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Experimental and theoretical daty-for dielectric functions, x-ray absorption coeScients, and generalized
oscillator strengths needed for a description of the energy-loss spectrum of fast charged particles in solid
silicon are given. Theories used to calculate spectra of total energy loss {"straggling spectra") are de-
scribed. The convolution method is used to calculate straggling functions for thin silicon absorbers. They
are compared with those obtained from other theories (Landau). For relativistic particles (y ~ 100), the
Vavilov-Shulek theories give incorrect functions for absorbers of thicknesses t & 1 mm. The conversion of
energy-loss spectra into ionization spectra is discussed, and the latter are compared with experimental
functions. Good agreement is found between calculated and observed functions for electrons, mesons,
protons, and their antiparticles and for a particles. From this agreement, the error (lo") of the theoretical
values of the most probable energy loss 6 and the full width at half maximum, w, is estimated to be less

than +1%.
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LIST OF SYMBOLS AND CONSTANTS

ao
8
C(P)
C

d T/dt
d), d2

+M

e
F(E,K)
f (E,O)

Numerical values actually used are given for silicon.
They are not necessarily the best reference values.

atomic mass of target atom, 28.086
A (E) integral over generalized oscillator strength,

Eq. (2.1 1)
Bohr radius, O.OS29177 nrn
Bethe's stopping number (also see I.)

shell correction
speed of light
stopping power
coefticients used in the asymptotic cross
section, Eq. (3.4)
energy loss of incident particle in a single
collision
Fermi energy, 12.46 eV
maximum energy loss
plasmon energy for all electrons, 31.048 eV
plasmon energy for M-shell electrons, 16.7
eV
electron charge
matrix element for longitudinal excitations
dipole oscillator strength
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f (E,K)
f(&)
fr (&)
G(E,K)

M
M'
M
Pl

N

N,

P (n)

'Ry
I"0

Z
Zeff
z

generalized oscillator strength
energy-loss straggling function
Landau straggling function
matrix element for transverse excitations
logarithmic average excitation energy, 174
eV
logarithmic average excitation energy,
weighted by E, 2480 eV
imaginary part of a complex function
ionization=number of ion pairs produced
change in momentum of incident particle
maximum value of K
minimum value of K
coeScient of extinction, also constant of
Rutherford cross section, k =2.55)&10 ' z
eV/atom
stopping number in Lindhard nomenclature
(see B)
mass of incident particle, electron:
0.511004 MeV; pion: 139.578 MeV; pro-
ton: 938.256 MeV; alpha: 3727.328 MeV
moments of cross section o (E)
moments of Rutherford cross section p(E)
vth moment of collision spectrum
rest mass of electron, rnc =0.511004 MeV,
also average number of collisions m = (n )
number of particles
Avogadro's number, 6.0222&&10 /mole
number of atoms per unit volume,
4.9938~ 10 cm
index of refraction, also number of col-
lisions of a particle in passing absorber
Poisson distribution function
energy of an electron with momentum K
Rydberg, 13.6058 eV
classical electron radius, 2.817939&10
cm
kinetic energy of incident particle
absorber thickness
speed of the incident particle
Bohr speed, c /137
energy per ion pair, 3.68 eV for electrons
full width at half maximum of a straggling
function
full width at half maximum of an ioniza-
tion function
full width at half maximum of a Landau
function
full width at half maximum of a Shulek
function
full width at half maximum of experimental
straggling function
full width at half maximum of experimental
noise function
atomic number of target atom, 14
eff'ective nuclear charge
charge number of incident particle
U/C

~M
&(p)
5
5(E,K)
52

E(E,K)
0

p(E)
$(J)
P
p(E)
p„(E)

o(E)

o.„(E)

g(E, K)
r(E, K)

Euler constant, 0.577 215
(1—P ) '~, 'also width of free-electron
plasmon function, =3.5 eV
total energy loss (sum over all E)
total energy deposition in absorber
mean total energy loss
most probable total energy loss
experimental value of most probable energy
deposition
theoretical value of most probable energy
deposition
largest total energy loss under consideration
density effect function
a small number
Kronecker delta
Mz —M2, "resonance" correction term for
Shulek f (6)
complex dielectric constant of material
binding energy of electrons in atom
Vavilov parameter, g/EM
Landau energy-loss variable
x-ray attenuation coefficient
experimental ionization spectrum
density of absorber, 2.329 g/cm
Rutherford collision cross section
relativistic Rutherford collision cross sec-
tion
standard deviation of a Gaussian
standard deviation of noise contribution
total collision cross section
collision cross section as function of energy
loss E
collision cross section for longitudinal exci-
tations
collision cross section for transverse excita-
tions
collision cross section for large K
Landau parameter
longitudinal excitation cross section
transverse excitation cross section
frequency of optical radiation

I. INTRODUCTION

Thin silicon detectors are used in nuclear and particle
physics for the observation of the transit of charged par-
ticles. The ionization J (i.e., the number of electron-hole
pairs) produced in the detector is recorded for each parti-
cle passing through it. It is related to the total energy
loss 6 of the particle. Both 6 and J are stochastic quan-
tities. The probability density functions f (b ) and P(J)
are usually called straggling functions. They may be
characterized schematically by the value 6 of the most
probable energy loss and the full width at half maximum
ur. Energy-loss straggling functions will be derived here,
and their relation to the observed ionization straggling
functions will be described. In particular, absolute values
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of 8', the energy needed to produce. an electron-hole pair,
will be determined. Frequently, it is desired to identify
the passing charged particles from the observed functions
(Bichsel, 1970b; Talman, 1979; Allison and Cobb, 1980).
Therefore it is important to have a complete and accu-
rate theory for them.

Functions for fast particles (P=U/c ~0.25, i.e., 20-
keV electrons, 5-MeV pions, and 30-MeV protons) and
detectors with thicknesses less than 3 mm will be ob-
tained, with the further restriction that the thickness t of
the detector be small compared to the range of the in-
cident particles (x &0.6). For electrons, r must be so
small that multiple-scattering corrections are unimpor-
tant (Berger et al , 196.9).' It is assumed that the silicon
crystal is oriented such that channeling of the particles
will not occur (Eisen et al. , 1972; Esbensen et al. , 1978).
The only interactions considered are Coulomb interac-
tions with electrons and collective modes of excitation in
the material. The influence of bremsstrahlung will be dis-
cussed in Appendix I, though. Nuclear interactions are
disregarded; they will be infrequent and will change the
ionization spectrum very little. Angular deAections of
the particles will also change P(J) very little and there-
fore will not be considered (Scott, 1963; Bichsel, 1972;
Bichsel et al. , 1982). Related problems were discussed
by Ahlen (1980), who dealt with background material in
more detail than is given here.

A fast charged particle in traversing matter loses ener-

gy in discrete amounts E in independent, stochastic sin-
gle collisions. For very thin absorbers, these energy
losses have been observed in electron-energy-loss spec-
troscopy (e.g. , Perez et al. , 1977, Hinz and Raether,
1979; Chen et al. , 1980). In these experiments, the angu-
lar deflection, related to the change in momentum K of
the incident particle, is also observed. The probability
for the occurrence of these collisions is described by the
doubly difFerential cross section cr(E,K). In thicker ab-
sorbers, a particle will experience i (i =0, 1,2, 3, . . . ) col-
lisions, and it suffers a total energy loss

For a theory of the straggling functions, it is necessary to
consider the probability for the occurrence of collisions
and the probability for a particular energy loss E. The
latter is described by the singly difI'erential cross section
o(E), Eqs. (2.6) a.nd (3.8); the former is related by the
Poisson distribution, Eq. (6.1), to the total collision cross
section Mo, Eq. (4.1).

In order to get correct straggling functions, it is thus
necessary to determine o(E) accurately. The informa-
tion needed for this is discussed in Secs. II—IV. Theories

'The differences between measured and calculated spectra are
at least partly explained by the ratio r~(e) of Table V.

In some papers (Ferrell, 1956; Ashley, 1982) the expression
"inverse mean free path" is used to designate the collision cross
section.

of energy-loss straggling functions are discussed in Secs.
VI and VII, results are given in Sec. VIII, the relation of
energy loss and ionization is discussed in Sec. IX, and
comparisons of theory and experiments are made in Sec.
X.

II. INTERACTIONS OF CHARGED PARTICI ES
WITH MATTER

In solid silicon, energy losses to individual electrons
(producing delta rays) and to collective excitations
("plasmons") are the major interactions to be considered
for present purposes. The basic information about the in-
teractions is usually given by the cross-section o(E,K).
di6'erential in energy loss E and momentum transfer K.
The integral of o (E,E) over E is then used to obtain the
cross-section differential in energy loss, o (E). It is con-
venient to discuss the cross sections separately for
diferent atomic shells, for longitudinal and transverse ex-
citations, and for small and large momentum transfers
and energy losses. Their basic properties and the data
needed to calculate them are discussed in this section.
The theory used to calculate them in the Born approxi-
mation goes back to Bethe (1930). Fano (1963) reviewed
it in detail, and his formulation is adopted here.

The Rutherford cross section was used in several
derivations of straggling functions and is therefore given
first. It represents a good approximation for large energy
losses (Fig. 8, below).

A. Rutherford crass section

The nonrelativistic Rutherford cross section p(E) for
an energy loss E in the collision of a charged particle
having charge ze, rest mass M, and speed U, with a free
electron having charge —e and rest mass m, in the labo-
ratory system is given by (Evans, 1967; Bichsel, 1968;
Inokuti, 1971; Inokuti et al. , 1978)

with

2rrz e k2 4

mu E 13E

2 4
k =.

2
=27Tpomc z

2Hz e

mc

=2.5496&(10 ' z eV cm

(2.1)

(2.2)

B. Atomic collision cross sections

For single atoms, Fano (1963) derived the following
relativistic equation for o (E,K):

where ro=e /mc is the classical electron radius, mc
the electron rest mass, P=U/c, and c the speed of light
(values for the constants are given in the List of Sym-
bols). Since the electron receives all the energy E lost by
the particle, the momentum transfer K is determined by
E: E =K~/2m. p(E) does not depend on M. The rela-
tivistic equation is given in Eq. (3.5).
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and

~
F(E,K)

~

(1+Q/2mc )
(2.4)

~
P, G(E, K)

~r(E, K)=
[1+Q/2mc —E /(2mc Q)]

(2.S)

with F(E,K ) and G (E,K) the matrix elements for longi-
tudinal and transverse excitations, and P, the component
of P=v/c perpendicular to K. The essential dependence
on the speed and the charge of the incident particle thus
appears only in p(Q), while the properties of the material
appear in g(E, K) and r(E, K). The sum of the two is
called the "inelastic form factor. " See Fano (1963) for
further details. The dependence on v is not indicated ex-
plicitly in the symbol cr(E, K) For. collisions with small
momentum transfer in the solid, the complex dielectric
function c,(co,K) will be used in the calculations of the
collision cross section (see Sec. III.A).

The collision cross-section differential in energy loss E,
o.(E), is needed. It is calculated from o(E,K) .with the
following integral [an average over K is now assumed in

g (E,K) and ~(E,K)]:

o(E)=f cr(E, K)dQ

kZ &M [g(E,K)+r(E,K)] Q
P' & Q mc'

(2.6)

where Q~=2mu [the exact equation is given in Eq.
(3.6)] and Q =E /QM. The relation between K and Q is
given below Eq. (2.3). The cross section o.(E) depends on
the speed v of the incident particle through the factor
1/13 as well as through Q and QM. This dependence is
not shown in the symbol o (E), but values of o(E) must.
be ca1culated for each speed.

For the present application, it is not practical to evalu-
ate Eq. (2.6) for each energy loss and speed. Therefore
the integral is evaluated separately for transverse and
longitudinal excitations, and the following approxima-
tions are used.

For the transverse excitations, the matrix elements are
large only near K =0 and, for large energy losses, near
K =E. Thus, for small momentum transfers, Fano gave
the approximation [Fano's Eq. (23)]

i P, .G(E,K)
~

2=f32f (E,O)E/2mc (2.6a)

o(E,K)=p(Q)Z[g(E, K)+ r(E, K)](1+Q/mc ), (2.3)

where K is the momentum transfer, p(Q) is given by Eq.
(2.1) with Q =[(mc ) +(cK) ]'~ —mc, and Z is the
number of electrons per atom. If the atom is ionized in
the process, E and K are both shared by the electron and
the recoil ion, and there is no simple relation between E
and Q (see Figs. 3—7, below). The functions g(E, K) and
r(E, K) are the longitudinal and the transverse excitation
functions, defined by

We note that P, is equal to zero at K =K . For excita-
tions in the solid, the corresponding equation will be
given in Eq. (3.2). For intermediate values of Q, the con-
tribution from transverse excitations is negligible, be-
cause it is proportional to Q/2mc, Eq. (2.23). For large
K and E, the approximation of Eq. (2.23) is used. Prob-
lems are encountered for the integral over longitudinal
excitations, which are discussed next.

C. Bethe approach for longitudinal excitations

In order to conform to customary use (Manson, 1972;
Miller et al. , 1983), atomic units will now be used. They
are defined by e =4=m =1, E in Ry=13.6 eV, K in
units of 1/ao, where ao is the Bohr radius, U in units of
Uo

——c/137, and Q =K . The values of K and K~ are
approximately K =E/v, KM ——2U '(Lindhard and Win-
ther, 1964). Exact values were given by Inokuti (1971,
1978). Customarily, the oscillator strengths rather than
the excitation- functions have been used in the description
of the cross sections. For the longitudinal excitations, for
Q &&mc, they are defined by

f (E,K) =Eg(E,K)/K (2.7)

'Additional remarks about transverse excitations can be found
on p. 11 of Fano (1963).

f (E,O) is called the dipole oscillator'strength (DOS), and

f (E,K) the generalized oscillator strength (GOS). The
longitudinal GOS f (E,K) for 2p electrons of silicon as a
function of K is shown below in Figs. 3 and 4 for two
values of E. It is seen that f (E,K) is practically constant
for Kao & 1. Thus the integral of Eq. (2.6) diverges for
Q —&0. The nature of the longitudinal excitations for
small and intermediate energy losses (i.e., E ~& mc ) can
be understood easily if the integral over g(E, K) of Eq.
(2.6) is divided into two parts (Bethe et al. , 19SO), corre-
sponding to the definition of "distant" (or "resonance")
and "close" collisions (Bohr, 1948; Lindhard and Win-
ther, 1964; Bak et al. , 1987). This division shall be
defined by a value K„chosen such that the difference

f (E,K) f (E,O) is small —for K &K&. Th'e integral can
then be written as [we neglect Q/mc && 1 in Eq. (2.6)]

al(E)[EP /(2kZ)]= f f (E,O)d lnK

+ f f(E,K)d lnK

+f [f(E,K)—f (E,O)]d lnK,
m

(2.8)

where QM was replaced by KM, Q by K, and d lnQ by
2d 1nK.

The first integral can be evaluated as

E, vK&f (E,O) ln =f (E,O) ln
K ' E

Rev. Mod. Phys. , Vol. 60, No. 3, July 1988
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A (E)=I f (E,K)d lnK
Kl

+ EE — EO dlnE . (2.11)

2 (E) is a good approximation for 2 i (E) for large speeds
of the incoming particle, because then E is much small-
er than K, and the integral from 0 to E over
f (E,K)—f (E,O) is very small, while the maximum value
of the momentum transfer K~=2v is much larger than
the value K =E', where the function f (E,K) has its
maximum, and the integral over f (E,K) from KM to ~
is small (see Figs. 3 and 4 below). At energy losses just
below K~~, A (E) defined by Eq. (2.11) is to be used; how-
ever, for E &K~, A (E) must be set equal to zero. Thus
the integrals of Eq. (2.11) inust be calculated only once
(see Sec. III.B.). The replacement of A, (E) by A (E) and
the setting of A (E)=0 for E ~ KM is the Bethe approxi-
mation.

By combining Eqs. (2.9) and (2.11), the collision cross
section for longitudinal excitations is approximated well
by

UK I
o i(E)=Ep(E)2Z f (E,O) ln + A (E) (2.12)

the dependence on speed U appears only in the Ruther-
ford term p(E) and in the logarithmic term, but not in
A (E). A different value of K, was chosen for each atom-
ic shell. It may be noted that the differences between
A, (E) and A (E) are the "shell corrections" of
stopping-power theory [Eq. (4.3)]. They are negligible for
P) 0.25.

D. Further details about collision cross sections

It is well known that o(E,K) and o(E) show a com-
plex structure (Fig. 9, below) for energy losses close to
the binding energies 0 of electrons, while they are quite
simple for E ~~0. It is thus useful to consider separate
electron groups in the material. For silicon, K-shell elec-
trons will not contribute to energy losses below
0& ——1839 eV, nor will L,-shell electrons below OL =99
eV.

For the energy losses to electrons in the K- and I.-
shells, the atomic collision cross sections give a good ap-
proximation for the solid. For the M-shell electrons (four
electrons per atom), though, the collisions produce col-
lective excitations. The largest value of o(E, IC) in the.

The corresponding formulation for solid-state excitations
will be given in Sec. III.A. For the second and third in-
tegrals, the abbreviation

0

A, (E)=I f (E,K)d 1nK

+I [f(E,K)—f (E,O)]d lnIC (2.10)
m

is defined. A function 2 (E) independent of particle
speed can be defined by changing K to 0 and E~ to Oo:

E. Dipole oscillator strengths and optical constants

For a solid, the atomic DOS f (E,O) of Eq. (2.9) is re-
placed by the complex dielectric function
E(E)=e&(E)+iE2(E) [see Eq. (3.1)]. Because e, and sz
are related by the Kramers-Kronig relations (Appendix
A), it is only necessary to find Ei. Values of e2(E) were
obtained from experimental and theoretical sources;
82(E) is related simply to the optical constants. n (index of
refraction) and k (coefficient of extinction), and to the x-
ray attenuation coefficient p (Pano and Cooper, 1968):

s,(E)=n (E)—k (E),
E2(E)=2n (E)k (E),

(2.13)

(2.14)

p(E) =2 k (E)=2 Im(e' ),A'c Pic

where Ac =1.9732&10 eVcm. If c& —1, we have

p(E) =50 679EEi,

(2.15)

(2.16)

with E in units of eV and p in units of cm '. To get p in
Mb/atom, we divide p(cm ') by (10 ' %, )=49940,
where ItI, is the number of atoms per cm (4.994X10
for silicon). The relation between p(E) and f (E,O) is
given in Eq. (2.20).

Values of c2 were determined from the sources of ex-
perimental data given in Table I. These data were sup-
plemented by data discussed in Sec. II.E.2. In the follow-
ing, the data are considered in the sequence of increasing
energy. For some energy intervals, they were used as

In the electron gas model (Lindhard and Winther, 1964), the
distinction between distant and close collisions is much more
clear-cut: "collective" or "plasmon excitations" correspond to
distant collisions, all others to close collisions, and K, is defined
exactly by the point of interception of the plasmon line with the
free-electron interactions. Notice though that there are contri-
butions to the latter for K & K, .

solid occurs at around E =16.7 eV for sma11 values of K
("plasmon excitation, "Fig. 7 below).

For the evaluation of Eq. (2.12) and the corresponding
equations for the solid (Sec. III), the functions f (E,IC)
and the complex dielectric function must be known.
Semiempirical and theoretical approaches have been used
to calculate them.

Since the contribution to o'(E) from small K [Eq.
(2.12), Fig. 9 below] is a large fraction of the total at ener-
gies E near the binding energies (clearly depending on the
choice of K, ), it is important to determine the dipole os-
cillator strength and thus the optical constants of the ma-
terial accurately. These constants therefore are reviewed
in Sec. II.E. The generalized oscillator strengths are
dealt with in Sec. II.F, and the singly differential cross
sections are derived in Sec. III. Some integral properties
of o (E) are discussed in Sec. IV. The cross sections used
here are compared with those of other papers in Sec. V.

Rev. Mod. Phys. , Vol. 60, No. 3, July 1988
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Range of E

0—1.5
1.5—6
1.8—4.7
1.6-5.6
6—10
10-20
20-82.6
60-120
99-110
95-240
95-190

277
8000- 19600
6000-25000

Datum

8» Cp

E» C2

E» C2

~» ~2

Im( —1/c, )

n, k

p
p
p
p
p
p
p

Source

Shiles and Smith (1983)
Aspnes and Studna (1983)
Jellison and Modine (1983)
Vina and Cardona (1984)
Philipp {1972)
See Table II
Hunter (1966)
Tomboulian and Bedo (1956)
Brown et ar. (1977}
Gahwiller and Brown (1970)
Ershov and Lukirskii (1967)
Kohlhaas and Scheiding (1968)
Gerward (1981, 1982)
Del Grande (1986)

TABLE I. Sources of data used to obtain the complex dielectric
function c.(co)=E&{co)+ic2(co). The frequency cu is represented

by the corresponding energy E =Ace (in eV), n is the frequency-
dependent index of refraction, k is the coefficient of extinction,
and p is the absorption coefficient of electromagnetic radiation,
Eqs. (2.13)—{2.16).

—1

s(E,O)

E2yE
(E2 E2)2+(yE)2

(2.17)

E2
e, (E,O)=1- E' 1+(y/E)'

(2.18)

Ez(E, O) = E' 1+(y/E)'
(2.19)

tative data were available only for very small values of K;
for larger values, the experimental data provided only
qualitative guides for the theoretical values of
Im[ —I/E(E, K)] discussed in Sec. II.F.3. The important
parameters of the observed and calculated "energy-loss
functions" Im[ —1/E(E, O)] are given in Table II. Hinz
showed that the measured spectra can be fitted very
closely by the function Im( —1/E) calculated with the
free-electron plasmon functions, with the parameters E„
and y (often, the frequency co is used in these equations;
here, the energy loss E =Ace is used as the independent
variable):

found; in others, various modifications were made, as dis-
cussed below. In particular, correction factors were used
te adjust calculated values to the experimental data. In
addition, the correction factors were used to satisfy the
sum rules discussed in Appendix B.

