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This article presents a unified formulation and review of an extensive class of radiation effects and devices
based on free or quasifree electrons. The effects and devices reviewed inc/ude slow-wave radiators [such as
Cerenkov, Smith-Purcell, and TWT (traveling-wave tube) effects and devices], periodic bremsstrahlung ra-
diators [such as undulator radiation, magnetic bremsstrahlung FEL's (free-electron lasers), and coherent
bremsstrahlung in the crystal lattice], and transverse-binding radiators [such as the CRM (cyclotron reso-
nance maser) and channeling radiation]. Starting from a general quantum-electrodynamic model, both
quantum and classical effects and operating regimes of these radiation devices are described. The article
provides a unified physical description of the interaction kinematics, and presents equations for the char-
acterization of spontaneous and stimulated radiative emission in these various effects and devices. Univer-
sal relations between the spontaneous and stimulated emission parameters are revealed and shown to be
related (in the quantum limit) to Einstein relations for atomic radiators and (in the classical limit) to the
relations derived by Madey for magnetic brernsstrahlung FEL for on-axis radiative emission. Examples
for the application of the formulation are given, estimating the feasibility of channeling radiation x-ray
laser and optical regime Smith-Purcell FEL, and deriving the gain equations of magnetic bremsstrahlung
FEL and CRM for arbitrary electron propagation direction, structure (wiggler) axis, and radiative emis-
sion angle.
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I. INTRODUCTlON

The goal of this paper is to present a unified formula-
tion for characterizing spontaneous and stimulated radia-
tion emission parameters of quasifree electrons. By the
term quasifree electrons we refer to electrons propagating
in electromagnetic field configurations in which the elec-.
trons are unbound at least in one dimension, and thus oc-
cupy a continuum of quantum states in this dimension
(the propagation direction). Specifically we apply the for-
mulation to problems in which the fields that the propa-
gating electron experiences are either uniform or periodic
in the propagation (z) dimension. In these cases the lon-
gitudinal quantum states are continuous (if the structure
is considered infinitely long) and characterized by the
electron wave number k, =p, /A, where p,. is the electron
axial momentum.

There is a large number of spontaneous and stimulated
emission radiation effects that fit the above definition.
These radiation effects and devices were previously
classified into three classes (Gover and Yariv, 1978a;
Pantell, 1980).

(1) Slow-wave radiators: These produce radiation
effects in which the electrons pass through a structure in
which electromagnetic wave components can propagate
with a phase velocity slower than the speed of the elec-
trons (and thus, in general, slower than the speed of light
c). The electrons in these structures are basically free,
and only the radiation field is perturbed. This class in-
eludes radiation effects such as Cerenkov radiation (Jelly,
1958; Coleman and Enderby, 1960; Ulrich, 1967;
Piestrup et al. , 1973; Felch et al. , 1981; Kimura et al. ,
1982; Von Laven et al. , 1982), Smith-Purcell radiation
(Smith and Purcell, 1953; Salisbury, 1970; Bachheimer,
1972; Van den Berg, 1973; Burdette and Hughes, 1976;
Gover et al. , 1984), and coherent transition radiation
(Chu et al. , 1980, 1981; Piestrup and Finman, 1983; Dat-
ta and Kaplan, 1985), and devices such as the Traveling-
Wave Amplifier (a microwave electron tube; see Pierce,
1950) and the Orotron (a 20-mm-wavelength tube; see
Rusin and Bogomolov, 1969; Mizuno et al. , 1973; Kor-
neyenkov and Shestopalov, 1977; Wortman et al. , 1981).
Such radiation effects were also considered with semicon-
ductor carriers propagating in structures with periodic
perturbation of the index of refraction (Solimar and Ash,
1966; Sumi, 1966; Gover et al. , 1974; Gover and Yariv,
1975).

(2) Periodic bremsstrahlung radiators: These produce
radiation effects in which the electron propagates in a
structure where it is subjected to a spatially periodic

force throughout its traversal along the free propagation
dimension. This class includes radiation effects such as
synchrotron undulator radiation (Motz, 1951; Kincaid,
1977) and coherent bremsstrahlung in the crystal lattice
(Uberal, 1956; Walker et al. , 1975; Kurizki and McIver,
1982; Spence et al. , 1983), and stimulated emission de-
vices such as the magnetic bremsstrahlung free-electron
laser (Elias et al. , 1976; Deacon et al. , 1977), the Ubitron
microwave tube (Philips, 1960) and their electrostatic
analogues (Bekefi and Shefer, 1979; Gover, 1980a). Such
radiation effects can also take place with semiconductor
carriers in superlattice structures (Tsu and Esaki, 1973).
Similar radiation effects can also take place when the
periodic force that operates on the electron is time vary-
ing. These include spontaneous and stimulated Compton
(Thompson) scattering of intense radiation waves off an
accelerated electron beam (Pantell et al. , 1968). Howev-
er, in the more restrictive context of this paper we will
exclude these cases.

(3) Transverse binding radiators: These produce radia-
tion effects in which the electron propagates in a struc-
ture where a transverse (perpendicular to the direction of
propagation) binding force is operating on it. The elec-
tron thus oscillates in the transverse dimensions and is
"free" in the axial direction. Included in this category
are radiation effects such as the cyclotron resonance
maser (Twiss, 1958; Schneider, 1959) and channeling ra-
diation in a crystal lattice (Kumakhov, 1976; Terhune
and Pantell, 1977), and radiation devices such as the
Gyrotron microwave tube (Hirshfield and Wachtel, 1964;
Hirshfield and Granatstein, 1977). Such radiation effects
are also possible with drifting semiconductor carriers in
an axial magnetic field (Fassum and Ancker-Johnson,
1973).

The purpose of this paper is to reveal the basic com-
mon quantum-electrodynamical features of all these radi-
ation schemes. This interest is motivated by the
significant developments in the field of free-electron
lasers research. Since every spontaneous emission radia-
tion effect can be turned, in principle, into a stimulated
emissio~ device, revelation of the common features of the
various radiation effects and the relations between their
spontaneous and stimulated emission may help in the in-
vention and development of new free-electron lasers, in-
cluding possible developments in such attractive wave-
length regimes as the x-ray and vuv (very ultraviolet) re-
gimes.

One of the goals of this paper is to derive the general
relations between spontaneous and stimulated emission of
radiation in quasifree-electron radiation effects. In most
cases the spontaneous emission parameters can either be
calculated with less difficulty than the stimulated emis-
sion parameters or be measured experimentally. Conse-
quently, such relations can be useful for estimating the
feasibility of stimulated emission devices on the basis of
the known (calculated or measured) spontaneous emis-
sion parameters of any given radiation effect.

That there exists a basic relation between the spon-
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taneous and stimulated emission of every radiation efFect
is a fundamental result of quantum electrodynamics
(Feynman, 1961) and was stated even before the modern
development of QED by Einstein (Haken, 1981). Howev-
er, the application of Einstein relations to the estimation
of the stimulated emission gain of various quasifree-
electron radiation schemes is not straightforward. Exten-
sion of Einstein relations to account for certain free-
electron radiation processes is described in Bekefi's book
(Bekefi, 1966). More recently, simple classical relations
between spontaneous and stimulated emission of free
electrons in a magnetic bremsstrahlung free-electron
laser scheme were derived by Madey (1979) and were
shown later to have wider range validity than originally
assumed (Krinsky et al. , 1982; Kroll, 1982). One of the
goals of this paper is to extend these relations to all kinds
of quasifree-electron radiation schemes and to describe
their quantum and classical limits in a unified manner.

Although most of the radiation efFects mentioned
above can be analyzed classically in their practical re-
gimes of operation, a full quantum-electrodynamical
model is used here to describe both the electron wave
function and the electromagnetic field, the reason being
that in the quantum-electrodynamic theory the connec-
tion between spontaneous and stimulated emission is
straightforward. We later take the classical limit to ob-
tain the corresponding relation between spontaneous and
stimulated emission of classical radiation devices.

Extensive work was carried out recently on quantum-
mechanical analysis of the magnetic bremsstrahlung
free-electron lasers (Madey, 1971; Elias et al. , 1976;
McIver and Federov, 1979; Becker, 1980; Stenholm and
Bambini, 1981; Bosco et al. , 1983; Dattoli, 1983), even
though this type of laser would operate in the quantum
regime only under very strenuous conditions (supposedly
in the x-ray regime, ' see Gea-Banacloche et al. , 1983;
Gover, 1984; Renieri, 1984). Few works were published
on the quantum treatment of stimulated emission in
slow-wave structures (Dekker, 1977; Soln, 1981; Becker
and McIver, 1982). Channeling radiation is usually treat-
ed quantum mechanically in the transverse dimensions
(Pantell and Alguard, 1979), and sometimes also in the
longitudinal dimension (Beloshitskii and Kumakhov,
1978; Kurizki and McIver, 1984). The three-dimensional
quantum-mechanical model that will be employed in this
paper is more general than in the previous works. It de-
scribes in a unified way the various radiation schemes
listed above in various operating regimes, permitting ar-
bitrary mutual orientation of the structure axis, electron
propagation direction, and radiative emission direction.
%'e do not treat, however, any photon statistics and
quantum coherence aspects of the radiation (Bonifacio,
1980; Becker and McIver, 1983; Dattoli et al. , 1985).

We note that the sti~ulated emission gain regimes
considered here are only the homogeneously and inhorno-
geneously broadened low gain tenuous beam gain regimes
(Grover and Sprangle, 1981). Collective efFects, high gain,
and large signal saturation regimes are not considered

here. The units used in this paper are rationalized SI
units. The interacting charge is assumed in all cases to
be an electron of charge —e. In radiation schemes utiliz-
ing positrons (or holes in a semiconductor), the only
transformation necessary is —e —+e.

II. KINEMATIC CONSIDERATIONS

(2.1)

(22)

cannot be satisfied simultaneously in such a transition.
Here

(2.3)

4k ——c+(iiik) +(mc) (2.4)

are the electron momentum and energy, respectively, i
represents initial, f represents final, and q is the radiation
wave vector,

~ q ~

=co/c.
The principles of all the radiation efFects and FEL

(free-electron laser) devices listed above are based on per-
turbing the energy or wave number (momentum) of the
electron or the radiation wave in such a way that the en-
ergy and momentum conservation laws (and possibly oth-
er conservation or selection rules) are satisfied in the radi-
ative emission process. In the slow-wave radiation efFects
this is made possible by increasing the wave number q by
one of two means: (a) propagating the radiation in a
dielectric matter with a refractive index n & 1 (as in the
Cerenkov eft'ect), (b) propagating the wave in an axially
periodic structure where the structure endows the radia-
tion wave components with "crystal" momentum mk e„
where k =2m. /A, , m =+1,+2, . . . , and 1, is the
period of the periodic structure. The crystal-
mornenturn-assisted radiative emission and absorption
processes are depicted in Fig. 1(a) for m =1. The period-
ic bremsstrahlung radiation efFects are based on endow-
ing "crystal momentum" mk e, to the electron wave by
propagating the electron in a force field that is axially
periodic. Emissive radiative transition can take place
then via an electron wave component with increased
wave number in the final state (m ~0) or a decreased
wave number in the initial state (m &0). See Fig. 1(b) in
which an m =+1 example is depicted. The transverse

A considerable amount of understanding and a full
description of the radiation wavelength conditions can be
gained from mere kinematic considerations. Before em-
barking on. a detailed solution of the interaction dynam-
ics, we will exploit kinematic considerations in order to
derive important relations for the radiation parameters of
quasifree-electron radiation efFects.

It is well known that a free electron in an infinite free
space can never radiate, since the conservation of energy
and momentum conditions
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FIG. 1. e —k, diagrams and radiative transitions.

confinement radiation effects are based on transitions of
electrons from energy branches corresponding to higher
transverse energy states to energy branches correspond-
ing to lower transverse energy states for cases of emis-
sion, and, uice uersa, in cases of absorption [see Fig. 1(c)].
A combined case in which radiation processes involving
both interbranch transitions and an exchange of longitu-
dinal crystal momentum are depicted in Fig. 1(d).

It should be noted that Fig. 1 is only an illustration of
a one-dimensional (z) model, which is easier to display.
We will discuss later the three-dimensional case. The
curve in Fig, 1(a) represents in the case of an entirely free
electron the hyperbolic k, dependence of the energy
dispersion curve (2.4). The energy dispersion curves in
Figs. 1(b) and 1(c) are also nearly hyperbolic, but they are
modified by the respective static periodic force or trans-
verse binding force in which the electron propagates.

In a structure with periodic boundaries in the z dimen-

sion the electromagnetic field modes assume the Floquet
form (Collin, 1960),

A(r)= g A (r~)exp[i(q, +mk„)z] . (2.5)

g(r)= g 4 (r~)exp[i(k, +mk )z] . (2.6)

This is a special case of the Bloch theorem for an electron

In such structures the interaction between the electron
and the electromagnetic wave can be mediated via one of
the components (space harmonics) of Eq. (2.5) withI ~ 0, which have an increased wave number and thus
can satisfy the momentum conservation equation (2.2).
In a structure that applies a periodic potential on the
electron along the propagation direction (z), it is the elec-
tron wave function that satisfies the Floquet theorem
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p„ l k (r)='Il„ l k (rl)exp(ik, z), (2.7)

(2.8)

We may define the transverse energy E„l(k, ) as the in-
cremental energy relative to the fundamental transverse
quantum numbers branch 6o o I, ,

@,l, k @0,0, k ++,l(k (2.9)

In the particular case that the Hamiltonian is separable
into a term that depends only on the transverse coordi-
nates and one that depends only on the longitudinal coor-
dinates, the transverse energy E„I is iridependent of k„
each energy branch is displaced from its neighbors by a
fixed amount independent of the abscissa coordinate, and
they are all parallel to each other in the 8—k, diagram
plane. This is the case in the nonrelativistic electron lim-
it of an axially uniform structure, where H, l H(r )l——
—(A' /2m)B /Bz . A well-known example for such a
case is an electron in an axial magnetic field (Landau,
1930). In the nonrelativistic limit the transverse energy
branches (Landau levels) are equispaced with a uniform
k, -independent spacing: AE =Am, . The cyclotron fre-
quency is co, =eB/(mc). In the relativistic regime the
energy-level spacings are not equal and are k, dependent.

Figure 1(c) illustrates a section of the multiple-
transverse energy branches diagram of a transverse bind-

wave function in a one-dimensional "crystal" lattice.
The interaction in this case is due to the space harmonics
of the electron wave function (2.6), which are endowed
with excess crystal momentum in the initial or final states
and thus can satisfy the conservation of momentum con-
dition (2.2). The electron energy dispersion curve in a
periodic structure is a Brillouin diagram, and the elec-
tron radiative transition can be described, as illustrated
in Fig. 1(b), as an interband transition in which the elec-
tron makes a transition into a lower (higher) energy
passband in a lower (higher) Brillouin zone for the cases
of emission (absorption), respectively (Gover and Yariv,
1978a). For simplicity we assumed in Fig. 1(b) that the
periodic perturbation is weak enough, so that the energy
dispersion curve looks as if the free-space energy curve
displaced infinite times by mk in the k, direction. We
assume that the electron energy is away from the forbid-
den bands (which are not shown in the diagram, but are
marked by short vertical lines), and we only show parts
of the Brillouin zones that correspond to k, &0 and

m = —1,0, 1.
The transverse binding radiation schemes are based on

structures where an axially uniform transverse confining
potential operates on the electron. Due to the axial
translation symmetry and the transverse confinement, the
electron is characterized by a continuous axial wave
number k, (eigenvalue of the axial momentum operator)
and by a set of discrete transverse quantum numbers n, I:

ing electron radiation scheme. We point out that, con-
trary to the other two types of schemes, the transitions in
the latter case become possible due to modification of the
energy conservation condition (2.1) instead of the
momentum conservation condition (2.2). The electron is
capable of performing a radiative transition with a small
change in its axial momentum. It is capable of emitting
(absorbing) the large photon energy by making a transi-
tion to a lower (higher) transverse energy branch for the
cases of emission or absorption, respectively.

In addition to these three radiation schemes, any corn™
bination of these is also possible. For instance, an elec-
tron that is channeling in the crystal lattice between crys-
talline planes may emit channeling radiation due to the
transverse binding potential applied on it in the channel.
However, it may at the same time also emit coherent
bremsstrahlung radiation due to the axial periodic poten-
tial applied on it when traversing through periodic crys-
tal planes (Kurizki and McIver, 1982; Spence et al. ,
1983). It may also emit Smith-Purcell-type radiation due
to the effect on the radiation wave of the dielectric con-
stant modulation along the crystal lattice periodicity
(Gover and Yariv, 1978a). The energy diagram in this
case is a combination of Figs 1(a)., 1(b), and 1(c), and its
illustration would be quite elaborate [a simple special
case is depicted in Fig. 1(d)]. In general, any electron
state needs to be characterized by two transverse discrete
quantum numbers n, l, an axial quantum number m (cor-
responding to the space harmonic number or Brillouin-
zone number), and a continuous-state wave number k, .
In the slow-wave radiation mechanism the radiative pro-
cess involves transitions in which (n;, l;, m; )
—( nf lf mf ), and the excess momentum that is pro-
duced in the radiative transition is imparted by a slow
space harmonic of the radiation field. In the pure brems-
strahlung radiation mechanism (n;, l; ) = (nf, lf ) and
m,.&mf. In the pure transverse binding radiation mech-
anism m; =mf and (n;, l; )&(nf, lf ). In the most general
case (Kurizki and McIver, 1982) (n;, l, m; )&(nf., lf, mf ).
In all cases k„&k,f, and the electron imparts some of its
axial momentum to the radiation field.

In considering the kinematics of the various radiation
schemes, we will distinguish between cases in which the
electron transverse quantum numbers are discrete (as in
the channeled electron example) and cases in which the
transverse quantum numbers are continuous. Except for
the channeled electron and the cyclotron resonance
maser examples, in most radiation schemes and FEL's
the large transverse dimensions of the structure warrant
a model of continuous transverse states. Nevertheless,
we choose to start our discussion with the analysis of the
case of transversely discrete states, since it can be de-
scribed in terms of simple two-dimensional planar dia-
grams and is thus easier to visualize. We will generalize
the discussion later to the case of transversely continuous
states. It should be noted though- that most quantum
treatises of the FEL, which were previously published,
assume that all the fields are transversely infinite and
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transversely uniform, and that the electron transverse
wave number does not change in the transition (pure axi-
al recoil). Such an assumption is equivalent to a case
model of transversely discrete states.

where

i3k,
(2.18)

A. The case of transversely discrete states:
Intrabranch (longitudinal) transitions

@k . E
—@k ~ E

=+&~
ZE E E zf "f f (2.10)

The most general radiative transition in the case of
transversely discrete states is limited by the conservation
of energy and longitudinal momentum conditions:

is the electron group velocity (electron classical velocity).
Since q,o ——q, (roo), we need to use an explicit equation

for the electromagnetic dispersion relation in order to ob-
tain an explicit equation for the radiation frequency co0.

We distinguish between two different electromagnetic
structures. If the electromagnetic wave structure (or
resonator) is forcing quantization of the electromagnetic
transverse wave number qi (as is the case in a
waveguide), then

k„.—k,f ——q, +1k (2.11)
q(ro) =qi+e, q, (ro) . (2.19)

assuming that other possible conservation or selection
rules for transition between the two transverse states
(such as angular momentum and parity conservation) are
satisfied. We first analyze the schemes of slow-wave and
bremsstrahlung radiation effects. In both of these
schemes (n;, l; ) = (nf, If ), and hence all the energy curves
in Figs. 1(a) and 1(b) correspond to a single transverse
quantum numbers branch, which we define as

(2.12)

(Here we assumed the case of most relevance, one in
which the waveguide axis is along the electron propaga-
tion direction. ) In other electromagnetic structures,
which correspond to most practical realizations of
Smith-Purcell radiation, synchrotron undulator radiation
(or bremsstrahlung FEL's), and other radiation schemes,
the electromagnetic dispersion function is the free-space
relation

q(ro) =e— (2.20)

= irido, , (2.13)

Such transitions will be termed intrabranch or longitudi-
nal transitions.

For simplicity we assume in all cases interaction via
the first-order space harmonic (m =1). The general case
can always be restored by substituting k ~mk . An ex-

V'

ception is the case of Cerenkov radiation, where the en-
tire formulation still applies with k =O. The conserva-
tion of energy and longitudinal momentum conditions, in
the emission and absorption radiative processes which
are displayed in Figs. 1(a) and 1(b), are then given by

In both cases we may write

CO

q, (ro) =—cos6q, (2.21)

Ugz~~

1 —Pg, cos8q
(2.22)

where Bq ——cos '(eq e, ) in the second case and 6 is the
waveguide mode "zigzag angle" in the first case. Equa-
tion (2.21), when substituted in Eq. (2.17), produces the
following radiation condition:

k„.—k„=q„+k
—@„=A'co, ,

za ZE

(2.14)

(2.15)

It is instructive to note that Eq. (2.22} produces directly
the Smith-Purcell (1953) radiation condition

k„—k„=q„+k (2.16)
"(p;,' —cose, ),

Ol
(2.23)

ro, =ro, =ug, (q,o+k )=roo, (2.17)

where q„=q, (ro, ), q„—=q, (co, ).
We assume that the electromagnetic dispersion rela-

tion q, (ro) and the electron energy dispersion relation AE,
z

are known. Hence Eqs. (2.13) and (2.14) constitute a set
of equations that define uniquely the photon emission fre-
quency ro„and similarly Eqs. (2.15) and (2.16) define the
photon absorption frequency co, .

In the classical limit A~O the two sets of equations
[(2.13), (2.14) and (2.15), (2.16)] can be solved by first-
order Taylor expansion of

ze zi &ze za

=6E, +~ +k around k„.. This produces for both emis-
zE +'4a + w

sion and absorption the same radiation condition

where we restored the higher-order harmonics case by
substituting k ~mk~. Equation (2.22) is also the radia-
tion condition of the synchrotron undulator radiation
etfect (Motz, 1951; Kincaid, 1977}and can be viewed as
the Doppler-shifted frequency of the undulating electron,
which in its average motion rest frame oscillates at a fre-
quency coo ——y, k, u (Jackson, 1975). The well-known
FEL radiation condition (Gover and Sprangle, 1981)

(2.24)

can also be directly derived from Eq. (2.22) by substitut-
ing Bq ——0, pg, =1, and y, —= (1—p, )

'~ . For com-
pletion we also point out that, in the case when the radia-
tion wave propagates in a uniform dielectric matter, the
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right-hand sides of Eqs. (2.20) and (2.21) should be multi-
plied by the material refraction index n. The Cerenkov
radiation condition is then obtained directly from Eq.
(2.17) by substituting k =0:

1
n (coo)cos6q ——

gz

(2.25)

'V

which is the well-known Cerenkov radiation condition.

B. Finite-length homogeneous broadening

l
k„—k„—q, —k (2.26)

In a finite interaction length L the axial momentum
conservation conditions (2.14) and (2.16) do not need to
be satisfied exactly. The allowed deviations are of the or-
der of +~/L.

vgz 2~
AcoL =

1 —v, /v, L
(2.30)

where v „=—de/dq, is the group velocity of the radiation
mode. In the second case,

classical limit applies, we may substitute vg, l kze

=vg,
l
„=vg,

l „,and Eq. (2.28) is apphcable f«b«h
za zl

the emission and absorption linewidths with v, defined

by (2.18). In fact, in this case Eq. (2.28) could be derived
directly by differentiation of (2.17).

In order to obtain an explicit equation for Ecol, the
dispersion relation q, (co) needs to be differentiated and
expressed in terms of bcoL. bq, =(dq, /den)bcoL. IIere
we need to distinguish between the dispersion relations
(2.19) and (2.20), which now produce somewhat different
results. In the first case we obtain

l
k„—k„—q, —k (2.27)

vgz 2m.

1 —I3,cos6 L
(2.31)

Thus, instead of the unique definition of the emission and
absorption frequencies co„cu, set by the respective sets of
Eqs. (2.13), (2.14) and (2.15), (2.16), we obtain emission
and absorption lines with center frequencies co„co, and
frequency linewidths b, coL defined by (2.13), (2.26) and
(2.15), (2.27), respectively [see the upper curve of Fig. 2(a)
and Fig. 3]. The finite-length-limited linewidth hagi is
the lower bound for the bandwidth of the free-electron
laser emission curve. We will discuss in subsequent sec-
tions also additional mechanisms of homogeneous
broadening (e.g., electron collisions) and inhomogeneous
broadening (e.g. , electron energy spread) that can only in-
crease the emission linewidth beyond this fundamental
limit.

To obtain the equation for the FWHM (full width at
half maximum) linewidth of the emission and absorption
lines, respectively, we expand again (2.13) and (2.15) to
first order in fi, as we did in the case of (2.17). This time,
however, the expansion is carried out at frequencies
co, +hen~ /2 and final wave numbers k„+(bq, /2+~/L),
where bq, —=q, (c&, +bcoL /2) —q, (rv, —Ecol /2) (see Fig.
3).

This last relation can be written with the aid of Eq. (2.22)
in the simple form

600
(2.32)

vgz 277

1 vg, [n '—(coo)+ 1]cos6q L
(2.33)

This is obtained by differentiating q, (co)
= n (co)(rv/c)cos6q for a fixed radiation direction 6, and
substituting in Eq. (2.28).

C. The classical limit

which is well known in the conventional FEL theory
(Madey, 1971; Gover and Sprangle, 1981). N„ is the
number of periods along the interaction region. This re-
sult is independent of the kind of periodic structure used
and the emission direction.

For completion we also give the equation for the
finite-length linewidth of the Cerenkov radiation:

&k„.—@k„+dk @k,
l k, =k„

Z

Aq, ~ AcoL
+ =ACOe+

2 L ' 2
b,coL ((

l
co, —co,

l

—=
l

5co
l

(2.34)

There is clearly a significant qualitative diA'erence be-
tween the limit

Using Eq. (2.13), this produces

2m'
AcoL ——v, Aq, + (2.28)

called the inherently quantum limit, and the opposite
limit

(2.35)

where in this case

1 Q 0gz=gdkk lk=k
Z

A similar result is obtained also for the absorption
linewidth, except that in this case vg, is evaluated at
k, =k„. However, in practice, and certainly when the

called the classical limit. In the first case the emission
and absorption lines are well separated [upper curve in
Fig. 2(a)], while in the second case they are largely over-
lapping. However, even in the latter case the line centers
are displaced by a small but nonvanishing interval, and
the two processes do not exactly cancel each other. Con-
sequently, the net stimulated emission line shape, which
is proportional to the dN'erence between the emission
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and absorption line functions, is proportional in this case
to the derivative of the emission line-shape function
[lower curve in Fig. 2(a); see also Madey, 1971].

Vfe observed before that in the classical limit %~0,
one obtains co, =co, =~0. This is why we identify (2.35)
as the classical limit condition and (2.34) as the inherent-
ly quantum-mechanical limit condition. In the first case
(the quantum regime), the net stimulated emission line-
shape function depends separately on the values of the
emission and absorption line-center frequencies co„co„
which are quantum (fi dependent) parameters. In the
second case (the classical regime), the net emission line-

shape function is only characterized by coo and AcoL,
which are both independent of A. The net gain, however,
is still proportional then to the line-centers frequency
spacing 5m =co, —m„which results from the
difFerentiation of the emission and absorption line func-
tions difFerence. The lines spacing parameter 6' is pro-
portional to g, but this dependence cancels out when the
net stimulated emission rate or the gain parameter is cal-
culated (as will be shown later in Secs. III.F and IV.B).
The evaluation of the line-centers spacing parameter 6~
is, however, important not only for identifying the regime

(2.36)

(2.37)

where

~~=~a ~e (@k . +q +k ~k . —q —k 2~k )~~

=vg, (q„—q„)+ (q,o+k )

II

(2.38)

Here q,o—:q, (coo), U, is defined in (2.18) in terms of the
first-order derivative of DA, and mII is the longitudinal

of operation (classical or quantum), but also for a quanti-
tative evaluation of the net stimulated emission (gain)
when the classical conditio'n (2.35) is satisfied. Detailed
computation of the stimulated emission gain in the classi-
cal limit for difFerent free-electron radiation devices will
be given in Sec. IV, utilizing the equations for 6', which
we subsequently derive in the present section.

In order to express the line-centers spacing parameter
in terms of the device parameters, we now compute
m„~, to first order in A' by a second-order expansion of
(2.13) and (2.15) in terms of A. This results in

(a) (b)

(c)

FIR. 2. Line-shape functions in the quantum (upper curve) and classical (lower curve) regimes, and the corresponding definitions of
the linewidth parameters hcoL, Acoz, and 4~,h.
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d ek

m* A dk
II

z k.
ZI

effective mass defined by

(2.39)

and Sprangle, 1981). In the Smith-Purcell radiation case,
as in all other slow-wave radiation schemes, the electron
is entirely free, and its dispersion relation is given by (2.4)
with ki ——0. The longitudinal effective mass (2.39) can
then be expressed explicitly as

ACOo
5CO = CO —CO

2 1 U /m
~~

Ugz g ggy
(2.40)

&~o
5CO =COa —

Gate
=

m
)(

Ugz

1

1 —vg, coseq/c
(2.41)

where we also made use of Eq. (2.17).
By dividing Eqs. (2.40) and (2.41) by (2.30) and (2.31),

respectively, we obtain a general equation for both cases

For the two different optical dispersion relations (2.19)
and (2.20), the respective spacings between the absorp-
tion and emission line centers are derived by substitution
into (2.38), resulting in, correspondingly,

3
m(( =g m (2.45)

Another case of transverse continuous states to which
we can still apply the longitudEn. ally constI'ained recoil ex-
pressions derived in this section is the case of the magnet-
ic bremsstrahlung FEL, for conditions when the electron
propagates along the wiggler axis [zero canonical
momentum (Sprangle and Smith, 1980)] and the radiative
emission is on axis (eq ——0). In this case

@k ——cQ(mc) +(haik, ) +(e A ) (2.46)

where A is the transverse vector potential of the
wiggler, and the longitudinal effective mass (2.39) is
found to be

CO —COa e fico() ~DL

m U 2&Ug2
(2.42)

m)) =p Qm (2.47)

—COa e flcoo cooL ((1
27TU

(2.43)

The ratio (2.42) and the classical limit condition (2.43)
may be written in various cases in alternate forms. In the
case of Eq. (2.21), we may substitute coo from (2.22) and
obtain

CO —Na -e 1 15coO
&(1,

1 —Pg cosOq
(2.44)

where X:—L, /k is the number of periods along the
periodic structure (wiggler).

We note that the derived expressions for 5co/AcuL have
a somewhat wider validity than just for the case of trans-
versely discrete states for which they were derived. The
analysis so far is independent of the dispersion relation of
the electron 6k, and only assumes that the momentum

Z

conservation condition is satisfied in the longitudinal di-
mension [see Eqs. (2.14) and (2.16)]. Such a situation can
occur also in examples of continuous transverse states
under conditions where the electron quantum recoil
effect is purely longitudinal. An example such as this,
which is analyzed in greater detail in the next section, is
the Smith-Purcell effect observed under conditions in
which the radiation wave vector' has no lateral com-
ponents (the emission is in a plane that includes the elec-
tron trajectory and the normal to the grating). This is
also the case under conditions of arbitrary emission angle
under the "magnetized plasma approximation" (Gover

The first factor on the right-hand side is the ratio of pho-
ton energy to twice the classical kinetic energy of a parti-
cle with mass m

~~

. The second factor is the number of
electromagnetic oscillations within the interaction length
transit time L/U, . The classical limit (2.35) can be writ-
ten in terms of (2.42),

[instead of (2.45)]. The expression for the parameter
5colhcol (and subsequently the classical limit condition)
for the bremsstrahlung FEL is then found by substituting
(2.47) and e =0 in (2.44):

CO —Q7a e 1+pg, irido

p~, ymc
(2.48)

This equation is in full agreement with the conventional
classical limit condition, which was derived earlier for
FEL's in the highly relativistic beam limit (p, ~1) (Phi-
lips, 1960; Kurizki and McIver, 1982). Equation (2.48)
indicates that it may be easier to observe quantum effects
with nonrelativistic beams. Note, however, that this
equation is only valid under the particular conditions for
which there is no transverse momentum transfer (recoil).
In the general case (namely, when the radiative emission
is off axis) the model for transversely discrete states can-
not be used to describe the FEL. To obtain an equation
for the classical limit parameter of FEL's in the general
case, a model for transversely continuous states must be
used, as is done further on in Sec. II.G.

D. Interbranch (transverse states) transitions

We now consider the case of transversely discrete
states for transitions between pure transverse states. In
this case the energy and momentum conservation condi-
tions are satisfied with Eqs. (2.10) and (2.11), where

(n;, l;)&(nf, lf ) and m =0 (or there is no longitudinal
periodic structure at all).

For simplicity we consider emissive and absorptive
transitions only between adjacent branches as shown in

Fig. 1(c). Substituting m =0 and the definition (2.9) in

Eqs. (2.10) and (2.11), we get instead of (2.13)—(2.16) the
following two sets of equations, which define the emission
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and absorption line frequencies, respectively, co,p, p
——(1+p )y, cod „--2y,cod „. (2.58)

=A'( co, —tod ),
zt ze

(2.49)

(2.50)

In the specific examples of degenerate transverse transi-
tions considered above, the degenerate forward emission
and absorption frequencies are

——iii(co, —to„),
za zt

(2.51)
~p =(1+P„)y,', ro, , =2y,',~ (2.59)

where 6'k is defined in (2.12) and
zt

cod ——[E„I (k„) E„ i (—k„)]/A',

co„=[E„ i (k„)—E„ i (k„)]/fi .

