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The IBA-1 is reviewed with particular emphasis on the symmetry structure that arises naturally from its
inherently algebraic approach. The formulation of the model, in both its algebraic and its numerical as-
pects, is presented and the basic character of its predictions is discussed and compared with nuclear data.
The limitations of the model, and efforts to ameliorate these by appropriate extensions, are also reviewed
in some detail. An effort is made to provide a simple, transparent understanding of the basic physics by
clarifying the relation of the mathematical structure to underlying physical ideas, and to provide guidance

in understanding and carrying out practical calculations.
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I. INTRODUCTION

In 1974, a new nuclear model was proposed, by Arima
and Iachello, called the interacting boson approximation
model or IBA (Arima and Iachello, 1975, 1976; see also
Iachello and Arima, 1974). At the time of its proposal,
models for medium- and heavy-mass nuclei generally
centered on one of two types of approach, either a large-
basis, shell-model diagonalization, along with related ap-
proximations, such as the random-phase approximation
(RPA), to deal with nuclei that are not near closed shells
or major subshells, or geometrical models in which a nu-
clear shape and excitations of that shape are envisioned.
The IBA invoked instead an algebraic and group-
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theoretical approach that recalls a methodology em-
ployed successfully for light nuclei in the late 1950s and
early 1960s by Elliott (1958a, 1958b) and others. Over
the last decade the IBA has generated considerable in-
terest, as well as its fair share of controversy, and has
prompted a large number of new studies in nuclear struc-
ture and spectroscopy. It is the purpose of this review to
discuss the model and its predictions, its successes and
limitations, and some extensions of it that have appeared
in recent years.

The basic idea of the IBA (Arima and Iachello, 1975,
1976; Iachello, 1979; Scholten, 1980; Lipas, 1984) is to as-
sume that low-lying collective states in even-even nuclei
can be described by a system of interacting s and d bo-
sons carrying angular momentums O and 2, respectively.
This assumption is not an ad hoc one, but rather is based
on the well-known features of generalized seniority (Tal-
mi, 1983) calculations in the shell-model scheme and of
the empirical structure of near-closed-shell nuclei, in
which 0" and 27 states lie considerably lower in energy
than those of higher angular momentum. More
specifically, this is a characteristic feature of shell-model
calculations of levels resulting from a short-range residu-
al interaction in a two-particle configuration of identical
nucleons in the same orbit (deShalit and Feshbach, 1974).
Hence it is reasonable to view the boson states as being
constructed from the valence space only and to identify
the bosons as correlated pairs of like nucleons. As such,
their number N=n,+n,; is finite and conserved in a
given nucleus and is simply given by half the total num-
ber of valence nucleons. In the original version of the
model, the IBA-1, with which this review deals, no dis-
tinction is made between protons and neutrons. More-
over, the valence number counting is always done relative
to the nearest closed shells. For example, the nucleus
1¥Bay, has six valence protons (relative to Z =50) and
eight neutrons (relative to N =82), and so the boson
number is N =3+4=7. Similarly, both '9$Pt,;; and
128Xe,, have N=N_+N,=2+4=6 bosons and are tak-
en to have the same basis states in the model, even
though in one case both protons and neutrons are holes,
while in the other the protons are particles and the
neutrons holes. Nevertheless, despite this simpli-
fication, the key ingredient remains, namely, the explicit
incorporation in the formalism of the finite number of
valence nucleons available. This feature leads to many of
the characteristic differences between the predictions of
the IBA and earlier phenomenological models of collec-
tive nuclear structure, and also lends the former a micro-
scopic aspect, in that a substantial part of the predicted
structural changes across a major shell arise automatical-
ly from the changes in boson number.

Together, the s(/ =0) and d(]/=2) bosons of the
IBA-1 have six components (substates) and therefore
define a six-dimensional space. As will be discussed in
detail later, this leads to a description in terms of the uni-
tary group in six dimensions, U(6). As a consequence,
many of the characteristic properties of the IBA can be
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derived by group-theoretical methods and expressed
analytically. When we consider the different reductions
of U(6), three dynamical symmetries emerge (Arima and
Iachello, 1976, 1978a, 1978b, 1979), known as U(5),
SU(3), and O(6), which are related to the geometrical idea
of the spherical vibrator (Scharff-Goldhaber and
Weneser, 1955), deformed rotor (Bohr and Mottelson,
1953), and asymmetric (y-soft) deformed rotor (Wilets
and Jean, 1956), respectively.

The existence and role of symmetries in the IBA
framework represents its most unique and characteristic
feature. Their description is simple and analytic, they
have clear geometrical relationships and physical inter-
pretations, and—a highly important practical point—
their predictions depend on an absolute minimum of pa-
rameters. Indeed, many, such as E2 branching ratios,
are parameter free. Moreover, even though most nuclei
of course do not exhibit one or another of the IBA sym-
metries and hence require a numerical diagonalization of
the IBA Hamiltonian for their description, an under-
standing of the symmetry properties of the IBA greatly
simplifies that numerical treatment as well as the inter-
pretation of the resulting wave functions, energy levels,
and transition rates.

In addition, because of its symmetry structure, the
IBA is a particularly apt vehicle for treating transitional
regions, since such calculations can often be carried out
in terms of a single free parameter that specifies the rela-
tive structural evolution along the transition path be-
tween pairs of symmetries. In this sense, the model pro-
vides an alternative to the situation that existed previous-
ly, in which a number of geometrical models, each ap-
plicable to a different structure, would be applied accord-
ing to the empirically observed characteristics. It is
worth emphasizing at this point, incidentally, that many
references throughout the text to ‘“‘geometric” models
generally refer to the simplest ‘“harmonic” versions origi-
nally introduced and most easily employed. It is not the
place here to discuss the extensive subsequent evolution
of these models, but the interested reader will find some
apt comments in Lipas (1986b).

In these introductory comments, it should be noted
that a model proposed by Janssen, Jolos, and Donau
(1974), although starting from a quasiparticle framework
with no fixed boson number, produces results equivalent
to the IBA-1. In practice, the specific formalism of the
IBA, with s and d bosons, generally renders it more easily
usable. Although this review will therefore concentrate
on the structure, properties, and tests of the IBA model
and its offshoots, its equivalence to the quadrupole pho-
non approach of Janssen, Jolos, and Donau (1974), which
has been emphasized by Paar (1979), should not be for-
gotten.

Although the IBA is primarily a model for low-lying
collective excitations, recent extensions of the model
have begun to extend these boundaries considerably.
Perhaps the most natural of these extensions of the IBA-
1 is the model known as the IBA-2 (Arima et al., 1977;
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Otsuka et al., 1978), in which the proton and neutron de-
grees of freedom are specified separately and the Hamil-
tonian includes proton-boson-neutron-boson interac-
tions. This development is a major one, not only because
of the possibility of improved calculations, but also be-
cause it reveals still further systematics and new collec-
tive excitation modes and, most importantly, because it
allows the link to the underlying shell model to be pur-
sued. The IBA was originally formulated for even-even
nuclei. Its extensions to odd-even nuclei (Iachello and
Scholten, 1979) and recently to odd-odd spectra as well
(Van Isacker et al., 1985) are also major extensions of
the original model.

It is important at the outset to emphasize clearly the
purpose and nature of this review. The aim is to address
the structure and physical content of the model, its sim-
plicity and geometrical understanding, and to offer prac-
tical guidance in its use. A special effort will be made to

remove some of the mystery from the model, especially in -

its reliance on abstract group theory. While the detailed
use of group-theoretical techniques requires a specialized
expertise, an understanding of the basic concepts and of
the way they work can be rather simply conveyed.

This review will be limited to the IBA-1. Unfortunate-
ly, this forces us to ignore many exciting developments in
the IBA-2 in recent years. The IBA-2 was for a long
time viewed mostly as a much more complicated, but
sometimes necessary, approach to detailed calculations
necessitated by the obvious empirical dependence of cer-
tain properties (e.g., quadrupole moments, M1 transi-
tions) on proton-neutron degrees of freedom. It was also
essential in relating the IBA to its microscopic founda-
tions. However, in recent years the discovery of sym-
metries in the IBA-2, of collective M 1 modes, of the cen-
tral importance of F spin, and of the use of the IBA-2 to
extract information analytically on effective charges and
on effective substructure in the valence space have fos-
tered an emerging appreciation of its independent impor-
tance. For the most part, these developments will be
bypassed in the present article. The reader is referred to
reviews by Barrett (1984), Dieperink (1984), Dieperink
and Wenes (1985), and Lipas (1986a). The application of
the IBA to odd-mass nuclei, in which an odd nucleon is
coupled to an IBA-1 description of the even-even core in
the so-called interacting boson-fermion approximation
(IBFA), will also not be covered. This is a burgeoning
field that can support a dedicated review.

As far as the experimental situation is concerned, only
illustrative examples will be used to highlight specific
ideas. This review is therefore in no sense intended to be
an exhaustive and complete survey of the IBA literature.
Partly because the IBA has now become a standard mod-
el for comparison with experimental data, that literature
is already far too extensive to even attempt such a task.
Moreover, there already exist many reviews that cover at
least part of the overall territory. The interested reader
is referred, for example, to Iachello (1979, 1981a, 1983b),
Scholten (1979b), Arima and Iachello (1981), Casten and
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Warner (1983), Lipas (1984), Elliott (1985), Feng (1986),
and Iachello and Arima (1987).

The emphasis here will be on the nuclear structure
content of the model and on what the model has in turn
disclosed as to the empirical structure of medium and
heavy nuclei. Of course, the shortcomings of the model
will be highlighted as appropriate, as well as extensions
of the model designed to overcome these. The review
will be divided into five sections. After this Introduction,
Sec. II will give an outline of the model and its symmetry
structure and characteristic predictions, along with a dis-
cussion of, and practical guidance in, its use for the vast
majority of nuclei that are not close to one of the limiting
symmetries. It will include discussions of the geometrical
relationships of the model and of the intrinsic state for
the IBA. Section IIT will discuss the applications of the
model to empirical data. Section IV will discuss a num-
ber of important extensions of the IBA-1, and Sec. V will
contain some brief concluding remarks. There will be
only passing comments on the relationship of the IBA to
its microscopic foundations in the shell model, since this
is the subject of a recent review by lachello and Talmi
(1987).

Il. STRUCTURE OF THE MODEL

A. Hamiltonian

The interacting boson model in its simplest form, as
originally proposed (Arima and Iachello, 1975, 1976), de-
scribes a system of s(/ =0) and d(/ =2) bosons which
may interact with one another via one- or two-body in-
teractions. The neglect of higher-order terms does not
represent any fundamental constraint, and indeed has
been relaxed in some later applications of the model (see
Sec. IV), but rather stems from the desire to keep the
complexity of the overall Hamiltonian at a manageable
level. The additional, and perhaps unique, constraint ap-
plied in this model is to conserve the total number of bo-
sons in the system at a value given by one-half the num-
ber of valence nucleons. This restriction originates from
the assumption that the s- and d-boson degrees of free-
dom can be related directly to L =0 and 2 excitations of
pairs of fermions in a spherical shell-model basis. The
counting of bosons must then be done with respect to the
nearest closed shell in the neutron (or proton) space, so
that the bosons are counted as particles if the neutron (or
proton) number is before midshell, and as holes other-
wise.

A first impression might be that, given the well-known
particle-hole symmetry of most shell-model problems, it
should be possible to count a particular type of boson
from either shell and obtain identical results. However,
the underlying reason for counting always to the nearest
closed shell can be easily understood by the following
simple example. Consider a shell that consists only of a

=17 orbit. The maximum number of particles in the
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shell is eight, and midshell corresponds to four valence
particles or two bosons. Assume now that there are six
nucleons in the shell. If this system is treated as three
particle bosons instead of one hole boson, then there will
be basis states consisting of three d bosons which, in the
fermionic space, would correspond to states with seniori-
ty 6. The Pauli principle, however, mandates that the
maximum seniority in a j =1 shell be 4. The rule of
counting from the nearest closed shell therefore stems
directly from the Pauli principle and hence from the as-
sumed fermionic origins of the boson degrees of freedom.
Given the above simple definitions of the number and
type of bosons and of the limits on the complexity of the
possible interactions between them, it is a relatively
straightforward matter to construct the basis, Hamiltoni-
an, and operators that appear in the IBA-1 description.
Any complete basis may be used, and, indeed, in oc-
casional applications, basis states constructed in terms of
the SU(3) or O(6) symmetry wave functions are useful.
However, for most applications, and for the greatest ease
in understanding the structure of the model and gaining
insight into its predictions, it is most convenient to utilize
the U(5) basis. Here the basis states can be simply
specified by the number of s and d bosons and two addi-
tional quantum numbers which describe the manner in
which the d bosons couple to give the final total angular
momentum. They can therefore be written as

| NngunsL) or sometimes as | NngngnyL) , (2.1

where N is the total number of bosons, n; is the number
of d bosons, v is the d-boson seniority and hence the
number of d bosons not paired to angular momentum
zero, and n, represents the number of d-boson triplets
coupled to zero angular momentum. Rigorously, v and
n, cannot be simultaneous eigenvalues, but this is a tech-
nical point of small practical importance which we ig-
nore here. In the second form ng; is the number of d-
boson zero-coupled pairs and hence is identical to
(N —v). L is the total angular momentum quantum
number. The possible values of these quantum numbers
are easily deduced. First of all, N must equal n,; +n,, so
that n; can take values ranging from O to N with
n,=N —n, in each case. Clearly, depending on the num-
ber of d bosons paired to zero angular momentum, v will
take the values ngz,n;—2,...,1, or O (equivalently,
ng=0, 1, ...), while n, can take values 0, 1, ..., [r,/3]
where the brackets indicate the largest integer <n,/3.
The first few basis states available for n, values from O to
3 are illustrated in Fig. 1, where it is immediately obvious
that they correspond to the states of the simple harmonic
oscillator. However, a fundamental difference from this
geometric analog, where the phonons are generally un-
derstood as quasiparticle excitations, is the IBA-1 con-
straint on the total number of bosons, which results in a
limitation on the total number of basis states available
and, of course, on the maximum angular momentum that
can be constructed (L, =2N). This distinction results

Rev. Mod. Phys., Vol. 60, No. 2, April 1988

306> 304> <303> 102> <010>

(006) (004) (003) (102) (010)
> 204> 202> 000>

(004) (002) (100)

<102> vn,L

(002) <_.._A__2.

<000> (")
° 5001 BASIS STATES

N4

FIG. 1. Quantum numbers for the basis states of the IBA. The
numbers above and below the lines give two alternate but
equivalent sets of labels.

in many significant differences between the IBA and
geometrical models, as will be discussed below.

The Hamiltonian, which connects the basis states, is
written in the language of second quantization and, as
such, can only involve combinations of the operators
s,s,d,d?. The specific combinations that appear are
defined by the restriction limiting the complexity to a
maximum of two-body interactions and by the need to
conserve the total number of bosons. The former con-
straint implies that terms containing, for example, diat
or s's" are allowed, while combinations such as d Tatat
are not. The latter demands that every creation operator
be accompanied by an annihilation operator and vice ver-
sa. These rules result in the following form for the most
general IBA-1 Hamiltonian (Arima and lachello, 1976):

H=¢s's+edtd+1 3 cpdfah.da) v

L=0,2,4
U2 12,5 Yo .22
+‘/ﬁ[(dd) ds+H.c. ]+ 2\/3(‘1 s“+H.c.)
22 gtetgs 4 20t
+‘/§ds ds+2ss , (2.2)

where the coefficient in front of each term has been
chosen according to the definitions of Arima and Iachello
(1978a). The operator d is defined by d,,=(—1)"d _,,,
so that it maintains the character of a spherical tensor
operator of rank two. It is apparent that the full Hamil-
tonian of Eq. (2.2) involves two single-boson energies and
seven boson-boson interaction strengths. The notation
used follows that of Lipas (1984), in which tensor prod-
ucts, which involve angular momentum coupling, are
denoted in the form (d'd")L) and scalar products as
d'-d" with the further abbreviation that df-d'=d™.
Terms that contribute only to the binding energy in Eq.
(2.2) can be removed when considering the excitation en-
ergy spectrum of a given nucleus by making use of the
constraint on the total boson number, i.e.,

N=n,+ny, n,=s's, ny=d'-d, (2.3)

so that the Hamiltonian is reduced to its most useful six-
parameter form,
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H=¢'y, _}_%ECII‘(deT)(L).(dd )L
L
v
+T/j:0[(d*d*)‘2’-ds+ﬂ.c.]

Yo 12,2
+ Ve (d"™s*+H.c.) . (2.4)

The primed parameters appearing in Eq. (2.4) are linear
combinations of those in Eq. (2.2), and the detailed rela-
tionship between the two sets is given by Lipas (1984).
For symbols such as n,, which can denote either opera-
tors or their eigenvalues, the operator form is dis-
tinguished by a circumflex (e.g., fi;).

Clearly it is possible to combine the terms in Eq. (2.4)
in different ways and, in particular, to produce operators
in the Hamiltonian that have a more intuitive interpreta-
tion. In particular, a multipole form for the Hamiltonian
has been very commonly used, since it better displays the
symmetry structure of the IBA-1. However, even when
using that form, it often aids a physical understanding of
the operation of the different terms to cast them in the
direct second-quantized form of Eq. (2.4). Moreover, Eq.
(2.4) is important because it is used in the computer pro-
gram PHINT (Scholten, 1979a) to construct the final ma-
trix for diagonalization.

As just alluded to, however, the most commonly used
form of the IBA Hamiltonian, and the one in which it is
easiest to understand the role of each term in determin-
ing the final structure of the nucleus under consideration,
is the so-called multipole expansion. In this parametriza-
tion the various boson-boson interactions are grouped so

that the Hamiltonian takes the form (Scholten, Iachello, -

and Arima, 1978)
H=¢"A;+ayP'P+a,L?+a;0*+a, T2 +a, T2, (2.5)

where
P=4d?*—s?),
T,=d'd)", 1=0,1,2,3,4,
Q=<de+s'fJ)—l/57—(dTa‘)‘2>
:(de+sT¢7)—§T2 ,

Ad:‘/gTo > E:‘/_laTl .

In this form there appear terms that have, at least
superficially, a more physical connotation, specifically an
angular momentum operator, a quadrupole operator, oc-
tupole and hexadecapole terms, as well as the so-called
pairing operator P. Note, however, that these are opera-
tors acting on boson states, not in the fermion space. It
is in this form, therefore, that we shall usually consider
the application of the IBA-1 Hamiltonian to the set of
basis states described earlier. We note that the definition
of Q above uses a specific [SU(3)] choice of numerical
coefficients. A more general form will be given below.
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At this point it is unfortunately necessary to digress for
a moment on the issue of notation. There have been in-
numerable notations and definitions of the parameters
used in the IBA Hamiltonian, even if one considers only
the multipole form. For example, €”, a,, and a, are
often denoted &, k"', and —«’, while a, is most commonly
replaced by —« but also by —2« and QQ. Indeed, in this
work, £’ will be written as ¢ for simplicity. Since our pri-
mary motive is to convey a sense of the physics of the
model we have, albeit reluctantly, occasionally glossed
over this issue. In many cases, we have converted pub-
lished parameter values or scales on figures to the con-
sistent conventions adopted here. However, in a few ap-
plications discussed, the parameters involved will be
defined only to within a multiplicative factor. It should
be clear from the context and notation when this occurs.
The reader who needs detailed information in these
specific cases should consult the original literature.
Where the parameter values make a difference of physical
importance to the argument, however, they will be
specified. For convenient reference, we list, in Table I,
other notations frequently found for the parameters of
Eq. (2.5).

In order to understand the role played by each of the
operators in Eq. (2.5) in determining the structure of the
final wave functions in a given problem, it is worthwhile
to consider first the application of each term separately
to the U(5) basis states of Fig. 1. The term in €'’ simply
generates a diagonal contribution for each basis state
proportional to the number of d bosons contained within
it; hence it is equivalent to assigning an energy to the d
boson and contributes a total energy to H given by &
times the expectation value of the number of d bosons,
(n,). The resultant energy spectrum is thus that of a
quadrupole harmonic oscillator with phonon energy £ in

.which all the levels in a particular phonon multiplet are

degenerate. This degeneracy can be lifted, without mix-

TABLE I. Relations between some IBA parameters.

Parameters PHINT? Equivalent parameters sometimes
of Eq. (2.5) parameters used in the literature®

g’ EPS €

ao 2 PAIR 2"

a; 1 ELL —K'

a, 1 QQ —2k

as 5 OCT

a, 5 HEX

“Here PHINT refers to the program as written by O. Scholten
and described in Scholten (1979a).

®For this column, the equivalences apply only to the PHINT pa-
rameters. In the past, in some cases, different forms of the
operators were implicit in the Hamiltonians quoted. For exam-
ple, the term in the Hamiltonian —2xQ? has sometimes been
written as —«xQ?. In general, differences of a factor of 2 or in
sign also appear in the literature.
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ing the basis states of the model, by introducing any of
the L 2, T3, or T3 terms in the Hamiltonian, since inspec-
tion of Eq. (2.5) indicates that these terms cannot change
the total d-boson number. Each simply provides a
specific diagonal contribution. For example, the L 2 term
is proportional to the square of the total angular momen-
tum of the system and hence yields a contribution pro-
portional to L (L +1).

. The only terms that change the number of d bosons,
and therefore mix the basis states, are the pairing and
quadrupole operators of Eq. (2.5). Therefore one or both
of these must be used in order to induce a change in
structure, for example, a transition from a spherical vi-
brational structure towards some type of deformed char-
acter, be it O(6), SU(3), or an intermediate case. It is
therefore important to examine the specific role of these
two terms in more detail. The pairing term, when ex-
panded, clearly gives rise to contributions of the forms

dT2s2
and

d2d? Any;=0,

s2d2 Ang=+2,

stsz, An,;=0,
where the effect of each term on the d-boson number n,
is explicitly indicated. Thus PTP ecither is diagonal or
changes n, by 2 units. Moreover, given the appearance
of only scalar products in P and PT, the Any==2 part is
equivalent to changing the number of d-boson pairs cou-
pled to angular momentum zero n g by £1. The quadru-
pole operator, on the other hand, contains tensor prod-

ucts and pieces which change n,; by one and by zero, so
that Q2 has elements with

d™s? and 5723 2,
(dT"l")(Z),de and (dT(’i)(Z)_ST(’Z , Andzil ,
dTS‘STg and (dTa')(Z),(dTa‘)Q) ,

Any==+2,

And:() N

and will therefore mix all basis states. Thus a Hamiltoni-
an with PTP and no Q? terms produces wave functions
containing specific mixtures of those basis states differing
only by A(ny,ng)=(2,1) or (=2, —1), whereas one with
a Q7 term yields much more complex states containing
amplitudes for all basis states. As will be seen, however,
though each of these operators acting alone leads to com-
plex mixtures of U(5) basis states, each also produces
wave functions with definite, and simple, symmetry prop-
erties. That simplicity is, in effect, only apparent upon
transformation to a different intrinsic system (different
basis set), although its effects appear clearly in predic-
tions of energy levels, transition rates, and so on.

This type of simple understanding of the characteris-
tics of each of the operators in the general IBA-1 Hamil-
tonian, in terms of the way in which they connect the
basis states of the model, provides an immediate insight

Rev. Mod. Phys., Vol. 60, No. 2, April 1988

into the structure induced by any combination of them in
a particular calculation and into the structure of the
different symmetry limits that emerge from a group-
theoretical treatment of the Hamiltonian. Since these
limiting symmetries provide benchmarks in defining the
different structures obtainable within the general frame-
work of the IBA, further discussion of the role of the
various terms in the Hamiltonian will be left to a later
section, after the algebraic method has been introduced.
Prior to that, however, it is useful to consider the form of
the operators that enter into the IBA-1 formalism in the
description of various other observables.

B. Transition operators

The construction of operators for the various nuclear
structure observables of interest is again straightforward,
given the fact that they must be built from the basis ele-
ments s, sT, d, or d'. In the vast majority of applications
to date, only the lowest-order contributions to these
operators have been included. Thus the electromagnetic
transition operators can be written down by inspection as

T(E0)=aﬁs+£—§ﬁd , 2.6)

T(M1)=g,L , 2.7
T(E2)=ey[(s'd+dTs)+x(dTd)P]=ez0 . (2.8

The EO operator can be rewritten as
T(EO)=a(N— )+ Betiy=aN+Lony . 9)
d ‘/5 d ‘/g d
The first term in T (EOQ) vanishes, since N is conserved
and therefore cannot induce transitions between the or-
thogonal basis states. Hence EO transitions are simply
proportional to the matrix elements of the d-boson num-
ber operator and thus rather directly sample the wave-
function structure. In contrast, the M1 operator is pro-
portional to the total angular momentum and therefore
gives rise to no transitions. To investigate M 1 transitions
in the IBA-1 framework, it has therefore been necessary
to introduce second-order terms (Arima and Iachello,
1978a; Warner, 1981; Wood and Morrison, 1985). In this
case, one has

T(M1)=(gg+ AN)L 4+ Ba,L +C(QL)V

(2.10)

where Q now has the more general form of Eq. (2.8).

Finally, the E2 operator, which is identical in form to
the Q operator in the Hamiltonian, consists of one piece
that changes n; by unity and another that leaves n; un-
changed, the ratio of the two terms being given by the
parameter X.

Turning now to other properties, the operator for the
mean-square radius is, of course, closely related to that
for the EO transitions and is given by

r2=(r?) +any+bN , @.11)
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FIG. 2. Schematic representation of the role of the two-particle
transfer-operators above and below midshell.

where the first term represents the mean-square radius of
the closed-shell core.

It is also possible in principle to treat two-nucleon
transfer amplitudes within the framework of the IBA-1
model. For L =0 transfer, the operator is obviously ei-
ther s or er, i.e.,

T+=oz+sT , T"=a_s . (2.12)

Thus the transfer of two identical nucleons in a relative
angular momentum zero state is regarded as the creation
or destruction of an s boson. Of course, since such reac-
tions change specifically the proton or neutron boson
number, they cannot be explicitly realized within the
IBA-1 formalism. A consideration of the problem within
the framework of the neutron-proton versjon of the IBA,
however, leads (Arima and Iachello, 1977) to the follow-
ing forms for the two expressions:

N 172 ﬁ +1 172
T =a.s'|Q N ——Ln L , (2.13)
P A N+1
ﬁ 1/2 ﬁ +1 1/2
T-=a_|Q —N ——Ln L s,  (2.14)
’ R N+1

where p=m or v. Here (), is the pair degeneracy in the
appropriate major shell (e.g., for neutrons in the
N =82-126 shell, 2=22). It is important to note that
the role of the two-particle transfer operator changes at
midshell when the bosons change from particles to holes.
This situation is illustrated schematically in Fig. 2. Thus
below midshell T increases 4 by 2 units and describes,
for example, a (¢,p) reaction, whereas above midshell 7+
, by increasing n, and therefore N by 2 units, decreases 4
by 2 units and describes a (p, ) reaction.

C. Algebraic treatment of the IBA-1 Hamiltonian

The previous sections showed how the IBA approach
can be viewed as the application of a rather simple Ham-
iltonian, constructed by the application of a few, well-
defined rules, to a set of basis states that correspond
closely to those of a quadrupole harmonic oscillator.

Rev. Mod. Phys., Vol. 60, No. 2, April 1988

However, the unique characteristics of the IBA, and its
historical motivation, are founded in the principles of
group theory. A full treatise on the relevant algebraic
techniques is beyond both the scope of the present article
and the competence of its authors. Nevertheless, a cer-
tain familiarity with the basic principles, terminology,
and methods of group theory applied in the IBA formal-
ism is necessary to understand its origins and philosophy,
as well as to simplify the use of the general Hamiltonian.
Unfortunately for many nonspecialists, this is a topic that
abounds in specialized terminology and obscure lemmas
and theorems, without recourse to which many results
are difficult to obtain and more so to visualize. As will
become evident, the approach offered below has been li-
berally purloined from the excellent review article by Li-
pas (1984) on the IBA-1 formalism, but is aimed at an
even more elementary level. It attempts to make clear
the basic concepts and terminology by working out, step
by step, examples of some of the key ideas. We hope that
those not very familiar with group theory may benefit
from the approach in this section.

The five magnetic substates of the d boson and the sin-
gle s state can be regarded as forming a six-dimensional
vector space. Then, just as in the analogous case of angu-
lar momentum, where the components Jx,Jy,Jz generate
rotations or transformations of the angular momentum

" vector and form the group O(3), bilinear combinations of

the operators s, st d, d define basic “rotations” of the
corresponding six- d1mens1ona1 state vectors in the s-d
space and form the group U(6).

The essential group-theoretical apparatus is founded
on the properties of commutation of various pairs of
operators. The first step in working out a group struc-
ture is to look for combinations of the basic operators
that close on commutation, that is, for which the com-
mutator of any pair is equal to a linear combination of
the members of the set (including the trivial result
[4,B]=0). Complete sets of these operator combina-
tions are called the generators of the group.

For O(3) the generators are J,, J,, and J, or, alterna-
tively, the more convenient set J . ,J, where J. =J,+iJ,.
The commutation relations for these latter are well
known and are given by

[J,,J_1=2J,

and [JZ,Ji]ZZtJi (ﬁzl) >

showing that, indeed, they close on commutation.

For the case of the U(6) group, there are 36 possible bi-
linear operator combinations that satisfy the requirement
of boson number conservation,

sTs,sTEi'#,dLs,(dTJ)ﬁ) ,

1=0,1,2,3,4, (2.15)

u=+4,+3,... =3,—4, |u|<l.
This set closes on commutation and thus comprises the
generators. This can be made plau51ble by calculating, as

an example, the commutator [d s,8 s] In order to do
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this, we must state the basic rules for the eigenvalues of
operators in the second-quantization formalism. In
terms of a general creation (destruction) operator bT(b)
operating on a state with n, bosons, we have

b|ny)=v"n,|n,—1) (2.16)

and
b | ny)=V'n,+1|n,+1),

from which it follows also that b'b |n,)=#, |n,)
=Ny | ny )

Thus, for the example of the operators of Eq. (2.15)
just cited, we have
td's,ss1| nyn,)

=(d"ssTs —sTsd's) | nyn, )

(2.17)

=dsn; | ngn, ) —a,d's | nyn,)

or, since the eigenvalues of 7, namely n,, are factorable,
=(n,—a,)d"s | nyn,)
=(n,—A NV ng+1V'ng | ng+1,n,—1)
=[n,—(n,— IV ng+1v'n, | ny+1,n,—1)

=V ng+1V'ng | ng+1,n,—1)=d's | ny,n,)
or

[d's,sTs]=ds . (2.18)
The other commutators can be similarly evaluated and
indeed close on commutation. This set of 36 generators
of the group of transformations of U(6) is said to form
the Lie algebra U(6).

As will become evident, an important concept is that
of a Casimir operator of a group. This is an operator
that commutes with all of the generators of the group.
Such operators can be composed of linear or higher-order
combinations of the generators and are appropriately
called linear, quadratic, . . ., Casimir operators.

For example, in the case of O(3), the operator
JP=J2+J}+J}=J  J_ +J? commutes with J,, J  , and
J_ and is therefore the (quadratic) Casimir operator of
o).

The linear Casimir operator of U(6), which commutes
with all 36 generators, is the total boson number operator
C1U6=NEdT'a+STS. This result stems trivially from
the fact that all bilinear combinations of the s and d
operators must conserve the total boson number. Hence,
for an arbitrary bilinear combination of the generators of
U, xy,

[N,x Ty W=N(xTp)w—(xTpF)w
=N w-NG&Ty)w=0. (2.19)

The quadratic Casimir operator of U(6) is

=N(N+5).

C2U6
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It is now possible to search for smaller sets of genera-
tors, contained within the original 36, which themselves
close on commutation. These define subalgebras or sub-
groups of U(6). Each will have linear and/or quadratic
Casimir operators associated with it which commute
with all the generators of the subgroup [and hence also
with the Casimirs of U(6)]. In the analogous O(3) case,
the only subalgebra is generated by J,: the associated
group is O(2), and J, is also the Casimir operator of O(2).
For U(6), there are several subgroups, so the reduction
process continues until the subgroup O(3) is reached.
This latter requirement is a physical one, since the nu-
clear wave functions must be rotationally invariant. One
example (of many) of a subgroup of U(6) is U(5). It has
the 25 generators

d'a),

which form a subset of the 36 given in Eq. (2.15) and
which also close on commutation, as can be shown by
direct calculation in the same manner as illustrated in
Eq. (2.18). The linear Casimir operator of U(5) is A,.
This can be seen trivially, since the generators of U(5)
conserve the number of d bosons and therefore must
commute with 72;. Note, however, that A, cannot be a
Casimir of the larger group U(6) because it does not com-
mute, for example, with s'd, which does not conserve ny.
The quadratic Casimir of U(5) is Cyys =,(A,; +4).

It is now necessary to find the quantum numbers that
label the basis states. In general, as seen in the examples
above, the generators of a group may change some quan-
tum numbers (e.g., ng), but there will be one (or more)
that are not changed by any of the generators. For the
angular momentum case, for example, the generators
J,,J . always conserve the total J. For the U(6) group,
the 36 generators always conserve N. The set of basis
states that transform into each other under the action of
any of the generators and that therefore have a particular
fixed value of an unchanged quantum number (or num-
bers) is called an irreducible representation of the group.
For O(3) the set of states

|j7m:j>> |j7m:j—1)"'-v |]m:_]>

forms an irreducible representation or basis of O(3). This
irreducible representation is notationally labeled by j,
which is then a characteristic quantum number for the
representation. The basis states are distinguished by m,
which itself labels the irreducible representations of the
subgroup O(2). For U(6), the representation label is
specified by N (or commonly, for reasons relating to the
proton-neutron symmetry of the wave functions, by the
notation [N]).

Since the generators of a given group do not connect
different irreducible representations, the Casimir
operator(s) of a group, which, by definition, commute
with all the generators, must be diagonal and therefore
must conserve all quantum numbers, including those of
the subgroups (such as m in the angular momentum
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case). Then it follows that a Hamiltonian consisting only
of Casimir operators of a chain of a group and subgroups
cannot mix different representations of any of the groups
involved, and its eigenvalues are just linear combinations
of those of its component Casimir operators. Moreover,
at any stage in a group chain decomposition, all states
with the same representation labels are degenerate. In
addition, a transition operator consisting of generators of
a given group or subgroup cannot connect states in
different representations of that group. This trivially
leads to many essential selection rules.

As is evident from the above discussion, for any group
chain reduction, the basis states for which the Hamiltoni-
an is diagonal will be defined by the representation labels
of the various groups and subgroups appearing in the
group chain reduction.

As an example of these concepts, the angular momen-
tum problem can be summarized as follows:

groups: 03 D 0(),

generators: J.,J, J,,

Casimirs:  J? J,, (2.20)
labels: J m,

where the representation labels define the basis | jm ). A
Hamiltonian for the system can be written as a sum of
the Casimir operators involved,

H=aJ*+bJ, , (2.21)

and the corresponding eigenvalue expression is, of
course,

E=aj(j+1)+bm . (2.22)
If one considers only the group O(3), i.e., b =0, then all
the states of a representation of O(3) specified by j are de-
generate. The degeneracy is broken by going to the sub-
group, in which case the energies depend on the value of
m.

