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I. INTRQDUcTIQN

1. The general nature of metallic structure

Lorentz' provided us with our first usable

electronic theory of metals. He assumed that a
metal consisted of empty space containing
atoms, acting like hard spheres. In the interstices
between the atoms moved free electrons. These
electrons were subject to forces of only two

sorts: external applied electric fields, and forces
of elastic collision with the atoms. By equilib-

rium with heat radiation, for example, the elec-

trons take up the kinetic energy distribution
characteristic of gas molecules at the same tem-

perature. Now if an electric field acts on the

metal, it accelerates the electrons, producing an

electric current, consisting merely of a drift
velocity of the charges. With constant accelera-

tion, this current would increase linearly with

time after the application of the field, except for

the collisions of the electrons with the nuclei. It
can be readily shown that these collisions, when

averaged out, act like a resisting force propor-
tional to the velocity, or current. Thus the current

rapidly comes to a fixed value, proportional to
the applied field. We can see this from a very

simple equation. If —e is the charge on an elec-

tron, v its velocity in the direction of the applied

field, then —ev is the current which it carries,

Suppose the external field is E, so that its force
on the electron is —Ee. Finally the resisting

force of collisions is —kv. Then, writing force

equal to mass times acceleration, we have

m dv/dt= —kv —eE, or mdv/dt+kv= —eE. The
solution of this equation is the sum of two parts:
the steady drift, kv = —eE; and the transient,
v=constantXexp t

—(k/m)t]. The transient

damps down so rapidly that it is not appreciable
unless times as short as one period of optical

light waves are important. We are left, then,

with the steady drift, giving the current pro-

portional to the applied field, or Ohm's law. If
there are N electrons per unit volume, the current

density is —Nev, so that we have —¹v
=(¹'/k)E. Thus the quantity ¹','k is the
specific conductivity of the metal. It is greater
the more free electrons there are, but smaller

the greater the resisting force on an electron.
More detailed calculation of the mechanism of
collision processes gave a definite value for k, in

terms of the size of the atoms, etc. In Section 4,
we shall see how a mechanism of collisions leads
to an equivalent result.

The present theories of metals seem enormously
complicated, in contrast with the beautiful sim-

plicity of Lorentz's theory. This appearance is
partly justified, but partly it is not. For Lorentz's
theory, as we can see by a little consideration, is
very far from being complete. The modern
theories try to go much farther than it does,
and therein lies some of their complication. Let
us examine a few points in which, quite apart
from the quantum theory. Lorentz's treatment
needs amplification.

In the first place, it is obvious that with our
present knowledge of atomic structure, we should
never be content with a picture in which the
atoms were treated as hard spheres, the electrons
as colliding elastically with them. We must
bring the collisions between electrons and atoms
in metals into connection with what we know
regarding the collisions between electrons and
atoms in other places, for instance in gases.
Secondly, we cannot be content with simply
regarding the conduction electrons as consti-
tuting an electron gas, without further examin-
ation. The conduction electrons of a metal are
altogether too much like the valence electrons of
the individual metallic atoms, certainly executing
some sort of orbits about the nuclei, as well as
passing from atom to atom, and we shall not be
satisfied until we see the connection between
these two pictures. Then we cannot accept
Lorentz's crude assumption about the forces
acting on the electrons. Surely the electrons repel
each other; and surely the atoms are really
positive ions, and attract the electrons. These
large electrostatic forces must be considered. Qf
course, the metal as a whole is electrically
neutral, so that the forces from distant electrons
and ions cancel each other, but still there are
forces from nearby particles. In connection with
this, we are led naturally to the question regard-
ing the forces holding the metal together. A set
of positive ions, immersed in a gas of negative
electrons uniformly distributed, would be a
system in which forces of attraction would act
between the positive and negative charges,
tending to pull them together, while the pressure
of the electrons, growing larger as the metal was
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compressed and the density increased, would
tend to keep them apart. This might well result
in a stable solid of definite size and compressi-
bility. These questions of metallic cohesion lead
us to the idea that a metal is like a large molecule,
which is held together by electrical or valence
forces of one kind or another, and we should look
into the exact relationship between meta& and
molecule. All these questions are things which
occur to us, quite independently of the quantum
theory, and the answering of them leads us into
a theory much more involved, but at the same
time much more satisfactory, than Lorentz's.

VA have just spoken of some of the ways in

which the general ideas of Lorentz's theory
needed amplification. But in addition, that
theory was based on classical mechanics, and one
feature of quantum theory, namely, the exclusion
principle, or the Fermi statistics, ' ' ' has proved
to be of great importance in the theory of metals,
The fundamental papers of Sommerfeld" were
devoted to applying this feature of the quantum
theory to Lorentz's picture, showing that thereby
certain difficulties of his theory, relating mostly
to the specific heat, were removed. For the
specific heat of the free electrons, according to
Lorentz, should be the same as that of a cor-
responding molecular gas. Experimentally it was
very much smaller, According to the Fermi
statistics, where the electrons do not change
their energy appreciably with temperature until
we reach a much higher temperature than we are
accustomed to, the specific heat should be small,
as it is found to be. But aside from these ad-
vances, this first paper of Sommerfeld left the
theory of metals much as Lorentz had treated it.
Most of the more recent papers on metals have
been devoted to filling in the many unsatis-
factory gaps in this theory, which we have men-
tioned in the last paragraph, until at the present
time it is possible to give a tolerably complete
picture of the nature of metals, and of electrical
conduction in them. s

Let us see what general picture of metallic
structure we can build up. Metallic atoms consist
of nuclei surrounded by a number of shells of
electrons, of which the outermost is the shell of

~ For excellent resumes of this recent work, see references
61, 98, 116, 117, In some 6elds these go much further than
the present paper.

valence electrons, readily removed to form ions,
and which are active in chemical processes.
When the atoms come together to form a crystal,
these outer shells of electrons of neighboring
atoms overlap, to such an extent that the mid-
point between adjacent atoms is at about the
distance of maximum density of valence electrons
for a single atom. This means that the valence
electrons are profoundly alfected by the forma-
tion of the solid, metallic state, though the inner
electronic shells are relatively uninfluenced.
There are two qualitatively important results of
this interaction: a mobility of the electrons, re-
sulting in electrical conduction; and energy rela-
tions, resulting in the binding or cohesion of the
metal.

The mobility of the electrons is a result of the
lowering of the potential barriers between atoms
as they approach. The potential energy of one
of the electrons of an isolated atom goes from a
constant value, say zero, at infinite distance,
decreasing according to the law —e /r, where e

is the magnitude of the electronic charge, as the
electron approaches the remainder of the atom,
then decreasing more rapidly, until very near the
nucleus it becomes negatively infinite according
to the law C —Ze'/r, where C is a constant, Z
the atomic number. Such a potential energy is
shown in Fig. 1a. The energies of the various
types of electron may be shown as horizontal
lines in this diagram, indicating really that the
depth of such a line below zero energy measures
the energy required to remove the corresponding
electron from the atom. It is observed that even
the highest of these energy levels is several volts
below the asymptotic energy, measuring the
ionization potential of the valence electron. If an
electron moved with such an energy in such a
potential field according to the classical me-
chanics, it could travel only in the region where
the kinetic energy was positive, the region
denoted by AB in Fig. 1a. In the wave mechan-
ics, it is well known that the electron can pene-
trate into the region of negative kinetic energy,
but that its wave function there is exponen tially
damped off to zero, instead of being sinusoidal
as in a region of positive kinetic energy. Thus the
wave function, and the probability of finding the
electron, extend out beyond AB, but not far,
with appreciable intensity, and the maximum
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Fto. 1. a, Potential within a sodium atom. b, Potential within a sodium crystal. Potentials
are so adjusted that x-ray levels agree, in which case potential at infinite separation is lower for
metal than for atom, since image force is only half as great as Coulomb force at same distance.
Shaded area in b indicates band of free electrons, derived from 3s of separated atoms.

density is necessarily within AB. The electron is

confined to the atom by the potential wall around

it, rising to a height of several volts.
Now if two atoms approach, and if they have

incompleted outer shells of electrons, capable of
taking in more electrons, as with metallic atoms,
then it would be possible, if it were not for the
barrier between them, for an electron to go over
from the one atom to the other, executing an

orbit about either nucleus. This is effectively
prevented by the barrier, however, for even

though it is possible on the quantum theory for
an electron to penetrate a barrier, this would be

very unlikely with such a high wall. As the atoms

get close enough, however, the barrier begins to
get lower, as well as narrower. Qualitatively we

might say that this happens when two curves

like Fig. 1a, get close enough so that at the

midpoint the height of either curve is appreciably
lower than the potential at infinity; though we

shall see later that this simple view of the situ-

ation is not quite accurate. At any rate, it is
clear that when the atoms are as close as in

Fig. 1b, so that the regions in which the valence

electron was likely to be found, in the two atoms,
coalesce, the potential barrier between them will

have disappeared. As this situation isapproached,

all obstacles to the free motion of electrons from
one atom to the other will be removed, and the
whole molecule will become essentially a con-
ductor. In a similar way, as more and more
atoms are added, the potential walls between
them will disappear, and the whole interior of
the metal will become a region without potential
barriers. This will allow free motion of electricity
from one part to another, leaving only the
potential walls around the surface of the metal,
now responsible for the work function, or the
work required to remove an electron from the
metal. This situation is indicated in Fig. 1b,
where the potential is shown for the atoms in the
neighborhood of the edge of a crystal.

Figs. 1a, b indicate at the same time another
feature of the effect of the approach of the atoms
on the energy levels: the single level of the valence
electron in the isolated atom becomes broadened
into a band of levels, of breadth of the order of
magnitude of five or ten volts, in the metal,

There are several ways to consider this. One of
these makes use of the characteristic quantum
relation, Energy =hv. As two atoms approach
close enough so that electrons jump with appre-
ciable frequency from one to the other, the

energy levels of the electrons become split up,
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and the total splitting in energy, in magnitude,
measures roughly the frequency of jumping
from one to the other, by this quantum relation.
Considered qualitatively, we may say that the
stationary states of the separate atoms in this
case are no longer exactly stationary; on account
of the probability of jumping, there is a finite
lifetime for the stationary state, and conse-
quently a broadening or splitting of the energy
level, as always with finite lifetimes. When the
jumps become as frequent as they are in the
metal, when practically every electron which
strikes the barrier passes over it, the frequency of

jumping becomes of the same order of magnitude
as the frequency of motion of the electron in its
orbit, and the broadening of the energy level is
comparable with the whole electronic energy.
With the molecule of a few atoms, the energy
levels are split into a few components, while
with the metal they are broadened into a con-
tinuum. This point of view concerning the
broadening, though it is difficult to follow out
in a quantitative way, is quite legitimate and
very informing.

Quite a different point of view concerning the
broadening of levels is obtained from the Fermi
statistics. As the atoms are brought closer and
closer together, the valence electrons are crowded
into a smaller and smaller space. Now according
to the Fermi statistics, or to the exclusion prin-
ciple, the greater the density of an electron gas
becomes, the greater must become its mean
kinetic energy; in fact, the kinetic energy in-
creases on compression essentially as in adi-
abatic compression of a gas. The actual density
of valence electrons in a metallic crystal repre-
sents a considerable concentration, and when we
compute the necessary spread of kinetic energy
according to the Fermi statistics, we see that it
requires electrons of kinetic energy all the way
from zero to about ten volts, resulting in the
band of energies which we have noted. This is
the explanation given in Sommerfeld's quantum
form of Lorentz's free electron theory. It is
instructive to see that the same bands of electron
energy levels which are thus explained as
coming from free electrons are those which we
have already followed through as being the
broadened and distorted energy levels of the
valence electrons of the atoms. In fact, there is

no distinction which can be drawn between
valence and conduction electrons: in the solid
metal, the valence electrons acquire mobility
and become able to travel from atom to atom,
carrying current.

One difficulty in connection with what we
have just said will occur to one at once: why is
conductivity confined to metals? Our arguments
seem so general that it is hard to see why they
do not apply to any solid. The answer to this
difficulty can be found by considering the energy
levels of the valence or conduction electrons. In
Fig. 1, we have followed through a single energy
level from the isolated atom to the metal, in
which it is broadened into a band. This level was
occupied, both in atom and metal. But we could
equally well have started with a higher, virtual
level, not occupied in the normal state of the
atom, but connected with an excited state. This
would similarly have broadened into a band,
lying higher than the one already considered.
Each excited level goes into such a band, and
the infinite number of excited levels forms a set
of bands which, as the atoms move together,
stretch to greater and greater positive energies.
These bands are discussed in detail later in

Section 14, and are shown in Fig. 9. Now it is
plain that for large distances of separation these
bands will be distinct, but for small distances
they can coalesce into a single continuum of
levels. Only a certain number of the levels,
counting up from the bottom, will be filled with
electrons, and the rest will correspond to virtual
orbits of excited electrons. It turns out to be the
case that in insulators, the filled levels form a
band by themselves, separated by a finite interval
from the next higher unfilled levels, while in
conductors there are empty levels immediately
adjacent to the filled ones. Thus in Fig. 1b, above
the part of the 3s band which is filled with
electrons, shaded in the diagram, is an unfilled
part of the band, which is not indicated. This has
an immediate effect on the conductivity. For if
we put the substance in the electric field, and if
it is a conductor, the eHect of the field will be to
accelerate all the electrons. Those whose original
direction was opposite to the field will be slowed
down and decreased in kinetic energy, while
those travelling in the direction of the external
force will be speeded up, and their energy will be
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increased, This means that each electron will

change its energy level, and the easiest way to
consider this is as a gradual shift of electrons
from their original energy levels through a con-
tinuous set of energy levels, either with increasing
or decreasing energy. But now if the electrons
originally filled a band of energy levels, there is
no possibility for the electron of maximum energy
to increase its energy further, as it would have
to in conduction, for the next higher level is not
adjacent, but requires a finite jump of energy,
which the field cannot give it. Thus conduction is

impossible. * The crystals in which the filled

bands are separated from the unfilled ones in

this way are in general those in which the elec-

trons of the component atoms fill closed shells.

The energy bands of the crystal into which these
shells merge hold the same number of electrons
as the atomic shells, and are likewise filled. On
the other hand, if the atomic shells are only

partly filled, the crystal bands are also only

partly filled, leading to conductivity. It is thus

plain why metals, with their partially filled

atomic shells, are conductors, while ionic crystals,
composed of ions formed of closed shells, are
insulators. In other more complicated cases, a
detailed study of the energy levels is required to
determine the conductivity, and this in general

has not been given up to the present.
We have now described the first of the two

effects produced by the approach of metallic

atoms to form a crystal: the mobility of the
electrons, resulting in conductivity. The second

effect is the effect on the energy, resulting in

binding or cohesion between the atoms, holding

them together to form a solid. This binding is
similar though not identical to valence binding,

but that does not suffice as an explanation, since

one can interpret valence binding in more funda-

mental terms. The question is more difficult than

that of conduction, for it depends essentially on

the interaction of electrons, whereas conduction
involves principally the action of separate elec-

trons. Fundamentally, however, the binding

results from electrostatic attractions between the
positive ions and the negative electrons. As we

mentioned at the very beginning, a set of positive
ions immersed in a uniform negative volume

~ For the application of these ideas to the conductivity of
poor conductors, see references 59, 60.

charge would tend to be attracted into a com-
pressed state, the attraction being balanced by
the pressure of the condensed electron gas. In
terms of our potential curves of Fig. 1, the
potential energy function for an electron becomes
decidedly modified as the atoms approach, the
energy at any point in the outer part of the atom
decreasing, since the electron finds itself in the
metal under the attractive action of neighboring
atoms as well as of the atom to which it is
attached. This is a result of the penetration of
one atom by another, according to which an
electron of one atom is really partly inside the
neighboring atoms, and therefore is not perfectly
shielded from their nuclei by their outer elec-
trons. This lowering of potential energy is con-
nected with a corresponding lowering of the
total energy, and consequently a binding. This
effect is roughly equivalent to the "Coulomb
interaction" which has been frequently discussed
in valence binding. But there are also other com-
plicating features. Thus as the atoms approach,
the charge of the valence electrons redistributes
itself, and the first effect is a tendency to con-
centrate between the atoms, just where the
favorable effect of the change of potential is
greatest, resulting therefore in further increased
binding. This corresponds rough! y to the
"exchange interaction" of valence binding,
though it is probably much less important in

metals than in molecules, The whole situation is
not as simple as this would indicate, however,
for at the same time there are changes in kinetic
as well as potential energy, and there are com-
plicating features in the interaction between
electrons. But the essential mechanism of inter-
action is the one we have described above.

II. FERMI STATISTICS AND FREE ELECTRONS

2. The Fermi statistics for meta11ic electrons

The simplest way of getting a fair approxima-
tion to the electrons in a metal is the use of the
Fermi statistics, combined with the classical
mechanics. " " "This is most easily formulated
in a phase space of six dimensions, in which the
three coordinates and three momenta of an
electron are plotted, and each electron is repre-
sented by a point. We assume that each electron
moves, not under the influence of its neighbors,
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but in a suitable averaged field of force which
depends on position only. The simplest form of
statistical mechanics is then applicable to the
problem. Liouville's theorem applies to the
swarm of points representing the various elec-
trons, and tells us that they move so that the
density of points is constant as we follow along
the streaming points. Further, the motion of
each point takes place on a surface of constant
energy in the phase space. Thus by familiar
arguments, the whole distribution will be inde-
pendent of time if, and in the general case only
if, the distribution is a function of energy only.
That is, iff(x, y, z, p„p„,p, ) dx dy dz dp, dp„dp,
represents the number of electrons whose coor-
dinates and momenta are in the element dx ~ dp „

and if actually f=f(H), where H is the Hamil-
tonian function, a function of the coordinates
and momenta x ~ .p„then f will be independent
of time.

The different types of statistics correspond to
different choices of the function f. The choice is
not arbitrary, but is dictated by the physical
principles underlying the problem. Actually in

any physical case the various particles (as elec-
trons in this case), will not be independent, but
will rather be able to interact with each other.
%e neglect this interaction when we replace the
mutual effects by an average field of force, and
this is approximately justified, but not exactly.
Actually, individual pairs of electrons sometimes
collide sharply with each other, producing per-
turbations of the simple situation we have con-
sidered, and in particular allowing the colliding
electrons to change their individual energies,
though conserving the total energy. In such a
collision, the representative points of the two
electrons move from the energy surfaces they
were on to new surfaces, a type of motion of
representative points not contemplated in Liou-
ville's theorem. And for real statistical equi-
librium, the distribution must remain constant
even though processes of this type occur. For
particles colliding according to the classical
mechanics, f must be given by the Maxwell-
Boltzmann distribution, f=c exp ( —H/4T),
where k is Boltmann's constant, T the absolute
temperature, and where the constant c is deter-
mined by the normalization condition J'f dx
~ ~ .dp, =N, N being the total number of par-

ticles. This is shown by the well-known method
of the Boltzmann H-theorem. Particles obeying
the exclusion principle, however, will give a
distribution independent of time, only if f is
given by the Fermi distribution, where, if we
consider particles of one spin only,

1th~
f=

exp I (H-Ho)/kT3+1

where Ho is determined by the normalization
condition J'f dx ~ .dp, =N. The power of the
statistical method comes through the fact that
the interactions of the electrons are largely taken
into account merely by the choice of the statis-
tical distribution function f, Once that is settled,
we can go back to the picture of electrons moving
in a potential field without influencing each
other, and obtain results of a considerable degree
of accuracy.

Before going further, it will be well to an-
ticipate by pointing out the principal features in
which the statistical method is inaccurate. First,
even in classical mechanics, no problem in which
there are mutual interactions of particles can be
treated with real accuracy by a six-dimensional
phase space. Such a space does not take into
account the mutual relations, and in computing
any such thing as mutual energy of interaction,
it fails, for it does not give correctly such things
as the probability that one particle will be at a
definite distance from a neighbor. This point is
discussed in more detail in Section 5. The space
we have used is the p space; to express our in-
formation completely, we need a 6N dimensional
space, in which a whole system of N particles is
represented by a single point, and we treat
ensembles of such systems. In this I' space, the
interactions are correctly indicated. Secondly, in
wave mechanics, a phase space cannot properly
be used anyway. The principle of uncertainty
states that the uncertainty in a coordinate, mul-

tiplied by the uncertainty in the corresponding
momentum, is necessarily at least as great as h.
If we multiply together the uncertainties Ax

Dp, in all coordinates and momenta, we then
have a minimum of h'. That is, the uncertainty
principle forbids us to look at the phase space
in a way in which we can distinguish smaller
detail than a volume h'. It is not, then, a picture
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which can be carried through in great detail.
Instead, we must use separate coordinate and
momentum spaces as in Section 12.

The application of the uncertainty principle
has important relations to the question of
quantum states, and of individual electrons.
The Sommerfeld quantum condition tells us that
if the system is quantized, there will be one
stationary state per volume k' of phase space.
We see then that if we look at the problem from
the standpoint of the phase space, we cannot
resolve finely enough to distinguish individual
stationary states from each other. No informa-
tion depending on particular quantum numbers,
electron shells, and the like, can be properly
represented in the phase space; if we tried to do
it, the information would become lost on trans-
forming to the more correct wave mechanics. It
is for this reason that the Fermi statistics makes
no effort to consider separate stationary states,
and that the Thomas-Fermi model of the atom
contains no information about the x-ray shells of
electrons. Similarly, the uncertainty principle
prevents us from considering separate electrons,
and the corresponding discontinuous density in

p space. The maximum possible value of the
Fermi distribution function f equals 1/k', cor-
responding to one electron per volume k' of
phase space. If we looked at such a distribution
function with a fine resolving power, the density
would be highly discontinuous, being infinite
where an electron was, zero in between. By virtue
of the uncertainty principle, however, we are
directed not to look at the density too closely. In
fact, we are required to smooth it out by just

H.

Fio. 2. Density distribution in Fermi statistics. f as
function of energy H, for absolute zero, and two higher
temperatures.

the right amount to convert a discontinuous dis-
tribution into a continuous density function.
The Fermi statistics thus does not consider in-
dividual electrons, but rather a smoothed-out
distribution of charge.

With these explanations, we may now proceed
to use the Fermi statistics. In the Fermi function
f=(1/k') Iexp P(H —Hs)/kTj+1}-', Hs proves
to be approximately independent of temperature,
for low temperatures. Then when H is less than
Hs, and H —H& is large numerically compared
with kT, the exponential is very small, and f is
practically equal to 1/k', while when H is greater
than Hs by a corresponding amount, f becomes
practically equal to (1/k') exp t —(H-Hs}/kTj,
much smaller than 1/k', and following a law
formally similar to the Maxwell-Boltzmann law.
Thus in an energy range of the order of mag-
nitude of kT the distribution falls from its
maximum value practically to zero. The behavior
of the function is shown in Fig. 2. As the tem-
perature becomes lower and lower, the range
within which the fall takes place becomes smaller,
until finally at the absolute zero the function f
is equal to 1/ks when H is less than Hs, zero
when H is greater than Hs.

3. The free electron model with Fermi statistics

The simplest model which can be made of a
metal, and one which has been much used, is
that in which the potential energy of an electron
is assumed to be constant, so that H equals
simply the kinetic energy, (p,'+p„'+p,'}/2m.
In this case, the distribution function f is inde-
pendent of the coordinates, depending on the
momenta. We may then profitably consider the
distribution of momentum, a function obtained
by integrating f over coordinates: J'fdxdydz
is a function giving the probability of finding an
electron in unit volume of momentum space,
independent of coordinates. Since f is in this
case independent of coordinates, within the
volume V of the container, though of course it
is zero outside, this function simply is fV. It
approximately equals V/k' if p /2m is less than
Hs, zero if it is greater than Ho. That is, in

momentum space, all that region with the sphere

P,'+P„'+P,' = 2mHs, of radius (2mH0)'", is
uniformly filled to a density of V/h' with elec-
trons, while the region outside the sphere is
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Fio, 3. Energy distribution for free electrons.

empty. At a temperature above absolute zero,
the transition is not perfectly sharp, but is
rounded off, the transition region occupying an
energy band of the order of kT. If electrons of
both spins are present, each sort can fill the
space independently of the other, so that now
the maximum density is 2 V/hp.

It is easy to find the relation between
the maximum energy Hp and the number of
electrons N, at the absolute zero of temperature.
This relation is to be found from the equation
JfV dp dP„dP,=N. Now for electrons of one
spin, fV is equal to V/h' within a sphere of
volume (4~/3)(2mHp)P", and is zero outside.
Hence we have N=(4~V/3h')(2mHp)'~'. This
fundamental relation tells us that the maximum
allowable density increases with the 3/2 power
of the maximum energy Hp, or that the energy
increases with the 2/3 power of the density. Ke
can also find easily the distribution function in
energy. For energies below Hp, the number of
electrons whose energy is between H and H+dH
is equal to V/h' times the volume of momentum
space between these limits, which is (8~mH) dp
= (8~H) m dH/(2mH)'". Substituting, this be-
comes dN/N = (3/2)(H/Hp)'&'d{H/Hp), which is
plotted in Fig. 3. From this distribution function
we can immediately find the average value of
functions of the energy; for instance, the average
energy is

1 1

a'p Ã' sdh x"Pdh = (3/S) Hp. ~

0 0

4. Conductivity in the free electron model

Having found our distribution, the two most
interesting things to consider are the conduc-

tivity, and the total energy. For the conduc-

tivity, we can divide the discussion into two
steps. First we ask how the electrons would be
accelerated in the presence of an external electric
field. Next we inquire what the effect of damping
or collisions would be, and how these would lead
to a constant drift velocity. The first question is
easy to answer. The electrons are free, acted on

by no forces except the external field. In the
absence of a field, the coordinates of the electron
increase linearly with the time, the momentum
stays constant. Thus if we consider only a
momentum space, plotting each electron by a
point in this space irrespective of its coordinates,
the representative point of an electron stays at
a fixed position. The representative points of all
the electrons, at absolute zero of temperature,
will fill a sphere surrounding the origin of this
momentum space, with uniform density, as we
have just seen. Now if an external field is im-

posed, by Newton's second law, the external
force will equal the time rate of change of
momentum. Let us set up the vector —eE, where
—e is the charge on the electron, E the external
electric field, assumed to be constant over the
volume of the metal. This vector will then
represent the time rate of change of momentum,
or the velocity vector for the representative
points in momentum space. All points will flow

with uniform velocity in the direction of the
external force, so that the spherical swarm of
points will move bodily, without change of the
relative distribution, in a given direction in
momentum space. This will result in a continu-
ously increasing current. For the total current is

simply N times the mean current of a single

electron, if ¹is the total number, or is —¹p/m,
where p is the mean momentum of an electron,
a vector. But this is simply the center of gravity
of the swarm of points, so that its velocity is
—eE, and its value, if the external field is applied
at t=0, is —eEt. Hence the total current is
(¹'/m) Et, a current proportional to the external
field, increasing uniformly with time. This is the
same current that would be found from any free
electron picture, whatever sort of statistics were
used.

The next problem in discussing conductivity
is that of collisions. With really free electrons,
there would be no collisions; they must be intro-
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duced as an arbitrary, extra influence. For the
moment, let us adopt a very simple model, that
in which an electron travels on an average for a
time r, then has a collision. At the collision, the
momentum of the electron will change suddenly
and discontinuously, so that its representative
point in momentum space will jump to a quite
different point of space. If the collision is com-
pletely elastic, and the center of force with which
the electron collides is fixed or infinitely heavy,
energy will be conserved, so that the point will

jump from one point to another on a surface of
constant energy, or a sphere whose center is the
origin of momentum space. For example, if the
collision is like that of two elastic spheres, one
moving (the electron) and the other rigidly fixed
(the atom), the distribution of scattered particles
in angle is uniform, so that after collision the
representative point is equally likely to be found
on any part of the sphere; the mean momentum
after collision is precisely zero. Hence on an
average the electrons collect momentum for a
time v, then lose it, so that the average electron
will have the momentum characteristic of the
average time which has elapsed since the last
collision, or ~/2. Ke thus have for the average
current the quantity (he' r/2m)E, a constant
times E, from which the conductivity is Ne' r/2m.
And the distribution in momentum space is
again a sphere, but shifted along to have its
center at —e'E r/2.