The tabulated data for ez(E) from 1.5 to 6 eV (Aspnes
and Studna, 1983) were used without modifications. For
E from 6 to 10 eV, the values of c.2 given by Philipp
(1972) were adjusted to match the values at 6 eV. For the
region above 10 eV, three different approaches were used.
They are described in the next three sections.

1. Plasmon excitations

Recent measurements of energy losses between about
10 and 20 eV for fast electrons in Si were made by Stie-
bling and Raether (1978), Hinz and Raether (1979), Chen
et al. (1980), and Tarrio and Schnatterly (1986a, 1986b).
Theoretical values were given by Louie et al. (1975) and
Sturm and Oliveira (1980). The data were reviewed by
Hinz (1979) and Raether (1980). Fairly accurate quanti-

For these functions, the maximum value of
Im[ —1/s(E, O)] is h =E„/y; it is located at E =E„;and
the full width at half maximum u is equal to y. For the
comparison with the experiments, the function must be
folded with the resolution function of the instrument,
and the observed values of Ez, w, and h are slightly
different. For the present purposes, it was assumed that
the function Im[ —I/e(E, O)], calculated with Eq. (2.17)
and with the parameters E,=16.7 eV and y=3. 5 eV
(from Table II), was a good approximation for the func-
tion determined in the experiments.

As outlined above, c& is to be determined from c2 with
the Kramers-Kronig relation; therefore, values of c.2 must
be found rather than values of Im( —1/s). If values of Ez

calculated with Eq. (2.19) and the parameters for the
free-electron functions (Table II) are used in the
Kramers-Kronig relation, we will obtain values of
E,(E,O) differing considerably from those calculated with
Eq. (2.18), and thus an energy-loss function Im( —I/s)
differing from the desired one (i.e., the one determined
experimentally). After trying some other analytic func-
tions for sz, I found that Eq. (2.19), with E„=18.5 eV

TABLE II. Data for plasmon excitations obtained from electron-energy-loss spectroscopy and solid-
state theory. The location of the most probable energy loss E~, the full width at half maximum w, and
the maximum value h of the "loss function" Im(-1/c, ) for Si are given. As a compromise, I have chosen
E„=16.7 eV, w =3.5 eV, and h =4.8 for the calculations in the text.

Authors

Stiebling and Raether (1978}
Hinz and Raether {1979)
Hinz (1-979)
Chen et al. (1980)
Tarrio and Schnatterly (1986a, 1986b)
Louie et aI. (1975)
Sturm and Oliveira (1980)

E~ {eV)

16.7
16.9
16.8
16.6
16.8
17.2
17.4

w (eV)

3.8
3.2
3.3
3.3
3.0
5.4
3.5

3.9
5.1

4.5

5.6+0.6
3.3
4.8
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and y =2.9 eV, resulted in a calculated function
Im( —I/c, ) wit

'
h E =16.7 eV m =3.5 eV, and h =4.7

eV, in reasona e agbl reement with the compromise values
selected in Table II, and thus differing little from the ex-
perimental function.

8.0
5.0

4.0

3.0

3.0

2. Theoretical calculation of atomic
dipole oscillator strengths

Values of the dipole oscillator strength f (E,O) for
atoms were calculated for all electron shells by Dehmer
et al. (1975) who solved the Schrodinger equation for an
inde endent electron model using a Hartree-Slater poten-
tial. These values were confirmed for L-ia . f r L-shell electrons in
the calculations of GOS outlined in Sec. II.F.1. For K-
shell electrons, g, wf (E 0) was also calculated with the hy-
drogenic approximation (Waisk,~ 4

1 ke 1952, using an
eff'ective nuclear charge Z,z ——13.5745 according to
Clementi and Raimondi (1963).

These data were used in the evaluation of experimental
optical data. Within the approximation outlined by Fano

(1968) the photoabsorption coefficient
(Mb/atom) is related to the calculated DOS f
(eV ') by

p(E) =109.8f (E,O) . (2.20)

For the I. and I shells, the theoretical values of p(E) for
silicon atoms obtained with Eq. (2.20) are plotted in Figs.
1 and 2 below.

3. Evaluation of experimental optical data

Dr. Saxon kindly gave me tables of DOS.

Measured mass absorption coefficie pi nts for solid sil-

1. Hunter's (1966) values [calculated with Eq. (2.15)], on
th average amount to only 0.65 of those of Tomboulian

to methodsand Bedo (1956). This difference may be due to metho
of sample preparation (Hunter, 1985). The values from
the theoretical calculations of DOS for the M shell of the
atom s ow a i eh d ff rent curve shape. The di6'erence must
b d to the rearrangernent of the electrons in t e so i

rn in
the theoretical p(E) at 24 eV does not appear in the ex-
perirnental p.

It was assumeed that the Hunter data were the most re-
liable, and they were used without any modifications
from 20 to 82. e826 V. For E) 82.6 eV, the theoretical
values for the atomic M-shell were used with a coefficient
of proportionality determined at that energy. In order to
obtain c,2 rom p, i wf (E) 't as assumed that the initial value
of si E,O) in Eq. (2.15) was equal to l. In the subsequent
d t rmination of c, , using the Kramers-Kronig relation,
E, differed from 1 by no more than 2% for E & . e
the initial approximation therefore was adequate.

1.0
0'.a
0.8
0.7
0.8
0.5

0.4

4
~ ~ s

~ ~~ ~

~ ~

0.3

O.R
30

I

40 80 80
E/eV

FIG. 1. X-ray absorption coefficient p(E) (Mb/atom) as a func-
t' of photon energy E =Ace for 20& & eion
line represents the theoretical data for silicon atoms os of Dehmer
et al. [1975;see a so q.1 (E . (2.20)]. Measurements of the attenua-

'
nt for solid silicon by Hunter [1966; see also {Eq.

(2.15)] are represented by the solid line; those y om ou
Bedo (1956), by the dotted line. Values given by Philippand e o

(1972) are represented by the chained ine. o e
minimum or atoms ("Cooper minimum"; McGuire, 1986) at 24
eV does not appear for the solid.

8
I

0—I

100
I . J . ]..

150 800 250
E/eV

300

FIG. 2. X-ray absorption coefficient p, (Mb/atom) as a function
f 80 E 300 eV. The solid line represents

values obtained from theoretical dipole oscillator strengt s or
atomic silicon (Dehmer et al. , 1975). The dotted line represents

1956)' the dashed
—110 eV theline, those of Gahwiller and Brown (1970; for 99— e

l. 1977 were used); and the chained line,
those of Ershov and Lukirskii (1966). The single point at
eV is from Kohlhaas and Scheiding (1969).

For the energy range from 90 to 3OO eV, calculated
and measured mass absorption coefficients are shown in
Fig. 2. The theoretical L-shell data were added to t e
M-shell data to obtain the theoretical values shown. For
all the measured data, problems with surface layers were
encountered. This may explain the large differences seen
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in the figure. For 103—200 eV, the experimental values
generally are less than theoretical values. The theoretical
function calculated by Ritsko et al. (1974) had been nor-
malized to the Gahwiller and Brown (1970) data and
therefore did not provide independent information. Its
shape agreed with these data. No measurements have
been made for energies between 277 eV and 6 keV.

The final adjusted data for c.2 for E & 100 eV were
determined, using Eq. (2.16), as follows: For E from 100
to 110 eV, the experimental data for p(E) of Brown
et al. (1977) were used. For E ~ 110 eV, the theoretical
values —multiplied with correction factors varying with
energy, and chosen to approximate the experimental data
and to satisfy the sum rules —were used. For 110—220
eV, the factor was 0.85, giving a function lying near the
mean experimental values. Consequently, it was neces-
sary to increase the theoretical values of p(E) for E & 220
eV in order to compensate for the reduction at the lower
energies [this is similar to the corrections made by Shiles
et al. (1980) for aluminum]. Specifically, between 220
and 300 eV, a factor linearly increasing from 0.85 to 1.15
was used; for E ~300 eV, the theoretical values were
multiplied by 1.15.

For E ~ 1839 eV, the K-shell contribution to DOS cal-
culated with the hydrogenic approximation (Walske,
1952) was added to the M- and I.-shell functions. Since
the modifications made below E = 1839 eV were
insufhcient to fulfill the sum rules, the calculated values
above this energy were multiplied by a factor 1.07. With
these factors, the sum rules were satisfied; in addition, the
I value defined by Eq. (B4) was equal to the one found ex-
perimentally (Tschalar and Bichsel, 1968). Measure-
ments of p(E) for E ~ 6 keV were reviewed, for example,
by Gerward (1981, 1982). They agree within a few per-
cent with the values calculated above. Clearly it is neces-
sary to assume an uncertainty of at least +10/o for the
values of c.2 for E ~ 20 eV.

Besides the factors used to modify the calculated
values of p(E) given above, the energies (i.e. , 220 and 300
eV given above) at which various factors changed were
free parameters, too. Including the parameters used for
the plasmon function, the calculation contains 12 adjust-
able parameters. Because the parameters apply to widely
different energy regions, they are not strongly interdepen-
dent.

The full function sz(E) was used to calculate Ei(E)
with the Kramers-Kronig relation (Appendix A), and
values of n, k, Im( —1/E), and p were calculated with
Eqs. (2.13)—(2.15) and compared with experimental data.
Values of n and k agreed with Hunter's data to within a
few percent. Values of p at 1839 eV were about 5%
above the values given by Veigele (1973) and 13% above
those of Storm and Israel (1970). This is reasonable, con-
sidering that for aluminum, where experimental data
were available, Shiles et al. (1980) found values 12%
above Veigele's and 17% above Storm's at 1560 eV.
Values of p(E) at 6—9 keV were 4% above those mea-
sured by Gerward (1981, 1982) and by Del Grande

(1986). At 17.5—25 keV, the values agree to better than
1% with these measurements.

Calculations of the reAectance R with the data for e
determined here agreed with those given by Philipp
(1972) to better than 10% for 7 (E/eV & 15. It must
also be noted that the Aspnes and Studna (1983) data for
c, , agree closely with those of Jellison and Modine (1983)
except at 3.3 and 4.S eV, where the differences of the or-
der of 10% occur. These differences have a very minor
influence for present purposes.

While Shiles et al. (1980) were able to determine I for
aluminum from the experimental data, this was not possi-
ble for silicon because no measurements of x-ray absorp-
tion have been made for 277 eV & E ~ 6 keV. Indeed, the
experimental value (Tschalar and Bichsel, 1968) was used
to adjust the parameters.

F. Generalized oscillator strengths

For small and intermediate energy losses, complete sets
of values of GOS for longitudinal excitations were calcu-
lated for all three shells. The largest contribution came
from the L shells; those from the E and M shells were
smaller. For excitation energies much larger than the
binding energy 0 of the electrons in a given electron shell
of an atom, the GOS f (E,K) has a pronounced max-
imum located near (Kao) =E (E in Ry, ao=Bohr ra-
dius, see Fig. 3 and, below, Fig. 7). For E near 0,
though, f (E,K) changes little for small values of Kao
and decreases rapidly for (Kao) &E (Fig. 4). A general
impression of the location of the maximum values of
GOS in the (E,K) plane and the width of f (E,K) for K-
shell electrons can be obtained from Fig. S. The func-
tions are similar for other shells. For present purposes,
all values of generalized oscillator strength were calculat-
ed with theoretical functions. Experimental values were
available only for plasmon excitations for energy losses
between 10 and 20 eV. Details for each shell are given
next.

1. L shell

The calculation of generalized oscillator strength
f (E,K, I, l') was based on the theory presented by Man-
son (1972), using an independent electron model; I indi-
cates the angular momentum of the ground state, I' that
of the excited state. It was necessary to calculate values
for the ground state of each subshell and for all continu-
um states with all values of the final-state angular
momentum I'. The excitation energy, equal to the energy
loss, is E (note that the energy given to the electron in an
ionization process is equal to E —0); the momentum
transfer in the collision is K. The principal quantum
number is not indicated.

The numerical calculation of f (E,K, I, I') consisted of
(Manson, 1972) (1) selection of a suitable grid for the ra-
dial distance from the nucleus and interpolation of the
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FIG. 3. Generalized oscillator strength f (E,K, I), in Ry ', for
longitudinal excitations for the 2p shell (l =1, 0=7.954 Ry) of
silicon atoms, for an energy loss E =108 Ry (solid line). The
abscissa represent the momentum transfer K (in atomic units)
occurring in the collision. The sum over all values of the final-
state angular momentum I' has been calculated [Eq. (2.21)].
For comparison, the function calculated with the hydrogenic
approximation is also given (dashed line). Note that for
Kap (1, the values difFer very little from the DOS f (E,O, I);
thus the second integral in Eq. (2.11) will be very small. The
maximum value of f(E,K, I) is located at IC~ap =9.2, and con-
tributions for Eap) 17.5 are very small. For 30-MeV protons,
X~ao=70; therefore, replacing 3 &(E) of Eq. (2.10) by A (E) of
Eq. (2.11) causes a very small error. At this energy loss
(E =1470 eV), GOS provides the largest part of the collision
cross section, Eq. (3.8): for 1-CxeV electrons, the contributions
are o.I, 4%; o „15%;and o.„(E),81%.

FIG. 4. Generalized ocillator strength f (E,K, I) for the 2p shell
of silicon atoms, for an energy loss E =18 Ry (solid line). The
abscissa represents the momentum transfer K (in atomic units)
occurring in the collision. The sum over all values of the final-

state angular momentum /' has been calculated. The function
obtained from the hydrogenic approximation is given by the
dashed line. Here, the contributions for 1-GeV electrons from
the three parts of Eq. (3.8) are almost evenly divided: cr, [Eq.
(3.1)],40%; o., [Eq. (3.2)], 26%; o.„[Eq.(3.3)], 34%.

103

102

potential and of the ground-state wave function from
Herman-Skilman (1963) tables for this grid, (2) selection
of values of E and I', (3) calculation of the continuum-
state wave function for these values of E and I' by nu-
merical integration of the Schrodinger equation, (4) cal-
culation of the radial matrix elements for several values
of K, (5) calculation off (E,K, I, I').

Values were calculated for excitation energies
0. 1+0(E/Ry (550+0, momentum .. transfers
0 & Kao (35 and values of the final-state angular momen-
tum 0( I' (ll for 2s (I =0) and 2p (I = 1) ground states.
I~ was small for small energies and up to 24 for large en-
ergies. Since the sum over all I' is needed in the calcula-
tions of o (E),

f (E,K, I) = g f (E,K, I,I'),
I'=0

(2.21)

it is necessary to determine values for I' ~ I~. In Fig. 6,
f (E,K, I, I') is shown as a function of I' for 2p electrons,
E =48 Ry, and three values of K. It appears that an ex-
ponential function will closely approximate GOS for
large values of I'. f (E,K, I, I')=C(E,K, I) exp[ —a(E,
K', I)I']. This function has been used to extend the sum in

102

FIG. 5. Contour map of generalized oscillator strength

f ( W, Q) for K-shell electrons. f ( W, Q) is calculated in the hy-

drogenic approximation and is valid for all atoms, with 8', the
excitation energy E in units of Ep =Ry XZ,p; and Q, the square
of the momentum transfer IC, divided by twice the electron
mass, again in units of Eo (Walske, 1952). The solid line
represents the locus of the maximum value of f ( W, Q). Shown
as dotted lines are the values of 8' where, for a constant value
of Q, f (8', Q) is one-tenth of the maximum value. Excitations
to discrete energy levels are not shown. For large values of Q or
8; the GOS is quite narrow, and the maximum value is located
at W=Q. Photographs of a three-dimensional model of this
figure are shown in Fig. 10 of Inokuti (1971). For 2p electrons
in silicon, for two selected energies, f(E,K) along a vertical line
(i.e., E =const) is shown in Figs. 3 and 4.
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The calculations with Manson's program are expen-
sive. For K-shell electrons, they give values of f (E,K),
which for most energy losses E differ by less than 3%
from values calculated with the screened hydrogenic ap-
proximation (Walske, 1952; Inokuti, 1971). Therefore I
have used it for the calculation of GOS (Fig. 5). The
value of the effective charge, Zz ——13.5745 given, by
Clementi and Raimondi (1963), was used, and the small-
est excitation energy was assumed to be the binding ener-

gy Sx. ——1839 eV (Bearden and Burr, 1967).

FICx. 6. generalized oscillator strength f(E,K, t, I') for 2p elec-
trons iri silicon as a function of l', the angular momentum of the
final-state wave function. The excitation energy is E =48 Ry.
GOS is shown for Kao ——8 (crosses), 10 (diamonds), and 14
(squares). For sufticiently large l', an exponential function
C exp( —al') provides a very good approximation for f(E,K, I')
[below Eq. (2.21)]. For Kao =8, the average deviation between
the analytic function and the tabulated values amounts to
+0.2% for l' & 13 (for l' & 13, the tabulated values are systemat-
ically lower). For Kao=10, the average deviation is +0.4%.
However, for Kao ——14, for l'& l 1, the diA'erences are as much
as +15%. The contribution for l'& 16 to the sum of Eq. (2.21)
amounts to less than 0.1% for all three values of Kao.

Eq. (2.21) to infinity.
A comment may be made here about the calculations

of GOS for Al by McGuire et al. (1982). They calculat-
ed values only for l' ( 12. Thus it is interesting to consid-
er the residual contribution for the calculation in Eq.
(2.21). For silicon (which is quite similar to Al in the
inner shells), the ratio of the sum from I' = 13 to ~ to the
total sum is 8.5% for 300 Ry, and it is 21% at 500 Ry.
Therefore the stopping numbers 8 (Sec. IV) calculated by
these authors will be too small, especially at high particle
speeds.

The accuracy of the numerical calculations was
checked in various ways. For example, radial integrals
for the matrix elements were calculated for given inter-
vals Ar in r and also with intervals 2hr. Differences be-
tween these two results usually amounted to much less
than O. l%%uo. Only when f (E,K, /, l') was small (if, e.g. , for
some values of K the radial matrix element changes sign)
were larger differences seen. A further indication of nu-
merical errors can be seen in Fig. 6: most likely, the
differences between the analytic functions and the numer-
ical values are due to numerical errors of the latter. For
the sum, f (E,K, 1), these errors contribute very little: for
K =10.2, the contribution for /' & 13 to the sum amounts
to only 0.01% of the total. Further estimates of errors
wil1 be given in Sec. III.C; Examples of the total GOS,
f (E,K, l), for 2p electrons are given in Figs. 3 and 4. For

3. M shell

3

I

EI

2

K=40

0
0 0.5

Ka,
1.5

FIG. 7. "Loss function" Im[ —I/e(E, K)] as a function of
momentum transfer K (in atomic units) and energy loss E (in
eV) near the plasmon peak (16.7 eV). The functions were calcu-
lated with the model given by Tung et al. (1976). For energy
losses below and slightly above the plasmon energy, the func-
tion varies little for Ka«0. 1, then drops quite quickly. For
larger energies, the function begins to show a pronounced max-
imum at (Kao} =E/Ry. For energy losses less than 100 eV,
K [ao ——0.025 was used for Eqs. (2.9) and (2.11).

Tung et al. (1976) gave a model for the interaction of
electrons with the valence band of insulators and derived
an analytic equation for the imaginary part of the dielec-
tric function. I have used this equation to calculate
E2(E,K) The. parameters needed were obtained by calcu-
lating E2(EO), v,arying them until Ez(E, O) agreed with
the values found in Sec. II.E. Then, e&(E,K) was calcu-
lated with the Kramers-Kronig relation. In addition, the
sum rules of Appendix 8 were used to check the results.
For several values of E, Im[ —I/s(E, K)] is given as a
function of K in Fig. 7. It is seen that the function
changes quite rapidly for small Ka 0. Therefore, for
E g 100 eV, K& ——0.025 was used in the calculations with

Eq. (2.9). The location in the E Kplane of th-e maximum
of Im[ —I /s(E, K)] ("bulk-plasmon dispersion") calculat-
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ed with this function is in reasonable agreement with the
data given by Stiebling and Raether (1978) and Chen
et al. (1980); the full width at half maximum increases
with increasing K, as observed in the experiments, but no
quantitative data were available from the experiments.

It was found that, for E & 100 eV, the above function
differed little from the free-electron function given by
I.indhard and Winther (1964). The latter function was
used for E & 100 eV. It may be noted that
I/ ——I Im[ —I/s(E, K)]d lnK, which is equivalent to Eq.
(2.11), is approximated well for E»E/ by

I/ p(E)4——(1+0.8E//E), where E/ ——12.46 eV is the
Fermi energy [see Eq. (3.4)].

4. Generalized oscillator strengths for large energy losses
for all shells

For large energy losses, f (E,K) is large only near the
value K =E (Figs. 3 and 5). For E «(M/m)Mc, Pano
(1963}approximated the longitudinal and transverse ma-
trix elements by [Pano's Eq. (28)]

1 /2
i
F(E,K)

i

= 5(E,K),1+Q /mc

i p, G(E,K)
i

=p, 25(E,K),1+Q/mc

(2.22)

(2.23)

1 1 s
A (E)=— +E 1+s 1+s

—s(1 —/3 ), E &EM (2.24)

with s =E/2mc . The first term in the large parentheses
stems from the longitudinal excitations, the second and
third from the transverse ones. The dependence on parti-
cle speed appears in two places: first in the term (1—p )

and second in the fact that the cross section is zero for E
greater than the speed-dependent EM [see Eq. (3.6)].

