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An attempt is made to develop a description of the multielectron quantum state responsible for the integral
quantum Hall effect. One goal is to provide intuitive support for the very powerful and general argument
of Laughlin that the theoretical relationship is insensitive to complicating details in the interior of the sam-
ple. The model the author uses is somewhat more realistic than heretofore in that it is three dimensional,
does not ignore the atomic structure of the bulk matter, and does not use an effective-mass approximation.
In order to treat the problem quantum mechanically, the complete system, including circuitry external to
the system of interest, is replaced by a model closed system consisting of a finite number of electrons. In
this model, states with a finite Hall current and voltage are metastable against decay caused by interactions
outside the model, such as those with bulk matter excitations. Such states describe the true situation well
only in the conductivity plateaus; between plateaus, there would be current flow between the Hall voltage
probes corresponding to decaying states. Experimental constraints replace this transverse current by a volt-
age drop along the direction of current flow. The interactions between the electrons are expressed in terms
of a self-consistent potential which gives an independent-particle description as a starting point, and residu-
al interactions which are treated by perturbation theory. The self-consistent potential is found to be impor-
tant in understanding the properties of the quantum state of the system, such as the existence of the pla-
teaus in conductivity and how the electrons in the (effective) two-dimensional region come to equilibrium
with the different Fermi levels in the voltage probes. To all finite orders of perturbation theory, the residu-
al interactions are found not to alter the quantized Hall conductivity.
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better than 0.1 ppm, the quantum Hall effect becomes a
very powerful method of providing an accurate value of
the fine-structure constant a (= e?/#c ~1/137) (since the
speed of light is now an exactly defined quantity). A very
elegant and general physical argument for the validity of
the quantum Hall relationship has been given by Laughlin
(1981); it relies only upon some general assumptions about
the nature of the state of the system inside the sample.
Thus the quantum Hall effect becomes an important in-
gredient in tests of quantum electrodynamics. The
present status of such tests is reviewed briefly in Sec. VI.
More recently, plateaus that are fractional multiples of
the basic unit have been discovered (Tsui et al., 1982b)
and an explanation of them has been given (Laughlin,
1983).

The present paper is concerned only with the integral
quantum Hall effect, not with the explanation of the frac-
tional quantum Hall effect. We are interested particularly
in the role of the self-consistent potential, which changes
as external conditions change, and in the question of the
exactness of the quantum Hall relation. It is intended to
complement Laughlin’s powerful argument by extending
and generalizing earlier discussions about the properties
of the eigenfunctions of the electrons that participate in
the effect (Chalker, 1983; Trugman, 1983; Joynt and
Prange, 1984). While we do not claim to improve upon
the rigor of Laughlin’s argument, we believe it is useful to
explicate some. of the underlying issues. For example,
while Laughlin (1981) does not explicitly mention
electron-electron interactions, it should become clear that
his proof really does account for such complications, and
more. Also, it is hoped that a more thorough understand-
ing of the nature of the quantum state of the system may
make it possible to study some of its more detailed prop-
erties such as the current distribution in the sample and
the plateau width as a function of Hall current. It is even
conceivable that this could lead to an understanding of
small deviations from equilibrium which give rise to the
ordinary resistance of a sample.

The present author has considerable experience in pre-
cision calculations in quantum electrodynamics but is an
outsider to the field of condensed matter physics. He
started out with skepticism about whether the physics of
the quantum Hall effect were well enough understood
that the results should be put on the same footing as other
precision determinations of «, and the present work is an
outgrowth of that skepticism. It attempts to develop a
more complete microscopic picture of the quantum states
responsible for the quantum Hall effect, the hope being
that this will enable us to identify the physics that does
ultimately limit the precision of the determination of a.
It may also be regarded as an elaboration of the micro-
scopic properties which are sufficient for the Laughlin ar-
gument to be valid. For example, it is demonstrated to all
finite orders of perturbation theory that the electron-
electron interactions modify the current and the electro-
chemical potential difference in the same proportion, so
that the exactness of the relationship is not disturbed.
This is an important conclusion, since that perturbation
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theory is not characterized by a particularly small param-
eter. On the other hand, the use of perturbation theory
limits the discussion to the integral quantum Hall effect;
and it is of course possible that even in the integer case
there are nonperturbative complications. As a result of
this effort, the author has developed high respect for the
argument of Laughlin and a belief that the quantum Hall
effect may indeed provide a competitive value for the
fine-structure constant.

A. Semiclassical description

In Sec. IT we start with an intuitive discussion of the in-
tegral quantum Hall effect. This is based on an under-
standing of those properties of the quantum state which
can be inferred from simple semiclassical considerations.
While this method cannot justify the exactness of the rela-
tion, it does help us understand why it is insensitive to the
existence of impurities, geometrical effects, etc. It also
helps in understanding the mechanisms involved in pro-
ducing the large plateaus seen under certain conditions.
Here we describe the role of the self-consistent potential
in explaining such features of the quantum Hall effect.
The need to understand the self-consistent potential arises
because the external circuitry can act as an electron reser-
voir; and when the filling factor is changed, electrons will
tend to move in or out of the “two-dimensional”! region
to keep the available states filled up to the Fermi energy
of the higher potential probe [(—) terminal]. The usual
argument that a charge cannot build up in the layer be-
cause a strong electrostatic force develops to prevent it is
not true in this circumstance. When the situation is
analyzed self-consistently, a small charge imbalance can
actually occur. The redistribution of charges produces
changes of the electrostatic potential that are comparable
in size to the Hall voltage. The resulting potential distri-
bution in the sample should vary dramatically as a func-
tion of the filling factor. If the residual electron-electron
interactions did not produce the fractional quantum Hall
effect, the self-consistent potential could produce a pla-
teau by itself without other mechanisms. More realisti-
cally, the change in the self-consistent potential probably
enhances the conventional mechanism due to localized
states. It is likely that the self-consistent potential causes
a dramatic change in the current distribution across the
sample as the filling factor is varied across the plateau.

An approximate semiclassical treatment of the two-
dimensional wave functions is given in Appendix A.

'The quotation marks are used to indicate that the region car-
Tying the current is essentially two dimensional because the elec-
trons are typically in the lowest sub-band of excitations perpen-
dicular to the layer. However, in the full quantum-mechanical
treatment, the dynamics of the motion normal to the layer is not
neglected.
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B. Quantum-mechanical models

Having developed some intuitive understanding of the
microscopic physics of the phenomenon, we turn in Sec.
IIT to the development of an appropriate quantum-
mechanical model. Any discussion of the quantum Hall
effect must begin with an effective Hamiltonian which
contains more or less of the physics. At this point, we
discuss some of the problems and aims in formulating an
appropriate model for describing the quantum Hall effect.
We believe that it is desirable to incorporate as much of
the basic physics as is feasible into this effective Hamil-
tonian. We hope to avoid the introduction of various un-
necessary approximations which may make it impossible
to uncover the effects that give the true limitations of the
quantum Hall effect relationship. Some of the approxi-
mations that are customarily made cannot easily be used
as a starting point for a more complete treatment in
which corrections could (in principle) be systematically
worked out. The starting point of many discussions of
the quantum Hall effect is a simplified Hamiltonian in
which the dynamics of one dimension has been frozen out
so that the electrons move in a smoothed two-dimensional
potential in which the effects of individual atoms in the
device have disappeared. At the same time the mass of
the electron has been replaced by an effective mass.
While this can give a qualitatively correct picture of the
single-particle eigenfunctions, it is hard to see how it
could be made the basis for a rigorous discussion to the
required accuracy. Indeed, it is the nature of the general
discussions that they do not rely on such a description;
and, as will be seen, there is no difficulty in eliminating
these particular simplifications.

Even though the results are highly suggestive, the skep-
tical outsider finds the use of the effective-mass approxi-
mation to be a particularly dubious start to a high-
precision analysis. It is presumably arrived at by first
determining the energy of an electron as a function of
wave number and then constructing an effective Hamil-
tonian using the standard gauge-invariant substitution.
There are several obvious qualitative objections to this
procedure. First of all, the dynamics of an electron in the
presence of a strong magnetic field gives entirely different
eigenfunctions from those without a magnetic field, so the
extrapolation from one condition to the other may be
nontrivial. Second, the underlying bulk matter has imper-
fections of various kinds, so that the effective parameters
might be position dependent. Third, terms in the energy
that are not quadratic in the wave number could conceiv-
ably modify the quantum Hall effect relationship at an
observable level. Fourth, there seems to be no way to con-
firm that, at the level of precision to which we aspire, the
existence of individual atoms in the device does not modi-
fy the result. Finally, in principle the use of the gauge-
invariant substitution could omit some important physics
of the interaction of an electron with the bulk matter in
the presence of an external field. For example, a more
complete effective Hamiltonian might .contain terms that
are describable only in terms of field strengths. (In a
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somewhat analogous situation in quantum electro-
dynamics—the treatment of the electron propagator by
first calculating in free space and then using the gauge-
invariant substitution—one would lose some important
physical effects such as the Lamb shift and the
anomalous moment of the electron.) If physics were lost
at this stage, it is hard to see how it could be recovered
later by some correction procedure, since the formalism
no longer includes a complete description of the system.

It is our objective to treat the quantum mechanics of
the system as completely as seems feasible. At the present
time, we are primarily concerned with the problems asso-
ciated with condensed matter physics. Ultimately, one
should check that relativity and quantum electrodynamics
do not introduce significant corrections; but for the mo-
ment, these exotic effects seem less serious than the ones
at hand. (In fact, relativistic effects can be incorporated
into the discussion without serious change.) More to the
point, it does seem impractical and unnecessary to include
everything in the system we study. For example, the
physics of the external circuitry providing the current and
measuring the voltages seems irrelevant to an understand-
ing of the physics of the quantum Hall effect. More
problematic is the question of the quantum dynamics of
the bulk matter in which the electrons move.? Ideally, we
should not ignore those dynamics. We believe that in
principle it should be possible to carry through a more
complete analysis; one is described briefly in Sec. V. It is
probably desirable to do so in order to give an absolutely
convincing demonstration that, for example, the electron
charge appearing in the quantum Hall relationship is the
actual physical charge of the electron as measured in free
space, unmodified by dielectric effects. Here we take the
point of view that if our purpose is to, obtain a good
understanding of the properties of the state of the elec-
trons involved in the effect, it is not really necessary to
study the dynamics of the bulk matter in detail. Further-
more, Laughlin’s proof can be used to close the logical
gap to produce a rigorous result. Accordingly, it is as-
sumed that the main effects of the bulk matter are to pro-
vide an external potential in which the electrons move and
to modify the effective interactions between electrons.
The potentials are three dimensional, not two dimension-
al, and the external potential includes contributions from
the individual atoms in the device. In our model Hamil-
tonian, coupling between the electrons and bulk matter
excitations is ignored aside from effects which can be ab-
sorbed into the effective interactions between electrons.
However, this coupling is often invoked as a mechanism
that permits the system to relax to an equilibrium state.

2We use the term “bulk matter” for want of a better one to
describe everything except the electrons involved directly in the
process. This includes all nuclei and bound electrons in the
sample and voltage probes.
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C. Closed-system model

Although the actual experimental system is open, we
wish to deal only with the finite number of electrons that
are inside the sample at any one time. In place of the
external circuitry associated with the current flowing
through the sample, we take a sample of finite length and
introduce appropriate boundary conditions which permit
us to treat the current. The system is also open because
electrons are free to flow between the sample and the volt-
age probes. We assume that the electrons at the edges of
the sample actually penetrate into the probes and spend a
portion of their time there. We believe that the probes
play an important role as reservoirs of electrons, permit-
ting the number of electrons in the current-carrying por-
tion of the sample to change as conditions require. The
electrons in donor states can also be regarded as being in
reservoirs. In principle, all these electrons are included as
part of the physical system; but ones that are permanently
attached to the atoms are not.

In order to deal with the system quantum mechanical-
ly, we should fix the number of electrons (our assumed
Hamiltonian conserves that number). However, it is cer-
tainly true that as external conditions (a gate voltage, for
example) are modified, the actual number of electrons
participating in the process will change. Therefore we
imagine putting in the “right” number of electrons for
each situation and then holding that number fixed. Our
discussion seems to have no special sensitivity to the total
number of electrons actually participating. Once the
quantum states are well understood, it may be possible to
develop a more appropriate statistical treatment, which is
certainly essential if nonzero temperature effects are to be
treated properly.

We intend to treat the realistic situation of finite Hall
current and voltage (rather than the limit as these quanti-
ties go to zero). For the true open system, this situation is
maintained by the external constraints; but in terms of the
model closed system, it cannot correspond to the stable
ground state of the system because the energy could be
lowered by transporting an electron from the higher-
potential probe [(—) terminal] to the lower-potential
probe [( + ) terminal]. In the absence of residual interac-
tions between the electrons and interactions with the bulk
matter excitations, the model has energy eigenstates that
have finite current and voltage. When those interactions
are taken into account, the original eigenstates may turn
into decaying states. However, under plateau conditions,
the decay of these states to states of lower current in-
volves the rearrangement of a macroscopic number of
electrons and/or a tunneling through a large distance.
Thus it is plausible, and seems to be experimentally true,
that they must be states with a very large lifetime. We
refer to them as metastable states. If the picture to be
described is basically correct, it would be interesting to
find a way to estimate their lifetime, since it should be re-
lated to the longitudinal conductivity in the sample.
Since we consider only the situation with finite Hall
current, we have no obvious way of making contact with
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certain other approaches, for example, ones based on the
Kubo formula. For reviews of such approaches, see the
articles by Thouless (1986) for a discussion of topological
methods and Pruisken (1986) for field theoretical
methods.

The model is described in detail in Sec. III. The one-
particle Hamiltonian, including a self-consistent potential
contribution, is used to derive the quantum Hall relation-
ship from the resulting one-particle eigenfunctions.
Laughlin’s argument in the language of this model is also
presented there.

D. Electron-electron interactions

One of the important aspects of the problem is the role
of the interactions between the electrons. Apparently,
there is no exact theory of this interaction. It presumably
starts out as the basic Coulomb interaction which is
modified by dielectric effects and perhaps screening at
long distances. It may also include contributions or
modifications due to phonon interactions; however, resi-
dual dynamical effects due to phonons are not included in
our basic theory. Here we do not find it necessary to treat
the precise form of the electron-electron interaction. It
need not even be translationally invariant. We simply as-
sume that there is some effective interaction that is basi-
cally two body without any particular symmetry, but it
will be obvious that our arguments permit also the in-
clusion of effective many-body interactions which may be
present.

Our method is based on a self-consistent formalism in
which we try first to include the gross effects of the in-

" teraction in an effective single-particle Hamiltonian and

then to treat the residual effects by perturbation theory.
Fortunately, it is possible to do this in a sufficiently gen-
eral way that it is not necessary to do any real
calculations—provided that one accepts the general
behavior of the eigenfunctions which is expected on intui-
tive grounds. This procedure is based on the belief that
the quantum states involved in the integral quantum Hall
effect correspond to filling certain of the unperturbed
one-particle states in the “two-dimensional” region and
that such multiparticle states remain isolated in energy
from states that are easily reached by the perturbation.
With this approach, it turns out to be possible to relate
the Hall current to the differences of the energies to re-
move electrons at either side of the sample where they are
in equilibrium with the reservoirs. This difference of en-
ergy is given precisely by the electrochemical potential
across the sample. The first-order definition of the self-
consistent potential is given in Sec. IV, and the second-
order contributions to the current and electrochemical po-
tential are studied and shown not to disturb the quantum
Hall relation. This is also extended to a general class of
contributions. Appendix B contains a more complete dis-
cussion of perturbation theory, and it is shown that to all
finite orders the integral quantum Hall relation is not af-
fected. Our treatment gives no indication that the eigen-
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states are electrodynamically unstable, so we assume that
decay takes place only by interactions with bulk matter
excitations. :

E. Miscellaneous

Section V contains a discussion of some refinements of
the main treatment which seem helpful for a more de-
tailed understanding of the physics of quantum Hall de-
vices. The first of these has to do with a speculation on
how the equilibrium is established between the electrons
in the “two-dimensional” layer and the voltage probes
which are serving as electron reservoirs. The main point
is that, at the edge of the sample, the “two-dimensional”
layer has available states with energies both above and
below the Fermi level of the adjacent probe, so that the
layer fills precisely to that level. The second point dis-
cussed is how two or more levels inside the layer can
merge in energy to the Fermi level inside the probe. The
third point discusses some possible physics of the break-
down of metastability. The fourth critiques briefly the
arguments about an open versus closed system. The fifth
returns to Laughlin’s argument to show how it can ac-
count for some possible subtleties such as the screening of
the electron’s charge by the dielectric properties of the
medium and even energy stored in mechanical stresses in
the material. Finally, it is shown that nonminimal terms
in the effective Hamiltonian, such as that due to align-
ment of electron spin, do not affect the general con-
clusions.

Section VI contains a critique and general appraisal.
First, it gives some indication of how the ideas presented
in this paper may be elaborated. Next, it discusses some
of the physics that might possibly limit the accuracy of
the interpretation of the quantum Hall effect. Unfor-
tunately, I am at present unable to specify the theoretical
limits of this interpretation. Finally, it incorporates a
brief review of how the quantum Hall effect fits into the
precision analysis of quantum electrodynamics.

The present article makes no pretense of being a general
review. Rather, it attempts to present a coherent micro-
scopic description of the integer quantum Hall effect. In
arriving at this description, the author has drawn freely
on the published literature, but he has not attempted a
balanced presentation of all points of view. Some of the
material is new. For example, it is an easy extension of
some of the earlier work to free it from the restriction of
a literal two-dimensional description and the use of an ef-
fective mass. Undoubtedly these points are well under-
stood by the experts in the field, but to my knowledge
they have not been explicitly presented. The role of the
self-consistent potential is emphasized here. Another ex-
ample is the analysis of the equilibrium between the elec-
trons in the two-dimensional layer and those in the reser-
voir, including the merging of different levels at the reser-
vior. Generally, this topic seems to be ignored in the
literature and is perhaps not too well understood. A new
formal development is the perturbation-theory proof that
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the residual electron-electron interactions do not modify
the quantum Hall relation.

Finally, let me mention some general reviews of the
quantum Hall effect which the reader may find helpful.
Halperin (1986) has written a Scientific American article.
that should be a useful introduction to the subject. In
particular, it contains a description of the devices and a
nicely illustrated discussion of how the localized state
mechanism can account for the plateaus. A paper by von
Klitzing (1986), based on his lecture on the occasion of
the presentation of the 1985 Nobel Prize in Physics, in-
cludes an overview of the field. Some articles discuss
various aspects at a technical level (Cage and Girvin,
1983a, 1983b; Halperin, 1983). The most comprehensive
review presently available is a volume based on a seminar
series at the University of Maryland (Prange and Girvin,
1986). '

1. INTUITIVE DISCUSSION

The general experimental arrangement and nature of
the experimental results are illustrated in Fig. 1. The
electrons participating in the Hall effect are constrained
to move in a thin layer about 50—100 A thick which is
nearly planar, and a strong magnetic field of order 10 T is
applied perpendicular to the plane of the sample. The
Hall current of order 10 uA flows in and out of the layer
through the current source and current drain. The sample
has voltage probes which can measure the Hall voltage of
order 100 mV across the sample and the resistive voltage
drop along the sample. The system is constrained so that
there is no current flow across the sample between Hall
voltage probes. The physical dimensions of the Hall sam-
ple are in mm, with the length (distance along current)
normally several times the width. The energy to excite a
higher Landau level (which corresponds to a larger cyclo-
tron orbit) is typically of order 10 meV; the energy to ex-
cite a higher electron sub-band (excited electron state as-
sociated with motion parallel with the magnetic field) is
somewhat larger. Of course there are great variations in
these characteristics. For example, in some experiments
the Hall voltage is much smaller, so that the energy re-
quired to move an electron across the sample is much
smaller than the energies to excite higher levels.

A striking feature of the data is the occurrence of pla-
teaus in the Hall resistance at values of 4 /e? as a func-
tion of the filling factor, which is defined below. Here i
is an integer, but in the fractional quantum Hall effect it
is replaced by a fraction with odd denominator. These
plateaus occur at temperatures under about 4 K; accord-
ingly, a typical value of kT is of order 0.25 meV. Within
the plateaus, the longitudinal resistance drops to exceed-
ingly small values. The plateaus get broader and more
precisely flat as the temperature is reduced; at the same
time, the longitudinal resistance becomes even smaller. It
is a remarkable fact that these plateaus occur under such
widely differing experimental conditions. It is one of our
aims to develop an understanding of the underlying phys-
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ics that produces this behavior. Where relevant, other
features of the experimental phenomenology are described
below as we proceed.

The quasi-two-dimensional layer in which the Hall ef-
fect takes place is an inversion layer at a semiconductor
interface. There are two principal types of devices. One
is known as a silicon MOSFET (metal-oxide-
semiconductor field-effect transistor). In this device, the
inversion layer is produced by applying a gate voltage
(10—50 V) across a thin SiO, layer which is attached to a
Si substrate. The system acts somewhat like a capacitor

250 T T T

200 -

Vy (mV)
a
o
— T
T 4
=
‘__/x</

50 |-

a1 I L L
0 I 2 3 4 5 6

MAGNETIC FIELD (T)

_ o.0f® S S gk 1
€
e 5k :y
ol P
3 §
2} % T 0.02 ppm

-0.2f ‘} 1

5:7 5:8 5:9 6:0

MAGNETIC FIELD (T)

FIG. 1. Schematic of the physical arrangement and examples
of results of quantum Hall measurements. (a) Example from
Cage et al. (1985) showing results for a GaAs-AlGaAs hetero-
structure device cooled to 1.2 K. The inset shows the geometri-
cal arrangement of the sample in the plane of the layer. The
nominal number of electrons per cm? is 5.6 10'". A strong
magnetic field is applied perpendicular to the plane shown. The
source-drain current I of 25.5 pA flows longitudinally (vertical-
ly in the figure) through the sample, and the Hall voltage Vy is
measured across it. A voltage drop ¥V, along the direction of
current flow is also measured. The plots show Vy and V, vs B.
The Hall resistance Ry is given by Vy/I. This type of plot is
remarkable in that it extends from the classical Hall region,
where Ry is linear in B, into the quantum Hall region where
the plateaus are seen. The numbers on the plateaus correspond
to the filling factors at their centers. (b) Example from Cage
et al. (1985) showing the experimental precision presently at-
tainable; data is for the 6453.20 Q (i =4) plateau for the sample
under the same conditions as in (a). At the present time, experi-
mental determination of e2/h is limited by the problems of
comparing with a resistance standard rather than with the accu-
racy of measurement on the sample.
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with the inversion layer being one of the plates. The car-
rier density in the layer is varied by changing the gate
voltage. The other type is called a GaAs-Al,Ga;_,As
heterostructure device. This type has a ‘““fixed” carrier
density, so it is the magnetic field that is varied to observe
the quantum Hall effect. Actually, there are nearby
donors permitting the carrier density to vary somewhat,
so the carrier density is not absolutely fixed. We need not
say much more about the detailed nature of these devices
(if that were necessary, it would be hard to conceive how
they could achieve such accuracy) except to remark that
they need not be very pure. They can have impurities,
disorder, geometrical irregularities, spatially varying layer
thickness, etc., without disturbing the effect. In fact, it is
generally accepted that impurities which produce local-
ized states play an important role in making possible the
plateau that is observed. Later on, I shall argue that the
situation is actually a little more subtle in that there could
probably be a plateau without impurities were it not for
the fractional quantum Hall effect. The impurities prob-
ably inhibit that effect, making possible the observation of
the integral effect.

