarez-Gaume, Moore, and Vafa
(1986), and Alvarez-Gaume et al. (1987), Sonoda (1987c)
Dugan and Sonoda (1987), and Pay (1987). Chirally sym-
metric correlation functions are obtained there in terms
of Arakelov Green's functions.

E. Determinant line bundles and Quillen's metric

Holomorphic anomalies have an especially attractive
geometric interpretation, which we shall discuss in this
section.

In general, an effective action is scalar. In chiral
theories, this scalar is to be extracted from the deter-
minant of a chiral Dirac operator. Since chiral Dirac
operators reverse chiralities, its determinant can only be
defined after choices of bases in each space S+,S of spi-
nors of definite ehirality. In other words, it is not a sca-
lar but an element of (~'"S+)S(&'"S ) '. These one-
dimensional spaces form a line bundle over the space of
background gauge fields, modulo gauge transformations.
Zero modes are sources of anomalies and could cause this
bundle to be twisted, so that its sections cannot be equat-
ed with scalars. Topological obstructions are given by
characteristic classes, which can be evaluated by the in-
dex density formula. This is the geometric approach to
chiral anomalies pioneered by Atiyah and Singer (1984).
The gravitational anomalies of Alvarez-Gaume and Wit-
ten (1983) can also be viewed in the same light (see Al-
varez, Singer, and Zumino, 1984).

In our first treatment of holomorphic anomalies in Sec.
VII.A, we bypassed this issue by attempting to construct
a reparametrization-invariant, holomorphic square root
of the chirally symmetric determinant (suitably normal-
ized with zero modes), that was a scalar. We shall now
come to the geometric point of view, and determine
whether the determinant line bundle cari be trivialized by
investigating directly the existence of a covariantly con-

T" +' [eigenspace—s—with eigenvalues &a of b, +

(7.63)

Now the key observation familiar from index theory is
that p~V'„y, P~(V'„) g is a one-to-one correspondence
between eigenspaces of A„and 6+, as long as the ei-
genvalues are strictly positive. In particular, V„restricts
to an operator from T" to T" +'. lf these spaces have
diff'erent dimensions (in other words, if the index of V„
does not vanish), 'then we just define the determinant to
be 0. Otherwise, let P„.. . , PM be a base for T",and

define (detV'„)~ to be

pih . A/M
(7.64)

This should be viewed as an element of the one-
dimensional space

stant section. This requires a notion of connection. We
shall see that determinant line bundles carry an intrinsic
metric, the Quillen metric. In the presence of holo-
morphic structures, this determines a connection whose
curvature and holonomy give exactly the perturbative
and global anomalies of the theory. Such interpretations
of anomalies had been suggested by Witten (1985a).

We begin with a brief review of the setup for deter-
minant line bundles. Let V be a family of operators in-
dexed by a parameter r varying over some parameter
space B. We shall adopt- the terminology of the case
V=V'„, ~=metric on the surface M, although the setup
will be obviously quite general. Exactly as the chiral
Dirac operator interchanges spinors of positive and nega-
tive chiralities, the operator V'„sends T" to a different
space, T" ', and thus its determinant chn only make
sense after a choice of bases within each space. Since
these bases are inAnite dimensional, we introduce the
finite-dimensional approximations

T~ =6 Ieigenspaces with eigenvalues & a of b.„ I,
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(maxTn )
—1 (maxTn —1

)e, — - h cz, + (7.65)

and does not depend on the bases. If we had chosen a
different eigenvalue cutoff P, say /3&a, then the two
determinants would satisfy a relation of the form

(7.66)

with s =(detV'„) and s& ——(detV; )&. Equation (7.66) is
actually a way of identifying the spaces
{z'"T" ) 'S(&'"T" +') for difterent values of n, so we
shall view them all as identical. In particular, they can
be viewed as

(maxKerVz )
—i {maxKer{ Vz )+ ) (7.67)

where Pi, . . . , PM and it|&, . . . , itjz are bases for T'
and T" +'. Using the worldsheet metric indexed by ~, we
could introduce a metric

(7.68)

above 8 . The transition laws (7.66), however, require
that the Ils II arising from a global section satisfy

n & A. & /3

(7.69)

where the A, 's are the positive eigenvalues of 6, . This
condition is not satisfied by Eq. (7.68). The modification
proposed by Quillen is

(7.70)

After zeta regularization of the infinite-dimensional prod-
uct on the right-hand side, this does lead to a smooth

and we shall henceforth use for them this last notation.
It is important, however, to keep in mind the interpreta-
tion of Eq. (7.67) as (7.65) for a positive, since the dimen-
sions of KerV'„and Ker(V'„) may jump, while the pa-
rameter space B can always be covered by small coordi-
nate patches B over which T" and T' +' have con-
stant dimensions and in fact vary smoothly with respect
to parameters. Thus Eq. (7.65) forms a smooth line bun-
dle over B for each o., and patching these line bundles
together over overlaps B AB&, using the transition rule
(7.66), we obtain a smooth line bundle over the full pa-
rameter space B. This is the determinant line bundle,
which will be denoted alternatively by Eq. (7.67) or just
DET(V'„). We recall that it has a natural global section,
namely the determinant of V'„, which is identically 0
when the index does not vanish and is otherwise given by
Eq. (7.64). In the latter case the determinant section is 0
when the operator V'„has a zero mode.

We turn next to the construction of a metric on
DET(V'„). Now over a coordinate patch 8„,a section s
of DET(V"„)can be written as

s={g,h . AP~ ) 'e(Q, A. . . AQ~ ),

metric on DET(V', ), which is called the Quillen metric.
So far, our discussion has been quite general, although

we have used the terminology relevant to V'„. Specializ-
ing to V; proper, we note that for n = —,

' the index is 0
and the determinant section is a section that vanishes ex-
actly when the theta function vanishes. This incidentally
is the case where the number of zero modes does jump.
In genus h & 2, the index does not vanish for any weight
n &—,, so the determinant section in these cases is trivially
identically zero. Although there is no natural global sec-
tion, local sections are quite important and have ap-
peared implicitly before. To see this we observe that the
duality explained in Eq. (6.26) allows us to rewrite
DET(V'„) as

DET(V'„)=( &'"KerV"„) '8 ( &'"Ker(Vi „)) (7.71)

Taking n suKciently small but positive, we can then
represent a section s of DET(V'„) over 8 as

s =(p, h h pM ) 'g (g, h h it'x) (7.72)

with P„.. . , tItM and ij'j„. . . , g~ zero modes of V'„and
V& „. Note that the ranks M and X are constant when
the weight n is not —,'. The Quillen metric then takes the
form

det'6„
det ( y, I y/, ) det ( q, I itji, )

(7.73)

as we saw in Sec. VI.A. Thus the Belavin-Knizhnik for-
mula gives exactly the curvature of the determinant line
bundle with respect to the Quillen metric.

familiar from our earlier evaluations of conformal and
holomorphic anomalies. In general, it is not possible to
choose bases of zero modes invariant under large
reparametrizations, so the sections s we just discussed are
defined only locally.

Equation (7.71) for DET( V'„) also shows that
DET(V'„) is a holomorphic line bundle above moduli
space, since we have seen in Sec. VII.A that the operators
V'„depend holornorphically on moduli parameters. It
should be pointed out that we now view the base space of
parameters as moduli space instead of the space of
metrics. This is essentially possible because our con-
structions are manifestly reparametrization invariant. As
for the Weyl symmetry, we can restrict our discussion to
a specific conformal gauge (e.g. , metrics of constant cur-
vature) or only to combinations of determinants that are
ultimately Weyl invariant. This harmless arbitrariness of
conformal gauge is the same as was encountered earlier
in the derivation of the Belavin-Knizhnik formula.

If we choose bases of zero modes depending holo-
morphically on moduli, the section s of Eq. (7.72) is a
holomorphic local section of the line bundle DET(V'„),
and hence the curvature form of DET(V"„) is just given
by

det'6
BB1

II llg ——851,(7.74)
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The cases relevant to the bosonic string are DET(V'2)
and DET(VO). The spaces KerVz and KerVi are the usu-

al quadratic and Abelian differentials, while Ker V0
represents the constants, and KerV'

&
consists of confor-

mal Killing vectors that all vanish for genus h )2. As a
consequence

DET(V2) =K ', DET(VO) =A

where K and A are the canonical and Hodge bundles and
we have ignored the trivial bundle of constants over
moduli space. The Belavin-Knizhnik formula now as-
serts that the bundle DET(V2) 'S[DET(VO)]'
=K @A ' is Aat. By covariant transport we can then
construct a global nonvanishing section over Teichmuller
space. To really obtain a section over moduli space we
need to investigate the holonomy of the connection.
Such investigations were initiated by Witten (1985b) and
worked out in detail there for the heterotic string. In
particular, the holonomy around a loop is expressed as an
adiabatic limit of the Atiyah-Patodi-Singer (1975) eta in-
variant of the fibration above the loop.

In the above setting the determinant line bundles car-
ried a holomorphic structure and the connection was
determined by the metric. Such was also the case iri the
setting originally considered by Quillen, namely, deter-
minant line bundles over Jacobian varieties. In the more
general situation of chiral Dirac operators indexed by pa-
rameters ~, varying over a space 8, Bismut and Freed
(1986) have extended Quillen's construction to construct
a connection separately. Such a connection depends on a
choice of horizontal spaces in the "universal curve, " i.e.,
the fiber bundle over 8 whose fiber above ~ is the spin
manifold on which Q is defined. For the operators V'„

this fiber bundle is the usual Teichmuller universal curve,
and there are natural horizontal spaces, . namely, the hor-
izontal spaces discussed in Sec. IV.H. The mairi steps in
the construction of the connection are then as follows:
with the Riemannian metric in the fiber and the choice of
horizontal subspace, one can produce a unitary connec-
tion on the infinite-dimensional bundle on 8 whose fibers
are spaces of spinors. This connection projects in thorn to
a connection on eigenspaces of g,*@,and B„g,* and
hence to a connection on determinant spaces of the form

(7.63), (7.65) for each eigenvalue cuto6' o.. Again these
connections do not rnatch, as the eigenvalue cutoff varies.
A correction factor with regularization yields a well-
defined global connection, whose curvature is given by
the index density formula

Q. 2m Tr exp
fiber 27T 2'ITl

(7.75)

Here A is the standard A polynomial, the index (2) indi-
cates retention of only the 2-form terms, and 0 is the
curvature of a connection co '" on the universal curve,
which can be described as follows: Choose a metric on B
and consider the metric on the full universal curve ob-
tained by requiring that the fibers and horizontal spaces
be orthogonal and the horizontal spaces be isometric to
the tangent spaces to the base. Then co

'" is the projec-
tion onto the tangent space to the fiber of the Levi-Civita
connection on the universal curve. It is in fact indepen-
dent of the choice of metrics on the base. As for I, it is
as usual the curvature of external gauge couplings. In
the presence of a compatible holomorphic structure, this
construction gives back the holomorphic connection in
the determinant line bundle, and the 3 genus in Eq.
(7.75) should be replaced by the Todd polyriomial for 8
operators. Finally, Bismut and Freed also evaluate the
holonomy of DET(B ), generalizing the Witten (1985a)
formula for global anomalies.

We shall now illustrate Eq. (7.75) by rederiving the
Belavin-Knizhnik formula. We parametrize moduli by
constant-curvature metrics and take the horizontal sub-
spaces as defined by the lifts p —&k(p)B/Bz+p, of Sec.
IV.H. The connection co "' described above coincides
with the connection on the Teichmuller curve deter-
mined by the metric in the fiber and the holomorphic
structure. In particular, the curvature Q of Eq. (7.75)
coincides with the curvature of the Teichmuller curve in
Sec. IV.H. Since the curvature form iF/2@of the co-.
tangent bundle is —0/2m, the operator B„=g V', is just
the 8 operator coupled to the nth power of the holo-
morphic cotangent bundle, and the expression for the
Todd polynomial is Todd x = 1+x /2+x /12+
We obtain with x =A/2'

2

curvature of DET($„)=2nf1+ —+.
fiber 2 12

6n —6n +1 0 =—
2477 fiber

n x
1 —nx+

(2)

6n2 —6n+1
CO~p

In the last equation we have used Eq. (4.49) to express
the final result in terms of the Weil-Petersson Kahler
form. This agrees with Eq. (7.21) for constant-curvature
metrics.

The original chiral anomaly of Adler (1969), Bell and
Jackiw (1969), Bardeen (1970), and Cyross and Jackiw
(1972) emerged in fermion triangle diagrams, where it

t

was found that one could not conserve vector currents
without violating the conservation of the axial-vector
current. For a recent review see Jackiw, Witten, and Zu-
mino (1984). The fact that chiral determinants are not
scalars is stressed in Alvarez-Gaume and Witten (1983)
and in Atiyah and Singer (1984), where the basic
geometric setting is also introduced. Although we lacked
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space to discuss it properly, the material of this section is
heavily influenced by the family s index theorem of Ati-
yah and Singer (1968). That the conformal anomaly can
be derived from the index theorem is first noted by Al-
varez (1986). The Quillen metric is defined in Quillen
(1984). Mathematical treatments of adiabatic limits and
holonomy are in Cheeger (1987) and Lee, Miller, and
Weintraub (1987). Further applications to global
anomalies and torsion issues are developed in Freed
(1986).

F. Superholomorphic anomalies

One of the most remarkable features of the previous
discussion is that the bosonic string partition function is
almost completely characterized (up to a constant) by its
being a nowhere-vanishing holomorphic section of a line
bundle on moduli space. As remarkable as it may be, one
can discuss the bosonic string theory and its scattering
amplitudes without really ever using this fact, however,
as Secs. II and IV illustrate.

For the superstring case, the situation is rather
different. The very construction of type-II and heterotic
strings in the Ramond-Neveu-Schwarz formulation re-
quires a summation over spin structures for left- and
right-moving worldsheet fermions separately. Thus we
always make use of the chiral components of the string as
exhibited in Sec. III.K. One resorts to considering a non-
chiral Lagrangian and noiichiral scattering amplitudes
and then uses the principle of chiral splitting discussed in
Sec. III.K to split the string into its two chiral modes.
Such splitting will in general be unique only up to a
phase, but further physical principles, including unitarity
and modular invariance, may then be used to fix this
reriiaining phase. %'e achieved a splitting in terms of the
chiral components of the fields in Sec. III.K and in terms
of holomorphic square roots of determinants dependent
only on the period matrix Q and 7, +, and not on Q and

In view of the complex structure of supermoduli
themselves —as explained in Sec. III.G—it is natural to
seek a superholomorphic splitting of superdetermina, nts
and amplitudes. We shall establish in this section that
superdeterminants indeed split holomorphically, with
respect to this complex structure on supermoduli, except
for h soperholomorphic anomo. ly which cancels in d= 10.
In Sec. VII G we shall show that super-
holomorphic splitting coincides with the chiral splitting
in terms of 0 and 7,+.

