
Sum rules in charged fluids

Ph. A. Martin

The screening effects in fiuid phases of charged particles give rise to a variet'y of exact sum rules for their
correlation functions. Some of them have been known for a long time, while others have been derived
more recently —in particular, for nonuniform fluids. A presentation of these sum rules for static and
time-displaced, classical or quantum-mechanical correlations is given from a unifying viewpoint: they ap-
pear as consistency relations imposed by the long range of the Coulomb force in the equilibrium or
dynamical equations. The cluster properties and the fluctuations of electrical quantities are also discussed.
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1076 Ph. A. Martin: Sum rules in charged fluids

I. INTRODUCTION

Some of the most significant properties of nonrelativis-
tic ordinary matter are the local neutrality and the
screening of the Coulomb force: a system in thermal
equilibrium does not tolerate any charge inhomogeneity
over more than a few. intermolecular distances. As a
consequence of this very basic fact, the static and the
time-displaced correlations of charged particles in
thermal equilibrium are subjected to specific constraints.
These constraints, which we call sum rules, always ex-
press, in one way or another, screening and neutrality in
the system. In this paper we review a number of such
sum rules in various situations (bulk, inhomogeneous,
time-dependent, and quantum-mechanical correlations),
as well as their relations to cluster properties and fluctua-
tions in charged Auids. Before entering into a detailed
description, it is worth exhibiting some typical features of
static screening with the help of simple physical argu-
ments.

A. Debye-Hiickel theory

To begin with old and familiar ideas on the subject we
recall the reasoning that Debye and Huckel presented in
1923 (Debye and Huckel, 1923). One considers a mixture
of s species of positive and negative point ions with
charges e, a=1,2, . . . , s. The electric potential P(r) in
the vicinity of an ion of type o. fixed at the origin is deter-
mined by the Poisson equation

bP(r) = 4~c(r—), r&0,

The still unknown constant b is determined by the re-
quirement that as

~

r
~

~0, (t(r) should approach th' e
Coulomb potential of a point charge e at the origin, i.e.,
b =e . Comparing Eqs. (1.1) and (1.4) leads to the fol-
lowing equation for the charge density around the ion u
(the ion atmosphere or the screening cloud):

c(r)=—— —~lrl2
a e

4~ /r/

We can now compute the total charge that is carried by
the particles surrounding the ion e, and we find from
Eq. (1.7)

drcr = —e (1.8)

Equation (1.8) expresses the fact that the total amount of
charge in the ion atmosphere exactly counterbalances
that ion's own charge: it is called the charge or elec-
troneutrality sum rule. Alternatively, Eq. (1.8) may be
postulated and used to determine the constant b in Eq.
(1.6).

Charge sum rules have probably been known and used
from the very beginning of the molecular theory of elec-
trolytes. Gouy (1910) and Chapman (1913) have written
and solved the one-dimensional Poisson-Boltzmann equa-
tions to study the charge distribution c (x) near a charged
electrode (x is the direction perpendicular to the elec-
trode). Here the total charge of the molecular layers
compensates the surface charge o. of the electrode:

is the inverse of the Debye screening length A, . For r&0,
Eq. (1.4) obviously has a solution that vanishes at infinity:

rl
P(r) =b

dXC X = —0
0

(1.9)

n(y, r) =p~exp[ Pe~/(r)], P=—(kii T) (1.2)

p being the homogeneous density far from the origin.
The set of coupled equations (1.1) and (1.2) are the
Poisson-Boltzmann equations. In the linear approxima-
tion, and taking into account the overall neutrality

(1.3)

where n(y, r) is the density of particles of type y at r
when a charge e is present at r=O, and c(r) is the asso-
ciated total charge density. Debye and Hiickel assumed
that the density may be given by the Boltzmann distribu-
tion in the potential (t (r) at temperature T:

The sum rule (1.8) implies a constraint on the correla-
tion functions of a homogeneous state if one equates the
density n(y, r) around the ion a to the density of parti-
cles y in this state when a particle a is known to be locat-
ed in r=O:

p(y, r, a, O)
n&y, rj=

Pa
(1.10)

Here, p(a„r„az, rz) is the usual two-point correlation
function of the homogeneous Quid. Using Eqs. (1.3) and
(1.10), the charge sum rule (1.8) can be written as

f
S

dr g e~[p(y, r, a, O) —p p ]= ep—
the Poisson-Boltzmann equations reduce to the linear
Debye-Huckel equation

a relation which is typical for charged particles, and is
not true in a Quid with short-range interactions.

b,P(r) —~ P(r) =0,
where

S C4' g pye~

1/2

(1.4)
B. Linear response and sum rules

Another convenient method for generating sum rules
in Coulomb systems is linear-response theory. In order
to illustrate this method in a simple case we consider a
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Ph. A. Martin: Sum rules in charged fluids 1077

classical charged Quid at equilibrium, in the presence of
an external static point charge eo located at the origin.
The potential energy of the Quid particles with this
charge is

gin over distances on the order of the screening length A, .
Assuming that the state is homogeneous, and that
( A (a) ), —( A ) decreases exponentially as

I
a

I
~ ao,

we conclude from Eq. (1.15) that

Uo =eo C(r)

where

C(r)= ge N(a, r),

(1.12)

(1.13)

(C(r)A(a))
(A(a)), —(A ) = —e,pf dr

0

(C(r)A ),= —eoP dr
Ir+ai (1.17)

N(a, r)= +5„5(r—r ),
J

are the microscopic densities of the charge and of parti-
cles of species a. To first order in eo the equilibrium
average ( A ), of a quantity A in the presence of the

0

external charge eo is
fdr Pl(r)(C(r)A )T=O (1.18)

decays faster than any inverse power of
I
a

I

. Then, us-
ing the multipolar expansion of the Coulomb potential
produced at a by the charge distribution ( C(r) A ) T im-

plies that this distribution does not carry multipoles of
any order:

with

(C(r)A ),(A), =(A) e,P—fdr

(C(r)A ) =(C(r)A ) —(C(r))( A ) .

(1.15)

(1.16)

for all harmonic polynomials 5'&(r) of order l, l =0, 1,
2 ~ ~ ~ ~

If l =0 and A =N(a, O), one recovers the charge sum
rule. (1.11). This is immediately seen if one writes
(C(r)N(a, O) ) in terms of the correlation functions, sin-
gling out the contribution of coincident particles:

In Eqs. (1.15), (1.16), and the following, it is understood
that the thermal average ( . ) is defined for an
infinitely extended system, and no finite-size eFects are
taken into account.

We choose for A a localized observable such as a prod-
uct of densities N(a&, r&) . N(a„, r„), and denote by
A (a) the space translate of A from the origin to a. If the
charge eo is screened, as in the Debye-Huckel theory, the
state ( . ), will dift'er from the unperturbed state

( ) = ( ), ~ only in a neighborhood of the ori-

(C(r)N(a, G))z ——pe [p(y, r, a, O) —prp ]+e p 5(r) .

(1.19)

But Eq. (1.18) provides a number of additional nontrivial
sum rules for various choices of l and A. To interpret
these new sum rules we define the excess particle density
of species n at r, when there are particles of species
a„.. . , a„ fixed at r&, . . . , r„, r&& &r„

pT(a, r
I a„r„.. . , a„,r„)

= (N(a, r)N(a„r, ) . N(a„, r„)) —(N(a, r) ) (N(a„r&) N(a„, r„))

n

=p(a, r, a„r„.. . , a„,r„)+ g 5 5(r —r ) p(a„r&, . . . , a„,r„)—p(a, r)p(a„r„. . . , a„,r„),
j=l

(1.20)

and the corresponding excess charge density

c(r
I
a„r„.. . , a„r„)= g e pT(a, r

I
a„r„.. . , a„,r„) .

(1.21)

Choosing now A =N(a„r, ) N(a„, r„), we immedi-
ately deduce from these definitions that the excess charge
density (1.21) does not carry multipoles of any order

clustering shield the multipoles induced by specifying any
arrangement of the system's charges.

The screening of the system's charges and of external
charges gives useful information on the truncated
charge-charge correlation function (the structure func-
tion) of the fiuid:

fdr P&(r)c(r
I
a„r„.. . , a„,r„)=0 . (1.22)

This set of constraints, 1=0,1,2, . . . , n =1,2, . . . [the
(l, n) multipole sum rules], expresses the remarkable fact
that typical configurations in a phase having exponential

The properly normalized conditional one-particle excess den-
sity would be the quantity (1.20) divided by p(a„r&, . . . , a„,r„).
It is convenient to use definition (1.20).

Rev. Mod. Phys. , Vol. 60, No. 4, October 1988



1078 Ph. A. Martin: Sum rules in charged fluids

S(r
~

r')=(C(r)C(r') —(C(r))(C(r'))

g e e pT(a, r
~

a', r')
aa'

= ge e, [p(a, r, a', r') —p(a, r)p(a', r')]
aa'

+5(r—r') g e„p(a, r) . (1.23)

With the choice A =C(r') and l =0, Eq. (1.18) obviously
implies

fdr S(r
i
r')=0 . (1.24)

When one sets A =C(r') in Eq. (1.15), the screening of
the external charge

fdr'[(C(r')), —(C(r'))]= —eo (1.25)

leads to

/3f dr' fdr S(r
~

r')=1 . (1.26)

If the Quid is invariant under translations and rota-
tions, S(r r') depends only on

~

r —r' ~, and we simply
write S(r

~

r')=S(r —r'). Then Eq. (1.26) becomes

Pfdr' fdr, S(r)=1 .
/r' —r/

(1.27)

Pfdr~rj~ S(r)=—fdr~r~ S(r)

Applying the convolution theorem of Fourier transforms,
this is equivalent to

2m.(v —l)P lim =1,S(k) (1.28)
o

where S(k)= fdr e'"'S(r) and 2~(v —1) k
~

is the
Fourier transform of the Coulomb potential in dimension
v=2, 3. Alternatively, expanding S(k) to second order in
k and using spherical symmetry, Eq. (1.28) is also
equivalent to

C. Reduced growth of charge fluctuations

Another striking consequence of screening is the re-
duced growth of charge fluctuations. In a gas of neutral
atoms or molecules, each charge belongs to a neutral en-
tity that has an extension of the order of the atomic or
molecular diameter d. One can also say that a free
charge in a plasma always carries its neutralizing cloud
(of radius on the order of the Debye length X), constitut-
ing with it a neutral entity. In a macroscopic region A of
volume

~

A ~, with
~

A
~

much larger than d or A, ', only
those entities cutting the boundary BA of A at random
contribute to the net charge C~= f Adr C(r) in A. The
mean-square Auctuations of this charge may then be ex-
pected to be proportional to the surface

~

BA
~

of A, and
not to its volume, as are the usual Auctuations of exten-
sive thermodynamical quantities (outside of critical
points).

This can be seen as a consequence of the charge sum
rule (1.24). Let us choose, for simplicity, a cubic sub-
domain of side I., in a homogeneous fiuid in v dimen-
sions. Then, with the definitions (1.23), the charge fluc-
tuations in A [with characteristic function +A(r)] are

(C~ ) = f dr f dr'S(r —r')

= f dr yA(r)S(r), (1.31)

where y~(r)= fdr'X~(r')XA(r+r') is the volume of the
intersection of A with its r-translate ((Cz) =0 because
of local neutrality). We have, clearly, with
r=(r', r, . . . , r ), v=2, 3,

(1.32)

When the expansion (1.32) is introduced into Eq. (1.31),
we find that the volumic contribution vanishes because of
the charge sum rule (1.24), and ( CA ) is indeed on the or-
der of the surface

~

BA
~

=2vL ' of the cube:

1
J 1 7 ~ 4 ~ 7 V 0

~(v —1)
(1.29)

1
V

~r'~S(r) .
2v

(1.33)

The sum rule (1.29) is known as the second-moment
Stillinger-Lovett condition (Stillinger and Lovett, 1968a,
1968b; Outhwaite, 1973). Any one of Eqs. (1.27) —(1.29)
is equivalent to the property that the inverse dielectric
function e (k) vanishes in the limit of small wave num-
bers. This follows from the well-known relation

'(k) = 1 2'(v 1)P- —S(k) (1.30)

obtained from the response of the Auid to an external
spatially modulated charge density. When the conditions
(1.27) —(1.29) hold, the fiuid completely shields any exter-
nal charge inhomogeneity and behaves as a conducting
medium.

The surface behavior, Eq. (1.33), can also be found by
another simple argument based on the Gauss law:

C~= f ds E(r), v=2, 3,
1

2m(v —1) a~
(1.34)

where E(r) is the electric field at r due to a particle
configuration in the Quid. We divide the surface BA into
X cells b,j of size

~

b,
~

(i.e.,
~

BA
~

=X
~

6
~

). Then we
have approximately

N
ds E(r)=

~

b,
~ y EJ,

aw j=1

where E is the projection of the electric field on the
direction normal to the surface of the cell 6 . If the elec-
tric fields at di6'erent points can be treated as weakly
correlated random variables, we can apply the law of

Rev. Mod. Phys. , Vol. 60, No. 4, October 19S8
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large numbers to conclude that

(E.E.)

=(const)N=(const)
~

BA
~

(1.35)

D. Scope of the review

In the derivation of sum rules presented in this Intro-
duction, several approximations have been made. For in-
stance, in the Debye-Huckel theory, one introduces a
mean potential in Eq. (1.2), and the linearized equation
(1.4). One expects, however, that the sum rule (1.11) is
exact and holds under very general conditions (otherwise,
individual charges in matter would produce a Coulomb
field at large distances). The same remark applies to the
second-moment condition (1.29) derived here by linear
response. The purpose of this paper is to review various
kinds of exact sum rules that have been obtained in re-
cent years, and to present more fundamental derivations
in the framework of statistical mechanics. We shall also
discuss the characteristic fluctuation properties of elec-
tric quantities.

There is no need to emphasize the importance of sum
rules in the study' of charged fluids, for instance, liquid
electrolytes and strongly coupled plasmas, where the
Coulomb interaction between the particles plays the
essentia1 role and cannot be regarded as a weak perturba-
tion. In these cases, not much is known about the corre-
lations, and any exact relation provides useful informa-
tion. Such relations also serve as guiding constraints in
building approximation schemes.

From a more basic viewpoint we would like to under-
stand better the properties of Gibbs states of ordinary
matter, whose constituents interact with the Coulomb
force. The beautiful work on the stability of matter (see
the review by Lieb, 1976) was concerned with establish-
ing the saturation of bulk matter and its thermodynamic
stability. It is then a natural question to ask what the
general implications of the long range of the Coulomb
force on the structure of an equilibrium state are. In this
sense, the multipolar sum rules (1.22) are a set of con-
straints that are inherent in the structure of the Gibbs
state of a uniform classical plasma.

Progress on this problem has been achieved along
three diA'erent and complementary lines. The first, and
most fundamental, uses field-theoretic methods to estab-
lish the thermodynamic limit of the state and cluster
properties in suitable domains of the thermodynamic pa-
rameters (see the review articles by Brydges and Feder-
bush, 1981; Frohlich and Spencer, 1981c). These
methods are constructive and completely rigorous. They
are of rather high technical complexity and apply at the
moment to a limited (yet important) number of situa-
tions. A second line of investigation, which we shall
adopt here, is to explore the constraints imposed by the

long range of the Coulomb force, provided that the
correlation functions exist in the thermodynamic limit,
and obey appropriate equilibrium equations and cluster
conditions. The results obtained in this way are exact
(i.e., do not follow from approximations), but not all of
them are rigorously proven, insofar as some reasonable
properties (e.g. , the type of decay of the correlations) are
assumed to hold a priori. Using the usual integral-
equation approach to the theory of Auids, this allows us
to keep a simple mathematical language, and give a
unified presentation of the classical static and dynamical
as well as quantum-mechanical situations. Finally, much
e6'ort has gone into the search and the solution of explicit
models (lately, mainly in two dimensions). In addition to
their own mathematical interest, they enable one to un™
derstand detailed mechanisms, and check the validity of
general sum rules. Two-dimensional models have beeri
reviewed in part by Alastuey (1987), and one-dimensional
models by Choquard et al. (1981).

Notwithstanding their intrinsic beauty and richness,
the mathematics of the field-theoretic methods and of the
solvable models cannot be presented here, for this would
lead beyond the scope of this paper. We shall content
ourselves with describing the results that are relevant to
the matter under consideration. We also cannot give
credit to the large body of literature on approximate
methods, numerical simulations, and other approaches to
the properties of charged Auids. For this, we refer, in
particular, to the review articles by Baus and Hansen
(1980), Ichimaru (1982), and Alastuey (1986).

Section II is devoted to the bulk properties of homo-
geneous classical Auids and is more extended. We give
the derivation of sum rules in some detail; it is also in this
simple situation that more resu1ts, old and new, are
known. The properties of inhomogeneous Auids have at-
tracted much attention lately; they are reviewed in Sec.
III, where recent works concerned with the link between
the statistical mechanics of Coulomb systems and macro-
scopic electrostatics are also reported (Sec. III.G). Crys-
talline states are not considered, except for some general
aspects of the spontaneous breaking of translational in-
variance (Sec. III.F). Screening in classical dynamics and
in quantum mechanics share several common features: it
is less efFicient than in classical statics because of the ab-
sence of Debye regime (i.e., of exponential clustering) in
both cases. This is the subject of Secs. IV and V. Parts
of the material presented here have already been re-
viewed by Gruber and Martin (1980a), Lebowitz (1981),
Martin (1986, 1987), and Jancovici (1987).

II. BULK PROPERTIES OF HOMOGENEOUS FLUIDS

A. Equilibrium equations

1. General setting

In this section we are concerned with the bulk proper-
ties of homogeneous phases of classical charged particles

Rev. Mod. Phys. , Vol. 60, No. 4, October 1988



1080 Ph. A. Martin: Sum rules in charged fluids

in dimensions v = 1,2, 3. We can have s species of
charges e, +=1, . . . , s, and a fixed uniform background
of charge density c„. We speak of a Coulomb gas when

c& ——0, and of a jellium system when c&&0. A Coulomb
gas has at least two components with charges of opposite
signs. The jellium can have several components with
charges of the same sign and opposite to that of the back-
ground. The one-component jellium is usually abbreviat-
ed OCP (one-component plasma). We denote by

q =(a, r) the species a and the position r of a particle of
this species.

A configuration of N particles in the volume V has po-
tential energy

U(q, , . . . , q„)= g e e P(r; —r )

+cb g e f dr/(r, —r)
i=1

ponents have charges of equal sign. In the energy {2.1),
P(r) denotes the regularized Coulomb potential when
this is needed. In fact, all the properties of interest to us
are due to the long range of the Coulomb potential, and
we will allow local modifications of the potential (2.3)
such that the force F(r) = —VP(r) remains locally integr-
able. 2

It is well known that the finite-volume canonical or
grand canonical distributions pv(qi, . . . , q„), associated
with the energy (2.1), satisfy the BGY (Born-Green-
Yvon) equations (Yvon, 1969; Hansen and McDonald,
1976)

—1~ipv{q» .

Fb(qi)+ g F(q„q, ) pv(q„. . . , q„)
J =. 2

+ f dq F(q„q)p, (q, q„.. . , q„), (2.4)

+-,'c,'f dr f dr'y(r r') . —
v . v

(2.1) where

The Coulomb potential P'(r) is the solution of the Pois-
son equation in dimension v= 1,2, 3:

F(q„q2)=e e F(r, —rz)

is the two-body (regularized) Coulomb force, and

(2.5)

b.P'(r) = —c,,5(r),

Ei =2, 82=2&, E,3=47T,

namely,

1 v=3,

4'(r)=
1

[
r

[

—
/

r l, 'v=&.

v=2 {ro is a length scale),

(2.2)

(2.3)

Fb(q)=e cb f dr'F(r —r')
v

(2.6)

is the electric force on the particle e at r due to the
background charge density. In Eq. (2.4), I vdq
= f vdr g'„ i means integration over V and summation
over all species.

For the purpose of taking the thermodynamic limit
and studying the bu]k properties, it is convenient to
rewrite Eq. (2.4) in terms of the electric field due to all
charges (background plus system's charges) as

The singularity of P'(r) at the origin prevents the ther-
modynamic stability of systems containing point charges
of opposite signs in two dimensions for strong enough
coupling, and in three dimensions for all values of the
coupling (classical collapse). In these cases we introduce
an appropriate regularization of the potential at r=0,
which we will not specify here (for instance, by dealing
with spherically symmetric extended charges). The regu-
larization is not necessary for the jellium when all com-

Ev(r) = f dr'F(r —r')cv(r'), (2.7)

where

cv(r)= g e pv(o. , r)+cb (2.8)

is the total charge density. Equation (2.4) then becomes

P '~ipv{qi qn)= ~ Ev{ i)+ X F(qi qg) pv{qi
J =2

+ f,dq F(qi q)[pv{q qi q. ) —pv{q)pv{qi (2.9)

2. Thermodynamic limit

In a number of cases, it has been proven that the ther-
modynamic limit of the finite-volume correlations exists,
and the corresponding infinitely extended state is invari-
ant under translations and rotations. In the cases de-
scribed below (except the last one), the finite-volume

2Strongly repulsive short-range forces, or hard cores, can also
be considered. This requires us to explicitly separate the contri-
butions of the short-range parts of the force from those of the
long-range parts: the demonstrations become slightly fonger,
but the results are the same for the problems under considera-
tion.
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correlations are defined in the grand canonical ensemble
with temperature T and activities z .

(a) Edwards and Lenard (1962) have explicitly solved
the problem of the one-dimensional Coulomb gas (cb ——0)
when the charges are ratiopally related, for all values of
T and z . They have shown that the thermodynamic
limit can be taken by usual method of the transfer matrix
in one-dimensional systems.

(b) The thermodynamic limit of the three-dimensional
Coulomb gas (cb ——0) can be controlled in the Debye
screening regime (Brydges, 1978; Brydges and Federbush,
1980). The charges e are integer multiples of a charge e.
The Debye regime is characterized by the dimensionless
plasma parameter I =Pe /A, D small enough, where

Pgz e

The Coulomb potential is taken as the inverse of the La-
placian with Dirichlet boundary conditions, correspond-
ing to perfectly conducting walls. The methods are based
on the sige-Gordon representation of the Coulomb gas
and cluster expansions developed in the context of the
constructive field theory. In this treatment constraints (i)

e z =0 and (ii) z /max Iz I )C~O are imposed.
Condition (i), related to overall neutrality, has been re-
moved in particular cases, and free boundary conditions
can also be used (Federbush and Kennedy, 1985). The
thermodynamic limit of the two-dimensional Coulomb
gas has been established by the same field-theoretic
methods in the Debye regime characterized by the plas-
ma parameter I"=Pe small enough (Yang, 1987).

(c) The results of (b) have been generalized by Imbrie
(1983) to systems with arbitrary charges, including the
jellium. The jellium limit formally corI'esponds to
z ~~, with z e fixed for one species n, namely, to re-

laxing condition (ii) in (b).
(d) Frohlich and Park (1978) have shown the existence

of the thermodynamic limit of charge-symmetric systems
in all dimensions, and for all values of the thermodynam-
ic parameters. A charge-symmetric system has cb ——0,
and an even number of charges, with e = —e +1 and
z =z +1. One uses here correlation inequalities for
Gaussian measures. For charge-symmetric systems it is
possible to prove that the correlations are asymptotic to
the approximation given by the Debye-Huckel theory as
the parameter I =Pe /XD tends to zero (Kennedy, 1983).
Moreover, in the presence of an external charge distribu-
tion, the correlations converge as I —+0, after an ap-
propriate scaling, to those of an ideal gas in the external
mean potential determ&ned by the Poisson-Boltzmann
equations (Kennedy, 1984).

(e) The two-dimensional OCP is exactly solvable in the
canonical ensemble for the special value of the coupling
parameter I =Pe =2 and all densities (Alastuey and
Jancovici, 1981a; Caillol, 1981; Jancovici, 1981a). The
reason is that at this value of the temperature, the
Boltzmann factor takes the form of a Vandermonde
determinant that can be computed. Vr'e add that Gaudin
(1985) was able to solve, at I =2, a lattice version of a
two-component Coulomb gas. This model is further
studied and extended by Cornu and Jancovici (1987).

3. The BGY hierarchy for the bulk correlation functions

In all the above-mentioned cases, the bulk correlations
p(qi, . . . , q„)=lim „pi,(qi, . . . , q„) obey the hierar-

chy of equations obtained by formally taking the infinite-
volume limit in Eq. (2.9). More precisely, one shows for
the two- and three-dimensional systems of cases (b) —(e)
that the bulk correlations satisfy the equations (Fontaine
and Martin, 1984)

n

~ip(qi . q )= g F(qi q )P(qi q. )+f dq F(qi, q)[p(q, qi, , q. ) —p(q)p(qi, . . . , q„)]
J=2

(2.10)

under the clustering condition

l p(q, qi, , q. ) p(q)p(qi . . —

(2.11)

»d, as &~R', the electric field (2.7) vanishes in the
bulk. A uniform state that verifies Eqs. (2.10) and (2.11)
cannot sustain a nonvanishing electric field in the bulk.

