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The theory of neutrino mixing and neutrino oscillations, as well as the properties of massive neutrinos
(Dirac and Majorana), are reviewed. More specifically, the following topics are discussed in detail: (i) the
possible types of neutrino mass terms; (ii) oscillations of neutrinos (iii) the implications of CP invariance for
the mixing and oscillations of neutrinos in vacuum; (iv) possible varieties of massive neutrinos (Dirac, Ma-
jorana, pseudo-Dirac); (v) the physical differences between massive Dirac and massive Majorana neutrinos
and the possibilities of distinguishing experimentally between them; (vi) the electromagnetic properties of
massive neutrinos. Some of the proposed mechanisms of neutrino mass generation in gauge theories of the
electroweak interaction and in grand unified theories are also discussed. The lepton number nonconserving
processes prey and p~3e in theories with massive neutrinos are considered. The basic elements of the
theory of neutrinoless double-P decay are discussed as well. Finally, the existing data on neutrino masses,
oscillations of neutrinos, and neutrinoless double-P decay are briefly reviewed. The main emphasis in the
review is on the general model-independent results of the theory. Detailed derivations of these are present-
ed.
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I. iNTRODUCTlGN

Are neutrino masses different from zero? What kind of
particles —Dirac or Majorana —are the neutrinos with de-
finite masses? Does lepton mixing analogous to quark
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mixing take place? Do neutrinos that take no part in the
standard weak interaction (the so-called "sterile" neutri-
nos) exist? The answers to these and many other funda-
mental questions of neutrino physics are not yet known to
us. Numerous experiments are being performed and
prepared at present in dozens of laboratories around the
world with the aim of finding the answers to them.

Nonzero neutrino masses and neutrino mixing appear
naturally in many different variants of unified theories
representing generalizations of the theory of electroweak
interaction of Glashow (1961), Weinberg (1967), and
Salam (1968), viewed as standard today. Although re-

markably successful phenomenologically, the Glashow-
Weinberg-Salam theory seems incomplete from a theoreti-
cal point of view (see, for example, Harari, 1984). Conse-

quently, the discovery of effects associated with nonzero
neutrino masses would have a significant impact on the
searches for possible ways to go beyond the standard
theory.

One of the most interesting effects arising in the case
when neutrino masses are different from zero and when
neutrino mixing does take place are the oscillations of
neutrinos. Oscillations of neutrinos were first considered
by Pontecorvo (1957, 1958). At that time only one type
of neutrino was known. The two-component neutrino
theory was proposed (Landau, 1957; Lee and Yang, 1957;
Salam, 1957) and was confirmed experimentally
(Goldhaber, Grodzins, and Sunyar, 1958). The success of
this theory was considered by many physicists as strong
evidence that the mass of the neutrino is zero.

Pontecorvo assumed that there exists an analogy be-
tween lepton charge and strangeness and that not only the
strangeness but also the lepton charge is not conserved by
the weak interaction. In accordance with this hypothesis
it was natural to assume (in analogy with the IC Ksys--
tem) that the neutrino state vector represents a superposi-
tion of the state vectors of two Majorana neutrinos with
small (but different) masses (the analogs of K& and K2).
In this case the oscillations vL+ vI should take place in
the neutrino beams, where vL is a left-handed antineutri-
no, a particle that does not take part in the (V-3) weak
interaction (such particles were termed "sterile"; Pon-
tecorvo, 1958). That the oscillations vL+~vt take place
can be established by the "shortage" (at some distance
from the source) of neutrinos of the initial type.

The idea of oscillations was applied to the case of two
neutrino types (v, and v„) by Pontecorvo in 1967. Both
oscillations between "active" neutrinos v, ~+v& (taking
part in the V-A weak interaction) and oscillations between
active and sterile neutrinos v, ~~v,L,v, ~+v&L, . . . , are
possible in this case.

It should be indicated that the mixing of two massive
neutrinos (as well as the mixing of baryons) was intro-
duced and discussed in the works of Maki, Nakagawa,
and Sakata (1962) and of Nakagawa et al. (1963). These
authors noted that in the case of neutrino mixing "the
weak neutrinos (v, and v„) are not stable due to oc-
currence of virtual transmutations v, ~+v„" and that the
latter should be taken into account in the interpretation of

the results of the famous Brookhaven neutrino experiment
(Danby et aI. , 1962) performed at that time.

Of significant importance for the development of the
theory of neutrino oscillations was the work of Gribov
and Pontecorvo published in 1969. In this work a con-
sistent phenomenological theory of neutrino mixing and
oscillations was formulated for the case of two neutrino
types. The scheme of Gribov and Pontecorvo represents a
minimal scheme of neutrino mixing: to the four states v„
v&, v„and v& in this scheme there correspond the four
states of two Majorana neutrinos with nonzero and dif-
ferent masses. Sterile neutrinos are not present.

Already in the first papers on neutrino oscillations it
was pointed out that the possible effects of oscillations
should be taken into account in the interpretation of ex-
periments with solar neutrinos (Pontecorvo, 1958, 1967).
This was done long before Davis et al. (1980) found the
so-called solar neutrino problem.

Since the early seventies, work on neutrino oscillations
and massive neutrinos has become more and more closely
related to the gauge theories of electroweak interactions.
In many studies the general case of n neutrino types is al-
ready considered. The case of mixing of n massive Ma-
jorana neutrinos was first discussed by Pontecorvo (1971).

The works of Bilenky and Pontecorvo (1976b), Eliezer
and Swift (1976), and Fritzsch and Minkowski (1976)
were based on the generalization of the quark-lepton anal-

ogy; it was assumed that lepton fields, like quark fields,
enter into the weak charged current in a mixed form. The
fields of Aavor neutrinos are then orthogonal superposi-
tions of the fields of Dirac neutrinos with definite masses.
Finally, the mixing of an arbitrary number of neutrinos,
in the case of active as well as of sterile neutrinos, was
considered by Bilenky and Pontecorvo (1976a).

A detailed review of all these papers, including a dis-
cussion of possible methods by which to look for oscilla-
tions of neutrinos, was published in 1978 (Bilenky and
Pontecorvo, 1978).

After the appearance of grand unified theories (Pati
and Salam, 1973; Georgi and Glashow, 1974), the interest
in neutrino oscillations and in the properties of massive
neutrinos increased considerably. It was stimulated by
the fact that nonzero masses and mixing of neutrinos
arise naturally in these theories. In many extensions of
the standard theory containing neutrinos with nonzero
masses, and especially in the grand unified theories, the
massive neutrinos are predicted to be Majorana particles.
As a consequence, the properties of massive Majorana
neutrinos and the physics they are associated with have
been intensively studied since the beginning of the
eighties. Significant progress has been made, in particu-
lar, in understanding the electromagnetic properties of
Majorana neutrinos (Schechter and Valle, 1981b; Wolfen-
stein, . 1981a; Kayser, 1982; Nieves, 1982; Shrock, 1982b;
Kayser and Goldhaber, 1983; for earlier discussion see
Majorana, 1937, and Case, 1957), which were shown to
differ markedly from the electromagnetic properties of
the Dirac neutrinos. Both the elementary-particle and the
nuclear physics aspects of the theory of neutrino-
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less double-P decay [(A,Z)~(A, Z+2)+e +e ], the
process most sensitive to the existence of Majorana neutri-
nos coupled to the electron, were further developed (Wol-
fenstein, 198la; Halprin et al. , 1983; Haxton et al. , 1982,
1984; Doi et al. , 1983a, 1984). As a result, a much better
understanding of the relation between the existence of
massive Majorana neutrinos and the existence of neutrino-
less double-P decay and its rate emerged (Wolfenstein,
198la; Schechter and Valle, 1982b; Nieves, 1984;
Takasugi, 1984; Kayser et al. , 1986). The connection be-
tween the symmetry properties of the possible neutrino
mass terms and the type of massive neutrinos they lead to
was also thoroughly investigated. The studies of radiative
decays of massive neutrinos within the modern gauge
theories, begun in the late seventies (I.ee and Shrock,
1977; Marciano and Sanda, 1977; Petcov, 1977b; see also
Shrock, 1974), received new impetus and were actively
pursued after it was realized (De Rujula and Glashow,
1980) that it might be feasible to observe the photon
fluxes from such decays even if the neutrino radiative life-
times exceed considerably thy age of the universe. Final-
ly, there has been a remarkable progress in the theory of
neutrino oscillations in matter (Wolfenstein, 1978; Barger,
Whisnant, et al. , 1980) in the last two years or so (Mi-
kheyev and Smirnov, 1985; a summary is given, for exam-
ple, in Mikheyev and Smirnov, 1986c).

In the present article we review the theory of neutrino
mixing and neutrino oscillations as well as some of the
basic properties of massive neutrinos (Dirac.and Majora-
na). More specifically, the following topics are discussed
in detail: (i) the phenomenological theory of neutrino
mixing and oscillations; (ii) the implications of CP invari-
ance for the mixing and oscillations in vacuum; (iii) the
physical differences between massive Dirac and massive
Majorana neutrinos and the possibility of distinguishing
experimentally between them; (iv) the basic elements of
the theory of neutrinoless double-P decay (with emphasis
on its elementary-particle aspects); (v) the electromagnetic
properties of massive neutrinos (including gauge theory
predictions for neutrino radiative decays); and (vi) the
status of lepton charges and mechanisms of neutrino mass
generation in the gauge theories of the electroweak in-
teraction. The predictions of the grand unified theories
for neutrino masses and mixing angles as well as the lep-
ton number nonconserving processes prey and p~3e in
theories with massive neutrinos are also considered but in
less detail. Finally, the results of the 13-decay end-point
and double-P-decay experiments searching for effects of
finite neutrino masses and of the experiments searching
for neutrino oscillations are briefly reviewed. We have
also included two appendixes in which the properties of
the free spin- —, Majorana field are summarized and an in-
troduction to the theory of neutrinoless double-P decay is
given.

In our discussion of the existing data on neutrino
masses and mixing we have not included the results of ex-
periments searching for relatively heavy neutrinos
(m )few keV) that couple together with lighter neutri-
nos to e and/or p in the weak lepton charged current.

The physical implications of the existence of such neutri-
nos have been thoroughly studied by Shrock (1980, 1981a,
1981b, 1982a, 1982b; see also Gronau, Leung, and Rosner,
1984). A detailed description of the present limits on
their masses and couplings as well as of the experiments
in which they have been obtained can be found in Shrock
(1983), Deutsch (1985), and Gall (1985).

The emphasis in this review is on general, model-
independent results. %'e give a rather detailed exposition
of the phenomological theory of neutrino mixing and os-
cillations. This theory is well established and has a direct
relevance to the analysis and interpretation of the experi-
mental data. All derivations in that part of the review
can be easily followed by the reader (without reference to
other literature). The electromagnetic properties of mas-
sive neutrinos and the basic elements of the theory of neu-
trinoless double-P decay are treated in a similar way.

As is well known, the existence of nonzero neutrino
masses may have important cosmological and astrophysi-
cal implications. Their discussion lies outside the scope
of the present review. Excellent reviews on the subject al-
ready exist (e.g., Steigman, 1979, 1984; Dolgov and Zeldo-
vich, 1980).

I et us note finally that since the appearance in 1978 of
the review by Bilenky and Pontecorvo, several other re-
view articles treating the subject of massive neutrinos and
neutrino oscillations have been published: Primakoff and
Rosen (1981), Frampton and Vogel (1982), Boehm and
Vogel (1984), Costa and Zwirner (1985), Wyler (1985),
and Vergados (1986). There has been considerable pro-
gress in the understanding of the properties of massive
neutrinos since the appearance of the articles by Framp-
ton and Vogel and by Primakoff and Rosen, and we have
tried to cover it. The reviews by Costa and Zwirner and
by Vergados are devoted mainly to baryon and lepton
number nonconservation in the gauge theories, while that
of Boehm and Vogel considers the experimental con-
straints on neutrino masses and mixing obtained by 1984.
These reviews, as well as the review lectures by Wyler
(1985), overlap with our work only partially.

II. LEPTON CHARGES

All existing experimental data are compatible with the
hypothesis that the lepton charges of particles are con-
served. In the present introductory section we shall for-
mulate the lepton charge (lepton number) conservation
law and shall present the results of some of the latest ex-
periments testing this law. We shaH also give different
possible formulations of the lepton charge conservation
law.

The existence of the following three generations (fami-
lies) of leptons and quarks has been established to date:

t

Q V~ C Vp, S V~

d e ' s p ' b

I.et us assume that each generation of leptons has its own
lepton charge, and let us define the lepton charges (elec-
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TABLE I. Lepton charges of the particles.

Particles

e~ ve

p~ vp

vq v~

Hadrons, 8"—,Z,y

0.
1

the recent experiments performed at meson factories) and
in experiments studying kaon decays. The upper limits
for the branching ratios of the r decays, forbidden by
(2.1), are much less stringent than the limits quoted in
Table II. For example (Hayes et al. , 1982),

R(r+~p++y) (5.5X10

R(r+~p++e++e )(3.3&& lo —'.
tron L„muon L&, and tau L,) according to Table I
The lepton charges of the antiparticles are, by definition,
opposite to the lepton charges of the corresponding parti-
cles. The lepton charge conservation law reads

gL,' =const,

We have discussed so far only the additive form of the
lepton charge conservation 1aw. A long time ago a multi-
plicative law of lepton charge conservation was intro-
duced (Cabibbo, and Cxatto, 1960; Feinberg and Weinberg,
1961). For the case of two lepton charges (electron and
muon), the multiplicative law is formulated as follows:

gLp =const, (2.1)

gL,'+ gL z
——const,

l

( —1) ' '=const .QL, i
(2.2)

gL', =const .

Thus, in accordance with this law, the overall electron,
muon, and tau lepton charges must be separately con-
served in any process. Equation (2.1) is called the addi-
tive lepton charge conservation law. Below we shall dis-
cuss other possible formulations of the conservation law
for lepton charges.

Let us now consider the results of experiments in which
(2.1) has been tested. Some processes forbidden by the
conservation law (2.1) are listed in Table II. The upper
limits obtained for the ratio R of the probability (or cross
section) of a given process and the total probability (cross
section) of the corresponding allowed processes are shown
in the second column of Table II.

At present a number of experiments are underway that
are searching for the neutrinoless double-P decay
(A,Z)~(A, Z+2)+e +e [(PP)o decay; see Sec. IX],
which is forbidden by (2.1). This process has not yet been
observed. The best limits have been reached in experi-
ments with Ge. For the half lifetime of the decay

Ge~ Se+e +e

Caldwell et al. (1986) obtained the lower bound

T&p2) 2.5&10 yr .

It should be noted that only the most stringent limits
on the probabilities of processes forbidden by the lepton
charge conservation law are given in Table II. They have
been obtained in experiments with muons (especially in

There are no direct proofs yet for the existence of neutrino of
the third type v,. The existing experimental data show, howev-
er, that v cannot coincide with v„v„v„,and v„(see, for exam-
ple, Perl, 1980, and Winter, 1983).

It is not difficult to see that the multiplicative law forbids
(PP)p decay and the processes listed in Table II as well.
It is clear also that Eqs. (2.1) and (2.2) lead to the same
consequences for processes involving only two leptons (for
instance, both laws allow vp+X~p +X and forbid
v&+X~e +X, etc.). For processes with four leptons,
the additive and the multiphcative laws of lepton charge
conservation have different implications. According to
(2.2), the decays

p ~e +v~+vp ~

p ~e +v~ +vp,

(2.3)

(2.4)

and the reactions

vp+e ~p +v~

vp+e ~p +v~ )

(2.5)

(2.6)

are allowed. The additive conservation law forbids pro-
cesses (2.4) and (2.6).

The decay (2.4) has not been observed. The following
upper limit has been obtained for the ratio
R (p+ —+e ~v, v&) of the probability of the decay
p+~e++v, +v& and the probability of the standard de-
cay p+~e++v, +v„(Willis et aI , 1980):.

R(p+~e ~v, v&) (5X 10

2The limits on the p+ —+e+y, p+ —+e+yy, E+—+m. +p+e de-
cay branching ratios and on the p ~e conversion cross sec-
tion are expected to be improved by 1—3 and 1 order of magni-
tude, respectively, in ongoing experiments at LAMPF, BNL,
TRIUMF, and SIN; and in an experiment now underway at
BNL a sensitivity —10 "with respect to the K&~e +—p+ decay
branching ratio is planned to be achieved (for a review of these
experiments and corresponding references see Walter, 1985).
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TABLE II. Upper limits for the branching ratios or relative cross sections of processes forbidden by the

lepton charge conservation law.

Process

p+ ~e++y
p+~e++e +e+
p+ —+e++y+p
p +S—+e +S,

p + Ti ~e + Ti

e+-+p+

K m++e++p
K+ —+m++e +p+
E+—+n. +e++p+
p +I~e++Sb

&4.9X 10
& 2.4X 10-»
&7.2X10
&7X10-"
& 1.6X10-"
& 2~10-"
&8&10

&7&&10
&5X10
&7X10
&3)&10

Reference

Mischke et al. , 1986
Eichler et a/. , 1984
Bolton et a/. , 1984
Badertscher et al. , 1980
Bryman et a/. , 1985
Eichler et a/. , 1984
Fitch et al. , 1967 (see also Particle
Data Group)

Diamant-Berger et al. , 1976

Abela et al. , 1980

An upper limit for the ratio of the cross sections of pro-
cesses (2.6) and (2.5) was obtained in experiments per-
formed with high-energy neutrinos (Bergsma et al. ,
1983):

cr(v&e ~p v, )
&0.09 .

o(vie ~p v, )

Thus the experimental data do not give evidence in sup-
port of the multiplicative law of lepton charge conserva-
tion.

Let us note finally that the existing data do not exclude
the phenomenological possibility of conservation of the
lepton charge L ' equal to 1 for e and p+ (i.e.,
L'=L, L„), which —was introduced by Zeldovich (1952)
and Konopinsky and Mahmoud (19S3). If the charge L'
is conserved, (pp)o„decay and the processes listed in
Table II, with the exception of the last two, are forbidden.
In a theory with conserved lepton charge L ', the
"phenomenological" neutrinos v„v„,v„vz correspond,
respectively, to a LH (left-handed) neutrino vL, LH an-
tineutrino vL, RH (right-handed) antineutrino v~, and
RH neutrino vz. We shall consider in detail the scheme
with lepton charge I.' and its generalization to the case of
arbitrary even and odd numbers of charged leptons in Sec.
VI.

As we have indicated earlier, no processes in which the
electron, muon, and tau lepton charges are not separately
conserved have been observed so far. In spite of that, the
conservation of lepton charges is viewed today to be ap-
proximate only; correspondingly, lepton charges are con-
sidered as approximate phenomenological notions. This
view of lepton charge conservation emerged, in part, from
the idea of an analogy between leptons and quarks and
from the results of extensive studies of the status of lep-
ton charges in the modern gauge theories of electroweak
interaction. The hypothesis of neutrino (lepton) mixing,
which will be discussed in detail in the present review, is
based on the assumption that the neutrino masses are dif-
ferent from zero and that the neutrino fields entering into

the weak currents are linear combinations of the fields of
neutrinos with definite masses. Neutrinoless double-p de-

cay, the processes listed in Table II, and other lepton
number nonconserving processes are allowed, in principle,
in the theories with neutrino mixing. The fact that they
are not observed experimentally is, possibly, a reflection
of the smallness of the neutrino masses (see Sec. XI). In
accordance with the neutrino mixing hypothesis, oscilla-
tions of neutrinos vi~+vi, l&l', should take place in the
neutrino beams. The observation of neutrino oscillations
would be a proof of the violation of the lepton charge
conservation law. In the subsequent sections we shall
consider in detail various aspects of the theory of massive
neutrinos and neutrino oscillations, and in Sec. XII the
relevant experimental data will be discussed.

III. ELEMENTS OF THE GLASHOW-
NlEINBERG-SALAM THEORY

It is well known that all existing data on the physics of
weak and electromagnetic interactions are in wonderful
agreement with the standard theory of electroweak in-
teraction of Glashow (1961), Weinberg (1967), and Salam
(1968). In the discussion of possible experiments in
search for nonzero neutrino masses, neutrino oscillations,
etc., we shall assume, consequently, that the interaction of
neutrinos with quarks and leptons is described by the
Lagrangian of the standard theory, that is, that
the "phenom enological" neutrinos and antineutrinos
v„v@,v„v„v&,v are particles which take part in the stan-
dard weak interaction. Accordingly, we think it is
relevant to begin our review with a brief exposition of the
Glashow-Weinberg-Salam theory. Besides, it is useful to
recall the Higgs mechanism of mass generation on which
the standard theory is based, before going into a discus-
sion of the possible schemes of neutrino mixing.

Let us consider first the kinetic part of the Lagrangian
of the neutrino, charged lepton, and quark fields and sup-
pose that the neutrino fields and- the LH components of
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the charged lepton and quark fields form doublets of the
group SU(2)r,

I
QL

P1r.
dL

Cl

02r. =
SL

(3.1)

while the RH components of the charged lepton and
quark fields are singlets with respect to this group. It is
obvious that the Lagrangian of the fields of fundamental
fermions is then invariant with respect to the global
SU(2)r transformations. If we demand that the Lagrang-
ian be invariant with respect to the local SU(2)L transfor-
mations as well, we shall arrive at a weak-interaction La-
grangian with "correct" (compatible with the observa-
tions) charged current. The unification of the weak and
electromagnetic interactions requires, however, an exten-
sion of the symmetry group of the theory. The requisite
minimal extension is the group SU(2)l XU(1), where U(1)
is the group of the weak hypercharge (Glashow, 1961).

The standard theory is based on the requirement of
SU(2)L XU(1) local gauge invariance. This invariance
takes place if the following substitution is made in the
free Lagrangian of the fields of fundamental fermions:

r

d PlL 8 ig —A ig—' ,' Yr".—B —fir., l =e,p, r,a 2 a

the fundamental fermions and gauge vector bosons arises
only as a result of the substitution (3.2) and does not con-
tain other terms possible from the gauge invariance stand-
point. Thus the fermion —gauge-boson interaction in the
standard theory is the minimal interaction compatible
with the requirement of gauge invariance.

To unify the weak and electromagnetic interactions in
one electroweak interaction, we need to choose the weak
hypercharges of the fermion doublets and singlets in such
a way that the relation of Gell-Mann and Nishijima is sa-
tisfied,

Q=T3 +—,
2 ' (3.3)

where Q is the charge (in units of the proton charge e)
and T3 is the third component of the weak isospin. It
follows from Eq. (3.3) that

Yg' ———2,
@quarkL

ygll81'k
Cq

(3.4)

Wr egg A +ig' ,——J B—
Here

eq being the q-quark electric charge.
With the help of Eqs. (3.2) and (3.3) we get for the in-

teraction Lagrangian

B~tp,r ~ c) —lg A~'——l'g' —,YL""B~ Q,L, a = 1,2,3,a 2 a

(3.2)
~&4~(~a —ig'2 Y~ "B )4

d~qit~(d~ lg' , Yg' B )qrt—, q—=d,s',

k +k k
Ja g gaL3 a 2 PaL + g ltlr. 3 a 2 PIL

a=1,2, 3 I =e,p, , v.

~ Y .em .32Ja=Ja —Ja ~

(3.6)

(3.7)

Here A and B are the gauge fields associated with the
local symmetry groups SU(2)r and U(1), respectively, g
and g' are dimensionless coupling constants, YL'~ is the
hypercharge of the lepton doublets, etc.

It is assumed further that the interaction Lagrangian of

where J' is the electromagnetic current of the quarks
and leptons.

Separating the Lagrangian of the interaction of fer-
mions with the charged vector bosons, we have from Eq.
(3.5)

~r= i g j'+'W +Hc. +Wor.
2&2

(3.8)

We shall use the Pauli metric. In this metric x =(x lxo); the
Dirac equation has the form Ja g Par. 3 ar+gaL + g PlLya +AIL (3.9)

(y 8 +m)g(x)=0,

where y are Hermitian matrices that satisfy the relation

7~7 P+ VPV~ 2~rx13 .

a =1,2, 3

is the weak charged current,

&2

l =e,p, v.

(3.10)

The matrix y5 is defined as y5 ——yly2y3y4. The 1eft-handed and
right-handed components of the field g(x) are determined,
respectively, by

is the field of the charged vector bosons, and

Wr igj A +ig'(j ' —j )B—— (3.11)

t4(x) = —,(1+yg)g(x),

QR{x)= —,'(1—y, }g(x) .

is the Lagrangian of the interaction of fermions and neu-
tral vector bosons. Further, if instead of Aa and B we
introduce the fields
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Z =A cosO w —~ si11Ow,

A~ =A ~s1nOW+B~cosOw,

where 8)i (the weak angle) is defined by the relation

tanOW ——g'/g

(3.12)

(3.13)

the example of generation of quark masses.
Suppose that the fermion —Higgs-field interaction is

described by Yukawa-type couplings. Two SU(2)L XU(1)
invariant Lagrangians of quark —Higgs-boson interaction
of the indicated type can be constructed:

and require that the constants g and g' be connected with
the charge e by the relation

g sinOW ——e,
then the electromagnetic interaction Lagrangian is ex-
tracted, obviously, from Eq. (3.11). One has

Q,LM q
"pz P+ H. c. ,

a=1,2, 3
q=d, s, b

Qnl. M~q qg P+ H. c.
a=1,2, 3
q=u, e, t

(3.19)

(3.20)

Here

Wl i —— j Z~+iej ~ A
2 cosOW

(3.14) Here M ' " and M"P are complex 3 g 3 matrices and

Og

j =2j —2 sin Owj' (3.15) i+2 P (+ )e (3.21)

is the neutral current of the standard theory.
The SU(2)L XU(1) gauge invariance can be exact only

in the case when the masses of all particles are equal to
zero. Consequently, the mass terms in the Lagrangian
violate the gauge invariance of the theory. The standard
theory of the electroweak interaction is based on the as-
sumption that the SU(2)L XU(1) gauge invariance is bro-
ken spontaneously [to the U(1) of the electromagnetism]
via the Higgs mechanism (Englert and Brout, 1964;
Guralnik, Hagen, and Kibble, 1964; Higgs, 1964, 1966).
We shall consider this mechanism briefly here (for a more
detailed discussion see Abers and Lee, 1973; Bernstein,
1974; Coleman, 1975).

In the simplest version of the theory, a doublet of scalar
Higgs fields

is a doublet of Higgs fields whose hypercharge is equal to
( —1)

Taking into account Eq (3.1.8) and using the gauge in-
variance of the Lagrangian, it is always possible to choose

0
p(x) = (), p(x) =I+H x

vZ

A+H (x)
vz
0

(3.22)

(unitary gauge), where H (x) is the field of a neutral sca-
lar physical Higgs particle. Inserting Eq. (3.22) in Eqs.
(3.19) and (3.20), we obtain the following expressions for
the quark mass terms:

W"('= —pl M "~pz +H. c. ,
(3.16)

~down n M down&
(3.23)

whose hypercharge is equal to unity [in accordance with
Eq. (3.3)] is introduced. The Higgs fields are supposed to
interact both with the fields of vector particles and with
the fermion fields. The corresponding couplings are in-

troduced in such a way that the local gauge invariance is
preserved.

A distinctive feature of the Higgs fields is the presence
in the Lagrangian of the theory of the Higgs potential

I'(A) =~(A)' V'(0+4}— (3.17)

(~ and )M are positive constants), which leads to a degen-
eracy of the vacuum and to a nonzero vacuum expecta-
tion value ((() )0 of the field P . By choosing

&0')o= ~2 (3.18)

where A, =(p /~)'~ (with this choice we fix the vacuum
state), we can generate mass terms of the fields of inter-
mediate vector bosons, of the fermions, and of the Higgs
bosons (while photons remain massless). Since we are in-
terested here in the neutrino masses, we shall consider the
generation of fermion inasses in the standard theory on

where

PL,R CL, R

tLR

dL, R

(3.24)

So, the elements of the quark mass matrices coincide (up
to the factor V 2/A, ) with the constants of the
quark —Higgs-boson Yukawa couplings.

Let us now proceed to the final stage of our considera-
tion, that is, to the reduction of the mass terms (3.23) to a
diagonal form. An arbitrary complex matrix can be re-
duced to a diagonal form with the help of the biunitary
transformation (the proof is given in Sec. IV.B). One has

M""=ULI "~UR,
(3.25)

~down y' down yfI
where m "P and I ' " are diagonal matrices with positive
elements and UL R and VL R are unitary matrices. Sub-
stituting Eqs. (3.25) for M"(' and M ' " in (3.23), we ob-
tain for the quark mass term
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~up+ ~down

= —Pvl P —nm Pl =
q=d, s, . . . , t

(3.26)

generate a neutrino mass term (preserving the renormal-
izability), and the neutrinos are massless in the standard
theory. For the lepton charged and neutral currents we
have

Here

P =PL+PR = C ~ n =nI. +nR = S (3.27)

Ja ' =2 g vlL1 alI
l=e,p, r

J a g +IL Ya+IL g lL1 alL
~ 0; 1ep

1 =e,p, 7 l=e, p, ,z

+2sin 8II g leal .
l=e, p, r

(3.32)

I I

PLR ULRPLR ~ nLR ~LR+LR (3.28)

~ I,
'+ );quarkJa ' = PLXa&L =2PL3 aUkM&L

~ 0; quarkJa' =PL'YaPL —nL, 'YanL

—2sin OII.[ —,'py~+( ——, )ny n],

(3.29)

where

(3.30)

is a unitary quark mixing matrix.
For the case of three generations of quarks, the mixing

matrix U&M was first considered by Kobayashi and
Maskawa (KM) (1973). They showed that this matrix is
characterized by three Euler angles and one phase and can
be present in the form

C1 $1C3 $1$3

Hence d(x),s(x), . . . , t(x) are the fields of quarks pos-
sessing definite masses. The primed quark fields
[dL It(x), sL Ii(x), . . .] forming the multiplets of the group
SU(2)L are linear orthogonal combinations of the LH
(RH} components of the fields of quarks with definite
masses.

Finally, let us write the charged and the neutral weak
currents of the standard theory in terms of the fields of
quarks with definite masses. Exploiting the unitarity of
the matrices UI II and VL II and using Eqs. (3.9), (3.15),
and (3.28), we obtain the following expressions for the
quark charged and neutral currents:

If the neutrino masses are different from zero, the
fields vIL(x) that enter into Eq. (3.32) are given by the ex-
pression

+IL g UIk +kL—
k

(3.33)

where vt, (x) is the field of a neutrino with mass mk and
U is the unitary matrix of lepton mixing. We shall show
in later sections that neutrinos with definite masses can be
Dirac as well as truly neutral Majorana particles. In
theories representing extensions of the standard theory,
the number of massive neutrinos may exceed the number
of charged leptons.

The mixing described by Eq. (3.33) implies nonconser-
vation of the lepton charges. We shall conclude the
present section with a brief discussion of how, in the gen-
eral case of the mixing (3.33), one should define the type
of a "phenomenological" neutrino. The standard sources
of neutrinos are the weak decays of the particles. Neutri-
nos are also analyzed by studying weak processes. Since
all known weak processes are described by the Lagrangian
of the standard theory, the type of a "phenomenological"
neutrino or antineutrino is defined by Eq. (3.32) irrespec-
tive of whether lepton mixing takes place or not: we call
a muon neutrino the LH "particle" (described in the case
of mixing by a coherent superposition of states with dif-
ferent masses) which produces p when interacting with
the nucleons and which is born with p+ in the weak de-
cays, etc.

UKM = —$1C2 C1C2C3 —S2$3e i5
C1C2$3 +$2C3e i5

$1$2 —C1$2C3 C2$3e —C1s2$3 +C2C3ei5 i5
IV. NEUTRINO MIXING SCHEMES

where

(3.31)

A. Introduction

s; =sin8;, cI =cos8; (i =1,2, 3) .

We have considered the Higgs mechanism of genera-
tion of the quark masses. Analogously, the masses of the
charged leptons result from couplings to the Higgs fields
as a consequence of spontaneous symmetry breaking. We
shall consider in detail various mechanisms of neutrino
mass generation in Sec. VIII. Let us note here only that
as a consequence of the chosen multiplet of Higgs fields
and the absence of RH neutrino fields, it is impossible to

In this section we shall consider possible neutrino mix-
ing schemes. There exist several totally different schemes
of neutrino mixing and only one possible scheme of quark
mixing. This is connected with the fact that the neutrino
electric charge is zero, in contrast to the quark charges.
Correspondingly, neutrinos possessing definite masses can
be Dirac as well as Majorana particles (quarks are Dirac
particles}. In addition (because of the zero electric charge
of neutrinos), the number of massive Majorana neutrinos
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can exceed the number of charged leptons (i.e., the num-
ber of lepton flavors).

It is common practice to classify neutrino mixing
schemes according to the type of the mass terms, whose
diagonalization leads to the corresponding mixings. It is
not difficult to construct all possible (from a phenomeno-
logical point of view) mass terms. For this purpose let us
introduce the columns

rsC=rsT (4.6)

we get

—,
' (1—ys)(vL )'= (vL, )' .

which is a consequence of Eq. (4.3). Further, taking into
account that

1

vL —,(1—ys) =vL,

&eL, &eZ

(4.1)

Similarly, one finds

—'( I+ys)(vz )'=(v~ )' .

The LH fields vs (x) 'enter into the interaction Lagrang-
ian of the standard electroweak theory. The index I takes
n values e,p, s, . . . and characterizes the flavor of the
corresponding neutrinos. The RH fields vr~(x) do not
enter into the interaction Lagrangian of the standard
theory, but may be present in the mass terms. The index
l' numbers the RH fields. We shall assume that l' also
takes n values.

In addition to vt and vz, let us consider

Let us proceed now to the construction of possible neu-
trino mass terms using the fields vL, , (vL, )', vent, and (vz )'.
If only the fields vL and vent enter into the mass term, one
has

= —vRM vL +H.c. (4.7)

WM = ,' (v, )'M—M—v,+H.c. (4.g)

Using the flavor fields vL and (vr )' present in the weak
currents, one can build the mass term:

(v, )'= Cv, ', (v~ )'=Cv, '. (4.2)
Finally, the most general neutrino mass Lagrangian has
the form~

Here C is the charge-conjugation matrix. The matrix C
satisfies the conditions

Cy C '= —y, C+C=I, C = —C.
It follows from Eqs. (4.2) and (4.3) that

(vL. ) = vz C ', (vent) —= vzC—
(4.3)

(4.4)

The field (vL, (~))' transforms as vL(2t) under the proper
Lorentz transformations.

It is not difficult to show that (vL ) is a RH field, while

(vent
)' is a LH field. Indeed, we have

2 (1 ys)(vt. )'=—Clvt. 2 (1 ys)]-
Equation (4.5) was obtained by using the relation

(4.5)

4This possibility may be realized if, for example, neutral weak
isosinglet particles that mix with the neutrinos exist. For fur-
ther details see Sec. IV.D and the last paragraph of Sec. VII.B.

sLet us note that, in general, the number of RH neutrino fields

v~~ may be greater or less than n.
6To avoid any misunderstanding, we would like to note the fol-

lowing. The charge-conjugation operator U„which changes
the state vector of a particle with given momentum and helicity
into a state vector of the corresponding antiparticle with the
same momentum and helicity, transforms the operator l(z into
(A )'= c0~:

&cgL(x)U =2) (fz(x))',
where g, is a phase factor. Thus a given Lagrangian will not be
invariant with respect to the charge conjugation if it contains
only the LH components of some fields [e.g., vll. (x)].

2(vr. ) M—I. vt. 2vRMR —(vR)

vga i vl +H+ co
D (4.9)

B. Dirac mass term

Let us assume first that the neutrino mass term has the
form

Obviously, the possible term (vL, )'Mz (vz )' can be reduced to
the third term in W + . Indeed, one has (vL, )'M2(vg)'
= —vt. C M2Cvg ——vg(M2 ) vg.T —i D & D T

In Eqs. (4.7)—(4.9), M, M, ML, M~, and M~ are
n Q n complex matrices.

The mass term W is invariant with respect to the glo-
bal gauge transformations vL ~e'"vL, vent e'"vz. This
invariance implies the conservation of the lepton charge.
Neutrinos with definite masses are in this case Dirac par-
ticles. The mass term W is called a Dirac mass term.

Obviously, in the general case no global gauge transfor-
mations under which the Lagrangians W and W +

would be invariant exist. This is the reason why neutrinos
with definite masses in the case of the mass terms W
and W + are Majorana particles. The Lagrangian W
is called a Majorana mass term, while W + is called a
Dirac-Majorana mass term.

We proceed now to a detailed discussion of neutrino
mixing resulting from the diagonalization of the three
types of neutrino mass terms constructed above.
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= —vR M vL +H. C.

D
vl gMl lvlL+H. c. (4.10)

Utilizing the unitarity of the matrix U, we obtain from
Eq. (4.13)

l, I'=e,p, w, . . . I
vt ——UvL (4.14)

M = VmU (4.11)

Here V and U are unitary matrices and

mk ——mk5k, m/, &0 .

where M is a complex n&n matrix. It should be em-
phasized that in addition to the ordinary LH neutrino
fields vll. (I =e,p, r, . . .), the RH fields v~R
( I' =e,p, r, . . . ) not present in the interaction Lagrangian
of the standard theory are needed to construct Lagrangian
(4.10).

In order to reduce the mass term W to the standard
form, it is necessary to diagonalize the matrix M . An
arbitrary complex matrix can always be diagonalized by
means of the biunitary transformation. One has

oI

v!1„=g UlkvkL, 1 =e,p, r, . . .
k=1

(4.15)

Thus, if the neutrino mass term has the form (4.10), the
flavor neutrino fields v~L present in the standard weak
lepton currents are linear combinations of the LH com-
ponents of the fields of neutrinos with definite masses.
The unitary matrix U is called the lepton mixing matrix.

It is easy to see that the neutrinos vk are Dirac parti-
cles. Indeed, it is not difficult to convince oneself, using
Eq. (4.15), that the Lagrangian of the theory containing
the mass term (4.10) is invariant with respect to the global
gauge transformations

Inserting Eq. (4.11) into (4.10) we get

= —vR Ivt +H. c.= —v m vD

vk(x)~e' vk(x),

l(x)~e' l(x), l =e,p, r, . . . ,
(4.16)

Here

mkvkvk
k=1

(4.12)
where A is a constant parameter.

Invariance with respect to the transformations (4.16)
means that the lepton charge common to a11 charged lep-
tons and all neutrinos vk is conserved.

Let us define the lepton charge

vL ——U vL, vg ——Vvg, v= (4.13)

var

From Eq. (4.12) one can conclude that vk is the field of a
neutrino with mass mk

8Here is a proof of this statement for the simple and physically
interesting case of nondegenerate matrices M, detM&0. Con-
sider the matrix MM . Obviously, this matrix is Hermitian,
and its eigenvalues are positive. We have then

MM~=Vm V~

where V V= VV =I and {m );k ——mk5;k. Further, we obtain

M= VmUt,

where U =m 'V M, while mtk ——+{mk)' 5;k. It is not diffi-
cult to convince oneself that U is a unitary matrix. Indeed, us-
ing the first equation above one gets

U'U =m -'V'MM'Vm -'= I .

vIL (x) e vIL (x) vIR (x) vIR (x)

l(x)—+e' l(x) .
(4.18)

I.= g L&. (4.17)
l =e,fl&7, . . .

Obviously, all charged leptons carry one unit of the
charge 1.. It follows from Eq. (4.16) that the lepton
charge I. will be conserved if we assume that the charge
I of all neutrinos with definite masses is equal to one.
Thus neutrinos with definite masses are Dirac particles in
the case of the mass term (4.10) (vk differs from vk by the
lepton charge; note that neutrinos vk differ from each
other by their masses).

The fields v~1. (x) are fields of the neutrinos taking part
in the weak interaction. It is evident that the lepton
charges I.I (l =e,p, r, . . .) will not be conserved in a
theory with neutrino mass term (4.10) if the matrix M is
not diagonal. It is not difficult to see, however, that such
a theory will be invariant with respect to global gauge
transformations, '

9Using the unitarity of the matrices U and V we get for the ki-
netic terms in the neutrino Lagrangian

vL, p 8 vt. vg g 8 vg
~0

= —vs/ v'= —g vkyA vk
k=1

It is implicitly assumed here that apart, possibly, from the
neutrino mass term, the total Lagrangian of the theory possesses
the indicated symmetry.
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This implies that in the case of a Dirac mass term
(4.10) the total lepton charge L =g&, „, LI is con-
served.

Thus processes like

using Eqs. (4.3) and (4.4) (as well as the fact that a minus
sign appears when interchanging two fermionic field
operators), we have

(vL )'MvL —— (vL—C 'Mvt )

p+ —+e++y, p ~e++e +e+,
(4.19) =vt(C ') M vL ——(vt )'M vL .

K+~m++p +—+e+, p +(A,Z) —+e +(A,Z),
etc., are allowed in a theory with neutrino mixing given

( —) ( —)

by Eq. (4.15). Oscillations v ~+~ v r (l&l') should be
observed in the neutrino beams. At the same time, neutri-
noless double-/3 decay

This implies

M =M. (4.23)

We shall be interested in the case of nondegenerate
eigenvalues of the matrix M. A complex symmetric ma-
trix can always be expressed in the form"

(A, Z)~(A, Z+2)+e-+e— (4.20) M = ( Ut) "m U (4.24)

and processes like

p +(A,Z)~e++(A, Z —2),
E+~~ +e++p+, etc. ,

(4.21) = ——,(nL )'mnL, ——,nl m(nL, )',M & c (4.25)

where U U= UU =I and m;k ——ink5;k, mk &0. We now
insert Eq. (4.24) into (4.22) and obtain

are forbidden as a consequence of the conservation of the
total lepton charge L. In the following sections we shall
consider schemes of neutrino mixing in which (PP)o„de-
cay and other analogous processes are allowed in addition
to oscillations and processes of the same type as Eq.
(4.19).

