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INTRODUCTION animated state of motion. After his announce-

i ur ose of this a er to review the ment of this fact, there followed a deluge of

l Iteratu re show In g 1h at N atu Ie h as set a experim en ts and th eories w h ich sou gh t to arr ive

fin Ite ]Im It to the u l tIInate sen sItiv Ity of at th e tru e n atu re an d cau se of th is m ot ion . The
explanation was first looked for in the possibility

advance, and that this limit is determined by the that the Particles were altve. This theory was

f f l t d quickly disproved however, for very soon

ff d d b low par ticIes of g lass, m in eraIs, petrified w ood, poIIen
known to be over 100 years old, and even stone

1A. Historical dust from the Egyptian Sphinx were shown to
In 18&7, the naturalist, Robert Brown, while behave similarly to Brown's original pollen

examining suspensions of various pollens with pa«icles. All such possibilities as convection

the aid of one of the then newly constructed currents in the solution, internal motion due to
achromatic objectives, discovered that the uneven evaporation, hygroscopic or capillary
individual particles were constantly in a very action, mutual forces between particles, forma-
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tion of small bubbles of gas, temperature effect of
the illumination, etc. , were carefully investigated.
None of these having proved to be the true cause,
the search continued. Wiener' in the year 1863
published a lengthy paper in which he made the
suggestion that the molecular structure of the
solution might be the cause of the irregular
motion. Convection currents whose cross sections
were small compared to the diameter of the
particles were considered. Cantoni was led to
believe that the specific heats of the particles
and the solutions were connected with the effect,
while Jevons thought that the source was one of
an electric nature. In 1877 Delsaulx' published a
paper in which for the first time an explanation
was offered which is still considered to be the
correct one. In this paper he showed, that in a
given small interval of time, the impulses which
a particle would receive from the molecules of the
surrounding liquid would not always be equal in
all directions, but would very often have a
resultant in some one direction. Subject to these
resultant impulses the particles would exhibit a
random zigzag motion. Ti&irion pointed out in
1880 that Carbonelle had previously in 1874
considered and discussed this same theory, and
so to Carbonelle goes the priority for the true
explanation of the Brownian motion. To Gouy, '
however, goes the credit for having really pre-
pared the way for our present point of view,
since his experiments established conclusively the
fact that the source of the impulses really was in
the molecules of the surrounding liquid and not in
the particles themselves. In spite of these papers
however, many authors disagreed with this view
and ascribed still other causes to the effect, and
it was not until the papers of Einstein, 4 v.
Smoluchowski' and Ferrino had appeared that
the issue was finally settled.

Let us assume that we have a particle which is
constrained to move backward and forward
along a straight line, and that the motion takes
place in a random manner by jumps of equal
length E. We can calculate the probability W that
out of n such jumps (n/2-b) will be to the left
and {n/2+b) will be to the right, and obtain

1 n!W'=—
2" {$n—b)!($n+b)!

from which we see that the mean square of the
distance covered is

1S'= a'e """"da= nE2 (3)
E(2mn) & ~

and

W=(2xS') 'e «'J2"da.

In a similar manner we can show that if the
particles are able to move in every direction, the
mean square displacement in a given direction
will be

5' = -'nE2

Now let us assume, as in the Brownian
movemen t, a random zigzag motion of the
particles and consider the projection of the
motion of some one particle onto a straight line.
If 5&, S~ ~ S are these projections during equal
time intervals r, the projected displacement is
5=S~+ S~ 5 . We assume that successive
jumps are absolutely independent, then SqS~ =0,
and therefore

or
5'=S '+S '+ ~ ~ ~ +5 ' (5a)

The mean square displacement is then pro-
portional to the number of jumps, n, and to the
total time nr=t. Since the 5's are only the
projections of the individual displacements,
nothing has been said regarding the shape of the
path of the particle during the time intervals r.
This path may be quite complex. It is easily seen
that if S, S„andS, refer to the projections on the
axes x, y, e, and S, and S, refer to the projections
on the plane xy and in space, respectively, Eq.
{Sa) holds for S,', S„',S,'. As a result of this,
S.'=2nSP and S„'=3nSP.

These results show that S' is a function of the
time t, 5'=Qt, but say little concerning the

Using now the Stirling formula, we can state that
the probability for a given value of b is

S'= (2/ n)&e-'"~"

Obviously, the net displacement of the particle is
given by 2bE =a. The probability that the
displacement will be between a and a+da is

g = (1/E) (I/2') &e-""«~'da, (2)
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coefficient Q. Since this coefficient gives the time
rate of increase of the mean square displacement
it must obviously be a coefficient of diffusion of
the particles. It remained for Einstein first to
evaluate Q. Let us assume that the particles are
under the influence of a force which is pro-
portional to some potential 4. One can then
investigate the manner in which the condition of
a system remains stationary due to the fact that
the changes in this condition caused by the
Brownian motion and this assumed force equalize
each other. If 6 is the displacement of the
coordinate a, which is chosen to describe the
motion of the particle, the result is

FrG. 1. Brownian motion of a suspended particle. (After
Perrin, Brmunian Movement and Molecular Reality. )

a' = (2Rj'N) BTl. (6)

For spherical particles, one may use Stokes'
formula and so replace B by (1/6~pa). The final
result in this case is that the mean square
displacement is given by

S2=5'=(RT/N (1/37rfa', t, (7)

where a is the radius of the particles, and g is the
coefficient of friction of the surrounding medium,
and the other constants have their usual mean-
ings. The potential 4 is missing from the formula
since the restoring force quite naturally depends
upon it.

After the derivation of this formula, it was
obvious that in order to test the validity of this
molecular interpretation of the Brownian motion
one needs only to observe the mean square
displacement of a number of particles for a time
t, the sizes of the particles being accurately
known. Perrin and his co-workers succeeded in
preparing suspensions of very uniform particle
size and in a "camera lucida" traced the positions
of a given particle from half-minute to half-
minute. Since the microscope was vertical the
horizontal displacements S„ofthe motions were
observed. If cross-section paper be used the
projections onto two rectangular axes can be read
off immediately. This is not necessary however
for the sum of the squares of these projections is
equal to the sum of the squares of the separate
tracks, and to obtain the mean square of the
projection upon one axis it is only necessary to
measure these tracks one by one, square them
and divide by 2. Fig. 1 is reproduced from

Perrin's book Brotttmae Moftement aed Molecular

Realsly. By evaluating such traces as the one
shown, Perrin was not only able to verify
Einstein's formula, but also to obtain from his
experimental values of S' a very accurate value
for N, and so to establish definitely the Brownian
movement as a molecular phenomenon.

The coordinate a used by Einstein to describe
the motion of the particles can represent any
degree of freedom of the system and is not at all
restricted to translation. If this a refers to the
rotation of the particles one finds that the mean
square angular displacement 8' is given by

This formula was also beautifully checked by
Perrin.

von Smoluchowski, also in 1906, published the
results of his calculations in which, without the
assumption of an outside force, he arrived at the
expression

S' = 3,' = (64/81)(RT/N) (1/m fa)l (9)

for the mean square displacement in any one
direction. This, as will be seen at once, differs
from the result of Einstein only in the numerical
factor. In 1908 Langevin published a discussion
of the problem and derived by different methods
of calculation a formula identical with that of
Einstein.

Following these calculations many others
appeared dealing with various phases of the
subject. In 1913 Frau G. L. de Haas-Lorentz '
published a small volume in which the complete
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history ana status of the question of the Brownian
motion was given in detail, and in which the
above-mentioned investigations were discussed.
In spite of the completeness and thoroughness of
this booklet, very little attention was paid by
physicists as a whole to the subject for quite
some years. The seven cases, where Brownian
movement plays an important role, discussed by
Frau de Haas-Lorentz, in which unfortunately no
numerical values were given, were never con-
sidered further until 1926, at which time G.
Ising' published a paper in which for the first
time the relationship of Brownian motion to an
experimental problem in physics was shown
numerically.

In 1925 Moll and Burger, ' with their now well-

known "thermorelay" magnified the deflections
of a Moll galvanometer about 100 times, and
recorded the

deflection

photographically as
shown in Fig. 2. It will be noticed that the zero
line thus obtained is not at all straight but shows
small irregularities. Their galvanometers were of
course well shielded against thermal, electric,
magnetic, and mechanical disturbances, and so
they attributed this residual unsteadiness to
disturbances of a micro-seismic nature. Ising, in

the paper mentioned above, made a careful
study of the nature of these small zero deflections,
and from them calculated the mean square
deviation and showed conclusively that they
were for the most part purely of Brownian motion
origin. v. Smoluchowski had previously dis-
cussed the fluctuations of a suspended system,
These results will be discussed in detail in the
section devoted to the Brownian motion of
galvanometers.

Occasionally one finds, in the literature, work
of others who had used very sensitive instruments

such as radiometers, micro-radiometers, galva-
nometers, etc. , in which in spite of all precautions
and shields, zero disturbances similar to those
just mentioned are recorded. The Brownian
motion of these instruments had thus for years
been observed but never understood. Ising's
paper in pointing out the true nature of these
disturbances may be considered a classical
contribution to the subject.

18. Statistical nature of Brownian motion

The molecular nature of matter and the
interpretation of heat as the energy of chaotic
motions of the molecules are fundamental
principles in physics today. According to the
principles of classical statistical mechanics we
have to describe the state of a given system in
terms of coordinates, q&q&. - ~ and conjugate
momenta, pips the number of each being
equal to the number of degrees of freedom of the
system. If H(p,q,) is the Hamiltonian function of
the system, it may be shown that the relative
probability of finding the state of the system in
the range dqi .dpi', dp& dp& is given by

fd7 = Ce &1'1 "&i~'dq&dPi dqvdP~. (10)

The coefficient C must obviously be chosen so
that J'fd~.= 1, when the integration extends over
all possible values of the variables. This supposes
the system to be in thermodynamic equilibrium
at the temperature T.

Since there is a continual interchange of energy
between the system and its surroundings, the
total energy content H at a given temperature
does not have a definite value. In calculating
resulting averages for the system it is convenient
to introduce the partition function Z defined by

dqidpi ' 'dqvdpz

10m 10 v The average value of any function of the p's and
q's, f(p;q;), is then given by

1~1O Sv f(P;q;) = (1/Z) fe is dT,

In particular the average total energy is given by

Fio. 2. Fluctuations of galvanometer sero. (From Moll
and Burger. )

H = (1/Z) He-"I "~dr = 8 log Z/8P, (12)
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where P=l/kT and the average value of any
coordinate is

q; = (1/Z) q;e ~~d 7. (13)

and the Hamiltonian is thus

H = Qp;2/2m;+ V(q;); (15)

Suppose the coordinates are so chosen that the
kinetic energy is expressed as a sum of squares of
the momenta with constant coe%cients

T(p;) =gp 2/2m; (14)

then in calculating Z or the average of any
function of the coordinates alone, the integrals
occurring are the product of integrals over the
position and momenta coordinates respectively.
For example in getting H we have

1

P e ""~~ dP; [over other coordinates]
1 2m.-—p'=

2m'
e ~' ~ dp; lover other coordinates]

(16)

Now

The ratio is 1/2a. Hence the mean value of p;2/2m; is given by

p,'/2m; = (1/2m;) (2m;kT/2) = —,'kT, (»)

and so the mean value of the kinetic energy in

any coordinate is )kT. The same is evidently
true of potential energy terms which are simply
of the form $KqP assuming that q; does not
enter the Hamiltonian in any other way.