(2.53)

(2.54)

COd

1 —P,cosB
(2.55)

To obtain the emission and absorption line frequencies
in the classical limit A'~0, we expand 6& and e& to

ze za

first order in A around k„ in a manner similar to that
used to derive (2.17) and (2.22). For both electromagnet-
ic dispersion relations (2.19) and (2.20), this results in

This demonstrates the known scaling laws of positron
channeling and cyclotron resonance forward emission
frequencies, which at relativistic beam energies scale as
y and y, respectively.

For calculating the finite-length homogeneous
broadening of the emission and absorption lines of trans-
verse binding free-electron radiators, we allow an uncer-
tainty in the axial momentum conditions (2.26) and
(2.27), with k =0. The previous equations for the
linewidths (2.28) —(2.31) are applicable then without
change. The relative linewidth of the emission and ab-
sorption lines can be found for case (2.20) (free-space ra-
diation modes) by dividing (2.31) by (2.55) or (2.56), re-
sulting in the simple equation

~u

1 —Pg, cosBq
(2.56)

COL 2' Ugz

~ep, ap ~~d, u

(2.60)

~e, e
COp =COep =

Cheap

=
1 —P~, cosBq

(2.57)

In many cases one is interested mainly in forward
emission (B =0) and highly relativistic beams, for which
stronger emission at higher (Doppler-shifted) frequency
is obtained. In this case the emission and absorption fre-
quencies (2.55) and (2.56) are given by

In Eqs. (2.55) and (2.56) cod, co„are calculated to zero or-
der in the longitudinal quantum recoil. Since to this or-
der one can equate E„& (k,f ) =E„ I (k„), Eqs. (2.53) andff ff
(2.54) define A'~od, A'co„as the vevtical spacings between the
initial and final branches (lower and upper, respectively)
at k, =k„., as shown in Fig. 1(c).

Equation (2.55) may be compared for instance, with
the emission frequency conditions calculated for channel-
ing radiation (Pantell and Alguard, 1979) and for cyclo-
tron resonance emission (Schneider, 1959). In the first
case cod and ~„are usually different, though one may
consider a special case applicable mostly for positrons
channeling, in which they are nearly equal (degenerate).
If an harmonic binding potential is assumed in that case,
then co„=cod ——coi,p/y—:noh, where rohp =(k, /m)—1/2 1/2

and k, is the spring constant of the harmonic potential
(Pantell and Alguard, 1979). In the second example, the
CRM (cyclotron resonance maser), the branches spacing
is nearly degenerate: ~„=cod ——co,p/y —=co„where
co,p

——(eBp/mc)' [see Eq. (A3) in Appendix A] and co, is
the Lorentz-covariant cyclotron frequency. In both of
these examples the emission and absorption line centers
co,p, co,p are degenerate in the classical limit and are given
by

1
e ~d + Ugz~ze qze

m
II

1
~a ~u +Ugz~za + ~za2 m*

(2.61)

(2.62)

co, —co, =co„—rod+v, (q„—q„)+ (q„+q„),
2m

II

(2.63)

instead of (2.38). For the optical dispersion relation
(2.20), one obtains instead of (2.41)

~„—~od + (q„+q„)

1 —U, cosOq/c
(2.64)

This has the simple interpretation as the reciprocal of the
number of natural transverse oscillation periods
(27r/co„d ) during the transit time (L/v, ), which has the
same meaning as Eq. (2.32) for the periodic structure ra-
diators.

The inherently quantum-mechanical and the classical
regimes are defined for the transverse binding radiators
by the same conditions [see (2.34) and (2.35)] that we
used for the slow-wave and bremsstrahlurig radiators.
However, contrary to the previous case, the difference be-
tween the emission (co, ) and absorption (co, ) line fre-
quencies is riot only a consequence of the curvature of the
energy dispersion 8k, as a function of k, (longitudinal
quantum effect), but is also a result of the difference in
the energy branches spacing co„&rod (transverse quantum
effect), as illustrated in Fig. 1(c). Thus the second-order
expansion of 6'&, 6k in (2.49) and (2.51) results in

ze za
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Dividing by Eq. (2.31), we find that the classical limit

condition (2.35) is

CO —Mg e co„—cod + (q„+q„)
2m

I~

2~Ug

Acoc0 $ cos Bq

mc y y, (1 —P, cose )

cosB—2P,'
1 —P,cose~

(2.66)

(2.65)
In many types of radiation effects (as in channeling ra-

diation from electrons; see Andersen et al. , 1983), the en-

ergy branches are not necessarily equispaced (co„&cod ),
and they are determined by the particular (nonharmonic)
transverse binding potential. In these cases the third
(longitudinal recoil) term in the parentheses of Eq. (2.65)
is usually negligible, and the classical limit is reached due
to finite-length broadening only if the radian frequency
bandwidth due to the transit time b,co=2m/(L /Us, ) is

larger than co„—cod. There are other cases, such as the
cyclotron resonance maser and planar -channeling radia-
tion from positrons, which can be characterized by a
nearly harmonic confining potential, for which the ener-

gy branches are almost equispaced ("degenerate spac-
ing"); see Andersen et a/. , 1983). One needs to be careful
in these cases and note that co„and md are not exactly the
vertical spacing frequencies between the neighboring
branches (2.53) and (2.54). Furthermore, when calculat-
ing the emission and absorption frequencies to first order
in A', the 'dispersion of co„(k, ), cod(k, ) (the dependence of
the branches spacing on the initial wave number k„) may
not be neglected.

This is indeed the case in the cyclotron resonance
maser. Except for the limit of longitudinally nonrela-
tivistic electrons P, ~O (for which case the Landau-level
spacing A'co, is nondispersive), the dependence of co„and
cud on both the longitudinal wave number k„and the
transverse-state (Landau-level) number must be con-
sidered (to first order in A'). The expansion of co„—cod to
first order in A is carried out for this case in Appendix
A. ' The result is

(2.67) are useful for understanding the physical mecha-
nism in devices based on the cyclotron resonance radia-
tion effect. These include various FEL-type devices such
as the quasioptical CRM (Sprangle et al. , 1981), the
CARM (Bratman et al. , 1983), and the axial magnetic
field (wigglerless) FEL (Ride and Colson, 1979; Cabell

et al. , 1982; Fruchtman and Friedland, 1983). As we in-
dicated in the previous section, the smaH signal gain of
the radiation device is proportional to 6co. %"e can thus
relate the different terms in the equations for 5~ to the
physical mechanisms dominating the gain of these de-
vices.

We can trace the origin of the different terms in Eq.
(2.66) to three geometrical sources, which correspond to
the last three terms in the second-order expansion in
(A4). The third term originates from the relativistic mass
effect that lifts off the vertical spacing "degeneracy"
(equality) between adjacent Landau levels due to the rela-
tivistic mass effect (Schneider, 1959). The first term re-
sults from the curvature of the energy dispersion curve
and the change in the electron wave number due to pho-
ton emission (longitudinal recoil). This is an entirely
classical gain mechanism, which was proposed first by
Weibel (1959), and is identical to the longitudinal recoil
gain mechanism in the interbranch transition FEL de-
vices discussed in the previous section. The second term
is a new mixed contribution term, which expresses the
second-order change in the electron energy due to both
longitudinal recoil and transverse-state (Landau-level)
transition.

The different terms in the CRM stimulated emission
can also be given classical interpretation, as was shown

by Chu and Hirshfield (1978). The third term can be re-

lated to an azimuthal electron bunching eft'ect, and the
first term results from the longitudinal bunching. The
mixed term was omitted in that derivation, but it can be
easily restored in a fully relativistic classical derivation.
It represents the mixed process of azimuthal bunching,
due to an axial force, and longitudinal bunching, due to a
transverse force. This process is intrinsically relativistic.
Consequently the mixed term [second term in Eq. (2.66)]
is non-negligible at relativistic electron energies and van-

ishes at nonrelativistic energies.
It is instructive to compare the CRM line spacing Eqs.

(2.66) and (2.67) to the corresponding equation for intra-

Dividing by (2.31), we find the classical limit parameter
(2.65) of the cyclotron resonance radiation to be

M —APa e sin Bq PQ) p +3&0+

1 —P,cose~ y3~ci 2rrv,
(2.67)

The arbitrary emission angle equations for the frequen-

cy line spacing and classical limit parameters (2.66) and

For derivation of 6co corresponding to the analogous problem

of planar channeling radiation of positrons, see Kurizki and

McIver (1985).

2%e must restrict our conclusion only to devices operating in

the low gain regime under conditions in which the electron per-

forms a large number of oscillations (turns) along the interac-

tion length. -As will be shown in Sec. III.H, when this condition

is not satis6ed, extra terms may appear that are not proportion-
al to 5u {these gain terms are not proportional to the derivative

of the spontaneous line-shape function, and scale as the interac-

tion length squared instead of the cubic power scaling of the

principal term). Consequently, the conclusions drawn in the

rest of this section bear limited applicability to some "short"
device embodiments of gyrotron and quasioptical CRM.
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branch transitions (and the conventional FEL). See Eqs.
(2.41) and (2.42). The first observation is that the sign of
Lo is opposite in these two cases. This means that the
line-shape functions [Fig. 2(a), for both the quantum and
classical limits] are inverted relative to each other in the
two different cases. The nonrelativistic mass instability
effect and the longitudinal bunching effect tend to cancel
each other, but the relativistic mass effect is dominant in
all emission directions, keeping the sign of 6~ negative,
except at B =0, for which 6m=0.

The vanishing of 6' and consequently of the gain at
e =0, as is evident from Eq. (2.67), is an important con-

q

elusion in the consideration of various FEL-type cyclo-
tron resonance radiation devices, which are proposed for
operation at optical frequencies with high-energy elec-
tron beams and "long" interaction lengths [axial magnet-
ic field FEL (Ride and Colson, 1979; Gell et al. , 1982),
wigglerless FEL (Fruchtman and Friedland, 1983),
CARM (Bratman et al. , 1983), etc.]. In all of these cases
small signal gain terms proportional to I. are not to be
expected for forward radiative emission where 6 =0 (for
which the analysis is usually done), and the highest-order
linear gain term scales in this case, such as I. . Equation
(2.67) suggests that L scaling gain may be obtained with
radiation angles (or guided mode zigzag angles), which
are at the edge of the spontaneous emission radiative
cone B~ 1/y, . For a long interaction length, this gain
may be possibly higher than the on-axis gain.

For nonrelativistic electrons the mixed term in Eq.
(2.66) always vanishes, and the total stimulated emission
can indeed be expressed as the result of pure transverse
and longitudinal contributions. We note that even in this
limit, the relativistic mass effect is dominant and 6' is al-
ways negative. The longitudinal recoil [first term in
(2.66)] then only subtracts from the gain. Its negative
contribution reduces to zero at transverse emission con-
ditions 6 =a/2. This explains why low electron energy
radiative devices, like the quasioptical CRM and the
gyrotron, operate predominantly at radiative emission
angle vertical or nearly vertical to the magnetic axis.
However, in some of these devices the interaction length
is short, and gain terms that scale like I may be re-
quired to be included for full characterization of the radi-
ation device (Sprangle et al. , 1981; Kreischer and Tem-
kin, 1983).

Similar analysis to the one given here for the CRM can
be carried out to obtain the conditions for the classical
and quantum-mechanical regimes, and to evaluate the
linewidth spacing and gain of other transverse binding
radiation effects at arbitrary radiation angles. An impor-

3Gyrotrons operate with near cutout' waveguide modes for
which the "zigzag propagation angle" is nearly vertical (Lau
et al. , 1981) and quasioptical masers operate with an open cavi-
ty radiation mode with propagation direction perpendicular to
the magnetic field axis z (Sprangle et al. , 1981).

tant example is channeling radiation with an harmonic
confining potential [detailed analysis of channeling radia-
tion and its quantum and classical limits can be found in
Beloshitskii and Kumakhov (1978)]. Another example is
the quadrupole wiggler FEL (Levush et al. , 1985), which
is a proposed magnetic focus transverse binding force de-
vice that can be viewed as an optical version of the "stro-
photron" (Agdur, 1961)microwave tube.

F. Mult~photon ern~ssion

6' =co —coa e (2.68)

is the same quantum recoil frequency shift calculated in
the previous sections [given, for instance, by Eq. (2.42)].
If the electron emits yet another photon, its energy is re-
duced further and its spontaneous emission line center
shifts further toward low frequencies. This spontaneous
multiphoton emission effect is not realized in most practi-
cal FEL devices and effects, which would generally emit
an average of a fraction of a photon per electron. Multi-

Ckz, —
kw m/L

I
I

I

b kgb
I

t
kze-

I

lgq

I

i

kzi

t
1

I

I

tl4Pa
I

l

I

(

~ t"e
L

I
I I

I

(
I

! Bkzg
I i 1

kzo kz

FIG. 3. Finite-length homogeneous broadening caused by an
uncertainty +Am/L in the momentum conservation condition.

As illustrated in Fig. 3 we usually have for all intra-
branch radiative transitions co, ~co„because the curva-
ture of the energy dispersion curve is usually positive.
This fact gave rise to net gain, as explained before, be-
cause it displaces the emission and absorption line
centers by a finite amount (however small).

We also notice that due to the monotonous increase of
the energy dispersion curve slope, the solution of the en-
ergy and momentum conservation conditions (2.13) and
(2.14) for a given k„produces ever decreasing emission
line-center frequency as 6; decreases. Thus an electron
at k„, which makes a spontaneous emission transition,
emitting a photon at frequency m, within a linewidth A~,
centered around ~„may sometimes make another transi-
tion, emitting spontaneously another photon at frequency
co' within a linewidth Ace,

' centered around m,
' =co, —6m,

where
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photon spontaneous emission is possible, though, in prin-
ciple, with strong, long wiggler FEL's. It was discussed
(see Madey and Deacon, 1977 and Gover, 1983) as a pos-
sible theoretical noise saturation mechanism in x-ray
FEL's.

Another multiphoton emission effect may take place in
stimulated emission. In this case, however, the emitted
photons must all be at the same frequency ~ of the
amplified radiation field. To permit emission of a photon
of frequency co, this frequency must be within the emis-
sion linewidth co, —AcoL /2 & co & co, .+AcoL /2. Since
after one photon emission the emission line center
reduces to m,

' =co, —6co, a second photon emission at fre-
quency co is possible only if ~, —5~—Acyl /2 & co

&co, —6co+AcoL/2, which can be satisfied only if the
emission linewidth is larger than the momentum recoil
shift —AcoL ~6co. With similar arguments we find out
that in order for a single electron to be able to emit XpI,
photons of frequency ~ in a cascade process, the condi-
tion Acyl ~Xph6co must be satisfied. We conclude that
an upper limit estimate for the number of photons that
can be emitted by stimulated emission by a single elec-
tron is

FIG. 4. Multiphoton stimulated emission and absorption pro-
cess by a quasifree electron.

broadened FEL also leads to an estimate for the satura-
tion energy extraction efficiency of the quasifree-electron
stimulated radiation emission device (FEL):

A7 —COa e

(2.69)
(N„h )„,fico irico b,coL

'9=
k ~k a ~e

(2.70)

The stimulated multiphoton emission process is illus-
trated in Fig. 4. In order to keep emitting at the same
photon frequency co, the crystal momentum imparted by
the recoiling electron has to increase gradually from k
up to its maximum value limited by the finite-length
momentum uncertainty k +~/L. We note that to ob-
tain the maximum photons emission number given by Eq.
(2.69), which is the saturation photon emission number, it
is necessary that co0& co & co0 —6co/2, and that the stimu-
lated emission rate will be strong enough to reach satura-
tion within the interaction range. Note also that the
quasilinear gain physical picture given here is a
simplification of a complex process and is only useful for
crude estimates. In the full saturation process, multipho-
ton stimulated absorption always takes place simultane-
ously with the emission in a complex process involving
cascade occupation of increasing and decreasing numbers
states (McIver and Federov, 1979; Becker, 1980).

The above semiquantitative discussion of the satura-
tion mechanism in a finite-length homogeneously

4Both the spontaneous and stimulated multiphoton emission
effects that we discuss here are simple demonstrations of the
fact that classical oscillators, such as radio antenna or a mi-

crowave tube, can emit, either spontaneously or by stimulation,
many photons. This should be distinguished from the use of the
term "multiphoton process" in connection with atomic ioniza-
tion by intense laser fields (Bucksbaum et al. , 1987), where

quantum effects remain even in the "multiphoton absorption"
process.

When AcoL and co, —co, are substituted from Eqs. (2.31)
and (2.41) and m f from Eq. (2.47), one obtains

(2.71)

This equation agrees well with previous estimates of the
power extraction efficiency in FEL's (Gover and Spran-
gle, 1981). In the highly relativistic limit of the magnetic
bremsstrahlung FEL (2.24), it reduces to the known
equation (Sprangle and Smith, 1980) g = 1 /( 2N ).
Rigorously the extraction efficiency of the FEL must be
determined in a nonlinear gain calculation (which is out-
side the scope of the present model), and would be ex-
pected to be a function of the FEL input power. Equa-
tions (2.70) and (2.71) signify the maximum possible
efficiency that can be achieved in a uniform interaction
region of length L. That is assuming that the device is
tuned to operate within the positive gain curve in the
small signal regime, and the input power is increased un-
til saturation is reached at the end of the interaction re-
gion.

A comparison of (2.34) and (2.35) to (2.69) leads to the
conclusion that the quantum regime is always character-
ized by single photon emission (per electron), while the
classical regime is characterized by the possibility of mul-
tiphoton emission. Note, however, that even though
(2.69) indicates that N h &~1 in the classical regime, this
number bf photons is emitted only if saturation is
reached. Typically (N h )„„photons of the order of
thousands is emitted per electron in saturated magnetic
bremsstrahlung FEL oscillators (Elias et cil. , 1976).
However, below saturation fewer photons than (N h)„,
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(even less than 1 on the average) may be emitted even in
the classical regime, if the amplified radiation signal
power is small enough.

We point out that the entire discussion of this section,
which referred to intrabranch radiative transition
schemes [with the exception of Eq. (2.71), which was
evaluated specifically for the case of the magnetic brems-
strahlung FEL], applies without change also to inter-
branch radiative schemes. This is correct on the condi-
tion that the spacings between the branches are nearly
degenerate.

F. The transition from the quantum
to the classical regime

z=0 z=L

FIG. 5. Longitudinal electron wave packet in the longitudinal
quantum limit at the beginning and end of the interaction re-
gion. The longitudinal variation of the electromagnetic force
(ponderornotive wave) is shown for comparison.

AL
(q, +k„) ((~,

2&fPl
~I

U

(2.72)

which can also be written in the practical form

We have described the radiation from quasifree elec-
trons in the case of transversely discrete states as
quantum-mechanical electronic transitions between the
longitudinal continuous states. The initial and final lon-
gitudinal states k„between which the electronic transi-
tions take place, are well-defined quantum mechanically
in the long interaction length (quantum) limit (2.34). In
this limit the spacing between the emission and absorp-
tion lines, 5' [see upper curve of Fig. 2(a)], which is a fi

dependent quality, is considerably larger than the
linewidth (which is A independent). For this reason we
consider (2.34) as the condition for the longitudinally
quantum-mechanical regime. In the opposite limit (2.35),
the characteristic parameters of the net stimulated emis-
sion curve [lower curve of Fig. 2(a)] are not a function of
A, and therefore we consider it to be the classical regime
limit. %'e also proved that in the quantum limit only sin-

gle photon emission is possible, while in the classical lim-

it multiphoton emission is possible.
An alternative definition for the quantum and classical

regimes was suggested by Renieri (1984). This definition
can be restated in a more general way as follows. The
electron operates in the finite-length homogeneously
broadened classical regime if throughout the entire in-
teraction length L its axial position can be quantum
mechanically localized with an accuracy better than the
wavelength of the electromagnetic force wave with which
it interacts. In the opposite limit the electron operates in
the longitudinally quantum-mechanical regime (Fig. 5).
The interacting electromagnetic force wave is the pon-
deromotive force in the case of bremsstrahlung FEL's,
and is the slow electromagnetic field component in the
case of slow-wave FEL's (Gover and Sprangle, 1981). In
either case it is given by k =2'/(q, +k„), with k„=0
in the case of Cerenkov FEL. Renieri's classical limit
condition is derived in Appendix B, resulting in (89),

(2.73)

where A,,=iri/(mc)=2. 4X10 A is the Compton wave-
length.

Although Renieri's quantum regime criterion and the
criterion of nondegeneracy of the emission and absorp-
tion lines ("large longitudinal recoil" ) refer to quite
di6'erent physical aspects of the interaction, it is found
that they take place at almost the same parameters re-
gime. Condition (2.72) is identical with (2.43) except for
a numerical factor. This interesting result is taken ad-
vantage of in the following discussion. It is instructive to
point out that a full quantum-mechanical description of a
particle requires a quantum wave packet. In general, it is
necessary to justify the common practice of using a single
harmonic plane wave to describe the particle in a
quantum-mechanical analysis of electron radiation prob-
lems. Moreover, we point out that the single wave ap-
proximation is not valid in certain problems as in FEL's
with prebunched electron beams (Schnitzer and Gover,
1985), where a full wave packet should be used in order
to describe properly the electron.

In the next sections we derive significant quantitative
conclusions from the transition from the quantum to the
classical limit. This requires careful examination of the
assumptions made in the quantum-mechanical analysis.
We make the following observations.

(1) In the quantum analysis we usually assume a single
longitudinal state function [(2.6) or (2.7)] in order to de-
scribe the electron. This approach is legitimate in the in-
herently quantum-mechanical regime (2.34), because, as
we show in Appendix B, in this regime any electron wave
packet will spread very fast into a width much larger
than A, , and throughout most of the interaction length
will behave indeed as an infinite-length single state har-
monic wave function of wave number k, . However, in
the opposite (classical) limit (2.35), using a single state
wave function to describe the electron quantum mechani-
cally, as is usually done (Madey, 1971; McIver and
Federov, 1979; Becker, 1980; Stenholm and Bambini,
1981; Bosco et a/. , 1983; Dattoli and Reinieri, 1983;
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Gover, 1984), is not always correct. The most general
quantum description of the electron should be done by
means of a wave packet [see Eq. (B6)], which keeps the
information on the position (phase) of the well-localized
electron particle relative to the wave. Indeed, such an
approach would be essential in problems where the elec-
tron phase is important, as in the prebunched FEL
(Schnitzer and Gover, 1985). Since we will relate in the
present work only to FEL's with electrons arriving at
random phase, the use of the single longitudinal state
wave-function quantum description (2.7) is acceptable,
even if we intend later on to take the classical limit,
(2.35). The quantum-mechanical uncertainty in the axial
position of an electron described by a single longitudinal
state wave function (2.7) is equivalent to averaging over
the electron's initial phases (entry times) in a classical
analysis.

(2) In the classical regime [see (2.35)] multiphoton
emission is possible. Only a multiphoton emission quan-
tum analysis will describe correctly the FEL in the entire
small signal classical regime (McIver and Federov, 1979;
Becker, 1980). However, it is still correct to use a single
photon emission analysis (as we will do in the next sec-
tion) even in the classical limit, as long as we limit the
signal wave input down to assure that the energy of the
radiation emitted per one electron is less than Au. It was
shown elsewhere (McIver and Federov, 1979; Becker,
1980) that a full multiphoton emission model does not
change the results obtained from a single photon emis-
sion analysis.

(3) We note that Renieri's quantum limit condition
refers only to the longitudinal dimension. This can be
used only for intrabranch transitions in radiation
schemes with transversely discrete quantum states, or
when the problem is uniform in the transverse dimen-
sions. For completion one should identify also the possi-
bility of a transverse quantum regime, which can take
place in the case of transversely continuous states. This
inherently quantum regime is obtained when there is no
way to describe the electron with a wave packet of finite
transverse dimensions, so that the electron wave
diffraction effect along the entire interaction length
remains negligible. More specifically, the wave-packet
transverse dimensions do not expand beyond the extent
of the electromagnetic field transverse variatio'n parame-
ter (e.g. , the reciprocal transverse wave number, or in the
case of Smith-Purcell radiation, the transverse decay
length). If we are in this inherent transversely quantum
regime [Fig. 6(a)], it is correct to use a plane wave to de-
scribe the electron. However, if we want to describe the
electron quantum mechanically in a way that is also
correct in the transversely classical limit, we must use a
transverse wave packet, since in this limit the electron

See an extensive bibliography on quantum treatises of mag-
netic bremsstrahlung FEL's in Elias et al. , 1976.

a tt)

FIG. 6. Transverse electron wave-packet diffraction along the
interaction region, compared with the transverse variation of
the electromagnetic force.

transverse coordinates can be localized well enough along
the entire interaction length [Fig. 6(b)] and thus be
affected by the radiation field variation. The field varia-
tion experienced in the transverse classical limit by a lo-
calized electron along its classical trajectory is deter-
ministic and can be used in the interaction calculation (as
we later demonstrate in Sec. III.B.3). Appropriate pre-
cautions for carrying out correctly a quantum-
mechanical analysis in the transverse dimensions are tak-
en in the next section in the transverse quantum and clas-
sical analyses (Sec. III.B) in line with the present observa-
tion.

The parametric conditions for the inherent transverse
quantum and classical limits are described in Appendix
B. The transverse dimension of the electron is estimated
to be the minimal width of the transverse wave packet for
which the wave diffraction expansion within the interac-
tion length L, is still moderate. For an electron charac-
terized by the de Broglie wave number A, D&

——A/p, this
minimum width is QA, DBI. /m. We note that the relevant
momentum for the calculation of the de Broglie wave-
length is the average axial momentum gr =ymu (which is
different from the total momentum p =ymU when the
electron is subjected to an intense transverse quiver).

The dimension of the transverse variation of the radia-
tion and wiggler fields, to which the electron wave-packet
width needs to be compared, is different for various free-
electron radiation effects. In the case of free-space prop-
agation we may distinguish between two different situa-
tions. (1) The wave propagates at an angle to the elec-
tron, in which case the relevant parameter characterizing
the transverse variation of the radiation field is
2m/q~=A. /sine~ (also applicable to waveguide modes
with e representing the "zigzag" angle). (2) The radia-
tion wave beam propagates coaxially with the electron,
and its diffraction limited minimum transverse dimension
is given by &AL/m. In the first case the transverse clas-
sical limit condition is found to be
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1~)
L sin e~ tt Pl'

and in the second case

7.8& 10 A

Py
(2.74)

absorption frequencies are determined by the energy con-
servation condition (2.1) and the momentum conserva-
tion condition (2.2) modified by the crystal momentum
k„=k e, . This can be written explicitly in the form

2.4~ 10—'
Py Py

(2.75)

G. The case of transversely continuous states

In the language of accelerator physics, A, DB
——X, /(Py)

can be interpreted as the "emittance" (Lawson, 1977) of a
single electron, fundamentally limited by the quantum
uncertainty principle Ap~AI"~=A. In this interpretation
A,, is equivalent to the "normalized emittance" of a single
electron, and Eq. (2.75) is analogous to the classical con-
dition at which an electron beam, interacting with a radi-
ation beam, can be treated as a filamentary current with
zero emittance.

When considering typical parameters of magnetic
bremsstrahlung FEL's one can verify that in most practi-
cal situations both the longitudinal [Eq. (2.73)] and the
transverse [Eqs. (2.74) and (2.75)] classical limits are
dificult to violate. There is some interest in operating a
FEL in the quantum regime, stemming from fundamen-
tal research motivation (Gea-Banacloche et al. , 1983).
Equations (2.73)—(2.75) suggest that the quantum regime
may be easier to attain in schemes utilizing nonrelativis-
tic electrons. We also note that in order to observe quan-
tum e6'ects, one should satisfy strenuous conditions on
the electron beam quality parameters in addition to
operating in a parameter regime that is excluded by one
of the classical conditions (2.73)—(2.75). See Gover
(1983).

Dk —Dq ——Ace, , (2.76}

k; —k, =q, +k

6i, —Dq ——Ace, ,

(2.77)

(2.78)

k, —k, =q, +k„, (2.79)

cd~ co~ v& '(qo+k~ )—:coo (2.80)

1 ~@k
g

(2.81)

With the optical dispersion relation (2.20) (free-space ra-
diation modes), the radiation condition is

vg kw
COO = ~

1 P.e-
g q

(2.82)

This is identical to Eq. (2.22) when v~ =e, u~, .
In the case considered now (of a laminated periodic

structure), the finite-length homogeneous broadening
effect is derived from (2.26) and (2.27), assuming exact sa-
tisfaction of the transverse momentum conservation con-
ditions k,. —k, =q, , k, —k; =q, ~ This results ini i i i i i

which modifies t,he set (2.13)—(2.16) by the inclusion of
the transverse momentum conservation condition.

Expansion of e k and Dk to first order in A around k;
e a

produces a result similar to that of (2.17),

Only in particular emission directions and when sym-
metry considerations or selection rules dictate it, will the
emission process involve electronic transitions into only
one transverse state. In general, when calculating the
probability for photon emission, one should consider all
possible electronic transitions. In the limit when a large
number of transverse states are involved in the radiative
transitions (which is certainly the case when the electron
is unbound in the transverse dimensions), it would be ap-
propriate to assume a model of transversely continuous
states. Thus, contrary to the case considered before, the
electron may recoil in the radiative process in an arbi-
trary direction (both longitudinal and transverse) and its
final state is selected from a three-dimensional continu-
um.

The simplest examples to consider are those in which
the electrons and the radiation propagate in transversely
uniform (laminated) periodic structures, as is the case in
many of the radiation e6'ets and devices under con-
sideration, as, for instance, in magnetic bremsstrahlung
FEL (Elias et al. , 1976), coherent bremsstrahlung
(Uberal, 1956; Walker et al. , 1975), and coherent transi-
tion radiation (Piestrup and Finman, 1983). In all of
these cases 6i, is given by Eq. (2.4), and the emission and

2&
A~I ——v . Aq+ e, (2.83)

and using (2.20),

Ugz 2~
Ecol =

1 —P e
g q

(2.84)

COe =Cc)o—
2 6CO,1 (2.85)

COa =COo+ &56), (2.86}

1 Pg eq ij =i—(qo+k );(qo+k ), ,

(2.87)

The well-known fractional linewidth equation AcoL/mo
= I/X [Eq. (2.32)] is straightforwardly derived for the
present case by taking the ratio between (2.84) and (2.82).

The quantum-mechanical shift between the emission
and absorption lines is found from second-order expan-
sion of e k, 6k in terms of A around k;. Instead ofe, a

(2.41), we obtain, using (2.20),
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where

1 1

p2 Bk;Bkj
(2.88)

with k;, k (i,j =1,2) being transverse continuous wave
numbers related to the transverse momentum pz=kk~,
and k3 =k, is the longitudinal wave number. The classi-
cal limit condition (2.35) now reads

AL
(qo+k );

gZ E,j=].
(qo+k )~ &&1,

(2.89)

and the maximum number of stimulated emission pho-
tons (X~zq)„„ that can be emitted at direction e is given
by the inverse of (2.89).

Equation (2.89) can be made more explicit when we
substitute the effective-mass tension elements [calculated
for the energy dispersion relation (2.4)]:

p, p,
(2.90)

rn* . . P~ m*
1

2
yy, .m

(1/m");~ =0,
(1/m*) „=(ym)
(1/m*)„=(y,'ym )

and Eq. (2.89) simplifies into

&coo' =[(y,p, )
'—sin'6], «1; (2 91)

ymc

where y; =(1—p; )
'~ . We can also substitute [using

(2.20) and (2.80) with k =k„e, ] ( qo+ k );~,
=(coo/c)cos6;, (qo+k ), =(coolc)p, '. For the case in
which the electron motion is aligned with the wiggler
axis z: p= pe„ the mass tensor becomes diagonal:

A known radiation efFect that is a good example for the
present formulation of transversely continuous states is
the coherent bremsstrahlung radiation effect (Uberal,
1956; %'alker et aI. , 1975; Kurizki and McIver, 1982;
Spence et af. , 1983). It also demonstrates well the transi-
tion from the case of transverse continuous states to the
case of transverse discrete states. The periodic structure
in which the electron (or positron) propagates is the crys-
tal lattice. The periodic structure wave number that it
experiences is k =

~
Ci ~, where 0 is any reciprocal-

lattice vector of the crystal lattice. If the kinetic energy
of the electron motion in any direction is much larger
than the binding potential energy of the crystal, then the
electron in the crystal can be considered free in aH di-
mensions, characterized by continuous transverse and
longitudinal states, and its group velocity and mass ten-
sor are the same as in free space [as given in Eq. (2.90)
above). If the electron (positron) propagates at a small
angle relative to a crystal channel, and its kinetic energy
perpendicular to the channel is only slightly above the
binding energy of the channel, then even though the par-
ticles occupy a continuum of transverse states, their ener-
gy dispersion relation may deviate significantly from the
free-space dispersion (2.4). In such a case explicit
knowledge of the band diagram in the solid is necessary
in order to calculate the mass tensor (2.88) and the group
velocity (2.81). Alternatively, it may be necessary in such
a case to solve for the emission and absorption frequen-
cies by exact solution of the energy-momentum conserva-
tion conditions (2.76)—(2.79) with the given dispersion re-
lation .of the transverse energy bands (Kurizki and
McIver, 1985). When the transverse energy of the elec-
tron (positron) is smaller than the binding energy of the
crystal channel, the electron will occupy transversely
bound (channeling) discrete states. The radiation pro-
cesses in this case are better described in terms of trans-
verse discrete states in Secs. II.A, II.D, and the next sec-
tion.

using the radiation condition (2.82),

(y p ) —sin 6 Acoo ((1
bcol 1 —P, cos6 ymc

(2.92)
H. The case of transversely discrete states:
Combined longitudinal and transverse transitions

Note that Eqs. (2.91) and (2.92) reduce into the corre-
sponding Eqs. (2.43) and (2;44) of the transverse discrete
states in the limit B=O. This justifies the use of a one-
dimensional 'longitudinal recoil" model for various radi-
ation schemes (such as the magnetic bremsstrahlung
FEL), even though they are really characterized by trans-
verse continuous states. However, the difFerence between
Eqs. (2.91) and (2.92) and the corresponding Eqs. (2.43)
and (2.44) for 6&0 indicates that the neglect of the
transverse recoil in the calculation of gain in such devices
is not always correct, and it may result in a significant er-
ror unless 6 «(P, y, ) '. In Sec. V we will take advan-

tage of the more general classical limit parameters, Eqs.
(2.91) and (2.92), in order to calculate the gain of the
magnetic bremsstrahlung FEL and the cyclotron reso-
nance maser at a general off-axis emission angle.

