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The first measurements on vortices in rotating superfluid *He have been conducted in the Low Tempera-
ture Laboratory at Helsinki University of Technology during the past five years. These experiments have
revealed unique vortex phenomena that are not observed in any other known superfluids. In this review,
the concept of broken symmetry is applied to investigate the quantized vortex lines in superfluid *He. In
the superfluid 4 phase, vorticity can be supported by a continuous winding of the order parameter; this
gives rise to continuous “coreless” vortices with two flow quanta. Novel vortices with a half-integer num-
ber of circulation quanta may also exist in *He- 4 due to a combined symmetry of the superfluid state. In
the superfluid B phase, the vortices have a complicated core structure. The vortex-core matter is ferromag-
netic and superfluid, and it displays broken parity. The ferromagnetism of the core is observed in NMR ex-
periments due to a gyromagnetic effect. The calculated core structures exhibit an experimentally observed
first-order phase transition. This vortex-core transition in rotating *He- B may be understood in terms of a
change in the topology for flaring-out of the vortex singularity into higher dimensions; the topological iden-
tification further suggests that the phase transition manifests a spontaneous bifurcation of vorticity—
involving half-quantum vortices in >He-B. These recent advances of interest in quantum liquids are also of

general relevance to a wide range of fields beyond low-temperature physics.

CONTENTS 1. Symmetry of linear defects
2. Vortices in He II
I. Introduction 534 3. The most symmetric vortices in He
IL. Superfluid Phases of Liquid *He 538 4. Vortex “isospin” in *He- 4
A. The order parameter in superfluid *He 538 5. The most symmetric vortices in *He- 4
B. Broken symmetries in superfluid *He 539 B. Broken space parity in continuous vortices: sym-
C. The most symmetric superfluid phases 539 metry versus topology )
D. The Ginzburg-Landau functional 541 C. Broken axisymmetry in the *He- 4 vortices
E: Magnetic interactions in superfluid *He 542 1. Singular vortices with broken axisymmetry
IIL. Superfluidity of *He- 4 542 2. Continuous vortices with broken axisymmetry
A. Degenerate states of He- A 542 3. Distortion of the vortex lattice
B. Magnetic anisotropy 543 D. Physical properties of vortices with broken parity
C. Liquid-crystal-like properties of *He- A 543 1. Axial superflow in the w vortex
D. Combined gauge-orbital symmetry 543 2. Spontaneous electric polarization in the v vortex
E. Energy, superflow, and orbital current in >He- 4 544 3. Ordering of the “Ising” variables
IV. Topology of Vortices in *He- A 545 4. Helix in the w-vortex array
A. The topological and symmetry classification E. Symmetry classification of singular vortices with
schemes 545 two cores
B. The small-distance topology of vortices 545 1. Vortex substates
1.” Defects with topological charge N=1 546 2. Extended symmetry of the m =1 vortex
2. Continuous defects 546 F. Half-quantum vortices in the parallel-plate geometry
3. Half-integer vortices 548 1. Isolated half-quantum vortices
C. The large-distance topology of vortices 548 2. Vortex molecule with soliton glue
1. Zero-field vortices 548 3. Nonconservation of quantum numbers with
2. Vortices in small magnetic fields 549 half-quantum vortices
3. Topology of the soft core of continuous vortices 4. The Aharonov-Bohm effect
in low fields 549 G. Possible phase transitions in rotating 3He- 4
4. Vortices with three cores 551 VI. NMR on Vortices in *He- A
5. Topology of vortices in high fields 551 A. Spin waves in >He-4
6. Structural core transition with a change of topo- 1. Leggett equations for spin dynamics
logical charge 552 2. Schrédinger equation for the spin-wave modes
7. Singular vortices in high fields 553 B. NMR on continuous vortices in 3He- A—singular
D. Topology of periodic vortex textures in a rotating versus continuous vortices
container 553 C. NMR on the half-quantum vortex
1. Lattice of isolated vortices 553 VIL Properties of Superfluid *He-B
2. Smooth vortex textures 553 A. Degenerate states
V. Symmetry of Vortices in He- A 555 B. Gyromagnetism of Cooper pairs in *He-B
A. Axial and discrete symmetries of vortices in super- C. Relative spin-orbital anisotropy in the isotropic
fluids 555 liquid

