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This paper surveys the magnetic flux effects in multiply connected conductors, both normal metals and su-

perconductors. Discussion of these effects for hopping conduction on the dielectric side of the metal-

insulator transition is presented also. The main emphasis in the review is on the modern theoretical picture
of these phenomena and comparison of theoretical results with experimental data.
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Studies of galvanomagnetic properties of disordered
conductors have recently revealed a new direction of
research that has already yielded reliable results and has a
promising potential as well. In the experimental domain
it consists in observing magnetoresistance oscillations in
topologically different tiny samples at low temperatures.
One can draw an analogy between these experiments and
the idea of an experiment with electron beams in vacuum
(Fig. 1) proposed fairly long ago (Ehrenberg and Siday,
1949; Aharonov and Bohm, 1959) and performed in dif-
ferent versions after Aharonov and Bohm (1959) had
pointed out the radical importance and viability of such
an experiment. It should also be noted that already in
1939 Franz had pointed out that the phase difference be-
tween two electron beams is determined by the magnitude
of the magnetic flux enclosed between them (see the
comprehensive review by Olariu and Popescu, 1985). Ex-
periments reveal an interference pattern produced on the
plate AB by two beams emitted by the source S. The in-

(b)

FIG. 1. (a) Schematic of electron-beam interference experiment
(Ehrenberg and Siday, 1949); (b) the stationary wave pattern in
the beam crossing region of space near the plane AB.
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terference bands shift as the magnetic flux in the region f
changes, although beams I and II pass through a field-
free region, while the outer boundaries of the beam cross-
ing region remain unshifted [Fig. 1(b)]. The change in the
phase difference between the beams, which determines the
band shift, can be obtained from the expression

b,y= f Adl =2m
Pic Po

'
-I/2 I /2

where the magnetic field vector potential A is integrated
around the contour made by beams I and II, P is the mag-
netic flux through the region f, and Po

——hc/e =4. 14
0&10 Gcm is the magnetic flux quantum. Thus the
result does not depend on the gauge chosen, in accordance
with the requirement that the theory be gauge invariant.

The effect of magnetic flux on the motion of the elec-
trons localized in a region with H =0 should obviously
manifest itself also in the case of electrons moving in a
conductor that encloses a region with II&0. Actually,
one should observe variations in the sample characteris-
tics providing information on the energy spectrum and
mechanisms of the electron scattering.

Consider two simple models with one-dimensional
propagation of an electron wave along a given path (Figs.
2 and 3), which illustrate two different approaches to
solving thermodynamic and transport problems in sys-
tems with magnetic flux.

The first model involves a closed ring of radius R with
an electron moving freely in it. The ring encloses a mag™
netic flux P [Fig. 2(a)]. We can write the electron wave
function in the form

g„=e'"~/, n =0, +1,+2, . . . (1.2a)

If we include now a weak arbitrary potential V(y), a
splitting of the electron levels at the points

(c) M

-i~ o~
FIG. 2. (a) Schematic of one-dimensional ring confining a mag-
netic flux; (b) electron energy in the ring reduced magnetic flux
P/Po, (c) magnetic moment vs reduced flux P/Po.

(y is the electron coordinate on the ring), the electron en-

ergy E„and magnetic moment M being dependent on P
[Figs. 2(b) and 2(c), light lines]:

7l-
2mR' Pp

(1.2b)
eR

2plc fp

FIG. 3. (a) Schematic of one-dimensional ring with scatterers S
and current-carrying contacts by Buttiker et al. (1984); (b) rela-
tive transmitted wave intensity vs reduced magnetic flux (5/$0.

/=$0(n&+n2)/2 arises where the E„(P) and E„(P)pa-

rabolas intersect one another. As a result, the electron
ground-state energy and magnetic moment and other
thermodynamic properties of the model that can be ex-
pressed in terms of the electron spectrum turn out to be
periodic functions of the magnetic flux with a period $0
shown by heavy lines in Figs. 2(b) and 2(c) (Biittiker
et al. , 1983; Landauer and Biittiker, 1985).

We can follow the magnetic flux dependence of the
transport properties using the simplest model of a ring
connected to two current-carrying leads via elastic scatter-
ers S [Fig. 3(a); Buttiker et al. , 1984; Gefen et al. , 1984].
For an arbitrary wave vector ko of the incident wave, the
wave vectors of the waves propagating around the ring in
opposite directions will be different for the same energy
of the particle and equal to ko+(1/R)(glgo), if one as-
sumes the tangential component of the vector potential A
to be P/2rrR

The relative intensity of the transmitted wave t
representing the transport characteristic of the system will
be a periodic function of the flux containing also higher
harmonics due to a multiple passage of the waves around
the ring. Figure 3(b) illustrates the t(P) relationship for
the scatterer parameters and the value of koR correspond-
ing to the best signal transmission.

By now various magnetic flux interference effects that
depend substantially on sample shape have been
discovered and predicted. The search for such effects in
metals began long after the discovery of oscillations in the
resistivity (Schubnikov and de Haas, 1930) and magnetic
moment (de Haas and van Alphen, 1930, 1932) of pure
bismuth single crystals. These phenomena may be inter-
preted quasiclassically as size effects in momentum space,
where, as the field increases, the quantized areas of elec-
tron orbits become successively equal to the extremal
cross section area of the Fermi surface of the metal, thus
resulting in the onset of oscillations (Onsager, 1952;
Lifshitz and Kosevich, 1954). The oscillations have been
observed in high magnetic fields where the maximum
Larmor radius of the electron trajectories rJ was less than
the mean free path l and the sample size. Thus the sam-
ple shape was here inessential.

Magnetic moment oscillations related to the geometric
size of the samples were first considered by Dingle (1952)
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for the case in which electrons with an isotropic disper-
sion relation are specularly reflected from the boundary of
a pure cylindrical sample of radius R placed in a weak
longitudinal magnetic field. It was assumed that
R «rL, l, with magnetic field included in the determina-
tion of the energy spectrum by a perturbative treatment.
The calculated spectrum of the susceptibility oscillations
turned out to be very complex; however, it revealed an in-

teresting feature leading to a qualitative understanding of
the mechanism by which a magnetic field acts on a metal
under the conditions rL »min(R, l) &&A,, where A, is the
electron wavelength (including action upon a disordered
conductor, to be considered in the following sections).

The spectrum of the Dingle oscillation periods was
determined by a set of areas S; of regular polygons with
an arbitrary number of sides inscribed into the circular
cross section of a cylinder, the polygons representing
closed projections of electron trajectories on the cylinder
cross section. For A, «R the periods were equal to Po/S;,
which corresponds to a change of the flux through the or-
bit areas by one quantum, just as in the case shown in Fig.
2. Thus the classical bending of trajectories in a magnetic
field turns out to be inessential in this case, the action of
the field reducing to that due to the magnetic flux en-

closed in the various closed trajectories.
Subsequent studies (Kulik, 1970; Bogachek and

Gogadze, 1972; see also Gogadze, 1984, and references
therein) drew attention to the fact that specularity in real
cylindrical objects should increase for the electrons local-
ized near the surface, thus enhancing the relative contri-
bution to the spectrum due to oscillations with a period
close to $0/mR, which should manifest itself for any
electron dispersion relation. The authors of these studies
suggested also that the magnetoresistance, acoustic ab-
sorption, and tunneling current from the cylinder surface
be studied instead of the susceptibility oscillations.

Experimental investigation of the magnetoresistance of
thin (R=10 '

p,m) cylindrical single crystals of pure
bismuth (Brandt et al. , 1977, 1982) with a large mean free
path revealed oscillations in a longitudinal field at
l, rl &R. The authors separated out from a complex spec-
trum a period approximately equal to $0/mR . Further
studies are required before a comprehensive comparison
of experiments of this kind with theoretical calculations
will be possible.

There is another class of oscillatory phenomena that
can occur in normal disordered metals, namely, oscilla-
tions of transport effects in multiply connected samples in
the field of a vector potential A, whose relative magni-
tude, rather than decreasing, even grows with decreasing
electron mean free path. Oscillations of this kind, with a
period of Po/2 in magnetic flux were predicted by
Altshuler et al. (1981). The first observation of these os-
cillations (Sharvin and Sharvin, 1981) was followed by a
number of experimental studies of this phenomenon.
These studies are reviewed in Secs. II.A—II.C.2 of the
present paper. The search for oscillatory effects in quasi-
one-dimensional rings (Umbach et al. , 1984; Webb et al. ,
1984) has led to the observation of a new class of effects

in disordered tiny conductors, namely, mesoeffects, which
originate from a lack of total averaging of properties over
the impurity distribution (Altshuler, 1985; Altshuler and
Khmelnitskii, 1985; Lee and Stone, 1985; Stone, 1985;
Webb et al. , 1985). The resistivity of such multiply con-
nected samples observed as a function of magnetic field
reveals Auctuations, their spectrum having a, strongly pro-
nounced harmonic of period Po. These phenomena are
discussed in Sec. II.C.3.

Magnetic fiux effects manifest themselves not only in
normal metals, but also in superconductors. Their impor-
tance for the physics of superconductivity'and its applica-
tions is widely recognized. If concentrated in the form of
a Aux tube inside a superconductor, the magnetic flux
should be quantized.

Before the development of the microscopic theory of
superconductivity, London (1948) predicted this
phenomenon by suggesting the quantity $0 to be a flux
quantum. In 1961, Deaver and Fairbank (1961) and Doll
and Nabauer (1961) measured the. magnetic moment of
hollow superconducting cylinders and found the quantity
$0/2=bc/2e to be a flux quantum in superconductors.
Byers and Yang (1961) and Onsager (1961) attributed this
result-to electron pairing. The pairing occurs in such a
way that the electron single-particle energies are equal at
a minimal total energy. Then from Eq. (1.2b) it follows
that n

& P/Po ——(nz —P——/$0) and, hence, P= Po(n &

+n2)/2 (Schrieffer, 1964). Thus the magnetic flux corre-
sponding to the minima in the total energy of the electron
pair is a multiple of the superconducting flux quantum
$0/2. The phenomenon of magnetic flux quantization in
superconductors can be investigated also by studying such
a transport quantity as the resistance of a hollow cylinder
in the vicinity of the superconducting transition (Little
and Parks, 1962; Parks and Little, 1964). All these effects
in superconductors are a natural consequence of the ex-
istence of a macroscopic wave function that is not des-
troyed by the electron impurity and electron-photon
scattering. These effects are dealt with in Sec. III. Final-
ly, the last section (IV) of this review is devoted to discus-
sion of magnetic flux effects in hopping conduction.