A central task in developing any group chain or group
reduction scheme is thus to identify the quantum num-
bers that label the irreducible representations of each
subgroup, and this is the basic procedure followed in the
algebraic treatment of the IBA. Group chains are con-
structed starting from U(6), where all the states are de-
generate for a given value of N, and ending with O(3). A
Hamiltonian for any such chain is written as a sum over
the Casimir operators of the subgroups of the specific
chain, and therefore will be diagonal in a basis defined by
the corresponding representation labels. Each step in the
chain reduction thus introduces one or more free param-
eters (coefficients of terms in H) into the eigenvalue ex-
pression and requires one or more quantum numbers to
distinguish the representations of the particular sub-
group; it also breaks a previous degeneracy. Thus the
solution of the eigenvalue problem for such a chain
reduces to that of the (known) eigenvalues of each of the
Casimir operators.
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The structure defined by such a Hamiltonian is re-
ferred to as a dynamical symmetry. One of the elegant
aspects of these symmetries is that, although they may
correspond to a complex physical situation and, in terms
of Eq. (2.5), to a complex Hamiltonian, the excitation en-
ergy spectrum can be immediately written down and
each state can be labeled by appropriate quantum num-
bers. As noted, since transition operators can also often
be written in terms of the group generators, transition
selection rules also appear naturally, and the rates for al-
lowed transitions can be written analytically. Moreover,
many ratios of transition rates depend only on general
characteristics of the symmetry (group chain) and are pa-
rameter free. [This is not surprising: the Alaga rules
(Alaga et al., 1955) for E2 branching ratios in deformed
nuclei are a familiar geometrical analog.]

Returning now to the basic problem in the IBA-1,
there are three, and only three, group chains of U(6) that
end in O(3). They can be written

(I U(6)DU(5)D0(5)D0(3),
(II) U(6)DSU(3)D0(3),
(III) U(6)D0(6)D0(5)D0(3) .

(2.23)

Having summarized the basic group-theory approach
and illustrated it with the angular momentum case, we
should find the procedure here (if not the details of how
they are carried out) clear. In the following we shall sim-
ply cite the principal results.

The linear and quadratic Casimir operators of U(6) and
its various subgroups can be written in terms of the
operators of Eq. (2.5) as

Cus=N, Cue=N{N+5),
Cius=Hg , Cus=hg(fiy+4),
Cosuz=4Q*+1L 7,
Cro6=2N(N+4)—8P'P ,

(2.24)

Cros=2L24+4T%, C,o3=2L7.
20 5 203

It should be commented that since these Casimir opera-
tors are defined by a set of vanishing commutators, any
multiplicative form is also a generator. The definitions
above are conventional and convenient ones. It now
remains to identify the representation labels for each
chain, and hence the quantum numbers of the basis
states, as well as the physical structure for each limiting
symmetry. In doing so, we shall from time to time make
correspondences with various geometrical models.

1. Chain I: The U(5) limit

The representation labels for the U(5) limit (Arima and
Iachello, 1976) have already been introduced in the previ-
ous section, in terms of the basis states used in the treat-
ment of the general IBA-1 Hamiltonian. The correspon-
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dence with the group decomposition of Eq. (2.23) is as
follows:

U(6)DU(5)D0(5)D0(3) .
[N] ny v npL

(2.25)

As can be seen, an additional quantum number n, has
been introduced to describe the reduction from O(5) to
O(3). This requirement indicates that within the basis
states | Nn v ) which describe the representations of O(5)
there can be more than one state with a particular value
of L.

As pointed out above, this chain was chosen to de-
scribe the basis of the general IBA-1 treatment, and the
meanings and possible values of the quantum numbers
have already been described. The Hamiltonian for chain
I can be written down by inspection of Egs. (2.24) and
(2.25):

Hy=0aCys+BC,ys+7Ca05+8Cr0;3 - (2.26)

Its eigenvalues are
E=any;+fPny(ny+4)+2yv(v+3)+28L(L+1),
(2.27)

where each term in Eq. (2.27) is the eigenvalue of the cor-
responding Casimir operator of Eq. (2.26). In terms of
the operators of the multipole expansion, the Hamiltoni-
an Hj reduces to

Hy=¢h,+a,L2+a, T2 +a,T} . (2.28)

The relationship between the different coefficients of Egs.
(2.26) and (2.28) is obtained by comparison of Egs. (2.5)
and (2.24) and is discussed in Lipas (1984).

A typical example of the energy spectrum in the har-
monic U(5) limit where H;=g¢#, is shown in Fig. 3 and

corresponds, except for high-spin cutoffs, to that of a.

harmonic vibrator in a geometrical framework. The
characteristic features of the corresponding wave func-
tions can be deduced from the terms appearing in Hy, all
of which are diagonal with respect to the n; quantum

g+ (400) g+ (400) g+ (400) 4+_(400) 4+_(410) o+ (401 o+ (410) g+ _(420)

6+ (300) 4+ (300) 3+ (300) o+ (310) o+ (301)

4+_(200) 2+ (200) o+ (210)

2+_(100) u(s)
+_(000) (nd e nA)
(o) Ao/

FIG. 3. Low-lying levels of the U(5) symmetry of the IBA in
the harmonic limit.

number; thus, in U(5), there are no terms that mix states
of different d-boson numbers. Examples of the wave
functions are included in Table II, which gives the wave
functions for the lowest O states in all three dynamical
symmetries. The selection rules for the various elec-
tromagnetic and transfer operators are then easily de-
duced.

It is interesting to note the rich flexibility in the level-
energy spectrum provided by the eigenvalues expression
(2.27). The U(5) limit is in fact a very general anharmon-
ic vibrator, and levels with different L but the same n,
need not be degenerate. It is informative to pursue a lit-
tle further the relationship between U(5) and the
geometric anharmonic vibrator. Both spectra, of course,
display multiplets of levels (with degeneracies broken by
anharmonic effects) which have successively higher n,
values or phonon quantum numbers. [Frequently below,
for convenience, we shall use the phonon terminology in
reference to the U(5) multiplets because of the similarity
to the geometrical picture, just as in discussing SU(3) we
shall call certain excitations 8 and y vibrations.] The
close relation to a vibrational picture is also clear in the
nuclear potential corresponding to U(5), which is spheri-
cally symmetric with a minimum at deformation =0
(see Sec. IILE). (Note, incidentally, a point that will be
important later, that such a potential also has no struc-
ture in the y degree of freedom: it is completely y soft.)

TABLE II. Wave functions expressed in the U(5) basis for the first three O states in each limit of the

IBA.
Basis states (n ngn,)

State? Limit (000) (210) (301) (420) (511) (602) (630)

oF u(s) 1 0 0 0 0 0 0
0(6) —0.43 —0.75 0 —0.491 0 0 —0.095
SU(3) 0.134 0.463 —0.404 0.606 —0.422 —0.078 0:233

(V% u(s) 0 1 0 0 0 0 0
0(6) 0.685 0.079 0 —0.673 -0 0 —0.269
SU@3) 0.385 0.600 —0.204 —0.175 0.456 0.146 —0.437

05 u(s) 0 0 1 0 0 0 0
0(6) 0 0 —0.866 0 —0.463 0 0
SUQ3) —0.524 —0.181 —0.554 0.030 —0.114 —0.068 —0.606

®The states are ordered for pedagogical clarity and not necessarily in the order of increasing energy.
Indeed, the 7=3 0™ state in O(6) (here-labeled 07) is usually the 05 state.
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The similarity of the U(5) limit and the geometrical
anharmonic vibrator runs deeper than this, however.
Brink, de Toledo Piza, and Kerman (1965) have dis-
cussed a vibrator model with cubic and quartic anhar-
monicities in lowest-order perturbation theory. Since
their Hamiltonian has several free parameters that affect
the predicted degeneracy splitting, they adopted the ap-
proach of expressing the splittings of the three-phonon
quintuplet in terms of those of the two-phonon triplet.
Their results are given in Table III, in terms of €, €,, and
€4, which are the deviations of the two-phonon energies
from 2FE 24 As pointed out by Arima and Iachello (1976)

and shown more explicitly in a recent analysis of the U(5)
symmetry (Aprahamian et al., 1987), the energy levels of
U(5) have exactly the same intertrelationships as those
given in Table III for the geometric anharmonic vibrator
model. In both, there is an inherent connection between
the energy splittings in different multiplets. It is interest-
ing that some of the results in Table III can be trivially
derived. For example, the three-phonon 07 state can be
constructed only by coupling the one-phonon 2t state (d
boson) to the two-phonon 27 state. The three indistin-
guishable phonons thus coupled have three pairwise
anharmonic interactions, each of which is identical to
that in the two-phonon 2% state. Hence the anharmoni-
city is 3g,. Similarly, the 6% state is composed of a one-
phonon 2% state coupled to the two-phonon 47F level.
Again, there are three pairwise interactions identical to
that occurring in the 4T state, and the anharmonicity is
3g,. The other results can be easily derived using the
coefficients of fractional parentage tabulated by Bohr and
Mottelson (1975).

a. EO transitions

As noted earlier, since the EO operator is proportional
to Ay, (i T(EO)lj)ocndj(i | j)=0 if is~j, and there

can be no EO transitions in the U(5) limit.

TABLE III. Energies of the three-phonon quintuplet in terms
of the two-phonon anharmonicities (Brink, de Toledo Piza, and
Kerman, 1965).

N Energy® (relative units)

0

1

2+€0

2+,

2+E4

34 3¢,
3+4+7/5¢0+4/7¢,+36/35¢,
34+15/7¢,+6/7€,4
34+11/7¢,+10/7¢4

3+3E4

ph

o

W W W W WN NN -
AP LWNOANONO |

%0, €5, and g4 are defined as the deviations of the 0+, 2+, and 4+
level energies of the two-phonon triplet from 2E g+
1
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b. E2 transitions

The E2 operator of Eq. (2.8) has a term that changes
ny by =1 and a term with Any;=0. If the operator is
chosen to be a generator of the U(5) symmetry, then only
the latter term would be used. However, the predicted
E2 matrix elements would then be 0 between states
differing by 1 or more d bosons, while they would yield
nonzero diagonal contributions (quadrupole moments).
This situation is essentially the inverse of that expected
and observed for vibrational nuclei, and hence it has been
customary to use the first term of the E2 operator in the
U(5) limit, which produces results very similar to those of
the geometric vibrational picture.

For example, one obtains the general result

SB(E2:L,ng+1—L',ng)=ej(ng+1)N —ng) , (2.29)
<

where ey is a boson effective charge. The sum on the left
side of Eq. (2.29) accounts for the distribution of strength
from a given initial state if the angular momentum selec-
tion rules allow decay to more than one level of the next
lower multiplet. This sum contains more than one term
only for decay of n; > 3 states.

The expression analogous to Eq. (2.29) in the phonon
model is proportional to (n,,+1). The factor (N —ny)
in the IBA case arises from the finite boson number, and
its origin can easily be seen. For example, if we denote
the first few U(S) states only by |n,,n,) and use Egs.
(2.16) and (2.17), we have for the matrix element
(ng,n, |std | ng+1,n,—1):

(ng,n, |std |ng+1,n,—1)

=1V (ng+ UV n,{ng,n, | ng,n,)  (2.30)
=V'ng+1V'N —n, . (2.31)

Note that these results are intimately linked to the in-
clusion of finite N in the IBA. In terms of quadrupole ex-
citations only (i.e., d bosons or quadrupole phonons), the
U(5) limit and the geometrical vibrator are identical. The
2{ level has one such excitation, the levels of the
0*,2%,47" triplet have two, and so on. The difference is
that, in such excitations in the IBA, the restriction to a
finite fixed N imposes an additional constraint, which
gives rise to the second factor on the right in Eqgs. (2.29)
and (2.31).

Equation (2.29) gives, for the transitions between the
lowest levels,

B(E2:2} -0 )=eiN (2.32)

and

B(E2:2F —2{)=2e3(N —1) . (2.33)

The ratio of these two gives the useful result that
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B(E2:2f —27)
B(E2:2{ —0{) |us)
B(E2:25 —27)
B(E2:2{ —0f)

R =

N -1
N

(2.34)

ph
Since U(5) is usually relevant only near closed shells,
where N is rather small, differences from the geometric
model can thus be significant. For example, for N =5,
Eq. (2.34) gives R=1.6, compared to 2.0 for the
geometric picture. Finally, note that when the initial
state [with N =n,; + 1 d bosons; see Eq. (2.29)] is the fully
aligned I =2N excitation, the factor (N —n,) has re-
duced to unity. This is an example of the well-known
cutoff effects in B(E2) values involving high-spin states
that are another characteristic distinction of the IBA
from the geometric models.

As a final comment, it should be reemphasized that the
_choice of E2 operator used here, T(E2):a(sTc7+de ),
is not mandated by, nor is it in the spirit of, the U(5) sym-
metry itself. Under such circumstances [which are
unique to U(5)], it would appear most reasonable in prac-
tical calculations to treat B (E2) transitions in this limit
with the full operator, the ratio X of the two terms being
a free parameter.

c. Two-nucleon transfer

The ground states in U(5) consist solely of n, =N s bo-
sons. Thus the operator s or s' can connect the ground
states of adjacent even-even U(5) nuclei with N and N —1
or N +1, respectively, but cannot reach any excited 0"
states, since they all have n; >0. The transfer strength
between ground states is given by Eq. (2.13) as

Sg(N,—>N,+1)=a)(N,+1)(Q,—N,), p=mv.
(2.35)

2. Chain ll: The SU(3) limit
The representation labels of the chain II (Arima and

Iachello, 1978a) decomposition are

U(6)DSU(3)D0(3) .
[N (Apu) K L

(2.36)

The Hamiltonian is just a linear combination of the
Casimir operators of SU(3) and O(3) and can be written

Hy=a,L%+a,0%. (2.37)

Comparison with Eq. (2.24) shows that this form is
equivalent to

a; 3
Hy=3a,Chsy3 + 2 T 16?2 Cro3 -

The eigenvalue of the SU(3) Casimir operator as defined
in Eq. (2.24) is given by '
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Ec, () =3(A2+p? +Ap+30+3u) , (2.38)

and thus the resulting eigenvalue expression is

a
E=—2-2(k2+u2+ku+3k+3y)+(a1—3a2/8)L(L+1) .

(2.39)

Note that Q in Eq. (2.37) takes the specific form of Eq.
(2.5).

The step SU(3)DO0(3) in Eq. (2.36) requires an extra
quantum number and some explanation. Traditionally,
this label is chosen to be K’ corresponding to the Verga-

.dos basis (Vergados, 1968). It is important to note that

K' is not exactly identical to the familiar projection
quantum number K of Elliott (1958a, 1958b; Elliott and
Harvey, 1963). More specifically, the basis states of the
Vergados basis of Eq. (2.36), here labeled by K’, are, in
general, linear combinations of more than one Elliott
(geometric) K value, although for most N and L values
the amplitudes with Kpgpion7#K vergagos are very small
(Casten and Warner, 1983). Nevertheless, effects of their
presence show up in some characteristic predictions and
are evident empirically as well (see below). Unless the
distinction is important, however, we shall henceforth
generally use the symbol K for the SU(3) representation
label.

A full discussion of the group-theoretical details of this
symmetry, and of the ranges that the various quantum
numbers can take, is best found in the more expert arti-
cles on the subject by Elliott (1958a, 1958b) and Vergados
(1968) and, in the IBA context, by Arima and Iachello
(1978a) and Lipas (1984). Here, it will be sufficient to
outline a few of the rules for determining the labels and
content of the lower SU(3) representations.

The quantum numbers (A,u) are best described and de-
rived using the method of Young tableaux, which is illus-
trated in Fig. 4. The boson system is represented by a to-
tal of 2N boxes, arranged among three rows, and the
SU(3) quantum numbers A and u describe that arrange-
ment in the manner shown in the figure. Physically, the
rows can be thought of as representing the z, x, and y
directions for the oscillator quanta available to the sys-
tem, so that A is equivalent to n, —n,, and p to n, —n,.
The ground-state representation of a (prolate) nucleus is
then denoted by a single row of 2N boxes (all quanta in
the z direction) and hence has (A,u)=(2N,0). Since bo-
son degrees of freedom are being considered, the next
representation is formed by moving two boxes into the
second row, giving (A',u')=(2N —4,2). The next two
boxes can be placed in either the second or the third row,
yielding 2N —8,4) and (2N —6,0), respectively, and so
on. The K values within each representation are given by

s

K=min{A',p'},min{A,u'} —-2,...,0, (2.40)

which, for the lowest-lying representations (and large N),
yields
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FIG. 4. Examples of the determination of the (A,u) values of
the lowest SU(3) representations using the method of Young ta-
bleaux.

K=0 for u'=0,

K=0,2 foru'=2, (2.41)

K =0,2,4 for u'=4.

In general, K=0,2...,u’. The rule for assigning L
values to a given K is familiar from the Bohr-Mottelson
treatment of the analogous quantity.

The predicted energy spectrum is shown in Fig. 5 and,
not surprisingly, is analogous to that expected from an
axially deformed symmetric rotor. Above the ground-
state band, the next representation contains two bands
that recall the B(K =0) and y(K =2) excitations of the
rotor. Note, however, that SU(3) is a very specific kind
of deformed rotor in which these two bands are degen-
erate. Other differences from the geometrical model,
such as those associated with the adoption of the Verga-
dos scheme, arise because of the finite boson number im-
plicit in the IBA scheme and disappear as N — .
Several of their manifestations remain important for bo-
son numbers typical of deformed nuclei and will be dis-
cussed presently.

Since the SU(3) wave functions are complicated linear
combinations of U(5) basis states with many n, values, it
is not surprising, first, that {n, ), is larger than in ei-
ther U(5) or O(6), or second that it changes little from
state to state. Figure 6 illustrates this by showing the
values of (n,) for the yrast band calculated for all three
limits by diagonalizing the appropriate Hamiltonian. In
U(5), changes in the (single) n; value characterizing each
state are reflected directly in the state-dependent behav-
ior of various observables. In contrast, in SU(3), the
value of any matrix element normally results from subtle
coherent effects, as befits a collective deformed intrinsic
state.

Despite this complexity in the structure of SU(3)
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FIG. 5. Low-lying levels of the SU(3) symmetry of the IBA.
The intrinsic representations are labeled by the quantum num-

bers (A,u), while individual rotational bands are labeled by
their dominant K quantum number.

states, their physical character is clear when discussed in
the context of geometrical models. The two bands of the
(A—4,2) representation have dominant K values of 0 and
2 and, as noted above, are clearly analogous to the famil-
iar B and y bands. The next representation (A —8,4) has
three bands, with dominant K components K =0,2,4.
The K =4 excitation is easily interpreted as a double-y
vibration, and K =2 can only be formed at low energy as
a double vibration of By nature. The K =0 state is ambi-
guous, however, since it can be either S or yy: both are
expected at about the same energy. Since the next repre-
sentation, (A—6,0), also contains a K =0 excitation and
occurs only slightly higher, the two required K =0
modes are indeed both present. It has been shown
(Warner and Casten, 1982b), by inspecting the E2 matrix

T T T T T
6 N=6
yrast levels
5 -
4 su(3) .
<nd>
3+ -
o(e)
2 -
u(s)
|+ -
o 1 ] 1 1 1
o 2 4 6 8 10 12
L

FIG. 6. Expectation values of i, in the yrast states for the
three symmetries of the IBA. N =6.



402 R. F. Casten and D. D. Warner: The interacting boson approximation

elements in the presence of small symmetry breaking,
that the (A—8,4) K =0 band is =2 yy and 1 83, while
the (A—6,0) K =0 band is the orthogonal combination.
The relative energies of different representations are
also interesting to consider. The excitation energy of a
representation is proportional to the differences in the ei-
genvalues of C(A/,u') between it and the ground state.
For example (neglecting the contribution or,
equivalently, considering 0" states or states of the same
spin), the energy of the 8 and y bands is proportional to

| C(A—4,2)—C(A,0)| =26(A—1)=26(2N —1) . (2.42)

From Eq. (2.39), the value of a, needed to fit a typical

SU@3)-like nucleus is
E22+ —E21+

-~ 302N 1)
Similarly, a, is given by a; =E,, /6+3a, /8.
1

a,= (2.43)

Note that, in expressions for the differences of the ei-
genvalues of two C(A,u) operators, the A% terms always
cancel, and thus, for any representation, the energy is of
the form a,( AN +B). Thus the ratio of the energies of
two excited representations is parameter free and of the
form

E(\',u") AN +B 4
= -, 2.44
EV,i) CN+DN—w C (2.44)

For example,

E(A—8,4)  E(K=0(yy),K=2(By),K=4(vy))

E(A—4,2) — E(K=0(B),K=2(y))
4N —6
=N N_:wz (2.45)
and
E(L—6,0) _ E(K =0(8B))
E(A—4,2) ~ E(K=0(B),K=2(y))
4N —3
TOAN 1N (2.46)

where the familiar geometric labels have been given as
well. The limiting results are reasonable, since the higher
representations are of two-phonon (383, ¥y, and By) char-
acter. Finally, note that the first terms in both numera-
tors and denominators rapidly dominate as N increases,
so that the asymptotic values are already approximately
attained for N values typical of deformed nuclei
(N~=~12-18). The behavior of the above ratios against N
is shown in Fig. 7.

a. EO transitions

The EO operator is not a generator of SU(3) and hence
can connect different representations. In particular, it
yields significant matrix elements between the ground
band and the K =0 band (8 band) of the 2N —4,2) rep-
resentation which, for the 0™ states, take the values
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FIG. 7. Ratios of the energies of two higher-lying representa-
tions to the (A—4,2) representation containing the 8 and y
bands in the SU(3) limit of the IBA as a function of boson num-
ber N.

((2N,0),K =0,L =0| T(EO) | (2N —4,2)K =0,L =0)

2

) 1/
8(N —1)(2N +1)N .47)

9(2N —3)(2N —1)?

where eq=/V'5 in the notation of Eq. (2.9). More gen-
erally, the operator transforms as (A,u)=(2,0) under
SU(3) and hence can also connect the (2N —4,2) states
with those in the (2N —6,4) and (2N —8,0) representa-
tions. (This approach to deducing selection rules will be
discussed further in the paragraphs on transfer reac-
tions.) In addition, there is also an effective K selection
rule which, while not exact, limits the transitions of
significant strength to those with AK =0.

b. E2 transitions

If the specific form of the quadrupole operator

o=(s'd+d's)—v720aT3)®»

is used, then T(E2)=aQ is a generator of SU(3) and

hence cannot connect different representations. Thus the
selection rule is A(A,u)=(0,0), and only intraband repre-
sentation transitions are allowed. Thus y —g or f—g
band transitions are forbidden, in distinct contrast to the
harmonic geometrical model. Moreover, the same selec-
tion rule permits not only intraband transitions but also
transitions between different bands in the same represen-
tation. For the important (2N —4,2) representation, this
leads to collective transitions between the 8 and ¥ bands.
This also represents a fundamental and striking
difference between the starting points of the IBA and
geometrical descriptions of well-deformed nuclei. In-
terestingly, these S— ¥ collective transitions have now
been observed (Greenwood et al., 1978; Davidson et al.,
1981a, 1981b; McGowan, 1981; Gelletly et al., 1985;
Haque et al., 1986) in a number of nuclei, and their ob-
servation constitutes an important confirmation of the
IBA description.

Finite boson introduce other

number effects
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modifications of the B(E2) values, for example, an at-
tenuation of strength as the spins involved approach the
cutoff value of L =2N, and deviations of interband
branching ratios from the Alaga rules, for example, for
transitions between 8 and ¥ bands. Since the branching
ratios most frequently observed are of y—g character,
and since these transitions are forbidden in SU(3), it is
best to postpone a discussion of this feature until a later
section. For the yrast transitions, the B(E2) values are
given by

23
B g

B(E2:(2N,0);L +2—L)=e (2L +3)(2L +5)

(L +2)(L +1) ]

X(2N —L)2N +L +3) .

(2.48)
This gives, for the first 2 state,
B(E2:2{ —0f )=e§iV(2—Ni3—) . (2.49)

5

Note that Eq. (2.48) clearly tends to zero as L —2N and
already shows an appreciable falloff at L =~JL,,,. The
predicted falloff is a direct result of finite- N and is not
very dependent on deviations from SU(3). In most de-
formed nuclei these falloffs seem not to be observed (see,
for example, Grosse et al., 1981, and Emling, 1984).
Empirical falloffs in B (E2) values have been observed in
the Ba and Kr regions (Kaup and Gelberg, 1979;
Hanewinkel et al., 1983), but whether or not they can be
attributed to boson number effects remains an open ques-
tion.

Two other interesting results are evident from Eq.
(2.48), in the limit N >>1. First, the spin dependence is
given by the factor in large parentheses, which just gives
the Alaga rules. For example, in the large-N limit, Eq.
(2.48) gives

B(E2:4—2) 10

B(E2:2—0) 7 ° 2.50)
However, Eq. (2.48) also shows that deviations from the
Alaga rules appear even in the strict SU(3) limit and are a
direct reflection of finite-N effects. The second feature of
Eq. (2.48) in the large-N limit is a proportionality to N2.
It is in fact easy to understand why this arises. In U(5) it
can be seen from Eq. (2.29) that B(E2) values (for
N >>L, that is, N >>ny) scale as N. This is a direct result
of the presence of n, =N s bosons and of the fact that a
given state (e.g., 2]") always contains the same number of
d bosons [e.g., n (2] )=1] independent of N. Here, in
SU(3) [and, indeed, in O(6); see below], n, and n, are
both approximately proportional to N (for example, for
large N, (n,), , =2N) and thus, in the derivation of the
SU(3) analog of Eq. (2.29), both the st and d (or d¥ and )
operators contribute a factor proportional to N, whereas
in U(5) only s led to such a factor.
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c. Two-nucleon transfer

The selection rules for the operators s and s' in the
SU(3) limit can be .understood by assigning them the
SU(3) quantum numbers (2,0) and considering the Young
tableaux appropriate to the lowest two SU(3) representa-
tions in adjacent nuclei. The existence of a nonzero ma-
trix element is then determined by the ability to connect
two representations by the addition or removal of two
boxes. The resulting selection rules are shown in Fig. 8
for the situation in which the nuclei involved are below
midshell. Above midshell the roles of (p,z) and (¢,p) are
reversed, since then (t,p) would decrease N and N, by
one. In either case, the two-nucleon transfer strengths
between ground states are given by

2N +3
=a? 1)—T=_
Sy(N,—N,+1)=a)(N,+ )3(2N+1)
4 N-—1
XN E=No=3on 1o |
p=mv . (2.51)

This expression yields much weaker cross sections than
in U(5) and, in particular, predicts a sudden drop in (¢,p)
cross sections in a U(5)—SU(3) phase transition (see Sec.
II1.B.2).

3. Chain lll: The O(6) limit

The representation labels appropriate to the O(6)
dynamical symmetry (Arima and Iachello, 1978b, 1979)
are

U(6)D0(6)D0(5)D0(3) .
[N] o T

(2.52)
vy L
Note that the only difference from chain I is the substitu-

tion of the group O(6) for U(5). The corresponding quan-
tum number o takes the values '

oc=N,N-2,...,0o0r 1, (2.53)
while the reduction to O(5) gives
r=0,0—1,...,0 (2.54)

for each o representation. For historical reasons, the la-

o% (2N-6,2) ____ (2N-4,2) ____ (2N-2,2)
e
// //
e yd
7 /
7/ 4
of ————tf e —— e
9 (2N-2,0) (2N,0) (2N+2,0)
s : st
(p.t) | (t,p)
|

FIG. 8. SU(3) selection rules for two-nucleon transfer for nuclei
below midshell. The dashed arrows represent allowed matrix
elements.
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bels 7,v, have been used for the O(6) scheme, but they
are identical to the v,n, of the U(5) chain. The Hamil-
tonian Hy; is obtained by replacing aCys+BC,ys by
aC,n6 [Eq. (2.26)], and the eigenvalue expression then be-
comes

E=2ac(oc+4)+2y7m(r4+3)+28L(L+1) . (2.55)
Again, the various terms in the Casimir operators can be
combined to write Hyy in the convenient format of the
multipole expansion: :

Hy=aoP'P+a,L2+a,T} . (2.56)

Here the PP term stems from the C,0¢ Casimir, that is,
from the presence of the subgroup O(6). Due to the com-
mon use of the multipole Hamiltonian, the form of the
(equivalent) eigenvalue expression that has most fre-
quently appeared in the literature is

E=A4A(N—-0)XN+o+4)+B7m(r+3)+CL(L +1),
(2.57)

|
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where A =a,/4, B=a;/2,and C =a;—a;/10. (Expres-
sions with coefficients 4 /4 and B /6 are sometimes also
encountered.)

A typical energy spectrum is shown in Fig. 9. In this
case the geometrical equivalent, though less familiar, is
that of the y-unstable rotor of Wilets and Jean (1956).
The states are grouped into large families, each charac-
terized by a given value of ¢ and comprising a represen-
tation of O(6). Within each family, the states are
clustered into 7 multiplets, whose relative energies scale
as 7(7+3) and whose degeneracy is split by the L(L +1)
term. Note that this term implies that the energies
within a 7 multiplet will vary monotonically with spin.
Usually C>0, so that, for example, as in Fig. 9,
E02+ <E3x+‘ Neglecting the last L (L +1) term, we see

that the yrast energies increase more slowly than in a ro-
tational nucleus and more rapidly than in a harmonic vi-
brator. Thus, for example, to compare the three limits,

E, —vE, 2E, _3E, _4=12:3:4, u(s)
Ey,EEgEg=\E._:E._,:E._:E._,=1:2.54.57, O(6)

EL=2:EL =4:EL=6:EL=8: 113.33:7:12,

In the higher-lying, lower o representations, the se-
quences of levels are completely identical, except for
lower cutoffs, since 7,,,, =0 in each case.

The structure of the wave functions in the O(6) limit is
determined by the P'P term in Eq. (2.56), which is the
only nondiagonal one in a U(5) basis. As pointed out ear-
lier, this operator has An; =0 and *2 contributions, and
hence can connect states differing by zero-coupled pairs
of d bosons. This results in a very distinctive structure
for the O(6) wave functions, some examples of which are
given in Table II. It can be seen that, for each state, the
contributing basis states are determined by a sequential
operation of the form An;=2, Ang=1 on the first basis
state. Moreover, the specific basis states that contribute
are determined by the 7 value: wave functions for states
of the same 7 but different o have a different distribution
of amplitudes for the same basis states. With this picture
in mind, the selection rules again become obvious.

a. EO transitions

Since T(EO) is diagonal in the U(5) basis states, it
must require A7=0. Using Eq. (2.9), it is trivial to see
that, in addition, Ao ==2 is necessary to avoid a cancel-
lation in the contributing components. Thus the only
predicted EO strength to the ground state is from the
o =N —2, =0 state, where the matrix elements take the
form
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SU(@3) .

(0=N,7=0,L=0|T(EQ)|0=N —2,7=0,L =0)

172
(N —1)(N +3)(2N +4)

8(N +1)?

:eo (2.58)

b. EZ2 transitions

The quadrupole operator that is a generator of the O(6)
group consists of only the first part of the most general
form, namely,

Q=ez(std+dTs) .

By definition, of course, this operator leads to the selec-
tion rule Ag =0. However, inspection of Table II also in-
dicates the existence of a second condition. Since the
form of Q given above has the property An,==1, it is
clear that it cannot connect states with the same 7 value,
since all the component basis states differ by An,;=2.
Moreover, Q does not connect basis states with different
values of ng or n,, since it does not contain a term that
allows recoupling of the d-boson wave functions. Thus
the additional selection rule is seen to be Ar==x1. This
rule, as well as the particular 7 values labeling various
states, leads to a characteristic O(6) signature, namely se-
quences of 01-2%-27" levels with allowed cascading E2
transitions connecting them. Five examples (one truncat-
ed to 07-27) are evident in Fig. 9, namely, those based on
the 7=0 and 3, 0 =6 and 4 states, and on the 7=0, 0 =2
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FIG. 9. Low-lying levels of the O(6) limit, for N =6.

levels. More such triplets appear for larger N values.

The o selection rule can also be deduced from the form
of the wave functions, since for states from different o
groups, but with 7 values differing by =1, the individual
contributions to the E2 matrix element exactly cancel.
The E2 selection rules also imply that the O(6) limit has
vanishing quadrupole moments. This has been found to
be in disagreement with the data and remains an interest-
ing question, which will be discussed further later.

Since their origins are different, the expected strengths
of the o and 7 selection rules differ. If the O(6) symmetry
is slightly perturbed by a term of the form en,, the can-
cellation embodied in the o rule is no longer exact. Thus
states with o <o ,,, will decay, with weak E2 matrix ele-
ments, to 0 =0,, levels, while preserving the Ar==+1
selection rule. In particular, the 0" “bandheads” of the
O <0, representations are expected to decay to the 2
level rather than to the 25 state.

Finally, the expression for the B (E2) values connect-
ing the 0 =0 ,,, L =27 (i.e., yrast) states is given by

)(T+1) .

B(E2:7+1—>7)=e}(N —7)N+7+4 s

(2.59)
Note that, as in SU(3), and for the same reasons, these
B (E2) values scale approximately as N2 for large N. For
the particular case of the 2}t —0;" transition, Eq. (2.59)
gives

B(E22} —0f)=e3 YN +4)

5 (2.60)
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c. Two-nucleon transfer

The creation or destruction of an s boson obviously re-
quires that the d-boson structure of the initial and final
wave functions be identical. The 7 selection rule for
two-particle transfer is thus A7=0, while the o rule is
Ao ==1, since the addition or subtraction of an s boson
changes N by 1. The result is that population of neigh-
boring ground states of O(6) nuclei is allowed. In addi-
tion, for (¢,p) [or the analogous (*He,n) reaction] below
midshell, the o=0,,,—2, 7=0 excited 0" state has

.o0=N,—1, where N, is the boson number of the target
nucleus, and is an allowed transition, as is the (p,¢) transi-
tion to the o <o,,—2 state above midshell. Once
again, because of the different n; structure of U(5) and
O(6), the two-neutron transfer cross sections vary less
rapidly with N in O(6) and can serve to identify such re-
gions. The ground-state transfer strengths are given by

2 N +4
Sg(Np—>Np+1)=ap(Np+l)2—(m-
N —1
Q N 2T
XN Ny Ne |
p=mv. (2.61)

d. Differences between U(5) and O(6)

At first sight these two limits appear quite different.
One yields a phononlike structure with simple selection
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rules, while the other is a y-soft deformed rotor with
quasi-band-structure and more complex selection rules.
Yet both group chains contain the O(5) and O(3) sub-
groups. As a result, many properties are in fact identical.
This point, which is extremely important, has recently
been emphasized by Leviatan, Novoselsky, and Talmi
(1986).