The formula which we have just found is
exactly the same that we should have found
from classical theory. There are several features
of it, however, which demand further consider-
ation. In the first place, if the collisions were
elastic, the electrons would continually gain
energy. %'e can see this by a simple example of
one-dimensional motion. If an electron at t=0
has a momentum p, and after time r has a
momentum p+( —eE)~, its kinetic energy will

have increased by the amount (P —eE r)'/2m
—p'/2'= —peE 7/m+e'E ~'/2m in the inter-
val. A corresponding electron with initial
momentum —p would have had its energy in-
creased by &ATE ~/m+e~Z ~2/2m. If the initial
momentum p is large compared with the incre-
ment of momentum, as it is with the Fermi
distribution, the first terms in the two cases are
large numerically compared with the second, and

we observe that they cancel, so that to a first
approximation the changes of electronic energy
add to zero. But the second order terms are all
positive, and they will nest cancel, but will result
in a continuous absorption of energy. This ab-
sorption, for N electrons, would be of the amount
Ne'E' r'/2m, or just the product of the mean
current Ne'E v/2m and the electric field E, per
unit time. Thus this absorption of energy, with
consequent speeding up of the electrons, is simply
the Joulean heat, and this simple picture would
indicate that all this heat would be lodged in

kinetic energy of the electrons. Actually, how-

ever, the collisions are not elastic. The atoms
which are hit by the electrons are of finite, not
infinite, mass, and even a so-called elastic col-
lision is one in which the electron loses a little
energy, the atom gaining an equal amount. As a
matter of fact, the electron loses almost precisely
the extra, second-order, energy which it has
picked up, on the average, so that the electrons
gain practically none of the Joulean energy, the
atoms receiving practically all of it. This follows
from the known fact that the electrons have a
specific heat which is very small compared with
that of the atoms, so that if there is a certain
amount of energy to distribute between atoms
and electrons, it will practically all go to the
atoms, if the situation is anything like thermal
equilibrium. And normally in a metal there is
approximate thermal equilibrium between elec-
trons and atoms, though in certain exceptional
cases this is not necessarily true.

The second special feature of the model of
conduction which we must consider is that
resulting from the exclusion principle. The col-
lisions with atoms cannot obey exactly the
classical laws, for according to those laws an
electron after collision might jump to a point of
momentum space which was already filled, con-
tradicting the exclusion principle. The modifica-
tion of the classical law which appears correct is
to assume that an electron can have a collision
according to classical laws if it jumps to an
unoccupied point of momentum space, but that
it has no collision at all if it would jump to an
occupied point. More precisely, if f is the dis-
tribution function at the point of phase space to
which the electron wishes to jump, f, the
maximum allowable value, we assume that the
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probability of jumping to this point is only
(1—f/f, „)as great as the classical theory would
indicate. This, of course, is rather crude when
examined in detail, for in some cases it can lead
to electrons passing through spherical obstacles
without interference, but our method of classical
mechanics plus the Fermi statistics is crude
anyway. This law of collision has a rather
profound effect on the actual motions of the
electrons, though not on the resulting conductiv-
ity, For consider an electron whose representative
point before collision lies well inside the occupied
sphere in momentum space. Then all points of
the same energy are also occupied, so that no
collision whatever is possible. The only electrons
which can collide are those whose kinetic energy
is very near the maximum allowable energy.
This has rather odd results. An electron whose
initial velocity is opposite to the accelerating
force, but quite large, of the order of magnitude
of the maximum velocity, will be slowed down

by the external field, so that its representative
point will move toward the center of the sphere,
taking it out of the region where collision is
possible. This will continue until the electron is
brought to rest, speeded up in the other direction,
and given practically the maximum allowable
velocity in the other direction, before collision is
possible. The collision will perhaps reverse the
velocity without changing its magnitude, and
the whole cycle begins again. Now if we look at
the coordinates of the electron while its velocity
is undergoing these changes, we see that the
problem is similar to that of a ball being thrown
up in the air, being brought to rest by gravity,
and falling down to earth again with its initial
velocity but opposite direction. The actual dis-
tance through the metal which the electron must
travel in the process corresponds to the height
at which the ball starts down, and this is the
height at which its kinetic energy is wholly
transformed into potential energy. In the elec-
tron's case, it moves against the potential
gradient of the conductor for a distance in which
the voltage changes by its initial energy, so that
the retarding potential within the conductor
stops it, then falls back again to its initial posi-
tion, and finally has a collision. In the process, it
may move several centimeters, since its energy
is a number of volts, and in all this time it has

no collision. But the essential thing is that as
soon as it gets a large enough energy so that col-
lisions are possible, the classical law begins to
act, and it goes only a time 7 further before col-
liding. The mean free time, or mean free path,
of an electron, for computing conductivity, must
be understood to mean the mean time or path
for an electron which has already acquired
enough energy so that the exclusion principle
permits a collision. In spite of the peculiar type
of motion of the individual electrons according
to this theory, the calculation we have given of
the current is still approximately correct. For
the spherical distribution of points will still be
shifted along by the current by an amount
—eE v/2, approximately. Individual points will
move uniformly through the sphere, in the direc-
tion of the external acceleration, until they strike
the boundary of the original sphere. Then they
will continue on the average about the time r
more, when they will have a collision which on
the whole will shift them to the opposite side of
the sphere, from which they will commence the
same process over again. The result will be a dis-
placement of the sphere.

For a more exact discussion of conductivity by
this method, it is obvious that we must go into
all the points we have mentioned in a careful
analytical way. We shall not do this, for this
report is concerned primarily with the electronic
structure rather than the conductivity. But the
general method is the following. Evidently in
the presence of the external field, and with the
collisions, a new stationary state will be set up,
different from the original Fermi distribution.
It will not be really stationary unless the Joulean
heat is somehow removed from the metal, so
that it does not continually heat up, but we
assume this done, so that the atoms have a
velocity distribution characteristic of a fixed
temperature. Then the problem is to find a new
distribution function f, similar to the Fermi dis-
tribution, but different from it. We cannot use

thermodynamic methods for finding this dis-
tribution, as we could for the Fermi distribution,
for the problem is not one of thermodynamic
equilibrium, since energy is being transferred
from the electric field to the electrons, from them
to the atoms, and from them removed by some
external process, in an irreversible manner. We
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must instead use a kinetic method, just as in
Boltzmann's H-theorem, or as in Lorentz's dis-

cussion of the problem of conduction, first setting
up the rate of change of any arbitrary distri-
bution function f with time, then equating the
time rate of change to zero for a steady state.
As usual in such problems, we assume that the
final distribution differs by a small quantity of
the first order in Z from the Fermi distribution,

by using an expansion in powers of small quan-
tities to make the solution practicable. And when
we do this, using our modified classical law of
collisions, we find a distribution which in fact is
very similar to the Fermi distribution, but
shifted along by an appropriate amount in the
direction of the acceleration. The problem is
decidedly complicated by the fact that there are
three separate features to consider, all affecting
the detailed distribution function in the region
where it falls from its maximum density to zero:
the temperature distribution, resulting in a
gradual falling off of density in an energy range
of the order of kT rather than a sudden edge;
the energy gained by an electron during a free
path; and the energy lost to an atom on a col-
lision. These three energies are independent of
each other, and result in decidedly complicated
calculations, but still calculations which have
been approximately carried through. The reader
is referred to the original papers for the details,
and is merely reminded that our simple discussion
is in essence correct. *

5. Energy in the free electron morsel

The second point which we wish to consider
for our simple model of the metal is the total
energy. First we find the kinetic energy. This is

very simple. Assuming the electrons to be at
absolute zero, and all to have the same spin,
the mean kinetic energy has been found to be
(3/5)Hs, whereHO= (3h'/4&)"'(N/V)"'/2m. This
is of interest particularly for finding the pressure,
which would be computed as for a perfect gas if
we neglected potential energy, which for the
moment we do. For a perfect gas, if P is the

Many of the references in the Bibliography deal with
conduction, though mostly with some application of wave
mechanics. References 17 and 2S are fundamental, but
many of the others are important. The problems are
thoroughly discussed in reference 98, and reference 117
gives an emellent and readable shorter discussion.

pressure, we have PV=2/3Xaverage kinetic
energy. Hence for a given number of electrons,
the pressure is inversely proportional to the 5/3
power of the volume, or PV'"=constant, This
is the adiabatic law of compression for a perfect
gas, as we should expect; for the type of com-
pression which we give the electrons of the metal
when we compress it is adiabatic, no heat being
communicated to it, since we assume the
process to occur at the absolute zero. The
pressure of the gas is that which has been
already mentioned in the first section, and it
must be balanced by an attraction to produce
equilibrium of the metal.

Before we can compute the potential energy,
we must make a little more precise the nature of
our model. Of course, electrons are charged, and
a dense gas of electrons, with a high negative
charge, would be very different from our picture
of electrons in a force free space. We must rather
assume that there is a fixed uniform distribution
of positive electricity, the net amount per unit
volume just cancelling the negative charge of the
electrons. This positive charge would represent
the nuclei of the atoms, spread out uniformly
over the volume. We should say at first sight that
the potential energy for such a model was zero.
The distribution is exactly electrically neutral,
so that each element of positive or negative
charge would seem to be in no field. In accordance
with electrostatics, the total potential energy
equals the double integral $fJ'p(x&)p(x&)/rts
Xdvt dvs, where p(xi) is the charge density at xi,
p(xs) at xs, ris is the distance between these
points, and the factor 1/2 takes care of the fact
that each pair of volume elements, dvj and dvs,

is counted twice in the double integral. Surely if

p is everywhere zero, the integral vanishes.
There is, however, an additional refinement

which we can introduce, which seems perhaps
rather artificial in this simple model, but which

becomes very natural in the real metal. This
refinement comes in when we remember that we

are making a statistical calculation, by means of
the Fermi statistics, rather than an electrostatic
calculation of the ordinary sort, and that we are
dealing with discrete electrons rather than
infinitely subdivided ones, so that each electron
is acted on by only the N —1 other electrons,
since it exerts no forces on itself. The statistical
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calculation applies only to the electrons, not to
the nuclei, which we assume to be uniformly dis-
tributed, as we have just mentioned, so that we
must treat the charge of the electrons and of the
nuclei differently. Let us set p = p.+p„,the sum
of the electronic and nuclear charge densities,
so that the energy is

]ff)P («)P (*s)+L..(«)~.(«)

+p„(xi)p, (xe))+p„(xi)p„(xg)}/rigdv]dvg.

This consists of three types of term, the first
coming from the interaction of electrons with
each other, the second from interactions of elec-
trons with nuclei, the third from interactions of
nuclei with each other. The first is quadratic in
the electronic charge density, the second linear,
the third independent of it. When we regard this
electronic charge density statistically, p, becomes
an average charge density. Then according to
electrostatics, in the first term, the quantity
p, (xi) p.(x~) would be the product of the average
charge densities at the two points xi and xg,
while according to statistics it will be the average
of the product. As usual in statistics, the average
of a product is not equal to the product of the
averages, so that the first term is not the same
as in electrostatics. The other terms are not
affected by the statistical treatment, however,
since they involve only linear expressions, and
using the fact that the total potential energy, as
computed by electrostatics, would be zero, and
indicating averages by bars over the quantities,
we can rewrite the potential energy as

(p,(x,)p.(x ) —p, (x,) p, (x,))/r„dv,d „

or as simply the correction to the energy of inter-
action of pairs of electrons on account of the
statistical treatment,

The average p, (x])p, (xi) is something involving
the statistical correlation between different elec-
trons, and as indicated in Section 2, it can be
computed properly only from the probability
distribution in the F space. Thus let the coor-
dinates of the N electrons be x] ~ x~, and their
momenta p] .p~, and let the probability that
simultaneously x] be in dv], x~ in dv~, etc. , and
P»n dP], etc. , be f(x]. Par) dv]. ~ dI]]]r. The

space in which x] ~ p~ are plotted as variables
is the I' space, and f is the distribution function
in that space. We are interested only in coordi-
nates, not in momenta; thus let us integrate over
momenta, obtaining a function which we can
call F~(x] ~ x~), whose product with the volume
element dv] ~ .dvt]) gives the probability that
simultaneously electron number 1 be in dv],
electron 2 in dv], , etc. Now the potential energy
of interaction between electrons is $g;;e'/r;;,
summed over all electrons i and j, for which

i/j. This is to be averaged over the distribution
function Fjv. On account of the equivalence of
electrons, the double sum will be just N(N —1)
times one term of it, or the energy equals
$N(N —1)e'/r]i, the interaction energy of the
pair 1,2, times the number N(N —1)/2 of pairs.
The average of e'/r]]], however, depends only on
the first and second electrons, independent of the
others. That is, to compute it, we need only the
integral of F~ over the coordinates of all electrons
but the first and second, which we may call

F~(x&x~) = J' ~ f'F~(x] ~ xy)dv]] ~ de. Aver-

aging over this distribution function, the total
potential energy of interaction between pairs of
electrons is $N(N —1)ffF~(x]x~)e'/r]~ dv] dv], .
This is what we previously denoted as
$J'J'p, (x])p, (x&)/r]~ dv] dv~. On the other hand,
in finding the quantity $J'J'p, (x]) p, (x],)/r]3
Xdv] dv~, we must use the average charge
density, a function of one electron only. Again
on account of the equivalence of electrons, this
is —Ne times the probability of finding electron
1 in dv, independent of all other electrons, This
requires the probability function to be integrated
still another time, giving F](x&}=fF&(x]x&}dv~.
In terms of F], our second quantity is
$N'f fF](xl)Fi(xs)e'/rla dv] dvl.

In considering the total potential energy, it is
convenient to rewrite it as

{—NeF](x]) }dv] {—(N —1)eF~(x]x.)/F](xi)

+¹F](xi)}/rigva

p, (x])dv] (p, '(x~) —p, (x]}}/r]&v~,

where p, '(xq) = —(N —1)eFg(x]x~)/F&(x]). The
quantity p.'(x~), really a function of x] as well
as x&, is the average charge density of electrons
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which ~ould be found at x& if an electron were
known to be at x&, whereas p, {x0) is the average
density at x2, independent of whether there may
be an electron in dv& or not. Since dv& is infini-

tesimal, the chance of finding an electron in it is
also infinitesimal, so that p, (x2) is a charge den-

sity which integrates over all space exclucling
dv& to N electrons, while p, '(x~) integrates only
to {N—1) electrons, since one of the electrons
is definitely located at x&. Thus, as we stated
above, the true interaction energy between
electrons involves the interaction of each
electron with only N —1 others, and not with
itself. The total potential energy may be re-
garded as the interaction of the electronic charge
with that single electronic charge included in

p, (x2) and not in p, '(x~), with opposite sign,
since it is to be subtracted from zero to give the
final result. In a manner of speaking, it is the
interaction of the electron with itself, which is
incorrectly added into the total in electrostatics,
but which we subtract again to give the correct
energy.

The particular point of the present calculation
is that the density p,

' is not so simple as it would
seem, If we know that an electron is in dv&, then
we cannot assume that the other electrons are
distributed over other volume elements dv2 in an
entirely haphazard way, to give a uniform volume
distribution. On account of the exclusion prin-
ciple, other electrons will be kept a certain dis-
tance away from the one in question. Thus, while

p.' will be independent of position so long as dv~

is a considerable distance from dv&, it will decrease
as dv0 approaches dv&, presumably becoming zero
as they come together. The problem is much like
that met in x-ray crystal structure, where we are
interested in the probability that, if one atom is
in dv&, another will be found in dv2. If the two
elements are far apart, the probability will be
constant, but as they come together it fluctuates,
there being some distances, as twice the atomic
radius, where there are an abnormally large
number of pairs, while with smaller distances the
probability goes down to zero, since no pairs
approach closer than a certain minimum. In our
present case, we have not the material for
making a really correct calculation, of p', though
later, in Section 28, we shall use the wave
mechanics to get an accurate treatment. We

know two things about p', however: first, it is
constant, equal to the mean density of' electrons
in the metal, —Nei V, if r is large, but falls to
zero if r approaches zero; secondly, its integral
throughout the volume is —(N —1)e, corre-
sponding to the N —1 other electrons. Putting
these two facts together, we can make a very
simple hypothesis which proves to be a fair first
approximation. We assume that p' is zero for r&q

less than a certain R, and is constant for r&q

greater than R, where R is chosen so as to make
the integral come out right. At large r&~, p' must
equal —Ne/ V, the average density. The integral
of this over the volume U would be —Ne, one
electron greater than the required integral
—(N —1)e. Hence the sphere of radius R must be
just large enough to include one electron:
47rR'/3= V/N. This determines p' completely.
In terms of it, we see that F2(x&x~) =N/(N —1)V'

if r», the distance between x&y&s& and x&y&z2, is
greater than R, zero if r» is less than R. On the
other hand, F&(x&) =1/U.

In terms of the assumed p's, we can now com-
pute the potential energy. We have p, (x2)
= —Ne/V, and p, '(x~) = —Ne/V if r&2 is greater
than R, zero otherwise. Thus our integral

p.(x,)dv, (p, '(x,) —p, (x,))/r»dv,

(—Ne/ V)dv& (Ne/ U)/r&2dv~,

where the first integration is to be taken over the
volume V, and the second over a sphere of
radius r&2 eoual to R. Hence the integral is

——,'(¹e'/ V) 4&rr&2'/r&2dr» = —xR'N'e / V.
0

Substituting for R, this is equal to
-', (—Ne) e/R, or —

4 (4&r/3 V)'"e'N"'

We have now found the total potential energy,
as well as the total kinetic energy, for electrons
of one spin. If there are N& electrons of +spin,
N~ of —spin, where ordinarily N& =N2, the total
energy will then be

3 3h' '" 1
(N 5/3+ N 5I3)

5 4&r V 2m
3 4&r

e'(N&4" +N»4&').
4 3V
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This differs from the more correct expression
derived from the wave mechanics* only in the
numerical value of the constant. multiplying the
second term. The formula becomes more inter-
esting if we take the case in which Ni = N2, and
introduce the radius R as above by the equation
4~R'/3= V/Ni = V/¹, so that R is the radius
of a sphere containing two electrons, one of each
spin. Then we can eliminate V. If further we
express energies in terms of the Rydberg energy
2s'me4/It', and distances in terms of the atomic
unit as ——k'/4&me', the energy becomes

9 ( 3 q' ' (Ni+¹) 3 (N'i+NQ)

5 44./
= 3 50N 'R' —1.50N/R,

if N=Ni+Ns=total number of electrons. In
other words, since R will change proportionally
to the linear dimensions of the metal if it is com-
pressed, the kinetic energy increases inversely
proportionally to the square of the linear dimen-
sion, the potential energy inversely as the
distance, as we should expect from an electro-
static potential energy.

The model we have used is of course very
crude. Nevertheless, it qualitatively agrees with
the truth in the matter of the energy. The ex-
pression above shows a minimum of energy for a
certain distance R, given by setting the deriva-
tive equal to zero: 0= —7.00N/R'+1. 50N/R',
R = 7.00/1. 50 =4,67 atomic units. The resulting
density of electrons is, in order of magnitude,
in agreement with what v e actually have in the
alkali metals, if we consider only the free elec-
trons; and it is for these metals and these elec-
trons that we should expect to get the best
agreement. The energy of binding per electron
is here —0.16 atomic units, or about 2.2 electron-
volts, also of the right order of magnitude. As we
improve our model, however, we shall see that
there are many features in tvhich this calculation
must be modified, so that it is largely accidental
that there is even approximate agreement with
experiment.

Before leaving this model, we should mention
that the energy formula used above has been

~ See, for instance, reference 72. The units used by
Brillouin in this reference do not agree with ours in all
respects.

used to discuss ferromagnetism in a very crude
way. In the formula in terms of Ni and N2, it is
possible for Ni and N2 to be different, In this
case, the electron spins would not cancel each
other, and the metal would have a net magnetic
moment, Such a spontaneous magnetization is
supposed to occur in ferromagnetic bodies, Now
if we consider only the kinetic energy, we see at
once that the energy will be a minimum it

N&=Ns, so that the body is nonmagnetic. On
the other hand, the potential energy becomes
negatively larger if all electrons have the same
spin. Thus at small distances, where the kinetic
energy is the preponderant term, the spin will

be zero, but at large distances the potential
energy is more important, and beyond a certain
critical distance the lowest energy will be for the
state where all electrons have their spin in one
direction, The distance proves to be larger than
those actually found in metals, so that this
method does not lead to a satisfactory discussion
of ferromagnetism, and it is mentioned only for
the sake of completeness. But one feature con-
nected with it persists in more correct treatments
of ferromagnetism: the interaction terms in the
potential energy give a lower energy for parallel
spins, and if the spins can be set parallel without
too much increase of the kinetic energy, the body
will have a permanent magnetic moment. This
is the fundamental origin of ferromagnetism.

III. FERMI STATISTICS AND VARIABLE

POTENTIAL FIELD

6. The variable potential (Thomas-Fermi) model
with Fermi statistics

The model of a metal we have been discussing,
in which the electrons move in a field-free space,
is obviously much too simplified to represent a
real metal. Ke have spent so much time on it
simply because it presents a number of features
which must be present in a more elaborate theory
as well. Actually, however, the field within a
metal fluctuates violently, becoming very great
in the neighborhood of an atomic nucleus, but
reducing to zero in the regions between atoms.
In the present section, we consider the actual
nature of the field, and the treatment of electrons
in such a field by the Fermi statistics, This ap-
proximation comes very much nearer the truth,
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and still is not too diffirult to handle. It leads to
electrons which in the regions between atoms
behave much as the free electrons we have just
considered, while near the nuclei they behave
like the electrons in the Thomas-Fermi' model
of the atom. We still do not use wave mechanics,
and get no information about discrete stationary
states, but for the broad features of metallic
structure these are not necessary anyway.

The first and most important question which
we must answer is, what is the nature of the field
in which the electrons movers We cannot answer
this question finally until we discuss the wave
mechanics, but we can give an explanation which
includes all the physical features of the situ-
ation. Our first approximation is very simple. We
take all charge, positive nuclei and distributed
negative charge, and compute the electric field
of this distribution. This field, and its resulting
potential, are evidently not the correct ones to
use for an electron. For the system as a whole
is electrically neutral, and the potential is that
of a distribution of charge whose total amount is
zero, On the other hand, the field which acts on
an electron is that of a system whose net charge
is one unit of positive charge, a positive ion.
Further corrections are the ones arising from the
exclusion principle, mentioned in connection
with the force-free problem; and eRects of image
forces, important at the surface of a metal, and
of polarization. We shall see that these correction
effects can be looked at in a rather fundamental
way, and that they may change the field decid-
edly. Nevertheless, the effect on the field is
ordinarily not great quantitatively, and for
simplicity in presentation, we shall first assume
that the electric potential of the whole charge
distribution is the one to use. This leads to the
Thomas-Fermi method.

Having once set up the potential, we can
compute from it the charge distribution. Accord-
ing to the Feimi statistics, at the absolute zero
of temperature, the density of electrons will be
the maximum allowable value in the phase space
at all points where the total energy H is less than
H0, zero where A is greater than H's. Carrying

~ For the Thomas-Fermi model, see references 4, 5, 11,
19, 21, 41, 83, 84, 86, 102, 118.For some of the calculations
in connection with the present section, the writer is
indebted to Mr. H. Krutter, who will probably present
them in a forthcoming paper.

Fic. 4. Diagram for Thomas-Fermi method. Upper
curve: potential energy U, maximum energy Ho. Lower
curve: charge density of electrons.

out arguments similar to those used in discussing
the force-free case, we see that at every point
of coordinate space we can set up a momentum

space, in which the density will be uniform up
to a certain sphere, zero outside it. If U repre-
sents the potential energy of an electron at this
particular point of space, Hs —U is the maximum
allowable kinetic energy, so that the radius of
the sPhere is [2m(Hs —U) J'Is, and its volume
(4s./3) [2m(Hs —U) |si'. The number of electrons
per unit volume of coordinate space and unit
volume of momentum space is 2/h', if we con-
sider both spins. Hence the number per unit
volume of coordinate space, integrating over
momentum space, is (Sx/3k')[2m(Hs —U) 31s.

As we see from Fig. 4, this gives a large density
in the neighborhood of the nuclei, but a decreas-
ing density in regions where U becomes more
positive. At points where U is greater than Hs,
so that classically the particle has negative
kinetic energy and cannot move, we assume the
density to be zero. We have, then, the charge
distribution of the electrons.

Since we already know the positions of the
nuclei, and have found the charge distribution of
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electrons, we are in position to compute the
electrostatic potential of this distribution of
charge. We may now demand that this potential
energy function should agree with the original
function U. This is the requirement that the
field be self-consistent, though not precisely in
the sense of Hartree. It is a condition which
completely determines the field, and from now
on we assume that U is determined in accordance
with it. Let us consider if an approximate solution
for U is possible with real metals. For a single
atom, our problem reduces to the Thomas-Fermi
atomic model. The requirement of self-consis-
tency then is known to lead to a differential
equation in which variables can be separated in

spherical coordinates. The solution depends only
on the radius, and the resulting ordinary differ-
ential equation has been solved numerically.
Hence this problem may be considered as solved.
When we meet a metal, however, the problem
does not have spherical symmetry, and leads to
a partial differential equation, which at first
sight seems hopeless to solve. Fortunately,
however, there is a feature of the situation which
we shall use constantly from now on, and which
makes an appioximate solution quite easy.

'7. The ceIIular potential

We consider a regular crystal of the body- or
face-centered cubic type. We imagine each atom
to be the center of a polyhedral cell, so con-
structed that the cells of adjacent atoms touch,
and taken together just fill up the space. The
cells can be constructed by dra~ing the planes
which are perpendicular bisectors of lines joining
nearest or next-nearest neighboring atoms. These
planes bound the cells. For the body-centered
lattice, the cell is a fourteen-sided figure bounded
by eight hexagons (facing toward the eight near-
est neighbors) and six squares (facing toward the
six next-nearest neighbors). For the face-centered
lattice, the cell is a regular twelve-sided figure
bounded by diamond-shaped faces, one pointing
to each of the twelve equally near neighbors.
The simplifying feature is that within one of
these cells, the potential is very nearly spherically
symmetrical. * Let us justify this statement.

In the first place, as we see from Fig. 5, where

s This is pointed out particularly in reference 8'F, though
in a diferent connection.
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Fir. 5. Polyhedral cells for body centered and face
centered cubic lattices. Dotted lines represent unit cells,
containing two atoms for the body centered lattice, four for
the face centered,

the cells are plotted, they are not very different
from spheres in their shape. This is natural,
since the cubic lattices in question are the forms
taken by close-packed spheres. In fact, if we
packed the spheres closely, and imagined them
fiexible, like iubber balls, and then squeezed
them so that no empty spaces were left between,
they would squeeze into just the polyhedral cells
we are considering. Now each cell, by sym-
metry, will contain just enough negative charge
to balance the positive charge on the nucleus,
so that it will be uncharged as a whole. If the
charge were spherically symmetrical, it would
have no field at exterior points. If it is almost
spherically symmetrical, as we are stating it to
be, it will have but a small field at outside points.
Thus, at a point within one cell, the other cells
will contribute but small fields. Further, they
surround the cell in such a symmetrical way that
even these small fields will tend to cancel. As a
net result, the field at a point inside a cell is
almost entirely produced by the charge within
that cell itself. But this charge is arranged in

general spherically about the nucleus, so that it
produces a central field. Our arguments, then,
form a closed circle: it is a consistent assumption
to suppose that within each cell the field is almost
central. It will be a good approximation to
suppose that it is exactly central. This becomes
particularly reasonable when we examine the
actual form of the potential curves, which we
later determine. For it then appears that the
potential energy, going to infinity negatively as
—Ze'/r+constant, where Z is the atomic
number, at the nucleus; rises to a value approx-
imately constant rather close to the nucleus; and
in the whole intermediate region between atoms
is quite closely constant. If we assume a central
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field of this character throughout the sphere
inscribed in the cell, and let the potential be
exactly constant between this sphere and the
outer boundary of the cell, surely we shall have
a good approximation, which at the same time
will give a potential showing the right periodicity,
and yet being continuous and with a continuous
derivative everywhere.

