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For a decade now the subject of the nature of the two-dimensional melting transition has remained con-
troversial. An elegant theory based on the unbinding of pairs of crystal defects suggested that two-
dimensional solids might melt by a transition sequence involving two continuous transitions separated by
a novel, nearest-neighbor-bond-orientationally ordered fluid —the hexatic phase. Competing theories pre-
dict that the transition is of the usual first-order type observed in three-dimensional systems. This paper is
a critical review of the current status of research into the problem of two-dimensional melting, with an
emphasis on computer simulations. An attempt is made to point out unresolved issues pertaining to this

fascinating and still open question.
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The nature of the melting transition in two-
dimensional systems has been a matter of hot controversy
in the past several years. Kosterlitz, Thouless, Halperin,
Nelson, and Young (KTHNY) have suggested that the
transition may be fundamentally different from that ob-
served in ordinary three-dimensional systems (Kosterlitz
and Thouless, 1973, 1978; Halperin and Nelson, 1978;
Nelson and Halperin, 1979; Young, 1979). Competing
theories propose that the transition is of the usual first-
order type observed in three-dimensional systems
(Ramakrishnan, 1982; Chui, 1982, 1983; Kleinert, 1983;
Joos and Duesbery, 1985). A large body of experimental
and simulation research into two-dimensional melting
followed the announcement of the KTHNY theory. In
spite of all this effort, the question as to the nature of
two-dimensional melting remains unresolved. Recent ex-
perimental work supporting the existence of continuous
melting transitions in some two-dimensional systems in-
dicates the need for further theoretical and computation-
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al work to lead to an understanding of the experimental
results.

In this paper I intend to summarize and perhaps clari-
fy the current situation with regard to research in two-
dimensional melting with an emphasis on computer
simulations. In particular, I will point out important
gaps in our current understanding. Where appropriate, I
will highlight directions which I believe will be fruitful
for future research.

The paper begins with an introduction to the ideas im-
portant in the study of two-dimensional phase transi-

tions. An overview of the current status of theoretical,
simulational, and experimental research in this subject
follows. Conclusions and suggestions for further
research are summarized in the final section.

|. THEORETICAL SUMMARY

A. The Kosterlitz-Thouless transition

Phase transitions in two-dimensional systems with con-
tinuous symmetry are of great interest due to the ab-
sence, in these systems, of conventional long-range order
at low temperatures (Mermin and Wagner, 1966). The
two-dimensional XY model provides a simple example of
such a system, since the spins may point in any direction
in the continuous range [0,27]. We begin by discussing
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FIG. 1. Spin wave in an XY spin system.
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theoretical ideas for the XY model, since it is a simpler
case than melting. In a rough way the origin of the lack
of long-range order is illustrated in Fig. 1. Figure 1 illus-
trates a long-wavelength spin wave in an XY spin system.
Assuming a harmonic interaction for small differences in
angle between neighboring spins, the energy of such a
spin wave is proportional in one dimension to L (27 /L)?,
in two dimensions to L2(27/L)?, and in three dimensions
to L3(2w/L)?, where L is the linear dimension of the sys-
tem. In three dimensions, therefore, these distortions are
forbidden in the thermodynamic limit, leading to the
presence of long-range order at low temperatures. In one
dimension these distortions are favored, leading to the
nonexistence of an ordered phase, while two dimensions

is a borderline case. .
More careful study of the two-dimensional case

confirms that long-range order cannot occur (Mermin
and Wagner, 1966). However, the two-dimensional XY
model is characterized at low temperatures by what has
come to be known as quasi-long-range order. In a fer-
romagnetic phase, for example, the spin-spin correlation
function decays at long distances to a nonzero constant,
indicating long-range ordering of the spins. In a
paramagnetic phase the behavior of this correlation func-
tion is described asymptotically by exponential decay to
zero characterized by a correlation length. At the criti-
cal point, however, the spin-spin correlations exhibit a
slow, algebraic decay with decay exponent 7. Critical-
point-like algebraic decay of the correlation function
over a region of the phase diagram is the signature of
quasi-long-range order. A phase in which the correlation
function exhibits algebraic decay is known as a “critical
phase” and is characterized in renormalization-group
language as a line of fixed points. The exponent 1 will be
temperature dependent in such a phase.

Such critical phases are not characteristic of all two-
dimensional systems. The critical behavior depends also

on the order-parameter dimension n. The XY model has
n =2. The Ising model has » =1 and, since a long-
wavelength spin wave cannot occur in this model, long-
range order does persist at low temperatures and the clas-
sic two-dimensional Ising transition results. For n =3,
fluctuations are strong enough to destroy the quasi-long-
range order and to suppress the transition temperature to
zero. Examples of two-dimensional systems with n =2
are superfluid films, thin superconductors, XY models,
and two-dimensional solids.

Kosterlitz and Thouless advanced a theory that de-
scribes the transitions in two-dimensional . (2D)
superfluids, superconductors, and XY models based on
the physical idea of topological defects called vortices as
the mechanism driving the transitions in these systems
(Kosterlitz and Thouless, 1973, 1978). Figure 2 illus-
trates spin vortices of positive and negative vorticity in
an XY system. Such vortices disrupt the spin alignments
even at large distances. Mathematically, such vortices
correspond to singularities of the order-parameter field.

The essential physics of the Kosterlitz-Thouless (KT)
theory is revealed by a simple calculation. Creating an
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FIG. 2. Spin vortices: (a) negative vorticity; (b) positive vortici-
ty.

isolated vortex requires an infinite amount of energy:
Consider an XY model characterized by a nearest-
neighbor interaction of strength J. The energy cost due
to the spins a distance » from the center of the vortex is,
in the harmonic approximation, J /2(27 /2mr)*(2mrr), and
therefore the total contribution from a vortex in a system
of size L is given by

——f ‘ Pwﬂﬂn

where a is the lattice spacing. The entropic contribution
of such a vortex due to the freedom to place it at any lat-
tice site is also logarithmic in L, however, leading to a

free energy
I 2
= ] . (2)
a .

This simple calculation predicts a transition at a tem-
perature kpT,=mJ /2, from a phase in which vortices
are forbidden to a disordered phase in which they
abound.

This simple picture is not really adequate, however,
since a bound pair of oppositely “charged” vortices has a
finite energy and does not disrupt the spin ordering at
long distances. Such pairs will be thermally excited even
at low temperatures. The reduced Hamiltonian for a sys-
tem of vortices is

r—r'
a

+E, 3 s%r) . 3)

—], (1)
a

F,=Jrln

—kpTIn

H=—7K 3

[r—r'| >a

s(r)s (r')ln

Here s(r) is the vorticity for the vortex at site 7,
defined as —1 and + 1 for the vortices in Figs. 2(a) and
2(b), respectxvely The harmonic approximation used in
deriving the logarlthmlc interaction energy is inadequate
at small r, and therefore a core energy E, is introduced to
describe the contribution of the region within a core di-
ameter a. The factor 1/kpT is assumed to have been ab-
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sorbed into the definition of the coupling K and core en-
ergy E.. Note that the Hamiltonian is just that of a two-
dimensional two-component Coulomb gas with a chemi-
cal potential E,..

The mechanism for the KT transition is the unbinding
of a dilute gas of vortex pairs. The calculation of the be-
havior of the vortex system requires that the screening of
the vortex interaction by thermally excited vortex pairs
be considered. The bound pairs of defects act analogous-
ly to a dielectric by screening the interaction between op-
posite “charges.” The vortex unbinding occurs at a tem-
perature when the “dielectric constant” characterizing
the system diverges (or, equivalently, the coupling con-
stant K goes to zero).

The KT theory is a renormalization-group treatment
of the screening effects. The theory predicts a continuous
transition from the low-temperature phase (characterized
by quasi-long-range order) to the high-temperature,
disordered phase. The transition will be characterized by
only essential singularities in the energy and specific heat.
The coupling constant K, however, will renormalize to a
universal limiting value (at the transition temperature)
and then jump discontinuously to zero. (This jump mani-
fests itself in the 2D superfluid transition, for example, as
a discontinuous jump in the superfluid density.) The
spin-spin correlation length is expected to diverge ex-
ponentially as the transition temperature is approached
from the disordered phase.

It should be mentioned that the transition temperature
predicted by the KT renormalization-group theory is the
same as that predicted by the simple discussion above,

" with the coupling constant replaced by its renormalized

value. In a sense, this is to be expected since the renor-
malized coupling constant gives the interaction energy
(including screening) for a pair of infinite separation. The
KT predictions for the 2D superfluid, superconductor,
and XY model are confirmed by experiment and comput-
er simulation (see, for example, Saito and Muller-
Krumbhaar, 1984; Fernandez and Ferreira, 1986; Strand-
burg, 1987 and references therein).

B. KTHNY theory of two-dimensional melting

The two-dimensional melting transition poses addition-
al complications for a defect-unbinding theory. Two-
dimensional particle systems are characterized by two
different order parameters and, correspondingly, by two
types of topological defects. In addition, experimental
2D particle systems are often subject to a substrate po-
tential. In order to deal with these complications, the
basic ideas of Kosterlitz and Thouless were elaborated
upon by Halperin and Nelson and, independently, by
Young (Halperin and Nelson, 1978; Nelson and Hal-
perin, 1979; Young, 1979). The Halperin-Nelson-Young
(HNY) theory has been reviewed in detail several times
(Nelson, 1980). Here we provide only a brief description
of the basic ideas and results of the calculation.
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1. The melting transition

The 2D solid is characterized by quasi-long-range posi-
tional order, as evidenced by the algebraic decay of the
density-density correlation function. This positional or-
der may be destroyed by free dislocations (see Fig. 3) in a
dislocation-unbinding transition. A dislocation may be
viewed as an extra row of atoms stuck partway into the
crystal. The theory of this transition differs somewhat
from that of the vortex-unbinding transition described
above due to the fact that dislocations are described not
by a .scalar ‘“‘charge” but by a Burgers vector. The
Burgers vector for the dislocation in Fig. 3 is shown. Itis
defined as the amount by which a path around the dislo-
cation (e.g., four steps to the left, four down, four right,
four up) fails to close.

A simple argument from elastic theory analogous to
that for the vortex shows that the energy of a single dislo-
cation also diverges logarithmically with system size.
The dislocation Hamiltonian contains an additional term
due to the vector character of these defects:

—K , r—r’
H gig0c = B I#Er b(r)-b(r')In P ]
_ b(r)-(r—=1r)b(r')-(r—1)
lr—r'|?
+E. 3 |br)|?. 4
K is related to the Lamé elastic constants by
K= 4u(p+A) ) (5)
2u+A

The elastic Hamiltonian for the 2D triangular solid is
given by

‘f

FIG. 3. Dislocation on a square lattice. The Burgers vector of
this dislocation is shown. Note that a dislocation does not de-
stroy the bond-orientational order of the lattice.
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HE———%fdzr(Z‘uu,%ﬁ—ku,fk) ,
where (6)

Qu;(r)  Ouy(r)

ar,. + ar,

1
uu(l‘)=3

i

and u (r) is the atomic displacement field. Note that the
definitions of 4 and A used here contain a factor of
1/kzT. The HNY renormalization-group analysis of the
dislocation-unbinding transition leads to the following
predictions.

(1) The density-density correlation function defined as

ggl|r—r1'| )= (/G lur—ul) o

(where G is a reciprocal-lattice vector), will decay in the
solid phase as

gg(r)~r~7 where L <n(T, )<+ (8)

for the first Bragg point. This divergence leads to
power-law singularities in x-ray diffraction patterns, rath-
er than §-function Bragg peaks.

(2) The combination of elastic constants

K =HBEN) o))
2u+A s

as T—T,, from above , (9)
where
t=(T-T,)/T, and v=0.396. .. .

(3) In the liquid just above freezing the positional
correlation length :

E~explc/|t|Y). (10)

(4) A “bump” in the specific heat due to the gradual
dissociation of dislocation pairs should occur above the
melting temperature 7,,. There is no specific-heat diver-
gence associated with the transition. This point should
not be stressed too heavily, however, since the actual
peak height, width, and location relative to the melting
temperature are highly model-dependent parameters.
For example, Monte Carlo simulations of the XY model
yield a specific-heat peak sharper and nearer to the tran-
sition than is found in calculations for the corresponding
Villain model. In addition, if there exists a bicritical core
energy below which the transition is first order, one may
expect to see rather sharp specific-heat peaks near the
multicritical point. In a finite computer simulation or
resolution-limited experiment the distinction between a
true divergence or first-order & function and a sharp but
still finite peak may be very difficult to draw.

2. The hexatic phase and the hexatic-isotropic transition

The above predictions are very similar to those made
by Kosterlitz and Thouless for the vortex-unbinding
transition. Halperin and Nelson found, however, that
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the liquid above this dislocation-unbinding transition is
not isotropic. Solids are characterized by two types of
ordering. Besides the quasi-long-range positional order-
ing already described, there is long-range order in the
orientation of nearest-neighbor bonds. Halperin and
Nelson found that the dissociation of dislocation pairs,
which destroyed the quasi-long-range positional order,
left a fluid characterized by quasi-long-range order in the
nearest-neighbor-bond orientations.

The nearest-neighbor-bond-angular order is measured
by the bond-angular correlation function

g6( lr—r'] )=<ei6[9(r)—-6(r’)]> , (11)

where 0 is the angle made by a bond between a particle at
r and its nearest neighbor with respect to an arbitrary
fixed axis. In the anisotropic fluid just above melting,
which Halperin and Nelson titled the ‘“hexatic phase,”
the orientational correlation function

—7n6(T)

ge(r)~r R (12)
where
18kz T
Ne= 7K,

Because the bond-orientational order is only quasi-
long-ranged, the x-ray diffraction pattern from an infinite
hexatic sample would consist of an isotropic ring. How-
ever, finite-size effects will modify this pattern, so that
the sixfold modulation expected in the thermodynamic
limit for long-range bond-orientational order will be ob-
served in real experiments and simulations even in the
quasi-long-range hexatic phase.

A second type of crystalline defect, the disclination,
disrupts the bond-angular order (see Fig. 4). A disclina-
tion is characterized by a mismatch in orientation as one
circumnavigates it (see the arrows in Fig. 4). Alternative-
ly, a disclination can be viewed as an atom having the
“wrong” number of nearest neighbors as measured by a
Voronoi polygon construction. The Voronoi polygon
construction is a generalization of the Wigner-Seitz cell
and is useful for disordered systems.

As is depicted in Fig. 5, a dislocation may be viewed as
a tightly bound pair of disclinations. In the solid, dislo-
cations are bound very strongly with a potential that in-
creases as the square of the separation. In the hexatic
phasé, however, this interaction is screened by the pres-
ence of free dislocations and the potential grows only log-
arithmically with separation.

Disclinations interact in the hexatic phase with the
screened Hamiltonian

sir)sir ln
r#r'

r—r

H giso = —

+Ey 3 sir), (13)
r
where K 4 is the coupling constant related to distortions
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of the bond-angle field and is called the Frank constant
(in analogy to that of liquid crystals). K, is infinite in
the solid and zero in the isotropic liquid. The s(#) are in
this case the disclination ““charges’ corresponding in a
triangular lattice, for example, to 4+ 1 for an atom with
seven nearest neighbors and —1 for an atom with five.
The disclination core energy E,; is not simply related to
the original dislocation core energy E,.

The disclination Hamiltonian is now of the form (3)
and the results of the KT theory for the XY model may
be carried over to predict a continuous disclination-
unbinding transition at a temperature T;> T, into an

isotropic fluid. At this transition, the following predic-

tions are made.
(1) The Frank constant K ,(7;)—72/7 and then

(b)

FIG. 4. Positive and negative disclinations in a triangular lat-
tice. Note the rotation of the triangular cells by 60° (a) clock-
wise, and (b) counterclockwise, as a clockwise path around the
disclination is traveled. Note that these disclinations may also
be described as particles having (a) five, and (b) seven neighbors,
respectively, rather than six.
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FIG. 5. Dislocation that may be viewed as a bound disclination
pair. A path around the dislocation fails to close, as shown.
The two disclinations, one having five nearest neighbors and
one having three, are also shown.

jumps discontinuously to zero as T— T from below. As
T—T,, from above, K, diverges proportionally to the
square of the positional correlation length.

(2) The bond-angle correlation function exponent
ne(T;)=1.

"(3) The orientational correlation length goes as
Eg~exp(b/| T —T;| %) as T—T; from above. Calcula-
tions of the expected width of the critical region in which
this form is valid indicate that the correlation length may
be very large (10*~10° A) before this form is observed,
and that even experimental systems may not be large
enough to observe this behavior (Cardy, 1982; Greif
et al., 1982; Dahm, 1984). The correlation length was
calculated using the HN recursion relations and assum-
ing a value for the core energy. However, the critical
width is sensitive to core energy. Since, as will be dis-
cussed below, little is known about core energies for
specific experimental or simulated systems, estimates for

the width of the critical region for particular systems
have not been made.

(4) The energy and specific heat display only essential
singularities at T;. The specific heat should, however,
show a peak above T; due to the gradual dissociation of
disclination pairs.

The KTHNY picture of the 2D melting transition is
summarized in Table I.

3. KTHNY theory in the presence of a substrate

Since many of the experiments discussed below involve
atoms adsorbed on graphite, we review here briefly the
modifications to this theory which obtain in the presence
of a weak incommensurate substrate potential (Nelson
and Halperin, 1979; Young, 1979). The melting transi-
tion is modified only slightly. An additional term in the
elastic Hamiltonian (describing a tendency to align with
the substrate axes),

Hp=1y [d*(d,u, —d,u,) ' (14)

(where y is an additional elastic constant describing resis-
tance to twist), leads to a new dislocation Hamiltonian

r—r’
a

K, s b(r)-(r—r1')b(r')-(r—r')

—K, ,
H gigoc = . > b(r)-b(r')In
r#£r’

T AT [r—r'|?
+E.3 [b(r)|?, (15)
.
with
K, =3eth) sy et

2u+r o opty
K. — 4u(u+A)  4uy
2= - .
2u+A pty
Renormalization-group recursion relations were ‘de-

rived for this Hamiltonian by Young (1979) and by Nel-
son and Halperin (1979).

TABLE I. Summary of some predictions of the KTHNY theory for two-dimensional melting.

Solid Hexatic Liquid
Dislocations Bound in pairs Free Free
Disclinations Bound in quartets Bound in pairs Free

Positional correlations
Bond-orientational correlations

Elastic constant K = Ampulp+ 1)
2u+A

Long range

Frank constant K , Infinite

Quasi-long-range

Finite, nonzero

Short range
Quasi-long-range

Short range
Short range

- Zero Zero
Finite, nonzero Zero
T, T;
K —16m K, —72/m
as T—T, as T—T;

from below from below
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The exponent v from Eq. (9) is now expected to be
given by 0.3696... <v <0.4 and the values of 7, are
modified.

Above the melting transition, however, the effect of a
substrate potential is more significant. The bond-
orientational order is now long ranged. Instead of isotro-
pic rings the diffraction pattern will now consist even in
the thermodynamic limit of diffuse spots whose radial

and angular half-widths have a temperature-independent
ratio near the transition (Aeppli and Bruinsma, 1984).

The disclination transition is washed out when the sub-
strate has sixfold symmetry. However, for small enough
substrate field a remnant of the hexatic to isotropic tran-
sition will still be observable, just as a ferromagnet in a
weak magnetic field will still show remnants of critical
behavior. For a square substrate Halperin and
Nelson predict that the KT-type disclination-unbinding
transition will be replaced by an Ising-like transition cor-
responding to the two equivalent ways of putting a hex-
agonal adsorbate on a square substrate (Nelson and
Halperin, 1979).

Moreover, an ‘“orientational epitaxy” effect has been
predicted at low temperature by Novaco and McTague
(1977) (McTague and Novaco, 1979). The adsorbate may
have a preferred orientation with respect to the substrate.
This preferred orientation may not be along one of the
substrate symmetry axes. In this case, two equivalent
oriented states exist (e.g., rotated +10° from the substrate
axes). An Ising-type transition is also expected if the
melting transition takes place while the adsorbate is in
the rotated state.

The KTHNY theory is, of course, dependent upon
various approximations and assumptions. The transition
sequence described here can be preempted by a first-
order transition resulting from a number of effects. The
KTHNY theory involves an expansion in fugacity and
thus uses a dilute gas, or large core energy, approxima-
tion. A change in behavior could occur as the core ener-
gy is decreased. Such a change has been observed when
the XY model is modified so as to change the effective
vortex core energy (Swendsen, 1982; Domany et al.,
1984; Van Himbergen, 1984), as well as in simulations of
the dislocation and disclination systems discussed in Sec.
III (Saito, 1982a, 1982b; Strandburg, 1986). The core en-
ergy will depend on system parameters such as the densi-
ty and the form of the atomic interactions. Collective
dislocation excitations also could be of importance.

C. Grain-boundary-induced melting

The possibility of grain-boundary-induced melting in
which the dislocation-unbinding transition is preempted
by a first-order transition involving a proliferation of
grain boundaries has also been proposed (Fisher et al.,
1979; Chui, 1982, 1983). Grain boundaries are collective
excitations of dislocations, as shown in Fig. 6. A grain
boundary has the effect of rotating one patch of crystal
with respect to another. Although a grain boundary may
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FIG. 6. Small-angle grain boundary. The grain boundary can
be seen to be made up of a line of dislocations.

be viewed as a string of dislocations (see Fig. 6), infinite
parallel grain boundaries interact with a potential that is
not long range, due to cancellations occurring only in
that limit. Thus a transition in which grain boundaries
appear may be distinct from the KTHNY dislocation-
unbinding transition. A calculation by Fisher, Halperin,
and Morf (1979) for small-angle grain boundaries, which
included the possibility of “vibrations” around a straight
grain boundary configuration, concluded that the melting
transition due to small-angle grain boundaries was identi-
cal to the KTHNY mechanism.

However, Chui (1982, 1983) calculated the free ener-
gies of possible low-angle grain boundary configurations
in more detail. Using a low-density approximation, he
considered the effects on the grain boundary free energy
of transverse and longitudinal fluctuations, grain bound-
ary crossing energies, coupling of grain boundaries to
dislocation pairs, and coupling of grain boundaries to
density changes. The calculations were performed in the
limit of low densities of both grain boundaries and dislo-
cation pairs and did not include the effects of renormal-
izations of the core energy and elastic constants. Chui
concluded that the KTHNY melting mechanism would
be preempted by a first-order transition irrespective of
the value of the core energy. The first-order nature of the
transition was due to a negative grain boundary crossing
energy, a coupling with the density change, and the in-
teraction with bound dislocation pairs. He predicted a
change from weakly first-order to strongly first-order
transitions for core energies below a critical value of 2.8.
(For a comment on core energy units see Sec. I1.B.1.)

Chui’s calculation involves the assumption that the
distance s between the dislocations making up a grain
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boundary is small compared to the distance z between -

grain boundaries. For E, less than 2.8 this assumption
breaks down, however, and s gets very large. Thus
Chui’s prediction of a first-order transition for E, <2.8 is
not reliable. Indeed for z <<s, the KTHNY description
of a dilute gas of dislocation pairs would appear to be
more appropriate.