III. CROSS-SECTION DIFFERENTIAL
IN ENERGY LOSS

To calculate straggling functions, the collision cross
section o(E) differential in energy . loss E is needed. Ac-
cording to the discussion in the previous section, three
contributions to o(E) can be discerned. They are given
next.

In addition to the dependence of the Rutherford cross
section, Eq. (2.1},on the charge z of the particle, the col-
lision cross section depends on higher powers of z [Bloch,
1933; Ashley et al. , 1972; Jackson and McCarthy, 1972;

where the Kronecker 6 indicates that the matrix ele-
ments vanish unless the state E is an eigenstate of
momentum K. In Eq. (2.23) it can be seen that for
Q «2mc the transverse matrix elements will be small
compared to the longitudinal ones because of the factor
Q/2mc in the numerator. With this approximation the
integral in Eq. (2.11) will be equal to zero for E & E~ and
equal to

Eq. (4.3)]. These effects are negligible for the
particle speeds under consideration here.

A. Small momentum transfers

2mU Q(
Im( —1/e) ln

GATV
E2 (3.1)

where E=e(E,O) is the complex dielectric constant for
K =0 as a function of energy loss E, and Q is given ap-
proximately by Q =E /2mU [Fano's Eq. (18)]. Thus,
to get o i(E), it is simply necessary to calculate
Im( —I/c, )=E2/(E, +Ez) from the data described in Sec.
II.E. For E & 100 eV, E,a0 =0.025 was used
( Q, =6.25 X 10 "Ry); for E & 100 eV, K, ao = 1 was used

(Q, =1 Ry).
For the transverse excitations, the cross section is

given by Fano's Eq. (47), which replaces Eq. (2.6a):

2 2

o, (E)= —ln[(1 —/3 E, ) +p'82~]
&U C,

C)
+ p ——arctan

2

/3 E2

1 —Pe,
(3.2)

In the calculation of cr(E), the contributions o &(E) and
both parts of o, (E) were calculated separately in order to
assess their relative importance. For E &4000 eV (twice
the binding energy of the K shell), cr& and cr, decrease
rapidly with increasing E (approximately proportional toE, according to the numerical data). For energy losses
E where c., is almost equal to 1 and c2 « 1, problems may
arise in the evaluation of the ln term in Eq. (3.2) with a
computer with 32-bit words.

B. Large momentum transfers

For longitudinal excitations, the function A (E) of Eq.
(2.11) was calculated numerically for all electron shells
with the GOS described in Sec. II.F. The function for 2p
electrons of silicon is shown in Fig. 8. For comparison,
the corresponding function calculated with the hydrogen-
ic approximation is also given. It is seen that the
Hartree-Slater results are approximated by the hydrogen-
ic calculations for E &300 Ry to better than l%%uo. The
collision cross section for large momentum transfers K is
[Eq. (2.12)]

o „(E)=2Zp(E) g EAi(E), (3.3)

where the sum is over all subshells l. For all electron

For the longitudinal low-K excitations in a solid ma-
terial, Pano (1963) gave the following equation [his Eq.
(45)] for o (E). It replaces Eq. (2.9) for atoms (here, cgs
units are used, thus Q =K /Zm; furthermore, E « mc ):

z e Qi
o i(E)= Im( —1/E) ln

KU m
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8 ~ I . ~ I I I

\ to conclude that no serious errors occurred in the numer-
ical calculations of GOS; in particular, the intervals used
in the radial integrations of GOS and in the momentum
transfer K were small enough to cause no problem in the
numerical integrations. Similar agreement was found for
the K shell.

C. Approximation for large energy losses

For arbitrarily large energy losses, Uehling (1954) gave
the relativistic Rutherford cross section:

10 50
E//Ry

I

100
I \

500 i000

p„(E)=p(E)(1 P'E /—EM ),
where

(3.5)

shells, for energy losses E much larger than the binding
energies 0 of the electrons, I have found empirically that
the function A (E) of Eq. (2.11) can be approximated by

Z/
A, (E)= 1+

ZF. E (3.4)

FIG. 8. Function A(E) of Eq. (2.11) for the longitudinal exci-
tation of electrons in close collisions. A (E) is used to obtain
the differential collision cross section o.„(E)of Eq. (3.3). A (E)
was calculated with the Hartree-Slater (solid line) and the hy-
drogenic approximation (dotted line) for 2p electrons in silicon
as a function of energy loss E. The function j(E)=6EA (E) is
shown. The approximation function of Eq. (3.4) is also shown
as the dashed line. The Rutherford cross section, Eq. (2.1), mul-
tiplied by (21+1)f32E'/k, is represented by the horizontal line
at j(E)=3.

EM ——Mc p y /[(M/2m)+(2m /M)+y] . (3.6)

~„(E)=p(E) 1 —P'
M

dpg Z& 1+ +, . (3.7)
I E E2

A more detailed study of the cross section for large ener-

gy losses to bound electrons can be found in Anholt
(1979) and Davidovic et al. (1978). The relativistic
correction terms given there are small for the energy
losses used in the present theory (Secs. VIII and X).

These equations supersede Eq. (2.24). Further correction
terms differing for particles with different spins (Uehling,
1954) can be neglected in the present application.

It appears reasonable to keep the terms d, /E and
dz/E of Eq. (3.4) for large E. The functions of Eqs.
(3.3)—(3.5) are thus combined into6

where ZI is the number of electrons in the subshell. The
coefficients used for the present calculations are given in
Table III. This equation corresponds to that derived by
Inokuti (1971) from the binary-encounter theory
[Inokuti's Eq. (4.87), where d, was equal to 40/3]. For
the 2s and 2p shells, calculations of A (E) were made up
to E] ——558 Ry=690. For E & 200 Ry, the deviation be-
tween the'integral of Eq. (2.11) and the approximation
function of Eq. (3.4) was less than 0.1%. This leads me

D. Total singly differential cross section

o (E)= cr I (E)+o, (E)+c „(E) . (3.8)

At E =30 keV, the contribution from o&(E) and cr, (E). is

In order to obtain the total cross section, the functions
for small and large momentum transfer, Eqs. (3.1)—(3.3),
are added, resulting in

Shell E (eV) d
&

(eV) d2 (eV2)

13.57 20 000 3340

2$

2p
M

4.51
4.97
1.53

4 000
3 000

150

369
448

9.4

1.94~ 10'
2.07~ 10'

31.2

TABLE III. Coefficients Z&, d&, and d& for the asymptotic
equation of A(E) [Eq. (3.4)]. The equation is valid for energy
losses E greater than E, . g is Clementi and Raimondi's (1963)
orbital charge coefficient, and the effective nuclear charge is
Z,a. ng, where n is t——he principal quantum number. Then,
d, =( —,)Z,a Ry/n'=( —, )g Ry for K- and I.-shell electrons.

E„d2 for all shells and d
&

for the M shell were determined from
a least-squares fit to values of A (E) calculated with Eq. (2.11).

This is the approach used in earlier work (Bichsel, 1985a;
Bichsel and Yu, 1972). Another approach would be to apply
the terms d& /E and d~/E of Eq. (3.4) only to the longitudinal
excitations. Equation (3.7) would then be replaced by

o „(E)=p(E)Z 1 O'
E +p(E) g—Z&
E

EM ( 1+s E

where d2 has been neglected. This change is of little conse-
quence for the calculations of Sec. VIII to X and of 52 with Eq.
(4.5); for example, „5z——2100 keV /cm for the example below
Eq'. (4.7), but it does change substantially the values of g52, cal-
culated with the equivalent of Eq. (4.7), for E» 2mc: g5&

——70
keV /cm, much less than the result g52 ——1170 keV./cm with

Eq. (4.7). For the present study, the exact result for 52 is unim-

portant {see Appendix G).
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only 1%. For energy losses greater than 30 keV, o.„(E)
of Eq. (3.3) is replaced by that of Eq. (3.7). At E =EM,
a(E) drops to zero abruptly. An example of the com-
plete collision cross section o (E) as well as the individual
terms of Eq. (3.8) is shown in Fig. 9. For electrons and
positrons, the cross section for large energy losses are
given in Eqs. (9) and (10) of Uehling (1954); but the devia-
tions from the Rutherford cross section, Eq. (3.5), are ex-
tremely small for all but two of the experiments in Table
IX below (T =0.98 MeV, where the deviations are still
small).

dependently of measurements of stopping power.
An undesirable aspect of the data is the following: for

small momentum transfers (i.e., @ac&1), experimental
data of DOS were used. For the 1. shell, for Ka0 ~ 1, the
theoretical values of GOS were used. They di6'er, at
Kao= 1, by as much as 15%%uo from the experimental
values. A further study of this problem would be desir-
able.

IY. INTEGRALS OVER o(E)

E. Errors

The data obtained for the di8'erential collision cross
section o (E) appear to be adequate for present purposes
(Table VII, below). In particular, for the most important
region in the DOS extending from 0 to 300 eV, the errors
in the values of Im( —1/E) are probably less than 10%.
For E & 300 eV, the errors may be as much as 20%. Fur-
ther optical measurements would be highly desirable for
6&E/eV &3000, especially to determine the I value in-

In most references, integrals of o.(E) over the energy
loss E were used [e.g., collision cross sections: Anholt
(1979); stopping power: Tschalar and Bichsel (1968);
Ahlen (1980); density effect: Sternheimer and Peierls
(1971);straggling functions: Hancock et al. (1983)]. For
this section, integrals over o(E) were calculated and
compared with other results. Numerical calculations and
integrations of o (E) were made for E & 1.4 MeV with
Eq. (3.8); the residual integrations for E & 1.4 MeV to
EM were obtained analytically, using Eq. (3.7).

1O6 I-
A. Moments

One set of integrals is defined by the moments

M =X, E o EdE, v=0, 1,2, . . . . (4.1)

We note that o.(E)=0 for E & Esr in the present formu-
lation, Eqs. (3.7) and (3.8).

The moment M0 determines the average number n of
collisions of the particles in the absorber by n =tMO,
where t is the thickness of the absorber; n is the major
determinant factor for the most probable energy loss 6 .

IO4 1.O5

E/eV

FIG. 9. Total differential collision cross section ("energy-loss
spectrum") cr(E) of Eq. (3.8) for energy loss E in a single col-
lision of pions with momentum of 45 GeV/c in solid silicon
(solid line). In order to show the structure of cr(E) more clear-
ly, the function E cr(E)N, (in eV/cm) is plotted. Maxima are
clearly seen at 17,200, and 1900 eV. They are associated with
the M, I., and E shells of silicon and are determined mainly by
the optical-absorption coefticients of the material. These opti-
cal data therefore must be known quite well (Sec. II.E). For
E ~ 50 keV, the cross section for each shell is proportional to
the number of electrons in the shell; the function decreases as
(1 PE/E~) [Eq. (3.5—)] and drops to zero at E =E ——32 GeV.
The moments of o.(E) are Mo ——38200 cm ', the collision cross
section (number of collisions per cm); M] ——5.33 MeV/cm, the
stopping power; M2=2. 8&(10 MeV /cm, related to the width
of the straggling curve; and 52 ——3370 keV /cm. The mean en-
ergy loss per collision is (E)=M, /MD=139 eV. The separate
contributions cr, [dotted line, Eq. {3.1)], o, [chained line, Eq.
(3.2)], and cr„[d shaed line, Eq. (3.3)] multiplied with N, E are
also shown. The nonrelativistic Rutherford cross section would
be represented by a horizontal line at 1.8 & 10'.

B. Stopping power M, and stopping
number 8

dT 0.30708 z2Z
dt p~ A

(4.2)

with the stopping number 8 (called L by Lindhard and
Winther, 1964, and others) for ions heavier than elec-
trons:

The mean total energy loss (b, ) is used in the Shulek
function (Appendix D). It is given by the first moment,
usually called the stopping power: ( b, ) = tM, . In the
present application, ( b, ) is usually much larger than 6
and is not relevant for straggling functions (Figs. 18—21
below). A check of the present data is given by the
values of M„calculated with Eq. (4.1), compared to
stopping-power values, obtained from the Bethe theory,
for particles of kinetic energy T (see e.g., Bichsel and
Porter, 1982) given by (in units of MeV cm /g)
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2mc EM
28 =ln —1 —2

(A'co~ )

=19 777+in. (EM /MeV), (4.4)

where Ace =31.048 eV is the plasma frequency for sil-

icon, and C(1)/Z =0.0021 is the asymptotic value of the
shell corrections. Relativistic correction terms of order
z and higher were neglected (Jackson and McCarthy,
1972). For y = 100, Eq. (4.4) gives a value of 8 greater by
0.4%%uo than Eq. (4.3).

C. Second moment and 5,

2mc P E
28 =ln —2pz —2 —5(p)Iz Z

+2[zL, (P)+Lz(f3)],
(4.3)2

pzyz=, +1 —1, pz=, 2+
Mc Mc Mc

where EM is given in Eq. (3.6), I = 174 eV is the mean ex-
citation energy [Eq. (B4)], C (P) represents the shell
corrections, 5(f3) the density effect, L, (P) the Barkas
effect, and Lz(P) the Bloch correction term. For the
present use, C(P), L&, and Lz are negligibly small, and

5(P) is discussed in Sec. IV.E. It may be noted that for
the calculation of stopping power with Eq. (4.1) with the
o(E) of Eq. (3.8), no density corrections need be intro-
duced for the numerical calculations, because the correct
function, Eq. (3.2), is used for the transverse excitations.

For very large speeds, y ~~100, it is preferable to use
5(P) of Eq. (4.9), as suggested by Pano (1963, p. 21, foot-
note 18), resulting in

where (d, ) is the average value of d, for the shells,

(d, ) =728 eV for silicon (Table III). The total value of
5z is the sum of the numerical integral over a(E) of Eq.
(3.8) and the integral of Eq. (4.7).

Example: 45 GeV/c pions, EM =31.6 GeV,
X,kZ = 178.3 keV/cm. From numerical calculation
with o(E) for energies E below E, =1.4 MeV, a value

„5z——2100 keV /cm was obtained. The contribution
from E, to EM then is 5z ——1170 keV /cm, for a total

g
value 52=3270 keV /cm. Because 52 is the difference of
two large numbers, its value has an uncertainty of a few

percent (footnote 6).
In the theory of Shulek et al. (1967), all deviations

from the relativistic Rutherford cross section [Eq. (3.5),
or Eq. (2) in Uehling, 1954] should be included in the cal-
culation of 52. In particular, this includes the expressions
of Eqs. (3) and (4) in Uehling for particles with spin
greater than zero; for electrons and positrons, Eqs. (9)
and (10) in Uehling should be used for 0 (E), but then 5z
will be very large, and the considerations of Appendix G
are highly relevant. For present applications concerning
electrons and positrons, Figs. 11 and 12 below, numerical
values of 52 were calculated with E& ——1.4 MeV as the

upper limit of the integral. These values will be smaller
than those extending to E~. Since for thicker detectors
ionization by the bremsstrahlung generated in the detec-
tor itself would become increasingly important (Appen-
dix I), all theories would have to be corrected for this
eA'ect, and 52 would not be a meaningful parameter. Fur-
ther considerations about values of 52 are given in Ap-
pendix G. Approximations to 52 used in earlier studies
are described in Appendix H.

For particles with P && 1, Mz is related to the width of
the straggling functions. For relativistic particles, M2
seems to be quite useless. For the Shulek function, the
important quantity is the dNerence 52 between M2 and

M2,

52 ——M2 —M2 (4.5)

where M2 is the moment for the Rutherford collision
cross section, Eq. (3.5),

EM
Mz ZN, f E p(—E)(1 PE/EM)dE—

0

=ZE, E~ 1—k
(4.6)

Z(d, ) ln —P 1—k EM 2 E1

P E 1 EM
(4.7)

(Bichsel, 1972); For energy losses less than E„Mz is ob-
tained by numerical integration of Eq. (3.8). For E & E&,
an analytic integral can be obtained for 5z from Eq. (3.7),
neglecting d 2,

EM
g5z=ZN, f E p(E) 1 —P dEg 2 a E

D. Results for moments

It is instructive to consider the contribution to the mo-
ments as a function of energy loss E. The integrals Mp
and M, are given as a function of the upper limit E of the
integral, Eq. (4.1), in Fig. 10. Clearly, the detailed struc-
ture of o (E) near the plasmon peak ( = 17 eV) is impor-
tant to Mo, while for M& the L-shell excitations (E & 100
eV) are important. For heavy charged particles (protons,
pions), M, calculated numerically with Eq. (4.1) agrees
with stopping powers calculated from the Bethe theory
[i.e., Eq. (4.2)] to. better than 0.3%. For electrons with
kinetic energies between 300 keV and 1 GeV, values of
M& calculated with the present data agree to better than
0.5% with values presented in ICRU (1984). This agree-
ment does not prove very much about the accuracy of
0'(E), since the DOS has been adjusted to give the I value
used in Eq. (4.3).

No independent data are available for the total col-
lision cross section Mo (Inokuti, 1971) and the second
moment Mz. Values of 5z(E) are given in Fig. 10. The
most important contribution to 52 comes from the K
shell. As shown in Appendix 0, 52 calculated to EM is
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1O4

103

(E)

TABLE IV. Density correction for silicon, for electrons with
kinetic energy T. Values for three different approximations are
given: column 1, calculated with Fano's Eq. (48); column 2 is
the difference between Eq. (4.8) and the integral over Eq. (3.2);
column 3 is from ICRU (1984), or Eq. (4.9) for T&400 MeV.
The large differences between columns 1 and 3 for the lowest
energies are similar to those found by Inokuti and Smith (1982)
for aluminum.

1O'
1o1

/
/

/
/

/
/

/
/

/
/

/
/
/

/
I

/
/
/

I

a,(E)

E/eV

. . . . I

1O4
. . . .!

1O5 ipe

FIG. 10. Moments Mo (solid line) and M& (dotted line), Eq.
(4.1), as a function of energy loss E for 45-GeV/c pions. Mo
reaches 99.9%%uo of its full value of 38400 crn ' at E =850 eV;
one-half of all collisions occur for E ~ 19 eV, and 80% occur for
E &50 eV. The first moment M& reaches one-half of its full
value at E =5 keV and 70% at 1350 keV. The function 62 of
Eq. (4.5) is also given. It is quite small for E &Oz ——1839 eV,
the binding energy of K-shell electrons. At E=1.82 keV,
52 = 368 keV'/cm; its value at Eic ——32 GeV [Eq. (3.6)] is

52 ——3370 keV /cm. For the range of energy losses shown, Mz
reaches only 7 X 10 of its final value and is not shown.

not a useful quantity for most cases discussed in Secs.
VIII and X.

E. Density effect 5

Fano (1963) described the density effect 5 as the
difference between. the integral over transverse low-E ex-
citations for very low densities [shown in Pano's Eq.
(32)], i.e.,

—ln(1 —P ) —P (4.8)

=lny —4.447 . (4.9)

For y &740, Sternheimer gave other equations, which
were used in ICRU (1984). Values of 5 calculated with
the three methods are given in Table IV. For electrons
with kinetic energies above 2 MeV, the differences be-
tween the present calculations and the ICRU values are

and the integral over the cross section cr, (E) of Eq. (3.2)
for materials with finite densities.

Another approach, described by Fano's Eq. (48), gives
6 directly. This approach was also discussed by Inokuti
and Smith (1982) and was used by them to calculate 5 for
Al. Calculations for silicon were performed with both of
these methods. The differences between the two calcula-
tions were less than 0.3%. They were due in part to
different methods used for the numerical integrations.

For y & 740, an asymptotic function for 5(p) was given
by Sternheimer et al. [1982, 1984; fico =31.048 eV, see
Eq. (4.3) for y ]:

5(P) =lny —1n(I/A'co ) —1

T (MeV)

0.2
0.4
1

5
10
30
100
300
1000

0.0321
0.1017
0.322
1.357
2.216
3.939
6.145
8.290

10.68

0.0327
0.1023
0.323
1.352
2.209
3.953
6.174
8.332

10.73

0.0487
0.1216
0.342
1.351
2.239
4.003
6.179
8.325

10.72

less than 2%,' '
but for smaller speeds, very large

differences were found, similar to those found by Inokuti
and Smith for aluminum.

V. APPROXIMATIONS USED IN OTHER PAPERS

Collision cross sections have been given in many pa-
pers. Here, only those functions used in papers con-
cerned with the calculation of straggling functions will be
compared with the cross section cr(E) of Fig. 9. The
Rutherford cross section, Eq. (2.1), was used, for exam-
ple, by Bohr (1948) and Landau (1944). Vavilov (1957)
included the relativistic correction of Eq. (3.5), while
Livingston and Bethe (1937), and later Shulek et al.
(1966), included the binding correction term of Eq. (3.7).

The large resonance contributions seen in Fig. 9 have
been approximated by one or several delta functions by
Blunck and Leisegang (1950), by Talman (1979), and by
Bak et al. (1987). The density effect is incorporated in
this part; for the rest of the spectrum, the Rutherford
cross section is used.

A closer approach to the present cross section was
achieved by Bichsel (1970a), who used GOS for the K and
L shells calculated with the screened hydrogenic matrix
elements.

An interesting approach was used by Knop et al.
(1961), by Bichsel (1974), and by Talman (1979), who
separated o(E) into two parts: they used the Vavilov or
Shulek functions for all electrons outside of the K shell,
and convoluted it with the contribution for E-shell elec-
trons calculated with the screened hydrogenic approxi-
mation.

