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u, the error in the mean of the n; observations on the mean u, .
s. the S.D. of these n; observations.

)l. INTRoDUcTIQN

OME of the recent advances in probability
and mathematical statistics throw con-

siderable light on the theory of errors. Problems
that arise in drawing conclusions from observa-
tions are essentially statistical and should be
handled as such. Unfortunately the literature on
statistics has received but scant notice from
writers of treatises on errors. In the present
paper we shall attempt to put the pertinent
results of statistics in such a form that they will

be useful for the interpretation of physical data,
Pursuit of the theory of errors is often con-

sidered to be futile for the reason that systematic
errors, suspected or unsuspected, may be so
large as to eclipse any accidental error likely to
occur. It is true that a statistical treatment of the
data obtained from a single experiment per-
formed under controlled conditions can never
disclose the systematic errors in that one experi-
ment. It is only by comparing the results of
several observers that it is possible to form some
idea as to whether all observers were really
measuring the same thing or if, on the contrary,
the systematic errors present in one experiment,
were different from those in the others. Such
comparisons are possible only when the data of
each observer have been correctly treated,
statistically, on the assumption that all system-
atic corrections have been eliminated. For this
reason a working knowledge of the theory of
errors is indispensable to the interpretation of
experimental data. The detection of systematic
errors by statistical analysis has been discussed
and applied by one of the writers. '

' Raymond T. Birge, Phys. Rev. 40, 207-227 (1932); 40,
228-261 (1932).

The branch of statistics that concerns the
theory of errors is called "sampling" or "the
theory of small samples. "The object of sampling
is to make possible an estimation of the magni-
tude and variability of some measureable prop-
erty of a very large number of items by testing
only a portion of them. From the measurements
of the individuals in a random sample of 5, 10,
20, 30 or more items, and from previous ex-
perience with similar items, some estimate of the
mean of the measureable magnitude and of its
variability in the entire lot can be made by
statistical methods of induction. The confidence
that one may place in such an estimate depends
on the size of the sample and on previous
experience with similar items, when such ex-
perience is available. Complete con idence or
certainty can only be approached as a limit by
indefinitely increasing the size of the sample. No
guarantee can be made beforehand as to how
large the sample must be in order that an
estimate shall lie within a specified amount from
the true value'; however, it may be possible to
lay odds beforehand that an estimate will fall
within the specifie range. The theory of sam-

pling furnishes both the methods of estimation
and the odds.

A "frequency curve" is a curve so constructed
that the area included between two abscissas is
equal to the number of items having a measured
quality lying within the range defined by these
abscissas. Since the area of any strip must be
integral and therefore finite, even though the

' The reader may consult J. M. Keynes, A Treatise on
Probability, Ch. 29 (Macmillan, 1921); W. A. Shewhart,
The Econornio Control of Quality, pp. 362, 438 (Van
Nostrand, 1931); Thornton C. Fry, Probability, Ch. 3
(Van Nostrand, 1928); M. S. Bartlett, Proc. Roy. Soc.
A141, 518-534 (1933), especially pages 520 and 521.
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abscissas differ only infinitesimally, it is clear
that the total area under any frequency curve
must be infinite and that its actual construction
would require an unattainable number of
measurements. A frequency curve therefore is an
attribute of a hypothetical and indefinitely large
aggregate, known by the term "parent popula-
tion. " An actual sample, no matter how large, is
finite, and therefore will have not a frequency
curve but a frequency polygon.

As the size of the sample is indefinitely in-

creased and the "class interval" along the
abscissa indefinitely decreased, the frequency
polygon of the sample approaches the frequency
curve of the parent population from which it is
drawn. The parent population and its frequency
curve have the same objective existence as any
statistical limit; hence they can be approached to
any desired degree by the two expedients (a)
taking a large enough sample, and (b) refining
the measurements so that enough figures are
recorded for each item to allow a sufFiciently
small class interval.

In the theory of errors a set of n equally reliable
observations may be considered as a sample of n
drawn at random from an indefinitely large
number v of observations that might be made if
time and opportunity would permit and if the
apparatus would not wear out. This hypothetical
aggregate will be the parent population in the
problem.

If there were no systematic errors present, the
mean of the parent population would be the true
value of the quantity being measured. The
effect of a systematic error is to displace the mean
of the parent population of observations above or
below the true value. This correction, if ever
isolated and evaluated, can be added to or
subtracted from the mean of the parent popula-
tion to give the true value.

The object of making the n observations is to
estimate what would be obtained for the mean of
an indefinitely large number of observations; in
other words, the object is to estimate the
position of the mean of the parent population.
Its exact value remains unknown because n is
finite, As our hopes vanish of ever knowing
exactly the mean of the parent population, we
become increasingly interested in the number of
significant figures in the estimate. That is, if x is

an estimate of the mean ii of the parent popula-
tion, we should like to know what is the chance
that x differs fiom i' by a stated amount. On the
basis of certain assumptions regarding the form
of the parent population, the study of statistics
furnishes the answers to this question and to
several others that arise.

The true value of the quantity being measured
is approached by correcting for systematic errors,
one after another. The effect of accidental errors
can be reduced as far as desired by taking enough
observations. The measurement of each system-
atic correction presents a problem in statistics,
for a correction cannot be intelligently applied
unless its precision is stated.

$2. THE SPECIFICATION OF THE

PARENT POPULATION

The frequency curve for the parent population
will be assumed "normal. " There are several
reasons for this choice. In the first place, for error
theory the normal curve is nearly always an
excellent approximation. Furthermore, several
investigations on non-normal populations have
shown that even considerable departures from
normality do not produce appreciable changes in
many important deductions based on the normal
curve. It has also been established that the
frequency curve formed by the means of samples
drawn from a non-normal parent population is
often much more nearly normal than the
population itself. While there exist several types
of measurement that by nature do not have
normal parent populations, rarely will deductions
based on the normal law fail to be valid.

It is therefore idle to investigate whether a
parent population is exactly normal. However, it
may be worth while to discuss some arguments
that are commonly advanced as proof that the
normal law cannot possibly ever be obeyed. The
most incisive arguments run as follows: (a) Since
only certain discrete values can be recorded, the
probability for all intermediate values is zero.
Therefore the law of error cannot be continuous,
hence cannot be the normal curve, because of the
inherent discontinuous nature of measurement.
(b) The frequency polygon of a set of measure-
ments is nearly always skew and irregular,
whereas a symmetrical and regular figure should
be obtained if the normal law holds. (c) Ex-
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tremely large residuals apparently do not occur,
whereas according to the normal law they should
occur once in a while. When the statistical view is
taken and the normal curve becomes a frequency
curve for the parent population of observations,
the fallacies in these objections become evident,
as will now be explained.

The discontinuous nature of measurement has
nothing to do with the law of error, which is the
specification of the parent population. The step
or least count of the instrument, being finite,
simply has the effect of grouping the observations
into class intervals. Such grouping must always
be accomplished before a frequency polygon can
be constructed: if the instrument did not attend
to this, the computer would have to do it.

It might be expected that the moments of a set
of n measurements would vary somewhat as the
least count and the zero of the measuring scale
are changed, and such is in fact the case. This
effect has been carefully investigated by Shep-
pard, ' Fisher, ' and Wilson s and the corrections
to be applied to the various moments on account
of the finite width of the class interval have
properly come to be known as "Sheppard's
corrections. " These serve to bridge the gap
between a continuous law of error and the
discontinuous nature of measurement. Such
investigations have served to show that the least
count of the instrument should be small enough
so that when a large number of readings (perhaps
a hundred or more) are taken, there will be a
variation in the recorded terminal digits of
around 20 units, for otherwise a considerable
portion of a set of observations is, in effect,
scrapped. An astonishingly large number of
observations may be required to overcome the
damage done by unnecessarily coarse reading or
graduation of the scale.

The appearance of a frequency polygon can be
very misleading. Even when there are many
hundred observations in a set, the appearance of
the polygon may be of little value for inferring
the law of error. Fortunately the adequacy of a
chosen parent population, whatever it may be
and however arrived at, can be tested quanti-

' W. F. Sheppard, Proc. London Math. Soc. 29, 353-380
(1897)", J. Roy. Stat, Soc. 60, 698-703 (1897).'R. A, Fisher, Phil. Trans. Roy. Soc. A222, 309-368
(1921-22).

s E. B. Wilson, Proc. Nat. Acad. Sci. 13, 151-156 (192/).

tatively and objectively by Karl Pearson's chi-
test or criterion for goodness of fit. ' This test
determines the probability that a given set of
observations follows the normal law or some
other proposed form. The chi-test provides the
only decisive criterion, yet it is almost never used
by physicists. One good reason is that at least 500
observations are required in order that confidence
may be placed in the result. ' Even when the test
shows a small probability that the set of observa-
tions came from a normal parent population,
conclusions based on the normal law will usually
be safe.

If the least count of the instrument were
infinitesimal, the normal law would admit the
occurrence of a certain small proportion of very
large residuals. But in practice the least count is
always finite, and this serves to divide the area
under the frequency curve into rectangular strips
every one having width equal to the least count,
and the one of maximum height being centered at
the mean of the curve. The readings that can be
made on the instrument are the abscissas of the
centers of these strips, and if an infinite number
of readings were taken, the number recorded of a
particular magnitude would be the area of the
corresponding strip. Now where the curve
approaches the horizontal axis, the areas of the
successive strips decrease very rapidly because of
the infinitely high order of contact made by the
curve. This will especially be true if the gradua-
tions on the scale are coarse, for unless the least
count is extremely fine there will always be some
outlying strip whose area is much greater than
all the area lying beyond. The abscissa of the
center of this strip will then, in the long run, be

' Karl Pearson, Phil. Mag. 50, 157-175 (1900).This was
Pearson's first paper on the chi-test. Tables for using the
criterion were computed by W. Palin Elderton, and
appeared first in Biometrika 1, 155-163 (1901-02).These,
with additions and examples, are found in Tables for
Statisticians arid Biometricians, Part I, edited by Karl
Pearson and published in 1914 by the Biometric Labora-
tory, University College, London, W. C. 1.Some important
discussions of the chi-test are summarized by R. A, Fisher
in his Statistical 3Eethods for Research Workers (published
by Oliver and Boyd, 1925, 4th edition, 1932).' It is interesting to notice the frequency polygon for
500 measurements of a spectral line made by one of us
(reference 1, p. 210). The chi-test gives P~0.22, which
means that in about 1 out of 5 trials we should expect in
random sampling a larger xs than that here obtained if the
real distribution is norma). This probability is not only
high, but is a result that could never have been deduced
f'rom the mere appearance of the polygon.
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recorded more frequently than all the further

outlying readings combined, which means that in

practice the residuals apparently have an upper
limit. Extremely large residuals will occur once in

a while, but their frequency is much diminished

by the discontinuity of measurement and the
shape of the normal curve. The fact that
extremely large residuals are seldom found
supports the normal law and does not subvert it,
As was pointed out by Pearson' in his original

paper on the chi-test, and as has been clearly
explained by all later writers on the same subject,
it is necessary to lump the tail of a frequency
curve into a single "cell"; consequently slight
disagreements between calculated and observed
frequencies in the tails of the curve are of no
concern whatever, either in making an objective
test (such as the chi-test) of the fit of the curve or
in speculations on the extent to which departures
from normality may invalidate deductions that
are based on a normal parent population. Thus
the last argument is found to be irrelevant.

$3. THE DISTRIBUTION OF CERTAIN PROPERTIES

OF SAMPLES DRAWN FROM A NORMAL

PARENT POPULATION, AND

SQME DEDUcTIoNs

(3a). The distribution of u, s, and z

The normal curve' is fully specified by its
mean tt and S.D. a. If xi, xs, ~, x„are n

observations of equal reliability and x is their
arithmetic mean, the n true errors are defined as
x;—tt—= c; and the n ressduals as x;—x=—vt. By
definition, the S.D. of the parent population is a,
where

a'-= 2(x —t )"/v=Ze'"lv (I)

' The normal curve is sometimes called a Gaussian error
curve. It has been attributed to Gauss rather than to
Laplace solely because Gauss' Theoria Motus Corporum
Coetestium appeared in 1809, three years prior tothe
appearance of Laplace's Theoric Analitigue des Proba-
bstites. But this was not Laplace's first treatment of the
normal curve; in 1774 (Memoires. . . presentes a l'Aca-
demic T. vi, p. 628) he arrived at the normal curve as an
approximation to the hypergeometric series, and in 1778
gf~emoire sur les Probabilities) he dealt further with it and
emphasixed the need of tabulating the normal probability
integral. Accordingly Laplace should be credited with the
normal curve and its integrals rather than Gauss. How-
ever, both men were considerably antedated by Abraham
De Moivre, according to evidence presented in a historical
note by Karl Pearson, Biometrika 16, 402-404 (1924}.
De Moivre arrived at the normal curve and its integrals

The algebraic form of the normal curve is'

y de = Lv/aQ (2sr) je "t'~' de. (2)

The total area under the curve is v, t:he number of
observations (and hence errors) in the parent
population.

The "probable error" of a single one—any one—of the observations is that constant quantity p

that divides the area of the curve into quarters.
It is therefore defined by the equation

f r CO

yde=$ yde=-'. v,
—P —CO

(3)

wherein y has the value assigned by Eq. (2). The
value of p is found to be an irrational fractional
multiple of o, namely,

p = 0,6744897502 a. (4)

as approximations to binomial series in about 1721, and
printed his findings under the title Approximatio ad
Summam Terminorum Binomii (a+b)" in Seriem expansi,
dated Nov. 12, 1733. This seven page pamphlet was
hound into the unsold copies of his Miscellanea Analytica
as a second supplement. Only two copies of this book com-
plete with the second supplement have been reported
extant, but these rare pages have been made generally
accessible by a photographic reproduction in a com-
mentary by R. C. Archibald, Isis 8, 671-683 (1926).
De Moivre himself translated the A pproximatio. . . into
English and amplified it for portions of the second and
third editions of his Doctrine of Chances, published in
1738 and 1756, respectively. This English translation is
quoted in full on pages 567-575 of David Eugene Smith's
A Source Book in Mathematics (McGraw-Hill, 1929j.
The essential parts of this translation are found on pages
14—17 of Helen M. Walker's History of Statistical Method
(Williams and Wilkins, Baltimore, 1929),

9 In this paper, frequency curves will be written in
differential form. y will be used indiscriminately for the
ordinates of all of them. The differential specifies what
sort of frequency curve y is the ordinate of, and the whole
expression gives the frequency in the elementary cell.
Thus in Eq. (2), y de is the number of errors in the interval
e+Ide.

It is an even bet that any one of the v observa-
tions taken at random lies within tta p, for half of
them lie inside tt~p and the other half outside.
Curve (a) in Fig. I shows a normal frequency
curve and the abscissas that divide it sym-
metrically into quarters.

The division of a symmetrical curve into
quarters is called a "quartile" division, and the
distance from the center to the dividing lines on
either side is known as the "quartile distance. "
In the normal curve (tt) of:ig. I, the probable
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the sample. Here v &z &z„hence «„ it;, and i«are positive,
as the arrows indicate.

discussing the precision of Bessel's correction, he
had occasion to find the distribution of s in
samples of n."

Eq. (2) gives the number of errors in the parent
population lying in e~qdei whence the proba-
bility of the coexistence of n errors lying in the
ranges e;&zde; (s=1, 2, ~ ~ ~, n) is

n

LI(df (2z-) J"exp ( —Q e '/2d')d«i des ' ' 'd« ~ (7)
1Fig. 1. (a) The normal frequency curve of errors in the

parent population; its S.D., or square root of the second
moment about the mean, is o. The area under the curve is
the total number of errors, v. The abscissas +p=0,674 o
divide the curve symmetrically into quarters. (b) The
frequency curve of the errors of the means of N samples
of 6 each, drawn at random from the preceding parent
population of errors. This curve is also normal, but its S.D.
is d/&6, hence the abscissas that divide it into quarters
are ~r =0.674 ~ d/g 6. The area under the curve is N, the
number of samples.

This can be expressed in terms of u and s by
noting the relations between errors and residuals
that are exhibited in Fig. 2 and expressed
algebraically by

ei =vi+u

es = Vs+u
error p is therefore the quartile distance of the v

observations from the mean p.
The S.D. s of the sample of n observations is by

definition the r.m.s. residual, so
en—i = V»—i+u

en = Vn+u = Vi V2 —' ' ' —t n i+u.

(8)

The true error of the mean of the sample will be

(6)

s and z can always be computed, but u is un-

known as long as p remains unknown.
Our study of the theory of errors depends

mainly on the distribution of u and s in samples
of n drawn from the parent population. This was
first found by Helmert in three neglected papers
that appeared in 1875 and 1876. He found first an

expression for the distribution of g«P in a set of
1

n measurements. "The following year, 1876, in

"F.R. Helmert, Schlomlich's Zeits. f. Math. und Phys.
20, 300-303 (1875); ibid. 21, 192—218 (1876). Helmert's
derivation is reproduced in Emanuel Czuber's Beobae@uegs-
fehler (Teubner (1891))on pages 147-150.