Simulations of the disclination system (Strandburg,
1986), which are described below, indicate a change from
KTHNY melting to first-order melting below a core en-
ergy near 2.8. These simulations lend support to Chui’s
prediction of the crossover core energy, but contradict
his assertion that melting remains first order for higher
core energies. Possibly, Chui’s theory correctly describes
the situation for E, <2.8, but the behavior becomes
KTHNY-like for E, > 2.8 as the distance between dislo-
cation pairs becomes large and Chui’s approximation
breaks down. One of the factors important in Chui’s cal-
culations is a coupling of grain boundaries to a density
discontinuity. This effect is not included in simulations
of defect systems, since they use lattice models.

In addition, it is possible for a first-order transition to
lead to a hexatic phase rather than to the isotropic fluid
phase. If, for example, the grain boundaries remain
bound in pairs above melting, the grain boundary melting
can lead to a hexatic phase. An approximate calculation
by Chui of the free energy of bound grain boundaries in-
dicates that they will not remain bound above a grain-
boundary-induced melting transition.

Fisher, Halperin, and Morf (1979) comment that the
dislocation correlations predicted by Nelson and Hal-
perin for the hexatic phase show an angular dependence
that may be described as a strong tendency of disloca-
tions to arrange themselves in small-angle grain
boundaries. Since dislocations have a tendency to form
grain boundaries in the hexatic phase, one must be care-
ful in interpreting the presence of grain boundary loops

in defect plots obtained from simulations as evidence -

against the hexatic phase, and in favor of a transition to
an isotropic liquid. An isotropic liquid requires grain
boundaries that are not bound in pairs.

D. Possibilities of first-order transition
through simultaneous dislocation
and disclination unbinding

In the KTHNY theory the dislocation interactions in
the solid phase are treated independently of the disclina-
tion interaction in the hexatic phase. The free disloca-
tions in the hexatic phase screen the disclination interac-
tion, producing the logarithmic disclination interaction
of Eq. (13). The values of the Frank constant K 4, and the
disclination core energy E_; thus obtained are related in
a nontrivial way to the initial values of K and E,. A De-
bye approximation gives K , proportional to E, and to
the square of the positional correlation length. If the
screened interactions are sufficiently weak as the disloca-
tions unbind, a simultaneous disclination unbinding may
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occur precipitating a first-order transition. The KTHNY
theory does not deal with the effects of disclinations and
dislocations concurrently and therefore leaves this possi-
bility open.

Kleinert (1983) has argued by means of mean-field
theory calculations that the scenario described above
occurs and that melting is a first-order process. Howev-
er, as is well known, mean-field theory predictions for
phase transitions are often incorrect since they. do not
treat fluctuations properly. These fluctuations are partic-
ularly important in two dimensions.

Kleinert’s calculations were performed for a model
that is based on the zero-temperature disclination in-
teraction. Since dislocations can be composed of dis-
clinations (see Fig. 5), this model includes the possibility
of both the dislocation- and disclination-unbinding tran-
sitions. This model had been proposed earlier by Nelson
(1982) in a dual form known as the Laplacian roughening
model. This model has been the subject of extensive
Monte Carlo simulations to be discussed in Sec. III.B
(Janke and Kleinert, 1980, 1984; Strandburg et al., 1983;
Janke and Toussaint, 1986; Strandburg, 1986).

Kleinert (1983) has also noted that the logarithmic
dislocation interaction [Eq. (4)] does not give the correct
energy for separated disclination pairs (which may be
formed by lining up dislocations at intervals of one lattice
constant). He points out that the simple interaction [Eq.
(4)] gives an excess energy E.R to the string of Burgers
vectors comprising the disclination pair. This string
should actually have zero energy since it may be drawn
in various ways to represent the same disclination pair.

This observation is not a problem for the KTHNY
theory, however, since KTHNY use Eq. (4) to describe
disclination interactions only in the solid phase. Since
disclination pairs interact as ?Inr in the solid phase, they
are very heavily suppressed at temperatures below melt-
ing. The KTHNY theory makes the very reasonable as-
sumption that disclinations occur only in tightly bound
pairs (i.e., dislocations).

Disclinations become important only when, in the
presence of unbound dislocations, their interaction is
screened to logarithmic (as in the hexatic phase). The
question of whether this screening is sufficient to precipi-
tate a concurrent unbinding of dislocations and disclina-
tions remains a quantitative question. Evidence from
Monte Carlo simulations indicates that the nature of the
transition depends on the magnitude of the defect core
energy (Saito, 1982a, 1982b; Strandburg, 1986).

E. Vacancies and interstitials

Point defects such as vacancies and interstitials may
also play an important role in the melting process. Be-
cause of the relatively hard cores of most atomic interac-
tions, vacancies usually have a much lower energy than
interstitials. Vacancies are of considerable importance in
the equilibration of dislocations. Implications of the im-
portance of vacancies to dislocation motion in interpreta-
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tion of simulation results will be discussed in Sec. IL.A.

Joos and Duesbery (1985) have recently performed a
zero-temperature calculation of defect energies in rare-
gas systems, discussed at some length in Sec. II. The low
energy calculated for localized vacancies leads them to
conclude that the melting transition will be driven by va-
cancies rather than by dislocation unbinding.

Below a certain density the energy of a vacancy be-
comes negative in these systems. The rare gases are de-
scribed fairly well by a Lennard-Jones interaction poten-
tial. The competition between attractive and repulsive
parts of the potential leads to the existence of a “pre-
ferred” lattice spacing. As the lattice is expanded beyond
this spacing, eventually it is energetically favorable to
break up the system and allow separation into islands of
solid at a smaller lattice spacing and lakes of condensed
vacancies. Thus vacancies may certainly be said to drive
the transition, at low temperatures, from solid to solid-
gas coexistence as a function of decreasing density. The
Joos and Duesbery calculation of the lattice spacing at
which this density-driven transition occurs is in good
agreement with experimental rare-gas-on-graphite phase
diagrams.

However, vacancies are an unlikely mechanism for the
melting transition at higher densities and temperatures or
in systems such as the 1/r" potentials that do not have a
“preferred” lattice spacing. They also cannot explain the
purely temperature-driven melting from solid-gas to
fluid-gas coexistence. Since vacancies do have a rather
low energy, they exist in a non-negligible equilibrium
concentration in the solid. However, since they are local-
ized defects, vacancies do not disrupt the lattice structure
at long distances. Only by aggregating into structures on
the order of the system size can they affect the long-range
order of the system and thus causing melting. Aggre-
gates are favored since their energy is lower than that of
an equivalent number of isolated vacancies. Such large
aggregates are, however, no longer usefully viewed as va-
cancies. Indeed, as Joos and Duesbery point out, a string
of vacancies that crosses the system is precisely an un-
bound dislocation pair.

F. Density wave theory

A density wave theory of melting, by Ramakrishnan
(1982), leads to a prediction of a first-order transition.
The predicted entropy change on melting and height of
the first peak of the structure factor are consistent with
values obtained in computer simulations. Since such a
mean-field theory neglects the fluctuations that lead to
the loss of long-range positional order, its ability to pre-
dict the order and character of the melting transition is
questionable. If the transition is first order and therefore
due to local effects, then such a theory should give good
results. On the other hand, the agreement of such a
theory with finite size and time simulations (which also
neglect possibly important long-wavelength fluctuations)
is not conclusive for the nature of the transition in the
thermodynamic limit.
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il. DEFECT ENERGIES AND INTERACTIONS

The dislocation, disclination, and grain boundary
theories described above are based on a lattice model of
defects interacting with potentials obtained from elastici-
ty theory. Several questions arise regarding the applica-
bility of these models to two-dimensional particle sys-
tems. How valid is the elasticity theory description of
defect interactions in actual 2D solids? How may the pa-
rameters of the lattice model be connected to real sys-
tems? The relevant parameters are defect coupling con-
stants K and K 4, defect core diameters, and defect core
energies. In both of these areas knowledge is currently
rather limited.

A. Validity of the elasticity description

A possible difficulty for the KTHNY Chui and
Kleinert calculations would be a breakdown of the elasti-
city theory, in the context of which these defect-mediated
melting theories are derived. Anharmonic effects can be
of importance in real systems. In this section the validity
of the elastic description for real systems is discussed.

Harmonic behavior of the 2D solid at low tempera-
tures has been verified in several simulated systems
through studies of the behavior of the squared displace-
ments of atoms from their lattice sites (Young and Alder,
1974; Gann et al., 1979; Tobochnik and Chester, 1979).
However, these results concern the defect-free solid and
do not tell us whether the defects themselves interact as
predicted by elasticity theory.

For the 2D electron (1/r potential) system Fisher,
Halperin, and Morf (1979) have calculated the energies of
various defect configurations both by a variational
method relying on elasticity theory and by numerical re-
laxation techniques. They find that the long-distance
elastic form of the dislocation interaction is valid down
to distances of about three lattice spacings. They also
calculate energies for various localized defects. In the
electron case [in contrast to the rare gases studied by
Joos and Duesbery (1985, 1986)] interstitials have a lower
energy than vacancies. This result is due to the necessity
of a neutralizing positive background in the electron sys-
tem, which provides an effective attractive interaction.

Ladd and Hoover (1982) have calculated the energy of
pairs of dislocations in a system interacting with
piecewise-linear forces. They conclude that the interac-
tions are consistent with continuum elastic theory for
dislocation separations greater than a few lattice spac-
ings.

Calculations by Joos and Duesbery (1985, 1986) for the
rare gases indicate a much more complicated picture.
Joos and Duesbery use realistic potentials to calculate
zero-temperature dislocation energies for 2D xenon and
krypton with and without a graphite substrate. Numeri-
cal static relaxation techniques are used. These calcula-
tions should give a good qualitative description of the sit-
uation for 2D Lennard-Jones potential systems as well.
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The defects studied were pairs of dislocations formed by
lines of vacancies or interstitials (see Fig. 7). Their re-
sults for the dislocation pair interaction as a function of
separation are shown in Fig. 8. They indicate that the
long-distance elasticity limit is reached for vacancy lines
"only for distances on the order of 30 lattice spacings.
That the Lennard-Jones potential leads to extended dislo-
cation cores has also been pointed out by Hoover,
Hoover, and Moss (1979). Vacancy strings of size less
than 30 lattice spacings have significantly lower energy
than might be expected on the basis of elasticity theory.
The interstitial-type pairs obey the elasticity predictions
for considerably shorter pair separations. This difference
is due to the asymmetry of the Lennard-Jones potential.

The Joos and Duesbery results have two rather serious
implications for Monte Carlo simulations of melting of
2D Lennard-Jones systems. First, the lower energy of
vacancies and vacancy aggregates compared to that of in-
terstitials means that simulations with periodic boundary
conditions and a fixed number of particles may give seri-
ously flawed results. In such systems vacancies and inter-
stitials are almost always created in pairs, since the
creation of a lone vacancy requires large-scale rearrange-
ments of the lattice, which are essentially impossible to
achieve in the time available for simulations.

Since the presence of vacancies is required for some
dislocation motions, the suppression of vacancy forma-
tion will - inhibit dislocation equilibration. Broughton
et al. (1982) and Stillinger and Weber (1981) studied the
melting of 1/r'? potential and Gaussian core model sys-
tems, respectively, in the presence of a single vacancy.
They found that the presence of the vacancy was
significant in obtaining agreement between the fluid to
solid and solid to fluid traverses of the transition. Behav-
ior in the perfect solid was typical of a system with an
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FIG. 7. Vacancy dislocation dipole in a triangular lattice ob-
tained by removal of eleven atoms in a row. The arrows indi-
cate the directions of the Burgers vectors (Joos and Duesbery,
1985).
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FIG. 8. Dislocation dipole energies for floating Xe monolayers
(Joos and Duesbery, 1985).

artificially high kinetic barrier to melting. However, they
concluded that even in the presence of the vacancy the
melting appeared to be first order.

It is possible that the difficulty of vacancy formation is
responsible for the fact that nearly all simulations of 2D
systems display first-order transitions, whereas continu-
ous transitions are seen in many experiments (see Sec.
IV). Significantly, what appears to be a continuous tran-
sition is observed in simulations of a Lennard-Jones sys-
tem, which allow for motion in the third dimension
(Abraham, 1983; see Sec. V.F for a discussion of the or-
der of the transition in this case). Constant chemical po-
tential simulations that allow for density fluctuations and
vacancy formation would be extremely helpful. Howev-
er, these simulations have been plagued by technical
difficulties. New efforts in this direction are certainly
warranted.

The Joos and Duesbery calculation also has important
implications for the validity of the extrapolation from the
results of finite-size simulations to the thermodynamic
limit. If the elastic regime is not reached until 30 lattice
spacings, then system sizes much larger than the typical
1000 particles will be needed in order to ascertain the
long-distance behavior of the system. The form of the
dislocation interaction shown in Fig. 8 also indicates that
one may expect to see an equilibrium concentration of
“localized” defects of sizes on the order of ten lattice
spacings even in the solid. This fact will make a mean-
ingful interpretation of maps of defect positions (see Sec.
V.C.1) extremely difficult indeed.

Large defect aggregates have indeed been observed just
prior to melting in simulations of Lennard-Jones systems
(Tobochnik and Chester, 1979). The appearance of these
clusters has usually been interpreted as evidence of first-
order transitions and, in particular, of grain boundary
melting. If, however, the elastic limit has not yet been
reached, these clusters should perhaps be regarded as
part of the dislocation “core.”

The implication of the Joos and Duesbery (1985, 1986)
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results for simulations is that the study of size depen-
dence is essential to the understanding of the 2D melting
transition. Toxvaerd (1981, 1983) has performed studies
of size dependence of various quantities in repulsive
Lennard-Jones and Lennard-Jones systems. Substantial
diffusion was observed in an 8100 particle system at a
temperature and density at which none had been ob-
served at smaller sizes. Diffusion may be important for
the melting behavior in the thermodynamic limit. Also,
the shear modulus ¢ showed a substantial and roughly
logarithmic decrease as a function of system size for sizes
up to 1024 particles near the melting transition. Calcula-
tions by Hoover et al. (1984; see also Toxvaerd, 1984) us-
ing a quasiharmonic approximation (low-temperature
limit) gives a slight increase in y as the size is increased.
The amount of increase is inversely proportional to the
system size. However, the quasiharmonic calculations
are valid only at low temperatures, since they do not in-
clude the effects of defects. The significant decrease in u
as system size is increased observed by Toxvaerd implies
that systems of size 1024 and smaller are not large
enough to test predictions for elastic constants near the
melting transition.

Significantly, Toxvaerd also found that the density of
crystal defects (as measured by a Voronoi polygon con-
struction) increased as the size of the system increased.
This increase may be due to the large defect core implied
by the results of Joos and Duesbery.

Even if the system size and interaction potential are
chosen so that the defect pair interactions may be de-
scribed properly in elastic theory, there remain qualita-
tive anharmonic phenomena that are simply not included
in the elastic description. Large-angle grain boundaries
are examples of such phenomena, which may conceivably
be important for melting (Fisher et al., 1979). Substrate
interactions may also destroy the applicability of the har-
monic description. If they are sufficiently strong, they
completely dominate the adsorbate behavior, producing
commensurate phases describable by lattice theories.

B. Parameters of the defect description.
Calculation of the parameters

The parameters of the HN model are the combination
of elastic constants K, the Frank constant K 4, the dislo-
cation and disclination core energies, and the defect core
radii. It should be emphasized that most of the predic-
tions of the KTHNY theory can be checked without
knowing these parameters. However, determination of
these parameters for atomic systems would be extremely
useful for the following.

(1) Prediction of the melting temperature.

(2) Study of melting behavior as a function of these pa-
rameters. It would be of interest, for example, to be able
to link density changes in Lennard-Jones systems to
changes in defect core energies.

(3) Comparison of the results of atomistic simulations
and experiments to results of defect simulations that
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show a change in melting behavior as a function of core
energy.

One of the difficulties in making these connections has
been a certain amount of confusion about the definitions
of these parameters. All of the theoretical calculations
begin with so-called “unrenormalized” values of the
melting parameters, i.e., the values obtained when no
dislocation pairs are present in the solid. It is often as-
sumed that these “unrenormalized” values are identical
to zero-temperature values. However, in real systems,
phonons are known to affect these parameters, even when
no defects are present (Fisher et al., 1979; ‘Morf, 1979).
Since the HN calculations do not take phonons into ac-
count, it seems reasonable to include their effects before
applying the KTHNY theory.

This problem was pointed out and this conclusion
reached by Fisher et al. (1979) and by Morf (1979) in cal-
culations for the 2D electron system. Using the results
from the defect energy calculation described in this sec-
tion, they calculated the melting temperature from the
HN recursion relations using both zero-temperature
and ‘“phonon-renormalized” values. Thesé phonon-
renormalized values gave a prediction for the melting
temperature in good agreement with that observed in ex-
periments and simulations.

A more subtle difficulty in determining the appropriate
“unrenormalized” values of the parameters concerns the
identification of the appropriate length scale on which
these parameters must be measured. The smallest length
in the KTHNY calculation is the defect core radius.
Thus, all changes to the theoretical parameters that are
due to effects occurring on smaller length scales must be
included before the theory may be applied. The discus-
sion of the previous section indicates that it may be
necessary to include in the unrenormalized values the
effects of defect aggregates localized to distances smaller
than the distance at which elastic theory begins to de-
scribe the defect interaction. These aggregatés may be
expected to have substantial effects on the elastic con-
stants as well as on the defect core energies.

The elastic constant K is defined as

K — 4u(u+A)
2u+A

Ty

where p and A are the Lamé elastic constants in units of
kpT /a}, with a, being the lattice spacing of the atomic
system. The renormalized value K may be computed in
simulations either by straining the system and measuring
the response or by using the formulas derived by Squire
et al. (1968; see also Stewart, 1974). Low-temperature
values may be used to extrapolate to an ‘“‘unrenormal-
ized” value appropriate at the melting temperature (Fish-
er et al., 1979; Morf, 1979). However, the discussion of
extended defect cores suggests that these values may not
be appropriate for use as input to the KTHNY theory for
some systems.

The dislocation core energy and core radius are
difficult to obtain by either experiment or computer
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simulation. The core energy and core radius are not in-
dependent quantities. The core radius is the distance
outside of which the dislocation energy obeys the loga-
rithmic form of Eq. (4). The core energy is the energetic
contribution of the region within that radius. Two
difficulties exist in determination of these parameters for
atomistic systems: (1) determination of their absolute
values in the system in question and (2) expressing these
values in the appropriate units for comparison to defect
theories and simulations.

As mentioned in Sec. II.A (Fisher et al., 1979; Hoover
et al., 1979; Joos and Duesbery, 1985, 1986), dislocation
energies have been determined for a few systems using
zero-temperature relaxation calculations. The difficulties
in using zero-temperature values have already been men-
tioned. Another method has been to count, using the
Voronoi polygon construction, the number of defects
present at low temperatures and to calculate the core en-
ergy from an Arrhenius law [p=exp(—2E, /kpT)] (To-
bochnik and Chester, 1982; Murray and Van Winkle,
1987). Unfortunately, the number of defects present at
low temperatures is small and therefore statistics in the
simulation are bad. At higher temperatures defect in-
teractions are often important and the Arrhenius law is
no longer adequate.

This method assumes that the energy of the smallest
defect pairs gives the appropriate ‘“unrenormalized”
value. If the elastic limit is not reached until about 10
lattice spacings, as in Lennard-Jones-type systems, this
assumption is incorrect and the measured value will be
the energy for creation of small localized defects rather

than the desired dislocation core energy.
Experimentally, core energies are also very difficult to

determine. Arrhenius-type fits to the specific heat may
be used (subject to the caveats above) and have been done
in the cases of “He (Ecke and Dash, 1983; Hurlbut and
Dash, 1984, 1985; Strandburg et al., 1985) and ethylene
(Kim ef al., 1986) on graphite. A similar analysis of neu-
tron scattering data has been performed for *He on
graphite (Feile et al., 1982). The dislocation core ener-
gies thus obtained are approximately 4, 15, and 5, respec-
tively (in units of the temperature of the specific-heat
maximum), in the portions of the phase diagrams investi-
gated. In these cases the low-T form of the specific heat
with one excitation energy fits the data up to very near
the melting point. Possibly the effects of defect clustering
are small in these systems.

In order to be useful for comparison to defect theories
these core energies must be expressed in units of the “un-
renormalized” elastic constant K. These values of K are
in most cases not known. The electron system appears to
have a rather small core radius of about three lattice
spacings. In this case one may assume that the renormal-
ization due to small defect aggregates is negligible. Mak-
ing this assumption, and using the phonon-renormalized
values, the dimensionless core energy 16mE,. /K =4.4 is
obtained. Good agreement with experiments and simula-
tions is obtained when the transition temperature is
determined using these values as input to the KTHNY
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theory (Fisher et al., 1979; Morf, 1979).

Two other important parameters in the KTHNY
theory are the unrenormalized Frank constant (disclina-
tion coupling constant in the hexatic phase) K , and the
hexatic phase disclination core energy. These quantities
have not been determined in any atomistic systems so far.
The renormalized value for K 4, has been computed for
the Laplacian roughening model (Strandburg et al.,
1983). The unrenormalized values are not known, even
for that system, however. The unrenormalized disclina-
tion core energy mentioned here includes the effects of
screening by free dislocations and is not simply related to
the low-temperature disclination core energy (which is
just half the unrenormalized dislocation core energy).
Clearly the investigation of the connection of properties
of atomistic systems to the parameters of the defect
theories remains an important area for future research.

Ill. SIMULATIONS OF THE DEFECT SYSTEMS

Leaving aside questions of the connection of the elastic
description to realistic atomic systems one may investi-
gate the validity of the defect theories within the elastic
framework, particularly as the defect core energy is
varied. Simulations of the defect model itself have ad-
dressed this issue rather successfully.

A. Saito’s dislocation simulation

The first of these simulations was performed by Saito
(1982a, 1982b) on a dislocation gas system. In this simu-
lation, dislocations of unit length were allowed to point
in any of six directions allowed by a triangular lattice.
These dislocations were placed on a triangular mesh and
interacted with a potential which, while behaving like the
logarithmic dislocation Hamiltonian at large separations,
was modified to take into account the periodic boundary
conditions and the lattice structure of the mesh. This po-
tential was then fit to the logarithmic form [Eq. (4)] to
determine an initial core energy for dislocations. The
core energy for this simulation was 167E_ /K =4.6,
where this value differs from that quoted by Saito to
maintain agreement with HN conventions for the units.
Since Saito’s model included only dislocations, only one
transition was possible. It was, however, possible to ana-
lyze the nature of the transition itself, as well as the iden-
tity of the phase above the transition. ,

Saito’s results showed that the transition for this natu-
ral core energy obeyed the KTHNY predictions.
Specifically, he observed the unbinding of dislocation
pairs at the transition, and the elastic constant K, (deter-
mined from a dislocation correlation function), passing
through 167 at the transition. The dislocation correla-
tions above the transition fit the predicted hexatic phase
form very well. The height of the specific-heat peak was
size independent for systems containing 418 and 1672 lat-
tice sites, as is expected for the KTHNY melting mecha-
nism. The transition temperature as estimated from the



Katherine J. Strandburg: Two-dimensional melting 173

elastic constant Ky — 167 was approximately 12% above
the temperature of the specific-heat maximum, and the
width of the peak was also about 12%. The Frank con-
stant K , obtained the value 72/7 approximately 20%
above the melting temperature. However, the hexatic to
isotropic transition cannot occur in this system since
dislocations alone are considered, so no conclusions
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FIG. 9. Dislocation configurations near melting at Saito’s
lower core energy indicating the presence of grain boundaries
and loops. Configurations are shown after (a) 1300, (b) 1400,
and (c) 1500 Monte Carlo steps per site at the melting tempera-
ture (Saito, 1982).
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about the width of the hexatic phase may be drawn from
this temperature dependence.