Actual samples have great variations.in composition
and geometry. One of the desirable properties of a sample
to be used for precision measurements is that it have a
small effective electron mass. This makes it possible to
achieve the condition for quantization with a smaller
magnet. Another is that it have a large zero-field mobili-
ty, for example 100000 cm?/Vsec. The mobility is a
measure of how easy it is for the electrons to move
through the sample without suffering collisions. To see
the fractional quantum Hall effect, still higher mobilities
are required. The best precision is produced when the
minimum value of the longitudinal resistance at the
center of a plateau is as small as possible.

A. Semiclassical discussion of the integral
quantum Hall effect

The present aim is to explore qualitatively some of the
microscopic features of the integral quantum Hall effect.
Therefore, for purposes of exposition, we start with a re-
view of the semiclassical treatment, which is more intui-

_ tive and more compact than the quantum-mechanical

treatment to be given later. A particularly nice discussion
of these ideas, which we generalize slightly, is given by
Trugman (1983). We assume that the temperature is low
enough so that thermal excitations can be ignored except
where explicitly mentioned. The discussion of this section
centers on the behavior of the single-particle energy eigen-
functions in the self-consistent potential and ignores the
effects of the residual interactions. As usual, we imagine
that the electron dynamics normal to the thin layer is
frozen into the lowest quantum state and we study the re-
sulting two-dimensional motion.

What must be accepted from quantum mechanics is
that the number of available states per unit area in the
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lowest Landau level is 1/271*=eB/h;3 in _typical situa-
tions, the order of magnitude of ! is 100 A. In the full
quantum-mechanical treatment, each individual eigen-
function spreads over a much larger area, but the eigen-
functions overlap sufficiently to produce this average den-
sity of states. Now we try to understand the qualitative
behavior of these one-particle states using semiclassical
ideas. At this point, the reader may wish to refer to Ap-
pendix A for a brief treatment of the eigenfunctions of
electrons in a two-dimensional potential; still more details
can be found in the papers by Trugman (1983) and by
Joynt and Prange (1984). However, these details are not
essential for the immediate discussion. ’

The electrons move in a combined magnetic and elec-
tric field. The magnetic field is perpendicular to the
plane of the electrons’ motion. Our discussion concen-
trates on the lowest Landau level, and we ignore the ex-
istence of spin and of valley degeneracy (valley degenera-
cy is a feature of the crystalline structure of the bulk
matter which produces a degeneracy of the lowest Landau
level). When there is a current flowing through the sam-
ple, the magnetic force acting on the electrons tends to
push them to one side until an electric field is created and
a steady state is established. Semiclassically, the com-
bined electric and magnetic fields then produce a cy-
cloidal motion of the electrons. At different times in the
cycle, the magnetic and electric forces do not precisely
cancel. However, provided dissipative effects may be ig-
nored, the electric field produced by this rearrangment
adjusts itself until the total Lorentz force acting on an
electron averages to zero.* That is,

E+(v)XB=0, 2.1

3This equality is strictly valid only for a uniform electric field. ,

Even though it is not exact in general, that has no effect on the
precision of the quantum Hall relation. Although this result
should be derived by a quantum-mechanical treatment, it can be
understood qualitatively with a simple uncertainty principle ar-
gument. A classical orbit of radius R corresponds to a particle
whose momentum is eBR, while quantum mechanically its
momentum must be of order #/R. Balancing these to give the
orbit of minimum radius/energy gives R?~%/eB, which corre-
sponds to the above area per state. It is interesting to note that
this area contains just one flux unit. (A flux unit is 4 /e; thus
the number of flux units within an area A is eBA /h.)

“Dissipative effects might be represented by a viscous drag
term proportional to (v) on the right side of the following
equation. In the absence of B, this would produce the usual
longitudinal resistivity. With B, there is a combination of Hall
and longitudinal resistivity. A significant longitudinal resis-
tance is observed between plateaus, but within the. plateaus, it
drops to an exceedingly small value [see Fig. 1(b)]. The general-
ly accepted explanation for this behavior is that within the pla-
teaus all available one-particle states are filled and there is no
possibility for electrons to scatter inelastically. There is further
discussion of this point at the end of this subsection and in foot-
note 8.
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where (v) is the drift velocity of an electron. Since {v)
is constrained not to have a component parallel to B, it is
uniquely determined to be

(=EXE. 2.2)
This is of course just the velocity of a Lorentz transfor-
mation which would reduce the electric field to zero at
one position. However, since in general the electric field
is not uniform, there does not exist any Lorentz transfor-
mation that can eliminate it everywhere.

Semiclassically, the electrons drift along the equipoten-
tial lines and have a cycloidal motion about them of ra-
dius /, also known as the magnetic length. Translated
into quantum-mechanical terms, this means that the ener-
gy eigenfunctions are extended along the equipotentials,
but have a distance across them of order /. We may
speak of the equipotentials as “guiding” the eigenfunc-
tions through the layer. In a region where the concept of
equipotentials is meaningful—recall that we are project-
ing out one dimension of the physics and there may be
complications from impurities, etc.—there are two types
of eigenfunctions: those whose guiding potential extends
from one end of the sample to the other in the direction
of current flow and those which are trapped on contours
that close upon themselves. The former are known as ex-
tended or current-carrying eigenfunctions and the latter as
localized eigenfunctions. The central guiding equipoten-
tials of localized eigenfunctions enclose (approximately)
an integer number of flux units.

We separate the complete two-dimensional region into
an extended-state region consisting of equipotentials that
extend from one end of the sample to the other and a col-

lection of localized-state regions consisting of equipoten-

tials that close upon themselves. Wave functions associat-
ed with one of these regions can of course extend spatially
into the other. In a specific model, Trugman (1983)
discusses the fraction of the area occupied by the extend-
ed eigenfunctions. This vanishes for zero Hall voltage
and increases with voltage; here we study only the situa-
tion with a finite Hall voltage and Hall current.

Next we wish to argue that there is considerable over-
lap of the extended eigenfunctions, which leads to the
conclusion that fluctuations due to the individual proper-
ties of these eigenfunctions should be unimportant. The
length of the guiding potential of an extended eigenfunc-
tion is at least L, the length of the sample in the direction
of the current, so that the area covering the eigenfunction
is of order /L. Since the area available to each one is
2712, the average transverse separation between them is of
order 27I%/L, which is clearly much smaller than the
transverse extent of the individual -eigenfunctions
(I/L =~1077). Accordingly, the reasons that we are able
to understand the quantum Hall effect using semiclassical
ideas are that a very large number of eigenfunctions con-
tribute to the current density at most points in the sample,
and that the properties of each eigenfunction can be un-
derstood with semiclassical ideas (most of the time they
are not in regions of such strong macroscopic electric
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fields that such approximations break down).

A portion of the sample showing some localized-state
regions and an extended state is illustrated in Fig. 2.
Writing the charge on the electron as — e, we see that the
Hall current is

I:—efn(x,y)(v)-(ﬁxds)
e ,
- fn(x,y)E'dS , (2.3)

where - n(x,y) is the density of carriers in the two-
dimensional layer; it is limited by

eB
=

The integral is carried out from one voltage probe to the
other. Two examples of integration paths are shown in
the figure. The potential energy of an electron along each
path is shown in Fig. 3. The X’s in Fig. 3(b) represent
the potential at the position of localized states which lie
on the path.

While any path is permissible, it is convenient to choose
a path that does not pass through any regions of localized
states or impurities where the semiclassical approximation
is inadequate. If there is a situation in which all the ex-
tended states are precisely filled along this path, then

(2.4)

il

n(x,y) <no

2
I:%AV (filled) , 2.5)

where AV is the electric potential across the sample. (In
the quantum-mechanical treatment to be given later, AV
becomes the electrochemical potential difference between
the two voltage probes, which is just the quantity mea-
sured by a voltmeter.) This is the quantum Hall relation.

&

o

FIG. 2. A section of the sample showing the voltage probes (+
and —), regions of localized states (shaded), and an example of
an extended eigenfunction following an equipotential. In this
example, the extended eigenfunction encounters some obstacles
such as an impurity (3D), and it splits at a saddle point in the
equipotential to pass around both sides of a localized region.
After encountering the obstacles, it returns to the same equipo-
tential. Two integration paths between the probes are shown.
Path (a) always lies in the extended-state region between obsta-
cles.
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FIG. 3. The potential along the two paths shown in Fig. 1. In
both cases, the solid lines lie in the extended-state region. For
path (b), the X’s represent a localized region where the states
are filled, and the dotted line represents a region of vacant local-
ized states.

No one would be convinced by this argument about the
exactness of this relation; such conviction requires the
powerful argument of Laughlin (1981), in which micro-
scopic details are shown to be irrelevant provided they
have certain general features. However, it does provide
intuitive understanding. Notice that no assumption has
been made about how the electric field varies across the
sample; for example, it need not be uniform. Thus the
question of whether the current is distributed over the
whole surface or along the edges depends on the self-
consistent potential which evolves in a given situation.
Clearly the localized eigenfunctions do not give any con-
tribution to the total current.’ The fact that the existence
of localized states does not disturb the quantum Hall rela-
tion was first pointed out by Prange (1981), using a
quantum-mechanical treatment. The present discussion
also indicates why geometrical effects, such as a hole
through the sample, do not alter the result.

These considerations are also helpful in understanding
why the longitudinal resistance becomes very small within
the quantum Hall plateaus (footnote 4). To have longitu-
dinal resistance, it is necessary that the conducting elec-

°As far as the discussion has gone, there is of course no diffi-
culty if the integration path does pass through a localized re-
gion, since the limiting potentials on the two sides of the region
are the same (Kazarinov and Luryi, 1982). However, we shall
argue in the following subsection that it is desirable to avoid
possible complications that may occur in these regions.
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trons lose energy by inelastic scattering. But since all the
one-particle states of lower energy are filled under those
conditions, it is impossible to have such inelastic scatter-
ing and the longitudinal resistance should vanish. How-
ever, Rendell and Girvin (1984) argue that there must be
places in the two-dimensional layer where the simple
description without dissipation must be invalid. These
occur near the current source and drain. Because the den-
sity of current-carrying electrons in these circuit elements
is much larger than in the layer, the Hall voltage across
them is much smaller. As far as the layer is concerned,
they effectively short out the Hall voltage. Figure 4, tak-
en from their paper, shows an example of equipotential
lines calculated under the simplifying assumption that the
longitudinal and transverse resistivities are independent of
position. Note the resulting crowding of the equipotential
lines in diagonally opposite corners of the sample. If the
current were to follow the equipotentials strictly, the
crowding of the current in the corners would probably
lead to a condition that would violate the semiclassical as-
sumptions we have been using so far (for example, in a
high electric field the drift velocity might become com-
parable to the velocity of the cyclotron motion). One
might expect that in the regions near the source and drain
there would be more dissipation than in other regions and
the current would cross equipotential lines.

The present author suggests a possible refinement of
the discussion of Rendell and Girvin (1984), based partly
on the following material in this section. In the vicinity
of the Hall probes, the extended states may be completely
filled, giving the ideal quantum Hall relation (2.5). But
near the source and drain, where electrons are being re-
moved and injected, there may exist vacancies and/or ex-
citation to higher levels which give a much more compli-
cated situation, causing the resistivity tensor to vary with
position within the sample. How to go about analyzing
this situation is not presently obvious to the author. It is
probably important to do so because it may tell us some-
thing about the practical limitations of the accuracy of

[ ® ®
: y i
rz
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® 8, ® ®

FIG. 4. Qualitative picture of the equipotential lines in the
two-dimensional layer for a uniform sample in which o,, and
Oy are constant. The current source and drain effectively short
out the Hall voltage at the ends of the sample, causing a concen-
tration of current in the corners. The numbers on the sides indi-
cate the approximate potentials (in mV) when the source-drain
current is 5 uA and the filling factor is 4 (from Rendell and
Girvin, 1984).
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the quantum Hall device as a method of determining the
fine-structure constant.

B. Some properties of the eigenfunctions

The quantum-mechanical treatment is elaborated in
more detail in subsequent sections. While there is no ob-
vious direct connection between it and the formulation of
Eq. (2.3), there are some general correspondences that are
described here briefly. It turns out that the current car-
ried by a one-particle state is, in a loose sense, given by
the derivative of its energy with respect to an appropriate-
ly defined transverse coordinate. On the other hand, the
discussion of the two-dimensional eigenfunction given in
Appendix A shows that this energy is approximately
5#m, —eV (x,y), where w, is the cyclotron frequency and
V(x,y) is the value of the guiding electrostatic equipoten-
tial. Thus for a given eigenfunction, the current carried
by an electron is proportional to a weighted average of the
transverse electric field that the electron sees along its
path. Notice that even though the electric field is not
constant along the path, the normalization of the eigen-
function changes in an appropriate way to ensure that the
current does not vary along the path. Provided all these
one-particle states are occupied, the total current then
turns out to be given in terms of the difference in the en-
ergies of electrons at. opposite sides of the sample, giving
back the result (2.5) with the interpretation of AV as the
electrochemical potential difference.

One may now visualize situations in which the behavior
of the eigenfunctions seems too complicated to support
the previous conclusions. I want to argue that such ap-
parent difficulties need not alter the results. For example,
impurities seem to be outside the realm of a two-
dimensional description. If we assume that the concept of
a guiding potential is meaningful for some spatial regions,
what happens when the actual eigenfunction gets into the
region of a complicated three-dimensional impurity?
Such a situation is illustrated in Fig. 2. There our semi-
classical considerations, as well as the discussion of Ap-
pendix A, break down. One should in principle calculate
the actual three-dimensional eigenfunction in such a re-
gion and match it somehow to the appropriate eigenfunc-
tions in the two-dimensional formalism. However, the
connection between the more correct three-dimensional
formalism and its two-dimensional model appears to be
quite obscure, to say the least. This particular situation
presents no special difficulty in the three-dimensional
quantum-mechanical discussion to be given later, and I
mention it here partly to show the inadequacies of a two-
dimensional treatment and partly to argue why it does not
matter. If we accept that between impurities the eigen-
functions are primarily two dimensional in character (the
dynamics perpendicular to the layer is frozen in its lowest
quantum level), then the impurities become “black boxes”
which somehow connect pieces of the two-dimensional
eigenfunctions. Were it not for the magnetic field, we
would expect an impurity to produce scattering, leading
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to undirected outgoing waves. However, because of the
energy constraint, the eigenfunction actually continues
along the same guiding potential after it leaves the region
of the impurity (Prange, 1986). Furthermore, current
conservation must be valid through an impurity. It is
also clear that a huge number of extended eigenfunctions
(of order 10°, perhaps) are affected in a very similar way
by any given impurity. Since we examine the current in
the region between impurities, we expect that quantum
fluctuations tend to average out and that therefore the
semiclassical description remains valid there under these
conditions. Of course, if the impurities become so dense
that it is not possible to find an integration path which is
never too close to an impurity (say within a magnetic
-length), then one might expect the description to become
questionable. There ought to be some similar criterion in
the quantum-mechanical treatment. Perhaps the condi-
tion for insignificance of the quantum fluctuations here is
analogous to the validity criteria for the approximation of
replacing a sum by an integral in the quantum-
mechanical treatment.

Another possible situation that can occur without a
breakdown of the two-dimensional description is one in
which an extended equipotential crosses itself to produce
a localized-state region, as illustrated in Fig. 2. The place
where the equipotential crosses itself is a saddle point of
the potential, and our semiclassical discussion must clear-
ly break down there. Any éigenfunction spanning this
particular equipotential obviously divides at the saddle
point and part of the current goes on each side of the lo-
calized region. The important thing to observe is that, be-
cause of energy conservation, the current must continue
along the same equipotential after the saddle point, and
the discussion is very similar to that for an impurity. It
would require a full quantum-mechanical treatment to
study the eigenfunction within such complicated regions,
but it is unnecessary to do so because the current carried
by the eigenfunction is conserved and we can get the re-
quired information about the total current by considering
only regions between impurities and saddle points. A
similar discussion could be given for a hole through the
sample (Tsui and Allen, 1981). In that case, a large num-
ber of eigenfunctions have the property of splitting and
passing partially on each side of the hole. Plateaus have
been produced in a geometry in which the current flows
around both sides of a hole (Woltjer et al., 1986). The
purpose of that experiment was to examine certain quali-
tative aspects of the quantum Hall effect rather than to
test the precision of Eq. (2.5) to great accuracy. In gen-
eral, as long as we can analyze the current in a region not
too close to the various types of obstacles, our semiclassi-
cal approximations can remain reasonable.

As just described, each of the eigenfunctions passing
through the sample may actually be quite complicated be-
cause of various imperfections it encounters. As em-
phasized above, it seems important that it is possible to
arrange the path of integration in Eq. (2.3) so as to avoid
localized regions and impurities and pass entirely within
regions of extended eigenfunctions, as illustrated by path
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(a) in Fig. 2. Trugman (1986) has considered various
model potentials with a potential difference across the
sample and found that such a path exists for them. If
this were not possible, it would mean that there was a bar-
rier between the two electrodes consisting of a region oc-
cupied only by localized states. In general, there is no
reason to expect a quantized Hall relation in such a situa-
tion (unless there is a reason that the potential jump
across such a region should vanish). So long as the
extended-state region along which we choose the path of
integration has all states filled, Eq. (2.5) results. Since
they carry no current. it is immaterial for the present pur-
pose whether the localized states are filled or not.

C. Role of the self-consistent potential

The filling factor v is defined as the average carrier
density divided by ng: '
(n)

v= . (2.6)
no

For simplicity, we wish to deal only with one filled level.
In particular, we ignore the complications of electron
spin, which doubles the number of states available to the
electrons,® or of possible valley degeneracy, which can
double it again. Our following discussion therefore refers
to the situation near v=1, but it can obviously be extend-
ed to other plateaus. It is given in terms of the GaAs het-
erostructure devices (which typically do not have valley
degeneracy), but similar features are valid for the
MOSFET.

From Egq. (2.3), we note that there is a way in which the
extended states need not be completely filled, yet the quan-
tum Hall relation may remain valid. If there is a region
where the electric field is zero, it is not necessary for the
states in that region to be filled. That is, if n(x,y)=n,
wherever E=£0, the integral is unaffected.

The remark of the preceding paragraph provides a clue
as to the remarkable stability of the quantum Hall rela-
tion, even when conditions are changed that vary the
number of electrons in the layer away from perfect filling
of all the states. Starting with the situation for v=1, in
which the layer is electrically neutral, the potential may
have a fairly uniform rise from one probe to the other.
Now suppose we increase the magnetic field so that the
number of available states increases and v decreases from
one. If the spatial distribution of electrons could not
change, the current given by Eq. (2.3) would decrease and
Eq. (2.5) would turn into an inequality. To maintain the
quantum Hall relation, it is necessary that electrons move

Typically, the energy associated with electron spin is much
smaller than that due to the cyclotron motion because of the
suppression of the g, factor in the solid together with the
enhancement of the cyclotron frequency because of the small ef-
fective mass inside the solid.
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around so as to keep the extended states filled in the re-
gions where Es£0. The aim of the following discussion is
to persuade the reader that the most stable state of the
system actually has this property. The argument may ap-
pear to be somewhat involved, but its essence is actually
quite simple: There cannot be an empty extended one-
particle state where Es£0 because if there were it would
be possible for an electron from a state of slightly higher
energy to decay quickly into it by exciting the bulk
matter.” The complication arises because when the occu-
pation of the electron states is changed, the self-consistent
potential also changes. In discussing the following ideas,
the author has found that there exists a natural prejudice
that the number of electrons in the layer cannot change
from that giving a neutral charge distribution because of
the strong effects of the Coulomb interaction.® It is ar-
gued below that this expectation is not correct under
steady-state conditions when there is a potential across
the sample.

A few possible mechanisms will be described. In all
likelihood, they have a complicated interrelation; but they
will at first be described as though each one acted individ-
ually. In the first, which is possible only for heterostruc-
ture devices, the needed electrons come from nearby
donors outside the two-dimensional layer. An estimate of

this effect has been made by Baraff and Tsui (1981), who

studied the problem self-consistently in the z direction.
This mechanism presumably has very little x,y depen-
dence, but it establishes a new equilibrium between the
donor states and the conducting electrons. It seems to be
able to account for a few-percent change in B from the
central value of the plateau; in any case, it does not apply
to MOSFET’s.

The generally accepted mechanism is that the plateaus
are due to the localized states produced by impurities
(Laughlin, 1981; Halperin, 1982). Rather than describe it

A more precise statement is that the one-particle states in a
region where Es£0 cannot be partially filled; they must be either
empty or completely filled. However, the electric field need not
vanish at the boundary between a region where the states are
empty and a region where they are filled, for example, on a hill
of the potential.

%0ne way of presenting this argument is to recall the
phenomenological equation connecting the current density and
electric field in two dimensions: j=0,E—o0EX B. In the
steady state, the divergence of this must be zero. If the coeffi-
cients o were independent of position, this would lead to
V-E=0, which corresponds to zero net charge distribution in-
side the layer. However, in the ideal quantum Hall limit, the
longitudinal conductivity o, vanishes, and the argument:fails.
To understand the physics of o, when the state deviates slight-
ly from the ideal quantum Hall limit, we note that it arises from
the viscous drag term mentioned in footnote 4. Therefore it
seems likely that this term is proportional to the number of lo-
cal vacancies of the level, and it will remain small and position
dependent so that V-j=0 does not imply V-E=0.
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here in the usual language, which seems to ignore the spa-
tial distribution of the states and may not even apply to
the situation with a finite Hall voltage, it is presented in a
way that makes better contact with our present point of
view. Such a description is also given by Halperin (1986)
in a Scientific American article, where it is nicely illustrat-
ed. In terms of the two-dimensional description, the lo-
calized states are associated with hills and valleys of the
potential. These states can serve as reservoirs for the elec-
trons that participate in the Hall current. Presumably,
the heights and depths of these regions can be very large
on the scale of the smoothly varying potential associated
with the Hall current. As illustrated in Fig. 3, all the val-
ley and extended states are filled, and the hill states are
filled up to some level (just what determines that level is
not obvious, since there may not be a definite Fermi level
throughout the layer).

Now if the magnetic field is increased, the number of
states per unit area increases in all these regions. If no
electrons are permitted to move into the layer from other
sources, this situation is unstable, and electrons can decay
from higher-lying states into the newly created lower
ones. It is possible that this may produce a new stable
state in which the number of electrons trapped on hills is
reduced and the extended states are kept filled. This may
permit the quantum Hall effect to be maintained for a
significant change in B. In this process, it is also possible
that electrons can be supplied from potential valleys
which were originally filled by electrons in higher Landau
levels. (Recall that increasing B raises these energies rela-
tive to those of extended states carrying the Hall current
because the excitation energy of a Landau level is propor-
tional to B.) Decreasing B leads to changes in the oppo-
site direction; electrons are forced to move further up on
the hills and also into higher Landau states in the valleys.
In any case, the result (2.5) is unchanged if all the extend-
ed states can be kept filled. Without more specific infor-
mation about the nature of the localized states, it is not
clear how much of the plateau can be attributed to this
mechanism. Presumably, it becomes less important as the
Hall voltage increases, since the fraction of the area con-
taining localized states decreases (Trugman, 1983).

