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A. GENERAL

§1. Introduction
HIS review on the physics of crystals is
divided into a number of parts. The first
parts deal with the experimental aspects of the
problem of the solid state. In the last part a
general solution of this problem will be proposed
and developed.

The experimental facts which distinguish the
solid state, particularly those which have not
been explained on the basis of the theory of ideal
crystallographic lattices will be selected. It is
our contention that these obnoxious observations
are peculiar to the solid state and to incorporate
them into the theory constitutes the present
problem of the solid state.

In the following sections, the mechanical,
thermal, electrical and other properties will be
treated separately. In this treatment the suc-
cesses and failures of the classical theory of ideal
lattices will be indicated. We shall then discuss
the requirements of a more general theory of the
solid state and in the last part give our own
solution, introducing cooperative phenomena and
discussing their influence on the formation of
secondary structures.

The last part in many respects is still specula-

tive. Even the earlier parts, however, may be
more speculative than they appear at first sight.
In the physics of solids, and to some extent in any
branch of physics, a “fact’” may be not just a
fact, but a highly complicated combination of
observations and interpretations not free from
speculations. For instance, if one describes the
properties of a crystal, one should not omit to
state how the crystal was grown, what impurities
it contains, how it has been treated since forma-
tion, etc. Experts often differ as to the nature of
experimental control and sometimes the same
observation has been used to support conflicting
theories. The selection of facts in this and any
other paper is therefore determined by the
author’s opinion as to what is important.

§2. The theory of ideal lattices

We shall often use the terms ideal crystals,
perfect crystals, real crystals, and occasionally the
term mosaic crystals. To distinguish clearly be-
tween these different notions we shall define
them.

An ideal crystal is essentially a geometrical
model. The elementary building stones (atoms,
ions, molecules) are located in a discrete set of
points which constitute an ideal geometrical
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194 F.
point lattice. The spacing (lattice constant) is
such that the crystal is in an extremum of energy;
the extremum may be a minimum, a saddle point
or a maximum. The ideal crystal may not have a
real counterpart existing in nature. The existence
of such a crystal is possible only if the ideal crys-
tal represents a statically stable configuration. To
exist as a thermodynamically stable configuration
at the absolute zero point of temperature, the
energy of the ideal crystal must be an absolute
minimum.

To allow for the kinetic energy, we extend the
notion of an ideal crystal by saying that the
average positions of the building stones coincide
with the points of the ideal lattice. For an ideal
crystal to be thermodynamically the most fav-
ored configuration, it must be dynamically stable
and its free energy an absolute minimum. The
stability of a lattice built up of atoms (electrical
charges) must of course be dynamic. (Law of
Earnshaw.)

The elementary cell of an ideal crystal has
dimensions d,, ds, d; of the order 10~2 cm, that is
of the order §=h?/me?. An essential feature of
the theory of ideal crystals is that the time
averages of conditions in all the elementary cells
of a free crystal are in every respect identical.

A real crystal is a crystal as it actually exists in
nature. Real crystals always contain imperfec-
tions of various kinds and therefore crystals of
the same substance often exhibit different phys-
ical properties.

A perfect crystal is a real crystal in its thermo-
dynamically stable configuration. If it is a free
crystal, i.e., one imbedded in its own vapor or
melt at constant temperature in a field free
space, the free energy is a minimum.

By mosaic crystal we mean a real crystal com-
posed of tiny crystal fragments of varying size
which are slightly displaced or inclined relative to
each other. The idea of a mosaic crystal was first
introduced by C. G. Darwin to explain certain
features of reflection of x-rays. The term mosaic
crystal was introduced by Ewald.

The question whether or not a perfect crystal
is identical with an ideal crystal is one of the
major issues of the problem of the solid state.
On the basis of data furnished by x-rays, this
identity has been assumed in the past. Recently
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various samples of crystals have been found to
have different physical properties although x-ray
analysis indicated no difference in the crystals.
Evidently by such analysis one is not able at
present to determine whether or not the perfect
crystal is identical with the ideal crystal.

For the study of the theory of ideal crystals
the reader is referred to treatises on this subject.!
This theory has been generally successful in cor-
relating the so-called structure-insensitive proper-
ties of crystals with their fundamental building
stones (atoms, ions, etc.). Structure-insensitive
properties are the space lattice and density, total
energy per mol, specific heat, elastic constants,
thermal coefficient of expansion, the ordinary
electrical and thermal conductivities, the dielec-
tric constant, etc. These properties, in order of
magnitude, are the same for single crystals and
polycrystalline material. They change very little
on plastic deformation, annealing or introduction
of small amounts of impurities. The theory is
most successful in regard to the properties of
ionic crystals such as rocksalt.

Real crystals also possess many physical char-
acteristics which are structure-sensitive. They
‘are the inset of plastic deformation, the rupture
strength, the electrical breakdown strength, in-
ternal damping for elastic and optical waves,
internal diffusion, superconductivity, etc. The
classification into structure-sensitive and insensi-
tive properties, is mainly due to A. Smekal.

It should be emphasized that the distinction
between structure-sensitivity and insensitivity is
only one of degree. All the physical properties
are more or less affected by method of growth, by
annealing, quenching, etc. Also it may happen
that properties which are structure-sensitive at
low temperatures may become insensitive at high
temperatures.

An example is the critical shearing stress caus-
ing plastic deformation (yield point), which at
high temperatures becomes independent of
previous working.

Such phenomena are probably related to the
general fact that low temperatures tolerate the
existence of thermodynamically pseudo-stable
configurations much more readily than do high

1 M. Born, First and second edition of the Handbuch der
Physik XXIV.



PHYSICS OF

temperatures. From this point of view, the study
of properties of crystals at temperatures near the
melting point is desirable.

§3. Imperfections in real crystals

The interpretation of structure-sensitive prop-
erties is difficult or impossible in terms of an ideal
crystal. There have been many attempts in recent
years to correlate structure-sensitivity with the
ever-present accidental imperfections in real
crystals. In our review we shall consider as im-
perfections deviations from the ideal lattice
which are of an accidental nature, and not
characteristic for the thermodynamically stable
state.

Imperfections may be of a macroscopic or of a
microscopic nature. The latter are more difficult
to study but are of interest because of the at-
tempts made by some workers to ascribe many
of the discrepancies between the theory of ideal
crystals and experiment to such imperfections.

We here list the most common types of imper-
fection:

(a) Mechanical distortions are common and
occur in the form of fissures, crevices, slip lines,
twin formations, mosaic formation, lineage, etc.
If they are of macroscopic magnitude (greater
than p/10) they may be detected by direct ob-
servation, or with the aid of the microscope.
Mechanical distortions may be produced during
or after the formation of a crystal.