The self-consistent problem then becomes a
spherically symmetrical one within each cell, and
leads to the same differential equation as for the
isolated atom, and the same numerical method
of solution. Only the boundary condition is dif-
ferent. With the Thomas-Fermi atom, the con-
dition is that infinite space contain just the Z
electrons necessary to balance the nuclear
charge, With our problem, however, the Z
electrons are crowded into the finite volume of
the cell. As a slight variation of the statement in
the last paragraph, let us take a sphere whose
volume is the same as that of the cell, so that it
is between the inscribed and circumscribed
spheres, and let us assume a spherical Thomas-
Fermi problem within this sphere. Our boundary
condition is that the Z electrons be just con-
tained in this sphere. The equation can be
solved subject to this boundary condition, for
arbitrary values of the radius of the sphere, and
in particular for the observed value. It auto-
matically gives a potential which has zero slope
at the surface of the sphere, for the sphere
encloses no net charge, and its field is zero at the
boundary. As stated above, when we carry out
the calculations for actual cases, the potential
not only has zero slope at the surface of the
sphere, but is nearly constant for a considerable
range on both sides of it, so that we can join
together the solutions in neighboring spheres
smoothly. From now on, we shall assume the
potential to be determined by this method, and
shall use freely the results of the numerical cal-
culations determining it.

8. The potential acting on an electron

It has already been pointed out that the field
used in the Thomas-Fermi method is not the
correct one, for it is the field of all electrons, not
of all minus the one which is being acted upon.
We wish instead the field at a point where an
electron is known to be found, due to all the

other electrons. As seen from Section 5, this is
not given by J'(p/r)dv, the ordinary electrostatic
formula, but by J'(p„+p,')/re, where p, '(xq)
= —(X—1)eF&(x&x~)/F&(x&) is the density of the
E—1 electrons left over when one electron is at
xi. Our problem, in discussing the field quali-
tatively, is to analyze the various ways in which
p,

' differs from p„the whole average density of
negative charge. In this analysis, we shall con-
sider several eR'ects neglected in Section 5.

A first illustration of the problem may be seen
by considering the problem of a single atom.
An electron of charge —e finds itself in the field
of the nucleus of charge Ze, and (Z —1) other
electrons, When the electron in question is far
from the nucleus, quite outside the distribution
of electronic charge of the other electrons, it is
in the field not of a neutral atom, but of a positive
ion, which to the first approximation is spheri-
cally symmetrical. This produces a field e/r', if r
is the distance of the electron from the nucleus,
with a corresponding potential e/r. The potential
of an atom as computed by the ordinary Thomas-
Fermi method, on the other hand, falls oR in an
exponential fashion with the distance. This
potential should be corrected, so as to be approx-
imately e/r rather than exponentially zero for
large distances.

As the electron we are interested in comes
somewhat closer to the ion, it polarizes it. The
field of the electron at the ion is —e/r', so that
if the polarizability of the ion is a, the induced
dipole moment is —ae/r'. The field of this
dipole back at the electron is 2ue/r', and its
potential ne/2r4, just as truly a part of the
potential acting on the electron as the Coulomb
potential at large distances, though neither term
is part of the potential of the total charge dis-
tribution. There is one difference, however. The
polarizability of an ion or atom is a quantity
which depends on the frequency of the external
field which is polarizing it, on account of the
ordinary dispersion effect. If the electron were
standing still, or if instead it were a proton, which
moves so slowly that it might almost be con-
sidered at rest, we should use the polarizability
as determined from the static dielectric constant,
But actual electrons are moving so rapidly that
the electrons within the ion or atom do not have
time to adjust themselves perfectly to its
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motion. In other words, ive should really use the
polarizability for high frequency, and for an
undetermined frequency, since the external
electron is not sinusoidal in its motion. The
polarization term, though we can understand it
in principle, and though we can fairly well

approximate it, is thus not a perfectly definite
thing. It depends on the electron's motion as
well as its position, and not in a simple v ay
vvhich ive can formulate directly.

Both effects of which we have spoken take
place when the electron is v ell outside the charge
distribution of the ion. 8'hen hov ever it pene-
trates into this charge distribution, the situation
is entirely altered. It is still in the field of the
nucleus and Z —1 electrons, but the electrons
deform their distribution entirely on account of
its presence. The polarization is the beginning of
this deformation, the first approximation to it
for large distances; for the polarization arises
from the action of the electron in pushing the
cloud of other electrons aivay from it to the other
side of the nucleus, producing thereby a dipole.
But as the electron penetrates, instead of pushing
the other electrons all to one side, it simply
pushes them away from itself, in all directions.
Thus when the electron gets very close to the
nucleus, it acts like a E electron. By this time it
has distorted the other electrons so that there is

only one of the others close up, functioning as a
X electron, while the outer shells are full of their
normal complement of c lectrons, instead of
lacking one from the outer shell, as in the original
ion. In other ivords, by the time the electron
has penetrated to the nucleus, it has cleared a
hole for itself, bv pushing one of the electrons
vvhich was already there out to the periphery of
the atom. Further, this electron which it has
pushed out is of the same spin as itself, so as to
leave a hole into which it can fit, v ithout con-
tradicting the exclusion principle. It is this hole
ivhich we discussed in Section 5 in the force-free
model. Vie approximated it by a spherical hole,
from which all other charge of the same spin was
removed, of just such a size that, with the al-
lo+ed density of electrons, it would include one
electron's charge. From this ave could find the
change in the energy of the electron, ivhich with
our crude method of calculation was —(3/4)
X(4m. !3)"'e(N/ V)'", where NjV is the number

of electrons of the same spin per unit volume.
In our simple case, though this effect gave a con-
tiibution to the energy, it resulted in no force.
In general, however, where the potential varies
with position, the allowable density N/'V is a
function of position, so that if we extend our
calculation of energy made with a constant
potential to the case of variable potential, an
approximation only partially justified, we shall
find an energy term depending on position, and
consequently a force resulting from this effect.
Actually we shall use the potential rather than
the force, just as in our applications ive shall
wish the potential rather than the force for the
polarization and other effects.

In the last paragraph, we have really mixed

up two effects, though they are closely related.
An electron can keep other electrons away from
it in tivo ivays: by the exclusion principle, and
by the repulsive forces coming from electro-
statics. The first acts only between electrons of
the same spin, and approximately the same
momentum, the second between any pair of
electrons. The electrostatic eff'ect is the one
responsible for polarization, since this can take
place before there is any real penetration of the
charge distribution. The exclusion effect is
primarily responsible for the formation of the
hole around a penetrating electron, But the
electrostatic effect is present i. ~en here. It modi-
fies the hole for electrons of the same spin, though
only slightly. implore important, it produces a
somewhat similar effect on electrons of opposite
spin. The accurate calculations on the structure
of helium, almost the only case where the corre-
lation between electrons of opposite spin has been
very carefully studied, has shown that the prob-
ability of finding an electron of one spin near
one of the opposite spin decreases, though not to
zero, as the two come together. The fact that
there is a finite probability of finding them in
contact, with an infinitely high potential energy,
is compensated by the fact that they have an
infinitely great negative kinetic energy at this
point, a possible thing in wave mechanics,
though not in classical mechanics. Noiv to com-
pensate this deficiency of charge of opposite spin
in the neighborhood of an electron, there must
be an excess at a somev;hat larger distance, since
the total charge of opposite spin must add up to
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Fin. 6. Density of charge near an electron, plotted against
internuclear distance. Curve A for another electron of
same spin, B of opposite spin, C for both spins combined.
One unit of density represents maximum allowable value
for electron of one spin. Integrated deficiency of charge, for
curves A and C, one electron unit; for B, zero.

the required amount, regardless of any displace-
ment which it has. This is indicated in Fig. 6,
where we plot in a schematic way the density of
charge of the same and of opposite spin near an
electron. For the electronic charge of the same

spin, we use not the simple approximation so far
employed, in which the density is zero at
distances less than R, and the maximum value

at larger values, but the value given by wave

mechanics, * which will be described later, and

which gives a smooth curve, but with the same

total charge of one unit included in the hole.
For the charge of opposite spin, we have drawn

a schematic curve giving less than normal

density at r=o, with larger density at inter-
mediate distances, so arranged as to give the
same total number of electrons as if there were

no variation of density. It is seen that the result
of this additional correction is to give a hole

with more charge displaced than before, so that
it will somewhat increase the magnitude of the
correction to the energy, without changing its
qualitative nature. In other words, it will change
the constant factor in the formula, but since we

know that it is not right, this effect will not
result in any change in our conclusions. There is,
however, one final remark to be made about Fig.
6. Suppose we find an electron at a distance r

from a second electron, and ask what are the
probabilities that it have the same spin, or the
opposite spin. The answer is to be found from

~ See reference 87, and a forthcoming paper of signer
and Seitz (Phys. Rev. 46, 509 (1934)) for further discussion
of these questions. The writer is indebted to Dr. Seitz for
the privilege of seeing his paper before its appearance.

the relative heights of the two curves A and B
in Fig. 6. At large enough distances, the prob-
abilities will be equal. But at very small dis-
tances, and persisting for some considerable
distance, the probabilities will be much in favor
of the second electron having the opposite spin.
This is the way in which, in the statistical
method, we observe that pairing of electrons
with opposite spin which is so important in the
theory of atomic shells, and in the theory of
homopolar valence. We observe further that the
effect of an electron on determining the spins of
its neighbors extends through only a relatively
small sphere of action.

We have now investigated the difference
between the ordinary average electric field, and
the field at a point where an electron is known
to be, both outside and inside an atom, Outside,
the divergence comes because the electron, by
its removal from the atom, left the atom posi-
tively charged; and further, because it polarizes
the atom. Inside, the polarization effect becomes
merged with the exclusion effect, by which an
electron forces other electrons of the same spin
and same momentum out of its range. We have
found approximate formulas for these ionic and
polarization effects on the energy, both outside
and inside the atom. It is the author's belief that
by making these corrections to the electrostatic
potential outside and inside the atom, and by
joining them smoothly in the intermediate region,
it should be possible to set up the best approx-
imation available for the potential to use in

atomic problems. In particular, in some of its
features, it should be better than Hartree's
method, ' which is often used, though for single
atoms there is not a great difference. We shall
anticipate the wave-mechanical treatment a
little by mentioning the differences between this
method and Hartree's. Hartree finds a wave
function for each electron of the atom, such that
the sum of the squares of all the wave functions
gives the total charge density. As with our
method, his first approximation to the electric
field acting on an electron is just the total field
of this charge density and the nucleus, which of
course is better computed by his method than

by the statistical method. But as with us, this
would give the field of a neutral atom rather
than of an ion. He corrects this, then, by sub-
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tracting from the total charge distribution the
charge connected with the wave function of the
particular electron whose orbit he is finding.
Thus if he is investigating a E electron, he sub-
tracts off a E electron's charge density, while il

he is investigating a valence electron he subtracts
a valence electron's charge. The result is quali-
tatively similar to what we have used. But in
general the hole from which we remove the
charge is more concentrated than the wave
function which Hartree uses. Thus the mean
distance between the removed election and the
one in question is smaller for our method than
for Hartree's, and the resulting negative poten-
tial energy contribution is larger, so that our
model gives a stabler energy, and therefore by
the minimum principle is nearer the truth.
Similarly Hartree does not have any means of
taking into account the polarization, and detects
errors in his method for this reason; we should
do this, again decreasing the energy. Our method
is much more like that of FockP' " M but even
that does not take polarization into account.

The discussion of the field for an atom has
been so long, only because similar problems come
up in a more aggravated form when dealing with
a metal. In the first place, Hartree's method
when dealing with a metallic potential is quite
impossible. * The wave functions of individual
electrons in the metal will prove to be waves
travelling throughout the metal, corresponding
to equal probabilities of finding the electron on
each of the N atoms of the metal. If now we
corrected the total electric field by subtracting
off the charge of the particular electron whose
wave function we were computing, we should
subtract 1/6th of an electron from each atom,
leaving a small and approximately uniform
volume charge throughout the metal. This
would leave a potential showing large-scale
changes from point to point, and depending on
the shape of the sample of metal, wholly dif-
ferent from what we should expect. On the other
hand, when the electron is within the metal, our
method suggests removing the charge from a
hole closely surrounding the electron, just as we
have discussed in the case of an atom. This will
give a potential which has the same value at

s This has been pointed out for example by Brillouin, as
in reference 95.

each atom of the metal, as it should. The hole in
general proves to be of the same order of mag-
nitude as an atom, so that the charge is largely
removed from the atom on which the electron is
located, leaving the other atoms electrically
neutral, as we have assumed before. And the
energy correction on account of the removal of
the electron is large on account of its close con-
centration, resulting in an effect of binding on
the metal as a whole, as we found with the force-
free model. We assume, then, that within the
metal we are to correct for the removed electron
as described before, modifying the correction to
take account of the displacement of electrons of
opposite as well as of the same spin. And within
the metal we are at every point in a region of
approximately maximum allowable electron den-
sity, so that the polarization and ionic effe"ts
met outside atoms are not to be used. These come
in only at the surface of the metal.

If the electron we are interested in is outside
the metal, we must treat it differently, as with
the atom. Here, however, the ionic effect has
quite a different character from what it does in
an atom, It becomes instead the image force, an
effect which has created considerable misunder-
standing, for like the other forces we have been
considering, it is not part of the average field,
and yet forms part of the field acting on the
electron. Let us assume that a charge —e is at a
distance r from the free surface of the metal,
where r is small compared with the dimensions
of the sample of metal. The total charge e will be
induced on the surface, consisting physically of
the unbalanced positive charge left by t:he re-
moval of the electron. We shall not have one
atom carrying the whole positive charge, and
the others electrically neutral, however, Rather,
by electrostatics, the positive charge will on the
average be distributed so that the resulting lines
of force outside the metal are the same that
would be produced by a point charge e at a
distance r below the surface of the metal, the
"image" of the charge —e. The field exerted by
the induced charges at the electron is of mag-
nitude e/4r', and its potential is e/4r.

The field of an electron outside a metal is the
image field. A separate polarization field at
smaller distances is not necessary in this case,
for the image field takes account of the redis-
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tribution of the charge of the metal on account
of the presence of the outer electron, and hence
really takes the place of the polarization effect
as well as the ionic effect. As the electron begins
to penetrate the cloud of electrons of the metal,
however, the formula for image force is no longer
correct. Instead, the potential becomes that of
the whole charge distribution corrected for the
absence of the electrons in a hole surrounding
the electron in question. As with the atom, these
two types of potential curve must be joined at
the surface. A careful discussion of this joining
has not been given. Probably the details are not
as simple as at first sight they would seem. For
one thing, the atoms in the neighborhood of the
surface are not in the symmetrical position of the
inner ones, and it is hardly legitimate to suppose
that the potential is centrally symmetrical within
one of their cells. This question becomes par-
ticularly important in connection with the effect
of surface films on metals. Another complication
is that the image field is a one-dimensional field,

depending only on the distance from the surface,
while the field within the metal shows periodic
variation from atom to atom. It would not seem

easy to join these smoothly. Undoubtedly a
periodicity extends out foi some little distance,
so that the image field is not so smooth as it
seems. Nevertheless, this effect is probably small.

One qualitative feature of the joining of the
field within the metal to the image field should

be mentioned. The potential within a cell
becomes constant at the edge of a cell. The image
potential, however, continues to rise inversely
proportionally to the distance. Thus the image
potential will rise above the potential within the
metal, and the potential at infinity will be
decidedly higher than the maximum potential
within the metal. This is shown in Fig. 1. In fact,
it will rise several volts above the maximum

energy IIO of electrons. This difference, between
the potential at infinity and H&, represents the
work function of the metal. We cannot expect
any calculation based on the statistical method
to give a very accurate calculation of it, but it is
interesting that it gives any information about it
at all. For a single atom, the Thomas-Fermi
method without our corrections indicates that
the maximum energy Ho is the same as the

potential at infinity, giving an ionization poten-
tial of zero,

9. Conductivity in the Thomas-Fermi model

We now have a picture of the potential within
a metal, and of the electron distribution within
it. Let us, as with the simpler model, ask what
sort of information we can get about the two
questions of conductivity and total energy. First
we consider conductivity, and ask what the
effect of an external electric field will be on the
motion of the electrons. This is not the simple
question that it was with the force-free model,
for the actual motions of the electrons in the
absence of an external field are now extremely
complex. We are assuming that the electrons
move according to classiral mechanics, sho~ing
the presence of the quantum theory only in their
statistics. Now an electron in a periodic field of
the type we are considering can have two quite
different sorts of motion. First, its energy can be
less than the value corresponding to the mid-

points between atoms. If we imagine the poten-
tial energy of an electron, —e times the potential,
plotted in the form of a relief map, there is a
funnel-shaped depression of potential energy at
each nucleus (using a two-dimensional form of
statement), rising to a constant plateau, and
then going over to the depression at the next
nucleus. The electrons we are considering are
those whose energy is not great enough for them
to rise up to the top of the depression. Such
electrons are then conhned, in classical me-

chanics, to the particular depression in which
they find themselves. They are real bound elec-
trons. If now an external field is imposed, this
will not, except for an excessively small number
of electrons right at the top of the depression,
make any difference in the status of the e&ectrons;
those which were bound without the field will

still be bound. They cannot carry current from
one atom to another. The held will merely
change their orbits slightly, shifting the center
of gravity of the orbit to one side or the other;
it will polarize the bound electrons, as if they
were in free atoms. These bound electrons,
moving in a central field, will have orbits like
those in Bohr's theory; only, since our Fermi
model does not take account of discrete sta-
tionary states, they will be like Bohr orbits of a



ELECTRONIC STRUCTURE OF METALS 231

continuous set of quantum numbers. They will

be periodic orbits, with precession, penetrating
into the interior part of the atom, of the type so
well known in the earlier developments of atomic
theory.

The second type of electron is that whose

energy is great enough so that it can get over
the barriers between atoms. These electrons
classically will have orbits which loop from one
nucleus to another. In general, they will enter
each cell with the same energy, but with a dif-

ferentt

angular momentum, except in very special
cases, so that the loops around successive atoms
will be of different shape. Their classical motion
could be discussed, but as far as the writer
knows it has not been. It involves some very
interesting and fundamental questions of me-

chanics, questions which have a definite bearing
on the problem of conduction. In particular, does
an electron, started off in a given direction, retain

any trace of its original momentum after en-

counter with many nuclei? It is obvious that this
is a question of the greatest importance in

treating resistance. The writer cannot pretend to
answer this question, but certain features con-
nected with it can be brought up. It is an inter-
esting question, obviously, because if the elec-
trons do not retain their original momentum,
that means that the corresponding electric
current becomes lost, or there is a resistance,
while if the momentum persists after indefinite
collisions, there will be no resistance. It is obvious
that if the atoms are arranged at random, as in a
liquid or alloy, there can be no question of per-
sistence of momenturp. But with a regular lattice
it is not so obvious. And particularly is this the
case because we shall find that in wave mechanics
this persistence of momentum actually occurs
for a regular lattice, so that such a lattice is
resistar celess. The resistance arises entirely
from the irregularity of the lattice caused by
temperature vibration or by mechanical irregu-
larity. And while it is generally supposed, without
argument, that this is a peculiarity of wave
mechanics, the writer is not convinced of this.

It is certainly true that for some regular
lattices there can be groups of electrons which
retain their momentum. Thus think of a cubic
lattice made of material spheres, rather small in
comparison with the distance between. The field

of force is supposed to be the repulsive force of
collision which particles going through this
lattice would feel when hitting the rigid spheres.
Now there will be certain open channels through
such a lattice, in certain directions related to the
crystal axes, the channels being larger as the
spheres are smaller in proportion to the grating
space. And particles directed through these
channels, with an arbitrary speed, can travel
clear through the lattice without collision. There
are, further, certain modes of motion in which
the par ticle collides successively with spheres on
opposite sides of a channel, in just such angles as
to keep moving in general along the channel. Of
course, these types of motion are but a small
proportion of all possible motions, and even
these would not be possible in an arbitrary
periodic potential, but they are enough to show
that it is not entirely fanciful to suppose that
momentum can be in some sense conserved.

Another and somewhat more physical way of
looking at the problem is the following. Let us
suppose a parallel beam of electrons, all of the
same energy, incident on a certain cell of the
crystal. Different electrons will be deflected by
different amounts, depending on how near the
nucleus they were aimed; those which were in
between atoms will hardly be deflected, while
those making a direct hit will be entirely changed
in direction. In general, however, the beam after
the one collision will retain a good deal of its
original momentum, but some electrons will be
definitely scattered out of the beam. But now,
instead of an incident parallel beam, we could
have had in addition certain incident electrons
converging tov ard the nucleus. If these were
properly chosen, we might have had just such
incident electrons that they would be scattered
into the original beam by collision, compensating
for those scattered out. A state of affairs is con-
ceivable in which the net effect of the scattering
in the cell is zero: as many electrons are scattered
into each direction as are scattered out if it.
With such a situation in a cell, it is possible to
set up a beam of electrons progressing through
the crystal, individual electrons being scattered
out of the beam, others being scattered in, in such
a way as to produce equilibrium, and a beam
which on the whole is unaffected as it goes
through. Whether such a situation is possible
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mechanically is not known. It is possible in wave
mechanics, and as a result a perfect lattice is
resistanceless. Until the question is answered,
we cannot say whether this is true in classical
mechanics as well. But in any case, if the lattice
is distorted by temperature vibration, it is
certain that such streams of electrons will be
damped out, there will be a certain mean free
time during which the forward momentum will
be entirely lost, and the metal will consequently
have resistance. Only now, in contrast to our
earlier elementary theory, the resistance, and the
collisions which produce it, do not have to be
introduced as extra hypotheses, but a complete
carrying through of the mechanism would lead
automatically to a calculation of resistance. For
this reason, the problem is much more difficult
than with the elementary theory. We can no
longer separate the acceleration of the electrons
under the action of the external field, and the
collisions; for all the time the electrons are being
accelerated they are also under the action of
atomic nuclei, and are suffering deflections, in-
dicated by motion in the momentum as well as
coordinate space, which take the place of the
sharp collisions. We shall not try further to
analyze the problem of conductivity on this
model, on account of the great difficulty. For
fortunately the wave mechanics introduces sim-
plifications which bring us back much nearer to
the elementary field-free theory, and which
permit a fairly simple treatment.

10. Free electrons and momentum distribution
in the Thomas-Fermi model

One feature of conduction in the present
model is worth while discussing, however: the
question as to whether we can give any meaning
to the energy distribution of the free electrons,
as treated in the elementary theory, where the
number of free electrons in a given energy range
is proportional to the square root of the energy,
and where there is a definite mmimum of energy
at absolute zero of temperature, with a rounding
o6 according to the Fermi statistics at higher
temperatures. This concept has been so useful
in problems particularly of thermionic emission
that one hopes that it has a significance aside
from the special model on which it is based.
Fortunately this seems to be the case. We have

seen in the first place that there is in this theory
a sharp distinction between free and bound
electrons: those whose energy lies above the
maximum of the potential energy in the crystal
are free, those below are bound. The electrons
just able to pass over these maxima, having zero
kinetic energy at them, correspond in a sense to
the lowest electrons of the Fermi distribution of
the force-free theory. Thus the height of the
maximum energy Ho above these electrons
measures the greatest kinetic energy of a free
electron, in that theory. This maximum kinetic
energy increases as the grating space decreases,
with lowering of the height of the potential
barrier. And the greater the maximum kinetic
energy, the more free electrons there are per
atom, so that the number of free electrons should
be greater for metals with small grating space.
Putting it the other way around, we have here
an indication that the metals with few free elec-
trons, the alkalies, should have large grating
spaces, while those with many free electrons, as
in the transition groups of the periodic table,
should have small grating spaces, and at the same
time large maximum kinetic energies for the free
electrons. But when we look at the matter a
little more closely, we seem to find a difFiculty in
this interpretation. As one of these free electrons
moves from the region intermediate between
atoms to the neighborhood of an atomic nucleus,
its kinetic energy enormously increases. In the
inner part of the orbit, there is no fundamental
distinction between free and bound electrons;
this distinction comes only in the electrons'
ability to surmount the barrier between one
atom and the next. We shall find when we con-
sider wave mechanics that we are not permitted
to do a number of things that are allowed with
the present model. We cannot speak of the energy
of a given electron; for the electrons exert forces
on each other, and we have made an approx-
imation by replacing these by an external
potential field. And we cannot, on account of the
uncertainty principle, inquire too closely about
the speed of an electron when we limit its
position too much. In particular, we cannot fix

our attention only on the electrons in between
the atoms, neglecting those which happen to be
near the nuclei, and expect to get definite in-
formation about their energies. On account of
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these two facts we shall have to do two things:
first, consider the kinetic energy of the electrons,
which can be given a definite meaning, rather
than their total energy; secondly, find the
average behavior over electrons at all different
parts of the atom, rather than picking out the
electrons merely at the top of the potential
barrier. We shall anticipate those difficulties by
seeing how much information about the electrons
we can get from our present model, if we restrict
ourselves in this way.

First, we must consider only kinetic energy.
Let us, then, consider the distribution of density
in momentum space alone. Secondly, we must
average over all coordinates. What we are
allowed to use, then, is the integral over coor-
dinate space of our distribution function f, which
will then give an average distribution in mo-
mentum space. This is the converse of ihe
process we have used before: integrating f over
momentum space, to get the density in coordinate
space. It is a very easy process: first we choose a
certain magnitude of momentum, and compute
from it the kinetic energy (we are not interested
in the direction of the momentum, for our dis-
tribution in momentum space must be inde-
pendent of direction). Then electrons of this
kinetic energy will be found at all points of
coordinate space for which the sum of this
kinetic energy, and the potential energy, is less
than Hr„and at no other points. At these
allowed points, f equals 2/Ii'. Thus we simply
multiply 2/k' by the volume of coordinate space
satisfying the condition just stated, and the
result is the density in momentum space at the
corresponding momentum. The result is shown
in Fig. 7, and is easy to interpret. First, if the
kinetic energy we are considering is less than the
maximum kinetic energy of an electron at the
potential barrier, all parts of the metal are
available to it, and the integral is 2V/k', a
constant. This is the density at points in the
momentum space within a sphere whose radius
measures the maximum kinetic energy of free
electrons. As the kinetic energy increases beyond
this limit, however, the available volume very
rapidly decreases, so that the density rapidly
falls off, with a sharp break. The parts of
momentum space corresponding to large kinetic
energy, of course, give information only about

Fio. 7. Distribution in kinetic energy, Thomas-Fermi
method.

the bound electrons. Though these cannot take
part in conduction, still they appear in the
density plot in momentum space, and the writer
sees no way, consistent with wave mechanics, of
leaving them out of account.

The sharp break in the distribution curve in
momentum space, or in the corresponding one in
kinetic energy (see Fig. 7), seems to be real, not
merely a characteristic of our model, and it is
this to which the theory of thermionic emission
must have reference. If we now imagine the tem-
perature to be elevated, so that we must use the
Fermi statistics for a high temperature, a little
consideration will show that the break will be
rounded off in the familiar way. More electrons
of high kinetic energy will appear, and these will
not be like the ones already there, confined to the
region of the nucleus, but will be free to travel
about. They are the electrons which can escape
from the metal. The fact that in the kinetic
energy distribution they overlie certain other
electrons of the same kinetic energy, however,
directs our attention to the fact that: this dia-
gram, though it seems to be the only one per-
mitted by wave mechanics, makes no clear dis-
tinction between free and bound electrons. The
electrons within the sphere of discontinuity in the
momentum space are not all free; many cf them
are bound electrons which, being at a turning
point of their orbit, have momentarily a small
kinetic energy. Similarly free electrons frequently
have much larger kinetic energy than the
"maximum" kinetic energy of a free electron, so
that they are partly represented by the part of
the momentum distribution outside the sphere.
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But nevertheless the number of electrons within
the sphere equals precisely the number of free
electrons, for its radius is determined by the
maximum energy of a free electron at the
maximum of potential energy.

11. Energy in the Thomas-Fermi method

The total energy of our model of the metal
behaves much more like the real metal than is

the case with the simpler model. Thus as the
atoms approach from infinite separation, instead
of varying as inverse powers of the distance, the
energy varies much more slowly, not differing

appreciably from the sum of the energies of the
separate atoms until they begin to come into
contact with each other. If we compute the
energy, and field in which the electrons move,
without taking into account the difference
between the average field and the field where an
electron is, there is no minimum in the energy;
it rises gradually, finally becoming infinite as the
atoms are pushed into contact. * This increase is

a result, as with the elementary model, of the
increase of kinetic energy when the electrons are
pushed into a smaller and smaller volume, with
consequent speeding up on account of the Fermi
statistics. This is partly counteracted by a
decrease of potential energy. For as the metal is
compressed, an average electron is nearer the
nucleus of its atom, and hence in a region of
lower potential energy. The decrease of potential
energy, however, is not rapid enough to give an
attraction. But when the correction is inserted
corresponding to that made in Sections 5 and 8,
where we assume the charge to be removed from

a hole surrounding the position ot an electron,
with consequent decrease of potential energy,
this correction appears to introduce a minimum

into the curve, analogous to that found in

Section 5 for the free electron model. Accurate
calculations have not yet been made, but the
minimum seems to be of the right order of mag-
nitude to account for the cohesive properties of
the metal. It is obvious, however, that the sta-
tistical method, which does not take account of
electron shells and of the periodic properties of
the elements, cannot be expected to give an
accurate account of properties like grating space

~ Unpublished calculations of the writer and Mr. H.
Krutter.

and heat of dissociation, which actually vary
strikingly from element to element. All we can
expect to get from it is a sort of average value,
averaged over a group of elements of about the
same atomic number but different chemical
properties. Since calculations are not available,
and since we shall treat the total energy much
more carefully in connection with the wave-
mechanical model, we postpone further discussion
to that place.

