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The authors present a general discussion of spherical, nonrelativistic blastwaves in an astrophysical con-
text. A variety of effects has been included: expansion of the ambient medium, . gravitation, and an em-
bedded Quid of clouds capable of exchanging mass, energy, or momentum with the medium. The authors
also consider cases of energy injection due either to a central source or to detonations. Cosmological solu-
tions are extensively treated. Most attention is devoted to problems in which it is permissible to assume
self-similarity, as in the prototype Sedov-Taylor blastwave. A general virial theorem for blastwaves is de-
rived. For self-similar blastwaves, the radius varies as a power of the time, R, x t "I. The integral proper-
ties of the solution are completely specified by two dimensionless numbers measuring the relative impor-
tance of thermal and kinetic energy. The authors find certain exact kinematical relations and a variety of
analytic approximations to determine these numbers with varying degrees of accuracy. The approxima-
tions may be based on assumptions about the internal density distributions (e.g., shell-like), pressure distri-
bution, or velocity distribution. In many cases exact conditions from, for example, boundary conditions
or other constraints may be used to determine unspecified parameters. One new set of exact integral con-
straints has been derived. The various approximation schemes are tested with known solutions. The au-
thors find that for blastwaves in which the How extends to the origin, the assumption that the internal ve-
locity is linear with radius is reasonably accurate. For blastwaves in which an interior vacuum develops,
the equally simple approximation of constant interior velocity is accurate. These lowest-order approxima-
tions are shown to give numerical coe%cients in the relation E.

=constant"

which are accurate to about
1 —2%. The higher-order approximations show an accuracy that in some cases equals that obtained, to
date, by direct numerical integration. In addition to the new methods presented, the authors have ob-
tained new results for evaporative blastwaves, impeded blastwaves, blastwaves with cloud crushing, bub-
bles, cosmological blastwaves (self-similar and non-self-similar, radiative and nonradiative), blastwaves in
a wind, and detonations. Some of the new results found are exact. Included are the radiative, cosmologi-
cal self-similar solution, appropriate to the universe (z & 10) when inverse Compton cooling is e%cient
IlnR =const+(lnt)(15++17)/24], and certain properties of the solutions mentioned above. In a series
of appendixes several related issues are treated: energy conservation for multicomponent Quid in an ex-
panding universe; central and edge derivatives of physical quantities in self-similar adiabatic blastwaves;
shock jump conditions including energy input (detonations), and a variety of other matters.
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L)ST OF SYMBOLS~

a

Eo Esi

cloud radius [Eq. (5.30)j; a constant
[Eq. (9.87)].
coefficient in two-power approximation
for x [Eq. (4.9)].
a constant [Eqs. (4.31) and (9.88)].
a constant [Eq. (9.89)]; speed of light
(Secs. IX and X).
isothermal sound speed [Eq. (2.1)],
behind shock [Eq. (10.1)].
isothermal sound speed of dark matter
[Eq. (9.5)].
integration constant [Eq. (9.93)].
(b 4ac—)' [Eq. (9.91)j.
total energy of the intercloud gas inside
the blastwave, including the energy of
the swept-up ambient medium:
E =E, +Eb [Eqs. (3.14) and (Al)].
For a cold, stationary medium E =Eh.
dE/dT [e.g. , Eq. (A2)].
total energy of all components in
blastwave [Eqs. (A16) and (9.74)], of
components other than intercloud gas,
E'=E, E[Eq. (—A16)].
initial energy of blastwave,
EO=Eb(t =0), [Eq. (A21)]; in units of
10 ' erg [Eq. (6.63)], 10 ' erg [Eq.
(9.39)].
energy of ambient intercloud gas in ab-
sence of blastwave [Eqs. (3.14) and
(A18)].
energy due to blastwave [Eqs. (3.31)
and (A19)].
detonation energy [Eq. (A21)].
energy injected by central source in the
time interval (O, t) [Eq. (7.1)].
kinetic energy in blastwave [Eq. (3.16)j.
energy radiated by blastwave [see (A5)].
thermal energy in blastwave [Eq.
(3.18)].
cloud filling factor=fraction of volume
occupied by clouds [Eq. (2.1)]; may de-
pend on position.
value of f just outside shock [Eq.
(2.6)].
mean values of f inside blastwave [Eqs.
(2.10) and (D6)].
(@+1)Kit/&02 [Eq (477a)].
gravitational acceleration [Eq. (2.2)],
constant [Eq. (2.12)].
parameter characterizing cosmological
expansion [Eq. (9.1)]; h =1 (Q«1),
h =—', (0=1).

'Equations in or near which symbol is defined are given in

square brackets.
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h~
a Ho

Jx

kp crit

E (LVA)

K~„(QPA)

I, I„d

M„M,„

Hol(100 kms 'Mpc ') [Eq. (9.32)]'
Hubble constant at arbitrary time [Eq.
(9.3)], now [Eq. (9.4)].
form factor for blastwave luminosity
[Eq. (4.95)].
for arbitrary hydrodynamic variable x,
the power law for x(M): j =1„/l~
[Eq. (4.54)]. Special value: j~ ——1/l~
[Eq. (4.52)].
for arbitrary variable x characterizing

k„blastwave; x ccR " [Eq. (3.7)]. Rela-
tion to time dependence t
k = —g„/g [Eq. (7.4)], except

po(r, t) ~r t ' [Eq. (3.25)]. Special
cases: k„=g ' —1 [Eq. (3.13)],
kp k~+3, k——~=k —3 [Eq. (3.29)).
for k =k „;,=(7—y)/(y+1) and
kE ——0, linear velocity approximation
exact; .central vacuum forms for
k )k „;, [Eq. (4.18)].
dimensionless moment of r U" [Eq.
(2.9)].
E 2 in the linear velocity approxi-
mation [Eq. (4.16)].
E „ in one-power approximation [Eq.
(4.24)].

in the shell approximation [Eq.
(4.43)].
moment of evaporated gas [Eq. (C4)].
dimensionless moment of pressure [Eq.
(D7)].
power law in cooling function: Aocp'
[Eq. (6.1)].
for arbitrary variable x, approximate
x &x (r/R, )/ inside blastwave [Eq.
(4.8)].
power-law index in Kahn approxima-
tion [Eq. (4.34)].
power law for asymptotic behavior at
inner edge of hollow blastwave [Eq.
(B37)].
radiative luminosity of blastwave [Eq.
(4.93)], of outer radiative shock [Eq.
(7.14)].
rate of energy injection by central
source [Eq. (7.2)].
a constant proportional to the rate of
energy injection: I.;„=I., t '" [Eq.
(7.9)].
power law in cooling function: A~T
[Eq. (4.94)].
rate of mass fiow from a cloud to the
intercloud medium [Eq. (2.1.)].
mass of intercloud gas inside blastwave
[Eq. (2.1)].
swept-up [Eq. (3.27)], evaporated [Eq.

M„M'

M;„

M

At„At„

p po

P, P,'

pQ p

P„

Q.,

R, (r)
R, (1)

R„

R,

(C7)] mass inside blastwave.
integration constant [Eq. (6.27)].
characteristic mass for blastwave in a
wind [Eq. (8.5)].
total mass of all components in
blastwave [Eq. (A8)], of all but inter-
cloud gas, M'=M, —M [Eq. (A8)].
mass of ith component in blastwave:
i =1, intercloud gas (M =M&); i =2,
matter other than intercloud gas, as-
sumed to have same spatial distribu-
tion; i =3, central mass (M'=M2+M3)
[Eq. (A22)].
rate at which mass is injected into
blastwave from central source [Eqs.
(2.15) and (7.23)].
mass loss rate in wind prior to
blastwave [Eq. (4.81)].
rate at which mass is injected into
blastwave by cloud evaporation [Eq.
(C3)].
isothermal Mach number of shock
U, /Co [Eq. (6.20)], in saturated eva-
poration [Eq. (5.34)].
adiabatic Mach number of shock [Eq.
(E7)], of postshock fiow [Eq. (E8)].
density of hydrogen nuclei p/pH [Eq.
(4.93)].
mean density of hydrogen nuclei in
blastwave M/pH V [Eq. (4.94)].
momentum of radiative blastwave [Eqs.
(6.5a) and (8.15)].
pressure [Eq. (2.1)], ambient pressure
[Eq. (2.1)], post-shock pressure [Eq.
(2.1)].
mean pressure in blastwave [Eq. (2.11)],
just after radiative cooling leads to
shell formation [Eq. (6.18)].
logarithmic derivative of pressure [Eq.
(B13)], just inside shock [Eq. (B12)].
cosmic-ray pressure [Eq. (4.88)].
parameter describing cloud evaporation
rate per unit volume [Eq. (5.15a)).
average value of Q [Eq. (5.15b)].
radial coordinate froin center of
blastwave [Eq. (2.1)].
blastwave radius at time t [Eq. (2.6)].
blastwave radius at fiducial epoch [Eq.
(3.7)]
normalized blastwave radius R, /R, (1)
[Eq. (3.7)].
for R, &R„, evaporated mass is impor-
tant [Eq. (5.25)].
for R, &R„„evaporation rate saturates
[Eq. (5.36)].
at R, =R„radiative losses from the
shocked intercloud gas become impor-
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RstoI

R eq, im

R c

R eq, cur

Uin

Uc&

HPg~ ~ LOI~

tant [Eqs. (6.16) and (6.63)].
R, /A, ,i [Eq. (6.25)].
radius of outer caustic in dark matter,
of gas shock, in a combined dark
matter/gas blastwave [Eq. (9.72)).
at R, =R,q, P equals ambient pressure,
[Eq. (6.18)].
maximum radius during overshoot of
radiative solution [Eq. (6.21)].
for R, ~R;, blastwave impeded by
clouds [Eq. (6.39)].
for R 5 R eq 1m &

P =Po for impeded
blastwave [Eq. (6.48)].
for R, & R„, clouds completely crushed
[Eq. (6.53)].
for R, ~R, , cloud-crushing losses are
significant [Eq. (6.61)].
at R, =R. . . P =Po for cloud-
crushing solution [Eq. (6.62)].
entropy I'/pr [Eq. (4.12)].
age of blastwave [Eq. (2.1)].
for blastwave in a wind, time at which
injected energy is comparable to energy
of swept-up wind [Eq. (8.8)].
temperature [Eq. (4.93)], mass-weighted
mean temperature in blastwave [Eq.
(5.1)].
internal energy (Appendix A) [Eq.
(A2)]; shock parameter (Appendix E)
[Eq. (E15a)].
velocity of intercloud gas [Eq. (2.1)].
shock velocity [Eq. {2.1)], post-shock
Quid velocity [Eq. (2.1)].
velocity of ambient medium [Eq. (2.1)],
for a particular case of wind [Eq.
(4.81)].
velocity of mass injected from central
source [Eqs. (2.15) and (7.2)].
velocity of cloud-crushing shock [Eq.
(6.52)].
logarithmic derivative of u [Eq. (Bl1)],
just inside shock [Eq. (B16)].
velocity of the self-similar coordinate,
ui ——ups [Eq. (B5)].
shock velocity relative to Hubble Bow
[Eq. (9.15)].
volume [Eq. (2.6)].
gravitational energy coefficients [Eqs.
(7.16) and (A34)].
gravitational interaction energy
coefficients for components i,j [Eqs.
(A25) and (A35)].
fraction of post-shock pressure in cosm-
ic rays [Eq (4.86)].
gravitational energy of intercloud gas
[Eqs. (2.12) and (A9)].
gravitational interaction energy [Eq.

x(1)

P)~ 3'2

CX ), CX2

I (x)
6

Kp, KT

(Agb)], self-energy [Eq. (Aga)]
gravitational energy transferred out of
gas [Eq. {A12)].
age of blastwave/age of universe [Eq.
(9.40)].
arbitrary variable [Eq. {3.7)], just
behind shock [Eq. (Bl)].
arbitrary variable at fiducial radius
R, (1) [Eq. (3.7)].
normalized x [Eq. (4.6)], logarithmic
derivative of x [Eq. (4.10)].
(1 —v)x* [Eq. (B29)]
arbitrary variable evaluated at inner
edge of hollow blastwave [Eq. (4.48)].
normalized relative shock velocity in
Hubble Sow [Eq. (9.85)].
defined in [Eq. (9.91)]; y i )y 2.
Redshift [Eq. (10.18)].
u, /C =(pu, /P)'~ [Eq. (3.17)].
constants [Eqs. (4.59b) and (4.59c)].
detonation velocity/c [Eq. (10.2)].
efFective pressure compressing clouds/P
[Eq. (6.54)].
ratio of specific heats at shock [Eq.
(3.22)], in interior of blastwave [Eq.
(3.14)].
e6'ective y just behind shock, allowing
for cosmic rays [Eq. (4.86)].
energy in bubble/energy injected [Eq.
(7.6)]; for fully adiabatic bubble (I =1),
for bubble with radiative outer shock
[Eq. (7.16)]
gamma function [Eq. (6.51)]
shell thickness in shell approximation is
R, 5 [Eq. (9.21)].
K20 ——(1+$) ' [Eq. (C18)].
cc is the energy jg released in detona-
tion wave [Eq. (10.1)].
total energy density of gas [Eq. (B48)].
R, cct" for power-law behavior [Eq.
(3.1)], q —=u, t /8 in general [Eq.
(9.105)].
for arbitrary variable x characterizing
blastwave: x a: t " [Eq. (7.3)]. Relation
to space dependence R:q = —gk„
[Eq. (7.4)]. Exception: 8, ~t"" in radi-
ative phase [Eq. (6.17)]. Special cases:
E;„~t '" in bubbles [Eq. (7.1));

po(r, t) ~ r t [Eq. (3.25)]. For
cosmological blastwaves with Qg &0,
gE is defined by [Eq. (9.102)].
normalized temperature k T/pu, [Eq.
(E6)].
power-law index for density, tempera-
ture dependence of evaporation rate per
unit volume [Eq. (5.15)].
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» &i~ ~H

4sT

P~ PO~ Pl

Pcl

pilrit

pu

P ~Pl

Op

0'd~ Og

Ocl

X, X,

r/R, [Eq. (4.7)].
cloud mean free path (to,&od)

' [Eq.
(2.1)].
the radiative cooling rate per unit
volume is n A [Eq. (4.93)].
mean mass per particle [Eq. (5.1)], per
hydrogen nucleus [Eq. (4.94)].
v/A, v, [Eq. (85)], u, /u, [Eq. (3.15)],
u~/u, [Eq. (3.21)].
dimensionless numerical coefFicient in
general expression for R, [Eq. (3.6)].
value of g for Sedov-Taylor blastwave
[Eq. (4.79)].
g for adiabatic, radiative blastwaves
[Eq. (6.17)].
effective g for combined dark
matter/gas blastwaves [Eq. (9.7S}].
for stage 1 of blastwaves in a Qg ~ 0
universe: g in the precosmological
stage, at late tiInes and at arbitrary
time [Eq. (9.103)].
normalized momentum Aux through
shock; =1 for strong shocks and
strong detonations [Eq. (E10)].
intercloud density [Eq. (2.1)], ambient
intercloud density [Eq. (2.3)], post-
shock intercloud density [Eq. (2.3)].
mean intercloud density in blastwave
[Eq. (3.4)].
density in a cloud [Eq. (6.52)].
critical cosmological density [Eq.
(9.4b)].
total mass density, including intercloud
gas, clouds, stars, neutrinos, etc. [Eq.
(9.4b)].
constant characterizing ambient density
in cosmological blastwaves [Eq. (9.2)].
logarithmic derivative of p [Eq. (81)]
just inside shock [Eq. (817)].
Zt, /Mu,
saturation parameter [Eq. (5.34)].
in combined dark matter/gas
blastwaves, Eb/Mv, evaluated for dark
matter and gas separately [Eq. (9.73)].
cloud cross section ma [Eq. (2.1)].
cloud evaporation parameter, measured
in pc [Eq. (5.30)].
cosmic time [Eq. (9.1)], at start of
blastwave [above Eq. (9.5)].
integration constant approximately
equal to rb [Eq. (9.93)].
cosmic time at which radiative cooling
becomes important in blastwave [Eq.
(9.S2)].
used to describe pressure gradient [Eq.
(4,68)]; to measure heat Aux [Eq.
(5.30)].

o

normalized energy fIux through shock
[Eq. (E10b)]; =1 for strong shocks, but
not for detonations [Eq. (E22)].
shock compression [Eq. (4.2)].
momentum per steradian of intercloud
gas [Eq. (D2)].
number of clouds per unit volume [Eq.
(2 1)].
cosmological density parameter [Eq.
(9 3)].
cosmological density parameter based
on intercloud gas only [Eq. (94b)], at
present epoch [Eq. (9.4a)].

I. INTRODUCTION

There is growing evidence that explosions are critically
important to the evolution of astrophysical systems. In
addition to classic point explosions, continuous energy
input of one kind or another is often important. The
treatment in this paper on blastwaves is sufFiciently gen-
eral that its methods can be applied to winds from early-
type stars, D critical ionization fronts, detonations, or
any situation in which an expanding spherical distur-
bance is preceded by a shock front. Quite apart from the
nature or origin of the explosive process itself, the ex-
panding blast wave will shock, heat, and accelerate the
surrounding ambient medium. If there are romany explo-
sions, the multiple interacting blastwaves may dominate
over other physical processes to the extent that they
determine the overall density and temperature of the
medium. In our galaxy, shocks from supernovae are
thought to be important in the acceleration, collapse, and
perhaps formation of interstellar clouds. Shocks may
also be important for accelerating cosmic rays (Axford,
Leer, and Skadron, 1977; Bell, 1978; Blandford and Os-
triker, 1979) and for determining the intercloud tempera-
ture and pressure as well. In the 6rst paper in this series
(hereafter denoted as paper I) (McKee and Ostriker,
1977), we attempted to construct a general theory for an
interstellar medium dominated by shocks. In other work
(Schwarz, Ostriker, and Yahil, 197S; Blandford and
McKee, 1977; Ostriker and Cowie, 1981; Vishniac et al
1985) we have studied the effect of shocks on the inter-
galactic medium, where it may be as important for galaxy
formation and the confinement of intergalactic clouds as
are shocks for star formation and confinement of inter-
stellar clouds within the galaxy.

The astronomical paradigm of a blastwave is the super-
nova remnant (SNR). Some stars undergo a cataclysmic
explosion, a supernova, at the end of their lives (see, for
example, Chevalier, 1981): low-mass stars (i e , stars .of.
mass comparable to that of the sun, 1M~ ) in close binary
systems can explode either when mass transfer from one
star to the other drives the latter over the Chandrasekhar
limit, or when the two stars coalesce, again exceeding the
Chandrasekhar limit. Stars of mass M~7MO cannot
shed enough mass in their lifetimes to end up below the
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Chandrasekhar limit, and they explode when the nuclear
fuel in their cores is exhausted. Remarkably enough,
these very difFerent beginnings both lead to an explosion
with an energy Eb —10 ' erg, or 6& 10 Moc . Initially,
the energy is largely thermal, but as the supernova ex-
pands, adiabatic. expansion converts the thermal energy
to kinetic energy. The mean expansion velocity of the
matter ejected by the explosion is U„=10 [E»/
(M,, /M~)]' cms '. Not all the matter in the pre-
supernova star is ejected: for massive progenitors, a neu-
tron star or black hole may be left behind.

As the remnant of the supernova expands, it goes
through several well-defined stages: (1) In the first stage
the ejected mass exceeds the swept-up ambient mass, so
that to lowest order the ejecta undergo free expansion.
The dynamics in this stage are affected by both the densi-
ty distribution of the pre-supernova star and that of the
ambient material. (2) After the blastwav'e expands to the
point that the swept-up, shocked mass of gas exceeds the
ejected mass, the SNR enters the second stage, the adia-
batic (or Sedov-Taylor) stage, and the dynamics becomes
simple. For a uniform, homogeneous ambient medium,
the distributions of density, velocity, and pressure in this
stage depend only upon two-dimensional parameters, the
energy of the explosion Eb and the ambient density po.
Even if the initial explosion is aspherical, it approaches
sphericity in this stage. SNR's in this stage of evolution
have been observed at radio, infrared, optical, and x-ray
wavelengths. X-ray observations, particularly by the
Einstein satellite, best reAect the distribution of the hot,
shocked gas inside the SNR, and are approximately con-
sistent with theoretical expectations in terms of the de-
gree of brightening at the edge and other properties.
With the exception of young, pulsar-powered remnants
such as the Crab Nebula, the optical emission from
SNR s is primarily emission-line radiation from shocked
clouds, many of which have a filamentary appearance.
(3) Eventually the radiative losses from the SNR interior
become significant, and the remnant enters the third, ra-
diative stage of its evolution, when a shell-like structure
is expected to occur. Much of the interstellar medium is
at too low a density for the SNR to be observable in this
stage. (4) Finally the SNR expands so far that its interior
pressure drops to the point that the SNR merges with the
ambient interstellar medium.

The theoretical paradigm for the simple blastwave is
the Sedov-Taylor (ST) self-similar solution (Sedov, 1946,
1959; Taylor, 1950) for a point explosion in a homogene-
ous medium with zero pressure and a fixed ratio of
specific heats. This solution thus applies to the second of
the four stages of SNR evolution outlined above, when
the stable spherical shock propagates, at a decelerating
rate, into the unperturbed medium. Since the solution
depends only on the blastwave energy EI, and the am-
bient density po, there is no characteristic radius or time
in the problem, and the blastwave radius must be of the
form R, =(gEbt /po)'~, where g is a numerical con-
stant, with the interior structure maintaining an invari-

ant form. The dependent variables describing the
liow —the velocity U(r, t), the density p(r, t), and the
pressure P(r, t)—must all be of the form x (r, t)
=x, (t)x(r/R, ), where xi(t) is the value of x (r, t) just
behind the shock and x is dimensionless; for example,
U i(t) ~ U, (t):1R—, /dt, p, (r) ~pa(R„t), and Pi(t)
~po(R„t)U, (t) B.ecause the structure of the blastwave
at any time is related to that at any other time by simple
scaling, the solution is said to be self-similar. All dimen-
sionless quantities approach fixed values in this phase
with, for example, the thermal energy fixed at about 70%
of the total energy. It is often possible to obtain explicit
analytic solutions to self-similar problems because the
partial differential equations of hydrodynamics reduce to
ordinary differential equations for the dimensionless
dependent variables x (r/R, ). In the interior, the density
and velocity approximate power laws, with the mass con-
centrated towards the edge (p cc r ) but the velocity near-
ly linear throughout the interior.

Sedov (1959), in a classic work, has presented an exten-
sive analysis of solutions of this type, which can be ob-
tained through dimensional analysis. The example of the
evolution of a supernova remnant shows the power of
this technique: in reality, the ejected mass that dom-
inates the first stage of the evolution and the radiation
that dominates the third stage are never completely ab-
sent, so the Sedov-Taylor solution represents an inter-
mediate asymptotic solution (Barenblatt and Zel'dovich,
1972; Barenblatt, 1979), which is valid in the limit
&„«&,«&„ where R„ is the radius at which the
swept. -up mass equals the ejected loss and 8, is the radius
at which radiative cooling begins to determine the dy-
namics. The Sedov-Taylor solution is exact only in the
limits R„/R, ~0, R, /R, ~0, but it is a good approxi-
mation whenever the radiative losses are not dominant,
and it thus has wide applicability.

There is a second type of self-similar solution, in which
dimensional analysis is inadequate (Barenblatt and
Zel'dovich, 1972; Barenblatt, 1979); in particular, the
values of the parameter g in the expression R, ~ t" is in-
determinate through dimensional analysis. For
blastwaves, self-similar solutions of the second type can
occur when energy is not conserved. If the energy in the
blastwave Eb ——Eo(R, /R, ) for R, &~R„ then for
R, &&R, the solution will be self-similar with

R, =[gEO(R, /R, ) t /pojj', or R, =(gEOR, t /
1/(S+ kE)

po) ~ . In this case the solution does not depend
separately on the two length scales (Eat /po)' and R,
but only on a combination of the two. If the combination
is not specified in advance —in other words, if kz is an
unknown to be solved for —then the solution is of the
second type. Radiative blastwaves (Sec. VI) and cosmo-
logical blastwaves with Qg &0 (Sec. IX) fall into this
category.

In recent years the literature concerning blastwaves in
an astronomical context has become quite voluminous as
more and more complexities have been added to the
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theoretical model (e.g., Chernyi, 1957; Parker, 1963;
Dryer, 1974; Cavaliere and Messina, 1976; Ga6'et, 1978;
Chieze and Lazareff, 1981). Most improvements involve
relaxing the simplifying assumptions of the ST solution
and allowing for conduction, radiative losses, external
pressure, gravity, relativity, or symmetric spatial or tem-
poral changes in the ambient gas. These variations stj.11

permit the explosion to be described as spherically
symmetrical, which is, of course, a great convenience to
the theoretician. It is thus reassuring that many of the
Einstein images of supernova remnants show a fair de-
gree of circular symmetry. However, we know that the
interstellar Inedium is far from uniform, so it is useful to
see if an approximate treatment can be found which al-
lows for this irregularity. To the extent that much of the
mass of the interstellar medium is confined to a small
fraction of the volume and that the high-density com-
ponent is mostly in irregularities (henceforth called
"clouds" ) small in scale compared to the radii of the
blastwaves studied, we can consider the medium to be
made up of two Quids. There is a background medium
with mean density and isothermal sound speed (po, CO)
and an embedded Quid of clouds. The blastwave propa-
gates in the low-density medium, with clouds treated as
"impurities" that can add or subtract mass, energy, or
momentum from the local Qow. An approximate treat-
ment of this problem was given in paper I of this series
(McKee and Ostriker, 1977); a detailed numerical discus-
sion was presented (hereafter denoted as paper III;
Cowie, McKee, and Ostriker, 1981), and the converse
problem of the efFect on the cloud Quid of a blastwave
propagating through was discussed earlier (hereafter
denoted as paper II; McKee, Cowie, and Ostriker, 1978).

To treat either the e6'ects of inhomogeneity or the oth-
er mentioned physical e8'ects requires detailed numerical
solutions of the hydrodynamic equations, However, in
many cases it is possible to obtain analytic solutions for
the shock radius R, versus time which are exact to
within constant numerical factors.

In previous papers by the authors in various combina-
tions and with others, a variety of solutions has been
found for the expansion of spherical blastwaves. Various
numerical and semianalytical techniques have been used,
and the results published in various notations and to
varying degrees of accuracy. A preliminary and elemen-
tary summary of the present method was presented by
McKee (1982). The intention of this paper is to present
on a unified basis a new analytic treatment of our previ-
ous results, and to extend the method to other cases in
which it may provide a simple and accurate model for
computing evolution in other problems of interest, such
as stellar wind bubbles or explosions in cosmologically
expanding media. We have found that the relatively sim-
ple analytical treatment presented here (based primarily
on the virial theorem) is remarkably accurate and pro-
vides much greater insight than that obtainable from
more complex numerical simulations.

A brief review of our organizational plan and primary

results may be useful as a guide to the reader. Sections II
and III should be read by those interested in any of the
specific problems addressed subsequently, since they es-
tablish the notation and derive the fundamental dynami-
cal equations to be used thereafter. A general time-
dependent virial theorem is derived which includes sur-
face terms, gravity, and interaction with another coexten-
sive Quid (such as a matrix of clouds). The terms in this
equation retain their intuitive basis, such as relations to
commonly understood thermal, kinetic, and gravitational
energies. The derived equation also allows for expansion
of the underlying Quid as would be appropriate for
cosmological explosions or for supernovae occurring in
stars surrounded by a stellar wind. In the limit where the
internal Quid becomes compressed into a thin shell, a par-
ticularly simple equation results. Both the general and
the limited form of these equations can be used for an ar-
bitrary spherical blastwave. They are ordinary nonlinear
difFerential equations well suited for exploratory numeri-
cal calculations in cases in which the full complexity of
numerical hydrodynamics is not required. Section III
treats the broad and important class of self-similar Qows,
showing how the exponents of the power laws in the time
development can be found exactly and how most of the
integral properties of the solution can be summarized by
two numbers: cr, the ratio of total blastwave energy to
~U, , and o. , the ratio of pU, to the mean internal pres-
sure. With these determined, one can find, in addition to
the kinetic and thermal energies, the value of the shock
radius versus time and other quantities of interest. The
remainder of the paper can be seen as primarily an exer-
cise in determining these two numbers (a, o. ) in a variety
of contexts by simple but approximate means. Section IV
outlines several diferent useful approximations, the sim-
plest being one that is reasonably accurate for the Sedov-
Taylor case, assuming that the internal radial velocity is
linear in radius. The most useful approximation is
termed the pressure-gradient approximation (PEA), and
is an extension of an approximation introduced by Gaff'et
(1981a). Sections V, VI, VII, and VIII apply the theory
developed so far to a variety of contexts that appear in
galactic astronomy. For example, mass input from
evaporating clouds, which can be more important than
mass input at the outer shock, is treated in Sec. V. Radi-
ative losses, or the losses due to Pd V work done on inter-
nal clouds, are treated in Sec. VI. All of these complex
and interacting processes are important for galactic su-
pernova remnants propagating in the inhomogeneous in-
terstellar medium. We attempt to summarize the overall
situation in Fig. 1. Section VII treats the bubbles that
form around early-type stars having strong stellar winds,
and Sec. VIII discusses explosions in a wind, as might be
appropriate for either the stellar case or for a galaxy de-
veloping an active galactic nucleus in an environment
where there was a preexisting galactic wind (M82 may
represent an example of such a phenomenon).

In Sec. IX we turn to cosmology, whgre, although the
previously established principles are still valid, gravity
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and the underlying expansion combine to change the pic-
ture quantitatively. Very thin shells with low rates of en-

ergy loss are the rule. In a real sense cosmological
blastwaves can be thought of as solitonlike rearrange-
ments of the Hubble fiow via a nonlinear wave. This sec-
tion ean be read by those interested primarily in cosmolo-

gy without Secs. V —VIII. Section X treats detonation
waves, including cosmological detonations and stressing
the simple fact that they always propagate at a constant
velocity regardless of the density and velocity structure
of the underlying Auid.

The appendixes treat a variety of subjects used in the
main body of the text normally with greater rigor and
generality. Since many of the results are derived here or
collected for the first time they may be useful to readers
with other agendas. For example, Appendixes B, C, and
E, would be useful for those performing detailed numeri-
cal integrations for the treatment of edge derivatives or
exact integral constraints. We hope that these solutions
will facilitate a comparison between theory and observa-
tion and thus contribute to an understanding of the ener-
getics of the interstellar and intergalactic media.

cloud mean free path. No further assumptions are
made, and, given these assumptions, the treatment is ex-
act.

We begin by defining the quantities needed in our
derivation. Let r be the radius of an arbitrary point, and
let R, be the radius of the shock front, idealized as an
infinitesimally thin boundary. Let U be the fiuid velocity
at r, measured in the laboratory frame; uH(r, t) and U, (t)
are the values of v ahead of and just behind the shock, re-
spectively. The velocity of the shock itself is U, (t). The
density p and pressure P have the values po(r, t), Po(r, t)
ahead of the shock and p, (t), P, (t) just behind the shock;
the isothermal sound speed is given by C =(P Ip)'~ Let.
M be the mass of intercloud Quid inside R, . To describe
the clouds, we introduce f (r, t) as the volume filling fac-
tor, co,

&
as the number of clouds per unit volum. e, o,&

as
the cloud cross section, and A,,i

—=(co,io,i) ' as the mean
free path. The rate of mass exchange with the intercloud
medium per cloud is m, and g is the gravitational ac-
celeration.

A. GeAef8I Ylrlal theorem

II. THE VIRIAL THEOREM FOR BLASTWAVES

The basic relations we need are the equations of con-
tinuity and motion for the intercloud fiuid (Shu et al. ,
1972; Cowie et al. , 1981), with the simplifying assump-
tion that the cloud velocity is negligible:

[p(1 —f)]+ r p(1 —f)U =co„m
1 8

Bt I"2 Br
(2 1)

En this derivation we shall assume that spherical sym-
metry holds. Magnetic fields will be neglected except in-
sofar as they contribute an isotropie pressure. The shock
front at the perimeter of the blastwave may be broadened
by thermal conduction, a magnetic precursor (Draine,
1980), or accelerating cosmic rays (Drury and Volk,
1981), but its thickness is assumed to be small compared
to the radius of the blastwave. The shock is assumed to
satisfy the usual jump conditions with some effective
value of y, the ratio of specific heats, in most of our
work. The virial theorem for blastwaves divers from the
standard virial theorem in that it does not apply to a
fixed mass. In addition, we explicitly allow for two com-
plications that are important in some applications: either
(1) the ambient medium may be expanding or (2) it may
consist of an intercloud medium with embedded clouds.
The theorem we derive applies to the intercloud medium.
For simplicity, we assume that the clouds have negligible
velocities. Mass exchange from the clouds to the inter-
cloud medium due to evaporation (Cowie and McKee,
1977; Balbus and McKee, 1982) or turbulent stripping is
permitted; since the clouds are essentially at rest, no
momentum is transferred by this process. Mass exchange
in the reverse direction via condensation is also permit-
ted, but here we neglect the associated momentum
transfer. Finally, we assume that the clouds exert a drag
on the intercloud medium of —pu /A, ,&, where A,,&

is the

67~)P7l U pU
2

a. (2.2)

Our assumption that the shock- front is thin means that
the cloud filling factor f is constant across the shock, so
that the usual shock jump conditions apply (Appendix
E). Mass and momentum conservation in our notation
are

Pi(U, —Ui ) =PO(U, —Ua» (2.3)

P1 +pl(U U 1 ) Po+po(U UH )

which imply

(2.4)

The expression pu /A, ,&
for the typically unimportant friction-

al drag in Eq. (2.2} is fairly uncertain. Calculations of an inter-
stellar cloud overtaken by a shock in the absence of any mag-
netic field (Woodward, 1976} indicate a drag about half this
large (Woodward, 1983); in the presence of a magnetic Geld the
drag would be greater. Note that A,,&

may not be constant for
small clouds: as they are reduced and A,,&

is increased. The sug-

gestion that the drag on an interstellar cloud is only about
0. 1pu /A, ,&

(Yuan and Wang, 1982) Is based on an incorrect In-

terpretation of Woodward's (1976) results.
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P, =Pp+pp(v, —vH)(vi —vH) . (2.5) The partial time derivative may be evaluated with the aid
of Eq. (2.1),

As is usual in derivations of the virial theorem, we begin
with the identity

R

rp 1 — v V=4', p& 1 —
0 v, v&dt 0

R

+ f *
r [p(1 f)v l—d V .