II. RESISTIVITY OSCILLATIONS IN MULTIPLY
CONNECTED DISORDERED CONDUCTORS

A. Qualitative considerations

Resistivity oscillations with Po/2 flux period in multi-

ply connected disordered conductors are intimately relat-
ed to the phenomenon of weak localization. Therefore we
shall consider first the conductivity correction due to
weak localization (Abrahams et al. , 1979; Anderson
et al. , 1979).

In the classical theory of transport phenomena the total
probability for a particle to transfer from point' P to point

Q (Fig. 4) is the sum of probabilities of such a transfer
over all possible trajectories. In quantum mechanics this
result corresponds to neglecting the interference of scat-
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FIG. 4. Different types of quasiclassical particle trajectories
connecting P and Q. Point 0 is the trajectory self-crossing
point.

tered electron waves propagating along different paths
and having approximately random phases under the
quasiclassical condition A, « I. There is, however, a
specific class of trajectories, namely, self-crossing trajec-
tories (trajectory 2 in Fig. 4) for which the wave interfer-
ence turns out to be essential. Indeed, two waves propa-
gating along such trajectories in two opposite directions
(conjugated waves) accumulate the same phase difference.
Therefore the contribution of these trajectories to the
probability of coming to point 0 (Fig. 4) will be

I
~ i+~3

I

'=
I
~ i I

'+
I
~2

I

'+2 Re~ 7~2

2

EG = — ln
2~ A

(2.3)

If the sample is placed in a magnetic field, then the am-
plitudes of the probability of completing the loop on con-
tour 2 of Fig. 4, clockwise and counterclockwise, acquire
additional phase factors

E8 2&
3& —+2& exp Adl =3& exp i

Ac 4o

. 2m~2~~2 exp
0o

(2.4)

where the magnetic flux through the loop is P=HS, and
S is the projection of the loop area on the plane perpen-
dicular to the magnetic field direction. Equation (2.4) im-
plies that the phase difference between the conjugated
waves is

the sample for diffusion, and a the small dimension of the
sample (see below).

For the lower limit in Eq. (2.2) the elastic collision time
r is chosen, since the diffusion description of particle
propagation becomes valid only for longer times, and a
particle can turn back only after at least one scattering
event. In a film of thickness a «+Dr& L&——a particle
is capable of passing many times from one wall to another
in a time scale 7~, the diffusion acquiring two-
dimensional character. Similarly, when the wire diameter
a is small compared to L&, diffusion over times t & a /D
will be one dimensional.

It follows from Eq. (2.2), in two dimensions the correc-
tion to the two-dimensional film conductance 6 =ao. is
(Abrahams et al. , 1979; Gorkov et al. , 1979)

=4IA,
I

(2.1)
(2.5)

which is twice the sum of the squared amplitude moduli.
A higher probability of returning back to point 0 means
a lower probability of transfer from point I' to point Q.
Thus the interference of conjugated waves favors particle
localization and, hence, results in an increase of resistivi-
ty.

. Quantitative evaluation of this effect should take into
account that the particles return to a given point by dif-
fusion, the interference occurring between conjugated
waves propagating along a tube with a cross-section area
of A, . Note also that the time of their propagation should
be less than the time ~+ during which the conjugated
waves remain coherent. The phase relaxation time ~~
may be related both to inelastic processes and to spin-spin
scattering. The relative correction to conductivity b,o/a.
is proportional to the total probability for particles to re-
turn in the time r~ (Altshuler, Aronov, Khmelnitskii, and
Larkin, 1982)

Uk dt
(Dt)d/2 3 —d (2 2)

where D is the diffusion coefficient, U the particle veloci-
ty, o. the metal conductivity, d the effective dimension of

2HDtH =1,

o rH
2

2HD D

(2.6)

where rH (Pie/2e&)' is the —m—agnetic length for a par-
ticle with charge 2e. The characteristic magnetic fields
are determined by the relation tH-~~, i.e.,

Therefore, by producing a phase difference depending on
the size of trajectory, the magnetic field destroys the in-
terference, which, in its turn, reduces the probability for
the particle to return to the given point and, hence,
reduces the resistivity. This is the mechanism that ac-
counts for the negative magnetoresistance phenomenon
(Altshuler et al. , 1980; Kawabata, 1980a, 1980b).

The characteristic time tH in which the interferenee of
conjugated waves is destroyed in a magnetic field can be
estimated from the condition that in this time the phase
difference between the conjugated waves becomes of order
unity,
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or

Ac 1

e Dwq

P'T~
COc (2.7)

path l is smaller than the cylinder circumference, so that
the size effects of pure metals (see the Introduction) may
be neglected. The phase difference accumulated by conju-
gated waves going around the cylinder is

where co, =eH/mc is the cyclotron frequency, p is the
Fermi energy, and m is the effective mass. As follows
from Eq. (2.7), the magnetic fields of interest here are less
than the classical limit determined by the condition
co,&=1,by a factor ps&/A' »1.

A detailed exposition of both the theory and the experi-
mental data on anomalous magnetoresistance of singly
connected samples can be found in reviews by Altshuler,
Aronov, Khmelnitskii, and Larkin (1982) and Bergmann
(1983).

The anomalous magnetoresistance of disordered con-
ductors observed in the weak field (rL » i) may be con-
sidered as a magnetic flux effect caused by the magnetic
field confined within electron loop trajectories. The
recognition of the fact that these trajectories are actually
paths in real space, which may be of macroscopic size,
has led to ideas concerning the effect of topological
differences in the shape of samples on their magnetoresis-
tance and the possibility of observing interference oscilla-
tions in the resistivity of multiply connected samples as a
function of magnetic flux enclosed by them (Altshuler,
Aronov, and Spivak, 1981).

Consider, for instance, a hollow metal cylinder with a
hole that encloses a long solenoid carrying a magnetic
flux P so that the magnetic field is zero everywhere out-
side the solenoid (Fig. 5). However, the vector potential
A within the sample should be nonzero, its tangential
component being equal to P/2mR (the Aharonov-Bohm
experiment geometry). We assume that the mean free

i.e., it is the same for all conjugated waves running
around the cylinder. As a result, the cylinder resistivity
will oscillate with the period Po/2.

B. Theory of resistivity oscillations
in multiply connected conductors

2 C„(r,r), (2.8)

where v is the density of states at the Fermi level and rr is
connected with the diffusion coefficient through
Einstein's relation

o.=e Dv.

In the presence of the vector potential A of magnetic
field, the equation for the cooperon takes on the form
(Altshuler, Khmelnitskii, Larkin, and Lee, 1980)

'2

A D iV A+iran—+ —C (r, r')=5(r —r') .2e . 1

As pointed out in the preceding section, the negative
magnetoresistance effect is related to quantum corrections
to the conductivity originating from the interference of
conjugated waves. The main quantum correction to the
conductivity can be derived by summing the fan diagrams
(Langer and Neal, 1966; Abrahams et al. , 1979; for'kov
et al. , 1979; Fig. 6), which determine the function
C„(r,r') or "cooperon. " The conductivity correction is
related to the cooperon by the expression

(2.9)

I

I

I
I

I

I

I

ILZ
I
I

l
I
I

I
I I I
I I I

I

I/'J' I I

Equation (2.9) resembles the Schrodinger equation for a
particle of charge 2e and mass fi/2D with the imaginary
energy i co.

For a thin-walled hollow cylinder with magnetic field
in the walls H =0 and vector potential A&0, constant in
absolute magnitude and directed tangentially, the solution
of Eq. (2.9) with periodic boundary conditions along the
coordinate y (i.e., along the cylinder circumference), has
the form

FIG. 5. Schematic of experiment with a so1enoid carrying mag-
netic flux P inside a cylinder with wall thickness a. FIG. 6. Fan diagram for the conjugated wave interference.
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d
( r) J' ~ g iQ(r r—')

2mRR (2~)~ i
iso+ +DQ&+D Q»—2 l 2e

Tg C

(2.10)

where Q~ =(Q„,Q, ), Q» =I/R, and R is the cylinder radius. Substituting Eq. (2.10) in Eq. (2.8) yields

2e 1 1. dQ& ™ 1

(2')2, „1"
Qj +L~ '(~)+

R
2P

4o

(2.11)

R /L~(co)

R 2$
00

(2.12)

For co =0, Eq. (2.12) can be presented in the form
(Altshuler, Aronov, and Spivak, 1981)

e L~
AG) ———

~A'

2mB
sinh

2+R 2$cosh — —cos2m.
40

(2.13)

As can be seen from Eq. (2.12), the magnetic flux depen-
dence of the conductance correction represents a sum of
the Lorentzian contours of width /OR/2L„centered on
P=lgo/2. Such a clearly nonsinusoidal shape of the con-
ductivity oscillations originates from the inclusion in Eq.
(2.12) of conjugated waves making multiple turns around
the ring. Now if the phase relaxation length L~(co) is
small compared with the circumference 2', the oscilla-
tions become sinusoidal with an exponentially small am-
plitude.

For a cylindrical sample of radius A and height b, the
correction to its longitudinal conductance at cu =0 is
(Altshuler, Aronov, and Spivak, 1981)

where

2

Lq(co) =
1 + l M'T~

If the thickness of the cylinder walls is small compared
with the length L~(cg), then the integration over Q
should be replaced by a summation with only the term
corresponding to Q„=O retained. If, in addition, the
cylinder height is also small compared with L&(co), then
the integral over Q, should be likewise replaced by a sum,
with only the term with Q, =0 retained in it (thin ring).
This yields for the conductance of a unit length along the
circumference of a thin ring G~ crab (b i——s the ring
height, a is the ring thickness)

2

b, G)(co) = — L~(co)

2
&(cos 2mn

2e 2' R
( )

b
(2.14)

1

L ~(M)

2
1 1 aeH+-

Dr~ 3 Ac
(2.15)

1 1

D&II

As pointed out by Altshuler (see review by Sharvin,
1984), if the angle 8 between the field and the cylinder
axis is not zero but is very small, so that

where Ko(x) is the Macdonald function. Just as in the
case of the ring, the correction oscillates with a period
$0/2, becoming exponentially small for L~ &&2rrR.

