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Magnetic ions embedded in a nonmagnetic host exhibit a number of unusual low-temperature properties’

known collectively as the Kondo effect. Conventional small-parameter expansions for the Kondo effect are
plagued by infrared divergences, and the theory of dilute magnetic alloys has for many years centered on
nonperturbative techniques. This paper reviews a novel perturbative approach to the magnetic alloy prob-
lem based on expansion in 1/N, with N the ionic angular momentum degeneracy. This approach is analo-
gous to perturbative expansions in statistical mechanics and field theory based on an integer-valued param-
eter (such as the number of spin components or the number of colors). The large- N expansion reproduces
the essential features of the Kondo effect at O(1) and appears to yield convergent (or asymptotic) expres-
sions for ground-state properties. In contrast with previous nonperturbative approaches, the expansion
provides information on dynamic, as well as static, properties. The evidence for convergence of the expan-
sion is reviewed, and large- N calculations are compared with exact results for static properties. A number
of independent, but essentially equivalent, approaches to the large- N expansion have been developed during
the last five years. These techniques are reviewed pedagogically, and their relative strengths and
weaknesses emphasized. A guide to notation in the recent literature is provided.
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. OVERVIEW

A. Introductory remarks

In this paper we review a new approach, the large-
degeneracy expansion, for investigating models of dilute
magnetic alloys. Such alloys are produced by dissolving a
small concentration of paramagnetic ions in a nonmagnet-
ic metal; classic examples include CuFe and LaCe. [For
an overview of experimental properties, see the review ar-
ticles of Daybell (1973), Rizzuto (1974), and Tsvelick and
Wiegmann (1983).] At high temperatures these systems
display rather dull behavior: the impurities lead to Curie
law paramagnetism and have an effect on transport prop-
erties comparable with that of nonmagnetic impurities.
However, as the temperature is decreased below a charac-
teristic scale (which is strongly material dependent), mag-
netic alloys exhibit striking effects. The magnetic suscep-
tibility saturates, and the resistivity increases with de-
creasing temperature. The specific heat, thermoelectric
power, and other properties display large anomalies,
which have no analog in nonmagnetic alloys. Finally, at
very low temperatures, properties become Fermi-liquid-
like. The excess susceptibility becomes constant, and the
excess specific heat linear in T. Despite this behavior,
such systems remain unusual: on a per ion basis, the sus-
ceptibility and specific heat may be hundreds or
thousands of times larger than the same properties in a
nonmagnetic system. [The analogous behavior in concen-
trated alloys—the “heavy-electron metals”—is currently a
subject of great interest; see, for example, Lee et al.
(1986).]

Over the last twenty-five years, the problem of under-
standing this anomalous low-temperature behavior has
been a recurring theme in condensed matter physics. A
great number of sophisticated techniques have been em-
ployed to investigate this problem; many of these tech-
niques were initially developed in other areas of many-
particle physics. Examples include the numerical renor-
malization group (Wilson, 1974; Krishna-Murthy et al.,
1980a, 1980b), the Bethe-Yang ansatz (Andrei et al,
1983; Tsvelick and Wiegmann, 1983), and quantum
Monte Carlo (Hirsch and Fye, 1986; Gubernatis et al.,
1987).

We do not intend to review the previous literature on
the magnetic impurity problem. A number of excellent
review articles (which themselves comprise hundreds of
pages) exist for most approaches to the problem. For
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reference we list a number of these articles at the end of
this section in Table 1. Instead, we wish to examine in
some detail the techniques that have been developed in re-
cent years based on the general concept of large-angular-
momentum degeneracy.

Many interesting models in statistical mechanics and
field theory contain integer-valued parameters N. In a
spin system, N is the number of spin components (Abe,
1972; Ma, 1973); in quantum chromodynamics, the num-
ber of colors (Yaffe, 1982; Migdal, 1983); and in some
condensed matter models, the number of electron species
(Oppermann and Wegner, 1979; Ma and Fradkin, 1983).
In each of these cases, expressions for the partition func-
tion (or S matrix) and correlation functions may (at least
in principle) be generated by expanding perturbatively in
1/N. Even in cases where N is rather small, such expan-
sions may plausibly exhibit features that escape more con-
ventional perturbation theories; such is the hope, for in-
stance, in quantum chromodynamics. In all these sys-
tems, the partition function may be written in the form

Z = foe——NS(a) , (1.1)

where f " indicates an integration over all degrees of free-
dom and S (o) is independent of N. (It is generally neces-
sary to rescale some parameters of the system to obtain
this simple form.) In these cases, the 1/N expansion
resembles a semiclassical expansion in quantum mechan-
ics, with 1/N taking the place of #; in particular, in the
limit N — «, such systems may be described by a classi-
cal mechanics, based on Poisson bracket equations of
motion and a phase space analogous to that in Newtonian
mechanics. This interpretation of large-N limits has been
reviewed extensively by Yaffe (1982).

The possibility of a large- N expansion for magnetic al-
loys was first put forward by Anderson (1981). In such
alloys, the angular momentum degeneracy of the magnet-
ic ion may, in principle, be large. For example, in the
rare-earth ions Ce and Yb, magnetism arises from f elec-
trons, and the degenerate configurations are f! and f°.
In both cases, if spin-orbit and crystalline electric field ef-
fects are ignored, the magnetic degeneracy is 14; even tak-
ing into account the relatively large spin-orbit effects in
these ions, the ground-level degeneracies remain 6 and 8.
In light of results from statistical mechanics and field
theory, 1/N seems an attractive parameter for perturba-
tion theory. Detailed investigations of the large-N expan-
sion were initiated by Ramakrishnan (1981) and Ramak-
rishnan and Sur (1982) in Brillouin-Wigner studies of the
Anderson model.

In the following pages we review progress in the
development of a large-N expansion for magnetic alloys
since 1981. We restrict attention to the dilute limit, i.e.,
to the properties of a single magnetic ion in a metallic
host. This single-ion problem has been investigated rather
thoroughly by a variety of techniques. In addition, a
number of large- N studies have been carried out on con-
centrated alloy, or lattice, models. The lack of a viable
nonperturbative approach for lattice models, which are
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believed to describe the heavy-electron metals (Lee et al.,
1986) and concentrated valence fluctuators, has been a
principal motivation in ongoing perturbative studies of
the single ion and the lattice. Nevertheless, the applicabil-
ity and convergence properties of the large-N expansion
for concentrated alloys remain controversial, and a review
of lattice studies may be premature at this time. We in-
stead offer a list of references to recent large- N studies of
the two-ion problem and the lattice at the end of this sec-
tion (Table II).

While treatments regarding 1/N as an expansion pa-
rameter date only from 1981, the method has its roots in
much earlier work. Many O(1) results for ground-state
properties were derived by other approaches before the ex-
istence of a systematic expansion parameter was realized.
The variational large-N expansion is a descendant of pre-
vious variational treatments based on the assumption of a
singlet ground state. Such methods reach back to the
quasi-bound-state theory developed for the Kondo model
by Yosida and collaborators in the late 1960s (Yosida and
Yoshimori, 1973). Variational solutions for the Anderson
model ground state were later studied extensively by Var-
ma and Yafet (1976). Diagrammatic techniques in the
large- N expansion also have a long history, dating from
the work of Keiter and Kimball (1971). Later studies
based on Brillouin-Wigner perturbation theory were car-
ried out by Bringer and Lustfeld (1977) and by Grewe and
Keiter (1981). Finally, the mean-field approximations in-
troduced in zero-temperature functional integral treat-
ments (see Sec. VI) have antecedents in the work of
Takano and Ogawa (1966), Yoshimori and Sakurai (1970),
and Chakravarty (1982).

The remainder of this paper is organized as follows: in
Sec. 1.B we introduce the models on which the large-N

expansion is based—these are the finite- U and infinite-U
Anderson models and the Coqgblin-Schrieffer model. In
Sec. I.C we discuss the parameter rescaling necessary for
a large-N expansion. We summarize some of the main
physical concepts that emerge from the expansion in Sec.
1.D. In the following sections we review five distinct ap-
proaches to the large-N expansion. (Several approaches
might conceivably be grouped together or subdivided.)
The treatment is largely pedagogical, and we have at-
tempted to include relatively complete mathematical de-
tails, even at the expense of some repetition. We illustrate
how each approach may be used to calculate thermo-
dynamic properties and correlation functions and review
results obtained at zero and finite temperatures. We list
below these approaches and the sections in which they are
treated. The sections are relatively self-contained and
may be read in any order.

(i) Diagrammatic expansions in 1/N from perturbation
theory for strongly correlated systems (Zhang and Lee,
1983; Rasul and Hewson, 1984a, 1984b; Brandt, Keiter,
and Liu, 1985), Sec. II.

(ii) Diagrammatic expansions in 1/N from perturba-
tion theory with auxiliary bosons (Coleman, 1984; Bick-
ers, 1986), Sec. III.

(iii) Systematic expansions and infinite-order summa-
tions in 1/N from variational theory at zero temperature
(Gunnarsson and Schonhammes, 1983a, 1983b), Sec. IV.

(iv) Infinite-order summations in 1/N from integral
equation solutions (Keiter and Kimball, 1971; Inagaki,
1979; Grewe, 1982; Keiter and Czycholl, 1983; Kuramo-
to, 1983; Coleman, 1984; Kuramoto and Kojima, 1984;
Miiller-Hartmann, 1984; Zhang and Lee, 1984; Bickers,
Cox, and Wilkins, 1985, 1987; Maekawa et al., 1985a,
1985b), Sec. V.

TABLE I. Theoretical review articles on the magnetic impurity problem.

1. Abrikosov, 1969.
2. Andrei, Furuya, and Lowenstein, 1983.
models).

3. Fischer, 1970. “Magnetic impurities in metals:
4. Griiner and Zawadowski, 1974.

“Magnetic impurities in non-magnetic metals” (overview of early approaches).
“Solution of the Kondo problem” (Bethe ansatz solution of magnetic impurity

the s-d exchange model” (overview of early approaches).
“Magnetic impurities in non-magnetic metals” (overview of early approaches).

5. Griiner and Zawadowski, 1978 (renormalization group and scaling theory).

6. Keiter and Morandi, 1984.

“Thermodynamic perturbation theory for systems with strong local correlations” (perturbation

theory for the Kondo model, intermediate valence models, and other models with strong local correlations).

7. Kondo, 1969.
8. Krishna-murthy, Wilkins, and Wilson, 1980a.
netic alloys.
of dilute magnetic alloys.
metric Anderson models).
9. Lawrence, Riseborough, and Parks, 1981.
mixed-valent alloys).

10. Newns and Read, 1987.

“Theory of dilute magnetic alloy” (overview of early approaches).

“Renormalization group approach to the Anderson model of dilute mag-
I. Static properties for the symmetric case”; 1980b, “Renormalization group approach to the Anderson model
II. Static properties for the asymmetric case” (renormalization group for the symmetric and asym-

“Valence fluctuation phenomena” (overview of theory and experiment on

“Mean field theory of intermediate valence—heavy fermion systems” (overview of mean field

results in the large-N expansion for dilute and concentrated alloys).
11. Noziéres, 1975 (renormalization group and Fermi-liquid theory).
12. Suhl, 1973. Ed., Magnetism: Magnetic Properties of Metallic Alloys (collection of review articles on early approaches).

13. Tsvelick and Wiegmann, 1983.
impurity models).

14. Varma, 1976.
15. Wilson, 1975.
the Kondo model).

“The renormalization group:

“Exact results in the theory of magnetic alloys” (Bethe ansatz solutions of magnetic

“Mixed-valence compounds” (overview of theory and experiment for mixed-valent alloys).
critical phenomena and the Kondo problem” (renormalization group for
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TABLE II. Large-N treatments of the two-impurity and lattice problems.

1. Auerbach and Levin, 1986a.
(mean-field theory and fluctuations).
2. Auerbach and Levin, 1986b.
Kondo lattices” (mean-field theory and fluctuations).
3. Brandt, Keiter, and Liu, 1985.

“Kondo bosons and the Kondo lattice:

“Large-N limit of mixed valence:

microscopic basis for the heavy Fermi liquid”

“Experimental evidence for predicted universal behavnor in low-temperature properties of

diagrammatic expansion and rigorous results” [free

energy and f Green’s function to O(1/N) for the two-impurity problem].

4. Coleman, 1983.
5. Coleman, 1985a.
6. Coleman, 1985b.
lattice and two-impurity problems).
7. Coleman, 1987.
two-impurity problems).
8. Grewe, 1984.
9. Lavagna, Millis, and Lee, 1987.
particle superconductivity).

10. T. K. Lee, 1985.
tice).

11. Millis and Lee, 1987.
tuations).

12. Rasul, Read, and Hewson, 1983.
single-impurity and lattice thermodynamics at O(1)].
13. Rasul and Hewson, 1984c.
[ground-state energy to O(1/N)].
14. Read, Newns, and Doniach, 1984.
tice).

“Mixed valence as an almost broken symmetry”

“1/N expansion for the Kondo lattice” (large-N formalism for the Cogblin-Schrieffer lattice).
“Large N as a classical limit of mixed valence” (mean-field theory for the lattice).
“Heavy fermions and broken symmetry in the generalized Anderson model” (mean-field theory for the

(mean-field theory and fluctuations for the lattice and

“One-particle excitation spectrum of the Kondo lattice” (proposed extension of NCA results to the lattice).
“d-wave superconductivity in the large-degeneracy limit of the Anderson lattice” (quasi-

“The effective interactions in the Kondo lattice” (conduction-electron interactions in the Anderson lat-
“Large-orbital-degeneracy expansion for the lattice Anderson model” (mean-field theory and fluc-
“Ground state properties of the Anderson lattice in the large-N limit” [equivalence of
“Ground state properties of the two-impurity Anderson model in a 1/N expansion”

“Stability of the Kondo lattice in the large-N limit” (mean-field theory for the lat-

(v) Functional integral saddle-point methods and loop
expansions in 1/N for the Cogblin-Schrieffer and
infinite- U Anderson models and generalizations of these
models (Read and Newns, 1983a; Coleman, 1985a, 1985b,
1987; Read, 1985; Houghton, Read, and Won, 1987), Sec.
VL

Throughout we attempt to maintain a consistent nota-
tion for quantities that appear in more than one context.
To aid in comparison with the literature we present a
translation table (Table XI) of notation at the end.

B. Model Hamiltonians for the large- N expansion

Treatments of dilute magnetic alloys center on two
models, identified with the names of Anderson (1961),
Kondo (1964), and Coqblin and Schrieffer (1969). Of the
two, the more fundamental is the Anderson model. This
model describes the interaction of delocalized conduction
electrons with a highly localized magnetic impurity orbi-
tal. Impurity electrons are strongly correlated by the
presence of an on-site Coulomb repulsion U, and mix
weakly with conduction states through a hybridization
matrix V. In the simplest case, the impurity orbital has
only spin degeneracy, and the Hamiltonian may be writ-
ten

H,=Hypyna +Himp +H iy, Hpana= 2 EkoMko >
ko
Hipp= 2\*»:d‘,f1¢,—+—Untnl , (1.2)

Hix = 2 Vk(ckad +H.c.) .
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Here €, (g4,) denotes the energy of the conductlon (im-
purity) state with creation operator CL, (a' ) and number
operator ny, (ng). In the absence of a magnetic field, the
level energies may be written g, and €4. Note that the hy-
bridization is in general energy dependent. A measure of
the hybridization strength is the impurity level width T,
which follows from a golden rule calculation (ignoring the
on-site repulsion). This is just

T=aN(eg)VE, (1.3a)
with N (e) the conduction density of states. For a flat
band and constant hybridization,

C=7N(0)V? (1.3b)

This model is often used to describe transition metal al-
loys, in which the magnetic ions have quenched orbital

‘degrees of freedom.

The model may be generalized to treat impurities with
orbital degeneracy and arbitrarily complex multiplet
structure. New forms for the on-site Coulomb interaction
and the hybridization term are then required. For rare-
earth ions, such as Ce and Yb, spin-orbit coupling is
strong and, to good approximation, the total angular
momentum about the impurity is conserved by the in-
teractions (Cogblin and Schrieffer, 1969). In general, an
exchange integral J, as well as the direct integral U,
should be introduced to describe the Coulomb interaction.
If this complication is ignored, the simplest Anderson
Hamiltonian for rare-earth systems is
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HA =Hband +Hf+Hmix’ Hband= E EkmMkm »
km

Hfzzefmnm""U 2 nmnm' ’ (14a)
m

m>m'
Hy = 2 Vk(C]Imfm +H.c.).
km

In this case, the parameters have the same interpretation
as before; now, however, c;:rm and f,I, create spherical-
wave states of fixed total and orbital angular momentum
(j and /). The magnetic quantum number m varies be-
tween —j and j: the impurity degeneracy is

N=2j+1. (1.4b)

For N =6, this Hamiltonian describes the ground multi-
plet (f!, j==, I=3) of Ce; after a particle-hole transfor-
mation, the Hamiltonian may be used to describe Yb (f 3,
j= %, I=3). The Hamiltonian above may be made more
realistic by including additional spin-orbit multiplets or
by breaking the ground-state degeneracy with crystalline
electric fields (Hirst, 1978). Anderson models for thulium
and uranium impurities have been treated within large-N
approximations by Read et al. (1986) (Tm) and by Nunes
et al. (1986) (U). For most of our purposes, however, the
simple rare-earth Hamiltonian with an N-fold multiplet is
adequate.

This Hamiltonian may be further simplified in the
physically relevant limit of large U: in Ce systems, U is
typically of order 5 eV. In such cases it is an excellent ap-
proximation to assume U— . In this case, the only pos-
sible impurity configurations are empty and singly occu-
pied. We denote the N +1 possible configurations |0)
and |[m). The infinite-U Anderson Hamiltonian may
then be written ‘

H, =Hband +Hf +H pix »
with Hy,.q as before, and

Hf=28fm [m><m| ’

' (1.5)
Hpix= Vilcem |0){m | +H.c.) .
km

This Hamiltonian has been the starting point for most
1/N investigations. [In the following section we discuss
the parameter rescaling required for generating a 1/N ex-
pansion. This is perhaps not obvious, since N does not
appear explicitly in Eq. (1.5).]

An alternate Hamiltonian for nmagnetic alloys is the
s-d, or Kondo, Hamiltonian (Kondo, 1964). This Hamil-
tonian may be derived (Schrieffer and Wolff, 1966) as an
effective limiting form of the Anderson Hamiltonian in
Eq. (1.2) for —&; and U much larger than I'. The Kondo
Hamiltonian describes the interaction of conduction elec-
trons with a local impurity spin through an antiferromag-
netic contact coupling:

HKszand +Hint’ }-Iband= 2 ExoMko >
k
7 (1.6)

Hyy=—J 3 S-ci'alacka, J<0.
KK'aa’
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Here o is a vector of Pauli matrices, and S a local spin-%
operator. The interaction may conveniently be rewritten
in terms of local projection operators:

Hiy=—J 3 clo|a)@|cua+3I 3 clatra . (17)
kk'aa' kk'a
The last term is just a correction to the one-body
conduction-electron potential.
The generalization of this Hamiltonian for rare-earth
alloys is the SU(N) Kondo, or Cogblin-Schrieffer, model
(Cogblin and Schrieffer, 1969):

Hcs=Hyang+Hing, Hpana = 2 ErmNkm »
ki

' " (1.8)

Hiyy=—J 3 cpm |m){m'|cpm J<O.

kk’'mm'

Here, |m ){m’| is a projection operator that acts within
the impurity Hilbert space { |[m): m=—j,...,j}. The
relation of the interaction term in this model to that in
the spin-3 Kondo model is clear. This Hamiltonian may

- be derived as a limiting form of the Anderson Hamiltoni-

ans in Egs. (1.4) and (1.5) (Cogblin and Schrieffer, 1969).
The Coqgblin-Schrieffer model describes the interaction of
conduction electrons with an N-fold degenerate impurity
whose magnetic configuration fluctuates. This model has

also served as a basis for numerous large-N studies (see
Sec. ILE).

C. Parameter rescaling for the large- N expansion

In this section we describe in a simple way how 1/N
may be regarded as an expansion parameter for the
infinite- U Anderson and Cogblin-Schrieffer models. It is
necessary to define the behavior of parameters in the
large-N limit so that physical quantities do not diverge
for N— 0. This preliminary step is necessary in all ver-
sions of the large- N expansion for magnetic alloys and for
more general systems in statistical mechanics and field
theory (Yaffe, 1982).

The parameter N does not explicitly appear in the An-

(a) (b)
77 oK —e—

K
(c) °
oK, —
FIG. 1. Pictorial representation of many-particle states in

Rayleigh-Schrédinger perturbation theory. The shaded rectan-
gle represents the Fermi sea of conduction electrons, and the ad-
jacent line the localized f level. (a) | Q), the filled Fermi sea
and an empty f level. (b) |esexm ), a state with one f electron
and one conduction hole, both in magnetic channel m. (c)
| Exexm ), a state with one conduction electron (energy Eg)
and one conduction hole (energy &), both in magnetic channel
m.
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derson and Cogblin-Schrieffer Hamiltonians. Neverthe-
less, it arises in perturbation theory wherever there appear
sums over magnetic quantum numbers in intermediate
states. As an example, consider the many-particle state
| @), in which the f level is empty and the Fermi sea of

(Q|Hm1x|N)(N|Hm1X|Q)

conduction electrons fully occupied [see Fig. 1(a)]. For
convenience, let this state define the zero of energy. In
Rayleigh-Schrodinger perturbation theory, the lowest-
order stabilization of this state by hybridization is (ignor-
ing level broadening) '

(1.9

AE,= Re
° % —Ey
1
RS (v 2 XRILIO O ] egm) Cegm [ []m (0] cun] | 2)
km —(Ef——-fik)
N |V |?
_ReS \Vel” __NT, | D ,
k Ek—Sf o |€f|

assuming in the last step a flat band of half-width D >> | &, | and constant hybridization. The stabilization energy of

| @) is proportional to NT.

In contrast, consider the stabilization of the isoelectronic state

lerexm ) =Ffcim | Q) .

(1.10)

In this state, one band electron in magnetic channel m has been moved onto the f orbital. The stabilization energy is

AEm= RCE <€f8km IHmix |N)<NE|,Hmix |€f8km>
N € —&—Ly

Cexm | [|m )0 cxm]| Exexm Y Exeem | [|0)<m | chm]|exm )

Re

Il

V 2
ReE—I——KJ——=—£
K

Gf—EK m

D
ler |

where

| Exexm ) =clmcim | Q) . (1.12)

This stabilization energy is proportional to I', but con-
tains no factor of N.

Hence states with an empty impurity orbital are gen-
erally lowered in energy by amounts N times larger than
comparable states with an occupied orbital. As pointed
out by Ramakrishnan (Ramakrishnan, 1981; Ramakrish-
nan and Sur, 1982), this may be interpreted as a phase-
space effect: there are simply more possibilities for hy-
bridization of an empty impurity state.

The factors of N that arise in perturbation theory must
be “scaled away” if the infinite-U Anderson model is to
have a well-behaved large-N limit. This may be accom-
plished by fiat by setting

N|Vi|*=0(1), N> . (1.13)

Then | Vi |*=N|Vi|?/N=0(1/N), and the formal
basis for expansions in 1/N becomes clear: in leading or-
der, the only terms that contribute are those in which a
factor of N accompanies each V2 hybridization process.
In the next order, terms enter with one “missing” factor
of N, and so on.

Similar arguments from Rayleigh-Schrédinger pertur-
bation theory establish that terms proportional to NJ
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K Ef-—Ek—-(EK—Ek)

(1.11)

[
enter expansions for the Cogblin-Schrieffer model. [This

could also be established by appealing to the canonical
transformation that links this model with the infinite-U
Anderson model (Schrieffer and Wolff, 1966).] Hence it is
required that

NJ=0(1), N> (1.14)

for perturbation theory in 1/N to be well behaved.

What is the physical meaning of the formal parametri-
zations in Eqgs. (1.13) and (1.14)? The possibility that
some perturbative processes are intrinsically “more im-
portant” than others of equal order in ¥? should be clear
from Egs. (1.9)—(1.11). However, we regard the parame-
ter rescaling as largely a necessary technical device, which
allows the investigation of magnetic impurity models
from a new viewpoint. The success of various approxi-
mations must be established by comparison with other ap-
proaches (such as the numerical renormalization group
and Bethe ansatz) and with experiment. In fact, the con-
vergence properties of the 1/N expansion at finite tem-
perature remain to be fully established. Nevertheless, in
the course of this review, we argue that the ground-state
properties of magnetic alloys are captured successfully by
low-order expansions in 1/N, and, further, that infinite-
order resummations in 1/N provide one of the most com-
plete descriptions of finite-temperature properties now
available.
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D. Some basic physics of the large-N expansion

Before describing detailed implementations of the
large-N expansion, we outline briefly some of the con-
cepts that underly the method’s success. The question
that must be confronted by any approach to the magnetic
alloy problem is the following: what is the qualitative na-
ture of the ground state formed when a magnetic ion is
immersed in a sea of delocalized conduction electrons?
One might naively argue that the ground state should be
degenerate. The N magnetic configurations of the ion are
equivalent, and, at least in the weak-coupling limit, each
free-ion ground state should map perturbatively onto a
ground state of the interacting system. This reasoning is,
of course, false. The local coupling in the Cogblin-
Schrieffer and Anderson models cannot be treated by per-
turbation theory, and the ground states of the noninteract-
ing and interacting systems have different symmetries for
arbitrarily weak coupling. As shown first by experiment,
then by increasingly sophisticated theoretical methods,
the ground state of the Cogblin-Schrieffer and infinite- U
Anderson models is a total angular momentum singlet.
Alternative perturbation theories must incorporate this
fact at lowest order to have a chance of success.

The large-N expansion succeeds for just this reason.
The O(1) approximation amounts to solving for the
lowest-energy singlet of the ion-conduction electron sys-
tem, assuming the existence of no more than one hole in
the conduction band. The basis states included in the
O(1) calculation for the infinite-U Anderson model are
those shown in Figs. 1(a) and 1(b). The variational ansatz
for the ground state is

oce
900 = Q)+ = S efhen 193, (1.15)
with | Q) the noninteracting Fermi sea. Since at most
one hole is included, the determination of the ground state
is a one-body calculation at this order. Higher-order ap-
proximations take into account the addition of electron-
hole pairs to the variational state |d,).

The resulting ground-state singlet is not a bound state
in the usual sense, i.e., it is not separated by a gap from
excited states. Approximate excited states may be found
by (a) replacing | Q) with a noninteracting excited state
|exc), which differs only by the presence of a few
electron-hole pairs in the conduction band, then (b) re-
peating the ground-state calculation, taking into account
states that differ from |exc) by the possible addition of
one conduction hole and f electron. As emphasized by de
Chatel (1982), the low-lying states of the interacting sys-
tem may in this way be placed in one-to-one correspon-
dence with the low-lying states of the noninteracting Fer-
mi sea. Hence the interacting system behaves as a Fermi
liquid within this simple " approximation. From
renormalization-group and Bethe ansatz studies, it is
known that this Fermi-liquid behavior survives when the
alloy models are solved exactly. The large- N expansion
allows systematic corrections to the simple O (1) picture
of Eq. (1.15).
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The energy scale for the ground state (the “Kondo
scale”) is exponentially small in the expansion parameters

g=N(0)|J| (Coqgblin-Schrieffer) ,
(1.16)
2
_Noy'_ T (Anderson) .
les|  mles]

In the simple one-hole, or O(1), approximation men-
tioned above, the ground-state energy gain from
conduction-electron mixing is

TCS’TA =De‘1/Ng s (1.17)

with D the half-width of the conduction band. (For the
Anderson model, this simple expression is valid in the
Kondo limit —er>>NT'.) Note that the Kondo scale is
analytic in the parameter 1/N, but nonanalytic in the
coupling constant g.

The exponentially small Kondo scale, rather than the
initial bandwidth D, is the characteristic energy for varia-
tions in the density of low-lying excited states. For this
reason, the 7T-—0 magnetic susceptibility and specific
heat per impurity ion are greatly enhanced over the values
for the noninteracting system. As shown in subsequent
sections, the O (1) values for the Anderson model are

7k} nfV

2 (1)
__Hj ny
T, '’

=57, 7"=73
, , (1.18)
wi=iG+1)gus),

with n }1) the lowest-order approximation for the fraction-
al f-level occupancy, or valence. When the nonessential
factors ,LLJZ-/3 ‘and w’k3 /3 are removed, the ratio of the
susceptibility and specific-heat coefficient (the so-called
Sommerfeld ratio) is just unity at this order. Fermi-
liquid-like corrections emerge at higher order and may be
treated systematically.

The Fermi-liquid properties of the Cogblin-Schrieffer
and Anderson models for T—0 have long suggested a
simple phenomenological interpretation (Schotte and
Schotte, 1975; Newns and Hewson, 1980; Wilkins, 1982).
Similar properties are exhibited by the nonmagnetic
resonant level model

Hpgp =Hy,pg +Himp +H pix

Hband= zeknkmy Himp:’gfznm N (1.19)
km m

Hmix=?2 (clszm +H.c.),
km

for suitably chosen values of the resonance position g
and width T=7N(0)72. The resonant level model is
conceptually simple to treat, since it involves only a one-
body mixing term without strong local correlations. The
low-temperature properties of the magnetic alloy models
may be described by an effective resonant level model,
with resonance position and width each of order the Kon-
do scale Tcs or T4. [A complete study of resonant level
phenomenology, or “local Fermi-liquid theory,” for the
magnetic alloy problem has been carried out by Newns
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and Hewson (1980).] A principal motivation for studying
the large-N expansion in the Fermi-liquid regime has
been the desire to provide a microscopic basis for this
simple phenomenology.

The O(1) approximation for the Cogblin-Schrieffer
and Anderson models is a one-body theory, in which
noninteracting states of the Fermi sea are modified by the
addition of a single hole and an f electron. For this
reason, Fermi-liquid results may be rigorously described
at this order by a resonant level model of the form
described above (see Sec. VI). Effective resonance param-
eters may be deduced by asking what happens when an f
electron is added to the O(1) ground state. As shown in
the following sections, the one-electron excitation spec-
trum has a quasiparticle contribution at energy
o—p=T,, with u the Fermi energy. Hence the effective
resonance position €y is T4. The weight of the f quasi-
particle is just the probability 1—n }” for finding the f
level empty in the ground state, i.e., the overlap between
the ground state and the noninteracting Fermi sea (with
the f level empty). In the Kondo regime, the quasiparti-
cle weight becomes exponentially small as the f valence
approaches unity. The effective resonance width T is re-
duced from the bare f-level width T" by the ground-state
overlap factor 1 —n }”.

This simple picture for the Fermi-liquid physics breaks
down when electron-hole pairs are included at higher or-
ders in the large- N expansion. It is well known that when
a Fermi sea is subjected to a localized nonmagnetic per-
turbation, the overlap between the initial ground state and
the perturbed ground state vanishes (Anderson, 1967; Ya-
mada and Yosida, 1982). The localized perturbation pro-
duces a cascade of low-energy electron-hole pairs, which
overwhelm the contribution of the initial ground state. A
similar infrared overlap catastrophe occurs when
electron-hole pairs are included in the ground state for the
magnetic alloy problem: all low-lying states of the unper-
turbed system appear with nearly equal weight in the in-
teracting ground state. The appearance of pair cascades
prevents a naive extension of the effective resonant level
model to higher order. The Fermi excitations probed by
the magnetic susceptibility and specific heat are not sim-
ply hybridized one-electron excitations in the basis of
noninteracting states. Rather, within this basis, they are
one-electron excitations dressed by an infinite number of
electron-hole pairs. At higher orders in 1/N, the effec-
tive resonant level model describes these local “quasiparti-
cles,” which are related in no simple way to the “bare” f
electrons.

A particular version of the large-N expansion provides
a rigorous means to generate, order by order, the quasi-
particle resonant level model describing the Fermi-liquid
regime. A functional integral saddle-point technique,
combined with an all-orders rearrangement of perturba-
tion theory (see Sec. VI.C), may be used to generate an ef-
fective Fermi Hamiltonian, together with Bose-type in-
teractions between the underlying quasiparticles.
Numerous extensions of this elegant technique have been
proposed for lattice models describing the heavy-electron
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metals (see Table II). Such approximations amount to su-
perposing the single-ion singlets described above while ig-
noring interion interactions. While this approximation is
phenomenologically quite successful, its validity remains
unclear at this time. We do not discuss treatments of the
lattice problem in the present review, but refer the reader
to the sources cited.

The simple picture for Fermi-liquid physics which
emerges from the large- N saddle-point expansion does not
extend to higher temperatures. In particular, a detailed
numerical treatment is required to describe the crossover
between the Fermi-liquid regime and the high-
temperature limit, where magnetic impurities show free-
ion-like behavior with perturbative corrections. At finite
temperature, other versions of the large-N expansion
(such as the diagrammatic resummations described in Sec.
V) furnish quantitative information on magnetic alloy
properties. These methods are largely complementary to
those which succeed in the Fermi-liquid limit. Taken to-
gether, the various approaches provide quantitative results
and additional physical insight for the full range of tem-
peratures.

Il. DIAGRAMMATIC LARGE-N EXPANSIONS
FOR THE INFINITE-U ANDERSON MODEL

In this section we discuss diagrammatic 1/N expan-
sions for the partition function and Green’s functions of
the infinite-U Anderson and Cogblin-Schrieffer models.
The complicating feature of perturbation theory for these
models is the presence of strong local correlations, which
prevent an expansion based on free fermions. Methods
for treating this complication date from the work of
Keiter and Kimball (1971). Keiter and Kimball con-
sidered the finite-U Anderson model; in this case, stan-
dard finite-temperature perturbation theory may be ap-
plied formally. However, since U is typically much larger
than the hybridization width T, it is a better approxima-
tion to include the Coulomb term in an “unperturbed”
Hamiltonian. In this case, the Feynman diagrammatic
approach is ruled out and more specialized methods are
required. The same methods apply more generally to
models with spin and projection operators. Since such
methods may be unfamiliar, we begin by deriving general
expressions for the partition function in strongly correlat-
ed electronic systems (Sec. II.A). We follow the approach
of Keiter and Morandi (1984). In Sec. II.B we discuss the
technical structure of finite-temperature perturbation
theory for the infinite-U Anderson model and derive ex-
pressions for the partition function at O (1) and O(1/N)
in the large-N expansion. Expressions for zero-
temperature thermodynamic properties are derived within
the same approximation in Sec. II.C. We discuss in this
section the physical source of Fermi-liquid corrections in
the Sommerfeld ratio X/y [the first corrections to
Fermi-gas behavior appear at O(1/N)]. In Sec. IL.D, ex-
pressions for the f-electron spectral density, which may
be probed directly by photoemission and inverse photo-
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emission experiments, are derived at O(1) and O(1/N).
In this section we also discuss the effects of the ground-
state overlap catastrophe, which first appear at O (1/N).
In Sec. ILE the large-N expansion for the Cogblin-
Schrieffer model is developed, and the Schrieffer-Wolff
transformation (1966) connecting this model and the An-
derson model is described in diagrammatic terms. Final-
ly, in Sec. IL.F we briefly review the evidence for conver-
gence of the large-N expansion from comparison with
ground-state Bethe ansatz results.

A. Perturbation theory for systems
with strong local correlations

Conventional perturbation theories in condensed matter
physics rely on the ability to expand the partition func-
tion about a noninteracting ground state with free Fermi
and Bose excitations. In order to model systems with
strong localized interactions (including magnetic alloys),
it is frequently necessary to introduce quantum spin and
projection operators. In such cases, a Feynman propaga-
tor expansion is impossible. An alternate perturbation
theory based on contour integral representations for the
partition function and correlation functions has been dev-
ised to treat such systems. We briefly describe this ap-
proach below.

Quite generally, the partition function of a many-
particle Hamiltonian may be written

dz

Z=Tre PH=
re T 2mi

e PTr(z—H)™ !, (2.1)

where T is a contour in the complex plane, oriented coun-
terclockwise, and surrounding all singularities of the

J

_ dz
T Jdrogi

VA e BTy

z—Hy '3 [32)z —Ho)*‘]”l=
n=0

resolvent (z —H)~!. The resolvent may be expanded as

(z—H)"'=(z—Hy)"' S [Viz—Ho)"']",

n=0

(2.2a)

by decomposing the Hamiltonian into an ‘“‘unperturbed”
part and a perturbation:

H=Ho+V . (2.2b)
Thus
Z= [ Z obrr e—Ho) ' 3 [Vz—Ho)™'T" | .
2mi n=0
2.3)

The trace may be explicitly evaluated by inserting a com-
plete set of states between consecutive factors of
V(z—H,)~'. Alternatively, this expression may first be
simplified by introducing a self-energy operator 2(z) diag-
onal in the basis of H eigenstates | N ):

Sy(2)=(N|2(z) | N)
=(N|V[1—(z—Ho)"'QyV]"'|N),

(2.4)
Ov=1—Py, Py=|N)(N| .
This quantity is formally quite similar to proper self-
energies in Feynman perturbation theory. Xy includes all
contributions to the matrix element

(N |V[l—(z—Hy)" W] |N)

except those which contain | N) as an intermediate state.
The partition function may be rewritten

dz

1
B | . — 2.
e “Tr = (2.5)

Z——Ho——Z(Z)

(There is no ambiguity in writing the operators in this way, since [H 0,%]:0.) Alternatively, the n =0 term in Eq. (2.3)

may be separated out to give

dz.

= Te —BZTI‘
T 2mi

zZ-2z,

n=1-"
where the unperturbed partition function is just

—BH,
Zy=Tre BHo

(z—H)%S V[(z—HO)“V]”“‘y , - (2.6a)

(2.6b)

Since the trace is cyclically invariant, this expression may be further simplified:

Z—Zy= ﬂe—&i

T 27 dz <,

T 3 =He—H) V1=

dz

S 1
—B: 1 _ -1 n
el “Tr > n[(z Hy) " 'v]*. 2.7)

n=1

The factor 1/n leads to awkward summations. This factor may be eliminated by introducing a coupling-constant in-

tegration, i.e., by writing

dz

_ ldg
Z"ZO__Bfo g Jr 2mi
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e~PTr S [(z —Ho) " 'gV]" . (2.8)
n=1
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This expression may also be simplified by introducing a
self-energy operator. In this case, let

Sn(z,8)=(N|2(zg) |N)
=(N|gV[1—(z—H,) " 'QngV]~'|N),

(2.9
with Qy as in Eq. (2.4). Then it follows that
1 A
Z-Zy= | dg [ Az gy 228 5 )
0 g YI2mi z—Hy—3(z,8)

B. Perturbation theory for the infinite-U
Anderson model

We discuss below the application of the general tech-
niques from Sec. IL.A to the infinite- U Anderson model

H=Hypgpqg+Hs+Hpy

Hygpa= zeknkm’ Hf=8f2 ‘m>(m I ’ (2.11a)
km m

HmiszE(c,Im [0)<m | + |m){O|crm) -
km

(The zero of energy is set by the unperturbed Fermi sea

J

dz o PR
Z/Zypna= —e~PTr —_— <N
band f T 27i f Ngld Zand band
_ BEband
dz B: N <
== —e “Tr N band
T 27 f Ngld band an

z —(H—E}™)

[e—(Ho—EF"™)]~" 3, (V[z—(Ho—ER™]~1}"

and empty f level.) In this case the presence of projection
operators prevents a conventional Feynman expansion.

We consider first the representation of Eq. (2.3). A
complete set of eigenstates of the noninteracting Hamil-
tonian

Ho=Hy,nq+Hy (2.11b)

must be introduced. It is convenient to trace separately
over band and local states by letting

Tr=Tr;Troang - (2.12)

To further allow the separation of band and local degrees
of freedom, the integration variable z in Eq. (2.3) may be
shifted parallel to the real axis in each element of the
trace by

z—>z+EpP
where

Hpuna |NY=ERF™|N) . 2.13)

This shift amounts to subtracting out the energy of
electron-hole pairs in excited states of the Fermi sea: local
and band degrees of freedom may then be separated com-

pletely in the absence of hybridization. Applying these
changes and dividing by Z,,,4 gives

N band>

Nband> (2.14)

n=0

Note that the only band energies which remain in the denominators

[Z“(HO—EI*\’Iand)]—I

are intermediate-state electron-hole energies, measured relative to the initial state | Nyung)-

The thermal average over band degrees of freedom may be carried out using Wick’s theorem to contract the electron
creation and destruction operators that appear in repeated factors of V. A simple set of diagrammatic rules to evaluate
Eq. (2.14) is summarized in Table III and illustrated in step-by-step fashion in Fig. 2.

The same separation of band and local degrees of freedom may be applied in the representation for Z in Eq. (2.5). The
sclf-energy operator, which acts within the full Hilbert space of band and local states, may be replaced by an f self-
energy, which acts only within the space of local states. This is possible since, in thermal averages of the form

—BE}\’]and
e t
2 (Nband |CIC2C3 e |Nband)<Nband,c4CSC6 e 'Nband> T,
Nband band

Wick’s theorem may be applied independently in successive matrix elements. Thus

—ﬁE}\’Imd o N
Tr; 3 (Nouna |2 (Ho— ™0 3 (8 +EF™ )z — (Ho— EF™]~'T" | Nyana)
Nband band n=0
=Tr/(z—H;)™! zo[ﬁf(z)(z —H)™ ',
e
where
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TABLE III. Diagrammatic rules for evaluating the infinite- U Anderson partition function. We list below rules for evaluating the
partition function Z; using the expression in Eq. (2.14).

To compute a general contribution to Z; of O(V?*"), n>1:

(a) Set down 2n vertices in a vertical line. Draw wavy (dashed) lines entering the bottom vertex and leaving the top to in-
dicate an initially empty (occupied) f level. Alternate wave and dashed lines between the vertices from bottom to top. (A
total of 2n+1 lines now appear.) :
(b) Always working to the right of the vertical line, connect the vertices with full lines (representing conduction electrons) in
all possible ways that maintain the direction of the dashed lines at each vertex.

(c) Assign quantum numbers km (m) to full lines (dashed lines), conserving angular momentum at each vertex.

(d) Assign to ascending conduction lines a factor (ck,,,c,fm)-—l— frm and to descending conduction lines a factor (ckmck,,.)
= fim> With f the Fermi function. Draw a perpendicular to each local configuration line, and assign to it an energy
denominator (z —E,)~!, where E, is found by adding the energies of ascending lines intersected by the perpendicular and
subtracting the energies of descending lines intersected.