0 Bi

(2.6)

dv

Bt
[p(1—f)u]=p(1 f)— +codrhu

dt

r [p(l —f)u ] .1 8 2

ri Br
(2.7)

Substituting into Eq. (2.6) with the aid of Eq. (2.2) and in-
tegrating by parts gives

dP pu
+pg dV .

Br A, qi

R, R, R,
rp(l —f)v dV=4vrR, pi(1 fp)ui(u—, —ui)+ f p(1 —f)u dV+ f r(1 f)—

t 0 0 0

(2.8)

%'e simplify this expression by introducing the dimen-
sionless moments of the radius and velocity,

v 4nr p(1 f)dr—
0 U) M

r
R,

(2.9)

%'e define the weighted mean interior value of the cloud
filling factor f, by

Typically BP/Br increases strongly near the edge of the
blastwave, so that f; is weighted toward the edge. Then
an integration by parts gives

Rf r (1 f) dV=(1 —f, )4mR, (P, P—), (2.11—)
0 Br

where P' is the mean pressure of the intercloud gas,
defined as R, P =3J r P dr. Next, we define the gravita-

tional virial energy term
R

W= f pgr(1 f)dV, —
0

(2.12)

which Is evaluated In Appendix A. Note that
g= GM, (r—)jr is the gravitational acceleration due to
the total mass inside r, including the clouds, nongaseous
material such as stars, neutrinos, etc., and any possible
central mass. As shown in Appendix A, 8'is the same as
the gravitational energy of the gas.

Finally, we use Eq. (2.3) to rewrite the first term on the
right-hand side of Eq. (2.8) as

4lTR~ pi ( 1 —fp )v i ( vq —v i ) =4&Rg ( 1 —fp )U ipp( v& —u~ )

(2.13)

Then our final result for the virial theorem for blast
waves arises from inserting Eqs. (2.5) and (2.9)—(2.13)
into (2.8):

3 3 R,
(K„MR,u, )=4mR, (1—f;)(P—Pp)+4mR, pp(u, —u~)[(l f;)uH —(fp —f, )u—, ]+ Kp2 —K,2 Mu, +W,

cl

(2.14)

where we have assumed A,,&

——const.
In this form, the virial theorem is quite general and ap-

plies to any nonrelativistic, spherically symmetric, invis-
cid, nonmagnetic How. For example, expansion into a
vacuum is covered by setting Po=p0 ——O'. In our applica-
tions, we shall assume that a shock front is located at R, .
Since the derivation is independent of the energy jurnp
condition, the virial theorem allows for thermal conduc-
tion of heat from the hot interior to the shock front (Sec.
V) and for detonations in which energy is injected at the
shock front (Sec. X).

One feature of this equation that makes it particularly
useful is that it is possible to derive reasonably accurate
analytic expressions for the moments E „;this is accorn-
plished in Appendix C.

B. The thin-shell approximation

As an alternative to the virial theorem approach de-
scribed above, it is possible to derive an equation of
motion for the blastwave (Appendix D). We know from
similarity solutions and from numerical calculations that
most of the mass in the blast%'ave is concentrated near
R, . In the shell approximation all the gas is assumed to be
concentrated in a shell at r -R, and to be moving at ve-
locity v &. In the thin-shell approximation, the shell is as-
sumed to have zero thickness and to be at r =R„hence
its velocity is U, . In this latter case, the equation of
motion (D8) reduces to
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(Mu, )=4mRs (1—f)[(P P—o)+povH(u. —uH )]

—Mu, /A, ,&+ W'/R, +Mi„u;„, (2.15)

where M;„U;„ is the rate at which momentum is injected
at the origin. Zel'dovich and Raizer (1966) have dis-
cussed this approximation for the simpler case
f =8'=A, , '=v~=0. It is often easier to apply Eq.
(2.15) than (2.14), but it is less accurate. It can be shown
that usually the two approaches are equivalent if, in
evaluating the moments required for the virial theorem,
it is assumed that U is a linear function of radius.

unravel the dependence of Eb and p on R, . Let R be the
shock radius R, normalized to some fiducial radius,
denoted R, (1). In general the requirement of self-
similarity implies that a hydrodynamic variable x which
is a function of the blastwave radius can be written

—k
x =x (l)R (3.7)

Eb Eb(1)R—— (3 8)

where x (1)=x (R = 1) and k„ is constant. In particular,
we have R, =R, (1)R, consistent with our notation for
the fiducial radius R, (1);furthermore,

III. SELF-SIMILAR BLASTWAVES (Po ——0)

%'e now develop the formalism to describe the evolu-
tion of a spherical blastwave under the assumption that it
is self-similar. Since the inclusion of an ambient pressure
I'o usually destroys the self-similarity, we set Po =0 here.

As discussed in the Introduction, self-similar
blastwaves are characterized by a power-law dependence
of the blastwave radius R, on time,

—k
p=p(1)R

Equation (3.5) then becomes

JEST(1)
R, =R, (1)

p(1)R, (1)

2

5+k, —k,

g/2

t",

(3 9)

(3.10)

(3.11)

R, act" . (3.1)

The velocity of the strong shock at the periphery of the
blastwave is then

U, =qR, /t . (3.2)

Let Eb be the total energy of the intercloud gas due to
the blastwave, including kinetic, thermal, and gravita-
tional terms, and let M be the total mass of the intercloud
gas in the blastwave. Then the dimensionless quantity

o =Eb/Mv, (3.3)

gEb(R, ) t'" (3.5)

is generally constant for self-similar solutions, even
though E, M, and u, may all depend on time (this re-
quirement is relaxed in Sec. VI.C). The mean intercloud
density p(R, ) is defined by

M—:p(R, )V(1 f;), —

where V=4m.R, /3 is the volume and f, is given by Eq. .

(2.10). The solution of Eqs. (3.2) —(3.4) is

It is sometimes useful to have explicit expressions for
the age t and velocity U, of the blastwave in terms of R;
Eqs. (3.2) and (3.10) give

p(1)R, (1)
gEb ( I )

)
' 1/2

R ' '~" . (3.13)
p(1)R, (1)

(3.12)

u, =u, (1)R ' —"&=

E=f —,'pu (1 f)dV+ —PV+W
y; —l

The determination of g, or equivalently o =E&/Mu, , —
completes the solution for the dynamics of the blastwave.
The two basic equations we use to constrain these param-
eters are the energy equation and the virial theorem. The
total energy E of the intercloud gas is the sum of the ki-
netic, thermal, and gravitational energy of the gas inside
the blastwave. It consists of two parts: the energy due to
the blastwave Eb plus the energy E, the ambient inter-
cloud gas would have had in the absence of the
blastwave:

p(R, ) —:E, +Eb, (3.14)

3

4m' cr(1 f,)— (3.6)

Thus the radius of a self similar blastwav-e is always relat
ed to the current energy and mean interior density by a
Sedou Taylor like relation, -even w-hen Eb and p are func
tions of time and/or radius This simple resul. t is a direct
consequence of dimensional analysis.

In order to obtain an explicit solution for R„we must

where we have made the approximation ffP d V =f;PV,
with f; defined in Eq. (2.10). The effective specific-heat
ratio for the interior of the blastwave is y;. The gravita-
tional energy term 8' includes the self-energy of the in-
tercloud gas, together with the interaction energy due to
other mass inside the blastwave; it is discussed in Appen-
dix A. For blastwaves in cold, stationary media, the en-
ergy of' the ambient medium E, vanishes, and for such
blastwaves we shall generally drop the distinction be-
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tween E and Eb.
De6ning

V1= U1 ~vs

permits the kinetic energy Ez to be simplified to

EK +1+022

Eb 2O.

(3.15)

(3.16)

The thermal energy E,h can be expressed in terms of an
effective mean Mach number a given by

pu, p(1)u, (1)
P P(1)

(3.17)

which is generally constant for self-similar blastwaves; we
obtain

a o(y; —1)
(3.18)

with the aid of Eqs. (3.3) and (3.4). Equations (3.14),
(3.16), and (3.18) then yield the energy equation

(3.19)

The virial theorem (2.14) provides the second basic re-
lation for determining the dynamics of the blastwave.
For self-similar blastwaves, the moment %11 is constant

(5—k —kE )/2
and the factor MRu& ccR ~ from Eqs. (3.4),
(3.9), (3.11), and (3.13). Hence, the virial theorem for
self-similar blastwaves can be expressed as

which reduces to 2/(y+1) for vH ——0; here y is the ratio
of specific heats just behind the shock front. Our prob-
lem thus reduces to determining the moments L „,and
in succeeding sections we develop simple approximations
for doing this.

Before focusing on particular cases, however, we note
some general relations that apply to all self-similar
blastwaves. The mean pressure P may be inferred from
Eqs. (3.3), (3.4), (3.6), and (3.17) to be

P= Eb

a o(1 f;)V —a R,
(3.23)

P (p/po)
a'(1 —v„)(v, —v )

(3.24)

The evaluation of the mean density is complicated by
the possibility that the ambient density may be a function
of time and by the possibility of mass injection by eva-
poration. In general, the ambient density po(r, t) may de-
pend explicitly on both radius and time:

—k

po(r, t)~r "t ". (3.25)
—k

At the shock, this simplifies to po(R, ) ccR, ~ because
po(R, )/p must be constant in a self-similar blastwave and

p cc R ~ by Eq. (3.9). Since R, cc t", this implies

=k —g /q . (3.26)

The pressure just behind the shock P1 is given by the
jump condition (2.5), so the ratio P /P, is

—,
' v, ( 5 —k kE )IC„—

3 3po fo f;—
(1—vH) vH-

Qf 2 1 f, —
4m.R,

M, = po(R, )(1 fo)—
Po

w++1 +02 +12 + 2Mv,
(3.20)

The mass of intercloud gas in the blastwave is comprised
of swept-up ambient gas M, and evaporated gas M„.
The mass of the swept-up gas is

p, (R, )R, (1 f, ), —(3.27)

2+ (y —1)vH

y+1 (3.22)

va—=uH/us . (3.21)
In order for the solution to be self-similar each of the
terms in Eq. (3.20) must be constant; in particular, self-
similar blastwaves in expanding media have a constant
ratio vH of expansion speed to shock speed. [In the case
of cloud drag it is possible to relax this requirement that
each term in (3.20) be constant —see Sec. VI. C.]

The energy equation (3.19) and the virial theorem
(3.20) thus determine o. (and a ) in terms of various mo-
ments of the velocity distribution E „,and the pararne-
ters v&, vH, and 8'. We defer discussion of the last two to
Sec. IX on cosmological blastwaves. The normalized
post-shock velocity v, is determined by the shock jump
conditions (Appendix E); in the absence of energy injec-
tion at the shock front it is

so that

Po

1 —fo
3 —k 1 —f, (3.28)

In the absence of evaporation p, =p and M, =M. Note
that it is k, not k, which appears in Eqs. (3.27) and

(3.28).
Another relation between k and k, which brings out

the connection to the expansion or contraction of the am-
bient medium, can be obtained by equating two expres-
sions for dM, /dt. The requirement of self-similarity im-

3 —k g(3 —k )
plies that M, ~R ~~t ~. On the other hand, the
blastwave sweeps up mass at a rate po(u, —uH )(1—fo), so
that
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dM gM
dt P t

(3—k ) =4IrR, pou, (1—f o)( 1 —vH ) .

With the aid of Eq. (3.27) this reduces to

3 —k

3
k' ='- -'

Pp

(3.29)

(3.30)

hence k difFers from k only if the ambient medium is
Pp

in motion (vtI&0). Equations (3.26) and (3.30) together
yield

I)vH = —I) /(3 —kp ), (3.31)

as a kinematic constraint on self-similar blastwaves in
such a case.

IV. APPROXIMATIONS FOR ADIABATIC,
SELF-SIMILAR 8 I ASTWA VES IN STATIONARY,
HOMOGENEOUS MEDIA
(vH ——W =Xci'= fo —f =y —y =rh =s=i o=0)

A. General resutts

v, =u, /u, =2/(y+1),
&I—:P I /Po =(y+ 1)/{y —1)

(4.1)

(4.2)

for the post-shock velocity [from Eq. (3.22)] and the
compression [froin Eq. (E22)], respectively. In view of
the fact that the ambient medium is stationary, it is not
necessary to distinguish between k and k [Eq. (3.30)].

Pp

With these simplifications, the energy equation (3.19)
and the virial theorem (3.20) for self-similar blastwaves
can be solved for the parameters a and o. :

3(y+1)
(5 —k —k~ )(y+ 1)KI, —4Ko2

(4.3)

Most analyses of blastwaves have focused on adiabatic
blastwaves in stationary, homogeneous media. Here we
shall allow for the eFects of embedded clouds only in-
sofar as they occupy a fixed fraction fo=f; of the
volume; cloud drag, cloud evaporation, and cloud crush-
ing are all neglected. In an adiabatic blastwave, the en-
tropy per particle is conserved, but it is not necessary for
the total energy to be constant. Since we treat gravity
only in the cosmological case (uH&0), the assumption of
a stationary ambient medium allows us to set 8'=0. Fi-
nally reserving a discussion of detonations to Sec. X, we
find that the shock jump conditions [Eq. (E22)] give

tion would require specification of the hydrodynamic
variables as functions of A, . However, to obtain all the in-
tegra/ quantities of interest and the expansion rate, only
two numbers are required, and straightforward methods
can be found that will provide very accurate values for
these numbers. There is one general relation among the
moments which follows from the continuity equation and
is exact. As demonstrated in Appendix C [Eq. (C10)], for
the case at hand {uH ——m =a=0), this kinematic moment
relation is

(3—k )+ K„P +) n —11

3—k +n (4.5)

This relation does not reduce the number of unknown
moments in the equations for a and o., since it intro-
duces a new moment, IC20, but it does play an important
role in constructing approximations, since it relates den-
sity and velocity moments.

In a self-similar blastwave, a hydrodynamic variable
x (r, t), such as the density p, the velocity u, or the pres-
sure I', can be written

with

x (r, t) =x, (t)x(A, ), (4.6)

X =r/R, , (4.7)

x(A, ) =A, ", (4.8)

or two-power approximation,

for one or more of the hydrodynamic variables. The pa-
rameters l„, a„, etc. , are generally fixed by an integral
collstl a111t oil x ( A, ), 01 by I eqllll lllg the logai lthllllc
derivative,

I) lnx d lnx
I) lnr d ink,

(4.10)

to match the correct values (cf. Appendix B) at the boun-
daries.

Conservation of mass provides an integral constraint
on P(A, ):

x, (t) being the post-shock value and x{1)=1.The hy-
drodynamic equations for self-similar, adiabatic
blastwaves are given in Appendix B. To construct ap-
proximations for the moments we shall adopt a one-
power approximation,

2Ko2(3y, —S ) + (5—k —kE )(y+ 1)X„
(4.4)

3(y; —1)(y+ 1)'
I p(A, )A, dA, =

3 k p)
(4.11)

(3—kp)(y+1)

The distinction between y and y; in Eq. (4.4) has been
maintained for generality', in adiabatic blastwaves they
are equal.

In order to complete the solution, the moments E&I
and Eo2 must be obtained. Qf course the complete solu- s =I'/p~ (4.12)

This implies that %00——j., as it must from the general
condition (4.S). For adiabatic blastwaves, a second con-
straint is provided by entropy conservation. The quanti-
ty
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is a function of the entropy per unit mass and hence is a
constant in cornoving coordinates. As shown in Appen-
dix 8.4, this implies

Evaluation of fs dM then yields

(4.13)

ps', dA, =
o (y+ 1)[(y—1)k —kE]

(4.14)

The utility of this result is limited, however, since the in-
tegral on the left-hand side can be evaluated analytically
only for simple approximations for the pressure and den-
sity.

In the following, we first develop approximations for
the density and velocity structure of "filled" blastwaves,
in which the shocked intercloud gas extends from the ori-
gin to the edge of the blastwave, as in the case of the
Sedov- Taylor blastwave. We then treat "hollow"
blastwaves, in which the intercloud gas is confined to a
shell between A, =A,; ~0 and A, = l. The central cavity can
either be a vacuum, as in the case of Sedov blastwaves in
sufficiently steep density gradients (and cosmological
blastwaves), or it can be filled with very hot gas, as in the
case of bubbles. Approximations for the pressure distri-
bution, which provide the most accurate, simple results
for the blastwave structure, are discussed in Sec. IV.D.
The results are then applied to the known exact solutions
for Sedov blastwaves; the e6'ects of cosmic-ray accelera-
tion at the shock are also brieAy considered.

In subsequent sections we shall Gnd that some of the
approximations developed here are useful for nonadiabat-
ic and nonstationary blastwaves as well. Care must be
exercised in extending these results to those cases, how-
ever, since Eq (4.11.) does not apply to evaporative
blastwaves, and the relation k =k does not apply to
cosmological blastwaves.

K~„=X +„0=% +„(LVA), (4.16)

which, with the kinematic moment relation (4.5), deter-
mines all the moments

K„(LVA)= 1

1+
(3—k )(y+1)

(4.17)

This result, when inserted into Eqs. (4.3) and (4.4) to give
u and o., completes the solution.

Although the LVA is generally approximate, there are
values of y and kz for which it becomes exact (Sedov,
1959). The self-similar hydrodynamic equation (811) for
U* (where the asterisk denotes logarithmic derivatives) is
consistent with setting U =1 oddly if the normalized tern-
perature 8&x T/A, is constant, so that 8"=0. Since
O*=P*—p* —2, one can use Eqs. (812) and (813) to
determine the condition that 8' vanish. Setting 8=8&,
the post-shock value, from Eq. (E27), we find U cc r pro-
vides an exact solution to the hydrodynamic equations
for

7—gk =k„;,=—

g+ I
(4.18)

and kz ——0. In this case Eqs. (4.3), (4.4), and (4.17) give
the exact results X2 ———'„

unity; hence, the LVA is the most natural simple approx-
imation for the velocity structure. The corresponding
power law l for the density is determined by the mass
constraint, Eq. (4.11):

6—(y+ 1)k
P (4.15)

y —l

The same result is obtained from the equation of con-
tinuity (86) with u'= l.

In the LVA we have

B. Density and velocity structure of filled blastwaves
(A,;=kE —0, k &kp«, , )

3(y+1)'
4(y —1)

(4.19a)

(4.19b)
Since central energy injection leads to hollow

blastwaves and we are deferring a discussion of detona-
tions, we can assume that the energy is constant in a
filled, adiabatic blastwave (kE ——0). A central vacuum
forms if the density gradient exceeds a critical value
k «,, [Eq. (4.18)];here we assume k & k „;,. We consid-
er several approximations, in order of increasing accura-
cy.

t. Linear velocity approximation (LVA)

The simplest approximation for the velocity structure
of a filled blastwave is that the velocity is a linear func-

I
tion of radius, U ~ r, v =A, ' with l, =1. As wiH be showy
below, if one assumes that both the density and the veloc-
ity are simple power laws, then the kinematic moment re-
lation (4.5) implies that the velocity power law l„must be

since y =y; in adiabatic blastwaves. In astrophysical ap-
plications the density distribution p ~ r commonly
occurs (as in winds or galactic halos). For this case the
LVA is exact when y= —,

' and is a good approxi. mation
for nearby values of y.

2. One-power approximation (OPA) for velocity

3+l
K 3+l +m +nl,

(4.20)

The next level of sophistication in approximating the
moments is to allow the velocity power law l, to di6er
from unity while maintaining the density power law l at
the value given by the mass constraint, Eq. (4.15). With
power laws for both p and U, the moments become
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Hence, in this approximation, E
& &

is the harmonic mean
of %20 and L0p:

1 1 1 1+K i ) 2 E'20 EC02
(4.21)

5E~0
—3

1 —E20

2E'2c —Xi i ( 1+Kqo )
I =-

(1—IC2O )E i,

(4.22a)

(4.22b)

If we require that Eq. (4.20) for /C „satisfy the kine-
matic moment relation (4.5) for all m, then we recover
the LVA. Similarly, if we set I equal to the value in Eq.
(4.15) and require the moment relation to be satisfied for
some n, we again recover the LVA. However, a more ac-
curate estimate of the moments is obtained by setting
l„=v &, the exact edge value for the logarithmic velocity
gradient. In terms of the critical density gradient
kz„,, ——(7—y)/(y+ 1) defined in Eq. (4.18), Eq. (819) be-
comes

Note that if K&0 and E» are known, then one can solve
Eq. (4.20) for I and 1„:

This result shows that the OPA value for K „reduces to
the exact LVA value when kp=kp. „t. The increase in
accuracy a6'orded by the OPA over the LVA is shown in
Table I, which compares several approximations with the
exact results for Sedov-Taylor blastwaves (kz ——k =0) at

and —.5 7 4
3~ S~ 3'

A variation of the OPA that aAords greater accuracy
can be obtained by noting that the most accurate mo-
ment in the OPA is Koz, and then calculating K» from
the geometric mean approximation [Eq. (C13b)]. The re-
sult for E» is

(3—k~ )(y+1)
I4+2(5 —k )[2y +7y —3 —y(y+1)k ]I'~~—2

(4.25)

This reduces to the LVA result for k =k „;,and is more
accurate than the OPA result for kp Q kp t %hen corn-
bined with the %02 result from Eq. (4.24), this yields
values of o.'and o [Eqs. (4.3) and (4 4)] of comparable or
somewhat better accuracy than the pressure-gradient ap-
proximation in Sec. IV.D below.

X~„(OPA)= 1

(y —1)[m +n + ,'n (k „—;,—k )]
1+ (y+1)(3—k )

which together with Eq. (4.15) yields

(4.24)

3. Two-power approximation (TPA) for velocity

A significant improvement in the accuracy of the ap-
proximation is obtained by assuming that the density and
velocity can each be represented as the sum of two power
laws, as in Eq. (4.9). Requiring that the velocity have the
correct derivatives at the origin and the edge [see Appen-
dix 8, Eqs. (819) and (827)] leads to

TABLE I. Sedov- Taylor blastwaves in a uniform medium ( kE ——k =0).

OPA TPA PGA /E

&Zo

Ko2
CX

(1—f)f

0.8571
0.8571
0.8571
2.6667
0.8036
1.8568

0.8571
0.8000
0.7500
2.7826
0.7500
1.9894

0.8367
0.7889
0.7445
2.8293
0.7396
2.0175

2.8571
0.7500
1.9894

0.835 67
0.785 57
0.74042
2.839 66
0.736 47
2.025 97

E20
X))
Eo2
a

(1—f)g

0.9000
0.9000
0.9000
2.4000
1.3542
1.1018

0.9000
0.8504
0.8060
2.4753
1.2898
1.1568

4y=—
3

0.8797
0.8391
0.8009
2.5168
1.2714
1.1736

2.5400
1.2795
1.1661

0.879 37
0.838 19
0.799 93
2.519 87
1.269 87
1.174 99

0.9130
0.9130
0.9130
2.3333
1.6211
0.9204

&zo

E'o2

CX

(1 f)g—
0.9130
0.8673
0.8258
2.3968

. 1.5550
0.9595

0.8936
0.8563
0.8210
2.4355
1.5334
0.9731

2.4565
1.5398
0.9690

0.893 44
0.855 85
0.820 77
2.437 15
1.532 45
0.973 65
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with

I„
(@+1)A,+(y —1)A, '

2y
(4.26a)

k =k „;, and to the thin-shell limit K „=1 as y~1.
.As shown in Table I, the accuracy is typically better than

o.

/, =1+ (kp„,, —kp);
2 y— (4.26b) 4. Kahn's approximation for mass distribution

with

I I

p(A, )=a&A, '+(1—a )A,
'

3 —yk y(kp„„—k )
a =—

y —1
' " 10—y —(y+2)k

(4.27)

(4.28a)

6—(y+ 1)(2k —kp„,, )

P2 y —1 Pl
(4.28b)

The approximation represented in Eq. (4.27) is valid only
when the denominator of a in Eq. (4.28a) is &0, which,
in turn, is assured (for k &k „;,) so long as y & 1.
Again, when k =k „;„this expression reduces to the
exact LVA result. For k =0, this expression agrees with
the result obtained by Gaffet (1981a), which when y =—,

'

gives (/, l )={—,', l4).
The moments E „can be evaluated by direct integra-

tion with approximations (4.2S) and (4.27) for u(A, ) and
p(A, ). This procedure is quite accurate at y= —', , but be-

comes less so for smaller y as the exponents I, and I
2 p) 0

l become large. The TPA and the kinematic moment

relation can be used to show that

for k =k „,„ the exact LVA result u(A, )=A. is
recovered.

The TPA result for the density is obtained by requiring
p*(A, ) to agree with the exact values in Appendix 8 [Eqs.
(820) and (828)] and by imposing the mass constraint
(4.11):

Kahn (197S) has developed an approximation for the
internal structure of blastwaves which is more accurate
than those considered above, although it does not readily
lend itself to calculation of the moments. The approxi-
mation has been extended and applied by Cox and Fran-
co (1981)and Cox and Anderson (1982). Rather than ap-
proximating the density, Kahn approximates the loga-
rithmic derivative of the mass by the sum of iwo powers:
for kp (kp t the approximation is

I
M* @+A, '
MI &+1

where

l =X,(kp„,, —kp ),

(4.33)

(4.34)

I

y(3 —k )/(y —1) {3 kp )(~ 1 )
M(A, ) =A, ~ exp (y+1)(k „;,—k )

(4.3S)

Now

dM =(3—k )X,p( A, )A, d A, ,

so thai

(4.36)

and M
&

is () inlM (r)/8 lnr evaluated at A, = 1; this approx-
imation has the correct values and logarithmic deriva-
tives at the boundaries, just as does the TPA. Integration
gives

y+1+{y—1+2yb)%, ~i,o

2y(1+ 2/) )

2+
2y " 4y(l, +1)

(4.29)
M', =(3—kp)X)

pA,

M

(4.37)

(4.38)

x[(4—kp+/„)X( +, ()
—{3—k )],

'2

(4.30)

Combining Eqs. (4.33) and (4.38) gives

I„
(y+A, ') M(A, )

{y+1) (4.39)

where

b =(y —1)/[y(3 —k )], (4.31)

with M(/(, ) given by Eq. (4.3S).
One reason for the accuracy of this approximation is

that

x+1+I +1,0
u2

' y$
Qp 1 —a

4+I, +I, 4+l, +I,+ (4.32)
(4.40)

and the coefficients a and l are given by Eq. (4.28a).
Pl

In common with the LVA and OPA discussed above, this
approximation reduces to the exact LVA when

for self-similar blastwaves, according to Eqs. (4.38) and
(847); since (1—v) changes by only a small factor from
the center to the edge of the blastwave, the quantity be-
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ing approximated is nearly constant. Solving Eq. (4.40)
for U =A,v/v& yields

/+1
2

(4 41)

C. Density and velocity structure of hollow blastwaves
{)(,; &0)

This result explicitly demonstrates the linearity of U near
the origin. Because l =0 at k „;„the LVA is recovered

2

when it is exact. Finally, the pressure can be obtained
from the adiabatic condition derived in Appendix 8, Eq.
(B56).

For Sedov-Taylor blastwaves (k =kz ——0) with y =—'„
Kahn's approximation for the density is accurate locally
to 4% (Cox and Franco, 1981), whereas the TPA is accu-
rate only to 17%. However, the presence of the exponen-
tial in Kahn s approximation renders it unsuitable for an-
alytic calculation of integral quantities, whereas the accu-
racy of such quantities calculated with the TPA is gen-
erally much better than 1%.

except for radiative bubbles (Sec. VII.B), in which the ki-
netic energy of the injected Quid makes Ko2 & I. This ap-
proximation is appropriate for most radiative blastwaves;
an exception is radiative evaporatiue blastwaves, in which
the radiative shell is formed in the interior rather than at
the edge (Cowie, McKee, and Ostriker, 1981). The thin-
shell approximation is also appropriate for adiabatic
blastwaves with a soft equation of state, y —+I; such
blastwaves have the same moments K „as do radiative
blastwaves, but they have a finite and oooo rather
than the values a ~~ and o. finite appropriate for
momentum-conserving blastwaves (Sec. VI).

Historically, the thin-shell approximation has been
used in treating the equation of motion for nonradiative
blastwaves [Eq. (2.15)] as well as for radiative blastwaves.
However, there is an unfortunate kinematic inconsisten-
cy in this approach: If all the gas is in a thin shell at R„
then that shell must move at the shock velocity U„rather
than at the shocked Quid velocity u&, and the two di8'er
unless y= l. %'e shall use the thin-shell approximation
only for @=1. Note that the approximations discussed
above (LVA, OPA, and TPA) all reduce to the thin-shell
approximation in the limit y ~1.

Blastwaves in steep density gradients (k &k „;,),
blastwaves with central energy injection (Sec. VII), and
cosmological blastwaves (Sec. IX) all develop central cav-
ities, so that the swept-up mass is confined to a shell,
0 & A,; & k & 1. Fully radiative, momentum-conserving
blastwaves are also hollow, with the swept-up mass in a
thin shell at A, = I. We now consider several approxima-
tions for hollow blastwaves in order of increasing sophis-
tication.

1. Thin-shell approximation

In this approximation all the gas is concentrated at
r =R, so that

(4.42)

2. Shell approx~matron

The simplest generalization of the thin-shell approxi-
mation that removes the kinematic inconsistency of the
latter is to assume the Aow velocity inside the blastwave
is fixed at U =U &. In this case the moments satisfy the re-
lation

K „=K p=K (shell) . (4.43)

The kinematic moment relation (4.5) becomes

(3—k +m)K (shell)=3 —k + E,(s ehll) .27tl
P +I m —1

(4.44)

Since Kp(shell) =Kpp = 1, this relation determines the mo-
ments:

(3—k )(y 11)+2
Et, -K)(shell)=

y+1 4—k

(4—k )(3—k )(@+1)'+4(3—k )(@+1)+8+pp —+2 ( shell ) =
(y+I) (4—k )(5—k )

(4.45)

(4.46)

'2 —kk —v)
p(A, ) = 1

1 —vi

In the shell approximation, the density can be obtained
by integrating the equation of continuity (2.1), with the
result

l

requires v, =1. Below, we shall use this approximation
both for bubbles and, after suitable generalization, for
cosmological blastwaves.

3. Shell one-power approximation (kE =0)

Note that A, ; =v& in this approximation. The accuracy of
the approximation is best when the shell is thin, which

A considerable improvement in the accuracy of the ap-
proximation for hollow blastwaves can be attained by a1-

Rev. Mod. Phys. , Yol. 60, No. 1, January 1988



J. P. Ostriker and C. F. McKee: Astrophysical blastwaves

lowing a power-law variation of velocity behind the
shock. The simple one-power approximation for filled

blastwaves, x =A, ",becomesI„

x =x;+(1—x;)
1 —A, ,

(4.48)
2J &u,. +2j~v;+J&+ 1

E
2j~+3jz+ I

(4.58a)

(4.58b)

for hollow blastwaves, where x, —:x(A, ) and A, is restrict-
ed to the range X, & A, ( 1.