Equations (2.12) and (2.14) do not, however, take into
account certain points of importance for a comparison of
the theory with experiment.

(1) In the derivation of Eqs. (2.12) and (2.14) no al-
lowance was made for the presence of magnetic field in
the sample; in other words, it was assumed that in the
sample walls H =0, or that the wall thickness was negli-
gible. In the real experiments to be discussed below, the
samples were placed in a uniform magnetic field, the field
in the cylinder walls being nonzero. As a result, (a) the
oscillations decay as the field increases, since the magnet-
ic fluxes enclosed in different trajectories of conjugated
waves are different, and (b) a monotonic component ap-
pears in the magnetic field dependence of the sample
resistivity, which originates from the interference of the
conjugated waves, which do not enclose the cylinder axis;
i.e., anomalous longitudinal magnetoresistance sets in
(Altshuler and Aronov, 1981b). Note also that the mag-
netic field direction may deviate from the axis of cylindri-
cal samples by an angle 0.

The inclusion of magnetic field results in the phase re-
laxation length I.+ becoming field dependent. For a
cylinder or ring with a wall thickness of a in a field paral-
lel to its axis,
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rH ~4R sinO,

a* =a cos 0+6R sin 0 (2.15a)

then the quantity a in Eq. (2.15) should be replaced by
a*, such that

TC

1
AcuD exp, A,, (0,

C

1@exp, k, &0,
C

(2) As demonstrated by Hikami et al. (1980), in the
presence of spin-orbit scattering the anomalous magne-
toresistance in weak fields and at low temperatures re-
verses its sign. At the same time, in the case of oscilla-
tions, the monotonic component undergoes sign reversal,
the oscillation phase changing by ~. The change in the
shape of the curve can be described by replacing the func-
tion Z~(L„) in Eq. (2.14) by

where coD is the Debye frequency. Note that for nonsu-
perconducting materials (A,, & 0) the quantity T, has only
a formal meaning, and that T, &p. For typical normal
metals at helium temperatures P= 10

All this adds up to the following expression:

2 RKG =, [(—,
' +P)Zp(L~(H)) —,

' Zp(—L~(H))] .
b

(2.20a)

'
, Zp(L~—(H)) —, Zp(L p—(H)),

where

(2.16) Similarly, for a thin ring,

—,
'

+/3

L (H) =L (H)+ 1 2 4
O' 0' D 3w 3iso

(2.17)

1

4 T
ln

C

(2.18)

and fo1 T ))Tc

Here

2

C

(2.19)

Here r, and r„are the spin-flip electron scattering times
due to spin-spin and spin-orbit coupling, respectively; and
L&(H) is determined by Eq. (2.15). The first term in Eq.
(2.16) represents a contribution to the interference which
vanishes in the presence of strong spin-orbit coupling
(triplet cooperon), and the second term (singlet cooperon)
is negative and describes the antilocalization effect creat-
ed under these conditions.

(3) A substantial contribution to the transport phenom-
ena may come from the interaction of electrons with su-

perconducting fluctuations. This interaction, generally
speaking, is present even in normal metals and is essential
in superconductors, even at temperatures considerably
above T„owing primarily to the so-called Maki-
Thompson corrections (Larkin, 1980). Since the super-
conducting pairs are in the singlet state, which is not af-
fected by spin-orbit scattering, the Maki- Thompson
correction affects only the singlet part of the cooperon.
The factor in front of the second term in Eq. (2.16) can
now be written as —,'+p(T/T, ). The always positive
function p(T/T, ) was tabulated by Larkin (1980). For
superconducting metals, for T~T„

R
I 2p

Lq(H) fo

3

2 R

L~(H)
I—2P

0o

(2.20b)

C. Experimental studies
of magnetoresistance oscillations

1. Cylindrical films

The observation of oscillatory magnetoresistance in
hollow normal metal cylinders could serve as a rather
direct experimental confirmation of the quantum interfer-
ence concept underlying the weak localization theory.

The first experiments were performed on samples made
of magnesium (Sharvin and Sharvin, 1981; Gijs et al. ,
1984a, 1984b), and lithium (Altshuler et al. , 1982; Ladan
and Maurer, 1983; see also the review by Sharvin, 1984).
In these experiments, cylindrical films 10—100 nm thick
were evaporated on the surface of quartz filaments with
d=l pm and placed at liquid-helium temperature in a
longitudinal magnetic field H. The sample resistivity R
was measured with a dc potentiometer. The tiny size of
the samples precluded production of magnetic flux only
in the sample channel; the presence of nonzero magnetic
field inside the metal accounted for the additional mono-
tonic variation of the resistivity superimposed on the os-
cillations. The simultaneous measurement of the oscilla-
tion amplitude and monotonic component of the magne-
toresistance on the same sample provided an additional
possibility for comparison with theory, since both phe-
nomena are characterized by the same parameters [see
Eqs. (2.14) and (2.15)].
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Experiments with magnesium (Fig. 7) demonstrated
that the oscillation period did indeed correspond to the
variation of the magnetic flux through the sample cross
section by an amount =go/2; however, the phase of the
oscillations (minR for FI =0) and the monotonic growth
of the resistivity with increasing H could not be recon-
ciled with the simplest formula [Eq. (2.14)] suggested
above for this phenomenon (see Sec. II.B). On the other
hand, the same oscillation phase was observed earlier in
the experiments with superconducting materials of Parks
and Little (1964) near T, and of Shablo et al. (1974) at
T & T, (for more details see Sec. III). Magnesium was re-
ported to be not superconducting down to 17 mK (Falge
et al. , 1968), and the positive magnetoresistance in this
case can be accounted for by another reason (see below).

The most direct confirmation of the weak localization
mechanism, however, from both qualitative and quantita-
tive points of view, was obtained in experiments by
Altshuler et al. , 1982) and Ladan and Maurer (1983) on
lithium films. In the case of lithium the oscillation phase
was successfully reversed and a negative sign achieved for
the monotonic magnetoresistance (Fig. 8).

The measurement results averaged over four experi-
mental curves are in a good accord with the theoretical
curve (dashed line in Fig. 8) drawn by Eqs. (2.14) and
(2.15), with the sum in Eq. (2.14) including only the n =1
term. The value of the filament diameter accepted in the
calculations, d =1.31 pm, was found to be fairly close to
the value d =1.30+0.30 pm obtained with a scanning
electron microscope. Thus, within this accuracy, the
period of the experimental curve in flux through the aver-
age sample cross section coincided with Po/2. The film
thickness a = 127 nm accepted in the calculations deter-
mined at the same time the oscillation decay and the mag-
nitude of the monotonic magnetoresistance component,
thus providing an additional test of the theory.

The results of the magnesium film studies shown in

-0.02-

-0.03—

0 lO 20 30 40 50 60 70
Hme)

FIG. 8. Longitudinal magnetoresistance AR(H) at T =1.1 K
for a cylindrical lithium film evaporated onto a 1-cm-long
quartz filament. R4 2

——2 kQ, R3OO/R4 2 ——2.8. Solid line: aver-
aged from four experimental curves. Dashed line: calculated
for I ~=2.2 p'm, ~~/~„=0, filament diameter d=1.31 pm,
film thickness 127 nm. Filament diameter measured with scan-
ning electron microscope yields d =1.30+0.03 pm (Altshuler
et al. , 1982; Sharvin, 1984).

Fig. 7 and the more detailed data obtained by Gijs et ah.

(1984a, 1984b) (Fig. 9) may be theoretically explained if
one considers spin-orbit interaction under the elastic
scattering of electrons [see Sec. II.B, Eqs. (2.20a), (2.16),
and (2.17)]. The importance of spin-orbit scattering in
the case of magnesium, an element with a small atomic

0.2
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0 l 0 20 30 40
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lX
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0
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CL

~ ~ 4.2K
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FIG. 7. Longitudinal magnetoresistance AR(H) at T ——1.1 K
for two cylindrical magnesium films on quartz filaments 1 cm
long. R4» ——9.2 kQ, R4.»i =12.3 kO. The ratios +3OO/R4 2 for
the two films are 1.39 and 1.25, respectively. Filament diameter
of sample I measured with scanning electron microscope is
1.59+0.03 pm. The arrows specify the fields corresponding to
integer numbers of magnetic flux quanta $0/2=bc/2e through
the filament cross-section area (Sharvin and Sharvin, 1981).

10 20 30
B(IO 4T)

40

FIG. 9. Longitudinal magnetoresistance R{H) for different
temperatures of cylindrical magnesium film on a quartz fila-
ment 5.3 mm long and 1.2+0. 1 pm in diameter. R4 &

——5056 Q.
Solid curves show the theory. L„=2pm, ~~/r„=13 for 1.45
K (Gi~s et a/. , 1984a).
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number Z =12 is, generally speaking, not obvious, since
the relative cross section of spin-orbit interaction in the
electron scattering from defects was estimated by Meser-
vey and Tedrow (1978) to scale as (aZ)", where
a=e /Ac= », . Thus for magnesium one might expect
small values of the ratio ~/~„=10 . One should, how-
ever, bear in mind that the oscillation phase and magne-
toresistance sign are determined by the ratio r&/r», with

growing dramatically with decreasing temperature.
The curve in Fig. 9 for T =1.45 K corresponds to
r„/~» ——13, and for the curves in Fig. 7 evaluation yields

~~/v;, ~ 10, whereas above helium temperatures Berg-
mann (1982) observed negative magnetoresistance in pla-
nar magnesium films with r~/~» & 0.5.

Turning back to the results for lithium (Fig. 8), which
are well described by theory with 7'+Ir»=0, it should be
pointed out that the shape of the curves for small r&lr»
turns out to be relatively insensitive to the magnitude of
r~/r». Using Eqs. (2.14), (2.17), and (2.20a), one can
derive an upper limit for this quantity, r~/r» & 0.3,
which corresponds to ~»& 10 s for the sample used in
the experiment of Altshuler et al. (1982). The amplitude
of the resistance oscillations for this lithium sample could
be measured at temperatures up to 2.6 K. These data and
the monotonic longitudinal magnetoresistance measured

up to 4.2 K were used to derive the value of L~(T) and
the temperature dependence of the phase relaxation length

l+ UF&~=3L——~/I displayed in Fig. 10. This dependence
for the quantity 1/l+ or 1/wz was thus found to be nearly
quadratic in T over the temperature range studied, and
the value of r+ was about one-tenth of the electron trans-
port relaxation time in bulk lithium. For bulk lithium
one observes a b,pcc T law (Krill, 1971; Sinvani et al. ,
1981) due apparently to the electron-electron interaction
in pure metals (Landau, 1956).