The correlations of the one-dimensional Coulomb gas
[case (a)] also obey Eq. (2.10) in the thermodynamic limit

This condition is verified in cases (b), (c), and (e) (see
Sec. II.B). It ensures that the integral in the last term of
Eq. (2.10) is absolutely convergent. The corresponding
states are locally neutral:

Indeed, writing the infinite-volume limit of Eq. (2.9) for n = 1,
and for a general E=lim Ez(r), gives

R

e E+e pe jdriF(r —r, )[p(a, r, a„r, ) —p~ ]=0

y e.p.+cb =0
a=1

(2.12)
The invariance of the two-point correlation under translations
and rotations together with the antisymmetry of the force imply
that this integral vanishes, and thus E=O.
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(Gruber, Lugrin, and Martin, 1978; Aizenman and Mar-
tin, 1980; Aizenman, 1981). However, this system shows
a dielectric behavior: in an external applied field, it ad-
mits states where the electric field is also dig'erent from
zero in the bulk (see Sec. II.F).

It will be useful to write Eq. (2.10) in an alternative
form, introducing the electric field at r&,

E(r,
I q2, . . . , q„)= JdrF(r, —r)c(r

I q2, . . . , q„),
(2.13)

~ipT(qi Q)=e,p(qi)E(ri I Q)

ri

+ X F(qi q))pT(qi Q)
J =2

+ Jdq F(q„q)PT(q, q, , Q) .

B. Cluster properties

1. Results

(2.16)

pT(qi Q)=p(qi Q) p(qi)p(Q) (2.14)

pr(q, q„Q ) =p(q, qi, Q ) —p(q i )PT(q, Q)

p(q)p T(—q i, Q ) —p( Q)p(q, q i ) . (2.15)

When Q consists of a single point, Eq. (2.15) is the usual
form of the truncated (Ursell) three-point correlation
function. Then it is not hard to check that Eq. (2.10) is
equivalent to

which is generated by the excess charge density (1.21)
when particles are fixed at q2, . . . , q„. For this we intro-
duce the abbreviated notation Q=(qz, . . . , q„), and the
truncated functions defined by

Not much is rigorously known about the behavior of
the correlations for large spatial separations. In the one-
dimensional Coulomb gas [case (a)], the asymptotic form
of the truncated correlation functions can be calculated
and shown to be exponentially decaying (Edwards and
Lenard, 1962). This follows for the fact, familiar in one-
dimensional systems, that there is a gap between the
lowest eigenvalue of the transfer matrix and the rest of
the spectrum.

A remarkable result is the proof of the existence of the
Debye-Huckel regime (i.e., exponential clustering) in the
two- and three-dimensional Coulomb systems of cases (b)
and (c). Brydges and Federbush (1980), Imbrie (1983),
and Yang (1987) show that the truncated correlations
have an exponential bound, when two groups of particles
are separated:

Ip(ai, r, +a, . . . , Qk, r/, +a, ak+„rk+i, . . . , Q„,r„)

p uzi ri . . . ~k rk)p(izk+i rk+i . . o'n rn)
I

&Ciexp
XD

(2.17)

Constants C& and C2 depend on the thermodynamic pa-
rameters and on the short-range regularization. The con-
stant C2 can be chosen arbitrarily close to one, by taking
the plasma parameter I su%ciently small.

One can make the following comment to appreciate
the difference between one and higher dimensions. Be-
cause of screening one can imagine that the charges in a
typical configuration can be grouped into neutral entities.
As a consequence of Newton's theorem, two neutral
groups of particles do not interact in one dimension, as
soon as they do not overlap. %'ith this picture in mind
the one-dimensional system behaves as a gas of neutral
molecules with short-range forces, and the correlations of
this gas are known to cluster exponentially fast. In
higher dimensions, however, neutral groups of particles
do not form spherically symmetric charge distributions
and there are always residual multipole forces between
such groups. The important and albeit, nontrivial point
in the Debye-Huckel regime is that these multipole forces
are also screened, on the average, because of very subtle
arrangements of particles in the typical equilibrium
configuration, thus allowing for exponential clustering.

Finally, the correlations of the two-dimensional OCP

I

at I =2 [case (e)] can be calculated explicitly (Jancovici,
1981a), and they have a Gaussian decay. The structure
function (1.23) has the particularly simple form

S(r)=e p[5(r) —pe i'''~ ] . (2.18)

2. Type of clustering compatible
with the equilibrium equations

A simple argument based on the harmonicity of the
Coulomb potential shows that all types of asymptotic be-
havior ape not possible in a homogeneous classical
charged fiuid: if the truncated correlations are integrable
and monotonously decreasing at infinity, they have to de-
cay faster than any inverse power.

We consider the homogeneous OCP in three dimen-
sions. A short-range regularization of the Coulomb po-
tential is not needed here. Denoting PT(r)=PT(r, O),
(

I
r

I

= r ), the spherically symmetric truncated two-point
function, Eq. (2.16) for n =2, simplifies in this case to
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] e
f3

' pT(r)=epE(r)+ pT(r)dr r

+e r f~ dr'F(r —r')pz-(r, r', 0),
P 'pT(r) = —ep —+ +oC 4me p 1

(p —3)(p —2) rt' ' r'

(2.25)

(2.19)

with E(r)=r E(r
~

0) the radial component of the elec-
tric field (2.13). It is therefore determined by the Poisson
equation

[r E(r)]=c(r
~

0)
4mr

=e[pT(r)+p5(r)] . (2.20)

Then we have (Alastuey and Martin, 1985) the following
proposition.

Proposition 2.1. Assume that pT(r, O) is integrable
and tends monotonously to zero as r~cc. Moreover,
for r large enough,

~
pT(r, r', 0)

~

&M(t)
~
pz(r) ~,

t =min(
(
r —r' [, (

r'
~

), and lim, M(t) =0, then
limri'pr(r) =0 for all p &0.

The assumed bound on the three-point truncated func-
tion pT(r, r', 0) requires that the latter does not decay
more slowly than the two-point function itself, and also
has some joint decay as a second particle is sent to
infinity. This bound is compatible with known exact re-
sults, and bounds indicated by perturbative expansions.

Proof. Let us first assume for simplicity that pr(r) has
a power-law decay

Thus we conclude from assumption (2.21) that C=0 and
A =0. The relation C =0 is simply the charge sum rule
(1.24), and A =0 means that the decay cannot be like an

inverse power of the distance. The a priori assumption
(2.21) can be removed, to also exclude all kinds of mono-
tonous (nonalgebraic) decays that are not faster than in-

verse powers.
We conclude from the proposition that if the structure

function of the homogeneous OCP does not decay faster
than any inverse power, it must either have oscillations,
or be nonintegrable. The local relation between the elec-
tric field and the charge distribution given by the Poisson
equation (2.20), together with the monotonicity hy-
pothesis, play an essential role. We cannot exclude an os-
cillatory behavior as cosk, r/r~, because then the field and
the charge density are of the same order at infinity.

These arguments can be extended to multicomponent
systems, under the assumption that pT(a„r, a2, 0) has a
definite sign for

j
r

~

large enough, namely,

e,e,pT(ai r a2 0) &o
I
r

l
large enough,

an inequality which expresses the electrostatic attraction
or repulsion of charges at large distances.

lim rI'pT(r)=A for some p&3 .
y —+ oo

(2.21) 3. Non-Coulombic potentials

Integrating the Poisson equation (2.20) gives, for r&0,

C 4meE(r)= dr'r' p, (r')
r 2 r 2 y

To emphasize the special role played by the Coulomb
potential, among other long-range potentials, we consider
a OCP of particles interacting with a long-range but
non-Coulombic potential P(r) characterized by

4~e +0
p —3 rI' rP— (2.22)

P(r)= as
~

r
~

~~ (b~O),b
(2.26)

f dr'F(r —r')pT(r, r', 0)=o
rp —1

(2.23)

Hence inserting Eqs. (2.22) and (2.23) in Eq. (2.19) gives
r

~h~re C=e Jdr[pr(r)+p5(r)] is the total charge of the

right-hand side of Eq. (2.20). Moreover, the condition on

the three-point function implies that P(k)=a, b [k/r ', /k/ ~0, (2.27)

where p(k) is the Fourier transform of p(r), and a a
constant. Assuming that the correlations still verify the
BGY hierarchy, an analysis of Eq. (2.16) in Fourier space
shows that the Fourier transform S(k) of the structure
function necessarily has the form

with 0 & y & v, y&v —2 [y =v —2 is the Coulomb poten-
tial (2.3)], or equivalently

&d C 4meppT(r)=ep, —,, +o
dr r2 p —3 rJ' rp —1 S(k)=(Pa b) '

~

k
~

' r+g(k), (2.28)

and, therefore, by integration

4Lernrna 1 in Alastuey and Martin (1985).

(2.24) where g(k) depends on the three-point correlation func-
tion. When y&v —2, the first term of Eq. (2.28) is not
analytic in k at k=0, and this singularity induces a term
of order

~

r
~

' ' r' in the asymptotic development of
S(r). One of course has to check that the behavior of
g(k) as k~0 does not cancel the first term of Eq. (2.28):
in any case, a more detailed analysis (Alastuey and Mar-
tin, 1985) shows that the decay of S(r) has to be algebra-
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ic when y&v —2. Therefore, among all possible long-
range potentials, it is only in the Coulomb case, Eq. {2.3),
that a decay law of the correlations faster than any in-
verse power is compatible with the structure of equilibri-
um equations.

A physical example is the two-dimensional film of elec-
trons at the surface of liquid helium, interacting with the
three-dimensional Coulomb potential (i.e., v=2, @= 1).
If the term

l

r
l

' ~' is dominant, the asymptotic be-
havior of the structure function of the electron film is

l
r, and it agrees with the results found for the slab

geometry in three dimensions (Sec. III.D). The same
considerations apply to a one-dimensional system of elec-
trons interacting with the two-dimensional logarithmic
Coulomb potential (v= 1, y=O). Here, the decay of the
charge-charge correlations is r

l
[a result rigorously

established by Dyson (1962) for the value kii T = 1 of the
temperature], and corresponds to that obtained for the
strip geometry in two dimensions (Sec. III.D).

C. Multipolar sum rules

with g(r„r)=e g e pT(a, r, a„r„g). The cluster-

ing assumption (i) implies that
l
d "g(ri, r)

l
& M,

d = sup( r, ,
l

r
l

). Then, the following lemma with the
choice y=v —1 shows that the convolution (2.29) decays—v+ ]. —lofaster than r, l

Lemma. Let F(r) be a locally integrable function on
R' with F(r)=O(

l

r
l

r), 0&@&v, and g(r, , r) a
bounded function on R XIR such that g(r„r)=O(d "),
d =sup(

l
r, l, l

r
l

), and il ~ v+1. Then

lim
/rl/ ~oo

r,
l

r+'f dr F(r, —r)g(r;, r)=0 .

Thus we conclude that the field E(r,
l Q) also decays—v+ 1 —lofaster than

l ri
l

. Under the same clustering as-
sumptions, E(A,u

l Q ) has a multipole expansion up to or-
der /0:

(Q being fixed)

f dq F(q„q)pT(q, q„g)= fdr F(r, —r)g(r, , r),
(2.29)

We have seen in Proposition 2. 1 that the charge sum
rule (1.24) follows from the BGY equation, when the
truncated correlations are integrable. The next proposi-
tion states that the higher-order multipole sum rules
(1.22) have to hold in an equilibrium state that has good
cluster properties (Gruber, Lugrin, and Martin, 1980;
Gruber, Lebowitz, and Martin, 1981;Blum et al. , 1982).

Proposition 2.2. Let the space dimension v be two or
three. If the correlations satisfy Eq. (2.16) and

(i)
l
d "pT(q„. . . , q„) l

&M, d =sup
l
r, —r, l

l,j

~ ( —1)' Gi{u
l
Q)

E(A,u I )= 'V +o
l I pl + v i —pl+ v —i

l =0

with

G/(u
l
Q)= g (8; 8, F')(r)

ll '''ll

x fdrr ' r'c(rig).

(2.30)

for il& v+. lo and n =2, . . . , n~+2, then the (l, n) mul-
tipole sum rules (1.22) hold for l & lo, n & no

Proof. The asymptotic behavior of the BGY equation
is analyzed as the particle (a„r, ) is sent to infinity, the
other remaining fixed. One integrates Eq. (2.16) over a
ball of fixed radius, centered around the point r, =Au, u

being a fixed unit vector, and let A, ~~ [this has the
e6'ect of transforming the gradient on the left-hand side
of Eq. (2.16) into the integral of pT(qi, Q) on the surface
of the ball, so no assumptions have to be made on the
asymptotic form of the derivatives of the correlations].
The main point is to show that the field E(r,

l Q) due to
the excess charge density has a decay faster than—v+ 1 —lo'. This is clearly the case for the LHS (left-hand
side) of Eq. (2.16) (after integration over the ball) and for
the second term on the RHS (right-hand side) of Eq.
(2.16).

The last term on the RHS can be written in the form

GI'{u
I
Q)= 2 oi I'i+1{u)f,«I r

l
'&i,.{')c{r

I g»
m= —I

r=, (2.32)

where al are nonzero constants. Since u is arbitrary,
and the spherical harmonics are linearly independent, the
(l, n) sum rules follow:

fdr
l
r

l

'Y& (r)c(r
l
Q)=0,

l=0, 1, . . . , l0 .

One proceeds in the same way in two dimensions.

(2.33)

(2.31)

Hence we must have Gt{u
l
Q) =0 for I =0, 1, . . . , lo.

In three dimensions, the coefficient G& (u
l Q) can be

expressed in terms of the spherical harmonics Yl by

~This system has been extensively studied by Forrester (1984,
1986a, 1986b, 1988). See Appendix 8 in Martin and Gruber (1984).
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+ g e p(g)=0.
j=l

(2.34)

When Q=(a, r) reduces to a single point, the higher-
order sum rules are trivially verified because of spherical
symmetry. The first nontrivial higher-order sum rule is
the dipole sum rule when two particles are fixed:

fdrrc(r
I q, , q2)= f dq e r[p(q, q„q2) —p(q)p(qi, q2)]

+(e r, +e r2)p(q„q2) =0 . (2.35)

In the homogeneous three-dimensional OCP, the l-sum
rules imply the following relations between the two- and
three-point functions g2(r)=p p(r, 0) and g3(r„r2)

(r„r2,0):

pf dr2
I
r2

I
P/(~)[g3(ri, r2) —g2(ri)]

In one dimension, however, the coefficients G&(u
I Q)

are identically zero for I ~ 0, since the force is constant;
thus only the charge (l =0) sum rules can be derived. In
fact, in spite of exponential clustering, the I =1 sum rule
does not hold in the one-dimensional Coulomb system
(see Sec. II.D).

In two and three dimensions, exponential decay im-
plies an infinite number of sum rules: all multipoles are
shielded. This is, in particular, true for the states de-
scribed in cases (b) and (c) of Sec. II.A. In the sine-
Gordon formalism used here, the sum rules follow from
the fact that the Gaussian measure with covariance given
by the inverse of the Coulomb potential (the Laplacian
—b, ) is formally invariant under translations by harmon-
ic functions P(r). Technically, one first approximates
P(r) by a smooth function with compact support; the re-
sulting boundary terms do not contribute as a conse-
quence of exponential clustering (Fontaine and Martin,
1984).

Let us write the sum rules more explicitly in some par-
ticular cases. The general charge sum rules reads

f«c(»
I
Q)= f dq e [p(q, g) —p(q)p(g)]

where P&(8) is the Ith-order Legendre polynomial and 8
the angle between r, and r2. Approximation schemes for
closing the BGY hierarchy and computing the structure
function of the OCP should be consistent with the con-
straints (2.36). In this respect it is interesting to observe
that the Totsuji-Ichimaru convolution approximation
(Totsuji and Ichimaru, 1973) has this property.

D. Second-moment conditions

1. Stillinger-Lovett second-moment condition

The charge sum rule, which holds under the condition
of integrable clustering, can be interpreted as the shield-
ing of test particles of the same species as those which
constitute the system itself.

The situation is, however, not the same when we intro-
duce test charges that are diA'erent from the system's
charges: they may be shielded or not according to the
plasma or dielectric nature of the phase (see the discus-
sion following Proposition 2.3). We say that the system
has the complete shielding property if any external
charge distribution is screened by the system's charges.
If this is the case, the structure function S(r') has to satis-
fy the additional constraint (1.29), since this relation was
precisely shown to be a consequence of the shielding of
an infinitesimal charge in the linear-response theory. In
fact, the second-moment condition (1.29) can also be de-
rived directly from the equilibrium equations, as the mul-
tipolar sum rules, when the correlations have a
sufticiently fast spatial decay. This is the content of Pro-
position 2.3 (Martin and Gruber, 1983).

Proposition 2.3. If the charge and dipole sum rules
(2.34) and (2.35) are verified for n = 1,2, and if

f dql f dq2 I
r2

I pT(qi q2 q )

then the second-moment condition (1.29) holds.
Proof. Setting Q=(q, I in Eq. (2.16), and using the

first BGY equation

P 'Vip(q~ )=f dq F(qi, q)PT(qi, q)=0,

I
ri

I
g2(ri), l ) 1, (2.36) one can rewrite Eq. (2.16) as

p 'VipT(q, , q2)=e p(q, )E(ri lq2)+ fdqF(qi q)[pT(qi q2 q)+(~...+~, , )pT(qi, q)] . (2.37)

After multiplication by e and summation over a2, and taking into account definitions (2.13), (1.20), (1.21), and (1.23),2

one gets

p 'Vi g e pr(qi, q2) =e p fdrF(ri —r)S(r —r2)+ f dq F(qi q)cT(r2
I ql

cx2

(2.38)

The excess charge density

cT(r2
I qi q )= & e., [PT(q2 q»q )+(~„,, +&„,„)PT(qi,q )l (2.39)
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differs from definition (1.21) only with respect to a truncation in the variables q, and q. It is easy to check that it also
satisfies the charge and dipole sum rules. The same is true for the last term of Eq. (2.38) (here the joint integrability as-
sumption on the three-point truncated function enters to allow the exchange of the r and rz integrals). Multiplying Eq.
(2.38) by rz, and integrating over rz, we are left with

P ' f drzr2 V, ge pT(q„qz) =e„p f dr2r2 fdrF(r, —r)S(r —r2),
cx2

r

P 'f dr~r~ V2 ge pT(q„q~) = —e p f dr~r~ V2f dr/(r~ —r, —r)S(r) .
(Xp

(2.40)

The second line of Eq. (2.40) results from translation and
rotation invariance. After partial integration, and taking
the charge sum rule into account, one finds (setting
r, =O)

P 'e p v=e p v f dr2 fdr P(r2 —r)S(r) . (2.41)

This is equivalent to relations (1.27), (1.28), and (1.29) [if
P(r)=1/

~

r
~

+P"(r) has an integrable short-range regu-
larization P"(r), the latter does not contribute, since then

fdr'J dr/"(r' —r)S(r)= Jdr'P"(r') JdrS(r)=0, by
rule (1.24)]. The proof is the same in two dimensions.

The conditions of the proposition are obviously
verified in the Debye screening regime [cases (b) and (c)
of Sec. II.A], as well as for the two-dimensional OCP at
1 =2 [case (e)], implying the validity of the second-
moment condition in these systems [in particular, this
can be checked directly on the simple formula (2.18)].

One expects, however, that Eq. (1.29) fails [i.e., the
second-moment differs from the universal value (1.29)] in
the phases where arbitrary external charges are not
screened. This can be shown to occur in two instances:
in the Kosterlitz-Thouless phase (Kosterlitz and Thou-
less, 1973; Minnhagen, 1987) at sufficiently low activity
and temperature, and in the one-dimensional Coulomb
gas for all activities and temperatures.

potential P' (r„r2) should behave as the Coulomb poten-
tial itself, i.e., P' (r„rz)= —ln

~
r, —r2

~

in two dimen-
sions, or P' (x„xz)=—

~
x, —xi

~

in one dimension.
The absence of screening is therefore characterized by
the divergence of the excess free energy, or by

lim p, (r„rz)=0, v=1, 2 .
lI) —I2/ ~oo

(2.43)

(2.44)

for some positive constants M and 6, whenever e0 is not
an integer multiple of e, and the activity and temperature
are small enough. Loosely speaking, the Quid particles
bind in pairs in the confining logarithmic potentia1: the
system behaves rather as a gas of dipoles than as free
charges, and it is known that a gas of dipoles does not
screen external charges (Frohlich and Spencer, 1981b).
Moreover, it can be verified that the second-moment con-
dition fails under the same conditions. The situation is
similar in one dimension, where one has the estimate

~ p, (x,0)
~

&M exp( —5
~

x
~

) (2.45)

Frohlich and Spencer (1981a) have been able to prove
that in a two-dimensiona1 charge-symmetric system of
charges e and —e, the correlation (2.42) is bounded by

2. Screening of external charges

In order to discuss the screening of external charges, it
is convenient to introduce the correlation p, (r„r2) of an

0

external pair of charges (eo, —eo) located in r, and r~,
defined by

Zv(ri r2)
p, (r„r2)= lim

v R Zy

=exp[ —13F'"(r„r2)]
=exp [Pe 02/' (r „r2)] . (2.42)

The partition function Zv(r„rz) (respectively, Zv) refers
to the iiuid in the presence of (respectively, without) the
pair (eo, —eo). The quantity F'"(r„r2)=—cog' (r„r2),
defined by Eq. (2.42), is the excess free energy when the
pair (eo, —eo) is immersed in the fiuid. If the Auid parti-
cles are not capable of screening eo and —e0, the e6'ective

for all activities and temperatures (Aizenman and
Frohlich, 1981), and the second-moment condition never
holds (Aizenman and Martin, 1980).

In view of these results, it is natural to adopt the valid-
ity or the failure of the second-moment condition as a
criterion for discriminating between a plasma or a dielec-
tric phase of the Coulomb gas. One must remember here
that this criterion applies only to the bulk properties, and
does not take into account the surface polarization
effects. The relation between the (bulk) Stillinger-Lovett
second-moment condition (1.29), and the dielectric sus-
ceptibility of a macroscopic body, wi11 be discussed in
Sec. III.G.

The main assumption of Proposition 2.3 is the validity

In the proof of Eq. (2.44), the self-energy of the charges is in-
cluded. The self-energy terms are finite because of the regulari-
zation provided by the use of a lattice configuration space.
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of the dipole sum rule (2.35), which is true if the correla-
tions cluster faster than

l
rl ' +", v)2 (Proposition

2.1). Proposition 2.3 puts an upper bound on the decay
of the particle correlations in the two-dimensional
Kosterlitz-Thouless phase: the three- or four-point func-
tions (or both) cannot decay faster than

l
r

l
. For the

one-dimensional gas (which has exponential clustering),
Proposition 2.3 implies that the dipole sum rule (2.35) is
always violated because of the dielectric nature of the
phase.

Another piece of information that follows from Propo-
sition 2.3 is the asymptotic behavior of the Ornstein-
Zernike direct correlation function Co(r). In Fourier
space, the direct correlation function Co(k) of the OCP is
related to the structure factor by

More generally, one finds the analog of Eq. (2.49) for a
-fully truncated n-point function

fdl„, f dl2 f drt
l

1',
l pT(r„12, . . . , 1„„0)

3—( 1)" (g 1)t
2irPe

(2.51)

These rules have appropriate generalizations to mul-
ticomponent systems. They can also be understood as
consistency relations imposed by the screening of an
external charge when one goes beyond the linear term in
the response theory.

More interesting are partial second-moment relations
when only one variable is integrated out. The latter are
specific to the jellium, and involve partial derivatives of
the correlation functions with respect to the density

C,(k) S(k) p
PS(k)

Inserting the sum rule (1.28) one gets

C (k) p2ir(v —1) 1

lkl lkl

(2.46)

n —f

l rj l PT(r2, . . . , r„ i, o)
J =2

3 » pT(r„. . . , r„„O) . (2.52)
2~Pe2 &p

= —PP '(k)+o, (2.47)

i.e., Co(k) behaves as the Coulomb potential itself as
l

k
l

~0. This fact, commonly used in the integral-
equations theory of fluids, appears here as a rigorous
consequence of the IIGY hierarchy when the hypotheses
of ProposItion 2.3 are fulfilled. The behavior (2.47) of the
direct correlation function has been used as a starting
point to establish the second-moment condition (Mitchell
et al. , 1977).

3. Second moment of higher-order correlations

a. One-component plasma

dr
l

r
l PT(r, O)= — (v=3) .