Let us note in conclusion that the mixing of neutrinos
generated by a Dirac mass term is analogous to Cabibbo-
Kobayashi-Maskawa quark mixing. It was introduced by
several authors (Maki et a/. , 1962; Eliezer and Ross,
1974; Bilenky and Pontecorvo, 1976b; Fritzsch and Min-
kowski, 1976) with the purpose of constructing a theory
in which there would be a complete analogy between the
weak interaction of quarks and leptons.

where

nl ——U vL, (ni )'=CnlC

Finally, we get for the neutrino mass term

= —
2 XmX= —

2 g mkXkXk .M 1 — 1

k=1

Here

X2
X=&1.+(&l.)'=

(4.26)

(4.27)

(4.28)

C. Majorana mass term

We shall consider in this subsection neutrino mixing in
the case of the Majorana mass term

= ——,(vL, )'MvL +H.c.

~ ~For an arbitrary matrix M we have

M= VmU (a)

l, l'=e, p, v, .
( vl'L ) Ml'I vIL +H. C. (4.22)

where M is a complex n )&n matrix.
In the simplest case of two neutrino types, the mass

term (4.22) was first considered by Gribov and Pontecor-
vo (1969). The scheme of neutrino mixing introduced by
these authors is the most "economical" one, as the neutri-
no mass term is formed only by the LH flavor neutrino
fields. To the four neutrinos and antineutrinos taking
part in the weak interaction there correspond four possi-
ble spin states of two massive Majorana neutrinos with
different masses.

We shall consider the general case of n neutrino types.
In order to cast the Lagrangian W in the standard form
let us diagonalize the matrix M. In doing that one has to
take into account that M is a symmetric matrix. Indeed,

where VV =I, UU =I, and m;k ——mk6;k, mk)0. We shall
assume for simplicity that m;~mk for i~k and that mk &0.
Obviously, MM~= Vm V . On the other hand, MM
=(U ) m U since M=M =(U )"mV . Hence (U~) m U
= Vm V~. This implies

UVm=mUV.
Since m2 is a diagonal matrix and m;&mk, it follows from the
last relation that U V is also a diagonal matrix. Further, U V
is a unitary matrix. Thus

U V=S
2i ak

where S;k ——e 6;k, o,k being real constants. Finally, inserting
this expression into (a), we obtain

M =(U')'m(U')',

where U' =S' U, (S' );k ——e 6;k.
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We conclude on the basis of Eq. (4.27) that X» is the field
of a Ilelltrlilo wltll mass Ptkk.

It is not difficult to see that the fields Xk satisfy the
condition

XI, (x)=CXk (x), k = 1,2, . . . , n . (4.29)

Xk(x)= fN~[u "(p)a„(p)e'i" +u"( —p)a„(p)e '~"]dp,

(4.30)

where

1 1
Np ——

(2m. )
~ +2po

is a standard normalization factor, the spinor u "(p) de-
scribes a state with momentum p and helicity r,
u "(—p)=Cu" (p), and a„(p) and a„(p) are the annihila-
tion and creation operators of one and the same particle
with momentum p and helicity r.

Prom Eqs. (4.26) and (4.28) one obtains

vl ——UXI

and, consequently,

(4.31)

viL = g UlkXkL
k=1

(4.32)

In this way, if the neutrino mass term has the form
(4.22), the fields of ordinary LH flavor neutrinos are
linear combinations of the LH components of the fields of

These conditions imply that Xk(x) are the fields of Ma-
jorana neutrinos. ' The properties of the Majorana fields
will be discussed in detail in Appendix A. We should like
to note here only that as a consequence of Eq. (4.29) the
operator Xk(x) has the form

Majorana neutrinos with definite masses. ' The number
of fields of Majorana neutrinos coincides with the number
of flavor neutrinos (i.e., the number of charged leptons).
Clearly, the 2n states with different helicity of the n mas-
sive Majorana neutrinos correspond to the 2n neutrinos
and antineutrinos (v„v„,v„v„v„,v„. . .) taking part in
the weak interaction.

We should like to conclude this subsection with the fol-
lowing remarks.

(i) Evidently, there exist no global gauge transforma-
tions under which the mass term (4.22) in its most general
form could be invariant. This implies that in the case
under discussion no conserved lepton charges that could
allow us to distinguish neutrino from antineutrino exist.
As a consequence, the particles with definite mass in the
case of the mass term (4.22) are Majorana neutrinos—
truly neutral particles with spin —,'.

(ii) Using the language of the LH and RH field com-
ponents, we can clarify the difference between the Dirac
and Majorana cases as follows. From Eqs. (4.6) and (4.29)
it follows that the LH and the RH components of the
Majorana field Xk(x) are connected by the relation

XkR (x ) CXkL (4.33)

The LH and the RH components of the Dirac field vk(x)
are independent of each other.

Let us introduce the field vki ——e' vki (A is a constant)
instead of vkl . The charged currents and the charged lep-
ton mass term would not change if simultaneously the
charged lepton field were to undergo the transformation

l(x)~l'(x)=e' l(x) .

Since the fields vkl (x) and vkz(x) are independent, the
field vs (x) can always be transformed [vk~ (x)
~vj~(x) =e' vs(x) j so that the neutrino mass term be
also invariant with respect. to the indicated gauge
transformations.

If the fields Xk(x) and l(x) in the Majorana case were
transformed as

12For the kinetic term of the neutrino field Lagrangian one has

XkL, (x) X'kl. (x)=e' Xki. (x),

I (x)—+l'(x) =e' l(x),

(4.34)

Wp = —vI.QaBavL nL pa~anL

i— 1Lf 8 nl. —
2 (nL) g ~ (nL)

the weak charged currents and the charged lepton mass
term, obviously, would not change. However, as a conse-
quence of Eq. (4.33), Xj~(x)=e ' Xkit(x), and the neutri-
no mass term would not be invariant with respect to the

gk(x) =e gk(x), k =1,2, . . . , n (a)

(where ak is an arbitrary real constant). The choice of the
phases is reflected in the Majorana condition

CX =gg, Xg, (x), gk =e

Note that the mass eigenstate fields of W~ are determined

by the procedure of diagonahzation up to overall unphysical
phase factors. We could have chosen them to be

It should be emphasized that the diagonalization of the Ma-
jorana mass term W (4.22) may lead to massive Dirac neutri-
nos in the particular case when W, as well as the theory it is
part of, possesses some global symmetry (Bilenky and Pontecor-
vo, 1981; Wolfenstein, 1981b; Leung and Petcov, 1983). For
further details see Secs. VI.C, VI.D, and VI.F.
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transformation (4.34).
(iii) In a theory with Majorana mass term (4.22) none of

the lepton charges LI, l =e,p, r, . . . is conserved nor is
the total lepton charge L =CHILI. Consequently, the
theory allows not only processes like p+ ~e + +y,
IM+~e++e +e+, etc. , but also (pp)o, decay and other
similar processes. The considered scheme of mixing with
Majorana massive neutrinos leads to oscillations in the
neutrino beams (like the scheme mixing of massive Dirac
neutrinos discussed in the previous subsection).

We have considered so far neutrino mixing schemes in
which the number of neutrinos (Dirac or Majorana) with
definite masses coincides with the number of flavor neu-
trinos. We turn now to the discussion of a mixing scheme
in which the number of massive neutrinos (of Majorana
type) exceeds the number of flavor neutrinos.

D. Dirac-Majorana mass term

(ni)'= —(ni)rC-', we get

(ni)'Mni —— —(ni) C 'Mni

=(ni) (C ') M ni (——ni)'M ni .

So, as in the case of a Majorana mass term discussed in
Sec. IV.C, the mass matrix M is symmetric:

M =M. (4.37)

We shall assume that the eigenvalues of the matrix M are
not degenerate. One has

M=(Ut) mU

Here U is a unitary 2n )&2n matrix, while

mg, ——mk5g, , mk)0, i k=1,2, . . . , 2n .

Further, inserting Eq. (4.38) in (4.35), we get for the mass
term under consideration

The fields viL(x) enter into the interaction Lagrangian
of the standard theory. Only these fields have been used

,in the construction of the Majorana mass terin considered
in Sec. IV.C. The Dirac mass term was built using the
"active" flavor fields viL(x) as well as the RH fields

vIII (x) which do not enter into the interaction Lagrangian
of the standard theory. This mass term is constructed so
that global gauge invariance corresponding to conserva-
tion of the total lepton charge does take place. In the
present section we shall consider the most general Dirac-
Majorana mass term (4.9) (Bilenky and Pontecorvo,
1976a; Barger et al. , 1980; Bilenky, Hosek, and Petcov,
1980; Kobzarev et al. , 1980; Schechter and Valle, 1980).
It is built by both the LH fields vIL(x) and the RH fields

viII (x) without imposing the condition of global gauge in-
variance.

The Dirac-Majorana mass term (4.9) can be written in
the form

WD+~= ——,
' (ni)'mni+H. c. ,

where

nL, =U nL, .

From Eq. (4.39) we obtain

2nM~+I= ——,'XmX= ——,
' g m„X,X, ,

k=1

where

X2
X=ni+(nL)'=

+2n

Obviously,

Xk(x)=CXk (x) .

(4.39)

(4.40)

(4.41)

(4.42)

(4 43)

WD+~= ,' (n, )'Mn,—+—H.c.

Here M is a complex 2n &2n matrix, and

VL

nL =
C

where

(4.35)
So, if the neutrino mass term is given by Eq. (4.35), the

particles with definite masses are Majorana neutrinos.
From Eq. (4.41) we conclude also that Xk(x) is the field
of a neutrino with mass mk.

It is not difficult to derive the relations connecting the
flavor fields vIL(x) and the fields (vIR(x))' not present in
the standard weak-interaction Lagrangian with the LH
components of the 2n Majorana fields Xk(x). Indeed, us-
ing the unitarity of the matrix U, we find

&eI.

(vg )'=
(V,ti )' (4.36)

nI —Unl ——UXI„.

This implies

2n 2n

vIL g U!kXkL (&III ) = g +TkXkL
k=1 k=1

(4.45)

are column matrices formed by the LH fields.
Let us perform the standard procedure of diagonaliza-

tion of the mass term. Taking into account the relation

Note that the index l takes the values e,p, r, . . . (altogeth-
er n values); the index 7 numbers the n lower rows of the
mixing matrix U.

Rev. Mod. Phys. , Vol. 59, No. 3, Part I, July 1987



684 S. M. Bilenky and S. T. Petcov: Massive neutrinos and neutrino oscillations

Thus, if the neutrino mass term has the form (4.35), the
n flavor fields v~L(x) are linear combinations of the LH
components of 2n Majorana fields. It is essential that the
"sterile" fields (vent(x))' are in this case linear combina-
tions of the LH components of the same 2n Majorana
fields. For the RH components we get from Eq. (4A4)

W = ——,vLMvL+H. c.c (4.49)

and LH antineutrino, respectively.
Let us assume now that the neutrino mass term does

not conserve the ZKM lepton charge (Bilenky and Pon-
tecorvo, 1980, 1981). In the case of two charged leptons
the most general neutrino mass term has the form

(nL)'= U'Xrt .

It follows from this relation that

2' 2)i

(vIL ) = g Ua &krt »~ = g &ik&krt .
k=1 k=1

(4.46)

(4.47)

Here M is a symmetric 2 & 2 matrix,

VL

VL

Applying the standard diagonalization procedure we get

It is evident that the Dirac-Majorana mass term is not
invariant in the general case under any global gauge
transformations of the neutrino fields. This implies that
in the theory under discussion no lepton charges are con-
served. Consequently, like the theories with a Majorana
mass term considered in Sec. IV.C, a theory with a
Dirac-Majorana mass term, in principle, allows processes
of the type p+ ~e++y, p+ ~e++ e +e+, etc., as well
as total lepton charge nonconserving processes such as
(PP)o„decay. An essential difference between the scheme
with a Dirac-Majorana mass term and that with a Ma-
jorana (or Dirac) mass term shows up in neutrino oscilla-
tions. Namely, in addition to the oscillations between the
"active" neutrinos (those taking part in the standard weak
interaction), oscillations between the "active" and
"sterile" neutrinos are possible in the case under con-
sideration. The "sterile" neutrinos do not participate in
the standard weak interaction. They are quanta of RH
fields The n. otion of sterile neutrinos was first introduced
by Pontecorvo (1957). We shall discuss in detail in Sec.
VII the phenomena of neutrino oscillations arising in the
three mixing schemes.

vL —g Ulk+kL ~ vL g U2k~kL
k =1,2 k =1,2

(4.50)

Jn =2(v&L1'aeL+v2L VarL+v1LXaPL
~ (+)

+v2L)'AL + (4.51)

The most general neutrino mass term that can be built us-
ing the fields vkr and vs (k = 1,2, . . . , m) has the form

where Xk(x) is the field of a Majorana neutrino with mass
mk.

It is apparent that this scheme is equivalent to the mix-
ing scheme of Gribov and Pontecorvo (1969), correspond-
ing to a Majorana mass term.

Let us discuss next the general case of n ~2 charged
leptons. We shall assume (generalizing the ZKM scheme)
that one four-component neutrino field is associated with
the fields of two charged leptons and that both the LH
and the RH components of all neutrino fields enter into
the lepton currents. Clearly such a scheme may be viable
only if an even number (say, 2m) of charged leptons ex-
ists. Generalizing Eq. (4.48) we obtain for the weak
charged- lepton current '

E. A special case of mixing of neutrinos
with Majorana masses Here

1W = —TvLMvL+H. c. (4.52)

J' =2(vr. 'Y eL+vLl'WL )
~ (+) (4.48)

where vL ———,(I+ys)v' and v'=—Cv . The electron and
muon neutrinos are, in the ZKM scheme, LH neutrino

All neutrino mass terms considered so far have been
constructed under the assumption that to each charged
lepton there corresponds one LH flavor neutrino and that
the RH fields are not present in the weak interaction La-
grangian. It is known, however, that the existing experi-
mental data are not incompatible with the assumption
that to two charged leptons (e.g., e and p) there corre-
sponds one four-component neutrino, whose LH and RH
components enter into the weak lepton currents. We have
in mind the scheme of Zeldovich, Konopinsky, and Mah-
moud (ZKM; Zeldovich, 1952; Konopinsky and Mah-
moud, 1953), according to which one lepton charge, the
same for e and p+, is conserved. The charged-lepton
current has in the ZKM scheme the form

v2L

C

(4.53)

C
vmI.

'5We have assumed that v„v„,v, v~, . . . are quanta of the
fields v~L, v&L, vzL, v2L, . . . (the fourth lepton is denoted by g). It
should be clear that the components of the four-component neu-
trino fields could be identified in a different way with the
"phenomenological" neutrinos.
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2P7l

2 g mk~k~k
k=1

(4.54)

and M is a 2m X2m symmetric matrix. The method of
diagonalization of the mass term (4.52) does not differ
from those considered in detail in Secs. IV.C and IV.D.
One has

UcpPL, R(x)Ucp PL,R(x')C 'y4 ~ (5.3)

Obviously, the free Lagrangian of the fields considered
is invariant with respect to the CP transformation. It is
not difficult to see that the interaction Lagrangian of the
leptons and Z boson is also CI' invariant. Thus CP in-
variance in the lepton sector holds if

Ucp WI'(x ) Ucp' ——WI'(x '), (5.4)
2' 210

ViL g Uik~kL ~ viL g Ui+mk~kL
k=1 k=1

(4.55)

V. CP INVARIANCE AND NEUTRINO
MIXING

Here U is a unitary mixing matrix and Xk(x) =CX k(x) is
the field of a Majorana neutrino with mass mk.

The main difference between the scheme constructed
here and the scheme based on a Majorana mass term is
that the former requires an even number of charged lep-
tons. (It should be obvious from Sec. IV.C that a scheme
with a Majorana mass term can be constructed for any
number of charged leptons. ) The generalized ZKM
scheme is appealing for its economy: all components of
the neutrino fields enter into the lepton currents and neu-
trino mass term. If it turns out that there exists an even
number of charged leptons, this may serve as an indica-
tion in favor of the validity of this theory.

Let us note in conclusion that the scheme considered
here leads to oscillations only between neutrinos taking
part in the standard weak interaction VI ~VI (l&1').
However, the ZKM-like lepton charge changes by two
units in oscillations of the type v, ~~v„(see, however, foot-
note 15). It is natural to expect that oscillations of this
type are suppressed as compared with the oscillations
v~ ~~v~~ vp~~vg.

where

WI'(x)= glL(x)y UlkvkL(x)Wa(x)
2 2 lk

W (x)=q Wa(x),

where g =1, a=1,2, 3, g4 ———l. Using Eqs. (4.3), (5.2),
and (5.3) we easily get

UcplL (x)yavk! (x)Ucp lavkL (x )yalL (x

Further, taking into account that

Ucp W (x)Ucp =g W (x )

we find

Ulk = Ulk =Olk ~ 0 0=I

(5.5)

(5.6)

Thus, if CP invariance holds in the leptonic sector, the
mixing matrix of neutrinos with Dirac masses is a real
orthogonal matrix.

We conclude with the following remarks.
(i) Let us choose the arbitrary CP phases of the flavor

neutrino fields equal to 1:

+ gvkL(x)yaUlklL(x) Wa(x)
2 I, k

is the lepton —8'—-boson interaction Lagrangian. In this
expression

A. Mixing of neutrinos with Dirac masses
UcpvIL(x)Ucp =3 4CvIL (x )

UCpvIR(X)UCp y4CvIR (X )

(5.7)

In all the mixing schemes considered above the mixing
matrix is in the general case a complex unitary matrix.
We shall discuss in this section the restrictions that follow
from the assumption of CP in variance of the
lepton —intermediate-boson interaction Lagrangian. We
begin with the case of mixing of neutrinos with Dirac
masses (Dirac mass term).

The operator of a Dirac field f(x) transforms under
CP as

UCPW (x)Ucp' ——W (x'),
where

(5.8)

Evidently, the standard interaction Lagrangian of the in-
termediate bosons and leptons in this case is invariant
with respect to the CP transformations, and CP invari-
ance would hold in the lepton sector if

Ucpitl(x)Ucp' y4CQ (x') . —— (5.1)

(x) gvl'R (x)MI IvIL (x)+H. C.
l, l'

(5.9)

UCPWL, R(»UCP'=y4CQL, R (x') . (5.2)

Here Ucp is the CP-conjugation operator, x'=( —x,ixo),
and C is the charge-conjugation matrix determined by
Eqs. (4.3). From Eq. (5.1) we get for the LH and the RH
components of the field t/r(x)

From Eqs. (5.7) and (5.9) we obtain

(5.10)

So, if CP invariance holds, the matrix M is real
A real matrix can be reduced to a diagonal form via the

biorthogonal transformation

From this relation we obtain M =0'IO (5.11)
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where 0' and 0 are orthogonal matrices and
m;k =mk5;k, mk & 0 (the proof is analogous to that given
in footnote 8). From Eqs. (5.9) and (5.11) we find that

&IL = g 0!k+kL r

k=1
(5.12)

Ucp PL, R(x)Ucp ricp/4C 4,R (x ) i (5.13)

where vk(x) is the field of a Dirac neutrino with mass
mk. In this way, using a different method, we have ar-
rived at the same conclusion: If CP invariance holds in
the leptonic sector, the lepton mixing matrix in the case
of Dirac massive neutrinos is a real orthogonal matrix.

(ii) In principle, there are phase factors associated with
the CP transformations. Instead of Eq. (5.2) we have

It is interesting to note that as early as in the first work
on neutrino oscillations (Pontecorvo, 1958; one flavor
neutrino was known at that time) it was emphasized that
massive Majorana neutrinos can have different CP pari-
ties. We shall see further that the relative CP parities of
Majorana neutrinos are, in principle, observable quanti-
ties.

Let us now consider the restrictions on the lepton mix-
ing matrix which follow from the requirement of CP in-
variance of the Lagrangian of the system. The free La-
grangians of neutrinos with definite masses, 'of charged
leptons, and of weak intermediate bosons, as well as the
Lagrangian of the lepton —Z -boson interaction are, obvi-
ously, invariant with respect to the CP transformations.
Consequently the total Lagrangian is CP invariant if

where g~p ——e ' and a is a real parameter. Taking into
account these phase factors, we obtain from the condition
of CP invariance of the Lagrangian, instead of Eq. (5.6),

Ucp Wl'(x) Ucp' WP(x——'),
where

(5.19)

9cp(i)9cp(+k )9cp( ~)U!k Ulk

This imphes that the mixing matrix has the form

(5.14) WI'(x)= glL(x)y UlkXk (x)W (x)+H.c.
2 2 I, k

'~l '~k i a'
UIk ——e OII e e (5.15)

where 0 is an orthogonal matrix. We are going to show
in Sec. VII that the phase factors present in Eq. (5.15) can
be left out [owing to the fact that because of the nonob-
servability of the phases of the Dirac fields the factor pcs
in Eq. (5.13) can always be set equal to one].

We proceed now to a discussion of CP invariance in the
case of mixing of neutrinos generated by a Majorana mass
term.

UcplL(x) Ucp = I &4ClL '(x') (5.21)

From Eqs. (5.16) and (5.17) we get for the Majorana fields

XkL (x)

(5.20)

It has been indicated in Sec. V.A that the phase factors
associated with the CP transformation of the Dirac fields
have no physical meaning and can be chosen arbitrarily.
In the case of mixing of Majorana neutrinos we consider
it is convenient to choose the CP phase factors of the
charged leptons to be equal to i:

B. Mixing of neutrinos with Majorana
masses

UcPXkL( )UcP Qcp(Xk)gk) 4CXkL (x ) ~ (5.22)

The condition that Xk(x) is a Majorana field can al-
ways be written in the form

Using Eqs. (5.5), (5.21), and (5.22) we obtain from (5.19)
and (5.20) (Bilenky, Nedelcheva, and Petcov, 1984;
Kayser, 1984)

CXk (x)=4Xk(x» (5.16) Ulk 1kgk Ulk (5.23)

UcPXk(x)UcP lcp(Xk )y4Xk(x ) i (5.17)

where gcp(Xk) is a phase factor and x'=( —x, ixo.). From
Eq. (5.17) we get

UcI'
I P "~ ='Pep

I P (5.18)

where Ip, r) is the state vector of a Majorana neutrino
with momentum p and helicity r and p'=( —p, ipo). It
follows from Eq. (5.18) that gcp is the CP parity of the
Majorana neutrino. As is shown in Appendix A, the CP
parities of Majorana particles can assume the values i.

where gk is a phase factor. Since the weak-interaction
Lagrangian is not invariant with respect to the charge
conjugation, the phase factors g'k have no physical mean-

ing and can be arbitrarily chosen. It will be assumed in
what follows that gk =+1. We shall see that the observ-
able quantities do not depend on the factors gk.

Under CP the Majorana field transforms as

nk = —iricp(Xk) . (5.24)

—z (~/4)(g„g k
—1)v= ve

where 0 is a real orthogonal matrix.

(5.25)

The quantity gk can take the values +1.
Condition (5.23) differs substantially from the corre-

sponding condition (5.6) in the case of Dirac massive neu-
trinos. As follows from Eq. (5.23), the phases of the ele-
ments of the mixing matrix are determined by the CP
parities of the Majorana neutrinos as well as by (arbitrary)
factors in the Majorana condition (5.16). The mixing ma-
trix elements are real for qkgk =1 and purely imaginary
for qkgk

———1 [the last statement is valid only if the CP
phase factors of the fields I (x) are chosen to be equal to
i] It is clear from. Eq. (5.23) that the mixing matrix has
the form
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UcpvlL(x)UCP =lY4C vlL (x ) . (5.26)

Evidently, the Lagrangian of lepton —intermediate-boson
interaction is CP invariant in this case. The total La-
grangian of the system will be CP invariant if the neutri-
no mass term is CP invariant. Consider first the Majora-
na mass term. One has

Here

Ucp& (x)Ucp' ——W (x') .

= TvLC MvL —, vLM CvL-M T —I

(5.27)

(5.28)

where

From the derivation given above it should be obvious
that these results are valid both for a Majorana mass term
(the index k runs from 1 to n, where n is the number of
charged leptons) and for a Dirac-Majorana mass term (the
index k takes values from 1 to 2n).

We shall consider next a different approach to the
problem of CP invariance in the case of mixing of mas-
sive Majorana neutrinos. We have used in our treatment
so far the transformation properties of the fields of neu-
trinos with definite masses (in addition to those of the
charged-lepton and weak-intermediate-boson fields). Sup-
pose that the flavor neutrino fields vlL(x) transform
under CP as the LH components of Dirac fields:

M=(Ut) mU (5.33)

(5.34)

From Eq. (5.28), using (5.33), we obtain

T g mk~k~k
k

where

(5.35)

~k (U +L)k+(U C+L )k (5.36)

is the field of a Majorana neutrino with mass mk. It fol-
lows from Eq. (5.36) that

&1L = g UlkXkL
k=1

(5.37)

Thus, if CP invariance holds in the leptonic sector, the
lepton mixing matrix in the case of a Majorana mass term
is given by Eq. (5.34). The phases of the elements of the
mixing matrix take the values 0 (pk

——1) or ~/2 (pk
———1).

Let us see next how the massive Majorana neutrino
fields behave under CP transformation. From Eq. (5.36)
we get

(5.38)
1=e,p, ~, . . .

Using Eq. (5.26) one obtains

and M is an n & n symmetric matrix.
Using Eqs. (5.26)—(5.28) we obtain

(5.29)

~CPXkL(x)Ucp =l g UlkY4C vlL "(x') .
l

Further, from (5.38) we find

Y4C+lL (x ) g U!k'Y4C+k'L
k'

Finally, from (5.34) it follows that

&lk = UlkPk .

(5.39)

(5.40)

(5.41)
Taking into account that M =M, we get

(5.30)
Inserting now Eq. (5.40) into (5.39) and taking (5.41) into
account, we get

Consequently, if CP invariance holds in the leptonic sec-
tor, the neutrino mass matrix M will be real [under the
convention used for the CP phase factors in Eq. (5.26)].

Let us cast the matrix M in a diagonal form. For a real
symmetric matrix one has

M =0m'0', (5.31)

where 0 is a real orthogonal matrix and m;k ——mk6;k
(i,k =1,2, . . . , n), ml', being the kth eigenvalue of the
matrix M. The no+zero eigenvalues of a real symmetric
matrix can be either positive or negative. We have

UCP+kL (X ) UCP = l pk 'Y4CXkL (X ) ~ (5.42)

'9CP(&k ) ='Pk ~ (5.43)

So, the CP parity of the field of a Majorana neutrino with
mass mk is determined by the sign of the corresponding

The Majorana fields Xk(x) determined by Eq. (5.36) satis-
fy the condition Xk ——CX~ . Hence the factors g'k in the
Majorana condition for these fields are equal to l. By
comparing Eqs. (5.42) and (5.22) we conclude that the CP
parity of the Majorana field pk(x) is given by'

1

mk =mkPk (5.32)

where mk ——
~
mk and pk =+1. Further, if we use the
l (~/ )(pk —& J

identity pk ——e , the matrix M can, obviously, be
expressed in the standard way:

Obviously, this result does not depend on the convention
(5.26) used for the CP phases of the fields vIL, (x).
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eigenvalue of the neutrino mass matrix (Wolfenstein,
1981a; Bilenky, Nedelcheva, and Petcov, 1984). Note that
Eq. (5.34) is compatible with the general expression (5.25)
4k=1 nk=pk)

The phases of the elements of the tnixing matrix (5.34)
are equal to zero for pk

——1 and take the value ~/2 if
pk= —l. At the same time the fields of the Majorana
neutrinos satisfy the condition CXk ——Xk. It is not diffi-
cult to see that the lepton mixing matrix can be made real
by redefining the Majorana fields (Wolfenstein, 198la).
Indeed, inserting Eq. (5.31) into (S.28) we get the follow-
ing expression for the Majorana mass term W

(4.35) is real. It should be apparent that the relations we
have derived for the case of a Majorana mass term are
also valid in this case.

To summarize, we have shown that in the case of CP
invariance the CP parities of the massive Majorana neu-
trinos determine the phases of the elements of the lepton
mixing matrix (or alternatively, enter into the Majorana
condition). As was noted first by Wolfenstein (1981a), the
relative values of the Majorana neutrino CP parities are,
in principle, measurable quantities. It will be shown in
Sec. IX that, in particular, the (Pf3)o, d-ecay amplitude de-

pends on them in a nontrivial way.

where

n

T g mkXkXk
k=1

(5 44) VI. MIXING OF TWO MASSIVE
MAJORANA NEUTRINOS

Xk {O vL )k+pk{ C vL )k (S.45) A. The general case

vlL g OlkXkL
k

(5.47)

Thus, if the fields of neutrinos with definite mass satisfy
the Majorana condition (5.46), the neutrino mixing matrix
is a real orthogonal matrix. ' By comparing Eqs. (5.36)
and (5.45) we can conclude that the fields Xk(x) and
Xk(x) are connected by the relation

Obviously, the field Xk of the Majorana neutrino with
mass mk satisfies the condition

CXk (x) =pkXk{x) . {5.46)

From Eq. (5.45) we obtain'

In the present section we shall consider in detail the
simplest possibility of neutrino mixing —the mixing of
two neutrinos with Majorana masses. We shall treat first
the general case. Then various limiting cases, which are
interesting from a physical point of view, will be con-
sidered.

As has been shown in Secs. IV.C and IV.D, mixing of
massive Majorana neutrinos arises both in the schemes
with a Majorana mass term and in the schemes with a
Dirac-Majorana mass term. Consider first the Majorana
mass tertn. In the case of two neutrino types (say, v, and

v„) it has the form

—i {m/4)(pk —1)
Xk =e Lk (5.48)

= ——,(vt )'MvL +H. c. , (6.1)

This completes our discussion of the Majorana mass
term, and we proceed to the analysis of the implications
of CP invariance in the case of a Dirac-Majorana mass
term [see Eq. (4.35)]. It is convenient to choose the arbi-
trary phase factors appearing in the CP transformation
laws for both the LH flavor neutrino fields v~1 and the
RH fields vI~ to be equal to i. In this case CP invariance
implies that the symmetric 2n )& 2n mass matrix M in Eq.

where

&eL

VpL

and M is a symmetric 2& 2 matrix. We shall assume here
that CP invariance holds in the leptonic sector. One has
then M*=M (see Sec. V.B). Let us parametrize the ma-
trix M as follows:

Let us note that the CP phase convention, as determined by
Eqs. (5.21) and (5.26), was implicitly adopted and the fields

Pk(x) were used by Halprin, Petcov, and Rosen (1983) and
Petcov (1982a, 1982b, 1982c, 1983).

It is useful to compare the two choices of Majorana fields
considered. Me can write the negative eigenvalues of the neutri-

no mass matrix as m~ = immi (m~ &0). The factor i can be ab-

sorbed either by the element U~~ of the mixing matrix or by the
Majorana field g~(x). A11 factors in the Majorana condition
(5.16) are equal to 1 in the first case, and the phases of the mix-

ing matrix elements can assume the values 0 or m/2. In the
second case the mixing matrix is real. However, the factors gk
in the Majorana condition take the values +1. Obviously, the
two choices are physically equivalent.

I rrtee(veL ) veL +~pp(vpL ) vpL

+m„,[(v,t )'v„l. +(v„l. )'v,t. ] I +H c. (6.2)

The Lagrangian (6.2) was first constructed and the
relevant scheme analyzed by Gribov and Pontecorvo
(1969).

Next let us diagonalize the neutrino mass matrix. We
have

M =0m'0 (6.3)

mee mme
p

mme

where m„, m„„and mzz are real parameters. Equation
(6.1) can then be written as
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where 0 is an orthogonal matrix, m,"?, = mk5;k, and mk is
the kth eigenvalue of the matrix M(i, k =1,2). For m& z
we obtain

m'? 2
———,

' t(m„+mpp)+ [(???„—???pp)'+4m p, ]' 'I .

(6.4)

X?——, {sin8 vL+cos8v„L, )

+p, [sin8(v, L )'+cos8(v„t. )'],
X2=( —COS8VBL, +S1118V~1 )

+p2[ —cos8(v,l )'+sin8(vol )'] .

(6.15)

An arbitrary orthogonal 2X2 matrix has the general

sinO —cosO
cos8 sin8 (6.5)

where 8 is a parameter. Inserting Eq. (6.5) into (6.3) one
finds

+eL sin(9+ )L cosg+2
(6.16)

vpL =cosOr71L +slng+2L

The simplest Dirac-Majorana mass term has the form

It is now easy to express the flavor neutrino fields v,L, (x)
and

v~L (x) in terms of the LH components X~L, (x) and
X21.(x) of the two Majorana fields:

m« ——m ~sin 8+m2cos I9,

m&& ——m icos 0+m&sin 8,
2m„, =(m'? —mz)sin 8 .

(6.6)

(6.7)
where

= ——,(nL, )'Mnl. +H.c. , (6.17)

From Eq. (6.6) we get

???p~
—Iqq

= ( Y?? )
—m 2 )cos2 8 . (6.8)

VL
nI. =

)c (6.18)

Finally, it follows from Eqs. (6.7) and (6.8) that the angle
8 is connected with the parameters m«, m&» and m&, by
(Cxribov and Pontecorvo, 1969)

mL mD

mD mg
(6.19)

tan20= 2m'~

mph',
—m«

(6.9)

[(m„—???„„)+4m„, ]'~z (6.10)

Obviously, this relation does not uniquely determine the
angle 8. The latter can be determined unambiguously if
in addition to tan28 the sign of sin28 is also known.
From Eqs. (6.7) and (6.4) we find that

Here vL, stands for any LH "active" neutrino field (v,z or
v&L, , . . . ), v?? is a RH "sterile" field, and ???I,, mD, and
mz are parameters. In the case of CP invariance we shall
consider mI, mD, and mz to be real.

By. comparing Eqs. (6.1) and (6.17) we see that all rela-
tions derived above would be valid for the case of a
Dirac-Majorana mass term if we made the following sub-
stitutions in them: m« —+mL, m&&

—+mz, m&, —+mD,
v,L,

—+vL, v„L ~(v?? )'. We have

The nonzero eigenvalues of the matrix M can be both
positive and negative. Assuming that m&2+0, let us
write

vL =sing+&L —cosH+2L

(vg ) =cos8X~L +sln8X2L,

where the mixing angle 9 is given by the expression

(6.20)

mk mkPk~ (6.11) 2mD
tan28= (6.21)

where???k ——~???k
~

and pk=+1. Inserting Eq. (6.3) into
(6 1) we g« the following standard expression for the neu-
trino mass term:

and X, and X2 are the fields of Majorana neutrinos with
masses

g mkXkXk
k =1,2

(6.12) m? 2=p) 2T~I???g +???I +[(mg —???I ) +4???D] (6.22)

where

Xk=(o &c. )k+pk«C&1 )k

Obviously,

(6.13)

[the factor p?, is equal to 1 ( —1) when the expression in
parentheses is positive (negative)] and CP parities
'pep(X~ 2)=ip&&2 The relat. ions derived so far in this sub-
section are exact. We shall discuss next some limiting
cases that are interesting from a physical poirit of view.

Cgk ——Pk+k
T

(6.14)

Hence Xk(x) is the field of a Majorana neutrino with
mass mk. As has been shown in Sec. V, the CP parity of
the Majorana neutrino Xk is ipk. Using Eqs. (6.5) and
(6.13) we get

B. Possible mechanism for generation
of small Majorana neutrino mass

Consider the Dirac-Majorana mass term (6.17). Let us

assume that
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mI ——0, mid » t ma i
(6.23)

For the eigenvalues of the matrix M we get from Eq. (6.4)
up to terms linear in mD/mII

Im ~ m&, m2 ——ma/up~ . (6.24)

Thus, if the condition (6.23) apply, the particles possess-
ing definite masses are two Majorana neutrinos, one of
them being much heavier than the other:

(Xi —X2) .1

2

Since Cg] ——7) and CX2 ———X2, one has

(Xi+XI) .
2

Using Eqs. (6.31)—(6.33) we get

(6.32)

(6.33)

(6.34)
2

mD
m)~my~ m2~, m2 ((m)

m~
(6.25)

The "light" and the "heavy" Majol'ana neutrinos have op-
posite CP parities:

ncl (X I )= I ncI (XI) = —I (6.26)

(6.27)

Further, from Eq. (6.21) as well as from (6.10) we get for
the mixing angle

It follows from Eqs. (6.32)—(6.34) that g(x) is a complex
four-component (Cp &1t) field of a neutrino with mass
m. Thus we have shown that the fields of two Majorana
particles possessing equal masses and opposite CP parities
are equivalent to the field of one Dirac particle having the
same mass. With the help of Eqs. (6.13) and (6.32) it is
not difficult to express the field P(x) in terms of the fla-
vor neutrino fields v,l and v&L. ..

Ip= cosO vei +siI18 vpL —s1118 ( vqI ) +cosO (vpL, )

(6.35)

Finally, using Eqs. (6.20) and (6.27) one finds

mg) fPla
vL -—X2L, + XIL, , (vII ) =XIL, + XII.

mg mg
(6.28)

where

In this way we conclude that if the conditions (6.23) do
hold, the LH flavor field vL represents a mixture of the
LH component of a light Majorana neutrino [the relevant
coefficient being ( —1)] and the LH component of a heavy
Majorana neutrino (with coefficient mD/mII &&1). This
implies that effects of nonzero neutrino mass might be
observed in experiments like those studying the electron
spectrum in tritium P decay.

The mechanism for generating light neutrino mass
described here is known as the mechanism of Gell-Mann,
Ramond, Slansky (1979), and Yanagida (1979; see also
Stech, 1980). It is used in a wide class of grand unified
theories. If the appearance of nonzero neutrino masses is
associated with this mechanism, the massive neutrinos
will be Majorana particles. Consequently, total lepton
number nonconserving processes like (PP)0, decay will
take place.

C. Pseudo-Oirac neutrino

Using Eqs. (6.9) and (6.10) we get

mmetan20'= mph
2 2 1/2

( m pp +m pe )

(6.36)

Finally, it follows from Eq. (6.35) that the LH flavor
fields v,L and v„i are connected with QL and

[(('L, ———,
' (1+yq)P', g'=Cg ] as

V,L =QL COSO' —1/JI S1118',

vpL =1/Jl sinO +'+cosO
(6.37)

j~ ' =2[eL y (Pl cosO' —PL sinO' )

The mass term (6.33) is invariant with respect to a glo-
bal gauge transformation of the complex field g(x).
However, the lepton charge associated with this invari-
ance (in the general case of 8'&0) is not conserved by the
standard weak interaction. This is evident from the ex-
pression for the charged-lepton current:

Suppose that in the case of a Majorana mass term

m„+mph ——0 .

From Eqs. (6.4) and (6.11) we obtain in this case

mi =m2=(m~p+m~e) =m2 1/2

P) ——1, P2
———1.

The mass Lagrangian has the form

= ——,m(X IXI+XIX2) .

Instead of 7& and X2 let us introduce the field

(6.29)

(6.30)

(6.31)

+pL y (fi sinO'+QL cosO')] . (6.38)

As a consequence, the weak interaction generates a Ma-
jorana mass for p that is much smaller than its Dirac
mass. Effectively, it lifts the mass degeneracy between PI
and Xz, splitting the Dirac neutrino p into two Majorana
neutrinos with very close but different masses. In view of
this the field f(x) is called pseudo-Dirac (Wolfenstein,
1981b). It is a characteristic feature of the considered
scheme of lepton number conservation that in the limit of
zero Majorana mass corrections the flavor neutrino fields
v,l and v&I are related through an orthogonal trgnsfor-
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mation with the components gL and ltd. of one Dirac
field g.

Not only oscillations of neutrinos, but also processes
like p+~e++y and (PP)o decays are allowed in the
case of pseudo-Dirac neutrinos. In fact, all processes typ-
ically associated with the existence of massive Majorana
neutrinos are allowed, even in the limit of zero Majorana
corrections to the mass of the pseudo-Dirac neutrino
(Petcov, 1982a; Valle, 1983).

Let us add in conclusion that the conditions for the ap-
pearance of pseudo-Dirac neutrinos in the general case of
n flavor neutrinos have been studied by Leung and Petcov
(1983), while the Majorana corrections to the mass of the
pseudo-Dirac neutrinos have been considered by Petcov
(1982a), Doi et al. (1983b), Leung and Petcov (1983), and
Petcov and Toshev (1984). Finally, it should be noted
that a weak P-decay Lagrangian, which implies, in
essence, a pseudo-Dirac neutrino, was discussed a long
time ago by Pauli (1957).

D. The Zeldovich-Konopinsky-Mahmoud
lepton charge

Let us consider the Majorana mass term (6.2) assuming
that

mee =~pp =o, mme (6.39)

As is clear from Eq. (6.4), the masses of the Majorana
neutrinos coincide in this case:

I ) 2 =I@e
= 721

while their CP parities are opposite,

gCP(gl ) l 9CP(X2) l

(6.40)

(6.41)

= ——,
'

m[(v~L )'v,i. +(v,i. )'v„I ]+H.c. (6A2)

The Lagrangian (6.42) is invariant with respect to the glo-
bal gauge transformations

v,L (x)~v,'L (x)=e' v,i (x),

v~L (x)~v~L =e vpi (x)
(6.43)

where A is a constant parameter. This invariance implies
that the mass term (6.42) is a Dirac mass term. Indeed,
let us introduce the field v(x) so that

C
vL, =vei. ~ vR =(vpi. ) (6.44)

From Eqs. (6A2) and (6.44) we obtain

(6.45)

We have shown in Sec. VI.C that if the conditions (6.40)
and (6.41) are fulfilled, the Majorana mass term is re-
duced to a Dirac mass term. It is useful to obtain this re-
sult in a different way.