For comparison we also show the results of a study into
the magnetoresistance of quasi-one-dimensional lithium
strips measuring about 10 &&10 )& 10 ' cm carried
out by Licini et al. (1985). The samples were prepared by

evaporating lithium onto a substrate with a stencil (Fig.
11) fabricated by "canyon" lithography (Fulton and Do-
lan, 1983). By using the weak localization theory for the
quasi-one-dimensional case, Licini et al. (1985) obtained
for one of the samples over a broad temperature range
0. 1 & 'r~ 16 K the relation L+ +D——r& 1.9——T ' pm
+10%, or ~ =1.4)&10 ' T s+10%, i.e., the same ex-
ponent for the temperature dependence of r~ as in Fig. 10
but with an order of magnitude smaller absolute values of

(assuming by the free-electron model UF 1.3——X10
cm/s for lithium). An estimate was obtained also for the
temperature-independent quantities L, =+Dr, =3.1 pm
and L» +D——r»=1.8 pm. The magnitude of the spin-
orbit coupling turned out to be at least an order of magni-
tude greater than that for a cylindrical sample described
earlier, apparently due to the presence of trace amounts of
heavy elements, to which lithium is particularly sensitive.

The dependence ~+ ~ T was observed earlier on pla-
nar films of other metals as well, e.g. , magnesium (Berg-
mann, 1982). This dependence is obviously not related to
the conventional e-e scattering. While a comprehensive
discussion of the relaxation processes is beyond the scope
of this review (see, for example, Altshuler and Aronov,
1985), it should be noted that a plausible theoretical ex-

planation of the relationship v~~ T has yet to be ad-
vanced. Neither electron-electron scattering in dirty met-
als (Schmid, 1974; Altshuler and Aronov, 1979, 1981a;
Altshuler, Aronov, Khmelnitskii, and Larkin, 1982;
Abrahams et al. , 1982) nor electron-phonon scattering
(Schmid, 1973, 1985) are capable of producing such a
dependence ~~( T).

It is possible that the ~„'~ T dependence is transition-
al between high-temperature electron-phonon scattering
(~~ '~ T ) and low-temperature electron-electron scatter-
ing v.

+
' ~ T in the two-dimensional case, or r+

' ~ T ob-
served in many three-dimensional cases (see, for example,
the review by Altshuler and Aronov, 1985).
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A number of magnetoresistance studies in a transverse
field have been carried out on samples shaped as a
"mesh" representing a two-dimensional square array',
"necklace" samples consisting of square rings strung end
to end, or ladders of quasi-one-dimensional strips con-

FIG. 10. Temperature dependence of 1/V l~, where l~=uFr~
is the phase relaxation length for the lithium (see Fig. 8). ,
~~/~„=0; ~, w~/v;, =0.2 for 1.1 K. Dashed line drawn to
guide the eye (Altshuler et al. , 1982; Sharvin, 1984).

FIG. 11. Silicon substrate for preparation of lithium samples
(Bishop et al. , 1985) with a stencil fabricated using canyon
lithography (Fulton and Dolan, 1983).
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R e2 L~ S L~
ln

m. Ao- q
(2.21)

where o is the conductivity and q is the wire cross-section
area. One readily sees that Eq. (2.21) can be derived from
Eq. (2.3) for the correction to the resistivity of a solid film
with the mean free path l replaced by S»1.

The relative magnitude of effects for samples of dif-
ferent type (single-loop, ladder, network) and size
prepared of the same wire is determined for S «L~ by
the following relations: (A) Near the minima, i.e., at the
noninteger values of 2P/Po, bR/R ccS/L& for samples

0.5

FIG. 15. Reduced magnetoresistance hR/AR, „vs reduced
flux 2$/go for three types of samples made up of square loops
with a side S, for S/L~=0. 2. (a) Single loop; (b) ladder; (c) net-
work (Douqot and Rammal, 1985).

regular oscillations appear when the ratio of magnetic
fluxes through the loops is of the form n /m, with n and
m both integer. In the case of interconnected identical
loops with a perimeter 4S with L„/S &0—o, the oscillation
shape is distorted in a manner qualitatively similar to that
for a multiple traversal of a ring by two conjugated
waves, where, according to Eq. (2.12), the oscillation
shape, which is sinusoidal for small L~/S, becomes
Lorentzian. These results do not depend on whether one
considers arrays of rings with common nodes or ladders
in which loops have common sections (Fig. 15, curves a
and b).

(ii) Infinite square networks Th. e localization correc-
tion to the resistivity b,R (H) in this case is based on the
solution to the problem of the energy spectrum of an elec-
tron propagating in a square lattice with a period S in a
magnetic field H normal to the lattice (Hofstadter, 1976,
and references therein). Despite the complexity of the
spectrum, the curve bR (Plgo), where Q=S H, turns out
to be periodic and to have maxima at integer values of
2P/$0 (Fig. 15, curve c)

For H =0 and S«L+, the resistivity correction in
case {1l)will be

of any type. (B) At the maxima, i.e., at the integer values
of 2$/go

L~/S for a loop,
b, R/R ~ const for a ladder,

(S/L~) lnL~/S for a network .

Figure 15 presents b,R{P)/R curves calculated for these
cases, neglecting the flux through the conductors, for a
particular case of S/L~ =0.2.

In a qualitative agreement with these results, the peaks
in the experimental curves in Figs. 12 and 13 decrease in
amplitude and become sharper for networks compared
with arrays made up of loops of the same size.

(iii) Honeycomb networks. To carry out a qualitative
comparison with the results of Pannetier et al. (1985),
Douyot and Rammal (1985) took into account the depen-
dence of L~ on H defined by Eq. (2.15), where the ring
wall thickness a is replaced by the width of the strips
making up the network. The spin-orbit coupling revers-

ing the sign of magnetoresistance was also included in the
calculations. Figure 14 shows the close resemblance in
the shapes of the theoretical and experimental curves
reached for a copper honeycomb network.

3. Experiments on mesoscopic samples

A number of theoretical studies have analyzed the pos-
sibility of observing oscillations with a period Po in disor-
dered conductors (Browne et al. , 1984; Carini et al. ,
1984; Gefen et al. , 1984). In particular, Gefen et al.
(1984) investigated the resistance between two points of a
one-dimensional ring with two scatterers additionally
switched into the branches of the circuit [Fig. 3(a)].

If filaments are strictly one dimensional, the presence
of scatterers does not affect the fact that two waves prop-
agating along two branches of a circuit with a flux P ac-
cumulate an additional phase difference of 2m.g lgo.
Therefore the coefficient of electron wave transmission
through the ring and, hence, the ring conductance oscil-
late with a period of $0. In addition to this, oscillations
with a period $0/2 also arise from the interference of con-
jugated waves (see Sec. II.A), which, however, have a
smaller amplitude in a one-dimensional circuit. Indeed, if
the transmission intensity coefficient through one branch
of the circuit is t ~, then the oscillations with the period $0
in the transmitted wave intensity are of order t~, and
those with the period $0/2, of order t& (Gefen et al. ,
1984).

It would seem that as the number of parallel channels
X grows, the oscillations with the period $0 will add in a
random way, resulting in the falling off of relative magni-
tude of the effect as N '~, whereas the oscillations with
period $0/2 should add coherently, and thus in the case of
a large number of channels the oscillations with the
period $0 will vanish (Gefen et al. , 1984). As will be
shown later, however, at T =0 the oscillations with. the
period Po do not vanish for any number of channels; in-
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XR (H)R (H +ho),
(2.22)

I I I I I

0.0 0.2 0.4 0.6 I.O I.2
I

0.8
FIG. 16. Magnetoresistance of a gold ring vs magnetic field for
different temperatures (Umbach et al. , 1984}. Ring resistivity
for FX=Ois Ro ——7.7 Q.

stead it is found that the total dephasing results here only
from inelastic processes.

Experiments on quasi-one-dimensional rings aimed at
revealing regular resistivity oscillations with periods of $0
and $0/2 led to a discovery of a fluctuative dependence of
the conductivity of these rings on magnetic field (Umbach
et al. , 1984; Webb et al. , 1984), which did not vary with
time. The experiments were carried out on rings made of
gold and Au6OPd4o alloy. Figure 16 presents the magnetic
field dependence of the resistivity of a gold ring 320 nm
in diameter and 45 nm wide at different temperatures.
This dependence is seen to have a complex fluctuative
character, with an amplitude of the order of 10 R o ( R o

is the sample resistivity). It was not possible to identify a
dominant periodicity of the magnetoresistance in these ex-
periments. As the temperature was lowered, this struc-
ture grew in amplitude while not shifting with magnetic
field. Moreover, no decay of the random oscillations with
magnetic field raised up to 8 T was detected. The magne-
toresistance of wires made of the same materials was
found to have a similar structure.

In their subsequent experiments on gold rings, Webb
et al. (1985) discovered an oscillation spectrum with a
clearly pronounced peak corresponding to the period $0
(Fig. 17). The observation of this phenomenon was made
possible by increasing the ratio of ring diameter to width
(784 nm/41 nm). The upper panel of Fig. 17 displays the
magnetic field dependence of the resistivity, which is seen
to contain, besides a fluctuating. component, oscillations
with a periodicity close to $0. Shown below is the Fourier
power spectrum of the magnetoresistance:

2

=f" dH f+"dl,e'"'""

(g} IO X@0

I I!((

0 IO0 200
l/a H ( l /T)

500

FIG. 17. (a} Gold ring magnetoresistance at 0.01 K (Webb
et al. , 1985}. (b} Fourier power spectrum in arbitrary units. In-
set: picture of the ring.

where R(1/b, H) is the Fourier power spectrum of the
sample impedance.

The Fourier power spectrum of the magnetoresistance
has peaks at 1/hH =0, 131, and 260 T '. The max-
imum at 1/b, H =131 T ' corresponds to the presence in
the fluctuation spectrum of regular oscillations of a
period of Po/S, and that at 1/bH =260 T ' of a period
$0/2S (Sbeing the ring area).