2vrpe
(2.48)

In combination with the charge sum rule
fdr2PT(r„rz, O)= —2pT(r„O), this leads to the follow-
ing relation for the three-point function:

Combining various sum rules, it is possible to obtain
simple second-moment sum rules for higher-order corre-
lations. We give some examples in the OCP. With
definition (1.23), the Stillinger-Lovett condition can also
be written as

The compatibility between Eqs. (2.51) and (2.52) is easily
checked. These relations for arbitrary n have been de-
rived independently by Alastuey (1988) and Vieillefosse
and Brajon (1988): they follow, for instance, from a
study of the small-wave-number behavior of generalized
Ornstein-Zernike equations for n-point functions. The
case n =3 appears in Vieillefosse (1985).

b. Multicomponent jellium

pi=— 1 S

Cb+ pep
1

'

(x=2
(2.53)

In this setting, the following partial sum rules have
been derived (Suttorp and Van Wonderen, 1987):

We consider a mixture of s point charges e
+=1,2, . . . s, of equal sign, embedded in a neutralizing
background. The overall neutrality is satisfied, but the
particle density p= g' t p is no longer proportional to
the charge density when s & 1. The statistical ensemble
can be parametrized in several ways. A convenient pa-
rametrization is given by the inverse temperature P, the
background charge density c&, and s —1 activities
z2, . . . , z„which are used to fix the s —1 densities

p2, . . . , p, . Then the density of species 1 is determined
from the neutrality relation

f dr2 f dri
l
ri

l PT(r»r2 0)=
e

(2.49) dpa, dpa,g.fdr2PT(a„O, a2, r2) =—p +2cb +pa
CX2

3 8 BCb

Using the dipole sum rule fdr2r2PT(r„r2, 0)
= —rtpT(r„O), one also obtains from Eq. (2.48) (2.54)

32 r2 f d r, r, r2p T(r „r2,0)=
2~Pe

(2.50)
Pa,ye..f«, l., l'PT(~t, 0, ~2r2)

217 BCb
2

(2.55)
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3

vrf3 ' deb
(2.56)

One obviously recovers Eq. (2.49} when only one species
is present.

4. Fourth moment

%'hen these equations are summed over o,
&

with the fac-
tors e and the neutrality (2.53) is used, one recovers the

1

usual charge sum rule for Eq. (2.54), and the Stillinger-
Lovett second moment for Eq. (2.5S},as one should.

The same authors also give sum rules for the three-
point functions that generalize Eqs. (2.49) and (2.50) to
the multicomponent jellium, ig particular,

f dri f dr3
I

r3. 1 pT(~1 rl ii2 0 iz3 r3)

(C', )
lim = —a, fdr

I
r

I
S(r) =K ~0,

1
Qi =1, Q2= —,Q3=—1

4

(2.59)

m„=f d
I
r "G(r

G(r)= g e e pT(a„r, a3, 0),
(2.60)

Equation (2.59) holds when S(r) has an integrable first
moment, and satisfies the charge sum rule (1,24). More-
over, the result (2.59) is independent of the shape of the
regions A. It is the same for spheres (van Beijeren and
Felderhof, 1979), and more generally for a sequence of di-
latations of any fixed domain Ao (Martin and Yalqin,
1980).

The moments of the charge-charge correlations

It has been known for a long time that the fourth mo-
ment of the structure function of the OCP is related to
the isothermal compressibility XT (compressibility sum
rule, Pines and Nozieres, 1966; Vieillefosse and Hansen,
1975; Baus, 1978)

always have a definite sign for k =0, 1,2. Since
G(r) =S(r)—6(r) g e p [Eq. (1.23)], Eqs. (1.24), (1.29),
and (2.S9) imply that its first moments are negative:

mo= —ge p
2

dr
I
r

I
S(r)=-f 15 1

2' pe PXT

or, equivalently,

(2.57)
I]=-

Q
(2.61)

s(k)= IkI — IkI +o( IkI ) .
16m' pe pXT

V

vr(v 1)P'—
(2.58)

Recently, Vieillefosse (198S) has provided an exact
derivation of the compressibility rule (2.57) from the mi-
croscopic equilibrium equations, again taking into ac-
count the dipole sum rule (2.35) and various identities be-
tween the correlation functions. The same result has
been obtained by Suttorp and Cohen (1985). In these
works, the small-wave-number behavior of the fiuctua-
tions of other quantities of interest {such as the energy
and pressure density) is also determined. In a multicom-
ponent jelliurIi, sum rules for the fourth moment of the
pair correlation function can be established (Van Beijeren
and Felderhof, 1979; Suttorp and Van Wonderen, 1987),
as well as various fiuctuation formulas (Van Wonderen
and Suttorp, 1987).

E. Charge fluctuations

1. Moments of the charge-charge correlations

2. Charge correlations in adjacent regions

It is also interesting to compute the correlations of the
charge in two different subregions A, and A2 (Lebowitz,
1983):

(CA CA ) = f dr, f dr2S(r, —rz)

= fdrS(r)yA A (r) . (2.62)

Here Xz (r) are the characteristic functions of A;,
i =1,2, and

The negativity of these moments rejects the fact that the
screening cloud of a charge is mainly made of charges of
the opposite sign, and G(r) has to be mostly negative, In
solvable models [cases (a) and (d) of Sec. II.A], one finds
that G(r) is even pointwise negative. However, this will
not be the case in general: when the particles have repul-
sive cores and the density is sufficiently high, G(r) is ex-
pected to have oscillations at short distances.

It has already been explained in the Introduction that
the mean-square charge fluctuations in the bulk are
strongly reduced as a consequence of neutrality. These
Auctuations are related to the first moment of the struc-
ture function. Using the spherical symmetry of S(r), Eq.
(1.33) has the equivalent form

y~ ~ (r)= Jdr'XA (r+r')XA (r')

is the volume of the intersection of A& with the r-
translate of A2. Considering, for instance, two adjacent
cubes centered at (0,0 . 0) and (L, O . . 0), one has, for
L large enough and r = (r ', . . . , r ),
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0, r')0 or r'& —2l. ,

'+«L
(2L —I"

1

)L '+O(I. -'), 2I—.& ~r'~ & I.—.
(2.63)

If S(r) has an integrable first moment, one finds from ex-
pansion (2.63) that

l

of adjoining regions is large compared to the Debye
length (1.5).

&C, C, )lim, = fdr
~

r'
~
S(r)

4v

I K&0.
2v

(2.64)

Only the domain —I. &r'&0 contributes to the limit,
and (CA Cz ) is proportional to the common surface

1 2

area o' the two cubes. The negativity (2.64) of the corre-
lation~ of adjacent regions again rejects the fact that the
syste n behaves as if built of neutral entities. The charge
Auctzations iri A& are due to the neutral clusters of
chai g'es that intersect the surface between A, and A2. An
incr:ase of the positive charge in A& necessarily results in
an i»crease of the negative charge in A2. In the Debye
screening regime, the asymptotic statements (2.59) and
(2.64) will hold approximately whenever the diameter L

l

3. A central limit theorem in dimension v=2, 3

One can expect that the full probability distribution of
the appropriately scaled charge random variables

h» a»mit as
indeed- the case: under suitable clustering assumptions,
the limiting distribution is Gaussian in two arid three di-
mensions (Martin and Yalqin, 1980; Lebowitz, 1983).

More generally, let the space R = U A be divided into
disjoint cubes of volume I. centered on a simple cubic
lattice, and let CA =(2vL ') '

CA be the appropri-
J J

ately normalized charge in A . . Then, as stated iri the
riext proposition, these random variables are jointly
Gaussian, with covariance given by the finite difference
Laplacian 6; on Z, v=2, 3.

Proposition 2.4. Assume that

(i) fdr, . fdr„~ pT(a„O, az, rz, . . . , a„,r„)
~

& ~ (X clustering);

(ii) f«2 fdr„~ r,
~ ~

pT(a&, O, az, r2, . . . , a„,r„)
~

& ~, for n =2, 3;
(iii) the (O, n) charge sum rules hold for n =1,2, 3 .

Then the joint distribution of the C~ is Gaussian as
J

I.~ ~, with covariance

d;,. = lim (CA C'A )
L —+co ' J

1 K=K 5, — 6~; . (l ——— ~ ~ .
2v ' ' 2v

(2.65)

pvoof. To obtain the covariance d;J, one verifies that
nonadjacent cubes are. not correlated:

ln(exp(iyC'A)) = g M„(Cz),
n~

(2.67)

M, (c', )=(c', ) =o,
M, (c.)=&c '. ) —(c', )',
M, (C )=(C ') —3(C'')(C )+2(C )',

(2.68)

I

to the Gaussian exp( yE) as L~~—(for simplicity
only a single charge variable is considered here). Using
the cumulant expansion

lim &C'~ C'A )=O, ~i —J ~

)2I. .
L~ oo

(2.66)

The combination of Eqs. (2.59), (2.64), and (2.66) leads to
Eq. (2.65) of the covariance.

If one denotes the generating function for the probabil-
ity distribution of the charge C'~ by gA(y)
= (exp(iyC~)), one likes to show that g~(y) converges

This amounts to showing that all cumulants M„(C A ),
n )3, vanish as I.~ ao. The nth-order cumulant can be
represented as an integral over truncated correlation
functions pT(q, ~ ~

q„), which include the contribu-
tion of coincident points

M„(C'~)=, f dq, . f dq„e e pT(q, ~

.
~
q„),1

(2.69)

pT(qi I q2) =pT(qi q2)+~„,„p(qi ),
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PT(ql I qz I q3)=PT(qi q»q3)+&„,,pT(qi q3)+&„,„PT(qi,qz)+&„,„pT(qi, qz)+&, ,~, ,P(qi» (2.70)

One easily sees that the charge sum rule (2.34) is equivalent for the. pT(q, I

. q„) to

dq&e pT q& q&
. q„=O . (2.71)

The X -c'lustering assumption, and the translation invariance, imply that the integrals (2.69) are of the order of L, i.e.,
M„(C & ) =0 (L "~ ' "). Therefore, M„(C z ) vanishes as L ~ ae when n & 3 in three dimensions, and n ~ 4 in two di-
mensions. Let us now estimate M3(C'~) in three dimensions. Using the charge sum rule in the form of Eq. (2.71), one
has

1M3(C'A)= f, dqi f dqz f dq3e e e pz(qi I qz I q3)

1= „»f, «i f «zh(ri —rz) ~I, IR'yA A
(2.72)

where we have set e(r)= fdr'P(r —r')C(r') . (2.74)

h(ri —rz)= f dq3 g e e e PT(cubi, ri
I
oz, rz a3 13) .

(2.73)

Under assumption (ii), the integral (2.72) with rz in A and
r, in the complement of A is on the order of the surface
L, and thus the quantity (2.72) vanishes as L ~ eo. The
proof in two dimensions and for the joint distribution of
the C'~ is similar.

In the one-dimensional system, there is no scaling
[ I

BA
I
=0(1)],and the charge variable CA has a discrete

range. In this case, all the cumulants are different from
zero in the limit I.~~, and the distribution of CA con-
verges (weakly) to a discrete one. An explicit example of
such a distribution can be obtained for the charge-
symmetric model (e, —e). Here the limiting distribution
is expressed in terms of the Fourier coeScients of the
fundamental solution of the Mathieu equation (Martin
and Yalqin, 1980).

Here there is no conceivable way in which distant regions
would be decoupled for arbitrary configurations. The po-
tential at r is genuinely nonlocal, and particles far away
will always contribute to the fluctuations at r. It is there-
fore of interest to know if these fluctuations are well
behaved, and how to compute them. The problem is also
of practical importance: a knowledge of the distribution
of the electric field, usually referred to as the microfield,
is needed to determine the shape of spectral lines emitted
by a neutral or partially ionized atom in a plasma.

Let us first investigate the possible behavior of the po-
tential fluctuations in the thermodynamic limit, with the
help of an argument due to Alastuey and Jancovici
(1984). The potential fiuctuations in a finite system of
volume Vare given by

8' (r„r,)=([~11(r,) —(+(r, )) ][p(r ) —(q'(r )) ])
= f dr', f drz'P(r, —r', )P(rz —rz)Si, (r',

I rz),

(2.75)

F. Potential and field fluctuations

1. General considerations

For particles with short-range interactions (for in-

stance, with a finite range d), the potential at r is a local
quantity, namely, it depends only on the part of the parti-
cle configuration that is in a sphere of radius d around r.
Then the potential and force fluctuations in a finite spa-
tial region A in the bulk are well defined, since they de-

pend only on the configuration of particles in the vicinity
of A. Regions separated by large distances (larger than
2d) do not infiuence each other directly.

The situation is very different in charged systems,
where the potential at r due to a particle configuration is
formally given by

where Si,(r, I
rz) is the charge-charge correlation func-

tion in the finite system. We choose for V a sphere
(disk) of radius Ro, and consider the potential

f vdrzP(rz —rz)Si (r',
I
rz) at rz, due to the charge distri-

bution Si,(ri
I
rz) for fixed ri. Although the global neu-

trality in the finite system implies

The average potential ( 1') =lim ( +(r) ) z
diFerent from zero even in a homogeneous state, because elec-
tric layers will be formed near the boundaries of the finite sys-
tem. The potential in the bulk will be constant, and remains
nonzero as the boundaries recede to infinity. An example is
given by Alastuey and Jancovici (1984).
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f drzS&(r',
~

r2)=0, (2.76)

this charge distribution will, in general, have a nonvan-
ishing dipole moment:

+R (r) = f dr'%(r'),1

iX

Then the electrostatic formula

4mR

3
(2.83)

drzrzSv r, r2 ——0 1 (2.77)

0, v=3,1

R0

due to charge layers at the boundary of the sphere (or the
disk). The potential at the origin r, =0 due to this charge
distribution is therefore of order

dr' 1

XR(r)
~

r —r'
~

4vrR 1

3 fri
'

i
r /'+2mR',

f
r

/
(R,

(2.84)

v= 2.
(2.78) yields the identity

+R"'(r) = —.1IIR (r)+OR (r), (2.85)

We estimate the order of magnitude of the potential
fiuctuations W), (0,0) at the origin as follows. If r', is in
the vicinity of the boundary in the integral (2.75) one has
P( r') ) = 1/R o ( v =3 ), P( r', ) = —lnR 0( v =2 ). With the esti-
mate (2.78), the contribution to W&(0, 0) of a shell of
volume Ro ' near the boundary in the ri integral (2.75)
is therefore of order 1/R0 in three dimensions, but
diverges as 1nR0 in two dimensions. We therefore expect
that, when r, and r2 are fixed in the bulk, W), (r„r2)
remains bounded as R0 —+oo in three dimensions, but
diverges in two dimensions.

2. Potential fluctuations in three dimensions

with

tR(r)= f dr' —
3 ~

r' —r
~

+ C(r') .

(2.86)

Then one has (Lebowitz and Martin, 1984) the following
proposi tioIl.

Proposition 2.5. (i) Assume that the limit (2.79) exists,
and lim~,

~

„W(r)=0; then the potential fiuctuations
can be computed locally in the infinite state by

W(r, —r, )= lim &[+R(rl) ~(IIR(rl)~]
g ~ oo

(2.87)

We concentrate now on the three-dimensional case,
and shall assume that the potential fiuctuations (2.75)
have a translation-invariant thermodynamic limit

W(r, —r2)= lim W), (r„r2) .
V~ IR

(2.79)

Our main point is that whenever the limit (2.79) exists,
W(r) can as well be computed as the limit of averages of
strictly local functions in the infinitely extended state.

For this, it is convenient to distinguish first between
the contributions to the potential (2.74) due to the parti-
cles located in the neighborhood of r and the particles
distant from r. We split the potential into a local part
O'R (r) due to the particles inside a sphere XR(r) of radius
R centered at r, and a global outside part 'PR"'(r) due to
the particles in the exterior of this sphere:

1 „$(r")

r —r' r' —r"

2 f;k., S(k)
(2.88)

where the local function 'IIR(r) ='Ir'R(r) —O' R(r) is given
by definitions (2.81) and (2.86).

(ii) Moreover, if fdr
~

r
~

~)oT(a„r,a2, 0)
~

& oo, and
the (0,1) charge sum rule holds, W(r) is given by the fol-
lowing equations:

with

%(r) = +'R (r)++R"'(r), (2.80)
and has the asymptotic behavior

(2.81)
W(r) = 1 fdr'

/

r'
/

S(r') +o

(2.89)

%R"'(r)=f, , C(r') .
R'iZR(r)

~

r —r
~

(2.82)

We introduce moreover the spatial average of' the total
potential on this sphere

Proof. Part (i) of the proposition results from the fact
that the spatially averaged potential (IrR(r) does not con-
tribute to the fluctuations. Indeed, the existence of the
limit (2.79) implies that, for each fixed R,
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lim ([%ii(r)—(%~(r))i,] )i,

3

4~

3

W(r)= 2' f—dr'
~

r+r'
~

—
~

r
~

— S(r')

3

5;

and this quantity tends to zero as R ~ oo if
hm,

~

„W(r)=0. The first equation (2.88) is obtained
by a direct calculation of the limit (2.87), with the help of
definitions (2.81) and (2.86). Notice that the second for-
mula (2.88) is the formal limit of Eq. (2.75), where the in-
tegrations have to be performed in the indicated order.
The last equation (2.88) results from the convolution
theorem for Fourier transforms.

To obtain the asymptotic behavior (2.89), we use the
charge sum rule and the spherical symmetry to write

W'"'(r)= ~f dr—'
~

r+r'
~

S(r'). . (2.91)

It is interesting to remark that the contribution W'"'(r)
to the fluctuations of the particles at "infinity" is not
negligible: it is just half of the total Auctuations (2.88).

the result (2.89) follows.
We see that the decay of the potential fluctuations is

always slow, even if the clustering is exponentially fast.
Moreover, when the second-moment relation (1.29)
holds, the asymptotic behavior of W(r) is P '1/

~

r ~,
i.e., universal, and independent of the short-range part of
the interaction.

Part (i) of the proposition shows that the contribution
%ii"'(r) of the particles at infinity to the Auctuations can
be calculated from the local function —~l)ii(r), and the
decomposition (2.80) provides a natural distinction be-
tween the contribution of the nearby particles and those
far away. The complete probability distribution of
%ii""(r) can be determined by the same method as in Pro-
position 2.4. If the state has the property of X' cluster-
ing, the random variables %ii"'(r) are jointly Gaussian as
R ~ Oo, with covariance

Since

f dr'r "r'S(r') = —,'5;, f dr'
~

r'
~

S(r'),

(2.90)
3. Electric field fluctuations in three dimensions

The electric field fluctuations can be treated in the
same way, replacing %(r) everywhere by E(r) = —P'%(r).
One finds the formula for the tensor e'J(r)
= (E'(r)EJ(0) ) of the electric field Auctuations (Le-
bowitz and Martin, 1984)

(2.92)

with the asymptotic behavior

e'(r) = 5, —3r'r~ f dr'
/

r'
/

S(r') +0 1+0 3, 7" =

The second equality follows from the second-moment
condition (1.29). The off-diagonal part of e "(r) always
has a slow decay of dipolar type. However, the trace

eJJ(r) =4' fdr', S(r')1

/r —r'/
(2.94)

decays faster than any inverse power if S(r) has that
property [S(r}satisfies the charge sum rule (1.24)].

Equations (2.88) and (2.92) refer to the Auctuations of
electric quantities at a point r in space. It is also impor-
tant to know in various physical situations the efFects of
the field Auctuations on a charged particle of type a0 at r0
in the system. The previous results can be extended
to this case by computing the potential and force Auc-

tuations in the state ( . )o, with correlations

(2.93)

I

po(qo, q i, . . . , q„)/p(qo ) conditioned by the presence of a
particle of type o.0 at r0.

We consider a general system of charged particles in-
teracting with the locally regularized Coulomb force
F(q„qz). Using the BGY equation it is not hard to show
that the correlations of the force at q0 in the state
( . )o involve only the two-point function

&F'(qo)F/(qo) ~o= f dq +'(q qo)(&'pT)(q qo) .
p qo

(2.95)
This gives, in particular, after an integration by parts,

1 f dq(V. F)(q qo}pT(q qo}
(2.96}
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is proportional to the electric field at qo. Then, using the
Poisson equation in Eq. (2.96), one obtains the following
simple fluctuation formula for the electric field [with
qo =(~o,o)]:

3

g (
~

E'(0)
~ &o —— pe pT(a, O, ao, 0)

j=1 PIZO exp

e
0

(2.97)

It is, in general, not possible to suppress the regulariza-
tion of the force in Eqs. (2.95) or (2.96) because of the loss
of thermodynamic stability, except in the case of a jelli-
um with all the particles having charges of the same sign.
In the latter case, we can deal with point particles (no
collapse) and the force

1
F(q, qo)= —e e V =e E(ro)

charges of the same sign. This exact value of the second
moment of the field has been used by Iglesias, Lebowitz,
and McGowan (1983) to compute the microfield distribu-
tion approximately.

4. Potential and field fluctuations in two dimensions

As noted at the beginning of this section, the two-
dimensional potential fluctuations diverge with the size
of the system. However, Alastuey and Jancovici (1984)
have shown that the Auctuations of the potential
difference

%(r, ) —%'(rz) = —f dr(ln
~
r, —r

~

—ln
~
r2 —r

~

)C(r)

at two points r1 and r2 exist:-

8'(r, —r2)= lim ([%(r, ) —4'(r2)
V~ IR

The last equation follows from the neutrality, and the
fact that the correlation p(a, r, ao, ro) vanishes at coin-
cident points because of the repulsive interaction between and are given by formulas analogous to Eq. (2.88):

(2.98)

W(r)= f dr'(ln
~

r —r'
~

—ln r'
~

) f dr"(ln
~

r —r"
~

—ln
~

r"
~

)S(r' —r") =2f dk(1 —e'"') (2.99)

The electric field Iluctuations e'~(r) are expressed in
Fourier representation by the same equation (2.92), with
the factor 2/vr suppressed. Both 8 (r) and e'J(r) do not
have a fast decay:

W(r)= —ln
~

r
~

+o(ln
~

r
~
),2

(2.100)

5, . —2r 'r'
e'J(r) =— 1+0 2 (2.101)

where the second-moment condition has been taken into
account. All these properties of two-dimensional Auctua-
tions can be checked explicitly in the two-dimensional
OCP at I =2 (Alastuey and Jancovici, 1984).

I

process. It has been recognized by Lenard (1963) that, in
the infinite-volume limit, this process is Markovian,
translation-invariant, and has the exponential clustering
property. The constant Eo in Eq (2.10.2) is a constant
external field due to charges at the boundaries. An in-
teresting point is that the states obtained in the thermo-
dynamic limit for different values of Eo, corresponding to
boundary charges that are not multiples of the e, are
distinct (Aizenman and Martin, 1980). In these states,
the average electric field (E & in the bulk does not van-
ish, and the system shows a dielectric behavior. This is
again a consequence of the fact that the charges form di-
poles bound by the confining potential —

~

x
~

. An exter-
nal field induces a nonzero polarization of these dipoles
in the bulk.

5. Electric field fluctuations in one dimension

In the neutral one-dimensional Coulomb gas, the
configurations of the electric field are particularly simple:

N

E(x)= g e sgn(x —x~ )+Eo,
j=1

x&0,
sgnx=

1 0 g e =0.x ( ~ jj=1

(2.102)

They are piecewise constant functions with discrete
jumps 2e at the positions x. of the charges. If one

J
thinks of x as a "time parameter, " one can identify the
configurations (2.102) with those of a certain random

G. Mixture of ions and dipoles

The sum rules can be generalized to classical Auids
where neutral molecules with multipoles are present, in
addition to pure charges. If the densities of mobile
charges are not zero, it is expected that the screening
properties remain the same (i.e. , of Debye type) as in a
Iluid consisting only of charges (Hoye and Stell, 1978).

The most commonly studied model is a system of ions
interacting with a dipolar solvent (civilized-model elec-
trolyte). It can be characterized as follows. The particles
of species e carry either a charge e or a dipole moment
of strength d„. We set d =0 (respectively, e =0) if the
species a is an ion (respectively, a dipole). For a solvent
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1094 Ph. A. Martin: Sum rules in charged fluids

particle, we introduce the abbreviated notation
q =(a, r, ro), where r and co(

1
co

1

=1) denote, respective-
ly, the position of the particle, and the orientation of its
dipole moment p (co)=d co. We normalize the angular
integration over the angles of the dipole to 1, and set

(2.103)

—f dr
1

r
1

[S(r)—V.P(r)]=—,v=2, 3 .
v n(.v —1) '

(2.111)

In Eqs. (2.110) and (2.111), S(r) is the charge-charge
correlation function

X[e +p (~,).V, ]F(r,—r, ) . (2.104)

Then, Proposition 2.2 holds: under the same cluster-
ing hypothesis, the multipole moment tensor of order I
due to the excess particle density p(q 1 q„. . . , q„) van-
ishes (Blum et al. , 1982):

f dqri(q~a(q lq! . . . q. )=o.
For the lowest orders, the tensors ~(q) are

ro(q) =e (charge),

z', (q) =e r'+p' (co) (dipole),

r&~(q) =e r'r +—'[p' (co)v'+p'(co)v']

(2.105)

(2.106)

(2.107)

——[e
1
r

1
+p, (co) r]5, (quadrupole) .