In the case under consideration the neutrino mass term
has the form

If simultaneously with (6.41) we perform the following
transformation of the electron and muon fields,

e(x)~e'(x) =e'"e(x),

p(x)~p'(x)=e '~p(x), (6.46)

the total Lagrangian of the system, obviously, will not
change. This invariance implies that the lepton charge
I.', equal to + 1 for e and v„ to —1 for lLl and vz,
and to 0 for all other particles (i.e., L'=L, Lz—) is con-
served. Let us note that the charge L' was introduced a
long time ago by Zeldovich (1952) and Konopinsky and
Mahmoud (1953).

Thus we have shown in the present subsection that if
the conditions (6.39) are realized we arrive at one massive
Dirac neutrino and at the conservation of the ZKM lep-
ton charge. The weak charged and neutral lepton
currents then have the form

J =2(VL, 7 ~I. +VIVE.I'. )

~ 0 C CJa =+L Ya+L ++L 3 a+L
(6A7)

E. Schemes with maximal neutrino mixing

It is well known that (neglecting the small effects of CP
violation), in the case of neutral kaons, (i) the mixing an-
gle is equal to ~/4, (ii) the particles with definite mass
possess opposite CP parities, and (iii) the difference be-
tween the masses is much less than the masses of the
mass eigenstate particles. The construction of schemes of
neutrino mixing possessing these three characteristic
features is of undoubted interest.

Consider first the Majorana mass term (6.1). Let us as-
sume that (Bilenky and Pontecorvo, 1983).

It is well known that such a theory is compatible with the
existing data. The mixing of neutrinos in the ZKM
scheme was considered by us in detail in Sec. IV.E.

It should be noted that the Dirac field arising as a re-
sult of the diagonalization of the mass term (6.42) differs
substantially from the Dirac fields considered in Sec.
IV.B. Whereas only the LH components of the Dirac
fields discussed in IV.B are "active, "both the LH and the
RH components of the field v(x) enter into the weak lep-
ton currents. Clearly this difference is of a physical char-
acter. If, for example, a neutrino beam passes through a
magnetic field, under certain conditions a LH neutrino
transforms into a RH neutrino due to the neutrino mag-
netic moment. The RH neutrinos in the ZKM scheme
can interact with nucleons and produce p+. In the stan-
dard case the RH neutrinos are sterile. The Dirac neutri-
nos arising in the two cases also possess different magnet-
ic moments (Wolfenstein, 1981b; Petcov, 1982b). Let us
note that some astrophysical effects of the rotation of the
neutrino spin in a magnetic field have been studied by
Fujikawa and Shrock (1980).

where v(x) is a four-component Dirac field. (6.48)
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1

1,2—mme —2 ( pp+mee )

and their CI' parities are opposite:

gCP(X1) l, ICP(X2) —l

Evidently,

~
m1 —m2

~
((ml, m2

(6.50)

(6.51)

Finally, it is not difficult to obtain from Eq. (6.16) the re-
lation between the flavor neutrino fields and the fields of
massive Majorana neutrinos:

1 I
veL ~ (X1L X2L )i vjuL ~ (X1L +X2L )v'Z ' " v 2

(6.52)

Let us turn now to the Dirac-Majorana mass term
(6.16). Suppose that

mg) » f mL l, f
mg J

.

We get in this case

m1 2-mD+ —,
' (mL+ma ), 8=m/4,

VCP(X» =1 21CP(X2)= —l .

Further, we have

1 c 1
(X1L —X2L), (vol) = (X1L+X2L) .

2 v'2

(6.53)

(6.54)

(6.55)

For the Majorana neutrino fields we obtain the expres-
sions 1, 1

X1—— (v+ v'), X2 —— ( —v+ v') . (6.56)

It is apparent from Eqs. (6.9) and (6.10) that in this case
8=m/4. For the eigenvalues of the mass matrix we get
from. Eqs. (6.4) and (6.48)

m 1 2
~

2 (m pp +m ee ) +m pe (6.49)

Consequently, if the inequalities (6.48) take place, the
masses of the Majorana neutrinos are equal, respectively,
to

Finally, it is not difficult to recognize in Eqs. (6.52) and
(6.56) the two LH components ($12L and $1 2L) of the
fields ($12) of two pseudo-Dirac neutrinos with masses

m„, and mD, respectively, split by small Majorana mass
COrreCtiOnS [Of Order (m&&+mee) and (mL+mll)] intO
pairs of Majorana neutrinos with different but very close
masses.

F. Dirac neutrinos in the case
of a Majorana mass term:
some general results

We have seen in the preceding subsections that two
mass-degenerate Majorana neutrinos may be equivalent to
a Dirac neutrino. Consequently, under certain conditions,
some of the neutrinos with definite masses in the case of a
Majorana mass term may be Dirac particles. Our discus-
sion of this possibility has been confined so far to exam
ples of mass terms involving only two flavor neutrino
fields. We shall formulate next some general results con-
cerning the relation between the neutrino mass spectrum
and the varieties of massive neutrinos generated by a Ma-
jorana mass term W [see Eq. (4.22)] and the symmetries
it has in the case of n types of neutrinos vl. After that a
brief qualitative discussion of the weak Majorana correc-
tions to the masses of pseudo-Dirac neutrinos will be
given.

The necessary and sufficient condition for the appear-
ance of massive Dirac neutrinos in a theory with a neutri-
no mass term of Majorana type' W is the existence in
the theory of a global gauge symmetry corresponding to
the conservation of at least one lepton charge (Bilenky
and Pontecorvo, 1981; Wolfenstein, 1981b; Leung and
Petcov, 1983; Wyler and Wolfenstein, 1983). Let us con-
sider for simplicity the case of one conserved lepton
charge L' The stru. cture of the Majorana mass term [see
Eq. (4.22)] implies that any conserved lepton charge
should be, in general, a nonstandard linear combination of
the ordinary lepton charges I I ..

( —1) 'alLl, (6.57)

The close analogy with the mixing of neutral kaons
makes these two schemes of neutrino mixing rather at-
tractive. Oscillations between two types of active neutri-
no (ve+~vz, v, ~~v„. . .) are possible in schemes of the first

, type. In schemes of the second type, oscillations between
active and sterile neutrinos (v,L ~~veL, v„L~~v„L, . . .)

are allowed. It should be noted, however, that the oscilla-
tion length [which is inversely proportional to the differ-
ence of the squares of neutrino masses (see Sec. VII)] in
these schemes may turn out to be rather long. If the
schemes of neutrino mixing considered here are realized
in nature, we could face a situation in which the effects of
relatively large masses m~ and m2 would be observed in
experiments that directly measured the neutrino masses
(the H decay, , ), whereas neutrino oscillations, as well
as the (pp)0 decay (see Sec. IX) would not be detected
due to the small value of

~
m1 —m2

~

.

where

I 8)lMp1 e o ~ ~

nI ——0 or 1, aI ——0 or 1, l=e,p, ~, . . . (6.58)

9The Majorana mass term W is assumed to contain all pos-
sible contributions to the neutrino mass matrix, except possibly
the weak-interaction corrections.

(al&0 at least for one l). The number of massive Dirac
neutrinos, as well as the number of massless neutrinos, is
determined by the explicit form of this combination
(Leung and Petcov, 1983; Wyler and Wolfenstein, 1983),
namely by min[n+(L'), n (L')] and

l
n+(L')

n(L') —~, respectively, where n+(L') [n (L')] is the
number of ordinary lepton charges I ~ that enter into the
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0
= ——,

' [(v,L, )'(v~L. }'(v~L )'] m, p

0

me~ 0 vei

0 mp, v~L

m&~ 0 v~L

+H. c. , (6.59)

where m, & and m&, are mass parameters.
It is not difficult to show that this mass term conserves

CI' parity, and, under the CP phase convention (5.26),
rn, „and m„should be real parameters. The diagonali-
zation of W leads to one massless Majorana neutrino X1
and two massive Majorana neutrinos X2 and X3, which are
mass degenerate, possess opposite CP parities, and are
equivalent to a massive Dirac neutrino v:

&et, + (ver. }'
v„L, +(v„L, )'
V,L, +(V L,

)'

X1cosg+ (X2+1 sX3)sing
2

1~ (Xz —y5X1)

I—X1sin8+ (X1+@+3)cos8
2

X1cos8+ ( vL +CvL )sln8

(&11+C&Z )
—X1sln8+ ( vL +CvL )cosH

(6.60)

Here

tang=
ltt ~~

, v(x) = [Xz(x)+X3(x)],
2

The diagonalization of the neutrino mass term W may re-
veal that some of the min[(n+(L'), n (L')] Dirac neutrinos are
massless. It can be shown, however, that they acquire radiative-
ly induced Dirac mass terms at two-loop level [the diagrams
generating these Dirac mass corrections are similar to the two-
loop diagrams discussed by Petcov and Toshev (1984)]. Let us
add that if several lepton charges are separately conserved, the
total numbers of massive Dirac and massless neutrinos are
given, respectively, by the sums of the numbers of massive
Dirac and massless neutrinos associated with each of the con-
served lepton charges via the formulas given above.

expression for L' with a plus (minus) sign. z For
min[n+(L'), n (L')]&0 the lepton charge L' given by
Eq. (6.58} is, obviously, a generalization of the ZKM lep-
ton charge considered in Sec. VI.D. The properties of the
Dirac neutrinos arising as a result of the conservation of
the charge L' are thus analogous to the properties of the
ZKM (i.e., nonstandard) Dirac neutrino.

Consider, for example, the case of three flavor neutri-
nos, v„v&, and v„possessing a Majorana mass term that
conserves the charge L'=L, L„—+L„conserved also by
the weak interactions (Petcov, 1982a}:

r

»d dict (X1)=pcs'(X1) =t mulct (X3)= —i .The mass of X2
and X3, and consequently of v, is given by

2 2 1/2Pl = ( m ~e+ Pl p~ ) (6.61)

Otherwise the Dirac neutrinos would be pseudo-Dirac.

As a consequence of the conservation of the lepton
( —) ( —)

charge I.'=I., —1.
& + I.„v,~~ v, oscillations are al-

( —)

lowed, while v &
cannot take part in the oscillations. Ob-

viously (PP)o„decay is forbidden, but the processes
)M +(A,Z}~e +(A,Z —2), r &e —+ y, v ~e
+ e++e, v ~e +p++p, etc. , are not. However,

the predicted cross section for the p —e+ conversion
and the rates for the indicated v decays are unobservably
small if the Dirac neutrino mass m does not exceed a few
MeV (see, for example, Petcov, 1977b).

Further, as the specific example considered in Sec. VI.C
suggests, pseudo-Dirac neutrinos can appear in a scheme
with a Majorana mass term W if W possesses global
symmetries that are not symmetries, say, of the weak in-
teraction (Wolfenstein, 1981b). The weak interaction then
induces Majorana mass corrections, splitting each
pseudo-Dirac neutrino into a pair of Majorana neutrinos
that are almost degenerate in mass. If CP invariance
holds in the leptonic sector, these Majorana neutrinos will
have opposite CI' parities. As we have already noted in
Sec. VI.C, all processes typical of massive Majorana neu-
trinos [like (PI3)o„decay] are, in general, allowed in the
case of pseudo-Dirac neutrinos, even in the limit of zero
Majorana mass corrections (Petcov, 1982a; Valle, 1983).
These processes are not necessarily suppressed relative to
those involving Majorana neutrinos. Examples of
schemes with pseudo-Dirac neutrinos, as well as the
specific phenomenology they are associated with, were
considered by Petcov (1982a), Singer and Valle (1983},
and Doi et al. (1983b).

The indicated conditions for the existence of Dirac (or
pseudo-Dirac) massive neutrinos in a scheme with a Ma-
jorana mass term imply, of course, restrictions on the cou-
plings between the massive neutrinos and the charged lep-
tons in the weak charged lepton current (Leung and
Petcov, 1983; Petcov and Toshev, 1984). For example,
the fields of Majorana and true Dirac neutrinos cannot be
present simultaneously in the relation expressing a given
flavor neutrino field vtL, (x) in terms of fields of neutrinos
with definite masses ' unless all neutrinos of Majorana
type have zero mass. Both fields corresponding to the
Dirac neutrinos and their Dirac conjugates (multiplied by
the charge-conjugation matrix) enter into the weak
charged lepton current. However, they do not couple to
the same charged leptons, nor to the charged leptons hav-
ing couplings to massive Majorana neutrinos (otherwise
they would correspond to pseudo-Dirac neutrinos).

These restrictions can be used to find the most general
neutrino mass matrices leading to given numbers of mass-
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M= 0 0 Q

0 Q 0
(6.62)

where P and Q are p Xp and k )& k (nonzero) matrices and
P =P, while

0 RM'= (6.63)

where R is a k X (k +p ) nonzero matrix, is the most gen-

eral mass matrix having p massless and k massive Dirac
neutrino eigenstates. It is easy to check that min[n+(L'),
n (L')] and

~

n+(L') n—(L')
~

(where L' denotes the
corresponding conserved lepton charge) do indeed give the
numbers of massive Dirac and massless neutrinos in these
cases.

We should like to conclude this section with a brief dis-
cussion of the weak Majorana corrections (hmM) to the
mass of a pseudo-Dirac neutrino (mpD). They split the
pseudo-Dirac neutrino into two Majorana neutrinos
whose masses differ approximately by 6m~. A complete
calculation of these corrections can be performed in a re-

normalizable electroweak theory, in which the neutrino
mass term arises in a self-consistent way (e.g. , due to the
Higgs mechanism). The precise value of b, mM may de-

pend on the Higgs sector of the theory. For models in
which finite neutrino mass corrections arise at the one-

loop level, such a calculation was discussed by Doi et al.
(1984a), who also considered a particular example of a
theory with pseudo-Dirac neutrinos. The one-loop weak
corrections hmM

"~ are proportional (Wolfenstein, 198lb;
Petcov, 1982a) to the initial mass of the pseudo-Dirac
neu«mo mpD. ~II -const X mpo. The factor of
proportionality depends, for example, on the ratio of the
charged-lepton and 8' —+-boson masses squared and on
products of the elements of the corresponding mixing ma-
trix. It does not exceed approximately 10 in the case of
three generations of leptons and may be as large as 10
if a fourth generation of leptons with a charged lepton of
mass comparable to that of the W —+ boson exists. If the
pseudo-Dirac neutrino possesses a mass in the region of
10 eV, neutrino mass differences of the order of b,mM"'"

may be detected, in principle, in neutrino oscillation ex-
periments. It should be added that under certain rather
general conditions a pseudo-Dirac neutrino may acquire
radiatively induced Majorana mass only at the two-loop
level (Leung and Petcov, 1983). Some of the possible
two-loop weak Majorana corrections are not proportional
to the mass of the pseudo-Dirac neutrino (Petcov and
Toshev, 1984). They depend linearly on the masses of the
Majorana neutrinos coexisting with the pseudo-Dirac neu-
trino. In any case, the induced two-loop Majorana mass

less, massive Majorana, and massive Dirac neutrinos
(Leung and Petcov, 1983; Wyler and Wolfenstein, 1983).
For example, p massive Majorana and k massive Dirac
neutrinos (2k +p =n) are generated by the Majorana
mass term (4.22) with

P 0 0

does not exceed roughly 10 eV if the neutrino masses
are smaller than 100 eV.

Vll. OSCILLATIONS OF NEUTRlNOS

A. Dirac {Majorana) mass term

1. General expressions for the transition
probabilities

vol (x)= g Ug, vkl (x),
k=1

(7.1)

where vk(x) is the field of a Dirac (or Majorana) neutrino
with mass mk, and U is a unitary n &&n matrix (n is the
number of charged leptons).

Consider a beam of neutrinos with momentum p. We
shall assume that

We have considered in the preceding sections different
possible schemes of neutrino mixing. The oscillations in
neutrino beams are one of the most fundamental conse-
quences of neutrino mixing.

The oscillations of neutrinos are analogous in their
quantum-mechanical nature to K ~~ oscillations.
Suppose that the state vectors of the neutrinos taking part
in the weak interactions (v„v&,v„. . .) are superpositions
of the state vectors of neutrinos (Dirac or Majorana) with
different masses. What would be the behavior of a neutri-
no beam in this case? It is clear that at. some distance
from the source of neutrinos of a given type, the state vec-
tors of neutrinos with different masses (because of the
difference in the masses) would acquire different phase
factors. The state vector of a neutrino would then be a
superposition of the state vectors of neutrinos of different
(all possible, ill p1111clple) types. It ls obvlolls tllat tile
probability of finding a neutrino of a given type would be
a periodic function of the distance between the source and
the detector. This phenomenon was called neutrino oscil-
lations (Pontecorvo, 1957, 1958).

In order for oscillations of neutral kaons, neutrinos, etc.
to be possible, the following conditions have to be real-
ized: (i) the particle interaction Lagrangian should contain
terms that preserve some quantum numbers (strangeness
in the case of kaons, lepton numbers in the case of lep-
tons, etc.); (ii) the total Lagrangian (and the mass term)
should not be diagonal with respect to these quantum
numbers, and the relevant quantum-number-
nonconserving couplings should be much weaker than
those preserving the quantum numbers. The states with
definite mass (and width) would then be superpositions of
states possessing definite strangeness in the case of neutral
kaons, definite lepton numbers in the case of neutrinos,
etc.

We shall consider in this section the oscillations of neu-

trinos in vacuum in the case of a Dirac or a Majorana
mass term. For the field operator of the flavor neutrino

vs, (x ) we have in these cases
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(7.2) U we get, with the help of Eqs. (7.3) and (7.6),

Neglecting the masses of the neutrinos vk in comparison
with their momentum, we get from Eq. (7.1) for the state
vector of the (flavor) neutrino vi, produced in the weak
interaction,

(7.3)

I'=e,p, ~, . . .
i&i & X Uike

k=1

—iEI, t
lk~„,.„(&)= y eke

k=1

—lEkt Ug (7.8)

(7.9)

Here
I
k,L & is the state vector of the neutrino (of Dirac

or Majorana type) with momentum p, mass mk, and neg-
ative helicity. Equation (7.3) is based on the assumption
that the differences in the masses of the neutrinos vk are
so small that a coherent superposition of the state vectors
of neutrinos with different masses is formed in the weak
interaction. The conditions under which this takes place
are discussed in the papers of Nussinov (1976) and Kayser
(1981), as well as in reviews by Bilenky and Pontecorvo
(1978) and Frampton and Vogel (1982).

Similarly, for the antineutrino state vector, we have

2

U1'ke Ulk
k=1

(7.10)

Consider next the behavior of a beam of antineutrinos.
From Eqs. (7.4)—(7.6) we obtain

Ivi&)= g Use
k=1

Further, we have

lk, R& . (7.11)

is the probability amplitude for the transition vi~v~ for
a time t in vacuum. The corresponding transition proba-
bility is equal to

i&i&= g Uu IkR&,
k=1

(7.4)
l'=e, p, v, . . .

I v~ &a-, —,, (t), (7.12)

where
I
k, R & is the state vector of a Dirac antineutrino

(or Majorana neutrino) with mass mk and positive helici-
ty.

If in the initial moment t =0 the flavor neutrinos are
described by the state vector

I v~ &, at the moment t they
will be described by

(7.5)

where
n

&—
p

—( t) y UI'k e Ulk
k=1

(7.13)

is the probability amplitude of the transition of v~ into v~

at a time t after the production of vI at t =0. For the
transition probability one has

where Ho is the free Hamiltonian. One has
2

P .-„(t)= g Ui*ke "
Uik

k=1
(7.14)

where Ek=(p +mk)' . From Eqs. (7.1), (7.3), and (7.6)
we get

Let us obtain some general relations which the vacuum
oscillation probabilities should satisfy. Comparing Eqs.
(7.10) and (7.14) we see that

n

Ivl&t g e U1k lkL &.
k=1

(7.7) (7.15)

As is well known, neutrinos are detected by observation
of weak-interaction-induced reactions. To obtain the
probability amplitude for finding a given type of neutrino
in a beam of neutrinos described by the vector

I
v~ &„we

have to decompose
I
vI &, over the complete set of neutri-

no state vectors
I v~ &. Using the unitarity of the matrix

P„...(t)=1, P . (r)=1. (7.16)

This general relation is a consequence of CPT invariance
(Cabibbo, 1978). Further, the sum of the probabilities of
transitions of a given type of neutrino (antineutrino) into
neutrinos (antineutrinos) of all possible types is, obviously,
equal to unity:

The neutrinos with definite masses may be unstable. If, for
example, m» mI, the decay v2~v~+y is possible. The exist. -

ing calculations show, however, that, as a rule, the radiative life-
time of a neutrino with mass smaller than-100 eV exceeds the
age of the universe (see Sec. X.B). Therefore neutrino instability
due to radiative decays can be neglected in the analysis of neu-
trino oscillations. Let us note, however, that the neutrino decay
v2 —+v~+y may have important astrophysical implications (De
Rujula and Glashow, 1980). We note also that the possibility of
"fast" invisible neutrino decays has been discussed by Gelmini
and Valle (1984). We shall assume here that neutrinos are
essentially stable.

2
PlkEk-—u+
2p

(7.17)

Using Eqs. (7.10), (7.14), and (7.17), we obtain for the
probabilities of the transitions vI —+vI and vI ~vI the
general expressions, respectively,

Clearly, these relations follow from the unitarity of the
mixing Hlatl 1X U.

Let us return to Eqs. (7.10) and (7.14) for the transition
probabilities. We have assumed that mk &&P(=pk),
k =1,2, . . . , n. Keeping only the terms linear in mk/p,
one has
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R 8
2 2

I &a
I I

UI'k
I

+2 g I
Uj'k Uik &g j&j(i=i k&j

2 2
foal k —I ~J

2p
R —Pk. , & (7.18)

n

I
&tk I'I UI k I

+2 & I
&ikUj'k&P~&i~

I
«s

k&j

2 2
Plk l?l '

J
2p

R +0kj;1'1 (7.19)

Here R is the source-detector distance and

Nkj; I'I =arg( +l kU'Ik +!'j+ij ) .

It should be noted that the transition probabilities are functions of the ratio R /p.
The probabilities I', , and I'-„.— can also be written as

(7.20)

i(R/I) g UI'j +Ij +1'k +Ik(e 1+1)
j,k

=&n+2 Q I
Ui j Ui, Ug k Uik I

j&k

2 2
fPl —mkJ R —pjk 11 —cos4jk 11 (7.21)

~v,„., (R-~&)=&Ii+2 Q I &i, &v UjkUIk I
cos

j&k

P?ZJ —P1k
2 2

R +4'jk; j I cos0jk;—t i (7.22)

It is not difficult now to formulate the general condi-
tions under which the probabilities of the transitions
vj~vi and v~ —+vl (1'&1) are different from zero (i.e.,
under which neutrino oscillations take place). Suppose
that all neutrino masses are equal. As follows from Eqs.
(7.21) and (7.22), in this case

(7.23)

Further, suppose that U~j =5Ij (there is no mixing). It is
obvious from Eqs. (7.9) and (7.13) that the equalities
(7.23) also hold in this case. Consequently active neutri-
nos of a given type may undergo transition in vacuum
into active neutrinos of a different type (or into sterile
neutrinos; see Sec. VII.B) only if (i) there exist as least two
neutrinos that are nondegenerate in mass; (ii) neutrino
mixing does take place (i.e., at least some nondiagonal ele-
ments of the lepton mixing matrix are different from
zero).

Finally, let us assume that p/R )&
I ~j —~kI, j&k,

j, =k1,2, . . . , n It is cle. ar from Eqs. (7.21) and (7.22)
that we arrive at (7.23) under the above condition, as well.
Thus the effects of neutrino oscillations may be observ-
able if at least one difference of the squares of neutrino
masses is of the order of or greater than p/R.

finite masses by studying the neutrino oscillations in vac-
uum (Bilenky, Hosek, and Petcov, 1980; Doi et al. ,
1981b). We have seen that the probabilities of transitions
between different flavor neutrinos are determined by the
differences of the squares of neutrino masses and by the
elements of the lepton mixing matrix. Let us find out
first what is the difference between the mixing matrices in
the X)irac and in the Majorana cases.

An n )&n unitary mixing matrix U is characterized by
n real parameters: n (n —1)/2 Euler angles and
n(n+1)/2 phases. Not all phases in the mixing matrix,
however, enter into the expressions for the observable
quantities.

Indeed, consider the mixing of neutrinos with Dirac
masses. The expression for the charged lepton current
has the form

j~ =2+Ij Y~U,kv» .~ ( —)

I, k

It is well known that the multiplication of Dirac fields by
constant phase factors has no effect on the physical re-
sults. Evidently, in the case of Dirac neutrinos vk, only
those phases in the matrix U are physical which cannot
be eliminated by the transformation

2. On the impossibility of distinguishing
between Oirac and Majorana mass terms
in oscillation experiments

U~ U'=S(a)US"(P) .

Here

l cx) l pk
~l'I (~ ) e 8I'1 ~'k (P) e 8'k

(7.24)

We shall show in this subsection that if the neutrino
mass term is of Dirac or Majorana type [Eqs. (4.10) and
(4.22)], it will be impossible to determine what kind of
particles —Dirac or Majorana —are the neutrinos with de-

where a~ and pk are arbitrary real parameters.
Using Eq. (7.24) we can determine the number of phys-

ical phases present in the Inixing matrix in the case of a
Dirac mass term.
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The matrices S(a) and S(P) can always be cast in the

S(a)=e 'S(a'), S(P)=e 'S(P'),

where detS(a') =1, detS(P') =1. One has

(7.25)

n (n +1) n (n —1)
2 2

—Pl = (7.31)

and o.E are arbitrary real parameters, are physical. Obvi-
ously, the number of physical phases in the case of a Ma-
jorana mass term is equal to

where

+pi =0.
E k

(7.26)

It is obvious from Eqs. (7.24)—(7.26) that there are
(2n —1) arbitrary phases in S(a) and S(P) [2(n —1)
phases ai and Pk and one common phase (ao —Po)], which
can be used to reduce the number of phases in the lepton
mixing matrix. Thus, in the case of g Dirac mass term,
the lepton m1xing matrix contains

n(n+1) (n —1)(n —2)
Pta = —(2n —1)=

2 2
(7.27)

Jn =2 g ~L VaUlkXkl. ~

1,k

where the fields Xk(x) satisfy the conditions

CXk (x) = gkXk(x), k =1,2, . . . , n

(7.28)

(7.29)

(gk ——+1). As a consequence of Eq. (7.29), the fields
Xk(x) cannot absorb phase factors. The phases of the
charged lepton fields are not observable. Instead of l(x)
one can always introduce the field l'(x) =e 'llx). So, in
the Majorana case, only the phases in the mixing matrix
that cannot be eliminated by the transformation

U —+ U'=S(a) U,
where

(7.30)

physical phases.
We have shown in Sec. V that the mixing matrix of the

neutrinos with Dirac masses should be real if CP invari-
ance holds in the leptonic sector. Consequently the physi-
cal phases in the mixing matrix characterize the violation
of CP invariance. It follows from Eq. (7.27) that, for
n =2, CP invariance holds automatically. For n =3
there is one phase in the mixing matrix responsible for
violation of CP invariance, etc. All these results are valid
in the case of quarks as well, and are well known
(Kobayashi and Maskawa, 1973).

Consider next the case of neutrino mixing induced by a
Majorana mass term that does not have an analog in the
quark sector. The charged lepton current in this case is
given by

Comparing Eqs. (7.27) and (7.31) we conclude that the
number of physical CP-violating phases that may be
present in the lepton mixing matrix in the Majorana case
is greater than the number of physical phases that may
enter into the mixing matrix in the Dirac case (Bilenky,
Hosek, and Petcov, 1980; Kobzarev et al. , 1980;
Schechter and Valle, 1980; Doi et al. , 1981b). In particu-
lar, for n =2 the Majorana mass term can be a source of
CP violation, in contrast to the Dirac mass term. For the
difference between the numbers of physical phases corre-
sponding to the two cases we get from Eqs. (7.31) and
(7.27)

nM nD =EZ I (7.32)

Is it possible to determine on the basis of this difference
in number of phases in the mixing matrix the type of
massive neutrinos (Dirac and Majorana) by studying neu-
trino oscillations? In order to find out, let us turn to Eqs.
(7.10) and (7.14) for the probabilities of the transitions
v~~v~ and v~~v~. It is obvious from these expressions
that the probabilities P,„(t) and P~ .-„(t) will not

change if we replace the mixing matrix U by

Ecx] —Epk
Uik =e &o e (7.33)

where a~ and pk are arbitrary real parameters. Thus,
both in the Dirac and in the Majorana cases, the probabil-
ities of the transitions v~~v& and v&~v& in vacuum may
depend only on phases in the mixing matrix that cannot
be absorbed by the transformation (7.33). The number of
such phases is equal to (n —1)(n —2)/2. It is clear from
Eq. (7.33) that the physical phases by which the mixing
matrices in the cases of Dirac and Majorana mass terms
differ do not enter into the transition probabilities
P, ,„(t) and P„., (t). Conseq-ue—ntly, by studying neutri-

no oscillations in vacuum, it is impossible to answeI the
question what kind of particles —Dirac or Majorana —are
the neutrinos with definite masses (Bilenky, Hosek, and
Petcov, 1980; Doi et a/. , 198lb). [The same conclusion
can be shown to be valid in the case when neutrino oscil-
lations take place in matter (Langacker et al. , 1987).]
The observation, however, of the neutrinoless double-P

—'&kIf instead of gkL, (x) we introduce gkL, (x)= e gkL, (x), the
invariance of the Majorana condition (7.29) requires that instead
of the component gk~ (x) one should introduce

Xkp(x)=e Xkg(x). Clearly, the neutrino mass term is not
invariant with respect to such a transformation.

24The additional (n —1) CP-violating phases, characteristic of
the case of Majorana mass term, are always associated with ef-
fects whose magnitude is suppressed by the factor (mk/E„),
where E is the neutrino energy in the relevant process and mk
is the mass of the Majorana neutrino taking part in the process
(Schechter and Valle, 1981a).
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decay would allow us to answer this question (see Sec.
IX).

Finally, it follows from these considerations that for n

neutrino flavors the oscillation probabilities P„,.„,(t) and

P„.—(t-) depend, in the case of a Dirac or a Majorana~t '~I

mass term, on n (n —1) independent parameters: (n —1)
differences of the squares of neutrino masses, n (n —1)/2
mixing angles, and ( n —1)(n —2)/2 CP-violating phases.

B. Oscillations of neutrinos
in the case of a Dirac-Majorana
mass term. Sterile neutrinos

Ik, L, )=
I'=e, p, r, .

U/'k
I
v/'&+ X

1'=e,p, r

Further, inserting Eq. (7.37) into (7.36) one has

is clear that the complete set should be formed in the case
under consideration by 2n state vectors. ) The RH fields
v///(x) do not enter into the ordinary weak-interaction La-
grangian. This implies that the LH antineutrinos do not
take part in the standard weak interaction. As has been
indicated already in Sec. IV, such particles have been
termed "sterile" (Pontecorvo, 1958).

Using the unitarity of the mixing matrix we get from
Eq. (7.34)

%e shall discuss now the oscillations of neutrinos in
vacuum in the case of mixing arising as a result of the di-
agonalization of a Dirac-Majorana mass term. One has in
this case (see Sec. IV.D)

where

I'=e, p, r, . . .

+
I'=e, p, , r,

Iv/')~ p,
' '(t)

(7.38)

2n 2n

v/t. g U/k +kL ~ v!R X UTk+ kL
k=1 k=1

(7.34)
2n

k=1
(7.39)

where U is a unitary 2n &(2n mixing matrix (n is the
riumber of charged leptons), and Xk(x) is the field of a
Majorana neutrino with mass mk.

Consider the behavior of a beam of neutrinos with
momentum p under the condition that the mixing (7.34)
takes place. We shall assume that

I p I
&)mk. For the

state vector of the flavor neutrino v/ with momentum p
one obtains from Eq. (7.34)

2n —iEk&
U/k

IG =1
respectively, are the amplitudes of the transitions v/~v/
and v/~v/L for time t. For the probability of finding
the active flavor neutrino v/ at a time t after the emission
of the neutrino vI, we obtain

P. ..(R/p)=
I a. ..(t) I

2n

Iv/)= g U/kIkl. ). (7.35)
2n

= & I U/k I

'
I U/k

I

k=1
Here

I
k, l-) is the state vector of a neutrino with mass

mk, momentum p, and negative helicity.
Suppose that as a result of some weak decays a beam of

neutrinos v/ is formed. In the initial moment (t =0) the
neutrinos from the beam are described by the vector

I
v! ).

The state of the neutrinos at time t is described by the
vector

2n

(7.36)
k=1

+2 g I U/J U// U/'k U/k I

j)k

)& cos
2 2Pl ~ —Pl kJ

J4' 'k!'/

(7.40)
Here R =t is the distance between t;he source and the
detector of the neutrinos, and

where
P jk.!/

=arg( U/ jU/j U/ k U/k ) . (7.41)

2

Ek=(P +mk)'~ =P+
2p

As is well known, neutrinos are detected by observation of
weak-interaction-induced reactions. In order to obtain the
probability amplitudes to find neutrinos of different types
in the beam of neutrinos described by the vector

I v/)„
we have to decompose

I v/), over a complete set of neu-

trino state vectors, which includes the vectors
I
v! ). It is

essential that the vectors
I v/) do not form a complete set

in the case of the mixing (7.34). It follows from Eq.
(7.34) that in addition to

I v/) the complete set of state
vectors also contains the vectors

I v/L ), describing LH an-
tineutrinos which are quanta of the RH fields v/R(x). (It

P . (R/p)= Ia- . (t)-I

Zn

k=1

+2 g I UT,jU/J UT*,k U/k I.
J)k

Q cos
2 2

Vl . —VlkJ

2p J'~.k//

(7.42)

The probability of finding a sterile neutrino v/t at a time
t after the emission of v! is given by an analogous expres-
sion:
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So, in the case of a Dirac-Majorana mass term, neutri-
no mixing implies that both the probability of finding an
active neutrino vi and the probability of finding a sterile
neutrino v/I (appearing as a result of the oscillations
v/+ vi and v/~v/L, ) in a beam of active neutrinos vi at
some distance from the source may be different from
zero. Let us recall that only oscillations between active
neutrinos are possible in the case of a Dirac (Majorana)
mass term.

The sum of the probabilities of transitions of vi into all
possible active and sterile neutrinos is equal to unity:

I vi &a-, (t)

l =e,p, 'r, . . .
(7.45)

where
I
k, R & is the state vector of a RH Majorana neutri-

no with mass mk and momentum p (p &&mk). If neutri-
nos vi are born at some initial moment (r =0) in weak de-
cays, the state of the neutrinos at a time t after their emis-
sion is described by the vector

P~, , (R /p) + P . (R/p) =1 .
vl'L ~ vl

(7.43)

where the probability amplitudes a- .-„(r) and a, . (t)vp', vl vl R,'vl

are given by

This relation is a consequence of the unitarity of the
2n )&2n mixing matrix U.

Consider next the behavior of a beam of antineutrinos.
For the state vector of the active antineutrino vI and the
sterile RH neutrino v//i we obtain, with the help of Eq.
(7.34),

2n

UI'k e Uik
k=1

2n —ipkt&, —(t)= y UT/, e U/k .
k=1

(7.46)

2n

lk» &U/k lv/z&= g I
k R &&7k (744) For the probabilities of the transitions v/~v/ and vi

~viz at time t we get

2n

P„—,„—,(R/P)= g I U/k I'I U/k I'+2 g I U/'/&»&ikU/k Icos
k=1 j&k

2n

P,,„;,(R /P) = 2 I Uri, I

'
I U/k

I

'+ 2 2 I Ui'U// UiT, U—
/k . I

cos
k=1 j)k

2 2
mj —mk

R + tt'jk;/'/
2p

2 2Ij —Ulk

2p
+~jk l'iJ

These probabilities satisfy the condition:

P„„(R/p)+— . P .—(R/p) =1 .
vl'R ' vl

Comparing (7.39) and (7.46) we conclude that the transi-
tion probabilities satisfy also the following general rela-
tions (a consequence of the CPT invariance):

P„, , (R/p) =P„(R/J/) . —.—

As we have seen, all three schemes of mixing con-
sidered (Dirac, Majorana, and Dirac and Majorana) lead
to neutrino oscillations. It is interesting to note that, in
principle, one can distinguish the first two schemes from

For a discussion of other schemes of neutrino mixing, possi-
ble in the theories with RH currents, and of the neutrino oscilla-
tions they imply, see Maalampi and Roos (1984).

The oscillations between active neutrinos (vl~~vl, vl~+vl ) and
those between active and sterile neutrinos (vl~+vl L,vl~vl R) are
sometimes called oscillations of the first and of the second class,
respectively (Barger et al. , 1980; Schechter and Valle, 1980).

I

the third one by studying the oscillations (Barger et al. ,
1980; Schechter and Valle, 1980). Indeed, suppose that
the neutrinos are detected by observation of the processes
of neutrino-nucleon neutral current scattering. Let the in-
itial beam of neutrinos consist, e.g. , of v&. For the num-
ber of events N (R,p) at distance R from the source of
v& we have

Pv, v(R /p)No (R,p. ) . (7.47)
l=e,p, ~,

Here No (R,p) is the number of events expected in the
absence of oscillations. Equation (7.47) was derived as-
suming (in accordance with the standard theory) that only
the LH neutrino fields are present in the weak neutral
current and that e-p-r- universality holds for the
neutral-current couplings.

The sum of the probabilities on the right-hand side of
Eq. (7.47) is equal to unity in the case of a Dirac (Majora-
na) mass term. Consequently, neutrino oscillation effects

Other phenomenological possibilities, however, are not ruled
out (Bilenky and Pontecorvo, 1984; Maalampi and Roos, 1984).
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should not be observed in this case. The indicated sum of
probabilities is given by

v~ —+v~ and v~ —+v~ should be equal if CP invariance holds
in the leptonic sector (Cabibbo, 1978):

l=e,p, v;. . .
P, „(R. /p) = 1—

l=e,p, ~,

P„.„-(R/P) P,, , (R!p)=P „-(R.-/p) . (7.51)

(7.48)

if the neutrino mass term is of Dirac-Majorana type. In
this case the quantity g&, P, . (R/p) may be

smaller than one and may depend on R/p. Therefore the
observation of neutrino oscillation effects in experiments
in which neutrinos are detected through the processes of
neutral-current elastic and/or deep-inelastic neutrino-
nucleon scattering would be a proof of the existence of
sterile neutrinos. It also would imply that the number of
massive neutrinos exceeds the number of neutrino flavors.
The explicit form of the periodic dependence of, say,

g&P„, (R/p). on R/p is determined essentially by the

number of independent neutrino mass square differences,
which in turn is fixed by the total number of mixed active
LH and sterile neutrinos. Hence a study of this periodic
dependence may give, in principle, information about the
number of sterile neutrinos taking part in neutrino oscilla-
tions of the second class.

Let us note finally that the scheme with a Dirac-
Majorana mass term that we have considered is just one
example of schemes contaimng sterile neutrinos that have
sizable mixing (through mass terms) with active flavor
neutrinos. Sterile neutrinos (fermions) that mix with ac-
tive flavor neutrinos may appear, for example, in the ex-
tensions of the standard theory with mirror fermions
(Maalampi and Roos, 1984), as well as in the supersym-
metric theories with spontaneously broken 8 invariance
(Ellis et al. , 1985). The neutrinos with definite masses in
some of these schemes may well be Dirac particles
(Maalampi and Roos, 1984). In all schemes with sterile
neutrinos that mix with active neutrinos, transitions in
vacuum of the active neutrinos into sterile states may take
place.

Let us recall that as a consequence of CPT invariance one
has

P„, , (R/P)=P~. -„(R/P) .

From Eqs. (7.51) and (7.53) we also have

P„, , (R /P) =P, „,, (R /.P),

P~ .„(R/P)=P„.— (R/P) -.

(7.53)

(7.54)

A test of Eqs. (7.51) and (7.54) for l&l' could enable us
to find out whether CP invariance holds in the leptonic
sector. We shall discuss here one of the possible
methods for a direct test of these relations (Bilenky and
Niedermayer, 1981). Let us show first of all that as a
consequence of CPT invariance and of the unitarity of the
mixing matrix, Eq. (7.51) is valid in the case of oscilla-
tions involving two types of neutrinos (say, v, and v&),
even when CP invariance does not hold. Indeed, from
Eq. (7.16) we get in this case

(7.55)

Using Eqs. (7.53) one finds

(7.56)

Let us note that from Eqs. (7.55) and (7.56) one also has

(7.57)

In the case of a Dirac-Majorana mass term, CP invari-
ance in addition implies

(7.52)

C. CP invariance in the leptonic sector
and neutrino oscillations in vacuum

Ulk Ulk

in the case of a Dirac mass term, and the condition

(7.49)

We have shown in Sec. V that if CP invariance holds in
the leptonic sector, the mixing matrix U satisfies the con-
dition

Thus it would be possible to perform a test of CP in-
variance in the leptonic sector by studying neutrino oscil-
lations only if at least three types of neutrinos take part in
the oscillations. Particularly suitable for the indicated
test would be the beams of neutrinos originating purely
from semileptonic decays of KL mesons. These beams
would be mixtures of v„v„v&, and v&. Up to small
corrections (of order 10 ) due to CP nonconservation in
the KL decays, the intensity of the v, (v„) component of
the beam in the region of neutrino production would be

Ulk gk4k Ulk (7.50)

in the case of a Majorana or Dirac-Majorana mass term.
In Eq. (7.50) 'gk= &ger(Xk) where rjcr(Xk) is the CP
parity of the Majorana neutrino with mass mk, and gk is
an arbitrary sign factor in the Majorana condition. Using
Eqs. (7.9), (7.13), (7.39), (7.46), (7.49), and (7.50) it is not
difficult to convince oneself that in all three mixing
schemes considered the probabilities of the transitions

Note that the equality P„.„(R/p) =P„.„(R/p) follows

from CPT invariance.