Continuing to study the situation that might evolve as
the magnetic field is increased, we next consider the role
of additional electrons which can enter the two-
dimensional layer from the external circuitry. The effect
of these additional electrons on the self-consistent poten-
tial should be determined by a quantum-mechanical
analysis. However, we can get a rough idea of the size of
the effects by considering the change of the electrostatic
energy produced by moving the electrons into the sample
to produce a small excess negative charge. Recall that if
a charge distribution is changed from an original configu-
ration given by po(x), which produces the electrostatic po-
tential ¥V, the change of electrostatic energy is given by

f IMLd3xd3y+ f8p(x)V0(x)d3x .

AU, =
o 2me | x—y |

If this is applied to the situation where SN electrons are
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moved from the high-potential reservoir into the two-
dimensional layer, the change of electrostatic energy is es-
timated to be

2 .
AU~ l<i—><aN)2—xeA VeN 2.7)
2 \ kgpr

where « is the dielectric constant and r is the separation
between two of the additional electrons. The last term
arises from the rearrangement of the electrons in the orig-
inal electrostatic potential; A is some number less than 1.
The average (1/r) is 2G /L, where G is a geometric fac-
tor of order 1, which depends on how the electrons are
distributed in the layer. Minimizing this expression with
respect to 8N, one finds with reasonable parameters that
of order 10°—10° electrons can move into the layer if
enough states are available below the Fermi energy of the
high-potential probe [(—) terminal].’ Since the total
number of electrons in the layer is of order 10'°, the rela-
tive change in number is minute. Clearly, however, the
change of electrostatic potential produced under these
conditions is of order AV. If fewer states are available,
the minimum is not reached, and the change in electro-
static potential is smaller.!°

The purpose of the preceding paragraph was to con-
vince the reader that when one-particle states are avail-
able, electrons flow into the two-dimensional layer and
the additional charge will cause a change of electrostatic
potential which is appreciable on the scale of other impor-
tant potentials. These changes should be quite dramatic
experimentally under appropriate conditions. It might be
thought that in the absence of the previous two mecha-
nisms the plateau length would correspond to a change of
B of order one part in 10* or 10°, since the additional
electrons would fill all the available eigenfunctions and
change the electrostatic potential enough to prevent more
electrons from entering the layer. We now argue that the
situation is more subtle in that the eigenfunctions are
filled in such a manner that the self-consistent potential
that evolves is able to maintain a plateau for an observ-
able change of B, even in the absence of localized states.
It turns out that the self-consistent potential is so ar-

The present discussion is for intuitive purposes only. In a
more correct analysis, one should take into account that G and
A depend weakly on 8N as well. G is of the order of In(L /W’),
where W' is the width into which the extra electrons are
squeezed, and A depends on the region into which they are
placed. Nevertheless, the order-of-magnitude estimate should
be reasonable.

1%Tn the case of a MOSFET, the argument may require techni-
cal modification, since there it is a gate voltage that reduces the
number of electrons relative to the number of states. Moreover,
this is a situation in which the total number of active electrons
changes. However, I claim that the practical result is the same.
Once the gross equilibrium has been established by the gate
voltage, the internal distribution of electrons will fine-tune in a
manner similar to that described in the following paragraphs.
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ranged that the current is crowded near one edge of the
sample where all the eigenfunctions are filled and that the
rest of the sample is in equilibrium with the higher-
potential terminal. Only the current-carrying states need
be filled. When localized eigenfunctions are taken into
account, the self-consistent potential experiences a smaller
change as a function of B, but it acts to enhance the role
of those eigenfunctions. The possible behavior of the po-
tential as a function of v is illustrated in Fig. 5(a).

We shall now switch from the semiclassical language
and continue the discussion in terms of the energies of the
one-particle states. It is clear that the energies of all
states are pushed up by the change of potential. It might
seem that this would give a much larger energy change
than Eq. (2.7), but one should remember that the addi-
tional potential also acts on the positively charged lattice,
giving a negative contribution to the energy.
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FIG. 5. Electrostatic potential for different values of B.
Curves labeled v=1 refer to B in the center of the plateau, and
those labeled v<1 (v>1) refer to a B that is larger (smaller)
than the central value. (a) The situation when there are no lo-
calized states available to act as reservoirs. The dashed line
occurring for v < 1 represents a region where the states are par-
tially filled in just such a way that the potential there is in-
dependent of position. Without localized reservoirs, the v> 1
curve drops to very negative values. Even a change as small as
1% might produce variations as significant as those indicated
here. If a higher level can absorb electrons (not shown), the
curve v' > 1 may replace the v> 1 curve. This curve could also
describe the potential along path (a) of Fig. 2 when localized
states are available. (b) The situation when there are localized
states available to act as reservoirs, as illustrated by the poten-
tial along path (b) of Fig. 2. Now fewer electrons are required
to move in or out from the external circuitry. At the same time,
the change in effective potential enhances the ability of the lo-
calized states to serve as reservoirs. The potential along path
(a) would be similar to (a) except that the changes would be
more gradual as a function of B.
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Again starting with v=1, we suppose that all the ex-
tended one-particle states are filled and that their energies
rise more or less uniformly from one probe to the other as
a function of distance across the sample. Now we try to
visualize the situation that evolves as B is gradually in-
creased, creating additional states uniformly across the
sample. When energetically possible, electrons will flow
into the layer from the higher-potential probe to fill these
states. As they do so, the repulsive electrostatic potential
will build up until a steady state is established. How the
states fill is given by obvious physical considerations. In
a region where the single-particle energies are varying
with position, there can be no partially occupied states be-
cause the system can relax to lower the energy, possibly
by emitting a phonon. This relaxation time should be
very rapid because of the large overlap of two neighboring
eigenfunctions. Thus any holes corresponding to.states
below the Fermi energy of the higher-potential probe will
move across the sample until they are filled by an electron
from that probe. As the electrostatic potential changes,
states near the higher-potential probe will reach the Fermi
energy of that probe and finally not accept additional
electrons (if they did, their energy would be pushed higher
than that of the probe’s Fermi energy, which is not per-
mitted).

Thus, as B increases, there develops a region in contact
with the lower-potential probe in which all states are
filled up to the energy of the higher-potential probe and a
region of partially filled states that is in equilibrium with
the higher-potential probe. The first region will shrink in
size as B increases, and the latter will expand. Most of
the excess electrons go into the first region, which carries
all the Hall current. Since we expect the electrostatic po-
tential estimate to give a reasonable guide to the order of
magnitude of the number of additional electrons that can
be accepted in the layer, we see that the filled-state region
must shrink rather quickly as B increases. In our exam-
ple, a 1% increase of B might require the current-
carrying region to shrink to 10~ of the original width.
Presumably, so long as the current-carrying width
remains large compared to a magnetic radius, our general
picture remains valid and the quantization condition (2.5)
is correct. The situation is expected to be as in Fig. 5(a)
(v< 1 curve). In effect, the experimental Av is permitted
to be large because the current-carrying region can shrink
to a small width where all the states are filled. The con-
clusion is that Eq. (2.3) continues to produce the quantum
Hall relation.

In the more realistic situation with localized states, one
would expect the two mechanisms to work together.
Since the additional electrostatic potential raises the ener-
gies of all the states, it makes it easier for electrons in lo-
calized states on a hill to drop down to fill unoccupied ex-
tended or valley states. The existence of this mechanism
reduces the number of electrons that must enter the layer
from the probes, which in turn reduces the crowding of
the current suggested in the preceding paragraph. The
role of the localized states is suggested by the behavior of
the potential along path (b) of Fig. 2, as illustrated in Fig.
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5(b). A larger change of B is necessary to reach the point
where partially filled states are in equilibrium with the
higher-potential reservoir. Detailed model calculations
should be done to study these mechanisms in more detail.
The localized states may also play an important role in

~suppressing the fractional quantum Hall effect. It is an

experimental fact that as the “two-dimensional” layer is
made very pure, the integer plateaus shrink in width and
the fractional ones occur between them (Stérmer, Tsui,
and Gossard, 1982). Clearly, the fractional quantum Hall
effect is associated with the residual electron-electron in-
teractions that produce quasiparticles having lower energy
than the independent-particle system (Laughlin, 1983).
This leads to new plateaus and thus reduces the length of
the integer plateaus. We would expect a new plateau to
start whenever the partially filled extended states reach
the correct filling to lower the energy. Since in fact there
are a large number of such fractional-filling plateaus, it is
possible that the integer plateaus would become insignifi-
cant if there were not some mechanism to inhibit the frac-
tional ones. This mechanism may be that the impurities
somehow dynamically prevent the residual interactions
from forming the quasiparticle states.

In addition to the possibility of impurities’ dynamically
suppressing the interactions that produce the fractional
plateaus, there is the likelihood that the role of localized
states as reservoirs of electrons is important. They pro-
vide electrons that permit the extended states to remain
filled for a larger change in B than would otherwise be
possible. Thus, as B increases, the crowding of the
current takes place more slowly than in the case without
impurities, and the partially filled region in equilibrium
with the higher-potential reservoir requires a larger
change in B before its fractional filling reaches the condi-
tion for a prominent fractional plateau. We expect a spe-
cial stability for filled states because of the relatively large
gap.(compared to kT) necessary to involve higher Landau
levels or higher sub-band states. The situation with local-
ized states may then be somewhat as illustrated in Fig.
5(b). Here it is assumed that there are enough electrons
available on hill states so that the extended states may be
kept filled. However, the current is still concentrated
largely on the low-potential side of the sample [( + ) ter-
minal]. Perhaps the important lesson here is the way in
which the total quantum state in the layer is able to adapt
to various changes so as to maintain the plateau.

Without localized states, the situation in which v is in-
creased seems very different. In this case, there are not
enough states available to hold all the original electrons.
Some electrons may be returned to their donors and oth-
ers may move into the potential probes. Referring to Eq.
(2.7) with 8N negative now (possibly reversing the sign of
the second term since the electrons are pushed into the
low-potential reservoir), we see that a very large energy is
required to force a substantial fraction of the electrons
out of the layer—perhaps hundreds of electron volts per
electron. The situation might be as suggested by the
curve labeled v> 1 in Fig. 5(a). Since this is totally out of
scale with other potentials in the problem, something else
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must happen. The resulting self-consistent potential in
the layer will be lower than the original one. To prevent
the large distortion in the potential, it is necessary that
new states be available for some of the electrons. One ob-
vious way this can happen is that localized states which
previously had too high an energy to be occupied now be-
come available, somewhat along the same lines as
described earlier, but now enhanced by the overall nega-
tive change in potential. This is suggested by the v> 1
curve of Fig. 5(b).

It also seems conceivable that extended states from the
next-higher Landau level could absorb some of the elec-
trons without disturbing the quantum Hall relationship.
In some cases several higher levels lie in the energy range
between the Fermi energies of the two probes. Usually
they remain unoccupied because of the exceedingly small
spatial overlap between the occupied states and states of
higher levels of nearly the same energy (energy separation
<kT); in the central region of the plateau, the leakage
rate to states of a higher level is then so small that they
remain negligibly occupied. If the potential acting on the
electrons goes low enough, a higher level may accept elec-
trons that can be in equilibrium with the lower-potential
probe without filling sufficiently to attain equilibrium
with the higher-potential probe. In the energetically most
favorable situation, the occupied states will have zero
voltage across them and will not yield a net contribution
to the Hall current. The possible result is indicated in
Fig. 5(a) (v'> 1 curve), where it is assumed that the totali-
ty of these mechanisms leads to a modest net decrease of
the potential. With further decrease of the magnetic field,
the higher Landau level may go down in energy suffi-
ciently that it can be in equilibrium (locally) with both
voltage probes. In that case, a higher conductivity pla-
teau is produced.

D. Some possible experimental consequences
of the effective potential

Now we may discuss possible experimental conse-
quences of this picture. Conceivably, a very wide plateau
might not be accounted for by the donor and localized-
state mechanisms alone, so that a more dramatic redistri-
bution of the potential distribution may be required, as in-
dicated by the v£1 curves in Fig. 5. It should be possible
to observe the effects suggested here by experimentally
studying the potential or current distribution across the
sample. Actually such experiments have already been
carried out at 4.2 K by Ebert et al. (1985), Sichel et al.
(1985), and Zheng et al. (1985). These experiments see a
dramatic shift of the potential distribution as the magnet-
ic field is varied through the region of filling factor 2.
An example of this variation is shown in Fig. 6. For a
magnetic field of 7.8 T, the current is somewhat concen-
trated near the (—) terminal, while for 8.2 T, most of the
current flows near the (+ ) terminal. This is just the
behavior anticipated in Fig. 5. However, the present ex-
planation is not the correct one since, when the current is
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FIG. 6. Potential distribution across the sample as a function
of B (from Zheng et al., 1985). The sketch of the sample indi-
cates several small voltage probes placed between the outer ones.
The potential difference between each of the probes and probe 1
is plotted vs B. Between plateaus (e.g., B =6 T), the voltage
drop across the sample is rather uniformly distributed, but in-
side the plateaus the distribution changes quite rapidly as a
function of B.

reversed, the largest voltage drop remains on the same
physical side of the sample. Apparently, the correct ex-
planation is that the shift is due to a small (of order a few
percent) variation of the carrier density across the sample.
This variation results from the manner in which the sam-
ple is prepared using molecular-beam epitaxy. In effect,
the complete sample consists of several quantum Hall de-
vices in parallel, and the current chooses to flow in the
one where the carrier density most nearly matches the
number of available states.

Under the conditions of these experiments, the plateau
is rather narrow and the new mechanism proposed here
may not be required. It would be interesting to carry out
a similar experiment at lower temperature such that a
wider conductivity plateau would be produced. If the
ideas presented here are correct, the system should be-
come very unstable against having the current on the
wrong side of the sample when the magnetic field is far
from the center of the plateau. Of course, the observation
of the expected effect might be difficult, since the relaxa-
tion time becomes very long when the source impedance
of the interior contacts becomes very large (Chang, 1985).
The necessary dynamical analysis of how several parallel
devices establish a steady state has not yet been carried
out.

The behavior of the ordinary resistance and its linear
relationship to the deviation of the quantum Hall resis-
tance from its ideal value may be regarded as possible in-
direct evidence for the change of the potential distribution
as a function of B. The main point is that at the center of
the plateau the measured longitudinal resistance R, has a
very strong minimum as a function of B (Cage et al.,
1984), with a value that depends strongly on the tempera-
ture. One possible explanation of R, is known as
variable-range hopping between localized levels, but it
does not lead to a linear relationship (Wysokinski and
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Brenig, 1983). Instead, I hypothesize that this resistance
comes about because the occupied Landau levels have a
small leakage to higher levels wherever the higher eigen-
functions are sufficiently close spatially to a lower-level
one whose energy is within k7. The small occupancy of
the higher levels leads to a small modification of the
quantum Hall resistance and introduces a small longitudi-
nal resistance. A steady state is maintained because of the
constraint that there be no net flow of current across the
sample. The deviation of the quantum Hall resistance
from its ideal value is found to be linear in R, (as predict-
ed by such a model). The present point is that as the B
field is varied, the E field rapidly becomes large in certain
regions, as we have seen. Thus the leakage to higher lev-
els increases very rapidly as B is varied away from the
minimum. Therefore it is expected that R, will increase
strongly with that variation in B. The weakness of this
argument is that it is not possible to distinguish experi-
mentally on which side the E field is large.

E. Overview of the quantum-mechanical
discussion

In the following sections most of our attention will be
spent in trying to understand the nature of the multi-
electron eigenfunction in the “two-dimensional” region.
We conclude this section by summarizing the picture that
has been developed so far. The most important thing is
that we are dealing with an open system to which quan-
tum mechdnics is not readily applied. However, the
behavior of the system in the region where the Hall volt-
age is measured is most simply understandable in terms of
a multielectron state dominated by single-particle
behavior. Therefore we make the assumption that we
may isolate a finite piece of the sample and replace it by a
closed system with a finite number of electrons. The volt-
age probes as reservoirs also appear to be an essential part
of the system, but we disconnect them from the voltmeter
in order to have a closed system. When conditions (such
as current, magnetic field, or gate voltage) are changed,
the number of electrons in the systém actually changes.
Here we imagine inserting the correct number of elec-
trons, which are then held fixed, to discuss the eigenfunc-
tions. In a state of finite Hall current, the electrons are
distributed asymmetrically between the reservoirs to pro-
duce the correct Hall voltage (the distribution of electrons
is given by this complete quantum state, of course).

We are imagining that the current is imposed from the
outside—corresponding to the experimental arrange-
ment—and the Hall voltage is observed. However, this
imposition is not part of the Hamiltonian that provides
the information about the possible states; we must select
the state that has the desired properties. In our descrip-
tion, such states are assumed to be electrodynamically
stable. The true ground state of the system would have
zero Hall voltage and current. The current-carrying
states can decay only by mechanisms outside the model,
such as couplings which permit excitations of the bulk
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matter. If the resulting decay rate were appreciable, it
would correspond to a current flow between reservoirs. In
an actual sample, this transverse current is instead con-
strained to vanish; the physics of the decay in the model
then manifests itself as a longitudinal voltage drop.

So far, we have imagined that for each value of the
current through the sample there is necessarily a unique
quantum state for the system, which we take to be the
state of lowest energy under the constraint that the
current have a fixed value. States of higher energy would
decay to this state quickly by the mechanisms outside the
model. We think we gave a convincing case that the ex-
tended states must be occupied in the manner claimed.
However, it is not necessary that localized eigenfunctions
be filled to the higher Fermi level in order to produce the
quantum Hall relation. It is entirely possible that some
such eigenfunctions on a potential hill might be so isolat-
ed spatially that the time scale for them to equilibrate
may be made very long because of a small tunneling prob-
ability. Thus there may be many system quantum states
that have the same physical content, differing primarily
in how the localized eigenfunctions are occupied. The
different states may also have slightly different self-
consistent potentials. Away from Hall plateaus, it is not
possible to keep all the single-particle states in the “two-
dimensional” region filled, and electrons can easily flow
across the sample. Under those conditions, it is necessary
to maintain the Hall voltage externally. Further qualita-
tive discussion of the conditions for metastability appears
in Sec. V. ’

Ill. FORMULATION OF THE QUANTUM-MECHANICAL
DESCRIPTION

We turn now to the details of our model. Since we
have eliminated the outside world by taking a finite sam-
ple length and by opening the circuit involving the voltage
probes, we must introduce some other properties of the
model that permit it to have behavior similar to that of
the actual sample. Because our system is confined to a fi-
nite length (0 <x <L) in the direction of current flow, it
is appropriate to introduce periodic boundary conditions
in that direction. This emphasizes the role of the long-
range phase correlations in the eigenfunctions, as was
originally made clear by the argument of Laughlin (1981).
Practically, it makes the single-particle eigenfunctions
discrete and countable. No similar boundary conditions
are necessary in the other two directions, since the sample
itself confines the electrons, and there is no current flow
out of the voltage probes.

As already emphasized, the probes are reservoirs of
electrons, and only the tiny fraction of the electrons that
are in the “two-dimensional” layer actually participate in
the Hall current. All the electrons that are free to move,
including those in the reservoirs, are part of the
quantum-mechanical system to be studied. This model is
schematized in Fig. 7. We refer to the thin layer that car-
ries the Hall current as the “two-dimensional” region to
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FIG. 7. Idealized schematic of the model. In place of the
external circuitry which specifies the current and measures the
voltage, a fixed current is assumed to flow through the sample
in the x direction, and the voltage probes [the regions labeled
(+) and (—)] have become electron reservoirs.

emphasize that the dynamics there is nearly two dimen-
sional, but that we have not ignored three-dimensional
physics (footnote 1). We believe that the electrons in the
reservoirs come to equilibrium with separate Fermi ener-
gies, but emphasize that electrons are free to pass between
regions. In fact, electrons near the edge of the sample will
have eigenfunctions that span the “two-dimensional” re-
gion and one of the probes. It does not seem to be neces-
sary to discuss the physics of the reservoirs in great detail.
Basically, each reservoir provides an electrochemical po-
tential with which nearby current-carrying electrons must
be in equilibrium. A description of how this equilibrium
might be established is given in Sec. V.

In the “two-dimensional” region, the three-dimensional
potential confines the electrons most of the time to the
lowest quantum state in the direction perpendicular to the
two-dimensional layer (about 50—100 A thick). Such a
thickness would lead to an energy scale for excitations in
this degree of freedom of order 10—20 meV (taking the
effective electron mass for this consideration to be about
1—10 the electron’s mass); typical Landau excitation energies
are somewhat smaller. In some cases, Hall voltages are of
order 100 mV, so.that there are several levels of Landau
and sub-band excitation available within the energy range
between the Fermi energies of the two probes. In some
measurements, more than one of these levels is occupied;
for example, the first two Landau levels may be occupied
(in MOSFET’s, there can also be “valley degeneracy” in
which the lowest sub-band is degenerate). Often, the spin
degeneracy is not resolved, leading to another factor of 2
in the occupancy. Clearly, the existence of the quantum
Hall effect depends on having certain levels fully involved
while higher levels remain unoccupied. Since kT <0.4
meV, there is a significant gap in the energy necessary for
thermal excitation of an electron to a higher sub-band or
to a higher Landau level (than the ones participating at a
given plateau). As discussed in the previous section, it is
also important that there not be significant “sideways”
leakage to higher levels. This is suppressed by the very
small overlap between states of the same energy in dif-
ferent levels. For such decays to be strong, the electric
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field would have to produce an energy difference of order
10 meV in a distance of about / (i.e., in 100 A), corre-
sponding to an electric field of order 10* V/cm. The
average electric field is of course much smaller than this,
but under some circumstances we may have to worry
about this possibility.

We assume that the magnetic field is large enough and
the layer thickness small enough so that the occupation of
higher levels can largely be ignored. After understanding
more about the nature of the quantum Hall effect, it
should be possible to estimate the necessary limits on
these parameters. However, in trying to obtain an accura-
cy of 0.1 ppm, it is not advisable to ignore completely
small effects that could arise from interactions which ex-
cite (virtually) higher levels. In our discussion, such vir-
tual excitations are treated perturbatively.

A. The Hamiltonian and boundary conditions

Figure 7 illustrates the geometry of the system just
described. The total number of electrons is fixed, and the
space available to them is divided into three regions. Two
of these represent the voltage probes and are treated here
as three-dimensional electron reservoirs for the “two-
dimensional” region. Since we aim to study individual
states, our considerations are restricted to zero tempera-
ture. No assumptions are made about the symmetries of
the sample (other than those implied by the periodic
boundary condition) either at a microscopic or a macro-
scopic level. Once a sufficiently good understanding of
the physics of the states is obtained, it should be possible
to move toward a still more realistic model.

To study this system, we introduce a second-quantized-
formalism for the electrons in the active region. The bulk
matter (footnote 2) provides a given external potential.
For simplicity, we treat the interaction between the elec-
trons as a two-body interaction but may easily generalize
it to many-body interactions. This interaction can be in-
fluenced by the bulk matter, for example, by a dielectric
constant; and it may even vary with position within the
sample (i.e., it need not be translationally invariant).
However, the dynamics of the bulk matter is suppressed
other than for these effects.