V

(2.108)

As an explicit example we write the dipole sum rule for
the two-point function:

fdr fdrop [e r+p (co)]pT(a, r, co, a„r,, ro, )

= —[e., r!+p.,(~!) ]p.,
(2.109)

which holds for each choice of the orientation iu& of the
dipole at r&. The extension to the case where the fIuid

has molecules with permanent multipoles of higher order
is straightforward. For instance, permanent quadrupoles
will contribute to the formation of the quadrupole tensor
(2.108), and so on.

If one assumes that the system screens arbitrary exter-
nal charges, the Stillinger-Lovett condition has the fol-
lowing generalization for a dipolar solvent (Carnie and
Chan, 1981a; Martin and Gruber, 1983):

Pf dr' fdr, [S(r)—V P(r)]=1,
1

r' —r
1

or, equivalently,

(2.110)

With this notation the BGY hierarchy (2.10) keeps the
same form, with the Coulomb force (2.5) replaced by the
Coulomb and dipole force

F(qi, q2) =[e +p (ro, ) V, ]

(2.113)

One should note that the screening is less eA'ective if
the ions have a structure and themselves carry dipoles
(i.e., e„and d both diff'erent from zero). A perturbative
calculation shows that the decay of the correlations is
now algebraic (as

1
r

1

' +" for the dipole-dipole corre-
lations). The screening of the charge still holds [Eq.
(2.105) for l =0, and Eqs. (2.110) and (2.111)],but the
higher-order rules (2.105) are no longer true. Because of
their own dipolar structure, the ions can no longer be ar-
ranged in the screening clouds to compensate for any
mult1pole.

Finally, w'e recall that a gas of pure dip oles
(e =O, a = 1, . . . , s ) does not screen. It can be shown
(Frohlich and Spencer, 1981b) that the truncated correla-
tion function of two infinitesimal external dipoles cannot
decay integrably fast. The dipole-dipole correlations in a
gas of pure dipoles must also have a weak decay. Indeed,
if the decay of the dipole-dipole correlations is faster
than

1
r

1

' + "(v&2), the dipole sum rule (2.109) (with
e =0) would hold according to Proposition 2.1. Hence
the dielectric bulk part of the susceptibility tensor

g'~= J dr, g f dc@,f dro2p' (ro, )p~ (co@))OT

X(a„r„~,
1
az, o,~, ) (2.114)

would vanish. This is in contradiction to the physical
property that a pure dipole gas behaves as a dielectric,
and should have a nonzero polarization in the bulk. One
expects that the dipole-dipole correlations decay as

1

r 1, i.e., as the dipole-dipole potential itself (Stell,
1977).

S(r)= g fd~, f d~,e., e.,pT(ai, r, ~i
1
a2, 0,~,),

A') A'2

(2.112)

and P(r) the charge-dipole correlation function

( )= 2 fd~!fd~2e. ,p, (~2)PT(a! r ~1 la20 ~2)

9The excess particle p(q
1 q, , . . . , q„) is defined as in Eq. (1.20),

with 5 =$ $(r) —z~)$(~i —~q).
One encounters an analogous situation in a quantum-

mechanical plasma (Sec. V.B).

Rev. Mod. Phys. , Vol. 60, No. 4, October 1988



Ph. A. Martin: Sum rules in ct)arged fluids

III. INHOMOGENEOUS FLUiDS

A. Introduction

In this section we review screening properties and sum
rules in charged fluids at thermal equilibrium that are not
invariant by translations. The cause of the inhomo-
geneities is external, for instance, the presence of walls, of
external charge distributions and applied field, or of addi-
tional forces which are not of an electric nature. %ith
the exception of Sec. III.F we shall not be concerned with
inhomageneous states that result from a spontaneous
breaking of translation invariance, such as ionic crystals,
Typical physical situations that we have in mind are elec-
trolyte solutions in the vicinity of an electrode, metallic
interfaces, or plasmas confined in varied geometries.

One first has to make a distinction between two classes
of systems, the semi-infinite and the strictly finite ones.
By semi-infinite systems we mean fluids which may be re-
stricted to a domain D by appropriate w@lls, but D is not
bounded, and extends to infinity at least in one direction.
Examples are plasmas in a slab or in a half-space bound-
ed by impenetrable walls. The correlation functions of a
semi-infinite system are obtained by a thermodynamic
lirgit, in which all boundaries except those delimiting D
are sent to infinity. In finite systems the fluid is confined
in a bounded region of space and descr&bed by the usual
finite-volume correlation functions.

In semi-infinite systems, some form of local neutrality
will be true on a microscopic scale: no macroscopic ex-
cess of charge can be built, since charge can always es-
cape to infinity. Semi-infinite systems are suitable for the
investigation of the microscopic structure of density
profiles and correlations in the vicinity of an inhomo-
geneity. On the other hand, it is only for finite-volume
systems that the surface polarization effects are fully tak-
en into account, and the findings can be compared with
the predictions of the electrostatics of macroscopic bo-
dies. This will be discussed in Sec. III.G.

The inhomogeneous fluid that we consider here will al-
ways be assumed to be in a plasma phase. In other
words, the thermodynamic parameters are such that the
bulk correlations of the same fiuid (obtained by removing
the finite-distance bouiidaries and the external distur-
bances) have an exponential decay, and all the related
properties typical for a plasma phase (Secs. I.C and I.D).
This precaution is necessary: one knows from numerical
evidence that the two-dimensional Coulomb gas in the
periodic field of a static infinite ionic lattice undergoes a
transition, at suSciently low temperatures, from a plas-
ma phase to localized phase, where electrons are bound
to the ions (Clerouin and Hansen, 1985; Clerouin, Han-
sen, and Piller, 1987a, 1987b). This very interesting
phase of an inhomogeneous Coulomb system is the
equivalent of the Kosterlitz-Thouless phase of the two-
component Coulomb gas (Alastuey, Cornu, and Jancovi-
ci, 1988). It is currently under investigation and will not
be discussed here.

A remarkable point is that, even in the plasma phase,
the correlations of the nonuniform Quid can exhibit a
slow (nonexponential) decay. Specifically, along a plane
insulating wall, the pa&r correlation decays only as

~
r

~

' (v=2, 3). The origin of this slow decay has to be
asymmetry effects in the screening cloud of a particle sit-
ting near the wall. This screening cloud can only consist
of arrangements of particles lying in the half-space where
the fluid is confined, since g.o mobile charges are available
at the wall and behind it. As a consequence of this con-
straint, the particle plus its screening cloud has a nonvan-
ishing dipole moment. Then, a slow decay of the pair
correlation can be inferred from the general theorem that
a fast decay of the correlations in every direction would
imply the vanishing of all electrical moments (Proposi-
tion 3.1). The situation is expected to be diff'erent in a
conducting interface, where mobile charges always sur-
round a particle and can succeed in building a screening
cloud without multipoles (although not necessarily spher-
ically symmetric).

B. Semi-infinite systems

I. Generat features

Ei,(r)= I dr'F(r —r') pe pr (a, r')+c'""(r')
a

=E'P'(r)+Er"'(r), (3.1)

i.e., the field due to all charges (system's charges and
external charges). Assuming that the correlations have a
limit as V~D, Ei,(r) coriverges to E(r), the electric field

at r in the semi-infinite system, which is now, in general,
different from zero. This entails the following
modifications of Eq. (2.10) and (2.16): g" z F(q„qj ) has
to be replaced by gj" 2F(q„q )+e E(r, ), and the

space integral has to be carried over the region D. Equa-
tion (2.16) becomes

The rigorous results on three-dimensional inhomo-
geneous fluids are still scarce: we quote the work of
Federbush and Kennedy (1985) on surface properties in
the Debye screening regime. On the other hand, many
investigations on the effects of inhomogeneities have been
performed in the two-dimensional OCP at I =2; they
will be mentioned below.

We shall admit here that the correlations of the semi-
infinite system also obey the BGY hierarchy obtained by
fornially taking the thermodynamic limit of the corre-
sponding finite-volume system. If c'"'(r) denotes the dis-
tribution of all external charges (localized in D or at the
boundaries of D), the electric field (2.7) has to be replaced
by
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n

p pipT(qi, Q)=e p(qi )E(ri
I Q)+ e E(ri)+ p (qi, q. ) pT{qi, Q)+ f dq F(qi, q)pT(qi, q, Q) . (3.2)

An example of this situation has been given by Jancovici
(1982b) in the two-dimensional OCP at I =2, and by
Alastuey and Lebowitz (1984) for a class of inhomogene-
ous background densities in the same model.

2. The Carnie-Chan sum rule

The screening of an infinitesimal charge leads again to
Eq. (1.26),

Pf dr' f dr S(r
I
r')=1,

IrI
(3.4)

which was derived in the Introduction by a linear-
response argument; the argument applies as well when

Assumption (ii) is really used for the (I,n} sum rules with
I ) 1. The charge sum rule can be derived whenever D extends
to infinity in at least one direction (as in an infinite cylinder).

Of course, Eq. (3.3) is trivial for I ) l by rotational invari-
ance in the homogeneous plasma.

This form of the equation holds when the dielectric con-
stant of the external medium is set equal to one, so no im-

age forces have to be taken into account in Eq. (3.2).
Then we have the analog of Proposition 2.2.

Proposition 3.1. If the correlations satisfy Eq. (3.2)
with the same cluster conditions (i) as in Proposition 2.2
and (ii) D contains an open v-dimensional cone in which
the asymptotic densities of the charged particles do not
all vanish, then the ( l, n ) sum rules hold for / & lo, n & no.

The proof is the same as that of Proposition 2.2. The
additional assumption (ii) enters in the derivation of the
multipolar sum rules (2.33) from Eq. (2.32) by using the
freedom to vary the unit vector u in an open set. " This
is where one explicitly uses the fact that D is semi-
infinite.

Here, the proposition is conditional: the multipolar
sum rules are true only if the correlations have good de-
cay properties in all directions in D. In particular, if it is
known that, for some reason, a screening cloud carries a
nonzero multipole moment, one infers from the proposi-
tion that the decay must be algebraic, at least in one
direction.

When the decay is faster than any inverse power in a11
diiections (a case that is expected to occur when the
medium is everywhere conducting in infinite space), the
simplest set of nontrivial sum rules is that a11 multipoles
of the charge-charge correlations vanish

f dr P&(r)S(r
I
r')=0 . (3.3)

where Q are the angles of r. One expects, in a plasma
phase, that the convergence to bulk quantities occurs on
a microscopic scale (on the order of the Debye length)
when one goes away from the inhomogeneity. In this sit-
uation, the correlations will converge sufBciently fast,
when all arguments tend to infinity in the fixed direction
0, to those of a uniform system with densities p (0).
Typical examples are treated in Secs. III.C—III.E. An
infinite periodic jellium [class (ii)] constitutes an elemen-
tary model for an electron gas in the periodic field of an
ionic lattice. At a suKciently high temperature, the elec-
trons are delocalized, and behave as a perfectly conduct-
ing Auid. This will be brieQy discussed in Sec. III.F.

Some remarks on Eq. (3.4) are in order. Even if
S(r

I

r') has good decay properties, the integrals over r
and r' cannot be permuted: if this were possible, one
would obtain zero by the charge sum rule (1.24), instead
of l&0. Thus some care has to be exercised when apply-
ing the sum rule (3.4) to specific geometries.

The strict Coulomb potential can be modified in the
sum rule (3.4) to 1/

I
r

I
+P"(r), where P"(r) is any in-

tegrable short-range potential. This short-range part
does not contribute, since now integrals can be ex-
changed, and the charge sum rule applies.

The slightly more general relation

pf dr f dr S(r
I

r') = 1, (3.6)

where ro is an arbitrary point, is equivalent to rule (3.4).
Indeed, taking the Laplacian of the left-hand side of Eq.
(3.6) with respect to ro, one finds with the Poisson equa-
tion (2.2) and charge sum rules (1.24) that

V', f dr' f dr S(r
I

r')1

I
r —ro

I

= —4m f dr'S(ro
I

r') =0 .
D

(3.7)

Thus the left-hand side of Eq. (3.6) is a harmonic (bound-

the system is semi-infinite and there are no image forces.
The sum rule (3.4) is the Carnie and Chan generalization
to nonuniform Auids of the second-moment Stillinger-
Lovett condition (Carnie and Chan, 1981a; Carrie, 1983).

Eqiration (3.4) can also be seen to be a consequence of
the equilibrium equations. A derivation, which is an ex-
tension of that of Sec. II.D, can be found in the Appen-
dix. It applies to two different classes of inhomogeneous
plasmas: (i) asymptotically uniform plasmas; (ii) infinite
jellium systems with periodic density. The first class (i) is
characterized by densities that are asymptotically con-
stant in (almost) all directions, i.e.,

(3.5)
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ed) function of ro on the whole of R; it is therefore con-
stant with respect to r0.

In an inhomogeneous plasma with good decay proper-
ties (faster than algebraic), the system's charges screen
not only any external charge distribotion, but also all its
multipoles. This leads to a nontrivial generalization of
the Carnie-Chan form (Jancovici, 1986)

Pfdr'P&(r') fdr S(r
i

r') = P&(ro) . (3.8)
Ir —ral

The multipole sum rules (3.8) have the same relation with
the screening of external distributions as do rules (3.3)
with respect to the screening of the system's charges. Us-
ing Eq. (3.3), it is easily verified that the LHS of Eq. (3.8)
is harmonic.

C. Insulatiog plane stall

1. A dipole sum rule

We consider a charged Quid confined in the half-space
x &0 by a plane wall located at x =0, and we write
r= (x,y), where y stands for the components parallel to

I

the wall. We first show under very reasonable conditions
that S (r

i
r') carries a nonvanishing dipole moment by es-

tablishing the dipole sum rule

2n(v 1—)Pf dx' f dx f dyxS(x, y i
x')= —1,

0 0

v=2 3 (3.9)

—S (x —x', y)i &~ . (3.10)

Adding and subtracting the same bulk quantity we can
write

Because of invariance under translations along the plane
and rotations around the x direction,

S(r
i

r') =S(x,y —y'
i

x') =S(x
i

x', y' —y)

is only a function of the length
i y —y'

i

. As x arid x' be-
come large, S(r

i

r') approaches a fully translation-
invariant function S (r

i
r') =S (r —r'), the bulk charge

correlations for the same value of the temperature and
densities. We assume that this. convergence occurs on a
microscopic scale, so that the fol1owing joint integral is
finite:

f dk' f dx f dy i
x

i i
S(x,y i

x')

f dx' f dx fdyxS(x, y i
x')= J dx' f dx f dyx [S(x,y i

x') —S (x —x', y)]

+ dx' dx dyxS" x —x', y

f "—dx f dx'x fdyS'(x x, y—)+j"dx f "dxx fdyS'(x —x, y) .
0 0 0 0

(3.1 1)

This result follows from the permutation of the x and x'
integrals in the first term of the second member of Eq.
(3.11) [this is allowed under condition (3.10)]. Then, the
integra1 over the correlation function of the semi-infinite
system gives zero because of electroneutrality:

f "dx' fdy S(x,y i
x') =f "dx' f dy S(x

i
x', y) =0 .

(according to Proposition 3.1, it must be slower than

i
r

i

+" in some direction). Since there are good de-
cay properties in the bulk, the weak clustering should be
along the wal1.

2. Long-range correlations along the wall

(3.12)

Using the translation and rotation invariance of the bulk
function, the quantity (3.11) is also equal to

f dx' f dx(x —x') fdyS (x —x', y)

More detailed information on this slow decay can be
obtained from a closer inspection of the Carnie-Chan
sum rule (3.4). We consider the two-dimensional Fourier
transforms of S(x,y i

x') and S"(x —x', y) (v=3):

,' f dx—fdyx'S "(x,y) =-
—oo 2m. (v —1)P

(3.13)

S(x,k
i

x')= f dye'" "S(x,y i

x'),
S "(x —x', k) = f dy e'"'"S"(x —x', y),

(3.14)

where the last equality is the second-moment condition
(1.29), and this leads to the sum rule (3.9). This sum rule
was derived by Carnie (1983) using a different method
[see the remark following Eq. (3.35) below].

Qbviously, the dipole sum rule (3.3) for I =1 cannot
hold in this semi-infinite system, and we must conclude
that S (x, y i

x ') cannot have a fast decay in all directions

and we like to determine the small k behavior of

f dx' f dx[S(x, k
i
x') —S "(x —x', k)]

0 0
—=a (k)+ b (k)+ c (k), (3.15)

where we have set
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(3.16)

~ [S(x,k
I

x') —S "(x —x', k)],
(3.17)

a(k)= f dx' f dx e
—l~l S(x k

I
x )

0 0

b(k)= —f dx' f dx(e l" l"—1)
0 0

—ikix
dk(x'+

I y I

'}'" (3.19)

The bulk function has been subtracted out in Eq. (3.15) to
form an absolutely convergent integral according to as-
sumption (3.10). Introducing the two-dimensional partial
Fourier transform of the Coulomb potential

c(k)= —f dx' f dx e I I ~S (x x k)
0 0

(3.18) the Carnie-Chan rejation (3.4) becomes

f d(ef dy'f dx'f dx .

*
f dye'"'eS(xy —y'(x')= (im f dx'f dx e "*S(x(e le'(=(,

2~ o o IkI lil-o IkI o o

(3.20)

and thus

a(k)= +0(k) .
2m

Under assumption (3.10) we are allowed to expand b (k) under the integral sign. Then the sum rule (3.9) implies

b(k)=
I

k
I f dx' f dx x [S(x,0

I

x') —S "(x —x', 0)] +o(
I

k
I

)
0 0

—Ik
I f dx'f dx xS (x —x', 0)+o( Ik

I
) .

4vrI3 o o

Finally, one finds that [S (x —x', k) has no linear contribution in k by symmetry]

c(k)= —f dx' f dx S (x —x', 0)+
I
k

I f dx' f dx xS (x —x', 0)+0(
I
k

I
)

0 0 0 0

= —,
' fdrIx IS (r}+ IkI f dx'f dxxS (x —x', 0)+o(IkI) .

(3.21)

(3.22)

(3.23)

Collecting Eqs. (3.21), (3.22), and (3.23) in Eq. (3.15) leads
to the sum rule

f dx'f dx f(x,x')=—
0 0 8m /3

(3.27)

f dx' f dx[S(x, k
I

x') —S "(x —x', k)]
0 0

,'f«I-x IS"(r)+
4 +o(IkI }. (3.24}

The singularity at k=0 implies a slow decay along
the wall. Since the Fourier transform of

I
k

I

is
—I/2ir

I y I, Eq. (3.24) implies the asymptotic behavior
in space:

f dx' f dx[S(x, y I

x') —S (x —x', y)]
0 0

Iri two dimensions one must replace —I/8m. P
I y I by—1/2ir P I y I

in Eq. (3.25). The sum rule (3.27) was ob-
tained by Jancovici (1982b) from a direct linear-response
argument. Its validity, as well as that of the asymptotic
form (3.26), can be explicitly checked in the two-
dimensional OCP at I =2 (Jancovici, 1982a). Federbush
and Kennedy (1985) give a rigorous bound on the fall-off
along the surface, of the form C

I y I

' ', E &0 (v=3).
The derivation of Eqs. (3.9) and (3.25) presented here uses
the same methods as in Jancovici, Lebowitz, and Martin
(1985).

1 1
I y I

—+ (y(y,
8vr~P

I y I

' (3.25) 3. Image forces

S(x,yIx')= ', IyI
f (x,x')

(3.26)

provided that there are no other singularities for real
values of k different from zero causing a still weaker de-
cay. We expect that this long-range correlation is a
specific surface feature, to which the bulk term in Eq.
(3.25) does not contribute. If one assumes an asymptotic
behavior of the form

We consider the case where the half-space x ~0 is
filled with a material that has a dielectric constant c.„
different from 1. A particle of charge, e at the point
r=(x, y) has an electrical image of charge (1 —E )/
(1+v, )e =he at the point r=( —x, y). One must now
include the effect of the images in Eq. (3.2), replacing
F(q„q) by

F~(qi, q)=e e [F(ri —r)+bF(r, —r)],

f (x,x') obeys the sum rule (3.28)
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c~(r
~

Q)=c(r
~
Q)+&c(r

~
Q) (3.30)

is the excess charge density due to the system's particles
and their images. In Eq. (3.29) the correlation functions
have been defined to be identically zero when one or
several arguments lie in the half-plane x &0, and the in-
tegral extends over the whole space. With this, the con-
ditional Proposition 3.1 can be phrased in the same
terms: the multipole moments of cz(r

~
Q) vanish if the

clustering is fast in all directions. This implies, with
definition (3.30), that

fdr P(r)c~(r
~
Q) =( I+6)f dr 5'—(r)c (r

~
Q) =0 .

(3.31)

The result holds with the upper sign when the harmonic
polynomial P(r) =P+(r) is even under refiection with
respect to the plane x =0, and with the lower sign when
P(r) =P(r) is odd under this refiection
[P (x,y)=+V ( —x, y—)]. If b,&+—1, one finds again
that all multipoles must vanish under the assumption of
faster-than-algebraic decay.

For the whole range of positive and finite values of
E (b,&+I ), the surface properties of the fiuid are the
same as for E =1. The dipole sum rule (3.9) holds, and
is not afFected by c. : this should be clear from its deriva-
tion, which involves a comparison with quantities per-
taining to the bulk only. There is still a slow decay along
the wall, the only diA'erence being that the right-hand
sides of Eqs. (3.25) and (3.27) must be multiplied by E

(Jancovici, 1982b).
The extreme case E =0 (b, =l) is also of interest: it

mimics a situation where the fluid has an eA'ective dielec-
tric constant much larger than c„. Here, the electroneu-
trality sum rule is true by Eq. (3.31), but nothing can be
concluded about the odd multipole moments of the ex-
cess charge density, in particular, on the x component of
its dipole. Therefore, the sum rule (3.9), which can still
be derived in the same manner, is no longer in contradic-
tion with a good decay parallel to the wall. Also, the
long tail in Eq. (3.25) (which is now multiplied by E =0)
disappears. This leads to the conjecture that, in this lim-
iting case, the decay of the charge-charge correlations is
faster than any inverse power in all directions. It turns
out that the two-dimensional OCP at I =2 is solvable
when c, =0 (Smith, 1982). One indeed verifies in this
model that the sum rule (3.9) holds, the decay along the
wall is exponentially fast (with damped oscillations), and
all even-multipole moments of the excess charge density
vanish, in conformity with Eq. (3.31) (Jancovici, 1982b).

i.e., the force exerted on a charge e at r& by another
1

charge e at r and its image at r. The electric field (2.13)
produced by the excess charge density can be written as

Ez(ri
~

Q)= fdr[F(r, —r)+bF(r, —r)]c(r
~

Q)

= fdrF(r, —r)cz(r
~
Q), (3.29)

where

4. Charged wall

We let the plane wall at x =0 be charged by a uniform
surface charge density o., creating an electrical field
ED=2~(v —1)0., and E is finite. ' In addition to Eqs.
(3.9) and (3.25), there are a number of other sum rules
that can be seen to be a consequence of the screening of
the plate by Quid layers of opposite charge. These sum
rules, which we state here, have been checked in the
two-dimensional OCP at I =2 (Jancovici, 198lb, 1982b;
Smith, 1981).

The simplest case is the perfect screening of t'he plate
by unit of surface. By symmetry, the particle densities
depend only on x, and the integrated charge density
profile satisfies

dx g e p(a x)+cb = o
0

(3.32)

In the Debye regime the screening is expected to take
place over a microscopic distance (as shown in the mod-
els).

The contact theorem relates the bulk pressure p to the
particle densities at the wall. For a Coulomb gas (cb ——0)
in the presence of a charged hard wall without image
forces (e =1), it takes the form (Henderson and Blum,
1978; Henderson, Blum, and Lebowitz, 1979)

p =P ' g p(a, 0) vr(v 1)o— — (3.33)

If the particle o. has a hard core of diameter d, the cor-
responding density must be taken at the point of contact
d /2. In a jellium system one must add to Eq. (3.33) a
quantity involving the potential difference 5P across the
surface layer (Choquard, Favre, and Gruber, 1980; Tot-
suji, 1981). For the OCP, the relation reads (E =1)

p =P 'p(0) —m(v —1)a —cb5(P,

5/=2m(v —1)f dx x [ep(x)+cb] .
0

(3.34)

i3A second electrode carrying a surface charge —cr is located
atx =+ ~.

i4Namely, for X charges in a volume V, cb ———%e/V is also
subject to the volume change.

