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This review covers the progress in the study of vortex oscillations in rotating superfluids. The paper deals
with the theory as its principal coricern, but the experimerits that one can compare with the theory con-
sidered are also discussed. Attention is focused mainly on the d'fects of crystalline order in the vorte~ lat-
tice (the Tkachenko waves especially) and on the boundary problems arising in studies of vortex oscillations
in finite containers. The approach is based mostly on the continuum hydrodynamic theory dealing with
dense vortex arrays, and considerable attention is devoted to discussion of this theory in order to under-
stand better the principles upon which the obtained results rest. The theory is traced from the simple
description of a rotating classical fluid with continuous vorticity, through that of a perfect fluid with quan-
tized vorticity in the form of an array of vortex lines, then the two-fluid theory of an isotropic superfluid,
and finally the theory of rotating anisotropic superfluids such as He-A. Applications of the theory to He
II, the superfluid phases of He, and the superfluid neutron matter in pulsars are discussed.
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I. INTRODUCTION

The motion of vortices has already been studied for
more than a century. During the classical period of vor-
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88 E. B. cronin: Vortex dynamics of rotating superfluids

tex dynamics, which began in the late 1800s, many in-
teresting properties of vortices were discovered, beginning
with the notable Kelvin waves propagating on an isolated
vortex line (Thompson, 1880). The main subject of
theoretical studies at that time was a dissipationless per-
fect fluid (Lamb, 1945). It was difficult to make contact

, with theory experimentally, since any classical fluid ex-
hibits viscous effects. The situation changed after the
works of Onsager (1949) and Feynman (1955), who re-
vealed that rotating superAuids are threaded by an array
of vortex lines with quantized circulation. With this
discovery, the quantum period of vortex dynamics began.
The rotating superfluid He provided the testing ground
for the theories of vortex motion developed for the perfect
fluid. Hall (1958) and Andronikashvili and Tsakadze
(1958) were the first to study experimentally the elastic
properties of vortex lines. It was possible to observe reso-
nances on Kelvin waves with the spectrum modified by
interaction between vortices. The properties of the vortex
waves were to a large degree well understandable within
the confines of the theory of an inviscid perfect fluid.
But some effects, damping of vortex waves in particular,
required an extension of the theory to include two-fluid
effects, so the quantum period of vortex science was
marked by the progress of vortex dynamics in the frame
of the two-Auid theory. The first step in this direction
was taken by Hall and Vinen (1956), who studied mutual
friction between vortices and the normal part of the su-

perfluid and derived the law of vortex motion in two-fluid
hydrodynamics.

The second important theoretical framework, invented
to describe vortex motion in rotating superfluids, was the
so-called macroscopic hydrodynamics. It relied on hydro-
dynamical equations averaged over scales much larger
than the intervortex spacing. Such a hydrodynamic
theory was formulated by Hall (1960) and Bekarevich and
Khalatnikov (1961). It was a continuum theory similar to
the elasticity theory, including, however, only bending de-
formations of vortex lines and ignoring the crystalline or-
der of the vortex array. The theory was successful in ex-
plairiing a variety of experiments.

In the late 1960s attention was attracted to phenomena
connected with crystalline order in the vortex array. The
first to show that vortex lines in a rotating superfluid
form a stable triangular lattice, as in a type-II supercon-
ductor (Abrikosov, 1957), was Tkachenko (1965). He
predicted (Tkachenko, 1966) that the vortex lattice sus-
tains collective elastic waves, or "Tkachenko modes, " in
which vortex lines undergo dispacements homogeneous
along the vortex lines and transverse to the wave vector.
Such a wave is a transverse-sound mode of the vortex lat-
tice and is derived from the elasticity theory of the two-
dimensional vor'tex lattice when the wavelength is much
larger than the distance between vortices (Tkachenko,
1969). Tkachenko modes were not describable within the
Bekarevich-Khalatnikov hydrodynamics, but later the
continuum theory was developed, which incorporated the
effects of vortex-lattice rigidity (Tkachenko rigidity) and
of vortex-line bending (Sonin, 1976; Williams and Fetter,

1977). This theory predicted a mixed mode of vortex os-
cillations involving the Kelvin mode and the Tkachenko
mode as particular cases when the vortex wave propagates
along, and normal to, the rotation axis.

Observation of the regular vortex lattice turned out to
be a much more difficult experimental problem in rotat-
ing He II than in type-II superconductors because vortices
in He II do not create magnetic or electric fields facilitat-
ing their identification. Only 13 years after the paper of
Tkachenko (1965), the existence of the regular vortex lat-
tice in rotating He II was proven experimentally. The
first evidence was obtained by S. J. Tsakadze (1978), who
deduced a value of the vortex-lattice shear rigidity by ob-
serving a mixed mode of vortex oscillations (the Tkachen-
ko mode modified by vortex bending) in a free-spinning
cell with He II. Shortly afterwards direct photographs of
vortex arrays in He II were obtained showing that vortices
form stable, regular arrays similar to the predictions of
theory (Gordon et al. , 1978; Yarmichuk et al. , 1979).

Recently new problems have challenged vortex dynam-
ics research as a result of the discovery of superfluid
phases of He. The 2 phase turned out to be especially
unusual. It possesses a remarkable and hitherto unknown
property: the rotating A phase, while remaining a super-
Auid, sustains a continuous vorticity that is not homo-
geneous in space, as in a rotating classical fluid, but forms
a two-dimensional periodic texture with more intricate
symmetry properties than the simple hexagonal symmetry
of the triangular vortex array in He II. The study of such
periodic textures originated with the work of Volovik and
Kopnin (1977). A continuous vorticity in the rotating A

phase has been detected by Hakonen et al. (1982) with
use of NMR techniques. But investigations of the
dynamical behavior of vortex textures in the rotating A

phase are still in an early state. The first theoretical work
was done by Kopnin (1978), who derived the law of
motion for a continuous axisymmetric vortex in the 2
phase.

At first, the 8 phase seemed less intriguing than the 3
phase, because only "common" singular vortices were ex-
pected to exist in it. But the NMR experiments on the ro-
tating B phase were a surprise for experimentalists and
theoreticians alike (Ikkala et al. , 1982). They showed
that properties of vortices in the 8 phase are quite non-
trivial, and that the vortex texture undergoes a phase tran-
sition. The spontaneous magnetic moment of the vortices
was also discovered (Hakonen et al. , 1983). All these in-

teresting phenomena have been explained by a complicat-
ed structure and symmetry of the vortex core in the 8
phase (see the recent paper by Salomaa and Volovik,
1985). Qne may expect that core effects play an impor-
tant role in vortex dynamics too, as can be judged from
the only experiment on vortex dynamics in the 8 phase,
dealing with vortex-induced mutual friction in rotating
He-8 (Hall et al. , 1984).

Up until now only two superfluids have been available
for laboratory research: He and He (putting aside the
superconductive electron fluid in metals). However, these
two superAuids do not exhaust all the possible applica-
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tions of superfluid vortex dynamics. Long ago it was pro-
posed that the interior matter of neutron stars is in a su-
perfluid state (Migdal, 1959) and is threaded by quantized
vortices because of rotation (Ciinzburg and Kirzhnitz,
1964). A rich variety of phenomena in pulsars are inter-
preted by the use of this vortex conception. In the past
astrophysical applications strongly stimulated the study
of vortex dynamics. For example, experimental studies of
Tkachenko modes in Tbilisi (Tsakadze and Tsakadze,
1973) were prompted by the theory of Ruderman (1970)
associating variations observed in the pulse period of pul-
sars with Tkachenko waves.

The study of vortex dynamics in rotating superfluids is
advantageous because rotation creates vortices with well-
controlled form and density. But vortices are generated
by uniform superftow too, and they are responsible for the
critical velocity of the superflow (see the recent review by
Sonin, 1982). Vortices are present even in undisturbed
He (Awschalom and Schwarz, 1984). Results obtained

by studying vortices in rotating superfluids may be used
for other, more intricate vortex structures. An example
of such an extension is the theory of Vinen (1957, 1961)
describing the behavior of the vortex tangle arising at
large superflows. Recent developments in this theory are
discussed by Tough (1982; see also Nemirovskii and Le-
bedev, 1983).

The importance of vortex dynamics is not restricted to
sup erfluid applications. There are number of linear
singularities (linear defects) in other ordered condensed
media that are similar in some aspects to superfluid vor-
tices. Besides vortices in superconductors these include
dislocations in solids, Bloch lines in magnetic materials,
disclinations in liquid crystals, and some others. The gen-
eral methods of their topological classification and of sta-
bility analysis have been developed [see the review of
Mineev (1980) and the book of Kleman (1983) for intro-
ductions to the literature]. But the dynamics of linear 'de-

fects also has much in common with that of superfluid
vortices. In particular, the motion of the Bloch line is
described by an equation including a gyrotropic force
similar to the Magnus force. Gyrotropy of the equation
of motion always results in elliptical or circular polariza-
tion of linear-defect oscillations, as occurs in the case of
the Kelvin wave. Such oscillations of Bloch lines, or
magnetic vortices, have been seen experimentally and
studied in theory (Argyle et al. , 1984; Dedukh et al. ,
1985).

Theoretical and experimental achievements in vortex
dynamics have been treated in a number of comprehen-
sive reviews and books (Hall, 1960, 1963; Andronikashvili
et al. , 1961, 1978; Andronikashvili and Mamaladze,
1966, 1967; Khalatnikov, 1971; Putterman, 1974), but
phenomena associated with crystalline order in the vortex
lattice were considered there only fragmentarily. Our in-
tention is to fill this gap. The theory is .reviewed and
found capable of describing all oscillation modes of a reg-
ular vortex lattice. The experiments that have been per-
formed or may be done to prove this theory are also con-
sidered, though from the position of a theorist: results,

but not techniques, are discussed. The experiments deal
mostly with effects produced by a large number of vor-
tices, so our theoretical approach is based on macroscopic
hydrodynamics referring to the infinite vortex lattice.
Even though a great deal of attention is devoted to
boundary problems for finite vortex arrays (because of
their importance for contacts between theory and experi-
ment on vortex oscillations), they are assumed to be large
enough and are treated using the hydrodynamical theory.
In order to make the review self-contained, it was. neces-
sary to limit it essentially to problems of superfluid hy-
drodynamics as a whole, keeping in mind that vortex-
oscillation modes can mix with other hydrodynamical
modes and sometimes it is difficult to distinguish between
them in theory and experiment. But we deal with general
problems of the hydrodynamics of rotating superfluids
only to the extent necessary for understanding vortex
motion.

As for the style of the present review, the principle
"from particular to general" is preferred to the principle
"from general to particular. " Though the latter makes
the paper more compact and helps to avoid repetition, the
former is more convenient for readers who have no inten-
tion of entering deeply into the theory and who want to
stop at some level. Following the same principle, we dis-
cuss an experimental result immediately after the theory
has been presented adequately. for its discussion. It is
quite remarkable that so much of the theory and experi-
ment on vortex oscillations can be understood within the
framework of the model of the perfect fluid, without
referring to the more complicated two-fluid theory. We
exploit this circumstance as far as possible.

Discussion of the perfect fluid begins with a very sim-
ple model of a classical fiuid with continuous homogene-
ous vorticity (Sec. II). It is well known that superfluid
vorticity is concentrated along singular vortex lines with
quantized circulation. It is in this quantization of circula-
tion that the quantum fluid differs from a common classi-
cal perfect fluid. But sometimes the circulation quantum
may be considered to be small compared to other relevant
parameters and it is even possible to forget the quantum
nature of the superfluid for a while. ' In Secs. III and IV
the laws of vortex motion and oscillation modes in an un-
bound rotating superfluid with quantized vorticity are
considered. Boundary problems for the perfect fiuid are
treated in Secs. V and VI. only after analysis of the
boundary problems are we able to discuss experiments on
vortex oscillations in finite containers with a superfluid,
and this is done is Sec. VI.

The theory is extended to include two-fluid effects for
an unbound fluid in Sec. VII and for a fluid in finite con-
tainers in Sec. VIII. Section IX is devoted to the proper-

~So, like Putterman (1974), we shall heed Uhlenbeck's appeal:
"one must watch like a hawk to see how Planck's constant
comes into hydrodynamics" (cited in Preface to Putterman's
book).
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ties of anisotropic superfluids such as the A phase of He
or the neutron matter in the P2 superAuid phase. This
section gives a preliminary outlook on new problems that
we encounter in studying vortex dynamics in anisotropic
superfluids. The review is concluded by Sec. X, briefly
discussing the mutual friction problem arising at deter-
mination of the vortex velocity in the two-fluid hydro-
dynamics.

Experiments discussed in the review were performed
mostly on He II, which has been up until now the main
field of application of the presented theory. As for super-
fluid He, we are compelled to discuss more often future
experiments, since experimental research on vortex
dynamics in superAuid He is in its early stages. In our
paper we touch also on astrophysical applications of the
theory.

II ~ WAVES IN A PERFECT FLUID
WITH CONTINUOUS VORTICITY

We begin our analysis of vortex oscillations within the
theory of a rotating classical perfect fluid.

Equations governing the motion of a perfect fluid are
the continuity equation,

Bp
Bt

+V (pv)=0,

and the Euler equation

Bv +(V.v)v= VP/p . —
at

(2.1)

(2.2)

Here v is the fluid velocity, p is the density, and I' is the
pressure. The pressure obeys the differential Gibbs-
Duhem relation

dI' =pdp+S dT, (2.3)

where p is the chemical potential, S is the entropy per
unit volume, and T is the temperature. Formally one
may describe a superfluid within the perfect-fluid theory
only at T =0 when S =0 too. Then Vp appears instead
of VP/p in the right-hand side of Eq. (2.2), as usual for
the superfluid Euler equation. But the perfect-Auid
theory may be applied at finite temperatures until the ef-
fects associated with the normal part of the fluid are not
very important.

One can prove directly that Eqs. (2.1) and (2.2) obey the
momentum cqnservation law

Here ea =T X v is the vorticity.
Suppose that the fluid rotates with the angular velocity

Q. Transformation to a rotating coordinate frame does
not change the continuity equation (2.1), but the Euler
equation (2.2) becomes

(2.8)

When 9 denotes the absolute vorticity, the Euler equation
in the form of Eq. (2.6) is invariant with respect to the
transformation to the rotating frame.

Now let us consider waves of small amplitude. Devia-
tions of the pressure and the density are connected by the
linear relation P'=c p', where c is the sound velocity. In
the linear theory, the velocity v in the rotating frame is
small, and the vorticity takes its equilibrium value 2Q, so
the linearized equations in the rotating frame are given by

1

+pV v=0 (2.9)

Bv C+2QXv= — Vp' .
Bt p

(2.10)

Suppose that a plane wave propagates in the fluid. Then

p'=p(Q)exp(iQ R—idiot)

Bt
+ (v V )v+ 2Q X v = VP /p—+V ( , f), —r ) . (2.7)

Here r is the distance from the rotation axis. Equation
(2.7) differs from Eq. (2.2) written for the inertial frame
by the Coriolis force 2QXv and the centrifugal force
V( —,

' Qr ). Further, the centrifugal force will be ignored
as being of minor importance for the problems under con-
sideration. Indeed, this force becomes essential when the
linear velocity due to rotation approaches the sound velo-
city and the fluid density begins to depend or r. Such fast
rotations are not available in present-day laboratory ex-
periments on superfluids.

The transformation to the rotating frame changes the
vorticity too, so the velocity field, originally irrotational
in the inertial frame, possesses after the transformation
the vorticity TXv= —2Q. Further, it is convenient to
deal with the absolute vorticity, always determined in the
inertial frame. Then the vorticity is not touched upon by
the transformation to the rotating frame, but is connected
with the fluid velocity in the rotating frame by the rela-
tion

~Jr

Bt +VJ II,J
——0,

=p(Q)exp(ipz+iq r icot), —

v=v(Q)exp(iQ R —idiot)

(2.11)

where j=pv is the momentum density or the mass flow,
and II;J is the momentum-Aux tensor given by

H)~ =I 6ij +pV)VJ

After transformation of the second term on the left-
hand side of Eq. (2.2) it takes the form

Bv +r0Xv= VP/p V( —,U ) . — —1

at

(Qv) pe(xi@ +ziq r icot) . —
Here and throughout the paper R is a three-dimensional
position vector, the z axis is directed along the rotation
axis, a two-dimensional vector r is the component of R in
the xy plane normal to the rotation axis, a wave number p
and a two-dimensional wave vector q are components of
the three-dimensional wave vector Q on the z axis and in
the xy plane, respectively. Three components of the velo-
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cuq c pq
2 2 2~q + 2 2 2co —cp ~ —cp

(2.12)

city v(Q) will be introduced as follows: the component U,

along the z axis, the component Uq along the wave vector
q, and the the component U, along the axis normal to
both q and the rotation axis.

We begin by solving the continuity equation (2.9) and
the equation for U, [one of three scalar equations given by
the vector Eq. (2.10)] and find the expressions connecting
p' and U, with vq.

The spectrum of the inertial wave, Eq. (2.15), was
proved by observation of resonances on standing waves in
a fluid contained in a cylindrical region with finite height
(Fultz, 1959). One can find further discussion and addi-
tional references in Sec. 2.15 of Greenspan (1968) and in
Sec. 7.6 of Batchelor (1970).

Now let us discuss the dispersion law for oscillations in
a compressible fluid. Solving Eq. (2.14) as an equation
for co one obtains the expression

co = —,'(4Q +c Q )

Substituting these expressions into the remaining two sca-
lar equations given by Eq. (2.10) we obtain equations to
determine vq and v„

+[ & (4II2+ 2g2)2 (2~ p)2]1/2 (2.17)

2 C2p2—i cov — 2Qu, =0,
~2 c2Q2

—icov, +2Qvq =0 .
(2.13)

The dispersion law for this system of linear equations is

2 2 2
4~2 GP —c P

2 2Q2
(2.14)

2 2

co =40 =4Q
Q' p'+q' (2.15)

Let us assume that the fluid is incompressible, taking a
limit e~ao. Then Eq. (2.14) yields

Comparing this spectrum with the spectrum of oscilla-
tions in a fluid at rest (0=0, co& ——cg, co2 ——0), we see that
rotation adds a second mode with a finite frequency. It
occurs due to the Coriolis force: rotation makes a fluid
rigid in the direction normal to the rotation axis. The
dispersion law, Eq. (2.17), shows that natural units of the
frequency and the wave vector in a rotating fluid are 0
and II/c, respectively. Thus the expansion in Q is an ex-
pansion in the dimensionless parameter cQ/0, and the
limit of an incompressible fluid choo is approached at
large wave vectors when cg/Q~ ao. Then one branch of
the spectrum, Eq. (2.17), yields the inertial wave with the
spectrum Eq. (2.15), and another branch is a sound wave
modified by rotation. Frequencies of the latter are given
by

Equations (2.12) and (2.13) give the following relations be-
tween velocity components in the wave:

co' =(cg)'+ (2Qq/Q) (2.18)

im ice q"=20"' "=
2n p" (2.16)

In the inverse limit of small wave vectors cg/0&&1,
expansion of Eq. (2.17) in cg/0 yields two frequencies,

Thus we have an elliptically polarized wave, well known
in the hydrodynamics of a rotating classical fluid as the
inertial wave. This wave plays an important role in
meteorology and geophysics (Greenspan, 1968). Proper-
ties of the inertial wave are very peculiar. For example,
the group velocity is directed normal to the wave vector.
The inertial wave is the sole linear mode of motion in an
incompressible inviscid rotating fluid. Looking at the
dispersion law, Eq. (2.15), one arrives at a result known as
the Taylor-Proudman theorem: any slow motion in the
rotating fluid is two-dimensional and homogeneous along
the rotation axis. This statement follows from the prop-
erty that small frequencies co &&20 correspond to small
values of the ratio p/Q. Thus the slow motion of the
fluid is columnar. Suppose that a solid disk is towed
across the bottom of the rotating tank with a fluid. The
entire vertical pillar of fluid above the disk moves as a
unit. This pillar is called a "Taylor column. " A number
of convincing experimental demonstrations of this strik-
ing phenomenon are described in the book of Greenspan
(1968). Slow columnar motion, known as a geostrophic
mode, is especially important for problems considered in
the present paper.

4Q +c QCO=
c2p2 (2.19)

This means that the model of the incompressible fluid is
invalid when the oscillation wavelength is large enough.
This important conclusion, obtained in the continuous-
vorticity model, holds as well in a fluid with quantized
vorticity. Therefore one should be careful with the term
"hydrodynamics of an incompressible fluid. " On the one
hand, the hydrodynamical theory should describe the
long-wavelength behavior of a fluid; on the other hand, it
is just the long-wavelength limit that the hydrodynamics
of an incompressible fluid fails. However, this problem is
academic to a certain extent, because the space scale c/0
at which the incompressible-fluid hydrodynamics be-
comes invalid is extremely large (of order hundreds of
meters) and is not relevant to any real laboratory experi-
ment. Probably such a large space scale is relevant in
some astrophysical applications. But one should
remember that at the distance c/Q from the rotation axis
the fluid velocity approaches the sound velocity c, and the
centrifugal force may not be ignored. Then our theory
should be modified.
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III. MOTION OF VORTEX LINES
IN A PERFECT FLUID

A. Vortex lines in a perfect fluid.

Energy of vortex lines

The concept of a vortex line appeared in classical hy-
drodynamics many years ago (see Lamb, 1945). This is a
line whose direction is everywhere that of the vorticity
vector T&v. Now suppose that a bunch of vortex lines
forms a tube, and motion of the fluid is irrotational
(curl-free) everywhere except for space within the tube.
This is known as a "vortex tube" or a "vortex filament"
or simply a "vortex. " Circulation around a vortex fila-
ment is a measure of its "strength":

vdl . (3.1)

V- v =0, V')& v =0 . (3.2)

At given circulations around all vortex lines we come to a
standard classical-field problem. Any vortex line induces
a velocity field given by the Biot-Savart formula (in com-
plete analogy with a magnetic field around a filament
with an electrical current. ) The net velocity field at the
point R is equal to a sum of contributions of all vortex
lines:

aj dRJ &&(R—RJ )
v(R) =

, 4~ R—R, ' (3.3)

Here ~J. is the circulation around the jth vortex line, and

RJ is the position vector of the point on the same line.
Integration is performed over the whole length of any
vortex line. The velocity field induced by one rectilinear
vortex line is especially simple. In this case integration
over the line length yields a field

(3.4)

Here sc is the circulation vector of magnitude ~ directed
parallel to the vortex line in accordance with the right-
hand rule. The two-dimensional position vector r lies in
the plane normal to the vortex line, and the origin of r is
on the vortex line. The velocity field Eq. (3.4) refers not

Here one integrates over any closed path around the fila-
ment. Suppose that at a given circulation the diameter of
the vortex filament decreases and becomes much smaller
than any relevant hydrodynamical scale (it may be the
curvature radius of the vortex filament or the distance
from other filaments). Such an infinitely thin vortex fila-
ment is widely known as a "vortex line. " But in contrast
with the vortex line introduced in a fluid with continuous-
ly distributed vorticity, we are now dealing with a singu-
lar vortex line along which all vorticity is concentrated.
A fluid may contain an arbitrary set of singular vortex
lines; outside of them motion of the fluid is curl-free. If
in addition the fluid is incompressibl, then in a multiply
connected region around the vortex lines the velocity field
satisfies the conditions

only to a straight vortex line, but to a curved one as well,
until the distance r from the vortex line is small com-
pared to the curvature radius.

Though the concept of the singular vortex line was in-
vented in classical hydrodynamics, it was there thought of
as being very distant from a real fluid, since viscosity let
to diffusion of vorticity, initially concentrated along
singular lines, over the entire bulk of the fluid (Lin, 1963,
p. 105), But in the superfluid, vorticity is not compatible
with the existence of a scalar complex order parameter;
therefore the superfluid endeavors to contract the region
of vorticity, providing stability of the vortex lines.

The energy of vortex lines is equal to the kinetic energy
of the velocity field induced by them. For a straight vor-
tex line [the velocity field is given by Eq. (3.4)] the energy
per unit length is

E=p Jdr —,'U (r) = I =~ ln . (35)4~ r 4n r,

The upper cutoff of the logarithmica11y divergent integral
depends on the particular hydrodynamical problem under
consideration. It is a distance from the vortex line at
which the velocity begins to decrease faster than 1/r. For
example, when one deals with a vortex ring formed by a
vortex line, the cutoff r is of the order of the ring ra-
d1us.

The lower cutoff r, is a core radius. The vortex core is
a region around the vortex line where the hydrodynamics
of an incompressible perfect fluid fails. One can approxi-
mately determine the core radius as a distance r at which
the velocity v„given by Eq. (3.4) is of the order of the
sound velocity c. This means that r, -~/c. Exact deter-
mination of r, requires an analysis of the vortex core
structure beyond the hydrodynamical approach, based on
the concept of infinitely thin vortex lines. In classical hy-
drodynamics a number of models were proposed to deal
with the vortex core, for example, a hollow core or a solid
core with uniform distribution of vorticity in it. In quan-
tum hydrodynamics the core radius r, -a./c is of order of
the coherence length. Studying a quantum fluid on such
a space scale is far from easy in general, except for cases
when one may apply some local field theory describing
the order parameter inside of the core by differential
equations. The Ginzburg-Pitaevskii theory is such a
theory, and within its framework the first calculation of
the superfluid vortex core was carried out (Ginzburg and
Pitaevskii, 1958) that provided an exact value of the cut-
off r, in Eq (3.5). .

The phenomenological Ginzburg-Pitaevskii theory is a
mean-field theory similar to the well-known Ginzburg-
Landau theory describing superconductors near the criti-
cal point. But such a theory is not suitable for applica-
tions to He II, where the effect of critical fluctuations is
much stronger than in superconductors. Therefore a
modified version of the Ginzburg-Pitaevskii theory has
been proposed, matching the scaling laws and experimen-
tal data in the critical region for He II (Ginzburg and So-
byanin, 1976, 1982). This is the phenomenological
theory, which wi11 be used in Sec. X.C in connection with
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dR;.dRJ
(3.7)

Performing this transformation we used Eq. (3.3) for the
velocity field and conditions given by Eq. (3.2). Equation
(3.7) is identical with the expression for the magnetic en-
ergy of electrical currents flowing along thin filaments
and for the electrostatic energy of charged filaments.

Any term i &j in the sum Eq. (3.7) is the energy of in-
teraction between two vortex lines. The self-action term
i =j contains the logarithmically divergent integral that
we have encountered in estimating the energy of one vor-
tex line. It is therefore cut off by the core radius r, .

B. The Magnus force and the Helmholtz
theorem

In order to describe the dynamical behavior of a prefect
fluid with singular vortex lines we solve the hydrodynam-

the mutual friction problem. The calculation of the vor-
tex line energy in the %' theory is similar to that in the
Ginzburg-Pitaevskii theory (Ginzburg and Sobyanin,
1976). Similar calculations of the vortex core structure
and its effect on the energy of the vortex line have been
carried out using the Gross-Pitaevskii theory for the
weakly interacting Bose gas (Gross, 1961; Pitaevskii,
1961; Fetter, 1965). This theory is derived from the
Schrodinger equation for bosons written in the second-
quantization formalism, but also results in the nonlinear
Schrodinger equation for the condensate wave function,
or the order parameter, like that in the Ginzburg-
Pitaevskii theory. Properties of vortex lines in terms of
the Gross-Pitaevskii and Ginzburg-Pitaevskii theory were
considered by Vinen (1966).

The structure of the vortex core has also been studied
within the healing theory of Hills and Roberts (1977b,
1978a, 1978b), who generalized the traditional two-fluid
theory in a way that allows the superfluid density to be an
independent thermodynamic variable. One can find a dis-
cussion of this and other models for the vortex core in the
review paper of Barenghi et al. (1983).

By performing calculations of the vortex core structure
we can obtain an exact number factor in the expression
for the lower cutoff r, in Eq. (3.5). But this factor is not
very important for our purposes, since the logarithm in
Eq. (3.5) is large as a rule (of order ten). Furthermore, we
shall be using the "logarithmic approximation" neglecting
number factors in the argument of the logarithm in the
expression of the energy of vortex lines.

Let us find now the energy of an arbitrary pattern of
vortex lines in an incompressible fluid. The energy is ap-
proximately equal to the product of the energy per unit
length given by Eq. (3.5) and the total length of vortex
lines. A more involved approach is to transform by
means of partial integration the volume integral for the
kinetic energy,

8'= —,p I dRU(R) (3.6)

into the sum of double linear integrals over vortex lines

ical equations for the curl-free perfect fluid in a multiply
connected region around the vortex lines. These equa-
tions should be supplemented by equations governing the
motion of vortex lines. Now we are going to discuss such
equations.

It is well known that vortex lines in a perfect fluid
move with the fluid, or are "frozen into" the fluid. This
is stated by the Helmholtz theorem, which holds for
singular vortex lines too, but in the latter case some points
deserve discussion: (i) the hydrodynamical theory be-
comes invalid in the approach to a singular vortex line,
(ii) in connection with it the question arises how to deter-
mine correctly the fluid velocity of points on vortex lines.
In order to make these points clear we review the deriva-
tion of the Magnus relation connecting the vortex line
velocity vt and the external force F per unit length ap-
plied to the vortex line.

Suppose that we have an isolated vortex line in an in-
compressible fluid. The line induces the velocity field
v, (r) given by Eq. (3.4), and there is a fluid current past
the vortex line with a constant velocity vp. Then the net
velocity field around the line is

t

v(r) =v, (r)+ vo . (3.8)

P =const ——,
' p[v(r) —vL ] (3.9)

Next we write an equation of momentum balance for a
cylindrical region of a radius rp around the vortex line.
The momentum conservation law requires that an exter-
nal force F exerted on the fluid in the balance region be
equal to the momentum flux through the entire boundary
of the balance region. The momentum-flux tensor is
given by Eq. (2.5), in which the velocity v should be re-
placed by the relative velocity v —vL. Using Eqs. (3.4),
(3.8), and (3.9) and integrating the momentum-flux tensor
over the cylindrical region of the radius ro, we obtain the
total momentum flux, which should be equal to the exter-
nal force. It yields the following relation:

F=pKQ(vp —vt ), (3.10)

On the right-hand side of Eq. (3.10) we see the Magnus
force.

We dwell on this simple derivation of the Magnus rela-
tion, which can be found in many books on hydrodynam-
ics, in order to discuss the rather wide range of its validi-
ty. During the derivation we referred to the hydrodynam-

Equation (3.8) yields the sole velocity field in an in-
compressible perfect fluid satisfying conditions (3.2) to-
gether with the condition imposed by the given circula-
tion of the vortex line. The pressure around the vortex
line can be found from the Euler equation (2.2), in which
the temporal derivative is

Bv
at

= —(vL, V)v.

Then we obtain the Bernoulli law for a stationary state of
the fluid in the frame of reference connected with the vor-
tex:
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ical equations only at large distance ro from the vortex
line. It may have appeared as if the behavior of the fluid
in the vortex core did not matter at al1. However, we
made an implicit assumption concerning the fluid in the
vortex core. It was assumed that the momentum and the
momentum flux were well-defined quantities everywhere,
even inside of the vortex core where the hydrodynamical
theory fails. This assumption does not arouse suspicion
in the case of hydrodynamical vortices. Bui sometimes
the assumption does not hold, as in the case of magnetic
vortices in the easy-plane (planar) ferromagnet. The mag-
netic vortex is a linear defect of an ordered material like
the superfluid vortex. On the close path around the mag-
netic vortex, the magnetic moment rotates through the
angle 2m, remaining in the easy plane. The dynamics of
the easy-plane ferromagnet is governed by the
phenomenological Landau-Lifshitz theory. In this theory
there is a momentum conservation law derived from the
Lagrangian by means of the Noether theorem. But the
momentum and its flux are divergent on the axis of a
magnetic vortex, and this should be allowed for when one
derives the equation of motion for the magnetic vortex
from the momentum balance. The balance equation must
include not only the momentum flux through the cylin-
drical surface remote from the vortex, but also the
momentum flux through the surface on an infinitely
small radius surrounding the axis of the vortex (Nikiforov
and Sonin, 1983).

The Magnus relation may be extended to cases in which
the vortex line is not straight and in which there are other
vortex lines. Then the velocity field near the vortex line is
a more general function of the position vector than that
given by Eq. (3.8). But one. can expand this function close
to some point on the vortex line, and the first two terms
of such an expansion should give the field, Eq. (3.8) (a
singular term —I/r and a constant vector). In the case of
a curved vortex the expansion also contains a logarithmic-
aHy divergent term -1nr, but it is cut off by the core ra-
dius r, and gives a contribution -lnr, to the constant
velocity vo. Qther terms of the expansion are important
if the position vector r is the same order of magnitude as
the distance from other vortex lines or the curvature ra-
dius of the vortex line itself. Our derivation of the
Magnus relation, Eq. (3.10), is valid if one chooses the ra-
dius ro of the balance region to be larger than the radius
r, of the vortex core but smaller than the distance from
the vortex line, where higher-order terms in the expansion
of the velocity field become important. Thus the condi-
tion that restricts the validity of Eq. (3.10) is that the core
radius be smaller than any spatial scale relevant for the
hydrodynamical problem under consideration. One can
apply the Magnus relation to a compressible fluid, too. In
this case the relevant scale is a sound wavelength, and it
should be larger than the core radius. Then, in deriving
the Magnus relation, one can ignore the spatial variation
of the density p and the fluid velocity v produced by the
sound wave.

When we derived the Magnus relation we considered a
vortex in steady motion at a constant velocity vL. If the

velocity vL varies in time, the inertial force of the fluid
inside the balance region can contribute to the momentum
balance. It is clear, however, that not the whole inertial
force of the fluid contributes, but only the part of this
force associated with the presence of the vortex (the
difference between the inertial force of the fluid with and
without the vortex). The rest of the inertial force is can-
celed by nonstationary corrections to the momentum flux.
As a crude estimate for the inertial force that can be add-
ed to the Magnus relation we take the quantity
-pr, (dvL /dt) or -pr, covL, , where co is a frequency. The
inertial force is smaller than the Magnus force -p~vt
provided

co~I~/r, -c /~.2 2

This inequality is violated only at quite large frequencies.
For a sound wave it is the frequency at which the wave-
length is of the same order as the vortex core radius.
Under such conditions the hydrodynamical framework on
which our derivation of the motion equation rests, com-
pletely fails. Therefore we adhere to the opinion of Baym
and Chandler (1983), who studied the effect of vortex in-
ertia on the dynamics, that a calculation of vortex inertia
on the basis of hydrodynamics is questionable.
Throughout this paper we assume that the Magnus rela-
tion [Eq. (3.10)] without the inertial force is exact enough.

The external force in the Magnus relation [Eq. (3.10)]
may be any force localized over distances from the vortex
line smaller than other relevant hydrodynamica1 scales.
An example of such a force would be the electrical force
on ions captured by the vortex core. But if the whole
fluid is in some external force field, then the force in Eq.
(3.10) includes that part of the total force on the fluid
which is associated with the presence of the vortex. For
example, when the fluid is in a gravitational field the Ar-
chimedes force acts upon on the vortex. It is proportional
to the mass difference of the fluid with and without the
vortex. The Archimedes force was introduced by Musli-
mov and Tsygan (1985) to explain the expulsion of vor-
tices from the superconducting interiors of neutron stars.

When the external force F is absent, the vortex moves
with the velocity vo of the fluid current past the vortex.
Thus we arrive at the Helmholtz theorem again, but now
it is clear what the fluid velocity of the point on the vor-
tex line is. The velocity vo in Eq. (3.10) is the first term
of the expansion for the velocity field near a point on a
vortex line, regularized by subtracting the divergent term
—I/r and by cutting off the logarithm term (lnr~lnr, ).
From here on we shall drop the subscript 0, assuming that
the regularization of the velocity field is always per-
formed.

In the Magnus relation we encounter a noteworthy
feature of vortex dynamics: the resultant of forces on the
vortex is balanced not by the inertia force, proportional to
an acceleration (as in Newton's second law), but the gyro-
tropic Magnus force, proportional to a velocity. Any
force acting upon the vortex can be described by its con-
tribution to the net vortex velocity, and vice versa, any
contribution to the vortex velocity may be presented as
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some force acting upon the vortex. Particularly, one can
rewrite the Magnus relation, Eq. (3.10), in the following
form:

dR)f
L

—pK)(, VL =F+Fo q (3.11)

where Fo———pe Xvo is the force exerted on the vortex by
the fluid current. Such a "force versus velocity" relation
is widely exploited in vortex dynamics.

Since the force on the vortex fixes its velocity, the latter
cannot be an independent variable determined by initial
conditions as in the case of a particle. So the particle in
two-dimensional space has twice the degrees of freedom
of a rectilinear vortex performing two-dimensional
motion. As a result, the dynamical behavior of the vortex
and of. the particle is essentially different. Suppose both
are located in a two-dimensional well. The particle in
such a well would have two linearly polarized oscillation
modes, but the vortex would have one elliptically polar-
ized mode reducing to a circularly polarized mode when
the well is axisymmetric. The Kelvin mode considered in
Secs. III.D and III.E gives an example of such a mode for
which the bending energy of the vortex line plays the role
of the potential energy forming the well.