In Sec. II.A we considered purely longitudinal (intra-
branch) radiative transitions. In Sec. II.D we considered
transitions between pure transverse states (interbranch
transitions). For the sake of completeness we brieAy dis-
cuss in this section the synergistic case, in which the
transitions are between branches of difFerent transverse
quantum numbers and at the same time involve a transfer
of longitudinal crystal momentum. These transitions are
still controlled by the energy and momentum conserva-
tion conditions (2.10) and (2.11), where (n, , l;)+(nf, lf )

and m;+mf.
There are a few radiation effects for which the mixed

transitions case is of interest. One example is the com-
bined transverse and longitudinal transitions in FEL
schemes, which consists of an axia1 magnetic field super-
posed by a periodically modulated transverse or longitu-

Rev. Mod. Phys. , Vol. 60, No. 2, April 1988



488 Friedman et af.: Spontaneous and stimulated emission from quasifree electrons

dinal magnetic field (McMullin and Bekefi, 1981; Gross-
man et a/. , 1983; Shraga et al. , 1986). Another example
is the betatron oscillation in magnetic bremsstrahlung
FEL with a long wiggler. This transverse oscillation re-
sults from a transverse quadrupole focusing force pro-
duced by the wiggler or superposed on it. In both cases
the transverse oscillations generate in the radiative emis-
sion spectrum sideband lines superposed on the high-
frequency lines associated with the periodicity.

En this section we will briefly examine the kinematics
of the combined longitudinal and transverse transitions
case through the example of coherent bremsstrahlung ra-
diation by transversely bound (channeled) electrons (or
positrons) in the crystal lattice. A channeled electron (or
positron) experiences simultaneously the transverse bind-
ing potential of the channel potential and the longitudi-
nal periodic electrostatic potential produced by the
periodic arrangement of the crystal atoms along the
channel. The radiation wave is also aA'ected by the
periodic refraction index modulation of the same period
(Gover and Yariv, 1978a; Kurizki and McIver, 1982)
(photon umklapp or Smith-Purcell mechanism), though
this mechanism is believed to produce a much smaller ra-
diation effect (Andersen et al. , 1983; Kurizki and
McIver, 1984, 1985). Consequently the high-frequency
coherent bremsstrahlung spectrum that is attributed to
crystal momentum-transfer processes between continu-
ous states can be superposed with the channeling radia-
tion frequencies in mixed longitudinal-transverse transi-
tions. The frequencies associated with diA'erent trans-
verse transitions of the same longitudinal momentum
transfer k value should give rise to satellites ("side-
bands") about the purely longitudinal k„peak. These
combined spectrum characteristics were proposed and
analyzed in previous publications (Kurizki and McIver,
1982, 1984, 1985), and may have been observed experi-
mentally (Andersen, 1986). New coherent bremsstrah-
lung experiments with very low energy e-beams recently
pioneered by Spence et al. (1983) give hope that the ex-
pected satellites spectrum may be revealed if measure-
ment could be carried out with high enough spectral
resolution.

The energy diagram needed for a full description of the
mixed transitions case is a combination of Figs. 1(a), 1(b),
and 1(c). This combination (describing the combined
channeling-Smith-Purcell-bremsstrahlung processes) is
difficult to represent graphically. In order not to obscure
the picture, we show in Fig. 1(d) only a simplified dia-
gram, which is essentially a combination of diagrams 1(a)
and 1(c) describing the combined channeling radiation-
photon umklapp process. Since the kinematic considera-
tions of the photon umklapp (Smith-Purcell-type emis-
sion) and coherent bremsstrahlung types of interactions
are the same, and since the index of refraction modula-
tion period is the same as the electric potential modula-
tion, the radiation frequencies equations that we derive
from Fig. 1(d) apply also to the coherent bremsstrahlung
process. For simplicity we show in Fig. 1(d) only the ra-
diative emission process and ignore absorptive transi-

tions. It is assumed that the intrabranch radiation fre-
quency coo [see Eq. (2.22)], which is associated only with
the crystal momentum transfer, is much larger than the
interbranch (pure transverse-states transition) frequencies
given by Eqs. (2.55) and (2.56). This is indeed the case in
coherent bremsstrahlung of channeled electrons in which

Uzk~ &&~a, u ~ (2.93)

so the transitions between channeling states will normally
form satellites on the coherent bremsstrahlung lines spec-
trum. In Fig. 1(d) co„(cod) are the vertical energy spac-
ings between the initial energy branch and any higher
(lower) branch of the channeling states. The periodic
structure wave number is k =2~/k, where X is the
lattice constant in the channeling direction.

Inspection of Fig. 1(d) leads to the conclusion that the
satellite transition frequencies, which are the general
solutions of Eqs. (2.10) and (2.11), are just the beat fre-
quencies of the pure intrabranch and interbranch transi-
tions frequencies. The combination of Eqs. (2.22), (2.36),
(2.41), (2.55), and (2.56) results in the satellites frequen-
cies:

COe+ =
1 —P,cose (2.94)

27TUg

~u, d & (2.95)

Considering that m„d decreases as a function of beam en-

ergy (in the harmonic potential model applicable to posi-
trons, co„d =co&0/y, whereas for electrons1 /2

cl) d Mhp/y
' ), one would expect to be able to observe

the satellites spectrum in combined channeling-coherent
bremsstrahlung experiments with low energy (up to few
MeV). For typical values (Andersen and McIver, 1981)
of fico& =100 eV (obtained for electrons channeled along

The center line frequency co,0 is found from this equation
by substituting co„=0. In the derivation of this equation
we neglected the quantum recoil correction to the inter-
branch (transverse) transition frequencies, and calculated
the longitudinal quantum recoil shift of the lines [second
term in the numerator of Eq. (2.94)] to first order in A'.

This approximation is valid at low energies (below few
MeV for electron channeling radiation). At high energies
the recoil eAect may have to be calculated to higher order
in fi or evaluated by exact solution of Eqs. (2.13), (2.14),
(2.4), and (2.21), if the line frequencies are to be evaluated
at an accuracy better than the satellite spacing [third
term in the numerator of Eq. (2.94)]. See Kurizki and
McIver (1985).

The finite-length homogeneous broadening of the satel-
lite emission lines will be similar to the broadening of the
center line b, co~ [see Eq. (2.31)]. If this broadening mech-
anism is dominant in determining the emission
linewidths, as in the experiment of Andersen and McIver
(1981), then the condition for resolving the satellites from
the center line is
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the 110 or 100 plane in Si) and crystal thickness I.~0.5

pm, for which fi(2irus, /1. )=2.5 eV, condition (2.95) is
well satisfied. %'e conclude that if the coherent brems-
strahlung spectrum would be measured with high spec-
tral resolution under the same conditions as Andersen's
channeling radiation experiment, the satellites structure
could possibly be resolved.

I I I. TRANSITION RATES CALCULATION

In order to obtain a quantitative measure of the spon-
taneous and stimulated radiative power emission in the
various radiation schemes considered here, one should
embark on the dynamical analysis of the interaction pro-
cess and solve the quantum-mechanical equations (at
least perturbatively, as in this work). Since we are in-
terested in both spontaneous and stimulated emissions,
and particularly in the relation between them, it is advan-
tageous to start from a quantum-electrodynamical model
where both the electrons and the radiation field are de-
scribed quantum mechanically, and both spontaneous
and stimulated emission are treated with the same formu-
lation.

As we pointed out in the Introduction, the electrons
occupy a continuum of quantum states, at least in the
longitudinal dimension. On the other hand, the photon
occupation states, which describe the radiation field, are
discrete. A first step in calculating the spontaneous and
stimulated emission parameters is to derive the transition
rate, which in our model is the rate at which the radia-
tion mode photon occupation state

~
v+ 1 ) grows, when

starting from a state
~

v) (emission), or the rate at which
state

~
v —1 ) grows, starting from

~

v) (absorption). In
the linear regime the net photon emission rate is the
growth rate of the state

~
v+ 1 ) minus the growth rate of

the state
~

v —1). The spontaneous emission rate into a
given mode q is found by setting vz ——0 in the equation
for the emission rate. This can be transformed into an
equation for spontaneous emission spectral radiant inten-
sity when going to the large cavity limit where the radia-
tion modes form a continuum (as we will do in Sec. IV).
The stimulated emission net gain of a given mode can
then be straightforwardly derived in terms of the
di6'erence between emission and absorption rates. It is
calculated here in the limit of single photon emission ab-
sorption.

The model we just described suggests the use of
Fermi's golden rule to calculate the transition rates
(Schi6; 1971). However, caution must be exercised, since
in some radiation schemes application of Fermi s rule
may lead to erroneous results. We therefore start from a
first principle first-order perturbation analysis of the
electron-photon wave equations, and find that in some
cases, as in the classical case of transversely continuous
states, a modified version of Fermi's golden rule should
be used.

%'e start by deriving a general first-order' perturbation
procedure for quantum states with two subsets of quan-

turn numbers, one of which is discrete. This is applied to
the case in which the continuous subset refers to electron
states that are solutions for Schrodinger's equation in a
general wiggler field, and the discrete subset refers to the
occupation number states of a quantized radiation field.
Since in most radiation schemes of interest the electron is
relativistic, this model, which relies on the Schrodinger
equation, is not satisfactory. %"e thus extend it in Sec.
III.C to the relativistic regime by reducing the Klein-
Gordon equation into a Schrodinger-type form. The use
of Dirac equation formulation can be avoided since, in
general, spin effects are negligible.

A. A first-order perturbation analysis

The combined Hamiltonian of the electron and radia-
tion field in the nonrelativistic limit is (Marcuse, 1980)

2m
(3.1)

where a, a are the creation and annihilation opera-
tors of mode qo. , q is the spatial mode index, o. is the po-
larization index, and co is the frequency of this mode.
We substitute A=- A + A„V= V + V, where A and
V are vector and scalar potentials of a general wiggler,
and A, is the radiation mode vector and scalar poten-
tials. Neglecting the second-order term in A, the Hamil-
tonian can be written as the sum of an unperturbed Ham-
iltonian (Ho ) and a perturbation Hamiltonian (H'),
which is first order in the radiation field, A„where

++A'aiq(a t a + —,'),
/AT

(3.2)

H'= A, .( ifiV+e A ) . —
771

(3.3)

A, =g [A, (r)a + A,* a ],
qo

(3.4)

where A, (r) is the phasor of the classical field of mode
qO

qo':

A, (r, t)—:Re[ A, (r)exp( i cot)], —
qcr CT

A, (r) is a single mode in an arbitrary set of orthogonal
eigenmodes and is normalized in a finite volume V to

Since the quantized radiation fields are the sourceless
cavity modes, we may assume a transverse gauge with
V'- A, =0, V, =0, for which case the use we made in (3.3)
of the commutation relation [V, A, ]=0 is justified. If
the radiation field quantization is carried out on traveling
radiation modes in the Schrodinger picture, then the vec-
tor potential operator can be presented as (Bjorken and
Drell, 1965)
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f A, (r) A,* (r)d r = 55,pro'.
y qo. q'o. '

2cG)
q

and in an infinite volume to

f A, A,* d r= 5(q —q')5
g

(3.5)

(3.6)

where the summation sign also implies integration over
the continuous indices.

Before going on with the perturbative analysis, a note
is in order with regard to the normalization and dimen-
sions of the parameters in Eq. (3.12). We normalize the
total wave function f to unity,

where E is the dielectric constant in the interaction region
(in vacuum E =Eo). In some case, when there is no room
for confusion, we drop the indices qo. -for the sake of
clear presentation [ A, (r) =—A, (r)].

With this normalization the creation and annihilation
operators satisfy the commutation relation

(3.13)

and, consequently, its dimension is I . The normali-
zation of the basis functions (unperturbed eigenstates) is,
in the case of transversely discrete states,

[a,a ~ ]—5 5 (3.7)

in a finite volume, and

[a,a t ]=5(q—q')5 (3.8)

( k'v'
~

vk ) =5 5„,5(k, —k,'),
1 i

(3.14)

in an infinite volume.
This model, one may note, is so far completely general,

and it covers all the radiation schemes discussed in the
previous sections.

The Hamiltonian equation to be solved is the time-
dependent Schrodinger equation,

i' Q=(Ho+H')g .
a
Bt

(3.9)

The eigenstates of the unperturbed Hamiltonian are

~
k, v), where

Ho i
k, v) =E„

i
k, v) . (3.10)

The index k stands for all the quantum numbers of the
electron state, at least one of which is continuous, and
the others may be discrete. The index v stands for the
photon occupation number of mode q in polarization
state o. . The occupation states are discrete. For simplici-

ty we assume that only one radiation mode state is occu-
pied and drop the indices qo. , hence v—=v . The total
energy eigenvalues of the noninteracting electron and ra-
diation field system are

and in the case of transversely continuous states,

(k'v'
i
vk ) =5„5(k—k') . (3.15)

There is in principle also an intermediate case in which
the electron states are discrete in one of the transverse di-
mensions and continuous in the other. This case is
relevant, for example, in the analysis of planar channel-
ing. However, for the sake of brevity we will avoid ela-
borating on this case, except for noting that the ortho-
normalization in this case will be performed by means of
a single Kronecker delta in the discrete dimension, and

by a two-dimensional Dirac delta in the continuous di-
mensions. The dimension of the expansion coe%cient
Ck in each case can be deduced from Eqs. (3.12)—(3.15),
and can be verified to be I', rn, and m for the trans-
versely discrete, transversely continuous, and the inter-
mediate (a single discrete dimension) cases, respectively.

Substitution of (3.12) in (3.9) results in a standard per-
turbation theory set of equations:

Eg @k+'Ital (v+ 2
——) . (3.1 I)

. Ek.—Ek
i fiCk, —g Ck ( k 'v'

~

H'
~

vk )exp —i
kv

(3.16)

~
f) =g Ck, (t)exp —i t

~

k, v),
k, v

(3.12)

We generalize our discussion slightly and present an
analysis of a general quantum-mechanica1 problem
defined by Eqs. (3.9) and (3.10), where k, v are any kind
of a pair of continuous and discrete indices, respectively.
We want to calculate the linear growth rate of one
discrete state

~

v') for arbitrary amplitudes of the states
~

k ). Following a standard time perturbation theory, we
expand the perturbed wave function in terms of the un-
perturbed states (Schiff, 1971),

Note that for the case in which H' is the first-order ra-
diative interaction Hamiltonian (3.3), and

~

v) are the
quantized field occupation states, most of the terms in the
summation over v in (3.16) vanish, except for the terms
v=v'+1 and v=v' —1. Consequently, (3.16) is an
infinite set of coupled ordinary differential equations,
which couple each photon occupation state to the next
higher and lower states, describing the cascade process of
multiphoton emission and absorption. In order to inves-
tigate the multiphoton emission process, one would
reduce (3.16) into the standard form of Raman-Nath
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equations. These were analyzed in detail in the general
case (Raman and Nath, 1936) and also specifically in
reference to the FEL problem (Dattoli and Remeri,
198S). However, as we explained in Sec. II.F, we avoid
solving the exact multiphoton emission problem, and, for
the purpose of this paper, we confine our analysis to
first-order perturbation solution (single photon emission),
»z. Xk I Ck. ~. l

Limiting the analysis to the standard first-order pertur-
bation theory (Schiff, 1971), the coefficients Ck. .(t) are
calculated to first order by substituting on the right-hand
side of (3.16) Ck ——Ck (0)=const and integrating over t.
We now define the probability that a discrete photon
state

I

v') is occupied independently of the amplitudes of
the electron final states,

P. =X
I
Ck. I'

k'

subsequently, we define the transition rate into this state,
W'. =P' /t .We extend our analysis to many particles
by assuming that the transition rate into state

I

v') in the
presence of %, identical electrons in the interaction re-
gion is simply a factor N, larger (single electron emission
model). This normalization is only a matter of conveni-
ence, aimed in order to obtain directly the homogeneous
broadening emission rate equation of a finite current elec-
tron beam. In a more rigorous formulation the wave
function g would be normalized to 1 (a single electron) in
order to allow the Fermi-Dirac statistics to determine the
initial parameter distribution of the entire electron beam.
However, assuming Ck ~ ——Ck.„(0)5,, the integration
over time is straightforward, and a transition rate (ex-
pected to be constant for a time t short enough to keep
P', .~ &~ 1) is obtained:

8' =N, ~ g g Ck~(k'v'
I

H'
I
vk )sine

k' k, v

2

(3.17)

To obtain the standard form of Raman-Nath equations (Raman and Nath, 1936; Dattoli and Renieri, 1985), substitute CA. in terms
of the fast varying amplitude ak .. ak ——CI, exp( —iEk t/A), and eliminate the vanishing terms in the summation over v. This reduces
(3.16) into

t~+k' ' Fk''+k' '+g(ak ' l(k v IH I
v +1 k)++k ' —](k', v'IH'I v' —l, k))

k

In a one-dimensional model (Dattoli and Renieri, 1985) the electron quantum number k is completely determined by the conservation
of energy condition, and the summation over k is omitted. The evaluation of the matrix elements results in the coe%cients of the two
oF-diagonal terms, which relate to each other as &v+ 1/&v.

7For a vacuum electron beam it is unlikely that. statistical considerations (Fermi-Dirac statistics) will make an "homogeneous
roadening" assumption (same initial states for all electrons) an inappropriate approximation. What is required for an homogeneous
roadening assumption is that the initial conditions of diFerent electrons (for example, their axial velocity) are similar to the extent

that the spread in their center emission lines is much smaller than their homogeneous line broadening hmL (2.32). This is indeed a
quite relaxed condition that allows us to assume that many electrons have almost the same quantum numbers without any need to
worry about violating the Pauli exclusion principle. The consideration of radiative transition by an extremely dense electron beam
when the Pauli exclusion principle should be taken into account is a matter of scientific curiosity that is irrelevant for all practical ra-
diation devices based on relativistic electrons in a vacuum, with the possible exception of some peculiar solid state carriers radiation
schemes. Stimulated transitions by an electron beam with a shifted Fermi sphere distribution was considered in 1976 and 1978
(Gover, 1976; Gover and Yariv, 1978a). One can show (Gover and Friedman', 1986) that for an electron beam with minimal spread in
k —r phase space (uniform distribution of two opposite spin electrons per quantum state-of free-space quantization in a box), a
sufticient condition for homogeneous broadening is

N, (
Rnp, .

Here X, is the total number of interacting electrons, and A,DB is the de Broglie wavelength:

=(2.4&& 10-" )
1

mc yp,
'

yp,

It can be easily verified that the number on the right-hand side of the equation is very high and hard to exceed with practical electron
beam current. Furthermore, in practice inhomogeneous broadening will be set probably at much lower current levels due to thermal
energy and angular spread. The inhomogeneous broadening regime is discussed in the next section. It should also be noted that the
simple generalization to a many-particie beam invoked by Eq. (3.13) also implies a model of single particle interaction. Interaction
between the particles, collective and cooperative efFects are not included in the present formulation.
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In the particular problem which is of interest in this
paper, the discrete index v is the photon occupation
number, and in order to calculate the emission and ab-
sorption rates in the single photon emission-absorption
limit we need to calculate (3.17) for v'= v+ 1 and
v'=v —1, respectively. On the other hand, the eigen-
states of the quasifree-electrons must be taken continu-
ously (at least in the longitudinal dimension). This leads
in general to results that are diA'erent, or that are a gen-
eralization of Fermi's golden rule, as is shown in the next
sections. This approach should be contrasted with the
approach taken in the standard semiclassical atomic radi-
ation and atomic laser theory, where the Fermi golden
rule is derived within a model in which opposite assump-
tions are used: the electrons occupy discrete states and
the radiation modes are continuous (Schiff, 1971; Yariv,
1975). Equation (3.17) would result directly in the stan-
dard Fermi golden rule if the initial wave function is a
single discrete eigenstate Ck, ——C„5kk (as in an atom).

However, such a model is not appropriate for deriving
the results of this paper, . in which the electrons always
occupy a continuum of states, and where in some cases
the physical situation requires the use of an electron
wave packet rather than a single eigenstate.

B. The transition rate calculation
for different electron transverse states

In the present stage of our derivation we assume that
the interaction takes place in all cases in the longitudinal-
ly quantum-mechanical limit. This would usually mean
that a single longitudinal eigenfunction infinite in the lon-
gitudinal dimension is used to describe the electron initial
state. However, in order to keep track of the electron
number normalization, we substitute the single state
function with a more general narrow spectrum wave
packet composed of a single longitudinal initial-state
function limited in the longitudinal dimension by a finite
width envelope function that is much longer than the in-
teraction length (see Appendix C).

To complete the electron wave-function normalization
one should also consider the transverse dimensions. In
the case of transuersely discrete states (1), the single
transverse-state function of the electron is transversely

In this case, assuming a single transverse state and a
single (narrow spectrum wave packet) longitudinal state,
the initial-state amplitude is given by

Ck ——5„,5„„5r(5(k, —k„)v'2rr/L (3.18)

where 1/L is the single electron probability density per
unit length.

The substitution of Eq. (3.18) in Eq. (3.17) and the use
of (3.11) and (2.12) results in a constant transition rate
equation

finite and can be easily normalized. In the case of trans-
versely continuous states, two difFerent subcases should
be distinguished: (2) the transuersely continuous (in-
herently quantum) case, and (3) the transuersely continu
Ous transversely classical case. In the first of the
continuous-states cases the electron is described by a sin-
gle transverse eigenstate function, which is infinite in the
transverse dimensions, or in general described by a nar-
row spectrum transverse-states wave packet that, along
the entire interaction length, must have a large width rel-
ative to the transverse variation of the radiation wave
[see Fig. 6(a) and the discussion in Appendix B]. By con-
trast, the second case of transverse continuous states cor-
responds to a well-localized electron, which can keep a
narrow width relative to the transverse variation of the
radiation wave along the entire interaction length [see
Fig. 6(b)], and therefore must contain a wide spectrum of
transverse eigenstates.

The three cases —(1) the transversely discrete, (2) the
transversely continuous quantum, and (3) the transverse-
ly continuous classical —require difFerent analyses and
difterent electron wave-function normalizations. Since in
all cases there is a continuum of final states, at least in
the longitudina1 dimension, the first-order calculation of
the transition rates results in —not surprisingly—
equations that are formally similar to the standard Fermi
golden rule equation. However, there are fine distinc-
tions in the interpretation of the transition rate equation
parameters in the diAerent cases. These distinctions are
delineated in the following subsections for the three
diferent cases, which summarize the results of the more
detailed derivation given in Appendix C.

1. The transversely discrete (quantum) case

nL f dk,f I &nflfkzfvf IH'
I
v;k.;l;n; &

I '5[@k„@~, (vf vi)~~ql—, .— (3.19)

where %L —=X, /L is the longitudinal electron density.
This reduces directly to the Fermi golden rule form
(Schiff, 1971)

W p(6f )nL
I &nflfkzfvf I

0
I

v'kz'l n' )
(2~) 2

(3.20)

where the density of states p refers in our case to the con-

I

tinuous longitudinal states of the electrons:

dk,f
d @k f t —(vf —v,-)Ace

(3.21)

Note that U,f is the axial- velocity of the electron in its
anal state (k,f, nf, lf ) and may be slightly different from
the initial axial velocity, which is defined similarly to Eq.
(3.21) but at (k„,n;, l;). In many practical cases this
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quantum recoil eA'ect is negligible, but as long as we stay
in the quantum limit the distinction must be kept.
Furthermore, even in the classical limit this distinction
may be important when considering stimulated emission,
since then the emission and absorption rates are almost
equal, and the tiny recoil eftects may eventually deter-
mine the net gain equation (see Sec. III.F).

2. The transversely continuous (inherently quantuin} case

In the case of transversely continuous states both the
transverse and axial quantum numbers of the electron
eigenstates are continuous. This is a significantly
different physical situation from the transversely discrete
states when the radiative transition involves transfer of
transverse momentum (e.g. , in oft-axis radiative emis-
sion), since in this case the electron may absorb a con-
tinuous range of transverse momentum (transverse recoil)
the same way in which it does in the longitudinal dimen-
sion (longitudinal recoil). As in the previous case we as-

=Qn, 5, 5(k —k;)+(2m) /V, (3.22)

where Vis the volume in which the probability of finding
the electron is one. The substitution of Eq. (3.22) in
(3.17}and the use of Eq. (3.11) results again in a constant
transition rate equation,

sume an initial electron wave function with a single longi-
tudinal state k„, but we still need to choose whether to
describe the electron by a single transverse quantum state
or by a wave packet of transverse states. The first choice
is the appropriate model to use in the transverse (in-
herently) quantum-mechanical limit discussed in Sec.
II.F (observation 3). We will first analyze this case,
which is somewhat simpler. The second case (the trans-
versely classical limit) will be analyzed in the next sec-
tion.

Since a single initial electron quantum state and a sin-
gle photon occupation state are assumed, we substitute in
Eq. (3.17)

(2~) "vI d kf I
& vfkf I

H
I
kivi &

I 5[@k.—oo
I I (3.23)

where n v =X, /V is the electron number density (per unit
volume).

The delta function in Eq. (3.23) leads to integration
over a surface in the final electron states space kf, which
ensures satisfaction of the energy conservation condition

—(vf —v; )irlcoq . (3.24)

1
I
k) = exp(iki ri)P„„(z) .

2& ]. z
(3.25)

In free space (e.g., in the Cerenkov radiation problem),
the longitudinal dimension wave function is a simple har-
monic wave Pk k (z)'=(2') ' exp(ik, z), and the quan-

tum numbers k are the free-space electron wave numbers
(eigenvalues of the momentum operator). In a
configuration of an axially periodic wiggler (e.g. , magnet-
ic bremsstrahlung FEL, coherent bremsstrahlung, etc.),
the longitudinal-dimension-state function is a FIoquet-
Bloch mode [compare to Eq. (2.6)] and is given by

QO

P„„(z)= g cz„exp(ik, z),i/2~
(3.26)

The integration over space in the matrix element calcula-
tion may limit further the possible final states. In partic-
ular when the interaction volume is large, it results in the
additional momentum conservation conditions. Further
simplification of (3.23) is thus possible only when the ma-
trix element can be calculated for a particular problem.

For the sake of illustration we examine the common
case in which a transverse uniformity of the wiggler (lam-
inated structure) can be assumed (as was done in Sec.
II.G). The electron wave function is given in this case by

where k, =k,0+ mk . The transverse quantum num-
b

bers k~ are in general the eigenvalues of the transverse
canonical momentum operator.

Since the wiggler field is assumed transversely uniform,
the only dependence of H' on the transverse coordinates
ri is through the radiation field A, (r) [see (3.3) and
(3.4)]. Assuming that the radiation field is a simple plane
wave propagating at an arbitrary direction e and nor-
malized according to Eq. (3.6) the radiation field operator
is

Thus

1

+(2m ) 2E~q

. 1/2

eq e a +H C. (3.27)

driexp[i(ki, +qi —kif ) ri]
(2~)

=5(kif —ki;+qi) .

The integration over kif in (3.23) yields a factor L„L
(the transverse cross-section area of the plane wave),
since there is a delta function squared in the integrand.
This reduces the volume density of the electrons n ~ to a
longitudinal density nL. The integration over k,f is car-'
ried out, , using the substitution dk,f ——p(6k k )dpi,lf zf lf zf
where

H '=H ' (z)e ' '+H ' (z)e

Performing the transverse coordinates integration in
the matrix element in Eq. (3.23) with (3.25) and (3.28) re-
sults in a delta function for the final transverse wave
number,
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dk,I
P(@k, k, )=f zf d ek k fivgzfIf zf

(3.29)

(3.30)

The electron density of states is defined similarly to Eq.
(3.21), except that the final energy is defined by

= 6k —(v& —v )fico, and the final transverse state bykf k,. f i q&

k~&
——kz;+q~. The transition rate is then given by

2 2

W = nL
~
(vIk,~ ~

H+(z)
l k„v; )

~

. (3.31)
e2U„~

The results for the transversely continuous states (trans-
versely) quantum case are thus similar to those of the
transversely discrete case (1). Contrary to case (1), there
is no need now for any additional summation over final
transverse states. The final transverse state is uniquely
defined by the exact transverse momentum conservation
(transverse recoil) (kz& ——ki,. —qi) imposed by the as-
sumption of transverse uniformity. The transverse recoil
elt'ect, which is included in (3.29) and absent in (3.21), will
introduce a substantial difFerence in the final net gain
equations at OA'-axis radiation conditions in the two
diFerent cases (see Sec. III.F). Notice also that contrary
to Eq. (3.20), the matrix element calculation in Eq. (3.31)
involves only integration over the z dimension.

3. The transversely continuous classical case

While in the previous section we assumed that the ini-

tial electron wave function can be described in terms of a
single transverse quantum state, we presently consider
the case when the conditions of the problem require that
we keep a wave packet of transverse states. This is re-
quired if the transverse wave-packet dimensions remain
small relative to the transverse variation parameters of
the radiation wave and the wiggler field along the entire
interaction length, so that the electron's interaction can
be characterized by the particular classical trajectory
drawn by the center of the wave packet [see Fig. 6(b)].
This can be the case in bremsstrahlung FEL radiation
schemes when the radiation wave is a high-order trans-
verse mode and the position of the electron trajectory rel-
ative to the nodes and maxima 1oci of the radiation mode
is important. It is clearly the case in slow-wave radiation
schemes where the radiation field decays exponentially
away from the slow-wave structure (Gover and Sprangle,
1981), and the classical trajectory of the electron deter-
mines the radiation field intensity that it experiences.

In the present case, contrary to that of transversely
discrete states, the electron may drift away from the
structure axis. In fact, one may generally distinguish
three diferent natural axes of the problem: the structure

This results again in a Fermi golden rule relation similar
to Eq. (3.20),

p(6f )nL
~ (vfk~f

~

H+(z)
~
k«v; )

(2n. ) 2

axis (for a periodic structure —the direction of the
periodicity It ), the electron (average) motion direction,
and the radiation direction. The present formulation is
applicable for treating the general case in which all of
these directions are difFerent. We cannot avoid, thus,
some intrication of our notation, which is necessary in
order to indicate the coordinates frame of reference (for
the derivation step, it is advantageous to use a coordinate
system aligned with the electron motion). Before intro-
ducing the quantum wave packet and the calculation of
the transition rate, we dedicate a couple of paragraphs to
clarifying the notation used.

A model illustration of the present transversely classi-
cal case is shown in Fig. 7. The electron trajectory r,ii(z)
shown can be interpreted, for example, as the classical
trajectory of an electron in a magnetic wiggler. This
motion consists in general of two components:
r„i(z)=r„i(z)+r„i(z), where r„i(z) is the periodic
wiggler motion (of period A, ), which is superimposed on
the slow variation average motion of the center of oscilla-
tion r,ii(z), which can deviate from a straight line if there
is an additional external (focusing) force applied on the
electron (e.g. , due to "betatron oscillation" rendered by
the transverse gradient of the wiggler field). Figure 7
may also describe an electron that propagates in the
transversely varying radiation field of a slow-wave struc-
ture (e.g., Smith-Purcell radiation), experiencing varying
amplitude of the radiation field due to slow transverse ex-
cursion of its trajectory relative to the structure axis z
(both because of off-axis injection e,&0 and a possible
external focusing force applied throughout the interac-
tion length). In this latter case, of course, r i(z) =0 and
the short period ripple shown in the figure is eliminated.

A rigorous quantum representation of a classical elec-
tron trajectory consists of a wave packet of quantum-
mechanical eigenfunctions centered around the classical
trajectory of the electron. Since in the longitudinal di-
mension we still want to stay in the quantum regime, we

FIG. 7. Description of the electron transverse wave-packet tra-
jectories relative to the structure axis (z) and the electron aver-
age motion axis (z').
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it(jr', 0)=(2m)'~ /L' p„, „,(r')f i[re —r'„i(z)],
lO zi

(3.32)

compose the wave packet only of eigenmodes of diA'erent

transverse-state numbers k~,. and of the same single longi-
tudinal wave number k„. The notions of transverse and
longitudinal dimensions become somewhat ill defined
when the average classical trajectory is curved. A possi-
ble way to circumvent this difticulty is to use curvilinear
coordinates with varying axes, aligned with the electron
trajectory. We wiH use here a simpler model, defining a
fixed longitudinal (z') axis as the long-range average
direction of the classical trajectory. We will assume that
the angular deviation of the trajectory o6' its average
direction is always small (paraxial approximation), 'and

we will denote the "average election coordinates" in the
frame aligned with the average motion axis z' by r' (see
Fig. 7).