These follow directly from the definitions. Since
the algebraic sum of the residuals is zero, it is
evident that

=Qv '+nu". = ns'+nu'
1 1

This resembles the formula for the moment of
inertia of n points of equal mass about p. s is the
radius of gyration about z, and u is the distance
from p to f.

The Jacobian of the transformation (8) is n, so
that dei de& ~ den becomes n du dvi dvs ~ dvn i,'
whence the probability of the coexistence of the n
residuals vi, vs, ~ ~ ~, vn is

"F. R. Helmert, Astronomische Nachrichten 88, No.
2096, 122 (1876). This is given in Czuber's book on pages
159—163. References to Helmert's work are often in-
accurately given.
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y dtt dvi dvs ' ' 'dv~ i=st/1/frqf (2')]"exp {—ns'/2&r' —ntt'/2o')du dvi dvs 'trav» i. (10)

By a clever transformation, Helmert changed the element of volume from dl dvi dv2 ~ dv„ i in the
residual space to the element dtt ds in the N, s space. A shorter method than Helmert's is the geo-
metrical one introduced by Karl Pearson, ' which for brevity we shall follow. Since the integral of the
right-hand side of Eq. (10) over all values of u, vi, v2, , v„ i is convergent, integration with respect
to vi, v2, ~, v„ i can be accomplished by using an ellipsoidal shell in the orthogonal vi, vs, ~ ~, v„ i

space in place of the rectangular element dvi dv2 dv„ i. The volume of the thin ellipsoidal shell
defined by the two surfaces over which (v, '+v~s+ +v„s) 1 has the pair of constant values n&(s~ ds}

tt —1
is 2n1&" 0/I' —rtl&" '-'."" 'ds —a result that is known from studies in hyper-space. Now since

2

the right-hand side of Eq. (10) up to the differentials is constant over either surface of the shell that
has just been described, it can be integrated throughout this shell simply by replacing dvi dv2. dv„ i

n —1
by 2'&&" "/I' —rti&"-2' s" ." ds. Multiplication by X, which denotes an indefinitely large

2

number of samples of n drawn at random from the same parent population, will then give

y dtt Cs = XnL1 'fr& (2') ]"I 2 ' &&" ", I'L-,' {rs—1)1 I
tt'&" '-'/s" ' exp ( —ns'/2 fr' —ntt"-/2 os}dtt &t's

E' st
s tas/stets aItt

op (2')

stl(yt —0
(S/ o) t -"e—ttgg/2as dS

I'L-', (n —1)j2'&" s/a

for the frequency distribution of u and s. y dl ds
is the number of samples that have S.D. in the
interval s+-,'ds and means in the interval u&-', du

measured from the mean tt of the parent popula-
tion. n is the number of observations in each
sample, and N is the number of samples. "

Eq. (11) is a very important one. In the first
place, by integrating it with respect to s from 0 to
fxf there results

y dtt =/LE/ n,/ag {2')je """"-"cfu (12)

for the number of means having errors in the
interval u*-,'du, Eq, {12) is another normal
curve, and its S,D. is fr/g n. This is an important
property of samples from a normal parent
population. The probable error r {or the quartile
distance) of the mean of n observations is

"Instead of using the actual volume of the ellipsoidal
shell, it is perhaps more convenient simply to say that
the volume contained between the two ellipsoidal surfaces
must be some constant times s" 'ds, since it is in a space of
n —1 dimensions. Then from Eq. (10)

y dig ds =const. s" "- exp ( —ns'/2ag —nsfg/2fy'-1 dn ds

will be the frequency distribution of n and s if the factor
of proportionality is properly chosen. This factor can be

found by equating ft/itft f J y duds to unity; ita

value so determined and inserted back into the expression
for y dn ds gives Eq. (11) immediately.

accordingly p/v'rt; that is"

r =0.674 ~ ~ fr/g n. (13)

A frequency curve for the means of samples of 6
is given as Curve (b) of Fig. 1. The vertical lines
with abscissas &r divide its area symmetrically
into quarters. It is an even bet that the mean of st

observations does not differ from the mean of the
parent population by more than r.

In the second place, integration of I from —~
to +~ in Eq. (11) gives

Xn«" 0 s ti —2

yds= e
—tt tt&/sty&ds (14)

I'L~~(n —1)j21&" s&a fr

for the number of samples having S.D. lying in
the interval s+2ds and with x lying anywhere.
This is equivalent to a result obtained by
Helmert" in 1876, and for this reason it will be
called "Helmert's equation. " A graph for n =6 is
shown as Fig. 3. Karl Pearson" has discussed the

"A table showing the factor 0.674 /g n to five
figures, for n running from 1 to 1000, was published by
Winifred Gibson, Biometrika 4, 385-393 (1906). This is
reproduced as Table V in the Tables for Statisticians and
Biometricians, Part I. Table 26 in the Smithsonian Physical
Tables shows 0.674 /Q (n —1) to four figures up to
n=99, whence the factor 0.674 ~ /qln can be read if
one takes care to increase the argument by unity.

'4 Karl Pearson, Biometrika 10, 522-529 (1915).
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Qnl(r-0 /3$ r-2
-(r/7&( rs d

p 21(r-3)o
n=6

¹isthe number of samples; n is the number in each sample
and is here equal to 6. The mode comes at s/a=0. 8165.
The median comes at s/+=0, 8516. The mean comes at
s/» =0.8686.

geometry of these curves. They are decidedly
skew when n is small, but as n increases they
become normal about the point s=o with S.D.
o/& (2n), as Pearson showed analytically and as
is exhibited graphically in Fig. 4. Each full line
curve is the true graph of Helmert's equation,
while the corresponding broken line is a normal
curve of S.D. o/Q (2n) so placed that its center
(peak) comes at the mean s of the full line curve.
The approaching coincidence of the full and
broken curves with increasing n shows how
Helmert's curves lose their skewness and become
normal with S.D. &r/Q (2n).

The mode (maximum) is at

S= o L(n —2}/n J&m(r(1 —1/n —1/2ns —~ ~ ~ ). (15)

The mean (first moment of area) is at

s= syds/ yds
0 0

= a (27r/n) &/B[-', (n —1), 2i-+a (I —3,'4n
—7 /32ns — ). (1(7)

The last parenthesis comes from applying the De
Moivre —Stirling approximation

n!= (27m) &(n/e) "(1+1/12n

+1/288n' —139/51840ns+ ~ ~ ~ ) (17)

/'l'X

/
/

/
r i it mrdlrr

i,i mern

8/er

FIG. 3. Frequency distribution of the standard deviation
s in samples of 6 from a parent population whose standard
deviation is o.

TABLE I. The tsedias a/f of the standard deinatsos fre!Isescy
carves. o/f is defined by

f

r/�/
sl(r-0 S r-e

e ""/~'ds
(s—I) I, , y (19)

Comparison with the mean and mode.

Median Mode Mean
fa —1

n r// r ~' [(a -2)/&&) r(2 r/a) I/Bl —.I)2

2 0.4?6 9363 r 0 0.564 1896 r
3 .679 7782 0.577 3503 r .723 6012
4 .769 0862 .707 1068 .797 8846
5 .819 3527 .774 5967 .840 7487

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

.851 6120

.874 0808

.890 6326

.903 3347

.913 3911

.921 5509

.928 3048

.933 9874

.938 8347

.943 0191

.946 6671

.949 8761

.952 7207

.955 2598

.957 5399

.959 5989

.961 4675

.963 1706

.964 7297

.966 1620

.816 4966

.845 1543

.866 0254

.881 9171

.894 4272

.904 5340

.912 8709

.919 8662

.925 8201

.930 9493

.935 4143

.939 3364

.942 8090

.945 9053

.948 6833

.951 1897

.953 4626.955 5331.957 4271

.959 1663

.S68 6267

.888 2029

.902 7033

.913 8749
,922 7456

.929 9598
935 9418
.940 9825
.945 2877
.949 0076

.952 2538
,955 1115
.957 6464
.959 9103
.961 9445

.963 7823

.965 4507
,966 9721
.968 3652
.969 6456

49 .982 8634 .979 3792

75 .988 8337 .986 5766

.984 6022

.989 9609

to the factorials that arise from the beta
function. "

The median 8 of one of these curves is the
abscissa that divides its area into halves. This
abscissa will be some multiple of o, say o/f,
which by definition will satisfy

0f
r// OO

yds=' yds=-,'N,
0

(18)

wherein the integrand is given by Eq. (14}.The

- t'"-2 'I"2.—t'
1n —2n —4n —6 64 2 g 2 'J

n even
a n —3n —5 n —7 5.3.1 a(n —2)!
1n-2n —4n —6 5 3 1 (n —2)!—————~ ~ ~—— n odd2n —3n —Sn —7 4 2 2r i&s-3

I(2.)
These products can be derived from the recursion formula
I'(s+I) =n I'(s), which leads to

(n —2)!Qs
l i (s I )j=

2 „- t-1 (-Lk(n-3)j' s odd
since I'(1)~ Q a.
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upper limit can be found by inverse interpolation
in the Tables of the Incomplete Gatnnta Function. "
These calculations have been made for us by
Lola S. Deming, and are given in Table I,
together with the abscissas of the mean and
mode. The positions of the mean, median, and
mode are shown graphically for n=6 in Fig. 3.
Clearly, as n increases, the mean, median, and
mode all approach the value cr, as is already
evident from the discussion of Fig. 4.

In the third place, it is evident that the
distributions of u and s in Eq. (11)are completely
independent; in any sample u may be large and s
small, and conversely, This is the fundamental
reason for the difficulties that are encountered in

attempting to find the true mean tt and the
probable error of i when the only information at
hand is that provided by the sample itself.
These difficulties disappear as n increases, as
will be clear from a later section. The inde-
pendence of u and s is a property peculiar to
samples drawn from a normal parent population.
This property does not hold for a non-normal
distribution.

The fourth resul t to be derived from the
simultaneous distribution of u and s is the
distribution of u/s, with s lying anywhere
between 0 and ~. u/s can be thought of as the
distance from the mean of the sample to the
mean of the parent population measured in
terms of the S.D, of the sample. The distribution
of u/s was first found by Student" in 1908. To
accomplish this he needed the distribution of s.
Unaware of Helmert's work, Student established
the distribution of s beyond reasonable doubt by
an ingenious empirical process. Then after
proving that there is no correlation between u

and s, nor between u' and s', he assumed that u
and s are independent, and proceeded by the
following method to find the distribution of u/s.

"Tables of the IncontPkto Gatnrna Fnnction, edited by
Karl Pearson, published by His Majesty's Stationery
Office, Imperial House, Kingsway, London %.C. 2. (1922).
The incomplete gamma function is defined by the integral

f1~I', (n) J x" 'c *dx.
0

In the same symbolism the complete gamma function
would be I' (n), but for brevity and by convention we
drop the subscript ~ and write simply I'(n). The left-hand

fn -lh t' In —li
side of Eq. (18) is N P,

L 2 J/ I'(
2 j, where o n/2p.

"Student, Biometrika 0, 1-25 (1908); 11, 414-417
(1915-17).

dN

6s

Ftc. '4. Frequency distribution of the standard deviation
s in samples of n from a parent population whose standard
deviation is o,

Nnt& -»
y ds — c-as&na& its

2t(a—wo

y tfs — c-n( ~-inlai ds
Ngn
op ir

N is the number of samples. s/o is the abscissa of the
center of area for a particular full line curve. These curves
illustrate the mode approaching the mean and the fre-
quency distribution of' s becoming normal with standard
deviation o/(2n) I, as n increases.

In Eq. (11) let u/s be replaced by z. Then if s
and z be used as orthogonal axes in place of u and
s, the elementary volume y du ds becomes

y s ds dz, so that the simultaneous distribution of
s and z is

y ds dz=
(2s.)I'H(n —1)J2&'" "o'

~ (s/o)~ 'e '»'" '&a+*" sdsdz. (20)

Integration of this with respect to s from 0 to
+& gtves

N
y dz= (1+zs) I "dz (21)

Bt $(n —1), ,'-j
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9N

e n-(

'Studentz Curve

,/j

9

-e -e ()

9H

V

N

Cr4
~L

.9N

F(c. 5, Student's distribution of s —=n/s,

yd = (1+se) 1'dz.

'(—')(2
—————-Normal distribution of S.D. 1/g tn,

yds=NQ {tn/2n)e —&~" ds, tn=n —1, n —2, n —3.

The curves are plotted for n=5. The normal curve of
S.D. 1/{n-3/2)l is not shown because it lies so close to
Student's distribution that it would cause confusion.
The area under all curves is N, the number of samples.
n is the number in each sample. s is the distance from the
mean of the sample to the mean of the parent population
(the true value), measured in terms of the S.D. s of the
sample.

1/(n —3/2}l will fall very close to Student's
distribution, especially near the center; in fact
such a curve could not be shown on the same
figure without confusion and so has been
omitted. The agreement in the quartile distances
of the two curves is shown in Table II, which will
be needed later.

(3b). The u,s frequency surface
The simultaneous distribution of u and s is

important not only for the four conclusions that
have already been deduced from it, but also
because it is the equation of the "te,s frequency
surface" —a surface whose altitude y on the
orthogonal axes I and s is given by Eq. (11}.The
elementary volume y dte ds is the number of
samples whose errors fall in the range u~~tdte
while their standard deviations fall in the range
s+-,'ds; consequently, by integration, the volume
erected on any closed figure in the u, s plane is the
number of samples whose errors and standard
deviations fall simultaneously within the ranges
defined by the boundary of the given figure. The
total volume under the surface is N, the number
of samples. The authors have found this surface
to be extremely valuable in describing certain
properties of small samples.

Because of the complete independence of te

and s, all plane sections u = const. on this surface
will be skew curves similar to the curve defined

for the number of samples having z in the range
z&~sdz and any S.D. s whatever. This is called
"Student's distribution. " The most important
property of this equation is the absence of (r.

Student's 1908 paper was a powerful stimulus to
the theory of sampling, not alone for the distri-
bution of te/z but for the distribution of s itself,
since not until long afterward was Helmert's
prior work discovered by statisticians. "

Student's curves are symmetrical in z, as
would be expected, since for any value of s, u

is as likely to be positive as negative. As n
increases they become normal near the center,
with S.D. 1/(n —3/2) &. The full line curve in Fig.
5 is Student's distribution for n= 5. The dashed
ones are the normal curves of S.D. 1/(n —1)&,

1/(n —2)l, and 1/(n —3)&, for comparison. The
figure shows that a normal curve of S.D.

Karl Pearson, Biometrika 23, 416-418 (1931—32).

n small, about 10

FrG. 6. The frequency surface

n larger, about 30

y dn ds=[ Ngn
e—till le dn

Lel (2n)

nl (~—)) / 9$ e-9
X e- in (

el�+�)&de

P 2j(a—3)e
2 J

illustrated by sections. As n increases, the volume becomes
more and more concentrated about the point «=0, s=e.
The total volume is always Ã, the number of samples.
The 9=const. curves are always normal with S.D. =e/Q n.
The n const. curves approximate normal curves with
S.D. =e/Q (2n) as n increases sufl|ciently.
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by Helmert's equation, which has already been
discussed. Fig. 3 is then typical of any of these
curves. They will all have the same mode, mean,
and median that have been found in Eqs. (15),
(16), (18), for Helmert's equation. As n increases,
the mode, mean, and median approach coinci-
dence with the value a while the curves lose
their skewness and become normal with center at
s = 0 and with S.D, 0 jQ (2n).

The s= const. curves will be normal, all with
center at u =0 and with S.D. a/& n. Clearly, as n
increases, the u, s frequency surface becomes
more and more concentrated about the point
n = 0, s = a. Two u, s frequency surfaces are
represented by sections in Fig. 6. The one on the
left is for a small value of n and the one on the
right is for a comparatively large value of rs.

tion is improbable. To be more specific, there are
certain tests which determine the probability
that the given sample could have been drawn
from a suggested parent population —that is, a
parent population having a proposed mean and
S.D. These various tests will not all give the
same answer to the problem, in fact at times they
may diRer so widely that a suggested hypothesis
will be accepted on the basis of one test but
rejected by another. Such a situation is, of course,
a difficult one, but it is apt to arise when dealing
with small samples. The larger n is, the finer will
be the distinctions that can be drawn between
one hypothesis and another, and the closer will
all tests agree. In the limit, as n becomes infinite,

(3c). Tests for hypotheses concerning the parent
popu1ation

Since the frequency surface for a normal
parent population is completely determined when
its mean p and S.D. n are given, it is sufficient
in our problem to state that the object of making
n observations is to enable something to be
conjectured regarding the mean or the S.D, , or
both, of the hypothetical indefinitely large
number of observations that msght be taken and
from which the n observations constitute a
sample. By keeping in mind the u, s frequency
surface it is possible to make certain objective
statements regarding the parent population from
which a sample is drawn.