Several high-energy physics laboratories plan to obtain such
beams (see, for example, Loveless, 1980; Bryman, 1983; Hoff-
man, 1983).
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equal to the intensity of the v, (vz) component. In order
to perform a test of CP invariance, it is necessary to com-
pare the fluxes either of v, and v„or of v& and vz, or else
of v, and v, at some distance R from the neutrino source
(the KL decay tunnel). Assuming the validity of the CPT
theorem, we get for the intensities of the fluxes of v„v&,
v„and v& at distance R from the source

I,(R,p) =P„, , (R /p)I„, (p)+P, ,„,, (R /p)I, , (p),
(7.58)

I„(R,p) =P„.„(R/p)I „,(p) +P .-„(-R/p)I „,, (p),

I', l =e,jM, l'&l,
where I„(p) is the initial intensity of the v~ and v~ fluxes.

Vg

The intensities of the v, and v, fluxes are given by

I„(R/p) I—(R /p) =D,~I (p),

I„(R/p) I—(R /p) =D~,I (p), (7.66)

I (R/p) I—(R-/p)=D„I„(p)+D,„I„(p).

I, (R/p) I (R—/p-) I' (p)

I, (R/p) —I-„(R/p) I' (p)
(7.67)

As a consequence of CPT invariance D,&
D——&—,. If

I, (R/p)&I (R/p), then, as can be seen from Eq. (7.66),

I (R /p) &I (R /-p). Moreover, it follows from Eq.
P

(7.66) that in the case when I,(R/p)&I „(R/-p), I =e,p,
the intensities of the neutrino fluxes satisfy the relation

I„(R,p)= g P .„,(R/p)I, (p),
l=e, p,

I„(R,p)= g P~. (R/p)I, , (p) .
I =e,p

Obviously, the ratios

(7.59)

This relation is.based solely on CI'T invariance. There-
fore a test of the validity of Eq. (7.67) would constitute a
test of the CPT theorem in such a subtle experiment as
would be a neutrino oscillation experiment.

Using Eqs. (7.65) and (7.69), we also get

"i (R p)
I-„

I„, (R,p)
(7.60)

I, (R,p) I (R,p—)-
I„(R,p) —I- (R,p)

I„(p) I„(p)—
I„(p)

(7.68)
would be equal to unity if Eq. (7.51) were valid. If any of
the quantities R~ turns out to be different from unity, one
can conclude that, first, oscillations of neutrinos do take
place and, second, CI' invariance does not hold in the lep-
tonic sector.

Let us introduce the quantities

DI I ——I', ,
—I'- .— (7.61)

CPT invariance implies

DIi= —Da .

Using Eq. (7.16), we get

DI~I —0, l =C,p, 'T, . . .
l'

(7.62)

(7.63)

D~, +D~, —0, D,p+D,p
——0, D,~+D@,——0 .

(7.64)

It follows from Eq. (7.62) that D~~=O, l =e, lM, r, . . .. Evi-
dently, D~ ~ can be different from zero for some I and I',
l&l', only if the leptonic weak interactions are not CP in-
variant and if at least three types of neutrinos take part in
the oscillations. We shall show next that in the case of
three types of oscillating neutrinos only one of the quanti-
ties D~~ (l &l) is independent. Indeed, in this case we

have

I„(R,p) —I-„(R,p)

I (R,p) —I-„(R,p)

I, (p) I„(p)—
I„(p)

Equations (7.68) are based on the assumption that there
exist only three types of oscillating neutrinos (v„v&, and
v,). Consequently a test of Eqs. (7.68) would provide in-
formation about the number of different types of neutri-
nos taking part in the oscillations.

If the probabilities P,, „,(R/p) and P, .-„(R/p) tur-n

out not to be equal, P, „,(R /p)&P „.-„(R/p), that wo-uld

be a proof of the CP noninvariance of the purely leptonic
weak interaction. In this case the lepton mixing matrix
should contain CP-violating phases. However, the effects
of CP violation in neutrino oscillations may turn out to be
practically unobservable under certain circumstances,
even if there are large CP-violating phases in the lepton
mixing matrix. We shall consider in conclusion two ex-
amples of conditions leading to such a situation.

(i) Under the conditions of a realistic neutrino oscilla-
tion experiment, the transition probabilities have to be
averaged over the region of neutrino beam formation, the
dimensions of the neutrino detector, the uncertainties in
the spectrum of neutrinos, etc. Let us assume that for all
j&k

These relations imply (Barger, Whisnant, and Phillips,
1980; Bilenky and Niedermayer, 1981)

R 2 2 —1 ~

J (7.69)

D, =Dp ——D,p .

From Eqs. (7.58) and (7.59) we get

(7.65) Then, if R /p is sufficiently larger than all
(

~ mj —mk
~

) '(k&j), the cosine terms in Eqs. (7.18) and
(7.19) would acquire, as a result of the averaging, suppres-
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sion factors rendering these terms negligible, and for the
averaged transition probabilities we would get

P
, , „-, =-P,,;,=g I Uii I'I Uik I'.

k
(7.70)

Thus, if the conditions (7.69) are realized, Eq. (7.51) may
take place even when CI' invariance does not hold.

(ii) Let us number the neutrino masses in the following
way:

Pj ) (Pl 2 g g Pl~

[r =n for the Dirac (Majorana) mass term and r =2n for
the Dirac-Majorana mass term]. Suppose that

So, if the amplitudes of the transitions vi~vi and vi~vi
depend effectively only on one difference of the squares of
the neutrino masses [i.e., if the conditions (7.71) are real-
ized], the CP-violating phases present in the mixing ma-
trix do not enter into the expressions for the probabilities
P, (R/p) and P„., (R/p) and Eq. (7.51) is satisfied, in

spite of the possible violation of CI' invariance.
Finally, on the basis of Eq. (7.74) it is not difficult to

derive the expression for the probability P„, , (R/p)]
[P ., (R/p)]. In the case of a Dirac (Majorana) mass

term one has

2 2
OZk —7th ]

R &(1, k=2, . . . , r —1 .
2p

(7.71)
P..., (R/P) =1—gP„, , (R/p) .

l'~l
(7.75)

For the amplitude of the transition vl ~vl, we obtain in
this case (neglecting terms of order [(mi, —m&)/2p]R„
k~r)

Taking into account that

(7.76)

we obtain '

P, , (R/p) =P, , (R/p)

(7.72)

Similarly, for the amplitude of the transition vl —+vl, one
has

X 1 —cos
2 2

Pl~ —f11 ) R (7,77)

If we replace Ul„with Ul2„ in this expression, it will cor-
respond to the case of a Dirac-Majorana mass term.

The corresponding probabilities for /&I' are given by

P, „,(R/p)=P , .-„(R/p)-
D. The simplest cases of oscillations

2 2

=2
I
Ui,

I

'
I Ui, I

'
2p

(7.74)

Qscillations between two types of neutrinos

In the present subsection we shall consider in detail the
cases of oscillations between two and three types of neu-
trinos in vacuum. Let us begin with the simplest possibil-
ity of oscillations involving two types of neutrinos:

vi~~vi, l~I' .
oSupyose, for example, that one has to average over the un-

certainty hp in the neutrino momentum p. As a result of the

averaging, the cosine terms would acquire the factors

hp R—Imj —mk
I

p p

The indices I and l' can be equal, respectively, to e and p,
or to e and ~, or to p and ~, etc.

If the neutrinos with definite masses vi and v2 are
Dirac particles, the mixing matrix U is a real orthogonal
2&&2 matrix. It has the following general form:

j&k. These terms can be neglected provided

hp R—&&( Imj —mk
I

1

p p

cos8 sinO
—sin8 cos8 (7.78)

Obviously, the validity of Eq. (7.69) is only a necessary condi-
tion for that. The present example illustrates the role of the
conditions (7.69) in averaging over any other quantity, as a re-

sult of which the cosine terms in the expressions for the transi-
tion probabilities become negligible.

Equations (7.74) and (7.77) appear, for example, in the
schemes with a pseudo-Dirac neutrino (Petcov, 1982a).
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It follows from Eq. (7.78) that the fields vs, (x) and
viL(x) are connected with the LH components of the
fields of neutrinos with definite masses viL, (x) and vzL, (x)
by the relations

vIL =viLcosO+v2L sin0,

VI I = —V}ISine+ V2L COSe .
(7.79)

The angle 8 is the lepton mixing angle (leptonic analog of
the Cabibbo angle).

From the general expressions (7.18) and (7.19) for the
transition probabilities we obtain in the case under con-
sideration

, (R /p) =P-„.—(R /p)

2
= —,sin 20 1 —cos RAm

2p
(7.80)

P„, „,(R/p) .=P, „,, (R/p)

2
= 1 ——,sin 20 1 —cos R

Am

2p
(7.81)

Here hm =
~

m i
—mz ~, where m i and mz are the neu-2= 2 — 2

trino masses.
If the massive neutrinos are Majorana particles (Ma-

jorana or Dirac-Majorana mass term), the mixing matrix
will be characterized, by one angle and one CP-violating
phase. However, in the case under discussion, with two
massive neutrinos, the probabilities of the neutrino transi-
tions do not depend on the phase responsible for the viola-
tion of CP invariance. For the probabilities P„...(R/p)
and P„. (R/p) in this case we get Eqs. (7.80) and (7.81).

If one expresses Am in units of eV, the source-
detector distance R in meters, and the neutrino momen-
tum p in MeV (note that we work in the system A=c = 1),
Eq. (7.80), for example, takes the form

from Eq. (7.83) that the necessary condition for the obser-
vation of neutrino oscillations (provided the value of
sin 28 is sufficiently large) is

L(R . (7.86)

Since the conditions leading to (7.87) are always realized
for sufficiently large values of hm, the probabilities
(7.87) are often referred to in the literature as correspond-
ing to the large-Am limit.

In practice, Eqs. (7.79) and (7.80) are always used in
analyses of the data from neutrino oscillation experi-
ments. A review of the most recent data will be presented
in Sec. XII.

2. Oscillations involving three types of neutrinos

We shall consider next in detail the oscillations involv-
ing three types of neutrinos (v„v&,v, ). It follows from
Eq. (7.33) that, for both Dirac and Majorana neutrino
mass terms, the probabilities of the transitions depend in
this case on the elements of a 3)&3 unitary matrix which
has the form of the Kobayashi-Maskawa matrix:

Ci $1C3 $)$3

If the oscillation length is much larger than the distance
between the source and the detector, the oscillations will
not have time to develop at distance R and, consequently,
will not be observed.

, Finally, if as a result of the averaging (over the region
of neutrino beam formation, etc.) the term with cosine in
Eq. (7.83) becomes negligible, the averaged probabilities
are given by

(7.87)

AmP„,.„(R/p) = —,sin 28 1 —cos2. 54 RVp,
'
Vi

Often the expression for P„, ~, (R /p) is written as

(7.82)

$&$2 —C)$2C3 C2$3e
i5

U = —$)C2 C)C2C3 $2$3e i5
C ( C2$ 3 +S2C 3'e

i5

—C I$2S3 +C2C3e
i5

(7.88)
T

P„, „,(R/p)= —,'sin 28 1 —cos2m—

where

L =4m p
Am

(7.83)

(7.84)

Here, c;=cosa;, s; =sin8; (i =1,2, 3), and 5 is the phase
characterizing the violation of CP invariance.

The probabilities P„, „,(R/p) and P„„(R/p) in the.
general case can be written in the form

P,, „,(R/p)=g Urk Uik Ui*~ U(J(e ' —1+1)
k,j

is the oscillation length in vacuum. For Am and p given
in units of eV and MeV, respectively, we have

gC
—i 6k=&i i —2 Re g Ui k Ug, Ui J Ui, (1—e ~ ),

k)j
L=2.5 m .

hm
(7.85) (7.89)

The introduction of the oscillation length permits us to
formulate in a transparent way the conditions under
which neutrino oscillations may be observed. It is clear

P„.„(R/p)=5pi —2Re g U(k Ug, U)'U(J(1 —e "'),
k)j

(7.90)
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where
2 2

Plk —Pg .

2p

where

e 2 2 2 e 2 2 2 e 4 2 2A 21 =S 1C 1C 3, A 31 =$1S3C $ p 2 32 —S 1S 3C 3 (7.93)

Equations (7.89) and (7.90) are convenient to use for cal-
culations of the transition probabilities in the case we are
considering. The expressions one obtains for the probabil-
ities are, however, rather cumbersome. %'e shall give here
only expressions for those quantities which, in our
opinion, are of greatest interest from an experimental
point of view.

Using Eqs. (7.88)—(7.90), we get for the probabilities

P„, ~, (I =e,p),

c4zi =s icz(c iczc3+sz$3 2ciczc3szs3cos5)p 2 2 2 2 2 2 2

c4 3i —s icz(c iczs 3 +szc, + 2ciczc3$z$3cos5), (7 94)p 2 2 2 2 2 2 2

2 3z = (c ic zc 3 +s zs 3
—2c i czc3szs 3cos5)p, 2 2 2 2 2

X (c ic z$3 +s zc 3 +2c i czc3$z$3cos5)2 2 2 2 2

Evidently, the quantities hkj are related as

~21+~32+ ~13 0 ~ (7.95)
= 1 —22 zi (1—coshzi) —2A 3i (1—cos63i)

I l

2A 3z( 1 cos53z) (7.92)
Further, for the probabilities of the transitions vz~v,
and vz~v, we obtain, respectively,

P„. (-„.-„)(8/P) =2$ iciczc3 I ciczc3(1 —cosbzi) —Sz$3[cos5—cos(Azine+)5)] J

+2$is3cicz[ciczs3(1 —cos63i)+szc3[cos5 —cos(53i( )5)]I

—2$,$3C3 I ($3C,CzC3 —Sz$3C3)(1 —cosh3z)+Szciczc3[cos5 —cos(b3z( )5)]2 2 2 2 2' +

szs 3c i cz [cos5—cos( b 3z(+ )5 )] ]
2 (7.96)

If the conditions
R

mk m'
I

) k&j2 2 —1

J (7.97)

are satisfied [see Eq. (7.69) and footnote 30], as a result of
—iAk

the averaging (over the neutrino spectrum, etc.) e

(k&j) may be neglected, and we get from Eqs. (7.89) and
(7.90) in this case

5l'l 2 Re g UI'k Ulk Uij'+1j
k&j

I
Ul k I I Ulk I

(7.98)

In particular, using Eqs. (7.88) and (7.98), we find in the
case of oscillations involving three types of neutrinos

2 2 4 2 2P~.~ =1—2s1c1 —2s1s3c3 . (7.99)

For a more detailed discussion of the problem of solar neutri-
nos see, for example, Bilenky and Pontecorvo (1978) and Hax-
ton (1984).

Let us note that for relatively large
I mk —mj I

(
I

mk tizzy. I
»10 eV ) k&—j, P„. represents the

reduction coefficient of the flux of solar neutrinos, due to
neutrino oscillations in vacuum.

E. Neutrino oscillations iri rnatter

Our discussion of neutrino oscillations has been con-
fined so far to the case of oscillations in vacuum. We
shall next consider briefly the oscillations of neutrinos
propagating through matter (Wolfenstein, 1978).

The probabilities of neutrino transitions in matter may
differ drastically from the probabilities of the correspond-
ing transitions in vacuum (Wolfenstein, 1978; Barger,
Whisnant, et al. , 1980; Mikheyev and Smirnov, 1985). In
particular, under certain conditions the presence of matter
can lead to a resonant amplification of the transitions be-
tween given types of neutrinos, even when the same tran-
sitions are strongly suppressed in vacuum due to a small
mixing (Mikheyev and Smirnov, 1985). As was shown re-
cently by Mikheyev and Smirnov (1985), for a wide range
of values of neutrino oscillation parameters
(hm =10 —10 eV, sin 29) 10 ) these conditions
can take place in the sun. This implies that, even in the
case of small vacuum mixing angles, the flux of electron
neutrinos ve from the sun may be considerably smaller
than the flux predicted by the standard solar model (see,
for example, Bahcall et al. , 1982). The results of Mi-
kheyev and Smirnov have been confirmed and somewhat
extended in a number of subsequent studies (Barger, Phil-
lips, and %hisnant, 1986; Bethe, 1986; Bouchez et al. ,
1986; Haxton, 1986, 1987; Kolb, Turner, and %'alker,
1986; Messiah, 1986; Parke, 1986; Rosen and Cielb, 1986,
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Langacker et al. , 1987). Matter effects may also be sub-
stantial for oscillations of neutrinos passing through the
Earth (Barger, Whisnant, et al. , 1980; Cudwell and
Cxaisser, 1985; Carlson, 1986; Chechin, Ermilova, and
Tsarev, 1986; Baltz and Weneser, 1987), as well as for the
neutrinos emitted in collapsing stars (Mikheyev and Smir-
nov, 1986c).

t. The evolution equation

We shall confine our discussion of neutrino oscillations
in matter to the simplest possibility of oscillations involv-

( —) ( —)

ing two types of neutrinos v ~ and v ~., l&l':
l =e, l'=p, or l =e, l'=~, or l =p, l'=~. We shall as-
sume (for simplicity) that the neutrinos with definite mass
in vacuum are Dirac particles, so that the mixing (7.79)
takes place. . However, the results we shall obtain can be
proven to be independent of the type of the vacuum neu-
trino mass eigenstates (Langacker et al. , 1987). The
( —) ( —) ( —) ( —)

v I —+ v I and v ~~ v I transition probabilities in vacu-
um are given in the case of interest by Eqs. (7.80) and
(7.81). The expressions for P~ ~ & ~

and P~ ~ ~ ~
can be

V l'i V vl' vl
derived by solving the equation of evolution in vacuum,

( —)

e.g., for the neutrino state vector
I

v I(t) ). This method
of calculating the neutrino transition probabilities is also
applicable to the case of oscillations in matter, and w' e
shall use it in our discussion of the latter. .

where H is the Hamiltonian of the neutrino system. We
shall choose the initial condition for Eq. (7.100) in the
form

( —) ( —)

I
v(O))=

I v, ), (7.101)
( —) ( —)

v (0))=
I

v ~ ) being a possible alternative. The vec-
( —) ( —)

tors
I

v ~) and
I

v r) are the state vectors of the flavor
( —) ( —)

neutrinos v I and v ~ possessing definite momentum p.
In the two-neutrino oscillation case under consideration

( —)

v (t) ) can always be written as
( —) ( —) ( —) ( —) ( —)

I
v (r) &=( a i(r)

I

v i)+ a 1'(r)
I

v ~ &]

( —) ( —)

xexp —i J, & v I IH
I

v, &dr' . (7.102)

( —) ( —)

Under the initial condition (7.101), a &(r) and a ~(t)
represent the amplitudes of the probabilities for finding

( —) ( —)

neutrinos v ~ and v I at time t The .phase factor in Eq.
(7.102) plainly has no physical significance. However, in
view of our further considerations, it proves convenient to
introduce it. Using Eq. (7.102) we obtain from Eq.
(7.100) a system of coupled evolution equations for the

( —) ( —)

amplitudes a &(t) and a ~(t) which is equivalent to Eq.
(7.100):

( —)

The time evolution of the state vector
I

v (t) ) of a fla-
vor neutrino produced in some weak process is governed
by the Schrodinger-type evolution equation

( —)

a I(t)
( —)

a &(r)

( —)

( ) a, (r)

a &(t)
(7.103)

( —) ( —)

i
I

v (t))=H
I

v (r)),
dt

(7.100)

( —) ( —) ( —) ( —) ( —) ( —)

vrl Hlvi& —
& vt IHI vl'&

( —) ( —)

& vslHI vr& 0
(7.104)

( —) ( —)

a I(0)=1, a I (0)=0 . (7.105)

%'e should like to note that the recent dramatic development
in the theory of neutrino oscillations in matter {the number of
publications that have appeared in the last six months exceeds
15) began after the present review had been essentially complet-
ed. The subject is still in a stage of development and it is im-
possible to cover it comprehensively in our article. Therefore
we shall present here only some basic results.

( —)

is the evolution matrix of the system. Evidently„M' '" is
( —) ( —)

a Hermitian matrix: (M' ' ') =M"' '. The condition
(7.101) corresponds to the following initial conditions for
Eq. (7.103):

It obviously follows from Eqs. (7.103) and (7.104) that
neutrino oscillations will take place only if

( —) ( —)

I IH I I )~0. (7.106)
( —)

The form of the evolution matrix M" '" implies that the
neutrino oscillation probabilities are determined by the
difference between the matrix elements of the neutrino

( —) ( —)

Hamiltonian for the v I and the v
~ states, and not by

the values of each of the matrix elements.
In the case of neutrinos propagating in vacuum, one

can express the elements of the corresponding evolution
( —)

matrix Mo ' ' in terms of the vacuum oscillation parame-
ters by using Eqs. (7.78), (7.79), (7.2)—(7.5), (7.6)
(H =Hp), and (7.17):
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( ) (E& —E2)cos28 —,
' (Ez E—t )sin2I9

(I' &)Mp'
—,(E2 E—, )sin20 0

cos20—K I.
sin20
2I

sin20
2I.

(7.107)

where

K=sgn(pt 2
—I ) )

2 2 (7.108)

and L =2~2@/b, m is the vacuum oscillation length (see
Sec. VII.D.l). The solutions of Eq. (7.103) with evolution
matrix and initial conditions given by Eqs. (7.107) and
(7.105) lead to the familiar expressions (7.80) and (7.81)
for the vacuum oscillation probabilities P~ ~ ~ ~ and

H =Hp+8,'„, , (7.109)

where H,'„, is the effective interaction Hamiltonian of the
neutrinos with the electrons and nucleons of the matter.
We shall assume that the interactions of neutrinos are
described by the standard theory. In this case 0';„, is fla-
vor diagonal, and one has

Neutrinos propagating through matter can scatter off
of the particles present in the matter (electrons and nu-

cleons). The effects of incoherent (i.e., inelastic and non-
forward elastic) scattering of neutrinos, which could cause
attenuation of the neutrino fiux, can be shown to be negli-
gible in most of the cases of practical interest due to the
small values of the corresponding neutrino scattering

( —)

cross sections. However, forward v ~ ~
—e and

( —)

v ~I —X elastic scattering, which does not destroy the
coherence of the neutrino states, may affect the oscilla-
tions, generating nontrivial indices of refraction of the
( —) ( —)

v ~ and v I waves propagating in rnatter.
The Hamiltonian of the neutrino system in matter has

the form

2~ + 2~
cos20 +

( —)I (7.111)

Here

(+) ——( v, IH,'„,
I

v, &
—( v„,IH;'„,

I v„,&

Lp

2&
N, [F( ) (0)—F( ) (0)]

p v, V

=( )v'2GFX, , (7.112)

( —)

where Fr ~ (0) is the v t —e forward scattering ampli-
V

tude, X, is the density of the electrons in the medium,
and

~
~v2GFK, is the charged-current contribution to

( —)

the real part of the v, —e forward. scattering ampli-
tude. The quantity Lo 2n(+2GFX, )——'(L o ) charac-

proximation) a nontrivial contribution in the upper diago-
nal element of the evolution matrix (7.104). Since the
( —) ( —)

v „—e and v „,—% elastic scattering amplitudes are
determined by the neutral-current interaction, this implies

( —) ( —)

that the v z~+ v oscillations in matter in the case under
consideration (oscillations involving only two neutrinos)
will not differ from the oscillations in vacuum. This is
not valid, however, for oscillations involving the electron

( —) ( —) ( —) ( —) ( —)

neutrino (antineutrino) v, ( v, ~+ v „or v, ~+ v,). As
is well known, in addition to the contribution generated
by the neutral-current weak interaction (Z -exchange dia-

( —)

gram), the v, —e elastic scattering amplitude also re-
ceives a contribution generated by the charged-current
weak-interaction ( W "—-exchange diagram). Such a contri-

( —)

buti. on is absent in the v &
—e elastic scattering ampli-

tude. As a consequence we have (Wolfenstein, 1978;
Barger, Whisnant, et al. , 1980)

( —) ( —) ( —) ( —)

( v, IH +H;'„",
I

v, &
—( v„,IH +H,'„",

I v„,&

sin20
2L,

(7.110)

( —) ( —)

Furthermore, the v I
—e and v

~
—X neutral-current

weak interactions are universal for the different types of
neutrinos and therefore cannot give (in the leading ap-

( —)

Note that, for example, v I & is now the state vector of the
&
—) ( — ( —)

neutrino v I in matter:
I

vI&—:
I v~(p); matter).

( —) ( —) ( —) ( —)

& v t ( v t) I Ho+Hint I
v I( v t )&'

( —) ( —) ( —) ( —)

=& v z( v t)IHo I
v t( v t)&

3~This conclusion is not valid for neutrinos propagating in a
very dense media (such as the interior of the neutron stars or of
the collapsing stars) (Botella et al. , 1986).

The amplitude F( ) (0) is normalized so that the total
1

( —)

v ~
—e scattering cross section is given by 4m ImE( ) (0)/p.

I
A factor of V2 and a minus sign are missing in the expres-

sion for [F (0)—F„(0)]given in Wolfenstein (1978); the sign
e P, 'T

error propagated also in the works of Barger, Whisnant, et ah.

(1980) and of Lewis (1980), wherein the correct numerical factor
in the formula for [FI ~

{0)—E~ ~ (0)] was found. The
Ve P)7

correct sign was obtained by Langacker, Leveille, and Sheiman
(1983).
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terizes the medium and is called the eigenlength (frequen-
cy) of'matter.

Equation (7.112) is valid for electrons at rest as well as
for electrons with nonzero momentum if the forward
scattering amplitude F( ) (0) is averaged over the direc-

V

tion of the electron momentum.
In ordinary matter, which is electricaIly neutral, one

has

l'-x, The matrix elements of Ho which enter into the
evolution matrix in this case are given again by Eq.

( —)

(7.109), while for those of H,'„, we have ( v „supposedly
does not interact with matter)

( —) ( —)

( .lH;„",l, )=0,
(7.116)

( —) ( —) ( —) ( —)

p Np
N, =Xp ——

~N NN
(7.113) 2K ( —) ( —)

t =( ~tlH (I ~t)
Lp

( —)
m(&"=2~

cos20 + 1
( —)g

sin26I

2I

sin20
2I.

where Np(z) is the proton (nucleon) number density and

p is the matter density. In most cases of interest (the
Earth, the sun) Np/N~ —const.

It follows, for instance, from Eqs. (7.110)—(7.112) that
( —) ( —)

the evolution matrix that determines the v, ~ v z tran-
sition amplitude has the form

(+)&2GF g g„N

where N, is the number density of the particles a in
matter and g,

' is the vector coupling constant in the
relevant effective v( —a interaction Hamiltonian. In the
standard theory g,"=—,

' +2 sin Og, g, '=g, '= ——,
'

( —) ( —)

+2 sin 0~, etc. For the oscillations v, ~~ v „ in an elec-
trically neutral mediu~. with neutron number density N„
one finds (see, for example, Mikheyev and Smirnov,
1986c)

(7.114)
, =KG,(N, ——,'N„) .Le

A few additional comments are in order. First, only
the vector couplings in H';„, give a contribution to the
neutrino forward scattering amplitudes (a coherent
scattering of neutrinos can, be caused by vector interac-
tions) ~ Second, in the language of optics, Eqs. (7.113) im-

( —)

lies the existence of a difference between the v, and—) ( —) ( —)

v z„ indices of refraction n( v, ) and n( v „,) in the
medium:

( —) ( —)

n( v, ) —n( v „,)=, [F( ) (0)—F( ) (0)]N,
P V P, T

V 2GFN,
(7.115)

And third, the difference in the signs of F,, (0) and

F (0), which is reflected in Eqs. (7.111), (7.112), (7.114),

and (7.115) and has important implications, is a conse-
quence of the fact that neutrinos and antineutrinos carry
opposite weak isospin charges.

It should be indicated that the effects of the neutral-
( —) ( —)

current v t —e and v t —N forward scattering have to
be taken into account in the case of oscillations involving

( —) ( —)

an active ( v t) and a sterile ( v ) neutrino. The evolu-
( —)

tion equation for the probability amplitudes a I(t) and
( —) ( —) ( —) ( —) ( —)

a „(t) of the transitions v t- v t and v t- v „can be
obtained from Eq. (7.104) by making the formal change

2. The case of rnatter with constant density

( —)

P( ) ( ) =1—&sin2 gm
Ve~ Ve

R
1 —cos27T

( —)I
(7.1 17)

( —)

P( ) ( )
——~sin 2 0

Vpj V.e

R
1 —cos2~

( —)
(7.118)

Here

For concreteness we shall assume in our further discus-
( —)

sion that the neutrino produced at t =0 is v, and that
( —) ( —)

v, may oscillate into v „. Given the evolution matrix
(7.114), it is not difficult to solve the evolution equation

( —) ( —)

for a, (t) and a ~(t) in the case of a medium with con-
stant electron number density N, . For this purpose it suf-

( —)

fices to find the eigenvalues of M'"" and the orthogonal
matrix that diagonalizes it. We shall give only the final

( —) ( —)

result, namely the expressions for the v, ~ v, and
( —) ( —)

v,- v ~ transition probabilities (P( ) ( ) and
e e

P( ) ( ) ). They have the same form as Eqs. (7.80) and
V; V

(7.81) for the corresponding vacuum probabilities:
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( —)

cos2 0

L
cos20(+ )K

Lp

L L
1(+)2K cos20++ Lp

( —)

L 2 1/2
L L

1(+)2K cos20+
Lp Lp

( —) ( —)

is the v, ~+ v & oscillation length in matter and

( —) sin20
sin2 8 m= 2 1/2

L L
1(+)2K cos20+

Lp 0

(7.119)

(7.120)

(7.121)

because v, and v, scatter differently on electrons. This
drastic difference between the properties of neutrino tran-
sition probabilities in vacuum and in matter is a conse-
quence of the fact that, due to the absence of positrons
and antinucleons, ordinary matter is neither CPT nor
CP-symmetric, while the vacuum is both (at least to a
good approximation). For the same reason, CP and CPT
transformations cannot be defined for the mass eigenstate

( —)

neutrinos P ) 2 in matter.
Further, it follows from Eqs. (7.117)—(7.120) that neu-

trino oscillations in matter are possible only if neutrino
oscillations take place in vacuum (i.e., if 8&0 and
m ) &m2). In a medium with "low" electron number den-
sity, when

( —)

where 8 is the neutrino (antineutrino) mixing angle in
matter:

( —) ( —) ( —) ( —) ( —)

I v, ) =
I g ) )cos 8 + I g z )sin 8

(7.122)
( —) ( —) ( —) ( —) ( —)

v„)=—
I
g))sin8 +I gz)cos8
( —)

In Eq. (7.122),
I P ( 2) are the neutrino energy (and

momentum} eigenstates in matter:

( —) ( —) ( —)

(Ho+H'"()
I 0 1,2& = E ),2 I 0 ),z& .

( —)

The oscillation length L is determined by the energy
difference

( —) ( —) L
2 1/2

E 2
—E (

——(Eq E) ) 1(+)2)l —cos28+
Lp Lo

L
Lo

2p V'2GgN, « 1,
Pl2 —m)

K cos20) 0,
for any value of sin28 there exists a value of L /Lo,

( —) ( —)

neutrinos oscillate as in vacuum: L =L and 0 =0.
If the electron number density in the medium is relatively

( —)

large, so that L /Lo &) 1, we have L =Lo and
( —)

I
sin2 8 ~ I

«
I

sin28
I
. Thus the presence of matter

( —) ( —)

suppresses neutrino oscillations ( v,~ v „) in this case,
even if they are not suppressed in vacuum.

However, the most striking feature of the dependence
( —)

of sin2 8 on L/Lo is its resonance character (Barger,
Whisnant, et al. , 1980; Mikheyev and Smirnov, 1985).
Indeed, if

( —)

=2+K L (7.124) Lp res

=K cos20, (7.127)

pill ~pill pill ~pill (7.125)

Equation (7.124) can be derived by comparing the expres-
( —) ( —) ( —)

sion for M (~", obtained in terms of ( E z
—E ) ) and

( —)

8 ~ from Eq. (7.104) by using (7.122) and (7.123), with
the expression (7.114). Obviously, the mass eigenstate
neutrinos in matter and in vacuum do not coincide:
( —) ( —) ( —) ( —)

Q ) 2& v ) 2g(g). In matter the transitions v )~~ v 2
( —)

become possible: as a consequence of { v ( I
Ho

( —) ( —)

+Hl~t I
v t)&0,II'=e,p, one has ( v 2L(~) IH()

( —) ( —)

+H,'„,
I

v (1(g))+0. Hence v ( 2 are not eigenstates of
the Hamiltonian of the neutrino system in matter.

The first interesting feature of the probabilities (7.117)
and (7.118) to be noted (Langacker et al. , 1987) is that
they are neither CP nor CPT invariant, in contrast to the
probabilities of transitions in vacuum [see Sec. VII.C and
Eqs. (7.80) and (7.81)]. Indeed, even for CPT and CP
conserving interactions of the neutrinos we have 8 &8
L &L, and consequently

for which the neutrino mixing in matter is maximal:

I

sin28"'I =1 . (7.128)

This implies that the v, —+v& transition in the case under
consideration may be strongly enhanced in matter, even if
ihe same transition is suppressed in vacuum due to a
small value of the vacuum mixing angle. It follows from
Eq. (7.120) that, depending on the sign of a cos28,
resonant amplification is possible either for the transition
v, ~v„ involving neutrinos or for the transition v, ~v&
involving antineutrinos, but not for both types of transi-
tions. Analogous results can be obtained for the
( —) ( —) ( —) ( —)

v,~ v, and v &~ v, l =e,p, ~oscillations.
We shall assume further for definiteness that Eq.

(7.126) is satisfied, i.e., that neutrino oscillations v, +~v„
may be amplified in matter. From Eqs. (7.79) and (7.108)
it can be concluded that (7.126) corresponds to a particu-
lar relation between the flavor and the mass eigenstate
neutrinos: The dominant component in

I
v, ) in vacuum

is the state of the lighter of the two neutrinos v~ and v2
(say, v(), while the dominant component in

I v„) is the
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heavier neutrino state. This is intuitively expected to take
place and is predicted by some gauge models [like the
SO(10) model], but it is by no means the only possibility.

Using Eq. (7.127) it is not difficult to find fram Eq.
(7.120) the width of the region in which sin 28~ & —,

' (res-
onance width):

=2
~

sin28
~

L
Lp

(7.129)

The oscillation length and the energy difference
( E2 —E

~ ) at resonance can be obtained from Eqs.
(7.119) and (7.124), taking (7.127) and (7.128) into ac-
count:

L I'es

]
sin28

/

(&2 —El )...=(Eg —&$)
~

»n28
~

.

(7.130)

(7.131)

So, if the vacuum mixing angle is small (sin 8 «1), the
resonance is narrow and the oscillation length at reso-
nance exceeds considerably the vacuum oscillation length:

Consequently, if (7.133) is valid, the condition (7.134)
takes the form

p
2~R &—sin20

(7.136)

=2~X2.64&&10 km, , (7.137)3

p [g/cm ] e N

where p~ [g/cm ] is the matter density expressed in units
of g/cm . For the case of the Earth we get

Thus Lo/sin28 determines, in the case of a small vacuum
mixing angle, the minimal distance from the neutrino
source at which neutrino oscillation effects may be large.
Let us estimate this distance for the neutrinos passing
through the Earth. For 'this purpose it is a sufficiently
good approximation to assume that the Earth consists of
matter having a constant density p equal to its averaged
density of 5.5 g/cm and that it is isotopically symmetric:
N, =Nz ———,N~. In general, one has

L =2~(~26 N, )

(7.132) L p -2m. & 10 km . (7.138)

Note that the diagonal element of the evolution matrix
(7.114) vanishes, while for fixed p and hm, (E2 E~ )—
and L take, respectively, their minimal and maximal
va'Iues at resonance.

For neutrinos with a continuous energy spectrum, the
resonance condition (7.127) determines the momentum at
which the resonance takes place (resonance momentum):

hm 2~ cos28
2~KG,N,

The width bp of the interval of momenta
(p"'—bp/2, p"'+hp/2) in which sin 28 & —,

' can be
found from (7.129) and is

ap=2p"'~ tan28~ .

The case of small vacuum mixing angle, when

Thus it follows from Eqs. (7.136) and (7.138) that matter
effects may be considerable for the neutrinos passing
through the Earth (R & 1.3 && 10 km) only if

~

sin28
~

& 0. 1 (Bouchez et al. , 1986; Carlson, 1986;
Chechin, Ermilova, and Tsarev, 1986; Baltz and Weneser,
1987). Using Eqs. (7.84), (7.85), (7.135), and (7.138), it is
not difficult to find also that the resonance condition is
satisfied in this case for

~ -2.5X1O ~'~.
2 e+2

(7.139)

Equation (7.139) implies that, depending on the value of
b,m, the effects of matter may be important for solar
neutrinos (p & 14 MeV) and/or for atmospheric neutrinos

((p ) —10 GeV) passing thraugh the Earth.

sin8 (~cosO (7.133) 3. Propagation of neutrinos in matter
with varying density

2mB &L"'=
/
sin28

(

(7.134)

For small vacuum mixing angle we get from Eq. (7.127),
using (7.126) and (7.133), that at resonance

L=Lp . (7.135)

(one can choose 0& 8 & m/4 without loss of generality), is
of particular interest, since in this case the oscillations in
vacuum are suppressed. In spite of Eq. (7.133), we will
have sin 28~ —1 if the resonance condition (7.127) is ful-
filled. However, large mixing angles do not necessarily
imply large oscillation probabilities. In matter with con-
stant density, P„[Eq.(7.117)] m.ay be large (i.e., close

to unity) only if in addition to the resonance condition
(7.127) the following inequality is satisfied:

We shall next consider briefly the case of oscillations of
neutrinos in matter with nonuniform spatial distribution
of density (Mikheyev and Smirnov, 1985). Such a distri-
bution, for example, supposedly takes place in the interior
of the sun, where, according to the existing solar models
(see, for example, Bahcall et al. , 1982), the density
changes dramatically along the neutrino path from the
core to the surface of the sun. Since only changes of den-
sity along the neutrino path are important, we shall be in-
terested orily in the variation of electron number density
N, (matter density p~) with the distance r =t traveled by
the neutrinos: N, =N, (r) [p~ =p~(r)] The poin. t of
neutrino production and the direction of the neutrino
momentum, which, if given together with r, specify the
position of the neutrino in space at time t =r, shall be as-
sumed to be known.
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As in the previous section we shall consider for defin-
( —) ( —)

iteness the case of v, —v & transitions under the initial
( —) ( —)

condition
~

v (0)) =
~

v, ). It will be assumed that in-
equalities (7.126) and (7.133) are satisfied, so that the
v, —+v& (and not the v, ~v„) transition can be expected to
be amplified in matter.

Before discussing the case of interest let us also note
( —)

that the transformation (7.122), with 8 determined by
Eqs. (7.120) and (7.121), actually diagonalizes the evolu-

( —)

tion matrix M '""[Eq. (7.114)]:

( —) ( —) ( —)

AN, =2N,"'tan20 . (7.144)

If N, and the derivative dN, (r)/dv are smooth functions
of r, which they are in all physical examples of interest,
the density width (7.144) corresponds to a spatial width
given by

dX,

, res

dN,

dt

(0&8&m/.4, )r&0). It is not difficult to find from Eqs.
(7.129), (7.112), and (7.143) the corresponding resonance
width:

Here

( —)

0
C m

S m

( —)

C m

(7.140)

(7.141)

where (dNe/dr)„, is the value of the derivative at reso-
nance.

It proves convenient to analyze the evolution of the
neutrino system in the case under consideration using the

( —) ( —3

evolution equation for the amplitudes a 1 (t) and a z (t)(-')
of the probabilities for finding the matter eigenstates P (

( —3

and P z at time t:

( —) ( —) ( —) ( —)

( c =cos 8, s ~=sin 8 ) is the mixing matrix re-
lating the flavor neutrino states and the states of neutri-
nos with definite mass in matter, and

( —) ( —) ( —) ( —) ( —)

f
v (t)) =[ ~ ) (t)

/ @ ) (r))+ (2 2 (t)
/ g 2 (r))]

g ( —) ( —)

&exp —i v& H v& dt' (7.146)

( —) ( —) ( —) ( —)

M1 ———(Ez —E, ) c
(7.142)

It follows from Eqs. (7.102) (l =e, l'=)I), (7.122), and
(7.146) that

( —) ( —) ( —) ( —)

Mz=(Ez —E)) & ',
( —) ( —)

where ( E 2
—E 1 ) is determined by Eq. (7.124).