The electron operators are taken to be periodic in a dis-
tance L along the direction of the current according to

Y(x +L,y,z)=9(x,y,z) . (3.1)

The main role of this condition is to make the eigenfunc-
tions discrete and countable so that we do not have to deal
with continuum normalization and with the properties of
the (unquantized) eigenfunctions outside the region of in-
terest; we do not believe that it distorts the physics. It
would be desirable to free the discussion from such artifi-
cialities, or at least to prove that they do not influence the
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conclusions.!! Here we assume any gauge for the vector

potential which permits this condition.
We take the Hamiltonian to be

2
p+eA+ﬁI:B—’il

H= [ ¢y'x) +V, [¢(x)dx

2m

+1 [ P x)Uyx xwx)(x)dx dx
(3.2)

Here B is an analytic tool introduced in order to define a
convenient expression for the- current. It might appear

that it could be transformed away with a gauge transfor- .

mation, but that is not so. Only gauge transformations
that maintain Eq. (3.1) are admissible. However, two
values of B which differ by integer multiples of 27 are re-
lated by gauge invariance and hence are physically
equivalent. Evidently, this model is equivalent to those of
Laughlin (1981) and Halperin (1982) which have the sam-
ple closing on itself and an adjustable flux threading the
hole (here B plays the same role as the threading flux).
Note that, in such models, it is not necessary to have any
particular symmetry—the boundaries need not be circles
and the voltage probes can be localized on the circumfer-
ence. As emphasized in the Introduction, m is the physi-
cal mass of the electron, not an effective mass. However,

it turns out that the energy scales are more simply ex- *

pressed using an effective mass, e.g., #iw, —=eB/m*. Of
course, nothing depends critically on the precise magni-
tude of this energy scale. But, as described above, the ob-
served scale is important for the existence of the quantum
Hall effect. If it were based on the electron mass (i.e., a
factor of 10 smaller), the onset of leakage between levels
would be greatly enhanced and it would undoubtedly have
been more difficult to observe the effect. In fact, one of
the considerations in the choice of an experimental sam-
ple is to make the effective mass as small as possible. The
one-particle potential V, is the external potential supplied
by the bulk matter. In principle, it is nonlocal (to ensure
orthogonality to the eigenfunctions of electrons bound in
the bulk matter), but we ignore this for the moment. In-
teractions between electrons are represented by U,. They
may easily be generalized to include many-body interac-
tions.

"Discussions with Marvin Weinstein.(1985) shed some light on
the meaning of the periodic boundary conditions. He pointed
out to me that if we restrict our universe to length L in the x
direction ( «o in the other directions) and require p, = —i#d3/3dx
to be Hermitian, then we must require quasiperiodic boundary
conditions with an arbitrary phase function of y and z. Starting
from that point, it is possible to change the gauge so as to make
the phase factor unity (the original phase is just the difference
of the required gauge function at the two boundaries), as we
have assumed here.
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We introduce an effective one-particle potential U,
which is to be determined in some self-consistent way to
represent the average effect of the interaction between the
electrons. To avoid complications in the discussion, it is
important that U; be independent of 8. U, and the pro-
vided external potential are nonlocal, but we suppress this
complication temporarily and treat them both as local.
The precise definition of U, is rather involved; it is dis-

‘cussed in Sec. IV and Appendix B. For the present, we

treat U; as known and incorporate it into the one-particle
part of the Hamiltonian, which is then given by

Hi= [ 'xhpxd (3.32)
where
ﬁ 2
p+eA+TB’i
h;z m +V,+U, . (3.3b)

This defines the unperturbed problem, while the pertur-
bation is given by

H'=1 [ ¢{x0¢ x)U,0x,xW(xW(x)d*x d*x’
— [V ®U s .

The unperturbed problem is exactly solvable by express-
ing the operators v in terms of eigenfunctions of 4 satis-
fying

hl‘lb&\(x):E&fﬁ&\(x)

(3.3¢)

(3.4a)

with the usual normalization. Anticipating that we shall
perturb about reference states in which certain of these
one-particle eigenfunctions are occupied and the rest emp-
ty, we introduce the following convention to label the
eigenfunctions: & represents a general eigenfunction, «
represents an eigenfunction occupied in the reference state
and to be treated by hole theory, and @ represents an
eigenfunction unoccupied in the reference state. We em-
phasize that the labels run over all types of one-particle
eigenfunctions, including Landau excitations, z-
confinement excitations, etc., so that they form a com-
plete set. No distinctions are made (or can be made) be-
tween eigenfunctions in the reservoirs and those in the
“two-dimensional” region, and some eigenfunctions span
two adjacent regions. However, we think of the “cou-
pling” between adjacent regions as being sufficiently weak
that in each reservoir a Fermi level is established (to good

approximation).
With this convention, we write
v=3blYat 3 azvs, (3.4b)

a a

where the operators aT, a, bT, and b satisfy the usual an-
ticommutation rules. The a’s are referred to as particle
operators, and the b’s as hole operators. The metastable
reference state with no particles or holes is not the com-
plete ground state of the system; rather it is the ground
state for a fixed value of current. We refer to it as the un-
perturbed state, and assume that its metastability is main-
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tained under perturbations. To be precise: the perturba-
tions do modify the value of the current, but we assume
that it is possible to find an original unperturbed state
which produces a state with the desired current. Using
(3.4b) in (3.3a), we find

Hl:zsa-zgablba+zeaa;aa- (35)
a a a

The statement that the unperturbed state has a lower en-
ergy than other states with the same current is that 5> €,
for pairs that must be created in order to obtain the other
states from the unperturbed one.

The operator giving the Hall current may be written

S__ e [t B
I= mL f”b L

A convenient expression for the current is then given by'?

__e|3H(B\_ e dEP
I= ﬁ< 3B >_ h———a/;’ , (3.7

where we have used the Feynman-Hellman theorem in the
last step. The expectation value is for any exact eigen-
state of the Hamiltonian H of eigenvalue E (f3). As men-
tioned previously, the current-carrying states must be
metastable. That means we assume that they are eigen-
states of the Hamiltonian (3.2), but other physics not yet
- taken into account, such as bulk matter excitations, could
permit them to decay. For present purposes, we assume
that the “other physics” is sufficiently weak that it may
be ignored in discussing the eigenstates; yet it can be in-
voked as a mechanism for bringing about decay into these
states. If it is true that the current-carrying states are
eigenstates of H, then it is at least plausible that they can
be obtained by perturbation theory from the unperturbed
states defined by H, provided the potential U, is chosen
with sufficient . care. Here we understand B as a
mathematical parameter, and all functions are assumed to
depend continuously upon it. E([3) is the total energy of
the state under consideration, including that of the elec-
trons in the reservoirs and taking into account interac-
tions between electrons. More will be said about the gen-
eral behavior of E(f3) in the discussion of Laughlin’s ar-
gument below.

px+ed,+ Pd3x . (3.6)

B. Qualitative properties of the eigenfunctions
and energy spectrum

We expect the general picture of the eigenfunctions as
described in Sec. II to be correct, but now we plan to dis-
cuss them without any unnecessary approximations.
Since V, includes contributions from individual atoms,
the eigenfunctions satisfying Eq. (3.4a) must be very com-

In carrying out these derivatives, note that ¢ and ¢ are in-
dependent of 3. They are restricted only by the boundary con-
ditions and the anticommutation relations.
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close two-dimensional zeros

plicated because the potential varies rapidly on a scale of
1 A. Fortunately, it is not necessary to calculate or
analyze the wave functions at that level. We need only
make a very straightforward and plausible assumption.
This crucial assumption is that each eigenfunction has a
phase that can be defined continuously as a function of
position. That is, it may be expressed

ipA

)
Yur)=e 4 R (r) (3.82)

where both @, and R are real. This appears to corre-
spond to the idea of long-range phase rigidity, which is
important in Laughlin’s argument. Provided an eigen-
function has no two-dimensional zeros (i.e., lines of zeros
that go completely through the eigenfunction in the z
direction) this phase will be unique within an overall addi-
tive constant. (Zeros at the sites of atoms cause no ambi-
guity.) If an eigenfunction has two-dimensional zeros, the
phase will not be unique but will be path dependent; how-
ever, single valuedness of the eigenfunction requires that
phases determined by different paths differ by integer
multiples of 217.

As in Sec. II, some eigenfunctions in the “two-
dimensional” region are localized; i.e., they do not extend
continuously from one end of the sample to the other
(they may exist artificially at both ends due to our use of
periodic boundary conditions). Then single valuedness
gives a quantization condition that restricts the eigenfunc-
tions. The total phase change around any closed curve

must be an integral multiple of 27 (zero if it does not en-
).13

3The author wishes to call attention here to a mathematical
point that may be worth further investigation. As Brenig (1983)
and Joynt and Prange (1984) point out, it is not normal for
discrete, locally normalizable states to have energies within the
continuum. (In our model, of course, there is no true continu-
um, but we may think of the extended states as playing that
role.) Normally, the “would-be” discrete states become decay-
ing states. They argue that discrete states lie outside the contin-
uum, i.e., at either higher or lower energies. With the electrons
confined to a finite width, there is actually no upper bound to
the continuum, so the discrete states would lie only below the
continuum. If this point of view is correct, and the author be-
lieves so, each would-be localized state mixes with a set of ex-
tended states having nearly the same energy to produce extend-
ed states that have a large relative probability of being in the
would-be localized-state region. Each of these states would
have a very small, but nonvanishing, amplitude to extend be-
tween the two original regions. This means that in the follow-
ing discussion the localized states, but not the relabeling gaps,
would disappear. However, the author contends that the phys-
ics of the discussion still makes sense. It is likely that most of
the would-be localized states have such a long lifetime that in
any practical situation we may as well treat them as individual
eigenstates. From now on, we ignore this possible complication
in the discussion.
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Eigenfunctions confined to either of the reservoirs are
also regarded as localized eigenfunctions in the present
discussion. There is some subtlety here, sirice there may
be (technically) extended eigenfunctions whose probability
is concentrated inside a reservoir, but whose amplitude
elsewhere is very small and does extend from one end of
the sample to the other. If there are such eigenfunctions,
a tiny fraction of the Hall current may actually pass
through the reservoirs. Thus there is a very gradual
changeover from extended eigenfunctions to ones that are
actually localized in a reservoir. As we go from one ex-
tended eigenfunction to the next, the probability to be
outside the reservoir and the current carried through the
sample diminish to some point where they are both so
small that we may ultimately regard an eigenfunction as
being attached to the reservoir and not as an extended
eigenfunction. While the place where we define the
changeover to localized eigenfunctions is arbitrary, it
should be possible to do this in such a way that the total
current carried by the states defined to be localized is
completely negligible compared to the total Hall current.
The nature of the equilibrium near the edge of the sample
is discussed further in Sec. V, and the ideas of this para-
graph are needed-in order to understand the discussion of
Laughlin’s treatment of the quantum Hall relationship.

For eigenfunctions extending from one end of the sam-
ple to the other, the total phase change ¢ must be an in-
teger multiple of 27 (if there are two-dimensional zeros,
the multiple is of course path dependent). For each eigen-
function, we select a particular path for defining the total
phase change between x =0 and x =L (in case there are
two-dimensional zeros). It seems appropriate, and turns
out to be convenient, to use this total phase change as one
of the parameters to label the eigenfunctions. We reex-
press this phase in terms of an average wave number by
writing

@=kL =@x +L,y,z) —@yx,,2) , (3.8b)
where
k =2mn/L . (3.8¢)

For each value of this average wave number, we expect
there to be several states which require additional labels.
In the simplest case, where only the first Landau level is
filled in the unperturbed state, we use k in place of a to
label extended states. The spacing in k values is very
small (27 /L), and the set of eigenfunctions corresponding
to two successive values of k are very similar (having only
an overall phase difference of 27 over the total length of
the sample and a tiny transverse separation of order
271%/L). We assume that for each value of k (associated
with a definite path for defining the phase), the energy
eigenvalues have low degeneracy and that the energy spec-
trum does not change character as a function of k. The
same set of additional labels may then be used for all k,
and a given set defines a “level.” To the extent possible,
the same labeling scheme may be applied to the localized
states, but with k replaced by some other suitable label.
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Usually, the different levels correspond to differing Lan-
dau excitations, with approximate energy separation #w,,
or different excitations of the z-confinement modes. As
discussed in Sec. V, this labeling scheme may break down
at the edge of the sample, where two states with the same
k can see a very different environment and become degen-
erate even though they belong to different energy levels in
the interior of the “two-dimensional” region.

While it is possible to solve the one-particle eigenvalue
equation explicitly for certain simple potentials, and that
is the usual procedure, our present aim is to develop some
general intuitive understanding of the properties of the
eigenfunctions. Some instructive examples of interactions
with a scattering potential are described by Joynt and
Prange (1984) and Prange (1986), and the time-dependent
development of a wave packet in the presence of a strong
scatterer is given by Joynt (1982, 1984). Intuitive under-
standing is also provided by a semiclassical analysis of the
eigenfunctions in two dimensions (Trugman, 1983; Joynt
and Prange, 1984); this is described briefly in Appendix
A. Here we give a description that is three dimensional
and does not require any important specialization of the
external potential. While the author believes that it pro-
vides insight into some properties of the wave function,
he does not claim that it would serve as a useful starting
point for their actual calculation.  Initially, the descrip-
tion ignores the complications associated with two-
dimensional zeros of the wave function; in any case, it can
be applied to small regions which can later be pieced to-
gether.

Substituting Eq. (3.8a) into the eigenvalue equation
(3.4a), and separating the resulting eigenvalue equation
into real and imaginary parts, we find

2
P VA Vet Uy |Rg=e5R, (3.92)
and
V- [(#Vpz+eA)R*]=0, (3.9b)
where
g (7iV@z+e A)
a 2m ’

This gives a pair of equations for the functions R; and
@45 The first has the form of a simple eigenvalue equa-
tion with an additional effective potential #”; depending
on ¢, The reader should note that this additional poten-
tial is gauge invariant. The second is an expression of
current conservation.'*

“It is interesting to note the structure of the longitudinal
current as a function of distance across the eigenfunction. It
changes sign near the center of the eigenfunction. This corre-
sponds classically to the cyclotron motion of the electrons. If
there is a potential gradient across the eigenfunction, the
current does not quite cancel out; this corresponds to the drift
velocity of the electrons.
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In other situations, these equations could serve as the
starting point for the development of the eikonal approxi-
mation. Here that is not possible because of the rapid
variation contained in the external potential ¥, and in
7 4, which do not permit us to treat the first term of
(3.9a) as small. Here we use them qualitatively to obtain
an intuitive understanding of the properties of the eigen-
functions, following somewhat the reasoning of Appendix
A. It should be emphasized that, in general, ¢, depends
on the label designating the level; i.e., states of the same k
need not follow exactly the same path through the sam-
ple. In fact, this observation turns out to be crucial in
discussing how different levels can merge in energy at the
edge of the sample.

' Writing out the additional effective potential in detail
in the Landau gauge, we find

3, 3, lz

Pa
ax dy

oz

# #

—eyB | + +

]2
7= . (3.9¢)

2m
All of this looks quite intractable analytically, but it does
provide some tools for intuitive understanding. The
phase varies systematically along the length of the sample
to accumulate its total change, but that variation need not
be uniform. It may also fluctuate on a microscopic level
to produce the results of an effective mass. In simple po-
tential models, 7”5 provides a strong potential “trough”
through the sample; it is this trough which confines the
wave function to a transverse distance of order /. Assum-
ing that the systematic phase change along the length of
the sample dominates the behavior, one sees that the po-
tential minimum occurs at
0@~

yo(x,z)Eﬂ%(x,yo(x,z),z) ,
which describes a curve through the sample. In the vicin-
ity of this minimum, the potential has the form
(y —y0)*#*/(2mI*). For an arbitrarily specified ¢, the
trough will not occur in the right place throughout the
sample to produce an appropriate eigenfunction. In the
simplest example of a smooth two-dimensional potential,
the trough should follow an equipotential. In general, the
phase function must adjust itself to put the trough in the
right place to produce an eigenfunction and to have the
correct total change along the sample. For intuitive pur-
poses, it is helpful to define an average value of y, using
Eq. (3.9d) by neglecting the y,z dependence on the right-
hand side. This gives

(3.9d)

ye=kI? . (3.9¢)
This average lateral position is not weighted by R?; aside
from that, it does correspond to the approximate density
of states no=1/2mi%. For eigenfunctions in the interior
of the “two-dimensional” region, the center tends to move
along two-dimensional equipotentials, which are obtained
by averaging out the ordinary three-dimensional poten-
tials (in this averaging, it may also be necessary to take
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into account changes in the sub-band energy if the layer is
not quite uniform). As y, changes, the associated eigen-
functions displace across the sample in a corresponding
way.

If we were to plot the distributions of energies of a lev-
el, they would smear out into a band. The appearance of
a band would depend on the size of the fluctuating com-
ponent of V, relative to the systematic effect of the Hall
potential. Although it is not explicitly stated, I believe
that the plots of energy distributions that one frequently
sees in discussions of the quantum Hall effect correspond
to the situation in which the systematic Hall voltage is
small relative to the fluctuations or is somehow subtract-
ed out. In other situations, the Hall voltage may corre-
spond to an energy difference several times the local ener-
gy differences between levels. Bands from different levels
(including contributions from the localized states) would
then have considerable overlap. Even in those plots, it
would be better if one were to plot the distributions for
extended, valley, and hill eigenfunctions separately, since
they might actually overlap if the variation of the
“smooth” component of the potential were large enough.
These remarks are inserted here to point out that such
plots lack an important piece of information, namely the
spatial location of the eigenfunctions. If one plots the en-
ergies of eigenfunctions as a function of k, which is a
measure of their transverse location, it is seen that eigen-
functions of the same energy in different levels usually
have very different values of k and hence very different
spatial locations. In order to obtain the quantum Hall ef-
fect, it is necessary that the spatial overlap of such eigen-
functions be exceedingly small so that a lower level can-
not easily decay into a higher one.

As just remarked, if an extended eigenfunction has
two-dimensional zeros, the labeling by k is ambiguous.
This happens when an eigenfunction divides to avoid a re-
gion containing localized states. A two-dimensional ex-
ample with a saddle point is shown in Fig. 8(a). One type
of eigenfunction labeled ¥ lies entirely on one side of the
localized-state region, another type o lies entirely on the
other side, and a type 6 passes partly on each side. For
eigenfunctions of the y or 8 types, we may define the total
phase change by taking a path along the eigenfunction on
the y side of the region. Similarly, for eigenfunctions of
the o or & types, we may use the o side for the definition.
These two possible choices produce the two curves in the
plot of €, vs k in Fig. 8(b); in the region of the 8-type
eigenfunctions, the two curves are simply displaced by a
horizontal distance 27N /L, where N is approximately the
number of flux units contained within the localized state
area. According to a semiclassical argument by Prange
(1986), it is also the number of localized states associated
with that area. [Perhaps this is connected to an argument
by Brenig (1983) which relates the total number of local-
ized states of a level to properties of a level shift function,
in a sort of generalized Levinson (1949) theorem. The
present author has not been able to understand Brenig’s
argument well enough to relate it to the present work.] It
is clear that as k steps through successive values on one
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(a)

FIG. 8. Illustration of the origin of “relabeling gaps.” (a) Ex-
amples of extended eigenfunctions in the vicinity of a localized
region. Those of type ¥ pass entirely on one side of the local-
ized region (ignoring exponentially small tails of the wave func-
tions), while those of type o pass entirely on the other side.
Those of type & split and pass partially on each side; they may
be labeled continuously with either of the other two types. A lo-
calized state is shown inside the loop of a 8-type eigenfunction.
(b) The single-particle energies labeled with the wave number k
of the extended eigenfunction. The range in k for each type of
state is illustrated. There is a unique assignment of k for eigen-
functions of type y or 0. With those of type 8§, we may elect to
choose either method of labeling, as shown by the two curves.
The double-arrowed lines indicate examples of places where we
can shift from one label to another while introducing a relabel-
ing gap. The eigenfunctions corresponding to opposite ends of
these lines are the same, but the label has changed.

of these curves, the single-particle eigenfunctions change
quite gradually. At some point, we may choose to relabel
the eigenfunctions by switching from one curve to the
other. Since the situation changes gradually with k, there
is no unique way to specify where the relabeling should
take place; there is no physical discontinuity, even though
certain values of k do not appear in the labeling of the
states. Two possibilities for the location of the relabeling
gap are illustrated in Fig. 8(b). The actual situation is un-
doubtedly very complicated, with many such relabeling
gaps (even several for individual eigenfunctions). Howev-
er, it seems essential (in order to obtain the quantized
current) that there be a continuous progression through
eigenfunctions which can be labeled by k. This is analo-
gous to the point made in Sec. II that it should be possible
to find an integration path for the evaluation of the
current which lies entirely within the extended region.
Wherever gaps occur in the values of k used for the la-
bels, there is no physical gap in the succession of eigen-
functions. We could, in fact, label the eigenfunctions
without a gap in k, at the expense of having k lose its
original meaning as giving the total change in phase
whenever that is unique. We do this below in the discus-
sion of Eq. (3.13), where we refer to the variable that la-
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bels the states successively as k’. (The mathematically in-

clined reader may wish to refer back to footnote 13 at this
point.)

Since some (perhaps most) of the eigenfunctions do not
have a unique value of k, the average transverse displace-
ment refers to the particular path chosen to define the
overall phase. Obviously, one should not take y; too
literally as giving the position of the orbit. Nevertheless,
it is a useful parameter for visualization, particularly
when the magnetic field is changed. Then the density of
states in y; changes as a function of B, but the general
nature of an eigenfunction as a function of y; does not
change if the effective potential is held fixed.-

Now we must describe briefly the properties that the
external potential ¥, must have in order that the eigen-
functions and energy spectrum have the general charac-
teristics described above. What sort of structure is actual-
ly contained in V,? We know that on a very small scale
(of order 1 A) it has a very rapid and large spatial depen-
dence associated with the atomic structure of the bulk
matter. However, the scale of the wave function is much
larger (of order 100 A), so the-effect of these small-scale
fluctuations should average out while giving rise to an ef-
fective mass dependence of the energy spectrum. Prange
(1986) discusses in detail three other components of V,.
One of these is a “smooth” component, which varies
slowly with position (I |VV, | <«<#w.). However, one
should note that the total variation of this component
over the sample can be several times larger than #iw,. It is
for this part of the potential that we may think of the
eigenfunctions as being “guided” by equipotentials as in
Sec. II. The condition ensures that eigenfunctions of dif-
ferent Landau levels are never close enough in space so
that a filled lower level can decay into a higher one. In
semiclassical terms, this condition is equivalent to the re-
quirement that the drift velocity given by Eq. (2.2) be
smaller than the cyclotron velocity. Another part of the
potential varies rapidly with position on the scale of / but
it always remains very small in magnitude (<<#iw,.).
Prange gives arguments that this potential does not intro-
duce extended eigenfunctions into the gap between Lan-
dau levels. We take this to mean that extended eigenfunc-
tions in a given region of the sample outside impurities
have a well-defined hierarchy of Landau and sub-band
levels, as discussed above. The other type of potential is
associated with impurities and is referred to as a scatter-
ing potential. Prange discusses how this gives only for-
ward scattering because of energy conservation. We refer
the reader to the excellent review by Prange (1986) for
more details.

For our treatment of perturbation theory, it is useful to
introduce new eigenfunctions defined by

Yo=e'P/ly (3.10a)
which are eigenfunctions of
h=h,| g0 - (3.10b)

Localized eigenfunctions are independent of 3, while for
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extended eigenfunctions, a change in 3 corresponds to a
change in label k according to

5B<—L 8k . (3.10c)

Later on, when it becomes necessary to differentiate the 3
dependence contained in the eigenfunctions, it is more
convenient to use these new functions even though they
are not periodic. The reason is that for localized eigen-
functions the derivatives vanish, and for extended eigen-
functions we may use the relation (3.10c) to replace
derivatives with respect to 3 by derivatives with respect to
k.