(6) Multiply the product of energy denominators and Fermi factors by V" —), where c is the number of conduction line

crossings. Sum on all internal variables. Compute the contour integral
dZ —ﬂz
Z= ey ‘R(z),

where R is the result of the preceding operations and I' encircles all singularities of R in a counterclockwise fashion.

a ~BE]'\Jland o
(Nf 1342 [NfY= S SN Niana | EE+ER™) | N Nogna ) - (2.15)
Nband Zband
It follows that
dz
Z/Zpgpa= | e PTr < . (2.16)
band T 2i fZ——Hf—-Zf(Z)
The complex function
’ _ Eband
Go(z>;<o L o>=<o s i—-”—(zv.,a,,d — 1 Nba,,d> o> (2.17a)
Z—Hf—ZI(Z) Nypand Zband z —(H-*ENn )

is commonly called the empty-state propagator. Analo-
gous propagators G,,(z) may be defined for the occupied
states. These quantities are the analog of Feynman prop-
agators within the contour integral formalism. The asso-
ciated densities,

Po,m (€)= -% ImG (e +i0%), (2.17b)
have a simple physical interpretation at zero temperature.
In this limit, the only band state contributing to the
thermal average in Eq. (2.17) is the zero-energy Fermi sea
| ). Inserting the exact representation

z—Ey ' (2.17¢)

with & the eigenstates of the full Anderson Hamiltonian,
gives
pole)= [{0;Q| @) |28(e—Eq) ,
)

(2.18)
Pm(e)=3 | (m;Q|®)|*8(e—Eg) .
o
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i

The zero-temperature densities measure the overlap of the
noninteracting “ground states” |0;Q) and |m;Q) with
interacting states of energy €. As mentioned in Sec. I.D,
one expects these overlaps to exhibit an infrared singulari-
ty for e— Eg, the ground-state energy of H.

Related densities py and p,, may be defined to measure
the overlap of the exact ground state with noninteracting
excited states:

Po,m(€)=(Z /Zpang) e “Pepg pm(€) . (2.19a)
It is easy to show that at zero temperature
PolEg—8)= 3 | (0;Npgna | Do) | 28(e—EF™), (2.19b)

N band

with | ®,) the interacting ground state. An analogous ex-
pression holds for the occupied states | m;Npanq ). In this
case, the overlap functions are expected to exhibit infrared
singularities in the limit e—0. We shall return to a more
detailed discussion of the zero-temperature overlap func--
tions and the infrared catastrophe in Sec. V.B.

For low-order perturbation theory in 1/N it is con-
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venient to replace Eq. (2.16) with the analog of Eq. (2.10).
The resulting representation for the partition function is

Z/Z g =1+Ne P
fl dg dz e‘BzTrf Zf(z;g) ’
0 z-—Hf—Ef(z,g)
(2.20a)
with
SHz8)=24(2) | yrgr - (2.20b)

Diagrammatic rules for evaluating the components of 3 f
may be obtained from those in Table III by (a) truncating
the lines that leave the highest vertex and (b) dropping all
diagrams that may be disconnected by cutting a single lo-
cal configuration line. For convenience we summarize
these rules separately in Table IV.

The work required in a large-N calculation based on
Eq. (2.20) may be cut in half by the following observation:
every empty-state contribution to Z /Zy,.4 corresponds to
an occupied-state contribution found by cyclically per-
muting vertices. (An example of two diagrams related by
such a vertex permutation is shown in Fig. 3.) A further
permutation yields an additional empty-state contribu-
tion. It is easy to show that diagrams related by a vertex
permutation contribute equally to the partition function.
Hence it suffices to calculate only empty-state contribu-
tions and multiply by a factor of 2. The partition func-
tion may then be rewritten

Z/Zynag=1+Ne

ldg rdz 0B
—B f Y f i
This expression has been used by Brandt, Keiter, and
Liu (1985) to generate a 1/N expansion for the finite-
temperature Anderson partition function. The ground-
state energy, zero-temperature magnetic susceptibility,
and f valence were previously derived at O(1/N) by
Rasul and Hewson (1984a) using a slightly different tech-
nique. The derivation of Brandt, Keiter, and Liu is
sketched below.
The contribution to 2y at O (1) is shown in Fig. 4:

W =g NS — Tk
k Z+€k—8f

_ﬁEf

Eo(Z,g)

—_— . 2.21
z —Eo(z,g> ( )

(2.22)

Contributions to 2, of O(1/N) are those shown in Fig. 5:

Jell—f)

1
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(a) (b) (c)

§ A m'A yk'm’

g A mAYkm
z! )
(z-e;+e)
! ﬁ x (+1)v*?
(z-e+€,) 1,
7! J

FIG. 2. Illustration of diagrammatic perturbation theory for
the Anderson partition function [Eq. (2.14)]. The diagram con-
structed is an empty-state contribution of O(V*). (a) Vertices
and f-electron lines. Four vertices (solid dots) appear, since the
diagram is O(V*). Wavy lines represent the empty f level and
dashed lines an occupied f level. (b) Addition of conduction
electrons. Solid lines, representing conduction electrons, are
added to the right of the diagram. Dashed and solid lines form
continuous loops or paths through the diagram. (c) Assignment
of quantum numbers. Occupied f lines receive a magnetic
quantum number, and conduction lines a magnetic quantum
number and momentum. Angular momentum is conserved at
each vertex. (d) and (e) Assignment of Fermi functions, energy
denominators, factors of ¥, and an overall sign. Since the per-
pendicular between the two lowest vertices intersects an ascend-
ing f line and a descending conduction line, the associated ener-
gy denominator is (z +&;—¢&;)”!; other energy denominators
are obtained in the same way. The diagram receives a factor of
(+1)V*, since no conduction line crossings appear and there are
four vertices. There are in addition two angular momentum
sums and two momentum sums. Thus the diagram contributes
to Z /Zband
Jz

_1_4 Sk

dz 1
NVZ 2 Yz ,—pz1
( ) fl‘ 2mi ¢ z g z+e—ef

z

a quantity of O(1) in the large- N expansion.

4
=M (z,g)=E_ (NP2 : (2.23)
0 8=N kzk (z+ex—ep)? z4ep —ep — S0z 464 —e4,8)
Substituting Eq. (2.22) in (2.21) gives at leading order
s (1)
1) _ —Be dg B O (Z’g) —Bsf dz —B Z—Eo (Z)
ZV/Zygpa=1+Ne "I —B [ fr i e ~ Ve 4B Jooge | ——1, (2.24a)

after performing the integration over g. Integration by parts gives finally
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TABLE IV. Diagrammatic rules for evaluating configurational self-energies in the infinite- U Anderson model. We list below rules
for evaluating the empty- and occupied-state self-energies defined in Eq. (2.20).

To compute a general contribution to the empty-state (occupied-state) self-energy at O(V*), n>1:

(a) Set down 2n vertices in a vertical line. Beginning at the bottom with a dashed (wavy) line, connect the vertices with al-
ternate dashed and wavy lines (all ascending). (A total of 2n —1 lines now appear.) '

(b) Always working to the right of the vertical line, connect the vertices with full lines in all possible ways that maintain
the direction of the dashed lines at each vertex. Disregard diagrams that may be disconnected by cutting a single local con-
figuration line—they do not contribute to the irreducible self-energy.

(c) Assign quantum numbers km (m) to full lines (dashed lines), conserving angular momentum at each vertex.

(d) Assign to ascending conduction lines a factor 1— f%, and to descending conduction lines a factor fym, with f the Fermi
function. Draw a perpendicular to each local configuration line, and assign to it an energy denominator (z —E,)~!, where
E, is found by adding the energies of ascending lines intersected by the perpendicular and subtracting the energies of des-
cending lines intersected.

(e) Multiply the product of energy denominators and Fermi factors by (g¥)?"(—)°, where c is the number of conduction line
crossings. Sum on all internal variables.

FIG. 3. A two-member family of coupling-constant diagrams [Eq. (2.20)]. The second diagram may be obtained from the first by de-
taching vertex 1 from the empty-state line above it, then swinging this vertex (together with its attached conduction and occupied-
state lines) to the top of the diagram. After performing the coupling-constant integration, one obtains from these diagrams

dz _ 1 1 1 1 1 1

(—ps—B [ Eom LS ff (- i)

6 Jr 27 z—¢gf kE, =2 3 Z—&, z—sk1+ek2—af z—£k1+ek2—ek3 z+ak2—ek3—af Z—Ex,
s B [ 9z gl 1— 1 1
=(=UV=c Jromi® 2 kzif"z( fk3)fklz+5k2—‘5f zZ 4k, —Ek,

1 1 1
Z &k, — €k, +Ek, —€f Z —Ek +Ek, Z+Ek —Ef ’

The equality of the two expressions follows by letting z—z +ek, in the first integral.
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dz g, 1—930(2) /32
~_.€

ZV/Z g =Ne 7 s Mol
/. band e + fl" 2ri z—Ef)”(z)

(2.24b)
As noted by Brandt, Keiter, and Liu (1985), the first term is actually O (N), rather than O(1). This term formally dom-
inates the expansion at finite temperature for N— . However, in the zero-temperature limit, this term is exponentially
small and may be safely neglected.

The O(1/N) contribution to Z /Z,,q follows by similar manipulations. (The coupling-constant integration may be
carried out exactly in each order of the expansion by suitable use of partial fraction techniques.) The resulting expression

is

1 1/N
g [ d, | ST

EE)I/N)

+
307 T zozP

1
=L Bz___ V2 22: ,
r 4ﬂ'ie N(N ) kk'fk(l fk)(

The appearance of the factor fj(1— fy:) indicates the in-
clusion of one electron-hole pair beyond the O(1) ground
state. In the following section Egs. (2.24) and (2.25) are
used to derive the ground-state energy and zero-
temperature thermodynamics at O(1) and O(1/N). The
corrections to the partition function and thermodynamic
properties of O(1/N?) have been computed by Bickers
(1987).

C. Thermodynamic properties at zero femperature

Equations (2.24) and (2.25) may be used to derive the f
valence (fractional occupancy of the f level), charge sus-
ceptibility, magnetic susceptibility, and specific heat to
O(1/N) in the Fermi-liquid regime. In this limit, the cal-
culation may be simplified by noting that the contour in-
tegrals reduce to a pole contribution and branch-cut in-
tegrals. The contribution from branch cuts is exponen-
tially small for T—0. We sketch the derivation below,
assuming for simplicity a flat density of states, with sharp
cutoffs at +D. [See Rasul and Hewson (1984a, 1984b);
Brandt, Keiter, and Liu (1985).]

The dominant low-temperature contribution to Z'!
[Eq. (2.24b)] arises from a pole at Ey(T), the most nega-
tive solution of the equation

o— ReZ{P(w)=0. (2.26a)

For a flat density of states, Ey(0) satisfies the equation

M -

km k

FIG. 4. Empty-state self-energy at O (1), =((z,g).
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1 1
z4ep—ep)? [z —ZD)][z+ex —ep— 30 (z+ex —ex)]
(2.25)
Ef—@
0= |22 (2.26b)
D
For convenience we frequently write this zero-

temperature solution simply as Ej, and introduce the ad-
ditional notation

TA EEf——EO . (2.273-)

In the limit |e;| >>NT, T, is an exponentially small
scale:

7TEf

. (2.27b)
NI

TA ~D exp

The solution to Eq. (2.26b) is plotted graphically in Fig.
6. Note that Eq <&;. Thus

E, —BE
BEo_, ¢ =PFo

zWz, —>Ne s pe” (2.28)

This identification holds to exponentially small terms,
and E, is the Anderson ground-state energy to terms of
O(1). The zero-temperature valence, susceptibilities, and
specific heat follow by differentiating Eo(T) | 7—o. The
valence and susceptibilities are defined by the relations

A,
A A
s By« HYY vs B
A A
A

|
2 - z—ES’(z,g)

FIG. 5. Empty-state self-energy at O(1/N), p N’(z,g). The
dressed O(1) “propagator,” 1/(z —={"), is denoted by a double

wavy line.
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Eo €
5 T T A
' P4
] ’
:
i /
] ’
] 4
1
]
o 1
a i
N H
~~
3 :
s '
8 ;
Q i
~ H
-5 '
[}
(]
]
4
1
]
)
4
I,l
Y 5 1 ] 1
Ly = 0 3
/D

FIG. 6. Graphical solution of Eq. (2.26b) to find the ground-
state energy at O(1). For g <<0, there are in general three
solutions. The lowest solution is the ground-state energy
Eo=¢;—T,4; with exponential accuracy, T, =D exp(mes/NT).

w_8Eo ) 3’E, . ’E,
R =8, e T a2 =
€f

a£f aH2

(2.29)

H-—0

Since the free-energy F= — T InZ, the specific-heat coef-
ficient may be found from :
‘j—Tln(Z“)/Z )
oT band

AEy(T)
ToarT

N')/(I)T .
T—0

T—0
(2.30)

The valence is computed first. Differentiating Eq.

(2.26) for w=E|, gives

_"_’_E_o_ivf_af

dey T Ogf E0—£f+s
_|{_9%0 |NT fo de
dgs T -D (E0—8f+8)2
oE
SRS £ PR 2.31)
1TTA aEf
Thus the O(1) valence is just
oE
(m_270 B
ng 3%, l4p’ (2.32)
with
NT
n= aTy (2.33)

The charge susceptibility results from differentiating Eq.
(2.31) with respect to £ once more:

_62E0 3’Eq NT f de
as, as, -D (Eo—ef+s)2

NF f_

E,

+ |1—

aﬁf D (E0—8f+5)3 ’
(2.34)
ie.,
e 3B p 1
¢ 9ef  (14pu) Ty
=(m/ND)[nf"P[1—nf"]. (2.35)

The charge susceptibility vanishes in the integral-valent

The magnetic susceptibility follows by a similar calcu-
lation. For simplicity we assume that the g factors of the
f and conduction electrons are the same. (This assump-
tion is dubious in real systems.) Note first that

_ oE, _L_a_z f f(e—mg,uBH)
oH T 0H - Ey—es+e
I 9E fle—mgugH) D df(e—mgugH) 1
= E———————— 2.36
T BH f— (Eo—es+e)? +mgup f_DdE dc Eo—gs+e (2.36a)
The right-hand side may be expanded to linear order in 2 2
H as PY QST R/ B N0 M (2.38)
1+p 3T, 7 3T,
NL | 3Eo —2 4 __( gup)? -l 2 m ] Finally, the specific heat follows from
T oH
Tl 4 _ oE, _ NT fD _ af(e) 1
QE, 9Eo y.12~H (2.36b) orT T J-D oT Eo—es+¢
) oH 3TA ’ ’ f(g) aEO
Wlth 5 (E0—€f+8)2 oT
wi=ji+1gus)*. (2.37) - oOF
Solving for dE,/dH in Eq. (2.36a), then differentiating =l3‘,u—T—A +,u—5§,0— , (2.39)

with respect to H gives
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applying Sommerfeld’s expansion (Ashcroft and Mermin,
1976). Thus

2 2
m__pMH T (nH_m

14u 3T, 7 3T,

14 (2.40)

The Sommerfeld ratio R, i.e., the ratio of the zero-
temperature susceptibility and specific-heat coefficient,
has the value

R(l) 2/3 X(l)

W3 (2.41)

at O (1) in the large-degeneracy expansion. This is the re-
sult expected for a noninteracting Fermi gas of quasipar-
ticles.

In order to extend the expansion to O (1/N), it is neces-
sary to extract the contribution to the free energy from

Eq. (2.25). As before, this contribution arises from the
most negative poles of the integrand; the contribution
from branch cuts is exponentially small in the limit
T—0. The poles appear in the factors [z—2\"(z)]~! and
[z4ex —ep— 2z + g5 — )] ! at z=E, and
z+4gp—gp=Ej, with Ey(T) the solution to Eq. (2.26)
found previously. Since

Z(I/N)

Z=Z"D |14 i +0(1/N?),

the free energy may be written

Z(l)
Zband

ZWN

In Z D

F—Fogng=— = (2.42)

1
B

When the expression for Z'/¥ in Eq. (2.25) is substi-
tuted, and the pole contributions extracted, the result for
the excess free energy in a finite magnetic field is

-+

1

F—Fiana=Eo(T+5Z(E)V* 3, {fk< 1—fr)
kk'm

m -1
0

Z(E())= 3z

z=E,

(E0+8k~—-8fm )2 E0+€k-—-Ek'—~2é)1)(E0+Ek—-€k')

+(k<k")

(2.43)

where €5, =¢f —mgupH, and g,&; depend on the field i 1n the same manner. We intentionally retain a form symmetric
in the indices k and k’. The denominator containing 3!’ becomes singular for &, —&;; nevertheless, the sum of terms in
large parentheses remains nonsingular in this limit. (This is an important point in the derivation of X!!/" and /M)
The second term in (2.43) contains several field- and temperature-dependent factors, each of which must be differen-
tiated in calculating zero-temperature properties. The evaluation of the susceptibility and specific heat is summarized in

Appendix A.
To O(1/N), the susceptibility and specific heat coefficient for a flat band density of states take the form
2 (1) 2
K 20144) u
X(l) XN - ad B 1 u Lo—Lo—M— |2— L ,
+ 3 TA TaqpN | @ T 14p [
o (2.44a)
W M _ T3 |, pam X 1
+ XU +X |l
YT = N | T sp?
[
where 2
K= R A (2.45b)
L fD/TA dy 1 0 [y+,uln(1+y)] (1+y)
" Jo y+uln(l4y) (14yp)" These results are valid to terms of relative order T, /D
P22+ ) (2.44b) when the impurity level e, lies within the conduction
M= o dy 5 B -43-y . band. When the level lies outside the band, extra terms
[y +uplIn(14-y)] (14y) arise in the simplification of the two-dimensional in-

The f valence (Rasul and Hewson, 1984b) may be written

M, /N _ M N
n n = 1 L,—uk
frt+ny T+n +(1+.“')N 2TH
Ll ’
14+p
(2.45a)

with
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tegrals derived in Appendix A. (See also the discussion of
this point in Sec. IL.E.)
From Eq. (2.44), the Sommerfeld ratio at this order is

/3 X 1L
u;/3 v N

1
R= l————— | +0(1/N?) .
{ (14p)? l+

(2.46)

This may be compared with an exact Ward identity, or
Fermi liquid relation, connecting the magnetic suscepti-
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bility, charge susceptibility, and specific heat of the de-
generate Anderson model (Yamada, 1975; Yosida and Ya-
mada, 1975; Yoshimori, 1976):

+0(1/N?). (2.47)

1 m?
At
It is easy to check using Egs. (2.35), (2.40), (2.46), and
(2.47) that the Fermi liquid relation is satisfied within the
large- N expansion at O (1/N). Bickers (1987) has extend-
ed this conclusion to O (1/N?).

The source of Fermi-liquid-like corrections in the Som-
merfeld ratio beyond O(1) is the appearance of singlet
electron-hole pairs in the perturbative ground state. Such
a pair appears in the rightmost diagram of Fig. 5: a hor-
izontal line cutting the O (1) empty-state propagator in-
tersects a rising band line (an electron) and a falling band
line (a hole). The electron and hole lie within the same
angular momentum channel and carry no net spin. Hence
the pair excitation does not couple to an applied magnetic
field. Nevertheless, the presence of electron-hole pairs in
the interacting ground state alters the effective density of
states probed by the low-temperature specific heat, in-
creasing the Sommerfeld ratio from its Fermi-gas value of
unity.

The fact that Eq. (2.47), a nontrivial identity connect-
ing three thermodynamic properties, is satisfied order by
order is one of the strongest indications that the zero-
temperature 1/N expansion is convergent (or at least
asymptotic). It is not clear a priori that this should be the
case. If, for example, the exact expressions for n r, X, v,
and X, were nonanalytic in 1/N after setting NV? con-
stant, infinite-order resummations of large- N perturbation
theory would be required. (This is just the case for per-
turbation theory in the hybridization width I".) The fact
that the Sommerfeld ratio emerges correctly does not
prove that the ground-state expansions are convergent, but
it strongly favors this possibility.

temperature expansions has been presented by Rasul and
Hewson (1984b). After obtaining an exact relation be-
tween the band cutoffs in large- N perturbation theory and
the Bethe ansatz, these authors were able to compare re-
sults for X and n; within the two techniques. The com-
parisons demonstrate agreement at O(1) and O (1/N) for
the full range of €. These results are discussed at greater
length in Sec. ILF.

The convergence of systematic expansions for finite-
temperature properties like ny(T) and X(T) remains un-
certain. Comparison with exact results requires the solu-
tion of the finite-temperature Bethe ansatz integral equa-
tions within an O(1/N) approximation and the calcula-
tion of complicated branch-cut integrals from large-N
perturbation theory. The convergence of the ground-state
expansion suggests that a systematic approach may
succeed at finite temperatures as well. However, at the
present time, approximate infinite-order resummations of
large- N perturbation theory (see Sec. V) provide a simpler
route for computing finite-temperature properties.

D. Propagator for f electrons i

The perturbation theory for the partition function
described in Sec. IL.LB may be extended to correlation
functions as well. The derivation of correlation functions
for general many-particle systems with strong local corre-
lations is described in Appendix B, following a treatment
by Keiter and Morandi (1984). Here we state only the re-
quired result for the finite-temperature f-electron propa-
gator Gyliw, ):

- B i
Grlio,)= fo dre'"Gy(r) ,
G(1)=— (T, Fp(r)F(0)) ,

with

(2.48a)

=|0){m]|, (2.48b)

an f-orbital projection operator. In terms of the eigen-
states of the unperturbed Hamiltonian | N ),

Further evidence for the validity of the zero-

1 dz e“Bz
Z/Zyona jap. “T 2wz

Gylio,)= 2 (N |[V(z+Ey—Ho) ') | M3)

Zband Lm
XAM; | Fp | M) {M; | [(z+Ey +io, —Ho)~'VI™ | M)

X (z+Ey—Ep, +iw,) " (M, | F}, [N) . (2.49)

This complicated expression may be simplified and given a diagrammatic interpretation using the techniques of Sec.
IL.B. Diagrams for the f Green’s function have a simple form. The right-hand side of Eq. (2.49) closely resembles the
expression for the empty-state contribution to the partition function [see Eq. (2.14)]. G 7 resembles the empty-state con-
tribution to Z/Zy,,q since necessarily the f configuration in the initial state |N ) is empty. The expressions for
Z /Zyang and Gy differ in the following ways: (a) only one factor of 1/z appears in the integral representing Gy; (b) in
Gy, factors of V are at two points replaced by factors of F,, and F,,, ; () in all energy denominators to the right of F,,, an
additional factor of iw, appears.
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TABLE V. Diagrammatic rules for evaluating the f Green’s function G,(iw,).

To compute a general contribution to Gliw,) of O(V*"), n>0:

(a) Set down 2n 42 vertices (solid dots) in a vertical line. Beginning at the bottom with a dashed line, connect the vertices
with alternating dashed and wavy lines (all ascending), finally leaving the top vertex on a wavy line. (A total of 2n +2
lines now appear.)

(b) Counting from the bottom, convert the first vertex to an open circle (to represent the operator F:, ); convert an even-
numbered vertex to an open circle (to represent the operator F,,).

(c) Always working to the right of the vertical line, connect the remaining 2n vertices with full lines in all possible ways
that maintain the direction of the dashed line at each vertex.

(d) Working on the left side of the diagram, connect the open circles with a dash-dotted “external line,” carrying energy iw,
from top to bottom.

(e) Assign quantum numbers km (m) to full lines (dashed lines), conserving angular momentum at each vertex.

(f) Assign to ascending band lines a factor 1—f),, and to descending band lines a factor fy,,, with f the Fermi function.
(g) Draw a perpendicular to each local configuration line and assign to it an energy denominator (z —E,)~!, where E, is
found by ‘adding the energies of ascending lines intersected by the perpendicular and subtracting the energies of descending
lines intersected.

(h) Multiply the product of energy denominators and Fermi factors by V?*(—)°. Here c is the number of line crossings on
the right side of the diagram. Sum on conduction momenta and internal angular momenta.

(i) Compute the contour integral

1 [ dz

_BZR
z, Irom® @,

where R is the result of the preceding operations, Z; is the system partition function, and I' encircles all singularities of R
in a countercloskwise fashion.

Points (b) and (c) may be implemented in each empty-state partition function diagram by replacing the band electron
line which enters the lowest vertex with an “external line” of frequency iw,. See Fig. 7. (In the figure the external line is
dash-dotted and drawn to the left of the diagram to prevent confusion with conduction lines.) This means that contribu-
tions to the Green’s function may trivially be obtained from diagrams for the partition function by applying the rules
outlined in Table III, making the necessary replacement of a single line, and finally dividing through by Z/Z,nq. We
display the rules explicitly in Table V. ‘

We proceed to compute contributions to G, at O(1) and O(1/N), following the work of Brandt, Keiter, and Liu
(1985). The diagrams contributing to G at O (1) are displayed in Fig. 8. Summing this series gives

h

(1) 1 dz e B & 22)1)(2) 1 1 dz e~ P 1
Gy (ion)=—75 ; 2 ; =_m ; m ; :
ZW/Zana “T 2wz 2 z z+iw,—tf Z'V/Zyug T 2Wi 234 (2) z+iw, —¢f
(2.50)
For T—0, only the lowest pole of the integrand contributes, and
—1
Z(E,) 5
G iw,)=————, Z(Ey)= [1— 2.51
r o=, 7, ZEd) 3E, 2.51
Note that Z‘V/Z, .4 cancels the factor of e P04t the pole. The corresponding spectral density is
plw)= —i ImG (0 +i01)=Z(E))8(0—T)=[1—n{"18(w—T) . (2.52)

The delta function simply represents the process of adding an f electron to the ground state with energy T,4. Z (E,) may
be interpreted as a quasiparticle renormalization factor, reflecting the small admixture of the empty state in the O(1)
ground state.. The delta function is the lowest-order approximation for a narrow Fermi-surface resonance (the so-called
Kondo-Abrikosov-Suhl, or Kondo, resonance). The resonance appears as a delta function in O (1) treatments, since its
half-width is of order 7T 4 /N. Low-temperature electronic transport properties are controlled by the growth of the Kon-
do resonance (since the conduction-electron scattering rate is directly proportional to the f spectral density).

At O(1/N), a large set of contributions to G, appear. The three types of contribution are the following: (a) self-
energy insertions which lie entirely above the external (iw, ) line [see Fig. 9(a)]; (b) self-energy insertions parallel to the
external line [see Fig. 9(b)]; and (c) additional contributions to Z /Z,,,q in the denominator of Eq. (2.49). Note that no
contributions arise at this order from diagrams with crossing conduction lines. All contributions may be obtained by ex-
panding the expression
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G/(’l)(i“’n)"'GJ('l/N)(i“’")“’_Z—m?me:_l/zv_) r%e_ﬁzz_zg”(z)f—z{)‘/”’(z)
1 1 2 1—fy ’
Ztio,—gf  (z4io,—er)?  F z4io,—e—2(z+io, —e;)
(2.53)
to O(1/N). This gives immediately
(1/N) —Bz
G}t/N)(iwn)=_ ZZ“) G}l>(iw,,)+}'(—l)~/1;b;~ r% (z+im,,—zf)‘[gz—28”(z)]
p2 1—f =3M(z)
‘Z—Hwn-Ef % z4io, —& —2Mz+io, —&)  z—2(z) ] '
(2.54)

In this expression, 24!/ is given by Eq. (2.23). The first term in (2.54) is a renormalization of the O(1) result. The oth-
er terms may be evaluated at zero temperature by considering only pole contributions. The zero-temperature form of
G}l /N) is worked out explicitly in Appendix C. Here we only quote the result:

G Niwy)+G i, ) =Qliwy)+Biliw,)+Bylio,) 2.55a)
with
2
1 3 |sumy,,_Z—Eo)”
Quien)=70"T, [Z(E°)+ o [ L3P |5
Bylio,)=————Z(Ey) 2> 1=/ —Z(EQ)ZSM(Ey) |,
! " (iwn_TA)z k iwn+E0—Ek_z (iw"+E0‘_€k) . (255b)

1

Jr
Byliw,)=—Z(Ey)V?
2tion) VI 17

—iwy+Eo+e;—Z(—iw, +Eq+ex)

—NV?

-1
as{!

"~ JE,

Z(Eg)= [1

The term Q is formally a quasiparticlelike propagator
with excitation energy T ,, while B, and B, are back-
ground contributions singular near T,. Closer examina-
tion (see Appendix C) reveals that Q has a logarithmically
divergent quasiparticle renormalization constant. The
divergence arises from soft electron-hole pairs in Z{!/V,
Retaining only the leading term and the most singular
correction, the renormalization constant takes the form

(l—n}”) 1+%[n}”]21n1\ +(nonsingular) , (2.56)

with A a formal infrared cutoff, i.e., a minimum
electron-hole excitation energy at the Fermi surface. Re-

markably, this infrared divergence is canceled by a com-

pensating logarithm from the second term in B,. The
real and imaginary parts of the Green’s function are finite
for all w#T,.
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1—for 1 ]

o ioy+er—er—Ty [Eo+ex—ep—20 (Eg+ep —gg) ]

As shown in Appendix C both the compensating diver-
gent contributions arise from the diagram in Fig. 9(a).
This diagram represents the O(1) Green’s function,
dressed by the lowest-order correction =y!’Y to the
empty-state propagator Go. The propagator G, is not it-
self physically measurable; however, as shown in Sec.
I1.B, its spectral density may be interpreted as an overlap
function for eigenstates of the noninteracting and in-
teracting Hamiltonians. If the empty-state propagator ex-
hibited an isolated pole at the energy of the interacting
ground state Eg, the residue at this pole would be precise-
ly |(0;Q|®y) |2 the overlap of the noninteracting and
interacting ground states [cf. Eq. (2.18)]. Within the
large-N expansion, the empty-state propagator exhibits
such a pole at O(1) [cf. Eq. (2.26)]. The residue is
Z(Ey)=1—n }”, the quasiparticle renormalization factor
introduced previously. In carrying the expansion to
higher order, one implicitly assumes that this pole shifts,
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(a) (b)

A
A
A —>
A
o
iWn
. 1

g

FIG. 7. Diagrammatic relation between the partition function
and f Green’s function. (a) An O(1/N?) empty-state contribu-
tion to Z/Zyyg in the representation of Eq. (2.14). (b) The
O(1/N?) contribution to Gsliw,) analogous to diagram (a).
Diagram (b) is obtained from (a) by excising the bottom empty-
state line, replacing the lowest conduction line with a dash-
dotted external line of “energy” iw,, and replacing the interac-
tion vertices at the ends of the external line with open circles,
representing the operators F,, and F,L.

but remains isolated. [The shift in the pole is just the
order-by-order correction to the ground-state energy,
found using Eq. (2.21) or alternatively Eq. (2.16). Correc-
tions to the quasiparticle renormalization factor do not
appear explicitly in expansions based on Eq. (2.21), and
cancel from expansions based on Eq. (2.16).] In fact, the
quasiparticle renormalization constant diverges logarith-

NT 1

(1/N) 1 o
N T (w— TA )

Pr (0)=

é )
A + +
+ LI — . R
iwn“? A é A |wn‘{"\g
iwp¥ A
S
'wn\{\g‘

FIG. 8. Diagrams contributing to the f Green’s function at
O(1). All contributions may be obtained by dressing the
empty-state line at O (1).

mically when computed, order by order, in a large-N ex-
pansion. The expression for Z(Eg) at O (1/N) is precise-
ly the quasiparticle renormalization constant in Q above.
Read (1985) has conjectured that the logarithmic diver-
gences in Z (E;) may be resummed as a geometric series,

and that the ground-state overlap vanishes as Anf2 /N, with
ny the exact f valence. Such an infrared overlap catas-
trophe is expected on general grounds (Anderson, 1967)
whenever a Fermi sea is subjected to a localized perturba-
tion. The noninteracting ground state is effectively “lost”
in a cascade of soft electron-hole pairs. The conjectured
overlap exponent assumes the form expected (Nozieres
and de Dominicis, 1969) for N-channel scattering by a
Fermi-surface resonance. The remarkable success of the
large-N expansion is based on the fact that divergences
due to the overlap catastrophe cancel in physical results
(such as the f Green’s function above).

The f-electron spectral density assumes a much simpler
form at O(1/N) than the full Green’s function. As
shown in Appendix C, for a flat density of states,

T +R(0)~0—T,),

(2.57a)
1

1 NT
R(w)= NZ(EO) -

This relation was first derived by Gunnarsson and
Schonhammer (1983b) within an alternate approach (see
Sec. IV.B). The first contribution, which diverges qua-
dratically at T, is just the lowest-order term in the ex-
pansion of the Lorentzian function

T,/N
(00— TA )2+(7TTA /]V)2
(2.57b)

Zr /7 "
(w—T4)P+(ZT)?

in powers of 1/N. Hence, at this order, the large-NV ex-
pansion is consistent with the appearance of a Fermi-
surface “Kondo resonance” with excitation energy T,
half-width Z (E,)T, and weight Z (Eq)=1—n}".

The value of the spectral density at zero frequency, i.e.,
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2
—o de
fTA (@+e—T4)? [e—(NT/m)In(e/T4—1)]*+(NT)?’

—D<w<T,.

(a) (b) (c)

° 1?2 iwn‘.{b

\8

FIG. 9. Diagrams contributing to the f Green’s function at
O(1/N). (a) Contribution from the O(1/N) empty-state self-
energy. Note that this correction to the O (1) diagram appears
above the external line. (b) Contribution from the O(1/N)
occupied-state self-energy. This correction appears parallel to
the external line. (c) Contribution from the O(1/N) term in the
partition function.

()] (1/N)
(27427240

iw\;,‘
n~\6
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at the Fermi energy, is just

(l/N)( )__1_____&__ 1 p= NT
N (14p2? Ty’ mT4

This result satisfies the Friedel-Langreth sum rule
(Friedel, 1952; Langreth, 1966), a nonperturbative relation
connecting the f valence and spectral density, to O (1/N).
The sum rule states

(2.58)

’?Tl’lf

N

R SR
pf(O)—ﬂ_ sin

1_p 7
N (1+p)? NT

1 u 1 )
- — +O(1/N*).
N (14pu)? T,

O(1/N?)

(2.59)

It is encouraging that the perturbative expansion satisfies
an exact relation between static and dynamic quantities.
This constitutes additional strong evidence that the ex-
pansion is actually convergent (at least for 7—0).

For |w|, |&s|, and NT >>T, the integral contribu-
tion to ps in Eq. (2.57) may be simplified. Note that the
largest contribution to the integral arlses for e~ —w.
Thus

R(w')~n(1) 1 Nl“/n'
7 N [—o—(NT/m)In(—w/T4—1)P+(NT)?
—w TAd(-:
XfTA (a)+€—TA)2
L NL/m
7 N [—w+e&—(NT/m)In(—w/D)P+(NT)? ’
(2.60)

dropping terms of relative order T, /NT and T,/ |ey]|.
This contribution to the spectral density is a broad reso-
nance (half-width ~NT) with weight ~n }”/N per angu-
lar momentum channel; the resonance peaks at
€p=gr—Ags with Aes the highest-energy solution of

Pf‘T
I
|
|
I
I
|

T~ X

g’f Ta w

FIG. 10. Single-channel spectral density for f electrons p; at
O(1/N). A 8 function with weight 1— (”+0(1/N) appears
at w=T,4. An infinite-order summation in 1/N is required to
smear this & function into a true “Kondo resonance” (with
half-width of order #T,/N). A broad, nearly Lorentzian reso-
nance (half-width of order NT') appears at € ~¢&,. The weight
of this resonance is approximately nf''/N. The spectral weight
at the Fermi energy is finite and in agreement with the Friedel-
Langreth sum rule.
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NT

w—¢
0=3w)="1n L
w

D

(2.61)

The characteristic two-peaked form for the O (1/N) spec-
tral density is sketched in Fig. 10.

It should be noted that the large-N expansion for Gy
breaks down near w=T,. This is because the imaginary
part of the f-electron self-energy is O (1/N) for all values
of w. Since the imaginary part vanishes at O (1), a zero-
width resonance (i.e., a delta function) appears in the
spectral density at this order. The singularity at 0 =T,
cannot be removed by expanding G, and p; in powers of
1/N: at lowest order, a simple pole appears at T,, at
O(1/N) a double pole [cf. Eq. (2.55b)], and so forth. The
1/N expansion for Gy is nonuniform in frequency. A
nonuniform expansion may nevertheless converge point-
wise at all points (except singular points like 0=T,). In
particular, the singularity at 7, does not rule out the ex-
istence of a convergent expansion for G, near zero fre-
quency. Furthermore, a large-N expansion may still be
generated for low-temperature transport properties (which
depend only on the form of the f spectral density near the
Fermi energy). [Transport properties in the Fermi-liquid
regime have been investigated using the equivalent tech-
niques of Sec. VI (Houghton, Read, and Won, 1987).]

E. 1/N perturbation theory
for the Cogblin-Schrieffer model

Up to this point we have limited our discussion to tech-
niques for treating the infinite-U Anderson model. In
this section we show how these techniques may be adapt-
ed to treat the Cogblin-Schrieffer model (Coqblin and
Schrieffer, 1969).

Recall from Sec. I.B that the Cogblin-Schrieffer Hamil-
tonian takes the form

Hcs=Huvana +Hinty Hoand= >, clkm
; o (2.62)
Higy=—J 2 Ck'm’ I m)(m' ’ Ckm -
kk'mm’
The projection operator acts within the impurity Hilbert
space {|m): m=—j,...,j}. We shall find it con-
venient to rewrite the‘interaction as
Hmt‘“" 2 Crkm Im ><m 'ck' '_Jz 1.

kk'mm’

(2.63)

The constant term may be disregarded. In this form the
interaction operator resembles a product of interaction
terms from the infinite- U Anderson model:

(chm | M YO 0)(m" | o)

This correspondence may be exploited to derive a simple
set of perturbative rules for computing the partition func-
tion.

The coupling-constant representation for the partition
function from Eq. (2.10) is

(2.64)
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—BEy,
dzeBz eﬂ

2wz

ldg
Z/Zband_N Bfo fl" Zband n=1

A sample diagram which appears at O(J3) is shown in
Fig. 11(a). The dashed lines represent states of the impur-
ity and the solid lines band electrons; the square dots are
interaction vertices. [It is easy to find the term in Eq.
(2.65) which generates this diagram. We temporarily
postpone the enumeration of systematic rules.] Note that
two impurity lines and two band lines are attached at
each vertex. Diagrams become easier to interpret if the
vertices are “exploded” into wavy lines, as shown in Fig.
11(b). The wavy lines do not represent empty impurity
states; they serve as a bookkeeping device. The wavy lines
serve another purpose, however: when drawn in this way,
the Cogblin-Schrieffer diagrams are formally identical to
occupied-state partition function diagrams for the
infinite- U Anderson model [cf. Eq. (2.20)]. Contributions
to the Cogblin-Schrieffer partition function may be ob-
tained from Anderson model diagrams by a graphical
Schrieffer-Wolff (Schrieffer and Wolff, 1966; Keiter and
Kimball, 1971) transformation. If the integration variable
z in Eq. (2.18) is shifted by z—z+4-¢;, wavy lines in the
Anderson diagrams correspond to energy denominators of
the form

1

—_—. (2.66)
z+er+ €k,
i

Each denominator may be combined with two factors of
V from neighboring vertices. In the limit

Vi sw, gp—>—o, V2/ep=J<0, (2.67)

(a) (b)

A
A
A

FIG. 11. Diagrams for the Cogblin-Schrieffer partition func-
tion in the representation of Eq. (2.65). (a) An O(J®) contribu-
tion to Z /Zy,,q. The local f state is represented by dashed lines
and conduction electrons by solid lines. A shaded square
represents the four-fermion interaction vertex; a factor gJ is as-
sociated with each vertex. (b) The same diagram shown in (a)
redrawn with “exploded” vertices. This diagram closely resem-
bles the first contribution to the Anderson partition function in
Fig. 3.
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2 (N’gHmt{

[z —(Hpaa—En)1"'gHi}" "' [N) . (2.65)

every product of ¥? and an empty-state energy denomina-
tor is replaced by J. In this limit, occupied-state Ander-
son diagrams are mapped onto Coqblin-Schrieffer dia-
grams order by order in perturbation theory. The ex-
istence of such a transformation might have been antici-
pated from the form of the interaction in Eq. (2.63).

It is possible to write down diagrammatic rules for
evaluating the partition function using Eq. (2.65). It is
more convenient to introduce additional simplifications
based on analogy with the Anderson model. It was
demonstrated in Sec. II.B that perturbation theory for the
Anderson partition function may be streamlined by com-
puting only empty-state diagrams, then multiplying by a
factor of 2; it is relatively simple to develop a 1/N expan-
sion for the empty-state self-energy. The same concept
may be invoked to simplify perturbation theory for the
Cogblin-Schrieffer model, even though no empty state ap-
pears in the Hilbert space. The reason is that every
occupied-state diagram for the - infinite-U Anderson
model is related by a cyclic vertex permutation to an
empty-state diagram: the two diagrams contribute equally
to Z. Hence contributions to the Cogblin-Schrieffer par-
tition function may be obtained by considering either
occupied- or empty-state Anderson diagrams in the limit
of Eq. (2.67). If the latter choice is made, the rules in
Table IV, based on the empty-state self-energy, may be
adapted for the Cogblin-Schrieffer model: in Eq. (2.15), it
is only necessary to shift the variable of integration z by
z—z+¢; before passing to the Cogblin-Schrieffer limit.
This ensures that £ shows up only in empty-state denom-
inators (which are to be converted to vertices). In addi-
tion, note that empty-state self-energy contributions enter
the Cogblin-Schrieffer partition function with multiplica-
tive factor 1, not 2. Empty-state self-energy diagrams for
the Anderson model may be reinterpreted as “irreducible
polarization” diagrams for the four-fermion interaction in
the Cogblin-Schrieffer model. We shall generally refer to
them by this name.

Perturbative rules for Z based on irreducible polariza-
tion diagrams are listed in Table VI and illustrated by an
example in Fig. 12. The irreducible polarlzatlon to O(1)
is shown in Fig. 13(a). Thus

MV (z,g) =gM(z) g(NJ)z L
z+¢g
D
=—gNy f_D (2.68)
with
y=N()|J]| .

The associated contribution to the partition function is
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TABLE VI. Diagrammatic rules for evaluating the Cogblin-Schrieffer partition function using the irreducible polarization II.

To compute a general contribution to Z of O(J"), n>1:

(a) Set down n +1 short wavy lines (vertices) in a vertical line, identifying the top and bottom vertices as one. Connect the
vertices with ascending dashed lines. (A total of n dashed lines appear.)