Chechin and Ermilova (1976) used a harmonic-
oscillator model to approximate the resonance collisions
for argon. Lapique and Piuz (1980) discussed cluster
counting and gave detailed information about the col-
lision cross section for argon.

Allison and Cobb (1980) described the "photoabsorp-
tion ionization" (PAI) model: in their Eq. (28) they di-
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vided the cross section into three parts similar to the
division given in Eq. (3.8), but in Eq. (3.1) they used a
variable value of Q„chosen to be equal to E. Equation
(3.2) was unchanged. They approximated o„(E) [Eq.
(3.3)] with the Rutherford cross section, multiplied by a
factor calculated from DOS:

g(E)= J f(E',0)dE', (5.1)

which corresponds to EA (E) of Eq. (3.3), but which is
always less than 1 [Eq. (B3), Fig. 8]. Chechin et al.
(1972) used essentially the same equation.

YI. METHODS FOR OBTAINING STRAGGLING
FUNCTIONS

A variety of approximations (Sec. V) for the single col-
lision spectrum have been used to calculate straggling
functions with the following methods, given in order of
appearance in the literature: (1) use of moments, (2)
mixed-method calculations, (3) Laplace transformation
calculations, (4) convolution calculations, (5) Monte Car-
lo calculations.

Bohr (1948), with statistical arguments, assumed that
the straggling for relatively thick absorbers should be
represented in a first approximation by a Gaussian func-
tion, with the most probable value 6 of the total
energy-loss spectrum located at the mean energy loss
(b, ) =tM& (Sec. IV) and with a standard deviation o. ,

given by o =tM2. Symon (1948) and Tschalar (1968a,
1968b) used the third moment M3 to obtain the asym-
metry of the straggling functions.

In mixed calculations, a straggling function obtained
from a simple model of the collision spectrum (such as
Bohr's Gaussian function) is convoluted with a function
calculated from a residual term. Williams (1929), for ex-
ample, divided the single collision spectrum into two
parts: that for energy losses smaller than F. ] and that for
energy losses above E&. He used a Gaussian to approxi-
mate the straggling function for the collisions with
E &E& and convoluted it with a function for the larger
energy losses (which was obtained from convolutions of
the Rutherford spectrum for E & E, ). Other mixed cal-
culations were performed after the Landau function was
published, and are described below.

In the third method, a transport equation describing
the change in f (6) for a small increment in absorber
thickness is derived. This equation then is solved with
Laplace transforms. The method was first applied by
Landau (1944), who used the Rutherford spectrum to ob-
tain the "Landau straggling function" described in many
of the references (see Appendix D). Its value of the most
probable energy loss 6 and the full width at half max-
imum w are discussed in Appendix E.

Later, the Laplace-transform method was used with
various modifications of the primary collision spectrum
by Blunck and Leisegang (1950; Appendix F), Vavilov
(1957), Shulek et al. (1966), Bichsel (1970a), and Talman

(1979). It has been reviewed recently by Bichsel and Sax-
on (1975), Hall (1984), and others. The generic term
"Shulek function" is introduced here to indicate the Lan-
dau, Vavilov, or Shulek et al. functions (Appendix D).

Further developments were achieved with mixed
methods: Shulek functions were convoluted with the sin-
gle co11ision spectrum for K-shell excitations when the
average number of collisions with electrons in this shell
was less than one [Knop et al. (1961),Bichsel (1974), and
Talman (1979)].

A more compkx mixed method was used by Bak et al.
(1987). They calculated separate distribution functions
for the resonance and the Coulomb-type collisions and
used different approaches according to whether the num-
ber of collisions was smgller or larger than ten for each
contribution. In the end, they obtained functions which
for very thin absorbers showed a distinct peak for K-shell
excitations, similar to the one given by Bichsel (1974) for
Xe; the authors describe it as an "artificial feature of the
model. " Talman (1979) compared this approach (he de-
scribed it as "treating the K shell discretely" ) with a cal-
culation where he treated the K shell "continuously" and
only found a peak for the "discrete" calculation. No
peak appears in the convolution calculation for t =10
pm, Fig. 11, but in even thinner absorbers, individual
plasmon peaks appear [Bichsel and Saxon (1975); Perez
et al. (1977)]. The theoretical results of Bak et al. for the
most probable energy loss differ by up to +4% from
those for the present theory for t &300 pm, and by
0.9—1.5% for t =1040 pm. The results for w are up to
15% less for t =32 pm and up to 10% larger for
50 & t /pm & 200. For t =290 pm, they differ by —1.2%%uo

to 1.5%', for t = 1040 pm, by —2. 2%%uo to —3.3%.
A mixed-method equivalent to the Blunck-Leisegang

approach was also used by Hancock et al. (1983) with a
rather peculiar twist: the Landau parameter g as well as
the most probable energy loss b, (Appendixes D and E)
were used as free parameters in the calculation of the
Landau function, which then was convoluted with a
Gaussian representing the resonance collision with a fur-
ther free parameter, equivalent to 52 in the other theories
(Appendixes G and H). The parameters were then ad-
justed until a good fit to the experimental data was ob-
tained.

The interaction of the charged particles in the absorber
is simulated most closely by a Monte Carlo calculation,
the fifth method mentioned above. As for all other ap-
proaches, it is necessary to have a knowledge of the
energy-loss spectrum cr(E) for single collisions. In the
calculation, the passage of each particle through the
detector is followed from one collision to the next. The
distance traveled between collisions as well as the energy
loss E in the collision is determined with random num-
bers (Press et a/. , 1986), and the individual energy losses
are added up to the total energy loss 6 of the particle,
Eq. (1.1). The calculation is repeated for N particles, and
a function f&(b, ) is thus generated. If different sets of
random numbers are used for further calculations,
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FIG. 11. Calculated energy-loss spectra f(hl for I-CxeV elec-
trons passing through a silicon detector of thickness 10 pm.
The ordinate is an arbitrary scale, and all spectra are normal-
ized to the same peak height. The solid line a represents thy
spectrum calculated with the present theory. The other three
lines —b, c, and d —represent Shulek functions (Appendix D)
calculated with different values of 52 (Appendix G). For the
dotted line b, the value 52=2130 keV /cm was used. It is ob-
tained from the primary collision spectrum used for line a. For
the chained line c, 5~ =359 keV /cm was used: the integral for
M2 of Eq. (4.1) extends to E„=1600eV only (Fig. 10). This
value was chosen to give a Shulek function with the same width
as that from the present theory. The Vavilov function (with
52=0, ~=3.6&(10 ) is shown as the dashed line d. It is equal
to the Landau function. Parameters describing the various
functions are

line

a
b

d

1.857
2.57
2.42
2.21
2.51

1.758
3.76
1.76
0.717
2.8

2130
358

0
1105

different functions f (b) will be obtained. This is the
procedure of experimental measurements: in each repeti-
tion of the experiment, a di6'erent ionization function will
be obtained. Monte Carlo calculations are time consum-
ing (tens of hours on a VAX 780), and they can only give
stochastic samples. of the functions derived with analytic
methods. Monte Carlo calculations for energy-loss dis-

Function e is not shown; it is calculated with 62 according to
the Shulek prescription (as suggested by Hancock et al. , 1983),
using the Sternheimer parameters for silicon (Table X). It is
60% wider than function a. Clearly, the convolution of the
Landau function with a Gaussian, i.e., the Blunck-Leisegang
(1950) theory (Appendix F), will not give the correct shape of
the straggling function: function c rises more slowly than func-
tion a below h~ and decreases faster above A~. The reason for
the srgall value of A~ of curve a compared to that for the Lan-
dau function is that K-shell electrons effectively do not contrib-
ute to the energy loss in function a, but they are included in
function d. Indeed, the ratio of the A~, 1.857/2. 21=0.84, is
close to the ratio of electrons in X+M shells to that of all
shells: 12/14=0. 86. Note that h~ increases with increasing 52.

tributions were proposed by Herring and Merzbacher
(1957) and were performed by, among others, Ispirian
et al. (1974), Cobb et al. (1976), Ermilova et al (1. 977),
and Brenner et al. (1981). A spectrum calculated with
the Monte Carlo method was compared with those from
other methods by Bichsel (1985b).

The randomness inherent in Monte Carlo calculations
can be eliminated with the following analytic method,
which implies that infinitely many particles pass through
the absorber. An important assumption, though, is that
successive collisions are statistically independent. This
assumption is confirmed by measurements with electron-
energy-loss spectroscopy, and particularly by the fact
that there are particles traversing the absorber without
undergoing any collisions (Perez et al. , 1977). The num-

ber of collisions experienced by the particles then is de-
scribed by the Poisson distribution

n

P(n)=, e™, (6.1)

(6.3)

This approach to the calculation off (t, b, ) is the "convo-
lution method. " It was considered by Herring and
Merzbacher (1957) and later used by Kellerer (1968), who
performed calculations with the Rutherford cross sec-
tion. It was used with a more realistic collision spectrum
for aluminum by Bichsel and Saxon (1975) and for argon
by Allison and Cobb (1980).

Mathematically, the Monte Carlo-, the convolution-,
and the Laplace-transform calculations are equivalent.
Given an adequate primary collision spectrum, it is possi-
ble to obtain good energy-loss straggling functions with
any of these three methods. The Laplace-transform

7In channeling, there is a correlation between successive angu-
lar deAections and energy losses.

where P (n) gives the fraction of particles suffering n col-
lisions, and I is the average number of collisions for all
particles, calculated with the absorber thickness t and the
tota1 collision cross section M0: m =tM0. A fraction
P(0)=e™of the particles pass through the detector
without a collision, the corresponding thickness is
t = —[lnP(0)]/Mo. For 45-GeV/c pions, Mo =38400
cm '=3.84/pm. Then, P(0)=0.5 for t =0.18 pm, and
P(0)=0.01 for t =1.2 pm.

The probability density function for n collisions is
given by the n-fold convolution of the single collision
spectrum o (E):

o (b )*"=I cr(E)o"" "(b E)dE — (6.2)

with

o(b, )* =6(h) and o(h)*'=o(h) .

The complete straggling function then is
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680 Hans Bichsel: Straggling in thin silicon detectors

method with a realistic collision spectrum was used by
Bichsel (1970a). Straggling functions calculated with
several methods are compared in Figs. 11—13.

In practice, it may be difFicult to achieve satisfactory
results with I.aplace transforms because of numerical
problems dealing with the sharp resonance peaks of the
primary collision spectrum (Bichsel, 1970a). With the
Monte Carlo method it is quite time consuming to
achieve accurate results. There seem to be no serious
problems with the convolution method. It is therefore
used here.

850

200

150

100

50

10 GeV e

VII. CONVOLUTION METHOD

The method in the form used for the calculations of
Secs. VIII and X is reviewed here briefly. We assume
that the straggling distribution f (x, b, ) has been deter-
mined for a certain absorber of thickness x. Then the
function for an absorber of thickness 2x is calculated by
the convolution of f (x, b. ) with itself:

f (2x, h)= f f(x, 6 g)f(x, g)—dg . (7.1)
0

An initial distribution is calculated for an extremely thin
absorber of thickness dx from

f (dx, b, ) =5(b, )(1—Mcdx)+dx o (b, ), (7.2)

where f(O, b. )=5(h) and Modx =no=0. 001. This dis-
tribution now is convoluted with itself according to Eq.
(7.1) until the desired thickness t is reached (Bichsel and
Saxon, 1975).

The single collision spectrum o(E) described in Sec.
III.D is calculated for the incident particles for eriergy
losses E between 1.8 eV and the maximum energy loss E„
rieeded for a given absorber thickness. This is either the
maximum energy loss E~ in a single collision, Eq.
(3.6)—80 keV for 40-MeV protons, 500 MeV for 1-GeV
electrons, 32 GeV for 45-GeV pions —or, according to
Eq. (7.1), at most the highest total energy loss bM for
which f (t, b, ) is to be calculated (for the experiments de-
scribed in Sec. X, b.M is less than 4 MeV). In the calcula-
tions it was found that a value E„=1.4 MeV was
sufticiently large to exclude truncation errors in the con-
volutions made here. Thus a(E) will extend to E„=1.4
MeV or to EM, whichever is smaljker. A linear energy
scale would not be practical for such a large range of en-
ergy losses. The numerical calculations were performed
for energy-loss values equally spaced in lnE. Most of the
calculations were performed for a grid with Nz ——64
values per factor of 2, i.e., 1250 values for the total spec-
trum. The accuracy of each convolution was checked by
calculating the momerits Mp to M3 of the resulting func-
tion. They were compared with the theoretical moments.
Differences were always less than 0.3%. Further checks
of the numerical accuracy of the results were made with
numerical methods: for example, values of hz and w cal-
culated with X2 ——32 rather than X2 =64 differed by less
than 1% from the latter. Also, values calculated with
no=0. OOOS in Eq. (7.1) differed by less than 0.01%%uo from

0
30 40 50

h jkeV
60 70

FIG. 12. Calculated energy-loss spectra f(h) for 10-GeV/c
electrons passing through a silicon detector of thickness 148
pm. The solid line a represents the spectrum calculated with
the present theory. The dotted line b is the spectrum calculated
with the Shulek theory (Appendix D) and the value 5z ——2260
keV /cm obtained from the primary collision spectrum used
here (extending to F.„=1.4 MeV). The chained line c represents
a calculation with a value 62 ——1615 keV /cm, chosen to give a
Shulek function with the same width as that from the present
theory (Appendix G). The Vavilov function (with
K=5.2)&10 ') is shown as the broken line d. Parameters
describing the various functions are

line

39.9
42
41.7
39.7
41.4

17.26
19.16
17.27
10.60
15.56

2260
1615

0
1105

Function e is not shown; it is calculated with 5& according to
the Shulek prescription, using the Sternheimer parameters for
silicon (Appendix H). As in Fig. 11, the convolution of the Lan-
dau function with a Gaussian, i.e., the Blunck-Leisegang (1950)
theory, will not give the correct shape of the straggling func-
tion.

VIII. RESULTS OF ENERGY-LOSS CALCULATIONS

Many energy-loss spectra were calculated for the
present study, especially for the cases differing substan-
tially from other theories (e.g., very thin absorbers). The
calculations were not very time consuming. For exam-
ple, for 1-GeV electrons traversing a detector of thick-
ness t =2.5 mm, 24 convolutions were needed. With
Nz ——64, the calculation took 7 min of CPU time on a

those with np =0.001.
The spectrum was transformed onto a linear scale of

energy loss with a separate program. The most probable
energy loss 6 was determined by a parabolic Qt to the
stragghng function with the three values of the function
nearest the maximum. The estimated uncertainty of 6
from this fit was less than 0.2%. The full width at half
maximum w was determined by linear interpolation.
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FIG. 13. Calculated energy-loss spectra f(A) for 45-GeV/c
pions passing through a silicon detector of thickness 300 pm.
The same functions are shown as in Fig. 12. The following pa-
rameters describe the functions:

line

C

e

84.8
87.7
86.4
83.5
85.8

29.9
35.8
29.9
21.5
27.0

3370
1794

1105

VAX 780. With Nz ——32, the calculation took 2 min.
Because energy-loss functions depend on both detector

thickness and particle speed, it is not practical to give
comprehensive tables or figures for them. General

~On a limited basis, calculated spectra can be obtained from
the author. A graph of the measured spectrum should be sent
to him. It will be returned with the calculated function. Re-
quirernents: On the graph, u should be greater than 6 cm; the
height of the spectrum should be 10 cm or more. The abscissa
(indicating pulse height or ionization) must be linear. The ex-
perimental arrangement (beam line, detector position, collima-
tors) must be described, and absorber thickness, particle type,
and energy spectrum (or spectrum of momentum or Py), and
noise contribution (m„or o.„)must be given. If there are contri-
butions from sources other than the particles under considera-
tion, they either must be subtracted or the spectrum must be
given for pulse heights at least +2m from A~. The effects dis-
cussed in Sec. IX must be described (see Bak et aI., 1987, for a
good example). It would be useful if the moments Mo to M3 of
the measured spectrum were provided. Alternatively, a listing
of the data in AscIi code on a 5.25-in. Aoppy disk readable by an
IBM PC-AT can be sent.

The last function is not shown; it corresponds to the experimen-
tal data presented by Hancock et al. (1983), but does not in-
clude the contribution from detector noise. The uncertainty of
the measured A~ was +2.8 keV; of m, about +2.5 keV. The
measured function thus does not disagree with the present
theory, function a. Here, functions a and c show only a small
difference in shape, but the Shulek function with 52 calculated
according to Eq. (4.7), function b, is still much wider than func-
tion a.

trends can be seen from three examples of spectra, tables,
and graphs of 6 and m for selected values of absorber
thickness r and particle speed p, given next. Energy-loss
spectra for 1-GeV electrons passing through a 10-pm sil-
icon detector, calculated with several different approxi-
mations for the straggling function, are shown in Fig. 11.
It is seen that none of the spectra calculated with the oth-
er theories is close to the spectrum obtained from the
present theory. Spectra calculated for 10-GeV/c elec-
trons passing through a silicon detector of' thickness 148
pm are shown in Fig. 12. Again, none of the other
theories is close to the present one. In particular, it
should be noted that the functions calculated with the
Shulek approximation rise less steeply and drop faster
with increasing 5 than the present function. Finally,
spectra calculated for 45-GeV/c pions traversing a detec-
tor of thickness 300 pm are shown in Fig. 13. Here, the
Landau function and the Shulek function with 52=3370
keV /cm (Appendixes G and H) diff'er strongly from
present theory, while a Shulek function with 52 ——1794
keV /cm difFers only slightly, but again, it rises less
steeply and drops faster.

Other examples of calculated spectra will be shown in
the comparisons with the experiments in Sec. X. Clearly,
the largest differences between the various theories occur
for thin absorbers.

For some purposes it may be sufhcient to consider only
the values of 6& and m. It is a remarkable result of the
calculations that 6 and m are independent of particle
speed to within 0.1% for py & 500 (i.e., 250-MeV elec-
trons, 70-GeV pions, and 500-GeV protons), i.e., there is
no relativistic rise of b,z beyond Py =500 (see Appendix
C). Values of b,z for py & 500 are given in Table V, those
of to in Table VI. For 100&Py &500, b, and tu are
within l%%uo of the values given in the tables. Functions
useful for interpolation are also given. For thicknesses of
10, 80, and 1280 pm, b,z is given as a function of py in
Fig. 14. Also given is w (py) for r =320 pm. For mesons
and protons, and the thicknesses shown in the tables, 5
and m differ by less than 0.1% from the values for elec-
trons. For much thicker absorbers, differences will ap-
pear because of multiple scattering, nuclear reactions,
etc.

A more detailed representation of m as a function of
absorber thickness for Py & 500 is given in Fig. 15, which
corresponds to Fig. 4 in Bak et al. (1987). The ratio
w/wL is shown as the solid line (wL ——4g). This function
agrees within a few percent with that of Bak et al'. for
t ~70 pm, but it is almost twice as large at 20 pm.
Maybe of even greater interest is the second ratio shown:
that of w to ws, the width of the Shulek function (dashed
line). The small values of to relative to ws for t & 15 pm
can be understood qualitatively: for very thin absorbers,
the probability of interactions with K-shell electrons is
very small. Effectively, only 12 electrons contribute to
the energy-loss processes. This also causes a large reduc-
tion in 52, from that for all three shells, 52 ——2130
keV /cm, to that for only the L and M shell, approxi-
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TABLE V. Values of the most probable energy loss 6 of the energy-loss straggling functions f (5) as a
function of thickness t of a silicon absorber for all particles with charge +le and Py & 500 (250-MeV
electrons, 70-GeV pions, and 500-GeV protons). For Py & 100, A~ differs by no more than 1% from the
values given in column 2. The absolute uncertainty of A~ is estimated to be less than +1% (one stan-
dard deviation), the relative error about 0.1%. The following functions (Bichsel, 1987) approximate A~
(eV) to within 1.2% for Py&100 (t in pm): 13&t &110, b~=t(100.6+35.35)nt); for 110&t &3000,
h~ =t (190+16.3 lnt }. The ratio r~ of Lakp to the values L Ap calculated with the Landau theory (Appen-
dix E), as well as the ratio b,~/t (eV/pm), is given. For comparison, the mean energy loss (6) for
100-GeV pions (Py =717, EM =84.2 GeV, dT/dt =0.555 keV/pm) calculated with Eq. (4.2) is given as
well as that for 1-GeV electrons (dT/dt =0.4888 keV/pm, from ICRU, 1984).

t (pm)

10
20
40
80

160
320
640

1280
2560

A~ (keV)

1.8S7
4.120
9.282

20.39
43.38
90.96

189.4
393.2
815.5

0.844
0.886
0.948
0.991
1.006
1.008
1.006
1.002
0.999

186
206
232
255
272
285
296
307
319

5.55
11.1
22.2
44.4
88.7

177
355
710

1420

4.9
9.8

19.6
39.1
78.2

156
313
626

1251

mately 52 ——800 keV /cm (Bichsel, 1985a; see also Fig. 10
and Appendix G). The Landau theory begins to approxi-
mate the correct values of w only for t »2 mm, the
Shulek theory for t & 800 pm.

Thus it appears that straggling functions must be cal-
culated with the present theory for all experimental situa-
tions where close agreement between theory and experi-
ment is to be found. In particular, the Landau value of

is larger than the value calculated with the present
theory for t & 100 (Mm (see Table V), and the Landau
width wL ——4g is much smaller than that given by the
present theory (Fig. 15). On the other hand, the Shulek
et al. (1967) theory gives values wz much larger than the
present theory.