(b) Most real crystals exhibit permanent ac-
cumulations of stresses. The fact is revealed by
observation on transparent crystals in the polariz-
ing microscope and undoubtedly such stresses
exist also in opaque crystals. Such stresses in
metal crystals can be detected by the so-called
thermal and magnetic analyzers.

(c) Inclusion of impurities in crystals can
hardly be avoided. In the purest materials there
is perhaps one foreign atom per million of the
mother substance. Impurities may go into the
same space lattice as the mother atoms, replacing
them at random as Ag in Au. Or the impurities
may form lacunes or layers in crystals. These
lacunes may consist of eutectics, or only of im-
purities, or they may be physical or chemical
combinations of impurities with the mother atoms
and may be crystalline or amorphous in char-
acter. Sometimes the impurities are precipitated
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out in the form of more or less regular layers, or
in the form of dendrites. In Chart I some
examples of imperfections are shown.

(d) Surfaces of crystals may have a very com-
plex nature. We shall say little about this sub-
ject. We hope that a comprehensive review may
come from some other pen.

B. ErasTiCITY OF CRYSTALS

§4. Definitions and experimental facts

We assume that we are dealing with crystals
in their thermodynamically most stable states.
Various macroscopic portions in such a crystal
then must exhibit identical macroscopic behavior
if we disregard surface effects. Individual micro-
scopic variations such as Brownian movement,
exchange of place of the building stones (Platz-
wechsel) etc. exist, of course, but it is assumed
that in the first approximation they do not affect
the macroscopic behavior. If we now distort a
stable crystal by application of various suffi-
ciently small external loads the crystal will be
deformed. The characteristics of this deformation
are called the elastic properties of the crystal.
In most cases real crystals of sufficient perfection
may be obtained such that on removal of the
loads the crystal returns into its initial state and
exhibits the initial macroscopic properties of the
crystal in the free state. For this case for which
the isothermal application of small 'oads does
not cause any hysteresis effects the following
analysis applies. In this analysis we essentially
follow the assumptions and notations used by
Voigt in his classical book on the physics of
crystals.

The displacement of a given point P with the
cartesian coordinates x, y, z is a vector whose
components are u(x,y,2), v(x, 9, 2), w(x,y, 2).
The state of strain at P is characterized by the
six quantities

x;=0u/ox; y,=dv/dy etc., )
y.=2z,=0dv/dz+dw/dy etc.
It can be shown that the matrix
X: x,/2 x./2v
ve/2 vy ¥/2 (2
2:/2 2,/ =z,
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represents a symmetrical tensor of the second
rank which is called the strain tensor. The com-
ponents of this tensor are by definition identically
equal to zero for a free crystal at the absolute
temperature 7'=0.

The state of stress at a given point P in a solid
is known if the stress vectors S, are known for all
the «? plane surface element of unit area which
contain the point P. S, is the force which must
be applied on a surface element whose normal is
n if we wish to restore equilibrium after a very
thin layer of matter has been removed on the +n
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side of our surface element. Under special as-
sumptions, which will be formulated, it can be
proved that the state of stress at a point P is
completely described if the stress vectors S, S,,
S, are known, which represent the reactions
from the adjoining parts of the solid on three sur-
face elements whose outer normals are in the x,
y and z direction. The three stress vectors have
the following components

S.»X,, Y., Z,
S,»X,, Y, Z, 3)
S.»X,, Y., Z.

DESCRIPTION OF THE PHOTOGRAPHS OF CHART I

F16. 1. Twin in calcite. At the edge one sees that the cleavage planes in the twin are of a
different orientation from those of the whole crystal. Twins in calcite are very frequent and often
show remarkable constancy of thickness over their entire length which may be several centi-

meters. (Magnification X41.)

F16. 2. Cleavage surface of calcite with the tracings of two crossing twins, T and T. (Magnifi-

cation X 41.)

F1G. 3. Stepped cleavage surfaces on calcite. The twin T appears displaced at every step, the

displacements being proportional to the height of the steps.

he existence of permanent stresses

in the neighborhood of the twin is apparent from the cleavage contours. (Magnification X41.)

F1G. 4. Cleavage face (010) of gypsum with precipitates arranged in two sets of planes (111)
left and (001) right. Notice the curved surfaces which form the transition between these two
sets ;)f)planes. (Specimen from the collection of Mr. H. Abraham in Pasadena.) (Magnification
X1.1.

F1G. 5. Quartz crystal with needle shaped inclusions of Sillimanite Aly SiO;. The needles
show no aBparent relation to any low indices direction in the crystal. (Specimen from the col-
T.

lection of

Sinclair Smith, Mt. Wilson Observatory.) (Magnification X1.2.)

F1G. 6. Alloy of iron with 6.33%, boron and 0.41%, carbon. Notice the regularly spaced

precipitations. (Magnification X 735.)

Fi1Gs. 7, 8,9, 10 are photographs by Professor M. Straumanis in Riga. They represent sections
of a single crystal of Zn containing small amounts of Cd. The individual pictures are,

()] Sectio]n#;arallel to (1120) through single crystal of Zn+0.25 percent Cd. (Magnification
X17.

(8) Surface of the same crystal as in (7). (MagnificationX17.)

(9) Crystal of Zn+1 percent Cd. (MagnificationX17.)

(10) Single crystal of Zn+0.2 percent Cd+0.05 percent Ni. (MagnificationX 14.)

For an account of the solubility of Cd in Zn see M. Straumanis, Metallwirtschaft XII, 1933

and Zeits. f.

physik. Chemie A148, 112 (1930).

Here we wish to call attention only to the remarkable ainile and double periodicities of the

precipitation of Cd in Zn. The problem of whether all suc

periodicities are caused by the

grome conditions exclusively or whether some of them are intrinsically characteristic for the
1]

crystalline structure will occupy us later.

For excellent photographs of other types of imperfections, such as slip lines in metals,
Wiedmannstitten figures and striations which are caused by permanent stresses (in diamond),
see the publications (24), (26), (27), respectively.
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If the crystal is in mechanical equilibrium it fol-
lows that the matrix on the right side represents
a tensor of the second rank, which is called the
stress tensor, provided that

4)

lim F/V =constant vector,
V=0

where F is the total volume force acting on the
matter contained in the volume V. If the moment
M of the volume forces acting on the volume V
satisfies the condition
limM/V=0

V=0

®)

it follows that X,= Y, etc., so that in this case
the stress tensor is symmetrical.

Under the above circumstances the observa-
tions indicate that for sufficiently small deforma-
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tions the components of the stress tensor are
linear combinations of the components of the
strain tensor so that we may write (Hooke's law)

X:=cuxz+crayy+csz.+c1sy .+ 153+ crexy
Y.=cux:+cay,+casz.+Cauy izt caoxy [ (©)

The 36 constants ¢ are called the elastic con-
stants of the crystal. Provided that crystals are
homogeneous these constants do not depend on the
choice of the point P.