As long as the parent population remains
unknown, the position of a sample in the u, s
plane remains unknown so far as its u coordinate
is concerned, The S.D. s and the mean x can be
computed for the sample, but the error u = x —p
obviously cannot be computed, for y, is unknown.
Moreover, on account of the independence of I
and s, the known value of s gives us no clue
regarding the value of u; however, it may help us
to lay odds on any specified range within which u

might be found.
Since the same sample can come from many

sources, the exact parent population cannot be
determined from the sample. On the other hand,
considerations of the ts, s frequency surface are
often very helpful in deciding whether a sug-
gested hypothesis regarding the parent popula-

/1 $1

A 0 8

Fic. 7. Contours in the u, s plane. A sample of S.D. s
and of error u can be plotted in the u, s plane. The sample
point (u, s) lies on the four contours shown:

jul =const. Js f

=—fu/s[ =const.
s =const. A =const.

the sample becomes identical with the parent
population and any proposed hypothesis can be
decided with certainty. However, n is for
various reasons usually limited to a small integer,
and the problem is to learn how much can be
safely inferred from such a sample.

By proposing values of Is and 0, a u coordinate
for the sample is provided for testing purposes,
and the sample may be placed at the point
(u, s) in Fig. 7, and certain conclusions drawn.
The volume of the u, s frequency surface lying
outside any one of certain contours that pass
through the point furnishes a test of the hypothe-
sis.

Through the given point in the u, s plane there
can be drawn five contours that divide the



132 EDNARDS DEMING AND RAYMOND T. BIRGE

volume symmetrically each side of the s axis.
They are

(22)

(23)

(24)

+tt =const. ,

s = const. ,

+s =u/s = const. ,

b = (S/o}"-2 eXp f—)n(tt2+S2)/o25
= const. , (25)

) = (s/o)" exp f—gn(tt2+s2 —o')/o'5
= const. (26)

The first three are straight lines extending to

infinity; the last two are oval closed curves
surrounding the highest point (tt =0, s
=crf(n —2)/n5& of the volume defined by Eq.
(11).Only the s contours are independent of o.

A certain fraction of the volume lies outside the
symmetrically pla~ tt contours AA and BB;
this fraction is the probability of drawing a
sample of n items having an absolute error in
their mean greater than the proposed value of tt.
This fractional part of the volume can be
computed easily from a table of the normal
probability integral. Its value is

Qn n l{»—I) co»—2

P„=2 e-n 2/242 dl. s
e
—n»2/2((2 dS.~(2 ) . rg(n —1)52l{ -»o,

Qn ((/ {a /& r()

=2 e """-'"dtt =1—g (2/s} e-I"dt.
op (2)r} 0

(27}

If P turns out to be small, say 0.01, then only once in 100 trials could the mean of the sample be
expected to differ so widely from the mean of the proposed parent population; in such a case the
hypothesis would immediately be placed under suspicion, but it cannot be definitely rejected until
other tests have been made and the circumstances carefully reviewed. On the other hand, if P„ turns
out to be fairly large, say 0.2 or higher, then in at least 1 trial out of 5 a greater error would, in the
long run, be obtained, and there would be no grounds for rejecting the hypothesis on this criterion.
The test just described will be called the "tt test. "

The upper limit in the last integral of Eq. (27) is the ratio of tt to {r/Q n, i.e., the ratio of tt to the
S.D. of the means of samples of n. In this form the value of P is easily found from Sheppard's Table. "
If the form of the integral in Eq. (27) is changed so that

r(//{2((2/»)

P =1—(2/$2r} e "dt,
0

(28)

the upper limit becomes the argument in various other tables of the normal probability integral. "The
upper limit could also be made to depend on the ratio u/r with an attending increase in convenience
for some problems; thus,

)4 W. F. Sheppard, Biometrika 2, 174-190 (1902). This
table is repro{fuced as Table II in Tables for Stotisticio»s
o»d Bionectricio»s, Part I. The upper limit in the integral
of Eq, (27) is Sheppard's x, and our P is his 1-rs or
211-k(I+ )j

24 The first table of the normal probability integral was
computed by M. Kramp and published in his A»olysc
dcs Rdfmctio»s, pp. 195-206 (Strasbourg, 1789). This
forme{f the basis for all tables down to 1898, when James
F. Burttess in the Trans. Roy. Soc. Edinburgh 39, Part II,
pp. 257-322 {1898)tabulated the integral in Eq. (28) to
15 decimals, together with first and second differences,
the argument being the upper linut of this integral and
proceedinft in steps of 0.001 from 0 to 1.499 and then in
steps of 0.002 from 1.500 to 3. Shorter tables, based on
Burgess', are given in B. O. Peirce's A Short Talc of

I»tcg rais {Ginn and Company), in the Smithso»ia»
Pkysicol Tables (pp. 56 and 57 of the 7th and 8th editions),
and in many texts on the theory of errors, least squares,
and statistics. Notable also is the Kelley-Wood table,
Appendix C of Truman L. Kelley's Statistical jrfetkod
(Macmillan, 1924), where the upper limit of the integral
in Eq. (28) is tabulated with $(1-P„) as argument in
steps of 0.001 from 0 to 0.499. One of the handiest tables
for P» are Tables I and II in R. A. Fisher's Statisticat
j/Iethods for Rcscarck I/I'orkcrs (page 79 in the fourth
edition), where «/{o/Q») is listed to six decimals for values
of P„proceeding in steps of 0.01 from P„~0.01 to P„~1.00,
and also for P„~10 ', 10~, ~ ~, 10~. It is interesting to
note that the "Diffusion Integral" of Table 31 in the 7th
and 8th editions of the S»sithso»ia» Physical Tables is
just ouf P».
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u/r u/r

P~= I —0.674 {2/s.)& e &" "'"'/'" dt=1 —{2y/g s) e ~'" dt
0 0

yu/r

= I —(2/g s) e—"tft,
0

(29)

wherein y=0.674. ~ ~ /&2=0. 476936276 ~ ~ . The probability integral was first tabled with u/r as
argument by Encke s' and this form has been adopted by several later writers.

The necessity of using tables of the normal probability integral is to a large measure obviated by
Fig. 8, which shows closely enough for most purposes the chance P of the occurrence of an error (in
the absolute sense) as great as or greater than given multiples both of the S.D. (or r.m.s. error) o/g rt

and of the probable error r =0.674 ~ a/g rt.
Tables of the normal probability integral generally tabulate the t'rtternal portion of the area under

the normal curve, that is, the unshaded portion of the area in the upper right-hand corner of Fig. 8.
This internal area is to be subtracted from the whole area (unity) to obtain the external portion,
which we designate by P„.The reader should note carefully that in the headings of some tables, the
letter P is used for the internal portion of the area, and is then just the complement of our P„.

The other contours in Fig. 7 provide other tests. Thus, the fraction P, of the volume that lies above
the s contour EE is the chance of drawing a sample of n having a S.D. greater than s. This leads to
another type of probability integral, the incomplete gamma function, which has been tabled by Karl
Pearson and his staH. "From Eq. (11) the fraction of the volume above EE in Fig. 7 is

Qn std(n —0 14 e

P = e—li ll /s EF du r(h ltd /sd

oQ {2s.) I"P(rt —I)j21~" tier ~, K j
st l(n —1) s e—s

=1- !(shC(h, ,'. „
rg{~-I)j21~.—&.J. k&J

(30)

wherein t/=ns'/2o', and I'„and I' represent the
incomplete and the complete gamma functions. "
Here it should be noted that the ratio of s to ~ is
required in order that this integral can be found,
but no value of tu is needed, If P, is small, there is
an equally small chance that a sample of S.D. as
large as the known s could have been drawn from
a parent population having the suggested S.D. ~,

"Encke, Berliner Astronomisches Jahrbuch fur 1834,
pp. 249-312 (1832). The tables on these pages are repro-
duced in Encke's Astronossische Abh/sndttsrtgert Vol. 1, No.
7 (Berlin, 1866). Kramp's tables (see preceding footnote)
formed the basis for Encke's computations. Abbreviations
of Encke's tables are given in several more recent books,
among which are T.W. Wright's Adgtssh/test of Obserootio»s
(Van Xostrand, 1884; revised by J. F. Hayford in 1906),
David Brunt's Combirtatiort of Obsero/stions (Cambridge
University Press, 1917), W. W. Johnson's Theory of Errors
and Method of est Squares (John Wiley, 1912), A. de
Forest Palmer's Theory of Mcssstrernents (McGraw-Hill,
1912), The Srsithsonion Physical Tabies, page S7.

and the interpretation is that the hypothesis, as
far as a is concerned, is unlikely. If P, turns out
to be nearly unity, it is practically certain that if
the suggested o were the true value, the S.D.
of the sample would have been larger than that
observed. Hence the suggested value of o would
again appear unlikely. When P, is anywhere near
$, there is no ground for rejecting the hypothesis
on the basis of this criterion. This test will be
called the "s test. "

Instead of using tables of the incomplete
gamma function for calculating P„ it is usually
easier in this work to use tables for the chi-test. s

In the chi-tables, P(y') depends on two argu-
ments, x' and the number of "degrees of freedom. "
P, will be identical with P{g') if ns'/o' replaces x'
and if e—1 be taken for the number of degrees of
freedom. In Elderton's table the number of
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degrees of freedom is denoted by n' —1, and in
Fisher's table it is denoted by n. The identity of
P, and P(x') is more than a mathematical
coincidence, for it turns out in studying the chi-
test that ns'/n' actually is x' for n observations
made on a single magnitude —but we cannot
pursue the matter further here, Besides the chi-

tables, another short cut to calculating P, is
possible when n is around 20 or more, for then the
normal curve of S.D. ~/g (2n) is a close enough
approximation to Helmert's equation near the
mode, as was learned from Fig. 4, and a table of
the normal probability integral can be used to
ascertain whether the sample is unusual. For
smaller values of n this approximation may not
be close enough.

A third criterion comes from the z contours,
CO and OD are drawn making the angles & arc
tan u/s with the s axis. The fraction P, of the
volume lying outside these contours is the
probability of drawing a sample of n having a
ratio of u to s greater than the ratio arising from
the proposed u and observed s. The calculation of
P, leads to a third type of probability integral,
the incomplete beta function; however, the
special type here encountered is generally known

as "Student's integral, " since it is simply an

integral of Student's distribution and Student
himself prepared rather extensive tables. "From
Eq. (21)

2
P, =1— (1+z') &" dz. (31}

8(-,'(n —1), g) p

P, is the fractional part of the area lying beyond
~z under Student's distribution of z (Fig. 5),
just as P„ is the fractional part of the area lying
beyond +u under the normal distribution of u,
and shown shaded in the upper right-hand corner
of Fig, 8. For the calculation of Student's integral
it is not necessary to postulate a value of e, since

P, is simply the probability that a sample of n
will fall outside a proposed pair of z contours, and
these are independent of o. Probably the handiest
scheme for looking up the value of Student's
integral is with the nomograph devised by V. A.
Nekrassoff~ and reproduced as our Fig. 9 with

the kind permission of the Bell Telephone
Laboratories. The curved portion of the zg (n —1)

~ V. A. NekrassoII, Metron 8, No. 3, 9S-101 (1930).

scale will give better results than the straight
portion, which it supersedes over a short range,
but: both the curved and straight portions will
give practically the same results.

The reader familiar with Fisher's methods will
realize that the z test here described is equivalent
to his t test for the significance of the mean of a
single sample.

A very small value of P, signifies that the
sample has an exceptionally small value of z;
thus, on the average, only once in 1000 trials will
u/s (=—z) be so large that P.=0.001. In such
cases either the proposed error u is unusually
large or else the S.D. s of the sample is accidently
very low. Evidently, then, if we reject the idea
that the error in i is as great as the proposed
value of u every time P, turns out to be small, we
shall occasionally reject a perfectly good hy-
pothesis, for not only will the error in the sample
actually be large sometimes but also the S.D. s
will occasionally be unusually small. When,
however, P, is closer to unity, say 0.2 or greater,
the sample is not unusual, and the interpretation
is either that u is not exceptionally large or that
if it is, then s is also. In such a case it would
evidently be unwise to conclude that the error in
x can easily be as great as the postulated value
of u unless there is good reason to believe that
the S.D. of the sample is not unusual.

If the S.D. of the sample happens to be
exceptional„ the u and z tests will give different
results regarding the proposed value of u, and it
is the latter test that will be misleading. Without
even a guess as to where a lies there is no way of
surmi. ing whether s is or is not extraordinary and
the z test will accordingly be hazardous when
considering the error of the sample. On the other
hand, if there is some fairly definite knowledge
concerning cr, the u test can be applied; the z test
is in this case irrelevant except that it serves as an
indication of whether the S.D. of the sample is or
is not extraordinary. If the sample is not
exceptional, the u and z tests will indicate
substantially the same conclusions; and con-
versely, if the sample is exceptional they will

disagree.
This has an important bearing in those

problems in physics wherein, having given the
mean x and the S.D. s of n observations, we seek
merely the probability that the error in 7 could
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be as great or greater than a proposed error tt; in

other words, where we seek the probability that
the given sample could have been drawn from
some normal parent population having its mean
at ts(=X —tt) and having any S.D. whatzoer. This
is a natural question to ask, especially when
there is no information at hand concerning o.
Now since o is not needed for the z test, it might
seem that here is a criterion peculiarly adapted
to the problem. Unfortunately, however, this is
not so. For although its value may be unknown,
nevertheless the parent population does have a
certain S.D., and as has just been learned, it is
necessary to have some notion what this S.D. is
before the proposed error tt can be judged with
confidence on the basis of the z test. Evidently,
then, it is impossible to make any progress
without postulating some value of r, and all

conclusions respecting the error, whether drawn
from the tt or the z test, will depend on this
postulate.

The z test simply tells whether the value of
tt/s obtained in a given sample is extraordinarily
large or small, and for this, it is, of course,
perfectly valid. Usually, however, we are more
interested in knowing whether tta—a x —ts is ex-
ceptionally large or small, and the trouble with
testing z = tt/s is that z expresses tt in units of s,
which is itself a variable, being subject to the
fluctuations of sampling according to Eq. (14).

Careful considerations of the u, s and z tests
will generally disclose about all the information
concerning the parent population that the sample
alone is capable of giving. Any one of the three
tests by itself may be misleading, because they
all possess an inherent weakness owing to the
fact that the contours on which they depend
extend to infinity.

An important contribution was made by J.
Neyman and Egon S. Pearson" when they
developed a single test depending on a unique
family of closed contours for the probability
associated with a proposed parent population.
They devised for this purpose the X contours, and
the test depending on them will be called the
"X test. "Along a X curve the ratio of the altitude

ss J. Neyman and Eqon S. Pearson, Biometrika 20a,
17$-241 (1928). The duLgrams and tables published by
Neyman and Pearson, together with remarks on their use,
will be found in Tabfss fm SMisticiorss lsd Biossstricians,
Part II.

at any point of the tt, s frequency surface to the
maximum value that it can be made to take (by
putting it=0 and a=s) remains constant. The
fraction of the volume under the tt, s frequency
surface lying outside the X contour drawn through
the point (tt, s) is

ni"
P~=

4 (2s)1'$$(n- I)]2&&" i~0'

~ (s/o) &—i z-«n&s&&&s+&s& dts ds, (32)

the integral being taken outside the X curve.
Neyman and Pearson published values of P& as a
function of n, tt/o, and s/o. By means of their
diagram and table the k test is as easy to apply as
any of the others. %hen Pq turns out to be small,
the hypothesis respecting ts or 0, or both, appears
questionable. The diagram published by Neyman
and Pearson enables the computer to ascertain at
a glance just where the trouble lies when P»
turns out to be small.

A fifth test is provided by the 4 contours of Eq.
(25), but the difference between Ps and Pi is
insignificant, and there is a theoretical reason
why the X contours are better suited to the
purpose. The b contours are curves of equal
altitude on the tt, s frequency surface, but for
small values of n they would not be curves of
equal altitude on a u, s' or on a N, s' frequency
surface. But the significance of the X contours is
always the same, regardless of the coordinate
system. As n increases, the b and ) contours
approach coincidence; in fact at n = 10 they are
already very close together.

The significance of each test depends not only
on the value of P (P„,P„~ ~ ~ ) that is found, but
also on how much is known a priori regarding the
parent population, A hypothesis regarding ts and
o cannot be accepted merely because the tests
give high values of P, for it may seem wise to
abandon this hypothesis in favor of one that
leads to smaller values of P but which is a priori
more logical or has a more rational basis. For this
reason considerable caution must be exercised
before occepting a hypothesis purely on the basis
of any one or all of these tests. High values of P
simply show that there are no grounds for
rejecting the proposed values of Is and a on the
basis of these criteria alone.
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On the other hand, a very low value of P does
not present such difhculties, for it forces us,
regardless of a priori considerations, either to
admit that the sample is exceptional or to regard
the hypothesis with suspicion. Which one of
these alternatives is to be chosen will depend for
one thing on how compelling were the reasons for
selecting the particular hypothesis in the first
place. It is thus clear that statistical tests are
more readily useful for rejecting a hypothesis
than for accepting one.