«; f «;X[dRJX(R; —R, )]
4m /Rg —RJ /

On the right-hand side of Eq. (3.14) we see the general-
ized force acting upon the ith vortex line in the point R;.
This force is balanced by the Magnus force, in accordance
with the basic law of vortex motion. Terms in the expres-
sion for the generalized force [see Eq. (3.15)] correspond
to forces exerted by all vortex lines. Each of them has its
counterpart in Eq. (3.12) for the velocity.

Equations of motion given by Eq. (3.14) form a closed
system describing the dynamical behavior of vortex lines,
as well as that of the fluid as a whole. The Euler equa-
tion is necessary only if one wants to find the distribution
of the chemical potential or the pressure over the fluid.
Let us see what form the Euler equation takes in the
model of singular vortex lines. The vorticity may be
presented as a sum of contributions due to all vortex lines:

C. Canonical equations of motion of vortex lines
in an incompressible perfect fluid

r0(R) = g I~J f d R~ 5(R R~ ) . —, (3.16)

The Helmholtz theorem forms the basis of the theory
of vortex motion in an incompressible perfect fluid, a
theory which was developed in the past century. Suppose
there is a set of vortex lines inducing the velocity field,
Eq. (3.3). One obtains the velocity of the point R; on the
ith vortex line by taking a limit R—+R; in Eq. (3.3) and
subtracting the singularity ~ 1/

~

R—R;
~

in the self-
induction term i =j, in accordance with the procedure of
regularization described in Sec. III.B. The velocity of the
point R; is

dR; Ir~. f dR~ X(R;—RJ )dr, . 4~ ~R,.
(3.12)

For the set of parallel rectilinear vortex lines, integration
in Eq. (3.12) is readily performed and yields

d r; «J X (r; —r~ )

J~; 2&(lg —lj ~

(3.13)

Here r; is the two-dimensional position vector of the ith
vortex line. The self-induction term i =j drops out after
regularization.

Let us rewrite Eq. (3.12) in the following form:

dR;—p«;(R;) X
7

(3.14)

Here the vector «;(R;) is a tangent to the ith vortex line
in the point R;, and the magnitude of this vector is the
circulation «;. One can readily prove the identity of Eqs.
(3.12) and (3.14) by calculating the functional derivative
of the energy 8' given by Eq. (3.7):

Here 5(R—RJ) is a three-dimensional 5 function and

dRJ is an integral over the jth vortex line. Substitut-
ing Eq. (3.16) into the Euler equation (2.6) and using the
Gibbs-Duhem relation, Eq. (2.3), at T =0 to replace
VPIp by Vp, we obtain

+ glrj f [dRJ Xv(R)]5(R—RJ)= —V(p+ —,v ) .
J

(3.17)

R;=z;z+r;+u;(z) . (3.18)

Here z is the unit vector along the z axis and r; is the

Singular terms in Eq. (3.17) play the role of pseudopoten-
tials, allowing us to extend the Euler equation to points of
vortex lines where the hydrodynamical theory is invalid in
a strict sense.

The Euler equation is a field equation, and Eq. (3.14) is
an equation of motion of "charges. " In electrodynamics
the field possesses its own degrees of freedom only when
the retardation of the interaction is important, but may be
eliminated from the nonrelativistic dynamical theory.
Likewise one can eliminate the Euler equation, describing
an incompressible fluid by equations of motion for vortex
lines only.

In the rest of this review the most attention will be de-
voted to small osciHations of an array of rectilinear vor-
tices parallel to the z axis. One can describe their motion
by a set of two-dimensional vectors of displacement u;(z)
in the xy plane which depend on the coordinate z and the
index i of the vortex. The original three-dimensional po-
sition 'vector R; is connected with u;(z) by
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two-d. imensional equilibrium position vector of the ith
vortex line. Then we can rewrite Eq. (3.14) as follows
(Fetter, 196'7):

of the vortex line:

du d u(z)—p~z X
dz

(3.21)

Bu;(z)
Bt

1 68'
zX

5u;(z)
(3.19)

These are Hamiltonian equations for pairs of conjugate
variables (x;,y;) that are components of the displacement
u;. If one assumes x; to be a coordinate, then p~y; is a
canonical momentum. The particle moving in the xy
plane would have two pairs of conjugate variables: (x,p )

and (y,p„).

D. Kelvin oscillations of an isolated
vortex tine

dz

Here we consider circularly polarized waves propaga-
ting on an isolated vortex line. This problem was solved
by Lord Kelvin a hundred years ago (Thompson, 1880).
Using the concept of linear tension s given by Eq. (3.5),
we estimate the energy of the vortex line as 8'= El., where
I. is the length of a slightly bent vortex line:

2 I /2

The force of linear tension on the right-hand side of Eq.
(3.21) is balanced by the Magnus force.

Equation (3.21) admits plane-wave solutions
cc exp(ipz i—cot) with the dispersion law

6) = +V@j9

where rigidity v, is

(3.22)

r
ln

4m r,
(3.23)

As an upper cutoff rm one should choose a distance
where perturbations produced by oscillations penetrate.
In an unbound fluid, such a distance is expected to be of
order of the wavelength —1/p. This means that our ap-
proach based on the differential equation (3.21) is not
quite rigorous, since the coefficient of this equation de-
pends on the wave number p. But it is possible to develop
a more rigorous approach.

Let us look for a general solution of the problem as a
superposition of normal-mode solutions, each being a
propagating plane wave. We perform the Fourier
transformation

2
1 du(z)=L,p+ — dz
2 dZ

(3.20) u(z, t) = dp u(p, t)exp(ipz) .
2%.

(3.24)

We drop a subscript of the displacement u, since only one
vortex is retained in our analysis. Taking the functional
derivative of the energy 8' and substituting it into Eq.
(3.19), we obtain the equation governing small oscillations

The expression for the energy in the Fourier representa-
tion is obtained from Eq. (3.7) retaining only the self-
action term for one vortex line. Using Eqs. (3.18) and
(3.24), we have

du(z& ) du(zz)
2 1+

pK d d
dz dZ

l(zi —z»'+
l
u(zi) —u(zz)

l

'1'"

f fd, d,
du(z~ ) du(zz )

dz dZ

Z$ Z2

u(z&) —u(zz)

Ized

—z2 l'

= 8'0+1.0 f dp u(p)*u(p)&(p) .
Sm

(3.25)

Here 8'p and Lp are the energy and the length of the
straight vortex line and

The equation of motion (3.19) after Fourier transforma-
tion takes the form

X(p) = p e'~' — (1—e'~')
—oo

Divergence at small z is cut off by the core radius r, .
Then by partial integration one obtains

2~ 58'
zX

p«o 6u(p)*
ItK(p)

z Xu(p) .

(3.28)

IC(p)=p f cospz=p ln(1/pr, ) .
"c Z

This equation describes the Kelvin oscillations with the
frequency of Eq. (3.22), but now the upper cutoff r in
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Eq. (3.23) is rigorously determined.
Qscillations of the single vortex line have also been con-

sidered within the frame work of the Gross-Pitaevskii
theory for a weakly interacting Bose gas (Gross, 1961;Pi-
taevskii, 1961; Fetter, 1965). Outside of the vortex core
the equations of the Gross-Pitaevskii theory coincide with
the hydrodynamical equations. (A justification of hydro-
dynamics is thus provided by this microscopic model. )

But the Gross-Pitaevskii theory is able to provide an exact
value of the lower cutoff r, in the expression for rigidity
v, given by Eq. (3.23).

E. Experimental observation
of the Kelvin mode

The Kelvin modes have been observed in experiments
on torsion oscillations of a pile of disks in rotating He II.
But in these experiments frequencies were rather low, and
the Kelvin oscillations were strongly modified by collec-
tive effects due to long-range interaction of vortices.
Pile-of-disks experiments will be discussed later, in Sec.
VI, after the analysis of boundary problems that is neces-
sary for their interpretation.

Some time ago Ashton and Glaberson (1979) tested the
dispersion law [Eq. (3.22)j at high frequencies where col-
lective effects are not important; in this experiment they
dealt with pure Kelvin waves in isolated vortex lines.
Ashton and Glaber'son investigated the motions of ions
along vortex lines in rotating He II in the presence of a rf
electric field, transverse to the vortex lines. It had been
suggested earlier (Halley and Cheung, 1968; Halley and
Ostermeier, 1977) that such a field would strongly couple
to vortex waves under suitable conditions. Resonant gen-
eration of vortex waves occurs when the following condi-
tions are satisfied:

co~=co(p) —u;,~, (3.29)

de(p) (3.30)

Here co~ is a rf frequency of the field, which was 10 Hz
in the experiment, v;0„ is an ion velocity. The first condi-
tion means that the vortex wave frequency in the frame of
reference of the moving ion is the same as the frequency
co~ of the field. The second condition ensures that the
ion, pumping the energy into the vortex wave, remains in
the vicinity of the vortex wave packet moving with the
group velocity des/dp. In addition to these two condi-
tions, the sense of circular polarization of the rf field
should be the same as that of the vortex wave in the
frame of reference of the ion. Ashton and Glaberson
(1979) measured the ion velocity as a function of the dc
electric field, driving ions along the vortex line. They ob-
served anomalies on the plot when all conditions of the
resonance were satisfied. Despite a small discrepancy
with theory, explained by Ashton and Glaberson in terms
of the field inhomogeneity, the experiment provides rath-
er convincing evidence of the existence of propagating
Kelvin wave at high frequencies.

IV. OSCILLATIONS OF QUANTIZED VORTICES
IN A ROTATING PERFECT FLUID

A. Hydrodynamics of rotating superfluids

The equations of motion (3.12) for vortex lines yield a
complete description of the dynamical behavior of an in-
compressible perfect fluid with quantized vortieity. How-
ever, analytic solution of these equations is a tractable
problem only when one deals with a few vortices or with
regular arrays of straight parallel vortices. In the latter
case the apparatus of complex functions can be applied
(Milne-Thomson, 1960). In the hydrodynamics of super-
fluids the most remarkable analytic result belongs to Tka-
chenko (1966), who has solved exactly and completely the
problem of small oscillations for the infinite two-
dimensional regular array of rectilinear vortices using the
theory of elliptic functions. According to Dyson (1971,p.
51), Tkaehenko's solution was "a tour de force of power-
ful mathematics. " However, this analytic technique can-
not be extended to three-dimensional problems when vor-
tex flexure oeeurs. Moreover, most experiments deal with
fluids involving a large number of vortices constituting a
very dense array, and only averaged parameters are avail-
able for experimental observation. Thus we follow the ap-
proach of the continuum elasticity theory of solids and
approximate equations for discrete vortex lines by equa-
tions for continuous fields of such averaged parameters as
the vortex density, deformations of the vortex array, and
the vortex velocity. It is assumed that these parameters
slowly vary over the distance between vortices, and one
may use an expansion in gradients or in wave vectors in
the Fourier representation. The initial equations govern-
ing motion of the fluid with singular vortex lines play the
role of microscopic equations for atoms in a solid. This is
why the term "microscopic" is sometimes used to refer to
equations in terms of quantized vortex lines and "macro-
scopic" to refer to equations of the continuum model
(Baym and Chandler, 1983). But in fact "microscopic"
equations are formulated within the scope of the
phenomenological hydrodynamical theory and have noth-
ing to do with truly microscopic equations of the fluid.

Macroscopic hydrodynamical equations can be derived
from microscopic hydrodynamics by means of a coarse-
graining procedure, or they may be formulated on a
phenomenological basis using conservation laws and re-
quirements imposed by symmetry. Macroscopic hydro-
dynamics was derived and applied to the description of
rotating superfluids beginning with the pioneering work
of Hall (1958), Mamaladze and Matinyan (1960), and
Bekarevich and Khalatnikov (1961). Bekarevich and
Khalatnikov developed the first general nonlinear
phenomenological description of rotating superftuids.
However, their hydrodynamics neglected the energy in-
crease produced by shearing of the vortex lattice. There-
fore Tkachenko modes could not be obtained in such a
hydrodynamics. A continuum hydrodynamical theory al-
lowing for the crystalline order in the vortex lattice and
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Bv 1

at
+coXVL= —V(p+ 2U ) . (4.1)

Here v and co are the averaged velocity and vorticity,
respectively, the latter equal to the number density of vor-
tex lines per unit area multiplied by the circulation quan-
turn ~. Symbols denoting averages are dropped. We write
the gradient term on the right-hand side of Eq. (4.1) in
the same form as in Eq. (3.17). But p in Eq. (4.1) now
denotes some scalar function, which differs from the
chemical potential p in Eq. (3.17). We shall not explore
the relation between old and new p because our intention
is to formulate the hydrodynamics phenomenologically,

its shearing rigidity was developed by Tkachenko (1969),
but his theory did not consider possible flexure of vor-
tices. The extension of the hydrodynamical continuum
theory to include effects of shearing rigidity and vortex
flexure was carried out by Sonin (1976) and Williams and
Fetter (1977). In both papers linear equations for quan-
tized vorticity were derived in the Fourier representation,
then expanded in the wave vector, retaining only first
terms of the expansion. This procedure yielded the long-
wavelength equations of motion within the continuum
theory. An equivalent coarse-graining procedure directly
in the coordinate space was suggested by Baym and
Chandler (1983). They also restricted themselves to a
linear theory. Volovik and Dotsenko (1980) have derived
hydrodynamical equations. for the vortex lattice using
Poisson bracket techniques. A general nonlinear hydro-
dynamics of a rotating superfluid involving the effects of
both vortex tension and Tkachenko shearing rigidity of
the vortex lattice was formulated by Andreev and Kagan
(1984).

Though nearly all calculations concerning vortex oscil-
lations remain within the scope of the linear theory, we
prefer to begin with formulation of the general nonlinear
macroscopic hydrodynamics in order to have an outlook
on the problem as a whole. Following the plan of the
present review we restrict ourselves in this section to the
one-Auid hydrodynamics of a perfect Auid. Resultant
equations differ from those of Andreev and Kagan (1984)
by another choice of variables characterizing the form of
the vortex lattice. %'e shall use displacements and defor-
mations instead of the variables connected with the metric
tensor of the vortex lattice used in the paper of Andreev
and Kagan.

First let us see what form the Euler equation takes in
macroscopic hydrodynamics. In the initial microscopic
hydrodynamics of the perfect fluid with singular vortex
lines it is given by Eq. (3.17). From here on we assume
that any vortex line bears one quantum of circulation,
~=A/M, where M is the mass of bosons or Cooper pairs
of fermions. We shall average Eq. (3.17) over a vortex
lattice cell. Because of the singular character of the vorti-
city field, the velocity of the Quid in the vector product is
not affected by the procedure of averaging; it remains a
regularized local velocity of the point on the vortex line.
This velocity will be denoted as vL. Thus the averaged
equation is

appealing only to conservation laws and symmetry. But
later it will be clear that p in Eq. (4.1) is the chemical po-
tential in macroscopic hydrodynamics, as required by the
energy conservation law.

The Euler equation (4.1) is closely connected with the
continuity equation for vorticity. The latter is obtained
by taking a curl of both parts of Eq. (4.1),

RAP

Bt
+vX(r0Xvt ) =0 (4.2)

or

BOP

at + ( vL, ' V )r0 + [Co ( V ' VL, ) —( co ' V )vt ]=0 . (4.3)

Up+ 2 2

2

p+ 2

M f 6U'(coXVL, ) .

The term originating with the vector product in Eq. (4.1)
gives a contribution to the phase difference variation due
to a flow of vortex lines across the path between points 1

and 2. Indeed, any passage of a vortex line across the
path produces a change 2m. in the phase difference. This
is a "phase slippage, " a concept invented to explain
Josephson-type phenomena in superconductors and super-
fluids (Anderson, 1966).

The next step is to rewrite Eq. (4.1),

—+r0Xv+V(p+ —,U )= f/p,
Bt

introducing a force

f = —pr0X(vt. —v) .

(4.4)

(4.5)

Comparing Eq. (4.5) with Eq. (3.10) and recalling that co

is equal to the circulation quantum ~ multiplied by the
two-dimensional density of vortex lines, we see that f is a
force acting upon vortex lines in unit volume of the fluid

Because G is proportional to the density of vortex lines,
Eq. (4.3) is a differential conservation law for vortex lines,
but its validity is not restricted to the model of singular
vortex lines; it holds even when vorticity is distributed
continuously over the entire space. Therefore one can ar-
rive at the Euler equation [Eq. (4.1)] starting from the evi-
dent continuity equation for vorticity in the form of Eq.
(4.2) or (4.3). Integration yields Eq. (4.1), but with an in-
determinate scalar function p+U /2.

Another insight into the physical meaning of Eq. (4.1)
is achieved by recalling the connection between the veloci-
ty v and the phase y of the order parameter of the super-
fluid: v=(A'/M)Vy. A phase difference along the path
around the vortex line is equal to 2~. Suppose we in-
tegrate Eq. (4.1) along a path between some points 1 and
2. This yields an expression for the temporal derivative
of the phase difference:

d(V» —Vi) M r2 av
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moving with velocity v. Thus it should be. connected
with a variation of the energy due to vortex displace-
ments. The total energy density is given by

E =ED+ ,' pu—, Eo ——E;„(p)+E„(u) . (4.6)

Here Eo is the energy density in the frame of reference
moving with the averaged velocity v. It includes the
internal energy density E;„(p), depending on the fluid
density p, and the vortex energy density E,(u), which is a
functional of the vortex line displacements u. Displace-
ments are determined referring to some arbitrarily chosen
equilibrium pattern of vortex lines. Here we consider a
general nonlinear theory, so displacements u are arbitrary
three-dimensional vectors and do not necessarily lie in the
xy plane as assumed in Sec. III.C. In fact, E„(u) is the
density of the total kinetic energy of the fluid after sub-
traction of the kinetic energy of the averaged flow with
density pv /2. Gf course, E„(u) depends only on gra-
dients of u, not on their absolute values, so the Gibbs
thermodynamic relation is

EO
dEO ——p dp+ d (V;uj )

QJ

Du=du+(Du V)u . (4.10)

Now we can find the variation of the total energy in the
Lagrange sense. At first we write the energy variation in
the Euler sense:

58'= f dR du+ dV~u
BE BE
BU BVJ.Q

Then we eliminate du with the help of Eq. (4.10),

(4.11)

5$'= f dR [Du —(Du V)u]
BE
BU

58'= f dR —VJ

r

+ VJ 7'u; Du.BE
VJu,

(4.13)

+ —
V~ [Du —(Du V)u] . (4.12)

BE
BVJQ

Integrating by parts and allowing for BE/BU=O, we ob-
tain

M' BE
=P dP+ dQ) + V~ — dQJ

Q7 f QJ
(4.7) The quantity in brackets is the functional derivative in the

Lagrange sense determining the force f:
or, for the density of the total energy,

dE =(p+ —,U )dp+pv dv+ du1 6E
5u

+V; - -duBE
BVg Q

(4.8)

Here the functional derivative is determined by the usual
expression:

5E aE aE aE
5u Bu BVJu BVJu

(4.9)

However, it is not the derivative that determines the force
f in Eq. (4.4). Let ns consider a small variation of posi-
tions of the vortex lines. There are two ways to,define a
small variation of displacements u. The first definition
refers to a fixed point on a vortex line, and the variation
is defined as the difference between two positions of this
point. It is a small variation Du in the Lagrange repre-
sentation of hydrodynamics, and the force f should be
connected with the energy variation with respect to the
Lagrange variation. However, the displacement u(R, t) in
Eqs. (4.6)—(4.9) is a field variable referring to a fixed
point R of the coordinate space, i.e., a variable in the
Euler representation of hydrodynamics. In this represen-
tation a small variation du is the difference between dis-
placements of those two points on vortex lines which were
located at point R after and before variation of positions
of all vortex lines. The functional variation in Eqs.
(4.7)—(4.9) is determined with respect to the Euler varia-
tion du. The relation between the Lagrange and the
Euler variations is well known:

BE BE
BV~u J BV~u;

(4.14)

Bj;
v+V II,J ——0, (4.15)

and for the energy,

BE +V.J=O .
Bt

(4.16)

The momentum-flux tensor is

IIIJ =—I 6;J +PVI VJ +0;J (4.17)

where the elastic stress tensor of the vortex lattice is given
by

BE BE
/J BV l k (4.18)

For the energy flow one has

J=(p+ —,U )j— [Ul; —(vt. .V)u;] .
BE

BVu;

The pressure

(4.19)

Equations (4.4), (4.5), (4.14), and the continuity equation
(2.1) at given dependence of the energy on all variables
constitute a closed system of hydrodynamical equations.
It is invariant with respect to the Galilean transformation
and also to the transformation to the rotating coordinate
frame, provided that 9 is an absolute vorticity in the iner-
tial frame of reference and centrifugal forces are ignored.
We can prove that our system of equations obeys the con-
servation laws for the momentum,
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I' = —Ep+pp

satisfies the differential Gibbs-Duhem relation,

(4.20) with i =j =z drop out. As a result, the density of' the
elastic energy is determined by three elasticity moduli,

dP =P dP —
. d VJ'+)

BE

J Qg

(4.21)
E„=4Ci (u~, +uy, ) +C2(u + ugly )

+ C3[(u„„—ugly) +4u y], (4.26)

The energy conservation law is obeyed only provided that
p in the Euler equation Eq. (4.1) is the true thermo-
dynamical chemical potential.

The hydrodynamics of Bekarevich and Khalatnikov
follows from the present theory when one ignores the
dependence of the energy on shearing deformation of the
vortex array, i.e., the crystalline order in the vortex array.
Then the vortex energy density E„(co) depends only on the
vortex density, and the variation of the energy produced
by variation of the pattern of vortex lines is

58'= I dR de
Bco

BE= I dR (ro d—Fo) . .
Bco co

(4.22)

The variation dc@ is connected with the Lagrange varia-
tion of the displacement Du, following from purely
kinematical arguments, by the formula [compare with Eq.
(4.3)]

dr0= (Du V)co [—r0(V Du) —(co V')Du] . — (4.23)

We eliminate de from Eq. (4.22) by substitution of Eq.
(4.23) and compare the obtained expression with Eq.
(4.13). After some integration by parts, this yields the fol-
lowing formula connecting derivatives with respect to G
and to gradients of the displacement u:

BE
J

BE BE
J BV g

—VJ&k (4.24)

With the help of this formula it is not difficult to prove
that our hydrodynamica1 equations are identica1 with
those of Bekarevich and Khalatnikov (1961)at T =0.

B. Equations of motion in linear
hydrodynamics

u;J = —,(V';u +V' u;) (4.25)

Now we descend from the general theory to its particu-
lar cases, which permit a quantitative analysis. Let us
derive the expression for the vortex energy density E„ in
the harmonic approximation. The vortex array consti-
tutes a triangular lattice possessing hexagonal symmetry.
Its energy in terms of displacement gradients is elastic.

.One can find a general expression for the elastic energy
for the lattice with hexagonal symmetry in the book of
Landau and Lifshitz (196S). This expression may be sim-
plified, since in the harmonic approximation only dis-
placements in the xy plane normal to the rotation axis in-
crease the energy. Therefore all terms containing com-
ponents of the deformation tensor

or in terms of displacements u, which are two-
dimensional vectors in the xy plane, henceforth

2

E,=Ci +Cz(V.u)
dz

Bx

2
Bgy BQ~ BQy-

Bx Bg Bx
+ — +

(4.27)

The first two terms in Eq. (4.27) are not connected with
the crystalline order and shear elasticity. Therefore they
can be derived from the Bekarevich-Khalatnikov theory.
The density of the vortex energy in this theory is equal to
the energy s of one vortex line per unit length [see Eq.
(3.5)] multiplied by the two-dimensional density of vortex
lines co/~:

"m V ~c
EU = ct) ln = coin

4~ r, 8~
(4.28)

Here we chose the intervortex distance on the triangular
lattice,

1/2
2K

v 3' (4.29)

of vorticity co from the equilibrium value 2A. The expan-
sion includes terms of first order in ~'. But the variation
of vorticity is not independent, being coupled with the
variation of the velocity of the fluid. In the correct
theory, first-order terms in m' should be canceled out by
other first-order terms, so we retain in the expansion of
the Bekarevich-Khalatnikov vortex energy, Eq. (4.28),
only terms of the second order in m':

B2E
E, E„P+— u;coJ-

BQP& BcoJ

BE,
UO+

(a)' Q)
Q

BE,
+ z

(co' 0)
2Q

(4.31)

The deviation of vorticity u is connected with small dis-
placements of vortex lines by a relation similar to the
linearized version of Eq. (4.23) connecting dr0 and Du:

as the upper cutoff r in the logarithm argument. This
means that co, =2m/V 3r, in Eq. (4.28).

In the harmonic approximation, the vortex energy E,
may be expanded in terms of a small deviation

(4.30)
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to'= —20(V.u)+2(Q V)u . (4.32)

Now we can calculate derivatives BE„/Bco and B E„/Bco
using Eq. (4.28), substitute them together with ro' given by
Eq. (4.32) into Eq. (4.31), and compare the obtained ex-
pression with the first two terms in Eq. (4.27). This en-
ables us to deduce values of two elastic moduli:

PKA
C) ——Pv, Q, C2 ————

8m.

~c
v, = ln

8w 2Q

(4.33)

The negative elastic constant C2 does not lead to instabili-

ty, since, as we have already mentioned, the displacements
are not completely independent variables: the longitudi-
nal part of the displacement field is connected with the
variation of vorticity and therefore with the fluid velocity
(Baym and Chandler, 1983).

Such a simple calculation of two elastic moduli in the
Bekarevich-Khalatnikov theory was possible because we
used the logarithmic approximation, neglecting numbers
comparable to the large logarithm. But it is these very
numbers, which are different for different types of vortex
lattice, that determine shear rigidity. Therefore deter-
mination of the shear elastic modulus C3 involves more
ingenious calculations, like those performed by Tkachen-
ko. The reader is referred to the original papers of Tka-
chenko (1965, 1966) on the subject and to Appendix B in
the paper of Baym and Chandler (1983). The only con-
clusion we can draw without detailed calculations is that
C3 should be of the same order as C2. The exact calcula-
tion yields

Here Vz(V„,V~) is the two-dimensional vector of the gra-
dient in the xy plane, and VP' =c Vp' where
c = (BP/Bp) '~ is the sound velocity.

Equations are written in the rotating coordinate frame
in which velocities v and vL are small. The right-hand
side of Eq. (4.38) is the force on the vortex line. It
originates entirely due to quantization of vorticity -and

vanishes if v —+0. In this limit Eqs. (4.36)—(4.38)
transform into Eqs. (2.9) and (2.10) in the continuous-
vorticity model. Then the velocity of vortex lines does
not differ from the averaged velocity of the fluid, i.e.,
V=VL .

C. Spectrum of oscillations
in an incompressible fluid

Bv
Bt

+(20Xvt )i=0. (4.39)

Separation of longitudinal and transverse parts of a vector
field involves an intricate integration-differentiation
operation in the coordinate space, but it is easily per-
formed in the Fourier representation. Suppose that

In an incompressible fluid (c~ oo ) the density does not
vary, p'=0, and the velocity field is divergence-free,
V.v=O. Any vector field A(R) may be divided into a
longitudinal and a transverse part, A(R) = A~~(R)
+AJ (R), then V X A~~(R) =0 and V A, (R)=0. The gra-
dient term on the right-hand side of Eq. (4.37), which is
longitudinal, cancels exactly with the longitudinal part of
the vector-product term on the left-hand side if the fluid
is incompressible. Thus we can rewrite Eq. (4.37)

PCT PKA
2 16~

(4.34) A(R, t) = I dQ den A(Q, co)exp(ipz+iq r idiot). , —

Here cT ——(aQ/8')' is the Tkachenko wave velocity.
The same relation between the shear elastic modulus and
the transverse sound velocity holds in atomic crystals.

Having calculated the values of elastic constants in the
density of the vortex energy [Eq. (4.27)j, we can rewrite
Eq. (4.18) for the elastic stress tensor as follows:

BQg.
o;i= —2Apv, 5J, +pcT[3(V u)5~ —(V;ui+Vju;)]

()Z

(4.40)

A = Q, Ag ——A — Q.g2 ' ~ g2
(4.41)

So in the Fourier representation Eqs. (4.39) and (4.38)
look like

where p and q are the components of the wave vector Q
on the z axis and in the xy plane. Then we have for
A= A(Q, co)

X(1—8;, )(1—5,, ) . (4.35)

To close this section, we present the complete system of
linearized equations of motion for macroscopic hydro-
dynamics:

icuv+2Q—Xvt —[Q (2QX vt )]Q/Q =0,
2

zX(vL —v)=v,p u+ [q u —2(q u)q] .
2Q

(4.42)

(4.43)

Bp
Bt

+p(V.v) =0,
Bv
at

+2& Xvt ———V'P'/p,

(4.36)

(4.37)

8 U—plr[z X ( vt —v) j= +ptcv,
BZ

PKCT 2[2V&(V u) —Vzu] .20
(4.38) '

Equations (4.42) and (4.43) look like three-dimensional
vector equations; they are, however, effectively two di-
mensional. Indeed, vectors u and vL ———i~u have com-
ponents only in the xy plane, and the z component of v,
U„can be eliminated with the help of the incompressibili-
ty condition Q v=0. As in the continuous-vorticity
model (Sec. II), we choose axes in the xy plane parallel
and normal to the vector q and denote corresponding
components by subscripts q and t. In terms of q and t
components, Eqs. (4.42) and (4.43) take the form
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—i coUq —2Q ULt ——0,p
2

—l coUt +2&VI.q =0
(4.44)

the second imaginary unit j.
In the j-complex representation the vector product

zXv is jU, and our hydrodynamical equations (4.44) and
(4.45) for axial modes become simple and compact:

2 2
CT

~sP t'I.q+ 2~ Ul.q
—i eau +2AjUL

——0, (4.50)

&sp
VL =U+ JUL, =0 .

l 67
(4.51)2 2

CTg
+l CO( UL —U ) = —v p Ul g

— ULq q s 2A
Eigenfrequencies of axial modes correspond to zeros of
the complex determinant of Eqs. (4.50) and (4.51):

(4.52)D(j)=ice j(—20+v,p ) .
2 2 2

2=(2n+vp2) 2n 2+v,p2+ "- (4.46) Then

These equations, have a solution when the following
dispersion law holds:

D. Axial modes of vortex oscillations

We shall call waves axial when their wave vectors are
directed along the z axis (q =0). According to Eq. (4.46)
the dispersion law for axial modes is given by

co =(20+v,p ) (4.47)

These are circularly polarized torsion vortex waves, stud-
ied extensively from the 1950s onward. The waves in-
volve motion only within the xy plane, and all displace-
ments and velocities are two dimensional, so it is con-
venient to use the complex representation for two-
dimensional vector, widely applied in classical hydro-
dynamics (Milne-Thomson, 1960). In this representation
any two-component vector is presented by a complex
number. The components of our vectors, however, are al-
ready complex in the Fourier representation as a result of
the presence of ice in the equations. In order to distin-
guish between complexity due to the Fourier transforma-
tion and that connected with the representation of two-
dimensional vectors, we introduce a new imaginary unit j,
assuming j = —1 as usual. Any vector in the xy plane is
presented by a complex number,

3 =Aq+J'At . (4.48)

Separation of a j-complex number A into its real and
imaginary parts yields q and t components of a vector A:

Aq ——Rej(A ), A, =Imj(A ) . (4.49)

In performing these operations, one should treat the other
complex unit i as real. That is why we have introduced

. In deriving the dispersion law we neglected the term
cccTq in the first multiplier in Eq. (4.46) as being of
higher order than our approximation, but retained a simi-
lar term in the second multiplier. This is because this
term is always unimportant compared to 2Q, but is not
small compared to 2Q(p/Q) when the ratio p/q is small
enough. As for terms ~ v,p, they contain a large loga-
rithm in v, and are retained in both Inultipliers.

Further analysis of oscillation modes in an incompres-
sible fluid will be carried out for different particular cases
separately.

co= —ij(20+v,p ), (4.53)

and relations between velocity components are

Ut = —JUq, VI.t —JVL q (4.54)

We arrive at explicit formulas for axial modes by replac-
ing j by +i Then. Eq. (4.53) agrees with Eq. (4.47). The
two signs correspond to two possible senses of the circular
polarization.

Probably the j-complex representation for two-
dimensional vectors looks too artificial for the simple
problem under consideration. But it will turn out to be
convenient for more complicated problems dealing with
axial modes in two-fluid hydrodynamics and in boundary
problems.

The spectrum of axial modes in macroscopic hydro-
dynamics differs from the spectrum of the pure Kelvin
modes (Sec. III.D) by the gap 2Q and by another choice
of the upper cutoff r in Eq. (3.23) for v, (the intervortex
distance r„ instead of r = 1/p for the pure Kelvin mode).
The gap arises as a result of long-range interaction be-
tween vortices, in analogy with the gap in the plasma-
oscillation spectrum as a result of Coulomb interaction.
The axial vortex wave in macroscopic hydrodynamics
may be considered to be the collective Kelvin mode. One
may not follow the transition from the collective to the
pure Kelvin mode and still remain within the scope of
macroscopic hydrodynamics, because the presence of the
wave number p in the argument of the logarithm function
in the dispersion law of the pure Kelvin mode, is incom-
patible with the second-order differential equations of the
hydrodynamical theory, as was pointed out in Sec. III.D.
These equations provide a rigorous approach until

pr, &~ 1. A more general theory, capable of treating both
collective and pure Kelvin modes, deals with the system
of equations (3.19) in the Fourier representation and is re-
stricted by a weaker condition pr, « 1 (Sonin, 1976; Wil-
liams and Fetter, 1977). According to this theory, wheth-
er pr, «1 or pr, »1, the dispersion law [Eq. (4.47)]
holds with r„or 1/p as the upper cutoff of the logarithm.
But according to Rajagopal (1964), in the region pr, »1
the shift of the Kelvin wave frequency due to rotation is
II instead of 20 in Eq. (4.47). The aforementioned theory
disproved this result based on some simplifying assump-
tions.
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E. Mixed modes. Slow motion
of an incompressible perfect flUid

The general dispersion law for an incompressible fluid,
Eq. (4.46), shows that low-frequency oscillations co «0
are possible only if p &&q. This means that the Taylor-
Proudman theorem (Sec. II) holds in a perfect fluid with
quantized vorticity too: the fluid in a state of slow motion
is homogeneous along the rotation axis. Considering the
slow motion one can neglect the vortex tension (the term
ocv, in the dispersion law) and obtain from Eq. (4.46)
(Fetter, 1975; Sonin, 1976)

2
a) =40 +c q2

(4.55)

The first term on the right-hand side is of classical origin
and yields the frequency of the inertial wave. The second
term is due to quantization of vorticity and is responsible
for the Tkachenko waves. We shall call the oscillation
mode with the dispersion law Eq. (4.55) the mixed mode.
It has some noteworthy features pointed out by Williams
and Fetter (1977). The frequency co as a function of q at
given nonzero p has a minimum. The values of q and of
co in the minimum at pr, && 1 are given by the expressions

2

m —4n —c~q UL, =0 .2 2P 2 2
2 (4.58)

The inverse Fourier transformation of this equation yields
the following equation for the vortex velocity vL lying al-
ways in the xy plane (p « q):

= —4Q — +CThgvL . (4.59)
Bt2 ~g Bz2

Here b,z
——B /Bx +B /By is the Laplace operator in the

xy plane. The inverse Laplace operator 1/Az is an in-
tegral operator determined by the Green's function of the
Laplace equation. Applying the Laplace operator Aq to
both sides of Eq. (4.59), we can transform it into the dif-
ferential equation

chenko wave (U, &&U~, U, ). As for vortices, they move in
the xy plane on elliptical paths with their major axes per-
pendicular to q. The ratio of the axes of the ellipse
Ul.q /UL, , is small at co «A, so one can neglect small longi-
tudinal components vq and ULq and consider the slow
motion in the xy plane to be transverse with coinciding
vortex and averaged fluid velocities U, =UL, . Eliminating
from Eqs. (4.44) and (4.45) all velocity components except
for Ul „we obtain

q = =4p~2m. O/a. ,
2Qp
CT

(4.56)
= —4Q +crhgvt .

Ot Bz
(4.60)

vq . 2Q p
Ug 1 CO Q

Qp —crq2 2 2

E C02Q
(4.57)

2 2 2)1/2
CO —Cy.q

LCO

q 2Qp
U = ——

Uq
—— v, .pq iraq

When the quantum Tkachenko contribution cTq in-
creases from zero, the oscillatory motion of the fluid
transforms from the circularly polarized motion u, =iu„
as in the classical inertial wave, into the motion with
transverse linear polarization corresponding to the Tka-

co~ =4ACTp .

As usual, the minimum on the dispersion curve co vs q
should correspond to a peak of the density of states. This
peak will be discussed later (Sec. VI.E) in connection with
the interpretati. on of the experiments of Glaberson's
group.

Let us find the relations between velocity components
in the mixed wave. The solutions of Eqs. (4.44) and
(4.45), together with the incompressibility condition
Pvz+qvq =0, yield

ULq l co

UI) 2Q

This equation follows after some simplification from the
more general equation obtained by Williams and Fetter
[(1977);see Eq. (29) in their paper].