In the ordinary theory of elasticity it is further
assumed that crystals are holonomous systems
and that the forces are all of a conversative nature
such that for T=0 a potential energy w per cm?
can be ascribed to the deformed crystal. It is

2w=cnxl+cay,? ezt tcuyl szl oo, )
+2[c12yy+cr1az: +euye +eiszz +orex, Jx,
+ . . . . . . . . .

o )
+ .
Fe e e e
+2¢c56x,2 . )

If T#0, the quantity o represents the change in cu €2 ¢ 0 0 0

free enmergy caused by the deformation. The 1 s 0 O 0

stresses are obtainable from w by differentiation s 0 0 0
(10)

X.=dw/ox,;  Y.=0w/dy, etc. (8) T 0

Caa 0

The existence of a potential energy of deforma-
tion implies therefore

Cik=Cki 9)
and only 21 constants (instead of 36) are neces-
sary to describe the elastic behavior of the most
general (triclinic) crystal.

For lattices satisfying special symmetry condi-
tions the number of these constants may be re-
duced still further. I reproduce here only the
schemes for hexagonal (5 constants) and cubic
crystals (3 constants).

For hexagonal crystals, we obtain the matrix

(cax)

(cr1—c12)/2

if the hexagonal axis is chosen as z axis. We also
have

2w=€u(x¢’+yu’) +583212+Cu(y12+x;2)
+ (Cll—sz)xy2/2+25lzxzyu+ 261s(x:+yu)2 P (11)

For cubic crystals the scheme is

¢ €2 ¢z O 0 0
cn a2 O 0 0
11 0 0 0

12

cu O 0 ( )
Cu 0
Cu
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and the potential energy

2w=cn(x2 4y, 2.2+ 2c12(y, %+ 2.y, +x:2,)
+Cu(y.2+zzz+xy2)- (13)

For isotropic non-crystalline solids and for liquids
the number of the elastic constants reduces to
two and one, respectively.

Very often instead of the relation (7), the
strain components are expressed as linear com-
binations of the stress components with introduc-
tion of the elastic moduli (si). Experimentally
one usually determines the elastic moduli first,
and not the elastic constants.

The ¢ are to be obtained from the s by the
following relations. Cubic crystals:

o= (Su+sw)/s,

€= —S$13/5, s=(sn+251)(su—s12). (14)
Ca=1/544

Hexagonal crystals:

Cn+C1=s33/5, cu—cp=1/(s1—>s1),

3= —513/s, €= (Su+s)/s, cu=1/s4, (15)

5= 53;(S11+512) — 2513%

It must be noted that if the s,; are observed
directly and if the probable errors of this deter-
mination are of the order A, then, because of the
relative smallness of s34 2552, the elastic con-
stants ¢ and ¢ of a cubic crystal may be easily
afflicted with a probable error of 5A or more.

Before discussing the experimental values of
the coefficients ¢ we summarize the assump-
tions which must be made regarding the nature
of real crystals in order for the above scheme of
interpretations to be justified.

(o) We assume that it is justified to work with
time and space averages of the stresses on sur-
face elements sufficiently small to make the rules
of the differential calculus applicable.

(B) The tensor character of the stress rests on
the validity of Eq. (5).

(v) The symmetry of the stress tensor rests on
the validity of Eq. (6).

(8) We assume that no hysteresis effects occur,
so that a potential energy of deformation exists.

(e) If in addition we require absolute homo-
geneity of the crystal (ideal crystal) then Eq. (4)
for the free crystal is replaced by the more
rigorous requirement
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limF/V=0

V=0

@)

and the divergence of the stress vectors S; etc. is
equal to zero. That means that in the free homo-
geneous crystals the stresses are zero throughout.

We may mention already here that in many
cases the ordinary theory of elasticity can be ap-
plied successfully in spite of the fact that the
above condition (8) is not rigorously satisfied.
For instance, all vitreous substances (glasses) fall
into this class. Glasses indeed flow, regardless
of how small the stresses are. We may, for a
given state of homogeneous stresses o define a
critical time of flow 74(¢:x) by

(16)

where g, is either the initial distance between
two points or the initial angle between two lines
and 7 stands for time. 7 of course depends on the
stresses and on the nature of the substance. Just
what the factors are which determine 7, is in
itself an interesting problem, which as yet has
not found any solution. For the present discus-
sion it is of importance to notice that the crdinary
theory of elasticity can only be applied if the ex-
ternal loads are applied for intervals 7<7;.
Whether or not for crystals 7,= « will be dis-
cussed later.

In Tables I and II we give the observed elastic
constants in absolute units (dynes/cm?) multi-
plied by 107, for a number of single crystals at
room temperature. Unfortunately no measure-
ments of the elastic constants (except the com-
pressibility) of typical komopolar crystals such as
diamond are available. Such measurements are
badly needed. In regard to the results given in
Table II, it must be emphasized that these re-
sults were obtained by Voigt more than 20 years
ago on one or two crystals of NaCl and KCl only
and these measurements have not been repeated
since. I hope that the realization of this deplorable
state of affairs will induce some experimental
physicists to undertake systematic investigations
of the elastic constants of important ionic and
homopolar crystals.

qo=r1,dq/dr,

§5. Dependence on imperfections

From Table I it is seen that different observers
differ as much as 10 percent, although the accu-
racy which they claim for their respective obser-
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TABLE 1. Metals.

Substance System o 2 cu Cs s n Cos
Tungsten (Br) cubic b.c. 51.27 20.58 15.27 =¢y =(y3 0 =cu
Aluminum (G) “ fe. 10.54 5.84 2.80 o “ “ "

Gold (G “ fe. 19.41 16.61 4.00 “ “ “ “
Brass (M.A.S.) “ 14.75 11.14 7.19 “ “ “ “
Iron (G.A.S.)) “ be. 23.7 14.1 11.6 “ “ “ “
Magnesium (G.A.S.) hexagonal 5.64 2.31 1.69 5.87 1.81 0 =(cn—cn)/2
Zinc (Br.) “ 15.90 3.23 4.00 6.214  4.815 ‘“ ‘
Zinc (Gr. A. G.) “ 16.08 431 4.00 5424 4375 ‘“ “
Cadmium (Br.) “ 10.92 3.98 1.562  4.604  3.756 “ “
Cadmium (Gr.A.G.) “ 12.06 4.821 1.852 5.136  4.423 “ “
Antimony (Br.) rhombohedral 7.52 2.875 2.44 4.28 2.62 0.91 “
Bismuth (Br.) “ 5.70 2.93 1.00 3.89 1.87 0.424 “
Tin (Br.) tetragonal 8.39 4.63 1.77 9.66 2.81 0 0.74
b.c.=body centered. f.c.=face centered.
In parenthesis (Br.) etc. are given the initials of the observers. (See reference 2.)

TasLE I1. Tonic crystals. TABLE la.