C. How the states are filled

In Sec. II we described the general features of localized
and extended single-particle eigenfunctions in the “two-
dimensional” region and how these states should be occu-
pied in a self-consistent way. Here we refine that discus-
sion in the light of a somewhat better idea of the nature
of the eigenfunctions. Each reservoir can be considered
approximately as an isolated system with all states filled
up to some Fermi level. Because the reservoirs are not
thin in the z direction, these states have an almost con-
tinuous range of energies associated with kinetic energy in
that direction and also have many levels of excitation of
the magnetic states. On the other hand, the electrons in
the “two-dimensional” region exist in the lowest state in
the z direction and have relatively high energy because of
confinement to the thin layer. For the present discussion,
higher states associated with this confinement play a role
only in perturbation theory; they may have a more signifi-
cant role for the higher plateaus. Under plateau condi-
tions, an equilibrium is established between the reservoirs
and the adjacent ‘“‘two-dimensional” region. We accept
this here and defer a more complete discussion to Sec. V.

In preparation for discussing how the quantization of
the conductivity comes about when we may ignore in-
teractions between the electrons, we first describe various
possibilities for the dependence of the one-particle energy
levels on y;. Suppose that conditions are such that we
need consider only the lowest Landau level and lowest z-
confinement state. In addition, for the moment, ignore
the self-consistency question and imagine that we have a
good starting assumption for U;, which leads to a set of
extended and localized eigenfunctions and their eigen-
values. Between relabeling gaps, the extended eigenfunc-
tion energies are represented by points lying on a smooth
curve as a function of y,. If we delete the gaps, the
separate curves join into one smooth one. The density of
points is proportional to the magnetic field, and the ends
of the curve will tie into the Fermi energies at the two
reservoirs. From our previous discussion in Sec. II, we
expect that all eigenfunctions with energies below the
higher Fermi energy are occupied, but that there may be
partially filled eigenfunctions in equilibrium with the
higher Fermi energy.

Figure 9 illustrates the possible behavior of g, as a
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function of y; for various magnetic fields. These curves
are not based on actual self-consistent analyses; rather,
they are impressionistic representations of the plausibility
arguments given here and in Sec. II. With one exception,
it is assumed that the next-higher Landau level or electron
sub-band has an energy gap large enough so that such ex-
cited eigenfunctions play no direct role and they are not
shown. For each case, one plot shows the eigenfunction
energies with representative relabeling gaps and the other
shows them with the gaps removed. Solid horizontal lines
in the gap regions indicate filled localized eigenfunctions

s
t
N_E
[]
Yk Yk
(b)
3
6k
E;”
Yy
(C%‘F’
ek
g EF
= v Uy

FIG. 9. Energies of one-particle states. The left side of each
figure shows extended-state energies plotted as a smooth func-
tion of wave number and examples of localized-state energies in-
troduced at the positions of the sample relabeling gaps. Filled
localized states are represented by solid horizontal lines and
empty onés by dotted horizontal lines, under the assumption
that these states are filled to the higher Fermi energy. Partially
filled extended states are represented by dashed lines. The right
side of each figure shows the extended states with the relabeling
gaps deleted at positions indicated by vertical arrows. (a) might
represent the situation in the middle of a plateau. (b) might
represent the situation where the magnetic field has been in-
creased from that of (a), causing the self-consistent potential
acting on the electrons to increase. The resulting curve for the
extended states must not go higher than the Fermi energy of the
negative voltage probe. In the example shown, this results in a
region in equilibrium with that probe where the extended states
are only partially filled: (c) might represent the situation when
the magnetic field is reduced from that of (a), causing the self-
consistent potential to decrease. In all cases, the occupation of
the localized states changes to accommodate the overall change
of the filling factor, but some electrons flow in or out from the
probes as well.
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on hills or valleys, while dotted horizontal lines represent
empty localized eigenfunctions. Figure 9(a) might
represent. the situation in which the magnetic field is in
the middle of a plateau and the energy drop of the extend-
ed eigenfunctions is fairly uniform across the sample as
illustrated in the plot at the right.

Figure 9(b) shows the possible effect of increasing the
magnetic field, following the discussion of Sec. II. Recall
that the number of eigenfunctions per unit area is propor-
tional to B. We assume that the extended and localized
eigenfunctions remain filled to the energy Ey~’. This
means that electrons must flow into the layer and change
the self-consistent potential until the proper equilibrium is
established. As described in Sec. II, the repulsive
Coulomb energy increases the potential acting on the elec-
trons and raises the energies of all the eigenfunctions.
Hill eigenfunctions that are pushed above Ey ' need not
remain filled, so that the total number of electrons flow-
ing into the layer from the reservoirs is less than it would
be without localized eigenfunctions. This may make it
possible for all the extended eigenfunctions to remain
filled for a modest change in B. In any case, since each
g for a filled eigenfunction should not exceed E 1(:_ ) the
potential increase is limited and the drop in energy is
necessarily more precipitous near the ( + ) terminal. As B
increases further, we may reach the situation ‘illustrated
here in which the extended eigenfunctions at the energy
E§~) are no longer completely filled and there is a very
rapid drop in energy near the (4 ) terminal. The argu-
ment for this configuration is exactly the same as in Sec.
II.

Figure 9(c) shows how the system may evolve when the
magnetic field is reduced. In this case, with the original
self-consistent potential there are not enough eigenfunc-
tions to hold all the original electrons, and some electrons
are pushed out of the layer into the reservoirs. As a re-
sult, the energies of all the eigenfunctions are lowered. As
described in Sec. II, this permits new regions of potential
hills to accept electrons, which reduces the number that
might otherwise be pushed out of the layer. If the area
that can now accept electrons is large enough, it is possi-
ble that with a modest change of B the situation would
evolve as illustrated here. Now more of the current is
near the (—) terminal than the ( 4 ) terminal. However,
the number of eigenfunctions within the first Landau lev-
el is limited, and at some point enough electrons will be
pushed out of the layer that the eigenfunction energies
may be pushed down significantly on the scale of the po-
tential difference. If a potential minimum in the middle
of the sample results, this leads to a current greater than
the net Hall current near the (—) terminal together with
some reverse current near the ( + ) terminal. With further
decreases of B higher Landau levels would begin to play a
role. At first, valley eigenfunctions from higher levels
could accept electrons, and this would tend to stabilize the
potential. Ultimately higher extended -eigenfunctions
would drop down, and perhaps one would come to equili-
brium with the ( + ) terminal. If so, it could accept elec-
trons; but not having a net difference of energy across it,
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it would not contribute to the current. Ultimately it
would fill up, leading to a transition to another plateau.
We defer a discussion of higher plateaus to Sec. V.

The preceding discussion is undoubtedly simplistic.
Providing that the essential ideas are reasonably correct,
however, it may lead to a more detailed understanding of
the microscopic mechanisms involved in the quantum
Hall effect. The condition that all levels be filled to the
Fermi level of the (—) terminal, while at first sight plausi-
ble, is probably too rigid. Eigenfunctions near the top of

" potential hills may not be in good communication with

nearby filled eigenfunctions if the distance separating
them is more than a few magnetic lengths. In that case,
they may not come to equilibrium completely as the mag-
netic field is swept through the plateau. While this could
affect the amount by which the self-consistent potential
must adapt by the flow of electrons between the reservoirs
and the “two-dimensional” layer, it does not affect the
quantum Hall relation to be (re)derived below. It is im-
portant only that the extended eigenfunctions be filled in
the region where € actually depends on k. The same ar-
gument given in Sec. IT can be restated here. If there were
an empty eigenfunction in such a region, a neighboring
eigenfunction with very good spatial overlap could decay
into it by exciting the bulk matter. This implies that any
quantum state with reasonable occupation of the localized
eigenfunctions has the extended eigenfunctions appropri-
ately filled to produce the correct quantum Hall relation-
ship within a plateau. Therefore the number of states
that have the correct properties to produce a plateau may
actually be quite large. Generally, in the remainder of
this paper, we ignore this possible generalization and pre-
tend that there is a unique state, secure in the knowledge
that other possible states have the same macroscopic
behavior. However, these considerations certainly play an
important role in understanding the length of the plateaus
and the mechanism of the transition between them.

D. Connection with Laughlin’s argument

We may now indicate briefly the argument of Laughlin
in the present context using Eq. (3.7). In the case of the
integer quantum Hall effect, we vary 8 continuously from
0 to 27 while the current remains nearly fixed. While the
Hamiltonian can be restored to its original form by a
gauge transformation, the continuously deformed state
does not return to the original one since its energy has de-
creased by — i (I ) /e (since I will in principle vary a tiny
amount as a function of B, we use its average (I) over
the 27 range here). How can this happen? The answer is
that as the state deforms, an integer number of electrons
(in this case one) moves out of the high-potential reservoir
[(—) terminal] and the same number moves into the low-
potential reservoir [(+ ) terminal]. At the same time,
electrons in the “two-dimensional” region gradually shift
across the region, but at the end the state of the electrons
there returns to its original form (and energy). Because
the number of electrons that move across is a tiny frac-
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tion of all the electrons in the three-dimensional regions,
this change results in a totally unobservable change in the
current and in the potential difference across the “two-
dimensional” region. The decrease in the total energy of
the state can then be attributed to the difference of the
electrochemical potentials across the sample. The desired
result is obtained by equating the two expressions for the
energy change of the system,
2

—h<1>/e=—eAV=><I>=fh~AV. (3.11)

One aim of this paper is to make intuitively plausible
that the electron states actually have the properties that
justify this conclusion. We do this first for the situation
in which all extended eigenfunctions for the lowest Lan-
dau level are filled, which we expect to be true near the
center of a plateau. We also assume that the current is
small enough that leakage to higher Landau and sub-band
levels can initially be ignored. If we consider the unper-
turbed problem, holding U, fixed during the variation of
B, we see that the single-particle eigenfunctions do have
just the property required by Laughlin’s argument. As f3
increases by 2w, each of the extended eigenfunctions
transforms gradually into the next according to Eq.
(3.10c). The presence of localized eigenfunctions does not
affect this argument; they are unaffected by 8. A very
large number of extended eigenfunctions spans regions of
localized eigenfunctions, or even a hole through the sam-
ple, and each one individually experiences a very tiny
change. Yet the net effect is to move one electron across
each relabeling gap. Similarly, near a probe, the probabil-
ity for an extended eigenfunction to be outside the probe
becomes vanishingly small as k goes to its highest or
lowest value near a probe. At some point, one electron is
simply counted as being in the probe rather than in an ex-
tended eigenfunction. This is not an abrupt transition,
but the net effect is that the total charge in one probe in-
creases by e and that in the other decreases by e after the
27 change in 3. The behavior near the edge is discussed
in more detail in Sec. V. (Note: for the fractional quan-
tum Hall effect, 8 must increase by a higher multiple of
27 before the state in the “two-dimensional” region re-
turns to its original form.)

Now let us examine what this implies for the complete
state of the system, including the effects of electron-
electron interactions. Recall that we are using 3 as a label
for the set of quantum states associated with a given
Hamiltonian rather than as a physical flux parameter as
in Laughlin (1981) and Halperin (1982), but the
correspondence should be obvious. Values of B that differ
by 27 have the same set of states. As f3 is varied continu-
ously, we assume that each of the associated eigenstates of
Eq. (3.2) also transforms continuously provided that the
parameters are in the center of the plateau region. This
assumption is based on the similar behavior of the unper-
turbed states of the system: There are no sudden jumps as
B is varied; what happens at relabeling gaps or at the edge
of the sample is actually very gradual. (We are implicitly
assuming that the residual electron-electron interactions
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do not change the essential features of the spectrum of the
system; that is, they do not make the states metastable
and we are presently ignoring the fractional quantum Hall
effect. Should they cause metastability, the present pic-
ture would break down unless the lifetimes were so long
that decays would not occur on an experimental time
scale.) Now consider a plot of E(f3) vs B for fixed B
starting from the ground state and going to some large
value of |fB| [see Fig. 10(a)]. We assume that this is a
smoothly varying function of f (roughly parabolic in
shape for small ) since varying B moves electrons across
the sample, producing a potential difference between the
probes and, according to Eq. (3.7), a current that increases
with |B|. When B has a value within a plateau, the sys--
tem does not return to the original state whenever f3
changes by 27 because there is no easy mechanism for it
to do so. The electric and magnetic forces are in balance,
so individual eigenfunctions do not tend to move across
the sample. The only way the energy of the system could
return to its original value is for an electron to tunnel a
considerable distance (through filled eigenfunctions). The
eigenfunctions reached by this continuous variation of 3

(a)

E(B)
B
E(B)
(b) _i“k
\
\\
7 g

FIG. 10. The total energy of the system as a function of B. At
the minimum, the Hall current would be zero by virtue of Eq.
(3.7). For finite currents realized in the laboratory, our model
requires that the system be very far away from this minimum.
In (a), the scale is very large; i.e., the values of B are huge. The
small region indicated in (a) is greatly enlarged and folded into a
27 region of B in (b).
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are assumed to be stable within the model defined earlier,
but are metastable against decay by bulk matter excita-
tion. When B has a value between plateaus, the lifetime
of the states becomes very short and the present descrip-
tion breaks down. It also breaks down when the current
becomes very large.

Once we have forced the system to be closed, it has
many possible states corresponding to, different potential
differences and their associated currents. They differ pri-
marily in the number of electrons in each of the reser-
voirs; this asymmetry is responsible for the potential
difference between the reservoirs. The true ground state
has no potential difference or current. From the point of
view of the present paper, it is uninteresting; but in other
treatments [see reviews by Pruisken (1986) and Thouless
(1986)], it is the object of study. The energy of the states
may be displayed in another way, which emphasizes their
metastability. A region of the curve of Fig. 10(a) (corre-
sponding to positive current) is magnified in Fig. 10(b),
with all states plotted within a 27 range of 8. A continu-
ous increase of B by 27 moves the state down one of these
line segments where it shifts to the beginning of the next
one. The curvature of the lines is negligible as seen on
such a plot, and I is practically constant within such a
range. This change of 3 corresponds to the motion of one
electron across the sample, as described above.

There are some ways the preceding argument may
break down, but the possible resulting effect on the quan-
tum Hall relation is hard to quantify. Away from the
center of the plateau, the one-particle states are not neces-
sarily filled. As argued in the preceding subsection, there
may be a partially filled region in which these states have
the Fermi energy of the high-potential probe. This can-
not be an exact statement; there must be small variations
in energy away from the mean. Perturbation theory in
the residual electron-electron interactions must be suspect
in this region. Presumably it produces a superposition of
the various possibilities for occupying the one-particle

states. In some sense, this region becomes an extension of -

the probe. Also, away from the center of the plateau, the
electric fields in the layer may become large locally, per-
mitting electrons to leak between Landau levels (invoking
the bulk matter interactions) or into the low-potential
reservoir. This would lead to longitudinal resistivity and
a concomitant deviation from the ideal Hall conductivity.
In the center of the plateau, this leakage should be exceed-
ingly small, but not necessarily zero. It is suppressed by
the very small overlap between wave functions of the
same energy in two different levels (typically, their spatial
separation is many magnetic lengths).

E. Lowest-order estimate of the Hall current

Now we are prepared to discuss the Hall current in the
absence of perturbations. In this approximation, the total
energy of the system is given by

E9B)= S e,. (3.12)

Rev. Mod. Phys., Vol. 59, No. 3, Part |, July 1987

The energy of a localized eigenfunction is independent of
B; recall that U, is defined for B=0.

Next we note that for extended eigenfunctions the 8
and k dependences are linked through Eq. (3.10c). The
current then simplifies to

e Jey

1O— _
AL <~ 3k

(3.13)

The sum extends over the filled ground-state Landau lev-
els for any of the situations illustrated in Fig. 9. Since
there is no physical discontinuity at relabeling gaps, they
present no special difficulty. In fact, we may simply re-
place k by a new label k’ which labels the eigenfunctions
without any gaps. Then, as pointed out in Sec. II, the la-
teral separation between the eigenfunctions in the “two-
dimensional” region is much smaller than their internal
extensions. Thus the energies vary extremely slowly as a
function of k', and it should be legitimate to replace the
sum by an integral with a totally negligible error.” At this
stage, we have

ask' ,

o_ __ € - .
I'"'= h fﬁlled ok’ d ‘(3 14)

Clearly, this integral is just the difference of Fermi ener-
gies between the two reservoirs, which is equivalent to the
electrochemical potential difference between the two volt-
age probes. Hence we find

e2

19=S-Ay.

3.15
" (3.15)

The replacement of the sum by the integral can be made
more rigorous if we note that it corresponds to averaging
the expression with respect to 8 over the range 27. How-
ever, this introduces the new assumption that U,(B) is in-
dependent of 8 over this small range.

It is the aim of the next section and Appendix B to
demonstrate that this relationship is not disturbed by tak-
ing into account the residual interactions between the
electrons. This is done in each order of perturbation
theory: a modification of E () which produces a modifi-
cation of I is exactly matched by a modification of the
difference of electrochemical potentials.

Most of the previous microscopic descriptions of the
quantum Hall effect have used basically the sort of argu-
ment just given, but with somewhat less generality. Some
of these start with the properties of Landau wave. func-
tions in a uniform electric field and then study the modi-
fications produced by impurities. As we have seen, it is
not necessary to tie the discussion to such an unperturbed
starting point. The main requirement is that it be possible
to label successive one-particle eigenfunctions by an aver-
age wave number k without any physical gap, even if
there are relabeling gaps. It is possible that there are no
regions where the unperturbed wave functions are a good
approximation. Others have observed the generality of
Eq. (3.13) for a simplified two-dimensional system with
an effective electron mass. Chalker (1983) gives a deriva-
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tion of (3.13) in which the phase shifts produced by im-
purities are analyzed and related to a change in the
current. Joynt and Prange (1984) give a derivation some-
what similar to ours in that it is based on the Feynman-
Hellman theorem. The derivation of (3.13) alone can be
much simpler than the one given here, but it will be seen
in Sec. IV that the definition using f3 is very powerful for
studying the effect of perturbations. The discussion given
here is an improvement over earlier ones in that fewer as-
sumptions are made about the physics of the eigenfunc-
tions in the “two-dimensional” region. The concept of ef-
fective mass is unnecessary; the presence of atoms is taken
into account; features of the potential such as impurities
need hardly be mentioned since they are automatically
taken into account [however, see the discussion about the
potential following Eq. (3.8¢)]. The essential features of
the single-particle eigenfunctions are that some are local-
ized eigenfunctions independent of B and others are ex-
tended eigenfunctions which have a definable phase
change from one end of the sample to the other, permit-
ting the definition of an average longitudinal wave num-
ber. The wave numbers need not be unique if the eigen-
functions have two-dimensional zeros, but this causes no
essential difficulties. Also, the practically continuous
behavior of successive eigenfunctions in a relabeling gap
region is stressed here.

The replacement of the sum by an integral in passing
from Eq. (3.13) to (3.14) of course requires that this
description not be distorted by the presence of an exces-
sive number of relabeling gaps. This is a subject for fur-
ther study. Hard boundaries at the edges of the “two-
dimensional” region play a secondary role in this discus-
sion. However, it is possible that they provide a feature
of the environment that assists in the establishment of
equilibrium with the reservoir as described in Sec. V. It
seems closer to the real physical situation to introduce
high- and low-potential reservoirs to represent the voltage
probes. In the present analysis, there is a realistic poten-
tial difference (perhaps of order 100 mV), not an infini-
tesimal one. Incidentally, it is not possible to produce a
known Hall current in a sample simply by applying an
external electric field across the sample from the outside.
Even with such a field, the extended eigenfunctions could
fill up in such a way that they have no net energy differ-
ence across the sample and hence no net current. If a
Hall current is sent through the sample, the appropriate
energy difference will be produced across the sample; but
it will have no simple relationship to the applied electric
field.

B
"y -

(c)

OO - O

FIG. 11. Graphical elements for the construction of perturba-
tion theory. In (a) is shown the four-operator contribution cor-
responding to Eq. (4.1). An incoming line represents either a
particle state destroyed at the interaction or a hole state created
by the interaction; similar remarks hold for the outgoing lines.
In (b) is shown the two-operator part of the interaction corre-
sponding to Eq. (4.2). The first term gives a direct contribution
and the second an exchange contribution. The third term is the
subtracted effective potential. Note that the first two terms
have a dependence on 3 through the eigenfunctions labeled by
a, while the U, term is calculated for §=0. (c) shows the sim-
plest contributions to the shift in the reference state energy
caused by the perturbation. While these terms do not cancel in
the energy, their leading contribution to the current does.

IV. THE SELF-CONSISTENT POTENTIAL
AND PERTURBATION THEORY

A. Formulation of the self-consistent
potential

When we insert the definition (3.4b) into the perturba-
tion Hamiltonian (3.3¢c) and rearrange the various terms
in normal order, three types of terms are produced. The
first has products of combinations of four creation and
annihilation operators. It is given by

Hy=4 [ NIp 09 ) Uy(x, x)dx Wix) Td e d
(4.1)

where N stands for normal ordering. It is represented
graphically by Fig. 11(a).

The second, which is pictured in Fig. 11(b), has two
such operators and is given by

Hi= [ N| 3[4 x0xUs x5 WU u(x) — T (000U, (x, x5 x)x)]

— i (x) U (x,x)G(x,x)(x") |d3x d3x .

(4.2a)

Here we have made U, explicitly nonlocal, as is true in the general case. The factor G, which is introduced to assure
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gauge invariance, is given by

G(x,x")=exp

l.e X 17 n . ’
~% fx,A(x )dx"—iB(x —x")/L | . (4.2b)

It would appear desirable to choose U, so that Eq. (4.2a) cancels out. However, to avoid cumbersome complications, it
turns out to be advisable to choose U, to be independent of 3. Therefore we define U, in terms of single-particle eigen-
functions defined for B=0 and for some particular reference gauge A,. It also proves useful to incorporate some
higher-order effects from U, into U, so we define only the first-order contribution to U, at this point:

ULV (x,x)=Go(x,x)"' 3 [8(X——x') J Uax Xl (X W ()" — 9l (X0 (U5 (x,%1) | (4.2¢)

29

where the subscript O on G and a refers to the choice of reference gauge and to 8=0. Now H has been constructed so
that to first order in U, it vanishes when 8=0. This means that when it is used in perturbation theory to work out a
contribution to Eq. (3.7), it provides the factor which must be differentiated. Consequently, it can occur.only once, since
we set B=0 after differentiating. It might appear that the factor G could as well have been omitted, since the U, term
must cancel between the two pieces of the Hamiltonian in Eq. (3.3). However, it would then have turned out that the
current density defined for the unperturbed part of the Hamiltonian alone would not have been conserved. With G, one
can easily identify another piece of the current-density operator which yields a conserved current and where the total
current is also generated properly from Eq. (3.7).

Finally, the third is a nonoperator contribution to the energy which must be taken into account in calculating the
current. It is pictured in Fig. 11(c) and is given by

E'= [ |3 3 W00 Us(x x W W () — X)) U (5, X W2 %]
— 3 LU (x,X)G(x,x Wu(x’) |d*x dx" . 4.3)

Note that the B dependence still occurs in the functions appearing explicitly here even though it does not occur in U;.
However, when this expression is differentiated with respect to 3, which is then set equal to O, all the terms cancel to first
order by virtue of Eq. (4.2c). [The easiest way to see that the 3 dependence of G causes no difficulty is first to rewrite
Eq. (4.3) in terms of the functions ¢’ defined in (3.10a).] To first order, this choice of U\’ seems to be optimal. Any
other choice would be “self-correcting” in the sense that changes induced in the basic single-particle eigenfunctions
would be offset by compensating changes in the perturbations due to Egs. (4.2a) and (4.3). However, that would make
the analysis unnecessarily cumbersome. When we turn to perturbation theory (without incorporating higher-order effects
into U,), it will be necessary to take into account at most one order in (4.2a) together with all orders of (4.1).