If„however, the coordinate q;, say, enters the
Hamiltonian solely as (1/2mt)pp+~K~qp, the
particle cannot come into thermal equilibrium
with the rest of the system: there must be some
kind of interaction between it and the rest of the
system. This is generally provided by some
mechanism such as collisions of gas molecules
with the mass particle which constitutes the
oscillator. Supposing the interaction energy
depends solely on the coordinates, not on the
momenta, then the result for the mean kinetic
energy of each degree of freedom is rigorously
given by statistical mechanics.

Associated with each degree of freedom is a
mean kinetic energy of JEST. One can, then,
calculate the Brownian movement fluctuations
due to this )kT energy in a system in perfect
generality from the laws oi statistical mechanics.
This is possible since the average energy of these
I'andom motions will be exactly the same for all

systems at the same temperature (so long as they
are each in thermodynamic equilibrium with
their surroundings) entirely independent of the
nature of the systems and the mechanism which
produces them. The energy distribution, how-

ever, will be a function of the particular system
in question, and it is the purpose of the main

body of this paper to develop in detail the
characteristics of the Brownian motion in some
of the more common measuring devices.

Since the fluctuations of a given system which
are due to Brownian motion are statistical in
nature, we may at once calculate the probability
of finding our system in the region x to @+de,
the result being the well-known Gauss error
curve, given by

W(x)dx = [27'' j-'e-""*'dx. (18)

In using our system for the purpose of measuring
we must read off by means of the position of an
indicator of some type the energy of the system
after the quantity of energy to be measured has
been impressed upon said system. We must know
whether the excess energy is due to the quantity
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TABLF. I.

Coordinate
values Energy values a()kT)

&n.~

4(/k T)
9(/kT)

16(lkT)

Proba-
bility
W'(x)

0.317

0,045

0.003

0.00006

where A is the directional force depending upon
the moving system, and B may be thought of as a
deviation factor. If bx is a steady deflection, then
Bbq is the turning moment produced by bq. If we
now substitute for bx the value x= (2e/A)& we
obtain

gq= (A 'B)x= (2~A)I,~B, where e= ~kT (20)

being measured or simply to the statistical
fluctuations of the system. From the above-
mentioned probability equation, (18), we can,
following Czerny, s draw up Table I in the
following manner.

If, then, we find the energy of our system equal
to a JkT as shown by the coordinate x of our
indicator, we can immediately state the proba-
bility that this constitutes a real measurement.
The factor a is clearly arbitrary, and depends
only upon the degree of certainty desired.

The statistical laws governing the behavior of
our system have nothing to say regarding the
detailed mechanism of the energy fluctuations. It
is therefore very unsatisfactory to attempt in a
particular case to say that the source of the
existing variations is this or that effect. Further-
more we may not hope by removing one of these
supposed causes, let us say by evacuating a
galvanometer and thus preventing bombardment
by air molecules, to decrease the magnitude of
these fluctuations. There must be, regardless of
what the system and the cause may be, a mean
kinetic energy of exactly gkT associated with
each degree of freedom of the system.

Since x, the coordinate of our indicator, may
be any coordinate which describes the position of
our system, many common measuring devices are
at once seen to be subject to these slight de-
flections of amount (x')&. These deflections in
most cases are relatively easy to predict, and
when expressed in terms of the constants of the
instrument in question give at once the theoretical
limit of that system. Let the sensitivity of any
instrument be given by

a =bx jbq,

where bx is the change in the quantity to be
measured and bq the corresponding deflection
produced by this change. This may be written as

as the average error in a single measurement of
the quantity q. In general there is a relation
between A and B which is characteristic of every
measuring instrument, and this fact together
with the validity of the Einstein equation results
in a natural limit of sensitivity for all single
measurements of q.

It is well to mention that in this paper we are
interested primarily in such measurements. One
might take many measurements of the zero of any
instrument, and so accurately determine the zero
and the most probable deviations from this zero.
We would thus be able to draw our zero very
accurately as in Fig. 3a. We might now apply a

{a)

quantity smaller than bq to the instrument and
again make a great many readings of the new

position, obtaining the value indicated in Fig.
3b. The difference between the two positions
would give us a measure of a quantity much
smaller than bq, the individual deflections for
which would have been entirely indiscernible.
One must, however, remember that in such a
case the amount of energy which has been
delivered to our instrument during the course of
this measurement is greater than gkT.

$2. NQN-EI. EcTRIc SYsTEMs

2A. Suspended mirror

Let M be a very light mirror suspended upon a
fine quartz fiber of torsion constant A. The
motion of this system may be characterized by
the one coordinate p, where p is the angle through
which the system has rotated from its position of
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equilibrium (Fig. 4}.Since it is a motion of one
degree of freedom, we may expect that the
system will oscillate back and forth with a
Brownian motion of such magnitude that

g'A+= e=gkT. (21)

An example will make clear the order of magni-
tude of these oscillations. At 18'C, «=$kT=2
X10 "ergs. Assuming A to be 10~ dyne cm/
radian', as for a thin quartz fiber, we find Q =2
&;10 ' radian.

Suspended Mirror

M

FiG. 4.

Gerlach" allowed a beam of light to be re-
flected from such a mirror onto a distant scale
and then made a study of the inherent zero
unsteadiness of the system, With a quartz fiber a
few tenths of a p in diameter and a few centi-
meters long, a mirror 0.8 X 1.6 mm and a scale at
1.5 m, Brownian movements of several cm were
observed. A system with a fiber sufficiently thin
showed at 1 m a Brownian movement of over a
meter. The mean square deflection, Yq', was
successfully measured with an accuracy of 7

percent, and found to agree very closely with the
value predicted.

Kappler, " continuing this work, investigated
the possibility of using the Brownian movement
of such a suspended system to obtain a more
accurate value of Avogadro's number. A photo-
graphic record of the Brownian movement of a
system, and the equation $Ap'= )kT and
measurements of A and g permit one to obtain
a value of k, the Boltzmann constant. Having

this, N is obtained from the relation

N =R/k.

The constant of the fiber, A, was determined
carefully to &0.2 percent. From 101 hours of
registrations at 287'K, p' was found to be
4.178 10~ radians+0. 4 percent. From these
values N was found to be 6.059 10~ which is
probably accurate to +1 percent. One important
result must be emphasized: the fact that only the
character of the Brownian movement was
dependent upon the pressure, while the average
energy of course was not.

In order to determine whether the value of @~

had been made too large by some outside
impulses, such for example as mechanical
vibrations, curves were taken at various pres-
sures ranging from 1 atmosphere to 10 ' mm of
mercury. As is clearly seen in the curves shown
in Fig. 5, which were recorded at the two
extremes of the pressure range, the pressure
dependency of the form of the Brownian move-
ment is shown. It is quite striking that at low
pressures the motion approaches the sinusoidal
natural mode of oscillation of the system and
tends to lose its random character. Rut for slight
outside disturbances which make themselves felt
only at the lowest pressures, all of the curves, in
spite of the difference in their forms, yield for the
Brownian movement of the system identical
values of qP.

In a second paper Kappler studied the
influence exerted by these outside mechanical
disturbances in order to see if the 1 percent error
in the previous determination of N could be
reduced. By studying the Brownian movement
for long periods of time with respect to its
dependence upon the original conditions (original
velocities, etc.) one can determine what parts of
the g' are due to spurious eHects. In addition one
obtains the mean square velocities, u', and from
them can make a quite independent determi-
nation of k, the Boltzmann constant, since
)mal'= )kT.

Uhlenbeck and Goudsmit's investigated theo-
retically the dependence of the form of the
Brownian movement upon the pressure. They
developed the displacement of the small mirror,
for a time interval long compared with the free
period of the system, into a Fourier series, The



BROW NIAN MOTION 169

I~
~~ - —=~ I lsl ~

I I W Na

'~f gjt: ' '~~&. -~~jew~~~~~ ~'&'+ ",rf~!i&A" 'iFikkk~'a'ii'w

NI Is ii~s ~g ~

i a~iRIIi~~I

".rr i

IRISN4 L'

sash~
!%6s::

hl

Ftc. S. Brownian fluctuation of a suspended mirror. (From Kappler. )

(a) Restoring force 2.66X10 ' abs. units. I=6.1X10~. Camera distance 86.5 cm. Time 30 sec. equivalent to 2 mm.
Pressure 4X10 ~ mm.

(b) Restoring force 9.428X10 ' abs. units. I=10 '. Camera distance 72.1 cm. Time 30 sec. equivalent to 1 mm.
Atmospheric pressure.

(c) Same system as curve 5b, except that the pressure is 10 ' mm.

squares of the amplitudes of each Fourier
component were found to be given by

~lml(8k T) ~ 1
@2 , (22)

pIT xkT(~' —cv'x)'+32''p'aux

where m=mass of gas molecules, p=mass of
mirror per cm'. They are, then, explicit functions
of the pressure and the molecular weight of the
surrounding gas molecules as well as the absolute
temperature. The sums of these quantities,
however, just as must be expected are entirely
independent of the pressure and the molecular
weight, being functions only of T and yielding
the result predicted from the equipartition
theorem,

$A@'= $A Q y'& ——gkT. (23)

The above discussion shows that such an
instrument as a Nichols radiometer, which

consists of a tube evacuated to about 0.01 mm in
which a pair of light vanes and a small mirror are
suspended by a quartz fiber as shown in Fig. 6,
must always have an unsteady zero. Experi-
mentally such instruments, in spite of all possible
mechanical precautions, actually show these
residual deflections around their zeros.

For any suspended system with a fixed torsion
constant A, there is then a definite limit set by
the Brownian motion. However, as may readily
be seen, the sensitivity of the system may be
increased by diminishing A. For, whereas the
Brownian movement fluctuation is represented
by ATq', the constant turning moment produced
by the quantity being measured is represented by
A@.The Brownian motion is then proportional to
1/A&, while the real deflection produced by our
given energy quantity is proportional to 1/A.
Our net gain is therefore inversely proportional to
A &. Mechanical stability and the patience
necessary to read long period instruments are the
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Suspended Double Mirror and pute=Ae~' and 4=Be ' the equation for
4& ls

(~' —~p) (a -~') —x'= 0, (27a)

which has the two roots

(y P+ (yg~/2 +Lg~+ {(g P ~g~/2) ij» (27b)

I I' k2

&3' 4
Me

Fro. 7.

8=x cos a —y sin a,

C =x sin a+y cos a,
(28)

These are the frequencies of the normal modes of
vibration. If we now let x and y be the normal
coordinates we get

limiting factors of sensitivity, for an ideal
instrument.

2B. ComI»ound torsion pendulum

The kind of calculation involved in the theory
of the Brownian movement for a system of more
than one degree of freedom is illustrated by the
double torsion pendulum worked out for this
report by Professor Condon. Suppose by at-
taching a second mirror half way up the fiber as
in Fig. 7 we cause the system to have a motion
characterized by two degrees of freedom. We
now require the two angles 8 and p to describe
the complete motion. According to our statement
of the validity of the equipartition theory, the
system should now have a mean kinetic and
potential energy equal to kT. Let us proceed to
investigate the motion of such a system.

T=~(O'+~),
(24b)

V= -'{~P0'+cva4' —2&04),

where cui'= (ki+k~)/In ~'= k~/I&, )P = k&/(I, I&)».