Neglecting the longitudinal velocity component UI q
means that vortices behave as an incompressible fluid and
V vt ——0. This condition together with Eq. (4.59) or
(4.60) constitutes the hydrodynamical theory of slow
motion. Although the longitudinal part of the vortex
velocity is small, it plays an important role in the disper-
sion law and in the derivation of the basic equation of
motion Eq. (4.59) and cannot be ignored until this equa-
tion is obtained. Just the small longitudinal component
v~ of the fluid velocity provides the possibility of fluid
motion along the z axis, as follows from the fluid in-
compressibility condition pv, +qvq ——0. Sometimes
geometry does not allow such motion; then both the fluid
and the vortices move together only in the xy plane.
Variation of velocities along the z axis, which is slow in
accordance with the Taylor-Proudman theorem, may not
be ignored either, since the small derivative 8 vL /Bz in
Eq. (4.59) is multiplied by the large factor 40 . Indeed,
this derivative is responsible for the gap in the oscillation
spectrum at q~0. This gap is important for observation
of Tkachenko waves in finite vessels and wi11 be discussed
later (Secs. VI.D and E).

It was named a transverse vortex wave before (Sonin, 1976),
because the wave vector Q for this wave is nearly transverse to
the rotation axis. But in the present review the word "trans-
verse" is widely used to refer to divergence-free velocity fields,
not to the mixed node.

F. Tkachenko waves. Elasticity theory
of a two-dimensional vortex crystal

When p =0 the mixed mode becomes the Tkachenko
wave with the gapless dispersion law
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CO =CTg (4.61)

Though vortices in the Tkachenko wave move on ellipti-
cal paths, the axis of the ellipse parallel to q is small

(ul.q «UL, , ), and motion of vortices is nearly linear and
transverse with respect to q. Thus it is fairly accurate to
consider the Tkachenko wave to be a transverse sound

wave in the two-dimensional lattice of rectilinear vortices
(Tkachenko, 1969). In order to see this better, let us
rewrite Eq. (4.38) omitting Bu/Bz:

tia force in the dynamical equation (4.66), in which mass-
less vortices provide the elastic force. Such an interpreta-
tion of Eq. (4.66) is possible because the fluid velocity v is
approximately equal to the vortex velocity vL .

In the stationary case longitudinal displacements are
exactly ruled out by Eq. (4.64).

G. Vortex oscillations in a compressible
perfect fluid

U CT

at
= =

2n
=vL ——v — [z X (2VV u —Vu)] . (4.62)

2
C) Uji CT=+ ZQAUy,
Bt 2Q

8Ug

Bt
= —2O XU~I .

(4.63)

(4.64)

Exclusion of the small longitudinal displacement u~
~

yields an equation similar to that for the transverse sound
in conventional elasticity theory:

8 Uy
2

Bt
—cTEUg =0 . (4.65)

Dividing the field of vortex displacements U into longitu-
dinal and transverse parts, u=u~~+uz (V uq ——O, V

~u~~
——0), and using Eq. (4.39) for elimination of the fluid

velocity v, we obtain for displacements in the long-
wavelength limit

i cop'—+pQ v= 0.,
2—icov+2QX vL + i Qp'=0,

p

(4.68)

(4.69)

and the third equation of vortex motion does not differ
from that in the incompressible fluid, Eq. (4.43) or (4.45).

As we do for the fluid with continuous vorticity (Sec.
II), we first solve the continuity equation, Eq. (4.68), and
the equation for U, given by Eq. (4.69). These equations
do not differ from those in the continuous-vorticity
model, since the vector product Q&&vL has no z com-
ponent, so we obtain again Eq. (2.12) connecting p' and U,

with Uq. Eliminating p' and U~ from equations for Uq and
U, given by Eq. (4.69) yields two equations,

For a discussion of the effect of compressibility on vor-
tex oscillations we need to return to the general linear
equations of motion, Eqs. (4.36)—(4.38). Performing the
Fourier transformation, we obtain

This follows from the more general equation of slow
motion, Eq. (4.59), when the fluid is uniform along the z
axis. Let us rewrite Eq. (4.65) in the form, also widely
used in elasticity theory (the subscript l is omitted),

—Ecru —2Q UL, -——0,q p 22

—icon, +2QULq ——0 .
(4.70)

Qg

p — V~ 0)J
Bt

Here

2gJpcT(VgllJ+ Vie�)

(4.66)

(4.67)

is the elastic stress tensor, as follows from Eq. (4.35) as-
suming that BU/Bz=0 and V U=O. Subscripts i and j
take only two values corresponding to the two axes in the
xy plane.

We see that the elasticity theory of the vortex crystal
contains a single elastic modulus, the shear modulus
p=pcT. Formally one arrives at such a version of the
elasticity theory (Landau and Lifshitz, 1965) assuming
hexagonal symmetry and taking the limit of the infinite
compression modulus that rules out longitudinal displace-
ments (Ignatiev and Sonin, 1981). More exactly, longitu-
dinal displacements are not ruled out, but excluded from
the equations. However small, they remain finite and are
not independent variables, as in the atomic crystal. This
is one of the peculiar features of vortex dynamics dis-
cussed earlier. Even small longitudinal displacements of
vortices generate the flow of the fluid with the averaged
velocity v, because they are coupled with the vorticity
field. The motion of the fluid is responsible for the iner-

2 4~2 + 2q 2 (4.72)

corresponds to the usual sound wave modified by rotation
[cf. Eq. (2.18)]. The second solution,

C CTg

cq +40
(4.73)

yields the Tkachenko wave in the limit c—+co. But we

These equations transform into the equations of motion in
the continuous-vorticity model, Eq. (2.13), when vt ——v,
and into equations of motion for an incompressible fluid,
Eq. (4.44), when the sound velocity c—+ oo.

Solving Eq. (4.70) together with Eq. (4.45), we obtain
the dispersion equation for oscillations in a compressible
flui,

CO —C CT9'
2 2

co =(20+v,p ) 20 +v,p +2 2g2

(4.71)

This equation has two solutions for co at any given wave
vector Q. We restrict ourselves to the case p =0 when
the wave vector Q lies in the xy plane (in-plane modes)
and use the inequality c &&CT. Then the first solution of
Eq. (4.71),
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see that compressibility strongly alters the spectrum of
this wave at small q ~&2Q/c, making it parabolic:

CTC
(4.74)

We have already encountered the drastic effect of
compressibility on the inertial wave in the long-
wavelength limit when we studied the continuous-
vorticity model in Sec. II. This effect is important for
our conception of the hydrodynamics of an incompressi-
ble fluid, as was remarked after Eq. (2.19). That com-
ment is also relevant for a fluid with quantized vorticity.

The strong effect of compressibility on the Tkachenko
wave spectrum in the long-wavelength limit was
discovered by Reatto (1968). But he obtained a dispersion
law different from Eq. (4.73), giving complex frequencies
despite there being no physical source of dissipation in a
perfect fluid. This result is due to imperfections of the
model used by Reatto (Sonin, 1976). The theory of a
compressible fluid developed above allows a rigorous
analysis of the problem without referring to the assump-
tions of Reatto's model.

V. OSCILLATIONS OF FINITE VORTEX ARRAYS.
TWO-DIMENSIONAL BOUNDARY PROBLEMS

A. Introductory comments

For most experiments dealing with vortex oscillations,
finite dimensions of containers play an important role.
The theory may make contact with such experiments only
after analysis of the boundary problem. This problem in-
volves formulation of boundary conditions for the equa-
tions of macroscopic hydrodynamics treated in the previ-
ous section and solution of the equations for the geometry
of a particular experiment. Such a program implies that
all effects of the boundary are taken into account by a
proper choice of boundary conditions. The symmetry and
local properties of the finite array are assumed to be the
same as those of the infinite array. This approach is com-
mon for theories of continuum media, such as the elastici-
ty theory, for example.

We restrict ourselves in the present section to two-
dimensional problems in which vortices move in the xy
plane remaining rectilinear and parallel to the rotation
axis (the z axis). It is difficult to find experimental situa-
tions to which such a theory may be applied. As we shall
see (Sec. VI) even weak pinning of vortices strongly modi-
fies their oscillation spectra, and bending of vortices may
not be ignored. Therefore only numerical experiments
modeling two-dimensional motion are at our disposal for
comparison with the theory. Extensive numerical calcula-
tions of a large number of finite two-dimensional vortex
patterns and their oscillation modes have been carried out
by Campbell and Ziff (1979) and Campbell (198la). In
addition, some important general relations between eigen-
frequencies of finite vortex patterns have been analytically
derived and oscillation modes classified (Campbell,

1981a).
In spite of the limited applicability of the two-

dimensional theory, a continuous and steady interest in it
is completely justified. The theory allows us to obtain
elegant exact results, the Tkachenko theory being an im-
pressive example. Besides its esthetic and pedagogical
value for further study of three-dimensional problems, the
two-dimensional theory enables us to solve some key
problems of vortex dynamics. Of utmost importance for
us is the question: what reliance can be placed. on the
continuum-hydrodynamics approach developed for the
infinite-vortex lattice when dealing with a finite array?
Recently such an approach was called into doubt on the
grounds that boundary effects strongly affect the struc-

- ture of the vortex lattice, even deep within the interior of
the vortex array (Campbell, 198la, 1981b). Therefore our
analysis of finite-vortex-array dynamics is preceded by a
discussion of the equilibrium properties of a finite vortex
array. We shall see that distortions of the finite vortex ar-
ray produced by the boundary are stronger than in atomic
crystals, as numerical calculations have shown (Campbell
and Ziff, 1979). This is explained by the long-range in-
teraction of the vortices. But further comparison of the
eigenmodes of finite vortex patterns, obtained from the
continuum theory and numerically, convinces us that the
distortions are not strong enough to discredit. the results
of the dynamic continuum theory relying on the infinite-
lattice properties inside a finite vortex pattern.

Within the scope of the two-dimensional theory we also
treat surface waves propagating along the boundary of the
vortex pattern. The study of surface waves is in its early
stages, and it is difficult as yet to draw any conclusions
concerning their observability. But they are interesting- in
principle and deserve discussion.

7lv (5.1)

The formula is obtained by minimization of the fluid en-

ergy in the rotating coordinate frame,

8'= I dr[ —,'pv —pv (Q&&r)+E„j, (5.2)

where E, is the energy density of the vortices given by
Eq. (4.28) and depends on the magnitude of vorticity
co=~n„, so shear rigidity of the vortex lattice is not taken
into account. Then the Feynman formula is exactly true
even for finite vortex arrays If it wer. e not true, vortex
lines would rotate with a velocity different from that of
the containing vessel, and mutual friction between vortex

B. An equilibrium finite vortex array.
Distortion produced by a boundary

It is well known now that a superAuid in a rotating
container imitates solid-body rotation, despite the fact
that the velocity field remains curl-free nearly everywhere
in the bulk. This is possible on a macroscopic scale if the
superfluid contains vortex lines parallel to the rotation
axis and uniformly spaced at a density n, per unit area
given by the formula of Feynman (1955),
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lines and the normal part of the fluid would lead to ener-

gy dissipation, but this is impossible for the equilibrium
state.

On the other hand, it was noticed by Hall (1960) that
vortices do not fill the vessel completely, and a so-called
irrotational region free from vortices should exist near the
wall of the cylindrical vessel. Later it became clear that
the vortex-free region is formed near any solid surface
bounding a superfluid and parallel to the rotation axis
(Bendt and Oliphant, 1961; Kemoklidze and Khalatnikov,
1964; Stauffer and Fetter, 1968). When the curvature ra-
dius of the solid surface is large compared with the inter-
vortex distance, the width of the vortex-free region is
(Stauffer and Fetter, 1968)

1 /2
Ivd= ln— (5 3)

4mB r,

The width d differs by the factor -+1n(r, /r, ), large in
the logarithmic approximation, from the intervortex dis-
tance r, . It justifies determination of d within the scope
of the continuum theory, though this factor is not quite
so large in practice. The existance of the vortex-free re-
gion was experimentally proven by Tsakadze (1964),
though quantitative discrepancy with theory was consid-
erable (see also the discussions by Andronikashvili and
Mamaladze, 1966, and Andronikashvili et al. , 1978).

The width of the vortex-free region can be different
from its equilibrium value given by Eq. (5.3). Suppose
that the rotation speed of the container with superfluid
changes its value. Then the number of vortices in the
container has to change too. But generation of new vor-
tices and their annihilation at the boundary are much
slower than other relaxation processes (see Chap. IX of
Andronikashvili et a/. , 1978). Therefore one can consid-
er a state of restricted equilibrium at a fixed number of
vortices. If the number of vortices is smaller than the
equilibrium value, then the width d of the vortex-free re-
gion is larger than that given by Eq. (5.3). When d is in-
finitely large, the problem corresponds to the case of a fi-
nite number of vortices in unbound fluid. Vortices, how-
ever, "know" the rotation speed of the vessel, since we
look for their equilibrium distribution in the reference
frame rotating together with the vessel. Vortices always
congregate around the rotation axis forming a finite pat-

Uor =O~ Uoq = ' QRo
r)Rp .

(5A)

As a result of a small distortion, the distance of the
vortex-pattern edge from the rotation axis is Rp+5u; we
choose the small radial displacement 6u in the form of
the nth cylindrical wave

6u =uoe (5.5)

Here y is an angle of a point on the vortex-pattern edge
and n is an integer. Due to distortion the velocity field
changes and becomes vo+v'. The vorticity Fo=V&v
remains 2Q everywhere inside the vortex pattern with the
distorted edge. Then co changes only near the edge. Since
the displacement 6u is small, we can write that the vorti-
city deviation due to distortion is

t0'= V X v' =2Quo5(r Ro)e'"~ . — (5 6)

Suppose that our vortex pattern is inside of a cylindrical
vessel of radius R. Then the distortion velocity field v'
has no radial component at r =R and satisfies the condi-
tions V v'=0 and VXv'=0 except at the edge r =Rp. It
is given by the expressions for r &Ro

.
pg i 2'

1 — e'"~,
R

/ ~ P
Up =El8+

Rp

tern of cylindrical shape with the density given by Eq.
(5.1). This behavior may be considered as a result of two
competing effects. First, vortices effectively repel each
other, trying to stay apart. Second, the rotation velocity
produces a force (recall that in vortex dynamics any velo-
city is equivalent to a force; see Sec. III.B) attracting vor-
tices to the rotation axis and trying to make the vortex
pattern round and compact. The latter effect may be in-
terpreted in terms of the surface tension of the vortex-
pattern boundary. But unlike the surface tension of com-
mon fluids and crystals, the surface tension of the vortex
pattern is proportional to its volume, and not to the sur-
face area. In order to show this, let us calculate the ener-
gy associated with a small distortion of the boundary of
the finite vortex array occupying a cylindrical region of
radius Rp. In the ground state the velocity field vp is
determined in the cylindrical system of coordinates as fol-
lows:

According to Baym and Chandler (1983), there is a difference
of order A/mA between the angular velocity of a container of
radius 8 and of the vortex array inside of the container. But
this is the result of the incorrect energy minimization procedure.

.4Kemoklidze and Khalatnikov (l964; see also Khalatnikov,
1971) gave a formula that differed by the factor V m. I have re-
peated their calculations and have not revealed this factor,
which probably results from a misprint or an arithmetical error.
Stauffer and Fetter explained the disagreement by a discontinui-
ty of the velocity on the boundary of the vortex pattern allowed
by Kemoklidze and Khalatnikov. But this discontinuity is not
important within the approximation adopted both by Stauffer
and Fetter and by Kemoklidze and Khalatgikov.

I I'
U~ = —LU+

Ro

and for Ro & r &R

0

n+
0

Ro

einy

n —1 R
2n

0

2n
0 in'

(5.7)

(5.8)
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The radial component U,
' should be continuous at the

edge; this means that w+ ——w . But the azimuthal com-
ponent U~ is discontinuous, and the magnitude of discon-
tinuity follows from Eq. (5.6):

w 1+ +w+ 1—
2'

Rp

=2w =2QQp

(5.9)

Substituting the real part of the determined distortion
velocity field into the expression for the energy, Eq. (5.2),
we find that distortion of the edge of the vortex pattern
increases the energy by an amount

2

58'd(n)=~RppQ 1—2 2QP
(5.10)

We see that the energy of distortion is proportional to a
two-dimensional volume mRp, but not a surface area
2mRp at R~oo.

But the form of the finite vortex pattern is strictly
cylindrical only in the continuous-velocity model. Now
let us take into account that vortices form a triangular
lattice. Because of the lack of correspondence between
the circular symmetry of the vortex-pattern edge and the
hexagonal symmetry of the infinite-vortex lattice, the
edge should deviate from a cylindrical shape. Indeed, if
we cut out a cylindrical region from the infinite-vortex
lattice, its boundary vortices cannot be located on one cir-
cumference; some of them will be at a distance of the or-
der of the vortex spacing. Thus we can say that there is a
small distortion of the edge of the vortex pattern and, as a
result of it, the velocity deviates from solid-body-rotation
velocity inside the vortex pattern. Just this velocity devia-
tion was found by numerical calculations and was called
the destabilizing velocity (Campbell and Ziff, 1979). The
net destabilizing velocity is yielded by a sum over distor-
tion harmonics labeled by an integer n, each given by Eq.
(5.7). The sum should include n =6, 12, 18, . . . allowed
by hexagonal symmetry. Deep in the interior of the vor-
tex pattern the contribution of the fundamental harmonic
n =6 becomes most important, and the destabilizing velo-
city is proportional to r, in complete agreement with the
numerical calculations of Campbell and Ziff (1979).

The destabilizing velocity makes the vortex pattern
with the structure of the infinite-vortex lattice unstable
and deforms it. Deformation tends to decrease distortion
of the edge and the energy associated with distortion. But
at the same time the elastic energy of the vortex lattice in-
creases. The competition between these energies deter-
mines the equilibrium structure of the vortex pattern. In
the equilibrium state the solid-body rotation of vortices
must be restored, since lattice deformation contributes to
the vortex velocity, as one can see from Eq. (4.62), and
this contribution exactly cancels the destabilizing velocity.
Calculations supporting such a picture were carried out

by Ignatiev and Sonin (1981). It was shown that elastic
deformation strongly diminishes distortion of the vortex-
pattern edge and the energy of this distortion. But at the
same time distortion of the regular vortex lattice in the
bulk arises. Deep in the interior of the vortex pattern dis-
placements of vortices from sites of the regular triangular
lattice fall as r in agreement with the numerical calcula-
tions of Campbell and Ziff (1979).

Thus numerical calculations, as well as the simple con-
tinuum theory of Ignatiev and Sonin (1981),show that the
boundary of a vortex crystal distorts the lattice more than
the boundary of an atomic crystal. According to Camp-
bell and Ziff (1979), the ratio of the surface energy of the
vortex pattern (the difference between its energy and the
energy of the same number of vortices in the infinite lat-
tice) to its total energy decreases too slowly when the
number of vortices in the pattern increases and probably
does not approach zero, i.e., there is no thermodynamical
limit for vortex crystals. The effect of finiteness of the
vortex pattern on its dynamic behavior will be discussed
in the following section. In conclusion we point out that
the numerical calculations mentioned above were carried
out for vortex patterns in an unbound fluid. But the walls
of the vessel strongly reduce boundary effects because im-
ages of periphery vortices decrease their long-range velo-
city field. We see from Eq. (5.7) that distortion velocity
inside of the vortex pattern is a factor [1—(Ro/R) "]=2nd/R smaller than the same velocity in
an unbound fluid (R~ oo ). The same small factor enters
the expression for the distortion energy [Eq. (5.10)]. This
should affect our conclusions concerning the thermo-
dynamical limit for vortex patterns.

u=V'&4= —z& 7'+ .

The potential 4 must satisfy the wave equation

Q2 gy —c,'6+=0 .
Qt 2

(5.11)

(5.12)

Axisymmetric modes correspond to a cylindrical wave

C. Axisymmetric Tkachenko modes
in a finite vortex pattern.
Comparison of the continuum theory
and numerical experiments

In considering axisymmetric modes we need not derive
detailed boundary conditions on velocity fields (this will
be done later) because axisymmetric oscillations involve
variation of the angular momentum of the fluid. Any
correct boundary condition should provide that the net
angular momentum be conserved, so in deriving the
dispersion law for axisymmetric modes we may refer
directly to the conservation law for the angular momen-
tum. Such an approach was taken by Ruderman (1970) in
studying Tkachenko waves in a cylindric vessel of a finite
radius. I.et us refer to the elasticity theory of the two-
dimensional vortex crystal (Sec. IV.F). The field of trans-
verse displacements u may be determined by a vector po-
tential %'= %z:
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4=MOJO(qr )e

u„=0, u~= ——-=+OqJ, (qv)e
8%' —l COt

Bf'

(5.13)

aqJ2(qR) —J&(qR) =0 . (5.20)

tion for determination of eigenfrequencies ~=cTq of
axisymmetric modes:

with the soundlike spectrum ~=cTq.
Suppose that no external force acts upon the fluid.

Then eigenfrequencies are defined by the condition that
the total angular momentum not vary (recall that in the
Tkachenko wave the fluid and vortices move together
with nearly the same velocity):

M=2~p I U~v dr
R= —2&pl CO Q ~ I" C&

0

2npi—co+OR J2(qR)e ' '=0 . (5.14)

~wF(s)=ji scT~.R (5.16)

This follows from the more general condition given by
Eq. (40) of Williams and Fetter, for the case when the
motion of the fluid is two dimensional as considered here.
Equation (5.16) supposes that the vortices and the fluld
are at rest near the wall of the vessel, i.e., u o= J~(qR) =0.

Now we consider the more general condition imposed
on the axisymmetric modes, which reduces to the condi-
tions of Ruderman and of Williams and Fetter in two op-
posite limits. It is assumed that some external force is ap-
plied to the fluid boundary, restoring it to its initial state
and proportional to the azimuthal displacement at the
boundary. Then the following equation for the angular
momentum balance holds:

27rR cr~„(R ) = —2~Rku ~(R ),
where k is the ratio of the force to the displacement. The
right-hand side of this equation is the torque exerted on
the fluid, and the left-hand side is the flux of the angular
momentum through the circular boundary. Here o-~, is
the component of the stress tensor, given by Eq. (4.67), in
the cylindric coordinate frame:

BQ~ Q~ $ c)Q~
0'@~= —pcT — + (5.18)

BP P I Bg

For axisymmetric modes u, =0, and substitution of Eq.
(5.18) in Eq. (5.17) yields

Bu~(R) u~(R)
Br R +u~(R) =0 . (5.19)

Equation (5.19), together with Eq. (5.13), gives the condi-

Here we do not distinguish between the radius R of the
vessel and the radius Ro of the vortex pattern. Equation
(5.14) yields Ruderman's eigenfrequencies,

(5.15)
I

Here j„,denotes the sth zero of the Bessel function J„(z).
For the fundamental frequency j2 &

——5.14.
Another simple condition for determination of eigen-

frequencies of axisymmetric modes was proposed by Wil-
liams and Fetter (1977) (WF):

0 5.I8 5.I4 7.02

FIG. 1. Eigenfrequencies co of the axisymmetric Tkachenko
modes for a finite vortex pattern of radius R subject to action of
the surface restoring force. The frequencies in units of cT/R
are shown for the two lowest modes. The thick solid lines with
arrows show how the eigenfrequencies increase when the force
increases from zero to infinity.

Here a =pc+/k.
The force sticking vortices to the wall (it is assumed in

this section to be at rest in the rotating frame) arises due
to mutual friction between the vortices and the normal
part of the fluid, which sticks to the wall. So the parame-
ter o; may be determined only within two-fluid hydro-
dynamics, as done in Sec. VII.D. We shall see that cou-
pling between vortices and the wall is considerable, even
at rather low temperatures, and aq is quite small. At zero
temperature vortices can interact with the wall because
any real wall is not smooth. Effective friction arises as a
result of the averaging of vortex motion over the irregular
relief of the wall, as the residual resistance for electrons in
dirty solids.

The dispersion equation (5.20) yields Ruderman's spec-
trum [Eq. (5.15)] when a~co and the spectrum of Wil-
liams and Fetter when &x=0. Let us consider now the
variation of cx from oo to 0. Eigenfrequencies of axisym-
metric modes increase as shown in Fig. 1 by arrows. Two
lower eigenfrequencies map the two intervals on the fre-
quency scale indicated by solid lines. It is important that
the fundamental frequency of Ruderman,
co+(l)=5. 14cT/R, is not the lowest one. The spectrum
also includes the zero frequent. y corresponding to the
Goldstone mode due to invariance with respect to rota-
tions. This mode is of no physical interest. But when ro-
tational invariance is broken, the zero-frequency mode be-
comes an observable mode with finite frequency.

Such a character of the spectrum of axisymmetric
modes should be taken into account when comparing pre-
dictions of the continuum theory with results of numeri-
cal calculations for finite vortex patterns. In order to
simulate the boundary condition u& ——0 used by Williams
and Fetter, Campbell (1981a, 1981b) numerically calculat-
ed eigenfrequencies of the vortex pattern when the outer-
most ring of vortices was constrained to be strictly f'ixed.
The calculated frequencies turned out to be a factor of 2
smaller than the frequencies given by Eq. (5.16) and con-
siderably smaller than the frequencies of Ruderman's
spectrum [Eq. (5.15)]. Campbell considered them to be
frequencies of soft oscillation modes that could not be
predicted by the continuum theory based on the perfect-
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triangular-lattice properties. Another interpretation of
these numerical results may be proposed, however, which
is not so discreditable for the continuum theory of the tri-
angular lattice. All vortices in the pattern except those on
the fixed outermost ring constitute their own inner pat-
tern. Interaction between inner vortices and the outer-
most ring of vortices produces an elastic force applied to
the inner pattern, so the latter can sustain oscillation
modes with frequencies corresponding to some finite n in
Eq. (5.20) and falling somewhere in the first interval of
the scale of eigenfrequencies shown in Fig. 1. This would
explain why numerically calculated eigenfrequencies can
be much smaller than the lowest frequency of Wilhams
and Fetter for the whole pattern, the outermost ring in-
cluded. In order to give a more exact quantitative inter-
pretation of soft modes in a vortex pattern with a fixed
outer ring, in terms of the continuum theory, one should
determine somehow the force on the inner pattern.

Endeavoring to find a numerical result Inost appropri-
ate for comparison with the continuum theory, we re-
ferred to the first pattern (left and uppermost) shown in
Fig. 14(n) of the paper of Campbell (1981a). The pattern
contains X = 19 vortices. The displayed field of displace-
ments for Campbell's parameter A, =O. 158 609 5 resembles
that for Ruderman's fundamental mode. The given value
of A, corresponds to the frequency co =v'A, l 2—A, )Q
=0.54Q. On the other hand, the fundamental Ruderman
frequency for the pattern of N = 19 vortices is
~=j2,~cT/R =(j~ ~/2~% )Q=0.589Q. The 10%%uo dis-
crepancy is not too significant, especially if one takes into
account that the ratio m/0 is not small enough for the
long-wavelength continuum theory to be accurate. This
comparison convinces us that the continuum theory rely-
ing on the perfect triangular lattice is not so poor an ap-
proximation for dynamics of large enough vortex pat-
terns, despite strong distortions of the triangular lattice
produced by the boundary.

Suppose that an edge wave propagates along the edge of
a vortex pattern of radius Ro in a cylindrical vessel of ra-
dius R. This leads to distortion of the edge and genera-
tion of a distortion velocity field inside of the vortex pat-
tern and in the vortex-free region. The displacements and
velocities for the nth cylindrical edge wave differ from
those given by Eqs. (5.5)—(5.8) by the time-dependent fac-
tor exp( —icot). Equation (5.9) also holds. In the
continuous-vorticity model, the velocities of the vortices
and of the Quid coincide, and the edge of the vortex pat-
tern should displace with the radial velocity and

d6u
dt

(5.21)

Substitution of 6u and U,
' readily yields the dispersion law

of the edge wave in a rotating reference frame (Campbell
and Krasnov, 1981):

Rp

R

= —2QI 1+coth[n ln(R/Ro)]] (5.22)

But in the laboratory reference frame

Rp=0 n —1+
R

2&i

(5.23)

The edge wave n = 1 involves translation of the pattern as
a whole and is a displacement mode in the classification
of Campbell (198la). Its frequency approaches 0 in the
laboratory frame when R-~ao because in an unbound
fluid translation of the vortex pattern does not change the
energy.

If the width of the vortex-free region d =R —Rp is
much smaller than R, we can rewrite the dispersion law,
introducing 'the wave number k =n/R:

D. Edge waves in the continuous-vorticity
model

co = —2Q(1+cothkd)

In the long-wavelength limit kd && 1

&= —CEk, CE =2Qd

(5.24)

(5.25)

It is well known that semi-infinite crystals sustain sur-
face waves, called Rayleigh waves. It would be interest-
ing to find surface modes localized near the boundary of
the vortex array as well. Such modes involving motion of
vortices only close to the boundary have already been
found in the numerical calculations and called edge waves
(Campbell, 1981a, 1981b). Campbell and Krasnov (1981)
have developed a theory of edge waves in the frame of the
continuous-vorticity model, taking into account mutual
friction. In classical hydrodynamics, edge waves were al-
ready known to Kelvin (Thompson, 1880), who
discovered them while studying the stability of the colum-
nar vortex tube in an unbound fluid [see Sec. 158 in Lamb
(1945) and Sec. 7.3 in Batchelor (1970)]. Here we present
a theory of edge waves in the continuous-vorticity model.

If d takes its equilibrium value from Eq. (5.3), the veloci-
ty of the edge waves is equal to

aQ ~u
ln

I"c

1/2

(5.26)

Since this velocity is larger than the Tkachenko wave
velocity cT ——(xQ/8m )'~, the edge wave can emit volume
Tkachenko waves and lose energy. But we shall see in the
following section that attenuation due to emission of Tka-
chenko waves is quite weak.

It is interesting to note that the edge wave is unidirec-
tional and can propagate only in the direction opposite to
the velocity of solid-body rotation. Therefore reflection
of edge waves is impossible.
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E. Edge waves and Tkachenko waves
in the continuum model of quantized
vorticity

Now we shall go beyond the scope of the continuous-
vorticity model and include in our considerations the-ef-
fects of crystalline order in the lattices of quantized vor-
tices. The closed system of equations governing fluid
behavior inside a vortex pattern consists of the Euler
equation (4.37) and equation of motion of vortices, (4.62),
in which we neglect the longitudinal part of the displace-
ment field. For convenience we rewrite both equations to-
gether:

D D D
VL = —lcou =v (5.33)

The distortion field contributes, however, to the elastic
tensor o,j, Eq. (4.67), and the components necessary for
us are

2pcTk
w+ (1—e '"")

The wave number k is connected with n in Eqs. (5.7) and
(5.8) by the relation k =n/R.

The distortion velocity field is divergence-free
(V v =0) and curl-free (VXv =0), so the elastic term
o:cr drops out of Eq. (5.28) and the vortices move togeth-
er with the fluid:

Bv
Bt

+2Q+ vt +VP/p= 0, (5.27) X exp( —ky +ikx i cot), — (5.34)

Bu &T

rjt 20=VL =V+ ZQAU . (5.28) 2ipcTk
( 1 e

—2kd)

In the vortex-free region there is only the Euler equation, X exp( —ky +ikx

idiot)

. — (S.35)
Bv VP =0.
Bt p

In the linear momentum-flux tensor,

(5.29) The fields generated by Tkachenko waves are deter-
mined by the potential %'=% z (see Sec. V.C),

(5.36)W=(%+e'+'+4 e '~~)exp(ikx i cot), —(5.30)H)j =I 5)J +CT)j

the stress tensor o;J given by Eq. (4.67) vanishes in the
vortex-free region.

We consider oscillations near the edge of the vortex ar-
ray when wavelengths are small compared with the curva-
ture radius of the edge and the edge is treated as a plane.
The x axis is along the edge and the y axis is directed in-
side the vortex pattern; the solid surface is located at
y = —d. Oscillations near the edge are described by a su-
perposition of three solutions of the hydrodynamical
equations. The first onc includes fields duc to distortion
of the edge, while the other two describe Tkachenko
waves falling onto and reflected from the edge. The dis-
tortion velocity field is obtained from Eqs. (5.7) and (5.8)
if we add the time-dependent factor exp( —icot), use the
inequality d =R —Ro «R, and carry out a transforma-
tion of coordinates, x =Roy, y =Ro r The d—ist.ortion
pressure field is determined from the Euler equation, Eq.
(5.27) or (5.29). We obtain (a) inside the vortex array
(y &0)

according to

u"=V+)&z, v =vt ———icou
(5.37)

I' =2Qi cop%' .

These fields satisfy Eqs. (S.27) and (5.28) when
co =cr(k +q ) and co«Q.

The contribution of Tkachenko waves to the stress ten™
sor is given by

oyer
———2pcr qk (4+e'+' —4 e '~~)

X exp( ikx i cot), —
o. = —pc (k q)(4 e'~~+—%' e '~~)

(5.38)

X exp(ikx i tot) . — (5.39)

Now it is necessary to match fields inside the vortex ar-
ray and in the vortex-free region using the conditions of
continuity of mass flows and momentum at the edge

y =0.
Continuity of the mass flow is provided by continuity

of the normal velocity Uy.
-

u„=w+ (1—e " )exp( —ky +ikx i cot), —

uy
——iw+ (1—e )exp( —ky + ik +ikx

idiot),

—(5.31)
2iw sinhkde ""=iw+(1 e"") —tok ( II++—q' ) .

(5.40)
P =pw+ (1—e )exp( —ky +ikx icot);-2&+CO —2kd

k

(b) in the vortex-free region (0 &y & —d )

u„=—2w cosh[k (y +d)]
Xexp( —kd +ikx i cot), —

u~ = 2iw sinh[k(y+d)]
X exp( —kd +ikx

idiot),

—
P = —2pw —cosh[k (y +d)]

k
X exp( —kd +ikx

idiot)

. —

(5.32)
w (1—e 2kd) 20+ co

k
2cTk

+2Qitop(4++4 ) —2pcrqk(%+ —% ), (5.41)

The comPonents IIyy and II&y of the momentum-fIux
tensor should be continuous also:
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Elimination of w+ and w from Eqs. (5.40)—(5.42)
yields the condition imposed on 4+ and %' which
governs reflection of Tkachenko waves from the edge of
the vortex array. In deriving this condition it is assumed
that co «0 and kd « 1. These inequalities are necessary
to justify application of the long-wavelength theory of
Tkachenko waves, since the equilibrium value of d given
by Eq. (5.3) is nearly of the same order as the intervortex
distance. Thus the reflection condition, or the effective
boundary condition on Tkachenko waves, is

1+ ( P++ 0 )+iy(%+ —% )=0,
cEk

(5.43)

2

0= — w+(1 —e ) —pcT(k —q )(4'++'P ) .-2kd 2 2 2

CO

(5.42)

gates along the edge y =0, it cannot propagate in the
same direction along y =D. Therefore the boundary con-
dition at y =D takes a simple form of the reflection con-
dition Qy 0, which may be rewritten with the help of
Eqs. (5.36) and (5.37) in a form similar to Eq. (5.45):

e lqD+ gy e —le 0 (5.47)

The determinant of the two linear equations (5.43) and
(5.47) yields the dispersion law for waves propagating
along the fluid layer parallel to the x axis:

1+ tan(qD) =y .
CEk

(5.48)

Because y is small, in a good approximation the spectrum
consists both of Tkachenko branches given by poles of the
tangent,

'2 1/2
where small y is of order co/0:

2cTqk 2cz.k (co cTk )—'~

coQ(k +q ) co 0 (5.44)

If the frequency co is far from the frequency —cEk of
the edge wave, the small term ~ y may be ignored. . Then
we obtain a simple reflection condition

%++% =0. (5.45)

According to Eq. (5.37), this means that u~ =0, i.e., there
is no displacement of vortices normal to the boundary
(compare with the condition on the circular boundary dis-
cussed in the following section).

The dispersion law for the edge wave is obtained from
Eq. (5.43), assuming that the falling Tkachenko wave is
absent. Since at positive k the frequency —czk is nega-
tive, the amplitude of the falling wave is %'+ when

q =(co —cz k )' /cr is positive. Equation (5.43) is
therefore satisfied when 4+ ——0 and the factor before 4
vanishes, and the dispersion law for the edge wave is
given by

32cTk
co= —c~k(1 —iy), y= —,(cF. cT)—

QcE
(5.46)

The small imaginary part of the frequency [y was ob-
tained from Eq. (5.44) by the substitution co= —cEk] de-
scribes attenuation of the edge wave due to emission of
the Tkachenko wave. It supposes that the irradiated Tka-
chenko wave is carrying away energy to infinity. But if
there is another boundary at a distance smaller than the
absorption length of the Tkachenko wave, the wave re-
flects there and returns to the former boundary, so no at-
tenuation occurs. As an example we consider propagation
along the fluid layer between two rotating planes parallel
to the rotation axis. The coordinates of planes in the ro-
tating reference frame are y =0 and y =D. At the first
boundary, the boundary condition is Eq. (5.43) as before.
The edge wave can propagate around the vortex pattern
only against the velocity circulation (see the end of Sec.
V.D). When k&0 and co&0 and the edge wave propa-

co(p) =cT
D

(5.49)

l

where integer p & 1, and of the edge-wave branch
co= —cEk, which crosses all Tkachenko branches. At the
crossing point the small y becomes important, and repul-
sion of branches occurs. Though the frequency of the
Tkachenko branch p =0, co(0)=cTk formally satisfies
Eq. (5.48), it does not correspond to some motion of the
fluid, since 4=0 everywhere in this case.