In Eq. (3.34) the pressure p is defined (in the thermo-
dynamic limit) as minus the derivative of the free energy
with respect to the volume, while keeping the system glo-
bally neutral. ' In the presence of image forces (E &1),
there is still an additional term in Eqs. (3.33) and (3;34)
that depends on c, and on the two-point correlation
(Carnie and Chan, 1981b; Jancovici, 1982b).

There is a sum rule that relates the dipole moment of
the excess charge carried by a particle q =(a, r) to the
variation of its density p(q) with respect to the external
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electrical field ED=2m. (v —1)cr (Blum et al. , 1981):

p(q)=P f drix, c(r,
~
q)

=pf dqie (x i
—x)pT(q i, q) (3.35)

and, inserting Eq. (3.35),

dq, e x,pT(a„r„a,O) =o. .
xi )0a

(3.37)

This holds when cb ——0. In particular, it is interesting to
see that when o. =0, the dipoles of the screening clouds of
positive and negative charges at the wall compensate
each other exactly. The analogous relation for a jellium
system includes an additional contribution due to the
background, and can be found in Blum et al. (1983).

Finally, Rosinberg, Lebowitz, and Blum (1986) have
presented a solvable model of localized adsorption at the
wall. Here the wall acquires a surface charge by adsorp-
tion of ions: the effect of an absorptive site is represented
by an effective attractive 6-function potential.

D. Other geometries

The implications of the Carnie-Chan relation (3.4) can
be worked out for plasmas confined in varied geometries
(Jancovici, Lebowitz, and Martin, 1985). In the cases de-
scribed below, the walls are always insulating, with
dielectric constant c. = 1.

We first consider a slab of thickness a. With the same
notation as for the plane wall, the two-dimensional
Fourier transform of S(x,y ~

x') along the slab faces (lo-
cated at x =0 and x =a) satisfies Eq. (3.20), the only
difference being that the x and x' integrals. extend on the
thickness of the slab a. No subtraction is needed here
and the equivalent of the behaviors (3.24) and (3.25) are

The second equality follows from definition (1.21) and the
charge sum rule. This relation can be considered to be a
more detailed statement than the dipole sum rule (3.9).
Indeed, differentiating Eq. (3.32) with respect to a, and
inserting Eq. (3.35), leads immediately to the result (3.9).

We can deduce from Eqs. (3.35) and (3.33) a constraint
on the truncated functions when a particle is at the wall.
Since the bulk pressure is independent of o., differen-
tiating Eq. (3.33) with respect to o. gives

p(a, O) =2vr{v —1)Po. ,
8

Bo

Smith (1982), Forrester, Jancovici, and Smith (1983), and
Choquard, Forrester, and Smith (1983).

We consider next a Auid confined in a cylinder with a
cross section of arbitrary shape X. The z axis is along the
cylinder and we write r=(R,z), where R stands for the
components of r perpendicular to the cylinder axis. In
terms of the one-dimensional Fourier transform

S(R,k
~

R')= f dze'"'S(R, z
~

R'},

Eq. (3.4) becomes

(3.40)

f dz e'"' =2KO(k
i
R

i )z'+ /R/'
= —21n(/k

[ fR/),
~

k
~

~0 . (3.42)

This leads to the asymptotic behavior along the cylinder
axis

f dR'f dRS(R, z
i
R')=— 1

4P/z /(ln/z /)

/z /~co (3.43)

Because of this slow decay only the charge sum rule
holds in the cylinder, and the higher-order multipoles of
the excess charge density are not defined (see Jancovici
and Artru, 1983, where the cases e &I are also dis-
cussed). As in the plane wall case, the expressions (3.39)
and (3.43) are the leading asymptotic terms provided that
the Fourier transform of S has no singularities for real k
(k&0) which may give rise to longer oscillating tails.

The properties of a plasma in a wedge (formed by two
half-planes intersecting along the z axis, with an angle 8)
have been investigated by Jancovici, Lebowitz, and Mar-
tin (1985), and Choquard, Piller, Rentsch and Vieillefosse
(1988). The results are not yet conclusive. In the first
work, one assumes that the infinitely extended integrals
on R and R' are convergent after appropriate substrac-
tions of bulk and plane wall contributions, and one finds
a decay in the z direction {0& 8 & vr) similar to that of the
cylinder, Eq. (3.43). In the second work; a Debye-Hiickel
type of approximation leads to a power-law decay, where
the power depends on the angle 6 of the wedge.

lim 2pln
~

k
~ f dR' f dRS(R, k

~

R')=1, (3.41)
/kl 0 X X

where we have used the small-k behavior of the partial
Fourier transform

f dx'f dx S(xk ix')= ~o(
i
k

i
),

0 0 2&
(3.38)

E. Interface between two conducting media

f 'dx' f 'dx S{x,y l

x'}=—
4~'p ~y~'

/y/~oo . (3.39}

This decay is typical for a bidimensional electron film in-
teracting with the three-dimensional Coulomb potential.
The strip geometry is studied in detail by Forrester and

1. The two-densities OCP

A plane interface at x =0, between two charged fluids,
can be represented by a OCP with a background
cb(r) =cb(x) [r=(x,y')] having two difFerent (asymptotic)
densities in the half-spaces x ~ 0 and x & 0:
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lim cb(x) =c„+, lim c„(x)=cb (3.44) where p(p) is the chemical potential in the bulk phase of
density p, and

The system is uniform in the directions y parallel to the
interface, and asymptotically neutral as xi+ac. The
charged particles adjust their density to interpolate be-
tween cb+ and cb . Examples of this system have been
provided in the two-dimensional OCP at I =2. Jancovici
(1984) has considered a background that is a step func-
tion at x =0. Blum (1984) has treated the case of a
metal-metal junction or semiconductor junction, where
the interface between the two different media is separated
by a charged gap. A class of smoothly varying back-
grounds satisfying Eq. (3.44) is introduced by Alastuey
and Lebowitz (1984). It is found in these models (and
also by weak coupling calculations) that the correlations
decay faster than any inverse power in all directions, in-
cluding those parallel to the interface, and various sum
rules given below can be explicitly checked. In this situa-
tion, according to the general theorems, all multipole
sum rules are true, as well as the Carnie-Chan relation
(3.4) and its generalization (3.8). We now discuss some
forms of the sum rules that are specific to the geometry
of the interface.

One has first the overall neutrality of the charge-
density profile:

P(~) —P( —~)=2~(v —1)f dxxc(x) (3.47)

is the potential drop across the interface.
The Quid obeys two dipole sum rules analogous to Eq.

(3.9) in the half-spaces x ~ 0 and x ~ 0:

2n(v —1)Pf dx' f drxS(r
I

r')= —1—QO x)0

2~(v 1)Pf— dx'f drxS(r
~

r')=1 .—QO x(0

(3.48)

They can be derived, as was Eq. (3.9), by a comparison as
x~ oo (respectively, x~ —~ ), with a uniform OCP of
density p+ (respectively, p ). Notice that the two equa-
tions (3.48), once added, are compatible with the usual di-
pole sum rule (3.3) for 1 = l.

Et is interesting to remark that two additional dipole
sum rules are true at a conducting interface, and are not
equivalent to Eq. (3.48):

f dx c(x)=0, c(x)=ep(x)+cb . (3.45)

The electrostatic potential [determined by
bP(x) = —2m(v —1)c (x), v=2, 3] verifies the electro-
chemical balance equation (Ballone, Senatore, and Tosi,
1981a, 1981b; Rosinberg, Badiali, and Goodisman, 1983)

2'(v 1)Pf d—x'x'f drS(r
~

r')=1,
—QO x&0

2vr(v —1)Pf dx'x' f dr S(r
~

r') = —1 .
—QO x(0

(3.49)

Cb

(3.46) One gets the first Eq. (3.49) by adding and subtracting the
same bulk quantity, with the function S+(r—r') corre-
sponding to the density p+

f" dx'x' f dr S(r
~

r') = f dx'x' f dr[S(r
~

r') —S+(r—r')]+ f dx'x' f dr S+(r—r') .
—QO x&0 —QO x&0 x)0

(3.50)

Since S(r
~

r') approaches S+(r—r') as both x and x' are
large [see assumption (3.10)], we can interchange the in-
tegrals in the first term of Eq. (3.50). Then this term van-
ishes because of the usual dipole sum rule, which holds
for S(r

~

r') and S+(r—r'). The second term of Eq.
(3.50) is easily seen to be equal to

——,
' f drx S+(r)= 1

2m(v —1)P

by the bulk second-moment condition (1.29). This gives
the first Eq. (3.49); the second one is established in the
same way. Equations (3.49) are also a consequence of the
sum rule (3.8), when one specializes it to 1 = 1 and to the
geometry of the interface (Jancovici, 1986).

2. Metallic wall

A metallic interface is also obtained if one considers a
Quid in the half-space x & 0 in contact with an ideal con-
ductor plane wall at x =0 (E = ca ). The correlations are
expected to have a decay faster than any inverse power
law in all directions. This has been verified in the two-
dimensional OCP at I =2 by Forrester (1986), where
sum rules reported below can also be checked. ' Here
the situation is as follows. According to the discussion of
the image forces of Sec. III.C, when e„=~ (i.e., b, = —1)

The fast clecay is also supported by weak coupling theories
{Onsager and Samaras, 1934; Alastuey, 1983).
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only the odd multipoles of the system's excess charge
density have to vanish. In particular, the l =0 charge
sum rule (3.3) is not valid here. This implies that, disre-
garding the image charges, the screening cloud of a parti-
cle near the wall is not complete. Electroneutrality is
only recovered if the images are taken into account in the
screening process.

However, since the usual dipole l =1 sum rule (3.3)
holds, it is possible to derive, as before, the equivalent of
the rule (3.49):

cz ——c(x)—c( —x),
c(x)=pe p(a, x)+cb .

(3.52)

In fact, the region of the Quid close to the conducting
wall (the double electric layer) may carry a nonvanishing
surface charge given by

o.= f dx c(x) . (3.53)

This surface charge can be prescribed and considered as
an external parameter in the system. Instead of o, it is
convenient to choose, as an independent parameter, the
potential drop 5P across the double electric layer. This
potential drop can be simply expressed in. terms of the di-
pole of the charge density:

5P=$( ~ ) —(t(0)=2~(v —1)f dx xc(x) .
0

(3.54)

Then one can establish a sum rule that relates the total
excess charge density carried by a particle q =(u, r) to
the variation of its density p(q) with respect to 6P
(Forrester, 1985; Jancovici, 1986):

p(q)=pf dr, c(r, Iq) . (3.55)

This is the analog, for a conducting wall, of Eq. (3.35)
which was for the insulating charged wall. If one
differentiates Eq. (3.54) with respect to 5P, and inserts
Eq. (3.55), one recovers the rule (3.S1).

Two limiting cases of the two-densities OCP (3.44) are
of interest. In the first case, one lets the background den-
sity cb tend to infinity in the half-space x ~0. Since the
Debye length A, =[2m(v —1)pe cb ] will vanish in

the region x &0, this region is expected to behave as a
perfectly conducting medium. This will produce the

One defines c (x)=0 for x & 0, since the wall is assumed to be
impermeable to the fluid particles.

2m(v —1)/3 f dx'x' f dr S(r
I

r') = 1,
0 x)0

but one should note that Eq. (3.9) is no longer true.
As far as the overall neutrality is concerned, it is only

satisfied by the charge density of the Auid and its image'

f dx cz(x) =0,

eff'ect of a metallic wall for the Quid particles in the re-
gion x ~ 0, provided that they are prevented from mov-
ing across the interface. One introduces a model (the
ideally polarizable interface) where an impermeable
membrane is set up between the two media (Rosinberg
and Blum, 1984). Then it is possible to show, in the two-
dimensional OCP at I =2, that the infinite density limit
cb ~ Oo indeed corresponds to the metallic wall bound-
ary for the fiuid in the region x &0 (Alastuey et al. ,
1985).

In the second case one lets the density cb tend to zero
in the half-space x ~ 0: the Quid particles have a perme-
able boundary at x =0 through which they can evapo-
rate, but ther'e is no neutralizing background for x &0
(Ballone, Senatore, and Tosi, 1981b). One shows that the
particle density tends to zero only as

I
x

I
(v=3) as

x —+ —~. The overall neutrality is satisfied:

e f dx p(x)+ f dx[ep(x)+cb+]=0 . (3.S6)

The truncated correlation pT(x, x', y) has an algebraic
decay as x~ —~ (x', y fixed) or as y~ ~ (x,x' fixed),
which is sufFicient to ensure that the charge and the di-
pole sum rule hold for the excess charge density, but the
higher-order multipoles are not defined. Thus the screen-
ing in this permeable boundary is more efficient than in
an insulating hard wall, but not as strong as in a metallic
interface (Alastuey and Lebowitz, 1984; Jancovici, 1984).

F. WLMB Equations and long-range order

1. The WLMB equations

In addition to the equilibrium equations (3.2), there is
another set of exact relations between the correlations
that proves useful for the study of inhomogeneous fluids.
They are a generalization, to charged systems, of a set of
equations, the WLMB (Wertheim, Lovett, Mou, and
Buff) equations, that these authors have derived for neu-
tral systems (Lovett, Mou, and Buff, 1976; Wertheim,
1976). The peculiarity of the WLMB equations is that
they do not explicitly involve the intermolecular forces.
They apply to semi-infinite systems, and relate the gra-
dient of the density to an integral of the external force
over the pair correlation function, plus a surface contri-
bution of the finite-distance boundaries BD of the system:

p '&~p(qi)= e E'"'(r, )p(q, )+f dqe E'"'(r)pT(q, q, )

—p ' f dsp7(q, q, ) . (3.57)
BD

In Eq. (3.57), E'"'(r, ) is the part of the electric field (3.1)
at r, (when V~D) that is due only to the external charge
distribution (thus disregarding the system's charges), and

f&Dds means integration over the surface dD and sum-

mation over the species a.
The WLMB equation can be deduced from the equilib-

rium equations (3.2) in a few lines. Integrating both
members of Eq. (3.2) over the region D one gets (with
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p ' f ds,pT(q„q, ) f&qi f&q2F(ql q2)pj(qi q2 q)=o (3.59)

= f «iS(qi)~. ,
E(ri

I q2)

+ f dqi[e E(r])+F(qi, q, )]pr(q], qi), (3 58)

since the joint integral

vanishes as a consequence of the antisymmetry of the
force F(q„q)= —F(q, q, ). Using the definitions (2.13)
and (1.21) of E(r, l q2) and of the excess charge density,
the first term on the RHS of Eq. (3.58) can be written as

f «iv(qi)~ E(rilqz)= f ~qiP(q&) f «F(q&, q)pT(q lq2)

= —f «f «F(q qi)v«i)pr(q lqz)

= —f «e.E''(r)p, (q lq, )
D

= —f «& [E(r)—E'"'(r)][pr(q, q2)+5 p(q, )] . (3.60)

To obtain Eq. (3.60), one interchanges the q and q i integrals, and notices that

f «iF(q, qi)p(qi)=e~f dr, F(r—r, )ge p(aii, r, )=e E'&'(r),
a1

(3.61)

wh««"'(r) is the part of the total electric field at r that is due to the system's charges only [see Eq. (3.1)]. When Eq.
(3.60) is inserted into Eq. (3.58) one finds

p f &s&pT(qi, q, )=e E'"'(r, )p(q, )+f dq e E'"'(r)pT(q, q, ) eE(r, )—p(qz) —f «F(q»q)pr(q2 q) (3.62)

The WLMB equation (3.57) results when one remarks that the combination of the last two terms of Eq. (3.62) equals
pV~(q—2) by the first equation of the BGY hierarchy. In fact, Eq. (3.57) is a member of a WLMB hierarchy, which

reads, for a general Q = Iqi, . . . , q„ I,
n n

p ' g Vjp(g)= g e E'"'(rj )p(g)+ f «e E'"'(r)[p(q, g) —p(q)p(g)] —p f ps[p(q, g) p(q)p(g)j
j=1 j=1

(3.63)

The derivation (3.58)—(3.62) is formal, insofar as the
convergence of integrals has to be discussed in relation
with the cluster properties, and the exchange of integrals
in Eq. (3.60) has to be justified. This can be done in a
number of inhomogeneous situations under assumptions
that are compatible with the findings of Sec. III.C (Blum
et al. , 1983). We give some applications.

I3
p(~i, xi)= f&y gpT(a, y, a„x, ) .

Bx)
(3.64)

From there one can easily recover the sum rule (3.37).
By integration one first obtains the charge density at x

Q e p(a„x)

2. The charged wall

%e consider again the case of a Coulomb Auid without
background (cb ——0), in the vicinity of a plane wall at
x =0 carrying a uniform charge density o.. Notation is
the same as in Sec. III.C, and E =1. Because of the uni-

form charge distribution on the electrodes, the external
electric field g'""=2m(v —l)cr is constant for x ~0. '

Taking into account the charge sum rule and the transla-
tion invariance along the wall, only the surface integral
contributes in Eq. (3.57), and the WLMB equation
simplifies to [r=(x,y)]

7A second electrode carrying a surface charge —o. is located
atx=+ ~.

dxI dy& e pT a&, x&, y& ix, 0 . 3 65
o,a&

Integrating again over x from 0 to (x), the left-hand side
of Eq. (3.65) yields —o. by the electroneutrahty rule
(3.32), whereas the right-hand side gives the same expres-
sion as in Eq. (3.37), after an integration by parts.

3. Symmetry breaking and long-range order

Interesting information can be obtained, from the
WLMB equations, on the conditions under which a crys-
talline phase may be formed. It is well known that the
spontaneous breaking of a continuous group (e.g. , the
group of space translations) is accompanied by the oc-
currence of long-range order in the system, which mani-
fests itself by a slow (nonexponential) decay of the corre-
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lations. This is due to the existence of excitations in the
system (here, the phonons) which can have vanishingly
small energies. It is therefore of interest to know what
kind of decay of the correlations is expected in a phase of
charged particles that spontaneously breaks the transla-
tion invariance. To this end one notes that when the sys-
tem has no boundaries (D =R ), and no external distur-
bances are present [E'"'(r)=0], the WLMB hierarchy
(3.63) formally reduces to

It is locally neutral if the charge of the (Wigner-Seitz) cell
5 associated with [e„.. . , e„j is zero:

dr g e p(n r)+cb =0 . (3.68)

Proposition 3.2. Assume that there are no external
charges (except for a uniform background in jellium sys-
tems). Then, in dimensiori v) 2, any periodic and locally
neutral state that satisfies the clustering conditions

g V p(q, , . . . , q„)=0,
j=1

(3.66) pz'{qi . .q )
I
&I d =sup

I I
rl&v+

E,J

(3.69)

J 1 y o ~ ~ ) V e (3.67)

which means that all correlation functions are translation
invariant. This assertion is, of course, subjected to the
clustering assumptions that are needed to rigorously es-
tablish the %'LMB equations. A precise statement is for-
mulated in Proposition 3.2 below (Gruber and Martin,
1980b). A state is periodic if it is invariant under some
discrete subgroup of the translations generated by v in-
dependent vectors I e„.. . , e I (Bravais lattice), i.e.,

p(cxi, 1 i, , ix„&r„)=p(&imari+ ej ~
~

~ ~g ~ rg +ej ) ~

f dqI f dq2
I pT(qi, q2 q3 (3.70)

is necessarily invariant under the full translation group.
Proof. In the derivation (3.58)—(3.62) of the WLMB

equation, condition (3.70) ensures that the joint integral
(3.59) is absolutely convergent (and thus vanishes). The
exchange of integrals in Eq. (3.60) can be justified as fol
lows. We first limit the r, integral in Eq. (3.60) to a
sphere of radius R. One has to show tht the following
limit

f dqi f dq F(qi, q)p(qi )pT(q I
q&)= lim f dq f dr, [F(r, —r) —F(ri)] g e p(a„ri) e~pT(q I q2)

a&

(3.71)

exists, and gives the final expression (3.60). The subtract, -

ed term in large curly brackets has been introduced to
improve the convergence of the r, integral. It does not
contribute to Eq. (3.71) because of the charge sum rule,
which holds under assumption (3.69). Consider first the
case where ci, ——0. Then E'"'(r) =0, and

g~ e~ p(a&, r&)=c(ri) is the total charge density. It is
1

not difficult to show that if c (r, ) is periodic and locally
neutral,

lim f dr, [F(r, —r) —F(r, )]c(r, )
~rl t

&8

=E'"'(r) =E(r) (3.72)

2m(v —1)lim dri[F(ri —r) —F(ri)]cb —— cbr
V

(3.73)

is linear in r, and the limit R —+ ~ can be taken under the
integral sign in Eq. (3.71) for the same reasons as above. '9

This gives

2m(v —1)

&& e r,p(q, )+f dq e rpr(q, q, )

(3.74)

converges to the periodic electric Geld due to this charge
density and the large brackets in Eq. (3.71) in 0 (

I
r

I
)

uniformly with respect to R. ' With assumption (3.69)
the limit can be taken under the integral sign in Eq. (3.71)
by dominated convergence. This establishes the validity
of Eq. (3.57), which reduces in this case to V,p(q, ) =0.
Thus the density is constant.

If cb &0, the system's charge density
e p(o;, , r, )=c(r, ) —e„differs from c(r, ) by the con-

starit c&. The contribution of the uniform background

The right-hand side of Eq. (3.74) is again equal to zero,
because of the dipole sum rule that holds under condition
(3.69). The same arguments apply to the higher-order
correlations, leading to the translation invariance (3.66)
in all cases.

One concludes from this analysis that the correlations
in an ionic crystal cannot decay faster than

I
r

I

' +" in
dimerisions v=2, 3. This lower bound is probably not op-
timal. In the two-dimerisional OCP, it has been im-

' Lemma 2 in Cxruber and Martin (1980b).

The proof is not dependent on the choice of a sequence of
spheres in Eq. (3.71). With a sequence of dilatations of an arbi-
trary fixed volume, one would always get a linear function of r
in Eq. (3.73) and the conclusions are the same.
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proved to
~
r

~

with the help of a refined version of the
Mermin argument (Martinelli and Merlini, 1984). In a
two-dimensional OCP of electrons interacting with the
1/

~

r
~

potential, it has been shown that crystalline order
is destroyed by transverse long-wavelength phonons
(Alastuey and Jancovici, 1981b).

If one includes the rotation group in the analysis, one
obtains that the state is invariant under the full Euclide-
an group, if it clusters faster than

~
r

~

' + ' for v=2, 3
(Gruber, Martin, and Oguey, 1982).

4. Periodic jellia

a. The one-dimensional OCP with uniform background

The one-dimensional OCP of point charges e, with a
uniform background c&, has the remarkable property of
yielding stat;|:s that are nontrivially periodic for all tem-
peratures, yet exponentially clustering (Kunz, 1974). The
occurrence of the period a =ec& ' is easily understood in
the ground state, where the minimal electrostatic energy
is obtained by locating the charges equidistant, each of
them neutralizing a background segment of length ect, '.
The point is that there is only one longitudinal excitation
mode that does not vanish in )he long-wavelength limit
(but equals the plasmon frequency 2e p/m). For lack of
low-energy excitations, the order is not destroyed by
thermal Auctuations.

Since the electric field due to the background is
Z'"'(x) =2xc&, the one-dimensional OCP obeys the non-
trivial WLMB equations (3.63)

13 g p(x„. . . , x)
j=1

=2cg dx xc x x1, . . . ~x~ (3.75)

dX XC X X1, . . . , Xn =0 (3.76)

With the help of Eq. (3.76), it is not hard to prove that
the averaged structure function S(x) verifies the
Stillinger-Lovett second-moment condition (1.29). The
one-dimensional OCP, although periodic, is in the plas-
ma phase for all temperatures.

The several-component one-dimensional jellium, with
charges e that are multiple integers of a common

where c (x
~

x„.. . , x„) is the excess charge density
(1.21). This shows that the dipole sum rule (2.35) does
not hold, a situation that is possible in one dimension,
even if there is exponential clustering (see the remark
after Proposition 2.2). However, if one introduces the
averaged correlations on a cell b, (

~

b,
~

=a)
1

p(x, , . . . , x„)= — dx p(x, +x, . . . , x„+x),
0

one deduces immediately, from Eq. (3.75) and the charge
sum rule, that the averaged excess density obeys the di-
pole sum rule

charge, is also solvable (Lugrin and Martin, 1982). The
state is a periodic plasma phase with period a =ec&
where e is the greatest common divisor of the charges e .

b. Two- and three-di mensional OCP
with periodic background

G. Finite systems

By a finite system we mean a Quid in thermal equilibr-
iu, confined in a finite domain V by impermeable walls.
The particle configurations in V are assumed to have a
fixed total charge I &dr C(r)=C&. The surrounding
medium may have a dielectric constant s difFerent from
that of empty space (E~&1).