In rejecting a hypothesis we may reject one
that is true: in accepting one we may accept one
that is false. The frequency of the former mistake
can be controlled to a large extent by lowering
the limit for rejection. Thus, if we decide to reject
a hypothesis when any P &0.01, we shall commit
the mistake of rejecting a perfectly good one on
the average of once in 100 such tests, but by
lowering the rejection limit to 0.001 we lower this
average to once in 1000. It is, however, impos-
sible to control so easily the mistake of accepting
a hypothesis on the basis of a high value of P
when actually it is false, for there will always be
false hypotheses that give higher values of P than
the true one gives, so that it is impossible to
distinguish between the true and the false by
objective tests alone. Methods for making
quantitative use of other information concerning
the hypotheses under test have been devised by
J. Neyman and Egon S. Pearson s' '4 who have
given an excellent discussion of this whole

subject.
In some cases it is more important to avoid

rejecting a hypothesis that is true than it is to
avoid accepting one though it be false; and in
other cases just the reverse is true. The serious-
ness of either mistake depends on the action that
is to follow the decision and on the interests
involved. A clear illustration of this statement is
found in the conflicting interests of producer and
consumer in the results of sampling tests on a
consignment of goods. For the proposed hypothe-
sis we might say that the consignment which is
sampled complies with certain specifications;
then a low rejection limit works to the advantage
of the producer but to the disadvantage of the

'4 J. Neyman and Egon S. Pearson, Phil. Trans. Roy.
Soc. A231, 289-337 (1933);Proc. Camb. Phil. Soc. 29, 492-
510 (1933).See also Thornton C. Fry Probability and Its
Engineering Uses, pp. 269-270 (Van Nostrand, 1928).

consumer, whereas a high rejection limit does
just the opposite.

As an example for illustrating the application
of the different tests let us consider the following
10 readings made on a micrometer: 1.078, 1.080,
1.071, 1.076, 1.081, 1.077, 1.075, 1.073, 1.079,
1.070. There is reason to suppose that these are of
equal reliability, so they will be given equal
weight. Their mean is ~ =1.0760 and their S.D.
s 0 00355 se

Let us first consider the hypothesis that the
sample was drawn from a parent population with
true mean 1.0740. If this is the case, the true
error of the mean of our sample is +0.0020, and
we may now ask the question, what is the chance
that the true error could be as large as or larger
than 0.0020? Without some knowledge con-
cerning o the only thing we can do is to postulate
that the sample was not extraordinary, and apply
the z test. If st = +0.0020 or greater, then
tt/s = +0.0020/0. 00355 = +0.563 or greater. Now
with st=10 and z=0.563, Fig. 9 shows that
P, =0,13. So in about 1 out of 8 samples of 10,
j st/s

~
will be as large as or larger than 0.563, or in

1 out of 16 samples, st/s will be as large as or
larger than +0,563. Hence on the assumption
that the S.D. of the 10 readings is not unusual,
there is no compelling reason to reject the
proposal that if the number of measurements
were to be indefinitely increased, their mean
would finally settle down to the value 1.0740.

Suppose now that there has been some previous
work done by the same observer with the same
instrument, and there is good reason to believe
that o lies very close to 0.0040. It is clear,
without actually calculating P„ that 0,00355
was in fact not an extraordinary S.D. , for the
average S.D. in samples of 10 drawn from a
normal parent population having e = 0.0040 is, by

"One of the slowest ways to compute x and s is to follow
their definitions, i.e. , take the sum and divide by n,
and then find the square root of the average squared
residual. Considerable time can be saved by computing
x and s simultaneously by using the departures from some
selected point (instead of from i), and then applying a
correction. In this example 1.075 might be selected as a
datum. The departures from this point are 3, 5, —4, 1, 6,
2, 0, -2, 4, —5, all times 10 '. The average of these
numbers is +1.0, whence i=1.075+0.0010=1.0760. The
sum of their squares is 136; hence, by a well-known
formula in mechanics, ss=(136/10 —1.0') 10 '=12.6 10 '
and s =0.00355. See Whit taker and Robinson, The Calcnfns
of Observations, Art. 96 (Blackie and Sons, 1924 and
1926).
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Table I, 0.0040 0.9227=0.0037, which is close to
0.0040. So in this case the conclusion indicated by
the z test can be accepted with confidence. But if

is known pretty definitely, the u test is
possible. The probable error of the ten measure-
ments is r =0.674 ~ 0/Q 10= 0.00085, so the
ratio u: r = 0.0020: 0,00085 = 2.34. The ratio
u: a/Q n is 0,0020: 0.0040/Q 10= Q (5/2) = 1.58.
Either of these ratios enables P to be read
quickly from Fig. 8. The result is P„=0.114,
which means that there is about 1 chance in 9
that

~

u
~

0.0020, or that there is about 1 chance
in 18 that u —+0.0020. The u and z tests
therefore concur, as they will when the S.D. of
the sample is not extraordinary.

In the preceding paragraphs we have made the
hypothesis that the mean of the parent popula-
tion is 1.0740 and on the basis of the z and u
tests have calculated the chance that a sample of
10 with =1,0760 or greater (i.e, , with u-
+0.0020) could have been drawn from such a
parent population. In making the z test it was
necessary to assume that the S.D. of the sample
was not extraordinary, and in the u test to
assume and use some definite value of a. The
reliance that can be placed on the results depends
entirely on the validity of these assumptions.
When a is not known very definitely, but reasons
exist for thinking that it may be in the neighbor-
hood of (e.g.) 0.0040, we might be interested in
the question of what fraction of the samples
drawn from a normal parent population with

y = 1.0740 and o =0.0040 would, on the average,
lie outside the oval shaped X contour drawn
through the point in the u, s plane corresponding
to the 10 observations. With u=0.0020 and
s=0,00355 it is found that Pq=0, 27, which
means that about 3 out of 11 samples will fall
outside this X contour. On the basis of the ) test,
then, there is no reason to reject the proposal
that y = 1.0740 and o =0.0040.

For the sake of illustration, it is interesting to
assume that 0=0.0025 instead of 0.0040, This
will reverse some of the previous conclusions. In
the first place, the S.D. of the sample now
appears to be exceptionally high, for with
v = n s2/2a~ = 10(0.00355)~/2(0. 0025)' = 10.1, Eq.
(30) gives

P, = 1—r.{9/2)/r{9/2) =0.0168,

which means that in only about 17 samples out of
1000 could the S.D. be as high as or higher than
that found. We may now expect the z and u tests
to disagree, The probable error of x is now only
(0.674 ~ )(0.0025)/Q 10=0.000533, and the pro-
posed error 0.0020 is accordingly 3.75 times the
probable error, for which P„ is 0.0114—just
about 1/10 of what it was before. So if 0 = 0.0025,
an error as large in magnitude as 0.0020 could
occur in only 11 or 12 samples out of 1000, and
the proposal that 1.0740 could be the true value
should be looked upon with suspicion. Certainly
in the face of such odds the proposal could
hardly be other than rejected without some very
forceful arguments to support it. This conclusion
contrasts with that which would be drawn from
the z test, for P, retains its former value, 0.13.
The disagreement between the u and z tests
shows how misleading the latter would be if used
alone. The trouble comes, of course, from the fact
that the S.D. of the sample is now exceptionally
high.

Finally, we may examine the X contour on the
double assumption that p = 1.0740 and 0 =0.0025.
In this case P~ is found to be 0.013, which is so
low that the assumption appears improbable.
From the position of the sample in the u, s
diagram it is evident that the low value of P~
arises almost solely from the high value of the
ratio s/rr.

(3d). Three important relations when P=-',

The u, s, and z tests lead to three important
statistical relations. If the straight line contours
of Fig. 7 take positions such that the volume
under the u, s frequency surface is divided sym-
metrically into quarters by each of them, it will

be an even bet that a random sample will fall
inside or outside the u and z contours, and above
or below the s contour. Fig. 10 illustrates this
situation.

In Fig. 10a, P„=-,'. The lines AA and BB
eHect quartile divisions of every one of the
normal curves obtained by taking sections
s =const. through the u, s frequency surface.
The particular constant value of

~
u ( along these

lines is therefore r=0.674. a jQn, the prob-
able error of the mean of n observations.

In Fig. 10b, P, = ~. The line EE divides into
halves the area under each of the Helmert's



140 W. EDWARDS DEMING AND RAYMOND T. BIRGE

TAsLE I I. Thc tlrrarlilc dcvialiorr I' irs Slrrdcrsl's disrribrsiio».
I is defined by

(1+x-) I "ds = j. {33)1

Comparison with the normal curve of S.D. I/{rr -3/2) I.

1 r+r l

(a)
n contours s contours

(c).
s contours

Fro. 10. The volume under the tr, s frequency surface

ydg ds=f
& Ness c-sos/ras d+
LQ (2x)o

~I(a—n s s s
x

{11)-42J
can be divided into quarters in several different ways.
Here the division is effected with rs, s, and s contours by
setting the shaded areas {to infinity) each equal to s, .
In (a) the lines AA and BB are a distance r from the s
axis, r being the "probable error. " r is determined from
the normal probability integral by setting P„~$. In (b)
the line EE divides all the rs=const. curves into halves
and therefore lies the median distance s=o/j above the rs

axis. 1/f is determined from the Tabks of the Irgcorrrplele
Garrrrrra Fssrsctiors by setting P.=l, and its values are
given in Table I, column 2. In (c) the lines CO and DO
make equal angles with the s axis, this angle being tan ' f.
I is determined from Student's integral by setting P, =l.,
and its values are given in Table II, column 2. r and s
depend on a and rt both, whereas I' depends only on rt.
s=rr/s is constant and equal to f along the lines CO
and DO.

8
9

10
11
12

13
14
15
16
17

18
19
20
21
22

24
25

0.577 349
.441 614
.370 348
.324 981
.292 942

.268 786

.249 745

.234 241

.221 300

.210 288

.200 768

.192 434

.185 056
, 178 467
.172 533

.167 154

.162 249

.157 752

.153 607

.149 774

.146 214

.142 896

.139 794

0.674

Q (rt —3/2)

0.550 719
.426 585
.360 530
.317 957
.287 603

.264 557

.246 289

.231 348

.218 833

.208 152

.198 896

.190 774

.183 573

.177 130

.171 321

.166 048

.161 234

.156 816

.152 742

.148 970

.145 464

.142 195

.139 137

Discrepancy,
percent low

4.612
3.403
2,651
2.161
1.822

1.573
1,384
1.235
1.115
1.016

0.9324
0.8621
0.8014
0,7492
0.7025

0.6617
0.6256
0.5930
0.5631
0.5368

0.5129
0.4906
0.4707

curves that are obtained by taking a section
s =const. through the N, s frequency surface. The
particular constant value of s along EE is s = a/f,
the median of Helmert's distribution, given by
Eq. (18) and Table I, column 2.

In Fig. 10c, P, =-,'. The constant value of
z = tc/s along the z contours is always the tangent
of the angle that these contours make with the s
axis. In Fig. 10c, the lines OD and OC effect a
quartile division of Student's distribution of z,
and the particular constant value of Iz~ along
them is denoted by p. Values of f for n running
from 3 to 25 have been calcula, ted for us by Lola
S. Deming and are listed in Table II."

's The values of f in Table II were calculated by putting
s=tan () and then making successive approximations to
find the limits of the integral written in the heading of
Table II. The same purpose could be accomplished with
less precision by inverse interpolation in Student's original
tables (see footnote 17) or in later tables by Student and
R. A. Fisher, Metron 5, No. 3, pp. 90-120 {1925).Another
possibility is inverse interpolation in the Tables of the
Irrcorrrpk'lc Beta Frsrrcliorr, recently prepared by Karl
Pearson and his staff {issued by the Biometric Laboratory,
University College, London, W. C. 1, 1934), but our
Table I I was calculated and used several years before the
appearance of the Tables of the Irrcorrr plcle Bc& Function.

As has already been pointed out, o does not
enter Student's distribution of z, hence l is
independent of o and depends only on n.
Further, since the normal curve of S.D.
1/(n —3/2) & or of probable error 0.674 ~ /
(n —3/2) I was found to be an excellent approxi-
mation to Student's distribution of z near the
center, we should expect this last expression to
be a good approximation to f, provided n is not
too small. The actual discrepancy is given in

Table II, column 4. In practice, the approxima-
tion l =0.674 . ./(n —2)& will be found entirely
satisfactory when n & 20, though of course,
0.674 ~ ./(n —3/2) & is always a better one,

If s be computed for each of an indefinitely

large number N of samples, half the values of s
will be less than s= o/f, and the other half will

be greater, by definition of the median s= o/f in

Eq. (18). Clearly, then, if fs be computed for
each sample, half the values of fs will be less

than o and half will be greater. Finally, if
0.674 .fs/&n be computed for each sample,
half will be less than r and half will be greater.
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It is convenient to denote 0.674 f/&st by
the symbol p, so that p and & bear the same
relation to the probable error r that f and fs do
to the S.D. a. Values of p are given in the second
column of Table III. The heading of this column
is &so, for reasons that will become clear later.

The preceding discussion shows that the
contours in Figs. 10a and 10c correspond to
quartile distances r and l on the distributions of
u and z, respectively, and that the contour in

Fig. 10b corresponds to the medians a/f, o, and
r on the distributions of s, fs, and ps, respec-
tively. Hence in the case of a large number of
samples of st observations each, it will be found
that

(a) in ($+e~) the cases, juj ~r;
ps ~~r

(b) in ($+ss) the cases,
fs ~a

(c) in (-„.'+~s) the cases, ju/sj Cl;

wherein e~, es, es approach zero as a statistical
limit' as the number of samples is indefinitely
increased; that is, the odds that e~, es or es shall

differ from zero by less than a stated amount
can be made as great as desired by taking enough
samples. No one can say in advance just how

04
I

0

I&( .04 ~

o
' I 5~ Number

Fto. 11.For each of 100 samples of 4, +ps is laid off in
the vertical from the point that represents K The mean of
the parent population is p 0, and its S.D. is unity.
r 0.674 ~ ~ cr/Q4 0.337.The horizontal lines at distances
ar from the true value show the range covered by the
probable error. In $1 out of 100 samples !«!&Is. In $2
out of 100 samples j«!&r. In $3 out of 100 samples
ps &r. As the number of samples is indefinitely increased,
the fractions of them satisfying these three inequalities
each approach $ as a statistical limit.

(b)
fS&a fs&o

or t
@s&r ques& r

ju/sj &l ju/sj &g
(c) or

juj &fs juj &ls

The character of each of these quantities, for
any given value of n, is worthy of notice. In {a)
r is a constant while u varies from sample to
sample. In (b) o and r are constants, while fs and
Qs vary from sample to sample. In (c) f is a
constant while u/s varies, and in the second
form, botIt ls and u vary from sample to sample.
These facts and relations are illustrated in Fig.
11;where the value of z for each of a number of
samples is measured along the vertical and
marked by a heavy dot, then the distance I's
for the sample is laid oR' in the vertical above
and below the dot. Thus a vertical line of length
2l's with center at z marks each sample. In Fig.
11 these lines represent the first 100 samples of
4 drawn from a normal parent population of
S.D. a=1 and mean tt=0.~ From Table II,
l =0.4416 when rt=4.

It will be noticed that in 51 out of the 100
samples, the range a l s measured from
overlaps the true value tt=0. For a random
sample, there is by relation (c) above an even
chance that j u j & fs, so we should expect to find

approximately half these ranges to overlap tt= 0.
A pair of horizontal lines equally spaced at a

distance r=0.674 . a/&4=0. 337 . above and
below the true value tt =0 show the range covered
by the probable error. Before a sample is drawn,
it is an even bet by relation (a) above that

"These are listed in Vf. A. Shewhart's book, Tke
Econontic Control of Q«ality, Table D, page 454 (Van
Nost rand, 1931).The authors are indebted to Dr. Shewhart
for the idea of this figure. It was first exhibited by him
at a joint meeting of the American Mathematical Society
and Section K of the A. A. A. S. in Atlantic City, De-
cember 27, 1932.

many samples must be taken in order that et

may be less than (e.g.) 0.01, but it is possible to
find the Probability that s&&0.01 for a given
number of samples.

The relations (a), (b), and (c) just given can
be stated still more simply as follows. It is an
even bet that for a random sample

(a) juj &r or juj &r;
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j u j &r, and it is interesting to note that 52 dots
fall inside the range ar and 48 fall outside. If
for each sample in the figure the range ~ps
were laid oH from the horizontal line y=0, it
would be found that ps&r in 53 samples, @s&r
in 46 samples, and ps=r to three digits in one
sample. (To avoid confusion, the ranges +ps
are not shown on the figure. )

Thus the 100 values of juj and the 100 values
of @s are separately about equally divided each
side of the probable error r. At the same time the
100 values of ju/sj are about equally divided
each side of i', so that about half the 100 values
of jr j are greater than the corresponding values
of is. If the number of samples were indefinitely
increased, the ratio of the number for which

jgj &r to the number for which juj &r would

approach unity as a statistical limit, and the
same can be said of the other inequalities written
in (b) and (c).