The most obvious apparent difference between U(5)
and O(6) concerns the second group of excited states and
in fact is not, rigorously speaking, a difference at all.
Reference to Figs. 3 and 9 shows a two-phonon-like trip-
let, 0F,2% 4% in U(5), but only the pair 27,4% in O(6).
By the E2 selection rules (Any;=1 and Ar=1), the first
excited O state (denoted 05 since the ground state is 0;")
decays to the 2it level in U(5), but in O(6) the 05 state
has either 7=3, or 7=0 and o =0,,,—2, depending on
the energy of the second O(6) representation, and thus, in
either case, cannot decay to the 2;" level. However, this
contrast implicitly assumes a near-harmonic U(5) spec-
trum. As noted earlier, the U(5) eigenvalue equation has
great flexibility. Thus, for example, in Eq. (2.27), if the
coefficients of the terms in n, are large and positive while
that of the v(7) term is large and negative, the three-
phonon (n,,v)=(ny,7)=(3,3) 0" state can be brought
below the (2,0) 07" level. Then the first excited 07 state in
U(5) will be a three-phonon state and will not have al-
lowed transitions to the 2" state but rather to the 25" lev-
el. While this requires very large anharmonicities, and
may seem unappealing, it is still within the rigorous phi-
losophy of U(5). More generally, because of the appear-
ance of the O(5) subgroup in both O(6) and U(5), proper-
ties having to do only with the 7 structure of the wave
functions are, in fact, identical. For example, branch-
ing ratios [within the o =0 ,,=N O(6) representation]
such ~as B(E2:3{(1=3)—2,(r=2))/B(E2:3{ (r=3)
—4;(r=2)) are the same.

Thus, in principle, as Leviatan, Novoselsky, and Talmi
(1986) emphasize, some of the data cited in support of
O(6) are really only evidence for O(5) and could be con-
sistent with a very highly anharmonic U(5). However,
there do exist many quantities that can distinguish be-
tween the two. These arise because of the specific d-
boson structure of the wave functions, which in turn is
directly a product either of having the larger group U(5),
stemming from €fi; in the Hamiltonian, with the low-
lying states spanning many representations of U(5), or of
having O(6), stemming from aOPTP in the Hamiltonian,
in which case the low-lying states belong to a single rep-
resentation of O(6).

In going from state to state up the level scheme, for ex-
ample, in the yrast band, (n,;) changes much more rap-
idly in the U(5) scheme than in O(6) (see Fig. 6). This
directly affects absolute B(E2) values, which increase
more rapidly in U(5) than in O(6). This is illustrated for
the yrast band in Fig. 10.

A particularly important distinguishing characteristic
centers on the higher-lying levels: In U(5), these levels
have high n; and are multiphonon states that have al-
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FIG. 10. Yrast B(E2) values in U(5) and O(6) normalized so
that B(E2:2;]—0;)=1 in each case. Their differences reflect
the difféerent magnitudes of finite-boson-number effects in the
two limits.

lowed E2 transitions to many n;—1 levels. In O(6), the

* states of the o < 0, representations are restricted to de-

cay within those representations by the Ao =0 selection
rule. The data will be inspected later. Suffice it to em-
phasize here that it is crucial, in potential O(6) regions, to
measure absolute B (E2) values and to identify, if possi-
ble, extended sequences of o <o, levels in order fully
to discriminate against a possible anharmonic U(5) char-
acter.

4. Summary

It is evident that each dynamical symmetry limit corre-
sponds to a very specific choice of interactions in the gen-
eral IBA-1 Hamiltonian. Indeed, each symmetry is
characterized by one term in the Hamiltonian that is re-
sponsible, by virtue of its effect on the mixing of U(5)
basis states, for the characteristic structure of that
symmetry’s wave functions:

Generating
Symmetry term An, structure
I u(s) Ay Any=0
11 SU(@3) Q* Any=0,+1,+2
111 0(6) PP Any=0,+2

The differences in the structure of the wave functions in
each limit were illustrated in Table II. Moreover, it has
already been demonstrated that an understanding of the
specific structure of each limit allows the role of various
operators to be easily deduced. An important point is
that the wave functions in a particular symmetry limit
are unique (for a given boson number N) and independent
of the parameter values chosen in the symmetry Hamil-
tonian. This can be seen by the following arguments.
For U(5), each multiplet corresponding to the nth pho-
non state always has only one component in the wave
function, namely with n;=n. For the other symmetries,
the mixing of these basis states is produced by the partic-
ular An, properties of the single operator [e.g., Q2 for



R. F. Casten and D. D. Warner: The interacting boson approximation

SU(3)] that produces the characteristic wave functions.
Normally, the magnitude of such mixing would depend
on the energy separation of the unperturbed basis states,
since it is always a function only of the ratio of that sepa-
ration to the mixing matrix element. However, one notes
that the Hamiltonians for SU(3) and O(6) do not contain
an £fi; term. As a consequence, the U(5) basis states on
which the nondiagonal operator acts are degenerate.
Thus the mixing is already “fully effective” for any value
of the coefficient of the characteristic operator, and the
wave functions are independent of this strength factor.
Clearly, for situations between symmetries, when two or
more different nondiagonal operators “compete” in the
Hamiltonian, each produces a characteristic mixing, and
thus the resultant wave functions depend on their relative
strengths (coefficients).

Finally, some comments should be made on the use of
the term “symmetry” as applied to the group-theoretical
treatment of the IBA, since this term can itself give rise
to some confusion. As we have seen, while each group or
subgroup in one of the three possible chain decomposi-
tions does indeed demand a symmetry in the underlying
bosonic degrees of freedom, the entire chain in fact de-
scribes a sequential breaking of each symmetry by the
next, or lower, subgroup in the chain. Thus, taking the
O(6) limit, or chain III, as an example, the symmetry
U(6) demands that states be differentiated only by virtue
of their total boson number N, and hence all states in a

u (6) b= o(e) >

Ao (o+4) +

407

specific nucleus are degenerate. The subgroup O(6) then
lifts that degeneracy and splits the states into families of
multiplets characterized by the quantum number o, and
so on. This situation is illustrated in Fig. 11. It is for
this reason that the more correct definition of these struc-
tures is termed dynamical symmetry. The Hamiltonian
in fact describes a sequence of symmetry structures, each
contained within its predecessor, and each of which lifts
the degeneracy implied by the earlier group, without
mixing its representations. As illustrated above, the sim-
plest example of this is, of course, the O(3) DO(2) group.
With no term from the O(2) group in the Hamiltonian,
the M substates for each state J are degenerate. The ad-
dition of the second term proportional to J, in the Ham-
iltonian lifts that degeneracy, and this would correspond
physically to the introduction of a magnetic field, which
breaks the rotational symmetry.

D. Realistic calculations and symmetry breaking

1. The Hamiltonian

The distinctive structures of the three dynamical sym-
metries in the IBA provide three clear-cut limits of the
general Hamiltonian. Although evidence exists which
suggests that some of the features of the pure symmetries
are observed empirically in selected nuclei, in general, a

o= N-4
FAMILY OF
LEVELS

. ot
- a*
=3 = [ 80
— 4+
p— == - __ o+
- 2t
T I
e o*
r =0
o(5) = 0(3)
Br(r+3) + CL(L+I)

FIG. 11. Illustration of the concept of a dynamical symmetry. Each step in the group chain decomposition breaks a previous degen-
eracy, introducing new quantum numbers as well as a term in the eigenvalue expression. The example here is for the O(6) limit.
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realistic calculation will require a departure from the
strict limits or indeed a transition between them. In this
context the analytic limits emerging from the group-
theoretical treatment of the Hamiltonian can be viewed
as “benchmarks” in constructing a more accurate
description of the low-lying collective structure of a par-
ticular nucleus, or series of nuclei. This approach can be
illustrated diagramatically in the form of the symmetry
triangle of Fig. 12. The three apexes represent the limits
of one of the exact symmetries, while the space enclosed
by the three sides denotes the range of more general solu-
tions that can be obtained numerically by diagonalizing
the IBA-1 Hamiltonian of Eq. (2.5). A transition be-
tween two specific symmetries, without invoking any of
the characteristics of the third, would correspond to a
path along one of the three sides, but a more complex
path between two limiting cases is clearly also possible.
For a transition along the sides, the structure at any
point will be determined by the ratio of the two parame-
ters [see Eq. (2.5)] that characterize the symmetries in
question, and these are also indicated in the figure.

From this discussion, it is clear that one of the most
appealing aspects of the IBA-1, aside from the basic sym-
metries themselves, is the ease with which transition re-
gions can be calculated as a function of a single, physical-
ly intuitive, parameter. When it is recalled that such
phase-transitional regions have historically been con-
sidered the most challenging and complex testing
grounds for nuclear models, because of the competition
of rival degrees of freedom, it is clear that the group-
theoretical structure of the IBA-1 truncation offers a
significant simplification. Whether this simplification is
physically realistic, of course, can be assessed only by
recourse to the data and will be extensively discussed in
later sections.

Referring to the multipole expansion of Eq. (2.5), the
effect of the various terms and their links with the limit-
ing symmetries have already been discussed, and the
latter aspect is contained in the definitions of the various
Casimir operators [Eq. (2.24)]. In the context of a gen-
eral calculation, the first point to note is that the L ?term
is always diagonal and simply gives a contribution

e
o(e) o

u(s) SU(3)
G2
X=2/7/2

FIG. 12. Symmetry triangle of the IBA indicating the three
limiting symmetries on each of the vertices and the transition
legs between symmetries. The X labels are discussed in Sec.
I1.D.3.
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L(L +1) to each level of spin L, for any Hamiltonian.
Thus it has no effect on state wave functions, and also
none on energy differences of states of the same spin.
The term in T has seldom been found necessary in actu-
al applications. It will therefore be ignored in the discus-
sion that follows. The termsin A, PP, and Q? produce
the characteristics of the U(5), O(6), and SU(3) structures,
respectively, while T3 stems from the O(5) subgroup,
which is common to both the U(5) and O(6) chains.

The first step in an IBA-1 calculation is thus to deter-
mine the approximate position of the nucleus under
study with regard to the three limiting symmetries. This
can be done phenomenologically by reference to some of
the characteristic energy and B (E2) ratios that distin-
guish the symmetries (discussed above) or by virtue of a
theoretical understanding of the underlying microscopic
shell-model basis of the IBA and the geometrical ap-
proach. Thus nuclei in which both neutrons and protons
are near their respective closed shells can be expected to
show U(5) or vibrational behavior, while Z and N values
near midshell would suggest rotational structure and
hence SU(3) as a starting point. The occurrence of axial-
ly asymmetric features can be expected in cases where
the neutrons are particles and the protons holes, or vice
versa, and suggests the use of the O(6) symmetry. Care
must be taken in using these qualitative arguments, how-
ever, since the particles or holes character of the bosons
can be influenced by significant subshell effects (see Sec.
III.C). Moreover, since in practice the O(6) symmetry
frequently occurs near the end of major shells, and since
many of its predictions are very similar to those of U(5),
it is sometimes difficult initially to distinguish between
the two. It is therefore particularly important to consid-
er both energies and B (E2) values in this case.

a. O(6) and U(5) nuclei

Traditionally, the most characteristic and easily recog-
nizable signature of O(6) has been the appearance of
nearly degenerate 25" and 4;{" states at an energy of
roughly 2.5 times that of the 27 level, with the 05 state
(assigned 7=23) lying significantly higher and decaying to
the 7=2 second 2% state rather than to the 2i" level.
However, as noted earlier, these O(6) features actually
arise from the O(5) structure, and hence are equally
characteristic, in principle, of a U(5) symmetry. Since a

near-harmonic U(5) spectrum has E o+ ~E  =~E,
2 2 1

=~2.0E,,, it should be reemphasized here that to repro-
1

duce an O(6)-like spectrum with U(5) requires a highly
anharmonic structure in which the three-phonon 0*
state lies below the two-phonon 0% state. While this is,
in principle, allowed, experience has shown (see Sec.
ITI.A) that the empirical observation of the O(6) charac-
teristics cited above usually coincides with additional,
and unique, signatures of O(6). Therefore, pending the
discovery of counterexamples, this traditional set of O(6)
characteristics is best taken as at least an initial indica-
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tion of likely O(6) character, to be tested by other empiri-
cal information. In addition, it is interesting to note that,
working within a very different framework, Kumar
(1970, 1972) and Cline (1971) pointed out many years ago
that the descent of the 2% quasi-y bandhead near or
below the 4" state is the signature of a y-soft potential
whose prolate and oblate minima are of roughly equal
depth. Thus, at least as initial starting points, U(5)- and
O(6)-like spectra are easily recognizable.

b. Deformed nuclei

The first important feature of deformed nuclei to note
in the context of the IBA is that, in general, they cannot
be described by the SU(3) limit, which, as pointed out
earlier, corresponds to a very specific type of deformed
rotor with degenerate 8 and ¥ bands and vanishing y —g
and B—g B(E2) values. Clearly, therefore, it is neces-
sary to introduce considerable SU(3) symmetry breaking.
In most deformed nuclei the 3 band is above the y band.
Comparison of Figs. 5 and 9 suggests that this can be
produced by introducing a perturbation to SU(3) in the
direction of O(6). An example of part of a practical cal-
culation for the well deformed nucleus '%®Er is shown in
Fig. 13. The final calculated spectrum of the ground, f3,
and y bands is shown on the right, while on the left the
SU(3) “starting point” is shown. In the SU(3) limit the
parameters a, and a, of the L ? and Q2 terms, respective-
ly, have been determined according to the eigenvalue ex-
pression (2.39). Thus, as given earlier, this yields

EZ; —Ezr
az=.—m (2.62)
and
E,, 3
a =" +§a2 . (2.63)

The resulting SU(3) spectrum fits the 2;" and 23" states by
definition, has an exact L (L 4 1) rotational band struc-

| —6*
[
15k | .
—y
+ +
___6 6 : ——‘6+ 2+
—5t 5+ ot
_ [
3 loF 5 —a
= _ +
= + X —3
o= & | 2
|
—¢" L — SU3)
051 SU(3) | +
. ! . 06003
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FIG. 13. Example of the effect of adding a term aoP'P to an
SU(3) Hamiltonian with a; =0.0105 MeV, a, = —0.008 MeV,
and N =16. a, is in MeV.
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ture, and has degenerate 3 and ¢ bands. The next step is
to break this latter degeneracy, without losing the rota-
tional energy spacing. The terms in ef,; or T3 will tend
to decrease the ratio E af /E21+ and thus must be kept

small for well deformed nuclei. As can be seen in Fig. 13,
however, the PP term has very little effect on this
feature, but does raise the 8 band, since it represents a
symmetry breaking in the direction of O(6), whose higher
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FIG. 14. The effects of SU(3) symmetry breaking in the IBA.
The scale on the abscissa is such that O corresponds to SU(3),
while the O(6) limit is approached when the abscissa tends to-
ward large values. (a) 2% energies of various rotational bands
relative to E2]+; (b) principal wave-function components ex-

pressed in an SU(3) basis; [the primed labels refer to the various
SU(3) intrinsic excitations] (c) matrix elements that mix
different SU(3) basis states. Note the sharp separation into
AK =0 and 2 matrix elements.
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representations each begin with a O state. The effects of
this term can be understood rather easily if the Hamil-
tonian is written as

H=a,Q*+ayP'P+a,L?, (2.64)

with Q and P defined following Eq. (2.5). Then, as noted
earlier, the L ? term is diagonal and can be dropped for
our present considerations. Thus
a
H=a, |0*+—P'P
a,

, (2.65)

from which it is clear that a, is now only a scale factor
on the energies and that the structure is fully specified by
the ratio ay/a,. The energies of the 8 and ¥, and the
next K =0 and 2 bands, are shown in Fig. 14. Typically,
one finds values of a,/4a,~ —1 for most deformed nu-
clei. The behavior is easy to understand by considering
the matrix elements that mix SU(3) representations in
this Hamiltonian. The perturbation is proportional to
a,/4a, and therefore so must be the matrix elements that
mix SU(3) representations. These matrix elements may
be easily calculated by transforming the symmetry-
breaking Hamiltonian to an SU(3) basis. Typical results
(Casten and Warner, 1983) are shown for N =16 in Fig.
14. Clearly, they must lie on parallel straight lines in a
log-log plot. The interesting point is the overwhelming
dominance of AK =0 over AK =2 mixing. Moreover,
these AK =0 matrix elements easily attain several hun-
dred keV. Given that typical separations of 8 and g
bands are =1 MeV, this is a substantial mixing, whose
most obvious effect is a repulsion of the g and 8 bands.
The By and y bands, whose mixing matrix elements and
unperturbed SU(3) separation [see Eq. (2.45)] are compa-
rable to those for the SU(3) 8 and g bands, also repel.
The net effect, as shown in Fig. 14, is a nearly unchanged
Y-g separation and a rising 3 (and By) band energy. For
values of a,/4a, appropriate (Warner, Casten, and
Davidson, 1981) to deformed rare-earth nuclei, the
ground-band wave functions are thus a substantially
mixed combination of g, 3, vy, and 33 SU(3) excitations,
while the y band is largely the SU(3) ¥ and By modes.
The dependence (Casten and Warner, 1982, 1983) of the
wave functions on the SU(3) symmetry-breaking parame-
ter is also illustrated in Fig. 14. The important conse-
quences of a large amplitude for the SU(3) 8 mode in the
calculated ground state will be discussed later. In any
case, the key point for the moment is that the parameter
a, can be varied to fit the 3 bandhead, leaving the ground
and y bands virtually unchanged.

c¢. Transitional regions

As noted earlier, the three transitional regions
0(6)—SU(3), U(5)—SU(3), and U(5)—O(6) are particu-
larly easy to treat in the IBA, generally in terms of a sin-
gle parameter reflecting the position along a leg of the
symmetry triangle of Fig. 12. Nuclei in a transitional re-
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FIG. 15. Example of the effect of adding a term €7, to an SU(3)
Hamiltonian with a,=0.0087 MeV, a,=—0.013 MeV, and
N =10. eisin MeV.

gion between SU(3) and O(6) may be treated by breaking
the SU(3) symmetry with the same terms just discussed
[Eq. (2.64)] except with much larger magnitudes, so that,
when the aOPTP term begins to dominate, an O(6) struc-
ture develops. Such SU(3)— O(6) transitional nuclei have
been extensively studied (Casten and Cizewski, 1978) and
will be further discussed in Sec. III.

An analogous example for the case of a nucleus that is
transitional between U(5) and SU(3) is shown in Fig. 15.
Again, the SU(3) limit has been used as the starting point,
but, in this case, the boson number has been chosen as
N =10, since this is more typical of this type of transi-
tional region. The appropriate Hamiltonian is

H=¢A,+a,Q*+a,L?. (2.66)

There is a clear reduction in the ratio E(4{)/E(2}"), an
increase in both E(2{) and E(4;") separately, and the ex-
cited 0" band is now below the ¥ band, in contrast to the
situation for the PTP symmetry breaking in Fig. 13. The
introduction of a term in efl; to an SU(3) Hamiltonian
must usually be accompanied by a concomitant adjust-
ment of the Q2 and L ? terms to maintain the required
energies for the 2{" and 23 states, since the presence of a
nonzero d-boson energy will raise both. The relative
magnitude required for the €A, and Q? terms will depend
on the boson number, since the effects of the former scale
roughly as N, while the latter is a function of N2. Thus,
near closed shells, the efi; term is relatively more impor-
tant, while near midshell the calculations are largely in-
sensitive even to rather large € values.

Nuclei in a U(5)—O(6) transitional region can be cal-
culated with a Hamiltonian containing efi; and aoPTP
terms. This type of transition region has been less stud-
ied than the other two and is dealt with below in the con-
text of the alternative consistent-Q formalism (CQF) and
the extended CQF (ECQF).

2. Electromagnetic transitions

a. E2 transitions

The most general form, Eq. (2.8), of the E2 operator is
repeated here,



R. F. Casten and D. D. Warner: The interacting boson approximation 411

T(E2)=ep[(s'd+dTs)+x(d'd)?7,

where ey is the boson effective charge that determines the
absolute B(E?2) scale. In fact, its value has been found to
be remarkably constant in virtually all applications of the
IBA-1, and in the range 0.12-0.16 eb. As pointed out
earlier, the first term in T(E2) is a generator of O(6), and
the second is a generator of U(5). However, in practice,
the first term is employed in both these symmetry limits
to generate the characteristic selection rules. Thus, in a
transitional region involving U(5) and O(6) terms in the
Hamiltonian, the first choice for T'(E2) would be with
X=0. However, for SU(3) symmetry, X takes the value
—V'7/2, so that, in transitional Hamiltonians incor-
porating a Q2 term, the corresponding E2 operators
might be expected to involve X values in the range O to
—V'7/2. Of course, it must be emphasized that the
above arguments only serve to suggest an initial value for
X with which to compare experiment and theory. X can
simply be treated as a free parameter with no a priori re-
strictions.

The first extensive studies of the E2 operator in realis-
tic calculations were performed for the well-deformed
nuclei in the rare-earth region, and it is instructive to
summarize some of the results of that work here, al-
though the reader is referred to the original paper
(Warner and Casten, 1982b) for details. The Hamiltoni-
an employed was of the form discussed in the context of
Fig. 13, namely,

H=a,L*+a,0*+a,P'P,

with Q taking the SU@3) form of Eq. (2.8) with
X=—V'7/2. Thus the perturbation to the pure SU(3)
limit is supplied by the last term and can describe nuclei
in which the 8 band lies above the y band in energy,
which in fact is the case for the majority of the well-
deformed rare-earth nuclei.

The characteristic empirical feature, and indeed signa-
ture, of these nuclei is the remarkable stability of many of
the B(E2) systematics across the entire region, as illus-
trated in Fig. 16 for the ground and y bands. However,
Fig. 16 also reveals the far greater fluctuations in the
B—g B(E2) strengths, as well as their significantly re-
‘duced magnitude, relative to ¥ —g strengths. The most
obvious conclusion from these systematics, in the context
of the IBA, is that the finite y—g and f—g B(E2)
values both require departures from the strict SU(3) lim-
it, as they involve transitions between representations
that cannot occur as long as a;=0 and T (E2) utilizes a
Q operator with X = —V7/2. Nevertheless, decades of
familiarity with the geometrical model render the weak
[—g, rather than the strong y —g, transition rates the
more intriguing, since, given our well-established under-
standing of the intrinsic excitations in geometrical terms
as involving simply a different orientation of the vibra-
tional quanta with respect to the symmetry axis of the
nucleus, the naive expectation would be that the E2
properties should be similar. It is, of course, true that
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FIG. 16. Empirical values of some important B (E2) values and
B (E?2) ratios in deformed nuclei.

microscopic calculations (Bes, 1963), using, for example,
the random-phase approximation in a deformed basis,
reproduce the low 3—g B(E?2) values, but it is not intui-
tively clear how the IBA-1 could incorporate such infor-
mation.

The B(E?2) strengths that result from the SU(3) Hamil-
tonian and from a broken-symmetry calculation with a
typical ratio ay/4a,=—0.94 are shown in Fig. 17 as a
function of the parameter X in T(E2). The intrarepre-
sentation transitions are very little affected by X, while
the interrepresentation transitions, which must trend to
zero in the SU(3) limit as X— —V'7/2, grow rapidly as
| X | decreases. For a given X, the dominant effect of the
aOPTP symmetry-breaking term (for X values to the left
of the dashed line) is to decrease the magnitude of the
[— g transitions, relative to other transition rates. These
results can be easily seen in the ratios plotted in Fig. 18,
which also shows an additional striking feature, namely,
the rigorous constancy of the ratio 25—0,/2,—0, in
SU@3).

The latter behavior can be understood simply in terms
of the contributions from the two parts of the E2 opera-
tor. The vanishing of the interrepresentation transitions,
for X=—V'7/2, implies that, of necessity, the An,=0
and An,; =11 matrix elements interfere destructively and
cancel exactly. Thus their magnitudes must be in the ra-
tio V'7/2 and their signs the same. This feature in turn
implies the more general result that the ratio of any two
interrepresentation transitions will be a constant, in-
dependent of X, for the SU(3) Hamiltonian. For the
specific example of B—g /y —g cited in Fig. 18 this ratio
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takes the value of =~1. For intrarepresentation transi-
tions the contribution from the first term in T(E2)
(Any==1) dominates and hence X has very little effect
on their magnitude.

The empirical data for the y —g/g—g B(E2) ratios
(see Fig. 16) can now be combined with the results of Fig.
18 to extract (Warner and Casten, 1982b) a range of X
values capable of reproducing these B(E2) data in the
rare-earth region. Note that this step is possible because
of the very small effect of the PP perturbation on both
the y —g and g —g B (E2) strengths. The result is

—0.54 <X < —0.22 (2.67)

and immediately shows that the SU(3) form of the E2
operator cannot reproduce the observed data. Moreover,
one notes that, for most deformed nuclei, X falls in a
rather narrow range, as pointed out by McGowan and
Milner (1981) and Warner and Casten (1982b). Indeed,
Fig. 18 shows that, even with symmetry breaking in the
Hamiltonian, for X= —V'7/2, the predicted magnitude
of y—g strengths would be 2 orders of magnitude too
low. Thus the SU(3) symmetry must always be broken in
the E2 operator. In addition, the results of Fig. 18 and
Eq. (2.67) give rise to two important predictions concern-
ing the decay of the 8 band,

B(E2f—g) B(E2B—g) -
B(E2:y—g) B(E2:B—v)

0.04 . (2.68)

(The specific values all refer to 27 —07 transitions.) We
shall see similar results below in the discussion of the
consistent-Q formalism. It is interesting to note (see Fig.
17) that while the B—>g transitions are very weak, the
[B—7v transitions are comparable in strength to y—g
transitions. Thus, while it must be noted that the specific
range quoted in Eq. (2.68) is rather sensitive to the
chosen value of the PP perturbation, it is nevertheless
clear that, even in the presence of large SU(3) symmetry
breaking, the B8 band of an IBA deformed nucleus is
characterized by a collective transition to the y band,
rather than to the ground band. Moreover, the data in
Fig. 16 and the recently observed collective B—y E2
matrix elements confirm at least semiquantitatively this
crucial characteristic.

The origin of the B—y transitions provides an in-
teresting contrast to geometrical models. In the latter,
they are, of course, forbidden in the harmonic limit but
can be introduced if 8-y band mixing is introduced. In
the IBA, this latter element also appears, since K is not a
rigorously good quantum number in the Vergados basis.
However, the principal source of f—vy E2 matrix ele-
ments is a direct AK =2 amplitude. [This can be seen,
for example, from the finite intercept on a Mikhailov plot
(Mikhailov, 1966) of calculated B(E2:Lg—L,) values
(e.g., Warner, Casten, and Davidson, 1981).] The impli-
cation is that, even if f—y band mixing is introduced in
the geometric model to produce B(E2:Lg—L,) values
comparable to those of the IBA, the spin dependence of
these and their branching ratios will differ considerably
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from the IBA for finite N. This has been discussed at
length by Casten and Warner (1983).

The data of Fig. 16 on absolute B(E2) strengths for
2; —>OéF transitions can now be used, in conjunction with
the deduced range of X values, to ascertain a correspond-
ing range for the boson effective charge. The outcome is
a phenomenologically defined form for T(E2) in well-
deformed, rare-earth nuclei:

T(E2)=0.145(15)[(s'd +d's)—0.38(16)(d Td)?] .
(2.69)

The situation in the actinides is much less clear. The ra-
tio of B(E2:y—g) to B(E2:g—g) values seems to be
less than for the rare-earth region, and widely different
E?2 operators have been tried (Maino et al., 1981; Zhang
et al., 1985). A systematic study here would be well
worthwhile. In any case, this equation can be used as an
initial guide to calculations and as a reasonable estimate.
For detailed fits to a given nucleus it may be best to fine-
tune the coefficients ey and X.

Another prominent feature of the IBA for deformed
nuclei is the prediction of interband E2 branching ratios
that deviate from the Alaga rules, for finite N. These de-
viations actually appear in the exact SU(3) limit as well
[e.g., in ratios of B(E2:8— ) strengths] but are more
pronounced in broken SU(3) calculations. This is con-
sistent with a large body of data on deformed nuclei, par-

ticularly for ¥ —g transitions. Such effects can be intro-

duced in geometric models via AK =2, y-g band mixing
and have traditionally been parametrized in terms of a
band mixing parameter Zy (or Zg for B— g transitions).
For detailed discussions see Lipas (1962), Riedinger,
Johnson, and Hamilton (1969), and Bohr and Mottelson
(1975). In realistic IBA calculations for deformed nuclei,
there are two distinct mechanisms for deviations of y —g
transition strengths from the Alaga rules (Casten,
Warner, and Aprahamian, 1983). One is similar to the
geometrical model, namely AK =2 mixing of the SU(3) ¥
and g intrinsic states when SU(3) is broken. These matrix
elements are, however, rather small, as reference to Fig.
14 shows. A more important source stems in an interest-
ing indirect way from the allowed S— ¥ SU(3) E2 transi-
tions. When SU(3) is broken, large AK =0 matrix ele-
ments mix substantial amplitudes of the SU(3) B band
into the SU(3) g band, as discussed above. Therefore, in
the resultant ¥y —g E2 matrix elements, there will be im-
portant components of the type (Bsys)|E2]|7Vsua))-
But this allowed matrix element itself deviates from the
Alaga rules because, as just noted, there is K mixing in
the (2N —4,2) representation even in the strict SU(3) lim-
it.  Thus the deviation from the Alaga rules arises, ulti-
mately, from two distinct sources of AK =2 mixing, both
dependent on the breaking of SU(3), but one, the more
important, originating in an inherent characteristic of
SU(3) itself. In both cases, but particularly the latter, the
AK =2 mixing has a strong N dependence, decreasing as
N — . Indeed, since the amplitude of K =0 in the
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FIG. 19. Calculated and empirical values of Z, in the rare-
earth nuclei. From Casten, Warner, and Aprahamian (1983).

SU(3) y band for large N goes as 1/N?, the geometrical
concept of independent ¥ and 8 modes is recovered for
large N. Thus the effective Z, values that characterize
the IBA predictions have a parabolic variation
throughout the rare-earth region, minimizing at midshell
(Casten, Warner, and Aprahamian, 1983; see also Van
Isacker, 1987). Most remarkably, the data, shown in Fig.
19 along with some calculated values, disclose exactly
this behavior. '

This point is important for three reasons. It is typical
of many ‘“automatic” predictions of the IBA for de-
formed nuclei which cannot be avoided by reasonable pa-
rameter choices and which therefore are telling tests of
the basic structure of the model. (Collective B—y transi-
tions are the most obvious other example.) Second, it is
perhaps the most obvious example of the observable
effects of finite NV in the IBA; interestingly, it does not
concern high-spin states, nor small N values. [For fur-
ther discussion of this point, see Casten, Warner, and
Aprahamian (1983) and Dieperink and Wenes (1985).]
Finally, it is an excellent example of an apparent micro-
scopic aspect of the phenomenlogical IBA-1 since, even
with constant parameters, the model predicts a very
specific valence nucleon number dependence of structure.

b. M1 transitions

As pointed out in Sec. II.B, the lowest-order descrip-
tion of the M1 operator is proportional to the total angu-
lar momentum and hence does not give rise to transi-
tions. It is therefore necessary to consider higher-order
terms in a realistic calculation, and, rather surprisingly,
it is then in fact possible to extract some simple predic-
tions for the behavior of E2/M1 mixing ratios in a
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variety of cases. Of course, these predictions must be
tempered by the realization that, a priori, an explicit
recognition of neutron and proton degrees of freedom
would seem to be appropriate to the description of mag-
netic properties in general. Indeed, M1 transitions have
recently taken on high importance in the context of the
IBA-2 with the discovery (Berg et al., 1984; Bohle,
Kuchler et al., 1984; Bohle, Richter et al., 1984,
Richter, 1985) of a new collective mode, the so-called iso-
vector M1 excitation (Loludice and Palumbo, 1978;
Dieperink, 1981, 1983; Iachello, 1981b, 1984; Pittel and
Dukelsky, 1985), which is characterized by collective M1
matrix elements connecting the ground state of deformed
nuclei to 17 levels near 3 MeV. There have also been a
number of recent IBA-2 studies of the relation of M1
transition rates between low-lying states to F-spin purity
in deformed and O(6) nuclei (Harter et al., 1986, 1987,
Novoselsky and Talmi, 1986; Warner, 1986; and Gelletly,
Van Isacker et al., 1987). On account of the interest in
this mode, it is important to understand, first, the role of
possible M1 transitions even in the IBA-1. Interestingly,
several studies (Warner, 1981; Lipas, Hammarén, and
Toivonen, 1984; Wood and Morrison, 1985; Lipas,
Toivonen, and Hammarén, 1987) have shown that a
number of features emerge from an IBA-1 treatment that
are, in fact, observed.

The expanded M1 operator (Arima and Iachello,
1978a; Warner, 1981) becomes

T(M1)=(gg+ AN)L +B(QL)V+Ca,L . (2.70)

The first term remains diagonal and can be discarded
in a discussion of transition properties. The quadrupole
operator in the second term has the same structure as
that defined in Eq. (2.8) and can connect states that differ
by AL =0 or *1, while the third term contains f; and
hence is proportional to the EO operator and can only
connect states with AL =0. In general the parameter X
in the quadrupole operator of the second term can be
varied freely, and a number of fits (Lipas, Hammarén,
and Toivonen, 1984; Lipas, Toivonen, and Hammarén,
1987) to M1 properties in collective nuclei have been at-
tempted in this fashion with varying degrees of success.
However, no well-defined or systematic behavior of the
fitted parameters in the M1 operator seems to emerge
naturally from this procedure, nor does it give rise to any
clear-cut predictions concerning the behavior of M1
transitions in different regions. On the other hand, a
number of simple predictions do result if the quadrupole
operator in Eq. (2.70) is constrained to take the same
form as that used to describe E2 transitions.

The matrix element of the M1 operator can be written
as

(@'L|T(MV)||@L;)=—Bf(L,L;){¢'L/||Q|l@L;)
+C[L(L;+1)2L;+1)]'?
X{@Ls | Rg| @L; >8LiLf )

2.71)
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where ¢',¢ denote additional quantum numbers. The
spin dependence of the first term is contained in the fac-
tor

X(L;—L;+2(L;+L;—1D]'"?. (2.72)

In fact, for L — L *1 transitions, it is only this first term
that contributes, and, with the assumption that the quad-
rupole operator has the same X value as used in the E2
operator, the expression for the reduced mixing ratio
then becomes

(@'L;||T(E2)||@L;)
(@'L;||T(M1)||@L;)

—1
~ Bf(LLy)

AE2/M1)=

(2.73)

The reduced mixing ratio is related to the quantity
normally measured, 8(E2/M1), by

8(E2/M1)=0.835E A(E2/M1) ,

with E, in MeV. The second term in Eq. (2.71) is pro-
portional to the EO operator and hence in vibrational nu-
clei, or in deformed nuclei for the ¥ — ¥ and y — g transi-
tions, will be negligible, and the E2 /M 1 mixing ratio will
simply have the form of Eq. (2.73). This immediately
leads to a prediction for the spin dependence of M1 y —g
transitions that in fact is the same as emerges from many
other approaches (Grechukhin, 1963, Greiner, 1966; Ku-
mar, 1975). Moreover, the fact that the same spin depen-
dence holds true for transitions within the y band results
in the additional prediction of a link between the reduced
mixing ratios for y —g transitions and y — ¥ transitions,
namely, that they should be identical for the same values
of the initial- and final-state spins. In addition, the sign
of the mixing ratios should be constant throughout the
deformed region. In fact, all three predictions seem to be
reasonably well borne out by the data (Warner, 1981), al-
though some very recent results (Gelletly, Van Isacker
et al., 1987) for y —g transitions in '“Er seem to show a
factor-of-2 disagreement with the corresponding mixing
ratio values within the y band. For the case of B—g
transitions in deformed nuclei it will be the second term
in Eq. (2.71) that dominates, since, while the EO transi-
tions are strong, the equivalent E2 transitions are weak,
as discussed in the previous section. In fact, in this case,
the spin dependence remains the same but, of course, the
constant can change. Thus the sign of mixing ratios in
B—g transitions may be different from those involving
the ¥y band. The data on mixing ratios for f—g transi-
tions are rather sparse, and as yet no comparison has
been made with the predictions of this simple framework.
However, the data that exist (Lange, Kumar, and Hamil-
ton, 1982) do seem to support the idea that the sign of
the mixing ratios for these transitions is constant across
the rare-earth region and opposite to that observed for
Y — g transitions (Krane, 1973).
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In the O(6) limit, the selection rules associated with the
E2 and EO operators, respectively, lead to the specific
prediction that the A7=0 transitions from the o =N —2
to the o =N group of levels should be dominated by M1
transitions, since, while these are allowed by the second
term of Eq. (2.71), the E2 operator is forbidden.