Reviews of Modern Physics, Vol. 59, No. 3, Part |, July 1987

Copyright ©1987 The American Physical Society

555
555
556
557
557

558
561
561
561
563
563
564
565
565
566

567
567
568
568
568
569

571
571
571
572
572
572
572

574
575
576
576
577

577

533



534 M. M. Salomaa and G. E. Volovik: Quantized vortices in superfiuid He

D. Small dipole anisotropy and textures 577
E. NMR on textures in superfluid *He- B 579
F. NMR on vortices in *He-B , 579
1. Orientational effects of vortices on the order
parameter 579
2. The vortex-core transition and the core magneti-
zation 580
VIII. Core Structures of Vortices in >He-B 583
A. The most symmetric o vortex 583
1. Axial and discrete symmetries of the o vortex 583
2. Core structure of the o vortex 584
B. The v vortices with broken parity 586
1. Spontaneous breaking of space parity 586
2. The A-phase core of the axisymmetric v vortex 587
3. Asymptotics in the axisymmetric v and w vor-
tices 589
4. Spontaneous breaking of axisymmetry in the v
vortex 589
C. The physical properties of vortices in *He- B 591
1. The magnetic moment in the vortex core 592
2. The magnetic anisotropy of the axisymmetric
vortices 592
3. Consequences of broken parity in the vortex core 593
4. Breaking of axisymmetry in the vortex texture
outside the cores 594
5. Broken rigidity of the vortex asymptote 595
6. Properties of vortices with broken axisymmetry 595
D. Topology and boojums on the Fermi surface in the
core 597
1. Nodes in the energy gap 597
2. Real-space versus k-space vortices 597
3. Topology of k-space vortices in the axisym-
metric v-vortex core 599
4. The nonaxisymmetric v vortex is a half-quantum
pair 601
E. Discussion of the possible nature of the vortex-core
transition 603
IX. Discussion 605
Acknowledgments 608
References 609
I. INTRODUCTION

In the superfluid phases of liquid He occur the most
complicated known vacuum states of condensed matter,
in which many symmetries are simultaneously broken.
These broken symmetries are manifested, especially, in
the exciting physical properties of the quantized vortex
lines in superfluid *He under rotation. In the A phase
these properties include the occurrence of continuous vor-
ticity in the liquid-crystal-like vortex textures and the
possible occurrence of vortices with a half-integer number
of circulation quanta. In both the A4 and B phases they
include the existence of vortices in which new superfluid
phases nucleate within the vortex cores, the spontaneous
magnetic and electric moments of the vortices, the mag-
netic anisotropy of the vortices, and several other intrigu-
ing and unprecedented physical properties of the quan-
tized vortex lines and lattices formed in superfluid >He
that follow from the broken symmetries of the liquid, in
conjunction with the broken symmetries of the vortex
states.
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In particular, the topology of quantized vortex lines in
superfluid *He is fundamentally different from that of the
vortex lines in superfluid *He (He II) (for reviews on vor-
tices in He II, see, for example, Vinen, 1961; Feynman,
1964; Andronikashvili and Mamaladze, 1966). For exam-
ple, the topological charge N of vortices in 3He- 4 obeys
the algebra 1 + 1=0 (instead of 14 1=2 for the He II
vortices), which governs a reversible binary reaction: it
may be interpreted as describing the coalescence of one
singular vortex line (N=1) with another (N=1), in order
to generate a continuous vortex texture (N=0), or the re-
verse “‘chemical” process for the dissociation of a “neu-
tral” continuous vortex texture to emit a pair of “radi-
cals,” i.e., singular vortex lines. Moreover, in contrast to
the single topological invariant that can only exist for
vortices in He II—the quantum of circulation of the vor-
tex line—in superfluid *He there can emerge several dif-
ferent kinds of distinct topological charges associated
simultaneously with a given vortex line. This cir-
cumstance is also a consequence of the peculiar breaking
of symmetry that occurs in the superfluid low-
temperature phases of liquid 3He.

In superfluid *He, the complicated hierarchy of interac-
tion phenomena—such as magnetic field anisotropy, nu-
clear magnetic dipole-dipole interaction, competition of
the superfluid condensation energy density with the gra-
dient energy, boundary effects, and rotation-induced
superflow—contributes to new possibilities for the simul-
taneous occurrence of a corresponding hierarchy of
vortex-core structures. This means that there will emerge
a rich variety of several core regimes with different length
scales for vortices in *He, including regions of the hard
core, the soft core, and the dipole-locked and/or dipole-
unlocked vortex cores.