(b) Always working to the right of the vertical line, connect the vertices with full (conduction) lines in all possible ways that
maintain the direction of the dashed line at each vertex. Disregard diagrams that may be disconnected by cutting a single
wavy line—they do not contribute to the irreducible polarization.

(c) Assign quantum numbers km (m) to full lines (dashed lines), conserving angular momentum at each vertex.

(d) Assign to ascending conduction lines a factor 1—f%, and to descending conduction lines a factor f,, with f the Fermi
function. Draw a perpendicular to each impurity line and assign to it an energy denominator (z —E,)~!, where E, is
found by adding the energies of ascending lines intersected by the perpendicular and subtracting the energies of descending
lines intersected.

(e) Multiply the product of energy denominators and Fermi factors by (gJ)"(—)¢, where c is the number of conduction line
crossings. Sum on all internal variables. Compute the contour integral

_ dz _g_Il(z,g)
Zlg=-8 I‘21Tte 1-1l(zg) ’

where II is the full irreducible polarization to the required order, including the result of the previous steps, and I' encircles
all singularities of the integrand in a counterclockwise fashion. Compute the coupling-constant integral

_&
Zband f Z(g)
Z2W0 2 f _B 0Pz glt'V(z) ~ tegral is dominated by an isolated pole E(7T) <0 at the
band r 277-1 1—gIV(z) solution of the equation
M) —
=Bfr22‘e—ﬁzln[1—n(l)(z)] Rell'V(w)=1. (2.70)
i
w (The branch cut along the positive real axis has terminus
_ dz o Pz —olIl'"(z) /0z ) (2.69) at the origin.) At T'=0, this equation may be reduced
T 27§ 1—-T1Y(z) (assuming a flat density of states) to
This form is quite similar to that for the Anderson —NyIn(—E,/D)=
model [Eq. (2.24b)]. As before, in the limit 7—O0, the in- .
ie.,
(a) O(J ) (b) E0= -'TCS , (271)

A A with
N
9 » NOT ~ TCS=De—l/NY .

This result is completely analogous to Eq. (2.27) for the
infinite- U Anderson model. In the Anderson model, the

g
g
K'm
+ (z+ek)_'
x(+0 3% [1-1,] | ‘
(z+¢,)”
Aem T A A
A + e = @

FIG. 12. Illustration of diagrammatic perturbation theory for A A
the irreducible polarization Il(z,g). The diagram constructed (a) (b) |

here is O(J?). (a) Vertices and f-electron lines. Three vertices

appear, but the top and bottom are to be identified as one.

Dashed lines represent the singly occupied f level. (b) Addition

of conduction electrons (solid lines). (c) Assignment of quantum

numbers. (d) Assignment of Fermi factors, energy denomina- g =0(l) VERTEX
tors, factors of J, and an overall sign. This diagram contributes
to the polarization FIG. 13. Irreducible polarization for the Coqblin-Schrieffer
model. (a) O(1) contribution, I1''(z,g). (b) O(1/N) contribu-
_I_(gNJ)22fk(1—fk.)_l__2_ . , tion, II'"/¥(z,g). The dressed O (1) vertex, gJ/[1—I1"V(z,g)] is
N k' ) denoted by a double wavy line.
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in the
the ground-state energy is

ground-state energy is lowered by T, at O(1);
Cogblin-Schrieffer model,
lowered by T'cs.

The zero-temperature susceptibility and specific-heat
coefficient follow by differentiating E(T) as in Sec. II.C.
One finds in this case

These are the analogs of the results (2.38)—(2.41) for the
infinite- U Anderson model. The Cogblin-Schrieffer re-
sults may be obtained from the Anderson results in the
limit

V2 0, gf—>—o0, I'/mep=7y . (2.73)

3E 'uz At O(1/N), the polarization diagram that must be con-
XV = — E};;i = 3T1 , mi=jiG 4+ 1(gps)?, sidered is that shown in Fig. 13(b):
cs
3E 2 BT g g = 2 Jell =) &/
YW= TR e 1Tt —eeg)
aT? 3T¢s
(2.74)
and . :
I W The contribution to Z/N/Z, . . analogous to that in Eq.
wn_m/3 X (2.25) may be found by performing the coupling-constant
75, 273 41 integration and combining terms:
Sie(1—Ffy) 1 1
ZUN /7 vana= et L vy . (2.75)
band = —B J N % (z4e)? 1—TN2) 1—TN(z+gp —ep)
Note that, in the presence of a field,
~1—(NJ)22 —J*S and e —ep, =g —mgupH . (2.76)
N kk' kk'm
From the pole contributions in the zero-temperature limit, the free-energy correction is
AFYN= L2 31V /BE) "' S | fell—fi) 1 L +(k<k') (2.77)

kk'm

This expression may be differentiated with respect to field
and temperature to obtain X! and y''/); the deriva-
tion is parallel to that in Appendix A. In this case, some
additional care is required to simplify the resulting double
integrals over the conduction band. (The same care is re-
quired for the Anderson model in the Cogblin-Schrieffer
limit —es >>D.) Omitting terms of relative order Tcs/D
and N7y, the results are

X=X“)+X(I/N)
i 1
: - -
- 1 - -_ -_ - -
T +N(2L3 L—L,—M l)],
2
W, a7 /3 | 1 (1/N)
= + =—|X 1—— X , (.78
Y=Y Y “§/3 N + ( a)
R=1++40]|-L
N N2 |’
with
_ D/TCS d 1
L=/ Y - -
0 In(1+y) (14+y)
, (2.78b)
_f Y
1+y) (14y)3
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Ep)? 1—M'"Ey+e, —eg)

f

As in the case of the infinite- U Anderson model, the non-
trivial Sommerfeld ratio at O (1/N) arises from the tem-
perature dependence of Bose-type electron-hole pairs
which do not couple to the magnetic field.

The integrals L, and M may be evaluated analytically
in this case (Rasul and Hewson, 1984a). The final expres-
sion for the magnetic susceptibility is

I

(1) (1/N)
= X =
X=X"+ 3Tes

1
1——=(1—C+ InN
N( + 7)

(2.79)

where Euler’s constant C=0.577 216.

We emphasize again that the results above may alter-
nately be obtained directly from the Anderson model re-
sults of Appendix A in the Cogblin-Schrieffer limit [Eq.
(2.73)]. However, a simple limiting procedure in Eq.
(2.44) does not yield all the terms in Eq. (2.78): this is be-
cause some of the steps in deriving (2.44) assume that
D >> —¢y, rather than —e; >>D (see Appendix A). Also
note that these results may be obtained from a pseudo-
Hamiltonian approach analogous to that discussed in Sec.
III for the Anderson model. In this case the pseudo-
Hamiltonian takes the form
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H pseudo = Hyong +Hipe

Hband = 2 Exlim > (2.80)
km

Hiw=—=J 3 clmfmfmcim (J<0).
kic'mm’
The pseudo-Hamiltonian is equivalent to the Cogblin-
Schrieffer Hamiltonian within the restricted Hilbert space
with

Z"m

Finally, it is possible to derive a functional integral repre-
sentation for the Cogblin-Schrieffer partition based on
Egs. (2.80) and (2.81); using this representation, one may
generate the large- N expansion for Z without introducing
a coupling-constant integration (cf. Sec. IIL.B).

mefm =1. (2.81)

F. Comparison of large-N and Bethe ansatz results

In this section we compare the results of large-N per-
turbation theory at zero temperature with results of the
Bethe ansatz (Andrei et al., 1983; Tsvelick and Wieg-
mann, 1983). This comparison provides strong evidence
that the large-N expansion for low-temperature thermo-
dynamic properties is convergent, or at least asymptotic
in 1/N. The Bethe ansatz technique is a diagonalization
scheme for many-particle Hamiltonians which yields ex-

2

act solutions for the equilibrium properties of the
infinite-U Anderson and Cogblin-Schrieffer models.
These solutions serve as a benchmark with which approx-
imate treatments, such as large-N perturbation theory,
may be compared. (As yet, the Bethe ansatz has not pro-
vided solutions for dynamic properties, such as the f
spectral density.) The most subtle aspect of such compar-
isons is the relationship between low-temperature scales in
the Bethe ansatz and conventional solutions. The Bethe
ansatz requires a “‘relativistic” spectrum for band elec-
tronms, i.e., a dispersion law g, =vk, — 0 <k < 0, With v
constant; a band cutoff at — Dg, must be imposed on the
charge-excitation spectrum of the interacting system after
the fact. In contrast, conventional treatments start from
a noninteracting conduction band with finite cutoffs at
+D. The expressions for characteristic energy scales in
the two methods consequently vary.

The relationship between energy scales in Bethe ansatz
and finite-bandwidth treatments of the infinite- U Ander-
son model has been extensively studied by Rasul and
Hewson (1984a, 1984b). It is possible to relate the cutoffs
D and Dg, for arbitrary N by expanding Bethe ansatz
and perturbative results for X and n; in some parameter
other than 1/N. It is necessary to choose another param-
eter since the Bethe ansatz results for these properties are
not analytic in 1/N. The general zero-temperature ex-
pressions derived by Ogievetskii, Tsvelick, and Wiegmann
(1983) and by Schlottmann (1982, 1983) take the form

exp(—iwAd—7|w|/N)

(2.82)

X—'uj _,e— f I‘(1+iw)(_iw+0+)—im(1v_1)/1v
~3 |Tarm T - T(1+io/N)(1—io)
nee=1——— f do TU+4io)—iw+40+) e -—D/N

& 2” —* 0+i0* T(1+iw/N)

A=7es/NT+[(N —1)/N]In(Dgy /eT')+ InN/N .

exp(—iwd—m|w|/N),

The expressions in Egs. (2.44), (2.45), and (2.82) may each be expanded in powers of NI /7e; in the “empty-impurity
limit,” €,— 0. Rasul and Hewson (1984b) have demonstrated that

nfzfrlerf: 177\'751; h]lvN+ [1 —11\7 In(NDgy /emes) +O(NI“/17':5f)3 (Bethe ansatz) ,
(2.83a)
nf—% % _%}[1+1n(D/gf)]+0(NF/1T£f)3 (large-N expansion) ,
while
X _._m NT 2_ NI ? 1——1 +M+2 _ 1 In(NDgy /emey) +0(NI‘/7r8f)4 (Bethe ansatz) ,
ui/3  NT || 7es mes N N N
(2.83b)
X _ . m NT 2_ NI ? 1___3_ +2[ 1 In(D /e s) +0(NI“/17'€/)4} (large-N expansion) .
pj/3  NT | | mes ey N N
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[Note that all terms of O(N I“/ﬂ'sf)2 are included in the
large-N expansion for ny at O(1/N). This is because all
diagrams of O(V*) enter the partition function at O (1) or
O(1/N). A similar argument holds for the expansion of
X.] The expressions for ny and X above agree provided

¢ __p (2.84)

DBA: A N .
NN/(N——I)

This is the necessary identification of cutoffs. Note that
this identification does not depend on the validity of the
large- N expansion. The expansion parameter is NI'/7e;.
The terms in Eq. (2.82) which prevent a series expansion
in powers of 1/N are eliminated when Dy, is replaced by
D; note, for instance, that

7T8f

A=—2L
NT

+ In(wD/NT) . (2.85)

1
1— —
N

Equation (2.84) serves as the basis for comparisons of
Bethe ansatz and large-N results for arbitrary e (since
the cutoff parameters cannot depend on the position of
the f level). It has been established analytically that the
expressions for ny and X in Egs. (2.44), (2.45), and (2.82)
agree at O(1) for all values of e;. Further, this
equivalence has been established numerically at O(1/N).

o) 0.2 04 06 0.8

FIG. 14. Comparison of zero-temperature large-N and Bethe
ansatz results for the f valence and magnetic susceptibility.
The curve above is reproduced from Rasul and Hewson, 1984b.
Results are shown for N =8, NT /7D =0.01. The full curve is
the large- N result to O (1/N), the dashed curve the large-N re-
sult to O(1). The crosses are results of the Bethe ansatz (in
terms of the conventional cutoff D) expanded to O(1/N). The
large- N results are in excellent agreement with the Bethe ansatz.

Rev. Mod. Phys., Vol. 59, No. 4, October 1987

This requires expanding the exact Bethe ansatz results for
ng and X to O (1/N). Results for X as a function of ny to
O(1/N) are reproduced from the work of Rasul and
Hewson (1984b) in Fig. 14. The curves generated by the
two methods are identical within numerical accuracy.
More detailed comparisons for the valence and suscepti-
bility as functions of &, are contained in Rasul and
Hewson (1984b).

We may summarize the logic establishing the validity
of a perturbative large-N expansion at zero temperature:
(i) the Bethe ansatz expressions for n; and X, when
rewritten in terms of the cutoff D, possess a convergent
(or asymptotic) expansion in 1/N; (ii) the agreement of
Bethe ansatz and perturbative results at O(1) and
O(1/N) establishes the validity of perturbation theory.
As discussed in Secs. II.C and IL.D, the perturbative ex-
pansion also satisfies an exact Ward identity, or Fermi-
liquid relation (Yamada, 1975; Yosida and Yamada, 1975;
Yoshimori, 1976) and obeys the Friedel-Langreth sum
rule (Friedel, 1952; Langreth, 1966) to O(1/N). Taken
together, these facts indicate that, at zero temperature and
frequency, 1/N perturbation theory leads to convergent
(or asymptotic) expansions. It is much more difficult to
establish convergence at finite T or w, but it is reasonable
to believe that the expansion remains valid over a finite
range.

The zero-temperature large-degeneracy expansion has
been of importance in establishing the universality of
Bethe ansatz and conventional (finite-bandwidth) ap-
proaches to the Cogblin-Schrieffer model (Rasul and
Hewson, 1984a). For N =2 (the spin-% Kondo model), a
nonperturbative proof of universality has been provided
by Andrei and Lowenstein (1981). [See also Andrei et al.
(1983).] The proof consists of showing that the same ra-
tio of characteristic high- and low-temperature scales is
obtained in renormalization-group (finite-bandwidth) and
Bethe ansatz studies. The low-temperature scale 77 is
defined by the relation

_H

1 o
X="F——, ui=jj+igus).

3T, (2.86)

The high-temperature scale has a more technical defini-
tion: at high temperature, the impurity susceptibility ap-
proaches Curie behavior with logarithmic corrections. As
shown by Rasul and Hewson (1984a), the exact behavior
for arbitrary N is

2

X(1=%4 2 2 Iln(T/Te]

e
NIn(T/Tgx) N? [In(T/Tg)]?

+0(n~3(T/Te) | . (2.87)

Tx is defined (Wilson, 1975) so that no terms of
O[In=*(T/Tx)] appear in this high-temperature expan-
sion. Rasul and Hewson (1984a) have computed Tk for
the Cogblin-Schrieffer model by direct perturbation
theory:
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14+C— =L |(Ny)Ne=1/N7 | (2.88)

2N

D
Tg="—
k=5 €xXp
with y=N(0) |J | and Euler’s constant C=0.577216.
The Wilson number (Wilson, 1975), which relates high-
and low-temperature scales, is by definition

W(N)‘—:TK/TL . (2.89)
This number has not been computed rigorously for arbi-
trary N. While the value of Tk is known within the
finite-bandwidth scheme [Eq. (2.88)] and T, is known
within the Bethe ansatz (Andrei er al., 1983; Tsvelick and
Wiegmann, 1983), it has not been possible (for technical
reasons) to derive the exact relation of the cutoffs D and
Dg,. (This relation is known for the infinite- U Ander-
son model [Eq. (2.84)].)

The large-N expansion for the Coqgblin-Schrieffer
model may be employed to derive W (N) perturbatively.
From Eq. (2.79), it follows that

T, =D [1+—1i7(1~c+ InNy) [e " 1¥Y +O(1/N?),

(2.90)

with C Euler’s constant. Combining this result with Eq.
(2.88) gives

1+C
wN =2 {1_—1~ [l-— InNy

2 N |2
> 1——117(1——C+lnN7/) +O(1/N?)

eltC 1 3 )
=S 1-% |5-¢||+oumn. @

The Wilson number has also been calculated by a nu-
merical technique within the Bethe ansatz for the
Cogblin-Schrieffer model (Hewson and Rasul, 1983). The
result postulated for arbitrary N is

el+C—3/2N
~2aT(1+1/N) °

This coincides exactly to O(1/N) with the result above
from large- N perturbation theory for the finite-bandwidth
model. From the postulated exact value of W (N) and the
exact expression for Tk in Eq. (2.88) an exact expression
for T, (and hence X) in the finite-bandwidth scheme may
be derived:

W (N) (2.92)

o
T 3T

T, /D=T(141/N)e!/N(Ny)l/Ne—1/Nv

(2.93)

Since W (N) has been established perturbatively, the ar-
guments above do not constitute a proof of the universali-
ty of the two approaches; however, the agreement is com-
pelling evidence in this direction. For completeness, we
note that W (N) for the infinite- U Anderson Hamiltonian
has been derived nonperturbatively (Rasul and Hewson,
1984b) by combining (a) the Bethe ansatz result for T,
(b) the relation (2.84) between D and Dg, (necessary for
translating 7; to the finite-bandwidth scheme), and (c)
results of a high-temperature expansion in the finite-
bandwidth scheme. Results of the Bethe ansatz and
finite-bandwidth approaches may be combined provided
D >> | g | >>NT (this is required since in the Bethe an-
satz approach Dgjs >> | € |). We list the values of T},
Tk, and W (N) for the Cogblin-Schrieffer and infinite- U
Anderson models in Table VII.

TABLE VII. Temperature scales in the Cogblin-Schrieffer and infinite- U Anderson models with conventional band cutoffs. The
characteristic low- and high-temperature scales in the Cogblin-Schrieffer model and the infinite-U Anderson model (for
NT << —¢&s << D) are listed below. A flat conduction-band profile with half-width D is assumed.

Definitions
2
KM
X 3T, ( : )
2
2 In[In(T /T,
Xz“‘_] 1— 2 nfin(T/ K)2] (T— )
3T NIn(T/Txk) [In(T/Tg)]
_Ix
T
Coqgblin-Schrieffer Infinite- U Anderson
. ) r /N e
1 | 1/8, 1/N, —1/Ny LA AR e
T, DT +N e M(Ny) e Dr 1+N D exp NT
/N
D 1 - D 3 ||NT TEs
T, - 14+C— /N, —1/Ny - 1+C — —=—
K 27 P |1 HC =5y |V e 27PN 17D | PP NT
exp 1+C——3— exp 1+C————§—~
2N 2N
w
1 1
27T 1+Nl 27T 1+N]
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lil. AUXILIARY BOSON TECHNIQUE IN LARGE-N

EXPANSIONS FOR THE INFINITE-U ANDERSON
MODEL

In this section we discuss an alternate approach to the
large-N expansion for the infinite-U Anderson model.
This approach is the auxiliary boson (or slave boson) tech-
nique introduced by Barnes (1976) and Coleman (1984).
This approach does not require the machinery developed
in Sec. ILLA and Appendix B for treating systems with
strong local correlations. It instead makes use of the
Feynman formulation for imaginary-time Green’s func-
tions. The two methods yield equivalent results and
differ only at the formal level. The technique in Sec. ILA
is, perhaps, more direct and physically motivated; on the
other hand, the auxiliary boson formalism is more closely
related to conventional many-body techniques based on
free-particle propagators. Furthermore, the auxiliary bo-
son approach allows the introduction of saddle-point ap-
proximations and an all-orders rearrangement of pertur-
bation theory for the Fermi-liquid regime (see Sec. VI).

We introduce the auxiliary boson technique in Sec.
III.A. To illustrate this technique, we rederive the O (1)
and O(1/N) contributions to the partition function in
Sec. III.B, employing a functional integral formalism. Fi-
nally, in Sec. III.C, we sketch the derivation of the f-
electron Green’s function using auxiliary bosons. The
reader interested in the use of saddle-point approxima-
tions for the functional integral may wish to read Sec.
III.A, then proceed directly to Sec. VI.

A. Auxiliary boson representation
for the Anderson Hamiltonian

The infinite- U Anderson Hamiltonian takes the form

H:Hband+Hf+Hmix’ Hband= Esknkm ’
km
Hp=¢g; 3 |m)(m| , (3.1)
m
Hoix =V 3 (clm [0)(m | +H.c.) .
km

The states |0) and |m) (m=—j,...,j) represent the
empty and singly occupied configurations of an impurity
f level. In the presence of an infinite on-site Coulomb en-
ergy, these are the only possible configurations. The
occupied-state degeneracy is just N=2j+1. The pres-
ence of projection operators |m){0| and |0)(m |
prevents the straightforward use of diagrammatic tech-
niques based on free fermions. Nevertheless, the infinite-
U Hamiltonian may be identified with an equivalent
operator acting within a restricted Hilbert space of free-
particle states. The use of equivalent representations of
this type dates from the work of Abrikosov (1965) on the
Kondo model. The complicating feature in the Kondo
model is the presence of ionic spin operators. Abrikosov
replaced these operators with fermion bilinears acting
within a restricted Hilbert space; since the fermions that
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appear in perturbation theory may not be interpreted as
physical particles, this approach has been termed a pseu-
dofermion technique. The same type of representation for
the infinite- U Anderson model was introduced by Barnes
(1976) and later by Coleman (1984). In this case, projec-
tion operators may be replaced by bilinears acting within
a mixed Hilbert space of Fermi and Bose states:

[0){m | —bf, |m)O|—flb,
|mYm | —f) fom .

Here f,, and b are Fermi and Bose destruction operators.
A pseudo-Hamiltonian may be defined on the full Hilbert
space. It takes the form

Hpseudo :Hband +Hf +Hmix ’

(3.2)

where Hy,,q is as before and now

Hp=c; > fifms Hmix=V 3 (cinb fm+Hec). (33)
m km

The restricted space of physical states is the subspace for
which

o+ 3 flfm=0=1. 3.4)

Within this restricted space, the properties of the pseudo-
Hamiltonian are identical with those of the initial Hamil-
tonian (3.1). This approach has been termed an auxiliary
boson technique, since a boson is introduced to represent
a system that previously contained only fermions. Here-
after we drop the subscript “pseudo” in describing the
auxiliary boson Hamiltonian.

The identifications in Eq. (3.2) do not constitute a
unique representation. One may equally well choose the
representation

[0)(m | >f1b,, |m)O|—b)f,

s (3.5)
l m><m | ~>bpy by, ,

with b,, and f Bose and Fermi operators. Even more
general representations are possible, since the pseudo-
Hamiltonian’s form outside the restricted Hilbert space is
completely arbitrary (Kotliar and Ruckenstein, 1986).
Note, however, that this equivalence of representations
generally breaks down when approximations are em-
ployed that introduce matrix elements beyond the restrict-
ed space. In this section we do not consider such approxi-
mations; the representation in (3.2) is then perfectly ade-
quate for all derivations. [A particular saddle-point ap-
proach, which violates the rigid occupancy constraint in
Eq. (3.3), becomes exact in the Fermi-liquid regime. This
approach is reviewed at length in Sec. VI1.]

B. Derivation of the partition function to O (1/N)

The aucxiliary boson approach allows the exact repre-
sentation of the Anderson partition function by a thermal
functional integral. In this section we demonstrate how
this representation may be employed to derive the Ander-
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son partition function to O (1/N).

The functional representation may be derived rigorous-
ly using a Trotter-type limiting procedure (Bickers, 1986).
Here we merely explain the rationale for this representa-
tion and quote the result. The partition function takes the
form ‘

Z =Tre PH (3.6)

where H is the pseudo-Hamiltonian of Eq. (3.3) and the
trace is restricted to the subspace of states with Q=1.
The trace may be extended to the full Hilbert space if an
“operator delta function,” which projects out the Q=1
subspace, is inserted. Such an operator is

. B ,
aT Metﬁh e——S’ Szfo drL(7),

Z=) 0 of€

L(T)= Cim
km

) = | 0 . =0 .
_gr_'*‘skm ]Ckm"*' %fm {3;+8fm +iA ]fm +§ lg; +iA

T Bdle_iﬁug—n _

ol 2m (3.7a)

Thus

~_ aT Bd;‘eiﬂ"Tre‘B””", H(A)=H +iAQ .
—aT 21

(3.7b)
Since the trace is now performed over the full Hilbert
space of Fermi and Bose states, a relatively compact func-

tional representation is possible. In the conventional con-
tinuum notation, the partition function may be written

(3.8a)

§+Vk2(gakmfm +§7mckm) >

with 7-dependent Grassmann fields ¢ and f and complex field £. The Grassmann fields enter quadratically and may be
eliminated, or traced over, in the usual way. The resulting expression involves only the complex field £ and the time-
independent “constraint field” A. In a frequency representation, the partition function becomes

T i —Blep+id)
Z/Zypng= f_ﬂT—‘—thkae'm(l—i—e Pleg+i )Nfge‘s,

S=—NTrln

where

Snn’
G(Ek )nn’EGk(iwn )Snn’= ;0__.8_
— ¢tk

n

Do (i, i) =D} (ivin) =~ 1

As always, w, and v,, are Fermi and Bose Matsubara fre-
quencies. Noté that the Bose propagator is written with
subscript “0.” We reserve the notation D* for a dressed
Bose propagator that appears at a later stage of the
derivation. [The inverse Bose propagator that appears in
the action S should strictly remain in a discretized form.
We regard the form in Eq. (3.8) as a notational short-
hand.]

Equation (3.8) provides a straightforward means for ap-
proximating the partition function within a large-N ex-
pansion. Before proceeding we mention an alternate form
for Z/Z,,,q discussed in the literature (Coleman, 1984);
this form is not so amenable to a systematic expansion in
1/N. Instead of employing the operator delta function in
Eq. (3.7a) to restrict the trace over states to the subspace
with @=1, one may write

Z =Trie PP = lim ¢PTre —FH®IQ

p—w

(3.9a)
with
H(u)=H+uQ .
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, Glef+iM)py=GHiwy)8 =

- d
m: Xnn'=En _n"» ngf I;Idgmdgmzfl;nl

(3.8b)

1—-72 3 Gle,+iMXG(e) X! ] —BS | &m |2D5 (ivpm,id) ,
k m

8nn'
ia),,—sf—ik ’ (38 )
(Reé,,)d (Imé,,) o¢

m

The presence of Q in the trace eliminates the contribution
from the subspace with Q=0, and contributions from
subspaces with Q> 1 are eliminated in the limit g— oo.
It follows that

BuTre —BH (1)
_ 1 eHTre P Hg Bu P
Z/Zba"d“ﬂll?; e FEE _#li{r:oe (Q)H*.

(3.9b)

The operator expectation value {Q )* may be evaluated by
standard Feynman techniques, including the use of the
linked cluster theorem. This approach is somewhat diffi-
cult to implement in large-N perturbation theory beyond
O(1); contributions to both 3, {(n,, ) and (b5 ) must be
computed at each order, and the number of diagrams that
arise quickly becomes unmanageable. It is much simpler
to work with Eq. (3.8). In this expression the fermions
have already been eliminated, and relatively few Bose dia-
grams are generated at each order. This is quite analo-
gous to the procedure in Sec. IIB. In that case, the num-



874

ber of partition function diagrams was reduced by consid-
ering an expansion based on the ‘“empty-state self-
energy.”

We now proceed with the derivation of Z‘'V and
Z1/N) The quantity NV? is to be treated as a constant
of O(1). To obtain all terms of O(1), it is only necessary
to retain terms of order |&,, |2 in the action S; terms of
quartic and higher order, which follow from the expan-
sion of the logarithm in Eq. (3.8), enter with coefficients
of O(1/N"), I>1. Thus

SD=—B |&m | DG iV i) —ITMiv,y)]

1 (3.10)

*(iv,,)=NV?
1V /3

S GHilw, +vp))Gilio,)
kn

_yprs LSl in
- X l'Vm—l.}L—}—Ek——Sf )

The term IT* follows from expanding the logarithm to
lowest order, then explicitly writing out the frequency
trace.

The Gaussian integral over the fluctuating fields &,,,
assuming the O(1) action, is

-5 —ipAy—1
=(1—
fge ( e )

Xexp |— ln[i —D}iv,) )T iv,y)]

(3.11)

The sum in the exponential may be transformed to an in-
tegral over the contour I'; surrounding the imaginary axis
in Fig. 15(a):

3 In[1—D§(iv,, )TMiv,,)]

_ dz_ A AT
=B [;, 57 5b@h[1-DiIM2)],  (3.12)

with b the Bose function. [This step actually requires
some care. For A a real variable (as we have assumed to
this point), the principal branch of the logarithm has a
cut along the line Imz =A with branch point at Ey+iA,
Ey <0. The contour of integration I'; must not cross this
cut. The solution to this technical difficulty is simple:
the representation in (3.8) continues to hold if the A in-
tegration is shifted into the complex plane by A—A—il,
with constant A,. With this shift, the branch point in the
logarithm is displaced to (Ey+Aq)+iA. By choosing

|
A My V]—Be—iBr [ 92 ,—p
Em In[1— DG (17, MMivy,)]=e " [ —=-e~Pn
iB dz
— —iBA bz Bz
=—Pe fr ol In

where

=(z)=NV?S, S/ —
r Z+E—Ef
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(a) (b)
n ;u}rz
qOT
I
(c) i
PR s

FIG. 15. Contours of integration for frequency sums. (a) Con-
tour of integration I'; for performing the Bose frequency sum in
Eq. (3.12). (b) Contour of integration I, after the variable shift
z—z +IiA, with Ag=ImA. The quantity A, may be chosen suffi-
ciently negative to ensure that I', lies entirely to the left of the
singularities of the logarithm in Eq. (3.13). (c) Contour of in-
tegration I' encircling the singularities of the logarithm in a
counterclockwise fashion.

Ey+Ap>0, the cut may be located entirely in the right
half-plane, and the step in Eq. (3.12) is allowed. We shall
implicitly employ this procedure whenever necessary.]
The complex integration variable may trivially be shifted
by

z—z +iA

giving
S In[1—D}(iv,, JTTMiv,, )]
m

A
1— I1(z)
z

dz .
_3fr1 S bz +iM)n ,  (3.13)

with

— (e)—f( iA)
firg=nye 3 Lo =/l
& Z+Ek—€f

and I', as in Fig. 15(b).
The Bose and Fermi functions may be expanded as

b(z +id)=e BE+iM | O (e —2Bry

(3.14)
Flep+iny=e Xt Lo (=28
It follows that
=((z) .
0 +0O(e %P
z
2(1)( ) )
1— 0 \Z +0(e~—2131)’
(3.15)
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and T is the contour illustrated in Fig. 18(c) below. (The expansion of the Bose and Fermi functions within the A in-
tegral may be simply justified. It was already noted that A should strictly contain a negative imaginary part. The expan-
sions in Eq. (3.14) are then uniformly convergent for ReAE[ — 7 T,7T]. Note that =i is exactly the empty-state self-
energy that appears in the treatment of Sec. IL.B.)

Finally, the O(1) partition function is

(1)
(1) __ T BdA iBA —Blep+ild)\ N 1 —iBA dz _B 2 '(2) _2iph
zW= [ B e 1te W |1+ Be fr-——zm,e 7In |1— +0(e—2Ph
(1)
—Be dz _ 2y '(2)
=Ne "V+1 > ¢ Pn {1 3.16
e I 4148 [ e |1 (3.16)
Integrating by parts on z gives
- dz 1-33"(z)/3z
ZW— Ne Per 4z ,_p. - —O0%0 2)/0Z 31
Ne +fr 2mi S z—30(2) 3.17)

This is precisely the expression derived for the partition function at O (1) in Sec. IL.B [see Eq. (2.24)]. With somewhat
more effort, the O (1/N) correction may be obtained. The additional term appearing in the action at O (1/N) is just the
second-order term in the expansion of the logarithm in Eq. (3.8):

Sa/M _ 1 (NV?)?

TN S TrGle, +iMXGle )X Gles +iMXGlep)X . (3.18)
kk’ v

The partition function to O (1/N) becomes

Z=ZWV4zW/N_Zz0 =T ﬁ_‘?_&eiax(l+e—ﬁ<éf+ik))zvf (—S(1/N) s
—aT 21 §
with

SV=—BT &, |2DMivy), DMivy) '=ivy, —ik—TMiv,) . - G19)

Here, D* is a dressed Bose propagator.
The O(1/N) action may now be written out explicitly by applying the definitions of the frequency-space matrices in
Eq. (3.8). The integral over &, takes the form

_s 1 (NV?)? = = _gm ‘
fg(_S(I/N))e s =“ETlem2m3m4 f§§m1§m2§m3§m4e s » (3.20a)

where a sum on m; is implied, and F is an expression involving Fermi Green’s functions that we do not write out expli-
citly. This integral may be simply evaluated by recalling the general Gaussian integral formula

fdidzz,-zjsz,e—m=(detA)*l[(A—‘),-k(A—‘)ﬂ+(A"),.,(A—1)jk] . (3.20b)

In this case, A~! takes the form —B~'D?, i.e,, it is proportional to the dressed propagator; the factor (det A)~! is then
exactly the expression which resulted from the £ integrations in the O(1) calculation [see Eq. (3.11)]. Since the dressed
propagator is diagonal in frequency, the indices m; in Eq. (3.20a) must be equal in pairs. It is straightforward to show
that the resulting expression for the 1/N correction to Z is

Z(I/N)=_l(NV2)2 7T Bd}\'

e P140(e PM[S1(M) +S2(M)]

2 N —aT 21
where
S1(M)=B"2 3 DMivy)DMivy )GHiw,)Gili (0, — Vi ))GHiw,)Grli (@ — V)
kk'mm’'n
and
S M=B" 3 DMivy)DMivy )GHiw,)Gili (@) =, )G Hi (@ — Vi + Vi NGrl i@y — ) . (3.21)
kk'mm’'n

The frequency sums S; and S, have the simple diagrammatic representation shown in Fig. 16. The only part of these
sums that contribute to Z'!/Y), i.e, the only part that survives the A integration, is the part proportional to e ~*#*

It may be checked that S, is O (e ~%#*). Thus only S; contributes to the partition function. This frequency sum may
be simply evaluated: ’

Rev. Mod. Phys., Vol. 59, No. 4, October 1987



876 N. E. Bickers: Large-N expansion for dilute magnetic alloys

B! S DMivy)Gilile
k'm’

n—Vm))=—
%

and

—B7'3 (1—fi) 3 DMiw, —er)GHiw, Gy li(w
k' kn

=— 3 fill— fi)DMivy, +&x — e )G} ivy +4 >+ 0(e ~'PY)
kk'

n—Vm))

S (1—fi)DMiw, —ep)+0 (e 1Y)

(3.22)

The remaining sum over m in Eq. (3.21) may be converted to a contour integral over the path I'; illustrated in Fig. 15(a).

Thus, finally,
b(z)

S1(A)= —ﬁszl —fx

Shifting the variable of integration along the imaginary axis, dropping higher-order contributions in e

)frl T — +IM]ZDNZ)D*(Z+sk_ek,)+0(e—2"m).
kTREf

(3.23)

—iB% and deform-

ing the integration contour into the path in Fig. 15(c) [cf. Egs. (3.13)—(3.15)] gives

_i dz _ 1 1 1 _2iBA
S1 M) =Be =P [ =e=FS fi(1—fi) +0 (e %)
! B T 27i %fk I (z+£k—£f)2 z—31(z) z—f—ak_skr——Eé”(z + & —€g)
(3.24)
When the A integral in Eq. (3.21) is finally evaluated, the result takes the form
d 1 1
ZWN= —BZ (NV?)? (1— : (3.25)
'Bfl‘ 41ri sz i) (z+sk—sf)2 [2—2(”z)][z+8k—ek'—2£>”(z+sk—£k:)]
[

This is exactly the result derived in Sec. II [see Eq. ) B pion
(2.25)]. The chief technical advantage of the auxiliary bo- Gylioy,)= f 0 dr Gy(7),
son approach at this order is that it eliminates the need — _(T.F.(r)FL(0))
for a coupling-constant integration; the chief disadvan- Grlm) (T (1) ’
tage is the presence of the projection integral over A. The with
derivation of thermodynamic properties from the expres- Fo=10) (3.26)
sion for the partition function in Egs. (3.16) and (3.25) m=10)Cm | . ’
has been carried out in Sec. II.C. Corrections to the parti- In the equivalent auxiliary boson representation,
tion function at O (1/N?) have been computed by Bickers :
(1987) using the approach above. Fpn—b'fim

and

C. Auxiliary boson approach for the f-electron
Green’s function Gy(r)= ——Trle BH T b (1) fo (1) f 1 (0)B(0)] .

To illustrate the auxiliary boson technique for comput- (3.27)

ing correlation functions, we sketch below the derivation
of the f-electron Green’s function. Recall from Eq. (2.48)
that

J

Gf('T)z Z/Zband T 27 Z
or
1 1
=—— lim ePt——Tre PHW(_T ™
N = Zma i Z0 g

In these expressions, the functions of A and p obey linked
cluster theorems (i.e., only connected diagrams need to be
considered in perturbation theory). Note, however, that
the prefactor (Z/Zp,nq)~! must be evaluated separately
order by order.
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As shown in detail in Appendix D, this expression may
be evaluated in two equivalent ways:

1 fﬂ'T Bdi g 1 —Tre —PH(M(_ T,eHMpTr, e ~HWf ) H(A)=H +i)Q ,

(3.28)

bl fue WD), H(u)=H+pQ .

f

To maintain continuity with Sec. III.B, we employ the
first expression above. There is in this case no advantage
to be gained from working with a functional integral rep-
resentation in which fermions have been eliminated [see
Eq. (3.8)]. Instead, we summarize in Table VIII the Feyn-
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(@) i{wn=Vm) (b) iwn

i Vm .

iwp,

I |
T ilwn=vm)
|

iwnT‘
|

l(wn"‘ym)
i Uy

i(Wn=vm) i(Wn=Vm=vm)

FIG. 16. Diagrammatic representation of the frequency sums
in ZM [cf. Eq. (3.21)]. Double wavy lines represent dressed
Bose propagators D* and dashed lines Fermi propagators G}‘.
Solid lines represent conduction-electron propagators G;. Each
line carries a Bose or Fermi frequency, and frequency is con-
served at the vertices. (a) Representation of S{(A). (b) Repre-
sentation of S,(A).

man rules for evaluating G(iw,). These rules may be de-
rived from a mixed Fermi-Bose functional integral or by a
more conventional route. A step-by-step illustration of
the rules for a specific diagram is shown in Fig. 17. Note
that the Fermi and Bose propagators in every allowed dia-
gram form a single continuous loop of Q “charge.” Dia-
grams with multiple Q loops need not be considered, since
each loop is O (e ~*P*), and such contributions are project-

ed away in step (h).

The frequency sums may be performed in a way that
makes transparent the connection of this treatment with
that in Sec. IL.D. To do this, it is convenient to follow the
supplemental rules below.

(¢') When labeling lines with frequency, let the Bose
line that leaves the top of the diagram (and enters the bot-
tom) carry frequency iv,,. Let this frequency and the
external frequency iw, appear only on Fermi and Bose
lines. Associate independent frequencies iw,  with con-
duction lines. Label the remaining lines obeying frequen-
cy conservation. An example of this labeling scheme is
shown in Fig. 17.

(") Perform first the sums on conduction-electron fre-
quencies (associating a factor 1/B with each sum). Each
ascending line produces a sum

1
53

————F (ivy, —iwy)
n LOp—Eg

=—(1—fx)F 4 (iv,, —e, )+ 0 (e ~F*) | (3.29a)
with F, the product of all Fermi and Bose propagators to
the left of the ascending line. Each descending line pro-
duces a sum

1 1 . . .
=N —————Fp(iv, +iw,)=fiFpliv, +&;)
B n L0Op—Eg

+0(e™PYy (3.29b)

TABLE VIII. Diagrammatic rules for evaluating G(iw,) in the auxiliary boson formalism.

To compute a general contribution to Gfl(iw,) of O(V*"), n>0:

(a) Set down 2n +2 vertices (solid dots) in a. vertical line.

(b) Beginning at the bottom with a dashed line, connect the vertices with alternating dashed (Fermi) and wavy (Bose) lines

(all ascending), finally leaving the highest vertex on a wavy line.
A total of 2n+2 lines now appear.

(either implicitly, or by explicitly drawing in a line).

Connect this outgoing wavy line with the lowest vertex

(c) Replace the lowest vertex and another vertex directly above a dashed line with open circles, to represent the operators
b'f,, and fl,b. To the left of the lower circle, draw an incoming (source) arrow and to the left of the upper circle, an

outgoing (sink) arrow.

(d) On the right of the diagram, draw solid (conduction-electron) lines connecting the remaining solid dots (vertices). The
solid lines must maintain the direction of the dashed lines entering or leaving each vertex.

(e) Assign quantum numbers km (m) to conduction (Fermi) lines, conserving angular momentum at each vertex.

Assume

that frequency iw, and angular momentum m enter the diagram through the source arrow and leave through the sink.
(f) Assign to each line a propagator, conserving frequency at each solid dot or open circle:

1

Bose—»———— ,
iV —i

. 1
Fermi—»———7—,
iw,y—(gr+iA)

conduction electron— — .
Wy —Eg

(g) Sum on internal frequencies (associating a factor 1/8 with each sum), conduction-electron momenta, and angular momen-

tum indices.

(Each angular momentum sum furnishes a factor N.)

Multiply the diagram by V?"(—)*+°+! with a the

number of ascending conduction lines and ¢ the number of conduction line crossings.

(h) Perform the projection to the Q =1 subspace:

. 1 T BdA ; .
Gf(la)n)=z f_"T —BzTe ﬁlG}‘(lw,,) )

where G}”(iw,,) is the result of the preceding operations.
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with Fp the analog of F,. Drop the terms of O (e ~"P*)
from the expansion, since these contributions vanish when
the projection is performed. Perform the sum on v,
(with its associated factor of 1/p3) last.