Crystal System a1 ar a3 cu Griinei Hanson
NaCl (Voigt) cubic (NaCl type) 4.65 1.29 1.27 =c1i =ciz O and Goens Bridgman Goens  Zinc I Zinc II
KCl - - - 3.78 0.64 0.63 * v
CaF: : 16.5 4.50 3.40 oo s zg ) zg.gg 22'; 8.08 7.70

s; 5 . 3 26.28 27.66
Quartz trigonal 8.66 0.71 5.81 10.73 1.44 1.72 s:: 250 25.0 26.4 2515 24.40
S1z -0.5 0.34 1.1 1.57 0.45
Sis —6.05 —6.64 -1.75 ~7.85 —6.39

vations should fix the elastic constants within a
few percent. Three causes for this disagreement
must be considered.

(a) Observational errors. If the accuracy
claimed by the various authors is correct this
cause for the discrepancies in Table I must be
discarded.

(b) The crystals used by the different observ-
ers are not elastically identical. It would be neces-
sary to investigate the effects of impurities, of
growing conditions, etc., on the elastic constants.
Evidence of the dependence of the elastic con-
stants on the grade of the substance used has
recently been obtained by A. W. Hanson?® in the
case of single crystals of Zn. It may be of interest
to reproduce here in Table Ia all the values
which so far were obtained for the elastic moduli
(in cm? dyne™'X 10713) of zinc single crystals.

Although Hanson's zinc I (Evanwall) and

t P. W. Bridgman, Proc. Nat. Acad. Sci. 10, 411 (1924);
Proc. Am. Acad. Arts and Sci. 60, 306 (1925). E. Goens,
Naturwiss. 17, 180 (1929); Ann. d. Physik 17, 234 (1933);
16, 793 (1933). Mazima and Sachs, Eeits. f. Physik 50,
161 (1928). E. Griineisen and E. Goens, Zeits. f. Physik 26,

235 (1924). E. Goens and E. Schmid, Naturwiss. 18, 376
(1931); 19, 520 (1931). W. Voigt, Lehrbuch d. Kristall-

physik.
# A. W. Hanson, Phys. Rev. 45, 324 (1934).

zinc IT (Horsehead special) both are 99.99 percent
pure the differences which he obtains for these
two slightly different grades are considerable.

(c) Our scheme of interpretation of the
observations in the elastic region is not correct.
More about this will be said later.

It must be mentioned that one must clearly
distinguish between isothermal methods of meas-
uring the elastic constants (slow application of
the load) and adiabatic methods (observations of
elastic oscillations). In the latter case hysteresis
effects may occur which are due to the change in
temperature caused by the quickly alternating
loads. The difference between the two types of
measurement can be calculated from the funda-
mental laws of thermodynamics. The differences
are usually small, amounting for instance to
about 1/5 percent for steel at room temperature.*
However in the neighborhood of crystallographic
transformation points the apparent hysteresis
effects related to adiabatic elastic changes may
assume considerable proportions.

¢ A. Jaquerod and O. Zuber, Helv. Physica Acta 5,
438 (1932).
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§6. Dependence on pressure

Although the complete sets of the elastic con-
stants are known for relatively few crystals only
it must be mentioned that accurate values are
available for the compressibilities of very many
crystals. Of particular interest for the theory are
the determinations of the change of compressibil-
ity with increasing pressure. Such observations
have been carried out on alkali-halides® and their
analysis has furnished us with important informa-
tion concerning the interactions between the ions
which constitute these crystals.® More about
this will be said later.

The dependence of the other elastic constants
on pressure seems not to be known.

§7. Dependence on temperature

Very few observations on the temperature de-
pendence are available. Luckily a complete and
very precise set of measurements exists on
Young’s modulus for quartz.” As these observa-
tions extend from 0°C up to 1100°C they give us
valuable information concerning the behavior of
Young’s modulus in the neighborhood of the
crystallographic transformation point at 576°C
where quartz changes from the trigonal into the
hexagonal system.

A. Perrier? has measured Young's modulus (E)
for slabs cut parallel to the threefold axis (E;)),
normal to this axis (E,) and at £50° to this axis

13
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% J. C. Slater, Phys. Rev. 23, 488 (1924).

¢ H. M. Evjen, Phys. Rev. 44, 491 (1933).

7 A. Perrier and R. de Mandrot, Memoires de la Soc.
Vaudoise d. Sc. Nat. (1923), p. 333.
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(E4s00). In Figs. 1 and 2 his results are repro-
duced. The temperature ¢ is in centigrade. The
errors of the measurements amount to less than
0.5 percent except in the immediate neighborhood
of the transformation point, where relatively
great errors result because of the fact that the
temperature could not be held constant better
than within 1°C. Two curious facts are im-
mediately apparent. In the first place the func-
tions E(¢) at the transformation point have a
derivative which is practically

dE/dt=F =, 17)
In the second place dE/dt<0 below 576° and
dE/dt>0 above 576°. This latter fact is particu-
larly astonishing. For the purpose of the following
discussion I insert here Fig. 3 somewhat out of
place, giving the total thermal expansion A(f)
per unit length of quartz as a function of the
temperature ¢; where =0 means 0°C and
NMt=15°)=0. The upper curve in Fig. 3 repre-
sents the expansion normal to the principal axis
of the crystal; the lower curve is the expansion
parallel to the principal axis.

The expansion was measured with the help of
x-ray reflection from the crystal® and checks on
the whole with the macroscopically measured
expansion. However in the neighborhood of the
transformation point the macroscopic measure-
ments are not accurate enough for a comparison
with the expansion of the crystal lattice as
measured by x-rays. It is seen from Fig. 3 that

8 A. H. Jay, Proc. Roy. Soc. A142, 237 (1933).
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the thermal coefficient of expansion (1/X)(d\/dt)
is positive below 576° and negative above 576°.

The results shown in Fig. 2 are in accord with
the expectations of crystallographic symmetry.
For t<576° it is Esee# E_se0 in accord with the
trigonal symmetry of the a-quartz. For ¢>576°
it is Espe=E_so in accord with the hexagonal
symmetry of the g-quartz.

It must furthermore be mentioned that Perrier
found Hooke’s law to be macroscopically valid
up to loads which cause rupture. This fact, that
up to rupture no deviations from Hooke’s law
are found, is theoretically of great importance.
At the same time it was of course also established
that the process of isothermal deformation takes
place without any noticeable hysteresis effects.