It is likely that the algebraic-geometric considerations
addressed in Secs. VII.A and VII.E for the bosonic string
can be generalized to the case of supermoduli space. In
particular, the generalization of the Mumford form of
Eq. (7.22b) can be deduced from the form of the super-
holomofphic anomaly equation to be presented in Eq.
(7.109) below and will be given by

s =(Qi 6 A Pqh q)(cubi A @cod, )

for even-spin structure and

3. Holomorphic coordinates for supermoduli space

Recall that to each supergeometry satisfying the tor-
sion constraints (3.11) corresponds a supei complex struc-
ture J~ given by (3.23) which characterizes the super-
conformal class of the supergeometry. Thus supermoduli
space may be viewed as

sAh ——
I supercomplex structures JM I /sDiff, (7.76)

where it is understood that JM arises from an %=1 su-

pergeometry that satisfies the torsion constraints. This
allows us to introduce superholomorphic coordinates on
st& through the complex structure 8 of supermoduli
space as explained in Sec. III.G. The complex structure
J~ itself may be used as a complex coordiiiate for st, I, ,
and holomorphic and antiholomorphic directions are, re-
spectively, solutions to

0= rM ~=dJM" id(d JM ~) =—dJM" iJM'd Jp", —

O=I M =dJM +i/(dJM )=dJ~++iJM de+�.
(7.77)

As was shown in Sec. III.G, this system is integrable and
thus defines complex coordinates.

We now wish to parametrize the complex structure
JM with the help of the X= 1 supergeometry. We shall
first do this locally arid then discuss global issues in Sec.
VII.G. It follows from the torsion constraints that all
components of H~ can be expressed in terms of
H '=H, H, arid H ' and their complex conjugates.
The latter two a.re eliminated by super-
repararnetrizations 5V, and local U(1) and super Weyl
rescalings, and we riiay set them to zero. Supermoduli
space may now be parametrized in terms of the super
Beltrami differenti. al p =H '. With the help of Eq.
(3.22), we get

H =H '=H, '=0,
H '=D H, H + = ——,'D+H,

(7.78)

6Q =iD,H + —,'D+HQ+ —HQ, .

Thus we see that to first order all components of Hz de-

We shall denote superderivatives by D instead of by X at this
point, reserving 2) for later use.

s =(Pi h hg, i, , )e(coi h hen„+, )

for odd-spin structure. PJ are the holomorphic super-
quadratic di6'erentials of Sec. III.E and coI are the super-
Abelian differentials. The Mumford form thus arises as a
global section of E A with K the generalization of the
canonical line bundle of A of the Hodge bundle in the
above sense. Our results will show that this bundle is
indeed Aat.
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pend either on H or on H separately, and H provides
holomorphic coordinates on supermoduli space. %e con-
clude that the operator 2) varies holomorphically with
respect to sup'ermoduh parameters.

The situation to second order is more subtle. In the
case of moduli space, there are no constraints on specify-
ing zweibeins, arid second-order terms in deformations
can be chosen so that e depends holomorphically on
the Beltrami differential up to second order. For %=1
supergeometries, however, even E alone cannot be
specified arbitrarily due to the torsion constraints, as may
be seen by counting degrees of freedom. Indeed, upon
specifying E, we have also right away its complex
conjugate E+, or eight real superfields all together. But
the supergeometry depends on 16 EM 's and 4 QM'sn

minus 14 (real) torsion constraints. Thus giving all the
components of E overspecifies the system. This
phenomenon may also be understood as a manifestation
of the fact that the structure group of the connection is
red)iced to O(2). Thus the space of E satisfying Eq.
(3.11) is a nontrivial curved manifold, unlike the space of
metrics I g „I, which is a contractible cone.

Satisfying the torsion constraints to second order re-
quires modifications of Eq. (7.78), so that the super-
geometry to second order is specified by

The results are

J '=2iH, J '=D J
J + = —i (D+H +D M), Jr+ =D J +,
J '= iHD+ H —2iHD+ H,
J '= i (1—+2D HD+H D—D+HH ),

i —(1 HD—+D H+D+HD H),

(7.83)

J = ——D D+HD H+iD HD+D H .
2 +

The holomorphic components can be read o6'from Eq.
(7.77), and it is clear that J ', J +, J,', and J~+ are
holomorphic. Their complex conjugates are antiholo-
morphic, and the remaining eight components (like
J+ +, . . . ) are neither holomorphic nor antiholomorphic,
and should be considered as auxiliary fields arising from
the overdetermination characteristic of JM . Note that
the number Of truly independent holomorphic com-
ponents (J ' and J +

) is exactly what you would have
expected from a naive extension of ordinary geometry
(functions of z and functions of (I)).

The U(l) connection involves yet another complica-
tion. One can easily show by rearranging terms that

=Z + ,'(D H+D-M)E M HE, —

(7.79)
QQ = DJ ++——J +0 + —J '0l

z

@ M=EM DHE, —+ ,'(D D H-+D, M)Z, +iD (E+D+M), (7.84)

- where

+ ,'(D, H+D SC)E-M,

~=HD H —~D HH.

The U(1) corinection is given by

6Q =iD,H +iD E +—,'D+ HQ+ —HQ,

——,'R+ M +—,'D MQ+,

(7.80)

(7.81)

so that Q becomes holomorphic except for a total D
derivative. We may now recast all components of the su-
pergeometry in terms of linear functions of the com-
ponents of the complex structure, except for the D
derivative in Q

M ~ M+ r J +~ M+ r J zg M2-
5Q = —D J ++—J +Q +—J 'Ql l

+ —
2

— + 2

+iD (K+D+M), (7.85)

AJ BE N (7.82)

Here we have kept only the HH part of the quads'atic
terms in H, since it can be checked that H terms will not
upset the superholomorphic dependence found to Arst or-
der in H. To linear order, the quantities 4™,A, and
hence 2) depend only on H. However, to second order,
new dependence arises through E and M, which involve
H as well. To understand this phenomenon, we need to
introduce true complex coordinates on supermoduli
space, and these can be built out of the JM through Eq.
(7.77) and the complex structure 8.

It is convenient to express JM in terms of U(1) indices
as seen from the geometry EM

JM"=@M'&.'&( +@M (XS) &P"

~(n) D(n)+ r J +D(n)+ r J D( z)n
2 ' 2

—inD+ J + nD (K+—D+M) .

The total derivative, however, is simply a local U(1) and
super Weyl rescaling, which may be done away with by a
conjugation,

—n(K+D M) „n(K+D M)
e )

analogously to the bosonic case, where only the deriva-
tives B„are holomorphic, and riot V' or Dr. 1his means
that the parametrization (7.79) is holomorphic to second
order and can be used to calculate the holomorphic
anomaly.
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2. Variational derivatives of superdeterminants

For the calculation of variational derivatives of the
determinants, it will be useful to introduce projection
operators onto the null spaces of the superderivatives.
We define

II" —= 1 —S"+ ' S" onto KerS" =Ker '+ '1
+ —

( —) + n

n +1/2

II n
1 Sn —1/2 1 S" onto KerS" =Ker+ (+) P1

n —1/2

for n&0, (7.86)

H =—1—,
) ~

—' onto Ker (+)

To show that these operators indeed project onto the
above-mentioned null space, one relies on the properties
derived in Sec. III.F. Take, for instance, the case of H+.
When n (—1, KerS" +'~ =Ker '„+'&&2——0 according to
Eq. (3.72). Hence

X+iL X+iL . (7.88)

straightforward.
It follows that for all n, @.span Ker(1 —II" ) and 4

span Ker(1 —II+ ' ).
We now compute the variational derivatives of the su-

perdeterminants with respect to H, viewed as indepen-
dent coordinates on sALI, . Given a supergeometry EM
we shall deform it to another supergeometry DM under
the change of & as described by Eqs. (7.79)—(7.81).
However, it appears profitable to consider, as well, re-
scalings of both EM and 6M by -the same super Weyl
transformation —X and local U(1) transformation iL. —
These new geometries will be denoted by EM" and O'M"

and the corresponding deformation by H. Thus the su-
pergeometries EM and EM should be viewed as fixed,
and the deformation H induces the geometries DM and
DM", which can be represented in terms of the following

dlagr am:

Ker(1 —II+)=KerS" +'
~ ~

S+ ——KerS+ . (7.87)
n +1/2

When n )—,', we have rather KerX)+ ——Ker '„+ ' =0
according to Eq. (3.72), which implies that
(RangeS" +'

) =0. Hence every element to which II+
is applied is in RangeS" +'/, and it follows readily that
II+ ——0, which coincides with Ker2)+. For n = ——,',
KerS = I const I, so that

Ker(1 —II+'~ )= V such that

1 S+' V=const . .
( —) +
0

The Green's function on scalars being chosen to have
zero integral over the surface (as one has in the bosonic
case), it is clear that the constant must vanish. This in
turn implies that S+' V=O by arguments similar to
those that led to Eq. (3.80). For n=O, the property is

Here & is the corresponding scaling of H, given (for
L=O) by

&+'=e z "II+
=H+ +(y, ) ~DgXH+',

(7.89)

and the deformation EM ~EM
" is given by Eqs.

(3.17)—(3.19). To perform the calculation of the & defor-
mation of the superdeterminants, we shall first pull &
back by the local U(1) and super Weyl transformation
X+iL, then calculate the H deformation of EM, and
finally reassemble the answer in terms of EM and &.
The fact that this can be done provides a check that we
preserved super-reparametrization invariance.

Superdeterminants are again defined through the heat-
kernel short-time cutoA method employed in Sec. III.G,
arid we shall restrict our attention to the case h )2. We
need the expression for the super Weyl rescaling Eq.
(3.114), which we here repeat for convenience. '

Without loss of generality, we can restrict to

sdet' sdet'
ln =ln

sde«+J
I +k &&+.

I
'Pp& sdet(4,

~
4„&&4.

~
+~&

( —) "Jd z @(S+XS X iR+ X) . —(7.90)

Here, 4.&KerS" except when n =0 where @ HKerCIO' ', and ql E KerS+ '~, except when ri = —,
' where

~. Ker ~~+~.

Mixed variational derivatives with respect to supermoduli are given by

sdet' sdet'
"

'.—'

5~5@in =60501nsdet(@
~
@k)(%„~qI&) sdet(cp,

~
cp„)(g

~
@&)

( —) "5H5g Jd z 6(S+XS X iR+ X) . — (7.91)

40&e have denoted the change H of Eq. (7.79) by & here, reserving H for later Use.

4'Since we are dealing with nonchiral determinants, recall that there is no local U(1) anomaly.
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The first term is calculated using the heat-kernel short-time cuto6' method, as, for the case of the super Weyl anomaly.
One begins by introducing

—t(Q' —')'
ln5 '„'(s)=ln sdet[(CI '„') +s]= —f e "stre (7.92)

Variation with respect to H yields

](f) ( —))2
5Hln5 '„'(s)=2f dt e "str5Hf) ~„'C] '„~e

Elements of KerCl '„' will not contribute to the supertrace in the above formula, and it is useful to insert (redundantly)
the projection operator A " onto Ker '„', so that '„' becomes invertible on this restricted function space,

—t(Q'-))'
5~1n5'„'(s)=' —2f dt e " str5HCI'„',

,
e " (1—A" ) .8 (7.94)

%'e use the arguments of analytic continuation in s familiar from the super %'eyl case, and since there are no zero
modes, we find in the limit s ~0 that

—~(o'-')'
5Hlnsdet'Cl'„'=str58 '„',

,
e " (1—ft" ) . (7.95)

Second variations yield

—~(o' —')' —~(Q ' —')'
5H5~1n sdet' '„'=+str5H58 '„',

,
e " (1—A" ) —str5H '„',

, 5H '„',
,

e " (1 —A" )

~(Q ( —))2

( )

n ~~( )

(7.96)

This expression may be considerably simplified by noticing that, to order HH, Q+ and 2) depend only on
(anti) holomorphic coordinates.

For the change in the projection operator we have (n&0)

5H ( 1 —ft "
) =2)+, ,

5HZ) A "
+ ~

( ) H 7 (7.97)

and for n =0

5 (1—ft )= (,2) 5 2) A
0

(7.98)

Using also the fact that z may be set to 0 in finite-dimensional traces, we may continue the above calculations to obtain
I

~(Q &
—))&

5H5~ln sdet'CJ '„'=+str(5H5H2)+X) +2)+5H5H2) ), ,
e " (1—ft "

)0„
+str5H2)+A+ ' 5HZ), , (1—A" )+str5H2)+, ,

(1—A+ '~ )5HXl ft"

1 —cu (H ) ~ ~ —c(1—u)(G )
du str5~2)+2) e " 2)+5HZ) e

0
1 —Eu (G „& w ~ —c(1—& Cl n —1/2+e du stroll 5HZ)+e " '" 5HZ) X+e

0
(7.99)

The second and third terms can be linked to the changes in the finite-dimensional determinants of zero modes. Using
the fact that the operator ft " projects onto the kj's, we have

5H58lnsdet(@.
~
Nk) =2(5H5H@

~
NJ)+(5H4

~

(1—ft" )
~

5&C&~) . (7.100)

Now the variations in the zero modes can be determined from a di6'erential equation that follows from their definition,

4J ——0 —.5HZ) (4~ )+2) (5H4& ) =0 . (7.101)
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Fortunately, we do not need the full change of the zero modes in Eq. (7.100), but only the projection onto the comple-
ment to the N~'s:

so that

(5HZ) )4~+(1—II" )5HZ&) ——0,
n —1/2

(7.102)

&5H4~ ~
(1—Ii" )

~
5H4~ &=str5 2), ,

(1 —11",-'")5„n 11"
n —1/2

Analogously, we have

5H5Hlnsdet&4
~

0&&=2&5H5H+
~

4 &+&5~+
~

(1 —II+ '")
~
5H+

(7.103)

(7.104)

and

(7.105)

The two terms in the first line of Eq. (7.99), combined with the first terms on the right-hand side of Eqs. (7.100) and
(7.102), are essentially super Weyl anomalies. Exactly as in the bosonic case, our calculation of the superholomorphic
anomaly is consistent only modulo super Weyl transformations, so that the above effects due to the super Weyl anomaly
may be ignored. The last two terms can now be easily evaluated with the help of the heat kernel Oat superspace given in
Appendix C, as well as the dependences of the superderivatives 2)+ and 2) on H and H, respectively, as given by Eq.
(7.85):

sdet 1 —4n
5H5HIn = ( —) "fd zED, HD H .

sdet&4~
~
4k

(7.106)

Next, we need the change in the super Weyl anomaly of Eq. (7.91). We may now pick a convenient slice for EM" by us-

ing the local U(1) and super Weyl rescalings to make 0+——0 in a small patch. As a consequence the supergeometry is
flat, R+ ——0. Super-reparametrization invariance guarantees that we can put such patches together, as long as the ex-
pressions are covariant. The kinetic term yields

@2)+XX) X =E(D+XD X HD XD X—+HD+ XD,X+HHD, XD,X

+ —,'ID HHD XD,X HD+HD XB—+XI +D+XD XPD+D HH+ ,'D D+HH —DHD+H—
I ),

(7.107)

whereas the change in the curvature is given by

=E R+ +iD+ H —iD H+iD+D (K+K)

D I 2HD D,H —+—D HD, H I + D+ I 2HD+D—H+D—+HD HI (7.108)

Notice that the function M has completely disappeared from the Anal result of the calculation and that the factor K
enters only as a super Weyl transformation would. Thus the net effect of the second-order terms that were needed to
perform the variation (7.91) with respect to superholomorphic coordinates of sJNhis only a s, uper Weyl transformation.
Putting together Eqs. (7.91) and (7.106)—(7.108), we can actually reassemble all terms and rewrite them in function of the
supergeometry 6M and the deformations & only. This provides us with a powerful check on the covariance of the re-
sult, and we obtain

sdet'Cl'„' 1 4„

+ —R (4D+AD&+&D ~ D &+&'D D+&)
2

(7.109)
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which is indeed completely covariant. We have used Eq.
(7.89), relating H and &, and set R+ ——R.