We now demonstrate that the velocity is a linear func-
tion of position in this approximation; in other words,
the shell OPA is equivalent to the shell LVA. The loga-
rithmic derivative of X is

g (1 —X;) A, —A,;
I„—I

x (1—A,;) 1 —A,;
(4.49)

Hence, if x;&0, then x;—:x*(A,, ) is a finite number un-

equal to zero only if l„=l. As shown in Appendix 8.3,
U; is finite and nonzero; hence I, .=1 and the velocity is
linear:

2j&A,;+2j&k;+j&+ I
&20=

Zj&+3j&+1
(4.58c)

To this point the discussion of the shell OPA has been
general, and applies to bubbles and cosmological
blastwaves as well as Sedov blastwaves. In order to ob-
tain values for I,; and ji we can substitute Eqs. (4.58a)
and (4.S8c) into the exact moment relation (C9) and use
the value of j& obtained later in this section. However, if
we restrict the treatment to Sedov blastw aves
(kE ——v~ ——0), it is possible to use the exact, explicit ex-
pression for A, ; obtained by Sedov (1959):

u =u;+(1 —u;) 1— (4.50)
k —k „;,

( + 1)~z 3y+ k —6

al

(4.59a)

The- value of v; is determined by the requirement that the
gas at A, , remain there, so that u; =A, , u„or

u, =A, , /v, , v,. =l . (4.51)

(4.52)

so that

It is convenient to express this approximation in terms
of the mass fraction M(A, )—:M(r)/M. Since M, =0, we
have, from Eq. (4.48),

(y —1)
CX2 =—

2P+ 1 —.Pkp

y(S —k ) 2(6—3y —k )

y(5 —k )

(4.59b)

(4.59c)

Note that A,; =0 for k =k „;,and 1,; —+ I for k —+ oo.
To complete the approximation, we must select a value

for j&. Let j& be the exact value of j& at A,;, and let j&t 1

be the exact value at A, = 1. Near A, ;, we have
M cr (X—A., )p so that

(4.53) (4.60)

with

(4.54)

k +3y —6

y(3 —k )
(4.61)

The logarithmic derivatives x ' and M* are related [from
Eqs. (4.48), (4.49), and (4.52)] by

where we have used Eq. (B42) to obtain I . 'On the other

hand, Eq. (4.37) for M*, gives

=Jx

In particular, for x =A, we have

(A, —A,; )M*

(4.5S)

(4.56)

1

(3—k )X)(1—k;) '

from Eq. (4.56). We then adopt the weighted mean

jx, +~iJx,.
J

(4.62)

(4.63)

The moments are

K „=JA, u "dM,

so that

(4.57)

which has the desirable attributes of reducing to the ex-
act LVA for kp k

p I t and A, ; =0, and giving approxi-
mately equal weight to the inner and outer edges of the
shell for A, ; ~1. Inserting Eqs. (4.61) and (4.62) into this
expression, we find

Rev. Mod. Phys. , Vol. 60, No. 1, January 1988



J. P. Ostriker and C. F. McKee: Astrophysical blastwaves

y —1

(3—k, )( I+X, ) (y+ 1)(1—1,, )
L

p Q

P(0)=1-
Ep

(4.67)

k, (k +3y —6)
(4.64)

The result of using this expression in the approximation
(4.58) for the moments is shown in Table II. When used
to calculate 0 [Eq. (4.4)] and g [Eq. (3.5)], these results
are within 2% of the exact values; the value of a is less
accurate.

The PGA is thus a two-power approximation for the
pressure.

The edge derivative P j is evaluated in Appendix B, so
it remains to determine lp . For self-similar blastwaves,

2

the equation of motion (B7) and the jump condition (E22)
for 6j imply

dp =P*1P~9' ~

D. The pressure-gradient approximation (PGA)

A complementary approach to approximating the
blastwave structure is to consider the pressure rather
than the density and velocity. We adopt a power-law
form for the pressure gradient,

'j —idp
dz (4.65)

p) lp
P =P(0)+

lp
(4.66)

where the central pressure is

Strictly speaking, one should give a separate analysis for
hollow blastwaves (k & k „;,) without central energy in-
jection, since such blastwaves have zero pressure in the
central cavity, but the above approximation leads to a sa-
tisfactory result for the mean pressure. Integration of
Eq. (4.65) yields

(1—v)U*+(3+kz —k )

(1—v, )U*, +(3+kE —k )
(4.69)

P =P(0)+ P;M!lM (LPA) . (4.71)

Since the pressure is a linear function of the mass frac-

The quantity y is unity at A, =l and is usually close to
unity for the entire range 0(A, & 1; hence we ignore it in
estimating lp . Adopting power-law approximations

p=A, ~ and U =A, ", we have lp —1=1 +l, . The mass

constraint (4.11) is equivalent to I =ll —3 with

l~ =(3—k )X„so that

/p
——/~+l, —2 .

For a first approximation, one might ignore the factor
l, —2 in comparison with l~ and obtain

TABLE II. Hollow Sedov blastwaves (3 ~ k~ ~ k~„;„k~=0) for y = 3.

K2o
K))
K()2

2

(1 fg—'

K2o
KI I

Ko2
2

(1 f)g—
K2o

K))
Ko2
CX

(1 f)g—

Shell

0.7470
0.8611
1.0000
8.7805
0.4521
1.0350

0.7000
0.8333
1.0000

13.714
0.3906
0.9549

0.6307
0.7917
1.0000

33.103
0.3266
0.8846

PGA/GM

kp
——2.2

0.6296
0.6420
0.6546
9.8077
0.3370
1.3883

kp ——2.5

0.5556
0.5926
0.6321

15.000
0.2778
1.3429
k =2.8

0.4444
0.5185
0.6049

34.286
0.2139
1.3505

Shell OPA

0.6126
0.6461
0.6833

10.2025
0.3392
1.3795

0.5809
0.6575
0.7500

15.417
0.3082
1.2102

0.5384
0.6655
0.8288

36.218
0.2745
1.0523

Exact

0.637 07
0.655 86
0.676 23
9.731 68
0.344 32
1.358 94

0.591 09
0.651 82
0.72448

14.738
0.305 54
1.220 85

0.540 29
0.659 10
0.811 66

34.404
0.271 88
1.062 48
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tion M, this is termed the linear pressure approximation
(I.PA); Gaffet (1981) has presented an extensive analysis
of this approximation for astrophysical blastwaves and
has extended it to higher order. Earlier, Laumbach and
Probstein (1969) developed an approximation for
blastwaves in exponential density gradients which
reduces to the linear pressure approximation in the limit
of infinite scale height. Morita and Sakashita (1978) have
also considered this approximation.

To obtain the PGA, or pressure-gradient approxima-
tion, we include the term (l, —2), approximating it as
v

&

—2. The results of Appendix B.2 then give

The volume average of the pressure (4.66) is

P= 1 Pi —/(3+Ip ) . (4.74)

Equation (3.24) relates this average pressure to a:

(y+1) (k „;,—k —k@)
P(0)=

3y +20y+ 1 —(y+ 1)[(3y+1)kp —3(y —1)k@]

(4.73)

3y'+ 2oy+1 —(y+ 1)[(3y+ 1)k, —3(y —1)kE ]
2(y —1)

3(y+1)(3—
&p, )

2(3—k )(3+Ip P f )— (4.75)

(4.72) With the aid of Eqs. (B21) and (4.72), this becomes

3 9y +20y —5 —(y+ 1)[(3y+ 1)k —3(y —1)k@]
CX (PGA) .

2 (3—k )[5y+1—(y+1)(k +kE)]
(4.76)

This is the basic result of the PGA. It is remarkably ac-
curate over a wide range of y and k; its accuracy for
kz&0 has not been checked. It is generally more accu-
rate than the linear pressure approximation, and, in con-
trast to the latter, it reduces to the exact LVA for
kp kp t and kE ——0. It also becomes exact in the limit
y~1. Of the approximations considered in Table I, only
the two-power approximation is xnore accurate. Al-
though the derivation focused on the case A, , =0, Eq.
(4.76) is within 2% of the values of a for blastwaves with
A, &0 in Table II; indeed, it is substantially more accu-
rate than the shell OPA.

In order to obtain the value of o. and complete the
solution, a further approximation is necessary. %'e
present two versions of difFerent complexity and accura-
cy, depending on diferent assumptions for the ratio of
the moments (K»/Kp2). Defining

F=(y+ 1)Ki i /Kp2

we can combine Eqs. (4.3) and (4.4) to give

(4.77a)

0' =
a (y —.1)

(5 —k —kE )F —2(5 —3y)
(5 —k —kE)F —4

with a given by Eq. (4.76).

(4.77b)

1. The /7 approximation (PGA/K)

The simplest approximation is to take EC» ——Lp2,
which we shall call the EC approximation. This is not the
LVA; to recover that approximation, it is necessary to set
K» ——Kp2 in evaluating a also. Equations (4.76) and
(4.77b) then yield

2(3 —k )[lly —5 —(y+l)(k +k@)]
0 = (PGA/K) .

3(y —1) I 9y~+20y —5 —(y+ 1)[(3y+1)k —3(y —1)kx ] I

. (4.78a)

As shown in Table I, the resulting values for o. for filled
blastwaves agree with the exact ones to within 2% for
the cases shown. The E approximation is exact at
kp kp „but becomes very poor for hol low blastwaves

I

mean approximation, K ] ~ =KppEpp which is satisfied to
within 1% for the cases in Tables I and II. Equations
(4.3), (4.77a), and (C13b) then imply (independently of the
PGA)

2. The geometric mean approximation {PGA/GM)

(5 —k )F —4
CX

3—k (5 —k —k@)F—4
(GM) . (4.78b)

With a determined by the PGA, Eq. (4.3) and the ki-
nematic moment relation (C9) provide two of the three
relations needed to determine aH three second-order mo-
ments. To close the system, we adopt the geometric

For energy-conserving blastwaves (kz ——0), this immedi-

ately implies

F =—,'(3 —k )a (GM, k@——0) . (4.78c)

Equations (4.78b), (4.78c), together with (4.76) determine
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F in the PGA and consequently fix the moment ratios via
(4.77a), and o through (4.77b). The resulting values of o.

are somewhat less accurate than those from the K ap-
proximation for the filled blastwaves illustrated in Table
I, despite the fact that the underlying approximation in
the latter case is less accurate. However, for hollow
blastwaves the values of cJ from the PGA/GM approxi-
mation are substantially better than those from the K ap-
proximation (Table II), which suggests that the
PGA/GM is a robust approximation. The accuracy of
n is substantially better than that of the moments and o.

in this case. As for the E approximation, this approxi-
mation becomes exact at k =k „;„with I' reducing to
(y+1) as it should.

For the more general case in which k@&0, Eq. (4.78b)
gives

8+[8 —48(3—k )(S—k )a ]'/
F = (PGA/GM),

6(S—k )

(4.78d)

where

Sedov-Taylor blastwaves in media with power-law density variations ( ks ——UH
——p' =g, fo f=, =y——y,.

=~ =e=Po=0)» po(R)—:po(1)[R, /R, (1)]

Result

1/(5 —k )

R, =R,{1)
)Ebt'

p(1)R, (1)'

1.52&&10 '(1——'k )gE~,

no(1) 1y

2 1/(5 —k )
P

pc

5 Note

Exact'

n, (1)
t =25.6

,
(1——,'kp)JEST, 1 pc

(5 —k )/2
P

(1—,'k~)gE„—
U, =1.53&10

(I——,'k ) no(1)

Eb
0 =

MU,

' —(3—k )/2
R,

I pc
Exact'

2(3—k )[11y—5 —(y+1)k~]
3(y —1)[9y'+20y —5 —(y+1)(3y+ l)k~]

3
4rrt)2o (1—f)
9(5—k~)2(y —1)[9y'+20y —5 —(y+1)(3y+1)kp]

32m(1 —f)(3—k )[lly —5 —(y+ 1)kp]

pU,
' 3[9y'~20y —5 —(y+1)(3y+1)kp]

P 2(3 —k~ )[5y+ 1 —(y+ 1)k~]

5y+ 1 —(y+ 1)kp

o.2(y(y 1) 11y—5 —(y+1)kp

P (y+1)[5y+1—(y+1)kp]
P, 9y2+20y —5 —(y+1)(3y+1)k,

3(y —&)

p) (3—kp)(y+1)

P/P) (y+1) (3 kp)[5y+1 —(y+1—)k~]

p/p, 3(y —1)[9y +20y —5 —(y+1)(3y+1)k ]

(3—k ){5—k~)
2(10—3k' )

3(5—k )(10—3k')
Sm(1 —f)(3—kp)

6(10—3k )

(3—k ){7—2k )

7 —2k

2(5 —k )

2(7 —2k')
3(10—3k' }

3
4(3—kp )

8(3—k~)(7 —2k' }

9(10—3k' }

(k (k „;,)

I GA'

PaAb

Exact

PGA

(mass-weighted

average)

'1 pc=3.086/ 10' cm; E» —=E&/(10 ' erg); the conversion from mass density po to hydrogen number density no is based on cosmic
abundances, with po/no ——2.34 && 10 g.

See Secs. IV.D and IV.E for details of derivation and applicability.
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B=—(3—k )(5—k k—s)a +12 . (4.78e)

For y=1, Eqs. (4.75) and (4.78d) imply I' =2, corre-
sponding to Ei& ——EC02 as it should in this case.

E. Appijcation to Sedov biastwaves (ke ——0)

g. Dependence on density distribution (k~)

) i/st 2js (4.79)

with

Sedov (1959) was the first to obtain the solution for
blastwaves in media with a power-law variation of the

density, pp~R ~. The methods discussed above allow
us to test our approximations for determination of con-
stants such as o. and cz which can otherwise be obtained
only through numerical integration; the results are sum-
marized in Table III. The nature of the blastwave
changes as k increases.

k &0. Blastwaue in a preexisting cauity (Cox and
Franco, 1981). As k becomes large and negative, the

—(3—A: )/2
blastwave decelerates rapidly (u, cc 8 ~ ). The
pressure becomes uniform except for a sharp rise at the
edge of the blastwave [lp ~ —k in Eq. (4.72)], which is

required to effect the deceleration.
k =0. Sedou-Taylor blastmaue. The classic problem

of the dynamics of a strong explosion in a uniform medi-
um (Sedov, 1946, 1959; Taylor, 1950; von Neumann,
1947) has the solution

R, (t)=
4mgu Et

k =2.
3M

(4.82)

In this case. the PGA expressions for the constants are

3(3y'+ 12y —7)
2(3y —1)

2(9y —7)
3(y —1)(3y +12y —7)

PGA (exact for y = —,', kz ——2), (4.83)

u (r, t) =v, l,u, =v, ru, /R, , (4.84)

so that the linear velocity approximation (as well as the
OPA, TPA, and PGA) is exact. This solution is some-
times referred to as the Primakoff solution because Pri-
makoff (cited in Courant and Friedrichs, 1948) studied it
in connection with underwater explosions, for which
y=7 and k =k „;,=0. The power-law indexes for the
density and pressure are

81(y —1)(3y +12y —7)
32ir( 1 —f)(9y —7)

from Table III.
Finally, for y= —,'the PGA is exact, and Eq. (4.83)

yields a =8, o =—'„and 4m//3=6/(1 f); Eq. —(3.18)
shows that exactly half of the energy is thermal. Our re-
sults for this particular case (kz ——2, y = —', ) agree' with
those of previous workers (Sedov, 1959; Chevalier, 1982).

k =k „;,. Homologous blastmaues. In this case the ve-
locity field is a linear function of position,

gsT ——2.026. . . /(1 f)— (4.80) l =1, lp ——3, (4.85)

&,p(&, ) =3K,po(Rg ) =3M~ /4n. u (4.81)

Inserting this result into Eq. (3.10) for R, (t) gives

for y= —', ; approximate values of g for y& —', can be ob-
tained from Table III. The accuracy of the approxima-
tions developed above is portrayed in Table I for several
values of y. The two-power approximation (TPA) and
the pressure-gradient approximation (PGA) are both
quite accurate (better than about 0.4% and 2%, respec-
tively, in Table I), and both can be used to treat the large
part of the three-parameter space (y, k, kz) for which
numerical solutions are not available.

0& k~ & k~,„;,=(7—y)/(y+1). Filled blastwaues in a
decreasing density gradient. For k &k „;, the pressure
is 6nite at the origin; the case k =k „;,will be discussed
further below. The most important astrophysical case of
a power-law density gradient is pp~ r, which corre-
sponds to an explosion in a preexisting supersonic wind.
The condition k & k „;,imposes the restriction y & —,; at
y = —', , the velocity is linear. It is useful to define a (possi-
bly fictional) mass Row M and wind velocity u„ in a hy-
pothetical preexisting wind such that

independent of y, from Eqs. (4.15) and (4.72). Astrophys-
ically, the most important example of a homologous
blastwave is a blastwave in a wind (k =2) with y= —,',
discussed above.

k,„;, & k &3. Hollow blastwaues with finite mass. In
su%ciently steep density gradients, a vacuum forms at
the center and the shocked intercloud gas is confined to
A, & X & 1; for k & 3, the total mass in the blastwave is
6nite. Approximations for this case were developed in
Sec. IV.C and are compared with the exact solution in
Table II. As shown in Eq. (4.51), the velocity at X, is

u; =A, ;u, . The temperature and pressure both vanish at
A, ; [see Eqs. (B30) and (B43)]. The density there vanishes
if k &6/(y+1) and becomes infinite if k &6/(y+1),
from Eq. (B42).

3 & k &5. Accelerating blastwaues. Blastwaves in this
range of density gradients are also hollow, but they for-
mally have infinite mass and energy; hence the similarity
solution applies only to an undetermined region near the
shock front, and our integral methods cannot be applied.
Since k &3, the exponent ii=2/(5 —k ) exceeds unity
and the blastwave accelerates. Provided k &5, the ve-

locity and acceleration remain finite.
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2; Biastwaves with cosmic rays (y~y;)

As an application of these results for a case in which
y& —'„consider a blastwave in which cosmic rays are ac-
celerated at the shock (e.g. , Blandford and Ostriker,
1978). Chevalier (1983) has found a similarity solution
for this problem under the assumptions that the cosmic
rays and thermal gas have the same mean velocity and
that they each expand adiabatically, with specific-heat ra-
tios of —', and —'„respectively. If the fraction of the post-
shock pressure in cosmic rays is denoted by w„, then the
efFective value of y at the shock is determined by the en-

ergy jump condition to be

rays. The quantity y; enters in Eq. (3.14) for the energy,
whence

(4.88)

where P,h and P„are the mean pressures of the thermal
gas and cosmic rays, respectively. The mean pressure of
a component k of the gas in the blastwave can be calcu-
lated with the aid of Eq. (856) for the pressure; in the
one-power approximation for the density with
l =/~ —3 =X,(3—k ) —3 [cf. Eq. (4.37)], we find

(4.89)

= —,'(1—m„)+4m„,

so that (Chevalier, 1983)

5+ 3wcr
yeff' 3(1+ )

(4.86)

(4.87)

[Note that the compression X, is (y,&+1)/(y, z—1) and
does not explicitly depend on yl, .] Using Eqs. (4.88),
(4.89), and the definition ui„=P„ i j(P,h i+P„ i ), with
I' =I'th+I'„, we find

(4.90)

Note that only the relatiUistie cosmic rays contribute to
w„. The value of o: can be determined from Table III,
with y replaced by y, ff.

In general, the internal ratio of specific heats y; that
enters into rr [see Eq. (4.4)] is less than y, fr, since. the ex-
pansion of the gas behind the shock reduces the pressure
of the thermal gas more rapidly than that of the cosmic

l

6(y, —1)+5y+1—(y+1)k
0 = P

(y; —1)[Sy+ 1 —(y+ 1)k ]a
which becomes, on taking a from the PGA [Eq. (4.76)],

(4.91)

The values of ~r (and hence g) can be obtained from a~ in
the K approximation from Eqs. (4.3) and (4.4),

(3—k )I4(l+w„)+(1+3w„)[Sy,ff+1 —(y,fr+)k ]I
(1+,„)[9y, +20y, —5 —(y, +1)(3y, +1)k ]

(4.92)

For a uniform ambient medium (k =0), this is within
P

2% of Chevalier's numerical results. As the value of m„
goes from 0 to 1, the corresponding value of g drops by a
factor of about 2: the pressure is lower for a given energy
at y= —", than at y= —'„so the blastwave expands more
slowly. I.= f n A(T)(1 f)4rrr dr— (4.93)

I

differs from p &
for

k& &k«„,.
A quantity of considerable importance in astrophysical

blastwaves is the total luminosity I.. In low-density gas
in which the emission varies as the square of the particle
density n, the luminosity I. can be expressed as

3. Biastwave structure and emissivity (k & k „;,)

Next, consider the internal structure of the blastwaves.
We focus on filled blastwaves (k (k „;,) for simplicity.
The most accurate expressions for p, I', and U are given
by Kahn's approximation (Sec. IV. 8.4). The two-power
approximation for p and U is given in Eqs. (4.25) —(4.28),
and that for P is given by Eqs. (4.66), (4.67), (4.72), and
(821). In some cases, the yet simpler one-power approxi-

I
mation x =A, is required. The choice of such an ap-
proximation is necessarily somewhat arbitrary. If values
near the edge of the blastwave are needed, the edge
derivatives (819)—(821) can be used for the exponents l„.
Alternatively, an integral constraint can be used: For the
density, the value of l which ensures M = J p d Vis given

by Eq. (4.15); it is related to l~ by l =ll —3, and it

I.= R, (1—f)nnoA(T, )I

noA(Ti )I (4.94)

with

I =X((3—k ) Jp T A dk, . (4.95)

in the absence of absorption, where n A is the emissivity
per unit volume. Since astrophysical plasmas are
predominantly hydrogen, we adopt the convention that n

is the density of hydrogen nuclei; hence n =p /AH, where

p& is the mass per hydrogen nucleus. If A has an ap-
proximate power, -law dependence on temperature,
A ~ T, this becomes (Cox and Franco, 1981)
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fP ~t- —(I m)lydM— (4.96)

The effective density of the particles radiating at a tem-
perature T, is thus I~np. [For evaporative blastwaves
n is much larger than n 0, and one defines
I- ~ n ( n p+ n,„)I~, where n,„ is the mean density of
evaporated gas.]

To evaluate I for adiabatic blastwaves, we express the
integrand in terms of I' and the entropy variable
s=I'/p~, which is given exactly in terms of M by Eq.
(4.13):

somewhat simpler approximation for (4.101).
As shown in the examples (4.101) and (4.102), the radi-

ative form factor I diverges for su%ciently large k .
This divergence is not simply due to the fact that the
PGA is less accurate for hollow blastwaves, but rather to
the fact that the radiative losses for such blastwaves are
concentrated toward the center rather than toward the
edge as they are for ST blastwaves. For example, the
cooling time, which varies as nkT/n A~ T' /n, de-
creases inward at the edge if

a, —:[1+I(y —1)]/y . (4.97)
k

—2y +3y+29+2m(y +y —8)
P (y+ 1)(y+4—2m)

(4.103)

The pressure can be written in terms of M by expressing
the pressure-gradient approximation (4.66) in terms of M—~/(3 —k )Xl
[using A, =M ~ ' from Eq. (4.62)]:

Ip /(3 —k )X)
P =P(0)+ [1—P(0)]M (4.98)

This procedure, which is reasonably accurate for filled
blastwaves (k &kz„,, ) is exact for k =k „;„but be-
comes increasingly inaccurate as k increases above k „;,
(hollow blastwaves). Finally, we approximate the result-
ing integral for I as a weighted mean of its values at
P(0)=0 and P(0)= 1 (a procedure that is exact for a i

——0
or 1), obtaining from Eq. (4.96)

1 —P(0) P(0)+
I~ a +a, a, (4.99)

where

and l~ and P(0) are given by Eqs. (4.72) and (4.73). This
2

result is exact for kP =kP«, , and kE ——0, since then the
PGA is exact and P(0)=D.

The cases of greatest astrophysical interest are m =—,',
corresponding to bremsstrahlung cooling, and m = ——,',
corresponding to line cooling in a plasma of cosmic abun-
dances with 10 S T 5 10 ' K (Kahn, 1976). For y= —',

and kE ——0, we find

40 (3—k ) 16—5k 12(2—k )

9 (8—3k' ) 21 —8k' 39—15k

(4.101)

8() (3—k )
' 16—5k 2(2 —k )

3 (8—3k' ) 138—59k 57—25k

(4.102)

which are within 1.5% of the numerica1 results of Cox
and Franco (1981) for 0) k~ )—4; they are exact for
k~ =k~,„,=2. Cox (1986) has given an alternative,

XJ
a2 —— [3(y+1)—2yk +kE I('3+kE——yk )],-2 yI P

I'2

(4.100)

which lies between 1.8 and 2 for ——,
' & m (—,'. Blastwaves

in steeper density gradients will form dense radiative
shells in the interior rather than at the edge.

Y. ENERGY-CONSERYING BLASTWAVES
WITH THERMAL CONDUCTION
(kE ——vH ——W=)i,„'=f p —f; =y —y;=Pp ——0)

Thermal conduction can alter the evolution of a.
blastwave in two ways: in a homogeneous medium, it
reduces the temperature gradients and eliminates the
temperature singularity that occurs at the origin in the
ST solution; in an inhomogeneous medium, it leads to
evaporation of the embedded clouds. The simplest way
to treat conduction in a homogeneous medium is to as-
sume that it is so efBcient that it renders the temperature
constant throughout the remnant. Such isothermal
blastwaves were first analyzed by Korobeinikov (1956)
and Korobeinikov, Melnikova, and Ryazanov (1962); Sol-
inger, Rappaport, and Buff (1975) considered the implica-
tions of such blastwaves for supernova remnants. The
blastwave radius divers only slightly from the Sedov
value, but the density jump at the shock divers

. significantly from the adiabatic value X,=(y+ 1)/(y —1)
due to conduction of energy to the shock front from the
hot interior (for a blastwave in a steep density gradient,
the heat flow is reversed). More recently, Naidu, Rao,
and Yadav (1983) have developed approximate analytic
solutions using the technique of Laumbach and Probstein
(1969), and they have generalized the treatment to allow
for energy injection. A1though the assumption of iso-
thermality is convenient and approximately accurate, it is
physically inconsistent when the conduction is due to
electrons in a fully ionized plasma (Lerche and Vasyliu-
nas, 1976): if the electrons are hot enough to transport
heat efhciently across the blastwave, they are too hot to
maintain equipartition between the electron and ion- tem-
peratures. Numerical solutions (Cowie, 1977), including
the saturation of the heat Aux, which occurs when the
temperature-gradient length is comparable to or larger
than the blastwave radius, show that the electrons are
nearly isothermal and the ions nearly adiabatic at early
times; at intermediate times, thermal conduction and
Coulomb collisions between the electrons and ions result
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in a structure somewhat similar to the idealized iso-
thermal blastwave. Cox and Edgar (1983) have obtained
the similarity solution for the early phase in which the
ions are adiabatic and the electrons isothermal. An ana-
lytic model for the evolution of such a blastwave toward
the adiabatic Sedov structure is given by Edgar and Cox
(1984).

The evolution of a blastwave in an inhomogeneous
medium is quite difFerent from the Sedov case in which
cloud evaporation is important (McKee and Ostriker,
1977; see also Cowie, 1976). The injection of mass into
the interior retards the blastwave, but since the mass in-
jection is generally less at later times when the tempera-
ture is lower, the mean density declines with time and
R, CC t" with i) =2/(5 —kp) & —'„ the ST value. Chieze and
Lazareft (1981)have found the similarity solution for this
problem when the conductivity ~ T . Numerical solu-
tions of SNR evolution including c1oud evaporation are
also available (Cowie, McKee, and Ostriker, 1981).

A. Isothermal blast waves (m=0)
1

Although truly isothermal blastwaves with T, = T, are
an idealization unlikely to be encountered in any astro-
physical setting, they do provide a useful model for as-
sessing the maximum efFects of thermal conduction in a
homogeneous medium. We shall use the pressure-
gradient approximation, and the K approximation (Sec.
IV.D) to obtain a simple analytic solution for such
blastwaves.

The assumption of isothermality allows us to relate a
directly to the post-shock compression 7,. In terms of
the mass-weighted average of the temperature

kT/p=P/p, (5.1)

a =pu, /kT=8, ', (5.2)

since T= T&, where t9, is the normalized temperature just
behind the shock [Eq. (E6)]. Now the shock jump condi-
tions imply

v, =(Xi—1)/Xi,

Oi ——(Xi —1)/Xi,

(5.3)

(5.4)

for a strong shock in a stationary medium [Eq. (E24)], in-
dependent of whether energy is added to or taken away
from the shocked gas by thermal conduction. We con-
clude that

where p is the mean mass per particle, the definition
(3.17) gives

The mean pressure for an isothermal blastwave follows
from inserting Eqs. (5.3) and (5.5) into Eq. (3.24):

I' 3

P, (3—k )X,
(5.6)

In the PGA, the mean pressure is

(3—k )X, +U', +1 (5.7)

from Eqs. (4.70) and (4.74). The edge derivatives Pi and
U i must be evaluated directly from Eqs. (86) and (87),
since the adiabatic condition (88) no longer holds. Since
T is constant we have P*=p*, so that with kz ——0

4 —(1—k )Xi

2(Xi —2)

kpoxl(3 —Xi)+(3X1—4)(Xi —1)

2(Xi —2)

(5.8)

(5.9)

(Note that the mean density P is proportional to the
external density pp so that k&=k& ' to distinguish this1'O'

case from that of evaporative blastwaves to follow, we
consistently use k in this section to emphasize that the

Pp

dynamics are governed by the external medium. ) Com
bining Eqs. (5.6)—(5.9) then yields the solution for the
shock compression:

5 —k
Pp ~o ~o

3 —k
(PGA) . (5.10)

For k =0, this is within 2% of the exact result.
Po

To complete the solution, it is necessary to evaluate o,
which we do using the PGA/GM approximation
developed in Sec. IV.D. Generalizing the de5nition of I
in Eq. (4.77a) to (2/vi)Kii /%02, one finds that the basic
relations (3.19) and (3.20) leave Eqs. (4.77b) and (4.78c)
unchanged (note that kE ——0). These last two equations
together with Eq. (5.5) yield

Xi —1

(y —1)Xi

(5—kp)(3 —kp )Xi —6(5—3y)(Xi —1)

(5—kp)(3 kp )Xi —12(Xi ——1)

(5 —
kp )(3—k

p )(Xi —1)

(5 —k )(3—k )X,—12(Xi —1)
(y=-', )

(PGA/GM) . (5.11)

For the case of greatest astrophysical interest, y =—,
' and

a'=X', /(X, —1) (5.5)

for isothermal blastwaves. Because the Aux of kinetic
and internal energy is not conserved across the shock in
this case, however, the compression 7, is not known a
PP'EOI'L

For k =0, this is within 1% of the exact value (Solinger
~p

et a/. , 1975). The exact value of cr leads to /=3. 243, so
that the blastwave radius is 10% greater thorn in the ST
case.

Finally, note that the thermal energy, which has a rela-
tively simple form in the adopted approximation, is
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E,h (5—k )(3—k )Xt —12(Xi —1)
('5 —k )(3—k )X, —6(5 —3y)(X,—1)

(PGA/GM), (5.13)

which also exceeds the ST value by 10% for

(kp, , y ) =(0,—', ).

where the coefficients Q (r), a T, and xp depend on the na-
ture of the evaporation (e.g., saturated or classical
evaporation —see Cowie and McKee, 1977); in addition,
Q(r) depends on the properties of the clouds. What is
needed in Eq. (5.14), however, is the volume-averaged
evaporation rate (co,~m ). Hence we define the quantity
Q„(R) such that

B. Evaporative blastvraves ( co,im ) =Q,„(R)
kT(R)

p
[p(R)] ' . (5.15b)

Diffuse astrophysical gases are often inhomogeneous,
with most of the mass concentrated in clouds that occupy
a smaH fraction of the volume. A-blastwave in such a
medium propagates primarily in the lowest-density
phase, engulfing the clouds in hot gas. Thermal conduc-
tion between the hot gas and the clouds results in cloud
evaporation, and it has been proposed that this mecha-
nism is responsible for regulating the structure of the hot
gas in the interstellar medium (McKee and Ostriker,
1977). The injection of mass into the interior of the
blastwave implies that the mean density varies with ra-
dius (k&~0). In the limit in which the evaporated mass
dominates the swept-up mass, which we shaH focus on,
the density variation of the ambient medium—k

(po~R ') is irrelevant. In a less extreme situation, a
self-similar solution is possible only if k =k (Chieze

Po

and Lazareff, 1981).
The internal structure of an evaporative blastwave

differs dramatically from that of other blastwaves in that
the post-shock pressure P& is of order p~v, , ~hereas the
mean internal pressure P is of order pv, ~~p0v, . The
large negative pressure gradient behind the shock ac-
celerates the evaporated gas from the clouds (which are
assumed to be stationary) up to the mean flow velocity.

Because the pressure is not a monotonic function of
position, the pressure-gradient approximation is inap-
propriate; instead we adopt the linear velocity approxi-
mation. Some of the details of the analysis, including the
modification of the kinematic moment relation by the
evaporated mass, are deferred to Appendix C.