In the case of matter with (electron) density varying
( —) ( —)

along the neutrino path, we have M'""=M '""(t) and
( —) ( —) ( —) ( —) ( —)

consequently
I 0 1,2) l 0 1.2(t)) 8 8 (t) M1,2

( —) ( —) ( —'3
= M 1 2(t), and 0 = 0 ~(t). However, Eqs.
(7.120)—(7.122) and (7.140)—(7.142) remain valid in this

( —)

case for each value of t. Although the states
~ g ) 2(t) )

( —)

are eigenstates of the evolution matrix M (""(t) at each
moment t, they, in general, are not eigenstates of the
Hamiltonian H, and Eq. (7.123) is not fulfilled. As the

( —)

matter density varies, transitions between f 1 (t) and
( —)

P z (t) are possible.
For given p and hm the resonance condition (7.127)

determines a value of N, (and therefore of p if
NF /Nz —const) at which sin 28 = 1 (resonance density):

2 I

N res ~m cos2 (7.143)
2~zpGF

( —)

a ,(t)
( —)

a „(t)

( —)

( —) & 1(t)=0 (r) ( )
tlat( t)

(7.147)

Taking I =e and l'= p and replacing

( —)

a e(t)
( —)

a ~(t)

( —)

a ((t)
dt ()

( —) ( —)

M 1(t) i 8 (t)—
( —)

i 8 (t)
( —)

M "2(t)

( —)

a 1 (t)
( —)

PB(t)

(7.148)

( —) d ( —)

8 (r)= 8 (t)
dt

with Eq. (7.147) in (7.103) we get, using Eqs. (7.114),
(7.140), and (7.141),

( —)

3sThe states
~ g 12(t)) are often called matter eigenstates in

the literature (see, for example, Mikheyev and Smirnov, 1986b).

dN,

AN, dt
tan 20

2

1(+) +tan 20
e

(7.149)
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where the last equation has been obtained by using Eqs.
(7.120), (7.121), (7.143), and (7.144). If neutrinos are born
in a region with electron number density N, =N, (t =0),
the initial condition for Eq. (7.148) corresponding to

( —) ( —)

v (0)) =
~

v, ), as follows from (7.122), has the form
I

r

( —) ( —)

a &(0) c
( —)

a , (0)
(7.150)( —)

0
S m

( —)

g 0
( —) ( —) ( —) ( —)

where c ~ =cos 0 ~, s ~ =sin 0 ~, and
( —) ( —)

= 8 (t=0)= 8 (N,').
For generality we have treated so far both the cases of

neutrino and of antineutrino propagation. Equation
(7.120) implies, however, that under the assumptions
(7.126) and (7.133) antineutrino mixing, and therefore an-
tineutrino oscillations (v, ~~vz), can only be suppressed in
matter. Therefore we shall consider further in this sec-
tion the more interesting case of neutrino oscillations
only.

If the density [and consequently 8 (t)-dN, /dt; see
Eq. (7.149)] changes relatively slowly, so that the adiabat-

a, (t)=a
&

(0)exp i—f M, (t')dt'
0

t
a2 (t)=a& (0)exp i f—M2(t')dt'

0

(7.152)

It follows from Eq. (7.152) that in the adiabatic approxi-
mation (i.e., up to corrections of order
[28~/(Mq —M

~ )] ) transitions between the matter eigen-
state neutrinos f~ (t) and gz (t) do not take place, in spite
of the variation of the density along the neutrino path.
However, the flavor content of a neutrino beam can
change substantially. Using Eqs. (7.152), (7.150), (7.141),
and (7.142), we obtain from (7.147) for the amplitudes

a, (t) and a„(t)

ic condition
2

28 (t)
(7.151)

M, (t) —M, (t)

is fulfilled, one can neglect the nondiagonal terms [8 (t)]
in the neutrino evolution matrix in Eq. (7.148) (Mi-
kheyev and Smirnov, 1985, 1986c; Messiah, 1986). The
solutions of the evolution equations can then readily be
found:

a, (t)= c c (t)+s~s (t)exp i —[E2 (t') —E~ (t')]dt' exp i —M, (t')dt'
0 0

a&(t)= cs~(—t)+s c (t)exp i f [—E2 (t') —E& (t')]dt' exp i f M&(t—')dt'
(7.153)

The corresponding probabilities have the form

P „(t)= .
~
a, (t)

~

=[c c (t)+s s (t)] —,
' sin28 —sin28 (t) 1 —cos (E2 E& )dt'—

P „(t)=
~

az(t)
~

=. [ cs (t)+s—c (t)] + —,'sin28 sin28 (t) 1 —cos f (Ez E~ )dt'—
(7.154)

So, if the density changes adiabatically, for given p,
hm, and 8, the average probabilities P, , (t)
= c~ c (t)+s~ s (t), P, . (t) = 1 P, , (t), and th—e

amplitude of oscillations Az ———,
' sin28~sin28 (t) depend

only on the values of the density at the beginning (N, )

and at the end point r =t[N, (t)] of the neutrino path
[which via Eqs. (7.120) and (7.121) determines 8 and
8 (t), respectively] and not on the density distribution
along the path. Large-amplitude oscillations v, ~+v& take
place in the regions with N, (t)-N,"' provided N, -N,"'
(or in the case N, «N,"' if the vacuum mixing angle is
relatively large). For N, & N,"'

( N, & N,"') and

N, (t) &N,"' [N, (t) &N,"'] one has s~ &0.5, s (t) &0.5
[c~ &0.5,c~(t) &0.5], and therefore P, , (t) &0.5. Fur-

ther, if neutrinos are produced and/or end up in a region
with density that exceeds considerably or is much smaller
than the resonance density, and the vacuum mixing angle
8 is small [Eq. (7.133)], then

~

sin 8
~

&& 1 and/or

~

sin28 (t)
~

&& 1 and the oscillatory term in Eq. (7.154) is
negligible. Under these conditions practically oscillation-
less and almost total v, ~v& conversion is possible (Mi-
kheyev and Smirnov, 1986c). This can take place if, for

I

example, (i) neutrinos are produced in a region with high
electron number density,

I. „,cos28= „,»1 (7.155)

[we have used Eqs. (7.112), (7.143), and (7.133) in (7.155)];
(ii) the density decreases monotonically along the path of
propagation of neutrinos to some minimal value

N, =N, (tf) «N„(iii) neutrinos pass through a reso-
nance layer ( Nf & N,"') and

xf
(7.156)

~0 N =Nf

It follows from Eqs. (7.120), (7.121), and (7.133) that
under the conditions (7.155) and (7.156)

Indeed, it is not difficult to convince oneself that up to
corrections of order I28 (ti/[M2(t} —M~(t}]j, for example,
the eigenvalues in the neutrino evolution matrix in (7.148) coin-
cide in this case with M&(t) and Mz(t) at any t.
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~res ~res
sin20 0 tan20 1 + oN, X,

~res
' 2 '

~res
cos20 =—1+—

0 tan 20 1+2
N,

(7.157)

f f
sin20~(rf)=tan20 1+ „, , cos20 (tf)=1 ——,tan 20 1+2

e e

Using Eq. (7.157) one obtains from (7.154) to leading order in sin 0, N,"'/N„and Nf/N, "'

mP„, (tf).=sin 0 1+2 „,+2 o cos (E2 E& —)dt' =sin 0,
e e

P (tf)=. 1 P, ,—(tf)=cos 0. (7.158)

Since sin 0«cos 0, we have indeed practically a total v, —+v& conversion in this case. The neutrino state which at
t =0 is described by

~

v(0) ) =
~
v, )=

~ gz (0) ) transforms continuously into the orthogonal state

~
v(tf ) )=

~
v„)=

~ P2 (tf ) ) at tf as the density decreases, passing through the resonance value. Since the density changes
relatively slowly, the neutrino system, being at t =0 in a state which to a good approximation is an eigenstate of the
Hamiltonian H, has time to adapt to the change and thus to follow it. The probability P, , (t)=P ~ .„(r) follows the

behavior of N, (t), increasing and decreasing together with the electron density. The "rotation" of the neutrino flavor in
the case under consideration is analogous to the well-known phenomenon of rotation of the spin of a spin- —, particle in a
slowly varying magnetic field. Let us add that at resonance, as follows from Eqs. (7.128), (7.159), and (7.154),
P, „(t„,)=P. , , (t„,)=—, and that for t & tf practically no v„~~v, oscillations will take place even if N, (t) &N, (tf)
since the neutrino system will be in a state with definite energy:

t

~

v(t))=exp i f —Ez (t')dt'
~
gz(t)) =exp i j E2 —(t')dt' e f '(

~
v, )sin0+

~

vz)cos0) .

In order for the adiabatic v, ~v& conversion to be pos-
sible, the condition (7.151) should be satisfied at all mo-
ments t & tf Howeve. r, the validity of the adiabatic con-
dition in the resonance layer is most important. At reso-
nance (M2 —M~ ) =(E2 E~ ) has a—minimal value [see
Eq. (7.124)], and the factor multiplying the derivative
dN, /dt in Eq. (7.149) for 0 (t) is maximal. Moreover,
the most significant changes of the flavor content of the
neutrino state take place precisely in the resonance layer.
Using Eqs. (7.149), (7.145), and (7.124), we can rewrite
the adiabatic condition at resonance in the form

2
2L res

(7.159)

Obviously, Eq. (7.159) will be satisfied if the resonance
width exceeds the oscillation length at resonance density:
Ar &L"'. This condition resembles the necessary condi-
tion (7.134) for the existence of large oscillation effects in
matter with constant density, although in the case under
consideration oscillations practically do not occur.

Obviously, with minor modifications, the above results
will be valid for the v, ~v and the vI~v, t'=e, p, ~,
transitions. If ~ cos20 & 0 and the vacuum mixing angle is
small, oscillations involving neutrinos will be suppressed
in matter with varying density, while transitions between
antineutrinos v, —+v„[ ~

and/or vl —+v, l =e,p, ~, will be
strongly enhanced.

Extensive numerical calculations (Mikheyev and Smir-
nov, 1985, 1986c; Barger, Phillips, and %'hisnant, 1986;
Bouchez et al. , 1986; Kolb, Turner, and Walker, 1986;

Rosen and Gelb, 1986); performed in the framework of
the standard solar model have shown that, for values of
the vacuum oscillation parameters Am and sin 20 in the
intervals 10 & Am & 10 eV, sin 20& 10, the adia-
batic condition (7.151) as well as the conditions (i)—(iii)
[Eqs. (7.155) and (7.156)] can take place in the sun, and
thus a substantial depletion of the solar v, flux is possible.

With this remark we shall conclude our discussion of
neutrino oscillations in matter. Among the questions not
considered by us, of particular interest are those concern-
ing the divergence of neutrino wave packets in matter and
the transitions between the flavor neutrinos in the case of
nonadiabatic density variation. They have been studied
by Mikheyev and Smirnov (1986a, 1986c), Bouchez et al.
(1986), Parke (1986), Petcov (1987), and Toshev (1987a),
respectively. Three-neutrino oscillations in matter have
also been intensively investigated recently (Baldini and
Giudice, 1986; Kim et al. , 1986; Kuo and Pantaleone,
1986a, 1986b; Petcov and Toshev, 1986; Smirnov, 1986;
Toshev, 1987b). A more detailed discussion of the subject
in general can be found in Mikheyev and Smirnov
(1986b).

Vill. MASSIVE NEUTRINOS IN GAUGE THEORIES

A. General remarks

After the foregoing rather extensive general analysis of
the possible varieties of neutrino mass terms and massive
neutrinos, we turn now to examples of neutrino mass gen-
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eration in the framework of gauge theories with spontane-
ous symmetry breaking. As is well known, no accept-
able alternatives to the gauge theories as theories of
elementary-particle interactions exist at present. Not only
the electroweak but also the strong interactions of quarks
are most successfully described by a theory with unbroken
SU(3) color gauge symmetry, or quantum chromo-
dynamics (QCD). The symmetries playing a fundamental
role in the construction of the gauge theories are dynami-
cal. They fix unambiguously the character of the dynam-
ics governing the basic particle interactions (electroweak,
strong, etc.) and (apart from the sector responsible for the
mass generation) ensure renormalizability once the sym-
metry group and the particle content of the theory are
specified. It has been known for a long time (Lee and
Yang, 1955) that the conservation of lepton I. and baryon
B charges could not possibly be associated with unbroken
local symmetries. ' This may reflect the existence of ex-
act global symmetries which, however, are not inherent
to, and have to be imposed as an additional constraint on,
the gauge theories. In this sense global symmetries imply-
ing lepton and baryon charge conservation cannot be con-
sidered as fundamental in the context of the gauge
theories. The latter admit violations of these symmetries
whenever the requirement of local gauge invariance (and
renormalizability) and the relevant multiplet content per-
mit it. As a consequence, finite neutrino masses arise
quite naturally in the gauge theories of electroweak in-
teractions (see, for example, Cheng and Li, 1980) and
especially in grand unified theories (GUT's)
unifying the electroweak and strong interactions (see, for
example, Ellis, 1981). In some GUT's, such as those
based on the group SO(10), it is almost impossible to
avoid. finite neutrino masses. At the same time the sim-
plest versions of these theories, namely, the standard
SU(2)L, XU(1) electroweak theory, which contains no RH
neutrino fields vs(x), and its SU(5) grand unified gen-
eralization (Georgi and Glashow, 1974) predict massless
neutrinos.

The neutrino mass matrix originates usually in gauge
theories of electroweak interactions from Yukawa-type
couplings of the lepton doublets and/or singlets with
Higgs scalar fields, some components of which develop
nonzero vacuum expectation values. In order not to spoil
the renormalizability of the theory, these couplings have
to be gauge invariant. The mass terms thus generated can
be of the varieties we have considered, i.e., both massive
Dirac and massive Majorana neutrinos are possible in the
gauge theories.

Further, the properties of massive Dirac and massive
Majorana neutrinos and the physics associated with them
are very different. Massive Dirac neutrinos arise in
theories in which some lepton charge is conserved. The
simplest example of such a theory is the minimally ex-
tended standard electroweak theory that includes the RH
neutrino fields vugg (x) as SU(2)L and U(1) singlets,
wherein the total lepton charge I. is assumed to be con-
served. Besides the nonzero neutrino masses, the only
predicted new phenomena that might lead to observable
effects in this case are, in essence, the oscillations between
neutrinos possessing different flavors (Petcov, 1977b). In
contrast, massive Majorana neutrinos arise in theories
with no conserved lepton charge, which represent consid-
erable extensions of the standard theory (see, for example,
Cheng and Li, 1980). As a rule, they predict the existence
of a multitude of characteristic particles and processes.
For instance, in the SU(2)1 XU(1) theories containing no

vs (x ) fields, these could be relatively light neutral,
charged, and doubly charged, as well as massless Higgs
particles and a number of specific processes in which they
might take part. For this reason, it is generally believed
today that massive neutrinos could be the "visiting card"
of some new physics beyond that predicted by the stan-
dard model.

As we shall see, the gauge theories offer essentially no
clues about the precise values of the neutrino masses and
leptonic mixing angles. As a rule, grand unified theories
with massive neutrinos suggest a plausible explanation for
the smallness of the neutrino masses, relating them to the
ratio M~ z/MoUT of the two mass scales typically
present in GUT's: the scale of unification of electroweak
and strong interactions MGUT —10' GeV and the scale of
unification of weak and electromagnetic interactions
ME~-M~zo-100 GeV. The predicted values of the

masses themselves are subject to uncertainties. Neverthe-
less, the predictions in general have a tendency to lie in
the region between 10 eV and several tens of keV,
which, in principle, can be explored in various experi-
ments with neutrinos from accelerators, reactors, and the
sun and with atmospheric neutrinos (see, for example,
Bilenky and Pontecorvo, 1978). Specific values for the
leptonic mixing angles as well as for the ratios of the neu-
trino masses can be obtained within a given theory if the
theory, for example, is required to be invariant with
respect to certain discrete transformations involving the
neutrino fields. The angles and neutrino mass ratios are
expressed then in terms of ratios of quark or charged-
lepton masses (e.g. , Harvey, Ramond, and Reiss, 1982).
Usually, there is no a priori justification for the existence
of such symmetries.

It is beyond the scope of the present review to discuss the
structure of the gauge theories. There exist already several ex-
cellent reviews and books on the subject (Faddeev and Slavnov,
1980; Quigg, 1983; Cheng and Li, 1984).
4~Otherwise the resulting gauge interactions would introduce a

discrepancy in the Eotvos experiment, unless they were charac-
terized by ultrasmall coupling constants.

B. SU(2)L XU(1) theories

Dirae neutrinos

Dirac-type mass terms [Eq. (4.10)] arise most naturally
in the standard SU(2)L XU(1) theory containing the RH
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neutrino fields v!!!(x)as SU(2)L singlets (Petcov, 1977b).
These terms are generated by the Yukawa-type interaction

~!—p
— Q G!'!vl'R 0'cf

&lI.
(8.1)I +H.c. ,

l, l'=e, p, v,

where!t!'=ir2$* is the charge conjugate of the standard
Higgs doublet

the neutral component of which has a nonzero vacuum
expectation value (P )o&0, and G!! are, in general, com-
plex constants. The coupling (8.1) gives rise to W [Eq.
(4.10)] with M!!=(P )OG!!. The neutrino mass spec-
trum as well as the lepton mixing matrix can be arbitrary.
In this case neutrinos are treated on an equal footing with
the other fermions of the theory, and there exists a com-
plete analogy between leptons and quarks. In particular,
the couplings (8.1) are similar to those inducing a mass
term for the charged leptons:

l, l'=e, p, w, . . .

&lI.
G!'!l~ P, +H. c. , (8.2)

where Gl'l are complex constants.

2. Majorana neutrinos

a. The model with a triplet of Higgs scalars

It is impossible to generate a Majorana mass term for
neutrinos in the minimal SU(2)L X U(1) theory [no v!!!(x)]
via a renormalizable gauge-invariant coupling, as the
product (C 'v!L) v! L, changes the weak isospin by one
unit, and the only Higgs field available is an isodoublet.
However, , if a triplet of neutral, charged, and doubly
charged Higgs fields

—H+/VZ H++
H H+/V'2 (8.3)

!—H
l, l'=e, p, ~, . . .

IL(v )'
h!!(v!LlI )H ir2

lI. )'

+H.c. , (8.4)

where hll are complex symmetric constants, leads to

whose neutral component has a nonzero vacuum expecta-
tion value (i.e., (H )0——u /v 2+0) is introduced, the
gauge-invariant coupling

(Cheng and Li, 1980; Maiani, 1980), with

~l/'= 2 — All' =U~ll'v'2 (8.5)

Stringent constraints on the value of (H )0 follow from
the existing data on the ratio M~/(Mzcos 8~ ), which in
the model is given by

Mw2

icos Ow
2 2

(H'),
')O

(H'),
( ')0

2

1+2
2

A,
2

21+4'
A,

2

From the experimental success of the standard model pre-
diction M~/(Mzcos 8~)= 1 it follows that u &&A, , where

A,=250 GeV.
In addition to nonzero neutrino masses, the theory

predicts the existence of three neutral, one charged, and
one doubly charged physical Higgs scalar particles. Their
masses and couplings with the leptons and quarks depend
crucially on the mechanism used to break the global U(1)
symmetry associated with the conservation of lepton
charge L. Et is possible to assign two units of L to the
Higgs triplet H[L(H)= —2], so that the coupling (8.4)
would conserve the lepton charge. The form of the U(1)
symmetry breaking leading to (H )o&0 and L noncon-
servation is determined by the assumed properties of the
Higgs potential V(P,H) of the theory. The breaking can
be explicit when V(P, H) is supposed to contain the trilin-
ear L-nonconserving term (P HP'). In this case the
masses of the physical Higgs particles in the model can be
arbitrarily large, e.g., they may considerably exceed, Mw.
Consequently, except for the nonzero neutrino masses,
there may be no specific observable effects at low energies
due to the presence of the additional massive scalar parti-
cles in the theory. Moreover, no deviations from the stan-
dard big-bang cosmology are predicted.

The phenomenology of the theory changes drastically if
one assumes that the lepton charge L is conserved by the
Higgs potential V(P, H), but the U(1) global symmetry as-
sociated with the conservation of L is broken spontane-
ously (Chikashige, Mohapatra, and Peccei, 1981) as H
develops a nonzero vacuum expectation value. The result-
ing model is due to Gelmini and Roncadelli (1981) and
has been widely discussed (e.g., Georgi, Glashow, and
Nussinov, 1981; Schechter and Valle, 1982a). Its most re-
markable feature is the presence of a physical massless
neutral scalar particle M (the Goldstone boson of the
broken global symmetry) called a Majoron, which has ex-
tremely weak pseudoscalar couplings with the charged
leptons and quarks. The Majoron field M (x) is a linear
combination of the imaginary parts of the neutral com-

The property ha ——hI I is analogous to the symmetry property
of the Majorana mass matrix of neutrinos.

43Note that this symmetry has nothing to do with the U(1)
weak hypert-. harge symmetry of the standard theory.
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(8.7)

(8.9)

where Hz+ is the physical massive charged scalar'field in
the theory, and the substitutions (8.8) and (8.9) should be
made irrespective of the chosen mechanism of symmetry
breaking.

The couplings of the Majoron to the neutrino mass
eigenstates Xx (x) and the charged leptons can be deduced
from Eqs. (8.2), (8.4), (8.6), and (8.7):

,=i, , M (x) g Xk(x)y5Xk(x)v —M (g2+4u2)1/2

ponents of the Higgs doublet field P and the Higgs triplet
field H. In the unitary gauge in which no unphysical
fields are present in the Lagrangian of the theory, the
couplings of M can be obtained by the substitution

p (x) p—(x)~i 2 2 1/2M (x), (8.6)
(A2+4u )'/2

H (x) H*(—x)~ i— , M (x)
(g2+ 4u 2

)
1/2

[M '(x)=M (x)] .
Let us note that in the same gauge we have effectively

y(+)~ u H+ (8.8)
(A, +2v )'

+ +
2 2 1/2 T

(A, +2u )

Unlike the case of explicit 1. breaking, the Majoron
model predicts physical scalar particles that are relatively
light on the scale of electroweak symmetry breaking
A,=250 GeV. For instance, the mass of one of the neutral
Higgs particles, whose couplings to the charged leptons
and quarks are also suppressed by the factor v/A, , does
not exceed U. Together with the Majoron the physical
scalar particles should take part in or mediate a number
of characteristic processes .at low energies (Georgi,
Glashow, and Nussinov, 1981). In particular, the charged
and neutral ones may be produced in 8'—-boson and Z-
boson decays. The width of the Z decay into a Majoron
and its light neutral counterpart is twice that of the Z
decay into a neutrino-antineutrino pair of a given type.
Being unobservable, this specific decay mode of the Z
would mimic decays into two new types of neutrino-
antineutrino pairs. Consequently, a relatively accurate
measurement of the width of the Z invisible decays will
provide a crucial test of the triplet Majoron model. The
cosmological implications of the model are unconvention-
al as well. For example, according to the model,
neutrinos —in contrast to photons- "ould not survive dur-
ing the evolution of the universe to form cosmic back-
ground. They are predicted to disappear, annihilating
pairwise into pairs of Majorons (Georgi, Glashow, and
Nussinov, 1981).

[CXk (x)=Xk(x)], (8.10) l2. The model of Zee

M (x)I —Mo (g2+4 2)1/2

1 =e,p, g, . . .

Vl I
g l(x)ysl(x) .

2M 11

(8.11)

U (l00 keV . (8.12)

Thus the charged lepton —Majoron coupling is exceeding-
ly weak as, on account of Eq. (8.12), u/A, &4X 10 . The
same conclusion applies to the quark-Majoron interaction
under the condition (8.12). Hence, the Majoron may cou-
ple substantially only to neutrinos.

44For an analogous reason, the quark-Majoron couplings are
also flavor diagonal.

They are diagonal in the fields of leptons with definite
masses, since the neutrino and charged lepton masses ori-
ginate in the model from couplings to one Higgs field
(triplet and doublet, respectively). Further, the strength
of the charged lepton —Majoron interaction is determined
by the ratio u/(1, +4u )'/. Severe constraints on the
possible value of u in the triplet Majoron model can be
obtained from astrophysical considerations. It can be
shown (Georg1, Glashow, and Nussinov, 1981) that the
process y+e —+M +e inside red giant stars, which is
possible due to W& Mo, would lead to unacceptably large

energy losses unless

An alternative mechanism for generating a Majorana
mass term within the SU(2)1 &C U(1) theories with a
minimal fermionic content and an enlarged Higgs sector,
including several Higgs doublets P; (i =1,2, . . . ), was
suggested by Zee (1980). As we shall see, the model of
Zee is extremely rich in properties (Wolfenstein, 1980,
1981a; Petcov, 1982a, 1982b) that make it interesting
from both a theoretical and an experimental point of
view, and we are going to consider it in somewhat greater
detail. The mechanism for neutrino mass generation in
question relies on the fact that there exist more than one
lepton family. For definiteness we shall assume three
such families. The LH neutrinos v1 acquire a radiatively
induced Majorana mass term as a result of the introduc-
tion of an SU(2)L singlet charged Higgs field. H'. It
couples to SU(2)1 singlet combinations of two lepton dou-
blets which are'antisymmetric in the flavor indices:

(&1 L)'
Wl H' g f11 (v—11.lL, )H 1'r2 li z +H C.

I~5 =e,p&7

=2 g f(( ll H' (v11. )'+H. c. , (8.13)
I, I'=e,p, ~

0 0where f11 = —f1 1 are, m general, complex constants.
Utilizing the phase arbitrariness of the three pairs of lep-
ton fields, one can make W1 ~ explicitly CI' conserving,
which implies [in the convention fixed by Eqs. (5.21) and
(5.26)] that f~1 can be made real. According to Eq. (8.13)
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H' can be assigned two units of the lepton charge I.. The
lepton-number-violation effects originate then from trilin-
ear couplings of II' to P;, which have to be antisymmetric
in the indices of the Higgs doublets in order to preserve
the gauge symmetry

y
=g c&k P& Pk H +H. C.

j,k

(8.14)

Mg =fg (mi —pl~ ), l, l =e,p, r
(0') 2 2

Here (Petcov, 1982b)
2

(8.15)

(8.16)

where M~ 2 are the masses of the charged Higgs particles
H&+2, and the mixing angles P and P are defined through
the relations

where cjk ———ckj are, in general, complex constants. One
can consider without loss of generality the simplest case
of two Higgs doublets. In this case there is one constant
in Eq. (8.14), c~2, and it can be made real. As in the stan-
dard model, the neutral components of the Higgs doublets

develop nonzero vacuum expectatlon values

(($, 2)0&0), which break spontaneously the U(1) global
symmetry associated with conservation of the weak hy-
percharge. Further, there are three charged scalar fields
in the theory (H' and the upper components of the dou-
blets P~ 2), but only two linear combinations formed by
them ( H, 2 ) correspond to physical scalar particles.
These particles possess nonzero masses.

Although absent from the Lagrangian of the theory, a
neutrino mass term of Majorana type arises at the one-
loop level due to the couplings (8.2), (8.13), and (8.14) (see
Fig. 1). This term is finite and takes a particularly simply
form (Wolfenstein, 1980) if only one of the Higgs dou-
blets, say P~, couples to the leptons and the P&-lepton cou-
plings are flavor diagonal:

The existing data impose rather weak constraints on the
parameters M~ 2, f~r, P, and P, and consequently on fa0

(Petcov, 1982b). The search for charged scalar particles
at PEP and PETRA has given negative results which im-

ply M, 2 & 20 GeV. Another constraint follows from the
observed universality between the p decay and P decay:

(8.19)

where

M =M~ cos P+M2 sin P . (8.20)

It should be noted that Ml'I ' ——0, l =e,p, v, and there-
fore the relevant neutrino mass Lagrangian W,~~ contains
only flavor nondiagonal terms. This property of W,fr is a
consequence of the chosen form of the lepton-P; cou-
plings and does not hold in the general case. However, it
is interesting from the theoretical point of view as it leads
to very unusual consequences [e.g. , for the (PP)o,-decay
rate].

Of special interest also is the possibility

l feP l

+ (feT +fPT ) (8.21)

m, =m„'
l f,„sin2a l,

i sgn( f—,zsin2a ),

The character of the resulting neutrino mass spectrum, as
well as the CP parities of the Majorana mass eigenstates
in this case, is determined by the ratios of the charged-
lepton masses squared. Of the three massive Majorana
neutrinos, two, say 72 3, are almost degenerate in mass,
possess opposite CI' parities, and are much heavier than
the third g)..

tang = (8.17)
=m + —,

'
m

~ sgn( f,&sin2a ), (8.22)

tan2P =
2 2, 2V2

(M )
—M2) — 2 c)pMp

2 1/2 (8.18)
CP CP

'g2 = —'g3 =l

2
Pl@

imp —m3
l
=m) ( m2,

P2~

0f1.
tancx =

0
f8T

2
P7Z p (8.23)

FKx. 1. Diagrams generating finite neutrino mass term of Ma-
jorana type in the model of Zee.

It follows from Eqs. (8.22) and (8.23) that, in the version
of the model considered, the absolute values of the masses
m; cannot be predicted. However, m2 3 may well lie in
the range of 20 eV. The relations between v~L(x) and
X;(x) (i = 1,2, 3) are given by (Wolfenstein, 1980; Petcov,
1982a)
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~2L ~3L
+,L sina+ cosa

2
veL

X2L X3L
vpL = —y ]Lcoscx + sina

&2
+2L ++3L

v2

(8.24)

Some of the predictions of the Zee model, as well as of
the model with a triplet of Higgs scalars, will be con-
sidered by us later.

We shall restrict our discussion of possible mechanisms
for generation of Majorana-type neutrino mass terms in
the SU(2)L XU(1) theories to the two examples considered
above. A rather complete list of other possibilities can be
found in Cheng and Li (1980).

Finally, it is amusing to note that a mass term of
Dirac-Majorana type W + with ML, ——0 [see Eq. (4.9)]
and, consequently, massive Majorana neutrinos may ap-
pear in the standard Inodel containing the RH neutrino
fields v~z(x). Indeed, besides the Dirac piece generated in
the standard way [see Eq. (8.1)], the most general neutrino
mass Lagrangian includes in this case a Majorana term
for vl~(x). Since vIR(x) are SU(2)L and U(1) singlets, the
latter is gauge invariant and does not spoil the renormal-
izability of the theory. The neutrino masses and lepton
mixing angles thus arising can be arbitrary.

C. Grand unified theories

The grand unified theories (Pati and Salam, 1973;
Georgi and Glashow, 1974) represent an attempt at a uni-
fied description of electroweak and strong interactions of
leptons and quarks in the framework of gauge theories.
According to the grand unified theories with unbroken
color symmetry that we shall discuss, the electroweak and
strong forces between the fundamental fermions, - as
described by the standard SU(2)1. X U(1) and SU(3) gauge
theories, should become universal in strength at ultrahigh
energies characterized by a scale MoUT —10"GeV (Geor-
gi and Glashow, 1974); At these energies the difference
between leptons and quarks is supposed to be inessential,
reducing to a difference only between the values of the
electroweak [SU(2)z XU(1)] and strong [SU(3) ] charges
they carry. Accordingly, the particle multiplets in GUT's
are composed of both leptons and quarks. As a conse-
quence, the baryon 8 and lepton I. charges are not
separately conserved, but the combination (B L) has a-
special status and may be preserved in GUT's. Further,
nucleon decays like p —+e+~, p —+p+K, etc. are allowed
and may proceed with rates close to the existing upper
limits. Extensive searches for indications of the nucleon
instability predicted by GUT's are being performed at
present. However, the results obtained so far are either
negative or not conclusive (Koshiba, 1984).

We shall focus our attention on neutrino mass genera-
tion in two classes of GUT's, namely the SU(5) (Georgi
and Glashow, 1974) and SO(10) (Georgi, 1974; Fritzsch

drc
L

dyeL

dbc

eL

veL

(8.25)

10= uLy'

r—QL

bc
uL

TC—uL

—uLy

—uL
yc

PC
uL

b—uL
b—dL

uL
b

uL

C—eL

dL

dL

dL

eL

(8.26)

Jf' ~T JQ T
Here uL ——Cup and dL ——Cd), where j is the color in-
dex of the quarks, j= r, b,y. The multiplets containing
fermions of the second and third generations can be ob-
tained from Eqs. (8.25) and (8.26) by the substitutions
veL ~vpL ~ e ~p, u ~c, d ~s, and veL ~v&L ~

J J J J

uJ~tJ, dJ~bJ, respectively. The minimal set of Higgs
fields necessary to realize the requisite spontaneous sym-
metry breaking in the theory [SU(5)~SU(3) XU' (1)]
consists of a 5-piet and a 24-piet. The indicated multiplet
content, together with the requirement of gauge invari-
ance of the Higgs field couplings, ensures, automatically
the conservation of the (B L) charge. As -a consequence,
the neutrinos are predicted to be massless. The minimal
SU(5) theory of Georgi and Glashow is essentially unique
among the grand unified theories in allowing massless
neutrinos to occur naturally.

The SU(2)L XU(1) models with a triplet and singly
charged Higgs field and a neutrino mass term of Majora-
na type, discussed in the previous subsection, can be ac-

and Minkowski, 1975) theories. The first represents a
minimal grand unified generalization of the SU(2)L, XU(1)
electroweak and SU(3) strong interaction theories. As in
the SU(2)I XU(1) theory, parity nonconservation is built
into the SU(5) GUT's with the type of fermion multiplets
chosen, and no attempt is made to relate it to some form
of breaking of an initial symmetry of the theory. In con-
trast, one starts with parity-conserving fermion couplings
in the SO(10) GUT's. The corresponding symmetry is as-
sumed to be broken spontaneously or explicitly only in the
Higgs sector. Through the interaction of fermions and
gauge bosons with the Higgs fields, the symmetry break-
ing is conveyed to the gauge couplings of the fermions.

In the minimal SU(5) theory of Georgi and Glashow
(1974), which is a generalization of the standard
SU(3) XSU(2)1. XU(1) theory, the fermions of each gen-
eration are assigned to the reducible (5+10) representa-
tion of the gauge group. There is no room in it for the
RH neutrinos, which are SU(5) singlets. Thus neutrinos
may acquire, in principle, only a mass term of Majorana
type in the SU(5) theory.

For the first generation the 5-plets and 10f-plets have
the form

Rev. Mod. Phys. , Vol. 59, No. 3, Part l, July 1987



?18 S. M. BiIenky and S. T. Petcov: Massive neutrinos and neutrino oscillations

16f—5f+10f+1f, (8.27)

where the 5f- and 10f-plets have been specified earlier
[see Eqs. (8.25) and '(8.26)]. The SU(5) singlet lf can be
identified with the RH counterpart [viz(x)] of the LH
neutrino field [v~L, (x)] in the multiplet. A neutrino mass
term of Dirac type is inevitably generated by the
fermion —Higgs-boson couplings that give rise to the
quark and charged-lepton mass terms (see, for example,
Langacker, 1981). However, due to the underlying sym-
metry of the theory and the irreducibility of the fermion
representations used, it is not arbitrary in general. For ex-
ample, in the cases of Higgs fields forming 10- and/or
126-dimensional representations (10H, 126H) of SO(10),

commodated within the SU(5) theory with an enlarged
Higgs sector by adding a 15-piet and a 10-piet of Higgs
fields, respectively (Cheng and Li, 1980). Among the
SU(5) models with massive neutrinos in which neutrino
mass terms arise as radiative corrections, the generaliza-
tion of the model of Zee is unique in that it does not ex-
clude sizable neutrino masses, mass differences, and mix-
ing angles, and therefore, sizable effects of neutrino oscil-
lations at the existing facilities (Nieves, 1981).

Massive neutrinos appear quite naturally in the SO(10)
GUT's. Moreover, the suggested mechanisms of neutrino
mass generation in these theories give rise to neutrino
masses compatible with the existing experimental data,
thus providing an explanation of the remarkable disparity
between the neutrino and the charged-lepton and quark
masses.

The generation of neutrino masses is intimately related
to parity and (B L) nonco-nservation in the SO(10)
theories (Ramond, 1979; Barbieri, 1980). Parity noncon-
servation is assumed to arise only as a result of spontane-
ous symmetry breaking or specific Higgs self-interactions
(Georgi, 1974). Therefore both LH [v~L (x)] and RH
[v~~(x)] neutrino fields are present in the relevant fer-
mionic multiplets, and consequently neutrinos can acquire
a mass term of Dirac type. Since, in addition, the (B L)-
charge is not necessarily conserved, no symmetry forbids
the appearance of Majorana mass terms formed by v~L (x)
and/or v~z(x). This implies that, in the SO(10) theories,
the neutrino mass Lagrangian can be expected on rather
general grounds to be of the Dirac-Majorana type con-
sidered by us in Sec. IV. D.

The fermions of each generation are assumed (Georgi,
1974; Fritzsch and Minkowski, 1975) to form a 16-
dimensional irreducible spinor representation (16f) of
SO(10). Its SU(5) content is

the resulting Dirac neutrino masses are of the same order
as the charge- —', quark masses (Georgi, 1974; Georgi and
Nanopoulos, 1979a, 1979b, 1979c). Obviously, such a
possibility is ruled out by the existing data. The neutrino
mass spectrum changes drastically, however, if, being
SU(5) singlets, the RH neutrinos acquire a huge Majorana
mass M, say, of order of the unification mass M&UT~IR '
(Gell-Mann, Ramond, and Slansky, 1979; Yanagida, 1979;
Stech, 1980). Neglecting for simplicity the possible inter-
generation mixing, we then get the following mass term
for the neutrinos of each generation:

0 PlD VL
D+M 1

SQ(10)— 2 [(&L) &R] M q +H cID vR L&g )

2IDI=, M=M
M vR

(8.29)

respectively, and opposite CP parities. Further, up to
corrections of the order of mD/M « 1, we havevR

vt. (x)=XI.(x), and v~(x)=%~(x), i.e., the admixture of
superheavy neutral leptons in the LH charged lepton
current is negligible. It can be shown that the effects of
flavor mixing, as well as of nonzero Majorana masses
smaller than mD for the LH neutrinos, do not qualita-
tively alter these results.

Large Majorana mass for the RH neutrinos can be gen-
erated via the Higgs mechanism by the coupling of two
16/ to 126H, whose SU(5) singlet component has
nonzero vacuum expectation value (Gell-Mann, Ramond,
and Slansky, 1979; Yanagida, 1979; Stech, 1980). This
breaks the SO(10) symmetry to SU(5) and induces (B-L)
nonconservation. Large M can also arise as a radiative~R

correction at the two-loop level (Witten, 1980) if the
Higgs fields chosen form only 10- and 16-dimensional
representations (10H, 16H) of SO(10) (no 126H present).
The nonconservation of the (B-L) charge is then associat-
ed with the trilinear Higgs boson coupling (16H 16~10H ).
For M one gets in these two cases, respectively,

case A: Mv -Mso„,
2

~D
case 8: M~ -c — Mso

lO
'

(8.28)

where ID is of order of the mass of the charge- —,
'

quark
from the same generation and flavor indices have been
suppressed. As was shown earlier (see Sec. VI.B), the
mass eigenstates of the Lagrangian Wsz~g~ are one light
Majorana neutrino (p) and one superheavy Majorana neu-
tral lepton (X) with masses

450ne can use also the couplings of a 120-piet of Higgs fields
to generate the requisite fermion mass spectrum. Although
Dirac neutrino masses compatible with the observations could
arise at tree level in this case, they may be changed dramatically
by radiative corrections (for details see Barbieri et al. , 1980).

Majorana masses smaller than mD actually appear as radia-
tive corrections in the case under consideration (Barbieri et al. ,
1980; Magg and %"atterich, 1980).
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where Mso is the characteristic scale of breaking of the
10

SO(10) symmetry to SU(5) and E is a Higgs boson mixing
parameter associated with the indicated trilinear coupling.
The scale Mso is not fixed unambiguously. It can
exceed the unification scale by several orders of magni-
tude, being possibly of order of the Planck mass
Mz —10 GeV: MARUT &Mso &Mz. As a consequence,19

there are large uncertainties in the predictions for neutri-
no masses. Using, for example, for the current masses of
the u, c, and t quarks the values 5 MeV, 1.5 GeV, and 40
GeV, respectively, with Mso -10' GeV and c.-0.1, we

get the following light-neutrino mass spectra in cases (A)
and (B):

case A: m&-10 ' eV, m2-10 eV, m3-0. 7&&10
eV;

case 8: m~ —2.3&10 eV; m2 —7.0 eV, m3 —181.8
eV.

As we have indicated, variations by several orders of mag-
nitude in the direction of smaller masses are possible due
to the uncertainty in the value of Mso . The effects of

10

flavor mixing introduce additional uncertainties in the
values of the light-neu'trino masses.

It should be emphasized that'it is possible to have zero
mass and even light Dirac neutrinos in the SO(10) GUT's.
This can be a consequence of the presence of SO(10) sing-
let fermions in these theories (Georgi, 1974; Georgi and
Nanopoulos, 1979a, 1979b, 1979c; Roncadelli and Wyler,
1983; Wyler and Wolfenstein, 1983), which make it possi-
ble to maintain the conservation of the (B L) charge. -

Indeed, adding to each generation of leptons and quarks
an SO(10) singlet fermion field sL (x) (the generation in-
dex is suppressed) and assuming that it forms an SO('10)-
breaking but SU(5)- and (B-L}-preserving mass term with
v~(x) [—Mso, ,

sl (x)v~(x)+H. c.], one obtains the fol-

lowing neutrino mass Lagrangian (Georgi and Nano-
poulos, 1979a, 1979b, 1979c; see also Petcov, 1982a):

~SO(10) [VL (VR ) SL ] MD
D

0 Mso

0

so„

)( vg +H. c.

(sL )'
(8.30)

This conserves the corresponding lepton charge and there-
fore the (B L) char-ge, which is also conserved by the to-
tal Lagrangian of the theory. The mass eigenstates of the
Lagrangian (8.30) are one massless neutrino, which up to
corrections of order of mz/Mso coincides with vL, , and

10

one Dirac neutral lepton with large mass of the order of
(Mso '+mD) ~ Mso

The neutrino mass Lagrangian for a given generation
would have one light and one heavy Dirac eigenstate if in
addition to Wso()Q) it contained the lepton;number-
conserving couplings to vL, (x), v~(x), and sl. (x) of a
second SO(10) singlet fermion (Roncadelli and Wyler,
1983). The light Dirac neutrino couples in this case
predominantly to the corresponding charged lepton in the
LH charged current, the analogous coupling of the heavy
neutral lepton being strongly suppressed.

Obviously, all these considerations can be extended to
the case of intergeneration mixing.

