
JANUARY, 1934 REVIEWS OF MODERN PHYSICS VOLUME 6

Elementary Notions of Quantum Mechanics

KARL K. DARRow, Bell Telephone Laborotorfes'

TABLE OF CONTENTS

BASIS OF ALL CORPUSCULAR THEORIES. 25
BASIS OF ALL UNDULATORY THEORIES. 26
SPEEDS IN UNDULATORY THEORY. 28
BEGINNINGS OF THE FUSION OF CORPUSCULAR AND UNDULATORY THEORIES. . . . . . . . . . . . 30
TWO THEORIES MUTUALLY ADJUSTED TO ENABLE BOTH To COPE WITH DEFLECTION AND

REFRACTION 31
PRINCIPLE KNOWN AS "LEAST TIME FOR THE WAVES, AS ' LEAST ACTION FOR THE

CoRFUscLEs 33
LEVEL SURFACES OF THE ACTION CONSIDERED AS WAVE FRONTS WITHOUT PERIODICITY. . 34
BEGINNING OF WAVE MECHANICS: A PERIODIC FUNCTION IS INTRODUCED WHICH FOR ITS

WAVE FRONTS TAKES THE LEVEL SURFACES OF THE ACTION. 36
FUNDAMENTAL INTERRELATIONS OF CORPUSCLES AND WAVES. 36
PHASE SPEED, GROUP SPEED AND CORPUSCLE SPEED OF ELECTRICITY OF MATTER. . . . . . . 39
PRINCIPLE OF INDEFINITENESS . . 39
REFLECTION AND TRANSMISSION OF CORPUSCLES AND WAVES 42
WAVE EQUATIONS. 44
SCHROEDINGER S WAVE EQUATION& ITS PROPER VALUES AND THE STATIONARY STATES OF

AToMs. . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . 47
LINEAR HARMONIC OSCILLATOR TREATED BY THE METHOD OF SCHROEDINGER. . . . . . . . . . 48
IMPLICATIONS OF THE SYMBOL 4 49
FREQUENCIES OF LIGHT EMITTED BY ATOMS COMPARED WITH FREQUENCIES INHERENT IN

THE ATOM MODEL 51
VIBRATION FREQUENCIES OF A CLASSICAL ATOM MODEL; FOURIER ANALYSIS. . . . . . . . . . . 52
TERM FREQUENCIES AND EMISSION FREQUENCIES OF A QUANTUM-MECHANICAL ATOM

MODEL& MATRIX ALGEBRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . 54
MORE ABOUT MATRIX ALGEBRA 56
DESIGN OF CLASSICAL AND OF QUANTUM-MECHANICAL ATOM MODELS. . . . . . . . . . . . . , . . 57
QUANTUM CONDITION IN MATRIX ALGEBRA) AND ITS CONSEQUENCES. . . . . . , . . . . . . . . . . . 58
CONCEPT AND EMPLOYMENT OF OPERATORS IN QUANTUM MECHANICS. . . . . . . . . . . . . . . . . 61
RADIATION FROM ATOMS INTERPRETED BY CLASSICAL AND BY QUANTUM-MECHANICAL

THEORY . 65

Q UANTUM mechanics is the latest stage of another and newer endeavor, the effort to
the ancient and stubborn endeavor of men picture the world as a flux of waves in a medium

to build a satisfying image of the world out of

filling

spac. Theseseem antagonistic, and indeed
particles in a void. Also it is the present stage of were always regarded as rivals until the present

century began, for the good and sufFicient reason~ This article is substantially the same as one which was
composed for publication in Germany, and has been

that in earlier times the theories were so formu-

brought out as a boolt by the Verlag S. Hirsej. I am lated that they could not both be used of the
much indebted to the criticism and advice of my mathe- same thing at once—they were truly incom-
matical colleague Mr. L. A. MacColl, and have p«6t«patible. That was of little consequence during
bY some of the additions and rearrangements, made « the nineteenth century, since all the ltnown
the German version by the translator, Dr. E.Rabinowitsch.

of many good suggest~ons made by
Phenomena of matter were interPretable by the

ananonymouscriticwhiiethemanuscriptwasinthehands first, all those of light by the second of the
et a publisher. images. In those days it seemed as though the
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kingdom of nature were sharply partitioned
between the rivals, light owning the dominion of
the undulatory theory, matter being atomic; as
soon as electricity was recognized to be a
substance, it was annexed to the domain of the
corpuscular theory. But then came the twentieth
century, and discovery after discovery broke
through the supposed partition, until men were
forced to admit that it did not exist at all.
Certain phenomena of light demanded that
corpuscles be invented, certain phenomena of
electricity and matter required that waves be
conceived. There was no recourse except to alter
both the images until it should be possible to
fuse them into one. Quantum mechanics proposes
alterations and a fusion; it obliges the particles
to submit to the guidance of waves, it humbles
the waves to the rhle of pilots to the particles;
and in prescribing laws for one, it dictates the
behavior of both.

Such a programme makes the impression of
being thoroughly revolutionary; and many
among the workers in quantum mechanics have
helped to confirm that impression, by writing or
speaking of the downfall, the overthrow, or the
repudiation of classical theories. No one, of
course, would deny that the new system is full

of radical ideas, nor that its history is a succession
of breaches with the past. Yet, the changes which
some of the earlier doctrines have suffered are
no more remarkable —I should say that they are
less remarkable —than the changeless survival of
others. The Constitution of theoretical physics
which our forefathers handed down to us has
been drastically amended in several of its
sections, but others are intact, and these are not
the least important. If one wishes to say that
quantum mechanics came about through revolu-
tion, one should always add that never has there
been a revolution more gradual, more cautious,
more tenacious of all the virtues of the old
regime.

Indeed, as one reads onward in the literature
of quantum mechanics, one is, turn by turn,
surprised by t:he radicalism of some single new
idea, and by the immense conservatism of the
scientific mind, which can almost never be
persuaded to relinquish the successes of an older
theory, however avidly it may seize on the
advant:ages of a newer. The nineteenth-century

form of the kinetic theory of gases with its rigid
elastic spherules, the electromagnetic theory of
light and its vibrating charges and its spreading
waves, the Rutherford atom model with its
central nucleus and its revolving electrons, the
earlier mutations of the quantum-theory —all of
them led to striking numerical agreements be-
tween experience and theory; and of these,
almost all have been saved, hardly any have
been renounced. Can we say that the "classical"
mechanics of Newton and Lagrange and Hamil-
ton is out of date, so long as atom-models are
still constructed by imagining some assemblage
of charged and massive particles and writing
down the classical expression for its energy as
function of their positions and their speeds?
True, after writing this expression down we do
strange things with it which Hamilton probably
never dreamt of, and the model slips out of
sight in the metamorphoses of our equations;
but in the end we compute certain things which
we call amplitudes, and then to get the intensity
of the light which streams from the atom we
multiply these amplitudes by the very factor, by
which in the electromagnetic theory we multiply
the amplitude of the vibrations of a charge in

order to get the strength of the light which it
emits! Maxwell and Lorentz have not been
superseded, so long as this is so.

All this has bearing on the knotty question:
how shall the beginner attack the quantum
mechanics? Shall he follow in the footsteps of
the pioneers, first being told of the earlier
theories, and then of the several ways in which
they have been altered? Or shall he be confronted
at once with the present theory as though it had
sprung into being complete and perfect, owing
nothing to the past?

Well! if quantum mechanics were perfect,
much could be said for the latter course. Already
there is a tendency among expositors to take it,
and to ignore the steps by which the theory has
been carried to its present state:

"He then unto the ladder turns his back,
Looks in the clonds, scorning the base degrees

By sohich he did ascend. . . ."

But the present theory is not perfect. Some of
its successes are properly those of earlier theories,
not its own; some of its predictions are unveri-
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fied; no one has yet discovered how to make it
cope with certain problems. This strengthens the
case for the opposite course —for treating the
present theory as a stage in the evolution of
thought, derived from the foregoing stages by
making modifications in these which are no
greater than is strictly needful. It is certainly
the easier course for those who have already
been broadly trained in general physics, of which
the scope of quantum mechanics covers but a
smallish part. Furthermore, one can scarcely
believe that if quantum mechanics shall one day
be perfected, it will isolate itself so completely
from yesterday's theories that the interconnec-
tions will not be worth retracing.

In this article, therefore, the evolutionary
mode of treatment shall be adopted instead of
the revolu tionary.

BASIS OF ALL CORPUSCULAR THEORIES

How far back should we go into the atomic
theories, into the wave theories of earlier days,
in order to provide the necessary basis?

To Democritus and to Lucretius we need pay
only the tribute of a few respectful words. They
spoke and fought for the idea of atoms in a void,
Lucretius with splendid eloquence; perhaps with-
out them the idea would never have been
started for us to develop; but they had of course
no notion whatever of the modern scientist's
demand for a quantitative, a numerical agree-
ment between experiment and theory. Of Dalton
and the other chemists of the early nineteenth
century we need say hardly more. Their atoms
possessed no qualities except weight, and hooks
to interlock with the hooks of other atoms; they
could not give the weight of any atom in ounces
or grammes, but only the ratios of weights of
atoms of different kinds (frequently with an
error, as the discovery of isotopes has proved).
With the kinetic theory of gases came actual
atom-models —rigid elastic spheres and (for dia-
tomic molecules) rigid elastic ellipsoids —which
began to fulfil the physicist's aspirations. Then
came an idea of enormous importance: t.he notion
of the atom as a mechanical structure whereof
the parts could be made to vibrate about their
common centre, which Helmholtz and others
invented to explain why light goes more slowly

when it passes through matter. The present-day
theory contains that idea, but could not itself
be born till after the discovery that electricity
is a substance composed of atoms, subtler even
than those of matter. ' When this discovery was
made, soon after the turn of the century, modern
atomic theory began. Our situation is distin-
guished in two principal ways from that of the
atom-builders who preceded us. We live after
that discovery, not before it; and unlike every
earlier generation, tv@ have sess our atoms.

This statement is perhaps a little too strong,
but certainly not by much. I do not say that we
have seen atoms in the way in which we see a
pebble or a ball when it hurtles through the air;
but I say that we have beheld them in the same
way as meteors or skyrockets are seen. The reader
may now say: "We have not seen meteors, but
the trails of incandescent matter that they leave
behind them in the night sky; we have not seen
skyrockets, but the trains of flaming sparks
which they shed in their flight; we have not seen
atoms, but the rows of water-droplets which
condense upon the ions which a flying atom
forms along its path through moistened air—we
have not seen these particles, but only their
tracks. " No doubt! But the track of a corpuscle
may be just as clinching evidence for the
existence of that corpuscle, as would be its image
formed on the retina of a human eye or its feel
as it rolled around in the palm of a human hand.
Indeed, if the corpuscle in question is too small
to be seen or felt, how else can we define it than
by saying that it can follow a path and form a
track?

We can readily observe the paths of charged
atoms —the elementary corpuscles of electricity
and of matter —through field-free space and
through electric and magnetic fields. The
straightness of the paths in field-free regions,
their curvatures in fields, show us that the atoms
conform to the laws of classical mechanics. They
respond to the fields in just the same way as
large and tangible pieces of charged matter,

' I use "electricity" hereafter in referring to beams or
aggregations of electrons, and "matter" in referring to
beams or aggregations of atoms (ionized or not). There are
strong objections to this usage, but it seems to me on the
whole less objectionable than to speak of "waves of an
electron" or "electron waves" or "atom waves. "
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Coulomb's pithballs for example. The curvatures
may be measured, and their values give us the
ratio of charge to mass for the electron (the
atom of negative electricity) and for many kinds
of charged atoms of matter. The measurements
are often made by methods in which the path
is not made visible, but the principles are the
same. We then appeal to Millikan's famous
experiments with oil-drops, which supply us
with the value of the charge which figures in all
these charge-to-mass ratios. Knowing this, we
can compute the mass of the electron and the
masses of all other kinds of atoms. There is one
other observable and measurable property of the
atom —measured, it is true, by experiments on
streams of atoms, not upon individuals; it is the
magnetic moment.

Thus, when we wish to form a corpuscular
image of negative electricity, we must conceive
it not as atoms of arbitrary charge and arbitrary
mass and arbitrary behavior, but as particles of
definite mass (about 9X10 " gramme) and
definite charge (about 4.77 X10 "e.s.u.), which
behave in the classical way as they move through
such electric and magnetic fields as we can
produce in the laboratory. We must conceive of
sodium {for instance) as particles of mass about
equal to 3.8X10 "gramme, and magnetic mo-
ment of the order of 10 " c.g.s. unit. Our
freedom is thus very seriously restricted; not for
us the soaring independence of the philosophers
of the past, who were free to assign whatever
values pleased them to the sizes and the masses
and the numbers of their atoms, secure against
all test! But what we lose in freedom, we gain
in assurance. An atomic theory in which so much
is fixed by first-hand knowledge cannot go
wholly astray.

Yet by a strange coincidence this generation,
the first in history for which the atomic theory
of matter and electricity has been transformed
into a fact, has been obhged to introduce an
undulatory theory of both. In the study of light
it has had the same experience, reversed: it has
been required to invent a corpuscular image,
but it has not been permitted to abandon the
undulatory image which was handed down to it
from the past. Twice it has been obliged to unite
a corpuscular with an atomic theory, without

destroying either. This is the problem which
now engages us.

BAsIs oF ALL UNDULATQRY THEQRIEs

We must begin by analyzing the nature of a
wave theory, such for instance as the supremely
successful traditional theory of light founded by
Young and Fresnel, and developed in the first
quarter of the nineteenth century. This is more
difficult than the analysis of a corpuscular
theory, at least for Anglo-Saxons; the English
physicist Crowther has wittily suggested that
this is because the ball has been for ages the
favorite plaything of the Anglo-Saxon races.

The very name calls up a picture of a pro-
cession of water waves along the surface of a
pool, crest following on trough and trough on
crest one after another in an indefinite sequence.
Of all its features, the most striking is this
visible regular alternation of hills and valleys;
the next most striking is th constant speed
with which the sequence glides along. These
constitute "wave motion" to the eye. A little
observation shows us that the water does not
move onward with the waves: a floating leaf
will rise and fall as the waves pass under it,
and have no tendency to follow them. By
hydrodynamical theory one may determine how
the water itself does move; the motion is not
very simple, and perhaps it is better to think of
transverse waves on a very long stretched cord.
Here the waves move along the cord, a succession
of valleys and hills like ripples on water; but
each element of the string oscillates sidewise.
Let the x-axis lie along the line with which the
string coincides when not vibrating, and let the
vibrations occur in the xz-plane. For the dis-
placement g of any element of the string, we
have:

&=A cos (nt —mx)
=A cos 2m(vt —px)
=A cos 2w(t/T —x/X)
=A cos (2m/X)(ct —x),

wherein the names and meanings of the constants
are the following: X, the wave-length or crest-to-
crest distance; p, the wave number; v, the
frequency; T, the period; c, the speed with
which the waves glide along, hereafter to be
called the phase speed; and A, the amplitude.
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Strictly there should be an additive constant
inside each of the brackets, but we may imagine
the zero of time so chosen as to annul it.

Instead of a single string running along the
axis of x, let us imagine an elastic solid pervading
the whole of space, or at least a region of which
the linear dimensions are very large compared
with X; and suppose that the displacement of
every particle thereof is parallel to the axis of z,

and conforms to Eq. (1). We now have the old-
fashioned wave model of a beam of plane-parallel
plane-polarized monochromatic light proceeding
in the x-direction. To obtain the new-fashioned
wave model for the same thing, we write E. for

g, and say that it stands for electric field strength;
the equation otherwise remains the same. There
is a simultaneous equation for H„, the magnetic
field strength; but for the present purpose we
need not remember it.

It is rather strange to realize how little of this
elaborate wave model does actually serve to
represent observable features of light. In a beam
of light, we never see anything in vibration;
therefore we do not perceive nor measure the
frequency ~. We do not see any waves, hills,

valleys, crests, nor troughs; therefore we do not
perceive nor measure the wave-length ). We do
not actually perceive nor measure the wave

speed or phase speed, though we do measure
something which happens to be equal to it iw

vacno, though different from it in any material
medium. Apart from polarization (of which I
shall say little) and momentum {to be discussed
later on) there are only two qualities of light
which we can measure. One of these is inter-
preted as being proportional to square-of-ampli-
tude (A'); the other is a speed which may be,
but in general is not, equal to the phase speed.
The former is the intensity of the light, which
in a truly plane-parallel monochromatic beam
is the same everywhere and always. Thus, of all
the quantities appearing in the expression (1)
which describes the wave model of a plane-
parallel monochromatic beam of light, only the
coefficient A has an immediate meaning in terms
of what is observed, and it is constant both in
time and space. It would not be worth while to
invent a wave model for such a case as this.

The model begins to show its value when we

superpose a pair of wave trains of equal wave-

length but not coinciding in direction. Say that
we have two wave trains such as that described
by (1), excepting that instead of travelling along
the x-direction, they travel along two directions
in the xy-plane inclined respectively at angles
+8 and —8 to the x-direction, and thus intersect
each other at angle 28. Adding the displacements
together, we get:

P&+/&=A cos (nt —mx cos 8—my sin 8)

+A cos {et—mx cos 8+my sin 8)

=2A cos {my sin 8}cos (nt —mx cos 8). (2}

Now we have a wave motion of which the
amplitude varies from place to place, being in
fact a sinusoidal function of y, the square of its
magnitude being given by the equation:

(Amplitude}2 =4+~ cos L(2g sin 8/g)y j. (3)

If we should send two beams of plane-parallel
light across one another's paths at an angle 28,
and should then observe that the intensity of
the light varied with place according to Eq. (3)—if we should observe that the intensity varied
as the square of the cosine of some constant
multiple of y—then the wave model would
justify itself.

This is precisely what happens. The experi-
ment which I have mentioned is a typical
experiment on what is called the "interference
of light. " The intensity of the light is found to
vary as cos' (ky); here k stands for a constant
which has different values for light beams of
different colors, and can be determined by
measuring (for example) the distance between
two successive planes of zero light-intensity, the
so-called "width of a fringe. " When k is deter-
mined and 8 is known, the wave-length ) can be
calculated; that is to say, we can assign the
value which the crest-to-crest distances in the
wave models of the two beams of light must
have, in order to produce an interference-
pattern of the scale which is observed.

Such is the standard and ultimate way of
ascertaining wave-lengths. Two beams of light,
or more than two, are caused to overlap. There
is then a peculiar and characteristic intensity-
distribution in space, which is known as an
"interference pattern" or a "pattern of station-
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ary waves. " It conforms with the wave model,
provided that we identify light intensity with
square-of-amplitude, and provided that we
choose the proper value of A. What is called
"measuring wave-length" consists in making the
proper choice.

The commonest way of doing the experiment
is to send a sing)e plane-parallel beam against a
screen with a series of equal and equally-spaced
slits, or a mirror with a series of identical and
equally-spaced grooves. The beam is then divided
into a number of narrow pencils, each emerging
from one of the slits or reRected from one of the
grooves; these spread out and overlap, and
produce the remarkably sharp and distinctive
kind of interference pattern which is especially
known as a "diffraction pattern. " This consists
of beams diverging at fixed angles from the
direction of the original beam. The wave model

is competent to interpret this pattern, provided
again that the proper value of ) be.chosen. If
a beam of a certain kind of light (x-rays) is
projected against a mass of powdered metal,
there appears a diffraction pattern consisting of
cones, having the direction of the original beam
for their common axis; this also is amenable to
the wave model, and permits a determination
of wave-length.

We have now seen that light waves are never
observed (in any ordinary sense of this verb),
and that the so-called "wave-length" is a prop-
erty of the wave model which is evaluated by
making observations on an interference pattern.

Next we must consider some of the speeds
associated with wave trains; for the significances
of some of these speeds, the comparative lack of
significance of others, involve some of the
subtlest points of wave theory.

SPEEDS IN UNDULATORY THEORY

This is by definition the speed at which the
wave crests of the undulatory model advance.
But we never perceive the wave crests, and
therefore cannot measure their speed. The model
described by Eq. (1) refers to an unlimited beam
of uniform light. In such a beam, nothing visibly
moves. All we can do is to cut out a segment of
such a beam, and measure how long it takes to
go from one place to another. This is done in all
experiments upon the speed of light, by any of

the three methods (the toothed-wheel method,
the rotating-mirror scheme, the recentlydevel-
oped method in which Kerr cells are used).