As in the bosonic string, this expression simplifies con-
siderably if we represent supe rconformal classes by
constant-curvature geometries and restrict & to elements
in KerP, . Recalling that the super Weil-Petersson
metric on supermoduli is given by Eq. (3.44) with con-
stant R+, we obtain at once that

G. Global issues for the superstring

In this section we shall tie together the various proper-
ties of string amplitudes uncovered so far and propose a
solution for a number of contradictions and ambiguities
that have seemed to afFect superstrings.

1. Chiral and superholomorphic splitting

sdet'

sde«e,
~

C„)(e.
~
q~)

( —)'"J[&//,'w, . (7.11O)

The above holomorphic coordinates for supermoduli
space, second variations of superdeterminants, and holo-
morphic splitting of the superstring measure appear in.

D'Hoker and Phong (1987a). The approach taken there
is in the supergeometry formalism. A different argument
in Wess-Zumino gauge, also leading to holomorphic
splitting, was provided later by Sonoda (1987d) and
Bershadsky (1988). That Howe's solutions (3.32) provide
holomorphic coordinates for supermoduli space in the
sense of Eqs. (7.77) and (7.78), when the zweibein depends
holomorphically on mod uli, was verified by Nelson
(1987b). Independent approaches to ratios of
superdeterminants and superholomorphic splitting are
discussed by Baranov and Schwarz (1987).

We have discussed a number of difFerent approaches to
the splitting of string amplitudes as a function of left and
right chirality degrees of freedom in Secs. III.K and
III.M—III.O, or as a function of holomorphic and antiho-
lomorphic dependence on moduli space in Secs. VII.A
and VII.C—VII.E, or finally as a function of superholo-
morphic and antisuperholomorphic dependence on su-
permoduli space in Sec. VII.G—the previous section.
The question thus arises whether all such approaches are
the same or, if they are different, which one is correct.
To discuss this, we shall make a finer distinction.

(a) Holomorphic splitting over moduli space

amplitude= f dmkdmk
~

9(mk)
~

(b) Holomorphic splitting on moduli space at fixed
internal momenta

amplitude= f dpi' f dmkdmk
~

P(mk, pg)
~

(c) Chiral splitting at fixed internal momenta (and for
odd-spin structure at fixed Dirac zero modes g+")

amplitude= f dpi''f d mx.
~
V(Q, &, +;pj')

~

even,
h

amplitude= f dpi' fdP+" f d mx
~
V(Q, X,+;g+",pf) ~

'odd .
h

(d) Superholomorphic splitting on supermoduli space

amplitude= d mx
~

V(mx )
~s&,

h

(e) Superholomorphic splitting on supermoduli space
at fixed internal momenta (and fixed Dirac zero modes
for odd-spin structure)

amplitude= f dye fdg j"

X f d m~
~
p(m~(;$0+);pg)

~

~ .
h

Of course it is understood that the absolute value square
is taken for the nonchiral theory.

We now discuss the validity and interrelation of the
various possibilities.

(a) Holds for the partition function of the bosonic
string only, provided the measure is defined to include
the factor det(ImQ). It does not hold for nontrivial
scattering amplitudes of the bosonic string. It also does
not hold for type-II or heterotic strings.

(b) Holds for any scattering amplitude in the bosonic
string. In a modified form that will be explained below it

I

holds for type-II or heterotic strings after odd moduli
have been integrated out.

(c) Holds for type-II or heterotic strings, as was shown
in Sec. III.K for exponential insertions. In Sec. III.M it
was also shown to hold in detail for the one-loop case.
We can argue that it holds for all amplitudes. Note that
we do not assume here that Q and 7 + are complex coor-
dinates for sA, I, .

(d) Holds for the partition function of type-II or
heterotic strings, as was shown in Sec. VII.F, on the con-
dition that a factor sdet(ImQ) be included in the mea-
sure. In fact, it follows from (c) as we shall show below.

(e) Holds provided we can argue —as we will indeed—
that Q and X, + of (c) are complex coordinates for sJK&.
In that case it is equivalent to (c), and valid for all ampli-
tudes in type-II or heterotic strings. Thus it is the prop-
erties (c) and (e) which provide the correct framework for
superstring perturbation theory.

In the remainder of this section, we shall show that (c)
implies (e) and finally see how odd moduli can be in-
tegrated out to obtain a result of type (b) for the super-
string.
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1038 E. O'Hoker and D. H. Phong: Geometry of string perturbation theory

2. Supersymmetric period-matrix

Our starting point is an arbitrary scattering amplitude
at fixed momenta, encountered already in Sec. III.K, and

I

more explicitly in Eq. (3.323) for type-II and Eq. (3.326)
for heterotic strings. We shall mostly be interested in the
matter part,

A (Q, Q;X;X, ;g;, g;;pj')= fD(xg) g 5 f „dz B,x —pg' V, (g„g, ) . V„(g„,g„)e
p I

(7.111)

where the emission vertices V& V„are physical and
independent of the ghost fields. For simplicity, we shall
consider only the case of even-spin structure, and we
shall list the modifications resulting from odd-spin struc-
ture at the end.

It is easy to see that A. , defined above and for all
internal momenta, is invariant under local reparametriza-
tions (connected to the identity) and local supersymmetry
and has the standard Weyl and U(l) anomalies, which
should be thought of as compensated by the ghost fields.
A. fails to be modular invariant because we picked a
canonical homology basis. Thus it may be expected to
transform "covariantly" under a modular transforma-
tion, provided 7 is transformed appropriately. It is also
invariant under any large diffeomorphism that preserves
the homology basis and hence is invariant under the
Torelli group. The most important thing here is that it is
reparametrization and supersyrnrnetry invariant.

Now the chiral splitting established in Sec. III.K im-
plies that this is the norm square of a function C depen-
dent only on 0, X +, g;, and pP:

tr~z ——f d z X +(z)g~+(z)col(z) .

B,S (z, w)+ X, +(z)f d z'X, +(z')B,B, lnE(z, z')

XS (z, w) =2775 (z, w) .

With ihe help of this propagator, we have

QIJ Qlj 2trl ( ETIO j )

(7.115)

(7.116)

or

fIIJ =QIJ — d z f d w col(z)X +(z)S~(z, w)
8m Z

Since the g+ integral is again Gaussian in p, Q is actually
independent of p as well and depends only on the super-
moduli. The term X'+ introduces the coupling to the
Dirac field of a nonlocal potential (since we have already
integrated out the x field), as can be seen from Eq. (3.189)
directly. Thus it is appropriate to introduce a full Dirac
propagator S (z, w) for the combinations of I& and X'+.

A. (&,&;X,+,X, ;g;, g;;pj') XX,+(w)coJ(w) . (7.117)

=(2~)iou(k)
l
e.(n, X, +,g„iP) l'. (7.112)

Here C inherits the symmetries of A. . But we know
most of the p dependence on C: it is a Gaussian in p. A
particularly interesting quantity is the variance of the
G-aus sian:

a2
5~ hlJ= lnC (fl,X, +,g;;pp) .

27l t Qpf Qpj
(7.113)

with the field o. given as before,

Using the functional integral representation of Eq.
(3.201), we see that it is independent of the external mo-
menta k, and we get

I a2 +~'++' Pg I"

QIJ —QIJ + ln D ~+e
2@id ()pj"tip/'

(7.114)

(@r
l
eJ ) =ImflIJ (7.118)

with 41J EKer2)'~ . Recall that, since we are dealing
with even-spin structure only, there are precisely h such
super Abelian differentials. For odd-spin structure, there
is (generically) one more.

In fact, this shows us right away, when we integrate
over the internal momenta, that the correct normaliza-
tion of the matter functional integrals is sdet(1m'), as

Reparametrizations, Weyl, and local U(1) invariance of 0
are manifest, but since 8 was also supersymmetric, we
conclude that 0 must be supersymmetric.

Thus chiral splitting has led to a supersymmetric ex-
tension of the period matrix —exactly the type of thing
we were looking for, as will become clear shortly. The
imaginary part of this supersymmetric period matrix was
already encountered in the discussion of the superholo-
morphic splitting of the superdeterminant on scalar
superfields (not surprisingly) in Sec. VII.F for n =0,

42An arbitrary (real) phase that could in principle come in the
definition of C cannot depend on the complex variables 0,
X,+, and g;, and can thus be neglected —in particular in symme-

try considerations. From one spin structure to another it is
determined by the action of the modular group.

4 Since the propagator S has a perturbative series in g, + that
ends after h terms, Eq. (7.117) is the full answer for S replaced
by S when h=2. It is straightforward to show directly in that
case that 0 is supersymrnetric.
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indeed factors into the absolute value square of a func-
tion dependent only on 0 arid 7 +. This very strongly
suggests that 0 and 7 + should be good holomorphic
coordinates for supermoduli space. Actually, this may be
seen very directly from the fact that H ' of Eq. (7.83)
was a good complex coordinate for supermoduli space
and that its expression in Wess-Zumino gauge [Eq.
(3.129)] indicates that e 5e ' and 5X + are both good
complex coordinates. Hence we have shown that chiral
splitting of (c) implies the superholomorphic splitting of
(d) for the partition function as well as (e), since now A
and X + are good coordinates for sikh. As indicated be-

fore, this means that (c) and (e) are in fact equivalent.
Actually, the above construction of the supersym-

metric period matrix is equivalent to a generalization of
the usual construction of the period matrix in terms of
line integrals of Abelian differentials. To see this, recall
that a holomorphic super Abelian differential m=m0
+ Ocr+ (i /4) 88 A mo satisfies the following set of
differential equations:

D, m +—,'7 +&@=0,

D,co+ —,'D, (X +mo)=0 .
(7.119)

The general solution to the second equation is given in
terms of h complex integration constants cr,

co(z) = y clcol(z)
I

f d w B,B„G(z,w)X +m (w), (7.120)

where G is the scalar Cireen's function. Using the fact
that

B,B G(z, w)= —B,B lnE(z, w)

+~col(z)(lmQ)IJ'co~( w),

we see that the latter contribution can be lumped togeth-
er with the integration constants cr. In view of the fact
that the prime form is single valued around A cycles, it is
then clear that the differentials

col(z)=col(z) — f d y f d2w B,B lnE(z, w)

XX-+S„(w,y)X +col(y)

(7.121)

are canonically normalized around A cycles,

dzmJ=fg dzNJ=5JE

Here S (z, w) denotes the meromorphic Dirac propaga-

opposed to det(1m'), recovering (for the amplitudes with
no vertex insertions) that

sdetn+n'"

f d zE sdet 1m'

=QJx — f1 w f d y &ox(w)X +S (w, y)

XX +Qz(y), (7.122)

as is easily seen, order by order, in an expansion in
powers of X.

The supersymmetric period matrix in the context of
Eq. (7.118) was first encountered in the general formula-
tion of amplitudes in terms of two-dimensional super-
geometry in Sec. III.I, and in D'Hoker and Phong
(1987a). The construction in terms of line integrals
around closed contours of Abelian differentials for even
spin structure is due to Bershadsky (1988) and Sonoda
(1987d, 1987e). Its supersymmetry was also checked ex-
plicitly in Sonoda (1987e). Generalizations to the case of
odd-spin structures are given in D'Hoker and Phong
(1988a).

3. Splitting of superrnoduli space over "moduli"

It remains to work out how the split expressions of (c)
and (e) can be reduced to the holomorphic splitting in the
sense of (b). In short, we should integrate out the odd
mod uli.

If sJRh were a vector bundle above JNi„with ,the odd
moduli as fibers arid transition functions that depend
only on A, h, then such integration would be straightfor-
ward. However, supermoduli space rather emerges as a
coset space of two-dimensional supergeometries by
reparametrizations, supersymmetry, local U(1), and Weyl
transformations. Especially supersymmetry is very
tricky, since its action on the two-dimensional metric is
not only along the reparametrization and Weyl direc-
tions, but also along moduli. Thus changes in g +

viewed as supersymmetry transformations can be undone
only at the expense of a simultaneous motion on moduli
space. If one indeed wants to exhibit a projection from
any slice.of supergeometry for supermoduli space, taken
as some specific choice of e ',5 +, one has to confront
the problem that supersymmetry acts by mixed transfor-
mations on both the zweibein and the gravitino field. In
practice it has not appeared to be possible in general to
disentangle this action and decompose it onto
reparametrizations and Weyl transformations without
affecting moduli. This observation may lead one to be-
lieve that no natural projection of supermoduli onto
moduli exists in general.

When this is the case, the formulas for the amplitudes
of superstring scattering processes seem ambiguous be-
cause, without a preferred projection, the answer for
physical amplitudes should be independent of the projec-

tor [the Szego kernel for even-spin structure and the
propagator (3.204) for odd-spin structure]. The integral
of these normalized differentials around 8 cycles repro-
duces precisely the supersymmetric period matrix defined
above:

+JK 0Bgmj
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tion. Actual calculations show that this is not the case:
a difference in projection produces a shift in the even
coordinates that depends on the odd moduli and, upon
integrating out the odd moduli, results in a total deriva-
tive term on moduli space.

In fact the emergence of total derivative terms is
directly observed when performing a change of slice for
the super Beltrami differentials in Eq. (3.335). It was ar-
gued by Verlinde and Verlinde (1987b) that a change in

X + induces a BRSQ change that may be pulled out of
the integral and as usual produces a total derivative on
moduli space. Actually, their argument is only local on
moduli space, so that a change in g + produces a total
derivative on moduli within the open patch one is consid-
ering, and the question arises how to put such patches to-
gether. To be more precise, the super Beltrami
differentials are characterized by points z„which should
move independently of moduli if the proposed formula
(3.340) in terms of picture-changing operators is to hold.
Thus the issue is whether one can have points moving
quasiconformally on moduli space in a global way. Re-
formulated in terms of the Teichmiiller universal curve, it
is a question Of whether there are any covariantly con-
stant global sections of this fiber bundle. Certainly this
bundle is not flat, since we evaluated its nonzero charac-
teristic class c, . It also has no global sections. It would
thus appear that the fermionic string integral is intrinsi-
cally ambiguous.

One is faced very much with a problem in Cech coho-
mology, as it appears perhaps most simply in the prob-
lem of the magnetic monopole inside a sphere. One has
an object (say the field strength) that is a total derivative
(say of the vector potential) in an open patch. However,
if one is dealing with an underlying topologically non-
trivial manifold, the integral can still be nonzero because
one can never cover that manifold with just one patch.
Correct expressions must also include the Wu-Yang-type
corrections that take the effects of patch changing into
account.

Such a treatment was proposed by Verlinde (1987) and
independently by the authors, and it leads to a well-
defined expression for the full amplitudes, with no fur-
ther total derivative ambiguities. Thus in general there
are additional contributions coming from the boundary
terms in a cell decomposition of moduli space, which
may be evaluated explicitly. It is tempting to propose
that such a treatment could be obtained directly from an
argument based on the preservation of worldsheet super-
symmetry, but we shall not explore this possibility fur-
ther here.