~& and ~ are, respectively, the natural frequency
of oscillation of the upper mirror with the lower
one fixed and of the lower one with the upper
one fixed. Now if we write down the equations
of motion,

d'0/dP+ cog-'0 —X'4 =0,

d'C 'dP+u g'C —)'8 = 0,

(25)

(26)

T= K.E.= $ l I,V+I,y' ),
(24a)

V= P,E.= $ (kzP+ka(y —&)')

or if we let 8 Ii»8, and 4 = (I2)»4,

T= k(x'+i'),
2 V= (ruP cos'a+coPsin'a —2X'sinacosa)x'

+(~P sin~ a++&~ cos~ a+2)P sin a cos a)y~

+L(~.'- —~P) sin 2a —2)P cos 2ajxy. (29)

But since x and y are normal coordinates, the
term in xy must vanish, so for a we have

2 tan 2a=)P/((c)2 (dy ).

iJsing this value for a the coefficient of x' in 2 V
turns out to be equal to ~ '. That for y' is equal
to ~+', so the potential energy function is

V=;L~ &x&+~,&y'). (30)

so
-'~ ~x2= i~kT 2K+ y = QkT,

x'=kT/c=" and y'=kT/(o '.

The motion of 0 is given by

0' = x' cos' a+y' sin' a

=-'(.v'+y')+~(x' —y') cos 2a. (31a)

Similarly the motion of 4 is given by

4' =x' sin' a+y' cos-' a
(31b)

= '(x'+y') —$(x' —y') cos 2a.

Substituting the values for x', y' and a. from the

Now since the Hamiltonian is composed addi-
tively of a function of x and of y, the two co-
ordinates will be independent statistically. So,
we shall have xv=0. Also by the equipartition
theorem
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preceding results we have

Q)2
82=kT

{~2~ '2 )4)
{32a)

2C. Elastic rods and strings

Smoluchowski derived the relationship for a
string fastened at one end:

A' = (2RT/N) (I/~a2pg) (37)
4'=kT

((g12~22 )i4)

Substituting for

Q2 —I 82

we have

(32b)

-'k18' = ~2k T. {33)

Accordingly the upper mirror fluctuates just as
if the lower body were not present. Similarly
substituting for 4' we get

it 2 = kT/k2+kT/ki. (34)

The lower body therefore fluctuates due to
Brownian movement with its own fluctuations,
as it would if the upper body were fixed, —2'k2&'

= gkT, plus those of the upper body -', k18'= —',kT.
This motion of the lower mirror is exactly the
same as that which it would have if the upper
mirror were not present. The torsion constant
E would then be given by 1/E= 1/ki+1/k2.

If we calculate the quantity

84 =x' sin e cos a —y2 sin 0. cos n

k2/I2
I18'= kT

(ki+ k2/I1) ~ (k2/I2) —(k2'/I, l,)
= kTI1/ki

or

where a and p are the radius and density of the
string, respectively. Przibram while studying the
Brownian movements of long chains of bacteria
was able to prove the accuracy of this equation,
when one of the ends of several of the chains
was fastened to the cover glass. Houdijk, later,
observed the Brownian movement of the lower
ends of thin Fibers which were fastened at their
upper ends and allowed to hang vertically. In
collaboration with Zeeman he studied filaments
of 1p platinum and 2p quartz, and they were able
to verify the above theoretical prediction. Van
I.ear and Uhlenbeck" have discussed the problem
of a string fastened at both ends following the
method of calculation first worked out by
Ornstein, in which one calculates the mean
square deviations when the surrounding medium
is air. By improving upon all previous calcula-
tions of these quantities, one is able to calculate
the mean square deviation of a given point x at
any time t, after having started at t=to with
some given initial deviation C of that point.
For the string it is found that

kT kT
S'=—F(x)+ C' ——F(x) e &'

p p

we obtain

04 = k T(I,I2) &/ki ——(I1I2)&8y,

which gives us the degree of correlation of the
two motions,

8y =kT/k,

or the mean value of 8@ is the same as 8'.

where

-1 aG p
X —+ G, (38)

F{x) at 2F(x)

G(x, t) = g x„'sin o)„t!co„)„,
+=1

F{x)= g x„2{x)/X„,
n 1

(@—8)'= p2 —28&+82
= kT(1/k2+1/ki —2/k 1+1/ki) (36)

= kT/k2,

i.e., the fluctuations in twist of the second mirror
relative to the first are the same as if the upper
mirror were fixed.

Obviously, this two-mirror treatment may be
extended to the case of N mirrors.

and p and f are, respectively, the density and
friction coefficient of the string, while P=f/p.
For an elastic rod,

4L'
S'(L) =kT

3~r'E+ 0.982rr'd gL'
(39)

where E= Young's modulus, r = radius of the
rod, d = volume density and L= the length. This
formula is practically identical with that given
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by Houdijk, the only difference being the factor
0.98 instead of 1. Houdijk, using his own formula
and experimental data, was able to determine N
to within 5 percent of the accepted value.

If we are interested in the midpoint of a string
fastened at each end (Fig. 8), the calculations
become very much simplified. Let e(x, t) be the
transverse displacement at the position x and
time t. The whole length of the string is

f
) )

I 1+(Be/Bx)'jlCx l+$ (Be/Bx)'dx.
0 0

I

L -) u (x, t)
I

I
I

I

Elastic String

Fta. 8.

Weightless String

FtG. 9.

over and above the potential it has (Fl) when
e= 0. The normal modes of vibration are of the
general form

U =a„sin{esx/l).

The Brownian movement of the syste~n we know
will be such that

~T a„~coss —dx = $kT, {40)

n's' 1 l——F—a„-"=~~kT,
P 2 2

2kT
a,P = l, (41)

e'))-'F

[a„a=Owhen egmj.
n ')rx

e = Pa„sin—,
l

n'rx
e'= P a„'sin' —.

l

At the midpoint

n~x 0 even e
sin' —=

1oddn

hence e'= (ap+a3s+ ~ ~ ~ )

2l 1 1 1
=—kT -+—+—+-

+ F 1 3' 5'

Assuming that the tension is practically constant
along the length, the work done against it in

putting the string into the distorted shape is

)

~ F (Be/Bx, 'dx
0

Since the sum of this series is s'/8

e'= kTl/4F or (4F/l)e'= kT. (42)

This result shows us that the Brownian move-
ment fluctuations of the midpoint of such a string
are the same as those of a single mass particle
whose force constant is 4F/l. It is interesting to
note further that if all the mass of the string were
concentrated at the midpoint the restoring force
would then be 4Fe/l which states that the
midpoint of a stretched string fluctuates just as
it would if the rest of the string were without
mass (Fig. 9).

From this general discussion of strings and
rods it is clear that any instrument in which they
form part of the system will be subject also to
an ultimate limit of sensitivity as a result of
Brownian movements. Einthoven, using a string
galvanometer with a string 18 mm long and 0.2p
thick, with a 2000-fold magnification found that
the system was always in motion. Just as
Kappler had found with a suspended mirror, at
pressures above 100 mm of mercury this motion
is quite irregular while at low pressures it appears
to be the same as the principal mode of vibration
of the fiber. Tinbergen had shown with a typical
instrument of this kind that measurements of
direct currents less than 10-~ ampere were quite
impossible due to these Brownian motion de-
flections. The agreement between predictions
and observed values was again very good.

2D. Vibrating membranes
Let us assume that in a given instrument a

membrane is to be used, for example for the
measurement of a pressure, p, or a change of
pressure bp. This membrane, with its individual
boundary conditions and characterizing con-
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stants, will posses a position of equilibrium, and
its motion can be described by one coordinate.
Again, by applying the equipartition theorem we
know that this membrane will vibrate constantly
and that its average potential and kinetic
energies will each be equal to $kT. As in the
above cases the sensitivity as an instrument will

be given by a = bx/bp, where bx is the deflection
produced by the pressure bp. The fluctuations
about the position xp are therefore equivalent to
slight changes of the pressure, and so every
measurement will be in error by an amount bp.
To find the actual value of this bp, one needs
only to set up the potential energy equation of
the deformed membrane and the equation for
the free period and then to proceed to evaluate
bx/bp in terms of the constants of the instrument.
There is, then, a minimum pressure which can be
measured with an instrument such as an aneroid
barometer.

An interesting question may be raised re-
garding the human ear. Is the intensity threshold,
measured in units of M (inimum) A(udible)
P(ressure), determined by the above-mentioned
bp& The ear-drum is vibrating constantly as if
the incident pressure were fluctuating by bp.
This should produce a faint background noise
beneath which no sounds of smaller intensity
may be distinguished. If the ear were infinitely
sensitive in other words, there would be, due to
statistical fluctuations of the pressure, an ever
present "noise."

~a~n @

loads on the ends of the arms, A the restoring
force of the acceleration of gravity and x the
angle through which the balance arms turn.
For a steady deflection Abx=agbm and as a
result the sensitivity is given by

bx/bm =ag/A.

The undamped period of the balance Tp is given
by

To ——2+a(mp+ 2m/A) &

or A l/ag = {2x/Tog) (mo+2m) . (43)

Again bx =x = (2~/A) &. Substituting this and
eliminating A&/a we have bm=(2~/Tag)(2e(mo
+2m))& for the average error in measuring the
mass m. The average downward motion of one
of the scale pans bz when carrying a load bm, is

bz=ax=a — =— . (44}

This can be calculated from the equation

gbm bz=2e.

If we neglect mp, the mass of the scale arms

bm = {4n/Tog) {~m', &.

If we now put e=2X10 '4 and g=981, we
obtain the final formulas

bm = 1.81 ~ 10~ m&/Tp gram, (45a}

bz=2. 25 10 ' Tp/m& cm. (45b)

m+bm
Chemical Balance

FiG. 10.

2E. Chemical balance

Recalling our equation that the average error
in making a measurement of a quantity q is

bq = {2'/B)&, it is only necessary to determine
the constants A and B for a chemical balance in

order to arrive at its theoretical sensitivity limit

(Fig. 10). Ising'4 found this bm to be of the order
of 10 ' g. Let 2a= length of the balance arms,
k&~moa'= moment of inertia, m and m+bm the

If for example m = 1000 g, Tp = 10 sec. , then
bm=5. 72 10 ' g; bz=7. 12X10 ' cm.

Needless to say this particular limit bm = 10-9

g has not yet been approached experimentally,
as the present limit is about 10 ' g.

2F. Spring balance

In the same manner one can show that the
sensitivity of a spring balance is limited by a
zero unsteadiness bx such that again $Abx'= e.
Again the sensitivity cr= bx/bm=B/A. For the
deflection produced by bm we have the expression
gbm = —Adx, where —A = (m~x~/g) = (Mx/g),
which gives

o = bx/Bm=g/A.
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The free period of such a system is

To=2 (mo+m/-A)&.
From this

A/g = (2w/gTo)A I(kIo+m) I. (46)

Substituting this in the equation for the sensi-
tivity, we get

2'
bm = bx—A '(llew p+ m) I

gTp

and by inserting the value bx= (2p/A) &,

bm = (2 ~, g Tp) (2 p) '(3lp+ m} &. (47)

Neglecting the weight of the spring and pan ilfp

and substituting the numerical values for e and

g we have the final formula

bm = 0.9OS X10-P{mI/Tp) g. (48)

The result then of Brownian movement in the
case of either type of balance is an unsteady
zero and, therefore, limited sensitivity. This
unsteadiness is the same as would be produced
if the mass m on the balance were fluctuating
by an amount bm.