However, the speed with which a segment of a
wave train gets from place to place is eat neces-

sarily the speed of the wave crests. This is a
fact of experience: one sees it exemplified in
watching trains of ripples on water, where the
individual wave crests are visible.

To get at the reason for this fact, we must
first realize that a train of waves of finite length
is never a perfect sine-wave such as Eq. (1)
describes. Even though every single wave of the
train should be a perfect sine-curve, even though
the train should be broken off with absolut:e
sharpness at both of its ends~ven in this
apparently ideal case, it could not be regarded as
a perfect sinusoidal train. For it is of the essence
of a perfect sinusoidal wave train, that it goes
on forever in both directions. A segment of a
wave train must be regarded as a resultant of
superposed sine-waves of the type described by
Eq. (1), having various amplitudes and various
wave-lengths, which can be determined (if we
know the exact shape of the train) by the
method of Fourier analysis.

The onward gliding of a segment, therefore, is
the result of the onward gliding of the individual
infinite wave trains of different wave-lengths,
into which it must be resolved. Now if all of
these have the same wave speed, —if phase speed
is independent of wave-length —the segment will

travel along undistorted, with the same speed
as that of the wave crests. But if phase speed is
not independent of wave-length, the segment
will travel at a rate which will differ at least
from some, and may differ immensely from all
of the phase speeds of its components. Worse
yet, it will change its form as it goes along, and
in the course of time it may even spread out
until it mingles with other preceding or following
segments, or disperses into the indistinguishable,
like a puff of smoke in a breeze or a drop of ink
in water. In such a case we may not speak of its
speed at all, unless we hold in mind that we are
speaking of something which is essentially some-
what indefinite, and grows more and more
indefinite the longer time goes on.

This is a most important point about wave
motion and wave models. Unluckily, the study
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v+hv the phase speeds of the two wave trains )
and ) +hX; by g the speed of the beats. These are
speeds conceived as relative to the observer.
Relative to a crest of the former wave train, the
speed of the latter train is dv, that of the beats
is (g —v). Relative to the former wave train, the
latter moves a distance 6) while the beats are
moving a distance X in the opposite sense,
therefore with a minus sign. Hence:

(g —v}/Av = —'A/a'A (5}

Solve for g; go over to the differential notation,
to signify that the conclusion is strictly valid in

the limit of vanishing difference of wave-length;

g = v —X(dv/d) ).

A more elegant form of the equation is obtained

by remembering that phase speed v is the
product of wave-length X and frequency v, and
acting accordingly:

g= —X'(dv/dX) =dvjd(1/X} =dv /de, . (7)

This quantity g is known by the name of "group
speed. " We shall later find it playing an im-

portant role.

BEGINNINGS OF THE FUSION OF CORPUSCULAR

AND UNDULATORY THEORIES

We now return to the development of the
main argument.

I have recalled to the reader that in the
classical and familiar undulatory theory of light,
the fundamental features —the waves themselves,
their wave-length, their frequency, their phase
speed —are not observabLe in any ordinary sense
of this word. The values of X and v and v are not
directly measured: they are deduced from certain
data of experiment, with varying degrees of
indirectness. Wave-length is the nearest of the
three to actual data: though it is not observed,
its value is deduced from distribution-in-intensity
in overlapping beams. No experiment ever con-
ceived can detect the phase speed, though there
happens to be, in the special case of light in
vaelo, a coincidence by virtue of which we may
airm that it is equal to the speed of a broken-off

piece of a beam, which is observable. Frequency
is the most remote of the thtee, for in practice
v is just: a symbol for the quotient of phase

speed by wave-length. -"Not one of these things
has ever become observable, as the atoms of
electricity and matter have become observable
of recent years; and it is not to be foreseen that
any of them ever will.

The reader perhaps is wondering why I have
spent so much space in recalling what has long
been known about light. The reason is this: the
wave theory of matter and of electricity has
certain features which seem at first sight strange,
which come as a surprise and a stumbling-block
to many physicists, and yet they are essentially
the same as the features of the theory of light
which I have just been quoting, which have
been known and readily accepted for half a
century or more.

Consider, for example, a beam of negative
electricity such as we are in the habit of visual-
izing as a stream of electrons all going in the
same direction with the same speed. Such a
beam, as everyone knows, can be approximated
by setting up a vacuum tube with a hot filament,
a cylinder charged to a potential higher than
that of the filament, and some metal diaphragms
with holes in line with one another and with a
hole in the cylinder. Now it will be suggested
that upon this corpuscular picture of the beam,
we superpose the image of a wave train. But
this is not because some new method of observa-
tion has made us able to perceive vibrations or
advancing wave crests in the stream —nothing
of the sort has happened, any more than with
light. What has been newly observed is a
distribution-of-intensity in overlapping beams of
negative electricity, resembling that which occurs
in overlapping beams of light, and interpretable
like the latter by a wave model, provided that
we identify square-of-amplitude in the model
with intensity in the actual situation. Square-
of-amplitude is measured, and wave-length is
deduced; but neither wave-length, nor phase
speed, nor frequency is observed. The rate of
progress of an isolated piece of the beam is
measurable, but the phase speed is not to be

'This statement, like certain others in the article, re-
ouires modification if radio waves are taken into account.
The continuity between these and what is commonly called
"light" imparts a quality to the wave theory of light which
as yet finds no parallel in the undulatory models of elec-
tricity and matter.
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identified with it; the coincidence which occurs
in the case of light in vactto does not occur in this
case, but we should not be more surprised than
at its failure to occur in the case of light in
carbon bisulphide.

There is, I repeat, no suggestion of throwing
away the corpuscular image of the beam of
electricity, and installing the wave model in its
place. We must adopt the wave model in order
to account for the diffraction pattern of the
overlapping beams; but we must keep the
corpuscles because, as I said, we have seen them.
It is now our problem to make them exist
together in our minds.

Intensity, as I have said, is represented in the
wave model by square-of-amplitude. But it also
has something to represent it in the particle
theory: it is the total charge borne by the
streaming particles, per unit time, across unit
area set normally to their course. This quantity
is the number of electrons per unit volume,
multiplied by their speed and by the charge of
each. The two last factors are constant through-
out the diffraction pattern of a beam of electrons
of uniform speed. ' The square of the amplitude
of the waves thus corresponds to the number-
per-unit-volume, the "concentration" of the
particles. If we say that the concentration of the
particles is everywhere proportional to the square
of the amplitude of the waves, we make the
first step towards union of the theories.

This step has been suggested by the diEraction-
pattern which appears when the original electric
beam is broken into many by a grating or a
crystal. Say that instead of meeting such an
obstacle, the beam continues indefinitely onward
through empty field-free space. It then is repre-
sented by two images: (A) a train of plane-
parallel sine-waves with uniform amplitude, and
MI) a cloud of electrons dispersed at random
throughout its extent and all advancing in the

' This passage is open to criticism for evading an impor-
tant issue. If one uses the simple corpuscular picture for a
pair of overlapping beams, one must imagine some cor-
puscles going in one direction and some in another; and
in the extreme case of beams inclined to one another at
180', the net flow across any surface is nil, and yet we do
not say that the intensity vanishes. This belongs to the
complex of dificult and delicate problems with which the
"principle of inde6niteness, " hereinafter mentioned, at-
tempts to cope.

same direction with the same velocity. Both
images together represent it; neither is complete
without the other, though the former seems
superfluous so long as one considers none but
unimpeded beams.

THE TWO THEORIES MUTUALLY ADJUSTED, TO

ENABLE BOTH TO COPE WITH DEFLECTION

AND REFRACTION

There are classical ways of deflecting a beam
of electricity, without impeding it by matter.
For instance, it will be bent into a parabolic
arc if it traverses an electric field inclined to its
original direction. This is familiar, and familiar
also is the explanation by the corpuscular theory:
each electron suffers a force and answers by an
acceleration. If the wave model is to subsist,
the wave train must be bent along with the
paths of the corpuscles; we cannot have the
electrons going one way and the waves another.
Can we devise such an interrelation between
electrons and waves? To achieve this, we shall
find that we are obliged to assume a certain
relation between wave-length of waves and
momentum of corpuscles. This has been verified

by experiment, and is one of the most important
laws of nature.

To derive it, I will take a some~hat artificial
case, the limit of an actual case; it has the
advantages of simplicity and of a close analogy
with a famous phenomenon of light. Suppose
that we have two regions of empty space at
different electrostatic potentials. They shall be
separated by a plane, say the xy-plane; and the
potential gradient from one to the other shall be
so steep, that we may deem it concentrated at
the plane of separation, so that there is a
potential discontinuity between the regions s)0
and s(0. For definiteness, suppose that the
latter region is at the higher potential —higher
by V'electrostatic units than the former —so
that electrons coming from above are speeded
up as they pass through the plane s=0.

Now imagine a stream of electrons of mo-
mentum p, approaching the plane along a di-
rection inclined at ft to the normal —LM in
Fig. 2. As an electron goes through the plane,
the magnitude of its momentum is changed to a
new value P', but the tangential component pt
of the momentum remains unaltered, since there
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Fic. 3.

Fic. 2.

is no component of field strength parallel to the
plane. Fig. 2 is almost self-explanatory; as one
readily sees,

sin 8/sin 8'=p'jp. (8)

Now if we vary 8 while leaving p the same, the
right-hand member of this equation remains
unchanged; for the momentum of an electron is
fixed when its kinetic energy is fixed, and the
kinetic energy of these electrons increases by the
constant amount e V when they go through the
plane, whatever their direction of approach from
above. We have therefore:

sin 8/sin O' = P'/P ~ quantity independent of 8. (9)

But this is the law of optical refraction, which,
as every physicist remembers, is compatible with
the wave theory of light. We have found what
has been known since the days of Newton and
Huyghens, that the law of optical refraction is
compatible both with the wave theory and with
the corpuscular theory. We shall therefore be
able so to contrive our wave model, that the
waves will bend through the same angle as the
electrons when they pass the plane, and follow
the same direction as the electrons thereafter.
However, we shall not be able to make them go
at the same speed as the electrons, as will now
appear.

Fig. 3 represents the classical Huyghens con-
struction for the passage of a wave front through
a refracting surface, and is almost self-explana-
tory. The wave front is perpendicular to the
plane of the paper; AA' is its trace at a certain
instant, say t=0; BB' is the trace, at a later

instant t=T, of the part which has not yet
reached the surface; CB is the trace, at t = T, of
the part which has traversed the surface. Denote
by v and v' the speeds of the wave front above
and below the surface. Evidently the perpen-
dicular distance from AA' to BB' is vT; we need
in addition to know the distance from A to CB,
and this is supplied by Huyghens' argument,
which is as follows: the refracted wave front is
the envelope of spherical wavelets, which start
from the various points of the surface at the
instants when the incident wave front reaches
these points, and spread outward with speed v'.

This argument gives v'T for the length of the
line AC, and we readily derive:

sin 8/sin 8' = v/v' = quantity independent of 8. (10)

W'e are trying to represent a beam of elec-
tricity both as a stream of corpuscles and as a
train of waves, which must travel the same
course, and must therefore bend alike as they
pass across a potential discontinuity. By com-
paring Eqs. (8) and (10) we see what we must
assume in order to achieve this: to wit, the
relation:

v/v' =p'/p.

At the crossing of the discontinuity, phase speed
must go down (or up) in the same proportion as
electron-momentum goes up (or down)! Phase
speed and particle momentum must vary inversely:

v =const. /p. (12)

With electron speeds not approaching too closely
to that of light, this is almost the same as saying
that wave speed and particle speed are inversely
proportional to one another —a hard but in-
evitable saying. Eq, (12}disposes of all chance
of assuming that wave speed and electron speed
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are the same. We can make the wave train
travel along the same course as the electron
stream, but we cannot make a wave crest and
a particle stay together.

It takes only one more step to arrive at the
relation between momentum and wave-length;
but despite the fact that wave-length is much
nearer to observable things than is phase speed,
there are several points which it is better to
treat before that step is made.

The condition expressed by Eq. (12) suffices
to make corpuscle stream and wave train keep
together, not merely at a sharp deflection such
as would occur at a potential discontinuity, but
also throughout a curved path such as the beam
describes in an electric or a magnetic field. It is
equally potent for the case of a beam of ponder-
able matter passing through a gravitational field.
In all of these cases the path of the beam may
be traced either by supposing it made up of
corpuscles whereof the momentum changes be-
cause of the force which the field exerts upon
them, or by imagining it as a wave train of
which the phase speed varies inversely as the
momentum computed for the corpuscles.

THE PRINCIPLE KNOWN AS LEAST TIME FOR

THE WAVES, AS LEAST ACTION FOR THE

CORPUSCLES

Select a couple of points on the path of the
beam, or, to be more precise, on that of one of
the corpuscles composing the beam, " for instance,
L and N of Fig. 2. Go over to the wave model;
the path in question (LMN' of Fig. 2) now has
a new interpretation: it is the curve to which a
wave front remains perpendicular, in going from
I to N (Fig. 3). One could now draw an infinity
of paths from L to N, each consisting of a
straight line dragon from L to some point of the
refracting surface other than M, and another
straight line drawn onward from that point to
N. Each of these would be a conceivable path
for a corpuscle going from L to N; also, a wave
front could be conceived as going from L to N
in such a way as always to remain perpendicular
to any one of these. None of these, however, is
the actual path. The actual path is outstanding
among all of these by the feature, that the time
spent by the wave front in going from L, to N

along it is less than the time which would be
required to follow any other. (In making this
statement, it is of course assumed that the wave
front would always travel with speed e when
above the refracting surface, and always with
speed u' when below it.)

This is Fermat's "principle of least time"
which he proved for the case illustrated in Figs.
2 and 3, where every path is straight except for
a sharp bend or corner occurring where it
traverses a single refracting plane. It can be
generalized to the case of a continuously-curving
beam traversing a field of force, though then it
may be strictly true only when the comparison
is made between the actual path and others
which differ therefrom by infinitely little. Also
it is possible to contrive cases in which the time
is a maximum rather than a minimum; so that
on the whole, the principle is best entitled
"principle of stationary time, "and written thus:

v 'ds=o (13)

the integral being a line-integral along the actual
path, between any two points thereof, of the
reciprocal of v the wave-front speed or phase
speed.

This principle is, of course, not true for the
corpuscles; the actual path (say LMN of Fig. 2)
is not in general the one by which they could
go in the shortest time from L to N. This
difference enhances the prestige of the waves,
which is a good thing, as it diminishes the
advantage which the corpuscles have over them
in our minds by virtue of being observable. It
supplied, indeed, the earliest argument for what
we now know as the wave theory of light —a
striking historical fact, not so well known as it
should be. Fermat believed in "economy of
time" as a fundamental principle of nature, and
postulated —this was as long ago as the middle
of the seventeenth century —that light should
spend the shortest possible time in going from
the start to the finish of its path. By postulating
this, one reverses the trend of the argument of
the foregoing pages, and comes to the conclusion
that in such a case as that of Figs. 2 and 3, the
speed in the upper medium must stand to that
in the lower as sin e to sin 8'—the ratio later pre-
scribed for the wave-front speeds by Huyghens.
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There is however a corresponding principle
for the corpuscles. Evidently it is to be obtained
by substitution from (12) into (13);we get:

pds = 0. (14)

b 2Tdt =O. (16)

The integral which appears in (14) and (16)
alternatively written as J'pds and J'2Tdt, goes
by the name of "action. " I will denote it by A.
It is a function of the two points on the path of
the corpuscle between which the integral is
taken. If we consider one of the points, say
Po(xo yo, zo), as fixed, it is a function of the
coordinates (x, y, z) of the other point P: one

The line integral of the momentum of a particle
between any two points of its path is stationary
with respect to all other paths joining these
points and differing infinitely little from the
actual one. To express the idea in a less rigorous
but more customary fashion: the line integral
(14), taken along the actual path of the particle
between any two points thereof, is smaller than
the corresponding integral for any neighboring
path joining those points.

This is the "principle of least action, " IVIau-

pertuis offered it as a substitute for Fermat's
principle of least time, at an epoch (the mid-
eighteenth century) when it seemed that in
spite of Fermat's argument the corpuscular
theory of light had vanquished the undulatory
theory. We of the twentieth century are not
obliged to discard the one in order to employ
the other: conceiving of a beam of electricity or
matter as a stream of corpuscles associated with
a train of waves, we may make use of both.

There is a more familiar notation for the
principle of least action, deri~ed from (14) by
simple substitutions based on the classical me-
chanics (the relativistic formulae will be given
later on). Put u for the speed of the corpuscles
and m for their mass, therefore mu for their
momentum p and (~o)mu' for their kinetic energy
T. We readily deduce:

pds =p(ds/dt)dt = pudt =2Tdt (15)

and the principle of least action takes the form:

might call it the "action" which the corpuscle
has accumulated on its way from Po, by the
time it arrives at P. It seems decidedly abstract;
we are not nearly so well accustomed to it, as to
such functions as energy and momentum; but
quantum mechanics confers upon it, or rather
upon a function closely allied to it, new prestige
and importance.

LEVEL SURFACES OF THE ACTION CONSIDERED AS

WAVE FRONTS WITHOUT PERIODICITY

The important feature of action, for our
present purpose, is due to the fact that we may
write

pds =pox+ ppy+ ppz (17)

for pds is the scalar product of two vectors, one
being the momentum whereof the components
are p„p„, p„and the other the line element
whereof the components are dx, dy, dz. Hence:

aA/ax=p, aA/ay=p„, aA/az=p, (18)

the space derivatives of the action A, with
respect to the coordinates of P, are the compo-
nents of the momentum which the corpuscle has
when it arrives at P. This quality is shared by
the function W which I will now define:

W= (2T—E)dt =A —Et. (19)

Here E stands for the energy of the corpuscle-
the total energy, kinetic and potential together,
which remains the same all along the path, so
that its time integral along any section of the
path is simply the product of its value by the
time which the corpuscle spends in tracing that
section.

The function W has the following properties:

a W/a, =p., a W/a„= p„,
(2o)

a W/a, =p„aW/at = —E.
Consider the function W at any particular

instant of time. It has a system of "level sur-

faces, " or surfaces over each of which its value
is constant. These surfaces are perpendicular to
the paths of the corpuscles at the points where
they intersect it. Now let t vary. As it varies,
the level surfaces wander through space. Each
small section of each surface moves parallel to
its own normal.
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From Eqs. (20} it can readily be shown—
indeed, it is almost obvious —that the speed
with which these level surfaces travel is given

by the equation,

Speed of level surfaces = E(P. {21)

(I have given the argument in detail in another
place, ' and therefore do not repeat it here. )

Now this is Eq. (12), with a specific value
assigned to the constant which in that equation
appears as an indeterminate, To recall the argu-
ment: in order that wave train and corpuscles
may follow the same path, the wave fronts must
move with a speed equal to I/p multiplied by a
constant. The value of the constant does not
matter; we may make it equal to the energy of
the corpuscles, if we will; and if we make this
choice, the wave fronts of the train become the
level surfaces of the function W.

Thus far the argument has served to enhance
the prestige of the waves, by associating them
with the fundamental function of the corpuscles
which bears the name of "action"; also, to aid
the prestige of this function by linking it with
the wave fronts. Still there is something missing:
in the foregoing argument there is no allusion
whatever to vibration or periodicity, wave-length
or frequency. The primary feature of what we

nowadays call "wave motion" is lacking; only a
secondary feature, the wandering of wave fronts
through space, is present,

Looking back again into history, we find that
the notion of regular vibration did not enter
into the theory of light for many decades after
Fermat and Huyghens. It is certain that Huy-
ghens did not have it; when he first drew the
diagram which reappears in this book as Fig. 3,
he was picturing to himself the passage of a
single pulse across the boundary between the
two media. Indeed, there seems to be nothing in
Huyghens' construction which implies a regular
sequence of pulses or wave fronts. In his book
«1690, he shows a sketch of spherical wave
fronts proceeding from various points of a candle
flame; those diverging from a single point follow
each other at equal distances; but he is careful

4 I»treductie» te Wsse-hfecho»ics, Bell Sys. Tech. J.
6, 653—701 {October, 1927); translated into German as
Etre»tare Eisfuhru»g i» die Wette»r»ectus»ih {Hirzel, 2nd
Ed., 1932); hereinafter referred to as Wase-&eche»ics.

to explain that this is an accident of the drawing,
that in reality the pulses emerge from the
radiant points at random intervals!