When these rules are applied in conjunction with those
listed previously, the result takes the form

(v V2)n c+1 E —Bz
N1 (=) frz 2miC S,

where c¢ is the number of conduction line crossings [a
minus sign arises for each ascending line from Eq.
(3.29a)], q is the order of the diagram in 1/N, and the
contour I', is that shown in Fig. 15(b). S(z) is an expres-
sion containing (i) one momentum sum for each conduc-
tion line; (ii) a factor of 1— f; for each ascending conduc-
tion line and f; for each descending conduction line; and
(iii) a product of energy denominators, one for each Fermi

(3.30)

(a) (b)

) % (d)
A

o [ ]
[ b Vvl 3 b Vavy o3 2 Tav VETE)

[ ]
o(v?
(e)
mA K'm
iwp
mA
km
) ma ilwn+ym) A
iwp,—>0 iwy—>%

FIG. 17. Illustration of diagrammatic perturbation theory for
the f Green’s function using the auxiliary boson representation.
The diagram constructed above is O(V*) and O(1/N?). (a)
Vertices. Six solid dots are set down initially (though two will
be altered shortly). (b) Local Fermi and Bose lines. A dashed
line represents a local fermion and a wavy line a local boson. A
dashed line flows up from the bottom vertex, then wavy and
dashed lines alternate, with a wavy line flowing out of the top.
The ellipsis indicates that the top line is implicitly connected to
the bottom vertex as well. (c) Introduction of external lines.
The bottom vertex and another, directly above a dashed line, are
replaced by open circles with attached external lines, represent-
ing the operators be,,, and f,):,b; no factors of ¥ are associated
with the open circles. (d) Addition of conduction electrons
(solid lines). (e) Assignment of quantum numbers and frequen-
cies. The external lines introduce angular momentum m and
Fermi frequency iw,. (¢') Assignment of frequencies for simple
evaluation of Matsubara sums associated with conduction lines.
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and Bose line. From Eq. (3.29), it is easy to show that a
given Fermi (Bose) denominator takes the form

1
z —efm(Easka——stkd)

, Fermi ,

1 (3.31)

z —(Eaeka—Edskd)

, Bose,

where the sums run over all ascending and descending
conduction lines to the right of the Fermi (Bose) line. De-
forming the path of integration into the contour I" shown
in Fig. 15(c) gives

(NV2" e dz

——

—Bz
N r 217_ie 'S(z) .

(3.32)
This expression is precisely the result for a general contri-
bution to the f Green’s function derived in Sec. II.D.
Since the Feynman rules outlined above produce results
equivalent to those in Sec. II.D we shall only indicate the
auxiliary boson diagrams that contribute to G, at O(1)
and O(1/N). These are shown in Fig. 18 (the line con-
necting the highest and lowest vertices is not drawn in ex-
plicitly). The resemblance to the diagrams in Figs. 8 and
9 is obvious. Note that the rules for computing the
finite-temperature Green’s function in Table V are consid-
erably more direct than those in Table VIII. The auxili-
ary boson approach requires an unnecessary calculation of
Feynman frequency sums. The true versatility of the aux-
iliary boson approach is realized in the Fermi-liquid re-
gime (T—0): in this limit, exact large-N expansions for
the partition function and correlation functions may be
obtained by evaluating the constraint integral over A in an

(@) o (b) OU/N) A
iwnj
A
iwp—>-4
iwp,
. A
'wn'—)-é
(c) ouN)
;wn,(j (d) o(i/N)
A M, S0/N) -
g} (2" +2 ]/zband

A
iwn%—é

FIG. 18. Contributions to the f Green’s function in the auxili-
ary boson representation. (a) O(1) contribution. The Bose
propagator is dressed to O(1) using the self-energy computed in
Eq. (3.30). This diagram should be compared with that in Fig.
8. (b) O(1/N) contribution from a single Bose self-energy in-
sertion; cf. Fig. 9(a). (c) O(1/N) contribution from a single
Fermi self-energy insertion; cf. Fig. 9(b). (d) O(1/N) contribu-
tion from the partition function; cf. Fig. 9(c).
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order-by-order saddle-point approximation. We discuss
this powerful approach in Sec. V1.

IV. ZERO-TEMPERATURE VARIATIONAL
APPROACH TO THE 1/N EXPANSION

The treatments of the Anderson and Cogblin-Schrieffer
models reviewed in Secs. II and III are in principle valid
for arbitrary temperatures. In fact, these methods have
been applied almost exclusively in the zero-temperature
limit. In this section we review an alternate approach for
calculating zero-temperature properties of the Anderson
model, the variational method of Gunnarsson and
Schonhammer (1983a, 1983b, 1985, 1986). This treat-
ment provides results for the f valence and magnetic sus-
ceptibility (both static and dynamic) and the f Green’s
function. The method is particularly suited to realistic
calculations of the f Green’s function. Calculations have
been performed for various conduction electron densities
of states and for finite, as well as infinite, U (Gunnarsson
and Schonhammer, 1985). However, as a variational
method, the technique cannot be trivially extended to fi-
nite temperatures.

In Sec. IV.A we discuss the determination of the
ground-state energy and wave function, valence, and stat-
ic susceptibility for the infinite- U model to O(1). The ex-
tension of the calculation to O(1/N) is briefly treated in
Appendix E. In Sec. IV.B we discuss the calculation of
the f spectral density to O(1) and O(1/N). In Appendix
F we discuss the generalization'of these techniques to fi-
nite U.

A. Zero-temperature thermodynamics
within the variational approach

The Anderson model for rare-earth impurities takes the
form

H =I‘:Iband"'flf +H iy Hyang= z Eklkm >
km

He=e; > n,+U 3 npny, » 4.1)
m

m>m'

HmiszE (C]Imfm +H.c.),
km

where f,’:, creates an f electron in magnetic channel m
and cy, creates a conduction electron of wave number
k = |k| in channel m. The ground-state energy Eg and
properties that depend on it, such as the valence and mag-
netic susceptibility, may be computed by introducing a
variational wave function |¢o). The true ground state
may be denoted | ). In the infinite- U limit, only states
with empty or singly occupied impurity orbitals contri-
bute to |¢o) and |1y). The simplest such states are the
noninteracting vacuum |Q), i.e., a filled Fermi sea of
band electrons with Fermi energy £, and

lesexm ) =fcim | Q) . 4.2)
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(a) | (b) o

72 —

7
jok7, —e—

() oki  oun) (d) oKz O(I/N)
ok, Aok —e—

FIG. 19. Pictorial representation for components of the varia-
tional ground state. The shaded rectangle denotes the Fermi sea
of conduction electrons and the adjacent line the localized f or-
bital. Electrons are represented by solid circles and holes by
open circles. The order in 1/N at which each state couples to
the first is indicated. (a) | Q), the filled Fermi sea and an emp-
ty f orbital; this is the simplest component of the ground state.
(b) | esexm ), a state containing one f electron and one conduc-
tion hole of energy &, both in magnetic channel m. This set of
states couples to | Q) at O(1). States |Q) and |eseem ) are
the only states that must be considered in an O(1) calculation.
(©) | Ex \Eke, ), a state containing one conduction electron and

one conduction hole. The states in (b) and (c) couple at
O(1/N). (@ [(e/sklm)(Ekzeksm')), a state containing one f

electron, one conduction electron, and two conduction holes.

‘The states in (c) and (d) couple at O(1). States (a)—(d) must all

be considered in an O (1/N) calculation of the ground-state en-
ergy and wave function.

For convenience, throughout this section the energy of a
band hole is denoted by lower-case epsilon and the energy
of a band electron by upper-case E.

In general, states that couple to | Q) may be indicated
pictorially. In Fig. 19, electrons are represented by filled
circles and holes by empty circles; the shaded rectangle
represents the filled Fermi sea, and the adjacent line the
localized f level. The noninteracting vacuum | Q) is in-
dicated in 19(a) and the f-electron—band-hole state
| esexm ) in 19(b). A band-electron—band-hole state

| Ex &k, ) =k mCicym | Q) (4.3)

is indicated in 19(c), and so on.

Since the true ground state is an angular momentum
singlet, the noninteracting vacuum provides a valid start-
ing point for a variational calculation. Further, only sing-
let contributions to |¢,) need be considered. Singlets
may be constructed from the antisymmetrized electron-
hole wave functions in Fig. 19 by summing symmetrically
on all magnetic quantum numbers. The resulting wave
functions may be classified by the order in 1/N at which
they couple to | Q). As always (see Sec. 1.C), it must be
assumed that

NV2=0(1) 4.4

for N— 0. Brillouin-Wigner perturbation theory to
determine the energy of state | Q) in the presence of in-
teractions gives rise to terms of the form
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NNy« energy denominator

A given electron-hole singlet may be classified by count-
ing powers of 1/N in the product of matrix elements that
contains that state at lowest order. Note that by electron
number conservation, all contributions to Eq. (4.5) con-
tain even powers of H.;,. For example, the normalized
[f-electron—band-hole state

71_1—\—/;-2 | ereem )

couples at O(1), since

_l—l2<QiHmix|€f€km) 2=NV?. (4.6)
N m
Since
1
FI2<Q|Hmix|8f€k2m><€f5k2m | H i | Ex,ex,m ) |?
m
1
:NV4:—~NV22’ 4.7
N( ) 4.7)
the state

1 |
VN 2 | Busigm)

couples at O(1/N) and may be neglected in an O(1) cal-
culation. The order at which other states couple is indi-
cated in Fig. 19.

It follows that to compute the ground-state energy ex-
actly to O(1) it is only necessary to consider variational
states of the form

1 oce
SNV =A4||Q)+—= Sy |erexm) |, (4.8)
] ;O | \/N % k| ftk

where the superscript “occ” indicates that the k sum is
restricted to occupied states with &€, <er. As usual, the
noninteracting Fermi sea | (1) sets the zero of energy:

(Q|H |Q)=0. (4.9)

The variational solution may be found by minimizing the
quantity

(o6" | H | 46" —Eo({o" [ 46") —1)

occ
=A2 | S aile;—ex)+2VNV Y ax
k k
oce
—E, |4? —1|, (4.10)

1+ 3 o
k.

with E, a Lagrange multiplier. [E, is just the O(1) ap-
proximation for the ground-state energy Eg.] The varia-
tional equations take the form
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(‘Q’IHmiXINl)(Nl |Hmix|N2><N2“'HmixIQ>

(4.5)
-
( (1) H (1))
9/94% E0=————¢° (‘U l(‘f)" )
(d0’ [ ¢0")
3/0ay: (Eg—es+e)ax=VNV, (4.11)
oce
3/0r: A% |14+ Jaf |=1.
k
From the second equation,
YNV (4.12)
E0—8f+8k

Writing out the first equation explicitly and substituting
for a; gives

1

- 0ocCc
E,=NV? ———-——-—=2(1)(E ) 7=
0 §E0_8f+8k o (Eo) | T=0
—E
N, |20 4.13)
T D

employing the notation of Sec. II.B; the last line holds as-
suming a flat density of conduction states. This is pre-
cisely the equation for the ground-state energy at O(1) de-
rived previously [cf. Eq. (2.26)]. 42 may be interpreted as
a wave function renormalization constant, since

[(Q|¢y) |2=42. (4.14a)
Note also that
oce -1
A= |1+ S ai | =(1-383"/8Ey)~'. (4.14b)
k
The corresponding f valence is
occe
(n_ ny2_ M .
ne'= (erepm )| 2= ’
f % | Cerexm [ o) | Tt
yzNVZZ 1 NT , (4.15)

r (e —Ty4 2 7T 4

TA EEf—-E().

This result has also been derived previously [cf. Eq.
(2.32)]. '

The magnetic susceptibility X may be calculated from
the ground-state energy as in Sec. II.C. It is easy to show
that

2

XV=nEL 205 4 1)gup)? . (4.16)
3T,

This calculation of E,, ns, and X may be extended to

O(1/N) by including states (c) and (d) from Fig. 19 in the

variational ground state. We sketch the derivation in Ap-

pendix E.
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B. Spectral density for f electrons
within the variational approach

In this section we derive expressions for the f-electron
spectral density using the variational method. The spec-
tral density may be measured experimentally using
valence-band x-ray photoemission and inverse photoemis-
sion. Gunnarsson and Schénhammer (1983b, 1986) have
performed extensive comparisons of experimental spectra
with 1/N results, obtaining good agreement for a variety
of materials. The variational method has in addition been
applied to describe x-ray core spectra, x-ray absorption
spectra, and the dynamic susceptibility. In this section we

G/(1)=—i6(1)
N

L O 90+ 3

emphasize analytical results for the f-electron spectral
density and demonstrate their connection to results from
other approaches. For a complete discussion of numerical
calculations and the comparison of theory and experi-
ment, the reader should consult the extensive review arti-
cle by Gunnarsson and Schonhammer (1986).

At zero temperature, the f Green’s function takes the
form

Gy(6)=—i6()( Yo | {fm(D.S ()} o) ,

where | ) is the full interacting ground state. Inserting
a complete set of eigenstates of the interacting Hamiltoni-
an gives

(4.17)

i(Eg—Ey)t

(Wo| frm | NN | £ 190) (4.18)

This expression may be Fourier transformed in the upper half-plane:

Gra= [~ dte™G(1)

=i 3 [ e I | LN [ 0) =i 3 ) dre

i(z+Eg—Ey)t

(o | fm | NYCN | |00

- 1 1 )
(ol gz I [V0) + {0 Fm s [0
=GF(2)+GF (). (4.19)

The imaginary part of this Green’s function is just the f spectral density, i.e., the energy distribution for adding or re-

moving one f electron from the system:

N N

The first term in this equation is the spectra for removing an f electron from the system. Since Eg —Ey <O, this spec-
trum is nonzero for w <0. To an excellent approximation, this spectrum may be measured experimentally by valence-

band x-ray photoemission (XPS). In order to compute

1 ‘ >
otior—Egrm " |V

h

1
prlo)=— ;—Im(:ﬁo

directly, it is necessary to (a) solve variationally for the ground state, then (b) invert the operator w —Eg + H within a
suitably restricted subspace. The XPS spectral density is actually O (1/N) for all @ <0. This follows by noting that the

valence ny is just

ng=N fi)mda)pf(a))=0(1) .

(4.21)

The total weight of the negative-energy spectrum in a single m channel is then O(1/N). To compute ps(w <0) to

O(1/N), the leading-order approximation

1 occ

l’ﬁO)z]‘ﬁé)l)):A |Q>+ VN %ak|8f8km>

(4.22)

of Eq. (4.8) is adequate. This is because the resolvent (w—Eq+H) ™! is itself O(1/N). a; and 4 are as in Egs. (4.12)

and (4.14). Thus

fm |¢0>2%N %akckm [0) .

(4.23)

At O(1), the one-hole state g, |0) = | gx-m’) is coupled by H ;, to the two-hole, one-f states
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| (epexm)erem”)) = fh ClomCiom: | O) - (4.24)

(For m =m’, it is necessary to set €, <€} to prevent overcompleteness.)
To calculate p(w) at O(1), it suffices to invert w — Eq+H in the subspace spanned by |g;m ) and |(efexm)(epm’)).
The pertinent matrix elements are

(skm I C()——Eo +H | lem'> Z((D—Eo—sk )SkkISmm/ s
((sfskm)(sk'm’) l O)—Eo +H I (efaklml )(sk2m2 ) ) =(a)—E0 — €& —sk'+sf)8kk18k'k28mm18m'm2 ,
and
((efekm)(sk'm’) I O)—EQ +H | Ek"m” ) = V(ak'k"——Skk"smm')sm'm""-—‘ Vsk'k"amrmu—{—O( 1/N). (425)

The simplification of the last matrix element is allowed in an O(1) calculation. ‘The only matrix element of the resolvent
required is

(exm |(@—Eo+H)"|gem') .

A general matrix identity (Gunnarsson and Schénhammer, 1983b) may be invoked to find this element: for a matrix A
with blocks B, C, and D, .

B C
~|c D}’ (4.26a)
the inverse of A in the B subspace takes the form
(A~ py=(E~ Yy, Eppy=Bpy— 3 CpaDia'Cap (4.26b)
dd’
where index b is restricted to the B subspace, and so on. This “folding-down relation” implies that
(exm | (@—Eo+H)~"| exom’) =88 |(@—Eo—ex)=NV> 3, L -
ggm | (0—Eo+ | exm’) =8kBmm' (0 —Eo—gr)— kz o Eo—tr—ente,
Sk Smm’
= e 4.272)
—w+Ey+e,—2y (—wo+Eg+eg)
with
(n S 1
30 (z2)=NV?*y ——— . (4.27b)
r Z+Ex—Ef
Substituting Eqgs. (4.23) and (4.27) into (4.19) gives finally
2 occ a2
R 1
N k —Z+E0+Ek—20 (——Z+E0+Sk)
NVZ occ 1 1
=—Z(Eo) 2 2 (1) ’
N % (ex—T4) —z+Eg+e,—34 (—z+Eg+¢eg)
_1 (4.28)
a3{)
Z(Ey)= |1—
(Eo) dE,
The spectral density p,(w) takes a simple form for — Ty <@ <0. The function
1 v (4.29a)

—w—Ey+e—3(—w+Eqy+¢)

has a pole at e=w with e-residue Z (Ej), and a branch cut along the real axis for e >w+T,4. Thus, for — T, <w <0,

1 NT 0 de 1
=—Z(Ey)~—>Im
prl@)="17Z(Eo) 72 f—D (e—T4)? —w+Eq+e—3(—w+Eg+e)—i0*
1., NO 1 '
=—ZXEy)~———— . (4.29b)
N7 7% 7 (0—T,)?

Note also that for general w <O [the case in which the branch cut in Eq. (4.29a) contributes], the spectral density assumes
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the form found previously using the diagrammatic approach [Eq. (2.57)]. We shall have more to say about the
equivalence of these techniques after deriving the positive-energy spectral density.

The quantity ps(w > 0) is the spectrum for adding an f electron to the system. This spectrum may be measured experi-
mentally by inverse photoemission, or bremsstrahlung isochromat spectroscopy (BIS). While the spectrum is O (1/N) for
negative energies, it is in fact O(1) for positive energies. This is because

N—-ns U<oo,

=N [ dopio)=
s fo Psi® N(l—nf), U=ow .

(4.30)

(In the latter case the missing spectral weight lies at infinite energy.) Thus the total weight of the positive-energy spec-
trum in a single m channel is O(1). In this case it is necessary to compute

1
0+i0t+Eg—

N

Within the lowest-order approximation applied to this point, the state
S| W) =AF) | Q)= |egm) 432)

with A4 as in Eq. (4.14). Recall that for the negative-energy spectrum, an O(1) approximation for the ground state is suf-

ficient, since the matrix elements of the resolvent are of leading order 1/N. In this case, the resolvent has matrix ele-

ments of O(1); hence the O (1/N) expression for the ground state must be used to obtain 1/N accuracy for general w > 0.

Despite this fact, it turns out that the O(1) ground state is sufficient to obtain O(1/N) accuracy for all o €(0,T ). [This

may be seen from the full expression for G(w+i0%) in Appendix C.] We reproduce only this partial calculation below.
The required matrix element of the resolvent is

1
<8fm Z+E6—H efm>.

Note that |eym ) is coupled by H to

Chm |0)= | Exm) : (4.33)
at O(1/N) (since | (Exm | Hpyix |€m ) |*=V?) and that | Exm ) is coﬁpled to the states
Chmf i | 0) = | (Exm)(esepm”)) 434

at O(1). The required matrix element may now be computed to terms of O(1/N) as before. For convenience, let
H=z+E,—H . (4.35)
Applying the folding-down procedure of Eq. (4.26) twice gives

-1
(e;m lﬁ“]efm)=

— unocc —_— —_ —
(esm |H|ggm)— 3, (eym |H|Exm){Exm |H ~'|Exm){Exm |H |e;m)
K
with

(Egm |H ~'|Exm )= |(Exm |H |Egxm)

— 3 (Exm |H|(Exm)(efepm’))
k'm’

—1
X ((Exgm)esem’) | H | (Exm)(esepm’)) ~ ' ((Exm)(epepm’) | H | Exm )

-1
oce 1 .
= |z+Ey—Ex—NV? : = —E,—3 -1
,[z o—Ex—N %Z P " [z +Ey—Ex—=4(z +Ey—Eg)]

(4.36)
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Thus
(eym |H ~'|efm)=[z+Eo—e;—2,(z+E;]™",
(4.37)
2 ( ) Vz unocc 1
Z)=
" % z—Ex—3W(z —Eg)
_T > dE
7 J0 z_E-3V(z—E) "’
The last line assumes a flat density of states.
The resulting expression for the propagator is
A2
G7(z2)=
= T, =5, (z+Ey)
—Z(Eg) |~ —— 3,z + Eo)
0 7 — TA (Z . TA )2 m 0
+O(1/N?) . (4.38)

The quantity =, is O(1/N), so the leading-order result
for the spectral density is simply

prl@>0)=Z(Ey)d(0—T,)

=(1—n")8(w—T,) . (4.39)

This delta function is the only feature of the spectrum at
o).

At O(1/N), an additional background appears. The
integrand in the expression for 3, (w+E,) has a pole at
E =@ with E-residue —Z(E,), and a branch cut along
the real E axis for E <w—T,. Thus, forO<w <T,,

Im3,,(0+Eg+i0%)=—Z(E))I'=—(1—nf")[",

(4.40a)
and to O(1/N),
pf(w)=—LIme(w+iO+)
T
1, NI 1
=—ZAEy)————, 0 T,. (4.40b
N ( o) p (a)—TA)2 <w<1iy ( )
For o>Ty, the continuum part of

Im=,,(w+Ey+i0%) contributes. This is not the only
contribution to ps for o> T,4. A contribution also arises
from the 1/N correction to the ground-state wave func-
tion, which has been neglected in this treatment. [This
contribution may easily be derived from the full 1/N ex-
pression for Gy(w) in Appendix C.]

The spectral density expansion clearly breaks down at
o=T,, where a pole occurs at lowest order. As discussed
in Sec. IL.D, the functions G; and ps do not possess uni-
formly convergent expansions in 1/N on the full real line.
In particular, a convergent expansion is impossible at
w=T,. Nevertheless, a systematic 1/N expansion of the
spectral density is expected to be pointwise convergent. A
corollary of this pointwise convergence is that the expan-
sions of p, for negative and positive energies must match
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at w =0 order by order. Equations (4.29) and (4.40) illus-
trate this matching property. Throughout the region
— T4 << T4, the spectral density has a simple analytic
form to order 1/N. As discussed previously the validity
of the expansion is also confirmed by the Friedel-
Langreth sum rule (see Sec. ILD).

Despite the pointwise convergence of the expansion, an
infinite-order approximation is necessary to obtain a
smooth spectrum in the vicinity of the singular point
o=T,. The simplest infinite-order approximation is that
in Eq. (4.38) before expansion in powers of 3,,. The spec-
trum near o =T, takes on a finite width due to the imag-
inary part of X, (which is proportional to 1/N). While
this infinite-order summation in 1/N ensures a smooth
spectrum near w=1T 4, it alters the analytic properties of
the spectrum near @ =0: the function

1
Z—TA —-Em(z +E0)

exhibits an undamped pole just below z=0. The energy
of the pole does not have an expansion analytic in 1/N.
The pole occurs where

0o—T4—Re2,,(0+Ej)=0, w<0. (4.41)
Recall that
D
S04 Eo) =L =0
T 0 (1)+E0—E——20 (Q+E0—E)
r po 1
=Z(Ey)— dE | ——— —
(Eo)— [, [w_E+F(“’ E)J )
with F nonsingular at o=E. Thus
r
E,,,(w+E0)=—Z(E0):r—ln( —D/w)
-+ nonsingular terms
L —o/D)
o~ N nl—w
+nonsingular terms , (4.42)

for NI'>>T,.
gives

Ignoring the nonsingular contribution

o Lag - _De-N
o—Ty4= Nln( w/D), i.e., w~—De

for N> . (4.43)

The presence of this anomalous energy scale and its impli-
cations for infinite-order partial resummations in 1/N
were first emphasized by Krishna-murthy (1984). We dis-
cuss such resummations in detail in Sec. V.

Finally, note that the quantity
Gf(icu,,)=Gf<(iw,,)+Gf>(iw,,) (4.44)

obtained by adding Eqgs. (4.28) and (4.38) is precisely the
contribution G 4(iw, ) found in Appendix C [cf. Eq. (C4)].



N. E. Bickers: Large-N expansion for dilute magnetic alloys 885

This contribution arises diagrammatically (see Sec. I.D)
from. self-energy insertions parallel to the line carrying
external frequency iw,. In the language of this section,
these contributions are corrections to the f resolvent;
self-energy insertions that lie entirely above the external
line are corrections to the ground-state wave function. In
the language of Sec. III, corrections to the f resolvent
take the form of self-energy insertions on the fermion
lines; ground-state wave-function corrections are self-
energy insertions on the boson lines. At zero temperature
the three approaches are completely equivalent. The
physical content is arguably clearest in the variational ap-
proach, since the form of the ground-state wave function
is explicitly exhibited; however, this approach is limited
to zero temperature, while the other approaches are not.

V. SELF-CONSISTENT DIAGRAMMATIC EXPANSIONS

It was noted in preceding sections that, in a perturba-
tive 1/N expansion, the f-electron spectral density exhib-
its a singularity at =T, with T, the solution of Egs.
(2.26) and (2.27). This singularity remains order by order,
preventing a complete description of f photoemission and
electronic transport. In order to remove this singularity,
it is necessary to perform an infinite-order resummation
in 1/N. Resummations have been investigated within a
variety of contexts, including the variational approach of
Sec. IV (Gunnarsson and Schonhammer, 1983b) and the
saddle-point approach of Sec. VI. In this section we re-
view partial resummations of diagrammatic perturbation
theory (Keiter and Kimball, 1972; Inagaki, 1979; Grewe,
1982; Keiter and Czycholl, 1983; Kuramoto, 1983; Cole-
man, 1984; Kuramoto and Kojima, 1984; Miiller-
Hartmann, 1984; Zhang and Lee, 1984; Bickers et al.,
1985, 1987; Maekawa et al., 1985a, 1985b). Partial
resummations incorporate many desirable features of
low-order perturbative expansions, provide a more satis-
factory treatment of dynamic properties, and are simple
to apply in finite-temperature calculations. In contrast,
partial resummations are not appropriate in the Fermi-
liquid regime, where a systematic treatment of low-energy
electron-hole processes is essential. In this sense, the ap-
proaches discussed below serve a function complementary
to that of the approaches in Secs. II—-IV and V1.

The simplest thermodynamically self-consistent ap-
proximation for the Anderson and Cogblin-Schrieffer
models has appeared in the literature under a number of
names. These include the “noncrossing approximation”
or NCA (Kuramoto, 1983), the “self-consistent ladder ap-
proximation” (Maekawa et al., 1985a, 1985b), and the
“self-consistent large-N expansion” (Bickers et al., 1987).
For brevity we shall generally refer to this approach as
the NCA. In Sec. V.A we describe the NCA for the
infinite-U Anderson model. The thermodynamic self-
consistency of this approach and its higher-order generali-
zations is discussed at length in Appendix G. In Appen-
dix H we summarize a number of exact sum rules for the
Anderson model and show that they are satisfied within
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the NCA. Analytical solutions of the NCA equations at
zero temperature are reviewed in Sec. V.B. In Sec. V.C
we describe the NCA for the Cogblin-Schrieffer model.
Finally, in Sec. V.D we provide an overview of finite-
temperature NCA results.

A. Noncrossing approximation for the infinite-U
Anderson model

Recall the alternate representations for the partition
function of the infinite- U Anderson model derived in Sec.
I1.B:

B B VY —
Zf=Z/Zband_ r 27Tie Ter—Hf—/z\f(Z)
(5.1a)
and
Zp=1+Ne ™7
r=14Ne
PN 1 N
0 r 27Ti f - _A '
2 z Hf zf(z,g)
(5.1b)

The low-order expansions in 1/N derived in Sec. II were
based on the second representation; for present purposes
the first representation is considerably easier to manipu-
late. The diagrams contributing to the partition function
at O(1) are those shown in Fig. 20(a). Note that the emp-
ty and occupied states are necessarily treated asymmetri-
cally. The diagrams contributing to Z; at O(1/N) are
those shown in Fig. 20(b). All the diagrams that enter at
O(1) and O(1/N) have noncrossing conduction lines.
There are, of course, a host of other diagrams with the
same noncrossing property. A few are illustrated in Fig.
20(c). All diagrams with noncrossing conduction lines
may be summed by solving the coupled equations in Fig.
21. The equations for the self-energy may be written out
simply using the rules of Table IV:

281)(Z)=NV22 __f’f_
k Z+Ex—Ef

—30(2)=NV?Y fiGn,(z +¢),
<

1—f (5.2)
(/N __ 172 —Jk
3, Nz)=V % p—
—3,(2)=V*T (1—fi)Go(z —&) ,
k
where
1
Gol2)= z —3(z)
and (5.3)
1
G, (z)= P
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(a)

+ eee
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(c)

>@> >@>'

->

_>.@->-@->@'>'

FIG. 20. Diagrams contributing to the infinite- U Anderson partition function in the representation of Eq. (5.1a). (a) Empty- and
occupied-state contributions at O (1). The empty state is indicated by a wavy line and the occupied states by dashed lines. The'double
wavy line indicates an empty-state propagator dressed to O(1) (see Sec. II). (b) Empty- and occupied-state contributions at O (1/N).
(c) Some empty- and occupied-state contributions with noncrossing conduction lines at O (1/N?). Note that contributions with cross-

ing lines begin to enter at this same order.

It is convenient at this point to define the spectral densi-
ties ‘

pole)=— —lelmGo(m—{-iO’“) ,

(5.4)
D pm(@)= —%Ime(a)+i0+) .

This approximate solution for the Anderson partition
function has been named the noncrossing approximation,
or NCA (Kuramoto, 1983), to emphasize the class of per-
turbative diagrams retained. It may be shown (Kuramo-
to, 1983; see Appendix G) that this approximate solution
is thermodynamically self-consistent. By this we mean
that various exact expressions for the partition function
which follow from integrating thermodynamic derivatives
(such as the valence or magnetization) remain consistent
when the noncrossing approximation is introduced. The
NCA is the simplest approximation in a hierarchy of
self-consistent solutions (Kuramoto, 1983).
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Simple expressions for the f-electron Green’s function
and dynamic susceptibility may also be obtained within
the NCA. The Green’s function diagrams are illustrated
in Fig. 22. Applying the rules of Sec. IL.D gives

Lo odz

2, Jr2aie Oz i

G’f(iw,,)=

1 [ — .
=Z—f f_wdee B,E[po(e)Gm(e—Ha),,)

—pm(e)Gole—iw,)] -
(5.5)

The resulting spectral density is

1 —Bo © _
pf(a)):~z—f—(l+e B )f_wdee Pepo(e)pm e+ ) .

(5.6)
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The dynamic susceptibility X(w) also has a simple form
within the NCA. The f contribution to the magnetic sus-
ceptibility may be written

B iv, T
X(ivy)=— [ dre"™ M(r)

M(r)=—{T,M(r)M(0)) ,

. (5.7
M—guy Sm |m)m| .

The diagrammatic representation of X(iv,,) within the
NCA is shown in Fig. 23. Applying the general expres-

with sion for correlation functions derived in Appendix B gives
J
. N,u'jz' 1 dz —Bz . NI-"? 1 ® —Be . .
X(ivy,)=— 3 —27 fr%e G, (2)G,, (2 +iv,y, )= — 3 Ef—- f_wdse om (ENGp(e+ivy,)+G,,(e—iv,,)] ,( |
: 5.8
pi=jG+1)gup)? .
The magnetic spectral density becomes
Nu?
ImX(0+i0%) =L T [* dee=Bp () pm(etw)—pmle—)] . (5.9)
3z, 9w

The expression for the static susceptibility X(w=0) ob-
tained by this approach is the same as that which follows
from differentiating Z; directly with respect to the field;
for a proof see the end of Appendix G.

B. Analytical solutions of the NCA equations
for zero temperature

Although the NCA is a thermodynamically consistent
approximation, it does not obey a number of exact
Fermi-liquid relations that connect static and dynamic
properties. Kuramoto and Kojima (1984) and Miiller-
Hartmann (1984) have investigated the NCA in the zero-
temperature limit. At zero temperature, the coupled
NCA integral equations derived in the previous section
may be converted to differential equations (Inagaki,
1979), and analytical results, which clarify the limitations
of the approach, may be extracted. In addition, the dif-
ferential equations provide yet another way to generate
perturbative expansions for zero-temperature properties
up to O(1/N) [recall that the NCA omits terms of
O(1/N?)]. We review this approach in detail below, fol-
lowing the treatments of Kuramoto and Kojima (1984)
and Miiller-Hartmann (1984).

1. NCA differential equations

At zero temperature, the NCA integral equations take
the form

D
So0+i0H) =YL (7 ge £(e)G (@ +e+i0%)
T —-D
_NTL po v
== _D+wdaqm(8+10 ),

(5.10)
Sn@+iot) =L [° ge[1-£(e)1Go0—e+iot)
T —D

L re -
= f_p+a,d€G°(€+'0 ).
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FIG. 21. Pictorial representation of the coupled integral equa-
tions for summing diagrams with noncrossing lines (the NCA
integral equations). 2, and =,, are the empty- and occupied-
state self-energies. The empty state is indicated by a wavy line
and the occupied states by dashed lines; double lines indicate
self-consistently dressed propagators. These integral equations
incorporate all contributions of O(1) and O(1/N) in the large-
N expansion.
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A / A
nwn{g + iwnx @
w3 N
+ oo = '§
' iwn‘{’\ﬁ

FIG. 22. Diagrammatic form of the f Green’s function within
the noncrossing approximation for the infinite-U Anderson
model. The notation is as in Sec. ILD. The f Green’s function
is expressed as a convolution of the self-consistently dressed
empty- and occupied-state propagators.

So long as D >>NT, the @ dependence of the lower limit
of integration may be ignored. Differentiating with
respect to @ gives immediately

a3, 33,
20 _NL G (o), L6y

- 5.11
dw T dw T ( )

(the 0% is not written explicitly hereafter). The initial
conditions consistent with neglecting @ in the lower in-
tegration bound are
2o(—D)=%2,(—D)=0. (5.12)
Following Kuramoto and Kojima (1984) and Miiller-

Hartmann (1984), we introduce a notation for the inverse
propagators:

A

>—

|

A A
iVm'/i)\ + % + . /
o 4 vl %
|Z/m\{n\ \(5

n

+oo’. = f%\

iVm‘{;\ﬁ

FIG. 23. Diagrammatic form of the dynamic susceptibility
within the noncrossing approximation for the infinite- U Ander-
son model. X(iv,) is expressed as a convolution of two
occupied-state propagators.
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Yolw)=—G5 Hw), Y,lo)=—GCGyo). (5.13)
These quantities obey the coupled equations
2 yw)=—1-YL vy, (5.14a)
do T
4y (w=—1-L v, (5.14b)
do T
with
Yo(—D)=D, Y,(—D)=D +¢;. (5.15)

2. Some preliminaries on the zero-temperature limit

An important step in solving for zero-temperature stat-
ic and dynamic properties is the determination of the
propagators G, and G,,. This step alone is not sufficient,
however; special care is necessary to evaluate thermally
weighted sums for T—0. Consider, for example, the
empty-state spectral density po. As shown in Sec. IL.B, py
may be decomposed by introducing a complete set of en-
ergy eigenstates | ®) of the Anderson Hamiltonian. At
zero temperature,

polw)= |{@|0;Q) |*8(0—Es), (5.16)
)

with |0;Q) the noninteracting empty state and filled Fer-
mi sea. The function p, vanishes below Eg, the exact
ground-state energy. The occupied-state distribution
function p,,(w) exhibits the same threshold. [It may be
established rigorously that above the threshold Eg the
spectral densities exhibit power-law singularities, indica-
tive of an infrared overlap catastrophe. A proof has been
provided by Kuramoto and Kojima (1984).]

At finite temperature, excited states of the noninteract-
ing conduction-electron system contribute to the thermal
averages defining py and p,, (see Sec. I.B). This implies
that, for T'> 0, py and p,, possess exponentially damped
tails extending below the exact ground-state energy Eg.
On the other hand, the factor e #°/Z £ grOws exponen-
tially for w < Eg in the zero-temperature limit. Thus, in
expressions such as )

1 B0y [° gee—Fe
prlw)=7(1+e foy [ deePopelpp(e+o)

(5.17)

a zero-temperature limit must be sought for the compos-
ite factors ‘

ﬁo(s)EZf“le ~Pepo(e)
and (5.18)
Pm(e)=Z7 e =P, (¢) .

These quantities are spectral densities for a pair of (un-
physical) propagators analogous to Gy and G,,. It is easy
to show that py and p,, vanish above the exact ground-
state energy Eg.
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NCA equations for gy and p,, may be obtained at finite
temperature by multiplying the imaginary part of Eq.
(5.10) by —e~P*/7Z;. Thus

Zfle—ﬂw —%Imzo(a)+i0+)
=pol@) | Golw) | 72
LA f_DD de[1—f(e)lpn(e+w)
e (5.19)
Zf_le —Bo —%Imzm(w—!-iO"‘)

=P (@) | Gp() | -2

D
- % [, dell—F@lple+o) .

In terms of these new quantities, the f spectral density
becomes

@)= [ delpo(e)pm(e+o)+poe)pm(e+o)]
(5.20)

3. Solution of the NCA differential equations

The coupled equations (5.14) may be solved in two
steps (Inagaki, 1979): (a) Y,, may be determined as a
function of Y, then (b) the frequency corresponding to
each value of Y, may be found. To implement step (a),
the second equation may be divided by the first:

NI

1+—Y” dY = |1+— Y0 dy, . (5.21)

Integrating this equation gives

Y, + ]—v;llln( Y,,/D)+C=Y,+ %n( Yo/D),

(5.22a)
with C a constant of integration. Since Yy(—D)
=Y, (—D)—er=D and D >>¢y, the integration constant
is simply

C=—¢f. (5.22b)

Step (b) may now be implemented by integrating Eq.
(5.14a) [or (5.14b)] with respect to Y, (or Y,,) to deter-
mine w(Yy) [or o(Y,,)]. Integrating up from the lower
band edge gives

f de— — f dx
D 14+ (NT/m)Y,; x)

_Nl"f dx
T 7 Jp (NT /m)+ Y,,(x)

—(Yo—D),

(5.23)
ie.,

f dx
Yo (NU/m)+Y(x) -~

o —y,_NT
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The arguments in Sec. V.B.2 imply that the exact Y,
and Y, vanish at the ground-state energy of the interact-
ing system and are real for w < Eg. One might reasonably
assume that this exact behavior is preserved by the NCA,
i.e,, that there exists an energy E&<* at which the inverse
propagators Y, and Y,, vanish, and below which they are
pure real. We know of no rigorous proof that this ansatz
is correct; however, the ansatz is consistent with extensive
numerical investigations by Kuramoto and Kojima
(1984), and its validity seems firmly established.

With this ansatz Eq. (5.23) yields immediately an ex-
pression for EY

ENCA— _ NT fD dx

7 Jo (ND/m)+Y,(x)

Further, replacing — D and Y,(—D)=D with EY* and
Yo(EF*)=0 in the first line of Eq. (5.23) gives

Y Y, (x)
_pNca_ 0 m
o—Eg /; P NT/m) 4 Y, %)

(5.24a)

, a)<ENCA

(5.24v)

The analogous expressions whlch follow from integrating
Eq. (5.10b) are

r po dx
Eft—=g,—— [ — %% 5.
¢ =¥TT Js (T /m)+ Yo(x) (:259)
and
Yo(x)
_ENA__ [mge To®) 5.25b
f (T /m)+Yo(x) ( )
Since EYCA is the approximate ground-state energy,

Egs. (5.24) and (5.25) may be used to calculate the zero-
temperature thermodynamic properties ns, X, and X.
leferentlatmg Eq. (5.22) with respect to €, at fixed Y,
gives

a9y, .
Som 1+NF Yyl |—1=0, (5.26)
an
ie.,
Y, Y,
de; (NT/m)+Y,
Thus differentiating Eq. (5.24a) gives
nNCA aENCA — NF fD - Ym(x)
4 des 7 J0 T [(NT/m)+ Y, (x)]?
(5.27)
By the same approach
NCA
yNCA . __ PEg
a£§
r —2Y;
_ NT fD (NT /m)Y,,(x) mix) (5.28)
T ©0 [(NT/m)+ Y,,(x)]

To compute X, one requires the generalization of Eq.
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(5.22) for occupied f states split by a field. The resulting
expression for YNCA is

oA [P ax /TN /)4 20 ()]
3 507 Y, (0[NT/m)+ Y, (0]

(5.29)

If now the NCA differential equations are not solved
exactly, but perturbatively in 1/N, the expressions for
n}”, X(c”, and XV first derived in Sec. ILC may be
recovered (Kuramoto and Miiller-Hartmann, 1985). For
example, at O(1), Eq. (5.22) becomes

NT

Yo+——I(Y,,/D)—e,=Y, (5.30a)
T
and
Y, NT
=Y |—+7, 5.30b
Changing variables in (5.27) gives immediately
a0 NT f” dYp, __u
f = T 2 ’
T 4 [(NT/m)+Y, 1+u
[ nl (5.31a)
__NT
u 7T,
with e, — T 4 the lowest energy solution of
£r—w
o=l |22 (5.31b)
T D

(It is amusing that the low-temperature scale T, emerges
in this case as an integration limit after a change of vari-
ables.) Likewise,

(1 _ Nrf (NT /7r)—
¢ r,? [(NF/ﬂ)+Y ]4
1 7 (2 (1)
=— -———(n )H(1—ng) (5.32)
Ty (14u)?* NT
and
e i NT 0 dY, (NT/m)+2Y,
3 7 YT4 Y: [((NT/m)+Y,]?
n i :“1
3T, (5.33)

Results for ns, X,, and X at O(1/N) can also be
rederived by this approach. Results at O(1/N?) cannot,
since the NCA equations omit terms of this order.

(N +1)(0—EJ®)

Go(a)iIO"'): %eiITrN/(N+1) l

T'nea

ENCA)

4. Zero-temperature limit for propagators
and spectral densities

The propagators Gy and G,, near the ground-state en-
ergy EQC® may be obtained from Egs. (5.22)—(5.25)
(Muller-Hartmann, 1984). Equation (5.22) may be rewrit-
ten

7Y, /T mES 1 D
= 1—— | |22
Yo |—NT TN | T
Ty,
ie.,
TTYm/F 7TTNCA
= —— Y —_—
(7 Yo/ D) T exp[ —7(Y,,—Y,)/NT],
(5.34a)
with

Tnca=D(T /mD)Nexp(me;/NT) .

For Y, and Y, << NT /, this expression reduces to

Yo=£(Ym /Trnea)N (5.34b)
Thus, from Eq. (5.24b),
Y,
E§*—o~—= [ dx Tnealmx /DY,
i.e.,
r (N+1)(EgCA—a)) N/(N+1)
YO(CO)N - ’
m T'nea
w<EYA . (535
Similarly,
N 1)(ENCA ) 1/(N+1)
Ym (CO ) ~ TNCA * ’
Tnea
w<EJ . (5.36)

Propagators G, and G,, valid on both sides of the
threshold ENCA may be found immediately by analytic
continuation:

—N/(N +1)

—N/(N+1) (5.37)

pol@) =00 — ENA)Lgin

r N +

aN [ (N +1)(w—
1 Tnea

and
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NCA, ]—I/(N+1)
G (a)ii0+)=___1__.e:rm/uv+1) (N+1)w—Eg™) ,
" NCA TNCA (5 38)
NCA —1/(N+1) .
pm(@0) =80 —ENA) — L i [T | | M+ 1Ne—Fs )
" ¢ “aTwca N +1 Tnea

Within the NCA, the spectral densities py and p,, exhibit
power-law threshold singularities with exponents depen-
dent only on the degeneracy N. More systematic treat-
ments of the threshold behavior (see, for example, Sec.
IL.D) suggest that the exact exponents depend on the f
valence as well.