We have obtained the effective boundary condition for
Tkachenko waves near the plane wall without referring to
the relation connecting discontinuity of the tangential
velocity on the edge of the vortex pattern with the dis-
placement of the edge, This relation, however, was used
to derive the dispersion law of the edge wave in the
continuous-vorticity model (Sec. V.D), and Eq. (5.21) re-
lies on it. Beyond the scope of this model, Eq. (5.21) is
incompatible with the conditions of continuity of the
momentum flux used in the present section. The contra-
diction would be removed by the inclusion of an addition-
al mode in the superposition of waves near the boundary.
Such a mode would be available if dispersion of Tkachen-
ko waves were taken into account because it would in-
crease the order of the dispersion equation and the num-
ber of its solutions. The Tkachenko wave vector, howev-
er, exhausts all possible real solutions at co «0, so an ad-
ditional solution for the wave vector cannot be real. This
means that an additional mode would attenuate at a dis-
tance of the order of the intervortex spacing and would
not be tractable within the continuum theory. In view of
this, the question arises which condition we should elim-
.inate from the continuum theory where the number of
conditions on the edge exceeds the number of modes. It
seems that conditions appealing to conservation laws have
priority over other ones. The condi. tion connecting the
velocity discontinuity on the vortex-pattern edge with the
displacement of the edge may be given up on the grounds
that the continuum theory is not capable of finding the
displacement exactly enough.

It is worthwhile to note that a similar problem of addi-
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tional boundary conditions arose in the theory of exciton
polaritons in solids (Ivchenko, 1982). It was also resolved
by preferring the conditions based on the conservation
law.

o~„=pcT+„q J„"(qr) —J„—'(qr)+ J„(qr)
I" p 2

X exp(in@ —icot) . (5.54)

F. General Tkachenko modes
in a cylindric container

In Sec. V.C the axisymmetric Tkachenko modes were
considered. In order to extend these considerations to
general Tkachenko modes we shall derive the effective
boundary condition for Tkachenko waves on a circular
boundary. our derivation follows along the same lines as
in the previous section, where the plane boundary was dis-
cussed. Here we consider a cylindrical Tkachenko wave
with n-fold symmetry in a container of radius R with a
vortex pattern of radius Rp. The Tkachenko wave dis-
torts the edge of the vortex pattern, and the velocity field
of distortion is given by Eqs. (5.7) and (5.8) multiplied by
exp( —icot). The pressure field associated with distortion
of the edge is found from the Euler equation —Eq. (5.27)
inside the vortex pattern and Eq. (5.29) in the vortex-free
region: for r & R p,

2lg

Now we write the continuity conditions on the vortex-
pattern edge for the flows of mass and momentum as in
Sec. V.E. Continuity of mass flow requires continuity of
the radial component U, of velocity:

Rp t Rp

R
= + R
=Lw 1—Lw 1—

J„(qRp) ."Rp

271

coRp Rp
+ R

In the continuity condition for the flow of momentum
normal to the boundary (the radial momentum) one may
retain only the pressure, ignoring the contribution of the
stress tensor:

2Q+ CO I"I = —pw+
n Rp

nRp
'lw+ 1—

0
Rp

2ll

+ql J (qRp)
Rp

Xexp(in y —icpt), (5.56)

and for Rp &r &R,

COR p Rp +
2ll

The third continuity condition is imposed on the flow of
the transverse momentum given by II+„——o.&„..

272

2cr (n —1)p R p
w+ 1—

I coRp R

Xexp(in' itot) . — (5.51) +pcT%'„
2ll

2
—q J„(qRp) — J„'(qR p)

2q

p p

pcT(n —1)
o+ = —2w+

I CORp Rp

7l —2 '2n
Rp

Distortion also contributes to the stress tensor of the vor-
tex array. From here on we shall not retain corrections of
order cp/0 responsible for the coupling of edge waves and
Tkachenko waves. Then the distortion contributes only
to the component o.+„ in the cylindric coordinate frame
given by

(5.57)

Solving these equations, we obtain the edge-wave modes
and Tkachenko modes. Tkachenko modes are given by
solutions in which w =0, i.e., the vortex-free region is
not disturbed and the radial velocity component U, and
the pressure on the edge of the vortex pattern [the right-
hand sides of Eqs. (5.55) and (5.56)] vanish. Eliminating
tp+ and assuming Rp=R, we obtain the effective boun-
dary condition, which contains only the Tkachenko-wave
amplitude %'„:

X exp(in' i cot) . — (5.52) [J„+2(qR ) —nJ„(qR )]%„=0. (5.58)

The fields of displacements, velocities, and pressure
generated by the Tkachenko wave are determined from
Eq. (5.37) through the potential

The zeros qR =A„~ of the factor before %'„yield the fre-
quencies of the Tkachenko modes:

4=O'„J„(qr)exp(in y i cot) . — (5.53)
cp„(p)= (n +A„~)'~2 . (5.59)

The contribution of the Tkachenko wave to the stress-
tensor component o.+„ is given by

When n =0, Eq. (5.59) coincides with Eq. (5.15) for the
Ruderman spectrum of axisymmetric modes, since
Ap, ——j2,. At very large n, when the wavelength
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Vl. VORTEX OSCILLATIQNS IN FINITE
ROTATING VESSELS. THREE-DIMENSIONAL
BOUNDARY PROBLEMS

A. Boundary conditions on a horizontal
solid surface. Pinning

In this section vortex patterns will be considered that
are finite not only in the horizontal plane (the xy plane),
but also along the rotation axis (the z axis). They sustain
vortex oscillations having wave vectors with components
a1ong and normal to the rotation axis. %"e begin with for-
mulation of boundary conditions imposed on the perfect
fluid at the horizontal solid surface. The first one is trivi-
al: the normal component of the velocity vanishes at the
surface,

u, =O . (6 1)
I

Other boundary conditions arise from constraints on the
vortex velocity. Such conditions have been proposed by
Hall (1958) and in more general form by Bekarevich and

(nl2vrR) ' is small compared with R, the curvature of
the boundary becomes unimportant, and the frequencies
of the Tkachenko modes approach those obtained from
the boundary condition that the normal displacement van-
ish [u„ccJ„(qR)=0]. This condition was derived in Sec.
V.E for the plane boundary. For Tkachenko waves in a
cylinder it was proposed by Williams and Fetter (1977).
But in general the condition u, =O does not hold. One
should bear in mind that u, is not a true radial displace-
ment, but that produced by the Tkachenko wave. The
true displacement of the edge of the vortex pattern differs
by the contribution of the distortion field [the right-hand
side of Eq. (5.55) is the velocity of this displacement].

It is interesting to note that the lowest frequency of the
spectrum Eq. (5.59) belongs not to an axisymmetric mode,
but to a mode n =1. Indeed, the lowest frequency at
n =1, co~ ~

——3.21cTjR, is smaller than the fundamental
Ruderman frequency ct)g(1)=cop

&

——5. 14cT/R. But we
have already pointed out (Sec. V.C) that formally the
lowest axisymmetric mode is the Goldstone mode with a
zero frequency. This mode, however, is of no physical in-
terest.

Khalatnikov (1961):

1 — - — ~ 1-
vt. —Vg = —g

FAX�(zXctl)+g
zX~

CO' Q)
(6.2)

Here v~ is the velocity of the solid surface in the xy
plane.

In linear theory

co =2Q+2Q BU

()z
(6.3)

and one can rewrite Eq. (6.2) as

BU , Bu
vt vg =g +g zX

az ()z
(6.4)

The phenomenological condition of Bekarevich and
Khalatnikov assumes that a surface force acts upon the
vortices. If the surface is ideally "smooth, " the force is
absent, g and g' are infinite, and the vortices terminate
normal to the surface plane, Bu/Bz=0. In experiment,
this last condition holds only on the free surface of the
fluid. Any real solid surface is uneven. Suppose that the
end of the vortex is located on the tip of a protuberance of
the surface. Then there is a restoring force on the vortex
proportional to its displacement, since the displacernent
increases the length of the vortex and therefore its energy.
When the fluid flow dragging the vortex is too small, the
vortex cannot escape from the protuberance, and station-
ary motion of the vortex along the surface is impossible.
This is a phenomenon of vortex pinning well known for
type-II superconductors in the mixed state (Tinkham,
1975). Coercivity affecting domain-wall and Bloch-line
motion in ferromagnetic materials yields a similar effect.
All these effects may be united under the title "dry fric-
tion:" motion is allowed only when a driving force
exceeds some critical value. Surface pinning of vortices in
experiments on stationary counterAow in He II was re-
vealed by Yarmchuk and Glaberson (1978, 1979), and
more systematically studied by Hegde and Glaberson
(1980).

Forroally one may describe the perfect-pinning case by
assigning zero values to the phenomenological coefficients
g and g' in the Bekarevich-Khalatnikov condition [Eq.
(6.4)]. But physically it is more correct to rewrite the
condition for pinned vortices in the stationary problem in
terms of displacements

BU , Bu
u —uz ——a +a'z g

z az '

~Axisymmetric oscillations do not involve radial displacements
of the fluid in the long-wavelength limit, as follows from Eq.
(5.13), so the condition u, =0 imposes no restriction on the os-
cillation frequency at n =0. But Williams and Fetter retained
in their analysis the small terms of order r„/R that made the
radial displacement at n =0 finite. The condition that small u,
vanish at the boundary was satisfied when the azimuthal dis-
placement u~ vanished too. It yielded Eq. (5.16) from which
W'illiams and Fetter determined the eigenfrequencies of the ax-
isymmetric modes.

or in the equivalent form

BQ =b(u —uz) —b'zX( uu~) .
az

(6.6)

1
b —jb'=

a +ja'
—~co

0+j0' (6.7)

Here u~ is the displacement of the solid surface. Pinning
coefficients in Eqs. (6.4)—(6.6) are connected in the
Fourier representation by a j-complex relation (see Sec.
IV.D),
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Explicit relations between the pairs of coefficients are ob-
tained by separation of the real and imaginary parts with
respect to the imaginary unit j (the reader is reminded
that in performing this operation i is assumed to be
"real").

Any linear version of the phenomenological boundary
condition on vortices becomes of limited usefulness when
the force dragging the vortices reaches the critical value
for depinning. Then the pinning site cannot hold the vor-
tex, and it will tend to jump from one surface protuber-
ance to the next, thus producing an irregular and non-
linear form of slip (Hall, 1958). This means that the pa-
rameters of the boundary condition depend on the Auid
flow in a complicated way, and no linear idealization is
satisfactory. Following a similar line of reasoning,
Yarmchuk and Glaberson (1979) questioned whether one
could rely on the Bekarevich-Khalatnikov condition at
all. This caution is entirely justified in the region where
the onset of depinning occurs. But when the flow has far
exceeded the critical depinning value, vortices move so
fast that irregularities of their motion are not too impor-
tant; then one may introduce an average velocity of the
vortex slip along the surface and the 8ekarevich-
Khalatnikov condition for such a velocity. In the same
manner, the problem of pinning in type-II superconduc-
tors is dealt with by introducing a linear resistance for the
current much larger than the critical current of depin-
ning. The problem of coercivity in ferromagnets is simi-
larly treated using the concept of linear mobility of the
domain walls in magnetic fields exceeding the coercivity
field. A more ingenious and general approach to dealing
with the pinning problem is to incorporate into the boun-
dary condition the dry-friction force and a friction force
proportional to the relative velocity of the vortices and
the boundary. This was what Adams et al. (1985) did
when studying the spin-up problem in superfluid He. In
this case, however, the problem becomes nonlinear; in the
present review we shall stay with the linear Bekarevich-
Khalatnikov condition.

Another question concerning vortex-boundary interac-
tion was raised by Campbell and Krasnov (1982) and
Adams et al. (1985): "how the alternative attachment
and release (after some stretching) of a vortex line on sur-
face irregularities could result in a dissipative force pro-
portional to the relative velocities. " It is natural to sug-
gest that a dissipative force given by the Bekarevich-
Khalatnikov condition is of the same origin as residual
resistance in dirty metals at T =0: it arises as a result of
averaging of vortex motion over random irregularities of
the solid surface. Such a dissipative force may arise even
if there is no direct contact between a rough wall and the
vortices, as in the case of a vertical wall parallel to the
vortices [see discussion after Eq. (5.20) in Sec. V.C]. In
this case, however, the force is expected to be rather weak.
The complete solution of the problem of surface pinning
would be a theory connecting the force on the vortices
with the amplitude and space scale of the surface irregu-
larities. Some steps in this direction were recently taken
by Schwartz (1985). However, up until now he has con-

sidered only isolated vortices.
Data on the magnitude of empirical coefficients in the

Bekarevich-Khalatnikov condition were available from
experiments on vortex oscillations that will be discussed
later. Unfortunately, these data were not sufficient to
determine both coefficients g and g' simultaneously.
Therefore, beginning with Hall (1958), researchers in this
field, were forced to assume that g'=0. The direct mea-
surement of the sliding coefficient g is due to Gamtsem-
lidze et al. (1966). They determined g under stationary-
flow conditions. A disk on a suspension head was rotated
with a velocity slightly greater than the rotation speed of
a vessel containing He II in which the disk was immersed
normal to the rotation axis. The parameter g was de-
duced from the displacement angle of the disk with
respect to the rotating suspension head. The values of
Gamtsemlidze et al. (1966) and those of Hall (1958)
roughly agree and fall in the interval /=10 ' —10
cm sec '. The data are discussed in greater detail by An-
dronikashvili and Mamaladze (1966). Additional infor-
mation on pinning coefficients has been obtained from ex-
periments in which the inertial-wave resonance was ob-
served. These will be discussed in Sec. VI.E.

Data on vortex-surface interaction are available also
from studies of transient phenomena such as the spin-up
process, in which a freely rotating bucket of superfluid is
impulsively spun up and allowed to relax back to solid-
body rotation [for references see Chap. IX in the book of
Andronikashvili et al. (1978) and the recent papers of
Campbell and Krasnov (1982) and of Adams et al.
(1985)]. Campbell and Krasnov (1982) analyzed the
spin-up experiments of Reppy et al. (1960) and of Reppy
and Lane (1965) in some two-fluid-hydrodynamics models
(two-fluid hydrodynamics of rotating superfluids is dis-
cussed in Secs. VII and VIII) using the Bekarevich-
Khalatnikov boundary condition identical to Eq. (6.4)
with g =0. They introduced a dimensionless pinning pa-
rameter g connected with g in Eq. (6.4) by the relation

g =v, /Lg (L is the height of the helium), Fitting to ex-
perimental data, Campbell and Krasnov obtained values
of g a few orders of magnitude larger than those deduced
from previous experiments and from those given above.
But their model relies upon a rather questionable assump-
tion concerning the rate of vortex creation at lateral walls
that undermines the reliability of their quantitative con-
clusions on the pinning force. Adams et al. (1985) have
performed spin-up experiments with a rather small aspect
ratio L/8 =0.21 and interpreted them using the same
model as that of Campbell and Krasnov (1982) except for
presence of the dry-friction force in the boundary condi-
tion (see discussion above). They arrived at a quantitative
estimate of the pinning parameter quite different from
that obtained by Campbell and Krasnov. But, as they be-
lieved themselves, the model of Campbell and Krasnov is
inadequate to describe normal-fluid behavior in their ex-
periment because it supposes that the normal fluid spins
up by viscous diffusion of vorticity from lateral walls
homogeneous along the rotation axis. For small aspect
ratio in the experiment of Adams et al. (1985), another
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mechanism is expected to dominate, similar to that
describing spin-up of the classical fluid between infinite
horizontal planes (see Sec. 2.4 in the book of Greenspan,
1968). This mechanism involves formation of the Ekman
layer near the bottom, through which fluid is pumped ra-
dially by centrifugal action. To compensate for the mass
flow in the Ekman layer, a small vertical secondary flow
is required. Adams et al. (1985) suggested that their pin-
ning parameter, obtained by fitting to experimental data,
reflected this mechanism to some extent. But this would
change the physical meaning of g, which would cease to
be a pinning par'ameter in the strict sense. Thus further
development of the theory is necessary in order to obtain
reliable data on pinning from spin-up experiments.

B. Pile-of-disks oscillations.
The vortex-wave resonance versus
the inertial-wave resonance

The experimental study of vortex oscillations in the
pile-of-disks geometry began in the 1950s (Andronikash-
vili and Tsakadze, 1958; Hall, 1958). According to Hall
(1958), the or'iginal aim of these investigations was to
study mutual friction effects in rotating He II by a modi-
fication of the classic experiment of Andronikashvili
(1946). An increase was expected both in period and in
damping of the oscillating pile of disks as a result of drag
upon the superfluid by mutual friction. The mutual fric-
tion effects, however, were found to play a minor part in
comparison with the other damping mechanism of drag-
ging connected with vortex pinning and elastic properties
of vortex lines.

Remarkable resonance effects were discovered when the
disk separation was an odd number of half-wavelengths of
the vortex wave propagating along the vortex line (Sec.
IV.D). The simple explanation of these resonances (Hall,
1958) is that the ends of the vortices are completely
pinned to rough surfaces of oscillating disks, which gen-
erate oscillations of vortex lines resembling oscillations of
the elastic string. Motion of the vortices is coupled with
motion of the fluid as a whole. The latter affects oscilla-
tions of the disks. Only resonances with an odd number
of half-wavelengths were observable, because the even-
number resonances generated Quid motion with velocity
vanishing after averaging over the fluid layer.

The resonances were observed by determining the
period of oscillation as a function of rotation speed. The
pile of disks was suspended by a long torsion fiber in a ro-
tating He cryostat. These resonances were extensively
studied experimentally and theoretically by Hall and the
Tbilisi group. One can find comprehensive discussions of
the matter in the previous reviews (Hall, 1960; Androni-
kashvili et ak. , 1961, 1978; Andronikashvili and
Mamaladze, 1966, 1967). On the whole, theory and ex-
periment were in a good agreement.

But all these early experiments were performed at com-
paratively low rotation speed. Recently Andereck et al.

(1980) and Andereck and Glaberson (1982; see also Gla-
berson, 1982) returned to these experiments and were able,
owing to progress in technique, to extend the experiments
to considerably higher rotation speeds (from —1 to —10
rad/sec). They discovered that at high rotation speed the
observed resonance frequencies were considerably lower
than had been predicted by Hall. This was explained by
the generation of Tkachenko waves. Later we shall dis-
cuss the arguments on which this claim was based (Sec.
VI.E). Another interpretation of the results of Andereck
et aI. has been offered in the framework of Hall's original
theory, rejecting, however, some approximations tradi-
tionally made within this theory (Sonin, 1983). This dis-
cussion attracted attention to some new aspects of the old
theory and has been included in the present review.

We consider a perfect fluid between two horizontal
solid surfaces located at z =I, and z = —I., so the width
of the fluid layer is 21.. The dimensions of the surfaces
are much larger than 21.. The surfaces perform harmonic
torsional oscillations around the z axis. It seems that one
can treat this problem as one dimensional: to find the
dependence of fluid variables on z at a given velocity vz
of the solid surfaces and to take into account the slow
variation of v~ in the xy plane afterwards. But because
of the singular behavior of the oscillation spectrum it is
preferable to take into account from the very first the
variation of vz in the xy plane, supposing that the solid-
surface velocity field is vz exp(iqr —icot) and vz is nor-
mal to q. Later we shall take the limit q —+O. The solu-
tion of our hydrodynamical problem must be a linear su-
perposition of plane waves

—exp(iQR —icot) =exp(iqr+ipz

idiot)—

with fixed q and ~. Any wave in the superposition corre-
sponds to a value of p satisfying the dispersion equation
for waves in an incompressible perfect fluid [Eq. (4 46)];
we neglect the Tkachenko contribution ~ cTq until the
following section. This equation has three solutions for
p . Two of them are much larger than small q and cor-
respond to torsion vortex waves with the spectrum Eq.
(4.53),

(6.8)

where the substitution j = +i gives values of p for two cir-
cularly polarized waves. The third value of p,

(6.9)

yields the inertial wave with velocity homogeneous in
space, but varying in time in the limit q —+0.

The three possible values of p correspond to three
standing waves in the wave superposition. For the field
of the Auid velocity in the xy plane we have in the j-
complex representation
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l 67
u(z, r, t)= ux(j)cosp(j)z+uI +j cosprz

2Q

&(exp(iq. r —icot) . (6.10)

The real ut (with respect to j) is the amplitude of the iner-
tial wave„and the complex u~ ——v~+ juz determines the
amplitudes of two torsion vortex waves (Kelvin modes).
The explicit expressions for the velocity components u~

and u, (along and normal to q) are obtained by separation
of the real and the imaginary parts:

u~ =Rej u = —,
'

(ux + iud )cosp (+ )z + —,(ux iu—x )cosp ( —)z + ut cosptz exp( i q r —idiot),

1
u, =Im u= (—ux. +iud)cosp(+)z ——(ux. iud. )c—osp( —)z+ui cospiz exp(iq r itot—) .

2i 2l

(6.11)

Here p(+) are the values of p(j) at j=+i We. see that
the amplitudes of the Kelvin waves are given by ux-+iud.
and u~ —iU~,'the relations between the velocity com-
ponents in the Kelvin waves [Eq. (4.54)] and in the iner-
tial wave [Eq. (4.57)] at czq =0 are satisfied by the fluid
velocity field [Eq. (6.10)]. The third component of veloci-
ty, u„ is found from the incompressibility condition
PUz+Wq 0

u, (z, r, t) = —q Rej
ux( j)sinp (j)z

p(j)
slur z+ 2~Ur

iN
ju~ = ux cosP (j)L+

2Qj
lQ)

2Q~+I (6.13)

(6.12)

Now we take into account that pi is proportional to q [see
Eq. (6.9)] and therefore small, and expand in piz. Using
Eqs. (4.54) and (4.57) between velocity components, we
can find the vortex velocity vL and substitute it into the
Bekarevich-Khalatnikov condition, Eq. (6.4) or (6.5). We
limit ourselves to the simple case of perfect pinning when
the vortex velocity vL is equal to the solid-surface veloci-

ty and the Bekarevich-Khalatnikov condition at the sur-
faces z =+L reduces to the complex relation involving
two boundary conditions,

The third boundary condition [Eq. (6.1)] is imposed on u„'
according to Eq. (6.12) one may write it as

0=Re~
ux(j) sinp(j)L

pv)
+ IUr (6.14)

Now one can see the reason why we retained the small
wave vector q in the xy plane. If we had not, we would
have lost the boundary condition, Eq. (6.14), which fol-
lows from Eq. (6.12) when q&0. But there is another
way to deduce Eq. (6.14). Suppose that the total fluid
flow, integrated over the whole width of the fluid layer,
must vanish along some direction in the xy plane. This
restriction yields Eq. (6.14) when the direction is that of
the vector q. In the pile-of-disks geometry q should be
directed along the radius, since the absence of radial mass
flow is required by the incompressibility of the fluid.

The solution of Eqs. (6.13) and (6.14) yields the ampli-
tudes of all waves in the space between disks. The fluid
velocity averaged over the fluid layer is of most interest.
It has only the t component [the q component vanishes as
a result of Eq. (6.14)] and its ratio to the solid-surface
velocity is equal to the ratio of the effective density p'
that moves with disks to the total density p. This ratio
was introduced into the theory by Hall (1958) and is equal
to

L
dz u, (z)

2ugI.

4Q . 2Q 4Q, Re, [ZKV)l —. Imj[zxv)]+, ZKV»K( j)—
(6.15)

4Q
2

~ ~

zrcV)

In a more explicit form, this ratio coincides with the expression obtained by Hall (1958):

Z ( )
Q(co —2Q) Z ( )

Q(co+2Q) 4Q
( )Z ( )

CO CO QP

Q(co+2Q) Z Q(co —2Q)
(6.16)

Rev. Mod. Phys. , Vol. 59, No. 1, January 1987



E. B. Sonin: Vortex dynamics of rotating superfluids 117

Here Zx(j)=[tanP(j)L]/P(j )L and Zx(+) are Zz(j } at
J =+i.

We do not give here any formulas connecting p'/p with
the observable variation of the period and damping of the
pile-of-disks oscillations because one can find them in the
previous reviews; an especially extensive discussion of
them is given by Andronikashvili et al. (1961).

The poles of p'/p as a function of co determine the fre-
quencies of the resonances. Hall (1958) supposed that res-
onances are possible only when co»2Q and simplified
Eq. (6.16), assuming that co »0:

50

20
OJ

3
lg

0 tanp (+ )L

p ~ p(+)L
tanp ( —)L

p( —)L
(6.17)

IO

2
m. 2n —1

co =v
7l S (6.18)

The poles of p'/p are poles of tanp (+ )L (only poles on
the real axis correspond to physical resonances), and the
resonance frequencies are linear functions of the angular
velocity 0: O~

0
I

IO

Q=QL /I

I

20

Here the integer n is a number of a branch of the spec-
trum.

The Hall approximation at co &&A is equivalent to the
assumption that the oscillating disks generate only Kelvin
modes in the fluid. Thus one can obtain the resultant for-
mulas of this approximation, Eqs. (6.17) and (6.18), by de-
leting the inertial-wave contribution and the boundary
condition Eq. (6.1) imposed on u, from the very first. But
an approximation based on expansion in 0 is questionable
when one deals with the low branches of the Hall spec-
trum [Eq. (6.18)]. In observing the lowest branch of the
Hall resonances, Andereck et al. (1980) .revealed a serious
discrepancy with Eq. (6.18). They observed resonances at
large ratio 0/co when resonances on the Kelvin modes are
impossible, since both values p(j) are negative,

pV) = —k~=—2A
(6.19)

In this case the Kelvin vortex waves are evanescent and
penetrate into the fluid only to the length I, = 1/k„which
is sometimes called the width of the superAuid Eckman
layer (Alpar, 1978). In the limit Q »co Hall derived from
Eq. (6.16) a simple formula,

tanhk, L=1-
p k,I (6.20)

which excludes the possibility of resonances.
In order to verify suspicions concerning the lowest

branches of the oscillation spectrum, Sonin (1983) calcu-
lated the dispersion law numerically, using the general
Hall formula, Eq. (6.16). The resonance frequencies were
determined by the condition that the denominator in Eq.
(6.16) be equal to zero. The results are shown in Fig. 2 by
solid lines in dimensionless variables G =coI /v, and
Q=QI. /v, . On the same plot the dispersion curves
given by Eq. (6.18) are shown by dashed lines. One can

FIG. 2. Low-frequency branches n =1 and 2 of the spectrum
of oscillations in the superfluid between two horizontal solid
surfaces. The solid lines show the eigenfrequencies that are nu-
merically calculated poles of the function p'/p given by Eq.
(6.16). The dashed lines are the eigenfrequencies determined by
Hall's approximate formula Eq. (6.18). The dot-dashed line is
the asymptotic curve given by Eq. (6.21), which the n =1
branch approaches as Q»co. The dashed lines with the cross
marks are drawn through the experimental points of Andereck
and Qlaberson (1982) obtained for different distances d =2L
between disks: 1, d =0.0208 cm', 2, d =0.0366 cm; 3,
d =0.0508 cm; 4, d =0.0762 cm. It was assumed that
v, =10 cm sec

1/4

(2n)'"=

(6.21)
' 1/4

(2n)"4 .4'. '
The frequencies on this curve produce a zero denominator
in Eq. (6.16) when Q»co. It is worth noting that the
Hall formula Eq. (6.20) for the region Q»co was criti-
cized in the past and another one proposed by Mamaladze
[see Eq. (4.35) in the review paper of Andronikashvili
et al. , 1961]:

1 (tanhk, L)/k, L—
p 1 (co/2Q) k,L /tanhk—,L

(6.22)

The zero of the denominator in this formula yields the
resonance frequency Eq. (6.21), but Andronikashvili et al.

see that the numerically calculated curve n =1 entirely
differs from that defined by Eq. (6.18). The new curve
goes into the region 2Q&co, where Hall resonances are
impossible, and approaches at A~ oo the asymptotic
curve

co=(20) i
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did not discuss such a resonance.
Comparing the dispersion curve n =2 from the Hall

formula [Eq. (6.18)] with that numerically calculated
(both are shown in Fig. 2) does not reveal a serious differ-
ence. It does show the peculiar nature of the lowest
branch of the oscillation spectrum in the rotating super-
fluid between two horizontal planes. Unlike the higher
branches, the lowest one may be considered to be the
Kelvin-mode resonance only at its beginning when Q=O.
At the growth of 0 the ratio A/co increases, as does the
contribution of the inertial wave to the superposition of
the waves generated in the fluid bulk. %'hen A &&~ the
Kelvin oscillations are negligible nearly everywhere in the
fluid bulk. Thus we may consider the lowest oscillation
branch as corresponding to the inertial-wave resonance.
But it should be remembered that even in the limit
A/co~ oo one cannot neglect the Kelvin waves complete-
ly. Though they penetrate into the fluid only the width of
the superfluid Eckman layer I, =1/k„which is small

compared with the spacing between disks, the Kelvin
modes are vital to the behavior of the inertial wave, since
it is governed by the effective boundary condition allow-

ing for the existance of Kelvin waves in the boundary
layer. This condition is derived in the following section.
Therefore despite the fact that an inertial wave is possible
in the classic fluid with continuous vorticity (Sec. II), only
the array of quantized vortices can sustain the inertial-
wave resonance, which is a quantum phenomenon.
Indeed, when the circulation quantum K tends to zero and
Kelvin modes disappear, the inertial-wave-resonance fre-
quency given by Eq. (6.21) vanishes also.

C. The effective boundary condition
and slow motion of a horizontal layer
of rotating fluid

The inertial wave is the classic limit of the mixed wave,
which is the only mode that can propagate in a rotating
superfluid at low frequencies. Low-frequency oscillations
may be described in the frame of slow-motion hydro-
dynamics developed in Sec. IV.E, but we need a boundary
condition for Eq. (4.59) governing slow motion in the hor-
izontal layer of the rotating superfluid. The condition
should allow for the existence of Kelvin waves in a super-
fluid Eckman layer of width /, . Such an approach, based
on the concept of the boundary layer, is widely used in
hydrodynamics (Greenspan, 1968).

In order to derive the effective boundary condition for
slow motion with co «Q, we consider a fluid occupying a
semi-infinite space z & 0. This is the limit of a thick Quid
layer I, » l, between oscillating disks. The velocity of
the solid surface z =0 is given by the field
vz exp(iqr —icot), where vz is normal to q and both lie in
the xy plane, as was assumed in the previous section.
Near the solid surface three waves are generated: the
mixed one and the two Kelvin modes, all of them with
the same q and co. Unlike the previous section, the waves
are not standing, but propagating along the z axis. Then

the fluid velocity in the xy plane in the j-complex repre-
sentation is given by

v(z, r, t)= ux(j)exp[i@(j)z]

2Q p+uM — +j exp(i')
tco Q

X exp(iqr —idiot) . (6.23)

Here vM and p are the amplitude and the z component of
the wave vector, respectively, of the mixed wave. This
time we do not ignore the Tkachenko contribution cTq to
the frequency of the mixed mode [see Eq. (4.55)], and the
latter does not reduce to the classical inertial wave. The
amplitudes and wave numbers of the two Kelvin modes
are determined by the complex quantities vx (j) and p (j).
The sign of p (j) [see Eq. (6.19)] is chosen so as to provide
attenuation of the Kelvin vortex wave far from the boun-
dary.

The vortex velocity vL is determined with the help of
Eq. (4.50) in the Kelvin vortex wave and with the help of
Eq. (4.57) in the mixed wave; the net vortex velocity field
vt is substituted into the Bekarevich-Khalatnikov condi-
tion [Eq. (6.5)] on the surface z =0. It yields the j-
complex equation

led ECO LCO—ak, ux —— u&+ +j u~ —ju~ . (6.24)2' 2' 2Q

Here we used a =a+ja', the relation vL = icou, —and
Eq. (6.19) for p (j), and neglected the contribution of the
mixed wave to Bu/Bz, since p is small at ~ &&Q.

The component v, of the fluid velocity, found from the
incompressibility condition as in the previous section, is
substituted into the boundary condition Eq. (6.1). It
yields the equation

q 2Qp
Rej v~+ —v~ ——0 .

~k, J ~~ q
(6.25)

(b +k, )'+b'
b(b+k, )+b' (6.28)

For perfect pinning ( b, b'~ ao ) A =k„otherwise 2 ~ k„
since the dissipation parameter b is always positive.

We have considered a single-plane mixed wave near the
solid surface. A general velocity field in slow-motion hy-

Elimination of the j-complex amplitude vz of the Kelvin
waves from Eqs. (6.24) and (6.25) gives the equation for
the mixed-wave amplitude:

, v~+(v~ —va) =o,/p (6.26)
q

where

'=k, 'Rej[(1+ak, ) '],
or in explicit form [see Eq. (6.7)]

(1+ak, ) +(a'k, )a=k,
1+ak,
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BVL
A —(vL —vg ) =0 .

Bz
(6.29)

In deriving Eq. (6.29), the correspondence principle
ip~B/Bz, q ~—b,z was used. The meaning of the in-
verse Laplace operator 1/b. j is explained in the paragraph
after Eq. (4.59). In a more general form, Eq. (6.29) may
be rewritten as

1
A (11'V)VL —(UL —V11)=0. , (6.30)

where n is the unit normal to the solid surface directed
inside the fluid.

Now we shall return to the problem of the Quid layer
between two osciHating solid surfaces located at z =+L.
In contrast with the previous section, we limit ourselves
to conditions of slow motion co«Q and large spacing
I.» I„but we do take into account the Tkachenko con-
tribution to the mixed-wave frequency given by Eq. (4.55).
Since the Taylor-Proudman theorem holds in a fluid with
quantized vorticity, we expect the fluid motion to be
columnar. This means that the velocity slowly varies
along the z axis and may be expanded in the Taylor series:

VL (z, r, t) =vo(r, t)+ ,
' v, (r,t)z— (6.31)

Substitution of this expansion in the equation of motion
(4.59) and the boundary condition Eq. (6.30) yields

drodynamics is a superposition of such plane waves.
Then Eq. (6.26) is a Fourier transform of the boundary
condition we look for, and U~ is a Fourier transform of
the vortex velocity VL in the fluid bulk. The inverse
Fourier transformation of Eq. (6.26) yields the boundary
condition imposed on the vortex velocity vL .

dispersion law

2 2 2 2
co =c01 +cTq (6.37)

Though variation of the velocity is slow along the z axis
and was taken into account with the perturbation theory,
even a weak dependence on z, together with pinning of
vortices, is responsible for the gap coL in the oscillation
spectrum Eq. (6.37). When the Tkachenko contribution is
small (q~0), the eigenfrequency is equal to coL, , and the
mixed eigenmode is the inertial-wave resonance con-
sidered in the previous section. Indeed, in the limit of
perfect pinning 2 =k„ the frequency coL given by Eq.
(6.36) coincides with the inertial-wave-resonance frequen-
cy, Eq. (6.21), obtained for the case co «Q.

But the columnar motion as just described is not the
only type of motion allowed by slow-motion hydro-
dynamics in a horizontal fluid layer. Let us consider a
more general solution of the equation of motion Eq.
(4.59):

v(z, r, t) =vo cospz exp(iqr i cot) .— (6.38)

The values of p, q, and m are connected by the dispersion
relation, Eq. (4.55), for the mixed mode. We consider free
oscillations of the fluid layer when the solid surfaces are
at rest, i.e., vt1 ——0. Then substitution of Eq. (6.38) into
the boundary condition Eq. (6.30) yields an equation
determining the set of discrete values of p at given q and

Ap
tanpL, —1=0 . (6.39)

The columnar motion corresponds to the smallest value of
p obtained by expanding the tangent in Eq. (6.39):

~v0 2 1
2

=4Q v~(r, t)+cTh~vo,
Bt2

q
2

Po= ~~ (6.40)

13L v1 —( vo —vt1 )=0 ~ (6.33)

We neglect the small v& everywhere except when it ap-
pears under the operator 3/Bz. According to Eq. (6.33),

1
V1 — AJ (Vo —Vg ),AI.

(6.34)

and elimination of V1 yields the following equation for
the velocity field homogeneous along the z axis (from
here on, the subscript 0 will be omitted):

0 v2
2 2

Bt
—crkgv+coL v=coL vg

~here the frequency col is

(6.35)

(6.36)

Thus we have reduced the problem of fluid motion be-
tween two oscillating horizontal solid surfaces to the
2+ 1 partial differential nonhomogeneous equation for
the two-dimensional velocity v=vL. The eigenfrequen-
cies of free oscillations of the fluid layer are given by the

Substitution of.p =po into the dispersion law [Eq. (4.55)]
readily yields the dispersion law [Eq. (6.37)] for the
columnar motion.

Motion of the fluid is columnar when poL « 1, or, ac-
cording to Eq. (6.40),

Lq (6.41)

We see from Eq. (6.34) that this inequality provides that
the z-dependent part of the velocity field is small com-
pared with the z-independent part.