Chandrasekhar et al. (1985) studied magnetic field ef-
fects on one-dimensional aluminum and silver rings.
They succeeded in observing, in both eases, resistivity os-
cillations with a periodicity of Po/2; the silver rings re-
vealed at the same time the presence of oscillations of
period Po. Figure 18 presents magnetic field dependences
of the magnetoresistance for a silver ring. The observed
behavior at low fields can be fitted by a sum of two oscil-
latory contributions, namely, one of period $0/2 (the
periodicity in the magnetic field being 24 Oe), described
by Eq. (2.20b), and one of period $0. However, the most
convincing evidence for the existence of oscillations of
period $0 was obtained in the high-field domain, where
the $0/2. oscillations have already decayed. In this
domain one sees clearly oscillations with a Fourier power
spectrum peaking at hH =52 Oe, which corresponds
within 10% to the flux period $0.

Datta et aI (1985) inve.stigated interference effects in
parallel quantum wells in the GaAs-A1GaAs structure
and observed resistance oscillations with the periodicity

The oscillation amplitude was approximately 10 3 of
the total resistance. Washburn et al. (1985) studied the
temperature dependence of the amplitude of oscillations
with Po and $0/2 periods in polycrystalline Au films.
They found that the Fourier spectrum amplitude of the
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FIG. 18. Magnetoresistance of a 1-pm-diameter silver ring
(Chandrasekhar et al. , 1985); ~, experiment; dashed curve, cal-
culated oscillations according to Eq. (2.20a), with a periodicity
of hc/2e; dotted curve, oscillations of period hc/e; solid curve,
sum of the two contributions. Inset: oscillations at a high field
with a period hc/e (periodicity in magnetic field kB=52 G).

mesoscopic fluctuations in small rings is described by a
temperature dependence of T

Umbach et al. (1984), Webb et al. (1984), Chan-
drasekhar et al. (1985), and Webb et al. (1985), showed
experimentally that the complex magnetic field depen-
dence of the magnetoresistance is closely related to the
statistical properties of the sample proper. Umbach et al.
(1986) studied the magnetoresistance oscillations of arrays
of submicron-size silver rings connected with one another
in series by bridges. The arrays consisted of 1, 3, 10, and
30 rings. It was found that the amplitude of oscillations
of period Pp falls off with increasing number of series-
connected rings N as I/~Ã, whereas that of oscillations
with a periodicity of Pp/2 does not change. We should
stress that if the fluctuations are large compared to the
average conductance, the dominant periodicity in a single
loop is Pp, while in the opposite case it is Pp/2 (Buttiker
et al. , 1985; Stone and Imry, 1986).

Similar statistical phenomena were found earlier in
strongly localized systems by Fowler et al. (1982) and
Kwasnick et al. (1984), who revealed a strongly fluctuat-
ing dependence of the conductivity of quasi-one-
dimensional channels in metal-oxide-semiconductor field
effect transistors (MOSFET's) on gate voltage. At first,
Azbel' (1983) attempted to explain these results as due to
the resonance tunneling of electrons in a one-dimensional
system. Lifshiftz and Kirpichenkov (1979) had shown
earlier that the phenomenon of electron resonance tunnel-
ing is essential in the statistical fluctuations of the trans-
verse film resistance. In this model, the resistance is
dominated by a random resonance pair of states. The
probability of their appearance depends on the specific ar-
rangement of impurities and fluctuates strongly. The

conductance fluctuations should manifest themselves as
large narrow spikes with variation of Fermi energy, their
width being on the order of the width of the resonance
levels. However, the experimental behavior of conduc-
tance in one-dimensional MOSFET s is at odds with this
picture. Lee (1984) was able to explain these results quali-
tatively as due to fluctuations in one-dimensional Mott
variable-range hopping conduction. In the one-
dimensional case the conduction is controlled by the
bottleneck effect. As the chemical potential varies, the
impurity pair controlling the electron Inotion is replaced
by another in a random way.

These and other studies (Altshuler, 1985; Altshuler and
Khmelnitskii, 1985; Lee and Stone, 1985; Stone, 1985)
have led to the understanding that the phenomena in
question reflect the existence of a random potential in the
sample, the properties of tiny samples being determined
by the actual form of the random potential, which may
fluctuate from sample to sample.

It was earlier believed that in disordered quantum sys-
tems the length scale on which any physical quantity be-
comes averaged out is the mean separation between im-
purities, N;, the relative fluctuations being propor-
tional to I/~N;. However, Altshuler (1985), Lee and
Stone (1985), and Stone (1985) showed that this length
scale exceeds by far N; ', tending to infinity for T~O.
Samples of size smaller than this length scale are now
conventionally called mesoscopic (Stone, 1985). In such
samples no total averaging of properties over the impurity
distribution occurs, which results in destruction of crystal
symmetry and the appearance in such samples of a num-
ber of phenomena typical of low-symmetry crystals
(Altshuler and Khmelnitskii, 1985).

Stone (1985) performed numerical simulations of the
magnetic field behavior of a mesoscopic sample, using the
model of Lee and Fisher (1981), and revealed the appear-
ance of an aperiodic structure in the dependence of the
resistivity on magnetic field, similar to that observed in
experiments.

In our discussion of fluctuation phenomena we are go-
ing to investigate the Fourier power spectrum of magne-
toresistance (Altshuler and Khmelnitskii, 1985; Lee and
Stone, 1985):

F~prs(h p H) (o~p(H)ors(H +hp) )
—(o p(H))(crrs(H+hp)) .

c)
/ II

cI)

FIG. 19. Diagrams yielding main contribution to the correla-
tion function of conductivities. Diagrams (c) and (d) cancel.
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Here o 13(H) is the conductivity of the sample, and the
angular brackets denote averaging over the various ran-
dom potentials. The quantity &E(O,H) characterizes the
amplitude of a random variation of cr(FI), and the mag-
netic field scale ho on which F(ho, H) varies determines
the field scale H typical of the variation of o(II) Using

the diagrammatic technique for an electron in the field of
impurities (Abrikosov et al. , 1963), one can represent the
quantity F(ho, H) as a sum of diagrams (Fig. 19) corre-
sponding to the expression (Altshuler and Khmelnitskii,
1985)

2

f «d' " ", f drI (~.,~»+S„~.s)[
~

P',~', (O, r)
~

'+
~

P',",, (O, r)
~

']
mvV BE BE.

+6 p5~sRe[P,' ', (O, r)P', ';(r, O)+P', ', (O, r)P', ';(r, O)]} . (2.23)

=5(r—r') . (2.24)

Here BD ——V, Bc——V —(2ie/ch')A, for which curlA=H,
curls =ho. Note that the equations for I" ' and I" ' con-
tain the same time ~;„, which, generally speaking, does not
coincide with the energy relaxation time. The reason for
this is that any inelastic collision destroys any correlation
between the conductivities of two samples (Lee and Stone,
1985)..

The magnetic vector potential a appears in the equation
for diffusion because we are actually interested here in the
correlation in the motion of a particle and hole propaga-
ting in different fields, A+a and A, respectively. There-
fore the wave functions will have a phase difference

by= f dl a(r) .

The same considerations apply to the cooperon, which re-
flects the existence of correlation in the motion of two
electrons propagating in different fields, A+a and A.
The total phase difference accumulated by the two elec-
trons in their motion will be

by= f dl(2A+a) .

Calculation of the correlation function [Eq. (2.23)] for
T=O predicts size-independent Auctuations in conduc-
tance of order e /A. This implies that the length scale on

Here V is the sample size, n = [exp(+ E/T)+ 1] '. The
calculation includes contributions from graphs that differ
in the direction of the arrows. The graphs 19(c) and 19(d)
cancel. %'e assume the average conductivity o. to be iso-
tropic. The first term in the curly brackets is due to fluc-
tuations in the diffusion coefficients [Fig. 19(a)], and the
last one originates from the density-of-states fluctuations
[Fig. 19(b)] (Altshuler and Shklovskii, 1986). The quanti-
ty P„' ' is the diffusion (cooperon), differing from the
one introduced earlier in Eq. (2.9) and satisfying the equa-
tion

2

—Eco+D —/BcD — a + P (r, r )
e (,C,D)

cA

6A &3 24 =6R cos 2mb/
+9'a

where y is the phase, which is specific to the sample. If
the voltage and current probes are interchanged, then

6R24 )3
——M cos

which the fluctuations self-average is much larger than
usually expected and tends to infinity as T goes to zero.

Lee and Stone (1985) calculated the Fourier power
spectrum for the conductivity of a thin wire in magnetic
fields and came to the following conclusions.

(1) The fact that Eq. (2.24) for the diffusion contains
only the quantity ho implies that the fluctuations should
remain practically unchanged up to the classically strong
fields, which is exactly what is observed in experiments.

(2) For T=0 the magnetic field scale on which the
Fourier power spectrum of the conductivity fluctuations
undergoes variation is defined by the condition

bp, =QOV'3,

where bP, is the magnetic flux variation through the
sample area perpendicular to the magnetic field. This
field scale was obtained earlier from the numerical simu-
lations of Stone (1985) and is likewise in accord with ex-
periments.

The appearance of nondiagonal components of the con-
ductivity tensor in the mesostructure, due to the breaking
of space symmetry, results in a dependence of fluctuations
on the sign of magnetic field. The Onsager relation is
o.;k(H) =ok;( H). When m—agnetoresistance is measured
with the four-terminal method, symmetry under magnetic
field reversal will be observed only if the voltage and
current probes are interchanged. Biittiker (1986) dis-
cussed this asymmetry in terms of the Landauer formula
(Landauer, 1970). He has shown that the same
phenomenon takes place in Aharonov-Bohm experiments.
If voltage is applied to probes 2 and 4-and current is mea-
sured between probes 1 and 3, then the oscillatory part of
the loop resistance is
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If the resistance 5R ~4 23 is measured, then

2mb, g5R,4 23 ——5R cos +gp
4o

and p~+gp.
The first observations of asymmetry were made by

Umbach et al. (1984) and Webb et al. (1985). A detailed
comparison of the experimental and theoretical results
was carried out by Benoit et al. (1986},which confirmed

Buttiker's theory (1986).
We are going first to present the form of the Fourier

power spectrum for a ring of radius R placed in a field of
a vector potential A directed tangentially to the cir-
cumference, after which we shall discuss how the result
should change when the magnetic field in the annulus it-
self is taken into account. The calculation of F(hP, P) is
identical to that of Ao.