Based on the above model and assumptions, we take
for the initial electron wave function in the transversely
classical limit (written in the average coordinates)

classical limit as explained in Sec. II.C and Appendix B,
and as illustrated in Fig. 6(b).

In order to see the temporal evolution of the wave
packet, it is necessary to decompose the initial wave
packet [see Eq. (3.32)] into its transverse-state functions
and propagate each state k; in time according to its
dispersed energy 8k . This is formally done in Appendix

C, but the result can also be derived from simple con-
siderations a.s follows. Because of the choice of coordi-
nates, the transverse derivative of the energy (namely, the
transverse velocity) is null V6, k, ——0. Furthermore,k =kO ——0

in the transversely classical limit, the higher-order
dispersion of the energy as a function of,k~ is assumed to
be too small to cause substantial expansion in the wave-
packet envelope during the transit time. Consequently,
to a good approximation, all eigenstates in the wave
packet propagate in time with the same center state ener-
gy 6"z, z„and the time evolution of the wave packet [see

LO zi

Eq. (3.32)] is simply,

, (r ) is a single eigenstate function in an
iO zi

external field structure (e.g., a wiggler), which is assumed
to be transversely uniform at least around the average
trajectories. In the case of a periodic field structure the
eigenstate function is a Floquet mode, which can be de-
scribed by [compare Eqs. (2.6), (3.25), and (3.26)]

g(r', t)=(2m)/L'~ .P„, „,(r')fi[r~ —r,'ii(z)]

—~(@, , )t/A
lO zi (3.34)

(3.33)

The envelope function fi(ri) is a narrow function of typ-
ical width o.i (see Fig. 7) and can be taken to be, for ex-
ample, the Gaussian function of Eqs. (811) and (812).
Note that our specific choice of coordinates implies
ki=ki0=0. Consequently, Eq. (3.33) is independent of

eI g.
The exact form of the wave-packet envelope function

f i(ri —r,'ii) is immaterial, since in the transverse classical
limit we will be able to neglect its finite width and will

only need to know the position of its center locus r'„i(z).
This is correct as long as o.

~ is much smaller than the
characteristic dimensions of the transverse variation of
the wiggler fields or the radiation mode fields. On the
other hand, we must assume that o.

~ is still large enough
so that, throughout the electron transit time, the trans-
verse expansion (diffraction) of the wave packet is negligi-
ble. These are exactly the conditions of the transversely

The picture of the time evolution of the longitudinally
quantum transversely classical approximate wave func-
tion (3.34) is illustrated in Fig. 7. The winding envelope
function remains frozen in width and shape, at least
throughout the electron transit time period. A "carrier"
Floquet mode plane wave propagates axially inside the
envelope with the electron de Broglie wave number and
wavelength XDB, and the phase fronts are approximately
perpendicular to the average motion axis z'.

Our goal is to find the transition rate. Since the initial
electron wave function is a superposition of eigenstates,
we need to go back to Eq. (3.17) and substitute in it the
amplitudes of the individual transverse eigenstates Ck .
This formal eigenstates decomposition is used in Appen-
dix C in the same way used there to derive (3.34). Again
a simpler, but less rigorous, derivation of the same results
may be obtained by employing the assumption that the

In the transversely classical limit, contrary to the other two
quantum limits (Secs. III.B.1 and III.B.2), the average electron
coordinates system is preferable over the structure coordinates
for describing the electron wave function. This choice of coor-
dinates will simplify the derivation of the matrix element for
this case, but the final (classical) results should be independent
of the choice of coordinates.

The physical meaning of (3.33) with kj ——0 is of a wave packet
that propagates in the z' direction sensing the periodicity of the
structure in the z' dimension only ( k ' =k cosO, ). In the clas-
sical limit the transverse extent of the wave packet is assumed
to be so small that the periodicity in the transverse dimensions
(x') is not sensed. For most classical devices (e.g. , magnetic
bremsstrahlung FEL), this transverse periodicity (k /sinO, ) is
immense when measured in an electron wave-number scale.
Effects such as coherent bremsstrahlung in a crystal, for which
this assumption may not hold at large angle O„need to be
solved in a transverse quantum formulation (case 2}.
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spatial dimension of fi [ri —r,',i(z)] is small in all dimen-
sions relative to the spatial variation of the wiggler and
radiation fields, but large relative to the de Broglie wave-
length. Consequently, after comparing Eqs. (3.34) and
(3.12), we may express the initial eigenstate amplitude as

C„, =(2') ~ /L'~ 5(k;—k,';)6(ki)fi[r~ —r„i(z)]5

(3.35)

Within the spatial range of negligible fields variation,
C„, can be considered spatially constant despite the en-

velope function f [ri —r,'ii(z)].
Substituting (3.35) or the more rigorous Eq. (Cl1) in

(3.17), and now taking advantage of the narrowness of
the envelope function fi relative to the fields (or more
specifically, relative to the spatial variation of the interac-
tion Hamiltonian H ), one arrives again (see Appendix C)
at the simple equation

—a~x cosO — z sine +iq& r&+iq z

m

(3.38)
In both slow-wave structure examples (a Smith-Purcell

grating or a Cerenkov dielectric slab) we can single out at
least one synchronous term in the sum (3.39) and write
the perturbation Hamiltonian as an exponentially decay-
ing function times an oscillatory function of r:

(3.39)

Substitution of (3.39) in (3.36)' results in a general
equation for interaction in a planar slow-wave structure:

(2~)8'„= nt p(@f )f
—a X (z )cose —a z sine

! yk,fvf ~

e

2 2

p(A'f )nL ~(k,fvf ~

H'[r,'„(z'),z']
~
v;k;; )

~

', XH„,[r'„(z'),z']
~

v, k;, )
~

(3.40)

(3.36)

where p(6f ) is given by Eq. (3.29).
Equation (3.36) expresses the intuitively expected re-

sult that, in calculating the transition rate of a trans-
versely classical electron, what is important is the value
of the interaction Hamiltonian only along the trajectory
of the electron.

A simple example that illustrates the implication of
Eq. (3.36) is that of radiation by an electron interacting
with a transversely evanescent surface wave. This takes
place in slow-wave radiation schemes like Smith-Purce11
radiation (Smith and Purcell, 1953; Salisbury, 1970;
Bachheimer, 1972; Burclette and Hughes, 1976; and
Gover et al. , 1984) and Cerenkov FEL's based on a
dielectric waveguide (Von Laven et al. , 1982). Assume,
for example, a planar surface slow-wave structure that
lies on the plane x =0. The radiation field operator can
then be written in general in terms of the structure coor-
dinates r as

This is a general equation for the emission rate from pla-
nar slow-eave structures, which permits transverse ex-
cursion of the classical trajectory of the electron in the x
dimension due either to initial angular deviation or to
continuous focusing along the interaction region (as
shown in Fig. 7). The significance of the conclusion, that
the Hamiltonian must be evaluated along the classical
trajectory of the electron in the computation of the ma-
trix element, is well demonstrated here when one exam-
ines the simple example of straight-line propagation
parallel to the slow-wave surface [x (z) =x0, y (z) =0,
8, =0]. Equation (3.40) indicates an attenuation by a

—2a xofactor e relative to an electron propagating right
next to the surface. In the more general case of propaga-
tion in an angle 8,&0, the line-shape function will not
only be characterized by the finite interaction length, but
will also be dependent on the propagation angle e, and
on a (as we will present in Sec. III.D).

C. The relativistic regime

where a =[q +q, —(co/c) ]'~ . In a periodic slow-
wave structure (grating) q, =q,o+mk, the fundamen-
tal space harmonic is radiating (ao= —iq„o, where q 0 is

real). In a Cerenkov FEL based on a dielectric
waveguide, Eq. (3.37) reduces into a single transversely
decaying slow wave. We recall that in the derivation of
(3.36), the coordinate z' was assumed to be the average
electron motion direction. Consequently, if we assume in
the present example that an electron propagates in the
plane y =0 at an average angle 8, relative to the slow-
wave structure plane (see Fig. 7), then the field operator
(3.37) needs to be transformed into the electron coordi-
nates using the rotation transformation (z =z'cosB,
—x'sinB„x =z'sinB, +x'cosB, ):

Most radiation schemes considered in this paper
operate with relativistic electrons. Hence we need to ex-
tend the previous treatment, which is based on the
Schrodinger equation, to the relativistic regime. The
most general approach would rely on the Dirac equation
to describe the electrons. However, since spin eA'ects are
usually negligible (Bosco et al. , 1983; Kurizki and

' The transverse classical limit condition, which made this
substantial simplification, is in this case the requirement that
the transverse dimensions of the electron wave packet are much
less than the electromagnetic decay length 1/a.
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McIver, 1984), considerable simplification of the formu-
lation is gained by using the Klein-Gordon equation:

Bt
iiri +eV ttt=c ( —iAV+e A) g+m c"g . (3.41)

P= u (r, t)exp( iE&&t /A),— (3.42)

Unfortunately Eq. (3.41) is a second-order differential
equation in time and cannot be combined with the quan-
tized radiation field equation for use with the perturba-
tion procedure presented in Sec. III.A, since that pro-
cedure was based on a first-order (in time derivatives)
Schrodinger equation [see Eq. (3.9)]. However, if the
charged particle is relativistic only in one dimension (the
average particle motion direction), which is the case for
a —=eA /mc &&1, then it can still be approximated by a
Schrodinger-type equation, which is first order in the
time derivative. There are a number of ways to obtain
such a quasirelativistic efI'ective Schrodinger equation by
approximating the Klein-Gordon or Dirac equation
(Fujiwara, 1961; Beloshitskii and Kumakhov, 1978). A
formal reduction of the relativistic equations into a first-
order equation can be obtained by second-order quantiza-
tion of the particle wave-function field, as demonstrated
in Appendix D. In this section we sketch a simpler
derivation of the Schrodinger-type relativistic equation
by an iterative approximation of the Klein-Gordon equa-
tion (3.41) around a center energy Eo, which is about the
particle energy in the wiggler in the absence of radiation
fields. The approximation is based on the assumption
that the solution of (3.41) is a single quasiharmonic posi-
tive energy wave (for an electron):

where u (r, t) is a slowly varying function of t, and the
negative-energy (positron) wave solution is not excited.
This assumption is well justified in practical cases for
which the radiative perturbation energy is much smaller
than the relativistic electron energy ymc .

Substitution of Eq. (3.42) in (3.41) results in

i' u = c ( —iAV'+e A) +(mc )
Bt 2 Eo+eV

+A'- u.8
at2

—(Eo+eV) —iA'e V u
Bt

i% /=HE,
rjt

where"

(3.43)

1 c ( —iAV'+e A) +(mc ) —(Eo+eV)H= Eo+—

[c ( ilail'+e A) —+(mc ) —(Eo+eV) ]
8 (Eo+e V)

(3.44)

The Hamiltonian (3.44) can be split into an electronic
unperturbed part and a radiative perturbation part:
H =HO, ]+H&, where

Successive iterative substitution of this equation into its
right-hand side, neglecting third-order derivatives in time
and space (A' terms), and neglecting the time derivatives
of the electromagnetic fields (fico&~Eo) results in the
eft'ective quasirelativistic Schrodinger equation

1 c ( ifiV'+e A„)—+(mc ) —(Eo+eV ) 1 [c ( iAV+e A—) +(mc ) —(Eo+eV„) ]
0 el 0 Eo+ e V„ 8 (Eo+eV„)

—'2[A ( iRV+eA —)+( ifiV+eA ) A, ] e—V, (E&+eV —)

H~ ——e Eo+e V~

(3.45)

(3.46)

Here we assumed electron energies in the range E =EO.
Since, by definition,

[c ( iAV+e—A ) +(mc ) (Eo+eV„) ]gz———0,

Eq. (3.46) is the correct first-order radiative interaction
Hamiltonian (in terms of the radiative field A„V, ) and

Ho, l is the unperturbed Hamiltonian, correct to second
order in the wiggler fields A, V .

We note that for the mere purpose of computing the
first-order radiative perturbation Hamiltonian, the series
expansion of Eq. (3.44) could have been stopped after the
second term. However, the third term is non-negligible
in the calculation of the unperturbed problem of the elec-
tron in the wiggler, and in the case of a uniformly period-
ic wiggler it is needed in order to obtain the anisotropy of

t

the effective-mass tensor (2.90). In many cases, however,
the solution of the unperturbed Hamiltonian wave func-
tions (which are needed eventually for the computation
of the perturbation matrix element) can be found by solv-

ing directly the Klein-Gordon equation instead of the

iiEquation (3.44) can be formally derived by a second-order

Taylor expansion of the square root in the classical iden-

tity E Eo=(EO+e V) [1—[1+(ci(—p, +e A)i+ (mc')i —(Eo
+eV)')/(Eo+eV) ]'~

I and by the substitution p, ~—B'AV

The conditions for the validity of this symbolic operator expan-

.sion are apparently the ones indicated in the paragraph before
Eqs. (3.43) and (3.44).
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effective Schrodinger equation (3.43) with (3.45).
In all practical applications, eV =0 or is negligible

relative to Eo ——yomc in the denominator of Eq. (3.46).
Taking a transverse radiation gauge for the radiation
fields V' A, =0, V, =0 [in analogy to the derivation of
(3.3)], the relativistic perturbation Hamiltonian may be
written in the compact form

where

H,'„=eA, (r) ~

H,' =e A,*(r).

—iAV+e A

—iAV+e A

(3.50)

(3.51)
[H„']= A, ( ifiV—+e A )= [HNR],

my0 Xo
(3 47)

(3.48)

In Appendix D we derived this specific result together
with the equation for the relativistic perturbation Hamil-
tonian (3 47) in a more rigorous procedure based on
second quantization of the Klein-Gordon equation.

D. Calculation of the matrix element
and homogeneous broadening line-shape function
for various radiation schemes

In order to evaluate the transition rate, it is always
necessary to calculate first the transition matrix element.
It is preferable to execute first the photon-state matrix
calculation, which can always be done explicitly and
straightforwardly. Substituting Eq. (3.4) in (3.47), one
obtains

M =(kIvI
i

H'
i v, k, )

+(k& ~H,
'

~
k, )+v, +15. . (3.49)

where [H ]NR is the nonrelativistic perturbation Hamil-
tonian given by (3.3).

When combined with the unperturbed quantized radia-
tion field Hamiltonian, Eq. (3.45) replaces the unper-
turbed electronic Hamiltonian part (first two terms on
the right-hand side) of Eq. (3.2). The first-order pertur-
bation formulation that we developed in the previous sec-
tion can therefore be applied with only a minor
modification, which requires that we divide the nonrela-
tivistic perturbation Hamiltonian [H ]NR [Eq. (3.3)] by

y0. However, the electron eigenstate functions that
should be used to calculate the matrix element in the final
equations are the solutions of the unperturbed relativistic
equations (3.43) and (3.45) or the Klein-Gordon equation
(3.41) with the wiggler potentials A, V .

There is some uncertainty about the value of the divid-
ing factor yo in Eq. (3.47), since the electron energy is

changing in an unknown way through the interaction re-
gion due to photon emission. The proper choice for y0,
which takes into account the radiation process, must lie
between y,. and y&, the initial and final electron energies
before and after the interaction region (where
V =0= A, ). The standard procedure of Feynman dia-

gram perturbative calculation (Bjorken and Drell, 1965)
suggests that the appropriate value of y0 to be used is the
geometric average between the initial and final values:

For the case in which the quantization modes are travel-
ing plane waves, the normalized mode vector potential
field is the coefficient of the operator a, in Eq. (3.27):

A, =
I iri/[(2m. ) 2Eco] I

'~~e e'q' .

~

k)= e'"',
(2'�)

(3.52)

Aq (r) = A e'q', (3.53)

where o. is the helicity or polarization-state index of the
radiation wave. We choose here to describe the electron
in a fully quantum-mechanical model (both longitudinal-

ly and transversely).
The calculation of the emission matrix element with

Eqs. (3.52) and (3.53) results in

What is left to calculate in any particular radiation
scheme are only the electronic-states matrix elements.
The detailed calculation of these elements for any radia-
tion scheme lies outside the scope of this paper. We will

show, however, the exact procedure necessary for calcu-
lating each radiation scheme and will dwell upon the
common characteristics. The common feature of all the
radiation schemes we will consider is the extended in-
teraction between the electron and radiation waves along
the axial (z) dimension. This results in similar emission
line-shape functions for all radiation schemes, which
stems from the axial coordinate overlap integral in the
electronic matrix elements in Eq. (3.49). The transverse
overlap integration leads merely to a numerical factor,
and we discussed its computation in Sec. III.B for three
specific cases.

The electronic matrix element measures the spatial
overlap between the initial and final electron states and
the electromagnetic fields. This determines the strength
of the interaction and various exclusion rules of the tran-
sition; in particular, conservation of momentum condi-
tions. For demonstration purposes we now focus discus-
sion on the emission matrix element M +,f i

=(k&
~
H,'

~
k,. )Qv;+1. It is clear that the calculation

of the absorption matrix element is completely analo-
gous. We start with the simplest example of a free-space
electron state and a plane electromagnetic wave propaga-
ting in a uniform interaction region of Anite dimensions:
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Lx

Z

FICx. 8. Finite interaction length broadening the Cerenkov in a
dielectric slab geometry.

(k„,—k„f—q„)L
~

M „+, l
ccsincf i

(k, —kf —q )L
X sine

(k„.—k,f —q, )L
+sine (3.54)

where (L„,L~ ) and L are the transverse and longitudinal
dimensions of the interaction region [see Fig. 8(a)].

In the limit of large interaction region dimensions
(L„,L,L ~ 00 ) the line-shape functions of (3.54) vanish
unless k; —kf ——q, vividly recovering the familiar
momentum conservation condition in uniform space [see
Eq. (2.2)]. As is well known, this condition cannot be
satisfied in free space simultaneously with the energy
conservation condition, and therefore Fig. 8(a) and Eqs.
(3.52) and (3.53) correspond to a realizable radiation
scheme only if the interaction region contains a dielectric

I

medium (e.g. , gas), thus representing the Cerenkov effect
in a quantum model. In this case the radiation wave vec-
tor (2.20) is modified by the index of refraction,
q=e neo/c, and the matrix element line-shape functions
(3.54) can simultaneously attain their maxima on the con-
dition that the totah Uectorial momentum conservation.
equation (2.2) is satisfied.

It is noted that Eq. (3.54) includes three line-shape
functions, corresponding to the three spatial dimensions.
In practice one of these functions is dominant. In the
transversely classical limit, usually the transverse line-
shape functions are eliminated by the process described
in Sec. III.B.3 (illustrated by Fig. 7). This case is shown
again in Fig. 8(b) for the present example of Cerenkov
emission in a "dielectric slab, " depicting a narrow wave-
packet electron wave function propagating at a straight
line at an angle 8 relative to the axis of a dielectric block
with dimensions (L,L~,L). We note that in the electron
coordinate system (x',y', z") the dominant (narrowest)
line-shape function that remains after the evaluation of
the matrix element is sine [(k,', —k,f —q,')L'/2]. It is
thus the effective interaction length of the electron L'
that determines the emission and absorption line-shape
functions. This length is usually determined by the longi-
tudinal dimension of the structure (the dielectric slab in
the present example): L'=L/cose, . However, at large
angles, as depicted in Fig. 8(b), the transverse dimensions
of the structure may be the ones that determine the
effective electron interaction length (L'=L /sine, ) and
the interaction line-shape function.

The free-electron interaction configurations of most in-
terest in the present review are ones that are character-
ized by a periodic structure in the axial (z) dimension.
We confine our analysis to the cases discussed in Sec.
III.B, in which the matrix element calculation involves
only z integration, or in which the longitudinal line-shape
function is dominant. If the periodic structure affects the
radiation field, the radiation modes satisfy the Floquet
theorem (2.5). If the periodic structure affects the elec-
tron, the electron eigenstate functions are also Floquet
(Bloch) waves [Eq. (2.6)]. In some problems, such as
when an electron is channeled through the crystal lattice,
both the electrons and the radiation field are affected by
the periodicity. It is instructive then to examine the
combined contributions of both effects to the matrix ele-
ment.

Keeping in Eqs. (2.56) and (2.57) only the terms that
will produce axial phase matching (momentum conserva-
tion) via first-order harmonics, the emission matrix ele-
ment can be written

(3.55)

where (ri) exp[i(k, o+mk )z], (3.57)

(r&) exp[i (q o+mk )z], (3.56) are the m-order space harmonics of the radiation and
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electron waves, respectively, and A"' is the first-order
Fourier component of the periodic wiggler. '

We focus our attention now on the axial overlap in-
tegral, assuming that the transverse overlap integral is
nonvanishing. It is clear that after integration over the z
coordinate all "first-order" products of the various terms
in (3.55) produce the same detuning function:

~
M, „+, ~

cc(v,. +1)sine [(k„.—k,f —q, —k„)L/2] .f i

(3.58)
e" e-

{b)

(e)

This fully justifies the axial conservation momentum con-
dition (2.14), which was hypothesized in Sec. II for an
infinite interaction length. It also fits well with the axial
momentum uncertainty assumption of (2.26). In a simi-
lar way one can also show that

~
M,

~
cav; sine [(k,f —k„.—q, —k )L/2] .f i

(3.59)

It is worth drawing attention to the fact that the
difFerent first-order terms in Eq. (3.55) add up in a phase-
coherent way. It is thus very important, when a number
of radiation mechanisms exist, to determine the phase of
the various terms as well as the amplitude, in order to
find out if their contributions to the proportionality
coefficient of (3.58) add up constructively or destructive-
ly.

It is quite instructive to relate the contributions of the
various terms in (3.55) to a number of well-known radia-
tion schemes. We do it with the aid of a series of Feyn-
man diagrams (Fig. 9), which illustrate the various in-
teraction terms. It should be noted that although in
Feynman diagrams each junction usually represents an
order. -of perturbation in the fields, in the presently dis-
cussed problems the unperturbed electron and radiation
fields (before they interact with each other) can often be
solved exactly in terms of the wiggler field or the periodic
electromagnetic structure. The first-order components in
(3.55) may represent therefore exact first order Floquet-
space harmonic calculation and not a fi'rst-order perturba
tion calculation. However, the interaction of the electron
with the radiation wave is indeed a first-order calcula-
tion. The Feynman diagrams should be regarded here

(g)

FIG. 9. Feynman diagram representation of different free-
electron radiative emission schemes.

only as a symbolic means for classifying and illustrating
the basic physical processes in the various radiation
schemes. Figure 9 classifies the various interaction
schemes reviewed in this article into five classes of ele-
mentary processes.

(1) The leading process in coherent bremsstrahlung ra-
diation (Uberal, 1956; Walker et al. , 1975) and in elec-
trostatic bremsstrahlung FEL (Gover, 1980a), and one of
the contributing terms in oA-axis undulator radiation
(Motz, 1951; Kincaid, 1977), is the basic bremsstrahlung
process for which A,'"= A"'=0. The matrix element is
composed of two terms,

q( i ) e A(0) e q(0)
s 'p

(3.60)

These terms are represented by the Feynman diagrams of
Figs. 9(a) and 9(b), respectively.

(2) The leading process in the most familiar radiation
ffetecof magnetic bremsstrahlung FEL (Elias et al. ,

1976; Deacon et al. , 1977) or undulator synchrotron ra-
diation (Motz, 1951; Kincaid, 1977} is based (assuming
on-axis radiation and zero transverse electron canonical
momentum) only on the term

(3.61}
' For the transversely classical case (Sec. III.B.3), contrary to

the other cases, the electron Floquet wave-function harmonics
were assumed to have the form (3.57) in the average electron
coordinates r' and not in the structure coordinates r. For the
purpose of clarity in the general discussion of different free-
electron interaction schemes, we keep using the structure coor-
dinates, but it should be kept in mind that in the transversely
classical regime, the longitudinal coordinate parameters really
correspond to the average electron coordinates. Of course there
is no distinction between the difFerent regimes in the specific
simple case of electron propagation on axis {8,=0).

This term is represented by the degenerate diagram of
Fig. 9(c). The conventional bremsstrahlung process dia-
grams [Figs. 9(a) and 9(b); Eq. (3.60)] contribute to the
FEL radiation scheme only when oA'-axis radiation or
nonvanishing transverse canonical electron momentum
are considered. It should be pointed out that diagram
9(c) is unique to the Schrodinger and Klein-Gordon
equations representation, since they both are second or-
der in the vector potential. In a Dirac equation formula-
tion, which is first order in the vector potential, the mag-
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netic bremsstrahlung FEL scheme would also be
represented by the conventional bremsstrahlung dia-
grams 9{a)and 9(b), but diagram 9(c) would not exist.

(3) In the Smith-Purcell radiation effect and other
efFects based on a periodic electromagnetic structure,"=g&"——A" ' =0, and the only contributing term is

q(o) A((). q((0)
Vg —V ~ +

/Pl
(3.62)

This process is presented symbolically by diagram 9(d),
which is a "generalized" Feynman diagram (Clover and
Yariv, 1978a). Here the first interaction junction
represents generation of a subluminous radiation wave by
the electron, and the second interaction junction on the
photon wave symbol represents elastic scattering by the
optical grating. This scattering can be described as a
process in which the grating endows the subluminous
electrostatic (Coulomb) wake field of the electron with a
negative crystal momentum that turns it into a luminous
radiation wave.

It should be noted that also in the conventional
Smith-Purcell radiation effect there is some transverse
electrostatic force that is applied to the electron by its
image charge in the grating (Smith and Purcell, 1953).
Hence there is some contribution (presumably small) to
this radiation. effect also due to electrostatic bremsstrah-
lung terms [see Eq. (3.60) and Figs. 9(a) and 9(b)].

(4) In addition to the three radiation processes, which
are possible in an axially periodic structure, we discussed
in previous sections radiation effects in a transversely
confining force, such as the cyclotron resonance maser
and channeling radiation. In these radiation schemes
A = A,'"=g'; "=g"'=0. The axial coordinate over-
lap integral-in the matrix element produces in this case a
line-shape function similar to (3.S8), but with k =0.
This corresponds to the axial momentum conservation
condition (2,50) in interbranch transitions (Sec. II.D). In
this case the transition is made possible between initial
and final states that correspond to two different trans-
verse energy branches, and the energy conservation con-
dition can be satisfied simultaneously with the momen-
tum conservation condition due to the excess intrabranch
(transverse) energy exchange involved in the transition
[see Eq. (2.49)].

Using a general point of view the different transverse
energy states of the transverse confinement interaction

schemes can be regarded as timelike electron scattering
processes presented by Figs. 9(e) and 9(fl. The central
force field generates in the e —k, plane perturbed energy
branches above the free-electron energy diagram [Fig.
1(c)]. This is contrary to the spacelike perturbation by
the bremsstrahlung process that produces branches,
spaced horizontally from each other, in the e —k, plane
[Brillouin zones —see Fig. 1(b)]. While the spacelike pro-
cess is represented by horizontal lines in Figs. 9(a) and
9(b) the timelike process is represented by vertical lines
[Figs. 9(e) and 9(fl].

(5) For the sake of completeness we also show in Figs.
9(g) —9(i) the Feynman diagrams of the Compton scatter-
ing radiation scheme (electromagnetic wiggler FEL).
Both the electromagnetic pump (wiggler) and the emitted
radiation are represented by slanted lines of slope e. For
the sake of simple formulation the Compton scattering
radiation effect was not included in the analysis of this
paper. However, most of the common features that we
identified in the other radiation schemes are found in this
radiation scheme as well (Gover, 1981, 1984), and the ex-
tension of the formulation to this scheme is quite
straightforward.

The actual quantitative calculation of the matrix ele-
ments for specific electron radiation schemes is outside
the scope of this paper. We limit ourselves to showing,
that up to a proportionality constant a large number of
radiation schemes in various operation regimes display
the same emission and absorption line-shape functions,
which are given by (3.58) and (3.59). These "homogene-
ous broadening" line-shape functions are the result of a
finite interaction length and are common to all radiation
schemes where the interaction between the electron wave
functions and the radiation wave is extended over a long
interaction length.

In concluding this section we discuss an alternative
longitudinal homogeneous broadening mechanism, which
takes place in some radiation schemes. This mechanism
is one in which the interaction Hamiltonian or the elec-
tron wave functions decay exponentially as a function of
z. The line broadening may then be limited by the ex-
ponential decay length instead of the interaction length
I.. The line-shape function is derived in these cases from
the z integration implied in the matrix element (3.55),
where the inclusion of an exponential factor exp( —I(z) in
the integrand modifies (3.S8) and (3.59) to read

t

cosh(I~L) —cos(k„.—k,& —q, —k )L
~
M, +, ~

~(v;+1)2e
[a. +(k„k,/ q, —k„) ]L——

cosh(~L) —cos(k,&
—k„.—q, —k )L

[a. +(k,~ —k„.—q, —k ) ]L

(3.63)

(3.64)

This result reduces to the sine line-shape functions (3.58)
and (3.59) in the limit vL && 1, and to a Lorentzian line-

shape function

+i ~

~ (i(L) ~[1+(k„—k,&+q, +k ) /v ]

(3.65)

I

in the opposite limit. In the latter case the wave-number
mismatch width of the line-shape function is sc and is in-

dependent of the interaction length L, . Hence, when con-
sidering the frequency linewidth for this case, a would re-
place m/L in (2.26) and {2.27).

Some examples in which line-shape functions as (3.63)
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and (3.64) or Lorentzian line shapes [see (3.65)] are ob-
tained are those where the radiation wave decays ex-
ponentially due to losses, or when the electron wave func-
tion decays. A typical case is that of channeling radia-
tion, when the initial-state wave function decays into oth-
er transverse electronic states due to inelastic collisions
(scattering by phonons and electronic excitations; see
Kurizki and McIver, 198S). This can be described ap-
proximately by an exponential decay factor accounting
for the finite coherence length of the electron wave func-
tion when subjected to these scattering mechanisms. ' In
this case any of the homogeneous line-shape functions
[(3.63),(3.64),(3.65)] may be used where a. =a.

, +sf and

v, ,~f are the exponential decay constants of the chan-
neled electron initial- and final-state functions, respec-
tively (Andersen and McIver, 1981).

The inhomogeneous line-shape functions [(3.63),
(3.64),(3.6S)] also describe the line broadening of electron
emission when interacting with an evanescent elec-
tromagnetic wave (such as Smith-Purcell radiation and

V'

Cerenkov interaction with a radiation mode of a dielec-
tric slab). The matrix element for this case was derived
at the end of Sec. III.B.3 for a transversely classical elec-
tron propagating at an angle 6, relative to the structure
surface (Fig. 7). Assuming straight-line propagation of
the electron x '(z') =x 0

——const, the axial integration im-

plied in Eq. (3.40) results in the matrix element calcula-
tion (3.62), the same exponential decay homogeneous
broadening line-shape functions (3.63)—(3.65) with
i'd=a sinB, and (k„q„k,L)~(k;,q,', k', L ').

state matrix elements vf ——v;+1 and vf ——v, —1, respec-
tively.

It is important to note that contrary to the conserva-
tion of energy conditions, (2.13) and (2.15), written
specifically for the center line frequencies co=co, and
cu=m„respectively, we now require the energy conserva-
tion condition to be satisfied exactly for a given arbitrary
frequency co. Consequently, the axial momentum conser-
vation conditions (2.14) and (2.16) are not necessarily
satisfied. For a Axed transverse state in the case of trans-
versely discrete states and for an assumption of exact
transverse momentum conservation in the case of trans-
versely continuous states, the initial wave number k„and
the radiation frequency ~ determine completely the final
state k,f and the corresponding momentum conservation
mismatch k,f —k„—q, —k (k„—k,f —q, —k ) that
need to be inserted in the detuning curves (3.58), (3.59),
(3.63), and (3.64).

The emission and absorption transition rates are pro-
portional to their corresponding detuning functions
[(3.58),(3.59),(3.63),(3.64)] with the same proportionality
coeKcient, except for the factor 1/U,f that appears in
Eqs. (3.20), (3.31), and (3.36) and the factor I /yf that
emerged from the relativistic generalization of Sec. III.C
[see Eq. (3.48)]. This makes it possible to write the net
photon emission rate into a given radiation mode qo. at
frequency co in the form

d vq~
+i —W

dt f & f

E. The transition rate calculation
=I„y;U„(vq +1) F(0, )

1

~e Uze

We have found that for the various electron models
(transversely discrete states, transversely continuous
quantum, transversely continuous classical) and the vari-
ous radiation schemes listed and described in the previ-
ous section, the single photon emission and absorption
transition rates involve similar transition matrix elements
[Eqs. (3.20), (3.31), and (3.36)]. The squared absolute
value of these emission and absorption matrix elements
are proportional in turn to homogeneous broadening de-
tuning functions given by (3.58) and (3.59) or (3.63) and
(3.64). The initial and final axial wave numbers k„,k,f
that appear in the detuning functions are restricted by
the total energy conservation condition, which is dictat-
ed, for instance, for the case of transversely discrete
states, by the delta function in Eq. (3.19). The delta func-
tion argument nulls and manifests the energy conserva-
tion conditions for emission 8k —61, ——Ace and absorp-

Z1 ze

tion @k —6k ——Am for the two nonvanishing photon-
za Zi

' A more accurate model should consider also the "refeeding
efFect, " i.e., the scattering of the electron back into the original
state (Andersen and McIver, 1981).