There are many measurements of the compres-
sibility and Young’s modulus as functions of

TasLe III.
Egin
Metal kg/mm? BX10* kg/mmz X104 aX10® T,°K
Pb 1500 — 550 78.7 8.8 600
Al 6300 21.3 2300 24.7 7.3 932
Ag 5900 7.6 2500 8.2 59 1233
Cu 9900 3.6 4000 4.5 4.9 1356
Ni 23,500 2.5 9500 33 39 1783
Fe 18,300 2.2 7300 3.0 3.3 1803
Pt 16,000 0.7 6600 1.8 2.7 2028
Zn 4300 —_ 1600 48.4 9 692
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temperature which have been carried out on
polycrystalline substances, for which data I refer
the reader to the various tables of physical con-
stants. On single crystals, besides Perrier’s
measurements on quartz, very few observations
of the effect of temperature on the elastic con-
stants are available.

In Table III we reproduce some of the
data which have been obtained® for Young's
modulus E and the torsional modulus G of
various polycrystalline metals in the range
t=—180°C to +20°C. We write
(18)

E=FE;(1+8t)  Gi=Ga(1+71).

All of these metals crystallize in the cubic face-
centered system except a=Fe which is cubic
body-centered and Zn which is hexagonal. For
purposes of later discussion I have added the
thermal volume coefficients of expansion a be-
tween ¢=0°C and {=100°C, and the absolute
temperature T at the melting point. It is seen
that 8 and v run roughly parallel with the values
of a and 1/T,, for all the various metals.

Furthermore for a number of metals G(¢) has
been determined over quite a wide range of
temperatures. As the various functions G(¢) are
all more or less of the same type I reproduce as
an example in Fig. 4 only G(¢) for platinum.
These values were obtained® by a dynamic
method and they are therefore adiabatic moduli.

For some of the other metals, which possess
crystallographic or magnetic transition points
very flat minima and maxima of G(f) and E(f)
appear near these critical points. It might be
expected that for single crystals these minima are
very sharp (just as in the case of quartz), but
unfortunately no accurate data seem to be
available.

From the available data we conclude that the
various elastic constants retain definite finite
values up to temperatures near to the melt-
ing point T, and that in a narrow interval
AT(AT/T,.<1) just below T, they drop ab-
ruptly to zero (E, G, etc.) except the compressi-
bility « which abruptly changes from «, (solid) to
km (melt).

® G. Sachs, Handbuch d. Exp. Physik V, 2
( ;’K) R. Koch and C. Dannecker, Ann. d. Physxk47 196
1915
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It seems further that G(t) decreases somewhat
more rapidly with ¢ than E(f). As the relative
lateral contraction » is given by

14+v=E/2G (19)

it would follow that » is somewhat increasing
with £.

Some indirect information concerning the
elastic behavior of metals in the neighborhood of
the melting point T’ can be obtained from meas-
urements of the velocity of sound v of solid
metals (v,) and their melts (v,) near T Table IV
shows some of the experimental results.!!

In the first place it is interesting to note that
in most of the cases v,/v, 2. For longitudinal
waves we have

U= (E'Q/Pe)!v
so that in most of the above cases approximately
Ejknt=4, (21)

where E;¢ and «x.* are the adiabatic values of
Young’s modulus (solid) and the compressibility
(melt) both measured in absolute units.

(20)

Un= (Km®pm) 4,

TABLE IV.
2, X 1078 2, X 1076
Metal in cm/sec. in cm/sec. 0,/m
Cd 2.665 1.313 2.03
Hg 2.673 1.289 2.07
Pb 1.350 0.699 1.93
Sn 2.643 1.294 2.04
Bi 1.809 2.179 0.83

11 Q. Stierstadt, Metallwirtschaft 11, 18, 32 (1932).
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For lead near the melting point p,=11.00 and
pm=10.65 gm/cc so that at t=327°C

km®=1/pmm?=1.91X 10" cm?/dyne,

(22)
E,*=p,0,2=2.01 X110+ dyne/cm?,
whereas at room temperature the corresponding
isothermal values are

k' =24 %10~ cm?/dyne,

. (23)
E,'=1.5X10"dyne/cm?2.
The thermodynamic relations between the
adiabatic and the isothermal constants are

K/kd=cp/co=14aT/pk'c,=1+4k;,

(24)
E¢/Ei=14a*TE*/cop=1+k,,

where ¢, and ¢, are the specific heats per gram
at constant pressure and constant volume, re-
spectively. At room temperature the correction
terms k for most metals are very small (less than
0.01). However, near the melting point, where the
thermal coefficient of expansion may assume very
great values, the correction terms £ may become
quite great. This is in some ways borne out by
the values of Eqgs. (22) and (23). For instance if
for lead we assume a probable value of 8 between
5% 10~*and 1072 (see Table III), we should have
Ei(tm) considerably smaller than Ei(20°)=1.5
X 10" dyne/cm?. On the other hand, E.S(im)
> Ei(20°), so that certainly Ej(t.) is several
times as great as E,%(f.), and k. considerable
greater than one, if the measurements of the
velocity of sound are correct.

As we do not know either G(¢,) or ¥(¢) it is not
possible to compare the values of «, and «» at the
melting point. It is known however in the case
of mercury that along the curve of fusion ap-
proximately k,= 0.9%.

§8. Dependence on cross section

Theoretically a dependence of the elastic con-
stants on the cross section of the samples must be
expected, provided that this cross section is small
enough. Little experimental material seems to be
available on this important question. It may be
of interest in this connection to mention the
corresponding results which were obtained on
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drawn circular quartz fibers.”? Young’s modulus
E and the torsional modulus G showed the follow-
ing dependency on the diameter /:

E=a/l+E,
(25)
a=36,000 E_=4500
and
G=b/1+G,
(26)
b=17,000 G,=2650

where E and G are measured in kg/mm? and / is
measured in units of 1u=10"* cm. E and G do
not change their values with aging of the fibers.
This independence of E and G on aging is im-
portant in view of the fact that the rupture
strength of thin quartz fibers decreases consider-
ably with age.
We notice that dimensionally we may write

e=D\E,, D;=8; (25"
b=DyG,,  Dy=6.4u, (26')

which means that the observations on the elastic
constants of thin fibers indicate the existence of
lengths D>>d, where d is of the order of the lattice
constants (of 10~*x). D; and D, represent the
critical values of / for which the contributions of
the “surface’” to E and G become equal to E_,
and G, respectively. It is of great importance to
ascertain by further experiment whether or not
these lengths D are structure-sensitive.

Similar lengths D of the order of 1x come into
appearance in adsorption phenomena on glass,
which we shgll discuss later. I shall try to show
in the course of this review that lengths of this
type are significant for the effects of so-called
cooperative phenomena in the liquid, vitreous
and crystalline state of matter.

Finally it must be stated that in general the
elastic constants of single crystals must be
grouped among the structure-insensitive proper-
ties. Considerable variations however may be
expected if one measures for instance E or G of
polycrystalline material depending on the size of
the individual crystals as compared with the size
of the whole sample. For a sample consisting of a
few strongly anisotropic crystals naturally E and
G may be quite different, depending on the
orientation of the stresses.

and

12 Q. Reinkober, Phys. Zeits. 33, 32 (1932).
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§9. Elastic constants of mixed crystals

Young's modulus has been determined for
binary alloys such as Au-Ag, Au—Cu, Al-Cuy, etc.
For the case of Au-Ag the values obtained"® for
the elastic constants ¢;xX101° in dynes/cm? are
tabulated in Table V.