To make contact with the discussion given above, we
could, for example, consider the chiral amplitude C . It
depends on 0 and 7 +, which were argued to be good
complex coordinates for supermoduli space. However,
they exhibit the same problem mentioned above: 7,+

transforms simply under a local supersymmetry, but AIJ
also transforms. Thus it seems that we cannot expect to
integrate out P + and be left w'ith a sensible theory on

4. Modular invariance

We can now argue that the superstring measure in
terms of Q, as prescribed above with the odd moduli iri-

tegrated out, is modular invariant. It may be convenient
to review here the points of the previous discussion that
we shall need in our arguments. The first important fact
is that

(a) fl transforms under modular transformations

exactly the same way as Q. This is most easily seen from
the description (7.122) of 0 in terms of line integrals of
super Abelian differentials over homology cycles, since a
modular transformation is just a change of homology
basis. The theta characteristics [5] of the —', differentials

7, change accordingly,

D C

2 diag AB' (7.123)

The next outcome of our earlier discussions is that
(b) the superstring measure on II resultihg from in-

tegrating out odd moduli is invariant under small
changes of the 2h —2 —', differentials X, which leave 0,
fixed. In fact the chirally symmetric superdeterminants
are regularized in a manifestly super-reparametrization-
invariant way, and although chiral splitting of each of
them would lead to anomalies, the anomalies cancel in

moduli space in terms of AIJ, which is not supersym-
metry.

Here, however, we are saved by the existence of Q,
which is supersymmetric. Indeed, it is clear that the am-
plitude C can be expressed as a function of 0 and 7, +

instead of 0 and g, +:

C (Q, X, +, g;;pt') = C (Q, X, +,g;;pf ) .

Since C is itself supersymmetric in the sense that polar-
ization tensor and position of vertex operators transform
covariantly under-supersymmetry, it is cfear that we are
no longer concerned by the fact that no global slice can
be chosen for the super Beltrami differentials.

In fact, for all practical purposes, (Q,X) admits a natu-
ral projection to 0 trivially defined by omitting X. Thus,
in order to integrate out the odd moduli in a supersym-
metric fashion, one should keep 0 fixed and integrate the
remaining independent variable X. This is not to say that
7 suddenly admits global sections above moduli space,
but rather that a change of section (a gauge
transformation —in this case a supersymmetry) acts in a
tensorial fashion, so that, upon transition from one patch
to the next, quantities transform in a tensorial way, and
no boundary problems occur between patches. In this
way we obtain a well-defined measure on "moduli space, "
viewed as the space of matrices Q.
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the full gauge-fixed superstring, as we saw in Sec. VII.F.
This means that there is no local supersymmetry anoma-
ly, and our assertion follows from the fact that a change
in 7, with 0 fixed is just a supersymmetry transforma-
tion. The final point we wish to make is that

(c) modular transformations can be used to pull back
or push forward measures on [Q,X] without ambiguities.
To see why, we note that measures written in terms of
(Q,X) involve combinations of chiral Dirac determinants,
correlation functions of spinors, and correlation func-
tions of scalars. There are no difFicglties with spinor
correlation functions, but Dirac determinants and chiral
scalars in general cannot be defined individually in a
modular-invariant way. In our situation, however, we
know that modular anomalies will cancel for the com-
bination of Dirac determinants alone, as can be checked
from the explicit bosonization formulas (7.61), or by in-
yoking Witten's (1985b) result on global anomalies. As
for chiral scalars, the fixed intergal momenta splitting
prescription applies, which transforms under modular
transformations as it should.

%'e can now see that there is no ambiguity in the
superstring measure. More precisely, we can cover the
space of [AI by patches IB I over each of which a
choice of 2h —2 —,

' differentials IX, I is made, and the
superstring measure is obtained by expressing 7 as
X=gm, X, and integrating with respect to +,~

&
dm, .

Over overlaps B AB& there is no ambiguity in view of
observation (b) above. Now let 8 and 8 be patches for
which there exists a modular transformation M sending
8 into MB with a nonempty intersection with 8&. For
the superstring measure to be consistent, we need to
know that the superstring measure on 8 is pushed to a
measure on MB that agrees with the measure on 8
chosen independently' at the outset. Under a modular
transformation, the measure on 8 is pushed by (c) 'to a
measure of the same functional form, with the only
difference that the 7, from the push forward in general
will not ag~ee with the X, ~ on B~. »»ew of o»erva-
tion (b), this leaves the measure unchanged, and we have
shown the absence of modular anomalies.

We can now trace easily the origin of the ambiguities
discussed by Verlinde (1987), Verlinde and Verlinde
(1987b), Atick, Rabin, and Sen (1988), and Moore and
Morozov (1988). These ambiguities seem to be inherent
in a choice of slice in which the zweibein e is indepen-
dent of odd moduli. In this case a change of 7, keeping
e ' fixed is not a supersymmetry transfor~ation, and the
difference in the 7, results in a total derivative defined
only on intersections of small patches on moduli space.
The argument we just gave above then fails, since the
measure pushed forward on MB~ differs from that on 8&
by a local total derivative. This is why Wu-Yang terms
have to be introduced by hand to lead to @ well-defined
cosmological constant. We also note that, if there existed
global sections of the universal Teichmiiller curve, so
that the IX, I could be chosen globally to be invariant un-

der modular transformations, then the above argument
would apply trivially. Indeed the measure pushed for-
ward on MB would clearly agree with the one on 8
since they would both come from the same choice of 7, .
However, the Teichmuller curve has no global sections,
and Wu-Yang terms will be needed. They are usually
difficult to evaluate explicitly.

We observe that the issue of modular invariance,
which is a global issue, has been reduced to local con-
siderations by the above arguments. The reason for this
is that we already know how to cancel modular
anomalies in ihe chiral Dirac determinants and how to
define chiral scalars, using internal loop momenta. The
main problem at this point is really the problem of mak-
ing small changes in the P„which is solved by using the
supersymmetric period matrix. In particular, we make
no assumption about global choices of 7, 's through the
0 space and just use small covering patches.

As we just noted, slices [Q,X] correspond to zweibeins
depending usually on odd moduli m, . This means that
the terms Blam, arising from the ii dm, integration
cannot be dropped. In principle we should expand the
contractions in 7, which will stop after A. —1 terms.

The supersymmetric period matrix A will be an ele-
ment of Siegel space of h &h symmetric matrices with
even Grassmann values. Such a space will have dimen-
sions —,'h (h +1), evidently larger than the dimension
3h —3 of the space of superperiod matrices. It is obvi-
ously an important issue in the presept approach to solve
the corresponding Schottky proble~ of characterizing
the supersymmetric period matrices arising from super-
Riemann surfaces.

5. The cosmological constant to two loops

That these ideas make sense is easily seen by reconsid-
ering some of the calculations performed in the litera-
ture. In Morozov and Perelomov (1987) and Atick, Ra-
bin, and Sen (1988) it was argued that, in order to make
the string measure well behaved, the insertions of the
picture-changing operators in the case of genus 2 should
be taken at special points. It is now easy to see why by
examining the difference between 0 and 0 in Eq. (7.117).
When h =2, we can replace S by 5, which is the Szego
kernel for genus 2. Furthermore, g + is given by

X,+ (z) =a,5(z —z, ) +a~6(z —z~ ), (7.124)

1 and &z are two arbitrary points and a~ and a2
are the two odd moduli. Substitution into Eq, (7.117)
shows that only the term in a,az survives, so that the
Szego kernel is evaluated between z, and z2,

l
Qli QIJ — a,azcol(z, )S——(z„z~)coJ(z2) .

4m'
(7.125)

An explicit formula for the Szego kernel in terms of
branch points was given by Pay (1977):
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with

1
X

z (x)—z (y)

z x cli

a,. &A
(x)=

z x —a,.
a,. 68

1/4

1/2
Bz(x) Bz(y)

Bx Bg
(7.126)

(7.127)

space may be required in the covariant or light-cone
gauge superstring in view of supersymmetry has been
suggested by Green and Seiberg (1987) and Greensite and
Klinkhamer (1987). Detailed analyses of contributions
from the boundary of moduli space are presented by
Atick and Sen (1987a, 1987b), who show that two-loop
string-theoretic calculations of Fayet-Iliopoulos D terms
agree with the e6'ective field considerations of Dine, Ichi-
nose, and Seiberg (1987), and Dine, Seiberg, and Witten
(1988); Atick, Moore, and Sen (1988b) also address ambi-
guities of n-point functions.

in the notation of Sec. IV.B, so that a,-, i =1, . . . , 6 are
the branch points and 3 UB is the partition of the
branch points into two groups of 3 corresponding to the
spin structure v. This formula shows that the divisor in y
of 5 (a„y) is

ai 201

and similarly if a, &8, so that one is left with Q=Q
when z, and z2 are two branch points within either 3 or
8.

Thus it is to be expected that the correct superstring
measure can be written in terms of the usual measure in
Q when the support of 7 is located at the branch points.
This also includes the calculation of the cosmological
constant to two-loop order by Moore and Morozov
(1987), also performed with the insertions at the branch
points.

We have, however, the general supersymmetry covari-
ant formula available, and hence we can insert the
picture-changing operators anywhere. When they are
not inserted at the branch points, 0, will not equal 0, and
the diFerence is an odd-moduli-dependent shift, which
according to general integration formulas for Grassmann
variables will produce a total derivative term on moduli
space. The diFerence here, however, is that this contri-
bution was defined tensorially throughout, so that only a
term coming from the boundary of moduli space and not
from the boundary of individual cells is obtained. We
shall report elsewhere on more explicit verifications of
these ideas.

The importance of a modular-invariant choice of inser-
tions z, is stressed in Verlinde and Verlinde (1987b).
Ambiguities caused by total derivatives on 1ocal patches
of moduli space were investigated by Verlinde (1987),
Atick, Rabin, and Sen (1988), and Moore and Morozov
(1988). Appropriate corrections to the cosmological con-
stant dictated by Cech cohomology considerations (as in
%'u-Yang terms for a particle in a gauge field; see Al-
varez, 1985) were introduced by Verlinde (1987) and in
unpublished work of D'Hoker and Phong (1987). A
diFerent approach assuming the existence of global sec-
tions of the universal Teichmuller curve is to be found in
Atick, Moore, and Sen (1988a, 1988b) where a discussion
of advantages and disadvantages of various choices of
slices in the literature is also given. The possibility that
additional contributions from the boundary of moduli

VIII. VERTEX OPERATORS FOR ON-SHELL
PHYSICAL PARTICLES

One of the remarkable features of string theories is
that correlation functions of certain local operators —the
vertex operators —on the worldsheet give scattering am-
plitudes of physical particles in space-time. The spec-
trum of the space-time theory as well as its gauge invari-
ances are thus dictated by the structure of those vertex
operators. The general rules for the construction of ver-
tex operators have been partially known from the days of
dual models. A key requirement is that they have con-
formal dimension 1 for open strings and (1,1) for closed
strings. In this section we shall present the complete
rules for vertex operators in the functional formulation
for the closed bosonic, type-II, and heterotic string
theories. Essentially, bosonic vertex operators must be
consistent with all the symmetries of the corresponding
worldsheet theory, after inclusion of all possible
anomalies. The condition of conformal dimension (1,1)
just guarantees the integrability of a vertex operator on
the worldsheet. Of particular importance is the Weyl
anomaly. It is in fact the anomalous dimension of vertex
operators that is responsible for the appearance of mass-
less spin-2 particles in the string spectrum. Vertex opera-
tors also give a simple explanation of gauge invariances
in space-time as modifications by total derivatives on the
worldsheet, since these should not change the scattering
amplitudes. We shall discuss in some detail the example
of the gauge symmetry of the graviton and antisymmetric
tensor field.

Vertex operators for emission of fermions are more
complicated. Some of the difficulties can already be gath-
ered from the fact that we must manufacture space-time
spinors when the fundamental fields on the worldsheet
are space-time vectors. Moreover, insertion of a fermion
emission vertex operator should change the spin struc-
ture on the worldsheet. In Sec. VIII.E we shall present
the fermion vertex construction due to Friedan, Shenker,
and Martinec (1985; Friedan, Martinec, and Shenker,
1986) and Knizhnik (1985) based on bosonization and
coupling to the ghosts. The space-time supersymmetry
charge is then easily obtained from the fermion vertex
operator, and some basic consequences of supersymmetry
will be discussed.
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A. Covariance properties of vertex operators

Vertex operators for on-shell physical states of given
momentum k must obey the following covariance proper-
ties.

(i) Space-time translation invariance requires that all
x" dependence occur through a factor of exp(ik. x). The
remaining factors depend only on the derivatives of x".

(ii) Space-time Lorentz invariance requires that space-
time indices (p, , v, . . . ) on all fields be contracted with a
polarization tensor s„(k) which transforms under a real
representation of the little group of k„.

(iii) Worldsheet reparametrization invariance is en-
sured when Einstein indices are contracted with the
zweibein to yield U(1) indices. A factor &g =dete is
required for the volume element.

(iv) Worldsheet local U(l) invariance requires that
derivatives be covariant, all U(1) indices properly con-
tracted, and all U(1) anomalies canceled.

(v) Weyl invariance requires that the vertex be invari-
ant under %'eyl rescalings after inclusion of all
anomalies.

Fermionic strings require, in addition to the above, the
following.

(vi) Local worldsheet supersymmetry. Vertices must
be invariant under arbitrary reparametrizations of super-
space (N= 1 for the type-II superstring, N = —,

' for
heterotic strings). With superfields, all super Einstein in-
dices must be contracted with the superzweibein, only lo-
cal U(1) covariant derivatives should be used, and a fac-
tor E=sdetEM" should be included instead of &g.

(vii) Super Weyl invariance must be preserved after in-
clusion of anomalies.

Now requirements (i)—(iii) and (vi) are easily enforced
by use of U(1) covariant (super)derivatives, while (vii) will
follow from (v) and (vi). Further, there will be no U(1)
anomaly if Weyl anomalies cancel separately for left- and
right-movers. Thus (super)Weyl invariance is the key
property that distinguishes physical states from ghost
states.

B. The bosonic string and space-time
gauge invariance

1. The bosonic string vertex operators

The general vertex operator consistent with the re-
quirements of Sec. VIII.A is given by

V(E, k)= f d g&g U(E, Dx, R)e'"' (8.1)

Here U is a polynomial scalar expression in the U(1) co-
variant derivatives of x" and the two-dimensional curva-
ture R. " Using the Heisenberg equations of motion for

44To obtain similarity with the case of fermionic strings, where
derivatives are taken U(1) covariant, we have adopted this same '

strategy for the bosonic case. The translation to the covariant
derivatives V introduced previously is straightforward.

the x" field (D,D,x"=0) under the time-ordering sym-

bol, we see that vertex operators involving D,D x" must

be omitted, and on a given x" only D, or D, derivatives
are applied. We turn then to the Weyl transformation
laws of U(1) covariant derivatives. If e is a zweibein,
the connection and curvature are

The covariant derivatives on tensors of U(1) weight n are
given by

Dn e
—(n+1)crD nena (8.3)

R =e (R 2D,D, cr)—.