To compute the f spectral density within the NCA, it
remains to calculate gy and g, [cf. Eq. (5.18)]. From Eq.
(5.19), these quantities satisfy the equations

%[ﬁo(w)Yﬁ(w)]= — L pt@)

(5.39)
D o @ P2 (@)]= — L)
EyS Pm m = 7TP0 ’

with
Po(@)Y5(@) | gxca=Pm (@) Ym(@) | gyea=0 .

These equations assume the same form in the asymptotic
region w—»EgCA as the equations for Y, and Y,, [see Eq.
(5.15)], if one makes the ansatz

pol@)~aYi (o), (5.40)
Pm(@)~a ¥y (w), o—sESA. ’

|

The value of @ may be determined using an identity due
to Miiller-Hartmann (1984). Note that

B%[ﬁo(w)Yo(w)—i—Nﬁm(w)Ym(w)]=ﬁo(w)+Nﬁ,,,(w) :

(5.41)
Hence
S do [y()¥o(0) + N (@)Y, (@)]
/ = [ dolpo(@)+Npnl@)]=1,
ie.,

[Po(@)Yo(@)+Npp ()Y, (w)] lEg‘CAzl , (5.42)

giving immediately

1
oz-—N_‘_1 .

(5.43)

Finally, the f Green’s function may be computed. Re-
call that in the NCA

Gf(wiri0+)=—zl~ [7 deePpy(e)Gple+0+i0%)—Gole—@Fi0F )p (e)]
f — o0

ENCA

=— [0 delpe—o) ¥y ()= Y5 e—w)pm(ell+ [

EYA+o

xca depyle—w)G,, (e+i0T) .

(5.44)

The first integral is real and may be neglected if only the spectral density is required. It may, however, be computed ex-
actly using an identity (Miiller-Hartmann, 1984) analogous to Eq. (5.42):

B Y )+ Y5 ) () =L 2[5 ()T ()] — Zpim(e) - (5.45)
I’ d¢ r
Applying the identity in Eq. (5.44) gives for =0
EJcA _ - T ES ™ N+l |
= [ AP Y &) = Y5 P e = TP Y )| o =T [ dePmle) =y |- Ty |
Finally, for «—0, (5.46)
E§+o 1 ; T
= i) — sim/N+D___ T
ExCA depole—w)G,,(e+i0T) NCAe (N + 1T
ngCA'l"O)d E—EgCA —1/(N +1) EgCA-f-a)—S —N/(N+1)
X E|l——— e ———
EFCA T'nea "T'nea
— T Him/(N+1) [ 1~ VAN D )= NAN+1D)
(N +1°T Jodxx (1=
- T tin/(N+1) 5
(N+1)2I‘e ‘n"cscN_*_1 . (5.47)
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Thus the f Green’s function at the Fermi surface becomes

™

_N+1 T T

i

Gp(+i0t)=

(N+1)T

— t
N YTNFI NI TN+

(5.48)

This analysis is only sufficient to find the Green’s function at @« =0. Miiller-Hartmann (1984) has extended this
analysis by retaining the next-leading corrections to the singular functions Y3, ¥,, ', po, and j,, for o—E&A. The re-

sult obtained for Gy is, in our notation,

Grlo+i0t)—Gp(£i0t)=

2 N

B,=B ,———
! N+1 N+1

1 2Nl

B,=B |——,
» T2 |N+1 N +1

with B the beta function. We comment on this form below.

tim 4 sin T
(N +1)’I N +1

1 Tnea | (N+1Do 1N+
N+2 1r‘/’IT TNCA
)
L1 (N+1)o |V
AN +1°2| Tnca ’

(5.49)

The leading term in the magnetic spectral density, i.e., the imaginary part of the magnetic susceptibility, may also be
obtained for ®—0. The calculation exactly parallels that in Eq. (5.47), and we only quote the result:

Hj N . T 15}

(N+1)] o]

—2/(N+1)
N N

ImX(w+i0t)~—
N+1 Tiea

T'nea

, By=B (5.50)

N+1'N+1

Equations (5.48)—(5.50) allow the direct comparison of NCA results with exact Fermi-liquid relations for the Ander-
son model. Four Fermi-liquid relations are listed in Table IX (Langreth, 1966; Shiba, 1975). The first two relations state
that the character of the f-electron self-energy at zero energy is unchanged by the presence of Coulomb correlations (even

in the limit U— o). Within the NCA,

N4l

o i

ImZ4(i0%)=—ImG; (i0")=—T | |1

The first relation is clearly violated in general; for N— oo,
ImSNCAG0*+) ~ — 1
nf
and the approximate form deteriorates with decreasing
valence. The second Fermi-liquid relation is also violated,
since the NCA Green’s function is nonanalytic at @ =0.
The spectral density exhibits a slightly asymmetric and
very sharp cusp (~ | |V *+V) at ©=0.
The third and fourth Fermi-liquid relations connect
thermodynamic derivatives with low-energy dynamic
properties. The third relation is violated since

(5.51b)

T
(N +1)T

a value independent of the valence; once again, the correct
value is approached in the integral-valent limit for large
N. The NCA fails most severely for the fourth relation:
the quantity o~ 'Im¥N®(w) actually diverges for w—0.

pyA0)= , (5.52)

J

T'nea
N +1

T
N +1

2N +1 B1 Tnea
N+2 B, T/

Thca = sec
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— t
N YT N+1% V1

(N+1)/(N-1)

(5.51a)

2 —1
ﬂz ]

(N +1)?

These shortcomings of the NCA prevent its application
for T—0. However, the method’s failure in the Fermi-
liquid regime does not invalidate its application at finite
temperature and frequency. The failure is due to an im-
proper treatment of high-order perturbative processes in-
volving low-energy eléctron-hole pairs. As the tempera-
ture (or probe energy) is raised, contributions from these
high-order processes are quickly outweighed in thermal
averages by low-order processes requiring higher-energy
transfer. For example, the sharp cusp that dominates
pslw) for w—0 falls off rapidly; for larger w (still in the
asymptotic regime), the dominant contribution to the
spectral density varies as | | Y/ ¥+, For large N this
term becomes indistinguishable from a linear contribu-
tion. Thus on a coarse-grained frequency scale, the spec-
tral density appears smooth down to an energy of the or-
der of T}Xca, a characteristic crossover energy for the two
asymptotic contributions in Eq. (5.49). We define T¥ca
as the energy o >0 at which these contributions to py are
equal. By a short computation,

(N+1)/(N —1)

T
NeA , (5.53)

/=

T'nea
_
N +1

1
rol%
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TABLE IX. Fermi-liquid relations for the f Green’s function
and dynamic susceptibility. We list below four Fermi-liquid re-
lations involving dynamic properties of the degenerate-orbital
Anderson model. These relations have been established by all-
orders perturbation theory in U (Yamada, 1975) and remain
valid in the limit U— . 2 is the f-electron self-energy, ps
the f density of states, and X(w) the dynamic susceptibility.

1. ImEf(i0+)|T=0:—1".

2. L ImZw+i0h) —o0.
9o 0=T=0

3. pf(0)|T=o=—77—_1i:sin2 -Z:;—f e (Friedel-Langreth).
2

4. 4y ImX(w) =l)(2 (Korringa-Shiba).
3 2] w=7=0 N T=0 ’

with B, and B, as in Eq. (5.49). The height of the cusp
above its value at the crossover energy is
N/N—1)
Pr(0)—ps(TRca) ‘

prl TXca)

T'nea
/r

(5.54)

This demonstrates analytically that the cusp anomaly has
a sizable effect only in the mixed-valent regime, where
T'nea ~T; in the Kondo regime, where T'nca <<, the
crossover scale Tica is tiny [O(Tnca/I')] in compar-
ison with T'yca, and the relative height of the cusp above
background at w="TyNca is equally small. At finite tem-
perature, thermal smearing prevents the observation of
zero-temperature spectral features with energy scales
smaller than T the temperature acts as a natural coarse-
graining scale. This means that, in the Kondo regime,
finite-temperature NCA calculations should not produce
an anomalous zero-frequency feature for 7> Tica. In
particular, if the onset of a Fermi-liquid regime (in which
properties vary with simple power-law temperature
dependences) occurs at T > Txca One expects extrapola-
tions of NCA calculations to zero temperature, or fre-
quency, to be reliable.

C. NCA for the Coqgblin-Schrieffer model

1. NCA integral equations for the Cogblin-Schrieffer
model

The noncrossing approximation for the Anderson
model partition function may be simply extended to the
Cogblin-Schrieffer model. In this case, the fundamental
quantities are the irreducible polarization and the
occupied-state self-energy (see Sec. ILE). Recall from
Sec. V.A the NCA equations for the Anderson model:

20(2)=NV?Y fiGn(z +5;),
k

(5.55)
Sn(@D=V>3 (1—fi)Go(z —&;) ,
x
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with
1
Go(2)= z —2o(2)
and
G (z)———“l—““—
M 2 —gp—Zp(2)

The Cogblin-Schrieffer NCA equations may be derived
by a Schrieffer-Wolff transformation (Schrieffer and
Wolff, 1966; Keiter and Kimball, 1971). The prescription
is the following.

(1) Write down the Anderson model NCA equations
with z—z +¢;.

(2) Pass to the Cogblin-Schrieffer limit

V?s o, gf—>—o, Vi/ep=J. (5.56)
It is convenient to let

lim -3z +e7)=1%2) ,

Cs Ef

lim 2, (z +e7)=232) , (5.57)

1ngIG,,,(z +e,)=G53(2) .

By inspection, the Cogblin-Schrieffer NCA equations are
O(2)=NJ S i Gz +¢4)
k

1—fx
382)=0 S ————, 5.58
(2)=J 2, 1—11%S(z —g;.) 5.58)
1
G ) =——— .
m (z) 2 —ZSIS(Z)

The Cogblin-Schrieffer NCA has been investigated ex-
tensively by Maekawa and collaborators (1985a, 1985b),
who refer to it as the “self-consistent ladder approxima-
tion,” or SCLA. The integral equations treated by these
authors take the form

HSCLA(Z) =NJ 2 fk Gs,CLA(Z +ex ) ,
k .

ESCLA(Z)zjz (1—f) I5CLA(z)
m < k l—HSCLA(z—Ek)
1
=J > (1— -1, (5.59
% fk) I—HSCLA(Z—-sk) ( )
1
GSCLA(Z)= .
m 7 e, TSR
The term
(5.60)

I3 (A—fi)(—1)=Aes
k
is a temperature-independent constant; without loss, it
may be absorbed into the f-level energy by letting

Ef—>§f=8f+AEf . (5.61)
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(This step remains valid in the presence of a magnetic
field, provided gugh <<D.) The energy € itself cannot
appear in any physically measurable quantity. This is be-
cause the f orbital remains singly occupied at all times.
Equations (5.59) are precisely the NCA equations with

Gy M) oGSz %) ,

(5.62)
LA (2) > TTS(z —3) .
The SCLA partition function takes the form
—Bz
SCLA _ e
z 2 fI‘ 2mi z —eg —35CLA )
Bz
—e B gz e _."Fizes | (5.63)
- 2 fF 2mi z —35(z2)

The intermediate step follows by the variable shift
z—z +%;.

The name “self-consistent ladder approximation” is de-
rived from an alternate pictorial representation of the
Coqblin-Schrieffer diagrams [see the treatment by Mae-
kawa et al. (1985a)]. Furthermore, Mackawa and colla-
borators (1985a, 1985b) employ a pseudo-Hamiltonian ap-
proach (see Sec. III) analogous to Abrikosov’s treatment
(Abrikosov, 1965) of the Kondo Hamiltonian (see Sec.
III). Such an approach is completely equivalent to the di-
agrammatic technique described in Sec. ILE.

5(z)

TS (o, )——JZCS fr ‘BZG,SS(Z +imy,)

1—TIS(z) +1 ]:——F+chs frﬁ

2. NCA expressions for dynamic properties

The impurity ¢ matrix and dynamic susceptibility of
the Coqblin-Schrieffer model have been studied by Mae-
kawa and collaborators (1985a, 1985b). Both quantities
may be simply obtained by a Schrieffer-Wolff transfor-
mation (1966) from the analogous quantities in the An-
derson model. From an equation of motion treatment,
the Anderson model ¢ matrix is found to be

Tlio,)=V*Gliw,)
1 dz

—_— b ,—Fz, ;:
= z, Ir L G,,(z +iw,)Gy(z)

with

Zp= [ 2 e PGo(2) + NG (2)]

The contour I encircles the singularities of the integrands
in a counterclockwise fashion. Performing the shift

z—>z +¢7 in both integrals, then passing to the Cogblin-
Schrieffer limit gives immediately

(5.64)

CS,. 1 dZ _ CS . 1
Tkk'(lco,,)ZJE-Es— fr Pyl PG SS(z +lm,,)m )
(5.65a)
with
ZS_N [ B2 —pGSS(y) . (5.65b)
T 277i

Here G5° and II® are as in Eq. (5.57). This may be
rewritten as

dz ()
1—11%(z)

(5.66)

e PGSz +iw,)

The first term is energy independent and real valued. Such contributions always arise from nonmagnetic impurity
scattering. This term may be removed by redefining the nonmagnetic impurity ¢ matrix. The function

1%8(z)
1—11%%(z)

is analytic in the upper and lower half-planes and decays as z ™~

! at infinity. Hence it has the spectral representation

n(z) 31(8) 1 (e +i07") :
e = = —Im—— el (5.67)
1Sz J . de z—e M= M S e ri00)
The ¢ matrix may then be rewritten
cS,; J 1 ® —Be | cs —lw,) cs .
Tkk'(zw,,)=—ﬁ—]zcs f_wdee pS (e)m—Gm (e+iw,)n(e) (5.68a)
hence
I T@ (@ +i0%)=— Tg(1+e ) [ deePp, (e+oln(e) . (5.68b)

This ¢ matrix (generalized to include crystal-field split f levels) has been employed to calculate the resistivity of model Ce

systems (Maekawa et al., 1985a, 1985b).
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The dynamic susceptibility may also be derived by a Schrieffer-Wolff transformation from the Anderson resuit |Lq.

(5.8)]. Recall that for the Anderson model

d
et

2mri

Nuj 1

X(ivy,)=— 3 —Z; e PG, (2)G,(z +iv,) .

(5.69)

Again shifting the variable of integration by z—z +&, and passing to the Cogblin-Schrieffer limit gives

N, ,ujz-
3
Ny}

XS(ivy)=— Z—lcg I- —2‘%e ~BG 2GRz +ivy,)

—— s [T dee PN OGS e tivy )+ G e —ivi )],

3
with
2 i 2
ui=j(j+1)gug)” .
The absorptive part of the susceptibility is then

N, /.1,]2-

3 Z

ImXS(w+i0t)=

The static susceptibility may be obtained directly from
Eq. (5.70a) as

Nu; 1
CS(y—0)— . — 4 %
XC(0=0)=— 3 7G5

X f_: dee PpS(e)-2ReGS(s) .

These expressions have been employed by Maekawa and
collaborators (1985a, 1985b) to study the static and
dynamic susceptibility in a model Ce compound
(CCCU2Si2).

D. NCA results at finite temperature

The failure of the NCA in the Fermi-liquid regime
(Sec. V.B) is balanced by its success in calculations at fi-
nite temperature. The NCA provides a conceptually sim-
ple approach for treating static and dynamic properties
above the characteristic anomaly temperature Tca in-
troduced in Sec. V.B. In this sense, the NCA is largely
complementary to the approaches discussed in Secs.
II—-IV and VI. The variational approach (Sec. IV) is ex-
pressly formulated for the zero-temperature limit. The
powerful saddle-point approximations discussed in Sec.
VI are valid throughout the Fermi-liquid regime, but not
at higher temperatures. The diagrammatic expansions of
Secs. II and III are, in principle, valid at arbitrary tem-
perature, but are; in practice, awkward to apply outside
the Fermi-liquid regime.

In view of the NCA'’s behavior for T—0, its reliability
at finite temperature must be established by comparing
results for static properties (specific heat and magnetic
susceptibility) with “exact” results from the Bethe ansatz
or numerical renormalization group. Comparisons for
systems with angular momentum degeneracy N=4 and
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725 f_ww dee _Bspﬁs(s)[PSS(8+w)—pﬁs(e—w)] .

(5.70a)

(5.70b)

N =6 (Bickers, Cox, and Wilkins, 1987) are shown in Fig.
24. (Since different conduction-electron band structures
are assumed in the NCA and Bethe ansatz, the low-
temperature scales have been adjusted to give identical
magnetic susceptibilities at high temperature.) The NCA
results are in good agreement with the exact treatment
and improve slightly with increasing degeneracy. As
shown in Fig. 25 the NCA remains an excellent approxi-
mation in systems with N as small as 2 (Zhang and Lee,
1984). The success of the NCA at small magnetic degen-
eracy has important implications for the modeling of
more realistic systems. When impurity levels are split by
a strong crystalline electric field (CEF) or a finite magnet-
ic field, N does not formally remain an expansion param-
eter. Nevertheless, on the basis of results for N=2, one
expects the NCA to retain much of its quantitative validi-
ty in these cases.

Since the NCA yields reliable results for static proper-
ties outside the Fermi-liquid regime, it is reasonable to as-
sume dynamic properties are accurately represented as
well. Bickers, Cox, and Wilkins (1985, 1987) have studied
the temperature dependence of the impurity valence, mag-
netic susceptibility, specific heat, resistivity, thermo-
power, and thermal conductivity over a wide range of pa-
rameters in the so-called Kondo regime. In this regime,
the degenerate impurity configuration lies far below the

. nondegenerate configuration (—&;>>T"). Most dilute in-

termetallic alloys of Ce and Yb are now believed to lie in
this parameter range of the Anderson model rather than
in the strongly mixed valent regime (where |e7 | <T'). In
Ce alloys (YD alloys), the degenerate impurity configura-
tion is f! (f'%) and the nondegenerate configuration f°
(f'). Strong spin-orbit interactions reduce the impurity
degeneracy from 14 to 6 (Ce) and 8 (Yb). Crystalline elec-
tric field (CEF) splitting may further reduce the effective
degeneracy in some alloys. Systems may be conveniently
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FIG. 24. Comparison of large-N and Bethe ansatz results for
finite-temperature thermodynamics (Bickers, Cox, and Wilkins,
1987). (a) Specific heat C and magnetic susceptibility X for
N =4. (b) Specific heat and susceptibility for N =6. In both
cases, Bethe ansatz results for the Cogblin-Schrieffer model are
compared with large-N results for the Anderson model in the
scaling regime.

characterized by values of the ground-state energy scale
T, and the zero-temperature valence. [In this context,
the valence ny(T) is defined as the fractional occupancy
of the degenerate configuration at temperature T.]
Finite-temperature properties assume approximate scaling
forms as functions of the reduced parameter T /T 4 in the
valence range n,(0)=0.7—1.0. Representative results for
N=6 are shown in Fig. 26. This approximate universali-
ty within the Kondo regime allows robust comparisons
with experiment. The precise values of the configuration
splitting €5 and the hybridization width I" are not crucial,
so long as the valence is sufficiently large. The only fit-
ting parameter remaining is the low-energy scale itself.
The most thoroughly characterized dilute alloy of Ce is
(La,Ce)Bg. As shown in Fig. 27 the susceptibility, specif-
ic heat, resistivity, and thermopower of this system are
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FIG. 25. Comparison of large- N and renormalization-group re-
sults for the magnetic susceptibility of the N =2 Anderson
model (Zhang and Lee, 1984). The solid line shows large- N re-
sults for a flat conduction band of half-width D, with
I'/D =0.016 and €7/D = —0.075. The dots represent the Kon-
do model susceptibility curve deduced by the numerical renor-
malization group (Krishna-murthy, Wilkins, and Wilson,
1980a).

consistently described by the NCA over ranges of two to
four temperature decades.

Maekawa, Kashiba, Takahashi, and Tachiki (1985a,
1985b) have studied the magnetic susceptibility and resis-
tivity of Ce impurities within the Cogblin-Schrieffer
NCA (unit impurity valence). These authors modeled the
anisotropic properties of CeCu,Si, by incorporating CEF
splitting of the Ce j =% term (Fig. 28). Cox (1987a) has
used the Anderson model NCA to study the static and
dynamic properties of a proposed single-impurity model
for UBCI3.

In addition to thermodynamic and transport properties,
the NCA has been used to study dynamic correlation
functions at finite temperature. The impurity electron
density of states ps(w) and the dynamic magnetic suscep-
tibility ImX(w) have simple expressions within the NCA
(see Secs.'V.A and V.C). The density of states may, in
principle, be probed directly by x-ray photoemission (f-
electron removal) and inverse photoemission (f-electron
addition). Anderson model studies have concentrated on
the Kondo parameter regime (see above), which is be-
lieved to be most relevant to experiment. As discussed in
Secs. I1.D and IV.B, the f density of states has two prom-
inent features in the simplest infinite-U approximation
(see Fig. 29): a broad charge-excitation resonance (half-
width ~NT') near. e, the position of the unhybridized
degenerate configuration; - and a narrow Kondo-
Abrikosov-Suhl resonance near the Fermi level. In Ce al-
loys, the chargé—excitation resonance measures the weight
for f1—f° transitions, while the Kondo resonance re-
flects f°—f! transitions: hence, the charge-excitation
resonance is probed primarily by photoemission and the
Kondo resonance by inverse photoemission. In Yb alloys,
these roles are reversed: photoemission probes the
f¥—f! Kondo resonance, while inverse photoemission
probes the 13— f14 charge-excitation resonance.

The scaling properties of the Kondo resonance at low
temperatures and energies have been investigated by Bick-
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_FIG. 26. Scaling of thermodynamic and transport properties
for the N =6 Anderson model (Bickers, Cox, and Wilkins,
1987). (a) Effective magnetic moment TX(T). (b) Electrical
resistivity. (c) Thermopower. Results are shown for an f
valence varying between 0.97 and 0.71.
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ers, Cox, and Wilkins (1985, 1987). The resonance shows
approximate scaling with reduced parameters 7 /T, and
w/T, (see Fig. 30) over a wide range of impurity
valences. This scaling behavior is directly reflected in
low-temperature transport properties, which measure
weighted averages of the conduction-electron lifetime
T(w) o pfl(a)). As the temperature is increased through
T ~T,, the Kondo resonance melts away (see Fig. 31).
At finite temperature, p measures the density of states
for changing the f-electron count, thermally averaged
over all many-body eigenstates. The Kondo resonance is
due to a small admixture of the nondegenerate configura-.
tion in the ground state and low-lying excited states.
Hence, when higher-lying eigenstates with negligible ad-
mixtures of this configuration become appreciably popu-
lated, the unique ground-state signature disappears.

More realistic generalizations of the simplest infinite- U
Anderson model lead to a richer structure in the f density
of states. Bickers, Cox, and Wilkins (1985, 1987) have in-
vestigated the photoemission and inverse photoemission
spectra for model Ce and Yb alloys with two spin-orbit
multiplets.

The dynamic susceptibility ImX(w) has also been stud-
ied extensively within the NCA. This spectrum may be
probed directly by neutron scattering (see, for example,
Holland-Moritz, Wohlleben, and Loewenhaupt, 1982).
The temperature dependence of ImX(w) for the infinite- U
Anderson model has been investigated by Kuramoto and
Kojima (1984) and by Cox, Bickers, and Wilkins (1985).
‘Using a single-impurity approximation, the latter authors
obtained good agreement with neutron scattering experi-
ments on CePd; (see Fig. 32). The behavior of inelastic
lines in systems with more complex multiplet structure
has been investigated by Maekawa, Kashiba, Takahashi,
and Tachiki (1985a, 1985b). '

A number of other properties have been investigated
within the NCA for the Anderson model. The behavior
of the magnetization M (H) in high fields has been inves-
tigated by Cox (1987b). Cox (1987c) has applied NCA re-
sults to a discussion of NMR linewidths in the heavy-
electron metals. Finally, the NCA for the Anderson
model has been employed in an investigation of pair
breaking by magnetic impurities in BCS superconductors
(Bickers and Zwicknagl, 1987).

VI. LARGE-N SADDLE-POINT
APPROXIMATIONS IN THE FUNCTIONAL
INTEGRAL APPROACH

A. Introduction

In this section we discuss saddle-point approximations
(Read and Newns, 1983a, 1983b; Coleman, 1985a,
1985b, 1987; Read, 1985) based on functional integral rep-
resentations for the Cogblin-Schrieffer and infinite- U An-
derson models. Such approaches rely on pseudo-
Hamiltonians, which we first discussed in Sec. III.A. The
pseudo-Hamiltonians conventionally studied are
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FIG. 27. Comparison of large-N theory (Bickers, Cox, and Wilkins, 1987) and experiment for ( La,Ce)Bs. A quartet f ground state is
assumed. All theoretical results (solid lines) assume a low-temperature scale To=1 K. (a) Magnetic susceptibility (Felsch, 1978). (b)
Specific heat (Ernst, Griihl, Krug, and Winzer, 1984). (c) Electrical resisitivity (Winzer, 1975). (d) Thermopower (Ernst et al., 1984).
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subject to
S fmfmt+bb=1. (6.4)

The operators f,]:, and b' create fermions and bosons,
respectively. The pseudo-Hamiltonians are equivalent to
the Cogblin-Schrieffer and infinite-U Anderson models
within the restricted Hilbert spaces satisfying the occu-
pancy constraints (6.2) and (6.4).

It is possible to derive rigorous functional integral rep-
resentations for these models based on Egs. (6.1)—(6.4).
In Sec. III.B functional integrals were used to derive the
first two terms in the expansion of the Anderson partition
function in powers of 1/N for arbitrary temperature T.
Recall that results obtained in this way may alternately be
derived by the methods of Sec. II. Functional integral
methods may also be used to derive expansions for the
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FIG. 28. Comparison of large-N theory and experiment for
CeCu,Si, (Maekawa, Kashiba, Takahashi, and Tachiki, 1986).
Experimental results (dashed lines) for the anisotropic magnetic
susceptibility in the heavy-electron compound CeCu,Si, (Onuki,
Furukawa, and Komatsubara, 1983) are compared with theoret-
ical results (solid lines) for the N =6 Coqgblin-Schrieffer model
with crystal-field splitting
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FIG. 29. NCA result for the low-temperature f spectral density
pr of the N =6 Anderson model (Bickers, Cox, and Wilkins,
1987). A Lorentzian conduction density of states with half-
width D is assumed. The f spectral density exhibits two peaks:
a broad (half-width~NT') charge-excitation resonance near ¢,
the position of the unhybridized f level; and an extremely sharp
“Kondo resonance” just above the Fermi surface. For the pa-
rameters  chosen, the Kondo resonance lies at
/D =Ty/D ~5.3%x1073. (For finite U, an additional reso-
nance would appear near energy €7+ U.) The nonanalyticity of
the NCA spectral density at the Fermi surface is not visible for
the temperature shown.
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FIG. 30. Approximate scaling for the low-temperature f spec-
tral density p; of the Anderson model (Bickers, Cox, and Wil-
kins, 1987). Results are shown for four values of the f valence
ny. The low-energy Kondo resonance assumes a nearly univer-
sal form within this parameter range. This universality is re-
flected directly in electronic transport properties.

Cogblin-Schrieffer partition function and correlation
functions of the two models. In all such calculations the
occupancy constraints (6.2) and (6.4) play an important
role: the full pseudo-Hamiltonian Hilbert spaces contain
“ghost” states, which should not contribute to physical
properties.

Whenever functional integrals over real or complex
spaces are introduced, nonperturbative saddle-point ap-
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08 . o125 —— /0 = 0.05
0.40 - ne = 0.97
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3
=
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w/ T,

FIG. 31. Temperature dependence of the f spectral density ps
for the N =6 Anderson model (Bickers, Cox, and Wilkins,
1987). The Kondo resonance rapidly drops in height and shifts
as excited states with small f° admixture become thermally
populated. Nevertheless, the resonance has an important effect
at temperatures up to ~10T,.
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FIG. 32. Comparison of large-N theory and experiment for the
dynamic susceptibility ImX(w) of CePd; (Bickers, Cox, and Wil-
kins, 1987). The dashed line shows a simple quasielastic line
shape. Finite-temperature results (solid lines) for the N =6 An-
derson model in the scaling regime are compared with experi-
mental neutron spectra (Galera et al., 1985) measured at 5 K
(solid circles) and 280 K (open circles).

proximations become possible. Such approximations are
common in the description of phase transitions and other
collective behavior. For example, the BCS theory of su-
perconductivity may be formulated as a saddle-point ap-
proximation with fluctuation corrections [see, for exam-
ple, Popov, 1983)]. Saddle-point approximations have
also been introduced in treatments of the Anderson and
Cogblin-Schrieffer models (Read and Newns, 1983a,
1983b; Coleman, 1985a, 1985b, 1987; Read, 1985; Kotliar
and Ruckenstein, 1986). [Mean-field treatments of the
magnetic impurity problem actually have a longer history,
dating from a study of the Kondo model by Takano and
Ogawa (1966).] Since saddle-point approximations are in
this case based on pseudo-Hamiltonians with enlarged
Hilbert spaces, a cause for concern is the fate of the occu-
pancy constraints (6.2) and (6.4). The exact role of these
constraints in saddle-point treatments has been (and
remains, to some extent) a point of controversy.
Constraints on particle number arise in statistical
mechanics within the canonical ensemble. In the thermo-
dynamic limit, canonical and grand canonical treatments
are equivalent, and exact constraints on particle number
are not crucial. It is only necessary that constraints be sa-
tisfied on average, since relative fluctuations are inversely
proportional to the total particle number. The occupancy
constraints (6.2) and (6.4) are qualitatively different in
character. Only one local Fermi or Bose particle may be
present in the system at any time, even if the magnetic de-
generacy N — oo (the large-N limit is not a thermo-
dynamic limit). For this reason the occupancy constraints
in magnetic alloy models are qualitatively different from
those that arise in the statistical mechanics of macroscop-
ic systems. At finite temperature, a saddle-point treat-
ment of the occupancy constraints introduces errors for-
mally of O(1) in a large-N expansion. These errors arise
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partially from the inclusion of unphysical states in the
pseudo-Hamiltonian Hilbert space.

The degree of violation of the occupancy constraints is,
however, highly temperature dependent. (A failure to
realize this fact has been the source of much of the con-
troversy surrounding the saddle-point approach.) In the
Fermi-liquid regime, i.e., for temperatures much less than
the characteristic low-energy scales T'cg and T, the con-
straints are violated by an exponentially small amount
[x<exp(—Tcs/T) or exp(— T ,4/T)]. For this reason, ex-
pressions for the low-temperature free energy and correla-
tion functions derived by other methods (Secs. II—IV)
may ‘be recovered from a saddle-point analysis in which
the constraints are enforced approximately. (This state-
ment has not, in fact, been established to all orders in per-
turbation theory, but now seems clear from examination
of low orders in the large-N expansion.) The basis for
this unusual behavior in the zero-temperature limit is not
entirely clear, but may be related to the integrability of
the Coqgblin-Schrieffer and Anderson models [in this re-
gard, see Coleman and Andrei (1986)].

Since the occupancy constraints need only be treated
perturbatively in the Fermi-liquid regime, the Coqblin-
Schrieffer and Anderson models may be reanalyzed using
the full array of methods for treating quantum field
theories near a saddle point. Such methods, which may
alternately be phrased in purely diagrammatic terms
(’t Hooft and Veltman, 1974), allow all-orders resumma-
tions of perturbation theory. Assuming suitable conver-
gence properties for the diagrammatic sums before and
after such a transformation, this amounts to a nonpertur-
bative reinterpretation of the underlying degrees of free-
dom in the theory. The infrared divergences that arise
from dressing the O(1) magnetic alloy ground state with
electron-hole pairs (see Sec. IL.D) may be eliminated by
such a transformation (Read and Newns, 1983; Read,
1985; Coleman, 1987). [While such divergences are au-
tomatically eliminated from measurable properties by the
large-N expansions of Secs. II-IV, they remain order by
order in other properties, such as the overlap between the
noninteracting and interacting ground states (see Sec.
IL.D).] The resulting Fermi degrees of freedom may be
interpreted as weakly interacting ‘“‘quasiparticles,” cou-
pled by excitations of a Bose background field. [These
are not quite the quasiparticles of Noziere’s Fermi-liquid
theory (Noziéres, 1974). In Noziére’s theory the specific
heat yT is completely determined by the quasiparticle
density of states; in the present case, the Bose degrees of
freedom also contribute to 7y.] The quasiparticle
transformation is a crucial conceptual advance which al-
lows a possible extension in periodic systems.

Generalizations of the Coqgblin-Schrieffer and Ander-
-son models for which the large-N limit is a thermo-
dynamic limit have been proposed (Coleman, 1985a,
1985b, 1987). In such treatments the impurity level is as-
sumed to hold up to N fermions or bosons, and the filling
is fixed at some integer value Q =¢N; the case g =1/N is
physically relevant. For fixed ¢, a thermodynamic-limit
saddle-point expansion is expected to converge asymptoti-
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cally for N— oo at all temperatures. The small parame-
ter in such an expansion is (gN)~!. In the physical limit,
this parameter tends to 1, and the treatment amounts to a
saddle-point expansion based on the number of Bose
loops, rather than the small parameter 1/N. Such an ex-
pansion is poorly behaved at finite temperature, but
remains well controlled in the Fermi-liquid regime. (The
number of Bose loops in a diagram and its order in 1/N
are closely related: for this reason, results from a loop ex-
pansion may subsequently be reexpanded in 1/N.) A
saddle-point expansion based on the number of Bose loops
was first discussed by Read and Newns (1983). We
describe the Bose loop expansion in parallel with our dis-
cussion of the saddle-point 1/N expansions for the
Coqgblin-Schrieffer and Anderson models.

The remainder of this section is organized as follows:
In Sec. VI.B we describe the saddle-point approximation
for the Cogblin-Schrieffer and Anderson models. We dis-
cuss in parallel the O(1) approximation in the large-N ex-
pansion and the tree-level approximation in the Bose loop
expansion. In Appendix I we discuss the saddle-point ap-
proximation for two “toy models,” again distinguishing
the results of O(1) and tree-level approximations. This
discussion illustrates many features of the full magnetic
alloy analysis in a simpler context; in particular, -the
quantitative success of saddle-point approximations in the
zero-temperature limit and their qualitative breakdown at
finite temperature may be simply understood for the toy
models. In Appendix J we discuss the calculation of
O(1/N) corrections to zero-temperature properties within
the saddle-point approach. In Sec. VI.C we discuss the
nonperturbative transformation introduced by Read and
Newns (1983) for treating quasiparticle degrees of free-
dom in the Fermi-liquid regime. Finally, in Sec. VI.D, we
make some additional comments on the Bose loop expan-
sion for the magnetic impurity models.

B. Saddle-point approximations
for magnetic impurity models

In this section we derive saddle-point approximations
for the Cogblin-Schrieffer and infinite-U Anderson
models. We consider in parallel a mathematical generali-
zation of these models: for each value of N, the pseudo-
Hamiltonians in Egs. (6.1) and (6.3) describe a hierarchy
of models with different local-level occupancies. The
models describing the magnetic impurity problem corre-
spond to the constraints

S fhfm=1, S fifmbb=1. (6.5)

Well-defined (but unphysical) models correspond to the
‘constraints

S =0 Sflifutbb=0 (Q<N), (6.6

with f,i, and b' Fermi and Bose operators. In particular,
models with simple thermodynamic limits are obtained
for
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S i Sfm=aN, 3 fhfm+bTo=gN, 6.7)

with g a constant and gN integral. As we emphasized in
Sec. III.LA and Appendix I, such generalizations are not
mathematically unique. The levels | m) and |0) in the
magnetic impurity problem have neither Fermi nor Bose
character. The generalization in Eq. (6.7) has particularly
nice properties, however. In this case, the large- N expan-
sion is equivalent to a Bose loop expansion (Coleman,
1985a, 1985b, 1987). The loop expansion is well con-
trolled in the Fermi-liquid regime (Read, 1985), and re-
sults derived by other large-N techniques may be
recovered by expanding in ¢ =1/N after expanding in the
number of Bose loops. [Outside the Fermi-liquid regime,
i.e., for temperatures of order T4 and Tcg, the loop ex-
pansion introduces errors due to violation of the level oc-
cupancy constraint in Eq. (6.5).] In the course of our
treatment we compare lowest-order results from the
large- N expansion and the Bose loop expansion.

The success of the saddle-point approach at zero tem-
perature may be interpreted using the language of Sec. II.
For T—0, thermodynamic properties are dominated by
the lowest-energy singularities in the quantities
(1—11W(z))~! (the polarization function for the
Cogblin-Schrieffer model) and (z —={"(z))~! (the
empty-state propagator for the Anderson model). The
saddle-point prescription amounts to locating these singu-
larities. At finite temperature, properties may no longer
be expressed as contributions from a single singularity.
The agreement between the saddle-point treatment and al-
ternative approaches worsens with increasing T. The oc-
cupancy constraints (6.2) and (6.4) are “effectively” en-
forced at zero temperature; at finite temperature, the con-
straints cannot be enforced within a saddle-point approxi-
mation.

1. Coqblin-Schrieffer model

We consider first the Cogblin-Schrieffer model [Eq.
(6.1)] and its generalization (Read and Newns, 1983a).
The partition function for arbitrary gN takes the form

aT

>

BAA igngN) 1 | . —iBAN -5
. e!PMaVI(] 4 g —1PA) fge

T Jar

‘with

S=BY |&m |*—~NTrln [14+J 3 G(iM)XG(g,)X
m k

(J <0),

1

Xm=8En—n G(E)nn'zsnn'm ’

Jo=J N dEndé. .

(6.8)

The value of the partition function is unchanged if A is
shifted into the complex plane by
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A—A+ieyr . (69

It is convenient to perform this shift at the outset, since
the saddle-point value of A is imaginary. Mean-field
equations may be obtained by (a) ignoring finite-
frequency fluctuations (the variables &,, with m=£0) and
(b) evaluating the static- integrals over A and &, by a
saddle-point approximation. [We review the inclusion of
lowest-order fluctuation corrections (Read, 1985) in Ap-
pendix J.] The partition function may be divided into
mean-field and fluctuation components:

. .
Z =ZypZoyers Zyr=e ME >

Fyp=emp(gN) — NT In(1+¢ ") 4 (£,)?

+L (emp {&o?) (6.10)

L=——N%Trln 14+J(£0)? S G(—epp)Gleg) |
k

Zayet=Z/ZyF -

Note that when (£,) vanishes, Fyy reduces to the mean-
field free energy for the first toy model in Appendix I
(with €5 set to zero).

For N=g~! (the “physical limit”), the logarithmic
trace L may be expanded to O(1) as

1

1 1 1
L~—NJ{(£)*—= S - .
S B % o, +emr [0, —&

fep)—f(—emp)

€x +EMF

= —NJ(&) S
k

_->—<§o>2RCH(“(SMF) ’ (6.11a)

with TI'V the O(1) polarization introduced in Eq. (2.68).
The identification in the last line holds rigorously assum-
ing a flat density of band states, and to terms of O(1/D)

for any band with characteristic energy D. Recall that
for a flat density of states

nVz)=—Nyln | =2 | (T=0),

(6.11b)
y=NO)|J]| .

Within a Bose loop expansion, the logarithmic trace
representing Fermi degrees of freedom may not be ex-
panded. Fermi contributions to the free energy must be
included to all orders even at mean-field or tree level. Al-
ternatively, within a large- N expansion about the thermo-
dynamic limit (fixed q), (&y)? is itself O(N). In this
case, L may be rewritten exactly as a contour integral,
and the contour distorted onto the real axis. The result-
ing expression is

1

L=N[" L s@min 1+7(8) 3,

Assuming a flat density of band states,

D
L=N [ L pepant | B | A—mp(g,).

(6.12b)
This is the partition function for an effective resonant lev-
el model. The resonance . position and hybridization
widths are just —eyp>0 and A. (Note that the inverse
tangent is restricted to the interval [ —m/2,7/2], chang-
ing discontinuously from —m/2 to 7/2 as ¢ increases
through —eypg. )
We discuss first the saddle-point solution within the
“physical” 1/N expansion [Eq. (6.11)]. The mean-field
equations to O (1) are in this case

d (n
: Rell (EMF)zl 5
2
3¢6o) (6.13)
0 (&) =Z(ewr)[1— NS (—enr)]
MF
dRell'V(z) |
Z(EMF)_ aZ Z=gpmp )
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- (6.12a)

E—Eg +lo+ £+€MF+iO+

At zero temperature the first equation has the solution

~1/Ny (6.14)

EMF= — TCS = —De
assuming a flat band profile. Substituting in Eq. (6.10)
gives immediately -

E0=F(T=0)=—'TCS . (615)

This is exactly the result for the ground-state energy de-
rived in Sec. ILE. Previous results for the magnetic sus-
ceptibility and specific-heat coefficient at O(1) may also
be reproduced. For a general external field x (h or T),
the required thermodynamic derivative is 9E,/dx. Dif-
ferentiating the equality

N'Y(Ey)=1 (6.16a)
with respect to x gives
dNM'(Ey) 3E, aN'V(E,) 0 16b
3E, ox | ax (6.16b)
Thus
AE AN V(E,) |~ ol (E
°o_ _ (Eg) | 3l (X) , (6.16¢)
9x 0E, ax
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and, by Egs. (6.13),
3E, AM(E,)
dx ox ’

This last form guarantees that dE,/dx may be obtained
simply by differentiating Fyr [Eq. (6.10)] with respect to
x, disregarding the implicit dependence of ey and (&;)
on x. The results in Eq. (2.74) follow immediately.