We assume that the blastwave is nonradiative and
cloud crushing is unimportant, so that the total con-
tained energy is constant. Then the solution is of the
form given by Eq. (3.10) with kE ——0. We must first find
the mean internal density p(R). By hypothesis all of the
mass added is from evaporation of interior clouds with
assumed spatial density co,&, so that

Q,„(R)

Q(R, )

3 ~(3+l +lT) '
(3—kz+xTl~+~ l }(3+1 )

(5.16)

where we made use of the fact that l~=l +l&.
Equations (3.13) and (5.2) allow one to rewrite (5.14) in

the form

Q,„(1)[U,(1)] p(1) 'R, (1) R
30.' KT

(5.17)

where

k,„=——3+k&+~zkz+(2~T —1)(1—g)/q . (5.18)

Then by differentiating the scaling relation for mass
—k +3

[M =M(1)R ~ ] and using Eq. (5.17), one finds that
k =2+k„,or, with (3.11),

kg+ 3~T ——', ~ks (a r ——,
' }

k (5.19)
KT —K +-

p 2

Integrating Eq. (5.17) and substituting from Eqs. (3.4)
and (3.13) then yields

Recall that kT/p=P/p [Eq. (5.1)], so that T differ-s

somewhat from the volume-averaged temperature ( T).
For simplicity we shall assume that Q(r) and Q,„(R)
have the same radial dependence, as would be the case if
Q were unaffected by the passage of the blastwave; then

we write Q cc(r/R, ) ~ and Q,„acR ~. We further as-
sume that p(r), T(r), and P(r) can be expressed as power

laws, p ~r, etc. The similarity solution of Chieze and
Lazareff (1981) for classical evaporation shows that the
power-law approximation is good for T but crude for p
and P; below, we therefore use integral constraints from
the kinematic moment relation rather than the edge
derivatives to evaluate the power laws. With these as-
sumptions, we readily find

(co„m) 4~
S (5.14) Pr —a +1/2 Q,„(1) S/2 —3&T

a(3 —k )(1 f)—R, (1)

We do not assume that the blastwave is isothermal. At
any point inside the blastwave, the evaporation rate per
unit volume ~,&m can be parametrixed as

'
KT —1/2

rl gE(1)
X (5.20)

~„m =g(r) kT(r)
p

(5.15a)

—k
which completes the determination of p(R)=p(l)R
We have retained the dependence on kE for future refer-
ence, but we set kE ——0 for the remainder of this section.

Rev. Mod. Phys. , Vol. 60, No. 1; January 1988



26 J. P. Ostriker and C. F. McKee: Astrophysical blastwaves

2
pUa = 3+I +IT P, ,

3+l I'1

3+1p+~T (y+ 1)
3+1 2(y —1)

(5.21)

where the final step follows the jump condition (E22).

&s we have seen in Eq. (5.16), the analysis of evapora-
tive blastwaves is complicated by the necessity of deter-
mining lz and lT in addition to the usual structure pa-
rameters. Indeed, for evaporative blastwaves, the kine-
matic relation among the moments [Eq. (C10)] also de-
pends on lz and IT, through Eq. (C14). Even with the
linear velocity approximation the analysis is somewhat
tedious and is given in Appendix C.3. Here we note a
simple relation for u, which follows immediately from
the assumption that P (r) and p(r) are power laws:

1. Classical evaporation

First we consider the case of classical evaporation, in
which the thermal conduction has the value given by
Spitzer (1962), so that (1(T,a )=(—,',0). This form of the
conductivity is valid only for a completely ionized non-
relativistic gas; hence y; =—,'. From Eqs. (5.19) and (3.11)
we 6nd

(5.22a)

6rl=
10—kg

(5.22b)

which reduces to the familiar result (kz, g) =(—,', —', ) for a
uniform medium. From Eqs. (5.20) and (3.10)

R, (t)=

p(R, )=

' 1/(10—kg )

(4 —kg )( 10—kg ) ( 1 f)ga E — 6y((0

kg
Q

3888Q,„(1)R,(1) ~

1/3

3888 R, (1) Q,„(1 )k E —(5+kg)/3

(4—kg )(10—kg ) a'(1 f)—
(5.23)

(5.24)

In order for this evaporation-dominated solution to hold,—k
the interior density p(R)=p(l)R ' must exceed the
ambient density p0, which implies

R, »
3888Q,„(R„)g E

a (10—kg) (4—kg)(1 —f)p03
=—R,„. (5.25)

Thereafer the evolution approaches the ST result.
To complete the solution, we must evaluate the mo-

ments E20, etc., the powers I and IT, and the parameters
a and g. The solution, in the linear velocity approxima-
tion, is given in Eqs. (C12)—(C20). The moment Xzo is

determined by the evaporative moment K&0
——(1+/)

In the case of classical evaporation (with y =y; =—', ), Eqs.
(C15), (C16), (4.4), and (3.6) give

3(11—2k' )(+4k' —7

(11—2k' g'+ 3

2(9$+ 1+2k& )

( 11—2k' )g+ 3
(5.27)

k =—', (classical, y= —„k&—0) .

Solution of Eq. (C19) gives g= —,', so that

+20 +11 +02 6

0 = —,", , /=55/9m =1.945,

(5.28)

First we consider the case of a uniform medium with
f &&1 and k&

——0, as treated in paper I (McKee and Os-
triker, 1977). Equation (5.22) yields

I 3 j' 6 (5.29)
2(4 —kg )

2 +20 +11 It 02—(11—2k' ){1+/)
24(1+g) (4—k& )(10—k& )

4 —kg
' 8(11—2k' )(1+$)

(10—kg )(11—2k' )(1+/)
6m (1—f)(4—kg )

(5.26)

The exponents I and lT follow from Eqs. {4.22a) and
(C17):

Q„/Q =1.38,

R, (t) =2.20
1/10 1/5t'" (0.31

3
Po

These results agree remarkably well with the exact simi-
larity solution obtained by Chieze and Lazaret (1981).
In the limit of vanishing external density, they found
a =2. 89 (2%%uo higher than our result) and R, =2.22
(E/Q)' ' t (1% higher); their results correspond to
g' =2.06 and Q,„/Q = 1.44.
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In paper I (McKee and Ostriker, 1977), the efficiency
of the evaporation was measured by X ':3f—y/aa,
where y & 1 is the ratio of the actual conductivity to the
Spitzer value and a is the cloud radius. If a is measured
in pc and X in pc, then

Q 3 49~ 10—73 ~ —i —3 K—5/2

x,." ' (5.30)

In paper I we estimated X„,=50 pc in the local interstel-
lar medium. Using Eqs. (5.24) and (5.30) together with
the exact Chieze and Lazareff (1981) solution, we obtain
the following numerical results for classical evaporative
blastwaves:

R, =0.045(E,X„,)' '0(t/1 y) pc, (5.31)

where n =p/p~ is the mean number density of hydrogen
nuclei in a gas of cosmic abundances. These differ slight-
ly from the results of paper I because of different values
for a and g.

The case k& ——2 (co,i o: r initially) is of interest for a
supernova explosion occurring in a star surrounded by an
inhomogeneous wind, or a galactic explosion occurring in
a galaxy about which the cloud density falls as r . In
this situation Eq. (5.22) iinplies

k =—,'(classical, y= —', , k& ——2) . (5.33)

Solution of Eq. (C19) gives /=3/13, and Eqs. (5.26) and
(5.27) then yield %20 ——

—,", , I = —
—,", , IT

——~4', and

g= 1.828.

2. Saturated evaporation

%hen the mean free path in the hot intercloud gas be-
comes comparable to the radius of the embedded clouds,
the heat Aux is no longer directly proportional to the
temperature gradient, and it is said to saturate or to be
Aux limited. An approximate theory of cloud evapora-
tion in this case has been developed by Cowie and
McKee (1977). It applies when the saturation parameter
o.0, which is proportional to the ratio of the mean free
path to the cloud radius, is in the range 1 —100; in astro-
physical units, tro=(T/1. 540& 10 K) /na „where n and
T are the density and temperature of the intercloud gas
far from the cloud. Their results imply

a. =5/(6+Jkt, ), icr ——a (1+ ,'Af, ), —,(5.34)

where At„ the Mach number of the evaporative outffow
in the region of saturated heat Aux, is a constant that de-
pends on the uncertain magnitude of this heat ffow (see
Cowie and McKee, 1977). For a typical value A, , =&2,
Eqs. (5.19) and (3.11)yield.

[saturated (Jk, =2), y= —,', kg —()] .

(5.35)

n =80.6(E5i/X&, )'~ (R, /1 pc) ~ cm (f =k& ——0),
(5.32)

With the hnear velocity approximation, Eq. (C19) then
gives /=0. 671, Eq. (C15) gives X2O

——K» ——0.473, and
Eqs. (4.22) and (5.16) imply l = —1.203, lT ——0.587, and

Q,„/Q =1.040. Note that this solution applies only for
o 0 ~ 1, or radii less than &»„where

R„,=0.67(1 f)(X—„/a~, ) pc . (5.36)

This result is independent of the energy of the explosion
and is nearly independent of AL, .

Yl. APPLICATlON TO BLASTWAVES
WITH MOMENTUM AND ENERGY LOSS
( vH = PV=m =s=O)

A. Radiative blastwaves in homogeneous media
(~ci'= ~ =O)

A=A(1)
p(1)

(6 1)

(where I =0 or —1 and —2 5 m 5 +.2, depending on
temperature and composition), so that

= —~4nR, A(P, T)n.P (6.2)

where n is the particle density. Substituting the depen-

dences assumed for the self-similar solution in Eq. (3.7)

gives

In all of the cases treated so far it was assumed that, al-
though the hot gas might lose or gain energy by doing

J P d V work, the total energy of the blast was constant.
However, as is well known, after long times the interior
will cool and, under most circumstances, cooling will
occur first in a thin, thermally unstable shell. - At that
time, in the numerical simulations (Chevalier, 1974;
Mansfield and Salpeter, 1974), approximately one-half of
the interior mass is compressed into the thin shell, which
continues to move into the unperturbed medium. The
shock is now nearly isothermal, y=l, so subsequently
the shocked gas is simply added to the shell. This phase
is correspondingly called the radiative, snowplow, Oort,
or mom'entum-limited phase, and as we shall see gives
R cct ~ [for y= —,', cf. Eq. (6.14)] or t'~" depending on
whether or not the rarefied interior gas has cooled or not;
if cooling is very efficient (g =—,') then the total energy, all
in the. form of kinetic energy of the shell, scales as
E ~ t -'"~ R -'.

Under some circumstances cooling may occur fairly
uniformly throughout the interior (e.g. , when catalyzed
by interior clouds), and then solutions of the type de-
scribed in Sec. IV may exist. In general, however, cool-
ing Aows will either not be self-similar or will be self-
similar only in the thin-shell limit. Before turning to that
case let us check on the applicability of general self-
similar Aows. I et the average cooling function in the in-
terior be
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kz+ il ' =k (l +2)+mkT —3, (6.3a)

d(Mu, )
=4mR, (P Po)/u, . —

S

(6.4)

I.et us first use this to rederive the familiar Oort (1951)
solution in the limit (P,PO) =0. Setting Mu, to the con-
stant radial momentum p &,

p, =—MU, =const, (6.5a)

we have, in the absence of internal mass injection
(m =0), the parametric solution

R, f R,' po(R,')dR,' —f R,' po(R,')dR,'=p&t/4m,

which can be solved for kz using Eq. (3.11) and the rela-
tion kT ——kI, —k =3+kE —k:

—11+6m +k (5+2l —2m)

3 —2'
For almost all circumstances this gives kE &0, energy in-
creasing with radius, which is an impossible result for a
radiating blastwave in the absence of energy injection.
An example of a case with kE ~ 0 is a somewhat relativis-
tic bremsstrahlung in an inverse-square density distribu-
tion (k =2); then l =0, —,

' & m & 1, and kz
=(2m —1)/(3 —2m) &0. With the exception of unusual
cases such as this, however, uniformly cooling blastwaves
are not self-similar.

We now apply our analysis to the case in which the
cooling occurs just behind the shock, so that a dense shell
forms. %'e make the approximation that all of the mass
inside the blastwave has been concentrated into the thin
shell at R, . (The fiow of hot interior gas into the shell as
the gas cools has been studied analytically by Gaffet,
1983.) The linear velocity approximation then holds;
indeed, the moments K „are all unity. The virial
theorem approach is equivalent to the radiative thin-sheH
equation of motion [Eq. (D13)] in this case, since y = 1,

um is the pressure-driven radiative shell. If the interior
gas has negligible mass but signi6cant pressure which
sufFers no radiation losses then, due to adiabatic
decompression P=P(1)R ', and we may seek self-
similar solutions, The fact that all of the energy of the
swept-up gas is radiated away implies that the blastwave
energy decreases in the thin-shell limit as

dE
dt S 2 S (6.8)

provided kz &0. With the aid of Eqs. (3.6) and (3.13),
this becomes an equation for kE.

(6.10)

In the thin-shell approximation, the moments are
K „=1;since y=1 for a radiative shock and k =k for

m =0, Eq. (4.4) becomes

3y —kE —k1 Po

6(y; —1)
(6.11)

Simultaneous solution of Eqs. (6.10) and (6.11) gives a
quadratic, the two roots for kz being

3 —k (MCS)

3(y; —1) (PDS) . (6.12)

The first root is the already derived (MCS) solution for
which, in the notation of Sec. III,

Since the blastwave is assumed to be self-similar (the
non-self-similar case has been discussed by Cox, 1972),
this can be integrated to give

3 —k
E=E(l)—R = P(1)u, (1) R, (1) R

E

(6.9)

for any po(R, ). For power-law distributions
—k

po(R, ) =—pu(1)R

=(3—k )p(R, )/3 (m =0),

(6.5b)

(6.6b)

(4—k )2 (MCS) . (6.13)
1 3

4—k ' 2~
Po

The second root is the pressure-driven snowplow (PDS):

cr =(3—k )/6(y, . —1),

rl =2/(2+3y, —k ),
this reduces to the form

3(4—k )l'0 P]t
(6.7)

9(y; —1)(2+3y; —k )'

8'(3 —k, )

a =1/[1—(k +3y, )/6] (PDS) .

(6.14)

We designate this generalized Qort solution as the
momentum-conserving snowplow (MCS). It gives the fa-
miliar result for k =0 and it applies to inverse-

Po

Compton-cooled explosions for which the interior cool-
ing is very eScient even when the density is low.

Of greater relevance for the normal interstellar medi-

For the simplest case of explosions in a uniform medium
(k =0) with y; =—', , Eq. (6.14) gives i)=d lnR /d lnt

= —,
' =0.29, slightly less than the value g =0.31 found by

Chevalier (1974) in numerical integrations. The small
di6'erence is due to the "memory" of the Sedov-Taylor
phase in the numerical solution, which leads to a greater
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internal pressure than in the self-similar PDS solution
(Cioffi, McKee, and Bertschinger, 1988).

Even if the pressure at the beginning of the radiative
phase is large, there will be no PDS-type similarity solu-
tion if the density decreases too rapidly. From its
definition [Eq. (3.3)], we know that in the thin-shell case
cr = —,

' +E,h„,& /2E„;„„;,& —,'. Comparing this require-
ment with (6.14), we see that

o. & —,', k (3(2—y; ) (PDS} (6.15)

' g/2

R, (t) =R,
p, R,

(6.16)

where g and g are given in Eqs. (6.13) and (6.14) for the
two cases. Numerically R, can be estimated as the point

is required. If this is not satisfied then, however large the
initial pressure, the solution after some transition period
becomes of the MCS type. Furthermore, it is likely that
most, if not all, solutions of the PDS type are unstable to
nonradial perturbations due to the instability found by
Vishniac (1983). It is not clear what, if any, effect such
small-scale instabilities will have on the gross properties
of the blastwave.

In either the MCS or PDS case, R, (t) is given by Eq.
(3.10). We make use of the freedom in choosing R, (1) to
identify it as the radius at which Et, (R ) would have been
the initial energy Eo, labeling quantities at this point as
R„etc. Then the solution for a radiative blastwave in a
homogeneous medium is

at which half the energy of the initial blastwave has been
radiated away.

It is sometimes useful to have a single expression that
applies approximately to both adiabatic and radiative
blastwaves .Let g', be the value of g in the adiabatic
phase (Table III); let (g„,g„) be the values of (g, g) in the
radiative phase [Eqs. (6.13} and (6.14)]. In the radiative
phase we have E =Eo(t/t, )

" . Inserting an approxi-
—g kE

mate expression for gE which has the correct limiting
values into Eq. (3.5), we obtain

E,2

R,(t)= . o I 1 t+
p(R ) ka kr

(6.17)

An alternative method for providing smooth analytic fits
to blastwaves as they pass from the adiabatic to the PDS
and MCS stages has been given by Cioffi et al. (1988).

Next let us find the solution for the case of finite exter-
nal pressure (Pa&0) with the internal pressure decreas-—3r
ing adiabatically as P ~R '. The solution is no longer
self-similar. We define an equilibrium radius R, at
which the interior pressure equals P0.

R,q=R, (PO/P, ') ', P=PO(R, /R, ) (6.18)

where we continue to use R, (1)=R„the radius at which
the shell forms, and where P,' is the interior pressure just
after shell formation. Numerical calculations (e.g. , Che-
valier, 1974) suggest that P,' is about half the pressure an
adiabatic blastwave would have had at R, . Integration of
Eq. (6.4) with (f, A,,&

') =0 yields

U~ =V~2= 2

R,

2(3—k )
Pp

k
6 P0 R, &p

+ 3(2—y ) —k p R,

R,
R,

3r R,
R,

' 3(2—r. )—kt Pp 3(2—y, ) —k

6—k
1—

6—k

(6.19)

Since k & 3(2—y; ) [Eq. (6.15)], this reduces to the PDS
Pp

solution [Eqs. (6.14) and (6.16)] for R,q »R, »R, . At
the equilibrium radius R, , the isothermal Mach number
of the shock is for R cq ))Rp ..

according to Eq. (6.19), where the numerical evaluation is
for the ease (y;, kz ) =(—,', 0). At R„, , the interior is un-I& Pp

derpressured by a factor (6—k )/(6 —k —3y, )—+6,

compared to the ambient medium.

2 3 —k

6—k
6y;

6—3y; —k B. Radiative blastwaves in inhomogeneous media
(Po ——fo —f; =0)

(6.20)

6—k
stop cq

PO

(6.21)~ 1.43R,„,

for example, if y; =—,'and k =0, then At (R,q)=5. The
remnant will continue to expand until

&/(3r; )

If the mass per unit area in the shell is small compared
to that in typical clouds, the shell will lose mass as it ac-
cretes onto clouds that are passed. For simplicity, we
shall focus on the case in which the clouds are uniformly
distributed (A,d

——const), leaving the more general case for
Sec. VI.C.

The solution for the momentum-conserving snowplow'
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is trivial: since the pressure is everywhere negligible,
each element of the shell expands according to Eq. (6.7)
until it strikes a cloud and is absorbed. At any radius R,
the fraction of the shell that survives is exp( —R, /A, «).

In the case of the pressure-driven snowplow, we as-
sume that the internal pressure causes the shock, and
hence the shell, to reform after passing a cloud. For a
stationary ambient medium (vH =0) with negligible pres-
sure (Po =0), and in the absence of cloud crushing

(fo=f; =f), the equation of motion for the shell [Eq.
(D13)] becomes

(Mv, )=d

S

4rrR, (1 f)—P(1)R Mv,

Us ~cl
(6.22)

Since we are deferring discussion of blastwaves with ener-

gy input to Sec. VII, we may set kz ——3y;. The integral
of this equation is then

(Mv, ) =8m'A, ,&(l f)P(1—)e f,M(R')R' ' e dR'+[M(R, )v, (R, )] e
R,

(6.23)

R, (1)=A«

and have introduced the notation

R,*=R (R, =R, )=R, /A, « .

The mass in the shell obeys the equation

=4nR, po(1 f )——dM 2 M
dR, ' A]

(6.24)

(6.25)

(6.26)

for R, & R, . For a uniform ambient medium (po =const)
this may be solved to give

where M (R, )v, (R, ) is the radial momentum at the point
at which the shell forms. We have adopted

available to drive the shock further, energy-conserving
evolution is possible. Initially in this treatment we will
consider both energy input and loss, later specializing to
the adiabatic and radiative cases. Examining the terms
in the virial theorem [Eq. (2.14) or (3.20)], we see that no
truly self-similar solution is possible because the friction-
al term varies as R, /1, «. In the limit in which R, /A, « is

large, however, examination of (3.20) shows that the
problem reduces to that of the "porous plug, " with the
pressure gradient in the remnant balanced by the viscous
drag on the clouds. Both inertial and kinetic energy
terms are unimportant, and an approximately self-similar
solution is obtained with

M(R) =4nl, ,po(1 —f)(R —2R +2)+M, e

(6.27)
and

3(y+1) ~«
4E R

(6.30a)

v, = [(P(1)/po]'~ R
1/2

R, =A,,) (1+—', y;)
P(1) t

Po cl

i/( i+3@;/2)

(6.28)

IG =0 .

(6.29)

In this limit the solution is self-similar and can be treated
by a generalization of the methods of Sec. III (see below).
Note that the exponent in R, (t) is identical to that for
the PDS in a homogeneous medium [Eq. (6.14)]. In the
opposite limit R, «A, ,], but maintaining R, ~R„ the
solution (6.23) reduces to the non-self-similar, homogene-
ous PDS analyzed by Cox (1972).

C. Self-similar impeded blastwaves {Po m=0)——

We now turn to the case in which the blastwave is
slowed by frictional interaction with embedded clouds.
Since the frictional heat, like the entropy generated by
the shock itself, is deposited in the interior where it is

where M, is an integration constant. Equations (6.23)
and (6.27) can be integrated exactly to determine the ve-

locity and radius of the shell. In the limit where
(R, /R„R, /A, «) »1, we have

~'(y; —1)
(6.30b)

Two cases might be considered: First, following Cox
(1979), we might assume that thermal conduction can
maintain an approximately constant temperature in the
interior; then the pressure will be roughly constant and
the expansion will be con6ned to the outer layer of the
blastwave, Ar -A,,i. In this case the moments E „are of
order k,~/R, &&1 for n &1. The dynamics of such a
blastwave are qualitatively similar to those of an ST
blastwave (Cox, 1979). Our neglect of conduction at the
shock front and our assumption that the moments are
constant prevent us from treating this case.

In the more generally applicable second case, appropri-
ate to sufficiently large blastwaves that conduction is
unimportant, the interior is approximately adiabatic. We
also require of course that the density be low enough or
the radius small enough that interior radiative losses are
not important. The drag due to the clouds prevents mass
from piling up at the outer edge, so a large pressure drop
develops between the interior and the edge of the
blastwave (P »P, ). This forces the gas to expand out-
ward through a large fraction of the interior, so that the
moments E „are not small and variable, as in the first
case. In order to analyze this second case —an impeded
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blastwave with an adiabatic interior —we must generalize
the treatment of Sec. III to allow for variable o,'and cr as
indicated in Eq. (6.30). In general, let

—ka—:a(1)R
—kcr:—o'( l )R (6.31)

so that Eqs. (3.3), (3.4), (3.6), and (3.13) imply

k~=k +2(1 rl)—/il+k —3,
g=g(1)R

(6.32)

Then the dynamical results [Eqs. (3.10), (3.12), and (3.13)]
remain valid if g is replaced by g(1); Eq. (3.11)becomes

2" 5+k. -k--k, ' (6.33)

and Eqs. (3.5) and (3.6) remain unchanged.
We further generalize our discussion by allowing for a

power-law variation in the cloud mean free path,

A,,i
—=A,,i(1)R (6.34)

The moment E&2 in the cloud drag term in the virial
theorem (3.20) becomes X&+k 2. For the particular case
of an impeded blastwave with an adiabatic interior, Eq.
(6.30) implies o ~ a &x: R /A, ,&, so that

k = —2k = —(1+ki ),
4&I+k, , 2

o(1)=
3(y+ 1)'(y; —1)

Here we have taken

R, (1)=X,t(1),

(6.35)

(6.36)

(6.37)

~, g/2
R (t)=A (1) g(1)E(1) tg

p(1)A,,i(1)
(6.38a)

9(y; —1)(y+1) (6+kE+ki —k )(1)=
64m%, ~k 2(1 f;)—(6.38b)

2
71=

6+kE+k~ —k
(6.38c)

The transition from a Sedov-Taylor blastwave to an
impeded blastwave occurs at about the point at which
their respective radii are equal. Using Eq. (3.5), we find
that this occurs when g=g'sT, or at a radius R;~,

' I/(ki+1)

ksT
(6.39)

For k& & —1, the blastwave is impeded beyond this ra-
dius; for k& & —1, it is impeded at smaller radii. If we
evaluate (6.38b) and earlier formulas for the simplest case

which is possible provided k&&1 (i.e., A.,&
does not vary

linearly with R, ); the case k& ———1 has o =const and
does not require any generalization of the methods of
Sec. III. Equations (3.6), (3.10), and (6.33)—(6.36) then
yield

(y=y;= —, ), (kE =kz ——ki ——0) in the linear velocity ap-
proximation, we find that adiabatic blastwaves will be im-
peded for R &R; =(45/8)A, ,~.

In an impeded blastwave with an adiabatic interior, the
mean pressure is much greater than the pressure at the
shock front as the hot gas tries to force its way past the
clouds. Allowing for the possibility that f; is less than f0
because of cloud crushing (see below), we use Eqs. (3.24)
and (3.28) to obtain

2E', +k~ 2 1 f
(3—k )(y+1) 1 f;— (6.40)

D. Impeded blasbvaves: pressure-driven snowplow
(fo —f =0)

Radiative blastwaves in inhomogeneous media, which
were analyzed in Sec. VI.B above, can be treated with
this formalism also, provided they have expanded to

3 —k
large radii (R, »A, ,~,R, ) so that M ~ R ~. We reserve
the discussion of cloud crushing to Sec. VI.E, so we here
set fo=f; =f. For R, »A, ,{, the solution of Eq. (6.26)
for the mass in the shell is simply

M =4mR, po(1 —f)A,,t, (6.41)

so that in this case

k =1+k +k~,

p(1)=3po(1),

(6.42)

(6.43)

where we used Eq. (6.37) in obtaining the last result. For
an impeded pressure-driven snowplow with all the mass
in a thin shell, we have kz ——3(y, —1) from Eq. (6.12) (no
cloud crushing) and X&2

——1. As in the energy-conserving
case in Sec. VI.C above, the kinetic energy is negligible.
Then, since y = 1, Eqs. (6.38b) and (6.38c) become

9(y; —1)(2+3y; —kp )'
g(1)=

16ir( 1 f)—
2

71=
2+3y, —k

(6.44)

(6.45)

To express the radius in terms of the conditions at the
cooling radius R„note that EA, =E0R, and

kE kE

poR,"po=po(R, )R,po for R, &R„where E (R, ) =E.
[However, note that if A,,i(R, ) &R, then the blastwave

which is very large in this case (R, » A,„).
As one example, consider an impeded blastwave with

no radiative losses (kz ——0) with (y, y;, kz, k& ) =(—', , —',,0,0)
and fo=f, =f. Eva.luating Ã, 2 in the linear velocity ap-
proximation, which is of uncertain accuracy in this case,
gives ICi2 ———", and /=30/ir(l —f)=9.55/(1 f). Sinc—e
g'sT ——2.03/(1 f) (Table —I), the transition from the adia-
batic ST solution to the impeded, blastwave occurs at
R; =4.7A,,&, thereafter R =4.7A,,&(t/t; )', where
t;~ =33.9 [pk,,t(1 f)/E)'/ . —
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goes through a homogeneous PDS phase (Sec. VI.A) be-
fore entering the impeded PDS; in contrast to po and E, p
does not have the same power-law dependence in the two

k k
phases, so that pR, ~&p(R, )R, ~.] Inserting these results
into Eq. (6.38a) and using Eq. (6.43) we then obtain

g/23(r,. —1)—k

g(1)EoR,
3po(R, )

(6.46)R, (r)=

Equation {6.29) for a uniform ambient medium can be
recovered from Eq. (6.46) by setting k =0 and

R,q, =A,,i[Po/P(1)] (6.48)

in terms of which Eqs. (6.4), (6.22), and (6.27) can be
combined to give (for R »1, k =kz ——0)

—,'(U, R ) +(U, R )

=Co2
R eq, im

—3r.
rj+ R4 (6.49)

where Co=Po/po. In the same limit, this has the solu-
tion

1/2dR R
U

— —C —1

I

The shock radius approaches R,„;I in a finite time teq,
where

EoR, ' =4m( 1 —f)A,,)( 1) 'P( 1 )/3(y; —1) .

As another example, an imp'eded PDS in a wind (k =2)
with y; =—,'has g= —', , just as the adiabatic Sedov-Taylor
blastwave.

Recall that pressure-driven snowplows can occur in
homogeneous media only if the density gradient is not
too steep, kz &3(2—y,. ) [see Eq. {6.15)]. This restriction

Pp

does not occur for an impeded PDS: since o. increases
with R (fol kg & —1), tt always exceeds 2 at suKclently
large R. In fact, Eq. (6.3S) shows that at R, =A,,&(1) we
have o & —,

' for y; & —', (since K&2 ——1 for a snowplow).
However, in order for q to be positive, we do require

& 2+3y, (6.47)

The solution derived in this section is of course valid
only so long as the internal pressure I' greatly exceeds Po.
When (P /Po) approaches 1, a stopping solution analo-
gous to Eq. (6.19) can be derived. It will of course not be
self-similar. Since the pressure in the impeded PDS solu-
tion at the fiducial epoch when R, =R, (1)=A,,&

is P(l),
an equilibrium radius can be defined analogous to that in
Eq. (6.18):

E. Cloud crushing (k =ka =k~ =0)

The previous solution may be applicable during very
late stages of evolution, when the pressure difference be-
tween the intercloud medium (PP ) and the clouds is not
too large. At earlier stages the energy loss due to I P d V

work done on interior clouds can be great, as stressed by
Cox (1979). This effect, which was found to produce
about half of the energy loss in the numerical simulations
of paper III (Cowie, McKee, and Ostriker, 1981), is treat-
ed in this section as the only energy-loss process. The
treatment neglects the external pressure I'0 and the ap-
proximately equal pressure in the clouds I',1 and is thus
valid only for R & R,„[Eq.(6.18)].

When the expanding blastwave engulfs a cloud, the
high pressure inside the blastwave drives a strong shock
into the cloud at a velocity of about

U i=(Po/P i) (6.52)

where p, t is the initial gas density in the cloud (McKee
and Cowie, 1975). For U,&&a few hundred kms ' the
cloud shock is nonradiative and the I' dV work done by
the intercloud gas on the cloud is stored as internal ener-
gy in the cloud to be released back into the intercloud
medium as the blastwave expands. %'hen the cloud
shock becomes radiative, however, the work done on the
cloud is lost from the system. Here we assume the cloud
shocks are radiative.

Let R„be the radius of the blastwave at which the
clouds can be completely crushed, de6ned by equating
the shock crossing time to the age of the blastwave:
a /v „=gR„/U„or

' 1/2
Pcl

(6.53a)R CC

po

where a is the initial cloud radius. In terms of the cloud
filling factor fo=(4n. /3)co, &a, we have a =(3fo/4)A, ,&,

so that

fo Pcl
CC

1/2

(6.53b)

For simplicity, we set k =k& ——k~ ——0 so that R„, fo,
and A,,l are constant.

For R, &R„, the clouds are only partially crushed.
Let pI, P be the effective pressure compressing the clouds;
for R, 5R„,the clouds are being crushed throughout the
volume of the blastwave, and we expect pz-1. If the
clouds are compressed spherically, the compressional en-
ergy loss is

R, , ~»2 I (-,'+ I/3y, )
~e =

C, 3y, r(1+I/3y, )

dE 4'
dt 3

R, ro,&P~P4vra U„. (6.54)

=O. SOl ' (for y,. =—') .
0

(6.51) Integration yields (for the case where the energy is almost
entirely thermal)
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E(R, )=Eoexp—
1/2

4(y; —1)Pp po

1 f;— p, i
(6.55)

with R, (t) given by Eq. (3.5). Thus

E (R„)=Eoexp[ —3(y; —1)P~fo ], (6.56)

(6.57)
The compression is anisotropic, with most of the
compression occurring in the radial direction, so that the
crushed cloud has the shape of a distorted pancake (see
Vfoodward, 1976). Then Eqs. (6.39) and (6.53b) show
that the blastwave is impeded unless fo « 1. For an im-
peded blastwave the energy is entirely thermal, so that
(6.57) becomes

dE
dR,

3pl fo(y; —1)E
R,

(6.58)

In this ease the interior filling factor f; is nearly zero
and, since I' may significantly exceed the pressure I'

&
just

behind the blastwave shock [Eq. (6.41)], the factor p~
may be. significantly less than unity. Equation (6.58) im-
plies

kF =3Ppfo(y —1)

and from Eqs. (6.36) and (6.38) we find

g(1)E(R„)R„A,,iRs=

(6.59)

(6.60)

This result rejects the balance between the pressure gra-
dient dP/dr «E/R and the cloud drag pv /A, «PR /
t A, , which gives R ~ AEt /p (Cox, 1983). Note that the
pressure gradient extends throughout the blastwave be-
cause the clouds impede the How even after they are
crushed. Also, note that in most applications kE «1, so
that R, ~t' . %'e may define two radii: R, is the ra-
dius at which the energy has been reduced by a factor of
1/e due to I P dV work on crushing clouds, and R, ,
is the radius at which the pressure has been reduced to
the ambient and equilibrium results:

R, =R «exp(1/kz —1), (6.61)

where f, « 1 at R, =R«. Hence a significant fraction of
the initial energy E0 remains at R, =R„.