3. The consistent-Q formalism (CQF)

In the previous section it was demonstrated that the
empirical data on E2 transitions in the rare-earth region
mandate a rather well-defined structure for the E2 opera-
tor, which is not consistent with the SU(3) form of Q as-
sumed in the Hamiltonian. Thus different forms of the
quadrupole operator are needed in H and T(E2) in order
to describe the data. It is clearly of interest to ask wheth-
er a comparable description can be obtained within a
framework where consistent forms of the quadrupole
operator are used. This approach is referred to as the
consistent-Q formalism (CQF; Warner and Casten,
1982a, 1983) and, in its simplest form, utilizes a Hamil-
tonian

H=a,Q0%+a,L?, (2.74)
where

0=(sTd+dTs @ xd’a)? 2.75)
and

T(E2)=e5Q . (2.76)

The result of changing the absolute magnitude of X in
the Hamiltonian can easily be inferred from the conse-
quent changes in the d-boson seniority changing terms
generated by the Q2 interaction. The earlier study of the
E2 operator suggests that a reduction in the absolute
magnitude of X might be required, which in turn would
generate a reduction in the Any;==1,0 terms relative to
the An, =12 terms. It will be recalled that the former
are important in the Q2 [SU(3)] interaction, while the
PP term does not involve Any;=1 terms. Hence the
CQF approach would seem likely to generate the same
type of perturbation to the SU(3) spectrum as the pPip
symmetry-breaking term considered earlier. This is
indeed the case, and it has now become clear that the
CQF framework outlined above, which involves one less
parameter than the Hamiltonian and E2 operator of Egs.
(2.64) and (2.8), in fact produces equivalent or better
agreement with the data.

More specifically, a reduction in the absolute magni-
tude of X produces the same effect as the PP term in
pushing the 3 band above the y band in energy. Indeed,
the resulting matrix elements between SU(3) states
behave similarly against | X | to those of the original for-
malism against ay/4a, shown in Fig. 14. The higher ex-
citations (3B, vy, By bands) are also pushed higher in en-
ergy relative to the ¥ band. The ratios of their energies
as a function of X are shown in Fig. 20 and are seen to be
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FIG. 20. Energy ratios in the consistent-Q formalism for the

transition from SU(3) (left-hand side) towards O(6) (X =0). The

subtraction of E, , in both numerator and denominator is per-
1

formed simply to remove the effects of any L2 term.

very similar to those against a,/4a, in Fig. 14 (up to
ag/4a,~ —1) discussed earlier. Note that Fig. 14
showed energies and not ratios, but the relative behavior
of the higher excitations can be compared with the
present Fig. 20, since E, was nearly constant. However,
the important difference in the CQF approach is that the
v band itself is strongly lowered in energy as | X | de-
creases. That is, in contrast to Fig. 14, the increase in
such ratios as Ez/E, occurs because of the more rapid

E o+ (MeV)

(x,0) ZEJ

—
0.0 -1.32 -1.0 ~-0.6 -0.2

FIG. 21. Energies of various 2% states in the consistent-Q for-
malism for the transition from SU(3) (left-hand side) towards
O(6) (X=0). For N =10, with a, = —0.02 MeV.

Rev. Mod. Phys., Vol. 60, No. 2, April 1988

decrease of E,, than Ez and not because of an increase in
the latter. This is illustrated, for N =10, in Fig. 21. The
compression of the entire level scheme is apparent. Of
course, in practical calculations, this can be compensated
by larger absolute values of a,.

a. O(6) nuclei in the CQF

Just as the dominance of the g P'P term in the origi-
nal form of the multipole Hamiltonian results in an O(6)
spectrum, here too, in the CQF, when X —0, the quadru-
pole operator of Eq. (2.8) becomes a generator of O(6), so
that a spectrum with O(6) symmetry must be produced.
However, inspection of the original O(6) Hamiltonian of
Eq. (2.56) shows that the CQF version, Eq. (2.74), in-
volves one less parameter and therefore must produce a
more constrained form of the O(6) symmetry than Eq.
(2.57). 1In fact, the resulting O(6) eigenvalue expression is
(Warner and Casten, 1982a, 1983)

E=A[(N—0)XN +o0+4)+7(r+3)]+CL(L+1),
(2.77)

showing that the constraint that emerges is an equality of
the O(6) and O(5) contributions, so that 4 =B in Eq.
(2.57). Note that in the original O(6) limit there is no
constraint whatsoever of this type, and 4 and B may
take on any values. It is therefore very encouraging to
note (see below for further details) that empirical fits us-
ing the more general eigenvalue expression do indeed
seem to result in a near equality of 4 and B. This feature
has now been noted in both the 4 =130 Xe,Ba region
(Casten and von Brentano, 1985) and the 4 =196 Pt re-
gion. Moreover, it has recently, been shown (Casten
et al., 1986) that the fermion dynamical symmetry model
of Wu, Feng, Guidry, Ginocchio, and co-workers (Wu
et al., 1986; see also Ginocchio, 1980) also gives this re-

~ sult.

b. Deformed and transitional nuclei in the CQF

From this discussion it is apparent that the transition
from O(6) to SU(3) can be accomplished in the CQF sim-
ply by varying X between the values (0 and —V'7/2) ap-
propriate to each limit. As will be seen below, this treat-
ment, which again is simpler than the earlier formalism
and involves one less parameter, works at least as well.

It is interesting to understand the physical effect of
varying X. This was first worked out numerically
(Casten, Aprahamian, and Warner, 1984) and, subse-
quently, analytically by Castanos, Frank, and Van Isack-
er (1984). the basic idea is that SU(3) is a symmetric ro-
tor, while O(6) is an asymmetric, y-soft rotor with a
mean or rms ¥ value of 30°. Thus changes in X should
correspond somehow to the introduction of (dynamic) ax-
ial asymmetry. On the other hand, studies of the classi-
cal limit (see Sec. IL.LE) of the IBA-1 show that all y
dependence in the equivalent geometrical potential,
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V(B,7 ), enters through terms of the form cos3y so that
V(B,v) can have a minimum only at ¥ =0° or 60° (pro-
late, oblate limits) but never for intermediate axially
asymmetric values. Thus the question arises as to how
the IBA goes from the axially symmetric SU(3) limit to
the y-soft (y,,s=30°) O(6) case. In Casten, Aprahamian,
and Warner (1984) calculations in the Davydov and
Filippov (1958) model as a function of ¥ were compared
to those of the IBA in the CQF, and a one-to-one rela-
tionship between ¥ and X was deduced. The results are
shown in Fig. 22. By comparing results for different ob-
servables it is apparent that similar y-X relationships
occur and thus that an effective y value can be defined to
within a few degrees. Thus the O(6)—SU(3) transition
corresponds to a potential changing from completely ¥
flat to one whose minimum value is at ¥ =0° but which
has a finite slope as a function of y. The slope becomes
steeper (but remains finite) as X approaches the SU(3)
value. It becomes infinitely steep only if N— . Thus,
for finite N, v, never vanishes. This potential is shown
for several X values in Fig. 23. The y values and the
asymmetry that characterize the IBA, even in SU(3), but
more so with deviations toward O(6), are thus dynamic,
resulting from zero-point motion in a finite potential,
V(B3,7). The above procedure is subject to the criticism
that it compares the Davydov-Filippov model of rigid ¢
asymmetry with one of substantial y softness. There
have been a number of subsequent studies that explored
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this question with different approaches. Dobe§ (1985)
has employed the Hartree method with angular momen-
tum projection and obtained similar results. This ap-
proach is sensitive, not so much to y . as to ¥, the
value of ¥ at which the finite potential V(f3,y) is mini-
mized. He therefore obtained ¥ ,;,=0° in SU(3), but this
is not inconsistent with the results just discussed. Cas-
tanos, Frank, and Van Isacker (1984), on the other hand,
expressed the wave functions of the Hamiltonian for arbi-
trary X in a U(5) basis and then used the Holstein-
Primakoff representation to map this basis onto the expli-
cit wave functions W(S,y,) of a truncated quadrupole
phonon space. However, this procedure implies the
specific choice X =0 in the operator determining ¥, and
hence their results, though very similar to those de-
scribed above, are not strictly relevant to the case of an
E?2 operator with X540. Elliott, Evans, and Van Isacker
(1986) used a different method, based on calculating the
expectation values of the quadrupole and cubic invariants
Q2% 0% in the ground state. Here, the general trend is the
same, but the deduced values of {y ) are smaller and go
to essentially zero at the SU(3) limit even for finite N
values.

The nature of the transition induced by changing X
from its SU(3) to O(6) value can be investigated in a
different sense by rewriting the CQF Hamiltonian in
terms of the Casimir operators of the various symmetry
groups. This yields the surprising feature that the transi-

30 +)

BIE2; 25 — 27
B(E2;2%~07)

Eoe /E
2372y

y (deg)

.
20 N=12 BE2;25—=27)

B(E2,23—-0))

10 B(E2;3* ~4T)
B B(E2;3*—2%) T
1 1 1 1 i |
0 -0.5 1.0 15 -2.0 2.5 3.0
/5 X

FIG. 22. y<X relationship in the SU(3)«<>O(6) transition, for various observables in the IBA. For one observable the results for two

different N values are shown. From Casten, Aprahamian, and
Castanos, Frank, and Van Isacker (1984).
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Warner (1984). The curve marked O was obtained analytically by
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T T
X
3+ _
-1.32  su(3)
L .
c -0.89
>
I -0.44 N
-0.22
0 0.0 o(e)-
L, 1 1 1
0 20 40 60

y (deg)

FIG. 23. The dependence of the classical potential correspond-
ing to the IBA as a function of ¥ for several values of X, ranging
from the SU(3) limit (X = —1.32) to O(6) (X=0). From Casten,
Aprahamian, and Warner (1984).

tion does not correspond exactly to the SU(3)-O(6) leg of
the symmetry triangle but rather to a path of the type in-
dicated schematically in Fig. 24, which involves a contri-
bution from the U(5) Casimirs also. In fact, the
coeflicients of the linear and quadratic U(5) contributions
are equal and related to the parameters of the quadrupole
interaction by (A. Frank, 1986)

X

2X
Cius=Chys=a, "= V7

1+

V7 (2.78)

Note that, as evident from Fig. 24, both vanish for the
SU(3) value of X=—V'7/2 and for the O(6) value of
X=0. The largest contribution arises for X=—V'7/4
and yields a value for € of —a, /8. In practice, therefore,

u(s)

SU(3)

FIG. 24. Symmetry triangle of the IBA with an indication of
the path corresponding to the O(6)«>SU(3) transition in the
consistent-Q formalism (CQF).
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in realistic calculations, the U(5) contribution is rather
small.

The principal advantage of the CQF approach lies in
its considerable simplicity. Since the L 2 term in Eq.
(2.74) is always diagonal, the wave functions of the CQF
Hamiltonian are uniquely specified by X (and the boson
number ). The parameters a, and ey both act only as
scaling factors on the absolute energies and B(E2)
values, so that relative values of these observables are
also uniquely specified only by X and N. Thus, in this
framework, the energy and E2 properties are inexorably
linked, so that, if the X value is determined from one, the
other is determined (at least on a relative scale). In fact,
ratios of energies or B(E2) values can be predicted in
this framework as a function of X and N and displayed in
the form of contour plots, as illustrated in Figs. 25 and
26. (The dots on these figures serve to emphasize the fact
that the predictions are valid only for integral values of
N) The ratio R,=B(E2:2} —0/))/B(E2:2} —0;)
displayed in Fig. 25 can now be used, as before, to deter-
mine the permissible range of X values appropriate to the
well-deformed nuclei in the rare-earth region using the
data of Fig. 16. The result is the hatched rectangle in the
upper center of Fig. 25, which can then be transposed to
other contour plots to provide predictions for other
B (E?2) ratios and for the relative energy spectrum. [The
other hatched area corresponds to O(6)-like nuclei.] The
relatively narrow range of X values appropriate to de-
formed nuclei reflects the relatively constant values of R,
seen empirically in Fig. 16. Note that in the upper part
of Fig. 26 the energy ratio plotted is effectively the ratio
of the intrinsic excitation energies of the 8 and y bands,
since the form of the denominator is designed to remove
the L(L +1) dependence. The contour plot involving
B— v transitions in Fig. 26 shows that, as stated earlier,
these remain collective for large ranges of X and N. Fi-
nally, the CQF, in the context of an SU(3)— O(6) transi-
tion, gives simple results not only for ratios of energies
and B (E2) values but for their actual values. Figure 21
gave some of these results for energy levels.

In Egs. (2.32), (2.49), and (2.60) we gave analytic ex-
pressions for the B(E2:2{" —07) value in each of the
three limits. Of course, an analytic expression in inter-
mediate situations is not possible, but the simplicity of

T T

B(E2; 25 — 0})

B(E2; 25 —03)

BOSON NUMBER

FIG. 25. Contour plot of the indicated B (E2) ratio in the CQF
as a function of N and X. From Warner and Casten (1983).
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the CQF may be exploited to develop the following ap-
proximate expression (Casten and Wolf, 1987): .

B(E22} -0 )=e(N+1)X1-0.1X)/2 .  (2.79)

[Note that X is generally negative, so the coefficient of
(N +1) is slightly greater than 0.5.] This expression is
valid to better than £12% for X=0— —1, thus covering
nearly all deformed and transitional nuclei. It may be
used either to estimate absolute E2 transition rates or to
extract boson effective charges for nuclei not satisfying a
limiting symmetry. For the X value of —0.5, approxi-
mately valid for most rare-earth deformed nuclei, one
has, simply, B(E2:2{" —0;{")~0.525(N +1)%3.

While a more detailed comparison of the predictions of
the CQF approach with specific nuclei will be made in
subsequent sections, it is instructive at this stage to use
the X and N values corresponding to the empirically
determined rectangle on the contour plot of Fig. 25 in
conjunction with the other contour plots to construct the
predicted structure of a deformed nucleus in this frame-
work. The result is shown in Fig. 27 for the lowest three
rotational bands. Note again that the three distinctive
features that characterize this description are the 8 band
lying above the y band, a B—y E2 strength roughly
equivalent to the y —g strength, and a much weaker
B—g strength. All of these features are predictions that

Eop
E2; —E2y
1.3 1.2
> 4
u
©
- s N
g 1 1
p ot — on
g B(EZ,Z? 0?) 4
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B(E2; 2} —=07p),
BE2;25—~0p)
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FIG. 26. Contour plot of the indicated ratios in the CQF as a
function of N and X. From Warner and Casten (1983).
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FIG. 27. Typical structure of a deformed nucleus in the IBA.
The numbers on the transition arrows indicate typical relative
B(E2) values. From Warner and Casten (1983).

arise automatically for X values defined by the ratio in
Fig. 25, and hence the fact that they are at least qualita-
tively in agreement with the large body of data in this re-
gion speaks very strongly in favor of the underlying basis
of this approach. In addition it raises some interesting
questions concerning the nature and relationship of the 3
and ¥ intrinsic modes in deformed nuclei; this point will
be returned to in the next section.

In an O(6)-SU(3) transitional region there are obviously
many routes that could be taken from the crosshatched
area in the center of Fig. 25 to the bottom left-hand
corner, which represents the O(6) limit. However, some
predictions are independent of the route. For example, it
is clear that it is impossible to pass between the
crosshatched regions, in both of which R, is small,
without going through a maximum. This prediction,
though qualitative, is parameter independent and ines-
capable (within the CQF framework). Similar results
characterize other B(E2) ratios, such as the quantity
B(E2:3,—2))/B(E2:3} —2}).

It is also interesting to consider the simplest route,
namely a straight line as indicated in Fig. 25. Some re-
sults are illustrated in Figs. 28 and 29, where the predict-
ed behavior is compared with the experimental data for
the relevant nuclei. The agreement is in general good, al-
though for specific nuclei in the transitional region it is
no better than a factor of 2. On the left-hand side of Fig.
29, the predicted behavior of the quadrupole moment of
the first 27 state is shown. Since this prediction does not
involve a ratio of quantities, a value for the effective
charge in the E2 operator must be chosen, and the re-
sults of two such choices are indicated in the figure, both
falling within the previously determined range for this
parameter and, between them, encompassing essentially
all of the data. The value for !°°Pt is not shown and
remains, as discussed earlier, in marked disagreement
with the pure O(6) symmetry prediction. It is also in-
teresting to observe that the quadrupole moment data in
the deformed region appear to separate according to ele-
ment, possibly suggesting a small Z dependence of the
effective charge in this region. More striking is the clear

tendency of the values to saturate at larger boson num-
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FIG. 28. Comparison of calculated (CQF) and empirical
B(E2:2}—0]) values normalized to the 2i{" —O; transition.
The calculations utilized X values corresponding to the dashed
straight line trajectory in Fig. 25. From Warner and Casten
(1983).

bers, indicating that the empirical dependence on N is
weaker than the predicted one. Of course this feature
could also be explained by an N dependence in the
effective charge or by effective N values in the IBA-1 it-
self, since qualitatively Q21+ « N. Finally, the right-hand

side of Fig. 29 shows the dependence on X of a y—g

branching ratio. The interesting feature here is that,
while the calculated curve clearly approaches the rota-
tional value of 0.7 as N increases, it never attains it for
realistic values of the boson number. This behavior sim-
ply reflects the automatic incorporation of band mixing
effects within the IBA framework alluded to earlier and
discussed in considerably more detail in Sec. III.

It is clear, therefore, that the CQF can give a reason-
ably good and extremely simple description of the main
characteristics of the nuclei spanning the deformed-O(6)
region. Of course it must be emphasized that the results
shown above should not be expected to provide detailed
agreement with specific nuclei throughout the deformed
rare-earth region. Rather they may be conceived as a
(much improved) starting point in such a calculation, rel-
ative to the pure SU(3) limit.

For an SU(3)— U(5) transition, the above procedure is
inadequate, since the €fi; term is essential for U(5). Al-
though it has been pointed out that the transitional CQF
Hamiltonian implicitly contains such a term, in fact, the
contributions of C,ys and C,ys reach a maximum for
X = —V"7/4, the magnitude at this point being 1 that of
the a, coefficient of Q2. In practice this is totally
insufficient to describe the specific onset of vibrational
structure, and hence an additional term in efi; (at least)
must be introduced into the Hamiltonian of Eq. (2.74) to

give (Lipas, Toivonen, and Warner, 1985)
H=¢A,+a,Q0*+a,L*. (2.80)

This approach has been called the extended consistent-Q
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FIG. 29. Further IBA predictions in the CQF. From Warner and Casten (1983).
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FIG. 30. Contour plot relating 8 and ¥ band energies in the
ECQF for N =11. From Lipas, Toivonen, and Warner (1985).

formalism or ECQF. This step sacrifices some of the sim-
plicity inherent in the original CQF Hamiltonian since,
now, for a given boson number N, the wave functions will
depend on both X and €/a, rather than on X alone. Nev-
ertheless, it is still possible to construct contour plots for
energy and B(E?2) ratios as functions of X and e/a,, al-
beit now for a specific N value. Some examples are
shown in Figs. 30 and 31. Clearly these figures are con-
siderably more complex than their SU(3)— O(6) counter-
parts, and of course two of them must be used in order to
determine both X and &/a, uniquely. There are still,
however, a number of interesting signatures that can be

404 5 15 25, 25 L
25
324 -
15
35
24 -

_E/az
!

55

N=11 B

10% BE2i2y>0)
BIE2;230)

Vs X

discerned, which together emulate the known charac-
teristics of a rotational-vibrational transition. One such
signature is a lowering of the 8 bandhead below the y
bandhead and an accompanying increase in the strength
of the B—g B(E2) transitions. This lowering of the 8
band immediately places the calculation outside of the
scope of the normal CQF, but reference to Fig. 30 shows
that the addition of the €fi; term indeed generates a re-
gion in the X-e/a, plane where this occurs. Specifically,
it involves the upper right-hand corner, where the energy
ratio EOB/(E27~E23) falls below unity. Then Fig. 31

shows that, in the same quadrant, the B—g strength
maximizes while the y-—g strength remains largely
unaffected.

A U(5)—0(6) transition region is even simpler than
SU(3)—U(5), since X =0 is used in both these limits and
therefore may plausibly be kept constant throughout the
transition region. Thus the appropriate Hamiltonian is
simply that of Eq. (2.80) with X=0. Once again, simple
contour plots, of the type possible in SU(3)— O(6) transi-
tion regions, are possible, since the structure depends
only on €/a, and N. Some typical predictions (for
N =11) are discernible in Figs. 30 and 31 by setting X =0.
The predicted energy and B(E2) ratios are clearly seen
to reflect the expected trends between U(S) and O(6). It is
interesting to note that, as in the SU(3)—O(6) case, a
number of branching ratios such as those shown in Fig.
31 vanish in both limits and are finite only in the transi-
tion region.

Thus the use of a consistent form of the quadrupole
operator in the description of both energies and B(E2)
strengths seems to succeed in characterizing the major
structural changes in both across an entire major shell.
The question of which additional terms are necessary in
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FIG. 31. Contour plots of B(E2) ratios in the ECQF for N =11. From Lipas, Toivonen, and Warner (1985).
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specific regions to improve the agreement between theory
and experiment is still an open one and requires further
study. A further advantage of this approach that has not
yet been mentioned is its rather direct connection to the
parameters of the IBA-2 Hamiltonian, which in turn can
be linked to the underlying shell-model basis. Indeed,
there have been attempts (Xu, 1984) to derive the CQF
from a microscopic approach. This connection implies
that the constraints extracted from the data in the IBA-1
basis for parameters such as X can be used as direct input
to the problem of developing a fermion-boson mapping
procedure.

A final comment on terminology is useful here. In re-
cent years the term “CQF” has come to denote two
somewhat different ideas. In one, which is the formalism
presented here, Q takes on the same form in H and
T(E2), and an O(6)—SU(3) transition can be obtained
simply by varying X. In the other, the CQF (variable-X)
form of the Hamiltonian [ H =~Q?2(X)] alone is used (see,
for example, Faessler et al., 1985) to study nuclei be-
tween the U(6) symmetries, but without constraining X to
be the same in T(E2). We would prefer to use the term
“CQF” for the former and “CQF Hamiltonian” for the
latter.

4. Summary

To conclude and summarize this section, it is useful to
recapitulate some basic guidelines for practical IBA-1
calculations. This is most easily done by reference to the
symmetry triangle of Fig. 12. Calculations involving a
large € will tend towards a U(5) structure, while those
with a large a, term will give deformed nuclei with devia-
tions from SU(3) depending on the size of the symmetry
breaking [e.g., € or deviations of X from Xgy3)]. O(6)-like
spectra are produced either by a large PP term or, in the
CQF, by small |X| values. As general guidance, it is
also useful to recall that the N dependence of the Q2 term
is =~ N2, while the effects of efl; go as N, so that, even for
constant €/a,, a monotonic tendency towards deforma-
tion will ensue as N increases. How far it goes depends
on the actual values of €/a,. In an SU(3)-O(6) region, it
is useful to note that, while deviations from SU(3) grow
approximately linearly with a, PP, or with | X —Xsy3 | »
a good deformed structure nevertheless persists until
these latter terms are quite large: for example, as the
contour plots of Figs. 25 and 26 show, deformed charac-
ter remains more or less intact for N > 10 even for | X |
values as small as 0.4.

E. The intrinsic-state formalism: geometric
interpretation of the IBA

We have made numerous allusions and some brief
comments from time to time concerning the physical or
geometrical interpretation of the IBA. In fact, the prob-
lem of constructing a quantitative link between the alge-
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braic and geometric frameworks has produced a wealth
of literature over recent years. The motivation for such
studies is, of course, to understand the successes and
failures of the purely algebraic IBA in terms of the more
familiar and physically intuitive concept of a nuclear
shape. In this short section we shall develop some of
these ideas a little more formally and present some basic
results in simple form.

The association of a geometrical shape with a given
IBA Hamiltonian or wave function involves taking the
classical limit of a quantum system. This is a nontrivial
problem, and in general the correspondence is ambigu-
ous. However, Gilmore and co-workers (Gilmore,
Bowden, and Narducci, 1975; Gilmore, 1979) have
shown that an unambiguous definition is possible when-
ever the quantum system has the group structure of a Lie
algebra, such as U(6). For a system of N bosons, de-
scribed by the group U(#), there are » — 1 independent as-
sociated classical variables. For U(6) the sixth variable is
fixed by a normalization condition determined by the fact
that the boson number N is conserved. That is, all states
belong to a single representation [N] of U(6). For the
IBA-1, then, there are five classical variables, and these
may be chosen to be the familiar geometrical quantities
B, v, and the three Euler angles. The algorithm of Gil-
more (1979) depends on the concept of intrinsic or
coherent states in terms of which one calculates upper
and lower bounds of the expectation values of any opera-
tor. These bounds converge, in the N — o limit, to the
exact classical limit (Gilmore and Feng, 1978a, 1978b;
Gilmore, 1979). We refer the reader to the primary
literature for the details of this formalism and its condi-
tions of applicability (Gilmore, 1979; Dieperink and
Scholten, 1980; Dieperink, Scholten, and Iachello, 1980;
Ginocchio and Kirson, 1980a, 1980b; Arima and Iachel-
lo, 1981; Van Isacker and Chen, 1981; Bijker and Dieper-
ink, 1982; Iachello and Arima, 1987). For related ap-
proaches, see Castanos, Frank, Hess, and Moshinsky
(1981), Hatch and Levit (1982), Balantekin, Barrett, and
Levit (1983), Chen and Arima (1983), and Leviatan (1984,
1986). Here we outline the basic ideas and the results.
As recently discussed by Kirson and Leviatan (1985), a
general IBA Hamiltonian can be separated into collective
and intrinsic parts: H=H_;+H;,,. The H_ is the
“rotational” part, while H,,, depends on 3 and y. The
concept of an intrinsic state is applicable if the fluctua-
tions in B,y are small compared to their mean values.
Then one can write an intrinsic state for the IBA
ground-state condensate as follows:

IN,By)=—=(b11¥|0) |

VN (2.81)

where the operator b: acts in the intrinsic system and is
given by
bl=(148)"12{s" 4 Blcosy(d])
+V1/2siny(d+d ;)1

=1+ V2sT4Bdf) for y=0. (2.82)
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The origin of the factorial in the denominator on the
right-hand side of Eq. (2.81) can be seen by considering
the result of repeated applications of Eq. (2.16), namely,

(biN|10Y=VN1|NBy) ,

while the factor (1+8%)~!/2 in Eq. (2.82) arises from the
requirement that the states be properly normalized.
Ginocchio and Kirson (1980a, 1980b) have shown that
this is indeed an intrinsic state for the IBA, valid for all
N values, in the sense that the entire basis spanned by the
IBA can be projected out from it.

The form of this intrinsic state, and the use of the no-
tation B for the coefficient of the d, term, can be made
plausible by noting that the IBA ground state in U(5) has
ny =0, while {n;) >>0 in the deformed SU(3) limit. For
¥ =0 the number of d bosons in the intrinsic state, and
hence, by analogy, the deformation, is clearly controlled
by the magnitude of the coefficient of d,,. This coefficient
is then reasonably called B. It has been shown that the
quantity 3, in an intrinsic state that has a well-defined
quadrupole moment and that minimizes the quadrupole-
quadrupole interaction (i.e., the ground-state energy of a
CQF Hamiltonian), is given by the condition (Ginocchio
and Kirson, 1980b)

B=Bo=1—V2/TXtV (2/T)X*+4), (2.83)
where the * signs are for X >0 and X <O, respectively.
The minimum occurs for y=0 (prolate) if X <O and
v =m/3 (oblate) if X >0. For X=0, the interaction ener-
gy is independent of y. These results are valid to order
1/N for any CQF Hamiltonian and thus include the O(6)
and SU(3) limits, as well as intermediate situations. In
particular, for SU(3), X=—V'7/2 and B,=V'2, and, for
O(6), where X=0, Eq. (2.83) gives By=1. It is evident
that B, is much larger than the typical B values of the
Bohr-Mottelson (BM) model. However, in the latter ap-
proach B refers to the deformation of all 4 nucleons,
while the IBA describes only the 2N valence nucleons.
Ginocchio and Kirson (1980b) have obtained the approx-
imate relationship Bgy=1.18(2N / A)Bigs. The fact that
Bia >>Bgeom has the important consequence that the role
of anharmonic terms in the Hamiltonian is far more criti-
cal in the IBA than in the Bohr-Mottelson approach.

The expression for the minimization condition for
X <0, ¥y =0 to next order in N is (Ginocchio and Kirson,
1980b)

(X2—4)(V2/7XBy—2)
ANBy(2X*+4)

Bi=By— +O0(1/N?%), (2.84)

where [, is given by Eq. (2.83). Clearly, B;—f3, for
N — =0, but contains significant correction terms for real-
istic N values. . Specifically one has

B,(0(6))=1—1/N ,
B1(SU(3))=~V2(1—3/8N) .

(2.85)
(2.86)
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Thus far, the analysis has concerned an IBA Hamiltonian
which contains only a Q2 term. In the more general case,
of course, the intrinsic state will not be an eigenstate of
the quadrupole operator, and thus a different approach is

- necessary. Dieperink, Scholten, and Iachello (1980),

Ginocchio and Kirson (1980a, 1980b), and Van Isacker
and Chen (1981) have all approached this question by
constructing an energy surface corresponding to a gen-
eral IBA Hamiltonian. By Gilmore’s algorithm this gives
an upper bound to the exact ground-state energy and ap-
proaches it as N— «. By studying the minima in this
energy surface as functions of the parameters of the IBA
Hamiltonian, one can derive the associated geometrical
shape. A general expression for this energy surface, as a
function of 8 and v, stated in terms of the Hamiltonian
of Eq. (2.4), is given by (Van Isacker and Chen, 1981;
Iachello and Arima, 1987)

Ne,B°  N(N—1
1+82 (14822

E(N,B,y)= )(a1B4+aZB3cos37/

+ayfta,), (2.87)
where the a;’s are simply related to the coefficients C,,
Uy, Vg, Uy, and u,. One notes that ¥ occurs only in the
term in cos3y, and thus, as before, the energy surface has
minima only at ¥y =0° and 60°. No asymmetric minima
occur; for these one would need to introduce higher-
order interactions such as cubic terms. By choosing
coefficients corresponding to the different IBA sym-
metries one can display energy surfaces for each. The sit-
uation is unfortunately rather confusing at this point be-
cause, as we have noted, different authors use different
definitions of the coefficients in the IBA Hamiltonian and
because it is possible to construct the three IBA limits

. with different Hamiltonians. For example, the O(6) limit

may be obtained with a Hamiltonian H =aOPTP or with
the CQF Hamiltonian, H =a,Q? with X=0. Similarly,
in each limit one may also include an L ? term. Rather
general forms for the energy expressions in the three lim-
its have been given by Arima and Iachello (1981) using
the Hamiltonian of Van Isacker and Chen (1981).
Simpler expressions, which display the essential depen-
dence on 3 and 7, have been given by Dieperink, Schol-
ten, and Iachello (1980), who obtain ‘

2

E(N,B,y)zedN—l-f—«[};, uGs) , (2.88)
14 3p*—Vv2B3%cos3y
E(N,B,y)=kN(N —1) Ty , SU3),
(2.89)
, 1-p |’
E(N,B,y)=k'N(N —1) [ 115 ‘ , O(6), (2.90)

where Kk ca, and k'« ag in Eq. (2.5). These expressions
give (for large N) B,,;,,=0, V2, and 1 for U(5), SU(3), and
O(6), respectively, as was found previously.
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Finally, another way of seeing the same results is by
considering the structure of the wave functions them-
selves in the three limits. These have been obtained by
Ginocchio and Kirson (1980a) and are given by the fol-
lowing expressions (for large N):

Waple—12NF y(s), (2.91)
Ve 12MV2-B747%1 gu(3) (2.92)
Ve NI-B? ((6) . (2.93)

Clearly, in U(5) the energy minimum for the ground
state, where n; =0, corresponds to =0, while in O(6)
the minimum is at B=1, and in SUQ3) at B=V2. It is
also clear that, as N increases, the wave functions become
more and more localized in 3 and, for SU(3), in ¥. These
features are illustrated in Fig. 32, in which |W¥ | is plot-
ted against 3 for each limit for N values of 6 and 16.

Thus, to recapitulate, via the intrinsic-state formalism,
one obtains a geometrical picture of the IBA in which
U(5) corresponds to a spherical anharmonic vibrator
[note that it is also trivially ¥ independent, thus
reflecting the earlier discussion of some similarities to
0(6)], SU(3) is a deformed, axially symmetric rotor, and
O(6) is also deformed but is completely ¥ soft. Thus we
recover exactly the geometrical picture, discussed often
above, that is also apparent by analogy between the level
schemes of the geometrical and IBA models.

Using the intrinsic-state formalism, one can also derive
(Dieperink and Scholten, 1980) a result obtained numeri-
cally earlier and illustrated in Fig. 6, namely the expecta-
tion value {n,) in the ground state for the different lim-
its. The result is

NB?
1+8

where 3 is the equilibrium deformation value. This gives
(ny)=0 in U(S5), where the ground state is the s-boson

(ny)= (2.94)

T T T T T
u(s) o(6)  SU(3) N=6
1.0 -
0.8 B

0.6

T

04t §
0.2 y
¥l o

SU(3) N=16

u(s) o)

FIG. 32. Plots of |W¥ | vs B for N =6 and 16 for each of the
three IBA-1 symmetries. From Egs. (2.91)-(2.93).
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condensate. In O(6) and SU(3), the limiting values of
ny/N, as N— o, are 4 and . Reference to the earlier
result in Fig. 6 shows that the actual calculated expecta-
tion values of n, are reasonably close to these limiting
values for typical N values.