IV. THE WAvE-MEcHANIcAL METHQD:

WAUE FUNci'ioNs

12. One-electron wave functions in wave me-
chanics

In the preceding sections we have discussed
the treatment of a metal from the standpoint of
the Fermi statistics, using the classical mechanics
for the motion of electrons. Now' we have
reached the point where we must take account
of the fact that the electrons really move accord-
ing. to the wave mechanics. But of course we
cannot solve the problem of their motion exactly
by wave mechanics. The most useful approxi-
mation to use in getting started is the same one
we have used in connection ~ith the Fermi
statistics: we assume that each electron moves,
not in the field of all other electrons, but in an
averaged-out field. Then we can reduce the
problem to a set of problems, one for each
electron. This is essentially the method used in

most approximate treatments of atomic struc-
ture, and it proves to be very useful and a good
approximation there. We shall first ask, then,
for the solutions for the motion of an electron in

a periodic field of force. Having obtained these
solutions, we can investigate further approx-
imations.

The problem of determining the field to use is
essentially the one which we have already dis-
cussed. We correct the ordinary electrostatic
field of all positive and negative charges by
corrections coming from the exclusion principle,
image forces, and so on. For the present, we shall
not consider this correction further, but shall
come back to it in Section 2S. It is essentially
the same which we have already discussed in
Sections 5 and 8. The only difference between
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the present field and the previous one is that now,
instead of determining the total negative charge
density from the Fermi statistics, we find it by
computing the wave function of each electron,
squaring that wave function, assuming that to
represent the charge density for that electron,
and adding for all electrons. The sum, as one
knows from a comparison of the Thomas-Fermi
and the Hartree models of the atom, will agree
rather closely with the charge density already
considered. The final field, then, will be very
similar to what we have discussed, differing only
in unessential and minor details. One could use
a self-consistent field method for determining it,
in the following way. First, take the Fermi
potential, corrected for exclusion, determined as
described above. Find the wave functions of
electrons in this field. Set up charge distribution
and corrected field from this. Use that as a
starting point for a second similar calculation.
Repeat the process until the field was the same
at the beginning and end of a step, This method,
though it has not been carried out, would be
practicable, by making only a few non-essential
approximations. We have already pointed out in
Section 8 the way in which it differs from the
exact Hartree method of self-consistent fields.
Briefly, the correction for exclusion is different,
and is much more nearly correct in the present
method than in Hartree's.

If the field is known, the next problem is to
find the solution of Schrodinger's equation for
an electron moving in this field. It is a problem
which cannot be solved exactly, but for which we
can get good approximate solutions, and derive
many general propeities of the solution. The
problem is a purely mathematical one, but like
most of the mathematical problems of quantum
mechanics, it is so difficult that without a good
deal of physical insight we cannot solve it. We
shall go into it more carefully than we have the
Fermi statistical method, for it is closer to the
truth of the matter, and deserves more detailed
treatment. There are three principal ways in

which the results differ from those which we have
already discussed. First, and rather unimportant,
electrons now are capable of penetrating barriers,
so that those with energy even slightly below the
top of the potential barrier between atoms can
go from one atom to the other; the distinction

betweeii free and bound electrons is not as
definite as with the Fermi method. secondly, the
method of wave mechanics takes definite account
of quantum numbers and discrete stationary
states. Instead of continuous distributions of
energies, we find discrete energies for the bound
electrons, corresponding to the x-ray shells. And
for the free electrons, though there are con-
tinuous distributions in energy, there are certain
gaps, connected intimately with the quantum
states. These gaps have connection with such
things as electron diffraction, but even more
they can have profound effect on conductivity,
explaining in fact the difference between con-
ductors and nonconductors. And the discrete
quantum states naturally are the feature of the
situation which explains the difference between
different types of substances. There can be
nothing in the statistical method explaining in
detail why alkalies behave differently from
alkaline earths, and why both are violently dif-
ferent from an inert gas or a halogen. These are
characteristics of the periodic table, depending
entirely on electron shells and discrete stationary
states. The Fermi method can give only the
vaguest sort of information about such things;
we have passed over these problems tacitly in
discussing that method. Thirdly, in discussing
conduction, we have already mentioned that the
wave mechanics gives decidedly simpler relations
for accelerated electrons than classical mechanics
appears to. We were unable to give a good dis-
cussion in classical mechanics, but the wave
mechanics permits a number of rather accurate
statements regarding conduction.

The technique of dealing with the wave me-
chanics is quite different from that of classical
theory. We are not allowed to use a phase space,
on account of the uncertainty principle, as we
have already mentioned. Since this is impossible,
we shall view the problem from two comple-
mentary aspects which together provide almost
the same information: we shall consider the
wave function in coordinate space, and in
momentum space. The wave function in coor-
dinate space is the ordinary function of Schro-
dinger theory, whose square gives the probability
of finding the electron within given limits of
coordinates. In the neighborhood of each nucleus
it resembles the wave function of a bound elec-
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tron rotating 'about that nucleus, while in the
regions between nuclei it resembles the plane
wave characteristic of a free electron. The wave
function in momentum space is less familiar,
though well known from the transformation
theory of quantum mechanics. s It is a function
of the three components of the momentum of an
electron, such that its square gives the proba-
bility of finding an electron within given limits
of momenta, irrespective of its coordinates. For
considerations of conduction, the Fermi dis-

tribution, and such things, the momentum
function is even more useful than the coordinate
function, since it gives immediate information
about the mean velocity and current of electrons,
and the mean square velocity and kinetic energy.
Of course, either of these functions can be found

from the other, by a simple transformation, but
sometimes we can get information from one
more easily, sometimes from the other. The
momentum wave function proves to be capable
of giving more general results, but the coordinate
function is more familiar and more easily visu-

alized. Therefore we shall start our discussion

with it, basing our work on certain general

theorems which we shall prove later in discussing

the momentum, and which we shall simply state
at present.

13. Periodicity of potential and wave function,

and Bloch's approximation

The potential field for our Schrodinger problem

is a periodic one. The periodicity is best described

by setting up the cells surrounding the nuclei

which we have already mentioned, shown in Fig.

5, polyhedral cells all of the same shape and size,

which just fill up the space. Then the potential

has the same value at corresponding points of

all cells. Let one of the nudei be at the origin,

and let the vector from this nucleus to the kth

nucleus be Q». Then the potential is unchanged

by making the translation Q&, no matter what

value k may have: U(q)= U(q+Qs). We now

naturally ask, if the potential shows this simple

property of periodicity, does not the wave func-

tion show some similar property? It does, as we

shall be able to prove very easily when we have

treated the momentum eigenfunctions, in Section

~ See for instance reference 40. For a specific application,
to free atoms, see reference 26.

20. For the present, we give merely an intuitive
discussion of it. It seems plain that in some
fundamental way the wave function must have
the same behavior in the neighborhood of each
nucleus; it would be too much to suppose that
it could be quite different near different nuclei,
and yet satisfy Schrodinger's equation with the
same potential in each case. We can readily
imagine, however, that the function near the kth
nucleus should be like that near the nucleus at
the origin, but multiplied by some constant
factor; for a solution of Schrodinger's equation
can be multiplied by a factor and remain a
solution. If in particular this factor is of the
nature of exp (ics), where cs is a real constant,
then though the wave function is different at
the kth nucleus from what it is at the origin,
still the density of charge will be the same, for
this depends on the wave function times its con-
jugate, and the product exp (ics) exp (—ir s) = 1.
It is this case, where the density is periodic,
though the wave function is not, which proves
to be correct. Further, it can be proved that
the exponential factor must be of the form

exp P(2'/h)ps Qs j, where Ps is an arbitrary
vector, of the dimensions of a momentum, anc'

which for the present we shall call a momentum,
finding its interpretation later. In other words,
the wave function satisfies the equation

u(q+Qs) =exp f(2M/h) pp Qgjz(q).

This equation can be given a simple interpreta-
tion. If we were dealing with free electrons, the
wave functions would be plane waves, like

exp L(2s-i/h)ps qj, where ps is a vector which

proves to be the momentum of the electron, so
that ps/h is a vector of magnitude equal to the
reciprocal of the wave-length, pointing along the
wave normal. Then if we increased q by Q», the
function would be multiplied by the factor
exp $(2m/h)Ps Qs), just the same factor we have
found. In other words, our function is one which,
looked at in a broad way, behaves like a plane
wave, but in more detail behaves like an atomic
wave function. Within a cell, it can be very dif-
ferent from a plane wave, but if we compare only
the values at corresponding points of different
cells, these values will be related to each other
just as in a plane wave.
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Bloch" has made an approximation to the
wave function, satisfying the condition just
stated, and further agieeing closely with the
atomic wave function near the nucleus. If u~ is
the wave function of an electron surrounding the
kth nucleus if other atoms were absent, and Qi,
is the radius vector from the origin to the kth
nucleus, he assumes that the wave function con-
nected with p0 is

g exp $(2m'/k) pp Qpjup.

If the atoms are far apart, so far that the wave
function u& of the kth atom has fallen practically
to zero before one reaches one of the nearest
neighbors, then we shall actually have this sum
equal to the kth term near the kth atom, so that
it will simply be a constant times the function
for this atom itself. Further, it obviously changes
by the proper factor in passing from one atom to
another. If the functions of several neighboring
atoms overlap, the correct periodicity will still

be shown, for each term of the original summa-
tion must be multipled by the same factor in

going from one atom to another. But on account
of the overlapping the wave function no longer
will behave just like that of an isolated atom.
This, however, is to be expected; surely as atoms
approach the wave function must become dis-
torted. The approximation to this distortion
introduced by using our sum as a wave function
is, however, a very poor approximation, and for
this reason the method is only suggestive, not
quantitatively correct.

In spite of the poor wave functions yielded by
this method, it still is possible to obtain an
approximation to the energy, for by the per-
turbation theory the mean of the energy over
even a poor wave function is correct to one more
order of small quantities than the wave function.
Thus let H be the energy operator for the one-
electron pioblem. Then the mean energy is given
by

p exp p —{2~i/h)po Q jump exp E(2~i/h)pa Q«ju. dpi p exp P{27i/h)pp' (Q —Q )]XI „

Sl Sl ~

1

fp exp p —{2m/k)p& Q~gu g exp f(2m'i/k)pp'Q„gu„du p exp D2xi/k) po (Q„—Q„)gb„„
ltl a m, S

where H „=H„=tu Hu„de, and b

= J'u u de. In the nondiagonal terms, we
notice that the two terms corresponding to m, n
and n, m combine to give a cosine multiplied by
2. Further, each atom of the crystal is identical
with every other, so that the double sum is just
the single sum, multiplied by the number of
atoms in the crystal. Finally we assume that the
atoms are far apart so that u„and u, overlap
only slightly, the only case in which the method
of treatment is justified anyway. In this case, we
can approximately set b „=1, 8„„=0 if m/e.
Hence the expression for energy may be re-
written

H + p 2 cos p(2m/k)po. Q jH
a+m

Now we must consider the quantities K„.If U
is the actual potential energy, with identical
singularities at each nucleus, and U„is the poten-
tial energy for the uth atom alone, we have by
hypothesis f —(h'/8/iu)V'+ V Q =au„,where

~ is the one-electron energy for the atomic problem,
equal approximately to the binding energy of the
corresponding electron. Thus

Hu„=L
—{h'/Sir'm) q'+ Uju„=(e+ U —U„)u„,

so that H =e „+H'„,where H' „=t'u„
X(U—U )u de. As seen from Fig. 1b, U is
closely equal to U, as shown in Fig. 1a, within
the nth atom, but becomes less than U„outside,
becoming negatively infinite at each other
nucleus, wheie U is negatively infinite, U
finite. Thus H' will in general be negative if
u and u are of the same sign where they overlap
most strongly, positive otherwise. Remembering
now that e = e if m =u, =0 if mWu, the energy
becomes

«+K' + P 2cost (2~/k)pa Q „)K'„.
nQw

As a result of this equation, each atomic energy
level is broadened into a continuum, the various
levels being given by different values of the
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vector po. The maximum and minimum energies
of such a band come when as many as possible
of the cosine factors are positive or negative,
respectively, and the breadth depends on the
size of the matrix components H' „.Thus for
atomic wave functions far down in the atom, for

which the overlapping of functions from different
atoms is very small, these components will also
be small, and the band will be only slightly
broadened, while for the outer electrons of the
atom the overlapping will be large, and the
broadening can well be comparable with the
whole separation between energy levels. It is
in such cases that the method breaks down, as
we can see from several arguments. In the first
place, we have already seen that for large over-
lapping, there is no reason to suppose that
Bloch's method would give accurate wave func-
tions in the region between atoms. Next, as the
energy bands coming from different atomic con-
figurations began to overlap, which they would
do in this case, we should find that the energy
had appreciable matrix components between
levels of different atomic quantum number, so
that a proper perturbation calculation would
take into account the interaction between dif-
ferent atomic levels, and the final wave functions
would be mixtures of different ones of the sort
we have set up. Such a calculation has been made
in special cases," '" but has not been carried
out in general. The method is primarily one
suited to the more tightly bound electrons of the
atom.

14. The cellular method and metallic energy
levels

For cases where Bloch's method is inappli-
cable, as well as the ones where it is applied,
another method of approximation is more suit-
able, depending on the solution of the wave
equation within the cell surrounding an atom,
subject to suitable boundary conditions. ' ~ "' If
we knew precisely the wave function in one cell of
coordinate space, and knew the fundamental
momentum po, we could get the wave function in

any other cell by multiplication by the suitable
factor exp D27ri/h)Pp- Qs], and shifting along to
the required cell. All we need, then, is the wave
function in a single cell. This wave function must
satisfy two conditions: first, it must satisfy

~I2

FIG. 8. Perpendicular to face of polyhedral cell. Illus-
trated with section of body centered edll taken through
nuclei. Vector Q~ from nucleus 0 to nucleus I equals vector
from one face of cell 0 to opposite face.

Schrodinger's equation; secondly, it must join on
smoothly to the wave function in adjacent cells.
This latter condition can be put in a form de-
pending only on the one cell. Consider a nucleus,
and a nucleus in an adjacent cell, letting the
vector from one to the other be Qi, . It is plain that
this is also the perpendicular vector from one
face of the cell to the opposite face, as shown in
Fig. 8. From a point of the surface of the cell, to
the opposite point, the wave function must be
multiplied by exp P(2+s/h) Po' Qp]. Thus the
boundary condition is simply that the wave
function, and its gradient, be multiplied by this
factor on going from one point of the surface of
the cell to the perpendicularly opposite point.
There is, of course, a different factor for each
pair of faces of the cell. The problem is to solve
Schrodinger's equation in the cell subject to these
boundary conditions. This problem can be
discussed, and approximate solutions obtained.
We have seen that it is a good approximation to
suppose that the potential in a cell is spherically
symmetrical. Then Schrodinger's equation is a
spherical wave equation, and variables can be
separated in it in polar coordinates, as with an
isolated atom. Separate solutions are then of the
form of spherical harmonics of angle, multiplied
by functions of the radius which must be
determined by numerical solution of a radial
differential equation. For an arbitrary energy
value, we have an infinite number of solutions,
one for each spherical harmonic of angle, all
satisfying the condition that they remain finite
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at the origin, which of course we must demand. In
general these functions will become infinite at
infinity, but this does not concern us, since we
use the function only within the cell. Now by
making an arbitrary linear combination of all
these functions, with different spherical har-
monics, or different angular momentum or
azimuthal quantum numbers, we obtain an
infinite number of arbitrary constants, with
which it seems possible to satisfy the required
boundary conditions. A general discussion has
not been given; but it can easily be shown
possible to satisfy them at a finite number of
points of the surface, namely, at the midpoints
of the faces of the cells, and a practicable method
of doing this can be set up. The resulting wave
functions have been computed for certain cases,
in particular for sodium, as a function of energy
and of internuclear separation. For the tightly
bound electrons, one term in the linear combi-
nation is large compared with the others, so that
the function resembles an atomic function of
definite quantum number. This is not the case
where energy bands overlap, however, corre-
sponding in Bloch's method to the necessity of
making a perturbation calculation in such cases,
with combinations of several atomic states. The
combinations, however, are here made exactly,
rather than approximately as in perturbation
methods.

The actual calculations are made in the
following order. First, one decides on the energy
and the internuclear distance, or the size of cell,
determining the Q's. For this energy, one inte-
grates the central field differential equation
numerically, for each value of azimuthal quantum
number. One determines the value of function
and slope for each of these curves at the distance
midway between adjacent atoins, the edge of the
cell. There are then certain equations connecting
the various functions and slopes with the value

pg. There are enough such equations so that the
direction of the vector po may be assigned at
pleasure, and the equations then determine its
magnitude. It is possible for pa, however, to be
real or imaginary as determined from these
equations, and it is only the real values which can
be used. Imaginary values would lead to damped
waves, which are not allowable. Hence there are
only certain ranges of energy, internuclear

distance, and wave normal for which real propa-
gation is possible.

In Fig. 9 we plot energy against internuclear
distance, for sodium, as determined by the
cellular method, and show those ranges of the
diagram for which real propagation is possible in

some direction. The ranges in which propagation
is possible in all directions are somewhat more
restricted. This diagram shows very clearly the
relation between atomic and metallic energy
levels. At infinite separation, the levels of
negative energy are discrete, the energy levels of
the atom, and each can be assigned to a set of
quantum numbers. As the distance of separation
decreases, each of these discrete stationary states
spreads out into a continuum, as Bloch's
approximation would indicate. The spreading
becomes large for any particular state about at
the point where the orbits of adjacent atoms
commence to overlap. This is indicated by the
dotted line AA, intersecting each energy level at
the radius of the conesponding classical orbit; it
is seen that to the right of this line, the spreading
is comparatively small, while to the left, it is
large. We observe, then, that at the actual
distance of separation in the crystal, in this case,
the 1s, 2s, 2p levels have spread very little, while
the 3s has spread a good deal, so as to overlap
the 3p and 3d. Farther above and to the left of
the dotted line, the various groups of levels
overlap and interact with each other in a very
complicated way. We shall discuss the detailed
nature of the energy curves in much more detail
later, particularly in Section 19.

15. Periodicity of energy and wave function in
momentum syace

The different sublevels of the continuum into
which one of the atomic levels spreads are
characterized by the values of po, which we have
called the momentum. We can get a more
detailed picture of the energy levels by choosing a
given internuclear distance, and a given energy
band, and within this band plotting energy as a
function of po. Since po is a vector, this means
really a plot of energy in a three-dimensional
space, in which the three components of po are
the coordinates. This we may call a momentum
space, postponing further discussion of it until
later. Now when v e plot energy in the momentum
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or
exp P(2~/h)P) Qg]=1,

(P;/h) QI, =.integer.

But (P~/h) ~ Q~=e, where e is an integer, is the
equation of a plane perpendicular to P;, and
distant eh/I P;j from the origin, so that putting
in all possible integers we have a set of parallel
equidistant planes separated by the distance
h/I P; j. The condition then is that each of the
nuclei, with coordinates Qq, should lie in one of
these planes. But such planes are precisely the
ones which are of importance in the Bragg
re8ection of x-rays and electrons from the
crystal. These planes are determined by Miller
indices, as (100), (111), etc. , and it is easy to
show, as we do in Appendix I, that these Miller
indices, in the proper units, are simply the three
components of the vector P; determining the
planes. Further, it is easy to show that the
extremities of the vectors P; in momentum space
form a lattice, which has simple relations to the
lattice of atoms. Thus if the atomic lattice is
body-centered cubic, the momentum lattice is

space, for one of the bands, we discover an
interesting thing: the energy is a periodic func-
tion of position in the space. This comes about
mathematically because the equations con-
necting energy and po involve trigonometric
functions, cosines in Bloch's method, others in
the cellular method. The periodicity is a three-
dimensional one: there is a lattice of points in the
momentum space, much like the lattice of atoms
in the coordinate space, and if the momentum
coordinates of one of these points are given by
P, , we have E(p0)=E(p0+P;), where E is the
energy.

The periodicity in the momentum space can be
seen in the following way. The quantity p0 enters
the problem only in the one statement that
u(q+Q~) = exp L(2m/h) pp'Qp)a(q). But now we
can show that there are certain vectors P;, which
can be added to p0 without changing this relation.
If that is true, then the whole problem will be
just the same for p0+P; that it is for p0, so that
in particular the energy will be the same. The
condition is simply

exp D2m/h)(p0+P') 'Qpg =exp p(2~/h) pp'Qpg

for every Qq, or

face-centered, and Ace versa. These are the only
two types of lattice which we shall speci6cally
consider. This lattice in momentum space is
called the reciprocal lattice, because the magni-
tude of the vector from the origin to a point of it
is proportional to the reciprocal of the distance
between corresponding planes in the real lattice,
since as we have seen, this distance is h/

~
P; ~. In

the reciprocal lattice, as in the real lattice, it is
convenient to surround each lattice point by a
polyhedral cell, such that the various cells are all
of the same shape and size, and taken together
just fill the space. Then we have shown that the
whole boundary value problem, and consequently
the resulting energy levels and wave functions,
have exactly the same values at corresponding
points of any two cells in the reciprocal lattice.
The periodicity is at once obvious in the Bloch
method, where the energy depends on p0 through
the sum of terms cos ({2~/k)po Q ). If in this
function we replace p0 by po+P;, we have
cos L(2r/h)(p0 Q +P; Q„„)),which, remem-
bering that (P;/k) Q „=an integer, is the same
factor as before. In the cellular method, when one
carries out the trigonometric work, it is just as
obvious.

We thus have the energy given as a periodic
function of p0, for each energy band. By special-
izing a little we can give a good graphical
representation. Thus in Fig. 10 we show two
bands, computed by the cellular method, by
taking the section of the cell made by the plane
p,0=0, giving a square section, and by drawing
contours of equal energy in this section. The face-
centered nature of the reciprocal lattice is well
shown by this section. On account of the
periodicity, the contours join on smoothly to the
ones in adjacent squares, which means that they
must cut the edges at right angles. Another way
of indicating the energy by even more specializa-
tion, is to cut through the cell with a line rather
than a plane, and draw energy as a function of
position along this line. In Fig. 11 we do this,
choosing the line in the (110)direction, or the 45
degree diagonal of Fig. 10, so that we have waves
whose corresponding plane wave travels in this
direction. In such a diagram, the energy bands
can be all indicated on the same plot. Ke see that
the energy has either a maximum or minimum at
the center of the cell, and either a minimum or
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(a) (bj

Fio. 10. (a) Energy contours in momentum space, plane p, =0. Drawn for sodium, half inter-
nuclear distance =3.8 atomic units. This represents the energy band going to 3s at infinite separa-
tion. (b) One of the energy bands of sodium going to 3p at infinite separation.

maximum at the boundary. There are further-
more certain general relations: states which go on
infinite separation into s states of the atom have a
minimum at the center, p states have a maxi-
mum, etc. Further, the states far below the dotted
line of Fig, 9, which correspond to narrow bands
of energy, show only a little variation of energy
with po, while those far above the dotted line
show large and increasing variation. In Fig. 11, it
is obvious that each curve in the neighborhood
of the middle of the cell shows the general form
of a parabola, and the curvature of this parabola
continuously increases, from a very Rat one for
the low energy levels, to a very sharp one for the
high levels. For the low levels, where Bloch's
approximation is good, the cosine-like form of
the curves is apparent, but for the higher levels
this is a very poor approximation. Another
feature is that for the low levels, the ~arious
bands of energy are widely separated from each
other, while for the high levels they can even
overlap in some cases.

10. Detailed discussion of wave functions

In addition to the energy levels, it is of interest
to look at the wave functions themselves. In
order to do this, we can draw a straight line
through the lattice, and find real and imaginary
parts of the complex wave function at points
along this line, drawing separate curves for the

two. We do this in Fig. 12 for waves travelling in
the (110) direction. The line is drawn, not along
the wave normal, but in the (111) direction,
inclined at a certain angle to the wave normal,
and chosen because atoms are much more
closely packed in this direction than along the
wave normal. Along this direction, the ex-
ponential function gives a sinusoidal modulation,
the real part behaving like a cosine, the imaginary
part like a sine, as is very obvious from the
graphs. The functions of Fig. 12 could equally
well be determined by Bloch's method or the
cellular method.

In looking at the wave functions in detail, it is
interesting to consider the nodes, for it is well
known that these are of great importance in the
theory of characteristic functions, the energy in
general increasing as the number of nodes
increases (though the relations for a three-
dimensional function are not nearly so simple in
this respect as for a one-dimensional function).
And we observe that nodes occur in the functions
for two reasons: on account of those present in
the atomic function, and on account of those
introduced by the sinusoidal modulation. Thus
the very lowest energy level is that coming from
the 1s atomic function, with ps=0, shown in
Fig. 12a. This has no nodes at all. As we increase
Ps in the 1s band, however, nodes are introduced,
coming from the modulating wave, not the
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atomic function, for the 1s has no nodes. In other
words, as far as number (though not exact
locatio'n) of the nodes is concerned, the func-
tions agree with the plane wave functions
exp p{2sri/h)ps (IJ. Such a wave is shown in Fig.
12b, c where the dashed lines indicate the
modulating sine and cosine wave. This corre-
spondence is lost only at the edge of the cell,
where the half wave-length equals the distance
between atoms: there, as shown in Fig. 12d there
is a node between each pair of atoms, and we
have only a real function, rather than a complex
one, since the corresponding imaginary function
would have a node at each atom, which is
impossible for an s function. Now a complex
function of position corresponds to a progressive
wave, as we see by multiplying by the function of
time: exp L(—2m/h) (Et—ps g)]. But a real
function of position corresponds to a standing
wave, as exp [(—2s.i/h)Ef) cos I (2'/h)po qj,
and this is what we have at this particular wave-
length. There is a particular significance in this
wave. The standing wave can be considered as

1 l l [

-2

2p

FIG. 12. Wave functions for bound electrons for sodium,
as function of distance along a line in (111) direction.
a. ls function, po ~0. Function is real.
b. 1s, wave-length corresponding to po is 10atomic distances. Real part.
c. Imaginary part of (b).
d. 1s, wave-length 2 atomic distances, corresponding to edge of cell in

momentum space. Function is real.
e. 2p, wave-length ~2 atomic distances. Function is real, but (d) and

(e) are formally related as real and imaginary parts of a function.
f, g. Real and imaginary part, 2p. wave-length 10 atomic distances.
h. 2p po~0 real function.
i, 2s, po 0. Real function, but (h) and (i) are formally related as real

and imaginary part of a function.

The dashed sinusoidal curves are t:he free electron wave
functions from the free electron correspondence, having
the same number of nodes as the actual function. The
dotted curves are the modulating sine curves in which ps
is chosen from the central cell. They agree for ls states,
but not otherwise.

I' — 2s

FIG. 11.Energy plotted against momentum, (110)direc-
tion. Distance as tn Fig. 10. (The 2s and 2p curves are
actually so nearly straight that their curvature would not
show on this scale, and has been exaggerated. ) The 3s and
3P curves are those shown in Fig. 10(a) and 10(b), re-
spectively.

being made up of the superposition of two
progressive waves in opposite directions, and we
can show that the wave-length is just such that
the reflected wave is formed from the direct one
by Bragg reflection on the (110') planes. We
show this as follows. In Appendix II, we show

that the general condition for Bragg reflection of
an initial wave po to a final one pt, in the planes
described by the vector P, in the reciprocal
lattice, can be stated in two parts: first, a con-
dition of interference, the incident and reflected
wave being in the same phase relation at each



plane of atoms, which is p&= p0+P;; secondly, a
condition of wave-length, the final wave having
the same wave-length, and therefore momentum,
as the incident, or pP= pP. Now the edge of the
cell, in the (110) direction, is given by the
relation po= (1/2)Piio. Thus if we let Pi= —Pp,
we obviously satisfy the relation of wave-length,
and at the same time we have pi= —Pjio/2

Pl] 0/2 P110 p0 P110 agreeing with the
Bragg law for reflection in the (1TO) planes. We
have an interesting explanation of this special
case, then: at the particular wave-length for
which the electron wave can be reflected from
the (110)planes according to the Bragg law, it is
totally reflected, and the allowed wave is not
progressive at all, but standing, consisting of
equal amounts of direct and reflected waves.