Nevertheless it can be argued that Huyghens
was assuming a regular sequence without real-
izing it. To translate his "pulse" into a modern
picture, we must imagine that the displacement
at any point of the region traversed by the
oncoming light remains zero up to a certain
instant, then rises suddenly to an appreciable
value, falls off suddenly to zero again, and
continues at zero until the arrival of another
pulse. Each pulse would be a sort of thin film of
finite displacement, travelling onwards through
space towards the refracting surface.

Now such a pulse must be regarded as a
superposition of sinusoidal wave trains of various
wave-lengths and amplitudes. If all of these
component wave trains have the same phase
speed, all is well; the pulse marches onward
undistorted. This is the case so long as light
moves through vacuum. But when light enters
a material medium, the phase speeds of the
different wave trains draw apart. The pulse
becomes distorted, and the distortion must com-

mence at the refracting surface itself. Huyghens
may have been justified in drawing a straight
line athwart the path of the light to represent
a single pulse in the upper medium of Fig. 3,
provided that he meant the upper medium to
be a vacuum. But he was not justified in drawing
another straight line to represent the pulse in
the lower medium, glass or water or whatever
it may have been; for in crossing the boundary
the thin film of displacement would have changed
into a hazy volume spreading out in various
directions.

Indeed there is no way to design a pulse that
shall go through a refracting surface with a
sharply-defined de8ection. The only wave which

surely obeys Huyghens' rule is the member of
an endless sequence of sine-waves. The only
wave front to which Huyghens' construction can
securely be applied is the wave front which
belongs to a sinusoidal wave train of definite
wave-length and frequency. It is paradoxical but
not entirely extravagant to say that Huyghens
was postulating a full undulatory theory without
ever realizing it.
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BEGINNING OF WAVE MECHANICS: A PERIODIC

FUNCTION IS INTRODUCED WHICH FOR ITS
WAvR FRGNTs TAKEs THE LEvEL SUR-

FACES OF THE ACTION

Now the undulatory theory of electricity and
rnatter enters definitely upon the scene. The
analogy with light may be traced in the following
steps:

At a refracting surface, the only kind of beam
of light which is refracted at a definite angle is
the special kind which by definition is called
"monochromatic. " Also the only light which
will form an interference pattern corresponding
to a definite value of wave-length is precisely
this monochromatic kind. ' Therefore mono-
chromatic light is light of a single wave-length,
and the only kind of light which is refracted at a
definite angle in passing through a refracting
surface is a sinusoidal wave train. Now at a
surface of potential-discontinuity, the only kind
of beam of free electricity (electrons) which is
refracted at a definite angle is a beam consisting
of electrons of a single kinetic energy. We have
identified a function 8' associated with this
beam, of which the level surfaces are refracted
at the same definite angle. This establishes a
partial analogy with light but not a complete
one. To complete the analogy we assume that
the level surfaces of W are also those of another
function which is itself a sinusoidal wave train:
an oscillatory function, of which W itself is the
"argument" or "phase. "

The introduction of this wave train into the
picture, the assertion that it possesses real and
physical importance, are distinctive features of
the new mechanics. They are due primarily to
Louis de Broglie and to Sehroedinger.

These are, of course, the very waves of which
I earlier spoke, those of which the phase speed e
is inversely proportional to the corpuscle mo-

s A reader of the manuscript has objected that "mono-
chromatic Vight" is by dsfisition light of a single wave-
length, so that this sent'ence is a definition (or a truism) and
the previous sentence a theorem, instead of vice versa. He is
probably right about the usage, but if he is, the usage is
regrettable. "Monochromatic" can and should be defined
without reference to theory, and as Newton might have
defined it from his experience, had the word existed in his
time: as referring to the kind of light which is not spread
out or changed in appearance when passing through a
prism.

mentum p accordmg to Eq. (12). By msisting
that their wave fronts coincide and travel with
the level surfaces of W, we fix the hitherto-
undetermined constant appearing in that equa-
tion. Writing E for the total energy —not merely
the kinetic energy! —of a corpuscle, v and X for
the frequency and wave-length of the waves„
we get:

t|=v'A=E/P. (22)

The ratio of E to v is considered a constant,
because, first, the total energy of a corpuscle
remains the same throughout its entire course;
and, second, anything properly named "fre-
quency" should be the same throughout the
entire system in question. The latter statement
is due to our instinctive feeling that when two
material bodies are in contact with one another,
they cannot vibrate and also remain in continual
contact unless their frequencies are the same.

We will now conclude the list of our assump-
tions by supposing that the ratio of E to v is
not merely constant throughout the entire course
of a single beam, but has always the same value
for every beam in every locality. It shall be a
tiesversal constant. I denote it by h, thus re-
vealing the climax already foreseen, no doubt,
by every reader of this article: that it is to be
identified with Planck's constant first intro-
duced in the theory of black-body radiation

(a =6.55 X&0-~ g cms. ~.-i).
FUNDAMENTAL INTERRELATIONS OF CORPUSCLFS

AND WAVES

So we come to two of the fundamental rela-
tions of quantum mechanics:

E= h,v,

) =h/p,

(24)

(25)

presumptively valid for light and electricity and
matter alike, which are offered for the test of
experiment.

To have fixed the phase speed by fixing the
constant is not however of the first importance,
t being unobservable. What is of first importance
is the conclusion with respect to the wave-length.
We derive:

'A = (E/v) /P =const. /P. (23)
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As earlier pointed out, these waves are not
observable, and neither are the qualities of the
wave model which are called phase speed and
frequency, but the wave-length may be deduced
from observations on diffraction patterns. Thus
for free electricity {electrons) and electrically-
neutral matter {atoms), Eq. (25) is of the two
the more amenable to test. Beams of electrons
(or of atoms) must be caused to overlap one
another; the region of overlapping must be
explored for the peculiar distribution-in-intensity
which is called a difFraction pattern; if found,
it must be proved identical with that which
would be expected for some particular value of
X, and this value is then to be compared with
that demanded by Eq. (25).

The experiments made with this aim form
already a great and illustrious group, though
the earliest of them all—that of Davisson and
Germer —was done so recently as the winter of
1926-27. Davisson and Germer measured the
diffraction pattern of the beams of negative
electricity which emerge from a single crystal of
metal onto which an electron stream is projected.
G. P. Thomson shortly afterward made the
corresponding experiment with electrons of much
higher kinetic energy and thin films of metal
composed of many small crystals. Hundreds of
analogous experiments have been performed
with many values of electron energy and electron
momentum, many kinds of crystals, and a
variety of ways of mapping the diffraction
pattern. Rupp reports an observation of a
pattern imposed by a ruled optical grating upon
a beam of electrons which it intercepted and
reflected. O. Stern and T. H. Johnson inde-
pendently have observed the diffraction of ordi-
nary matter: that is to say, the pattern produced
by beams emerging from the surface of a single
crystal, against which a stream of gas such as
hydrogen or helium is directed. There have also
been strong though not perfectly clear indications
of the diffraction of proton streams.

Thc general mckwec of all these experiments is
fhc fall oerificaaos of Eq. (ZS).

The testing of Eq. (24) is a task of a different
sort altogether, and one might deem it impossible
in principle, in view of what was earlier said
about the nonwbservability of frequency and
phase speed. In truth, it has never been made for

electricity nor for matter. Corpuscle energy and
wave-train frequency have been proved pro-
portional to one another, only for light —only
because of certain interrelations between light
and electricity, or light and matters —and only
because of the unique coincidence of phase speed
with the measurable speed of a segment of a
beam, which characterizes light ie cacao.

To take one only of the proofs, the earliest
and likewise the most accurate: when a beam of
light of wave-length ) (not too large) falls on a
metal from a vacuum, it expels electrons, which
have a distribution in speed extending up to a
maximum speed. This maximum speed e (like
the distribution in speed), is independent of the
intensity of the light, whereas the total number
of electrons expelled per unit time is proportional
to the intensity of the light. Moreover the
kinetic energy K (= ~~rn:v„') corresponding to the
maximum speed is a linear function of the
reciprocal of the wave-length of the light:

K„=Ag/A+As, (26)

h =A, /c (28)
~ Observations on the black-body spectrum form perhaps

an exception to this statement.

where A~ and At stand for constants of which
the second depends upon the metal, but the
first is a universal constant. All these facts are
well interpreted by assuming that the energy of
the light is concentrated upon corpuscles each
having a quantity equal to At jX, and by further
assuming that each electron which is expelled
has taken over the entire energy of such a
corpuscle. (The constant As is then interpreted
as the amount of kinetic energy which is con-
verted into potential energy as the emerging
electron surmounts a potential barrier at the
surface of the metal. ) Since X is inversely
proportional to v, it is thus being assumed that
corpuscle-energy is proportional to wave-train
frequency, as in Eq. (24); and the facts sustain
this idea. Further, we should have:

A /X=hv=h jX; A, =h . (27)

Here e stands for the phase speed of light in
@aero, which is unobservable; but profiting by
the lucky coincidence aforesaid we put c, the
measured speed of light isa cacao, for e:
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and indeed it is found from the experiments that
the quotient of A& by c has the same value as the
experiments on electron-diffraction give for the
constant denoted by h in Eq. (25).

Thus, the Eqs. (24) and (25) have both been
checked, but —strange to relate —not for the
same entities; one has been tested for light:, the
other for electricity. There is however a beautiful
phenomenon which has been well interpreted by
assuming both of the two for light, and therefore
is a test of the two assumptions interlocked. It
is, of course, the Compton effect, A beam of
x-rays (high frequency light) of known wave-
length is projected into a stratum of matter;
electrons emerge from the matter with high
speeds, from which their energy and momentum
can be determined; there also emerge "scattered
x-rays" of greater wave-length than the incident
beam. All the phenomena are wonderfully well

explained by assuming that elastic impacts occur
between corpuscles of light and corpusdes of
electricity —photons and free electrons; where by
"elastic impact" is implied, that energy and
momentum are both conserved by the pair of
particles participating in the impact, without
any loss or transfer to any other object; and
where the energy and momentum of the photons
are computed by Eqs. (24) and (25) (and the
relation vX=c) from the wave-lengths of the
x-rays. The emerging electrons are those which
are recoiling from such impacts, the scattered
x-rays are the rebounding photons of lessened

energy and momentum.
I quote the equations of the process, employing

relativistic instead of ordinary classical me-
chanics. ~ The symbols v, 3 refer to the incident
x-rays {photons before impact); i'„X' to the
scattered x-rays (photons after impact); u stands
for the speed of an electron after impact (before
the impacts the electrons have speeds which are
relatively, often negligibly small; we here neglect
them); P and 8 stand for the angles made with
the direction of the incident photon by those of

' As many physicists must have found out for themselves,
the attempt to make the equations look simpler and be
more easily solvable by using ordinary mechanics has
precisely the opposite e6ect from that desired. The theory
of the Compton eNect affords one of the cases where the
wisest policy is also the easiest.

the recoiling electron and the scattered photon
respectively.

Conservation of energy requires that the
energy of the incident photon, ki, be equal to
the sum of the energy of the scattered photon,
hv', and that of the recoiling electron, which
latter in relativistic mechanics is given by the
expression,

E=mc =
I mp/(1 —P"')ljc2, P=u jc (25A)

where ms stands for the rest mass of the electron.
(Ke need not bother to include potential
energy. ) Thus:

Conservation of momentum requires the fol-

lowing two equations, referring respectively to
the momentum-components parallel and perpen-
dicular to the direction of the incident photon,
in the plane common to the three directions of
incident photon, scattered photon, recoiling elec-
tron:

hv/c= (kv'/c) cos 8+Pmsu/(1 —P')&j cos P, (25C)

0= (hv'jc) sin &+I msu/(1 —P')~j sin p. {25D)

Eliminating g and u between these three
equations, we arrive at a relation between v', v,

and 8, which may immediately be translated
into the following relation of simpler aspect:

) ' —X = {h/mc) (1—cos 8). (25E)

This is a prediction of the wave-length which
should belong to the x-rays scattered at angle 8.
It is verified by experiment. Eliminating 8 and
v' between Eqs. (25B), (25C) and (25D), one
gets the corresponding relation between u, v,

and p. This may be translated into a prediction
of the energy which should belong to electrons
recoiling in the direction p; it too is verified by
experiment. Finally, there is evidence that when
an electron recoils in a direction g, a photon
rebounds simultaneously in the direction 8 which
is computed by eliminating u and i' between
Eqs. (25B), (25C) and (25D), and substituting
the given value of p into the equation thus
derived.

Such are the most conspicuous examples of
the evidence sustaining Eqs. (24) and (25).
Henceforth these two relations shall be taken
for granted in this article.
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PHASE SPEED, GROUP SPEED AND CORPUSCLE

SPEED OF ELECTRICITY AND MATTER

As I have already said a number of times,
frequency and phase speed are not observable.
There are special circumstances which enable us
to estimate them in the case of light, but these
are lacking in the cases of electricity and matter.
They are therefore of minor importance, or
perhaps of none at all; but people generally seem
to want to be told their values, so values have
to be assigned. From Eq. (24) we get E/h for
the magnitude of the frequency. Here E stands
not for the kinetic energy alone (an error easy
to fall into) but for the to&i energy, and indeed
for the total energy in the sense of relativity.
The relativistic expression for E would then be
(mc'+ U); m standing for the mass of the
corpuscles (depending on their speed) and U for
their potential energy. The frequency is the
quotient of this expression by h. For the phase
speed we then have the quotient of (mc'+ U) by
p, which is (c'/u+U/p). Since U involves an
arbitrary additive constant, both phase speed
and frequency are indeterminate to the corre-
sponding extent; but since both are unobservable,
this indeterminacy makes no difference. '

Returning to Eq. (7) and substituting from
Eqs. (24) and (25), we find:

g = —)P(d v/dX) =dE/dp. (29)

By the classical mechanics of material particles,
we have:

p=mu E=fmu'+ U, (30)

from which we derive at once the result

The speed of the corpuscles in a beam of matter
or electricity —atoms or electrons —is equal to
the group speed of the waves.

The same theorem is obtained from relativistic
mechanics, the required formulae being these:

E= mpc'/(1 —P') &+ U, p =mpu/(1 —P') &,

(31)E=c(mp'c'+P') &, (P =u/c).

s One often sees the phase speed equated to c'/u, an
expression obtained by setting U 0. It is dangerous to
use or remember this expression, as it looks like an approxi-
mation to the right-hand member of Eq. (12), which is
not the case at all.

PRINCIPLE OF INDEFINITENFSS

Consider again the beam of corpuscles of
uniform momentum, and the accompanying
sinusoidal wave train, with which the argument
started. At the risk of seeming absurdly repeti-
tious, I say once more that the corpuscles are
not concentrated at the wave crests, nor in any
other particular part of the waves; the phase of
the vibration at any particular point has nothing
whatever to do with them; it is only the ampli-
tude of the waves which is related to the concen-
tration of the particles, the two being propor-
tional to each other. Thus a plane-parallel
sinusoidal wave train, of definite wave-length,
uniform amplitude, and endless extent, corre-
sponds to a flock of corpuscles which all have
the same definite momentum but are uniformly
scattered throughout space.

The content of this last sentence may be
restated in a variety of ways. Here is another:
an endless sinusoidal wave train describes a
flock of corpuscles, with an absolutely definite
value of momentum but an absolutely indefinite
value of position.

What sort of a wave train, then, could describe
a crowd of corpuscles confined to a single very
limited region of space? The natural answer is: a
wave motion of which the amplitude, instead of
being uniform all over space, is everywhere zero
except within that limited region.

This answer however leads straight to a
paradox. Such a wave motion may be resolved
(by a well-known, highly-developed, and much-
employed mathematical technique) into an
infinity —or, in certain cases, a finite number —of
sinusoidal wave trains of suitably-chosen wave-
lengths and amplitudes. These however have
different phase speeds (in the cases of electricity
and matter). Therefore arises the result of which
I spoke in discussing the fate of a segment of a
beam of light passing through a dispersive
medium. The distribution-of-amplitude changes
as time goes on. We may have assumed that at
/=0 the amplitude difkrs from zero only in a
region of length L; but this cannot continue true;
at other instants of time, the region in which the
amplitude is other than zero must be broader
than L (perhaps, in special cases, narrower).

our wave picture is therefore unable to
represent a Rock of corpuscles which stays
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together forever within a strictly-limited volume
(whether this volume be supposed to stand still
or to move onward with uniform speed). Ana-

lyzing it further, we perceive the difficulty. The
sinusoidal wave trains of different wave-lengths,
into which our initial distribution-in-amplitude
was resolved, correspond to different values of
corpuscle momentum. They therefore correspond
to different values of corpuscle speed. Our wave
picture thus describes a situation, in which a
crowd of corpuscles is confined at t=0 to a
limited volume of space, but, the various cor-
puscles have various speeds, so that they run

away from one another and the crowd spreads
out in the course of time.

Moreover, the wave picture appears to be quite
unable to describe a situation in which a crowd
of corpuscles is confined to a limited volume of
space, and also to a limited range of momenta and
speeds. This is the paradox aforesaid. It might
easily be taken to mean that the wave model is
fundamentally incompetent. We can easily
conceive a cloud of corpuscles all having the same
speed and all located close together, and yet the
wave picture refuses to represent it. This seems a
fatal flaw of the wave theory. Heisenberg how-
ever took a startling way out of the dilemma
affirming in substance that what the wave theory
cannot describe, cannot exist. The conception of a
cloud of particles all having nearly the same
position and nearly the same momentum cannot
be transcribed into waves; therefore —according
to Heisenberg —it does not correspond to
anything in reality.

This is an illustration of the so-called "princi-
ple of indefiniteness, " or "principle of un-

certainty. "By carrying the reasoning further, it
can be shown that the more narrowly limited is
the region to which the corpuscles are confined,
the broader is the range of momenta which must
be postulated in order to save the wave picture.
It can further be shown that the product of the
range in position (the breadth of the region) by
the range in momenta is roughly constant. In
more customary phrasing: the product of the

~ More commonly designated as "principle of uncer-
tainty" or "principle of indeterminacy"; introduced into
theoretical physics by Heisenberg, who called it Unhe-

sthseitkekrprinsip. It is more extensive than the two
illustrations here given will suggest.

indefiniteness in position by the indefiniteness in
momentum is a constant. A rough sort of proof is
the following:

Turn back to Fig. 1, and consider a single
"beat" between two consecutive minima of
amplitude, imagining that all the other beats are
blotted out. This is a distribution in amplitude
describing a flock of corpuscles confined within
the region of length D between the extremities of
the beat. Repeating Eq. (4):

(32)

where X stands for either of the very-nearly-equal
wave-lengths of the two sinusoidal wave trains
whereof the overlapping produces the beat, and
hX for the difference between these wave-
lengths. D is the "indefiniteness in position, "
which denote by dx; and the corresponding
"indefiniteness in momentum" dp is the differ-
ence between the values of momentum corre-
sponding to the two wave-lengths. We thus
obtain:

D ap=Wap= (a&/ax)a(h/X)
= (X'/h)L) (hd li/)Et) =h, (33)

so that the product of the two indefinitenesses is
not only a constant, but is equal to the famous
constant h. Because of the approximations and
specializations made in this particular proof, we
cannot accept this result too literally; the general
conclusion is, that the product of the indefinite-
nesses is of the order of magnitude of h.

One more example of the principle must suffice
in this place. Imagine a beam moving parallel to
the x-direction, and of endless extent in all
directions: that is to say, both the concentration
of the particles and the amplitude of the waves
are independent of x, y, and z. Now confine this
state of affairs to the region x&0, by supposing
the plane x=0 to be occupied by an opaque
screen interrupted only by a narrow slit of
width D, the central line of which runs along the
y-axis. What exists in the region x&0?

According to the simple corpuscular picture,
the particles for which $D &z & —qD will traverse
the slit and continue onwards undeflected, while
all the others are stopped by the screen. There-
fore in the region x&0 there will be a broad flat
beam of thickness D, limited by the planes
z= $D and z= —)D. But according to the wave
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picture, the beam will broaden steadily after it
emerges from the slit. This is one of the phe-
nomena of diffraction, observable in the cases
of water waves and sound waves, and derivable
from the mathematics of the wave theory. io

The wave picture thus describes a broadening
beam. This, in the corpuscular theory, would be a
stream of particles possessing not only momen-
tum along the z-direction, but also a distribution
of transverse momenta along the z-direction. The
undulatory theory seemingly cannot be fitted to
a beam of finite breadth consisting of particles
all moving parallel to one another. Again it will

be affirmed (following Heisenberg) that what the
waves cannot describe does not exist. A limitation
on the breadth of a beam of electricity, matter, or
light, entails the arising of transverse momenta
among the corpuscles of the beam.