(3e). FiduciaHy related values of o and s
Closely related to the tests that have previ-

ously been described is the notion of fiducially
related values of o and s. The adjective fiducial
was introduced in 1930 by Fisher~ for the
description of a certain objective relation that
exists between a parameter of the parent popu-
lation and the corresponding parameter of a
sample when the sampling distribution of the
latter depends only on the former. Such is the
case with a and s. Thus, if a set of e observations
has been taken and the S.D. is found to be s,
we can arbitrarily put P.= 0.95, using the
observed value of s for the limit of integration in

Eq. (30), and then make the perfectly objective
statement that there is only 1 chance in 20 that
the S.D. of the parent population can be greater
than the value of a required to be used in the
integral. This is the same thing as drawing the
s contour of Fig. 7 at a distance from the u axis
equal to the observed S,D. s, and then arbitrarily
selecting for o that value which will put 95
percent of the volume of the N, s frequency surface
above the contour and the remaining 5 percent
below it. These particular values of o and s are
accordingly so related to each other that if a
were actually the S.D. of the parent population
then there would be 19 chances in 20 that a

& R. A, Fisher, Proc. Camb. Phil, Soc.26, 528-535 (1930).

sample drawn therefrom would have a S.D. as
large as or larger than s; and conversely, since
s has actually been observed, there is only 1

chance in 20 that the S.D. of the parent popu-
lation is as large as or larger than o.

The value of o required to be used in the
integrals of Eq. (30) will for a given value of n
be a function both of P, and of the limit of
integration s, so it seems desirable that the
nomenclature for fiducial values should express
this fact. If P, has been placed equal to 0.95, we
designate the required value of o by the symbol
o(s,5) and call it "the 5 percent fiducial value of
0 corresponding to the given value of s,"because
there are 5 chances in 100 that the S.D, of the
parent population is greater than a(s, 5) for the
given value of s. Likewise the value of s required
to be used as a limit of integration in the same
equation will be a function of o and P., so when
P, =0.95 we denote the required value of s by
the symbol s(o,95) and call it "the 95 percent
fiducial value of s corresponding to the given
value. of a," because there are 95 chances in 100
that the S.D. of the sample is greater than
s(o,95) for the given value of o.

Now it so happens that in the incomplete
gamma function to which Eq. (30) reduces, s
and o occur only in the ratio s: o. This ratio
will of course be a function of P, for a given
value of n. If, then, for P, =0.95 this ratio be
denoted by 1/f», Eq. (30) gives

from which the numerical evaluation of f95 for
different values of n can be accomplished. When

@&9, the most satisfactory method seems to be
to integrate in series, retaining enough terms to
give the accuracy desired, and then to solve for
e/2f'Qs by any scheme that happens to be
suitable for finding the numerical roots of the
resulting algebraic equation. When @~9, inter-
polation in the Tables of the Incomplete Gamma
Function" by means of a central difference
formula will give 7 place accuracy. Values of f~
obtained by a combination of these methods are
shown in Table III for n running from 2 to 25.
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These values of f» provide the reciprocal
relation between the S.D. of the parent popula-
tion and the S.D. of the sample that has been
described above: when a sample of?I shows a
S.D. s, there is only 1 chance in 20 that the S.D.
of the parent population whence it came can be
greater then f»s, and conversely, if the S.D. of a
parent population is o, there are 19 chances out
of 20 that the S.D. of a sample of ?3 drawn
therefrom will be greater than a/f».

The notion of fiducial values can easily be
extended to the probable error of the mean of?3
observations, for if there is only 1 chance in 20
that the S.D. of the parent population is greater
than f»s, there is the same chance that the
probable error of the mean of ?I observations is
greater than

just those that were denoted by it in the pre-
ceding section. The median of Helmert's curves
is so frequently uM that for brevity and con-
venience the subscript 50 will ordinarily be
omitted, so that except when emphasis is desired,
fsp and Psp will aPPear simPly as f and P.

Values of fw for?3 between 2 and 25 are shown
in the second column of Table III; these are,
of course, simply the reciprocals of 1/f in Table I.
Alongside these are shown the factors
=0.674 ~ f/g?I. (Later on, ps will have still
another significance, and it will be convenient
to have esp retabulated in Table IV for com-
parison with two other functions yet to be
introduced. )

When the S.D. of a sample of?3 turns out to
be s, there is an even chance that ass, and

r(s, 5) = 0.674 f»s/4?3—=&ss, (35)

which may accordingly be termed "the 5 percent
fiducial value of r corresponding to the given
S.D. s." The factor 0.674- . .f»/473 is denoted
by gs, as just indicated, and its values for?3
between 2 and 25 are listed alongside the values
of fps in Table III. The factor gs gives a very
useful relation, because although the value of 0,
and hence that of r, may be unknown, we can
be "19/20 sure" that r is not greater than r(s, 5)
as calculated in the last equation. Thus, to go
back to the 10 observations previously under
consideration, since their S.D. is 0.00355 there is
only 1 chance in 20 that the probable error of
their mean 2: is greater than 0.3699X0.00355
=0.00131. The values of gs in Table III make
the calculation of 5 percent fiducial values of r
a very simple matter.

With the notation here introduced, extension
to other fiducial points can be conveniently
accomplished. Thus with some value of P, other
than 0.95, the subscripts for f and @ can be
changed to the new percentage; likewise a(s,5),
s(a,95), r(s,5) can be rewritten to correspond
with the new value of P,. In particular, the 50
percent point is of special interest, for it cor-
responds to the??3eIEi34m, of Helmert's distribution
of s, as is evident from a comparison of Eqs.
(19) and (30). The values of 1/fsp are accordingly
just those ratios of s/o that were labeled 1/f
in Eqs. (18), (19), and Table I, and the cor-
resPonding factors Psp =0.674. ~ .fw/g?5 are

TABLE I I I. Fidsn'al valses of o arid s. Multiplying
factors for getting the 5 and 50 percent fiducial values of a,
and the 5 and 50 percent fiducial values of the probable
error r, corresponding to a given S.D. s in a sample of?I.
f» is defined as the ratio of the 5 percent fiducial value of o.
to the observed value of s. f» is obtained by setting
P, =0.95, whereupon Eq. (30) gives

1 xi&" '&e *de =0.05. (34)

s js) ++~0.6?4. ..fss/gs

2 2.096 716 I
3 1471 068 0.572 8587
4 1.300 244 .438 5007
5 1.220 476 .368 1455

6 1.174 244,3?3 3389
7 1.144 059 .291 5586
8 I.IN ?97 .257 7514
9 1.10? 009 .248 8888

10 1.094 821 .233 S170

11 1.085 12? .220 6783
12 1.07T 232 M9 7482
13 1.070 578 .200 2916
14 1.055 150 .IQ 0098
15 1.060 424 .184 6755

16 1.055 338 .178 1222
1? 1.052 789 .172 2201
18 1.049 625 .166 8682
19 1.046 838 .181 9858
20 1.044 313 .157 50Q

21 1.042 102 .IQ 3826
22 1.040 077 .149 5648
23 1.038 238 .145 0185
24 1.085 560 .142 7132
25 1885 ON .189 522S

22.552 803
5.353 057
3.3?I T35
2.5S2 372

2.288 66?
2.088 899
1.921 235
1.815 BOZ

1.734 191

1.570 828
1.619 585
1.517 196
1.541 478
1.510 922

1.484 443
1.461 NS
1.440 780
1.422 439
1.406 011

1.391 185
1.3?Z 870
1.365 341
1,354 021
1343 599

+a~0.S?4...foe/Q s

10,758 2497
2.084 5705
1.137 IOOS
0.800 0840

O.QO 2057
.N7 4810
.458 1538
.408 0230
.359 8895

.Q9 7901
315 3470
.295 0457.277 874S
AQ 1308

~ 3104.239 0418~ 045S
220 1062
.212 0653

.II4 T598
,198 1113
.192 0227.186 4220
.181 2487

The 5 percent fiducial value of o is f»s, and the 5 percent
fiducial value of r is accordingly

r(s, 5) =0.674. ~ floss/Q s = @»s, (35)

The odds are 19:1 that r is not greater than 6I»s. fip
and 45ip {orsimply f and p) are defined in a similar manner
by setting P, =0.50. 1/fip is then just the median value of
s/a, and has already been given in Table I. The odds are
even that r is not greater than r(s, 50) ~454ps, which is the
50 percent fiducial value corresponding to the given
S.D. s.
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that reps. This statement is only a repetition
of relation (b) in the previous section, but it is
now seen that the even odds that were obtained
by placing the line EE in Fig. 10 at the median
is only one of an infinite set of odds that can be
laid on pairs of values of o and s through the
fiducial relation. In practice, it has been found
that the odds 1:1 and 19:1', given by f~ and

f~, will yield sufFicient information. Thus,
although we may know nothing beforehand
concerning ~, we can by a glance at Table III
say that the probable error of 20 observations
is as likely as not to be greater than &s =0.158s,
but that there is only 1 chance in 20 that it is
greater than g~s=0.212 s. Since these two mul-

tiples of s are so close together, we can be fairly
confident that the probable error of the 20
observations is in the neighborhood of @s. On
the other hand, while the probable error of 3
observations is as likely as not greater than
0.573 s, it has 1 chance in 20 of being greater
than 5,40 s. On account of the disparity between
these last two multiples of s (they differ by
almost ten-fold), we should be extremely
cautious about assigning any value to the
probable error of 3 observations, on the basis of
their S,D. alone.

It is interesting to note from Table III that
the values of f~ and f~ are widely different when
e is small, but that they both approach unity
monotonically and are not so greatly different
toward the end of the table. The approaching
coincidence of fg& and f~~ is, of course, brought
about by the tendency of the Helmert curves to
become more and more concentrated about the
abscissa sjr =1 as s increases, as is illustrated
by the curves in Fig. 4. This shows that as e
increases, the fluctuations in s are confined
more and more to a narrow band about a.

)4. THE ESTIMATION OF THE PROBABLE ERROR

(4a). I t obduction

R. A. Fisher' has divided the problems of
statistics into three classes: (a) the spec~ficatioe
of the form of the frequency curve of the parent
population, and of the necessary parameters;
(b) the distribution of various properties (means,
errors, standard deviations, etc.) of samples
drawn from a given parent population; (c) the
estimation of the parameters of the parent popu-

lation from information provided, at least in part,
by the sample. The first and second class can be
handled independently of the third, but the third
is intimately related to the others. In this treat-
ment of the theory of errors, the problem of
specification was disposed of by making the
assemPturn that the parent population of ob-
servations is normal. The simultaneous dis-
tribution of errors and standard deviations in
samples was then found, and certain deductions
were drawn from it.

These deductions are most conveniently ex-
pressed in terms of the e, s, s, and h tests, and
by means of the fiducial relation between 0 and s,
which have been described in the preceding
sections. These tests lead to statements such as
the following, "If the S.D. of the parent popu-
lation is o, then there is not more than one
chance in 100 that the error in x could be as
large as the proposed value of a," or "It is an
even bet that the error in s is not more than
fs." Such statements are entirely objective, and
involve none of the risks of estimation. These
tests make no pretense of estimating n, the e
test, for example, though it depends on o, simply
finds the odds against the occurrence of an error
as large as or larger than the proposed error, and
the odds so found will of course vary as o varies.

The parent population of observations is, by
assumption, normal, and is therefore completely
specified by the three parameters i, y and o.
%hen a set of e observations is taken, their
mean s differs from Ii by an unknown error s.
Odds against the occurrence of an error as large
as or larger than a given magnitude can be found

by the N test, but, as has been noted, the results
of this test depend on the value of o chosen for
the purpose. Clearly, then, it is desirable to use
a value of o that is as close as possible to the
actual S.D. of the parent population. It is the
purpose of any process of estimation to provide
a value of a that will make the cc test valid, or,
what is the same thing, to provide an estimate
of the probable error of s.

The problem of esfimotioe has necessarily been
deferred to the last, since it is a process of at-
tempting to reckon from the sample back to the
parent population, and therefore depends on the
distribution of a and s. It is a problem that
involves all the entanglements of induction.
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There are three methods of attempting to say
something about the parent population —max-
imum likelihood, empirical or arbitrary schemes,
and the posterior method. The first two disregard
all prior knowledge and base the estimate purely
on the sample. The last one utilizes the methods
of Bayes and Laplace to combine previous ex-
perience or knowledge with the information
contained in the sample. As the size of the sample
increases, the results provided by all these
methods become indistinguishable. The three
methods will be treated here in the order named.

(41), Ma~tnum likelihood

It is evident from Helmert's Eq. (14) and the
curve for m=6 in Fig. 3 that when a sample of n,

is drawn from a parent population having a
certain S.D. e, the S.D. s of the sample may lie
anywhere between 0 and ~, whether a be large
or small. ~ It is further evident that a sample of
S.D. s may have come from any one of an infinite
number of' parent populations. Out of this
infinity of parent populations there is a particular
one that is most favorable to the given sample;
that is, there is a particular one for which the
probability of drawing a sample of S.D. s+$ds
is greater than for any other parent population.
To arrive at this particular one, Helmert"
simply found the value of cr that makes y in Eq,
(14) a maximum for the given value of s by
setting dy/do =0. The necessary relation between
s and o is easily found to be

a =sf'/(n —1)g&. (36)

This value of o, which will be called o„may
be adopted as an ssfirrrate of the unknown S.D.
o of the parent population. When it is substituted
into Eq. (13) and used with the definition of s
in Eq. (5), it gives

r, =0.674 s/(e —1)&

=0.674 .[ge'/e(n —1)1& (37}

for an estimate of the probable error r of n
equally reliable observations. The subscript s,
attached to any quantity such as o or r, signifies
that the quantity is an esfiesafs derived from the
sampk aloes'. The factor 0.674 /(e —1)& is

«Since the least count of any measuring instrument
must be Snite, the S.D. of a sample will in practice have
an upper limit.

tabulated in the second column of Table IV for
n, between 2 and 25."

Eq. (37) is a familiar formula. In textbooks
it is usually called the "formula for the probable
error, "but it should be carefully noted that this
is a misnomer; r, is not the probable error r of s,
it is an estimate of r, and only one of many
possible estimates. Failure to realize this is very
likely responsible for the disrepute of "probable
error" in some quarters. Just as g is an estimate
of p, and is subject to statistical fluctuations for
which r is a convenient measure, so r, is an
estimate of r, and is similarly subject to statis-
tical fluctuations the measure of which will be
described presently. When rI, is small these fluc-
tuations are serious. As rs increases, they become
less and less bothersome, for we have seen from
the curves of Fig. 4 that as e increases s becomes
more and more restricted to the neighborhood of
r, so that the estimate r, becomes more and
more restricted to the true probable error r.

The introduction of the factor $n/(I —1)1& in

Eq. (37) is called "Bessel's correction, " since it
seems to have been first used by Bessel. The
history of just how and when he derived it is at
present obscure. The process that Helmert used

in deriving Bessel's correction has been named

by R. A. Fisher' ~ "the "method of maximum

likelihood, " and the estimate so obtained the
"optimum value"; Eq. (37) then gives the
"oPfirn'um estimate of r."Another interpretation
of the relation between s and o in Eq. (36) will

be given in the derivation of Eq. (42).

(4c) ~ Empirical estimates

There are other methods of attempting to
reckon from the sample alone what the S.D. of
the parent population actually was. One might
arbitrarily assume that the observed S.D. s of
the sample is the average of all those that would

be observed if a very large number of samples
were to be drawn. Geometrically this is equiva-
lent to placing the observed value s at the meara

s of the S.D. frequency curve (Eq. (14) and Fig.
3). If this is done, the estimate of o is, by Eq.
(16},

"R.A. Fisher, Messenger of Mathematics 41, 155—160
{1912).

» R. A. Fisher, Proc. Camb. Phil. Soc. 22, 700-725
(1925); 26, 528-535 (1930);2S, 257-261 (1932).
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11
12
13
14
15

16
17
18
19
20

6
7
8
9

10

0.674. . .!V (» —1)

0.674 4898
.4'76 9363
,389 4168
.337 2449

,301 6410
.275 3593
.254 9332
.238 4681
,224 8299

.213 2924
203 3663
.194 7084
.187 0698
180 2650

, 174 1525
.168 6224.163 5S?e
.158 9788
.154 7386

0.674. .. Q (1/2¹)
Xt)(it¹-1).I)

0.845 3475
.538 1650
.422 6738
.35S 7766

,317 0053
.287 0213
.264 1711
.246 0183
.231 1497

218 6829
208 0348
198 8026
.190 6985
.183 5101

177 0772
171 2761

.166 0099

.161 2011

.156 78?1

6 ~0.674. . .f/g»

1
0.572 8587
.438 5007
.368 1455

.323 3389

.291 6586

.267 7514

.248 8888

.233 5170

.220 6783

.209 7462

.200 2916

.192 0093
184 6755

.1?S 1222

.172 2201

.166 86S2
, 161 9858
.157 5083

o, =sy {n/2?r) B(-,'(n —1), y)

-9s/(1 —3/4n —7/32n' —* ) (38)

and by introducing this into Eq. (13), the cor-
responding estimate of the probable error r is

r, =0.674 sg (1/2?r) B($(n —1), q). (39)

We shall call this the "mean estimate of r."
The factors multiplying s have been worked out
by Lola S. Deming for n running from 2 to 25
and are shown in the third column of Table IV.