So far, for the particular propagation at the
edge of the cell, we have found only a real, and
not an imaginary, part for the wave function. It
seems as if it must be possible to find this
imaginary part somewhere, and as a matter of
fact it is, if we look for the 2p wave functions.
The 2p atomic function has a nodal plane
through the nucleus, and the three degenerate
substates of the 2p correspond to having the
plane in three mutually perpendicular orienta-
tions. Correspondingly in the metallic case there
are three substates. In particular for the propaga-
tion in the (110)direction, one state has the plane
normal to the (110)direction, while the other two
which in this particular case, though not in
general, have the same energy, have nodal planes
including the (110) direction. We consider the
first. Further, we consider the same edge of the
cell as before, so that the modulating factor is
such as to change the sign, corresponding to half
a wave-length, going from one atom to the next.
In Fig. 12e, we see that this 2p function has just
the same number of nodes as the is at the same
point of the cell, only now the nodes are those
arising from the atomic functions, rather than
from the modulating plane wave. Further, the
nodes of the 2p are midway between those of the
is, so that formally they are related like the real
and imaginary parts of a single complex wave.
The 2p, then, furnishes the missing imaginary
function. Like the 1s at this point, the 2p by
itself forms a standing wave, and again the direct
and reflected waves satisfy the Bragg relations.

Let us next consider the 2p states in which Po
decreases from the edge of the cell to the center.
These are shown in Fig. 12f and g, and we observe
the remarkable fact that a decrease of pq brings
an increase in the number of nodes, until finally
for pq=O, in Fig. 12h, we have twice as many
nodes as for the maximum value, one midway
between each pair of atoms as well as one
through each nucleus. The wave function again
has only a real, not an imaginary, value, and the
2s function with Pa=0, shown in Fig. 12i, is
related to it as Fig. 12d and e, were related. The
increase of nodes of 2p with decreasing Po seems
peculiar at first, but becomes reasonable when we
look at the energy diagram in Fig. 11, for there
we see that the energy, as well as the number of
nodes, of the 2p increases as we decrease Po,
verifying the general correlation between energy
and number of nodes. But now another possibility
of correlation with sinusoidal waves is suggested
to us. We recall that the energy and wave
function are really periodic functions of p&.

Instead of correlating these 2p functions with the
plane waves having po from the edge of the first
cell, at PQJQ/2, in to the origin, we could equally
well have correlated them with waves in the
next cell, from Pii~/2 out to Pii~. And if we had
done this, the plane waves would have had an
increasing, rather than a decreasing, number of
nodes, and in fact would in each case have had
just as many nodes as the real wave function.
In Fig. 12e and i, the dotted lines give the
sinusoidal curves connected with po's in the
central cell, while the dashed lines give the sine
curves from outer cells, with the same number of
nodes as the actual wave functions.

17. The free alectron and atomic correspon-
dences in momentum space

The remark we have just made is the key to an
interesting method of correlating the actual
solutions of Schrodinger's equation with the
values of Po in momentum space. We shall not
follow through the further details, for they can
get very complicated when we consider other
types of function and other directions of propa-
gation. But if, instead of confining ourselves to
the central cell of momentum space, we use the
whole of momentum space, we can assign to each
actual wave a value of po, not generally in the
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central cell, which has the following properties:
first, it is derived from the p0 in the central cell

by adding a vector P; of the reciprocal lattice, so
that the periodicity condition of the wave can be
stated in terms of this p0 as well as in terms of
that from the central cell; secondly, the corre-
sponding plane wave has as many nodes in its
real and imaginary parts as the actual wave,
though in the actual wave some of these nodes
come from atomic nodes. This correspondence
can be called the free electron correspondence
between wave functions and the momentum
space. The reason is that, if the periodic potential
were gradually reduced to zero, each wave
function would gradually change into the wave
function of a free electron, or a plane wave. The
wave function would of course change violently
in the process, but the one thing which would be
unchanged would be the number of nodes, since
this is a very fundamental property of the
function. If we make this correspondence, then,
the wave function which satisfies the relation
o(g+Qq)= exp {{2zi/k)P0 Q~ju(q) would go in
the limit when the electron became free into the
function exp f(2~i/Ij:)p0 g, and pp would go in
the limit into the momentum of the free electron.

In the free electron correspondence which we
have just described, each wave is assigned a
different pa, so that the pa can be used as a sort
of quantum number, sufficient to describe a
stationary state completely. This method is to be
contrasted with the method we have used
previously, in which we used only the central cell
of the momentum space and chose all pa's from
that cell. In that case, to specify a state, we must
give not only the p0, but also the energy band to
which it belongs, or what is the same thing, the
quantum numbers of the atomic state to which
this energy band goes on infinite separation of
the atoms. This method may be usefully called
the atomic correspondence. For practical pur-
poses, it is usually much more useful, for the
wave functions aie much nearer those of free
atoms than they are to those of free electrons, as
we can see from Fig. 12. It is stretching the point
a good deal to make an identification ot the
nodes, particularly the inner ones near the
nucleus, with the nodes of a plane wave. Further,
the energy levels are enormously different from
those ol' free electrons. The free electron of

momentum p0 would have an energy P0'/2m,
simply its kinetic energy. On the other hand, as
we have seen in Fig. 11, the 1s electrons have a
very low but practically uniform energy, the 2p
much higher and again almost the same, corre-
sponding to a great jump of energy between the
two cells, and nothing like the continuous law
which we should expect from free electrons.
Everything indicates that for a metal like
sodium, the free electron correspondence is very
far from the truth, for the levels which are
actually occupied with electrons. Another dis-
advantage of it is that it is not really nearly as
simple as our description would seem to indicate.
We have considered only one particular direction
of propagation, and specially chosen types of
wave function. If we had taken the general case,
we should have met great complication. Each
state which in the atomic method of corre-
spondence lies in the central cell of momentum
space will lie in some other cell in the free
electron correspondence {except the 1s states),
and a very careful consideration of the nodal
structure must be made before we can tell which
cell is the correct one. In general, to fit into the
free electron correspondence a given atomic
state which with its different p0's fills the central
cell in the atomic correspondence, it proves
necessary to cut this central cell up into many
small segments, as if it were a wooden block
being cut up with a saw, and to shift these
different segments by different vectors P; into
other cells, carrying the values of energy with
them. This results in a very complicated system
of zones, which has been discussed by Bril-
louin, '~ "with the energy continuous within one
of the small segments, but changing discon-
tinuously on the surfaces of the segments. These
surfaces of discontinuity prove in general, as in
the particular case we have considered, to be
surfaces such that any vector drawn from the
origin to a point of the surface represents an
electron wave which is capable of being reflected
according to the Bragg law. A few of these zones
are shown in Fig. 13.

18. The metallic correspondence

The free electron correspondence, as we have
seen, is theoretically interesting, but has no very
close relation to the structure of metals. Relations
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Fro, 13.Zones in momentum space, for body centered space lattice, face centered momentum
lattice. First solid represents middle zone, identical with middle cell, bounded by twelve faces
parallel to (110) planes. Second zone includes volume between first and second solids, also
bounded by (110).Third zone included between second and third, bounded by (110) and (100).

of much more value may be obtained by con-
sidering the 3s electrons of sodium. Here the
wave functions, as shown in Fig. 14, show quite a
different relation to sinusoidal waves. In Fig.
14a, b, c, d we show not only the 3s electrons for
several different ps's, as befcre, but also the
corresponding plane waves when ps is chosen to
be in the central zone (the atomic, rather than
the free electron, correspondence). We see that
while, of course, the number of nodes does not
agree at all, the general behavior of the wave
function in the region between atoms agrees
rather closely with the sine curve. It is only near
the nuclei, where, of course, the wave functions
have extra nodes characteristic of atomic wave
functions, that the two diverge from each other,
and this is not over as large a part of the space as
we might think, since the volume of a small
sphere around the nuclei is to the whole volume
as the cubes of the corresponding radii. In
perhaps ninety percent of the volume, the plane
wave represents the wave function well, through-
out t;he zone. Now these are the electrons which
actually function as free electrons in the crystal
of sodium, and it is decidedly a matter of
interest that the wave functions have such a
strong relationship to those of free electrons. The
relationship is shown again by referring back to
Fig. 11, which gave the energy as a function of
Ps. We recall that the various bands of electrons
gave energy curves resembling parabolas, but
with curvature going from a very small value for
the tightly bound electrons to a very high value
for electrons of high energy. We have given for
the 3s band the parabola P'/2m characteristic of
free electrons, and it is seen that it agrees very
well with the actual energy curve. For the lower
levels, the energy does not vary as much as this

with Po, for the higher levels it varies more. We
may bring this into correlation with our diagram
of Fig. 9. Here, it seems that the states far
below the dotted line have much less energy
spread in the central cell than free electrons,
those just about on the line have about the same
energy spread, those far above have much more.

We may now carry out with the 3s and 3p
wave functions an argument similar to what we
made earlier with the 1s and 2p. As we go to the
edge of the central cell, the 3s-like functions
acquire nodes midway between atoms, as in Fig.
14d. But the 3P at the edge of the cell, shown in

Fig. 14e, has corresponding nodes passing
through the nuclei, being approximately equiva-
lent to plane waves of the same wave-length
(neglecting the other nodes near the nuclei, which

here, in contrast to the free electron corre-
spondence, do not agree for the 3s and 3p
functions). If then with these 3P functions we
let either po be gradually decreased to zero, or be
gradually increased to twice its value, the
number of nodes continues to increase, as in Fig.
14f and g, and the function, except for the
nodes near the nuclei, resembles a plane wave of
shorter and shorter wave-length, corresponding
in fact to the plane wave determined by po in the
first cell outside the central zone. This suggests
then a correlation between wave functions and
points in momentum space, which we can call a
metallic correspondence, since it is appropriate
for the actual free electrons of the metal, and
which is different from both the atomic and the
free electron correspondence. In the metallic
correspondence, for sodium, we assign the states
which go to 3s at infinite separation to the
central cell, the 3p's to cells directly outside, and
so on. The dotted lines in Fig. 14 give the
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FlG. 14. Wave functions for free electrons, for sodium,
as function of distance along a line in (111) direction.

a, 3s function, po ~0. Real function.
b, c, Real and imaginary parts, 3s-like functions, wave-length ~8

atomic distances.
d. 3s-like function, edge of band.
e. 3p-like function, edge of band.
f, g. Real and imaginary parts, 3p-like function, intermediate position

in band.
The dotted lines indicate sinusoidal wave functions for the metallic

correspondence.

sinusoidal curves of the metallic correspondence,
agreeing with the atomic correspondence for
the lowest zone, a—d, but not otherwise. One
point of considerable significance in Fig. 14 is
the way in which a single function has s-like
properties at some points, p-like at others, as is
well shown in Fig. 14b, for instance. This
indicates the fact that the functions are really
linear combinations of different l values, as is
obvious from our derivation. Another way of
looking at it is that the different energy bands
have broadened out so that they overlap, with
consequent mixing of the stationary states.
There is really very little significance, then, in
denoting these levels by the atomic corre-
spondence, which is really correct only for energy
levels which do not interfere with each other. On
the other hand, for the bound electrons, shown in

Fig. 12, this phenomenon does not appear. In
Fig. 12f, g, for instance, the wave function in the
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Fle. 15. Energy plotted against momentum, showing
two zones.

neighborhood of each nucleus is like a 2p. Near
the left-hand nucleus of Fig. 12'„where the
function is actually like a difunction, it is so
small as to be negligible.

Ke should now expect to get good correlation
between the energies of the 3p electrons and free
electrons, and this is shown in Fig. 15, where the
3p's are shown in the cell outside the central one.
This curve, as one can see by comparison, is
simply a part of Fig. 11, with the rest omitted.
The energy curve of the 3p's, as a matter of fact,
agrees fairly well with the next part of the
parabola beyond the central zone. At the edge of
the cell, there is a discontinuity of energy, the
curve showing a behavior something like an
anomalous dispersion curve. Beyond that, how-

ever, for some distance, the curves agree fairly
well. That the agreement is not very good,
however, is indicated in Fig. 16, where we show
the energy in a two-dimensional plot, made up
out of our earlier Fig. 10a and b, but with the
contours drawn in the zones indicated by the
metallic correspondence. If the energy agreed



SLATE R

with that for free electrons, the contours would

be circles, the energy being independent of
direction. In the central part of the central zone,
this is the case, but by the time we get to the
next zone, the curves are far from circular. The
metallic correspondence is, as we infer from
what has just been said, one which holds for a
few bands of electrons only. As the wave-length
of the corresponding plane wave becomes shorter
and shorter, the oscillations of the wave function
coming from the plane wave and those from the
atomic part of the function about the nucleus
become of the same order of magnitude, and they
cannot longer be distinguished from each other.
Even in Fig. 14f, g this is to some extent the case.
The metallic correspondence is one which is
satisfactory only when these two types of
oscillation are of quite different orders of
magnitude. This suggests that sodium, which we
have discussed, is a particularly favorable case
for finding this correspondence in a pure state,
for there the inner shells of the atom are much
smaller than the valence electron, and the inner
oscillations of the wave function are concentrated
into a small volume compared with the whole
volume occupied by the atom. In metals like
iron, for instance, where there are electrons, t.he
3d's, which are half bound and half free, we could
expect no such clear-cut agreement between the
wave functions and energy levels and those of
free electrons. To put the difficulty simply, the
3d's would not know whether they should act as
free electrons or not, and whether they should be
so counted in the correspondence. But it is
useful to have considered such a case as sodium,
where the X and I electrons definitely are not
like free electrons, and the M electrons are.

In any case, we may expect that as we go to
much higher electron levels than these, the levels
will become more and more like the real free
electron levels, and that the free electron
correspondence will become more accurate. This
has one interesting result. The free electron
correspondence of an electron like 3s is in a cell
further out than that used for the metallic
electron correspondence. If we try to go in a
regular series from 3s out to electrons which
demand the free electron correspondence, we
must then skip over certain cells; there are not
enough states to make up for the cells. As a

FrG. 16. Energy contours, showing two zones.

matter of fact, there will be just five cells unac-
counted for, the ones occupied by the is, 2s, and
triply degenerate 2P in the free electron corre-
spondence, and not occupied in the metallic
correspondence, where 3s is in the middle cell.
Now of course there will not be five cells, at a
certain distance out, which are not occupied.
Rather, we shall get to intermediate states
between those for which the metallic or the free
electron correspondence is more suitable, which
will be ambiguous, belonging according to their
properties partly to one, partly to another, cell,
thus partly filling up two or more cells, and
bridging the gap in a way. Later, when we
consider the momentum eigenfunctions, we shall
be able to understand these states in a much
more definite way. A similar situation is en-
countered if, instead of taking one internuclear
distance and one potential function and con-
sidering different energy levels, we consider one
energy level and allow internuclear distance or
potential function to change as parameters. In
general, squeezing the lattice or reducing the
periodic potential to constancy will have the
effect of passing closer to the state of free
electrons. It will lower the dotted line in Fig. 9
and move it to the right. As this is done, and as
we consider a given energy level, we start with
infinite separation or a very large potential
variation, with a discrete atomic state. As the
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crystal is squeezed, we finally come to the
point where this state lies about on the dotted
line, Then it becomes appropriate to consider
this state as lying in the central cell in the metallic
correspondence, After a little more squeezing,
however, this becomes rather inappropriate, and
we assign the state partly to its central cell, but
partly to an outer one. Finally the free electron
correspondence becomes the correct one for this
electron, and it becomes assigned to the proper
cell for that, somewhat further out. This assign-
ment is proper, no matter how much further
squeezing may be done. In this process, we may
say that the state has been promoted, from the
inner cell to an outer one characteristic of the
free electron correspondence. This promotion is
very similar to what is found in diatomic
molecules, where the quantum numbers ap-
propriate for a state with considerable separation
of the nuclei no longer are appropriate when the
nuclei come together.

19. Promotion of stationary states

The conception of promotion of stationary
states is necessary if we are going to understand
the energy levels as a function of internuclear
distance, as shown on Fig. 9. In Fig. 9, we have
drawn a line, BB, indicating the mean potential
energy of an electron averaged through the
metal, and we observe that in general the energy
levels below this line are practically discrete,
those above continuous. We can easily under-
stand the significance of this fact. Below the line,
the total energy is less than the average potential
energy. Since the kinetic energy is necessarily
positive, this means that the potential energy is
decidedly less than the average throughout the
cell. The only way in which this can be achieved
is to have the electronic density concentrated in
the regions of low potential energy; that is, near
the nuclei. Levels below the line BB, then, must
correspond to bound electrons, and to fairly
concentrated wave functions, which then cannot
interfere with the corresponding wave functions
in neighboring atoms to broaden the energy
levels. On the other hand, levels above 88 have a
higher energy than the average potential energy.
The line AA, near 88, indicates the maximum
potential energy in the crystal, so that the total
potential energy of the wave function cannot be

greater than this value, and all excess of the
energy over AA must be kinetic. As a matter of
fact, the wave functions of Fig. 14 indicate, when
computations are made from them, that the
distribution of charge density throughout the
cell, for an electron with metallic correspondence,
is rather uniform, as in a plane wave, so that the
actual potential energy is approximately the
average through the cell, given by BB, and the
excess of energy over 88 measures roughly the
kinetic energy. The kinetic energy then is
practically zero as the level cuts BB,representing
a great decrease of kinetic energy from the
atomic electron state. As the level goes still
further to the left, however, the kinetic energy
rapidly increases again, as is shown by the rapid
rise of all the curves.

Now let us ask why the energy curves show
minima. This is a question which we have so far
neglected, but which is of the first importance in
questions of the energy of the crystal as a whole.
As a matter of fact, we shall find that the
minimum in the 3s curves corresponds in a
rather close way to the minimum in the total
energy of a sodium crystal, which gives its actual
equilibrium, explaining its cohesion, compressi-
bility, heat of dissociation, etc. It is of great
importance therefore to understand why the
minimum occurs. We observe that such a
minimum is not present for the 1s state; as a
matter of fact, the reason why all other states
have minima is just that they undergo the process
of promotion of which we have spoken, with
consequent increase of energy as well as of
quantum number, while the 1s state does not.
As in the last paragraph, let us consider a wave
function as approximately a plane wave, so that
the total energy is the sum of the kinetic energy
p'/2m and the average potential energy, 88, Fig.
9. As we compress this wave adiabatically, both
terms in the energy change. For adiabatic
compression, the wave-length will remain pro-
portional to the linear dimension of the crystal,
just as in a box containing standing electro-
magnetic or sound waves, and compressed, the
number of waves will remain unchanged, the
wave-length changing to compensate. Since p is
inversely proportional to the wave-length, the
kinetic energy will increase inversely as the
square of the linear dimension of the crvstal.
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This is the same variation of kinetic energy
which we have already found for the free electron
model by the statistical method, in Section 5.
The potential energy, on the other hand, will

decrease as the dimension decreases, as given by
88, Fig. 9. For the wave with p=0, then, we

may expect a regular decrease of energy as the
internuclear distance decreases. Of course, this
can be expected to hold only for distances small

enough so that our approximations are reason-
able good; that is, near our dotted line in Fig. 9,
for to the right of that line, the atoms are
practically separated, and their energy inde-
pendent of internuclear distance. Now for the 1s
state, this decrease of energy is just what we
find, and for just this reason of decreasing
potential energy. But if the metallic corre-
spondence were correct, we should expect for
instance that the 3s as well would show such
behavior, for the bottom of this energy band
rather accurately acts as if i t consisted of
electrons with no kinetic energy, as we have seen.
This is, however, far from the case. As the atoms
are squeezed, the 3s state first has a decreasing
energy, on account of decrease in the mean
potential energy, but at smaller distances it has a
rapidly increasing energy. And the reason can
only be that for a smaller distance of separation,
the 3s becomes decidedly higher than the dotted
line, enters the region where promotion takes
place, and is on its way up to an energy curve
which is a sum of the mean potential energy,
and the lrinetic energy p'/2m connected with the
momentum associated with this state in the free
electron correspondence, a quite high kinetic
energy. We may expect the energy level to rise
rapidly until it reaches this curve, then more
slowly, following that curve, as the volume
becomes smaller and smaller. Promotion is, then,
an essential feature in understanding the energy
levels. We shall be able to understand it much
better when we study the momentum eigen-
functions, for then we shall see that the mean
kinetic energy increases rapidly in the process of
promotion.

20. Momentum eigenfunctions

We have now proceeded about as far as it is
profitable to go with the coordinate wave
function alone. We shall therefore study the

momentum eigenfunction as well, and see in
what ways it can contribute to our understanding
of the problem.

The coordinate eigenfunction u(xyz} is a solu-
tion of Schrodinger's equation Hu= Eu, where H
is the energy operator, obtained from the
Hamiltonian function of ordinary mechanics by
replacing the momenta, p„etc., by (h/2mi) (8/8, ),
etc. That is, the equation is [—(h'/8x'm)V'
+ U)u(xyz) = Eu(xyz), where U is the potential
energy, E the total energy. The quantity u*u,
where u* is the conjugate of u, is the probability
of finding the electron in unit volume at xyz, if
the wave function is properly normalized.

In a similar way, the momentum eigenfunction
v(p,p„p,) is a solution of the equation Hv=Ev,
where now the operator H is to be found from the
ordinary Hamiltonian by replacing the coordi-
nates x, etc. , by —(h/2mi)(8/Bp„}, etc. It is now
the potential rather than the kinetic energy
which becomes an operator, and except in special
cases this is a more complicated operator than
the quadratic one of Schrodinger's equation.
The simplest method of handling it is rather
different from what we meet in the case of the
coordinate eigenfunction. We first expand the
potential energy in Fourier series or Fourier
integral:* we assume that

U(xyz) = P W(P.P„P,)
riever

Xexp P( —27ri/h) (P~+P„y+P,z) j,
where W(P P„P,) is the amplitude of the
Fourier component associated with the plane
wave whose normal is in the direction of the
vector P„P„,P„and whose reciprocal wave-
length is P/h, if P'= P '+P„'+P,'. In general,
all values of the P's must be used, so that the
series becomes an integral but we shall find that
in the particular cases we are interested in it
remains a series, which is the reason v hy we
prefer that method of writing it. Now in the
Fourier representation the coordinates enter in a
simple way, in the exponentials. Thus the
operator associated with U, operating on v,
becomes

Uv= p W(P P„P,) exp (P,a/ap. +P„a/Bp„
&xeypi

+P,B/8 p,)v(p„p„p,).
~ These methods of Fourier expansion are discussed for

instance in references 98, 116.
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But by expandinp the exponential in series, and

using Taylor's theorem, it is well known that

exp (P,B/Bp, +P„8/Bp„+P,B/Bp, )v{p.p„p,)
=v(p.+P"p.+P. p.+P.).

Hence, remembering that the kinetic energy
preserves its classical form, since it does not
contain the coordinates, the equation for the
momentum eigenfunction becomes

L(p'+ p'+ p*')/2~ jv{p-p,p*)

+ Q W(P,P„P,)v(p, +P„p„+P„,p, +P,)
usages

=Pv(p*p.p.).

In this form, generally the most convenient one,
the equation is a difference equation, connecting
the values of v at a number of different points,
rather than a differential equation. The quan tity
v*v is the probability of finding the electron in

unit volume of momentum space at p,p„p„if the
function is properly normalized.

It can be shown without trouble that the
coordinate and momentum eigenfunctions can be
found from each other by Fourier transforma-
tions. 40 Thus

N(xyz) = p v(p,p„p,) exp D2~i/h)(p x
PsPy P ~

+p y+p*z)]
and

v(p*p.p*) = N(xyz) e p D —2 '/»

p (p,x+p„y+p,z) jdxdydz dx dy dz,

where the factor J'dxdydz in the denominator
can be shown to take care of the normalization, so
that if u is normalized, v will also be, and vice

versa. This and other theorems relating to
momentum eigenfunctions are given in Appendix
III.

The formulas which we have just written
down, expressing the relation between I and v

as a Fourier transformation, give the key to the
interpretation of the momentum eigenfunction.
We see that N(xyz) can be written as a sum of plane
waves, each one of the form exp f(2~i/h)(psx
+p„y+psz)j, where p, /h, p„/h, p,/h are the
components of the vector in the direction of the
wave normal, of magnitude equal to the reciprocal

of the wave-length. This is just the wave which

by de Broglie's relation represents a particle
travelling with momentum p, of components p,
p„,p, . Since the whole wave function can be
written as a superposition of such waves, this
means on the general principles of wave me-
chanics that there is a certain probability that
the electron be travelling with any one of these
possible values of momentum. The corresponding
probability should be the square of the amplitude
of the corresponding plane wave. But this
amplitude, is just v(p,p„p,), or the momentum
eigenfunction, whose square we have already
stated to give the probability of finding the
electron with the momentum in question.

We can now prove certain general results
which follow from the fact that the potential in a
metallic lattice is periodic, by use of the mo-
mentum eigen function. In order to set this up, we

remember that we must use the Fourier resolu-
tion of the potential:

U(q) =P W(P) exp 5(—2~~/h)P q

where q is the vector of components x, y, z. Then
on account of the periodicity of the potential,
only certain discrete terms of this summation will

occur. Each of these terms will correspond to a
certain value of the vector P, and this corre-
sponds to a certain point of momentum space.
Hence we can set up a lattice of points in
momentum space, the points P which occur in

the summation, give the value of W for each of
these points, and the result will be a represen-
tation of the potential in momentum space. We
can now show this lattice to be the same recip-
rocal lattice which we have already considered.

Let the points of the reciprocal lattice be P;,
and of the space lattice Qp, where it is assumed
that one atom is at the origin. Then the peri-
odicity is expressed by the fact that U{q)
= U(q+Qq). The easiest way to describe this
equation in words is to set up the cells sur-
rounding the nuclei which we have already
mentioned, so that vectors from a point of one
cell to the corresponding points of the other cells
are the vectors Q~. Hence our statement is that
the potential has the same value at corresponding
points of all cells. But to secure this, we must
have just those plane waves exp f(—2m/h)P qj
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which have the same value at corresponding
points of all cells. That is,

exp I ( —2m/h)P; (g+Q~)]
=exp D 2m.s/h)Pi'q]

or
exp f{—2+i/h)P; Qg]=1,

from which it is obvious that the expression for

U(g+Q~) in the form of the Fourier expansion
equals U(g). But this is just the same condition
for the P; which we have already considered, in

Section 15, and have shown to )ead to the
reciprocal lattice in momentum space.

Now let us set up the equation for the mo-

mentum eigenfunction v(p) in the periodic
potential field. In the equation

(P'/2~)s(P)+ E~(Pi)~(P+P~) =&s(P),
P)'

we see that the only points in momentum space
which are concerned are first an initial point po,
and then the corresponding points in all other
momentum cells; that is, the points derived from

Po by making a translation P; in momentum
space. To each point of the central cell of
momentum space, for instance, we can set up a
lattice of corresponding points, by adding to its
momentum po all the various P s. And now we
see that the difference equation involves only the
points of such a lattice. As far as the equation is
concerned, it is entirely immaterial what values e
may have at any other points. In particular, they

may be zero. We shall deal with this case; others
may be obtained from it by linear combination.
A single stationary state, then, has a momentum
eigenfunction which, rather than being defined at
all points of momentum space, is defined at only
one point of each cell, tx.ing zero everywhere else.
One result becomes immediately apparent from
this. In general, the points of the lattice of
corresponding points where the eigenfunction is
defined will not be symmetrical with respect to
the origin in momentum space. There is no
reason why the mean momentum, as defined by
averaging over this eigenfunction, should be
zero. But if it is different from zero at one instant,
then, being a stationary state, it will continually
remain different from zero. That is, we can set up
stationary states corresponding to electrons
having a definite mean momentum in some
direction, a momentum which persists in spite of
indefinitely many encounters with the nuclei. In
discussing the classical problem of collisions, in
Section 9, we have already mentioned this
property. It is the thing which results in the
resistanceless nature of a perfect lattice in wave
mechanics.