For R, & R„the clouds are completely crushed, so the
energy loss is

dE 4~R—, v, P&Pc@,~4~a /3= 4mR—, v, PpPfo

RC

1.34x 10' ( 7—3k )rl gE 5,

(3—k )P(1—f)n (1) I i/z
pc

(6.63a)

where n(1)=P(1) /(2. 3 4X 10 g) is the density of hy-
drogen nuclei at R, =1 pc and I 1,&2 is given in Eq.
(4.102). This expression reduces to

26[E5, (1—f) n ]' 7 pe,
, 30' 1/2( I f)1/2 pc

(6.63b)

(6.63c)

panding substrate, it may be useful to review the variety
of solutions already derived and to indicate the domain of
validity of each type of solution. %'e assume a uniform
ambient medium (k =ki ——0) and y, = —,'. Several im-

portant characteristic radii have been introduced in pre-
vious sections: R,„[Eq. (5.25)], the radius at which clas-
sical evaporative solutions switch to the Sedov-Taylor
solution; R„, [Eq. (5.30)], which marks the transition
from saturated to classical evaporation; R„ the radius at
which half the energy has been radiated away by the in-
tercloud gas; R; -SA,,& [Eq. (6.39)], the radius at which
the motion of the blastwave is impeded by clouds; R,
[Eq. (6.18)] and R, ; [Eq. (6.48)], the radii at which the
internal pressure equals the ambient pressure; R„[Eq.
(6.S3)], the radius beyond which clouds are completely
crushed; R,„and R,q, [Eqs. (6.61) and (6.62)], which
measure the energy losses of cloud crushing; and
R,«& R,q [Eq. (6.21)], where the pressure-driven
snowplow finally comes to a halt. A given solution corre-
sponds to a particular ordering of these parameters and
the blastwave radius. For example, the Sedov-Taylor
blastwave is characterized by R„&R,&(R„R;,R,q).
The values of the characteristic radii also depend on the
solution; e.g. , the value of R,„given in Eq. (5.25) is based
on the assumption that cloud drag, cooling, and ambient
pressure are all negligible (R,„&R;,R„R,q ).

The cooling radius R, generally determines the volume
of the ambient medium heated by the blastwave. We ap-
proximate the cooling function for a gas of cosmic abun-
dances (Raymond, Cox, and Smith, 1976) as
A=1.6X10-"T-'"ergcm's-' for 10' K STS10"
K, and let p& 1 be the enhancement of the radiative
losses due to nonequilibrium ionization. Assuming the
blastwave is neither impeded nor near pressure equilibri-
um and normalizing to the characteristic 10 ' erg energy
of a supernova remnant, we 6nd that half the energy has
been radiated by the intercloud gas at

(6.62)

F. Summary of blastwaves in uniform inhomogeneous
media (k, =ki =o,y;= —')

Before proceeding to discuss the additional complexi-
ties introduced by energy injection, gravity, and an ex-

for ST and evaporative blastwaves, respectively. For the
ST case we set P= 1 and I i/2 ——1.88 (Cox and Franco,
1981);for the evaporative case, nonequilibrium ionization
effects are likely to be important so we set pI, /z

——10.
Note that, in the latter case, R, is independent of the
blastwave energy. For R, ~ R, a dense shell forms at the
periphery of the blastwave provided evaporation is unim-
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TABLE IV. Catalog of solutions for uniform external medium (y; = 3, UH ——8'= a =0).

(I) Adiabatic solutions

Al: R,„&R,((R„R,;,R, ,R,q)
Sedov-Taylor, Eq. (3.5)

A 2 (R ev&R jm ) & Rs & {Rc&RcptsR eq )

impeded adiabatic, Eq. (6.38)

(II) Evaporative solutions

1 Rs & (R s&t)R ev&Rc~ &R eq)Rc &R jm )

saturated evaporation, Eq. (5.35),

R sat (Rs & { ev s Rc &
R jm &RCN &R eq )

classical evaporation, Eq. (5.23)

(III) Cloud-crushing solutions (internal f P d V losses)

C1: R,„&R,&(R,„,R„R,q), partial cloud

crushing, Eqs. (6.55) and (3.5)

C2: (R„,R, ,R; ) &R, &{R„R,), total

cloud crushing, Eq. (6.60)

(IV) Radiative solutions {R„«R,)
Rc & Rs ((R eq~R jm ~Rcto ), pressure-driven

snowplow, Eq. (6.14)

{Rc& jm) &Rs ({ eq, jm~Rcc)& radiative

impeded snowplow, Eqs. (6.29) and {6.46)

%'3: (Rc ~R eq ) & Rs & {R stop ~R jm yR cc )& stopping

solution, Eq. (6.19)

Q4 '(R R q
' R ' ) & R & (R t p R )

impeded stopping solution, Eqs. (6.50) and (6.51)

=21=5

18
35

Not self-similar

1I=3

Not self-similar

Not self-similar

portant (R, ~&R,„); solutions have been discussed in
Secs. VI.A, VI.B, and VI.D. However, numerical calcu-
lations by Cowie, McKee, and Ostriker (1981) show that
cooling occurs in the interior of evaporative blastwaves
rather than at the edge. We have not discussed this case
here.

Based on the theoretical treatment of the local inter-
stellar medium in paper I (McKee and Ostriker, 1977),
the ordering (for Ez, ——1) and approximate value of the
radii is R sat & Rew & im & Rc R eq R ev & R stop' But
many of these inequalities are strongly dependent on con-
ditions that will vary from place to place within the
galaxy and from galaxy to galaxy by large amounts
(Habe, Ikeuchi, and Tanaka, 1981;Cox, 1986). To clarify
this confusing situation we present a catalog of relevant
solutions for the simplest case, i.e., no preexisting
motion, nor gravity, nor density gradients with y, fixed
to —,'. The catalog, presented as Table IV, divides the
solutions into adiabatic M, evaporative 8, cloud crushing
C, and radiative A, and gives the range of validity, solu-
tion name, relevant equation numbers, and exponent
g(R crt") for each.

For a given explosion in a definite Inedium the dimen-
sional radii are all determined and, depending on the or-
dering of these radii, the solution will go through various
phases in a definite order. %"e can schematically indicate

this order if we know all the dimensionless ratios of radii
and, in fact, two numbers (R; /R, ) and (R,„/R, ) allow
one to predict Inost of the details of the evolution.

Thus, as a further aid to the reader, we present in Fig.
1 just such a schematic breakdown of the solution space.
Script capital letters indicate the solutions labeled in the
Table IV, with arrows pointing to the direction of evolu-
tion. Since more than two dimensionless numbers would
be required to comp1etely specify the evolution, we indi-
cate within each area the di6'erent possible paths, in the
manner used in block diagrams. Certain solutions in
which two e6ects must be included —for example,
evaporation and cloud crushing —have not been calculat-
ed in the text but are required in certain parts of the Fig.
1. We enclose those in parentheses and invite the reader
to calculate them by the methods outlined. To simplify
the presentation we have assumed that R,„&R, and

& R, , both of which hold under most cir-
cumstances. We have further neglected the solution C1,
since the evolution is normally adiabatic during the inter-
val of partial cloud crushing and, finally, neglected cloud
crushing during phases when radiative losses are impor-
tant. In all cases the solutions described begin when the
matter evaporated from clouds exceeds that directly from
the exploding star, since none of the solutions developed
in this paper are valid prior to that time.

Rev. Mod. Phys. , Vol. 60, No. 1, January 1988



J. P. Ostriker and C. F. McKee: Astrophysical blastwaves 35

Solution Domains For 8lastwaves

In(R in, /Rc

0
In (Rev Rc ]

FICr. 1. Solution Domains for Blastivaves: For a specific am-
bient medium and explosion energy, the dimensional radii are
fixed (see List of Symbols), which determines the domain in Fig.
1 within which the solution lies. In each domain above we give
the possible solutions through which a blastwave passes, label-
ing solutions by script letters defined in Table III (A3 is the
stopping solution [Eq. (6.19)] and yl4 is the impeded stopping
solution [Eq. (6.50)]). Since more than two dimensions are re-
quired to define the parameter space, we must allow for forks
within each domain. To further simplify matters we have as-
sumed (1) that R~~ &Rim~ Req & c» and Req, im &Rem
true), (2) that we may neglect cloud crushing in A, and (3}that
the end of the ejecta-dominated phase (not treated in this paper)
occurs while evaporation is still important. Also C,q

corre-
sponds to an approach towards equilibrium radius R,q, and
solutions enclosed in parentheses, e.g., (@+A) correspond to
those not worked out in the text in which two effects are impor-
tant.

VII. APPLICATION TO SELF-SIMILAR
BLASTWAVES WITH ENERGY INJECTION
( vH = W = )(,„'= f 0 —f; =s =0)

E =E(1)ft/t (1)] =E(1)R
which defines gE and kE. Since R ~ t", this implies

(7.3)

(7.4)

Solving this equation together with the result (3.11) for il
yields (see Parker, 1963)

5 —k
kE ——qE 2+gE

2+ Qg
g '

k
a

P

(7 5)

To proceed further, it is necessary to specify the rela-
tion between the blastwave energy E ~ t and the inject-
ed energy E;„~t '". We consider two general cases for
bubbles: first, if the injected Quid is nonradiative, then
E ~ E;„and gE ——q;„; second, if the injected Quid and the
shocked ambient gas are radiative, then a momentum-
conserving solution is obtained.

There are two prototypes of a blastwave with energy
injection. The first is the stellar wind from a massive star
(Pikel'ner and Shcheglov, 1969; Avedisova, 1972; Castor,
McCray, and Weaver, 1975; Steigman, Strittmatter, and
Williams, 1975; Weaver et al. , 1977; McKee, Van Buren,
and Lazareff, 1984). Mass ilows out from the star at high
velocity v;„and undergoes a shock when the dynamic
pressure pv;„drops to the thermal pressure of the sur-
rounding gas. The shocked wind gas drives a shock into
the ambient interstellar medium, with the shocked inter-
stellar gas and the shocked wind separated by a contact
discontinuity. Since much of the volume of the
blastwave is filled with Iow-density stellar wind, this
structure has been termed an interstellar bubble by Cas-
tor, McCray, and Weaver (1975).

The second prototype of a blastwave with energy injec-
tion is the detonation wave, in which the passage of the
shock releases additional energy from the gas. This prob-
lern will be treated in Sec. X.

The methods we have developed can be readily extend-
ed to treat the expansion of bubbles and detonation
waves. The total energy of the bubble will be a power
law in time and in radius, with

Up to this point we have assumed that the energy in
the blastwave is injected impulsively. However, there are
a number of astrophysical situations in which the energy
is injected over a period of time. The resulting blastwave
is self-similar provided the total injected energy E;„(or
the rate of energy injection L;„)is a power law in time,

A. Bubbles: nonradiative injection

If the injected Quid does not radiate away its energy,
then the energy in the bubble is some fraction I of the in-
jected energy

(7.1) E =I E;„, (7.6)

(7.2)

and provided the injected mass is negligible. [Self-similar
flows with finite injected mass have been analyzed by
Simon and Axford (1966) for blastwaves in the solar wind
and by Chevalier (1982) for the initial phase of the expan-
sion of a supernova remnant. We shall not consider these
cases here. ]

E(1)=
Bin

(7.7)

The radius of the outer shock of the bubble [Eq. (3.10)]

which implies i)E ——il;„. With the aid of Eqs. (3.12) and
(7.2) we can express the fiducial energy E(1) in terms of
the fiducial luminosity L;„(1):

1"L;„(1) P(1)R,(1)
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R, (r) =R, (l)
gI L;„(1)

il;~(1)R, (1)

or R =[t/t(l)]" with

t(1)=

where

g;~(1)R,(1)
gl L;„(1)

q=(2+g,„)/(5—k, ),

(7.8a)

(7.8b}

(7.8c)

PGA/GM treatment [Eqs. (4.76), (4.77b), (4.78d), and
(4.78e)] gives o =1.2372 for this case, or g'~ =0.8828.
By comparison, the detailed numerical solution of
Weaver et al. (1977) for this case gives g' =0.88, while
the analytic approximation of Cavaliere and Messina
(1976) gives g'~ =0.901, with all treatments of course
giving g= —,'. Thus the simple and general (PGA/E')
treatment is accurate to approximately 1% in the R (t)
relation, with the somewhat more complicated
(PGA/GM) approach of higher but unknown accuracy.
The radiative form factor [cf. Eq. (4.95)].in this case is

from Eq. (7.5). If L;„ is given in the form L;„=L,t"'"

then L;„(1)=L,t(1) '" is given by

3/(2+g;„) QinP s(l)R (1)
I' (7.9)

%e now turn to several particular cases.

1. Adiabatic bubble

In the absence of any energy losses from the injected
Quid or the shocked ambient medium I = 1; the bubble is
fully-adiabatic. The mass in the bubble consists almost
entirely of swept-up ambient gas, which is confined to a
relatively thin shell. The most accurate explicit approxi-
mation for this case is the pressure-gradient approxima-
tion in Sec. IV.D. Results for o; and o can be obtained
by inserting Eq. (7.5), with qz ——g;„, into Eqs. (4.76),
(4.77}, and (4.78). The general results are not very il-
luminating, but particular cases of astrophysical interest
are as follows.

For g= —,':

160
m 19

13 11
209+ 6m 2(19—4m )

+ (7.12)

3y +20y+1+2g;„(—3y +Sy+4)
k

(y+ 1)(3y+ 1+2q;„)
(7.13)

from Eq. (4.73). For y= —,
' this reduces to k &(16

+3il;„)/2(3+ g;„)

2. Radiative outer shock

Since we have assumed that the ambient medium is
much denser than the injected Quid, it is quite possible
for the outer shock to be radiative and the injected Quid
to be adiabatic. Interstellar bubbles typically spend most
of their existence in this stage.

The luminosity radiated by ihe outer shock is

from Sec. IV.E, somewhat greater than when g;„=0.
As remarked at the end of Sec. IV.D, the accuracy of

the PGA is compromised for steep density gradients. A
necessary condition for the accuracy of the approxima-
tion is that P (0) be finite, which implies

6[20—6k, +(5—2k, )q,„]a2= (PGA),
(3—k, )[14—4k +(17—4k )i7,„]

(7.10a)

L„d =4mR, ( —,'pou, ) (7.14a)

(7.14b)

(PGA/E) .
3 —k 5 —k )(1+rl; }

20—6k +(S—2k@)g;„

For g;„=1:

(7.10b)
using Eqs. (7.8) and (7.9) with gE ——g;„. From Eq. (7.6)
we obtain

(7.15)

so that

9 2y(y+5) —(y+1)'kpa2= - (PGA), (7.11a)
4(3—k )[5y+2—(y+1)k ]

2~(3—k )gqI = 1+
9m

(7.16)

2(3—k )[19y—5 —2(y+1)k ]
(PGA/K) .

9(y —l)[2y(y+ 5)—(y+1)'k, ]

(7.11b)

For the particular case y =—', , q;„=1,k =0, this gives
a = —,", , cr = —,', and g= 125/72m. (1 f), which corre-—
sponds to g'~ =0.888 for f=0. The' more accurate

Note that k & 3 to ensure I & 1. Since the outer shock is
radiative, all the swept-up gas is in a thin shell and o. is
given by Eq. (6.11). Then the parameter g can be evalu-
ated with the aid of Eqs. (3.6) and (7.S):

9(y, —1)(5—k )

2m(1 f; )(2+r};„)[3y,(2+i};„)+—Sg;„—2(1+g;„)kp]
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As a check of the general result we can specialize to the
case g;„=1, y;= —',, kz f——; =0 considered by Weaver
et al. (1977), and obtain q= 3, —/=5/4m, and 1 = —',0„ in

agreement with their results.

3. Evaporative bubble (I'=1)

If the bubble expands into a low-density medium with
embedded clouds, and if cloud evaporation is efficient,
then the structure of the bubble is substantially modified.
The swept-up ambient gas has negligible mass; instead,
the mass of the bubble is dominated by the evaporated
gas in the shocked wind. We assume that radiative losses
are negligible, so I =l. This problem has been con-
sidered previously by Konigl (1983) and Van Buren, La-
zareff, and McKee (1987). Castor, McCray, and Weaver
(1975) and Weaver et al. (1977) considered the effect of
evaporating gas from the shell of swept-up ambient gas

6irT —5+2k' rl;„—(2x T —kg )
k

2xr —2a +1+rl;„(I—ir )
(7.18)

2zr 2' —+1+g,„(1 irp)—

2irT+5(1 —ir ) —k&
(7.19)

with rI given by Eq. (7.4); kz= —g;„/g with rj
The mean density P(1) that enters into R, (t) must be
determined self-consistently for evaporative bubbles; Eqs.
(5.20) and (7.7) give

into the region of the shocked wind. However, since the
mass of this evaporated gas represents a negligible frac-
tion of the gas in the shell, the dynamics of the expansion
are una6'ected by the evaporation and are given by the re-
sults of Secs. VII.A. 1 and VII.A.2.

Simultaneous solution of Eqs. (5.19) for k and Eq.
(7.5) for kE yield

Q,„(1)
a (3—k )(1 f)—R, (1) g gL;„(1)

91Il
(7.20)

When substituted into Eq. (7.8a) this yields the bubble radius

R,
R, (1)

a (3—k )(1 f)—
Q,„(1)R,(1)

g/(2a. T
—3x +2)

gL,„(1)
Pin

(7.21)

As an example, consider the special case of uniform
(k& ——0) classical evaporation (a T

———,', ir =0) in a
constant-luminosity bubble (7);„=1). Then
(Konigl, 1983), k =—'„and Eq. (7.21) reduces to

R, (t) =1.253[a g(1 f)L;„/Q,„]'~' t ~'—. (7.22)

The parameters a and g have been evaluated by
Van Buren, Lazareff, and McKee (1987), and for this par-
ticular case they find (a,g)=[3.48, 0.47/(1 —f)]. Their
similarity solution for this problem shows that, since the
energy is injected at the origin, the velocity, temperature,
and density all generally decrease outward.

B. Radiative bubbles

The bubb1es analyzed above contain a significant frac-
tion of the total injected energy E;„ in the hot, shocked
injected Quid. If this energy is radiated away, as well as
that in the shocked ambient medium, then a
momentum-conserving bubble results (Avedisova, 1972;
Steigman, Strittmatter, and Williams, 1975). Evapora-
tion of embedded clouds may enhance the radiation from
the shocked injection Quid and thereby facilitate the for-
mation of a radiative bubble. To simplify the discussion,
we ignore this possibility here.

I-et M;„be the mass injection rate and U;n the injection

velocity, so that I.;„=—,'M;„U;„. For simplicity, we as-
g;„—1

sume that U;„ is constant; then M;„~L;„~t '" . In con-
trast to the bubbles with nonradiative interiors, here
g;„&rlE, since most of the energy is radiated away.
Momentum conservation gives

E;„E;„(1)
Mu, = f M;„u;„dt =2 =2 R '" . (7.23)

1n Uln

Recall that we are assuming that the injected Quid has
negligible mass (M »M;„), so that u;„»u, . Equating
exponents in Eq. (7.23) yields

g;„(5—k ) —(3—k )k~=-
j+7l

g;„(5—k ) —(3—k )

P

q=(1+q,„)/(4—k, ),

(7.24)

where Eqs. (3.4), (3.9), (3.13), and (7.5) were used. The
expression for R, (t) may be obtained directly from Eq.
(7.23) with the aid of Eq. (7.2):

g/2

&7.25)

3L;„(1)
R, (t) =R, (1)

2mgrl;~(1)(1 f; )u;„R,(1)—
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Avedisova (1972) and Steigman, Strittmatter, Williams
(1975) obtained a result of this form for the case g;„=1,
k =0, but Avedisova found a different numerical
coefBcient.

In common with the radiative blastwaves considered in
Sec. V, the moments E2o and E» are unity. However, a
significant fraction of the total energy in the bubble is
contained in the unshocked wind, and one can show that

A. Adiabatic blastwave

We model the blastwave as a cold thin shell. This
should be a good approximation at late times, when the
adiabatic expansion losses due to the expanding wind re-
frigerate the gas; at early times we can compare our re-
sult with the exact solution, Eq. (4.82). The energy of the
blastwave Eb is then

oz= I+g;„/r) . (7.26) Eb ———,'M(u, —u ), (8.2)

This ensures that a —+ ao [see Eq. (3.20)], as it must for a
blastwave with no internal energy. Furthermore, for
such blastwaves one has o =Ko2/2 from Eq. (3.19).

VIII. BLASTWAVE lN AN EXPANDING WIND

(f =~ci'=ein=lb=+0=0)

Far from its source, a steady spherical wind obeys an
R density law. The initial stage of evolution of a
blastwave in a wind is, as usual, dominated by the ejected
mass, which acts as a piston driving a forward shock into
the ambient medium while a reverse shock propagates
backward into the ejecta. Such a system has been ana-
lyzed for both Gare-driven blastwaves in ihe solar wind
(Simon and Axford, 1966) and for supernova-driven
blastwaves in the interstellar medium (McKee, 1974;
Chevalier, 1982). During the later stages of evolution of
the blastwave a number of effects occur: the swept-up
mass dominates the ejected mass, the blastwave velocity
u, becomes of the order of the wind velocity u„or small-
er, the ambient pressure becomes important (u, -CO),
and radiative losses may become significant.

Up to this point, our analysis of blasiwaves in winds
(Secs. IV.E and VI) has ignored the expansion velocity of
the wind —i.e., we have assumed u, ~~u . Here we shall
determine the effects of the expansion on the blastwave
evolution for adiabatic and radiative blastwaves. We
shall assume that there is no energy injection (g;„=0);
Chevalier (1984) has considered the case of an expanding
bubble in a wind. As we did in all of Sec. VIII, we as-
sume the medium is homogeneous (f =A,ci

' ——m =0) and
we neglect the ambient pressure (u, ~~CO). In addition
we ignore self-gravity. Finally we assume that the
swept-up mass is dominant: not only is the ejected mass
negligible, but, if the wind continues after the explosion
(as it does in the case of a solar flare), then this assump-
tion requires that this wind not interact with the
blastwave. Hence, the mass in the blastwave at time t is
the mass it would have had if the wind had continued to
maintain an R density, minus the mass injected after
t=0:

where the post-shock velocity u, may be related to
Au =u, —u with Eq. (2.4),

2
uw+ Av ./+1 (8.3)

We have replaced u~ by u to emphasize the difference
from the cosmological problems treated below. Solving
Eqs. (8.2) and (8.3) for b,u, we find

1/2
MH1+ (8.4)

where the fiducial mass MII is given by

Eb =——,'MHu„. (8.5)

When the energy-conservation result (8.4) is supplement-
ed with the equation of continuity,

dM 2 Au

dt .u
(8.6)

the resulting system can be integrated to give

] ~ ~2 ~2
+ 2 +

tII y+ 1
I~

1 M
2 M~

~2—
~ ln 1+ +2 +

M~ M~

(8.7)

where

(8.8)

M t
Rs =usta +

H tH
(8.9)

is the characteristic time at which u, is of order u . This
parametric solution in terms of M/M~ can be completed
with Eq. (8.1):

M =4+R, po(R, ) Mr = (R, —u r), —
uw

(8 1)
R, u t, (8.10)

These results simplify considerably at late times, and
one finds for t ~~tH..

where the wind mass-loss rate is given by Eq. (4.81). It is
important to verify that the swept-up mass is indeed
dominant before applying the results of this section.

(8.1 1)
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1/2
y+1 ta

8
(8.12)

In contrast to the Q=O cosmological solution discussed
below [Eq. (9.32)], in this case the mass swept-up by the
blastwave grows without limit.

At early times (t « ttt) expansion of Eq. (8.7) shows
that this solution approaches that given in Eq. (4.82) for
an adiabatic blastwave in a wind, except that the factor
4m//3 is replaced by —98(y+1) . This factor is too large

by —', for y'= —,'and —",, for y= —', : the neglect of the inter-
nal energy at the starting point [Eq. (8.2)] leads to a pro-
gressively greater error as y becomes smaller. An ap-
proximation for R, (t) which has the correct limit for
t « tH [Eq. (4.82)] and agrees with Eqs. (8.7) and (8.9) for
t ~~tH is

since then hu is small and the radiative losses are negligi-
ble. For any value of M, /MH, the energy in the
blastwave approaches a nonzero constant p1v at late
times [Eq. (8.16)], so the fraction of the energy that is ra-
diated is

»vw p1 MH /M,
Eg Eb 2M~+b [1+(1+M /M )I/2]2

(8.19)

For M, &&M& the medium is efFectively stationary when
cooling sets in and nearly all the energy is radiated away;
for M, »MH, however, only a, fraction MH /4M, is radi-
ated away. Eventually, of course, the wind itself ter-
minates in a shock, and then the remainder of the energy
is radiated.

R, =v tH
2m/

3

' 1/2

+
ta tII

3/2 2/3

(8.13)
IX. COSMOLOGICAL BLASTWAVES

(f =g;, '=& y, =m—=p, =o}

81t /tH

16m/

8t /tH

y+1

3/2 —1/3

(8.14)

has the correct limits and agrees with Eq. (8.4) to within
5% for t & tH and for —', & y & —', .

B. Radiative bIastwave in a wind

If the shock is radiative, then the momentum associat-
ed with the increment in velocity hu is conserved:

p,:—Mhv =const . (8.15)

The energy in the blastwave over and above the initial
wind energy is

2

bE= —,'M(u, —u )=p, u + (8.16)

since v1 ——v, for a radiative shock. Assume that the
shock becomes radiative when M =M„' then at M„
b,E =Eb and Eq. (8.16) implies

If g' is taken to be the LVA value in Eq. (4.83), then for
t & ter and —', &y & —,'the agreement with Eqs. (8.7) and
(8.9) is within 11%. Similarly, one can show that the ex-
pression

Blastwaves in an expanding universe have been ana-
lyzed by Schwarz, Ostriker, and Yahil (1975), Ozernoi
and Chernomordik (1978), Bertschinger (1983, 1985a),
Ikeuchi, Tomisaka, and Ostriker (1983), and Fillmore
and Goldreich (1984). Maeda and Sato (1983a, 1983b,
1983c) have numerically treated the fully relativistic
problem and have independently derived some of the an-
alytic results we present in this section. Numerical treat-
ments of a closely related problem, the development of
cosmological voids, by Peebles (1982), Hausman et al.
(1983), Hoffman et al. (1983), and Lake and Pim (1985)
are also relevant. The methods we have developed here
are particularly useful in obtaining analytic solutions to
this problem. Using these methods, we have developed a
somewhat more general treatment of adiabatic cosmolog-
ical blastwaves and obtained new results for blastwaves
with radiative losses, with energy injection, or in
universes with dark matter (McKee and Ostriker, 1987).

For simplicity, we restrict ourselves to a matter-
dominated universe and to the two cosmologically impor-
tant cases in which the density is a,. power law in cosmic
time ~: the just closed Q=1 case, in which the gravita-
tional energy balances the kinetic energy of the expan-
sion, and the Q=O case, in which gravity is negligible.
These cases can be described by an ambient expansion ve-
locity and density

2EI, M
1+ 1+

vw C

(8.17) —3hpo=p =pu~

(9.1)

(9.2)

The equation of continuity (8.6) may then be integrated
with the aid of Eq. (8.15) to give

1/2
' 1/2 —1/2

M 2t MH1+ 1+
MC

(8.18)

Note that this agrees with the exact result (8.11) for our
model of an adiabatic blastwave when M ~M, &&MH,

Q=p, (8mG/3H ) =26M, /RuH

where for Q &&1

h = l,p„=30so/8m GHO,

and for Q=1

It =—', , p„=Qg/6mG, p„;,:—1/(6mGr ) .

(9.3)

(9.4a)

(9.4b)
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Here Qo and Ho are the present (z =0) values of Q and
the Hubble constant, respectively, and Qg ——(p/p, )Q is
the density parameter for the gas. For the Q = 1 case, we
allow for the case in which a small fraction of the mass is
in gas and the remainder (stars, neutrinos, etc.—"dark
matter") interacts with the gas only gravitationally by
distinguishing between (p, M, Q s) and (p„M„Q). The
dark matter is classified as cold, warm, or hot depending
on its velocity dispersion at the time the baryons decou-
pled from the radiation, since that determines the length
scale over which initial density perturbations are erased
by free-streaming (Bond and Szalay, 1983). An analo-
gous classification can be made for blastwaves, in which
the ratio of the velocity dispersion of the dark matter to
the shock velocity is the governing parameter. If Cd is
the isothermal sound speed of the dark matter, then
Cd && v, corresponds to "cold" dark matter and Cd ~&u,
corresponds to "hot" dark matter. Note that since this
classification is made at the red shift of the blastwave and
not at decoupling, it need not correspond to that. used for
galaxy formation. Our restriction to matter-dominated
universes eliminates consideration of "very hot" dark
matter with Cd ~ Qgc . Further discussion of blastwaves
with 0 ~ 0 is given in Secs. IX.A.4 and IX.B.2. In all
cases we neglect Compton drag by the microwave back-
ground.

Our discussion is divided into two parts. In Sec. IX.A
we consider self-similar blastwaves, show that in all cases
the shocked gas is confined to a thin shell, and find cer-
tain general results, In Sec. IX.B we drop the assump-
tion of self-similarity. These latter results are of greater
utility.

A. Self-similar cosmological blastwaves

&, GM, dM, f&, GM, dM
0 r 0 r

&, GM, dMd

0 r

where M, (r) is the total mass inside r and Md(r) is the
mass of nongaseous, or "dark, " matter inside R. The
first term represents the energy required to assemble the
gas in the presence of the dark matter; it is identical to
the gravitational virial term W in Eqs. (2.12) and (2.14).
The second term represents the energy required to assem-
ble the dark matter in the presence of the gas. Only the
first term contributes to the total energy of the gas, so
that

Eb =«sc+Eth+ ~)—E. . (9.8)

The rate of change of Eb due to radiative losses, energy
injection at the origin (bubbles) or edge of the blast wave
(detonations), and gravitational interaction with the dark
matter is given in Appendix A. The magnitude of 8'is
proportional to QMv~, so it is conveniexit to introduce
the coefficient m defined by

8' = ——' tL) QMvH (9.9)

For the unperturbed Hubble flow w = —', [see Appendix A,
Eq. (A28)], whence

of the energy. Recall that the blastwave energy Eb is
defined as the difference between the energy of the gas in-
side the volume, bounded by R„ in the actual case, and
the energy E, in an equivalent unperturbed part of the
(Hubble) liow, bounded by a sphere of the same radius
[see Eq. (3.14)]. Now, the total gravitational energy of all
the matter inside 8, is

If the blastwave begins its expansion at cosmic time ~b,
it will become self-similar only at ~&~wb. At these late
times, we have R, ~~" and u, =gR, /~. Hence we may
define a dimensionless constant vH, analogous to vi [Eq.
(3.15)],

E=i 3

Eb 10

(1—Q)utt

E, = —,', (1 Q)MuH—

The total energy in the gas is E =Eb +E„sothat

(9.10a)

(9.10b)

vH
—=uH/v, =h /g=const( 1 . (9.5)

With Eq. (3.16) for Ex and (3.18) for E,h, Eqs.
(9.8)—(9.10) yield

That is, self similarity requires a constant ratio of shock
velocity to Hubble uelocIty at the shock. The general self-
similar solution for radial expansion [Eq. (3.5)] still ap-
plies,

2 2 1 02+ 2Mv, u (y —1)
—

—,', vH[1 —(1——', w)Q] .

(9.11)

P

1/5
2/5

1/5
b (2+36)I5 (9.6)

where Eb ——o.Mu, is the energy of the blastwave at any
time ( =Eo in the absence of losses), /=3/(4vrq o), and.
where we used Eq. (9.2) for p. The definitions of the con-
stants (o,g) are identical to those proposed for the gen-
eral case in Sec. III [Eqs. (3.3) and (3.6)].

Due to the energetics of the Hubble flow and the possi-
bility that the gas represents only a fraction of the gravi-
tating matter, we must be quite careful in our definition

k =3h/q=3v~ (9.12)

[on the other hand, po(r, t) is independent of r so that
k =0]. Since kz ———qs/ri from Eq. (7.4), the general
expression (3.11) for g becomes

il =(2+3h +its )/5 . (9.13)

We can further generalize the treatment to allow
Eb ~t in the cases of energy injection or radiative

—klosses. Note that Eq. (9.2) implies that po cc R )' with
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Us :—1 —vH ——1—
"s Us

2(1—l1 )+gE
2+3h +gE

(9.15)

The normalized post-shock velocity is given by Eq. (3.22)

The Hubble velocity parameter vH =—l1/11 is then, from
Eqs. (9.6) and (9.13),

vH =uH/u, =5h/(2+3h +qE), (9.14)

so that the velocity of the shock relative to the Hubble
Bow is

(3.24) and (9.16) give the relation between a and the
mean pressure as

2(1 —
vent ) p

7+1 P,
(9.18)

In the shell approximation, the normalized thickness of
the shell is 1 —A, = 1 —v, [see below Eq. (4.47)]. We esti-
mate P by taking P(A, )=P1, a constant. Then, since the
average extends over the entire sphere, whereas the pres-
sure is nonzero only in the shell, we have
P /P )

——3 ( 1 —v1) and

2+(y —1)vH

(y+1) (9.16)

6(y —1)(1—vH )

(y+1)
(9.19)

The remaining general and exact relation needed to
determine the evolution of the blastwave is the virial
theorem [Eq. (3.20)]. Since P=po, Eqs. (9.8) and (9.13)
enable us to write it as

(9.17)

where a2 is defined in Eq. (3.17).
In order to evaluate the constants g and cr we must as-

sume a specific dynamical solution. Numencal integra-
tions (Schwarz et al. , 1975; Bertschinger, 1983; Ikeuchi
et al. , 1983) have shown that, in all cases studied, an ex-
tremely thin shell develops after long times, although the
reasons for this behavior are di6'erent in the di6'erent in-
stances. For an adiabatic blastwave in a low-density
universe, the pressure in the shocked gas declines because
of the decompression due to the expansion of the
universe; as a result, there is no resistance to an element
of gas overtaking another element that is shocked later to
a lower velocity, and the gas piles up just behind the
shock. For a blastwave in an Q =1 universe, the inner-
most gas, which is not decelerated by gravity, tends to
plow into the outermost gas, which is decelerated; again,
a very thin shell results. In both cases the mean density
of the shocked gas can substantially exceed the value
(y+1)/(y —1) attained just behind the shock. The ve-
locity behind the shock is nearly constant (actually in-
creasing slightly with decreasing radius), so our "shell
approximation" (Appendix C.4) should be excellent.
Thus, with 0 =u„ the moments appearing in the virial
theorem are given by Eq. (C22). The analysis of Ikeuchi
et al. (1983) suggests that the shell approximation is ex-
act for a constant-energy blastwave in a low-density
universe (Q=gE ——0). More generally, the shell approxi-
mation wi11 be accurate when the internal energy is small
(a =P/pu, «1).