The distribution of intensity in the broadened
beam is usually studied (in the case of light) by
observing the intensity on a screen placed parallel
to the screen containing the slit, at a distance
from the latter many times as great as the wave-
length. There are fringes parallel to the z-

direction, with a central maximum of intensity
at z=O, and symmetrically-placed maxima of
first, secold and higher orders, with minima
between. It is well known that the narrower the
slit, the more this pattern of maxima and miniina
widens out. Now all the particles lie within the
sht as they pass the plane x=O, so that the
breadth D of the slit may be regarded as the
initial "indefiniteness" dz of the ordinate of
the corpuscles. Similarly the breadth of the
diffraction pattern on the distant screen may be
regarded as a measure of the "indefiniteness"
d,p, which must be assigned to the transverse
momenta p, of the corpuscles, in order to preserve
the wave picture. One of these two indefinite-
nesses varies inversely as the other, a fact which
recalls Eq. (33). By making certain approxi-

'~ In earlier allusions to diffraction patterns, I spoke for
convenience as though they occur only when separate
beams overlap. The diffraction pattern of a single slit
may be explained in similar fashion if one wishes, though
the convenience of the procedure is doubtfu1 in this case.
One imagines the wave front divided into strips parallel to
the axis of the alit but much narrower than D, and envisages
the overlapping of these strips as they simultaneously
advance and expand.

mations, a relation resembling Eq. (33) can be
derived, as follows:

Let us evaluate the transverse momentum
which a particle must have, if from the slit it goes
toward either of the minima adjoining the central
maximum on the distant screen. (Actually there
would be no particles going in just these direc-
tions, since the intensity at the minima is zero;
but there will be corpuscles moving in directions
differing from these by infinitely little. ) Denote
by 8 the angle between the lines drawn from the
slit to the central maximum and to either
minimum. The former of these is the x-axis. As
for the latter, denote by p„p. the x and z
components of the momentum of a particle
travelling along it; as one readily sees:

P,/P. = tan 8.

The angle 8 conforms to the equation:

sin 8=XjD,

{34)

(3&)

which is proved in all textbooks of optics. "
If now we suppose that the ratio of wave-length

to slit-width is so small that sin 8 and tan 8 may
be replaced by 8, and if we assume the funda-
mental interrelation of Eq. (25) between wave-
length and momentum of the undiffracted beam,
we get:

u If we divide the wave front in the slit into strips as
suggested in the previous footnote, these strips may be
paired off in such a way that the wavelets proceeding
along the direction 8 from either strip of any such pair are
completely annulled by those proceeding from the other
of the pair, before they reach the distant screen.

The difference between the values of p, corre-
sponding to the two first-order minima which
bound the central fringe on either side is thus
equal to 2h/D. If we agree to call this the
"indefiniteness in transverse momentum" hp„
we obtain:

Dhp, = lid P, =2h. (37)

This seems to differ from Eq. (33) by the presence
of the factor 2. But, as before, we must not take
this factor seriously. Had the argument been
carried through with respect to the second or
third-order minima instead of the first-order, we
should have obtained 4 or 6 in place of 2. The
sharpest permissible statement is, that the
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product of the indefinitenesses of z-coordinate
and z-momentum is of the order of magnitude of
h. The "principle of indefiniteness" is itself
indefinite. "

Part of what has gone before has been devoted
to phenomena which wave model and corpuscle
model can be made to fit equally well: refraction
at a surface, bending of a beam as it traverses a
field of force. Part however has been devoted to a
group of phenomena —those of diffraction—
which only the wave model naturally fits; when
both the pictures are employed, the corpuscles
must be subordinated to the waves, in ways
which have already been suggested. There is yet
another group of phenomena for which the wave
model is superior, and the corpuscles must be
constrained to adapt themselves accordingly;
these we will now take up.

REFLECTION AND TRANSMISSION OF CORPUSCLES

AND WAVES

M/hen a beam of light passes from vacuum

(say) into glass, the passage is not attended
solely by refraction, but also by reflection of a
portion of the beam. The reflection is not
irregular nor random, but is determined by well-

known laws. It is diScult, if not impossible, to
produce any reasonable explanation of these by a
simple corpuscular model. Newton confronted
this di%culty, and emphasized it by many clear
and striking arguments. I should like to quote a
few of his phrases, out of place though seven-
teenth-century words may seem to be in an

article on quantum mechanics: "The cause of
reflection is not the impinging of light on the
solid or impervious parts of bodies, as is com-
monly believed. . . . First, in the passage of
light out of glass into air there is a reflection as
strong as in its passage out of air into glass,
. . . and it seems not probable that air should
have more strongly reflecting parts than glass.
But if that should possibly be supposed, yet it
will avail nothing; for the reflection is as strong
or stronger when the air is drawn away from the
glass (suppose by the air-pump in~ented by
Otto Guerietts. . .) as when it is adjacent to it.

's I have given a couple of additional illustrations in

Rev. Sci. Inst. 4, 188—192 (1933)."Newton's spelling!

Secondly, if light in its passage out of glass into
air be incident more obliquely than at an angle
of 40' or 41' it is wholly reflected, if less obliquely
it is in great measure transmitted. Now it is not
to be imagined that light at one degree of
obliquity should meet with pores enough in the
air to transmit the greater part of it, and at
another degree of obliquity should meet with
nothing but parts to reflect it wholly. . . ."
There is also the dependence of reflecting-power
on color, which LNewton continues) makes it
possible to set up an experiment in which a beam
of red light is partially transmitted on arriving
from glass at a boundary between glass and air,
while a parallel beam of blue light is totally
reflected; and "why should the blue wholly
impinge on reflecting parts, so as to be all

reflected, and yet the red find pores enough to be
in a great measure transmitted'"

After these and many other cogent illustra-
tions, Newton concludes: "This problem is
scarce otherwise to be solved, than by saying
that the reHection of a ray is effected not by a
single point of the reflecting body, but by some
power of the body which is evenly diffused all
over its surface. . . ." This is an admirable
statement of a portion of the wave theory. To it
we should add, that this "power" evenly spread
over the surface of the body acts upon a wave
front evenly spread over the cross section of the
beam. Instead of imagining corpuscles of light
bouncing back from atoms of the matter beyond
the boundary, it is expedient to imagine a
homogeneous wave front, or better yet a regular
sequence of wave fronts, reflected from a
homogeneous surface coinciding with the bound-
ary of the reflecting body, Having computed the
reflection in this manner, we can later introduce
the corpusc)es, making them distribute them-
selves in the manner prescribed by the squared
amplitude of the waves.

To go over to the case of beams of electricity:
we have seen that the analogue to a refracting
surface is a surface dividing two regions of
different electrostatic potential. This would be a
potential discontinuity. Actually, it is not
necessary to assume a change of potential
infinitely sudden, but merely one which is
comprised in a distance small compared with the
wave-length of the waves. Suppose however (for
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convenience) that there is a discontinuity at the
plane @=0, the potential being lower by V
electrostatic units on the right than it is on the
left. Imagine a stream of electrons of uniform
momentum p and kinetic energy U advancing
along the axis of x, from the left; and keep also in
mind the concomitant picture of a beam of plane
waves of wave-length 0/p„ their wave fronts
parallel to the plane x = 0.

The unmodified corpuscle model leads to a
simple definite prediction. Either U is greater
than e V, in which case the electrons will proceed
across the discontinuity, and continue their
courses on the right-hand side, though with
diminished kinetic energy (U—e V). Or else U is
smaller than e V, in which case the electrons will
not be able to cross the discontinuity, and it is
natural (though not inevitable) to assume that
they will be reflected back to the left with
reversed momentum and unchanged kinetic
energy. We then have either 100 percent trans-
mission or 100 percent reflection, and a definite
rule for deciding which occurs. The incident beam
will never be divided into a transmitted part and
a reflected part.

Were this to be the case, we should have to
infer that the accompanying waves are always
either totally transmitted or totally reflected.
However, our general experience with waves—
water waves, sound waves, light —suggests that
this is not a plausible conclusion. Total trans-
mission of the otherwise-known types of wave
motion never occurs across a boundary. Total
reflection, it must be conceded, does occur, but
not (to my knowledge) with normal incidence.
Division of the incident beam into a reflected
part and a transmitted part is the usual rule.
Were this rule to extend to the waves associated
with electricity, we should be obliged —in carry-
ing out the policy of subordinating corpuscles to
waves —to infer that even when U is less than
e V, some particles will cross the potential
discontinuity; even when U is greater than eV,
some will fail to cross it.

The appeal to direct experiment cannot be
made in this case, as it was in discussing diffrac-
tion. It is beyond the powers of experimental
physicists to make a potential drop so sharp and
sudden, that it is confined to a space much
smaller than the wave-length of an ordinary

electron beam (this being about 10 ~ cm for the
slowest electrons of which it is possible to form a
reasonably nearly uniform stream). However,
many phenomena of metals —such as the
thermionic effect and the photoelectric effect-
are interpreted by supposing that in the vicinity
of the surface of any metal, the potential changes
considerably over distances of the order of 10 ~

or 10 ' cm, and through this zone of rapidly-
varying potential all the electrons emerging from
the metal must succeed (or fail) in escaping.
Moreover there is a well-supported theory that
the nucleus of any atom is surrounded by a region
in which the potential changes considerably over
distances of the order of only 10 " cm; and
across this region, the charged particles proceed-
ing from the nucleus must make their escape (if
the atom is radioactive) or else the impinging
charged particles must make their entry (if the
nucleus is transmuted by impact of alpha-par-
ticles or protons). These cases are capable of
afFording indirect tests of the wave theory of
reflection.

The theory must however be formulated more
precisely before such tests can be applied. In
general, the feature of a wave theory which
controls the laws of reflection and transmission is
its set of boundary conditions. These may be
chosen because they seem plausible, but ulti-
mately it is the agreement of the observed with
the predicted laws which justifies the chosen set.
Thus, in the electromagnetic theory of light, it is
postulated that when light-waves pass from one
medium to another with a different dielectric
constant, the following quantities suffer no
discontinuous change at the boundary: viz. , the
component of electric displacement perpendicular
to the boundary surface, the component of
electric field strength parallel to this surface, all
the components of magnetic field strength. These
conditions result in hypothetical laws of reflection
which are found to agree with the empirical
laws: for instance, with the observed relation
between angle of incidence and percentage of
light reflected.

The waves of electricity and matter must
likewise be provided with boundary conditions,
which will describe their passage across abrupt
potential drops or potential rises, and will be
tested ultimately by the service which they
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render in interpreting experiment. At this point
I will give only a few of the consequences of those
which have been adopted, leaving the conditions
themselves unstated (they will be stated along
with the wave equations).

In the case already specified —uniform po-
tential (V0, say) from —~ to z =0; uniform but
lower potential, Vp —V, from z=0 to + ~; a
potential discontinuity of V electrostatic units at
x=0; a beam of electrons of kinetic energy U
coming along the z-direction from the left—the
prediction is partly the same, partly different
from that of the pure corpuscle theory. If
U&eV there is total reflection, as formerly
predicted; if U&eV there is not total trans-
mission, but a division of the beam into a
transmitted fraction and a reflected fraction.
Now modify the case by supposing the potential
equal to V0 from —~ to @=0; equal to Va —V
from @=0 to a=a; and again equal to Vp from
x=e to z=+~; so that the shape of the
potential curve suggests a trough of depth V and
breadth e excavated in a horizontal plain. It now
follows from the boundary conditions that there
is cot total reflection when U&sV. Part of the
train of waves passes through the potential
trough and continues its course towards positive
infinity, despite the fact that the potentialMrop
on the "near side" of the trough —at @=0—is
so great that all of the electrons should be stopped
by it. Subordinating the corpuscles to the waves,
we are now obliged to declare that electrons of
kinetic energy U can traverse a sudden potential-
drop greater than U/e, if farther along there is a
compensating (or only a partially compensating)
potential-rise. Not every electron of a homo-
geneous beam can achieve this, but only a
certain fraction of the total number; in other
words, there is a certain probcNh/y of traversal or
transmission. This probability is the transmission
coefficient of the trough for the waves, the ratio
of their squared amplitudes to right and to left of
the trough; it is a function of V and a, and of U
(or )) and it is determined by the boundary
conditions.

The reader will perhaps be more readily
reconciled to this singular conclusion, if I
remind him that a similar quality of light has
been known for many decades. Let a beam of
light be caused to enter a glass prism in such a

direction, that when it arrives at the far side of
the prism it is totally reflected; then if a second
piece of glass is brought up against that side,
leaving a very thin but yet appreciable air film

between the two, the totality of the reHection is
suspended and a portion of the light goes inward
through the second glass. This is, of course, only a
striking special case of the well-known rule
(enounced by Newton) that when a beam of light
is sent against a transparent film or stratum
between two media (which may or may not be
the same, but must be diflerent from the
substance of the film) the fraction of light
transmitted depends upon the thickness of the
stratum and the wave-length of the beam.

WAVE EQUATIONS

We have now passed the midpoint of this
article, and yet there has been no allusion thus
far to a wave equation. This must be very
annoying to mathematicians, for it is their
custom to define a "wave theory" by specifying
the differential equation to which they expect the
phenomena to conform. In favor of their policy it
can be argued that many of the quantitative
tests of the theory, by which it is eventually to
be justified, are possible only when the wave
equation and the boundary conditions are
assigned. Against their policy it may be said that
all of their equations have developed out of the
eighteenth-century efforts to find descriptions for
vibrations of strings and waves on the sea, by
way of the nineteenth-century triumphs in
describing vibrations and wave patterns of sound
in air and elastic distortions in solids. Some
people would be glad to blot out all these
memories, but to some they are essential to make
the theories vivid. The trend toward perfect
abstraction, which for several years has been
dominant in quantum mechanics, is welcome to
the ones; but the others crave to retain, for as
long as possible, as many as possible of the links
with the past. For the sake of the class of these
last (to which, as the reader must realize already,
I belong) I have retarded as far as possible the
advent of the wave equations.

The plural seems odd in the foregoing sentence,
but it is desirable, for there are several so-called
wave equations of differing aspects employed in
various problems. One feels that all of them
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should be special cases (or accidental imitations)
of a single universal wave equation, and much

contemporary exposition is phrased as if this
were certainly true; but the proof as yet is
lacking.

The simplest of all wave equations is the one-
dimensional example which is this:

8'f/8P =e'(8'f/8x'). (38)

This is employed in such cases as that of trans-
verse waves running along a wire stretched along
the x-axis, and sound waves travelling through
air with plane wave fronts perpendicular to the
x-direction. In these cases f stands for transverse
displacement of the string and condensation of
the air, respectively.

Any expression of the type appearing in Eq.
(1) is a solution, provided that the product of the
constants i and ) is equal to e:

f=A cos 2w(it —x/A+a); iX=s. {39a}

Thus any sine-wave of whatever frequency is
compatible with Eq. (38), but to each frequency
there corresponds a prescribed wave-length,
since the phase speed is fixed by the factor on the
right of Eq. (38).

Another type of solution is obtained by chang-

ing the minus sign into a plus sign in Eq. (39a):

f=A cos 2~(it+x/)+a); vX=s. (39b)

Another sort of solution is obtained by as-
suming f to be the product of a function of x
only and a function of t only, and proceeding in
the manner known as "integration by separation
of variables. "Putting +{x)@(t)for f in Eq. (38),
we get:

~+"{x)/+{x)=4 "(t)/4 {t) {40)

The left-hand member is independent of t, the
right-hand member independent of x. Each
therefore must be equal to a constant, to the
satec constant, which I denote by —C' (employ-
ing an intrinsically negative constant, in order
that the solutions shall be trigonometric func-
tions). This gives a pair of differential equations
for 0 and @ respectively:

y"{t)= —C y(t), e"(x}= —fl 'C%{x) (41)

whereof the solutions are:

g(t) =A cos 2~(vt+a);

e(x) =8 cos 2x(xjX+P) (41a)

f=const. cos 2~(x/X+P) cos 2x. (vt+n) (42)

and i, X, C and s are all interconnected by the
relations

C'= (2~v)'= (2+v/X)'; r) =e, (43)

so that i and 'h signify frequency and wave-
length, as in the other types of solution.

The reader will surely recognize that Eq.
(39a) describes a sine-wave progressing in the
positive x-direction, Eq. (39b) a similar wave
advancing in the negative direction, and Eq. (42)
a stationary distribution of amplitude or
"stationary-wave pattern" which is evidently of
the class of interference patterns and diffraction
patterns of which I spoke on earlier pages. As a
matter of fact, the right-hand member of Eq.
(42) is obtained by adding expressions such as
(39a) and (39b); it is the interference pattern of
two wave trains of equal wave-length moving in
opposite directions; it is essentially the right-
hand member of Eq. (2), the angle there called
8 being given the value s/2.

Thus far it has been implied that the string or
the air is of infinite extent in the x-direction. The
chief importance of Eq. (42) lies in the fact that
it is appropriate to a string of finite length or a
stratum of air of finite breadth, with boundary-
conditions at its ends. Say for instance that we
have a string of length L clamped at both
ends, so that fmust perpetually be zero at (say)
x=O and x=L. These conditions permit such
motions as are described by Eq. (42), when
certain specific values of X are chosen: these are
the values which are quotients of 2L by the
integer numbers, ms. , 2L„2L/2, 2L/3, and so on.
These are the "resonance wave-lengths" of the
bounded string (or air-chamber), and the corre-
sponding values of v/) are the "resonance
frequencies. "

We have already employed expressions like
those in Eqs. (39a) and (39b) to describe
homogeneous beams of matter and electricity
travelling through field-free space, and ex-
pressions like that in Eq. (42) to describe
diffraction patterns. Since therefore the solutions
of the wave equation (38) are of value in
interpreting electricity and matter, it is natural



KARL K. DARROW

to suppose that these may be fully governed by
an equation like (38).What more can be deduced
from such an equation?

At the very outset there is a contrast with the
cases of waves in air and vibrations of strings.
With a string of definite tension and density, or
with air of definite pressure and temperature, v

is a fixed quantity; and sine-wave trains of any
frequency are compatible with Eq. (38)—that is
to say, they are physically possible —the wave-
length always being equal to the quotient of the
frequency by the fixed value of rt. This is ex-
pressed by saying that phase speed is inde-
pendent of frequency and wave-length. Such is
not the case with the wave trains representing
matter and electricity, for which the phase speed
varies with wave-length in the manner prescribed
by Eqs. (22) to (25). We cannot properly express
this by saying that in Eq. (38), o must be re-

garded as a variable; for we are not (as yet)
supposing that e varies with x or t. We are obliged
to say that when the wave equation (38) is
applied to beams of matter or electricity in field

free space, any value of v is permissible, but to
each value of o there corresponds only one
solution of the type {39a),with a specific value of
frequency.

Remembering the expression {from Eq. (22))
for phase speed of waves associated with a beam
of corpuscles of energy E and momentum p, we

may write:

a~f/at ={E/P)s(a2f/ax); v=E/h, ), =h/P, (44)

the equation on the left being meant as the
tentative wave equation for such a beam, while

the others are to remind us that in the solutions

we are not free to choose any pair of values of v

and X—not even any pair of which the product is

(E/p) —but must use the particular pair E/h
and h/p. Thus, the only solution of the form

(39a} is this:

f=A cos (2rr/h) (Et —px+u}. (45)

Also the only solution of the form (42) is this:

f=+(x}e(t)

=D cos (2x/h}{px+b) cos (2x/h}(Et+a). (46)

Here +(x) is the solution of a differential equa-
tion which I repeat from Eq. (41):

ci'4'/Bx +tt 'C'4' = cl'0'/Bx'

+ (p/E)'(2 E/h}'0
= a~+/BH+(2~p/h)'+ =0 (47)

in the integration of which it has been assumed
that p is constant.

Thus far nothing of importance has been added
to our concepts by these equations. The im-
portant developments begin when we go over to
the case of a beam traversing a space which is not
field free, so that the momentum of the corpuscles
changes from point to point. Assume the
potential gradient to be parallel to the x-direc-
tion, so that the beam will not be deflected and
we can continue to use one-dimensional equa-
tions.