The fact that the momentum eigenfunction is
defined only at the discrete points po+P, allows
us to prove the important theorem we have used
in discussing the coordinate wave function, that
u(g+Qk) = exp I.(2m/h)pp'Qi]u(g). In the first
place, the coordinate wave function is a sum-
mation,

u(g) = Pe(p +P;) exp P(2 i/h) (Po+P;) g].

gn the same way,

u(g+Qi) =Zs(Po+») exp [(2«/h)(PO+») '(g+Qi)]
~i

=exp D2~i/h)po Q&]Pe(po+P;) exp D2~i/h)(PD+P;) q] exp L(2~i/h)P; Q~].
Pi

Remembering that from the definition of the
reciprocal lattice exp D2mi/h)P; Qi,]=1, this is
simply exp [ (2m/h) po Q~]u(g), proving our
theorem.

21. Atomic correspondence and momentum
eigenfunctions

We can now use the method of momentum
eigenfunctions to discuss the correspondences

already made between coordinate eigenfunctions
and the points po of momentum space. First we
consider the atomic correspondence, in which po
is chosen from the central cell of momentum
space. Let us pick a momentum p0 from the
central cell, and consider the lattice of corre-
sponding points associated with it. The mo-
mentum eigenfunction is defined at each of these
points, so that the set of equations for deter-
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mining the momentum eigenfunctions becomes a
discrete set of algebraic linear homogeneous
equations for the discrete set of unknowns. For
each point of the lattice, we have an equation

j+0

where P0 corresponds to momentum zero, so that
IV(P0) is the average value of the potential
energy, and where we have an equation for
each value p of our discrete set. These equations
are just like those often found in quantum
mechanics, particularly in connection with the
perturbation theory. In the first place, being
simultaneous linear homogeneous equations,
they have in general no solutions other than e= 0.
The condition that they have such solutions is
that the determinant of coefficients be zero. This
gives an equation for the energy E, which can be
determined in such a way that the determinant
will be zero. This equation is of infinite degree; in
general, it is of the same degree as the number of
equations. Hence there are infinitely many
solutions E, and infinitely many corresponding
momentum eigesifunctions. These are the various
stationary states and energy values of the
problem. To distinguish a stationary state, we
give the value of p0, and the quantum numbers
distinguishing the atomic state into which the
level goes at infinite separation. And for the
states which actually are approximately like
atomic states, those for which this method of
correspondence is a natural one, lying below the
dotted line of Fig. 9, this is a natural and
unambiguous method of labelling the stationary
states. It is the one following naturally from
Bloch's method, where each metallic level is
derived from an atomic energy level.

For the low-lying energy levels, for which the
atomic correspondence is a reasonable one, we
can get considerable information about the
momentum eigenfunctions by comparison with
the case of free atoms. The difference equation
for e(p) is in this case very hard to solve, but we
can derive the function by Fourier transforma-
tion from the coordinate eigenfunction, whose
properties we know in this case. We have

e{p)= u(q) exp f(-2iri/k)P qjdq dq,

where the integration is over all space. We know,
however, that e(p) will be zero unless p= po+P j,
so that we need perform the integration only for
these values. We know further that

ii(q+Q&) =exp p(2~/Ii) p0 Qk jg(q),

and that

exp $(—2~/h) {p0+Pj) (q+Q&) j
exp ((—2~/h) p0 Q01

Xexp t (-2~/k)(p0+Pj) q].

Hence the integrand is unaltered if we replace

q by q+Q&, or go from one cell to the corre-
sponding point of another. In other words, each
cell contributes the same amount to e(p), and if
we wish we may define it by integrating only
over one cell.

Now within a cell, e(q) is a sum of terms each
coming from the solution of a central field
problem, of the form exp (&imp)Pi (cos 8)tc„i(r),
where r, |t, @are polar coordinates. In this case, if
we ashume that the polyhedral cell can be
approximated by a sphere, the Fourier resolution
can be carried out, and shows that the momentum
eigenfunction is as follows, where P, e, 4, are
polar coordinates in momentum space, so that P
is the magnitude of the momentum:

e(P) exp (+&n4)Pi (cos 8)ij„(P),
where apart from a normalization constant,

Ji+ij0(2'/k)
v~i(P) = r'u„i(r) dr.

(2xrP/k)"'

If si„i{r)is a Laguerre function, as in the discrete
states of hydrogen, and if the orbit is small
enough so that ii(r) is practically zero at the edge
of the cell, the function e„i(P)turns out to be
expressible in terms of a Gegenbauer function, as
shown by Podolsky and Pauling. 00 In Fig. 17, we
plot the quantity ~„P(P),proportional to the
probability of finding an electron whose mo-
mentum is in magnitude between P and P+dP,
for several quantum states of hydrogen. We see
that the function is a continuous function of P,
showing various maxima, with zeros between.
As a matter of fact, w i shows the same number of
nodes as ii„i.There is a sort of reciprocal relation
between the two functions. Thus for s states
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Fto. 17. Momentum eigenfunctions for free atoms.

(l=o), the number of nodes is one less than
the principal quantum number n. In the coordi-
nate eigenfunction I, as n increases, more and
more maxima are added to the function for large
values of r. The inner maxima, for small r,
remain approximately fixed in positiop, though

they decrease in magnitude, while the size of the
orbit as a whole increases rapidly with n,. Now

the inner maxima of I correspond to the outer
maxima of v, and vice versa, for it is when the
electron is far out, corresponding to large r, that
it is going slowly, and in a region of large wave-

length and therefore small wave number, so that
this corresponds to small P. Thus as e increases,
the new maxima of v are added inside the old

ones, rather than outside. The outer maxima

retain their approximate positions, but become
reduced in amplitude, the innermost maximum

ha~ing by far the greatest amplitude. Thus the
effect is that the average magnitude of mo-

mentum, and consequently the kinetic energy,
decrease rapidly as I increases. This of course is

just what we should expect. The total energy
decreases rapidly in magnitude as e increases,
and for an inverse square field the kinetic energy
is numerically equal to the total energy. Quali-
tatively similar results are found for other
azimuthal quantum numbers, and the inner

maxima agree roughly with those for s states,
while the outer maxima, corresponding to the
inner part of the orbit, are absent.

The results which we have just given are for
hydrogen-like wave functions, with orbits so
small, or cells so large, that the atoms can be
considered as independent. When we consider the
cellular structure of momentum space, we recall
that instead of regarding v as a continuous
function of position in momentum space, we are
to give its values only at the discrete points
po+P;. It becomes of importance, then, to know
the relative magnitudes of the cells, and of the
region of momentum space in which the eigen-
function is large. It is immediately obvious that
if the atomic wave function is confined to a
region small compared with the cell of coordinate
space, as it will be for an inner electron, like the
1s, 2s, or 2P of sodium, then the momentum
eigenfunction must extend with large amplitude
over many cells. The outer, and even the inner,
maxima of the eigenfunction will be far from the
origin. The reason is seen in the reciprocal nature
of the momentum and coordinate eigenfunctions.
A wave in coordinate space whose wave-length is
of the order of magnitude of the lattice spacing
will be represented in momentum space by a
point about on the edge of the first cell. A much
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shorter wave will have a representative point in
momentum space which is correspondingly
further from the origin. Now the oscillations of a
ls, 2s, or 2P function, for sodium, will have an
effective wave-length much smaller than the
grating space, and consequently the momentum
eigenfunction will be much spread out. As a result
of this, there will be many different cells, or
values of P;, for which ii(po+2;) will be ap-
preciable and of the same order of magnitude.
Also, the oscillations of e(p), which we have seen
in Fig. 17, will be on a larger scale than the scale
of cells, so that the discrete values of the v's will
in fact give a fairly adequate representation of the
continuous curve.

The actual wave functions, of course, will be
different from the hydrogen-like wave functions
which we have been discussing. In the first place,
the radial functions u„~(r)will be different, and in
the second place it is necessary to add functions
of different I values to get the complete metallic
eigenfunction. For the inner electrons, however,
neither of these processes ~ ill change the
fundamental properties we have described, of
having the momentum eigenfunction extend over
many cells, with a principal maximum which is at
smaller and smaller momenta for higher total
quantum number. W'e shall not consider the
eigenfunctions of these bound electrons further,
for their principal interest comes simply in the
contrast which they afford to the eigenfunctions
of free electrons.

When we come to a state like 3s in sodium, at
the normal grating space, the situation is quite
altered. We have seen that with increasing total
quantum number the maximum of the mo-
mentum eigenfunction moves to smaller and
smaller momenta, For the sodium 3s, the coordi-
nate wave function has two sorts of oscillation:
the short wave-length oscillation about the
nuclei, and the long range wave extending
throughout the metal, whose wave-length is
longer than the lattice spacing. The former, in
Fourier analysis, will give components of high
momenta, just as with the other waves we have
considered, but the latter will give a single
component at po, in the middle cell. Further, this
single component will have a much larger
amplitude than the others, since it represents by
far the most important part of the oscillation of

the wave function. It corresponds to the principal
maximum of the bound electrons, which move
down toward the central cell of momentum space,
until finally for the first band of metallic elec-
trons, it reaches the central cell, and becomes by
far the most important component of the
eigenfunction. We now see why it is reasonable,
in the metallic correspondence, to assign the 3s
state to the po in the central cell: we make such
assignments only when the momentum eigen-
function is much larger at one point of mo-
mentum space than at any other, so that this
point can be unambiguously assigned to that
state.

22. Free electron and metaHic correspondence
and momentum eigenfunctions

Before pursuing the metallic correspondence
further, let us look at the free electron corre-
spondence. For sufficiently high energy states,
far above the 3s, the coordinate eigenfunctions
may be expected to resemble fairly closely the
plane waves of free electrons. Now a plane wave
has a momentum eigenfunction which is infinite
at one point of momentum space, that corre-
sponding to the momentum of the electrons in
the wave, and is zero everywhere else. Further,
the point where it is infinite is at a distance p
from the origin, where P'/2m equals the kinetic
energy of the state. Thus as the energy increases,
the infinite maximum of the function moves
further and further from the origin. There are, of
course, many states of the same energy, but
different direction, corresponding to maxima at
different points on the same sphere in momentum
space. We may infer, then, that each stationary
state of high energy has a momentum eigen-
function which is large at one point only of
momentum space. It is then reasonable to denote
this stationary state by the p0 of that point. If the
periodic potential field were reduced to zero,
these states of high energy would retain approxi-
mately their same eigenfunctions, but the lower
states would also approach free electron eigen-
functions. Thus for the bound electrons the
values of v(p) for the outer parts of their eigen-
functions would gradually decrease, as the
minima of potential about the nuclei became less
deep and the electrons did not acquire such great
kinetic energy there, and the values in the inner



parts would correspondingly increase, until
finally for zero potential the 1s state, for instance,
would be represented by a single point in the
central cell of momentum space, and so on. In
this way, as we have seen before, we can assign
each state to a particular point of momentum
space, obtaining the free electron correspondence.
But now we see that for the states of high energy,
even with the potential and grating space which
exist, this is a reasonable correspondence, while
for the low states it is not. The criterion for the
reasonableness is again that the assignment can
be made physically only if the eigenfunction is
much larger at the one point of momentum space
to which the stationary state corresponds than
it is at any other point.

Now in order to discuss the metallic corre-
spondence, we need an interesting theorem in
regard to momentum eigenfunctions. Ne recall
that the equation for these eigenfunctions is a
difference equation, a set of algebraic equations
of the sort met in perturbation theory. The
solutions of these equations, v(p), as always in
such cases, can be interpreted as a set of coeffi-
cients determining an orthogonal transformation
of variables. If we denote the eth atomic state by
a subscript g, we are given as a result, for a
definite po, the two parameter set of numbers
v~(po jPp), with the parameters e and j, giving
the amplitudes for the eth state in the jth cell.
The orthogonality and normalization conditions,
as shown in Appendix III, can then be written in
either of two forms. First, we may write

Z&~ (PojP;)v~(PO jP;)=1 if m =e, 0 if iiige.

This means first that if we take the momentum
eigenfunctions of two stationary states, multiply
them together for each cell, and add, the result is
zero, the orthogonality condition. Secondly, it
means that we have normalized so that the sum
of the squares of all the v(p) 's for all cells, for one
eigenfunction, is unity. This is a convenient
method of normalization. For the bound elec-
trons, for instance, for which many v(p)'s are
different from zero, it means that all these v{p)'s
must be small, since the sum of the squares of the
large number of terms is unity. For the free
electrons, on the other hand, where one com-
ponent is much larger than any other, this large

component is almost unity, the others being very
small compared with unity. But now in addition
to this statement of the orthogonality condition,
there is as always another form, in which we sum
over the other index:

pv„~(pojP;)v„(pojPi) =1 if j k, 0 if jWk.

The orthogonality condition coming from this
statement is one we shall not have occasion to
use, but the normalization condition,

Zv»'(Po jP )v.(P0jPi) = &

is a very valuable theorem. It means that if we
take the square of the momentum eigenfunction
in a given cell, and sum, not over cells, but over
all different stationary states, we get unity. It is
sometimes called the completeness theorem, for
if we have not the complete set of functions,
with all e values, the sum will not be unity.
Let us see what this means. For the outer cells of
momentum space, the free electron correspond-
ence is good. That is, for each such cell, with a
given po, there is a state which has a contribution
almost equal to unity in that cell, with very small
contributions in other cells. But then our
theorem tells us that, so to speak, this one stabs
almost fills up that cell. If for it we have v v

almost equal to unity, all other states put
together can have but a very small contribution
to the sum, which means that all other states
must have small momentum eigenfunctions in
that cell. It is obvious that this theorem, can lead
to important relations between the eigenfunctions
of different states.

For sodium, five states, the 1s, 2s, and three
substates of 2p, are very definitely bound elec-
trons. For these. , v(p) is appreciable in many
cells. The sum of v~v, for these five states, and for
all cells, is just five units. The cells where the sum

of v v over the five states is appreciable lie in a
zone in momentum space: none of them are for
states of too large total momentum, as we see
from Fig. 17, and none of them are right around
the origin. If then we subtract the sum of v~v for
these bound electrons from unity, for each cell,
we get the contribution which the other, metallic
and free, electrons are allowed to make, and we

see that this contribution is almost unity for the
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innermost cells, almost unity outside a certain
zone, but less than unity between. Now to have
good free electron correspondence, we must have
the momentum eigenfunction practically unity at
one point, practically zero elsewhere. This is only
possible outside the zone occupied by the bound
electrons. We can state this condition in a simple
way: it is only possible for free electrons which
everywhere move faster than bound electrons
ever do to an appreciable extent. We can again
have good correspondence, this time the metallic
correspondence, in those cells within the zone
occupied by bound electrons. These are for
electrons moving more slowly than the bound
electrons do to any appreciable extent. In
between, on account of the completeness relation,
it is impossible to have wave functions which
correspond very closely to sine waves. This zone
may be called the zone of promotion. In it, the
number of stationary states apart from those of
bound electrons is five less than the number of
cells, so that each wave function must have
appreciable contributions from several cells, and
there is ambiguity as to the proper correspond-
ence, something between the metallic and free
electron correspondence being indicated. In this
zone of promotion, wave functions and energy
values are all abnormal, agreeing neither with
metallic nor free electron models. We have
already seen, for sodium, the beginning of this
zone, coming just outside the first cell of mo-
mentum space. Only a few states show the
metallic correspondence at all accurately, for
this metal. And, as we have pointed out, this is a
specially favorable case for metallic corre-
spondence. For most metals, there would not be
such a sharp contrast between free and bound
electrons as for sodium. The outermost bound
electrons wouM have larger orbits than in
sodium, so that their momentum eigenfunctions
would extend in practically to the origin, with
the result that the zone of promotion would
extend to the origin, and there would be no true
zone of metallic electrons at all. We must
conclude, therefore, that for most metals the
electrons which actually take part in conduction
have complicated wave functions and energy
levels, which must be investigated separately in
each case, and which are not very susceptible to
generalizations. This in a way seems discouraging

to theoretical progress, but in another way it is
very fortunate. For it indicates that we may
expect great variations between metals, with
properties van ing in apparently erratic ways. It
indicates also the futility of obtaining general
theories of such detailed things as ferromagnet-
ism, Hall effect, thermoelectric effects, etc. These
things must all depend on the peculiarities of the
individual metal, and their detailed working out
must be based on a study of the peculiarities of
the corresponding wave functions. Other things
as well must depend on these wave functions in
the zone of promotion. Two examples are the
optical properties of metals in the ultraviolet, and
electron diffraction by slow electrons, two fields in
which surprising experimental results have been
obtained, with but small progress in correlating
them with other properties of the metals in
question.

23. Perturbatlon method for free electron and
metallic correspondence

In cases where either the metallic or the free
electron correspondence is good, the momentum
eigenfunction by hypothesis has a large value in
one cell, with small values in other cells. In this
case, it is legitimate to solve the difference
equations for the eigenfunction by perturbation
theory. We choose po to be the value for which
the eigenfunction is large, by whichever corre-
spondence is appropriate. Using perturbation
methods, e we then have, up to second order
perturbations,

W'(P;)
E=p,s/2m+ W(Po)+p

'~o Pox/2m —(go+ P;)'/2m

and s(p) is given by a sum of terms from all
points of the lattice corresponding to po, the
amplitude of the one displaced a distance P; from

po being proportional to

W(P;)/Qp'/2m —(Iio+P;)'/2m l.

We see that the components W'(P;) take the
place of the usual nondiagonal components of
energy in perturbation theory. Now from the
first expression, we see that one of the terms in
the energy becomes infimte, resulting as we

~ See, for example, references 42. 44. %9 61. 98, 116.
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prove in Appendix IV in a discontinuity of
amount 2

~
W(P;)

~
in the plot of energy against

p, if p'= (p+P;)', or if the vectors p and p+P;
have the same magnitude. But this is just the
condition of Bragg reflection, by which the wave
represented by p is reflected in the planes repre-
sented by P;, giving a reflected wave represented

by p+P;. We have already seen this in Appendix
II, As shown in the figure in Appendix II, if we
set up the plane which is the perpendicular
bisector of —P; in momentum space, any vector

p from the origin to a point of this plane satisfies
the condition just stated. In other words, we can
set up the infiite set of such planes in momentum

space, given by the set of P s, and as we explore
the energy as a function of position in momentum

space, using the metallic or free electron classifi-

cation, we shall find a discontinuity in energy
every time we cross such a plane. These planes
divide the space into the complicated set of zones
which we have considered in Section I'7.

The conditions of a Bragg reflection are two, as
we have already seen: first, the reflected wave
must be such as to show correct phase relations
to the incident one at every plane of atoms from

which the reflection is occurring, or pi= po+P&;
secondly, the frequency or wave-length of the
reflected wave must equal that of the incident
wave, or pp = po . Both conditions are satisfied, as
we have seen, for the waves at points of dis-

continuity in momentum space. The first alone
is satisfied, however, for every wave which must
be combined with the wave p to get the complete
eigenfunction of the state. And our perturbation
theory tells us that the more nearly the second is
satisfied, and at the same time the larger the
component of energy W(P;) connected with the
planes in question, the larger will be the coeffi-

cient of the plane wave in question. We may
cwork the perturbation theory by the method of
variation of constants, starting at I.=O with a
wave function which is exactly a plane wave. As
time goes on, the other plane waves will come in

with amplitudes increasing with time, the ampli-
tude of the one coming from reflection in the
plane P, being proportional to

W(P;) /Lpo~/2tn —(pa+ P;)~/2m J.

We may interpret this by saying that as a plane
wave travels through the crystal, it becomes

scattered, by reflection in the various planes of
the crystal. Those reflections are more likely in

planes in which the crystal has much density
(large W(P;)), and for which the reflection can be
most nearly without change of energy (po' most
nearly equal to (po+P;)'). The fact that reflec-
tions with change of energy can occur at all is a
result of the fact that the states we are dealing
with, the plane waves, are not really stationary
states, so that they have short lives, and corre-
sponding uncertainty in their energy. Translating
back to the language of particles, a beam of
parallel electrons of the same energy passing into
the crystal will be scattered, more and more
leaving the beam as time goes on, But a station-
ary state is possible, consisting of a certain
mixture of all the various beams of electrons
which can be obtained from the original one
consistent with the interference law of wave
mechanics. In this stationary state, as many
electrons will be scattered out of the beam in unit
time as are scattered in, so that there will be a
net forward motion in the beam. This is the
analogue in wave mechanics to the sort of
stationary beam, conserving momentum in spite
of collisions, which we discussed in connection
with classical mechanics in Section 9.

24. Population of energy levels in the complete
atom

We have now obtained a fairly adequate
picture of the coordinate and momentum eigen-
functions of electrons in such a periodic field of
force as we have in a metallic lattice. Before
proceeding further, we should ask which of these
stationary states are occupied in the normal
metal, and what are the corresponding density
distributions of all the electrons in coordinate and
momentum space. Aside from certain corrections
having to do with electron spin, which we shall
later discuss, the lowest stationary state of the
metal as a whole is found when there are two
electrons, of the two possible spins, in each of
the stationary states of a single electron, counted
up from the lowest energy level, and including
just enough levels to take care of all the electrons.
Let us consider first the bound electrons. Each
such electronic state is characterized by a value
of po, which by the atomic correspondence we
choose to be in the central cell of momentum
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space, and by quantum numbers similar to
atomic quantum numbers. We have spoken so
far as if p0 could take on any value within the
central cell, so that there would be an infinite
number of such states. But actually, as we show
in Appendix V, if there are N atoms in the
crystal, there are only N possible values which p0
can have, if we are to satisfy boundary conditions
at the surface of the crystal. Further, these N
possible p0's are arranged with uniform density
throughout the cell. Hence, corresponding to one
state of a free atom, there are just N states of the
crystal, or a possibility of 2N electrons, 2 per
atom, if we consider both spins. This is just the
number which we should have in the same
number of separated atoms. When all these levels
are filled up, the total density in momentum
space will no longer be confined to certain points,
but will fill the cells smoothly, so that the total
density function will look like that of Fig. 17,
being much like that for electrons in separate
atoms. This will be the case for all the bound
electron levels. There will then be a certain
number of electrons left over for the metallic
electron states. For instance, in sodium, there
will be one electron per atom. Now the central
cell in the metallic correspondence for sodium is
large enough to hold two electrons per atom.
Thus this cell will be only half filled up. Naturally
the inner part, corresponding to lower energies,
will be filled, with equal numbers of electrons of
each spin, and we see that in this inner part, the
energy levels are almost exactly those for free
electrons, as we expect from the accuracy of the
metallic correspondence here. Now by the com-
pleteness relation, the superposition of all these
states cannot fill the momentum space to more
than the constant maxiinum density of 2N
electrons per cell anywhere, but in the inner half
of the central cell it will be filled practically to
this density, for the higher states, which are not
occupied, ha.ve almost no contribution to their
momentum eigenfunctions in the central cell.
Outside the inner half of the central cell, however,
the density wiH fall oH sharply from this value,
representing practically the density of the inner
electrons, which will fall oS gradually, extending
out to large momenta. The net result, then, will
be a distribution in momentum space very
similar to that of Fig. 7, derived from the

Thomas-Fermi theory. Here, as there, the sharp
break in density at the outer boundary of the
metallic electron region is present. And here as
well, if we set up the distribution for a tempera-
ture above the absolute zero, regulating the
number of electrons in each stationary state by
the Fermi statistics, a rounding oH of the sharp
break in the distribution would occur just at this
point.

For an element with more free electrons per
atom than sodium, it is obvious that more than
the first half cell will be filled with these electrons,
so that the break in density will come for a larger
momentum, as we have seen from the Thomas-
Fermi method. Furthermore, in such an element
probably no electrons would show such accurate
metallic correspondence as with sodium. As a
result, the break would probably be less sharp,
and more complicated in structure, than for a
monovalent metal, but since detailed calculations
have not been made, it is not possible to be more
specific as to its structure.

V. THE WAVE-M ECHAN ICAL M ETHOD: CON-
DUCTIVII'Y AND ENERGY

25. Conductivity in the wave-mechanical model

Now that we understand the electronic struc-
ture of metals, using the picture of electrons
moving in a periodic potential field according to
wave mechanics, our next task is to investigate
the electrical conduction in the metal. This is a
problem in which the interactions of the electrons
are not important, so that our model should be
quite adequate to discuss it. We have seen that a
given electronic eigenfunction in general corre-
sponds to a certain mean momentum, and mean
current, which persists in spite of collisions. This
mean momentum is simply the center of gravity
of the momentum eigenfunction. Our next
question is, how does this mean momentum
change under the action of an external electric
field? The answer is very simple. The momentum
eigenfunction, as we have seen, is defined only at
certain points, given by p0+P;, where pa is a
constant, P; the elements of the reciprocal
lattice. But now under the action of the external
force F, these points are no longer fixed, but
move bodily through the momentum space,
according to the vector equation F=dpo/dt,
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analogous to Newton's second law of motion.
This can be proved easily from the equation for
the momentum eigenfunction. We have ordi-
narily written this

(p /2')v(pj+ Q W(Pt)v(p+Pg) Ev(p),
Pi

but now, since we are dealing with time variation,
we wish the form involving the time. If by
v{p, t) we were now to understand the function
involving the time, equal to our former v(p) times
exp (—2m/k)Et, the equation for v(p, t) would be

(p'/2iri}v(p, t)+pW(P;}v(p+P;, t)
~i

= —(h/2')8o{p, t) /8t.

Now we wish to add to the potential W'(P;) that
of a uniform field, and find the change in v{p, t).
To do this, we shall add a potential -(F~+F„y
+F~), where F~, F„,F, are the three components
of the force vector. Now we could analyze this
potential in Fourier series, as we have done with
the other potentials, but it is more convenient to
proceed directly, replacing x by —(k/2')8/8p„
etc. , according to our general rule. When we do
this, and collect the added terms on the right side
of the equation, the result is

(p'/2iii)v(p t)+Z&(P )v(p+P, t)
Pg-—(h/2~)(a/at+ Fg/ap. +F„a/ap„

+F~/ap, )v(p, t).

But now if we imagine that the whole distribution

v(p, t} is Rowing in the momentum space with a
velocity F, as well as undergoing changes with

time directly, the right side of this equation can
be written as —(k/2m)Dv(p, t)/Dt, where D/Dt
represents the derivative following the streaming
points in momentum space. We thus see that the
equation for the momentum eigenfunction ~n the
presence of the external field, as we follow along
with the points, is just the same as for the
function at fixed points of momentum space in

the absence of the external' field. The solution
must then be the same, so that we can set up a
vector po, which must be assumed to change with

a time derivative equal to F, and the eigen-
function will have the same values at the points
po+P;, at any instant of time, that it would have

at the same point in the absence of a field,
differing only in its steady motion through
momentum space.

There is one point regarding the momentum
eigenfunction which must be understood. As the
points po+P; stream through momentum space,
the values of the function v at the various points
do not stay constant; they vary, so that at each
instant they correspond to the eigenfunction of a
stationary state in the absence of field having the
instantaneous values of po+P;. This variation in
the first place has an effect on the eigenfunetion
and the energy. It is part of the time variation of
v as we follow the streaming points in momentum
space, so that it contributes a certain amount to
Dv(p, t)/Dt, an amount furthermore which is
different for the different points po+P;. Since
from our solution we have Dv/Dt= (—2~E/k)v,
where E is the same for all points and is the
energy as computed for the field free case, and
since part of this Dv/Dt comes from the time
variation of the magnitude of v, we see that the
remainder, which is available for the variation in

phase which gives the energy in the ordinary
sense, is not precisely the same for all points.
Hence our ensemble does not precisely corre-
spond to a set of particles all of the same energy.
But since the time rate of change of the magni-
tude of v is proportional to the external field F,
and since for all ordinary cases this is very small

compared with atomic fields, this correction is
ordinarily negligible. The other point, however, is
of real physical importance. We recall the
periodicity of the whole problem in momentum
space, such that corresponding points of two
cells give just the same eigenf unction and energy.
As a result of this, if we allow the external force
to act long enough so that py has travelled from
one cell into another, and if it happens to be
travelling in such a direction that it reaches a
corresponding point of the second cell, the eigen-
function and energy will come back to the values
which they originally had. If for example we
consider the average momentum, which is
proportional to the current, we shall find that as
the field is applied, the momentum begins to
increase in the direction of the force, but at a
certain point, a remarkable change will occur, the
momentum will decrease below its original value,
and then will commence an increase again, so
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that after traversing a complete cell it will have
just reached its original value again.