B. Perturbation theory for a class of contributions

Here we consider only those contributions to the energy E () which are one-particle—one-hole irreducible. This
means that the diagrams representing those contributions cannot be separated into two pieces by cutting two lines. The
reason for making this restriction will appear later. Appendix B removes this restriction from the discussion.

Before proceeding to a general discussion of perturbation theory, let us consider the second-order contribution to the
energy of the ground state.  This will have all the ingredients we need to understand the general case. The two contribu-
tions are illustrated by the graphs in Fig. 12. We write out that of Fig. 12(a) explicitly:

P X WX U (X, X)W (5 i )W (k) (%3) Uy (X3, KW (X)W (X4)

EqtEy—Ez—Ey

EPB =57 3 fd3x1d3x2d3x3d3x4

a,a',a,a
(4.4)

We have to evaluate the derivative of this with respect to 3, taking into account that we get pairs of ‘equal contributions.
For convenience, we have expressed this in terms of the functions ¢’ introduced in Eq. (3.10), since these are independent
of B for localized states and have simpler derivatives for extended states.

In differentiating the  or @’ dependence, we may ignore localized states and use Eq. (3.10c) to change derivatives with
respect to 3 into derivatives with respect to k for the extended states. Thus we find the term

ot , ot , ot , ot , ’
d 3 s s s e XOVRX)Un (X4, X000 (X W5 ()95 (X3)8hi (X3) U (X3, XY 5 (X1 (X4)
% Tok > [ d’xd’x,d%5d x, S ——— .45

a',a,a
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The inner sum has an obvious interpretation. It is a contribution to the self-energy of a hole, with sign reversed because
of the anticommutation relations, as represented by Fig. 13(a). (Note that the internal lines of the self-energy are in-
dependent of k when the differentiation is carried out.) A similar contribution arising from differentiating the contribu-
tion of Fig. 12(b) is shown in Fig. 13(c). '

The terms arising from differentiating the @ or & dependence do not have such a direct interpretation and require a
special trick to rearrange them. Consider the relevant factors containing the & dependence in Eq. (4.4). It takes the form

PP (x3)

2 ‘—K':E‘-“-F(Xl,xﬂ N (4.6a)
a

a

where we have suppressed some of the dependence that is irrelevant for the present discussion. Now we take the follow-
ing steps: Rewrite the sum in Eq. (4.6a) as a sum over all states minus a sum over filled states. In the sum over all
states, we replace the energy in the denominator by the single-particle Hamiltonian /49 acting on the eigenfunction and
then use closure to find

08(x,—x3)F(x1,x3) . (46b)

_r

K —hj
With certain cautions to be described in a moment, the resulting operator is independent of 3, and the term vanishes
when differentiated (recall that the 8 dependence in F is treated elsewhere). Again dropping localized-state contributions
and using Eq. (3.10c¢) for the extended states, we find that the subtracted term becomes

PRV (%) Un (%1, X)W (X)W (R U (K3 %3) U (X3, X)W (K ()

EqtEy—Ex—Ey

_y_9
"< Lok

2 fd3X1d3de3.X3d3.X4

o,a,@

4.7)

This term is illustrated in Fig. 13(b). It is the derivative
of the negative of another second-order contribution to
the self-energy of a hole. The diagrams associated with
Fig. 12(b) are shown in Figs. 13(c) and 13(d); they com-
plete the set of second-order contributions to the self-
energy of a hole. ‘

It is easy to see that the same procedure may be applied
to any one-particle—one-hole irreducible contribution.
The only change from Eq. (4.6) is that the energy €; may
occur in several denominators. Diagrams involving the
interaction (4.2a) also make their proper contributions.
Extension of the argument to incorporate multiparticle
interactions is also obvious.

At this point, we state the general result that this result
exemplifies. Suppose we calculate the nth-order contribu-
tion E™ to the energy of the ground state and do the
same thing for the energy of a hole, which we call — EM.
Then their derivatives are related by

IEM(B) 1 < OE"
B L= ok

(4.8)

FIG. 12. The two second-order contributions to the energy of
the reference state. (a) is the direct term and (b) the exchange
term.
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Replacing the sum by an integral, we find that the right-
hand side can be replaced by (E;(c";)ax ~E}(';’in )/2ar. This is

our objective. To any order of perturbation, the current
and the difference of chemical potentials are modified in
the same way.

The form of the result (4.8) is important; it gives a use-
ful relationship which is valid whatever the size of the ef-
fect, so that it is not necessary actually to calculate
corrections. In an early stage of this work, the author at-
tempted to estimate the perturbative corrections to the

k (c)

FIG. 13. The four-hole self-energy contributions which arise
from differentiating the contributions from Fig. 12. (a) and (c)
arise from differentiating the dependence of the @ or a' lines.

(b) and (d) arise from differentiating the dependence of the & or

&’ lines, after a mathematical transformation.
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current and found that they are not characterized by a
particularly small expansion parameter. This will now be
described very briefly. If two pairs are excited by the per-
turbation (the careful definition of the self-consistent po-
tential avoids single-pair excitation), each electron in an
excited state gives a current contribution dez/dk, while
the absence of an electron from the original state gives a
contribution —9dg; /3k. These are to be multiplied by the
probability of the double-pair excitation, of course. These
contributions can easily be identified by differentiating
the energy denominator of (4.4). The original attempt did
not incorporate the other terms from differentiating the
wave function or recognize that the whole thing was a
perfect derivative. Using a very simplified model for the
interaction and the wave functions, it is not hard to esti-
mate the order of magnitude of the correction. It turns
out that the current correction for a given k has cancella-
tions, and the estimate gives

2
, %0k
i

1
BIkoz———256

m*l
mka

b

where I is the current of an eigenfunction labeled k and
81y, is the modification of the current for pairs whose

mean wave number is ko (=k). The Bohr radius a is in-
troduced as a convenient length scale, k (=10) is the
dielectric constant, and m*/m (~0.1) is the ratio of the
electron’s effective to its actual mass. The combination
m*l/mka is fortuitously approximately 1. This estimate
does not include the effects of exchange and finite layer
thickness, which reduce the result somewhat. The fact
that this is also a perfect derivative should not be taken
seriously because of the crudity of the model; presumably,
the fact that it is larger when g; varies erratically could
have significance. - It is helpful that the numerical coeffi-
cient is somewhat small. The net effect, though, is that
one might expect corrections on the order of 0.1%), which
are much too large for one to be hopeful about making a
systematic perturbative calculation valid to better than 1
part in 107. On the other hand, they may be small enough
to make us optimistic about the possible convergence of
the expansion so that the validity of Eq. (4.8) order by or-
der encourages us to believe that the complete set of
corrections does not change the ideal quantum Hall rela-
tion. '

Now we have to return to a subtlety that was glossed
‘over when we dropped the derivative with respect to 3 of
a sum over a complete set of states, which led to an ex-
pression apparently independent of 3. The difficulty with
this is that the operator still acts in a Hilbert space which
incorporates the -dependent boundary conditions. Thus
the legitimacy of dropping this term depends on the con-
text in which it is to be used. If the remaining factors to
be summed and integrated over evaluate the expression in
a local way—i.e., one that is not sensitive to the boundary
conditions—then the neglect of the derivative is justified.
However, if the remaining factors can be sensitive to con-
ditions at opposite ends of the sample, then the dropping
of this term could be unjustified. For the contributions
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discussed in this section, there seems to be no problem.
However, if we start with a one-particle—one-hole reduci-
ble contribution, as illustrated in Fig. 14(a), and blindly
follow the procedure given here, we obtain one-hole redu-
cible contributions to the hole energy as illustrated in
Figs. 14(b) and 14(c). One of these [Fig. 14(c)] can have a
small denominator corresponding to the hole propagating
a long distance through the medium between self-
interactions. The fact that these are sensitive to the boun-
dary conditions is clear, and our present analysis is not
justified for them. To take them into account, we need a
more sophisticated procedure in which U, is modified to
make the hole self-energies vanish on the energy shell.
Such a procedure is described in Appendix B.

V. SOME REFINEMENTS

Let us recall quickly the main features of our model.
We assume that the “active” electrons move in an exter-
nal potential provided by the bulk matter and that their
interactions with each other may be influenced by the
bulk matter. We also assume that the complete eigen-
states of the energy, like those of the unperturbed problem
with a self-consistent potential, can have a finite Hall
current. We have invoked the existence of interactions
with bulk matter excitations to permit each voltage probe,
which serves an an electron reservoir, to come to an
equilibrium internally with some Fermi energy. These in-
teractions also permit the complete quantum state to relax
to the most stable one for a given value of the Hall
current. Other than that, interactions with bulk matter
excitations are outside of the model Hamiltonian. In the
“two-dimensional” region, we have (almost) a pure quan-
tum state, provided the temperature is sufficiently small.

Ql
o]
Ql
Q

k
(a) (b) (c)

FIG. 14. (a) shows a contribution to the self-energy of the refer-
ence state, which is one-particle—one-hole reducible. When dif-
ferentiated, it produces, among other terms, the contributions of
(b) and (c). Contribution (b) arises from differentiating the «
dependence of (a). Contribution (c) arises from the & depen-
dence by differentiating and making a mathematical transfor-
mation. In this case, the mathematical transformation is unjus-
tified.
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This state is the lowest energy state that carries the speci-
fied current.!®

This section deals with a number of topics that seem
helpful for a detailed understanding of the physics of the
quantum Hall devices. Because of the great variety of de-
vices and situations, we try to emphasize a few features
that might be more general. Except for the last topic,
which has to do with nonminimal electromagnetic cou-
pling, these topics are concerned mainly with the nature
of the metastable quantum state in the plateau region, and
how that metastability might break down between pla-
teaus. Since we are more interested in enlarging our intui-
tive understanding than in giving a rigorous development,
this discussion is in terms of single-particle eigenfunc-
tions. The residual electron-electron interactions make
the actual quantum state very complicated, but we assume
that the concept of an electrochemical potential within
each reservoir is still meaningful. In any case, the work
of Appendix B shows that the effective potential in prin-
ciple takes into account those residual interactions in the
definition of the single-particle eigenfunctions. We as-
sume that the relaxation to states of lower energy can be
understood in terms of single-particle transitions in which
the initial and final single-particle states have some over-
lap in space.

A. Speculations on the equilibrium
at the edge

In our discussion up to this point, we think of the two
probes and the “two-dimensional” layer as three nearly
independent dynamical systems aside from the assump-
tion that they come to an equilibrium in which the
single-particle energies at the edge of the layer must
match the Fermi energy within the nearby probe. A
probe is a three-dimensional conducting region in which
the electrons establish an equilibrium with all one-particle
states filled up to the Fermi energy.

Our present aim is to give a discussion of the equilibri-
um between extended eigenfunctions that pass near a
reservoir and those confined to that reservoir. Strictly
speaking, there is no sharp break between the two types of
eigenfunctions. Certain eigenfunctions extend from one
end of the sample to the other, yet have a significant
probability of being inside a reservoir. We may think of
the eigenfunctions as tunneling from one region to the

15Here we ignore the complications of the fractional quantum
Hall effect, but make a few remarks about the situation in this
footnote. Because of the residual interactions between the elec-
trons, it is possible that several different states of very different
nature might carry the same current but have different electro-
chemical potential differences. Presumably, the interaction with
bulk matter excitations would result in the experimental realiza-
tion only of the one having the lowest energy, which under some
circumstances would correspond to the fractional effect.
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other, even though there may not be a potential barrier in
the ordinary sense. We refer to these as transitional eigen-
Sfunctions. In the following, we examine their general
properties without attempting an explicit calculation of
individual eigenfunctions. The potential that acts on
these eigenfunctions must be very complicated, since it in-
volves both the probe and the edges of the sample. Since
we are concerned primarily with understanding the quali-
tative features of the eigenfunctions, it seems reasonable
to ignore some of the complications that were discussed
previously, such as the possible presence of relabeling
gaps - and nonlocality of the effective potential. However,
our treatment must be three dimensional and it need not
ignore the microscopic structure such as the presence of
individual atoms. Where necessary, we invoke the ex-
clusion principle, which requires that an extended eigen-
function not penetrate significantly into a reservoir unless
its energy be at or above the Fermi energy of the reser-
voir; technically, this might be incorporated in the nonlo-
cal structure of the effective potential.

In Sec. III arguments are given that an approximate
measure of the average transverse displacement of an ex-
tended eigenfunction is given by Eq. (3.9¢), which we re-
peat here for convenience,

yi=kI?. (5.1

In case there are two-dimensional zeros, this expression is
associated with a particular path through the sample. It
gives no indication whatever of where the eigenfunction is
located at a particular value of x. That location depends
on the phase dependence and is given approximately by
Eq. (3.9d). Moreover, eigenfunctions with the same k for
different levels (defined relative to the same overall path)
may pass through somewhat different parts of the sample.

In contrast to the extended eigenfunctions, the eigen-
functions confined to the reservoirs are in localized states.
Because this region is three dimensional, there are many
states of motion in the z direction, and states of all types
are filled up to the Fermi energy of the probe. These
eigenfunctions may extend into the semiconductor region
where they would generally be exponentially suppressed
with distance except possibly where a peak (as a function
of z) in the eigenfunction happens to coincide in position
with the potential well which provides the channel for the
Hall current. There, if the energy of an eigenfunction has
the right value, it may be possible for it to extend signifi-
cantly into the “two-dimensional” region. The fact that it
has more nodes in the z direction than normal “two-
dimensional” eigenfunctions should be inconsequential,
since the eigenfunction is already strongly damped wher-
ever those nodes occur.

As yp is increased, successive eigenfunctions move
transversely across the sample until they come into con-
tact with the probe or the edge of the sample, or both.
Various situations may occur, depending on the relation-
ship between g, and the Fermi energy of the probe. If
e, > Ep for a filled state close to the probe, that state can
decay into the probe by exciting the bulk matter. This
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would correspond to a current flow across the sample,
which is not possible for a metastable state. Hence, in the
plateau region, there cannot be filled states in the nearby
“two-dimensional” region whose energy is more than Ef.
“Nearby” means that they have sufficient spatial overlap
with the probe that they would be able to decay quickly
into it. In practice, this means that filled eigenfunctions
that pass within a few magnetic lengths of the probe must
have g, <Er. We have argued in Secs. II and III that
eigenfunctions near the high-potential probe need not be
filled provided that their energy is precisely the Fermi en-
ergy of that probe. If their energy is higher, they will de-
cay into the probe; if it is lower, they will be filled from-
the probe.!® In the metastable states, this partial filling is
not expected near the low-potential probe because there
are always filled states of higher energy in the “two-
dimensional” region which are available to fill them.
Next, let us consider qualitatively the behavior of the
transitional eigenfunctions. The main thing that we must
assume is that the quantity y, retains some qualitative va-
lidity in this region; that is, two eigenfunctions that have
different values of y, along the same general path will
have some overall transverse displacement in the direction
indicated by y;. Suppose then that as y; increases the
first eigenfunctions that overlap the probe slightly have
€x < Er. Since they must remain orthogonal to the local-
ized eigenfunctions in the probe, their probability to be in-
side the probe should be small. Unless g can approach
Ep, these eigenfunctions cannot move very far inside of
the probe as y; increases. Therefore the eigenfunctions
must move toward the edge (in a region away from the
probe) as y increases. As they come into contact with
the edge, their energy can begin to increase with y;. As
they are in contact with the probe also, all states satisfy-
ing € <Er must then be filled. (In detail, the self-
consistent potential may be important in this process.)
But since the edge region can support states of arbitrarily
large energy on the scale of interest (by pushing y,

16The preceding two sentences cannot be exactly true, since
they do not take into account the self-consistent potential. It is
highly unlikely that the single-particle energies are exactly de-
generate in this region. Because of the near degeneracy, the
residual interactions and thermal fluctuations are likely to be
relatively important. This should result in some fluctuations
about the ideal quantum Hall relation, but not enough is known
about the nature of the states to estimate the size of such fluc-
tuations. If the partial filling were to approach certain frac-
tions, the residual interactions would lead to states of lower en-
ergy, and a transition to the fractional quantum Hall effect
could occur (Laughlin, 1983). Barring such behavior,
Laughlin’s argument would appear to suggest that these fluc-
tuations tend to average out over a range of 3 of 27r. To the ex-
tent that localized states play a role as reservoirs, they would
tend to prevent a partially filled region and hence help avoid
this question. If the general picture being presented here is basi-
cally correct, this point bears further investigation.
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beyond the actual boundary if necessary), this means that
eigenfunctions in contact with the probe will fill up pre-
cisely to Eg.

This establishes the main assumption we had to make
in Sec. III. Figure 15(a) illustrates this for some represen-
tative eigenfunctions. The one labeled a is in contact
with the probe, but not the edge. After a sufficient in-
crease of y;, the one labeled 8 has moved over to the edge
but not advanced appreciably into the probe. Finally,
with a further increase of y,, the one labeled y has
pushed sufficiently into the edge region that its energy
rises close to the Fermi energy of the probe. We regard
this as a possible, but not necessarily the only, scenario
for the extended states to be in equilibrium with the
probe. The essential point is that the extended region has
available single-particle states whose energy spans the
Fermi energy of the probe. Provided a mechanism exists
(which I have tried to illustrate), the extended states must
fill up to that Fermi energy.

It is also of interest to know whether ¢, approaches Ep
smoothly as a function of y;; this could be related to the
question of accuracy through the step of replacing the
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FIG. 15. (a) The possible behavior of eigenfunctions near the
probe and sample edge as the average wave number k (or
equivalently y; =kl? is varied. In the situation shown, the
single-particle energies €; approach the Fermi energy of the
probe from below. The eigenfunction labeled « is for a y; such
that the eigenfunction overlaps the probe very slightly. With an
increase of yi, an eigenfunction labeled j3 lies close to the edge,
but still penetrates the probe only slightly. With further in-
crease of yi, the eigenfunction labeled y passes through the
probe and has pushed further into the edge of the sample. (b)
The probability for an eigenfunction to be inside the probe plot-
ted as a function of y; the region for calculating the probability
extends a short distance outside the probe to include tails of the
eigenfunctions. Each dot represents one eigenfunction; a realis-
tic figure might include of the order of 10° dots. (c) A plot of
the eigenvalues €, as a function of yy.
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sum by an integral in Eq. (3.14). This is an interesting
question which deserves study. We describe here how it is
possible that this approach might be smooth, even though
g; would be a very steep function of yy(x) near the edge.
We need only consider the case where g, < Ep for an
eigenfunction that first makes significant contact with the
probe. As y; increases further, the energy will not change
much until the eigenfunction approaches the edge; i.e., at
this stage, y, varies more rapidly with y, in the edge re-
gion than in the probe. At that point, g; will start to in-
crease and the eigenfunction will be able to enter the
probe and increase its probability there. This will de-
crease the probability for the wave function to be in the
“two-dimensional” region [i.e., R? in Eq. (3.9) gets small-
er there]. Since y, is increasing both in the probe and
elsewhere, the change of g, with y, is smaller than if it
increased only at the edge. As the probability to be inside
the probe becomes more and more significant, the value
of R? along the edge gets smaller and the current carried
by an eigenfunction decreases also (in spite of the fact
that it is in an electric field which is effectively larger as
the eigenfunction is pushed toward the edge). From Eq.
(3.13), this implies d¢; /0k —0 as y; increases. The argu-
ment just given is intended to be suggestive; the actual
dependence has not yet been determined.

If this picture of the transitional eigenfunctions is
correct, we would expect that the probability that an ex-
tended eigenfunction is inside the reservoir gradually in-
creases as y; moves toward its limiting value, finally ap-
proaching unity, corresponding to a state that is com-
pletely localized there. In defining this probability we
should use a volume slightly larger than that of the actual
conductor, so as to include the exponentially decreasing
probability distribution outside the conductor. The prob-
ability that an extended eigenfunction is inside this
volume is indicated schematically in Fig. 15(b), where it is
assumed that g, < Er as the probe is approached, as in
Fig. 15(a). Each dot represents one such eigenfunction.
As the probability that an eigenfunction is inside the con-
ductor increases, the current carried by that state also de-
creases unless the local velocity in the “two-dimensional”
region increases sharply in a compensating way; as
described above, we assume this does not happen. The en-
ergy should then behave as a function of y; as illustrated
in Fig. 15(c).

B. Mechanism for higher plateaus

In regions away from the edges, higher Landau levels
for a given k are separated in energy from the ground lev-
el by approximate multiples of #w., where w, is the cy-
clotron frequency (=eB/m™, where m* is the effective
mass). Although the cyclotron frequency depends on the
effective mass, we need not be concerned about its precise
description. At the larger magnetic field strengths, this
energy separation is of the order of 10 meV. Except for
the case of valley degeneracy, the excitation energy of
higher sub-bands is of the same order of magnitude but
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probably a little larger. The spin interaction with the
magnetic field is typically much less, both because the
Landau excitation energy is enhanced because of the small
effective mass and because the g, factor of the electrons is
reduced in the medium of the sample. It should be clear
from our prior discussion that the quantum Hall effect
does not require that the level separations be independent
of k. In fact, the existence of the higher plateaus indi-
cates that several different types of states can be in equili-
brium with the reservoir at the same time. How does this -
happen? First it should be clear that all these types of
states exist inside the reservoir and have the same Fermi
energy. Of course, inside the reservoir, there is no distinc-
tion such as sub-band excitation, but, nevertheless, it
should be possible for “two-dimensional” states with that
type of excitation to extend into the reservoir.

The highest level that is in equilibrium with the probe
must have its g; approach Er from below or be very flat
as a function of y;. Far from the edges and probes, we
expect all levels to follow a similar path through the sam-
ple for a given value of y,. The energy difference be-
tween different levels should be approximately indepen-
dent of y; within the interior of the ‘“two-dimensional”
region, but it is not necessary for our considerations that
this be exactly constant across the sample. For example,
a not perfectly homogeneous magnetic field or sample
properties which cause w, to depend on position do not
disturb our conclusions. However, transitional eigenfunc-
tions may have very different paths through the sample
for a given value of y;, and their energy separations may
change very dramatically.

In order to have lower states in equilibrium with the
reservoir, it is then necessary that they rise very rapidly in
energy near the reservoir before turning over to match the
Fermi energy. We have seen how this is possible in the
previous subsection. As changing y; causes the states to
reach the reservoir and enter it, the highest state will ap-
proach the Fermi energy first in the manner described in
the previous subsection. Lower-lying states will be unable
to enter the reservoir for the same value of y;. As y; in-
creases, these eigenfunctions bend around to avoid the
reservoir and are pushed toward the edge of the sample
elsewhere. This causes their energy to rise until they can
come into equilibrium with the Fermi level inside the
reservoir. Thus two energy levels (or more) can merge at
a reservoir. This can happen because the paths of the
eigenfunctions through the sample can be different for
different excitations. An example is shown for two levels
in Fig. 16(a).