Now E and v are still constant throughout the
beam, but p has become a function of x. We
continue to accept the wave equation (44), but
for the time being we neglect progressive waves,
confining our attention to solutions of the type
+(x)p(t)—solutions in which the variables are
separated, and which describe stationary wave
patterns. The function @{t) is still of the form
assigned to it in Eq. {46), since E is constant,
and the differential equation in Eq. (41) which
defines it has not been altered; it is still sinusoidal
and of frequency E/h. The function %(x) has
changed, for it is a solution of the differential
equation (47) in which p has ceased to be a
constant.

The next step consists in replacing p by its
expression in terms of E, the total energy, and V,
the potential energy" of the corpuscles; in
nonrelativistic mechanics this is L2m(E —V)jl
(s~ Eqs. 30).

So we come to the first of SchroeChnger's uence

equations:

a'e/~++(8 'm/'h )(E—V)e =0. (48}

Here E is a constant, V a function of x
depending on the field of force which the beam is
traversing.

'4This is a change from the previous meaning of V,
which was electrostatic potential.
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ScHRGEDINGER s WAvE EQUATIQN& ITs PRoPER
VALUES AND THE STATIONARY STATES

OF ATOMS

The striking feature of the differential equation
(48) is, that for certain particular values of E its
solution (or solutions) have certain distinctive
qualities. For instance, it happens with certain
types of function V(x) that there is a discrete set
of values of E, such that if any one of them be
substituted into Eq. (48), there is a solution
which is everywhere single-valued, bounded,
continuous, and has a continuous first derivative;
while if any value of Enot belonging to the set is
placed in Eq. (48), every solution increases
without limit as some (finite or infinite) value of x
is approached. With other types of function V,
there is a continuous range of values of E
extending over a certain interval, and outside of
this interval there is a discrete set of values, such
that the solution of Eq. (48) possess' the
foregoing qualities if E lies in the interval
aforesaid or belongs to the discrete set, and
otherwise does not. With yet other types there
is no discrete set; thus with V=constant any
value of E yields a solution of the stated type,
except values less than V which are {or, till quite
lately, have always been considered) physically
meaningless.

Thus if we conceive certain kinds of fields of
force, and corpuscles moving in them attended
by such wave trains as have been described, we
are obliged to admit certain distinctive energy
values and frequency values. These are distinc-
tive in the sense, that stationary wave patterns
can arise in which the amplitude (which is the
function 4'{x)) is afflicted neither by discon-
tinuities in itself, nor by discontinuities in its
slope, nor by becoming infinite at any point of the
field. They are known as "proper values" or
"eigenvalues. "

It was Schroedinger's idea that these are to be
identified with the energy values of the stationary
states of atoms and molecules. For any type of
molecule or atom a model is to be constructed,
consisting of corpuscles in a field {for instance, of
electrons in an electrostatic field) such that when
the potential-energy function corresponding to
the field is inserted into some such equation as
(48), the proper values of E shall coincide with

the observed energy values of the stationary
states.

The initial triumphs of this idea were im-
pressive and convincing. Thus, the stationary
states of the hydrogen atom (as deduced from its
spectrum) have energy values which conform
approximately with the proper values of the
three-dimensional Schroedinger equation which
follows:

(
B'4 B'4 B'4' 8s'm—+—+—+ (E—V) =0
Bx' By' Bs'

V= —e'/{x'+y'+s') I (49)

It is evident that this choice of the function V
corresponds to the picture of an electron in the
inverse-square electrostatic field of a stationary
point charge +e at the origin of coordinates —in
other words, to the customary model of the
hydrogen atom. Not only is the approximation
very close; it can be converted into exact agree-
ment (within the narrow limits of experimental
uncertainty) by improving the theory in three
ways: (a) by taking into account the motion of
the nucleus which bears the charge +e; (b) by
substituting for Eq. (49) the wave equation
based on the relativistic, as distinguished from
the classical, relation between E and p; (c) by
introducing the conception of "electron-spin, "
i.e., conceiving the electron and the nucleus as
point charges possessed of magnetic moment.
Further, there is impressive agreement with the
predictions of this theory about the influence of
electric and magnetic fields on the stationary
states.

It would be an unjustifiable use of our limited
space to make a further list of the successes of
Schroedinger's wave equation. It would also be
unjustifiable to reproduce the methods of
determining the proper values and the corre-
sponding solutions or "proper functions" of the
Schroedinger equation, for the several cases—
that is to say, for the several choices of the
function V—which have proved both mathe-
matically manageable and physically valuable.
Some of the simplest are given in my article
8'ave-Mechanics, and the others may be found in
any of several treatises; I refer in particular to
E. C. Kemble's contribution to this Journal. " I

'4 E. C. Kemble, Rev. Mod. Phys. 1, 157 (1929).
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will quote a single example, for the sake of
having something definite to look at; it shall be
the case V= const. x', that of the "linear
harmonic oscillator. "

THE LINEAR HARMONIC OSCILLATOR TREATED
BY THE METHOD OF SCHROEDINGER

Let the field of force be such that a corpuscle
(of mass m) experiences a force driving it
towards the plane x=0 and proportional to its
distance from that plane. Denote the force by
-k'x, the potential-energy function by $k'x'.
As everyone knows, the corpuscle makes sinu-
soidal oscillations with a frequency vp-—k/2~m&,
or rather it would make such oscillations, if it
were not subordinated to the attendant waves.
Eq. (48) becomes:

8%/Bx'+ (Sx'imp/k') (E—2r'tnvp'x') +=0 (50)

and by a simple change of variable Iq=x
X2~(m»/a) &]:

aP+/aqP+(C- qP)+ =0; C= 28/kvp. (51)

This is solved by putting for q a series of the
following type:

O=e-&&' g a.q". (52)

Substituting this into Eq. (51); grouping all of
the terms involving the same power of x; and
equating each of the groups separately to zero,
we arrive at this set of equations:

a,+p/a„= {2n+1—C)/(m+1) (m+2);
m=0, 1, 2, 3 . {53)

Evidently, if C is an odd integer, the chain of
coefficients in Eq. {52)comes to an abrupt end at
that value of e which is equal to $(C+1), and
the solution of Eq. {51) consists of a finite
number of terms; but if C has any other value
than that of an odd integer, the series goes on
forever. In the latter case, + is infinite at x= ~;
in the former case, 8' is finite at x= ~ and every-
where else, it is said to be "bounded. "

This illustrates the general statements of the
foregoing pages. The distinctive values of E
corresponding to the odd-integer values of C are
the odd-integer multiples of $kvp,

E,= (s+$)kvp, s=0, 1, 2 .. (54)

These are the "proper values" of the wave
equation with the specified potential-energy
function, the "permitted energy values" of the
model. The corresponding proper functions are
obtained from Eq. (52); they are commonly
written:

the symbol H, standing for the so-called "Her-
mite polynomial of order s," which is the
summation appearing in Eq. (52), with the
coefficients adjusted according to the rule stated
in Eq. (53), and ending at the term for which
% =S.

This "case of the linear harmonic oscillator"
occupies a peculiar position in quantum mechan-
ics. It possesses the one great advantage of ex-
treme simplicity, to which is due its prominent
position in all elementary expositions. En
revanche it suffers from various disadvantages.
The very simplicity of this oscillator makes it un-
typical. It is oneAimensional, whereas the atom
models which have been most successful in
accounting for the properties of matter are three-
dimensional. Classical theory and quantum theory
coincide in prescribing that it should emit the fre-
quency vp defined before Eq. {50), whereas the
success and prestige of the new mechanics is de-
rived chiefly from atom models (that of hydrogen,
for instance) for which classical theory predicts one
set of frequencies and quantum theory another,
and it is the latter set which is verified by experi-
ment. Moreover it is well known that atom-
models and molecule models are constructed
from electrified particles which attract or repel
one another with inverse-square forces, and the
student may ask of what use it is to discuss a
particle attracted by a force which varies directly
as its distance from some fixed point. To this
question the answer is, that in (for instance)
a diatomic molecule such as Hp or Clp, the two
nuclei and the several electrons are apparently so
arranged that each of the nuclei has a position of
equilibrium, and when either of them is dis-
placed by a little from its equilibrium position the
resultant of the various forces acting upon it is to
first approximation a force of precisely that
character. This statement is however true only to
first approximation; in general, the function
V(x) comprises not only a term $k'x', but others
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with higher powers of x; and these entail new

frequencies, by which the quantum theory can
be te'sted. This is the case of the "anharmonic"
oscillator, of which the case of the harmonic
oscillator is a limiting subcase, of relatively
minor interest.

In applying quantum mechanics to atoms, the
art of choosing the wave equation is of the highest
importance. I say "art" intentionally, since the
universal and fundamental principle —if such a
one there be—is not yet ascertained. One of the
most generally-acceptable of the prescriptions
will be given in the closing section of this article.
It must suffice at this point to mention (what the
reader may already have noticed) that the pre-
scription embodied in {48)cannot be applied as
it stands to all of even the very simplest cases
with which quantum theory purports to deal.
Take for instance the "rigid rotator, " familiar
and valuable in the theory of molecules. In its
simplest form it consists of two rigid spheres
maintained at a fixed distance apart, and revolv-
ing around an axis perpendicular to the line of
centres and intersecting this line at its midpoint.
The accepted wave equation for this case" is the
following:

B'O' B'4 B'0' 8~'EA—+—+—+ 4=v'+
Bz' By' Bs' k'

8x'EA
+=0. {M)

k'

Here A stands not foi: the mass but for the
moment-of-inertia (about the axis in question)
of the system. (V has vanished, because the po-
tential energy of the system is constant and may
be put equal to zero. )

Though in Eq. (56) the combination of deriva-
tives symbolized by V'4' (one of the customary
symbols for this combination; another is d%') is
written out in Cartesian coordinates, it is ex-
pedient to employ spherical coordinates in deal-
ing with the rigid rotator, and also with the
electron revolving in a central field of force. These
are illustrations of the rule that a particular
choice of coordinates may be of great practical
importance; in the foregoing cases the wave equa-
tion when expressed in Cartesian coordinates is

cumbrous and difficult to solve, but when it is
translated into spherical coordinates the requi-
site procedure is fairly simple. "

Finally I must not omit to say that accurate
wave equations must be based on relativistic
instead of classical mechanics, and must be ad-
justed to allow for the spins of electrons and
nuclei.

IMPLICATlONS OF THE SYMBOL 4'

Many probably find it disconcerting that no
name has been attached to that which the symbol
0' denotes; neither displacement, nor condensa-
tion, nor electric field strength, nor any other.
These I will remind that many of the successes of
the wave theories of sound and light are not in
any way dependent on the fact that the function
which figures in their wave equations is called
condensation in the one case, electric {or mag-
netic) field strength in the other. The explanation
of diffraction and interference of sound or light is
based on (a) a suitable wave equation, in which
the dependent variable is denoted by any con-
venient symbol, and {b) a relation between the
squared amplitude of the dependent variable
and that-which-is-observed, loudness of sound
and brightness of light, respectively. To explain
re8ection and refraction at a surface of discon-
tinuity, it is necessary to have in addition (c) a
set of boundary conditions. When the wave
theory of sound or light is "verified" by observa-
tions on diffraction, interference, refraction or
reflection, it is the combination of the wave equa-
tion (a) and the relation (b) and the boundary
conditions (c) which is verified. True, in the caen
of sound and light the specific form of the postu-
lates has been suggested by pictures of the de-
pendent variable as condensation and field
strength, respectively. The same postulates might
however have been derived from other pictures,
or from none at all. When in the middle of the
nineteenth century the elastic-solid aether was
in fashion, it supplied the postulates (a) and (b)
in the same form as the electromagnetic theory
now provides them. The diffraction patterns of
light thus do not speak for either of these con-
ceptions against the other, but solely for the
wave equation and for the relation between

aa Wme-Ncchweics, pp. 691-692 '~ Waec-Mcckosws, pp. 682-686, 691-692.
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squared-amplitude and observed intensity which
are compatible with both.

In the wave theory of matter and electricity
we have the postulates without the picture. The
lack of a picture has not precluded the invention
of a wave equation, a relation between squared
amplitude and that-which-is-observed, and a set
of boundary conditions —the formulation, that is
to say, of as much of a wave theory as it is pos-
sible to test by experiments on diffraction and
reflection.

The significance of 4' is therefore wholly con-
tained in these statements:

(a) 4' is the solution of one or another of cer-
tain wave equations with certain restrictions,
examples of which have been given.

(b) The square of the amplitude of + is propor-
tional to the number-per-unit-volume of cor-
puscles. (This statement will presently be re-

phrased. )
(c) At a surface of potential-discontinuity, 4'

and its gradient are continuous.
It must of course be admitted that in the

theories of light and sound, there is incontrovert-
ible reason for giving the names of field strength
and condensation to the solutions of the wave
equations. In observing sound, it is quite possible
to perceive (e.g. , with a revolving mirror) the
actual vibrations of solid bodies whence the
sound waves stream through the air, and possible
also to calculate the speed of sound correctly
from the elastic constants and the density of the
medium. With light there are various powerful
arguments (for instance, the agreement between
the speed of light in vacuo and the ratio of the
electrical units} for deeming that it is of the same
nature as the familiar electrical waves of which
the field strength and the frequency are observ-
able. From the physicist's point of view, the wave
theory of electricity and matter is inferior in this
respect to those of sound and light. It seems likely
that the inferiority will be permanent.

Postulate (b} will now be restated in the cus-
tomary way. Hitherto I have been writing the
solutions of such differential equations as (41)
in such forms as {41a);that is to say, as sinusoidal
functions Ccos (nt+y}, with C and y standing
for the constants named amplitude and phase
angle. The complex expression,

A exp {int) = {R+iS)exp {int)
= (R+iS) (cos nt+i sin nt) (60)

is a pair of such functions, one with and one
without the factori. They have equal amplitude
(R'+S') &; the radicand may be written as the
product of (R+iS) by (R—iS), that is to say, of
A by its conjugate A~. (Mathematicians will

object that a superimposed bar instead of a star
is commonly used in mathematics for a conju-
gate; but in physics it signifies an average. ) Their
phase angles differ by 90', but this is not im-
portant in quantum mechanics. If therefore we
insert the complex expression A exp (int) into a
differential equation such as {38), we are in
effect inserting a sine-function of squared ampli-
tude AA*. Postulate (b) then takes the following
form:

In combining mate theory and corpuscle theory,
the zoave function 4' and the concentration N of
the corpuscles are related as follouts:

(61)

Ostensibly this proportionality might be con-
verted into an equation by multiplying either
side with some constant factor, but such a step
would be futile and misleading. It is affirmed
merely that at different points of a particular
wave train or diffraction pattern or stationary
wave pattern, the values of ++* stand to those
of N in a constant ratio. Nothing is affirmed
about the magnitude of this ratio, nor about any
relations between its values for different wave
trains or different patterns.

Another of the difFiculties peculiar to the wave
model now makes its appearance. When the
relation between squared amplitude and concen-
tration of corpuscles was first introduced in this
book, the reference was to infinite or at any rate
to very long wave trains, associated with clouds
of very many (non-interacting) corpuscles spread
uniformly through the train. Concentration of
particles was then a permissible concept. Lat-
terly, however, we have been considering wave
patterns in peculiar force fields, designed for
representing atoms; for example, the inverse-
square central field proposed for the hydrogen
atom. It is not permitted to suppose that there
are enormously many corpuscles in such a field;
for the hydrogen atom, we are obliged to content
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ourselves with a single electron for the entire
wave pattern. The right-hand member of Eq.
(61) now is meaningless.

Here is, indeed, another incapacity of the wave
model: it is unable to represent a single corpuscle
in a definite place at a given time. Earlier we
found it incapable of representing a flock of
corpuscles all close together in space and having
identical momentum, and we saved it only by the
drastic step of surrendering our intuitive idea that
such a Rock can exist in Nature. To surrender
again is impossible, for we cannot yield up our
belief in the existence of single corpuscles. We
are constrained to a policy which may be stated
as follows:

Take some accepted atom model, and a partic-
ular proper value of E and the corresponding
proper function %. For definiteness, choose the
already-described model of the hydrogen atom-
the central field with potential-energy function
—e'/r —and the energy value, C-function, and
stationary wave pattern corresponding to the
normal state thereof. Choose some point P in the
field; describe a volume element dv around it;
evaluate 0 and 4'~ at P. The question is: what
is 4'0* dttP We cannot say outright that it is the
number of electrons in dv, there being only one
to the entire atom. We can however say that the
stationary wave pattern pertains not to a single
atom, but to all the hydrogen atoms in the uni-
verse (or anyhow, to all those in a particular
tube) which at a given moment are in the normal
state. Or, we can say that it pertains to a single
atom not at one instant of its career, but over the
whole of all the intervals of time during which it
is in its normal state, Then 0'4'* dt will be pro-
portional, in the former case, to the number of
atoms for which the single electron is located at
the given moment in dtt (that is to say, in a
volume element shaped and placed, with respect
to the nucleus of its atom, as the element dt's is
shaped and placed in the model). In the latter
case we must imagine the atom at very many
different moments of its sojourn in the normal
state; then 4'4'* dt~ will be proportional to the
number of moments at which the single electron
is located in dt.

The former of these policies is on the whole the
more serviceable, since the +-functions are
chiefly employed for explaining phenomena

which are known by observations not on single
atoms but on great multitudes. The laws of the
absorption of light by a billion billion atoms of
gaseous sodium in a tube, or the response of the
gas to a magnetic field, are just as well interpreted
by the proposed idea of 0'+s as they would be if
one could assign great numbers of electrons to
each individual atom. The latter policy has ad-
vantages of its own. Both are embodied in the
statement that 4'+s dtt is a measure of the
Probability that tIte electron is localed in the
volume-element dv. Similarly, if for 4' we take
one of the functions specified in Eq. (54) and
evaluate it at some value of x lying within some
interval Cx, then 0 0'* dx is taken as the measure
of the probability that an oscillating atom in the
state characterized by that particular 4-function
is located in dx. Neither of these statements is a
general formulation of the doctrine concerning 4',
but they will suffice for the present. 's

We come now to one of the greatest of the
problems confronting quantum mechanics,

FREQUENCIES OF LIGHT EMITTED BY ATOMS

COMPARED WITH FREQUENCIES INHERENT

IN THE ATOM MODEL

Atoms and molecules are capable of emitting
and absorbing light of various characteristic
wave-lengths. Many of these wave-lengths have
been ascertained from diffraction-patterns and
have been translated into frequencies, in the cus-
tomary way which was earlier described. It is
almost inevitable to suppose that these are the
vibration frequencies of the parts of the atom
relatively to each other, much as the frequencies
of the sound waves which radiate from a piano
through the air are those of the vibrations of the
parts of the piano. Indeed this notion is so deeply
embedded in our experience that we can hardly
conceive of any other, and it is involved in all

of our dynamical theories. It seems as though the
frequencies of waves simply must be the same as
those of their sources, and an atom simply must

'~ The definition of 4'4" as "probability" implies that
the integral. of ++*over the entire wave pattern is unity.
We can always arrange this by adjusting a numerical
coefficient, except when the integral is infinite, as in the
case of the endless sinusoidal wave train; in such cases
it is best to evade the di%culty by returning to Eq. {61).
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be a structure having all of the vibrations which
can be detected in the light which it emits.

The analogy with sounding-bodies and waves
of sound seems indeed to be established by the
fact that Schroedinger's wave equation, when
applied to an atom model in the manner which
has been described, determines a set of vibration
frequencies. These are the frequencies of the
stationary waves which form the patterns hereto-
fore described, which are associated each with
one of the proper functions 4' and the corre-
sponding energy value E. To the various per-
mitted energy values Ei, Ee, ~ ~ E„~ corre-
spond permitted frequencies, the values of which

(by Eq. (24) which underlies all the subsequent
theory) are Zi/k, . ~ Z,/k, ~ «. The whole of the
spectrum of the atom would then be expected to
consist of this sequence. Nevertheless it is the
amazing fact that tke spectrum of on atom actually
consists of eke difference frerluencies or beat fre-
gcenci es (E,—E,)/k.

VIBRATION FREQUENCIES OF A CLASSICAL ATOM

MODEL; FOURIER ANALYSIS

It is not necessary to make so definite a state-
ment as the foregoing, in order to bring out the
fact that spectra are not explicable by classical
ideas. Any vibrating system conforming to
classical mechanics, and possessing a limited
number of degrees of freedom, "is strictly limited
in its vibration-frequencies. Its motion may com-
prise as many different fundamental frequencies
as it has degrees of freedom„but it may have no
others excepting integer multiples and linear
combinations of integer multiples of these funda-
mentals. Say that it has three degrees of freedom
(such is the case of a corpuscle in a constant field
of force)," denote by vi, vs, vs the corresponding
fundamental frequencies; then oil of its frequen-
cies are obtained by giving various integer values
to ci, rid, as in the expression (aivi+oevs+asvs).
Spectra generally, and in particular the beauti-
fully simple spectrum of atomic hydrogen, are
entirely different from this.