TaBLE V.
Ag 25 atom% Au 50%Au 75% Au Au
o 120.0 138.2 148.9 166.0 187.0
Cia 89.7 104.5 113.5 132.2 157.0
Cu 43.6 48.7 50.8 48.5 43.6

Annealing, tempering and quenching of Cu-Au
single crystals produce differences of Young's
modulus of the order of 10 percent with changes
of the density amounting to less than 1 percent.
For more detailed information I refer to the
literature.!®

Technically the alloying of various metals for
the purpose of obtaining suitable elastic proper-
ties is very important. It is for instance possible
to produce substances (Elinvar) whose elastic
constants vary very little with the temperature.

§10. Comparison with the ideal crystal theory

An ideal crystal is homogeneous throughout.
There occur no Jocal accumulations of stresses
and the macroscopically measured elastic con-
stants are therefore entirely determined by the
forces between the atoms which constitute an
elementary cell of the crystal. Considerable
changes of the elastic constants can only be ex-
pected if one deals with samples of dimensions
which are comparable with the dimensions of the
elementary cells (10~® cm). Such changes are
therefore in most cases beyond the reach of ex-
perimental verification.

The principal forces, which are responsible for
the formation of a crystal are of electrical origin.
The theory of the ideal crystal therefore predicts
that any elastic constant ¢;; as we have defined it

will in general be of the form!
ca=vyuet/d (¢2)]

where e is the charge of an electron, d a length of
the order of the dimensions of the elementary cell

13 H. Roehl, Ann. d. Physik 16, 887 (1933); 69, 309
(1931).
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and v, is a numerical constant of the order one,
which varies of course from lattice to lattice. The
elastic constants ¢, are therefore of the order of
10'? dynes/cm? The observed c;,'s check this ex-
pectation. Concerning the accurate theoretical
determination of the v::’s much work has been
done, especially in the case of heteropolar crys-
tals, such as alkali-halides. The results obtained
so far roughly check the experimental data, but
much work is still needed to arrive at a really
satisfactory agreement. There do not seem to be
any difficulties involved in principle, except per-
haps with regard to the so-called Cauchy rela-
tions. Cauchy derived these relations between the
¢x’'s on the assumption that a crystal is built up of
one type of atom only and that the mutual inter-
action between these atoms can entirely be de-
scribed by central forces. Cauchy’s relations for a
triclinic crystal are

C44=C23, C55=C31, Ces=C13

(28)
Cs6=C14y Ce4a=C25) Cus=C36
hexagonal crystal:
=3¢, €13=Cu, (29)
cubic crystal:
C13=Ca. (30)

For a crystal which is built up of more than
one type of atom, Cauchy’s relations do not
necessarily hold as M. Born! has shown. However
in simple cases such as NaCl, KClI they should
nevertheless be valid. The relation ¢j,=cy for
these crystals is indeed experimentally verified,
if the values given in Table II are correct.
However as mentioned before it is of great im-
portance to redetermine these constants. For
cubic pure metals we also should expect cin=cy
as the interaction between the metal atoms is sup-
posed to be central in character. Table 1 shows
that in most cases definitely ¢js#cy. Our theoret-
ical expectations concerning Cauchy’s relations
are not at all verified, and the question is whether
the non-validity of Cauchy’s relations is caused
by the action of the so-called free electrons or
whether the metals in question definitely do not
form any ideal crystals. The Cauchy relations
(27) are not satisfied for the hexagonal Zn and
Cd either.

It might also be important to consider not only
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“binary” functions but also “ternary’’ functions
and so on. For example, if we consider three
particles %, k, ] in a crystal their mutual potential
energy may not be representable as a sum
Ui(rix) + Ua(r11) + Us(7::) but must be written as
U(rix, 7x1, 71:) which does not degenerate into
three additive parts U, U; and U;. The problem
of the form of the function U is closely related to
the problem of the ‘‘chemical” valencies, which
determine the cohesion of the crystal. In any
case the causes for the failure of Cauchy’s rela-
tions seem to be of a fundamental nature.

In regard to the dependence of the elastic
constants on temperature, the following may be
said. If Hooke's law were rigorously satisfied for
all values of the strain, dc;x/dT would be equal to
zero. The same is true for the thermal coeffi-
cients of expansion aim of a crystal. It can be
shown that®

(dC.’k/dT)/Cik= Aik(alm)y

where A denotes a linear function of the a's with
coefficients of the order 1-10. A numerical estim-
ate is arrived at as follows. Suppose that the dis-
placement of an atom from its equilibrium posi-
tion in the crystal is a vector whose components
are %, v, w. If a proper system of coordinates
(principal axes) is chosen the components of the
force can be written as

F.=filu/d+g(u/d)*+---] etc,

where d is the average lattice constant. The gi's
are constants which in practical cases assume
values of the order 1-10. From the theory of ideal
lattices one obtains for the thermal coefficients
of expansion expressions of the type

am= 'le(gi)kd/321

where ¢ is a linear homogeneous function of the
gis, k=1.36X1071% ergs/degree and e the charge
of the electron. Therefore

aim=6X10"°T"im,

@1

(32)

(33)

(34

where the I'’s are numerical constants of the order
1 to 50. It is seen therefore that the theory of
ideal crystals accounts in order of magnitude for
the thermal coefficient of expansion a~10-% and
B, y~10~4. However the theory has not been
worked out in any considerable detail, so that a
precise theoretical determination of «, 8 and ¥
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based on our knowledge of the individual inter-
actions between the atoms is still outstanding. I
wish to emphasize in particular the desirability
of a theoretical determination of «, 8 and ¥ in
the neighborhood of transition points and es-
pecially just below the melting point. It will be
argued later that the physical properties of
crystals in the neighborhood of the melting point
are perhaps one of the most direct expressions of
those interactions between the atoms which are
responsible for the existence of a crystalline state
of matter.