If this merging of energy levels happens only at the
low-potential reservoir, the second Landau level may be
partially filled as illustrated in Fig. 16(b). This corre-
sponds to the situation in which the filling factor is in-
creased from 1 slightly and the change of effective poten-
tial is negative. The availability of the second Landau
level to accept electrons prevents a large negative change
of the effective potential. It is possible for the second
Landau level to fill in such a way that there is no energy
difference between its two limiting values of y;. (Of
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FIG. 16. (a) The energies of two different Landau levels near a
voltage probe. When both states with the same y; are far from
the probe, their energy difference is approximately fiw.. Choos-
ing a condition such that the higher level goes rather smoothly
to the probe’s Fermi energy as y; is varied, we find that the
lower level would tend to come in below that level. Since it
must remain -orthogonal to filled eigenfunctions within the
three-dimensional region, the associated states take a different
path through the sample and ultimately come into equilibrium
with the same Fermi level. (b) Illustration of the possible role of
a higher Landau level in maintaining a plateau as the magnetic
field is decreased; vertical and horizontal scales are reduced as
compared to (a). The higher level can accept some electrons
near the Fermi energy of the (+) terminal without carrying a
net current. The dotted portion of the higher level shows the
energies of unoccupied states.

course, this possibility may be inhibited because the relax-
ation time required to establish equilibrium might be very
large.) If this condition is established, the second Landau
level should give no contribution to the current from its
term in (3.14) (of course, the replacement of the sum by
the integral may introduce a more significant error in this
case). This is how the second Landau level could conceiv-
ably contribute to the ground-state plateau behavior, as
mentioned in Sec. III. As the gate voltage or magnetic
field is changed further, the second Landau level begins to
carry a net current, causing a transition to the next pla-
teau in which it finally comes to equilibrium with the
high-potential probe. '

C. Criteria for the breakdown of metastability
What is the physical distinction between the plateaus

and the transition region between them? Here we must
distinguish between our model, which we hope gives a sa-
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tisfactory description of the physics of the plateaus at
zero temperature, and the real physics of the sample,
which would be necessary for a description of the dissipa-
tive processes that take place away from the plateaus.
Our overview is that, if the extended states of a given lev-
el in the current-carrying region can be kept filled, there
will be no dissipative collisions and no current flow across
the sample from one voltage probe to the other. Under
these conditions, we believe it should be possible to treat
the physics with the idealized quantum states that have
been described in this paper. It is a feature of these states
that they are metastable, as has been emphasized repeat-
edly. In the actual sample, the system is constrained not
to have a current flow between the voltage probes. If the
extended states in a region where €; varies with k cannot
be kept filled for some reason, there could be current flow
across the sample by phonon emission. Because of the
constraint, the resulting transverse current flow must be
balanced by a Hall current produced by a potential drop
along the sample. Thus the breakdown of metastability is
directly related to the existence of longitudinal resistance.

In the model Hamiltonian, the system can lower its en-
ergy (by exciting the bulk matter) whenever electrons can
work their way across the sample from the high-potential
reservoir to the low one. If only one level is involved, and
if all the (one-particle) states of that level in the “two-
dimensional” region are kept filled, it is very difficult for
an electron to jump all the way across the sample. How-
ever, what is to prevent an electron near the low-potential
reservoir from moving into the reservoir to create a hole,
which can then work its way over to the high-potential
reservoir to produce the same effect? If the energy level is
rising as the (4 ) probe is approached, this could happen
only if the electron could absorb energy from the bulk
matter. Ultimately, as the electrons cascade down to fill
the hole created, more energy would be returned to the
bulk matter than was originally required to start the pro-
cess. This could not happen at zero temperature as a suc-
cession of real processes, but it might be a significant ef-
fect at finite temperatures, or it might occur as some
high-order virtual process. The small size of the longitu-
dinal resistance might be regarded as indirect evidence
that, in order to maintain the metastability, the energy
levels are either very flat in y; or rise slightly as the low-
potential reservoir is approached.

As the magnetic field is increased or the gate voltage is
changed to decrease the filling factor, we have argued that
the energy-level dependence on y; should become very
asymmetric across the sample, with a very precipitous
drop near the low-potential probe. This means that as y;
is varied to go away from that probe, the energy level
must ultimately rise by the Hall voltage within a small
fraction of the total width; in some circumstances, this is
of order 100 meV. If a potential rise exceeding the Lan-
dau and/or sub-band excitation energy gets close enough
spatially to the probe, there should be a breakdown of our
picture resulting in current flow across the sample. We
may refer to this as a leakage into higher levels. While
this seems qualitatively plausible, no detailed calculations
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have been made to find out at what point this happens,
and it would be expected to be very sensitive to the
geometric details of the sample. It seems likely that there
would be a considerable difference in the onset of the
breakdown, depending on whether the probe is imbedded
directly in the “two-dimensional” region or is off to the
side on a tab. In the latter case, the three-dimensional
probe would be more isolated from the rapid change of
energy with y; and the plateau might persist to larger
changes in the filling factor. This mechanism for the
breakdown, like other ones, would also make the plateau
width smaller for larger Hall currents.

There are other possible mechanisms for a breakdown.
For example, there can be variable-range hopping of elec-
trons from one localized state to another (Tsui et al.,
1982a; Ebert, von Klitzing, Probst et al., 1983; Wysokin-
ski and Brenig, 1983). We have tentatively guessed that
this and exchange of electrons between extended and lo-
calized states might tend to fill the localized states up to
the Fermi energy of the highest-potential reservoir. But,
obviously, localized states that are too far from that probe
to have any significant spatial overlap with it could be
filled to some other level which depends more on the local
environment. Any filled extended (one-particle) states
that overlap a localized region will come to equilibrium
with it ultimately and fill it to some level that may vary
across the sample, corresponding to a Fermi level that
varies with position across the sample. Locally this level
should not fall below the energy of nearby extended
states. The electrons in localized states might be able to
move across the sample by hopping from one localized re-
gion to another or by jumping to unfilled higher Landau
or sub-band states. Once an electron is in a higher level,
it could move easily across the sample and ultimately
drop into the lower-potential probe. Meanwhile, electrons
from the original filled extended states would be dropping
into the localized states to try to maintain them at the

preferred level. The resulting holes would also contribute’

to the current flow across the sample and the breakdown.
This mechanism would clearly be enhanced as the filling
factor is changed in such a way that a precipitous voltage
drop occurs in a small transverse region.

We have noted previously that possibly many Landau
levels can lie in the energy interval between the Fermi en-
ergies of the two probes. Then another mechanism not
requiring localized states is that, when the effective poten-

tial changes rapidly with y, different Landau or sub-band -

levels of the same energy may begin to have a good spatial
overlap with each other. For example, if /3¢, /9y, ~#w,,
states in the second Landau level will have a large overlap
with states of the same energy in the ground level. This
corresponds roughly to the situation in the semiclassical
picture in which the drift velocity is comparable to the
velocity of the cyclotron motion. This condition would
require a very large potential gradient, of order 10* V/cm.
This is much larger than typical applied voltage gra-
dients. Even where a breakdown is caused by imposing
large currents, the average gradients are only of order 10?
V/cem (Cage et al., 1983; Ebert, von Klitzing, Ploog, and
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Weimann, 1983; Kuchar et al., 1984).

Inside the sample, the voltage gradients may be much
larger than the average across the sample. In our intuitive
discussion of Sec. II, it was remarked that an increase of
1% of B from its value at the “center” of the plateau
might cause the current-carrying width to shrink to 10~3
of its original size. The electric field in that region could
then easily be 10° V/cm. A similar large increase of the
electric field would take place with a decrease of B. This
local gradient would be a very sensitive function of the
filling factor and the geometrical arrangement. Impuri-
ties might have a similar effect. Near them, it should be
possible for states from two different levels of nearly the
same energy to approach each other in space. Even with
a much weaker overlap than is suggested by the above cri-
terion, the breakdown might be significant because an
electron in the lowest Landau level can decay into any of
several states in a higher level, and there may be a numer-
ical enhancement even though the overlap to any indivi-
dual level may be small. Also, once an electron has de-
cayed to a higher level, it is very quickly swept away by
the field, and that may enhance the effect.

Another mechanism that has been mentioned in the
literature is that there may be a kind of Cherenkov effect
when the drift velocity of the electrons exceeds the veloci-
ty of sound in the medium (Heinonen et al., 1984; Streda
and von Klitzing, 1984).

D. Open versus closed

The previous discussion sets forth my belief that, for
purposes of discussing the plateaus, our model closed sys-
tem should be adequate. It may also indicate some causes
of the breakdown that occurs between the plateaus. It has
some awkward features which have been swept under the
rug in the previous discussion. The periodic boundary
condition has been employed so that we may isolate the
sample from a full treatment including the external
world. This seems very plausible, and it appears that the
main. role of this condition is that it permits us to treat
the single-particle states as discrete and countable rather
than with a continuum normalization. It is also true that
when the electrons are not inside the sample they are sub-
ject to incoherent inelastic collisions, so that our attempt
to treat the problem as describable by a pure quantum
state would be totally wrong. Perhaps it is possible to
give a treatment that is better in principle, but it is hard
to see how such a treatment would improve our actual
understanding of the physical mechanisms involved. Pro-
vided that the dynamical effects of the bulk matter are
suppressed within a sufficiently large region of the sample
because of the exclusion principle for the active electrons,
we expect that the behavior in that region will be similar
to that of a pure state.

There are probably some technical mathematical prob-
lems that have been ignored in the use of the periodic
boundary condition. We have assumed that since the lo-
calized wave functions decay exponentially with distance



D. R. Yennie: Integral quantum Hall effect for nonspecialists 815

with a characteristic length /, the periodic boundary con-
dition has negligible impact on them. Localized states
that lie near the ends of the sample necessarily occur at
both ends, due to the periodic boundary condition. I have
not investigated whether this upsets the logic of the per-
turbation discussion; but if it does, I would regard it as an
unphysical artifact which should be ignored. Neverthe-
less, it may be necessary to understand some of these
questions if the question of accuracy (dependence on sam-
ple size) is to be properly understood.

E. Laughlin’s argument revisited

The connection of the discussion of the equilibrium in
the edge region with Laughlin’s (1981) argument is
straightforward. As 8 changes by 2, each of the dots in
Figs. 15(b) and 15(c) moves over to the next position. Let
us say that the signs are such that this is to the right in
these figures. Then the system of dots is restored to its
original configuration, but one dot has moved off the end
and the associated eigenfunction has been redefined to be
a reservoir eigenfunction. At no point is there a real
physical discontinuity, since the probability for the elec-
tron to be inside the reservoir is already unity well before
a dot reaches the point where this redefinition occurs.
Another way to look at this is to observe that a large
number of eigenfunctions individually change their proba-
bilities to be in the reservoir by a tiny amount, but the net
result is that there is one additional electron charge in the
reservoir. The energy change can be viewed in a similar
way. The total energy of the particles in extended eigen-
functions has not changed, but the system has changed its
energy exactly by the amount required to remove an elec-
tron at the Fermi level in one probe and add an electron
at the Fermi level in the other probe.

While the ideas of this paper were being formulated, a
number of individuals raised some interesting questions,
which are dealt with here. They illustrate the power of
the Laughlin argument.!” Originally, I assumed an effec-
tive Hamiltonian that separated the physics into two
parts, one consisting of the ““active electrons” that reside

17Both Robert Schrieffer and Walter Kohn suggested that I in-
clude all the electrons in the analysis, not just those directly in-
volved in the Hall current. At the time, the problem seemed
complicated enough without extending it in that way. To in-

clude all the electrons would seem to mean that one would have

to deal with the problem of what holds the solid together. How-
ever, the question came back in a somewhat more pointed form

during a seminar given at SLAC. Leonard Susskind asked why |

one should use the physical electron charge in defining the
current, since the material has dielectric properties and that
charge should be partly shielded. Michael Peskin again suggest-
ed that one should simply include all the electrons in the treat-
ment; and Marvin Weinstein helped me develop that point of
view, which is described here.
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in the reservoirs and in the “two-dimensional” region and
that are not bound to atomic sites, and the other consist-
ing of electrons included as part of the bulk matter, whose
dynamics are suppressed except for the external potential
that the bulk matter provides for the active electrons.
The bulk matter could also influence the interaction be-
tween the active electrons, e.g., through a dielectric con-
stant, but none of its dynamical variables occurred in the
Hamiltonian describing the active electrons. The same
type of criticism can be leveled at this starting point as we
leveled earlier against the use of effective mass and literal
reduction of the physics to two dimensions. While our
model treats the physics more realistically, there is still
the question of whether it is adequate to deal with an ac-
curacy of 0.1 ppm. The fact that we have not found any
deviation from the precise quantum Hall relation within
our model does not logically mean that our conclusions
remain valid for a more correct Hamiltonian.

Naively, one can see why the charges bound in the bulk
matter should not affect the current. It is true that local-
ly around a moving electron the total charge, including
bound charges, is less than the physical electron charge.
Therefore the expression for the current density, which is
proportional to the physical charge, is incorrect. Howev-
er, we calculated the total current as the integral of the x
component of the current density over the whole material
divided by its total length. The total current density is
given by the expression we used plus the contribution
from bound electrons. Since the volume integral of the
latter expression must vanish, our result should remain
correct. The electric charge also enters in the electro-
chemical potential difference. Again, it is correct to use
the physical electron charge because that is the meaning
of the energy required to move an electron from one con-
ductor to another through an electrochemical potential
difference. Nevertheless, this discussion shows that the
bulk matter is involved dynamically in the problem, and
therefore it requires an extension. For example, it is con-
ceivable that, in suppressing the dynamics of the bulk
matter, the resulting effective Hamiltonian for the active
electrons contains types of terms that are not adequately
treated by our discussion. Perhaps the kinetic energy
term in the Hamiltonian is more complicated or perhaps
there occur nonminimal couplings. I have a suspicion
that, for any such changes, the same results could be at-
tained with a necessary elaboration of the arguments that
have been given (as, for example, in the following subsec-
tion), but it is probably better to try to deal with the com-
plete system.

Consider the complete system of positively charged nu-
clei and electrons and its quantum states. The Hamiltoni-
an (3.2) is generalized to include the kinetic energy of the
nuclei and Coulomb interactions between nuclei. Now V,
is the Coulomb interaction between an electron and all the
nuclei, and U, is the Coulomb interaction between elec-
trons without dielectric constant. The new Hamiltonian
is more fundamental. This time we want to freeze out the
dynamics of the nuclei by asserting that the electrons pro-
vide some sort of Born-Oppenheimer potential and that
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the nuclei sit at minima of the potential. (In principle, we
imagine that bulk matter excitations permit the quantum
states of the electrons to reach a local minimum just as
before.) The expression (3.7) is now valid for the current,
with the physical electron charge occurring in the coeffi-
cient. It is even possible to modify the kinetic energy
terms of the nuclei so that Eq. (3.7) incorporates the
current density associated with them. At this point, the
general properties of the states can be inferred from the
discussion in the preceding sections, and Laughlin’s argu-
ment may then be used to derive the quantum Hall rela-
tion. This permits the energy of the bulk matter to play a
role in Eq. (3.7); i.e., we have extended the dynamics
beyond those of the electrons participating directly in the
current. However, we must still assume that when S has
increased by 2, the energy change is accounted for en-
tirely by moving an electron from one electrochemical po-
tential to another. The electrons in the “two-
dimensional” region, including those bound to atoms, are
assumed to return closely to their original configuration,
so that the energy of that part of the system is unchanged.
Laughlin’s argument is also powerful enough to incorpo-
rate changes in the total energy of the system associated
with the bulk matter, such as those due to mechanical
stresses that result from the electric fields which are
present. These would show up as a modification of the
electrochemical potential.

Finally, it is useful to give an example of a case in
which Laughlin’s argument is not exactly valid. Whether
it is realized in actual situations is not known; it does shed
light on the physics of the argument. Suppose we have
the situation of Fig. 16(b) which was described at the end
of V.B. If B is increased continuously by 27, the usual ar-
gument applies to the ground-state level. However, as
each eigenfunction in the excited level moves one step to
the right, there is a (very small) net change in energy be-
cause an additional state is occupied in the middle of the
sample at an energy slightly greater than the Fermi ener-
gy of the higher probe. (Looked at another way, this cor-
responds to a correction of the leading approximation to
the Euler-Maclaurin formula for replacing the sum by the
integral in the derivation.) This complete state will ulti-
mately decay to the original one by an irreversible excita-
tion of the bulk matter. It is important for Laughlin’s ar-
gument that such irreversible processes not be important
in the “two-dimensional” region. At the same time, it is
essential that they be available inside the probes (Laugh-
lin, 1985).

F. Nonminimal coupling terms
including spin interaction

Nonminimal coupling terms in the Hamiltonian corre-
spond to contributions to the current density that are not
generated by the prescription (3.7). Moreover, the mag-
netic moment coupling of the electron to the magnetic
field contributes to the energy of the one-particle states.
If the magnetic field were not perfectly uniform, one
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could worry that this coupling might affect the precision
of the quantum Hall relation. We argue here that these
apparent complications actually ¢ause no difficulties.

A nonminimal coupling contribution to the Hamiltoni-
an density, linear in the magnetic field, takes the form

Fo=B-Qlx), \ (5.2)

where Q is constructed from the electron operators and
may depend on properties of the bulk matter also. Asso-
ciated with such a term in the Hamiltonian density, there
is a new contribution to the current density,

jQZVXQ .

While the current contribution arising from this term
cannot b(: derived from Eq. (3.7), it is easy to see that it
vanishes and hence does not destroy our result:

1 o
IgzzfX‘_]de

(5.3a)

1 PRIPN
=7 fs(QXx)-nda . (5.3b)
This surface integral is easily seen to vanish: for the part
of the surface outside the system, Q=0; for the parts at
x =0 or L, X is parallel to fi and the integrand vanishes.
Thus (3.7) remains true in the presence of nonminimal
terms in the Hamiltonian. The effect of such terms is
simply to modify the Hamiltonian by contributions that
happen to depend on the magnetic field. If they are one-
particle terms, they can be incorporated directly into the
original unperturbed problem. If they are multiparticle
terms, they become part of the interaction between the
electrons, which must be treated following the procedures
of Sec. IV and Appendix B.

The case in which Q is proportional to the magnetic
moment of the electron in the layer may seem to require
special discussion. In this case, the difference in the ener-
gies of the states where the electron spin is oriented paral-
lel or antiparallel to the magnetic field is given by 7wy,
where w; is the (possibly spatially dependent) spin-flip
frequency. Each electron spin orientation can be treated
independently, and this difference in energy shows up as a
difference in potential in the two orientations. Since this
energy difference tends to be much smaller than the Lan-
dau energy separation, the main effect of the electron spin
is to give plateaus in which there are two electrons per
spatial eigenfunction. However, plateaus corresponding
to a separation of spin states can be observed.

VI. CRITIQUES AND DISCUSSION

A. General outlook

Let me remind the reader that the author is not a con-
densed matter physicist. This has been both an advantage
and a handicap in preparing this paper. Having no natur-
al prejudices about how to approach such a study, the au-
thor has perhaps been less encumbered by standard lore
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and more able to look at the problem of understanding
the quantum Hall effect in a fresh way. As an outsider to
the field, he may have been able to appreciate the difficul-
ties other outsiders were having in comprehending the
new developments of the past few years. On the other
hand, it is also possible that by not knowing enough con-
densed matter physics, he may have made egregious
blunders. Having discussed the issues with many con-
densed matter physicists, he feels that the latter has not
happened. The present subsection deals with the general
features of the quantum Hall effect, while the next has re-
marks about the question of its accuracy.

As originally conceived and as suggested by the title,
the objective of the article was to give a presentation
directly primarily toward nonspecialists, such as my col-
leagues in elementary particles physics. It has evolved
into more than that, and I hope it may also be of use to
workers in the field. While not strictly a review, much of
the paper is based on conventional developments. The
main claims to originality in a technical sense are the em-
phasis on the role of the external probes as an electron
reservoir and their influence on the plateaus through the
self-consistent potential, the generalization of the single-
particle treatment to free it from some of the assumptions
of earlier treatments, and the argument showing that the
integer quantum Hall relation remains valid to all finite
orders of perturbation in the residual electron-electron in-
teractions. Not having understood Laughlin’s argument
so well at the start, I came to realize that much of the
present work actually provides a detailed exposition of
some of the underlying physics of that argument without
necessarily adding real substance.

On a lesser but perhaps more useful level, it is hoped
that the picture presented here may be helpful in creating
a more detailed understanding of some aspects of present
and future experiments. In the preceding sections, the ob-
servant reader may have noted some implied criticisms of
the “standard” picture. In that picture, the plateaus are
produced as the Fermi level moves through a mobility
gap associated with localized states which lie (in energy)
between the extended states that carry the current. This
seems to be tied to a picture of the system in which the
current, and hence Hall voltage, is zero. It is based on the
energy spectrum alone, without any reference to the spa-
tial location of the various types of states. Perhaps this
language is understood by the specialists to have some
meaning in terms of the actual spatial distribution of
one-particle states and with a realistic voltage across the
sample (with a local Fermi energy), but the only place
where I have seen this described explicitly is in the Scien-
tific American article by Halperin (1986). In my opinion,
it is very important to understand the spatial distribution
of the various types of states and how it depends on the
background potential, which varies with the filling factor.

There has been some controversy in the literature about
where the Hall current is distributed, primarily along the
edge or primarily over the whole surface. Recent experi-
ments (Ebert et al., 1985; Sichel et al., 1985; Zheng
et al., 1985) have shown that it in fact has a complicated
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dependence on the magnetic field. A detailed understand-
ing of this behavior will likely turn out to be very compli-
cated, as it will deperid on both the details of the fabrica-
tion of the sample (i.e., the density of carriers that is built
in) and how this works in combination with the self-
consistent potential effects from the external reservoirs.
The experimental devices are actually several quantum
Hall devices coupled in parallel, and the dynamics of that
is not very well understood. The present experiments also
suffer from the difficulty that they are not carried out at
sufficiently low temperature that the electron state can in
any sense be well approximated as a single quantum state.
The experimental problem with going to lower tempera-
tures is that the source impedance of the device becomes
so large that the time to equilibrate becomes prohibitively
large. Ways must be found to improve the theoretical
treatment and perhaps to do experiments under conditions
in which more meaningful comparisons can be made.

Many theoretical treatments concentrate on conditions
inside the layer and ignore exactly how the connection is
made to the Hall voltage. In my opinion, this is sensible
because that is apparently where the important physics
lies; and one is most interested in dealing with questions
such as how complicated the potential can be without dis-
torting the effect. However, in the argument of Laughlin
and in the one given here, the voltage probes play a cru-
cial role. Not having found a discussion in the literature
about how the states inside the layer come to equilibrium
with the electrons in the probes, I try to provide one here
(see Sec. V). This discussion is at the level of “how it
must be” rather than of a detailed self-consistent treat-
ment, which I feel must be very complicated. It makes no
attempt at all to understand this equilibrium at finite tem-
perature, where the electron spectrum inside the probes
does not cut off sharply at the Fermi energy. Yet I hope
it has elements of the correct physics. Perhaps a better
argument would help us understand the deviations from
the ideal at finite temperatures. An elaboration of the
discussion suggests how several levels inside the sample
can come to equilibrium with the same Fermi energy at
the edge.

The possibility of relating these ideas to the finite-
temperature behavior, in which there are both a longitudi-
nal resistivity and an apparently related deviation from
the ideal quantum Hall resistance (Cage et al., 1984), is
intriguing. As has been repeatedly emphasized here, my
belief is that the states of the model described here are
metastable. They are likely to be stable under purely elec-
tromagnetic interactions, but become decaying states
when the interaction with the bulk matter is taken into
account. In the model, this decay corresponds to a
current flow between Hall voltage probes; in the experi-
mental configuration, that current must be compensated
by a Hall current across the sample, which is produced by
a voltage drop along the sample. An initial crude attempt
to understand that steady-state behavior under these cir-
cumstances leads rather naturally to the linear relation be-
tween the quantities mentioned above.