Finally, let us note that the global symmetries associat-
ed with conservation of the lepton charges LI and the to-
tal lepton charge L have the same status in theories with
broken supersymmetry as in ordinary gauge theories.
They do not necessarily follow from the structure of the
supersymmetric theories and are imposed as an additional
constraint whenever L~ and/or L are assumed to be con-
served. The possible mechanisms of lepton charge non-
conservation have been extensively studied in the context
of supersymmetric extensions of the standard theory (Hall
and Suzuki, 1984; Lee, 1984; Dawson, 1985; Ellis et al. ,
1985; Ross and Valle, 1985). It was found that neutrinos
inevitably acquire nonzero masses in the theories with L~
and/or L nonconservation. However, the supersymmetric
theories proposed so far offer no fundamentally new solu-
tions of the neutrino mass problem.

47The u, c, and t quarks are assumed to have the masses quot-
ed above at the scale of 1 GeV, while the neutrino masses are
determined by the values of the quark masses evaluated at the
unification scale (see, for example, Langacker, 1981). The latter
are approximately a factor of 4.7 smaller than the former
(Buras et al. , 1978}.

Such a mass term can be generated via the Higgs mechanism
if the theory contains a 16-piet of Higgs fields whose SU(5)
singlet component develops a nonzero vacuum expectation value
(Georgi and Nanopoulos, 1979a). It can also be associated with
the breaking of the left-right symmetry (Wyler and Wolfenstein,
1983}. Then the mass parameter Mso is replaced by the

10

characteristic mass of left-right symmetry, breaking, which can
be as low as 1 TeV.

IX. NEUTRINOLESS DOUBLE-((3 DECAY
(ELEMENTARY-PARTICLE ASPECTS
OF THE THEORY}

If neutrinos turn out to be massive, the question of
what type of neutrinos they are (Dirac or Majorana) will
inevitably arise. This will be a fundamental question to

49For reviews of the phenomenological aspects of the super-
symmetric theories see Fayet (1982), Ellis (1984), Ibanez (1984),
Nilles (1984); and Haber and Kane (1985).
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answer, as it will concern the very nature of neutrinos and
of the underlying symmetries of the electroweak interac-
tion. We have seen in Sec. VII.A.2 that it is impossible to
determine in practice the type of massive neutrinos in ex-
periments studying neutrino oscillations. In fact, the ex-
isting large number of studies (e.g. , Case, 1957; Ryan and
Okubo, 1964; Schechter and Valle, 1981a; Kayser, 1982;
Kayser and Shrock, 1982; Shrock, 1982b) allows us to
conclude that the majority of effects typical only of mas-
sive Majorana neutrinos are very subtle, being suppressed
by the factor (mk/E), where mk is the Majorana neutri-
no mass and E is some characteristic energy scale for a
given process involving real or virtual neutrinos. If neu-
trinos have nonzero masses smaller than 100 eV, the ex-
periments most sensitive to the existence of the Majorana
neutrinos (coupled to the electron) are at present those
searching for neutrinoless double-/3 [(PP)o,] decay of cer-
tain nuclei (Racah, 1937),

(A,Z)~(A, Z+2)+e-+e (9.1)

48 48
z0Ca —+22Ti+ e +e

76 76326e~34Se+ e +e

34Se~36Kr +e +e82 82

100 10042Mo~ 44Ru+e +e
128 12852Te~ 54Xe+e +e
130 13052Te~ 54Xe+e +e
150 150
60Nd —+ 6zSm+e +e

(9.2)

A comparison of the phase-space factors entering into
the probabilities of the (/3/3)o„decay (9.1) and of the com-
peting two-neutrino L,-conserving decay (Goeppert-
Mayer, 1935)

(A, Z) —+(A,Z+ 2)+e +e +v, +v, (9.3)

induced by the standard weak interaction (in second order
in Gz) reveals that the former exceeds the latter typically
by a factor of 10 —10 (see, for example, Wu, 1980). The
remarkable sensitivity of the process (9.1) to the existence
of Majorana neutrinos and lepton-number-nonconserving
interactions has its roots in the indicated strong phase-
space rate enhancement.

Let us note that none of the decays (9.2) has been ob-
served. The most stringent experimental limits have been
obtained so far for the (P/3)o, -decay lifetime of 32Ge. [See

Obviously, the electron lepton charge L,, is not conserved
in this process.

Background considerations imply that the most favor-
able nuclei for experiments on (/3/3)o, decay are those for
which the ordinary P decay is either forbidden (e.g. , by
energy conservation) or strongly inhibited (e.g. , by large
spin changes). Typical exaniples of nuclei that satisfy this
requirement are 20Ca 32Ge, 34Se, 4zMo szTe 5zTe and48 76 82 100 128 130

6oNd. The corresponding decays of interest have the
form

Sec. XII, where the existing data on (pp)o„decay are
briefly reviewed. ]

There exist many extensive reviews of the theory and
phenomenology of the double-/3 decays (9.1) and (9.3).
Two published very recently are by Doi, Kotani, and
Takasugi (1985) and by Vergados (1986). We shall con-
sider in this section only some of the elementary-particle
aspects of (P/3)o, -decay theory. These will be illustrated
with examples of predictions of the gauge theories with
massive Majorana neutrinos. Art introductory exposition
of the nuclear physics aspects of the theory is given in
Appendix B. Our consideration will be based on some of
the results derived in Appendix B.

We shall assume first that the effective weak P-decay
Hamiltonian has the form

GF
2(~LXaveL)JI- +H c. (9.4)

[jL (x) is the standard left-handed strangeness-conserving
charged hadron current] and that neutrino mixing takes
place,

v,L (x)= g U,gXkL, (x) .
k=1

(9.5)

Here Xk(x) is the field of a Majorana neutrino with mass
mk, and U is a unitary mixing matrix. The field Xk(x)
satisfies the condition

CXk (x ) =gkXk (x), (9.6)

where gk are unphysical phase factors (see Secs. IV.C and
V). We shall choose gk =+1. It will be assumed also that
the neutrino mixing (9.5) arises as a result of the diagonal-
ization of the Majorana mass term [Eq. (4.22)]. Note
that, as follows from Eqs. (4.24)—(4.30) and Eqs. (a) and
(b) of footnote 13, the unitary matrix used to diagonalize
the corresponding neutrino mass matrix differs from the
mixing matrix U in (9.4) when /k&1:

UIk ——UIke, I =e,p, ~, . . . , k =1,2, . . . , n, (9.7)

where

—2l CXk

(9.8)

and the matrix U does not depend on gk.
Obviously, the (PP)o, decay (9.1) can be generated by

the interaction (9.4): by exchanging a virtual Majorana
neutrino, two neutrons in the initial nucleus can Undergo
transition into two protons and a pair of free electrons
due to (9.4). In this way, a nontrivial contribution to the
(/3/3)o -decay amplitude A~~~~ may arise in the second

order of perturbation theory in the Fermi coupling con-
stant GF. A detailed derivation of the expression for the
amplitude in this case is presented in Appendix B. We
shall be interested in the dependence of the (P/3)o -decay
amplitude on the masses of Majorana neutrinos and on
the elements of the lepton mixing matrix. Theses quanti-
ties enter into A [pp~ through an effective mass factor
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(m ), information about whose absolute value is obtained
from the data on (P/33)o„decay [see Appendix 8, Eqs.
(817)—(824)]:

A(pp) —(m ) =g( U ek ) gkmkF(mk, A)
k

where

=g UekmkF(mk, A ),
k

(9.9)

(9.10)

and where we have made use of Eqs. (9.7) and (9.8) (gk = 1

due to the choice of gk).
The variable r is the distance between two neutrons

within the nucleus undergoing (PP)o„decay: r & 2R,
R =1,2A'~ F being the radius of the initial nucleus.
The average is with respect to the two-nucleon correlation
function appropriate to a nucleus of atomic number A.

Let us note that the experiments on (P/3)o, decay that
are in progress or should be performed in the near future
are expected to be sensitive to values of

I
(I )

I

down to
—1 eV (see Sec. XII and, for example, Caldwell, 1985).
The existing lower bound on the (P//3)o, -decay lifetime of

Ge implies (Haxton, Stephenson, and Strottman, 1984)

I(m)
I

&6.3 eV. (9.11)

(m ) —y (U,/, ) g/, mk= y U, /, m/, . (9.12)

Let us consider this possibility in greater detail.
The first thing to be noted is that the value of (m )

should be universal for all nuclei if neutrinos have masses
smaller than a few MeV. Further, it is obvious from Eq.
(9.12) [and (9.9)] that the effective neutrino mass (m ) as-
sociated with the (PP)o, decay may differ substantially
from the mass measured in experiments on direct neutri-
no mass determination [like the tritium 13-decay experi-
ment of Lubimov et al. (8oris et al. , 1984)). For exam-

5olt is not difficult to prove that the effective mass (m ) [and,
consequently, the (PI))o„-decay rate] does not depend on the un-

physical phase factors in the Majorana conditions (9.6) for any
choice of gk.

Since there are theoretical uncertainties in the calculation
of the corresponding (//3I3)o;decay rate, the upper limit on

I
(I ) I

may actually be smaller approximately by a fac-
tor of 6 (Doi, Kotani, and Takasugi, 1985; Klapdor,
1986).

It follows from Eq. (9.9) that the (PP)o„-decay ampli-.
tude vanishes in the hmit of zero neutrino masses. As is
shown in Appendix B, iri the weak interaction theory with
LH charged current and Majorana neutrinos, the lepton
charge is conserved in this limit.

For mk & a few MeV, k = I, . . . , n, F(mkA)=1
(mkr «1) and

pie, even if neutrinos with masses in the range of 15 eV
exist and they are Majorana particles, we nevertheless
may have

I
(m)

I
«15 eV, i.e., the (P//3)o;decay rate

may be suppressed to a level compatible with the observa-
tions. Such a suppression may be caused by a destructive
interference between the contributions in the (PP)ov-decay
amplitude corresponding to the exchange of different Ma-
jorana neutrinos when the different terms in (m ) tend to
cancel each other. More specifically, this cancellation
may occur due to the complexity of the mixing matrix
elements in the case of CP nonconservation (Doi et al. ,

1981b), as U,k, k = I, . . . , n, are not necessarily positive
then (see Sec. VII.A.2). If CP invariance holds, it may be
a consequence of the existence of Majorana neutrinos with
opposite CP parities (Wolfenstein, 1981a). Indeed, using
the constraint (5.23) which is imposed on the mixing ma-
trix U by the requirement of CP invariance, we find that
the (P//3)o„-decay rate depends on the relative CP parities
of the Majorana neutrinos:

k
(9.13)

for the model of Zee. Tiny contributions from diagrams
with exchange of virtual charged Higgs bosons make
A~pp/ different from zero but very much suppressed in

this theory (Petcov, 1982b). Similar cancellations were
shown to take place in most of the SO(10) models as well
(Chang and Pal, 1982), although they are not as effective
as in the case considered above.

The suppression of the (P//3)o„-decay rate is simply relat-
ed to the form of the Majorana mass term (4.22) of the
neutrinos. Indeed, it follows from Eqs. (9.12) and (4.24)
that (Wolfenstein, 198la)

where z)cp(Xk) is the CP parity of the neutrino Xk
Uek

I I Uek I
) This implies, in particular, that in the

case of CP invariance the relative CP parities of Majorana
neutrinos are in principle observable quantities. As is
shown in Appendix A, rjc/( Xk)=+i and, consequently,
the terms in (m ) corresponding to the exchange of Ma-
jorana neutrinos with opposite CP parities tend to mutu-
ally cancel. These cancellations may even be complete.

A remarkable example of the realization of the latter
possibility is provided by the version of the Zee model
considered in detail in Sec. VIII.B.2.b. In this version the
model of Zee contains two almost mass-degenerate Ma-
jorana neutrinos, X2 and X3, which are much heavier than
a third one X/.

I mz —m3
I

=//z t & (m~///z, )//zz &&mz, 3.
In particular, values of mz 3 as large as 10—. 20 eV are
possible. Further, CP is conserved and gc/ (Xz) =i, while
7I( p (X3)= i. Using Eqs. (8.2—2), (8.24), and (9.1 3), it is
not difficult to convince oneself that the specific form of
the lepton mixing matrix, together with the indicated re-
lation between the neutrino masses and the values of the
CP parities, leads to exact mutual compensation of the
three terms in (m ) (Wolfenstein, 1981a):

Rev. Mod. Phys. , Vol. 59, No. 3, Part I, July 1987



722 S. M. Bilenky and S. T. Petcov: Massive neutrinos and neutrino oscillations

(9.'14)

Consequently (PP)o„decay would be strongly suppressed
or forbidden, respectively, if the term (v,L )'v, L were not
present in the leadin'g approximation or at all in the neu-
trino mass Lagrangian. The first possibility takes place in
the model of Zee considered, wherein M« ——0 in the one-
loop approximation [see Eq. (8.15)] and nonzero contribu-
tions to M„arise only at the two-loop level.

The mass parameter
I
M„ I

is not bounded to be very
small and, consequently, the (P/3)o, -decay rate to be par-
ticularly suppressed in a theory with pseudo-Dirac neutri-
nos coupled to the electron (Petcov, 1982a). For example,
in the scheme with a pseudo-Dirac neutrino discussed in
Sec. VI.C, M„(—=m„) is a free parameter, and from Eqs.
(6.16), (6.29)—(6.37), and (9.12) we get

( m )pD =m„=m sin28'

where m is the mass of the pseudo-Dirac neutrino and 0'
is a mixing angle. Note that A[pp~ is proportional to the

mass of the pseudo-Dirac neutrino and not to the Majora-
na correction to the mass. This is a general property of
the contributions in A~p~~ arising due to exchange of
pseudo-Dirac neutrinos for which the weak Majorana
mass corrections arise at one-loop level.

It was shown in Secs. VI.C and VI.D that a massive
Dirac neutrino is equivalent to tao mass-degenerate Ma-
jorana neutrinos that possess opposite CP parities. For
example, in the ZKM scheme,

1
ver =vL = (X)L —X2g ), m ) =m z =m

&2

the "heavy" neutrinos ' (mk » a few MeV, k'=no
+ 1, . . . , n) W. e shall now present a brief qualitative dis-
cussion of the characteristic features of the terms in (m )
arising due to exchange of heavy Majorana neutrinos
(Halprin, Petcov, and Rosen, 1983).

For physically sensible correlation functions,
mkF(mk, A) becomes a monotonically decreasing func-
tion of mk for sufficiently large values of mk. If, say,
we use the correlation function suggested by Halprin
et al. (1976), then for mk &4—5 GeV, the contribution
due to exchange of Xk in the (pp)o„-decay amplitude is
compatible with the experimental limit (9.11). However,
because of the possibility of cancellations between dif-
ferent terms in the expression for (m ), the existence of
heavy neutral Majorana leptons that couple with appreci-
able strength to the electron and have masses below 4
GeV cannot be ruled out by the experimental data on
(/3P) O„decay.

It is important to note also that the correlation function
that determines the form of the function F(mk, A) varies
with the nuclear species and typically depends strongly
upon the nuclear radius R. Consequently, if the exchange
of heavy Majorana leptons (particles) plays an important
role in the (/3P)o„decay, the effective mass (m ) should
vary from one nucleus to another, and this variation may
be quite dramatic. This is in sharp contrast to the case of
light neutrinos [see Eq. (9.12)], for which (m ) is indepen-
dent of the type of decaying nucleus.

In order to be more specific, we shall consider one ex-
ample with a relatively simple correlation function that
contains a hard-core repulsion between two nucleons in a
nucleus (Halprin et al. , 1976):

9CP(gl ) 1 7CP(X2) l p(r)= I 3 ~[(2R) —r, )]] '0(r r, )9(2R r), — —(9.17)

(m ) = g U,k mk + g U,k mk F(mk, A),
ko k

(9.15)

and, if CP invariance holds,

where v(x) is the field of a Dirac neutrino with mass m.
The absence of (f)P)0 decay in the case when v, is a mas-
sive Dirac particle can then be viewed as a consequence of
exact cancellation of the contributions in (m) of two
Majorana neutrinos with equal masses having opposite
CP parities:

(rn )z ———,'(m~ —m2)=0 .

Let us suppose next that some of the Majorana neutri-
nos possess masses considerably exceeding a few MeV. In
this case one has

where r, =0.5 F is the hard-core radius. From Eqs.
(9.10) and (9.17) one obtains

F(mk, A) = —,(mk R) [(1+mk r, )e

—(1+2mk R)e " ] . (9.18)

Since for all nuclei of interest (A &48) the hard-core ra-
dius is much smaller than the nuclear radius (i.e.,
r, «R =1,2A' F), F(mk, A) and, consequently, (m )
vary with the nuclear radius, in this case as R, and
therefore with the atomic number as A . The effec-
tive mass ( m ) exhibits a stronger dependence on the
atomic number of the decaying nucleus if, for instance,
F(mk, A) is evaluated with the two-nucleon correlation

( m ) = —,. g I
U.k I gcP(~k )mk,

ko

+ —.g I Uek I
ncP(&k)mkF(mk A»1 2

k'
(9.16)

where the index ko labels the "light" neutrinos (mk & a
few MeV, ko ——1,2, . . . , no) and the index k' numbers

5]%'e shall also use the more appropriate term "heavy neutral
leptons" for such neutrinos.

52The possibility of cancellation between the contributions due
to exchange of light and of heavy Majorana neutrinos has been
studied in detail by Halprin, Petcov, and Rosen (1983), Leung
and Petcov (1984), and Langacker, Sathiapalan, and Steigman
(1986).
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+eRy v R('WL +~JR }]+H.c (9.19)

L R
veL g UekXkL ~ veR g UekXkR

k k

CXk (X)=4Xk(X» 4= +—1.

(9.20a)

(9.20b)

Here (eRY~V,R) and jR are RH charged lepton and had-
ron currents, respectively, ~, g, and A, are constant param-
eters, and U and U are mixing matrices. The existing
experimental limits on the weak interaction with RH
currents imply

~

~ ~, ~
2l ~, ~

A,
~

&&1. (see, for example,
Carr et al. , 1983; Doi, Kotani, and Takasugi, 1984).

The amplitude of the (PP)o„decay generated by the in-
teraction (9.19) in second order of perturbation theory in
GF can be represented as

LL LR RR
~{PP3o„=~{PP3 +~ {PP3 „+~{PP» (9.21)

function used by Doi et al. (1981a), p(r)-5(r —R). In
this case E(mk, A)=1.67e " . These considerations
suggest that studies of the (PP)c„decay of several nuclei
should be simultaneously performed.

%'e should like to conclude with several remarks con-
cerning the dependence of the (PP)o„-decay amplitude on
the Majorana neutrino masses in the case when RH
currents are present in the weak P-decay Hamiltonian.
The most general weak P-decay Hamiltonian with RH
currents has the following form in the case of neutrino
mixing:

Gg
Hg =2 [eLy~veL(JL~+RJR&)v'2

where A~&&I
' is the matrix element of the operator in

the S matrix containing the product of two LH (RH) lep-
ton currents

eL(R)(xl }'Y v L(R}(xl )eL(R)(x2)YPV L(R)(X2}

while A~~&& is the matrix element of the operator that

includes the product of the LH and the RH lepton
currents "

eL(x, )y v,L(x1)eR (x2)y pv, R(x2) .
The dependence of the terms A(&&), A(&p), and A (t5p)

LL LR RR

on the neutrino masses mk can be found in a way analo-
gous to that used in Appendix 8 to derive the dependence
on mk of the (pp)c„-decay amplitude in the case when the
weak P-decay Hamiltonian is given by Eqs. (9.4) and (9.5)
[see Eqs. (85)—(B7)]. It is confined to the following fac-
tors in the matrix elements:

L{R) 2

+ LL(RR)

k 9 ~mk

L R
~ Uek ekgk3 (pp3 o g

q2+mk

(9.22)

(9.23)

where (q +mk) ' is the propagator of the virtual neutri-
no Xk and the form of the dependence is determined by
the chiral structure of the corresponding lepton current
operators. For iristance, the dependence on mk in

A(pp) appears due to the following neutrino factor in the

corresponding S-matrix operator:

VqL (X 1 )VeR (X2 ) = ——,
'

( 1 + Y5 ) g U k U k gk Sk (X 1
—X2 )7 ( 1 —y 5 )C,

k

where Sk(x( —x2) is the propagator of the Majorana neutrino Xk [see Eq. (A8)] and we have made use of Eqs. (9.20a) and
(A9). This equality leads to Eq. (9.23), since

1 1 iq{x& —x&3
—,(1+y5)Sk(x( —X2)—,(1—y5) = — e dq —,(1—y5} .

(2~) q +mk

Obviously, in the limit of zero neutrino mass

A~~~'~
' ——0. Let us consider the behavior of A(pp) in

this limit.
If the neutrino mixing (9.20) is introduced phenomeno-

logically (Enz, 1957; Pauli, 1957; see also Primakoff and

Rosen, 1981), the mixing matrices U and U need not
be related. [We may have, for example, v,L(x)=XL(x)
and v,R(x) =XR(x},where X(x) is the field of a Majorana

We have assumed for simplicity that mirror leptons do not exist. It can be shown, however, that the results derived in the remain-

ing part of the present section are valid also in the case when mirror leptons do exist. For a discussion of the form of the weak p-

decay Hamiltonian in the theories with RH currents and mirror leptons see, Doi, Kotani, and Takasugi (1985).
~One can derive the general expression for the amplitude A(pp) in the case under consideration using the methods exploited in &p-

Ov

pendix B.
Let us note that the dependence on mk of the nuclear matrix elements appearing in A~pp) and A~pp) is given by the function

Ov Ov

F(mk, A) defined in Eq. (9.10),

~(PPIO„(m )Li (RR)= g ( U k ) gkmk+(mk ~ )

(see, Doi, Kotani, and Takasugi, 1984). Consequently, the results for the (pp)0„-decay amplitude obtained in the present section for
the case when the weak p-decay Hamiltonian is given by Eqs. (9.4) and (9.5) are valid for the amplitudes A (pp1 and A (pp1 as well.

Ov Ov
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g U,k U,krak =0 .
k

(9.24)

Indeed, it follows from Eqs. (4.35)—(4.45) and Eqs. (a)
and (b) of footnote 13 that

&eL g Ueke +kL
k

neutrino. ] It follows then from Eq. (9.23) that even if
mk ——0, A~pp~ may be different from zero. Thus one ar-

Ov

rives at the conclusion that if RH currents exist, (pp)o
decay can take place, even in the case of massless Majora-
na neutrinos (Enz, 1957; Primakoff and Rosen, 1969).
Although true in the framework of the phenomenological
approach, this conclusion is not valid in the gauge
theories of electroweak interactions, and we are going to
show that next.

Let us assume that the effective weak p-decay Hamil-
tonian (9.19) and the neutrino mixing (9.20) arise 1n a
gauge theory. As has been discussed in Sec. VIII, neutri-
no mixing results in the gauge theories from the diagonal-
ization of the neutrino mass term. Since RH neutrino
fields [v,R(x), . . . ] are present in the theory, the mixing
(9.20) can be generated only by a mass term of Dirac-
Majorana type [see Sec. IV.A, Eq. (4.9)]. In this case the
matrices U and U are not independent and one has

U,k ——U,ke, U,k = U~ke

With the help of Eq. (9.29) we get

g Uek Uekkk = g Uek U-,k ~

k k

(9.29)

(9.30)

which, on account of (9.27c) leads to (9.24). " Note that
since UIk and UIk are independent of gk, Eq. (9.30) im-

plies that A IIIII~, does not depend on gk.
It follows from Eqs. (9.23) and (9.24) that, in the gauge

theories with RH currents and neutrino mixing (9.20), (i)
=0 if mk =0, and (ii) for mk&0 the amplitude

is suppressed by a mechanism analogous to the

mechanism of Glashow, Iliopoulos, and Maiani (see, for
example, Doi, Kotani, and Takasugi, 1984; Enqvist,
Maalampi, and Mursula, 1984). Our considerations show
that, if the electroweak interaction is described by a gauge
theory and the (pp)o decay can be generated only by the
mechanism discussed, the observation of the (pp)o„decay
would imply the existence of massive Majorana neutrinos,
irrespective of whether RH currents exist or not (Kayser,
Petcov, and Rosen, 1986). Moreover, at least one Ma-
jorana neutrino should have a mass exceeding the value of
the parameter

~
( m )

~

which would be inferred from the
corresponding data (Kayser, 1986; Kayser, Petcov, and
Rosen, 1986).

(9.26)

g UIk UI'k ~ll' ~

k

X UIk UT*k =517
k

g Ulk Uj'k
k

y UIk UIk'+ y +7/ UIk' ~kk'
1

(9.27a)

(9.27b)

(9;27c)

(9.27d)

(e =gk). Here UIk and UIk (I =e,p, ,r, . . . ) are ele-

ments of a unitary matrix and, therefore, satisfy the uni-

tarity conditions

X. ELECTROMAGNETIC PROPERTIES
QF MASSIVE NEUTRINOS

There are at least two circumstances that contribute to
the considerable interest in the electromagnetic properties
of massive neutrinos that we shall review next. First, the
physical differences between the massive Dirac and the
massive Majorana neutrinos (particles) are very clearly ex-
hibited in their electromagnetic properties. And second,
numerous studies have revealed -that even extremely weak
neutrino-photon effective couplings may lead, if they ex-
ist, to important and directly observable astrophysical and
cosmological effects (see, for example, Cisneros, 1980;
Fujikawa and Shrock, 1980; Turner, 1981). In particular,

From Eq. (9.26) we obtain, using the equality
C ski. (X)=ggkR (X)~

iakVR= g U—ke gkXkR
k

(9.28)

By comparing Eqs. (9.20) with (9.25) and (9.28) one finds
that

U~k and UTk are elements of two block matrices forming the

unitary matrix, with the help of which the corresponding neutri-
no mass matrix is diagonalized (see Sec. IV.D). Obviously, Uy,

and Uz are independent of gk

57It can be shown that Eq. (9.24) also follows —in the gauge
theories with RH currents and neutrino mixing given by
(9.20)—from the general requirement of correct (i.e., compatible
with the unitarity of the 5 matrix) high-energy behavior of the
scattering amplitudes in these theories (Kayser, Petcov, and
Rosen, 1986).

8Let us add that in the case of CP invariance A(pp) in con-
an

trast to A(pp) and A(pp) is independent of the CP parities of
Ov Ov

the Majorana neutrinos (Kayser, Petcov, and Rosen, 1986).
59For different analyses of the relation between the existence of

the (PP)o, decay and the existence of massive Majorana neutri-
nos which lead to a similar conclusion see Schechter and Valle
{1982b),Nieves (1984), and Takasugi (1984).
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as was shown by De Rujula and Glashow (1980), it may
be feasible to detect experimentally photon fluxes from
the radiative decays of neutrinos in galactic halos and/or
of relic neutrinos with masses greater than a few eV, even
if the corresponding neutrino lifetimes exceed consider-
ably the age of the universe (-10' yr). Searches for pho-
ton fluxes from neutrino decays are being performed at
present (Auriemma et al. , 1985) and are likely to continue
with improving sensitivity in the future (Shipman and
Cowsik, 1981).

We shall begin with a detailed analysis of the general
properties of the electromagnetic current operator's ma-
trix element J' (x) between one-particle massive neutrino
states, following from the Hermiticity, CPT-, and CP-
transformation properties of J' (x). The electromagnetic
properties of massive Dirac and massive Majorana neutri-
nos will be compared and the basic differences between
them will be outlined. Then examples of predictions of
the gauge theories for the values of neutrino radiative life-
times and the magnetic moments of Dirac neutrinos, as
well as the existing limits on these quantities, will be
briefly considered.

(Jem( ))t ~em( )
1, a= 1,2, 3
—1, +=4, (10.5)

that

(FV(A)( 2))e + gV(&)( 2)

(G VA( 2) )e
GUAVA(

2)
(10.6)

Indeed, Eq. (10.5) implies

(( j(,,p, )
I
J™(0)I;(;,p;)))*

lowing general structure:

I (p, ,p;)=o pqp[F, ;(q')+y5FJ., (q')]

+(y q —qq )[Gj;(q )+ygGj;. (q )] . (10.4)

Here q=q ya, and FJ; '(q. ) and GJ (q ) are four in-
dependent form factors characterizing the process
v;~vj+ "y", where "y" is a virtual photon. The neutri-
no radiative decay amplitude A (v; —&vj+y) is determined
by the transition moments Fj, '" FJ, '"(q——) I, only.

It follows from the Hermiticity of the electromagnetic
current operator

A. General analysis

The amplitude of the neutrino radiative decay

Vg ~VJ + (10.1)

=g (v;(r, ,p, ) J' (0)
I
vj(r;,p, )) .

Using Eq. (10.3), we obtain from (10.7)

y4~a(pj Pi )3 4 Qa~a(p PJ')'

(10.7)

(10.8)

where v; and vz are two Dirac neutrinos with definite
masses m; and mj (m; & mj), can be written as Equations (10.6) can be easily derived now from (10.8),

taking into account (10.4) and that

&(v;~v,.+y)=ie(v, (rj,p,. )
I Ja (0)

I
v;(r;,p;))

s (q)
X (2' ) +2qo

') 4&aijy4='9a'ij/pap~ y4yal 4= qaya ~

74753'4 = —'Vs
(10.9)

X (2~)'~(p; —p, —q) (10.2)
Under the CPT transformation (in the case of a CPT-

invariant S matrix), we have

Here
I vz(rj p~ ) ) is the state vector of the neutrino vj, with

four-momentum pj =(pj,ipjo) and projection rj of the
spin on the momentum pj; Ja (0) is the operator of the
electromagnetic current in the Heisenberg representation
at x =0; ea(q) and q are the polarization vector and the
four-momentum of the photon, etc. The matrix element
of the electromagnetic current operator has the standard
form

(vj(rj,pj) I

J' (0)
I
v;(r;,p;) )

=iN,;u '(p, )I' (p, ,p;)u '(p;), (10.3)

where N; =[(2')3+4p;Opjo] ' is a normalization factor,
u '(p;) and u j(pj)=(u J(pj)) y4 are Dirac spinors
describing the free initial and final neutrinos, respectively,
and I (pj,p;) is a vertex function whose explicit form de-
pends on the dynamics governing the v;~vj radiative
transition. Lorentz invariance and current conservation
imply that for q &0 the function I (pj,p;) has the fol-

CPT
J (0) ~ UcpTJa (0)UcpT= —(J' (0)) (10.10)

where U~zT is the antiunitary CPT conjugation operator.
This implies

Here

I
vk(rk pk) &cpT UcpT

I
»("k pk) &

rjcpT(vk )
I » ( "k pk ) & k = & J

(10.12)

where
I
vk( —rk,pk)) is the state vector of the free an-

tineutrino vk with four-momentum pk and projection
(—rk) of the spin on the momentum pk and 21CPT(») is

cpT~vj(rj PJ )
I Ja (0)

I
v (ri p~ ) &cpT

(v;(r;,p;) I

J' (0)
I
vj(—rj,pj)) . (10.11)
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an unphysical phase factor. o One has

cpr(&g(&~ pj )
l
Ja (0)

l

& «i p ) )cpT
T. r.

iNji~cpT( Pi )~a(pj P )+c'pT( Pj )

Here

k ~ T
ucpT( Pk—)=1'4VT '(Cu ' (pk))*, k=i j, (10.14)

is the CPT conjugate of the spinor u (pk), where VT is
the time-reversal matrix defined by

T— —1~T Ya ~T 3 a~ ~T +T~ +T ~T (10.15)

CVrI ~(pj ~pi)VT 'C '=I ~(p;,pj) . (10.17)

Inserting Eqs. (10.4) and (10.16) in (10.17) and exploiting
Eqs. (4.3) and (10.15), we find that as a consequence of
CPT invariance

F, (q') = F;,'(q')— .

G V, A( 2) G V, A( 2)
(10.18)

r (p p )=~ ~j[F (q )+y,F (q )]

+(7'.e' —ee. )[G,';(e')+7'sG,";(e')] .

(10.16)

The form factors FJ,'"(q ) and G~ "(q ) characterize the
radiative transition v; —

+vz+
"y", where v; and v~ denote

antineutrinos. From Eq. (10.11) we get, using Eqs. (10.3),
(10.13), and (10.14), as well as the properties of the ma-
trices VT and C,

k
Pi )=l'gC& (pk), k =i,j . (10.23)

With the help of Eqs. (10.22), (10.23), and (10.3) we get
from (10.20)

Y4C~ a(pj Pi )C X4 ga~a(pj ~pi ) (10.24)

Finally, by using Eqs. (10.4), (10.16), and (4.3), it is not
difficult to derive from (10.24) the relations between the
neutrino and the antineutrino electromagnetic transition
form factors which should hold in the case of CP invari-
ance:

F v(&)( 2) —gv(&)i( 2)

G v'w(q2) —G v w(q2)
(10.25)

In the diagonal case, when in Eq. (10.1)j =i, eF;; and
ieF;; [F; "=F; "(0)] are just the induced magnetic and
electric dipole moments of the Dirac neutrino: '

V
pi e+i'i ~ di- = leFii (10.26)

It follows from Eqs. (10.18) and (10.25) that F;";(q )=0.
Therefore, if CPT invariant holds, the electric dipole mo-
ment of a Dirac neutrino, like the electric dipole moment
of the neutron, can be different from zero only if CP in-
variance does not hold.

The amplitude A (X;~Xj+y) of the radiative decay of
a Majorana neutrino P; into a lighter Majorana neutrino

Xj (m; )mj) and a photon

cp(v, (r, p, )
I

J' (o) lv;«; p;))cp
r,.

=iN~;ucp( —pi )I' (pj,p )uc'i'( P—J) (1022)

where

Further, if CP invariance holds, then under the CP
transformation

Xi ~XJ +f (10.27)

CP

J~ (0)~ UcpJ~ (0)Ucp ——rj+™(0),
and, consequently,

( j(rj,pj) l

J' (0) l;(;,p;))
= rj (vj(rj,pj )

l

J' (0);(r;,p; ) ) .

Here

(10.19)

(10.20)

has the same general structure as that of the decay (10.1)
involving Dirac neutrinos [Eqs. (10.2)—(10.4)]. The ma-
trix element of the electromagnetic current operator
J~ (0) entering into the expression for A (X;—+Xj+y) is
characterized in the general case (q &0) by four indepen-
dent form factors:

(X,(r, ,p, )
l
J™(0)lX;(r;,p;))

l
&k(rk pk) )cp Ucp l

vk(rk Pk) )
I
vk( "k Pk ) )

pk =( pk ipko) k=i ,j (10 '21)

is a CP conjugate state describing a free antineutrino vk
with four-momentum pi, and projection ( —rk) of the spin
on the momentum ( —pk). We have

=iNj;u '(p )I (pj,p;)u '(p;),

I .(p, p; ) =~.pej [F,';(e')+rsF,";(e')1

+(7' e' ee )[G;(e')+r—sG J", (e')]-,

(10.28)

(10.29)

The unphysical phase factors associated with the CPT and
CP transformations of the massive neutrino states are chosen
further in this section to be equal to unity (for a discussion in
which these phase factors are kept arbitrary (see, for example,
Kayser and Goldhaber, 1983).

~In the nonrelativistic limit the amplitude (10.2) corresponds
to the interaction Hamiltonian

—e(F;;cr H+iF;;"o. E),
where u are the Pauli matrices and H and E denote magnetic
and electric fields, respectively.
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where the notations are obvious. The Hermiticity of
J~ (x) [Eq. (10.5)] leads to constraints on the form fac-
tors Fi,'"(q ) and Gi "(q ) similar to Eq. (10.6):

(F V(A)( 2))s + F- V(A)( 2)
J's 9' =

( —) sj' 9'
(10.30)

( G i,
' "(q') )

' =G ~)'"(q') .

However, since the Majorana particles possess no distinc-
tive antiparticles, the implications of CPT invariance and
of CP invariance for the electromagnetic form factors of
Majorana neutrinos differ drastically from those for the
form factors of Dirac neutrinos (Schechter and Valle,
1981b; Wolfenstein, 1981a; Kayser, 1982; Nieves, 1982;
Pal and Wolfenstein, 1982; Shrock, 1982b; Kayser and
Goldhaber, 1983; Kayser, 1984).

Consider first the constraints on the form factors
Fi (q ) and Gi ,' (q. ) arising as a consequence of CPT
invariance. It follows from Eq. (10.10) that in the case of
CPT invariance

CPT&X(rp )I J (0)
I
X'(r p ) &cpT

= —&xi(ri,pi) I
J~™(0)

I x;(r;,p; ) & . (10.31)

Under CPT the state vectors of Majorana neutrinos
transform as follows (Kayser and Goldhaber, 1983):

cpT
I
Xk(rk»Pk) &

I
Xk(rk Pk) &cPT

UCPT
I
xk(rk Pk ) &

I.Xk( rk Pk)& k ' J
(10.32)

lCP(xk )
I
xk( rk Pk ) &

Pk ( Pk» PkO)» (10.37)

where Ticp(xk) = i—rik =+i is the CP parity of the Ma-
jorana neutrino Xk (see Sec. V.B and Appendix A). In the
case of CP invariance we obtain from Eqs. (10.19) and
(10.37)

Ticp(xj )ricp(x )&xi( ri pj—)
I

J' (o)
I
x ( —r p') &

=Ti &xJ(r),pi )
I

J' (0)
I
x;(r;,p;) & . (10.38)

One has

&X:(—r,p')
I
J™(0)

I
X;( r;,p ) &—

where

=iNi;up'(pi')I ~(pi,p )up'(p ), (10 39).

k
u, "(pi)=y4u "(pk), k=(,J (10.40)

As a consequence of Eq. (10.38), we get, using Eq. (10.28),
(10.39), and (10.40),

(X )q (X;)y I' (p',p )y =21 I (p,p;) . (10.41)

Taking into account Eqs. (10.29) and (10.9), it is easy to
obtain, from (10.41),

form factor G,";(q ) (Schechter and Valle, 1981b; Kayser,
1982; Nieves, 1982), the particle anapole form factor (Zel-
dovich, 1957).

Further, under CP transformation
CP

I xk(rk»Pk) & ~ UCP I xk(rk»Pk) &

As a consequence of Eq. (10.32) the matrix element on the
left-hand side of Eq. (10.31) can be written as

cpT&x (r p )
I

J' (o)
I X,(ri p, ) &cPT

F v(A)( 2) ( —) F v(A)( 2)= + '9J'Qi )i

&(&) 2 — V(A)Gi, (q )=(+)vli21;GJ; (q ) .
(10.42)

where

=iN i u pT(p; )I (p;,pi )upiT(pi ), (10.33)

uPT(Pk ) y4VT (u (Pk ) ) (10.34)

—1 Tv„- I .(P, ,p, ) v, = —1.(p, ,p, ) . (10.35)

From Eq. (10.32), with the help of Eqs. (10.3), (10.28),
(10.33), and (10.34), one obtains

Thus, the amplitude of the radiative transition of a given
Majorana neutrino into another Majorana neutrino and a
photon depends in the case of CP invariance on the rela-
tive CP parity of the initial and final Majorana neutrinos
(Wolfenstein, 1981a). As a consequence of Eq. (10.42),
the electromagnetic current operator matrix element
(10.28) is characterized by only two form factors (Nieves,
1982):

Fiv(q2)=Giv(q2)=0 ncp(Xi)=ncp(X )

Using this equality as well as Eqs. (10.29) and (10.15) we
find

and

F,";(q')=G,";(q')=0., Ticp(Xi)= Ticp(X;) . —
F v, A( 2) F v, A( 2)

G v(A) —
G v(A)( 2)=(+) ij' q

(10.36)

It follows from Eq. (10.36) that in the case of CPT invari-
ance F; "(q ) =0 and G;;(q ) =0. Consequently, in con-
trast to the massive Dirac neutrinos, the massive Majora-
na neutrinos can have neither magnetic nor electric dipole
moments if CPT invariance holds; they can couple only to
a virtual photon, and this coupling is characterized by one

Correspondingly, the neutrino radiative lifetimes are
determined in the case of Majorana neutrinos by one tran-
sition moment [the X;~xi +y transition is of magnetic
diPole tyPe (Fi";=0) if 21cp(xi)= —gcp(x ) and of electric
dipole type (F iv =0) when Ticp(xi ) =Ticp(x;)].

We should like to conclude this subsection with a re-
mark that may be of practical use in calculations of the
amplitude of the radiative transition between two Majora-
na neutrinos. The form factors Fi (q ) and G i "(q )
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describing the transition can be formally obtained from
the form factors FJ, '"(q ) and GJ,.'"(q ) calculated as if
the neutrinos taking part in the transition were Dirac par-
ticles. Indeed, it can be shown, assuming the validity of
CPT invariance (for details see Nieves, 1982; Kayser,
1982; Shrock, 1982b), that

F vA( 2) FvA( 2) FvA( 2)

6, ( 2) GVA( 2) GVA( 2)
(10.43)

If CP invariance also holds, then (Nieves, 1982; Pal and
Wolfenstein, 1982; Petcov, 1982c)

(10.44)

Note that both Eqs. (10.43) and (10A4) are compatible
with the corresponding constraints (10.36) and (10.42),
respectively.

Finally, it should be obvious that the results obtained in
the present subsection for the radiative transitions of
Dirac and of Majorana neutrinos are general and hold

true for the radiative transitions between any pair of neu-
tral Dirac and spin- —, Majorana particles, respectively.