U(1) invariance of U(e, Dx, R ) implies that the total num-
ber of derivatives —independently of how they are
distributed —must satisfy

(8.4)

On the other hand, the possible sources of %"eyl
anomalies are the following.

(a) Contractions within exp(ik x). Under constant
Weyl rescalings we have

ik x —O.k k. ik.x (8.5)

so that in view of the Weyl scalings of the derivative fac-
tors we find

m = —k k =2(N —1), N =0, 1, . . . . (8.6)

Thus, at the lowest mass level, N=O, we have a tachyon
whose presence has manifested itself in the asymptotic
behavior of the string partition function (cf. Secs. II.H,
V.F, and VII.A). At the next mass level, N= 1, we have
massless particles. Under the Lorentz group they decom-
pose into the graviton, the dilaton, and the antisym-
metric tensor field. It is a remarkable property of string
theory that the graviton must invariably be present. (At
least in the critical dimension. )

(b) Contractions of D, derivatives with each other or
with exp(ik x). The first type produces an anomaly pro-
portional to g„, while the second produces an anomaly
proportional to k„. Such anomalies disappear when the
polarization tensor is made to satisfy

(8.7)

These polarization tensors do not make up the complete
list, however, since cancellation of anomalies could occur
by combining diA'erent terms. The same considerations
apply to contractions between D, derivatives.

(c) Contractions between D, and D derivatives. These
also lead to anomalous terms. However, these mixed

D,"=e, V", D~ =e, V", [D„D,]"=nR . (8.2)

Under Weyl transformations (e '=e e ') we have

~n (n —1)o ~ n —no
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(D, x(z)D, "x(z)) .

m m&+ . +m =m

(8.8)
I

contractions always require curvature counterterms, and
conversely, since curvature terms by themselves are not
Weyl invariant, they can only compensate for mixed
derivatives in view of their tensor structure. If we intro-
duce "normal ordering" conventions so that no mixed
contractions are to be performed, no curvature terms are
required and none will ever appear. We shall throughout
assume that such normal ordering has been performed.

Thus the complete classification of vertex operators is
contingent upon the evaluation of all contractions of
derivatives of x" at coincident points. Since the action is
quadratic we need only consider bilinear composites in
x". The use of the Heisenberg equations of motion under
the time-ordered product and the commutation relations
of (8.2) allow us to restrict ourselves to the case of no
mixed derivatives in z and z on a given x". Thus the only
contractions of interest are

We shall regularize the ultraviolet behavior of compos-
ites by the heat kernel and a finite-time cutoff, which is
reparametrization invariant. The results agree with
those obtained from reparametrization-invariant (but not
translation-invariant) Pauli-Villars regulators to the or-
der we have checked. Dimensional regularization would
yield different expressions, which we believe are incon-
sistent with reparametrization invariance; moreover, this
method is well known to have problems with infrared be-
havior. With any of these methods, Leibnitz's rule is
satisfied:

B(8"x (z)0~x (z) ) = ( 8"+'x (z)8~x (z) )
+ ((Yx (z)B'i+'x (z) ) . (8.9)

Here 8=B/Bz with z a local conformal coordinate. Thus,
in view of Leibnitz's rule, we need only compute the con-
tractions (x (z)B x (z) ).

In Appendix A we calculate the general expression for
such contractions, and we find

2ma(g 1 —zo). . . (g p —2
ml, . . . , m(x (z)B x (z) ) =.

p =1 m,. =1,2, . . .

where the A's are finite (rational) coefficients given by

(8.10)

1 1 p —1 (Y m& mp mf d&i f dt2 dt~ [rp '(rp+ri) ' (~p+ ' ' +~& i) (~p+ ' ' +7&)™]
m o o

m&m2 . . m m& m 2(m &+m )
p

+ m+1
Pl +1 m&

. . . m 2{m &+m +1)
p

Pl —Plp

m +1p
Special cases are

1

m+1
1

m1+ m2+ 1

m1+m2+ 1

Pl2+ 1 Pl
1 +Pl 2+2

The rule here is to differentiate with respect to the ~'s

first and then to set ~0=1—t„~,=t, —t2 Tp

tp 1 tp and Tp tp By per forming only the last two
differentiations with respect to w and only the last in-
tegration, we may easily obtain a recursion formula
(m=m, + . . +m ):p

(8.11)
I

Thus contractions of covariant derivatives are polynomi-
als in covariant derivatives of the conformal factor.

Finally, we provide a general argument for equivalence
between vertices in the Polyakov formalism and vertices
in the operator langauge. Polyakov vertices must be
Weyl and reparametrization invariant after anomalies
have been taken into account. For the operator vertices,
one requires instead that they have conformal weight 1,
so that physical states are annihilated by the Virasoro
generators L„ for n ) 1. When we put the Polyakov ver-
tex in the conformal gauge, the worldsheet metric is Eu-
clidean and the residual invariance is just the Virasoro in-
variance. Conversely, every vertex of conformal weight 1

can be lifted to a Weyl-invariant vertex by adding ap-
propriate contractions. This can also be checked explic-
itly by inspection of the commutators of vertices with the
components of the stress tensor.

(D, xx ) = —,
' [2D, o. (D,o ) ], —

( D, xx ) = —,
' (D, o 2D, o D, o ) . —

(8.12)

Pl 1+
m, +1 m, +1

Some low-order terms are easily obtained. In function
of covariant derivatives this leads to the following formu-
las for contractions:

(D,xx) =D,~,2

2. Space-time gauge invariance and examples

Vp= f d P g E„„D,x "D x "e'"' . (8.13)

The vertex operators constructed by the above
methods may not produce truly distinct particle states,
since they may differ by a total derivative on the
worldsheet providing zero upon integration. In space-
time this would correspond to a gauge transformation.
As an example consider the m =0 vertex
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D,x"D,x D x"
PV~P

+E D x "D x")e'"'
p~p Z

(8.15)

The conditions for Weyl invariance are easily obtained
with the rules for contractions given above (recall that
our vertex was implicitly normal ordered with respect to
mixed contractions, so that no curvature terms occur),

(k g" 6k"k )E — =ik~k~s

We may add to V0 expressions of the following form,
which reduce to zero through integrations by parts and
the (Heisenberg) equations of motion:

c ~c. +0'k +0 k„+0 k k (8.14)

Clearly, in terms of c, this precisely corresponds to the
gauge transformations associated with the graviton and
the antisymmetric tensor Geld. For massless particles,
Eq. (8.14) generates all gauge transformations. To obtain
gauge transformations for higher-mass particles it suffices
to write down all worldsheet derivatives with the ap-
propriate U(1) structure. A somewhat more complicated
example may be given for mass level m =2, where

V& —— d g c. D,x "D,x D,x "D,x

(1987). Vertices from operator considerations are derived
in Sasaki and Yamanaka (1985) and Ichinose and Sakita
(1986). Indirect methods for obtaining vertex operators
from tachyon amplitudes are discussed in Aldazabal
et al. (1987). Interpretations of gauge invariances as to-
tal derivatives are given in Callan and Gan (1986), Cohen
et al. (1987) and D'Hoker and Phong (1987b).

C. The type-II superstring

Vertex operators for the type-II superstring must be of
the form

V(E, k)= J d zEU(E, EM",2)X)e'" (8.18)

(i) 2)+~X~,2) qX', p &1, q&1,
(ii) R+ and covariant derivatives thereof .

where U is a polynomial scalar expression in the U(1) co-
variant superderivatives of Xp and of the supercurvature
R+ . Super-reparametrization and local U(1) invariance
require U to be a scalar under these transformations.
Here we use again the Heisenberg equations of motion
2)+2) X"=0 under the time-ordering symbol to elimi-
nate mixed derivatives on a single Xp. Thus the building
blocks of U are

(k g" —6k"k') E =ik k "c
PV, P p, p

(8.16)
Local U(1) invariance requires the total number of Q+
and the total number of 2) derivatives to be equal:

and the analogous conditions with p~p, etc. These con-
straints are trivially satisfied when the c.'s-are transverse
and traceless, but there are more solutions.

In particular, there is a gauge invariance obtairied by
adding total derivatives of the type

0= Jd P g [O' D, (D,x"D x"D x'e'"")

+9 D, (D,x"D,x'D, x'e' )],
inducing the gauge transformations

(8.19)

Constant super Weyl transformations, including the
anomaly of the exponential, require

—,'g2)++-,'g2) +JR+ —1 k„ki'. —(8.20)

Finally, to perform the Gliozzi-Scherk-Olive projection
in order to obtain supersymmetry, one must also require
that left and right fermion numb'ers be separately con-
served. Including the factors of d 0 d 0, one gets

gX++gR+ =gn +gR+ =odd . (8.21)

+k8 ),
c ~c +0, c ~c +0'

PVP PV)P PVP P~PV P~PV P PV

(8.17)

More details about these examples, as well as the struc-
ture of the cancellation of the curvature terms, may be
found in D'Hoker and Phong (1987b).

The general rules for vertex operators above were for-
mulated by Weinberg (1985). The contraction
(D xD,x ) was shown by de Alwis (1986) to lead to the
correct dilaton vertex of Fradkin and Tseytlin (1985a,
1985b). Anomalous Weyl scalings of general composites
were calculated in D'Hoker and Phong (1987b). Weyl re-
scalings based on dimensional regularization are to be
found in Tanii and Watabiki (1986). Weyl anomalies
when several emission points get close to one another are
evaluated in Seiberg (1987), Sen (1987), and Watabiki

Combining Eqs. (8.19)—(8.21) gives the mass spectrum

I = —k„kP=2X, X =0, 1,2, . . . , (8.22)

45This total number counts those 2)'s applied to X" or R+
equally.

which is quite familiar from the operator formulation.
Finally, we must insist on local super Weyl invariance,

independently for left- and right-movers to ensure local
U(1) invariance as well. Contractions of 2)+"X" with
exp(ik X) and with 2)+ X will produce factors of co-
variant derivatives of X. Contractions of 2)+ X" with

"X will always produce curvature terms and covari-
ant derivatives thereof. Assuming that a normal order-
ing convention has been adopted, so that no mixed
derivatives are contracted, there will be no curvature
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terms either.
We can now outline the procedure for finding all ver-

tex operators at a given mass level iV.
Determine all contractions (2)+"X2)+ X& with the

total number of Xl+'s less than or equal to 2%+1. Con-
sider all expressions of the form (8.18) for the vertex
without any curvature terms. Take the polarization ten-
sor to be (anti)symmetric when two powers, say I and n,
are equal and (odd) even. Group the terms in Eq. (8.18)
into those having an even and those having an odd num-
ber of space-time indices. These groups do not mix and
can be treated separately. In, say, the even terms, take
the tensor of highest weight and separate its traces. Us-
ing the results for the contractions between 2)+ deriva-
tives, determine successively conditions on the lower
weight tensors, so that they combine with the anomalies
of the trace of the higher tensors to produce super-Weyl-
invariant expressions.

Clearly, the most dificult step in the above procedure
is the calculation of the anomalous contractions. As a re-
gulator we again use heat-kernel, short-time cutoA'

methods, which are guaranteed to be super-
reparametrization invariant. The calculation of the con-
tractions can be performed with the help of the super
heat kernel constructed in Appendix B (restricted to the
very simple case of n=0), and we shall just quote the re-
sults here. Furthermore, some algebraic relations exist
among the diA'erent p, q exponents. This comes about be-
cause the anomalous contractions satisfy the "derivative
property"

U =E )„+.X42)+X 2)+X"2) X 2) Xi'2) X

+s„,..P) X(&n 'X")n X~ n 'X')

+E„,„.i~+X"2)+X 2)+X 2) X( 2) X ) .

It is not hard to extend this list to higher-mass levels.

D. The heterotic string

The general vertex operator for the heterotic string is
of the form

V =Id g d 0(sdetE~ "
) U+ e '"' . (8.25)

Since dO(sdetEM") is a spinor superfield of weight —,',
super-reparametrization and U(l) invariance require that
U+ be a spinor superfield of weight —,', built out of
2)+i'X", 2) 'ix", and %12)~"ill, as well as factors of R
and its covariant derivatives (mixed derivatives on a sin-

gle factor again have been eliminated though equations of
motion). Simple and important examples are the Yang-
Mills vertex,

k"c. . =k ~ . =0pjv p;v

(s„. is not traceless, however). Symmetric traceless c,„.
corresponds to the graviton; antisymmetric c.„. corre-
sponds to the antisymmetric tensor, and the trace part of
E„. is the dilation (it would require an R+ term if con-
tractions had not already been performed).I =2'2

n (n ~xn ~x&=(n, ~+'xx, ~x& V Eijy d2/d0E~ XpqJlqf&e«x (8.26)

&n,xx & =n, x,
(n, 'XX & =n, 'r,
&n, 'XX & =-,'(x, 'r —n, rn, 'r), (8.24)

(2)+ XX & =—,'(2)+"2+2)~ Xg)+ 2+2)+XX)+ X),

(n, 'xx&=,'(n, 'r —zn 'rn r) .

Applying the above rules, we can easily derive the U
functions for the lowest mass levels. Certain symmetriza-
tion properties that automatically arise in this construc-
tion can be usefully represented in terms of Young ta-
bleaux of the representations of the target space-time
Lorentz group corresponding to the particles of the ver-
tex operator. Thus we have the following.

m =0:2

U =e„++X "D X.

+( —1)J'(X)+~XI)+~+'X&, (8.23)

so that it suffices to compute (2)+"XX&, the other cases
being deduced from it using Eq. (8.23).

Though an explicit formula with known coeKcients is
not available for the type-II superstring, in contrast to
the bosonic string, the calculations are su%ciently tract-
able to low order, and we get

and the gravity multiplet vertex,

V=E Jd gdOE2)+X"2) X'e'" (8.27)

Turning now to the general U+ we observe that invari-
ance under U(1) and constant Weyl transformations im-

ply, respectively, that

,'¹&—+—¹&,+ ,'¹R-, +-,'¹q'=—-
,'¹X)++¹X),+—,'¹R,+ ,'¹%—=,' k.k -. ——(8.28)

On the other hand, the vertex must have even worldsheet
fermion number, that is, ¹iIImust be even. It follows
that

I = —k.k =2%, X =0, 1,2, . . . . (8.29)
I

The rules of construction from the principle of super
Weyl invariance are now completely analogous to those
stated for the type-II superstring once we have identified
the potential anomalous contractions. There are new
anomalies coming from the contractions ((2)~)~%%&,
w'hile the anomalous contractions for X" are of the form
((&, ) XX&, ((2)+)~XX&, and ((2) )&X(n+)~X&. The
first two types of terms involving X",however, are essen-
tially given by those of the bosonic string involving 2)
derivatives and those of the type-II superstring involving
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2)+ 2)~=e (2)+ 2) —X)+XX)+2)~) (8.30)

under super Weyl scalings. When computing
((2)+)~XX) we can infer from dimensional analysis and
U(1) covariance that p 2)+ derivatives acting on X will

appear in the answer. Omitting then any reference to 2)
in the type-II superstring calculation reduces the opera-
tors in the heat-kernel regularization. On the other
hand, in an anomaly computation involving only 2)~
derivatives on X, the 2)+ derivatives may be effectively
omitted, and we recover the result from the bosonic
string. Finally, the anomalies in mixed derivatives are
polynomials in R, and its superderivatives. However,
as in the bosonic or type-II superstring, such contrac-
tions are precisely compensated by the curvature terms,
and every curvature term is present only to compensate

2)+ derivatives. fo see this, we regulate the theory by
the heat-kernel, short-time cutoff method. The natural
operator for X in the heterotic string is 2)+XL, which is
not a U(1) scalar, so we use instead —2)+ 2)~, which is a
positive operator transforming as

(& ) '(z, z') = ( +(z)p(z') ), (8.31)

which in superconformal gauge is related to the Aat su-
perspace propagator by

(g))1(zzr')eX(z)I2(+)1(zzr)eX(z)/2

with

(8.32)

'(z, z') =
I

, +08'5'(z —z') . (8.33)
f
z —z'

/

'+s'
The natural heat kernel is

tZS,S-
JY'(z, z')=(z

~

e + '
~

z')e(t),
which will be given by the perturbative expansion

(8.34)

for the anomalous contractions. Consequently, the nor-
mal ordering convention will be adopted in which no
mixed contractions are allowed, and thus no curvature
terms should appear.