26. Other mechanical cases

In addition to the cases thus far discussed, a
few other simple ones may be mentioned very
briefly. The atoms which make up a steel meter
stick are constantly in motion and so the length
of the stick is, in the final analysis, a quantity
which fluctuates statistically, Accepting this, it
is clear that all measurements of lengths with
such an instrument are also subject to uncer-
tain ties.

For similar reasons any measuring process re-
lating to the phenomenon of expansion, whether
the expansion be in the quantity to be measured
or in some part of the measuring device, will

necessarily be limited in its ultimate accuracy.
If it is desired to determine a length by nieans

of some form of interferometer, one can see at
once that here, too, a limit must be reached as
the mirror supports will fluctuate with respect to
their relative positions.

The last three examples have their explana-
tions in the fact that a massive steel bar is quite

analogous to a spring Ualance. Here again the
length of the system, according to the laws
discussed above, must fluctuate so that the mean
potential energy is= $kT.

Due to such fluctuations a simple pendulum
must have a fluctuating period due to the changes
in its length. Neglecting this fact, however, the
pendulum still does not give absolutely accurate
values of time intervals, since as a result of
having one degree of freedom, it must have a
random mean kinetic energy equal to )kT.

Such phenomena as ionization, scattering of
electrons, etc. , determination of optical con-
stants, mass-spectroscopic work, photography
and many others need only be mentioned in
passing. These clearly are statistical in nature
and so the sensitivity of measurements of them
or by them must be limited.

ri+Ldi/dt = F.

Letting X= 1 —rt/L and X =fFdt one gets

(49)

x' 1 x'-'

p"
L'-' (1 —X)P 2rLt

If now one degree of freedom is assun&ed, -', LiP

nIust be set equal to -', kT, and so

x'= 2rkTt.

This shows the mean magnitude of the e.m. f.
which exists in such a conductor as a result of
statistical fluctuations. (This result, arrived at
in 1913, is quite similar to that of the Johnson
effect discussed below. )

2. Two conductors. If now the system consists
of two electrical conductors which are coupled,
one can show that it has an average magnetic

)3. ELECTRIC SYSTEMS

3A. Simple electric systems
In the booklet of de Haas-Lorentz" discussed

above, six such systems are treated. These de-
serve mention at this point.

1. A single conductor. Given a single electrical
conductor with a self inductance L, resistance r,
carrying a current i, a time of observation t,
and F the e.m. f. produced by the thermal
agitation of the molecules, one sees that
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energy given by

$LiiP+ Miiii+ $Liii' = k T. (52)

This mean energy is equal to kT and not -', kT,
because the system is characterized by two
degrees of freedom.

3, F/uctuations in charge of system. In addition
to discussing the fluctuations in the quantity i',
which corresponds to the mean square velocity
a' of a particle, one might ask about the electrical
analog of the mean square distance, x', which
the particle travels due to Brownian Movement.
In other words, if e is the amount of electricity
which passes a given cross section in a time
interval t, one wishes to calculate e'. The result
is obtained at once from the Einstein formula

(6) if for a, the coordinate which describes the
motion, the quantity of electricity which has
passed since the beginning of the time interval
is taken, 6 then becomes equal to e. Since 6 is
the current, and the force connected with a is
the e.m. f. of the conductor, one must understand
by 8 the current which is caused to flow by a
steady e.m. f. of value 1. Therefore, if r=the
resistance, 8=1/r and the result is at once
seen to be

e' = (2kT/r)t. (53)

4. Tangent ga/manometer. If the influence of
the earth's field is neglected entirely, one can
calculate the extent to which the needle of a
tangent galvanometer must be constantly in
motion due to the spontaneous currents in the
coil. If Q is the moment of inertia and co the
angular velocity of the needle the final equation is

(54)

This is obviously equivalent to ~i' = $k T
= mean kinetic energy of the needle correspond-
ing to its one degree of freedom.

5. Circuit containing capacity. Let C = capacity
of a condenser, r and L equal the resistance and
self-inductance of the circuit, @ the potential
difference between the two condenser plates,
and +e and —e the charges on these plates. In
such a system

ALP = ~ie'/C =x'/4rt. (55)

Here, exactly as must be expected, one finds
that the electric and magnetic energies are
equal and each equal to kT. $x'/4rt = )kT
since in Case 1 (No. 1) (51), x'= 2rkTt. 7

6. F/uctuations of temperature of tuo parts of a
conductor. If P and Q, two bodies of heat ca-
pacities ci and c&, are connected by a metal con-
ductor D, one wishes to know whether the
temperatures of P and Q will vary due to
statistical fluctuations in the system. Letting T
be the equilibrium temperature and Hi and Hi

be the deviations of P and Q from T, one
finds that

e& =k~/c. (56)

7. System containing a thermocoup/e. If now
P and Q represent the junctions of a thermo-
couple, which are connected by two wires D
and D', it will be found that due to the spon-
taneous temperature differences of P and Q, a
fluctuating electric current will flow through
the system. One finds, in fact, that,

P =kT/L, 8'=kT'/c,
where

c clci/(cl+ci) ~ (57)

Here in this complicated system the mean
magnetic energy is exactly the same as that
found in the simple system No. 1 where /La'
=gkT. Also, the mean temperature differences
are the same as those found in No. 6 where
F'=kT'/c. This demonstrates a very important
result, namely the fact that the mean value of
the spontaneous electric current is not increased
by the accidental temperature differences of the
two junctions of the thermocouple. Also the
mean values of the temperature differences are
not increased by the Peltier effects which must
accompany the electric currents. As was shown
in (1 there is associated with one degree of
freedom of any system a mean energy of i,'k T.

38. Electrometer

The natural sensitivity of a Hoffmann duant
electrometer (Fig. 11) has been treated theo-
retically by Engel. "Again the starting point is
the Einstein equation. Due to Brownian move-
ment the potential energy of the system will
be equal on the average to qkT, or for the
electrometer (at 18'C)



f76 R. BOWLI NG BARNES AND S. SILVERMAN

—a'/Css) V', one can state that the average
fluctuations are

Fio. 11.

2i 4

8 ~ 10-' millimeters
(y'.pii) & = (61a)

(Ri ) & meter

8 10—' millimeters
(4pcs}' = (61b)

(R cs}f meter

$RqP='kT=2 10 '4 erg. (58)

If R, the restoring force is expressed in volts' cm
and @ is the angular displacement, then qRp'
=2 10 "(300)'. R is given by

R = Rp, 'n =Rp —(b/2 —a'/Css} V', (59)

where the ci& are the capacity coefFicients and
a and b are constants of the apparatus. A charge
of des is necessary to cause a deflection of
(qP) &, where

R 2 10 '300
des ——Css—(yp} & = Css —R&.

aV aV

With the help of the above equation for R,
V can be eliminated, and one then gets

300 2 10 ' b a'
des = Css ———volt cm

a(n —1}& 2 Css
(60)

3002 10' '06 b a' I "l tri l—Css ———
( 1) 1

'

2 C quanta. "

For example, if Rp= 5.6 volts' cm

U= 30.56 volts, (b/2 —a'/Css) = 0.0043 cm,

Cps=5.45 cm, then n will be 4.65,

and des=200 el. qu. This means of course that
200 el. qu. will produce a deflection equal to the
mean square Brownian movement deflection,
and therefore no charge smaller than several
times this amount could be measured accurately
in a simple measurement.

In a later paper Eggersis showed experi-
mentally that such a limit exists. By substituting
in the equation RqP= kT, either the value of R
when measuring volts, Ry Rp —gbV, or the
value when measuring charge, Rcp=Rp —(b/2

{In Egger's instrument Rp ——0.89 volts cm,
a=0.033 cm, b=0.014 cm, Css ——2.90 cm.j These
fluctuations are proportional to Vs where V is
the voltage applied to the duants. By measuring
them carefully he determined k, (k=R&'/T), to
be 1.425 10 "erg/degree with an accuracy of 5
percent.

Substituting the constants of this instrument
in the formula of Engel a theoretical limit of
sensitivity of 900 el. qu. /mm was found, the
theoretical limit being defined as that sensitivity
at which the disturbances (p")& were equal to
1 mm/m. At an actual sensitivity of 850 el. qu. /
mm (p') & was = 1.00 mm/m corresponding almost
exactly to the predicted limit. The practical
limit however was found to lie about 1500
el. qu. /mm where measurements could be made
with an accuracy of 5 percent. The time necessary
to reach maximum deflection was 20 seconds.

3C. Galvanometer

(a) Probably one of the most interesting and
important cases where the Brownian movement
limits the sensitivity of a measuring instrument
is that of the galvanometer. Since the motion of
this instrument may also be described by one
coordinate, the angular rotation p, one knows
in advance that it must be subject to zero
fluctuations such that $A@"= $k T. Following the
general procedure outlined above, its unsteadiness
can be expressed in terms of apparent fluctua-
tions in the current or voltage. Let the sensitivity
of the instrument be defined by i'd=deviation
per unit current= bx/bs. Let us assume further
from experimental experience that the smallest
deflection which will be significant (i.e. , which
can be reproduced with sufFicient accuracy to
be of any value to the observer, see $1B) is
given by

hx;. =4bx=4(y') ~.
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Although we are selecting our smallest reliable

deflection as bx=ebx, instead of using the root
mean square, (bP)&, the correlation of the two

is nearly unity; so it is clear then that for a =4,
the least energy value we are willing to consider
as certain is 16 JkT, and the probability that
it is obtained by a stray kick rather than by our

impressed force is quite small indeed. It is
evident that if a smaller value of a be selected
the uncertainty will be greater, requiring more

readings to attain the same accuracy. The net
result is that the total energy must add up to be
the same.

Now let us write bx/bi=C/A where Cbt' is

the deflecting moment produced by a current
change bi. Therefore C=dN/dx where N de-
notes the flux of magnetic induction through
the galvanometer coil. Let us restrict ourselves
to the usual case in which our instrument is

critically damped; the mechanical damping is

then negligible in comparison with the electro-
magnetic damping, and the calculations are
simplified.

Let p dx/dt= moment of the frictional forces,

2w/cp = r = period of oscillation,

for P = 0 we have rp = period of undamped
oscillation = 2m jcp,

X =p/2E= the damping constant,

E= moment of inertia of the system.

The differential equation of the motion of the
system is then

d'x dx—+2k—+(X'+cp'}x=0. (62)
dP d&

Remembering that cup= (A/E)&, we have )P+cp'
= cpp'. Also if R be the resistance in the circuit

X =4+),c = Xp+ C'/2ER, c'63)

where X,c is the electromagnetic damping and Xp

is the air, or any other damping. At the limit of
aperiodicity, or at critical damping, %=cup and
Xpg- C /2KR = td p from Eq. (63), and this de-
termines C when the other quantities are known.
Let us set Xp=0 as this will make the change of
flux, and hence C, a maximum. Then cpp ——C'/2KR
and from above cr= bx/bi = C/A. Eliminating C
and K we have the general formulae:

2R
current sensibility, cr; =—= —, (64a)

bt A cpp

bx crc 2
voltage sensibility, cr, =—=—= {64b)

be R A Ra&p

From Eqs; (19) and (20) we can calculate the
disturbances set up by the Brownian motion,
for we have bx=(2e/A)&. Hence we find from
(64a) and (64b)

bi = (ecpp/R) & = (~kT/R7) &

the current equivalent (65a)
and

bt = (pc0pR) I = (xk TR/r) l

the voltage equivalent (65b)

of the Brownian fluctuations, respectively.
Introducing cpp-- 2~/rp and e=2.0X10 " erg,

we can reduce these last two equations to
practical units giving

bi'=1. 12 10 ' (1/RTp}l amperes, (66a)

be'=1.12 ~ 10 ' (R/Tp)l volts. {66b)

And since we have bx;„=4bx, the smallest
accurately observable quantities will be four
times as great.