Vortex phenomena in superfluid He are also rendered
quite interesting from a broader point of view in physics
due to the occurrence of several types of mechanisms for
topological confinement, exemplified by the generation of
the soliton glue that holds together the pairs of half-
quantum vortex disclinations—Ilike quarks. Another non-
trivial connection to quantum field theory is provided by
the hedgehog in the I-vector field (the orbital anisotropy
axis in the 4 phase): a vortex can terminate in the bulk
superfluid at an /-vector hedgehog, which forms a mono-
polelike object. In this context, confinement means that it
is impossible to separate the hedgehog from its tail, which
is a quantized vortex line attached to the monopole. This
vortex line is the string that couples the two monopoles.
The superflow velocity field around this object is analo-
gous to the gauge-field distribution around the Dirac
magnetic monopole (Dirac, 1931).

The complicated core structures of the *He vortices
lead to the possibility of several phase transitions inside
the vortex cores. These transitions can take place not
only in the hard vortex core—which in *He is very large
in comparison with that of the “He vortex—but also in
the even more extended soft-core region of the vortex
structure. This leads to several possible new phase transi-
tions of the vortex-core matter; an interesting one has
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been observed (see Fig. 1 and Sec. VII) in the NMR exper-
iments carried out on the rotating bulk B phase of super-
fluid 3He; it is explained in Sec. VIIL.

The nontrivial vacuum state leads to a wealth of in-
triguing new possibilities for physical effects displayed by
the elementary excitations in superfluid *He. For exam-
ple, the reversal of the spin quantization axis (the d vec-
tor) for the 3He quasiparticles encircling a half-quantum
vortex line provides an analog to the transformation of a
particle into its antiparticle upon circling a singular line
like those postulated to exist in the grand unified theories
(Schwarz, 1982). For the half-quantum vortices, analogs
to the Aharonov-Bohm effect exist. Moreover, superfluid
3He exemplifies the nonconservation of charge; e.g., the
topological charge of a hedgehog in the magnetic an-
isotropy d-vector field in *He- 4 is not conserved. There
also is an analog to the chiral anomaly, which leads to
nonconservation of the *He quasiparticle momentum in
moving vortex textures. '

A new type of intercoupling of vortices in the usual
three-dimensional (3D) real (r) and momentum (k) spaces
occurs in superfluid *He; the superfluid can escape the
real-space singularity at the vortex axis by flowing out
into a higher-dimensional space (for k on the Fermi
sphere, this 'space is in general five dimensional). The
flaring-out of vorticity from the r space into the k space
is associated with a change in the topological structure of
the superfluid energy gap: point vortices appear on the
Fermi surface. These “boojums on the Fermi sphere”
closely resemble the point vortices (boojums) on the sur-
face of a container at the termination point of a continu-
ous vortex, and they play an analogous role in the dissipa-
tion of superfluid flow. Hence, vortices in superfluid *He
serve to combine the order-parameter space with the to-
pology of the Fermi surface.

Violations of parity in the cores of vortices in *He pro-
duce, as consequences, new physical properties for the
vortices, such as the electric dipole moments of the vortex
lines and the spontaneous mass and spin supercurrents
along the vortex axis. These properties result in the emer-
gence of corresponding new Ising-type variables for the
vortices. Usually these “Ising” variables, which indicate
the direction of the spontaneous electric dipole moment or
the direction of the mass superflow, would be orientated
up or down in the vortex lattice, at random, so that the
bulk liquid would appear neutral. However, it is
possible—in some cases spontaneously, in some cases
through the application of certain external orientating
effects—to align such Ising variables, which results in
their “ferromagnetic” ordering: in this situation the bulk
liquid will display broken-symmetry properties.

Combined with the broken axisymmetry of vortices,
this “ferromagnetic” order can lead to a twist, such that
the vortex lattice resembles cholesteric liquid crystals.
The violation of parity and the breaking of axisymmetry
of the vortices also lead to a distortion of the vortex lat-
tice, such that it is not simply square or hexagonal. Due
to the confinement of half-quantum vortices into pairs, or
“vortex molecules,” the primitive lattice cell for these vor-
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tices possesses a nontrivial basis with an internal struc-
ture, thus leading to new possible modes of oscillation for
the vortex lattice.

In Sec. II we discuss the stationary superfluid phases of
liquid *He: the nature of the order parameter in super-
fluid *He, the broken symmetries in the ordered states,
and the classification of the “inert” bulk-liquid superfluid
phases. The superfluidity of the A phase is considered in
Sec. III, with special emphasis on the combined gauge-
orbital symmetry, which leads to the intrinsic coupling of
superfluid and liquid-crystal-like properties, resulting in
continuous vorticity.