In regard to the dependence on temperature of
the elastic constants I add that the third law of
thermodynamics requires!4

dci/dT=0, T=0. (35)

This relation is in agreement with the observa-
tions as far as such observations at sufficiently
low temperatures are available.!®

Attention should be called to the fact that the
breakdown (fusion or sublimation) or trans-
formation of the crystalline state by thermal
agitation at constant pressure takes place essen-
tially in and is completed within an extremely
narrow interval AT around T= T,,. Indeed, Figs.
1, 2 and 3 show that to all appearances for T= T
the functions a(T), 8(T) and v(T) become very
(infinitely) great. However breakdown or trans-
formations announce themselves at temperatures
T'=T,—AT which are appreciably smaller than
T (for instance at approximately AT /T»=0.05).
This is evident from the behavior of the deriva-
tives da/dT, dB/dT and dvy/dT as functions of T.
This means that fusion and crystallographic
iransformation are processes which take place all
throughout the volume of the crystal as T is ap-
proached. It seems therefore hopeless to construct
theories of the fusion and the formation of crystals
by considering only sur face actions. Considerations
of how atoms are added to the surface of the
crystal have especially been advanced by W.
Kossel and T. N. Stranski!® and have success-
fully been applied to the problem of the forma-
tion of definite crystallographic faces. However,
in my opinion, one cannot hope on this basis to
arrive at a deeper understanding of the crystal-

14 K. Bennewitz, Handbuch d. Physik IX, first edition.

'* Tables annuelles internationales VIII (1927-28), p. 6.

1* W. Kossel, Naturwiss. 18, 901 (1930). T. N. Stranski,
Zeits. f. physik. Chemie A42, 453 (1930).

for
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line phase of matter, as, according to the observa-
tions mentioned the fusion and formation of
crystals are very definitely related to volume
effects.

In passing I wish to mention that the kinetic
(statistical) theory of the existence of phases never
has been worked out. This is very surprising in
view of the fact that the existence of various
phases of a given substance is a phenomenon,
which, needless to say, is of major importance.
Just as is the case with so many familiar phenom-
ena the existence of various phases has simply
been taken for granted. During recent years I
have several times pointed out the importance of
a kinetic theory of phases.!” A satisfactory pre-
liminary solution of this problem was finally ob-
tained by H. M. Evjen'® and myself in the case
of alkali-halides, and it is thought that the con-
siderations given in our work will lead to a gen-
eral solution of the problem of phases. Very
recently K. F. Herzfeld!® and P. Ehrenfest? also
have remarked that there exists no general kin-
etic theory of formation of phases. More about
this problem will be said later in the section deal-
ing with the thermal and caloric properties of
crystals.

On the theory of ideal crystals no dependence
of the elastic constants on the cross section of the
specimens should be expected except for thick-
nesses D of the specimens which are comparable
with atomic dimensions (d). Effects of this order
of magnitude are beyond the possibility of ordin-
ary mechanical tests. It seems, therefore, that
effects of the type expressed in Egs. (25) and
(26) cannot be understood if one considers only
the short range interactions between neighboring
atoms. The appearance of characteristic lengths
D>d points toward the necessity of considering
what I have called® cooperative phenomena. In
the following sections a considerable number of
different physical properties of crystals will be
discussed which support the observation just
made, that, besides the lattice constants d, the
introduction of intrinsic lengths D>d will be

17 F, Zwicky, Proc. Nat. Acad. Sci. 17, 524 (1931).

18 H, M. Evjen, Phys. Rev. 44, 501 (1933).

¥ K. F. Herzfeld and M. Goeppert-Mayer, J. Chem.
Phys. 2, 38 (1934).

# P, Ehrenfest, Comm. from the Kamerlingh Omnes
Laboratory, Supplement No. 75 (1933).

21 F, Zwicky, Phys. Rev. 43, 270 (1933).
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necessary in order to arrive at a coherent theory
of the physics of crystals. The existence of char-
acteristic lengths D supplies one of the strongest
arguments for the view that real crystals cannot
completely be described by the ordinary ideal
crystallographic lattices.

§11. Comparison with the imperfection theory

As already mentioned, the effects of imperfec-
tions on various physical properties of crystals
have been considered by many investigators.
Some authors have even gone so far as to make
imperfections responsible for all of those proper-
ties which on the theory of the ideal crystals are
or seem incomprehensible. However, most of the
literature on the subject of imperfections contains
little quantitative discussion and I shall not re-
view it in detail here.

Nevertheless the influence of imperfections is
in many cases undoubtedly of great importance.
I shall therefore attempt in the following to dis-
cuss the influence of those imperfections whose
characteristics lend themselves to a quantitative
description. Such imperfections are

(a) Holes and fissures. A hole shall be defined as
an internal surface on which the normal and the
tangential stresses are always equal to zero, regard-
less of whether or not an external mechanical load
is applied to the crystal. This, to be sure is an
idealized assumption, which is exactly true only
for holes whose diameters are large compared with
d. In a small hole the atoms of the various parts
of its surface may interact with each other and
produce surface forces. We shall not make any
use of such more refined pictures and we shall
therefore assume that the forces on the surface of
a hole are vanishing. The effects of holes and
fissures were systematically investigated first by
A. A. Griffiths.?

(B) Knots. Knots are regions in the crystals in
which there always exist inhomogeneous accumu-
lations of stresses. These stresses exist whether
or not a mechanical load is applied to the crystal.
Knots may be caused by inclusion of foreign
atoms into the crystal or they may be related to
non-ideal arrangements of the atoms of the
crystal.

(v) Twins. Through twins we have local
systematic directional changes of the elastic

22 A, A. Griffiths, Proc. Int. Congr. Appl. Mechanics,
Delft (1924), 55.
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properties of the crystal. If the crystal is stressed
the components of the resulting strain tensor will
abruptly change their values when we cross the
boundaries of the twin.

If in the following we speak about holes, knots
and twins the meaning of these terms must always
be taken as laid down in the above.

I also think that the combinations of holes,
knots and twins in a schematic way cover a major
part of all possible types of imperfection.

We have mentioned before that the elastic
properties of crystals are structure-insensitive.
This is understandable, as in general neither
holes, knots nor twins greatly affect the elastic
constants.

Holes act in the following way. Suppose for in-
stance that holes of total volume v are imbedded
in a cube of 1 cm? of an isotropic solid which is
uniformly stretched parallel to an edge of the
cube (x-direction). The principal stresses far
away from the hole are X.=o0, ¥,=Z,=0. If the
hole is of circularly cylindrical shape the stress
distribution (¢’) will be appreciably inhomogen-
eous (|(e—0¢")/a| >0.05) in a volume v’ which is
of the order v’=100 v. (For this and the con-
siderations which immediately follow, see Ap-
pendix I of part I1.)