Upon reducing the deflections obtained by
Moll and Burger (see $1A) to their voltage
equivalence, Ising found an observed be'=9. 22
X 10 "volt, compared with a value of 6.3 X 10 '

volt as calculated from (66b) for their particular
circuit. This result shows that any single meas-
urement of current or voltage will be uncertain
at least to the extent just stated.

(b) It was pointed out by Zernike" that the
same results could be obtained by considering
the galvanometer circuit purely from an elec-
trical standpoint. This means then, if Brownian
fluctuation is inherent in the electrical circuit
independent of mechanical effects and of equal
magnitude, that such precautions as evacuation
or cooling of the galvanometer alone are useless;
for these steps cannot reduce the net effect of
the random disturbances if the remainder of the
circuit be at room temperature.

Let us assume a circuit of resistance R, mlf-
induction L, kept for simplicity at a uniform
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temperature T. As a constant current is without
significance, we may assume i=0. From the
equipartition theory, we have that the energy of
spontaneous current fluctuations is

$Li'= )kT

as was shown in $3A. These kicks will occur far
too rapidly to permit their instantaneous meas-
urement by any ordinary current recorder.

It is now useful to imagine these currents to
be set up by a haphazard e.m. f. , K It is then
possible to write down as the differential equation
of our circuit

Ldi/dt+Ri =E,

galvanometer which is critically damped, as was
done in the mechanical example above (to
simplify the results, and also because this is the
usual laboratory type). Such an apparatus
averages out the current to a mean value "u,"
rather than gives the momentary current strength
i. It can be represented by an equation such as

d'u/dt'+2Xdu/dt+X'u = X'i, (71)

where conditions and units are so chosen that
for steady currents u=i. Integrating we obtain
for a circuit which has been closed a long
while

which, through integration, yields for the value
of the current at any instant, t

i(—t) te-"'dt
p

(72)

1
e~(«dt+i e- "ui (67)

p

To obtain the effect of one disturbance upon a
later one, we multiply Eq. (67) by ip, and since
ip is independent of later e.m. f.'s, we obtain

r,,pp= s p-e- ""~

So, two kicks ip and i&, separated by a time
interval t are correlated, the factor of corre-
lation being e "u~. This relationship becomes
vanishingly small as t»R/L.

It is now possible to calculate the average
current strength j over a time r

r

j=- idt
r p

and
S

jP =— dt i &i &'dt'

0

r-C

dt e "'~dx. (69)
0 p

Again, if r»R/L we can substitute ~ for
the values of the ~per limit of the integral of
the last integrand, without introducing any
appreciable error, We can then write Eq. (69) as

g = (2P/rP) rL/R = 2k T/R7, (70)

which is in agreement with Ising's value of
Eq. (65) to within a numerical factor. This
agreement may be made complete if we select a

and for the mean square

slQ

u' =2K' t'e '"'dt i( —t}i(—t+x)dx. (73)
p p

Utilizing the correlation factor of Eq. (68) and
proceeding as we did above in evaluating g~ in

(69), we have the result that,

1 i'L LiP rk T
(74)

4'A' R 2R Rr

upon introducing r = 2~/X. This is identical with
the result Eq. (65) obtained on the mechanical
basis.

(c) The above treatments which are due to
Ising and Zernike, and which lead to the same
result for the Brownian motion of a galvanometer
coil, show that this theoretical value agrees
qualitatively with the experimental results ob-
tained by Moll and Berger. A direct proof that
these fluctuations are truly due to Brownian
motion has been offered by Ornstein' 'and his co-
workers. The classical theory shows the de-
pendence of the motion upon temperature. It is
necessary, then, only to carry this general theory
over to the specific case of the galvanometer,
and to compare the calculations with the experi-
mental results obtained by observing the change
of the inherent fluctuations of a galvanometer
with change of temperature. Practically, it is
hard to change the temperature of the galva-
nometer itself; it is easier to insert a resistance
coil whose temperature may be varied at will.
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This requires the development of a formula to
cover the case of a system of two components
which are not at the same temperature.

For a system at one temperature, subject to
a varying e.m. f., E, we can write as our equation

Ldi/dt+Ri =E, (75)

where we have again, since E is perfectly random,
E=0.

For our system, which is no longer at one uni-
form temperature, we consider two inductances
Lj and Lo, and two resistances Ri and Ro which
are at temperatures Ti and To. Now it is known
that if F(z) be the spontaneous Brownian force
at a time z on a particle and F(z+P) be the
force at time z+f then F(z)F(z+f)WO. The

correlation will of course be greatest when f is
small. It can be shown very simply thatfF(z)F(z+P)dP is not dependent upon z or P
and is a constant. This value of the integral
which we may designate by FF, is 2PkT. On the
same lines we find for the case of an electrical
circuit ZZ=2RkT,

For a two-coil system at the same tempera-
ture, the accidental Ej for the first coil would
have the values Ei=O and E~Ei=2Ri kT, and
for the second coil Eo=0 and EoEo ——2Ro kT.
We shall assume for our "two-temperature"
system that the same relations hold true, with
the additional hypothesis that EiE~=-O, as the
Brownian fluctuation in one coil will be com-
pletely independent of the motion in the other.

The equation for our circuit becomes

(Lo+Lo) (di/dt) +(Rg+Ro) i =Eg+Eo.

Upon integrating we obtain for i

{R,+R,)t Rg+Ro
i =exp io+ (Ei(z)+Eo(z)) exp z dz

Li+Lo - o L i+L2

(76)

(77)

and for the value of F, neglecting terms with io as they are very small for appreciable values of t,
we obtain

2(R&+Ro)t Rg+Ro
io=(L|+Lo) 'exp tE()+E(z)}IE ( ) —E ( )}. p (+ )

Li+Lo o o Li+Lo

1 1
(2kR(Tg+2kR2To)

Ll+Lo Rl+Ro
0 for num

using our results that E„E= Therefore
2kRT for n=nt

(78)

g(Lg+Lo)o'= $k(R|Tg+RoTo)/(Rg+Ro). (79)

For Ti =- T& we get the usual equipartition value; otherwise, we obtain a weighted value in which
the coil of higher resistance-temperature product plays the dominant ale.

We now are able to estimate the Brownian motion of the galvanometer system. Let Ri be the
resistance of the galvanometer coil, which is at temperature T&,'Ro and To be the resistance and
temperature respectively of the external coil. Neglecting the inductance L, the equation of motion
and the electrical motion will be, respectively,

Kd'8/dP+Pd8/dt+a8+qi = F, (Rg+Ro)i —qd8/dt =Eg+Eo.

Eliminating i, we obtain as our galvanometric equation

d8 q' d8 qX—+ P+——+a8= F— (Eg+Eo).
dt"- Ri+Ro dt Rg+Ro
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If we assume as above

we obtain

FF= 2PkTi,

EiEi = 2RikTi)

EgEg = 2Rgk T2)

FEi =0,

FEg=0,

EiEg = 0,

a8""= a p+ FF+ - (EiEi+EaEe) (81)

q2
--1

gf
2

= k p+ pTi+ (RiTi+ReTq)
Ri+Rg Ri+Rg

(82)

For the case where the air damping p is very small in comparison with the electromagnetic damping q,
so that p(q'/Ri+R~, we obtain

/ac'= &k(RiTi+R~T~/R, +R,i). (83)

This states that the Brownian fluctuation as measured in potential energy of rotation is exactly
equivalent to the energy of the current fluctuation (79). The results can be checked experimentally
by varying T&, and observing the corresponding change in the disturbance of the zero. Ornstein
used a coil of 400 ohms resistance for Rg, and found that the ratio of the amplitudes of his zero
fluctuation at liquid air temperature and room temperature was 0.59; the theoretical value was 0.61.
This is excellent verification that the Brownian movement is the inherent cause of the galvanometer's

uncertainty.

$4. EFFECTS REI.ATED TO BROWNIAN MOTION

Thus far we have centered our attention upon
those cases in which the measuring instrument
itself exhibited fluctuations. In this section it is

proposed to discuss a few cases in which the
fluctuations occur in the quantities which are to
be measured. Although some of the phenomena
discussed are not strictly of a Brownian nature,
they are considered to be of sufficiently allied
interest to be included in this review.

4A. Shot eSect
The thermionic current: in a vacuum tube is

not a smooth flow of electricity, but is subject to
rapid and irregular changes in magnitude. These
fluctuations were discovered by Schottky'8 '9

and were called by him the Schrot or small-shot
effect. They are caused by random emission from
the cathode, and show their presence by voltage
or current fluctuations in any circuit in which the
tube is connected. When sufficient amplification
is used to make these variations audible in a
telephone receiver they cause a continual sound

bg =ng-¹. (84)

If a large number of particles is contained in
this assemblage, and if our observational period
extends over t seconds, we have from statistical
theory that

bg~=¹. (85)

of indefinite frequency; so that a continual
background of noise is heard.

A mathematical treatment of the problem is
possible if we assume that the passage of any one
electron from cathode to anode is entirely
independent of the passage of any other electron.
W'e can then interpret this condition by the
simple laws of probability of an unordered
distribution of similar events. Let the average
number of outgoing particles per second be N
{the average to be taken over a long interval of
time), and let the number of particles which
happen to be emitted in any particular interval
of I seconds be n&. In general e& will not equal
N t, the average number of particles for
seconds. The deviation from the mean value for
the interval is given by
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Let io=e N be the mean value of the current
taken over a long time, and let it be the average
value of the current over a single interval of t
seconds. Then the average current fluctuation
for this interval is given by

hi =i,—oo = eh, /t (86}

and for the mean square variation we obtain

aP = (e /P) SP = (e /P)N&=io(e/t). (87)

Results in good agreement with this theory have
been obtained by Rajewsky' for the case of a
photo-cell. Here he observed the mean relative
fluctuation f= 8t/E. For an average rate of
emission of 42.4 electrons per minute he obtained
the results given in Table II.

TAsLE II.

2 sec.
6

10
20

fca pcr imcntal

0.17&
.061

.019

fcalcu lated

0.109
.063
.048
.034

However, difficulties in the experimental verifi-
cation with a discharge or vacuum tube arise as
it is not possible in these cases to measure o

directly. Schottky and Johnson" have shown
that the difficulty may be overcome by making
a Fourier analysis of the shot effect current
fluctuations in a discharge tube over a long
interval of time T&&t. One can then show that
the fluctuations will affect a resonance circuit,
of eigenfrequency 1/t, in parallel with the dis-
charge tube as if there were a pure sinusoidal
alternating current in the tube of equal period I

and effective amplitude a = (~bio/t) ~.

To measure a from the energy which is
absorbed in the resonator it is necessary to know
the damping of the oscillating circuit. The
amplitude a and the eigenfrequency 1/t can be
found from the constants (capacity, self-induc-
tance and ohmic resistance) of the resonance
circuit, and oo can be measured directly. This
gives a method of determining the value of e,
the charge on the electron. This was first
attempted by Hartmann + ~ but his results gave
only qualitative agreement with the value as
determined by Millikan. Improved methods by

Hull and williams~ led to a result of e=4.756
X10 'o e.s.u. which deviates from the oil-drop
value by about 1/3 percent.