Saito next lowered the dislocation core energy by sub-
tracting a constant from the finite-sized form of the dislo-
cation interaction. The core energy for this second simu-
lation was 167mE, /K =3.6. Here Saito observed a strong
discontinuity and hysteresis in the energy dislocation
density, elastic constant K, and specific heat, which he
interpreted as the signature of a first-order transition.
However, one hesitates to take hysteresis as a definitive
sign of first-order behavior in a computer simulation
where serious questions of equilibrium may be raised. A
careful study of the size dependence of the specific heat
would be desirable in this system. At a first-order transi-
tion, the specific heat should show a peak whose height
scales proportional to the number of lattice sites.

Calculations of orientational correlations in the high-
temperature phase at this lower core energy indicate that
it is an isotropic liquid phase, as would be expected as the
result of a grain-boundary-driven first-order transition.
Configuration snapshots show the formation of grain
boundaries at this transition (see Fig. 9). The work of
Saito indicates therefore that at least in the system con-
taining dislocations alone, the KTHNY theory describes
the transition at high core energies, while a crossover to a
first-order transition, probably driven by grain boun-
daries, occurs at lower core energies.

B. The Laplacian roughening model
and the disclination system

An investigation of the disclination system was sug-
gested by Nelson (1982). At low temperatures, where
they are strongly bound into dislocations, disclinations
interact with a potential of the form

K , , r—r’
HYe = mrgr’s(r)s(r )| r—r' | YIn |[——

+E, 3 sXr), (16)

where s (r) is the disclination “charge” at site r.

A model containing a system of charges interacting
with the potential of Eq. (16) can exhibit, in principle, ei-
‘her the full KTHNY sequence of two continuous transi-
tions separated by a hexatic phase or a grain-boundary-
driven first-order melting transition. In principle, point
defects such as vacancies may also be composed of dis-
clinations. However, the energetics of these small local-
ized defects are generally dominated by anharmonic
effects and therefore will not be accurately represented by
the elastic theory interactions.

Nelson proposed the Laplacian roughening model, a
model for interface roughening that is dual to the dis-
clination system. Simulations of the roughening model
dual to the XY model have proved to be very useful in
studying the KT transition in that system (Saito and
Muller-Krumbhaar, 1984).
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1. The duality relation

Duality transformations are characterized by an in-
verse relation between the temperature scales of the dual
models. They are transformations which, when applied
to the partition function of one model, show that it is
equivalent to the partition function for another, dual
model. Suppose we begin with a Hamiltonian of the
form

_J
T 2kgT

> h(r)G(r—1)h(r'), (17)

r#r1’

Z=JI 3 [dnexp

r m(r)=—

—H[h(r)]+2mi 3 m(

r')h(r')

where the 4 (r) are integers.
The partition function for this Hamiltonian is

0

2 e—H[h(r)] . (18)
h(r)=—c

z-11

Using the Poisson sum rule (which amounts to insert-
ing & functions at integer values of 4) the partition func-
tion (18) becomes

(19)

where the m (r) are integers and the 4 (r) are now continuous variables.
Since the Hamiltonian in Eq. (17) is quadratic, the integrals over the continuous values of 42 may be performed by

completing the square in momentum space to yield
— 27k, T

Z=Z,] 3 exp 7

r m(r)=—o

where Z, is the factor obtained from the integration and
the remainder is the part left over from completing the
square. Z is thus related to a partition function for vari-
ables m (r) interacting with a Hamiltonian

27k, T

Hdual —
J

3> GHq)m(—q) 1)
q

and whose effective temperature is inversely related to
that of the original model.

Such transformations allow the possibility of, for ex-
ample, doing a low-temperature approximation for each
model and thereby obtaining low- and high-temperature
results for both. Their main virtue in the present case
comes from the fact that the long-range interactions
characteristic of the disclination model transform into
short-range, easily simulable models.

2. Simulations of the Laplacian roughening model

The Laplacian roughening model (LRM) is defined by
the Hamiltonian

J

- 2
HLR"‘szT2|Ah(r)I ’

r

where (22)
Ar(n)=2 (S [h(c+8)—h(n]] .-
j

The {§ ;} are the nearest-neighbor vectors and the {A (r)}
are integer height variables.

Just as in the case of Saito’s study of dislocation melt-
ing, the potential given here is modified to take account
of the lattice. It is characterized by a natural core ener-
gy, obtained by the Monte Carlo simulation described
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3 G Hq)m(qm(—q)
q

) (20)

below (Strandburg et al., 1983), of 167E./K =4.1. A
comparison of the Laplacian roughening and melting
phase diagrams predicted by the KTHNY theory is
shown in Fig. 10.

The behavior of the Laplacian roughening model was
investigated by Monte Carlo simulation by Strandburg,
Solla, and Chester (1983). Two continuous transitions
separated by a phase dual to the hexatic phase were ob-
served in these simulations. The transitions were located
by studying correlations in interface height and local in-
terface tilt across the system. The height-height and tilt-
tilt correlation functions change from saturated to diver-
gent at long distances at the roughening and unorienting
transitions, respectively.

A word about the way in which these correlation func-
tions were used is in order here. The KTHNY theory
may be used in these systems to predict not only the
asymptotic behavior of these correlation functions, but
also their finite-size, periodic forms over the full range
available in the simulated system. Fits to these forms

Smooth Rough Rough
oriented oriented unoriented
(a) F l } T
(o} T T,
~ Fluid Hexatic Solid
() T t + 4
Tj Tm

FIG. 10. Correspondence between (a) the phase diagram of the
Laplacian roughening model as a function of temperature T,
and (b) that of the dual disclination system as a function of tem-

perature T, as predicted by the KTHNY theory of melting
(Strandburg, Solla, and Chester, 1983).
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thus provide a very good test of the KTHNY predictions.
This situation is to be contrasted with that of atomistic
systems, in which only the long-distance behavior of the
correlation functions is predicted. Determination of the
asymptotic behavior in these atomic systems is quite

0.6

0.2

0.0

3.0

20

H(r)

0'00246810|2|416

FIG. 11. Height-height correlation functions for the Laplacian
roughening model in the (a) intermediate and (b) high-
temperature phases. Shown in the figure are the Monte Carlo
data (—.—-—.), and fits to the predicted KTHNY forms for
the intermediate (X --- X -*-X) and high-temperature
(X —— X ——X) phases (Strandburg, Solla, and Chester,
1983).
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difficult, as will be discussed in Sec. V.C.4.

In the smooth, oriented phase the height-height corre-
lations saturate rapidly to a constant. Figure 11 shows
the behavior of the height-height correlation function in
the intermediate and high-temperature phases along with
the fits to the theoretical predictions.

In order to provide a model-independent check of the
transition temperatures, an estimate of the change from
“saturating” to ““diverging” behavior of the correlation
functions was made. Here the finite system size does
create some difficulty since true divergences can never be
seen. In order to quantify the difference between satura-
tion and ‘“divergence” in a finite system, the quantity
7asym Was defined to be the distance at which the correla-
tion function comes within 1% of its value at the size of
the system. This quantity shows a distinct jump (see Fig.
12) that was identified as the transition temperature.
This method of estimating the transition temperature
gives results in extremely good agreement with the re-
sults of the fits mentioned above and gives strong evi-
dence of the existence of a phase in which the height-
height correlations have “diverged” while the tilt-tilt
correlations remain saturated. Extremely good agree-
ment between the phase diagram as determined by the
fits to the KTHNY predictions and by this model-
independent method was obtained.

It is important to note that although two transitions

2.0

1.0

10.0

9.0

8.0

7.0
Tasym

6.0

5.0

4.0

16 I8 20 2.2 24

FIG."12. 7,y as a function of temperature for the Laplacian
roughening model as derived from the (a) height-height and (b)
tilt-tilt correlation functions. An intermediate, rough, oriented
phase is clearly observed. Curve ¢ shows the data derived from
the height-height correlations shifted in temperature by an
amount AT* =0.1 (Strandburg, Solla, and Chester, 1983).
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are present in the Laplacian roughening model, the dis-
tance between them is only about 5% in temperature.
The thermodynamic quantities show a rather sharp in-
crease that might mislead one into thinking that the tran-
sition is first order. The KTHNY theory predicts that
thermodynamic  quantities will remain smooth
throughout the transition, but this prediction does not
preclude fairly sharp behavior, especially as the crossover
to a first-order transition is neared.

Janke and Kleinert (1980, 1984) and Janke and Tous-
saint (1986) have argued that a first-order transition is
observed in the Laplacian roughening model. Simula-
tions of a model that is exactly equivalent to the Lapla-
cian roughening model on a square lattice were interpret-
-ed as displaying a first-order transition. However, Janke
and Kleinert caution that the natural core energy de-
pends on the lattice structure, and the nature of the tran-
sition is expected to change with core energy. The transi-
tion may simply be different on the square lattice from
the Strandburg, Solla, and Chester results for a triangular
lattice.

Janke and Kleinert present as evidence of a first-order
transition the apparent stability of both low- and high-
temperature phases at the transition temperature. They
quench a random system to the transition temperature
and find that it does not order during their Monte Carlo
run. Similarly, a completely ordered system, heated in-
stantaneously to the transition temperature, does not dis-
order during the run. This method of determination of
the order of the transition is equivalent to assuming that
the observation of hysteresis in a simulation implies a
first-order transition. The use of hysteresis in determin-
ing the order of a transition by computer simulation is
extremely dangerous due to the fact that hysteresis may
be an artifact of a simulation that heats or cools too
quickly through a continuous transition and is therefore
not in equilibrium in the transition region. This danger
is exacerbated by critical slowing-down effects. that may
occur near continuous transitions.

A study by Janke and Toussaint of the system size
dependence of the height of the specific-heat peak in a
LRM on a triangular lattice claims that the peak height
increases linearly with the size of the system for three
sizes studied, implying a first-order transition. The Janke
and Toussiant curve for a system of size 37 X 37 reaches a
height of only 8 while the results of Strandburg, Solla,
and Chester for a smaller system of size 32X 32 reach a
considerably greater height of about 14.

The methods used to obtain the specific heat in these
systems (numerical differentiation of the energy and ener-
gy fluctuations) can only underestimate the specific heat.
A possible explanation for the discrepancy is that Janke
and Toussaint may have inadvertently 'missed the
specific-heat peak by taking temperature increments that
were too large. Indeed, the entire peak observed by
Strandburg, Solla, and Chester fits between data points
on the Janke and Toussiant plot. Figure 13 shows the
specific-heat data of Strandburg, Solla, and Chester. The
increment between data points on the Janke and Tous-
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FIG. 13. Specific heat as a function of temperature for the La-
placian roughening model (Strandburg, Solla, and Chester,
1983). The temperature interval between data points for the
Janke and Toussaint calculation is also shown (—), located
near their peak height of about 8.

saint curve for size 37X 37 near the peak is indicated.
Perhaps the size dependence observed by Janke and
Toussaint is explained by the fact that they have taken
progressively closer temperature increments as the sys-
tem size is increased. In fact, the peak height and width
at their largest system size (smallest sampling interval) of
58X 58 agree rather well with the value obtained by
Strandburg, Solla, and Chester for the 32X 32 lattice,
suggesting a size-independent specific-heat peak con-
sistent with the KTHNY theory.

3. Laplacian roughening model with other core energies

~ Strandburg (1986) modified the Laplacian roughening
model to allow changes in the disclination core energy.
Because the change from the natural core energy leads to
long-range interactions in the corresponding Laplacian
roughening model, an approximate model was derived
with short-range interactions. This model, valid in the
limit of small deviations, 8E,, from the natural core ener-
gy is given by

Sp+ 26 @—rG @l (@h(—q),
q

where (23)

G(q)= [4—2 3 cos(q-5;) ]!
j

HMLR =

and
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V3

32 BE.

'}/ =
in momentum space. In real space the interactions ex-
tend out to fourth neighbors in the triangular lattice.
This model was analyzed using the correlation function
methods described above to yield the phase diagram
shown in Fig. 14. This phase diagram and the apparent
divergence of the specific-heat maximum (see inset in Fig.
14) near a core energy of 2.7 give evidence of a core-
energy-dependent crossover from KTHNY-type behavior
to a first-order transition. The melting temperatures ob-
tained from this simulation were in reasonably good
agreement with the predictions of the KTHNY recursion
relations for core energies below the natural core energy
down to 2.7, indicating that the approximation of small
core energy change is not seriously wrong in that region.

For technical reasons the approximate model breaks
down rather catastrophically at short distances for core
energies above the natural core energy, leading to higher
effective core energies and eventually to a nonphysical in-
teraction. Fortunately, these problems are confined to
the less interesting region above the natural core energy
and do not affect the study of the crossover behavior.

Finite-size scaling analysis was performed for several
core energies. The dependence of three thermodynamic
quantities on system size was investigated. At the
highest core energy investigated all three quantities
displayed the behavior predicted by the KTHNY theory.
At the lowest core energy investigated the behavior was
as expected for a first-order transition, confirming the
crossover from KTHNY to first-order behavior as core
energy is decreased, which had been inferred from the
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FIG. 14. Phase diagram of the Laplacian-roughening model in

the core-energy-temperature plane showing the transition tem-
peratures 7 and T,. These transitions separate the (a) flat,
oriented, (b) rough, oriented, and (c) rough, unoriented phases.
Also shown are Saito’s results for 7', for two core energies at
which he observed continuous (0) and first-order ( + ) transi-
tions, respectively. The HN prediction for the location of the
transition at E, =2.0 is also shown ( X ). The lines are simply a
guide to the eye. Inset shows the maximum specific heat C,,
as a function of core energy E, (Strandburg, 1986).
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correlation function study.

The behavior of the specific heat at two intermediate
core energies is shown in Fig. 15. At a core energy of
3.5, behavior characteristic of the crossover multicritical
point is observed. At 2.7, multicritical behavior is ob-
served at the smallest sizes, with a crossover to first-order
behavior evident at the largest size. The multicritical ex-
ponents obtained from the two core energies are in ex-
tremely good agreement. Assuming hyperscaling
(dv=2—a), the exponents are v=0.58%+0.03, «
=0.85+0.06.

It is interesting to compare these results to those of
Saito (1982a, 1982b). The transition temperature of
Saito’s higher core energy is in good agreement with the
Laplacian roughening model results and with the
KTHNY recursion relations. At Saito’s lower core ener-
gy, however, the Laplacian roughening model gives a se-
quence of two continuous transitions at a temperature
that is not in agreement with Saito’s results (see Fig. 14).
It is quite possible that the crossover core energy is
dependent on details of the model and that the value is
simply different in the dislocation simulation. It is also
possible that Saito’s effective core energy is lower than
the quoted value due to the same effect that gives higher
effective core energies for Laplacian roughening model
core energies above the natural value. (The sign of this
effect is reversed due to the duality transformation.)

Janke and Kleinert (1984) have also investigated a vari-
ation of the Laplacian roughening model on a square lat-
tice (in a different but equivalent language). They have
found a tricritical point at the natural core energy. The
term which they have added to the Hamiltonian in an at-
tempt to change the core energy is (in Laplacian
roughening language)

[A(r)—h (e +2)P[h(r)—h(t—P)]* . (24)

This term, however, does not preserve the tilt symme-
try of the original Hamiltonian since, when Ah(r)
—h(r)+1/27G-r, the energy is changed. This symme-

- try violation corresponds, in the dislocation model, to al-
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FIG. 15. Logarithm of C,, vs logarithm of system size N at
E.=(a) 3.5 and (b) 2.7 (Strandburg, 1986).
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lowing isolated dislocations at low temperatures in the
solid. Qualitative change is thus expected when this term
is added.

IV. EXPERIMENTAL INVESTIGATIONS
OF THE TWO-DIMENSIONAL
MELTING TRANSITION

A. Introduction

Four categories of experimental systems have been
studied in order to probe the nature of the 2D melting
transition: (a) layered liquid-crystal phases, (b) electrons
on the surface of liquid helium, (c) various gases adsorbed
on graphite, and (d) a colloidal suspension of charged
submicron-sized spheres. The comparison of these exper-
iments with theories for two-dimensional melting is
difficult both because the experiments in themselves are
difficult and because the most revealing theoretical quan-
tities are hard to measure. In addition, most of the ex-
perimental systems are not ideal two-dimensional sys-
tems. The effects of this nonideality on the transition be-
havior may in principle be substantial.

Adsorbed gases and liquid-crystal films may be ex-
plored in great detail by high-resolution x-ray diffraction
measurements, heat capacity and isotherm measure-
ments, and, in the case of liquid-crystal films, mechanical
measurements of elastic response. The development of
high-intensity synchrotron x-ray sources and of well-
oriented single-crystal samples has even allowed investi-
gations of bond-orientational ordering in these systems.

However, the number of substances for which a complete,

set of measurements has been made is still limited.
Determining the order of the melting transition is
surprisingly difficult, and the results for most systems are
still quite controversial.

The adsorbed gas systems depart from ideal two-
dimensional systems in two respects: They have impor-
tant interactions with the substrates, and they display
phenomena associated with the formation of more than
one layer of adsorbate. Liquid-crystal films, while devoid
of substrate effects, are complicated by interlayer cou-
plings and, even in the thinnest films, by couplings of
bond-orientational order to order in the molecular orien-
tation or “tilt.” These complicating factors give rise to
rich phase diagrams in the adsorbed gas and liquid-
crystal systems. They also contribute to the difficulties in
interpretation mentioned above.

The system of electrons suspended above the surface of
liquid helium provides, on the other hand, a nearly ideal
example of a simple 2D system. The liquid-helium sub-
strate provides no ordering potential and the behavior is
classical in the appropriate density regimes. All available
experimental results on this system favor the Kosterlitz-
Thouless melting theory. However, the range of mea-
surements available for these systems is limited to dy-
namic measurements of coupled electron-helium modes.
Interpretation of these measurements requires a large
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amount of theoretical input. No direct structural mea-
surements are available and, in particular, none of the ex-
periments are sensitive to bond-orientational order.

The system of submicron-sized charged spheres pro-
vides in some respects a bridge between experiment and
simulation. Because the spheres are macroscopic their
motions may be directly observed and correlation func-
tions, for example, computed from photographs.

In spite of the difficulties inherent in most of the exper-
imental systems, the experimental results on two-
dimensional melting are extremely interesting. Ap-
parently continuous transitions have been observed in a
number of systems and evidence for the hexatic to isotro-
pic transition exists in some. In this brief review we con-
centrate on those experiments that show behavior
differing from the strong first-order transitions typical of
three-dimensional melting. Interestingly, the number of
systems that belong in this category has continued to in-
crease as more and more detailed experiments have been
done.

B. Experimental studies of liquid-crystal films

Liquid-crystal materials are composed of anisotropic
molecules. These molecules are generally of a very com-
plicated chemical makeup. One example of such a com-
pound is  4-n-pentylbensenethio-4'-n’-tetradecyloxy-
benzoate. Luckily, the details of the composition of these
molecules are irrelevant for the phase transitions that
concern us. We will therefore refer to them by their
shorthand names (14S5 in the case cited) and visualize
them as rods. There are also liquid crystals composed of
flat, disklike molecules. We do not discuss them here. A
typical size of the molecules that are discussed in this sec-
tion is 25X 55 A .

Although there is still need for considerable study in
these liquid-crystal systems, the evidence is mounting
that, at least in some thin films, the KTHNY phase se-
quence has been observed (Collett et al., 1984; Davey
et al., 1984; Sirota et al., 1985; Dierker et al., 1986).
Whether the transitions themselves obey the KTHNY
predictions is open to further study (Davey et al., 1984;
Dierker et al., 1986). In addition, the KTHNY picture,
developed to describe behavior of two-dimensional sys-
tems, has proved useful in gaining insight into some in-
teresting three-dimensional phases.

1. Summary of liquid-crystal phases

The combinations of positional, molecular-orienta-
tional, and nearest-neighbor-bond-orientational orderings
possible in liquid-crystal systems lead to a rich variety of
phases and phase transitions. Of particular interest in
the study of two-dimensional phase transitions are the
smectic phases. These phases are illustrated in Fig. 16.
In these phases a standing density wave along one direc-
tion produces a ‘“layered” system that can often be
thought of as a stack of weakly coupled two-dimensional
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FIG. 16. Schematic representation of the liquid-crystal phases
smectic 4 and smectic C.

layers. The density wave in these phases possesses quasi- .

long-range order. Both bulk smectic systems and thin
films consisting of as few as two molecular layers have
been studied. In the smectic-A phase the molecules ex-
hibit liquidlike ordering within the layers, while the
molecular long axes are perpendicular to the layers. In
the smectic-C phases the molecular axes assumme an
overall “tilt” with respect to the layer normal. These
phases are often characterized by chirality (i.e., the direc-
tion of molecular tilt rotates as one proceeds from layer
to layer).

Upon cooling, the smectic-4 phase may undergo a
transition to a phase in which some hexagonal order ap-
pears within the layers. These phases have been known
as B phases and it has recently been shown that they are
of two types—the hexatic-B and crystalline-B phases.
The crystalline-B phase is actually a solid displaying
long-range positional and bond-orientational order in
three dimensions. Such a phase may be thought of as a
stack of two-dimensional crystals. Since the two-
dimensional crystal displays quasi-long-ranged positional
order, its susceptibility to a positional ordering field is
infinite. Interlayer forces provide such a field and the po-
sitional order in the stacked layers is long range in three
dimensions. As the number of layers is decreased there
should be a crossover to two-dimensional behavior
characterized by quasi-long-range positional order. Ex-
periments described in Sec. IV.B.3 show that very thin
films of the crystalline-B phase display power-law struc-
ture factors characteristic of 2D solids.

Birgeneau and Litster (1978) suggested the possibility
of a “stacked hexatic” phase. Such a phase may be
viewed as a stack of 2D hexatic layers characterized by
short-range positional order and by quasi-long-range
bond-orientational order. These layers thus have an
infinite susceptibility to a bond-angle ordering field, and
the stacked hexatic will display long-range bond-
orientational order while maintaining short-range posi-
tional order within the layers. We will refer to these
phases as long-range hexatics to distinguish them from
the two-dimensional hexatics with which we are primari-
ly concerned in the rest of this article. An order-
parameter theory of these long-range hexatics has been
worked out by Bruinsma and Nelson (1981) and by Aep-
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pli and Bruinsma (1984). Again, one may hope that very
thin films of materials that display a three-dimensional
hexatic-B phase (with long-range bond-orientational or-
der) will cross over to 2D hexatics as the number of lay-
ers is decreased. Evidence for such behavior is described
below.