Since the present theory furnishes absolute values of
5, it must be considered the preferred method to be
used for the energy calibration of silicon detectors (see
Sec. X.C). It is necessary, though, that the thickness of
the sensitive region of the detector be known accurately,
and that the noise contribution and other efT'ects dis-
cussed in Sec. IX be determined reliably.

The following sources of errors of the calculated strag-
gling functions must be considered: (a) errors in the pri-
mary collision spectrum and (b) errors in the convolution
calculation.

An estimate of the inAuence of errors in the primary
collision spectrum can be obtained from straggling func-
tions calculated with diferent collision spectra. This was

TABLE VI. Values of the full width at half maximum, w of the straggling function f (6) as a function
of thickness t of a silicon absorber for all particles with charge + le and Py & 500. The absolute uncer-
tainty of w is estimated to be 1%, the relative error about 0.1%. For Py & 100, w is within 1% of the
values in column 2. The ratio rL of w to the values calculated with the Landau theory (wi =4/) is
given, as well as the ratio r& ——w/w&, where w& is the width of the Shulek function (Appendix D), with
6&

——2130 keV'/cm. The ratio of A~ (from Table V) and w is also shown. No simple relations between
the thickness and any of the three functions can be discerned in the table; but the following approxima-
tion functions given w (in eV) with an error of less than 2% ( t in pm): 5.7 & t & 11,
w =t(298.3 —53.53lnt); 11 & t &30, w =t(174.7—2.72lnt}; 30& t &260, w =t(259.6—28.41lnt);
260 & t & 2560, w =71.3t(1+39.4/t '). Since the ratio h~/w depends on absorber thickness, it can be
used to infer the detector thickness from it. Great care must be taken, though, to determine all the
corrections discussed in Sec. IX (see Table IX).

t (pm)

10
20
40
80

160
320
640

1280
2560

w (keV)

1.758
3.338
6.291

10.818
18.32
31.54
55.98

103.01
195.8

2.465
2.341
2.206
1.897
1.606
1.382
1.227
1.128
1.073

0.468
0.605
0.764
0.860
0.923
0.965
0.989
1.000
1.005

1.05
1.234
1.475
1.885
2.369
2.884
3.383
3.817
4.165
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FIG. 14. Most probable energy loss A~ (keV) for t =10, 80,
320, and 1280 pm as a function of Py. Also given is to for
t =320 pm. The values must be multiplied by the factors shown
(see Tables V and VI). The values are expected to be constant
for large values of py because they are determined only by ener-

gy losses less than about 2h~. For these energy losses, o.(E) is
almost independent of particle energy for P= 1 (see Appendix
C).

done with three of them (Table VII): (a) the one used
here, (b) the one used in earlier calculations (Bichsel,
1985a), (c) the PAI model described by Allis'on and Cobb
(1980; see also Sec. V) and applied here to silicon.

The major uncertainties of spectrum (a) were described
in Sec. III.D. For (b), a major error was that the optical
constants were determined separately for each shell. In
particular, the Kramers-Kronig relation used to calculate
c& from cz was applied for each shell. Furthermore, the
calculations of the generalized oscillator strength were
made only for energy losses of less than 220 Ry. For
PAI, the values of the complex dielectric constant E(E)
derived in Sec. II.E were used, but GOS was calculated
with the approximation of Eq. (5.1). A comparison be-
tween the spectrum cr(E) used here and that which was
calculated with the PAI approximation shows differences
of 5 —10% for most of the spectrum, but differences of up
to 40% occur just beyond the plasmon peak at E = 16.8
eV. The total collision cross sections M0 calculated with
the two spectra for 1-GeV electrons were 38388 and
40942 collisions/cm, i.e., the PAI value is 6.7% larger
than the one used here. The stopping power is only 0.8%
larger, though. Energy-loss spectra were calculated with

FIG. 15. Ratio r of the full width at half maximum w of the
present straggling function to the Landau width toL ——4g as a
function of thickness t of a silicon absorber for particles with

py & 500. The leveling in the ratio for 16 & t & 25 pm is due to
the increase from very small values to 1 and more in the proba-
bility of collisions with K-shell electrons. Also given is the ratio
r of w to the width wz of the Shulek function (Appendix D), cal-
culated with 5&

——2130 keV /cm (the value for 1-GeV electrons,
using the upper limit E„=1.4 MeV in the integral; see Sec.
IV.D). For small thicknesses, w is much less than wz —again
indicating that the K-shell electrons do not contribute
significantly to the energy losses. For heavy particles, 52 would
be larger, and therefore r would be smaller.

these three cr(E) for the following cases: 45-GeV/c pions
in 300 pm of silicon, 42.4-MeV protons in 196 pm, and
1-CxeV electrons in 10 pm. The results are shown in
Table VII. The maximum difference seen in the table for

amounts to 4% for the very thin absorber, that for w

to 1.8% for the thick absorber. Errors in the convolution
calculations were discussed at the end of Sec. VII.

IX. IONIZATION IN A SII ICON DETECTOR

Usually, the energy lost, b, [Eq. (1.1)j, by a charged
particle traversing an absorber is deposited in it. If a
large energy loss occurs, it is possible that a delta ray will
have enough energy to escape from the detector. Then
the energy deposited in the absorber, 6', is less than the
energy lost, b, (Laulainen and Bichsel, 1972; Hall, 1984).
The Monte Carlo calculations by Bichsel (1985b) for
100-MeV protons, traversing the equivalent of 1 pm of

TABLE VII. Values of h~ and w, calculated with three different single collision spectra o(E) for 45-'

GeV/c pions in 300 pm of silicon, 42.4-MeV protons in 196 pm, and 1-GeV electrons in 10 pm (see end
of Sec. VIII).

45 GeV/c m

h~ {keV) w {keV)
42.4 MeV p

h~ (keV) w (keV)
1GeVe

(keV) w (keV)

(a)
(b)
(c)

85.58
87.66
87.15

29.85
29.59
29.33

484

493

139.4

138.4

1.858

1.931

1.758

1.756
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silicon, showed changes in the spectrum no greater than
the stochastic variations (+1.5% to +5%) for
0.2&(b, /bz) &2. Large changes were found only for
A~5k~. In Sec. X experimental spectra for A~36
were compared with the theory: we can expect that the
effects of 6-ray escape will be very small.

The energy losses of the charged particle cause ioniza-
tion in the silicon, both in the primary collision and by
the subsequent energy loss of the secondary electrons. A
detailed discussion of the sequence of events in ionization
processes is given, for example, by Herring and
Merzbacher (1957). Usually, the energy loss in primary
collisions (see Figs. 9 and 10) is larger than the average
energy W needed to produce an electron-hole pair (ap-
proximately 3.7 eV). Thus, for each collision of the in-
cident particle, several electron-hole pairs will be pro-
duced.

No complete theory of the relation between the energy
deposited by a charged particle in silicon, 6', and the
consequent ionization J (expressed as a number of
electron-hole pairs) is available (see Antoncik et al. ,
1970, though). An empirical approach is used here: it is
assumed that there is a proportionality factor W (ICRU,
1979; L'Hoir, 1984; Lennard et al. , 1986) relating b, '

and J: J =b, '/W. It is known that (a) W=3. 7 eV at 300
K; (b) W does depend on particle type; (c) for heavy, slow
ions, W depends on the ion speed; (d) the dependence on
ion velocity for particles with charge +le seems to be
small; (e) for heavy ions, with energies of 100—700
MeV/u, Schimmerling et al. (1983) showed an increase
in W for gases of 10%%uo, (fl W is temperature dependent;
and (g) W depends on the concentration of crystal imper-
fections (Geretschlager, 1987).

For electrons losing thei:r full energy in the detector,
the energy dependence of the integrated 8, in a first
approximation for E && b, is given by
W(E)= Wo/(1 b/E), wher—e b =1.08 eV is the band

gap for silicon (ICRU, 1979; Lmgsgaard, 1982: For
0.56-keV electrons, 8' increases no more than l%%uo over
W for 6-keV electrons). Thus changes in the 5-ray spec-
trum with particle speed would cause changes in O'. Pre-
liminary calculations with a model proposed by Bichsel
and Inokuti (1976), using o (E,U), showed that changes in
W of the order of 0.3% due to this efFect might be expect-
ed for the speeds considered here.

EfFects that must be considered in the comparison of
theoretical and experimental spectra are described next,
with an outline of the action needed to include the effect.
Usually, additional data about the experiment must be
provided.

(a) Detector and amplifier noise: a Gaussian of width
o.„given by the experimenters is convoluted with the ion-
ization spectrum.

(b) Statistical variations of the number of particles
counted in each ionization bin of the spectrum: check

whether deviations from the theoretical spectrum are dis-
tributed according to a Poisson distribution.

(c) Statistical fiuctuations in the number of electron-
hole pairs produced (they are smaller than 1% for the ex-
periments described in Sec. X).

(d) A correction for saturation (incomplete collection
of charges) must be made in the experiment; it is usually
disguised by the "energy calibration" (e.g., Aitken et al. ,
1969).

(e) Errors in determination of the depletion layer or of
the detector thickness (Croitoru et al. , 1985): calculated
values of 6 and w will both be different from the mea-
sured values. If the energy calibration is correct, calcula-
tions with different values of t can be made until agree-
ment is achieved, and t thus can be determined (e.g. ,
Bichsel, 1985a; see also Table VIII).

(f) Inhomogeneity of detector thickness: this would
cause an experimental distribution wider than the calcu-
lated one. Measurements of the inhomogeneity must be
made, then spectra calculated for the various thicknesses
are added together. The thickness inhomogeneity can be
measured if a beam with. a very small cross-sectional area
is used (Bichsel et a/. , 1957; M6ller, 1986).

(g) Nonlinearity of amplifier —multichannel-analyzer
system: the system must be calibrated with a precision
pulser at the same input connection as that where the sil-
icon detector is connected. It is especially important to
determine the intercept of the channel number versus
pulse-height curve (Hanke and Bichsel, 1970).

(h) Energy spread in particle beam or admixture of
other particles in the beam observed in the detector [e.g. ,
electrons and muons in a pion beam (Bak et al. , 1987)]:
theoretical ionization spectra must be calculated for each
particle and energy and then added to give the spectrum
to be compared with experiment.

(i) Radiation from other sources (e.g., bremsstrahlung,
5 rays from surface layers, collimators, and enclosures):
it would be necessary to establish the source spectrum of
such radiation, calculate the ionization spectrum, and
combine it with the spectrum of primary interest.

(j) Internal bremsstrahlung of the detector: see Appen-
dix I.

(k) Systematic errors of the theory: back to the draw-
ing board.

For the comparison of theory and experiment, it would
also be useful if the total number X of particles passing
through the detector were given, as well as the number of
channels used in the pulse-height analyzer in which X
was counted. Furthermore, values of the first, second,
and third moment over the measured spectrum might be
compared with theoretical values.

X. COMPARISON WITH EXPERIMENTS

A. Procedure

As used in this paper, 8'is the "diA'erential value w" on p. 1

of the reference.
In order to obtain a straggling function for comparison

with a measurement, it will be necessary to perform the
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TABLE VIII. Comparison of theoretical and experimental straggling functions for the data given by
Bak et al. (1987). Protons: Py =2. 1 and 8.5; pions; 14 and 57; electrons: 3914 and 15 700. The sign of
the particle is given in front of w„and „h~. Detector thickness t in pm; particle speed f3y; noise o „ in
keV; theoretical and experimental widths of ionization curve, w; and w„, in keV; relative difference [Eq.
(10.2)] between the two, r, in %%uo', theoretical and experimental values of 6 in keV; and relative
difference rp iri %. For each thickness, the average values of the r, as well as the cr„, are given. In the
last line, average values of the r and o. are given for all data in the table.

rp

32
32
32

2.1

14
3 914

0.78 5.198
0.78 5.172
0.78 5.611

& r. & =O.9+2.6

5.36
5.26
5.49

3.0
1.7

—2.1

7.397
7.092
7.36

(rp) =

7.128
6.911
7.137

—3.1+0.5

—3.6
—2.6
—3

51
51
51

2.1

14
3 914

0.73 7.318
0.73 7.201
0.73 7.861

&r. & =O. 3+i.6

7.446
7.252
7.74

1.7
0.7

—1.5

12.325 12.64
11.840 11.79
12.397 12.24

&r & =0.3+2

2.6
—0.4
—1.3

100
100
100

2.1

14
3 914

2.0 13.468
2.0 12.929
2.0 13.836

(r„)=1.2+1.6

13.43
13.29
13.97

—0.3
2,8
1

26.356 26.76
25.283 25.96
26.544 26.86
(r~) =1.8+0.8

1.5
2.7
1.2

174
174
174
174
174
174

2.1

8.5
14
57

3 914
15 700

3.5 21.80
3.5 20.28
3.5 20.50
3.5 21.17
3.5 21.64
3.5 21.64

&r &= —0.7+3.2

22.5
19.79
21.08
20.58
21.63
20.61

3.2
—2.4

2.8
—2.8

0
—4.8

48.05 49.28
44.985 45.18
45.92 47.3
47.57 47.42
48.225 48.96
48.225 47.77

(r )1.0+1.6

2.6
0.4
3

—0.3
1.5

—0.9

290

290
290
290
290
290
290
290
290
290

2.1

8.5

14

57

15 700

3.2

3.2

31.63
31.63
28.62

3.2
3.2
3.2
32
3.2
3.2
3.2

28.87
28.87
29.73
29.73
30.38
30.38
30.38

(r. &= —i.o+i.z

31.01
—29.18

28.53

28.91
—28.81

29.24
—29.24

30.21
—30.21

29.28
—30.32

—2.0
[—7.7]
—0.3

0.1

—0.2
—1.6
—1.6
—0.5
—0.5
—3.6
—0.2

82.46
82.46
76.91

78.49

81.30

82.47

82.07
—81.63

75.89
—77.99

77.54
—77.73

79.43
—79.73

80.97
—81.1

80.36
—81.14.

(r, ) = —i.5+0.6

—0.5
—1.0
—1.3

1.4
—1.2
—1.0
—2.3
—1.9
—1.8
—1.7
—2.6
—1.6

1040

1040

1040
1040
1040

1040
1040
1040

2.1

8.5

3 914

15 700

3.9 97.46

3.9 84.24
84.24

3.9 84.18
3.9 84.18
3.9 ' 85.17

85.17
3.9 86.22
3.9 86.22
3.9 86.22

86.22
(r ) =0.1+2.4

93,13

85.43
—87.68

84.51
—83.95

84.12
—86.71

86.5
—86.31

83.54
—87.8

—4.4

1.4
4.1

0.4
—0.3
—1.2

1.8
0.3
0.1

—3.1
1.8

321.6
321.6
296.9

302.3
302.3
312.3
312.3
316.7
316.7
316.7
316.7

&r, &=

326.2
—321.2

302.8
—311.1

308.2
—308.3

315.9
—314.1

320.4
—320.4

321.9
—316.7

1.5+1.3

1.4
—0.1

2.0
4.8
2.0
2.0
1.2
0.6
1.2
1.2
1.6
0

All points (except —7.7%%uo) ( r ) = —0.2+.2.2 (rp ) =0.1+1.9
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convolution calculation for the energy losses outlined in
Sec. VII followed by the calculation of the modifications
caused by the experimental arrangement (Sec. IX).

In all experiments described here, the authors convert-
ed ionization in the detector into energy deposited in it
by providing an energy calibration. They assumed that
8' was a constant for all particles of all speeds and in-
dependent of detector thickness. A systematic difference
between measured and calculated spectra may indicate a
speed or particle dependence of O'. Among the effects
(a) —(j) of Sec. IX, only the noise contribution [item (a)] is
taken into account explicitly. Other effects will be con-
sidered for each experimerit.

The location of the most probable value of the theoret-
ical ionization spectrum will be designated by;6; the
width by w;. While these values should be expressed as
"numbers of electron-hole pairs, J," they are written here
in terms of energy deposition W(T)J. The value w, cal-
culated with (Maccabee et a/. , 1968)

and their standard deviations o.„,given by

given in Table VIII and Figs. 16 and 17. Data were
found for electrons, pions, protons, and cx particles, with
detectors ranging from 32 to 3000 pm. For these data,
the calculated values of tU and b, for a given value of py
change by less than 1 part in 10 for particles with
different masses and positive or negative charges. Thus
the most suitable variable to indicate the particle energy
is py.

The most extensive data set was given by Bak et al.
(1987), discussed in the next section. In a separate sec-
tion, 8 values are derived from this experiment. Other
data are discussed in Sec. X.D.

B. CERN-1986 data

(10.1)

r =(to, /w, ) —1, r =(,b, /, .6 ) —1, (10.2)

Several earlier papers mentioned by Maccabee et al. (1968)
and Aitken et al. (1969) agreed with the present theory within
experimental limitations.

will give values several percent different from w; (Table
IX). Similarly, there is no simple relation giving the
change of the value of the most probable energy loss 6
with the amount of noise: b, will increase by a few per-
cent, and the convolution of the energy deposition spec-
trum with the noise spectrum cannot be avoided.

The presence of other effects (e.g. , stray radiations or
the escape of delta rays) will be seen if the experimental
and theoretical functions are compared in detail (Sec.
X.D).

Only experimental data with v&0. 6 [Eq. (D7)] were
compared with the present theory. They were found in
ten recent papers. ' The conversion of ionization spectra
y(J) into energy deposition spectra p(A) by the authors
was accepted as given, and the differences between
theoretical energy-loss and energy deposition spectra
were neglected. The authors frequently did not provide
complete information about the measured data. For ex-
ample, Hancock et al. (1983, 1984) did not give mea-
sured values of 6 and m, and they only gave an average
value of the noise contribution. Various problems in oth-
er experiments will be mentioned below. For the data
where no value of the noise contribution o.„was given, I
have assumed plausible values, shown in Table IX.

A simple evaluation of theory and experiment can be
obtained from a comparison of the measured, w, and the
calculated, w;, widths of the ionization spectrum, and of
the values of the most probable energy losses, 5 and

These values are given in Tables VIII and IX. The
' comparison is made by calculating the relative differences

This set of experimental data given by Bak et al.
(1987) is well suited for a comparison with the present
theory. Data were taken for six silicon detector
thicknesses from 32 to 1040 pm for values of Py between
2 and 15 700. Care was taken to eliminate most contam-
ination by radiations other than the desired one. The
noise contribution from detectors and amplifiers was
measured carefully, the detectors were calibrated fre-
quently, and a variety of the effects mentioned in Sec. IX
were studied (Manlier, 1986). The data are compared with
the theory in Table VIII. The following observations
may be made about these data.

(1) The average values of the relative differences for all
data points (except —7.7%) are (r ) =( —0.2+2. 2)%%uo

and (r ) =(0+1.9)%: the agreement between theory
and experiment is excellent, and the standard deviation
o, of the experimental values is about +2%. The ex-
clusion of the data for t = 32 pm would not change ( r ),
but (r ) would change to (0.3+1.8)%.

(2) For t =50.9, 100.3, and 290 pm, both (r ) and
( r ) differ by similar amounts from zero, suggesting a
systematic error in the detector thickness. Values of
t =51.05, 101.8, and 286.6 pm would give zero average
deviation. The values for t =174 and 1040 pm show
larger variations than the others, and no need for a
change in t can be discerned.

For I; =32 pm, the differences r are rather large.
From the experimental side, it is possible that edge effects
were larger than estimated. Then 6 would tend to be
smaller than calculated from the nominal t, and m

would be larger. An indication of this possibility is seen
in Fig. 18, where the slope of the experimental straggling
function between 3 and 7 keV is less than for the calcu-
lated function. Since this detector was cooled to 77 K, it
is possible that the temperature dependence of 8' may
have influenced the measured values of the energy loss.
The possibility of errors in the theory cannot be exclud-
ed.
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(3) The distribution of values of r around the mean
value is consonant with a Gaussian distribution: 68% of
the values are less than o„,27% lie between o. and 2o. ,
and two values exceed 2cr (one of these was not included
in the mean). For r~, the situation is similar.

Experimental and calculated spectra are compared in
Figs. 18—'21. An adjustment of the energy scales of the
experimental data was made (i.e., the energy-loss scale
was shifted to give the value of „6 equal to;b, ). For
most data, the theoretical function goes to zero with de-
creasing b faster than the experimental one. Bak et aI.
(1987) ascribe this difFerence to "edge effects. " No dis-
cernable change in the shape of the spectrum due to
delta-ray escape is seen (see Laulainen and Bichsel, 1972,
though). The agreement between theory and experiment
is very good within the stochastic variation of the latter,
while the Shulek functions differ much from the experi-
ments.

C. Energy per electron-hole pair, W',

in silicon for relativistic particles

Since the present theory provides absolute values 6 of
the energy losses, while the experiments provide the ion-
ization J corresponding to 6', values of 8'can be derived
from the comparison of 5' and J from the experimental
data given by Bak et al. (1987).

Both w and 6 of Table VIII can be used for this pur-
pose. The theoretical quantities are the energy losses (in
keV). Since very little energy is exported from the detec-
tor by 5 rays for the experiinents described here, 6' and
w' differ negligibly from b and w. While the experimen-
tal quantities are listed as energy losses, they actually are
values of the ionization J and were converted into energy
losses by the calibration procedure, which was performed
with x and y rays from ' Ba using an implicit value of
the integrated &for electrons (ICRU, 1979).