The intrinsic-state formalism may also be used to study
excited states and E2 transition rates. Such work has
been discussed by Bijker and Dieperink (1982). Starting
with the intrinsic ground-state wave function of Eq.
(2.81) in the limit of large N, one may create 3 and y vi-
brations by employing the operators (Bohr and Mottel-
son, 1982)

1

blh=———(—BsT+d]), (2.95)
PV & 0
b$=%2(d§+dtz) , (2.96)

so that one of the bosons of the ground-state condensate
is replaced by an appropriate combination of s and d bo-
sons for the 3 and y vibrations. It may be seen that these
expressions are plausible by noting, for example, for the 3
vibration, that the replacement of one condensate boson
of the ground state by an orthogonal combination is
analogous to the geometrical picture in which the 3 vi-
bration is formed from an orthogonal combination of the
same microscopic components that comprise the ground
state. Thus the 8 and y vibrational states become (for

large N)

bib. |g)=N'2|B), bib, |g)=N"|y), (.97
|IBY=N""%}b_ |g), (2.98)
ly)=N""2b,|g) . (2.99)

The value of {n,) in the B band, for example, then is

given by

N —1
N

reflecting the separate contributions of the N —1 conden-

sate bosons and the one 3 boson. Similarly, the quadru-
pole moments are related by

N —1
N
The dominant characteristics of the two-particle transfer

operator [see Eq. (2.12)] can also be easily deduced by
noting that the operator s' can now be rewritten as

<nd>[3: <nd>g+(1+ﬁ2)_1 ’ (2.100)

QOp= Q,—(1-p)~12B+V2/7X) . (2.101)

sT=(148)"12b] b)) . (2.102)
This then yields immediately
: (N+1)1/2
(g,N+1]ST|g,N>=W, (2.103)
(BN+1|s" g Ny=—B__ (2.104)
’ &A= (1+pH2 7 '

and hence, for the simplest form of the operator (2.12),
the ratio of transfer strengths is given by
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Sp_ P

S, N+1°

(2.105)

Thus the cross section of the 8 band, relative to the
ground band, vanishes as N — «, in accordance with its
geometrical equivalent. Moreover, the ratio of ground-
state transfer strengths in the three symmetry limits of
the IBA is simply

U(5):SU(3):0(6)=3:1:1.5 . (2.106)

The factor-of-3 difference between U(5) and SU(3) in Eq.
(2.106) also appears in the exact expressions found in
Egs. (2.35) and (2.51).

Finally, using Egs. (2.95) and (2.96), Bijker and Dieper-
ink (1982) obtained the following analytic expressions,
valid for large N, for intraband and interband E2 transi-
tions involving the ground and 3 and ¥ bands:

(g | T(E2)|g)=esN(1+B) ' 2B—V2/7XB?) ,
(2.107)

(B| T(E2)|g)=epNVX14+B) "1 —-V2/IXB—B) ,

(2.108)
2\ —172 -
(7| T(E2)|g)=eBN‘/2% (242V2/7X) ,
(2.109)
(1452 172

(v | T(E2)|B)=ey—E7

— V2 /7
V5 (=2B+2V2/7X) ,

(2.110)

where X is the parameter contained in T(E2). For large
N, the relative magnitudes of these matrix elements fol-
low the sequence g—g >y —g > f—7, thus recover-
ing the predictions of the Bohr-Mottelson picture in
which transitions between 3 and ¥ bands are forbidden
while intraband transitions are strongest. However, for
finite V and typical values of X for deformed nuclei, these
expressions also yield the important result discussed ear-
lier that B—y band transitions dominate S—g and are
comparable to y—g band transitions. In fact, using
these expressions, one may reproduce Fig. 18, and, in
particular, the interesting result is that the ratio of B—g
transitions to y—g transitions, for large N, equals 1,
which is very similar to the numerical value obtained by
Warner and Casten (1982b). One last interesting result is
that if one inserts the expression for f3, in Eq. (2.83), into
the expression (2.108) for the B—g band transitions, one
finds (Warner and Casten, 1982c) that B—g band transi-
tions vanish identically. This result corresponds to the
CQF formalism in which X in T(E2) is made identical to
X in Q2 of the Hamiltonian. In numerical calculations,
small but nonzero values of the S—g matrix element
emerge, corresponding to the neglected terms of order
1/N or higher in the intrinsic-state formulas.
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11l.- COMPARISON WITH EMPIRICAL DATA

In the above sections the basic concepts, structure, and
physical interpretation of the IBA have been outlined,
along with a discussion of its application to practical cal-
culations and its relation to geometrical models. Al-
though some comparisons with data were presented
above, the purpose of the present section is a more sys-
tematic and thorough assessment of where the model
stands vis-a-vis the experimental facts of low-energy nu-
clear excitations. A convenient way to view this compar-
ison is in terms of the symmetry triangle of Fig. 12, the
essential features of which are the three symmetries or
limits and three transition legs linking them. Each of
these six features has been discussed above in terms of
the parametrization of the IBA-1 Hamiltonian and in
terms of the appropriate geometrical analogs.

A. Symmetries

When the IBA was first proposed it was thought that
many examples of the U(5) and SU(3) limits were known,
since these describe vibrational and rotational spectra.
As discussed above and as will be seen below, however,
the situation with respect to these two limits is more
complicated than was at first appreciated. The U(5) limit
is a very general anharmonic vibrator, while, in contrast,
the SU(3) limit is a very specific kind of deformed rotor.
The O(6) limit, on the other hand, when first presented
theoretically, was viewed as a major new prediction of
the model, although it has since been understood to cor-
respond to a y-soft potential and hence to an extension of
the model of Wilets and Jean (1956). In any case, the
subsequent empirical discovery of nuclei approximating
an O(6) description in several regions of the nuclear chart
has shown that it represents the third commonly occur-
ring form of collective behavior in nuclei. It therefore
seems appropriate to start with this limit.

1. O(6)

The level structure and E2 selection rules for the O(6)
limit were discussed earlier. The first nucleus to be
identified as manifesting the O(6) symmetry was '°°Pt.
Its level scheme is compared to the O(6) limit for N =6
in Fig. 33 (Cizewski et al., 1978). The eigenvalue expres-
sion for the O(6) limit, Eq. (2.57), contains three parame-
ters denoted A4, B, and C. A controls the separation be-
tween states belonging to different o families, B controls
the spacing between different 7 values, and C relates to
the degeneracy splitting within a 7 multiplet. There are
several ways of choosing these parameters in fitting actu-
al spectra. In Fig. 33, a fit that optimizes the overall
comparison is shown, although it will become apparent
later than an alternate one in which B is chosen to fit the
0% 7=3"% level at 1422 keV may be more useful. The
figure shows, first, that there is a one-to-one correspon-
dence between predicted and empirical levels. This ex-
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FIG. 33. Comparison of the predictions of the O(6) limit with the empirical level scheme for '*Pt. The upper numbers on the transi-
tion arrows are the empirical relative B (E2) values, and the lower set gives the O(6) predictions. From Cizewski et al. (1978).

tends through the complete =3 multiplet for the o =N
family and includes levels of two o < N families as well.
This latter result is particularly crucial, as will be seen,
and, among known O(6)-like nuclei, is still unique. Three
examples of the characteristic O(6) sequences of 0-2%-
2% levels with cascading connecting E2 transitions are
seen in Fig. 33, namely, for the quasi-ground-band, for
the levels related to the 0" (7=3) level, and for the lowest
levels of the 0 =N —2 =4 representation.

As noted, the O(6) limit is analogous to the geometric
model of a y-unstable rotor, and thus has the typical 2,
(3+,4%), (57,6%),... y-band energy staggering of a y-
soft potential. This is opposite to the staggering in the
rigidly asymmetric rotor model of Davydov and Filippov
(1958) for  =30°, and this is in fact one of the few practi-
cal empirical distinctions between these two types of
asymmetric rotors. The levels of '*°Pt display the pre-
dicted staggering, as can be seen by comparing Figs. 8
and 33, although, as discussed in more detail below, not
to the extent predicted by a completely y-flat potential.

It will be noted that, despite the one-to-one correspon-
dence of theoretical and empirical levels, there are severe
energy discrepancies. Of particular note is the large pre-
dicted spacing between high 7 states [due to the 7(7+3)
dependence], which is contrary to experiment, as well as

the fact that, empirically, E of is not less than E, as is
1

mandated in O(6) by the monotonic dependence of ener-
gies on spin within a 7 multiplet. These discrepancies are
also related to the question of ¥ softness and will be dealt
with below. First, it is important to test further the basic
O(6) predictions, since the one-to-one level correspon-
dence, in the absence of other data, does not necessarily
imply a structural correspondence.

The most crucial available structure indicators are E2
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branching ratios and absolute B (E2) values. In Fig. 33,
the relative B (E2) values are indicated on the transition
arrows and compared with the predictions of the O(6)
limit. It is seen that all allowed transitions are observed
and represent strong branches and that all forbidden
transitions are either weak or unobserved. In addition
many of the detailed branching ratios are close to the
predicted values. A comment on the decay of the O
bandheads of the o < N families is necessary. According
to the Ao =0 selection rule these levels cannot, in princi-
ple, decay by E2 transitions. Of course, they must decay,
and do so by a small amount of symmetry breaking. As
mentioned earlier, the o selection rule arises from an ex-
act cancellation of the many nonzero terms contributing
to the total E2 matrix element. This rule is therefore in
principle expected to be weaker than the 7 selection rule,
for which each individual term vanishes. Thus the O
bandheads of the o <N groups would be expected, a
priori, to decay to the 2", 7=1 member of the ground-
state band rather than the 2;, 7=2 state. Empirically,
this is indeed the case.

While the agreement with the O(6) predictions shown
in Fig. 33 is impressive, the earlier caveats about U(5) are
relevant and, indeed, have been the object of recent stud-
ies (Fewell et al., 1985; Fewell, 1986; Casten and
Cizewski, 1987). It is therefore worthwhile to compare
specifically both symmetries with the data for !°°Pt for
the two most crucial observables, absolute B(E2) values
and E2 branching ratios from o <o, states. The data
(Bolotin et al., 1981; Raman et al., 1987) for the former
are shown in Table IV. The effects of the different {n,)
values in U(5) and O(6) discussed earlier clearly show up
in the different predicted B (E2) values, and the O(6) set
is equally clearly in better agreement with the data in
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TABLE IV. Comparison of absolute B(E?2) values in '%Pt with
O(6) and U(5) predictions. All values are e?b2. From Casten
and Cizewski (1987).

I—I; Expt.* 0(6)° Us)®
2,—0, 0.276+0.001 0.276 0.276
2,—0, <2Xx10~° 0 0
2,2, 0.34 +0.03 0.36 0.46
4,2, 0.38 +0.03 0.36 0.46
0,—2, 0.021+0.01 0 0
0,—2, 0.14 +0.07 0.36 0.56
4,2, 0.0030.001 0 0
4,2, 0.17 +0.03 0.19 0.29
4,3, <0.06 0 0
4,4, 0.18 +0.09 0.18 0.26
6,—4 0.40 +0.11 0.36 0.56

?Taken from Cizewski et al. (1978) and Bolotin et al. (1981)
with a normalization to the recent, highly accurate,
B(E2:2{ —0i") value of Fewell (1986) and Fewell et al. (1985).
*Normalized to the 2;* —0; transition.

every case where O(6) and U(5) differ.

For E2 branching ratios, there are two o <o ,,, states,
the 21 levels at 1604 and 1847 keV, that can be used.
The results for the former are shown in Fig. 34. The
preference for the O(6) scheme is clear.

There is, however, a major discrepancy. The O(6) sym-
metry predicts vanishing quadrupole moments (they cor-
respond to A7=0 E2 matrix elements). Fairly large
values, however, have been reported (Fewell et al., 1985)
for '°°Pt. This is clearly a current failing of the model,
which, though improved, is not satisfactorily overcome
by resorting to IBA-2 calculations.

The data for the other even Pt isotopes is substantial
(but less complete than for °°Pt) and fully supports the
O(6) interpretation. Of particular interest, since it links
the region, is the sequence of (p,¢) and (¢,p) ground-state
cross sections whose N dependence was shown earlier
also to be a clear reflection of the different structure of
U(5) and O(6) wave functions. The data are compared to
these predictions in Fig. 34 and, again, support the O(6)
scheme. )

For many years it was suspected (Arima and Iachello,
1979), both on microscopic grounds and from the sparse
data that did exist, that the proton-particle, neutron-hole
nuclei around 4 =130, especially the Ba isotopes, might
be another O(6) region. The possibility of O(6) structure
in this region has also been discussed by Maino and Ven-
tura (1982a) for Nd and, less convincingly, for **Te, by
Robinson, Hamilton, and Snelling (1983). Recently,
however, extensive new (a,ny ) and heavy-ion data, taken
by the Koln group of von Brentano and co-workers, has
been used to show (Casten and von Brentano, 1985) that
there is indeed a very extensive region of near-O(6) nuclei
in the Ba and Xe isotopes. In its extent this region is in
fact a better example of O(6) than the Pt isotopes. In ad-
dition, a number of 7=4 states are identified (indeed the
complete multiplet in '>®Xe). On the other hand, fewer
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0 < N levels are assigned. A summary of the comparison
of these nuclei with the O(6) limit is shown in Fig. 35. As
with 16Pt, it has also recently been shown (Gelberg and
von Brentano, 1987) that absolute B(E2) values in this
region favor O(6) over U(5).

(a)

0(6) u(s)

0,

|96Pt

(c)

(p,1t)
u(s)

0(6)

1.0 ®

| 1 | |
192 194 196 198
A

tgt

FIG. 34. Comparison of O(6) and U(5) predictions. (a) Branch-
ing ratios for the decay of a o < N level in Pt compared with
O(6) and U(5) predictions. The widths of the transition arrows
are relative B(E2) values. Forbidden or experimentally unob-
served transitions are dashed. From Casten and Cizewski
(1987). (b) and (c) Enhancement factors for (z,p) and (p,?) in the
U(5) and O(6) limits compared to the empirical data. Based on
Cizewski et al. (1979, 1981). '
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FIG. 35. Comparison of the low-lying levels of several Xe and Ba nuclei with the O(6) limit and also with a scaled level scheme for

196pt, The O(6) parameters for Eq. (2.57)
Haque (1985).

The quadrupole moment problem in °°Pt and the ob-
servation of weak but finite strengths for some forbidden
AT=0,2 transitions, both in '*°Pt and in the 4 =130 re-
gion, has led Van Isacker (1987) to consider the effects of
a generalized E2 operator for O(6)-like nuclei in which
the X(d'd)? term is nonzero. Such an operator permits
at least small values for such normally forbidden mo-
ments. Since the two terms in T(E2) connect different
basis states, the predictions for the forbidden transitions
form a completely independent set. Indeed, ratios of
these, such as Q21+ /B(E2:2§ —0{"), are parameter in-

dependent (including X). Van Isacker compares these
predictions with the data for Pt and '**Ba. Rather
good agreement for several transitions and the above ra-
tio are obtained for 1**Ba. For °°Pt, some improvement
“also occurs, but discrepancies for some of the detailed
strengths of these forbidden but weakly observed transi-
tions remain.

It is interesting to note the striking similarities between
the 4 =130 region and '°°Pt, which is also shown in Fig.
35, with energies scaled by a factor 1.63 to make them
comparable. (This factor is roughly consistent with the
expected dependence of energy scales on mass.) One
finds nearly identical B and C parameters. The ratio
A /B is also particularly interesting. It may be recalled
that the CQF predicts a specific form of the O(6) limit in
which there is an inherent relation between the degenera-
cy splitting of the O(6) and O(5) steps in the U(6) chain
decomposition such that 4 =B. The ratio 4 /B can be

are A =67 keV, B =70 keV, and ¢ =10 keV for N =6. From Casten, von Brentano, and

extracted from the empirical spacings by using the rela-
tion
E,,(c=N-2) 3
E2+(Ti2)—E2+(T=1) 2AN+1) 7
2 1

A
R_B = 3.1

which follows from Eq. (2.57). The A4 /B values for °°Pt
and the 4 =130 region are listed in Table V. Recalling
that this ratio may take on any value whatsoever in the
O(6) symmetry, the observed near constancy of 4 /B for
nuclei far separated in mass and occupying different ma-
jor shells, as well as the closeness to the CQF value, sug-
gests a deeper underlying significance.

The table shows another interesting result. Suppose
that nuclei actually tending toward SU(3) were misas-
signed an O(6) character. The energy ratio
E02+ /(E22Jr _EZT) in Eq. (3.1), which is given by

Z(N +1) in the CQF for the O(6) limit, is unity in SU(3),
where the 0, level is the B bandhead. This gives the re-
sult R =1.5/(N +1), which yields, for example, a value
of 0.17 for N =8. The beginning of a decrease towards
such values is apparent in the table and reflects an inci-
pient trend toward deformed character in the lighter nu-
clei. Recent Daresbury data (Varley et al., 1985) on the
extremely neutron-deficient Nd and Ce nuclei in this
same region have indeed confirmed the onset of such a
phase transition.

The similarity of the 4 =130 and Pt regions runs even

TABLE V. Empirical and theoretical values of the ratio R = A4 /B as given in Eq. (3.1).

Nucleus CQF*? 196pt

]34Ba

130Xe X28Xe IZGXC

A/B 1.0 0.90

0.96

0.86 0.76 0.67

*This ratio may take any value whatsoever in the general O(6) limit of the IBA, but is always unity in

the consistent-Q formalism (CQF).
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deeper than noted above, extending even to the
discrepancies with the O(6) limit. As noted earlier, the
energies of states within a 7 multiplet must be monotonic
with L. Thus, if E42+ <E6x+ (as is common), then EOZJr

must be <E,,. In both Pt and the 4 =130 region this
1

prediction is violated. Moreover, in both regions the en-
ergy staggering in the y band is less extreme than is pre-
dicted by the O(6) limit if C is fixed from other spacings
that are insensitive to the details of the potential in the y
degree of freedom. Finally, the smaller-than-predicted
spacing between high 7+ states (e.g., the 7=3-4-5,
07-2*-2% sequence in Fig. 33) is also observed in the
A =130 region.

It will be recalled that the rigid triaxial rotor model of
Davydov and co-workers (Davydov and Filippov, 1958)
also displays a y-band staggering, but of exactly the op-
posite sequencing: in the O(6) limit the y-band levels are
grouped as 27,(3%,4%),(5%,6™), ... whereas in the rig-
id triaxial rotor model for ¥ =30° the sequence for low L
is (2%,37)(4%,5%), ... (the staggering changes sign for
higher spins). The empirical spectra of Pt and the
A =130 nuclei show an intermediate situation between
these two extremes, with little staggering suggesting that
the addition of a small triaxial term to the completely y-
independent potential of the O(6) limit might induce an
appropriate correction to the energy staggering. This
can be conveniently done with a term, introduced by
Heyde, Van Isacker et al. (1984), which is cubic in d-
boson creation and destruction operators and, geometri-
cally, introduces a minimum in the potential at y =30°.
Such an approach is appealing, since it does not change
the mean y characteristic of the O(6) limit, namely
¥ rms=30°, but only avoids the extreme complete ¥ soft-
ness of the O(6) limit. In effect, it reduces the extent of
zero-point motion around y=30°. Such calculations
have been performed (Casten, von Brentano, Heyde
et al., 1985), and the results, exemplified by *®Xe in Fig.
36, are in fact rather surprising. Of course, they correct
the energy staggering in the y band as they were
designed to do. However, at the same time and with the
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FIG. 36. Comparison of the empirical levels of 2Xe with the
O(6) limit [O(6)] and with the incorporation of a cubic (triaxial)
term [O(6),]. The coefficients B, C, and 6; (the coefficient of the
cubic term) are in keV. From Casten et al. (1985).
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same parameter values, they also now predict that the
first excited O state is above the 37 member of the y
band, in agreement with the data. [It is interesting that
this difficulty with the O(6) limit had always been as-
cribed to the 07 level, but is now seen to be probably a
secondary effect of the y-band staggering problem itself.]
More importantly, these same calculations also greatly
reduce the spacing among the high 7 states, in particular
the 0T-2%-2% sequence with 7=3, 4, and 5. Finally, the
7=4 47 level in '®Xe now falls at the correct energy as
well. It should be commented that a similar calculation
has also been carried out in an analytic way by Sun,
Zhang, and Feng (1985), who present a diagrammatic
construction of the O(6) wave functions that vividly
displays their structure. It is now evident why the alter-
nate set of initial O(6) parameter values of Fig. 36, in
which the predicted and observed 0 energies agree, may
be a more appropriate choice for the o =N levels in 196p¢
than that in Fig. 33. While this new set does not give the
best fit in the pure O(6) limit, it leads to predicted energy
levels in close agreement with the data when a cubic or
triaxial term is added to the Hamiltonian.

It is interesting that the degree of triaxiality intro-
duced into the nuclear potential is extremely small. At
v =30°, where the effect is a maximum, it amounts to
only a 3-5% change. Thus these nuclei, while not
rigorously ¥ independent, are nevertheless well described
by potentials that are extremely y soft.

Finally, other regions may also display O(6) character
or at least systematic tendencies toward it. Kaup and
Gelberg (1979) have suggested that the Kr nuclei under-
go a U(5)—0(6) transition with decreasing mass such
that the lighter isotopes may well approximate O(6) char-
acter.

2. SU(@B)

The other two limits of the IBA, and SU(3) and U(5)
limits, are not nearly so well identified in actual nuclear
spectra. The reasons for this will be evident shortly. We
shall consider here both the SU(3) limit and the more
common and general case of deformed nuclei. These are
not identical, since SU(3) structure is a particular case of
the deformed symmetric rotor, and, although deformed
nuclei abound, the exact limiting case envisioned by this
limit is not observed. Figure 37 summarizes four impor-
tant signatures of the SU(3) limit and illustrates clearly
why typical deformed nuclei cannot be described as SU(3)
nuclei.

The first, and most striking, criterion for SU(3) stems
from the fact that the ¥ and S vibrational modes belong
to a different SU(3) representation than the ground band,
and hence y —g and f—g E?2 transitions are strictly for-
bidden. While B—g transition strengths are often rather
small in deformed nuclei, Fig. 16 shows that y —g transi-
tions are always significantly stronger than single-particle
estimates for deformed nuclei. Hence it is clear that an
exact SU(3) symmetry is never realized. Second, levels of
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FIG. 37. Principal signatures of the SU(3) limit of the IBA.
Note that the last indicated, namely, collective S— ¥ transi-
tions, is preserved in the presence of considerable SU(3) symme-
try breaking and thus is not specifically a signature of the
rigorous SU(3) limit. From Casten, von Brentano, and Haque
(1985).

equal spins in the 8 and y rotational bands must be de-
generate. Of course, in actual deformed nuclei the most
common situation is Eg> E, . A third criterion is related
to the fact that, empirically, y —g E2 branching ratios
usually deviate from the Alaga rules. As discussed
above, it has been traditional (Lipas, 1962; Bohr and
Mottelson, 1975) to describe such deviations in terms of
band mixing, whose strength is specified by a band mix-
ing parameter Z,. In the pure SU(3) limit there is no in-
teraction, and no mixing, between the 8 or ¥ bands and
the ground-state band. Thus, in SU@3), Z, —0. The
fourth criterion for identifying the SU(3) symmetry stems
from a peculiarity of the E2 matrix elements connecting
[ and y bands to the ground-state band, which was first
identified numerically by Warner and Casten (1982b) and
subsequently derived analytically in a coherent-state for-
malism approach by Bijker and Dieperink (1982). B—g
and Y —g intrinsic £2 matrix elements both vanish in the
SU(3) limit. However, for any X value in the E2 opera-
tor, including the case in which X is arbitrarily close to
Xsus), the ratio R37,=B(E2:2,jf-—>0;)/B(E2:2;L—>0;)
is finite and constant at a value =~ L. In general, most de-
formed nuclei do not display any of these particular
SU(3) features. Occasionally, and presumably as a fortui-
tous consequence of evolving systematic trends, 8 and y
bands may lie close to each other or B—g /y—g B(E2)
values may approximate 1.

It is worth noting, however, that there is one region
that comes closest to displaying the four signatures cited
above, namely, the rare-earth nuclei near N =106, espe-
cially Yb and Hf. The data are illustrated in Fig. 38,
where it is seen that, near N =104, 106, the systematics of
each of these four observables passes near or through the
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SU(3) predictions. A further expectation for an SU(3) re-
gion is that the 8 and ¥ bands will be rather high lying in
energy since, assuming a constant coefficient a, of the Q2
term in the Hamiltonian, their energies [see Eq. (2.42)]
scale as (2N —1), thus reaching a maximum at midshell
(N =104 in this case). The systematics (Sakai, 1984) of y
vibrational energies in the second half of the rare-earth
region are compared to this expected dependence in Fig.
39. The empirical trend is consistent with SU(3), al-
though exaggerated.

Nevertheless, even in this region an unambiguous in-
terpretation is difficult, since some of the SU(3)-like
features could also occur if the quadrupole collectivity
were low in this region, as has been previously suggested
(Bes et al., 1965; Soloviev, 1965). Then the 8 and ¥
bands would be rather high lying, and consequently Z,
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would be apt to be small and B—g and y—g B(E2)
values would also decrease. The degeneracy of B and y
bands and the approximate . ratio of their ground-state
band B(E2) values is occasionally seen elsewhere and
could arise fortuitously. It is perhaps best to conclude
that the status of the SU(3) symmetry in this region is not
yet settled. (Indeed, the two authors of this review have
rather different opinions on this issue: the phrasing
above represents a major diplomatic achievement be-
tween them.) The possible applicability of the SU(3) sym-
metry to the actinides has also been discussed (Zhang
et al., 1985).

3. Deformed nuclei

As pointed out above, most deformed nuclei are by no
means good examples of SU(3). Many of the properties
of broken SU(3) calculations were discussed earlier. Here
we shall confront these with some of the pertinent data,
with special emphasis on the well-studied nucleus '°®Er.
The original IBA calculations (Warner, Casten, and
Davidson, 1980, 1981) for '®Er were carried out prior to
the development of the CQF and used a Hamiltonian
consisting of the quadrupole, L2, and PP terms of Eq.
(2.5). [Subsequent calculations (to be discussed below) in
the CQF utilized the Hamiltonian of Eq. (2.74). This
latter approach has one less parameter and in fact results
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in better agreement with the data.] The predicted and
measured levels for '®Er are compared in Fig. 40. There
are several essential points that should be noted. First, it
is evident that the overall agreement between experiment
and theory is satisfactory: the ground, y-band, and f3-
band energies are well reproduced, as is the experimental
sequence of higher-lying bands. However, the associated
comparison of branching ratios indicates that the ap-
parent agreement for the higher-lying K =2 bands is
probably largely fortuitous and that, even for the second
excited K =0 band, the IBA description gives only a
semiquantitative interpretation. There is also, one clear
disagreement (pointed out by Bohr and Mottelson, 1982)
from the energy levels themselves. Since they are com-
plete for low-spin states below about 1900 keV, due to
the use of the (n,y) average resonance capture (ARC)
technique, it is clear that there is no K =4 band below
~2 MeV, while the calculations predict a K =4 double y
vibration at =~1600-1700 keV. There is no easy way to
repair the IBA predictions for this band since, just as in
geometrical models, where the yy vibration is expected
at z2E7,, it is difficult (Dumitrescu and Hamamoto,
1982) to introduce sufficient anharmonicity to obtain
E, =~2.5E,. It now appears likely that one must in-

clude a g boson to ameliorate the situation. Further. dis-
cussion of the effects of incorporating a g boson into the
sd IBA-1 formalism will be presented in Sec. IV.

This discussion raises the general issue of multiphonon
states in the IBA, especially in deformed nuclei where the
(A, —8,4) and (A—6,0) representations with K =0,2,4
and K =0 bands, respectively, contain intrinsic states ap-
proximating the yy(K =0,4), BB(K =0), and By (K =2)
two-phonon geometrical modes. In this respect the IBA
and the Bohr-Mottelson picture are very similar, and
difficulties (Dumitrescu and Hamamoto, 1982) such as
those concerning the high empirical energy and implied
anharmonicity of the K =4 band in '®Er apply equally
to both. On the other hand, for years, the low-lying
states of deformed nuclei have been the subject of exten-
sive investigations in the quasiparticle phonon model of
Soloviev and co-workers (see, for example, Gallagher and
Soloviev, 1962; Soloviev, 1965; Soloviev and Shirikova,
1981; and, especially, Soloviev, 1986, and references
therein). The basic ingredients in this model are a
Woods-Saxon mean-field potential with pairing and mul-
tipole interactions treated in the random-phase approxi-
mation along with a quasiparticle-phonon coupling in-
teraction. The predicted wave functions for nonrotation-
al (i.e., vibrational) modes can be written in terms of
linear combinations of phonon amplitudes and two-
quasiparticle components. Moreover, the phonon struc-
ture itself can be expressed in terms of its two-
quasiparticle components. A key result is that, because
of Pauli principle effects, the model predicts that multi-
phonon states will not survive intact but will be highly
fragmented and that the low-lying intrinsic states of de-
formed nuclei can be adequately described in terms of

various one-phonon excitations and two-quasiparticle
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unobserved K =4 band at approximately two times the energy of the y band.

states. Soloviev (1986) draws out these distinctions,
stressing the point that the IBA-1 includes only that por-
tion of the full two-quasiparticle space that enters into
the B and ¥ modes. Moreover, he cites qualitative argu-
ments (mostly from single-nucleon transfer data) in sup-
port of the major predicted two-quasiparticle com-
ponents throughout the rare-earth deformed region.

As assessment of this claim is difficult at present, part-
ly because the data themselves are fragmentary (possibly
this is in fact an argument in Soloviev’s favor), partly be-
cause the single-nucleon transfer data that do exist can,
even in principle, provide information only on certain
very specific two-quasiparticle amplitudes (those in which
one component is that of the odd fermion ground-state
orbital in the target nucleus for the relevant reaction),
and partly because recent studies by Piepenbring (1986,
1987) suggest that, in calculations incorporating a much
larger multiphonon space, the two-phonon excitations
can emerge more or less intact, being lowered in energy
by interactions with three-phonon and higher levels.
Even here, however, their predicted energies seem to be
22.5E2+, and thus an association with the 05 and 25

v

levels in deformed nuclei is uncertain. In any case, it is
clear that any success to date in the IBA-1 description of
multiphonon levels is at best qualitative and that much
more work, especially experimental, in this area is need-
ed.
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As noted above, the energy levels shown in Fig. 40
were calculated using the Hamiltonian of Eq. (2.5). In
the original '®Er calculations the E2 transition rates
were calculated with an E2 operator of Eq. (2.8) in which
X was separately varied to fit the branching ratio
B(E2:2) —27)/B(E2:2} —0;). The results were rath-
er good but, as pointed out by Bohr and Mottelson
(1982), there were systematic discrepancies in predicted
and empirical deviations from the Alaga rules. However,
the importance of these discrepancies became a moot
point with the development of the CQF formalism, in
which calculations of energy levels and transition rates
involve one fewer parameter than the earlier calculation
and yet achieve better agreement with the data. In par-
ticular, for transition rates, the y—g E2 branching ra-
tios are now in essentially exact agreement with the data,
as shown in Table VI and, in the form of a Mikhailov
plot (Mikhailov, 1966, Riedinger et al., 1969), in Fig. 41.
In such a plot, if data or calculations for interband tran-
sitions lie on a straight line, it implies that the deviations
from the Alaga rules can be explained by simple two-
band mixing whose strength is proportional to the slope.
The earlier discrepancies (dashed line) are apparent, as is
the fact that the newer calculations (dotted-dashed line)
agree with the data to well within the experimental un-
certainties. It is important to emphasize that these y —g
band mixing effects in the IBA are inherent in the model.
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line is the CQF prediction of Warner and Casten (1982a).

The origin of y-g band mixing was discussed earlier. As
shown in Fig. 19, the predicted N dependence across the
deformed rare-earth region can be easily reproduced by
the IBA and represents, in fact, the clearest evidence for
finite-N effects.

It will be recalled that another central result of IBA
calculations in deformed nuclei is the automatic predic-
tion that B—g B(E2) values are much less than y—g
strengths. Of course, this is also a well-known empirical

TABLE VI. Relative B(E2) values from the y band in '**Er.
The IBA calculations utilized the consistent-Q formalism and
correspond to the dotted-dashed line in the Mikhailov plot of
Fig. 41. Based on Warner and Casten (1982a, 1983).

I; I1.,K, Expt. IBA

2 0,0 54.0 54
2,0 100 100
4,0 6.8 7.6

3 2,0 2.6 2.6
4,0 1.7 1.8
2,2 100 100

4 2,0 1.6 1.7
4,0 8.1 9.6
6,0 1.1 1.5
2,2 100 100

5 4,0 29 3.5
6,0 3.6 4.4
32 100 100
4,2 122 95

6 4,0 0.44 0.44
6,0 3.8 4.9
8,0 1.4 1.0
4,2 100 100
52 69 57

7 6,0 0.7 1.9
5,2 100 100
6,2 59 36
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feature (see Fig. 16) about which geometrical models can-
not make a statement without input from microscopy.

A key feature of both the earlier and the CQF calcula-
tions, referred to on several occasions above, is the
characteristic IBA prediction in deformed nuclei of
strong transitions between the 3 and y bands. Such tran-
sitions are forbidden in traditional harmonic models, be-
cause they violate the phonon selection rule, but are al-
lowed and collective in the IBA because, in the parent
SU(3) scheme, the 8 and ¥ bands occur within the same
(A,u) representation. Of course, f— ¥ transitions can be
introduced into geometrical models by -y band mixing.
However, as described earlier, even then, the two models
are still not equivalent. The origin of the S—»y transi-
tions in the IBA can be dissected with a Mikhailov plot.
Such an analysis shows that they arise primarily from a
direct AK =2 B— ¥ matrix element and, to a much lesser
extent, from -y band mixing. A Mikhailov plot analysis
(see the extensive discussion of this in Warner, Casten,
and Davidson, 1981, and in Casten and Warner, 1983) of
the empirical B(E2:8—y) values shows that a direct
AK =2 matrix element dominates here as well, in agree-
ment with the IBA prediction. It is important to em-
phasize that this prediction, which is inherent to the
model, arises specifically as an effect of finite boson num-
ber: in the N— « limit B— ¥ transitions become negli-
gible relative to intraband and B—g and y-—g transi-
tions, and the IBA predictions go over into those of the
traditional geometrical model.

To summarize, there are several aspects of the IBA in
deformed nuclei that agree with empirical observations
and that are important because they are inherent features
of the model, namely, the dominance of y —g over f—g
B(E?2) values, the dominance of S— 7 transitions over
B—g transitions, and the automatic inclusion of an N
dependence of the effective band mixing and therefore of
deviations from the Alaga rules.

Since the '*®Er results appeared, there has been exten-
sive study of many deformed nuclei in the IBA. These
include studies of *Hf (Haque et al., 1986), ">!"4Yb
(Gelletly et al., 1985; Gelletly, Larysz et al., 1987), 1Dy
(Warner et al., 1987), and others. In general, they result
in comparable and reasonable agreement with the data
and confirm the characteristic IBA predictions discussed
above. Discrepancies, of course, do occur. As a general
rule the properties of ¥ bands are predicted remarkably
well, but significant deviations in detail (although not in
gross features) appear for lowest K =07 bands. Such ex-
citations have always been more enigmatic than their
simple descriptions as 8 bands would indicate. It seems
that, although the IBA offers an improved characteriza-
tion, there remain significant structural aspects of these
states that are not understood. Mixing with nearby
quasiparticle excitations may be involved in some cases
(e.g., near Yb where Ej is particularly high), but an IBA
formalism that simply includes such degrees of freedom
is not yet available, although initial efforts in this direc-
tion have been made and will be mentioned in Sec. IV.
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4. U(5)

The U(5) symmetry offers a description of a vibrational
nucleus that can encompass an extremely broad range of
anharmonicities. This has been alluded to above in com-
menting that the U(5) eigenvalue expression is even cap-
able of generating O(6)-like sequences, at least for the
o =N family of states. It is therefore a little difficult to
discuss whether or not true U(5) nuclei have indeed been
observed. In this review such considerations will be lim-
ited to the question of whether or not nuclei have been
observed that are relatively harmonic expressions of U(5)
resembling the traditional vibrational spectra.