Materials that display smectic-C (tilted molecular axes)
phases also may have long-range hexatic phases. The
possible phase diagrams for these materials are even
more complicated than for materials in which the molec-
ular axes remain perpendicular to the layers. Two dis-
tinct three-dimensional long-range hexatic phases are ob-
served in these materials. Smectic-I and smectic-F are
distinguished by the direction of molecular tilt with
respect to the local positional structure of the system.

A theoretical discussion of the expected phase diagram
of a two-dimensional system with molecular tilt was pro-
vided by Nelson and Halperin (1980). The resulting
phase diagram is shown in Fig. 17. Additional defects as-
sociated with ordering of the molecular tilt are added to
the usual KTHNY theory. The molecular tilt may be
thought of as providing an orienting field, similar to that
produced by a substrate. In the presence of molecular
tilt ordering, quasi-long-range bond-orientational order
is always present. Thus no true liquid should occur in
“tilted” systems.

According to this theory, the smectic-C phase should
actually be a stack of bond-orientationally ordered layers,
rather than a stack of fluid layers as has been previously
supposed. The bond-orientational order should be rather
weak, however, since it is induced by the tilt ordering.
Such a phase would differ from a true hexatic since the
orientational susceptibility would remain finite and the
Frank constant K ;, would remain small. The smectic-C
phase is comparable to the liquid phase in an adsorbed
system. There, weak bond-orientational order is always
induced by the substrate. In this picture, no real transi-
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FIG. 17. Phase diagram for smectic liquid-crystal layers, as a
function of the inverse temperature-dependent Frank
coefficients K '(T) and K5 '(T). Both solid and fluid phases
are shown, and these can be either tilted or untilted. The Frank
constant K is infinite in the solid phases. Experiments with
varying temperature might trace a path from the lower-left to
the upper-right portion of the figure, with increasing tempera-
tures (Nelson and Bruinsma, 1980).
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tion would separate the smectic-C and long-range hexatic
phases.  Indeed, synchrotron x-ray studies of a material
previously thought to have displayed a smectic-C to hex-
atic transition have shown that no true phase transition
occurs (Brock et al., 1986). However, if the coupling of
bond-orientational order and molecular tilt is sufficiently
weak, the observed behavior may be experimentally in-
distinguishable from the zero-coupling behavior.

2. Experimental methods

As mentioned above, three methods have primarily
been used in the experimental study of liquid-crystal
phases. Thermodynamic measurements are used to map
out the phase diagrams and to investigate the order of
the transition and the appropriate critical exponents.
Measurements of the in-plane shear modulus are made
using a torsional oscillator technique. An annular film of
a controlled thickness is drawn between the edges of two
disks. The top disk is a torsional oscillator whose reso-
nant period may be accurately measured. As the resis-
tance to shear of the suspended film changes, the reso-
nant period of the oscillator changes in a manner propor-
tional to the in-plane shear modulus. Using this method
the change in period may be measured as a function of
temperature and the shear modulus determined.

The development of synchrotron radiation facilities
and techniques has allowed for extensive high-resolution
x-ray diffraction studies that probe the structure of these
materials. Because these free-standing liquid-crystal
films have no substrate to produce extra background
scattering, they make particularly good subjects for x-ray
scattering studies. Very thin films of the crystalline
phases will be expected to show the power-law structure
factors characteristic of two-dimensional solids.

Bulk long-range hexatic phases will be expected to
show square-root Lorentzian line shapes (Aeppli and
Bruinsma, 1984). Spots will be observed, rather than
rings, due to the long-range bond-orientational order.

Such spots will be observed if the orientational domains -

within the sample are large enough. An infinite 2D hex-
atic phase, on the other hand, would be expected to show
a liquidlike diffuse ring of scattering due to the algebraic
decay of the bond-angular order. In any real experiment,
however, angular correlations extending the length of the
sample will provide a modulation of the ring, leading to a
pattern of six asymmetric spots whose broadening in the
angular direction grows with sample size. The radial
spot width will be determined by positional correlations,
and the angular width by orientational fluctuations.

Recently, a clever experiment exploiting the link be-
tween bond-orientational order and molecular tilt order
in materials forming smectic-C (‘“tilted”’) phases has been
performed by Dierker et al. (1986). They used light
scattering to observe the defect structure in the molecu-
lar tilt ordering and then used the observed structure to
infer information about the bond-orientational order.
Their results are discussed below.
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3. Experimental results

Untilted systems. The long-range hexatic-B phase was
first observed in the liquid crystal 650BC (Huang et al.,
1981). The hexatic-B phase is characterized in x-ray
scattering experiments by short-range liquidlike position-
al order accompanied by long-range orientational order
within the layers. The positional correlation length in
this phase, while finite, is quite long (~100 A), corre-
sponding to approximately 20 atomic spacings (Huang
et al.,, 1981; Davey et al., 1984). The long-range
hexatic-B phase does not support an in-plane shear, as is
expected from the lack of positional order (Pindak et al.,
1982).

Neither the smectic-A4 (“layered liquid”) to long-range
hexatic-B nor the hexatic-B to crystal phase transition is
expected to be of the Kosterlitz-Thouless type in these
three-dimensional phases. Indeed the hexatic-B to crys-
tal transition is strongly first order. The critical behavior
near the long-range hexatic to layered liquid transitions
appears to vary depending upon the system studied in a
way which is not yet understood (Huang et al., 1981;
Viner et al., 1983; Davey et al., 1984; Huang et al.,
1986). It is often characterized by a specific-heat ex-
ponent near 0.5, possibly indicating the presence of a
Gaussian tricritical point (Huang et al., 1981; Bruinsma
and Aeppli, 1982; Viner et al., 1983; Davey et al., 1984;
Huang et al., 1986). A general argument has been pro-
posed to explain the appearance of this tricritical point
(Aharony et al., 1986).

An important observation with probable implications
for two-dimensional systems is that the layered liquid to
long-range hexatic transition is accompanied by a rapid
increase in positional order as evidenced by a sharpened
radial width of the structure factor, as well as by the ap-
pearance of the angular modulations of the scattering,

. which characterize the long-range hexatic ordering. The

theoretical calculation of Aeppli and Bruinsma (1984) re-
lated this increased positional order to the bond-
orientational order. The radial width of the structure
factor was given in terms of the specific-heat exponent
and amplitude. The experimental results show a good fit
to this theoretical relationship (Davey et al., 1984).

An apparently continuous hexatic to liquid transition
in a two-layer film has been observed in one of these un-
tilted materials, suggesting that the two-dimensional be-
havior of that material may conform to KTHNY predic-
tions (Davey et al., 1984). In the very thinnest of the
hexatic films (two or three molecular layers) the sixfold
modulation of the structure factor is no longer observ-
able, although the increase in positional correlations
characteristic of the long-range hexatic to layered liquid
transition is observed. The disappearance of the struc-
ture factor modulation is consistent with a crossover
from long-range to quasi-long-range bond-orientational
order and the appearance of the large angular fluctua-
tions expected in two dimensions.

Tilted systems. Long-range hexatic phases are also ob-
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served in systems with molecular tilt ordering (Pindak
et al., 1982). Bond-orientational order is observed in
these phases and has recently been observed in a
smectic-C (tilted layered liquid) phase as well (Brock
et al., 1986). Presumably the bond-orientational order in
the observed long-range hexatic phase is intrinsic, rather
than induced by the tilt, and is thus much stronger than
the induced bond-orientational order of the smectic-C
phase.

Thus, the behavior of these systems is very similar to
that observed for the materials forming smectic-A
phases. At high temperatures the layers show fluidlike
ordering. There is an apparent transition to a phase with
long but still finite positional correlations and long-range
bond-orientational order, and then a first-order freezing
transition (Sirota et al., 1985). The behavior of these tilt-
ed systems as a function of film thickness has also been
studied. In some systems the long-range hexatic phases
only appear as film thickness is decreased (Sirota et al.,
1985).

Exploiting the locking in the long-range tilted hexatic
phase of the bond-angle field to the director field of the
molecular axes, Dierker et al. (1986) use the structure of
disclinations observed in light scattering experiments to
deduce information about the relative strengths of the
elastic constants related to director twist and bond-angle
twist (K 4). A defect structure observed in the long-
range tilted hexatic phases is shown in Fig. 18.

In the hexatic phase a ‘‘star” appears whose arms
separate regions in which the molecular axes (and hence

FIG. 18. Point disclination of S= + 1 in the smectic-C* phase

of a two-layer film develops, upon cooling, in the hexatic-I* ‘"

phase five straight radial disclination arms. The calculated
director- and bond-orientation pattern about the five-armed star
defect is shown. The arrows indicate the local orientation of
the director; the crosses, the local orientation of the sixfold
symmetric bonds (Dierker, Pindak, and Meyer, 1986).
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the bond orientations) remain ordered. The sudden 60°
shifts in orientation of the director at the boundaries of
these regions are made so as to preserve the bond-
orientational order. The appearance of this structure im-
plies a dominance of the bond-angle elastic constant over
that associated with director twist. The fact that these
arms appear at the smectic-C to long-range tilted hexatic
transition indicates that bond-orientational order that is
not induced by the coupling to the molecular tilt has oc-
curred. An elastic calculation relates the length and
number of the “arms” to the value of K ;. The five arms
observed at the transition are the number that would be
expected for a value of K, of 72/, the value predicted
by the KTHNY theory.

The hexatic to crystal transition in very thin films has
not been studied in detail in untilted systems. In systems
in which the molecular axes are tilted, however, the
long-range hexatic to three-dimensional crystal transition
has been studied as a function of film thickness. The
transition was found to grow less abrupt as the film
thickness decreased. For example, in one system the
first-order jump in the positional correlations decreased
as the number of layers decreased to 5 (Sirota et al.,
1985). The Dierker et al. (1986) experiment provides in-
formation about this transition as well. Since the arm
length of the “star’” observed in the center of the disclina-
tions can be related to the bond-orientational elastic cou-
pling K ,, it can be used to measure the behavior of K ,
near the long-range tilted hexatic to crystalline transi-
tion. The arm length appears to diverge as the transition
is approached. A fit of this divergence to a form predict-
ed by KTHNY,

K, ~exple/(T-T,)], (25)

gives an exponent in good agreement with the KTHNY
theory.

C. Electrons on the surface of liquid helium

The classical freezing transition of electrons on the
surface of liquid helium was first observed by Grimes and
Adams (1979). An electric field was set up perpendicular
to the helium surface by means of a capacitor that had
the positive plate submerged in the helium. The force

~ thus applied was balanced by the repulsion between the

electrons and the helium. The distance between electrons
in these experiments was large, so the electrons behave
classically.

Because the electron Boltzmann factor is given by
exp(—V /kgT), where V is a sum of pair potentials,

2

v(ry=-<=, (26)
i

the phase diagram may be expressed in terms of one com-
bined density-temperature parameter I' (proportional to

the square root of the density divided by the tempera-
ture). The densities accessible at a temperature of 0.5 K
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(10° <n <10° cm—2) corresponded to a range of I' of
2 <I' <200. The electron system forms a gas for I' <1
and a liquid for 1 <I" < 100. Observations of the electron
system were made by measuring the density dependence
of coupled modes of the electron system and helium
capillary waves. These modes appear when the electron
system crystallizes, because the repulsion between the
electrons and the helium produces a small (% A deep)
dimple under each electron, thus coupling the phonons of
the electron system to capillary waves or “ripplons” on
the helium surface. The appearance of these coupled res-
onances signals the onset of freezing.

The mobility of the electrons in a 2D lattice was mea-
sured by Mehrotra, Guenin, and Dahm (1982). An ac
voltage was applied to one end of the submerged capaci-
tor plate, which was divided into three electrically isolat-
ed segments. The response was measured at the other
end. The time delay between applied signal and response
reflected the electron mobility. A measure of “excess
scattering” was obtained by subtracting a background
determined by the known behavior for the liquid and for
the low-temperature crystal. A peak in excess scattering
was observed near the melting transition. The authors
conjectured that this excess scattering was due to the dis-
sociation of dislocation pairs. The value of I' at melting
(I'=124+4) was consistent with values obtained from
the KT theory and from Monte Carlo simulations (Fisher
et al., 1979; Gann et al., 1979; Morf, 1979).

Guo et al. (1983) performed a similar experiment.
They probed the frequency dependence of the excess
scattering. They compared this frequency dependence to
an adaptation of the Ambegaokar et al. (1980) theory for
the dynamics of the KT transition in 2D superfluids, and
obtained good agreement with the KT theory.

Gallet et al. (1982) deduced values for the shear
modulus ¢ from the coupled electron-helium modes, by
relating the shear modulus to the effective mass of the
“dimple.” They found good agreement with the KT pre-
diction for the value of 1 at melting.

Thus all available experimental data on the 2D elec-
tron system supports the KTHNY melting theory. Un-
fortunately, these experiments contain no information
about bond-orientational order and thus can make no
comment concerning the HNY predictions for the hexat-
ic phase.

D. Adsorbed gases

1. Introduction

Adsorbed gases provide an almost inexhaustible num-
ber of possible combinations of substrate and adsorbate
and there have been many, many studies of such systems.
Here, we concentrate on systems physisorbed on graphite
substrates. In particular, we are interested in the phases
that are incommensurate with the graphite substrate, in
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which the approximation to a strictly two-dimensional
system is closest.

These systems often have phase diagrams which, in the
appropriate regions, look very much like the phase dia-
grams of their three-dimensional counterparts. The
phase diagram of xenon on graphite, for example, is
shown in Fig. 19. As the amount of gas adsorbed on the
substrate increases, however, these systems can show in-
teresting layering effects including roughening transitions
and wetting transitions. We will not discuss these phase
transitions here.

While the substrate does not impose positional order
on these incommensurate phases, the ground states of
these solids have a preferred orientation with respect to
the graphite crystal axes. Novaco and McTague predict-
ed this “orientational epitaxy” (Novaco and McTague,
1977; McTague and Novaco, 1979). When the lattice
constant is not commensurate with the graphite sub-
strate, the zero-temperature state may not be aligned
with the graphite axes, but it may be rotated by some
finite angle. These systems may undergo a transition
from the rotated state to a state aligned with the sub-
strate symmetry axes. In the aligned state the adsorbate
is believed to be described as a collection of commensu-
rate patches separated by domain walls (Shiba, 1980;
Gordon and Villain, 1982). Depending upon the order-
ing of the domain walls, the aligned state may be either
solid or liquid.

Long-range bond-orientational ordering is always im-
posed by the substrate. The effect of the long-range
bond-orientational ordering is to smear out any possible
hexatic to isotropic transition. The two-dimensional
liquid phases in these systems always have substrate-
induced long-range bond-orientational order. However,
if an adsorbed system passes near the point at which a
substrate-free hexatic to isotropic transition would occur,
some remnant of the transition may be observed (just as
in the case of a ferromagnet in a small magnetic field, one
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FIG. 19. Phase diagram of xenon on graphite between O and 2
monolayers (Heiney et al., 1983).
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may observe a remnant of critical behavior when passing
near the zero-field critical point). Indeed, the effect of
the substrate may be modeled by a sixfold field 44, which
couples to the bond-orientational order.

2. Experiments on specific systems

Rather than attempt an exhaustive review of experi-
ments on systems physisorbed on graphite, we will briefly
discuss some systems in which unusual melting behavior
has been observed with emphasis on recent, high-
resolution experiments. These systems include the noble

gases xenon, krypton, argon, and helium as well as

ethylene and CF,. Experimental phase diagrams are
shown in Figs. 19-24.

a. Krypton, xenon, and argon on graphite

Comparisons of the xenon, krypton, and argon phase
diagram are interesting because these systems are all
rather well described by a Lennard-Jones potential.
Their bulk phase diagrams are essentially the same when
scaled by the appropriate Lennard-Jones parameters.
The differences in the two-dimensional phase diagrams
must be due to differences in their interactions with the
graphite substrate.

Krypton on graphite. The size of krypton is such that
its substrate-free lattice spacing is similar to the spacing
that would be imposed by the graphite substrate. Thus,
krypton at monolayer densities freezes into a commensu-
rate solid whose melting properties may be described by
lattice models. As the density is increased, krypton on
graphite exhibits a novel transition into a reentrant fluid
phase that may be described as a domain-wall fluid (Bir-
geneau et al., 1981; Coppersmith et al., 1981; Abraham
et al., 1982). At yet higher densities krypton on graphite
forms an incommensurate solid (Butler et al., 1980;
Specht et al., 1984). The melting of the incommensurate
solid is of interest for this discussion.
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FIG. 20.- Phase diagram of near-monolayer krypton: F, fluid;
C, commensurate solid; RF, reentrant fluid; IC, incommensu-
rate solid; S, bulk solid; L, bulk liquid (Specht et al., 1984).
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T/TTP(3-D)

FIG. 21. Experimental phase diagram of argon on graphite.
Phases shown are gas (G), fluid (F), and incommensurate solid
(IS) (McTague et al., 1982).

Specht et al. (1984) have performed synchroton x-ray
studies that indicate that the incommensurate melting is
continuous. These transitions are very broad, in contrast
to the melting of incommensurate xenon, and there is as
yet no connection of the observed continuous melting to
any theory. A transition to a rotated state occurs well in-
side the solid and therefore is not a factor in the melting
transition. The incommensurate melting occurs at cover-
ages well above one monolayer. The effect of the second
layer on the melting transition is not known.

Argon on graphite. The argon atom is smaller than the
krypton atom and its natural lattice spacing is 8% small-
er. This spacing is different enough from that of the
graphite substrate that argon always forms an incom-
mensurate solid structure. Until recently it was believed
that argon on graphite always melts continuously, even
in the submonolayer region. The evidence for this belief
was derived from x-ray scattering studies (McTague
et al.,, 1982) and from measurements of heat capacity
(Chung, 1979). Vapor-pressure isotherm measurements

NORMALIZED DENSITY

| | l |
0 [ 2 3 4 5
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FIG. 22. Phase diagram of “He on graphite. Solid lines indi-
cate well-defined phase boundaries. Dashed lines indicate
suspected phase boundaries (Motteler, 1985).
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FIG. 23. Experimental phase diagram for ethylene on graphite.
Phases shown are liquid (L), vapor (V), high-density solid
(HD), ordered low-density solid (OLD), disordered low-density
solid (DLD), and intermediate density solid (ID). ‘“Ordered”
and ‘“‘disordered” refer to the orientations of the molecular
axes, which are thought to lie in a plane in these low-density
phases (Kim, Zhang, and Chan, 1986).

(Larher, 1983) also showed a broad melting region.
McTague et al. (1982) found a gradual continuous in-
crease of the positional correlations near melting in a
synchroton x-ray study of submonolayer argon. The
form of the variation of correlation length with tempera-
ture was shown to be consistent with a prediction of the
KTHNY theory over a rather broader temperature inter-
val than was expected from calculations of the width of
the KTHNY critical region. There was also a broad
specific-heat peak centered just above the temperature at
which the correlation length diverged, consistent with
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FIG. 24. Experimental phase diagram of CF, on graphite.
Phases shown are liquid (L); fluid (F); vapor (V); hexagonal in-
commensurate (HI); two commensurate phases (2X2 and 3P);
and two phases, whose identification is uncertain and is dis-
cussed in the text [1(S) and IC] (Zhang, Kim, and Chan, 1986).
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the KTHNY predictions.

More detailed recent heat-capacity studies in the sub-
monolayer region by Migone et al. (1984) reveal a small,
rather sharp (~0.3 K in width) heat-capacity peak that
had previously been buried in the broad peak mentioned
above. The broad peak is centered at a temperature
about 6% above that of the sharp peak. The sharp peak
occurs at a coverage-independent temperature, consistent
with the melting temperature observed in the scattering
studies. It is identified by Migone et al. as a signature of
first-order, triple-point melting. If this interpretation is
correct, the broad peak may well be a remnant of the
hexatic to isotropic transition. It is also possible that the
small sharp peak is due to continuous KTHNY melting,
since the KTHNY theory does not predict the width or
height of the specific-heat peak, but only states that it
does not diverge.

Indeed, recent synchroton x-ray experiments by Niel-
sen et al. (1987) contest the conclusion of Migone et al.
(1984) that the melting of submonolayer argon is first or-
der. Nielsen et al. observe a continuous evolution from
liquid to solid, with liquid correlation lengths reaching
approximately 1000 A. Over a temperature interval
comparable to the width of the sharp heat-capacity peak,
they observe a continuous evolution of the correlation
length from 200 to 900 A. These recent x-ray studies
continue to be consistent with predictions of the
KTHNY theory for the temperature evolution of the
correlation length and diffraction peak intensities.
Indeed, they probe an effective temperature region closer
to the transition than is the case for xenon on graphite.

Unfortunately, systematic errors prevent a comparison
of absolute temperature scales between the x-ray and
heat-capacity data, and thus it is not possible to test the
relative positions of the heat-capacity anomalies and ap-
parent correlation length divergence.

The entropy change due to the higher temperature,
broad heat-capacity peak is much greater than that due
to the lower temperature, sharp peak. Liquid-crystal
studies find that most of the entropy change occurs at the
hexatic to layered liquid transition (Viner et al., 1983).
This finding is consistent with the interpretation of the

" broad heat-capacity peak observed in argon as due to the

hexatic-isotropic transition. If so, one might expect (in
analogy to the liquid-crystal systems) to see a sharp in-
crease in positional correlations (stopping short of diver-
gence) associated with the broad upper peak. No such
increase has been observed in the x-ray studies. Because
of the differing temperature scales, it is not certain
whether the appropriate temperature region has been ex-
amined.

Another possibility is that the broad peak is due to a
rotational transition. The argon system has been shown
to display an unusual melting transition from a rotated
solid to a rotated liquid (D’Amico et al., 1986). The ro-
tational transition occurs above melting as does the
broad specific-heat peak. This rotational transition is ex-
pected to be of Ising type and thus have a =0, consistent
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with a rounded peak.

At monolayer coverages and above, all extant evidence
is consistent with continuous melting transitions. How-
ever, the experimental evidence at these higher coverages
is not nearly as complete as in the submonolayer regime.

Xenon on graphite. The natural lattice spacing of xe-
non is approximately 8% larger than that of krypton. It
forms a triangular incommensurate solid for tempera-
tures above 65 K. The melting of xenon on graphite is
probably the most studied of all two-dimensional melting
transitions. The melting of submonolayer xenon on
graphite is strongly first order [(Litzinger and Stewart,
1980; Heiney et al., 1983 and references therein)]. There
is substantial agreement, however, that at higher cover-
ages the melting transition becomes continuous (Heiney
et al., 1983; Rosenbaum et al., 1983; Dimon et al., 1984;
Nagler et al., 1985; Specht et al., 1985; Colella and
Suter, 1986). .

X-ray diffraction studies find positional correlation
lengths that diverge as the transition is approached from

the liquid, with lengths up to 2000 A actually observed
(Heiney et al., 1982, 1983; Dimon et al., 1984; Specht
et al., 1984, 1985; Nagler et al., 1985). Continuous melt-
ing is said to occur for temperatures above 125 K.
Vapor-pressure isotherms indicate a crossover from first
order to continuous melting above 150 K (Colella and
Suter, 1986). The continuous transition is, in both stud-
ies, and in contrast to the case of argon on graphite, ex-
tremely sharp. The disagreement between these experi-
ments as to the location of the crossover point demon-
strates the difficulty in distinguishing between a continu-
ous transition and a weakly first-order transition.