If W(T) is almost constant for electrons (La:gsgaard,
1982)," the integrated value used for the calibration radi-
ation is equal to the differential value needed for the
transmitted particles. I shall postulate this and use the
value W =3.68+0.02 eV at 300 K given in ICRU (1979).
If now the calculated energy losses agree with the mea-
sured ones, as indeed they do, it follows that 8'for high-
energy particles is the same as that for the calibration
electrons. Furthermore, since all measured values agree
on the average with the theoretical values within +2%,
we can conclude that W' for all the particles (e +—

, m.—,p —
)

and all the speeds given in Table VIII is equal to
3.68+0.07 eV.

Similarly, there is no evidence for any different value
from the data in Table IX, except possibly for
Py ~30000 in the data of Ogle et al. (1978). Further
measurements at these speeds would be desirable.

i

For 0.56-keV electrons, 8'increases no more than 1% over
8'for 6-keV electrons.

It is conceivable that systematic errors in the depen-
dence on speed or particle type of the theory of energy
loss could cancel systematic dependencies of 8'.

D. Comments about other experimental data

Theoretical and experimental values for the following
references are given in Table IX.

Kolata et al. (1968): The values of b. and w were
read from the figures, and no error estimates were made.
Only the two highest energies were considered, because
for the lower energies the assumption of a constant speed
of the protons in the absorber was less and less valid.
The infIuence of the reduction in energy in the absorber
can be assessed from calculations for two different ener-
gies, viz. , 38.0 and 37.5 MeV, i.e., the incident energy
and the most probable energy of protons leaving the foil.
The values of b, differ by 6 keV (l%%uo' of b, ), but ui differs

by only 0.03 keV.
Maccabee et al. (1968): Most of the experimental

functions shown by the authors agreed quite closely with
the Vavilov (1957) theory. The exception was 730-MeV
protons in a detector with t =464 pm (~=0.0055 ),
w„=59.6 keV. The authors used Eq. (10.1) with ui„= 35
keV (i.e., o„=15 keV) to calculate an "actual width of
w =48.2 keV, " which then agreed with the "theoretical
width of 48.4 keV" from the Vavilov theory. Since, from
the present theory, w =53.8 keV, calculations were made
with o.„=10keV (ui„=24 keV) as well as o„=15 keV
(Table IX). Clearly, the smaller value agrees more close-
ly with the experiment and would also be in line with
"resolutions widths (w„=20—30 keV)" given by the au-
thors. If indeed the detector resolution was 35 keV, the
value w; calculated with the present theory would be 68
keV, or 14% larger than the measured value (Table IX).
Thus a reexamination of the experimental resolution
would be desirable.

Aitken et al. (1969): I assumed that the quantity E „k
given in the figures was h~, and obtained values of w„
by measuring them in Figs. 2, 3, and 5 in the paper, as-
suming. that the channel number was proportional to the
observed ionization and that channel zero corresponded
to zero ionization. No values of o.„were given, and plau-
sible values were assumed (Table IX). For'458-MeV elec-
trons in a 2-mm detector, the effect of internal brems-
strahlung should be discernable. It will be small com-
pared to the resonance contribution (given by
w/wL ——1.094), and cannot be determined in this experi-
ment because the noise contribution is not known (see
Appendix I).

Hancock et al. (1983, 1984): The quantity E given
by the authors in their Table II (and Table I) was con-
sidered to be 5 . In order to obtain values of the exper-
imental full width at half maximum w„, I calculated the
functions shown in the authors' Eq. (3), where the Lan-
dau function is convoluted with a Gaussian of standard
deviation cr =(52+o„); 52 is a free parameter given in
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TABLE IX. Comparison of theoretical and experimental straggling functions for silicon detectors. Only data for which ~ was less
than 0.6 were considered. First, a symbol for the particle is given. The detector thickness t is given in pm, the particle energy T in
MeV, and the standard deviation o.„ofthe noise function in keV (the full width at half maximum of the gaussian used for this pur-
pose is m„=2.355a„). For some experiments, o „was given by the authors; for others, I chose a plausible value. In some cases, two
values of o„were used, and for the second value, only o.„, m;, and;A~ are given. The importance of an exact determination of 0.„
can be assessed from these data. Three values are given for the width of the straggling functions: the width m (in keV) of the energy-
loss function, the width w; (keV) of the calculated ionization function, and the width w (keV) of the experimentally measured func-
tion. The comparison of m and m; shows for which circumstances the noise contribution is important. The calculated value of the
most probable energy deposition is;b,~ (keV); the measured value is h~. We note that b,~ is in fact determined from the number of
ion pairs produced (including the noise contribution), multiplied by the average energy 8' needed to produce an electron-hole pair.
The noise contribution increases b~ by at most a few percent; therefore A~ for the energy-loss functions is not given. Notes and com-
ments about the experiments are given in Sec. X.D. If errors for w or „D~ were given by the authors, they are listed on the same line
as the name, in the appropriate column. The average difFerences between theory and experiment, (r ) and (r~ ), are given below the
data. If more than three values are available, the average deviation is also given. Systematic errors might be hidden behind these
averages.

wt.
!

Kolata et al. (1968)
196
196

38 0.29
42.4 0.30

average differences

140.2
138.3

141.5 141
139.4 139

(r )=—0.3

537 534
484 485

&rp & =0.2

Maccabee et al. (1968)

0,"
245
884
464

1 772

073 9
0.74 10
1.47 10

15
1.47 10

895
910
730

730
average di6'erences

197.0
598.3
53.8

188.4

=+3%
200
619
59.6

184

198.4
598.8
60.6
68

190.4
&r &=0.3+3

+2%%uo

678
2610

157

671
2587

161
163
664 659

( r~ & =0.3+2

Aitken et al. (1969)
2 160
2 160
2 160

315
65.3

458

0.89 20
1.07 20

897 20
10

average di8'erences

333.6
281.2
166.8

338.0
286.5
176.1
169.2
&r &=3

360
296
176

1246
1031
686
683

1329
1061
687

&r, &= —3

Hancock et al. (1983, 1984)

p

e

300
300
300
300
300
300
300
300
300
300
300
300

220
254
350
433
600
700
8SO

1195
0.98

114000
29 900
44 900

0.72
0.78
0.94
1.07
1.3
1.43
1.62
2.04
2.73

123
215
322

average di6'erences

66.5
60.6
50.3
45.1

39
36.8
34.6
31.7
29.5
29.6
29.8
29.8

67.9
61.6
52.2
46.4
41.4
39.4
37.3
33.5
31.5
31.5
31.6
31.7
30.9

&r. }= —1+6

+8%
71
68
56
48
44
40
38
37
32.5
30
29.6
29.6

+3%
210
196
153
131
115
108
102
97.2
87
85.5
85.6
88.8

192
174
142
126
108
102
95
87
81.4
85.1

85.6
85.7
84.9

&r, }=—S+4

Esbensen et al. (1978)

K
K

900
900
900
900
900
900
900
900

1 280
5 135

14 100
5 530

14 500
1 865
5 860

14 900
average

2.13
6.4

16
12.1
30.4
14.3
43

107
di8'e rene es

4
4.3
4.3

4
4

85.0
73.9
75.0
73.S
74.1

73.6
74.4
7S.O

85.7
74.9
75.9
74.4
74.9
74.4
75.2
75.8

(r. & =1.6

76.4

1.5+5 %
277 279
254 252
268 259
260 254
267 264
261 262
269 264
272 264

(r ) =1.4+1.5
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TABLE IX. (Continued. )

Nagata et al. (1975)
e 1 565

1 565
1 565
1 565
1 565
1 565
1 565
1 565
1 565

50
80

100
220
300
390
500
700

1000
average

99
158
197
435
590
760
980

1370
1960

differences

10
10
10
10
10
10
10
10
10

123.0
123.3
123.4
123.7
123.7
123.7
123.7
123.7
123.7

x

+2.5
126.2 126
126.5 129
126.5 132
126.9 141
126.9 129
126.9 127
126.9 137
126.9 129
126.9 129

&r. & =3+3.4

484
485
486
487
488
488
488
488
488

&r, &=

=+1
485
497
487
492
494
492
490
492
489

—0.3+2

Nagata et al. (1975)
e 2 905

2 90S
2 905
2 905
2 905
2 905

200
300
500
700

1000
1000

average

395
590
980

1370
1960
1960

differences

20
20
20
20
20
45

220.5
220.6
220.7
220.7
220.7
220.7

+1 /o

227.6 247
227.7 255
227.8 265
227.8 2SO

227.8 245
254.0 245

&r. ) =10+3

=+2%
935 938
935 938
936 928
936 943
936 943
936 943
&r, & = —O. 3+0.7

Mufller et al. (1982)
e
e

e+

Ogle et al-. (1978)
e

148
148
148
148
148
290

1 007

100.7
100.7
100.7
100.7

0.976 2.7
199 391

9 999 19 600
9 999 19 600

50 000 98 000
199 391
199 391

average differences

'8 200 16000
15 300 30000
24 500 48 000
51 100 100000

average differences

3.8
2.8
3.4
3.4
3.3
2.5
3.4

2.34
2.34
2.34
2.34

16.25
17.2
17.25
17.25
17.19
29.08
82.9

12.9
12.9
12.9
12.9

18.17
18.43
19.45
19.45
19.27
29.85
83.5

& r. & =1+1.4

14.26
14.26
14.26
14.26

18.6
18.73
19.31
19.42
19.86
29.9
84.9

38.4 40.3
40.4 41.4
40.6 39.6
40.6 39.5
40.6 39.7
82.2 80.9

306 323
&r, &= —0.5+3.6

+2. S%%uo

26.8 26.4
26.8 24.9
26.8 25.1

26.8 25.1

& r„& = —6+3

the authors' Table II, o „=4+0.4 keV (5+0.4 keV), and
the Landau variable A. is calculated with

A, =(b, —b, +0.225$)/g, (10.3)

where b, is the energy loss and b, and g are free param-
eters given in the authors' Table II (or Table I). Then I
determined w for these functions. The uncertainty of
w (+8&o) given in Table IX was calculated by repeating
the calculation of w„with the values of 52 and g both in-
creased by the errors given in the authors' Table II, and
with o „=4.4 keV. The error of 5 did not inAuence w

perceptibly. It must be noted that the increase in w by
convoluting the noise function with the energy-loss func-
tion (seen in columns 5 —7 of Table IX) is over 6% for
this experiment, and an exact knowledge of o „would be
desirable in order to achieve a correct theoretical value
w;. Furthermore, I cannot understand the Auctuations in

the difference E —6 appearing in the authors' Table
II (the differences for the pion data are 1.6, 2.8, and 2.3
keV —my calculations, +sing the authors' procedure,
gave differences of 2.7, 2.4, and 2.7 keV). The separation
into pion and proton data shown in the authors' Figs. 3
and 4 is simply an artifact of the choice of the
abscissa —it would not appear if the functions were plot-
ted against Py. The calculation of straggling functions
with the free parameters used by the authors (i.e., g, b,
and 62) must be considered a parameter fit to experimen-
tal data without any significance for the understanding of
the theory.

Esbensen et al. (1978) in their Table IV gave values of
b,~ (with errors) for several particles randomly incident
on a silicon detector of thickness 900 pm. As predicted
by the present theory, there is no significant difference in
the values for particles of opposite charge. The experi-
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FIG. 16. Comparison of experimental and theoretical values
from Tables VIII and IX, of the full width at half maximum w.
The abscissa is Py =p/Mc, where p is the momentum of the in-
cident charged particle, M its rest mass, and c the speed of light.
The ratio r =w„/w; is shown as the ordinate, where w„ is the
width of a measured straggling function, and w; that of the cal-
culated function. The data are for electrons (Mc =0.511004
MeV), pions (139.578 MeV), kaons (494 MeV), protons (938.256
MeV), and o; particles (3727.328 MeV) passing through silicon
detectors of thicknesses between 150 and 3000 pm. Errors are
given in the tables.
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FIG. 17. Comparison of theoretical and experimental values
(from Table IX) of the most probable energy loss A~. The
abscissa is p7. The. ratio r~ =„6 /;6 is shown as the ordinate,
where „h~ is the most probable energy loss of a measured strag-
gling function, and;A~ that of the calculated function. The
data are for electrons, pions, kaons, protons, and o, particles
passing through silicon detectors of thicknesses between 150
and 3000 pm. Errors are given in Table IX.

Nag ate
Ogle

mental data given in Table IX are therefore a weighted
average for the particles of opposite charge. The authors
provided me with a plot of the data for 6-GeV/c pions,
on which I measured the value of w given in Table IX. Et

should be noted that there is no relation of the "average
energy loss (AE)" given in the authors' table to the
stopping power, Eq. (4.2). (b,E ) appears to be the aver-

0
0 15

keV

FIG. 18. Ionization functions P(h) for 2-GeV/c positrons
traversing a silicon detector of thickness 32 pm (Bak et al. ,
1987). The ionization is represented by the equivalent energy
loss 6, which is the product of 8' the average energy needed to
produce an electron-hole pair and the number of pairs mea-
sured in the experiment. The value of 8'is implicit in the ener-

gy calibration provided by th'e authors (see Sec. X.C). It is as-
sumed that the energy-deposition curve differs very little from
the energy-loss curve. The solid line represents the function
P(b, ) calculated with the present theory with a value cr„=0.784
keV, measured in the experiment. For Figs. 18—21, the theoret-
ical functions were normalized to the maximum value of the ex-
perimental ones. The circles represent the experimental data;
stochastic errors are less than the size of the symbols. The ener-

gy scale provided from the experiment has been shifted by 0.22
keV (3%%uo) so as to have the experimental value „b.~ and the
theoretical value;h~ of the most probable ionization coincide.
The calculated value of;A~ is 7.36 keV; the width is w;=5. 6
keV (see Table VIII). The electronic stopping power calculated
with Eq. (4.1) is dT/dt =4997 keV/cm; thus the mean energy
loss in the detector, (b, ) = 16 keV, lies in the tail of the ioniza-
tion losses shown in the figure. The Vavilov function ((=0.57
keV, K=5.7X10 ) convoluted with the noise contribution is
shown as the dotted line, with a value of the most probable en-

ergy loss of 8 keV (see Appendix E) and with w =3.2 keV. The
dashed line is the theoretical function given by Bak et al. The
difference between theory and experiment for b, ~ 4 keV is prob-
ably due to a loss of detector sensitivity near the edges. In
Table VIII this experiment shows some of the largest
differences between theory and experiment.

age value of energy loss calculated from the restricted
spectra shown and does not include larger energy losses
included in the calculation of stopping power dT/dt. If
the upper limit used in the calculation were known,
(b.E) would be a useful datum for the comparison with
theory.

Nagata et al. (1975) gave values of the errors of all
their experimental data. I suspect, though, that they
only included the stochastic uncertainties from counting
statistics, but did not consider other sources of random
or systematic errors (e.g., electronic noise contributions
from the operation of the accelerator or the presence of
external radiations, e.g. , bremsstrahlung from defining
slits). For their thick detector (2.905 mm), the spread in
the values of w shown in their Table II (reproduced in
Table IX) is over 20 keV or 8%, while the error given by
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the authors is only +1%', for the thin detector, the
spread in w is 11% (126—141 keV), and the quoted error
is only +2.4%.

On-the other hand, the spread in 6- is comparable to
the stated error. Since external noise sources would tend
to increase w, but would not influence 6 much, I

200— 2 GeV/e m'

150

50

20-
it/keV

FIG. 20. Ionization function P(b, ) for 2-GeV/c pious traversing
a silicon detector of thickness 50.9 pm (Bak et al. , 1987). The
solid line represents the calculation with the present theory
with a value o.„=0.73 keV. The experimental ionization scale
was shifted by 0.16 keV. The circles represent the experimental
data. The experimental function is slightly narrower than the
theoretical one.

10
h/keV

FIG. 19. Iolllzatlon functloIls f(6) (see Fig. 18) for 2-GCV/c
protons traversing a silicon detector of thickness 32 pm (Bak
et al. , 1987). The solid line represents the calculation with the
present theory with a value cr„=0.784 keV, measured in the ex-
periment. The circles represent the experimental data. Stochas-
tic errors are twice the size of the symbol at 6=7 keV. The en-
ergy scale provided from the experiment has been shifted by
0.27 keV (3.6%), so that the experimental value „h~ and the
theoretical value;A~ of the most probable energy loss coincide.
The calculated value of h~ is 7.4 keV; the width is w =5.2 keV
(see Table VIII). Experiment and theory agree quite well. The
stopping power calculated with the theory is dT/dt =4011
keV/cm; thus the mean energy loss in the detector, (6)=12.8
keV, lies in the tail of the energy range shown in the figure. The
Shulek function, calculated with 52 ——3044 keV /cm and includ-
ing the noise contribution, is shown as the dotted line, with a
value of the most probable energy loss of 8.46 keV and with
u =8.88 keV.

0 &

20 30 40 50 6O 7O

tt/keV
80 OO 1OO

FIG. 21. Ionization function (t (6) for 8-GeV/c protons travers-
ing a silicon detector of thickness 174 pm (Mufller, 1986). The
solid line represents the calculation with the present theory
with a value 0„=3.51 keV. The ionization scales were not
shifted. The circles represent the experimental data. The ex-
perimental function is slightly narrower than the theoretical
one.

suspect that such sources were present and their
inhuence was not considered. In particular, the authors
did not indicate what the electronic noise contribution
was during the measurements with the electrons from the
accelerator.

Mr(lier et al. (1982): These unpublished data were
given to me in the form of plots of the experimental data.
Experimental values of w and 5 had been determined
by Mufller.

Ogle et al. (1978): The authors used a value of W of
3.80 eV for their energy calibration. I have multiplied all
their values of the most probable energy loss (E in their
Table I) by 3.80/3. 68, where 3.68 eV was derived in Sec. '

X.C. The authors did provide an estimated error of
2.5%%uo for their c, but did not give values of w or show
any ionization spectra.

The values of r for all data points in Table IX are
shown io, Fig. 16. Except for some of the data of Nagata
et al. (1975) and the Hancock et al. (1983, 1984), no
signi6cant di6'erence between theory and experiment is
apparent (Appendix I).

The ratios r are given in Fig. 17. Except for some
measurements by Hancock et al. (1983, 1984), and three
by Ogle et al. (1978), no significant difference between
theory and experiment is apparent. The values by Han-
cock et al. also diA'er substantially from other data at the
same range of Py. The measurements by Ogle et al.
disagree with the measurement by Mr(lier et al. (1982).

Besides the spectra shown in Figs. 18—21, I have com-
pared about 30 complete experimental spectra with
theoretical ones. There was a substantial and unex-
plained di6'erence only for the spectrum of Hancock
et al. (1983) for 0.736-GeV/c protons [T =254 MeV,
their Fig. 2(a)] and for the spectrum for 315-MeV pro-
tons given by Aitken et al. (1969, see Table IX). Very
good agreement was achieved if the noise contribution
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O.„was assumed to be, within reason, an adjustable pa-
rameter. For example, the energy-loss spectrum shown
by Aitken et al. for 458-MeV electrons in a silicon detec-
tor 2160 pm thick (their Fig. 5) agrees very closely with
the calculated spectrum if cr„=20 keV is assumed (i.e., a
Cxaussian noise spectrum with w„=50 keV; see Table
IX). With cr„=10keV, the difference between w and w,.

is 4%. The authors did not give cr„. Most of the
broadening of the spectrum thus is due to the binding
(resonance) effects and the noise. A contribution from
internal bremsstrahlung, as postulated by the authors,
should occur (Appendix I), but could only be determined
from experiment if o.„were well known. In none of the
30 comparisons were the delta-ray escape or any of the
effects (b) —(j) of Sec. IX obviously apparent.

It may be mentioned that in one of the experiments of
Manlier et al. (1982) (not shown in Table IX) a fair
amount of radiation from upstream hit the detector,
causing a considerable change in the ionization spectrum
especially for b. & 6 . Bak et al. (1987) were able to elim-
inate this problem.

The experimental function given by Baily et al. (1983)
for 5-GeV/c pions in a silicon detector about 20 pm thick
was reviewed earlier by Bichsel (1985a). It is not repeat-
ed here because the large uncertainty of the detector
thickness does not permit a conclusion about the validity
of the theory.

The data given by Julliot and Cantin (1978) are in gen-
eral agreement with the present theory. Insufhcient de-
tail was given in the reference to contribute to a
confirmation of the theory.

XI. CONCL, USIONS

It is seen that the present theory of energy loss agrees
well with experimental data over a very large range of
particle energies (0.3 & Py & 10 ), detector thicknesses
(32& t &3000 pm), and for a variety of particles (elec-
trons, pions, kaons, protons, and a particles). It is the
most accurate confirmation of our understanding of the
interaction of relativistic charged particles with electron-
ic excitations in matter.

The approximations made in the theory should cause
no restrictions in an application for very thin solid ab-
sorbers [to the order of 1 pm; for absorbers of thickness
of the order of 10 nm, surface plasmons and other efFects
will appear (Raether, 1980)]. I am not aware of any re-
striction as far as the energy of the incident particles is
concerned.

A variety of effects described in Sec. IX must be con-
sidered in the application of the theory of energy losses to
experimental measurements of energy deposition and ion-
ization spectra. These effects will be the same for all the
energy-loss theories. Many of them are quite unimpor-
tant for the experiments reviewed in Sec. X, but they
would gain in importance for particles with lower ener-
gies and for detectors thinner or thicker than discussed
here. The delta-ray escape, for example, will become im-

portant for very thin detectors (less than about 5 pm).
For electrons with T&&1 MeV, internal bremsstrah-

lung will be of increasing importance with increasing
detector thickness above about 1 mm (Appendix I). A
detailed treatment of this subject is beyond the scope of
this study.