The finite-volume structure function

S (r
~

r')=(C(r)C(r')) —(C(r)) (C(r'))

obviously verifies the relation

(3.78)

The statistical enselnble is canonical with respect to the
charge (no global charge Quctuations), but it may be canonical
or grand canonical with respect to the particle numbers.

At high temperatures, the two- or three-dimensional
OCP with uniform background is in a translation-
invariant plasma phase that satisfies all sum rules [case
(c) of Sec. II.A]. If the background charge density c&(r)
is nontrivially periodic (representing the efFect of a ionic
lattice), one expects that, at sufficiently high tempera-
tures, the electrons still form a fiuid plasma phase (al-
though not homogeneous), and that the correlations have
a fast decay. In this case the dipole sum rule holds ac-
cording to Proposition 3.1, and this periodic OCP verifies
the second-moment condition (Appendix). Moreover, it
satisfies the WLMB equations (3.63)

n

/3 ' g Vjp(r„. . . , r„)=fdrE'"'(r)c(r
~
r„.. . , r„),

J =1

(3.77)

where E'"'(r ) is the periodic electric field due to the back-
ground density eb(r). An example of this situation has
been provided by Alastuey and Lebowitz (1984) in the
two-dimensional OCP at I =2, with a background densi-
ty c&( )x=c&( x+na) (n integer), which is constant in the
p direction and periodic in the x direction with period a.
Cornu and Jancovici (1988) and Cornu, Jancovici, and
Blum (1988) have been able to solve the fully periodic
case c&(x,y) =c&(x +.na, y +mb) (n„m integers). The
state is a plasma, and the correlations have a fast decay.
As indicated in Sec. III.A, this two-dimensional system
has a transition to a dielectric low-temperature phase
with localized electrons.
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f drSV(r
I

r')= f dr'Sv(r
I
r')=0 .

V V
(3.79)

ed a dilatation-invariant quantity, the depolarization ten-
sor Tv, generally defined by '

Here this sum rule is not informative: it only rejects the
fact that the total charge of the fiuid in Vis fixed, but it is
not related to any kind of local screening properties. In
general, no higher-order simple multipole sum rules exist
in the finite system, because of surface polarization and
shape-dependence effects.

1. The susceptibility tensor

Useful information on the behavior of the finite system
can be obtained more conveniently from the study of the
polarization fiuctuations (the dielectric susceptibility ten-
sor). defined by

(3.85)

where P'(r) is the Coulomb potential. In the reference
framt. defined by the axis of the ellipsoid, both tensors Xv
and Tv are diagonal, with diagonal elements 7'v and Tv,
i =1, . . . , v. Then, in the case where there are no image
forces (a~ = I), electrostatics give the following relation
between the dielectric constant c of the Quid and the
components of the dielectric susceptibility (Choquard,
Piller, and Rentsch, 1985):

where

(3.80) 1+2m.(v —1)(1—Tf )X'v
i =1, . . . , v . (3.86)

1 2m'(v 1}TvXv

P'= f dr r'C(r), i =1, . . . , v
V

(3.81)

is the total polarization in the system. In linear-response
theory, and when the external space is empty (c, =1),
the tensor gv relates the average polarization to a con-
stant external applied field E0:

(3.82)

According to the above definitions, using Eq. (3.79)
and the formula

One concludes from Eq. (3.86) that in the plasma (or per-
fectly conducting) phase characterized by E= eo, one
roust have

1

2~( v —1)Tv'
(3.87)

This has to be contrasted with the bulk second-moment
value [2ir(v —I)]

Let us examine some special cases. For a sphere or
disk, the depolarization tensor is isotropic, with

Tsphere = 1 /v, thus giving

~1~2 (r 1 r2 }'+—,
' l(& i )'+(&2 )'1 (3.83) ~sphere

2'lT( V —i
(3.88)

the tensor 7v can be written in two different, but
equivalent, forms:

~V drl dr21 lr2SV(rl I
r2}

V v v

For a slab or strip perpendicular to the x axis, in the
(x, y) frame (y labeling the directions parallel to the slab),
the diagonal elements of the tensor Tv are T,~,b ——1,
7","1,b ——0. This leads to

dr, dt2(r'1 —rj2) Sv(r, I
r2) .

2V v v
(3.84)

1
slab 2 ( 1 }

~slab (3.89)

The second expression (3.84) is like a second-moment for-
mula. On the grounds that Sv(r

I

r') converges as
V~IR' to the homogeneous bulk function S(r—r'), one
may be tempted to conclude formally that the limit of the
diagonal components X'v =X'v are equal to

In a statistical-mechanical calculation, the susceptibili-
ty tensor has to be identified with the polarization Auc-
tuations &n the infinite-volume limit, defined by the dila-
tation of the fundamental elliptic or ellipsoidal domain.

2 2ir(v —1}'dr
I
r'I S(r)=, i =1, . . . , v,

by the bulk second-moment condition (1.29). This is not
the case: the dielectric susceptibility embodies surface
effects, and its limit is shape dependent.

The correct value of the dielectric susceptibility is pre-
dicted by the findings of macroscopic electrostatics for
homogeneously polarizable systems. Here, one considers
only elliptic (v=2) and ellipsoidal (v=3) domains, with
the limiting situations, the strip (v=2), the slab, and the
cylinder (v=3). With each of these domains is associat-

21For elliptic or ellipsoidal domains the depolarization tensor

calculated at an arbitrary point r~ in V, has the fundamental
property of being independent of this point rl in V, and thus it
depends only on the shape of V. For more general domains one
would need a more elaborate formulation in terms of local
quantities.
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Then the predictions (3.88) and (3.89) can be confirmed
by explicit calculations in the two-dimensional OCP at
I =2 (Choquard, Piller, and Rentsch, 1985, 1986). These
authors show that, for a sequence of disks of radius R,
the diagonal elements of the tensor X~ d,,k approach the
value 1/vr (3.88) as A~co. Similarly, for a strip ob-
tained as the limit of an ellipse by first letting the large y
axis tend to infinity, the x component of the susceptibility
approaches the value 1/2m given by the electrostatic re-
sult (3.89). Finite-size corrections can also be calculated.
The discrepancy with the Stillinger-Lovett value has to
be attributed to the long-range correlations along the
boundaries, combined with the effect of the unbounded
polarization observable (3.81). The weak decay as

~ y ~

along the slab or the strip, displayed in Sec. III.C,
obviously implies the divergence (3.89) of the parallel
components 7„„„in the infinite-volume limit. In the case
of the disk, the bulk and surface contributions to Xz d;,k
can be appropriately disentangled. The bulk contribu-
tion tends to 1/2~, as it should; the surface contribution
also. approaches 1/2' as a consequence of the weak de-
cay at the boundary, so that their sum is in agreement
with Eq. (3.88). It is pleasing to see how the peculiar
statistical-mechanical effects induced by the walls in
charged systems are needed for a complete agreement
with the laws of macroscopic electrostatics.

An inspection of Eq. (3.90) shows that the formula is also
true in the limiting cases Tz ——1 or T~=O. In particular,
for a slab perpendicular to the x axis, one finds the same
result (3.89).

If the walls are perfectly conducting (E„=~ ), Eq.
(3.90) reduces to

(1—Ti )[1+2m(v —1)X'i ( ~ ) j
1 Tp

=1+2~(v—1)X'i,( &m ), Ti &1 . (3.92)

Here, in a canonica1 finite system with metallic boun-
daries, this divergence must be attributed to residual
correlations across the whole system, which are due to
the charge conservation constraint, and would vanish in
the limit of infinite volume.

In the extreme case, E =0, Eq. (3.90) gives

The value Tz ——I is only obtained for an infinitely extend-
ed slab (strip). On the grounds that the dielectric con-
stant of the external medium is fixed before taking the
infinite-volume limit, Eq. (3.92) is extended to the limit
Tv ~ 1. One concludes from Eq. (3.92) that, in a metallic
medium, the plasma condition c.= Oc implies the diver-
gence of all components of the susceptibility

(3.93)

2. Image forces

We describe, finally, the case where the surrounding
medium has a dielectric constant E &1 (always in elliptic
or ellipsoidal domains). The inclusion of the image forces
leads to the following modification of Eq. (3.86) (Cho-
quard, Piller, Rentsch, and Viellefosse, 1988):

1 Ti«0 .
1 —2~( v —1 )X'i,(0)

(3.94)

+(1—s )Ti,+2m(v 1)s (1—Ti —)X'v(s )

E +(1—E )Tf —2ir(v —1)Ti,X'i, (s )

(3.90)

In this formula, the components X'i, ( e„) must be
identified with the polarization fiuctuations (3.80), with
image forces taken into account in the statistical ensem-
ble.

To discuss the implications of the plasma condition
c= oo, one treats the cases 0 & c & ao, c = ao, and
E =0 separately. If 0&8 & ~, the plasma condition
implies the vanishing of the denominator of Eq. (3.90):

(3.91)

In this respect, it is interesting to see that when the particles
are confined at the surface of a sphere, i.e., a finite two-
dimensional OCP without boundaries, one recovers the
Stillinger-Lovett value for the susceptibility.

X'i.(0)=, i =1, . . . , v,1

2'(v —1) ' (3.95)

and this holds for the whole class of ellipsoidal domains
considered here. This absence of surface effects in the
susceptibility must be related to the fast decay of the
correlations along the walls, which is expected when
E„=O (Sec. III.C). One concludes that the choice E =0
(which corresponds to defining the potential with Neu-
mann conditions at the boundary of V) minimizes the
surface effects, an observation that may be useful for nu-
Inerical simulations. The mechanisms that are at the ori-
gin of the behaviors (3.91), (3.93), and (3.95) can be stud-
ied in detail in the framework of a Debye-Huckel approx-
imation (Choquard, Piller, Rentsch, and Vieillefosse,
1988).

The value TI =0 can be obtained in an infinite slab (strip)
or cylinder. For the same reasons as before, one extends
Eq. (3.94) to the limit Ti +0. One find—s the interesting
fact that when the Quid is in the plasma phase, all com-
ponents of the susceptibility have the Stillinger-Lovett
value
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IV. TIME-DISPLACED CORRELATIONS 1. Definitions

A. Introduction

We have seen in the preceding sections that the static
correlations of a charged Quid are subjected to a variety
of constraints that can be traced back to the long range
of the Coulomb potential. The dynamics of a charged
Auid also exhibits several particular properties: in the
presence of any charge inbalance due to external causes,
the system will tend to restore the neutrality. However,
the charge clouds involved in this dynamical process will,
in general, carry multipoles, as a consequence of inertia
eft'ects and interparticle collisions. For this reason one
does not expect that the time-dependent correlations
show exponential clustering in space, even in the range of
thermodynamic parameters characteristic for a plasma
phase. Only a limited number of sum rules will remain
true.

In this section we consider a classical OCP of particles
of mass m and charge e. The OCP has the special
feature, not present in multicomponent systems, that the
electric current is proportional to the total momentum
(with a factor e/m). The dynamics of the latter is not
sensitive to collisions, and follows simple macroscopic
laws. This implies some exact sum rules specific to the
OCP, which are described below. The dynamical proper-
ties of multicomponent systems are more complex and,
except for the electroneutrality, apparently no other sim-

ple exact sum rules are known for them.

N(r, v, t) =g 6[r—r (t)]5[v—v. (t)]
J

(4.2)

is the microscopic phase-space particle density at time t,
where fr, (t), v, (t)] are the position and velocity of the

jth particle under the time evolution, and ( . } is the
thermal average on the initial conditions [r (0),v. (0)].
Integration over the velocity variables yields the usual
time-dependent structure function

S(r, t
~

r')= f dv f dv'S(r, v, t
~

r', v') . . (4.3)

In the following we simply suppress velocity arguments
in the correlation functions when they have been in-

tegrated out.
More generally we introduce the correlation functions

p(r, v; r', v', . . . ;t
~

U) between a set of particles with po-
sitions and velocities r, v; r', v', . . . at time I;, and another
set of particles U =(r„vi",r2, vz, . . . , r„,v„) at time t =0,
given by

A quantity of particular interest, which enters in the
linear-response theory, is the position and velocity corre-
lations of the charge at times 0 and t (the generalized
structure function), defined

S(r, v, t
~

r', v')=e [ (N(r, v, t)N(r', v', 0)}
—(N(r, v, t)}(N(r', v', 0)}].

(4.1)
In this definition,

p(r, vr', v', . . . ;t
~

U)=([N(r, v, t)N(r', v', t) ]„,[N(r„v„O) . N(r„v„,O)]„,} . (4.4)

The notation [ ]„, means that the contributions of coincident points in the two groups (r, v;r', v', . . . ) and

(r„v, ;rz, vz, . . . ) are not included. When the set U is empty, the correlations (4.4) are time independent, and reduce to
the equilibrium correlations with a factorized Maxwellian distribution of the velocities

p(r, v;r', v';. . . )=y(v)y(v') . p(r, r', . . . ), y(v)= 2'

' 3/2 I )v/'
exp —P

2
(4.5)

Note that the fact that the equilibrium state is stationary implies the relation

I I ~ ~ I ~ e K I o a ~ I ~ ~ ~ ~p(r, v;r, v;. . . ;r [
I'i, vi', r2, v2', . . . )=p(ri, vi', r~, v~;. . . ; —r

~

r, v;r, v;. . . )

In terms of these correlations, the generalized structure function (4.1) reads

S(r, v, t
~

r', v')=e [p(r, v, t
~

r', v') —p(r, v)p(r', v')]=e p (rT, tv~ r', v') .

The quantity

c(r, t
~

U)=e f d v[p(r, v, t
~

U) p(r, v)p(U)]=—e f dv pT(r, v, t
~

U)

is the time-dependent generalization of the static excess charge density (1.21), and one has

(4.6)

(4.7)

(4.8)

(4.9)

2. Dynamical equations

Definitions (4.1) and (4.4) are formal in an infinitely extended system, since there is no proof at the moment of the ex-

istence of the dynamics in the thermodynamic limit, except for the one-dimensional Coulomb gas (Marchioro and Pul-
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virenti, 1982). Throughout this section we shall admit that the correlations (4.4) are well defined in an infinite or semi-
infinite system, and that their. dynamics is governed by the well-known BBGKY hierarchy (Balescu, 1963; Ichimaru,
1973). For a OCP with a (possibly inhomogeneous) background density c&(r), the first equation of the hierarchy has the
form

a
p(r, v, t

I

U)= v—V„p(r, v, t
I

U) — E(r).V„p(r, v, t
I

U)
e

f dr'F(r —r') V„[p(r,v;r', t
I

U) —p(r')p(r, v, t
I U)],

m

where F(r)= —VP (r) is the Coulomb force (a local regularization is not needed in the OCP), and

E(r)= f dr'F(r —r')[ep(r')+cb(r')]

(4.10)

(4.11)

is the static electric field due to the total charge density. When the particles are constrained to move in a semi-infinite
domain D (in the sense of Sec. III.A) bounded by hard walls, the configuration integrals are restricted to D, and we sup-
plement Eq. (4.10) (valid inside D) by the condition of elastic collisions at the walls, i.e.,

p(r, v, t
I

U)
I caD= p(r, v, t

I
U}

I caD . (4.12)

v is the velocity of an elastically reAected particle at r on the boundary BD, with incident velocity v. Here the dielectric
constant of the walls is set equal to one.

As in the static case, it is convenient to rewrite Eq. (4.10) in terms of the truncated correlations and of the electric
field

E(r, t
I

U)= f dr'F(r —r')c(r', t
I

U) (4.13)

generated by the excess charge density at time t [cf. Eq. (2.13)]. The truncated correlations with respect to the particles
(r, v), (r', v'), and the set U are defined as in Eqs. (2.14) and (2.15). Then Eq. (4.10) becomes

8
pT(r, v, t

I
U)= —v V,p (rT, v, t

I
U) — E(r) V„p(r, v, t

I
U) —— [V„p(r,v)].E(r, t

I
U)

e eT» r T

fdr'F(r —r').V„pT(r, v;r', t
I

U) . (4.14)

B. Bulk properties

For lack of any solvable model in dynamics, exact results have to rely on an analysis of the BBGKY hierarchy (taking
now the existence of the thermodynamic limit for granted). For a homogeneous OCP with constant background cb, the
static field E(r) vanishes because of the local neutrality ep+cb ——0, and Eq. (4.14) becomes [p(r, v) =q&(v)p]

2

p (rT, v, t
I
U)= vV,p —T(r, v, t

I
U)+/3epy(v}v E(r, t

I
U) — f dr'F(r —r') V„pT(r, v;r', t

I
U) .

m
(4.15)

An immediate piece of information which can be ex-
tracted from the dynamical equations is the value of the
coefticients of the small-time expansion of the structure
function

selves to the properties that are exact in the course at the
time.

By integration over the velocities in Eq. (4.15) one gets
the continuity equation

oo ~n
S(k, v, t

I

v')= g a„(k,v, v'),
n=O "'- (4.16)

dt
pT(r, t

I
U)+V, dv v p(rT, v, t

I
U)=0, (4.17)

where S(k, v, t
I

v') is the spatial Fourier transform of the
translation-invariant function (4.7). By successive itera-
tions of Eq. (4.15}, the coefficients a„(k,v, v') are expres-
sible in terms of the static correlations. The expressions
have been obtained in the literature up to order 6, and we
refer the reader to Sec. 4 of the review by Baus and Han-
sen (1980), and to Ichimaru (1973), for a discussion of
this short-time behavior. In the sequel we address our-

which implies the conservation of the excess charge

3At time t =0 the velocity distribution is a Gaussian. One as-
sumes here that this distribution remains sufficiently short-
ranged at time t to ensure the existence of the average kinetic
energy and the vanishing of the integral of gradient terms.
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Bt fdrc(r, t
l
U)=0 . (4.18)

Since at t =0 the total static excess charge (4.9) vanishes,
the same property remains true for all times and for arbi-
trary positions and velocities of the initial particles, i.e.,

drc r, t U =0. (4.19)

This result holds, provided that there is no contribution
from the integral of the gradient term in Eq. (4.17), e.g. ,
if p T(r, v, t

l
U) decays faster than

l

r
l

for fixed U.
We shall assume this minimal cluster property in the fol-
lowing.

1. Spatial clustering compatible with the dynamical
equations

2 pT(r t
l
»+oippT(r t

l
»

As in the static case, the structure of the equations of
motion has implications for the nature of the cluster
properties (Alastuey and Martin, 1988). To discuss them,
it is useful to also form a second time derivative with the
help of Eqs. (4.15) and (4.17):

The slowest-decaying contribution to the term (4.20b)
comes from the integration region r' close to r, as

l

r
l

~ ao . If r' remains in a bounded region,
pT(r, r', t

l
U) decays at least as

l
r

l
according to the

above assumption, and F(r —r') as
l

r
l

. Thus this
contribution to the term (4.20b) is 0(

l
r

l
). When the

three distances between the points r, r', and U tend to
infinity, the decay is even faster, because of the very
definition of the truncated function. If r' remains at a
finite distance d from r in the integral (4.20b), and
p T(r, r', t

l
U) is assumed to decay as

l

r l, the integral

f d r'F(r —r')p T(r, r', t
l

U)
~

r —r'j (d

=f dr'F(r')pT(r, r —r', t
l

U)
/

r'/ (d
will decay at least as

l
r

l
because of the antisymmetry

of the force; hence, its gradient is 0 (
l
r

l
).

The result of this analysis is that both terms (4.20a)
and (4.20b) decay at least as

l
r

l
. Therefore, the

coe%cients

wk(r, t
l

U)= f dvwk(r, v, t
l

U), k =3,4,
of the development of pT(r, t

l
U) must satisfy the

diFerential equation .

dv v.V, 2pT r, v, ~ U (4.20a)

V, f d r'F(r —r') p T(r, r', t
l

U) . (4.20b)

The second term of the left-hand side follows from the
Poisson equation applied to the field (4.13), and
co& (4~e p/I )'~ i——s the plasmon frequency.

The first observation is that the excess charge density
(4.8) at time t, although globally neutral [see Eq. (4.19)],
has, in -general, a dipole moment diFerent from zero,
when the positions and velocities U =(ri, vi', . . . ', r„,v„)
of the particles at t =0 are specified; this will be explicitly
exhibited by the sum rule (4.31) below. Hence the corre-
sponding electric field (4.13) has a dipolar behavior:

E(r, t
l

U)= — fdr'[r' —3r(r r')]c(r', t
l
U),1

w„(r, o
l
U)=0, w„(r, t

l
U)

dt
=0

and thus wk(r, t
l
U)=0, k =3,4, for all times. One

concludes that the positional correlations of a charge
with any set of particles U behaves as

w~(v t
l

U)
pT(r, t

l

U)=
w6(r, t

l
U)

l
r

l

—+ oo

+ 0 ~ ~

(4.23)

wk(r, t
l

U)+o~ w„(r, t
l

U)=0 .
dt

In the situation of a plasma phase where the static corre-
lations decay exponentially fast, the initial conditions are

—+ OO~ p'= (4.21)
A similar analysis can be carried out for the structure

function S(r, t)=e pT(r, t
l
0). Specializing Eq. (4.20) to

U = (0,v, ), and integrating over v„gives
For the consistency of Eq. (4.15), it is necessary that
some correlations also behave as

l
r

l

it is natural to assume that the general position and ve-
locity correlations have an asymptotic development,
starting with a

l
r

l
term, as the particle at r is sent to

infinity. We set, for instance,

(4.24a)

4

V, f dr'F(r —r')pT(r, r', t
l
0) . (4.24b)

82
S(r, t)+co S(r, t)

Bt

= e f dv(v V, ) pT(r, v, t
l
0)

p, (r, v, t
I
U)=

w3(v, v, t
l

U)

w~(r, v, t
l

U)

w4(v, v, t
l

U)

+ t ~ ~ (4.22)
24If one assumes that

p (r, r+r', t
l
U)=

l
r

l

'w(r', t
l
U)+o(

l
r

l
'),

as
l

r
l
~~ with U fixed. When this is inserted in Eq.

(4.20) one sees that the term (4.20a) decays as
l
r

l

the symmetry of pT under the exchange of the particles implies
w(r', t

l
U)=w( —r', t

l
U).
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Using the stationarity (4.6) and the translation invari-
ance, the correlations occurring in terms (4.24a) and
(4.24b) can be written in the form

pT(r, v, t
~
0) =pz. ( —r, t—

i
O, v),

pT(r, r', t
(
0)=pT( —r, t—

(
O, r r—') .

(4.25)

(4.26)

According to the development (4.23), the correlation
{4.25) behaves as

~
r i, hence term (4.24a) is

0(
~

r
~

}. The contribution of the bounded r' regions
to term (4.24b) are again 0(

~

r
~

). When r' remains at
a finite distance from r, the correlation (4.26} decays as

~

r
~

' because of result (4.23), and this contribution to
the term (4.24b) is 0(

~

r
~

). Since both terms (4.24a)
and (4.24b) decay at least as

~

r ~, one concludes as be-
fore that the structure function must have a bound of the
form

~
S(r, t)

~

( M(t)
(4.27)

2. Sum rules

In contrast to the equilibrium situation (see Sec. I.B), it
is not possible to pursue this analysis further to exclude a
monotonous inverse-power-law decay of the correlations.
In fact, a detailed study of the short-time expansion re-
veals that, at the order t, (1/8!)(8 /Bt )S(r, t) ~,
has the nontrivial inverse-power-law behavior
—,'(e p /m /3 )

~

r
~

' (Alastuey and Martin, 1988). The
lower orders t, k &8, have a fast decay, as a conse-
quence of the strong static screening properties. In the
course of the dynamics, the screening clouds acquire
multipoles; the interplay of these multipoles with the dy-
namics eventually induces an algebraic decay of the
structure function. Even if these arguments do net deter-
mine the exact asymptotic behavior of S(r, t), they
strongly indicate that there is no exponential regime in
dynamics. In other words, the structure factor S(k, t)
[the Fourier transform of S ( r, t) ] is never analytic at
k=O when t&0. This is qualitatively diFerent from the
predictions of mean-field theory (the Vlasov approxima-
tion), which gives an analytic structure factor. In this
respect, the efect of the three-point and higher-order
correlations cannot be neglected. One should add that
the latter conclusions are not particular to the OCP, but
should also be valid for a multicomponent Coulomb gas.

saviors (4.22), (4.23), and (4.27). Then one can easily
derive a sum rule for the dipole of the excess charge den-
sity. Multiplying Eq. (4.20) by er and integrating gives
simply

B2

at2
dr rc(r, t

~

U)+co fdr rc (r, t
~

U) =0p (4.28)

After an integration by parts, terms (4.20a) and
{4.20b} do not contribute to the first moment
[ jdr fdr'F(r r'—)pT(r, r', t

~

U)=0 because of the an-
tisymmetry of P(r —r')]. Since the static correlations
obey the dipole sum rule, one has

f drrc(r, O
~

U)=0,

and one computes easily from Eq. (4.17)

(4.29)

fdrrc(r, t
~

U)
a
Bt t=0

egv, p(U), (4.30}

where p(U) is the static correlation. With these initial
conditions the solution of Eq. (4.28) is

n

drrc(r, t
~

U}= e g vj p(U) simo„t, (4.31)

showing that the dipole of the excess charge density (4.8)
is different from zero when t&0 (Jancovici, Lebowitz,
and Martin, 1985).