B. Neutrino radiative decays and magnetic
moments: experirnentai constraints
and theoretical predictions

The general expressions for neutrino radiative lifetimes
can be easily derived given the amplitudes A (v;~vj+y)
and A(X; —+X~+y) [Eqs. (10.2)—(10.4) and (10.28)] and
have the form

( —)

~ p
——~(v;(X; )~v, (XJ.)+y)2' (-) ( —)

(
I F,', I

'+
I

F
mi

(10.45)

Bearing in mind the numerical estimates we shall make
( —)

further, it is convenient to express ~ j, as

(.—)

ji =2-4 & 10' yr
30 eV

2

1 — (100 Gev)"
mi

(10.46)

It should be mentioned that the relations and the ex-
pression obtained above for the case of Dirac initial and
final neutrinos are valid also for the decay of a Dirac neu-
trino to a Majorana neutrino. However, if a Majorana
neutrino (X;) can decay into a Dirac neutrino (vJ), it will
decay to its antiparticle (vj) as well, the second transition
being characterized (on account of CPT invariance) by the
moments ( FJ'"). Reca—lling that the Hermiticity of
J' (x) implies FJ' ' ~+~(FJ, '"')" and noting that the
amplitudes of the two decays do not interfere, we get (Pal
and Wolfenstein, 1982)

~,', =[~-'(X; v, +y)+~ '(X; v, +y)]
= —,'~(X;~v, +y) .

The magnetic moment p; of a massive Dirac neutrino v;
is given, as was already shown, by p; =eI';; .

We shall assume further in this section that the neutri-
no undergoing radiative decay is much heavier than the
neutrino appearing in the final state and that the neutri-
nos possess masses satisfyirig the cosmological bound
(Cxershtein and Zeldovich, 1966; Cowsik and McClelland,
1972; see also Steigman, 1984):

Ip, I
&1.5x 10 ' pg, (10.48a)

I p, I
&1.2x 10-'~, , (10.48b)

The analyses of the existing astrophysical and cosmologi-
cal data [upper limits to (i) astronomical photon back-
grounds, (ii) photon fluxes from discrete sources, (iii) pos-
sible distortion of the microwave background radiation,
etc.], performed under the assumption that neutrinos de-
cay predominantly radiatively, exclude then lifetimes
smaller than 10' —10' yr for neutrinos with masses
exceeding approximately 1 eV (for a review and extensive
list of references see, Turner, 1981, wherein constraints on
the radiative lifetimes of neutrinos heavier than 100 eV
are also discussed). It may well be possible (Shipman and
Cowsik, 1981) to improve the sensitivity of detection of
astrophysical fluxes of photons with energies in the far-
ultraviolet region (i.e., exceeding 1 eV) by several orders
of magnitude in the not too distant future.

There are stringent limits as well on the possible values
of the neutrino magnetic moments:

ggm;&looeV,
i=1

2 if v; is a Dirac particle,
g ~ =

1 if v; is a Majorana particle .

(10A7)
from accelerator data (Kyuldjiev, 1984);

I I ., I
& 2x 10-"c, , (10A8c)
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based on cosmological arguments (Morgan, 1981); (a)

I =8,p)7). . .

1/2

iP,, i
(8.5X10 "ILI,II, (10.48d)

V

. + 2
y(q) GF(m(( )mq ) mI

I'JI —(~) 2- ~ g 4 UIJ Ull
8.7T v Q j ~ p ~ Mpj

(10.49)

Taking into account the experimental values of the s-
lepton and W —+-'boson masses (m~=1.78 GeV, M~ ——82
GeV) and using Eq. (10.46), it is easy to derive a lower
bound for the corresponding radiative lifetimes:

r 5

29 30 eV
'pp 0 10 yr

Let us note that the cosmological bound on p, was obtained

in the framework of the big bang theory by requiring that the
synthesis of He in the early universe not be affected by the ex-
citation of additional neutrino helicity states due to the elec-
tromagnetic interaction of the neutrinos. The astrophysical
bound is based on considerations of the allowed energy losses
due to neutrino pair emission by degenerate dwarf stars and is
valid for neutrinos with masses smaller than 10 keV.

For an early discussion of neutrino radiative decays in the
framework of the intermediate vector-boson theory with lepton
mixing, see Nakagawa et al. (1963}.

from astrophysical considerations (footnote 62) (Beg
et al. , 1978) (@II——e/2m, is the Bohr magneton). The
bounds obtained on the basis of the existing accelerator
data are expected to be improved approximately by an

( —)

order of magnitude in the v „-e and v, -e elastic
scattering experiments that are being performed or are in
preparation at present. Let us note also that magnetic
moments of the order of or greater than 10 ' —10
(e/2m, ) may have important astrophysical implications
(Cisneros, 1980; Fujikawa and Shrock, 1980; Okun et al. ,
1986).

We shall consider next examples of the electroweak
gauge theory predictions for the neutrino radiative life-
times and magnetic moments. Let us discuss first the
predictions of the minimally extended standard
SU(2)L)&U(l) theory with massive Dirac neutrinos (see
Secs. IV.B and VIII.B.1). The fields of the LH flavor
neutrinos vIL(x) in this theory are linear combinations of
the LH components of the fields of Dirac neutrinos

vkI (x) with definite masses: vIL, (x)=gk UIk vkL, (x)
where U is a unitary lepton mixing matrix. At the one-
loop level the amplitude of the neutrino radiative decay
vI ~vz+y is generated by the diagrams with exchange of
virtual 8' —+ bosons and charged leptons shown in Fig.
2(a). Here the suppression mechanism of Glashow,
Iliopoulos, and Maiani (1970) is operating, and in the case
of three generations of leptons we have (Lee and Shrock,
1977; Marciano and Sanda, 1977; Petcov, 1977b)

vk

(c)

e-

FIG. 2. Diagrams corresponding to (a} v; —+vj+y; (b} prey;
(c} p —+3e decays in the minimally extended standard elec-
troweak theory with massive Dirac neutrinos.

3eGFm

8~'v 2

m;

30 eV
e (10.50)

Note that p; vanishes in the limit of zero neutrino mass,
when the difference between Dirac and Majorana neutri-

Clearly, the radiative decays of neutrinos with masses
satisfying the cosmological restriction (10.47) will be
beyond observation if this bound is valid.

Much shorter lifetimes are possible if there exists a
fourth generation of sequential leptons with a relatively
heavy charged lepton o, i.e., m &M)v (De Rujula and
Glashow, 1980; Pal and Wolfenstein, 1982). The
Glashow-Iliopoulos-Maiani suppression mechanism turns
out to be ineffective then. The decay rate is maximal for
m~ &&M~, when the moments I'J " take the form of Eq.
(10.49) with the factors

2
mI—4U» UII

l mp

replaced by —,
' U'1 U; and ~z, & 1023 yr (30 eV/m;)~.

Unlike the radiative decay rates, the neutrino magnetic
moments in the theory under consideration depend weak-
ly on the lepton mixing matrix and charged-lepton masses
and are extraordinarily small (Lee and Shrock, 1977; Mar-
ciano and Sanda, 1977; Fujikawa and Shrock, 1980):
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v2M kV

x g +k Ukl ( ~(tan(zoic + 'gk mk cot(1'per. )HT
l, k

+H. c. , (10.51)

where tanuo ——V2U/A, (if CI' is not conserved, qk should
be taken to be equal to unity). If the mass of Hz+ is in the
range 20—80 GeV, the contribution to A (X;~Xj +y)
determined by the lepton-HT interaction is dominant. In
this case (Pal and Wolfenstein, 1982),

nos in a theory with LH weak charged currents disap-
pears (Case, 1957; Ryan and Okubo, 1964).

Massive Dirac neutrinos appear in some electroweak
gauge theories with RH currents as well, but we shall not
consider the predictions of these theories here. They have
been discussed in detail by Lee and Shrock (1977), Smir-
nov and Zatzepin (1978), and Shrock (1982b). Let us note
only that as a rule both neutrino radiative decay rates and
neutrino magnetic moments in theories with RH currents
are much larger than those discussed above.

We turn now to the predictions for radiative lifetimes
of Majorana neutrinos. The results of the general analysis

[Eq. (10.43)] show that the radiative lifetimes of the Ma-
jorana and Dirac neutrinos, determined by interactions
common to both types of massive neutrinos (as is the
standard weak interaction) do not differ substantially.
However, massive Majorana neutrinos arise in the gauge
theories due to specific couplings (most often between lep-
tons and Higgs bosons and/or Higgs bosons themselves)
changing the lepton charges by two units (see Sec. VIII
and, for example, Cheng and Li, 1980). Such couplings
might enhance considerably the neutrino radiative decay
rates, even if the corresponding theory does not contain
RH weak currents. The model with a triplet of Higgs
scalars and the model of Zee, considered by us in Sec.
VIII, provide examples of schemes in which this possibili-

ty may be realized.
As we have indicated in Sec. VIII.V.2.a, a combination

of the charged scalar field (II+) present in the triplet and
of that in the standard Higgs doublet (P(+)) corresponds
in the model with the triplet of Higgs scalars (8.5) to a
physical charged scalar particle HT+ [see Eqs. (8.8) and
(8.9)]. It couples to leptons with a strength typical of
Higgs bosons:

y(g) GQ(Pli( )mj )
+ji (+ )

Much shorter lifetimes are possible in the model of Zee
(Petcov, 1982b) discussed in detail in Sec. VIII.B.2.b. The
expressions one obtains for the moments Fz,'" are partic-
ularly simple in the version of the model with two Higgs
doublets, in which the neutrino mass matrix is given by
Eq. (8.15). In this case the X;—+X)+y, i =2,3, transition
moments have the following unusual form (Petcov,
1982b):

2

F i; ()v'-2m; 2 C„ 1 — cos2a (1(+)g)71;),V(A) + IJ 7

m, P

1

MH
ln

MH

M~
ln —1

MH
—(2~1), I =IJ, ,r

and where MH are the masses of the two physical
1,2

charged Higgs particles H~+2 present in the theory. It
should be noted that the diagrams giving the leading con-
tribution to 3 (X;~g)+ y) differ from those in Fig. 1

generating the neutrino mass matrix (8.15) only by the
photon line and vertex. For this reason the coupling con-
stants appearing in the expressions for F ); can be com-
bined (further details can be found in Petcov, 1982b) to
form the factor

1

m, ln(MH, /M~, )

The corresponding neutrino radiative lifetimes may be as
low as 10' yr for m23 30 eV and relatively light
charged Higgs bosons (i.e., MH -20 GeV and MH —100

GeV),

2
mI

&& g Uij U(i ~a
2M~

ln 2
mI

where M~ is the HT+ mass. The corresponding decay
rate is maximal in the case of four generations of leptons
with a heavy charged lepton cr, m -M~. Then we have

5

2 30 eV) 10 yr
mE

—(Zee) + 10]7+ l.i

5
30 eV

m;

~This coupling can be deduced from Eqs. (8.2}—(8.5} by using

Eqs. (8.8), (8.9), and the relation M~ ——4g (A, +2U ) valid in

the model.

As far as we know, this is the shortest neutrino radiative
lifetime possible in the gauge theories with LH weak
charged current.

One final remark. If, say, f,„=0in the model of Zee,
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then m~ ——0, the charge I'=L, +I„—L, is conserved,
m2 ——m3, and the Majorana neutrinos X2 and X3 are
equivalent to a Dirac neutrino

1
(X2—X3)

2

of the nonstandard (ZKM) variety having a mass
m =m2 ——m3 (see Sec. VI). Such neutrinos possess as a
rule nonstandard magnetic moments, which may differ
substantially from the magnetic moment (10.50). Indeed,
the magnetic moment of the neutrino P is given by
(Petcov, 1982b)

P23- —4emC

For m -20 eV it may be as large as
10 ' —10 ' (e/2m, ).

To summarize, the examples we have considered indi-
cate that neutrinos with masses -20 eV may have radia-
tive lifetimes in the range 10' —10 yr, which can be ex-
plored experimentally in the near future, and that Dirac
neutrinos may have magnetic moments of the order of
10 ' (e/2m, ), which may cause detectable astrophysical
effects. However, neutrino radiative lifetimes and mag-
netic moments of the indicated magnitudes are possible
only if there exist new particles and couplings beyond
those present in the minimally extended standard theory
with massive Dirac neutrinos.

XI. THE PROCESSES prey AND p~3e
IN GAUGE THEORIES WITH MASSIVE
NEUTRINOS

We have seen in the preceding sections that in the
theories with massive neutrinos and neutrino mixing the
lepton charges L„Lz, L, are not conserved. As a conse-
quence, lepton-number-nonconserving processes like

p —~e —+y, p+~e++e +e+, E ——+m —+e++p
etc. are allowed in these theories. As has been discussed
in Sec. II, stringent experimental upper limits for the
probabilities of such processes exist. The following ques-
tions naturally present themselves: are the predictions of
the theories with massive neutrinos and neutrino mixing
compatible with these limits, and if they are, what are the
mechanisms that suppress the rates of the lepton-
number-nonconserving reactions and decays to a level
compatible with observations'? With the aim of elucidat-
ing the status of lepton-number-nonconserving processes
in gauge theories with massive neutrinos, we shall review
briefly the predictions of these theories for the probabili-
ties of p —»ey and p —»3e decays.

The sources of lepton number nonconservation in the
minimally extended Cilashow-Weinberg-Salam theory
with massive Dirac neutrinos, considered in Sec. VIII.B.1,
are the lepton —Higgs-boson couplings (8.1) which give
rise to the neutrino mass term. The coupling constants in
Eq. (8.1) multiplied by the vacuum expectation value

(P )0 form the neutrino mass matrix. It is therefore
natural to expect that in this theory the magnitude of the

lepton-number-nonconservation effects will depend
strongly on the neutrino masses and on the lepton mixing
matrix elements.

The leading contribution to the prey decay amplitude
A(prey) in the theory is shown diagrammatically in
Fig. 2(b). The terms in A (p —»ey), corresponding to dia-
grams with exchange of different virtual neutrinos, tend
to compensate each other, i.e., the suppression mechanism
of Glashow, Iliopoulos, and Maiani (1970) is operating.
The p —+ey decay rate and branching ratio are given by
(Bilenky, Petcov, and Pontecorvo, 1977; Petcov, 1977b)

G2 5 2 2

g U„'kU, k192~' 32 ~
I (p»ey) =

I (prey)B(p—»ey) =
I (p~ev, v„)

2

pk ek
8'

(11.2)

3 cx
2 mk Mg2 2 2

g Upk Ui.k 2 ln z
Mg mk

(11.3)

Note that the naive estimate I"(p » 3e )/I (p —+ey )
-a/n may not be valid in the theory under considera-
tion. Due to the logarithmic enhancement of the p~3e
decay rate, we may have I (p-+3e)/I (p —+ey) »a/n.

It obviously follows from Eqs. (11.2) and (11.3) that the

p —+ey and p~3e decay branching ratios would be ex-
traordinarily small if the neutrino masses mk satisfied the
cosmological bound, being smaller than 100 eV. Taking
into account that M~-82 GeV and using the value 0.1

for the relevant product of the lepton mixing matrix ele-
ments, we obtain in this case

B(prey) & 0.5 X 10 ', B(p~3e) & 4X 10

These bounds are some 30 orders of magnitude lower than
the corresponding experimental upper bounds 4.9&10
and 2.4X 10 ', respectively (see Sec. II, Table II). Clear-

ly, the prey and p —+3e decays would be unobservable
under the indicated conditions. As can be shown, the

where mk is the mass of the Dirac neutrino vk, M~ is the
W+—-boson mass, UIk, I =e,p, are elements of the lepton
mixing matrix, and Eqs. (11.1) and (11.2) were derived as-
suming that mk &&M~.

The p~3e decay amplitude is determined as depicted
in Fig. 2(c). For neutrino masses much smaller than the
W —+-boson mass, mk «M~, the contributions of the dia-
grams with exchange of a virtual Z boson and of those
with two virtual W +— bosons in A(p~3e) are logarith-
mically enhanced and dominate over the contribution of
the diagrams with exchange of a virtual photon (Petcov,
1977b). In the approximation in which the latter is
neglected, the p —»3e decay branching ratio has the form
(Lee and Shrock, 1977; Petcov, 1977b)

(3)P(p—+3e)
I (p ~e ve vp )
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8 (prey) -4.8 && 10

8(p~3e) -4&& 10 (11.4)

I"(p ~3e)
I (prey)

In the model of Zee the lepton charges L,I, $ =e,p, ~ are
not conserved by the lepton —charged-Higgs-boson in-
teraction (8.13), which is not associated directly with neu-
trino mass generation. The leading contribution in the
p —+ey decay amplitude may arise due to this interac-

same result is valid for all possible lepton-number-
nonconserving reactions and decays in the theory under
consideration.

Thus we see that if the lepton charges I-~ are not con-
served, the p —+ey, p —+3e, K ——+m. —+e p+, etc. decays
may proceed with rates that are not observable in prac-
tice. If neutrinos possess nonzero masses and neutrino
mixing does take place, this possibility may be realized
provided the neutrino masses are much smaller than the
W—+-boson mass. Under this condition, the only lepton-
number-nonconserving process that might lead to observ-
able effects would be the oscillations of neutrinos (Petcov,
1977b).

One arrives at an analogous conclusion in the case of
three generations of leptons, even if relatively heavy neu-
trinos exist. In this case the mass of the heaviest neutri-
no, say v3, cannot exceed the experimental limit on the ~-
neutrino mass: m3 & 70 MeV (Albrecht et al. , 1985).
Searches for heavy neutrinos that couple both to the elec-
tron and to the muon and have masses in the range 1—70
MeV imply that

~

U„*3U,3 ~

&10 (for a summary, see
Lubimov, 1984). This in turn implies

8(prey) & 10, 8(p~3e) &10

which is far below the sensitivity of the experiments on
prey and p~3e decays performed at present.

The form of Eqs. (11.2) and (11.3) suggests that the
prey and p~3e decay probabilities may be close to the
corresponding experimental upper limits if, say, heavy
leptons with masses in the range of several GeV or
larger exist (Bilenky, Petcov, and Pontecorvo, 1977; see
also Bjorken, Lane, and steinberg, 1977; Cheng and Li,
1977; Lee and Shrock, 1977; Marciano and Sanda, 1977;
Wilczek and Zee, 1977). In particular, in the theory
under consideration, this could be a heavy neutrino v4
(i.e., a heavy neutral lepton) belonging to a fourth sequen-
tial generation of leptons (Lee et al. , 1977). Assuming for
illustration that m4 —10 GeV and

~
U&4U, 4

~

—10, we
obtain from Eqs. (11.2) and (11.3)

tion. As a consequence of the nonstandard form of the
couplings (8.13) (v, for example, is coupled both to p,
and e ), the contribution in A(p —&ey) they generate is
not suppressed by the Glashow-Iliopoulos-Maiani mecha-
nism. The prey decay probability is different from zero
even in the limit of zero neutrino masses, and in the case
of three generations of leptons we have (Petcov, 1982b;
see also Leontaris, Tamvakis, and Vergados 1985, and
Tamvakis and Vergados, 1985)

0 0

8(prey)= (11.5)
48~ M2GF

where f,„fz„and M are defined by Eqs. (8.13) and
(8.20). For M-50 Gev and

~ f,,f&, ~

—10
B (p ~ey ) —10 ', which is close to the best experimen-
tal limit of 4.9)& 10 " (see Table II in Sec. II). In fact,
this limit imposes rather stringent constraints on the pa-
rameters of the theory. For instance, if M(10 Gev,
then

~ f,,f&, ~

& 1.6&& 10 . The existing experimental
limits on the p —+3e branching ratio do not imply stronger
restrictions on

~ f,,f„~, since, as can be shown, in the
model of Zee (Petcov, 1982b; Leontaris, Tamvakis, and
Vergados, 1985)

I (p~3e)
I (prey) (11.6)

Wl H = g All —( vlL ) lL HT
I, I'

(lL)'lLH++ +H.c. , (11.7)
2

where IIz+(x) and M++(x) are the fields of physical mas-
sive singly charged and doubly charged Higgs particles
(see Sec. VIII.B.2.a). Let us note that in the model of in-
terest, with the triplet majoron, the masses of HT+ and

The p —+ey and p~3e demy rates may also be close to
their experimental upper limits in the SU(2)L )& U(1)
model with the triplet of Higgs scalars, discussed in Sec.
VIII.B.2.a. Of particular interest are the predictions for
I (prey) and I (p —+3e) of the version of the model with
a majoron, and we shall focus our attention on them.

In the case of relatively light neutrinos, the diagrams
giving the largest possible contributions in A (p —+ey) and
A (p~3e) in the model are induced by the
lepton —Higgs-triplet Ll-nonconserving couplings (8.4). It
is most convenient to mlculate and analyze these contri-
butions assuming that (H )0=v/v 2=0. In this limit
the flavor neutrinos v~ do not acquire a mass term at tree
level and the relevant lepton —Higgs-boson couplings have
the form

65Note that Eqs. (11.2) and {11.3) for 8 {p, ~ey) and

B(p—+3e) are not valid in the ease of contributions of "neutri-
nos" with masses of the order of or exceeding M~.

The corresponding diagrams can be obtained formally from
the diagrams shown in Fig. 2(b) by replacing the 8' —-boson
lines with lines of the virtual Higgs bosons H» and vk by Pk.
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H++ (MH and MH, respectively) are not independent,

1
MH — MH~2 (1 1.8)

u 258( prey)=
48~ 16 MH GF

(11.9)

In contrast to A(prey), the p~3e decay amplitude
receives a nontrivial contribution already in the tree ap-
proximation in this model: due to the I-H++ interaction
(11.7), a p+ can emit a real e and a virtual H++, which
can decay into a pair of real e+. The corresponding
p~3e branching ratio is given by (Bernabeu, Pich, and
Santamaria, 1985)

1 1 I hephee8(p~3e) =——
2~H GF

(11.10)

The existing data on the (PP)0, decay imply that

I
h„

I
& 10 (Georgi, Glashow, and Nussinov, 1981). If,

forinstance
I

" pI I "ee
I

and MH 100GeV, then

8 (p~3e)-4X 10

Comparing Eqs. (11.9) and (11.10) we arrive at the in-
teresting conclusion that in the model with the triplet Ma-
joron one may naturally have

I (p~3e) m~—Q) 1
I (prey) a (11.11)

Thus our considerations show that there exist natural
mechanisms for suppressing the rates of the lepton-
number-nonconserving reactions and decays in theories
with massive neutrinos and neutrino mixing. The proba-
bilities of the p rey and p —+3e decays predicted by these

For a calculation of the contribution in A {prey) arising
due to the I-H++ interaction see Pich, Santamaria, and Berna-
beu (1984) and Leontaris, Tamvakis, and Vergados (1985).

and that the mass. of H++ cannot exceed roughly
Gz

' -300 GeV, M~ & 300 GeV (Georgi, Glashow, and
Nussinov, 1981).

Obviously, the lepton-HT+ couplings in Eq. (11.7) are
analogous to the couplings (8.13) generating the leading
contribution in A(prey) in the model of Zee. As a
consequence, the term in B(p—+ey) that corresponds to
the contribution of the one-loop diagrams with exchange
of virtual Higgs boson HT+ and virtual neutrinos can be
obtained from Eq. (11.5) by replacing (f,,f&, ) with—„ I g&blah~, I

and M with the mass M~ of HT+. It is
clear from Eqs. (11.7) and (11.8) that the contribution in
A (prey) arising due to the l H++-couplings in (11.7)
is of the same order as that generated by the lepton-HT+
couplings. Taking both contributions into account, one
obtains

2

g h(ph(,

theories may be close to the existing experimental upper
bounds if, for example, heavy leptons and/or charged
Higgs particles exist. As follows both from our con-
siderations and from earlier studies (Bjorken and Wein-
berg, 1977; Lee et al. , 1977; Petcov, 1977a; Wilczek and
Zee, 1977), the predicted value of the ratio
I (p~3e)/I (prey) is very sensitive to the mechanism
assumed for the prey decay: it varies with the theory
from a!n to m/u. Therefore, the measurement of both
@~ed and p~3e decay rates might be used to distin-
guish between different mechanisms that might cause
muon number nonconservation. These results imply that
both decays should be investigated with better accuracy.

Xll. EXPERIMENTAL TESTS OF THE NONZERO
NEUTRINO MASS AND NEUTRINO OSCILLATION
HYPOTHESES

A. Introduction

Neutrino masses and mixing constitute one of the out-
standing problems of modern elementary-particle physics.
In many laboratories around the world experiments
designed to search for effects due to Majorana or Dirac
masses and mixing of neutrinos are being performed. In
spite of the considerable experimental progress achieved
in recent years, the problem of neutrino masses still
remains open. The data obtained most recently, however,
have permitted us to narrow substantially the region of
possible values of neutrino masses and mixing angles.

We shall first briefly discuss the results of experiments
in search of neutrino oscillations. Due to the interference
nature of the oscillations, searching for this phenomenon
is one of the most sensitive methods of looking for effects
of finite neutrino mass differences. We shall present only
the data obtained in the last few years. Excellent reviews
of the early experiments on neutrino oscillations per-
formed before 1982 are given in Baltay (1982) and
Wachsmuth (1982).

B. Neutrino oscillation experiments

In order to prove that neutrino oscillations do take
place, it is necessary to make certain that the probability-
of a transition of a neutrino (antineutrino) of a given type

: v~ (v~) into a neutrino (antineutrino) of a different type vr
(V~ ), I'&l, 1 =e,p, 1'=e,p, r (or into a sterile neutrino) is
different from zero and depends periodically on the quan-
tity R /p (where R is the source-detector distance and p is
the neutrino momentum). There exist two types of exper-
iments searching for oscillations.

1. Appearance experiments. In experiments of this
type one is looking for the appearance of neutrinos of a
given kind vi (l'=e, p, r) at some distance from the source
of neutrinos of a different kind v~ (l =e,p, l&l'). Find-
ing such neutrinos would constitute evidence in favor of
the oscillations vI~vI .
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TABLE III. Values of the parameter (Am )o, characterizing qualitatively the sensitivity of a given ex-
periment searching for neutrino oscillations. p and R are the neutrino momentum and the source-
detector distance typical of the experiment.

Neutrino source

Reactor
Meson factory
High-'energy accelerator
Atmospheric neutrinos
Sun

P (Mev)

1

10
10
104

1

R (m)

10
10
10
10
10"

(5m )0 (eV )

10
10-'

1

10
10—11

=P .— (R /p). —

= —,sin 20 1 —cos2. 54
Am R

(12.1)

P, „,(R/p) =. P, „,, (R/p)

=P„.„(R/p)

=P~ . (R/p)

= 1 —
2 sin 20 1 —cos2. 54

Am R
(12.2)

Here hni =
~

m
&

—mz
~

is the difference of the squares
of neutrino masses in eV, R is the distance between the
source and the detector .in meters, p is the neutrino
momentum in MeV/c, and 8 is the leptonic mixing angle.
The indices l and l' can assume the values e and p, or e
and ~, or else p and ~. Expressions analogous to (12.1)
and (12.2) apply in the case of oscillations between active
and sterile neutrinos.

It is obvious from Eqs. (12.1) and (12.2) that neutrino
oscillations would not be observed in a given experiment

The work of Blumer and Kleinknecht (1985}, however,
analyzes the experimental data under the more general assump-
tion of oscillations involving three neutrino states. For earlier
discussions of the three neutrino oscillations see De Rujula
et al. (1980) and Barger et al. (1980).

2. Disappearance experiments. In experiments of this
type, neutrinos of the same kind are detected at some dis-
tance from the source of v~. If the measured flux of neu-
trinos should turn out to be less than the flux expected in
the absence of oscillations, that would constitute evidence
in favor of the oscillations v~~+v (where v„ is an active
or sterile neutrino).

Since oscillations of neutrinos have not yet been found,
in most of the literature the experimental data are
analyzed under the simplest assumption, that of oscilla-
tions between two states. For the transition probabilities
we have in this case [see Eqs. (7.79) and (7.80)]

, (R/p) =P-„.—(R/p)

=P„, , (R/p)

if the difference of the squares of neutrino masses b,m
were so small that for all R and p characteristic of the ex-
periment the cosine argument were much smaller than
unity. Oscillations of neutrinos may be observed if the
values of R and p typical of a given experiment satisfy
the inequality

(12.3)

Clearly, in order to observe oscillations it is also necessary
that the oscillation amplitude sin 20 be large enough.

The inequality (12.3) implies that the parameter

(bm )o ——
R

(12.4)

v, +p~e++n . (12.5)

The detector of the Mossbauer group comprises a
sandwich of scintillator counters and proportional
chambers filled with He. Events were selected by coin-
cidence in the appearance of positrons (detected by the
scintillator counters) and neutrons (detected by the pro-
portional chambers). Altogether there were registered

characterizes qualitatively the sensitivity of an experiment
searching for neutrino oscillations (Bilenky and Pontecor-
vo, 1978): the smaller this parameter, the smaller the
values of the differences of the squares of neutrino masses
which can be "registered" in a given experiment. Typical
values of the parameter (hm )o for experiments with neu-
trinos from different sources are given in Table III.

As can be seen from Table III, the most sensitive (with
respect to b.m ) experiments with neutrinos from terres-
trial sources are the reactor experiments. We shall begin
with a discussion of the results obtained in the most re-
cent reactor experiments.

During the last four years the group of Mossbauer has
been performing neutrino oscillation experiments in
Gosgen (Switzerland) at a reactor having a power of 2.8
GWth. Measurements were taken at three distances be-
tween the center of the active zone of the reactor and the
detector: 37.9 m (Vuilleumier et a/. , 1982), 45.9 m (Ga-
bathuler et a/. , 1984), and 64.7 m (Zacek et a/. , 1985).

The reactor is an intensive source of low-energy (up to
8 MeV) electron antineutrinos, formed in the decays of
the fission products. The antineutrinos are detected ex-
perimentally by observation of the process of inverse /3

decay of the neutron
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10930+220 events at 37.9 m; 10590+190 events at 45.9
m; 8787+325 events at 64.7 m. At each of the three dis-
tances the spectrum of the positrons from the reaction
(12.5) was measured.

The data of the measurements at all the three distances
were analyzed by two methods (Zacek et a/. , 1985). The
first method consisted in comparison of the data obtained
at different distances. Information about the spectrum of
the initial antineutrinos was not entered in advance in this
analysis. The antineutrino spectrum was represented in
the form

2

S(E)=exp —g A„E"

and the free parameters Ao, A „and A2 were determined
by fitting the experimental data. It was shown in this
way that the positron spectra at the three distances were
well described under the condition that neutrino oscilla-
tions were absent. If one assumes that neutrino oscilla-
tions take place and are characterized by the parameters
hm and sin 28, then restrictions on the possible values
of these parameters could be derived from the data. A
comparison of the data obtained at the three distances is
presented in Fig. 3. The region of values of the parame-
ters hm and sin 28 located to the right of the solid curve
is excluded (at 90% C.L.).

As is seen from Fig. 3, not only an upper limit on Am
but a lower limit as well emerges if one compares the data
at different distances. Let us note that this is connected
with the fact that for sufficiently large hm the cosine

10',
I

term in Eq. (12.2) vanishes as a result of averaging, and
the oscillation effect reduces to a multiplication of the ini-
tial flux intensity by a constant factor smaller than unity.
Clearly, it is impossible to establish the presence of such a
factor by merely comparing data taken at different dis-
tances.

In the second method of analysis of the Gosgen data,
information about the spectrum of the antineutrinos com-
ing out of the reactor was used. The basic fission isotopes
in the Gosgen reactor are U, Pu, U, and 'Pu.
Their corresponding contributions to the power of the
reactor are approximately 60%, 28%, 7%, and 5%. The
spectra of the antineutrinos from fission products of the
isotopes U and Pu giving the main contribution were
determined from measurements of the P spectra of the
fission products (Feilitzsch et al. , 1982). The calculations
of Vogel et al. (1981) were used to derive the spectra of
the antineutrinos from U and Pu. The results of the
analysis, using the spectrum of the initial antineutrinos
obtained in this way, are shown in Fig. 4. The excluded
region of values of the parameters b.m and sin 28 is to
the r'ight of the solid curve (90% C.L.). From Fig. 4 it
follows that

hm (0.019 eV (sin 28=1),
sin 28 & 0. 18 (b m ) 5 eV ) .

The results of another experiment searching for oscilla-
tions in the beam of antineutrinos from a reactor have
been published recently (Cavaignac et al. , 1984) by a
group working in Bugey (France). The reactors in Bugey
and Gosgen are very similar. The detectors of the two

10 .

100

CU

CD

CU

IO
0

10 l

0.6 0.8
I I I k I I

0.0 0.2 0.4
sin2 28

FIG. 3. Results of the analysis of the Gosgen data at 37.9 m,
(Vuilleumier et al. , 1982), 45.9 m {Gabathuler et al. , 1984),
64.7 m and (Zacek et al. , 1985). The excluded region of values
of the parameters hm and sin22I9 is to the right of the solid
curve. The shaded region corresponds to values of Am and
sin 20 allowed by the Bugey data.

IO'
0 0.8

I s I

0.2 0.4 0.6 I.O
sin~ 28

FIG. 4. Results of the analysis of the Gosgen data obtained at
distances 37.9, 45.9, and 64.7 m from the reactor core. Infor-
mation about the initial antineutrino spectrum was used in the
analysis. The region to the right of the solid curve is excluded
at 90% C. L. The shaded region of values of Am and sin 20 is
allowed by the Bugey data.
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groups are identical. The experiments in Bugey were per-
formed at two distances, which, however, are smaller than
those exploited in Gosgen: 13.6 and 18.3 m. This permit-
ted the accumulation of considerably larger statistics in
Bugey than in Czosgen, namely, 39881+262 events ob-
tained at 13.6 m and 23 345+310 events registered at 18.3
m.

The ratio of the positron yields measured in Bugey at
the distances 13.6 and 18.3 m for different positron ener-

gies (in the interval from 1.5 to 6.5 MeV) and corrected
for the difference in spatial angle and the burning of the
nuclear fuel is presented in Fig. 5. For the ratio of the in-
tegral yields at these two distances the following value
was found:

F, /Y2 ——1.102+0.014 (stat)+0. 028 (syst) .

The authors of the work performed in Bugey interpret
the data they have obtained as evidence in favor of neutri-
no oscillations. For the allowed values of the parameters
hm and sin 20 the shaded region in Figs. 3 and 4 is
found. The best description of the Bugey data is achieved
fOf

Am =0.2 eV, sin 2l9=0.25 .

In the work of Zacek et al. (1985) attention is paid to
the contradiction between the Crosgen and Bugey data.
Practically the whole region of possible values of Am

RATIO

posr TroN ~/posr TroN 2

]) il

li
ll

0.
2 3 ~ 5 6

E (~ev)
FIG. 5. The ratio of positron yields at distances 13.6 and 18.3
m, obtained in the Bugey experiments (Cavaignac et al. , 1984).
Corrections for the difference in the spatial angles and the burn-
ing of the nuclear fuel are taken into account. The dashed
curve corresponds to prediction of the neutrino oscillation
theory for A~ =0.2 eV and sin 20=0.25.

and sin 28 obtained from the Bugey data lies in an area
excluded by the Go*sgen data taken at the three distances
(see Fig. 3). If information about the spectrum of the ini-
tial antineutrinos is used in the analysis of the Gosgen
data, the whole region of values of hm and sin 20 deter-
mined from the Bugey data lies inside the region of values
of these parameters excluded by the Gosgen data (see Fig.
4). Further, all positron spectra measured by the group of
Mossbauer are well reproduced by using a spectrum ex-
tracted from the Bugey data obtained at 13.6 m under the
assumption that neutrino oscillations do not take place
(Zacek et al. , 1985). The positron spectrum measured at
the distance of 18.3 m in Bugey cannot be derived in the
same way. Finally, if one assumes that neutrino oscilla-
tions characterized by An& =0.2 eV and sin 20=0.25 do
take place, and if one extracts the antineutrino spectrum
from the 13.6-m Bugey data, it is impossible to reproduce
by using this spectrum the Gosgen positron spectra as
well as the 18.3-m Bugey spectrum. On the basis of this
analysis Gabathuler (1985) expressed doubts about the
correctness of the 18.3-m Bugey data.

Thus the experiments with reactor antineutrinos do not
yet give an unambiguous answer to the question of wheth-
er neutrino oscillations take place. These experiments
continue. Let us note that apart from those in Gosgen
and Bugey, experiments designed to search for oscillations
in beams of reactor antineutrinos are being performed
also at the Rovno Power Station in the Soviet Union
(Borovoi et al. , 1980) and at the Savannah River Reactor
in the United States (Baumann et al. , 1984).

%'e proceed now to a discussion of the results of experi-
ments looking for oscillations in neutrino beams from ac-
celerators. Recently, the results of three new disappear-
ance experiments searching for v&~~v„oscillations have
been published (Bergsma et al. , 1984; Dydak et al. , 1984;
Stockdale et al. , 1984). The first two experiments were
performed at CERN, the third in Batavia. In these exper-
iments for the first time the neutrino events

v„+X~p +X were registered by two detectors. In the
experiment of the CDHS Collaboration (Dydak et al. ,
1984) the detectors were located at 130 and 885 m from
the proton target; in the experiment of the CHARM Col-
laboration (Bergsma et al. , 1984) they were at 123 and
903 m. Finally, in the experiment of the CCFR Colla-
boration (Stockdale et al. , 1984) the detectors were placed
at 715 and 1116 m from the center of the decay tunnel.
For the experiments at CERN a special neutrino beam
from the proton synchrotron (PS) with relatively low en-

ergy (-1 GeV) was formed. In Batavia a neutrino beam
with energy in the interval from 40 to 230 GeV was used.

Evidence for the existence of neutrino oscillations was
not found in all three experiments. The region of values
of the parameters Arn and sin 20 excluded by the data
obtained in these experiments is depicted in Fig. 6 (the
confidence level is 90%%uo,

' the excluded regions are located
to the right of the curves). As can be seen from Fig. 6, in
the case of maximal mixing (sin 28= 1), the data obtained
in the experiments with two detectors permit one to ex-
clude the values of the parameter hm in the intervals
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FIG. 6. Results of analyses of the data on v„~~v„oscillations.
The regions of values of hm and sin 20 to the right of the
curves are excluded (at 90% C.L.) by (a) CDHS (Dydak et al. ,
1984); (b) CHARM (Bergsma et al. , 1984); (c) CCFR (Stockdale
et al. , 1984); and (d) Serpukhoy (Belikov et al. , 1983).

28
FIG. 7. The region in the plane hm, sin28 excluded by the
data obtained at BNL in the experiment of Ahrens et al. (1985)
searching for v„~~v, oscillations.

0.26 & Am & 96 eV CDHS,

0.29 & hm &22 eV CHARM,

15 &5m2&1600 eV CCFR .

It was also found from the data that

with that expected in the absence of oscillations. The re-
gion of values of the parameters Am and sin 28 excluded
by the BNL data is shown in Fig. 7. As is seen from Fig.
7, for large hm,

sin 20 & 3.4 & 10

sin 20&0.053 for b,m =2.5 eV CDHS,

sin 28&0.20 for hm =2 eV CHARM,

sin 20&0.02 for hm =100 eV CCFR .

I T

The CCFR Collaboration performed a search for
vz~+v~ oscillations (Stockdale et al. , 1985) with the same
two detectors used in the v„~~v oscillation experiment.
No evidence for v& disappearance was found. For
sin 20=1 the CCFR data imply that Am &15 eV or
b,m ~ 10 eV (90% C.L.); the most stringent limit on the
relevant neutrino mixing angle obtained in this experi-
ment is sin 28 & 0.02 (for b,m =110 eV ).

We shall give next a brief exposition of the results of
the most recent appearance experiments searching for the
oscillations v&~~v, . In the experiment of Ahrens et al.
(1985), performed at the Brookhaven (BNL) accelerator
(with an average neutrino energy of 1.5 CxeV), the quasi-
elastic reactions v@+n~p +p and v, +n —+e +p were
detected. The distance between the proton target and the
detector was 100 m. The ratio of the fiuxes of v, and vz
was determined from the data at different neutrino ener-
gies. It turned out that the ratio of the v, and v„ fluxes
measured in the experiment coincides within the errors

10

CV

O

E

g, (cHARv) .

10

0
I I I I I I I

0,5 1.0
sin2 28

FIG. 8. Results of the analyses of the CHARM data obtained
in an experiment looking for v„~~v, oscillations with two detec-
tors exposed to the neutrino beam from the PS.
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If the parameter Am is so small that b,m A/p «1,
then from Eq. (12.2) we have

103

P . -sin 20 1.27
P

From the data obtained at BNL it follows that, for small
hm,

bm
~
sin28) &0.43 eV

In an experiment with two detectors the CHARM Col-
laboration looked for the oscillations v„~~v, in addition
to the oscillations v&+~v (Bergsma et al. , 1984). Quasi-
elastic v, -induced events were detected (with an average
neutrino energy of 1.5 GeV). An upper bound of
2.7X10 was obtained for the probability of the transi-
tion v& —+v, .

The results of the analysis- of the CHARM data are
presented in Fig. 8 (the region of values of b,m and
sin 28 located to the right of the curve is excluded at 90%%uo

C.L.). It follows from this analysis that

100

BEBC PS

900/n C.L

100102 10hm &0.20 eV (sin 28=1),
sin 28&0.04 (b,m =2 eV ) .

sin 28

FIG. 9. Results of the analyses of the BEBC data obtained with
the neutrino beam from the PS in search of the oscillations
v„~~v, . The region of values of Am and sin 2t9 located to the
right of the curve is excluded at 90go C.I..

Experiments searching for oscillations of neutrinos
have also been performed at the meson factory in Los
Alamos (Nemethy et al. , 1981; Wotschack, 1984). Neu-
trinos in these experiments originated from the decays of
stopped pions (m+~p+v&) and from the subsequent de-

cay p+ ~e+v, v&. The admixture of v, in the initial neu-
trino flux was —10, and the detector was located at 10
m from the target. The experiments looked for the oscil-
lations vz~~v, and performed a search for v, +@~e++n

events. Evidence for the existence of neutrino oscillations
was not obtained in these experiments either. It was
found that

vp~~v~. '

Am &7.4 eV (sin 28=1),
sin 28 &0.088 (b,m ~ oo ) .