Another possibility is to assume that if more
samples were to be drawn, as many would be
found with S.D. &s as have S.D. (s. Geomet-
rically this is the same thing as arbitrarily
placing the observed S.D. at the median 8 = o/f
of the S.D. frequency curve; hence this estimate
of o is fs, and by Eq. (13) it leads to

r, =0.674 ~ fs/gn= ps

for the corresponding estimate of r. We call
this the "median estimate of r." It is identical
with the 50 percent fiducial value of r. It will be
recalled that in the discussion of the median,
f was defined by Eq. (18), and that values of 1/f
and f {or fpp) have been shown in Tables I and

TABLE IV. Factors that multiply s to get sariols esti?rtates of
the probable error r of 71 obsersatiorts.

The "optimum estimate, "
r.=0.674 ~ s/g (?t —I). (37)

The "mean estimate, "
r, =0.674 ~ s/g (I/2¹) B($(?t—I), q). (39)

The "median estimate, "
r, =0.674 fs/4 rt = 4s. (40)

III respectively. The factors &=0.674 ~ f/Q n
have also been given in Table III, in the column
headed ppp. For ready comparison between
median, optimum, , and mean estimates, p is
again listed in Table IV.

There are other possibilities without number.
Only two more will be mentioned. One is to
place the observed S.D, at the mode (maximum)
of the S.D. frequency curve; this leads to

r, =0.674 ~ s/(n —2) &, (41)

which may be called the "modal estimate of r."
Another is to assume that the observed s' is

the mean square of all the standard deviations
that would be obtained from a very large number
of samples. It is a simple matter to prove by
Helmert's equation that the mean square of the
standard deviation in a very large number of
samples is o'{n—1)/n. Thus, using Helmert's
Fq. (14),

s'= s'(s/o)" ' exp (—ns'/2o')ds
0

f (s,'o)" ' exp (—ns'l2g')ds
p

= a'(2/n) I' —I' —= o2(n —1)/n.

~ ~ ~ (42)

This scheme of estimating cr brings in the factor
(n —1)/n and therefore leads to none other than
the optimum value, and the corresponding
estimate of r is identical with Eq. (37).

It is not necessary to know the distribution
of standard deviations in samples in order to
find the mean square standard deviation; it can
be found by writing Eq. (9) for each of a large
number N of samples of n items each, and adding
the N equations so obtained. This procedure
gives

N»
QQ eP =ngs'+natu'

1 1

{1/Nn) gee;2 = (1/N) Qs'+ (1/N) Qu',
21
22
23
24
25

.150 8205

.147 1857

.143 8017

.140 6408

.137 6796

.152 7168

.148 9477

.145 4446

.142 1774

.139 1209

.153 3825

.149 5648.146 0186

.142 7132

.139 6225
The left-hand side of the last equation is the mean
square {true) error in N samples, and is therefore
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o'. The first term on the right is s', the mean
square value of s, and the last term is the mean
square error of the means of the N samples,
which by Eq. (12) is simply o'/n. So we have

s2+ o2 &n

s'= cr'{n —1)/n,

as before. This is the method adopted in some
textbooks for the derivation of Eq. (37).
Usually, however, the texts forget to warn the
reader that it is only the average value of s' that
is equal to o'(n —1)/n; the S.D. s of any one
sample may give an estimate that divers con-
siderably from the true value, Further, the
texts usually do not mention the fact that this
is only one of many possible methods of esti-
mating r.

It is evident from a comparison of the columns
of Tables I and IV that the optimum, mean,
median and modal estimates are approaching
coincidence as n increases. Table I and Fig. 4
have already shown that the mean, median, and
mode on Helmert's curve approach o as n
increases, and that the values of s become
restricted practically to a very small range near
the abscissa s= o. So when n is very large, o.

may be equated to stn/(n —1)1&, or, closely
enough, simply to s, with considerable confidenc.

(4d). Fluctuations in estimates. The r.m.s. error
in an estimate of r. Significant figures

Estimates of r made by maximum likelihood
or any empirical method are subject to the

statistical fluctuations of sampling. Just as there
is no way of judging how much significance dare
be attached to the mean S' of a sample without
knowing the r.m. s. fluctuation o/gn (i.e. , the
S.D.) of the means of such samples —or what
amounts to the same thing, their probable
error r—so there is no way of judging the sig-
nificance of an estimate of o or of r without
having some idea of the r.m. s. fluctuation of
such estimates. It is therefore desirable to study
the precision of estimates of the probable error.

Every method for estimating o from the
sample alone places

(43)

where au is some function of n that approaches
unity as n increases. This proposed relation
between s and o gives, from Eq. (13),

r, =0.674 ~s/Q n = r~s/a (44)

for the corresponding estimate of r. The error in
writing r, for r is

r, —r = (0.674 /g n)(~s —o). (45)

If this were written for an indefinitely large
number of samples, the mean square error com-
mitted would be the average of (r, —r)' taken
over all samples. Now yds in Eq. (14) is the
number of samples having S.D. s+~ ds, so with
this it is easy to write down the contribution
from each interval ds between s=0 and s= ~
toward the sum of (r, —r)'. The sum of all these
contributions divided by N is the desired average
of (r, —r)', wherefore

{r,—r)' = (1/Ã) {0.674 jg n)' {ass—o)'y ds
0

= (1/N)(0. 674 a/Q n)' (1 —2&us/o+~'s"-~o".)y ds.
0

The three integrations that arise from the three terms in the parenthesis correspond, save for constant
factors, to the integrations that would be used for computing the zero, first, and second moments of
the area under Helmert's curve, Eq. (14), all of which have been found. The zero moment is of
course unity; the first moment or mean is s and is given by Eq. (16); and the second moment is
s'= o'{n—1)/n, as was found in Eq. (42). Whereupon it follows that

and that the
(r, —r)' = r'I 1 —2&us /o+ oP(n —1)/n I,

r.m. s. error in writing r, for r-= I1 —2~s/o+ ~'(n —I)/n ~ &.

r

(46)

(47)
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For convenience, the right-hand member of this equation will be designated by the letter F.
For the optinturn estimate of r, co= $n/(n —1)j&, so the r.m.s. error in the classical formula Eq.

(37) is, in units of r,

f 2 —2(s/cr) Q I n/(n —1}jI
& =

I 2 —24 $2a./{n —1)1/BP)-{n—1), $7 I
&

~ I 2(n —1) I
-1

I 1 —I/16(n —1)— I . (48)

The gamma functions come from the value of s
given in Eq. (16). Helmert" published this
result in 1876. It was to this end that he derived
Eq. (14).

Eq. (47}gives the r.m. s. error of any estimate
of r in fractional parts of r. But when r is un-
known, we have only r„and this increases and
decreases with co. Hence it would be interesting
to express the r.m.s. error of an estimate in
units of r,.To accomplish this it is only necessary
to multiply Eq. (47) through by r/'r, =cr/cos.
Accordingly the

r.m.s. error in writing r, for r
= (cr/cps) F, (49)

rg

F being, as already noted, the expression in co

on the right-hand side of Eq. (47). We shall call
the expression (rjcos)F, just derived, the pro-
portiona/ r.m. s. error in r„and shall abbreviate
it "p.r.m.s." error. It has its minimum value
when co= cr/s, as is easily found by equating to
zero the derivative of (cr/cos) F with respect to co.

This result shows that the mean estimate of r,
given in Eq. (39), has the smallest possible
p.r.m.s. error.

Like o and r, the p.r.m.s. error (a jcos)F can
only be estimated from a sample; its true value,
as far as can be learned from the sample, remains
unknown. Now it so happens that the estimate
of (crjcos)F is simply F, since the estimate of cr

is a„and cr,/cos is unity by Eq. (43).
We therefore have shown that

F—= I 1 —2cos/cr+ cos{n—1)/n I
'

{50)

The estimated p.r.m.s. error F in either estimate
of r is seen to be roughly 25 percent when n = 9,
and it increases rapidly as n decreases. Evi-
dently, then, an estimate of cr is subject to rather
violent fluctuations when n is very small.

In the last column of Table V are shown values
of 1/$2(n —1)j& for comparison with the second
and third columns. Evidently 1/I 2(n —1)$&

comes about midway between the optimum, and
mean values of F; it is a little larger than the
former and a little smaller than the latter. It is
perhaps a good enough approximation for either
estimate even down to n=2 and 3, since little
significance can be attached to such small samples
anyway. The values of F in the second and third
columns of Table V clearly approach those of
1/[2(n —1)jl in the last column. It should be
mentioned that Helmert in his 1876 paper" gave
a three-place table of F for the optimum estimate
running from n=2 to n=8, and compared it
with 1 /I 2(n —1))&.

On account of certain considerations arising
from the notion of maximum likelihood, it is
probably safe to say that when an estimate of r
is to be made from the sample alone, there is no
better procedure than the classical one of using
the optimum estimate, Eq. (37). We have here
discussed other ways of estimating the probable

TABLR V. Values of
F= (1—2 s/ + (n —1)/nil (50)

for the optimum (classical) and the mean estimates of the
probable error. Comparison with 1/(2(n —1)j&. For the
optimum estimate, ca = [n/(n —1)jl. For the mean estimate,
c0 =o/s = g (n/2 s ) B( 1(n —1), $j.

is not only by Eq. (47) the r.m. s. error in r„ in
units of r, but that it is also the estimated p.r.m. s.
error in r,.

To get the estimated p.r.m. s. error of the
optirnurn (classical) estimate of r, we put
co= In/(n —1)I& in the expression just written
for F, and for the mean estimate we put co = o/s.
The numerical values of F for these two estimates
are given in Table V for n running from 2 to 10.

2
3
4
5
6
7
8

10

F
optimum

0.635 7915
.477 0180
.396 6920
.346 4517
.311 3427
.285 0656
.264 4600
.247 7471
.233 8406

mean

0.755 5106
.522 7231
.422 0157
.362 9993
.323 2123
.294 1050
.271 6367
.253 6224
.238 7648

1/L2(n-1) j&

0.707 1068
.500 0000
.408 2483
.353 5534
.316 2278
.288 67S1
.267 2612
.250 0000
.235 7023
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error mainly to emphasize the fact that all of
them are subject to fluctuations arising from the
sampling distribution of s as given by Helmert
in Eq. (14).

If e is so large that the sampling distribution
of s (Helmert's Eq. (14)) can be considered
normal, its area can be divided into quarters
that for practical purposes are symmetrically
situated about the mean. An estimate of r then
has a probable error, and since the curve is
normal, this probable error will be 0.674
times the S.D. or the r.m.s. fluctuation. But we
have already observed from Table V that the
r.m. s. errors in the optimum and tiseae estimates
approach 1/t 2(e —1)J&, and when n is large
enough for one of these estimates to have a
probable error, any of the other possible esti-
mates that have been considered would have
practically the same r.m. s. error; hence we can
say that when a probable error of an estimate
of the probable error r exists, its estimated value
is 0.674 ~ ~ /t 2(n-1))&r„ that is, the

estimated probable error in r,
=0.674 ~ r,/t 2(e —1)1&=yr, /Q {n—1), (51)

y having the value 0.674 /&2=0. 4769 as
in Eq. (29). This is often loosely called "the
probable error of the probable error. " Strictly,
the probable error r has no probable error, since
it is a definite, though perhaps unknown, mag-
mtude for any set of n observations. The esIs'-

tnate r, made from the sample alone does, how-
ever, always have a r.m.s. error, but cannot have
a Probab1e error, as just explained, unless e is so
large that the distribution of s is practically
normal. This condition is perhaps approached
closely enough when n = 20, but of course no
definite line can be drawn there. Now either
from choice or circumstances, 20 is about as
large a number of observations as physicists are
in the habit of taking, so that only rarely does
an estimate of r actually have a probable error.
It therefore seems best to deal exclusively
with the estimated p.r.m.s. error of r„which
has been designated by the letter F in Eq.
(47), calculated in Table V, and which is well
enough approximated by the simple expression
1/I2(e —1)j&. Accordingly, the mean of e ob-
servations, together with either the optknem or
the mean estimate r, of the probable error,

should then be written

In so doing, it is important to remember that
although r, is the estimated probable error in z',

the quantity 1/t2(n —1)j& is the estimated pro-
portional r.m. s. error in r, .

Only when e is large can any reasonable degree
of belief be placed in an estimate of r. For this
reason a statement of the estimated probable
error r, is by itself of little use; we require also
the source of this estimate and whether it be
from 5 observations or from 25. If it is from 5
observations we know immediately that it is
subject to an estimated p.r.m.s. error of over
one-third and it must therefore not be taken too
seriously. One way of overcoming this difficulty
is to bring in prior knowledge by the methods
to be outlined later, but this is not always
feasible nor possible. On the other hand, if the
estimate is made from 25 observations, some
significance can be attached to it. In publishing
an estimate made from a sample alone, either n
or the estimated p.r.m.s. error should be stated.
Thus, the result of the 10 observations made on
a micrometer, previously considered, should be
written

1.0760+0.0008(1&0.24)
Dr

1.0760+0.0008, (10 observations).

Either line conveys the information that the
estimated probable error is subject to consider-
able doubt. The estimated p.r.m. s. error tells
how many figures are significant in r„and in
turn r, tells how many are significant in s. A
proper appreciation of these principles is essential
when correcting data for systematic errors, or
when drawing any conclusion from experimental
results.

(4e). The posterior method. The prior and
posterior curves for e

Estimates of o obtained by maximum likeli-
hood or by any empirical method are based on
the sample alone and hence are subject to
statistical fluctuations. They take no account of
knowledge concerning a that may exist in varying
amounts before the sample is taken. The confi-
dence that any one places in an estimate made
by one of the f'oregoing devices will depend in
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some manner on his previously formed ideas
concerning the range in which o lies and on how

large the sample is. As rt is indefinitely increased,
previous experience and ideas are gradually and
unconsciously relegated into insignificance.

The posterior method of reasoning combines
prior knowledge with the information contained
in the sample. It is applied in a qualitative way
quite generally. Everyone who thinks to himself,
"This result seems higher (or lower) than I had
for good reasons expected to find it; I wonder
therefore if by chance it is not too high (or too
low), " is combining prior knowledge with new

information provided by the sample and is
therefore employing, qualitatively, the posterior
method.

Prior» knowledge concerning o may range
from none at all to the ability to place it within

very narrow limits. As an example of the latter
situation we may cite cases where it is possible
to make a long series of measurements (perhaps
a hundred) on a single magnitude. The S.D. of
this long series multiplied by (100/99)& may
confidently be adopted as the correct value of a
for computing the probable error of subsequent
shorter series of observations made with the
same instrument and under the same conditions.
In such a situation, the value of o is established
so definitely that the S.D. of the subsequent
small samples need not be computed at all, and
the uncertainties of trying to estimate o from
each one of them alone are eliminated.

At the other extreme stands the less fortunate
situation where nothing at all is known regarding
o and where there is no hope of taking a longer
series of measurements under comparable condi-
tions in order to establish it. Between the two
extremes come more or less hazy notions, often
no more than enough to state wide limits
between which o must lie. At other times the
limits may be narrower.

These notions might be expressed graphically
in a probability curve, to be called a prior
existence curve, so drawn that the area between
any two abscissas is the probability of finding o

» Prior knowledge can sometimes be obtained after the e
observations are taken as well as before. Our adjectives
relating to time are chosen for convenience to fit the usual
descriptions of the law of causality, but they may be
changed if desired.

Qlg
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between them. The total area under the curve
would then be unity, since o must lie somewhere
within the range of the curve. A simple curve is
shown in Fig. 12. Here it is supposed that o is
known to lie somewhere between 1 and 2, and
the probability that it lies in any intermediate
interval is proportional to the width of that
interval; hence the curve is flat. Such a prior
curve, having finite discontinuities at o = 1 and
o = 2, would, of course, never be used in practice,
but it is a convenient one mathematically and
so will serve well for the first example.

In the situation where a long series of observa-
tions has provided rather definite information,
the prior existence curve would have nearly all
of its area enclosed in a narrow strip centered at
the S.D. of the long series. The exact shape of
the curve over this short interval would be
unimportant.