At finite temperature, the saddle-point partition func-
tion takes the form

—Bepp(D)

=—(&)? (6.16d)

 Zyr=e (14 DWW 1

=N+e-—B£MF(T)[1+0(e2B£MF(T))] ’ 6.17)

with eyp(7) the solution of the first equation in (6.13). In
comparison, the O (1) result from Sec. ILE is

dz_ ,_p, —312)/0z
2mi 1-11Y(2)
where I' encircles the singularities of the integrand in a
counterclockwise fashion. Up to terms of 0 (M%) the
saddle-point result may be obtained from the rigorous
O (1) result by approximating the integrand in Eq. (6.18)
by an undamped pole at the lowest solution of
Rell'"(w)=1. The terms of O(ezﬂsMF), which vanish for
T —0, but become large for T ~ T, reflect explicitly a
violation of the occupancy constraint in the saddle-point
treatment; the neglect of ImII' is a second approxima-
tion, which worsens with increasing temperature.

It is interesting to compare the results obtained above
with results from the Bose loop expansion. Assuming a
flat density of states, the mean-field equations for arbi-
trary temperature take the form

ZW/Zy =N + fr s (6.18)

0 D E+EmF
. —N defle)———F ___1,
a<§0>2 Y f__D Ef(E) (8+5MF)2+A2 6.19)
3] A pD 1 )
: = defle)——————=q—f(— ).
aEMF m f_D 8f €) (8+€MF)2+A2 1 f( EME

(The integrals may be expressed in terms of the digamma
function if desired.) At zero temperature these equations
reduce to

(8§4F+A2)1/2= TCS =De-—1/Ny ,
(6.20)

—l—tan‘1
T

—EMF

For fixed ¢ and Ny=0(1), these equations contain no
quantities of O(1/N), and no further reduction is permit-
ted. In the thermodynamic limit, relative fluctuations are
suppressed by factors of 1/N at all temperatures. Hence
the mean-field equations constitute a rigorous solution of
the model in the limit N— o (cf. the discussion of the
toy models in Appendix I). In this thermodynamic limit,
the system exhibits a continuous transition from a high-
temperature phase with (&;)=0 to a low-temperature
condensate phase with (£))50. The high-temperature
free energy is the same as that for toy model (i) [Eq.
(6.12)]: the system corresponds to a set of N noninteract-
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ing fermion levels, each with probability g for occupancy.

. The high-temperature solution becomes unstable (and the

phase transition occurs) at T,, where

b de 1 1
P s =
f—D eBcE+1 £+ EMF NY

<> Rell'eyp) |1, =1,
with

1
v (6.21a)
ie, emp=—T,In(g~'—1). Approximating the Fermi
function in the first equation with its zero-temperature
value gives ‘

Tcs
In(g—'—1) °

As in Appendix I, finite-temperature results obtained in
the thermodynamic limit become unreliable when ex-
trapolated to N =g ~!. The violation of the occupancy
constraint at high temperature is the same as that for the
toy models (see Table XII below). Further, the continu-
ous phase transition is an artifact of the saddle-point solu-
‘tion with no analog in the Cogblin-Schrieffer model.
Nevertheless, for the physical limit N =¢~!, the zero-
temperature solution obtained by the Bose loop expansion
reduces to the O(1) result of Eq. (6.15) upon expansion to
leading order in g. Since this property persists at higher
orders, the loop expansion (or thermodynamic-limit ex-
pansion) is well controlled throughout the Fermi-liquid
regime.

T, ~ (6.21b)

2. Infinite-U Anderson model

The generalized Anderson partition function for arbi-
trary gN takes the form

— ™ BdA _iggn) —Bles+iM\y [ s
Z=]_.r o © (1+e )fge ,

S=—NTrln |1-¥23 Gle; +iMXG(ep) X!
k

_BE Igm |2D_1(ivmri}\') ’
where

1

S,
G(E)””'zl—'ﬁ’ D(ivm,ik)=-ljv———.—}\' ,

n

- (6.22)
Xon=8En—n" f§= fHdé'ma’§m .

The variable A may conveniently be shifted off the real
axis as in Eq. (6.9). In this case, the mean-field partition
function (Read and Newns, 1983b; Coleman, 1985a) takes
the form
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Fyp =enp(gN) —NT In(1+e" ™ 77) _ey(£)?
+L'(emr (60)) 5 (6.23)

L’=-N—}3—Trln 1— VX £)? S, Gles —enp)Gleg)
k

This saddle-point free energy is quite similar to that for
the Cogblin-Schrieffer model [Eq. (6.10)]. For gN =1, L’
may be simplified by inspection:

f(Ek)—f(Ef——ﬁMF)
L'~NV*(&)*
<§0> % €k +EMF—Ef

+O(1/N)

= (&) ReZ (epp)+ O (1/N) (6.24a)

with =§" the O(1) empty-state self-energy introduced in
Eq. (2.15). Note again that this correspondence holds
rigorously for a flat band, and to terms of O(1/D) for an
arbitrary band. For the flat band,

8f—~Z

Res{(z) =L (T =0) . (6.24b)

Within the loop expansion, the O(1) approximation for
L' above is not sufficient. It is easy to check that more
generally

S S
E+€MF—€f

D
=N f_p ii’r;ﬁ—f(e)tan‘1

(6.25)
A=T(&)?,

assuming a flat band profile. Note that, as in Eq. (6.12b),
the inverse tangent lies in [ —7/2,7/2].

We discuss first the O(1) solution. The mean-field
equations take the form

9 (1)
———: gmqrp—ReZg (gyp)=0
a<§0>2 MF o (EMF
(6.26)

2(01)(8MF) =1——Nf(8f—EMF) .

: (€o)? |1

)
€

as
At zero temperature, the minimum-energy solution of the
first equation is just

(6.27)

with E, the ground-state energy of Sec. II.C. Further-
more, for T=0,

(E0)*=Z(Ey),

asi(Ey |7
3E, :

emp=Eo=¢;—T,,

(6.28)

Z(Ey)= [1 -
Since the coefficient of {(&;)? in Fyg [Eq. (6.23)] van-
ishes, the ground-state energy becomes
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as in Secs. II-V.

The zero-temperature thermodynamic properties nf D
XV, X and ¢V may be computed by differentiating
Fyy with respect to the appropriate field, ignoring the
implicit field dependence of ey and {&y)? [the argument
used to validate this procedure in part (a) may be trivially
extended to the Anderson model]. The results obtained in
previous sections at O(1) may be reproduced in this way.

As in our discussion of the Cogblin-Schrieffer model
we may compare the saddle-point and O(1) treatments at
finite temperature. The finite-temperature saddle-point
partition function takes the form

Zyp=e P (g AME TN

—Ne P po 7P o (PPmE D¢y (6.30)

with epp(T) the solution of Eq. (6.26). The rigorous O(1)
result [Eq. (2.24)] is

_p 1—834" /02
277'1 z—3M(z)
(6.31)

2/ Zppa=Ne P4 [

The saddle- pomt result may be obtained from Eq. (6.31),
to terms of O (e P*™MF ™ ), by approx1mat1ng the integral
by its lowest 2pole and neglecting Im=y". The additional
terms of O (e P ™MF™%/) in Eq. (6.30) represent a violation
of the occupancy constramt The inclusion of these terms
and the neglect of ImZ{" represent approximations in the
finite-temperature saddle-point treatment, whlch deteri-
orate with increasing 7.

Finally, we compare the O (1) results with results from
the tree-level loop expansion (Coleman, 1985a). In the
latter case, the saddle-point equations for a flat band pro-
file take the form

) O
8(§o)2 (E+8MF—8f)2+A2 ME >
1 (6.32)
— de f(g)
aeMF f 4 (E+8MF—8f)2+A2
A
=q — f(Ef EMF)_'_ NT

In the zero-temperature limit, these equations reduce to

2., A29172 TEMF
— A21172—
[(Ef emrp) +A%] exp NT s
itan—l A _ A (6.33)
m € —EMF - NT )

Equations (6.32) and (6.33) are analogous to Egs. (6.19)
and (6.20) for the thermodynamic-limit Coqgblin-
Schrieffer model. As before, the mean-field equations be-
come exact in the limit N— oo. In this limit the system
exhibits a continuous phase transition. The high-
temperature phase again corresponds to a set of nonin-
teracting fermion levels with probability g for occupancy.
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The transition temperature T, follows from Eq. (6.32):

P fD de 1 __ TEMF
—D Eﬂca+1 €+€MF—-€f NT

<> emp=ReZ( (emp) | 1,

with
eMpzef—Tcln(q”l—l) . © (6.34a)
Approximating the Fermi function by its zero-
temperature value gives
T
i (6.34b)

T,~——mm.
¢ In(gT'—1)

The extrapolation from the thermodynamic limit to
N =g~ ! is unreliable at finite temperature for the same
reasons raised in the discussion of the Cogblin-Schrieffer
model. The expansion about the thermodynamic limit is
an asymptotic expansion for gN — « with g fixed. The
point N =¢q ~! lies far outside the range of validity of the
expansion. Despite this breakdown of the loop expansion
at finite temperature, reliable results may be obtained
throughout the Fermi-liquid regime with exponentially
small errors: in particular, results of systematic large- NV
perturbation theory may be recovered by expanding the
Bose loop free energy in powers of the small parameter
qg=1/N.

The saddle-point approach has been used to calculate a
number of properties besides 7y, X, X, and y. Houghton,
Read, and Won (1987) have extensively treated the large-
N expansion for the T—0 resistivity and thermopower.
Coleman (1987) has computed the zero-temperature f
spectral density and dynamic susceptibility to O (1/N).
Read (1984) has calculated the coefficients for T2 terms
in the low-temperature magnetic susceptibility and
specific-heat coefficient and H? terms in the susceptibili-
ty to O(1). Withoff and Fradkin (1986) have computed
the zero-temperature field-dependent magnetization
M (H) and susceptibility X(H) to O(1).

We briefly discuss the effect of fluctuations in the
thermodynamic-limit models in Sec. VI.D. In Appendix
J we discuss a method for extending the O(1) calculation
of Eq. (6.26) to O(1/N). In the next section we discuss
an all-orders rearrangement of perturbation theory which
furnishes a new interpretation for alloy physics in the
Fermi-liquid limit.

C. Nonperturbative transformation
to quasiparticle modes

As mentioned in Sec. VLA, the functional integral pro-
vides a powerful tool for reorganizing perturbation theory
in the zero-temperature limit. In this limit, the constraint
integral (see Sec. VI.C) which eliminates unphysical states
from the analysis need not be performed exactly, but may
be treated in a saddle-point approximation. The formal
perturbative series that arises from fluctuations about the
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saddle point may be transformed to an equivalent series
by applying the following theorem of °t Hooft and Velt-
man (1974).

Theorem. Let =X +R (X) be any transformation (lo-
cal or nonlocal) invertible in the vicinity of ¢=0. Then
the partition function '

7Z = f e—S(:P)
(4

and all ¢ Green’s functions, defined by their perturbative
expansions, remain invariant when Z is rewritten as

Z0)= [ e=S™,
(6.35)
S8R

15y
The logarithmic trace is the formal Jacobian of the vari-
able transformation. Z(X), like Z(¢), is defined by its
diagrammatic expansion and may be obtained formally by
performing Gaussian integrations over the full real line or
complex plane.

This is a truly remarkable theorem. Its proof (see
’t Hooft and Veltman, 1974) relies only on the combina-
toric properties of diagrams. Several points should be
stressed in connection with this theorem. (a) Variable
transformations in functional integrals defined in this for-
mal way are even simpler than transformations in ordi-
nary integrals; it is not necessary to keep track of the
domain of integration. (b) The condition that the
transformation be invertible is crucial. If the transforma-
tion were singular in the vicinity of ¢ =0, it would be im-
possible to define a propagator for X, and Z (X) would be
ill defined. For example, the transformation

(E,€)—(r,0) (6.36)

is not permitted in the neighborhood of £=0. (c) The
theorem expresses the equivalence of formal series
summed to infinite order. In some cases a nonlinear vari-
able transformation may complicate a small-parameter
expansion. An infinite number of diagrams in X pertur-
bation theory may be required to reproduce a finite num-
ber of diagrams in ¢ perturbation theory. Further, new
divergences (which ultimately cancel, if treated properly)
may appear in the resummation of a convergent series.
(d) The theorem is purely perturbative in character. The
nonperturbative features of the actions S(¢) and S'(X)
are not guaranteed to be identical.

In the magnetic alloy problem, nonlinear variable
transformations are allowed in the vicinity of the T—0
saddle point, since all modes, including the ‘“constraint
field,” may be treated perturbatively. At higher tempera-
tures such transformations neglect nonperturbative contri-
butions from values of the constraint field near +#T.
These contributions are essential for eliminating ghost
states from the calculation at finite temperature. As
discovered by Read and Newns (1983), a particular
transformation leads to an elegant new interpretation for
degrees of freedom in the Fermi-liquid regime: the phys-
ics may be formulated in terms of Fermi quasiparticles
which interact weakly through the exchange of Bose-type

S'X)=S[X+R(X)]—Trln
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excitations. Effects of the “infrared catastrophe” (Ander-
son, 1967), which ensures that noninteracting and in-
teracting ground states have zero overlap, may be

bypassed in this way.
The Read-Newns transformation entails a change to
polar coordinates in the Bose (or Stratonovich-Hubbard)
J

_ ™ Bdix s o_ [*
zZy=[ 55 e 5= [ drLin,
_ a
L(7)= 3 Cim 3, TEkm ckm+2fm -Hifm+17L
: km

fm+E

field &(7) [see Eq. (3.8a)] and a subsequent £-dependent
gauge transformation on the local Fermi fields. For sim-
plicity we restrict the following discussion to the Ander-
son model; for the analogous treatment of the Cogblin-
Schrieffer model, see Read and Newns (1983). Recall that
the Anderson partition function may be written in

(6.37)

—+l}" §+V2 § mfm""gfmckm)_i}"»

with 7-dependent fields c, f, and £. By the theorem of ’t Hooft and Veltman, the transformation

E(r) 7 (1), E(r)r(rle =07

(6.38)

is allowed for T—0. (The Jacobian at the saddle point is just 7,540.) Note that two independent real fields appear be-
fore and after the transformation. Since r and 6 are real, their formal frequency decompositions are

O =B"2 rpe’ ™, 0(r)=B"12 Ope’"
m m

T * *
y Pm=r_,, 0,=0_, .

(6.39)

Having introduced r and 0, one may perform the field-dependent gauge transformation

fm(,r)_)eie(f)fm(,r), fm(T)—’e_ie(T)fm(T)-

(6.40)

The Jacobian of this transformation is unity. As before, the transformation expresses the equality of two infinite pertur-

bative series.
The transformed action may be written

f dr rsa——r +1i g@

L'(7)="3 Cim l-ag—+skm ]ckm+2fm[ +sfm+zk+z ]fm+zr[ +§2
o T or

00
}\’ Pl
+ ar

—1i

The transformed action contains no static & component..
This reflects the invariance of the original action to
simultaneous changes in phase of the Fermi and Bose
fields. The phase variable is a Nambu-Goldstone mode,
which decouples completely from physical modes of the
theory. The Gaussian integral over the static phase yields
a formally infinite (but harmless) contribution to the par-
tition function.
The transformation

A+ 0(r)=A(r) (6.42)

oT

may now be applied to replace the static constraint field
and purely dynamic components of the 6 field with a new
7-dependent variable. In this case, the Jacobian is formal-
ly infinite, but field and parameter independent. It may
be dropped, with the understanding that it formally can-
cels a second infinity elsewhere in the expansion. Finally,
note that the term

f dr lr—a—r +i— 96

3 ar =0. (6.43)

Thus the Fermi-liquid action becomes
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B
+ fo drL'(r)— [[1nr(7),

(6.41)
r+Vr2(Ekmfm +fmckm)
km
[
S= foﬂdTL(T)—- 1 EGE
T (6.44)

L(r)= Eckm

+ €km ] Ckm

+2fm [ +efm+zk]fm+tkr

+ Vr E (Ekmfm +fmckm) s

km
with 7-dependent fields ¢, f, r, and A. Note that saddle-
point expansions in the old and new variables remain
equivalent at finite temperature, so long as the saddle
point occurs away from the origin. It is the saddle-point
approximation itself that eventually breaks down due to
large-scale fluctuations in the constraint field. These non-
perturbative corrections may only be recovered in the
original variables. (If the theorem relating formal pertur-
bative series is not sufficiently convincing, the reader may
demonstrate explicitly at Gaussian order that diagram-
matic expansions based on the original “Cartesian” coor-
dinates and the new polar, or quasiparticle, coordinates
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are equivalent.)

Previous large- N results for static and dynamic proper-
ties in the Fermi-liquid regime may be rederived by an ex-
pansion in the quasiparticle coordinates. As shown by
Read and Newns (1983), it is advantageous to sum Fermi
loops to all orders by integrating out the fields ¢ and f,
then to perform a loop expansion in the Bose fields. The
position of the saddle point in r and A shifts, order by or-
der (cf. the treatment in Appendix I). The loop expansion
and large-N expansion are not equivalent. Results of the
loop expansion (which partially sums contributions of all
orders in 1/N even at tree level) may subsequently be ex-
panded in 1/N, if desired. To obtain all contributions of
O(1/N), a one-loop calculation is sufficient; the connec-
tion between the loop expansion and 1/N expansion at
higher orders has not been investigated. [Note that for
the thermodynamic-limit generalizations of the Coqblin-
Schrieffer and Anderson models (Coleman, 1985, 1987),
the Bose loop expansion and large- N expansion are identi-
cal. In the physical limit these generalized expansions
reduce to the loop expansion of Read and Newns.]

The conceptual advantage of the quasiparticle loop ex-
pansion, which mixes all orders in the small parameter
1/N, is that it provides a microscopic justification for the
local Fermi-liquid theory of Newns and Hewson (1980).
At tree level the Anderson model thermodynamics is
governed by the resonant level partition function of Eq.
(6.25) with gyr and A given by Egs. (6.32) and (6.33). At
higher orders in the expansion .this basic picture of an
underlying resonant level remains. The parameters eyp
and A change, order by order, but only by finite amounts.
These parameters completely determine the zero-
temperature magnetic susceptibility X; at higher orders in
the expansion, the specific-heat coefficient ¢ contains ad-
ditional contributions from fluctuations of the back-
ground Bose field. Within the quasiparticle framework, it
is these fluctuations which alter the Sommerfeld ratio
from the Fermi-gas value of unity.

Only at tree level does this simple picture of an effec-
tive level model emerge in saddle-point expansions based
on the original degrees of freedom (see Appendix I). At
this order the parameter A/I" may be viewed as a finite
wave-function renormalization constant measuring the
overlap between the noninteracting and interacting
ground states (see also the discussion in Sec. IV.A). The
low-energy thermodynamics may be expressed in terms of
Fermi-type excitations above this ground state. Beyond
this order the presence of electron-hole excitations with
arbitrarily small energy gives rise to infrared divergences
in the wave-function renormalization constant. These are
the signal of the well-known infrared catastrophe (Ander-
son, 1967): the noninteracting ground state has zero over-
lap with the interacting ground state. In principle, the in-
teracting ground state resembles the tree-level ground
state, but dressed by an infinite cascade of electron-hole
pairs. The elementary Fermi excitations above this
ground state must also incorporate the effects of pair
creation. The quasiparticle transformation alters the
character of the tree-level ground state and the excitations
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above it. The new tree-level ground state is expected to
have finite overlap with the full interacting ground state,
and a consistent resonant level description is possible. It
is this feature which makes the extension of the quasipar-
ticle transformation to lattice models so attractive. The
picture of hybridized quasiparticle bands, built from con-
duction electrons and local Fermi excitations, emerges at
tree level in a loop expansion.

Rather than computing the effective resonant level pa-
rameters €y and A in perturbation theory, one may re-
gard the position of the local quasiparticle pole ey and
the value of the quasiparticle-conduction electron hybridi-
zation width A as physical, or fully renormalized, parame-
ters of the interacting system. (These parameters follow
from knowledge of the magnetic susceptibility and some
other measurable property.) The values of the physical
parameters may then, in principle, be maintained, order
by order, in a loop expansion (or large-N expansion) by
altering the input parameters of the theory. Such a renor-
malization scheme has been discussed at one-loop order
by Read and Newns (1983a).

D. Further comments on the zero-temperature
limit for magnetic alloy models

As discussed in the previous section the Fermi-liquid
physics of the Cogblin-Schrieffer and Anderson models
may be reinterpreted by introducing an all-orders
transformation of perturbation theory. This “quasiparti-
cle transformation” eliminates the ground-state overlap
catastrophe in conventional expansions by proceeding
from a new zeroth-order ground state. Coleman (1985a,
1987) has emphasized that the Fermi-liquid physics may
be alternatively viewed within the original Hilbert state
basis as a case of “almost-broken symmetry.” In this con-
text the Cogblin-Schrieffer and Anderson models may be
viewed as members of an infinite hierarchy of Fermi-Bose
models (see Sec. VI.B) with varying local level occupancy.
In the thermodynamic limit the generalized models exhib-
it a true broken symmetry at low temperature. In this
section we comment on the sense in which the physical
Cogblin-Schrieffer and Anderson models exhibit an
almost-broken symmetry.

As first emphasized by Coleman (1985a), 1/N expan-
sions about the thermodynamic limit have the character
of loop expansions in field theory. Loop expansions are
generally attractive in Lagrangian field theory, since they
preserve characteristic symmetries order by order. For a
theory whose commutation relations depend on #, a loop
expansion may be shown to be an expansion in #. A tree-
level (no loops) calculation reproduces the theory’s classi-
cal limit (%—0), and the inclusion of fluctuations consti-
tutes a semiclassical expansion in powers of 7. For the
generalized magnetic alloy models, the limit gN-— o
with fixed g is also a classical limit, in which operator
commutators may be replaced by Poisson brackets, and a
classical phase space may (in principle) be defined. Yaffe
has reviewed this approach to large degeneracy expan-
sions in a general context (1982).
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Coleman and Andrei (1986) have derived the Bethe an-
satz equations describing the thermodynamic-limit An-
derson model

H =Hp,nq +Hf+Hmix, Hyppna = 2 Ekcl'crmckm ’
km
Hi=¢;3 fi fns Huix=V 3 (cinb frm+H.c.), (645
m km
S fufm+b'b=aN,
m

for arbitrary N and have explicitly verified that the
mean-field solution of Sec. VLB becomes exact for
N—>ow. In this limit the model exhibits a finite-
temperature continuous phase transition. Fluctuation
corrections for finite N have been investigated using per-
turbation theory. In the high-temperature phase, the cal-
culation of Gaussian corrections is quite similar to that
for toy model (ii) (Appendix I). The resulting expression
for the partition function is

7 Zmr 1 B
[2mg (1—g)NT'/? | _Pomr
ImZMF(s—iO+ )

e+ epmp—ReZyp(e)

>

D .
Fri= [, “b(etan~! , (6.46)

fleg)—q
EMpD) =NV T
P r +EMF—Ef

[The fact that f(e;—emp)=q in the high-temperature
phase has been used to simplify the last equation.]

As mentioned in Sec. VI.B, the high-temperature solu-
tion becomes unstable with respect to Gaussian fluctua-
tions at T,, where

ReZSyr(0)=ReZ{ (epp) =€mr » (6.47)

with
emp=¢;—T,In(g='—1) .

At this point, Bose condensation occurs and the mean-
field equations develop a broken-symmetry solution. As
for toy model (ii) in Appendix I, the broken symmetry is
invariance under a static rotation of phase in the Bose and
Fermi fields:

b(r)—eb (1), f(r)—eff(r). (6.48)

For g fixed and N large, but finite, fluctuations about
the saddle-point solution destroy the broken symmetry.
Mathematically, the broken-symmetry order parameter
| {€&0) | ? exhibits logarithmic divergences order by order
in perturbation theory. Infrared divergences of this type
are familiar from studies of fluctuation corrections to
mean-field theory in low-dimensional systems. The diver-
gence of fluctuations in low-frequency (or low-
momentum) modes is the basis for the Mermin-Wagner
argument (Mermin and Wagner, 1966) against long-range
order in one- and two-dimensional systems.

It is helpful to develop further this analogy between the
partition function in Egs. (6.8) and (6.22) and the parti-
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tion function of a two-dimensional x-y spin system. The
spin partition function takes the form

N
Z(s)= [ [ dsie=PH" .

i=1

(6.49)

Note that the temperature appears only as a multiplica-
tive factor (or coupling constant). In a suggestive contin-
uum notation,

Z(s)~ [ e, S=B [ dx s x)],

with J#° an appropriate energy density.

The functional integral representation of the spin parti-
tion function closely resembles the representations of the
thermodynamic-limit alloy models. Various analogies are
listed in Table X. Since the spin propagator behaves as
1/k? at low momentum, fluctuations about a broken-
symmetry solution in an infinite two-dimensional system
lead to logarithmic divergences (recall f d’k ~ f k dk);
likewise, since the Bose propagator in the Anderson
model behaves as 1/w at low frequency, fluctuations
diverge logarithmically for B=c (an infinite one-
dimensional system). In both cases, infinite fluctuations
imply the absence of long-range order, i.e.,

(6.50)

lim (s(x)-s(0))=0, lim (b(r)b'(0))=0. (6.51)

X—> 0 T—> 0

Despite this fact, it is well known that two-dimensional
x-y spin systems display a form of “almost-long-range or-
der” over a finite range of temperature. Spin-correlation
functions decay algebraically, rather than exponentially
fast. It has been argued (Coleman, 1985a; Read, 1985)
that (b(7)b7(0)) exhibits the same algebraic decay at
large imaginary times for T=0. Extrapolating from a
perturbative analysis at one-loop order, Read (1985) has
proposed that the exponent for decay at longtimes is
n } /N, with n; the exact impurity valence [this result may
be interpreted as a Nozieres—de Dominicis (1968) infrared
exponent for N-channel impurity scattering].

For L < » or < o, there is by definition no infinite-
range order. Nevertheless, slowly decaying correlations in
the corresponding infinite system have a residual effect.
Large correlations remain between points separated by
any distance shorter than the correlation length in the in-
finite system. If the correlations are infinite range
(remain finite or decay algebraically), correlations remain

TABLE X. Analogies between the thermodynamic-limit An-
derson model and a two-dimensional x-y spin system.

Anderson model Spin Hamiltonian

Imaginary time Distance
B Size of system L
Parameters &7, I’ [, other parameters
(b(m)b7(0)) (s(x)-5(0))

Low-momentum
propagator ~1/k?

Low-frequency
propagator ~1/w
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on all length scales in the finite system. In the
thermodynamic-limit Anderson model, treated at mean-
field level, the magnitude of the long-range order parame-
ter (b ) decreases with increasing temperature (decreasing
B). If the system actually exhibits no long-range order,
but only algebraically decaying correlations at zero tem-
perature, one expects slowly decaying correlations to
remain for large finite B; as B decreases, the correlations
should smoothly cross over from long-range to short-
range behavior. Note, however, that as the correlations
change, the dimension of the system () shrinks as well.
Inverse temperature plays the role of an adjustable param-
eter in the classical x-y spin system, but acts as the sys-
tem dimension in the thermodynamlc-hmlt magnetic al-
loy models.

Is the development of almost-long-range order in the
Bose field a  distinguishing feature of the
thermodynamic-limit models and the physical models
with N =¢~!? Certainly such behavior is reasonable in
the thermodynamic limit. For gN— oo, canonical and
grand canonical treatments become equivalent—the
Fermi-Bose occupancy constraint of Eq. (6.45) need not
be satisfied exactly to obtain correct results. At zero tem-
perature (the analog of infinite L.in a spin system), alge-
braically decaying off-diagonal order in the Bose field is
entirely plausible. At finite temperature, a remnant of
this behavior is expected (the quantum system is analo-
gous to a classical spin system with finite dimension L).
On the other hand, in the limit N = q‘l, canonical and
grand canonical treatments are deflmtely not equivalent.
Strictly speaking, the quantities (b (7)b7(0)) and (b)
vanish identically when the occupancy constraint is im-
posed (cf. Appendix D). Nonzero contributions to these
quantities arise from ghost states within an enlarged Hil-
bert space. Nevertheless, in the Fermi-liquid regime, it is
unnecessary to impose occupancy constraints rigidly to
obtain exact results for physical properties. In this limit
the Coqblin-Schrieffer and Anderson models are
equivalent to models exhibiting almost-long-range order.
[This statement has been established to O(1/N). Its ex-
tension to all orders in perturbation theory now appears
compelling.] Since the rigid constraint is physically im-
material at zero temperature, the Fermi-liquid physics
may be rigorously interpreted within the framework of an
almost-broken symmetry. Such an interpretation remains
valid at finite temperature if one neglects nonperturbative
corrections (i.e., terms arising from fluctuations in the
constraint field far from the saddle point). These large-
scale fluctuations, which are not governed by a small pa-
rameter, dominate the physics for temperatures of order

T'cs or T4 and become essential for a correct description .

of the crossover to free-moment behavior at high tem-
perature.

In conclusion, the Cogblin-Schrieffer and infinite- U
Anderson models may be. said to display an almost-
broken symmetry in the Fermi-liquid limit. The correla-
tion function (b (r)b7(0)), exhibits algebraic decay at
long times for all model parameters within the Kondo
-and mixed-valent regimes. The decay exponent is
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parameter-dependent and has been conjectured to be
nf/N This behavior is the analog of the Kosterlitz-
Thouless phenomenon in two-dimensional x-y spin sys-
tems [in the spin analog, the correlation function
(s(x):s(0)) decays algebraically in space with a
temperature-dependent exponent over a finite range of
temperature]. In a renormalization-group sense, the
zero-temperature magnetic alloy models may be said to
exhibit a continuous set of critical points in parameter
space (J, or €7 and T', not T). As explained long ago by
Anderson, Yuval, and Hamann (1970), this critical
behavior is governed by a strong-coupling fixed point.
The Bose field b provides an explicit realization of a
correlation function with strong-coupling exponents.

VIl. CONCLUSIONS

We have attempted to emphasize throughout this re-
view the essential unity of various approaches to the
large- N expansion for magnetic alloys. To aid in compar-
ison with the literature, a translation table of symbols for
various quantities introduced in the previous six sections
is provided at the end of this section (Table XI). Di-
agrammatic perturbation theory, the variational ground-
state method, the integral equation method, and the func-
tional integral saddle-point expansion all lead to
equivalent zero-temperature results at O(1) and O (1/N).
Despite this fact, the methods may be distinguished by
their strengths and weaknesses in higher-order approxi-
mations and in calculations at finite temperatures.

Diagrammatic methods provide the most straightfor-
ward means to extend systematic ground-state and finite-
temperature calculations to higher order in 1/N.
Nevertheless, systematic expansions of frequency-
dependent functions are, in general, nonuniform and ex-
hibit singular points order by order in perturbation
theory. Furthermore, the convergence of systematic ex-
pansions for static properties at finite temperature is, at
this time, largely unstudied.

The variational ground-state method provides a partic-
ularly clear physical picture of the many-particle correla-
tions underlying the Kondo effect. Since this method
may be readily extended to include realistic effects like
spin-orbit coupling and a finite Coulomb energy, it pro-
vides a particularly ‘promising route for calculations in
materials applications. The method cannot, by its nature,
be extended to treat finite-temperature properties.

The integral equation method, or NCA, has been the
subject of extensive study at finite temperature. This
method is conceptually simple to apply, leads to smoothly
varying frequency-dependent properties, and allows the
incorporation of realistic effects like spin-orbit and
crystal-field splitting. Results for static properties are in
excellent agreement with exact Bethe ansatz results, and a
large number of comparisons with experiment have been
possible. The principal weakness of this approach is its
failure in the Fermi-liquid regime (7—0, o—0). Al-
though the NCA diagrammatic summation includes all
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contributions of O(1) and O(1/N), the omission of high-
order electron-hole excitations near the Fermi energy in-
troduces large errors at zero temperature. The expansion
of frequency-dependent properties remains nonuniform in
this limit.

Saddle-point approximations provide an intuitively at-
tractive and mathematically rigorous reinterpretation of
magnetic alloy physics in the Fermi-liquid regime. In
particular, the quasiparticle transformation of Read and
Newns (1983) formalizes the phenomenological picture of
localized quasiparticles (Newns and Hewson, 1980), weak-
ly hybridized with conduction electrons and interacting
through the exchange of Bose-type excitations. The pos-
sible applicability of the saddle-point approximation in
concentrated alloys (including the heavy-electron systems)
is currently a subject of great interest (see Table II). The
saddle-point approximation breaks down outside the
Fermi-liquid regime, where it leads to a number of spuri-
ous features, including a continuous phase transition. In
this sense, the method is largely complementary to the
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NCA, which deteriorates in the Fermi-liquid regime.

We have reviewed the evidence for the existence of con-
vergent or asymptotic expansions in 1/N for the ground
state. Agreement with exact Fermi-liquid relations and
with Bethe ansatz results strongly supports the existence
of such expansions for both static and dynamic proper-
ties. Further numerical convergence studies for finite-
temperature properties are required.

One of the most striking results of large-N studies is
the perturbative derivation of the Sommerfeld ratio,
which relates the low-temperature susceptibility and
specific heat (see Sec. II.C). In contrast with most strong-
ly interacting Fermi systems, the development of a
Fermi-liquid ground state in the Cogblin-Schrieffer and
Anderson models may be- studied analytically. At
O(1/N) the Sommerfeld ratio differs from unity due to
the appearance in the ground state of singlet electron-hole
pairs. These Bose-type excitations alter the density of
states sampled by the specific heat, but do not couple to a
magnetic field. It would be of interest to pursue the study

TABLE XI. Translation guide for 1/N notation. Below we list some of the more common notation found in the literature for quan-
tities in the 1/N expansion. The first column lists symbols in this review. The second column lists the equations in which the adja-
cent symbols are introduced. The remaining columns list the corresponding symbols in other treatments. In cases where no special

symbol is introduced, a blank appears.

Symbol Eq. BKL Coleman Cox GS KKT MKTT M-H RH Read RN

N (1.4b) N N Ny Ng [J7] 2j+1 N N N N

r (1.3) A A r A TWo A=mA A Ao

Efm ( 1.4a) Em Efm Efm Efm Efm Em Efm Efm EOm
D (1.9) D D B D D w D D D
N(0) (1.3) p N(0) p Po P P
Gy(z2) (2.48) G(z) G(z) Gys(2) g(z) Gyflz) G(2)
prlw) (2.52) plw) 7 pslw) paslw) plw)
Go(z) (2.172) (z—30)"! D(2) D(z) —g(—z+gr) Ro(z) D(z)
pol@) (2.17b) B(w) 7 'Blw) B(w)
Gp(z) (2.17a) Gpn(2) G (2) (G*)oo(z —AE) Ry,(z) Gpn(z)
Pom@) (2.17b) A (@) 77'Ap (o) Ay (o)
Polw) (2.19a) blw) 7 '4p(w) &olw) b(w)
(@) (2.19b) (@) 7 lap(w) Em(@) Ap(o)
=0z (222) Soolz) —NT(—z+¢f) NV (2)
E, (2.27) E, AE E, Eg
T, (2.27) T, 8 T, T,
—Gnl@) (5.13) d(o)
—Gnl(w) (5.13) g (o)

J (1.8) J —Jo/N
A=my{&)* (6.12) A
A=T(&)* (6.25) A

EMF (6.9) —&f
EMF (623) Eo—‘sf

BKL—Brandt, Keiter, and Liu, 1985.
Coleman—Coleman, 1984.

Cox—Cox, 1985.

GS—Gunnarsson and Schonhammer, 1983b.

KKT—Kuramoto, 1983; Kojima, Kuramoto, and Tachiki, 1984; Kuramoto and Kojima, 1984.

MKTT—Maekawa et al., 1985a, 1985b.
M-H—Miiller-Harmann, 1984.
RH-—Rasul and Hewson, 1984a, 1984b.
Read—Read, 1985.

RN-—Read and Newns, 1983a.
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of the Fermi-liquid ground state to higher order in 1/N.
It is conceivable that the Sommerfeld ratio could be estab-
lished to all orders in 1/N by careful analysis of the per-
turbation series. Even if this is not feasible, a great deal
more might be learned about the strongly correlated
ground state.

The large-N expansion has, in addition, provided the
most powerful approach now available for computing
dynamic properties of magnetic alloys, such as the f-
electron spectral density and the dynamic susceptibility.
Although the existence of “Kondo resonances” in dynam-
ic spectra has been known for many years [see, for exam-
ple, the review by Griner and Zawadowski (1974)], the
first reliable techniques for computing these resonances
rely on' the large-N expansion. This perturbative ap-
proach has provided a unifying framework within which
static and dynamic properties may be viewed on the same
footing.

In conclusion, the large-N expansion for magnetic al-
loys furnishes new insight in a number of areas. The ex-
pansion allows the comparison of a well-controlled per-
turbation theory with exact Bethe ansatz results. Further
study of this correspondence might furnish information

on the all-orders convergence of a nontrivial perturbation

expansion or the calculation of dynamical correlation
functions within the Bethe ansatz. The various tech-
niques employed to generate the large- N expansion are in
principle applicable to other condensed matter problems
involving strong local correlations. Finally, the expansion
allows the calculation of both static and dynamic proper-

ties, providing one of the most complete approaches to
the magnetic alloy problem now available.
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APPENDIX A: DERIVATION OF x AND y TO O(1/N)
IN PERTURBATION THEORY

In this appendix we derive expressions for the zero-
temperature magnetic susceptibility and specific-heat
coefficient of the infinite- U Anderson model to O(1/N).
The susceptibility has been previously derived by Rasul
and Hewson (1984a, 1984b), whose notation we employ at
various stages; a partial result for the specific-heat coeffi-
cient has been obtained by Brandt, Keiter, and Liu (1985).
A flat conduction density of states is assumed for simpli-
city. We begin with the expression for the 1/N contribu-
tion to the free energy in the zero-temperature limit [see
Eq. (2.43)]:

1 1 '
AFVYN=3Z(EW* 3 |fill—fi) +kekD |,
. & (Eo+ex—&/m)* Eo+ex—ex— 20 (Eo+ex —ex)
;1 (Ala)
a3y
Z(Ey)= |1— .
(Eo) oz z=E,
r
The energies €,, €, and € contain a contribution _ JAF/NV YNy
—mgupH in the presence of a magnetic field. The oH H0 ’
empty-state self-energy S\ is (A2)
_ aAF(l/N) A U/NI
aT v ’
T—0

e—mgugH)

Mgy L o S
2= %‘,f_Dde Eete (Alb)

Note that the expression for AF‘!/Y is symmetric in the
indices k and k’. Even though the denominator contain-
ing =5 becomes singular for & —> €y, the sum of terms in
large parentheses remains nonsingular in this limit. In ex-
pressions for X and ¥ we combine terms resulting from
this expression whenever possible; we do not combine
terms at the outset, since the treatment of the singularity
requires some care at a later stage. The 1/N contribu-
tions to X and ¥ may be found using
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We first compute the magnetic susceptibility.

The magnetic field appears in four places in Eq. (A1):
(a) in the “‘quasiparticle renormalization factor” Z(E,);
(b) in E,, which occurs in the energy denominators; (c) in
the self-energy ={!; and (d) in the arguments of the Fermi
functions. The individual contributions are derived
below. Recall from Egs. (2.27) and (2.33) the definitions

NT
7TTA ’

Also note the O(1) result from Eq. (2.39) that

Ty=e;—E,y, p= (A3)
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oE, . o u ,uf The accompanying contribution to X'V follows by
T 3H =X"H, X"= 1+p 3T, (A4) substituting the last result in Eq. (A2):
First of all,
(@) Fi Xu/m:X(” B NT?
=4 (E()/3Eq | 1o ¢ T, I+p | 72(14p)
' a I 0 fle—mgugH) 0 D 1
= -— de— X de de ,
0E, 7 % f_°° Ey—¢gr+e f'D ! fo 2(81—TA)2D(€2—81)
2
=______NF (Eo—ﬁf).—l-i-_N‘,—T"‘r %HZ(EO—Sf)_B (A7)
T
+0 (HY) . (A5) wheré
The second term follows from expanding the Fermi func- "
tion to second order in the field, then integrating by parts. D(e)=Eq—e—Z, (Eq—¢) . (A8)
Thus, for H—O0,
(n -1 (1 -2 (1 (b) Differentiating the quadratic energy denominator in
K] 820 820 ) 820 X
~am |'” 9E, == \'"%&, | 3m |%E, (A1) gives
1 M g 3 1 —2 9E,
2 — = = -
(14u)?* | Ty . OH (Eg+e1—gp)*  (Eg+e—gyf)? oH
M j —‘%—H Y
314 =—=—x"VH . (A9)
(81 - TA )
(1)
= XH 1, B (ae) , o
(14-p)T 4 1+u The corresponding contribution to the susceptibility is
J
- T, [0 D
XM=y | =B ZAD 0 g [’ae, 1 , (A10)
I4+p = -D 0 (e.—T4)’D(gy—¢)

Differentiating the linear energy denominator gives

— D p(eyey e X UH | 320 (Eotei ) (A1)
o0H 2 D(gy—eg;)? oE, .
The contribution to the susceptibility is
1+NT /m(ey—e +T4)
xRV =y | =E- de, [ de, e (A12)
0 (e, —T4)[D(ey—g()]

1+,u T

(c) From Eq. (A1b), the explicit dependence of =" on H (as distinguished from the implicit dependence through E)
gives

B (1)(E0+s,—52) NF y,z-H | (A13)
oH T 3 (E]-Sz—TA)Z '
The corresponding contribution to the susceptibility from this dependence in the linear energy denominator is
NT2T}
XU/N) _y (D 4 f de, f daz _ 1 . (A14)
77' —T4)[D(ey—e) (e —e,—T)?
(d) The only H dependence remalmng to be accounted for is in the arguments of the Fermi functions. Thus
YA/N @ 1 1 |ANT _1_
a4 OH2> 1+u N | w | 2N
1
X dede, | fleg,—mgupH)[1— f(e;—mgugH) — +(le2) | . (A15)
%f 19€2 {f 1 gupH)| flg 4% ](81*TA)2D(82—€1)
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Note that
. Nu 12
3

9
851

H=0

Ef(sl—mguam[l —flea—mgugH)]

2
3
- aHZ - 882 } f(el)[l—f(SZ)] . (A16)

The preceding double integral contains no singularities, and an integration by parts is allowed. Substituting Eq. (A16) in
(A15), integrating twice by parts, then combining terms gives

9? 1
det (e,—T4)?