—vq F(0, )
1

'Ya Uza
(3.66)

where

F(0)=sine
2

(3.67)

for the case of interaction-length-limited line-shape func-
tion [(3.58),(3.S9)], and

(IrL) cosh(I~L) —cos0
cosh(i~L) —1 (irL)2+0 ~

(3.68)

0, =0,L, 0, —:k„k„(~,k„) q, (co)—k.— —

0, =0,L, 0, —=k„(co,k„.) —k„—q, (co)—k„.
(3.69)

(3.70)

The common coefBcient I
p

is the spontaneous emission
transition rate at the emission 1ine center, and can be cal-

for the exponential decay case [(3.63),(3.64)]. The emis-
sion and absorption detuning parameters 61„0, are the
phase mismatches between the electron, radiation, and
wiggler waves accumulated along the length L due to the
corresponding initial longitudinal momentum (wave
number) mismatch,

Rev. Mod. Phys. , Vol. 60, No. 2, April 1988



Friedrnan et aI.: Spontaneous and stimulated emission from quasifree electrons 503

0 =0+—, (3.71)

F0 =0——
a (3.72)

where

0, +0,0=
2

—q, (co) —k L,
uz zi

(3.73)

s=(8, —0, )= (3.74)

culated for a given radiation scheme and electron model
according to the procedure outlined in the previous sec-
tion. Both detuning functions were normalized to satisfy
F(0)=1.

We note that the dependence of 0„0, on k„, co is im-
plicit in the conservation of energy conditions that are
assumed to be satisfied exactly for a given frequency m:

=A'co, 6„—6"„=irido [(2.13) and (2.15) with

co, =co, =co]. The dependence on cu, k„can be made ex-
plicitly by expanding 61, and 6k to a second order in iii

ze za

in the same way that was used to derive (2.17) and (2.42).
For an electron and electromagnetic wave propagating
on axis with the wiggler, or in general in the absence of
transverse recoil, this results in

tical cases, we will mostly use in this paper a simplified
version of Eq. (3.66) with iI=0, assuming (as is usually
done) that the main quantum recoil effect is inside the de-
tuning function:

d Vq~ =I,p[( vq + 1)F(8, ) vq —F ( 6, ) ] .
dt

(3.79)

Equations (3.73), (3.74), and (3.78) are applicable to a
general electromagnetic mode (e.g. , a waveguide mode or
a free-space Gaussian mode within a Rayleigh length) as
long as the electron propagates perpendicular to the
wave phase fronts (forward radiative emission). For off-
axis radiative emission in the case of transversely con-
tinuous states, transverse quantum recoil must be taken
into account in the series expansion of the conservation
of energy and momentum condition, which needs to be
carried out in order to obtain an explicit (co, k, ) depen-
dence of the detuning parameters. Following the same
method used to derive 5cu/Ace [Eq. (2.89)] in Sec. II, we
specify the derivation to plane-wave radiation modes.
The analysis is still quite general, since the radiation
direction and the electron average motion direction are
both allowed to be arbitrary. Equations (3.71), (3.72),
(3.75)—(3.77) are valid for this case as well, but the recoil
parameter c. and the classical detuning parameter 0 are
given by (see Appendix E)

f71
ll

U Uz

The latter parameter is the longitudinal quantum
recoil parameter. Comparing it to (2.42) we find that it
relates to the emission and absorption line-centers spac-
ing 6co =cu, —co, and to the finite-length broadening
linewidth AcoL by the simple equality

a COe

E =2& (3.75)

y, u„=y; u„( 1 —g /2 ),
y, u„=y; u„(1+i7/2),

(3.76)

Clearly the condition c. «2~ is equivalent to the classi-
cal limit condition hcoL »

~

5co
~

[see (2.35)], and there-
fore the recoil parameter c is also the longitudinal classi-
cal limit indicator.

The other parameters in Eq. (3.66) that contain quan-
tum terms are y, u„=fik„/m and y, u„=hk„/m. Us-

ing the definitions (3.69), (3.70), and (3.73), we can
rewrite these terms (to first order in iii') as

AL 1(q+k ),
Uz ij =i OZ

(q+k ), , (3.80)

. 0=[co—(q+k„)-v ]L,/u, . (3.81)

As was predicted in Sec. III.B, the equation for the
classical detuning parameter 9 [Eq. (3.81)] is independent
of the choice of the coordinates system and is only depen-
dent on the projection of q+k on the electron propaga-
tion direction and the transit time t,„=L,/u, =L /u.
The recoil parameter definition also is independent of the
choice of coordinates. In Appendix F we explore the
symmetry properties of the mass tensor. We show there
that for a uniform (on the average) wiggler structure [for
which the mass tensor terms are given by Eq. (2.90)], the
mass tensor diagonalizes in a coordinate system that is
aligned with the electron average motion direction. This
system is therefore the principal system of the mass ten-
sor. The recoil parameter is shown there to be given by

where

2A co'9=
Pzl Uz

(3.78)

Clearly also g «1 is a classical limit condition. Howev-
er, for all practical cases e »q [E=(1/2y, )(co/

u, )Lr1=2vrX rj, where the second equality applies to
periodic structure FEL's with y, »1]. Consequently,
the condition c. «1 is a sufticient classical limit condi-
tion. Because q is so much smaller than c, for most prac-

(q,'+k', ) +(q'+k'„) . (3.82)I 'I/

This indicates that the recoil parameter depends only on
two parameters: the longitudinal and transverse corn-
ponents of the vector (q+k„) relative to the axis defined

by the electron average motion.
We cite from Appendix F two more forms for the im-

portant recoil parameter. Expressing the various param-
eters in (3.82) in terms of the electron rest-frame parame-
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ters' reveals an illuminating physical interpretation of
the recoil parameter: e= ——

~
q(~)+k.

~
cosB„,(~) I.'.

U
(3.86)

At„ (q'+k' ) =omtt, ,
P1 P

5~'/2 =coo —coo = 6'& /A'= A'k&2/(2m y')

(3.83)
For practical applications, it is useful to express the

recoil angle 6„,in terms of the angles between the mutu-
ally misaligned electron motion axis, wiggler axis, and ra-
diation direction:

=Pi(q'+k' ) /(2my') cos6q =eq e cos6' =e .e„cos6 =e .e

AL f00
+tan 6„„(coo)

Pl QU
(3.84)

where 6„, is the angle between the recoil momentum
vector' A'(q+k ) and the electron motion direction,

cosB„„=eq+t, .e, =e, (qo+k )/
~
qo+k (3.85)

and coo is the synchronism frequency [8(coo)=0]. The de-
tuning parameter may then be expressed in a compact
way in terms of 6rec:

'"Recall that the barred parameters y, u refer to the group ve-
locity of the electron which in the classical limit is the average
(over wiggler period) velocity of an electron quivering in a gen-
eral wiggler. In addition, y=yyr, yr ——Ql+a ' =y', where
y' is the relativistic mass factor in the electron average rest
frame, and a—:ed /mc.

' The wiggler wave number was defined to have negative
momentum (to indicate primary motion opposite to the signal
wave direction), hence A'[q —( —k }] indicates the transfer of
momentum to the electron in a process in which one {virtual)
wiggler photon of momentum —Ak ~ is absorbed, and one pho-
ton of momentum Aq is emitted.

is the well-known Compton recoil frequency shift of a
photon scattered by an electron at rest (with eft'ective
mass my'), and tt, =I.,'/(U y) is the wiggler transit time
in the electron rest frame. The second part of Eq. (3.83)
can also be derived directly from (3.75) when applied in
the electron (average motion) rest frame. This is permis-
sible because, as we show in Appendix F, Eq. (3.75) is a
covariant equation —form invariant under general
Lorentz transformations. Equation (3.83) provides a tie
between general free-electron radiation and the conven-
tional Compton scattering effect. Indeed, starting at the
electron rest frame with the known Compton recoil Eq.
(3.83) and then transforming back to the laboratory
frame is an alternative way for deriving the quantum and
classical regime equations (Gover, 1984). Also the origi-
nal paper by Madey (1971) on the FEL was based on
modeling the device as a stimulated Compton scattering
effect.

Another form for the recoil parameter, expressed in
terms of the laboratory parameters, can be derived from
Eq. (3.82) (Appendix E):

where e,e„e are unit vectors in the radiation, electron
motion, and wiggler directions, respectively. Equation
(3.85) can then be written, in general, as

cos6„,=
cos6' +cos6'

k c
2

1+
k c

+2 coseq
k c

In addition, the detuning parameter (3.81) can be ex-
pressed in terms of the recoil angle

0= ———cos6'+k„cos6' L, ' .
U

(3.88)

CO —COe

0, =2m
ACTI

(3.89)

CO —CO~

0, =2~-
ECOL

(3.90)

which also permits us to write the classical detuning pa-

The recoil parameter (3.84) expressed in terms of the mu-
tual angles (3.87) and the detuning parameter expression
(3.88) can now be used in Eqs. (3.66) and (3.71)—(3.94) to
provide a very general equation for free electron spon-
taneous and stimulated emission at arbitrary electron,
wiggler, and radiation wave directions.

We note that most of the analyses previous carried out
for free-electron lasers are applicable only to the limit
6~ =6' =6 =0 (on-axis propagation and emission).
Some of them (Krinsky et al. , 1982; Kroll, 1982) apply in
the more general case Bq =0, B~ =6' &0 (radiative
emission on the wiggler axis by an electron that may
propagate off axis). In this latter case 6) = [co/u
—(co/c +k ) cosB'„]I.', and 6„„=6', which also
makes Eq. (3.84) for the recoil parameter a simple expli-
cit equation given in terms of the electron propagation
angle O'„. In the most general case of arbitrary radiative
emission and electron propagation direction, which we
derived here, two angle parameters (6',6' ) need to be
known.

Explicit representation of the frequency dependence of
the line-shape functions can be obtained by first-order ex-
pansion of the detuning parameter around the emission
and absorption line centers. For both the models of lon-
gitudinal recoil [Eqs. (3.71)—(3.75)] and arbitrary recoil
arbitrary plane-wave emission angle [Eqs. (3.80) and
(3.81)], this results in (Appendix F)
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TABLE I. The finite-length homogeneous line-broadening parameters for periodic structure schemes.

Parameter Wave-number domain Frequency domain

Emission detuning parameter 0, =(k„—k„—q, —k )L
CO —CO~

27T
Ado'

Absorption detuning parameter

Classical detuning parameter:

(1) Longitudinal recoil

(2) Arbitrary angle plane wave

Quantum recoil parameter

0, =(k„—k„—q, —k )L

0, +0,0=
2

CO——q, —k L
Uz

(2) [=[co—(q+k ).v]L, /U, I

c=(0,—0, )

CO —
COO

2&
AcoL

rameter (3.73) as

(3.91)

where Acol is the finite-length homogeneous broadening
linewidth (2.31) or (2.84). There is a slight diff'erence be-
tween the emission and absorption linewidths, but in all
practical cases it is negligible (as explained in Appendix
F).

The frequency dependence of the finite-length homo-
geneous broadening net emission line-shape func-
tion [(3.79),(3.67)] is illustrated as a function of co by the
upper curve of Fig. 2(a) for the quantum limit
e»2m(co, —co, »bcoL ). The upper curve of Fig. 2(b) il-

lustrates the Lorentzian homogeneous broadening line-
shape function (3.65) in the same limit. The linewidth of
this line-shape function is wider than the 6nite-length
broadening width: Ecol, ——A~L~L/m. We note that the
linewidth parameter is in this case independent of L as
expected.

Table I summarizes the homogeneous line-broadening
parameters according to the two difFerent notations used
for describing the lines detuning in the wave number
domain and in the frequency domain. The second
column expresses the detuning parameters 8„0, as the
wave number (momentum) mismatches for emissive and
absorptive transitions, respectively, normalized to the in-
teraction length. It presents (implicitly) the dependence
of the emission and absorption lines on both to and 6k .

I

The third column expresses the detuning parameters ex-
plicitly in terms of the frequency parameters of the emis-
sion and absorption lines: the signal frequency co, the line
centers co„co„and the frequency linewidth AcoL. The
latter representation is manifestly similar to the represen-
tation of atomic transition lines. The dependence on the
electron energy and wiggler parameter is implicit in the
line-center frequency parameters (co„co, ) and the band-
width parameter 6~1 . Table I helps to draw the connec-
tion between the results of the dynamical analysis of this
section and those of the kinematic analysis in the previ-

ous section.
The transition rate equations (3.66)—(3.70) apply

without change for the Cerenkov radiation and the trans-
verse binding interbranch transition radiation schemes
with the substitution k =0. However, since the energy
conservation condition [(2.49), (2.51)] of the transverse
binding radiation schemes are diferent, Eqs.
(3.71)—(3.74), (3.80), and (3.81) should be modified. Fol-
lowing the analysis in Sec. II.D, we redefine for the case
of nondegenerate spacing of the energy branches (e.g. , in
electron channeling radiation),

~e
0, =Od+ (3.92)

(3.93)

CO —COd
L

U
(3.94)

—q, L . (3.95)

Equations (3.89) and (3.90) are still valid, except that
co, and co, are given by (2.55) and (2.56), and the emission
and absorption recoil parameters are [as in the derivation
of (2.65)]

&~e a
ge a =2%

Ect)L

j5 L eo, aoCO '
— cos 6

me U c2 q

II

(3.96)

The detuning parameters of the transverse binding force
interbranch transitions are summarized in Table II in
terms of both phase (wave number) mismatch and fre-
quency tuning parameters. Note that in the transverse
binding interbranch transiti'on case, there are two in-
dependent classical limits: (1) the negligible longitudinal
recoil limit e, , &&2~; (2) the degenerate spacing of the
transverse-states limit. In the first case the longitudinal
recoil is negligible [vertical transitions in the diagram of
Fig. 1(c)], but the problem can still be quantum because
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TABLE II. The finite-length homogeneous line-broadening parameters for transverse binding force
schemes.

Parameter Wave-number domain Frequency domain

Emission detuning parameter

Absorption detuning parameter

Longitudinal classical

emission detuning parameter

(1) On-axis emission

0, =(k„—k„—cI, )L

0, =(k„—k„—q, )L

CO —COd —q, L

EO —QP~2'
ECOL

CO —CO~

277
ECOL

6)—60~02'
ECOL

(2) Arbitrary angle plane wave (2) [=(cu—co& qv)L—, /U, ]

Longitudinal classical

absorption detuning parameter

(1) On axis
CL) —CO„)

q, L

{2) Arbitrary angle plane wave (2) [= (co —co„qv )L, /—U, ]

Quantum recoil parameter c, =2(0, —0d )

c, =2(0„—0, )

of unequal spacing between the transverse-states
branches (

l
ru, —ro,

l
& Eral ). The opposite can happen

0 0

in the second case. In Table II we assume only the first
limit and expand only the longitudinal recoil quantum
parameter to first order in A' (the transverse energy pa-
rameters 0d, O„,rod, cu„may remain fully quantum). This
is a reasonable model for problems such as electron chan-
neling radiation, where the electron system is inherently
quantum mechanical in the transverse dimensions. In
other problems, such as the cyclotron resonance maser
and positron channeling radiation, it may be necessary to
expand the transverse quantum parameters to first order
in A, as we did in (2.66) and (2.67). This will be discussed
in the next section.

F. The longitudinal classical limit

Until now we considered cases in which the electron is
described either quantum mechanically or classically in
the transverse dimensions. In all cases, however, it was
described quantum mechanically in the longitudinal di-
mension. In this section we derive for all cases the prac-
tical limit of "negligible quantum recoil" (the longitudi-
nal classical limit). In taking this limit one should bear in
mind the observations made in Sec. II.F regarding this
limit.

As indicated in the previous section, a sufficient condi-
tion for the longitudinal classical limit is
c.=2+.6co/Acul «2~, which is also identical with the
classical limit condition (2.35) derived earlier from kine-
matic considerations. Necessarily, when this condition is

satisfied, r) «1 is also satisfied (since g«E). Thus the
expansion of the transition rate, Eq. (3.66), to first order
in A in the classical limit can be carried out straightfor-
wardly by expansion in terms of e and g using Eqs. (3.71),
(3.72), (3.76), and (3.77). Since g «E, we will neglect in
the present discussion the resulting terms that are pro-
portional to rI' and will use in effect Eq. (3.79) instead of
(3.66). Taking the differential of (3.79) in the e «2' lim-
it, we find

d Vq~ =I,~ F(0)+—E F(0)+v~ e F(0)
dt ' 2 dO dO

(3.97)

For finite-length homogeneous broadening this result
reduces to the well-known spontaneous and stimulated
emission classical line-shape functions

sine (0/2) and (d/d0) sine (0/2),

previously derived for various kinds of FEL's (Madey,
1971; Gover and Livni, 1978; Sprangle and Smith, 1980;

' The ratio c/g scales as L (in the limit y, ~&1 or 'periodic

structure FEL's c, /g=2~X ). Consequently the terms propor-
tional to q may make a non-negligible contribution only for a
very short wiggler. Similar terms with quadratic scaling of the
classical gain in terms of the interaction length L (instead of cu-

bic) were identified in the FEL gain equation from direct classi-

cal formulation (Sprangle and Smith, 1980). They were found

to be negligible for practical FEL's with X ~~1.
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~c0/'V

1 —P, cos6&
(3.98)

where gn =1,2, . . . . There is no overlap between the
emission line functions of different radiation harmonics,
emitted at the same angle 6, as long as the emission

Gover and Sprangle, 1981; Piestrup and Finman, 1983).
We note that the second term in (3.97) is a spontaneous
emission term, though it has the same line-shape function
as the stimulated emission (third term). This term is the
only quantum-electrodynamical contribution left after
taking the electron classical limit c ~~2m. . However, in
this limit this term is always negligible relative to the
classical spontaneous emission (first term).

Equations similar to (3.97) were derived before from a
quantum model of magnetic bremsstrahlung FEL's by a
number of authors (Soln, 1981;Becker and McIver, 1982;
Dattoli and Renieri, 1983, 1985; Gover, 1984). This
equation states that the classica1 spontaneous and stimu-
lated photon emission rate functions are related to each
other by a simple relation of a derivative. Such a relation
can also be derived using a classical model as was shown

by Madey (1979) for the magnetic bremsstrahlung FEL.
Our derivation extends the theorem derived by Madey to
a large number of additional quasifree-electron radiation
schemes and operating regimes that were discussed ear-
lier in this paper. Furthermore, it extends it, when the
more general equations for the recoil parameter (3.80)
and (3.84) are used, to the general case of arbitrary elec-
tron propagation and radiative emission directions.

An exception to the generality of (3.97) is the case of
transverse binding radiation schemes. Only when the
vertical spacing between the branches of the transverse
quantum states is degenerate (cod ——co, ) are the detuning
parameters (3.94) and (3.95) identical, Od

——8„=8, and
(3.97) holds. In other cases (as in electron channeling ra-
diation) cod&co„, and then the emission and absorption
lines do not overlap even in the longitudinal classical lim-
it s «2~. In this case (3.66) does not reduce into (3.97)
as long as the condition

~

co„—cod
~

L/U, &2m, or the
equivalent condition

~

co,o —co,o ~
& b.cot, is satisfied.

If the deviation from degeneracy (the difference be-
tween the spacings) of the transverse-states energies
fi(co„—cod ) is a second-order quantum parameter
(

~

co„—cod
~

is proportional to fi), one can expand 0„9,
[Eqs. (3.92) and (3.93)] to first order in E„c., and
(co„—cod). One can then obtain, similarly to (3.97), ex-
pressions for the spontaneous and stimulated emission
rate, which are classical in both the longitudinal and
transverse parameters. Such an expansion was carried
out in Appendix A for the special case of the cyclotron
resonance maser, in which the vertical spacings between
the transverse-states branches are nearly degenerate. The
transverse "recoil" effect is manifested in this case by
transitions to lower or higher transverse states (Landau
levels). Considering emission into a particular harmonic
An =n; —nf, we find that the electron will radiate at cen-
tral frequency

linewidth (2.31) is narrower than the fundamental cyclo-
tron frequency b, coL &~0 .(].)

The "total" recoil parameter (both longitudinal and
transverse with respect to the magnetic axis)
c=2m5co/hcuL of a cyclotron resonance maser operating
at arbitrary cyclotron harmonic hn can then be found
directly from (2.67) by substituting co,o~b, neo, o:

sin'6 4~,0 ~,pL
(tt n)

( gn )2
1 —P, cos6~ y3mc

(3.99)

This can be used directly in Eq. (3.97), which is valid also
for the degenerate spacings transverse binding FEL with
an appropriately defined general recoil parameter c.. The
resulting equation is a general formula for spontaneous
and stimulated emission of cyclotron resonance radiation
in an arbitrary direction, and contains therefore both the
effects of relativistic mass instability (gyrotron effect; see
Hirshfield et a/. , 1965; and Chu and Hirshfield, 1978),
which is dominant for 6 =m/2, and the "Weibel insta-
bility" (Weibel, 1959), which is dominant for 6~ =0 [see
the discussion in Sec. II.D in reference to Eq. (2.67)].

We can now appreciate the generality of both the
quantum Eq. (3.66) and the electron classical (or negligi-
ble recoil) Eq. (3.97), which together with (3.67) or (3.68)
and Tables I and II define the spontaneous and stimulat-
ed emission rates in the homogeneous broadening re-

, gimes for the wide class of quasifree-electron radiation
schemes introduced in the first section. The emission
rate functions of all of these radiation schemes are
characterized by only four parameters, I, , co0, Ace, and c.

(or 5co); for interbranch transitions in the case of trans-
versely discrete states, there may be two separate values
for each of these parameters, corresponding to up and
down transverse-states transitions. For complete deter-
mination of the emission rate, the spontaneous emission
parameter I, has to be either calculated from the matrix
element of the transition or experimentally measured.
For the other three parameters, we derived explicit equa-
tions, which are listed in Table III for the general cases
of (1) transversely continuous states, (2) transversely
discrete intrabranch transitions, and (3) transversely
discrete interbranch transitions, and for the special case
of (4) the cyclotron resonance maser. This table applies
to a free-space plane-wave radiation model, and the radi-
ation direction relative to the structure (wiggler) axis [in
case (1), including the electron propagation direction] is
arbitrary.

Finally we note that Eq. (3.97) is not yet a fully classi-
cal equation, since we only took the electron classical
limit and left the radiation field quantization. Equation
(3.97) is still written in terms of photon occupation num-
ber transition rates. In the next section we reverse the
order of taking limits. We will start by taking the radia-
tion classical limit of Eq. (3.66) and will then examine the
electron classical and quantum-mechanical limits.
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TABLE III. The main radiation parameters of various schemes for plane-wave emission.

COp

Transversely continuous

Transversely discrete
intrabranch transition

Transversely discrete
interbranch transition

k U,

1 —PcosB'

k U,

1 —P, cosB~

~u, d

1 —P, cosB~

An co,p/y
1 —P,cosB,

Vz - 2'
1 —P cosBq

Uz 2m

1 —P, cosB~ L

Uz 2m

1 —P,cosB, L

Uz
'

2m

1 —P,cosB L

AL ~p l I +tan 8„„
U U my

fiL copI U
II

Aco p pcos 6

sin eq coqp co~pL
(An)

1 —P,cosBq y'mc U,

IV. SPONTANEOUS AND STIMUI ATED EMISSION

In the previous section we used a quantum-
electrodynamical model, in which we expressed the spon-
taneous and stimulated emission in terms of photon
growth rates. %'e now take the radiation classical limit
and express the spontaneous and stimulated radiation
emission in terms of more practical laboratory (ra-
diometric) parameters as radiant intensity and gain. The
radiation classical limit can be taken independently of the
electron classical limit (E &~2~). Contrary to Sec. III.F,
we take the radiation classical limit first, and then exam-
ine the spontaneous and stimulated emission parameters
and the relations between them in both electron classical
and electron quantum-mechanical limits. In Sec. IV.C
we extend these results to inhomogeneous line broaden-
ing. In the longitudinally quantum-mechanical limit we
will relate our equations to the well-known Einstein
coefficients relations (Einstein, 1917;Yariv, 1975). In the
longitudinal classical limi. t new practical relations extend-
ing Madey's relations (Madey, 1971, 1979; Kroll et al. ,
1981;Krinsky et al. , 1982; Kroll, 1982) are derived.

A. Radiant intensity and gain

Although most of the analysis in this paper applies to
general radiation modes, we have reduced the discussion
in many cases to the simple and most useful example of
plane traveling waves in free space. In this case it is most
practical to describe the spontaneous radiation emission
in terms of radiometric parameters like the spectral radi-
ant intensity. This parameter can be re'.sted to the quan-
tum parameter of photon g'rowth rate of mode q in polar-
ization state 0 by the relation

d &mode~ ~ V
dQ dco 8~ g

(4.2)

The total spectral radiant intensity (d P/dOdco), is
the summation of Eq. (4.1) over the two polarization
states a. Since the density of states (4.2) is independent
of o., the polarization-states summation is actually car-
ried out only over the radiation-states photon growth
rates (dv /dt), .

The power carried by mode (q, cr) is related to the
number of photons in the same mode by

ACOVq~
~ em, q~ (4.3)

Here E /V is the stored energy density in the mode,
and 3, is the e6'ective cross-section area of the radia-
tion mode perpendicular to its direction of propagation. '

The stimulated power generated in mode q, o is related to
the stimulated photon-state growth rate by

(hP )„=A'co
dVq ~

dt
(4.4)

This can be interpreted as either the energy growth rate
in an oscillator cavity or the single path power increment
in an amplifier configuration.

region. It was assumed that all the electrons enter with
the same initial conditions (homogeneous broadening
case). The number of modes per unit solid angle and unit
radian frequency for each polarization (helicity) state is
given for plane waves quantized iri a box of volume Vby

d.P
co sp

2d Xmpde 0 dVq

dA dc' dI; SP

(4.1)

where (dv /dt), ~ is the spontaneous emission rate of %,
electrons into the mode qcr, and 1V, =(Io/e)(L/U, ) is the
instantaneous number of electrons inside the interaction

"In the more general case of arbitrary radiation modes, e.g., in
a waveguide or in a dielectric material (Cerenkov radiation), the
speed of light c in (4.3) should be replaced by the mode energy
velocity UF. For the Cerenkov radiation example:
U~ ——c j(n +~dn/dao).
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The substitution of Eq. (3.79) in Eqs. (4.1)—(4.4) results
in the equations for the spontaneous emission spectral ra-
diant intensity and the stimulated emission gain in the
longitudinally (electronic) quantum-mechanical limit:

d Pq =R F(8, ),
dQ ddt sp

R —= (fi VI,„),1

A,
3

(EPq )„
G = ' =M [F(0, ) F(8—, )],q, cT P

(4.5)

(4.6)

(4.7)

r„v
qc

(4.8)

=2'
Ace

A,
3

3, Ac
(4.9)

Consequently, for frequencies within the emission line,

In the finite-length homogeneous broadening case,
F(0)=sine (8/2). For this case the gain curve (4.7) is
drawn in the upper curve of Fig. 2{a). We note that the
parameter I", would turn out to be inversely proportion-
al to fi and to V, and consequently the coefficient R (4.6)
is a classical equation, independent of A and V. On the
other hand M, the coefficient of the gain function (4.7),
is independent of V but dependent on A. The equation is
explicitly quantum mechanical as long as the emission
and absorption lines are well separated [upper curve of
Fig. 2(a)], which for the finite-length homogeneous
broadening case requires c &&2~.

The explicit calculation of I, for specific electron ra-
diation schemes is outside the scope of this paper. How-
ever, the proportionality to I,p

of both the spectral radi-
ant intensity parameter [Eqs. (4.5) and (4.6)] and the gain
parameter [Eqs. (4.7) and (4.8)] allows us to reveal univer-
sal relations that hold for all the radiation schemes dis-
cussed before. The ratio between the coefficients [Eqs.
(4.8) and (4.6)] is

assuming the absorption line is well separated from the
emission line, the gain is related to the spectral radiant
intensity by a universal relation:

EPq (~),„A 1
G (nI) = =2'

P (a)) A, Anl

d P (co)
(4.10)

dQ ddt sp

1G(nI)= 3, Ac AmI,

dPq

dQ
(4.11)

For finite-length homogeneous broadening, the
linewidth parameter is AcoI, ——hcoL, where the equations
for AuL are listed in the third column of Table III for
difterent interaction schemes. In the exponential decay
Lorcntzlan linc-sllapc llllllt IcL )) 1 (3—.65), ollc llscs
AcoI, ——~I hcoL. For all the cases of emission from a
periodic structure, the finite-length linewidth can be writ-
ten as AnIL ——coo/X~ [see Eq. (2.32)], and the equation for
the gain curve in terms of the total spontaneous emission
radiant intensity can be written in a very explicit way:

dPq
G (nI) = sine (8, ) .

2m', Ac d Q,p

(4.12)

The general relations between the quantum-mechanical
limit gain parameter and spontaneous emission parame-
ters are summarized in the second row of Table IV. The

Based on this equation, a measurement of the spectral ra-
diant intensity at direction q through a polarizer, which
admits only polarization state o, makes possible an esti-
mate of the stimulated emission gain G(co) of a radiation
mode propagating in the same direction with the same
polarization. The line-shape functions of the gain and
the spontaneous spectral radiant intensity are identical.

In many practical examples the experimentally mea-
sured parameter is the spontaneous emission radiant in-
tensity (spectral radiant intensity integrated over the en-
tire frequency linewidth). This parameter is given by
dP /dQ=hcol, d P {nI, )/dQ dao, where Anil, is the
homogeneous broadening linewidth and co, the emission
line peak frequency. The relation (4.10) can be thus writ-
ten in the alternative useful form

TABLE IV. The general relations between the gain and spontaneous emission radiometric parameters
for a given line-shape function.

6 (~)
[d'P (coo)/dQ dc@],~

6 (n))

[dP (coo)/dA], ~

Quantum
6'2%»1 1

A, Ac Ace

Classical

6'
2m «1

67—Cc)0

g 2'6'
2m.

A, Ae 4co g(0)

Cc) —Mo
g 277

6e)2'
A, Ae (5~)2 g (0)

Rev. Mod. Phys. , Vol. 60, No. 2, April 1988



510 Friedman et a/. : Spontaneous and stimulated emission from quasifree electrons

(bPq )„(bPq )p
~qo. ~QN

where

(4.13)

(4.14)

same relations, specified for the particular case of period-
ic structure devices with finite-length homogeneous
broadening, are summarized in the second row of Table
V. These equations and Eqs. (4.10) and (4.12) are written
in a form -that is useful for straightforward comparison of
measurable spontaneous and stimulated emission param-
eters.

An alternative and more physically suggestive repre-
sentation of the relation between spontaneous and stimu-
lated emission is revealed when one expresses the spectral
radiant intensity in terms of the spontaneous emission
power [b,P (co)],„measured in an infinitesimal solid an-

gle hQ and an infinitesimal frequency band b.ni =2~b f
within the frequency bandwidth of the emission line.
Equation (4.10) then reads

measured spontaneous emission power (b,P ), and the
quantum noise "input power" P&N. In the particular
case in which (b,P ), is the spontaneous emission power
measured into a single radiation mode, the relation

hQ = A, holds. Equation (4.13) then holds with

P&N fzcob——f. In fact, such a relation would be expected
to be valid not only with free-space plane-wave modes, as
presently assumed, but with any kind of radiation mode.

An interesting extension of the discussion up until now
is the inclusion of radiation photon-states occupation due
to the finite temperature T in the cavity. The mode occu-
pation number is given by the Bose-Einstein statistics
(Reif, 1965): [exp(iris'~/kT) —1] ', where T is the back-
ground temperature (the mirrors temperature in the case
of a resonator). Following the work of Gover (1984), we
extend our previous analysis by simply substituting in
(3.79) vq ——v, + [exp(A'co/kT) —1] ', where v, is the
number of photons in the traveling signal (input) wave (or
in the case of an osciHator, the number of photons in the
circulating coherent power), and the second term is the
"thermal noise" contribution. Equation (3.79) is then
modified to

Since the phase-space areas ratio A,„AA/A, is the
number of transverse radiation modes intercepted in the
spontaneous emission measurement, and Acohf is the fun-
damental quantum noise power (zero temperature quan-
tum vibration) in a single mode, P&N can be interpreted
as the quantum noise "input" power that "generates" the
spontaneous emission. The gain of a radiation scheme
can thus always be calculated from the ratio between the

4Vq~
I[v +(&fteelkT 1)—i+ 1]y (g

%'ith this extension the spectral radiant intensity of spon-
taneous emission [see Eq. (4.5)] may be replaced by an

TABLE V. The relations between the maximum gain and maximum spontaneous emission radiometric
parameters for some particular schemes in the finite-length homogeneous broadening regime.