&
in Sec. II.B. For Lz

=v'DA/2T «L;„ the contribution due to the density-
of-states fluctuations can be disregarded, yielding

w (hP, P) = (56(H)56(H+h, ) )
2

16 e' LT +"
I = —oo

L;„
I—

No Lln

2$+ b.P

=w D(bp) +w c(2$+bp), (2.25)

where 6(H) is the conductance of a ring, ' and for the
flux we obtain

+in +D

1 Da
12

+
2

hp

2m.gp
(2.26a)

whereas for the second

(S being the ring area).
As can be seen from Eq. (2.25), the conductance

Fourier power spectrum is periodic in b,P with a period
Pp, and in P with a period Po/2. Just as in Sec. II.B, in
the presence of magnetic field, to 1/~;„one should add
the decay I/r~ [Eq. (2.15)] due to the ring's being of fi-
nite thickness a, so that different magnetic fluxes are con-
fined within different electron trajectories. Therefore the
first and second terms in Eq. (2.25) will decay in different
ways. For the first term the decay will be

1 1+
+in +C

Da 2 H+hp/2
+

3 2m.gp
(2.26b)

From Eqs. (2.25), (2.26a), and (2.26b) one sees that the
cooperon part of the conductance fluctuations, unlike the
diffusion part, falls off with increasing magnetic field,
and for high fields H the conductance fluctuations de-
pend on hp only and do not decrease as the absolute value
of H is increased. The maximum of the function
~ (bP, P) falls off with increasing temperature as

( T)/T T—(1+P)n

If the condition T« fi/r;„ is fulfilled, then

r '2
+ oo

w (hP, P) =24
m fi

1

I—
0o

-2-2 +
R

LD

1

2$+bP R

4o Lc

2 2 (2.27)

As can be seen from Eq. (2.27), for T +0 and Lc D~ oo—, the width of the maxima of the function a (hP, P) tends to
zero, thus implying the absence of phase relaxation effects when no inelastic processes are involved.

Equation (2.25) can be rewritten in a form convenient for comparison with Fourier spectra,

Conductance fluctuations of a one-dimensional ring depend on more than just the material of the ring. Indeed, at T=0 they de-

pend also on the experimental geometry. Therefore Eq. (2.25) is valid for L„„&2+A. Isawa et al. (1986) have discussed the effect of
probes on experimental results. Di Vincenzo and Stone (unpublished) have investigated the difference between the two- and four-
terininal configurations. We are grateful to A. D. Stone, who drew our attention to the importance of the actual measurement
methods used.
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r

16m. e I OLD (2~—

RABID)n

bP~D 1+2 e D cos2~n

16~ e I-Tl.c + 2~—zn(Lc 5/+2/
~3 0

(2.28)

When comparing theory with experiment, one should
bear in mind that in the calculation of an experimental
spectrum one performs averaging only over magnetic field
[see Eq. (2.22)]. Therefore the theoretical results obtained
by averaging over the impurity distribution may be com-
pared with experimental data only when these two kinds
of averaging are equivalent or, in other words, when the
ergodic hypothesis is valid (Lee and Stone, 1985).
Rigorous proof of the validity of this ergodicity has been
presented by Altshuler, Kravtsov, and Lerner (1986), who
use a nonlinear o. model.

It should be noted in conclusion that Altshuler and
Spivak (1985) and Feng et al. (1986) drew attention to the
fact that the resistivity fluctuations are extremely sensi-
tive to a small variation of the random potential. As fol-
lows from their estimate, a change in the position of only
one impurity may change the conductance of a mesoscop-
ic film at T =0 by a finite amount of the order of e /A'.

This sensitivity would permit measurement of superslow
processes in metals, for instance, the time scale of pro-
cesses in spin glasses and metal glasses or the diffusion of
impurities at low temperatures.

Feng et al. (1986) showed that mesoscopic fluctuations
of resistance could be responsible for room-temperature
1/f noise in disordered metals and an anomalous low-
temperature 1/f noise in metallic glasses due to motion of
a single scattering center. At room temperature the resis-
tance fluctuations are due to thermally activated motion
of defects, while at low temperatures in metallic glasses
they are due to the tunneling in two-level systems.

Skocpol et al. (1986) have observed random time
switching between different "magnetofingerprints" on Si
MOSFET's with low carrier mobility. Most likely they
correspond to different configurations of scatterers.

D
8 AT,

2eA C+ '
A(r)

T.

b.(r)
i

b,(r)=0,7g(3)
Sm T,

(3.1)

6=
~

b,
~

exp(iay), (3.2)

where y is measured along the cylinder circumference.
From the condition of the order parameter's remaining

single-valued when traveling around a contour it follows
that'

2&n n
n=. 012 . . .7 (3.3)

where R is the cylinder radius. Substituting Eq. (3.2) in
Eq. (3.1) and taking into account Eq. (3.3) yields for the
difference between the free energies of a superconductor
and of a normal metal

7r AD 2 2(p T —Tc
~

b,
in

16 TR2 fo T, 2

(3.4)

where T, is the superconducting transition temperature in
the absence of magnetic field and b,(r) is the order param-
eter for the superconductor.

If the cylinder wall thickness a is much less than the
magnetic field penetration depth X( T) and coherence
length g(T), then in a magnetic field parallel to the
cylinder axis the absolute magnitude of the order parame-
ter

i

b,
i

and the superfluid current should be constant
within the cylinder walls. One may therefore assume that

II I. OSCILLATORY EFFECTS
IN SUPERCONDUCTORS

which becomes a minimum each time the quantity
(n —2$/Po) is minimal. Therefore (Tinkham, 1963)

As pointed out in the Introduction, Little and Parks
(1962) predicted and experimentally revealed (Parks and
Little, 1964) the oscillatory dependence of the supercon-
ducting transition temperature T, on the magnetic flux
through a thin-waHed cylinder. This effect is intimately
connected with the phenomenon of magnetic flux quanti-
zation in superconductors. For a quantitative evaluation
of this effect, consider the Ginzburg-Landau equation for
a. dirty superconductor (see, for example, the monograph
of Saint-James et al. , 1969),

2

5T, = —— min n—~ AD . 2P

4o

ko . 2y—T min n—
R 4o

(3.5)

where go ——(mD/8T, )'
In these states the superfluid current is likewise

minimal,
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50—

/b [z o. . 2P (3.6)

As follows from Eqs. (3.5) and (3.6), both the shift of the
superconducting transition temperature and the magni-
tude of the superfluid current are functions of magnetic
flux, with a periodicity of Po/2. Figure 22 below shows
the phase diagram of a superconducting cylinder in an
external magnetic field.

The' Little-Parks effect was studied by observing the
variation of the cylinder resistivity in a longitudinal mag-
netic field at a temperature close to T, . If the transition
point shifts by an amount greater than the temperature
spread of the transition proper, then the oscillations
should be asymmetric in shape, corresponding to the
resistivity's switching alternately on and off.

The temperature dependence of the cylinder conduc-
tance in the vicinity of T, is related to the fluctuation
conductivity. In the region T T, «i)i—/r„ the major
contribution to the fluctuation component in the conduc-
tivity comes from the Aslamazov-Larkin (1968) correc-
tion. For zero magnetic field and for a square film, this
correction has the form

e Tc

166 T —T,

The fluctuation correction of Aslamazov and Larkin to
the conductance of a thin-walled cylinder in the field of a
vector potential A was studied by Kulik and
Mal'chuzhenko (1971). For T & T,o it can be written as

—3/2

ire ko +" —T ko 2P
2 2

16'' b „„T, R2 Po

(3.7)

As is evident from Eq. (3.7), the temperature at which b, G
tends to infinity is a periodic function of magnetic flux, in

0
5.66 5.68 5.70

T(K)
5.72

FIG. 21. Phase diagram H ( T) of a 1.2-pm-diameter tin
cylinder: dashed curve, Eq. (3.8) for A,(0)=642 A; solid curve,
Eq (3-10) for H, =303O, T, =373 K, ~(0)=620A(G-f
and Parks, 1968).

accordance with Eq. (3.5). Equation (3.7) can be
transformed to

e 2~R &c
1 2+ 2mRp& 2~R

16'' b T —T,

2
X cos2mp

(3.7a)

where g= [~D/8(T —T, )]'~ is the coherence length in a
superconductor and Ki(x) is the Macdonald function. As
can be seen from Eq. (3.7a), the magnitude of the conduc-
tance oscillations falls off exponentially with increasing
cylinder perimeter for 2mR »g. However, for 2m.R=g
the oscillatory term and the monotonic component be-
come comparable.

Parks and Little (1964) and Groff and Parks (1968) car-
ried out extensive observations of this effect on supercon-
ducting cylinders of tin and aluminum. Groff and Parks
(1968) succeeded in observing an asymmetric shape in the
oscillations (Fig. 20) and drawing an experimental phase
diagram (Fig. 21). The phase diagram is seen to differ
from the theory (Fig. 22). This may be accounted for by

T= 1.150 K T= I.I29 K

K
4

C:

T = l. lie K

FIG. 20. The asymmetric shape of resistivity oscillations of a
1.33-pm-diameter aluminum cylinder (Groff and Parks, 1968).

Tc

FIG. 22. Phase diagram of a superconducting cylinder with
magnetic flux (Little and Parks, 1962). 3 is the cylinder cross-
section area.
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H,„„,]op, ( T) Hll ( T) 1+ 7 Q

10 2R
(3.8)

the fact that the magnetic field monotonically shifts the
superconducting transition point to lower temperatures.
By including this effect (Groff and Parks, 1968), one can
fit the envelope (dashed line in Fig. 21) by the following
expression for a «2R (R is the mean radius):

2

where

(T)=2~6 H, (T)a. (3.9)

is the parallel critical magnetic field of the film, H, ( T) is
the thermodynamic critical field of a superconductor, and
A, (T) is the penetration depth. For the H(T) diagram we
now have

T, (0)—T, (H)

T, (0)
4o

32rt iP(0)R H, (0)

2 l2
n a 4 2P
3R' 3

'2
a

2R
(3.10)

The solid line in Fig. 21 is the theoretical curve according
to Eq. (3.10), which thus is seen to fit well to the experi-
mental data.