The compressibility, found in the vapor-pressure iso-
therm experiments (Colella and Suter, 1986), could be
decomposed into two pieces (see Fig. 25): a sharp peak
corresponding well to a resolution-limited 8§ function and
a broad, temperature-independent peak fit well by a
Lorentzian. The sharp peak was interpreted as due to a
first-order transition. It shrinks as temperature is in-

L —— 116.5K
- (b)
~ 10} -
T E
x [
— !
=]
IO_3 = .
E A ]
: 1 1 1 1 ) I— 1 1 1 ]
-40 -20 (o) 20 40
Ap (K)

FIG. 25. Compressibility as a function of chemical potential for
the xenon-on-graphite system. Data are shown for isotherms
measured at 116.5, 128.4, and 145.0 (Colella and Suter, 1986).
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creased until it disappears at a temperature of about 150
K. The broad peak is then the only signature of the melt-
ing transition at higher temperatures.

It would be tempting to interpret the broad peak as the
nonsingular anomaly predicted by the KTHNY melting
theory. In that case its presence below the multicritical
point would be a signature of the beginning of a KTHNY
transition which is then preempted by a first-order transi-
tion. Alternatively, the broad peak may be the charac-
teristic behavior of the multicritical point itself. If so,
this multicritical point is of a novel character. In partic-
ular, its behavior is different from that found in computer
simulations of the crossover from first-order to continu-
ous transitions in the Laplacian roughening model, dual
to the disclination gas (Strandburg, 1986).

As is to be expected from the sixfold substrate field,
the xenon liquid is orientationally ordered. Above melt-
ing, x-ray diffraction on single-crystal samples show
broadened sixfold spots rather than the ring usually seen
in a liquid. The presence of spots indicates the existence
of long-range bond-orientational order. In other words,
the system exhibits some stiffness with respect to bond-
orientational fluctuations. This stiffness may be provided
solely by the hexagonal substrate field &4, or there may
be a nonzero intrinsic elastic constant KX ,. A nonzero
value of K , is a signature of a hexatic phase.

Rosenbaum et al. (1983) compared the observed be-
havior of the spot width to predictions of a harmonic
theory allowing for nonzero substrate field 4 and Frank
constant K ;. Using the KTHNY prediction that, near
melting, K 4 is proportional to the square of the position-
al correlation length, they compared their results with
predictions for the behavior of the angular width at vari-
ous values of #4. For reasonable values of 4 they found
that a nonzero K 4, was required to explain their data. In
order to explain their results by substrate effects alone,
values of h4 3 orders of magnitude larger than previous
estimates for xenon on graphite were required.

Recent synchrotron studies of xenon on the (111) face
of silver (Greiser et al., 1987) provide further evidence
that xenon melts into an intrinsic hexatic phase. Xenon
on silver does not orient according to the Novaco and
McTague predictions (1977), indicating that the substrate
field is extremely small and that the orientation of the
overlayer is determined by pinning at the edges or steps
on the substrate surface. [For a discussion of the role of
defects in determining the structure of adsorbed layers
see, for example, the work of Kern et al. (1986).] The
value of h¢ for xenon on silver is estimated to be approxi-
mately L that for xenon on graphite.

Surprisingly, since the substrates are so different, the
behavior of the xenon-on-silver system is essentially iden-
tical to that of xenon on graphite. The melting tempera-
tures coincide, as do the values of K 4 required to explain
the angular spot width data above melting. While the
spot width data can also be fit by a model involving
strong step spinning, the quantitative agreement of the
results for xenon on two very different substrates implies
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that the hexatic ordering is indeed intrinsic to the adsor-
bate.

The low-temperature phase observed, however, is not a
true, quasi-long-range solid. Some frozen-in disorder
remains, and the narrowest line widths observed in
scattering studies are wider than would be expected from
the experimental resolution or from substrate irregulari-
ties (Nagler et al., 1985; Specht et al., 1985; Greiser
et al., 1987). Greiser et al. argue that a plausible source
of the disorder is the pinning of dislocations to grain
boundaries or steps.

Comparison of xenon and argon on graphite. The xe-
non and argon systems, although displaying approxi-
mately the same magnitude of incommensurability with
the graphite substrate, have very different melting behav-
ior. These differences are almost certainly due to interac-
tions with the substrate, since xenon and argon are both
well described by Lennard-Jones potentials. The sub-
strate tends to expand the argon lattice from its preferred
separation. The potential well is relatively soft in the
direction of expansion and one might expect substrate
effects to be fairly significant. In contrast, in trying to
contract the xenon lattice, the substrate potential is
working against the. strong hard-core repulsion and
therefore, may be expected to be less effective. Abraham
(1983a) points out two factors that may be useful in un-
derstanding the difference between the Ar and Xe melt-
ing transitions: The argon melting temperature in the
submonolayer regime is comparable to the corrugation of
the substrate potential (probably the reason that argon
melts into a rotated fluid). Also, the argon fluid density
in the submonolayer region is roughly equal to the com-
mensurate density, again indicating the importance of
substrate effects in the submonolayer melting.

b. Helium on graphite

The phase diagram of “He on graphite is shown in Fig.
22 (Motteler, 1985). Both “He and *He have been studied
and their melting behavior is qualitatively the same. The
phase diagram of helium is also very similar to that of
hydrogen and deuterium, with phase boundaries differing
only by a temperature scaling (Freimuth and Wiehert,

1985; Motteler, 1985; Dash, 1987). On the basis of the
analogy between helium and these systems, the phases la-
beled a and B are identified as an incommensurate solid
with “striped” domain walls, and a hexagonal domain-
wall liquid similar to that observed in krypton on graph-
ite. In this case the line between the regions 8 and V
shows the location of heat-capacity maxima related to
the change from the domain-wall liquid to an ordinary
disordered liquid but does not denote a true phase bound-
ary. It is surprising to see how similar the phase diagram
of helium on graphite is to that of krypton on graphite
considering the vast differences in temperature scales and
in the respective atomic sizes.

‘Because of its magnetic properties, *He may be studied
with nuclear magnetic resonance. Widom et al. (1979)
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performed an NMR study of the melting transition of in-
commensurate *He on graphite. They observed evidence
of two transitions. One of these transitions was associat-
ed with slow motions, which they hypothesized were the
motions of unbound dislocations. The second was associ-
ated with the fast atomic motions characteristic of the
fluid phase. The first transition seemed to correspond
well to predictions of the location of the KTHNY melt-
ing transition assuming that renormalizations of the elas-
tic constants are small (essentially a large core energy
limit). The second transition was correlated with peaks
in the specific heat.

Thermodynamic measurements have also been used to
study the melting of the incommensurate helium solid.
In particular, Ecke and Dash (1983) analyzed the excess
specific heat near melting in terms of defect generation.
They were unable to distinguish between various poten-
tial thermally excited defects. However, they were able
to obtain a single defect activation energy over a temper-
ature range up to within a few percent of the melting
temperature. If this defect is interpreted as a tightly
bound dislocation pair, then the core energy in units of
the peak temperature would be between 3.5 and 5 de-
pending on the density. The defect energy measured by
Ecke and Dash is quite similar to defect energies ob-
tained by Feile et al. (1982) by neutron scattering mea-
surements on >He (Feile et al., 1982). Whether these de-
fect energies can be taken as core energies for the appli-
cation of the KTHNY theory depends on how well dislo-
cations can be described by elastic theory in this system
at these short distances.

Ecke and Dash (1983) improved the calculation of Wi-
dom et al. (1979) of the predicted KTHNY melting tem-
perature by using the Greif and Goodstein (1981) elastic
constant values, which take into account substrate
effects, finite-pressure corrections, and the breakdown of
the Cauchy approximation for the relationships of the
elastic constants. They include ‘‘phonon-renormaliza-
tion” effects in a rough way by using a temperature
dependence indicated by computer simulations of a
Lennard-Jones potential system. These calculations
place the specific-heat peak temperature below the pre-
dicted melting temperature and hence contradict the
KTHNY predictions. However, better calculations, us-
ing the HN recursion relations, should be performed for
a more meaningful comparison.

The density of defects present near melting in the
helium-on-graphite system is similar to that for the 2D
XY model (0.3%:; see Tobochnik and Chester, 1979) and
considerably smaller than that generally observed in
simulations of 2D melting for stiff-core potentials (ap-
proximately 2%:; see Tobochnik and Chester, 1982). The
width of the helium specific-heat peak is, however, con-
siderably narrower than that observed for the 2D XY
model. Dash and Ecke conclude that the shape of their
specific-heat peak is consistent with either a KTHNY
transition or a substrate-heterogeneity-broadened first-
order transition.
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Hurlbut and Dash (1984), however, argued that their
measurements of the temperature dependence of the 2D
pressure in “He monolayers show that the melting transi-
tion is first order. Near melting, the shape of the temper-
ature derivative of the pressure as a function of tempera-
ture should be the same as the shape of the heat capacity.
We therefore discuss (as they did) their results in terms of
heat capacity.

The experimental data of Hurlbut and Dash (1984)
could be explained equally well by a broadened first-order
model or by the smooth behavior predicted by KTHNY.
Hurlbut and Dash concluded that the transition was first
order on the basis of the narrowness of the peak width as
compared to widths obtained in the XY model (To-
bochnik and Chester, 1979) and dislocation gas calcula-
tions (Saito, 1982a, 1982b). Strandburg et al. (1985; see
also Hurlbut and Dash, 1985) pointed out, however, that
the specific-heat peak width is nonuniversal and that,
both experimental (xenon on graphite; see Colella and
Suter, 1986) and model (Laplacian roughening model; see
Strandburg et al., 1983) systems exist in which the peak
width is extremely narrow and yet the transition is con-
tinuous. Indeed, the continuous Laplacian roughening
transition at core energies comparable to those obtained
for helium on graphite shows a specific-heat peak width
remarkly close to that observed by Hurlbut and Dash.

An interesting observation of Ecke and Dash (1983) is
that at certain coverages a second small specific-heat
peak is seen at temperatures about 7% higher than the
melting peak. Ecke and Dash speculate that this peak is
due to a substrate-induced rotational transition. It is in-
teresting to compare this observation with the observa-
tion of two peaks in argon on graphite. In argon the rela-
tive sizes of the two peaks are reversed, with the melting
peak being considerably smaller than the broad second
peak.

c. Ethylene on graphite

Recent heat-capacity experiments of Kim et al. (1986)
show evidence for continuous melting of ethylene on

graphite at all coverages. Zhang et al. (1986) extended .

this work to higher coverages and found that the melting
of the bilayer solid was also continuous. This continuous
melting is characterized not by divergences but by broad
rounded anomalies (Kim et al., 1986). In this case the
anomalies are about 5% wide in temperature. The phase
diagram of ethylene on graphite according to these mea-
surements is shown in Fig. 23.

The solid from which the melting takes place is
thought to have a structure such that the ethylene mole-
cules are lying with their long axis parallel to the sub-
strate. The orientations of these axes are, however, disor-
dered at these temperatures. The effect of this additional
molecular structure on the melting transition and, in par-
ticular, on the bond-orientational order is not known, but
it is unlikely to be substantial since the molecular axis
directions are random.
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The defect activation energy was also determined (as
for helium on graphite) in the monolayer and submono-
layer regime (Kim et al., 1986). If these defects are inter-
preted to be dislocation pairs, then the core energies, in
units of the transition temperature, were on the order of
20. For such high core energies the renormalization of
the coupling constant should be very small. The mea-
sured core energy may therefore be compared to the “un-
renormalized” values used in defect simulation studies.
The simulations indicate that such high core energies
would certainly put the system in the continuous regime
(Saito, 1982a, 1982b; Strandburg et al., 1983; Strand-
burg, 1986). However, it is not known whether the mea-
sured defects actually are dislocation pairs.

d. CF,on graphite

Recently very intriguing results have been obtained by
Zhang et al. (1986) for the melting of CF, on graphite.
An experimental phase diagram for CF, is shown in Fig.
24. This system has a very complicated phase diagram,
which has been the subject of considerable study (Kjaer
et al., 1982; Nagler et al., 1985). We concentrate here
on results for the melting of the hexagonal incommensu-
rate solid (HI in the figure). Synchrotron x-ray measure-
ments have been interpreted in terms of a continuous
melting of the HI phase (Kjaer et al., 1982).

At high temperatures, where the phase boundary is
perpendicular to the temperature axis, the specific-heat
measurements show a small sharp peak and a broad peak

about 5% above it in temperature. This heat-capacity

signature is remarkably like that of argon on graphite at
submonolayer coverages. Bak and Bohr (1983) have sug-
gested a theory for the transitions of CF,, which includes
the effects of domain walls and of dislocations. They sug-
gest that the melting of the HI phase is of the KTHNY
type and that the phase into which the HI solid melts is a
phase with Ising symmetry. A further Ising-type transi-
tion is required to drive the system into the disordered
fluid phase. It seems plausible that the two specific-heat
peaks observed are the signatures of these two transi-
tions.

There has been some controversy as to the
identification of the phase marked I(s) in the figure. It
has been generally believed to be a “‘striped” phase with
uniaxial ordering of domain walls. Some experimental
results have indicated, however, that this phase may be a
fluid (Nagler et al., 1985). Zhang et al. (1986) have
identified a new phase (labeled IC in the diagram). They
do not offer a conjecture as to the structure of this phase.

We offer our own guess here. Bohr and Bak have per-
formed calculations that predict the intervention of a
phase with 2X 1 symmetry between the 2 X2 commensu-
rate and striped phases. The situation is similar to that
of Kr on graphite in which the weakly incommensurate
solid is unstable to the unbinding of dislocations to form
a reentrant domain wall liquid. In the case of CF,, how-
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ever, the domain-wall liquid is anisotropic, remaining or-
dered in one direction. Perhaps the phase labeled I (S) is
the predicted anisotropic fluid phase. In that case IC
may well be the striped phase.

It is not at all clear as yet how all these phases connect
up in the phase diagram. Vapor-pressure isotherm mea-
surements would be valuable in order to investigate the
region in which the phase boundaries are parallel to the
temperature axis (where specific-heat measurements are
insensitive to details of the transition).

As the above examples demonstrate, the situation in
the melting of physisorbed overlayers is quite intriguing
and far from well understood. Further theoretical and
simulational work in light of these recent experimental
advances is certainly called for.

E. Charged submicron-sized spheres

Recent experiments (Murray and Van Winkle, 1987)
have probed the melting transition of submicron-sized
charged spheres suspended in water and confined be-
tween glass plates. These spheres interact primarily with
a screened Coulomb potential. Since the spheres are re-
pelled by the plates, squeezing the plates closer together
lowers the sphere density. The experiments were per-
formed in a glass wedge. Photographs were taken: at
various points along the wedge in order to obtain data for
a variety of densities. Each photograph contained about
2000 spheres.

The photographs were analyzed in terms of correlation
functions and defect structure. The results indicated the
presence of two separate transitions characterized by the
sudden increase of the orientational and translational
correlation lengths, respectively. These transitions were
separated by a region approximately 5% wide in density,
which appears to be a hexatic phase.

The defect structure in this system was probed using
the Voronoi polygon construction (see Sec. V.C.3). As
has been the case in simulation studies as well, the pic-
ture obtained by such an analysis is complex, and com-
parison with the KTHNY picture of defect pairs is not
straightforward. Section V.C.3 contains a discussion of
some of the difficulties involved in such comparisons.

Because a hexatic phase is apparently observed in this
system, it should be able to provide insight into the ques-
tion of what a hexatic phase “looks like.” The KTHNY
theory describes behavior at large length scales and there
has not been a clear picture of how a hexatic phase
should appear on an atomic scale. The lack of such a
picture has hindered the resolution of the issue of wheth-
er the intermediate region observed in some simulations
is a hexatic phase or a coexistence region (see Sec.
V.B.2.a). On the whole, the charged sphere system is
very promising for the investigation of the two-
dimensional melting problem in real time and space in an
experimental system.
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V. COMPUTER SIMULATIONS OF ATOMIC SYSTEMS

A. Introduction

Ever since the discovery by Alder and Wainwright
(1962) of a liquid-solid phase transition in the hard-disk
system, computer simulations have been used to study
the melting of two-dimensional atomic systems having
many different potentials. In this section we review these
simulations and suggest some useful avenues for further
research. We begin with a general introduction to the
simulation methods. The advantages and disadvantages
of various choices of simulation procedure for the study
of the melting transition are discussed and some cautions
regarding interpretation are advanced. Included in this
introduction are comments on finite size and time effects
and on the difficulty of distinguishing a hexatic phase
from a two-phase coexistence region.

We next discuss the results of specific simulations. We
expect that the melting behavior may depend on the in-
teraction potential. For example, the defect core energy
may vary as the potential is changed. Section V.C in-
cludes a discussion of results for systems interacting with
relatively hard core potentials. These systems include
hard disks, Lennard-Jones potential, 1/7 12 potential, and
the Gaussian core model. In Sec. V.D we discuss systems
with intermediate strength potentials—1/#% 1/¢°, and
1/73. Section V.E contains a description of simulations
of the soft 1/r and 2D Coulomb potential systems.
Weeks (1981) has shown that, for potentials of the form
1/r" in 2D, there can be no volume change upon melting
for n <2. This finding indicates that there may be some-
thing special about the melting of these systems. In par-
ticular, they might be expected to display weaker melting
transitions. Simulations of particles on a substrate are in-
cluded in Sec. V.F and compared with experiments on
adsorbed gases. Finally, we offer general conclusions re-
garding the simulation results and suggest future direc-
tions for further simulation study.

B. General considerations

1. Methods

Two methods of simulation are used: the Monte Carlo
and molecular dynamics methods. In both methods re-
sults for quantities of interest are obtained as averages
over configurations generated by the repeated application
of a simple algorithm which governs the motions of the
particles.

a. Molecular dynamics

The molecular dynamics method (Rahman, 1965; Ver-
let, 1967; Kushik and Berne, 1977; Andersen, 1980) simu-
lates the dynamics of Newtonian motion while the Monte
Carlo method simulates the configuration sums of statis-
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tical mechanics. The particle motions in a molecular dy-
riamics simulation are determined by numerically in-
tegrating the equations of motion. The time increments
in the integration are called time steps and involve mov-
ing each particle a small distance. The choice of the
length of these time steps must be made so that they are
on the order of real microscopic time scales of the sys-
tem. Molecular dynamics has the advantage of allowing
investigations of realistic dynamics.

The molecular dynamics (MD) method operates most
naturally in the microcanonical (constant energy) ensem-
ble. Extensions of this method to other ensembles have
been introduced in recent years (Andersen, 1980). For
example, a canonical ensemble may be simulated through
coupling to a heat bath. One method of implementing
such a coupling is to occasionally randomize the velocity
of a given particle according to a Boltzmann distribution.
A constant pressure ensemble may be implemented by
coupling the system to a hydrostatic “piston.”” The mass
of the piston is arbitrary and must be chosen so as to pro-
duce volume fluctuations over a physically reasonable
time scale. Questions regarding the method of enforcing
a given ensemble are discussed below as they arise for
specific simulations.

b. Monte Carlo

The Monte Carlo method (Binder, 1979) relies, as its
name implies, upon moves chosen from a random distri-
bution. These moves are accepted or rejected according
to a comparison of the appropriate statistical probability
with a random number. For example, in the canonical
ensemble exp(—B6v) (where &v is the change in energy
due to the proposed move) is compared to a random
number between O and 1. If it is greater than the random
number the move is accepted. In theory, the Monte Car-
lo method offers considerably more flexibility in im-
plementation than the molecular dynamics method.

Straightforward implementation of various ensembles is.

possible simply by modifying the types of moves used and
using the appropriate statistical weight. For example, a
constant pressure ensemble may be implemented by using
changes in the volume of the system as attempted moves
and using the appropriate isobaric statistical weight to
determine whether the changes are accepted or rejected.

There is considerable freedom in choosing the atomic
moves as well. Any combination of moves may be used
as long as the transition probabilities satisfy detailed bal-
ance. The usual method is to move one atom at a time to
some position chosen randomly from a circle of arbitrary
size around the present position. The size of this circle is
arbitrary and is usually chosen to give a reasonable prob-
ability of accepted moves (around 30-50 %). In the con-
stant pressure simulation, there is also a choice to be
made in the size of the attempted volume changes and
the frequency of attempting volume changes. There are
no clear guidelines as to how to make these choices and
they are usually made heuristically.
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While many choices of Monte Carlo (MC) procedure
will give the correct results in the limit of infinite simula-
tion time, there can be considerable differences in equili-
bration rates for various procedures. For example, an
XY spin system studied by Swendsen (1982) undergoes
two transitions. A standard MC procedure, in which one
spin at a time was flipped, implied one first-order transi-
tion with a large hysteresis loop. Only when a MC pro-
cedure involving the flipping of whole rows of spins at a
time was used were the two transitions observed. These
results suggest the importance of investigations into vari-
ations on the ‘““one particle at a time” traditional MC
method in order to probe modes that are of importance
for phase transitions.

Because of the flexibility in choosing the Monte Carlo
procedure, the Monte Carlo method provides in principle
a better chance for determining phase transition behavior
than molecular dynamics, since a clever choice of Monte
Carlo move may considerably shorten equilibration
times. The loss of dynamic information is not unimpor-
tant, however. In any event, since the simulations de-
scribed here have not taken advantage of this flexibility,
there is probably no reason to prefer the molecular dy-
namics or Monte Carlo results and we will treat them as
equivalent.

¢. Monte Carlo renormalization group

The Monte Carlo renormalization-group, (MCRG)
method (Swendsen, 1982) is an extension of the Monte
Carlo method to take advantage of renormalization-
group ideas. It has not yet been applied to the problem
of two-dimensional melting. It has, however, been ex-
tremely successful in investigations of phase transitions
in spin systems. The method allows the calculation of
long-distance properties of the system, such as critical ex-
ponents, by computations of local correlation functions.
Applications of this method to the defect systems dis-
cussed in Sec. IIT (which reside on a lattice) should be
straightforward. The question of how to perform renor-
malization transformations for atomic systems is still
open. Tobochnik (1982) employed the MCRG method
for the g-state clock model, whose phase diagram for
q =5,6 is rather similar to the KTHNY predicted melt-
ing phase diagram. Using MCRG he found three
phases—an ordered phase, a disordered phase, and an in-
termediate critical phase. He pointed out that standard
MC alone gave a confusing picture of the transition
structure, showing hysteresis and large fluctuations.

2. implications of the choice of ensemble

The choice of ensemble is also, in principle, arbitrary.
In finite simulations, however, these choices can have im-
portant effects on the results. Most simulations of two-
dimensional melting have been performed in the constant
temperature, density, and number-of-particles ensemble.



190 Katherine J. Strandburg: Two-dimensional melting

A few simulations have been performed in a constant
temperature, pressure, and number-of-particles ensemble.

a. Constant density ensemble

Constant density simulations have the disadvantage
that local density fluctuations (and hence local defects
such as vacancies) are suppressed in finite systems. These
density fluctuations may be very important for the two-
dimensional melting transition.