We now discuss anomalies of the spinor superfields +
in order to complete our analysis. The basic object is the
propagator

e '"r'%" (z, z')e '*'r =%''(z, z')+ f dt, f d z,%' '(z, z, )W(z, )%' '(z, z')+ .
0

where

(8.35)

/z —z'f'
A '(z, z') = exp4~t 2t

(8' —0),

P'(z) =(e ~ * —1) +2(cl e ~ *')c)a
at Z Z

The contractions can be obtained from

(8.36)

(+c) 4) =c) ~ e '*'r f d w%" (z, w)e ' ' A '(w, z')
Z=Z'

(8.37)

As an example we get

&ex e) = —'n 'r+ —'(n r)'.
z 2 z 3 z (8.38)

It is clear that all other contractions could be derived in
an analogous fashion, albeit by rather lengthy calcula-
tions.

Vertices in the operator language for the heterotic
string may be found in Gross et al. (1986). The above
formulas for the type-II superstring and heterotic strings,
as well as the evaluation of super Weyl anomalies, are in
D'Hoker and Phong (1987b).

E. The covariant fermion emission vertex operator
and space-time sUpersymmetry

1. Covariant fermion emission vertex operator

Two related problems arise in the construction of fer-
mion emission vertex operators, which together point to

I

a solution. The first is to manufacture space-time spinors
out of the worldsheet fermions g" which transform rath-
er as an SO(10) vector. The second is that inserting a fer-
mion emission vertex operator at a point z on the
worldsheet must introduce a branch cut originating at z.
To see this, we recall that in canonical quantization, free
strings propagate along cylinders, and fermions and bo-
sons correspond, respectively, to states in which g" are
periodic g"(cr+m)=Q(cr) (Ramond sector), and states
in which g" are antiperiodic Q( cr +~)= f"(cr)—
(Neveu-Schwarz sector). Thus a fermion emission vertex
must switch boundary conditions in order to preserve
spin statistics. The way to achieve this is to introduce a
cut originating at the insertion that contributes a factor
of —1 when we cross it (see Fig. 23). Now a cut must
originate at one point and end at some other point on the
worldsheet. This means that we should look for opera-
tors S such that correlations of two S'.s with the P"'s will
be defined on the double cover of the worldsheet with
branch points at the S insertions. Such operators can be
obtained by bosonizing the worldsheet fermions. We
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superconformal ghosts are bosons, and e+—' obey Fermi
statistics. A way out is given by Friedan, Shenker, and.

Martinec (1985; Friedan, Martinec, 'and Shenker, 1986),
who introduced fermion fields g' and t), so that

P(z) =B,((z)e' ", y(z) =i)(z)e (8.42)

FIG. 23. Quadratic branch cut introduced by a fernuon emis-
sion vertex.

they can be represented by scalar bosons P',

g+ ——e-a +i rb' (8.39)

shall see that they can also be combined into spinor rep-
resentations of SO(10).

If we group the fields g" into

qa pa+ 'pa+5 qa ya ~ pa+5

are consistent with spin statistics, Spin fields X+&/2 in the
fields of the superconformal ghosts can now be intro-
duced by

~bio. j'z)/2
+ ]/2 —8 (8.43)

Since the P, y have conformal dimensions —,
' and ——,', the

bosonized theory is coupled to a background charge
Q = —2, the minus sign being due to the fact that the
operator product expansion P(z)y(w) is now —1/(z —w)
instead of 1/(z —tv). Similarly the conformal dimension
of e'~ in Eq. (2.184) becomes now —q (q +Q)/2, so that
the conformal dimensions of X+»2 and X,/2 are —', and
——', , respectively. This suggests that the fer~ion emis-

sion vertex is given by

The spin fields S can next be defined by V»2(u, k")=X,zz(u S )e (8.44)
+i/ /2

+a

+i/ /2. . . +i/ /2 (8.40)

(8.41)

for the bosonized theories can be viewed as generating a
Cartan subalgebra of SO(10), with the weights of S
given by a=(+—,', . . . , +—,'). These are precisely the
weights of the spinor representation of SO(10).

Since the g"'s have conformal dimension —,', it follows
from Sec. II.J that the spin fields S+, have dimensions —,',
and hence the operators S have dimension —', . Recall
that a physical vertex operator must have conformal di-
mension 1, so that it may be integrated on the
vyorldsheet. This appearance of the dimension —', instead
of 1 was one of the major difItculties of fermion emission

amplitudes already encountered in dual models, where a
number of cupes involving either projections onto physi-
cal states or a light-cog. e gauge approach were proposed.
A nat, ural resolution In the covariant formalism is in
terms of the superconformal ghosts. Indeed, when a fer-
mion vertex is inserted, it changes the boundary condi-
tions of the worldsheet fermions and consequently the
boundary conditions of the gravitino field X, since 7 cou-
ples to Q. In particular, the Grassmann parameter for
supersymmetry transformations must be double valued
around the insertioris. In terms of the superconformal
ghosts, this means that we must introduce a cut in the
P, y fields as well.

To achieve this, we need, as before, to bosonize the
ghosts. There is an added complication here, since the

Now a key observation is that the integrals of the
currents

(I'")
pg"(g)S (z)S&(tU)-

(g —z)

(I ~ ) ~Ski(z)J" (g)S (tu)- + e ~ ~

To compute tree-level fermion scattering amplitudes for
four or fewer fermions, we note that the amplitudes
decompose into separate functions for the vertex opera-
tors e' ", for the bosonized superghosts, and for the spin
operators. The first two types of correlation functions
are familiar by now, and we can use Eq. (8.45) and ten-
dimensional spinor algebra to arrive at projectively in-
variant expressions consistent with SO(10) transforma-
tion properties. The results reproduce those obtained by
the earlier methods.

In general we also need another fermion emission ver-
tex V, zz with opposite ghost charge. It is natural to
make use of X &/z, which, combined with S, will how-
ever produce an operator of dimension 0. We have then
to introduce g dimension-1 bosonic vertex. The vertex

where u (k) is a space-time spinor. The correct confor-
mal dimension is achieved for k "I „u =k =0, so that the
space-time fermion emitted is massless. (Here I denote
the ten-dimensional gamma matrices. )

It is useful to know the operator product expansions of
the S 's. In ten dimensions, the charge-conjugation ma-
trix C is antisymmetric and interchanges chiralities. Left
and right spinors correspond to an even or odd number
of + —,

' in a. We should have then

—nJ' (r„) ~~
S (z)S~(tc)- s „+

(z —tu)"" (z —u }'"
(I„.) Pq y

( )1/4
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V&&z is obtained by choosing the massless boson emission
vertex

(8.46)

The vert&ces V"
&&2 and V, &z are just two of an infinite

number of versions of the fermion emission vertex, which
are actually related to one another by

I in=[QnRsT~&I —in]F F

[QaRsT, kI'in ] .
(8.47)

2. Space-time supersymmetry

The supersymmetry charge in the covariant formalism
can now be obtained as a contour integral,

Q.=g "'.V.(k=0), (8.48)

where V (k =0)=X»2S is the fermion emission vertex
at zero momentum. From operator product expansions
we can check that Q transforms massless fermion ver-
tices into massless boson vertices and vice versa,

IQ, V (u, k)I = V (P'=ul", k),
[Q, V (g, k)]= V (u =ik "I„g,k) .

In fact, the full supersymmetry algebra

(8.49)

(8.50)

is obtained by taking P" to be the contour integral of the

The operators on the right-hand side are BRST invariant
(as physical vertices must be), but not spurious despite
the fact that they appear as BRST transforms. The
reason is that the irreducible representation of the
current algebra is built out of P, q, Bg, but not of g itself.
These many versions are caused by the necessity of
prescribing an arbitrary Bose sea level for the supercon-
formal ghosts. The Hilbert space of states must include
all represent;ations corresponding to various'choices of
sea levels. The vertex V~ is the BRST-invariant vertex
operator with Bose sea level k. These ubiquitous
"picture-changing" phenomena are explained in detail in
Friedan, Martinec, and Shenker (1986). They are crucial
in the construction of the Q operation of Witten's super-
string field theory (1986b) and, as shown by Verlinde and
Verlinde (1987b), in the gauge-fixed superstring of Sec.
III.P.

Finally, we note that X-fermion emission for X)6 is
already more complicated even at tree level. In fact the
above discussion shows that the worldsheet has to be
viewed as a sphere with N punctures, and such a surface
admits (%—4)/2 supermoduli parameters. Proper treat-
ment of integration over moduli parameters preserits
some of the problems encountered earlier in multiloop
amplitudes.

vector emission vertex at zero momentum: Bx". Power-
ful nonrenormalization theorems can in principle be de-
duced from thjs setup. For example, since vertices for
massless boson' and fermions can be obtained from one
another by a contour integral of the supersymmetry
current [see Eq. (8.49)], boson propagator corrections fol-
low from fermion propagator corrections by deformation
of contours. Thus there will be no mass renormalization
for massless bosons if the fermions are chiral.

It should be noted that this discussion is only local.
For worldsheets of nontrivial topology, the supersym-
metry current develops unphysical poles, which must be
taken into account before any firm conclusion can be
drawn. Furthermore, there may be contributions from
the boundary of moduli space.

Some classical papers on the fermion emission vertex
are those of Schwarz and Wu (1971),Thorn (1971),Corri-
gan and Olive (1972), Brink et al. (1973), and Mandel-
stam (1974a), the last paper being based on path-integral
methods in the light-cone gauge. The covariant fermion
vertex operator was constructed by Friedan, Shenker,
and Martinec (1985; Friedan, Martinec, and Shenker,
1986) and Knizhnik (1985, 1986a, 1986b). That the
ghosts should contribute was suggested by Goddard and
Olive. A derivation of quantum numbers for the vertex
from the Polyakov integral on surfaces with punctures
was proposed by Knizhnik (1986a, 1986b). Explicit cal-
culations of fermion emissions in the covariant formalism
are given in Cohn et al. (1986), Knizhnik (1986a, 1986b),
and Kostelecky, Lechtenfeld, and Samuel (1987). Non-
renormalization theorems are in Martinec (1986).
Picture-changing phenomena were uncovered by
Friedan, Martinec, and Shenker (1986). Their role in
superstring field theory is discussed by Witten (1986b),
and in the gauge-fixed multiloop partition function by
Friedan, Martinec, and Shenker (1986) and Verlinde and
Verlinde (1987b), as we saw earlier in Sec. III.P. Ver-
linde and Verlinde discovered the unphysic+1 poles in the
supersymmetry current and argued that their residues
~ust be total derivatives on moduli space. They also
provided expressions for the correlation functions of the
bosonized superconformal ghosts in terms of the prime
form. Unphysical poles as weH as contributions from the
boundary of moduli space in the two-loop case are treat-
ed by Atick and Sen (1987a, 1987b, 1987c).

IX. CONCLUSION AND OUTLOOK

In this paper we have reviewed some of the most re-
cent developments in string perturbatiog theory. We
shall now give a brief survey of the main objectives
achieved so far, as well as of the questions that remain.
We shall also take the opportunity to mention develop-
ments in other directions and include some references
that have not occurred earlier in the text.

The structure of strings is amazingly rich, and in many
ways quite rigid. Progress in the study of the bosonic
string has been spectacular thanks to the concerted
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efforts of many authors, and we have now a very good
understanding of scattering amplitudes, order by order in
perturbation theory. The fermionic strings, on the other
hand, have revealed themselves to be much more pro-
found and fraught with dangerous subtleties. Their in™
vestigation has forced us to come to grips with some of
the deepest questions in geometry. Nevertheless we have
reached a stage now where the required machinery is in
place, and the proposals we described in Secs. III.K,
III.O, and VII.G point to a consistent formulation of
superstrings. More specifically, with internal loop mo-
menta, we have a way of separating left from right chiral-
ities, which does reproduce the heterotic string from the
chirally split RNS string. This way is also precisely the
one agreeing with holomorphic splitting on supermoduli
space, allowing us to integrate out the odd moduli, and
holomorphic splitting on supermoduli will then reduce to
holomorphic splitting on "moduli, " if "moduli" space is
viewed as the (3h —3)-dimensional space of supersym-
metry period matrices Q. The formulation can then be
argued to lead to modular-invariant amplitudes, even
taking into account the fact that no global section over
moduli space of —', differentials can be chosen to gauge-fix
the superstring. It also ofFers a way out of the apparent
ambiguities of the picture-changing formalism discussed
by Atick, Rabin, and Sen (1987), Moore and Morozov
(1987) and Verlinde (1987). These ambiguities, for exam-
ple, could have led to a nonvanishing cosmological con-
stant at two-loop order if not treated properly.

A more explicit implementation with the required
technology of the above program is the natural next step.
Here we are encouraged by the rapid progress in the un-
derstanding of two-dimensional supergeometry and su-
permoduli space. Difhculties with indefinite metrics have
been resolved (Secs. III.F and III.H), a complex structure
of supermoduli space has been introduced (Secs. III.G
and VII.F), and foundations of superalgebraic geometry
are on the way with the super Abelian differentials and
supersymmetric period matrix (Secs. VII.F and VII.G;
Sonoda, 1987b). Line bundles over super Riemann sur-
faces have been investigated by Giddings and Nelson
(1987). It is perhaps timely to.formulate and solve a
Schottky problem for supersymmetric period matrices.
From the component point of view, we now have at our
disposal the chiral bosonization formulas for ghosts and
superghosts of Verlinde and Verlinde (1987a, 1987b), as
well as a good understanding of Mandelstam diagrams
(Sec. IV.G; Giddings and Wolpert, 1987) and of relations
between their determinants (Sec. V.G). That the present
formulation is an e%cient tool for' practical calculations
is illustrated to one loop in Sec. III.M. All this is
grounds for believing that we shall shortly have explicit
confirmation of consistency and unitarity of superstrings,
together with simple rules for calculating scattering am-
plitudes.

In this paper we have discussed only brieAy the
picture-changing formalism and the necessary %u-Yang
correction terms, and we have not pursued it further.

This is clearly an important issue, since it is intimately
connected with manifest BRST invariance. A detailed
discussion of this topic and of whether supermoduli
space splits over moduli is to be found in Verlinde (1987).
Other options have been suggested by Atick, Moore, and
Sen (1988a, 1988b).