At the EPS international conference on high-energy
physics in Bari the results of an appearance experiment
searching for oscillations v&~&v„performed at CERN
with the bubble chamber BEBC, were reported (Baldo-
Ceolin et al. , 1985). A flux of relatively low-energy
muon neutrinos from the PS (with average neutrino ener-

gy =1 GeV) was used in this experiment. The distance
from the target to the chamber was 820 m. Electrons that
could appear as a consequence of the oscillations vz~~v,
were looked for in the chamber. Evidence that neutrino
oscillations take place was not found. Altogether 434
vz+N~p +X events and 4 v, +N~e . +X events
were observed; the latter can be explained by the admix-
ture of v, in the initial neutrino beam. The results of the
standard analysis (the hm, sin 28 plot) of the BEBC
data are shown in Fig. 9. This analysis implies that

hm &0.49 eV (sin 28=1),
sin 28&0.028 (for b, m =2 eV ) .

Am &0.14 eV (sin 28=1),

sin 28&0.02 (for bm =2.2 eV ) .

The possibility of v&~~v, and v&~~v oscillations was

investigated in an appearance experiment carried out at
Fermilab with the 15-foot bubble chamber, using a
narrow-band v& beam (Taylor et al. , 1983). Under better
background conditions than those attained in the earlier
accelerator v&~~v, and v&+~v, oscillation experiments, a
search for excess over the background of events with e+
in the final state, which could originate from the reactions

v, +N —+e++X and v +N~~++X, ~+—+e+v.v„was
performed. The average v& energy in this experiment was
50 GeV, and the detector was located at a distance of
1400 m from the proton target (the length of the vr+and--
E+-decay tunnel

' —was 352 m). The following limits on
neutrino oscillation parameters were obtained at 90%
C.L.

v ~~v~.'p

gyp'~&2. 4 eV (sin 28=1),
sin228 & 0.013 (Am ~ co ) .

9For a review of the results obtained in the experiments with
bubble chambers performed at CERN and Fermilab prior to
1982, see Baltay (1982).
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TABLE IV. Expected neutrino fluxes from different processes taking place in the sun (Bahcall et al. , 1982). The expected rates of
the reactions v, + Cl~e + Ar and v, + 'Ga~e + 'Ge (Bahcall, 1986) are given (in SNU) in the last two columns.

Process

p+p~D+e++v,
p+e +p~D+v,
Be+e —+ Li+v,

8—+88e+e++ v,
' N~' C+ e++v,
15O 15N+ e++v

Interval of neutrino
energies (MeV)

0—0.42
1.44
0.86 (90%)
0.38 (10%)
0—14
0—1.2
0—1.7

Neutrino Aux
(10' cm sec ')

6.0
0.015
0.475

5.4X 10-'
0.06
0.05

Rate of' the reaction
v, + Cl~e + Ar

0
0.20
1 ~ 10

5.75
0.10
0.35

Rate of ihe reaction
v+ 'Ga e + 'Ge

69.3
3.2

34.5

16.2
3.7
5.9

The possibility of neutrino oscillations is also studied in
experiments detecting atmospheric neutrinos, i.e., neutri-
nos originating from the decays of pions, kaons, and
muons, produced as a result of the interaction of cosmic
rays with the Earth's atmosphere. The detectors of these
atmospheric neutrinos are located in underground labora-
tories.

In an experiment performed at the Baksan neutrino lab-
oratory (Boliev et al. , 1981), muons produced by atmo-
spheric neutrinos coming from the other side of the Earth
and consequently traveling a distance of —10 m were
detected. The average neutrino energy was =10 GeV.
The detected flux of muon neutrinos I,„~ was compared
to the expected flux in the absence of oscillations Io.
Thus this experiment was a disappearance experiment,
looking for v„+~v~ oscillations.

Evidence in favor of the existence of oscillations was
not observed in the 8aksan experiment. The ratio
8 =I,„z/Io was found to be

R =0.98+0.20 .

It follows from these data that

b.m & 6X 10 eV (sin 28= 1),
sin 28 & 0.65 (for large hm ) .

The results of another experiment on atmospheric neu-
trinos were published recently by I.oSecco et al. (1985).
The neutrino events were registered in this experiment by
a large detector (fiducial mass of 3300 tons) situated un-

derground at a depth of 1600 mwe (meters of water
equivalent) and designed to detect proton decay. 135 neu-

trino events were detected. The average neutrino energy
was =920 MeV. In order to test the hypothesis of neutri-
no oscillations, the authors compared the number of
upward-going neutrinos in —, of the spatial angle with the
number of neutrinos going downward in a spatial angle of
the same magnitude. The upward- and downward-going
neutrinos traveled, respectively, distances of —10 and
—10 m. Hence the experiment compared numbers of
neutrinos whose sour'ces were located at different dis-
tances from the detector. No evidence for existence of
neutrino oscillations was found in this experiment. For
the case of maximal mixing (sin 20= 1) the following re-
gion of values of the parameter bm was excluded by the
data.

2.2~ 10 & 5m & 11.2)& 10 eV~ .

A few words in conclusion about experiments aimed at
detection of neutrinos from the sun. Solar neutrinos are
being detected still only in the experiment of Davis et al.
(see, for example, Haxton, Davis, and Deutsch, 1984).
This experiment is based on the radiochemical method of
Pontecorvo (1946) and detects 3 Ar formed in the reaction

v+ Cl —+e + Ar . (12.6)

The detector of Davis comprises a tank filled with 615
tons of liquid C2Cl& (-2X10 atoms of Cl). The
detector is placed deep underground in a shaft at a depth
of 1400 m (4400 m of water equivalent). The argon pro-
duced in the reaction (12.6) "decays" via a X capture with
a half lifetime of 35.1 days. Ar is extracted from the
tank by blowing helium through the liquid (in recent
years Ar has been extracted six times per year} and is
placed in a proportional counter, in which the act of K
capture is detected. The average number of atoms of Ar
formed per day is 0.48. As a result of many years of ob-
servations (from 1970 to 1984), Davis et al. have ob-
tained

I,„p
——2. 1+0.3 SNU .

To test the hypothesis of oscillations, this quantity has
to be compared with the flux of solar neutrinos expected
in the absence of oscillations. The processes making the
major contributions to this flux, according to the standard
solar model (Bahcall et al. , 1982), are listed in Table IV.
The neutrino fluxes from each of these processes and their
contributions to the rate of the reaction v, + Cl

The quantity I characterizes the rate of production of 7Ar

and represents the product of the neutrino flux and the cross
section of the process (12.6). The Solar Neutrino Unit (SNU) is
equal to

10
v, captures

sec &((target atom)
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—+e + Ar are given ' in the third and fourth columns
of Table IV. Because of the relatively high threshold of
the reaction (12.6) (0.814 MeV), the chlorine-argon
method permits detection of only a small fraction
(-10 ) of the total neutrino flux (mainly the neutrinos
from B decay).

So, if the standard model of the sun and the existing
data about the relevant nuclear processes are used in the
calculation of the expected flux Io, one obtains (Bahcall
et al. , 1980; Bahcall, 1986):

pm
ve ice

0.5

Io ——7.5+2.5 SNU

where the error corresponds to a 3 standard deviation
(s.d. ) effective uncertainty. This was obtained by taking
into account a 3 s.d. uncertainty in the experimental
values of the quantities used as input in the calculation of
Io (cross sections, etc.).

Thus the flux of solar neutrinos observed by Davis
et al. is considerably smaller than the expected flux. The
existence of neutrino oscillations could be the most natur-
al explanation of this "solar neutrino puzzle" (Pontecor-
vo, 1958, 1967; Bahcall and Frautschi, 1969; Mikheyev
and Smirnov, 1985, 1986c; Bethe, 1986). Indeed, for
Am & 10 eV and large vacuum mixing angles, neutri-
no oscillations would lead to a considerable reduction of
the solar neutrino flux (the effects of solar matter are
negligible). This reduction would be independent of the
neutrino energy, since the dimensions of the neutrino
source (-10 km) are much larger than the neutrino os-
cillation length (L (3.5X10 km) [see Eqs. (7.69) and
(7.70) and the related discussion]. In the case of oscilla-
tions involving n different types of neutrinos, the flux
could be reduced at most by a factor of 1/n (Bilenky and
Pontecorvo, 1978). If neutrino oscillation parameters
Am and sin 20 have values 10 8&hm2(10 eV and
10 ' &sin 28&0.5 and [sgn(mz —m~)]cos20~0, a con-
version of the electron neutrinos on their way out of the
sun into different flavor neutrinos (v„and/or v ) and/or
into sterile neutrinos (v„) would take place (Mikheyev and
Smirnov, 1985; see also Barger, Phillips, and Whisnant,
1986; Bethe, 1986; Bouchez et al. , 1986; Kolb, Turner,
and Walker, 1986; Rosen and Cielb, 1986). The corre-
sponding v, —+vz[,.~~ transition probability is energy
dependent, and the reduction of the solar flux would vary
with the neutrino energy in this case. The dependence of
the reduction factor P, . for the p-p, Be, and B neutri-

no fluxes on the ratio E/hm, assuming v, ~v&~ ~
transi-

tions, is shown in Fig. 10 for three different values of
sin 20 (0.16, 0.04, and 0.01; Mikheyev and Smirnov,

05—

0.0
19 )0

E lb, m (MeVlev }

19

FICx. 10. The dependence of the matter suppression factor
P . for the p-p (solid curve), Be (dashed curve), and 8 (dot-

ted curve) solar v, fluxes on the ratio E/hm for three values
of sin 20 (0.16, 0.04, and 0.01) in the case of v, —+v&( } transi-
tions.

1986a). Note, in particular, that a reduction of the B
flux by a factor of —3 could take place together with a
strong suppression (e.g., by a factor of 10) of the low-
energy part of the solar v, flux generated in the p-p reac-
tion. Finally, a noticeable depletion of the Aux of v, from
the sun would also take place for 10 "& hm & 10 eV
provided the vacuum mixing angles were relatively large.
This would have a typical oscillatory dependence on the
neutrino energy.

At present, however, no definite conclusions concerning
the oscillations can be made on the basis of the results of
the Davis experiment. By making use of the chlorine-
argon method of v, detection, this experiment is sensitive
only to a small fraction of the total v, flux from the sun
whose magnitude strongly depends on the temperature in
the central region of the sun and other solar model pa-
rameters (Bahcall, 1978; Bahcall et al. , 1982; Filippone
and Schramm, 1982; Schatzman, 1984).

At present, several riew experiments aimed at detecting
and studying the flux of solar neutrinos are in prepara-
tion. The gallium-germanium radiochemical method
based on observation of the reaction (Kuzmin, 1965)

7~Let us note that, according to the standard model of the sun,
the p-p reaction generating the major part of the neutrino flux
takes place in regions located at distances between approximate-
ly 0.03RO and 0.2Ro from the center of the sun, while the B
neutrinos are produced in a spherical region with radius 0. 1Ro,
where RO=7 & 10' km is the solar radius.

v, + 'Ga —+e + 'Ge

has been developed. The threshold of this reaction is
0.235 MeV. As can be seen from Table IV, the gallium-
germanium method will permit, consequently, the detec-
tion of neutrinos produced in the basic reaction
p+p~D+e++v, . The flux of such neutrinos can be
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C. Direct neutrino mass measurement
experiments

1. Experiments studying the tritium P spectrum

The classical method of neutrino mass determination
consists in a precision measurement of the spectrum of
electrons from tritium decay in the end-point region. The
electron spectrum in the allowed transition

H~ He+e +v, (12.7)

is determined by the statistical weight and has the form

reliably predicted on the basis of general thermodynami-
cal considerations (Bahcall et al. , 1982; Bahcall, 1986;
Hampel, 1986). The expected contributions of neutrino
fluxes originating from different reactions and decays in
the sun to the rate of the reaction v, + 'Ga~e + 'Ge
are given in the fifth column of Table IV. The total
predicted rate in the standard solar model is 133 SNU.
Let us note that a rate below 75 SNU cannot be obtained
by a variation of the model of the sun (see, for example,
Hampel, 1986). The observation of such a rate of 'Ge
formation would be a strong indication of the existence of
neutrino oscillations. Two 'Ga- 'Ge solar neutrino ex-
periments that will use 60-ton (Zatsepin, 1983) and 30-ton
(Kirsten, 1986) detectors are in preparation at present.
Measurements of the solar neutrino flux with these detec-
tors are planned to begin in 1988 and 1989, respectively.

L.et us note also finally that a large argon detector is be-

ing designed, in which solar neutrinos will be detected by
the reactions v, + Ar~e + K*, K'~2y + K,
and v, +e ~v, +e . This detector will allow the deter-
mination of the direction of the neutrino momentum
(Bahcall et al. , 1985). [A detailed discussion of solar neu-
trino experiments capable of detecting neutrino-electron
scattering is contained in the article by Bahcall which ap-
pears in Reuiews of Modevn Physics (Vol. 59, p. 505).]

Information about the neutrino mass is usually extract-
ed from the Kurie function (Kurie plot)

1/2
n (E)

F(E)pE

=C {(Eo E)—'[(Eo E)—m—„]' j
'

(12.10)

Here T =E —m, is the kinetic electron energy and

Q =ED m, . —In the case of tritium decay, Q=18.58
keV. It is obvious from Eq. (12.10) that for m =0 the
Kurie function K(T) is a straight line crossing the abscis-
sa in the point T,„=Q. If the neutrino mass is different
from zero, the plot of the Kurie function deviates from a
straight line in the region Q —T-m„and crosses the
abscissa in the point Q —Tm,„=m .

The electron spectrum measured in experiments
represents a convolution of n (E) with the response func-
tion of the apparatus:

n,„„(E)= f n (E')R (E',E)dE' .

The instrumental response function R(E',E) is deter-
mined in specific calibration experiments, in which con-
version electrons with energies close to the end-point ener-

gy of the tritium P spectrum are used.
The highest sensitivity to date in the measurement of

the hard part of the tritium P spectrum has been achieved
in the work of the ITEP group (Boris et al. , 1984). In
this work a toroidal magnetic spectrometer specially
designed for neutrino mass measurements is used. A
compound of tritium and valine is used as a source.

As is well known, the group from ITEP has claimed
since 1980 that the neutrino mass is different from zero.
At the high-energy physics conference in Leipzig this
group presented data, from which it follows that (Boris
et al. , 1984)

=n (E)=C F(E)pEp„E„. (12.8) m„) 9 eV (90% C.L. ) . (12.11)

Here p and E are the absolute value of the momentum
and the total energy of the electron, F(E) is the Fermi
function (which takes into account the Coulomb interac-
tion between He and e ), and C is a constant, while

17&m &40 eV . (12.12}

The most recent result of the group [obtained by using
the spectrum of the final states of the T-valine molecule
calculated by Kaplan et al. (1984}]reads (Lubimov, 1986)

E„=EO E, p„=[(Eo——E) —m, ]' (12.9)

are the neutrino energy and momentum. In Eq. (12.9) Eo
is the total energy released in the decay (12.7). We have
presented the electron spectrum in the simplest case of ab-
sence of neutrino mixing. In this case m„ is the mass of
the electron antineutrino. The possible modifications of
the spectrum due to the existence of nontrivial neutrino
mixing were discussed by Kobzarev et al. (1980) and by
Shrock (1980). As a rule, the data of the H neutrino
mass experiments are analyzed and the results are present-
ed assuming that neutrino mixing does not take place.

The Kurie plots obtained by the ITEP group are
presented in Fig. 11 (for three different sources). The
solid curves were found from fits of the data for m„&0.
The dashed curves were obtained by fitting the data in the
case m =0.

Let us note that the ITEP work has been criticized re-
cently in several articles (Vilov, 1983; Simpson, 1984;
Bergkvist, 1985). The authors of these articles hold that
the ITEP group overestimates the accuracy with which
the group has determined the instrumental response func-
tion, which, it is claimed (Simpson, 1984; Bergkvist, 1985;
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FIG. 11. The data of the ITEP group for the hard part of the
spectrum of electrons from tritium decay {three different
sources). The curves were obtained by fitting the data. In these
fits the neutrino mass was either a free parameter (the solid
curves) or set to zero (the dashed curves). The spectrum of the
final states of the T-valine molecule was taken into account in
the fits.

see also Robertson, 1985), may invalidate the conclusion
that tn„~0.

The ITEP work aroused enormous interest in setting up
new experiments for a detailed study of the spectrum of
electrons from tritium decay, with the aim of measuring
the neutrino mass. Three experiments of this type are be-
ing performed (Fritschi et al. , 1986; Kawakami et al. ,
1986; Robertson et al. , 1986) and at least twelve others
are in preparation at. present. These experiments make
use of a variety of different sources (gaseous tritium,
frozen tritium, compounds T C, T-Ti, T Al, etc.) a-nd dif--
ferent types of spectrometers (see, for example, Robert-
son, 1985).

First results have been reported recently by the SIN
group (Fritschi et al. , 1986). The P spectrum was studied
in this experiment with a toroidal field, magnetic spec-
trometer of the type used by the ITEP group, modified
with a radial, electrostatic retarding field around the
source. The resolution of the spectrometer is 27 eV. The
three sources used were prepared by implantation of H
ions into carbon, evaporated onto aluminum backing.
Most important, the depth density distributions of the im-
planted H in the sources were measured with a 50-A
resolution using the nuclear recoil technique (see, for ex-
ample, Ross et al. , 1984). This permitted a reliable and
rather accurate determination of the energy-loss spectrum
of the electrons in the sources. The spectrometer resolu-

m &18 eV, (12.13)

which constitutes the basic result of the experiment. Ob-
viously, Eq. (12.13) is marginally compatible with the
"model-dependent" result (12.12) of the ITEP group.

Many of the tritium experiments that are being per-
formed or prepared at present aim to achieve an accuracy
in neutrino mass measurements which would permit a
check of the ITEP results. Undoubtedly, considerable
progress in the study of the neutrino mass problem by the
tritium method can be expected in the near future.

( —) ( —}
2. Limits on the masses of v„and v.

The existing experimental upper limits on the masses of
( —) ( —)

v „(I ) and v (m ) are much less stringent than
7-

tot

fbJ f
TT

))1,il f II

$I~ I I

II) (

18.4 18.5 18.8 18.7

ENERGY (keV)
FKJ. 12. The data of Fritschi et al. (1986) for the hard part of
the electron spectrum from tritium decay obtained in four dif-
ferent runs. The solid lines are the best fits of the data and cor-
respond to m =O.

tion function used in the analysis of the data was calculat-
ed by Monte Carlo simulation. Conversion electron ener-
gy measurements are claimed to have confirmed the
correctness of the calculated shape and width of the func-
tion (e.g., the calculated and the measured widths were
found to differ by less than 10%).

The spectrum of the electrons in the end-point region,
measured in four different runs in this experiment, is
shown in Fig. 12 (Kurie plot). The curves are the best fits
of the data points and correspond to m„=O. No indica-
tions for a nonzero neutrino mass were found in this ex-
periment. A statistical upper limit for m of 106 eV at
95% C.L. was obtained. Adding the estimated systematic
error leads to the upper limit
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( —)

those on the mass of v, :

I &250 keV at 90% C.L.

(Abela et al. , 1984), (12.14)

I &70 MeV at 95%%uo C.L.

(Albrecht et al. , 1985) . (12.15)

( —)

These limits were derived under the-assumption that v z
( —)

and v are mass eigenstate neutrinos. The limit on I
was obtained at SIN in a high-precision experiment in
which the momentum of p+ originating from the decay
m+~p+vz at rest was measured. It represents an im-
provement by a factor of 2 over the previously existing
limit on I

The limit on m has been improved several times in
T

the last four years by studying the hadron-invariant mass
distributions in various exclusive hadronic decays of ~—:

( —)+'~3n' 'm v, —(Matteuzzi et al. , 1985),
( —)+'~K+K+n' +' v—, (M—ills et al. , 1985),

( —)
~' —+'~~+m m' —' v, (Albrecht et al. , 1985),

1

and

( —) ( —)

T 7

(Abachi et al. , 1986') .

The result (12.15) is from ARGUS Collaboration at
DESY and is the lowest upper limit on I obtained so

D. Results from neutrinoless
double-P-decay experiments

Searching for the process

(A,Z)~(A, Z+2)+e +e
is an extremely sensitive method of searching for a
nonzero Majorana mass of neutrinos; So far the neutrino-
less double-P decay has not been observed. However, in
recent years the lower bounds on the (pp)0 -decay life-
times of'different nuclei have been substantially increased.

The best limits on the lifetimes were obtained in experi-
ments studying the decay

Ge + Se+e +e
In these experiments germanium detectors (normal ger-
manium contains 7.76% of Ge) that have good energy
resolution. and 4m geometry are used. One looks for peaks
in the distribution with respect to the sum of the electron
energies, corresponding to the 0+~0+ and 0+~2+
(pp)0„ transitions Ge~ Se (the energies released in the
0+~0+ and 0+—+2+ transitions are equal to 2040.7 and

(see Sec. IX and Appendix B) that can be derived from
these data depend on the theoretical model used in the
calculation of the nuclear matrix element. If we assume
that RH currents do not exist, then it follows from Eq.
(12.16b) that (Doi, Kotani, and Takasugi, 1985; Klapdor,
1986)

~
( m )

~
& 1.0—6.3 eV, (12.17)

where the uncertainty in the upper bound reflects the un-

certainty existing. at present in the theoretical calculations
of the relevant nuclear matrix element.

The transition 0+—+2+ is possible if RH charged
currents enter into the weak interaction Hamiltonian.
The best limit on the lifetime of the 0+~2+ (pp)o„ tran-
sition Ge~ Se were obtained in the recent work of
Caldwell et al. (1986) and of Ejiri et al. (1986) (68%
C.L.), respectively:

Ty2(0 ~2+ ) & 5 X 10 yl

T)g2(0+~2+) & 5.6&& 10 yr .
Let us note that, to reduce the background in these experi-
ments, electrons with a total energy =1.48 MeV were
detected in coincidence with photons with an energy of
0.56 MeV (originating from the excited-to-ground-state
transition of the Se nucleus).

Experiments studying the (pp)0 decay of Ge contin-
ue in many laboratories (see, for example, Caldwell, 1985).
It is expected that the lower bound on T&&2 will be in-
creased in the next few years.

With the help of different methods the (pp)o„decay of
nuclei other than Ge is also being studied at present.
Let us mention the work of Klimenko et al. (1984) who
obtained for the {pp)0, decay of "Nd, at 90% confidence
level, TI&2&2.3&&10 ' yr.

An upper bound on
~
(m )

~

in the range of a few eV
has also been obtained by using geochemical data on the
abundances of the xenon isotopes ' Xe and ' Xe in a
natural one-billion-year-old tellurium ore (Kirsten,
Richter, and Jessberger, 1983; see also Klapdor, 1986).
The analysis used to derive the bound was based on the

1481.6 keV, respectively). Record limits on the lifetime
of the 0+~0+ (pp)0, decay of Ge were obtained by
three groups (68% C.L.):

T~~2(0+~0+) & 1.2&& 10 yr (Bellotti et al. , 1984),

(12.16a)

T&&2(0+~0+) &2.5X 10 yr (Caldwell et al. , 1986),

(12.16b)

T&&2(0+—+0+) & 1.4X10 yr (Avignone et al. , 1985) .

(12.16c)

The restrictions on the parameter
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assumption that the measured concentrations of ' Xe and
Xe in the ore were formed due to the f3P decays of

128T d 130T (
128, 130T 128, 130X

+ anything) in the period after the formation of the
ore. The present-day understanding of our planet for-
mation and of the mineralization and cooling of ores
indeed suggests that the initial concentrations of xenon
isotopes in the tellurium ore studied were negligible. On
the basis of earlier geochemical analyses, it was concluded
(Kirsten et al. , 1968) that the 2v decay (9.2) of ' Te takes
place and that the PP-decay half lifetime of ' Te is (Kir-
sten, 1983) T1~2(' Te) =(2.55+0.20) X 10 ' yr. [Similar
analyses performed for the Se- Kr system gave (see
Kirsten, 1983) T1~2( Se) =(2.05+0.30)X 10 yr. ] More
recently a value for the ratio
RT ——T1&2(' Te)/T1&2(' Te) of the pp-decay half life-
times of ' Te and ' Te compatible with zero and, corre-
spondingly, a lower bound on T1&2(' Te) have been ob-
tained (Kirsten, Richter, and Jessberger, 1983):

~
(m)

~

&0.35—1.6 eV . (12.20)

Experimental studies of neutrinoless double-P decay are
continuously increasing. Several groups are developing
new methods of searching for the (pp)0, decay of ' Xe
(e.g., Caldwell, 1985). Considerable progress in the study
of this extremely important process (from the standpoint
of solving the neutrino mass problem) will undoubtedly be
achieved in the next few years.
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Using the lower bound (12.19) and the values of the
relevant (f3p)0;decay nuclear matrix element derived by
Klapdor and Grotz (1985), and assuming that RH
currents do not exist, one finds (Klapdor, 1986)

Rr ——(1.01+1.13)X 10

T»2(' Te)&8X10 yr (95% C.L. ) .

(12.18)

(12.19)

It should be noted that the value of RT is rather sensi-
tive to the existence of the (pp)o„decay (Pontecorvo,
1968). In this case (I'0„ /I 2 ) »(I 0, /I 2 ), and
therefore we should have RT ——(I 0, + I 2, )/(I 0,
+ I 2v ) & (I 2v /I 2v ) Moreover, the determination of
Rz from geochemical data is free from many of the er-
rors associated with the determination of absolute values
of T,&2(' Te) and T,&2(' Te) (e.g. , errors in the age of
the ore, absolute quantities of ' 8' Te and ' ' Xe
present in the ore, etc.). It was suggested (Pontecorvo,
1968) that the theoretical uncertainties in the calculation
of RT would be smaller than the uncertainties in the cal-
culations of T1~2(' ' Te). However, this does not seem
to be the case at present, as the most recent results in the
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APPENDIX A: MAJORANA
NEUTRINO FIELDS

Obviously, the ' ' Te decay rates determined by geochemi-
cal methods represent sums of the rates of all possible '2"3 Te
decays in which ' ' Xe is formed:

~128(130) ~ 128(130) ~ 128( 130)
APP APV +A2V +

where

I 128"30)—= I ('"""'Te '"""'Xe+e—+e -+anything),

I 128(130) I (
128(130 Te~ ' 8" 'Xe+ e +e )

and

128(130) I (128(130)Te~128(130)xe+e +e +v +v )

The ratio (I 0 /I 2„)/(I p /I 2 ) is determined approxi-
mately by the ratios of the phase-space factors in I p 2 and
I 0„2„and is roughly given by (cp/Fp) =600, where cp ——1.7 and
~=4.96 are the kinetic energies (in units of m, ) released in the

Te and ' Te PP decays (see Doi, Kotani, and Takasugi,
1985).

(y a +m)X(x) =0
and the Majorana condition

CX (x)=/X(x),

(Al)

(A2)

where g is a phase factor (we shall choose /=+1), and
the matrix C satisfies the conditions

Cy C '= —y, C~C=I, C = —C. (A3)

In this appendix we shall give information about the
Majorana field, necessary for the understanding of this re-
view (see Majorana, 1937; Mannheim, 1980). The Ma-
jorana particles are truly neutral particles (particles all of
whose additive charges are equal to zero) with spin —,'.
We shall denote the Majorana field by X(x).

The operator of a free Majorana field satisfies the
Dirac equation
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The operator X(x) has the form

X(x)= f [u "(p)a„(p)e'~"
(2~) ~ 2po

+gu "( —p)a„(p)e '~']dp

[~„(p),u„(p')]+ =0,
[a,(p),a„(p')]+——5„,5(p —p')

(A7)

The operators a, (p) and a„(p) satisfy the canonical an-
ticommutation relations

where

=X'+'(x)+X' '(x), (A4)
and, respectively, are the annihilation and creation opera-
tors of a Majorana particle with four-momentum P and
helicity r.

For the propagator

Q "(—P) =C[Q "(I)] (A5)
X(x ~ )X(x2)

and the spinors u "(p) are normalized by the condition
u" (p)u "(p)=2m5„„. (A6) we obtain with the help of Eqs. (A4) and (A7)

[X'+'(x&),Xp '(x2)]+, x, &x 0ax~ p» =' —(+)—[Xp (x2),X (xt)]+, x2Q)x]Q

—1

(2n )"
1 &p(x& —x&)

e dp =S~p(x~ —x2) .
yp —im aP

(A8)

Thus the Majorana particle propagator
I

X(x ~ )X(x2)

I

field X(x)] and x'=( x,ix—o) Fro. m Eq. (A10) using
(A3) we obtain

coincides with the standard Dirac propagator Uc~CX r(x) Uct~ = —gc~y4CX r(x') . (Al 1)

P(x~)P(x2) .

The essential distinction between a Majorana field and a
Dirac field consists in the fact that for a Majorana field
the propagators

Taking into account Eq (A2) and comparing (All) with
(A10), we find

(A12)

and

X(x ) )X (x2)

(x, )X(x2)

Let us note that the CP parity of the Majorana particle X
with momentum p is given by pep.

In conclusion, consider the bilinear form

X2OX],
are different from zero as well; obviously,

Q(x, )ttj (xp)=0

where X~(x) and X2(x) are Majorana fields and 0 is any
of the Dirac matrices (l,y, o ~, y y5, y5). Using the Ma-
jorana condition (A2), we get

and

(x& )@(x2)=0 .

Using Eqs. (A2) and (A3), we have

X(x&)X (x2)= —gS(xi —x2)C,

X (xi )X(x2)=gC 'S(x, —x2) .
(A9)

XEROX(
———X)O X2 ——g&$2XtCO C 'X2 .

Further, with the help of Eq. (A3) one finds

CoapC = —oap C'Vs C ='Vs—1 T —1

C(y~y5) C '=y~ys

Thus we have

(A13)

These relations are a consequence of X(x)'s being the field
of an absolutely neutral particle. They are used in the cal-
culation, for example, of the (P13)o,-decay amplitude.

%'e shall show next that the CP parity of a Majorana
particle can assume the values +i. Let us denote by Ucp
the CP conjugation operator. One has

UcpX(»UcI =rlc~y4X(x') . (A10)

Here pcs is a phase factor [the CP parity of the Majorana

74It is well known that the product of the intrinsic parities of a

spin-2 particle and its antiparticle is equal to —1. One can

easily show that the product of the CP parities of a spin- 2 par-

ticle and its antiparticle is equal to —1 as well. In the Majorana
case the particle coincides with its antiparticle. As a result, we

arrive at Eq. (A12).
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X2X1 glk2X1X2 i

X23 aXl klk2X1YaX2 ~

X2iraPX1 g lg2Xl~a@2 ~

X2Yal sX1 ktg2X1YaYsX2 r

X23 sX1 4142X13 sX2 .

In particular, it follows from Eq. (A14) that the vector
current of the Majorana field is identically equal to zero:

GF
A gr = —2(el Y V L )ja+H. c.

V2
(82)

where j (x) is the strangeness-conserving charged hadron
current, and that neutrino mixing does take place,

and Takasugi, 19S4.) The lepton charge is not conserved
in this process, which can take place only if neutrinos are
Majorana particles.

We shall consider the process (81), assuming that the
weak p-decay Hamiltonian has the standard form

X(x)Y X(x) =O . (A15) L
Vej g UikXkL

k
(83)

APPEND(X B: NEUTRINOLESS
DOUBLE-P DECAY (BASIC
ELEMENTS OF THE THEORY)

Here Xk(x) is the field of a Majorana neutrino with mass
mk and U is a unitary mixing matrix. The fields Xk(x)
satisfy the Majorana condition, which we shall write in
the general form

(A,Z)~(A, Z+2)+e —+e —. (81)

(For more detailed treatments, see Primakoff and Rosen,
1969, 1981; Vergados, 1981; Haxton, Stephenson, and
Strottman, 1982, 1984; Doi et al. , 1983a; Doi, Kotani,

In this appendix we shall give a brief exposition of the
basic elements of the theory of neutrinoless double-p de-

cay

CXi, (x)=gkXk(x), (84)

where gk is a phase factor. We shall choose gk
——+ 1.

Clearly (/3P)0, decay can occur in second order of per-
turbation theory in the weak interaction. The following
term in the 5 matrix gives the contribution to the matrix
element of the process (Bl) in second order of perturba-
tion theory in GF.

S = — 4(2) ( i) GF

2 v'2

2

f N[ez(x, )Y V,L(xl)vt(x2)Y~ eL (x2)]T j (x, )j&( x)e2xp i f m„,(x—)dx

(85)
Here ~„,(x) is the strong-interaction Hamiltonian. Note that in Eq. (85) the strong interaction is taken into account ex-
actly. With the help of Eqs. (A9), (83), and (84) we easily obtain

«+» 1+»
V,L (xl)v, t (x2) = —y (U,k) gk Si, (xl —x2) C,

2
(86)

where Sk(xl —x2) is the propagator of the Majorana neutrino with mass mk [see Eq. (AS)]. Further, one has

1+/5 1+y5
2

Sk(x 1
—x2)

2 (2~) q +mk

Using Eqs. (85) and (86), we obtain for the matrix element of the process (81)
2

& g (U,k) mkgku(Pi)Ya(l+Ys)YpCu (P2)
45'10720 (2tr) k

iq(x& —x&)

f —ip1x1 ip2x2 ( ——1) f e dqe
(2') q +mk

(iu'
~

T[J (xi)Jis(x2)] I p)dxldx2 —(pl~iu2) .
(87)

Here p~ and p2 are the four-momenta of the electrons, p and p' are the four-momenta of the initial and final nuclei, and
Ja(x) is the weak charged current in the Heisenberg representation.

75The first calculation of the probability for such a decay to occur was carried out by Furry (1939).
76That (pp)0„decay can take place lf the neutrino emitted together with the electron in p decays is a Majorana particle, was realized

first by Racah (1937).
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The second term in (87) arises due to the identity of the final-state electrons. It is not difficult to show that it coin-
cides with the first term. This can be done by using the relation

u(P~)Y~(1+3'sb'pCu (P2)=u(Pq)C Yp(1+3's) Y u (P&)= —u(P2)Yp(l+ Ys)Y~Cu (P&)

as well as the possibility of interchanging the current operators under the sign of the T product.
As can be seen from Eq. (87), the amplitude of the (pp)o„decay vanishes if the masses of the Majorana neutrinos are

equal to zero. This is connected with the fact that the lepton charges are conserved if only LH fields enter into the
weak-interaction Lagrangian and the neutrinos are massless. Indeed, consider the current

where X(x) is the field of a massless Majorana neutrino. It is not difficult to see that

X'(x) =e 'X(x) (89)

(a is an arbitrary real parameter) is also a Majorana field. One has

XL(x)=e' XL, (x), X~(x)=e ' X~(x) . (810)
It follows from Eqs. (88) and (810) that the Lagrangian of the system under consideration is invariant with respect to the
transformations

e (x)~e'(x) =e' e(x), XL (x)~XL (x) =e' Xl. (x) (811)
[in the case of zero neutrino mass Xx(x) is not present in the Lagrangian]. This invariance implies conservation of the
lepton charge, which is equal to 1 for e and the LH neutrino, to ( —1) for e+ and the RH neutrino, and to zero for all
other particles. It should be noted that the invariance with respect to the transformations (811) lies at the root of the
theorem stating the equivalence (for m„=O) of the theory with Dirac neutrino and the theory with Majorana neutrino
(Case, 1957; Ryan and Okubo, 1964).

Bearing in Inind the approximations we shall make further, let us perform the integration over the time variables in
(87). Taking into account that

&p'IJ (xi)Jp(x2)Ip) X(p'IJ (x~)In&&nIJp(x»lp&e

e'~ -"~ dr= iim ', f e-'-dr= lim f e-" "'dr= lim-
o a —ic. c~o oa —ic. '

we get from Eq. (87) for the matrix element of the (PP)o„decay

[where E and E are the energies of the initial and final nuclei, E„ is the energy of the intermediate state, and
J~~p~(x, O) =J~~p~(x)], and defining the integrals correctly using the standard procedure of adiabatic switch-off of the in-
teraction at xo —++ Oo,

0 0f e'-dr -- hm f

(f I
S'z'Ii)=i

2 , g (U'k)'mk4u(Pi)Y (I+Ys)YpCu '(P2)
4P ~oP20

)& f dx, dx, e
'""' '""'

(2m ) 9'ok

(p'I J (x]) In)(n
I
Jp(x2) Ip)

X
En+Vok+p20 —E

&p'
I Jp(x&)

I

n ) (n
I
J (xi) p &+ 2m o(E'+p io+p2o —E)

En +90k+p10
(812)

where /ok = (q +mk )
2 2 1/2

All expressions obtained so far have been exact. Next we shall consider briefly the hadron part of the matrix element.
We shall discuss only the 0+—+0+ nuclear transitions.

The following three approximations are usually made in calculations of the (/3P)o„-decay amplitudes (Primakoff and

Let us note that many recent papers have been devoted to the calculation of corrections to the closure approximation and other ap-
proximations usually used (e.g., Doi, Kotani, and Takasugi, 1984; Haxton, Stephenson, and Strottman, 1984; Klapdor and Grotz,
1984).
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Rosen, 1959, 1961).
(1) Closure approximation. The energies of the intermediate states

1
n ) in (812) are replaced by an averaged energy

E„~(E„).This allows us to perform the summation over the complete system of states
1

n ) in (812).
(2) Long wave approximation. Since

1 pi 21' &&1, where R is the radius of the decaying nucleus, the substitution

e ' ' ' '—+1 is made in Eq. (812).
(3) Nonrelativistic momentum approximation and the two-nucleon mechanism. The following approximate expression

is assumed for the current operator in (812):

J (x)= g (r+ )„[5q+ig~ 5~k(o k )„]5(x—x„), (813)

where the sum is over all nucleons in the initial nucleus. In Eq. (813) gz is the axial constant (g~ =—1.25).
In the approximation (813) one has

J~(x~)Jp(x2)=Jp(x2)J (x~) . (814)

To convince oneself of the validity of (814), it is necessary to take into account that (r+ )„(r+)„=0. If, further, we write

Eq. (812) in the form

(f 15' 'li)=u(p, )y yp(1 —y5)Cu (p2)A p,
then from Eq. (814) it follows that

A p
——Ap

Let us write
1ya'p=&ap+ 2 (ya'p y-g —a) .

(815)

(816)

It is clear from Eq. (815) that the second term on the right-hand side of (816) does not contribute to the matrix element
of the process under, consideration. As a result, we obtain the following expression for the matrix element of the (f3p)o„
decay in the laboratory system:

r

g (U,k) mkg'k u(p& )(1—ys)Cu (p2)
P iOP20 k

H ( Xn —Xm, mk +H2 Xn —Xm,' mk 7"+ n '7+ m ( 1 —gg C7n CTm

n, m

)& (2')5(p io+p20+M' —M) . (817)

Here P; and gf are the wave functions of the initial and final nuclei, M and M are the masses of the initial and final nu-

clei (we have neglected the recoil of the final nucleus), and

l 'X

HJ( 1xl mk)= f q, j=l 2,
q Ok ( q 0k ++J' )

where aj ——(E„)+poJ —M. Let us rewrite the considered matrix element as follows:
2

g(U.k) mkkk
1 1. 2 1

PIOP20 k R

(818)

Xu(p~)(1 —y5)Cu (p2)(MF —g&MoT)6(p&0+p20+M —M) . (819)

Here

mF — f I X„—X;m, ~
n, m

(820)

MGT = f A Xn —Xm, mk V+ n V+ mWnNm i

n, m

are the Fermi and the Gamow-Teller matrix elements and
R is the radius of the intial nucleus, while

h (
I
x

I
mk) =

2 & lHi( I
x

I
mk)+H2(

I
x

I
'~k)]

(821)

Neglecting aJ in comparison with qOk in (818) ( aj is of
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the order of several MeV,
I q I

-35 MeV), we get

h(
I
x I;mk)= e (822)

G4 5

I
( ) I' IM, —g,'M, I'F'(z)

2 (2m) E.

%'hen the masses of the Majorana neutrinos are suffi-
ciently small ( mk ( a few MeV) one has

h(
I
x I;mk)=

R
(823)

The neutrino masses enter into the matrix element of the
(pp)o„decay in this case essentially through the factor

X —,', ( Eo+ 10so+40so+ 60so+ 30so) . (827)

The calculation of the matrix elements MF and MoT
requires a knowledge of the wave functions of complicat-
ed nuclei and is a rather complicated problem (see, for ex-
ample, Haxton, Stephenson, and Strottman, 1982).

(trt ) = y(U, k)'mkgk .
k

(824) REFERENCES

Consequently, by using the existing experimental data, it
is possible to obtain upper limits on the quantity (m )
(see Sec. XII.B.5).

Let us now derive the expression for the probability of
the considered process. For the differential probability of
the decay we find from Eq. (819)

4 5
GFme I 2 2dr„=—

I
(m&

I IMF gAMGT
I

(1—cos61)
(2sr) R

X(so—a+1) (E+1) dEsin8dOF (Z) . (825)

Here c. is the kinetic energy of the electron in units of the
electron mass I„O is the angle between the final elec-
trons,

I
(M —M' —2m, )

me

is the kinetic energy of the final electrons, and

2'(Z +2)
1 —exp[ —2n a(Z +2) j

(826)

7sLet us note that the probability of (pgio„decay increases
considerably if one takes into account the relativistic Coulomb
wave function of the electron (Haxton, Stephenson, and Strott-
man, 1982; Doi et al. , 1983a).

is the Fermi factor of Coulomb corrections. Note that
we have neglected the mass of the electron in comparison
with its energy in the calculation of the differential proba-
bility dI 0.

As can be seen from Eq. (825), the (/3P)o -decay Proba-
bility vanishes at 6I=O in the approximation considered
by us. This is connected with the fact that ultrarelativis-
tic electrons possess negative helicity in the case when the
interaction Hamiltonian is given by (82) and as a conse-
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