To understand the curious behavior of which
we have just spoken, let us consider the case of an
almost free electron. There the momentum
eigenfunction is practically unity at one point,
say ps (if we use the free electron correspond-
ence), and very small at the other points ps+P;.
The average momentum is then practically ps, so
that its time rate of change is the external force,
and the particle accelerates as in classical
mechanics. Let it be accelerated outward from
the origin in momentum space. Then as Ps
approaches a surface of discontinuity connected
with a Bragg reflection, we know that the
eigenfunction approaches a standing rather than
a progressive wave, and the Fourier representa-
tion of this consists of equal amplitudes for a
direct and reflected wave, or at the face of the
zone which ps is approaching, and at the opposite
face. in other words, near the face, there is a
remarkable change in the amplitudes, the com-
ponent ps decreasing to half its intensity, and the
component ps —P, where P corresponds to the
face we are considering, building up to a corre-
sponding value. As the process continues, the
component ps decreases still further, rapidly
approaching zero, while the other component,
which now is in the central cell, builds up to a
value unity. What has physically happened is
very simple: the particle has been accelerated

until it has the proper speed to make a Bragg
reflection in the planes represented by P. At the
proper moment it makes this reflection, reversing
its momentum. As the field continues to act, this
negative momentum is decreased numerically by
the field, the particle being slowed down. As this
goes on, the original component ps has been
moving outward in the zone outside the one it
started in, but it has lost practically all its
intensity, while the component which originally
in the opposite zone on the other side has taken
on practically all the intensity. And physically,
instead of following the one or the other com-
ponent, the particle has been reflected, going
from one component to the other.

These relations are even clearer if we plot the
average momentum and average energy as
functions of Ps, which is chosen to be a vector
perpendicular to one of the faces of the cell, so
that we can get the periodicity of which we have
already spoken. These are shown, for the (110)
direction in sodium, in Fig. 18. The curve for
energy is the same one we have already obtained,
in Fig. 11.At the edge of the cell we can see the
sudden change in momentum, arising from the
Bragg reflections. Correspondingly there is a
sudden change in the slope of the energy curve,
the energy stopping its increase with ps, as we
have when the particle is travelling in the
direction of the field, and commencing to
decrease, as it does when the particle is opposed

l5 /2

Fio. 18. Energy and momentum as functions of po.
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by the 6eld. One result is suggested by this
figure: the curve for average momentum looks
hke the derivative of the one for average energy.
As a matter of fact this is true, and it is an
important theorem, for it allows us to compute
the momentum, and current, from the energy
curves, without making a separate computation.

The theorem which we have just suggested is
the following: if E is the energy, as a function of
Pp, then 8E/Bpp, =x component of the velocity,
averaged over the eigenfunction. '" '" This can
be proved without trouble by direct computation,
as we show in Appendix UI. It seems almost
obvious that it must be true, however, from the
following simple argument. Let a constant force
Eact in the z direction. Then the rate of working
of the force should be F times the x component of
velocity. This, on the other hand, should be the
time rate of change of energy, or

(BE/aPp. )(dPp /dl) =(BE/BPp )I',

from which the relation follows at once. Some
interesting qualitative results follow from this
theorem at once. The bound electrons, as we
have seen, have energy curves which vary only
slightly with Pp. Thus they must correspond to
very small mean velocity or mean momentum.
In momentum space, where the eigenfunction for
these electrons is spread out through wide ranges
of momentum, this means that the distribution is
so nearly spherical that the center of gravity,
giving mean momentum, lies almost at the
origin. In coordinate space, the potential barriers
between atoms are so high that very little current
can flow over the top. The situation is just
reversed for free electrons, where the momentum
eigenfunction is almost all concentrated at one
point, which can be far from the origin, giving
large mean momentum, and where the energy is
above the potential barrier, allowing free flow of
current.

Having investigated the eigen functions of
individual electrons in the presence of an
accelerating field, we can next inquire what
would happen to a whole collection of electrons,
as we have in a metal. In the first place, suppose
we have an energy band entirely full of electrons.
At the origin of time, we may take the central
cell of momentum space to be just filled to its
maximum density with representative points. As

a result of symmetry, the mean momentum will
be zero. But now let the field act. After a certain
lapse of time, some points will have moved out of
the central cell, leaving gaps in that cell. But the
gaps will be just, offset by the parts of other cells
which are now filled, and by periodicity, the
states which have been vacated have just the
same energy, momentum, etc. , as those which
have been filled. Thus all properties, as mean
energy, mean momentum, etc. , will be inde-
pendent of time. In particular, the mean mo-
mentum, or current, of such a filled band of
electrons is always zero. This means in the first
place that the bound electrons of a metal, in
which the bands are always full, do not contribute
to the electrical conduction. But it also has
signi6cance as applied to nonconductors. It may
be that in a solid all occupied bands are just
611ed with electrons, and that there is a gap in
energy between the last occupied band and the
6rst empty one. Then the net current must be
zero, and the material is a nonconductor. " In a
conductor, on the other hand, there must be
a band of energy levels which is only partly filled.
In the absence of a field, the electrons will
arrange themselves to give no current, as we can
see because they will fill the states of lowest
energy, and since these are symmetrically placed
with respect to the origin, they will take up a
symmetrical distribution, with cancellation of
the current. But as a field acts, the distribution
will displace itself bodily in the direction of the
field, with consequent production of a current.
This current will continue to grow until electrons
begin to undergo Bragg reflection; this will put a
stop to the increase, leading to a maximum
current, which will then decrease, change sign,
and come back to zero after an interval of time.

In actual conduction, however, other compli-
cating features will come in long before the
complete cycle of which we have just spoken is
complete. We have been dealing throughout with
a perfect lattice, but actually at any temperature
above the absolute zero the lattice will be
distorted by temperature vibrations. These
irregularities will produce scattering in which the
mean momentum is not conserved, but decreases,
and will therefore limit the increase of mo-
mentum, as we have already described in con-
nection with the classical mechanics. The amount
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of scattering depends on the mean square
deviation of the atoms from their regular
periodicity, and hence is proportional to tempera-
ture, since the kinetic energy of the atoms,
proportional to the square of their amplitudes of
oscillation, is proportional to temperature. As a
result, a resistance is introduced, proportional to
temperature, as is observed experimentally. We
shall not treat the detailed theory of conduction
in the present report. It is a long and complicated
subject, and even at the present time has not
been treated perfectly satisfactorily, but the
essentials are as we have described, and the
theory has been given adequately in several
comprehensive reports. *

26. Total energy in the vrave-mechanical model

The other interesting result to be obtained
from our solution for electronic motions in a
metal is the evaluation of the total energy, with
applications to cohesion, compressibility, heat of
vaporization, etc. To discuss this important
question, we shall proceed in a rather funda-
mental manner. So far, we have not set up
anything of the nature of a wave function for the
whole metal; we have used merely wave functions
for single electrons in a periodic field. Let us first
ask how we should compute the energy if we had
the exact wave function at our disposal. Let there
be N electrons, with coordinates from x~yizi to
xzy~zN and momenta from p i to p~. If the
problem were completely solved, we should
have a coordinate eigenfunction u(xi ~ .zN),
and a momentum eigenfunction tt(p ~. ~ p,~).
We should be able to get the total energy
by averaging over either of these eigenfunctions:
E= fN,*HI, dh, . - dz~= fr*em dp. , dp.N,

where H in the first expression. is the operator in

which momenta are replaced by differentiations,
in the second in which coordinates are replaced
by differentiations. It is simplest, however,
though unconventional, to use the coordinate
eigenfunction for finding the mean potential

~ A great many of the references in the Bibliography deal
with conduction, which as a matter of fact has received
more attention than most of the topics treated in this
report. An excellent review of the present status of the
theory is given in Sommerfeld and Bethe's article in the
Handbuch der Physik, reference 98. It is hardly worth
while enumerating the large number of papers on the sub-
ject, since they can be found from the titles in the Bibli-
ography.

energy, and the momentum eigenfunction for the
mean kinetic energy. For in this case no operators
except simple multiplicative ones are necessary,
and we can deal with easily understood averages
over density distributions. Then, if T is the
kinetic energy, U the potential energy we
have for the mean values T= fvsTiidp, U
= fu*Uudx, where Pisa function of the p's, U
of the x's, in the ordinary algebraical sense.

2V. Kinetic energy

Let us consider the kinetic energy first, as
the simpler function. We have, remembering that
all our particles are electrons of mass m, T
= (1/2m)(p. i2+ ~ ~ ~ +p,~'). This is a sum of
terms, one for each momentum, or three for each
electron. Now on account of the antisymmetry
which must be present in the wave function, on
account of the exclusion principle, we must get
the same mean kinetic energy for each electron.
Hence we have the total kinetic energy equal to
X times that of the first electron, or

Xdpgidpyidpgi ' ' t' Qdpzt' ' 'dpi'~.

But now f ~ ~ fa*a dp~ dp, N is a function of
p.,p»p„,and gives the probability that electron
number one be found in unit volume of mo-
mentum space at p, &p„ip,i. Let us call it
Gi(p, ip„ip,~), or Ci(pi) for short. It is a function
analogous to Fi(xi) for the coordinate distribu-
tion, which we have introduced in Section 5.
Then

(p'I2r )Gi(p)dpAp/p.

the average of the kinetic energy for a density
distribution NGi(p) in a three-dimensional
momentum space. In other words, we do not
need the whole momentum eigenfunction for
calculating the kinetic energy, but only this
three-dimensional density.

Now we have found separate momentum
eigenfunctions for each type of electron in the
lattice, and corresponding to each we can set up
the density by squaring. Adding these together for
the different types of electron, we get a density
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for the whole system, and it seems reasonable to
postulate that this is a good approximation to the
quantity NG&(P), the actual density in three-
dimensional momentum space. If the electrons
really were independent of each other, this would
be just correct, even though we take account of
the antisymmetry of the wave functions. Thus
let the N wave functions be vi(P), ~ ~ vN(P). Then
to set up an antisymmetric function of the
momenta of all N electrons, it is well known' ~

that we form the determinant

v, (Pi) vi(Ps) v&(P&)
1

vs(Pi) vs(Ps) vs(P~)g¹ ~ * ~ ~ ~ ~

vÃ(P ) vier(Ps) vi~(Pir)

If now we multiply this determinant by its
conjugate, and integrate over all momenta but

Pi, then as shown in Appendix VII, the result
can be easily proved to be

(&/N)l vi'(Pi)+v '(P,)+ +vy(P, )g,

a result following from the orthogonality and
normalisation of the v's. But the deternunant
multiplied by its conjugate is just the probability
of finding the first electron in unit volume of
momentum space at Pi, the second at Ps, and so
on, so that the integral over all momenta but Pi
is the probability of finding the first in unit
volume at pi, independent of the others, or our

Gi(P). Hence we have NGi(P) vis(P)+ - ~

+v~'(P), the sum of densities of the separate
electrons, as we have stated above. Actually, of
course, the electrons are not independent of each
other, so that this determinant is not a correct
eigenfunction for the whole system. Nevertheless,
in a function like the kinetic energy which

depends only on a sum of terms one coming from
each electron, and which contains no terms
depending on mutual action of the electrons, it
does not seem likely that neglect of these
interactions should be of great importance. Thus
we suspect that for computing kinetic energy,
the sum of one-electron densities in momentums~ gives a good density function. The same
argument would apply to the use of this density
for finding total current, as in discussing con-
duction. These arguments are reinforced by
another slightly diHerent consideration. The

interactions which we are neglecting are the
collisions of electrons with each other. Now in
such a collision the kinetic energy and mo-
mentum of the individual electrons change, but
on account of the conservation principles the
sum for the two colliding electrons remains
unchanged. Since we are interested only in total
kinetic energy and total momentum or current,
such collisions should not be of importance.

28. Potential energy
The potential energy, which we consider next,

is of three parts, as we have already seen in
Section 5: the potential energy of interaction
between pairs of nuclei, between a nucleus and an
electron, and between pairs of electrons. The
first term involves no use of wave mechanics at
all: between a nucleus of charge Zie and one of
charge Zss at distance r, the energy is simply
Z&Zss/r. The second term, however, is more
complicated. The term in the energy is

g —Zgs /res,

where rgb is the distance between the Jth nucleus
and the kth electron. This term must be averaged
over the electronic wave functions. On account
of the equivalence of electrons, the result is N
times the average for the first electron, or

Q (-Zpe'/rgi)dxidyidsi
J

X ~ a~adxs d~.

But just as for the momenta, J'swiss ass dsN is the
probability that electron one be in unit volume at
x~&si, which we have called Fi(xiyisi). Then the
mutual term in the energy is

N P(—Z e'/r )P (x)dv,J

which is exactly the interaction energy, as
computed by ordinary electrostatics, between the
nuclear charges Zgc, and the average charge
density —NiFi(s). This charge density is the
usual one considered in quantum theory. And by
arguments just like those used for the mo-
mentum, if we assume the electrons to be inde-
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pendent, and set up a wave function for the
whole system in the form of a determinant, the
result is NFt(x) =ep{x)+ ~ ~ +ts~s(x), the sum
of the densities of the separate electrons. Like the
kinetic energy, this term involves no interactions
between electrons, and we may assume that the
onewlectron eigenfunctions give a good approxi-
mation to the real density.

For the last sort of potential energy term,
however, the interactions between pairs of
electrons, the situation is quite different. The
term in the energy is

Qsltl u

and on account of antisymmetry the result will

be the same as for the one term e'/rN, multiplied

by N(N —1)/2, the number of pairs. That is, it
will be

N(N —1)/2 e'/rggxj Czs

X ' ' Q Q~xs'''ds~.

Here j' ~ fa'u Cxs ~ de~ is a function of the
coordinates of the two electrons 1 and 2, and it
gives the probability that simultaneously elec-
tron 1 will be in unit volume at xt, electron 2 in

unit volume at xs, which we have called Fs(x&xs).

In terms of it, we have seen that the interaction

energy is

N(N —1)/2

e'/r&sFs(x&»)&stoats.

A feature of the interaction energy which

must be considered is the effect of the electron

spin on it. The wave function a is really a
function of the spins as well as the coordinates of
the N electrons, and integrations over coordi-
nates should include summations over spins.
Thus Fs(xtxs) is a function in which x~ symbolizes
three coordinates and a spin, xs three coordinates
and a spin. And the whole function consists of
four separate functions of coordinates, for the
four cases {1) in which both electrons have

+ spin, (2) where electron 1 has +, electron 2 —,
(3) electron 1-, 2+, (4) both —.Similarly

F&{x&) really consists of two functions, one for

the case where the electron has + spin, the other
for —spin. Integrating F~ over the coordinates,
without summing over spin, would lead to two
numbers, the first giving the probability that
the electron have + spin, the second that it
have —spin. If the system as a whole had
balanced spina, with no net moment, each of
these numbers would be 1/2, but if the spins were
unbalanced, the numbers would be different
from 1/2, but always adding to unity. When now
we divide Fs by Fq, to get -(N —1)cFs(x&xs)/
F~(xi), the charge density of other electrons at xs
if there is an electron at x~, we again have a
function with four parts. It may be interpreted
as follows: two parts give the probability that, if
the first electron have + spin, the second have
+ and —spin, respectively, and lie within a
certain volume element; the other two give
similar probabilities for the case where the first
electron has —spin. In general, all four functions
can be different, and so give different contri-
butions to the integral, on account of the
exclusion principle, as a result of which the
relative behavior of two electrons depends
greatly on whether they have the same or
opposite spin. Thus it becomes of importance to
consider the spin. For the other terms in the
energy, on the other hand, the kinetic energy and
the interaction with the nuclei, it is easy to see
that all effect of the spin cancels out, so that we
do not have to consider it.

The tw~lectron probability Fs(xtxs) which is
needed for finding the interaction between elec-
trons cannot be expected to be accurately
determined by our method, which involves one-
electron wave functions in which interactions are
explicitly neglected, except for their average
value. s A qualitative discussion of the distinction
between the potential of the whole charge
distribution, which at point xt is J' —¹F~(xs)/
r~ dos, plus the nuclear potential, and the
potential of the charge distribution minus one
electron, when that electron is at xt, which is

s For discussion of this question, see reference 87, and
also a forthcoming paper of Wigner and Seits, Phys. Rem.
46& 509 (1N4). The author is indebted to Mr. Seits for the
privilege of seeing this paper before publication.
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plus the nuclear potential, has already been
given in Section 8. There it has been shown that
the second differs from the first by terms arising
first from the fact that the second potential was
of a singly charged positive distribution rather
than a neutral one, so that at a large distance
from the distribution the potential fell off as
e/8 rather than exponentially, while at points
inside the distribution the potential differed from
that of the whole charge by having one electron's
charge removed from the neighborhood of xl.
The difference arose secondly from polarization,
image forces, and other effects arising from the
electrical action of the electron at xl in producing
a change in the distribution of the other electrons.
These are all effects depending on electronic
interaction, and from our methods of discussion

by a one-electron problem we cannot improve on
our previous qualitative treatment. There is only
one exception to this, in which the one-electron
functions are of some value: the case of the
exclusion principle. It is recalled that if xl is in a
region of the distribution ~here the density, as

reckoned in the Fermi method, approaches its
maximum allowable value, the other electrons of
the same spin have a distribution which is like
the distribution of the electrons as a whole, but
with the charge removed from a hole surrounding
xl, just large enough to include the one electron
which is at xl, and therefore lacking from the
distribution of other electrons. Ke can improve
that approximation by a calculation using
antisymmetric wave functions.

Let us assume that the wave functions nl. ~ u
correspond to + spins, those from a~1 - 2' to
—spins. Let Fl+(xl) and Fl (xl) be the proba-
bility densities for the case of + and —spins,
respectively, so that

Fl+d» n/N F1~2 1 (N—n) /N.

Similarly let F2++(xlx2) be the probability density
for the case where both electrons have + spin,
with similar interpretations for the other three
components, so that

F2 M»dlj2 = (N —n) (N —n —1)/N(N —1).I 2

Then as shown in Appendix VII we have

n n

F2++(xlx2)=L1/N(N-1) jg EE21;*(»)2jl(xl)gj*(x2)2j,(x2) 2jl (xl)2jl{xl)211 (x2)2ja(x2)g
1 1 j~l

n N

F2+-(xlx2) L1/N(N 1)3+ + E'~j (xl)2ja(xl)lj (x2)2jj(x2)g
i~1 j n+1

N n

F2-+(xlx2) t.1/N(N 1)j g QL2js*(xl)Na(xl)2j j*(x2)2jj(x2)jj n+1 j~l

N

F2 {xlx2)= f&/N{N —1)j p g L2jl (xl)212{xi)21j {x2}2jj(x2) 21a*{xl)ill(xl)22j*{x2)Na(x2)j
l~n+1 jr+1

Also we have

Fl+(xl) = (1/N)QN; (xl)N;(xl), Fl (xl) = (1/N) Q 2j;*(xl)22;(xl).
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We observe that F2++ and F~ differ from Fl+
and F& + in that they have two sorts of terms. If
the second sort were omitted, we should have
N(N —1)Fg++(xlxg) = CNFl+(xl))(NFl+(xg)) &

with
similar values for the other subscripts. That is to
say, dividing through by Fi(xl), we should find
that the probability of finding the second electron
at x&, when the first is at xl, would equal just
Fl(x~). Since there are no correction terms if the
electrons have opposite spins, we have this
result in that case: if electron 1 has one spin,
electron 2 the opposite spin, and electron 1 is at
xl, the distribution of electron 2 will be just the
fractional part, {N—e)/N, of the total charge
distribution of electrons of this second spin. In
other words, the electron 1 does not affect the
distribution of charge of opposite spin at all.
Of course, we know that this is not actually the
case, as we have mentioned in Section 8, bui we
cannot expect to get any other result from this
method of calculation. On the other hand, if
electrons 1 and 2 have the same spin, there is a
correction term in the density. Thus if they boih
have the + spin, and if the first electron is at
xl, the density of other electrons of + spin will
not be —neFl+Cxq), but this diminished numeri-
cally by a correction

e P P u;*(x,)u;(xl}u;*(xg)u;(x,)
i 1 j~l

P u;*{xl)ui{xl)
i~i

This correction represents a charge density which
integrates to a total of one electronic charge. For
if we integrate over xg, on account of orthogonality
the only terms which will not integrate to zero
will be those for which j =i, which will give
unity, leading to a numerator equal to the
denominator. It is now interesting to consider
this correction charge density, for it evidently
represents the hole which we have spoken about
as resulting from the exclusion principle. We can
see its qualitative behavior easily. When x&= xl,
it becomes

e g u;*(xg)u;(x~) =neFl+(xe),
p~l

so that the correction cancels the first term, and

the density of other electrons is zero at the
position of the first electron. On the other hand,
when xl and xl are very different, the numerator
proves to be a sum of products of oscillatory
terms in practically random phase relations,
which almost cancel, giving practically zero.
This qualitative behavior agrees with what we
have stated before, the correction charge being
mostly removed from the neighborhood of xl.

To get a quantitative calculation of the
correction charge, we should have to take the
actual wave functions which we have calculated,
and work out the double summations. This could
be done, though it would be a good deal of work.
We can, however, get an idea of its value by
assuming thai the wave functions are plane
waves, as in a field-free region. In this case, the
function proves to depend only on the distance
from xl to xl, or ri~. It can then be shown~ that
the charge density of the removed charge at
distance rl~ from xl is

sin (rl~/d) —(rl~/d) cos (rl~/d) '

{
—e 3

Crn/d)'

where d=(V/3m'n)'". This is shown in Fig. 6„
curve A, and represents a concentrated density
which can be easily shown to give a total charge
of —e. In Fig. 6, A, we also give the radius R of
the hole as calculated in Section 5, which is equal
to {3U/4~m)'" = 1.92d, and we see that the
density attains half-value at just about this
radius. With this good agreement, we may as-
sume that the final calculation, using the correct
wave functions, would not differ much from the
value for plane waves, or in turn from the
approximation we have used before.

We have now seen, at least in outline, how io
calculate the total energy of a metal, or for that
matter of any other atomic or molecular system.
For the kinetic energy, we average P'/2m, over a
density function in a three dimensional mo-
mentum space, which can be obtained with fair
accuracy by adding the densities of the mo-
mentum eigenfunciions of the various electrons.
For the potential energy, we may summarize the
process in a slightly different way from what we
have used above. We first set up a charge density,
consisting of the point charges of the nuclei, at
their appropriate positions, and a volume distri-



bution of charge of the electrons. This volume
distribution can be found with fair accuracy by
adding the densities of the coordinate wave
functions of the various electrons. Next we set up
a potential at each point of space. %Ve really need
two potential functions, however, one for the
potential abating on a nucleus, the other for the
potential acting on an electron. The potential
acting on a nucleus is the potential, as computed
by electrostatics, of all other nuclei, and of the
whole electronic charge distribution above men-
tioned. The potential acting cn an electron is the
electrostatic potential ot all the nuclei, and of all
other electrons. This last term, the potential of
the other electrons, is difficult to find, for it does
not really follow from one-electron wave func-
tions, and we have to make approximations and
assumptions to get it. But we have described the
way in which the charge distribution of all the
electrons but one differs from that of all the
electrons, and in a qualitative way at least we lee
how to compute it. Having found the resulting
potential as a function of position in space, we
can compute the potential energy by the
electrostatic formula (1/2) J'(p U +p, U,)4e,
where p„and p, are the charge densities due to
nuclei and electrons respectively, and U„and U,
are the potentials acting on nuclei and electrons.

29. Energy as function of internuclear distance

Having found how to compute the energy, we
next ask what sort of function it is of the nuclear
positions, for that is the real information we
wish in the case of the metal. This cannot be
answered until we know how the momentum and
coordinate densities vary as the nuclei are
moved. We consider only uniform compressions
of the lattice, for these are the only distortions in
which our assumptions of a regular lattice
continue to be satisfied. Let us imagine 6rst that
the atoms are at infinite separation, all in their
low'est stationary states. Then the density in
momentum space will be of the nature shown in
Fig. 1'l, a distribution going to zero at zero and at
in6nite momentum, with a maximum between.
The density in coordinate space will be of the
familiar sort for a single atom, in the neighbor-
hood of each nucleus, going to zero in between.
The total kinetic energy will be large, the total
potential energy large and negative. The virial

theorem tells us that the potential energy is
twice as large numerically as the kinetic energy,
so that the total energy is negative, and equal
numerically to the kinetic energy. This total
energy represents the amount necessary to pull
all the electrons off all the atoms, removing all
the particles of the crystal to an in6nite distance
from each other. All changes in energy which
occur in the formation of the crystal, and in
its compression by experimentally realizable
amounts, change this total energy by only a
small fraction of itself.

As the crystal is compr~, both momentum
and coordinate densities change, with resulting
change of energy. In discussing these changes, it
is useful to keep in mind the virial theorem,
which for the case of hydrostatic pressure tells us
that T+E~ 3', where E is the total energy, T
the kinetic energy, p the pressure, v the volumeP'
At infinite separation, the pressure is zero, so that
T= —E, as we have mentioned above. At the
equilibrium volume, the same thing is true. In
between, however, the pressure is negative, so
that the kinetic energy is less than -E, while at
volumes less than the equilibrium volume the
pressure is positive, and the kinetic energy is
greater than —E. If one uses in addition the
relation p= -BE/Be, one can eliminate the pres-
sure, and obtain the kinetic energy, and hence
also the potential energy, directly from the total
energy. In Fig. 19we see the form which T and U
must have if the total energy is to show a mini-
mum, as it is known to do experimentally. It is
these resulting changes of kinetic and potential
energy which must be explained from our model.

As the atoms approach, the first effect will be
on the outer electrons. At in6nite separation,
these are atomic electrons, with momentum
eigenfunctions which are large for a considerable
range out from the origin in momentum space.
At shorter distances, however, we have seen that
these outer electrons approach the metallic
correspondence, in which the momentum eigen-
function is large only at one point in momentum
space, generally for smaller momentum than the
maximum at infinite separation. Taking all these
outer electrons together, the general effect will be
at 6rst a decrease of mean momentum, and hence
of kinetic energy. This is what we should expect
from Fig. 19. As the atoms are still further
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Fio. 19. Kinetic, potential, and total energy by the
virial theorem.

compressed, however, the effect of promotion
comes in for the outer electrons. In consequence
of this effect, their kinetic energy increases. This
is partly compensated, however, by the inner
shells of electrons, which at the same time are
decreasing their kinetic energy, preparatory to
becoming free electrons. The net result, however,
is an increase of kinetic energy, as Fig. 19 shows.
This change in kinetic energy can be brie8y
described as follows. The process of creating free
electrons is one of decrease of kinetic energy, for
the electrons become concentrated in the region
between atoms, where the potential energy is
high, and consequently the kinetic energy is low.
This goes on as the atoms are brought together.
It is counteracted, however, by the process of
compression of the free electrons already pro-
duced, which on account of the exclusion princi-
ple is accompanied by an increase of kinetic
energy. At large distances, the creation of the
free electrons is the more important process,
while at smaller distances the number does not
vary so fast, but the increase of energy on
account of compression becomes the governing
factor.

The changes in potential energy as the atoms
approach can also be understood from the model.
The coordinate wave functions of the outer
electrons become rapidly larger in the region

between the atoms, as they come together, and as
a result the charge density between the atoms
increases, with compensating decrease in the
immediate neighborhood of the nuclei. Negative
charge consequently is removed from the region
of low potential energy about the nuclei, and
transferred to the region of higher potential
energy, with increase of the total potential
energy. This increase, for distances of separation
greater than the equilibrium distance, almost
balances the decrease in kinetic energy. For both
these effects come from a shift of charge distri-
bution within the atom, and by the variation
principle a first order change in the ~ave func-
tion, and charge distribution, makes only a
second order change in the energy, though it can
make a first order change in potential and kinetic
energy separately. The net effect of change in
potential and kinetic energy, however, must be a
decrease of energy, or an attractive force, as
we can see from the virial theorem. For we
may write this (3/2)Pe=(T+E)/2=T+U/2,
where U is the potential energy. Let the kinetic
and potential energy at infinite separation be
Te and Uo, respectively, where we know that
To+ U&/2=0. Then we have (3/2)Pu= (T-T~)
+(U-U0)/2. But if (T—To)+(U—Ua) is a
small quantity compared with the change of
either kinetic or potential energy separately, we
have approximately (3/2)Pu=(T-Te)/2, and
since this is negative, the pressure is negative,
indicating attraction.