In view of the fundamental importance of the shell
structure of cosmological blastwaves, it is worthwhile to
estimate a for energy-conserving blastwaves and verify
that is is self-consistent to regard it as small. Equations

w =(1—5)——,'(1—-,'5) (9.20)

Hclc 5 ls determined 111 tclfns of tllc moments E [cf. Eq.
(C23)]; we adopt the n = 1 relation to lowest order in 5,

5=2(1—lt 1) . (9.21)

Note that 5 is the e+ectiue shell thickness for a homo-
geneous shell; numerical solutions (Bertschinger, 1983;
Ikeuchi et al. , 1983) show that the density in the shell is
far from constant, and the actual shell thickness general-
ly divers from 5. Equations (9.11), (9.14), (9.17)-(9.19),
and (C22) let us determine a and o to complete the solu-

where we have used Eq. (9.16) again. For the case y =—,',
qE ——0, A=Qg=1, this rough estimate gives a =384 in
comparison with the exact value 408.4. When gE ——0,
Eqs. (9.4) and (9.15) show that 1 —v~ & —,', so that ct is
indeed very small. [This estimate of a breaks down for
adiabatic blastwaves with a soft equation of state (y ~1},
since o; does not in fact vanish for such blastwaves-
see Eq. (9.36}.] The thermal pressure in energy-
conserving cosmological blastwaves is small because the
velocity difference at the shock is small compared to the
Hubble velocity, and thus the gas piles up in a thin shell
as the blastwave decelerates. Kinematically, this results
in a negative velocity gradient at the shock front (see Ap-
pendix B) and the natural formation of a void or cavity.

Since all moments of the density are determined in the
shell approximation, we can derive the gravitational en-
ergy to any desired accuracy. The velocity moment
%02 ——1 and, for the others, it sufBces for our purposes
here to treat the matter as if in a thin homogeneous shell
of thickness 5R, . We also assume that if any dark matter
is present, the force it exerts on the shell is the same as if
the Aow of dark matter were unperturbed by the
blastwave (the opposite case is taken up in Sec. IX.A.4
below). Then, from Eqs. (A30) and (A35), the gravita-
tional coefficient is

Rev. Mod. Phys. , Vol. 60, No. 1, January 1988



J. P. Ostriker and C. F. McKee: Astrophysical blastwaves

tion of cosmological blastwaves. We now focus separate-
ly on the cases 0« 1 and Q = 1.

0«1. Since h =1, Eqs. (9.13)—(9.16) reduce to

5(y+1)+2'~
(y+1)(5+qE) ' " 5+q, (II «1) . (9.22b)

Avq= 1+—gE,
vs

IE

5+gE
(9.22a)

Hence the solution becomes degenerate (the shock
comoving with the Hubble flow) in the limit gE ~0. The
relevant moments are obtained from Eq. (C22):

+1 =+10 +11 1— y —1

4gE+5 y+ 1

gE (y —1)+ (2rlE +5y+ 5)(1—K, )
(I&«1) .

5 gE+2

(9.23a)

(9.23b)

Qgo

ao

For all of these solutions there is a simple relation between the swept-up mass and the energy of the explosion deriv-
able from Eqs. (9.7), (9.2), and (9.4),

4mgEq (r)
M(r)=

3
(9.24)

0=1. Here Eqs. (9.13)—(9.16) give

v 2+ 39Eg= —,'(4+g@ ),
u, 3(4+pe )

2(7+5y+ 3qE )
V)=

3(4+rlE )(y+ I )
' 3(4+gE )

vH —— (Q= 1),

so that the shell decelerates for gE & I. In the just closed case the moments are

3x/E+ 2 y ]
Ki =X)o=E')) = 1—

6(2q~+3) y+1

(9.25)

(9.26)

(9.27)

K2 =K2o ——1— (12+3'~ —10K, )(y —1)+6(4+gE )(1—K( )

15(gE+2)
(0=1) . (9.28)

We now consider the adiabatic blastwave and the nonra-
diative bubble in greater detail.

1. Energy-conserving biastwaves ( rIE 0, fl =Qg—)

o.=—,
' (0«1) (9.29)

0« l. In a low-density universe, Eqs. (9.20) and
(9.21) imply that g= 1, b, u =0, and v, =vH =1. An adia-
batic blastwave comoves with the Hubble expansion at
late times. Equations (9.22) and (9.23) give K, =K2 ——1:
all matter is in an infinitely thin shell, and our solution is
exact. The internal energy produced at the shock is pro-
portional to Av, which vanishes; thus we expect
a =P/pu, to be zero, as is indeed the case for 0—+0
and all values of y [cf. Eq. (9.18)]. Finally Eq. (9.11)
gives

10GHoEb (0«1)R =
S 0 o

and the mass enclosed approaches a constant:
2/5Q 0M=(SZ, )'"

2GHo

=2.9X10' Eb6( (Qso/h~ ) Mo (0 &&1)

(9.31)

(9.32)

where h~ =Ho/(100 kms 'Mpc ') and Eb6& is in units
of 10 ' erg. These results become exact in the limit
V. /Vb ~ oO.

0= 1. In a marginally closed universe, Eqs. (9.25) and
(9.26) yield

vanishes in this case. The total energy is E=2.5Eb from
Eq. (9.10b), so that E=—,'Mu, as expected for a thin,
comoving shell in the absence of gravity. The radius of
the blastwave is

E& —Mu, /5, /=15/4m (&«1) (9.30)

independent of y, as it must be, since the internal energy

g = 4, Av =v, /6= VH /5,
v, =(5y+7)/6(y+1), vH =—', .

(9.33)
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The gravitational deceleration of the gas ahead of the
blastwave allows it to overtake more and more gas, so it
never becomes comoving as in the Q=O case. The mo-
ments are determined [cf. Eqs. (9.20), (9;21), (9.27), and
(9.28}]to be

2 4y+5 107y2+ 266y + 167
135(y+ 1)' (9.34)

5=—,w =(29y+25)/54(y+1). (0=1) .2 y —1

9 y+1

(9.35)

case, the accuracy of the shell approximation. The result
for a, although obtained from the virial theorem (9.17),
which involves the difference between quantities of. com-
parable magnitude, is also reasonably accurate: it is 9%
high at y= —', and 2% high at y= —', . Bertschinger was
unable to find a similarity solution for y (—', because the
density and pressure had divergent exponents at the inner
edge of the shell [see Eqs. (B42) and (B43)]. Hence, our
solution does not apply for y (—,'. The total energy E and
the blastwave energy EI, are the same in this case, since
the ambient gravitational and kinetic energy exactly can-
cel in an 0=1 flow [Eq. (9.10}]. The mass increases slow-
ly with time. Taking y = —,', we have

468.9 (Q= 1),
5y +90y+ 13

(9.36)

Now we can determine a using Eqs. (9.17) and
(9.33)—(9.35), finding E3/5 2/5

6( 36o )3/5
G 2/5 (9.39a)

where the numerical values assume y =—,'as before.
These relations then allow us to determine o. using Eqs.
(9.11) and (9.33)—(9.36),

1875y +5420y —1137y—6050
11664(y+1) (y —1)

(9.37)

so that [Eq. (9.6)]

RS

225 @'E
7-' '

320

3(360/3553)'/ (GEb )'/ r (0=1), (9.38)

where the numerical values assume y =—,', as before. We
can compare the solution (Qg =0= 1) with that obtained
by -Bertschinger (1983). The coefficient in our answer,
R, = 1.898(Eo G )'/ r /, differs from the result of his nu-
merical integration by 0.56%, demonstrating, in this

I

=2.3 x 10'~Eb36/)'ufo/'MQ (0=1) (9.39b)

x =t/r, 1 —x=rb/r, (9.40)

we can write

Zbt ~
~, = [g»(1 —x)+gx ]'/5

Pu
(9.41)

Inserting the exact numerical value of gsT for y =—,'from
Table I, we obtain

where ~,0 is measured in units of 10' yr.
Joint ST solution. The results obtained so far apply

only at late times ~&&rI, . For t =—~—v.
b small compared

to rI„we expect the standard Sedov-Taylor (ST) solution
to be valid. Because the ST and cosmological solutions
have the same form, it is straightforward to write an ana-
lytic expression that smoothly connects the two and that
should be relatively accurate. Introducing the parameter
x which lies between 0 and 1,

R =.
S

33 2(1 0 41x) /s(h Eb6)/0 )
/ t rs kpc (II((1),

97.8( 1 —0.36x )
/ EI,'6, t 8/ r8/ kpc ( II =0= 1).

(9.42)

where ts and &8 are measured in units of 10 yr. These
results are more accurate than those of Ikeuchi et al.
(1983).

for ~& ~&, then the evolution of the resulting bubble at
late times (t =r rb ~r) is descri—bed by Eq. (9.6) with

(9.44)
2. Nonradiative cosmological bubbles (Q= Qg ) Iin Iin

Radio galaxies, quasars, and perhaps young galaxies
with high supernova rates can inject more than 10 ' ergs
into the surrounding medium in the form of kinetic ener-
gy. If energy is injected into the blastwave at a rate

(9.43)

The result is
1/5

kL 1 (2+3h +g;„)/5
0 (9 45)

The value of g (the exponent of &) is given by Eq. (9.13),
since gE ——g;„ for nonradiative bubbles.
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20+ 3q;„
4(5 )

(«& 1),

46+9';„
12(4+i1;„)

(Q= 1).
(9.46a)

5(45il;„+213il;„+328');„+160)
(Q ((1),

32(4il,„+5)(5+i),„)'
5( 1215');„+5859');„+9272');„+14 212/3 )

(9.46b)

(Q= 1).
1728(4+q,„)'(2r),„+3)

The constant g is determined by Eq. (3.6) in terms of o,
which is given by Eq. (9.11). For y= —'„ the parameters

v] ando are

3h

R =R
S C 5p. Rc

(9.52)

where r, =r(R, =R, ). If the blastwave becomes radia-
tive in the pre-cosmological phase (t, (rh ), then R, and
~, have only formal signi6cance and one should use the
non-self-similar results below [Eqs. (9.97) and (9.100)].
Evaluation of Eq. (9.52) at r, implies

i)= —,'I 1+6h+[1+12h —4(3+2tuQ)h2]'/zI . (9.51)

'We have discarded the negative root because it gives
i) & h, in violation of Eq. (9.6).

The radius of the radiative blastwave is given by Eq.
(3.10). If we define R, as the blastwave radius at which
Eb ——Eo, the energy prior to any losses, and set
R, (1)=R„then we have

Specializing further to the case i);„=1 (steady energy in-

jection), we find

',",',„' =0.360 (Q (& 1),

,",'„' =0.488 (Q= 1).

The parameter a2 [Eq. (9.17)] in this case is

", ,",,' = l 3.8 ( Q (& 1 ),

—",,' =8.24 (Q= 1).

(9.47)

(9.48)

R =.
S

1440GHOL,

373Qg0
' 1/5

11 664GL
1265

(9.49)

For the Q = 1 case the velocity of expansion is constant at
u, =770 (L /10 "Lo )'/' km/s.

Finally, the radius of the bubble is, for a constant rate of
energy injection I.,

(gE / )
I/Sr(2+3h)/5

c — o pu ~c (9.53)

as expected from Eq. (9.6). Inserting Eq. (9.53) into (9.52)
then yields the final expressions for the radius of a radia-
tive, cosmological blastwave,

Ã0
qE /g

pu c

' g/{3h +2)
' 1/5

(Eor,
pe ic

o =—— — (1+—'Q ——'Q ) .
1 3 h

3 6 g (9.55)

In a low-density universe (Q«1, h =1), Eq. (9.51)
gives q = 1, which is identical to the comoving solution
found for the adiabatic case above. Using Eqs. (9.11) and
(9.13), we can thus summarize a radiative blastwave in a
low-density cosmology as follows:

(9.54)

in terms of R, and r„respectively; here p, —:p(r, ). The
value of /=3/(4n i) o ) is determined by the energy equa-
tion (9.11), which for radiative blastwaves reduces to

'2

3. Radiative cosmological blastwaves (q;„=0) 15rj=l, il@ ——0, o =—,', g= (Q«1), (9.56)

5q —1 —3h
'9

3h
1

h wQh+2:
which can be solved for q to give

The non-self-similar case will be taken up in Sec. IX.B
below. The shell approximation adopted in the present
section is exact for the radiative case, since the shell col-
lapses to zero thickness and our equations become very
simple with v, =K„=1,5=0, and tu =1—Qg/2Q. (Ra-
diative cosmological bubbles, with i);„&0 and Xo2&1,
have been discussed by Qstriker et al. , 1986.) In this
case we need not restrict ourselves to the case O=Qg.
Since we are assuming y =y, , a radiative blastwave must
be a momentum-conserving snowplow and not a
pressure-driven snowplow; hence o. ' =0. Equations
(9.13) and (9.17) then imply i) =[15+(1+16Q, )'/']/24,

i)@——[—21+5(1+16Qg )'/ ]/24 (Q = 1), (9.57b)

128(1——,'Qg )

[15+(1+16Q )' ]

(9.57a)

(9.58)

so that the radius is given by Eq. (9.31). For Q « 1, the
radiative and nonradiative blastwaves are completely
equivalent: since the blastwave is comoving (b.u =0), no
radiation is possible and the energy is conserved (ilz ——0).
If the blastwave becomes radiative in the pre-
cosmological phase, then the non-self-similar solution de-
rived in Sec. IX.B below is necessary to relate E0 to the
actual initial energy.

The just closed case (Q= 1, h =—', ) is more interesting.
Equations (9.51) and (9.55) give
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For Q8 = 1, these equations, together with Eqs. (9.13) and
(9.15), yield

g = (15+v'17)/24=0. 7968,

g@
——(21 —51/17)/24= —0.0160,

o =0.3250, g= 1.1567,

b, u =0.1633u, =0. 1952vH (Q = 1) .

(9.S9)

In the opposite limit 0 «0= I, we obtain

9)=(2+Q, )/3, g~=( —2+SQ, )/3,
9o = 43Q8, g'=

g

b,v =—,'Qgu, = ,'Qgu—Ii (Qs «Q= 1) .

(9.60)

(9.61)

In the limit Q ~0, this leads to the comoving solution
with

' 1/5

(Qg —+0),36 Qg
(9.62)

where Eb~ is constant in this limit. Clearly to reach this
comoving state requires non-self-similar evolution, which
must be treated separately. During this non-self-similar
evolution most of the blastwave energy is transferred to
the dark matter, so Eb is considerably less than the ex-
plosion energy. The energetics of blastwaves with
0 & Q is discussed below.

In this solution, like the adiabatic blastwave, the shock
propagates about 20% faster than the Hubble velocity.
The blastwave radius [Eq. (9.54)] becomes

(21 8()GE g 0.0201)0.1992 0.7968 (Q Q 1 )S 0 c

5=2(1—E'1)=
3(29)—1)X1

from Eqs. (9.21) and (9.27), so that

(9.63)

the energy in the gas is E =Qg E0, and the total energy in
all the matter is E, -E0. The first stage does not have a
truly self-similar character, since the time required to
evolve into the self-similar configuration is comparable to
the time recjuired for the dark matter to begin overtaking
the gas shell. The second stage will become self-similar
because, in the absence of thermal energy in the Hubble
Bow, it lasts indefinitely.

It is also possible to apply our analysis to "hot" dark
matter, in which the velocity dispersion is large com-
pared to the shock velocity (but not so large that the
universe is pressure dominated). In this case the hole in
the gas distribution due to the blastwave induces a densi-
ty perturbation in the dark matter no greater than of the
order of Qg(u, /Cd), which 'is negligible for v, «C&.
The first stage still exists, but since the blastwave is sub-
sonic with respect to the dark rnatter, a shock can never
develop in the dark matter and the second stage will not
occur. If the dark matter dominates the mass, it must be
nonrelativistic in the matter-dominated era of the Hubble
expansion, so that C& ~~ for 0=1. By contrast, the
Hubble velocity at the shock declines more slowly than

, and hence Cdfu, decreases with time and "hot"
dark matter eventually becomes "warm. " Our analysis
does not apply to "warm" dark matter (Cd-v, ), since
the density perturbation in the dark rnatter can be com-
parable to the gas density.

Stage I: Dark matter acceleration. During this phase
there is no truly self-similar evolution, so we generalize
the treatment of radiative blastwaves to determine the
asymptotic value of 9). Since qz ——Sg —4 for Q= 1 [Eq.
(9.13)],we have

4. Blastwaves with Ag ~ Q = 1
9X,(2g —1)(2—Q ) —(3g —2)(6—7Q )

1871(221 —1 )
(9.64)

If only a fraction of the matter is gaseous, then the
gravitational interaction between the gas and the dark
rnatter dramatically alters the evolution of the blastwave.
For "cold" dark matter (see the discussion at the begin-
ning of Sec. IX) two stages in the evolution may be
identified: In the first stage, energy is drained from the
gas (ilz &0) and added to the dark matter as the shell of
gas sweeps over the dark matter; in the case of the radia-
tive cosmological blastwaves treated above, the gravita-
tional energy loss far exceeds the radiative losses by the
factor (1—Q )(uH/hu) [see Eq. (9.69)]. This energy is
not truly lost, but rather transferred to the dark com-
ponent. In the second stage of evolution, the accelerated
dark matter has overtaken the gas and is also in a thin
shell; for 0 «0=1, the blastwave will closely follow
Bertschinger's (198Sa) solution for a collisionless com-
pensated hole (a blastwave in which the initial energy is
purely gravitational but the mass inside the blastwave is
unchanged from that in the Hubble liow). In this case

Equation (9.65) generalizes the result for radiative
blastwaves (y= 1, a =0), Eq. (9.50). An approximate
solution to Eqs. (9.64) and (9.6S) is

1+20" 3 2+3', (9.66a)

from Eq. (9.20). Since the solution is not strictly self-
similar, the virial theorem in the form we have derived it
is only approximately valid; however, using it [Eq. (9.17)]
and approximation (9.19) for a we find

6(y —1)(3g—2)
g(y+1)'

(St)—3)(3g+y —1)[(9y+15)21—4y —8]
(2q —1)(y+ 1)

43 + —1—6(3g —2)— — +2iv . (9.65)(y+1)
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1 —0
2+3',

I

(9.66b)

The expression for q is accurate to within 1.5% for

3 (y ( —,'; that for qz is accurate to within S% over the
same range of y. -For Qz ~~1, it is straightforward to
show that i) =(2+Qg )/3, just as for radiative blastwaves.
As A ~0, self-similar test particles comove with the
Hubble expansion. In the opposite limit, Q =1, we
derive from Eq. (9.65), q=(0. 8008, 0.7992, 0.7968) for

y = ( —'„—'„1),respectively, in excellent agreement with the
correct value for energy-conserving blastwaves, q = 4.

Knowing g and hence K& and m, it is possible to find o.

and g, but in view of the approximate nature of the treat-
ment we shaH not pursue this here. The results for radia-
tive blastwaves, which are more accurate, have been
given in Sec. IX.A.3.

The energetics of a blastwave in a partially gaseous
Hubble Qow can be treated exactly in the limit in which
the gas is in a thin sheH; the discussion will thus be ap-
proximate for energy-conserving blastwaves, which have
a finite thickness, but exact for the radiative blastwaves
considered above. For the gas, the energy balance is (see
Appendix A)

E~+E,h+ 8'+E„d+68'=Eo, (9.67)

where 8" is the gravitational potential energy of the gas
in the presence of the dark matter, E„d is the energy ra-
diated by the blastwave, and 68' is the gravitational en-
ergy transferred to the dark matter from the gas. Since
0= 1, the energy of the ambient gas E, vanishes [Eq.
(9.10a)]. The rates of energy loss from the gas are

d«„d =—'M(b, u )
GV

(9.68a)

d1 S

(9.68b)

w'here M is the rate at which gas is swept up by the
blastwave. These results have two important conse-
quences. First, the radiative losses are smaH compared to
the gravitational losses,

(9.69)

unless Qg=1. Second, both losses are largest at early
nE —&

times (since E

ccrc

), prior to the onset of self-similar
Aow. The energy balance for the dark matter is

«X,d+«h, d+ ~d =~~
where 8'd is the potential energy of the dark matter as
defined by the second term of Eq. (9.7); since the gas is
confined to a shell outside the dark matter, the interac-
tion part vanishes. The sum of Eqs. (9.67) and (9.70)
gives the overall conservation relation

&e, t+«th, t+ +'t+E..d =Eo

+v)g 1+vd
Rg —— R~,

2
(9.72)'

where v, g is the value of v& for the gas [Eq. (9.16)];v&~Rs
is the inner radius of the shell in the shell approximation.
Since y =3 for the dark matter, we find, using Eqs. (9.72)
and (E23),

R
2[y+3+(y —1)vH ]

(y+ 1)(3+v~ )
(9.73)

The energies in the two components are Ed —=a.dMdv, d
and E =o. M v, , where we have added the subscript g
on E and M for clarity. The superposition approxima-
tion implies that cr has the same value that it would
have in the absence of the dark matter. Since the dark
matter extends beyond the gas, we have

and

Mzu, ~/Mgu, =(1—Qg)Rd/(QgR~)

wh~~e E~, =E~+Ez d, etc., as it should. These results
hold so long as the dark matter does not overtake the
gas; when it does, energy is transferred back to the gas,
and the fIow makes a transition to the second stage.

Stage II. Combined dark matter/gas blastwave (cold
dark matter only). Even if the blast begins initially in the
baryonic component, after long times the dark matter, if
cold, will also have been swept up into a thin shell. That
material will, to an excellent approximation (for
Qg &&0), follow the self-similar solution for a collision-
less compensated hole found by Bertschinger (1985a), so
both components will be in thin overlapping shells ex-
panding as ~ . Alternatively, if the perturbation begins
as simultaneous and proportional positive energy pertur-
bations in the combined dark matter plus baryonic fluids,
due to some combination of initial negative density per-
turbations or positive (super-Hubble) velocity perturba-
tions, both Ouids will approach a self-similar R ~z ~

solution together.
In either case most of the energy wiH be in the dark

matter. The simplest, and qu1te accurate, way of treating
this problem is to take the combined blastwave to be the
superposition of the blastwave in the gas and that in the
dark matter. Since the latter is collisionless, the velocity
dispersion it acquires is entirely one dimensional; hence,
we treat it as a gas with @=3. We then infer a shell
thickness for the dark matter (subscript d) of
1 —k;d ——1 —v, d ——( 1 —vH ) /X;d ——

—,', for an energy-
conserving blastwave, compared to the exact value
0.0996 (Bertschinger, 1985a), and od ——0.2410 from Eq.
(9.37), compared to the exact 0.2506. Because the col-
lisionless shell thickness exceeds that of the gas, the
blastwave radii Rg and Rd di6'er for the two components;
Rg 1s the radius of the gas shock and Rd is that of the
outer caustic in the coHisionless gas. We adopt the sim-
ple approximation that the gas shell is centered in the
shell of dark matter, so that
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E, E +Ed o.d(1 —Qg ) Rd

Eg Eg u 0 Rg
=1+ (9.74)

Let us define the effective value of g, for the combined
blastwave to be

4E.
Pg

so that

3E

4m' o.gQgE,

(9.75)

(9.76)

The blastwave radius in the gas is then

R (9.77)

2 3

E,(5q 4)—
(9.78)

Since, in the limit Qg «0, g will be very close to —„we
solve the above equation in that limit to obtain

2M U,
'9 ——= ——

5 900

Qg

900 o, (9.79)

where o., =3/(4mrl g, )=ogQgE, /E~ from Eq. (9.76).
For y =1, Eq. (9.74) gives o., =0.3100 in this limit, so
that

g = 4, —0.0036Qg, qE ———0.0180 (9.80)

Note that although this solution was obtained in the limit
Qg «1, it is close to the result (9.59) if Qg =1 and so
should be expected to be a reasonable approximation for
the whole range 0&A &1. Cxreater accuracy can be at-
tained by inserting o.

g
=0.3250 [from Eq. (9.59)] into Eq.

(9.76) and solving (9.78) directly.
If, as would be the case in certain currently popular

cosmologies, 0=1 and Q =0.1, then disturbances in the

from Eqs. (9.4b), (9.6), and (9.75). These results allow one
to determine the radii Rg and Rd for arbitrary 0 and y,
and thus provide a useful extension to Bertschinger's
(1985a) results. Adopting Bertschinger's value
o.

d ——0.2506 ensures that Rd is exact in the limit 0 =0;
we then 6nd

Rg/(6~GE, r )' =(1.060, 1.050)

for y =(—', , —', ) and Q =0, compared to the exact values
(1.052, 1.048). For Q~= 1, the results reduce to the
Q =1 results obtained above.

Remarkably .enough, radiative blastwaves differ only
slightly from energy-conserving ones if Qg is small, both
because the losses scale as (b,u ) and because most of the
energy is in the dark matter:

B. Non-self-similar cosmological blastwaves

1. Solution from the equation of motion (g;„=0)

Blast waves in expanding media are self-similar only in
the limit v. » ~&, where ~b marks the onset of the
blastwave. %'e have obtained approximate expressions
for the behavior of the blastwave by meshing the cosmo-
logical similarity solutions with the Sedov-Taylor similar-
ity solution appropriate at early times [r =r 7.

b «rb,'—
cf. Eq. (9.42)]. An alternate approach is to attempt to
solve the equation of motion for the blastwave directly.
To do this we make two approximations: we assume that
all the gas is swept up into a thin shell; and we assume
that I =p U~ /a =ppU /e with a constant, just as for
self-similar blastwaves. For radiative blastwaves, both
approximations are exact. For adiabatic blastwaves at
late times, the first approximation is exact for Q=O and
quite good for Q = 1, as discussed above, and the second
approximation becomes exact for both cases. If
0 & 0= 1, we assume that no dark matter has overtaken
the gas shell —i.e., we treat only the first stage of the
blastwave. With these appr'oximations we can verify that
the self-similar solutions of Sec. IX.A do obtain in the
limit ~ &&~b, and we can obtain the cosmological general-
ization of the Oort snowplow for radiative blastwaves.

For the case at hand, the equation of motion [Eq. (D8)]
in the shell approximation (Ko, =1) with the pressure
confined to a thin shell [Kz ———', from Eq. (D7)] reduces to

(MUi)=4vrR, 2( ', P+pouahv)+ J g dM- (9.81)

2
3M 2 Us 2

2 +U~AU —6N QU~
g 0,'

(9.82)

where f g dM and w' are given in Appendix A [Eqs.
(A34)—(A36)]:

combined-matter distribution will be able to propagate
through the epoch in which inverse Compton cooling is
efficient (z) 7) as growing self-similar shells (Vishniac,
Ostriker, and Bertschinger, 1985). It is remarkable that,
even though the thermal cooling time is very small
compared to the age of the universe, r„,i/r
=[7/(1+z)] «1, during these epochs, the propaga-
ting blast (or "void" if that term is to be preferred) will
only lose energy at the very much slower rate of
7] sg/7 = 1/gE =500» l.

We note that in both this case and the nonradiative
case, the gaseous component is so cold that it is likely to
be unstable to nonradial perturbations. Both the initial
analysis of Ostriker and Cowie (1981) and subsequent
work by Bertschinger (1983) and Vishniac (1983) have
found that the shells are likely to fragment into pieces
with mass of order 10 M, after the self-similar state is
reached (i.e., for r ~&7b). .
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0
iu'=1 ——,'5 ——,'(1 ——,'5) (9.83)

dM =4m.R, pohU .
d7

(9.84)

The velocity u, is given by Eq. (9.16), and the mass in the
shell increases according to th/a q —h/a

R

1+ ——1 (1 —x)
D

h/a (9.96)

if we approximate 7& ——7&. A more convenient form for
R„which is exact in the limits t &«b and 7 »7I, and ac-
curate to within about 5% for intermediate values of 7, is

De6ning

(9.85)

where r) is given by Eq. (9.94). These results can be ap-
plied to both nonradiative and radiative blastwaves.

so that u, =(1+y)uH, we can rewrite Eq. (9.81) as

d = —d' ln7,
ay +by+c a(y —y, )(y —y2)

where

(9.86)

0 4h 1
1(y+1)
4 2 (9.87)

b ~ y+3
2

2(y+1)
Qp 2 (9.88)

c—: h 1+—m'0 — —1
y+1 1, 2

2 CX

(9.89a)

y+1 h 2[8a +Q5+(1——,'5)Qg],
8

(9.89b)

and y „y2 are the roots of the quadratic with y, &y2. In
deriving (9.89b), we have used the relation
Q =2(1—h)/h, which is valid for Q=O, 1, and Eq. (9.83).
The solution of Eq. (9.86) is

y i
—y2(ri, /r)

D1 —(rb /r)
(9.90)

where

D =(b 4ac)', y, 2—= (9.91)

and 7b is an integration constant that would equal 7b if
the solution were valid at 7~7b. Since

a. NonradiatIve blastwaves: approach to self-simIlar flow

Equation (9.93) confirms the power-law behavior found
for R, (t) in the similarity solutions of Sec. IX.A. We
adopt the values of a found there in order to ensure the
correct asymptotic behavior. For 0=0, we have
a =0, c =0, and D =(@+1)/2; hence Eq. (9.94) gives
rj= 1 for r~&rb, in agreement with Eq. (9.31). The in-
tegration (9.93) determines the comoving mass.

For Q=l, there are two cases. If 0 =1, then a is
given by Eq. (9.36) and 5 by (9.35). For y =—'„Eqs. (9.83),
(9.87)—(9.89), (9.91), and (9.94) then yield g=0. 8007; the
similarity solution has q= —,, in agreement to O(5 ). In
the other limit, Ag &~1, we evaluate cx and 6 in the self-
similar limit, finding a =O(Qg ) =0 and 5 given by Eq.
(9.64). As a result, we obtain g=(2+Q )/3, in agree-
ment with the similarity solution [Eq. (9.66a)].

The limiting expression for R, at early times given by
Eq. (9.95) is approximately R, cc t ' " in all three cases, if
the cosmological values of o; are used; this difFers
significantly from the correct ST behavior R, ~ t . On
the other hand, if the LVA expression for a is used
[a =@+1, Eqs. (4.3) and (4.17)], then Eq. (9.95) gives the
correct t ~ behavior. We conclude that Eq. (9.95) is not
an accurate way to handle the transition from ST to
cosmological blastwaves because a changes during the
transition. Equation (9.42) is the preferred general result.
For the same reason, it is impossible to evaluate the in-
tegration constant CR in terms of the energy in the pre-
cosmological phase; this problem is addressed in Sec.
IX.B.2 below.

dR,
=u, =uH(1+y),d7 (9.92)

h. Radiative blastwaves

an integration yields

R =C ' [1—(r'i /r) ]" ' (9.93)

D+h(13 —y)/2+1
8 —2(y+ l)a

(9.94)

where CR is another integration constant. For 7»7&,
we have R, ~ 7" with

Radiative blastwaves are characterized by y= l. %"e
further assume that the blastwaves have negligible inter-
nal pressure (a =0). This is appropriate to cosmologi-
cal applications at early epochs (z ~7), when inverse
Compton losses erat'ectively cool the shock-heated interior
electrons. Equations (9.87) —(9.89), (9.91), and (9.93) then
yield

where D is given by Eq. (9.95). On the other, hand, in the
pre-cosmological phase (r~r„), Eq. (9.93) yields

R, =Ciir"[1—(rblr) ]'~

D =[1+12h —4h (3+2iu'Q) ]'~

(9.97)

(9.98)

R ~Cits ' D" 't" ' (t &&r )
h ( 1+y —a )

where g is given by Eq. (9.94). Comparison with Eq.
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(9.51) demonstrates that this value of g is identical to
that found for self-similar radiative blastwaves. If the
blastwave makes the transition from adiabatic to radia-
tive at late time (r »rb ), and if Q=Qg, then the
coefficient CE is given by Eq. (9.54) as

(gE /p R ')E '))gl(3h+2) (r ))r ) (9.99)

On the other hand, if the blastwave becomes radiative in
the pre-cosmological phase (t, «r& ), then at these early
times R, is given by Eq. (9.95) with R, o:t"~'=t'~ . This
time dependence conforms with that for the momentum-
conserving snowplow [Eqs. (6.13) and (6.16)], which al-
lows one to determine Cz.