It is evident from Tables V —VII and Figs. 11—13, and
15 that the quality of the results of a straggling theory
depends primarily on the quality of the approximation
made for the single collision spectrum. Even with the
fairly sophisticated approximation used by Allison and
Cobb (1980; see Table VII) and by Bak et al. (1987), the
results are not very good (Fig. 18). Some improvements
are desirable for the collision spectrum: better data are
needed for the photoabsorption coefficients for E ~ 6 eV,
also an improved theory for GOS, especially for M-shell
electrons.

It is worth repeating that, while it is possible to obtain
a Shulek function with the correct width for thin ab-
sorbers (by choosing a suitable value of 5z, Appendix G),
this function will not have the correct shape and the
correct value of the most probable energy loss 6 . In
principle, it may be possible to calculate Shulek functions
agreeing exactly with convolution functions, if g, b, , and

62 are used as adjustable parameters, as suggested by
Hancock et al. (1983). I have not tried this.

There is still some uncertainty about O'. From the dis-
cussion in Sec. X.C, it can be concluded that 8' is con-
stant within about +2% for the particles and energies
represented there. On the other hand, it is known that
for low-energy particles (electrons; protons and a parti-
cles with energies below 10 MeV) &does depend on par-
ticle type and speed (ICRU, 1979; Lennard et al. , 1986).
Because of these problems caution is necessary with the
energy calibration of silicon detectors. In particular, a
calibration with natural cx particles will not be correct for
relativistic particles.

The average standard deviations of w and 6 of the ex-
perimental data in Table VIII are +2%. The average
difI'erence of all experimental values of w and b from the
theoretical ones is less than +0.2'7o. Thus it will be
necessary to perform experiments with much smaller un-
certainties (i.e., of the order of 0.2%) if errors of the
present theory are to be demonstrated experimentally.

With the present computer program, the calculations
of energy-loss functions need slightly more time than cal-
culations with the Shulek function (Appendix D). This is
a small disadvantage of the convolution method.

Clearly, the difFerences between the different theories
noted in Figs. 11—15 must be expected for other materi-
als also. These differences were demonstrated theoreti-
cally for aluminum by Bichsel and Saxon (1975) and have
been observed qualitatively for Al (Perez et al. , 1977), Ge
(e.g., Esbensen et aL, 1978), NaI (Bellamy et al. , 1967),
xenon (Bichsel, 1974), and other gas detectors (Bichsel,
1985b). A quantitative description for these detectors
would require the calculation of the collision spectrum as
shown in Sec. III. For argon, the PAI approximation for
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o(E) has been given by Allison and Cobb (1980; see
Table VII).

I suggest that theoretical values of the most probable
energy loss Ap and the full width at half maximum N,
calculated with the present theory and modified by the
considerations of Sec. IX, be used for the calibration of
silicon detectors henceforth. Since w and 6 depend on t
nonlinearly and with different functional behavior (see
the values of b. /w in Table VI), it is possible to deter-
mine the detector thickness from these two quantities.

s2(E,E) co2 E-
+ ln

7T c02+E
C01 E—ln
coi+E

coEz(co, K)
+ dCO

2 2"z co —E

coe2(co, K) E—E2(E,IC)
+ dM

CO) N —E

(A2)

ACKNOWLEDGMENTS

I am gratefu'1 to Professor Albrecht K.ellerer, for ex-
plaining the convolution method; Professor Ugo Fano,
for helping me understand the Landau theory during our
sabbaticals in Berkeley in 1967; Professor Steve Manson,
for supplying me (in 1969) with his computer program
for the calculation of GOS and for his advice; Dr. Mitio
Inokuti, for help and advice; and John Hubbell, for pro-
viding me with extensive data tables of x-ray absorption
coe%cients. I wish to thank the people at the Nuclear
Physics Laboratory at the University of Washington for
making available the use of the VAX 11-780 for calcula-
tions and word processing. The earlier version of the
program (based on the PAI approach) was developed at
the Physics Department of the University of Aarhus dur-
ing the winter of 1982, and I am grateful for their hospi-
tality and support.

APPENDIX 8: SUM RULES

The following sum rules were used in the fina deter-
mination of the dielectric functions (Shiles et al. , 1980):

fEez(E, IC )dE =1,
mE,

(Bl)

%'ith this equation, c& was calculated with co&
——1.5 eV,

m2 ——20.7 keV, using 900 steps in between, and analytic
solutions for the first and last integral in Eq. (A2). An es-
timate of the accuracy of the calculation can be obtained
from a comparison with the values given by Aspnes and
Studna (1983). The final results for e&(E,O) for
1.5&E/ev&6 differed by less than 1% from theirs. In
the further use of the data, for E ~2300 eV (where
c.

&

——0.999816) the free-electron approximation of Eq.
(2.18) for e, was used, with E„replaced by E, =31.048
eV.

APPENDIX A: THE KRAMERS-KRONIG
RELATION

2 fE Im[ —I/e(E, K)]dE=1,
~E,

(B2)

If, for a given value of momentum transfer K, ez(E, K)
is known for all E, the Kramers-Kronig relation permits
the calculation of e, (E,K) (Shiles et a/. , 1980):

coE2(co, K)
s, (E,K)= 1+—f de —E

(A 1)

where the principal value of the integral is to be used.
A variety of problems were encountered in the numeri-

cal evaluation of this integral, and I made a number of
mistakes in early calculations. In particular, for K =0,
seeing that c2 was very smal1 for E & 1.5 eV, I neglected
the contribution from 0 to 1.5 eV. This caused large er-
rors for c, for E & 6 eV. The following approach gave sa-
tisfactory results: for E &1.5 eV, c,2 was approximated
by a linear function. The integral from 0 to 1.5 eV then
was calculated analytically [Eq. (A2)] and evaluated for
each value of E. For large values of E, single-precision
calculation (i.e., with 32-bit numbers) gave errors in s,
because the difference co —E was very small for co=E.
The integ rais therefore were evaluated with double-
precision arithmetic.

In order to reduce inaccuracies in the numerical evalu-
ation of the integral in Eq. (Al) for co=E, the following
modification was used:

where E, =4m.ne /m, and n is the density of all the elec-
trons in the solid. With a mass density of 2.3290 g/cm
for silicon (Henins and Bearden, 1964), the value
E, =31.048 eV was obtained. For the dipole oscillator
strength, the sum rule

ff(E,O)dE=1 (B3)

was used. A further important quantity is the logarith-
mic mean excitation energy I defined by

lnI = fE Im[ —1/e(E, O)]lnE dE .
2

mE,
(B4)

The parameters used in correcting the theoretical DOS
(Sec. II.E.3) were adjusted until the sum rules were
fulfilled and I = 174 eV (Tschalar and Bichsel, 1968) was
achieved.

APPENDIX C: COLLISION CROSS SECTION
FOR YERY LARGE ENERGIES OF THE INCIDENT
PARTICLES

It is interesting to determine the range of energy losses
for which the differential collision cross section is practi-
cally independent of the energy of the incident particle if
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its speed U is almost equal to the speed c of light. This
will explain the independence of the most probable ener-

gy loss in multiple collisions seen in Fig. 14. Let us con-
sider I3 =1—5, where 5=1/y is a small number (for
200-MeV electrons, 5= 6)& 10; for 5-GeV/c pions,
5=8&&10 ). The total differential collision cross sec-
tion, Eq. (3.8), consists of three parts: o(E)=or(E)
+o,(E)+cr„(E). It is readily seen that o i(E), Eq. (3.1),
as well as o.„(E)for small and intermediate energy losses,
Eq. (3.3), will be constant for values of 5 sufficiently
small. For large energy losses, Eq. (3.7), o„(E) will de-
pend on EM =2mc P y =2mc /3 l5 both because of the
relativistic correction term, P E/EM, and because of the
termination of o (E) at EM.

For cr, (E), Eq. (3.2), because of the term (1 —P e, ) in
the logarithm, there will always be a range of energy
losses for which o, (E) will depend on 5. This will be the
case whenever 5 is greater than 1 —E,(E). For E &500
eV, the terms inside the large square brackets of Eq. (3.2)
can be rewritten as follows, using Eq. (2.18) with
E„=E,=31.048 eV:

22
2+5 +C2E2

—1/2

(Cl)

where E =1, arctany=y, and P =1 (except in the loga-
rithmic term) have been used. Clearly, for 5 «(E, /E),
Eq. (C 1) does not depend on 5, while it does for
5»(E, /E) . A critical energy loss at which (E, /E) is

equal to 5 can be defined, Es E, /v'5=yE, ——. For
E & E&, 6 will determine o „which therefore will still de-
pend on speed.

Due to the leading factor c2, the contribution of o., to
o. will decrease rapidly for E »O~ =1.8 keV, the bind-
ing energy of the K shell. Thus, at E =10 keV, o., is
about one-tenth of cr If we. choose Es ——10 keV (giving
5=10 or y =300) and calculate the values of the term
in curly brackets for 5=0 and 10 ' (with
Ez

——1.4X10 ), we get the two values 11.98 and 11.63,
with a difterence of 3%. The total diA'erential cross sec-
tion, o(10 keV), will thus increase by only 0.3%%uo as y in-
creases from 300 to ~. For @=100, o, is 18% less than
for ~. In the numerical calculations, it was indeed
found that the largest change in cr(E) with 5 occurred
near E&, and that it was close to the value derived above.
At other energy losses, the inft. uence of small 6 will be
even smaller.

Finally, for o„(E), Eq. (3.6), even for 5&10, the
correction term P E/EM=P El(2mc P y )=5(E/
2mc ) clearly is small for E & 2mc = 1 MeV.

Thus, for the absorber thicknesses considered here, the
straggling functions are constant to within 1% for
y & 300, the major change being caused by o., at energy
losses E=yE, . This is also true for the total collision
cross section M0, but not for the stopping power M, :
since E~ and thus cr„(E) increases with y, M, will in-
crease [see Eq. (4.4)].

APPENDIX D: CALCULATION OF STRAGGLING
FUNCTIONS, "SHULEK FUNCTION"

The straggling functions given by Landau (1944),
Blunck and Leisegang (1950), Vavilov (1957), and Shulek
et al. (1966) can all be calculated with the same equation.
This function is given the generic name "Shulek' func-
tion. " For a particle of speed v =Pc and charge ze
traversing an absorber of thickness t, and for a total ener-

gy loss 6, it is given by

f (t Q 5 )= eK(1 +tel )

~E~

y2
X exp K

&
y—

0 M

)&cos[A, ,y+xf2(y)]dy, (D1)

with

f, (y) =P [lny —Ci(y)] —cos(y) —y Si(y),

f2(y) =y[lny —Ci(y)]+sin(y)+P Si(y),

A, ) =KA, +K lnK

(D3)

Si(y) and Ci(y) are the sine and cosine integral functions
(Abramowitz and Stegun, 1964), and

(D4)

=0.017 825z t jf3 keV, t in pm,

(A, ) = —(1 —I ) —P —Inrc,

EM =Mc2P y l[(M/2m)+(2m/M)+y];

(D5)

(D6)

(D7)

(3.6)

E~ is the maximum possible energy loss with

y =1/(1 —P ), M and m the rest masses of the heavy
particle and the electron, respectively, I =0".577 215,

I

( b. ) = t d T /dt =(2B (D8)

is the mean energy loss, dT/dt the stopping power (Sec.
IV.B), B the stopping number, Eqs. (4.3) or (4.4), and 52
is given by Eq. (4.5) (52 is further discussed in Appen-
dixes G and H).

It is in the general spirit of the approaches of Vavilov
and Shulek et aI. that the moments of the collision spec-
trum be extracted from the Laplace-transform integral.
Thus ( b, ) in Eq. (D4) should be defined by Eq. (D8). For
heavy ions, B of Eq. (4.3) can properly be used; however,
for electrons, it is open to argument what should be used
for B (Appendix E).

For the numerical calculations in the present study,
3000 values of the integrand of Eq. (Dl) were calculated,
linearly spaced in y; the maximum value y~ of the vari-
able y was chosen such as to make the argument of the
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APPENDIX E: MOST PROBABLE ENERGY LOSS
p A'ND WIDTH w OF THE LANDAU FUNCTION

Landau gave the following equation for the most prob-
able energy loss:

I b, =g —0.22278+1 —I —p +ln

+ln I
2mc 2P2y2

ln +in~+0. 2000 —P —5I I (E1)

Earlier values for the constant 0.2000 were 0.37 (Landau,
1944) and 0.198 [Maccabee and Papworth (1969), quoted
by Sternheimer and Peierls (1971) see, also, Ahlen
(1980)]. The equation includes the density efFect, which

2References to Sternheimer's earlier work will be found in
this paper.

exponential function less than —35.
In principle, a different equation, given, for example,

by Borsch-Supan (1961), should be used for the Landau
function (for which 52 ——v=0). In practice, values calcu-
lated with Eq. (Dl) with 52=0 and ~=10 differ by less
than 10 from the values given by Borsch-Supan for
—2. 5 & A, & 3.4. The Blunck-Leisegang function is ob-
tained with a.=O, 52&0. The Vavilov function is ob-
tained for 52 ——0 and arbitrary values of ~ (but with the
restriction that the absorber thickness must be much less
than the range of the particles). For the Shulek et al.
(1966) function, both 52 and v are greater than zero.

On an elderly IBM-AT computer with Aoating point
accelerator, programmed in FORTRAN, the calculation of
200 values of f (t, h, 52) takes 12 min. The functions

f~(y) and f2(y) are calculated only once. Thus there
seems to be no need for the approximation of the Landau
function by a sum of Gaussians or by polynomials used in
some publications. This was a reasonable approach in
1950 (Blunck and Leisegang used four Gaussians and had
fairly large errors in the tails). Findlay and DuSautoy
(1980) used a sum of nine Gaussians, aiming to improve
the Blunck and Leisegang approximation. An approxi-
mation with polynomials was given by Tabata and Ito
(1979). Since the Landau and the Vavilov functions
should only be used for thick absorbers, this discussion is
somewhat academic.

It is not very difficult to obtain the equivalent of Eq.
{Dl) for the spectrum of Eq. (3.7), i.e., calculating the
straggling function with Laplace transforms for the func-
tion 1/E in addition to that for 1/E . Unsatisfactory
results must be expected because the sharp rise of the
E term with decreasing F. (shown by the dashed line in
Fig. 8) differs substantially from the realistic spectrum of
Fig. 9.

had not beep used by Landau. It is valid for all particles
(Rohrlich and Carlson, 1954), but it does not include any
deviations from Eq. (3.5) such as those given in Eq. (3.7)
or the Manlier terms for electrons and positrons.

For y && 100, using 5 of Eq. (4.9), we get

ln + ln —0.8+4.447
2mc

I

12.325+ ln~I (E2)

If we enter the I value and Eq. (D5) for g, we obtain

I b, (keV) =t(0. 1791+0.017 821nt), (E3)

with t in pm {compare to Table V). We note that the ad-
dition of 5z to the Landau function in the mixed methods
increases the values of L h~.

Substantially different results (especially for electrons)
would be obtained if Eq. (D4), together with the standard
stopping-power values (Table V), were to be used.

The small values of r for small t in Table V can be un-

derstood qualitatively: for very thin absorbers, K-shell
electrons do not contribute to the energy loss. Thus, the
e6'ective thickness of the absorber can be considered to be
t, = —,",t. For t =10 pm, t, =8.57 pm, and we calculate

Lh =1.863 keV, which is close to the 'value 6 =1.857
keV in Table V.

For the Landau function, the full width at half rnax-
imurn. m depends on the absorber thickness and is in-
dependent of particle type and speed. The exact value is
wL ——4.018$. For the Vavilov functions, mv depends on t
and the particle speed, which is usually represented by
the parameter ~. For ~ &0. 1, uz is the same as mI . For
increasing values of x', w~ decreases gradually, reaching a
value 2.3g at ~=1. For the sake of simplicity, mL ——4g
has been used in this paper.

APPENDIX F: THE BLUNCK-LEISEGANG FUNCTION

A calculation of the straggling function with the un-
bounded Rutherford cross section, o (E)=k /E,
0&E & oo, would lead to divergent integrals. Both Lan-
dau (1944) and Vavilov (1957) circumvented this problem
by essentially extracting the first moment M& from the
first Laplace transform needed in their treatment. In or-
der to achieve a better approximation, Blunck and
Leisegang (1950) also extracted the second moment and
arrived at the equivalent of Eq. (Dl) for ~=0. In order
to avoid the tedious calculations of that equation, they
derived the following equation, using the convolution
theorem for Fourier integrals:

f (t, b„5,)= 1

(2~t5, )'"
&& I fL (b, —y)exp[ —y /(2t5z)]dy,
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where ft is the Landau function. This equation can thus
be considered a "mixed-method" approach. It may be
noted that the quantity K, in the Blunck and Leisegang
formulation is equal to 5z.

Shulek et al. (1967) also extracted M2 and arrived at
Eq. (Dl). Bichsel (1970a) showed that it is not practical
to extend the approach to higher moments, and also
showed where and how the approximation of Shulek
et al. will break down (see Fig. 8 of Bichsel, 1970a).

Straggling functions have been calculated with both
Eqs. (D 1) and (F1). If, rather than using tabulated
values, the Vavilov function is calculated with Eq. (Dl)
before the convolution of Eq. (F1) is performed, it is
more efficient to use Eq. (Dl) from the beginning [prefer-
ably including the noise contribution in 52 (Hancock
et al. , 1983)].

APPENDIX 6: VALUES OF 62

Those readers who believe that the Blunck-Leisegang
(1950) or Shulek et al. (1966) methods provide a viable
approach to the calculation of straggling functions (Ap-
pendixes D and F) should consider the following
thoughts about 5z. In the calculation of an energy-loss
spectrum f (5), any energy losses F. & b, in the primary
collision spectrum cannot contribute to f (b, ). This can
readily be seen in, the convolution approach, Eq. (7.1).
Any deviation from the Rutherford spectrum for energy
losses E ~ b, is irrelevant to the calculation off (b, ). The
upper limit of the integrals in Eqs. (4.1) and (4.7) used for
the calculation of 52 therefore should be 6 rather than
EM. While 52(b, ) can readily be obtained at the same
time that o (E) is calculated, it would be rather tedious to
introduce these values into the calculation of Eq. (Dl),
and this is something which I have not done. This ap-
proach would break down for absorbers thinner than
about 10 pm, where the structure of the single collision
spectrum would be important (Bichsel and Saxon, 1975).

An easy approach to get a single order-of-magnitude
value of 5z would be to calculate 52 up to EQ Ap the
most probable energy loss. For example, for 45-GeV/c
pions passing through a silicon detector 300 pm thick,
6 =85 keV. Then 52 for E& ——85 keV is 1930 keV /cm.
This is not much larger than the value 5z ——1794
keV /cm used in Fig. 13 to achieve a function with the
same width as the function from the present theory. This
approach also works for electrons and positrons, since

I

the terms in E/T seen in Uehling's (1954) Eqs. (9) and
(10) (E/T=Q/Ez) are small for energy losses small
compared to T.

Another example: 1-GeV electron passing through a
silicon detector 10 pm thick, Ap =1.85 keV. Then 52 for
Es ——1.85 keV is 368 keV /cm. Again, this is not much
larger than the value 52 ——359 keV /cm used in Fig. 11 to
achieve a function with the same width as the function
from the present theory.

Values of 52 calculated with this approach may give a
function with a width m close to the correct one, but the
function f (b, ) still will rise too slowly below b, and drop
too fast above (see Figs. 11—13). The reader, at his own
risk, may try this approach.

APPENDIX H: CALCULATION OF 52
ACCORDING TO SHULEK AND FANG

In their Eq. (8), Shulek et al. (1966) used the following
second moment of the straggling function (their nota-
tion):

co=/ E~(1 P /2)(Z—,tt/Z)+ g —,'I;f;ln
2mc2P2

(H 1)

where, for present purposes, Z,z ——Z, I,. is the excitation
energy for atomic shell i, and f, the corresp. onding oscil-
lator strength. This equation was modified by the au-
thors from Eqs. (787a) and (788) of Livingston and Bethe
(1937) to include relativistic effects. co is equal to tMz,
with Mz given by Eq. (4.1). The first term in the large
parentheses, multiplied by k, =N, k/p, is exactly M2,
Eq. (4.6), with g =k, t The secon. d term is 52..

s52=ks g —,'I;f;ln I (H2)

2mc PF52= k~ 3 V~ ln
J. 0 1

where I, is defined by

(H3)

It is not obvious whether the value 2mv in the
Livingston-Bethe equations should be replaced by
E~=2mc P or by Eq. (3.6). Furthermore, Eq. (H2) is a
rather rough approximation. Fano derived his Eq. (72),
expressed here as

lnI& ——fE lnE Im[ —1/E(E, O)]dE fE Im[ —I /e(E, O)]dE (H4)

rather than the customary I value (174 eV), Eq. (B4). For
silicon, I] ——2480 eV. I have not been able to evaluate the
term

used in Pano's Eq. (72), and therefore cannot give a value

f

of 52 calculated with this equation (see Bichsel, 1974, for
an approximation). Values used so far (e.g. , Hancock
et al. , 1983) for Eq. (H2) are given in Table X, together
with those needed in Eq. (H3), given by Inokuti et al.
(1978). The large difFerences between I; and I„ indicate
that +52 provides only a rough estimate of the value.