Perhaps after mastering the subtleties of string pertur-
bation theory we may find a mechanism for breaking su-
persymmetry while maintaining a vanishing cosmological
constant. A proposal based on modular forms to one
loop has been presented by Moore (1987).

In a diff'erent direction, the string ground state should
be determined by physics at the Planck scale, and formal-
ly perturbative amplitudes may be used to probe the
higher-energy (limit as the Planck mass tends to zero) be-
havior of string theory. Such investigations have been in-
itiated by Gross and Mende (1987, 1988) and Gross
(1988), who argue that in the T~o limit, contributions
from surfaces with discrete symmetry dominate, and an
infinite number of relations then hold between scattering
amplitudes. This suggests the presence of a huge spon-
taneously broken symmetry.

At the other end, in the low-energy limit (T~ &x ),
string theory should reduce to an effective field theory,
whose equations of motion are given by the requirement
of conformal invariance. Thus a vacuum configuration
corresponds to a conformal field theory. Of particular in-
terest are vacuum configurations in which space-time
splits into four-dimensional Minkowski space-time times
a six-dimensional internal space M6. Vanishing of the
beta functions as well as unbroken %=1 supersymmetry
restricts M6 to be essentially a Calabi-Yau (i.e., Ricci liat
and Kahler) manifold. This was argued by Callan,
Friedan, Martinec, and Perry (1985), Candelas,
Horowitz, Strominger, and Witten (1985), Green,
Schwarz, and West (1985), Sen (1985, 1986a), Grisaru,
Van de Ven, and Zanon (1986), Howe, Papadopoulos,
and Stelle (1986), and Witten (1986a, 1986b). Other con-
formal field theories are provided by orbifolds, intro-
duced by Dixon, Harvey, Vafa, and Witten (1985, 1986),
toroidal compactifications (Narain, 1986; Ginsparg and
Vafa, 1987; Narain and Sarmidi, 1987; Narain, Sarmidi,
and Vafa, 1987; Narain, Sarmidi, and Witten, 1987),
quasicrystalline orbifolds (Harvey, Moore, and Vafa,
1988), and group manifolds (Jain, Shankar, and Wadia,
1985; Gepger and Witten, 1986; Jain, Mandal, and
Wadia, 1987). The moduli space of conformal field
theories and renormalization-group equations are con-
sidered, respectively, in Seiberg (1987) and Banks and
Martinec (1987). Four-dimensional theories from the
d=10 type-II theories with chiral asymmetry are con-
structed by Antoniadis et al. (1986), Bluhm, Dolan, and
Goddard (1987), Dixon, Kaplunovsky, and Vafa (1987),
and Kawai, Lewellen, and Tye (1987).

The large number of candidate vacua will require a
better understanding of nonperturbative effects, for ex-
ample, of stringy instantons. Very early on in string
theory, attempts were made to derive string perturbation
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theory from a string field theory, in the hope that string
field theory might be consistently interpolated off-shell.
Some of the earliest works are those of Mandelstam
(1973a, 1973b), Cremmer and Gervais (1974), and Kaku
and Kikkawa (1974). More recently, superstring fields. in
the light-cone gauge have been formulated by Green and
Schwarz (1983, 1984), Green, Schwarz, and Brink (1983),
and Gross and Periwal (1988), although in a
background-dependent way. Covariant formulations re-
quiring an unphysical length parameter are presented by
Kazama et al. (1986), Hata et al. (1987), and Neveu and
West (1987). String fields based on BRST invariance
have been developed by Friedan (1985), Siegel (1985),
Siegel and Zwiebach (1986), Banks and Peskin (1986),
and Witten (1986a, 1986b). Witten's theory is based on a
remarkable interaction on the worldsheet. Its bosonic
version has been shown to reproduce the correct (open-
string) amplitudes by Giddings (1986), Giddings and
Martinec (1986), Giddings, Martinec, and Witten (1986),
and Thorn (1987). Background-independent formula-
tions for it have been proposed by Horowitz et al. (1986),
as well as closed-string versions by Strominger (1987).
Operator formulations have been worked out by Gross
and Jevicki (1987).

More radical proposals for the study of nonperturba-
tive efFects have been put forth by Friedan and Shenker
(1986, 1987) and by Bowick and Rajeev (1987). Friedan
and Shenker use factorizatioli requirements to lump
moduli spaces of all genera, including surfaces with
nodes, into a universal moduli space. An abstract string
theory corresponds to a holomorphic vector bundle to-
gether with a Hat connection on the universal moduli
space. Nonperturbative effects correspond to a com-
pletion of the universal moduli space, which must then
include some classes of surfaces of infinite genus. This
approach has been extended to the case of the superstring
by Cohn (1988). On the other hand, Bowick and Rajeev
(1987) view conformal invariance as invariance under
DiffS'/S', so that the key requirement becomes Qatness
and trivial holonomy of parallel transport along
DiffS'/S'. Now DiffS'/S' is a Kahler manifold with
nonvanishing Ricci curvature, and an acceptable theory
can be viewed as a vector bundle on this space, whose
curvature cancels that of the tangent bundle. This would
be an analog of the anomaly cancellation between matter
and ghost parts in the Polyakov string. Related ideas
have been developed by Witten (1987).

A natural setup in which Riemann surfaces (more pre-
cisely, with a puncture and a local coordinate system) of
all genera appear on the same footing is provided by
Sato's universal Grassmannian, which has been at the
center of great developments in connection with integr-
able systems. It is similar in many ways to moduli space
and is already known to provide an operator proof of
Bose-Fermi equivalence (Sato, Jimbo, and Miwa, 1977,
1978, 1979; Date et a/. 1983; Segal and Wilson, 1985).
Possibilities of string theory formulations in terms of
Grassmannians are investigated by Ishibashi, Matsuo,

and Ooguri (1986), Alvarez-Gaume, Gomez, and Reina
(1987), Vafa (1987), and Witten (1988a, 1988b).
Grassmannians and the homology of the mapping class
group are studied by Arbarello et al. (1987). Of course,
for the fermionic string we would need. an analog of this
theory based on super Riemann surfaces.

Finally, several authors have also suggested consider-
ing string theories over number fields different from the
complex. This may help to solve some theories, as well
as to uncover any arithmetic structure that may make
the theory even more rigid.
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APPENDIX A: CONVENTIONS

1. Differential geometry

We use the following conventions for covariant deriva-
tives and connections:

(Al)

Generalizations to tensors of arbitrary rank may be de-
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lR mnk

~~mn

Bx Bx
+ ~mn ~kp ~mk ~np

duced by applying covariant derivatives to tensor prod-
ucts and using Leibnitz's rule.

The Riemann curvature tensor is given by

the sphere, plane, and upper half plane, respectively:

2 4dz dz

(1+ lz/ )

ds =2dz dz, R =0,
dzdz, R = —1

(z —z)
[V,V„]Vk ———R k „VI .

One has the symmetry properties

(A3) The sphere has area 4m. Furthermore, the covariant
derivatives in locally conformally Aat coordinates are

R lmnk R nklm

lmnk mlkn R mink R lmkn

Rlmnk+Rlkmn +Rlnkm

In Riemannian geometry, the connection I P „ is sym-
metric (i.e., has zero torsion) and the metric is covariant-
ly constant,

V, V„.. . ,= (0, n —I;, ) V„.. . , , (A9)

2. Spinors, Dirac matrices

encountered in Eqs. (2.41)—(2.44), with r;, =a, lng . We
use the notation for Rat metric g =g =v'g =1:

d z&g =dx dy =i dz hdz . (A10)

Hence the Levi-Civita. connection is given by

Fmn pg (~ gmnq + 6ngmq 6qgmn )

One also defines the Ricci curvature tensor

l
Rmn =R min

(A5)

U(1) vector indices are denoted by a, b, . . . and take
on the values z and z; spinor indices are denoted by
a, P, . . . and take values + and —.We use the same
notations z and z for conformally Hat coordinates and
U(1) indices because in conforrnally Sat coordinate sys-
tems they may be identified, so no confusion should arise.
Dirac matrices satisfy

and the (Gaussian) scalar curvature l y', y'1 = —E'"y& . (A 1 1)

(A6)

6R mnk
——Vk 5I mn

—Vn 5I mk,

and in the Gaussian curvature,

5R = ——,'Rg "5g „——,'V~V~(g "5g „)
+ —,'V V"6g „, (A8)

which is Eq. (2.34). It is also useful to record the changes
in the covariant derivatives,

A change in the Levi-Civita connection is a tensor, given
by

5rp „=-,'g&q(V 5g„,+ V'„5g, —V, 5g „),
generating a change in the Riemann curvature,

We take the convenient representation of this Clifford
algebra,

(y')++ =(y') = —(y')+ =(y') + =1,
(y') p

——0, a&f3,
(A12)

(y~)+ =(y~) + =(y~)++ = —(y~) =i,
(yg)++ =0 .

It is also useful to have the following formulas at hand:

Contractions without indices written explicitly are under-
stood as

and the following conventions for the antisymmetric ten-
sor:

(A13)

5V'= 5o V'+ ,'5g "V', +—V, (5g"),——
5V, = na, 5~ ,'5g „V'—+ V'(5—g„—)—

2

with 5g"= —(g") 5g, ,
General two-dimensional coordinates are denoted by
and g or g=(1/&2)(g'+if ). The metric is then

ds =g „dg dg". Locally conformally Aat coordinates
are denoted by z (or w, etc. ) and the metric is then
ds =2g, dz dz. With these conventions, one has the fol-

lowing metrics and curvatures, g R = —B,B lng, , for

CO t/J = CO P = —co g = co lP+ + co

It is useful to have

o.o~=s.~oo .

3. Covariant derivatives on U(1) tensors

For Weyl spinors of U(1) weight +—,
' we have

D, Q+ =e, 0 +—a)
2

(A14)
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On a Dirac spinor we have

D.P.= . P P.+ ,'(1'—). %pl
/

On a general tensor-spinor of weight n, we have

D, f(„) e,——((3 Q(„)+intro f(„)) .

Here the spin connection is given by

where

a'„-'=e—' a+4na, o-e —' a
Z

(82)

where 6 is the Oat-space Laplacian 5= —20,0 . Com-

bining Eqs. (81) and (82) and the scaling of 5 (z,z') un-
der constant Weyl transformations o.0, we find that

z=z' for short times t. As the issues involved are ex-
clusively local in z, we may locally perform a reparame-
trization rendering the metric conformal to the Euclide-
an metric: g „(z)=e "5 „. From Eqs. (2.42) —(2.44)
and (2.47), we readily find the o dependence of 6(„

c~q=e I'ebqc'b .a K„'(z,z') =e 'K„'(z,z') with t =e 't . (83)

The Gaussian curvature is expressed in terms of the spin
connection

Thus, without loss of generality, we may assume that
cr =0 at the point of interest z'. We now rewrite (Bl) as

R =c 0 co„

which is Eq. (3.37).

4. Dirac singularity

with

+5 —V„K„'(z,z') =5'(z, z')5(t)
at

V„=(1—e )b 4nd, a e —()

(84)

By definition

f d w 5(z —w )f(w )=f(z) .

We shall also use the covariant Dirac delta function

5(z, w)= —5(z —w) .1

Vg
Notice the minus sign versus the comma. It may be
viewed as the limit in the sense of distributions of certain
functions as c.—+0,

1 2

2
—+5(z —w )2n. (

~

z —w
~

'+e')'

The Bat-space heat kernel satisfies the equation

+6 K'(z, z')=5'(z, z')5(t)
Bt

with explicit solution

K'(z z') = e '' ' '0(&)
4~t

With the Aat-space heat kernel, we can derive an integral
equation for K„',

K„'=K'+ f dt'K' ' V„K„',

and

1 1 2exp —
i
z —w

i
~5(z —w) .

4m' 2c.

where pairwise integrations over z coordinates are under-
stood, and which is solved by the following formal
infinite series:

K„'=K'+ f dt'K' ' V„K'
In particular, we have

=2vr5(z —w) .
1

z —Q)

Notice the unusual factor of 2 in this convention.

+ f dr' f dr"K' ' V„K' 'V„K' +—

1. The diagonal of the heat kernel

(86)

APPENDIX B: SHORT-TIME EXPANSIONS
OF THE HEAT KERNEL

The heat kernel for the operator 6', ' satisfies the
equation

+iI((„) K„'(z,z') =5 (z, z')5(t)
at (81)

with the solution

,~( —)

K„' =8(t )e

We wish to calculate elements on or close to the diagonal

On the diagonal z=z', K' is of order 1/t. V„must in-
volve at least one derivative on o., and two-dimensional
rotational invariance requires equal numbers of z and z
derivatives, so that Eq. (86) is easily seen to be an expan-
sion in increasing powers of t, starting with 1/t. Thus, in
the short-time limit, we shall be interested in contribu-
tions with 0 derivatives coming from the first term (of or-
der 1/t) and with one z and one z derivative coming from
the second term (of order t ). Actually, the terms pro-
portional to B,o B,o cancel between the second and third
terms, as can be seen by a simple calculation not repro-
duced here. It remains to obtain the terms in B,B,o.,
which arise solely from the second. term in (86):
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K„'(z,z) = + f dt' f d z'K' '(z, z') V„(z')
4mt 0

&&
K" (z', z )+0(t),

K'(zz)= + R,1 1 —3n
4mt 12m

(I37) whence Eq. (2.68).

(810)

where the contribution of V„proportional to B,B o. is

denoted by V„and is given by

V„(z')=2
i

z' —z
i

(B,B,o. )h, .

2. The anomaly in the ghost number current

The ghost number current j,=c'b„ is naively analytic,
but suffers an anomaly, which we shall now calculate.
Observe that the ghost propagator

4n—(z ' —z )(B,B,o )8, (88) G(z, w ) = (c'b„} (811)

It is straightforward to evaluate the necessary z integrals:

f d'z'K' '(z, z')
i

z' —z
~

'L, K'(z', z)

is Weyl invariant off the diagonal. The regularized ghost
number current may be defined in a reparametrization-
invariant way with the help of the heat kernel and a
short-time cutoff:

, (t —t')(2t' —t)
2nt (j,}= f d w&g (w)G(z, w)Kz(w, z), (812)

Putting all together, one finds

K„'(z,z) = + b, o. ,
1 1 —3n

4mt 12m.
(89)

and taking into account the additional constant Weyl re-
scalings as given in Eq. (83) one finds with the help of Eq.
(2.31) that

where Kz is the heat kernel defined above. The anomaly
in V j, is a local scalar function of dimension 2, depen-
dent only on the metric and its derivatives. . Thus it must
be proportional to the curvature. The coeScient may be
gotten by calculating the term proportional to B,o. is

(j, } in the limit where E —+0, and then taking the 8
derivative. To calculate (j,}we use again the expansion
(86), but this time away from the diagonal. As one is in-
terested in a contribution linear in o., one need only re-
tain the first two terms in Eq. (86), and the relevant part
of Vz of Eq. (84) is V2..

( ~ } f d2 2a(w) 1

Z —W
K'(w, z)+ f dt' f d z'e ' 'K' '(w, z')Vz(z')K'(z', z)

0
(813)

where

V (z') =2(B,o )(z' —z )b, ' —4n B,cr8, .