Shablo et al. (1974) observed magnetoconductivity os-
cillations in a thin-walled cyli.nder of aluminum with an
oxygen impurity up to 8 K. These experiments demon-
strated that the Aslamazov-Larkin contribution [Eq.
(3.7a)] could not account for the temperature dependence
of the effect. The development of the theory of oscilla-
tions in multiply connected disordered conductors has
made it clear that in these experiments what was observed
for the first time was the Maki-Thompson contribution to
the magnetoresistance oscillations [Eq. (2.20a)]. Gordon
(1984), Gordon et al. (1984), and Gijs et al. (1984b) re-
peated the experiments of Shablo et al. (1974) on samples
of pure aluminum and performed a quantitative compar-
ison with theory. Figure 23 shows the experimental data

of Gordon et al. (1984) for different tempertures. The
solid lines present graphically the theoretical relations
(2.20a). Figure 24 shows the temperature behavior of the
first magnetoresistance oscillation. This dependence is
seen to be fitted well by Eq. (2.20a), the Aslamazov-
Larkin correction [Eq. (3.7a)] becoming predominant only
in the immediate vicinity of the transition point.

Gijs et al. (1984b) analyzed the oscillation amplitude
and the monotonic contribution in the weak magnetic

.OK

OO

.OK Loc.-

.0 K

—l6 50 100

H (G)

I

(50 200

FIG. 23. Magnetoconductance oscillations of an aluminum
cylinder (Gordon et ai. , 1984). Solid curves: theoretical calcu-
lations according to Eq. (2.20a). 600 ——e /m. A.

FIG. 24. Amplitude of the first magnetoresistance oscillation
vs temperature for aluminum cylinders (Gordon et al. , 1984).
The curve labeled Loc + MT represents Eq. (2.20a), and that la-
beled AL presents the Aslamazov-Larkin correction, Eq. (3.7a).
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10—
2 5
T(K)

FICx. 25. P(T) dependence derived by Ciijs et al. (1984b) from
resistance oscillations (O, 4) and monotonic magnetoresistance
(O, U) measured in two Al cylinders. Solid curve, theory by
Larkin (1980); Inset: ~~ vs temperature plot.

field domain (where P does not depend on magnetic field)
and obtained the temperature dependence of the parame-
ter 13 (Fig. 25). The solid line in Fig. 25 displays the
theoretical behavior of P(T) predicted by Larkin (1980).
In the vicinity of T„/3(T) grows logarithmically. Shown
in,the same figure is the temperature dependence of ~~,
which does not disagree with the predicted temperature
course ~+ ~ T ' due to electron-electron scattering
(Altshuler, Aronov, and Khmelnitskii, 1982b).

The numerous experiments on superconducting samples
have shown that the Little-Parks effect and the magne-
toresistance oscillations (Maki-Tompson contribution) in
superconducting metals are intimately related and under-

go transitions into one another as the temperature varies.
The Aslamazov-Larkin contribution to this effect has to
our knowledge not yet been revealed unambiguously.

We should stress that the resistance oscillations con-
nected with the Little-Parks effect differ from those in a
normal metal. The Aslamazov-Larkin correction de-
scribes the contribution of fluctuatively existing Cooper
pairs near the transition point T, to the conductivity.

The velocity of these pairs is quantized in multiconnected
conductors. The oscillation effect in a normal metal is
due to the interference of noninteracting electron waves
on conjugated trajectories and does not depend on
electron-electron interaction. The major corrections due
to the electron-electron interaction are Maki-Tompson
corrections. They describe the additional contribution to
conductivity, originating from the interaction of normal
excitations with fluctuative Cooper pairs (and, far from
the transition point, with correlated electron pairs with
opposite spins and momenta, which have a quantized an-
gular momentum in the multiconnected conductor).

IV. MAGNETORESISTANCE OSCILI ATIONS
IN HOPPING CONDUCTION

In the preceding sections we have considered resistivity
oscillations in multiconnected samples placed in a mag-
netic field with Po and Po/2 periods for the metallic con-
ductivity. We now turn to the question of magnetic flux
effects in subbarrier electron motion. If there is no sub-
barrier scattering, then the resistance of a dielectric inter-
ferometer has an oscillatory behavior in a magnetic field
with a Po period. Inclusion of the subbarrier scattering of
electrons in Mott's variable-range hopping (VRH) con-
ductivity is a more complex problem.

If the impurity configuration is random, the overlap in-
tegral between any two impurities is also a random quan-
tity, falling off exponentially with increasing distance. If
the subbarrier scattering is not taken into account, the
electron wave function decreases with increasing distance
on the scale of one center localization radius. If the sub-
barrier electron scattering is included (Lifshitz and Kirpi-
chenkov, 1979), the radius of the wave function grows
with increasing impurity concentration.

The hopping conductivity is determined by the square
of the modulus of the overlap integral, or more exactly,
by the log square of the modulus of the overlap integral,
which is averaged over the impurity configurations. The
question arises whether a periodicity of Po/2 exists in the
oscillations in the insulating state with Mott s VRH con-
duction. If it does exist, does it occur simultaneously
with the oscillations of period Po, or does one regime re-
place the other? And how are the periods replaced?
These questions were raised by Nguen et al. (1985a,
1985b), who showed that the transition from oscillations
of period Po to those of period Po/2 may occur with in-
creasing impurity concentration or degree of compensa-
tion as a phase transition of the second kind. This change
in the oscillation period turns out to be intimately con-
nected with a specific phase transition in the sign struc-
ture of the Green's function. It should be stressed once
more that this new phase transition is not connected in
any way with the metal-insulator transition and occurs
deep in the insulating state.

Nguen et al. (1985a) studied this quantity in the An-
derson model on a square lattice consisting of
( n + 1) =Xnodes, whose Hamiltonian is
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(4.1)

where c.; is the energy at the ith node and where VJ = V
for nearest neighbors and zero otherwise. All the energies
c;, except for cI and ~&, between which the transition
occurs, take on randomly the values —8' and 8'with the
probabilities x and (1 —x), respectively, where

The energies E& ——E~=0 and a;,a; are the
creation and annihilation operators at the ith node. For
the effective overlap integral between 1 and X one can
write

2n —1

(4.2)
Ir) fi, I c=O

(4.3)

The summation in Eq. (4.3) is performed over the whole
set of paths connecting nodes 1 and X. [i„] are the nodes
of such a path other than 1 and %, and a; = + 1 for
c,;=+8'. In calculating J one can disregard the contribu-
tion coming from paths involving returns, since they have
an additional smallness V/8'« 1 (Fig. 26).

Such a formulation of the problem simulates a situation
typical of the hopping conduction when an electron mak-

ing a hop between states with energies close to Fermi level

p becomes scattered on the way by many other impurities
(see, for example, the monograph by Shklovskii and
Efros, 1984). The probability of this hop and the corre-
sponding inverse resistivity of the Miller-Abrahams net-
work are proportional to

~

I
~

. The probability x corre-
sponds to the fraction of impurities with c.

& &p, which is
determined by the degree of compensation.

Numerical simulations by this model have revealed the
existence of a critical value of x, (in semiconductors it

corresponds to a certain degree of compensation or im-
purity concentration) at which the distribution function
of J changes its character.

If x &x, (in two dimensions x, =0.05), then in most
cases J&0, and for x ~x, the probabilities for J to ac-
quire positive (P+) and negative (P ) values become
equal (P+ P)——. Figure 27 shows the dependence of
AP=P+ —P on x for a 100)&100 lattice. As can be
seen from the figure, at x, a phase transition of the
second kind occurs for the quantity b,P, which is the
probability to determine the sign of the Green's function.

While the above phase transition resembles that con-
sidered in percolation theory, it is at the same time
characterized by anomalously large values of the indices.
Taking b,P for the order parameter of this transition, and
assuming b,P=(x, —x)~, we obtain for the index P=l.
At the transition point the sign correlation function falls
off with distance as r "I, where g=0.7. The scaling rela-
tion for the indices (Shklovskii and Efros, 1984)
2P=v(g+d —2) yields v=3 for 4 =2 [where v is the in-
dex of the correlation radius, g =(x —x, ) ']. For the
two-dimensional case percolation theory yields P2-0. 14;
v2 —1.33; and g=0.2 (see monograph by Shklovskii and
Efros, 1984).

In studies of the magnetic flux effect on ring resistivity,
the hole in the ring was simulated by setting all o,;=0
within a 7&&7 square at the center of the lattice in ques-
tion. The magnetic flux P through the hole was modeled
by multiplying the quantities o.; on all lattice nodes along
the cut (dashed line in Fig. 26) by e'+, where @=2vrg/$0.
Figure 28 presents in graphical form the dependence of

~ ~ x
f+s

~ iP

o)e I

0 002 0.05

FIG. 26. The lattice in Anderson's model used by Nguen et al.
{1985a). Solid curve, typical trajectory included in the calcula-
tion of J.

FIG. 27. AI' and I.{m,x) vs concentration x {Nguen et al. ,
1985a).
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even function of J~ and hence of J2, then Eq. (4.5) may
be rewritten as

L(q&,x)=2f f dJ)dJ2F(J), J2)

2JiJ2
X ln 1+ 2 2 (1 —cos2y)

(Ji —Jz)
(4.7)

and L(y,x) will have a period of m and be positive for all
cp. This implies that the magnetoresistance is negative.
Note that for small cp, as can be seen from Fig. 28, nega-
tive magnetoresistance exists even for x «x, .

The phase transition in the sign of the Green's function
can be physically explained as follows. Let the concentra-
tion of centers with a negative scattering amplitude, b & 0,
in the system be n. After a scattering on such a center
the wave function will acquire the form (Nguen et al. ,
1985b)

e
—z/a+ e r/a-h

Z
(4.8)

the quantity L(y,x) on y for different x:

L(y, x)=ln
i
J(y)/J(0)

i
(4.4)

The overbar denotes averaging first over all possible situa-
tions, and then over all hopping ranges. The quantity
L(y,x) is proportional to lnc7(p)/o(0) (Shklovskii and
Efros, 1984). Examining Fig. 28 it is evident that for
x &x, the magnetoresistance has a periodicity of 2~. As
x increases, the magnitude of ~L(m, x)

~

decreas. es and
vanishes at x =x, (Fig. 27). For still greater x, we have
L(m, x ) =0, the m.agnetoresistance being negative for all y
and exhibiting a periodicity of ~. Thus the transition to
the phase disordered in J at x =x, is accompanied by a
change in the oscillation period from $0 to $0/2.