Since Livingston-Bethe, Sternheimer, and Fano in
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TABLE X. Values of f; and I; (eV) for Eq. (H2) from Sternhei-
mer (1966) and of fI and I„(eV) for Eq. (H3} from Inokuti
et al. (1978). Values of s62 (keV /cm ) for 45-GeV/c pions,
calculated with E~ ——2mc P (column 6) and EM from Eq. (3.6)
(column 7); k =178.25 keV/cm.

Shell
Column 1

K
L

M1

M2
total

2
14
8
14
2
14
2
14

I;
3

1841
112
41
12

1.6/14
8.4/14

4
14

I1;
5

5780
608
460

790
278

28
9

1105

S&2

2082
593

57
18

2750

APPENDIX I: INFLUENCE OF INTERNAL
BREMSSTRAHLUNG ON IONIZATION FUNCTIONS

For the thin absorbers under consideration in this pa-
per, bremsstrahlung need be considered only for incident
electrons and not for the heavier ions. A difference must
be expected between the energy-loss spectrum, including
the bremsstrahlung loss, and the energy deposition spec-
trum, because a considerable fraction of the bremsstrah-
lung photons will escape from the detector. For example,
in a 100-pm silicon detector, less than one-half of all
bremsstrahlung photons with energy of 10 keV produced
in the detector would be absorbed in it; for 20-keV pho-
tons, no more than 5% would be absorbed.

For incident electrons with an energy of 1 GeV, the en-

ergy loss due to bremsstrahlung is 104 MeV/cm com-
pared to 4.9 MeV/cm for the energy loss due to inelastic

their studies all used the ratio M2/Mz ——I+(52/Mz),
they apparently assumed that D2 ——52/M2 would be so
small for relativistic particles that it could be neglected,
and that the approximation EM ——2mU would be ade-
quate for all purposes. It will be seen in the example
below that D2 indeed is very small, but there will still be
a large correction to the Landau function for thin ab-
sorbers. Values of 5~ calculated with E~=2mc P and
with the value of EM from Eq. (3.6) are given in Table X.
As expected, s52(2mv ) (column 6) is much less than

+52(EM ) (column 7). The value of 52 calculated with Eqs.
(3.7) and (4.5) is 3270 keV /cm, even larger than the re-
sult (footnote 6) of column 7. The remarks about the use-
fulness of 62 made in Appendix Cx still apply.

It may be noted that the value used by Hancock et aI.
(1983) in their Fig. 4 is the value from the sixth column
of the table, 5z ——1105 keV /cm (their 5z ——33 keV is this
value multiplied by the absorber thickness t =0.03 cm;
see Fig. 13), thus an incorrect theoretical value gave ap-
parent agreement with experiment. The value of
D2 =5z /M2 = 1.7 X 10 for this case is indeed very
small (as anticipated above), but since for a 300-pm sil-
icon detector this is larger than x=1.7)&10, it will
considerably broaden the straggling function.

collisions (ICRU, 1984). The radiative energy loss to
photons with energies less than 100 keV is only 0.011
MeV/cm, though, or 0.2% of the collision loss [this esti-
mate was obtained from Eq. (27) and Fig. 14 in Heitler
(1944)]. According to Seltzer and Berger (1985), the
value is 0.015 MeV/cm. Thus we can expect that the
effect of bremsstrahlung will be quite small for the detec-
tors under consideration.

Quantitative results for the energy loss have been
presented by Blunck and Westphal (1951) in their Figs. 2
and 3. The quantity a =0.001 40 X (Z /A )p

X[—', ln(183/Z "~ ')+ —,'] cm ' is equal to 0.134 cm

for silicon. For the thicker absorber in Nagata et al.
(1975), R =0.29 cm, uR thus is 0.04, and, from Fig. 3 of
Blunck and %estphal, the increase in the full width at
half maximum u of the energy-loss function is approxi-
mately 6%. Only a fraction of this increase will occur in
the ionization spectrum. The effect therefore is of the
same order of magnitude as the contributions of reso-
nance and noise (Table IX). The bremsstrahlung contri-
bution seems to be too little to explain the relatively large
values of r in Fig. 16 for this absorber. Berger et al.
(1969) have discussed the problem for thicker absorbers.

REFERENCES

Abramowitz, M. , and I. A. Stegun, 1964, Eds. , Handbook of
Mathematical Functions, National Bureau of Standards, Ap-
plied Mathematical Series No. 55 (U.S. GPO, Washington,
D.C.).

Ahlen, S. P., 1980, Rev. Mod. Phys. S2, 121.
Aitken, D. W. , W. L. Lakin, and H. R. Zulliger, 1969, Phys.

Rev. 179, 393.
Allison, W. W. M. , and J. H. Cobb, 1980, Annu. Rev. Nucl.
Part. Sci. 30, 253.

Anholt, R., 1979, Phys. Rev. A I9, 1004.
Antoncik, E., G. di Cola, and L. Farese, 1970, Radiat. Eff. S, 1.
Ashley, J. C., 1982, J. Electron. Spectrosc. Relat. Phenom. 28,

177.
Ashley, J. C., R. H. Ritchie, and W. Brandt, 1972, Phys. Rev. A

8, 2402.
Aspnes, D. E., and A. A. Studna, 1983, Phys. Rev. 8 27, 985.
Baily, R., C. J. S. Damerell, R. L. English, A. R. Gillman, A. L.

Lintern, S. J. Watts, and F. J. Wickens, 1983, Nucl. Instrum.
Methods 213, 201.

Bak, J. F., A. Burenkov, J. B. B. Petersen, E. Uggerhgj, S. P.
Mufller, and P. Siffert, 1987, Nucl. Phys. B 288, 681.

Bearden, J. A. , and A. F. Burr, 1967, Rev. Mod. Phys. 39, 125.
Bellamy, E. H. , R. Hofstadter, W. L. Lakin, J. Cox, M. L. Perl,
W. T. Toner, and' T. F. Zipf, 1967, Phys. Rev. 164, 417.

Berger, M. J., S. M. Seltzer, S. E. Chappell, J. C. Humphreys,
and J. W. Motz, 1969, Nucl. Instrum. Methods 69, 181. The
differences between measured and calculated spectra are at
least partly explained by the ratio r~(e) of Table V.

Bethe, H. , 1930, Ann. Phys. (Leipzig) S, 325.
Bethe, H. A., L. M. Brown, and M. C. Walske, 1950, Phys. Rev.
79, 413.

Bichsel, H. , 1968, in Fundamentals, Vol. I of Radiation Do-
simetry, edited by F. H; Attix and W. C. Roesch (Academic,

Rev. Mod. Phys. , Vol. 60, No. 3, July 3 988



Hans Bichsel: Straggling in thin silicon detectors

New York/London), p. 157.
Bichsel, H. , 1970a, Phys. Rev. B 1, 2854.
Bichsel, H. , 1970b, Nucl. Instrum. Methods A 78, 277.
Bichsel, H. , 1972, in American Institute of Physics Handbook,

3rd ed. , edited by D. E. Gray (McGraw-Hill, New York), p. 8-
142.

Bichsel, H. , 1974, Phys. Rev. A 9, 571.
Bichsel, H. , 1985a, Nucl. Instrum. Methods A 235, 174.
Bichsel, H. , 1985b, Radiat. Protection Dosimetry 13, 91.
Bichsel, H. , 1987, Helv. Phys. Acta 60, 771.
Bichsel, H. , K. M. Hanson, and M. E. Schillaci, 1982, Phys.

Med. Biol. 27, 959.
Bichsel, H. , and M. Inokuti, 1976, Radiat. Res. 67, 613.
Bichsel, H. , R. F. Mozley, and W. A. Aron, 1957, Phys. Rev.

105, 1788.
Bichsel, H. , and L. E. Porter, 1982, Phys. Rev. A 25, 2499.
Bichsel, H. , and R. P. Saxon, 1975, Phys. Rev. A 11, 1286.
Bichsel, H. , and S. Yu, 1972, IEEE Trans. Nucl. Sci. 19 {6),172.
Bloch, F., 1933, Z. Phys. 81, 363.
Blunck, O., and S. Leisegang, 1950, Z. Phys. 128, 500.
Blunck, O. , and K. Westphal, 1951,Z. Phys. 130, 641.
Borsch-Supan, W. , 1961, J. Res. Nat. Bur. Stand. , Sec. B 65,
245.

Bohr, N. , 1948, Dan. Mat. Fys. Medd. 18, No. 8 (second edi-
tion, 1953).

Brenner, D. J., M. Zaider, J. F. Dicello, and H. Bichsel, 1981, in
Proceedings of the 7th Symposium on Microdosimetry, edited
by J. Booz, H. G. Ebert, and H. D. Hartfiel (Harwood, Lon-
don), p. 677.

Brown, F. C., R. Z. Bachrach, and M. Skibowski, 1977, Phys.
Rev. B 15, 4781.

Chechin, V. A. , L. P. Kotenko, G. I. Merson, and V. C. Yermi-
lova, 1972, Nucl. Instrum. Methods 98, 477.

Chechin, V. A. , and V. C. Ermilova, 1976, Nucl. Instrum.
Methods 136, 551.

Chen, C. H. , A. E. Meixrier, and R. M. Kincaid, 1980, Phys.
Rev. Lett. 44, 951.

Choi, B.-H. , E. Merzbacher, and G. S. Khandelwal, 1973, At.
Data 5, 291.

Clementi, E., and D. L. Raimondi, 1963, J. Chem. Phys. 38,
2686.

Cobb, J. H. , W. W. M. Allison, and J. N. Bunch, 1976, Nucl. In-
strum. Methods 133, 315.

Croitoru, N. , P. G. Rancoita, and A. Seidman, 1985, Nucl. In-
strum. Methods A 234, 443.

Davidovic, D. M. , B. L. Moiseiwitsch, arid P. H. Norrington,
1978, J. Phys. B 11, 847.

Dehmer, J. L., M. Inokuti, and R. P. Saxon, 1975, Phys. Rev. A
12, 102. Dr. Saxon kindly gave me tables of DOS.

Del Grande, N. K., 1986, private communication.
Eisen, F. H. , G. J. Clark, J. Bgfttiger, and J. M. Poate, 1972, Ra-
diat. Eff. 13, 93.

Ermilova, V. C., L. P. Kotenko, and G. I. Merzon, 1977, Nucl.
Instrum. Methods 145, 555.

Ershov, O. A. , and A. P. Lg.kirskii, 1966, Fiz. Tverd. Tela Len-
ingrad 8, 2137 [Sov. Phys. Solid State 8, 1699 (19671].

Esbensen, H. , O. Fich, J. A. Golovchenko, S. Madsen, H. Niel-
sen, H. E. Schi@tt, E. Uggerh@j, C. Vraast-Thomsen, G. Char-
pak, S. Majewski, G. Odyniec, G. Petersen, F. Sauli, J. P. Pon-
pon, and P. Siffert, 1978, Phys. Rev. B 18, 1039.

Evans, R. D., 1967, The Atomic Nucleus, eleventh printing
(McGraw-Hill, New York).

Fano, U. , 1963, Arinu. Rev. Nucl. Sci. 13, 1.
Fano, U. , and J. W. Cooper, 1968, Rev. Mod. Phys. 40, 441.

Ferrell, R. A. , 1956, Phys. Rev. 101, 554.
Findlay, D. J. S., and A. R. DuSautoy, 1980, Nucl. Instrum.

Methods 174,- 531.
Gahwiller, C., and F. C. Brown, 1970, Phys. Rev. B 2, 1918.
Geretschlager, M. , 1987, Nucl. Instrum. Methods B 28, 289.
Gerward, L., 1981,J. Phys. B 14, 3389.
Gerward, L., 1982, High Precision X-Ray A tten uation

Coefftcients Measured by an Energy Dispersive Method R.e
vised Values for Si, Cu and Graphite (Technical University of
Denmark, Lyngby), LTF III Report No. 40.

Hall, G., 1984, Nucl. Instrum. Methods 220, 356.
Hancock, S., F. James, J. Movchet, P. G. Rancoita, and L. Van-

Rossum, 1983, Phys. Rev. A 28, 615.
Hancock, S., F. James, J. Movchet, P. G. Rancoita, and L. Van-

Rossum, 1984, Nucl. Instrum. Methods Phys. Res. B 1, 16.
Hanke, C. C., and H. Bichsel, 1970, K. Dan. Vidensk. Selsk.

Mat. Fys. Medd. 38, No. 3.
Heitier, W. , 1944, The Quantum Theory of Radiation, 2nd ed.

(Oxford University, London).
Henins, I., and J. A. Bearden, 1964, Phys. Rev. A 135, 890.
Herman, F., and S. Skilman, 1963, Atomic Structure Calcula-

tions (Prentice-Hall, Englewood Cliffs).
Herring, J. R., and E. Merzbacher, 1957, J. Elisha Mitchell Sci.
Soc. 73, 267.

Hinz, H.-J., 1979, "Elektronenenergieverlustmessungen an Si,
Ge und Al. . . . ,"Dissertation (Universitat Hamburg).

Hinz, H.-J., and H. Raether, 1979, Thin Solid Films 58, 281.
Hunter, W. R., 1966, in OptEcal Properties and Electronic Struc-

ture of Metals and Alloys, Proceedings of the International
Colloquium on the Optical Properties and Electronic Struc-
ture of Metals and Alloys, edited by F. Abeles {North-
Holland, Amsterdam), p. 136.

Hunter, W. R., 1985, private communication.
ICRU, 1979, AUerage Energy Required to Produce an Ion Pair

(International Commission on Radiation Units and Measure-
ments, Bethesda, MD), Report No. 31. As used in Sec. IX, 8'
is the "differential value w" on p. 1 of the reference.

ICRU, 1984, Stopping Powers for Electrons and Positrons (Inter-
national Commission on Radiation Units and Measurements,
Bethesda, MD), Report No. 37.

Inokuti, M. , 1971,Rev. Mod. Phys. 43, 297.
Inokuti, M. , Y. Itikawa, and J. E. Turner, 1978, Rev. Mod.

Phys. 50, 23.
Inokuti, M. , T. Baer, and J. L. Dehmer, 1978, Phys. Rev. A 17,

1229.
Inokuti, M. , and D. Y. Smith, 1982, Phys. Rev. B 25, 61.
Ispirian, K. A. , A. T. Margarian, and A. M. Zverev, 1974, Nucl.

Instrum. Methods 117, 125.
Jackson, J. D., and R. L. McCarthy, 1972, Phys. Rev. B 6, 4131.
Jellison, G. E., and F. A. Modine, 1983, Phys. Rev. B 27, 7466.
Julliot, C., and M. Cantin, 1978, Nucl. Instrum. Methods 157,

235.
Kellerer, A. M., 1968, Mikrodosimetrie (Strahlenbiologisches

Institut der Universita, t Munchen), G. S. F. Bericht B-1.
Knop, G., A. Minten and B.Nellen, 1961,Z. Phys. 165, 533.
Kohlhaas, E., and F. Scheiding, 1969, in Proceedings of the 5th

International Congress on X-Ray Optics and Microanaiysis,

Tubingen„edited by G. Mollenstedt and K. H. Gaukler
(Springer, Berlin), p. 193.

Kolata, J. J., T. M. Amos, and Hans Bichsel, 1968, Phys. Rev.
176, 484.

Lmgsgaard, Erik, 1982, private communication.
Landau, L., 1944, J. Phys. (Moscow) VIII, 201.
Lapique, F., and F. Piuz, 1980, Nucl. Instrum. Methods 175,

Rev. Mod. Phys. , Vol. 60, No. 3, July 1988



Hans Bichsel: Straggling in thin silicon detectors 699

297.
Laulainen, N. , and H. Bichsel, 1972, Nucl. Instrum. Methods

104, 531.
Lennard, W. N. , H. Geissel, K. B.Winterbon, D. Phillips, T. K.

Alexander, and J. S. Forster, 1986, Nucl. Instrum. Methods A
248, 454.

L'Hoir, A. , 1984, Nucl. Instrum. Methods 223, 336.
Lindhard, J., and A. Winther, 1964, K. Dan. Vidensk. Selsk.

Mat. Fys. Medd. 34, No. 4.
Livingston, M. S., and H. A. Bethe, 1937, Rev. Mod. Phys. 9,

245.
Louie, S. G., J. R. Chelikowski, and M. L. Cohen, 1975, Phys.
Rev. Lett. 34, 155.

Maccabee, H. D., and D. G. Papworth, 1969, Phys. Lett. A 30,
241.

Maccabee, H. D., M. R. Raju, and C. A. Tobias, 1968, Phys.
Rev. 165, 469.

Manson, S. T., 1972, Phys. Rev. A 6, 1013.
McGuire, E. J., 1986, Phys. Rev. A 33, 3572.
McGuire, E. J., J; M. Peek, and L. C. Pitchford, 1982, Phys.

Rev. A 26, 1318.
Miller, J. H. , L. H. Toburen, and S. T. Manson, 1983, Phys.

Rev. A 27, 1337.
M@ller, S. P., 1986, "Experimental investigations of energy loss

and straggling together with inner shell-excitations of relativis-
tic projectiles in solids, "Ph.D. thesis (University of Aarhus) ~

Mgfller, S. P., et al. , 1982, private communicaf;ion.
Nagata, K., T. Doke, J. Kikuchi, N. Hasebe, and A. Nakamoto,

1975, Jpn. J. Appl. Phys. 14, 697.
Ogle, W. , P. Goldstone, C. Gruhn, and C. Maggiore, 1978,

Phys. Rev. Lett. 40, 1242.
Perez, J. Ph. , J. Sevely, and B. Jouffrey, 1977, Phys. Rev. A 16,

1061.
Philipp, H. R., 1972, J. Appl. Phys. 43, 2835.
Press, W. H. , B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling, 1986, numerical Recipes (Cambridge University,
New York), p. 191.

Raether, H., 1980, Excitation of Plasmons and Interband Tran
sitions by Electrons, Springer Tracts in Modern Physics, Vol.
88 (Springer, Berlin/Heidelberg/New York).

Ritsko, J. J., S. E. Schnatterly, and P. C. Gibbons, 1974, Phys.
Rev. Lett. 32, 671.

Rohrlich, F., and B.C. Carlson, 1954, Phys. Rev. 93, 38.
Schimmerling, W., S. Kaplan, T. S. Sub ramanian, W. J.
McDonald, G. Gabor, A. Sado%, and E. Alpen, 1983, in
Proceedings of the 8th Symposium on Microdosimetry, edited

by J. Booz and H. G. Ebert (Commission of the European
Communities, Luxembourg), p. 311.

Scott, W. T., 1963, Rev. Mod. Phys. 35, 231.
Seltzer, S. M. , and M. J. Berger, 1985, Nucl. Instrum. Methods
B 12, 95.

Shiles, E., T. Sasaki, M. Inokuti, and D. Y. Smith, 1980, Phys.
Rev. 8 22, 1612.

Shiles, E., and D. Y. Smith, 1983, private communication.
Shulek, P., B.M. Golovin, L. A. Kulyukina, S. V. Medved', and
P. Pavlovich, 1966, Ysd. Fiz. 4, 564 [Sov. J. Nucl. Phys. 4, 400
(1967)].

Sternheimer, R. M. , 1966, Phys. Rev. 145, 247.
Sternheimer, R. M. , and R. F. Peierls, 1971, Phys. Rev. B 3,
3681. References to Sternheimer's earlier work will be found
in this paper.

Sternheimer, R. M. , S. M. Seltzer, and M. J. Berger, 1982, Phys.
Rev. B 26, 6067.

Sternheimer, R. M. , M. J. Berger, and S. M. Seltzer, 1984, At.
Data Nucl. Data Tables 30, 261.

Stiebling, J., and H. Raether, 1978, Phys. Rev. Lett. 40, 1293.
Storm, E., and H. I. Israel, 1970, Nucl. Data Tables A 7, 565.
Sturm, K., and L. E. Oliveira, 1980, Phys. Rev. B 22, 6268.
Symon, K. R., 1948, "Fluctuations in energy lost by high energy

charged particles in passing through matter, " Ph. D. thesis
(Harvard University).

Tabata, T., and R. Ito, 1979, Nucl. Instrum. Methods 158, 521.
Talman, R., 1979, Nucl. Instrum. Methods 159, 189.
Tarrio, C., and S. E. Schnatterly, 1986a, Bull. Am. Phys. Soc.,

Ser. 2, 31, 350.
Tarrio, C., and S. E. Schnatterly, 1986b, private communica-

tion.
Tomboulian, D. H. , and D. E. Bedo, 1956, Phys. Rev. 104, 590.
Tschalar, C., 1968a, Nucl. Instrum. Methods 61, 141.
Tschalar, C., 1968b, Nucl. Instrum. Methods 64, 237.
Tschalar, C., and Hans Bichsel, 1968, Phys. Rev. 175, 476.
Tung, C. J., R. H. Ritchie, J. C. Ashley, and V. E. Anderson,

1976, Inelastic Interactions of Swift Electrons in Solids (Oak
Ridge National Laboratory, Oak Ridge), Report No. ORNL-
TM-5188.

Uehling, E. A. , 1954, Annu. Rev. Nucl. Sci. 4, 315.
Vavilov, P. V., 1957, Zh. Eksp. Teor. Fiz. 32, 920 [Sov.

Phys. —JETP 5, 749 (1957)].
Veigele, Wm. J., 1973, At. Data Tables 5, 51.
Vina, L., and M. Cardona, 1984, Phys. Rev. B 29, 6739.
Walske, M. C., 1952, Phys. Rev. 88, 1283.
Williams, E. J., 1929, Proc. R. Soc. London, Ser. A 125, 420.

Rev. Mod. Phys. , Vol. 60, No. 3, July 1988