G(~ )

[d'P (bio)/dQ dao],.
p

G.(~. )

f dP (coo) /d Q],p

Quantum (s »1)
A periodic structure

A,
3

Ac 2~3, Ac

Negligible recoil (c &~1)

Transversely continuous

Transversely discrete
intrabranch

0.27(2~)- kL

p ymc

0.27(2w)
'4 empzm i

c

(An) AL

A, p, ymc

)& (1—P, cosB~ ) 'sin 6~

A, LN
0.27{2m)

p ymc

+tan 6„,(coo)
1 2

. y'
A, LN

0.27(2m )
AemPem f C

(An) k L co,o0.27
A, pymc

&& (1—P,cosB~ ) 'sin 8~

Rev. Mod. Phys. , Vol. 60, No. 2, April t 988



Friedman et a/. : Spontaneous and stimulated emission from quasifree electrons 511

equation for the total noise emission spectral radiant in-
tensity:

d P =R [1+( ficuikT 1)—1]F(g
d 0 d CO nPjSe

(4.16)

The diff'erential power relations [Eq. (4.13)], within the
gain and spontaneous emission bandwidth, may also then
be extended to

(bP )„(bPq ), AP„„„
PQN Pnoise

I", V
F(0, ),c

(4.17)

where we definc the CAective input noise power as

P„„„=Anib f [1—+(e""~" —1)—']g, , (4 18)
x2

which is the finite-temperature input noise power includ-
ing both the quantum zero vibration contribution (4.14)
and the thermal noise contribution. We defined AP„„.„
as the difFerential noise emission power measured at finite
temperature with no deliberate signal power in (Pq =0).
This noise power is larger than the zero tempera-
ture spontaneous emission (bP), by a factor
1+[exp(fico/kT) —1) '. We note, though, that only for
frequencies co &kT/A' (A, & 50 pm at room temperature)
does the Bose-Einstein factor become larger than unity.
For shorter wavelengths the finite-temperature extension
is usually (and rightfully) neglected.

d P
=R F(0)

noise

P+( ficoikT 1)—i] d F(g)
dO

dPq

dQ dco

d Pq =R F(0) .
sp

(4.20)

(4.19)

where 0 is given for a general radiative emission direction
by (3.81) and R by (4.6). For %co&~kT (X&&SO pm at
room temperature), the Bose-Einstein statistical term is
negligible, and since c. «2m. the entire second term on
the right-hand side of Eq. (4.19) is negligible. It is in-
teresting to note that in the opposite limit Ace «kT, the
second term in (4.19) turns out to be completely classical.
The coefficient of the detuning function dF ( 0 ) /d 0 is
then R (e/fi)(kT/tv), which is fi independent. Never-
theless, for most practical cases' this coeKcient is still
significantly smaller than R . Consequently, in all prac-
tical cases of high-energy electron radiators at any fre-
quency regime, it is usually safe to neglect the second
term of (4.19) altogether and to assume that the classical
noise power emission at finite temperature is equal to the
zero-temperature noise, namely, the spontaneous emis-
sion:

Thc classical limit equation of thc stimulated emission
gain is derived directly from (4.7) using (3.71) and (3.72),

B. The longitudinal classical limit
in the homogeneous broadening regime

6 =Q F(0),
dO

(4.21)

The electron quantum-mechanical gain regime that
was discussed in the previous section is interesting be-
cause of its clear physical interpretation. The FEL (in
the wide sense the stimulated emission device of any of
the quasifree-electron radiation schemes discussed before)
behaves in this regime according to the general charac-
teristics of any two-level quantum system, and most of
the equations derived above are not unique to FEL's.
However„ the case of practical interest in almost all FEL
devices is the electron classical (or negligible recoil) limit.
In this limit the emission and absorption lines are no
longer isolated [see lower curve of Fig. 2(a)], and the spe-
cial features of the particular quasifree-electron radiation
schemes appear. Consequently, the electron radiation
source no longer behaves as a simple two-level quantum
system. The previous results for the relations between
spontaneous and stimulated emission should then be
modified correspondingly.

Taking the negligible (recoil) classical limit E «2m. of
the photon emission rate (4.1S) with v, =O [or alterna-
tively (3.97) with v =(e " " —1) '], and substituting
in Eqs. (4.1) and (4.2), we obtain a general equation for
the total noise emission spectral radiant intensity at finite
temperature

where

(4.22)

We note that I,p
is dependent on A and V in an inverse

proportional way while c is proportional to A, and; conse-
quently, Q is an entirely classical equation. In the finite-
length homogeneons broadening limit F(0)=sine (0/2),
and then (4.21) is the well-known FEL gain formula in
the low gain cold tenuous beam regime (Deacon et al. ,
1977; Gover and Sprangle, 1981). It is drawn as the
lower curve in Fig. 2(a). The corresponding gain detun-
ing function for the case of exponential decay homogene-

"Some solid state carriers radiation schemes may be an excep-
tion. Using the forward emission equation for c (3.74), the
thermal noise contribution to the spectral radiant intensity
[second term of (4.19)] can be written as R (coL/v, )(kT/
ml~ U, )F'(0). VA'th low-energy electrons, this parameter may
conceivably be larger than the spontaneous emission contribu-
tion R F(0).
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ous broadening (xL ~& 1) is drawn in Fig. 2(b).
In analogy to Eqs. (4.10) and (4.11) the classical rela-

tion between the net stimulated emission gain (4.21) and
the spontaneous emission spectral radiant intensity or to-
tal radiant intensity can be expressed in the proportional-
ity forms,

Q. ~'P,.(~o)
G(co) = — F(0)

R r)fl Bco,z F(g) dg

F ( 0), (4.23)
Q.
R bee, dQ, F(g) dg

where

One should note that the classical limit relation (4.23)
and the explicit relations of Table V, rows 4—6, predict
quite difterent parameter scaling laws (e.g. , dependence
on A, L, ) than the corresponding quantum relations (4.10)
and (4.11), which are universal relations specifically appl-
icable only to two quantum level systems. This is an im-

portant observation, since these scaling laws are often
used in estimating the performance of various radiation
effects in new operation regimes (especially in attempts to
predict feasibility of new x-ray laser schemes).

Similarly to Eqs. (4.13) and (4.17), an alternative repre-
sentation of the relation between spontaneous and stimu-
lated emission powers is -given in the classical limit by the
differential relations

A, E

3, Ac
(4.24)

(~Pq. ).t [~Pq. (~o)].p d — I .p V d"c, F(0)= c. F(0) .
~qcr ~QN d ~ em~

(4.25)

is an entirely classical coe%cient.
Both of these general proportionality relations are

summarized in the third row in Table IV. In Table IV
the proportionality relations are written in terms of gen-
eral linewidth functions g. In the case of homogeneous
broadening, g can be expressed in terms of the line-shape
function F by the simple substitution F(0)=g[2vr(co
—coo)/hro] and Aco=b, noh. Note that Table I relates to
the ratio between the gain at arbitrary frequency m and
the spontaneous emission parameters at the maximum
point of the spontaneous line-shape function co =co0

(0=0), which is different now from the maximum point
of the net stimulated emission line-shape function F (0)
We also note that the normalization of the homogeneous
line-shape functions permits the substitution g (0)
=F(0)=1 in Table IV.

Because of the overlap of the stimulated emission and
absorption line-shape functions, the elegant universal
form of the quantum limit relations (second row in
Tables IV and V) is lost, and the radiation parameters ra-
tios are unavoidably dependent on the line-shape func-
tions, and through them on the parameters of the specific
radiation schemes; To obtain explicit scaling law depen-
dencies on the operating parameters (wavelength, beam
energy, etc.), the parameters of the specific radiation
schemes should be used. Table V summarizes these scal-
ing laws for the particular practical case of finite-length
homogeneous line broadening for which F(0) is given by
Eq. (3.67). The linewidth parameters b,col, used to con-
struct this table, were listed before in Table III for the
general schemes of transversely continuous and trans-
versely discrete intrabranch transitions and the special
scheme of the cyclotron resonance maser. The propor-
tionality coe%cients of these schemes are given in rows
4—6 in Table V for arbitrary emission'direction. The gain
parameter G is assumed to be measured at the maximum
gain frequency co=co, which corresponds to I9= —2.6
and F'( 0)=0.27. The spontaneous emission parameters
are assumed to be measured (as in Table IV) at co=coo
(0=0) for which F(0)=1.

There is no need for an equality analogous to the third
part of Eq. (4.17), since in the classical limit
b,P„„„=(b,P), . Considering that the classical detuning
curve F'(0) is of the order of one (near its maximum), the
comparison of (4.25) to (4.17) leads to the general con-
clusion that the ratio (bP~ )„l(bP ),„ is reduced by
roughly a factor of c «2m in the classical-limit case as

compared with the quantum-limit case. This reduction
factor can be traced to the overlap between the emission
and absorption lines in the classical limit, which reduces
the net stimulated emission.

C. lnhomogeneous broadening and Einstein relations

While in the previous section we assumed that all elec-
trons enter with the same initial conditions, in general
different electrons may experience different perturbation
Hamiltonian because of differences in their interaction
parameters. These differences may stem from different
reasons, such as a spread in the longitudinal and trans-
verse canonical momenta, different initial transverse
coordinates, or different interaction lengths. Discussion
of the inhomogeneous and homogeneous broadening lim-
its and the transition between them was already given by
Madey (1971) in his first paper on FEL. In the present
discussion we generalize our homogeneous broadening
relations to the inhomogeneous broadening regime,
preserving their general validity for the extensive class of
quasifree el'ectron radiation schemes, which was detailed
in Sec. I. We also bring out the connection of our formu-
lation to the well-known Einstein coefticients relation be-
tween spontaneous and stimulated emission.

In the case of electrons that enter the interaction re-
gion with different initial conditions, the previously de-
rived equations for the photon transition rates of an
homogeneous electron beam [Eqs. (3.66) and (4.15)]
should be averaged over all the electrons in the interac-
tion region:
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2vq~ e de
dt .

i di
= fdk„d ki;d rio, dL f(k„)f(ki;)f (rio, )f (L)

hpmpg, j hpmpg

(4.26)

where (dvq /dt)~ is .the photon emission rate of a single
electron j, and (dvq /dt)h is the photon emission rate
of X, identical electrons. Normalized distribution func-
tions of the electrons are f (k„.), f (ki; ), f (rio; ), and

f (L) in axial and transverse wave-number spaces, trans-
verse initial coordinates, and interaction lengths, respec-
tively. Here the inhomogeneous distribution functions
were normalized to unity, since the homogeneous transi-
tion rate was defined to correspond to the total number
of electrons X,.

The axial wave-number (momentum) spread is usually
due to the electron beam total energy spread or due to
angular spread (finite emittance). This axial momentum
spread is usually the most significant inhornogeneous
broadening mechanism in FEL's and the other free-
electron radiation schemes discussed in this paper, since
in all of these schemes the axial momentum conservation
(or synchronism) condition determines the homogeneous
broadening linewidth. The transverse wave-number
(canonical momentum) spread and transverse initial-
coordinates spread are a result of the finite emittance of
the beam. If the perturbation Hamiltonian is indepen-
dent of transverse coordinates, or depends on them weak-
ly (as is the case, for example with the conventional mag-
netic bremsstrahlung FEL at on-axis emission condi-
tions), then the transverse coordinate and momentum
spreads do not introduce significant inhomogeneous line
broadening [through the function f (ki;)]. However,
finite emittance of the beam will introduce in many prac-
tical cases inhomogeneous broadening indirectly
[through the function of f (k„)] because it will result in

an axial velocity spread.
A spread in interaction lengths may be a consequence

of strong electron collisions, which scatter the electrons
out of the interaction region or change their momentum
to such a degree that they cannot continue to interact
with the radiation field. An example for this spread is
the co11ision broadening of channeling radiation due to
latter imperfection scattering [note, though, that soft col-
lisions, which only gradually couple the electron wave
function into other transverse states, are responsible for
homogeneous broadening, which was described by (3.63)
and (3.64)]. Another example for interaction lengths
spread is in Smith-Purcell FEL's (Gover et al. , 1984) and
dielectric waveguide Cerenkov FEL's (Felch et aI. , 1981)
where the interaction lengths of the individual electrons
are the lengths traversed by them, before impinging on
the gratings or the slow-wave structure surface, or before
drifting away from the surface outside of the interaction
region. In this last example the broadening eft'ects due to
the spreads in the transverse momentum, transverse ini-
tial coordinates, and interaction lengths are all coupled
together. The entrance angle and initial coordinates of
the electron also determine its interaction length.

In many cases the integrations in (4.26) reduce to con-
volution integrals of the distribution functions with the
homogeneous line-shape functions F(8) of (3.66) or
(4.15). If the homogeneous line-shape functions are
much wider than the inhomogeneous broadening (elec-
tron distribution) functions, and I,~ can be considered
approximately constant, then the inhomogeneous
broadening functions behave as delta functions and the
homogeneous broadening emission rate equations (3.66)
or (4.15) are restored. In other cases the widest inhomo-
geneous broadening function dominates the convolution
in (4.26) and determines the total line-shape function.

For simplicity we focus in this paper only on the longi-
tudinal momentum spread inhomogeneous broadening,
neglecting all the other inhomogeneous broadening func-
tions in (4.26). In the limit where the width of the func-
tion f (k„) is much larger than the widths of F(8) in the
k„. dimension, (4.15) substituted in (4.26) results in

=l,pb. k,h [[v, +(e " —1) '+ l]f (k,„)dt

—[v, +(e" ~"T—1) ']f (k,d ) I, (4.27)

where
—2

'
b, k,I,

= f F(8, )dk„=my' b,8„.—Qo AQ7
(4.28)

Ak, I, is the width of' the initial and final electron wave-
numbers regions around the central upper state wave
number k,„and the central lower state wave number k,d,
between which regions radiative transitions are allowed
due to the homogeneous broadening [see Fig. 10(a)]. The
width of this region Ak, z is determined by the homogene-
ous broadening allowed wave number mismatch 60h
=b,8/L [where b, 81, is the width of the homogeneous
line-shape function F(8) in terms of the detuning param-
eter 8]. The value of hk, h is derived in Appendix G.
For the finite-length homogeneous broadening, Eq. (4.28)
becomes explicit by substituting in it b, 8& 2vr/L. For-—
the Lorentzian (decay length limited) homogeneous
broadening, 68& ——2m.~.

We note that k,„and k,z have in (4.27) the original
meaning of k„. and k„ in (2.14), which is different from
their meaning in the detuning parameter Eq. (3.69). In
the latter equations, k„(k„,co) was the exact solution of
the energy conservation condition for given k„,m. The
momentum conservation condition there did not have to
be satisfied exactly, but only up to a wave number
mismatch 8, given by (3.69). On the other hand, in the
present inhomogeneous broadening case, integration over
k„was already carried out and k,„,k,d are selected by
the narrow homogeneous broadening linewidths at values
corresponding to 0, =0, =0. In other words, k,„,k,d are
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FIG. 10. Interacting electron regions and saturation rnecha-
nisrns in the inhomogeneous broadening regime.

the "exact" solutions of the energy and momentum con-
servation conditions, which in the intrabranch transitions
case are given by Eqs. (2.13) and (2.14), with co, =~,

=%co, k,„k,d q, (co)+k— ——
ZQ Zd

(4.29)

In the general case of continuous transverse states, they
are defined by Eqs. (2.76) and (2.77), with co, = co,

Dk —Dk ——A'co, k„—kd ——q+ k (4.30)

For a given m, the wave number parameters k„,k,d are
solutions of a well-defined set of equations [(4.29) or
(4.30)]. Consequently k,„(co),k,d(co) are functions of co

implicitly defined by these equations, and therefore Eq.
(4.27) describes the emission and absorption frequency-

dependent line functions.
Equation (4.27) can be compared to the transition rate

probability in conventional atomic lasers. The spontane-
ous emission rate parameter I, is proportional to X„
the number of electrons in the interaction region. Taking
in (4.27) T =0 and rearranging terms, we can split the
photon emission rate into two main terms: (a) a term
proportional to N, f (k,„)b,k, i

—the number of electrons
in the upper quantum levels (the spontaneous emission
term); plus (b) a term proportional to v, [N,f (k,„)

N, f (k—,d )]6k,l, —the number of photons times the
population inversion between the upper and lower levels
(the stimulated emission-absorption term). The electrons
that participate in the transitions are represented by the
shaded sections in Fig. 10(a). The situation is completely
analogous to the transition rate probability in an atomic
two-quantum-level system. The only difference is that in
the present case the upper and lower energy levels are
dependent on the radiation frequency and emission direc-
tion e, or in general determined by the mode dispersion
relation, while in atomic lasers these levels are properties
of the material only. In Appendix G we discuss in more
detail the ramifications of our observations in identifying
the classes of electrons that participate in the radiative
transitions in the inhomogeneous regime. The width in
initial wave numbers of these classes of interacting elec-
trons Ak, & is calculated there. However, it only appears
in the coefficient of the transition rate, Eq. (4.27), and
therefore does not affect at all the ratio between spon-
taneous and stimulated emission. The more detailed ex-
amination of the inhomogeneous emission process, which
is presented in Appendix G, enables one to make some il-
luminating observations on the relations between the
present free-electron radiation formulation and the con-
ventional atomic laser approach. It also helps to predict
the saturation process of quasifree-electron lasers in the
inhomogeneous broadening regime. These are the pro-
cesses of "hole burning" and "pile heaping" in the quan-
tum limit, and of "plateau formation" in the classical
limit [see Figs. 10(a) and 10(b), respectively; see also
Gover, 1980b].

Another interesting observation can be made by in-
specting Eq. (4.27) and comparing the coefficients of the
spontaneous emission, stimulated emission, and stimulat-
ed absorption to the corresponding equations for atomic
radiators and lasers (Yariv, 1975). For atomic radiators,
the relation between these coefficients was found by Ein-
stein in a classical paper published in 1917 (Einstein,
1917). The correspondence between the free-electron ra-
diation coefficients and Einstein's A, B coefficients must
be done with some care, taking into account the
differences, which still exist, between atomic and free-
electron radiators, even in the quantum two-level limit.
This correspondence is studied in some detail in Appen-
dix H.

Because of the anisotropy of the radiation pattern of
free-electron radiators, which emit at angle-dependent
frequencies, the stimulated and spontaneous transition

Rev. Mod. Phys. , Vol. 60, No. 2, April 1988



Friedman et al. : Spontaneous and stimulated emission from quasifree electrons 515

0
Isp AQ

Aco
4~

a» —1-,~(~) a~ =h~p(~)a»,0 5A
4m

(4.31)

(4.32)

where I, =I, /N, is the spontaneous emission rate per
electron into a single radiation mode, and p(co)
=co V/(ir c ) is the total mode density in both polariza-
t-ion states per unit frequency.

D. Relations between spontaneous
and stimulated emission
in the inhomogeneous broadening regime

We now proceed with the study of the relations be-
tween spontaneous and stimulated emission in the inho-
mogeneous broadening regime. For the purpose of sim-
plifying the final equations, it is desirable to present the
electron distribution function in terms of a normalized
function (Gover and Sprangle, 1981),

1

th

k„—k,0

k,
(4.33)

where Ak, 0
——p,0 is the average longitudinal momentum

of the electron beam and Akth ——pth is the beam longitudi-
nal momentum spread. Because of the unity normaliza-
tion of f (k„), g(x) also is normalized according to

J „g(x)dx =1. For the common model of a shifted
Maxwellian distribution, the normalized function g (x) is

]g(x)= —e
v'7r

(4.34)

%'e now represent the electron distribution function in
terms of the detuning parameter 0(co, k„) (3.73).
Defining

8O =8(co, k,(i) (4.35)

rates must be defined in a dift'erential way [Eqs.
(H8), (H9), (H13)j, defining emission rates into prescribed
frequency segment A~ and solid angle segment AQ,
which are determined by the emission line-shape function
at a specified emission direction. With this differential
definition, explicit equations for the Einstein A, B
coefficients can be derived straightforwardly for a free-
electron radiator (Appendix H), and the Einstein
coefficients relations result in, as a direct consequence of
the basic QED principles on which Eqs. (4.15) and (4.27)
are based,

linewidth. This coeKcient was calculated in Appendix G
for both intrabranch transition (longitudinal recoil) and
general schemes of transverse continuous states. It is
given for both cases by

80 %co

=p —2 —2
zi zi Tph'V phV ph

(4.37)

leading to an equation for the inhomogeneous spread in
the detuning parameter 0,

BO 6)L
th= ak. th= -2 -2 Pth .

Tph'7 phV ph~
(4.38)

The synchronism velocity U h in Eqs. (4.37) and (4.38)
is defined by U h ——U, =co/(q, +k„) in the zero trans-
verse recoil case (k is the periodicity in the periodic
structure axis direction), and by U h

——U,
' =co/(q, '+k')

in the general recoil case (q,' and k' are the projections
of q and k on the electron propagation direction). In
both cases y h=(1 —p h) ', and y h

——(1—p )
' is

the relativistic mass factor, which is defined with p being
the total mean-square velocity of the electron (including
wiggling motion), when the electron axial velocity (v, or
U) is assumed synchronous with U h. In most practical
cases one operates with an electron distribution function
of relatively narrow spread and near synchronism with
the e-beam average velocity vph . v 0 Consequently, for
most cases one may substitute in Eqs. (4.37) and (4.38)
Pph Pz07 ph Yz0 and Vph 70.

We may express the longitudinal momentum spread
homogeneous broadening integral (4.26) as a convolution
between the homogeneous and inhomogeneous line-shape
functions in the detuning parameter coordinate:

Jd8[(v +1)F(0,)dt 0h

vq F(9, ) jg—
, 00—0

(4.39)

A FEL, or any free-electron radiation scheme, operates
in the homogeneous or inhomogeneous broadening re-
gime, depending on which of the line-broadening func-
tions is wider. If 60& is the detuning parameters width
of the homogeneous broadening line-shape function (for

. finite-length homogeneous broadening 60& ——2~, and for
decay-length-limited homogeneous broadening 60&
=2irhl. ), then the condition for inhomogeneous broaden-
ing is

(the detuning parameter corresponding to the average
momentum of the beam), we may substitute in (4.33) a
linear variable transformation:

(8—&o),
a0

ZI

where we assume that the coefficient (BO/Bk„) is nearly
constant within the inhomogeneous broadening

for which case (4.39) reduces to

dv 50~ 0„0" r„(v,.+1)gdt 0h "
0h

where [using (3.71) and (3.72)j

—v g
0ao

(4.40)

(4.41)
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0„O=—0, (~,k,o) =00+—
2

'

0do=0. (~ k.o)=00——.
2

'

A63g
1,„(vz +1)g 2ir

—vq~g 2K (4.43)

Equation (4.41) is the photon emission rate (4.27) writ-
ten in a normalized form. Together with Eqs.
(3.71)—(3.74) and (4.35) in the longitudinal recoil case,
and (3.88) in the general case of transverse continuous
states, it gives the full explicit dependence of the spon-
taneous and stimulated emission rates on the operating
parameters (co, y, v, etc.). This is valid for the inhomo-
geneous broadening regime of general quasifree radiation
schemes. The normalized presentation reveals the fact
that both the spontaneous and stimulated emission rates
are reduced in the inhomogeneous broadening regime rel-
ative to the corresponding emissions in the homogeneous
broadening regime by a factor roughly equal to the ratio
between the homogeneous and inhomogeneous linewidths
(for a finite-length homogeneously broadened line, fur-
ther broadened by inhomogeneous broadening, this fac-
tor is b, 0/0, h

——2m. /0, „).
An alternative presentation of the general linewidth,

Eq. (4.39), could be made by sllbstltutlng Eqs. (3.89) alid

(3.90) for the detuning parameters 0„0, in the homo-

geneous broadening line function, thus expressing explic-
itly the frequency (co) tuning dependence [but the energy
(y) tuning dependence is then implicit in the center emis-
sion and absorption frequencies co„co,]. Then instead of
Eq. (4.36), one transforms the inhomogeneous variable

k„, expressing it in terms of the line-center frequency
variables co„co„or coo [co, =~o( k„)—5co/2,
=coo(k„)+5co/2]. This would result in, instead of (4.39),
a convolution integral over the inhomogeneously varying
line centers of the individual electrons coo(k„), in a com-
plete analogy to Doppler inhomogeneous broadening in
atomic radiation systems (Yariv, 1975). In the inhomo-
geneous broadening limit we can obtain straightforward-
ly the explicit frequency presentation by substituting in
(4.41) 0 o/0ih =2'(co hagi 0) /cosh 0do =27r( co co o ) / coih

where a)„o——co,
~ p p, endo ——co,

~ p p, co, =coo—5co/2,

co, =coo+5co/2 [(2.36) and (2.37)], and 5co can be deter-
mined for specific radiation schemes using Table III. The
axial velocity spread inhomogeneous broadening
linewidth co,h is found to be [using Eqs. (4.38), (3.89), and
(3.90)j

~ ~with
2

~th ~~L th
YphV phv phm

(4.42)

The second part of (4.42) was written for the specific case
of free-electron radiation schemes based on periodic
structures [using (2.32)]. Near synchronism the phase ve-
locity parameter y hy hv ph may be replaced by the aver-
age beam parameters y h

——@0'' h
——y,0v h

——v,o. In terms
of these parameters, Eq. (4.41) is expressed as

The stimulated emission-absorption line-shape function
part of Eq. (4.43) is drawn in the upper curve of Fig. 2(c)
for the case of Maxwellian electron momentum distribu-
tion [Gover and Livni, 1978; see.also Eq. (4.34)].

We note that in the extreme opposite of (4.40), the
homogeneous broadening limit, the convolution in (4.39)
reduces this equation back into the homogeneous
broadening one of Eq. (3.79). This result is obtained us-

ing the normalization condition fg(x)dx =1 and the
fact that in this limit g (0/0, h) is a narrow function rela-
tive to I' (0) and behaves as a delta function.

We now can generalize all the results for spontaneous
and stimulated emission that were derived in the previous
section for homogeneous broadening and apply them to
the case of inhomogeneous broadening, taking advantage
of the apparent formal similarity between (3.79) and
(4.41). This can be done by substituting in all equations
( 60& /0, h )g ( 0/0, h ) instead of the homogeneous line-
broadening function I' (0).

We erst consider the quantum-limit case in which the
emission and absorption lines are well spaced:

(4.44)

Instead of Eqs. (4.5) and (4.7), the spectral radiant inten-
sity and gain will be given by

d I'

CO sp

60
0th

R g
9th

8„0
(4.45)

(4.46)

where M is defined by (4.8).
The homogeneous broadening relation between the

stimulated emission gain and the spontaneous spectral ra-
diant intensity [Eq. (4.10)] applies without any change
also in the inhomogeneous broadening regime, but the re-
lation to the total spontaneous radiant intensity [Eq.
(4.11)j changes because the emission linewidth (in fre-

quency domain) is now co,h instead of b.coL. Instead of
(4.11) we have

1G(co)= ~ em+C Cath

dI'q '

g (0„0)
dA, g(0)

(4.47)

The universal relations between the stimulated and spon-
taneous emission power differentials (4.13) and (4.17)
remain without change except for the last equality of
(4.17), which is substituted by the first (stimulated emis-

sian) term of (4.46).
The longitudinal classical limit of the inhomogeneous

broadening regime is found by taking the limit c «0th in

Eqs. (4.45) and (4.46). This results in
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d Pq

sp

EOI, Op
R g

th ' th

(4.48)

(4.49)

Q d P„(co )0

g,„R dI},de
8

. v&(0)

dPq~ 1 0
dQ, g(0) g,„

(4.50)

which are analogous to Eq. (4.23). An alternative presen-
tation of these relations in terms of the spontaneous and
stimulated power diFcrentlals 1S

(bPq )„
P

(4.51)

which is analogous to the first part of (4.25).
We conclude that only the quantum-mechanical rela-

tions between the gain and spontaneous emission spectral
radiant intensity (4.10) and the relations (4.13) and (4.17)
remain unaltered in the inhomogeneous regime. The oth-
er proportionality relations between stimulated and spon-
taneous emission change and exhibit diFerent scaling
laws as a function of wavelength, beam energy, and other
parameters. The inhomogeneous broadening propor-
tionality factor of the quantum-mechanical-limit relation
between gain and total radiant intensity (4.47) is reduced
roughly by a factor m, h/A~p ) I relative to the homo-
geneous case (4.11). The pro'portionality factor of the
classical-limit gain relation to spectral radiant intensity
and total radiant intensity (4.50) is reduced relative to the
homogeneous broadening equations (4.23) roughly by fac-

in analogy with (4.20) and (4.21). Here, too, we avoid
keeping the small quantum field correction to the spon-
taneous emission equation corresponding to the second
term in (4.19). For the finite-length homogeneous
broadening line-shape function, one has Aoh ——2m. , and
(4.48) and (4.49) are identical with the conventional clas-
sical spontaneous and stimulated emission equations de-
rived previously for many kinds of FEL*s and other radi-
ation effects (Gover and Yariv, 1975; Gover and Livni,
1978; Gover and Sprangle, 1981). The stimulated emis-
sion line-shape function is shown in the lower curve of
Fig. 2(c) for a Gaussian distribution function. The
dependence of the gain on the derivative of the electron
distribution is reminiscent of many plasma instability
eFects, and indeed in this operating regime the free-
electron radiation amplifier can be regarded as an inverse
Landau damping effect (Gover and Yariv, 1975).

The relation between stimulated emission gain and
spontaneous emission spectral radiant intensity and total
radiant intensity in the classical inhomogeneous broaden-
ing regime is found from Eqs. (4.48) and (4.49),

tors O,h and O,geo, hlb co
p,
——O,hb, ~l /b, a)h, respectively.

We may speculate that similar reductions in the spon-
taneous and stimulated emission powers and in ihe pro-
portionality factors occur also with other kinds of inho-
mogeneous line broadening if their predominant effect is
to create spread in the emission and absorption homo-
geneous line centers of the diFerent electrons. In these
cases the appropriate detuning parameter linewidth 60
of the corresponding inhomogeneous broadening line-
shape function takes the place of 0th in the equations ob-
tained above. In fact, we may extend in such cases our
two alternative equations for the inhomogeneous transi-
tion rate [Eqs. (4.41) and (4.43)] and write them in the
general form

dv hah
, 0„0I, (v +1)g

At9 ht9

do
~q~g, ~g

663I CO —QP „0I, (v +1}g 2m

(4.5,2)

where Aco & A~I„AO & AOI, are the inhomogeneous
linewidths in the frequency and detuning parameter
domains, respectively. These equations are in fact com-
pletely general and valid for the inhomogeneous as. well
as the homogeneous broadening regimes. In the latter
case, one should use the substitutions 60=60&,
hco=bcol„g (0/b 8)=F(8)=F(2nco coo/beni, ). —

The relations between the radiometric stimulated and
spontaneous emission parameters in both the
longitudinal-quantum and classical regimes are summa-
rized in Table IV for arbitrary homogeneous or inhomo-
geneous distribution function g of frequency linewidth
A~. The ratios and explicit scaling laws listed in Table V
for particular interaction schemes were calculated
specifically for the case of finite-length homogeneous
broadening.

Table V may be generalized to give the corresponding
explicit scaling laws in the inhomogeneous regime. To
do this one should multiply the equations in this table by
the corresponding inhomogeneous broadening reduction
factors identified earlier in this section (and summarized
in terms of b,co in Table IV). For the case of axial
momentum spread inhomogeneous broadening, the expli-
cit equations for the spread parameters 60=0th +6) doth

are given by (4.38) and (4.42}. In addition, the numerical
value of the homogeneous broadening gain curve peak
0.27 should be replaced in Table V by the appropriate
peak value of the normalized inhomogeneous broadening
gain curve g'(x)/g (0), which is of the order of unity be-
cause of the normalization. For the normalized Maxwel-
lian inhomogeneous distribution function (4.34), the peak
of the gain curve g'(0 /8, h)/g (0) is equal to
&2/e =0.86, and it is attained at an argument value
8 = —1/&2.

We conclude that the general relations found between
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the spontaneous and stimulated emission parameter can
be made explicit for a large variety of radiation schemes
as well as different operating regimes (classical or quan-
tum, homogeneous or inhomogeneous broadening). The
explicit equations make it possible to predict the values
and the scaling laws of the gain for various free-electron
laser schemes when the spontaneous emission parameters
of the same devices are measured first or calculated.

V. CONCLUSlON AND EXAMPLES

In this paper we exposed the common features of radi-
ation emission from various quasifree-electron radiation
effects and devices and particularly free-electron lasers.
The common features are a result of the extended in-
teraction between the electron and the radiation wave
along the electron propagation direction. This extended
interaction feature, which distinguishes these devices
from conventional atomic lasers, results in a requirement
of axial momentum (wave number) conservation, which
needs to be satisfied in addition to the energy conserva-
tion condition.

We have distinguished between cases of discrete and
continuous transverse states and, in the latter case,
identified transverse quantum-mechanical and classical
regimes in addition to the analogous corresponding dis-
tinction between quantum-mechanical and classical re-
gimes in the longitudinal dimension. Most free-electron
radiation devices and effects (and, in particular, the mag-
netic bremsstrahlung FEL) fall in the category of the
transverse continuous states, operating in their practical
mode of operation in the transverse (as well as longitudi-
nal) classical regime. Some well-known radiation effects,
such as channeling radiation, may fall into the category
of the quantum regime of transversely discrete states. An
important physical distinction between the radiation pro-
cesses in these two cases is the direction of the electron
quantum recoil. %'hile in the first case it is arbitrary, in
the second case the recoil is purely longitudinal. We
define recoil here to mean a direct transfer of linear
momentum to the electron (in a wider sense, a transition
between difj"erent transverse states may also be con-
sidered to involve transverse recoil due to transverse en-
ergy change).