24EbZ,3

(t, «rb) .
ma p„r~+

(9.100)

M(U, ——,'UH)=const (Q=O) . (9.101)

This verifies directly that this solution is the generalized
momentum-conserving snowplow: the difference be-
tween the total and swept-up momentum remains con-
stant in time.

2. Model for blastwaves with Q~ ~ 0:
dark rnatter acceleration

The cases of high and low density (Qg ——Q= 1,0) have
already been discussed in Sec. IX.A.3 on self-similar radi-
ative blastwaves, and do not require further elaboration.
It is worth noting that, in the low-density case (Q=O) in
which gravitational effects are negligible, we have
(D,yi, y2)=(1,0, —~)), so that Eqs. (9.84), (9.85), and
(9.90) imply

the form (3.5), R, =(gEst /P)' . In the problem at
hand the energy Eb is affected by the gravitational energy
loss to the dark matter and must be determined. We
adopt the ansatz

Ig

Ãb =k.&0
c +b

l7g 0
(9.102)

g'o(1 —x)+g,x . (9.103)

3h +'re —qF. 2+qZ
. 1/5

g,Ear

0 0
P ~c &b

(9.104)

Here Eo is the initial blastwave energy; we allow for radi-
ative energy losses on the blastwave time scale
t =~—~b =x~ and for gravitational losses on the cosmic
time scale r. If there are radiative losses (gE &0), then

0

Eq. (9.102) is valid only for t &t, . The constant go is
known from the pre-cosmological solution (e.g., the ST
solution), and the constant g, remains to be determined.
It should be emphasized that g, may differ substantially
from g, so that Fb in turn may differ from

QE 9E IE
Eo(t/t, ) '(r/rb) '. This ansatz will be reasonably
accurate only if g', is of order go, so that g, is approxi-
mately constant. For radiative blastwaves in a universe
with Q «Q=1 we found /=9/(4mQg)&)gsT=go [Eq.
(9.61)], so this accuracy requirement will be satisfied only
if g, «g in this case. Inserting this ansatz into the gen-
eral relation (3.5) yields

If only a fraction of the matter is gaseous, then, as em-
phasized in Sec. IX.A.4 above, the dynamics of a
blastwave is strongly affected by the gravitational in-
teraction between the gas and the "dark" matter. In the
first stage, energy is drained from the gas as the dark
matter is accelerated. This stage is not truly self-similar
because the time it takes for the blastwave to evolve into
a self-similar configuration is comparable to the time it
takes for the accelerated dark rnatter to overtake the gas
shell; furthermore, the similarity methods we have used
cannot treat the evolution at t -tb, when a significant en-

ergy 1oss can occur. Solution of the equation of motion
(Sec. IX.B.1) provides an accurate means for treating
blastwaves that become radiative in the pre-cosmological
era (t„,) « tb), but it is inaccurate for nonradiative
blastwaves, in which the fraction of the energy that is
thermal drops precipitously as the blastwave evolves
from the ST stage to the self-similar cosmological stage.
Here we develop a simple analytic approximation for the
non-self-similar evolution of cosmological blastwaves un-
der the assumption that the accelerated dark matter does
not overtake the gas shell (Stage I in the nomenclature of
Sec. IX.A.4).

All the blastwaves we have discussed obey a relation of

A
Us =1 (9.105)

with

(g, —go)x(1 —x)
7l=

5
+(3h +gE qE )x+2+r)E—

0 0

(9.106)

To evaluate the constant g„we assume that the
energy-loss processes would eventually reduce Eb to zero
if the dark matter did not over take the gas. If we divide
the total blastwave energy Eb into two parts, the gravita-
tional interaction —68' and everything else,

(9.107)

[see Eq. (A21)], then the rate of change of Ei, is

where Eq. (9.2) has been used for P. The blastwave veloc-
ity is then
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dEb GM
dt

4—vrR, pd(u, —u~) +DE,
R,

(9.108) (9.109)

where we have replaced the thin-shell approximation for
db. W/dt in Eq. (9.68b) with the more accurate shell ap-
proximation (ui —uH in place of u, —uH). Noting that

(1—x)
(9.110)

we can use Eq. (9.104) to reexpress the energy-loss rate as

dEb

dx
= —2vrEoh (1 —Q )

1 —x, "Eo g, (v, g —hx )x "~0

(1 —x)

~bhE

(1 —x)
(9.111)

The explicit x dependence of the gravitational energy-loss term can be found with the aid of Eqs. (9.103), (9.106), and
(E21):

2
g, (v, g —hx) =

5(y+1) I go( 1 —x )[2+ilE —(2h Ytg + 'tjg + 1 )x ]+g x [3+'g~ —(2h —t}z + rIE + 1 )x ] I . (9.1 12)
0 0 0 0

(We note that for detonations the factor —,
' should be replaced by —,'.) The value of g, is then obtained by integrating Eq.

(9.111}and requiring Eb(x = 1)=0. The integral in the gravitational term is

+1
, g, (v, q —hx)x

(1—x)

4( 1 —h)I (2+ g~ )I ( —gb )(2+gE }
[—IE(o+ ( 3+ )E, 4 e ]

5 y+1 I 4+gE rIE— (9.113)

where I denotes the gamma function.
As an example, consider the simple case in which the.

only energy losses are gravitational (b,E =0). Then
h =—'„since these losses are not important in an empty

universe; gE ——0, since the losses occur on the cosmic
0

time scale r; and go=/sr ——2.026. The integral of Eq.
(9.111)then gives

—64mEO(1 —Qg )I ( re)——g~csT+3c,135(y+1)I (4—gE)

(9.114)

so that

8m/, Qg

9(y+1) rb

IE

(r~rb/Q ), (9.116)

where we have used Eq. (9.66b) for gz. For Q =1, ex-
trapolation back to r=rb gives Eb(x =0)=ED; on the
other hand, for Q~ && 1, extrapolation gives
Eb(x =0)=6.31QsEo, so that the rate of energy loss in
the pre-self-similar stage can difer significantly from that
in the self-similar stage. The onset of the self-similar
stage for Qg «1 can be estimated from Eq. (9.112):
terms of order 1 —x can be neglected, as they were in ob-
taining Eq. (9.116), only if 1 —x =rb/r «Q~, so that the
onset of the self-similar stage occurs at r-rb /Q~.

45(y+1)(3—gE )(2—i)b )(1 riE )( —i)~}-
le = 3'9zksT+ 64 (1 —Q )

(9.115)

X. DETONATlON WAVES (f =A,,)'=y —y;=m
=Po =0)

A. General results

The value of qz is given by Eq. (9.66b). The accuracy of
this method may be gauged by taking the limit Q —+1,
corresponding to the adiabatic blastwaves discussed in

Sec. IX.A. 1. Since gz ~—4(1 —Q )/15 in this case, we

find g, =9(y+ 1)/8m. ; for y =—,', this becomes

g, =3/m =0.955, which is lower than the exact value

(Bertschinger, 1983) by a factor 1.33 (corresponding to
R's being too low by 1.06). This is remarkably accurate
considering that the rate of the gravitational energy
losses, which was used to infer g„goes to zero in this
limit. In the other limit Ag~0, gE —+ —', and we IIind

g, =6.03.
The blastwave energy at late times can be found by in-

tegrating Eq. (9.111) with x =1. For DE=0 and Q=l,
we obtain

Energy can be provided to blastwaves over a period of
time either from the interior, producing a "bubble" (Secs.
VII and IX), or at the shock front. The latter case is
termed a detonation wave. Astrophysical examples in-
clude nuclear explosions in stars (Hoyle and Fowler,
1960), self-propagating star formation (Mueller and Ar-
nett, 1976; Seiden and Gerola, 1979; Cowie and Rybicki,
1982), and self-propagating galaxy formation (Ikeuchi,
1981;Ostriker and Cowie, 1981).

In a detonation, the energy released is generally pro-
portional to the swept-up mass, so that Eb o:M (in this
section we set M =0 so that M, =M). In a self-similar
blastwave, the energy is also proportional to Mu, [Eq.
(3.3)]; hence the shock velocity u, is constant, so that
R oc t and q= 1. Since the thermal energy is also propor-
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—(v —u, ) + C, =—(u —uH) +Ec2 7 2 ] 2 2
2 1 P s (10.2a)

where C] is the isothermal sound speed behind the
shock. Define the parameters u and P by

y —1
(u, —VIt)—:2 ' cc —=Pc

1 —u
(10.2b)

the more general definition of u, allowing for finite pre-
shock temperature, is given in Eq. (E15). Solution of the
jump conditions in the strong shock limit then yields
(Appendix E)

Pi y+I
p —u

(10.3a)

V)=
V

Vs —Vi

=1—(1—v~) p+ 1

»2
y —u

g»2
1

(10.3b)

(10.3c)

For ordinary shocks with s=O we have u ~1 and Eqs.
(10.3) reduce to the standard results. In the case u =0
we see from (10.3c) that the fiow behind the detonation
wave moves at the adiabatic sound speed relative to the
wave. This condition, called the Chapman-Jouguet con-
dition, is shown in Zel'dovich and Kompanyets (1960) to
be the normal. steady state for a detonation wave and ob-
tains, for instance, in the spherically symmetrical self-
similar solution (cf. Landau and Lifschitz, 1959), al-
though only for a limited range of k (Sedov, 1959). We
shall henceforward take u =0 (see Appendix E for a brief
discussion of the general case). Then Eq. (10.2b) implies
that in the frame of the unshocked gas a steady detona-
tion wave will move at a velocity pc:

p [2( ~
2 1 )E ] t /2 (10.4a)

tional to the mass, we have E/R ~ I' ~ M/R ~p,
which implies kE+3=kp =k, Eq. (3.11}then confirms
that g= 1. To summarize, self-similar detonations with
Eb ~ M satisfy the general relations

ri=l, kE=k —3, g~=3 —k, kp ——k . (101}

Detonation waves differ from the blastwaves con-
sidered in previous sections of this paper because the
shock jurnp conditions across the shock are altered by
the energy injection (see Landau and Lifschitz, 1959).
Let cc be the energy per gram released in the detonation
wave, so that the energy jump condition for a strong
shock becomes

B. Stationary media [v„=u=0, k &2y/(@+1)]

Detonation waves in a stationary medium can be self-
similar if the density is distributed like a power law,—k
p=p(1)R ~. In our terminology the requirement that
E =o.Mv, =cMc implies that

u, =(E/o )'i c =const . (10.5)

For a Chapman-Jouguet detonation, u, =pc from Eq.
(10.4a), so that k„=0,

V)1 9

2(}2 1) 32 u,

1 3
y+1 8

(10.6)

where the numerical values are for y =—', . These results,
which are exact and independent of k, can be used with
the virial theorem (modified to take into account the
changed jump conditions) to obtain the properties of
self-similar detonation waves in stationary media without
resorting to approximate treatments such as the linear
velocity approximation. Equations (10.5) and (10.6), to-
gether with the results of Sec. III, then give

3P 3(y —1)
4m' 2m

(10.7)

Kii —— [%20(5—k ) —(3—k )],/+1 (10.8)

which replaces (4.5); note that k =k for nonevapora-
~0

tive blastwaves in a stationary medium. One can show
that the virial theorem for detonation waves is given by
Eq. (3.20}, with vi from Eq. (10.3b):

K&i(4 —k ) K02 32+ 2.'Y+ 1 (y+ 1)' a' (10.9)

Sedov (1959) shows that the Chapman-Jouguet condi-
tion can be satisfied only for k & 2y/(y+ 1). Reference
to Eqs. (B16)—(B18) shows that the edge derivatives,
which are infinite for Chapman-Jouguet detonations,
would change sign at k =2y/(y+ I). For
k &2y/(y+ I), the edge derivatives equal + 00, which
is consistent with a rarefaction just behind the shock
front. However, it is impossible for the edge derivatives
to equal —~, since that occurs in the shock, not behind
it. Hence we restrict our discussion to the case
kz &2y/{@+1), where the Chapman-Jouguet condition
is satisfied.

In order to proceed further, a discussion of the in-
. tegrals is necessary. The general relation among the mo-
ments for nonevaporative blastwaves, Eq. (C9), together
with Eq. (10.6), gives

C
U~ =UH +pc, Vl UH+ (y+1)

(10.4b)
The energy equation (3.19) applies to blastwaves with ar-
bitrary jurnp conditions and implies

(u =0, Chapman-Jouguet conditon). The density jump is
smaller in a detonation wave than in a normal shock,
with (pi/po} equal to ( —', ) rather than (4) in the usual case
of y= —,'.

1 1

2(@+1) . (y —1)ct, &02+ 2 (10.10)

Now, equating the values for o in Eqs. (10.6) and (10.10)
gives
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ig„(3y —5)+E»(4—k )(y+1)=-,'(y+1) . (10.12)

2(y+1)'
A (10.11)(y+ 1)—&02(y —1)

which with the aid of the virial theorem (10.9) allows one
to write

Equations (10.8) and (10.11) give two exact relations
among the three moments Koz, Kzo, and E&1. If we
adopt for the third relation the harmonic mean relation
among the moments [Eq. (C13a)], we can derive a quad-
ratic equation for K» ..

2X„[20y +21y+9—(y+1)(9y+5)k +(y+1) k ]

2(y+1)It„[18(2y+1) (17y+13)k +2(y+ 1)kp]+6(3—kp)(y+1) =0 (10.13)

For the case of greatest interest (y = —', ), we can solve
for X» and Kzo without using the approximate equation
(10.13). We find the exact results,

(10.14a)

4(4—k )E20 —3 80
(10.15a)

3 3
+11 2(4 —k ) 8

105—56k + 8k 105
8(4—k )(5—k ) 160

where the numerical values are for k =0. The harmonicP
mean relation (C13a) then yields the approximate values

there is a density gradient (k ); the relative thermal ener-

gy o.' is weakly dependent on k and y and always close
to the value 2(y+1). Our relatively simple analytical
treatment can be used for arbitrary other values of
(kz, y ) for which numerical solutions do not exist.

C. Hubble floor

The solutions for cosmological detonations are clearly
not self-similar in general, but their features can be ob-
tained immediately from Eq. (10.4b). Bertschinger
(1985b) and Kazhdan (1986) have analyzed (with slightly
different results) the 0= 1 case. Here we follow the ana-
lytic treatment in McKee and Ostriker (1987). Essential-
ly, the Chapman-Jouguet condition requires that

2(y+1)

1— y —1 3&zo

y+1 4(4 k )IC20 3

5120
— =5.71,

897

(10.15b)

dR,
=h +pc, (10.16a)

where the cosmological parameter h is defined by Eqs.
(9.1)—(9.5) and r is the cosmic time. For detonations that
begin at r =rb, the general solution for (10.16a) is

with Kzo given by Eq. (10.14b). The accuracy of the har-
monic mean relation in this case is not known, but a
rigorous lower bound on Ko2 is provided by Eq. (C12),
Koz & —,'4. The values of I and I„, the power laws for the
density and velocity, are obtained from Eq. (4.22a) and
(4.22b) as 0.818 and 5.36, respectively, for k =0. The
large value of I, is characteristic of detonations: the ex-
act solution has U =0 inside a critical radius and
du /dr ~ 00 as r ~R, (Landau and Lifschitz, 1959).

It is interesting and somewhat surprising that the rela-
tive kinetic energy o is determined without need for nu-
merical integration and independent of whether or not

I

R, =Pc~" I'~' —"dr',
b

(10.16b)

which is trivially integrated for the cosmologically in-

teresting cases of Ii =(1,—,
'

) to give

ln(r/rb )
R, (~)=pcs ~

3[1—(~b /v )' ],
0,0= (10.17)

It is interesting to express the result as the present radius
of a detonation that propagated from z =zb to z =z1 and
that thereafter satisfied the equation R, = —h (1
—h)R, & . We find

1+z~ z]
ln +

1 +Z1 1 +z1
1/2

1 +Zg

1+z1

R, (z =0)=P
Ho

3
' 1

(1+z, )

0,
for Q= ', (10.18)

The numerical coefficient in Eq. (10.18) is 57 Mpc for
y= —,', c.=10, and &0=100 km/s/Mpc. The corre-
sponding masses are of the order of 10' QMo. This
treatment supersedes the more approximate calculation
in Ostriker and Cowie (1981)but confirms the conclusion

presented there that detonations propagating over
cosmological epochs can process volumes corresponding
to spheres of radius -50 Mpc for explosions of efBciency
c.=10-4
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D. Self-similar detonations in a Hubble flow (Q=Qg =1)

As in the case of cosmological blastwaves, solutions
will become self-similar only in the limit that the age of
the wave t approaches the age of the universe ~. We will
assume that is the case. The results of Sec. IX show that
the requirement of self-similarity can only be satisfied for
the just closed (with Qg =Q = 1) universe [see Eq.
(10.17)]. In this case the total energy of the How is the
same as the detonation energy [see Eq. (9.10)]. The ener-

gy in the blastwave Eb ——Mac o:poR, o: r + ". How-

ever, by definition EI, ~ r . Equating these expressions
and using the relation among (g, gz, lt) given by Eq.
(9.13) gives us the simple result

(2y+3) 10' = K02 +
18(y+ 1) (y —1)ct

and since we know o from Eq. (10.21) we obtain

18(y+ 1)

1—(2y+3)'
(y+1) (y —1)%02+4(yi —1)w

Inserting this result into the virial theorem (10.23) pro-
vides a second relation among the moments,

12(y+ 1)(2y+3)E'„—(5—3y)(2y+3) IC02

—4(y+1) (3y —4)w —3(y+1)(4y+5)=0 .

(10.26)

rl=rj~ = I, k@ ———1 (Qg ——Q= 1) . (10.19)

Since v, is constant, it follows from Eqs. (10.4a) and
(10.4b) that vi and vs must be constant as well, and,
since v, /vIt ——rl/It, we find v, =(—,

'
)vent, which leads to the

simple exact results

V~ =3pc, VH =2pc, AV =V~ /3 =VH/2 (10.20a)

2 +3
pc ~—", pc,/+1

2p +3 $9
Vi =Vi /Vq —„pc,37+3

(10.20b)

where the numerical values are for y = —', . The R, (t) rela-
tion is given by Eq. (10.17): R, (r)=3Pcr. The dimen-
sionless constants o and g' are also obtained exactly:

EC
2

S

1 1

18(y —1)
(10.21a)

giving

27(y —1)
2' (10.21b)

To obtain information about the other integral properties
we must proceed as we did in Sec. X.A.

First, we note the general kinematic result for non-
evaporative self-similar Aows given by Eq. (C9). For
cosmological detonation waves we use (10.20b) for v& and
set k =0, obtaining

lO

3(y+ 1)(3K20—1)
2(2y+3)

(10.22)

Next, we use the virial theorem (3.20), which in this con-
text becomes

3 2(2y+ 3) 2 (2y+3)' ~3(y+1) 3 9(y+ 1)'

(10.23)

Equations (10.22) and (10.26) give two exact relations
among the three moments K20, K», and K02. To
proceed further we introduce the hal'monic mean approx-
imation, as before, and Eq. (C13a) becomes the third rela-
tion among the moments. The gravitational factor
w =w» is given by Eq. (A28); using Eq. (4.22a) to elimi-
nate I in favor of K2&, we find

~K2O
l8 =

Kzo —1
(10.27)

E )) =0.5434 K2o =0.6201 te =0.5904

Ko2 ——0 4836 u

I =0.2648, I, =1.743 .

(10.28)

In comparison with these results, those of Bertschinger
(1985b) are w =0.552, EC02 ——0.452, and u =124.6.
About half the energy is in thermal form [cf. Eq. (3.18)].
The cosmological expansion has reduced I, considerably
below the value for a detonation in a stationary medium,
which is quoted below Eq. (10.15b).

As in all detonations, the temperature is independent
of time. From Eqs. (3.23) and (10.5) we have

P
Po

4m ace
3 2

(10.29)

Substituting Eqs. (10.22), (10.27), and (C13a) into Eq.
(10.26) yields a cubic equation for ECzo, which completes
the solution. That equation, which is general but not
particularly illuminating, will not be presented, but we
shall pass on to the most important special case.

As in Sec. X.A above, the problem simplifies consider-
ably for y =—,', since the coef5cient of Eoz in Eq. (10.26)
vanishes in this case, so Eqs. (10.22), (10.26), and (10.27)
determine K», K2&, and w. The remaining quantities of
interest can then be found with the aid of the harmonic
mean relation [Eq. (C13a)] and (10.27). The results are as
follows.

For Q =Q=l (y= —', ):

with the aid of Eqs. (9.9) and (10.20b). The energy equa-
tion (3.19) yields

Defining the mean temperature as P jpo ——P fp:—kT/p,
we find with (10.21b)
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=18«(y —1)/a =(0.36,0.23)ec
p

(10.30)

for (Qg =0, 1) and y = —,'. Adopting parameters appropri-
ate for the intergalactic medium (a= 10,p, = 10
g), we compute temperatures of approximately 10 K.
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is the intercloud gas, and the remaining components
could be clouds, stars„dark rnatter, a central mass, etc.
The assumption that its interaction is purely gravitation-
al rules out cloud crushing (so that the cloud filling factor
f is constant), cloud drag (A,, '=0), and cloud evapora-
tion (m =0). Since f is constant, we shall ignore it here,
but it can be recovered by replacing the volume element
dVby (1 f)dV-.

Let E be the total energy of the intercloud gas. It is
comprised of three terms: the kinetic energy Ez, the
thermal energy E,h, and the gravitational energy 8'.

( —,'pu +u)+
2

r v( —,'pv +u+P)
Bt ' I2 BI"

nA—+E;„5(V)+pug,

where u is the internal energy density; —n A is the radi-
ative coo1ing rate per unit volume, which in general is a
function of both n and T and will be positive if the radia-
tion heats the gas; E;„5(V) is the rate of central energy
injection; and g is the gravitational acceleration due to all
the matter, not just the gas. The sum of the kinetic and
thermal energies inside a sphere of radius R, (t) and
volume V, (t) is

V

Ex+E,h
——I ( —,'pu +u)dV . (A3)

With the aid of Eq. (A2), we can show that the rate of
change of (Ex-+E,„}is

(A 1)

Operationally, we seek a definition for 8 such that
dE/dt has a clear significance in terms of energy gains
and losses from the intercloud gas.

The di6'erential form of energy conservation is

dt (Er+Elh)=4&R~ [( gplv 1 +Q 1 )vs —( spiv 1 +01 +Pl )Ul ]—Erad+Ein+ pVg dV,
0

(A4)

with E„d is the radiation energy emitted by the gas and
V

E„d——J n AdV. (A

The shock jump conditions (El)-(E3) imply that the
term in brackets on the right-hand side of Eq. (A4) is

(~povH+"o+po«)(us UH) UHIo .

If Ed„ is the energy released by a detonation, then the
rate of change of Ed„ is

Ed« 4m.R, poEc (u,———VH)

and Eq. (A4) becomes

GM'dM
(Agb)

Observe that the sum of these two energies is just the
gravitational virial term introduced in Eq. (2.12):

Now consider the gravitational term. Let M, (r) be the
total mass inside r and M'(r} =M, (r) M(r) be the mass-
of the nongaseous components. The self-energy of the
gas is

GM dM

and the interaction energy of the gas in the field of the
other components is

«x+«. ) = 4~R,'l( lPovH+~o)(v. UH ) I'ovH ~— —

+Ed„E«z+ I ug dM .— (A7) (A9)
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Let p' and U' be the mean density and velocity of the
nongaseous components, and let g' be the acceleration
due to M'. Using the equation of continuity and the
jump condition (El), one finds

W;„,= —4mR, po(v, —vH )

—G f 4nrp. '(v —v') —f vg'dM . (A10)

The rate of change of W„&f can then be obtained by, re-
placing (p', v', g') by (p, v, g). Summing the rates of
change of 8';„t and 8'„&f then yields

GM, dhW= —4m.R po(v —viz ) — —— vg dM,R dt

(A 1 1)

term proportional to v, —v~), the work done by the gas
inside R, on that outside ( ~ vHI'0), the energy gains due
to injection at the origin or to a detonation, and the
losses due to radiation and gravitational transfer to the
other components. Note that an energy conservation re-
lation identical to that in Eq. (A16) can be written for the
other components, but with all quantities primed. In
particular, W „t is the energy of the other components in
the field of the gas. When the two relations are summed,
one obtains the energy conservation for the entire sys-
tem, with E, =E +E'=E&, +E,h, + S", and 8,
=I GM, dM, /r the total gravitational energy of the sys-
tem.

Equation (A16) is the basic statement of energy conser-
vation for a spherically symmetric, multicomponent
Auid, and it demonstrates that in this case the gravita-
tional virial term 8'can be interpreted as the gravitation-
al energy of the gas.

where

d6 W
G 4 2 g( P)

dM
(A12)

d ~ G
aM' BM (v —v')d
Br Br r

(A13)

which demonstrates that

is the rate at which gravitational energy is transferred
from the gas to the other components. To gain further
insight into the gravitational energy transfer AH, we
rewrite Eq. (A12) as

2. Energy conservation for a blastwave

If we now apply the energy conservation relation (A16)
to a blastwave, it is convenient to distinguish the energy
due to the blastwave Eb, from that which would have
been present in the absence of the blastwave E, . Assume
that E„d vanishes in the absence of the blastwave. Then,
since the shock jump conditions apply even in the ab-
sence of a shock, Eq. (A16) applies to any spherically
symmetric volume of radius R, (t), whether or not a
shock is present, and we have

6W= —68"; dE,
=4mB,

dt
GM,

2~pova+ "o po R
(" vss) vHI 0—

S

68' =4m', p'EU
d 2, GM
dt

(A15)

the gas's loss is the other components' gain. For the par-
ticular case in which the gas is concentrated in a thin
spherical shell, moving at a velocity hv =(v v') rel—ative
to the other components, the rate of gravitational energy
transfer is just

(A17)
for the rate of change of the energy of an equivalent
volume of ambient Inedium. The energy E, itself is given
by Eqs. (Al), (A3), and (A9) evaluated in the absence of
the blastwave; for example, for the cosmological case we
have Qv~/2=GM, /R and

Thus, as the shell expands past a mass
dM'=4m', p'Au dt, that Inass is no longer in the field of
the shell and has its gravitational energy increased by
GM dM'/R, . This increase in energy results in an ac-
celeration of the mass dM'.

With the gravitational contribution to the energy
determined, we can obtain a clear statement of energy
conservation by inserting Eqs. (Al) and (All) into (A7):

E, = —,', Mv~(1 —A)+E,h, .

The blastwave energy Eb is defined as

When Eq. (A17) is inserted into (A16), we obtain

dhW
dt dt

(A18)

(A19)

(A20)

dE
dt

GM,
ovH+iio ~0 R

(v ~H ) vHI 0
S

which may be immediately integrated to give

Eb E0 +Ein +Edet Erad (A21)

~ dhW+E,„+E„,—E...— (A16)

Thus the energy of the intercloud gas inside R, changes
due to the energy content of the swept-up matter (the

The blastwave energy is the sum of the initial energy of
the explosion E0 and the energy added by central injec-
tion E;„and detonation Ed„minus the losses due to radi-
ation E„d and gravitational transfer to other components
AW.
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3. Evaluation of the gravitational terms

&, GM, (r)dM, (r)
0

(A23)

where the total mass is

Let M, (r) be the mass of component i inside r:
M, (r)—denoted above and in the text as M(r) —is the
mass of intercloud gas, 'M2(r) is the mass interior to r of
nongaseous distributed material which interacts only
gravitationally with the intercloud gas (drag-free clouds,
stars, neutrinos, etc.), and M3 is the mass of any central
object. In the virial theorem, the effects of gravity enter
through the term [cf. Eq. (2.12)]

R
W= f pgr(1 f)dV- (A22)

tive to the details of the internal density distribution. In
the limit l ~~ we recover the thin-shell approximation
discussed in Appendix 0: w» ———,

' a d w2, ——w3, = o
that

GMi(R, )8'= ——
2 R, M (R )

(l ~oo), (A29)

where M'=M2(R, )+M3.
The second approximation is a variant of the shell ap-

proximation in which the density rather than the velocity
is assumed independent of position behind the shock; this
is equivalent to the shell approximation to first order in
the shell thickness, which is adequate for our purpose. If
we assume the intercloud density is constant in the region
(1—5)R, &r &R, and zero inside (1—5)R„we find for
k =0,

3

M, (r)= g M;(r) . (A24)

M;(R, )M (R, ) &&, M;(v)dM (r)-
~o r

(A25)

so that

%'e now introduce the dimensionless coeScients w, -:

W)) = 1 —55/3+5 —5 /5
2( 1 —5+5 /3)

1 —25+25 —5 +5 /5 5
1 —5+5 /3

35 (1—55/3+5 —5 /5)
1 —5+5 /3

(A30)

GM, (R, )

g w, ,M;(R, ) .
S i=1

(A26)
1 —5/2

w3, = ~1+5/2,
1 —5+5 /3

To evaluate these coefficients we assume that the density
of the distributed nonintercloud material is proportional
to the preexplosion intercloud density, p2 ~ r '. This
suKces to determine all the coefficients except w» in
terms of the moments defined in Eq. (2.9):

where the results for a thin shell (small 5) have also been
indicated.

In the text we have considered gravitational effects
only in the context of cosmology (Sec. IX). The mass is
parametrized in terms of the density parameter 0; and
the Hubble velocity v~,

W2i =&2—k, o ~

~o
GM, (R, ) =—Q vH

S

(A31)

wi2=
3—k

+2—k, o )
2 —k ~o

Pp

(A27) Then if we write the gravitational integral in terms of the
dimensionless quantity w,

W3I =K i o~ W I3 =w23 =0 W—:——,
' w QM, (R, )uH, (A32)

We have considered two separate approximations to
evaluate w» and the other coe%cients. The first is a

I
power law for the intercloud density, p& ~r ~. Equation
(4.20) for E„in this case th'en implies

3 —k

5+2l ' ' 5+l —k

we find

0) Q2
w =wi) +w2i (A33)

where we have set M3 ——0.
In certain cases [see Appendix D, Eq. (D8)] a diff'erent

integral is required. If w' is defined by

3 —k-= 5+l -'k -= 5-2k
P Po Po

3 —k
"=2 I ' "=2—k

P Pp

(A28)
then

with

f g dM—:—
—,'w'QM, (R, )uH/R, ,

0) Q2
w =w iI +w2i

(A34)

(A35)

Since these coefFicients are relatively weak functions of
l, we conclude that the gravitational term 8' is insensi- w'„= —,'(1+—', 5), w2, =(1——,'5) (A36)
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APPENDIX 8: INTERNAL STRUCTURE
OF SELF-SlMlLAR, ADIABATIC BLASTWAVES

(Aci =f0 —f(=y yl—=m =0)

1. General results

The assumption of self-similarity reduces the spherical-
ly symmetric hydrodynamic equations to a set of three
ordinary difterential equations. Any hydrodynamic vari-
able x can be expressed

vu* =p'(1 —v)+k —2v,

gp + QvHg
(1—v)u' = + —,'(k —kp)+ zvz'

(86)

(87)

(k„+x') .
t

Define v—:u/u& to be the quid velocity normalized to
the velocity of the self-similar coordinates U~ =—A,v, . Then
the mass [Eq. (2.1)], momentum [Eq. (2.2)], and entropy
[d (I'/pr ) /dt .=0] equations yield

x =x&(t)X(A,),
where

(81)
(1—v)P* =y(1 —v)p'+yk —k„,

where

(88)

A, =—r/R, , (82)

x
&
(t) is the post-shock value, and x (1)= 1. The logarith-

mic derivative of x is denoted

kT C'
2 2 2'-p, p" (89)

8 lnx d lnxx*=—
8 lnr d ink,

(83)

may be viewed as a norxnalized temperature or as an in-
verse Mach number squared. We have written the gravi-
tational acceleration as

Bx t/XX

Br A, u, t (84)

—k„—r]k„Since x&(t) &xR, "cct ", the partial derivatives of x
are

g =g, (t)g(&)=—
GM, ,

g(A, )=-
S

QU~
g(A, ),

S

(810)

and set vH
—=uH/u, .

Solution of Eqs. (86)—(88) gives the logarithmic
derivatives at an arbitrary point in the Aow:

(812)

28(kp —2yv)+(1 —v)[v(kp —k ) —QvHgk, ]
U (811)

2v[y8 —(1—v) ]
28(kp ykp)/(1 —v—) —(3v—2)k + vkp —4v(1 —v) —Qv~~gl,

2[y8 —(1—v)']
—yvk + [yv+2(1 —v)]kp —4yv( I —v) —yQvHgi,I'*= (813)

2[y8 —(1—v) ]
These equations apply to any self-similar, spherically symmetric fIow in which the entropy per unit mass is conserved.
No assumption has been made about the external velocity UH, density po, or pressure I'0, other than that they be con-
sistent with self-similarity. Bubbles (Sec. VII) and detonations (Sec. X) are both included.

In the absence of gravity (Q=O), these equations can be reduced to a single equation in terms of v and 8 by noting
that u'=1+v* and 8 =I' —p* —2. For the case in which the energy is conserved (kz ——0, so that kp ——kE+3=3),
Sedov (1959)has given an explicit analytic solution with gatv as the independent variable.