One deduces from Eq. (4.15) the law of force

f dv vpT(r, v, t
~

U)

E(r, t
~

U) —f d vv(v. V, ) p(Tr, ,vt
i

U)

2

+ fdr'F(r r')pT(r, r', t—
i

U) . (4.32)

According to our discussion of the cluster properties, the
last two terms on the RHS of Eq. (4.32) decay faster than

i
r

i
. Therefore one concludes from Eqs. (4.21), (4.22),

and (4.32) that the coefficient fdv vw3(r, v, t
~

U) is

determined by

8
dvvw3(r, v, t

~
U)

Bt

a. Dipo1e sum rufe and current-current fluctuations fdr'[r' —3r(r r')]c(r', t
~

U) .
m

(4.33)

From now on we adopt the viewpoint that the dynami-
cal correlations are characterized by the asymptotic be-

With the result (4.31), and the initial condition
Jdv vw3(r, v, O

~

U) =0, this gives

f n n

dv vw3(rv t
i
U)= (cosco~t —1) g vJ —3r r gvi p(U)

j=1 j=1
(4.34)

a quantity that is, in general, diFerent from zero for t&0. As a particular case of the result (4.34) one finds the asymp-
totic behavior of the current-current correlations
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dy' d&io U~)pz- r, v, t vi — cosh)pt —1
4m m

6I . —3T I"

IrI ~co . (4.35)

At order t this formula agrees with the static Auctua-
tions (2.93) of the electric field (with a factor p ). This
correspondence should be clear if one attributes the in-
stantaneous velocity dv=(e/m)Edt to the eff'ect of the
force due to the electric field.

When Eq. (4.31) is averagecl over the Maxwellian dis-
tribution of initial velocities, one obtains that the usual
dipole sum rule holds at all times when one specifies only
the positions of the initial particles

2 fdr r f dr'F(r —r')pT(r, r', t
I
0)

=2fdr'F(r') f dr rp (r, —r
I O, r'),

where Eqs. (4.25) and (4.26) have been used. Both quan-
tities vanish because of the charge sum rule (4.19) and the
dipole sum rule (4.36). This provides an exact closure of
the BBGKY equation (4.24) for the second moment,
which reduces to the simple diA'erential equation

fdrrc(r, t
I
r„.. . , r„)=0 . (4.36) 02 f dr

I

r
I

S(r, t)+co fdr
I
r

I
S(r t)=0 .

Bt
(4.39)

The dipole sum rules (4.31) and (4.36) can be understood
as follows: in the OCP, the dipole (4.31) is proportional
to the center of mass at time t of the local perturbation
initially at r&, . . . , r„. Since the center of mass decouples
from the relative coordinates it is only subjected to the
harmonic force of the background. Thus it oscillates at
frequency ~ and remains constant if there is no initial
velocity. The simple sum rules (4.31) and (4.36) are not
true in multicomponent systems, because of inertia eA'ects

due to the diferent masses.
No higher-order multipole sum rules are satisfied by

the time-dependent correlations of the OCP, as can be
checked from the small-time expansions.

Supplemented with the static second-moment value as in-
itial condition, and 8/Bt J dr

I
r

I
S(r, t) I, 0=0, we find

the result (4.37).

C. Semi-infinite systems

1. The time-dependent Carnie-Chan sum rule

We consider an inhomogeneous OCP belonging to
class (i) of Sec. III.B, i.e., a OCP having a background
density that is asymptotically constant in almost all
directions 0:

lim cb(
I

r I,Q)=c„(Q), r=(
I
r I,Q) .

/I/~oo
(4.40)

Another sum rule plays a role in dynamics analogous
to the Stillinger-Lovett second-moment condition. For a
homogeneous OCP, it can be written in three equivalent
forms as in the static case [see Eqs. (1.27), (1.28), and
(1.29)]:

pf dr'f dr, S(r, t)
1

=4vrP lim ' =cosoo t . (4.37)S(k, r)

This well-known long-wavelength sum rule can be ob-
tained in several ways (see, for instance, Hansen,
McDonald, and Pollock, 1975). In particular, it will ap-
pear as a special case of the derivation presented ip Sec.
IV.C in the framework of linear-response theory.

Let us show here that Eq. (4.37) follows immediately
from the BBGKY equation (4.24). One multiplies it by

I
r

I
and integrates over space. After a partial integra-

tion, terms (4.24a) and (4.24b) become

2f dv
I

v
I

'fdr p„(r,v, r
I
o)

=2f dv
I

v
I f drpr(r, —r

I
O, v),
(4.38)

2

~o„= f dQ co~(Q) = fdQ p(.Q),

z 4me p(Q)
(4.42)

p(Q)= lim p( I
r

I
Q)lrl-

The pure cosco t oscillation in Eq. (4.41) is due to the fact
that, in a OCP satisfying property (4.40), the long-
wavelength mode oscillates undamped with a single fre-
quency ooz. This feature does not extend to the electron
gas in the periodic field of an (infinite) ionic lattice. In
this case the plasmon mode is shifted and damped as a
consequence of the coupling of the electrons to the ionic
lattice (Alastuey and Hansen, 1986).

Because of neutrality, the same property (4.40) will be
true for the particle density. It turns out that for this
class of systems, there exists the following simple time-
dependent generalization of the Carnie-Chan rule (3.4)
(Jancovici, Lebowitz, and Martin, 1985; Lebowitz and
Martin, 1985):

p f dr' f dr S(r, t
I

r')=cosro~t, (4.41)
1

where co is given by the angular average of the squares
of the asymptotic plasma frequencies
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The sum rule (4.41) can be deduced from the BBGKY
hierarchy in a manner analogous to that for the static
case (Appendix). We give here an elementary derivation
based on linear-response theory ancl the assumption that
macroscopic electrodynamics is valid in the long-
wavelength limit.

We consider the electric field E(co,r) due to an oscillat-
ing external charge in the plasma eo exp( i cot—) located
at the origin. The macroscopic equations can be written
in the form

V [s(co, r)E(co, r)]=4ireo5(r),

switching on the perturbation adiabatically)

e0&mC'" (co)= —~/3co fdr' fdr S(r, co
~

r')

m/3eo —,'[5(co—co~ )+Q(co+co )], (4.47)

2. Applications

which is equivalent to the sum rule (4.41) by Fourier
transform. We describe some special cases (Jancovici,
Lebowitz, and Martin, 1985).

co (r)
E(co,r) = 1—

N2
(4.43) a. Plane wa/I

E(co, r)=[eo+C'" (co)],
~

r
~

~~, (4.44)

where C'" (co) is the total net charge induced in the plas-
ma by the external charge. Then, integrating Eq. (4.43)
over a large sphere, and using Gauss's theorem, yields

R2 fdQ E(co, R, B)
eo+C'" (co)

=4We0 . (4.45)

Letting R —+ ~ we obtain from Eq. (4.45), with the prop-
erty (4.40),

—2

6) —CO

(4.46)

Finally, we obtain from the Auctuation-dissipation
theorem and Eq. (4.46) (co being understood as having an
infinitesimal positive imaginary part corresponding to

z 4me p(r)
co r=

m

where e(co, r) is a local dielectric function.
Assuming that the induced charge density decays

sufficiently fast at large distances, the electric field is
asymptotically radial:

(4.48)

where co =(4me plm)' is the bulk-plasmon frequency.
Equation (4.48) can be established by the same arguments
that led to result (3.13).

The dynamical structure function decays as
~ y ~

along the wall, One first specializes Eq. (4.41) to the pla-
nar geometry as in Eq. (3.20) (in three dimensions)

lim f dx' f dx e ~ ~ S(x,k, t
~

x')
ii i-o

=cosB t,P (4.49)

Here the averaged frequency in Eq. (4.49) is the surface-
plasmon mode co& ——co„/&2. Proceeding exactly along
the same lines as Eqs. (3.15)—(3.24), one finds the
equivalent of the long-wavelength behavior (3.24) and the
spatial decay along the wall

The situation and the notation are the same as in Sec.
III.C. The dielectric constant of the wall is taken to be
equal to one. The dipole sum rule (3.9) is generalized to
(v=3)

4m/3f "dx' f dx fdyxS(x, y, t
~

x')= —cosco t,

f dx'f dx[S(x, k, t
~

x') —S (x —x', k, t)]=—,
' fdr

~

x
~

S"(r,t)+ 2cos —t cosco t +o(
~

k
~

)—,
0 0

(4.50)

f dx' f dx [S(x,y, t
~

x') —S (x —x', y, t)]=—
~ y ~

' 8m'/3

co&
2 cos —t cosco t,

~

—y ~

—+ ao,
2

t —costa tIJ

In the extreme case, c =0, the long tail along the wall

as well as the corresponding dynamical generalization of
the sum rule (3.27).

If the wall has a dielectric constant c. & Oo, the sum
rule (4.48) is not modified, but the time-dependent brack-
et in Eq. (4.50) has to be replaced by

[ ]—+ (1+v ) cos (4.51)+l+s

disappears. The sutn rules (4.50) and (4.51) can be found
in Jancovici (1985) as the classical limit of their
quantum-mechanical analogs (see Sec. V.C).

b. Slab

Since cb(r) vanishes in all directions not parallel to the
slab, one has co =0. The right-hand side of Eq. (4.41) is
time independent, and equal to the static value. This is
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because the slab behaves essentially as a two-dimensional
electron gas, where the plasrnon frequency vanishes as

I
k

I

',
I
k

I

~0. Thus the sum rules (3.38) and (3.39)
remain valid over the course of time.

c. Cylinder

Here again co~ =0, and the static result (3.43) holds for
all times. This is due to the fact that the plasmon oscilla-
tion in an infinite cylinder goes to zero with

I
k

I
as

I
k

I
(ln

f
k

f

)'~'.

d. Two-densities OCP

4mPf . dx' f drxS(r, t
I

r'}= cosco+—t,
(4.52)

4rrPf dx'f drxS(r, t
I
r')=cosco t,—OO x(0

where co& ——(4rre p
—/I )'~ are the frequencies associated

with the asymptotic densities. Adding the two expres-
sions (4.52) shows that the usual dipole sum rule is not
satisfied in the interface when t&0 As a .consequence,
there is a weak decay parallel to the interface when t&0.
The averaged frequency is now

' 1/2 1/2
Ct)p + COp

CO (4.53)
2rre (p++p )

m

The dipole sum rules (3.48) have the following time-
dependent generalizations (v= 3):

To determine the long-wavelength behavior one sub-
tracts out the bulk functions as x ~~ and x ~—ao, set-
ting

S (x,k, t fx')=0(x}S+(x—x', k, t)

+0( —x)S (x x', k—, t),
1, x)0,

&( )='
1 ()

(4.55)

where S +(x,k, t) [S (x,k, t)] is the y-Fourier transform
(3.14) of the bulk function corresponding to the density
p+ (p ). Using the sum rules (4.53) and (4.54), and
proceeding as in Eqs. (3.15)—(3.24), one obtains

f dx' f dx[S(x, k, t
I

x') —S (x,k, t
I

x')]
1/2

CO +Q)P

2
2 cos

4mp
i —cosco+ t

cosco„t—+0(
I

k
I ), (4.56)

which leads to the asymptotic form along the interface
(Jancovici, 1985)

and the sum rule (4.41) implies again that

ljm f dx' f dx e —
I "I~S(x,k, t

I
x

o Ik
=cosco t . (4.54)

dx' f dx[S(x, y, t
I

x') S(x,y, t
I

x—')]=-
—OO —OO Iy I

8~P
2 cos

1/2
CO ~ +COP P

2
t —costa+ t —costa

This example clearly shows that the dynamical screening
is less e%cient: the strong static screening properties of
the conducting interface are lost when t&0. w„(r, t

I
U)

pT(r, t
I

U)= +o (4.58)

fy I

~ . (4.57)

I

tions of the charge with a set of particles U behaves as

D. Uniform magnetic field

%"hen the classical OCP is submitted to a uniform
magnetic field 8 its static properties are not altered, but
its dynamical correlations present interesting new
features, which we summarize here (Jancovici, Macris,
and Martin, 1987). The only modification to the equa-
tions of motion (4.10) and (4.14) is that the electric force
eE(r) has to be replaced by the full Lorentz force e [E(r)
+v h8].

1. Bulk properties

Assuming that general correlations of the positions
and velocities still have the asymptotic form (4.22), an in-
vestigation of the cluster properties allowed by the struc-
ture of the dynamical equations shows that the correla-

The structure function is invariant under the rotations
around the direction of the magnetic field, and behaves as

s~(r, t) 1S(r, t)= +o (4.59)

fdrc(r, t
I
U)=0, (4.60)

The weaker algebraic decay (4.58) and (4.59) [compare
with the decays (4.23) and (4.27)] is caused by the pres-
ence of the magnetic field.

In view of the behaviors (4.58) and (4.59), the dipole of
the excess charge density and the second moment of the
structure function are not de6ned as absolutely conver-
gent integrals, and it is more convenient to study the
small-k behavior of the Fourier transforms c(k, t

I
U)

and S(k, t).
Because of the charge sum rule
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both c{k,t
I

U) and S(k, t) vanish at k=0. Setting

c(k t
I
»=

I

k
I
&i{k t

I
»+o( Ik

I
»

k=, (4.61)
fkl

one easily finds from the equations of motion that the
coefficient c, ( k, t

I
U) obeys the closed fourth-order

equation

+(co2+co2) +co2co, (cosg) c, (k, t
I
U)=0 .t4

(4.62)

Here co =(4vre p/m)'~ is the plasmon frequency,

co, =e/m
I
B

I
is the eyelotronic frequency, and

cos8=k.k, 8=B/I B I. The characteristic frequencies
of Eq. (4.62) are given by

co+= —,'Ico~+co, +[(co~+co, ) 4—(co~co, cos8) ]'
I .

(4.63)

These oscillations have also been obtained by Suttorp and
Schoolderman (1987) in a similar analysis of the collec-
tive modes of a dense magnetized plasma. They can also
be derived in the framework of macroscopic electro-
dynamics.

Solving Eq. (4.62) with initial conditions
c, (k, t =0

I
U) =0 [the static dipole sum rule (4.29)], and

the computed values of the time-zero derivatives, leads to
the result

lim c(k, t
I

U)
1

~k~~0, d fixe k

=c,(k, t
I

U)

i e g—v~ p(U)
CO+ —CO

2 2

sinco t since + t8 Ak(cosco+t cosco t) —B—(k B)co
CO CO

+k (co sinco t —co+ sinco+ t) {4.64)

and, when this is averaged over the initial velocities, one has

lim c (k, t
I
r„.. . , r„)=0 .

1

~k~ 0, dfixed k (4.65) lim
L~oo

lim pf „dr'f dr, S(r, t)
1

g ~ oo A~L(8) r' —r

S(k, t)=
I
k

I
s2(k, t)+o(

I
k

I

~) (4.66)

Equations (4.64) and (4.65) are the exact analogs (in
Fourier space) of the dipole sum rules (4.31) and (4.36),
and coincide with ther' when B=0.

The coefficient of the term of order
I
k

I
in the struc-

ture factor defined by

lim
g —+ oo

=I (t, 6 = 0)=cosco t,
lim pf „dr' fdr, S(r, t)

1

L~ co A~I. (B) r' —r

7T=I t, B=—
2

(4.68)

also obeys the simple differential equation (4.62): in this
case, again, the sum rules (4.60) and (4.65) provide an ex-
act closure of the BBGKY hierarchy. When the ap-
propriate initial conditions are inserted (the static
second-moment value) one finds the result

4vrP lim S(k, t)', =I(t,8),(k(~0, dfixed
I
k

I

1{t,g)=
2 2 [(co+ —co, ) cosco+t

(4.67)

—(co —coe ) cosco t] .

This is the generalization of Eq. (4.37) to the magnetic
field case.

N«ice that Eq. (4.67) is equivalent to sum rules in
space. Consider, for instance, a cylinder A~~(k) of ra-
dius R and length 2I., with its axis parallel to B. Then

z 2 Icoz cos[(co +co, ) t]+co, I . (4.69)
CO& +CO

Cxoing to Fourier space, the limit (4.68) [respectively,
(4.69)] amounts to taking k parallel to B in Eq. (4.67) (re-
spectively, k normal to B). One can recover the general
situation (4.67) by replacing A+I (8 ) in Eq. (4.68) with a
cylinder A+I (u ) with axis u, making an angle 8 with B.

The nonanalytic behaviors of pT(k, t
I

U) and S(k, t) as
I
k

I
and

I
k I, respectively, times a function of the po-

lar angles, generate the inverse-power-law decays (4.58)
and (4.59).

2. Inhomogeneous OCP

In the presence of a magnetic field, there is a simple
generalization of the sum rule (4.69) for a restricted class
of inhomogeneous OCP's. Using cylindrical coordinates
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1116 Ph. A. Martin: Sum rules in charged fluids

llm ct, ( R, p ) =cb ( p )
R ~ oo

(4.70)

Then one has the same sum rule (4.69), with co replaced
by the averaged plasmon frequency

r =(R,y, z), with the z axis parallel to the uniform mag-
netic field 8, one chooses the background density as a
function cb(R, y) independent of z, and assumes that it
has a limit for almost all radial directions cp:

N(r) =5(r—q)

and the current density

(5.1)

emphasis on similarities and differences with the classical
case. The ground state will not be discussed. We also
comment on some aspects of multicomponent systems.

Relevant quantities, belonging to a single electron of
charge e and mass m, are the number density

lim lim pf „dr' f dr S(r, t
~

r')
R ~ oo L~ oo ARL(B) r

J(r) = [p&(r —q)+5(r —q)p],2m
(5.2)

[co„cos[(co +ai, )'~ t]+co, I,
CO&+CO

(4.71)22
ai = f dip(y), p(y)= lim p(R, p) .

m 0 R —+ oo

This can be established by linear response and macro-
scopic electrodynamics [generalizing the arguments
(4.43)—(4.47) to the case of a magnetic field], or from the
BBGKY hierarchy.

Special cases include a semi-infinite QCP bounded by a
plane wall (ai~ =co~ /v'2) with the magnetic field parallel
to the wall, or the two-densities OCP ( co„
=[(ai+ +ai )/2]' ) with the magnetic field in the
plane of the interface. These two systems also verify di-
pole sum rules that are the generalizations of Eqs. (4.48)
and (4.53) when there is a magnetic field. Let 8 be the
angle between the magnetic field and the normal to the
wall. Then Eq. (4.48) becomes

4irpf dx'f dx f dy xS(x, yt
~

x')= I(t,6), —
0 0

(4.72)

with I(t, g) given in Eq. (4.67), and one has the analo-
gous generalization of Eqs. (4.53), with co replaced by
co+ (co ) for the region x &0 (x &0).

In the geometries where the sum rules (4.71) and (4.72)

apply, translation invariance is preserved in at least one
direction. In less special geometries there are apparently
no simple sum rules involving only a finite number of
pure oscillations. Using linear response and macroscopic
electrodynamics, one finds, rather, sum rules involving

continuous superpositions over whole frequency ranges

(see, for instance, the case of the OCP bounded by a

plane wall with the magnetic field perpendicular to the
wall, in Jancovici, Macris, and Martin, 1987). The result-

ing oscillations are damped; this damping is due to
dispersion effects and should not be related to any dissi-

pation in the system.

V. QUANTUM CHARGED FLUIDS

A. Introduction

where p, q are the usual quantum-mechanical momentum
and position of an electron. Since the spin of the electron
plays no role in the following, it will not be taken into ac-
count. We keep the same notation, N(r) and J(r), for
the corresponding second-quantized densities in the
many-electron system. In particular, the particle and
charge densities are

N(r) =a*(r)a (r),
C(r) =eN(r)+cb(r),

(5.3)

(5.4)

where a*(r),a (r) are the creation and annihila-
tion operators of a Fermi particle [Ia*(r)a(r')
+a(r')a*(r)I =6(r —r')]. Then the potential and total
energy of the electron gas in a volume V are

U= —,
' f dr f dr'P'(r —r'):C(r)C(r'):,

v v
(5.5)

(5.6)

where K is the kinetic energy defined with appropriate
boundary conditions, and: . : means Wick ordering.

In a quantum-mechanical situation it is important to
distinguish two types of sum rules that are conceptually
different. The first ones refer to the shielding of classical
external charges, whereas the second are linked to the
shielding of the system's own charges, which are of true
quantum-mechanical nature.

The shielding of external charges is best analyzed by
linear-response theory. If one considers again the pertur-
bation (1.12) caused by an infinitesimal static point
charge e0, the quantum-mechanical linear-response for-
mula gives

( ~ ), = ( & ) —e f« f d~(C(r) A ), (5 7)
/r[ 0

where ( A ), (respectively, ( A ) ) denotes the average (in
0

the infinite-volume limit) of an observable A in the per-
turbed (respectively, unperturbed) thermal state. For a
pair of local observables A and 8, the quantity ( g,g )
(an imaginary-time Green s function) is defined by

( 3 8 ) = ljm Tr (e PP. Ng
—(P—r)Hge —Hg)1

V IR Zv

0& ~ &P, (5.8)

We are mainly concerned with the screening properties
in the equilibrium quantum-mechanical electron Quid
(the quantum OCP at nonzero temperatures), with an

with Zv the partition function, p the chemical potential,
and X the total number of particles. By the same argu-
ments that lead to Eqs. (1.24) and (1.27), it is clear that
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X(r
I

A)= f d r(C, (r)A }T (5.10)

satisfy the higher-order multipole sum rules (1.18).
To study the internal screening properties of the quan-

tum electrons themselves, one must rather consider the
static charge-charge correlations (the quantum-
mechanical structure function)

S(r
I

r')=(C(r)C(r') } (5.1 1)

More generally, one introduces the (symmetrized) corre-
lation

c(r
I
A)= —,'(C(r)A + AC(r) }T, (5.12)

which can be interpreted as an excess charge density in a
state conditioned by the specification of a local observ-
able A. If A =N (r, ) . N (r„) is a product of densities,
r, &r2& . &r„, the quantity c [r

I
N(r, ) N(r„)]

=c(r
I
r„.. . , r„) has the same expression as the classi-

cal excess charge density (1.20) and (1.21), in terms of
configurational correlations. The latter are the diagonal
parts of the reduced density matrices defined by

=(a*(r, ) a*(r„)a(r„') a(r', )} . (5.13)

If A is not a purely configurational observable, Eq. (5.12)
involves the oft-diagonal parts of the reduced density ma-
trices. It is also of interest to know what kind of sum
rules are verified by the correlations (5.11) or (5.12).

In quantum mechanics there is no direct link between
functions (5.9) and (5.11), which coincide in the classical
case. It is therefore not possible to get any immediate
information on the static structure function (5.11) of the
electron gas from linear-response theory.

The conditional propositions 2.2 and 3.1 can be ex-
tended to the quantum Quid. By an analysis of the
hierarchy equations for the imaginary-time Green s func-
tions, or for the reduced density matrices, one can show
that the excess charge densities (5.10) or (5.12) should
satisfy multipole sum rules, if there is a sufBciently fast
decay of the correlations (Martin and Gruber, 1984; Mar-
tin and Oguey, 1986). The point here is that the static

the screening of a classical charge in the electron Quid
implies the same sum rules, with the classical structure
function (with the factor p) replaced by the quantum-
mechanical response function (also called two-point
Duhamel function)

X(r
I

r')= f d r( C,(r) C(r') }T .
0

One may also investigate if the more general response
functions

correlations of the quantum Coulomb gas (in dimension
v=2, 3) do not have exponential clustering even when
the thermodynamic parameters correspond to the classi-
cal Debye regime. Only a small number of sum rules
remain true.

The features of the static quantum-mechanical screen-
ing are to some extent comparable to those occurring in
classical dynamics. In both cases the nontrivial interplay
of velocity and configuration distributions (because of the
noncommutativity in the quantum case) induces an alge-
braic decay of the correlations.

B. Static properties

1. Equilibrium equations for the quantum OCP

Since there is, at the moment, no rigorous proof of the
thermodynamic limit of the correlations of the quantum
OCP with Fermi statistics, we shall assume that the lim-
its (5.8) exist for local observables, and inherit the natural
relations that hold at finite volume. One has, in particu-
lar, the Kubo-Martin-Schwinger (KMS) equilibrium con-
dition

(A,B}=(B,,A }, 0&«P,
and the imaginary-time "equations of motion"

(5.14)

( A,B }=([H, A]Q }=(Bp,[H, A]} . (5.15)

Specifying A =C(r) to be the charge-density operator
one gets first from Eq. (5.15) the "continuity equation"

The existence of the infinite-volume limit of the re-
duced density matrices, and of the imaginary-time
Green's functions, has been established for a charge-
symmetric Coulomb gas without statistics (Frohlich and
Park, 1978) and with Bose statistics at sufficiently low ac-
tivity (Frohlich and Park, 1980). The results hold for all
values of the thermodynamic parameters, and for a regu-
larized Coulomb potential.