As the atoms approach even rloser, however, it
is no longer true that the change in total energy
is small compared with the change of kinetic or
potential energy, so that the conclusion we have
just stated no longer holds. Once the charge of
the free electrons is pulled out into the region
between the atoms, the principal further effect on
the potential energy comes from the change in
the potential rather than the charge distribution.
In Fig. 1 were plotted values of U., the potential
acting on an electron, as a function of the
distance from a nucleus, withNi the cell sur-
rounding that nucleus. There is, of course, an
additive constant in U, which is arbitrary, but it
is most convenient to choose this constant so that
the inner part of the curve is independent of
internuclear distance. This has the result that U„
remains constant, so that the part (1/2) J p„U„do
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is independent of distance, and the only change in
potential energy comes from the electronic term
(1/2)fp, U, de. It also leads to x-ray energy
levels for the one-electron problem which are
independent of internuclear distance, which is
convenient. With this convention, we see that
—U, decreases more and more in the region
between atoms, as the atoms are squeezed
together, and consequently that the potential
energy must decrease more and more, as Fig. l9
shows that it must. This decrease of —U, is also
shown in Fig. 9, where it is given by curve AA.
This decrease of —U, comes from two sources.
First is an effect of pure electrostatics. As the
negative charge surrounding the nucleus is
crowded into smaller and smaller volume, the
negative potential of the whole charge distribu-
tion at the surface of a cell must decrease, if that
near the nucleus remains fixed. For at any given
distance from the nucleus, the attractive force on
a negative charge, or repulsive force on a
positive, will be less with the concentrated charge
than otherwise, since there will be more negative
charge within a sphere of the corresponding
radius, more nearly cancelling the positive charge
of the nucleus. Thus the U, curve will be less

steep for small internuclear distance than for
large, resulting in the type of curve shown in

Fig. 1. The second effect is that of the exclusion
effect. The result of this effect, we remember, is a
negative term in the potential energy, equal to
the interaction of an electron with a distribution
of charge, of net amount one electron, removed
from its neighborhood. Further, the size of this
hole is smaller as the density of charge becomes
greater, so that the term in the energy is corre-
spondingly greater. Thus as the atoms are
squeezed closer together, and the free electron
density becomes greater, this effect increases,
reducing the value of —U, at points between the
atoms. This effect, and the purely electrostatic
one, are of the same order of magnitude. As the
distance of separation becomes quite small, both
these effects on the potential energy tend to go
inversely as the internuclear distance, just as
they would if they represented the potential
energy of interpenetrating lattices of positive and
negative charge, as in an ionic crystal. On the
other hand, the kinetic energy tends toward the
free electron behavior, being inversely as the

square of the internuclear distance. Thus the
repulsive kinetic energy will outbalance the
attractive potential energy at small distances,
producing net repulsion.

30. Relation of one-electron energies to total
energy

We have now given a qualitative interpretation
of the energy of the lattice, the energy curve
which leads to the calculation of the grating
space, or equilibrium distance, the heat of
formation of the crystal, the compressibility, etc.
The terms which enter into this are all things
which can be computed, when once the electron
wave functions are known, and for the cases for
which they have been worked out, the agreement
with experiment is satisfactory. There is another
point of view regarding the total energy, how-

ever, which is also correct, and which is worth
considering, since it makes closer connection
with the one-electron functions. We have already
seen that each of these one~lectron wave
functions has an energy level which is a function
of internuclear distance, and it is natural to
ask what relation these energy levels have to the
total energy of the crystal. We may reasonably
expect a connection, for it is known that in

atomic models, the one-electron energies are
rather accurately equal to the ionization po-
tentials of the corresponding electrons. In the
method which we have used for computing the
energy of the crystal, we note in the first place
that the kinetic energy of the whole crystal is
assumed to be the sum of the kinetic energies of
the various one-electron problems, since the
momentum density is taken to be the sum of the
densities for the various electrons. Also the
potential energy of interaction between nuclei
and electrons, for the whole crystal, is the sum of
these terms for the various electrons, for a
similar reason. The potential energy of inter-
action between pairs of electrons, however,
involves a different situation. For a one-electron
problem, the potential energy is the sum of the
potential energy in the field of the nuclei, plus
that in the field of the other electrons. This latter
term is the integral of the charge density of the
one electron, times the potential of all other
electrons, integrated over all space. When we add
these terms together for all electrons, we have the
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integral of the total charge density times the
potential of all other electrons. But this is just
twice the correct interaction energy, for it counts
each pair of electrons twice, once in determining
the charge, once in determining the density. The
correct interaction energy is 1/2 the integral of
total charge density times the potential of other
electrons. Thus we have the following result: the
sum of the one-electron energies of all electrons
equals the correct kinetic energy for the whole
crystal, plus the correct interaction energy
betweer electrons and nuclei, plus twice the
interaction energy between pairs of electrons.
Conversely, the total energy of the crystal equals
the sum of the one-electron energies, minus the.
interaction energy between pairs of electrons,
plus the interaction energy between pairs of
nuclei. This statement is true to the same
approximation to which our whole calculation of
energy is correct.

For a single atom, the interaction between
pairs of nuclei is not present. We see then that
for an atom the total energy equals the sum of
one-electron energies (which in this case are
approximately the ionization potentials, with
negative sign), minus the interaction energy
between electrons. It is easily understandable
that the total energy is lower than the sum of
one-electron energies, &or each of these represents
approximately the energy required to remove an
electron from the neutral atom, while in com-
pletely breaking up the atom, successive electrons
are removed from more and more highly charged
ions, requiring much more work. Now for the
whole crystal at large separation, the one-
electron energy levels are almost exactly what
they are for the separate atoms, only there are N
times as many levels of each type. Thus the sum
of one-electron energies is just. N times that for a
single atom. The interaction energy between
pairs of electrons is of two parts: first, the
interactions between pairs in which both elec-
trons are on the same atom, of which the sum is
just N times that for a separate atom; secondly,
interactions between pairs in diHerent atoms.
This latter interaction is that between the net
negative charge of each atom and of each other
atom, and on account of the spherical distribution
of each atom, it just cancels the interaction

between the nuclei, leaving the total energy as E
times that of a single atom, as we should expect.

As the atoms approach, we are interested only
in the change of total energy. We have seen the
nature of the change in one-electron energy. For
the inner electrons there is no change, while the
energy of the outer electrons decreases, goes
through a minimum, then increases again, as we
have seen in Fig. 9. The outer electrons then
contribute the only change to the sum of the one-
electron energy, resulting in a minimum of
energy at some equilibrium distance. Let us see
how the other correction terms affect this energy.
We know that each cell remains electrically
neutral and approximately spherical. Thus the
interaction energy between the electrons of one
cell and those of another continues, even in the
compressed crystal, to cancel almost exactly the
repulsion between the nuclei of the corresponding
cells. The only corrections of any magnitude,
then, come from the change of the interaction
energy between electrons of the same cell, as the
cell is compressed. This correction would be small
for a univalent element like sodium, in which it
involves only the interaction between the valence
electron and the inner e!ectrons, but larger for
other elements, w 1 ere!t involves the interaction
between pairs of valence electrons. Thus for
sodium the sum of one-electron energies should
give fairly accurately the variation in the total
energy, which calculation shows it to do, while
for atoms with several valence electrons, there
should be additional terms in the energy, re-
sulting in tighter binding than the sum of one-
electron energies would indicate. In any case,
however, we see that the minima in the one-
electron energies are closely connected with the
minima in total energy of the crystal.

31. Total energy and magnetic properties

A final question connected with the energy is
that of the magnetic properties of the metal,
particularly ferromagnetism. We have assumed
that the lowest state of the metal was always
that in which the spins exactly cancelled, so that
the metal was nonmagnetic. Empirically we
know, however, that ferromagnetic metals appear
to have a magnetic moment in their normal state,
with spins parallel to each other. We must aslr
how this can be interpreted. At first sight it
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would appear impossible, for the kinetic energy
certainly has its lowest value when each of the
lowest energy levels is occupied by two electrons
of opposite spin, The potential energy, however,
depends on the spin, and under certain circum-
stances it can be lower for states of nonvanishing
total spin, by an amount sufhcient to make these
states actually lower than those of balanced spin.
%e remember that the potential U, in which an
electron finds itself is the potential of the
distribution —(N —1)eF&/F&, so that it really
consists of two parts: the potential in which an
electron of + spin finds itself, and a similar
potential for an electron of —spin. In the case of
balanced spins, these are equal, but if for
example more electrons have + spin than —,the
hole surrounding an electron with + spin will be
smaller, on account of their larger density, than
for a —spin, and correspondingly U, for the +
spin will correspond to a lower potential energy
than for the —.This is a situation in which there
will be a lowering of the total potential. energy if
electrons of —spin change over to + spin, with a
minimum potential energy if all electrons have
their spins parallel. They will do this, then, if and
only if the change is not accompanied by an even
greater increase of kinetic energy. In a case like
sodium, for example, the change in kinetic energy
certainly will be greater than in potential, at
ordinary distances of separation, as one can
compute from the relative sizes of the Fermi
energy and the potential energy terms. But in
iron, for example, the situation is quite diHerent.
There we have the whcle set of 3d and 4s levels,
available for outer electrons. These levels are
only about half filled with electrons. Further,
since the 3d's overlap so little, their energy band
will be only slightly spread out, so that it will

involve only slight increase of kinetic energy if
levels are filled with only one + electron, instead
of with a + and a —.These 3d's, of course, do not
take much part in the cohesion, since they do not
overlap enough to result in a large free electron
density between atoms, but tht, y are exactly
suited to produce a permanent magnetic moment.
From this example, we see that the requirement
for ferromagnetism is the existence of only
partially filled shells, so as to allow the spins of
these electrons to be all parallel, and far enough
inside the atom so that the resulting energy

Fto. 20. Momentum vectors for Bragg re8ecdon.

bands are only slightly broadened, so that the
increase of kinetic energy is far less than for the
outermost electrons. These conditions are fulfilled
in the iron group of elements better than in any
other elements of the periodic table, consistent
with the ferromagnetic properties of these
elements. "

The connection between ferromagnetism and
the interaction of electron spin resulting from the
exclusion principle was first pointed out by
Heisenberg. ~ His calculations, and most of the
subsequent theoretical work on ferromagnetism,
have been based on an analogy to the method of
Heitler and London as used for molecular
structure. ~ This method is not based on the use
of solutions of the one-electron problem for the
periodic lattice at all, but instead starts with the
electrons as if in the isolated atoms, with wave
functions concentrated about a single nucleus.
That method had one considerable advantage
over the earlier forms of the type of theory
presented in the present report: it gave a good
account of electron interactions, of the proba-
bility of finding one electron at a given distance
from another, and of the relation of this to
electron spin. Since these are essential features in
the treatment of both ferromagnetism and
valence, the method has found much application
there. At the time the applications were made,
the methods of incorporating electron inter-
actions in the present form of the theory, by
means of the distribution functions F& and F&,

were not well worked out. The writer believes
that in the future these latter methods will prove
to be of more value than the method of Heitler
and London, not only for discussing metals in
general, but for ferromagnetism and for molecul~
structure as mell. For metals, they have great
advantages in problems of electrical conductiv-
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ity; they now prove to be more suitable for total
energy and cohesion. Further, they have a great
technical advantage, in that they deal with
orthogonal on~lectron functions, which the
Heitler and London method does not. The writer
commends the general method outlined in this

report, with one-electron functions, and separate
discussions of kinetic and potential energy by use
of the momentum and coordinate eigenfunctions
and the virial theorem, as the most hopeful line
of attack at the present time on the structure of
solids and of molecules.

APPENDIX I. MILLER INDICES AND RECIPROCAL LATTICE

The Miller indices k, k„l of a set of planes are determined as follows, for a simple cubic lattice: of a
set of parallel equidistant planes including all atoms, of the sort we have described, we choose the one
which comes nearest the origin without cutting it, given by our equation (P;/h). q= 1. (Do not confuse
the k, Planck's constant, with the k Miller index). We take the intersections of this plane with the x,
y, s axes, k/P;„k/Pz, k/P;„and then define k, k, 1, by setting these three intersections equal to
d/k, d/k, d/l, where d is the lattice spacing. That is, k= (d/h)P~„k= (d/k)P;„f=(d/k)P;, . Now we
shall prove that k, k, l must be integers, which means that P;„P;„,P;. are arranged on a lattice of
spacing k/d, reciprocal to the spacing of the coordinate lattice. To do this, we need only prove that if
and only if k, k, l are integral, every atom of the crystal lies on one of the planes. The equations of the
planes become {kx+ky+ls)/d=n. Let @=A, y=rd, s=sd, where q, r, s are integers; this is the
condition that they lie on a simple cubic lattice. Then the equations become (kq+kr+Ls) =n. But
obviously if k, k, l, q, r, s are integers, N is also an integer, proving that for every lattice point the
equation of one of the planes is satis6ed. Conversely, if at least one of the indices k, k, / is not an
integer, it is obvious that q, r, s can be given integral values which will make s non-integral, showing
that some lattice points would not lie on the planes, so that non-integral indices are not allowed.

In a body centered lattice containing atoms at the corners of a cube of side d, and one at the
center of each cube, we evidently have q, r, s all integers (for the corners of the cube), or all half
integers (for the centers). Then if kq+kr+ls =n, an integer, k, k, l must all be integers (to satisfy the
condition for integral q, r, s), but furthermore k+k+/ must be an even number (so that, lor the half
integral q, r, s, the factor 1/2 may be multiplied by an even number, and give an integral e). Thus the
reciprocal lattice will have points only for 8+k+i even number, or in the momentum space
(P;,+P~+P;,) =even number x(k/d). But this is the condition for a face centered lattice in mo-
mentum space, the faces being of width 2k/d, with points in the center of each face. Thus the recip-
rocal lattice to a body centered space lattice is a face centered momentum lattice.

Similarly the reciprocal to a face centered space lattice is a body centered momentum lattice. Let
the atoms be at the corners of a cube of side 2d, and at the center of each face. Then q, r, s are all
integers, and q+r+s=an even integer. We can then satisfy

kq+kr+ls=upwith

k, k, L=integers, or k
k, l~ half integers, resulting in a body centered momentum lattice, of side k/d.

APPENDIX II. CONDITIONS FOR BRAGG REFLECTION

Let the initial wave be represented by exp f(2~/k)(Pp q)j the 6nal wave by exp f(2m/k)(p& q) j.
Then for Bragg reflection in the first place these must have the same wave-length, giving pP= p&'.
Secondly, they must both be in the same phase at the lattice planes {P;/k).q~ e, in order to have
interference. This demands that the exponentials be equal on these planes, or pi q= p~ q+nk, where
N is an integer, or P(p& —p&)/k]. q= s. For these planes to be the same as those represented above, we
must have Pi —Pp =P;, or Pi, the refleeted wave momentum, =Pg+P;. This is shown in Fig. 20, where
we also see that any vector ps froaa the origin 0 of momentum space to the plane AB, perpendicular
bisector of -P;, satis6es this condition.
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APPENDIX III. PROPERTIES OF MOMENTUM EIGENFUNCTIONS

The properties which we shall describe can be put in various different forms, depending on whether
e and e are continuous or discontinuous functions, and on whether they are confined to small regions
of space, or extend throughout all space. We shall state them in a convenient form for the case we use
most, namely, that in which u is a continuous function, extending throughout space in such a way
that u*u repeats itself periodically, and v is a discontinuous function defined at discrete points, and
confined to the part of momentum space surrounding the origin. In this case it is convenient to
normalize e to unity: g@*(p)t(p) = 1, The coordinate function I, however, cannot be normalized to
unity, but on account of its periodicity, we can set its average value over many cells equal to unity:
lim fJ'u*(q)N(q)ds/ J'de j=1, where the limit is taken as the volume of integration becomes larger
and larger. Let us then assume that

e(q)=pe(p) exp f(2m/k)p qj.

We can show that if It is normalized in the sense described, I is also normalized. To do this, multiply u
by its conjugate, and average over coordinates, obtaining the relation

t u*(q)u(q)de J' exp f(2m/k)(p' —p) q]= Z ZI'(P)s(P')
J'dy n n' J' dv

But now the average value of exp f{2si/k) p qj is zero unless p =0, in which case it is unity. Hence the
right side of the expression above becomes p~*(p)e(p) = 1, proving the normalization. Similarly,
multiplying the equation for a(q) by exp f(—2si/k) p'qg, and averaging, we obtain the relation

e(p)=lim e(q) exp f(—2m/k)p qjdv dv.

Using the definition of u in terms of e given above, we can prove that the e so determined satisfies
the same difference equation given in the text, so that it is the same function used there. To do this,
substitute I in Schrodinger's equation. We have

f(—k'/Sa'm)'+ Uju(q) = Qv(p')(p"/2m+ U) exp f(2si/k) p' qg
pl

= ZP(p') (p"/2m) exp f(2+i/k) p'. qj+g pe(p') W(P) exp f(2m/k) (p' —P) qg
p/ pl P

=E~(q) =EX~(p') exp L(2 ijk)p' q3
pt

where we remember the expansion of U in Fourier series. Now we multiply both sides of the equation
by exp f(—2m'/k)p. qj, and average over coordinates. The result is (p /2m)e(p)+gpW(P)e(p+P)
=Ev(p), the same equation given in the text.

The equation which we have just written may be given more explicitly, for the periodic lattice,

f(pp+P;)'/2m, -E~+~(po+P;)+ Q W(PI)v„(pa+PI+PI)= 0,
Py

where po represents the value in the central cell for which the function is defined, and where e refers
to the th stationary state. The orthogonality of the v's is easily proved. Thus let the same equation
be written for e* (po+P~):

f(p, +P,.) /2 —E„p*(p,+PI)+QW*(P,) '(p, +P;+P,)=0.
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Multiply the first equation by v *(po+P;), the second by v„(po+P;),and subtract. The result is

(E —E )(v (Po+Pj)v (Po+Pj))++W(P»)v (Po+P;)v„(Po+Pj+P»)

—EW (P»)v '(P'o+»+P»)v (to+Ps)=0.

Now sum over P;. The last term can then be rearranged, by noting that W*(P»}=W( —P»), if the
potential is real, and by letting Po~P;+P» =po+P, ', po+P& =po+P, '+P»', so that P»= —P»'. When
this is done, the last summation is seen to be equal to the preceding summation, so that they cancel
leaving

(E —E )2 '(P +P ) (Po+P )=0
Pj

That is, if m&n,
Pv *(Po+P&)v (P'o+Pj) 0,
Pj

the orthogonality condition. Ke have assumed that if m= n, the normalization condition

is satisfied, which can be done by proper choice of the multiplicative constants in v.
The orthogonality and normalization conditions stated above can be interpreted in terms of a

function space. Let us first consider only a finite number of values of P;, large enough to include many
cells surrounding the origin in momentum space. %'e could take these as a finite number of rectangular
coordinates, and plot the values of v„(po+Pj)for different P s as the components of a vector in this
space. The orthogonality and normalization conditions show that this is a unit vector, and that if we
draw the vectors for different values of n the various vectors are normal to each other. Of course, with
a finite number of cells, we have only a finite number of stationary states and values of n, in fact just
as many as there are cells. These vectors v„(po+P;)for different n's then form a set of orthogonal unit
vectors in the space, which could be used as coordinates as well as the Pj's. In terms of them, v (po+ P )
for different e's, but a given P;, represent the components of a vector representing P, in this new set of
coordinates. Ke can now express the condition of orthogonality and normalization of these P s, in the
new coordinates: g„v„*(po+P;)v(po+P»)=1 if P;=P», =0 otherwise. This is the completeness
relation of which we speak in Section 22. Passing to the limit of infinitely many cells, it continues to
hold in the present case, though not in all sorts of problems.

APPENDIX IV. ENERGY DISCONTINUITIES BY PERTURBATION METHOD

If either the metallic or free electron correspondence is good, that is an indication that v(p) is much
larger for one value of p than for any other. Let this one be po. But on the surfaces of zones in mo-
mentum space, one, and generally just one, other component also becomes large. Let this be po+P;,
where the surface in question is then the bisector of —P, . Then in the difference equations for v(p),
there will be just tv o large components. To a first approximation, we can replace the infinite set of
difference equations by the two simultaneous equations involving only these two v's:

(Poo, '2m —E)v(Po)+ W(P&)v(Po+P ) = 0 W( —P )v(Po)+E(Po+Pj)~/2m —Egv(Po+P ) = 0.

Setting the determinant of these equations equal to zero, we have a quadratic for E, whose solutions
are

E= -'(Po'/2m) +((Po+P )'/2m) a ' -'P(po'/2m) —((go+P )'/2m) g'+ W'(P, ) W(P;) )
' '

where we have used the relation W( —PI) = W*(PI). Solving for the case where po'/2m —(po+P j)'/2m
W W*(P,)W(Pj), so that we are far frcm the edge of the zone, we have the same solution obtained by
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the second order perturbation method. On the other hand, when

Po'/2oJS —(Po+Pg)'/2te«W'(PJ) W(P;),
near the edge, we have

~-(1/2) {(Po/2~)+I:(Po+PJ) /2~j}+{W (PJ)W(PJ) }"
+(1/8) {(Po'/2 )—

t (P +P )'/2 j} / {W (P;)W'(P;) }'",
showing that just at the edge the discontinuity in energy is 2$W (PJ)W(PJ)g'Io~2j W'(PJ) j, and
permitting us to derive the shape of the curve near the discontinuity.

APPENDIX V. SThTIONhRY SThTES FOR FINITE CRYSThLS

A wave exp f(2m/k)Po qj cannot be a solution for a finite crystal unless it satisfies boundary
conditions. For instance, for a rectangular crystal bounded by the planes x= 0, a~ X, y~0, y= Y,
s~ 0, s~ Z, we must expect that the wave should take on the same value over each pair of opposite
faces. The demands that P~/h~ integer, Po, Y/k~ integer, PoQ/k~ integer, so that the allowable
points in momentum space form a rectangular lattice, of sides h/X, h/ Y, h/Z. The volume of mo-
mentum space per point is then h /X YZ~ h'/ V, if V is the volume of the crystal. With other shaped
crystals, the detailed arrangement of points in momentum space would be different, but the number
of points per unit volume would be the same.

For a simple cubic crystal, the volume of a cell of momentum space is h'/d', if d is the lattice spacing.
This then contains (k'/d')( V/h') ~ {V/d') allowable points Po. But V/d' is just the total number of
coordinate cells of the crystal, and since there is one atom per cell, it is the number of atoms N, which
was to be proved.

For a body centered cubic crystal, the reciprocal lattice is face centered, of side 2h/d, containing
four points in the cube (2k/d) o, or one point per volume 2ko/d'. This then is the volume of one cell of
momentum space. Thus there are 2(k'/d')( V/k') ~ 2 Vjd' allowable points per cell. But the unit cell in
coordinate space, of volume do, contains taro atoms, so that the crystal contains 2 V/d' atoms, again
the same as the number of allowable points.

For a face centered crystal, the cell of momentum space contains 2 points in a volume h'/d', so that
the cell has the volume (1/2)h'/do, and contains (1/2)(ko/d')(V/ho) =(1/2) V/d values of Po. The
unit cell in coordinate space, of volume {2d)', contains four atcms, so that the crystal contains
4 V/(2d)o~ {'1/2) V/d' atoms, again the same as the number of allowable points.

APPFNDIx VI. RELhTIQN BEE%KEN AvERhGE MoMENTUM hND ENERGY

Multiply the equation for s(P) by e~(P), and sum over all values of P. This gives us the following
value for the total energy:

~=E *(P.+P.)L(Po+P.)*/2 i (Po+P.)+Z Z"(P.+P )W(P ) (P.+P.+PJ).
Pg PJ Po

Similarly for the average velocity in the x direction, f, we have

&= (1/ohio) 7&'(Po+Po) {Po.+Po.)s(Pe+Pa)

Now let us differentiate S with respect to the x component of Po, Po, .

t
Bo (Po+Po)

aE/apo. Eo'(Po+Po)f(Po. +Po.)/m+{Po+Po)+gg(Po+Po)'/2oJo j, «(Po+Po)
Py Po 8Po

(Po+Po) Boo(Po+Po) (Po+Po+PJ)
+s'(P.+P.) +Z Z W(PJ) «(P.+P.+P )+s'(Po+P.)

~Po~ ~f j'o ~Po~ aP..



ELECTRONIC STRUCTURE OF M ETALS

The first term is just i, and we shall show that the other terms vanish, proving the theorem. To prove
that the second and third terms cancel, we note that

DPo+Pk)o/2m+{Pa+ Pa) +PW(Pi)o(Po+ Pa+ Pi) =Ee{Po+Pa)
Pi

As in Appendix III, we rearrange the second term of the double summation, letting po+Pk+P;
po+Pk po+Pk~ po+Pa'+P, Pi= —P, so that this term becomes

E E ~(Pi )s (Po+Pk +Pi )~(Po+Pk )/aPo ~

J"i P~a

%e then drop the primes, and note that

f(Pe+Pa) /2i)kk (Po+Pk)+Z~ {Pi)& (Po+Pa+Pi) =&s (Po+Pa).
Pi

The two terms which we wish to vanish now can be rewritten as

t
+'(po+Pa) 8o{po+Pk)

SZ -.(p.+P.)+"(p.+P.)~. l ap.. 8po~

But differentiating the normalization relation

Z&o(Po+Pa)S(Pa+Pa) = 1

with respect to po, shows that the bracket above vanishes, which we wished to prove.

APPENDIX VII. PROPERTIES OF DETERMINANTAL EIGENFUNCTIONS

Let the coordinate eigenfunctions of a single electron be oci{z,). If the eigenfunction is associated
with + spin, and the electron spin is $„which can be + or —,the eigenfunction with spin can be
written u;+(z($&), which by definition equals a((z() if $, is +, but is zero if $; is —.Then if the eigen-
functions from 1 to e are associated with + spin, those from m+1 to N with —spin, an antisymmetric
eigenfunction for the whole system is"

i&+(&1$)) ' ok++(z1$1) Q(~1) (X1$1) ' ' ' QN-(z($1)
1

si+(z'o$o} ' ' ' Q~+(zo$o) Q(~i) (zo$a)
t E ~ ~ 1 \

IOi+($(N$N) ' * ' +a+(&H$N) Ok(a+1)-(ZH$N)

~ Ok~ (Zo$o)

QPf-(XN$N)

To get Fo(z)$&, zo$o), we multiply this function by its conjugate, and integrate and sum over all
coordinates and spina from 3 to N. Then Fo++ is the value in case $i, $o are both +, etc. Now the
eigenfunction is a sum of terms, each formed by taking one factor from the 6rst row, another from
another column of the second row, and multiplying by the subdeterminant obtained by crossing out
the two rows and columns already used. The conjugate is a similar sum of terms, and in multiplying
them and integrating over all coordinates from 3 to N, we integrate products of such subeeterminant.
But on account of the orthogonality of the oc's, such a product of subdeterminants integrates to zero,
unless it is the product of a subdeterminant and its own conjugate, in which case on account of
normalization it integrates to (1V'-2)! Thus the only nonvanishing terms are those in which the
factors involving zi and boa, in both the eigenfunction and its conjugate, come from the same two rows
and columns, and each such term is multiplied by the factor (N- 2)!/N!= 1/N(N-1). There are just
two sorts of such terms, one of the form ok;o(z&$&)oo({s&s&)okio{$ro$o)oki{$oaoo), where we take just the same
terms from both the determinant and its conjugate, and the other —oo( (zi$i)oui(z'($&)oui {zo$o)ok((zo$o) i
where the two rows are interchanged in the conjugate with respect to v hat they are in the original
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deteminant, with consequent change of sign. If now i and j both symbolize quantum numbers
assodated with the same spin, both terms occur, whereas if they have opposite spin, the second form is
absent, since in that case it is impossible for si to have simultaneously the spin necessary to give
nonvanishing values to both ttt and I;. Thus we arrive at the formulas for Fs given in Section 28.

To get FI(xi), we integrate Fs{xi~) over xs, and sum over ss, noting that the second form of term
contributes nothing, on account of orthogonality, except when s=j, when it cancels the first term.
The first term then gives (N —1) times the sum p1/N(N —1)jp;I;s(»i)NI(x~), giving the values of
FI(x'I) in Section 28.

By replacing the coordinate eigenfunctions tt(st) by momentum eigenfunctions t(p), we get the
momentum probability {Gipi), used in Section 27, in exactly analogous ways.
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