Johnson" found that under certain conditions
the voltage fluctuations did not obey the theory
of the shot effect. These deviations occurred
chiefly at low frequencies especially with oxide-
coated filaments under operating conditions such
that space charge effects were not noticeable.
Johnson attributed these abnormalities to a
fluctuating surface change, and this was sub-
stantiated by Schottky oo who showed that this
Flicker effect could be established as being
dependent upon the life-times of foreign atoms
upon the cathode surface. In general, the magni-
tude of the disturbances in an amplifying tube
in ordinary use is distorted either by the Flicker
effect or by space charge effects so that its value
cannot be predicted by measurements on the
true shot effect. In addition, in a well-designed
amplifier, Brownian fluctuations set up in the
grid circuit by thermal agitation may be the
predominant source of noise.

4B. Johnson eSect
The problem of thermal agitation of electricity

in conductors has been studied experimentally
by Johnson, "' and theoretically by Nyquist. 'o

Let us consider the simple circuit shown below
in Fig. 12 which consists of two equal resistances

R I II R

FiG. 12.

separated by a long non-dissipative transmission
line, having an inductance J and a capacity per
unit length of C, so chosen that R=(J/C)&.
Now, it may be shown quite easily that an e.m.f.
set up by thermal agitation in a conductor is a
universal function of frequency, resistance and
temperature.

If our two resistances are at the same temper-
ature, then by the second law of thermodynamics
they must also be in equilibrium as regards
total power transfer. This must also be true for
any particular frequency; for if we still have
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temperature equilibrium and if we assume that
one conductor delivers more energy at a fre-
quency range d, v than it receives, we may connect
a non-dissipative network such as a resonator
between the two conductors in such a manner as
to interfere more with the transfer of energy in
the range d v than in any other. Since there is
equilibrium of power transfer before insertion
of this network, there will be an unequal flow
after it is in position. But our conductors are
still at the same temperature, and we should
violate the second law, We have, therefore,
equilibrium of power transfer at any frequency.

Under the conditions of our ideal circuit above,
our lines possess the characteristic impedance R,
and there is no reflection at either end of the
line. Let the length of the line be l, and the
velocity of propagation be v, and let the absolute
temperature after equilibrium is established be
T. Then we have two trains of energy traversing
this transmission line, one being the power
delivered from conductor I and absorbed by
conductor II, and the other which runs in the
opposite direction. Now, let the line be isolated
at any instant after equilibrium has been reached.
We shall then have complete reflection at the
two ends, and the energy which was on the line
at the time the circuit was broken is trapped.
This permits a description of our system in
terms of its vibrations at its natural frequencies,
for we have established the conditions required
for standing waves. The lowest frequency of the
voltage wave will be v/2l and the higher ones
will be mv/2l where m is an integer.

Now consider a frequency range of width dv.
The number of modes of vibration (or degrees
of freedom) lying within this range is equal to
2ldv/t, assuming that l is large enough to make
the expression a large number. If this be so, we
can assign to each degree of freedom the property
that its average energy is a definite quantity,
which on the average will be kT, by the law of
equipartition. The total energy of the vibrations
within the frequency range is then 2lkTdv/e.
As our line is non-reflecting, this is the energy
within the given frequency range which is
transferred from the two conductors to the line
during the time of transit l/v, and the average
power transferred from each conductor is kTdv.
The e.m. f. due to thermal agitation in either of

the conductors produces a current which is
obtained by dividing the e.m. f. by 2R, and the
power transferred to the opposite conductor is
obtained by the usual I'R product. If we call
E'dv the square of the e.m. f. within the range
dv, we have

E dv =4RkTdv. (88)

Ke are now able to extend these results for
conductors which are pure resistances to a net-
work built of impedance members as in the
following Fig. 13. Here we have a pure resistance

Rv+&Y

Fic. 13.

R connected to an impedance R„+iY„which is
at the same temperature T, where R„and Y„are
some functions of the frequency. By reasoning
similar to that above, it may be deduced that
the power transfer from conductor to impedance
network is equal to that from the impedance to
the conductor. By simple current theory the
first is:

E'Rgv/k(R, +R)' t YP3

and the second is:

EPRdv/DR, +R)'+ Y„'j,

where E„'is the square of the voltage at the
frequency v. It follows from the equality of
these two expressions that the relationship of
Eq. (88) holds for any particular frequency
mterval and

E„'dv=4R,kTdv. (89)

To set this relationship in terms of experi-
mentally observable quantities let M(co) be the
ratio of the output current to the applied input
voltage at frequency v, i.e., the transfer ad-
mittance of the network from the member in
which the e.m. f. originates, to the member in
which the resulting current is measured. Setting
cu = 2~v we can rewrite R, as R(co), the resistance
in which the e.m.f. is generated. The square of
the measured current within the range dv is then
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2
Fdv =E„'~M(oi) ~'dv =—kTR(~) I M(oi} I'd~ (90)

and at the limit where the output current is just
at the noise level

and the square of the total current is obtained
by integration from 0 to ~ so

z~= (2/x)kT R(~) i M(cv) i'dvu. (91)
0

P =4kTR(vs —vt}Ms (92)

Johnson" has determined the value of k from
Eq. (91}, and his results are in qualitative
agreement with the theory.

This theory of thermal agitation in conductors
makes three suggestions regarding the reduction
of noise in amplifiers. The first is the use of a
low input resistance; this cannot always be done,
however, due to limitations set by the apparatus
which is generating the voltage phenomena that
are being investigated. Secondly, the tempera-
ture may be lowered. Thirdly, the frequency
range may be made very narrow by using a
sharply tuned circuit. "

A practical example of the eRect of thermal
agitation is the case of a good amplifier in which
the noise due to this agitation is greater than
that of either the Shot or Flicker effects. The
latter can usually be suppressed in a tube which
is working so that there is full space charge
limitation of the current. The amount of dis-
turbance which is present with grid connected
directly to the filament may be determined
roughly in terms of a resistance R, which,
connected between grid and filament, would
cause an equal amount of noise due to thermal
agitation. Then V'= W(R+R, ) where R is the
resistance of the conductor in the circuit, where
V' is the mean squared voltage fluctuation and
W is the power produced thereby.

In the region of voice frequency, 60 to 5000
cycles, we find for a given tube R,= 1.5 X10'ip/p
experimentally, where p, is the effective amplifi-
cation and i„is the space current in milliamperes.
For a tube in which y=15, and iv=0.5 milli-
ampere, the minimum noise corresponds to the
thermal agitation of R, =5000 ohms. For a set-up
of constant amplification in a region vs to vi and
a pure resistance circuit we can rewrite Eq. (91)

Vs =4kTR(vs —vi) = WR. (93)

For the vocal range vs —vi=5000, and H =0.8
X10 "watt. The corresponding voltage is then
of the order of magnitude of 10 s volt.

Hafstad" gives an excellent account of the
limitations imposed upon a more general circuit
in which the input-impedance varies with fre-
quency. He finds fluctuations in the grid circuit
of a sensitive FP-54 tube in agreement with
those to be expected from either the Shot or
Johnson effects. (Cf. Fig. 14.)

VINVT C S
a 4

Fin. 14. Fluctuations in grid circuit of FP-54 tube. Scale
250,000 mm per volt. {From Hafstad. ")

In passing, it is worth commenting upon the
use of a bolometer in the grid circuit of a vacuum
tube, as a radiometric device. Inasmuch as the
bolometer element is ordinarily of high resistance,
it produces a very high Brownian kick in the
usual galvanometer circuit which is used—
generally a Kheatstone bridge. To obtain small
heat capacity and consequently a large temper-
ature rise to produce the desired large resistance
change, one must necessarily reduce the amount
of material in the element, and the resistance
increases accordingly. It has been often suggested
that a su%ciently high resistance bolometer be
placed in the grid circuit of a vacuum tube.
However, from Eq. (92), which is a modified
for'm of the general equation, we see that thermal
agitation sets up a voltage fluctuation which is
dependent upon R&, precisely as for a simple
galvanometer. There is then no advantage to be
gained from the standpoint of reduction of
Brownian fluctuations by using a vacuum tube
amplifier in place of a galvanometer as a meas-
uring device. From the standpoint of construc-
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tion it is rather remarkable that thus far the
experimental efficiencies of the thermocouple and
bolometer considered as heat engines are the
same: for one is an instrument which develops
power by means of thermoelectric currents, and
the othe' varies the amount of power transfer by
a pure resistance change.

4C. Shot effect of photons

Suppose the eye were to be used as an instru-
ment to detect the presence of weak sources of
light. The question may be asked whether or
not there would be a natural limit to this
measuring process. The answer is, of course, yes.
Quite analogously to the Shot effect just dis-
cussed, the emission of photons is quantized and
so must be subject to statistical fluctuations.
These fluctuations will mean, obviously, that
whatever instrument is employed to measure the
absolute intensity of a source of light or to
detect a weak source will be limited in its
performance.

One of us, together with M. Czerny, " investi-
gated experimentally the possibility of seeing
these fluctuations with the unaided eye. A strong
source of light having a spectral distribution
very nearly the same as that corresponding to
the sensitivity of the darkness adapted eye was
set up and its intensity measured as exactly as
possible. The light from this source was then
greatly reduced in intensity and allowed to fall
upon a metal screen containing about 50 small
holes. With the head upon a rest about 50 cm
away from this screen the number of quanta
entering the eye per second from each of the
weak sources could be calculated. These sources
were so weak that they could be seen only after
the eyes had been 15 or 30 minutes in total
darkness. The field of small sources was seen to
flicker and twinkle much the same as a 6eld of
stars.

The authors realized the complexity of effects
entering into an experiment of this type. Could
the eye detect such a small number of quanta
that the statistical fluctuations would form an
appredable percent of the absolute intensity?
Could the eye then detect these percentage
changes of intensity? Would the physical condi-
tion of the observer play a great rble? How
many physiological effects could produce such a

twinkling effect under the conditions used'? All
of these questions and more had to be considered.
As a result however of threshold determinations
and calculations of the expected fluctuations the
authors stated in their concluding remarks that
"One can then say, that the eye is developed
right up to that limit, where the Shot effect of
photons makes itself noticeable. "

$5. CoNcLUs IoN

It has been shown above that practically every
process which might be used to make physical
measurements is in some way limited by Brown-
ian motion. In conclusion one might state simply
that matter and energy are divided into small
units (atoms, molecules, electrons, photons, etc.)
and that the natural limit of sensitivity is
reached by any method of measuring as soon as
that method begins to detect the individual
effects of these small units.