Two-phase coexistence or hexatic phase? The existence
of a two-phase coexistence region at a first-order transi-
tion in the constant density ensemble provides both ad-
vantages and disadvantages. If a coexistence region can
be identified, it provides good evidence of a first-order
transition. However, distinguishing a coexistence region
from a hexatic phase has proved a somewhat difficult
task.

Particle trajectory maps are often invoked to demon-
strate coexistence (Abraham, 1980, 1981; Koch and
Abraham, 1983). True phase separation is not observed
in the simulations. Rather (see Fig. 26) the existence of
solidlike and liquidlike patches is interpreted as evidence
for coexistence. Perhaps the simulation time scales are
too short to allow complete phase separation. Periodic
boundary conditions also mitigate against large-scale
rearrangements such as phase separation. It may be,
however, that the absence of phase separation is an indi-
cation of a vanishing interfacial energy, and that the
patches are the critical fluctuation characteristic of the
hexatic phase. Since no one knows for certain how a hex-
atic phase would appear in such maps, it is rather
difficult to draw convincing conclusions from the obser-
vation of these patches.

Broughton, Gilmer, and Weeks (1982) simulated the
stability of a phase-separated system prepared at the ap-
parent coexistence temperature in a 1/7'? system. The
system was stable over long periods of time. However,
the solid melted and reformed during the simulation, in-
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FIG. 26. Particle trajectory plots showing apparent two-phase
equilibrium in a Lennard-Jones potential system (Abraham,
1981).
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dicating that the boundary between solid and liquid has a
low interfacial energy. Melting and reformation does not
occur in the simulation of three-dimensional coexistence.
Broughton et al. thus conclude that their evidence favors
a first-order interpretation, but they cannot rule out the
possibility that the observed melting and reforming is an
indication of critical fluctuations.

The long-distance behavior of the bond-angular corre-
lation function will in principle distinguish between a
hexatic phase and a region of two-phase coexistence.
However, in a finite system, especially when the coex-
istence region consists of patches of fluid and solid rather
than a true phase separation, a coexistence region may be
characterized by a slow decay of bond-orientational or-
der very similar to that characterizing a hexatic phase
(Tobochnik and Chester, 1982). The long-distance be-
havior is very difficult to extract due to periodic bound-
ary conditions and also because the bond-angular corre-
lation function is an oscillating function of distance.

Therefore Strandburg, Zollweg, and Chester (1984)
have investigated the local bond-orientational order on
various length scales for Lennard-Jones and hard-disk
systems and shown good agreement with a coexistence
model in which the coexisting phases consist of patches
of approximately 50 particles. The agreement with the
coexistence model was quantitative at short length scales
with computations using the expected fractions of liquid
and solid. Udink and van der Elsken (1987) have criti-
cized the inference of coexistence from these results,
demonstrating that the solid fractions calculated from
various moments of the bond-orientational order parame-
ter are not in agreement except for very small systems.
They conclude that this disagreement rules out a coex-
istence interpretation. In their discussion, however, they
neglect the fact that in a system of coexisting patches (as
opposed to a phase-separated system) the size depen-
dences of the various moments of the order parameter
differ, leading to differences in the apparent solid frac-
tion.

Udink and van der Elsken are certainly correct, how-
ever, in noting that the existence of inhomogeneities on a
local scale does not imply global inhomogeneity. The ap-
pearance of coexisting patches of solid and liquid rather
than true phase separation must be an artifact of comput-
er simulation due to some combination of low interfacial
energy and the short times probed in simulations.

Alternatively, the solidlike and liquidlike patches may
be the signatures of critical fluctuations expected in a
hexatic phase. Strandburg, Zollweg, and Chester (1984)
used the low-temperature phase of the two-dimensional
XY model (which has spin order analogous to the bond-
angle order in a hexatic phase) to model the expected
hexatic behavior. This phase was homogeneous down to
the lowest length scales. However, it is becoming clear
that the local defect structure observed near melting even
in those systems for which other evidence points to
KTHNY melting (Murray and Van Winkle, 1987; Udink
and van der Elsken, 1987) is considerably more complex
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than that in the XY model, rendering this comparison
less than satisfactory. Indeed, Udink and van der Elsken
(1987) have recently argued that this patchy intermediate
region exhibits the algebraic bond-orientational order
characteristic of a hexatic phase (see Sec. V.C).

Even if it is certain that a coexistence region is ob-
served, a study of size dependence is needed to show that
this coexistence persists in the thermodynamic limit.
The probability of observing the “wrong” phase at a
given temperature is proportional to

exp(—BN§f) , 27)

where N is the size of the system and 8f is the free-

energy difference between the two phases.

In a finite system there will always be a region near the
transition where both phases are observed. If N and §f
are both small, this region may be fairly wide. An exam-
ple of this effect is given by Landau and Swendsen (1981)
in a study of tricritical behavior in spin systems. A histo-
gram of values of thermodynamic quantities showed a
double-peak structure at the transition, an indication of
coexistence. However, MCRG calculations showed that
the transition was, in fact, continuous. A slight tendency
of the peaks to merge with increasing size was evident in
the standard Monte Carlo simulation, once again indicat-
ing the importance of the study of size effects.

To add to the confusion still further, there is also the
possibility of first-order melting into a hexatic phase,
which would produce, in a constant density simulation, a
region of solid/hexatic coexistence and a hexatic region.
An exercise that might prove very useful would be to at-
tempt to create a hexatic by application of a sixfold
bond-angle field and then to remove the field to test the
stability of the phase.

b. Constant pressure ensemble

Constant pressure simulations should display no region
of coexistence to muddy the question of a hexatic phase.
The fact that no hexatic phase has been observed in con-
stant pressure simulations is an argument in favor of in-
terpretation of the “intermediate region” observed at
constant density as a coexistence region. Even this argu-
ment is not conclusive, however, since the width of a hex-
atic phase could be quite different depending on what
path one uses to traverse it. Abraham (1981) has per-
formed a constant pressure simulation for a Lennard-
Jones system beginning with a configuration obtained
from a constant density simulation in the intermediate
region. He found that the system quickly adopted behav-
ior characteristic of the appropriate single phase, good
evidence in this case of two-phase coexistence.

Determining the order of a phase transition in a con-
stant pressure simulation is not easy either. Distinguish-
ing a discontinuous jump at the transition from a steep
but continuous rise is very difficult, and questions of
equilibration near the transition must always be raised.
While the overall density may fluctuate in a constant
pressure simulation, local density fluctuations are still
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rather difficult to excite.

Technical controversies concerning the method of im-
plementing a constant pressure ensemble have arisen.
The questions involve the frequency with which area
changes are attempted and the method by which the new
particle positions inside the larger volume are obtained.
Toxvaerd (1984) has argued that in a simulation by Abra-
ham and Koch (1984), using a combination of Monte
Carlo tests for area changes and molecular dynamics for
particle motions, the times between attempts to change
the area were too short to allow for the transient effects
of the induced pressure wave to die away and equilibrium
to be reached. Pressure waves are only a problem for
molecular dynamics simulations.

Another point made by Toxvaerd (1984) has implica-
tions for both Monte Carlo and molecular dynamics
(MD). He criticizes Abraham and Koch for using an
overall length rescaling as the means of changing the
volume. He argues that the Monte Carlo acceptance or
rejection probability should then reflect changes in the
surface free energy between coexisting phases and the de-
fect density. Toxvaerd claims that the neglect of these
effects will lead to a bias in the density fluctuations. Rull
et al. (1985) concur in Toxvaerd’s analysis, adding that
constant-temperature MD calculations are also question-
able because of the velocity rescaling involved.

Broughton, Gilmer, and Weeks (1981) have performed
a molecular. dynamics simulation in which constant pres-
sure was enforced by a directed rescaling of all lengths to
ensure that the virial pressure would agree with the im-
posed pressure, rather than by a Monte Carlo test. One
may still worry that the method of imposing this pressure
may bias the configurations explored. Abraham and
Koch (1984) and Broughton, Gilmer, and Weeks have
performed checks of their constant pressure results
against constant density results and found no cause for
alarm. However, it is certainly reasonable to keep
Toxvaerd’s comments in mind for future implementa-
tions of the constant pressure ensemble.

c. Constant chemical potential ensemble

The constant chemical potential ensemble is rather at-
tractive, in principle, for the study of melting, since it al-
lows easily for the important local density fluctuations.
Indeed, Fisher and Huse (1982) have pointed out that use
of a constant N ensemble will tend to make a transition
look “sharper” in a finite system than it is in the thermo-
dynamic limit. A study of the hard hexagon lattice gas
for a small system showed regions of apparent coex-
istence or hysteresis even when the transition was known
to be continuous. -

However, implementation of the constant chemical po-
tential ensemble for dense systems has not been success-
ful as yet. The difficulties arise in attempts to insert a
particle. If the attempt is made at a random position in
the system, the chance of acceptance is extremely low.
Some work has been done on methods to choose the in-
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sertion position cleverly, but there is a clear need for
more research into this issue. The simulation of ad-
sorbed systems (allowing motion in the third dimension)
may be closely related to simulations in which the num-
ber of particles is allowed to fluctuate. Some such simu-
lations have been performed (see Sec. V.E). It is interest-
ing to note that these simulations, even on a flat sub-
strate, reproduce the experimental results for the con-
tinuous melting of xenon on graphite extremely well, al-
though the order of the transition remains a matter of
dispute.

3. Choice of boundary conditions

In addition to the choice of ensemble, the choice of
boundary conditions is also open. With very few excep-
tions the simulation studies of two-dimensional melting
have been performed with periodic boundary conditions.
Periodic boundary conditions have the advantage of
eliminating edge effects, which can completely dominate
the behavior of very small systems. However, periodic
boundary conditions have disadvantages, as well. The
most noticeable disadvantage of periodic boundary con-
ditions is that they tend to stabilize the solid. This stabil-
ization has been argued to make the system mimic the
KTHNY predictions by allowing the solid to superheat
until the stability limit represented by the attaining of the
value 167 for the elastic constant K is reached (Abraham,
1981).

Another very important effect of periodic boundary
conditions (at least in systems with a constant number of
particles) is the tendency to inhibit both large-scale parti-
cle rearrangements and the formation of point defects
such as vacancies. As mentioned in Sec. II.A simulations
designed to test this effect by adjusting the system size so
as not to accommodate a triangular lattice (and thus in-
serting a vacancy), found significant differences between
these results and those for a solid which fits exactly into
the system (Stillinger and Weber, 1981; Broughton et al.,
1982).

A simulation of the Inr potential system on a circle
with free boundary conditions has been performed by
Choquard and Clerouin (1983). The system size used in
this simulation was very small, however. Further investi-
gations of the effects of boundary conditions would cer-
tainly be of interest.

4. Finite-size effects

Surprisingly, very little study of size dependence has
been done for the melting of 2D atomic systems. As has
been discussed above in Sec. II.A, what little study has
been done has indicated the existence of strong finite-size
effects. In particular, if the defect cores are extended, as
they seem to be in the Lennard-Jones system (Joos and
Duesbery, 1985) where they appear to be about 30 lattice
spacings in extent, finite-size effects may be absolutely
dominant at sizes below the size of the defect cores. Tox-
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vaerd (1981, 1983) observed significant size dependence
of the defect density and elastic constants in the solid
near melting.

Udink and van der Elsken (1987) have recently used
finite-size scaling to study the positional and bond-
orientational order in a Lennard-Jones system. Their re-
sults (see Sec. V.C) provide evidence, contrary to the con-
clusions of most single-size simulations of this system, for
the KTHNY melting sequence.

An approximate calculation by Novaco and Shea
(1982) for a 256-particle 1/r° potential system finds that
the density fluctuations corresponding to longer wave-
lengths than available in their finite-size system were
about twice as large as the density difference between the
lowest density equilibrium solid and the highest density
equilibrium liquid in their simulation. This calculation
also highlights the importance of studies of size depen-
dence. While some very large systems have been simulat-
ed (Bakker et al., 1984), the systematic effects of changes
in size were not addressed in these simulations.

The most obvious effect of finite size is to blur the dis-
tinction between first-order and continuous transitions.
First-order transitions are no longer sharp. The long-
wavelength modes that are crucial for continuous transi-
tions are truncated. Even continuous transitions will ex-
hibit coexistence over some region [see Eq. (27)], and will
certainly not exhibit any true divergences. Since in a
finite system the specific heat will always be rounded, a
study of size dependence must be done in order to distin-
guish, for example, between the ‘‘sharp” specific-heat
peak expected at a first-order transition and the “round-
ed” peak expected at a KTHNY transition.

Another important finite-size effect is the observation
of a van der Waals—type loop in a graph of pressure
versus density when a first-order transition is traversed.
This loop has been explained by Mayer and Wood (1965).
It may replace a flat coexistence region in a small enough
system. The interface energy required to form coexisting
phases is proportional to the length of the interface. Ata

first-order transition in an infinite system, this interface
energy will always be negligible when compared to the
free energy gained by having the coexistence. In a finite
system, however, the free energy may be lowered over a
certain region by maintaining the pure phase, since the
interface energy may be significant. This effect may be
especially pronounced in a simulation with period bound-
ary conditions and short-time scales, where complete
phase separation, which minimizes the interface length,
does not have time to occur. It will be useful for the
reader to keep the possible effects of finite systems size in
mind when reading the discussions of individual simula-
tions below.

5. Effects of finite simulation time

A crucial question in computer simulations is whether
the system reaches equilibrium. This question is especial-
ly important near the melting transition where large pre-
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transitional fluctuations on the fluid side and fluctuations
in the intermediate region have been observed. The at-
tainment of equilibrium is usually determined by watch-
ing the value of various quantities as a function of time
(here meaning either MD time steps or Monte Carlo at-
tempted moves) and determining when a plateau has been
reached. Metastability is a serious concern in simula-
tions, as are the critical slowing-down effects known to
exist near a continuous phase transition. The times in-
volved in computer simulations are very short compared
to experimental time scales, and defect equilibration
times are expected to be very long. An encouraging note
is the attainment by Zollweg (1984) of a nearly defect-free
solid by compressing a hard-disk liquid through the
freezing transition.

Because simulation time scales are so short, hysteresis
is not a useful indicator of a first-order transition. Hys-
teresis may be due to heating or cooling too quickly
through the transition. For example, a straightforward
Monte Carlo simulation by Tobochnik (1982) of the clock
spin models found hysteresis where his more reliable
MCRG studies found an intermediate critical phase rath-
er analogous to the predicted hexatic phase.

Very little detailed investigation of finite-time effects
has been done. Novaco and Shea (1982) have studied
these effects in detail for the 1/r° potential system. They
studied a system of 256 particles using a constant energy
MD method. In order to obtain a more quantitative un-
derstanding of the approach to equilibrium, they comput-
ed the time dependence of autocorrelation functions of
various quantities. In the transition region they observed
relaxation times longer than their longest runs (approxi-
mately 100000 time steps). In addition to the increase of
relaxation times near the transition, an increase in the
amplitude of fluctuations in quantities such as the tem-
perature was seen. Novaco and Shea interpreted these
effects as evidence for ‘“‘critical slowing down” and thus
for a continuous transition.

Koch and Abraham (1983) argue that these effects are
an artifact of the constant density simulation and that
they indicate fluctuations of the liquid-solid ratio in a
coexistence region. Indeed constant préssufe simulations
by Koch and Abraham of a Lennard-Jones system show
much shorter relaxation times than their constant density
simulations of the same system. Since the Koch and
Abraham and Novaco and Shea (1982) results are ob-
served for different systems, there is no reason to assume
that they are in conflict. In any case, the point made by
Novaco-and Shea is that careful investigation of correla-
tion times is crucial in the study of possibly continuous
transitions.

In light of the above discussion of problems with the
use of computer simulation for the study of melting the
reader may be wondering whether the technique has any
use at all in this area. There remain several advantages
of computer simulations for the study of 2D melting.
Simulations allow a direct “tuning” of particle interac-
tions so as to investigate the dependence of the melting
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behavior on the potential. Simulations also allow studies
of strictly two-dimensional systems, as well as of the
effects of allowing motion in the third dimension. The
effects of substrate ordering fields may also be studied
and distinguished from the effects of motion in the third
dimension. Finally, simulations allow direct access to the
microscopic configurations, eliminating much of the
guesswork required in interpretation of most experimen-
tal results. For example, bond-orientational correlation
functions are directly measurable in simulations. A mi-
croscopic view of crystal defects and particle motions
may also be obtained.

C. Simulation studies of systems
with hard-core potentials

In 1962 Alder and Wainwright reported a simulation
of the melting of a system of 870 hard disks using the
MD technique. Using runs extending to 20000 collisions
per particle they determined the pressure as a function of
density at constant temperature. In a finite system un-
dergoing a first-order transition one expects to see a
“loop” in the density versus pressure curve, rather than
the jump in density one would expect for an infinite sys-
tem (Mayer and Wood, 1965). Alder and Wainwright
(1962) concluded from their observation of such a loop
that the melting transition was a first-order transition.
They also studied particle trajectories in the transition re-
gion. These displayed solidlike and liquidlike regions and
were thus interpreted as evidence of two-phase coex-
istence. Later- simulations confirmed this picture of a
conventional first-order transition in two dimensions. In
response to suggestions that dislocations might be impor-
tant for melting in two- and three-dimensional systems,
Cotterill and Pederson (1972) noted that dislocations
were present near melting in a “by eye” study of particle
maps.

Of course, at the time of these simulations, no detailed

- theory of dislocation-mediated melting existed and, in

particular, no suggestion that the transition might be
continuous in two dimensions had been made. Following
the announcement of the KTHNY theory of two-

, dimensional melting, a series of detailed simulations of

two-dimensional melting have been and continue to be
reported. The first of these reported the observation of
three regions, which were interpreted as evidence for the
KTHNY theory (Frenkel and McTague, 1979). Howev-
er, Toxvaerd (1980) noted that the density which Frenkel
and McTague simulated was in the solid-vapor coex-
istence region at low temperatures. The three regions are
explained as liquid, liquid-solid coexistence, and an
overexpanded solid characterized by negative pressures
and induced by the periodic boundary conditions. The
sixfold anisotropy of the intermediate region may be ex-
plained by the anisotropy of the coexisting solid phase,
which maintains its alignment with the periodic box in
this finite system.

Many of the simulations reported since have also been
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performed at densities where the ground state is a coex-
isting solid and vapor. The minimum density of the
zero-temperature solid is p*=0.9165 for Lennard-Jones
systems. However, the triple-point density is estimated
to be p* approximately equal to 0.81-0.82, so that by
the time melting is reached a single-phase solid is the
equilibrium phase. The fact that the simulations do not
reproduce the solid-vapor coexistence region at very low
temperatures is probably not significant for the interpre-
tation of the melting of systems with densities reasonably
greater than 0.82.

Since the time of the Frenkel and McTague (1979)
study most workers have reported the observation of
first-order transitions in. the hard-core systems. The
first-order transition observed, however, is acknowledged
by most to be weak. There is evidence of low interface
free energies in the coexistence region (Toxvaerd, 1980;
Broughton et al., 1982). The computed differences in
free energy between solid and liquid at the transition are
small (Toxvaerd, 1978; Barker et al., 1981; Phillips
et al., 1981; Broughton et al., 1982). Significant precur-
sors of melting and freezing are observed. In particular,
the fluid before freezing is surprisingly ordered. The first
peak of the structure factor of a 2D 1/r!% potential sys-
tem has a height of about 5.5 compared to a height of
2.85 for a 3D system (Broughton et al., 1982). Consider-
able bond-orientational ordering has also been observed
in the hard-core liquids near freezing (Strandburg et al.,
1984).

Studies of size dependence of various quantities have
cast doubt on the conclusion of first-order melting (Tox-
vaerd, 1981, 1983; Udink and van der Elsken, 1987). In
particular, finite-size scaling studies of the Lennard-Jones
system lend support to the KTHNY melting theory
(Udink and van der Elsken, 1987).

Figure 27 sketches the phase diagram obtained from
simulations for the Lennard-Jones potential system
(Abraham, 1983, 1984). The exact positions of the phase
boundaries are still a subject of some dispute. The order
of the melting transition (depicted here as first order) will
be discussed below. The Lennard-Jones potential is

12 6
g
r

The phase diagram is plotted in units of p*=po?,
T*=kgT/e. At sufficiently high densities one expects
the Lennard-Jones system to show similar transition be-
havior to the 1/r? system.

The transition from uniform solid to solid-vapor coex-
istence in the Lennard-Jones system occurs at a density
in good agreement with the zero-temperature calcula-
tions of Joos and Duesbery (1985). An important point
to note is that the melting transition line of the Lennard-
Jones system is more or less parallel to the temperature
axis. Thus, isotherm measurements will provide a much
better test than isochores in determining the order of the
transition. The basic outlines of the Lennard-Jones phase
diagram are in rather good agreement with the xenon-
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FIG. 27. Phase diagram of the Lennard-Jones potential system
as obtained from simulations by Abraham (1981). The approxi-
mate location of the experimental xenon-on-graphite tricritical
point is also indicated (a).

on-graphite phase diagram, thus illustrating the relative-
ly minor influence of substrate effects in the xenon sys-
tem. The approximate position of the xenon tricritical
point is noted on the Lennard-Jones phase diagram. In
the next few sections we describe the simulations of the
Lennard-Jones system as well as simulations . for the
hard-disk and Gaussian core model systems. We review
the evidence concerning the order of the melting transi-
tion.

1. Thermodynamic quantities

Barker, Henderson, and Abraham (1981), Phillips,
Bruch, and Murphy (1981), Toxvaerd (1978), Broughton,
Gilmer, and Weeks (1982), and Udink and Frenkel (1987)
have performed free-energy computations for hard-core
systems. These methods generally entail an analytic or
perturbation calculation of a reference free energy for
both solid and liquid branches followed by integration of
simulation data into the phase transition region. The
double tangent method is then used to determine the na-
ture and position of the transition from the crossing of
the solid and fluid free-energy curves. These methods are
biased in favor of first-order transitions since they assume
that the solid and fluid equations of state remain smooth
near the transition. These calculations lead to the con-
clusion that the transition is weakly first order. The
free-energy differences at melting are small. Because the
transition is so weakly first order, the determination of
the order of the transition is not unambiguous. The
finite-size and simulation time effects mentioned earlier
deserve more careful consideration in interpreting free-
energy calculations.

Since free-energy calculations are computation inten-
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sive, it is reasonable to try to use raw thermodynamic
data to extract information about the nature of the tran-
sition. Until recently, estimates of the melting tempera-
ture from raw thermodynamic data differed quite
significantly from those obtained using free-energy calcu-
lations. It was suggested that the raw thermodynamic
data reflected the mechanical instability of a superheated
solid (Abraham, 1981). Recent improved free-energy cal-
culations, however, are in good agreement with the melt-
ing temperatures deduced from raw thermodynamic
quantities (Udink and Frenkel, 1987). Disagreement per-
sists, however, over the location of the fluid end of the in-
termediate region, even among those who believe they
observe first-order melting.