A horizontal line extending from very small
to very large values of o and including unit area
with the o axis implies that the S.D. of the
parent population has equal probability in equal
ranges. Such a graph might seem to be the
appropriate prior existence curve in the absence

0 .e 8 .0 .d eO ie lf ec t8 eo tc zt zc sA JAo"

Fto. 12. Prior and posterior estimates of o. —————
4 {e) ss. o. The Prior existence curve for a shows the state
of knowledge concerning the S.D. of the parent population
before a sample is drawn from it. In this example, e is
known to lie with constant probability between 1 and 2.

p{e) vs. a. The posterior curve for e shows the
state of knowledge concerning the S.D. of the parent
population after a sample has been drawn and its S.D.
computed. Here, the sample was found to have a S.D.
of 3/2. The probability is no longer constant between 1
and 2, but becomes more and more concentrated about the
point e=s as n increases. The area under all curves is
unity.
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of any previous knowledge whatever concerning
the precision of a set of observations; but if
there is no knowledge concerning o, then there
is none concerning cr', cr', ln o, ~ ~ ~; and if the
horizontal line expresses ignorance of cr, it must
also express ignorance of these functions of cr.

But if cr has equal probability in equal ranges,
then cr', cr', In o, ~ do not have equal proba-
bilities in equal ranges of cr', cr', ln cr, . So it
appears hazardous to attempt to express mathe-
matically a state of complete ignorance con-
cerning cr. Nevertheless, Harold Jeffreysn has
argued that the correct procedure in such cases
is to make the ordinates on the prior existence
curve proportional to o ', i.e. , to assume that
ln cr is uniformly distributed. Be that as it may,
it will be clear later that when the prior informa-
tion is so hazy that there is di%culty in ex-
pressing it, the posterior method is affected by
the statistical Ructuations of small samples
nearly as much as the estimates made by rnaxi-
mum likelihood or any empirical method, and so
is hardly worth the effort, Jeffreys' curve is a
special case of one introduced by Molina and
Wilkinson in 1929, which will be studied later.

The quantitative application of the posterior
method of approaching the parent population is
always possible by Laplace's generalization of
Bayes' theorem" —"protrtded the state of prior
knowledge is expressed graphically or analyti-
cally in a prior existence curve. The process
involves only simple principles in the theory of
probability,

If ct(cr) is the ordinate on the prior existence
curve at the abscissa 0, then ct (cr) dcr is the prior
existence probability —the probability that the
S.D. of the parent population lies in the interval
o +qdcr according to the state of knowledge

~ Harold Jeffreys, Scientific Inference, Ch. S (Cambridge
University Press 1931);Proc. Roy. Soc.A138, 48—SS (1932);
Proc. Camb. Phil. Soc. 29, 83-87 (1933); Proc. Roy. Soc.
A140, 523-S34 (1933).Jeffreys' arguments are disputed by
R. A. Fisher, Proc. Roy. Soc. A139, 343-348 (1933).

~Thomas Bayes, Phil. Trans. Roy. Soc. 53, 370-418
(1763).

s' Laplace, Thctcprie A ncttytictne des Probctbitites (1812).
s" Poisson, Recherches snr tct Probctbdite des Jngements

(1837).
"See also Edward C. Molina, Bull. Am. Math. Soc. 36,

369-392 (1930);Ann. Math. Stat. 2, No. 1, 23-37 (1931).
's An excellent treatment of Laplace's generalization of

Bayes' theorem is in Ch. 5 of Thornton C. Fry's, Probability
ctnd Its Engineering Uses (Van Nostrand, 1928). See also
Ch. 6 in Arne Fisher's hfctthernaticat Theory of Proba-
bilities (Macmillan, second edition 1922).

existing before the sample was drawn. Now if
the S.D. of the parent population is cr, the
probability of drawing a sample having the
S.D. s&$ds is, by Helmert's Eq. (14), const.
Xo '(s/o)" ' exp (—ns'/2cr') ds. This is called the
prior productive probability of 0. The probability
that the S,D. of the parent population lies in the
interval cr a 1zdcr and that the S.D. of a sample of
n drawn therefrom will lie in s+ztds is the
probability of a compound event, and will
therefore be proportional to the product of the
prior existence and the prior productive proba-
bilities, namely,

p do ds = const.

X@(cr)cr t(s/cr}" s exp (—nss/2crs) dcr ds. (52)

We can imagine a surface of ordinate p plotted
on the orthogonal axes cr and s. Let us take a
slab of thickness ds at s, parallel to the p, cr plane.
The equation of the curve made by this section is

p der= const. ct (cr)cr '(s/cr)" ' exp (—ns'/20') dcr.

p dcr will be proportional to the posterior proba-
Nlity of cr, which is the name given to the
probability that the S.D. of the parent popula-
tion lies within the interval cr+zidcr after the
sample is drawn and found to have S.D. s. The
factor of proportionality will be unity if the area
under the curve is unity, as it will be if the
constant is properly chosen. This is insured if
the last equation is written

$(cr} cr ' (s/cr)" ' exp (—ns'/2cr"}
pdcr=

l&Pcti(cr}cr '(s/cr)" s exp (-ns'/2a'}der
(53)

When the constant factor in the equation of any
probability curve is so chosen that the total
area under the curve is unity, the equation is
said to be "normalized, " and the required
constant factor is called the "normalizing factor. "
It simply serves to identify unity with certainty.
As in the equation just written, the process of
normalization is nearly always most conveni-
ently accomplished by writing a denominator
identical with the numerator, and then inte-
grating in the denominator over all values of
the variable whose probability is being written.

The following example will illustrate the use
of the method and will exhibit some of its
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features. We shall suppose that before any
sample is drawn, a is known to lie between 1 and
2, and that equal intervals are equally probable
in this range. Then the ordinates of the prior
existence curve will be

y{a) =0 0&a&1

y(a} =1 1&o &2 (54)

y{a)=0 2& o.

p(o) =0 2&a
(55)

The normalizing factor 187.13 was obtained by
using the Tables of the Incomplete Gamma
Function to evaluate the denominator in the
preceding line,

Eq. (55) is plotted in the same figure. Instead
of being flat, the posterior curve has a maximum.
Approximately half the area is included between
the abscissas 1.46 and 1.86, so the location of o.

is now a little more definite than it was. The
area of the posterior curve would be more
concentrated, and a more definitely located, if
the prior curve had had a maximum near the
middle instead of being flat.

If n had been 24 instead of 6, the equation of
the posterior curve would have been

p(a) da= 33.371 X10'o '3 exp (—27/a~) da,

1«&2. (56)

This is also shown in the figure. The area is
now much more concentrated in the neighbor-
hood of the maximum, so that with n=24 we

The graph is shown dashed in Fig. 12. Now let
us suppose that a sample of 6 is drawn and
that its S.D. is computed and found to be 1.5.
Are all values of a between 1 and 2 equally
probable now? The posterior curve furnishes
the answer. Its ordinates are found by substi-
tuting the proper values of p(a), n, and s into
Eq. (53). The result is

p(a)=0 0&a&I

a '(s/a) ~ ' exp (—ns'q'2 o'}
p(a) do=- dof o (s/a)" exp ( —ns I'2a'-)da

= 187.13a 5 exp {—27/4a')do

1&a&2

should have a much better idea of where a

actually lies.
The posterior method furnishes a probability

curve for o by changing the prior existence curve
in accordance with the new information con-
tained in the sample. Before the sample was
drawn the probability was given by p(a);
aftenuard, by p(a).

The shape of the posterior curve changes more
or less as s changes; it is therefore not entirely
free from the statistical fluctuations of sampling.
Just how sensitive it is to variations in s will

depend on how large n is and on how definite
the prior information was; as one would expect,
when the prior curve confines a to fairly narrow
limits and n is not large, variations in s have
little effect; in fact if the prior information is
extremely definite, a very large value of n will

be required to affect noticeably the posterior
curve through changes in s. This is why the
value of a that has once been established by
means of a long series of measurements can be
used for subsequent shorter series; the standard
deviations of these shorter series need not be
computed at all because their inHuence on the
posterior curve would be negligible. However,
if the prior information fixes a only loosely, the
sample may influence the posterior curve con-
siderably, even when n is small. When n is large,
the posterior curve rises to a sharp peak at the
abscissa provided by maximum likelihood, irre-.pective of the shape of the prior curve. Further-
more, as n increases, the fluctuations in s become
inappreciable. It is therefore correct to say that
a value of a can be established by taking a long
series of measurements.

The form of the prior existence curve shown
in Fig. 12 is useful for illustration, but on
account of its discontinuities it lacks some of the
practical features of the curve proposed by
Molina and Wilkinson to be considered in a
later section.

(4f). Further remarks on the method of maxi-
mum likelihood

Before leaving the prior existence curve of
Fig. 12 it may be worth while to examine further
the position of the maximum of the resulting
posterior curve. Starting with a flat prior ex-
istence curve like that in Fig. 12, the maximum
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will always come at the abscissa o =sf'/(e —1)1&.

This result arises, of course, from differentiating
with respect to o the expression for p(a) in

Eq. (55), holding s constant, and setting the
derivative equal to zero. The resulting relation
between a and s is independent of the denomi-
nator, which is merely a constant; hence this
relation is independent of the range over which
the prior existence curve extends, provided only
that it is flat. If the prior existence curve for a

were other than flat, the maximum on the
posterior curves would in general lie elsewhere,
because p(o) do would no longer be given by the
right-hand side of Eq. (55) nor anything pro-
portiona) to it, but would be given by Eq. {53)
wherein p(a) would not be a constant but some
function of o.

Now the position of the maximum (or the
mode) on the posterior curve that comes from
using a flat prior existence curve for a turns out
to be identically the same relation between a

and s as was obtained in Eq. (36), which was
arrived at in our search for the parent population
that is most favorable {or most Likely in Fisher's
sense) to the S.D. that was actually observed in
the sample. It will be recalled that we arrived at
this most favorable parent population by differ-
entiating Helmert's Eq. (14) with respect to a
and setting the derivative equal to zero; also
that we called this process the method af maxi-
mum LikeLihood, after Fisher. That the two
results —the position of the maximum on the
posterior curve and the application of the method
of maximum likelihood —must be identical is
evident from the fact that when the prior
existence curve for o is flat, P(a) is simply a
constant and the right-hand side of Eq. (53)
then expresses, save for a constant factor, the
same relation between a and s as occurs in
Helmert's equation, so that we are really differ-
entiating the same function in both cases.

Because of this coincidence, the method of
maximum likelihood has often been described as
the process of finding the mode of the posterior
curve that arises from a flat prior existence curve.
This explanation, although it masks the true
nature of the notion of maximum likelihood,
would in itself do no harm were it not that by
implications it leads to misinterpretations. Thus,
as has been pointed out, the abscissa of the

mode of the posterior curve changes as the
prior existence curve changes, and the particular
abscissa a=sfn/{n —1)]& is the mode of the
posterior curve in general only when the prior
existence curve for a is fiat; whence such an
explanation as proposed above leads innocently
to the statement that the method of maximum
likelihood is a posterior method and depends on
a uniform (flat) prior existence curve for the
parameter sought —in our case, o. But if we had
used some function of a such as a', o, ln o,
in place of o as the equally spaced abscissas along
the axis of the prior and posterior curves, we
should likewise have found that, starting with a
flat prior curve for a~, a', ln o, as the case
may be, the relation o =sfn/(n —1)j& is not that
existing at the mode of the new posterior curve;
whereupon any uniqueness that the method of
maximum likelihood might have seemed to
pqssess now appears to have been an illusion.

The resolution of the di%culties that we are
led to by such an explanation lies in the realiza-
tion that the method of maximum likelihood is
not; a posterior method at all. It is simply a
process for finding the parent population that is
most favorable to the event that was observed
to happen —in our case a sample having S.D. s.
Obviously the answer to such a problem as
finding the most favorable parent population
should not, in fact must not, depend on the
choice of coordinates nor on any state of prior
knowledge, and it is interesting to note that if
Helmert's Eq. (14) be expressed in terms of any
function of o, rather than in terms of o itself,
the result of setting the derivative with respect
to o or any function of a equal to zero is always
the same as that already found in Eq. {36),
namely, o =sf'/(e —1)j&. This invariance is a
general property of the method of maximum
likelihood, and the proof is very simple: if the
function f(x), continuous in any interval, be
expressed in terms of v so that f(x) = F{v) and
v =g(x) over that interval, we shall find that the
values of x that maximize or minimize f(x)
correspond through the relation v =g(x) precisely
to the values of v that maximize or minimize

F{v), provided dv/dx is neither 0 nor ~.
A graphical illustration of the meaning of

maximum likehhood is provided by Fig. 13,
which shows three Helmert curves for n = 6. One
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FIG. 13.Curves illustrating the meaning of maximum likelihood. A sample of e is drawn, and
its S.D. proves to be so. The S.D. (r of the parent population can be anything between 0 and ~,
but the value (r~sOv'(e/(n —1)) is "most likely, " for this gives the greatest possible ordinate
at s s0 on the frequency distribution curve for the S,D. of samples of n (Helmert's equation).
The curves illustrate that the ordinate at s=so is higher when 0 =so& (n/(e —1)) than when
a~so or s s0$(n/(n —2)). With the latter value, the mode of the curve comes at s=s0. The
equation of the curves is

+pl(n-u /sx 0-&

y (fg0-, e-Oas!000 (fg()
2

in which e has been placed equal to 6.

(Helmert's equation)

curve is plotted with the maximum likelihood
value of o, namely, (r=ssLe/(n —I)]&, ss being
the S.D. observed in a sample of n; and the
other two are plotted with slightly less and
slightly greater values of (r. At s=ss, or at
s/ss ——1, the ordinate along the curve having S.D.
o =ssgn/(n —l)1& is clearly greater than the
ordinates of the two other curves. This fact
illustrates that out of the infinity of parent
populations that the sample could have come
from, that having the maximum likelihood value
of (r is most favorable, since it gives the greatest
possible ordinate at s=ss and therefore maxim-
izes the probability of drawing a sample of S.D.
So+@$.

(4g). The posterior method, continued. The
probability curve of the unknown mean,
and the calculation of the posterior
quartile deviation

One particular value of (r gives the u, s fre-
quency surface that was studied in previous
sections. A u,s frequency surface having its total

volume equal to unity but made up of contribu-
tions from several values of (r would be a com-
posite surface. Its sections would no longer be
the u and s curves that were studied, since all
values of o under the prior existence curve for o.

make their contributions to the volume according
to their relative probabilities, which are desig-
nated by the ordinates p((r).

To make the posterior method complete, it is
necessary to consider also the prior existence
curve for the mean p of the parent population.
The prior curve for (u, as well as that for (r, will

have its effect on the composite surface.
We may take sections s =const. on this com-

posite u, s surface, just as before, but such
sections will not now be normal curves as they
were with the simple surface. We shall assume
that they are symmetrical, however; and we
shall define the "posterior quartile deviation"
r, to be the absolute magnitude of the u abscissas
that divide an s section symmetrically into
quarters. Sometimes. if not always, these ab-
scissas r, will vary as the s coordinate of the
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section varies, whereas with the simple u, s

surface the abscissas +r cut a/1 s = const. sections
symmetrically into quarters.

Mathematically manageable forms, allowing
sufficient freedom for any degree of prior knowl-
edge likely to be encountered, have been intro-
duced by Molina and Wilkinson's for the prior
existence probabilities of the mean p, and the
S.D. o of the parent population. They are

1

p(a) d&r = —(a/0)'+ie o'""da (57)
2&' I'(-.,'-c+1)o

x ~
2- —ib

8(p) dp, =A 1+- d p. {58)
1+a'/ns' s

a, b and c are adjustable constants. A can easily
be found by setting J'"„8(p)dp = 1, but its value
will not be needed.

Graphs of Eq. (57) with c=3 and c=10 are
shown in Fig. 14. They are skew curves; the
mode comes at a/(c+3)& and the mean at
ta/g(2s)$8($(c+1), 1s). The o axis is tangent
to the curves at 0 and ~, where it makes high
order of contact, so extremely small and ex-
tremely large values of o are always excluded.
The larger c is, the narrower is the range in
which the greater part of the area is confined.
The two constants a and c permit whatever
concentration of area happens to fit the state of
prior knowledge and also permit the mean or
mode of the curve to be placed at will. It will be
noticed that if a=0 and c= —2, Molina and
Wilkinson's prior curve for a reduces to the one
proposed by Jeffreys, "namely, p(o) =const. a ',
and that if a =0 and c = —3, we obtain the flat
prior existence curve P(cr) = inst.

Fro. 14. Molina and Wilkinson's prior existence curve
for a.

@(a)da=— 1
(a/a) ~+~e-"n~' da (57)2&'1'($c+1)o

a and c are arbitrary constants. The area included between
any two abscissas is the prior probability that a lies within
that interval. The total area under each curve is unity.
The curves here drawn with c 3 and c 10 show that
increasing values of c correspond to increasingly definite
prior knowledge concerning the S.D. of the parent popu-
lation.

The prior curve for the mean is of the Student
type (see Fig. 5). It is symmetrical about the
mean x of the sample, so when b &0 this curve
implies that the mean of the sample is a priori
to be preferred as the mean of the parent
population. When b= 0, the curve is flat from 0
to ~, meaning that equal ranges from —~ to
+~ are, a priori, equally probable. This is the
most conservative value of b.