When the inequality Eq. (6.41) holds, other values of p
satisfying Eq. (6.39) are approximately equal to those at
which the tangent vanishes:

(6.42)

Substitution of p =p„ into Eq. (4.55) yields the eigenfre-
quencies

2Qmn
+CTq

qI.
(6.43)

which, together with the eigenfrequencies of the columnar
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motion given by Eq. (6.37) (the branch n =0), constitute
the full oscillation spectrum of the horizontal layer of the
rotating fluid. Any branch except the lowest n =0 has a
minimum of the frequency at a finite value of q. Values
of q and co in the minimum are determined from Eq.
(4.56) by the substitution p =p„.

D. Low-frequency oscillations of a finite
cylindric container with superfluid

The next step in our analysis of the boundary problem
is to consider a Auid bound both along the z axis and in
the xy plane. We shall consider a fluid filling a cylindric
rotating container of height 21. and radius R, but all our
results will refer as well to a Auid with a free surface
when the height of the fluid column is L. The analysis
rests on Eq. (6.35) governing slow columnar motion of a
fluid between oscillating horizontal solid surfaces. Later
it will become clear that such an approach is valid even
for very long cylinders with L »8. For this equation we
need a boundary condition on the lateral walls of the
cylinder. Such a condition for axisymmetric modes in an
infinitely long cylinder in a state of uniform rotation was
discussed in Sec. V.C [Eq. (5.19)]. Its extension to the
case of a cylinder with oscillating rotation speed is obvi-

ous:

au, (R)
Br R + [u~(R) —us(R)] =0 . (6.44)

Here we wrote the boundary condition in terms of veloci-
ties instead of displacements, using the cylindric coordi-
nate frame. The velocity of the lateral walls and the velo-
city of the horizontal surfaces bounding the fluid are
given by

v~ =&' X re '"', u~ (R ) =fl'Re (6.45)

Here 0' is the amplitude of the angular velocity oscilla-
tions of the container.

It is not difficult to find the solution of the nonhomo-
geneous equation (6.35) satisfying the boundary condition
Eq. (6.44):

u~(r, t)=
2

r
COL —CO

2 2

CO J~(qr)
tu' J,(qR) aqJ, (qR—)

XQ'Re '"', u„(r, t)=0. (6.46)

Here q =(co —coL, )' /cT. The angular momentum per
unit height for such a velocity field is

R
M=2' r dr u (r, t)

0

+4 J(R)
4 tu~ —tu2 ~~2 —tu~ qR [J)(qR) aqJ2(qR)]—

(6.47)

Suppose that the axial oscillations of a freely suspended
container are considered. Then the equation determining
the eigenfrequencies is found from the condition that the
net angular momentum of the fluid and of the container
itself not vary during the oscillations. This yields the
dispersion equation

r

J2(qR)
4 qR [J,(qR) aqJ, (qR)]—

Here 13 is the ratio of the moment of inertia of the con-
tainer to the moment of inertia of the fluid, if the latter
rotates as a solid together with the container.

If the container is very tall [L—+oo, cuL~O; see Eq.
(6.36)] and the moment of inertia of the container is negli-
gible (P=O), then Eq. (6.48) yields the Ruderman spec-
trum, Eq. (5.15). The fundamental Ruderman frequency
is especially interesting for us:

5. 14cT
@OR =

A

The fundamental eigenfrequency from the spectrum given
by Eq. (6.48) is well approximated by this value until the
inequality uR »~L holds.

In the opposite limit coL »mR the eigenfrequencies ap-
proach toL. When a=O and /3 is not very large, they are
given approximately by the formula

tu„=cuL +x„cT/R = cu+L( x/5. 14) co+ . (6.50)

Here x„are roots of the equation,

J2(x) =0
4 xJ~(x)

(6.51)

We see that the eigenfrequencies do indeed approach the
inertial-wave-resonance frequency coI, and at the same
time the spacing between neighboring frequencies de-
creases when the ratio coL /~R increases. This creates the
possibility of beats in the oscillations. Equation (6.46)
shows also that when coI /mR ~ oo and as a result co~coz,
the fluid velocity in the bulk far exceeds the velocity of
the lateral walls. This distinctive feature of the case
~L »coR is due to the inertial-wave resonance in the Auid
inside the container.

Thus oscillations with the Ruderman frequency [Eq.
(6.49)] determined by Tkachenko-wave velocity are possi-
ble in a container of finite height only if coR »jul . This
inequality in terms of container dimensions [see Fqs.
(6.36) and (6.49)] takes the form
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L, 3.8 A
g2 (6.52)

On the other hand, the columnar motion of the fluid per-
sists until the inequality Eq. (6.41) holds. At the inertial-
wave-resonance condition col &&co+ we have q =6.8/R
[the number 6.8 is the smallest root of Eq. (6.51)], and Eq.
(6.41) may be rewritten as

(6.53)

Comparing Eqs. (6.52) and (6.53), we see that when A is
small (strong pinning) a transition to the Ruderman re-
gime of oscillations bounded by Eq. (6.52) may occur in a
region where the theory of columnar motion is invalid. It
is clear, however, that when the container is high enough
the Ruderman theory must correctly predict eigenfre-
quencies. So the theory of columnar motion, which in-
cludes the Ruderman theory as a particular case, fails to
predict corrections to Ruderrnan frequencies, but not fre-
quencies themselves. It cannot, moreover, predict, the
value of L/R at which the corrections become unimpor-
tant, when this value does not satisfy the inequality Eq.
(6.53). Nevertheless, one may assign to the frequency col
and the parameter 3, which is connected with coL by Eq.
(6.36), a meaning broader than that within the scope of
the columnar-motion theory. They can be treated as
characteristic parameters determining the transition to the
Ruderman regime of oscillations. But then the relation
connecting A with the pinning coefficients, Eq. (6.28),
does not hold.

The problem of vortex oscillations in a cylindrical
vessel of finite height was solved formerly by a more in-
tricate method based on expansion of the fluid velocity
field in cylindrical waves (Sonin, 1976). It was found that
the obtained series of Bessel functions allowed summation
for not very long vessels when an inequality similar to Eq.
(6.53) held. As a result the velocity field given by Eq.
(6.46) at a =0 was obtained. Such a simple form of result
aroused the suspicion that there existed another, more
direct and transparent way to achieve the same result.
The theory of columnar motion provides this way. But
the expansion method gives the dispersion equation
beyond the region of columnar motion, though its solu-
tion requires numerical calculations.

E. Experiments on Tkachenko waves.
The Tkachenko wave versus the inertial wave

The first attempt to observe a Tkachenko wave was un-
dertaken by Tkachenko himself in the 1960s in a study of
torsion oscillations of a light cylinder suspended by a thin
fiber (see Tkachenko, 1974). No conclusive data were ob-
tained; nevertheless we shall return to this idea later, in
Sec. VIII.D, since its discussion requires a knowledge of
the two-fluid theory.

Further efforts to discover Tkachenko waves experi-
mentally were stimulated by Ruderman's theory explain-

ing long-period oscillations of the pulsar rotation velocity.
Tsakadze and Tsakadze (1973, 1975) tried to simulate
pulsar phenomena; they studied free rotation of buckets
of various shapes, cylindrical included, filled with He II,
and revealed rotation-period oscillations superimposed on
the steady deceleration of rotation. The finding was in
qualitive agreement with the Ruderman theory, The os-
cillations disappeared above the I, point that proved their
superfluid nature. But the oscillation frequencies ob-
served for cylindrical vessels were nearly eight times
higher than the Ruderman fundamental frequency co+.
This disagreement was explained by the three-dimensional
effects of pinning and bending of vortices (Sonin, 1976).
We saw in the previous section that such effects can
transform a Tkachenko-wave resonance into an inertial-
wave resonance in cylinders of moderate aspect ratio
L/R. What Tsakadze and Tsakadze (1973) observed,
then, was the inertial-wave resonance with frequency col .
This was proven by experimental detection of properties
predicted by the theory of the inertial-wave resonance (S.
Tsakadze, 1976). First of all, the experimental oscillation
frequency depended on the height of helium in the vessel
(the length of vortices) and on the smoothness of the bot-
tom, but did not depend on the vessel radius. It agreed
with the theoretical expression for the inertial-wave-
resonance frequency [see Eqs. (6.36) and (6.28)], but can-
tradicted Eq. (6.49) for the Ruderman frequency. In a
number of cases, beats arose in the oscillations, which are
possible only in the region of the inertial-wave resonance.
One can find more detailed comparison and discussion in
the papers of Sonin (1976) and S. Tsakadze (1976; see also
J. Tsakadze et al., 1980).

In further experiments, S. Tsakadze (1978) used longer
cylindrical vessels in an effort to get the region co~ &&coL
where pure Tkachenko waves are possible. He could not
do it completely, because it required impractical vessels
with too large a ratio L/R [see the inequality Eq. (6.52)],
but he managed to come fairly close. In his experiments
the Tkachenko contribution to the oscillation frequency is
the same order as the pinning contribution, but not more,
and S. Tsakadze had to refer to the general theory allow-
ing for both contributions. In Fig. 3, reproduced from
the paper of S. Tsakadze (1978), the theoretical depen-
dence of the oscillation frequencies on the frequency co~ is
shown, calculated numerically with the help of Eq. (6.48).
In order to draw the experimental points on the same
plot, values of the parameter A were necessary. They
were obtained by extrapolation of the plot A versus the
oscillation period (see Fig. 2 in the paper of S. Tsakadze,
1978). The plot was drawn across the values of A ob-
tained in the region of the inertial-wave resonance,
col. &&co+, where A is a single fitting parameter and is
readily determined from the experimental frequencies.
The experimental points for the longest cylinder with the
largest value of L/8 are most important for determina-
tion of the Tkachenko rigidity of the vortex lattice. It is
clear that they follow approximately the theoretical curve
for the fundamental frequency. and approach the region
where this curve becomes parallel to the abscissa axis; i.e.,
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FIG. 3. Dependence of the eigenfrequencies ~ of the lom-
frequency mixed modes on the frequency coL characterizing pin-
ning in a cylindric vessel of radius R filled by a superAuid up to
height I.. , R =3.2 cm, I. =5 cm; 0, R =0.75 cm, I. =7
cm; , A =0.4 cm, L =-10 cm, The solid lines mere calculated
from Eq. (6.48) at a=0 and P=3. The experimental points and
the theoretical curves are taken from S. Tsakadze (1978).

dependence on the frequency ~1, connected with pinning,
vanishes. The discrepancy between experimental points
and the theoretical curve is about 30%. This means that
the Tkachenko-wave velocity in the theory and in the ex-
periment agree with 30% accuracy. The agreement looks
rather satisfactory, especially if we take into consideration
the possible sources of error in interpretation. The rota-
tion speed was not constant in the experiment due to de-
celeration of free rotation. Amplitudes of period oscilla-
iions were rather large, but nonlinear effects were not es-
timated theoreticaHy or experimentally. Extrapolation of
the parameter A beyond its measured values was also
vulnerable to criticism. These deficiencies, pointed out by
Andereck and Glaberson (1982), affect the quantitative,
not the qualitative aspect of interpretation. The experi-
ment of S. Tsakadze provided the first experimental evi-
dence of the existence of Tkachenko waves and conse-
quently of cristalline order in the vortex lattice. Regard-
less of how the parameter 2 was determined, some exper-
imental points in Fig. 3 for the longest vessel show a ten-
dency to become independent of A, and it was for these
very points that the Tkachenko wave velocity was found.
To conclude our discussion of the experiment by S.
Tsakadze (1978), we note that not all measured values of
A satisfy the inequality A &k, following from Eq. (6.28)
(k, =85 cm for Tsakadze's experiment, but measured
A were in the range 20—200 cm '). One possible ex-
planation of this disagreement is that the inequality Eq.
(6.53), necessary for the theory of the columnar motion to
be valid, is not satisfied for too small A ~ k, . This means
that these values of 3, obtained from experimental oscil-

lation frequencies with the help of formulas of the
columnar-Inotion theory, are not those connected with the
pinning coefficients by Eq. (6.28). Nevertheless, as was
said in the paragraph after Eq. (6.53), the parameter 2
may retain its meaning as the parameter characterizing
pinning and independent of geometry; that the experimen-
tal points for different vessels are approximately on one
line favors this interpretation.

In Sec. VI.B we have already mentioned the experi-
ments of Andereck et al. (1980) and Andereck and Gla-
berson (1982), who claimed that they obtained confirma-
tion of the existence of Tkachenko waves. But their ex-
periments are readily explained by the theory of pile-of-
disks oscillations, without reference to the Tkachenko ri-
gidity and given in Sec. VI.B. A comparison of this
theory with the results of the experiments of Andereck
et aI., also carried out in pile-of-disks geometry, is
presented in Fig. 2. The figure shows the resonance fre-
quencies observed by Andereck et a/. for different dis-
tances d =21. between disks. The experimental frequen-
ries lie quite close to the numerically calculated curve
n =—1, which gives frequencies of the inertial-wave reso-
nance. The experimental data for d =0.269 cm, which
are distributed beyond the scale of the plot, at large
A & 170, also agree well with theory. Such an agreement
allows us to conclude that Andereck and Glaberson (1982)
observed the same inertial-wave resonance as that ob-
served by Tsakadze and Tsakadze (1973), though in
another geometry and at other frequencies of oscillation
and rotation.

But Andereck et al. (1980) and Andereck and Glaber-
son (1982) themselves associated the observed resonances
with a peak in ihe density of state due to a minimum on
the dispersion curve of the mixed mode at given p. This
minimum was discussed in Sec. IV.E [see Eq. (4.56)
there]. Andereck et al. took the value p =m/21. in Eq.
(4.56) that assumed the ends of vortices to be pinned com-
pletely to the disk surfaces. Then the frequency of the
peak is given by

(2n)"" . (6.54)

It is remarkable that this expression differs from that for
the inertial-wave-resonance frequency, Eq. (6.21), only by
a factor of about 0.7, and it is consequently not surprising
that the agreement of Eq. (6.54) with the experiment is
not much worse than the theoretical dispersion curve
n =- l associated with the frequency of the inertial-wave
resonance. But the theory used by Andereck et al. for in-
terpretation of their experiments left unresolved a serious
problem (by admission of the authors themselves; see p.
288 in the paper of Andereck and Glaberson, 1982): how
can the oscillaiions of disks, introducing perturbations
with wavelengths of the order of the disk radii, generate
Tkachenko waves (more exactly, mixed waves with con-
siderable Tkachenko contributions) whose wavelengths
are an order of magnitude smaller than the radius of the
disks' The density-of-state peak arguments do not pro-
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vide an explicit mechanism for generation, but suggest
that there should be one. On the other hand, the inertial-
wave-resonance interpretation rests on a self-consistent
hydrodynamical derivation.

For a further insight into the problem of pile-of-disks
oscillations it would be interesting to carry out observa-
tions at large rotation speeds of higher branches of the os-
cillation spectrum, say the branch n =2, pictured in Fig.
2. According to the theory of Sec. VI.B, the lowest
branch n = 1 is of a special nature; other branches do not
differ essentially from the frequencies given by the Hall
expression, Eq. (6.18) (compare the solid and dashed lines
n =2 in Fig. 2). But the density-of-state peak interpreta-
tion does not distinguish between different branches and
is extended to the branches n & 1 assuming that

p =m(2n —1)/2L in the expression for the frequency
given by Eq. (4.56). Therefore it predicts that observable
frequencies would be considerably lower than Hall's reso-
nance frequencies.

The spectrum of axial wave numbers p =m(2n
—1)/2L, implied by Andereck et al. , follows from the
theory of slow motion of a horizontal fluid layer when

Lq »2; these p's are solutions of Eq. (6.39). Since

q —1/R, the condition Lq »3 is equivalent to
L/R »A, the inequality opposite to Eq. (6.53) which
bounds the region of columnar motion. So the density-
of-state peak concept is expected to be relevant only at
quite large values of the geometrical parameter L /R . In
the pile-of-disks geometry I, /R is very small as a rule.

In conclusion it is worth noting that the theory of vor-
tex oscillations in finite vessels (Sec. VI.D) helps us to
understand some peculiarities of vortex observations by
photographic techniques. In the first experiments, Wil-
liams and Packard (1974) saw a rather irregular structure
with vortex images considerably blurred. The authors ex-
plained this by random oscillations of the rotation speed.
By Inodification of technique and geometry they managed
later to obtain good photographs of the vortex lattice
(Gordon et al. , 1978; Yarmchuk et al., 1979). The theory
predicts that random oscillations of the rotation speed are
especially dangerous in the limit col »co+ (small L/R )

when oscillations approach the inertial-wave resonance.
Then, as explained in the paragraph after Eq. (6.51) (Sec.
VI.D), the fiuid velocity in the bulk far exceeds the veloci-
ty of the walls. One can avoid such amplifying of the
rotation-speed oscillations by decreasing cuL /co&
ccR/v'AL. In connection with this we note that good
photographs of the vortex lattice have been obtained for
rather small values of this ratio.

are beyond the scope of the present paper (see discussion
by Alpar, 1978; Anderson et al. , 1978; Tsakadze and
Tsakadze, 1980). In addition, very slow oscillations of the
Crab pulsar's period have been observed (see discussion by
Dyson, 1971). As has already been mentioned, Ruderman
(1970) has associated this remarkable phenomenon with
Tkachenko waves. He considered waves in a cylinder (see
Sec. V.C), ignoring the difference between cylindrical and
spherical geometry. Inserting into Eq. (6.49) the data for
the pulsar in the Crab nebula (0=200 rad/sec, R =10
cm, a.=2)&10 cm /sec), Ruderman found that the os-
cillation period should be

T = — =9.73)&10 sec=3.75 months,6

in good agreement with the observed period of —3
months.

But as was shown before, the Ruderman model is too
idealized even for very long cylinders when pinning of
vortices to the solid surface is important (Sec. VI.D). In
pulsars the solid crust confining the neutron matter plays
the role of a solid surface. Having no data on vortex pin-
ning to the crust at our disposal, we can, nevertheless, es-
timate the possible effect of pinning from above
(Tsakadze et al. , 1980). Pinning can increase the oscilla-
tion frequency up to the frequency coL of the inertial-
wave resonance. Like Ruderman, we ignore the differ-
ence between a cylinder and a sphere and put I. =R in
Eq. (6.36) for coL, . The frequency col is maximal when
pinning is strong and 2 =k, . So the maximal coL is given
by

(6.55)

Here Eqs. (6.19) and (4.33) for k, and v, were used. Ac-
cording to Dyson (1971, p. 50), the vortex cores occupy a
fraction 10 of the pulsar volume. This means that the
ratio of the intervortex spacing to the core radius is
r„/r, —10', so that Eq. (6.55) yields for the Crab pulsar
coL ——1.3&&10 rad/sec. This corresponds to a period of
about 8 min. Thus pinning would lead to a strong de-
crease of the oscillation period.

VI I. VORTEX OSCILLATIONS
IN TWO-FLUID HYDRODYNAMICS

A. Two-fluid macroscopic hydrodynamics
of a rotating superfluid

F. Vortex oscilIations in puIsars

Many features of pulsar behavior have been explained
by hypothesis that the rotating inner matter of pulsars is
in the superfluid state and is threaded by vortex lines
(Kirzhnitz, 1970). Some of these features are associated
with transient phenomena, such as sudden spin-ups
(glitches) of pulsars, or relaxation after the glitch, which

The two-fluid theory of Landau (I.andau, 1941;
Khalatnikov, 1971; Putterman, 1974) was formulated for
a curl-free superfluid. If one deals with a superfluid
threaded by vortex lines, the equations of the Landau
theory hold in the multiply connected region outside the
vortex lines; they should be supplemented by equations of
motion for the vortex lines. Together they constitute the
theory governing the behavior of the superfluid at finite
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temperatures. But, just as in the one-Auid perfect AUid,
one can sometimes describe the motion of the vortex lines
in terms of the averaged parameters of the vortex array.
Such a theory is the macroscopic hydrodynamics defined
above (Sec. IV.A), extended to include finite-temperature
two-fluid effects. Here we shall formulate a two-fluid
macroscopic hydrodynamics omitting all dissipation
terms except 'for mutual friction. The remaining dissipa-
tion effects may be introduced into the theory (and will
be, as necessary) in the same manner as in the original
"microscopic" two-Auid hydrodynamics.

The two-fluid hydrodynamic theory includes continuity
equations for mass and entropy, which usually have the
orm

Bp +7 j=0
Bt

(7.1)

BS
Bt

+V (Sv„)=R/T .

Here j is the net mass current, S is the entropy per unit
volume, v„ is the normal velocity, and R is the dissipa-
tion function.

The Euler equation (4.1) retains its former form as de-
duced from purely kinematic arguments, but now refers
to the superfluid part of the fluid and contains the super-
fluid velocity v, :

E =ED+ jo.v, /2+ —,pv, , (7.7)

the Gibbs relation is

dE=pdp+TdS+v„dj+A, dv,

+ dV;uJ
BE

g uJ
where

2
P =Po —V~ 'Vs + 2 Vs

(7.8)

(7.9)

is the chemical potential in the laboratory reference frame
at a given current j. The current in the reference frame
moving with normal velocity v„ is

5E =j—pv„.
6v,

(7.10)

The velocity v, and the vortex displacement u are not in-
dependent variables, since vortex displacements change
vorticity. The definition of the derivatives oE/ov, and
BE/BV;uJ relies on the convention that the kinetic energy
of the averaged superflow with velocity v, is a function of
the velocity and involves the long-range interaction be-
tween vortices,

'

but the rest part of the superfluid kinetic
energy is a function of the displacement and involves the
short-range interaction of vortices.

The pressure is determined by the usual thermodynam-
ic formula:

Bvs
1+co X vL, = —V(Iup+ 2 v~ ) . Zo+ TS+—V ~+jo'(v v.)—

= —E+ TS+pp+ j.v„. (7.11)
To satisfy energy conservation, po should be the chemical
potential at a given current j in a reference frame moving
with velocity v,

The next equation is provided by the momentum con-
servation law, which is

Differentiation of Eq. (7.11) yields the Gibbs-Duhem rela-
tion:

dI =qdl, +SeT+q, d(v„v, )
'—dV, u—,BV;

Bj;
Bt

+VJII,J ——0 . (7.4) =pdp+S dT+ j dv„—A, .dv, — dV;uJ .
uJ

Unlike the case of the one-fluid theory, in which the
momentum conservation law is derived from the mass
continuity equation and the Euler equation, in two-Auid
theory momentum conservation must be dealt with in an
independent equation.

The system of equations of the two-fluid macroscopic
hydrodynamics includes, as well, the thermodynamic
identities and expressions for the momentum-flux tensor
and the vortex velocity VL .

The Gibbs relation for the energy density in a reference
frame moving with v, is

dEO =podp+ TdS+ (v„—v )'d jo

The momentum-flux tensor is given by

BE BE
IIij =~&iJ'+AvnJ+vst~J

~
+~tuk

~BVJ u BVJ uk

(7.12)

(7.13)

BE +V J=O,
Bt

where the energy current is given by

(7.14)

Now we are able to prove the energy conservation law
by calculating the time derivative of the energy density
with the help of the Gibbs relation (7.8) and the dynamic
equations (7.1)—(7 4). These yield

+ dV) uJ '.BE
g
uJ

(7.5)

jo——j—pv, .

For the total energy density in the laboratory frame,

(7.6)

Here u is the displacement of the vortex line, and jo is the
mass current in the superAuid reference frame,

J=(go+ ,' v, )j +STv„+(jo v„)v„—
BE()

[vt.k
—(vL .V)uk]

BVuk

=pj+STv„+(j v„)v„+(v„.v, )A,

BE
[vi.k —(vt V)uk] .

BVuk
(7.15)
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The energy conservation law [Eq. (7.14)] holds if the dis-
sipation function is equal to

R =(vl —v„)fx,
where the force

(7.16)

(7.17)

is introduced. Here the elastic force f is defined the same
as in a one-fluid perfect fluid [see Eq. (4.14)].

The requirement that the dissipation function R be a
positive definite quadratic form gives the phenomenologi-
cal equation for the vortex velocity as follows:

vI ——v„+aft+a'nX fx, (7.18)

where a &0 and n is the unit vector parallel to the yortici-
ty Q.

Our system of equations is closed if the dependence of
the energy on all hydrodynamic variables is known. Up
to now we have refrained from giving explicit expressions
for the energy or currents in order to obtain hydrodynam-
ics in a more general form, allowing extension to an an-
isotropic superfluid (Sec. IX). Now we shall fill in the
formal scheme with specific physical content. As we
proceed further it will be advantageous to use the fact
that vortex lines perturb a fluid considerably only in their
immediate vicinity. Therefore the coarse-graining pro-
cedure for deriving macroscopic hydrodynamics yields
values of hydrodynamical quantities that differ negligibly
from those in the original "microscopic" hydrodynamics,
with the exception, of course, of quantities that are com-
pletely absent in the original theory (mutual friction pa-
rameters and the elastic stress tensor of the vortex lattice).
The accuracy of such an approach is determined by a
small parameter Qr, /~ (r, is the core radius), which is
extremely small in He II (see the footnote to Sec. 32 on p.
112 in the Russian edition of the book by Khalatnikov,
1971). Within this approach we have the usual explicit
expressions for the currents:

Comparing Eq. (7.20) with the Magnus relation (4.5) in
the perfect fluid, we see p„v„and v, i instead of p, v,
and vL, since vortex lines are singularities of the velocity
field of the superfluid part of the fluid. If the elastic force
f were the only force acting upon the vortices, the net
velocity of the vortices vL would be equal to v,~, which is
dependent on the form of the vortex pattern. But ihe nor-
mal part of the fluid produces a drag force on the vortices
called the mutual friction force fr„and this force is re-
sponsible for the difference between v, ~ and vL.

fr, = —p, AX(VL, —v,i) . (7.22)

fs —f+ f„= ps—ri) X(v, —v, ) . (7.23)

One can introduce the force f, into the Euler equation
(7.3):

Bt
+&(go+ —,

'
U,')+8 Xv, = f, /p, . (7.24)

Both the forces f and fr, are of quantum origin and van-
ish in the continuous-vorticity model.

It can be shown that the dissipation function given by
Eq. (7.16) contains only the mutual friction force:

R = —(vL, —vn ) I frs+ps[co X (VL, —v„)]I

= —(VL —vn ) fr, = —(v, i —v„)fr, . (7.25)

Here Eqs. (7.17), (7.20), and (7.22) were used. Using Eq.
(7.21) one can rewrite the equation of motion of vortices,
Eq. (7.18), in the form of the linear relation for velocities
vt ~ vsI, and vn:

pn Pn
vI ——v,i+ 8'(v„—v,i)+ BnX(v„—v, i) . (7.26)

Here B and B' are the mutual friction parameters intro-
duced by Hall and Vinen (1956) and connected with a and
cx' by

The net force on the vortices per unit volume consists of
the elastic force and the mutual friction force,

J —PsVs+Pnvn~ JO Pn(Vn Vs) ~

s(, =p, (v, —v„) .
(7.19) 1 pna= - B, a'=

psst 2p

pn B,
2p

(7.27)

f= PsCOX(vsi Vs) ~

Then from Eqs. (7.17) and (7.19) we obtain

fx= —p co X(v ~
—v„) ~

(7.20)

(7.21)

The velocity v, i defined by Eq. (7.20) is the local super-
fluid velocity at a point on the vortex line (in Sec. III.B it
was explained what such a local fluid velocity means). It
differs from the average superfluid velocity v, when the
vortex array is deformed and the elastic force f arises.

Here p, and p„are scalar superfluid and normal densities,
respectively, taken from microscopic two-fluid hydro-
dynamics.

Any force in vortex dynamics is connected with some
velocity by the Magnus relation. The elastic force f may
be written as

The system of macroscopic hydrodynamic equations
formulated above is invariant with respect to the Galilean
transformation; the transformation to the rotating refer-
ence frame adds the Coriolis force to the momentum con-
servation law [Eq. (7.4)]. Other equations do not vary
when co is defined as the absolute vorticity in the inertial
reference frame (see Sec. II) and the centrifugal force is
neglected.

Various generalizations of this theory have been pro-
posed. Hills and Roberts (1977a) generalized the
Bekarevich-Khalatnikov hydrodynamics to include the in-
ertia of the vortex lines. Though the inertia of vortices is
usually slight (see Sec. III.B), it may become important
when some particles trapped by vortex lines enhance the
inertia of the lines considerably. Then the three-fluid
theory of Hills and Roberts (1977a) is necessary to
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describe the wave properties of rotating superfluids.
In the linear theory, the part of the superfluid kinetic

energy, which depends on deformations of the vortex ar-
ray and includes the short-range interaction between vor-
tices, is defined by Eq. (4.27) as in the perfect fluid, but in
Eqs. (4.33) and (4.34) for the elastic constants C&, C2, and

C3 the superfluid density p, should take the place of p.
Then the density E, of this energy is given by

) 2

E, = ln —(V u)
p, ~Q co,

8~ 2A Bz

modes listed above remain, though with their spectra
changed, but they are supplemented by two transverse
modes associated with vortex oscillations. Thus in total
there are six modes at a given wave vector.

Recently some of these modes (longitudinal and
transverse-vortex ones) were independently studied by
Chandler and Baym (1986). Their results, though
presented in a slightly different form, agree with those
given below.

B. Hydrodynamic equations for a completely
incompressible fluid

8Q& 8Qy
8-' a

(7.29)

BS' +SV.V„=O,
Bt

(7.30)

The mutual friction parameters 8 and B' will be dis-
cussed in Sec. X.

Now let us bring together the equations of the linear
macroscopic two-fluid hydrodynamics to be used below:

Bp +pV v=0,
Bt

We shall call the fluid completely incompressible when
it is incompressible in the mechanical and thermal sense,
that is, when the mass density and the entropy density are
constants. In practice all results of vortex dynamics deal-
ing with real situations may be obtained within the model
of the completely incompressible fluid. Formally this
model corresponds to the limit of infinite velocities of the
first and second sound (cl~oo, c2~oo). In this limit
both v, and v„are divergence-free, i.e., V v, =0,
V v„=0. We may transform the equations for the veloci-
ties v, and v into equations for the velocities v, and v„,
which in the completely incompressible fluid are given by

Vs

at +Vp+2& X vL ——0,
I SVp= —VP ——VT,
p p

(7.31)

(7.32)

vs

Bt
+ [2Q XvL ]l =0,

0vn ps+ [2Q X vtt ] L + [2Q X (vsl VL ) ]lBt pn

(7.36)

Bv 1+ VP+2Q Xv+ —2Q X (v, l —v, ) =0, (7.33)
ps

Bt p p

Bu ~T
vd=v, +v, zX + [zXbiu —2zXV(V. u)] .

Bz2 2Q

(7.34)

Here v is the center-of-mass fluid velocity,

ps pnV= Vs+ Vn
p p

(7.35)

and the vortex velocity vL is given by Eq. (7.26).
Looking ahead to our further analysis, let us see what

oscillation modes are expected in the two-fluid hydro-
dynamics of a rotating superfluid. We should distinguish
between longitudinal and transverse modes involving
curl-free and divergence-free motion. Various modes may
or may not involve relative motion of the superfluid and
normal parts of the fluid (a counterflow). The fluid at
rest, without vorticity, has one longitudinal mode, in
which it moves as a whole (the first sound). Transverse
modes without a relative motion are impossible because of
the condition V &v, =0. Oscillations involving a counter-
Aow admit one longitudinal mode, the second sound. In
addition, the normal part of the fluid sustains two trans-
verse viscous modes. In a rotating superAuid all four

l Usq 2+ ULt
Q2

—i COU„+ 2QULq ——0, (7.38)

—(i' vQ )u —2Q —u, — 2Q (ul —uL )=02 p ps p
nq Q2 nt Q2 st t

(7.39)

(ito vQ )u„, +2Qu—„q+ —2Q(u, lq uLq) =0, —
pn

+vV X (V Xv„)=—0 . . (7.37)

As in Sec. IV.C, the subscript I indicates that only the
transverse part of the corresponding vortex field is re-
tained. The first-viscosity term is included in Eq. (7.37)
as important for the problems to be considered later. It is
worth mentioning that all dissipation processes except for
the first viscosity and mutual friction are impossible in an
incompressible Auid, since they involve compression of
the superfluid or normal fluid, or both.

Now let us Fourier analyze Eqs. (7.36), (7.37), and
(7.34) using the earlier notations for the wave vector Q
and its components p and q on the z axis and in the xy
plane. We present the obtained equations as two com-
ponents in the xy plane, along and normal to the wave
vector q. The components will be denoted by the sub-
scripts q and t, as before:
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~ Usq Us1q ~sq

Us~ =Usl~
—

Us~ =

vsp +cTq /2Q

vs+ —cTg /2A

le UL,q ~

(7.40)

The z components U„and Un, of the superfluid and nor-
mal velocities are determined from the incompressibility
conditions. Vortex displacements have been excluded
with the help of the relation vL ———i cou. Equations
(7.38)—(7AO), together with Eq. (7.26) for the vortex ve-

locity, constitute a closed system of equations governing
oscillations in the completely incompressible fluid. Elim-
ination of the components of v, from Eqs. (7.38) and
(7.40) yields two equations:

—l COUs +2AjUL, =0 ~ (7.43)

(iso —vp )—U„+2Qj U„+ 2Qj(u, &
—Fz )=0,

pn

20+v,p
jUI. ,

ECO

(7.44)

(7.45)

Q =p. These modes have been comprehensively treated
in earlier reviews, but are included in this one in order to
make it self-contained.

The axial modes are circularly polarized and involve
motion only in the xy plane, so it is convenient to use the
j-complex representation for the vectors in the xy plane
introduced in Sec. IV.D. Then Eqs. (7.26) and
(7.38)—(7.40) take a more compact form:

Uslq = . Uig~ Uslg = . Uiq ~

ECO ECO

Here

(7.41) pn .— pn .—
1 — jB U,l+ jB

2p 2p
(7.46)

2 2 2

H=2Q +vp +P 2 Cy'q

Q2 ' 2Q
2 2

I =20+v,p — =20+v,p
CTg

2A

(7.42)

Here a tilde means that the quantity is j-complex and
B=B—jB', but U, =U,q+jU„, Un =U«+jU«, and so on.

Solving Eqs. (7.43)—(7.45), one can express all velocities
through U, :

The solution of Eqs. (7.26), (7.39), and (7.41) yields all os-
cillation modes and their dispersion laws in the complete-
ly incompressible fluid. But the general dispersion law
looks rather intricate, and we prefer to study the most in-
teresting particular modes separately.

C. Axial modes

Usl =

Un ='V Us~

lQ)
UI = Vs

2Qj

20+v,p
2Q

Ps 2&+vs' +jE

p, 2Q+j (i co vp )—

(7.47)

(7.48)

(7.49)

Axial modes have wave vectors directed along the rota-
tion axis (the z axis); thus in all the equations q =0,

Substitution of these velocities in Eq. (7.46) yields an
equation for UL that has a solution when the following
dispersion equation holds:

(ice vp ) ice—(2Q+v, p ) j+ —8 —2Q iso j+ 8 +(2Q+v,p )(1——,jB) =0.
2p 2p

(7.50)

imp„—2Qjp
+

i co 2Qjp„—"+
jvs

PnPs ico2Q —
2

p2 VVs

1

2P„
(7.51)

As explained in Sec. IV.D, the dispersion equation is obtained explicitly after substitution j=+i, each sign corresponding
to one of two possible circular polarizations. The following values of p satisfy the dispersion equation (7.50):

1/2
icop„2Qj p i~ 2—Qjp„—

Here brackets yields p for viscous modes,

P= 1 ——,j8, P„=l—— jB .
2 p

(7.52)

Equation (7.51) gives the same values for the wave num-
ber as Eq. (4.7) in the review by Andronikashvili et ai.
(1961),but in a different system of notation.

The underlined term in Eq. (7.51) may sometimes be
neglected (co«Q or co&&Q, small p, /p or p„/p, small
B). Then the viscous modes and the Kelvin vortex modes
are well separated, and the upper sign before the square

pU = Eco —2Qj2=1
v p

] . . 1 —B'/2+iB /2
ECO+2QE

pnB, .pnB
2p 2p

i

while the lower sign yields p for Kelvin modes,

(7.53)

Rev. Mod. Phys. , Voi. 59, No. 1, January 1987



128 E. B. cronin: Vortex dynamics of rotating superfluids

&s jp„

- —2A (7.54)

We see that in the long-wavelength limit the axial
modes cannot be labeled as viscous or Kelvin because the
vortex tension and viscosity enter the expressions for the
frequencies of two pairs of modes under equal conditions.

In the low-frequency limit all axial modes are damped
(p are complex) and penetrate into the fluid to a finite
depth. The penetration depth of viscous modes I/Im(p, )

differs from the width of the Eckman layer

IE ——V'v/2Q (7.55)

by a factor depending on the mutual friction parameters
and deduced from Eq. (7.53). The Kelvin modes
penetrate to the width of the superAuid Eckman layer,

l, =k, =Qv, /2Q, (7.56)

which has already appeared in Sec. VI.B.
It is worthwhile at this point to discuss the long-

wavelength limit p~O for the axial modes. Solving the
dispersion equation (7.50) with respect to co and expand-
ing the solution in p, we obtain two pairs of modes, each
corresponding to two possible circular polarizations
j=+i. The first pair has oscillation frequencies

ps 2 .pn
lj 2+ Vs@ l VP

p p
(7.57)

These modes do not involve relative motion of the super-
fluid and normal part of the fluid; therefore mutual fric-
tion does not affect them, and they are undamped in the
limit p~o.