Since the energy spacings in typical vibrational-like nu-
clei lying close to closed shells are larger than those of
deformed nuclei, there is a difficulty in identifying unper-
turbed two- and three-phonon levels. The 2i level in
such nuclei is typically at 500—800 keV, and thus the
two- and three-phonon states will be between 1 and 2.5
MeV, which is well into the region of single-particle or

where vibrational character is expected, so-called in-
truder states, which can be described (Wenes et al., 1981;
Heyde et al., 1982, 1985; Wood, 1984) in terms of excita-
tions crossing a major shell gap, may descend into the
low-lying region.

The Cd nuclei have long been considered (Scharff-
Goldhaber and Weneser, 1955) archetypical vibrational
nuclei. Unfortunately, in recent years, the above-
mentioned intruder levels have been discussed and stud-
ied in considerable detail in several isotopes near !'*Cd
(see Mheemeed et al., 1984, for the most thorough
study). Indeed, at the energy of levels supposedly
representing the two-phonon triplet, a set of five levels is
observed with strong interconnecting B(E2) values.
Mheemeed et al. (1984) and Schreckenbach et al. (1982)
have carried out explicit intruder-state calculations here
and are able to account rather well for most of the ob-
served properties. As a consequence of the proton-
neutron interaction, the intruder levels are expected to
descend in energy toward midshell (which occurs at

two-quasiparticle excitations. Moreover, in regions  '*Cd) and rise thereafter. Thus the heavier Cd isotopes
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might be expected to display relatively higher-lying in-
truder states and a more intact phonon spectrum. This
has recently been confirmed in experiments by
Aprahamian et al. 1984, 1987) on ''®Cd, whose level
scheme is shown in Fig. 42, where an isolated O in-
truder state can be seen lying rather far from the other
groupings of levels. These latter seem to represent a
nearly degenerate two-phonon triplet and five levels that
represent candidates for the three-phonon quintuplet.
The data, however, still allow two possible spin choices
for two of these latter levels, one choice of which in each
case is consistent with that expected for the three-phonon
quintuplet. The interesting aspect of this level scheme is
the extremely close spacing among the levels assigned to
both the two-phonon triplet and the three-phonon quint-
uplet.

The decay properties of these levels may also exhibit
the selectivity expected in the vibrator: if one assumes
pure E2 transitions, and X=0 is adopted in T(E2) so
that the U(5) selection rules are the same as those of the
geometric vibrator model, the dominance of allowed
(AN,,=1) over forbidden (AN, =2) B(E2) values is
more than an order of magnitude for both the two-
phonon triplet and the three-phonon quintuplet. The one
disturbing aspect of this scheme is that no 2% level de-
caying to the O intruder level has been located at an ap-
propriate energy. Based on the 0"-27 intruder spacings
in the lighter Cd isotope, one would expect such a level
near 2.1 MeV. The lowest known 27 state that decays to
the O intruder level is at 2518 keV. While it is therefore
possible that there is an undetected intruder level near 2
MeV, it would not appear from the decay properties to
be one of those already known.

There is another feature worth noting in the level
scheme of '8 Cd. Above 2 MeV there is a sequence of
levels extending up to 2.8 MeV which decay by a cascad-
ing set of transitions that terminate in one or another of
the members of the three-phonon quintuplet. The possi-
bility of their representing an even higher-lying multiplet
structure has recently been discussed (Aprahamian et al.,
1987).

B. Transition regions

An important aspect of symmetry concepts is that
pairs of symmetries act as termini for nuclear transition
regions, as illustrated in Fig. 12 and described earlier.
Sequences of nuclei in such a phase transition can be very
simply calculated, generally by the variation of a single
parameter, which specifies their location along the ap-
propriate leg of the symmetry triangle. This parameter
can usually be taken as the ratio of the coefficients in the
Hamiltonian characteristic of the two symmetries occu-
pying the vertices of the triangle at the termini of the
transition leg. Thus, for example, for a U(5)—SU(3)
transition the relative parameter is €/a,, while for an
O(6)—SU(3) transition it is the ratio of the coefficients a,
and a, of the Q2 and P'P terms in the Hamiltonian of
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Eq. (2.5) or the value of X in the CQF formalism. The
first two regions to be discussed in this way were Pt-Os,
which undergoes an O(6)— SU(3) transition, and Sm-Gd,
which undergoes a U(5)—SU(3) transition..

1. O(6)—SU(3) or deformed rotor

In an O(6)—rotor transition the levels of the deformed
asymmetric y-soft rotor evolve into those of the de-
formed symmetric rotor, as illustrated schematically for
a few levels in Fig. 43. The states of maximum spin in
each 7 multiplet combine to form the ground-state rota-
tional band. The states of next lower spin become the ¥
band, while the states of maximum spin for each 7 value
in the 0 =N —2 multiplet become the [ vibrational band.
The OF (7=3) state in the 0 =N representation, and the
quasiband built on it, become predominantly the two-
phonon y vibrational band with K =0. In the =N
group there is a 4™ state with 7=4 which, in the de-
formed rotor, becomes the bandhead of a K=4 band.
This band also has the properties of a double y vibration.

Obviously, the Pt-Os region is ideal for testing the IBA
in this regard. In calculations of this transition region
the pre-CQF Hamiltonian of Eq. (2.5) was used. Some
results (Casten and Cizewski, 1978, 1984) are shown in
Figs. 44 and 45. The essential structural changes depend
only on a,/a,. It will be observed that the agreement is
rather remarkable, especially considering the extreme
simplicity of the calculations. One interesting feature is
that they reproduce the enigmatic decay of the excited
0" states where, in Pt, some decay predominantly to the
27 state but others decay to the 25 state, while in Os, all
decay predominantly to the 25 states. These calculations
also show the gradual emergence with decreasing 4 of
branching ratios close to the Alaga rules, as opposed to
those characteristic of the O(5) symmetry observed in the
Pt region. The development of the quasi-y-bands accu-
rately reflects the empirical systematics. Careful inspec-
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FIG. 43. Schematic indication of the relation of levels in the
O(6) limit and in the deformed rotor. Note that the association
of excited O™ states is ambiguous and can be reversed.



436 R. F. Casten and D. D. Warner: The interacting boson approximation

6‘?
1491
| [Od) y —BANDS IN Os
1.1 16 100 101 m 1424
0.8 18 10036
0.3 46 100
st 1276 0.5 21 100
TTTT . -
8.6 15 100<145 5 el T 1203 N
. 5
10 21 10065 I 1143
+ 6.1 100 67 100 LA
4 l y 80100
T 1071 9.5 100 ) 7.3 100 167
T 59 10045
4.4 35 100 333 o o
- 3.836 wm]rs o —— 965 mEE 955 - l
o ¢ 2.8 43 100 909
ot I B 15 56 100 102 T T T
9 121 100 - a7 1.6 43 100 61 0.8 100100 81
o 105100 . 790 + -
767 T 1 3 ! 756
I | | 72 100 J | 5
43100 5.7 . 84 100 8.6 16 100 — 50
? 633 13 21 100 88 100
42100 8 T o+ J l . 11" 100
30 100 557 44
33 100 g 17 -+
+ 19 100 a89
+ 4 23 100 !
4 It 100
13 100
+ 2t l
+ 2+ 24 9
2 [
)
+ + + +
K . . 190 RETY:
Os Os Os Os

FIG. 44. Comparison of calculated and empirical relative B (E2) values for the ¥ bands in an O(6)—SU(3) transition region, the Os
isotopes. The upper rows of numbers are the empirical relative B(E2) values, while the lower rows are the calculated ones. From
Casten and Cizewski (1978, 1984).

(6%) T T T 836
K™= 4% BANDS IN Os 0.313 19100
0.06 4.60.8 100
+
5" 1560 5 ,
1.9 4.9 100 —1 55
73 16 100 30 100 o a6
42 100 o
0.72 9.9 100 .
T 1351 3.3 70100 st ———TT 11362
+
o510 : i
70 100 I .
53 100<198 M
37 100 111 H .
=TT 5%
N <0.07 24 100 135 N
4y 0.17 17 100 107 Eias o o 1069
16 100
7 100
o ot
+ 14 4 +
3 a3
y
N
+ 3 +
o Y
2 3
.
37
ot
¥
Zy
.
2y
+
24

FIG. 45. Same as Fig. 44, except K =4 bands in Os.

Rev. Mod. Phys., Vol. 60, No. 2, April 1988



R. F. Casten and D. D. Warner: The interacting boson approximation 437

tion reveals many examples of detailed agreement and
few, if any, significant disagreements. The properties of
the K=4 bands in Os are particularly important. They
are a characteristic feature of all the even-even Os iso-
topes and occur consistently near 1.1 MeV. Their ob-
served properties are extremely well reproduced.

An interesting and as yet unresolved point arises here.
There has long been much discussion of the possible role
of a g boson in the IBA (see Sec. IV). If such a higher-
angular-momentum boson is important, its effects should
be revealed, among other places, in the presence of col-
lective K =4 excitations in deformed nuclei. They would
be analogous to hexadecapole vibrations in traditional
geometrical models. Bagnell et al. (1977, 1979) have
indeed shown that the dominant two-quasiparticle ampli-
tudes observed in (¢,a) transfer reactions leading to the
relevant 47 states in Os nuclei are exactly those which
would be important in such a hexadecapole vibration.
They concluded that these states were admixtures both of
double ¥ vibrational excitations (that is, in IBA language,
K =4 bands in the s-d boson space) and hexadecapole vi-
brations and, moreover, that the collective E2 properties
of these levels are dominated by their double y vibration-
al character, while the transfer reaction properties were
dominated by the two-quasiparticle hexadecapole ampli-
tudes. Very recently, Baker (1985) has shown that a con-
sistent calculation of all the electromagnetic properties
(E2 and E4) can be obtained by carrying out an IBA cal-
culation involving s, d, and g bosons. While these results
look convincing, Morrison (1986) has pointed out that a
proper accounting of the effects of the Pauli principle on
the mass dependence of the T(E4) operator itself is at
least as significant as the introduction of a g boson in
reproducing the systematic trends in E4 excitation

modes. While the issue thus remains unresolved, the
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FIG. 46. Comparison of calculated (lines) and empirical

(points) energies of low-lying states in the Sm isotopes spanning
a U(5)—SU(3) transition region. From Scholten, Iachello, and
Arima (1978).
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agreement shown in Figs. 44 and 45 for the E2 decay
properties calculated in the IBA-1 remains undeniable.

The further development of the collective aspects of
the deformed symmetric rotor as one goes to the W iso-
topes has not been calculated in detail in the IBA-1 (but
see the IBA-2 calculations of Duval and Barrett, 1981b),
but the CQF calculations discussed in Sec. II indicate
that this phase transition continues smoothly into the re-
gion near midshell.

Another O(6)—SU(3) phase transition has been dis-
cussed by Kaup and Gelberg (1979) in the Kr isotopes,
although the less extensive data preclude definitive con-
clusions. Finally, in the 4=130 region, an O(6)— rotor
transition clearly characterizes the Xe and Ba isotopes:
near N=74 an O(6) character predominates, while recent
heavy-ion reaction data from Daresbury (Varley et al.,
1985) discloses a developing rotational character near
N=68 and 70. A detailed calculation of the phase transi-
tion in this region would be highly interesting but has not
yet been carried out; early treatments by Castanos et al.,
(1982) and the recent study of '*°Xe (Loewenich et al.,
1986; see below) treat some aspects of this region.

2. U(5)—SU(@3)

The vibrator—rotor transition region near A=150
was treated very early by Scholten, Iachello, and Arima
(1978), using the schematic Hamiltonian
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FIG. 47. Comparison of calculated and empirical energy levels
in the Sm isotopes for the same calculations as shown in Fig. 46.
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H=c¢fty+a,0*+a,L?. 3.2)
The parameter € was constrained to decrease linearly
with increasing boson number in going from nuclei close
to the N=282 closed shell towards the deformed nuclei
‘with N >90. That is, € was written e:so—~9ﬁ. This de-
creases the ratio of €/a, and induces a U(5)—SU(3)
phase transition. They achieved good agreement with a
wide variety of data. Examples of predicted energies are
given in Figs. 46 and 47. As the phase transition devel-
ops (as € decreases), the 25" state first decreases along
with the compression of the entire scheme including, par-
ticularly, the first excited 0% state, which later evolves
into the S band. Near the phase transitional point
around N=90, the Q2 interaction, which depends on N 2,
begins to dominate. It will be recalled that the energy of
the (A—4,2)=(2N —4,2) representation behaves as
2N —1 in SU(3). In accord with this, one sees that both
the B and y bands begin to increase in energy once defor-
mation has set in. The 0" band, however, remains below
the y band because of the € term. Although the quadru-
pole operator used by Scholten, Iachello, and Arima
(1978) in the Hamiltonian is of the SU(3) form, rather
than one with a variable X, this feature of a low-lying 0"
band is also common to the ECQF formalism (Lipas,
Toivonen, and Warner, 1985), as was noted in discussing
the contour plot of Fig. 30.
E2 transition rates were also calculated by Scholten,
Iachello, and Arima (1978), and some results are shown
in Figs. 48 and 49 for transitions within the ground band
and for those involving the interband transitions from the
B and y bands. The results are in good agreement with
experiment and are typical of what is expected in a
U(5)—SU(3) transition. The ground band B (E2) values
increase rapidly, changing from a proportionality to N in
the U(5) limit toward one going as N2 in SU(3). At the
same time the ground-state transitions from the second
and third 27 levels, which are forbidden in U(5), become
finite around N=90, where the structure is intermediate
between U(5) and SU(3). As expected from the earlier
discussion, the predicted and experimental ground-state
transitions from the 25 y bandhead state are stronger
than those from the 8 band 25 level. Both of these calcu-
lated B(E2) values must vanish when the Q? term dom-
inates, since the quadrupole operator in the Hamiltonian
is, again, the SU(3) form, and the Hamiltonian then
yields the SU(3) limit. This is seen in the figures. While
there are no data in this regard for Sm, it is well known
(see Fig. 16) that the y —g B (E2) values do not vanish in
the rare-earth region. This simply reflects the fact that
the SU(3) symmetry must be broken either by the addi-
tion of a PP term throughout the rare-earth region or by
|X| < | Xsu3)| in the CQF. Finally, the branching ra-
tios shown in Fig. 49 increase from near O towards the
rotational limit given by the appropriate Alaga rule as
the deformed region sets in. This agrees reasonably well
with the empirical trends. Some other branching ratios
are not reproduced as well. The Sm nuclei have also been
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FIG. 48. Comparison of calculated and empirical B (E2) values
in the Sm isotopes. See caption to Fig. 46.

treated in a similar manner by Yen et al. (1984).

One additional feature of the calculations of Scholten,
Iachello, and Arima (1978) concerns two-nucleon
transfer reaction strengths, in particular (p,t) and (¢,p)
reactions. Expressions for the ground-state transfer
strengths in the three limits were given previously in Egs.
(2.35), (2.51), and (2.61). The structure of all three ex-
pressions is similar, namely, a product of a factor de-
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FIG. 49. Comparison of calculated and experimental B(E2)
ratios in the Sm isotopes. The labels ROTOR denote the Alaga
values. See caption to Fig. 46.
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pending on the number of neutron bosons N, and the to-
tal number of bosons N times a correction factor, which
depends on (Q,—N,). It is interesting to compare the
U(5) and SU(3) expressions in the limit of large N. The
SU(3) value is substantially smaller than that in U(5): in
particular, besides having a different (Q,—N,) depen-
dence, the two expressions [Egs. (2.35) and (2.51)] differ
by a factor of one-third, a result which also emerged [Eq.
(2.106)] from the intrinsic-state approach discussed in the
previous section. Part of the reason for the lower
ground-state cross section in SU(3) is that, as noted ear-
lier, the strength is now shared with an excited O™ state.
In any case, one therefore expects the (p,z) and (¢,p)
ground-state cross sections to decrease upon entry into a
deformed region. The results of these calculations are
compared with experiment in Fig. 50: for both (p,#) and
(t,p) the sudden drop near N=90 in the ground-state
cross-section strength is evident and is accompanied by
an increase in the excited O state cross section. The re-
sults are in qualitative agreement with experiment.

An alternate set of calculations for this region,
specifically for the Gd isotopes, is that of Lipas et al.
(1983) and Lipas (1983). They utilize a slightly more gen-
eral Hamiltonian incorporating a PTP term as well, and
they also allow full freedom of the (s'd+d%s) and
@td)® parts of the T (E2) operator. They fit extensive
data in the Gd isotopes spanning the transition region.
An interesting aspect of their approach is that the Hamil-
tonian parameters are unconstrained and unmodeled, so
that they are free to obtain best fits. The results show
reasonable agreement with most of the energy and B(E2)
data, but it is worth highlighting one specific discrepancy
which they emphasize. In the well-deformed isotopes,
the IBA is incapable of reproducing the fine structure of
intraband energy staggering effects in the g, 3, and y

. bands: the IBA spacing is always fixed essentially at rigid
rotor patterns. This limitation of the IBA was also point-
ed out by Bohr and Mottelson (1982) and is inherent un-
less higher-order terms in the Hamiltonian are intro-
duced. : ‘
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FIG. 50. Comparison of calculated and empirical two-nucleon
transfer cross sections to 0" states in the Sm isotopes. See cap-
tion to Fig. 46.
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FIG. 51. Calculated energy ratios for the Ru and Pd isotopes
spanning a U(5)—O(6) transition region. The quantity & mea-
sures the position along this transition leg. £=0 in U(5) and 1
for O(6). The different curves correspond to different boson
numbers. Each nucleus is placed in the figure according to its
known empirical ratio from which the appropriate value of &
can be deduced. If different observables for a given nucleus
point to similar values of &£ then a consistent interpretation of
that nucleus in this transition region is indicated. From Sta-
chel, Van Isacker, and Heyde (1982).

3. U(5)—0(6)

There remains the question of the third leg of the sym-
metry triangle, namely, a U(5)—O(6) phase transition.
The nuclei near '*“Ru have been extensively studied in re-
cent multiple-Coulomb-excitation experiments and it has
been suggested (Stachel et al., 1982, 1984) that these nu-

“clei occupy an intermediate position along this transition

leg. Stachel and collaborators (Stachel, Van Isacker, and
Heyde, 1982; Stachel et al. 1984) have carried out calcu-
lations for such a phase transition and obtained reason-
ably good agreement with empirical systematics in the
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Ru-Pd region. Those calculations utilized a different
form for the E2 transition operator than has been tradi-
tional and are somewhat difficult to interpret physically
in the scheme discussed in this paper. The phase transi-
tion is defined in terms of a parameter £, which varies
from O to 1 in a U(5)— O(6) transition. As a result of the
specific E2 operator used, however, B(E2) ratios do not
necessarily reproduce the expected O(6) values with £=1.
Rather than presenting fits to each nucleus for a specific
& value, each observable is separately used to extract a &
value. The success in describing the phase transition is
tested and inspected by the constancy in extracted &
values for different observables in a given nucleus and by
the variation in & across the region. Some results are
shown in Figs. 51 and 52. Although there is some evi-
dence for an evolution in § with mass, it is not very con-
sistent nor can a single § value generally be assigned to a
given nucleus.

There have been other interesting IBA-1 calculations
of this region. Very recently, Bucurescu et al. (1986,
1987) have applied the ECQF formalism of Lipas,
Toivonen, and Warner (1985) to the Ru and Pd isotopes
using the Hamiltonian of Eq. (2.80), in which the
structural characteristics depend only on €/a, and on X.
Two E2 branching ratios are used to fix these parameters
for each nucleus. Note that, since X0, these calcula-

Ru

th
| B(E2;2, —04) (eb)? | BIE2;44—2y) (eb]
0.3F 0.3f
0.2F o | o02f ¢
]
01f 01k
L L L L s L L L 1 L L L
B(E2;2,—01) B(E2;31 —24)
0.1 B(E2;2,—21) b 0 B(E2; 31— 22)
L L 5 %
0 ol w0
| B(E2;3) —4y) 001k BLEZi22—0;) (eb)?
B(E2: 3y — 25) :
0.4} 0.005|-
$
0.2} \_/of———-%//é L ?
0 L L L Lo L 3 I L

| L
54 56 S8 60 62 64

B(E2; 2y—0z) (eb)
0.02 +

0.01F

L L 1 1 1 1

SL 56 58 60 62 64

FIG. 53. A comparison of calculated and empirical values for
certain B(E2) values and ratios in Ru. From Bucurescu et al.
(1986).
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tions are not strictly of the simple U(5)—Q(6) type but
also involve some components of SU(3). These authors
obtain good agreement with the data, as exemplified for
B(E?2) values in Ru in Fig. 53.

Finally, it should be commented that similar ECQF
calculations have been carried out (Aprahamian, 1984;
Shi et al. 1985) for '921%Ru (with identical parameters
for the two nuclei) and achieved good accord with experi-
ment, including the enérgies and B (E2) values associated
with the first excited 0" state and the quasiband built on
it. This is significant, since earlier discrepancies with
IBA calculations for these levels had motivated sugges-
tions that they were intruder states. In fact, while low-
lying intruder O states have been observed in a few iso-
topes (especially in Zr and Pd) in this region, they seem
not to be among the low-lying states in Ru.

4. Calculations for extended series of nuclei

a. The N,N, approach

An important feature of the IBA is the simplicity it
offers in treating extensive ranges of nuclei within a con-
sistent unified framework. In principle, of course, what-
ever Hamiltonian is used involves several unknown pa-
rameters, which must be chosen for each nucleus. In or-
der to reduce the total number of parameters for a large
set of nuclei, various models for the parameter variations
are usually involved. We have seen several examples
(Casten and Cizewski, 1978; Scholten, Iachello, and Ari-
ma, 1978; Stachel et al., 1984) above. Nevertheless one
is usually left with an uncomfortably large parameter set.

Recently, a different approach (Casten, Frank, and von
Brentano, 1985) has been suggested that drastically
reduces the number of free parameters. It exploits the
empirically discovered (Casten, 1985a, 1985b) simple
dependence of many collective observables on the valence
nucleon product N,N, (or the boson product
N,N,={N,N,) by writing the parameter variations of
the IBA Hamiltonian in terms of N, N,. Two calcula-
tions have been carried out, one (Casten, 1985a), for the
U(5)—0O(6)—>SU(3) transition region near 4=130 and a
second (Casten, Frank, and von Brentano, 1985) encom-
passing about 100 nuclei in a U(5)—SU(3) transition con-
sisting of about 70 in the A4 =~150-180 region and about
30 near A=100. The U(5)—SU(3) calculations utilized
the Hamiltonian '

H=¢th,4a,Q?

in the CQF formalism, with T(E2)=ezQ. A
U(5)—SU(3) transition is obtained if the ratio £/a, de-
creases with increasing N. To achieve this, € was
parametrized according to

—8(N_N,—N,) ONg), —ON N,

e=¢ggpe =(gqe

Here, ¢, is a general scale factor, 0 describes the rate of
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change of € with N N, and N, is an offset in NN, that
varies from region to region. The second form above
eliminates one parameter. In order to carry out the sim-
plest possible set of calculations, an extreme simplifying
constraint was imposed, namely, that g, 6, a,, and X
were held constant for all 100 nuclei. Three values were
assigned to Ny, one for the 4=100 region and two in the
rare earths, namely, one for protons below midshell and
one for the second half of the region. Thus a total of only
six constants (g, a,, X, and three values of ON,) were
used to describe the 100 nuclei (or five for the rare-earth
region). A particular feature of these calculations is that
the counting of valence nucleons (hence N N,) takes ac-
count of the appearance and disappearance of important
subshell effects, specifically that of Z=64 for neutron
numbers from N =84-88 and its assumed disappearance
for N >90. Though this aspect of the calculations is a
key element in their success, it is not inherent in the
methodology of the N_N, parametrization, and further
discussion of it will be postponed to the next section.

Some results for energy levels in the rare-earth region
and B(E2) values near 4A=100 are shown in Fig. 54.
Given the highly simplified and constrained nature of the
calculations, the agreement is remarkable. As noted,
similar calculations, with comparable results, have been
carried out for the 4=130 region.

Thus this simple approach yields rather good results,
which, if not the best obtainable for a given nucleus, at
least provide an apt starting point, and which are the
only ones to date to tackle the systematic evolution of
such extensive sets of nuclei.
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FIG. 54. Comparison of calculated and empirical energy ratios
and B(E2) values for two large groups of nuclei in the rare-
earth and 4 =100 regions. The IBA calculations, carried out
in the CQF, were parametrized using the N,N, scheme. From
Casten, Frank, and von Brentano (1985).
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b. The general Hamiltonian

An alternative to the above approaches, in which the
Hamiltonian is tailored to the perceived transitional
character of a given region, is one in which the most gen-
eral IBA-1 Hamiltonian is used to fit a large number of
data comprising extended sequences of nuclei. One such
study is the early one by Castanos and co-workers (Cas-
tanos, Frank, and Federman, 1979; Castanos, Federman,
and Frank, 1981; Castanos et al., 1982). It is also of in-
terest as one of the few detailed calculations carried out
explicitly with the Casimir operator form of the Hamil-
tonian. These authors treated three groups of isotopes,
the Xe,Ba region below N=282 [an O(6)—SU(3) region],
the Sm,Gd isotopes centering on N=90 [U(5)—SU(@3)],
and the U nuclei (stably deformed). In each region the
parameters were allowed to run free, and for each ele-
ment typically 50 individual level energies were fit to an
average deviation of 70-100 keV (except for U, where
the average discrepancy was 27 keV). An example of the
results is given for Xe in Fig. 55. The agreement is rath-
er impressive. Up to ~2.0 MeV essentially every empiri-
cal level has a theoretical counterpart, while a few extra
predicted levels occur. Since these calculations were car-
ried out, in fact, some of these predicted states have been
identified experimentally, such as the 3{", 41", and 6;" lev-
els in '?Ba (Schiffer et al., 1986) and the 4; level in
128% e (Goetting et al., 1981). In many cases these are in
reasonable accord with the prior calculations. Although
this work was carried out before recent data permitted a
full appreciation of the O(6) character of the heavier Xe
isotopes, it is interesting that Castanos et al. (1982) com-
ment that the OF level in *°Xe (now assigned as the
0 =0 pnax—2 bandhead) was instrumental in fixing the
P'Ptermin assuring a convergent solution.

The results for Sm and Gd are also interesting. The
general form of the Hamiltonian contains a term in ﬁdﬁ
that automatically gives a correction to the &fi; term,
which is identical in first order to the phenomenological-
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ly parametrized form for €, namely E:(EO—GIV ), used by
Scholten, Iachello, and Arima (1978). Castanos, Frank,
and Federman (1979) in fact get almost exactly the same
predictions for the energy levels as were shown in Fig.
47. Another interesting aspect of this study in this region
arises in light of the discussion in Sec. IV of the calcula-
tions of Van Isacker et al. (1982). Castanos et al. (1982)
point out that their calculations fail to reproduce one
low-lying 0% level in **Sm and *°Gd. The missing exci-
tations are exactly the states described by Van Isacker
et al. (1982) as due to the s’ “intruder” boson.

5. Specific nuclei

There have been innumerable IBA-1 calculations of
specific nuclei or small groups of nuclei. It is not our
purpose here to discuss all of these, although many are
important contributions to the testing and understanding
of the IBA. The reader who encounters these (or future
ones) should by now have the requisite tools and feeling
for the IBA-1 to place them easily in the context of what
has been discussed here.

Having said this, however, there are two specific calcu-
lations that are worthwhile to cite. One, by Maino and
Ventura (1982a), treats all the Nd isotopes, even crossing
the N=2382 shell closure. They choose the same effective
N, values used by Casten, Frank, and von Brentano
(1985). By breaching the N=282 gap they gain access, in
one systematic calculation, to Nd isotopes close to each
of the U(6) symmetries: O(6) below N=82, U(5) just
above, and SU(3) for N > 90.

A second study of the Se isotopes by Erokhina et al.
(1985) is of interest since these nuclei are among the
lightest yet studied with the IBA-1. They obtain the in-
teresting result that some states in a given isotopes have
high overlaps with U(5) wave functions, while others
(e.g., some excited O states) have near-SU(3) character.

C. Subshell effects in IBA calculations
and effective boson numbers

The above discussion (Secs. I1.B.2 and I1.B.4) of three
sets of comparably successful calculations (Scholten,
Iachello, and Arima, 1978; Lipas et al., 1983; Lipas,
1983; Casten, Frank, and von Brentano, 1985) for the
A =150 transition region highlights alternative
viewpoints on the role and choice of boson numbers and
Hamiltonian parameters in IBA calculations.

It is by now generally agreed that the Federman and
Pittel interpretation (Federman and Pittel, 1977, 1978,
1979; Federman, Pittel, and Campos, 1979) of the sudden
onset of deformation near 4=100 in fact provides a gen-
eral scheme for interpreting many transitional regions in
heavy nuclei. In particular, it has been argued (Casten
et al. 1981) that the phase transition near 4=150 is due
not simply to an abundance of valence nucleons but to
the obliteration of the Z=64 proton gap when neutrons
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begin to fill the 1hy,, orbit near N=90. The strong
144, j2o-1hg 5, monopole p-n interaction (Heyde et al.,
1985) depresses the effective single-particle energy of the
1A, ,, orbit, closing the Z=64 gap, and allowing the
quadrupole component of the p-n interaction to act upon
a much larger number of valence p-n pairs (Casten,
Brenner, and Haustein, 1987).

In the context of IBA calculations with normal boson
numbers in this region, the above effects will be manifest-
ed as discontinuities (Lipas, 1983) in the parameters
around N =88-90. However, it was pointed out by Scott
et al. (1980) that the subshell gap can also be regarded as
resulting in a reduction in the effective number of active
protons. Following the development of a detailed under-
standing of the changing proton shell structure in this re-
gion (Casten et al. 1981), it was realized that an alterna-
tive approach can be adopted in which such changes are
reflected in a neutron number dependence of the proton-
boson number N .. This approach has been investigated
by Gill et al. (1982), Maino and Ventura (1982a, 1982b),
Wolf et al. (1983), Warner (1984), Casten, Frank, and
von Brentano (1985), Wolf, Warner, and Benczer-Koller
(1985), Hsieh et al. (1986), and Passoja et al. (1986). In
such calculations, for example, for N <90, (,,Sm would be
viewed as having an effective N, =1 instead of N =6,
but would revert to the latter value for N >90. Of
course, this is an extreme simplification and, indeed, it
has now been shown, first by Wolf, Warner, and
Benczer-Koller (1985), and subsequently by Menzen
et al. (1985), Gill et al. (1986), Wolf, Casten, and
Warner (1987), and Wolf and Casten (1987) that the gap
dissipation is more gradual. These studies utilize a
nearly-parameter-free interpretation (Wolf, Warner, and
Benczer-Koller, 1985) of g(2{") factors in the IBA-2. Re-
cently, such data have been combined with
B(E2:2{F —0;") results in the Z=64 region to obtain
both N_g and N, values (Wolf and Casten, 1987).
These are shown in Fig. 56 and demonstrate the normal
sequence of N, values and the sharply changing N,
values when the Z=64 shell gap vanishes near N=90. It
has also been pointed out (Iachello, 1983a) that isotope
shift data disclose the presence of the kind of monopole
polarizability just referred to. A very recent example of
this in lighter nuclei is a study of the charge radii of
neutron-deficient Sr nuclei (Eastham et al., 1987).

Equally compelling but even simpler evidence for the
dynamic behavior of shell structure stems from the ener-
gies of the first excited 2;" levels. It is a well-known
feature of the generalized seniority scheme (Talmi, 1971,
1983) that EZIJr is constant for singly magic nuclei in-

dependent of the number of valence nucleons in the open

shell. This result is empirically exhibited, for example,

by the Sn isotopes. Moreover, a decrease in E,, has long
1

been associated with an increase in collectivity. The E -
1

data for Xe-Ge for N=84-90 are shown in Fig. 57.
Despite the expectations based on normal magic num-
bers, it is immediately apparent that, for N=284, 86, and
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88, Sm and Gd are actually less collective, less deformed,
than Ba and Ce, despite their apparently larger number
of valence protons. If, however, a Z=64 gap is intro-
duced, the systematics is immediately understandable. In
contrast, for N=90, the lack of any influence of a gap at
Z =64 is apparent. Finally, Scholten (1983) has carried
out microscopic calculations that suggest the relevance of
effective boson numbers. His results for N, obtained in
a generalized seniority calculation with N=82, are
shown in Fig. 58 and are intermediate between the nor-
mal values and the extreme assumptions of a sudden
disappearance of the Z=64 gap at N=90.

This discussion highlights two alternate approaches to
phase transition regions in the IBA-1. One may use the
traditional approach with ‘“normal” N values, obtaining
good fits but with substantial parameter variations (even
in IBA-2; see Sec. IV.F), or one may incorporate subshell
effects in the boson counting (effective N values), keeping
the parameters constant or their variations to a
minimum.
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FIG. 57. E2+ energies for isotones with N =84, 86, 88, and 90.
1
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FIG. 58. Effective values of the proton-boson number N, in the
region near Z = 64, calculated for neutron number N =82. The
dots are the calculations of Scholten (1983), and the solid lines
illustrate the simple predictions of the normal counting scheme
and of one in which a subshell closure at Z =64 is assumed.

It is interesting to remark that, in terms of the
mathematics of the Hamiltonian matrix, the two ap-
proaches are essentially equivalent. Consider the Hamil-
tonian

2 %2 2
H:Eﬁd+a2Q =& ﬁd+—€_Q .

The transition U(5)—SU(3) requires the eventual domi-
nance of the second term. This can be achieved either by
increasing a, /¢ or by increasing N (since Q%~N?, while
fiy=N).

The use of an approach in terms of a Hamiltonian
H=H(N_) is physically appealing and highlights the
subshell effects. Yet it must be remembered that, in any
given nucleus, comparable predictions can be obtained
with “normal” boson numbers and other values for the
parameters. While further study of the question and role
of N values in IBA calculations would be worthwhile, it
is pertinent to caution against invoking a proliferation of
subshell effects to account for every deviation of IBA cal-
culations from empirical results or to remove all rapid
changes in parameter values.

IV. EXTENSIONS TO THE IBA

A. The need for extensions

Overall it is fair to say that the IBA has been rather
successful within the original boundaries where it was in-
tended to apply, namely the low-lying collective excita-
tions of even-even nuclei. Of course, there have been
discrepancies, but overall the model has provided a sim-
ple yet flexible approach to individual nuclei and, espe-
cially, to the systematic trends in the behavior of nuclei
over extended sequences. In a number of cases it has
yielded surprising predictions [e.g., a new symmetry, the
O(6) limit, B—y collective transitions in deformed nu-
clei], which have subsequently been verified. Moreover,
and interestingly, as a result of the inherent properties of
its group structure, particularly the SU(3) limit, the IBA
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automatically yields many well-known features of collec-
tive nuclei which, in earlier approaches, had to be fitted
separately as perturbations to a basic model. Finally, due
to the emphasis on the valence space, which becomes ex-
plicit through the use of finite boson numbers, the predic-
tions of the IBA exhibit a characteristic mass dependence
that, in most cases, is reflected in the data.