If tb and a were kiloton, the probability of
drawing a sample with S.D. s+$ds and with
mean at x+~dx would be given immediately by
Eq. (11), and can be written

y(x, s) dx ds = Co '(s/o)" ' exp [—nss/2oi —n($ —p)"-/2o'-] ds ds. (59)

This is the prior productive probability of ti and o.
The posterior probability of y, and o, i.e., the probability that the mean and S.D. of the parent

population lie in the ranges p+qdp, and o~qdcr while the mean and S.D. of the sample lie in the
ranges x+$ds and s+qds, is given, except for the normalizing factor, by the product of the prior
existence and prior productive probabilities as expressed in Eqs. (57), (58), {59).Finally, integration
of this product over all possible values of cr gives the posterior probability of ti, namely

Jp" 8(v) 4{o)y(x, s) «
dg.f dy, Jp 8(p) Q(cr) y(x,s) der

(60)

"E.C. Molina and R. I, Wilkinson, Bell Syst. Tech. J. S, 632-64$ (1929).
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This is the probability, after the sample of mean s and S.D. s has been drawn, that the mean of the
parent population lies in the interval pa$dtu. As usual, the denominator is simply the normalizing
factor. The constant C in Eq. (59) cancels, so its value need not be determined.

The integrations with respect to a in this fraction are easily performed when the prior existence
probability functions e(p) and P(a) have the forms suggested by Molina and Wilkinson. The result is

1 2- —1(n+2+c+b)

1+ dp
n+1+c+b 1+as!ns-"s

sg (1+a'!ns')B
2

(61)

for the posterior probability of p.
It is here convenient to replace the error S—p by its usual symbol u, d)tl, by —du, and to denote

n+2+c+b by T and the entire resulting expression by —q(u) du. Then

1 1 u' -l"
g(u)du = , 1+ du

sQ (I+as/ns')B($(T —1), z) 1+a'/ns' ss
(62)

is the posterior probability curve for the error u
when the S.D. of the sample is s.

This is the equation for a section s =const. on
the composite u, s frequency surface formed by
the contributions of all values of o in the assumed

p(a) distribution. The posterior quartile devia-
tion, r„previously defined is then given by the
integral

tq CO

q(u) du=,', q(u) du= z, (63)
—t'

q —CO

since it must divide the s=const. curve sym-
metrically into quarters. The value of r, will

then be expressed by

r, =st(1+a'/ns') & (64)

where I is a function of T only, and satisfies

1

1

I ~

t

~ ~ I r ~~ ~2I
1

I

l
T—1 (1+8)-"df =—,',

(65)
2

T=n+2+c+b.

The integral by which f, is determined is of
the Student type; in fact t is just the value of 1

given by Table II when the n in that table is
replaced by T.'s If the integral were equated to

'~ The value of T to be used in Table II must not be
confused with the actual number of items n in the sample.
T and n are numerically the same only when 2+c+b~0,
as Eq. (65) shows. In the prior existence function assumed
by Jeffreys (footnote 33), c -2 and b~O, and this
relation is satisfied. Since Jeffreys also, assumed o 0 we

0.80, 0.90, and 0.9973, the corresponding limits
would determine the posterior 80, 90, and 99.73
percentile deviations. These can be denoted by
r,(80), r,(90), r,(99.73). The posterior probable
error, or 50 percent error, could be denoted by
r,(50), but unless emphasis is desired it will

usually be written simply as r, .
Curves showing t as a function of T for the

four values of the integral of Eq. (65) are shown
in Fig. 15. The ordinates for the 50 percent
curve come from Table II; the others were kindly
furnished by Molina and Wilkinson. They show
a similar chart in their paper. The procedure is
very simple after the constants a, b, and c are
settled upon. It is only necessary to find t for
the abscissa T=n+2+c+b by means of Fig. 15;
then to compute r, by Eq. (64).

It is interesting now to notice certain features
in the results that have been obtained. In Fig.
15 the ordinates for large values of T drop off
more and more slowly with increase in T, so
when n is large, t is not very sensitive to changes
in n, b, and c. Hence as n increases indefinitely,
t approaches coincidence with l' regardless of b

and c. Further, as n-+ ~, a'/nssmO and 1+a'/ns'
~1; therefore r,ms/-+sl, which in turn ap-

have from Eq. (64) the further interesting relation that
r, =ts Is. Thus when qb(o) ~const. /cr, the posterior
quartile deviation is numerically equal to what may be
called "Student's SO percent error" (see Table II and
Fig. 10c and the accompanying discussion). It should be
emphasized, however, that this is a mere numerical
coincidence and that the two quantities r~ and I's have
very different theoretical meanings.
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Fto. 15. Chart for using Molina and Wilkinson's prior existence curves. The ordinate l on any curve multiplied by
sQ (1+a'/as~) gives the indicated posterior percentile deviation of s. The abscissa T=n+2+b+c. N ~ number in sample;
a, b, c are constants used in fitting Molina and Wilkinson's curves to the prior knowledge.
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proaches r as a statistical limit. Thus the true
probable error will be attained as the sample is
indefinitely increased, irrespective of the prior
information, for the constants a, b, c then have
negligible influence.

When n is small, the situation is different, for
the value of t, and hence that of r„will depend
considerably on b and c. Also if a/0, the term
a'/ns' in Eq. (64) will be important on account
of its stabilizing action for it will prevent r, from
fluctuating as widely as s does. But if a=0, the
term a'/ns' will be absent, and r, will be pro-
portional to s, and will therefore fluctuate with s.
This is the situation in Jeffreys' assumption. " '

The significance of r, (50) is that according to
our knowledge and beliefs concerning p and o,
derived from all sources including the sample,
we are willing to lay even odds that ~u~ ~~r, .
The significances of r, (80), r, (90), and r, (99.73)
are similar except that the odds are 80: 20,
90: 10, and 99.73:0.27 that

~
u

~
(r,(80), r, (90),

and r2{99.73), respectively.
r2, is not the probable error of the mean of n

observations, nor is it an estimate of the probable
error, any more than is is. r, simply provides
another statistical relation; it differs from is in
that by taking account of prior information it is
not subject to fluctuations to the same degree
as s and ls. It is interesting to note that Molina
and Wilkinson" made 21 different assumptions
regarding the prior existence curves for p and 0.

and thereby obtained 21 different values for the
posterior quartile deviation r„. For a sample of
n=5 the highest and lowest of these values of

r, are closely in the ratio 2: 1, which shows that
prior information may have considerable in-
fluence on r, when n is small.

(4h). The estimation of o from several samples

We have seen that a value of 0 can be estab-
lished by taking a long series of measurements
on a particular magnitude; if s is the S.D. of this
long series, we may with considerable confidence
estimate o to be $[n/(n —1)j&(1%1/[2(n —1)j').
If n is large the estimated p.r.m. s. error
1/[2(n —1)j& will be small and the effect of prior
knowledge will be negligible. We may then use
this value for r in calculating the probable error
of subsequent shorter series of observations
made under similar conditions.

Unfortunately it is not always practicable nor
possible to take a long series of measurements in
order to establish a value of a. Oftentimes,
however, there do exist records of many short
series of observations, all presumably made
under approximately the same conditions and
therefore all with practically the same precision.
In such cases it is desirable to have a method
for estimating 0 from these several sets of
observations.

Let there be n2 observations on the mean p2, n2

on the mean p2, , n on the mean p . Let the
means of these rn series of observations be in
error by the amounts u2, u2, , u, and let their
S.D, be s2, s2, , s„. By writing down the
probabilities of the occurrence of errors and
residuals after the manner of the development of
Helmert's equation it is not difficult to see that

1ii S 1lg . . .S &lm 2 n ~s j2+n2s22+ +n„,s„,2

p ds)d$2 ds„, = const. — —exp ds)1$2 ds„,
0' Qj+ttg+ ++tg 14 2 0'

(66)

is the probability that the S.D. of the 2n series
will lie in the 2n ranges $2+~ds2, $2~,ds2,

s„~gs while their means lie anywhere between
—~ and +~. a is the same for all sets since
we are assuming that all the observations are
made under the same conditions as far as

precision is concerned. It is a that is to be
estimated. To accomplish this we can apply the
method of maximum likelihood —that is, differ-
entiate the above expression with respect to 0,
set this derivative equal to zero, and solve for
cr. The result is

n&SP+n2$2'+ +n s ' n2+n2+ +n
0 2 $2

I

n (+n2+ +n —rn n2+ n2+ +n„—m
{67)
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where
nrsr +n2s2 + ' ' +n~s~

si = . (68)
nr+n2+ ' ' ' +n

s as here defined is just the S.D. that would be
calculated for the entire lot of nr+n2+ . +n,„
observations if each series of observations were
held rigid with respect 'to its own mean and the
m sample means moved into coincidence.

Eq. (67) gives the optimum estimate of o,
found from the m series of observations. Its
estimated p, r.m. s. error is very closely 1/|2(nr
+n2+ ~ . +n„—m)j&, which of course reduces
to 1/{ 2(n —1)$& for a single set, as has already
been found in Table V. This optimum estimate,
together with its estimated p.r.m. s. error is then
statistically more reliable than an estimate made
from any one of the individual series of observa-
tions that make up the entire lot; it is also
statistically more reliable than an estimate from
a subsequent short series of measurements yet
to be made under the same conditions, Ke
should therefore not bother to compute the S.D.
of subsequent short series, but should rather
calculate their probable errors immediately by
Eq. (13) using therein the more reliable estimate
of o that comes from Eq. (67). There is, of
course, no reason why the S.D. of any short
series should not be combined with previous ones
to get a still more reliable estimate if such a
course seems advisable, and it should be noted
that the form of the middle member of Eq. (67)
is such that this is very easy to accomplish.
The point that we wish to emphasize is that
the S,D. of short series should not be used by
themselves if there is any way to avoid doing so.

An interesting special case is where measure-
ments are made in duplicate. Here nr=n2=n2

=n„=2, and m, the number of items
measured„ is equal to —,'(nr+n2+ ~ ~ +n ). Eq.
(67) then reduces to

o~2 —(s12+$2 + ' ', +st') /2m (69)

for the optimum estimate of o.. The S.D. of any
pair of measurements is obviously just half the
difference between the pair. Now any single pair
of measurements constitutes a sample of 2 and
is by Table V almost useless for estimating o,
but if several hundred items have been measured
in duplicate, the pairs of observations can be

combined and used in Eq. (69) to get a fairly
reliable estimate, since the r.m. s. error of this
estimate will be 1/(2m) &.

As an example in the use of Eq. (67) we take
20 samples of 5 each from the 500 readings on a
spectral line that were made by one of us. ' '
The fact that all these sets of 5 readings were
observations on a single magnitude rather than
on distinct means ter, p2, ~, p2o is of no conse-
quence in the application of Eq. (67); there is
in fact an advantage for purposes of illustration
in having the 500 readings all on the same
magnitude, because after we estimate a by means
of Eq. (67) from the 20 samples of 5 each we
shall have for comparison the still more reliable
estimate obtained from the entire 500. The 20
samples of 5 each were made up from the 500
observations in the following way: Readings
No. 1, 11, 21, 31, 41 constitute the first sample,
readings No. 51, 61, 71, 81, 91 constitute the
second sample, , readings No. 451, 461, 471,
481, 491 constitute the tenth, readings No. 2,
12, 22, 32, 42 constitute the eleventh, readings
No. 52, 62, 72, 82, 92 the twelfth, etc. The S.D.
and individual estimates of r made by both the
optimum and mean formulas (Eqs. (37) and
(39)) are shown in Table VI. Here nr =n2= n2

= 5 and m = 20. Kith the squares of the
S.D. in the second column Eq. (67) then gives

5 X 1336+5X 1976+ +5 X 1464
2 X10 2

5+5+ +5 —20

1336+1976+ .+1464
X10 '=1517X10

16

o, = 0,00389.

Here the estimated p.r. rn. s. error is 1/t 2(nr+n2
+ +n„,—m)$&=1/4160=0. 079, so we write

o.=0.0039(1&0.08). (70)

The averages (r, m. s. and arithmetic) of the
optimum and mean estimates in the fourth and
fifth columns of Table VI compare very favorably
with this result, but it is interesting to see how
the individual estimates in these same columns
fluctuate. Until the estimate of o written in Eq.
(70) has been displaced by a still better one, the
probable error of the mean S of any one of the
20 series of 5 observations each, or indeed of
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TaILE VI. Ae estimate of o made from 20 samtdcs of 5 each.
CmwParisos soith thc ojlimstm as' mean estimates of

o made from tLr isdimdlal

samples.

By Eq. (37) the oPtimsm estimate of o is s[a/(e-1) jt
~1.1180s when n~S.

By Eq. (39) the meal estimate of o is s(a/2s)& B($(n —1), s)
~1.1894s when n=S.

100 (=20XS) so far. When o is estimated from
the entire 500 the result is

o, =0.003583(500/499) f(1&1/Q 2(500 —1)j
=0.00359(1%0.032). (72)

Sample (S.D.)'=s'
No. mm'

XIO 8

1336
1976
0936
0256
0896

X10 '
36.55
44.45
30.59
16.00
29.93

Estimates of
Optimum

X 10-
40.87
49.70
34.21
17.89
33.47

e, in mm
Mean

X 10-4
43.47
52.87
36.39
19.03
35.60

6 1064 32.62 36.47 38.80
7 0704 26.53 29.66 31.56
8 0200 14.14 15.81 16.82
9 OS44 23.32 26.08 27.74

10 1056 32.50 36.33 38.65

11 3944 62.80 7Q.21 74.70
12 0256 16.00 17.89 19.03
13 3384 58.1? 65.04 69.19
14 2296 47.92 53.57 56.99
15 0800 28.28 31.62 33.64

16 0704 26.53 29.66 31.56
17 0400 20,00 22.36 23.?9
18 0776 27.86 31.14 33.13
19 1280 35.78 40.00 42.55
20 1464 38.26 42.78 45.51

Average 32.41« 38.9S" 38.55+«

any subsequent 5 observations taken under the
same conditions, should be written as

t 0.674 X0.0039/Q 5j(1+0.08)
=0.0013(1&0.08), (71)

which makes use of the estimate of a furnished

by the 20 samples rather than by any individual
sample of 5.

In this particular example we have at hand
400 more readings, since we have used only

The optimum estimate of e made from the 2Q samples of 5
each is found from Eq. (67):

eisP+eqsP+ ~ ~ ~ +a„s '
n)+ni+ ~ ~ "+n

5X1336+SX1976+ . +5X1464
S+5+ ~ +5—20

1336+ 1976+ +1464
1Q $1517 10 I16

e, =0.00389 mm,

* arithmetic mean.
««root mean square.

The figure 0.003583 is the S.D. of the 500
readings. The factor (500/499) & is hardly neces-
sary, since n is so large. The previous estimate
of o furnished by Eq. (70) and used in Eq. (71)
should now be replaced by the estimate in Eq.
(72). In practice we are generally not so fortunate
as to have a series of 500 observations from
which to estimate o but must instead be content
to combine several small samples by the method
of Eq. (67); indeed, more often the estimate of
a must be made from a single small sample. In
such a case, Eq. (67) reduces to Eq. (37), the
use of which has been discussed earlier.

$5. CONCLUSION

So far, we have dealt with methods for laying
odds on the error of the mean of a single sample.
The error of the mean has referred throughout
the paper to the difference between the mean of
the n observations in the sample and what the
mean would be if n were indefinitely increased.
We have therefore considered only accidental
errors. As was stated at the beginning of the
paper, no amount of analysis of a single sample,
regardless of how large it is, can of itself lead
one to suspect the presence of constant errors.

The parent population of errors, and any
sample therefrom, is one of accidental errors
only. The mean of the parent population is not
necessarily the true value of the thing being
measured; it is displaced by an amount equal to
the sum of all the constant errors that happen
to be operating. Only by considering several sets
of observations (samples) from different arrange-
ments of apparatus or from different laboratories,
but supposedly made on the same unknown

magnitude or on the same function, can sta-
tistical tests indicate the presence of constant
errors.

A large portion of the work that has been
done in mathematical statistics during the last
few years has been directed toward the problem
of several samples, or toward the more general
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problem presented by observations on points in

the plane or in space when the true coordinates
would supposedly satisfy a given functional
relation. Statistical methods, together with the
necessary tables and charts for facilitating com-
putation, have been devised from the results of
recent advances in theory for getting a quanti-
tative answer to the important question of how
well or how poorly a proposed law of physics is
substantiated by experiment. This question, as
far as statistics goes, is closely related to the
detection of constant errors.

The theory and the method for handling
several samples is a more general problem, but
not necessarily a more difficult one, than the
treatment of a single sample. In order that safe
conclusions may be drawn from several series of
observations, it is essential that each series
receive correct statistical treatment, or none at
all. It follows that although a single sample
cannot by itself lead to the detection of constant

errors either with correct or incorrect treatment,
the statistics of a single sample must form the
background for the interpretation of several
samples. The present paper is the result of an
attempt to gather the elements of the statistics
of a single sample into one place for ready
reference, in order to promote the study of
general methods for the interpretation of ob-
servational data.
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