NI*
T

1
P ‘u’l

¥ D(gy—ey) 1, (A17)

f deide, f(e)[1—f(&)] [

since d/d¢g; + 0 /3¢, applied to the last factor is 0. Finally,

2 -
6 |ND |"T4 o D 1 ,
e f_Dargl fo de, ] ) (A18)

XYW =y |
N| = (e,—T4)*D(e;—g,)

The complicated double integrals that appear in (a)—(d) above may be simplified to dimensionless single integrals in
the limit of large D. Specifically, consider the change of variables from ¢,,¢, to

x=¢/Ty, —D/Ty<x<0, y=(ey—¢)/T4, —x<y<D/T4—x . (A19)

If the impurity level lies well within the band (D >> |ef|), the range of integration for y may be restricted to
[—x,D/T,] with errors of order T,/D. A slightly more careful treatment is required when the impurity level lies out-
side the band. If this possibility is ignored, the region of integration becomes

O<y<D/T,, —y<x<0. (A20)
Note further that D (¢) takes the form

NIL . O de’ N, | D+T, +¢ NT €
D(e)=Eqj—e— =Ey— ~—e——In |14 — A2l
(&)=Eo—e T f—D g —e—Ty Eo—e+ T In Tg+e ] et + T, azd
The double integrals encountered above may be reduced to the following simplified forms:
0 D 1 (— )n D/T, dy 1 (—)"
de de = — = L, , (A22a)

Jopde ), Yey—T)"+t'D(ey—ey) nT% Js y +uin(1+y) (+y" | nThf "

[° de, [Pae, . - T o1 5 L (a2
-D 0 (e1—T4)[D(e3—e](ey—e1+T,) 0 [y +un(14+y)]° (1+y) 1+y :
0 D 1 T2 dy u 1

de de + — (A22c)
f—D ! fo 2 (e, —T4 )Z[D(Ez_ﬁl)]z 0 [y +p In(1+4)1? 1+y I+y
The expressions for X§5™ and X (/M) may be combined using the last two results:
D/T d
XYM 4y (/M) _y(D) p’ (141) 4 34 Y
(14+p)N K f b +uIn(1+3)1? (1+4p)?
dy 2 1 w__p
- 1+ - —X M, (A23)
0 [y +upIn(14p)]? 14y 1+y (1+up)N
where
dy y22+p+y)
M= 2 3
0 [y +pln(1+p)]° (14y)
Finally, the complete expression for X in terms of convergent one-dimensional integrals is
2 2(1+p)
x=x111 £ Ly—L,—M— [2——E—|L, | }. A24
TN | e T g | (A24)

This expression was first derived by Rasul and Hewson (1984a, 1984b).

Next, we derive the specific-heat coefficient y, following the treatment by Brandt, Keiter, and Liu (1985). The pro-
cedure is essentially the same as that above; it is necessary to consider temperature dependence from the same sources
(a)—(d). The contributions to ‘'Y from (a)—(c) may be obtained from Egs. (A7), (A10), (A12), and (A14) by making
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the trivial replacement
XDy V) (A25)

This follows from the simple relationship between temperature and field derivatives of E, and of the Fermi function.
The temperature dependence from source (d), i.e., the explicit temperature dependence of the Fermi functions in (Ala), is
more subtle. It is this term which accounts for the nontrivial Sommerfeld ratio obtained in Eq. (2.46) at O (1/N).

The quantity that must be evaluated is

3 [ dede, ‘f(sl)[1~f(e2)](£ - )211)(5 5 +1e2)
1—4 4 27 ¢1

. -3 1 1
aT? 14+u N

NI
T

(A26)

where only the explicit temperature dependence of the Fermi functions is to be considered. Both of the terms in large
parentheses become singular for £,—&,; the sum is nonsingular. It is convenient to isolate the singularity by changmg to
variables e =¢g; —&,, €,, and noting that

FEP[1—=f(e)]=—[f(e)—f(e))]b(e;—ey)=—[f(ey+€)—[f(g))]b(€), (A27)
with b the Bose function. The integral over € may be saved for last. In these new variables, v
2
am_ =98> 1 —1 i 1 1 . P 1
= — - d —
Yd 572 1op N | = fdﬁzb(S)f &) f (ex+€)—f ()] (erre—T,7 Di—e) + T2 D(® ]
(A28a)
The integral over € takes the form
b(s)G(e) b(—€)G(—¢) b(a)G(e) fler+e)—f(e)
de =P _— = | dey————, A28b
1S Y e fd = G [ de, o Fo T P (A28b)

with P the principal value; this follows by noting e?b(g)=—b(—¢), then shifting variables in the last term of Eq.
(A28a) by e,—>e,—e. Hence

NI

o

am_ =9 1 =1
Ya = 2
oT? 1+u N

2
b(e)G (¢g)
Pfde——————D(__s) : (A28¢)

To isolate behavior in the neighborhood of £=0, the range of the ¢ integral may conveniently be divided into three
parts [—D,—E],[—E,E], and [E,D], where E is a small energy that may be sent to zero after letting T—0. The tem-
perature dependence of the factor G follows by a Sommerfeld expansion:

1 7T* | 2 2

Tt T (e—T,)

4y, A2
e—T, T, 6 +0(T? (A29)

G(ge)=

The integral of the T2 term over [ —E,E] is nonsingular (even in the limit T—0) and vanishes for E—0. For T—0,
the Bose function becomes

1, e<x—E
b(e)= S A30
[0, e>E (A30)
Thus the contribution to !/ from G is
2
(1/N) 2 1 {NT 1 o1 1 _1
=— — i de |—5+———=5 |D7(—¢)
Va1 3+m) N | = Einof— I T e—T,
2
27> 1 |NT D 1 1 1
= - de |——————5 |D 7 '(¢g) . (A31)
S N | 7 | o |y T

The only contribution to y''/" from the Bose function in Eq. (A28c) arises from the interval [ —E,E]. The
temperature-independent part of G may be employed in deriving the 72 contribution from b (¢). Thus

P [ a2l p [F depere | (A32)
with
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1
D(—¢) ’

L1
E—TA TA

F(g)=

The integrand varies as 1/¢ for e—0, but the singularity is removed by the principal value; hence the integral has a valid
Sommerfeld expansion. The T2 term is just

7’ T? L 1

622(1)/8E2 272
I p0y= T —1—— S0 S R . (A33)
The resulting contribution to !’V is
2 2 2
am___m 1 op e |7 1 p _1 (A34)
Va2 3T, N |1+ 1+p 3T, N 14p (1+p)

This contribution to ¥ has no analog in the expression for X [Eq. (A24)] derived previously. It is this term which
makes the Sommerfeld ratio differ from 1, the value for a noninteracting Fermi gas of quasiparticles, at O(1/N). Note
that the correction term y“/ N) arises from Bose-type electron-hole excitations that do not couple to the magnetic field.
To summarize, the complete expression for the specific-heat coefficient to O(1/N) is

u?

(1+u)N

1

2(14-p) i,
N (14-u)?

I

K
1+p

Ly—L,—M — L,

y=y® {1+ ) , (A35)

with L, and M as in Egs. (A22a) and (A23).

APPENDIX B: DERIVATION OF CORRELATION FUNCTIONS FOR SYSTEMS
WITH STRONG LOCAL CORRELATIONS

In this appendix we derive a general expression for the correlation functions of a many-particle Hamiltonian, using the
same approach applied to the partmon function in Sec. II.LA. We follow precisely the procedure outlined by Keiter and
Morandi (1984).

Consider the correlation function

GAB(T)=—<T1-A(T)B> . (Bla)

The operators 4 and B may have Fermi or Bose character. The Fourier transform has a simple representation,

. B iw, T 1 B iw, T d. —(B—T1)z dz' . — ’ -
Gplio,)= fo dre' Guap(r)=—— fo dre' I‘Er%e B ’fr-i—;ji—e ZTr(z—H) '4(z’—H)"'B, B

_ (2n +1)7T (Fermi) ,
2nwT (Bose) .

Here the contour I' encloses all singularities of the resolvent (z —H)~! in a counterclockwise fashion. Performing the
Fourier transform gives

- ——Bz'__ "ﬂz
1 : dZ +e e Tr(z _H)—IA (ZI_H)—-IB . (B2)

Gap=— T
F21Tt r2mi iw,+z—2z'

One of the contour integrals may be performed by residues:

1 dz - — _ — - . —
GAB=+E r oy e PTr(z' —iw, —H) " 'A(z' —H) 1B+ fr e PTr(z —H) " 'A(z +iw,—H)"'B. (B3)
Finally, shifting the contour in the first integral by z’'—z’+iw, and combining terms gives
1l r 4 g -1 : ~1
GAB—Z c 2 “Tr(z —H)"'A(z +iw,—H)"'B , (B4)

where now C is a counterclockwise contour enclosing all singularities of the two resolvents (z—H)~! and
(z +iw, —H)™! (see Fig. 33).
As in Sec. IL.A, a perturbative expansion may be generated by dividing H into an unperturbed part and a perturbation

H=Hy+V (B5)
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and rewriting the resolvents:

=t [ ZeBTr |z —H) ' S [V(z—Ho) "4 S, [z +iwy—Ho)~V]"(z +ioy—Ho)"'B|.  (B6)

Z C 2 1=0 m =0

Inserting a complete set of eigenstates of the unperturbed Hamiltonian and shifting the integration variable by z—z 4+ Ey
gives
dz e #

1 —BEy ~ -
GAB:E%,IC 2wz ¢ szz=0<N|[V(Z+EN_H0) 1]I“Wi*)

XAM3 | A |My){M,|[(z+Ey+io,—Hy) 'V]"|M,)

X(z +Ey—Ey, +io,) (M, |B|N) . (B7)

This expression is employed in Sec. IL.D to investigate the f-electron Green’s function for the infinite-U Anderson
model.

APPENDIX C: 1/N CORRECTIONS TO THE ZERO-TEMPERATURE f GREEN’S FUNCTION
FOR THE INFINITE-U ANDERSON MODEL

In this appendix we derive an expression for the zero-temperature f-electron Green’s function (see Sec. IL.D) to
O(1/N), following in part a treatment by Brandt, Keiter, and Liu (1985). The Green’s function was reduced to contour
integrals in Egs. (2.51) and (2.54):

Gyliw,) =G Niw,)+G " Miw,), G}”(ia)n)=Z(Eo).;,
1w, — TA

Z(1/N) (Cla)

G}I/N)(iwn ): —77)—(;}1)(1.60" )+GA (ia)n )+GB(iwn) )

with

1 dz e —Be ‘ 2 1 ——fk
(D fr i . 2 (1) v 2 R (1) . ’
Z'V/Z ana 2mi (z4iw, —ep) [z —2p (2)] % Z+io,—g—2p (z+iw, —eg)
1 dz €_BZEBI/N)(Z)
ZV/Zana IT 270 (2 +iw, —ep)z =S
At T=0, the first term in Gf'/" is [see Eqgs. (2.24), (2.25), and (2.51)]

Z(I/N)G(l)(iw - 1 B(NV2)2
zMW T e, T, N

GA(ia)n)=

(Clb)

GB(iCL)n)=

1 1
g —Ty4 )? E0+€k——Sk'—ZE)”(EO—i-Ek—Ek')

ZXEy) 3, full—fr)
P (

B gz E,) . (€2
iw,—Ty4

The next term G4 has pole contributions at
z=Eq andz=Ey+¢g;—io, . (C3)

Noting that ZV/Z, . —e ~PEo at zero temperature, one finds
1 V? 1—
. 2 v Z(EO)E : (.lf)k
(iw,—T4) N k lon+Eq—er—35 (i, +Eq—¢g)
NV? Sk 1
N ZE)ZX 2 ;- .
k )* —iw, +Eqg+¢g—2 (—iowp,+Eq+e)

GA(iCl)n)—>

N (C4)

(Ek - T A
Finally, consider the last term Gp. It is useful to write out explicitly !’ to examine its pole structure:

S0/ (NV2)? S, (1—=fr,) 1

kyk, (Z +81—Ef)2 Z+€1—82—2E)1)(Z +€1-——€2) ' (CS)
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The full integrand in (C1b) has dominant low-temperature poles at

z=E, (double pole) and z=E;—g;+¢,; . (C6)

Thus
- 1 13 (z —Eo)
Gpliary,)—ZHEq)ZY M Ey) B 9O |z, 27207
Bllw, )— 0 0 w,—T4 (iw,,,—TA )2 —T, 3z 0 [Z_ZB”(Z)]Z £
22 ) ‘
L W7 Z(Eo)E —fx fk 1 (11) . -
N ek’ (€k —T4) iop—ex+ew—Ty [Eq—eg+ep—20 (Eg—ex +er)]

The complete expression for Gy(iw, ) at zero temperature follows by combining terms:

G iw,)+ G Niw,)=Q (iw,)+B,(iw,)+B,lio,) (C8a)
with

1 3 |susm (z —E,)’
= Z(E))+— |3 L ,
Qlio,)= T, (Eo)+ 3z |20 (2) [ _sU@P |&
Bl(iwn)=——1———;Z(Eo) D> 1_({’° —Z(E)="M(E |, (C8b)
(ia),,—TA )2 k ia)n-l-Eo-—-Ek—Eo >(ia),,+E0—8k)
Sk 1
Bylicw,)=—V?Z(E,)
2% 0 % (ex—T4)? | —iwp+Eo+ex —2(—iw, +Eq+eg)
1—fo
— NV? i i (11) 2
o ioptex—ew—Ty [Eg+er—er—20 (Eo+ep—ep)]

Note that the contribution from Eq. (C2) is canceled by a contribution from the double pole in Eq. (C7). The last expres-
sion is discussed in detail in Sec. IL.D.

Although Eq. (C8) is quite complicated, its imaginary part (the spectral density p;) assumes a simple form for a flat
density of band states. Note first that Q (w) is real for w£T 4. In addition,

NT 1 D de
2 f() (1) -+
o (CL)—TA) a)+E0—8——-20 (CL)+E0——E)+IO

ImBﬂa)—HO*):;%Z(EO)

T 52 NT 1
=—ZLZYE ——0(w)— T
== 2 E) @ T, 6((0) 7S (0)0w—T,4) ,
(C9)
1 NI de
S(w)=-—Z(E,)
WI=NEE T (@—Ty4)? fo [0+Eo—e—ReS (@ +Eg—e)]>*+(NT)?
1 NT 1 ® 1
=—Z(E,) d )
NPT | (o1 Y7 [e—(NT/min(e/ T4 — DP+(NT)?
Finally, note that
1 1
ImB,(w+i0%t)=——Z(E )—~—1m
2 N 0 f— suTA)2 —w+Ey+e—3S0(—w+Eg+e)—i0t
2
1 NT de’' 1
—Z(Ey) |/ | I
+N (Eo) mf-D (e—T4)? fo [Eo+e—¢ —S(Eg+e—e)]? o+i0t +e—e' —Ty
T NT 1
1 NI —© de 1
R(w)=-—Z(Ey) | — , (C10)
P=N o fTA (+e—T4)? [e—(NT/mIn(e/T4—1)]*+(NT)?
2
1 NT 11 1
T(0)=-—Z(Ey) |— | |=———— .
@I="LtHo T, }[w—TA+(N1"/7T)ln(w/TA)]2
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It follows that throughout the intervals (— D,T ) and (T 4,D)

1 . 1 NI 1
prlow)=— ;Ime(a)—}—lOJ"): Fzz(Eo)——;—

This relatively simple result is discussed at length in Sec.
IL.D.

APPENDIX D: OPERATOR AVERAGES IN THE
AUXILIARY BOSON REPRESENTATION
OF THE INFINITE-U ANDERSON MODEL

In this appendix we discuss the evaluation of operator
averages and correlation functions for the infinite-U An-
derson model within the auxiliary boson approach intro-
duced in Sec. ITI.A. Recall that, within this approach, the
partition function may be written

Z =Tre —BH , (Dl1a)

with H the pseudo-Hamiltonian of Eq. (3.3), defined on a
mixed Hilbert space of Fermi and Bose states. The trace
is restricted to the subspace of states with Q=1, where

Q=b"+3fifm. (D1b)

The only operators O defined on the full Hilbert space
which correspond to physical operators in the infinite- U
Anderson model are those which commute with Q:

[0,0]=0. (D2)

Such operators have a simple restriction to the Q=1 sub-
space and do not connect physical and unphysical states.
Operator averages take the form

(6<T)>,E~é—Tr,e —BH(o™H(e —TH) | (D3)

We mention two equivalent techniques for evaluating the
operator trace in this expression.

Technique 1. The trace may be extended to the full
Hilbert space by inserting the operator delta function

=T ﬁd}\fe—iﬁk(Q-—l)
—aT 271 '

Since O commutes with o,

N

Imz=—w, €F————

N

Imz=0 —

FIG. 33. Contour of integration C for Eq. (B4). The contour
encircles all singularities of the integrand in a counterclockwise
fashion.
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T +R(0)—0—T4)+[S(0)+T(0)]0—T,) .
—TIy

(C11)

O(r)=e™De—H
=exp[7(H +iAQ)]0 exp[ —7(H +iAQ)], (D4)

for arbitrary A. This relation holds for the operators O
and H acting on the full Hilbert space (states of arbitrary
Q) and for the restriction of these operators to the Q=1
subspace. Hence

A _1 —BH, HA, —H [T BdA  _igno-1)
(O(T))I—ZTI' e ~PH™H(e ot 2 €

1 =T Bd)» iBA A~
2 e'PTre —BH(}»)eTH(A)Oe —TH(A)
Z Y —T 2 ’

(D5)
with
H(A)=H +i)AQ .

In the last expression, the time development of O is
governed by the same operator H (A) that appears in the
statistical weighting factor; thus standard Feynman tech-
niques may be used to evaluate the trace.

A linked cluster expansion for the trace may be ob-
tained if O annihilates states with Q=0. This is the case
for all operators of interest. The trace is then O (e ~*#*),
since the first nonzero contribution arises from the Q=1

subspace. Note next that
Z =Tre PN =7, +0(e P, (Dé6a)

with Z.,.q the partition function of the conduction-
electron system. It follows that

Z band

—27=1+0(e—i3*) : (D6b)

If this expression is placed inside the integr/al in Eq. (D5),
the correction of O (e ~"#) is projected away. Thus

(O(1)=

1 T BAA g 1 o _pHM)
Z/Zomg vt 2 ¢ ZA T

Xe‘rH(Mae——‘rH(M . (D7)

The quantity inside the integral now obeys a linked clus-
ter theorem. Note, however, that the factor of Z/Z,.q
must still be evaluated independently.

Technique 2. The restricted trace may equally well be
evaluated by introducing

H(u)=H +uQ, ' (D8)

with p real. Again it may be assumed that O annihilates
states with Q=0. It is easy to show, by the same argu-
ments applied above, that
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(O(1),= —é— lir%eﬁ"Tre —BH () 7H ()G —TH (p)
p—
1
——  lim eﬁu.____Tre —BH (n) rH(;A)Oe —7H (1)
Z/Zband H—> oo
(D9)
with
ZF=Tre—PH®

In analogy with Eq. (D7), the quantity inside the limit
obeys a linked cluster theorem.

When the expressions in (D7) and (D9) are evaluated by

perturbation theory, intermediate states (which arise from
inserting the identity 35 | N){N | =1 between consecu-
tive operators) are automatically restricted to the Q=1
subspace. This is because O and all parts of the Hamil-
tonian commute with Q.

Operator product averages (including time-dependent
correlation functions) may be evaluated using the same
techniques. The only physical operator products are those
in which every factor commutes with @; in particular, if
an operator has no matrix elements diagonal in Q, all
products containing that operator vanish within the Q=1
subspace. This has important consequences for correla-
tion functions. If, for some operator 2,

(4),=0, (D10)
then the correlation function (2 (T)AT>1 also vanishes,
even if [4(7)4 T,0]=0. This follows since the correla-
tion function may be rewritten as

S (N AW | NN, | AY|Ny) (D11)

NN,

with both |N;) and | N,) in the Q=1 subspace For
example, the correlation functions (b(7)b'), and
(fm! T)fm )1 vanish identically. The operators b and f,,
are off dlagonal in Q. On the other hand, operators such
as b f,,, and f,,, fm» which commute with Q, fall into the
class discussed prev1ously The correlatlon functions
(f,,,('r )b (r)b'f,, ), and (f,,,(T)f,,,(T f,,,f,,, )1 are physical

unoce

[ (l/N)) A[|9>+\/—2

ky

with
lerer,m) =Fhcem | Q)
| Exyex,m) =ChymCiom | Q) (E1)
| (8f5k3m)(EkZEklm')>=erCk3m6’112m'cklm' |Q),

where
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(and .nonzero).

The reader may observe an apparent paradox in these
statements: surely a quantity like (b b ), may be viewed
alternately as (a) the mean value of a physical operator or
(b) the equal-time correlation function of two unphysical
operators. Do not the two treatments above give contra-
dictory results? In fact, there is no contradiction. The
operator b'p may be defined by its matrix elements
(without reference to its composite character); a second
operator may be defined by the product of the matrices
representing b' and b. When the full Hilbert space (states
with arbitrary Q) is considered, the operators defined in
this way coincide, since their matrix elements are 1dent1—
cal. If only the Q=1 subspace is considered, the b b sub-
matrix is nonzero, while the b' and b submatrices vanish
identically: the operators do not comc1de within the re-
stricted space.

Note that correlation functions for operators that satis-
fy (D10) are not given correctly by applying (D7) or (D9).
There are two reasons for this failure: (a) since [2 ,Q1+£0,

2(7.)=eTH2e—TH?&.eTH(A)28 —7TH(A) . (D12)
For example,
b(r)=e'rg™HMpo —THR) (D13)

(b) Even if the correct expression for 4 () is employed,
spurious contributions to (2(7‘)2 T)l may be obtained in
perturbation theory if the constraint is not explicitly im-
posed in intermediate states. This follows again since A
and Q do not commute.

APPENDIX E: VARIATIONAL DETERMINATION
OF THE GROUND-STATE ENERGY
OF THE INFINITE-U ANDERSON MODEL TO O(1/N)

In this appendix we derive an expression for the
ground-state energy of the - infinite-U Anderson model
[see Eq. (4.1)] to terms of O(1/N) using the variational
technique of Sec. IV. The variational state in this case
takes the form

1 occe
oy | epe,m )+ 2 Biz| Ex,ex,m) + —== vN 2’7’123 | (erer,m)Ep,ex,m")) ] l ]

alzak‘

and so on. To prevent overcompleteness in the third class
of states we restrict €k, <&k, for m =m’. The variational

equations follow from minimizing
(PO | H | gy —Eg(( @™ | ghl/N)y — (E2)

snd take the form
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<(pE)I/N)|H |¢E)1/N)>

8/04% Eo=—" - iz =Eo+ Ak

3/3ay: (ej—ex, —Eq)ay+VNV+V' 3 Bp=0,
. (E3)

9/3B1y: (Ex,—&r, —Eg)Bra+Va+VNV 3 v1;3=0,

k3
9/0Y 1230 (ef —&x,+Ep, —ex, —Eg)V 123
+VNV[Bi2+(1/N)B3,]=0 .

For convenience we have set Eg=E,+AE,, with E, the
ground-state energy to O (1) and AE, the O(1/N) correc-
tion. ‘

To the required order, the 33, term in the fourth equa-
tion may be ignored; this equation then yields

VNV

. (E4)
EG+sk1 —Ek2+8k3—8f

Y123=PBn

This simplification in solving for ¥ 1,3 is essential. Other-
wise, the next higher equation in the chain is an integral

J

occ 1

equation. [Integral equations are guaranteed to arise
whenever states containing multiple band holes or elec-
trons appear in the variational ground state; to obtain ac-
curacy of O(1/N?) or higher, these equations must be
solved by iteration to the required order in 1/N.] Con-
tinuing backward up the chain of equations, one finds

vV

Bin=a, (ESa)
Eg +ek, “‘Ekz‘—zE)U(EG +ex, —Eg,)
with
2(1)( ) 2OCC 1
z)=NV _, E5b
0 % ¥4 -—8/+8k ( )
as in Sec. II. Finally,
e VNV
1— = >
Eg—er+er, —2(Eg+¢,)
- unocc i
$2)=1? 3> ! . (E6)

& z—E -3z —E;)

Substituting these results into the first equation in (E1)
gives

Eo+AEy=NV*3

occ 1

k EQ+AE0—8f+Ek—E(E0+AE0+8]¢)

" =S UEg+AE ) +NVES

unocc

k, (Eo+AEo—es+eg )

1 +0(1/N?) . (E7)

kE; Eo+AEo+e, —Ex,— 26 (Eog+ AEg + & —Ey,)

In the last step the denominator containing S has been expanded to O (1/N). To solve for AE, it is necessary to expand

S Eo+AEg) to O(1/N):
(1)

(1 (1) 929
20 (E0+AEO):~20 (E0)+—AEO . (ES)
oE,
Since, from the O (1) solution [Eq. (4.13)],
Eo=3(E,),
it follows that
2\2 0cC unocc
AE=T) 7)) S L__ L ,
N k, Kk (&, —T4)" Eo+ex —Ex,—Z2 (Eo+ex, —Eg,)
az 17! (E9)
Z(Ey)=|1—
(Eo) dE, '

This is precisely the result found by the diagrammatic ap-
. proach in the zero-temperature limit [cf. Eq. (2.43)].

APPENDIX F: VARIATIONAL EQUATIONS
FOR THE GROUND-STATE ENERGY

AND WAVE FUNCTION OF THE FINITE-U
ANDERSON MODEL TO O(1)

Sections II—-IV treat exclusively the infinite- U limit of

the Anderson model. In physical systems, U is finite, and
multiply occupied impurity configurations may conceiv-
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ably be of importance. The finite- U Anderson model is
much more difficult to treat by a 1/N expansion than the
infinite- U model. In general, analytical results cannot be
obtained even in the zero-temperature limit. Algebraic
equations for the infinite-U model are replaced by in-
tegral equations at O(1). The most extensive studies of
finite-U systems have been carried out by Gunnarsson
and Schonhammer within the variational approach
(1985). In this appendix we merely point out the difficul-
ties of the finite- U model by rederiving the equations for
the ground-state energy and wave function to O(1).
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From Sec. 1B, the finite-U Hamiltonian for a rare-
earth impurity takes the form

H=Hband+Hf+Hmix’ Hyppg= 2 Exlkm 5
km

(F1)

S By,

m>m'

m

Hmix= Vz (C]Imfm +H.c.).
km

( 1 occ 1 oce
|5y =4 |Q>+—\/T% akfefskm>+—‘/—ﬁ k%ﬁkk’

The required off-diagonal matrix elements of the Hamil-
tonian are

(epgxm |Hpix | Q) =V,
(F5)

< (efskm )(sfek:m ') I Hmix [ efekum " )

=V (SxiOmm» + Ok 'k Omm*) -
The variational equations are in this case
(@0 | H | b”)

(@0 |96
9/0ay: (ef—gx—Eglag+V NV—{—\/NVZﬁkk’:O s
: -

3/342% E,=

’

(F6)
9/ (28f+U—8k-—-€k'—Eo)Bkk’
+1/1_V_V(ak+akr)=0 .

A complicating feature is the presence of two different
coefficients a; and ai in the third equation: each two-
hole state couples at the same order to two one-hole
states. This complication does not arise at O(1) or
O(1/N) in the infinite- U treatment. Substituting for By
in the second equation gives

occe

Oy O
(Eg+ex —&f)ax —NV?
0 &k —Epati %Eo—(25f+U)+sk+skr

=vVNV,

ie.,
[Eo—{-sk—Ef—EE)”(Eo—-Sf— U—+gr)]ag
(047

ﬁNVZ oce ‘ :1/1'\7
. kz Ey—Q2ep+U)+ex+ep

VvV, (F7a)

with
occ 1

M) =NV?S

_— (F7b)
r 2 +8k—-8f
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As in Sec. IV.A, let | Q) denote the noninteracting Fermi
sea, and define

| ererm) =Fmeim | Q) - (F2)

These are the only states that enter the O (1) ground-state
calculation of Sec. IV for the infinite- U limit. In the case
of finite U, one additional set of states must be considered
at O(1). This is

| (eperm)eserm’)) =F Comfiim | Q) - (F3)

To avoid an overcomplete basis we require g <€+ for
m =m'. The variational ground-state wave function
takes the form

[(efekm)(sfsklm')) ] ] . (F4)

This is an integral equation for the coefficient a;. (For
U— w0, the two expressions containing U vanish, and a;
is determined by an algebraic equation.) Substituting the
expressions for the coefficients a; and By in the first of
Egs. (F6) gives

Eo=VNVS ay, ax=ap(Ey) . (F8)
k

For U— «, Eq. (F8) becomes a simple transcendental

equation for the ground-state energy E,. The equation

for finite U is considerably more complex; E again satis-

fies a transcendental equation,

EOZF(E()) . (Fg)

In this case, however, the function F can only be deter-
mined by solving an integral equation.

Gunnarsson and Schonhammer (1986) have shown that
the function F may be determined analytically in the limit
U >>D; they have obtained closed-form results for the
static susceptibility and the f° and f? occupancies in this
limit. Results obtained in this way should be viewed as
the lowest-order terms in a joint expansion in 1/N and
D/U. For a discussion of these results and extensive nu-
merical results for the finite-U f spectral density, the
reader should consult the original treatment by Gun-
narsson and Schonhammer (1985) and the review article
by the same authors (1986).

APPENDIX G: THERMODYNAMICALLY
SELF-CONSISTENT APPROXIMATIONS
FOR THE INFINITE-U ANDERSON MODEL

1. Hierarchy of self-consistent solutions

An important criterion for approximate solutions of
many-body models is that they be internally consistent. A
self-consistency criterion for solutions of the interacting
electron gas (®-derivability) was established long ago by
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Baym (1962). One of the properties of a ®-derivable ap-

proximation is the consistency of alternate representations
of the partition function. For example, one possible rep-
resentation is obtained by integrating the particle number
with respect to the chemical potential; an alternate repre-
sentation is obtained by performing a coupling-constant
integration of TS 6’, where S and G are the self-energy
and propagator matrices. These two representations are
equivalent if the exact self-energy and propagator are em-
ployed; if arbitrary approximations are introduced, the
representations may differ.

The analogs of these representations for the infinite- U
Anderson model are the following:

d_ "&Tr

ZfEZ/Zband= T 2w Z_Hf_.if(z) (Gla)
and ‘
Z,=14+Ne 7s
f= +Ne
1 S/ (z,8)
_Bf dg —‘i-z—;e_ﬁ’Trf L /:g ,
0 T 2mi ¥4 ——Hf——Zf(z,g)
(G1b)

with 3 r as in Eq. (2.15). As in the electron-gas problem,
these representations may differ if arbitrary apgromma-
tions are introduced for the self-energy matrix >,. It is
easy to state one criterion that guarantees that the repre-
sentations are the same: the self-energies 2, and 2, (the
matrix elements of 3 #) must be such that the approxima-
tion includes only complete families of diagrams (Grewe,
1983), i.e., sets of diagrams related by a cyclic permuta-
tion of vertices.

It may require some work to determine whether a
specific choice of self-energies sums complete families.
Kuramoto (1983) has derived an infinite hierarchy of ap-
proximations that satisfy this criterion and has explicitly
constructed for them a generating function ® (analogous
to the generating function in the electron-gas problem).
The generating function, once constructed, may be used to
show that all approximate representations of the partition
function derived by integrating thermodynamic deriva-
tives (for example, temperature or field derivatives) are
equivalent. We sketch Kuramoto’s approach below.

The hierarchy of consistent approximations may be
generated from skeleton diagrams. A self-energy is said
to be reducible if it may be generated from a lower-order
diagram by adding a self-energy insertion on an occupied
or empty f line; skeleton diagrams are those which may
not be reduced in this way. A consistent approximation
may be obtained by writing down all skeleton diagrams
up to a specified order in the hybridization ¥, then dress-
ing the internal lines in these diagrams with all allowed
self-energy insertions. (It may be seen that diagrams pro-
duced in this way constitute complete families by writing
down an arbitrary diagram, then rotating the vertices
once. The important point is that the number of crossing
band lines is conserved by such rotations.) The lowest-
order skeleton diagram approximation is just the self-
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consistent expansion of Sec. V. Since all the diagrams in-
cluded in this approximation may be drawn with non-
crossing conduction lines, this has been termed the “non-
crossing approximation,” or NCA.

Derivation of ®. Consider representation (G1b). The
nth-order skeleton diagram contribution to the self-energy
matrix with bare internal lines takes the form

g"S (6 Yz),2) (G2)
with
016%=)0y=—,
. (G3)
(m|G%2) | m)= )
¥4 —-Ef

Thus a dressed skeleton diagram contribution to ﬁf be-
comes

"”(G,(z,g) z),

with
R 1
(0| Gylz,g)|0)= z—30(28)
| (G4)
(m IGf(z7g)]m>=z.__ —Em(z7g) .

3o and X, are the full self-energies in the approximation
considered. Summing on the skeleton diagrams included
in an Lth-order approximation gives

N

Si(z,8)= 2 g P(Gy,2) . (G5)

The expression

fl ﬁg"’l‘r S NG,,2)Gflz,8) (G6a)
0 g 127 (Gy2)Gylz,
may be integrated by parts to give
l /\(n) ~ ~
—Tr:27(Gy,z)G
o 11r2 7 (Gyp2)Gy
—= f dgg"Trf——~[E(")(Gf(z,g),z)@f]. (G6b)

The matrix S (")G + is dependent on the coupling constant
through its exphclt dependence on Gf and through the
implicit dependence on 2 " on Gf The self-energy 2 (#)
contains the dressed propagator exactly n—1 tlmes
Since the skeleton approximation includes complete fami-
lies of diagrams, the factors of aéf/ag from each dif-
ferentiation may be brought to the end of the trace (using
cyclic invariance). Thus

Q>

Sm
2‘;”~a—f— J : (G7)

Trfaig-(i(f")@f)=n Trs

o

Note finally that
S;=z—H;—Gj', (G8a)

SO
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1 o0 ~ ~ Py A ~
fO dg Trf ngang =(z Hf)[Gf(Z)—(Z —Hf)_l]—-ln(z —Hf)Gf(z)=Ef(z)Gf(z)—1n(z Hf)Gf(Z) (G8b)
Thus the representation in (G1b) is equivalent to
Z;=1+Ne */_po(G,}+8 [ - ~BeTe [ $4(2)G p(2) —In(z —H[)G(2)] , (G9a)
with

wJer

" -BZTrfi "(Gp,2)G(2) .
n= 2

(G9b)
It is now easy to show that ® is indeed a generating function, i.e., that the self-energy matrix may be generated as the

functional derivative of ® with respect to the propagator matrix. To carry out the functional differentiation, suppose Gy
depends on some (artificial) parameter a. Then

5P
= dz Try——(2)
fr Y

since the approximation contains only complete diagrammatic families. Thus
B e ” (G11)
S@f 27i _
This is the analog Baym’s generating-function relation for the electron gas

2. Use of the generating function

To illustrate how the generating function ® may be employed to prove two representations of Z; equivalent, we
rederive Eq. (Gla) from (G1b). First, the mean occupancies
no=Z"-

"Tre =PH|0){0| and n,=Z 'Tre P¥|m){(m |

may be derived directly from (G1b) by attaching a chemical potential to the empty and occupied f states
Hy=er|m)m | — 3 (ef—pm) |m){m | —po|0){O|
m

For example, the empty-state occupancy is just

(G12)
"= 3Buag) P25 | mo=0
=L 0 L Bauo)+B [ Ee =BT 3 510 (o) —Inlz — H (1) 1C(o)] ,  (©G13)
Zf(,llro) a(B,LLo) T 27i o=
where )
0| Gp(ug) |0)= , G ) = . (G14)
(0] Gr(uo) |0) P Y = m | Gfluo) [ m) e, 5,2 4
Using again the fact that complete diagrammatic families are present
T SWG,=nTr S 9, (G15a)
a(ﬁ A A TN
and
o(—BP) dz a 9 A
o=BP) __  dz _9 & 1
3(Buo) r2mi® T2 5, Or (G15b)
Also note that
1 03, 9G, 1 03,
T S,Gr—Inz —H;)G Go+2 G — (G15c¢)
a(B 2 Gy =t —H )Gy )= = S 5B € T 23 Bug) T | B 3B ©
Rev. Mod. Phys., Vol. 59, No. 4, October 1987
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Combining terms gives finally

—Bz d 1
71 e =z;'[ Z ___ - __
no=2Zy (o) fr 2mi z +po— 2oz +10) |ug=0 T 2mi 2—Z(2) e
The equation
_ Bu dz e #
Sy 12 ko) =Z ! ST s
a(B f(,uo + (nole fr 2mi z —3(z) .

may now be integrated with respect to Bug to recover the empty-state contribution to the partition function; the value of
the u,, derivative is also required to determine Z; fully. Thus

dz _e™F

Zr=Jr 2mi z —30(z)

+A4(T) . (G18)
The undetermined function A (T) is the part of the partition function independent of g, i.e., the occupied-state contribu-
tion.

As a second illustration of the power of the generating function we demonstrate that the expression for the static sus-

ceptibility derived in Eq. (5.8) using the magnetization correlation function is the same as the expression that follows

from differentiating the partition function with respect to the field. The static magnetization is just

= Z:(h),
aBh)  Z(h) 3BT
where
Zp =1+ 3 e "I _poip [ Fe~PTr (3,6, —In(z —H(h)Gy] . (G19)
- .
Note first that
——(_[3 y=— [ 4 —pye,3,96, (G20)
a(Bh) L 27 oh
by the same ai'guments used in deducing Eq. (G15). In addition,
—B A A A1 —B(ef—mguBh)
a(Bh) fr “Tr[2;Gy—In(z —Hp(h))Gs]=—gup %me
dZ —Bz a
r2.7¢ Try |2p— ah +g,u32mG (2) (G21)
[
Thus discussed above are self-consistent deserves some addi-
tional comment. By integrating various static thermo-
M(h)= Z ( ) g,uB f ———e ~FG,,(2) dynamic derivatives, it is possible to produce a number of
equivalent representations of the exact partition function.
and (G22) ®-derivability ensures that these representations remain
equivalent when approximate self-energies are introduced.
d*F Kuramoto (1983) has considered a generalization of the
X(0)=— oh? b infinite- U Anderson model, which includes the interac-
- tion of the -f level with time-dependent, Gaussian-
_ 1 dz  _p 8 G, (2) distributed auxiliary fields. If the auxiliary fields are
4 f 8ip % mJr 2mi € oh " —o treated perturbatively in parallel with the hybridization, a

This equation states that within any self-consistent ap-
proximation (and within the NCA, in particular), the stat-
ic susceptibility is simply obtained by writing down all di-
agrams for G,,, then breaking a single line by differentiat-
ing with respect to A. The NCA expression obtained in
this way is exactly that in Eq. (5.8).

The sense in which the skeleton diagram summations
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generalized skeleton diagram expansion may be written
down, and a generating function ® constructed as before
(the number of distinct interaction vertices is simply in-
creased). Imaginary-time (or frequency) f-level correla-
tion functions may be generated by differentiating the
logarithm of the generalized partition function with
respect to a set of auxiliary fields, then setting all auxili-
ary field interactions to zero. This procedure is a techni-
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cally elegant means to generate time-dependent correla-
tion functions. However, the generalized function @ con-
tains artificial interactions and has no implications for the
self-consistency of dynamic and static properties beyond
the implications of the function constructed in Eq. (G9b)
without time-dependent field vertices.

In particular, a number of exact theorems relate static
and dynamic properties of the infinite-U Anderson
model. The criterion of ®-derivability does not ensure
that a specified approximation satisfies these rules. For
example, one such sum rule states that

J7 defepier=ny (G23)
with p, the f Green’s function and n; the f valence. The
NCA does in fact satisfy this relation, but the proof does
not follow from ®-derivability (see Appendix H). Fur-
thermore, thermodynamically consistent approximations
need not satisfy Fermi-liquid relations for the Anderson
model, such as the Friedel-Langreth (Friedel, 1952;
Langreth, 1966) and Shiba (1975) relations of Sec. V.B.

We reserve the name ‘“‘sum rule” for global (i.e., in-
tegrated) frequency relations, based on the properties of
equal-time correlation functions, and the name ‘“Fermi-
liquid relation” for identities connecting thermodynamic
derivatives or zero-frequency correlation functions and
thermodynamic derivatives. As shown in Appendix H,
the lowest-order self-consistent approximation, the NCA,
satisfies all pertinent sum rules. Nevertheless, it violates a
number of Fermi-liquid relations (see Sec. V.B).

APPENDIX H: SUM RULES FOR THE INFINITE-U
ANDERSON MODEL

In this appendix we derive several exact sum rules for
the infinite-U Anderson model and demonstrate that
these rules are satisfied within the self-consistent approxi-
mation (the noncrossing approximation) of Sec. V.

1. Sum rules from analyticity

Recall from Eq. (2.18) that the Anderson model parti-
tion function may be written

Z/Zband= _di_e_ﬂzTI'f 1
T 2mi z—Hf—Ef(z)
dz e P

L 27i z —3(2)

dz e~ Pz

N e -
TV e 2 z—gf—3,(2)°

(H1)

where the contour T encircles the real axis in a counter-
clockwise fashion. The “propagators” (z—=,)~! and
(z —g;—=,,)~! are analytic in the upper and lower half-
planes and decay at infinity as 1/z, independent of the de-
tailed form of =, and X,,. Distorting the contour I' into
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a circle at infinity gives immediately

dz 1 o
r i Sy f_wdepo(e)—l
‘with
(e)= -—ilm L ; (H2a)
po T eti0t —S(e4i0%) ’
and
dz 1 ‘ ®
fF 2mi z —ef—Zp(2) f_wdspm(e)—l
with
(€)= —~Im 1 (H2b)
Pm T e+i0t—g;—3,(e+i0%)
2. Sum rules from equal-time correlation functions
G£(7): Recall that the correlation function
Gpr)=—(T,Fp(1)F(0)), Fp=|0){m |, (H3a)
has the frequency decomposition
1 ‘—iw,{r Ez_ Gf(z)
Gylr)= B %e fF 27i iw,—z
= f:o dEPf(E)’é’ > .e—i‘j; ,
n 1On (H3b)
prle)=——Gyle+i0%) .
From the definition,

Gp(r—0%)=—(F,F}) |
=—((]0){m |-|m)<0|))
=—[1—nD]; (H4)

likewise,

G (r—0")=(FLF,) = 7t,—nfm . (HS5)

Since
—iw, 0% 1
e " T
—=— , H6)
% iw,—¢€ et (
it follows that

= deppeN1—f(e)]=1—npT), (H7a)

[ depf(s)f(e)=%nf(T) , (HTb)

and

f_w depp(e)=1— 1——J-vl— ng(T) . (H7¢c)

s (7): Recall from Eq. (2.16) the expression for the z-
dependent f self-energy matrix:
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(Ny|E4(2) | Ny)
*ﬂEll«’Ja"d

= 3 AN Noana | 2z +ER™) | NyNgna)

Nyand Zband
where
(N |22 |N)

=(N IHmix[l_’(z —‘EIO)-_IQN-EImix]_1 IN) ’

(H8)
QOv=1—Py, Py=|N)(N| .