The term "vibration frequency" in the fore-
going lines may suggest too narrow a conception.
The argument above is not confined to a particle

"This statement is confined to mechanical systems not
afflicted by frictional forces and damping.

moving back and forth on a line (which would be
a system of one degree of freedom, all of the fre-
quencies of which would be harmonic overtones
of a single fundamental). It is not even restricted
to the case of a corpuscle revolving in a fixed
orbit, such as the ellipse characteristic of a par-
ticle of constant mass in an inverse square central
field. In most kinds of fields, the orbit of a cor-
puscle consists of a succession of loops no two of
which exactly coincide, though the path as a
whole is confined within a limited region of space
("conditionally periodic motion"). To these cases
also the foregoing theorem refers. On resolving
the motion into its component frequencies, all of
these are found to be linear combinations of inte-
ger multiples of the fundamental frequencies;
there are two fundamentals if the field possesses
central symmetry, otherwise there are three.

The classical operation of "resolving a motion
into its component frequencies" is a very im-
portant one. What has just been said does not in
the least imply that a particle moving back and
forth on a line (to take the simplest case of all)
must necessarily have a sinusoidal motion with a
single frequency chosen from among the per-
mitted list. In general the function z(t), represent-
ing its distance from a fixed point on the line

(say the midpoint of its to-and-fro motion) is not
of the form Ccos (nl+y); but it may be expressed
as a sum of such terms in which the frequencies
are those of the permitted list aforesaid —to wit,
the fundamental and its integer multiples —and
the amplitudes and phase angles are suitably
chosen:

x(t) = Q C, cos (27rsv pl+a, );
s=0, 1, 2, 3, ~ ~ ~ . (62)

This is the principle of Fourier analysis, on the
technique of which I will dwell for a few lines, as
it is helpful in understanding the process of
quantum-mechanical analysis toward which we
are advancing.

Instead of Eq. (62), I write its equivalent in
the complex-variable notation:

x(t) =g C, exp (2misvpl); C, =C,s. (63)

The introduction of negative values of s and
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hence of negative frequencies is something of a
hindrance to visualization, but not to the deriv-
ing of physical results. The condition C, = C e

makes the right-hand member of Eq. (63) real,
as the left-hand member is assumed to be.

Choose some integer r; multiply both sides of
Eq. (63) by exp {—2rirvot); integrate over an
entire period of the fundamental, e.g. , from
t=0 to t= T=1/vo, or over a finite number of
periods. We have:

v D3 T

x(t) exp P —2xirvotgt= P C. exp [)+i(s—r)vot jdt.
0 g4 cKt o

(64)

Now the whole practicability and valu of
Fourier analysis is due to the fact that all the
terms on the right of Eq. (64) are equal separately
to zero, save only the one for which s = r. This is
due to a peculiar property of the system of
functions exp (2mrvot), for which write:

f,(t) = exp {iskt), s=0, 1, 2, 3 ~ . {65)

This peculiar property is expressed by the
equation:

0 if res
f:(t)f.(t)«= . («)

o $0 if r=s.

A system of functions which pcs this prop-
erty is said to be "orthogonal in the interval from
0 to T."The set of functions (65) is therefore an
orthogonal system, but by no means the only one.
The proper functions of any trave equitation, sech,
as the functions (55), constiActe an orthogonal
sys~.

Owing to this property of orthogonality, we
deduce from Eq. (64):

T

C, = (1/T) x{t)exp ( —2msvot)dt. (67)
0

The coefficients in the right-hand member of
Eq. (63), which is the "Fourier expansion" of
x(t), are thus determined. The orthogonality of
the system of functions exp (2~isvot) makes it
easy to expand the function z{t) in terms of that
system.

Evidently the function x(t) is completely
specified by writing down the fundamental fre-
quency vo and the values of the coefficients of its
Fourier expansion. Of these last it suffices to
quote those with positive (or zero) value of the
index s, since the others are the conjugates of
those.

z(t) specified by (vo, Co, Ci, Co, ~ ~ )
or (vo, C.). (68)

Each of the coefficients C, is in general a complex
quantity, specifying both the amplitude and the
phase of the corresponding "component vibra-
tion" of frequency svo, as explained above in con-
nection with Eq. (60). If we are concerned only
with the squares of the amplitudes, it suffices to
write down vo and the quantities C,C,e.

For dx/dt it seems natural to put:

x(t) specified by (vo,'2msvoC, ) (69)

and to specify second and higher time-derivatives
in the corresponding way. This procedure is not
always valid, but the cases in which it is valid
form an acceptable analogy to the case towards
which we are moving.

For x the result is almost equally simple. On
multiplying the right-hand member of Eq. (63)
into itself, we get a series of terms containing the
same exponentials as figure in the expansion of
x(t), and readily find:

z'{t)=g D, exp (2z.isvot); D, =P C,C. , (70)

and consequently:

+{t)specified by (vo', g C, C, ,). (71)
r

This simplicity is due to the fact that the sum of
any two frequencies of the set svo is itself a mem-
ber of the set. From this fact it further follows
that any positive-integer power of sc(t) has the
same frequencies in its Fourier expansion as does
x(t) itself. Moreover, it follows that if there are
two functions p{t) and q{t) having the same
fundamental frequency vo and therefore the same
overtone-frequencies svo, then any function of the
form p~q" —nt and n standing for positive integers
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(including zero)—has the same set of frequencies.
So also does any finite or convergent infinite sum
of terms of the form p"q"; and therefore, so does
any function of p and q developable as a power-
series in these variables —and this is a very wide
class of functions indeed.

I summarize these latest statements as follows.
Let p and q stand for two functions of t which are
specified respectively by (vs, p,) and (vs, q,). Let f
stand for any function of p and q which either is
of the form p"q", or is a finite or convergent infi-

nite sum of terms of this form (even these restric-
tions are not necessary). Then f is specified by
(vs', f,), the coefficients f, being calculable from
the coefficients p, and q,.

The notation of the foregoing paragraph is
chosen to harmonize with that which is custom-
ary in quantum mechanics, where q in general
stands for a coordinate and p for a momentum,
and the coefficient of any term in the expansion
of a function is denoted by the symbol of that
function with a subscript to indicate the term.

To acquaint the reader with the art of using
these specifications or "representations" of func-
tions in dynamical reasoning, I give the procedure
for the simplest of all cases, that of the linear
harmonic oscillator. Starting from the well-

known equation:

m(d'q/dP) = —k'q (72)

we put for —k'q its representation (v&, —k'q, )
and for m(d'q/dt') its representation (v&,

.
—4~'ms'vs', ). Corresponding coefficients are to
be equated:

4s ms'vs', = k'q, . (73)

It is evident that to solve this system of equa-
tions we must put q, =0 for every value of s ex-
cepting one. The motion is therefore sinusoidal, of
e single frequency. Choosing s = 1 for the term of
which the coefficient is not to vanish, we get
ks=4ir mvs, a familiar result. The value of q&

remains indeterminate, any amplitude being
compatible with Eq, (72). If on the right of Eq.
(72) we put q, or any positive-integer power of q
except the first, or any sum of such powers of q,
the values of q, no longer vanish and some at
least of the other frequencies come in.

In Eq. (63) at the beginning of this section, the
Fourier expansion of the function x(t) was written

down with plus signs connecting its terms. Later
the plus signs quietly slipped out of the picture,
leaving behind the ensemble of sinusoidal vibra-
tions, denoted by their coefficients C, or q, . It was
possible indeed to solve the dynamical equation
(72) of the harmonic oscillator without bringing
back the plus signs, though they could have been
restored at any time. It has been good practice
to dispense with them, for now that we are going
over to quantum mechanics, we are about to
meet with ensembles of sinusoidal vibrations from
which the plus signs are altogether omitted. The
vibrations are supposed to exist together, and
yet it is worse than useless to add their expres-
sions.

TERM FREQUENCIES AND EMISSION FREQUENCIES
OF A QUANTUM-MECHANICAL ATOM MODEL;

MATRIX ALGEBRA

We think of an ensemble of sinusoidal vibra-
tions q. exp (2siv, t), in which the frequencies v,
form such a set as occurs in an actual spectrum.
That is to say: these frequencies are not integer
multiples sv& of a common fundamental vs, they
are the diHerences between the members of a
set of "term frequencies" Wi/h, W&/h, Ws/h,
which themselves are in general not integer mul-
tiples of a common divisor. No plus signs are to
connect the members of this ensemble, and no
summation sign is to be placed before them.

The notation just suggested is inadequate.
Each member of the ensemble should be marked
not by a single symbol s, but by the two indices,
say r and s, of the terms of which the difference
gives the frequency. The typical member is to be
written:

q„exp (2~iv„t); v., = (W —W,)/'h. (74)

Negative frequencies (in the eases where
W,(W, ) and zero frequencies (in the cases
where r=s) are admitted; as before, they are
hindrances to visualization, but helpful in arriv-
ing at physical results. As with the Fourier ex-
pansion, q„ is put equal to q„*,and this is justi-
fied in the event. As a symbol for the ensemble as
a whole, patterned after the symbol (vs, q,) for
the Fourier expansion of q(t), I choose tempo-
rarily:

Ensemble II: (Wi) Wi) ) q„,) (75)
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the system of values W (the energy values of the
stationary states) implying their difference
frequencies (W, —W,)/h.

The statements which follow are best regarded
as qualities imposed on these ensembles by
postulate, to be justihed eventually by the use-
fulness of quantum mechanics in interpreting the
phenomena of nature.

For the ensemble dq/dt we put:

Ensemble q: (W&, Ws, ~ ~ ~, 2xiv, .q„). (76)

This is analogous to Eq. (69), and follows di-
rectly from the later-to-be-given rules for adding
and subtracting ensembles. The rule for second
and higher time derivatives follows immediately.

As soon as we begin to think of multiplying the
ensemble q by itself, the striking peculiarity of
quantum mechanics appears. If we had connected
the various members (74) by plus signs, and had
then multiplied the two summations together in
the usual way, we should have got a procession
of exponentials with frequencies (v„,+v...). The
frequencies of the product would have been the
sums of the frequencies of q, taken two by two.
In general, these sum frequencies are not included
among the frequencies of q. If we call the en-
semble thus obtained the "square of q" (as we
have a perfect right to do) we are obliged to say
that q' has a different set of frequencies from q.

There are however some among the frequencies
(v„+v, . ) which are included among the fre-
quencies or, let me say, in the "spectrum" of q,
These are the ones for which s and r' are the same;
because of these, by virtue of the second of
Eqs. (74):

h(v„,+v„, ) =h(v„+ v,„)= (W, —W,)

+ (W, —W, ) = W„—W, = hv„. (77)

If therefore in multiplying the ensemble by itself
we leave out of the product all members having
frequencies other than these —if we multiply
each member (rs) of q not by itself and all the
rest, but only by those members (r's') for which
r'=s—then the resulting ensemble will have the
same frequencies as q, and no others. This is
what shall be called "the ensemble q'. "

The same thing happens when we multiply two
ensembles q and P having the same spectrum;
what by all precedent would be called the

"product" does not have the same and only the
same frequencies as each of its factors. We how-

ever are going voluntarily to omit most of the
terms which are obtained by the usual method of
computation, saving only those which have the
spectrum-frequencies of q and P. These which are
left shall be called "the ensemble qP.

"
The procedure is clear when one adopts yet

another symbol for ensembles of the sort with
which we are dealing:

ql 1 q12 q1 8 q14

qs& qadi qs3 qs4

Fnsemhle Z: q3& q3& q3s qz~

q4s ques qw

(78)

(qP)*'=2 q*P «

i
(79)

The member of qp which stands at the crossing of
the ith row and the hth column is obtained by
multiplying each member of the ith row of q
(counting along the row from the left) by the cor-
responding member of the kth column of p
(counting down the column from the top), and
adding these products all together, The frequency
v;«of this member of qp is the same as that of the
similarly-situated members of q and of p. What
shall be called "the square of q" is obtained by
putting q for p in Eq. (79). What shall be called
"the product pq" is the ensemble constructed ac-
cording to the following rule of calculation:

&Pq) «=Z P q «, (80)

its member (ih) being obtained by multiplying

the exponential factors being omitted for con-
venience, though strictly each member q,.is to be
thought of as q,.exp (iv„,t). Let q and p stand for
two ensembles having the same set of constants
W, and frequencies v„. (Two ensembles are never
added nor multiplied together unless this is true
of them. ) Boldface type shall henceforth be used
for ensembles considered as a whole, ordinary
italics (with subscripts) for the individual mem-
hers of such ensembles.

What shall be called "the product qp" is the
ensemble constructed according to t'he following
rule of calculation:
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the members of the ith row of p by the corre-
sponding ones of the kth column of q and adding
these products all together.

Finally, the "sum (p+q)" shall be obtained by
adding corresponding members of the two en-
sembles, and the "difference (p —q)" by subtract-
ing the members of q from the corresponding ones
of p. The product of q by a scalar C shall be the
ensemble of which each member is C times the
corresponding member of q.

Ensembles of the aspect of Eq. (78), subjected
to the rules of calculation which have just been
stated, are called "matrices. " The rules them-
selves are those of "matrix algebra, "a branch of
mathematics invented and developed long before
quantum mechanics was ever dreamt of. It was
ready and waiting for Heisenberg and the other
inventors of quantum mechanics, as the Greek
theorems concerning conic sections had been
ready and waiting for Kepler and Newton and the
subsequent builders of celestial mechanics. It
justifies the following brief statement of one of
the principles of quantum mechanics:

In respect of tke emissioe artd absorptiort of ligkt,
atorrrs artd molecules bekaue like systeIrts of uibra-
tioes Iokick conform to tke rIcles of rrcatrix algebra
instead of tke rgles of I"ourier e:epansiorts.

MGRE ABQUT MATRIx ALGEBRA

Of these rules, those of matrix addition,
matrix subtraction, and differentiation of a ma-
trix with respect to time {orsome other ordinary
variable) are of the kind which is naively called
"self-evident. "Matrix multiplication is peculiar,
and merits further comment. Since the right-hand
members of Eqs. {79)and (80) are usually differ-
ent, "multiplication" of a pair of matrices p and

q is really the common name of two distinct
operations denoted by qp and pq. These symbols
stand for matrices, the difference between which
is a matrix (pq —qp), thus defined:

which in general does not vanish. This is usually
expressed hy saying that "matrix multiplication
is noncommutative. " It is, however, associative.
We arrive at the same matrix if we form the
product qp (call it r) and then the product pr,
as if we form the product pq (call it s) and then

d(q~}/dq=aq' ' (82)

This is the only case of which this book will treat.
I will mention, however, that with a function
such as pc/ the definitions differ, one giving 2pq
and the other qp+pq for the derivative with re-

the product sp; the symbol pqp is applied to the
result.

Immediately after Eq. (71), I gave various
theorems about the systems of vibrations forming
Fourier expansions. These can now be repeated
for the vibration systems conforming to matrix
algebra, in the same words but with the new
meanings for the words. Let q stand for a system
represented by a matrix with a given spectrum of
frequencies; then q' is another matrix with the
same spectrum. So are all the other positive-
integer powers of q; q' is the matrix product of
q and q', q' that of q and q', and so on upwards.
So is any sum, finite or infinite, of positive-integer
powers of q multiplied by constants. So is any
function of q expressible as such a sum, and this is
a very wide range of functions indeed. Let p
stand for another matrix with the same spectrum
of frequencies as q. Then qp and pq are matrices
with the same frequencies, and so are qqp and
ppq and qpq, and all products of the form
ping'q p' ~ ~ where a, b, c, d, e ~ ~ stand for
positive integers, and all sums finite or infinite of
such products multiplied by constants. We must
be careful never to regroup the factors in such a
product. If a quantum-mechanical argument leads
us to the expression pqp (for example) we must
not cede to the temptation of rewriting it: as p'q.
The first of these symbols represents the matrix-
product p(qp) and the second represents p(pq);
and since qp and pq are in general not the same,
neither are pqp and p'q the same.

"Matrix multiplication" is thus a peculiar
process, which has proved to be highly expedient
in quantum mechanics though it was originally
defined for its own sake. "Differentiation of one
matrix with respect to another" is likewise a
peculiar process so defined as to be expedient in
quantum mechanics. More precisely, there is a
pair of processes, which Born defines as differen-
entiation of the first kind and of the second kind
respectively. With a function of the form q —a
being a positive integer —the definitions coincide
and the result looks familiar:
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spect to q. If the function is rounded off by add-
ing q'p, the two definitions concur in giving

2(qp+pq} for d(pq'+q'p}/dq. In quantum me-
chanics the energy function is always rounded off
in this manner. "A product p'q' does not appear
except as a member of a sequence (p'q'+p —'q'p
+ps-'q'y'+ ~ ques), which may be written
Z.~ p -'q'p'. The derivatives of this sequence
with respect to p and q are eZ,~' 'p' ' 'q'p' and

5—rqb-I —
opaque

In certain of the equations which follow a
matrix will be affirmed to be "constant in time";
what can this meanP Of all the members or
"elements" forming such an ensemble as appears
in Eq. (78), each involves a time factor, which is
exp (2wiv, p) for the element (rs). The only ele-
ments which are independent of time are the
ones for which the vanishing of v„reduces this
factor to unity. It was postulated at the start
that the frequencies v„, should be the differences
(W, —W.)/k between the members of a set of
term frequencies Wr/h„Ws/k. ~ . Thus the
elements for which r = s are independent of time.
These are the elements lying along the "principal
diagonal" of the matrix which starts at the left-
hand upper corner. A matrix for which all the
elements but these are zero is called a "diagonal
matrix" and is independent of time. " If in the
course of a reasoning we arrive at the conclusion
that a certain matrix is diagonal, that is tanta-
mount: to concluding that it is constant in time.

The quantities W';, with their subscripts
doubled, may themselves be regarded as the non-
vanishing elements of a diagonal matrix W thus
defined:

0 0 0

0 Wsl 0 0
W= ~ (83)

0 0 W3s 0

This enables us to make a striking assertion about
any matrix, p or q for instance, having the fre-

ss See, however, N, H. McCoy, Proc. Nat. Acad. Sci. 18,
674-676 (1932).

n If the quantities Wr are so chosen that some coincide
with others, e.g. , W'I ~ W&, then a matrix may be constant
in time even though its element (ij) does not vanish.
Such cases (the so-called "degenerate cases") are extremely
important in quantum mechanics, but we shall not reach
any in this book.

quencies v„,= (W„,—W„)/h. The derivative p is
the matrix of which the rs element is 2'„p„.
By applying the rules of matrix-multiplication
which have just been formulated, and writing
out the products Wp and pW and Wq and qW in
the fashion illustrated in Eq. (78), the reader will
find that:

p = (2s i/k) (Wp —pW);

q = (2~/Ir) (Wq —qW),
(84)

an interesting result, bringing out vividly the
non-commutative quality of the process called
"matrix multiplication, " and largely responsible
for the peculiar fitness of this type of algebra to
atomic physics.

A special case of a diagonal matrix is that in
which all the nonvanishing elements have a com-
mon (scalar) value c; a still more special case is
that in which this common value is unity, and the
matrix is named the "unit matrix" and denoted
by E. Multiplication of any other matrix, say a,
by E is commutative, and the product is a itself.
The diagonal matrix of which all the nonvanishing
elements are equal to a scalar c is denoted
(obviously) by cE; multiplication of a by cE is
commutative, and the product is ca.

DESIGN OF CLASSICAL AND OF QUANTUM-

MEcHANIcAL ATQM MoDELs

We are now ready to apply the methods of
quantum mechanics to particular atom models.
In keeping with the scope and size of this book,
I will speak almost entirely of the simplest case
of all: the molecule model based on the concept of
the linear harmonic oscillator, and employed (as
a first approximation) in interpreting the spectra
of diatomic molecules. Of course it falls far short
of the most general case, and it lacks some of the
features which appear in the model of the hy-
drogen atom and produce the spectacular nu-
merical agreements of theory with experiment
which that particular model affords. Nevertheless
it will serve as a good illustration of the basic
ideas; and where it is too specialized, I can oc-
casionally insert the more general theorems to
which a less simplified model would lead.