The second pair of oscillation modes is damped in the
limit p-~O, since they involve a counterflow accompanied
by mutual friction. The frequencies are given by

CO = —l 2Q+ VsP
pn

p

B' B .psj 1 — +——l vp
2 2 p

s pn, .pn B
2p 2p

In the limit Q~O, Eq. (7.54) gives p for the pure Kelvin
mode of an isolated vortex line, modified by mutual fric-
tion. We see that undamped oscillations are possible
when

pn , pn B))

D. In-plane modes

When the oscillation mode has the wave vector in the
xy plane (p =0, Q =q), we shall call it an in-plane mode.
The most trivial of these is the viscous mode, involving
the motion of the normal fluid along the z axis. Rotation
has no effect on such a mode, and its spectrum is the
same as in the fluid at rest:

(7.59)

H=, I =20.CTQ

20 (7.60)

We can eliminate from the equation of motion for vor-
tices, Eq. (7.26), all velocities excepting vL by using Eqs.
(7.38)—(7.40). This yields the following equations for the
components of the velocity vL ..

pn BA
UIq

P le
ps BA
P l CO —Vg

Pn B, Ps BQ H
+uL, 1—

2p p l u —vq

(7.61)

pn, 2Q, ps B'Q
2p l~ p iu —vq

pn H ps B'A H
+ULg 1 — — B +

2p l 6) p l ~—vq l 63

The dispersion equation for this system of linear equation
is as follows:

Other in-plane modes involve motion only in the xy
plane. In addition, the velocities v, and v„have no q
components because of the incompressibility conditions.
The coefficients II and I connecting the components of
v, ~ and vt. in Eq. (7.41) and given by Eq. (7.42) are equal
to

Pn 2Q+ II
2p l cO

2QII Pn, Pn
(
2,2)

67 p 4p
(8 S' ) =0

2p l co

(7.62)

Let us neglect for a while the crystalline order in the
vortex lattice. Then H ~ cT——0, and the dispersion equa-
tion is simplified:

(7.63)
i co — BQpn

p

I

This is the dispersion law of the viscous mode modified
by rotation. The same law is given by Eq. (4.38) of the re-
view by Andronikashvili et al. (1961), though in a more
complicated form and in different notation.

When the mutual friction is strong (BQ~ oo ), one ob-
tains from Eq. (7.63)
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pnvle=
p

(7.64)

This is a viscous mode in which the superAuid and the
normal fluids oscillate simultaneously, coupled by mutual
friction.

But one may not ignore the crystalline order of the vor-
tex lattice in the low-frequency limit. Retaining H in the
limit co~0, we obtain from the dispersion equation (7.62)
the dispersion law for the viscous mode,

friction losses are small because in the low-frequency lim-
it mutual friction strongly couples the superfluid and the
normal fluid, and there is no significant counterflow. The
same explains the temperature-dependent factor Qp, /p
in the Tkachenko-wave velocity. The fluid as a whole
with the total density p is involved in the low-frequency
Tkachenko oscillations, but the restoring elastic force is
decreased by the factor p, /p compared with that in the
perfect fluid (Tkachenko, 1973).

ps
vq =—

p
2p

+ '"B
2p

'2 (7.65)
E. Mixed modes in a completely
incompressible superffuid

which cannot be obtained from Eq. (7.63). The ratio of
the vortex velocity to the normal velocity in the in-plane
viscous mode (both have only t components) is small
when ~—+0 and given by

l CO Pn Vg

2Qp, H

Now we shall consider soft oscillation modes with wave
vectors Q directed at small angles to the xy plane
(p &&q). As in the perfect fluid, they will be called mixed
modes. It is convenient to study them using equations for
the center-of-mass velocity v and the relative velocity
pv=v„—v, . These equations are readily derived from
Eqs. (7.38) and (7.39):

pn v
=LCM'

ps CT

l 6) Pn 8&v
Q ps K

(7.66)
coU 2 Ut + ~Ust

p2 p
Q'

We see that the in-plane viscous mode in the low-
frequency limit has a finite penetration depth of order the
Eckman-layer width lE, unlike the similar mode in the
classical rotating viscous Auid. The drastic effect of crys-
talline order on the low-frequency behavior of the in-
plane viscous mode can be used for experimental confir-
mation of the crystalline order (see Sec. VIII.D).

When the ratio II/vq -«/v increases, the frequency at
which the, crossover from the dispersion law Eq. (7.63) to
the low-frequency dispersion law Eq. (7.65) occurs in-
creases too. But one should remember that when the pa-
rameter qr, -a/v becomes too large [r„ is the intervortex
distance given by Eq. (4.29)], the long-wavelength contin-
uum theory, upon which Eq. (7.65) relies, becomes in-
valid.

The dispersion equation (7.62) at small q~0 also yields
a Tkachenko wave with the dispersion law

co=c,q, c, =Qp, /pcT, (7.67)

where cz (aQ/8')' is the ——former Tkachenko-wave
velocity derived for the one-fluid perfect fluid. Ex'pand-
ing Eq. (7.62) in q, it is possible to obtain a small imagi-
nary part of the Tkachenko-wave frequency in the two
fluid theory,

+ vg uq+ wq =0,pn 2 ps

p - p

(7.69)

icou +2—0 uq+ 5uq + vg u + w, =0,ps'
, pn 2 ps

p
"

p
'

p

iso+ BQ—w —(2—B')0 w, BQ 5u, —
g2 q g2 ~ g2

2

+ (2 —B')0
2 5u„+vQ uq+ wq ——0,

(7.70)
( —ice+BR)w, +(2 B')Qwq BQ5u„— —

(2 B')Q—5u,q—+vg u, + w, =0 .
p '.

Substitution of v, =v —(p„ /p) w and v„=v+ (p, /p) w
into Eq. (7.26) yields

vI ——v+ 1 — B' (5v, —w) — Bz)&(5v, —w) .pn , pn

2p 2p

(7.71)
Pn 2 x (1 B'/2) +B /4—

Imago = — q v+
2p 8m B (7.68) In Eq. (7.40) for the components of 5v, =v, ~

—v, one can
neglect the vortex tension o:v„ then

The first term in the large parentheses is due to viscous
losses, and the second to mutual friction. The mutual

CT
UI.t ~ &Ust =—CT

ULq .

6Equations (7.66) and (7.68) were obtained earlier (Sonin, 1976)
for the particular values of B and B' given by Eq. (10.6).

In the long-wavelength limit the equations for v and
for w are uncoupled, since 5v, ~O and vg —+0 in this
limit. This means that there is an oscillation mode corre-
sponding to motion of the the fluid as a whole and anoth-
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er mode involving a counterAow without motion of the
center of fluid mass. By analogy with the terms "first
sound" and "second sound, " we shall use the terms "first
mixed mode" and "second mixed mode, " referring to
modes connected with fluid motion as a whole and rela-
tive motion of two parts of the fluid.

First we consider the first mixed mode. The transverse
velocities of vortices and the fluid, vt, -v„are larger
than the longitudinal velocities, since UI q

—
U& o:co/Q.

Conversely, according to Eq. (7.72), the longitudinal com-
poIlent 5vzq is larger than the transverse 6v„. Thus,
neglecting viscosity and coupling with relative motion, we
may write Eq. (7.69) in a much simpler form:

and Baym, 1986]

j 2 2
'2

(co+iBQ) co+iBQ =4Q — 1—
Q', Q'

(7.77)

p2 B2+(2 Bt)2
2 (7.78)

If mutual friction vanishes, B =B'=0, Eq. (7.77) yields
the dispersion law of the classical inertial wave, the
second inertial wave since it involves only relative motion
(a counterflow). But in the low-frequency limit one may
not ignore mutual friction, and the second inertial wave is
damped:

—j~v —2Q v, =0,
F. Oscillations in a clamped regime

—icov +2& vq+ 6vq ——0,ps

p

QTq
&vsq =—

ld)

This system of ihe equations yields the dispersion law

2 2
2 4@2I + 2q2 4@2I + ~ 2q2

Q2 QZ
(7.74)

which differs from the dispersion law of the mixed mode
in the perfect fluid by the temperature-dependent factor
p, /p in the Tkachenko contribution. The physical origin
of this factor has already been explained in Sec. VII.D.

The small imaginary correction to the frequency Eq.
(7.74) is found with the perturbation theory that implies
calculation of the small relative velocity w from Eq.
(7.70). As a result we have

Imago = — vQ 1+pn 2 2Q p
2p co Q

ps CTV B +(2—B')+ 2
p 4Aco

7The factor p, /p in Eq. (7.74) does not rely on assumptions
made for derivation of 8 and B', as Andereck and Glaberson
{1982)supposed. In fact, Eq. {7.74) holds at any temperature if
the frequency is low enough, whatever B and 8' are. The mag-
nitude of B, however, determines the range of validity of Eq.
(7.74).

When p =0, Eqs. (7.74) and (7.75) coincide with Eqs.
(7.67) and (7.68) for the pure Tkachenko wave.

The second mixed mode will be considered in the sim-
plest approximation when vq -0, 5v, -0. Then the
equations of relative motion given by Eq. (7.70) are

P

2 2

ice+ BQ—w —(2 —B')Q -w, =0,g

(7.76)
( ico+BQ)w, +(2——B')Qwq ——0,

and the dispersion equation is [cf. Eq. (71) of Chandler

In a clamped regime the normal part of the fluid moves
together with the solid surfaces bounding the superfluid
as a solid body. This is possible, for example, when the
viscous penetration depth is much larger than the width
of the fluid layer. The fluid layer, nevertheless, may be
larger than other relevant hydrodynamic scales. Such a
regime of motion is especially easily realized in superfluid
He because of its high viscosity. The clamped regime

has been assumed to exist in neutron stars, where the
charged normal part of the Auid is clamped to the solid
outer crust of the star by a large magnetic field (Baym
et al. , 1969).

In the clamped regime one may delete the Navier-
Stokes equation from the system of hydrodynamic equa-
tions and assume v„=0 in the rest equations. More ex-
actly, the normal velocity v„ is equal to the velocity of
the solid surfaces, but it does not matter for the linear
theory of free oscillations considered in the present sec-
tion. Then the number of degrees of freedom reduces to
that for the perfect fluid. The difference from the perfect
fluid is that superfluid motion involves a smaller mass
density and is affected by mutual friction. We shall dis-
cuss the oscillation modes in the clamped regime without
dwelling on derivations, which are similar to those per-
fol"med above-

In the clamped regime the first sound transforms into
the fourth sound with the velocity (Putterman, 1974, p.
206)

C 4 = 't/P~ /pC ( (7.79)

X '"B
2p

(7.80)

The dispersion equation of the Kelvin vortex waves
does not change in the clamped regime from that given by
Eq. (7.54) because the normal viscosity does not contri-
bute to it.

The incompressible Auid in the clamped regime sus-
tains the mixed mode with the dispersion equation

2
'

2-'+ -'Bn 1+2', —4n", +"q'
p QZ Q2

r

2

+ I —'"B
2p
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By analogy with the fourth sound, we shall call it the
fourth mixed mode. Like the second mixed mode it is
damped at co~0. %without the effects of the vortex-
lattice rigidity (cr ——0), Eq. (7.80) yields the dispersion
law for the fourth inertial wave. At p =0 we have the
Tkachenko mode with the frequency

C2 ——C2

' 1/2
A,Q

l copC

Ps c)T AQ

p„c)(S/p) icopC
(7.85)

67 = —l 8Q+ ~ CTq
.pn

2p

r
pn

2p

2 '1/2

8 + 1 — 8'
2p 2p

(7.81)

is an effective second-sound velocity, allowing for the
thermal conductivity, and C is the specific heat per unit
mass.

These equations yield the dispersion equation for a
thermally compressible superfluid,

(co c2Q—)(co +icoBQ)

This formula agrees with that obtained by Stauffer (1967)
and Volovik and Dotsenko (1980).

—(c0 —c 2p ) [Q [B +(2—B') ] icoBQ—I =0 .

(7.86)

G. Oscillations in a thermally

compressible fluid

In Sec. VII.E we saw that in the completely incompres-
sible fluid the equations of center-of-mass fluid motion
and of relative motion of the superfluid and the normal
fluid are uncoupled in the long-wavelength limit. When
the thermal expansion coefficient is small, as it is as-
sumed to be in He II (Khalatnikov, 1971), the mass flow
and the counterflow do not interact in a coInpressible
fluid either. Thus the mechanical and thermal degrees of
freedom are uncoup1ed. The effect of mechanical
compressibility on the oscillation modes of the fluid mov-
ing as a whole (the first mixed mode, the Tkachenko
mode) is similar to that considered in Sec IV.G. for the
perfect fluid, and results obtained there remain valid in
the two-fluid theory, though with p and cT replaced by p,
and the temperature-dependent Tkachenko velocity given
by Eq. (7.67) and denoted c,. For this reason we treat
here only the effect of thermal compressibility.

%'e need the continuity equation for the entropy and
ihe equation for the relative velocity w=v„—v, :

Bs' ps+ SV w= ——AT'
Bt p

Bm S+ VT'+BQw+(2 B')Q&(w=—0 .
Bt p„

(7.82)

(7.83)

Here we neglect the effects of vortex-lattice rigidity, but
include the thermal conductivity ~ k. Eliminating ur,
and the temperature variation T', as was done with
respect to U, and p' in the perfect fluid (Secs. II and
IV.G), we obtain the following equations for the in-plane
components of the relative velocity:

In the limit c2~ oo we obtain from Eq. (7.86) the disper-
sion law [Eq. (7.77)] for the second inertial wave in a
completely incompressible superfluid. In a superfluid at
rest, Eq. (7.86) gives the second-sound spectrum with dis-
sipation due to thermal conductivity. In the opposite lim-
it of fast rotation, ro && Q, we expand Eq. (7.86) in co up to
the second-order terms, to obtain

i AQ c2Q B
2 pC Q B~+(2—B')2

' 2 1/2
1 AQ c2Q B+ c~ —— +4 pC Q B2+ (2—B')~

Andreev and Kagan (1984) have derived a similar formu-
la, assuming, however, infinitely strong mutual friction
(B,B' mao ) when i—ts contribution to the frequency drops
out. But at the angular velocities available for today's ex-
periments the mutual friction contribution exceeds that of
thermal conductivity by many orders. Thermal conduc-
tivity becomes important extremely close to the A, point,
where c2 is very small, or probably at very low tempera-
tures.

In the limit co&~Q one can derive from Eq. (7.86) the
dispersion equation usually used in analyzing measure-
ments of B and B' with the second-sound technique [see
Eqs. (67) and (67a) of Chandler and Baym (1986)].

Vill. BOUNDARY PROBLEMS lN TWO-FLUID
HYDRODYNAMICS

A. Boundary conditions on a horizontal
solid surface

Here

~ —c 2Q
ice —

&
-w&+BQwq —(2—B')Qw, =0,

CO —C +
i cow, +BQ—w, +(2—B')Qw~ =0 .

(7.84)

At finite temperatures the number of oscillation modes
of the fluid increases, so the number of boundary condi-
tions should increase also. On the horizontal solid surface
bounding the perfect fluid along the rotation axis (the z
axis), we had the Bekarevich-Khalatnikov condition [Eq.
(6.2)] imposed on the vortex velocity vL, and the condition
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[Eq. (6.1)] that the mass flow normal to the solid surface
vanish. In the two-fluid theory, Eq. (6.1) is imposed on
the center-of-mass velocity,

vg =v„—z(z v„) .

Sometimes one uses a more general condition involving
the effect of a slip of the normal fluid relative to the solid
surface (Jensen et al. , 1980). The slip effect can be essen-
tial when the relevant hydrodynamic scale (the fluid-layer
dimension, or the wavelength) is of the same order as the
mean free path of quasiparticles. Thus the slip is beyond
the scope of the conventional hydrodynamic approach as
a rule But. sometimes the slip effect is not weak, even at
quite a large ratio of the relevant hydrodynamic scale to
the mean free path. By assuming an enlarged slip effect,
one can explain the rather low effective viscosity of He-8
measured at low temperatures. According to Einzel et al.
(1984), Andreev reflection of quasiparticles is responsible
for the increase in the normal-fluid slip. But for the
problems treated in the present paper, the slip effect is not
very important and can be taken into account without any
difficulty if necessary.

As a thermal condition one may assume that there is no
heat Aux across the solid surface. . This means that

~z =vnz —vsz =O . (8.3)

Together with Eq. (8.1) this tells us that neither velocity,
vs or v„, has a z component normal to the surface.

As an alternative to the adiabatic condition, as we shall
call Eq. (8.3), the isothermal condition may be assumed:
the temperature of the fluid near the solid surface is kept
constant. But later on we shall use only the adiabatic
thermal condition as more realistic.

B. Pile-of-disks oscillations and the effective
boundary condition

Now let us reconsider the problem of Auid motion be-
tween two oscillating horizontal solid surfaces in the
frame of two-fluid hydrodynamics (see the one-fluid
theory in Sec. VI.B). The surfaces are separated by a dis-
tance 21. Their motion is described by the velocity field
vtlexp(iqr icot), where —vtl is normal to the wave vector
q in the xy plane. As in Sec. VI.B, we shall take the limit

I

Ps Pn
Vz vsz + vnz

P P
and new conditions should be added: the "stick condi-
tion" . for the normal velocity v„and the thermal
boundary condition connecting the normal heat Aow and
the variation of temperature on the surface.

The stick condition is that the component of vn in the
horizontal plane coincide with the velocity vz of the solid
surface:

q~O afterwards, so q is small and the Tkachenko rigidi-
ty can be ignored.

The oscillating surfaces of the disks generate in the
fluid a velocity field, which is a superposition of all six
oscillation modes possible in two-fluid hydrodynamics:
two Kelvin modes, two axial viscous modes, and two iner-
tial waves. Each of these corresponds to a solution of the
dispersion equation for p at given q and IU. In the j-
complex representation (see Secs. IV.D and VI.B) one can
write the field of the superfluid velocity components in
the xy plane as

U = Ux(J)cosPg(j)z+U, (j)coal, (j)z

lG) Pn+ +J UICOSPIZ — (EA+J )MIICOSPIIZ
2Q P

Xexp(iq r —icot) . (8.4)

MqEA'=
ta,

leo —BQ
Q(2 —B') (8.5)

in the second-inertial-wave term ~'mq& follows from Eq.
(7.76). In both the first and the second inertial wave the
axial components of the wave vectorq pI and pIy~ are plo"
portional to q at given co, as follows from Eqs. (6.9) and
(7.78).

The next step is to substitute the velocity fields into the
boundary conditions at z =+L. The conditions Eqs. (8.1)
and (8.3) imposed on the velocities normal to the solid
surface yield (see a more detailed derivation in Sec. VI.B)

Explicit expressions for the components v,&
and v„are

obtained by separation of the real and imaginary parts
with respect to j, the imaginary unit i being treated as
"real." Equally, one can write the j-complex expressions
for the in-plane components of v„and vt. The axial
components v„and vnz are determined from the in-
compressibility conditions V v, =O and V.v„O as in
Sec. VI.B. The j-comPlex amPlitudes Ux.(j) and U„(j) and
the wave numbers px(j) and p, (j) refer to the Kelvin and
axial viscous modes, Jlx. (j) and P, (j), given by the lower
and upper signs in Eq. (7.51), or the approximate equa-
tions (7.53) and (7.54). The amplitudes UI and IUII are real
in the j sense; they define the transverse t component of
the velocities in the first inertial wave ( U I

——U,
= U„=U« ——Ul, ) and the transverse component of the rel-
ative velocity in the second inertial wave
(IU» ——IU, =U» —U„). The relations between velocity com-
ponents for various oscillations modes were found earlier
when they were studied in an infinite fluid. For example,
the ratio U,&/U„=iso/2Q in the first-inertial-wave term
~ U, in Eq. (8.4) is equal to U~/U, in the inertial wave in
the perfect fluid [see Eq. (4.57) in the classical limit
cr —+0]. The 1atlo

V+ j Ps Pn . . . vv j Ps PnU ( ') t . U ( ')
LCDRej, . + yE (j) sinpx (j)L + + y, (j) sinJ1„(j)L + LUI ——0,pxj p p p„j) p p

' " 2Q
(8.6)
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U (') . U(j)Used. . . UU J
Re& . [yz(j ) —1]sinPx(j)L+ [y, (j)—1]sinP„(j)L +iaLw» ——0 .' m(j) p„(j)

The boundary conditions are written in the limit q~O, in which pi and p» vanish also. The ratio y(j) between the nor-
mal and the superfluid velocity is given by Eq. (7.49) with the subscripts K and U referring to the Kelvin and the viscous
modes, respectively.

The stick condition [Eq. (8.2)] after substitution of the normal velocity field is

yx(j)v~(j)cospx(j)L+y, (j)U„(j)cosp„(j)L+ +J Ut+ (lcx+j)w»=jvg .
2Q p

(8.8)

We limit ourselves to the perfect pinning case, which corresponds to the Bekarevich-Khalatnikov condition [Eq. (6.4)]
g= g =0 and consequently vL ——vz. Substitution of vL in this condition yields in the j-complex representation

ldll

leo . pn Lco

2~. [@(J)cosprc(J)L+iT (J)c»p U)L]+ 2~ +J Ut 2~ +rJ ~»=JUa .2' 2Q p 2Q
(8.9)

Here

B' B i co —B/2
2 2 ( 1, —8'/2)20 (8.10)

is the ratio vL, /v„ in the second inertial wave.
Equations (8.6)—(8.9) give a solution of our boundary

problem in which the zeros of the determinant correspond
to eigenfrequencies. But the general analysis of such a
system of equations is quite complicated, and we restrict
ourselves to discussion of simpler particular cases. When
the frequency is large (co »0), then the eigenfrequencies
are given by the resonance condition for Kelvin waves
px(+)L =m(2n —1)/2, where px(+) is px from Eq.
(7.54) at j=i This .condition yields Hall s resonance fre-
quencies modified by mutual friction [cf. Eq. (6.18)),

2
m 2n 1

Q l PnB, . PnB

(8.11)

The most interesting case is the low-frequency limit
co «Q when an inertial-wave resonance is expected. In
this limit yx ~0 (Kelvin modes do not involve motion of
the normal fluid), but y, remains finite, as do a and t.
Then a direct estimate shows that a good approximation
at ~ &&Q is to delete the viscous modes and the second
inertial wave, together with the stick condition and the
thermal boundary condition, Eqs. (8.7) and (8.8). The
remaining system of equations contains the same modes
and boundary conditions as were in the theory for a per-
fect fluid (Sec. VI.B). The Kelvin wave number Px(j)
takes as its asymptotic low-frequency value ik, given by
Eq. (6.19). Repeating the derivation of the dispersion
equation, we obtain the frequency of the inertial-wave res-
onance in two-fluid theory:

1/2

I

This differs from the same frequency in a perfect fluid
[Eq. (6.21)] by the factor Qp, /p, because the Kelvin
modes involve only superfluid motion, and their contribu-
tion to the center-of-mass flow at the boundary [see Eq.
(8.6)] is diminished by a factor p, /p. In contrast, the first
inertial wave in the bulk is associated with motion of the
fluid as a whole.

In the same way we can reconsider the derivation of the
effective boundary condition for a mixed wave in the
bulk, which we carried out in Sec. VI.C for a perfect
fluid. Again the viscous modes and the second inertial
wave are not important, nor are the associated boundary
conditions, when the frequency is low. Two-fluid effects
result in the factor p/p, in the expression for the parame-
ter A in the effective boundary condition, Eq. (6.30) [cf.
Eq. (6.28)]:

P k
(b +k, )'+b'

p, b(b+k, )+b' (8.13)

C. Pile-of-disks oscillations
in a clamped regime

Formally the theory of the clamped regime is the limit
of infinite viscosity v~ Oo of the theory developed in the
preceding section. But to take such a limit is not a simple
procedure, and it is more convenient to derive the theory
of pile-of-disks oscillations in the clamped regime anew,
referring directly to those modes that are possible in this
case: two Kelvin modes and the fourth inertial wave (see
Sec. VII.F). Oscillations in the bulk, however, are not
free, because a normal Auid clamped by the oscillating
disks exerts a driving force on the superfluid by means of
mutual friction. Thus the hydrodynamic equations in the
bulk are nonhomogeneous and contain the velocity vz of
the disks. As usual, the general solution of such equa-

ps

p k,L,

1/2 1 /4

(2n)
L 2 (8.12)

Two-fluid corrections to 2 of the order ~/0 were also calcu-
lated (Sonin, 1976), but not all of them were taken into account,
so their total magnitude differs from that presented by the term
oc co/Q in Eq. (27) of Sonin (1976).
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(8.16)

The solution of these elementary equations (denoted by
the superscript D) is

D
Vst =gva ~

LCO

vI.q= 2~ gva

(8.17)

(8.18)

tions consists of some solution of the nonhomogeneous
equations and a superposition of solutions for the corre-
sponding homogeneous ones. The latter are the free oscil-
lation modes listed above.

Let us first solve the nonhomogeneous equations, which
represent the drag upon the superfluid exerted by mutual
friction with the clamped normal fluid. The necessary
hydrodynamic equations are Eqs. (7.26) and (7.38), where
it is assumed that v„=v~ and v, h

——v, . The latter condi-
tion means that vortex deformation effects on the velocity
vL are ignored, since the driving velocity field (the veloci-
ty v„of the clamped normal fiuid) varies slowly in space.
We are thus considering a case within the continuous-
vorticity model, and p —+0 and q~0, but at the same
time p/q~O also. As was discussed in Sec. VI.B, in the
pile-of-disks geometry the direction of q is identical to
the radial direction. If p/q were not negligible, u,~, i.e.,
the radial component of the superfluid velocity v„would
be finite, thus contradicting the incompressibility condi-
tion. As a result, Eqs. (7.26) and (7.38) take a quite sim-
ple form:

vst +2+VLq 0& Vsq (8.14)

VL,q
——— B (Vent

—v„),pn (8.15)
2p

pn
ULt Vst +

2
B (UB Ust )

2p

U (z, l, t) = [Ux(J)cosPx(J)z+U4(ia„+J)+jgutt ]

X exp(iq r —itot) .

The j-complex expression for the vortex velocity is

(8.21)

uL (z, r, t) = LQ) LCO

. vK (J )cosptt (j)z + u4 + t„j
2Qj 2Q

r

le+ j+ g u~ exp(iq r ice—t) .20 (8.22)

Here g =g+jg' and

i to (p„/p—)BQ
Lu

20 1 —'"B
2p

t„=I — B'— Bia„pn , pn

2p 2p

(8.23)

are ratios of the velocity components u,~/u„and VLtlu„
in the fourth inertial wave (see Sec. VII.F). The j-
complex amplitude u~(j) and the real u4 define the ampli-
tudes of two Kelvin modes and the fourth inertial wave,
respectively.

In the case of perfect pinning, when vL ——
vent on the

solid surface, substitution of Eq. (8.22) yields

ltd LCO

2'. Ux'(J)cosPx'(J)L +U4 +4J2Q

of free oscillation modes (solutions of the homogeneous
equations) should be included. The superfluid velocity
field in the j-complex representation is given by

D LQ)
&+ g va

2Q
(8.19) LEO+vs j+ 2& g —jva (8.24)

Here
(p„/p)BQ

—ito+(p„/p)BQ
The condition that the mass flow across the solid surface
vanish is

[2—(p„/p)B']0 (8.20)
i co+ (p„ /p )Bf—l

When the vortices do not interact with the disk surfaces
(no pinning) Eqs. (8.17)—(8.19) completely describe super-
fluid motion between oscillating disks (Sonin, 198la).

In the general solution for velocities, the contributions

Rej
uz. (j)sinPx (J')L

p~(j)L
+in„I.V4

——0 . (8.25)

Solving Eqs. (8.24) and (8.2S) for ux. (j) and u4, we can
find the ratio of the effective superfluid density p,',
dragged by the oscillating disks, to the total superfluid
density p, :

ps 1
dz u„(z)

ps 2vBL —L

=g+ + ImJ[vx(j)zx(j)]
V4 I

Vg Vg

Rej [jgzx(j)]—ia„lmJ[igzx-(j)] —Zx(j)Z~( —j)Re. J +t„g2Q
l 67

2Qi a„—Rej j t„zx(J')—
le

(8.26)

The expression for g given in this paper is incorrect.
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Here

ps =g —&m;[JgZx V)]
ps

0 pn, .pn-g+ —1 — 8 —t 8
2p 2p

t apnx(+)1.
S'x(+ )I

(8.27)

The first term g represents the effect of mutual friction
and the second is due to vortex pinning [compare with
Eq. (6.17) obtained for the perfect fluid]. Here px(+) is
the value of px. (j) at j=i Hall.'s resonances correspond
to poles of the function of tangent in Eq. (8.27). They are
observable when

Z~V) =[tax xV)l l/I ~V)L

When mutual friction vanishes and p, =p, Eq. (8.26)
coincides with Eq. (6.15) for p /p in the perfect fluid. Let
us consider the high-frequency region cu &&0 where Hall' s
resonances are expected. There one can expand Eq. (8.26)
in B:

v„~ u~(——r)+ v„exp[iq, (r —R)],
uL~

——u~( r) +P,v„exp [iq„(r —R )] .
(8.30)

Here U+ is the azimuthal component of the velocity in the
mixed wave that propagates in the bulk and /3, is the ratio
ul &Iu„~=ul Tlu„, in the viscous mode with the amplitude
U„of the normal velocity. We consider harmonic oscilla-
tions with the frequency co, but the time-dependent factor
exp( —icot) is omitted.

Substitution of Eq. (8.30) in the boundary conditions
(8.28) and (8.29) (vL~ iso—u=z) yields

u+(R)
R +iq„p, ub =0, (8.31)

8u~(R)
BI"

that there is a layer in which the moving wall generates
the viscous mode and that the width of the boundary
layer is the depth to which this damping mode penetrates.

For axisymmetric oscillations the viscous mode in the
boundary layer can be approximated by a plane wave with
the wave vector q„normal to the wall. Then azimuthal
velocity components in the boundary layer are

pn , pn))
2 v~(R)+vq =vg (8.32)

D. Boundary conditions on the vertical
solid surface. Axisymrnetric oscillations
of a cylindric vessel

Bu~(R)
p
= —per ()r

u„(R)
A

(8.28)

In Secs. V.C and VI.D we have used the effective
boundary condition on the lateral wall, implying that
there is a force sticking vortices to the wall, which is
parallel to them [Eqs. (5.19) and (6.44)]. Such a force is
provided by mutual friction between the vortices and the
normal fluid and sticking of the normal fluid to the wall.
Now we are going to derive this boundary condition.

Suppose that low-frequency axisymmetric oscillations
are excited in a superfluid contained by a cylindric vessel
of radius R. The assumption that vortices do not interact
directly with the wall means that the component o~„of
the stress tensor of the vortex lattice, given by Eq. (5.18)
in the cylindric coordinate frame, should vanish on the
wall. Then, recalling that Bu„/Bq&=0 for axisymmetric
motion, we have

Eliminating u„, we obtain the effective boundary condi-
tion, Eq. (6.44), with the parameter a equal to

(8.33)

Substitution of q„and p, given by Eqs. (7.65) and (7.66)
for the in-plane viscous mode in the 1ow-frequency limit
yields

1 ps
CX =—

8&v l co p~

x pvn-
ps

2

1 — 8' + 8
2p 2p

(8.34)

We see that in the low-frequency limit a —+~. Thus it
would seem that one could, not neglect the slip of the su-
perfluid relative to the lateral wall. The magnitude of
this slip, however, is determined not by the absolute value
of o., but by the dimensionless parameter qa, in which q
is the in-plane wave vector of the mixed mode in the bulk.
Since q & co/c„we have an inequality,

' 1/2

Another boundary condition is the usual stick condition
for the normal velocity v„at a wall moving with the velo-
city v~.

p~ 87TV

1 — 8' + 8
2p 2p

u„„(R)=u~ . (8.29)
(8.35)

The low-frequency' oscillation modes in the superfluid are
exhausted by mixed modes which involve motion of both
parts of the fluid together with vortices with the same
velocity. Obviously, mixed modes cannot satisfy both
boundary conditions simultaneously, so we resort to the
concept of the boundary layer again, this time supposing

One should remember that our derivation of the effective
boundary condition relies on the long-wavelength continu-
um theory and is valid for q„r, « 1, where r„-v'v/0 is
the intervortex distance. According to Eq (7.65), q„.r, is
small when the parameter v'v/8mv is small, but then the
right-hand side of the inequality (8.35) is small too, unless
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the ratio p/p„ is too large. So the slip is not very impor-
tant while we remain within the range of validity of the
theory above (except at very low temperatures).

Equation (8.34) for a was obtained earlier (Sonin, 1976)
for the particular values of the mutual friction coeffi-
cients 8 and 8' given by Eq. (10.6) below.

It is useful to have an expression for the component
II+, of the net momentum-Aux tensor, since this com-
ponent determines the force applied by the superfluid to
the wall. The net momentum consists of the elastic flux
given by the stress tensor of the vortex lattice and the
viscous flux given by the viscous tensor. But the former
vanishes at the solid surface, according to Eq. (8.28), ancl

II+, is given by

Bu„„(R)II,=z„,= —p„v BI"

v„~(R)
R

Bu„(R)
7

u (R)
+&quUU

p„viq, (1——P, )(v~ —u~) . (8.36)

Here Eqs. (8.30)—(8.32) were used. Suppose that the
cylindric vessel is an oscillating body of a torsion oscilla-
tor. Then the balance of angular momenta provides the
following dispersion equation for the eigenfrequencies of
the oscillator:

(8.37)

or, after substitution of Eq. (8.36),

Here cop is the eigenfrequency of the torsion oscillator
without the superfluid, aIld I ls the moment of inertia of
the vessel per unit length. When coo ——0, Eq. (8.38) gives
the eigenfrequencies of the freely suspended vessel. As-
suming that u+(r)=CJ(qr), and finding C from the
boundary condition (6.44), one can obtain from Eq. (8.38)
the dispersion equation (6.48) in the limit of a very long
cylinder (col ——0).

Let us turn now to the oscillations of a cylinder im-
mersed in a rotating superfluid. The boundary condition
for. the fluid around the cylinder is Eq. (6.44), as in the
previous problem of the fluid inside the cylinder, but
a o= q„' has another sign because the choice of the sign of
q, should provide attenuation of the viscous mode deep
within the fluid. Equation (8.38) also retains its form.
The oscillating cylinder irradiates the Tkachenko wave,
which may be approximated by a plane wave

u~=Cexp[iq(r —8)—icot] near the surface of the
cylinder when q =co/e, » 1/R. The amplitude C is
determined from the boundary condition equation (6.44).
Then substitution of u+ into Eq. (8.38) yields, in the limit
CO ((0,

2~pR=COp —E h)Ct I (8.39)

The eigenfrequencles have imaginary parts associated
with energy losses due to emission of a Tkachenko wave.
The damping 8-Imco/co is proportional to v II/co when
CO ((Q.

Formerly the theory of axisymmetric oscillations of a
cylinder in a rotating superfluid did not take into account
the Tkachenko-wave effect and assumed that the oscillat-
ing cylinder generated only viscous oscillation Inodes in
the surrounding fluid (Andronikashvili et al. , 1961,
1978). The equation for the eigenfrequencies in this
theory is obtained from Eq. (8.38) by deleting v~ and P„
and substituting for q, the value of q given by Eq. (7.63).
Then

iso —80,
ico (p„—/p)BQ

1/2

(8.40)

E. Turbo-fluid effects in pile-of-disks
experiments in He II

Mutual friction is among the most important two-fluid
effects and is responsible for attenuation of vortex oscilla-
tions. It has been studied in the past by observing Hall' s
resonances in pile-of-disks experiments (Hall, 1960; An-
dronikashvili and Mamaladze, 1966, 1967). But the accu-
racy of the obtained data on B and B' were diminished by
the competition of mutual friction in the bulk with pin-
ning and vortex slip on the surface of the disks (see the
discussion of the pile-of-disks experiment in He in Sec.
VIII.F).

The two-fluid theory predicts the temperature-
dependence factor Qp, /p for the frequency of the Tka-
chenko wave and of the inertial-wave resonance, as can be
seen from Eqs. (7.67) and (8.12). The temperature depen-

In the region of slow rotation A &(m this formula
predicts the linea. r dependence of the damping 6 on 0 [see
Eq. (7.3.1) in the review by Andronikashvili and
Mamaladze, 1967]. This prediction was confirmed by the
experiment of Tsakadze and Chkheidze (1960). Indeed,
the Tkachenko-wave effect is not expected to be impor-
tant at Q ((~ and cannot be calculated within the contin-
uum theory because the wave vector of the Tkachenko
wave is much larger than the inverse intervortex distance
in this case. But in the region of fast rotation 0 »co the
correct formula for eigenfrequencies is Eq. (8.39), allow-
ing for the emission of the Tkachenko wave. Equation
(8.40) in this region predicts the dependence 6cc 1/v'co,
contrary to 5 ~ v'0/co following from Eq. (8.39). An ex-
perimental study of the oscillations of a long cylinder in a
lotatlIlg superfluid, lIl the I'egllTle of fast I'otatloIl, woUld
provide the information on vortex-lattice rigidity that
Tkachenko hoped for (Tkachenko, 1974). Therefore ex-
tension of the experiment by Tsakadze and Chkheidze
(1960) to much higher rotation speeds would be interest-
ing for verification of the vortex-lattice effects.
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dence of the resonance frequencies in the pile-of-disks ex-
periment was studied by Andereck and Cxlaberson (1982)
and is shown in Fig. 4, reproduced from Fig. 19 of their
paper. The experimental points are compared with the
theoretical temperature dependence ~ Qp, /p following
from Eq. (8.12) for the inertial-wave-resonance frequency
(the solid line). The proportionality factor of the theoreti-
cal curve was chosen to match the low-temperature exper-
imental points. The theoretical and experimental depen-
dence agree quite well, despite the fact that the condition
co «Q (more exactly co «2Q) is not well satisfied for the
experimental points. A more accurate determination of
the theoretical curve, which does not use the assumption
co «2A, requires numerical calculations of the system of
equations (8.6)—(8.9).