If J
&

and J2 are the sums over the trajectories running
around the hole in the ring from above and from below
(J=J&+J2), then, as pointed out by Nguen et al.
(1985a), there is a relation between the change in oscilla-
tion period and the form of the distribution function for
the quantities J~ and J2, F(J&,J2), in terms of which the
quantity

2
+ J, +J2e +

L(y,x)= f f dJ&dJ2F(J, ,J, )ln J,+J,
is expressed. For x=0

(4.5)

J JF(J],J2) =5 J]——5 Jp ——
2 2

1+cosy
2

(4.6)

and L(y, 0) is periodic with a period 2~ (Fig. 28). If
starting with x=x„ the function F(J&,J2) becomes an

FIG. 28. Dependence of L(cp,x) on reduced magnetic flux
y=2zrg/Po (Nguen et al. , 1985a).

(a bei~g the Bohr radius). It will be negative within a re-
gion of length z=b and transverse size V'~ ba ~. The
condition of overlap of shadow regions from different
scattering centers determines the phase transition point in
concentration n„where memory of the original sign of
the wave function is lost. In the three-dimensional case
this condition is

ncb2g —1 . (4.9)

Since, for resonance scattering, b cc (E, —sj ) ', then if
there is no gap in the density of states there will always be
states with condition (4.9) satisfied, no matter the config-
uration. Therefore no phase transition will exist. Thus,
for the transition to exist, the spectrum of impurity states
should'have a gap. In real conditions, the impurity band
of semiconductors contains a Coulomb gap (Shklovskii
and Efros, 1984), which makes this phase transition possi-
ble.

It should also be stressed that negative magnetoresis-
tance appears only when averaging incr (the index of the
overlap integral). It is this quantity that is self-averaging.
When the variable-range hopping conductivity is calculat-
ed, the averaging of inc7(y)/o(0) over all possible situa-
tions is reduced to a calculation of the resistance of the
Miller-Abrahams random network (Shklovskii and Efros,
1984). The resistance of this network is greater than that
of a parallel connection, but it is smaller than the resis-
tance of a series connection. Therefore let us consider the
limiting cases: the parallel and series connections of the
rings.

The crossover of the $0 to Po/2 periodicity is connected
with the averaging over random realizations. In the sin-
gle loop, the oscillation period is equal to $0 (mesoscopic
effect), and its conductance is cro+o~cos2mglgo The to-.
tal conductance of a parallel connection of the rings is

G =GO+go~;cos2vrglgo .
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and positive magnetoresistance will occur (N is the num-
ber of rings). For a series connection of rings the resis-
tance R is

2'R =g o'o+o ~;cos

cro —
~

o&
~
(P+ P)—cos2~

, 2vrg
Oo —0 )cos

4o

For P+ ——P, the resistance of series-connected rings os-
cillates with Po/2 periodicity, and negative magnetoresis-
tance will be observed.

As shown in Sec. II, the quantum corrections to con-
ductivity, the anomalous magnetoresistance, and the
cylinder resistivity oscillations with period $0/2 in the
metallic state are associated with returning trajectories.
On the other hand, the above-mentioned effect in the hop-
ping domain is not connected in any way with returning
trajectories (they are not included in this model at all).
The question arises of how these effects are interrelated.
Is it the same effect but on different sides of the metal-
insulator transition, or are these phenomena of different
physical origin? At present there is no unambiguous
answer to this question.

Browne et al. (1984) and Carini et al. (1984) have per-
formed a numerical study of Anderson's model (1958) for
a one-dimensional ring and a cylinder. They calculated a
quantity P called the participation ratio,

2

P= —gg"(»; )

If the interference part of the conductance of the rings o.
&;

differs in sign only, and the sign of o.
&; is random, then

6=Go and no oscillations are present. In the general
case, if P+ is the probability of finding o.

&; with given
sign, then

2'6=GO+N(P+ P—)
l

o.
& l
cos, Go ——aoN

given node and thus does not exhibit anomalous behavior
in the insulating state.

The sensitivity of the conductivity quantum corrections
to magnetic field in the metallic phase results in a shift of
the mobility edge (Khmelnitskii and Larkin, 1981), which
manifests itself in the onset of anomalous magnetoresis-
tance in the critical region in the insulating phase
(Altshuler, Aronov, and Khmelnitskii, 1982a). For a
cylinder in the field of a vector potential, the mobility
edge should oscillate with magnetic flux variation, which,
in its turn, should produce oscillatory magnetoresistance
with a period of $0/2 in the critical region, where the
wave-function radius depends on the actual closeness to
the transition point and the hopping range is comparable
with the cylinder radius.

The first attempts to observe the magnetic flux effect in
a multiconnected VRH conductor have recently been re-
ported by Poyarkov et al. (1986) for a two-dimensional
network, prepared by an electron-lithography process
from an oxidized lead-telluride film 1600 A thick. The
resistance of the sample could be varied over a wide range
by exposure to light at helium temperatures. As the tern-
perature dependence of the sample resistance in the heli-
um region (Fig. 29) could be fitted by the relation

g.6 0.7 0.8 0.9 I.O

R =Roexp(To/T)',

where v=0. 3+0.1 similar to Mott's -law, one can suppose
that the electron transport in the sample is connected with
the VRH mechanism.

The high noise level made magnetoresistance measure-
ments rather difficult. The magnetoresistance curve in
Fig. 30 was obtained by averaging 24 consecutive runs
(solid line). One of the single runs is shown by a dotted
hne. The observed period of oscillations of 7+0.5 Oe is
consistent with the Po/2 value of the period in flux units,

where»; is the position of the ith node in an N-node lat-
tice. This quantity is related to the quantum correction to
the metal conductivity (Carini et al. , 1984)

So-~ —P—' .

CL
6—

In the metallic phase this quantity undergoes oscilla-
tions with a periodicity of Po/2. It should be noted that
in the insulating domain the results of Browne et al.
(1984) and Carini et al. (1984) are inapplicable, since the
quantity P calculated in these publications does not
characterize the conduction in the localization regime (it
is insensitive to variations in the tails of the wave func-
tions responsible for the hopping conduction). The parti-
cipation ratio P characterizes only the wave function at a

FIG. 29. Dependence of A(GQ) on T(K) for PbTe periodical
network with 6)&35 square loops. The period of the structure is
2 pm, the width of the network strips =0.5 pm. The measur-
ing current is parallel to the short side of the network (Poyarkov
et al. , 1986).
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H(oe)
2I
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FIG. 30. R(H) dependence at T=1.12 K for the same sample
as in Fig. 29 (average of 24 runs). The R(GQ) scale for the
single-run curve (dotted line) is shown on the right. (poyarkov
et a/. , 1986).

and the $0 period is not seen because of the uncertainty
due to the finite width of the network strips. The phase
of the oscillations (maximum R at M =0) agrees with the
prediction of Nguen et al. (1985a, 1985b) for the Po/2
period.

The effective hopping range is evidently not much
smaller than the perimeter of the loop and is on the order
of 10 cm. Such a large range can hardly exist in a
PbTe film with a homogeneous impurity distribution.
one can suggest that it is the granular structure of the
film with the tunnel barriers between the granules which
is favorable for the appearance of large values of the hop-
ping range.

V. CONCLUSIONS

A large number of experiments carried out in different
geometries and on different metals have confirmed the
major physical concepts associated with magnetic flux in-
terference phenomena in solids. Among them are the fol-
lowing. .

(1) The existence of oscillations in the transport proper-
ties of disordered metals with a period of $0/2=bc/2e re-
lated to the interference of conjugated waves.

(2) The existence of oscillatory phenomena in pure met-
als with a period of Po.

(3) Qscillations of the superconducting transition tem-
perature and of the Auctuation conductivity due to the
quantization of the macroscopic electron wave function in
superconductor s.

(4) The existence of oscillations with periods Po and

$0/2 in a complex fluctuative dependence of the resistivi-
ty of multiconnected mesosystems on magnetic field.

(5) The existence of oscillations with period $0/2 in
multiconnected systems with VRH conductivity.

We have tried to show that present-day theory is cap-
able of explaining satisfactorily the magnitude of the ef-
fects and their temperature and field behavior. It has be-
come clear that the available experimental data are in fair
agreement with theory. At the same time there are a

number of unsolved problems that need to be answered
from both theoretical and experimental viewpoints.

While the oscillatory effects of period Po in normal
metals and those of period Po/2 in superconductors are
known to be related to the gauge symmetry of
Schrodinger's equations for a single electron and BCS
theory, respectively, it is still unclear with what symmetry
of the Schrodinger equation the oscillatory phenomena of
periodicity $0/2 in normal metals with a random poten-
tial should be associated. In the insulating phase, the
change in symmetry resulting in a doubling of the period
manifests itself in a phase transition as one oscillatory re-
gime is replaced by another.

While one could present some qualitative considera-
tions suggesting a relation between oscillations in the in-

sulating phase and resistivity corrections originating from
fluctuations in the metal, no quantitative analysis of this
problem has been carried out. It is intimately connected
with the metal-insulator transition in the presence of
magnetic field. The available observations open the possi-
bility of further investigations of flux effects in the VRH
region. Of particular interest would be to study the
change in oscillation period with increasing disorder.
Such a study would also permit separation of the different
mechanisms responsible for hopping conduction oscilla-
tions, namely, the magnetic-field-induced shift of the lo-
calization threshold and the sign transition of Nguen
et al. (1985a, 1985b).

Networks made of superconducting metals are promis-
ing subjects for investigating magnetic flux effects. These
effects are very sensitive to the topology of these struc-
tures, which can be both regular and disordered. Such
structures may turn out to be good models of various sys-
tems, from an ordered lattice to "gauge glass, " in which a
change of magnetic field is equivalent to a transition from
one spin glass replica to another (Pannetier, Chaussy,
Rammal, and Villegier, 1984).

Mesosystems represent a new subject of physical study
with highly individual properties. This individuality
manifests itself in the shape of the magnetic spectrum of
the magnetoresistance oscillations and in a number of re-
markable properties predicted theoretically and yet unver-
ified. It would be of particular importance to continue
the investigation of these systems both theoretically and
experimentally, including the use of magnetic flux effects.

As already mentioned, prediction of Altshuler and
Spivak (1985) and Feng et al. (1986) and the observations
of Skocpol et al. (1986) of the extreme sensitivity of the
"magnetofingerprint" resistivity to small variations of the
potential offers an important new means of studying the
slow diffusion of heavy particles in conductors.
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