f6. APPENDIX

6A. Special cases of galvanometer circuits

Lately there have been several galvanometric
circuits devised to obtain high sensitivity, for
although the limit of sensitivity is clearly defined

by Brownian fluctuations, in practice there are
disturbances present of order of magnitude larger
than that set by molecular motion. For example,
the thermorelay under proper shielding with no
source of e.m. f. but only a fixed resistance in the
circuit of the first galvanometer will be quite
steady to external disturbances. The introduction
of a sensitive radiometric device such as a good
thermocouple in the circuit of the first galva-
nometer, however, invariably so magnifies the
problem of shielding from electromagnetic and
thermal radiations as to make the instrument
less sensitive than is theoretically attainable.
Ising has built a very ingenious galvanometer
which is so small that it lies upon the stage of a
microscope, and the deflections may be observed
to the Brownian limit directly without use of any
other magnifying apparatus. This scheme is still
subject to the difhculties of the relay as regards
external troubles. A few years ago a very
significant suggestion was set forth by Pfund, ~
who proposed a system of underdamped galva-
nometers to be set into resonance by an alter-
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nating current. The proposed advantage was the
well-known lack of sensitivity of a resonating
system to mechanical disturbances, in addition to
its insensibility to any current disturbances of
period different from that of the impressed
current. The problem was worked out under
Pfund by Hardy, '4 and the instrument —the
resonance radiometer —was used very success-
fully in mapping infrared spectra. The device
consists of two identical galvanometers which are
highly underdamped. The radiation falling upon
the thermocouple in the first circuit is interrupted
periodically so that the thermocouple is illumi-
nated for one-half of a period, and darkened the
other half. This produces a current whose
strength rises from zero to a maximum with the
proper timing to set the galvanometer in
resonance. The deflections of the first galvanome-
ter are magnified in the second by a very neat
adaptation of the Moll and Burger relay. (For
complete details see Hardy's paper. ) With no
unusual shielding against temperature drifts or
stray electric fields, it was found possible to
record the swinging amplitudes at magnifications
200 times as high as those possible with the
critically damped instrument. Mechanical vibra-
tions due to motor trucks and the usual building
tremors made very little impression upon the
instrument, despite the fact that it was mounted
directly upon the wall of a basement room, and
no vibration-free supports were used. Hardy
arrived at a sensitivity of some 4X10 " volt
(later corrected to about 4X10 "by Van Lear)
and stated that the instrument had lowered the
Brownian fluctuation limit some 200-fold. This
was, of course a misstatement, as was pointed out
by Czerny, ' who showed that in fact the reso-
nance system was theoretically less sensitive than
a critically damped system, and that the great
sensitivity was due only to the large time of
response: it required 40 seconds in place of the
usual 6 or 7 to attain maximum amplitude.
Czerny pointed out that the instrument magnified
all disturbances which were not mutually inde-

pendent. Subsequently Firestone" carried
Hardy's calculations further to fit the case of an
instrument of rapid response —about 6 seconds.
He arrived at the conclusion that the Pfund
resonance radiometer reduced drifts by a factor
of several hundred, since the actual drift involved

in reading must occur during one swing —i.e., a
half-period —as amplitudes to both sides of the
zero are read, while the total time of response is
some 10 to 11 times larger; but a Moll relay
of equal time of response had only one-half the
Brownian error. Firestone remarked that the
Brownian motion of a swinging system affects the
amplitude rather slowly, so that it will appear to
be much more constant over a short interval, say
3 complete periods, than it will over a longer
interval of some 10 complete periods. Curves
bearing this out have recently been published by
Hardy. " Firestone described a very clever
arrangement of short period which is drift-free.
He built a periodic radiometer using tw'o

critically damped galvanometers, such that the
total response time was only 6 seconds. To reduce
drifts, two condensers are placed in series with
the amplifying circuit which effectually stops all
drifts while passing the periodic deflection. The
Brownian error is of course again greater than
that of a Moll relay, but the experimental error
due to drifts is eliminated. To approach the
resonance radiometer in sensitivity, it is neces-
sary only to take a suflicient number of readings
to make the actual time of reading large. The
specific problem of the resonance radiometer has
been worked in complete detail by Van Lear."
Here he finds that the actual sensitivity of the
resonance radiometer is 1/3 that of a critically
damped instrument, and that of Firestone's
instrument about 1/7.

6B. Observational methods

(a). It remained for Zernike" to work out the
general problem of the statistical influence of
observational methods upon the measured
Brownian error. This leads immediately to the
estimation of the error for different types of
damping. The problem of the effect of damping
upon the Brownian motion has been treated
somewhat more specially by Czerny' and by
Ising, "but they introduced simplifications which
did not permit as complete a statement of the
problem, and which in some instances yielded
misleading information.

The problem of observational method is con-
cerned primarily with a determination of the
correlation of the Brownian fluctuations of
successions of readings taken on a galvanometer.
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A knowledge of this correlation permits an expression of the accuracy of different combinations of
sets of readings, and the best method of selection of readings for different damping cases.

(b). Let us consider a system subject to random fluctuations. Then the mean square value of the
simple case of two Brownian readings X~ and Xm, which are made in an interval of time O~t seconds,
is given by

(Xi+Xm)' =Xi2+Xo2+2XiXo = 2X'(1+p), (94)

where p= XiX&/X' is the correlation coefficient which determines the influence of Xi upon X2. We
wish to calculate p as a function of t so that we can determine the influence of one "kick" upon a
subsequent one. Let us begin by writing the equation of motion of the system where as usual F(t) is
the varying Brownian force:

KX+PX+ aX = F(t}. (9&)

By introduction of the undamped frequency co=—(a/K) &, the damping constant for the critical case
Pp= 2(Ka) & and n= P/Po, our equation becomes

X+2noiX+ oo'X = F(t)/K. (96)

This can be integrated by the method of variation of constants, and for the initial conditions Xo, and
Xo, one obtains the solution

Xo Xi, ] ~t

x(t) = () ge ", —Lie "&')+ (e ", —e "&')+ j {e "&« ' —e "&« 'I F(S)dS, {97)
Xp —Xi Xo —Xi K(~o —~i) ~o

where the ) 's are the roots of the equation

) '—2nok+ coo= 0. (98)

For a system that has been left to itself for a long time {i.e., one for which the lower limit of
integration is now —~ rather than 0) Eq. (97) becomes

1 t

x(t) = Ie "~«s& —e "~«s&I F(S)dS
K()o —) i)

(99)

To obtain the average value for many observations of x(t) from Eq. (99) it is necessary to know the
statistical properties of the unknown force F(t). The initial conditions are imposed that F(l) = 0 at Xo
and Xo= 0. We have immediately then that at Xo (99) reduces to

X,=Xo{&,e-& ~' —)„e-"~')/{&,—)„). (100)

This states that the influence of a Brownian kick on this mean value diminishes according to the same
periodic decrement as is observed for a macroscopic oscillation. To find our general mean of two
readings we multiply by Xo.'

—X 2(~2e—Xgt ~le—X&i)/(~2 "i) (101)

and from its definition in (94) the correlation factor p is
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~t
Fro. 15. Correlation between an observation and its

predecessor (or successor). (From Zernicke. )

The calculations for negative values of t are done
likewise and it is seen immediately that X,=X&,
which states that the correlation factor p is the

same for past as for future events. p= 1 for t= 0,
and falls off to zero for large values of t, according
to the following curve; (Fig. 15).

Next, let us calculate the Brownian error for
the case in which we determine the position of
equilibrium of our system by integrating the
random vibrations over a time interval $. We
wish to find the accuracy of the quantity
1/s J'o xdt, which is to say, our mean square error
is given by

1 s "- 1 s
~-"s ——o"-,„g„„u,„——— xdt =— X(S)X($')dSdS'

o
S-'

o

2X'
p($ —S')d(S —S'),

S o

(102)

assuming that S is large compared with the "periodic" time of p. This is the usual experimental
condition. From Eqs. (102) and (100) we have as our expression for the error

2X' Xo X, 4n 2nt
=—X' =—X', (103)

The factor 2nt/~ is the accuracy factor of the
integration since X' is the mean square error of a
single observation.

As X'/e' is proportional to the time of ob-
servation S, we can write X'/s'=rI a constant,
which we may term the eSciency of the particular
observational method. Physically, rl represents
the number of independent single observations
which must be taken per second to attain the
same accuracy. For the above case of the time-
integral, from (103),

~, =- ~/2nt.

Of special interest is an instrument for which the
damping constant n is very small, and for which
the deflection sensitivity is independent of n {as
in the case of the balance, treated elsewhere in
this paper), for then there is no natural sensi-
tivity limit, if we integrate over a very long
period of time. Turning to the case of the
galvanometer, we can replace our general

coordinate Xby the current s. Then our Brownian
fluctuation as derived above is given by

and
i'= ~kT/Rtn

2nt 2kT
oo s = ~o s =—&2

mS RS

(104)

(105)

It will be noted that in this expression neither the
damping nor the free period of the galvanometer
plays any role. An instrument of this type is the
electrometer, with which one measures the total
charge e= J'idt. This latter satisfies the diffe-

rential

equation

Ld'e/dP+ Rde/dt =E{t), (106)

where E(t) is the Brownian e.m. f. As shown
elsewhere in this paper (since this is merely the
well known Langevin formula for an emulsion
particle), this yields for our mean square
fluctuation in charge (cf. Eq. (53))

e'= 2kTt /R (10&)
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and this is identical with Eq. (105) inasmuch as
e .i t. Accordingly, the integration method of
observation gives the same limit of accuracy as an
electrometer measurement of equal time of
reading. Therefore, the galvanometric system is
most sensitive when used as an electrometer for
then it measures total charge; therefore, no other
observational method will equal integration in
exactness. This latter method will serve as an
excellent basis of comparison, and we can define
as the relative ei%ciency of any observational
method H= g/q, = e,'/~' which we may henceforth
call the efficiency of the system. ~o

One very important fact was mentioned by
Czerny —namely, that from thermodynamics, if
one considers the usual thermocouple-galvanome-
ter system as a heat engine, working at tempera-
ture difference d T between irradiated and
non-radiated portions, the best possible thermo-
dynamic efficiency is hT/T by the second law.
As hT varies with the intensity of radiation,

decreasing with smaller intensity, it is evident
that under the most stringent conditions (for
e.m.f.'s approaching the Brownian limit) the
efficiency becomes alarmingly low. Assuming a
galvanometer system for which the smallest
readable voltage experimentally is 10 "volt, the
corresponding temperature rise in the hot
junction will be about 10 "C, so that the
thermodynamic efficiency is about 10 '/300=3
X10 ".This agrees rather well with estimates
made that the least detectable energy for the
usual evacuated thermocouple is around 5 X10~
erg. Considering, as in Pfund's resonance
radiometer, that the observation time is 40 sec. ,
and that the Brownian limit is )kT=2X10 "
erg ( 20'C), our thermodynamic efFiciency is
2X10 "/40XSX10 =10 'o. This factor gives
only the efficiency as determined from heat
engine considerations, and usual experimental
sensitivity limits are chosen, with no attempt
made to select the best possible case.

(c) In practice we are unable to use the method of integration, unless we are interested in elec-
trometer measurements. For ordinary current measurements, one must replace integration by a
series of individual readings. We shall now calculate the Brownian fluctuation for this type of
measurement. Let us make N observations, on a given position, representing the Brownian fluctu-
ations by Xo, X&, ~ ~ .X„&,taken at times 0, s, 2s, ~ ~ ~ (N—1)s, respectively. The mean square error
of the arithmetic mean is

(Xo+Xi+ ~ ~ X~i)' 2X'
=X'+—Q p(zs)

N N *-i
(108)

and proceeding as we did in deriving Eq (102) by neglecting vanishing terms we obtain¹' $2e—x»—=1+
X' X2 —X& 1 —e "» 1 —e-"» (109)

Recalling from Eq. (100) that X'—2n~h+ u&'= 0 defines the X's we have for the periodic underdamped
case; i.e., n&1, ¹'- sinh ness+ (neo/~') sin a&'s

where co' = id(1 —n, ') &, (110)X' cosh naos —cos co's

and for the overdamped case of n&1, we replace the hyperbolic by the ordinary trigonometric
functions, and obtain

sin n~s+ (neo/a&") sin ~"s,
where a&" = (n' —1)&.