As discussed above (Sec. VI.E), Andereck and Glaber-
son adopted another interpretation of their experiments,
relating observed resonances with the frequencies of the
density-of-state peaks given by Eq. (4.56). In the two-
fluid theory Eq. (4.56) remains, but with the
temperature-dependent Tkachenko-wave velocity
c, =Qp, /pcT instead of cT. This means that the reso-
nance frequency would be proportional to (p, /p)" . The
theoretical curve obtained by Andereck and Glaberson
from the density-of-state peak theory is also shown in

CD

C3

~ l2—
CD

C3
CD

l.O
I

l.2
I

l.4
Temperature (K )

FICj'. 4. Dependence of the resonance frequency on the tern-
perature in a pile-of-disks experiment. The data points are for
the distance between disks d =0.051 cm and the angular veloci-
ty 0=10.1 rad/sec (Andereck and Glaberson, 1982). The solid
line shows the dependence ~(p, /p)'/ of the inertial-wave-
resonance frequency [Eq. (8.12)]. The dependence was scaled to
match the lowest temperature data. The dashed line was calcu-
lated by Andereck and Glaberson from the density-of-states
peak theory.

Fig. 4 by the dashed line. We see that the theory of
inertial-wave resonance better explains the experimental
temperature dependence.

F. The ciamped regime in superfluid
~He and neutron stars

It has been said above that the clamped regime (in
which the normal fluid moves together with the walls of
the vessel as a solid body) is readily realized in superfluid
He. In a pile-of-disks experiment in rotating He one

may choose a distance between disks much smaller than
the viscous penetration length, but still larger than the
wavelength scale of the vortex waves. This is possible be-
cause the former is given by -v'v/co and -V'v/II and
the latter is given by -Qv, /co and -Qv, /0 at co »0
and co &&0, respectively. At the same time v &&v, in He.
Therefore a pile-of-disks experiment in superfluid phases
of He is capable of providing direct data on the mutual
friction coefficient 8, since mutual friction becomes a pri-
mary source of drag on the superfluid under the con-
sidered conditions, even in the case of perfect pinning (So-
nin, 1981a), (excepting regions of the possible Hall's reso-
nances), as supported by Eqs. (8.26) and (8.27) in Sec.
VIII.C. Such an experiment would carry out the original
idea of the pile-of-disks experiment as planned for He II
(see the first paragraph in Sec. VI.B). Measurements of B
for rotating He have already been performed by Hall
et al. (1984), though in a geometry different from that of
the pile-of-disks experiment.

But observation of vortex-wave resonances (associated
with Kelvin modes or the inertial wave) is expected to be
more difficult in He than in He II, since the measured
values of B in both A and B phases of He are quite large
(see Hall et al. , 1984, Hall and Hook, 1985), and further
discussion in Sec. X.E). We saw above (Secs. VIII.B and
VIII.C) that vortex-wave resonances are possible when

pn ) pn

Hence they can probably be observed at low temperatures
when large values of 8 are offset by small p„/p.

The clamped regime is assumed also in the two-
component model suggested by Baym et al. (1969) to
describe the behavior of neutron stars. One component is
a neutron superfluid. The second consists of charged par-
ticles, protons and electrons, clamped to the outer crust of
the star by a large magnetic field, so that the charged
component rotates rigidly with the crust as a unit. Of the
charged particles, only electrons are effective at interac-
tion with vortices threading the neutron superfluid, be-
cause the electrons are normal and the protons are super-
conducting. The superfluid neutron component is cou-
pled with the clamped normal-electron component by mu-
tual friction. Baym et al. (1969) describe mutual friction
in their model by the relaxation time ~, determining the
mutual-friction torque on the neutron superfluid:
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C

(8.41)

Here 0 and Q„are the angular velocities of the neutron
superfluid and the crust, while I, is the moment of inertia
of the superfluid. This expression follows from Eqs.
(8.14) and (8.15) provided that U„=Or, Uz Q„r——, and
r, =1/BQ.

The two-component model of Baym et al. (1969) pro-
vided an explanation of the long relaxation time, of the
order of years, after a starquake. According to Alpar
et al. (1984a), however, the simple two-component model
does not explain adequately a wealth of new data on the
postglitch behavior of pulsars. They proposed the vortex
creep theory and applied it to the interpretation of the
behavior of some pulsars (Alpar et al. , 1984b, 1985).

IX. VORTEX OSCILLATIGNS
AND HYDRODYNAMICS OF A ROTATING
ANISOTROP IC SUP ER FLU ID

A. Vortices and hydrodynamics
of an anisotropic superfluid 'He- A

Earlier in this paper we applied the theory developed
for He II to the superfluid phases of He without any
reference to specific features of these phases. Now we are
going to examine to what extent one can exploit the
theory of the conventional superfluid He II (which
remained the single testing ground of the superfluidity
theory for about forty years) by considering superfluids
with a more complicated order-parameter structure and
symmetry. We shall extend the theory to include effects
of superfluid anisotropy. The theory relies on
phenomenological arguments and may be applied to any
anisotropic superfluid, but we have in mind He-2 as our
primary concern, and therefore begin with a short discus-
sion of the "microscopic" hydrodynamics of He- A.

The order parameter in the 3 phase of He is specified

by the unit orbital vector l, the unit spin vector d, and the
phase y, which is, at the same time, the rotation angle
around I, though it is not well defined globally (see fur-
ther). The dipole-dipole energy couples vectors I and d,
and we shall consider only the dipole-locked regime, when

l and d are parallel or antiparallel to each other. This
yields a correct description until the fluid variables vary
slowly compared with the dipole length —10 cm
(Brinkman and Cross, 1978). Then the spin vector d
drops out from the set of independent variables. The
remaining order-parameter variables, l and y, are not
completely independent. Only the derivatives of the
phase qv are well-defined variables; in particular, the
superfluid velocity is

v, = ~Vga,

where M is the mass of the Cooper pair of He atoms.

Since y is not well defined, Eq. (9.1) does not yield the
curl-free velocity field. The vorticity is given by the
Mermin-Ho equation (Mermin and Ho, 1976)

V & v, = c.,.k„/; V/k && V/„. (9.2)

Once the structure of broken-symmetry variables has
been determined, one can apply a standard procedure for
deriving the hydrodynamic equations for thermodynamics
and the conservation laws (Khalatnikov, 1971), The non-
linear hydrodynamics was formulated by Hu and Saslov
(1977). At the same time Khalatnikov and Lebedev
(1977) used the canonical Lagrange formalism to derive
the general hydrodynamic equations. Since then a consid-
erable number of papers on He- 3 hydrodynamics have
been published, but it remains a matter of controversy.
For a comprehensive list of references, the reader is re-
ferred to the last review by Hall and Hook (1985). Much
of the confusion has arisen over the intrinsic angular
momentum associated with the orbital vector l. The sim-
plest idea is that any Cooper pair is in a state with unit
orbital momentum and has an angular momentum Al.
Thus the density of the total intrinsic angular momentum
is fail times the number density of Cooper pairs, i.e., p/M
at T =0 or p, /M at T ~0. But the situation has turned
out to be much more complicated. Some microscopic cal-
culations agreed with such a prediction, but others
showed that the intrinsic angular momentum is reduced
by a very small factor ( T, /Ez); This was partly a matter
of semantics (Brinkman and Cross, 1978). The intrinsic
angular momentum is not a well-defined, one-valued
quantity. In principle, different angular momenta may
appear in the theory, and it is now thought (Volovik and
Mineev, 1981; Hall and Hook, 1985) that different mea-
surements of the intrinsic angular momentum may give
different answers. As for the problems considered in this
review, the most important is the dynamic angular
momentum t., which is directly involved in dynamics and
appears in the equation of orbital motion [see Eq. (10.17)
below]. It determines orbital inertia as a factor before the
term Bl/Bt [for discussion of the static intrinsic angular
momentum see Balatskii and Mineev (1986) and refer-
ences therein]. The frequency of orbital waves (see the
end of Sec. IX.C) and mutual friction coefficients (Sec.
X.D) depend on 1.. It follows from a number of micro-
scopic derivations of orbital hydrodynamics using a
quasiclassical expansion in spatial and temporal deriva-
tives of hydrodynamic variables that I. is very small due
to particle-hole symmetry in the BCS theory (Volovik,
1975; Cross, 1975, 1977; Nagai, 1980). But the solution
of the problem does not look definitive. Such a theory
gives hydrodynamics that do not satisfy the momentum-
conservation law and cannot be formulated within the
Lagrange formalism at T=0, though derived from the
theory with the Lagrangian.

The problem of the intrinsic angular momentum and of
the hydrodynamic Lagrangian are closely connected with
the problem of the nonlocal term —(A/M)Col (1.(VXI)
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in the expression for the supercurrent [see Eq. (9.9)
below] }. The microscopic theory mentioned above
predicted large Co at T =0 (see Mermin and Muzikar,
1980, and references therein). It is possible to formulate a
self-consistent local phenomenological hydrodynamics
satisfying the momentum-conservation law in the limit
T~O, p„~O only if L~pk/M and Co~0 in this limit
(see the discussion by Sonin, 1984, in which one can find
additional references). In order to reconcile the
phenomenological hydrodynamics with the microscopic
theory, Volovik and Mineev (1981) suggested that the nor-
mal density remains finite even at T~O if l varies in
space (see also Combescot and Dombre, 1986, and refer-
ences therein). The discussion concerning the magnitude
of Co is still in progress since McClure and Takagi (1979)
showed, using the symmetry of the BCS wave function,
that Co ——0 at T =0. The same result was obtained by
Ishikawa et al. (1980), who performed calculations with
the BCS many-particle wave function. Recently a num-
ber of papers have appeared (Volovik, 1985, 1986;
Balatskii et al. , 1986; Combescot and Dombre, 1986) in
which an exact solution was attempted of the quantum
problem for boojums (the singular points on the Fermi
surface in which the wave vector k is parallel to 1 or —I).
This is important because near boojums the quasiclassical
expansion in gradients is invalid and higher-order terms
are essential. The general conclusion was that the nonlo-
cal term ~ Co is linked to the normal fluid, but noi to the
condensate. However, a complete solution of the problem
has not yet been achieved in this way.

The source of all these ambiguities is the question of
how to treat boojums correctly in the microscopic theory.
The derivation of the zero-temperature hydrodynamics
from the microscopic theory of He-3 is discussed in the
Appendix. It seems thai up to this point the theory has
not been able to determine the contribution of boojums to
I, and Co unambiguously. But some conjecture linked
with the momentum-conservation law makes it possible to
derive the self-consistent zero-temperature hydrodynam-
ics with large L =ph'/M and Co ——0.

Another problem of the He-3 hydrodynamics worthy
of mention is the gauge wheel effect invented by I.iu and
Cross (1979). They showed that there is a term 1.(V&&v„)
in the Josephson equation which produces superfluid ac-
celeration. Hu and Saslov's hydrodynamics predict that
the gauge wheel effect exists even at T =0, p„=0, though
it depends on v„. But their hydrodynamic equations are
incompatible in this limit (even their linear version). If
they are supplemented by some terms that make the
theory self-consistent, the gauge wheel effect vanishes at
T~O, p„—+0 (Sonin, 1984).

In all, the structure of the hydrodynamical equations
for He-A is not entirely clear at present. Nevertheless,
we may distract ourselves from these difficulties when
formulating the "macroscopic" hydrodynamics of the ro-
tating anisotropic superfluid (the next section), which is a
cruder theory evolving from the original "microscopic"
hydrodynamics with a coarse-graining procedure. How-

ever, the problems discussed above become vital again if
one attempts to estimate some coefficients of macroscopic
hydrodynamics, for example, those for the mutual fric-
tion (see Sec. X.D).

The most remarkable feature of He-A is continuous
vorticity of the superAuid, which is accompanied by an

inhomogeneous l texture in accordance with the Mermin-
Ho relation Eq. (9.2). Volovik and Kopnin (1977) showed

that the l texture and the vorticity field in a rotating su-
perfluid are doubly periodic functions in the plane normal
to the rotation axis (the xy plane). Now a large number
of various vortex structures have already been proposed.
What vortex structure is in equilibrium depends on the
angular velocity and the magnetic field (see the recent pa-
pers of Seppala and Volovik, 1983; Ohmi, 1984; Maki and
Zotos, 1985, as the entry points to the literature on the to-
pics).

The cell of the periodical vortex structure may be con-
sidered as an elementary superfluid vortex. It can be
singular or nonsingular (i.e., with or without the singular
line on which the order parameter vanishes), but its circu-
lation is always quantized as in a conventional superfluid.
For nonsingular vorticity quantization follows from the
Mermin-Ho relation [Eq. (9.2)], or more readily from the
integral form of the relation derived by Ho (1978). The
Ho circulation theorem is obtained by integration of the z
component of the vorticity V X v, over the vortex struc-
ture cell in the xy plane. It yields the circulation around
the cell, in other words, the circulation around the ele-
mentary vortex:

v
= dx dy V X +s

cell

f dxdyI xBl Bl
(9.3)

The direction of l at any point within the cell is presented

by a point on the surface of a unit sphere. Theri the I tex-
ture yields a mapping of the vortex-structure cell on the
sphere. Because of the periodical boundary conditions for
the cell, it is a mapping of the torus on the sphere surface
(Volovik, 1984). The integral in Eq. (9.3) is the area of
the mapping, which is equal to the area 4m of the unit-
surface sphere surface multiplied by the integer topologi-
cal charge p. This charge indicates how many times the
unit sphere is mapped. As a result

Icv =2pK= 2ph
M

(9.4)

so the nonsingular vortex is always characterized by an
even number 2p of circulation quanta. But the circula-
tion of the singular vortex may be any integer number of
quanta, and even a half-integer when the vortex is hybri-
dized with the disclination in the field of the spin vector
d (Volovik and Salomaa, 1985).
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B. Macroscopic hydrodynamics of a rotating
anisotropic superftuid

The macroscopic hydrodynamics of a rotating super-
fluid is obtained by averaging the original hydrodynamic
equations over the vortex cell (the procedure of coarse-
graining). Thus its formal structure should not depend on
details of vortex structure within the vortex cell, in partic-
ular, on whether the vortex is singular or not. As usual,
instead of the coarse-graining derivation one can deduce
the macroscopic hydrodynamics by referring to thermo-
dynamics, the conservation laws, and the symmetry of the
order-parameter variables. It is very important that in the
rotating superfluid He-2 the degeneracy with respect to
the direction of 1 is lifted, since I is fixed by the vortex
structure. Then the vector I drops out from the list of in-
dependent hydrodynamic variables, and the order-
parameter field may be characterized by the same set of
variables as in the conventional superfluid: the superfluid
velocity v, and the deformation tensor of the vortex
structure determined by its displacements u. As a result,
the formal structure of the macroscopic hydrodynamics,
as given by Eqs. (7.1)—(7.17) in Sec. VII.A, remains valid
for the anisotropic superfluid too, but the equation of
motion for vortices, Eq. (7.18), should be replaced by a
more general one allowing a lower symmetry of the super-
fluid:

vL ——v„+afx+a'nX fx+n~m(m. fx) . (9.5)

Here the unit vector I determines the direction in the
plane normal to the vorticity vector at a given point, and
u is the third mutual friction parameter in the aniso-
tropic superfluid. The dissi'pation function R given by
Eq. (7.16) is a positive definite quadratic form when

u&0, ++a ~0 . (9.6)

The expression for the current is

BE
(Ps)i j+u jTijkVJuk .

BWI.
(9.8)

Since only displacements normal to the vorticity vector,
i.e., to the rotation axis, increase the energy, the tensor
y;Jk should vanish when k =z, and the tensor A, ;k~~ when
i =k =zor l =I =z.

%'e see that the expression for the current includes a
term depending on the deformation, which was absent in

A further difference between isotropic and anisotropic su-
perfluids becomes apparent when one turns to the explicit
expressions for the energy and the current. I et us write
the general expression for that part of the energy density
which depends on the order-parameter variables [v, and
the space gradient V;uj, or the deformation tensor u;j
given by Eq. (4.25)]. In a reference frame moving with
normal velocity -v„we have, in the-harmonic approxima-
tion (w =v„—v, ),

Wg WJ
@g =(pg )ij' +1'ijkiVj uk+ Y~iklmuikuimS EJ

the conventional superfluid. One can understand its ori-
gin by referring to the equation for the current in micro-
scopic hydrodynamics:

&;=—(p, );,tU, +—CVX& — Col(I VX&) . (9.9)

By averaging the last term in this equation, one obtains a
contribution to the current depending on the deformation
of the vortex structure. Just this term in the current was
intensively discussed in connection with problems of
He-A hydrodynamics (see Sec. IX.A and the Appendix).

The deformation-dependent current is important in the
macroscopic hydrodynamics for the vortex oscillations
discussed in the following section.

The deformation-dependent current is the only new
term in the hydrodynamic equations for the rotating an-
isotropic superfluid; other terms have their counterparts
in the isotropic superfluid, but differ from them by a
more general tensor structure.

It is clear that anisotropic superfluids such as He-2 on
the level of macroscopic hydrodynamics may possess the
same symmetry as the isotropic superfluid if the symme-
try of the vortex structure is high enough. But the
theory, developed above for a superfluid with singular
vortex lines, was simplified by the assumption that the
vortex lines perturb the superfluid only in their immediate
vicinity, which made it possible to use the scalar super-
fluid density while ignoring lowering of the symmetry due
to the vortex lines (see Sec. VII.A). This assumption does
not work in a superfluid with nonsingular vorticity, in
which the superfluid density along the rotation axis (the z
axis) and in the xy plane differ no matter what the sym-
metry of the vortex structure is. But the oscillation
modes that we have considered involved mostly the
motion in the xy plane or of the Quid as a whole, when
the difference between p, along the z axis and in the xy
plane does not matter. In such cases the results of the
developed theory ean be extended to an anisotropic super-
fluid with high symmetry of the vortex structure without
any modification. Further analysis of the vortex oscilla-
tions in an anisotropic superfluid will require symmetry
classification of the vortex structures.

C. Symmetry and the effect of axial
currents on Kelvin modes

Symmetry classification of the vortex structures in ro-
tating superfluids should follow along the same lines as in
solids. It is well known that macroscopic properties of
periodic structures, on scales large compared to their
period, are entirely determined by the symmetry of point
groups, or the "symmetry of directions" (Landau and
Lifshitz, 1976). With respect to such symmetry all
periodic structures are divided into the crystal classes.
The vortex structures are distributions of currents and
moments, just like the magnetic structures. Therefore
their symmetry should be described by the magnetic crys-
tal classes that supplement the elements of the point
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groups with time reversal (Landau and Lifshitz, 1982).
But two-dimensional periodicity of the vortex structures
imposes some restrictions on the possible magnetic
classes, and only 21 classes may refer to the vortex struc-
tures. The list for two-dimensional crystal systems (syn-
gonies) is given here (see Sonin and Fomin, 1985):

the oblique system: C&, ICz, Sz ——C;];
the rectangular system: I C&,(C& ),D& (C& ) I, I Cz, (Cz),

Dz(Cz) Dzd(Sz) I'
the square system: IC4, ,S4], IC4„(C~), D4(C4),

Dzd(S4) I
the hexagonal system: C3 I C6 S6I I C3U(C3),
3( 3)Ip I 6„(C6), D6(C6), D3d(S6)J.
Here the notations of Landau and Lifshitz (1974, 1976,

1982) are used. The class C„ is determined by the group
of the n-fold rotation axis (always the vertical z axis), and
Sn corresponds to the n-fold axis of improper rotations
(accompanied by reflection in the horizontal plane). In
the group C„„,the group C„ is supplemented by n verti-
cal planes of reflection denoted by o, The group D„
contains, besides C„, n twofold axes U2 in the horizontal
plane. The group D„d is the group D„supplemented by n
vertical reflection planes o, The group denoted by A (8)
contains all elements of 8, the subgroup of A, and the
remaining elements of 3, each combined with the time-
inversion operation R.

This classification implies that the vortex structure
varies only on the xy plane, but currents and moments
map a three-dimensional space. When the currents are
confined in the xy plane too, and, correspondingly, the
moments are along the z axis (as in He II), then the
groups united by curly brackets are not distinguishable,
since for plane currents the operations o.„and U2 are
equivalent and the reflection in the horizontal plane is the
identity operation. Thus for classification of distributions
of plane currents it is enough to retain only the first
group in each set of brackets. Then one has the ten crys-
tal classes listed by Kittel (1971).

As an example of a property that appears only in the
anisotropic superfluid, we shall consider the effect of
deformation-dependent currents on the Kelvin modes, the
torsion vortex waves propagating along the z axis. For
such currents to exist, the tensor ypjk in the energy density
Eq. (9.7) should include a quantity transforming like a
current (changing sign at the inversion of space or time).
The symmetry aHowing such a current is highest when
the current is axial and does not break rotational symme-
try. The axial current may be a nonlocal current
~l(l VXl) along the rotation axis. Of course, the total
current averaged over the cell of the vortex structure van-
ishes, including if necessary the current ~v, . An axial
current in equilibrium is forbidden by the symmetry ele-
ment cr„R, so it is possible in the classes C„and D„(C„).
For simplicity we shall consider the classes with high ro-
tational symmetry ( n & 2). The clamped regime will also
be assumed (v„=0, w= —v, ). Then the energy density
equation (9.7) may be rewritten in simpler form, retaining
only terms relevant for the problem under consideration:

2 BU
Ea = TPsUs +Ps&&s

Bz

BU , BUvs' —X vs' z)&
Z BZ

8 U= —20 Xpsvs+ps2vs
Bz

+y 2QX
az az

Bu Bv,—y' 2Q —zX
Bz Bz

(9.11)

Substituting Eq. (9.11) in Eq. (7.18) [which is equivalent
to Eq. (9.5) when a =0 due to rotational symmetry], and
using the relations in Eq. (7.27) between a,a' and B,B'
yields the equation for the vortex velocity written for the
plane Kelvin wave u ~ exp(ipz icot) in—the j-complex
representation:

2 3 . . LP
JUS + p ~+ ~Jp+ Us

Ps 20

lpu —Jp
U

ps 2' (9.12)

This equation is solved together with the Euler equation,
which in the complex representation for vectors in the xy
plane is Eq. (7.43). It yields the dispersion law for the
Kelvin mode:

Pn , .Pn 2 "2y
cu = —Ej 1 — B'—g B 2Q+ vsp —tg- ——p

2p 2p Ps

=+ 1 —-- B'+i B 20+v,p + p
Pn, .Pn '+ 2y
2P 2P Ps

(9.13)

The two values of j=+i correspond to two senses of cir-
cular polarization. The term ~y' in the energy cancels
and does not affect the eigenfrequency.

Thus the axial current leads to the term linear in p in
the expression for the frequency of the Kelvin mode.
When one deals with nonsingular vorticity in He- A
without a magnetic field, the only relevant space scale of
the vortex structure is the inter vortex distance
r, -&a/Q, and the hydrodynamic expansion in p is in
fact an expansion in the dimensionless parameter pI", .
This means that y &x: v Q. Formally one may apply Eq.
(9.13) only to the case pr, &~1, where the macroscopic
hydrodynamics is rigorous. But the Hall resonances in

(9.10)

The effective force fx determining the vortex velocity vL
[see Eqs. (7.17) and (7.18)] is given by

0Eg 6Eg
fx ———2QXA+ f= —2QX

6v, 6U
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He II were observed at small Q ~~~ where pr, &&1, In a
superfluid with singular vortex lines it is not difficult to
extend the theory to wave numbers p larger than 1/r,
(but not larger than 1/r„wher er, is the core radius) by
deriving it from the dynamics of isolated vortex lines (see
Sec. IV.D). No derivation of this sort has been carried
out for He-A. Nevertheless, assuming that such a theory
exists and that it admits an expansion in (pr, ) begin-
ning with the term cap, one can apply Eq. (9.13) for the
nonsingular vorticity at pr, »1. Then it follows from
Eq. (9.13) that the frequency of the Hall resonance in a
pile-of-disks experiment would increase as y ~ v'fl at
small Q, unlike the linear dependence on 0 in Eq. (8.11)
for an isotropic superfluid.

Observation of the Hall resonances would provide in-
formation on the symmetry of the vortex structure. For
example, one could distinguish between the lattices of
radial-hyperbolic and circular-hyperbolic vortex pairs, as
considered by Seppala and Volovik (1983) and by Maki
and Zotos (1985). These pairs belong to the classes
C&,(C& ) and D&(C& ), respectively. The latter allows axial
currents and the former does not.

Observation of effects associated with axial currents
would at the same time provide verification of the ex-
istence of the nonlocal term —(A'/M)CO&(l VXI) in Eq.
(9.9) for the current.

An axial current may also arise in the core of a vortex
in He-8. According to the symmetry analysis of
Salomaa and Volovik (1985), a spontaneous axial current
is possible for m and uUm vortices. But an estimate of its
effect on vortex oscillations in He-B requires a more in-
volved theory, since simple scaling arguments, used above
for nonsingular vortices in He-A, are not valid there.

In this section Kelvin waves in He-A have been treated
in terms of vortex displacements like Kelvin waves along
singular vortex lines. But in He-A, displacement of the I
texture associated with a given vortex structure produces
variation of I at a given point. So Kelvin waves are orbi-
tal waves in terms of the original microscopic hydro-
dynamics of He-A, and their properties must strongly
depend on the dynamic intrinsic angular momentum I.
discussed in Sec. IX.A. This dependence shows itself in
the equations for mutual friction coefficients B and 8'
[Eq. (10.31) or Eq. (10.32)] that will be derived later in
Sec. X.D.

X. MUTUAL FRICTION

A. Introductory comments

The concept of mutual friction between a superfluid
and a normal fluid was invented by Hall and Vinen (1956)
to explain the effect of rotation on propagation of the
second sound. Since that time it has remained one of the
most important and probably most intricate problems of
the hydrodynamics of a rotating superfluid. An exhaus-
tive discussion of mutual friction would take up too much
room, and this section will be limited to an overview of

the subject, mostly its theoretical aspects. The experimen-
tal results concerning mutual friction coefficients in He II
have been exhaustively reviewed recently by Barenghi
et al. (1983).

Calculations of mutual friction coefficients inevitably
refer to "microscopic" hydrodynamics and sometimes to
the really microscopic kinetic theory based on the
Boltzmann equation. The calculations follow along dif-
ferent lines, depending on the ratio between various space
scales. The pioneer theory of Hall and Vinen was based
on the assumption that the free path length of quasiparti-
cles is much larger than the size of the region responsible
for mutual friction. Therefore the mutual friction was
treated as due to scattering of noninteracting quasiparti-
cles by vortices. This theory will be discussed in Sec.
X.B. Because the free path length diminishes when the
temperature increases, such a theory is valid only when
T & 1.4 K (Sonin, 1975). As the temperature rises, how-
ever, and approaches the A, point, the radius of the vortex
core becomes larger than the free path length of the
quasiparticles, and one expects that some sort of
phenomenological theory similar to the time-dependent
Ginzburg-Landau theory may be valid. This was realized
in the theory of mutual friction near the A, point discussed
in Sec. X.C. But most experimental data fall in the re-
gion of the intermediate temperatures, where neither of
the two mentioned theories is capable of providing a satis-
factory quantitative picture of mutual friction. Matheiu
and Simon (1980) have suggested a model that fits the ex-
perimental data well at intermediate temperatures. It will
be discussed at the end of Sec. X.B.

In spite of the remaining controversy and disagreement
concerning the mutual friction problem in He II, the con-
tours of the theory are well established, and the magni-
tude of the mutual friction parameters is fairly clear as a
result of a considerable number of experimental and
theoretical studies. In contrast, investigation of mutual
friction in the superfluid phases of He is still in an early
stage. Both approaches developed for He II (based on the
scattering theory of noninteracting quasiparticles and on
phenomenological theory near the critical point) are ex-
pected to have regions of application for He too. But in
addition, another possible approach to a quantitative
theory of mutual friction has been found in He. If non-
singular vorticity arises in He-d, the space scale respon-
sible for mutual friction is the scale of the vortex struc-
ture itself, which is much larger than the free path length
and the coherence length. Then it is possible to study
mutual friction within hydrodynamics. This will be dis-
cussed in Sec. X.D.

The short Sec. X.E is devoted to mutual friction in pul-
sars.

B. Mutual friction in He II

at low temperatures

The low-temperature theory assumes that mutual fric-
tion occurs due to scattering of independent quasiparticles
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by a potential produced by the nonhomogeneous order pa-
rameter around the vortex line. Applying the usual
scattering theory for calculating the scattering cross sec-
tion of quasiparticles, one can find the force that the nor-
mal fluid exerts on the vortex:

F = —D(v i —VL) —Dz)((v i —UL) (10.1)

Here v„I is the local normal velocity in the vicinity of the
vortex. There are relations connecting D and D' with the
effective cross sections for the transfer of momentum
longitudinal and transverse to the relative velocity
v„i —vL (Hall and Vinen, 1956; Lifshitz and Pitaevskii,
1957). Like any force acting upon the vortex, the force
F„should be balanced by the Magnus force:

p, a. &&(v,( —vL ) = —F„. (10.2)

8 —jB'= —+2p 1 1 1

xp„p, E D +jD' jp, ~
(10.4)

Thus the mutual friction problem is reduced to deter-
mination of the scattering cross section of quasiparticles.

Quasiparticles are scattered by the velocity field outside
the core and by the nonhomogeneous field of the order
parameter inside the core. Only the first of these can be
calculated more or less rigorously, and we discuss the
theory ignoring the vortex core at first. Scattering of ro-
tons may be described within the quasiclassical scattering
theory (Lifshitz and Pitaevskii, 1957), and for phonons

We consider here forces per unit length of one vortex in-
stead of per unit volume. Therefore the circulation vector
sr replaces the vorticity in similar relations in the previous
sections. In order to have a relation connecting v,I, v„,
and vt like Eq. (7.26), we should find the relation be-
tween the local velocity v„h and the average velocity v„.
The latter may be assumed with high accuracy to be equal
to the normal velocity far from the vortex, since the vor-
tex disturbs the fluid only close to itself. The difference
v„~ —v„ is due to viscous drag by the force F„(Hall and
Vinen, 1956):

4~p„v
v„i —v„=F„/E, E = (10.3)

ln(r„ /r& )

This equation results from a consideration of the motion
of the cylinder through the viscous fluid (the two-
dimensional Stokes problem; see Batchelor, 1970). The
uniform-velocity motion of the cylinder produces a loga-
rithmically divergent velocity field. The upper cutoff r„
in the logarithm argument is chosen equal to the smallest
of four lengths: The viscous penetration depth -v'v/co,
the Eckman-layer width -V'v/Q, the intervortex dis-
tance -&~/0, or the length -v/

~
v„~ —v„~ (this last is

relevant for nonlinear problems). The lower cutoff r~ is
usually of the order of the free path length (Hall and
Vinen, 1956). A more detailed discussion of ri is given
by Sonin (1975).

From Eqs. (10.1)—(10.3) one can obtain the equation of
motion for vortices, Eq. (7.26), with & and 8' given by
the complex formula

the Born approximation has been shown to be accurate
enough (Pitaevskii, 1958).

But the scattering theory for quasiparticles in a vortex
velocity field turned out to be quite unusual due. to the
slow decrease of the velocity far from the vortex ( —1/r).
This decrease causes a singularit;y of the scattering ampli-
tude at small angles. Studying carefully the small-angle
behavior of the scattering amplitude for phonons, Iordan-
skii (1964, 1965) discovered a force transverse to the rela-
tive velocity v„i —vt, which had been overlooked in the
previous Born-approximation calculations. Since then
much confusion has arisen about the need for, and the in-
terpretation of, the Iordanskii force. It has been argued
that the Iordanskii force should always be added to the
transverse force obtained from the cross section. If the
cross section is determined by D and D', then one has to
write D' ~p„ in—stead of D' in Eq. (10.1) (Barenghi et al. ,
1983).

The source of disagreement was the contribution of
quasiparticles with large impact parameters (responsible
for the small-angle scattering) to the momentum balance
in the region around the vortex. This contribution was
analyzed by Sonin (1975) on the basis of the collisionless
Boltzmann equation. It was shown that the effective
cross section for the transverse force is an ambiguous con-
cept due to this contribution. In various approaches the
cross section does or does not include the term responsible
for the Iordanskii force. In particular, it depends on the
shape of the region where the momentum balance is con-
sidered. Therefore one should be careful not to take the
Iordanskii force into account twice, as was done for ro-
tons in earlier papers. In order to avoid ambiguity it is
helpful (but this is a matter of taste and convention) to as-
sume that D' in Eq. (10.1) corresponds to the net trans-
verse force. Then the result of Sonin (1975) is as follows.
The net transverse force is given by D'= —~p„ in Eq.
(10.1), independently of whether the quasiparticle gas con-
sists of rotons or of phonons. This statement is in agree-
ment with the transverse force for rotons calculated
within the quasiclassical scattering theory of Lifshitz and
Pitaevskii (1957; but after correction of a wrong sign of
D' in their paper).

The derivation of the mutual friction force from kinetic
theory has not put an end to the disagreements. Some-
time later Hillel (1981) and Hillel and Vinen (1983) re-
turned to this problem. According to their calculations,
D'= —

~ vp„[in their notation D'= ——,vp„, which corre-
sponds to D' xp„ instead of D' in E—q. (10.1)]. Their in-
terpretation of the Iordanskii force may be summarized as
follows (Hillel et al. , 1974). They emphasize a difference
between the momentum density of quasiparticles (rotons),
p„(v„—v, ), and the momentum density of the normal
fluid, p„v„. The force due to quasiparticle scattering is
the force exerted by the vortex on quasiparticles, but the
Magnus force must be balanced by the force on the nor-
mal fluid rather than by that on the quasiparticle fluid.
So the force-balance equation Inust take into account that
a momentum with density —p„v, (the difference between
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quasiparticle and normal-fiuid momentum) is convected
past the vortex line with a relative velocity v„l —vL. It
contributes the Iordanskii force to the force-balance equa-
tion. Such an interpretation is illustrative and helps us to
understand qualitatively the physical origin of the Iordan-
skii force, but it does not provide a quantitative solution.
The crux of the problem is to trace carefully how and
where the convection contribution appears in the calcula-
tions. In fact, the calculation of Hillel (1981) suffered
from the same deficiency as some previous calculations: a
certain contribution is taken into account twice. Hillel
calculated the effective scattering cross section by expand-
ing his integration over all impact parameters. At the
same time, only those quasiparticles passing by far from
the vortex contribute to the Iordanskii force, which he
added to the scattering force obtained from the effective
cross section. In general, it is dangerous to study mutual
friction starting from some intuitive definition of forces
acting upon the vortex, however plausible they may seem.
A more careful approach is first to derive rigorously some
balance equation and then to label terms that enter this
equation as such-and-such a force. This precaution is vi-
tal also for the mutual-friction problem in He-A, con-
sidered in Sec. X.D.

A more detailed discussion of the Iordanskii force re-
quires deeper involvement in the kinetic theory; perhaps
this will be presented elsewhere. It is worth mentioning
that the mutual friction force has also been calculated for
pure type-II superconductors (Gal'perin and Sonin, 1976;
Kopnin and Kravtzov, 1976). These calculations were
based on the Boltzmann equation, which is derived from
microscopic theory (Aronov et al. , 1981). When the ener-

gy of the quasiparticles is close to the energy gap of the
superconductor, the quasiparticle spectrum is identical to
the roton spectrum, and the quasiclassical theory should
yield the same mutual friction force as that for rotons.
Indeed, the above mentioned calculations agree with the
results D'= —~p„. Later we shall return to these calcula-
tions in our discussion of mutual friction in He-8 (Sec.
X.D).

All calculations yield a transverse force that exceeds
the longitudinal force due to scattering outside of the
core. For phonons the ratio D/1D'1 is of order the ratio
of the core radius to the phonon wavelength. For rotons
the longitudinal force determined in the quasiclassical
theory, in the approximation of the large logarithm, is
given by

these estimates Sonin (1975, 1976) used the approximation
D' = —ap„, D=0, which yielded after substitution in Eq.
(10.4)

B —jB'=2 j+ &pnps

pE
(10.6)

In this approximation it follows from Eqs. (10.1) and
(10.2) that the vortex moves with the local center-of-mass
velocity

ps pn
vL = vsl+ vnl

p p
(10.7)
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and the entire dissipation is associated with viscous losses.
Comparison of this theory with the experiments is not

very conclusive, since the experiments have been carried
out at temperatures too high for the theory to give exact
quantitative predictions. In Fig. 5 the experimental tem-
perature dependence of the transverse-force parameter D'
is reproduced from Fig. 9A of Barenghi et al. (1983; D'
corresponds to D, of Barenghi et al. ). The theoretical
values D'= —ap„are shown by the dashed line. They are
2—3 times smaller than the experimental values at the
lowest temperatures for which comparison is possible.
Probably the agreement would be better at much lower
temperatures.