It can be shown that in general Young's
modulus E’ of the imperfect crystal is

E'=E(1—hv)=E[1—h(p—0")/p], (36)

where p’ and p are the densities of imperfect and
the perfect crystal. & is a pure number which is
approximately equal to unity. A crude derivation
of the relation (36) is obtained as follows. Sup-
pose that a parallelepiped of an isotropic solid,
with the edges L,, Lj, L, is stretched in the
L;-direction by a load ¢ per cm?. A hole (paral-
lelepiped) with edges 1, ly, l; parallel to Ly, Ly, L3
is the parallelepiped. The average stress 7 in a
cross section | L; is either 3=¢ or 7=0o[ 14U/
L,L,] depending on whether this cross section
intersects the hole or not. Assuming strict valid-
ity of Hooke's law the average extension in the L
direction will be

ALy=(o/E)(La—1s)

+(o/E)(1+1da/LiLa)ls  (37)

or

ALy/Ls=(c/E)(1+lisls/LiLsLs) =c/E'.  (38)
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That is, the apparent Young's modulus is
E'=E(1-AV/V) (39)

if we put hlhy=AV and L,LL;=V. A more
exact calculation gives

E'=E(1-hAV/V), (40)

where & depends on the geometrical shape of the
hole. However k% is always of the order of unity.
The above relation (36) is correct only if hv<1.
Also if many small holes are systematically lined
up in one or several planes the effect on E may
become greater than (36) indicates. In general,
however, we may conclude that Young's modulus
shows only a slight dependency on change of the
internal structure of single crystals. Knots act
very similarly to holes, whereas the presence of
twins tends particularly to decrease the macro-
scopic anisotropy of crystals. No systematic ex-
perimental investigations seem available for test-
ing the above considerations.

Imperfections hardly help to clear up the
difficulties related to the failure of Cauchy’s
relations in cubic and hexagonal metal single
crystals unless these imperfections are system-
atically arranged with respect to certain crystal
planes. More about this possibility will be said
in the later parts of this review. We may state
however that the failure of Cauchy's relations
must be related to some cause more fundamental
than the existence of accidental and randomly
distributed imperfections.

The theoretical determination of the elastic
constants of polycrystalline aggregates from the
knowledge of the elastic constants of single
crystals has been worked out.?® The agreement of
these calculations with the observations may be
regarded as fairly satisfactory.

One of the basic assumptions (5) of the theory
of elasticity is that an elastic region actually
exists, so that no permanent deformations result
if the applied stresses are sufficiently small.
One might contest the correctness of this as-
sumption as applied to all real crystals. Indeed it
is known that very pure and perfect metal single
crystals show indications of plastic flow even for
the smallest loads applied. Actually no rigorously
elastic region can be determined for such crystals,

%3 D. A. G. Bruggeman, Thesis Utrecht, 1930.
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although we must theoretically expect of every
dynamically stable configuration that it exhibit
rigorously elastic effects for sufficiently small ex-
ternal forces. If the external forces are applied
only for very short intervals of time the resulting
deformations are sufficiently reversible to justify
the basic assumptions of the theory of elasticity
and the problem of flowing seems not very serious.
For forces which act over a long period of time
however it may become necessary to replace the
ordinary theory by a more general one, as we have
already discussed.

Finally it must be mentioned that the types of
imperfection which we propose to consider are
such as can be described in macroscopic terms.
There is hardly any doubt that this macroscopic
view point in many ways is very inadequate. The
problem of deviations from ideal lattices, that is
deviations which do not belong to the thermo-
dynamically stable state of a crystal, can satis-
factorily be solved only if imperfections are
treated from a purely atomistic point of view.
This has recently especially been emphasized by
H. J. Gough* and also by myself.?® About some
preliminary attempts which have been made in
this direction I shall report later. Here I wish to
emphasize only that not much can be expected of
the much professed way in which many of the
difficulties in the physics of crystals have been
blamed on imperfections without making any at-
tempt whatever to describe the atomistic or
macroscopic causes, the character and the be-
havior of these imperfections.

In keeping with a suggestion by Professor John
T. Tate the whole review is held on an elementary
plane, so as to address a general circle of readers.
Some of the pictures of Chart I were kindly
furnished me by Professor Dr. M. Straumanis in
Riga, whereas the rest of the photographs were
taken by Mr. D. S. Clark and myself. I am also
indebted to Professor J. W. Buchta for advice in
planning this review.

2 H. J. Gough, E. Marburg Lecture, American Society
for Testing Materials 33 (1933).

@ F, Zwicky, Proc. Nat. Acad. Sci. 185, 253 (1929).

26 R. F. Mehl and C. S. Barrett, Technical Publication
No. 353 (1930) of the American Institute of Mining and
Metallurgical Engineers. X

17 Sir Rob. Robertson, J. J. Fox and A. E. Martin, Phil.
Trans. Roy. Soc. A232, 463 (1934).



Cuart I.
DESCRIPTION OF THE PHOTOGRAPHS OF CHART I

F16. 1. Twin in calcite. At the edge one sees that the cleavage planes in the twin are of a
different orientation from those of the whole crystal. Twins in calcite are very frequent and often
show remarkable constancy of thickness over their entire length which may be several centi-
meters. (MagnificationX41.)

Fi16. 2. Cleavage surface of calcite with the tracings of two crossing twins, T and T}. (Magnifi-
cation X41.)

F1G. 3. Step| cleavage surfaces on calcite. The twin T appears displaced at every step, the
displacements being proportional to the height of the steps. The existence of permanent stresses
in the neighborhood of the twin is apparent from the cleavage contours. (Magnification X41.)

Fi16. 4. Cleavage face (010) of gypsum with precipitates arranged in two sets of planes (111)
left and (001) right. Notice the curved surfaces which form the transition between these two
sets of)planes. (Specimen from the collection of Mr. H. Abraham in Pasadena.) (Magnification
x1.1.

FIG. 5. Quartz crystal with needle shaped inclusions of Sillimanite Al; SiOs. The needles
show no ag:are_nt relation to any low indices direction in the crystal. (Specimen from the col-
lection of Dr. Sinclair Smith, Mt. Wilson Observatory.) (Magnification X1.2.)

F16. 6. Alloy of iron with 6.33% boron and 0.41% carbon. Notice the regularly spaced
precipitations. (Magnification X 735.)

Fics. 7, 8,9, 10 are photographs by Professor M. Straumanis in Riga. They represent sections
of a single crystal of Zn containing small amounts of Cd. The individual pictures are,

(0] Se:tio;lT;;arallei to (1120) through single crystal of Zn+0.25 percent Cd. (Magnification
x17.,

(8) Surface of the same crystal as in (7). (MagnificationX17.)

(9) Crystal of Zn+1 percent Cd. (Magnificationx17.)

(10) Single crystal of Zn+0.2 percent Cd+0.05 percent Ni. (Magnificationx 14.)

For an account of the solubility of Cd in Zn see M. Straumanis, Metallwirtschaft XII, 1933
and Zeits. f. physik. Chemie A148, 112 (1930).

Here we wish to call attention only to the remarkable single and double periodicities of the
precipitation of Cd in Zn. The problem of whether all such periodicities are caused by the
grome conditions exclusively or whether some of them are intrinsically characteristic for the
crystalline structure will occupy us later. .

For excellent photographs of other ty of imperfections, such as slip lines in metals,
Wiedmannstitten figures and striations which are caused by permanent stresses (in diamond),
see the publications (24), (26), (27), respectively.