What is an atom model, in quantum mechan-
ics2 To answer this, I begin by recalling what it is
in classical theory, and in the earlier forms of
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quantum theory. Essentially, it, is an energy

function, stated together arith certain dynamical
equations. To the eye of the body the linear
harmonic oscillator is a heavy weight attached
to the end of a coiled spring, travelling to and fro
along a definite path. To the eye of the mind, a
linear harmonic oscillator is an energy function
composed of a kinetic energy term ($)mi' and a
potential energy term ($)k'x', with a momentum

p equal to mi and certain equations for p and i.
This function combined with these equations

is the oscillator, insofar as it does service as an

atom model. I write them out in the "Hamilton-
ian" form, in which q denotes the coordinate x,
and the momentum p is used in preference to q as
one of the independent variables. The energy,
when expressed as function of p and q, is known

as the "Hamiltonian function" K(p, q). An atom
model consists of some particular choice of a
function H(p, q), combined with the two "can-
onical equations" of Hamilton:

aH/aq= —dp/dt; BH/ap=dq/dt. (85)

From these equations we derive:

dH/dt

= (aH/aq)(dq/dt)+(~H/~p)(d p/dt) =o (86)

The energy function is constant in time. This
may seem to exclude cases in which an atom is
inRuenced by another atom or by an external
field, but usually one adopts the artifice of re-

garding the two atoms or the atom-plus-field as a
single system for which the energy is constant.
(Otherwise one may make H a function H(p, q, t)
in which t appears explicitly. }

I exhibit these postulates in the general form
appropriate to a system of f degrees of freedom:

H(pr .pt' qr .qt)' ~H/~q'= —p''

aH/ap;=q, i=1, 2, 3, .f (87)

and again in the special form belonging to the
linear harmonic oscillator:

In designing an atom model, the procedure of
classical mechanics consists in choosing some
particular Hamiltonian function H(p, q) and em-
ploying Eqs. (87). It leads to a spectrum of fre-
quencies which are linear combinations of integer
multiples off fundamental frequencies, as well as
to other conclusions which are not in accord with
observation.

The procedure of quantum mechanics looks
exactly the same on the surface. Variables p and

q are introduced, and a function H(p, q) is chosen,
often looking precisely like the function selected
in the classical theory for the same atom model;
and Eqs. (87) are used. But now p and q are mat-
rices p and q of the type (78);H is a matrix func-
tion H; every product of p and q which appears in
H is a matrix product; and the derivatives are
obtained by matrix differentiation. The outward
and visible form has subsisted, but the meaning
beneath the symbols is transformed.

QUANTUM CONDITION IN MATRIX AI.GEBRA, AND

ITs CQNsEQUENcEs

Keeping to the case of the harmonic oscillator,
we will now envisage Eqs. (88) as matrix
equations.

In the left-hand members of the canonical
equations stand the time derivatives, for which
peculiar equivalent expressions have already been
derived (Eqs. 84). In their right-hand members
stand the derivatives —8H/Bq and +BH/Bp,
which in our special case are —k'q and p/m. For
these also I proceed to derive peculiar equiva-
lents, by a method which will seem highly artifi-
cial, but is evolved from a general theorem which
shall be stated afterwards. We have:

Hq —qH = (p /2m)q+(k q~/2)q
—q(p /2m) —q(Pq~/2)

= (1/2m) (p'q-qp')

= (1/2m) LP(Pq —qP)+(Pq —qP)P) (8»)

H =p'/2m+ k'q'/2; dp/dt = —)pq;

dq/dt =p/m. (88)

From these equations one readily derives Eq.
(72), and all the consequence which flow classi-
cally from that equation.

and similarly:

Hp —PH = (k'/2)L —q(pq —qp) —(pq —qP)q). (89b)

Let us noro make the follrI'ng assumption about
the matrix (pq —qp):
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h/2xi 0 0 0

0 h/27Ii 0 0

pq —qp= 0 0 h/2iri 0 . . (90a)

() () () h ~'2vri

This is the "quantum condition" of quantum
mechanics, expressed in the way suitable to mat-
rix algebra. I give alternative ways of expressing
it. The next is the most succinct:

pq —qy = (h/2si)E, (90b)

while the third will acquaint the reader with the
practice of using the symbol b„ to denote a
quantity which is unity when r = s and zero when

res:
{pq—qp) „=(h/2s i) b, . (90c)

Making this assumption, we convert the right-
hand members of Eqs. (89) into (p/m) (h/2~i) and
—h'q(h/2s. i) respectively. Substituting into Eqs.
(88) and (84), we get:

Wp —pW=Hp —yH; Wq —qW=Hq —qH, (91)

which equations suggest at once that the energy
matrix is identical with the matrix of the quan-
tities W. This is indeed the case: Eqs. (91) re-
quire that the energy matrix should be a diagonal
matrix, and that its elements along the principal
diagonal should differ only by a common arbi-
trary constant from the corresponding elements
along the principal diagonal of W. The reader has
probably been taking this for granted all along,
but it is a corollary of the quantum-condition
(90), and therefore recedes to the rank of a
theorem if Eq. {90)be taken as fundamental.

The general theorem mentioned above, of
which Eq. (89) is a special case, is the following:

(&q-q&) = («/dp) (pq-qp)

(p& —&p) = («/dq)(yq —qp). (»)
With the "first kind" of differentiation it is true
for any matrix function f of p and q; with the
second kind of differentiation it is true for
"rounded-off" functions such as those specified
after Eq. (82)." We could indeed accept Eqs.

~ The argument is, that if Eq. (92) is true for any two
functions f and g, it is true also for f + g and fg. For

(92) as the definitions of the two processes of
differentiation of a matrix function of y and q
with respect to these two matrix variables. There
would be nothing illogical about such a procedure;
its disadvantage is, that it veils the partial
analogy between these processes and the familiar
kind of differentiation, which was illustrated in
Eq. (82); but since the analogy is imperfect, there
is something to be said for disregarding it in the
definition of these new processes.

Thus the identity of H and W is not by any
means restricted to the particular form of H
which was introduced in Eq. (88). If we use a
definition of "differentiation" which is either
given by Eq. (92) or else leads straight to Eq.
(92), then any function H which conforms to the
canonical equations (it may be necessary to say in
addition, that H must be rounded off in the way
above described) is substantially the same as W.

The situation is now as follows:
We have laid aside the idea of coordinate q

and momentum p as functions of time which can
be written as sets of vibrations having frequencies
svp which are integer multiples of a fundamental
frequency vp,

We have replaced it by the idea of coordinate q
and momentum y as sets of vibrations having
frequencies v;; which are the differences between
the members of a set of terms Wrr/h;

We have written these sets as matrices;
We have defined "addition" and "multiplica-

tion" of matrices in certain distinctive ways, with
the result that such an expression as $(1/2m)p'
+(hs/2)q'] and all other expressions which are
written like algebraic functions have definite as-
certainable meanings and are matrix functions of
p and q, being themselves matrices with the same
spectrum of frequencies v;; as p and q possess;

We have defined "differentiation" of matrices
in certain distinctive ways, such that such ex-
pressions as dG/dt, BG/8p, 8G/Bq —6 standing
for p or q or any matrix function of p and q-
have definite ascertainable meanings and are

f+g the assertion is obviously true. For fg we get:
fgq —qgf- f(gq —qg)+(fq —qf)g

= rf(dg/~p)+(dfld p)g j(pq —qp).
With the first kind of differentiation the quantity in square
brackets is equal to d(fg)/dp. With the second kind it is
true if the stated condition is observed. Now (92) is true
for f =q and g= p; whence the theorem.
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matrices with the same spectrum of frequencies
as P and q:

We have introduced the quantum condition
(90); and now it turns out, that the diagonal
matrix constituted by the quantities W;i is
identical with a matrix function of p and q
which obeys the canonical equations —that is to
say, the matrix equivalents of the canonical
equations —and which therefore there is full

justification for calling the "energy" of the
system characterized by these quantities Wii/h,
and their difference frequencies v;;.

This strongly suggests that matrix algebra with
the foregoing rules combined with the quantum
condition is the proper, or at any rate a proper,
technique for dealing with problems of atomic
physics.

We require, however, much more than the
foregoing result. First of all we require the actual
values of the quantities W;;. Can the technique
of matrix algebra, combined with the quantum
condition and with a suitable form for the
Hamiltonian function H(p, q), supply us with
these?

In principle, it can; but the task is extraordin-
arily difficult, except in certain extremely simple
cases. The technique of determining these
quantities which was discovered by Schroedinger,
and is known specifically as that of wave mechan-
ics, is far more manageable; and it turns out that
by an extension of that same technique, the ele-
ments of the matrices p and q and of matrix
functions of y and q may be determined. I will

close this booklet with an exposition of that
method; but before we take it up, it will be
interesting to confirm for ourselves that in the
case of the linear harmonic oscillator with its
Hamiltonian function previously given, the rules
of matrix algebra and the quantum condition
suffiice to fix the quantities W;; in entire agree-
ment with Schroedinger's result which I quoted
earlier.

Writing out the expression for any element on
the principal diagonal of the matrix H, we have:

H« = (I/2iii) (PP)«+ (&'/2) (n)"
=(&/2~) Z P'0'+(I'/2) Z a'~'. (93)

Replace each element of the matrix p by the
corresponding element of the matrix mq, so that

P;; becomes 2irsv;,q, ;; write voz for (k' /4w m); we
obtain:

H«= 2''iit Q (—v;;v;;+vp')q; g, ;, (94)
i

Writing out the expression for any element of the
principal diagonal of the matrix (pq —qp), we
find:

(pv —vp)" =~(~v —vi)-
= 2xim Q (v;;—v;;)q;,q;;. (95)

i

This expression is to be equated to (k/2irs) P and
the result is to be used to evaluate H;;. Before
going further, we recall that according to the
mode of construction of these matrices, v;f is
equal to —v;i and q;& is equal to q;;», so that
q;g;;=q;I|t;; = squared amplitude of q;;. Mak-
ing these substitutions into Eqs. (93) and (95):

H;; = 2s't'ai Q (v;it+ vo') g;,g;;, (96a)
1'

—h/Sir'm =Q v;,q;,qi, .
i

Now returning to Eq. (72), we envisage it as a
matrix equation and derive from it a system qf
equations replacing Eq. (73):

4x mv, izq;; =k'q;;. (97)

From these it is inferred that for any element (ij)
of the matrix q, either vif is equal to +vo or to
—vo, or else the coefficient q;; itself vanishes. Now
think of all the elements beonging to a single row
of the matrix, say the sth row. Not more than
one of these may have the frequency +vo, and
not more than one may have the frequency —vo,.
otherwise two or more of the quantities H;i
would have to be equal, a complexity which oc-
curs in many cases, but not in that of the linear
harmonic oscillator. We put vi, ; i equal to +vs,

and v;, ~& equal to —vo,' and we put g;; equal to
zero in all cases exceptj=i~1.Now Eqs. (96) are
reduced to the forms:

H«=4s'mvo'(q", ' i+q'1, i+i)y (98a)

—k/8x m= vo(Q'i. i-i—g'i, i+i), (98b)

« It should perhaps have been emphasized earlier that
when i is written as a factor it always stands for (—1)l,
and is never to be confused with subscript i.
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and putting i equal consecutively to 1, 2, 3, ~ ~ ~,

we obtain:

Hit=)kvp, H22=(3/2)kvp, . H„.
= (j+$)kvp (99)

which is the sequence of permitted energy values
previously derived by Schroedinger's method.

The matrix technique thus proves itself cap-
able of solving the first and fundamental problem
of atomic theory, —the problem, that is to say, of
devising plausible atom models with definite
calculable systems of permitted energy values,
which can be compared with experiment. In this
respect it does not excel Schroedinger's tech-
nique of seeking the eigenvalues of a wave
equation, and indeed is generally much harder to
apply. However, in reviewing the foregoing
process one notes a definite indication that the
matrix method may be capable of something
more. The coefficients q;;, which were evaluated
in the course of calculating the energy values H;;,
seem to be connected with the problem of radia-
tion. For at the start, the concept of the matrix q
was derived from the concept of the displacement
of a particle; and according to classical theory,
the displacernent of an electrified particle is re-
quired to cause radiation, inasmuch as outflow
of radiant energy results from acceleration of
charges, and acceleration is always accompanied
by displacement. Moreover in working through
the problem of the harmonic oscillator we have
been led, on the one hand to the inference that
there is no radiation of frequency v;; except when
i-j =+1, and on the other hand to the in-
ference that tIiI vanishes except when i —j= +1;
this strongly suggests that q;; is some sort of
a measure of the intensity of radiation of fre-
quency viI. To compute all these coefficients by
the matrix technique would be a task of really
extraordinary difficulty, except in this extremely
simple case of the harmonic oscillator. It is there-
fore fortunate —as well as profoundly significant—that an extension of Schroedinger's technique
pernnts us to compute them, and eventually to
test the assertion that the matrix q contains the
description of the light which an atom emits,
much as the matrix H contains the description of
the permitted energy values of that atom. To
this task we now address ourselves.

CONCEPT AND EMPLOYMENT OF OPERATORS IN

QUANTUM MECHANICS

We return to the wave equation (47) applied
to an endless uniform beam, which I repeat with
both sides multiplied by (h/2m i):

(h/2~i)2B'4/Bx' =P'4'. (101)

In mathematics and in mathematical physics, it
is sometimes possible to make real progress by
altering the phrasing of theorems and equations,
and letting one's imagination wander in paths
suggested by the altered wordings. I now intro-
duce some ways of phrasing Eq. (101).

Let 4p denote any solution of that equation.
To multiply 4'p by p twice leads to the same
result as to differentiate 0 p twice with respect to
x and multiply each time by (h/22ri), Introducing
the word "operation": the operations of multi-
plying by p, and of differentiating with respect to
x and multiplying the result by (h/2m), are
equivalent when applied to 4'p. Introducing the
word "operator": when applied to 4'p, the
operator P and the operator (h/2~i)(a/Bx) are
equivalent. Rearranging the sentence: the solu-
tions of Eq. (101),which is to say, the functions
which we employ in the treatment of the uniform
beam in field-free space, are the functions to
which the application of operator p produces the
same result as the application of operator
(k/22ri)a/Bx.

Now write down the Hamiltonian function for
a system composed of a particle in a field nf force
which does not vary with time:

II(p, q) = kinetic energy+ potential energy

= L(I/~~)(p. '+p, '+p.')+ I'(», y, p) j. (102)

Write the symbol 0 immediately after the
quantity in square brackets, as though H were to
be multiplied into %. Following the hint of the
preceding paragraph, replace p, by (h/22ri) (a/ax),
and P„by (h/22ri) (B/By), and P, by (k/2~) (a/as).
Leave (x, y, s) unchanged, so that V(x, y, s)4
continues to mean the product of V by +. We
now have the so-called "Hamiltonian operator"—hereafter to be denoted by H—operating on
whatever is symbolized by 0:

B'2 B2 B2

+ + + V 4'. (103)
8~2m ax2 ay2 as2
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The reader will recognize two of the terms
which appear in Schroedinger's wave equation
(48). The equation itself appears if we let
ourselves be guided by the classical conclusion
that JI(P, q) is unvarying in time {Eq. 86).
Multiply 4' by a constant W'; or, to adopt the
new phraseology, operate on + by a constant W',

the boldface italic letter implying that we are to
think of the constant as an operator, though the
operation which it performs is pure multiplica-
tion. Equate the result to H+:

(104}

Here is Schroedinger's equation again. It will be
recalled that there are certain values of the
constant W, for which there are distinctive
solutions of Eq. (104).The result of applying the
Hamiltonian operator to any one of these, say
0'~;, is the same as the result of multiplying 4';;
by the corresponding value W';; of the constant.
Rephrasing this so as to bring it into the form of a
general and fundamental theorem:

Given an atom model, which is to say, a
Hamiltonian function H. Convert it into the
corresponding Hamiltonian operator H by
writing (k/2~) {8/Bqt), ~ ~ ~ (k/2ss) (8/8g, ) for P„
~ ~ p„. There are certain distinctive functions
(eigenfunctions) 4';;, and corresponding to these
there are constants (eigenvalues) W;; of the
dimensions of energy, such that when H is
applied to +;; the result is the same as when W;;
is multiplied into O';;. The eigenvalues are the
permitted energy values of the atom models, and
the eigenfunctions are the 4'-functions previously
mentioned. This is a new way of setting up wave
equations. "

The connection between the method of wave
mechanics and the method of matrix algebra can
be made in the following fashion.

Form the eigenvalues W;; into a diagonal

~ Certain diSculties are likely to occur if the coordinates

p, q are not Cartesian, or if there are "constraints" (in
the technical sense of analytical mechanics). Thus with
non-Cartesian coordinates, the Hamiltonian may contain
such a term as (for instance) pq, and this prescription by
itself would not tell us whether to write the corresponding
term in the wave equation as (h/2~) 8(%'q)/Bq or as
(k!2si) q 8%/Bq (and indeed there would be still other
possibilities). However this trouble may be avoided by
using Cartesians, and the other is not likely to occur in an
atom model.

matrix, the one which appears in Eq. (83); and
the eigenfunctions 4;t into a diagonal matrix, of
which the element (it') is O';;. The product of
these two is also a diagonal matrix, its element
(6) being the product W;;4;;. Availing ourselves
of the symbol 8 previously employed (Eq. 90c)
we may describe it fully by writing 8;;W;;+;; as
its typical element. We may regard it as the
ensemble of all the permitted values of the
right-hand member of Eq. (104); and the
operator H acting on 4' may be conceived to
produce this diagonal matrix.

If we are to do this, we must learn to think of
H%' as a matrix. Not only this, but also the
result of operating on 0 by x, and the result of
operating on 0 by p„—these two must be
considered as matrices, and so likewise must be
the result of applying to + any operator which is
a function of coordinates and of the differential
operators which replace moment according to
the foregoing rule. But how conceive of x%' as a
matrix, or of (h/2m)(8%'/8x) as a matrix, when
x has been introduced as an ordinary scalar
variable and 4' thus far has denoted something
which might be any of the eigenfunctions 4';;?

It helps to lean as much as possible on the
analogy afforded by the Fourier expansion, where
a function denoted by a single symbol is repre-
sented by a sequence of functions forming a
complete orthogonal set, each multiplied by a
constant evaluated in a certain way which the
orthogonality of the set makes feasible. The
eigenfunctions of any problem form a complete
orthogonal set (a fundamental theorem, which
there will not be space to prove in this book) and
thus it is equally feasible to expand or represent
any function in terms of them. But we wish to
have not a single sequence of terms, but a two-
dimensional pattern forming a matrix, to repre-
sent the result obtained when an operator acts on

Recall now that in dealing with the thing
denoted by 0', we have always dealt with cases
where 0' stood for one or another of the eigen-
functions O';;. In cases where it could not stand
for one of these (as, for instance, when W in
Eq. {48) or Eq. (104} has some value not
comprised among the eigenvalues) nothing has
been said about 4', and indeed such cases have
been disregarded altogether. The symbol
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refers to the totality of the eigenfunctions +;, the
symbol H%' refers to any or all of the functions
H4;; the symbol x% refers to any or all of the
functions x%';; the symbol p,+ refers to any or all
the functions (h/27&i)(tl%;/Bx). In general: let f
stand for any operator constructed according to
the foregoing rule out of a function of coordinates
and momenta; then f+ refers to any or all of the
functions f%';. Henceforth I will use {for con-
venience of printing) ordinary italics for an
operator acting on one of the functions
reserving boldface italics for operator symbols
printed by themselves or in front of the general
symbol +.