There are, unfortunately, no explicitly solvable quan-
tum models even in one dimension. However, by a clever
use of the properties of the logarithm-concave functions,
Brascamp and I.ieb (1975) were able to show that the
electronic density of the quantum one-dimensional OCP
with uniform background is nontrivially periodic, when
the dimensionless coupling parameter (m jp )' e/iri is
large enough. This provides an elementary model of a
Wigner lattice.

In Secs. V.B.1—V.B.3 we will be concerned with the
bulk properties of homogeneous phases in two and three
dimensions.

( C,(r) A }T t AV ( J,(r) A—}T——0 . (5.16)

However, function (5.9) is related to a frequency integral
over the dynamical structure factor [see Eq. (5.56) below].

Working out the commutator of the current density with
the Hamiltonian (5.6) gives
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(J~(r)A )T i——AV (KJ(r)A )T —i fdr'FJ(r —r')(C, (r')A )T

3—i dr'FJ r —r':X, r X r':A T, j=1, . . . , v.
Vg

In Eq. (5.17), K~'(r) is a kinetic energy tensor

(5.17)

KJ'(r) = [p~J'(r)+ J'(r)pj],
277l

and the truncated expectations are defined by

( A& &T ——&(A —
& A &)(Il —(& ) ) &, ( A&C) T ——&(A —

& A ) )(& —(&))(C—(C)) & .

(5.18)

(5.19)

Equation (5.17) is the analog of the classical-dynamical equation (4.15). Finally, the combination of Eqs. (5.16) and
(5.17) leads to the second-order equation [cf. Eq. (4.20)]

d v $2
, (C,(r)A), —a'~,'(C, (r)A), = —e' y . , (K~'(r)A),

br~Br

Ae+ V,f dr'F(r —r')(:X,(r)X,(r'):A )T .

(5.20a)

(5.20b)

In the two next subsections we discuss some exact conse-
quences of these equations.

2. Spatial clustering compatible
with the equilibrium equations

z
2

wI, (~, A) —i' a) wk(~, A)=0,
d

k =3,4, 0&r&P .

Moreover, the KMS condition (S.14) gives

(5.22)

The discussion is similar to that presented in Sec.
IV.B.1 (Alastuey and Martin, 1988). It turns out that the
charge density (C,(r)A ) T for a general local A has a
nonzero dipole [see Eq. (5.36) below]. This implies that
the second term on the RHS of Eq. (S.17) decays as

~

r ~, and so must other terms of this equation. We
assume, therefore, that all correlations have an inverse-
power asymptotic expansion as a point r tends to infinity,
starting with a

~

r
~

term. In particular we set

w3(r, A) w4(v, A) w, (~, A)
C (r)A T ——

3 + +

(C ( )A) —(C( )A ) =([A,C( )]), (5.23)

and from Eq. (5.16)

&C,(.)A &, — &C,(.)A),

=ifiV ( [ A, J(r)] ) . (5.24)

Since A is local, the commutators [ A, C (r ) ] and
[A,J(r)] vanish when

~

r
~

is large enough. This implies
that the coefficients of the development (5.21) satisfy the
boundary conditions

+ 0 ~ ~ (5.21)
wk(p, A) =wk(0, A),

(5.25)

By the same arguments used in the classical-dynamical
case [see the discussion following Eq. (4.22)], one con-
cludes that the terms (5.20a) and (5.20b) are 0(

~

r
~

).
Hence the coefficients w3(~, A) and w~(~, A) must satisfy
the equation

This is confirmed by the fact that the fi term in the Wigner-
Kirkwood expansion of the current-current correlations
(J'(r)J'(0) ) behaves as

d
wk(7r, A ) = Wk(7, A)

T p

The solution of Eq. (S.22) with the conditions (5.25) is

w3(r, A) =w4(~, A) =0, 0&~ &/3 . (5.26)

(K",(r)C(0) ),= ( C13,( —r)K"(0)), , (S.27)

Thus the correlations (C,(r)A )T of the charge with a
general observable A decay at least as

~

r
~

We now form the charge-charge correlations
(C,(r)C(0))T in Eq. (5.20). Using the KMS condition
and translation invariance, one can write

—A' ape 12m Br'dr'
(
r

[

(Martin and Oguey, 1985).

(:X,(r)X,(r'):C(0) ) T
——( Cfj, ( —r):N(0)X(r' —r): ) T

(5.28)
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By result (5.26), correlations (5.27) and (5.28) for fixed
r' —r decay as

~

r
~

. This allows us to conclude that
terms (5.20a) and (5.20b) decay at least as

~

r ~, as does

& C,(r)C(0) &T. We find, in particular, that the response
function X(r)=X(r

~

0) (5.9) and the structure function
S(r) =S(r

~
0) (5.11) are bounded by

3. Sum rules

a. Charge ancj dipole sum rules

Charge and dipole sum rules are easily derived from
Eqs. (5.16) and (5.20) under the cluster properties dis-
cussed in the preceding subsection. Integrating Eq. (5.20)
over r leads to

/X(r)f &,, /S(r)/ &
M M

(5.29) fdr&C, (r)A &T=A' co f dr&C, (r)A &T0'T

The study of the A expansion of S(r) indicates that the
decay must be algebraic. The A' term in the Wigner-
Kirkwood expansion of S(r) behaves as dr C r A „=0. (5.30)

But this ~ derivative must vanish because of the conser-
vation itnplied by the "continuity" equation (5.16), hence

7
16m.

2
A'Pe 1

as r
m

This implies that the response functions (5.10) and the
static correlations (5.12) obey the charge sum rule:

f drX(r
~

g)=0, fd„(r
~

g)=0. (5.31)

(Alastuey and Martin, 1988). This result is true for
Boltzmann statistics, but exchange terms coming from
Fermi statistics are exponentially small in the classical
limit iri~0, and cannot cancel this algebraic tail. The ex-
act asymptotic form of S(r) is not known, but one does
not expect exponential clustering of the structure func-
tion of the quantum OCP, even when its classical coun-
terpart is in the Debye regime. The absence of exponen-
tial screening in the quantum Coulomb system was con-
jectured by Brydges and Federbush (1981). Brydges and
Seiler (1986) have rigorously shown that a certain type of
imaginary-time correlation must have a long tail. An
algebraic decay of correlations is a general feature of
quantum jellia and multicomponent systems.

fdrr&C, (r)A &r —A' co fdrr&C, (r)A &z ——0 .

(5.32)

Moreover, one deduces from the KMS condition (5.14)

f d r r & Cii( r ) A & T —f d r r & C ( r ) A & z.

=f dr r&[A, C(r)]&r, (5.33)

and from Eq. (5.16), using the KMS condition again,

One also finds from Eq. (5.20) that the dipole obeys the
second-order differential equation [cf. Eq. (4.28) in the
classical case]

d fdrr&C„(r)A &7 — f drr&C, (r)A &T ——imari f drr(V & [A,J(r)] &T}=0 .
6

87 ~=p d 7=0

Indeed, the integral

fdrr(V &[A,J(r)]&T)=—fdr&[A, J(r)]&T

(5.34)

(5.35)

vanishes, since the state is translation invariant. The solution of Eq. (5.32) with conditions (5.33) and (5.34) is
'Aco 7 —Ra) ~

f drr& C(r)A &T
———

z &
—

z & fdrr&[A, C(r)]&T .
e ~ —1 1 —e

(5.36)

Introducing definition (5.10) and (5.12) one concludes from Eq. (5.36) that the response function and the symmetrized
correlations obey the dipole sum rules for any local A:

f dr rX(r
~

A) =0, f dr rc(r
~

A) =0 . (5.37)

However, generalizing the work of Kennedy (1983),Fontaine (1986) has shown that there exists a scaling limit, in which the corre-
lations of a charge-symmetric quantum gas approach those predicted by the classical Debye-Hiickel approximation. In this scaling,
one simultaneously takes a weak coupling limit I ~0 (I is the plasma parameter) and a classical limit Ao/AD ~0 [Ao=(Pfi /m)'~ is

the de Broglie length]. Of course, the limit is not uniform with respect to the spatial separation, and the decay remains algebraic for
all nonzero values of A,o/A, D.

2sprom definition (5.2), fdr J(r) =(e/m)p is proportional to the generator of space translations. If 2, is a spa««»»a«of ~,

fdr( [ &,J(r)] ) T is proportional to the derivative at a=0 of ( A, ) = ( A ), and thus vanishes in homogeneous state.
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When 2 is a purely configurational observable, which
commutes with the charge density C(r), Eq. (5.36) im-

plies the stronger dipole sum rule

drr C r A T ——0 ACr =0 (5.38)

valid for all r, 0&v(p. It can be checked in the fi ex-
pansion that the function ( C(r) A ) T does not obey
quadrupole or higher-order multipole sum rules.

f dr
~

r ~'(C, (r)C(0))T= — f(co~, r), (5.44)2'

f (co, r) = iricop

2
(5.45)

—f dr
~

r
~

S(r)= — f (co,0)

When ~=0 one recovers a well-known sum rule for the
structure function of the OCP (Pines and Nozieres,
1966):

b. Second moments
fico p fico p

2 2
coth

The perfect screening relation for the response func-
tion

dr r Xr =-' dr r yr

,
' f —drf dr

~

r
~

(C,(r)C(0) ) T

1

2' (5.39)

fdr
~

r
~

(C,(r)C(0))T
dv

0 T
—0 (5.40)

As in the derivation leading to Eq. (4.39), the kinetic en-

ergy term (5.20a) and the three-point function (5.20b) do
not contribute, because of the sum rules (5.30) and (5.38).
Integrating Eq. (5.40) over r, 0 &r & p, one finds, with the
"continuity equation" (5.16) and the KMS condition,
that

can also be deduced from the equilibrium equations. It
follows from Eq. (5.20) that the second moment of
( C,(r)C(0) ) T obeys the simple differential equation

(5.46)

The sum rule (5.39) is the quantum analog of the classi-
cal Stillinger-Lovett second-moment condition: it
characterizes a plasma phase. This sum rule, as well as
the charge and dipole sum rules (5.30) and (5.38) when A

is a configurational observable, will also hold in a plasma
phase of a general quantum multicomponent system
(Martin and Oguey, 1986). However, Eq. (5,46) holds
only in the OCP; it can also be derived froIn energy-
entropy balance correlation inequalities, which charac-
terize the equilibrium state (Martin and Oguey, 1985).
Because of inertia e6'ects due to the diferent masses,
there is apparently no simple sum rule for the second mo-
ment of the structure function in a several-component
quantum charged Auid.

The implications of the charge sum rule on the charge,
potential, and field fluctuations are the same as in the
classical case. These quantities have the same behavior
(2.59), (2.89), and (2.93), where the second moment of
course has to be evaluated quantum mechanically.

Q. Inhomogeneous fluids

fi co f dr
~

r
~

zg(r) = f dr
~

r
~

( C,(r)C(0) ) T

=2ifi fdrr ([C(r),J(0)]) .

(5.41)

In this subsection we describe some properties of a
quantum semi-infinite OCP with asymptotic uniform
densities (4.40).

The second-moment relation {5.44) has the generaliza-
tion

fdrr ([C(r),J(0)])=3iA' = coI 4~
(5.42)

Since fdrrC(r) is the dipole eq, its commutator with

the current (5.2) is readily calculated from the canonical
commutation relations

p f dr' f dr (C,(r)C(r') ) =f (co,~), (5.47)

where co is the averaged plasmon frequency (4.42). If
one sets r =0 in Eq. (5.47) one acquires the corresponding
sum rule for the static structure function S(r

~

r'):

and this leads to the result (5.39).
Moreover, the KMS condition, together with transla-

tion and rotation invariances, implies

f dr
j
r

~

(C&(r)C(0))T ——f dr
~

r
~

(C(r)C(0))T .

A'co~ p
p f dr' f dr S(r

~

r')= coth

(5.48)

(5.43)

The solution of Eq. {5.40) with conditions (5.39) and
(5.43) is

When Eq. (5.47) is integrated over r (0 & r &p), one
deduces the quantum-mechanical equivalent of the

'

Carnie-Chan sum rule for the response function:
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f dr'f dr X(r
~

r')=1 .
D D fr/

(5.49) 1. Homogeneous OCP

The sum rule (5.49) is also valid in inhomogeneous plas-
ma phases of general quantum multicomponent systems.

It is clear that the results of Secs. III.C and III.D im-
mediately extend to the quantum-mechanical case. The
applications of the Carnie-Chan formula to varied
geometries are similar, with the only modification due to
the quantum-mechanical form of the RHS of Eqs. (5.47),
(5.48), and (5.49), depending on the type of correlations
under consideration. We give a few examples (Jancovici,
1985).

Both the response and the structure functions have a
~

r
~

decay along a plane insulating wall. In the OCP
the dipole sum rule at the wall (3.9) holds with —1 re-
placed by f (co—, O), and the quantum-mechanical gen-
eralization of Eq. (3.27) is (with E =1,v=3)

S(k,co)= fdr f dt exp[i(k r —cot)]S(r, t) .

A well-known example is the f-sum rule:

S(k, t)
8
9t

i f—de AS(k, co)

A time-displaced correlation ( A (t)B ) can be formally
considered as the analytic continuation to ~=it/A of the
corresponding static function ( A,B ) (5.8). The time-
dependent charge and current correlations of a homo-
geneous OCP are linked by the dynamical equations
(5.16), (5.17), and (5.20), with r changed intoitlA.

As in the classical case it is possible to evaluate the
derivatives at time zero of S(r, t). This leads to frequen-
cy sum rules for the structure factor

f dx' f dxf (x,x') =—,[2f (co~, O) —f (co~,O)],8~'P
2Pie p .

~2
2m

(5.55)

(5.50)
Moreover, the Fourier transform X(k) of the static
response function (5.9) has a frequency-integral represen-
tation, which leads to the following form of the perfect
screening condition (5.39):

—fi~P
X(k) = f dao S(k, co)

/k' +0(ski ). (S.S6)

We refer to Pines and Nozieres (1966) for a discussion of
this kind of sum rule, and their implications for the
dielectric function.

Because of the simple relation between the imajinary-
and real-time correlation functions, one immediately ob-
tains that the dipole fdr r( C(r, t}A ) T and the second
moment jd r

~

r
~

S (r, t) at time t are given, respectively,

by the right-hand sides of Eqs. (5.36) and (5.44) with
r=itlfi One finds. , in particular, that the dipole of the
symmetrized distribution (5.54) for a general A is given
by

(5.51)

As in the dynamics (4.57), the fast decay and the strong
screening properties of the classical conducting interface
are spoilt in quantum mechanics.

C. Time-displaced correlations

where co = co /&2 is the surface-plasmon frequency.
In the slab, the quantum-mechanical sum rule is identi-

cal to the classical one (3.39), because here the corre-
sponding plasmon frequency variishes in the long-
wavelength limit.

In the quantum two-densities OCP one Ands an alge-
braic decay. parallel to the interface. %Pith the same nota-
tion as iri Sec. IV.C one gets the asymptotic behavior as

f dx' f dx[S(x, y ~

x') —S (x, y x')]

1 1 [2f (cop, O) f (co+,0) f (co~—, O)] . —
y~ 8vr P

The time-displaced correlations of two observables 2
and B are defined as the equilibrium average ( A (t)B )
(in the thermodynamic limit), where

Ace„p
d r rc (r, t

~

A ) = since t coth
2 2

&( f dr r( [ A, C(r)]) T . (5.57)

A ( t) iHtlfi A
—iHtlfi (5.52)

S(r, t
~

r')=( (Cr, t) (Cr', )0)T, (S.53)

with C(r, 0) the charge density (5.4). One considers also
the excess charge density at time t when an observable
is fixed at time zero [cf. Eq. (5.12)],

c(r, t
~

A)= —,'(C(r, t)A + AC(r, t))T . (5.54)

is the observable 3 at time t, evolving with the complete
Hamiltonian. In particular, the time-dependent structure
function of the OCP is

This is the quantum analog of the classical dipole oscilla-
tion (4.31), and is equivalent to it in the classical limit.
Moreover, the dipole sum rule

f di. r(C(r, t)A)T ——0 ([A, C(r)]=0) (5.58)

is true for all times, when 2 is a configurational observ-
able [cf. Eq. (5.38)].

In fact, one can obtain these results from the
quantum-dynamical equations exactly as in the classical
case (Sec. IV.B.2). The dipole and the second moment
obey the second-order equations (4.28) and (4.39},which
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must be solved with the initial conditions corresponding
to the quantum statics. - For instance, the sum rule

the second-order equation (A14), with initial conditions
(5.48) and

fdr r
~

S(r, t)= — f (co,it/A), (5.59) f dr' f dr S(r, t
~

r')a
dt D D I' t=0

—2
COp= —iA
2

(5.62)

f (co,it/fi) =
2

1 COt —E WOE

(5.60)e" ~—1 1 —e

2. lnhomogeneous OCP

is the solution of the second-order differential equation
(4.39) with initial conditions given by Eq. (5.44) at &=0
and the f-sum rule (5.55).

which is the generalization of the f-sum rule (5.55) to this
class of inhomogeneous OCP. When A'=0, Eq. (5.61)
agrees with the classical time-dependent Carnie-Chan
rule (4.41). The results are the same as in the classical
case (Sec. IV.C.2), with the cosine replaced by its
quantum-mechanical counterpart (5.60).

In a semi-infinite quantum OCP satisfying condition
(3.5) one has the following generalization of Eq. (5.59)
(Jancovici, Lebowitz, and Martin, 1985):

fjf dr'f dr S(r, t
~

r')=f(B~, &'&/&),

with co defined by Eq. (4.42). This can be obtained from
a quantum-mechanical linear-response argument similar
to that presented in Sec. IV.C.1. It is also a solution of

I

3 Constant magnetic field

The same remark applies to the quantum OCP subject-
ed to a constant magnetic field. The small-wave-number
behavior of the charge-charge correlations SB(k, t) is
given by Eq. (4.67), with cosco+t replaced by the
quantum-mechanical equation (5.60). Contrary to the
classical case, the static correlations are sensitive to the
presence of the magnetic field:

Sa(k)
4m./3 lim [(co+—m, )f (co+,0) —(co —co, )f (co,0)] .

fk/ 0, e fixed
f

k
[ ez+ —cia

(5.63)

However, the response function gB(k) in the presence of
the field B still satisfies the perfect screening relation in
its usual form (5.56):

Xa(k)
4~ lim =1 . (5.64)

[a ~-0
These long-wavelength oscillations of a quantum plasma
in a magnetic field have been obtained in the framework
of the RPA approximation (Mermin and Canel, 1964).

APPENDIX: A DERIVATION
OF THE CARNIE-CHAN SUM RULE

1. Fluids with asymptotically constant densities

Using the first BGY equation

P 'V,p(q, )=e E(r, )p(q, )+ f dq F(q„q)pT(q, , q)

(A 1)
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(A2a)

(A2b)=e p(q, )f drF(r, —r)S(r,
~
rz)

1 D

+e E(r&)c(rz
~
q&)+ f dq F(q&, q)cT(rz

~ q&, q) .

(A2c)

and proceedings as in Eqs. (2.37) and (2.38), we get from
Eq. (3.2)

j3 'Vi g e pT(qi, qz) +.5(r, —rz)e P 'V ip(q, )

This equation obviously simplifies to the form (2.38) in the homogeneous situation.
We multiply Eq. (A2) by V, (1/

~
r,

~

), and integrate it over r, and rz in D. Setting P(r„rz) =IDdr P(r, —r)S(r
~
rz),

term (A2b) becomes, after an integration by parts,

(A2b)= —e f drz f dr& V&
1

D D ri

1=e. f drzf dr V, V, .
D D li

1
p(q, ) P(r, , rz) —e f drz f ds, V, p(q, )P(r„rz) .

1 D aD rl
(A3)

Rev. Mod. Phys. , Vol. 60, No. 4, October 1988



Ph. A. Martin: Sum rules in charged fluids 1i23

Exchanging now the ri and rz integrals, and using the fact that fDd rz(t(r„rz) = fDd r2$(0, rz) is independent of r, [Eq.
(3.6)], we get

(A2b)= —e P f dr2$(O, rz) .

By property (3.5), we find that the density p is the average of all asymptotic densities p (0):
1 1

1 1
p = — dr, V, V, p(q, ) + ds, V, p(q, )

(A4)

lim f ds, V, p(q, )= lim fdQp(a„R, Q)= f dQp (0) .1

g ~ oo 1
(A5)

We perform the same operations on term (A2a):

1 1(A2a)=/3 ' f dr2 4n g e pT(a„O, qz)+ ds, . Vi g e pT(q&, q2) +/3 'e dri Vi
aD r, r)

2 2

Vi (qi)

T

1 1= —p 'e 4rjp(qi)+ f ds~ Vi p(q~) +/3 'e dr~ V,
1 BD r) 1 Z) r)

V ip(qi)

=p 'e f dr V, .
1

1 1 —1V, p(q ) — ds, V, p(q ) = —p e p
1 1

We have used the charge sum rule to obtain the second equality, and the result follows as in Eq. (A5).
The terms (A2c) do not contribute. One can argue, as in Jancovici, Lebowitz, and Martin (1985, Sec. 3.3), that the q

and q &
integrals may be exchanged, and these terms vanish by the charge sum rule again. For instance, the electric field

E(ri) is O(1/1ri1 ), since the plasma is asymptotically uniform and neutral. Thus V, (l/1ri
1

) E(ri)=O(1/1r,
1

),
and we are allowed to write

fdr, fdr, V,
1

D D . r(
1E(r&)c(r21qi)= f dr, V, E(r&)f dr2c(r21q, )=0 .

D
(A7)

A similar reasoning applies to the second term of Eq. (A2c). Therefore we conclude that the terms (A4) and (A6) are
equal. This implies fDdrzp(O, rz) =p, which is precisely the Carnie and Chan relation (3.4).

2. Periodic OCP

We assume that the conditions of Proposition 3.1 hold for l =0, 1, so the charge and dipole sum rules are verified.
We multiply Eq. (A2) by r2 and integrate over r2. The two last terms do not contribute because of the sum rules, and we
find [cf. also Eq. (2.40)]

p Vi e f dr2r2pT(r&, r2)+er& Vip(r, ) =e p(ri) f dr2r2 f drF(ri r)S(r
I r2) .

By the dipole sum rule f d r2r2pT(r&, r2) = —r,p(r), this leads to the equality

f drzrz fdrF(r, —r)S(r1r2)= —P 'v .

Notice that the integration of (A2) over r2, with the charge sum rules, leads to

f

draff

drF(r, —r)S(r1r2)=0 .

(A9)

(A10)

introducing the averaged structure function on a cell S(r—r') =(1/161 )f ada S(r+a1r'+a), the left-hand side of
Eq. (A9) can be transformed to [using Eq. (A10) and setting r, =a]

29We set p(a,
1
r 1,0) and p (0) equal to zero when the direction 0 does not belong to D.
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1 1f da f drz(rz —a) fdr F(a —r)S(r rz) = f da f drzrz f dr VP(r)S(r+a rz+a)

= f drzrz Vz f dr&(rz —r)S(r)

—v f drz fdr P(rz —r)S(r) = —P 'v . (Al 1)

This is equivalent to the second-moment condition (1.29) for the averaged function S(r).

3. The time-dependent Carnie-Chan sum rule

We consider a OCP with asymptotically constant densities (4.40). One finds from Eq. (4.14), and the definitions given
in Sec. IV.A, that the dynamical structure function of the inhomogeneous Auid obeys the equation

(j2 2

S(r&, t
l
rz)+ V~ p(r&) f drF(r, —r)S(r, t

l
rz)2 I D

4e
Vl l«ri )S(ri t

l
rz) 1+«vi(vi Vi) pr(ri vi t

I rz) — V, f dr F(r, —r)p T(r„r, t
l
rz)2 2 e

(A12)

This equation obviously simplifies to the form (4.24) for a
uniform OCP. We multiply it by 1/

l r,
l

and integrate
over r, and rz. Setting P(r„rz, t)= Jdrtt(r&
—r)S(r, t

l
rz), the second term on the LHS of Eq. (A12)

can be transformed to (Jancovici, Lebowitz, and Martin,
1985)

2 1f drzf dr, V,
APE D D I') l.p(rl )Vle(rl rz

2

p f dr Pz( Or zt)=co f dr g(zO, r tz) (A13)

a2 1
+co„ f drzf dr, -S(r, , t

l
rz)=0.

D D

The sum rule (4.41) results when one solves Eq. (A14)
with the appropriate initial conditions given by the stat-
1cs.
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