The topology of the A-phase vortices is described in
Sec. IV, while the further symmetry classification of the
vortices in He-A4 within given topological classes is ex-
plained in Sec. V. The observable physical properties of
the vortices are related to the breaking of discrete and axi-
al symmetry. In particular, vortices with several core re-
gions are discussed, and the half-quantum vortices in
*He- A are introduced; the observable NMR properties of
the 3He- A vortices are discussed in Sec. VL.

The special physical properties of superfluid *He-B are
presented in Sec. VII; the degenerate states of the order
parameter are specified, the gyromagnetism of the Cooper
pairs is discussed, and the NMR spectroscopy of the
3He-B vortex textures is explained. This section is illus-
trated by experimental results and the calculated proper-
ties of textures and textural spin waves, which are modi-
fied due to the vortices, since vortices produce a magnetic
anisotropy in the liquid, as well as a net spontaneous mag-
netization. :

The novel core structures of quantized vortex lines in
superfluid He- B are treated in Sec. VIII; the breaking of
parity as a discrete vortex symmetry leads to the oc-
currence of superfluid-core vortices with large magnetic
moments and to magnetic anisotropy concentrated in the
vortex core. The nontrivial superfluid core structure of
the *He- B vortices results in the appearance of point vor-
tices in the k space, i.e., realizations of the “boojums on
the Fermi surface,” thus providing examples of singular
lines where vorticity escapes from real space to momen-
tum space.

In addition, axisymmetry of the quantized vortex lines
in superfluid *He-B is broken: at low pressures vortices
with broken axisymmetry have been found to be energeti-
cally more favorable than any of the axisymmetric ones
(see Fig. 2). Broken axisymmetry generates a new Gold-
stone mode for the quantized vortex line, new features of
anisotropy in the vortex parameter A (associated with the
magnetic anisotropy of the vortex core), and a new topol-
ogy for the flaring-out of vorticity in higher dimensions.
Such new properties lead to predictions that are measur-
able with the use of NMR and ultrasonic techniques.
These nonaxisymmetric vortices have been identified as
topologically confined -pairs of half-quantum vortices,
analogous to quarks inside nucleons. Provided that exper-
iments confirm this identification, vortices with half-
integer circulation—initially expected to be observed in
3He- A—have in fact first been found in rotating super-
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fluid *He-B.

An interesting ‘“cosmological” experiment on liquid
helium was put forward recently (Zurek, 1985); the propo-
sal consists of cooling liquid “He rapidly from normal to
the superfluid state. Hereby vorticity is expected to be
generated at the interfaces of the superfluid condensation
fronts. It was suggested that such vortex lines may be
analogous to the cosmic strings (Zel’dovich, Kobzarev,
and Okun, 1974; Vilenkin, 1985) that are expected to have
nucleated at the phase transitions of the early Universe.
The vortices in superfluid *He are much easier to observe
because of the NMR effect than those in He II, which has
no net nuclear spin (vortices in He II can be observed
directly only during equilibrium rotation conditions; see
Packard, 1982). It is therefore possible to measure the
density of vortices not only in the steady state (equilibri-
um rotating container), but also in the dissipative states
(Paalanen and Osheroff, 1980; Hall and Hook, 1986; So-
nin, 1987).

The “cosmological” experiment may be realized in su-
perfluid *He- 4 and 3He- B, as well. Because the A-phase
vacuum has many features in common with the Higgs
vacuum—and also because the vortices in *He are
observable—such experiments are much more intriguing,
though necessarily more difficult, to carry out on super-
fluid *He, which provides a more relevant analog system
to grand unified theories than “He. We note that the
same idea of testing cosmological theory in a condensed-
matter analog experiment was first advanced in connec-

o S 2 3
: T{mK) :