Several workers have obtained data for density versus
pressure along an isotherm (Tsien and Valleau, 1974;
Toxvaerd, 1980, 1981; Broughton et al., 1982; Evans,
1982). In most of these simulations, the density and tem-
perature are held fixed and the pressure is measured. The
results of a careful simulation of this nature will show a
van der Waals-type “loop” in the P vs p graph if the tran-
sition is first order (see Fig. 28).

Loops were observed in all of these studies. Again, a
study of the system size dependence of these loops seems
to be called for. A demonstration of the effect of periodic
boundary conditions on these loops was provided by
Broughton et al. (1982), who simulated two systems of
particles interacting with a 1/r!2 potential. In one sys-

tem the number of particles was chosen so that a triangu-

lar lattice would fit exactly into the periodic cell. The
other system included a vacancy. The loop on the solid
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FIG. 28. Pressure as a function of density for the Lennard-
Jones potential system at a temperature 7% =1.0. Results for

sizes N=3600 (—. —.—.) and N=256 (O---O) are shown, and
the Mayer and Wood “loop” is observed (Toxvaerd, 1981).
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side was much larger for the system which fit perfectly
into the cell, showing the stabilizing effect of the periodic
boundary conditions on the solid. The system with a va-
cancy included also showed a loop, which was smaller
and more symmetric and thus possibly representative of
the actual transition behavior.

Data for thermodynamic quantities along an isochore
has also been obtained for these systems by several work-
ers. Such data is considerably less useful, since, as may
be seen from the phase diagram in Fig. 27, the melting
line is essentially parallel to the temperature axis. Thus
the transition will be especially smeared in this direction.
In addition, many of the simulations have been per-
formed very near the triple point density, where solid-
vapor coexistence is also expected over some portion of
the phase diagram, thus confusing matters further.

Also, no “loop” is observed in the constant density
simulations. It is thus very difficult to distinguish a coex-
istence region from a continuous transition. Tobochnik
and Chester (1982), for example, identified two changes
in slope in plots of thermodynamic quantities along an
isochore at densities of 0.856 and 0.888. They suggested
that these might possibly mark the boundaries of a hexat-
ic phase on the basis of measurements of other quantities,
discussed below. Later analysis showed that the inter-
mediate region was well described as a coexistence region
containing patches of liquid and solid (Strandburg et al.,
1984). However, recent finite-size scaling studies lend
support to the hexatic interpretation of this intermediate
region (Udink and van der Elsken, 1987).

The single specific-heat peak for a first-order transition
should be characterized by a flat top as one crosses a
coexistence region. This flat behavior within the coex-
istence region is indeed consistent with the observations
of Tobochnik and Chester (1982) at the two densities
mentioned. At a density of 1.14, the energy versus tem-
perature data (shown in Fig. 29) indicates a strikingly
different specific-heat behavior. The specific heat derived
from this data will display two separated peaks corre-
sponding to the two regions of increased slope near ¢
[=(T-T,)/T, ]1=0.0 and 0.18. Tobochnik and Ches-
ter believed that the transition at this density was first or-
der since the transition was much more abrupt than at
the lower densities and did not accord with the KTHNY
predictions in various respects. They did not show a
specific-heat curve. However, recent experimental evi-
dence from xenon on graphite indicates that the cross-
over to continuous melting occurs as the density is in-
creased, and that the continuous transition is very sharp.
A reinvestigation of the melting of the Lennard-Jones
system at high densities would seem to be in order.

Constant pressure simulations have also been used to
study the melting of hard-core systems. The authors of
these simulations have come to the conclusion that the
transition is first order from the observation of hysteresis,
metastability, and nucleation (Abraham, 1980, 1981;
Broughton et al., 1981). The problems with determining
the order of the transition by observation of hysteresis
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FIG. 29. Energy vs temperature for a Lennard-Jones system at
po*=1.14. The temperature is plotted in units of
t=T-T,/T,, where T,, is the melting temperature (Tobo-
chnik and Chester, 1982).

have been mentioned already. Distinguishing a discon-
tinuous jump from a sharp but continuous rise in density
is also difficult.

Because of the difficulty in distinguishing a first-order
transition from a KTHNY transition using these simple
thermodynamic probes, researchers have turned to other
methods of investigating melting in these systems. In
particular, efforts have been made to check the specific
predictions of the KTHNY theory.

2. Elastic constants

One very simple prediction of the KT melting theory is
that the combination of elastic constants

R 2u+

should show a universal temperature dependence as melt-
ing is approached, and that it should decrease to the
value 167 and then drop to zero at melting. Such a drop
has been observed in a number of simulations (Abraham,
1981; Broughton et al., 1982; Tobochnik and Chester,
1982). Statistical errors in the determination of K are
typically of the order of 10-20 % near melting.

In spite of this frequently good agreement with the
KTHNY prediction for K, most researchers have con-
cluded that the transitions in these systems are first order
on other grounds (primarily the observation of either
hysteresis or coexistence). Perhaps the KTHNY mecha-
nism is barely preempted by a weakly first-order transi-
tion. In this case the value of K obtained near the transi-
tion may be very close to the predicted value of 167. Al-
ternatively, Abraham (1981) proposed that the observa-
tion of melting when K =167 is really the melting of a
superheated solid. He drew this conclusion on the basis
of free-energy calculations that placed the transition at a
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FIG. 30. Shear modulus as a function of logarithm of system
size for a Lennard-Jones system (Toxvaerd, 1983).

lower temperature. More recent free-energy calculations,
however, give melting temperatures very near the tem-
peratures at which K~ 167 was observed (Udink and
Frenkel, 1987).

Tobochnik and Chester (1982) observed differences in
the behavior of K near melting depending on the density
of their Lennard-Jones system. At low densities (near the
triple point) the value of K at melting was approximately
167r. At a higher density the value was much higher
(about 60). They suggested that perhaps the transition
changes from KTHNY-like to first order as density is in-
creased. Ironically this suggestion is exactly the opposite
of the trend observed in experiments on xenon on graph-
ite and of the trend suggested above by analysis of the
Tobochnik and Chester specific heats. Further simula-
tions will be required to solve this puzzle.

One possible clue is provided by Toxvaerd’s observa-
tion of strong size dependence of the shear modulus in a
Lennard-Jones system near melting (Toxvaerd, 1983).
His data (see Fig. 30) show a decrease in shear modulus
as a function of increasing system size. The elastic con-
stant K is strongly influenced by the shear modulus.
Perhaps a study of size dependence of K at the To-
bochnik and Chester higher density would uncover a de-
crease to a value consistent with the KTHNY prediction
as system size is increased.

The effect of a substrate potential on the KTHNY elas-
tic constant prediction may be included by defining
another elastic constant to describe the resistance to
shear imposed by the substrate. Possibly a similar term
should be included to account for the stiffening effect of
the periodic boundary conditions.

3. Defect analysis

Investigations of the microscopic defect structure of
these systems are possible using the Voronoi polygon
method, pioneered for this purpose by McTague et al.
(1980). Voronoi polygons are a generalization of the
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Wigner-Seitz cell to a system not on a lattice. The sys-
tem is divided into contiguous polygonal cells, one for
each particle. Disclinations are manifested as polygons
with numbers of sides other than six (usually five or
seven). Dislocations are made up of pairs of disclina-
tions. In principle, they will show up in a Voronoi
polygon analysis as pairs of five- and seven-sided po-
lygons. Dislocation pairs would then be pairs of these
5-7 disclination pairs. Grain boundaries show up as al-
ternating strings of five- and seven-sided polygons. Pri-
marily, these defects are studied simply by eyeballing
maps of their location.

The KTHNY melting theory describes the solid as a
dilute gas of dislocation pairs that dissociate at the tran-
sition to form a dilute gas of pairs of disclinations (the
hexatic phase). The XY model, which is known to under-
go a KT transition through the unbinding of vortex
pairs, has a population of vortex pairs near the transition
of 0.3% of the number of spins (Tobochnik and Chester,
1979). The melting transition of hard-core systems is
clearly more complicated with a 2% population of dislo-
cation pairs at melting (Tobochnik and Chester, 1982).
Dislocations are also observed to cluster and to form
grain boundary loops (Toxvaerd, 1981; Broughton et al.,
1982; Tobochnik and Chester, 1982).

This clustering has led many researchers to conclude
that the melting of two-dimensional hard-core systems is
first order and is associated with a proliferation of grain
boundaries as proposed by Chui (1982, 1983). There are
several problems with coming to such a conclusion.
Complex defect structures have been observed even in
studies (Murray and Van Winkle, 1987; Udink and van
der Elsken, 1987) where other evidence is strongly in
favor of the KTHNY picture. The Voronoi polygon
analysis deals with the structure in the immediate neigh-
borhood of a particle. The KTHNY theory deals with
the long-distance interactions of defects. If extended de-
fect cores exist in these systems [as the Joos and Dues-
bery (1985, 1986) calculations indicate], then much of
what is observed in Voronoi polygon analysis should be
more properly subsumed in the defect core. Indeed the
short lifetime of some of these defects suggests that this is
the case, as does the observation by Toxvaerd (1981) of
an increase in defect density as the system size is in-
creased.

Another complication in interpreting these Voronoi
polygon maps exists. The logarithmic interaction of dis-
clinations in the hexatic phase is due to screening by
dislocations. These dislocations are “invisible” in the
KTHNY calculation, but they will not be invisible in our
Voronoi maps. Indeed, these dislocations are predicted
to have correlations in the hexatic phase very like the
grain boundary loops observed (Halperin and Nelson,
1978; Fisher et al., 1979).

Correlation functions between defects of various types
have been studied only for the Gaussian core model (Stil-
linger and Weber, 1981; Weber and Stillinger, 1981). Ini-
tially, one might expect that the short-range behavior of
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these correlation functions might be sensitive to the de-
fect unbinding transitions. If, however, the defect cores
are extended, the information obtained from. these corre-
lation functions will be much less direct. Examples of the
defect correlations obtained by Stillinger and Weber are
shown in Fig. 31. No simple pattern of behavior was ob-
served. An asymmetry between the 5-5 and 7-7 correla-
tion functions due to the presence of a significant number
of defect configurations other than simple pairs was ob-
served.

It is thus not clear what is the best way to interpret the
information obtained by Voronoi polygon analysis.
Perhaps some type of MCRG procedure applied to the
defects would be informative. Unfortunately, it is very
difficult to get good statistics on defect quantities, since
the number of defects (even near melting) is such a small
fraction of the number of particles.

4. Nearest-neighbor-bond-orientational order

The most distinctive predictions of the KTHNY
theory concern the behavior of the nearest-neighbor-
bond-orientational order. The two-dimensional solid
shows long-range bond-orientational order and quasi-
long-range positional order, and the fluid is characterized
by short-range exponentially decaying order in both posi-
tion and bond angle. The KTHNY theory predicts alge-
braic decay of bond-angular order accompanied by
short-range positional order in the intermediate hexatic
phase. Attempts to fit the angular correlation function to
a power-law form in the intermediate (hexatic or coex-
istence) region for hard-core systems have usually led to
values of 77 greater than 0.25 (the upper limit for stability
of the hexatic phase), implying either that the behavior
observed in these systems is not really power-law decay
but some combination of fluidlike and solidlike behavior
characteristic of two-phase coexistence (Tobochnik and
Chester, 1982), or that the long-distance limit has not yet
been reached. The angular correlation function is gen-
erally characterized by long-time scale fluctuations and
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model in the (B) coexistence, (C) cold fluid, and (D) warm fluid
regions: (a) function gss; (b) function g,; (Weber and Stillinger,
1981).
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the uncertainties in 1 are quite large. The behavior of
the orientational correlation function g¢(r) in the solid
phase is as expected, showing long-range bond-angular
order. The HN theory predicts that the angular correla-
tion length will diverge as the fluid-hexatic transition is
approached from the fluid side. Almost all simulations of
hard-core systems find the angular correlation length
reaching the size of the system before the first-order tran-
sition occurred (Frenkel and McTague, 1979; Zollweg,
1980, 1984; Broughton et al., 1982; Tobochnik and Ches-
ter, 1982). It is impossible to judge from these results
whether it would have diverged in an infinite system.

Two simulations of very large Lennard-Jones systems
have addressed the bond-orientational correlation func-
tions. In these large systems, one might hope to probe
the asymptotic regime. Bakker er al. (1984) have per-
formed an MD simulation of 10000 particles interacting
via a Lennard-Jones potential at a density of 0.88. Fits of
the bond-angular correlation function to an exponentially
decaying form in the fluid region led to the conclusion
that the orientational correlation length saturated near
T =1.11 at a value of about 20 lattice spacings, before
reaching the size of the system. Bakker et al. concluded
therefore that the transition is first order and that the in-
termediate region bounded by changes in slope of the en-
ergy versus temperature curve (see Fig. 32) corresponds
to a two-phase coexistence region.

The form of the correlation function g4(r) did not
show any appreciable change in behavior when proceed-
ing from the solid into the intermediate region, at
T =0.88. This fact is consistent with the picture of a
two-phase region with a small amount of fluid present.
Between T'=0.99 and T =1.02 a marked change in the
behavior of the bond-orientational correlation functions
is observed. Rather than the rapid saturation to a con-
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FIG. 32. Reduced potential minus kinetic energy vs reduced
temperature (Bakker, Bruin, and Hilhorst, 1984).
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stant observed at lower temperatures, a slow decay was
seen (see Fig. 33). This behavior is interpreted by Bakk-
er et al. (1984) as consistent with a coexistence region in

‘which the liquid spans the entire system.

One might argue, however, that these observations are
also consistent with the existence of a hexatic phase in
the region between 7'=0.99 and T =1.11. Bakker et al.
observed that the data at 7=1.02 and T =1.08 may be
fit to a power-law decay with decay exponent, 17¢=0.22
for T'=1.08 (very close to the predicted value of 0.25 at a
hexatic to isotropic transition). Is it possible that they
have observed a hexatic phase bounded by first-order
transitions? Or, possibly, that the divergence of the
orientational correlation length occurred between
T=1.11 and T =1.08? The critical region for these
transitions is predicted to be very narrow (Cardy, 1982;
Greif et al., 1982; Dahm, 1984).

Udink and van der Elsken (1987) have studied the
function g¢(r) in a system of 12480 Lennard-Jones parti-
cles. They simulated at a reduced density of 0.873, near
that studied by Bakker et al. Udink and van der Elsken,
however, found no saturation of the angular correlation
length upon approaching the intermediate region from
the liquid. Their observed correlation lengths reached
the size of the system. In addition, they obtained a good
fit of the temperature dependence of the correlation
length to the exponential form predicted by the KTHNY
theory.

The reasons for this disagreement are unclear. It
seems unlikely that the small difference in simulation
density is sufficient to explain it. A more likely possibili-
ty is that the fitting procedures employed by the two
groups led to disparate results. Since the orientational
correlation function is an oscillating function, a smooth-
ing procedure is required before a correlation length may
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FIG. 33. Orientational correlation function for various temper-
atures in the solid and intermediate regions (Bakker, Bruin, and
Hilhorst, 1984).
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be extracted (Zollweg, 1980). The correlation length ob-
tained may also depend on the interval of » over which
the fit is performed. Currently the results of Bakker
et al. and those of Udink and van der Elsken simply
stand unreconciled.

Udink and van der Elsken (1987) do not report fits of
their correlation functions to a power-law form in the in-
termediate region. Instead, they have employed finite-
size scaling to obtain the decay exponents from the ap-
propriate order parameters. This work is described in
the following section.

5. Local bond-orientational order

Because of the difficulty in determining the long-
distance behavior of the orientational correlation func-
tion, Strandburg, Zollweg, and Chester (1984) have used
a local measure of bond-orientational order on various
length scales to investigate the orientational order of the
intermediate region in both Lennard-Jones and hard-disk
systems. They studied the angular susceptibility of sub-
systems of particles. In this study X¢ was defined as

Xe={ 06| 2y — (| ¥6] 2,
where (30)

1
n;

Vo= 3 3 expli60))
N < 2

and where the sum on / is over all particles, the sum on j
is over the nearest neighbors of particle /, nl/ is the num-

ber of nearest neighbors of particles /, and 6); is the angle

made with a fixed axis by the bond joining particles / and
Jj-

If the system is made up of coexisting phases and the
subsystems are small enough, one would expect most sub-
systems to be either solid or liquid. The solidlike regions
seen in particle trajectory plots near the middle of the in-
termediate region are of size on the order of 100 parti-
cles. However, particle trajectory plots primarily give a
sense of the extent of positional order. The work of
Strandburg, Zollweg, and Chester tests whether the
bond-orjentational order is also explained by coexisting
patches of solid and liquid. If so, the distribution of
values of X¢ for sufficiently small subsystems should then
be given by a sum of the distributions of X in the solid
near melting and the fluid near freezing. The results of
Strandburg et al. are in quantitative agreement with pre-
dictions based on two-phase coexistence in both the
hard-disk and Lennard-Jones systems. The results show
the existence of solidlike and liquidlike patches of size on
the order of 50 particles in bond-angular as well as in po-
sitional order.

The Lennard-Jones system investigated was at a densi-
ty p*=0.856 equal to one of the lower-density system of
Tobochnik and Chester (1982). The hard-disk system
should correspond to a very high-density Lennard-Jones
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system. The similarity of the low-density Lennard-Jones
and hard-disk results therefore contradicts the distinc-
tion between low- and high-density Lennard-Jones sys-
tems made by Tobochnik and Chester. A van der Waals
theory (Weeks and Broughton, 1983) of the Lennard-
Jones system also finds no distinction between the melt-
ing behavior of a purely repulsive Lennard-Jones poten-
tial and the full Lennard-Jones potential with an attrac-
tive part in this region of the phase diagram.

Unfortunately, an accurate model of the subsystem dis-
tribution of X¢ for a hexatic phase is not available. In the
work of Strandburg, Zollweg, and Chester (1984), the an-
gular behavior of the low-temperature phase of the XY
model was used as a model. This analogy is suggestive
but may not apply precisely, especially since the defect
structure in the particle systems is considerably more
complex than that in the XY model. Since macroscopic
phase separation is not observed, it is possible that the
solid and liquid patches observed are critical fluctuations
that would be expected throughout a hexatic phase.

Recent finite-size scaling studies of the positional and
bond-orientational order parameters at a reduced density
of 0.873 strongly suggest that despite the apparent agree-
ment of the distributions of local bond-orientational or-
der with a coexistence model, the intermediate region is
actually a hexatic phase.

Udink and van der Elsken (1987) performed calcula-

tions of the translational and bond-orientational order
parameters and their second- and fourth-order moments
as a function of system size. The exponents 1 and 7
were then obtained from fits to log-log plots of these
quantities as a function of system size. They found that
the translational exponent 7 showed a sharp increase at a
temperature corresponding to the melting temperature
inferred from, for example, a plot of energy versus tem-
perature. At that temperature, 7 also passed the value of
%, which is the upper limit for mechanical stability of the
solid.
. The bond-orientational exponent 7, also displayed a
dramatic increase at a distinctly higher temperature.
This temperature corresponded extremely well to the
hexatic-liquid transition temperature from a fit of the
temperature dependence of the orientational correlation
length. These results demonstrate the existence of an
orientationally ordered, positionally disordered phase
over a region approximately 10% wide in temperature.

The hexatic melting temperature deduced from these
studies is somewhat below the fluid-intermediate region
boundary deduced from changes of slope in plots of ther-
modynamic quantities. Such a result is not surprising
since the KTHNY transition is not predicted to be asso-
ciated with any singularities in thermodynamic quanti-
ties. Indeed the specific-heat maximum. associated with
defect unbinding is predicted to occur above the transi-
tion temperature. It is interesting to note that the melt-
ing transition at this density occurs well above the re-
duced temperature at which a crossover to continuous
melting occurs in the xenon-on-graphite system.
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6. Particle motions

Particle motions are studied by measuring the average
squared displacement of particles from their lattice sites
and by observation of trajectory maps. Trajectory maps
may provide evidence for two-phase coexistence.

Generally, melting is associated with a dramatic in-
crease in the average squared displacement. Toxvaerd
(1983) has reported some rather disturbing studies of size
dependence of this quantity. He found that, at a temper-
ature that had apparently been in the solid region for a
system of size 1024, diffusion set in for a system of 8100
particles. He interpreted this as evidence that the system
melted as its size was increased. In several cases the on-
set of diffusion occurred when u 2 reached the value 0.18.
He compared this to the Lindemann criterion for three-
dimensional melting and suggested that melting may al-
ways occur at this value of u2. As Toxvaerd points out,
since u? goes as InN in 2D in the low-temperature har-
monic solid, u? will reach the value 0.18 for some system
size at any low temperature.

Koch and Abraham (1983), however, reported an ob-
servation of solid state stability for values of u? larger
than 0.18. They also pointed out that the onset of
diffusion does not necessarily signify melting. Diffusion
may occur in the equilibrium solid and, indeed, does in
the 3D solid. Toxvaerd argues that the onset of diffusion
at a particular value of u? and the observed frequency of
consecutive hops are evidence against the interpretation
of this diffusion as an equilibrium solid property.

Another interesting observation about particle motions
is the report by Alder and Ceperley (Alder et al., 1982)
for the hard-disk system of the observation of cyclic per-
mutations of on the order of 10 particles just prior to
melting. Interestingly, similar behavior has been report-
ed for the Inr potential system (Choquard and Clerouin,
1983). The significance of these cyclic motions is not
known.

7. Summary of simulations of hard-core systems

Taken together the above results lead to the following
conclusions: Free-energy studies indicate that the strictly
two-dimensional hard-core potential systems melt via
weak first-order transitions. Most studies of other quan-
tities have been consistent with first-order transitions.
However, the fluid near freezing is characterized by long
orientational correlation lengths. While Bakker et al.
(1984) argue that these correlation lengths do not
diverge, Udink and van der Elsken (1987) find correlation
lengths approaching the size of the system even in a very
large system. Very long runs are necessary to obtain
equilibrium in the cold fluid and transition regions. Fluc-
tuations are significant in these regions.

Until recently the intermediate region has been most
consistently interpreted in terms of two-phase coex-
istence. It displays a high density of defects with a pre-
valence of grain boundaries and clusters. A visual
perusal of trajectory plots shows solidlike and liquidlike
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patches. The local bond-orientational order parameter
distribution may be quantitatively reproduced by a coex-
istence model. However, the finite-size scaling studies of
Udink and van der Elsken demonstrate that the inter-
mediate region is an orientationally ordered, positionally
disordered phase, bounded by transitions that are in ac-
cord with the KTHNY predictions inasmuch as these
have been tested. These results highlight the extreme im-
portance of studies of size dependence for the interpreta-
tion of computer simulation results. ) ’

While Udink and van der Elsken have been reluctant
to label this orientationally ordered phase hexatic, their
reluctance is based primarily on the discrepancy between
the defect-rich structures observed in Voronoi polygon
analysis of their configurations and the dilute gas of
dislocations described in the KTHNY theory. As has
been discussed in Sec. V.C.3, one should be careful about
taking this picture too literally as a description for local
particle configurations. The KTHNY theory describes
the behavior at length scales greater than a defect core
radius, which may in fact be very large in these systems.
The large length scale behavior has been shown, by the
finite-size scaling analysis, to be quite consistent with the
KTHNY theory. Why this phase is so well modeled on
shorter length scales by a coexistence model remains puz-
zling. -
One final suggestion for future simulations of the
Lennard-Jones system may be given. Most simulations
to date have been carried out along isochores. Thus the
path taken in the simulations runs nearly parallel to the
phase boundary. Such a path will tend to ‘“‘smear out”
the transition region. An isothermal path may provide
cleaner transition behavior.