X' cos nous —cos cu"s

We find for valuesofs~0,
N&~ /X2 = 4n/(gg (112)
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Calling our observation time ¹=S, we have for this limiting case

Lim «'- =X'4l/~0.~0 (113)

This is in exact accord with the expression derived in Eq. (105) for the integration method.
«'„may be evaluated for various values of s. If this is done the efficiency H= «P/«'- may be plotted

against s, as in the following curve of Fig. 16 which is taken from Zernike.
It is seen that regardless of damping the summation method remains practically on a par with

integration as long as s& T/2. This result is quite remarkable, for it illustrates that high accuracy
may be obtained in this manner even for very weak damping, although such an instrument is very
poor for a single zero reading. For times of observation separated by as long as one period, however,
H drops to 0.6 even for a critically damped instrument.

The more usual laboratory use of a weakly damped system, however, involves an observation time
of the same order of magnitude as the period. We shall next consider, then, the case of such an
instrument when S, the total observation time, is not large.

The general integral as above gives the squared error

2XQ
«z=—df pGfs

0 O

which reduces, for small values of e, to

2X' 1 —4n'
«' =—2n+ LI —e "cos S~'j .

Sa) a)S
(115)

This function is periodic and the efFiciency H
=«,'/«'- shows sharp maxima at values of S
corresponding to whole periods, for at these
points cos Sco'= 1 is a maximum so that «' is a
minimum. Correspondingly, H is a minimum at
the half-periods where cos ca'S= —1 and «'„a
maximum. As S-+~, H approaches a stationary
value. A graph of H for the value of m=0.02 is
presented below, following Zernike in Fig, 17.

The effect of this changing effectiveness of a
swinging system is immediately apparent if one
considers the accuracy of even a small number of
readings. Here we have a short time interval in
which S=¹where N may be as small as 2. The
error is:

«'~ = ««2= —,'(Xi+Xp)'= ~X'(1+p(s)). (116)

We wish then to make p(s) as small as possible.
For the aperiodic case we saw that p continually
diminished with time, so it would be advanta-
geous to take the two readings as widely sepa-
rated as possible. However, for a vibrating

instrument the value of p oscillates and is a
minimum when our interval S=x/eu', as seen
from the preceding Eq. (115).For small values of
n, the exact formula becomes

«';„=—,'X'[1—exp ( —7incy/co')j (117)

= ~mnX' when expanded.

Therefore the best possible case is the one for
which the periodic error « for two readings is -', n.n
as large as the error for a single reading; for a
system in which n is very small, the gain in
efhciency may be made to be very large. For
example, for n=0.3, ««=0.5«i, or two readings
have only one-half the error of a single observa-
tion.

The advantage gained by thus taking a small
number of readings at the proper intervals is
further borne out if we consider the general case
of a set of m observations taken at uniformly
spaced intervals during the time of one period.
That is to say S= 2m/m~'.
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nb~
lp ts zp~

FtG. 16. Elficiency of the mean of many observations,
taken at fixed time interval S, for various damping
constants. (From Zernicke. )
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e i" 21 sf VT sT~$
FtG. 17. Efficiency of time-integral observation as a

function of the elapsed time S, for a weakly damped
galvanometer. (From Zernicke. )

For very weak damping

1 (4'/m)+sin (2s./m)
nX'. (118)

m 1 —cos (2s/m)

Evaluating this for various values of m gives
the values for B (see Table III). The gain in

TABLE III.
m 2 3 4 5 6 00

H 0.41 0.57 0.62 0.64 0.65 0.667

accuracy is quite appreciable when as few as 4
readings per period are taken; increasing m

thereafter does little good.
(d) Observational accuracy for the measurement

of the dhgerence between equilibrium Positions.
Thus far we have confined ourselves only to the
determination of the accuracy with which a
single point may be known. In practice it is
always necessary to know at least 2 points: first
the zero or reference point, and secondly, the
position of equilibrium or throw with steady
current flowing in the galvanometer circuit.
Essentially we measure the difference between
two positions, and the accuracy with which the
diA'erence is known is at heart the problem with
which we are concerned. The answer in the two
cases of time-integral and a discrete-manifold
set is found instantly. Since the long observation
time for the zero must be followed by an equally
long deflection time, the correlation factor will be
exceedingly small. The mean square error of the
difference of the two integrals will be 2»,', in
addition, the time is also doubled so that, all
told, our effectiveness is reduced to 1/4 the value
for a single point. As remarked above, usually one
is compelled to use a relatively short series of
readings (for reasons of fatigue and expediency).
It is worth while then to leave our optimum case
to calculate the error of the diHerence of two

readings where observations on each point are not
numerous.

Let Xy, Xs ~ X t be the various readings.
For the simplest case of one zero and one de-
flection reading, taken t seconds apart, we have:

» ujfg~g~„gg= 2X'(1 —p{t)). (119)

We want, then, to make p as large as possible;
that is, we desire to make pm1.

For an underdamped system, p attains its
maximum value of e~ "when t= 2x./~', or, at the
end of a whole period. Now, the galvanometer
throw is a maximum at the half-period. It is,
therefore, best to wait a half-period after the zero
reading before closing the circuit to deflect the
galvanometer. In addition, the return swing
carries almost as far to the negative side of the
zero, and the double throw is 1+e " times the
first maximum. Our time of course is doubled.
To calculate the efficiency, we have

((v'/2x) (1+e- ")'
H {difference) = ' " 'ng (120)to the limit

E,im H (difference) = 2/s's =
» (0.81).

This means then that taking into account that
the eSciency of all methods for differences are
at best only 1/4 as high as those for a single
reading, the poorly damped galvanometer, read
with isolated readings under optimum condi-
tions can be about 81 percent as good as that
obtainable under the best possible method. This
high accuracy results from the fact that the
Brownian correlation is so strong at the end of
one period that the fluctuation which it has
produced has changed very little; so that it very
nearly cancels out in taking diHerences in
readings.

It is true that at the end of the return swing the
galvanometer is at a maximum and is not yet
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ready to be used, and one might well inquire
whether or not this would reduce the eSciency of
the instrument. In truth the effectiveness H
~ould be reduced proportionally to the time for a
given e2, but ~2 is also proportional to 1/t, so that
the value of H remains unaltered. This may be
demonstrated very readily. For, if a second zero
reading be taken a whole period after the first
deflection reading, or half-period after the
current is cut off, we may write

difference ( 2XO+Xi 2~ 2)

="X'-X'(2p(t) -kp(2t)). (»I)
For n quite small p(t) =1—2irn, p(2t) =1—42in,

The total lapse of time is 2 periods, so the
efficiency remains the same.

This line of reasoning may be readily adapted
to a calculation of the sensitivity of the resonance
radiometer, and the results of Czerny' and
Firestone" are fo~d to be qualitatively correct.
As stated earlier in this paper, the resonant state
is attained for this underdamped instrument if
the galvanometer be excited during half of the
cycle. For a system of damping constant n, the
amplitude attained after a long time is 1/(1
—e ") that attained by a single impulse. Also, as
we read both ends of the swing, there is no zero
recording to be made. This gives us an unfavor-
able correlation factor since it is a minimum at
values of t equal to a half-period interval; and it
will be recalled that for a periodic case we wish
the correlation to be a maximum. From (101) we
find:

~2 = 2X2(1+e—«) (122)

In addition the time of observation is much
longer; to reach a final amplitude which is 99
percent of the limiting value, the time S=4.6/nod.

For small values of n, then

(4n/a) 4
IIreeen ence =

2(1+e—en)S (1 e—en)2

4 1
=-(0.35), (123)

4,62r2 4

and c difference 21lnX = 2~ difference When WeX2 1

substitute p(2t) in Eq. (119) for c difference

H(t) = 2n(1 —p(t))/rent. (124)

so that the resonance radiometer is only 35
percent as effective as the integration method as
regards observational method. It will be noticed
that this result does not depend upon damping;
but if the time S be reduced to 1.53 n/id then the
final amplitude will be 78 percent of the limiting
value, and H=65 percent instead of 35 percent.
This will be more efficient in lowering the
Brownian limit as compared to a single reading,
but is still short of being as good as two readings
taken under best conditions; for here we can
attain a value of H=81 percent.

There is one further disadvantage of the
resonance radiometer. In addition to yielding a
poor result as regards observational method, it
yields a poor result for the average current
disturbance itself. This limit, set by general
conditions, is 2'2 =2rkT/Rtn and as n is very small
compared to the value of 1 for a critically damped
galvanometer, the resonance radiometer suffers
again in the ratio of 1/n. Van Lear has worked
out the problem of the resonance radiometer in

complete detail, "He considered the first galva-
nometer to be a harmonic oscillator coupled with
an electromagnetic circuit. The fluctuations in

the first system are broken up into their Fourier
components, and thence the fluctuations in the
second circuit are calculated. Van Lear found
that the resonance radiometer's Brownian limit
was about three times as high as that of a
critically damped instrument of equal resistance
and equal time of response. This is in agreement
with the results found above by Zernike. In
addition, Van Lear found that no advantage
is to be gained by departing from conditions of
equal damping for the two galvanometers; and in
particular, the periodic radiometer of Firestone
which uses two critically damped galvanometers
is only half as good as the underdamped ones.

(e). The aperiodic case, The calculations for the
difference of two readings are precisely similar to
those for the periodic case. Here n&1, and p(t)
diminishes continuously with time. Further from
Eq. (119) e2«„——2X'(1 —p(t)), so that the error
increases with time. The deflection X also in-
creases with time, proportionally to the function
1—p(t); so that the relative square error is
proportional to 1/(1 —p(t)),

It follows then that
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TABLE IV.

is~ 1 is~10
t/r 1 p(t) +{t) t/r 1 —p(t) H(t)

which is the Langevin formula, for which the
solution is

Xz = (2kT/P) t. (126)

.15

.25
0.4
0.6
1.0

0.94
0.24
0.47
0.72
0.89
0.97

0.26 0.25
.52 0.50
.59 0.75
.57 1.0
.47 2.5.31 10.0

0.07
0.15
0.21
0.27
0.54
0.96

.93

.93

.89

.86

.69

.30

For a steady current PX= Bz and if the initial
conditions are X=0 for t=0

X(t) = (B/P)zt. (127)

r is the period of the instrument.

Table IV which gives values for st=1 and
zz=10 is taken from Zernike. For the critically
damped galvanometer it will be observed that
the efficiency is a maximum (59 percent) when
the deflection is about 50 percent of its final
value, and when t/r= 25 percent. Moreover, one
must also wait for a time about 0.6r before the
instrument is ready for use again. To calculate
the e%ciency on this basis of total elapsed time
&+0.6r, we find our e%ciency is about 20 percent.

The very heavily overdamped galvanometer is
actually one without a torsion constant. zz is very
large, and the coil creeps forward slowly. Its
equation of motion is simply

mX+PX = F(t), (125)

The Brownian motion will create an error in the
difference of two readings taken at an interval of
t seconds which may be expressed in terms of
current by

(128)

Now the electromagnetic damping constant is
known to be equal to B'/R so z~= 2k T/Rt, which
is the expression obtained for the electrometer.
This is equivalent to observing a time integral
and our relative e%ciency is the best obtainable.

In conclusion, the best theoretical galvanome-
ter is one which is used as an electrometer; in
practice, the resonance radiometer despite its
ine%cient method of observation remains most
free from macroscopic disturbances, and for
poorly protected mountings is most trustworthy.
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