Recently an experimental paper appeared under the ti-
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tle “Quantization of the Hall Effect in an Isotropic
Three-Dimensional Electronic System” (Stormer et al.,
1986). The experiment used a multilayer Hall sample
with thirty periods and found a plateau corresponding to
i =48 (with spin taken into account, this means that 12 of
the available states of neighboring energies were unoccu-
pied). I wish to emphasize that there is no difficulty in
discussing such experiments within the general frame-
work presented here, which is already three dimensional.
It is also likely that it did not cause great consternation
among those who like to give a two-dimensional treat-
ment. The point is that there are now many states, corre-
sponding to different sub-bands, with energy separations
that are very small. Provided that the carrier density is
large enough, many of these sub-bands can be filled at the
same time. The fact that a plateau is clearly seen is in-
teresting in view of the fact that a few of the sub-bands
are unoccupied even though their energy is presumably
very close to that of occupied sub-bands. The Hall volt-
age is small enough (=~0.5 mV) that it may not be able to
cause significant leakage from the occupied to the unoc-
cupied levels. More work should be done, perhaps along
the lines of the present paper, to understand this in
greater detail.

B. The question of accuracy

In discussing the question of accuracy, we should dis-
tinguish the ideal situation in the zero-temperature limit
from the breakdown in accuracy that occurs at finite tem-
perature. It is found experimentally that there are small
deviations from the ideal quantum Hall resistance at fi-
nite temperatures, even under conditions in which the ob-
served plateau is accurately flat (Cage er al., 1984). How-
ever, one may be able to calibrate away this deviation by
taking note of the fact that it is empirically linear in the
measured longitudinal resistance, with the linear coeffi-
cient depending on the sample. That is, if we extrapolate
to zero longitudinal resistance (presumably at zero tem-
perature), we may assume that the result is the ideal quan-
tum Hall resistance. Nothing we have said so far helps us
to come to grips with the important question of the accu-
racy of the quantum Hall relation in that limit. The best
argument in favor of great accuracy for the relation is
that of Laughlin (1981). The present discussion cannot
improve upon that argument, but it lends support by dis-
cussing the nature of the microscopic state and the prop-
erties it must have in order to produce his result. If this
discussion does indeed contribute to the understanding of
the basic mechanisms, then quite possibly it will make it
feasible to ask questions that might not be obvious in less
complete descriptions.

One feels that somehow the fact that there are only a
finite number of electrons involved in the process must
lead to a limitation in the relation. If corrections are of
order 1/N, they would not matter at present. However,
we have no basis for even suggesting what the functional
dependence on N should be. Perhaps such limitations
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could come about through replacing the sum by an in-
tegral. If there is a little “roughness” in the sum, perhaps
it introduces an error that is not readily appreciated by
the usual methods. Laughlin’s argument appears to say
that this does not happen. For some particular value of
B3, there might be fluctuations away from the ideal, but
these would be averaged out by integrating S over the
range 27. So long as there is not an obscure mathemati-
cal pathology, integrating /3 replaces the sum by the in-
tegral. Since any sample experiences small fluctuations in
environment, such an averaging seems to be physically
plausible.

If we think through Laughlin’s argument, it seems to
be important only that the total energy of the state de-
pend continuously and reversibly on 8. This can even in-
clude the énergy of the bulk matter, which we treated as
inert throughout our discussion (except for its ability to
bring the system to metastable equilibrium). Then we
have to assume only that we get the same change of ener-
gy by varying 3 by 27, which moves one electron across
the sample for each level participating in the integer pla-
teau, as by removing an electron from one probe and
transporting it externally (through a voltmeter or a bat-
tery, for example) to the other probe. If moving that one
electron itself made a significant change in the electrostat-
ic potentials, then we might have to worry about the fi-
niteness of the number of electrons. But since this is one
electron out of the huge number in the probes, such ef-
fects should be totally minute.

In the end, (our version of) Laughlin’s argument deals
with an idealization in which the quantum Hall relation is
exact. It has not been possible to give any quantitative es-
timate of deviations from the ideal and how they depend
on the real conditions of the sample. Hopefully, this
work provides a starting point for understanding the gen-
eral properties of the electron state which underly the re-
lation. For the present, the best evidence for the precision
is obtained by intercomparisons between different devices
(Delahaye et al., 1986).

C. Brief review of relevant QED

The now-standard way to test precision QED in pertur-
bation theory is to use various experiments and their asso-
ciated theories to predict a value of the fine-structure con-

_ stant a that may be compared with the values from other

types of experiment that are insensitive to the details of
QED. The most accurate experiments of the type requir-
ing QED calculations are those concerned with the
anomalous moment of the electron (a,) and the hyperfine
structure in muonium (spin splitting in the u*-e¢ = hydro-
genic ground state). Although the hyperfine structure in
hydrogen is very accurately measured, its interpretation is
limited because of uncertainties introduced by the struc-
ture of the proton. Other features of atomic structure,
such as the Lamb shift, while of intrinsic interest for
QED, provide less exacting information about the value
of . The non-QED sources of the fine-structure constant
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are the ac Josephson effect and the quantum Hall effect.

The most recent review of the status of QED, with em-
phasis on the anomalous moment of the electron and on
the relation of QED to the quantum Hall effect, is given
by Kinoshita (1986). Here we give a very brief summary.
The most accurate determination of @, is by an experi-
ment using a Penning trap (Van Dyck, Jr. et al., 1984).
Its theoretical interpretation has now reached the level of
four-loop QED calculations, which have been in progress
for several years (Kinoshita and Lindquist, 1981), with
progressively improving accuracy. The most accurate
determination of the muonium hyperfine structure is re-
ported in Mariam et al. (1982), and a general review of its
status is given in Bodwin, Yennie, and Gregorio (1985).
The Josephson junction experiments are reported in Willi-
ams and Olsen (1979). The experiment actually measures
e/#. To convert this to a value of a=e?2/#c, a chain of
other information must be used, including the gyromag-
netic ratio of the proton in water. In addition, a very ac-
curate resistance standard must be used. Obviously, the
determination of the quantum Hall resistance also re-
quires a very accurate resistance standard. This is not the
place to describe these intricacies in detail, but it is worth
noting that, in the quantum Hall experiments carried out
at the National Bureau of Standards over a period of
time, it was discovered that the standard resistors main-
tained at the National Bureau of Standards actually have
a very small drift in value with time (Cage et al., 1985).
Thus the quantum Hall effect has already made a very
important contribution to metrology. If the quantum
Hall effect and Josephson junction experiments can be
carried out with the same standard resistance as reference,
the dependence on knowledge of that resistance can be
calibrated away. Of course, this has not yet been done
directly, because the two experiments at the National
Bureau of Standards were unfortunately done at different
times. However, assuming linearity of the standard resis-
tance as a function of time, a correction can be made.

Assuming that the theoretical understanding of the
non-QED experiments is adequate to the present level of
precision, we then have the following comparison between
all these methods:

a; '=137.035994(5)

o =137.035991(25) ,

QAacjo=137.035963(15) , 6.1)
aghe=137.035965(12) ,

anps=137.035981(12) . .

The numbers in parentheses give the uncertainty in the
last digits. For the a, determination, the uncertainty is
primarily theoretical, and it will be improved during the
next year or so. The experimental uncertainty is an order
of magnitude smaller. The uncertainty of the u-hfs deter-
mination has several components: the most important is
that due to the muon’s magnetic moment (20); the next
most important is the estimate of uncalculated theoretical
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terms (15); and the uncertainty in the hfs measurement it-
self is only (5). No allowance for theoretical uncertainties
is made in the various condensed matter determinations.
We quote only results from the previously mentioned ex-
periments. The NBS determination refers to a composite
of National Bureau of Standards results made by Taylor
(1985), in which he took into account the drift of the NBS
standard of resistance with time and combined the ac-Jos
and QHE values in such a way that the standard is elim-
inated. The agreement between the various types of ex-
periments is remarkably good, and the precision of all the
methods is constantly improving.
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APPENDIX A: APPROXIMATE TREATMENT
OF THE WAVE FUNCTIONS
IN TWO DIMENSIONS

To develop better intuition about the eigenfunctions, we
study a model two-dimensional problem with an effective
mass and smoothed potential. The Hamiltonian for this
model takes the form

2
hi= PR 7 (xy), (A1)
m

where m™* is the effective mass. Such eigenfunctions have
been described by several authors, in particular by Trug-
man (1983), and by Joynt and Prange (1984). An impor-
tant feature is that the magnetic field tends to prevent the
spreading out of the eigenfunctions as in a scattering pro-
cess. This property is of course independent of gauge;
however, in order to get an intuitive idea of how these
things work, it is convenient to use the Landau gauge
given by

A=(—yB,0,0) . (A2)

We consider a region where there are no zeros of the
eigenfunction and where the smoothed potential does not
change abruptly in distances of order the magnetic length
[ (of order 100 A). To see how this works, we assume the
following form for the eigenfunction:

P=ePIN(x)ulx,y) . (A3a)

Here p is normalized in the y direction for each fixed
value of x, and N allows for a change in the normaliza-
tion as a function of x.

The most important x dependence is in the phase fac-
tor; we shall ignore the other dependence on x at first and
deduce it later by simple physical arguments. With these
assumptions, we find at fixed x the differential equation
iny
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—7#2(d /dy)* + (#ip’ —eyB)?
2m*

+ 77 (x,p) |pu(x,y)

=eu(x,y), (A3b)

where ¢’ =d @ /dx.

Now x plays the role of a parameter. We see that the
eigenfunction has a strong tendency to peak up at the
point

yolx)="%gp'/eB , (A3c)

and we expand the y dependence of 7~ about that point
and include the linear deviation [y —yo(x)]7”. The
equation then reduces to a harmonic-oscillator problem
with length scale /. The ground-state eigenfunction has
its center shifted from y, by 8yy(x)=—m*?" /(e’B?),
and we find the constraint

sH0. + 7 [%,y0(x)+ 58po(x)]=¢ , (A3d)

where o, is the cyclotron frequency, eB/m™*. Since in
practical situations &yy(x) <</, this gives the constraint
that yo(x) must follow an equipotential contour.  This is
just the “guiding” equipotential referred to in Sec. II. In
turn, this determines the function @(x), whose rate of
change with x must adapt in this way to the potential.
The variable x is also seen to occur in the ground-state
eigenfunction through yg(x) and 8yy(x). Locally, the
current carried by the state is given by
—N?*7""/B = —eN’E, /B, in agreement with the discus-
sion of Sec. II. Since the current of a single eigenfunction
must be independent of x (an exact result), this tells us
how the normalization depends on x. This variation of
normalization with distance along the potential maintains
the proper total electron density throughout the sample,
also in agreement with the requirements of Sec. II. v

We may use this result from a local region to under-
stand the properties of eigenfunctions on a larger scale.
All the properties expected in Secs. II and III are con-
firmed. For example, by integrating our expression (A3c)
for yo(x) (note that this is not weighted by N?), we find
that its average value is given by 27nl?/L. This confirms
the expectation of one state per quantum flux unit and
that the average transverse separation between adjacent
extended states is much less than their individual widths.
This also suggests the parametrization of the average dis-
tance of an eigenfunction across the sample in terms of %,
namely

yi=kI? . (A4)

This parameter should also have meaning for the more
realistic case as well, since it is generally the local phase
oscillations as a function of x which provides the trans-
verse (i.e., y direction) centering of the eigenfunction,
which then has a transverse spread of order / about that
center. There is no implication that y, has a direct signi-
ficance; however, as k varies from one extreme to the oth-
er, the succession of eigenfunctions should move across
the sample from one reservoir to the other.
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A potential hill or valley together with an overall drop
of potential across the sample can produce contour lines
like those that guide the eigenfunctions illustrated in Fig.
8(a). Contour lines closing on themselves give rise to lo-
calized states. To the extent that 7~ varies sufficiently
slowly with position, these could be studied with the same
procedure as in the preceding paragraph. For each small
region we could first transform to a local Landau gauge
where the x' axis is first taken parallel to a potential con-
tour. If we translate these results back to the original
gauge, we find that the total phase change around the
path of the eigenfunction (which of course must be an in-
tegral multiple of 2w, since the eigenfunction is single
valued) is given by the number of flux units contained in
a curve that passes along the peak of the eigenfunction.
See Prange (1986) for the details of this argument. This is
part of the general result that there is one state per flux
unit in the “two-dimensional” region.

APPENDIX B: PERTURBATION THEORY
INCLUDING PARTICLE-HOLE
REDUCIBLE DIAGRAMS

In Sec. IV we showed that the quantum Hall relation-
ship remains valid to every order of perturbation theory
for contributions to E () that do not have intermediate
states consisting only of a particle-hole pair. This appen-
dix describes a generalization of that proof to include all
contributions; however, it is still limited to perturbation
theory. The technique is to define U, so that the compli-
cations mentioned at the end of Sec. IV do not occur. We
recall that the origin of the complications is that one-hole
energies can have small energy denominators whenever
single-hole intermediate states occur in the perturbation
theory. It is essential to our whole discussion that the en-
ergies of the extended states are almost a continuous func-
tion of k, so that we may replace a sum by an integral.
The difficulty is obviously a consequence of the fact that
we should be doing degenerate rather than nondegenerate
perturbation theory. To avoid this would seem to be an
incredible chore, since we are dealing with a huge number
of electrons. Our technique is based on the fact that we
have the freedom to choose U;, and hence our basis
states, in such a way that the matrix elements to nearly
degenerate intermediate states vanish to all orders.

It may be helpful to give first a brief qualitative
motivation for the following technical discussion. Refer
back to Eq. (4.2), where the leading contribution (i.e., first
order in U,) to U, was defined. It has the important
property that the unperturbed eigenfunctions are not al-
tered by first-order perturbation corrections since the ma-
trix element giving such superpositions is zero. If there
were superpositions involving higher Landau levels, the
analysis would become quite complicated because the
operator 7 has large matrix elements between different
levels (for example, its matrix element between the ground
and first levels is much larger than its expectation value
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in the ground state by the ratio of I/ to 8y, of Appendix
A). The cancellation of the first-order contribution to the
current is made clear by the discussion following Eq.
(4.3). The aim of our general discussion is to extend this
property to all orders. The self-consistent potential is to
be defined in such a way that the lowest-order single-
particle eigenfunctions are not modified by the perturba-
tions. The result is that the current calculated using Eq.
(3.13) becomes exact to all orders of perturbation theory.

In Eq. (4.2b), we defined the first-order contribution to
U, to compensate the effects of H as closely as possible.
Now we add a hierarchy of additional contributions
designed to compensate higher-order effects from Hj and
Hj:

U, (x,x")=U{"(x,x')+8U,(x,x") , (B1)
where
SU(x,x')=86 U (x,x")+8,U(x,x")+ - - - .

The successive terms in §U; will be designed to compen-
sate increasingly complicated contributions from the per-
turbation theory. It hardly seems desirable to write out
this procedure in complete detail, since we do not wish to
carry through a genuine calculation. However, it will be
carried far enough so that the approach should be con-
vincing. Although U, cancels in the Hamiltonian, it is
clearly necessary to require it to yield a Hermitian contri-
bution, so that the eigenfunctions defined by A; form a
complete orthonormal set. This requirement is simply

U,(x,x')=U,(x',x) , (B2)

where the overbar denotes complex conjugation. This is
satisfied by the first term in (B1). We also require U, to
be independent of 3 so that it does not complicate the
analysis when we differentiate with respect to 8. Using
the completeness of the set of eigenfunctions defined by
hy, we may write

8U (x,x)= | 3 ¢o(x)Q 40 ¥5(x') (B3)

B=0
with
Qo =0zs
to assure Hermiticity.

For our present purposes, time-ordered perturbation
theory seems to work more efficiently than old-fashioned
perturbation theory. We use the interaction picture de-
fined by the Hamiltonian H;, so that the operators be-
come

ie_t

Px,0= 3 blt(xe "+ S a px)e . (B4)

In our analysis of perturbation theory, it will be useful to
use the wave functions ¥’ defined by Eq. (3.9) and the
corresponding operators. A pairing of these operators
yields the factor
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<0§ T[¢,(Xa’ta )’¢’T(xb1tb )] |0>= z lp:Y(xa )l/’g(xb Je

a

=3 ux ¥ (x, e

—ie (1, —

—igylt,

0t —1,)— 3 Walx Wil (xp)e 02, —1,)
a

—igy(t, —1t)

Tl T gy — S (kg W (xp e . (B5)

The perturbation Hamiltonian is now time dependent, and we may write the energy of the perturbed state as

E(B): Zﬁa(ﬁ)‘f'(()’ & |0>conn 5

where

1 "“l § ® *® ’ ’ ’ ’
g:gm]7l f_w - f_wdtldtz"'dtnT(H(O),H(tl),H(tz),...,H(t,,)).

Only connected diagrams occur in the expectation value
in Eq. (B6). Note that one of the times is held fixed in the
definition of &. The c-number part of the perturbation
given by Eq. (4.3) contributes only for » =0.

The B dependence of the & term in the energy occurs
explicitly through the dependence of the perturbation
Hamiltonian on the functions i, and also through the
pairings of operators as expressed by (B5). Consider the
derivative of one of these pairing factors with respect to
B. In differentiating a factor (B5), we note that the first
term of the second form is formally independent of S3; this
may be seen by the same type of rearrangement as
described in Sec. IV: replace €, by the operator &, acting
on the unprimed eigenfunction, then use closure on the
sum, to produce

RN SOy —iBx, /L

8(x, — Xy )e o(t, —1ty)

—e M i )0(, — 1) .
The justification for neglecting the B derivative of this
factor depends on the structure of the rest of the expres-
sion, but we shall define U, so that this is always legiti-
mate.

To obtain the modification in the current, we must dif-
ferentiate the second term of Eq. (B6) with respect to S.
The contributions arise from Eq. (4.3), where now only
the 8U, piece contributes, from the explicit B dependence
in (4.2a), and from the second term of one of the factor
pairings as given in (B5). It turns out that all of these can
be combined into the expression

30 [0eom 0[6aBDY[0)comn
B =—2 [3B]a ’

where the expansion of & uses H5 and the 8U; term of
Hj. On the right-hand side it is understood that we dif-
ferentiate only the 8 dependence which enters through a.
As in our previous work, we may replace 3 by the label k
and introduce a factor 1/L. We note that the quantity
differentiated on the right-hand side (rhs) is the hole
propagator with incident and final label k and with the
external lines amputated. If this could be identified with
the energy to create a hole, our work would be finished.

(B7)
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f

In fact, if we consider only the class of graphs discussed
in Sec. IV, the expectation value on the rhs would be sim-
ply the contribution of a proper self-energy, and we would
have reproduced the results of that section in a more com-
pact way.

Now we must deal with the complications of degen-
erate perturbation theory. It manifests itself here by the
presence of small (even zero) energy denominators in the
rhs of Eq. (B7) when we consider contributions with
higher numbers of self-energies. (The name self-energy is
not quite correct, since the bulk matter is capable of
scattering a hole from one state to another, but we contin-
ue to use it.) Calling this self-energy M, we find that the
contribution to the expectation value illustrated in Fig. 17
takes the form

Mm;l(sa)M&la(ea)

Moo(eg)+ 3,
[il

E&I—-Ea

M (€)M g 5 (€)M (€5)
+ 2 (g5 —€x)Es —Eg) o (B8
31’52 & allty, a

M includes a term from —8U,, and it may have —8U,
appearing internally as well. If vanishing denominators
actually occur in Eq. (B8), the expression becomes mean-

FIG. 17. Contributions to the hole self-energy, with varying
numbers of proper self-energy contributions.
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ingless. Since the left-hand side of (B7) is well defined in
perturbation theory, we conclude that the neglect of the
derivative of the first term of the second form of (BS) is
at fault in this case. We have introduced terms that give
a singular sensitivity to the boundary conditions because a
hole can have a self-energy interaction, propagate the
length of the “two-dimensional” region (signaled by the
small-energy denominator), and have additional self-
energy interactions.

It is straightforward, in principle, to define 8U, so that
this difficulty does not occur. We must do this in a way
that not only makes Eq. (B8) finite but also makes its
derivative with respect to the B dependence contained in a
finite. Actually, we must make the series in (B8) vanish
term by term. The simplest illustration of this is that if
we set &;=a in the second term, the result blows up un-
less the numerator factor is zero. This requires the first
term of (B8) to vanish. We do not require the derivative

of the first term to vanish, because the derivative of the -

second term with B=0 remains finite. In the same way,
the second term must vanish in order to avoid difficulties
in the third term, etc. We must also avoid the singularity
that occurs when €z, approaches €, in the second term.

To do this, we may require M éa to vanish at least to first

order in the energy difference.
Let M gl)az(e) be a proper self-energy part without any

overall U, subtractions. This quantity satisfies the Her-
miticity property
Mg (e)=Mg) (e) . (BY)
The proof of this relationship follows from considering a
T-bracket expression which produces a term in MV,
Taking the complex conjugate reverses the time order.
The anti-time-ordered expression can be rearranged alge-
braically into a sum of terms that are products of time-
ordered and anti-time-ordered factors, including one that
is the completely time-ordered expression. The latter
term gives a contribution to the rhs of Eq. (B9) (including
the correct sign). If B is below the threshold to produce
real intermediate states, all the other terms vanish.
Now we may define 8,U; by using Eq. (B3) with
s, =M,

-
@

1
[7(8&1+E&2)] , (B10)
where the right-hand side is evaluated at 8=0, in accor-
dance with Eq. (B3). The choice here is not unique. We
might also have used the average of M‘! evaluated for
the two energies, The important point is that Q! satis-
fies the Hermiticity property and gives

MG, (ea)=Mg), (e))—(8,U1)z 5

)

(B11)

with the properties we need. These properties are as fol-
lows. (i) M {1)(e) vanishes for B=0. Its derivative does
not vanish, however. (ii) M f,‘l)a(e) goes to zero as € &, goes

to g, for B=0. Again, the derivative does not vanish.
Now the second term of (B8) and its derivative with
respect to 3 are well behaved.
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The rest of the discussion will be somewhat sketchy.
We want to define a term —38,U;. which will appear in
the first term of (B8) and cancel its second term for =0,
when only the M V) parts appear in the sum. As in the
discussion of 8,U,, we first generalize the second term to
have two different indices and a general energy €. A Her-
miticity requirement like Eq. (B9) is easily seen to be sa-
tisfied, and we define a new piece for Q by an expression
like (B10), with the sum now appearing on the rhs. This
automatically cancels the second term of (B8) when =0,
to a consistent order. In studying the third term of (B8),
we must take MV in all places and combine it with
pieces of the second term which have M‘! in one factor
and —8,U; in the other, The result has the property of
being well behaved and having a well-behaved derivative.
Following the same pattern, we define an additional con-
tribution 86;U; which makes this set vanish for 8=0. The
procedure can obviously be extended systematically to
more and more terms of (BS8).

Our conclusion is that the self-consistent potential may
be chosen in such a way that the second term of Eq. (B6),
which represents the perturbative corrections to the ener-
gy of the ground state, has vanishing derivative with
respect to 3 at B=0. At the same time, the perturbations
do not shift the energy required to create a hole from the
value —g,, so the chemical potentials in the reservoirs are
unchanged. Of course, the interactions do affect the
current and the electrochemical potentials through the
choice we have been forced to make for U,; the point is
that, with this choice, the perturbations do not shift these
quantities from their effective single-particle values. The
consequence is that when perturbation theory is valid,
only the integer quantum Hall effect is obtained. The
fractional quantum Hall effect occurs when the situation
cannot .be described perturbatively. Our present discus-
sion sheds no light on the conditions that make perturba-
tion theory valid. Our intuition is that when the filling
factor is near unity the quantum state in the “two-
dimensional” region has a certain stability against the ef-
fect of the perturbations.
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