The disagreement between theory and experiment for
the longitudinal-force parameter is also considerable
(Barenghi et al. , 1983; Hillel and Vinen, 1983). This has
been attributed to the contribution of the core to mutual
friction. It is difficult to estimate this contribution
rigorous1y because of the lack of a reliable theory to
describe the vortex core in He II (excepting for a narrow
critical region discussed in the following section). In or-
der to describe the core structure, various speculative
models have been proposed (see Sec. III.A and the review

by Barenghi et ~l., 1983). The observed longitudinal

~Pn +pkT po

po &pkT

3 20—

v'pkT
Kp~

Po
(10.5)

Here po is the momentum of the roton minimum and p is
the roton mass. This formula is readily derived from the
roton cross section given by Sonin (1975) and Hillel
(1981). I ifshitz and Pitaevskii (1957) gave a formula
with a factor 1.2 instead of 2.6. Thus for rotons the ratio
D/1D'1 is -QpkT/po and very small. Relying on

-20—
-40

1.2
I

1.4 1.6 1.8 2.0 2.2
Temperature(K )

FIG. 5. Dependence of the mutual friction parameter D' on the
temperature. The solid line was obtained by Barenghi et al.
(1983) by fitting the experimental data. The dashed line shows
the theoretical values D'= —~p„.
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force is explained if the core absorbs all rotons falling on
it and the collision diameter of the core coincides with its
diameter. The concept of the absorbing core was suggest-
ed by Lifshitz and Pitaevskii (1957) and was investigated
recently by Hillel (1981) and Hillel and Vinen (1983), who
found that the core radius, deduced from the experiment
according to this concept, is in reasonable agreement with
some models of core structure.

Mathieu and Simon (1980) proposed a theoretical
model that is in close agreement with experimental data
in the temperature range 1.7—2.1 K, just where the other
theories discussed here are unsuccessful. Their arguments
in a slightly modified and simplified form are as follows.
For stationary motion of' the vortex in a completely in-
compressible fluid (p=const, S=const) the continuity
equations for the mass and the entropy, Eqs. (7.1) and
(7.2), yield (dissipation is ignored)

V [p, (v, —v„)]=0 . (10.8)

Mathieu and Simon suggested that the velocity fields are
transported by the vortex without deformation; then

Vp, (v, —v„)=0, (10.9)

and, since in the core Vp, &0, the superfluid and the nor-
mal velocity in the core are equal to each other, i.e.,
v,l=v„&. Using this relation and Eqs. (10.2)—(10.4) we
obtain

2pE
&pnps

(10.10)

C. Mutual friction in He ll

near the A, point

The mutual friction coefficients B and 8' close to the A,

point were measured by Mathieu et al. (1976). They in-

The model of Mathieu and Simon relies on not quite
rigorous conjectures, but its good agreement with experi-
ment is a strong argument in its favor and raises the hope
that a more rigorous justification of their model may be
found.

Putterman (1974, Sec. 32) proposed a purely hydro-
dynamic theory of m.utual friction that relates the mutual
friction dissipation with the second viscosity def'ined by
the coefficient Q3 He neglected the spatial variation
of the relative velocity v, —v„and substituted
V.[p, (v, —v„)]=Vp, (v, —v„) into the second-viscosity
term ccgI in the dissipation function. But we saw that
tllls tcr111 vaIllsllcs II1 a COIIlplctcly lncomplcsslblc flllld,
which is a good approximation for a superfluid far from
the critical region. Therefore the first, but not the second,
viscosity is responsible for dissipation. In the critical re-
gion considered in the following section, thermal
compressibility becomes important, and the second
viscosity contributes to mutual friction. But there the
conjecture of Putterman that v, —v„=const is invalid,
and the second-viscosity contribution differs from that
calculated by Putterman.

I

B +jB'= 2

8 +jg
The calculated g and g' are given by

',i2
I)P (r) APs BS(r)

ar + S iver

1 rdr
4Ap, o p, r

2

(10.11)

1/3
TA, —T

TA.

AC T~ —T
pS T~

' 1/3
TA —T=1.5

(10.12)

Here AC is the specific-heat discontinuity on the A, line,
while A is the relaxation parameter in the 4 theory. The
entropy S(r) and the superfluid density p, (r) in the
ground state of the vortex are functions of the distance r
from the vortex line, and S and p, are values of S(r) and
p, (r) at r~ oo .

The expression for the dissipation parameter g consists
of two terms. The first is due to relaxation of the order-
parameter modulus. Just this process was considered by
Pitaevskii (1977), and his order estimate is in agreement
with our quantitative one. The second term in g is con-
nected with relaxation of the order-parameter phase. This
relaxation process is responsible for the second viscosity

vestigated. the second sound in rotating He II and showed
that when T approaches TI the coefficients 8 and 8'
diverge as (Tl —T) '~ . Such critical behavior was ex-
plained by Pitaevskii (1977) on the basis of the dynamic
scaling hypothesis, supposing that relaxation of the order
parameter modulus was the principle energy-dissipation
mechanism. In addition to this, Pitaevskii conjectured
that both B and B' diverge at T~T~ with the same criti-
cal exponent. He found that this exponent is close to
——,, in agreement with the experiment. But no con-
clusions concerning the magnitudes of B and B' were
drawn.

Near the A, point the vortex-core radius becomes larger
than all other relevant lengths, and one may expect that
some phenomenological theory similar to the time-
dependent Ginzburg-Landau theory is applicable. Indeed,
this theory has already been used for description of vortex
motion in type-II superconductors (Gor'kov and Kopnin,
1975). But because of the more important role of critical
fluctuations in He II, an analogous theory for He 11 (the
Ginzburg-Pitaevskii theory, see Ginzburg and Pitaevskii,
1958) cannot pretend to a quantitative description. A
modification of this theory, however, has been proposed.
Its parameters are renormalized to be nonanalytical func-
tions of TI —T fitted to experimental data and scaling
laws. The resultant theory, called the phenomenological
4' theory, was considered in the reviews of Ginzburg and
Sobyanin (1976, 1982). Within the scope of this theory
the coefficients 8 and 8' in the critical region have been
calculated (Sonin, 1981b). Results of these calculations
are better presented in the parameters g and g' connected
with B and B' by the complex expression
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given by the coefficient g3 —flA/2Mp Thus the second
term in g may be interpreted as the contribution of the
second viscosity to the mutual friction, proportional to
the coefficient g3.

Comparing theoretical g and g' with the experimental
values of Mathieu et al. (1976), which are

1/3 1/3T' T = T' T
g =2

TA,
(10.13)g =2.8

g =0.62A ', g'=0. 58A (10.14)

after substitution of A=0.3[(T~ —T)iT] '~ (given by
Ginzburg and Sobyanin, 1982), agrees better with experi-
ment for the value of g. The corrections due to thermal
conductivity are not large, according to Onuki, so the nu-
merical difference between values of g obtained by Sonin
(1981b) and Onuki (1983a) probably arises as a result of a
more careful calculation of the distribution of S and p, in
the core by Onuki. In all, the theory provides a quite sa-
tisfactory explanation of experimental data in the critical
region, in particular, the negative sign of 8'.

The methods used by Sonin (1981b) and Onuki (1983a)
to obtain the equation of motion for vortices are also
similar. They are based on the absence of secular terms in
the equations describing the superfluid around the mov-
ing vortex. This method was widely used to derive the
equations of motion for various solitons, including vor-
tices in type-II superconductors (Gor'kov and Kopnin,

Onuki claimed that his entropy production differed from
that of Pitaevskii by the factor ~ ( Tg —T) . But this is puz-
zling because Eq. (116) of Onuki (1983a) yields the same entro-

py production as in the paper of Pitaevskii (1977).

shows that the agreement for g' is better than that for g.
Indeed, it is harder to calculate g than g'; one must know
the relaxation parameter A and the spatial distribution of
S and p~.

Divergence of 8 and B' in the critical region means
that, according to Eq. (7.26), vortices move much faster
than the superfluid and the normal fluid when thermal
counterflow takes place. Hence it is expected that vortex
pinning strongly affects the counterflow. This is dis-
cussed in more detail by Sonin (1981b).

The theory of mutual friction near the k point has also
been developed by Onuki (1983a). He used the
phenomenological theory, which is a generalization of
Hohenberg and Halperin's (1977) model F. This theory is
equivalent to the 0' theory except that Onuki assumed the
relaxation parameter A to be complex. In addition,
Onuki took into account corrections due to the thermal
conductivity, which had been ignored by Sonin (1981b).
Without the thermal-conductivity corrections, and for
real A, the resultant formulas of Onuki coincide with the
expressions for g and g' in Eq. (10.12), so his theory
agrees with that of Pitaevskii (1977) and Sonin (1981b).'

The numerical estimate by Onuki,

1975). The idea of the method will be made clear in the
following section, where it is employed to derive the equa-
tion of motion of the nonsingular vortex in He- A.
Another way to derive equations of motion for solitons is
based on the variational principle. It was studied in the
papers of Kawasaki (1983, 1984) and Ohta et al. (1984)
for various types of topological defects, including super-
fluid vortices in the critical region.

Onuki (1983b) has extended the theory of mutual fric-
tion in the critical region to He- He mixtures. He found
that 8 and B' do not diverge on the critical line, even at
small concentrations of He atoms. In conclusion we
mention the experiments of Mathieu et al. (1982), who
measured the coefficient 8 as a function of pressure and
temperature. They found that at high pressures the criti-
cal behavior of 8 is different from that observed at lower
pressures and predicted by theory. The experimental crit-
ical exponent at I' =25 bars was —0.11, that is, three
times smaller than the theoretical value ——, .

D. Mutual friction in superfluid 'He

D'= —Kp„ tanh
h(T)
kT (10.15)

1/2
kTb, (T)

2'
b, (T)
kT&pn

Sap~

~p„~, A(T) ((kT .
m A(T)

kT

3

h(T) ))kT,
(10.16)

Here 6( T) is the energy gap and pF is the Fermi momen-
tum. When 4 ~&kT these formulas yield the formulas for
rotons (see Sec. X.B) provided that the roton mass and
momentum, p and po, correspond to Am /pz and p+ in
superconductors. Near T„when 4 &~kT, a mutual fric-
tion occurs mainly inside the core. The value of D in Eq.
(10.16) for this region was calculated using crude conjec-
tures on the order-parameter distribution inside the core.
The calculated value is much smaller than

The theoretical approach to mutual friction in He, like
that in He II, depends on the ratio of the free path length
of quasiparticles to the size of the region responsible for
mutual friction. In He-B the vorticity is concentrated
along the vortex lines, as a rule at distances small com-
pared to the free path length, so that one can apply the
scattering theory of noninteracting quasiparticles. No
such calculations have as yet been performed; neverthe-
less, one is tempted to risk using the results of calcula-
tions for pure type-II superconductors already discussed
in Sec. B. This looks like a reasonable procedure if mutu-
al friction occurs outside the core and is described by the
quasiclassical theory, which is sensitive only to the energy
spectrum of quasiparticles, but the energy spectra in He-
8 and in the superconductors do not differ. The values of
D and D' calculated for the superconductors (Gal'perin
and Sonin, 1976; Kopnin and Kravtzov, 1976) are
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L I X +(v„V)l —p +(v„V)I
Bt " Bt

5E0——
5y

(10.17)

(10.18)

Here I. is the dynamic angular momentum determining
the orbital inertia, and p is the orbital viscosity. The
functional derivatives are given by

5E aE
5~

'
BV~

2
PI: PID -pn ~c -~pnI mh

corresponding to the core's absorbing all quasiparticles
falling on it. The calculated value is also too small to ex-
plain the experimental value of B measured by Hall et al.
(1984) in He-B. This is not surprising because, for. the
core, it is difficult to trust the analogy between He Ban-d
the superconductor with 5 pairing. Though completely
unsuccessful quantitatively, the discussed theory shows
that near T, the core is a primary contributor to mutual
friction, so mutual friction coefficients should depend on
the structure of the vortex core.

The theory of mutual friction in He-A for nonsingular
vortices was developed by Kopnin (1978) on the basis of
the Boltzmann equation close to T, . But in fact, the re-
sults of Kopnin are readily obtained within the hydro-
dynamic theory without referring to the Boltzmann equa-
tion, and their validity is not restricted by the Ginzburg-
Landau region near T, . Here we shall give the hydro-
dynamic derivation of the equation of vortex motion ob-
tained by Kopnin, but generalized to include the effect of
orbital inertia (Sonin, 1986a).

Suppose that a nonsingular vortex moves through the
superfluid. The latter is assumed incompressible in the
mechanical and the thermal sense (p=const, S =const),
and the normal Auid is not dragged by the vortex because
of high viscosity (v„ is constant). Then we need only the
equation of orbital motion and the equation following
from complete incompl csslbillty of thc supcrfluld. It is
convenient for further analysis to present these in the fol-
lowing form:

Using Eqs. (10.19)—(10.21), one immediately proves that
Eq. (10.17) is the usual equation of orbital motion, given,
for example, by Hu and Saslov (1977), while Eq. (10.18) is
the incompressibility condition analogous to Eq. (10.8).

The vortex moves with the constant velocity vL, so
'dl /dt = —(vt V )1. Linearization of Eqs. (10.17) and
(10.18) with respect to the small perturbations produced
by vortex motion yields

Ll X[(v„—vt. ) V]I p[(—v„—vt ) V]I

5'E, O'E~ I'+
6I 51.6@

6E, 5E0= —— I'+
6@61 69'

(10.22)

(10.23)

The symbols 5 E/61, 6 E/61. 6cp, 6 E/6y6I, and
5 E/5cp denote here the linear differential operators ap-
plied to the perturbations 1' and y'. We write down in an
explicit form those applied to cp':

6E, A BE, BE
av, Ia;,-

5E
6~2

B E Bvs~

+B B ~Vj+
Bl

BE

f

(10.24)

y'=(t Vy)= (t.v, ), I'=(t V)1,

a
v,'; = v;q '+ I'

M

(10.25)

We have a system of two nonhomogeneous linear equa-
tions, (10.22) and (10.23), for I'(r) and y'(r). They have a
solution only if the left-hand sides (the nonhomogeneous
terms) are orthogonal to any solution of the adjoint homo-
geneous equations (without the left-hand sides); as a result
of translational invariance, the solution of the homogene-
ous equations is obtained by an arbitrary translation of
the solution for the vortex at rest. It is denoted by the su-
perscript t:

6E BE BE BE a~sj—v; +
61 Bl, BV;I BUsj Bl

(10.19)

(10.20)

aU"
Ivs) = ~VtV' +

Bl

=V,-l xl .
al

(10.21)

Here it is taken into account that I and U, =(4/M)Vy are
connected by the Mermin-Ho relation, so we have for
small perturbations v,

' and I'

Here t is an arbitrary vector of translation. In order to
obtain the solvability condition it is necessary to multiply
Eq. (10.22) by /' and Eq. (10.23) by y', to integrate both
equations over the whole plane, and to sum integrals. Be-
cause the linear differential operators are self-adjoint, par-
tial integration reduces the volume integrals of the right-
hand sides of Eqs. (10.22) and (10.23) to surface integrals.
Following Kopnin (1978), we consider the axisymmetric
vortex with I parallel to the z axis far from the vortex.
Then I' and I' vanish at the surface far from the vortex,
and the surface integrals contain only rp' and qv'. In all,
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Here n; are components of the unit vector normal to the
surface and directed outside. The currents far from the
vortex are

$2E
A, '(r) =

6US 5Usj

A, '( )=
Us~"si

vsj psJ (vsl vn) ~

Usj ps l
(10.27)

where p, z is the superfluid density in the plane normal to
I. The superfluid velocity v,~ is referred to as "local,"
though it is a velocity far from the vortex, because it is at
distances small compared to other hydrodynamic
scales —say, the distance from other vortices or from the
wall.

If the solvability condition does not hold and the linear
equations (10.22) and (10.23) have no solution, stationary
motion of the vortex with given constant vI is impossi-
ble. Then a solution of the equation of orbital motion in
a reference frame moving with velocity vt should contain
terms growing in time, so-called "secular terms. " Thus
the condition Eq. (10.26) provides for the absence of secu-
lar terms. Since it must hold at any translation t, we ob-
tain, after integration,

ML, a„z X (vt —v„)+py(vL —v„)= —~,z X A.

The integral in the orbital inertial term has been reduced
to the integral Eq. (9.3) for circulation [the first term on
the left-hand side of Eq. (10.28)]. The tensor y has com-
ponents

y;i= f dr V;1.VJ. /J (10.29)

only in the xy plane, since 7', I =O. For the axisymmetric
vortex under consideration it is reduced to a scalar y5;J
(ij &z) and

'2
d . p 1 dA+sin/3 +dr I' dI'f—'IT f dr'

0
(10.30)

the solvability condition is

f dr(t V)ltLl X[(v„—vt ) V]l —p[(v„—vt. ) V]lI

f dS n;[y'(r)A, ,'(r) —y'(r)A, ,'(r)] . (10.26)

are given by the complex expression

2p &vpsiB —JB' '
p" py-J-LM/~ (10.31)

At L =0, Eq. (10.28) yields the equation obtained by
Kopnin (1978) for the axisymmetric vortex. Cross (1983)
considered vortex motion also neglecting orbital inertia.
He estimated the dissipation function for a moving vortex
and was able to calculated only the dissipative component
of the mutual friction force. He obtained the same value
of B as Kopnin.

The explicit expressions for B and B' following from
Eq. (10.31) are given by

pn j IM+ K
2ppsy

2

(10.32)

2p

pn j.

pnx IM
2pp, g fi k

pnx LM+ K
2pps

2

Here

2ppsl &v

pnX 'VI

T
—1/2

1—
C

is the value of B in the theory of Kopnin. Equation
(10.32) shows that the orbital inertia term ~ L contributes
to the active and reactive components of the mutual fric-
tion force and changes their critical behavior near T, .
Indeed, Kopnin's theory (L =0) predicts that B o= (1
—T/T, )

'~ and B'~2, but assuming L acp, the critical
behavior is B ~ (1—T/T, )+'~ and B'~2(1 p, A/ML). —
If the absolute value of L, is very small, the vicinity of T,
where I. is important may be very narrow. Thus a mutu-
al friction measurement may give evidence of the ex-
istence of an intrinsic angular momentum, as was pointed
out first by Hall (1985a). Hall revealed a discrepancy"
between values of B measured in He-3 and those ob-
tained in the theory with I. =0. In order to explain the
effect of the intrinsic momentum on mutual friction, he
derived the mutual friction force through the torque due
to variation of the intrinsic momentum determined by the

for l texture given by l = sinp(r)cos[cz(r)+y], l»= sin/3(r)sin[a(r)+tp], l, = cosp(r), where r and q& are
cylindrical coordinates in the plane. Hall (1985a) estimat-
ed y =m /2 or m /3 for different models of an
Anderson- Toulouse two-quantum nonsingular vortex.

Recently an equation of vortex motion was derived for
a moving vortex lattice of arbitrary symmetry (Sonin and
Fomin, 1986). It has the same form as Eq. (10.28), in
which A,

' signifies the supercurrent averaged over the vor-
tex structure cell.

Comparing Eq. (7.26) with Eq. (10.28) for the antisym-
metric vortex, we see that the mutual friction coefficients

Mineev (1986} estimated this discrepancy differently from
Hall (1985a). It is not simple, however, to estimate reliably an
absolute value of B in theory because of the texture-dependent
factor y, which is not well known for experimental conditions.
It seems, therefore, that there is a clear discrepancy in tempera-
ture dependences of theoretical and experimental values B, but
not necessarily in their absolute values. In the experiment the
growth of B at T—+ T, is slower than Kopnin's theory predicts,
and up to now the only explanation for such behavior is due to
the intrinsic angular momentum, as discussed further in the
text.
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conservation law. It is not clear that just this torque is re-
sponsible for mutual friction (see further discussion by
Liu, 1985, and Hall, 1985b). On the other hand, in the
hydrodynamic derivation given above we did not resort to
some a priori determination of the force. The derivation
was based on the absence of secular terms. This condition
was intended to point out what weight function one
should use in averaging the equation of orbital motion in
order to obtain the correct equation of vortex motion.
The resultant equation, Eq. (10.28), takes the form of the
force-balance equation as usual, but one can see once
more why it is dangerous to rely on some a priori concep-
tion of forces related to the vortex, as was pointed out in
the discussion-of the Iordanskii force in Sec. X.B. The
forces on the left-hand side of Eq. (10.28) are proportional
to vL —v„and look as if they were components of the
force exerted on the normal fluid by the vortex (orbital in-
ertia is responsible for the transverse component). They
are balanced, however, not by the Magnus force
cc (vt —v„) as analogous forces in Hall's analysis, but by
the force ~ (v, —v„). It is worthy of mention that a simi-
lar force arises in the force-balance equation obtained by
averaging of time-dependent equations for the order pa-
rameter in the analysis of mutual friction in He II close to
the 1, point (see Sec. X.C and Sonin, 198lb).

Despite different ways of reasoning in Hall's theory
and the theory presented above, both yield similar expres-
sions for B and B' [see Eq. (10.32)], but the angular
momentum density L is of different physical origin in the
two theories. As was discussed in Sec. IX.A, there is
more than one way to introduce the intrinsic angular
momentum into the theory. One obtains Hall's result by
assuming that in Eq. (10.32) L =(k—pl. +p, )A/M in
terms of Hall's effective densities pI and A, . The first
density determines the angular momentum that Hall and
Hook (1985) have introduced into the hydrodynamics by
combining some gradient terms in the expression for the
supercurrent, and I, determines orbital inertia. Thus the
result of the analysis given in this section corresponds to
L =RA'/M in Hall s notation. Very often orbital inertia
has been neglected (as it was by both Kopnin, 1978, and
Hall, 1985a) on the grounds that the microscopic theory
predicts it to be of rather small magnitude (see discussion
in Sec. IX.A and the Appendix). When we neglect orbital
inertia, however, our hydrodynamic theory of mutual
friction is not able to explain deviations of the measured
B from Kopnin's theory. One may consider this fact as a
clue that orbital inertia is not so small. But orbital relax-
ation experiments by Paulson et al. (1976) did not reveal
any traces of orbital inertia. They claimed the absence of
any tendency to oscillation in the process of orbital relax-
ation, which means L ~&@. In sum, further efforts are
necessary to obtain the answer to this interesting and im-
portant experimental problem. Measurements as close as
possible to T, are especially valuable, as well as experi-
mental data on B'. Hall and Hook (1985) suggested that
a fourth-sound analog of the second-sound experiment in
He (Mathieu et al. , 1976) be performed. But one may

expect that the coefficients B and B' in such experiments
would be strongly frequency dependent. In "He, mutual
friction occurs in a small region around the vortex core,
and dependence of B and B' on frequency is not signifi-
cant (aside from a weak logarithmic dependence) until the
sound wavelength is large in comparison with the size of
the mutual friction region. On the other hand, the size of
such a region for nonsingular vorticity in He-A is of or-
der of the intervortex distance, and B and B' may depend
on frequency beginning from the lowest frequencies. So it
is not certain that a fourth-sound experiment would yield
values of B and B' like those predicted by the theory of
this section.

E. Mutual friction in neutron stars

As was said above (Sec. VIII.F), relaxation after
glitches in pulsars has been explained as mutual friction
between electrons and vortices in the superfluid neutron
matter. Only the dissipative coefficient B is necessary for
determination of the relaxation time r, =(Bfl ) . This
time has been calculated by solving the linearized
Boltzmann transport equation for noninteracting elec-
trons scattered by vortex cores, an approach similar to
that of Hall and Vinen (1956). Feibelman (1971) con-
sidered scattering of electrons by magnetic moments of
neutron quasiparticles in vortex cores. The neutron su-
perfluid was assumed to be in the S-wave state. He found
that the relaxation time depends exponentially on
b, /ezkT, where 5 is the energy gap in the quasiparticle
spectrum and eF is the Fermi energy. Sauls et al. (1982)
considered neutron superfluidity in the P2 state, where
the structure of the vortex core is quite complicated and
where the vortices have a spontaneous magnetization.
Spontaneous magnetization has also been discovered in
some types of vortices in He-B (Hakonen et al. , 1983).
Sauls et al. (1982) found electron scattering not only
from neutron excitations in the vortex core, as suggested
by Feibelman (1971) for S-wave vortices, but also from
the vortex-core magnetization. The latter mechanism is
especially important for low temperatures, when core-
excitation scattering vanishes. But both mechanisms
yield quite small values of B & 10 (see Table 1 of Sauls
et al. , 1982) compared to those experimentally measured
in He and even in He.

XI. CONCI USION

This paper has reviewed the theory and the latest exper-
imental results on dynamics of the vortex lattice in vari-
ous rotating superfluids. There now exists a theory cap-
able of describing all vortex-oscillation modes in rotating
superf1uids, including the effects of sheer rigidity of the
lattice and effects of boundaries. The basic concepts of
the theory have been tested by experiment, though further
efforts at the observation of Tkachenko waves in He II
would be desirable. It would be interesting also to have
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experimental evidence for the existence of surface vortex-
oscillation modes, discussed in this review.

The theoretical and experimental study of vortex
dynamics in the superfluid phases of He is still in its ear-
ly stages. Up to now vortex structures in rotating He
have been probed mostly by the rf NMR technique. This
was possible due to the remarkable magnetic properties of
superfluid He. The experimental study of phenomena
discussed in the present review requires ultra-low-
frequency hydrodynamic measurements successfully used
in He II. The application of these methods to new super-
fluids would be a good supplement to NMR methods and
doubtless would provide valuable information on vortex
structures, as we endeavored to show in this paper.

The properties of superAuid He also permit phenome-
na based on the interaction of hydrodynamic and magnet-
ic degrees of freedom —say, generation of mechanical os-
cillation by alternating magnetic fields and vice versa.
But discussion of these interesting effects remains beyond
the scope of the present review, devoted to purely hydro-
dynamic analysis.

Rote added in proof. Recently the review of Glaberson
and Donnelly (1985) became available to me. This review
extensively deals with vortex dynamics in He II and is im-
portant for studying the subject.

face integral over the Fermi surface:

p(R)= f„„dkp(R,k) . (A1)

Bg(k) 6H
M Br

(A2)
fi Bp(k)
M Bt 6$(k)

On the right-hand sides of these equations are functional
derivatives of the Hamiltonian H {p(R,k),@(R,k)], which
is a functional of p and y, the functions of the space-
position vector R and the wave vector k. These equations
can be obtained from the Lagrangian

(A3)

Equations (A2) are general enough to be applied not
only to the 2 phase. In the case of the 3 phase the ener-

gy H has a minimum when the k-dependent phase y(k) is
given by

For processes slow in space and time, the equations of the
linear theory take the form of the Hamiltonian equations
for pairs of conjugate k-dependent variables p(k) and
y(k) (Cross, 1977):
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APPENDIX: THE ZERO-TEMPERATURE
HYDRODYNAMICS OF 3HE- A VERSUS THE
MICROSCOPIC THEORY (THE DYNAMIC ANGULAR
MOMENTUM AND THE SUPERFLUID CURRENT)

The derivation of He-A hydrodynamics from the BCS
theory (Cross, 1975, 1977; Volovik, 1975) was based on
the quasiclassical gradient expansion for the energy gap in
the quasiparticle spectrum A(k). We shall intervene in
this derivation at the last stage, when one arrives at the
linear equations for the complex gap b, (k)
=A(k)exp[i'(k)], which is determined on the Fermi sur-

. face and depends on the direction of the wave vector
k(k =kF). Following Cross (1977), one can introduce in-
stead of b, (k) another variable, the density p(k) of parti-
cles with given direction k. The total density is the sur-

Here h~ and h.2 are two orthogonal vectors, 6& ——62,
which determine hydrodynamical variables: the unit orbi-
tal vector 1=42Xb,2/6& and the global phase p. The
latter may be defined only in its variations 6y. The varia-
tion of the k-dependent phase is given by

5y(k) =5@ (k 1) —51 .
(1x k)'

(A5)

1 dRp(R) II {p,V(p, l I . —(A6)

In deriving hydrodynamic equations from this Lagrang-
ian, one should remember that variation of I in the La-
grangian also involves variation of Bcp/Bt and Vrp because
of the generalized Mermin-Ho relation:

526)y —5(62@=1.(621 x5)l) . (A7)

In contrast to the global phase cp, the k-dependent phase
@(k) is well defined in the interval (0,2') everywhere on
the Fermi surface excepting at boojums (the points in

which k is parallel to 1 or —1), but it is not single valued.
One can see from Eq. (A4) that the boojums are located
on the vortex line in k space, and the change of y around
ii is 2m.

One of the possible ways to derive hydrodynamics from
the semimicroscopic equations of motion given by Eq.
(A2) is to introduce the hydrodynamic variables p, y, and
1 directly into the Lagrangian [Eq. (A3)], assuming that
p(R, k) and @(R,k) depend on k as in equilibrium (Sonin,
1986b). This yields the hydrodynamic Lagrangian
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Here 5& and 52 are arbitrary variations of variables. As-
suming 5@~5and 5~ ~a/Bt or V, one has

5H

51

aH
'

aH aH
,

aI av I »~ (A10)

5 = 5cp+51- x1
Bt Bt Bt

5(V';y) =V';5q&+51(V;/XI ) .
(AS)

with

Bl
p xl

Bt
5H

5l
(A9)

Variation of the hydrodynamic Lagrangian with respect
to 1 yields

Comparing Eq. .(A9) with Eq. (10.17), one can see that
Eq. (A9) is the equation of orbital motion at T=0
without orbital visc6sity (p=0) and with large dynamic
angular momentum L =pfi/M

But Cross (1977) derived the equation of orbital motion
otherwise. We shall trace his derivation with slight modi-
fications to allow generalization to the nonlinear case. It
is possible to obtain the relation between the furictional
derivative, 5H/51, given by Eq. (A10) and the time
derivatives of hydrodynamic variables using the equations
of motion Eq. (A2) and equilibrium relations connecting
hydrodynamic and k-dependent variables:

5H „BH ap(k) BH BV';q (k) aH+ —VJ.
5I "="'

apeak) BI Bv;q (k) aI
'

av, g(k) BV,I

Bp(k) Bp(k) Bp(k) Bp(k)

al ' Bl

BH a, , a@(k)
BV';@(k)

(A 1 1)

From here on the following relations are used:

5(ay/Bt) 5@

5(al /Bt) 51

5( V';@)
=5;.

5(VJ I) 5l
(A12)

The last term a: BH/BV';@ in this expression is nonlinear and did not arise in the linear theory of Cross. The remaining
terms contain Bp/Bt and Bp/Bl, which are small [of order ( T, /eF) ] in the BCS theory due to particle-hole symmetry.
As a result of this, Eq. (Al 1) yields after integration over the Fermi surface an equation of orbital motion with extremely
small I, of order ( T, /eF)

Thus two methods of deriving hydrodynamics, usually entirely equivalent, yield essentially different results. In order
to understand the discrepancy better, let us transform Eq. (A 1 1):

r

B A' I dk (k) B@(k) d B A I dk (k) Bg(k)
M "=km Bt dt B(BI/Br) M "=km Bt

dk k B B@(k) B By(k) dk BH
M "="s

Bl Bt Bt BI ="s BV .@(

a

k) Bl Bl
(A13)

The first two terms are present in the Lagrangian theory (the second one vanishes after integration), but the third and
fourth are not. They contain commutators of differentiation operators applied to the phase @(k). They are equal to zero
everywhere except in boojums, where the vortex line crosses the Fermi surface. We see that the two methods of deriva-
tion of hydrodynamics involve different kinds of extrapolation of the theory onto singular points where the theory fails.

One may obtain the general expression for commutators like those in Eq. (A13) by considering arbitrary successive
variations 52l and 5~1, resulting in rotations of the vortex in k-space and corresponding variations of the k-dependent
phase:

525+(k) —5)52@(k)=2m l (5ql X5(1)[5(k—k1 )+5(k+kl)] . (A14)

Here 5(k+kl ) are 5 functions on the Fermi surface.
Direct integration of the commutators in Eq. (A13), as-

suming that p(k) does not depend on k in the zero-order
approximation in T, /eI;, yields large terms. Qne of them
[the third in Eq. (A13)] cancels the first term in the La-
grangian theory, and it results in an equation of orbital

I

motion with negligible I.. But at the same time the
fourth nonlinear term ~BHIBV;y in Eq. (A13) cancels
the corresponding term cc BH/BV';y in Eq. (A10) for
5H/51. So generalization of such a theory to the non-
hnear case would Incan that the widely adopted condition
of equilibrium, 5H/5l =0, is incorrect. Other conjectures
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are also possible. Suppose, for example, that the density
p(k) has some singular contribution and the commutators
themselves reduce to a singular function more complicat-
ed than the 6 function, so that integration of the product
of p(k) and the commutator yields zero. One may also at-
tempt to redefine T;y and By/Bt in boojums by adding
some singular terms that cancel contributions of commu-
tators and lead to the Lagrangian theory (Sonin, 1986b).

So the crux of the problem of obtaining the equation of
orbital motion is the question whether to take into ac-
count the integral of commutators over the Fermi surface.
The same question arises in the problem of the nonlocal
term in the superf1uid current. It should be pointed out
that the Lagrangian theory does not avoid the difficulty
with the momentum-conservation law without additional
restrictions on the Hamiltonian (Sonin, 1986b). It follows
from the Noether theorem that the density of momentum
ln the momentum-conservation law,

B~
B(Bq/Br)

does not coincide in general with the mass current in the
mass-conservation law:

M BW
fi BVcp

M BH
BVy

M 2M MpVy+ V Xpl — Col [( (V && I )] . (A16)

The difference between g and j does not reduce to a
divergent-free current (which would lead to no difficulty
in the theory) if Co&0. But in the original microscopic
theory (before transition to the BCS theory) expressions
for both currents are identical; they reduce to the current

j after transition to hydrodynamics. Thus the Noether
theorem does not provide the conservation law for the
"true" momentum with density j if the nonlocal term
~Co is present in the expression for j. Now let us see

how this term arises. It is possible to start from the ex-
pression for the current j in terms of k-dependent vari-
ables p(k) and p(k) (Volovik and Mineev, 1981),

dkk V (k) — P —V (k)k=k,

(A17)

After integration by parts one obtains

j= J„„dkp(k)Vy(k)

fl
V 1 dk~(k) Bg k

The three terms in Eq. (A18) are in one-to-one correspon-
dence with the three terms in Eq. (A16). The commuta-
tor in Eq. (A18) can be reduced to one of those given by
Eq. (A14) with the help of the relation By/Bl
= —(k.I )Bcp/Bk.

This means that the integral of the commutator is re-
sponsible for the nonlocal term in the supercurrent.
Adhering to the opinion that this integral vanishes, one
may delete it and arrive at a consistent hydrodynamics
with the momentum-conservation law satisfied. Thus,
having no theory able to treat the vicinity of boojums
rigorously, one may expect nevertheless that the correct
theory should provide vanishing integrals of commutators
in order to satisfy the momentum-conservation law and,
as a result, to obtain the correct motion law of the vortex
line in k space {the equation of orbital motion). Similar-
ly, one may obtain the motion law of vortex lines in a per-
fect fluid (the Helmholtz theorem) by requiring that it
satisfy the momentum-conservation law (see Sec. III.B).

Evidently, the conjecture that the integral of the com-
mutator vanishes remains speculative and needs further
proof (or disproof). It rests on the belief that hydro-
dynamics should satisfy the local momentum-
conservation law in the form of a differential equation.
An alternative would be some complicated form of nonlo-
cal momentum-conservation law that nobody has yet been
able to formulate explicitly. What version of hydro-
dynamics is true may depend on the coHisional contribu-
tion. Recent developments in attempts to construct a
rigorous theory for the vicinity of boojums (Balatskii
et al. , 1986; Combescot and Dombre, 1986) lead us to be-
lieve that the nonlocal supercurrent as a whole is linked to
excitation states with zero or negative energy which arise
due to I texture and have strong analogies with the Lan-
dau states of a charged particle in a magnetic field. In a
collisionless situation co~~~ I these states must remain
unoccupied because there is no relaxation process that al-
lows them to come into equilibrium. This convinces us
that it is possible to treat orbital waves at ~~~ 1 within
the scope of the self-consistent hydrodynamics with
Co ——0 and I. =pA'/M (though one should be careful with
the term "hydrodynamics" in the collisionless situation).
The truly hydrodynamic regime co~&&1 calls for further
analysis because the collision contribution is expected to
dominate some reactive parameters including the dynamic
angular momentum (Brand et a/. , 1979). It is well known
that collisions strongly cha~ge the dynamics of charged
particles in a magnetic field when the free path length is
smaller than the magnetic length.

A possible experimental check of He-A hydrodynam-
ics would be measurement of mutual-friction coefficients
near the critical point. This is discussed in Sec. X.D.
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