On the other hand, the enormous truncation involved
in the IBA restricts its scope, and there are many ob-
served features in collective nuclei that have not proved
amenable to a successful interpretation in terms of the
IBA-1 with s and d bosons. In many of these cases it is
the geometrical models that naturally predict the ob-
served results and the IBA which must be extended. The
purpose of this section is to describe some of these exten-
sions and the results obtained so far.

There are two major developments of the IBA-1,
namely, the IBA-2 which distinguishes proton and neu-
tron degrees of freedom, and the IBFA which treats
odd-mass nuclei by incorporating fermion states coupled
to the boson basis, which can be considered as extensions
of the IBA-1. However, each of these areas has become a
large and active field of study in its own right, and it
would be a disservice even to attempt a brief summary in
the present context. Thus, while they will not be dis-
cussed further here, it is important to remember that
they are both indeed outgrowths of the IBA-1, and their
motivation, philosophy, background, and methodology
are similar to those of the IBA-1.

Most work on extensions to the IBA to date has been
motivated by difficulties with particular nuclei in the sd
IBA-1 framework. However, it is possible to take a more
global view and to show that there is systematic evidence
for the need for extra degrees of freedom. This is most
evident in deformed nuclei because the data are more ex-
tensive and because there are more excitations below the
pairing gap.

It will be recalled that, in SU(3), there are simple rela-
tionships between the energies of different representa-
tions. These were illustrated in Fig. 7 for the lowest in-
trinsic states above the 3 and y bands, in terms of ratios
to the ¥ band energy. If now the data for the lowest
K =0 or 2 bands above the 8 and y bands are added to
this figure, the results shown in Fig. 59 are obtained. Itis
clear that the vast majority of points fall well below ei-
ther of the possible SU(3) representations. Of course, it
can be countered that deformed nuclei are not SU(3) and
that perhaps lower predictions for the energies of these
intrinsic states could be obtained with either an ef; or X
breaking [towards U(5) and O6), respectively] of SU(3).
It turns out that this hardly changes the picture. Figure
20 earlier showed that as X deviates from Xgy3, the
higher bands move still higher relative to the y band.
While an €fi; term does lower some states, their energies
have a minimum against € and then rise again relative to
the ¥ band. This minimum is shown in Fig. 59 as a
dashed line, which was calculated for X= —1.0. Since
this is a large |X| (nearly all deformed nuclei are
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FIG. 59. Ratios of higher-lying levels to the ¥ band. The solid
curves are the SU(3) predictions as given in Fig. 7. The dashed
line labeled Min. is the minimum energy ratio obtainable with
an IBA Hamiltonian that reproduces the low-lying energy levels
of deformed nuclei. The symbols represent the empirical values
for all nuclei in the deformed rare-earth and actinide regions.
Where the empirical ratios are at or above the predictions of
the SU(3) limit, the specific nuclei are indicated. The highest Er
point is actually off scale at the top.

characterized by X values closer to X = —0.5), the minima
given by the dashed line should give a conservative lower
limit on the possible energies of intrinsic excitations
above the 3 and y bands. Thus the principal conclusion
remains intact, namely, that the higher excitations of
most deformed nuclei cannot be described within the sd
IBA with reasonable Hamiltonians that fit the properties
of lower-lying bands. This exercise tells us nothing about
the nature of these extra states, only that they are beyond
the sd IBA. Of course, this does not necessarily mean
that all such states are purely excitations outside the sd
space. One possible explanation is obviously that the
pure sd states are mixed with and pushed down by in-
teractions with higher-lying excitations that are outside
the basis. In any case, we shall see below various at-
tempts to account for this wealth of structure that is
beyond the sd IBA horizon, as well as other empirical
features (e.g., backbending) never intended to be encom-
passed by the IBA.

B. g bosons

The most obvious extension of the sd IBA-1 is, of
course, to incorporate a g boson. The original truncation
to an sd space was justified by the fact that, in a simple
shell-model calculation, it is these pairs which come
lowest in energy. Nevertheless, it was always recognized
that, at some energy, higher-/ pairs would become impor-
tant. Several experimental facts also suggest the need for
/=4 bosons, the most prominent of which is the fact that
B(E?2) values in the ground bands of deformed nuclei do
not show the falloffs and cutoff effects expected as a re-
sult of finite N (see, for example, Grosse et al., 1981;
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Ower et al., 1982; Emling, 1984). Another motivation
for the introduction of the g boson is the presence, in a
number of deformed nuclei, of relatively low-lying
K7™=3" bands and the systematic appearance in the Os
isotopes of very low-lying (=1 MeV) K"=4" bands. In
addition, it has long been speculated (Bohr and Mottel-
son, 1982) that the difficulty with the K =4 band in '®*Er
might be resolved by the introduction of g bosons.

The possible need for g bosons was, in fact, argued
very early in the history of IBA studies by Sage and Bar-
rett (1980) and Otsuka (1981). Chakraborty, Kota, and
Parikh (1981) found that the energy spectra and intrinsic
quadrupole moments calculated for deformed nuclei
could be interpreted in terms of effective boson numbers
significantly larger than those normally defined in the
IBA, but consistent with the definitions obtained in an
sdg version of this model. They concluded that g bosons
are essential for a natural description of the
deformation-producing properties. McGrory (1978,
1979) has carried out shell-model calculations for de-
formed nuclei and found that / =0 and 2 coupled fermion
pairs exhaust only about 70% of the wave functions even
for low-spin states. Similar results have also been ob-
tained by Dukelsky, Dussel, and Sofia (1981) and Otsuka,
Arima, and Yoshinaga (1982). Although the latter note
that many collective properties obtained by inclusion of g
bosons can be reproduced by a renormalization of the pa-
rameters of the sd IBA, it is clear from their calculated
amplitudes for /=4 fermion pairs that the explicit in-
clusion of g bosons is necessary at least for the treatment
of high-spin states. Other studies of g-boson amplitudes
and renormalization effects include those of Sage, Goode,
and Barrett (1982), Maglione et al. (1983), and Arima
(1983, 1984). Dukelsky et al. (1983) have advanced an
interesting argument for the need for g bosons from E1
transitions between high-spin states in parity doublet ro-
tational bands in the light actinides (*'*Ra). Their argu-
ment, framed in a near-U(5) context, points out that yrast
states of spin L have n; =L /2, while the negative-parity
yrast state of spin L — 1 is viewed as consisting of a fully
aligned coupling of an octupole excitation or f boson and
the positive-parity yrast band. For example, a 6™ state
has n,; =3, while the 5~ level is viewed as a fully aligned
level of structure W(37 )X ¥(2") and therefore has n, =1
and ny=1 (or one octupole phonon). The L =7" state
has n; =2. Clearly, then, while the latter may deexcite to
the 6T level by an E1 transition, the 6+ —5~ E1 transi-
tion is forbidden. This contradicts the experimental situ-
ation. If, however, a fully aligned g boson is introduced,
the 6% state has structure ny; =1, n,=1, and an E1 tran-
sition to the 57 level can occur via the transition opera-
tor f Tg. Finally, Pittel et al. (1984) in the framework of
IBA-2 have argued for the particular importance of a g
boson at higher energies in the region of the isovector 1+
states, where an sdg model may account for the fragmen-
tation of 1™ B(M1) strength.

Basically, two ways have been explored to introduce a
g boson into the sd IBA-1, by diagonalization of a Hamil-
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tonian with N=n,+n,+n, where n, is limited to values
0 and 1, and group-theoretically by expanding U(6) to
U(15). The latter assumes a zero g-boson energy &, at
least in the SU(3) limit, and the wave functions for the
low-lying levels can have reasonably large values of n,.
The former procedure of numerical diagonalization is
motivated by the presumption that the intrinsic energy of
a g boson should be substantially larger than €.

1. Numerical treatments

We consider the numerical approach (Van Isacker
et al., 1981, 1982; Heyde, Van Isacker, Waroquier et al.,
1983) first. In it, the Hamiltonian is of the form

H=H,+e,g"g+H,+Hy , 4.1)

where H; is the normal IBA-1 Hamiltonian, acting on
the sd space (sometimes called the = space) only, the
second term (with (ng)=0 or 1) accounts for the g-
boson energy, the third term acts on the g-boson (or I')
space, and the last term mixes the X and T spaces. H, is
often taken simply to be of the form H, ~«,Q,; 0, with
Qg=(g*§ ). Since it independently conserves n,-+n,
and n,, H, merely splits the energies of states with n, =1
but does not mix them. H,, can, in principle, be rather

complex but is usually truncated to simple terms such as

H, ~(g'sH®.(dd)* +H.c. 4.2)

(MeV)
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1 1 &
1
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FIG. 60. Energy spectrum resulting from the coupling of a g
boson to an SU(3) core as a function of the ratio «,/k for
N =12. The degenerate multiplets arising in the absence of a
g-boson quadrupole interaction term in the Hamiltonian are
seen at the left, while rotational bands with K =0, 1, 2, 3, and 4
are seen to emerge for large values of x, on the right. From
Van Isacker et al. (1982).
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in order to minimize the number of additional parame-
ters.

Heyde, Van Isacker, and co-workers (Van Isacker
et al., 1982; Heyde, Van Isacker, Waroquier et al., 1983)
have systematically studied the cases in which H,
satisfies or approximates one of the U(6) symmetries, and
the reader is referred to those studies for details. Here, it
is useful to highlight some general results. - First of all, in
deformed nuclei, where H; is close to the SU(3) Hamil-
tonian, a K =4 band, which is largely g boson in charac-
ter, appears in the low-lying spectrum. Bands of similar
structure but with K=0,1,2,3 are substantially higher ly-
ing, the splitting between bands being generated by the
Q,4°Q, term. This is seen in Fig. 60, which shows the
evolution of the spectrum of g-boson bands as a function
of k,/k (koca,) as a concrete example of a calculation
for a deformed nucleus. The calculated (Van Isacker
et al. 1982) and experimental energy spectra of *°Gd, as
well as the B (E2) values from the K=4 band, are shown
in Figs. 61 and 62. Several interesting features may be
noted. The energies and wave functions of the g, 3, and
v bands are little affected by the addition of a g boson:
the expectation value of the g-boson number (ng) (in
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t
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=
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units of 0.1%) is given for each level of the 3 and ¥ bands
in Fig. 61, and only for the 8, and higher levels does it
approach or exceed 1%. Of course, this conclusion
might change if n, > 1 values were allowed in the calcula-
tions. The B(E2) values are also in excellent agreement
with the data. Note particularly the relative scales of
branching to various bands. In obvious band notation,
the B(E2) values from the K=4 band go as
4—>4>>4—y>>4—->B>4-—g, in agreement with exper-
iment. Further discussion of these calculations for °Gd
will be given in Sec. IV.D below, since they also incorpo-
rate intruder bosons and thus include a second extension
to the IBA-1 as well.

The coupling of a g boson to U(5) or O(6) cores
(Heyde, Van Isacker, Waroquier et al., 1983) is also in-
teresting. A significant difference from the SU(3) case
above is that, here, the Q;,-Q, term is much less effective
in splitting the g-boson states, since the matrix elements
of Q., are much smaller. Thus predictions closer to
those of a weak-coupling calculation result. However,
the effects on B (E2) values are important. Some of these
are related to simple changes in boson cutoff effects and
are best discussed below in the more general U(15) frame-
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041 1sBAg-1 W / -3 -
03k L~ "2 —
0.21- —
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FIG. 63. Comparison of empirical and calculated intraband B (E2) values for (a) ground band and (b) ¥ band in '®Ru. The calcula-
tions utilize an IBA-1 Hamiltonian incorporating g-boson excitations. The different solid curves correspond to different strengths of

(2)

the boson effective charge e/3’ and are labeled in units of 0.1 eb. The empirical results are roughly consistent with the calculations

(2)

corresponding to e’ ~ —1.5. The dashed curve corresponds to the sd IBA-1. From Heyde, Van Isacker, Waroquier et al. (1983).
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work, but it is interesting that some very specific empiri-
cal features can be reproduced. A nice example is pro-
vided by the nucleus ®Ru, which is intermediate be-
tween U(5) and O(6) and in which the yrast B(E2) values
show a large jump at the 67 —4% point. As shown in
Fig. 63, it is possible (qualitatively) to reproduce this
effect for an appropriate sign and value of g-boson
effective charge e,, in the E2 transition operator,

CT(E2)=e T(E2)y +eyy(g'd +d'g)?
+eg,(g'2)? . (4.3)

The same figure also shows reasonable agreement (con-
sidering the large experimental uncertainties) with the
intra-y-band transitions.

2. U(15)

The effects of a g boson can also be studied by exploit-
ing the symmetry properties of U(15). Such an approach
is not limited to {n, ) <1, and was explored several years
ago by Ratna Raju (1981, 1982), Wu (1982), and others
and more recently in a renewed burst of interest (see, for
example, Akiyama, 1985; Borghols et al., 1985; Akiyama
et al., 1986; Yoshinga, Akiyama, and Arima, 1986; Aki-
yama, von Brentano, and Gelberg, 1987). Most of the
work thus far has been carried out in an SU(3) chain, and
we shall therefore treat only this case. [For a discussion
of the U(5) case, see Sun et al., 1983.]

There are, basically, two effects of going from U(6) to
U(15). First, the effective value of N is changed to 2N.
Thus all falloffs in B(E2) values are postponed to much
higher spins. Related to this, rotational bands also ex-
tend now to L =4N and thus cutoffs are effectively elim-
inated. Second, the number of SU(3) representations in
U(15) increases dramatically compared to U(6) and thus
new possibilities for intrinsic excitations appear.

The eigenvalue equation is given by (Akiyama, 1985)

E=aC(Au)+BL(L +1)+7S , (4.4)

where the first two terms are exactly as in the sd SU(3)
limit except that the values of (A,u) are based on
Amax=4N rather than 2N. Thus, for example, the ground
state is characterized by (4N,0), and the 8 and y bands
by (4N —4,2). Now, however, as noted, new representa-
tions appear. These are of two types, those containing
odd K rotational bands, and those stemming from multi-
ple appearances of representations with the same (A,u)
values. The lowest-lying of the former is
(A—6,3)=(4N —6,3) and contains K =1 and 3 bands.
The latter are typified by representations such as
(A—8,4)=(4N —8,4) which now occur twice, each time
containing K =0, 2, and 4 bands. These two occurrences
can be distinguished by a new quantum number w, which
takes on the values O and 1 for the (A'u')=(4N —8,4)
representation. Thus for w =0 the states occur at the
same energies (after substitution of 4N for 2N) as those of
the (A —8,4) representation in the sd IBA (but now have
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wave functions containing components with a g boson)
while, for w =1, a second set of K =0, 2, and 4 bands ap-
pears with shifted energies. This shift in energy is pro-
vided by the y.S term in Eq. (4.4), which represents the ei-
genvalue of an SU(3) scalar operator and is given by (Aki-
yama, 1985)

S=w(2N-2w+3), (4.5)

thus splitting the w =0 and 1 representations. Hence,
the level energies are given by

E=aC(A,u)+BL(L +1)+yw(2N —2w+3) . (4.6)

The quantity w is akin to a seniority quantum number,
which counts the number of (A,u)=04 coupled pairs.
Here, the value of w will be distinguished by a subscript
on the values of (A',u’). Thus one has now the represen-
tations (A —8,4), and (A —8,4),.

The states of (A—8,4), have a double phonon (e.g., y¥
or yp3) vibrational character. In contrast, the (A—28,4),
representation has been shown (Akiyama et al., 1986) to
resemble a one-phonon excitation. This geometric inter-
pretation helps account for the differences in predictions
of, for example, (¢,p) cross sections discussed below.

An example of a fit of this model to the data is shown
for !78Hf in Fig. 64. Note that, above the B and y bands,
the next representation has w =1. In a fit without g bo-
sons, these empirical states are predicted too high. The
odd K bands on the right should also be noted. Since
these states have w =0 they are not separately
parametrized and their predicted energies are fixed by the
g, B, and y band energies. Empirically, the band with
K =3 is in good agreement with the data. The predicted
1" band, however, is not observed experimentally.

It is clear that realistic applications of an sdg model to
most deformed nuclei must allow for some symmetry
breaking. Akiyama (1985) has introduced several opera-
tors that achieve this result without destroying the band
structure. When such a scheme is applied to !%®Er, the fit
in Fig. 65 is obtained (Yoshinaga, Akiyama, and Arima,
1986). The agreement with the data is excellent, but this
may simply reflect the much larger number of parame-
ters. In particular, compared to the SU(3) case, the
K =17 band is pushed much higher (to 2.7 MeV) than
the K =3 band and the K=4 band of the (A—8,4), repre-
sentation is separated off from the lower K bands.
Indeed, the lowest K=4 band now has a dominant com-
ponent (A—8,4), and reproduces the observed energy of
the K=4 band at 2.055 MeV, thus accounting for the
earlier K =4 anharmonicity problem.

While there are indeed a larger number of parameters
than in the sd case, several other predictions are also ob-
tained in agreement with the data. A number of these
center on cross sections for two-neutron transfer (Akiya-
ma et al., 1986), especially (z,p), which are very different
in the sdg IBA-1 model. The (¢z,p) transfer operator now
transforms as (4,0) under SU(3) instead of (2,0). Thus,
starting from a target with (A,u)=(4(N —1),0), the
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selection rule in (¢,p) (below midshell) allows population
of the representations (4N,0), (4N —4,2), (4N —8,4).
However, the last of these occurs with both w =0 and 1,
and there is a strong theoretical preference for popula-
tion of the ‘“one-phonon” w=1 states over the w=0
“two-phonon” levels. In 168Er the second excited K =0
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FIG. 65. Calculated energy levels of all positive-parity levels
below 2.4 MeV in '"®Er with the inclusion of a g boson. The
empirical bandhead energies are indicated by the dashed lines.
The labels below each bandhead represent the dominant SU(3)
representation and K quantum number. States with asterisks
cannot be assigned definite SU(3) representations. From Yoshi-
naga, Akiyama, and Arima (1986).
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band in the sdg model has w=1 and thus can be
significantly populated in (¢,p). A comparison of predict-
ed and observed 0" (z,p) strengths in '®®Er is shown in
Table VII. While the comparison still lacks detailed
agreement, the experimental values fall in between those
of the SU(3) limit of U(15) and the broken-symmetry
case. Moreover, the 2% state of the second K=2 band
also has a large amplitude for w=1 and can be populated
in (¢,p). In contrast, in the sd model, both these bands
(K™=03 and 2;) belong predominantly to the (A—8,4)
(“two-phonon”) representation. The sdg model calcula-
tions of Akiyama et al. (1986) predict that the ratio of
relative spectroscopic strengths S(27,K=2;)/S(27,
K =2{")=6 compared to an experimental value of 5. Fi-
nally, the K=4 band at 2.055 MeV, as noted just above,
has w =0 and therefore, again, is of two-phonon charac-
ter and will only be populated very weakly. The calculat-
ed ratio S(4%,K=47)/S(4"7,K=0{")~0.034 is con-
sistent with the upper limit obtained by Burke et al.
(1985). In general, the sdg model allows more states to be
successfully populated than the sd model and is in better
agreement with experiment.

As described in the earlier discussion of the
O(6)—rotor transition in the Os isotopes, a set of K=4
bands develops in each of the even-even Os isotopes near
1 MeV. Their properties, in particular their ¥ decay, and
the evolution in E2 branching ratios, are extremely well
reproduced by the simple sd IBA-1 calculations. Never-
theless, these low-lying bands and their direct E4 popula-
tion in Coulomb excitation are suggestive of g-boson
components. Baker (1985) has argued that a consistent
interpretation of all the data (E2 and E4 properties)
could be obtained by the inclusion of a g boson. His cal-
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TABLE VII. Relative (¢,p) strengths for 0" states in '°®Er (from Akiyama et al., 1986).

Band Level Relative strength
K7 energy
(keV) Experimental IBA prediction
cross section®
sd IBA? sdg IBA
SU(@3) Band mixing
o 0 100 100 100 100
05 1217 15 11 8.3 - 21.6
035 1422 10 2 14.7 3.6
0 1833 2.4 0.05 7.6

2Burke et al. (1985).

culations succeed rather well. However, as noted earlier,
Morrison (1986) has recently shown that, while a g boson
may aid in accounting for a given nucleus, the systematic
behavior of E4 properties arises mostly from the effects
of the Pauli principle on the mass dependence of the E4
transition operator itself. Clearly, further study is in or-
der.

Kuyucak and Morrison (1987) have recently suggested
another area where an sdg space may significantly
ameliorate a recent perplexing problem. All g factors are
constant in the IBA-1, independent of spin or intrinsic
excitation. However, recent work (Doran et al., 1986)
has disclosed evidence for falloffs in measured g factors
along the yrast band, for example, in '®°*Er. With the in-
clusion of a g boson, Kuyucak and Morrison find that the
g factors are spin dependent and given by

g(L)=go+8g,L(L +1). @.7)

A fit to the measured g factors (Doran et al. 1986) in
166Er is shown in Fig. 66. The agreement is good, al-
though the empirical uncertainties are large. Clearly, the
fit relies on a negative g,, and it remains to be seen
whether this is microscopically reasonable and whether it
also leads to consistent results for M1 transition rates.

Finally, and perhaps most importantly, the g boson, of
course, significantly diminishes the problem of the pre-
dicted falloff in yrast B (E2) values characteristic of the
sd model, since finite-N effects are much weaker when N
is replaced by 2N in all B(E2) expressions. The basic
problem is nicely exemplified by the data shown at the
left in Fig. 67, which compares the empirical values for
yrast band E2 reduced matrix elements for 2*U with
rigid-rotor and IBA [SU(3)] calculations. The discrepan-
cies for the latter starting at I~N,, are readily ap-
parent. The effects of a g boson on the high-spin behav-
ior of the IBA have been studied by Ratna Raju (1981,
1982) and Wu (1982). For example, Ratna Raju (1982)
has shown that in the yrast band,

B(E2:L +2—1L)

(L+2)L+1) N —L)(nN+L +3)
(2L 4-3)(2L +5) ’

:e;% (4.8)
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This formula is actually written for the general case of a
set of bosons with angular momenta 0,2,4,...,7n and
where the total degeneracy is 1/2(y+1)(n+2). (Forag
boson =4, and this gives the familiar result 15.) Equa-
tion (4.8) clearly shows that falloff effects, which stem
only from the last two factors in the numerator, are
much less severe [compare the sd SU(3) result of Eqg.
(2.48), which is obtained from Eq. (4.8), by substituting
n=2]. On account of this result, Ratna Raju (1982) has
argued that the reduction in B (E2) values at high spin
predicted by the sd IBA is not at all a reflection of finite
boson number effects but of insufficient collectivity, a
difficulty that is greatly reduced by the addition of an
! =4 boson.

An example of this effect is shown at the right in Fig.
67, The improvement over the sd case is substantial. It is
also evident that the introduction of [=6,8,... bosons
leads to little further change, since the g-boson results are
already quite close to the rigid-rotor result. It is the clear
need for g bosons in this context, perhaps more than any
other factor, that suggests that the improved agreement
obtained for other observables is also physically
significant and not just an exercise in parameter prolifer-
ation.

+0.3 — —

& g factor

+0.1

2 4 6 8 10 12
L

FIG. 66. Comparison of empirical and calculated values of g
factors for yrast states in '**Er. The calculated values would be
constant in the absence of a g boson. From Kuyucak and Mor-
rison (1987).
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FIG. 67. Comparison of models for yrast band E2 transitions: (a) Empirical reduced E2 matrix elements for the yrast band in 2*°U
compared to rigid-rotor (solid line) and IBA [SU(3)] (dashed line) predictions. From Ower et al. (1982). (b) Ratios of yrast B(E2)
values to rotational values for 232Th. The line labeled / = « corresponds to the pure rotor model predictions, while the SU(15) and
SU(6) lines correspond to the IBA with s, d, and g bosons and s and d bosons, respectively. From Wu (1982).

C. Higher-order terms

Another obvious extension of the IBA-1 is the intro-
duction of higher-order terms either in the Hamiltonian
or in the transition operators. An example of the latter
was already discussed earlier for the M1 operator whose
first-order term is diagonal in the IBA-1 basis, and there-
fore leads to no M1 transitions, while a second-order
term leads to predictions of the signs and magnitudes of
mixing ratios in deformed nuclei that seem capable of
reflecting the experimental situation. There are of course
many higher-order terms that can be included in the
IBA-1 Hamiltonian, and there has been little systematic
study of them. One must therefore be cautious when the
choice of a particular one enhances agreement with the
data. Nevertheless, one that has proved particularly use-
ful is the addition of a cubic interaction term (Heyde,
Van Isacker et al., 1984). This has already been dis-
cussed rather extensively above in connection with the
addition of a small component to the O(6) potential (see
Sec. ITI1.A.1). Here we wish to discuss one additional cal-
culation of this type, since it concerns the more general
situation in which no particular symmetry applies.
Loewenich et al. (1986) have studied '°Xe with the
(13C,2n7) and (IZC,3n,,) reactions and have developed an
extensive level scheme including several sidebands. This
nucleus is intermediate in character between O(6) and
SU(3). Calculations with the Hamiltonian

H=c¢h,+a,Q*+a,L? (4.9)

with X = —0.527, that is, intermediate between its O(6)
and SU(3) values, give generally good results for both en-
ergies and relative B (E2) values. However, just as in the
case of the heavier, O(6)-like Xe isotopes, it was found
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that the energy staggering in the y band was poorly
reproduced and that the spacing of higher-lying levels
was too large. Naturally this suggested the introduction
of a cubic term. Here, however, its effects are somewhat
different, since it is now superimposed on an SU(3)-like
potential with a minimum at ¥ =0° rather than on a de-
formed y-soft O(6) one. Nevertheless, a‘similar improve-
ment in predictions occurs, as can be seen in Fig. 68. In
both the present case and that of the O(6)-like Xe and Ba
nuclei, it is important to note that the amount of triaxial-
ity thus introduced represents a very small correction to
the potential obtained without this term. This is evident

Y band
O v ——
(71— |
g.s. band —_— B band
e 6 —_— ;
5 \
—
6* L == T N ——
The— 3 X P —
" 2* . - [0 -
———— Expt.  IBA-1 Expt. IBA-1
a b a b
120
*__ Xe
o N=10
e IBAD 6;= 0.06 MeV
a b

FIG. 68. Comparison of the experimental levels of the ground,
v, and B, bands of '2°Xe with predictions of the simple IBA-1
model (a) and with the IBA-1 model with the inclusion of a cu-
bic (triaxial) term ( o< 6;) (b). For a detailed specification of the
parameters see Loewenich et al. (1986), from which this figure
is taken.
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FIG. 69. Dependence of the IBA potential on ¥ in the classical
limit for the Hamiltonian of Loewenich er al. (1986) with and
without a cubic term whose magnitude is specified by the
coefficient 6;.

from Fig. 69, which shows the corresponding classical
potential with and without the cubic term.

While the choice to introduce a single third-order
term, to the exclusion of others, may seem rather ad hoc
it has an appealing physical interpretation and appears to
be a relatively simple way of significantly improving
some of the IBA-1 predictions.
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D. The IBA-1 with configuration mixing

The presence of intruder states as a common feature
(Wood, 1984; Heyde et al., 1982) throughout heavy nu-
clei has motivated another extension to the IBA, namely,
the incorporation of multiple systems of s and d bosons.
The most common application of this idea utilizes the
so-called Duval-Barrett (1981a, 1981b) formalism, in the
framework of the IBA-2, in which intruder states are
viewed as two-particle two-hole excitations from the
valence shell into the next higher shell or major subshell.
If the structural differences between particle and hole bo-
sons in two different shells are ignored, the creation of
two additional holes in the valence shell and two particles
in the next shell increases the total number of bosons by
two. Reasonable results have been obtained (Duval and
Barrett, 1981a, 1982; Sambataro and Molnar, 1982;
Schreckenbach et al., 1982; Duval, Goutte, and Vergnes,
1983) using this approach in several widely separated
mass regions (e.g., Hg, Mo, Cd, and Ge). The Hamiltoni-
an consists of the normal one, containing N, and N, s
and d bosons, plus a second Hamiltonian for the intruder
system in which N_=N_+2 or N,,=N,+2 (depending
on whether the intruders are proton or neutron excita-
tions) and a term that mixes these two configurations. It
is also possible to develop a similar idea in the framework
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FIG. 70. Comparison of empirical (solid lines) and calculated (dashed lines) energy levels for several Gd isotopes.

The calculations

include both a g boson and an s’d’ system of bosons. From Van Isacker et al. (1982).
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of the IBA-1, and this has been done and used by Van
Isacker et al. (1982) in calculations for the Gd isotopes,
in particular '*°Gd. It is useful to consider this, since it
is both an interesting extension of the IBA-1 and an illus-
tration of many of the main effects arising in the full
IBA-2 Duval-Barrett approach.

The difficulty in the deformed Gd isotopes is that, if
one attempts to apply the SU(3) limit, it is easy to repro-
duce the ground B and ¥ bands but there is another
K =0 band lying just above the first excited K =0 band
and there is also a low-lying K=4 band. It is impossible
to reproduce these within the standard framework of the
IBA. Motivated by this, Van Isacker et al. (1982) pro-
posed a Hamiltonian of the following form:

H:Hsd+HS'd'+Hg +Hin( > (4.10)

where the meaning of the terms is clear. Some results of
this work were described earlier in the discussion of g bo-
sons. Here we concentrate on the s’'d’ excitations, which
in practice are negligibly mixed with g-boson amplitudes.
In order to simplify the calculations, the following as-
sumptions were made: First, H,; was taken in SU(3)
form. Second, it was assumed that there were either N
bosons of sd type or (N —1) s and d bosons with one bo-
son allowed to occupy either an s'd’ state or a g-boson
state. Furthermore, in practice the effects of the d’ boson
were found to be small and were ignored. Therefore H,
is simply egs’ Ts’. The Hamiltonian for the g boson
was also taken in ~a simple form, namely,
H,=¢,8"g—Kk,0,,Q,. Finally, H;, describes an in-
teraction (very weak) between the sd states and the s'd’
levels or between the sd states and the g-boson states.
With this Hamiltonian, and with smoothly varying
values for the parameters, the systematics of the level
schemes of the even-even Gd isotopes for N >90 were
well reproduced, in particular, the energy of the second
excited K =0 band, which appears experimentally in
156Gd at 1.17 MeV (whereas the K =0, band from the sd
system is calculated at 1.7 MeV).

Some of the results of the calculation are shown in Fig.
70. In addition, a large number of B(E2) values were
calculated which, in general, are in very reasonable
agreement with the data. A particularly interesting
feature is that experimental Mikhailov plots of ¥y —g and
[B— g transitions in the Gd isotopes deviate sharply from
straight lines. The calculations (Van Isacker et al.,
1982), while not achieving detailed agreement with the
complex empirical plots, nevertheless show similar curva-
tures and, at least in '*®Gd, reproduce well the minima
and maxima in the curved Mikhailov plot contours.

E. Backbending and particle alignment effects
in the IBA-1

The study of high-spin phenomena in nuclear physics
has developed over the past decade into a widespread
field of activity abounding in interesting phenomena.
Most of these, at present, are outside the scope of the
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IBA. However, a simple extension of this model is cap-
able of describing at least the most basic phenomena,
namely backbending and the accompanying changes in
yrast band B (E2) values. The basic idea is rather simple.
The Hamiltonian is written as

H=H(N)+Hy(N—D+epp+Hpiy » (4.11)

where the IBA Hamiltonians in the first two terms are
solved for N and N — 1 bosons, respectively. In the latter
case one boson has been destroyed to create an aligned
two-quasiparticle state at excitation energy €,q,. Hpix
provides for mixing of these two basic configurations (but
also contains nonmixing interactions). The calculations
are usually carried out in two steps: first, energies and
wave functions for the N and N —1 boson systems are
obtained by diagonalization of the appropriate IBA
Hamiltonians, and then a mixing calculation is carried
out. As efforts in this direction have developed, they
have come to center on the addition of two-quasiparticle
configurations to a core described by the IBA-2. For ex-
ample, quite reasonable agreement has been obtained
(Yoshida, Arima, and Otsuka, 1982) for the backbending
observed in such nuclei as the Ba and Ce isotopes, as well
as for the observed decreases in yrast B (E2) values near
the backbend.

In earlier tests of the inclusion of quasiparticle excita-
tions in the IBA, however, the IBA-1 was used, and thus
a brief summary of these efforts is appropriate here. An
early initiative in this direction was taken by Gelberg and
Zemel (1980), who simplified their task by adopting the
particularly restrictive assumption that for the N-boson
system only the ground band core states were included,
so that H (N )=alL 2. With this simplification, the cal-
culations depend on four parameters, a, €5qp> ONE related
to the two-quasiparticle level system, and one to mixing
with the normal one. Results for the energies of the yrast
band in 2°Ba are shown in Fig. 71. Clearly, the back-
bend, which occurs around spin 12, is reasonably well
reproduced. With an E2 transition operator consisting
solely of a boson part there would, of course, be no tran-
sitions connecting states above and below the backbend

"in the absence of the mixing term in the Hamiltonian.

With that mixing term, finite, though small, B(E2)
values are obtained as shown on the right in Fig. 71.
While the empirical B(E2) values for L=12" and 147
in the region of the backbend are indeed below the rota-
tional model predictions, there is actually a more severe
drop in observed B (E2) values below the band crossing,
and the IBA calculations qualitatively reproduce this
feature, now known as the prealignment anomaly
(Hanewinkel et al. 1983). The predicted results arise
from the interplay of a boson cutoff effect and a band
crossing. Although no pretense to an accurate descrip-
tion of the empirical results can really be made in such a
simplified model, this example highlights two effects: the
ability to incorporate particle alignment in a rather sim-
ple extension of the IBA-1 and the ability to investigate
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FIG. 71. (a) Empirical (solid line) and calculated (dashed line) energy intervals vs spin in '2Ba. (b) Ratios of yrast B (E2) values for
'26Ba. R is defined as R =[B(E2:L —»L —2)/B(E2:2—0)]/[B(E2:L —L —2)/B(E2:2—0)],,,. The solid line represents a calcula-
tion including a schematic model incorporating the possibility of two-quasiparticle excitations. From Gelberg and Zemel (1980).

possible B (E2) falloffs, even in the presence of backbend-
ing. ‘

A more ambitious approach for the inclusion of two
quasiparticles in the IBA has been developed by Mor-
rison, Faessler, and Lima (1981). It has recently been ap-
plied by Faessler and co-workers (1985) to the Ba and Ce
nuclei. In this more general approach, the entire N-
boson core structure is included. Moreover, the core
structure is allowed to undergo an O(6)—SU(3) transi-
tion across these isotopes by using a CQF sd Hamiltonian
[X is fixed in T(E2)]. Additionally, H,;, is allowed to be
spin dependent, and includes exchange terms, and &, is
replaced by a more realistic fermion Hamiltonian allow-
ing for a surface delta residual interaction. Both neutron
and proton alignments are considered. In fact, the re-
sults for both alignments are used to test which is opera-
tive. Reasonable agreement for Ba and Ce isotopes is
achieved: an example, Fig. 72, shows results for '*°Ba
and includes rotor plus two-quasiparticle calculations as
well. These IBA calculations, however, do not explain
the prealignment anomaly discussed above, which, it
seems, is very sensitive to the alignment energy and as-
sumed mixing of aligned and core states. In the more
phenomenological calculations of Gelberg and Zemel
(1980) described above, this effect was specifically
parametrized to test the capability of the calculational
framework, while the philosophy of the calculations of
Faessler et al. (1985) is substantially more ab initio and
therefore misses this particular empirical detail.