It 1s easy to check (Kojima et al.,, 1984) that
(N |S(2)| N) is the Laplace transform of the quantity

—TOnH

<N!2(T)iN>=<N|Hmlxe QNHmix|N>y

— [T dre™(N |21 | N)=

& 1

T 2mi z—2'

1
z '-—QNH

=<N |Hmix[1—(z _HO)_

It follows that the matrix S(7) is the inverse Laplace
transform of $(2), i.e.,

N atic dz

Sin=— [ " Ze3(z) (H12)
a—ioc 277]
with a less than the ground-state energy.
The matrix 2(7) has a trivial 7—0 limit:
(N |S(r—0)|N)=(N |H%, |N) . (H13)

Distorting the contour in Eq. (H12) to encircle the singu-
larities of (z —H)~! in a counterclockwise fashion gives

immediately
- 2 2L (N |2 |NY=(N |H% |N) . (H14)
Thus, from Eq. (H8),
. ‘BER(and
rzdz 2f(z)_ 2 eZ <Nba.nd|H12nix|Nband)
Nband band
=NV>3 fi |0)(0]
k
+V2 3 (U—f) | m)m]|,
km
ie.,
—;:_— fw doImZyw+i0t)=NV*Y fi (H15a)
—o <
and
—i fw demZm(co+i0+)=V22(1—fk) (H15b)
o :
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1
mix ﬁ QNHmix
QNHmix N

IQNHmix]_ (z

i.e.,
(N|S(2)|N)=— fo°° dre™(N |S(r)|N), (H9)
for Rez < &, the ground-state energy of H.
Proof. Note that
(N |E(r)|N)

. dz' __,
“Jrom® <

1
Z'—QNH

N |H pix OnH pix

¥,

(H10)

where T' encircles the singularities of (z’—QyH)~! in a
counterclockwise fashion. Now, performing the 7 in-
tegration in Eq. (H9) gives

)

—Ho) 'QyHpix [N)=(N |2(2)|N) . (H11)

3. Sum rules within the noncrossing approximatibn

The sum rules (H2a) and (H2b) are trivially satisfied
within the noncrossing approximation. The sum rules
(H7a)—(H7c¢) and (H15a) and (H15b) are also satisfied.

Proof. The NCA expression for the f spectral density
is

1
p}“CA(m)=Z—N5;(1+e—Bw>

Xf deePplAe)pN M w+e) ,

(H16)
ZNA= 7 ae[phCMe)+ NpNCAe)] -

Thus
I dmp}‘cf*mm—f(w)]

ZNCA f da)f de e PepCA(e)pNAw+¢)

ZNCA f deePpiNe)=1—ny(T), (H17)
by Eq. (H2b).
lar fashion.
The sum rules for the NCA self-energies (H15a) and
(H15b) are also easy to verify. Substituting the explicit
form for the empty-state self-energy from Eq. (5.2) gives

d d
Jios3b %= [ 2 PR GRCMz +e)

Sum rules (H7b) and (H7c) follow in simi-

=NV*3 fi, (H18a)
Lk
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by Eq. (H2b). Likewise,

fr dz dz_sNea, )_sz(l_fk)

i (H18b)

APPENDIX I: ANALYSIS OF TOY MODELS AT ZERO
AND FINITE TEMPERATURES

In this appendix the large-N expansion for two trivial
ionic models is investigated using functional integral tech-
niques. The models are formally the Cogblin-Schrieffer
and infinite-U Anderson models in the absence of
conduction-band mixing. This analysis illustrates several
features of the interacting models (Sec. VI.B) in a simpler
context. Exact results may be obtained using a saddle-
point approximation at zero temperature; the saddle-point
approximation deteriorates at finite temperature, giving in
some cases a continuous phase transition analogous to
that found in treatments of the full models. For the toy
models the violation of occupancy constraints at finite
temperature may be calculated explicitly.

The ionic models are

(i) H=¢; SNy, S N,=1
IR R (1)
(il) H=8f2Nm+EQNO, No+ ZN = =0_
m m

N o and ﬁm are number operators for the nondegenerate
state |0) and the N-fold degenerate states |m); the
statistics of these states need not be specified, since the
constraints strictly prevent multiple occupancy. Model (i)
is just the Coqgblin-Schrieffer model with J =0; similarly,
model (ii) is the infinite-U Anderson model with ¥ =0.
In the treatments below we consider a generalized version
of these models, with occupancy constraints

(i) S N,=gN

(i) No+ 3 N,,=gN,
m

(12)

with g rational and gN integral. For example, for g =+,
the allowed values of N are integral multiples of 6. The
large-N limit is in this case a thermodynamic limit (the
fractional occupancy g is an intensive quantity). Large-N
perturbation theory takes the form of a loop expansion.
Even in the “physical limit” g =1/N, such an expansion
is expected to retain some validity. The (finite-
temperature behavior of the toy-model loop expansions
indicates the way in which similar expansions for the full
alloy models break down with increasing 7. Note that
the statistics of the levels |0) and | m ) become impor-
tant when multiple occupancy is allowed.

1. Toy model (i)

We consider first the constrained Hamiltonian

H=¢;3N,,, SN,=0=gN, (13)
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with | m) a set of N degenerate levels obeying Ferm1
statistics. This system has partition function

-—Bef(qN)

Z =P(q,N)e (I4a)
and entropy
S =InP(q,N) ,
with
!
P(gN)=— D' (14b)

(gNN[(1—g)N]!

Note that for gN =1, P(q,N)=N.
Alternatively, the partition function may be reexpressed
exactly as a Fermi functional integral:

z— ™ BdAry  —pan
—aT 21
with
H(\)=¢;0+iM0Q —gN), (I5a)
ie.,

T /3d7»eim<q1v)f e =S
f

7T 2 (I5b)

S= me('r

+sf+zklfm(7 .

Here f,,(7) and f,,(r) are sets of anticommuting
(Grassmann) variables. Transforming to a frequency-
space representation and dividing through by the partition
function Z, for a set of N zero-energy fermions gives

_Z_=f”T Bdk ipnam
—-aT 21

N3 eiw"0+ln

n

X exp

iw,, ——Ef—i}\.
iw, )

(I16)
The frequency sum and constraint integral may be
evaluated exactly, reproducing Eq. (I4). Alternatively, the
constraint integral may be evaluated by a saddle-point ap-
proximation. To accomplish this it is necessary to shift
the integration path into the complex plane. The shift

does not alter the value of the integral. This is simplest to
see in the representation of Eq. (I5a), where A multiplies
Q —gN. Thus separating (I6) into mean-field and fluctua-

* tion contributions gives

—BF
Z=ZyrZauer» Zmrp=e M,

FMF=€MF(QN)—NTIH(I+eﬂ(EMF—Ef)) ,
7T ﬁdl

—aT 277' :

(I8)
BFﬂuct

Ziyer=

iA

Fue=—iMgN)—NT S1n [1— —
fuee = = IMgN) § 8 o, +emr—Ef
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The mean-field, or saddle-point, condition is

BSMF 7
ie.,
flep—e )——L———- 19)
S EMF!= eﬂ(ef—eMF)+1 =9 -
Thus
emp=¢s—TIn(g~'—1),
(110)

—Bej(gN)
ZMF = ——_.e—————_ .
qu( 1 _q)(l——q)N
This is precisely the approximation for Z that follows
from the asymptotic expansion of the combinatoric factor
P(q,N) [Eq. (I4)] to leading order using Stirling’s formu-
la,

InN!=N(InN —1) . (I11)

For the thermodynamic-limit model with fixed g, the
mean-field approximation is the leading term in a 1/N
expansion of the partition function. We shall comment
on the validity of the expansion for the model with
gN =1 after examining 1/N corrections.

Corrections to Zyg may be computed to any order by
performing Gaussian integrations. Note first that

T3 In 1—_——’2”———]
n ta),,+£MF—sf

o i \m m—1

1 m
o, +eEMF—Ef

m=1 m
0 19 ym m-—1
’ m=1 m! dzm " ePF41 Z=gp—Eyp
J
0 :9 ym m—1
exp ___BN 2 (l}h) d l 1
may m! dz™ 1 efry z=er—eyp

+—£—(Bk)4q(1—q)(6q2-6q 1),

The linear term in Fy, is just

1

eB(Ef—EMF)+l =0 s

—iAN [q — (I113)

by the saddle-point condition (I9). The Gaussian correc-
tion to Z is

aT _ ﬁ(sf-—sMF)
—aT Bzdk exp | —BN(—1*/2) Bfe—e )
T (e f — *MF +1)2
T BdA ) )
=J_.r 5, xP[—NBq(1—g)A*/2]. (114)

Neglecting corrections exponentially small in N, the lim-
its of integration may be extended to + . The result for
Z to Gaussian order is then

ZMF

Z~— SME
[2nNg(1—¢)]/% ° (I15)

Note also that at Gaussian order the mean-square fluctua-
tion in A is just

T2

2y I
(A= Ng(1—q)

=0(1/N). (I16)

To extend the expansion of Z to higher orders in 1/N,
non-Gaussian contributions to Zg,; must be expanded in
powers of A, then integrated term by term. For example,
terms contributing to the relative 1/N correction are

2
z1+o<x3)—17v—2</3m6[q(1—q>]2<2q —17

(I17)

The AS term arises from the expansion of the cubic term in the exponent. After performing the Gaussian integrations as-
sociated with the two correction terms, one obtains for Z to O(1/N)

—Bef(g)
e Perte 1

=~ qu( 1 _q)(l—q)N [277'Nq(1—q)]1/2

This 1/N expansion could also be generated to arbi-
trary order by applying Stirling’s formula directly to each
factorial in P(q,N) [Eq. (I4)], then collecting terms. In
this context, note that the combination of factorials in
P(q,N) has a simple expression in terms of known func-
tions (Gradshteyn and Ryzhik, 1980):
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1 g*>—g+1 1
1— .
12N g(1—¢q) +O[ ”

‘F (118)
[
N! _ 1 (N +2)
(@NN[(1—g)NI!  N+1 T'(gN +1)I'((1—g)N +1)
1 1
~ N+1 B(gN+1,(1—g)N+1) ’
(119)
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with B the beta function. In this case, the proof that the
expansion generated for the partition function is asymp-

totic to the exact result relies on properties of simple ana-

lytic functions. For more complicated partition func-
tions, such a complete proof cannot be furnished.

The expansion has a number of interesting properties.

First of all, the free energy per level is

1, 1

T1
N " N nZ‘

=qer+T[glng +(1—¢g)In(1—¢g)]+O

1

—InN | .

N ]
(I20)

For T— O, this reproduces the exact ground-state energy

Ey/N =qegy, for all q. 1t is clear in hindsight that the

mean-field calculation should be sufficient to compute the
ground-state energy, since

1 1 PN
N0 | T
and (I21)
(Q)mr=gN ;

in this case, the constraint need only be satisfied on aver-
age to obtain the exact value of E,/N.

The mean-field treatment does not produce an exact re-
sult for the entropy, which counts the number of available
states. Since the system has P(g,N) degenerate configu-
rations,

1 1
—S(T) =—InP(q,N) . (122)
N exact N
On the other hand, the mean-field entropy is

=—[qlng +(1—¢g)In(1—gq)] . (123)
MF

1
TV_S(T)

This is the entropy of a system of independent fermion
states, each with probability g for occupancy; these states
may suggestively be viewed as noninteracting quasiparti-
cles. The fact that the probability for occupancy is less
than 1, even for &5 <0, reflects the occupancy constraint
at mean-field level.

Expansions based on this limit are certainly sensible
when the mean occupancy (Q) is large. How good are
such expansions in the case of initial interest, Q: 1, ie,
gN =1? (The same question arises for the full Cogblin-
Schrieffer and infinite-U Anderson models.) In the
present case, N =g ~! corresponds to a point far outside
the range of validity of the asymptotic expansion: the
Stirling series representing In(gN)! breaks down for
N ~g~!. The same numerical breakdown is expected for
any partition function in which a unit-occupancy con-
straint is treated as a constraint extensive in N. The
breakdown need not be uniform in temperature (this is the
key to the success of saddle-point expansions for the
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Coqblin-Schrieffer and Anderson models in the Fermi-
liquid regimes). For the simple system considered above,
the exact ground-state energy emerges from a mean-field
calculation. Furthermore, for N =g —!, the fluctuation in
the “constraint field” A [Eq. (116)] is
2 ¢
(y=-1_. (124)
l1—gq

This fluctuation is large at high temperatures (even for
g —0, but vanishes at zero temperature.

The violation of the unit occupancy constraint may be
quantified for this simple model. The mean-square fluc-
tuation {(Q —gN)?) measures the degree of contamina-
tion from ghost- states in the functional integral. To
evaluate this quantity at Gaussian order, a dimensionless
“source” j may be introduced,

A—A+j/B, - (125)
in Eq. (I5). It is easy to check that
(Q—qN>=ia%,an(j) B
j=0 (126)
((Q—gNP)—(Q—gN)*= —a—jlnzm
9j j=0

If no approximations are made, these expressions vanish
identically, since the integrand in Eq. (I5) is periodic in A.
At Gaussian order,

Zowal= [T

Bak ol —Ng(1—q)Bh+))2/2]

—7T 21
_ T+j d—xe_sz
—m+j 21
with
A=Ng(1—gq)/2 . N vy))
Thus _
9 1 ) )
B;Zﬂuctz_2_17_(e—A(1r+1)2_e—A(—1r+1)2)
and
92 1 o ;
~gj—zZﬂuth?,”—[ZA(77'—}-_/)e Al
+2A(m—jle= AT (128)
It follows that
(Q—gN)=0 (129)

(the constraint is satisfied on average, as remarked earlier)
and

A 24e—A™
—gN)??)=—225
<(Q 7 )> Zfluct(j:O)
—Amn?
=-_Ande . (130)
(r/A) “erf(mV' A)
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TABLE XII. Gaussian fluctuations in the constrained level oc-
cupancy. In a functional integral treatment based on the
saddle-point approximation, the level occupancy Q in toy model
(i) is not exactly constrained. The magnitude of the
temperature-independent fluctuation in the occupancy is tabu-
lated below for various values of the relative filling parameter g.

g~! (0 —1)%) (O —1))17?
2 0.077 0.28
4 0.040 0.20
6 0.031 0.18
oo 0.018 0.13

This term is exponentially small in gN for gN — « and
may be neglected in constructing an asymptotic expansion
in 1/N for fixed g (the thermodynamic-limit model). The
occupancy constraint is enforced up to exponentially
small, or subdominant, terms. We have retained these
terms to examine the physically interesting case N =¢ ~ 1.

In this case,

=2(1—gq). (131)

The magnitude of the unphysical fluctuations for various
choices of gq is recorded in Table XII.

Note that the fluctuations are temperature independent
in this toy model. The root-mean-square fluctuation is
large for all values of ¢ ~!=N, indicating the presence of
an admixture of ghost states in thermal averages. One
might hope that the fluctuations could be reduced by ex-
tending the bounds of the constraint integral; e.g., the
constraint could be enforced using the operator delta
function

™I BdA

—eMT 2mM exp[ —iBAMQ —gN)], (I32)

for arbitrarily large M. Note, however, that before ap-
proximations are made, the A integrand is periodic with
period 27 T. The integral in this case has M saddle points
(at A=2mnT +ieyp, n an integer). The integral over
each interval of length 27T is identical with the con-
straint integral considered previously, and the computed

fluctuations in Q —1 do not depend on M.

Thus, for the interesting case gN =1, the occupancy
constraint is only approximately enforced. This con-
clusion holds not just in the present treatment, but in all
treatments of an occupancy constraint by perturbation
theory (in particular, for the infinite-U Anderson and
Cogblin-Schrieffer models). Previous treatments which
have concluded that the constraint may be enforced exact-
ly, order by order, omit “subdominant” terms, which are
in general quite large when gN =1. (Despite this fact,
saddle-point expansions for the magnetic alloy models are
well controlled at zero temperature and in the Fermi-
liquid regime. In this limit, the constraint need not be en-
forced exactly to obtain exact answers.)
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2. Toy model (ii)

In the last section we have attempted to illustrate some
possible pitfalls of large-N expansions about the thermo-
dynamic limit: extrapolations beyond the range of validi-
ty of the expansion may lead to unreliable conclusions. In
this section we should like to pursue this point with a
more extreme example, viz., a possible generalization of
toy model (ii) in Eq. (I1). We consider the case in which
level |0) lies lowest, i.e., €7 > 0.

In this case, the N levels | m ) with energy € r and the
nondegenerate level |0) with energy O may be chosen to
have any combination of Fermi and Bose statistics. The
occupancy constraint ensures that only N +1 different
configurations of the system are realizable and that the
partition function is

Z—=1+Ne %1, (133)

independent of the underlying level statistics. If, howev-
er, the constraint is rewritten

SN, +No=gN , - (134)
m

each choice of statistics corresponds to a distinct system.
If various approximations are made before attempting to
recover the limit N =¢ ~!, a number of quite different re-
sults may be obtained. If, for example, € r>0and

ﬁm ->f,’£,fm, fermions ,
~ (I35)
NO——>bTb, boson ,

the presence of a low-lying Bose level allows the
phenomenon of condensation, or macroscopic occupancy,
at saddle-point level. For N =g !, the appearance of
Bose condensation is completely unphysical: no level in
the system may have occupancy larger than 1. The ap-
pearance of a condensate at low temperatures is in this
case an artifact of the approximate solution, unrelated to
the simple physics of the system with unit occupancy.

Bose condensation is prevented a priori (for any gN) if
one chooses ‘ '

f\\’m —>f:f,fm , fermions , 136

N0—>fgf0, fermion ,

or

N, bl b , bosons ,
m—>O0mOm (137)

1/\\’0—>f;§fo, fermion .

In both cases, since the lower level has Fermi character, it
can be at most singly occupied and plays no part in the
physics of the system in the thermodynamic limit N — .
This means that these cases are equivalent at saddle-point
level to the Fermi and Bose representations of the system
in Eq. (I3).

For toy model (ii) with €7 >0, a particular representa-
tion is required to obtain sensible results for the ground-
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state energy and level occupancies at mean-field level.
The exact results for the unit-occupancy system are

7V~(N0> =1/N. (I138)

exact

=O’

exact

N

If the nondegenerate level is assumed to have Fermi char-
acter, its contribution to properties vanishes in the ther-
‘modynamic limit N— « and

g,

N =0. (I39)

1 A
=qer, —{(Np)
4 N MF

MF

These expressions are qualitatively incorrect when ex-
trapolated to N =g —!. On the other hand, if the nonde-
generate level has Bose character,

1

—E
N oo

1 A
=09 _<N0>

=g, (140)
MF N

MF

by virtue of condensate formation; these expressions are
exact when extrapolated to N =g ~!. This is not especial-
ly deep. It is clear that a single Bose level can have mac-
roscopic effects, while a single Fermi level cannot. If a
nondegenerate level dominates a system’s behavior in
some regime, that level must be represented by a boson if
its influence is to be felt at all at saddle-point level in an
expansion about the thermodynamic limit.

This does not mean that more general features of con-
densate formation are relevant to the system with unit-
occupancy constraint. To clarify this statement we dis-
cuss at greater length the representation that exhibits Bose
condensation. (An analogous treatment may be applied
to the Cogblin-Schrieffer and infinite-U Anderson
models—see Secs. VI.A and VL.B.) The partition func-
tion for the mixed Fermi-Bose system may be represented
exactly by the functional integral

7z aT Bd}\'eiﬁh(qN)(1+e_B(Ef+iA))N
—aT 21

ngexp *Bé | Em | X —ivy, +id) | . (141)

At high temperature (where there is no condensate), the
saddle-point ‘solution is completely analogous to that for
toy model (i). Shifting A into the complex plane as in Eq.
(I7) gives

—BF
zZ =ZMF_Zfluct’ Zyr=e MF ’

Fur=emp(gN) —NT In(14-¢"™F~%7) (high T) ,

_ T Bd}\, X _ﬂFﬂuc
Zayer = fgﬂ’?fge ty

(142)

i\

-
Lo, +€MF—8f

Fﬂuct:“‘i}\,(qN)—NTzln
n

+ 3 | €m | A —ivy —epmp+id) (high T) .
m
Since the saddle-point free energy is the same as that for
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toy model (i) [cf. Eq. (I8)], the saddle-point condition is
again

f(Sf—SMF)zq (I43a)
and
. ~Be4(gN)
ZMF:__—*——_qu(l_q)u—q)N R (I43b)
as before.

The fluctuations in A and &,, are independent at Gauss-
ian order. This implies immediately that the violation of
the occupancy constraint at high temperature is the same
as that for toy model (i) [cf. Eq. (I30)]. For N =¢ !, the
constraint is violated by large amounts for all values of g:
the physical model lies far outside the range of validity of
the expansion. Nevertheless, a number of interesting re-
sults may be obtained by pursuing the expansion further.
The expression for Zg,, at Gaussian order (neglecting
terms exponentially small in gN) is

1 1
[27Ng(1—¢)]'% {_

Zayer= . Benr (I44)

The Gaussian correction diverges at low temperature;
specifically,
1

m‘ —> 0 (I45a)

(indicating an instability of the system at this order) when

emr—0 . (I45b)
This instability occurs where
flef)=q,
i.e., at
= Ef—’;—_—l—)— : ' | (146)
Below this temperature, the saddle-point solution

described above is unstable with respect to Gaussian fluc-
tuations, and the zero-frequency component of the Bose
field &, takes on a nonzero expectation value.

The general saddle-point equations are derived by
minimizing

Fyr=¢pMp(gN)—NT In(1 4Py (&0)’emF -

(147)
The saddle-point equations are
3e : <§o>2=N[q ""f(sf_sMF)] s
ME (148)
d
— =0.
IEV A
Above T,
(&) =0

and
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SMF::sf——Tln(q'l—l) . (I49a)
Below T,

emp=0
and

(£0)*=(No)mr=N[q —f(e;)]=O(N).  (149b)
The partition function takes the form

o ~Pestam)
Zyr= W’ T>T,
=(1+e PN T oT, . (150)

The saddle-point solution exhibits a continuous phase
transition at 7, (see Fig. 34) with order parameter
(Ny)/N. This phase transition is a real feature of the
system in the thermodynamic limit N — «, ¢ fixed. In
this limit, fluctuations in intensive variables, such as
(1/\\’ o)/N, vanish, and the mean-field theory presented
above becomes exact. The system exhibits macroscopic
condensation into the Bose level. This is analogous to
condensation in an ideal Bose gas. At zero temperature a
macroscopic number of particles (gN— ) occupy a mi-
croscopic quantum state. Outside the thermodynamic
limit (gN large, but finite), no phase transition occurs. In
the system’s ground state, the Bose level is occupied by
gN particles, but the previous transition is rounded by
“finite-size” effects. As N decreases, such effects become
increasingly important; in the extreme limit gN =1, Bose
statistics have no manifestation and the crossover from
high to low temperatures is completely smooth.

15 T T T T
N=28
a=1/8
1 T, = €/ln 5
]
&
\"2
Sk -
] ! I
00 2 4 6 .8 1

T/G‘ ’

FIG. 34. Order parameter of the mean-field solution of toy
model (i) [Eq. (I1)]. Results are shown for the case gN =1,
N =6. The order parameter, or Bose level occupancy, vanishes
above the transition temperature T,=¢,/In5. For T—O0, the
order parameter saturates to unity, indicating complete occu-
pancy of the Bose level.
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It is instructive to compute the specific heat in mean-
field theory for comparison with the exact result for
gN =1. Above the transition, the entropy is constant and
the specific heat vanishes; below T,

_ £
-I—S =In(1+4e Baf)+_f_’3_l__ (I51)
N ur T P41
and
2 Be
1 Ef e/
—C == | —)/—— . (I52)
N ur T (e‘B€f~}-l)2
Specifically, for T—T,,
Ls-| =—[qlng+(1—gin(1—g)]
N MF
and
| P 20, —1
—C =q(l—g)ln“(g—"'—1). (I53)
N MF

The mean-field specific heat is compared with the exact
result for N =g ~!'=6 in Fig. 35. Note that as the tem-
perature is raised to 7T,, the mean-field entropy achieves
its high-temperature limit, corresponding to a system of
N independent fermion levels, each with probability ¢ for
occupancy [compare the discussion following Eq. (123)].
At this order the Bose level does not contribute to the
high-temperature properties of the system. It is a single

C/Nkp

e e e

|
0 2 4

o
©

T/

FIG. 35. Mean-field and exact specific heat for toy model (ii)
[Eq. (I1)]. Results are shown for gN =1, N =6. The mean-
field solution is indicated by the solid line, and the exact solu-
tion by the dashed line. The mean-field specific heat vanishes
above the transition temperature T,=¢;/In5, but agrees with
the exact specific heat to exponential accuracy for 7—0. The
peak in the mean-field solution occurs at T /ey=0.42, and the
peak in the exact solution at T'/e;=0.31. The values of the en-
tropy S/kp at T, are 2.703 (mean-field) and 1.666 (exact). The
exact high-temperature limit for S /kp is In7=1.946.
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level with microscopic occupancy in a macroscopic sea of fluctuations is somewhat different from that in Appendix
fermions. For T—O0, the mean-field specific heat ap- I. In that section a saddle-point approximation (involving
proaches the exact result only static variables) was introduced at mean-field level,
2 _pe but static and finite-frequency variables were considered

__I_C _ & e T N=g! (154) on the same footing in the fluctuation free energy. In the
N | exact T ) (14Ne —Bes )2 ’ ’ analysis that follows, static variables are singled out for a

saddle-point approximation at each order.

This approach reproduces the results for the ground-
state energy and Fermi-liquid thermodynamics found in
Secs. II-V. As in Sec. VLB, the level-occupancy con-
straint may be treated perturbatively at low temperature.
The saddle-point approximation is equivalent to locating
the lowest singularity in the empty-state propagator
1/[o—Zp(w)] (cf. Sec. II). This singularity determines
all zero-temperature properties. The saddle-point approx-
imation deteriorates at finite temperature, however. In

: L ) ; " this case, the approach does not reproduce the results of
tained within a saddle-point expansion for T—0. For the other 1/N techniques and introduces errors associated

al.loy. models, the. v.alid',ity Of‘ a sa.ddlg-point expansion with the violation of the occupancy constraint.

within the' Fermx-hqu'ld regime Justlﬁ'es the falegant Since the saddle-point value of A [cf. Eq. (6.102)] is ac-

transformation to quasiparticle modes discussed in Sec. tually imaginary (as in the mean-field treatment of Sec.

VI.C. VLB), it is simplest to shift A into the complex plane
from the start by letting

with exponential accuracy. The approximate result
deteriorates rapidly with increasing 7', exhibiting a sharp
discontinuity at 7.

This toy model exhibits the same qualitative features
found in saddle-point solutions for the full magnetic alloy
models. The sharp phase transition at T results from the
approximate treatment of the level-occupancy constraint:
at finite temperature, the constraint integrations should be
performed nonperturbatively, rather than in saddle-point
approximation. Nevertheless, exact results may be ob-

APPENDIX J: DERIVATION OF THE O(1/N) FREE
ENERGY FOR THE INFINITE-U ANDERSON MODEL A=A+ik. » a1
BY THE SADDLE-POINT APPROACH

At lowest order, A, is just eyqr=E,, the ground-state ener-
gy of Sec. VI.C.

The partition function may be conveniently divided
into static and dynamic contributions. Without approxi-
mation,

In this appendix we examine a functional integral ap-
proach, first proposed by Read (1985), for calculating
1/N corrections to the ground-state energy of the
infinite- U Anderson model. This approach is an exten-
sion of the saddle-point analysis in Sec. VL.B. As in the
previous treatment, a partition function depending on the ~  _ f”T Bdi f dEydEqe —BF o Ep M) f o PFan(&D)
static variables A and &, [cf. Eq. (6.22)] is approximated —7T 2 0 Em ’
by its saddle-point value; in this case, the static free ener- ' a32)
gy is augmented by corrections from Gaussian fluctua-
tions in the finite-frequency variables. This treatment of where

J

FuaEoR)=ik( | & 2= D—NT In(14¢ "2 *) _NT Trin(1—¥?| & |2G*G)
Fan&X)= 3 | &m | A —ivyy +iX)—NT Trin[1— VX1 —V?| & | *G*G)~(G*XGXx'— | & | %G Gl , ¥3)
m=£0 .
_ Spn' 1
= A r=————£l—————— = . = ’ .
fé-m—‘ f "godgmdgma (G )nn iwn—i7»~sf ’ Gnn 8nn % ia)n—sk ’ Xnnr g"—"

l
Note that the variables A and &, appear in both the stat- The integral over the static variable £, should not be in-

ic and dynamic free energies, but that Fg, is purely stat-  cluded in the Gaussian corrections; it would not make
ic. In a mean-field treatment, the minimum of the static sense to integrate over £y, then subsequently minimize a
free energy Fy,, is located: static and dynamic fluctua- function of this variable.

tions are ignored. As shown in Sec. VI.B, a mean-field At this point it is possible to see why the saddle-point
approximation is essentially equivalent to an O(1) calcu- approximation is successful at zero temperature. The ef-
lation. The mean-field approximation may be extended fective free energy F . may be used to compute the static
by computing Gaussian fluctuations in the finite- Bose propagator, as well as thermodynamic properties.

frequency variables. Since Fgy, depends on A and &, Before the integral over A is evaluated the static propaga-
these fluctuations generate a correction AF,; to the static tor has the general form
free energy. A new saddle point may be determined for

1 = —BF (£ %)
the static integrals with free energy Fp=F,+ AF - Dh(0)=7 f dEod&o| £o | % e J4)
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The effective free energy may be expanded as

Fer=A+B |£|*+C |&|*+0(|&]), (Js)
where the coefficients 4, B, and C depend on A and the
temperature. In evaluating the static propagator to a
specified order in 1/N, F.; must be truncated. In an
O(1/N) calculation, terms of O ( | £, | %) may be dropped.
B! is then the static Bose proapgator, including all self-
energy corrections to O(1/N) except those with a static
internal line. These last corrections can only be obtained
by considering the quartic term. If the quartic coefficient
C vanishes (the case for a flat density of conduction
states—see below), B ~! is precisely the static Bose propa-
gator to O(1/N). If, however, C is nonzero, then B
omits a static contribution to the Bose self-energy at
O(1/N). This may be computed in the standard way by
expanding the quartic portion of exp(—fFy) in a power
series. When C vanishes, the prescription of setting

OF /3| &0 |*=0<=B=0 (J6)

amounts to locating the lowest singularity of the Bose
propagator to O(1/N). This singularity completely
determines thermodynamic properties in the limit 7—0.
Remarkably, the additional terms that appear in Feg for
nonzero C cancel in results for the ground-state energy,
and the prescription succeeds even in this case. Such a
cancellation is essential at higher orders in the expansion,
since the coefficients of |&y|2" with n odd are nonzero
even for a flat density of states.

We work out below the 1/N saddle-point approxima-
tion for a general density of band states. The resulting ex-
pression for the free energy is just that derived in Eq.
(2.44). Hence all previous results for zero-temperature
thermodynamic properties may be reproduced within the
saddle-point formalism. The first derivations of the Som-
merfeld ratio to O(1/N) were performed using saddle-
point techniques (Read and Newns, 1983; Read, 1985).

The dynamic free energy may be expanded to O(1/N)
as

Fomm S | | A—ivy, +iK)+NV2%Tr(GKXGXT— | £]2G*G)

m=£0
2y2
+(NV |§0121Tr(G7‘G)( "XGX'— | & |7G*G)+0 (1/N?)
= 3 | &m | (=i +iR)+T(iv,,) 4+ yliv,,)] , a7
m=%0
where
(ex)—f(iA+ep)
I, (iv,,) = NVZIZ L - L =NV22j.r K] e
B %o tco,,——z}\—sf i@y —Vp)—& k (Ve —il—gf
. (NV3? 1 1 1 1 (J8a)
I (iv,, )= 2 =3 - = : .
2ivm)= 6ol N B o ion—¢r (io,—ik—es)? i(@p—Vpm)—ex
Note that for T—0 and e, —A(> 0,
(z2)=3"z —i}), (J8b)
with =" the ubiquitous self-energy first introduced in Eq. (2.15).
If the'static component were included in the dynamic free energy, the Gaussian integral over {&,, ] would give
_ ' (V) iV, )
e BAFS““:—I—_exp —>In|l1— L), zln ERAL
1—e—ibA m iV —iA vy, —iA—=TII(iv,,)
I1,(iv,,) Iy(iv,,)
=——exp - L2 Ym 2 m 19)
1—e P ' — A m iV —IA—TL(iv,,)

retaining only terms of O (1) and O(1/N) in the exponent. As argued previously, the static Gaussian integral should not
be included in this calculation. If it is omitted, the result above should be multiplied by

BLiA+11,(0)411,(0)] . (J10)
Thus, including all terms to O (1/N),
- 7} H (ivy,) I(iv,,)
o B uar _ /3(1?»? expl— 3 In [V g iv Jg11)
1—e—iBk M0 iV —iA mo0 iV —iA—I11(ivy,)

In a previous derivation (Read, 1985) of this fluctuation correction, only the term containing II, was included. We show
subsequently that the other terms vanish for 70 and may be safely omitted in the Fermi-liquid regime; on the other
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hand, their contribution at tinite temperature is of the same order in 1/N as the lowest-order saddle-point solution. Note
that if A is set to zero in Eq. (J1) (i.e., if one dispenses with the saddle-point approximation entirely), these terms are ex-

actly those which arise in the treatment of Sec. IILB at O(1).

between this approach and that in Sec. III.

The inclusion of these terms reveals the close relationship

The Matsubara frequency sums in Egs. (J8a) and (J11) must now be performed. Note first that

1 M(ivy,) NV?
> 2 — NV g, 2

B mz0 iV —ik—T(iv,,)

1 1 1
S( n)='— . —
jon=1% 3

mz0 L@ ~Vi) =€ iy, —iA—T1(iv,,)

The sum S may be reduced to a contour integral along
three cuts (see Fig. 36). For A imaginary (the case at the
saddle point) two of the cuts coalesce. We temporarily
consider the more general case A=A +iAy; in this case,
Sliw,)=S(iw,)+S,(iv,)
1— f ( 8k')

- . b
iw, —ep—iA—I(iw, —&g)

(J13)

b(z) 1

S; =
(lwn) fr 2’1Tl Z—l)\. Hl(z) za),,—z—sk

with b the Bose function and I'; the contours in Fig. 36.
The evaluation of S; and S, may be simplified, since
II, [Eq. (J8a)] is explicitly of order 1/N: the O(1)
saddle-point value Eqg=¢s— T4 may be substituted in all
energy denominators. The only contribution to S arises
from the pole of the Bose function:
1 1 1

Siliw,)=———— = ; J14
! B —iX—TI,(0) iw, —eg 714

this accounts for the m =0 term omitted from S. When
T—0 and A, takes on its O(1) value E,, S, reduces to a
pole contribution from z =iA:

b(i))

Sliw,)=—Z(Ey)- - , (J15a)
iw, —iA—gp
with
A

I T=—=F====  Im:-w,
LT=—=—=F=2=—— Imz:=A\

F, < = > Im 2=0

P=L+G+Ty

FIG. 36." Contour of integration for performing the Bose fre-
quency sum in Eq. (J12). The cuts along Imz =A and Imz =0
coalesce for A imaginary (A =0).
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P A=

1 1
: — Sliw,) ,
n—&k (i, —ik—es)? "
J12)
[
oz |~
= [1— . J15b
Z(E,) [ 3E, ] ( )

For the case of interest (£, and A at their saddle-point
values), A=0 and the contours I'; and I';, coalesce. For
Ao=E,, Egs. (J14) and (J15) may be expanded in A as

1 1 1

B -—ii—HI(O) iy, — &g

= |ztEgLroun1 |—L (J16a)
i n—Ek
and
bin | T 1
~Z (BT = [ Z(Eo) o + 5 Z(Eo)

i

OAT) | ———

iw, —eg

(J16b)

When these contributions are combined, the singular
terms cancel, and the only term that remains in the zero-
temperature limit is
TZ(E))———. 17
u .

Thus, substituting in Eq. (J12), the contribution to
AFg,, from S; and S, is

1
~ |6l ?W ()

with

CIN _
r/ -

A

\'/

FIG. 37. Contour of integration for performing the Bose fre-
quency sum in Eq. (J21) in the limit T—0.
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W(T,)=—+(NV??Z(E,)

1 1 1 1
X = .
B > —T4)

fkn LOn—€; 10, —€p (iw,
(J18)

This term vanishes at zero temperature for a flat density
of states [the form assumed in the initial derivation
(Read, 1985)]; it is nonzero (but of order D!, with D a
typical band energy) in the more general case.

For A=E,, the contribution to AFg, from the last

- term in Eq. (J13) is

}glz(NV)lzlfsk) 1
N B&, iv,—er (iog—T4)P iv,—epr+Eo—2io, —ep+Eo)
(ex)[1—f (k")
_}|§0|2NV 2f 1 —f(ek)] 1“) 019
N Kk’ (Ek—TA) Ek——Ek"‘i‘Eo——zo (Ek‘*ek'+E0)

for T—0. [In the last step, contributions proportional to
f(T4) and f (&) have been dropped.]
The remaining contributions to AF,, in Eq. (J11) are

—TInB(R)+ T In(1—e %)
LG
+T 2 n I‘MJ. (120)
m=#0 ivm—lx

[Note that the O (1) saddle-point value for A should not
be used in evaluating these contributions, since they are
themselves O(1).] The first two terms vanish in the

f

may be performed exactly for T—0; for iA=0, it may
be rewritten as the contour integral

(l)(z +}\’0)

( )1 Z—}-Ao

EII +Iz . (J22)

1“2

The contour T is illustrated in Fig. 37; the contributions
I, and I, arise from the small circle of radius » and the
cut along the real axis. To mtegrate over the small circle,
note that

- imi 2z +40) 2Z " (o)
zero-temperature limit. The sum In |1— 20 o) | _ 0 10(). J23)
II Livy) z+4 Ao
T3 In —_— 21 .. ) ‘0 .
a0 ' —IA Parametrizing the circle as re'”, 0< 6 <27 gives
J
_ 1 e T rZ ~(Ag) .
Li=—o— [ Gre 46)Tl1+0 (1] |In | =5 | +i(6—m)+0(r)
rZ ~YAp)
7w |E R o (324)
| Ao
Since Ef)”(z +Ao) is real valued for 0 <z <&y —Aqg, the contribution from the branch cut is just
€ €,—A,
I,= frf O—‘Z—x—b(x)( —21i) + (exponentially small corrections) = — T In(1 —e —5%) rf 0—»Tln[i’r . (J25)
Setting T'—0 gives

This term also vanishes in the zero-temperature limit.

All the contributions to AF, at O (1/N) have now been found. An additional term of O(1/N) arises in general from
Fg.: [Eq. (J3)]. Setting iA= — A, and retaining terms to O (1/N) gives

—NT Trin(1—V?| & | 2G*G)= | & | =P () + + (NV i

= 60122800 — 1 | &0 *Z(EQIW(T,) .

[The O(1) value g, —
a flat density of states.

1501432

1 1 1
fhon 10On—Ex l0p—&p (iw, +)»0—€f)2

+0(1/N?)

@27

Ao=T 4 has been substituted in the second term.] The second term vanishes at zero temperature for

The complete form for Fg at zero temperature and to O (1/N) is, finally,
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Se ) 1—fge)] 1

Fur=Ao(1— | £0] D+ | €022 (ho)+ | £ |2

+ﬁ |80l ?[1— & |?Z~(EQIW(T,) .

NV?)
N 2

(ex—T4)P  ex—ep+Eo—2( (e —ep+Eo)

(J28)

As stated previously, the last two terms vanish identically for a flat density of states [the case treated by Read (1985)].
More generally, these terms account for static contributions to the Bose propagator. Similar terms arise in higher order
as well, if the static component is selected for special treatment.

A saddle-point approximation may now be introduced to calculate the ground-state energy; the terms proportional to
W disappear from final results. The saddle-point equation associated with | &, |2 takes the form

NV2? o Sled1—F(ee)] 1 _
Ao— S (0g) — 4 LW on—216|22-(E]=0.
i ° ° N kk' (Sk_TA )2 Ek_sk'+E0—2£)”(€k—Ek'+Eo) N 4 [ Igot 0 ]
329)

Writing

)»0=Eo+*11“,‘A7»o, |&0|*=Z(Ey)+O(1/N), (J30)
and expanding to O (1/N) gives

2)2 (ex N[ 1—f (&)

L parz 1By — WD Slel—f L ] 1(1) +Lwr,)=o0,

N N w (=T, ek —Ex+Eo—30 (ex —ex+Eo) N
ie.,
1 (NV?)? 1 1 1.,
—AAg=—"——"—Z(E,) (e )[1—f(gr) ——=Z(EQ)W(T,). (J31)
N Ao N 0 kzk’f e )[1—f (g ](Ek—TA)Z [er —eo+ Eo—3W(er —entE)] N ) a)

Substituting this result in Eq. (J28) for Fg and applying the saddle-point condition (J29) gives for the ground-state en-

ergy

F(T=0)=E,+ —;,—Ako—f—%; | & >W (T ) +0(1/N?)

(NV?2)?

1

=Ey+ Z(Ey) S flep)[1—f(g)]

This is precisely the result derived in Secs. II—-V. Note
the remarkable cancellation of terms proportional to W,
which have no analog in the other approaches. Similar
terms may be expected in higher orders of the expansion
as well. This is clear from Eq. (J27) which includes static
corrections proportional to | &y |2+ at O(1/N™).

Corrections to zero-temperature thermodynamic prop-
erties at O(1/N) may be derived from the free energy in
Eq. (J32) in the same way that O(1) properties were de-
rived in Sec. VI.C. The results found in previous sections
may be reproduced in this way.

In conclusion we emphasize that the approach dis-
cussed above, which singles out the static variables £, and
A for saddle-point approximation, is a reliable means to
generate a 1/N expansion within the Fermi-liquid regime
(T—0), but not at higher temperatures. At zero tem-
perature the occupancy constraint is effectively enforced
exactly, and the approach yields the same results found by
other techniques; in this case, minimizing Fr is
equivalent to locating the lowest singularity in the
empty-state (or Bose) propagator. At finite temperature,

Rev. Mod. Phys.. Vol. 59. No. 4. October 1987

k' (ex—T4) [ex —ex+Eo—Z(ex —ex+Ep)]

+0(1/N?).

(J32)

r

the occupancy constraint is not enforced, and the approxi-
mation deteriorates with increasing 7.
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