These functions f+; are now to be expanded in
terms of the orthogonal set 4';, even as earlier v e
expanded functions in terms of the orthogonal
set of exponentials of Eq. (65), For definiteness I
take first the simplest case of all, the operator x
or cubi. For the ith of the functions xO;, we write:

x%;=ai,% i+a2,%'2+a3 k3+' ' ' Q Q& +& (105)

where the symbols a„stand for constants
presently to be evaluated. "'"

I repeat the definition of orthogonality from
Eq, (66), specializing it a little:"-"

(106)

The integration is taken over the interval in
which the set of functions is orthogonal, which
varies from case to case; sometimes it is from
—~ to + ~, sometimes the variable x varies
cyclically and the interval is one complete cycle,
The use of x as sole variable of integration
implies an atom model of a single degree of
freedom, having one coordinate x and one
momentum p, . In general there will be several,
say r, degrees of freedom, and the functions 0';

'-" The indices in such equations are sometimes written
as here, sometimes so that

x%', = Zn»4'&

a prolific source of confusion.
~ In the earlier definition the integral was stated to be

different from zero when, and only when, i =j . To give it
the specific value unity in all these cases is perfectly
feasible, because each of the functions +& involves an
arbitrary factor which can be adjusted to bring out this
result. This adjustment is called "normalization. "

will be functions of (qi, ~ ~ q,) and the integration
will be with respect to all these variables. Instead
of dx, the r-dimensional volume-element (in the
special case of Cartesian coordinates, it is dqi
~ ~ .dq„) will then appear in the integral: I write
dq for it, and state the property of orthogonality
thus:

(107)

Now multiply both sides of (105) by +;*, and
integrate over the interval in question. We get:

(108)

Repeat the process for every value of j and for
all the functions x%';. The coefficients e now form
an ensemble which may be written after the
fashion of a matrix. This is the matrix which we
will always associate with the symbol x%' which
we have been calling "the result of operating on
+ by x." The symbol x+ shall have no other
meaning to us. The symbol x without the shad-
owy and indefinable 4" shall have no other
meaning to us; the operator is the matrix. Operator
x is the matrix of which the typical (ji) element is
J'0';*x+;dq. Operator p, is the matrix of which
the typical element is (h/2~i) J%';*(8%';/Bx)dq.
In general: iff stands for any operator which has
been obtained in the foregoing way, by taking
some function of the p's and q's and substituting
(h/27ri) (8/Bq;) for P;:

Operator f: matrix 4'&~f4',4q {109)

and here f%', is the function obtained by oper-
ating with f upon the function +;.

It is easy to say that the ensemble of the
quantities J'O&*f+;dq shall be written as a
matrix, but there would be nothing gained by
doing so unless such ensembles could be proved
to conform to the rules of matrix algebra. I will
give the necessary proof for the peculiar rule of
matrix multiplication. The product fg of two
operators f and g is the operator which when
applied to such a function as (for instance) 0;
produces the same function as is otherwise
produced when first g is applied to 0'; and then
f is applied to g4';. We go through the latter
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Here the coefficients g»; are constants evaluated
as explained above. Apply to this the operator f;
we get:

f g4'; = g&,N'&+gs;f4'+ = Q gk,f4'k. (111)

Expand each of the functions f%'k, we get:

f+k =2 f~k+~
I

{112)

the coefficients f,k being constants. Substituting
this into Eq. (111) and regrouping the terms:

f g+;=Z f'kgkl+1+Z ftkgkQ+s+' ' 'i (113)

process. First we obtain the function gO;, and
expand it, getting:

g+; =gi8'i+gs8's+ =Q gk'+k (110)
k

The theorem thus follows automatically from our
choice of the eigenfunctions of Eq. (104)—which
may be called simply the eigenfunctions of H—as
the complete orthogonal set to be used in
the representations. "

This theorem was earlier obtained by the
process of matrix mechanics, culminating in Eq.
(91).There it was obtained by assuming the so-
called "quantum condition" of Eq. {90a). The
equivalent of tnis condition must have entered
somewhere into the present chain of reasoning,
and we shall not have a hard task to locate it.
Let us derive the matrices for the operators pq
and qp, and form their difference. Applying this
to an eigenfunction 4';, we get:

so that the coefficient of 4'; in the representation
of fg%; is gkf;kg». But this is precisely the (sj)
element of the matrix formed by multiplying
f into g according to the rule of matrix multi-
plication; which is what was to be demonstrated.
The other rules of matrix algebra are readily
shown to hold for these ensembles.

In Eq. (111), the operator f is applied to a
linear combination of the eigenfunctions. Earlier
(before Eq. 105) I may have seemed to say that
an operator could be applied only to individual
eigenfunctions. It is difficult to avoid misappre-
hensions in these matters, and I was making
every effort at that point to avoid giving the idea
that 4' is some function or other which is to be
expanded in terms of the eigenfunctions. Such is
not the case; + in that situation has no meaning
by itself; all that is meant by f+ is the matrix
already defined. Operators however may be
applied to linear combinations of the eigen-
functions, under such conditions as occur in Eq.
(111).

It is easy to see that the matrix of the
operator H is diagonal, and moreover is precisely
the diagonal matrix (83) of the eigenvalues W';;.

Owing to Eq. (104), the result of applying H to
4'; is simply 4'; itself, multiplied by the constant
W;;. The expansion of any member of a complete
orthogonal set of functions in terms of the set is
siInply that member itself. Thus:

II%;= W;;0;; II;;=b;;8';;. (114)

(115)

Thus (pq —qy) is a diagonal matrix; moreover, it
is that diagonal matrix for which all the elements
on the principal diagonal have the common value
{h/2st); it is the matrix (h/2')E. Thus, when we
substituted {h/2ss) (8/Bg;) for P; in the operators,
we were introducing the quantum condition.

Now it is essential to restore, to each element
of these matrices (and of all the other matrices
with which there is ever occasion to deal) the
factor dependent on time which was introduced
at the beginning long ago and subsequently was
omitted for ease of printing and ease of reading
the formulae. Schroedinger's equation, it will be
recalled, is not the fundamental wave equation.
The underlying equation (of which Eq. (44) is
a special form) is one which involves derivatives
with respect to time as well as derivatives with
respect to coordinates. Certain of its solutions are
of the form 4'; exp (2mW;;/h)t, where 4'; stands
for any eigenfunction of the operator H, and W;;

k4 Had any other complete orthogonal set been chosen,
Eqs. (105) to (113) would have been valid in terms of the
new set, but the matrix of H might not and usually would
not have been diagonal. In the case of the so-called
"rotator" (an atom model patterned after a rigid body,
employed in molecular theory) it is expedient to use the
set of eigenfunctions of the angular momentum operator.
It turns out that with respect to this set the matrix of the
energy operator N is diagonal, as well as that of the
angular-momentum operator itself.
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for the corresponding value of the energy of the
system, that is to say, for the corresponding
eigenvalue. Any operator, say f, is to be as-
sociated with a matrix of which the typical
element is not fully given by Eq. (109), but is
rather to be obtained from Eq. (109) by sup-
plying each 4' with its appropriate time factor:

Operstor f:

f4';~fWdq exp D2xi/k)(W;; —W;i)Ij. (116)

The elements for which i =j retain the character
of constants, but in all the others the coefficients
f%'i~f%',~Sg figure as amplitudes of vibrations
having the frequencies (WIi —Wi;)/k.

RADIATION FROM ATOMS INTERPRETED BY CLAS-
SICAL AND BY QUANTUM-MECHANICAL THEORY

We make one more, and the last, of those frank
and outright borrowings from classical theory
which are essential to the success of quantum
mechanics, and prevent us from regarding it as
a self-contained and independent doctrine.

According to classical theory, an electron
describing any sort of an orbit radiates energy in
waves, which are light-waves. TJ.e frequencies of
the light are those which appear in the Fourier
expansion of the orbital motion, as I have already
told at: length. The polarization of the light is
determined by the shape of the orbit. A to-and-
fro vibration along a line—the only case which
there will be room to treat —is a special kind of
orbital motion, which produces plane-polarized
waves with the electric vector parallel to the
oscillation. If the vibration is perfectly sinusoidal
the light also is of a single frequency, perfectly
monochromatic. If the motion is not sinusoidal it
may be resolved by the Fourier process into
sinusoidal components, the frequencies of which
then appear in the waves.

Much of the foregoing would follow from any
plausible theory of light. The electromagnetic
theory goes further, and predicts that the rate of
radiation of energy R, from an electron describing
sinusoidal vibrations of amplitude xo and fre-
quency vo, is proportional to vo'z'P. It goes further
yet, and prescribes the constant of proportion-
ality:

R = (1/3c')(2~ve)'(ego)'.

However this last paragraph contains an
internal contradiction. If the vibrating electron
is radiating energy, its amplitude cannot be
constant. Its vibrations are damped; and the
Fourier expansion of a damped vibration com-
prises frequencies extending over a continuous
range on both sides of vo, which should be present
in the outRowing waves, and reveal themselves as
a broadening of the spectrum line; while in Eq.
(11/), vo ceases to be unique and za becomes a
variable. Superficially, the contradiction does
not seem serious. Only a very small fraction of
the energy of the vibration is radiated in each
cycle, so that the amplitude changes only in a
very small proportion from one cycle to the next,
and Eq. (117) is not hindered from being a very
close approximation. Moreover spectrum-lines do
have appreciable breadths, some part of which
could easily be ascribed to a steady decline in the
amplitudes of oscillators. Fundamentally, though,
the difFiculty is so grave as to be fatal to the
classical theory. The case of the linear oscillator
is too specialized to furnish a good illustration,
but that of an electron moving in the inverse-

square central field of a positively-charged
nucleus will serve. According to classical theory
such an electron should describe a spiral termi-
nating at the nucleus, and in doing so it should
emit a "continuous" spectrum comprising every
frequency.

This was the great objection to Rutherford's
atom model of electrons circulating around a
nucleus. Bohr, in order to save the atom model,
introduced the remarkable assumption that
there are certain orbits in which electrons can
revolve indefinitely without losing energy by
radiation, and that light is emitted in photons
when an electron passes by a sudden and
unvisualizable "transition" from one of these
permitted orbits to another. Here was the genesis
of the doctrine of stationary states, of permitted
energy values, and of the emission of spectrum
lines having frequencies equal to 1/k times the
differences between permitted energy values. It
would be fascinating to trace the evolution of
quantum mechanics from this beginning; but we
must proceed directly to, I will not say the final,
but the contemporary stage of the theory of
radiation.
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There is not space to treat a more general case
than that of the linear oscillator in which the
oscillating particle is an electron; but we can at
least generalize Eq. (11'/) to some extent before
departing from the classical theory. The sinu-
soidal vibration assumed in Eq. (117) is obtained
by assuming a potential-energy function const.
x'-and ignoring the damping attendant on radia-
tion, Assuming some other potential-energy func-
tion (and continue to ignore radiation) we obtain
either a non-periodic motion (a case not to be
treated here) or a motion which could be ex-
panded by the Fourier process after the fashion
of Eq. (63):

s(t) = PC, exp (2misv, t). (C, = C .*). (118)

According to classical theory, the outflowing
waves could be resolved into wave trains having
the various frequencies vo, 2u0, 3vo, ~ ~ ~,' and the
energy R, flowing away per unit time in waves of
frequency svo would be given by the formula:

R, = (1/3c') (2~sr 0)'e'C. C,*. (119)

Now by the procedure of quantum mechanics,
we consider x as an operator x and as the matrix
which is associated with this operator. The {ij)
element of this matrix, I recall, is a;; exp (2~i v;;t);
the amplitudes a;; are given by Eq. {108), the
frequencies v;; are the quantities (W,.;—W;;)/h.

In quantum mechanics it is assumed that to
each of these frequencies corresponds a rate of
outflow of energy R;, given by the similar
formula:

R„=(1/3c') {2m v, ;)'e'a;, a„-*. (120)

When using the wave picture of light of frequency
v;;, we are to imagine a wave train of this
frequency carrying energy steadily away from
the atom at the rate R;„given by Eq. (120).
When using the corpuscular picture of light, we
are to imagine photons of energy hv;, emerging
at such a rate that the average number per
second is R;;/hi;;. This latter phrasing however is
likely to lead us into the same difficulty as we
encountered in trying to interpret 4'0" for a
single atom. It is therefore desirable to say,
either that Eq. (120) refers to a very great
number of (non-interacting) atoms all together
{so that XR;,/hv;; will stand for the number of
photons emitted from N atoms in unit time), or

else that R;; stands for the probability that a
photon shall be emitted by an atom in a given
interval of time of unit length. The second of
these statements may be interpreted to include
the first, and therefore is superior.

Now it is a well-known fact of experience that
the relative intensities of the various spectrum
lines emitted from a gaseous assemblage of atoms
depends on its condition; for instance, on its
temperature and on the electrical current which
may be traversing it. The factors a;; must
therefore be variable; and on investigation, one
finds that the eigenfunctions +; which occur in
these factors involve coefficients which can be
adjusted to fit various conditions, on the other
hand, it must not be supposed that the factor
(2')'e'/3c' which appears in Eq. (120) is es-
sentially unverifiable, and could as well be
replaced by an arbitrary coefficient. It can be
and has been successfully tested by experiments
on scattering of high frequency light (x-rays} by
atoms. It would however take too long to enter
into these matters, and I must content myself
with a statement of the consequences of the fact
that with particular atom models, many of the
matrix elements a;; are equal to zero.

Referring to Eq. (108), one sees that if for any
pair of values of i and j the integral J'+,*x+4x is
zero (the integration being taken, as always,
from —~ to + ~) the rate of radiation of energy
R;; corresponding to the frequency i;; is also
zero. The corresponding line must then be
missing from the spectrum of an atom which is
adequately represented by an atom model having
these eigenfunctions. Now in actual spectra, one
evaluates the energy values W;; and the corre-
sponding "term frequencies" W;;/k, by analysis
and classification of the lines which are observed;
and then one generally finds that a great
number of the differences (Wr; —W;;)/h corre-
spond to vacant places in the spectrum —the
expected lines are absent. If a line (W;;—W;;)/k
is customarily missing from a spectrum, it is
said that the line is "forbidden, " and that the
states of energy values W;-; and W;; "do not
combine with one another. "

In the special case of the linear harmonic
oscillator, with the potential-energy function
V(x) = ~ik'x', the consequences of the vanishing of
certain factors a;; are in full accord with what the
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classical theory leads us to wish. The eigen-
functions for this case were given in Eqs. (52) and

(55), from which one sees that the functions 0';
with odd-integer values of i are odd, while those
with even-integer values of i are even. Thus the
integral J'+;~x%';dx vanishes when i and j are
both even or both odd, and it follows that no
energy is radiated with any of the frequencies
2vp, 4vp, 6vp, ~ . If i is even and j is odd, the
conclusion is not so immediate; but it follows

from the general properties of the Hermite
polynomials'r that the integral vanishes unless i
and j differ by one unit, so that no radiation
occurs with frequencies 3vp, 5vp, 7vp ' '

~ No fre-

quency but vp itself can appear in the outflowing
radiation. This is just the result which is needed
in order not to conflict with the classical theory;
for in classical mechanics a linear oscillator with
the potential-energy function $k'x' has a sinu-

soidal motion with only one frequency, and only
that one frequency can appear in the outflowing
waves. In cases of linear oscillators with other
potential-energy functions, the integrals
J'%';*x%'4x do not in general vanish, and
spectrum-lines of all the frequencies v;; are
indicated. Likewise it is satisfactory that a
departure from the particular form qk'x of the
potential-energy function entails by both theories
the appearance of new frequencies —in the one
case the overtones svp, in the other the various
frequencies v„.

The too simple case of the linear oscillator can
take us no further, which is a pity, as there are
important theorems for which it cannot be
invoked as an illustration. Indeed there is no
possibility of giving an adequate idea of the
scope and the range of quantum mechanics and
of its verifications, without at the very least
taking the nucleus-and-revolving-electron model
of the hydrogen atom, applying to it the rela-
tivistic wave equation, making the allowance for
the electron spin, and working out the effects of
an externally-applied field, electric or magnetic.
So great an enterprise transcends by far the
scope of this article, and I must confine myself
to stating the theorems without attempting to
prove them.

The reader may imagine, for convenience,

Pi Courant-Hilbert, 51ethoden der msthemclischen Physih,
p. 76.

some three-dimensional atom model: say the
nucleus and revolving electron of hydrogen and
ionized helium, or the first-approximation model
for sodium, in which last a single electron is
supposed to move in an electric field designed to
simulate the average resultant of the fields of the
nucleus and of the other electrons of the atom.
The Hamiltonian operator will (in general)
involve three coordinates qi, qp, qp, which for ease
of visualization may be conceived as Cartesian
coordinates x, y, z referred to a frame fixed in the
atom with origin at the nucleus thereof. The
eigenfunctions will in general be functions of all
three. Let +;, +; denote any pair of eigen-
functions; W;, W; the corresponding eigenvalues;
v;;=(W;—W;)/k the corresponding frequency.
(Strictly, the subscripts should be triple, but in
these closing paragraphs it is not worth while to
make the change. )

The verifications of quantum mechanics in-

clude the three following types:
(1) Tests by comParison of the ei genvalues of the

Kamiltonian operator ~tk tke observed energy
valges of tke stationary states of tke atom, these
latter deduced chiefly from spectra but partly
also from electron-impact experiments. The
agreements are amazingly good in the cases of
hydrogen and ionized helium, if there is no
external field at all and if there is a strong applied
electric field; and there are also excellent agree-
ments in the cases of various kinds of atoms in
applied magnetic fields of various strengths.

(2) Tests by missing lines. Many pairs of
eigenfunctions satisfy the following equations:

4,'x%;dq = 4;*y%,dq = 4;*z%,dq =0. (121)

According to the theory there should be no
radiation of the frequency v;; associated with
such a pair. It is in fact almost a universal rule
that such lines are missing from spectra. Oc-
casional exceptions can be ascribed to the fact
that atoms often pass through one another' s
fields, so that a Hamiltonian operator devised
without regard to such interactions is not
continuously correct. In this connection it is
important that when an external electric field is
applied to a radiating gas, many formerly-
missing lines make their appearance; and on
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introducing the proper term for this field into the
Hamiltonian operator, it is found that the pairs
of eigenfunctions corresponding to these lines

have ceased to satisfy Eq. (121).
(3) Tests by po46sagiow. Many pairs of eigen-

functions satisfy the following equations when

the coordinates x, y, s are properly chosen:

According to the theory, the radiation of the
frequency v;; associated with such a pair should
be plane polarized, with the electric vector
parallel to the z'-direction. This is not always
verifiable, however; for the coordinate frame

(x, y, z) is fixed in the atom, and in a radiating
gas the various atoms will be oriented quite at
random unless there is some orienting agency
acting from without. An externally-applied field,
electric or magnetic, is such an agency. When the
term describing such a field is incorporated into
the Hamiltonian operator of an atom model, and
the x-direction is chosen to coincide with the
field direction, certain pairs of eigenfunctions
satisfy Eq. (122), and the corresponding spec-
trum-lines are found experimentally to be plane
polarized with electric vector parallel to the field.
With electric fields there are also lines plane
polarized at right angles to the x-direction, and
with magnetic fields there are circularly polarized
lines in the light radiated along the x-direction;
all of which facts may be deduced from the values
of the integrals appearing in Eqs. (121)and (122),
when the corresponding eigenfunctions are in-
serted.

Quantum mechanics extends far beyond these
limited cases of which I have spoken, and its
verifications are more numerous and diversified

by far than those which I have mentioned. The
calculation of spectrum frequencies is not its

only function, and the observation and measure-
ment of spectrum lines are not its only tests.
Quantum mechanics is involved in the deflection
and scattering of free rapidly-moving electrons
and positive ions in gases; in the deflection of free
rapidly-moving neutral atoms in non-uniform
magnetic fields and in non-uniform electric fields;
in the transfer of energy between electrons and
atoms; in the deflection and scattering of light by
atoms and electrons; in the polarization of
gaseous, liquid and solid aggregations of atoms
by electric and magnetic fields, which is evinced
by measurements of dielectric constants and of
susceptibility; in chemical reactions. Quantum
mechanics is also the basis of the contemporary
statistical theories of radiation, electricity and
matter, from which are explained such diverse
phenomena of nature as the distribution-law of
black-body radiation, the specific heats of solids
and of gases, and the laws of the conduction of
electricity through metals and the escape of
electrons from metals. " It would perhaps be
shorter to list the divisions of physics, into which
the quantum theory has as yet made no inroads
and scored no successes! It seems audacious to
have attempted to make even the most ele-
mentary of introductions to so vast a subject,
in so small a space as forty-six pages. But
every division of science is now so vast that
if such attempts were not to be made, every book
would be of encyclopedic length and every
reader would be confined to his own specialty.
I have therefore no hesitation in admitting that
this article touches on only a small part of
quantum mechanics; t:hat in the untouched parts
there are many important principles, many
striking theorems, many brilliant successes of
theory in the interpretation of experiments; and
also that these successes fall far short of being
universal.

ss See for instance my earlier article, Rev. Mod. Phys. 1,
90 (1929); or Dr. Rabinowitsch's translation thereof,
Zkmestairc Zinfl'bring in die pkysNahsche' Ststistik,
Hirzel, 1932.