The distinction between processes involving a general
recoil and processes constrained to recoil only in the lon-
gitudinal dimension is valid also in entirely classical de-
vices (e.g. , magnetic bremsstrahlung FEL and CRM,
which belong to the first and second categories, respec-
tively). This distinction becomes apparent only when one
considers emission processes in which the total recoil
momentum q+k, which is composed of the radiation
Geld momentum q and the wiggler "crystal momentum"
k, has components perpendicular to the e1ectron aver-
age motion. In practice this is mostly relevant to the case
of "off-axis" emission by electrons. The distinction is im-
portant only when stimulated emission is being con-
sidered, because then (in the classical limit) the gain

equation is affected through the average motion mass
tensor (1/m );~, which in the longitudinally constrained
recoil case reduces into a single scalar parameter
(1/m*)~~. Despite this difference, our formulation al-
lowed the common description of devices and effects
operating with these two different emission processes.
This unified representation provides, for example, a way
for comparing between two different devices, such as a
helical wiggler FEL and a cyclotron resonance maser
(which belong to the first and second categories, respec-
tively). While both devices have the same spontaneous
emission characteristics, their stimulated emission gain is
different. This comparison is carried out in detail in Sec.
V.C.

In analyzing the dynamics of the radiation process of
quasifree electrons we developed a general first-order per-
turbation theory {in terms of the radiation field) in a
framework of a quantum-electrodynamical model. This
model leads to general expressions for the spontaneous
and stimulated emission photon growth rates. Various
fundamental interaction processes (Fig. 9) were identified
as possible sources for free-electron radiation, spanning
the validity of the formulation over a wide range of free-
electron radiation effects and devices. %'hen a number of
processes contribute to the radiation synergistically, their
matrix element amplitudes and phases add up coherently,
and the unified formulation enables correct consideration
of the interference between the different contributions.
The calculation of the matrix elements for specific radia-
tion effects was not included in the scope of this paper,
but the prescription for this calculation was outlined in
great detail.

We have derived explicit expressions for the finite-
length and exponential decay homogeneous broadening
line-shape functions. These expressions are applicable to
all radiation effects. We also analyzed inhomogeneous
broadening, considering in detail the particular case of
longitudinal velocity spread line broadening, which is of
most practical relevance. The longitudinal classical re-
gime line-shape functions were derived by taking the
negligible recoil limit of the quantum-mechanical expres-
sions in both homogeneous and inhomogeneous broaden-
ing cases, and are in both cases the derivatives of the
quantum-mechanical (large recoil) line-shape functions.

Expressions useful for experimental characterization of
free-electron radiators are derived when one takes the ra-
diation classical limit and expresses the spontaneous and
stimulated emission photon growth rates in terms of
common laboratory (radiometric) parameters such as ra-
diant intensity and gain. We revealed universal relations
between these radiometric parameters in both the elec-
tron quantum-mechanical and classical regimes. These
relations are common to all the radiation effects and in-
teraction schemes considered, and thus are a generaliza-
tion to different devices and different radiative emission
direction, extending theo rems derived previously by
Madey (1979) specifically for the magnetic bremsstrah-
lung FEL at on-axis emission conditions. In the longitu-
dinal quantum limit, where the emission and absorption
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lines are well separated, the expressions we derived are
universal quantum-electrodynamical relations between
spontaneous and stimulated emission in a general two-
level system, and are not different from similar relations
in atomic lasers. They are then related' to the well-known
Einstein relations. Only in the longitudinal classical lim-
it, when the emission and absorption lines overlap, are
the relations specific to quasifree-electron radiation
schemes and depend on the line-shape function's form
and, especially, width.

A particularly important feature of the universal rela-
tions derived in this paper is in their independence of the
kind of effect and interaction scheme involved. Even if a
number of the interaction schemes shown in Fig. 9 take
place synergistically, as is the case in many radiation
effects [for example, both processes of Figs. 9(a), 9(b), and
9(d) take place synergistically in the coherent bremsstrah-
lung effect], the relations still hold. These relations can
thus be used to estimate the stimulated emission gain of
lasers that are based on radiation effects for which the
spontaneous emission radiant intensity was measured.
When simple models for the radia. tion effect are not avail-
able for calculating the gain analytically, and experimen-
tal data on radiant intensity is available, such relations
are very useful and have the additional advantage of
universal applicability (or model independence).

To demonstrate the application of the equations de-
rived before, we will implement them in Secs. V.A and
V.B for estimating the laser gain in two specific examples
of the Smith-Purcell FEL and the channeling radiation
laser, based upon experimentally available data on the
spontaneous emission characteristics of these effects.

In addition we will use these relations in Sec. V.C in
order to derive general equations for the stimulated emis-
sion gain at arbitrary emission direction of two devices of
considerable interest: the magnetic bremsstrahlung FEL
and the CRM. The gain equations will be found in those
cases based on well-known classically derived equations
for the spontaneous emission of these devices, and on the
general equations we derived for the ratios between
stimulated and spontaneous emission parameters.

A. Estimating a Smith-Purcell free-electron laser gain

1984) and the relation given in the third column, fourth
row, in Table V. We assume an open resonator Smith-
Purcell FEL as shown in Fig. 11. The effective radiation
beam cross section is taken to be A, =O', I. sine,
where, for maximizing the gain, the radiation beamwidth
is taken equal to the e-beam width 8', . The length of the
radiation beam spot on the grating is taken equal to the
grating length. We also substitute in the relation in
Table V p=p, =p, since the wiggling motion of the elec-
tron is negligible.

To calculate the angle 6„,we assume that the electron
trajectory and the "wiggler" (grating) wave number k„
are coaligned. The electromagnetic mode space harrnon-
ic, which synchronizes with the electron beam, is purely
evanescent perpendicularly to the grating plane. Hence
its radiation wave vector q has no real component in
the x direction (normal to the grating surface). It may
have, though, a component in the lateral y direction,
which is defined as the direction in the grating plane per-
pendicular to the electron trajectory. Using the syn-
chronism condition q, —:q, +mk =co/v and the defini-
tion of the recoil angle (3.85), cos6„,= (q,
+mk )/[(q, +mk ) +q ]' . Defining the lateral an-
gle of the radiation mode 6q by q~—:(co/c) cos6~~, we
can write the recoil angle equation in the relation given
in Table V in the form tan 6„„=p cos 6~~. Conse-
quently the Smith-Purcell FEL gain at the maximum
gain detuning point 8= —2. 6 (assuming finite-length
homogeneous broadening) is

X I.
mc 8', A, y p sin6q

(5.1)

There are a few reports of experiments in which spon-
taneous Smith-Purcell radiation was measured. Howev-
er, not many of them include quantitative data on the
emission power levels. We use here the measured values
for radiant intensity reported by Gover et al. (1984). We
substitute in (5.1) the reported experiment parameters:
P=0.548 ( Vo ——100 kV), W, =0. 1 mm, A, =0.556 pm,

A reliable quantitative estimate of a Smith-Purcell
FEL gain is hard to make, mostly because of the
difticulty in solving exactly the electromagnetic problem
of the radiation field with the boundary conditions of a
metallic grating (Van den Berg, 1973). As in the general
optical grating diffraction problem, the amplitudes of the
space harmonics (diffraction orders) depend strongly on
the grating ruling shapes and, in certain wavelength re-
gimes (especially IR), on the dielectric properties of the
grating material. Analytical estimates of these arnpli-
tudes usually have limited validity, and, in general, inten-
sive numerical computation techniques must be applied.
Here we will base our estimate of FEL gain on measured
values of radiant intensity reported earlier (Gover et al. , FIG. 11. Smith-Purcell radiation scheme.
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B. Estimating a channeling radiation
free-electron laser gain

Another example we offer for the application of the
equations derived in Sec. IV is the estimate of the gain to
be expected in a stimulated channeling experiment. We
use here spontaneous emission values that were measured
by Andersen et al. (1981). In that experiment the elec-
trons channeled through the lattice plane I 110I of a sil-
icon crystal. In this particular plane there are only two
transverse quantum levels in which the electron wave
function stays bound to the planar channel. Hence we
must use the quantum-mechanical relation between spon-
taneous and stimulated emission (third column, second
row, in Table IV) in order to estimate the expected gain
under the same experimental conditions.

We substitute

dP Av' I
dQ hQ e

(5.2)

in the quantum relation in Table IV. Av' is the number
of photons emitted into the solid angle AA by a single

m =2, L =25 mm, 6~=160', 6 =137', (dP/dA),
=0.58 nW/ster, and A, =5835 A [computed from the ra-
diation condition (2.23)]. This results in

G~» ——5.6X10, which is, of course, a very low gain,
indicating that under the same conditions in which the
spontaneous emission experiment was carried out, FEL
oscillator construction would be impractica1.

Enhancement of the Smith-Purce11 gain would be pos-
sible in a waveguide structure (Gover and Yariv, 1978b),
in which case (assuming a planar waveguide) the FEL
gain is increased by a factor equal to the number of "zig-
zag bounces" of the optical rays in the waveguide along
the interaction length. However, such approach certain-
ly will not work as long as the FEL gain per bounce. is
much lower than any conceivable values of reAection loss
per bounce. An obvious way to increase the gain is by in-

creasing the electron current in the interaction region.
In the experiment conducted by Gover et al. (1984), the
e-beam current was 0.22 pA. It is certainly possible to
increase this current by many orders of magnitude, but
because of resultant emittance growth (Lawson, 1977;
Gover and Sprangle, 1981), this will increase the axial
momentum spread of the beam and the collisions rate
(with the grating). The emission line would then be likely
to be dominated by inhomogeneous broadening due to
velocity spread or collisions. From Eq. (4.49) one would
expect a strong reduction in gain due to this spread in in-
verse proportion to the broadened linewidth squared.
These considerations do not lead to optimistic predic-
tions with regard to realization of nonrelativistic beam
Smith-Purcell FEL s in the visible wavelength. Certainly
considerable improvements in the experimenta1 condi-
tions (perhaps optimization of the grating rulings shape
for maximal coupling into the interacting slow space har-
monic) would be required to change this conclusion.

electron traversing the crystal. Assuming A, = A„A,
is- the electron beam cross section, and Aco=hmL, where
AcoL is the finite-length homogeneous broadening
linewidth (2.31), we obtain a simple equation for the gain:

AQ SP

(5.3)

where Jo is the current density. The experimental data in
the cited experiment (Andersen et al. , 1981) was y=9,
60=0.64&10 ster, I. =1 pm, Av'=0. 5&&10 pho-
tons. Using this data, Eq. (5.3) yields

6 =0.54)& 10 ' Jo( A /cm ) .

6=5.2X10 20 dI
dA dQ

This result corresponds to a requirement for an electron
source that is much brighter than that of a cathode
temperature-limited source, if a reasonable gain of at
least a few percent is to be obtained. This is, of course, a
discouraging result (before considering yet any other
technological limitations such as material damage and
crystal heating). However, we do not rule out the possi-
bility of obtaining more favorable predictions under
different experimental conditions (possibly at longer
wavelength and lower electron energies).

C. General (off-axis) gain equations
for the magnetic bremsstrahlung free-electron laser
and cyclotron resonance maser

In order to calculate the spontaneous emission spectral
radiant intensity, we use a known standard formula
(Jackson, 1975) for radiation from a moving point
charge. The energy emitted per electron per unit fre-
quency per steradian is

A more important equation may be the gain as a function
of the electron beam brightness (dI/dA dA), since the
acceptance angle of the crystal channel is limited and not
all electrons entering at arbitrary entrance angles can
channel and emit coherently. In a planar channeling ex-
periment the coherent emission acceptance angle in the
dimension parallel to the channel plane is &A, /L. The
acceptance angle in the dimension perpendicular to the
crystal channel within which the electrons are injected
into the upper transverse energy level is 1.2 mrad. This
parameter is deduced out of the reported data on the an-
gular dependence of the measured emission as function of
the crystal orientation (Andersen et al. , 1981). Thus the
total acceptance solid angle in this experiment is estimat-
ed to be 60=9.6&10 ster. The gain dependence on
the electron beam brightness under the conditions of
Andersen's experiment is therefore

Rev. Mod. Phys. , Vol. 60, No. 2, April 1988



Friedman et af.: Spontaneous and stimulated emission from quasifree electrons 521

d I'
dco dco

ico[t —e r(t)/c]2 2 2

dte && e Xe& e
I6m

(5.4)
1

We assume that only the components of the electron ve-

locity that are perpendicular to the wiggler direction in a
FEL, or to the axial magnetic field in a CRM, contribute
to the radiation. We change the integration variable
from t to z using t = to. +z/vz 7

d I'
dco dco

1 /2
e Po

4m' &p

L V j i (co/U )z —i(co/c)e r&(z) —i (co/c)e e z
sin 26' dz e

o u,
(5.5)

where e' is the angle between the radiation wave num-
ber q and the transverse velocity of the electron vj. For
undulator radiation (periodic magnetic bremsstrahlung),
the transverse velocity is

—ik .r + ik r
v~= —,'(v e +v'e "

) . (5.6)

For a CRM the transverse velocity is
—i CO t + id'

v~= —,'(v e ' +v*e '
) . (5.7)

Substitution of (5.6) or (5.7) into (5.5) and multiplying by
the electron injection rate I0/e in order to get the spec-
tral radiant intensity of an electron beam results in the
same equation for both cases:

d I'
dco dQ

e Io Po

4~A, 2 Eo

1/2
L . 2, w . 20e,

Vz 2

(5.8)

where 8 is the detuning parameter, given by Eq. (3.81) for
the magnetic bremsstrahlung FEL,

2

3
sin e~ +tan e„„

em A uz yp

d . 20sine —,
dO

(5.1 1)

77 COL 0 wI v

2 cA, I~ v,

1

yp,

&& sin 8"[(y,p, ) '+ sin eq ] sinc-' de

(5.12)

where IA =4vre0mc /e =1.7X10 A is the Alfven
current constant. This gain formula applies for any arbi-
trary direction of the electron, wiggler, and radiation.
Also, the general tuning equation was restored by replac-
ing the maximum gain point volume, used in the table by
the finite-length homogeneous broadening detuning curve
[(4.23) and (3.67)]. In the special case in which the elec-
trOn and the Wiggler are aligned. 7 Greg eq 7 P Pz7 the
gain formula reduces to

6)=[co—(q+k ).v]
v

(5.9) In the even simpler case, when also the radiation is on
axis (eq =0), Eq. (5.12) reduces to the well-known gain
formula (Madey, 1971)

and v is the average electron velocity. For the CRM case
the detuning parameter 0 is G ( )

77 COL 0 wI v

2 cA, I& u,

2
1 d . 20sinc —.

yy, P, dO
(5.13)

—q, L . (5.10) In the CRM case the resulting equation for the gain at
arbitrary emission angle is

Note that in (5.9) an assumption u, =u, =const was used.
This is an approximation val&d only for a„—=eB /
(k„mc) « 1 in the case of a linear wiggler, but is exact in
the case of a helical wiggler with zero canonical momen-
tum. It is instructive to note that undulator radiation
and cyclotron resonance emission have the same spon-
taneous emission radiation pattern for the same wiggling
velocity u . The electron trajectories (which are exactly
the same in both cases if the wiggler is helical) completely
determine the spontaneous emission radiation pattern.

In order to calculate the gain we use the equations in
rows 4 and 6 of the second column in Table V for the
bremsstrahlung FEL and the CRM, respectively. The
equation for the gain in the first case is

Cuc0L Io uw
G(co)= ——

2 cocA, I~ u,

S111 e
Sln eq

y P, 1 —Pz cosBq

d . 20sinc —.
dO

(5.14)

This result indicates that one should not expect net gain
terms that scale as L on axis for CRM-based devices
(Ride and Colson, 1979; Gell et al. , 1982). As was dis-
cussed in Sec. II, there are still gain terms that scale as
L that may not cancel on axis, but these terms are only
significant for a short CRM device and were not included
in the present derivation.
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APPENDIX A: THE CYCLOTRON RESONANCE
MASER ENERGY LEVELS

2 1/2

@=mc 1+
7' C

Pz+
mc

(A 1)

As in the nonrelativistic limit (Landau, 1930) the trans-
verse momentum is quantized:

The total energy of a relativistic electron in a uniform
axial magnetic field B„which is the positive eigenvalue
of the Klein-Gordon equation, is

T 2

and transverse components, as was done in Sec. II.D,
since we have an explicit equation for the total energy
dispersion relation (Al) and it does not split (as it does in
the nonrelativistic limit) into pure transverse and longitu-
dinal components.

To calculate the classical cyclotron emission frequency
at any harmonic hn, it is sufficient to expand 0& to first
order in A and substitute in the equations for conserva-
tion of total energy (2.10) and longitudinal momentum
[(2.11), with m =0 (2.50)]. Using c)b/dk„=aviv, and
c)@/c)n =fico,om c /y, one obtains

pi (n——+ —,
' )2m fico,o, (A2)

M 0/P
coo=(b, n)

1 —
g, cosB~

(A3)

where co,0 ——e8, /m and m is the particle rest mass.
In the relativistic regime there is no particular advan-

tage in separating the electron energy into longitudinal

In order to find the difFerence between the absorption
and emission frequencies we expand 8„k to second or-

nf zf
der in A' around (n;, k„):

c)B BD
(k,j —k„)-+ (n& n, )—.

Bk-zj j zt

1 c)zA c)'8 1 c)'6+ 2
(k f k ') + (nt' n;)(k f —k ')+ (nf ii ) (A4)

Again, using the conservation of energy and longitudinal
momentum conditions and the relations

APPENDIX 8: THE CLASSICAL LIMITS
OF AN ELECTRON WAVE PACKET

3k,

g2g

9n

2
CO 0

mc

results in

=Pi' p
c)k, c)n me@~

An electron can be defined to be in the classical limit if
throughout the entire interaction region it can be well lo-

calized relative to the typical variation parameters of the
force wave with which it interacts. In order to determine
when this condition is satisfied, we write the electron
wave function at time t =0 as a Gaussian with width o. ,

itj(z, t =0)=f (z)e

where

c0 $ cos (3q

me@ y, (1 —P, cosB )

coseq—2/3, —1 . (A5)'
1 —P, cosB

f (z)= e
&raced

The wave function at time t is

P(z, t) = f dk X(k —k, )e'("'
&2~

(B3)

Equation (A5) is composed of three terms that can be
traced to originate, respectively, from (1) pure longitudi-
nal momentum change (recoil), (2) combined longitudinal
and transverse-state change, and (3) pure transverse-state
change, with each change taking place during the emis-

sion and absorption processes. It can be simplified into a
compact form when the three diA'erent contributions are
lumped together:

where X(k) is the Fourier transform of the initial wave

function:

X(k) = — f dz f (z)e ' '=, „e1

&2~ (2')'~"

%'e expand the energy of the electron 6& to second order
around k, ,

fzQ7~0 S1nBq
Aco =—

mc y (1—P, cosB~ )
(A6) Dk-6'i, +fiu (k —k;)+ —A' (k —k;)g

II

(85)
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Substituting (85) in (83), and performing the integra-
tion, we find

i[k,.z —(6A, /A)tj

g(z, t) =f, [z us—t, o, (t)]e

where

(86)

~ f, [z u —t, cr, (t)]
~

= , e

+(i)t /; )'
Ot=

0-2

(87)

The wave function in (86) is a Gaussian pulse, moving
with velocity U . The width of this pulse increases with
time in a diffusionlike way.

The minimum possible value for o., (varying o for fixed

t) is

AL
(q, +k ) «m .

2~Ill Ug

(89)

Equation (89) can be written in a more practical form us-

ing the equation for the effective mass (2.47),

A,
p )L m y2yp,

where A,„=2m/(q, +k ) and A,, =iri/me is the Compton
wavelength.

Ot
min

II

The time when the pulse arrives at the end of the interac-
tion length L is t =L/u~. The condition for the electron
to be classical, is that at the end of the interaction length,
where the full width of the electron wave packet is taken
to be v'2o, , it is still smaller than the wavelength of

min

the ponderomotive potential (see Fig. 5). This results in
the inequality condition

We assume that the interaction time is the longitudinal
transit time L/ug„and we require that the minimal full
transverse width of the electron at the end of the interac-
tion length i/2 o ~, will be smaller than the electromag-

min

netic field transverse variation (see Fig. 6). In character-
izing the transverse variation of the radiation field we dis-
tinguish between two cases: (1) The radiation mode
propagates at an angle to the electron wave packet. In
this case the electron wave-packet width has to be small-
er than the transverse wavelength of the radiation mode.
This results in thy condition

1

2sin e ~ 13,y
(814)

A, )
zy

(815)

APPENDIX C: A DETAILED DERIVATION
OF THE TRANSITION RATE EQUATION
FOR VARIOUS CASES OF TRANSVERSE STATES

1. The transversely discrete (quantum} case

In order to keep convenient account of the electrons
number normalization, we describe the electrons, even in
the longitudinal quantum limit, as a finite-length longitu-
dinal wave packet, which is distributed around a single
longitudinal eigenstate function with a very narrow spec-
tral width. We thus express the initial wave function as

(2) The radiation wave propagates collinearly with the
electron. Thus the electron wave-packet width has to be
smaller than the radiation beamwidth. If we assume a
Gaussian radiation mode, then the minimum diA'raction-
limited width of the mode for a given propagation length
L is i/ALrr. This results in the transverse classical limit
condition

1. Transverse classical Iimit
P;(r, t)=i/2~yk k (r, t)f, (z —zo), (Cl)

In order to find the condition for the transverse classi-
cal limit we follow a similar procedure and start at t =0
with a wave packet of infinite extent in the longitudinal
dimensions and finite width:

g(x, z, t =0)=f (x)e (811)

t [k,.z+ k,.x —(e,. /R)t]
g(x, z, t) =f, (x —us„t, crt, )e (812)

where
~ f, (x)

~

is a Gaussian similar to (87). The
minimal possible width of the Gaussian, sustainable
within an interaction time t [analogous to (88)] is

min
(813)

where f (x) is again a Gaussian (82) with width o i.
In analogy to (86), the time-dependent wave function

1s

where pk & (r) =
~
k; ) is a single state function normal-

li zi

ized according to (3.14)

y„„(r)y*,„,(r)d r =5(k, —k,')5„„, ,l z klk l l

and f, (z —zo) is a real envelope function, which is sub-
stantially longer (in the z dimension) than the interaction
length. Thus this envelope function seems constant as
long as the classical electron location (wave-packet
center) zo =us, (t to) is within —the interaction region.

We can keep the original volume normalization of the
total wave function f ~ P ~

d r= 1 [see Eq. (3.13)], if we

assign to the function f, (z —zo) the constant value
I/i/L within the entire interaction region (0&z &L).
This assertion can be verified by substituting (Cl) in
(3.13) and using the relation

(1/L) f II / yt, k /

d'r =I/(2~),
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I P) =&2rr/L exp i — t
I
k;v;) (C2)

which applies to eigenstates of infinitely long systems
with symmetry of axial translation or axial periodicity
[specifically for an axially uniform system explicitly

y——k (rt)e " /V2~, where f I gkli(I. )
I

'd'r
= 1].

The total initial wave function can now be written
within the interaction region as

Comparison of this equation with the general expansion
of the wave function (3.12) results in the explicit equation
for the initial expansion coefficient: Ck ——5 5o 5(k,

I—k„.)V'2rr/L [see Eq. (3.18)].
Once we derived the explicit expression for Ck, we

can substitute it in Eq. (3.17) to obtain a compact expres-
sion for the transition rate. The symbolic summation
over final states is replaced by an explicit integration over
the continuous-final-states wave numbers k,&. Substitu-
tion of (3.18) in (3.17) results in

W =2rrnL
2 dk/

I (n&I&k+v/ I

+'
I

v k„l,n;) 1»nc
oo AEt

f 2A
(C3)

where nI =N, /L is the longitudinal electron density, and
where

I

Substitution of (C4) and (C5) into (C3) results in Eq.
(3.20) and, consequently, (3.21).

bE—:8k I „—Ak I „—A'(vI —v;)co
ZE I I ZJ 0" i q

We assumed here that the radiation into the particular
radiation mode q, o. is possible only by transition into a
single transverse mode n&, I&. If the transverse-states en-
ergies are spaced closely enough so that the emission into
the radiation mode q, cr may involve more than one final
transverse state, one must keep the summation over the
final transverse states in (C3).

The temporal dependence of (C3) is eliminated when
we assume that the interaction time t is long enough
(longer than the electron transit time' ), so that the sine
function may be replaced by a delta function (note, how-
ever, that at the same time t must also be kept short
enough to satisfy the first-order approximation condition

P' ~„&&1). Un—der these conditions,

In analogy to the previous case, we start with an elec-
tron wave packet that is distributed around a single
eigenstate with a very narrow spectral width. This time,
however, the single eigenstate is of infinite extent in all
three dimensions, and in order to keep convenient ac-
count of the electron number normalization we choose to
take a finite (but large) extent wave packet in both the
longitudinal and transverse dimensions. In analogy to
Eq. (Cl) in the previous case, we write the initial wave
function as

g;(r, t) =(2') yk f(r —ro), (C6)

2. The transversely continuous (inherently quantum} case

sine ~2~—5(bE) .2 AEt
2A' t

(C5) where yk (r) =
I
k, ) is a single state function normalized

according to (3.15),

Jcpkrokd v =5(k —k'), (C7)

To show that the interaction time for which the transient
effects may be neglected, is a time longer than the electron tran-
sit time, we first estimate the frequency bandwidth that is asso-
.ciated with a finite interaction time. This bandwidth is calculat-
ed by relaxing the conservation of energy condition (2.13) and
writing it as an inequality

I
@q —6q —Ace

I
&Arr/t. This in-

zi zf
equality together with the conservation of momentum condition
(2.14), results in the bandwidth

Uz
b,co, = 2~/(tu, ) .

1—,cose~

In order to be able to neglect the line broadening due to finite
interaction time, this linewidth must be much smaller than the
linewidth due to finite interaction length (2.31) Ace, ~&A~L.
This yields the condition t &&t„, where t,„=L/U, is the transit
time of the electron through the interaction region.

and where the envelope function f is assumed to have
much larger dimensions than the interaction region.
Thus it looks constant as long as the classical electron lo-
cation (the wave-packet spatial center) ro ——vs(t —to) is
within the interaction region.

As a consequence of these assumptions and the nor-
malization relations for the initial function

f I g; I
d r= 1 [see Eq. (3.13)] and the eigenstate func-

tion (1/V) f ~ I pk I

d r =(2~), it is possible to assign
I

to the function f(r —ro) in (C6) the constant value
1/&V, within the interaction region and interaction
time. Comparison of (C6) with the definition of the ini-
tial function mode expansion (3.12) results in the explicit
equation for the initial eigenfunction amplitude
Ck, ——5, 5(k —k;)+(2') /L [see Eq. (3.22)]. This equa-

tion can be substituted into the generic equation for the
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transition rate (3.17), resulting in Eq. (3.23), where we re-
placed the symbolic summation over k in (3.17) by a
three-dimensional integration in k space, and again we
made use. of relation (C5) for time t large with respect to
the transit time.

In special cases such as a laminated structure, we can
proceed from Eq. (3.23) by developing further the matrix

I

element in the integrand and performing the integration
over k~&. The transverse coordinates integration implied
by the matrix element in Eq. (3.23) is performed over the
interaction region with the electron wave function [(3.25)
and (3.33)] and the perturbation Hamiltonian (3.28).
This results in sine function dependencies on the trans-
verse momentum mismatches:

( 2~ )
2 —L„/2 ~ L /2—2 f dx f dy exp[i(ki;+qi —kiI) ri]= sine

" "
sine

(2m ) 2 2
(C8)

When substituted in (3.23), the resulting sine functions
would behave as very narrow functions when L„,L are
large. We may replace them with delta functions, if the
line broadening they introduce is small in comparison to
the longitudinal finite-interaction length broadening (see
Sec. III.D). Hence substituting in (3.23) Eq. (C8) and the
limit relation

sine (k„+q —k„» )L /2~2m5(k +q» —k

(C9)

and subsequently performing the integration over the
final transverse states ki& in (3.23) leaves finally a factor
(L„L») /(L L»)=L L» on the right-hand side of the
transition rate equation which makes it dependent only
on the longitudinal density nI ——L L n, . The only k
space integration left (over k,&) can now be replaced by
integration over 8k, from which the delta function

zf
dependence on the Anal energy leads directly to the Fer-
mi golden rule equations for this case [(3.23),(3.30),(3.31)]
in complete analogy to the derivation of (3.20}and (3.21).

(2), the transverse envelope function is a narrow function
that represents a composition of many transverse eigen-
states. The initial total wave-function normalization

I I itj(
I

d r = 1 and the eigenmode normalization

[implied by (3.15)] lead to the conclusion that fi is nor-
malized according to J fid ri 1. ——

In order to propagate the wave packet in time, we ex-
pand it in terms of transverse eigenfunctions by substitut-
ing in a Fourier integral decomposition of the envelope
function f (ri},

ice.re
fi(ri)= f d kiX(ki)e

27'
(C10)—lkX(k') = f d r'f (r')e

2&

Substituting fi in the initial wave-function Eq. (3.32) and
comparing to the eigenstates expansion definition (3.12)
results in

3. The transversely continuous classical case
ik' r'

C„, (0)=&2vr/L 5(k;—k;,. )X(ki)e ' "' 5„ (Cl 1}

The initial wave packet we take in this case is (3.32),

ii/;(r', 0)=(2m) / /L' q&k, z, (r')fi[ri —ri,~(z)] .
lO zi

This wave packet should be compared with the corre-
sponding expansion in case (1) [see Eq. (Cl)] and case (2)
[see Eq. (C6)]. It is essentially the same wave packet as
(C6), but based on our previous experience we factorized
out the longitudinal envelope function and assigned to it
the constant value I/&L, as in case (1). Contrary to case

This equation is identical with the approximate Eq. (3.35)
only in the rather limited case, in which the transverse
wave packet can still be considered wide enough to as-
sume a single transverse state, so that X(ki)=2+6(ki).
Note that k~;=0 due to the definition of the electron
coordinate frame. Substitution of (Cl1) in (3.17), again
replacing the symbolic summation over k by three-
dimensional integration over the initial and final k
spaces, results in

ik' r' [z
W = (2n)nl f d k/

. f d ki(v&k&
I

H'X(ki)e ' "'
I

k'v;)sine
g2 —Qo —oo

—%CO( V/ —V )f
2

(C12)

where nL =N, /L is the longitudinal electron density.
Because of the choice of coordinates, for which U i=(1/A')Vk @i,——0, the equality 6i, = ez, k, is maintained up to firstgi

lO zi

order in A'. Thus the sine function can be taken out of the ki integration in (C12). What is left, then, is the integral over
X(ki) times exp[iki rid(z)] times the initial transverse eigenfunctions (which are transverse plane waves in our model).
This integral is simply the inverse Fourier transform of X(ki) [see Eq. (C10)] displaced by ri„(z), and it yields the initial
envelope function fi [ri —ri, i(z')]. Hence Eq. (C12) becomes
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(2~)'riI. f d'iP &vfkgfkif I

H'f [ri r—i,](z')]
I
k»k;;v; & I'»nc—00

—irico( vi —v( )
i f (C13)

Taking advantage of the narrowness of the envelope function relative to the interaction Hamiltonian results in

, (2~)'nL f d'kg
I &vyk;g IH'[rl. (z') z'] Ik:;v;& I'1&king lf[ri ri—.i(z')] lkio& I'

X sine

26'k —A'„—A'co( vg —v; )f
(C14)

ln Fq. (C14) we used the assumption that fi(ri —ri, ~) is a
narrow function relative to H' in the transverse dimen-
sions. Thus it forces the value r~=r~,

&
in the transverse

coordinates dependence of H'. We also assumed that
ri, i(z') changes as a function of z' much slower than the
interaction Hamiltonian H . Consequently the spatial in-
tegration implied in the matrix element definition was
factorized, and the envelope function together with the
transverse coordinates integration were taken out of the
perturbation Hamiltonian matrix element, which is then
left only with z' integration. The transverse coordinates
integration implied in the envelope function matrix ele-
ment in (C14) is nothing else but the Fourier transform of
the envelope function X(ki) (C10). The integration over

k~& of the envelope function Inatrix element can now be
executed explicitly even without knowledge of 7, simply

by applying Parsewal's theorem:

f d'k'
I
&(k')

I

'= f d' i I f &
')

I

'=1 . (C15)

APPENDIX D: SECOND QUANTIZATION
OF THE KLEIN-GORDON EQUATION

The Klein-Gordon equation for a relativistic particle is
2

ih +eV g=c ( —iAV'+e A) /+I c i' .
a =2
at (D 1)

The Hamiltonian that leads to this equation is
(Schweber, 1961)

This results in the transition rate equation for the trans-
versely classical case, Eq. (3.36).

H = f d r [A g*p eV —p*g+c [(iAV+e A)'g*] [( ifiV+e A)l—i]+I c Q*QI . (D2)

This Hamiltonian has two canonical variables le and p*.
Following the ordinary procedure of second quantiza-
tion, the corresponding canonical momenta are found to
be

H = f d r /*A „g,
&„=——e V +c [ iAV eA— .