I

z =0. Fixing the overall scale so that o(0)=0, we may
expand the potential 8'about 0 to yield

To leading order in t, one finds after some calculation

(814)

oo
1 (pm' k —I —2cr )(

0 0 m ( m k )

m —k —mP;Z Z

z=0

(817)

3. Anomalous contractions

1'(z, z')= — ln
~

z —z' ~, z&z' .
4m

The regularized propagator instead is given by

b, , '(z, z') = fd w b. '(z, w )Ko(w, z'),

(815)

(816)

where Ko may be thought of as given by the expansion
(86), but this time evaluated at distinct points w and z .
Contractions will be performed at some fixed point, say

Since Weyl anomalies are purely local, we may work in
local isothermal coordinates. The propagator may be
regularized at short distances by convolution with the
heat kernel, evaluated after a short time c. The propaga-
tor at distinct points is Weyl invariant and given by

(x(0)B x(0) }=4m f d'z K,'(O, z; E)B,.b,
—'(z, z')

= f d z Ko(O, z;e)(m —I)!z (818)

If (x(0)B x(0) }~ denotes the contribution to the above
expression of the terms in (86) with p interaction factors
8;, . . . , W, , each given by a formula such as (817)
with exponents k; and m;, we must have from invariance
under z ~e' z and z; ~e' z;,

P

g (2m; —k;)=m .

It is now simple algebra to substitute this into Eq. (86)
and evaluate perturbatively. Note that we need only deal
with derivatives of the propagator, which simplifies
matters. Thus we have
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On the other hand, simple power counting shows that

P

g k, (m,

otherwise the limit as v~0 will vanish. Thus k; =I; f&."
all i, and gf im, =m. This means that only a deriva-
tives on o. will appear in the final answer, and no B.
Furthermore, the interaction W, =(1—e )b,, applied

to E: ' '+'(z;, z,. +, ) produces a term

with solution

—t( „)'A'„= 0(t)e

We are specially interested in calculating elements on the
diagonal: z=z', 0=0' for short times t. This problem
is entirely local, so we may perform a super-
reparametrization and local U(1) transformation to
render the geometry superconformally Aat. From Eq.
(3.101) we find the super Weyl dependence of (CI„),

(e —1) K '(z;, z, +, ),
77

~—v ~n —1/2~n v
(n —1)X~ n —1/2 —2nX~ n nX-rr (C2)

where one sets ~; = t; —t; +1 after differentiation has been
performed. Substituting in (B6) and carrying out the
Gaussian integrals yields Eq. (8.11).

APPE.NDIX C: THE DIAGONAL
OF THE SUPER HEAT KERNEL

Since the quantities with hats are taken with respect to
tlat supergeometry, we may replace 2) +——a+, so that

o-v= '"-'"a [ -"'(a v+ a xv)]
=e '(a, -a v+na, a xv na —xa v

—na xa v —n'a xa xv)

We shall now compute the heat kernel for the super-
space Laplacian (U„),satisfying the equation

+( „)' %"„(z,z', 0, 0') =o2(z, z')o'(0, 0')6(t)
Bt

(Cl)

and its square is a very lengthy expression which can be
worked out in a straightforward manner. Actually, we
shall be interested only in the contr&bution that has at
most two superderivatives on X fields in total, the other
contributions tending to 0 at t~0. The two derivatives,
moreover, must be one 8+ and one 8 in order to get a
nonzero answer. With this restriction, we get

( „)
~ „„,V=e [a,a a, a V —na Xa, a a, V—(2n —1)a a, Xa,a V+a, Xa,a' V

—n'a Xa Xa„a V —(n —1)a Xa a V+n(n —1)a Xa Xa a V

—n(n+1)a Xa Xa a, V —(n' —1)a,Xa Xa a V] . (C3)

The contributions from the terms quadratic in X are easi-
ly seen to vanish in computing the kernel at coincident
points, so that we are effectively left with

( -)'v=e-"[ —a', a' v+a xa a' v+a, xa, a' v

+(2n —1)a,a Xa a V] . (C4)

As in the bosonic case, we may omit the scalings by con-
stant X and easily restore them at the end. Thus, without
loss of generality, we may assume that 2 =0 at the point
of interest (z', 0'). Using the fact that —a+a = —,'b. ,
where the Aat-space Laplacian is given by 6= —2B,B,
we rewrite the equation defining the heat kernel as

+6 V„%"„(z,z'; 0, 9') =5'(z, z')5'(—0, 0')Alt) .
Bt

(C5)

—(2n —1)a a Xa a ].

The part V„relevant to the diagonal of %"„ in V„ is
given by

V =(1—e )6—e [a Xa a —a Xa a

The Oat-space heat kernel satisfies

a +g %"(z,z', 0, 0') =5'(z, z')7i'(0, 0')5(t),

which is solved by

%'(z,z'; 0, 9') =K'(z, z')5 (0, 0')

where the usual Aat-space heat kernel K' is given by Eq.
(B5). The major distinction from the bosonic case is that
A' vanishes on the diagonal because 5 (0,0)=0, which
implies that there is no term in t ' in the expansion of
%"„ in terms of small t. In analogy with Eqs. (B6) and
(B7) we readily find that the relevant contributions are

A'„(z,z;0, 0)=f dt' f d z'd 0'%" '(z, z';0, 0')
0

X V„(z',0'%" (z', z; 0', 0)
+0(t) .

It is convenient first to work out the 0' integral:

f d 0'7i (9,0')V„(z', 0')7i (9', 0)=V„(z',0')7i (9', 0)
~

s,

= —(2n —1)a a X
(C7)

(C6) so that
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%'„(z,z; 0, 0)= —(2n —1)(3+() X

&( f dt' f d z'K' '(z, z')K'(z', z)
0

Bar
2m'

(CS)

Restoring the factor of constant X scalings and using Eq.
(3.20) for R+, we find

W„'(z,z;0, 0)= i — R+ +O(t) .. 2n —1

4m
(C9)

Ap analogous calculation for + will give a coefficient
2n + 1 in front of R+ instead of 2n —1.

APPENDIX D: RIEMANN VANISHING
ND ABEL THEOREMS

In this appendix we shall present some of the methods
of the theory of Riemann surfaces, and in particular pro-
vide proofs for some of the properties of the period ma-
triz and theta functions used in the text. The key tool is
Green's theorem on a cut Riemann surface. Recall that
we cpn choose a homology basis satisfying the intersec-
tion pairings (3.5), and that representatives of the cycles
AI,BI, I=1, . . . , h in the basis may be chosen as in Fig.

g(& ) —g(&+ )= f„~ .
1

(D 1)

We conclude these preliminaries by observing that a
holomorphic differential ~ is autom. atically closed as a 1-
form, i.e., den must be 0.

It is now easy to derive Riemann's bilinear relations.
Let coJ, coK be two elements of the homology basis, write
mJ ——dgJ on the cut Riemann surface, and apply Green's
theorem. The result is

10. It is not diNcult to see that the surface M can then
be cut along these cycles in a 4h polygonal region (see
Fig. 11).

Here we have labeled by + and —the oriented edges
of each cycle, and the oriented boundary of the cut
Riemann surface M,„, is

BM,„,= —g A J+ —QBJ+ +g A J ++BJ
The advantage of working with a cut surface is that any
holomorphic differential m can be integrated, cu=dg,
where g is a holomorphic function on I,„, with, howev-
er, different values on the +,—edges of each cycle. If
I'+ and I' are the corresponding points on the +,—
edges of, say, the cycle B, then we may join them by the
dotted path as in Fig. 22. Since this path can be de-
formed to 3 1, we obtain the important identity

h

o= f~J ~~K= fd(gJ~K)= g f . fgJ~K+ f—B~+ U BI Al+U A

O'AJ~J PBJ~K PBJ~J 0 Al~K +JK +KJ (D2)

showing that 0 is indeed symmetric. Next let co=+J,cJcoJ by any holomorphic differential, which we again write as
co =dg. The same arguments yield

0 ( M A co= — geo = geo+ ghee.
1 — 1

—BI+ U BI

h

fA mf B m —f B mfA m=1m g QJKcJcK
I=1 1&J,K&h

(D3)

n h

df If = g co, + g cJcoJ .
i =1 J=1

(D4)

Here co, are the normalized meromorphic differentialsi' i

introduced in Sec. VI.F, and cJ are some complex scalar
coefficients. Since the integral of df If over any closed
cycle must be a multiple of 2~i, we deduce that

and the second Riemann bilinear relation is established.
We now provide a proof of Abel's theorem characteriz-

ing the divjsors of meromorphic functions as the kernel
of Abel's map. Let f be a meromorphic function on M,
and let z1„.,z&,m1, . . . , mk be its zeros and poles. Then
df If is an Abelian differential of the third kind with
simple poles and residues +1 at these points, and thus
can be expressed as

2lrinK = /A df If =cK,
(D5)

Pl Z. h

277lmK = fB df If =27rl g f Ci)K+ g cJQJK
j=1 ~ J=1

for same integers nK and mK. This just means that
I(g",z —g". ,w. ) belongs to the lattice Z"+QZ . The
converse has already been established via theta-function
formulas, but we can also obtain it easily at this point by
reversing the above arguments. Indeed if I( g»z

&w~)—:0 then Eq. (D5) defines integers (nK, mK)
out of which a di6'erential ~ can be constructed as in Eq.
(D4) with periods multiples of 2rri. In particular,
f(z)=exp( I; co) is well defined on M and has the

desired zeros and poles,
Finally we come to the zeros of the theta functions

B(g,fl). Set
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(D7)

f(z)=8 f p)+gQ (D6)

If f does not vanish identically as a function of z, df /f
will be holomorphic away from the zeros of f, and hence
we may apply Green's theorem to the cut Riemann sur-
face with tiny disks S, around the zeros off removed:

0= f d(df /f )
cut

h

y—f, df/f+ g f df/f

+f df/f .—BJ+ UBJ

The last term on the right-hand side is 0, since f is in-
variant under A periods. Under the Bz period df/f
changes by —21ricox .Since the integrals over BS; just
produce 21Ti (g of zeros of f), it follows that f has exact-
ly h zeros.

To establish Eq. (6.37) we again use the cut Riemann
surface with base point I' (see Fig. 11) to write the Abeli-
an diff'erentials co+ as co& ——de. The jumps of gz across

and BI are then —QxL and 5xL, respectively.
Green's theorem implies

o= f d(gxdf/f)
h h

Xf„—gxdf/f+ X f, . g~df/f+ X f, g~df/f
I ( —BL )UBI. I ) ( —AI ~U AL

h h

= —21Tigg(z;)+ g &xL f df/f QQx—L f df/f++21Ti f gxcol+21TiQgI f co~
L=l L L=1 L L L

P= —2Tll g g(z; )+ —1TEQxx' —21Tl co~ —21Tlgx +21Tl f

glycol.

zo A~
(Dg)

up to lattice points on Z"+QZ". Here I' is the common
point to all the basis cycles. Taking I'=z0, which is no
loss of information, we recognize this relation as the
desired relation, with the right definition of 6 as in Eq.
(6.37).

It is now easy to deduce the zero set of 6(g, Q) itself if
we assume the characterization of those g for which f
vanishes identically to be of the form (=I(w, +
+wl, ) —b„where w„. . . , wi, is the set of poles of a non-
constant meromorphic function g. In fact, if g falls
within this case, we may arrange for g to vanish at z0. By
Abel's theorem I(zeros of g )—:I(w i + +wh ). Substi-
tuting in the formula for g and noting that g must have
zeros, one of which is z(), gives /=I(z, + . +Zi, , ) —b.
When z does not fall in this case, the first part of
Riemann's vanishing theorem expresses g as
I(z, + . . +zh) —5, and again zp must be among these
points.

APPENDIX E: THETA FUNCTIONS FOR THE TORUS

Ordinary theta functions, together with their proper-
ties, will be listed here. All four theta functions can be
expressed in terms of a single one as translations thereof
by a half-period:

where 8 may be defined through

Qo

i nn + 2wniz (E2)

This series is absolutely convergent for Imr & 0, and
0(Z, T) is holomorphic in z. Under shifts by the periods,
we have

8,(, (z+ 1,T) ='( —I )'P,b(Z, T),

1'),(, (z+T, T)=( —) e "" ""8,(, (z, T),
(E3)

whereas shifts under half-periods produce

8,(, (z+ —,', T) =( ) 8,(b+, )(z, T),

B,b(z+ —,'T, T) =( —i)"e ' "p(n+b)b(z, T),

where addition of a and b is understood modulo 2. Their
next fundamental property is their behavior under modu-
lar transformations:

Bpp(z 1 ) =83(z T)=4 (Z, 1 )

Dpi(z, T)=84(z T)=8(z+ 2), T)

B,p(Z, T)=82(Z, T)=e ' ~ + "8(z+—,),T),
(El)

B,b(z, T+1)=e "~ 8,(b+, ))( , z)T,

'r 'T

(E5)

8„(Z,T)=8,(Z, T)=e ' + "1') z+ —,'+ —,T There also exist famous infinite product representations
for these functions:
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Bob(z, r)= Q (1—e '"') 1 —exp 2mi n r+z-
n=1 2

b ni 7/4[ ivrz+ ( )b —ivrz]

1 —b
1 —exp 2~i n~ —z—

2
(E6)

& + (1—e ) 1 —exp 2tri nr+z-2771n 1 1 —b

n=1 2
1 —b. 1 —exp 2+i n~ —z—

2

Let us also mention an example of a Riemann identity:

~00(x )~01(y)~10(u)~»(U) —~00(y)~01(x)~10(U)~11(u) ~00(u)~01( p)~10(x)~11(y)

+800( U)4 p1( u )191p(y)611(X) =2600(x 1 )601(y 1 )8,0( u, )8» ( U, ), (E7)

with
I

x, = —,'(x+y+u+U), y, = —,(x+y —u —U),
I

u, = —,'(x —y+u —U), U, = —,'(x —y —u+U) .

t

~ ~

or more generally, iff is the Fourier transform of f,
f(n)= f dx e '""f(x),

It may be reexpressed as

g ( —1)'+ &,b(x)&,b(y)&,b(u)&.b(U)
a, b

g f(2~n)= g f(n) .
nEZ n&Z

2~11(X1)~11(y1 )~11(u1 )~11(U1 ) ' (E7 ) REFERENCES

Here we have suppressed the common ~ dependence. In
particular, upon setting y =u =v =0 one gets

811(X )800( 0 )801(0 )810(0 )

=2811( 1x )6'oo( 1X )6'01 ( 1X )810(—'x )

For a list of Riemann identities, see Mumford (1983),
Lecture I, pp. 16—23.

Also of importance are the "theta constants, "obtained
by setting z=0 in the above. As modular forms, they
have profound significance in number theory. Especially
well known is

8', 1(o,r) = —2mri(r)

where the Dedekind eta function is given by

Yl( )=re i'm/12 + ( 1 e2minT)

n=1
(E10)

Under a modular transformation, g(r) transforms ac-
cording to the Jacobi rule with c. = 1,

=s(cz+d )' ri(r) .

In addition one has the Jacobi relations

8'»(o, r) = —m800(o, r)801(0 r)810(0,r),
800(0 r)=8'01(0 r)+810(0 r)

e —A,2 lT n

2%A,

—n /2A,e

We take the opportunity to recall the Poisson resum-
mation formula,
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