2. Edge derivatives x,' for strong shocks (Po ——0)

The values of the derivatives at the edge of the blastwave

(814)

are necessary for analytic approximations to the internal structure as well as to provide starting points for numerical in-
tegrations. For strong shocks, Eqs. (E12) and (E13) imply

8)=(X)—1)(1—v))' . (815)

Then, setting A, = 1 and g(1)= 1, we find that Eqs. (811)—813) yield

—vikp+ [2Xi(1—vi)+ 3vi —2]kp —4yvi(1 —vi)(Xi —1)—QvH
pfc

2v, (1—v, )[y(X)—1)—1] (816)
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I

—[2y(Xi —1)(1—vi )+3vi —2]k + [2X,(1—v, ) +3v, —2]kp —4v, (1—v, ) —Qv~
P&=

2(1—vi )'[y(Xi —1)—1]
—yvik~+[yv, +2(l —v, )]k~ —4yv, (1—v, ) —yQv~

2(1—vi) [y(Xi —1)—1]

(817)

(818)

We now consider several special cases. For blastwaves in stationary media (uH =0) with no energy injection at the
shock (i.e., not detonations), the jump conditions (E22) yield v, =2/(y+ 1) and X,=(y+1)/(y —1). Since ki, =kE+3,
Eqs. (816)—818) simplify to

(3k' k—)(y + 1)+y +9

2(y+1)
[3k~ —(y+2)k ](y+1)+5y+13

Pi=

(819)

(820)

[(2y —1)k~ y—k ](y+ 1)+2y'+ 7y —3
p+

y —1
(uH =0, e=0) . ' (821)

If we further specialize to the case of no central energy injection and no radiative losses (kE ——0), then Eq. (819) shows
that u', = 1 for. k =(7—y )/(y+ 1). As shown by Sedov (1959), the LVA is satisfied exactly at this point (and not mere-

ly at the edge), and for steeper density gradients (larger k ) a vacuum develops at the center. For u*, SO the central
vacuum is large and the shell approximation (Appendix C.4) is better than the LVA.

For cosmological blastwaves (Sec. IX) we distinguish the low- and high-density cases: for Q=O, we have
k = 15/( 5+ rlF ) and kp

——3 q~ /g =—( 15—2q~ ) /( 5+qE ), so that

2g, (7y+ 3)+25(y' —1)
V] (822)

(y+ l)[2gE+5(y+1)]
which is always negative: the gas piles up just behind the shock. For 0=1, we have k =10/(4+gE) and

kp ——2( 6—qE ) /(4+ g@ ), so that

9vgs (7y+ 3)+3gE(25y + 13y —28 )+2(25y —y —34)

(y+ 1)(2+3/E )(3g/+5y+7)
(823)

This is also negative, provided qE &0 and y ~ 1.19. In
both cases the shell approximation is appropriate.

Finally, for Chapman-Jouguet detonations, the
compression is Xi ——(y+1)/y, so that the denominators
in Eqs. (816)—(818) all vanish; the slopes of p, u, and P
diverge at the shock (Zel'dovich and Kompanyets, 1960),
and this remains true for an expanding medium.

3. Central derivatives (no central
energy injection: L,„=O)

%e now evaluate the derivatives at the origin for filled

blastwaves, and at the inner edge of the mass distribution
for hollow blastwaves. First consider filled blastiuaues,

which have p~0 for A. ~O; in addition we assume a
nonzero central pressure, P(0) ~0. This rules out bub-

bles, which have central energy injection, but not
blastwaves with energy gains or losses at the periphery.
Since the pressure gradient must be finite at the origin, it
follows that

kp
v(0)=

y[2+u'(0)]
(825)

v(0) =
3p

(826)

Note from Sec. X that the condition k~ =0 is satisfied by
a detonation in a constant-density medium: the gas near
the origin of such a detonation is stationary. The nor-
malized velocity implied by Eqs. (826) and (E22) is

u = A v/v, :A, ( y+ 1)(3+k@ ) /6y

for vH=O. The density gradient at the origin is then
readily found from Eq. (88),

This quantity is finite because the possibility that
u*(0)= —2 is ruled out by the requirement that u (0) be
finite. Since v ~ kv, we have v =1+v, a generalization
of the argument leading to (824) then implies either that
v(0) ~ kp&0, v'(0) =0, and u*(0)=1, or that
v(0) ~ k~ =0. In either case, we conclude that

P'(0) =
P(0)

dI'

s=o
(824) (828)

3(kp —yk ) 3(3+k~ —ykp)p*(0)=
3y kp 3(y —1) —kE—

Elinunating p' between Eqs. (86) and (88) then yields For kz ——0, these results reduce to the results obtained by
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pt:—(1—v)p', P =(1—v)P* . (829)

Sedov (1959), v (0)=1,v(0)=1/y, v~(y+1)A, /2y, and
p"(0)=(3—ykp)l(y —1).

Next, consider hollow blastwaves. As before, we as-
sume no central energy injection, so that there is a vacu-
um for k~k,-. For cosmological blastwaves, we assume
that all the matter is gaseous ( Q =Qs ), so that again
there is no matter inside A,;. Since A,; is a constant, it fol-
lows that the velocity at A, is A,;U„whence
v, =v, /A, v, =1. Reference to the entropy equation (88)
then indicates that p* and/or P' must diverge at 1,; in
order for the equation to be satisfied there. Vfe define

l„; = —x,t/v, "

so that

2(3+kE ) —(y+ 1)kp
k +3y —2(3+k~)

y(3+kE —k )

k + 3y —2(3+kx )

from (834), (835), and (840).
1

4. Integrals {N;„=0}

(841)

(842)

(843)

Now, Eq. (852) below shows that as A, ~A, , from above
(so that the enclosed mass fraction M„,~0), the normal-
ized temperature becomes

(y —l)(l —v)v
2(yv —1)

(830)

vU =p +k —2v,

(1—v)v*= + —,'(k —k~),(y —1)vP
2(yv —1)

P =yp +yk —kp .

Solving these equations at A, =A,;, where v= 1, yields

(831)

(832)

(833)

Then the self-similar hydrodynamic equations (86)—(88)
become in this limit

The conservation laws for mass, energy, and entropy
yield exact integrals for self-similar flow (Sedov, 1959).
The mass inside a radius r is

M(r)=MM(A, )=(1 f) f 4m—.r pdr .
0

(844)

(845)

Then assuming no mass injection inside the blast wave
(m =M;„=0),we have

(Note the convention that M without an argument is the
total gas mass inside the blastwave. ) For a self-similar
blastwave, M(A, ) is independent of time for fixed A, , and
hence

r

M(A, ) = 4mr p(r)Av, + f 4mr dr (1 f) . —
dt 0 Bt

P,~=3+kE —k

6+ 2kE —(y+1)k
p

6+2kE —k —2y

(834)

(835)

(836)

dM 2=4vrR, po(1 —f)(v, —v~) . (846)

In combination with the continuity equation (2.1) and the
jump condition (2.3), this gives

x ~(A, —A,;)"' (837)

For kz ——0 these expressions agree with results obtained
from the exact solution (Sedov, 1959).

In order to interpret p and P, consider a hydro-
dynamic variable x with the asymptotic behavior

(1—vi) M(X)
(1—v)

which is an exact relation for the normalized density
p(A, ).

Next consider the energy integral. Let

as A. ~A,;, so that 1 GM (r)pE*(r)=—,'pv + P—
y —1

(848)

In particular, we have

(838) be the energy density of the gas at r, where we assume all
the matter is gaseous (Q=Q ); e* is not to be confused
with E, the energy release in a detonation (Sec. X). The
energy inside r is then

(1—v)*=— (839) &(r)=EE(&)=(1 f) f e*(r)4mr dr . — (849)

However,

v,'. =v;*—1=—(k +3y 6 2k+)/y— —
Allowing for energy injection at the origin, we have for
the equation of energy conservation

is a finite, nonzero constant, which is consistent with Eq.
(839) only if (1—v) cc(A, —A,;), so that li, ,i, ——1. Com-
bining Eqs. (838) and (839) then yields

+ r v(e*+P)=L;„5 r (1 f)—
where 5(x) is the Dirac 5 function. Now note that

(850)
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(851a)E=rlEE/t, L;„=rI;„E;„/t,
GM(r) = ,'Q—RultM(A),,

E =rrMu, =4rropa(1 f)R—, u, /(3 —k ) .

s=s)M ',
(851b) where

(851c) yk —3—kE

3—k

Because ~/s, =I'/p r, Eq. (854) can be rewritten as

The requirement of self-similarity is that E(A, ) be con-
stant for fixed A, . Following a procedure analogous to
that which led to Eq. (847), we use Eqs. (848)—(851) to
find an exact relation for the normalized temperature:

(855)

(856)

Av~M8= —
—,'(1—v)

pv —1

O 7/E+ 5(3—k )gX)pk
(852)

which is exact for self-similar, adiabatic blastwaves.

APPENDIX C: KINEMATIC RELATIONS
AMONG THE MOMENTS

similar result has been given by Sedov (1959);
Q=O, by Gaffet (1981); and for gz ——0, by Bertschinger
(1983). In the absence of gravity and for constant energy
(gz ——0), this result reduces to Eq. (830).

Finally, consider the entropy. The quantity

(853)

1. General relations between K, 0 and K„
for self-similar blastwaves

In terms of the moment K „deftned in Eq. (2.9),
fm ' n

r i U dM
R, U, M

(Cl)

is a function of the entropy per unit mass and is constant
in comoving coordinates since the blastwave is adiabatic;
hence we have s =s (M ). Since I', p, and M are all power
laws in E.„it follows that

R
K 0MB"= 4mr" +

P 1 — dP .

Taking the time derivative of both sides gives

(C2)

R

K„o[M,„R,"+4rrR, +"po(1 fo)(u, —u~)+—nMR," 'u, ]=j 4vrr" + —[p(1 f)]dr +4mR, —+"p&(1 f)u, , —
0 dt

(C3)

since K„0 is constant for self-similar blastwaves. The right-hand side can be simplified by using the equation of con-
tinuity (2.1), the jump condition (2.3), and the moment

'n

(C4)

which depends on the internal structure of the blastwave. Then the right-hand side of Eq. (C3) becomes

K„'"OR,"M,„+4rrR,"+ po(1 fo)(u, —uH )+nK„—&,MR," 'u& . (C5)

The mass in the blastwave M is comprised of the swept-up ambient gas M, and the evaporated mass M„. More gen-
erally, M„can be due to any mass exchange with the clouds and may be positive or negative. One can readily show
that [Eq. (3.27)]

4~ 3

)o

and for evaporation-dominated blastwaves

M-„R,
(3—k )

(C7)
p s

In general we write u, =v, u, and uH
—=vHu, (Sec. III). Inserting Eqs. (C4) —(C6) into Eq. (C2) then gives the general ki-

nematic result

M, M„
(3 —k )(1—vH) +(3—k )K„'"o +nK„) )v)

M„
(3—k )(1—v~) +(3—k ) — +n
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a. Nonevaporative biastwaves (M,„=O, M, =M)

We find

(3—k )(1 vH—)+nK„, ,v,

(3—kp )(1—v~)+n (C9)

For a strong shock in a stationary ambient medium
(v~ =0), this reduces to Eq. (4.5) in the absence of energy
injection at the shock [Eq. (E27), vi ——2/(y+1)], and to
Eq. (10.9) for a Chapman-Jouguet detonation [Eq. (E26),
vi ——1/(y+ 1)].

b. Evaporative biastwaves in a stationary medium (v„=0)

We require k =k for self-similarity (Chieze and La-P Pp

zareff, 1981). The general result is given by Eq. (C8).
Focusing on the case in which the evaporation is dom-
inant (M, =0, M =M,„)and there is no energy injection
at the shock, we obtain

(3 kp )K„'"0+—2nK„ i, /(y+ 1) .E.0=
3—k +n (C10)

Our derivation of the virial theorem allows for either a
nonstationary ambient medium or evaporation, but not
both, since we assumed the clouds to be stationary.
Hence we can simplify this result for the relevant cases of
(i) nonevaporative blastwaves and (ii) evaporative
blastwaves in a stationary ambient medium.

E11

(C13b)

3. Moments for evaporative biastwaves (kE =0, v„=O)

For evaporative blastwgves, the kinematic relation
among the moments (C10) depends on the evaporative
moment K„'"0. We assume that inside the blastwave we

l~ —k, f{~ a
have T(r)ccr, p(r)ccr ~, and co,irn ~r ~T' p ~,

which is consistent with Eq. (5.15), so that
' —1

relation is satisfied to a remarkable degree for Sedov
blastwaves: for the cases given, the agreement with the
approximation is better than 0.1% except for the case
k =2.8 in Table II, where the agreement drops to 1%.
Furthermore, the one-power approximation (OPA) for
the density and velocity (see Sec. IX.B.2) satisfies this re-
lation exactly.

The geometric mean approximation K» ——EzoKpz is
almost as accurate as the harmonic mean approximation
(C13a); in fact, K» is between the geometric and har-
monic means in 5 of the 6 cases listed in Tables I and II.
Together with the kinematic moment relation derived
above, the geometric mean approximation can be used to
determine the deviations from the LVA (Kzo
=K» —Ko2) and the K approximation (K» Koz). F——or
the particular case of nonevaporative blastwaves in a sta-
tionary medium, the geometric mean approximation and
the moment relation (C9) imply

3 —k 4+ (GMA, vH =0) .
&Oz y+1

2. The harmonic mean and geometric
mean approximations

K,o= 1+
3 —kg+I' Tlr+a I

(C14)

From the definition of the moments E „,it is apparent
that K» is in some sense intermediate between Ezo and
Epz ~ The moments may be regarded as the scalar prod-
uct of (r/R, ) and (U/U, )" with a weighting factor, to
which one can apply the Schwarz inequality and obtain

[(5—k )(y+1)—4]Kqo ——(3—k )(y+1)Kio . (C15)

In addition, l is given in terms of K20 by Eq. (4.22).
Adopting the linear velocity approximation, we have
K20 ——K», so that Eq. (C10) reduces to

2
Kmn + Kzm, OKO, zn

In particular, for m =n = 1 we have

K 11 +K20Epz
2

(C 1 1)

(C12)

Equation (4.3) for a, derived froin the virial theorem and
energy equation, remains valid for evaporative
blastwaves. The I.VA simplifies this equation to

3(y+1)'
(5 —k )(y+1)—4 K2O

1 1 1 1+
E11 2 Kzo Epz

(C13a)

The numencal results in Tables I and II show that this

Thus E» is no greater than the geometric mean of Kzp
and Kpz ~ Since Ezo and Kpz are both Positive, one can
show that the harmonic mean is also no greater than the
geometric mean (which in turn is no greater than the
arithmetic mean). This crude argument suggests that we
may approximate K]1 as the harmonic mean of Ezp and
Koz:

Solving this equation together with Eq. (5.21) then yields
a relation among I, IT, and Ezo.

r3+I +t
3+l

6(y —1) 1

(5—k )(y+1)—4 K2O
(C17)

0=—«2o) ' —1 (C18)

namely,

Combining Eqs. (4.22), (C14), (C15), and (C17), we find a
quadratic equation for
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where

W =,'(3 —k~ —3~, )[(5—k, )(y+1)—4]+«T(y —1),
8= (3—k&)(y —1)+4—(&—k, )(y+1)

[3(y —3)+k (y+1)]+ [6—(y+1)k ]
(C20)

C—:—2(y —1) .

it is possible to develop an equation for the evolution of a
blastwave directly from the equation of motion. &e be-
gin with the equation of motion for an element of inter-
cloud fluid of mass 5M =p(1 —f)5 V (Cowie et a/. , 1981):

d
5 ( f) BP5 v 5M sgn(v)

dt BI'

where we have assumed spherical symmetry and station-
ary clouds; a gravitational term has been added. Let

The moment %20 is then given by Eq. (C15). Applica-
tions of this result are given in Sec. V.B. 'P(R) = f v dM, (D2)

4. The shell approximation

In a variety of circumstances the velocity interior to
the shock is constant or increases inwards (cosmological
explosions, radiative cooling, propagation into a steeply
declining density) and a vacuum develops in the interior.
As discussed in Sec. IV.C, the moments may be approxi-
mated in this case by assuming v (r ) =v, =const:

with, of course, Eo ——1. The general kinematic relation
(C8) (neglecting evaporation and detonations, which are
important only if shells do not form) becomes a recursion
relation. For a stationary ambient medium, this relation
yields Eq. (4.44); in the cosmological case, it gives

3(1—h/II)+ —[2+(y —1)h /I)]K„/+1
3(1—h/I))+n

(cosmology, M,„=O), (C22)

be the momentum per steradian of the intercloud gas in-
side R. Summing Eq. (Dl) over all the mass elements in-
side a radius R0 that is comoving with the external local
gas gives

4~ %(R,)= —f (1—f) dV
dt 0 Br

f v dM+ f gdM+M;„v;„,
cl

(D3)

where we set A,,&

——const and sgn(v) = 1. The last term al-
lows for injection of momentum at the origin; M;„ is the
mass injection rate and v;„ the injection velocity (see Sec.
VII). If we choose Ro to be just outside the shock radius
R„we can derive from (D2) the kinematic relation

(D4)

With the aid of the definitions of the K „ factors in Eq.
(2.9), we obtain

dt ' dt
%(R, ) = %(RO)+pvR, vH(v, —vH )(1 fo) . —

where we have used the cosmological relations
(vH/v, )=(h/I)) and k =0 from Sec. IX. Note that for

y = 1 Eq. (C22) gives all K„=1; i.e., we recover the thin-
shell approximation for radiative (isothermal) blastwaves.

We note in passing that, if all of the matter is restricted
to a homogeneous shell in the region (1—5)R, ~R, then

Let

4'+(R, )=%0,Mv, . (D5)

(D6)

1 —(1—5)"+

1 —(1—5)
(C23)

whlcll differ by a welglltlIlg factol r fl OII1 f; ill Eq.
(2.10), and let

APPENDIX D: EQUATION OF MOTION
AND THE THIN-SHELL APPROXIMATION

r dIEI, ——2
P

~
R, R, (D7)

The virial theorem derived in Sec. II is exact, but the
moments entering into it are unknown. As an alternative

Inserting Eqs. (D4) —(D7) into (D3) and integrating the
pressure term by parts then yields the equation of motion
for the blastwave:

d = 2 EO2MU l
I~OIMvl 4IrR&(1 f')(&p~ ~o)+4IrR pp(v, vH)[(1 f')vH (fo f()vl]

&
+ gdM+M&&v&&

(D8)
This equation is equivalent to the virial theorem, Eq. (2.14).

The pressure moment Ez has been defined so that it is unity if the pressure is uniform inside the blastwave, as is ap-
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proximately true for a filled blastwave in which the mass is concentrated at the edge; this approximation becomes exact
as y —+1. However, for cosmological blastwaves the pressure is nonzero only in a thin shell; in the limit in which the
pressure is a 5 function of position, Eq. (D7) gives Kz ———', .

For self-similar fiow with Po ——I,,&
——M;„=fo f —=0, the equation of motion implies

3L
2

+ QE

7l
vIKOI 3'(1 vH ) Koivi+ ~ +vH

which is similar in form to the virial theorem for self-similar fiows in an expanding, gravitating medium, Eq. (9.17).
Here we have assumed povH/P=vH, since that is true for all the cases considered in the text, and we have used Eq.
(A34) to replace jg dM.

Equation (D9) may be used to evaluate the moment Koi, which determined the total momentum in the blastwave [Eq.
(DS)]. Assuming that vH ——8"=y —y; =m =a=0 in addition to the assumptions stated above Eq. (D9), we apply the
PGA expression for the pressure [Eq. (4.66)] and find

(y+ 1)(3—k —kE ) 9y +20y —5 —(y+ 1)[(3y+1)k —3(y —1)ks ]
(Sy+1)—(y+1)(k, +kE) 7y'+20y —3 —(y+1)[(3y+1)k,—3(y —1)k, ]

(D10a)

For radiative blastwaves (y= 1), this collapses to K~ =1. This result together with Eq. (4.76) for a and the virial
theorem (D9) then yields the PGA result for Koi.

2(y+1)'(3 —k )

(7y —1)(y+3)—(y+1)[(3y+1)k,—3(y —1)kg ]
(D10b)

As expected, this moment also reduces to unity for radiative blastwaves. The PGA result for the moment K,o follows
from the general moment relation (C9).

We now return to the general case and develop the shell approximation, which takes advantage of the fact that, since
most of the mass in a blastwave (except for detonations) is concentrated in a shell near R„ the velocity of the shocked
intercloud gas is approximately constant. In the shell approximation we take v =v „so that Eo& ——EO2 ——1. For simpli-
city, we assume that the cloud compression in this shell is negligible, so that f =fo

——f. The blastwave equation of
motion in the shell approximation is then

Mu i 4m R, ( 1 ——f)[(K~P Po—) +pou~ ( u—, —u~ )] Mu, /—A,,&+ J g dM +M „u;„. (Dl 1)

We consider two special cases, neither of which allows for detonations. First, if the ambient medium is stationary
(u~ ——0) and the shock is strong (u, &&Co ), this equation can be simplified by writing u, =2u, /(y+ 1) and dR, = u, dt:

d 2Mv,
Mu, =2m(y+1) (1 f)(KpP —Po)——

S us y+1 ~c]

(y+ 1)GM 2M' y+ 1 M
uin

(D12)

We have used Eq. (A29) for the gravitational term, which
is a good approximation if the matter is in a thin shell;
here M' is the mass of the matter other than the inter-
cloud gas. If E~ is approximated as unity, then for
f =Po=G =A,t'=M;„=0, this reduces to the approxi-
mation discussed by Zel'dovich and Raizer (1966), which
in turn was based on the expansion developed by Chernyi
(1957).

Second, if the shock is radiative, then the compression
will be large (pi »po), (u, —u

&
) will be small [Eq. (2.3)],

and the e6'ective y at the shock will be close to unity,
y= 1 [see Eq. (E15)]. Such blastwaves satisfy a simple
equation even if the ambient medium is expanding or
contracting (u~&0) or if the shock is not strong. The

dR,
4mB,

(1 f)[«~P Po)+—pouH(u. —u—H )]
v

1 GM 2M . vln

(D13)

For 611ed blastwaves, in which the central pressure is
nonzero, the moment Kz ——1 in this approximation; for
hollow blastwaves, including cosmological blastwaves,
EI ———,

' in this approximation.

high compression implies v, =v„so that, in this thin-
shell approximation, Eq. (D 1 1) becomes
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APPENDIX E: SHOCK JUMP CONDITIONS

4. General solution

Bow is

2 =a1=
(u, —u, )' (1—v, )'

yC', y0)
(ES)

For a plane, nonrelativistic shock propagating at ve-
locity u, through an ideal gas, which is itself moving at
velocity U~, the Auxes of mass, momentum, and energy
are constant in the shock frame, which yields the shock
jump conditions (or Rankine-Hugoniot conditions): +po(u. uH ) =Po+po(u. "H —) (E9a)

%'e can express the Auxes of momentum and energy
across the shock in terms of the parameters II and 4
defined as follows:

pi(u, ui)—=po(u, uH»—

Pi +pi(u~ —u i ) =Po +po(u~ —UH )

(El)'

(E2)

2 yo 0 2
—,'N(u, —uH )—:—,'(u, uH )—+ +ac

yo —1 po

PI
—,'(u, —ui) +

' —1 p

= —,'(u, —uH) + — +ac . (E3)
yo Po

yo —1 po

Here the conditions ahead of the shock are denoted by
the subscript 0 and those behind by 1; all velocities are
measured in the frame in which the shock velocity is v, .
We have allowed for the injection of an energy cc per
gram at the shock front, due to the release of chemical,
nuclear, or gravitational energy in a detonation, or to
conduction of energy from the shocked gas to the shock
front. For chemical or nuclear energy, c. is determined
by the change in composition across the shock: If n. is
the density of species j, and I. is the binding energy per
particle, then sc —= [(n o/po) —(nj /p)]IJ. If energy is ab-
sorbed due to chemical or nuclear dissociation, then c.

will be negative. We have also allowed for the possibility
that the ratio of specific heats ahead of the shock, yo,
differs from the value, y, behind the shock; if y&yo, then
c will generally be nonzero, as in the case of dissociation
of molecular hydrogen. However, these equations do not
apply to magnetized gas, in which the magnetic field and
the gas have different effective values of y.

We define the compression 7], the normalized veloci-
ties v& and vH, and the normalized temperatures 0& and
00 by

so that

00II=1+
(1—vH )

(E10a)

(1—vH )' yo —1
(E10b)

H= 1+ 1

y~, (E1 la)

+=1+ 1 cc 2

yo —1 yoCo JR,
(El lb)

With these definitions, the jump conditions (El)—(E3)
become

X,(1—v, ) =1—v~, (E12)

X)[9)+(1—v, ) ]=II(1—v~) (E13)

(1—v)) + 8, =@(1—vH)
2y 2

y —1
(E14)

The solution of these equations is conveniently ex-
pressed in terms of the parameter

Note that II and N reduce to unity for strong shocks
[Po«po(u, —uH) or Oo«(1 —v&) ] in the absence of
energy injection at the shock front (s=0). In terms of
the adiabatic Mach number A,„these relations become

+1=P1~PO &

vi—=ui/us VH = UH /us

(E4)

(E5)
u —=+[y —(y —1)&b/II ]' 2

which may be rewritten as

(E15a)

P]
0,

piUs

'o

2
PoUs

C2

2
Us

C2

2
Us

kT,

PUs

kTo
2

PoUs

(E6) 0 2=

2
y Yo (y —1 )ec

y 1 Q2

(y~.'+1)'
(E15b)

2= (u, —uH)
a= 2yoco

(1—vH )

yo0o
(E7)

whereas the adiabatic Mach number of the post-shock

where (p,po) is the mean mass per particle (behind,
ahead of) the shock. The adiabatic Mach number JR, of
the shock is then given by

It is straightforward to show that u (1 if c)0, A, , ) 1,
and y) 1. Even if E is negative, it follows from the
definition [Eq. (E15a)] that

~

u
~

& y. Note that radiative
shocks have c. &0; alternatively, such shocks can be ap-
proximated as having c.=0 and an effective y close to
unity. In terms of u, the solutioo to the jurnp conditions
(E12)—(E14) is
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y+1.
II(y —u )

(E16a)

(E16b)

tonation and u &0 to a weak detonation; u =0 is termed
a Chapman-Jouguet detonation:

g &0, AI,
&

& 1 (strong detonation),

u =0, W„=l (Chapman-Jouguet),
(E21)

I+u (1 )z
p —u

2 2 (I+u)(y —u)=II 1 —v~ (y+1)
Pi

=X,8, =II(1—vH )
2 1+u

P0U g+ 1

(E16c)

(E16d)

The adiabatic Mach number of the post-shock Qow is
given by

p —u

y(1+u) '

so that the point u =0 corresponds to At„= 1; for u & 0,
the post-shock Qow is subsonic, whereas for u & 0 it is su-
personic.

In. some cases it is useful to express the solution impli-
citly in terms of the compression X&. Equations (E12)
and (E13) give

(E18a)

(E18b)

u &0, At, & 1, At,„&1 (shock) (E19)

for a nontrivial solution (Landau and Lifshitz, 1959).
The shock is said to be strong if Af, »1 and weak if
At, =1; the corresponding values of u are

0, At, ~l .
(E20)

If there is an energy release at the discontinuity (s & 0),
then the Mach number A, , need not exceed unity: if
AL, &1, the Qow is termed a deQagration, whereas if
AL, &1 it is termed a detonation. Detonations are dis-
cussed by Landau and Lifshitz (1959), Stanyukovich
(1960), and Zel'dovich and Raizer (1966). For y =yo and
c. &0 one can show that the supersonic case is always
compressive (g, & 1). Both positive and negative values
of u are possible, with u & 0 corresponding to a strong de-

Eq. (E16a) can be solved for u (X&).
The jump conditions (E16a)—(E16c) apply to an arbi-

trary discontinuity in the Quid Qow. In discussing their
significance, we shall assume that the ratio of specific
heats is constant across the shock (y =yo), thereby elim-
inating the possibility of rarefaction shocks, in which
X& &1 (Zel'dovich and Raizer, 1966). For shock waves,
in which there is no energy injection (a=0), the require-
ment that the entropy increase across the shock implies

u &0, At„ & 1 (weak detonation) .

Strong detonations and Chapman-Jouguet detonations
are preceded by shocks, with the energy relase occurring
behind the shock front. The jump conditions apply at
every point behind the shock front, with the energy
release increasing from 0 to c, and u decreasing from the
value just behind the shock front ( = 1 for strong shocks)
to its final value & 0 [Eq. (E15b)j; a weak detonation can-
not occur in this case. Nate that P ~+8 is a linear func-
tion of u, as is 7& ", hence, in the P-7 ' plane, the evolu-
tion of the gas behind the shack front lies on a straight
line. If the detonation is driven by a piston, or if it is
propagating in a su%ciently steep density gradient
(Sedov, 1959), so that the shocked gas acts like a piston,
then the detonation is strong (u & 0); in the absence of
such effects, however, a rarefaction wave follows the de-
tonation, so that AI„= 1 and u =0: the Chapman-
Jouguet condition is satisfied. A weak detonation can be
preceded by a shock only if (1) energy is absorbed or radi-
ated behind the regi'on where it is relased and (2) u =.0 at
the point where the energy injection changes sign. Oth-
erwise, weak detonations do not have associated shock
fronts and can occur only if the release of energy is trig-
gered by some supersonic mechanism, such as radiation.

An astrophysically important example of a discontinui-
ty with s &0 is the ionization front (see, for example,
Kahn, 1969), in which ionizing radiation propagates
upstream and deposits energy in the neutral gas Qowing
across the front. (The deposition of momentum as well
as energy is considered by Max and McKee, 1977.) In
ionization fronts, the gas loses energy to radiation, so the
value of c. is not fixed. The final temperature 8& is deter-
mined by balancing radiative cooling with photoioniza-
tion heating, and since Oi is known, the mass and
momentum jump conditions suffice to determine the con-
ditions behind a front of given velocity. The velocity, of
the ionization front itself is determined by the criterion
that the Qux of ionizing photons equal the Qux of neutrals
across the front plus the number of recombinations per
unit area. Supersonic ionization fronts are termed R
fronts; subsonic ones are termed D fronts. Strong 8
fronts have subsonic Qow and a relatively high compres-
sion behind the front; weak R fronts have supersonic Qow
and a small compression behind the front. If the ionizing
fiux at the front is sufficiently large (photon fiux
&2noC, ), the ionization front races through the gas
without much dynamical efFect (a weak 8 front). If the
ionizing Qux reaching the front is in the range 2n0C&
& photon Qux& n0C0/2C~ then the Qow generally re-
laxes to a shock front followed by a "D-critical" front
with AL& —1, analogous to the Chapman-Jouguet condi-
tion.
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2. Strong shocks (He~0, A,,~ ~ )

We now focus on strong shocks, the case of greatest in-
terest in the text. In this case we have

H=1, e=l+
v, (1—vH)

u =y — =v, (y+1)—1,+1=
X1

cc &]—1 y+1
X1

U 2+1

v)[2 —(y+ 1)v, ]
2(y —1)

(E25)

2(y —1)ec y+ 1
u

v,'(1 —vH )' y —u

y —u
v, = 1 —(1—vH ) y+1

2 (1+u)(y —u)
(y+1)

)2 (1+u)
pov,

2 (y+1)

(E22)

(Ho=0 vH =0)

These relations allow one to express the jurnp conditions
implicitly in terms of either 71 or v1. Note that in the ab-
sence of energy injection at the shock (e=0, u =1), Eq.
(E25) gives the usual strong shock jump conditions for X,
and v1.

c. Chapman-Jouguet detonation (u=0)

In this case Eq. (E22) yields

a. No energy injection at the shock (s=0)

We have H=+=u =1 and

X =y+1
1

y —1

2+(y —I »H
y+1

01 ——2(y —1)
(y+1)'

(E23)

P1
2

POUs

(1—vH ) (go=0, v=0) .H

(arbitrary strong shock, Ho =0). We now consider several

special cases.
y+1x =—

1 7

y

yVII+1
y+ 1

y(1 —vH )'

(y+1)'
P, (1—vH)

y+12
PoUs

2(y' —1)ec'
(1—vH )

(Oo ——0, u =0) .

d. Stationary ambient medium, no energy injection
(vH =e=0)

(E26)

The compression 71 is independent of the ambient veloci-

ty vH in this case. For vH ——vH /v, =0, these jump condi-
tions reduce to the usual ones for a strong gas dynamic
shock [see, for example, Zel'dovich and Raizer, 1966, and
Eq. (E27) below].

b. Stationary arrlbient medium

2
V1= y+1

P1
VII ——0,

POUs

(E27)

0,=, v=0 .2(y —1)
(y+1)'

In this case we recover the standard jump conditions
for a strong shock from Eq. (E23):

x ——y+1
1 00 =0

y —1

X1—1
8,=

X1

V1
=vi(1 —vi) (0O ——0, vH ——0) .

X1

The parameters u and c, which describe the energy injec-
tion at the shock, can then be obtained from Eq. (E22):

Alternatively, for a strong shock in a stationary medi-
um with arbitrary energy injection at the shock front, we
have vs =0 and II=1, but e (and hence @ and u) arbi-

trary; equations (E12) and (E18b) then yield

X,(1—v, )=1,
(E24)
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