+e A„( i A'V )+e —A ];

(D6)

m. =i fi i A +e V—Q*
at

and ~*.
We are interested in problems where the electromag-

netic potentials are the sum of static wiggler potentials
V, A and radiation potentials V„A, . Hence the
Hamiltonian can be divided into three parts:

H;„,= f d r g*&;„,g,

C

(D7)
ifiV. A, + A,—( ikey)—

2

+e A„.A, +e (c2A2 —V2) .

and H;„, is the Hamiltonian that describes the integration
between the charged Klein-Gordon particle and the radi-
ation field in the presence of the wiggler field:

H =H(„,+H„+H;„, , (D4)

where H&„, is the Hamiltonian that describes a free-space
particle:

H = dr A + * —eAV+me" (D5)

H is the Hamiltonian describing the interaction between
a charged Klein-Gordon particle and the wiggler 6eld in
the absence of the radiation field:

[lit(r, t), ir(r', t)]= iA'Air —r') . (DS)

As in the standard second quantization procedure (Bjork-

We follow the ordinary second quantization procedure,
as carried out, for example, by Bjorken and Drell (1965)
for a particle in free space. In order to quantize the
Hamiltonian, one replaces the field lit by a field operator,
so that it will satisfy the commutation relation
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i(hi, lfi)t+ik r.

Here 8i, is the energy of a free electron or positron with
momentum Ak, a& is the annihilation operator of a free-
electron state

~

k), and bi, is the creation operator of a
free-positron state

~
k). These operators obey the fol-

lowing commutation relations:

[ak haik'] [bq, bq ]=5(k—k')

[~k iik'] [~k iik'] [bg bk']=[bi:, bit ]=o

[&i,*bk ]=[&i, bi, ]=[uk bi, ]=[&i,*bkl=o.

(D10)

It can be shown that this representation of the field
operator g (D9) satisfies the commutation relation (Dg)
for any potential V. The momentum representation (D9)
is an intermediate picture representation. In this pic-
ture the time derivatives in the Hamiltonian (D2) can be
explicitly executed.

Substitution of (D9) in (D5) and (D6) and going back
to the Schrodinger picture by eliminating the time depen-
dence of all operators results in equations for the quan-
tized Hamiltonians,

Hr„, ——f d k @k(aiai +bkbk),

H = f f d kd k'(h a„a„+h~ b„bk
(D 1 1)

+bw, ~k'bk +hur, bk'ak ) &k'( —k) w( —k)k

where

en and Drell, 196S), we choose to write the field operator
in the momentum representation

3 1 i—( 0~k/fi)t + ik. r

(2ir) i

uk—= f d k[u* (k, k)a„+ u* +(k,k)b~~],

b k
——f d k[u+ (k, k)ak+u~++(k, k)bz~] .

(D13)

The unitary matrix u (k, k) is the Hilbert representation
of the transformation u, which diagonalizes the unper-
turbed Hamiltonian H&„,+II . It can be constructed in
principle by a standard diagonalization procedure of the
Hermitian matrix (bi,5&i,+h ), the result of which is a

k'k

diagonal matrix of the wiggler Hamiltonian eigenvalues
(Ez). Note that the transformation (D13) involves in

general mixing of electron and positron states. However,
in all relevant practical cases, and in particular when
V =0, the mixing submatnces u +,u+ are negligible
or vanishing, which means that the wiggler by itself does
not generate pairs.

It can now be shown that the newly defined creation
and annihilatio~ operators of 'wiggler states" satisfy
commutation relations similar to the free-particles com-
mutation relations,

[a„,u ~t, ]= [b~, b „-,]=5(k —k '), (D14)

and all the other combinations commute to zero. This
makes it possible to define the wiggler eigenfunction elec-
tron occupation states

~

k) =a
k ~

0) that are orthogonal
to each other. The energy of the state

~

k) is 6k—one of
the eigenvalues of the unperturbed Hamiltonian
H&„,+0 . Using this new set of eigenstates one can fol-
low the first-order perturbation procedure outlined in
Sec. III.A to calculate the transition rate into the photon
state

~ v& ). Since we already concluded that the wiggler
does not mix electron and positron states, and since only
one kind of particle (let us say electrons) is injected into
the wiggler, we can simplify our analysis and neglect all
positron-creating operators in the previous equations
(substitute u +

——u+ bz ——0). ——Substitution of (D9)
and (D13) in (D7) results in the representation of the in-
teraction Hamiltonian in the k space

d 3r e
—ik' r~ e ik.r.

(2 )' 2+~,~„,
(D12)

H;„,= f f d kd k'b k,ka k,ai, ,

where

(D15)

In order to diagonalize the unperturbed Hamiltonian
II f +H one has to find a unitary transformation u
that defines a new set of "wiggler states" annihilation
operators:

h „'-,„-=f f d'k'd'k u (k', k')u' (k, k)
(2m )

X
1

d 3r e ik r~ —e ik'..r
int

2Q 8'k Ck (D16)

In this picture the time development of an operator is

i(H /A)t ~ —i (H /A)t0( t ) e free g~o)e free

We do not refer to this picture as the interaction picture, since
H is not regarded here as a perturbation. For a free electron,
this representation is nothing but the Heisenberg representa-
tion.

(k'
( H;„,

~

k) =h qk . (D17)

In order to obtain a more explicit equation for the ma-
trix element computation we define the wiggler

Using the commutation relations it is straightforward to
show that the matrix element of (D15) between states

~

k') and
~
k), which is needed for the computation of

the radiative transition rate equation (3.17), is
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eigenwave function of the electron

yi, (r)—: Jd k u* (k, k)e'"'. kii kie qi+ k

(El)

(E2)

This wave function diagonalizes the unperturbed first
quantization Hamiltonian, and therefore it is the eigen-
mode solution of the Klein-Gordon equation (Dl) in the
absence of the radiation field. Using this definition the
matrix element is

&i, = @i, —fiU, (k„—k„)—A'vi (ki, —kif )

+ —,'i'' g (k, —k, ), (k; —k, )), (E3)

As in Sec. II.G, these two equations can be solved by ex-
panding the final electron energy to second order around
the initial electron energy,

h ~,)-= J d r tpi-Pf;~i(pk where

In order to obtain an explicit equation for the energy 8k
and complete the computation of the radiative transition
rate, one has to solve explicitly the Klein-Gordon equa-
tion in the wiggler and, in general, match boundary con-
ditions for the electron wave function at the entrance and
exit from the wiggler. However, in practical calculations
we will assume that an incoming free-space electron ex-
cites predominantly a single wiggler state with

@k——ek ——y, mc, and after interaction the electron exits

with a single state energy Dk, ——6k ——yfmc . As in Sec.f
III.A we now choose the sourceless radiation modes to be
described in the transverse gauge (V' A, =0= V, ).
Hence the first-order perturbation Hamiltonian matrix
element [(D19), (D7)] can be written as

g~»NR&k ~ (D20)

APPENDIX E: FIRST-ORDER EXPANSION
OF THE EMISSION AND ABSORPTION
DETUNING PARAMETERS

In order to calculate the explicit dependence of the
emission detuning parameter 8, in Eq. (3.69) on co and k„
in the case of general recoil (continuous transverse
states), one has to use the conservation of energy and the
conservation of transverse momentum conditions,

where HNR is the nonrelativistic Schrodinger equation
interaction Hamiltonian as given in Eq. (3.3). Equation
(D20) is identical to the matrix element of the relativistic
perturbation Hamiltonian (3.47), which was derived in
this paper in an a1ternative less rigorous way.

One can conclude that the perturbation procedure
based on the Schrodinger equation, which we formulated
in Secs. III.A —III.D is extendable to the relativistic re-
gime. In the relativistic regime the entire formulation
remains valid with the introduction of two modifications
to the perturbation Hamiltonian matrix element calcula-
tion: (a) The functions to be used in the overlap integral
of the matrix element are the Klein-Gordon eigenfunc-
tions, instead of the Schrodinger equation solutions. (b)
The perturbation Hamiltonian should be multiplied by
the factor (y;yf )

V=-
0k

[see Eq. (2.81)] and

dk„dq,
+ L(co—co, ) .8CO 8CO ~

~——coe

(E4)

The dependence of k„on co is defined implicitly by (El)
and (E2) and the dispersion relation 6'k ——A'(k„, k~, ).

e

Using the rules for derivatives of implicit functions, we
can'write the derivative of k„, with respect to co, as

dk„0k„~@k, Bk„dk,
0 8@k G 0k

e

(E5)

where

1

Av„

ak„
and

le vze

g2 Bk;Bk. k=k,.

[see Eq. (2.88)]. We now substitute (E3) and (E2) in (El)
and solve for (k„.—k„). The substitution of this in the
equation for 0, (3.69) results in the first-order expansion
in fi 0, =0+8/2—(3.72), where 8, the classical detuning
parameter, and E, the recoil parameter, are given by
(3.80) and (3.81). The first-order expansion of
9, =8—E/2 (3.72) is obtained by following the same pro-
cedure, starting from (3.70).

We supplement this proof by an alternative derivation
of 0 and z, which also reveals the explicit dependence of
the detuning parameters 0„0„8on co (third column of
Table I). This derivation ties up to the kinematic con-
siderations analysis of Sec. II.G and takes advantage of
the equation for 5~=co, —co, (2.87), which we derived
there for the case on which we presently focus, namely,
the case of transversely continuous states with general
transverse recoil.

The alternative derivation starts by expanding k„and
q, to first order in ro co, (and no—t in fi, as we expanded
before). The expansion is around co„ the center of the
emission line, which is defined by 8, (co, )=0. Substitut-
ing this expansion in 8, (3.69) results in
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We note that v, —:1/fiB@i,/Bk
~ & k is not (necessarily)

e

the electron velocity, but it is the synchronism velocity
corresponding to the exact solution of the conservation
of energy and total momentum conditions at emission
[(2.76) and (2.77)]. Assuming the plane-wave radiative
dispersion relation q =ence/c (2.20) in the conservation of
energy and transverse momentum conditions [(El) and
(E2)] we obtain

0 =0——1+2a
COp

(E13)

CO —COp (( 1
COp COp

In all practical cases, we are interested in frequencies
that are within the linewidth,

dk„
(1—Pi, ei).

Uze

Thus the emission detuning parameter is

(E7)
Thus the modifying terms in (E12) and (E13) may be
neglected, resulting in the practical equations for the
emission and absorption detuning parameters
[(3.71),(3.72)] and [(3.89),(3.90)].

(E8)

Equation (E8) is an exact first-order equation (in terms
of co —co, ) for the emission detuning parameter 8, . The
parameters P„co, are found from the exact solution of
the full 3D momentum conservation and energy conser-
vation conditions (2.76) and (2.77), and can be computed
in principle to any order of A. In order to get practical
equations, second-order expansion (in terms of fi) is em-
ployed around Ci, in Eq. (2.76) in exactly the same

manner as in (E3), except that in the present case the ex-
pansion is of Bk around 6'k . Substitution of the 3D con-

e

servation of momentum condition (2.77) results in

APPENDIX F: THE RECOIL PARAMETER
AND ITS SYMMETRY PROPERTIES

1 0 0
0 1 0

1
—2

(Fl)

The recoil parameter s is defined in Eq. (3.80). For an
electron in a uniform wiggler field, the mass tensor ele-
ments are given by Eqs. (2.90). Evidently, in the average
electron coordinates, the mass tensor forms a diagonal
matrix

k~ L CO —COe

8, = (co —co, ) =2m 1+
COp —6CO ACOI COp

(E10)

Following the same procedure for the absorption detun-
ing parameter results in

Uzek~ RO+
1 —P, eq 2

This equation is correct to first order in A. Since this
equation is written in terms of the "center emission veloc-
ity" p„ it can be directly used in (E8) to eliminate the p,
terms resulting in

Thus there is symmetry preference to the axis of average
electron motion, and the coordinate system (x',y', z'),
which is aligned with this axis, is the principal coordinate
system of the mass tensor. The equations that define the
mass tensor (2.90) are covariant (form invariant) under
coordinate rotational transformations. To prove this we
examine the mass tensor (2.90) for the case of a coordi-
nate system that is misaligned with respect to the average
motion axis (see Fig. 7). Hence P &0&P, . For simplici-
ty we choose the special case where p~=0, so that the
mass tensor is described by a scalar m * =m y and a 2D
tensor:

k L CO —COa

0, = (co —co, ) =2m
COp+ 5CO

(El 1)

1
2

Xx
(F2)

E CO —COp

0 =0+—1+2e 7

COp.
(E12)

where co, =co0=5co/2, co, =coo+5co/2 [see Eqs. (2.85)
and (2.86)].

Equations (E10) and (Ell) can be interpreted as the
modifications to the approximate equations (3.89) and
(3.90), stemming from the small difFerence in linewidth
between the emission and absorption lines
hcoL, =b col (1 5'/coo), b, coL, =—b.coL (1+5co/coo). Writ-
ten in terms of the classical detuning parameter
8=2m(co —coo)/hcoL and the recoil parameter e [as in the
corresponding Eqs. (3.71) and (3.72)], the modified Eqs.
(E10) and (E12) appear as

mp p p

The eigenvalues of this matrix should be the diagonal
terms of the mass tensor, once it is diagonalized by per-
forming a coordinate rotational transformation into its
principal coordinate system. Indeed the eigenvalue equa-
tion of the matrix in (F2) is

p2 p2

(my)

and using the relations 1/y„, =1—P „it is straightfor-
wardly solved to result in

A, , =(1—P —P, )/(my), Az ——1/(my) .
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These eigenmass tensor components are identical to the
ones obtained in (Fl) by direct substitution p„' =p~ =0 in
(2.90) in the averaged electron coordinates.

The recoil parameter (3.80) can be expressed in a more
explicit way by substituting in the mass tensor 1/m*,
given in the principal coordinates system (Fl). This re-
sults in Eq. (3.82), which demonstrate the partition of the
recoil parameter c. into a longitudinal and transverse
term (with respect to the average motion axis vector
e, —:e, e). Yet an alternative equation for E can be found
by pulling out the term (q,'+k', ) from the parentheses
in (3.82) and substituting the synchronism condition

q,'+k', =~0/U, where A@0 is the classical synchronism
frequency [8(co0)=0],

fiL 1 ~00 1 (ql+It l)
(FS)—2 —2

( e+ke )2

The second term in large parentheses can be identified as
the tangent of the angle between the recoil vector q+k
and the electron motion axis e, [defined in (3.85)]. Both
the recoil parameter c. and the detuning parameter 0 can
thus be written in terms of this angle B„„resulting in

Eqs. (3.84) and (3.86), respectively.
It is instructive to note that, as in many scattering

problems (e.g., Bragg diffraction from the crystal lattice),
the relevant dynamic parameters depend on the total
recoil momentum, which in our case is q+k (see foot-
note 15). Nevertheless, for practical applications it is
convenient to express c and 0 in terms of the separate
wave number amplitudes

~ q ~

=co/c and
~

k
~
=k„,

their angles with respect to the electron average motion
angle e„,to these angles (3.87), providing a most general
equation for 0 and c for arbitrary electron motion axis,
wiggler axis, and radiation direction.

The general equation for s [(3.84),(3.87)] and 0 (3.88)
can be easily reduced to the most common case of "on-
axis propagation and emission, " for which B„,=O=G',
e' =~=6', and consequently s=fiLco0/(my Tt y ),
8=(co(1—p) —k U)L/U. It is also instructive in this lim-
it to present explicitly the velocity parameter for the case
of the magnetic bremsstrahlung FEL. In this case the en-
ergy dispersion relation of an electron in a uniform trans-
verse wiggler is

Ak ——c[(A'k) +(mc) (1+a )]' ( =ymc ),
where a =eA /(mc) is the average wiggler strength pa-
rameter (Steinberg et al. , 1986), and the wiggler period
oscillating terms were averaged out. The electron canon-
ical momentum p, =Ak indicates the average electron
propagation direction. Its transverse components are
constant in a uniform wiggler, and its longitudinal com-
ponent is the wiggler period averaged longitudinal
momentum p, . In the case of on-axis propagation, the
electron average motion axis and the wiggler axis coin-
cide and p,~=O. The calculation of the average motion
velocity and the mass tensor components proceeds on as
in Sec. II.G, resulting in U = U, =p, /(ym), where

P, =mc (y —1 —a )'~2, and y =—y, =(1—P 2
)

=y/yi, whe~e y~:—(1+a )' . These results and the
subsequent equations for spontaneous and stimulated
emission are completely consistent with the conventional
classic derivation of a uniform wiggler FEL in the on-
axis propagation and emission limit (Sprangle and Smith,
1980).

In conclusion of this appendix we try to gain deeper in-
sight into t'he emission problem by expressing the detun-
ing and recoil parameters in terms of the electron rest
frame coordinates and by examining the Lorentz covari-
ance of the parameter equations. Using the Lorentz
transformation relations applied for transformation into
the rest frame of the electron average motion,

ttr =It tr ~

q~+k' ~=q~+k'„~,

q,'+k', =y(q,'+k', ) .

Equation (3.82) reduces into (3.83),

At,',
, (q'+k' ) =6to'tt„,

Pl P

to express (3.86) in terms of the rest frame coordinates:

8 =2'(ro co0)t,'„. — (F9)

Evidently 0 and c. are scalar quantities that can be evalu-
ated in any Lorentz frame. The detuning parameter 0 is
the relative phase measured in the electron rest frame be-
tween the radiation frequency co' and the electron "wig-
gling" frequency co0 during an oscillation period t,', . The
recoil parameter ad=Scut,', is the shift in this phase due to
the doppler shift associated with the quantum recoil
efFect.

Both (F7) and (F9) could have been proved also in an
alternative, simpler way, by evaluating Eq. (3.75) for E

and (3.91) for 0 directly in the electron rest frame. This
is permissible, since these equations are covariant and
can be evaluated at any Lorentz frame. To prove the co-
variance we use the Lorentz transformation formula

6CO =Q ( LCD' +pL C Aq,
'

)

and the dispersion relation

Act)
hq, =

Uqgz

(F10)

(F11)

where pL is the axial velocity of an arbitrary Lorentz

5''/2=t0o —~0 =@f/iil=A(q'+k6' )2/(2m@')

is the Compton recoil frequency shift of a photon scat-
tered by an electron in rest, with efFective mass my', and
t,', =L, /(y U) is the wiggler transit time (and therefore
the electron oscillation time) in the electron rest frame
(Gover, 1984). We also use the relations

to'=y(co —q v), co0=yk„v, (F8)
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frame and U, is the group velocity of the electromagnet-
ic mode (for plane waves vqg,

——c coseq). Using (F10) and
(Fl1), we see that the factors in the numerator and the
denominator cancel each other out in both (3.75) and
(3.91), resulting in, respectively, e=(co,' —co,')/b, co'L and
0=2m (co' —coo) /b cvL.

The main explicit equations that we derived for c, and 0
[(3.80)—(3.82)] were shown above to be covariant under
rotational transformations, but they are not covariant un-
der general Lorentz transformations. The reason for this
lack of covariance is that we limited our analysis to static
wigglers, so that co =0 (but in any other frame difFerent
from the laboratory frame, co' &0). Fully Lorentz invari-
ant equations may be recovered by repeating the classical
limit expansion procedure of this appendix and of Sec.
II.G, but replacing the emission and absorption frequen-
cies co„co, in the conservation of energy conditions
[(2.76),(2.78)] with to, —co and cv, —to . This further
generalization will not be carried out here.

for Ak, I„are the final electron wave number uncertain-
ties of an electron for a given initial wave number, emit-
ting or absorbing a photon in a finite-length interaction
region, whereas the emission and absorption frequencies
are not prescribed.

To calculate Ak, &, one should solve the equations

klu kzu +Akzu 2 kld kzd+ Akzd (Gl)

5k,„Akd . gg
2 ' 2 ' 2

(G2)

which are obtained from the conservation of energy and
momentum conditions in the general case of continuous
transverse states, assuming that the homogeneous
broadening is due to longitudinal eave-number uncer-
tainty (b.8). Expansion of Az k to first order in irt around

l z

and 6k I, in (Gl) and using Eqs. (4.30), which
lu zu ld zd

defines the expansion centers k„,kd, results in

APPENDIX G: THE INHOMOGENEOUS BROADENING
REGIME AND HOLE-BURNING EFFECT

Ak,„hk,d

Uzd

hk, „—Ak, d
——60,

(G3)

(G4)
If the homogeneous broadening line-shape function is

much narrower than the inhomogeneous line-shape func-
tion, then the convolution integral inferred in (4.26) picks
out of the electron distribution function f (k, ) only elec-
trons with initial wave numbers in the regions
k,„—b, k, t, /2 & k„&k,„+Ak, I, /2 and k,d

—Ak, i, /2
&k„.&k,d+Ak, I, /2, where k,„,k,d are the exact solu-
tions of the energy and momentum conservation condi-
tions (4.29) for a given frequency co. This result in Eqs.
(4.27) and (4.28) for the inhomogeneous broadening emis-
sion rate. The electrons in the two wave-number regions
are essentially the upper- and lower-level populations of a
two-level quantum system. They are represented by the
shaded. area in the electron distribution function shown
in Fig. 10(a). The figure and Eq. (4.27) illustrate that the
net gain in this limit is proportional to the population in-
version between the levels, and that in the classical limit
[Fig. 10(b)] the population inversion condition f(k,„)
&f (k,d ) is equivalent to the "slope condition" for plas-
ma instabilities f'(k„.=p, b/irt) ~ 0 and to the Cerenkov
condition v,o—:(1/ih')(d 6/dk, )

~
k,o& v~„=co/(q, +k )

(Gover and Yariv, 1975).
The initial wave number width due to the homogene-

ous broadening —Ak, & is the range of initial wave num-
bers k„. around k,„and k,d, which for a fixed oi and ex-
act conservation of energy condition conserve momentum
in the transition, within the momentum uncertainty
hk, =DO=—60/L allowed by the homogeneous broaden-
ing process [for fimte-length homogeneous broadening
(3.67), b, 8=2rr/I. , and for Lorentzian broadening func-
tion (3.65), 50=2~~]. The wave number width b.k,i, il-
lustrated in Fig. 10(a) should be distinguished from the
wave number mismatch widths Ak„=Ak„=2m/L,
which are illustrated in Fig. 3. The latter wave number
width parameters, contrary to the definition given above

where

1 BD
ZM

This results in

Ak,„=68
Uzu Uzd

Ak, d .
Uzd

~UZ =Uzu
—

Uzd

(G7)

We now substitute in (G7) the energy-momentum con-
servation conditions [Eqs. (4.29) in the intrabranch tran-
sition case or Eqs. (4.30) in the case of continuous trans. -

verse states]. This results in

Uzu
—

Uzd = CO

(q, +k, ) —P, —

rnid

c
(G8)

For the intrabranch transitions case one can use the rela-
tions k, =k, v,' '=v, &

——cv/(q, +k„). This results in

Ado
Uzu Uzd =

2 )~ Yphr zphUzph

(G9)

where yph
——y . In the case of continuous transverse(0)

Since U,„ is very close to U,d, we have Ak,„=hk, d
=Ak, I, .

The difference between U,„and U,d can be found by using
the relation

p, 6'v,
k, =

c26

Differentiation of (G6) results in
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states the difference between v,„and v,d is calculated in
the coordinate system, which is aligned with the average
electron trajectory (e, =e, ). Thus we substitute in Eq.
(G8) the relation u,

' '=u,'~„=co/(q,'+k', ), where

q,', k', are the radiation and wiggler longitudinal wave
numbers in this coordinates system. This results in

%co
Vzu Vzd =

e2 em XphVzphVzph

(G10)

Both the case of intrabranch transition and the case of
continuous transverse states can be described in a unified
Wa, y by defining Pph Vph as Pzph Vzph in the ArSt CaSe and,
respectively, as y,'~h, u,'~„ in the latter case. Using (G5)
the electron wave-number homogeneous width then reads
for both of these cases:

V

gg Yph~ ph ph
zh

Ado

Ak» &&q, +k (G12)

All of the electrons in the region p, h
—Ahk» /2

&pz &pzI, +4~k»/2 can then perform both stimulated
emission and absorption transitions with almost equal
probability. Consequently, the net emission process satu-
rates only when the electrons redistribute evenly in k,
space within the homogeneous broadening region, and

In both cases the radiative emission can be in an arbitrary
direction. By inspecting (Gl 1), we note that b,k,h would

be much wider than 60 in all practical cases.
The wave number width parameter Ak» provides a

measure of the number of electrons participating in the
interaction, in the upper and lower levels, between which

transitions take place. This width would become, in

principle, an observable parameter if one can measure the
electron distribution function after interaction, whence

significant energy extraction is assumed to have taken
place. At these conditions (nonlinear or saturation re-

gime), there is an effect in the distribution function of
"hole burning" around k,„and "pile heaping" around

k,d until, at saturation, the bottom of the hole and the

top of the pile are at the same levels (population inver-

sion depletion). This repopulation process is illustrated

by the dotted areass of Fig. 10(a). The widths of the
"hole" and the "pile" are Ak», and their areas give a
measure of the maximum radiative energy extraction
efftciency possible in the warm beam limit (Gover, 1980b;
Gover and Sprangle, 1981).

This inhomogeneous saturation mechanism of the FEL
in the quantum limit is completely analogous to the
known hole-burning effect in inhomogeneously
broadened atomic lasers (Yariv, 1975). However, in the
classical limit, the saturation characteristics of inhomo-

geneously broadened free-electron lasers are different

than their atomic counterparts. In this limit (E «2') it
is straightforward to show that the homogeneous wave
number width (Gl 1) is much wider than the entire recoil
momentum (wave number):

the number of photo-emitting and photo-absorbing elec-
trons becomes the same. This situation is depicted in
Fig. 10(b), which indicates how the hole-burning mecha-
nism turns in the classical limit into a process of "plateau
formation" on the electron distribution function.

In a FEL oscillator, where many longitudinal modes at
many frequencies may develop, this saturation mecha-
nism may lead to a peculiar process of "mode coopera-
tion" [a term coined in extension of the "mode competi-
tion" effect in atomic lasers (Yariv, 1975)] and to process-
es of continuous widening of both the electron beam and
optical spectrum (white light lasing). These processes,
which have been described in more detail (Gover, 1980b;
Gover and Sprangle, 1981), result from the fact that the
plateau formation increases the electron distribution
slope (and consequently the gain) at wave numbers near
the edges of the plateau, and from the fact that in the
classical limit a multiphoton emission process is possible.

For the calculation of the inhomogeneous broadening
linewidth in Sec. IV.D [Eq. (4.36)] one needs to evaluate
(88/Bk„). This parameter can be deduced directly from
Eq. (Gl 1):

ao
Bk„.

%col
(G13)

m'Dphil phV ph

The interaction length I.' is measured along the electron
beam averaged motion axis.

APPENDIX H: EINSTEIN REI ATIONS BETWEEN
SPONTANEOUS AND STIMULATED EMISSION

As was delineated in Appendix G, in the quantum lim-

it the free-electron radiator described by (4.15), in the
homogeneous broadening regime, or (4.27), in the inho-

mogeneous regime, is a two-level quantum system. In
this sense it is analogous to an atomic radiator or a laser,
which are based on transitions between two atomic quan-
tum levels.

Einstein relations between spontaneous emission,
stimulated emission, and stimulated absorption, were
developed for such a system in a historical paper pub-
lished in 1917 (Einstein, 1917). It is instructive to under-
stand the correspondence between Einstein's famous A, B
coefficients and the radiation parameters that were de-
rived in Sec. IV for the quantum free-electron radiator.
In doing that we have to resolve difficulties associated
with three differences between the atomic case treated by
Einstein and the case of a free-electron radiator treated
here. (1) Contrary to the free-electron radiator, the tran-
sition energy levels of the atomic radiator are inherent
properties of the atom and are independent of the radia-
tion frequency and emission direction. (2) The radiation
frequency in the atomic radiator is isotropic (independent
of emission direction), contrary to the free-electron case.
(3) In Einstein's formulation, both the spontaneous and
stimulated emission are discussed in terms of a continu-
um of radiation modes. This was needed for the indirect
proof (based on equating the calculated equilibrium
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( Wzi ) t +21PE(~)

( Wiz).t=»zpz(~»
( Wzi ),p

——A zi,

(H 1)

(H3)

where pE(co) is the energy density of the radiation modes,
which, in terms of the formulation of this paper, would
be interpreted as

PE(co) =trico[v, +(e" " —1) ']p(co),

where for box quantization of the radiation modes

co V
p(co) = z,

(H4)

(H5)

Here p(co) is the total mode density in both polarization
states per unit radiation frequency. It is derived by mul-
tiplying (d N/dco dQ) [see Eq. (4.2)] by a factor 2X4m,
where Q=4n. is the full space solid angle, and 2 stands
for the two polarization states.

Einstein s A, B coe%cients relations are (Yariv, 1975)

B21 12 (H6)

=ficop(co) .
B~,

(H7)

These relations were derived by Einstein by simply equat-
ing at equilibrium the total emission [( Wzi )„+( Wzi ),p]
and absorption rate ( Wiz )„given by (Hl) and then com-
paring the resultant distribution to Planck's distribution.
With present-day basic QED theory, Einstein s relations
can of course be derived directly (without resorting to
equilibrium limit consideration). This can be shown for
atomic radiators by simply comparing the coef5cients of
the emission terms in a transition rate equation analo-
gous to (4.27), which can be derived for an atomic radia-
tor. However, for a free-electron radiator, this compar-
ison cannot be done straightforwardly. The di8'erences,
listed above, between an atomic and a free-electron radia-
tor require some care in the definition of the emission
rate parameters ( Wz, )„,( W, z)„,( Wz, ),p in the latter
case.

Since Einstein s transition rates refer to a single radia-
tor (atom) in either the upper or lower level, we define
also for the free-electron case I,„=I, /N„which is the
single mode spontaneous emission rate per radiator (elec-
tron). Furthermore, considering stimulated emission into
a continuum of radiation modes, we multiply the emis-
sion rate per radiation mode by the number of radiation

blackbody distribution to Planck's formula), which was
used by Einstein. By contrast, our Eqs. (4.15) and (4.27),
derived from modern quantum-electrodynamics theory,
refer to a single radiation mode.

Einstein's A, B coe%cients are defined in terms of
( Wzi )„, the stimulated emission radiative transition rate
of a single radiator (atom) from upper level 2 to lower
level 1, the corresponding inverse transition rate ( W, z )„
(stimulated absorption rate) and the spontaneous emis-
sion rate ( Wz, ),p. These rates define the A, B coefficients:

modes within the solid angle EQ and frequency band-
width A~ defined by the linewidth for emission around a
certain emission frequency center co, and emission direc-
1on eqe &

(HS)

These equations result from the stimulated emission and
absorption parts of Eq. (4.15), in the homogeneous
broadening case, when we assume first a single electron in
the upper state [for which in the quantum limit
F(8,z) =1, F(8,z) =0], and then a single electron in the
lower state [for which F(8„)=0,F(0„)=1].The pa-
rameters Armand Aco can be derived from the linewidth
formula. For example, for the finite-length homogeneous
broadening line-shape function F(0)=sine (0/2) (3.68)
with a periodic structure radiator —Aco/coo ——1/N„and
for on-axis radiation b, A=mA, ./I.„. Alternatively, in the
homogeneous regime, Eq. (4.27) or, more generally, Eq.
(4.43), would result in similar equations to (HS) and (H9),
but with the inhomogeneous broadening linewidth and
the corresponding (larger) AQ and Aco.

Using definitions (H4), (H5), and (4.2), Eqs. (HS) and
(H9) can now be compared with Einstein's transition rate
(Hl) and (H2), yielding explicit equations for the Einstein
B coeScients and proving directly Einstein's first relation
in the case of a free-electron radiator:

0I sp AQ,
B21 = Acc) =812

Ado 4' (H10)

This is the equation for the total spontaneous emission
rate of a free electron in all frequencies and direction,
and it is the quantum-mechanical analogue of Larmour's
formula (Jackson, 1975).

Evidently the total spontaneous emission rate (H12) is
proportional to the stimulated emission rates (HS) and

More care must be exercised in the definition of the
spontaneous emission rate. Einstein's definition (H3) can
be understood as the total spontaneous emission rate in
all radiation directions. This parameter can be calculat-
ed for free-electron radiators by multiplying the spon-
taneous emission part of (4.15) by the density of radiation
modes (4.2) and integrating over all frequencies and an-
gles:

d X
(W„), „,= J $1, F(8)2 dQdco . (Hll)

0 GA dco

For the most practica1 case of a linewidth function given
by F(0)=sincz(8/2) and a detuning parameter of a
periodic structure FEL given by 8=(co/U, —q, —k )I.,
the integration can be carried out explicitly, resulting in
the interesting formula

ky k„
(Wzi)p, tot ~p t 0 YO~ N
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(H9) and I,„cancels out when their ratio is calculated
(which is the essence of Einstein relations). However, in
order to get a complete formal agreement with Einstein's
second relation (H7), and in lieu of the fact that the emis-
sion frequency is nonisotropic, it would be preferable to
define the Einstein A coefficient of a free-electron radia-
tor in a differential way (as was done in Sec. IV.A).
Defining the free-electron spontaneous emission rate
( W2& ), to correspond to ihe spontaneous emission rate
only into the diA'erential solid angle and frequency seg-
ments AA, b co [the same ones used in the estimate of the
stimulated emission rates (H8) and (H9)], and equating
the result with Einstein's A coefftcient definition (H3),
one obtains the explicit equation for the free-electron ra-
diator A coefficient:

d X
A 2, = ( W2, ),p

——I",p2 b.Q b.co

=I,~(co) b,co .AQ
4m.

The ratio between (H13) and (H10) results directly in
Einstein's second relation (H7).
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