Finally, a rather different approach to backbending in
the IBA-1 has been taken by Heyde and co-workers
(Heyde, Van Isacker, Jolie et al., 1983; Heyde, Jolie
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et al., 1984). It is reminiscent of the Duval-Barrett
(1981a) technique for inclusion of intruder states with
different effective boson numbers N, but utilizes the
IBA-1 and generalizes it to include subsystems of states
with No,Nog+2, ..., N =Ny+6. The Hamiltonian is
simply

H=H_ .+AN—-Ny)+H_, , (4.12)

where No=N, jma and H_,, is the normal multipole
Hamiltonian such as e(N)A,;+a,Q% 2A is the energy
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FIG. 72. Energy levels of '**Ba compared to predictions of IBA
and rotor models with the inclusion of two-quasiparticle excita-
tions. From Faessler et al. (1985).
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needed to create a 2p-2h excitation, that is, the energy
separation of families of levels with AN=2, and H;, has
AN =2 matrix elements only. The first two parts of the
Hamiltonian are separately calculated for each boson
number. The key ingredient specifically incorporated in
order to achieve the desired result (backbending) is that
the parameter € in H_,;, is N dependent. It is written as

g=60(N,_.,—N), (4.13)

so that states with larger N have smaller € and therefore
smaller inertial parameters. Moreover, the Q2 term in
H_ ., dominates to a greater extent. Thus the yrast band
with N=N_,, —6 will have the largest spacings and will
eventually be crossed by the more collective higher-lying
bands, leading to backbending. Whether this happens
before the spin cutoff is a question of detailed parameter
values. Clearly, a large 6 will lead to backbending at
smaller L values and to a more significant change in the
falloff effects in B(E2) values relative to a standard
IBA-1 calculation with fixed N.

Calculations in this scheme for the six nuclei from
134—-164py reproduce the empirical systematics of sharp
backbending at low frequency in **Dy and no backbend
in the heavier isotopes.

This picture describes a backbending phenomenon
completely within a (multi-N) collective framework. Al-
though it succeeds reasonably well, its success is, in a
sense, built in, and its relation to more traditional ap-
proaches is not yet clear.

F. IBA-1 as a projected IBA-2

As noted above, the IBA-2 is an important extension
of the IBA-1, not only for calculational purposes, where
the distinction between protons and neutrons is essential,
but also because of its closer relationship to the underly-
ing shell structure and its prediction of new collective
modes. A particularly important property of the IBA-2
is that the proton-neutron symmetry character of each
state is specified in terms of a new quantum number

interacting boson approximation 455

called F spin (Van Isacker et al., 1986; Arima et al.,
1977). A given nucleus has a fixed value of the projection
of F spin, Fy=1/2(N,—N,), but, in analogy with iso-
spin, can have states with different values of F. More-
over, there are terms in the IBA-2 Hamiltonian that can
mix F spin, although in most IBA-2 calculations, with
certain notable recent exceptions (Novoselsky and Talmi,
1986), the low-lying states are rather pure
F=F_,=1/2(N_+N,) states. To the extent that this
is a good approximation one can then make use of projec-
tion formulae (Scholten, 1980; Harter, Gelberg, and von
Brentano, 1985; Frank, Harter, and von Brentano, 1987)
that, for a particular set of IBA-2 parameters, give the
IBA-1 parameters that produce exactly the same predic-
tions for the F,,, states as the original IBA-2 calcula-
tion. An approximate method, applicable for states with
F values close to F,, has also recently been discussed by
Dobes (1987).

We shall not specify the projection formulas explicitly
here. However, their existence is very useful and appeal-
ing, since IBA-1 calculations are much simpler and more
economical to carry out and since it is generally easier to
understand the character of the resulting IBA-1 wave
functions in the context of dynamical symmetries and
geometrical analogs. Several uses have been made of this
approach, primarily by the K6ln group of von.Brentano,
Gelberg, and co-authors. Besides the references cited
above they have studied (Sala, Gelberg, and von Bren-
tano, 1986) the systematics of boson effective charges in
the rare-earth region by carrying out a set of IBA-2 pro-
jected into IBA-1 calculations in the CQF and relating
the calculated B(E2) values to the quantity F,/F.
Another use of the projection idea which can be of quite
general applicability is found in their recent study of M1
transitions and F-spin purity in '2®Xe, in which an IBA-1
Hamiltonian was inversely projected to give a “starting
point” IBA-2 Hamiltonian to fit the near-O(6) spectrum
of 2Xe (Harter, von Brentano, and Gelberg, 1986).
However, it should be recognized that, in general, the
process of inverse projection from IBA-1 to IBA-2 is not
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FIG. 73. Contours in the N-Z plane. (a) Empirical E ,+ energies in the rare-earth region (labels are in keV); (b) hyperbolic contours
1

of constant N,N,; (c) predictions of projected IBA-2 calculations with constant parameters. The contours start at 100 keV (inner-
most) and increase in 100-keV steps. From Theuerkauf et al. (1987).
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unique. In fact, in principle, there are an infinite number
of IBA-2 Hamiltonians that can give rise to the same
projected IBA-1 Hamiltonian.

A final application of this approach starts from the ob-
servation that in many phenomenological fits to extended
sequences of nuclei with the IBA-1, one must generally
vary the IBA-1 parameters, but in some cases (Casten,
Frank, and von Brentano, 1985) these variations can be
written as simple functions of N_N,. Since this factor
frequently enters in the projection equations just dis-
cussed, it might then be possible to use constant IBA-2
parameters, with the variation in IBA-1 parameters com-
ing naturally through the projection. With the aim of
testing this idea, Theuerkauf and co-workers (1987) have
carried out extensive series of IBA-2 calculations within
the IBA-1 framework with constant IBA-2 parameters.
In regions of little structural change, these projected
IBA-1 calculations can indeed describe the empirical sys-
tematics. Moreover, in general, most observables are
predicted to be smooth functions of N N,. Despite this,
as illustrated in Fig. 73, in transition regions, the changes
in IBA-1 parameters arising simply from the projection
formulas are not sufficient to account for the systematics.
While both theory and experiment follow N, N, sys-
tematics, the predicted strength of the dependence on
NN, is insufficient. The point here in all these diverse
examples is not the detailed agreement or disagreement
of a particular choice of IBA-2 parameters with the data,
but rather the use of a simple approximate method to uti-
lize the IBA-1 in a way that this capable of recognizing
effects of the separate variation of proton and neutron
boson numbers.

G. f bosons and negative-parity states

Clearly, the sd-boson IBA-1 model cannot account for
negative-parity states at all. Yet numerous examples of
such states are known in heavy even-even nuclei, and, in
particular, negative-parity rotational bands are a com-
mon feature of deformed nuclei. Many of these intrinsic
excitations are identified experimentally by enhanced E3
transition rates to the ground state. Although they may
not be extremely collective, frequently being populated
rather strongly (see, for example, Burke, Maddock, and
Davidson, 1985) in single-nucleon transfer reactions as
well, many have been interpreted in terms of octupole de-
grees of freedom coupled to the ground state. Micro-
scopic arguments for negative-parity nucleon pairs have
recently been given by Catara et al. (1986). It is a natu-
ral extension of the IBA-1, therefore, to incorporate an f
boson. Indeed, a rather extensive discussion of f-boson
properties appeared as early as the fundamental paper on
the U(5)—SU(3) transition by Scholten, Iachello, and
Arima (1978), who considered a simple Hamiltonian of
the form

H=Hy,+e fTf+0,N-Z,[0;x0,1?, (4.14)
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where €, is the f-boson energy and 6, and Z, describe
the interaction of the octupole bosons with the sd-boson
system. The quadrupole boson operator Q is defined as
Qf:2(7)1/2(fff)(2’. The system is constrained so that
the wave functions either contain N s and d bosons or
(N —1) s and d bosons along with one f boson. To sim-
plify the treatment, Scholten, Iachello, and Arima (1978)
carry out a series of calculations in which the parameters
€, 0 r, and Z, are constant as a function of N.

If Hy, is taken in the harmonic U(5) limit and the in-
teraction term in Z, is neglected, the energies of the
negative-parity states are simply given by E =en, +E;,
where E;=g¢,46,N. This produces a spectrum with a
series of multiplets in which an octupole boson is coupled
to each positive-parity state. The low-lying levels of such
a system are shown on the left of Fig. 74. In the SU(3)
limit another simple level scheme results, also shown in
the same figure, in which a series of excited octupole
bands with K =07 -3" appear. The energies are given in
simplified form by E(K,)=AL(L+1)+a;K;+B;,
where a, and B are appropriate combinations of the pa-
rameters of the Hamiltonian. Depending on the sign of
a,, negative-parity bands result whose energies are either
monotonically increasing or monotonically decreasing as
a function of K r- Scholten, Iachello, and Arima (1978)
also calculate the U(5)—SU(3) transition including an f
boson. The calculation simply consists of diagonalizing
the Hamiltonian given in Eq. (4.14), where H,; is allowed
to undergo a transition from U(5) to SU(3). Typical ex-
amples of the results are shown in Fig. 75. The most in-
teresting feature is the evolution of the sequence of
negative-parity states. Near the closed shell at N=282,
where a vibrational spectrum is obtained, the lowest
negative-parity state is 37, followed by groupings of oth-
er negative-parity states at higher energies. This is rem-
iniscent of the U(5) scheme shown on the left in Fig. 74.
As the spherical-deformed transition region sets in, so
does the development of rotational bands. In particular,
the lowest levels are seen to evolve into a K =0~ band.

Finally, Scholten, Iachello, and Arima (1978) also cal-
culate B(E3) values connecting the ground state with

u(s) SU(3)
_ K=37
_ K=2 -
_ K=l _—5T
K=0 — 5—4;
S5_a4 _—4_ 3
=5;- — 5I7=37
5= . 2
— 5 IK3_
3" -7—?:/ \?‘
/ E3 E3
—2 //
_/o« == &

FIG. 74. Schematic representation of the octupole (7= —)
spectrum in the U(5) and SU(3) limits. From Scholten, Iachello,
and Arima (1978).
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FIG. 75. Comparison of calculated (lines) and empirical
(points) energy levels of negative-parity states in the Sm iso-
topes. From Scholten, Iachello, and Arima (1978).

the various octupole levels. Assuming the simple E3
operator T(E3)=~(s'F+f%s)®, then, in the U(5) limit,
only the first excited 3~ state with n;=N —1, n;=0 and
ny=1 is connected to the ground state by an E3 transi-
tion. On the other hand, in SU(3), the 3~ states of all
four octupole bands have E3 ground-state transitions. In
fact, the relative B (E3) values from these states are in
the ratios 1:2:2:2, for the deexcitation of the K=0", 17,
27, and 37 bands, respectively. The larger B (E3) values
in the case of K540 stem simply from the fact that the
antisymmetrized wave functions in these cases contain
two terms, while that for K =0 contains only a single
one. Due to this fragmentation of E3 strength, the con-
spicuous feature of the transition from U(5) to SU(3) will
be decreasing B (E3) values. These results are empirical-
ly observed, as illustrated in Fig. 76.

The neutron-rich nuclei *°~14Ba were also described
with the Hamiltonian of Eq. (4.14) by Scott et al. (1980).
For H,, the authors employed constant coefficients of
the Q2 and L 2 terms, and a simple linear dependence on
boson number for the boson energy and pairing terms.
The low-lying 1~ and 37 states in each nucleus were de-
scribed by a single constant interaction strength Z,. The
f-boson energy was adjusted to normalize the 3~ energy
in each case. (Note that €, does not affect the relative
spacing of the negative-parity states, but merely shifts
them with respect to the positive-parity states.) The re-
sults of the fit are shown in Fig. 77. The striking feature
of interest here is the correct reproduction of the crossing
of the 1~ and 37 levels between neutron numbers 86 and
88, which is a characteristic signature of the onset of de-
formation (Scott et al., 1979).

Another approach to negative-parity states in this re-
gion is a calculation of the N=88 isotopes by Han et al.
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FIG. 76. Comparison of calculated and empirical B(E3) values
for E3 transitions in the Sm isotopes. From Scholten, Iachello,
and Arima (1978).

(1985), who use a Hamiltonian of the form of Eq. (4.14)
but without the 6, N term. H, is taken from previous
calculations (Chuu et al., 1984) of the positive-parity
states and is Z independent from Nd to Dy. Good agree-
ment is obtained except for the lowest 1~ levels (predict-
ed too high) and the predicted E1 strengths. Both of
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FIG. 77. Comparison between the calculated (solid lines) and
experimental (points) energies of the low-lying states in the
neutron-rich Ba isotopes. From Scott et al. (1980).
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these difficulties are corrected (however, at a substantial
cost in the number of parameters) by adding a p(I/ =1)
boson. There have been several other studies that ex-
plored the need for p bosons. The introduction of a p bo-
son helps compensate for the shift in the center of mass
when an octupole or f boson is introduced and may also
be useful in accounting for the decay of higher-spin
7= — states. Engel and Iachello (1985) studied the
effects of p and f bosons in the case of a
U(16)D - - - DSU(3) dynamical symmetry. More recent-
ly, Otsuka and Sugita (1987) have incorporated both p
and f bosons into an IBA-1 study of negative-parity
states in the actinide region.

At the same time additional studies with only an f bo-
son have been carried out. The coupling of an f boson to
an O(6) core has recently been considered by Engel (1986)
and applied to the negative-parity states of °0—19°pt,
The Hamiltonian is similar to that in the work of Han
et al. (1985) but with H; in the O(6) limit. Reasonable
agreement for J7” <4~ states is obtained, but the facts
that the lowest negative-parity states in Pt have J"=5"
and that the J7 > 6~ states are not well fit are illustrative
of strong nonoctupole character in these states.

More recently, an extensive set of calculations includ-
ing the f boson have been carried out by Barfield (1986)
and Barfield, Wood, and Barrett (1986). Their formalism
is rather similar to that of Scholten, Iachello, and Arima
(1978), except that they also include an exchange term
(proportional to a coefficient A4;) in the Hamiltonian,
which arises from an octupole-octupole interaction. This
term plays a particularly crucial role, and the competi-
tion between it and the quadrupole-quadrupole interac-
tion term, denoted 4,0, Q, determines the relative or-
dering of the octupole bands. This feature is illustrated
in Fig. 78, where it can be seen that a variety of relative
orderings can be obtained and it becomes possible to go
naturally from the 07172737 sequence for prolate shape
at the beginning of a shell towards the inverse situation
expected at the end of a shell.

1 1
100 200 300
Ax(keV)

FIG. 78. Schematic calculation of the relative ordering of the
different negative-parity K bands with a Hamiltonian incor-
porating s, d, and f bosons. A; is the strength of the exchange
term. The parameter A4, in the Hamiltonian was set at —50
keV. The full specification of the Hamiltonian and the values
for the other parameter values are given in Barfield (1986) [Eq.
(8.43)] on which this figure is based. The I"=0" line gives the
energy of the lowest I"=0" state.

Rev. Mod. Phys., Vol. 60, No. 2, April 1988

In this work, H; is treated in the CQF formalism.
The E3 operator is generalized, relative to earlier studies,
to the form

T(E3)=e;[ (s F+fIs)+x,d F+1a)®]. @15

This study is particularly interesting because it covers a
broad range of nuclei stretching from 3*Sm to !¥2W. The
calculation has a rather large number of free parameters,
and it is not the purpose of this review to discuss the de-
tailed variations in each except to note that the B(E3)
values are primarily determined by X;. The most detailed
results are presented for the nucleus '*®Er; the fit to the
negative-parity energy levels is shown in Fig. 79. (The fit
to the positive-parity energy levels is essentially the same
as obtained in earlier studies.) As can be seen, four
negative-parity bands below 2 MeV are well fitted by the
calculations. Several other empirical low-lying negative-
parity bands, indicated in the box at the left, are also
known, but at least several, the low-lying 4=, 37, and 6~
bands, are considered (Davidson et al., 1981a) to be two
quasiparticle in character and therefore outside the space
of these calculations.

Finally, a related approach that has been introduced
by Iachello and Jackson (1982) is the a-clustering model,
which is designed to account simultaneously for low-
lying negative-parity states, large a-transfer cross sec-
tions, and small a-decay hindrance factors, and has been
applied in the actinides and elsewhere. The model en-
visages a normal IBA set of states coupled to another set
described by s’ and p (I =1) bosons. The basic idea is
that, although the simultaneous excitation of both proton
and neutron pairs might seem to require a large energy,
the attractive p-n interaction in an «a cluster can
significantly lower the energy required, and such states
may play a role in the low-lying spectrum. The group
structure of this second set of states is then determined
by the space spanned by s’ and p bosons, or U (4)xU(2).
The U(2) group here allows for both proton and neutron
s’ and p bosons. In the IBA-1 this reduces to U(4) (but

Expt. Theory
I K" 1 K'f
2500 4—04 B
Eo[3—— 3 3-_ ?xpt Theory Tfe_ory_
4 0—0 S — Ex 0"’
2000} | =3 Expt, TheOry A
— g = B 1
3 L i K™=1" ]
x 3
w 1500+ b
1000 4
L 168,
500%- J

FIG. 79. Comparison of calculated and empirical negative-
parity states in '®Er. The boxes contain experimental band-
heads thought to represent dominantly two-quasiparticle excita-
tions, and the next-higher-lying theoretical bands. From
Barfield, Wood, and Barrett (1986).
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note that this may be a risky simplification because, then,
a 4p or 4n state is at the same energy as the a cluster). In
any case, this subset of states is then coupled to the nor-
mal sd space with appropriate mixing terms. Depending
on the p-boson energy and the interaction terms (and the
group chain describing the sd system), such a model can
account for many low-lying negative-parity states, for
large a decay probabilities, and for enhanced E1 transi-
tions (since the center of charge and mass do not coincide
when the « cluster is present). However, despite exten-
sive comparisons to the data, in both the rare earths and
the actinides, and with models of stable octupole defor-
mation, dynamic octupole vibrations, and f bosons, there
is not as yet a clear picture of the relative merits or areas
of validity of each approach.

While the above discussion illustrates a few results of
incorporating an f boson into the IBA, it is clear that

this is a field that has barely been touched. The data in "

deformed rare-earth and actinide nuclei on negative-
parity states are very extensive, while only a few initial
theoretical probes of the f-boson structure and of the
coupling of the f boson to the sd-boson space have been
published. This entire area and its relation to other ap-
proaches, such as that of the a-clustering model, would
seem to be ripe for much more extensive and systematic
theoretical investigation.

H. Other applications of the IBA

A generic kind of extension of the IBA-1 consists, not
in introducing new degrees of freedom, but in exploiting
the normal IBA structure of low-lying collective excita-
tions in conjunction with the description of other states
or, more commonly, of various nuclear reaction process-
es. Examples of this are electron scattering, the decay of
giant resonances, and medium-energy proton scattering.

1. Electron scattering

Electron scattering has been the most extensively stud-
ied of these three, and we begin with it. It offers, in prin-
ciple, a much more detailed and sensitive probe than
electromagnetic decay (or y scattering), since it is sensi-
tive to the radial wave-function structure: electron
scattering at different angles samples different momen-
tum transfer and therefore different radial regions.

The formalism is extremely simple and was first dis-
cussed at a very early stage (Dieperink et al., 1978;
Dieperink, 1979) and subsequently by Dieperink (1981) as
well as in many specific articles exploiting the formalism.
In E2 excitations in electron scattering, the transition

operator of Eq. (2.8) is modified as follows:
T, (E2)=a(r)(s'd+d's)¥+B(r)dTd)?, (4.16)

where the boson densities @ and 8 have now been ex-
pressed as radial functions a(r) and B(r). It is then clear
that an arbitrary E2 matrix element can be expressed as
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(i|T,(E2)||f}=a(r)A+B(r)B , 4.17)
where A and B are the normal IBA matrix elements, con-
necting states i/ and f, of the operators (s'd+d's) and
@'a)?, respectively. A4 and B can be calculated trivially
once an IBA calculation for a given nucleus has been per-
formed. Then a standard distorted-wave Born approxi-
mation calculation of the electron scattering cross sec-
tions can be parametrized in terms of a(r) and B(r), and
the data as a function of momentum transfer ¢ can be
used to deduce a(r) and B(r) for each value of r.

Such experimental studies are difficult, and the analysis
time consuming, and therefore only a few results have ap-
peared as yet although it is clear that this is an exciting
field that offers much promise. See, for example, the
work of Moinester et al. (1982), Hersman et al. (1983),
Goutte (1984), Borghols et al. (1985), de Leo et al.
(1985), and van der Laan et al. (1985). Some of these uti-
lize the IBA-2, while others either use the IBA-1 or in-
corporate approximations that essentially reduce the cal-
culations to IBA-1.

Several complementary approaches may be taken. In
one the boson densities a(r) and B(r) are extracted from
measured transition charge densities to two states, say 2;
and 25, and then used to predict the transition densities
for the 27 level. Alternatively, if a(r) and B(r) are
known, A and B can be extracted and compared with re-
sults obtained with more conventional techniques. Final-
ly, a(r) and B(r) could be calculated from a microscopic
theory.

An interesting point concerns the general structure of
a(r) and B(r). Despite the differences between geometric,
particle-hole or quasiparticle phonons and the particle-

" particle (or hole-hole) IBA bosons, it is tempting to iden-

tify the creation of a d boson with a one-phonon opera-
tor. Then, by analogy with the geometric model, it has
been argued (Dieperink et al., 1978; Borghols et al.,
1985) that boson densities involving one d-boson operator

0.002
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FIG. 80. Boson densities a(r) and B(r) for '°Pd deduced from
the charge densities of the 2{" and 2; states. From van der
Laan et al. (1985).
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tion. From van der Laan et al. (1985).

should be surface peaked (first derivative of the charge
density), while a second derivative form would apply to
an operator with two d bosons. Thus, crudely, a(r)
should have the former character and 3(7) the latter.
Applications of these ideas have been carried out for
the Pd, Sm, and other isotopes. The 10pq results from
the NIKEFF group (van der Laan et al., 1985) are a

D. Warner: The interacting boson approximation

good example of the technique. Although they employ
the IBA-2, their approximation that a (r)=a,(r) and
B,(r)=p,(r) simulates some of the reduction to IBA-1.
Figure 80 shows the boson densities a(#) and B(r) de-
duced from the transition charge densities for the 2;" and
25 states. Note that a(r) is indeed of first derivative
form and that B(r) is more complex. Using these results,
the fit to the scattering cross section for the 27 level (the
25 level is considered to be an intruder state) shown in
Fig. 81 is obtained. The agreement is rather encourag-
ing.

De Leo et al. (1985) have expanded on this work by
studying inelastic proton scattering and by using the
form factors deduced from the electron scattering data.
They also obtain results for a(r) and B(r) that closely
resemble first and second derivative shapes, respectively.

A particularly beautiful application of electron scatter-
ing to test the IBA concerns the Ge isotopes in which an
intruder configuration forms an excited band in the light
isotopes, ®®°Ge, and the ground state in the heavier
ones, #7Ge. This work has been discussed by Goutte
(1984) and, although it utilizes the IBA-2 in the Duval-
Barrett formalism, it is still worth illustrating the results
here, since it so well demonstrates the power of this tech-
nique. The data from >7°Ge are used to extract a(r) and
B(r) boson densities for each configuration of levels.
Then the 27 and 25" form factors for ">7*Ge are predict-
ed. The results are shown in Fig. 82 and show remark-
ably good agreement with the data. In particular, the
strikingly different behavior of the 27 state in "°Ge is
well reproduced. Careful interpretation (see also Duval,
Goutte, and Vergnes, 1983) allows one to assign this 2+
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FIG. 82. Boson densities and transition charge densities. (a) The four boson densities appearing in the T(E2) operator. The super-
scripts I and II refer to the two intrinsic configurations (Duval, Goutte, and Vergnes, 1983) present in the Ge isotopes, and the widths
of the curves indicate the uncertainties in the extracted values of a(r) and B(r). These were obtained from four of the eight low-lying
2% states in the four even-even isotopes ®~7*Ge. These densities are then used to obtain predicted transition charge densities (thin
lines) for the other four, as shown in (b), where the dark curves are the experimental transition charge densities. From Goutte (1984).
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level to a normal configuration and the others to an in-
truder 2p-2h configuration and thereby to map out the
evolution and mixing of the interacting configurations as
a function of 4.

The approach of using the data from some states to
determine a(r) and B(r) and then predicting others has
also been taken by Hersman et al. (1983), in this case for
134Gd, in order to test the IBA description of the lowest
excited K =0 () band. They fit the scattering data to
the 2; and 2;L levels and then found rather serious
disagreements for the 2,}? state. The results are shown in
Fig. 83. Several different parameter sets were used to de-
scribe the 25 levels, but none succeeded.

Moinester et al. (1982) have tackled a particularly
tough problem, namely, the entire set of Sm isotopes
from A =144-154. Their approach consists of first cal-
culating these isotopes in the IBA. (The calculations
were entirely done in the IBA-2, but the resultant wave
functions turned out to be nearly totally symmetric in
proton and neutron degrees of freedom and thus the cal-
culation corresponds closely to the IBA-1.) Then, boson
densities deduced from the scattering to lower states are
used to predict the higher ones. Here these authors ex-
tracted a single set of boson structure functions, a(r) and
B(r), for the entire isotopic chain, which, notably, spans a
transition region. The transition charge densities for the
27 states are shown in Fig. 84 where they are compared
to IBA-1 predictions. The observed variations in these
densities are well reproduced. Another interesting
feature of this study is that monopole densities ay(r) and
Bo(r) are extracted from 0 —O0™" transitions and are used
to interpret isotope shift and other monopole data in Sm
as well. Figure 85 shows one of the resulting predictions,
namely, for the EO excitation of the 05 level in *’Sm.
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FIG. 83. Comparison of calculated and empirical electron
scattering cross sections for 2+ states in **Gd. The parameters
of the fits were determined from the 123- and 966-keV states,
and the three lines for the 816-keV 2% state are different IBA
fits. From Hersman et al. (1983).
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FIG. 84. Comparison of calculated and empirical transition
charge densities for 2it states in Sm isotopes using the same
overall best fit a(r) and B(r) densities for all isotopes. The un-
certainties in a(r) and B(r) are reflected by the envelope of pre-
dictions for the IBA model. From Moinester et al. (1982).

While the empirical uncertainties are large, the agree-
ment is nevertheless apparent.

A final interesting application (Borghols et al., 1985)
of these ideas concerns excitation of the 4% levels in
196pt, These should proceed by double E2 excitation
(d¥xd)* and therefore the form factors should be of
second derivative form. However, the electron scattering
data for three 4™ states, shown in Fig. 86, are clearly sur-
face peaked. Furthermore, in O(6), only the first 4 level
should be excited, which is clearly not the case here. If,
on the other hand, a g boson is important in the excita-
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FIG. 85. Calculated and empirical transition charge densities
for the EO excitation of the 05 state in '*2Sm. From Moinester
et al. (1982).
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tion of the 4% states, the operator is just 8'(r)g 's and the
boson density should be of first derivative form as ob-
served. This is an interesting, albeit roundabout, argu-
ment for g-boson effects that could prove extremely use-
ful in other regions.

2. Giant resonances

The application of the IBA to giant resonances is a rel-
atively untouched field in which the first efforts also look
encouraging. The basic idea (Morrison and Weise, 1982;
Rowe and Iachello, 1983; Scholtz and Hahne, 1983;
Maino et al., 1984) is simply to describe the low-lying
collective states with the IBA-1 and use their structure to
calculate photoabsorption and photon inelastic scattering
cross sections. The giant dipole resonance (GDR) is in-
corporated via a p(/ =1) boson, and a Hamiltonian
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FIG. 86. Experimental transition densities for the 4™ states of
0.877, 1.293, and 1887 MeV in *°Pt. From Borghols et al.
(1985).
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H:Hsd+Hp+Hint (4.18)

is used where the notation is obvious. The energy and
spreading of the GDR is separately parametrized. Thus
the calculations trivially predict the energy and rough
shape of the photoabsorption cross section as a function
of E,: this is not really a test of the model. However, an
interesting result, exemplified by the transitional Nd and
Sm isotopes, is shown in Fig. 87, namely, that the calcu-
lations reproduce the fine structure involved in the devel-
opment of a double-humped distribution as deformation
sets in. The origin of this, geometrically, is well known:
in the deformed field, the GDR splits into K =0 and 1
components. The latter is higher in energy because it
represents a vibration along the minor axis of the nu-
cleus, and also has nearly twice the total cross section be-
cause of the presence of both K =41 and —1 ampli-
tudes. The calculations reproduce this, as well as the
larger width of the K =1 part, because of the larger num-
ber of K”=1" states than K =07 levels.

While most of the basic physics is inserted into these
results a priori, it turns out that, without additional pa-
rameters, this type of calculation also predicts (Maino
et al., 1985) inelastic photon scattering to excited states,
with the difference relative to other models that coupling
of the GDR to all core states (not just the ground state or
ground-state band) is automatically included. Figure 88
shows the differential cross sections for elastic and inelas-
tic (2;") photon scattering for 2*Th and 2*8U. The agree-
ment is clearly rather good and did not require the as-
sumption of extra amplitudes outside the model frame-
work.

The above results are for deformed nuclei or transi-
tional nuclei in a U(5)—SU(3) region (e.g., the Nd iso-
topes). Recently, Maino et al. (1986) have considered
the SU(3)—O(6) region spanned by the Os isotopes.
They obtain excellent agreement with the data for the
photoabsorption cross sections and generate predictions
for photon scattering cross sections to the 2", 25, and
05" levels. These results have all been obtained by numer-
ical diagonalization of the Hamiltonian of Eq. (4.18).
Also, recently, Zuffi et al. (1987) have developed analytic
formulas to describe both photoabsorption and scattering
in the SU(3) and SU*(3) (triaxial) limits in the framework
of the IBA-2.

3. Medium-energy proton scattering

Lastly, one can exploit the simplicity of group and
symmetry structure to study scattering processes. As
just one example, Ginocchio et al. (1986) have applied
the IBA-1 to medium-energy proton scattering at 800
MeV. By combining the IBA-1 description of the low-
lying states with the Glauber approximation treatment of
the scattering process, they utilize the known IBA matrix
elements of an eikonal phase operator to evaluate the
scattering, obtaining analytic results in all three IBA-1
limits. Again, because the IBA basis provides a simple
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FIG. 87. Comparison of calculated and empirical total photoabsorption cross sections in the Nd and Sm isotopes. The fragmenta-
tion of E 1 strength is shown in arbitrary units at the bottom. From Maino et al. (1984).

framework to include all low-lying states, the calcula-
tions automatically include coupling to all inelastic chan-
nels. In this way one is able to investigate the depen-
dence of these on the low-lying structure, finding, for ex-
ample, that such effects are only important for high-g
(>2.5 fm~1) scattering in U(5) and O(6), but are first-
order effects (at g 1 fm~!) in SU(3). For elastic scatter-
ing, channel coupling effects again are largest in SU(3)
and are directly related to B(E2) values. Third-order
effects in SU(3) appear at ¢ 22.5 fm~! and can distin-
guish oblate and prolate deformations. Figure 89 illus-
trates some of these results. Once again, this is a new
field in which only the first ventures have been made.
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V. SUMMARY AND CONCLUSIONS

We have tried in this review to discuss the IBA-1 mod-
el and some of its more significant extensions. The basic
model was outlined and discussed from the standpoints
both of its central group-theoretical structure, leading to
analytic dynamical symmetries with clear physical inter-
pretations, and of its numerical diagonalizations. The
importance of its emphasis on the valence space, and the
consequent appearance of the boson number N in the for-
malism, was stressed. The essential element here is not
the specific values of N used, and indeed some calcula-
tions have employed choices differing from the tradition-
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al ones, but the fact that N is finite and varies from nu-
cleus to nucleus. Both these features distinguish the IBA
from geometrical models.

Throughout the review a substantial effort has been
made to demystify many aspects of the model by way of
specific examples and by attempting to provide a simple

do/dQ(mb/sr)

o~ | L 1 I I I 1 Vi
0.5 1.0 1.5 20 2.5 3.0 35

q(fm™)

R. F. Casten and D. D. Warner: The interacting boson approximation

and intuitive understanding of the underlying physics. A
number of important tests of the model have been dis-
cussed, some in passing and others in some detail. Many
other important contributions have been made that have
barely, if at all, been mentioned.

We hope that, in addition to an appreciation and un-
derstanding of the formal structure of the model, the
reader will have acquired a physical feeling for the IBA
as well, so that, when faced with a particular application,
he or she will have a grasp of where to start and, more-
over, a prior feeling of what will be the likely outcome of
an IBA calculation or of a series of calculations for a se-
quence of isotopes.

In sum, we think it is reasonable to state that the IBA
has been a very successful model which correlates a large
body of data, and which, though phenomenological, has
predictive power, even in the microscopic sense. It has
led to a much deeper understanding of many collective
phenomena in heavy nuclei as well as of the systematics
of the evolution of nuclear structure over broad ranges of
nuclei. On the other hand, the model is manifestly phe-
nomenological and remains in need of additional work
directed towards its microscopic justification and founda-
tions. Moreover, even at the phenomenological level, the
model has obvious shortcomings, some of which are in-
herent to the basic truncation scheme involved in its for-
mulation, and, naturally, numerous extensions of the
model have been developed over the last years to over-
come these shortcomings.

It may be appropriate in these final paragraphs to sum-
marize where, following the work of the last decade, the
IBA sits with respect to the pantheon of nuclear models
available for medium and heavy nuclei. After much ini-
tial excitement over the model and its predictions, as well
as considerable controversy, the situation today seems to
be one in which the IBA has become one of a triad of ap-
proaches to nuclear structure, each with different advan-
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FIG. 89. Calculated cross sections for 800-MeV proton excitation of the 2{ state in a schematic Sm isotope: (a) assuming the struc-
ture to be O(6) or U(5); (b) assuming SU(3) symmetry. The solid lines are the full calculation [with the assumption of prolate shape
for the SU(3) case]. The dashed line in (b) is the SU(3) prediction for an oblate shape. The dots are the results without coupled-
channel effects. From Ginocchio et al. (1986).
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tages and disadvantages: this triad consists of a micro-
scopic shell-model approach, a geometrical approach,
and an algebraic approach. Each of these starts with
simple concepts of approximate validity, namely the
spherical single-particle shell model (including pairing),
often truncated in practical calculations, the spherical
phonon and deformed symmetric rotor geometric models
for collective nuclei, and the s- and d-boson IBA-1 mod-
el. Each of these parent models has in turn spawned gen-
erations of offshoots: the shell model has been extended
to a multiparticle situation, and deformed nuclei can be
described with the Nilsson model. Geometrical models
have been developed that include other degrees of free-
dom, such as axial asymmetry or hexadecapole deforma-
tions, as well as versions that include rotation-vibration
coupling or quasiparticle excitations. As regards the
IBA, extensions such as the IBA-2 or those discussed in
the previous section, which include g bosons, coupling to
the quasiparticle spectrum, and, of course, coupling to
odd-mass nuclei, are being actively studied. In both their
simplest and their more complex forms, the IBA-1 and
its extensions, as well as the other algebraic techniques
they have fostered, thus provide an important alternative
to existing approaches to the modeling of heavy nuclei.
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