D. Intermediate strength interactions

While most simulation studies of 2D melting have been
carried out for the hard-core systems described above,
there is also great interest in the study of 2D melting for
softer potentials. The defect core energy may be expect-
ed to vary depending on the potential. In this section we
review results for the intermediate potentials. In particu-
lar, studies have been performed for the 1/¢%1/r3 and
1/r3 potentials.

The 1/7% potential system has been studied in detail by
Allen et al. (1983). They studied a system of 2500 parti-
cles using reasonably long runs (40 000 MC steps per par-
ticle or passes near the transition). Their study ranged
from an investigation of the microscopic defect structure
to a determination of the free energy. Their results are
rather similar to those for the hard-core potential sys-
tems. The free-energy computation indicated a first-
order transition with dv /v =0.7%. They had significant
equilibration problems in the transition region, charac-
terized by slow energy fluctuations, superheating, and su-
percooling if great care was not taken in moving slowly
through the transition region, and.an inability to cool to
a defect-free solid in the computer time available. They
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also observed a sharp rise in defect density at the transi-
tion with a relatively high density of defects across the
transition region.

The transition region was most consistently described
as a two-phase region. The elastic constant K, while ap-
proaching 167 near melting, declined gradually across
the transition region rather than jumping to zero at melt-
ing. Since K should be O in a fluid or hexatic phase and
> 167 in solid, these intermediate values probably indi-
cate two-phase coexistence. Although finite-size effects
would also give nonzero values for K in a hexatic phase,
one would expect these values to be small. Trajectory
plots were “patchy” and consistent with two-phase coex-
istence. In addition, while it was possible to fit the corre-
lation function g4 to a power-law form in this region, the
exponents 1, characterizing the decay were all
(1.12 <6 < 1.15) considerably larger than } (the upper
limit for stability of the hexatic phase).

In spite of these indications of two-phase coexistence,
the long time fluctuations present in this region and the
significant pretransitional effects observed left Allen
et al. (1983) unwilling to draw a conclusion as to the na-
ture of the transition in the long-time, large system limit.
The pretransitional effects included a rapid increase of
the angular correlation length as the freezing transition
was approached from above, similar to that observed in
the hard-core systems. Thus, except for added difficulties
in equilibration and in recooling the solid, the results for
the 1/r® potential are very similar to those for hard-core
potentials. A weak first-order transition was observed in
the simulation. Significant pretransitional effects left
open the question of finite-size and time effects on the na-
ture of the transition.

The detailed study of finite-time effects by Novaco and
Shea (1982) for a constant energy molecular dynamics
simulation of the 1/r° potential system has been dis-
cussed above. In the transition region they observed re-
laxation times longer than their longest runs (100000
time steps), leading them to conclude that data obtained
in this transition region should clearly be regarded as
nonequilibrium data. A cautionary note: this nonequi-
librium data forms a loop in the p-P plane, and in the ab-
sence of information concerning relaxation times the
transition would certainly be interpreted to be first order.
The time dependence of the autocorrelation functions
was quite similar for every quantity for which it was
computed, including such dissimilar quantities as the
internal energy and the local-angular-order parameter 1.
In addition to the increase of relaxation times near the
transition, an increase in the amplitude of fluctuations in
quantities, such as the temperature, was seen.

Novaco and Shea interpreted these effects as evidence
of critical slowing down. Koch and Abraham (1983) ar-
gued that the long relaxation times were simply an ar-
tifact of the constant density simulation and character-
ized a two-phase region. In any event, in the absence of
equilibrium, Novaco and Shea concluded that it was not
possible to determine the order of the transition.
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In a molecular dynamics study of the 2D dipole system
(1/r3 interaction) at constant energy, Kalia and Vashish-
ta (Kalia and Vashishta, 1981; Vashishta and Kalia,
1982) reported the observation of a first-order transition
in a 256 particle system. They based their conclusion on
the observation of superheating and supercooling and a
latent heat of melting. This latent heat was found to be
< 1% of the energy of the solid phase. They used the
pair correlation functions to demonstrate that the su-
perheated and supercooled states correspond to solid and
liquid, respectively, and that they are stable in runs of
40000 time steps. In addition, they observed homogene-
ous nucleation when an energy equal to the latent heat
was subtracted from the supercooled liquid. Their results
for this system were essentially equivalent to those they
obtained for the electron system (see next section). Since
the system was rather small, a study of size dependence
would seem to be in order.

Bedanov and Gadijak (1982), while concurring in the
diagnosis of the 1/73 transition as first order, found
significant differences between the 1/r> and 1/r systems.
They observed that the orientational correlation length
and the positional correlation length diverged at the
same temperature for the 1/r® system, but that these
divergences were separated in the electron system. Their
system contained 504 particles, and they do not describe
the length of their molecular dynamics runs.

In summary, studies of systems interacting with inter-
mediate potentials find weak first-order transitions, as do
most studies of the hard-core potentials. However, the
findings of Allen et al. (1983) and of Novaco and Shea
(1982) emphasize the importance of finite-size and time
effects in these systems, and none of the statements re-
garding the order of the transition can be considered to
be definitive.

E. Soft interaction potentials

As mentioned above, Weeks (1981) has shown through
an examination of the Clausius-Clapeyron equation that,
for potentials of the form 1/7" if n <d (where d is the
dimensionality of the system), there can be no density
discontinuity at melting and thus no two-phase coex-
istence. This proof is consistent with the empirical obser-
vation that the first-order character is weakened as the
potential is softened. Of course a first-order transition,
characterized by an entropy discontinuity, can certainly
still occur in these systems.

The earliest simulation of the 2D electron system was
that by Hockney and Brown in 1975. They found melt-
ing distinguished by a A-like transition at I'=95. This
finding has, however, not been corroborated by any of
the simulations that followed nor by any of the experi-
ments on 2D electron systems. Since Hockney and
Brown had very short simulation times it is considered
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likely that they were observing nonequilibrium effects.

At about the same time as the development of the
KTHNY theory for 2D melting, Gann, Chakravarty, and
Chester (1979) completed a Monte Carlo study of the
melting of a 100-particle 2D electron system. Their con-
clusions were based on a free-energy calculation. They
concluded from this study that melting was characterized
by a first-order transition at I'=130. This value of T is
in good agreement with the concurrent experimental
determination by Grimes and Adams (1979). Grimes and
Adams, however, found a transition in agreement with
KTHNY predictions, in as many respects as could be
tested. The difference in slope of the computed solid and
liquid free-energy curves of Gann, Chakravarty, and
Chester was only approximately 0.03%. They noted that
the free-energy method is biased toward a first-order in-
terpretation, and that they cannot rule out a continuous
transition within the accuracy of their computation.
They also noted that the fluid before freezing was quite
well ordered, as evidenced by the observation of
significant structure in the pair correlation function.

Kalia, Vashishta, and de Leeuw (1981; see also Vash-
ishta and Kalia, 1982) have performed a molecular dy-
namics simulation of the electron system for various sys-
tem sizes. For a system of 100 particles they observed a
rather wide (10%) region of hysteresis in the energy.
They also observed homogeneous nucleation on a time
scale of 10000 time steps. In light of this observation
they concluded that their 40000 time-step runs are
indeed sufficiently long. The width of the hysteresis re-
gion decreased with system size to about 4% for 500 par-
ticles, but the magnitude of the jump in entropy across
the transitions did not decrease. The magnitude of this
jump is in agreement with the density wave theory of
Ramakrishnan (1982), which predicts a first-order transi-
tion. Since the Ramakrishnan theory is a mean-field
treatment, however, it is possible that the theory may
correctly predict the approximate magnitude of the en-
tropy difference between the solid and fluid without
correctly predicting the details of the transition.

Assertions of first-order melting of the 2D electron sys-
tem have been challenged by the most extensive set of
simulations for this system, those of Morf (Fisher et al.,
1979; Morf, 1979, 1981). Morf reports several equilibra-
tion problems in studying the melting transition of the
2D electron system. In particular, it was not possible
even in long runs to cool the system back into a defect-
free solid. None of the other simulations of the electron
system studied defects. Morf suggests that this difficulty
may be due to very long defect relaxation times associat-
ed with the KTHNY transition.

As mentioned previously, calculations of the energies
of various defects have been performed for the 2D elec-
tron system. The dislocations are seen to follow the pre-
dictions of elastic theory down to distances of two or
three lattice spacings. Because of the ambiguity in the
choice of core diameter, these results can be applied only
approximately to the prediction of the melting tempera-
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ture. However, when a core diameter of 1 to 2 times the
lattice constant was assumed, and when renormalization
of the shear modulus by phonons was accounted for by
Monte Carlo measurements at low temperatures, Morf
obtained from the KTHNY theory a predicted melting
value of I'=137, in good agreement with simulation and
experimental results.

In addition, Morf obtained good agreement for the be-
havior of the shear modulus near freezing with predic-
tions obtained from the HN recursion relations. He also
observed the onset of particle diffusion and a drop in
shear wave frequency for 140> T > 120 as melting oc-
curred. Power-law decay of the orientational correlation
function with 74<1 was observed for 134T > 130,
strongly suggesting the identification of this region as a
hexatic phase.

Unfortunately, the inability to obtain reversibility
through the transition makes the drawing of firm con-
clusions as to the nature of the transition impossible. In
an attempt to address this issue, Morf (1983) has investi-
gated the effects of adding a small hexatic field term to
the Hamiltonian. This field has an effect similar to that
of a hexagonal substrate, stabilizing the long-range angu-
lar order and thus precluding the observation of a hexatic
to fluid transition. However, the addition of this field al-
lowed Morf to obtain reversibility through the transition
and to study the phase diagram as a function of h4. The
melting curve as a function of the hexatic field A4 for
small i, was consistent with the HN predictions and in-
consistent with the predictions of the Clausius-
Clapeyron-type relation dT,, /dhs=08M¢/5S. The tran-
sition was studied for S;kpT, <hg<+kpT,, . It is still
possible, however, that for hg < 4kpT, the transition
crosses over to first order.

For the still softer Inr potential (2D one-component
plasma with a uniform neutralizing background), the evi-
dence is limited. Choquard and Clerouin (1983) reported
a simulation of this system in which they found a weak
first-order transition characterized by premelting effects
described as cyclic permutations of six or more particles.
As mentioned above, similar effects have been observed
for the hard-disk system. Choquard and Clerouin ob-
served little hysteresis and a very narrow transition re-
gion (less than a percent wide). They argued for a first-
order transition on the basis of the observed hysteresis
and the observation of solidlike and liquidlike patches in
a trajectory plot in the transition region. Neither of
these pieces of evidence is conclusive.

Perhaps most importantly, the Choquard and Clerouin
effective system size was very small since they used free
boundary conditions. They used 511 particles on a disk
with free boundary conditions, analyzing only the parti-
cles within a radius 1/2R (about 125 particles) in order
to avoid surface effects. While the idea of using free
boundary conditions is certainly of interest, studies of
finite-size effects are of crucial importance in such sys-
tems.
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F. Adsorbed systems

In order to provide a detailed comparison with experi-
ment, and especially to understand the discrepancy be-
tween the continuous transitions observed in some exper-
imental systems and the first-order transitions observed
in simulations of the corresponding two-dimensional sys-
tems, simulations of particles on a substrate have been
performed. In recent years, the phase diagrams of xenon,
krypton, and argon on graphite have been studied in de-
tail by computer simulation. Remarkably good agree-
ment with experimental results has been obtained, al-
though differences in interpretation persist. Krypton on
graphite has not been studied in the range of incommen-
surate melting, so we will not discuss the simulation re-
sults here. Xenon and argon on graphite have been simu-
lated by using a Lennard-Jones potential to model the
various atomic interactions, adjusting the parameters to
experimentally determined values. Molecular dynamics
methods were used with a constant number of atoms en-
closed in a three-dimensional “box” with periodic bound-
ary conditions in two dimensions, a graphite substrate on
the “bottom” and a reflecting wall on the “top.”

A simulation study of submonolayer argon on graphite
by Abraham (1983a) found a continuous melting transi-
tion. This finding is in accord with all experimental evi-
dence but the most recent heat-capacity results, which in-
dicate a very weak first-order transition. 1680 argon
atoms were used in the simulation and the size of the
graphite substrate was about 400 A2, Since this broad,
continuous transition differs markedly from the behavior
of the corresponding 2D Lennard-Jones system, in which
the system melts over a much smaller temperature range,
it is clear that substrate effects are significant for this sys-
tem. Abraham points out two reasons for this to be so.
The submonolayer argon melting temperature is about 47
K. However, the corrugation of the graphite substrate
potential is about 50 K. Also, the density of the liquid
into which the submonolayer argon system melts is very
close to the commensurate density for argon: Trajectory
plots show a gradual growth of liquidlike regions over a
greater than 10% region in temperature.

The melting of argon near and above one monolayer
has not been studied in recent computer simulations.
The extant experimental evidence is in favor of continu-
ous melting at the higher coverages. The relationship of
the argon on graphite melting to any of the two-
dimensional melting theories is not clear, but it is certain
that the substrate plays an important role in the melting
transition.

Xenon on graphite is considerably less influenced by
the substrate ordering field. Since the optimal xenon
spacing is 8% larger than the commensurate spacing, the
substrate has the effect of compressing it. In trying to
compress the xenon adlayer, however, the-substrate is
working against the stiff 1/7'? repulsive part of the po-
tential and hence is relatively ineffective. Submonolayer
xenon on graphite melts with a relatively strong first-
order transition.
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As the coverage is increased, however, the xenon on-
graphite-transition becomes continuous in the experi-
ments, as evidenced both by x-ray scattering and by iso-
therm measurements [see (iii) in Sec. IV.D.2.a]. Abra-
ham (1983, 1984) and Koch and Abraham (1983) have
simulated xenon on graphite in the coverage regime
covered by the scattering experiments. The experimental
results were reproduced extraordinarily well. A very in-
teresting aspect of the simulations is that the transition
appeared continuous even when a smooth substrate (rath-
er than a graphite substrate) was used (Abraham, 1984).
These results confirm the picture of xenon as relatively
uninfluenced by the graphite ordering field.

Abraham takes strong exception, however, to the in-
terpretation of the experimental and simulational results
as evidence of a true continuous melting transition. X-
ray diffraction studies have been performed both at con-
stant coverage and at constant chemical potential. In
both types of experiments the xenon melting appeared
continuous with positional correlation lengths on the best
substrates extending to 2000 A (Heiney et al., 1983;
Rosenbaum et al., 1983; Dimon et al., 1984; Nagler
et al., 1985; Specht et al., 1985). Abraham has per-
formed constant coverage simulations that reproduce the
experimental constant coverage results extremely closely
(Abraham, 1984). He has also performed a constant
two-dimensional pressure simulation in which he ob-
served a discontinuity in the density as a function of tem-
perature or pressure and thus concludes that the transi-

- tion is actually first order.

Abraham explains the apparently continuous transi-
tion observed in the constant coverage experiment and
simulation as due to the presence of a region of coex-
istence between solid and fluid. Note that earlier results
of Abraham (1983) in which what was called a “temporal
bifurcation” coexistence (in which the system jumped
back and forth from solid to liquid as a function of time)
was observed were not borne out in his simulation of a
larger system. In the larger system the first layer density
remained reasonably constant in time. The two-phase
coexistence posited for this larger system is of the con-
ventional type. The number of xenon atoms in the larger
system was 2304 and the largest length scale thus around
200 A.

The experimentalists argue that their data may only
conceivably be fit by a coexistence hypothesis over a 0.4-
K range (where T,, =152 K) where the evidence was in-
conclusive. In contrast, Abraham concluded from an
analysis of trajectory plots that coexistence extends for
several degrees. Trajectory plots are perhaps a rather
misleading tool, since they do not allow quantitative
comparisons, and since critical fluctuations might be ex-
pected to look very much like coexistence over short time
scales.

At constant chemical potential or pressure, a first-
order transition will not be characterized by coexistence
but by discontinuities in thermodynamic quantities. In
an early constant pressure simulation of xenon on graph-
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ite by Koch and Abraham (1983), hysteresis and discon-
tinuities were observed and interpreted as evidence of a
first-order melting transition. Later comparison with ex-
periment, however, demonstrated that the simulations
had in fact missed the very narrow region over which the
continuous transition was observed experimentally. The
hysteresis and density jumps were due to nonequilibrium
effects.

In the later study by Abraham (1984) a much finer grid
of temperatures was investigated and a discontinuity was
still observed at constant pressure. Abraham suggested
that the continuous transition observed experimentally at
constant chemical potential was an artifact of substrate
inhomogeneities. At least as plausible, however, is that
Abraham’s simulation study is still missing the continu-
ous transition. The width of a transition is sensitive to
the axis along which the phase boundary is crossed. The
constant pressure transition may be more abrupt than the
transition at constant density or chemical potential. The
extremely long correlation lengths observed experimen-
tally indicate that if a first-order transition is actually ob-
served in the simulation, it may very well be a result of
finite-size effects. The experimental correlation lengths
also indicate a long substrate coherence length, and sug-
gest that the smearing due to substrate inhomogeneities
should be minimal.

The development of single-crystal graphite substrates
allowed the study by x-ray diffraction of the bond-
orientational order. A system in which angular order is
long range, while positional order is short range, will
generate an x-ray diffraction pattern characterized by
asymmetric spots whose radial width measures the posi-
tional correlation length and whose angular width is re-
lated to the mean-square fluctuation 6% of the bond an-
gles. 6% is a quantity similar in concept to the mean-
squared displacement u? in a crystal, and measures the
fluctuations in bond angle in the ordered phase.

In an infinite, substrate-free hexatic or fluid phase
there will be no preferred bond orientation and so the
asymmetric spot will broaden to form a diffuse ring. Sub-
strate fields lead to long-range bond-orientational order
in a fluid or hexatic and thus spots will be observed. Fi-
nite system size effects will also produce spots in a hexat-
ic phase, or even in a liquid whose bond-angular correla-
tion length approaches the size of the system.

Rosenbaum et al. (1983) plotted the radial width
versus the angular width as obtained from the experimen-
tal diffraction patterns. The dependence of the angular
spot width on the radial spot width in a long-range hexat-
ic has been predicted (Aeppli and Bruinsma, 1984) to be
linear if the hexatic ordering is intrinsic rather than sub-
strate induced. Rosenbaum et al. found a region of
linear dependence just above the melting temperature
and hypothesize that this behavior indicates hexatic or-
dering that is not simply an artifact of the substrate.

Abraham compares the Rosenbaum ez al. (1983) data
to his results for the variation of the inverse bond-
orientational correlation length with the inverse position-
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al correlation length. These correlation lengths were ob-
tained by performing exponential fits to the positional
and bond-orientational correlation functions obtained
from his xenon-on-graphite simulations. He finds a
dependence of the inverse bond-orientational correlation
length on the inverse positional correlation length con-
sistent (after arbitrary normalization) with the experi-
mentally determined dependence of 6% on the inverse po-
sitional correlation length.

The meaning of this comparison is obscure, however.
The observation of spots in the experimental diffraction
pattern shows the existence of bond-orientational order
on lengths comparable to the sample size (approximately
4000 A). Abraham’s orientational correlation lengths are
much shorter (about 40 A), while his system size is about
200 A. These two findings are not at all consistent.
Since, on a graphite substrate, long-range bond-
orientational order must be present, the angular correla-
tion lengths quoted by Abraham must characterize a
short-distance transient in the bond-orientational correla-
tions. None of his bond-angular correlation functions are
shown in his paper; therefore one cannot judge the quali-
ty of the fits.

The xenon-on-graphite simulations of Abraham do not
resolve conclusively the question of the order of the melt-
ing transition, or of the possible existence of a non-
substrate-induced hexatic ordering above the transition.
However, in spite of disagreement over interpretation of
the results, they do show that impressively good quanti-
tative agreement between experiment and simulation may
be obtained. They also show that the corrugation of the
graphite substrate is not crucial in determining the na-
ture of the xenon-on-graphite melting in the near-
monolayer regime.

An important question that remains unresolved is why
standard simulations of xenon on graphite are able to
reproduce the experimental observations so well. By
contrast, very large system sizes and detailed finite-size
scaling studies are required in the strictly two-
dimensional systems. That the apparently continuous
transitions are not caused by the sixfold substrate field is
clear from Abraham’s results for a smooth substrate.

Apparently the possibility of motion in the third di-
mension is crucial in these simulations. Probably this
fact is an indication that density fluctuations are not be-
ing equilibrated as well in strictly two-dimensional sys-
tems. It is also a possibility that the continuous transi-
tion is inherently related to the presence of a second layer
of atoms (since the crossover to continuous melting in xe-
non occurs near monolayer coverages).

VI. CONCLUSIONS

The nature of the two-dimensional melting transition
remains an open and fascinating question. At this point
the stage is set for further experimental, theoretical, and
simulational work.

The primary task for theorists at this juncture is to
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provide calculations that make more direct contact with
specific experimental systems. In the realm of adsorbed
systems particularly, the experimental observations
remain virtually unexplained in the incommensurate
melting regime. An understanding of the relationship be-
tween the defects in real systems and the idealized dislo-
cations and disclinations of the defect-mediated melting
theories is also lacking. Theories are also needed to de-
scribe the continuous to first-order crossover observed in
the defect simulations and the xenon-on-graphite system.

Experimentally, there is also much to be done. For
liquid-crystal systems a picture is emerging in which the
KTHNY theory plays a significant and useful role. Fur-
ther experimental studies, particularly of very thin films,
will be required in order to complete our understanding.
For electrons on helium, clever means need to be devised
by which the structure, and especially the bond-
orientational order may be observed. Determination of
the ways in which bond-orientational order is manifest in
measurable quantities is a challenge to theorists as well.
The phase diagrams of the recently studied adsorbed sys-
tems still contain notable ambiguities (such as the posi-
tion of the xenon-on-graphite multicritical point). Addi-
tionally, there are many incommensurate physisorbed
systems whose melting transitions have never been stud-
ied using today’s better substrates and synchrotron x-ray
facilities. While one hesitates to recommend adding to
the collection of unexplained phase diagrams, it seems
likely that as more systems are given careful study,
trends will appear that will lead to general insights. Fi-
nally, the influence of the substrate on melting may be
better understood if alternative, high-quality substrates
are developed that produce ordering fields of different
strengths and symmetries. The recent studies of xenon
on silver (Greiser et al., 1987) illustrate the usefulness of
such an approach.

Particular directions that might be fruitful for simula-
tion work include more direct contact with experiment,
including in particular more simulations in regions of the
Lennard-Jones phase diagram that have displayed in-
teresting behavior in experiments; further systematic
study of size dependence and the effects of finite time
scales; the exploration of possible multiparticle Monte
Carlo moves that might expedite equilibration of defects
and density fluctuations; the development of practical
constant chemical potential simulation methods; further
simulations on a flat substrate; and the application of
MCRG methods to the study of two-dimensional melt-
ing.
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