FIG. 1. Phase diagram of *He (Ahonen, Haikala, Krusius, and
Lounasmaa, 1974). The intersection of the T ,p curve, separat-
ing the 4 and B phases, and the T, curve is called the polycriti-
cal point (PCP). When superfluid *He-B was rotated in an
open-volume NMR cell, a first-order vortex-core transition was
observed (Ikkala, Volovik, Hakonen, Bun’kov, Islander, and
Kharadze, 1982) upon crossing the dashed T, line in the (p,T)
plane. O, H =284 G; ®, H =568 G. Note that at high pres-
sures the core-transition temperature is roughly parallel to the
A-B transition, but curves towards T, below the polycritical
pressure (Pekola, Simola, Hakonen, Krusius, Lounasmaa, Num-
mila, Mamniashvili, Packard, and Volovik, 1984). The first-
order vortex-core transition can possibly be associated with two
distinct vortex free-energy minima, illustrated schematically in
the insets and identified tentatively in Fig. 54.
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FIG. 2. Tentative identification of the two free-energy minima
involved in the vortex-core transition of Fig. 1. At low pres-
sures the nonaxisymmetric v vortex I with axi-planar core pro-
vides the free-energy minimum, while at high pressures the
axisymmetric v vortex II with A-phase core becomes more ad-
vantageous. Circulation quantization escapes from real r space
into momentum k space at the hard-core radius r. The
axisymmetric v vortex has a round core, while the nonaxisym-
metric v-vortex core is a ‘“molecule,” consisting of two half-
quantum vortices. The vortex-core transition is a topological
change between two inequivalent ways of accommodating vorti-
city (Volovik and Mineev, 1982; Salomaa and Volovik, 1986c¢).
See Figs. 53 and 54.

FIG. 3. Phase diagram of the low-temperature phases of sta-
tionary *He (Osheroff, Richardson, and Lee, 1972; Mermin and
Lee, 1976). The zero-field cross section coincides with that in
Fig. 1. Superfluid *He-B occurs at low temperatures and/or
pressures, while superfluid *He- 4 is stabilized in a small region
at high temperatures and pressures. With increasing magnetic
field H, the A-phase regime increases at the expense of the B
phase. In addition, the nonunitary superfluid *He- 4, phase ap-
pears in a magnetic field between the 4. phase and the normal
Fermi liquid in a narrow temperature regime. New superfluid
phases nucleate inside the cores of quantized vortex lines in su-
perfluid 3He under rotation.
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FIG. 4. (a) The relative motion of particles constituting the Cooper pairs in superfluid *He corresponds to a relative p-wave state
(L™=1), with the pair orbital angular-momentum projection L;" obtaining the three possible values v==+1 and 0. The orbital
angular-momentum quantization axis is denoted by Z;. (b) The Cooper-pair spins in superfluid *He are in a total triplet state (S =1).
The projection S, on the spin quantization axis 2, may obtain the values p==+1,0. (c) The Cooper-pair structure in the superfluid 4,
A;, B, and B phases of *He may be visualized as follows. In *He- 4, the pair orbital-momentum projection is v= -+ 1, while the pair
spin projection is u=0; thus, the order parameter equals ¥=Y, ;| 11+ {1), where the first and second entries refer to the orbital
and spin degrees of freedom, respectively, and Y, denote spherical harmonic eigenfunctions of L™=1, with L{™=y. The direction
of the pair orbital momentum defines the I vector in the A phase. The spin degrees of freedom are described by the magnetic aniso-
tropy vector d, on which the projection of the Cooper-pair spin is zero: S-d=0. In 3He-4,, ¥=Y, ;| 1), the pair orbital momen-
tum projection v=+1, and only one spin projection is present, resulting in ferromagnetic nuclear spin alignment. In *He-B,
V=Y 1 |I)+Y0|ti+11)+Y, _1]|11), the three possible orbital and spin projections occur with equal weight. Because of the
broken relative spin-orbit symmetry, the quantization axes are coupled in equilibrium *He-B through an order-parameter matrix of
rotation: Z,=R,?%;. In the spontaneously ferromagnetic 3 phase, ¥=Y | 11), the roles of the orbital and spin degrees of freedom
are conjugate to those in the 4 phase. This B phase has not been found to exist in the stationary bulk superfluid *He, but is theoreti-
cally found to nucleate in the axisymmetric v-vortex core in rotating *He-B. (See Fig. 38.)
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tion with linear defects in liquid crystals (Khlopov and
Obukhov, 1982), where these disclination lines are easily
seen optically.

In the present review we restrict ourselves to a con-
sideration of the static equilibrium properties of vortices
in superfluid *He. The dynamical properties of vortices,
such as their contribution to the dissipation of superflow,
their processes of creation, and their transformations to
each other, are beyond the scope of this paper (see, how-
ever, the recent reviews by Hall and Hook, 1986, and by
Sonin, 1987; the static equilibrium properties of vortices
in superfluid *He have also been discussed in the recent
review by Fetter, 1986).

We shall not discuss experimental techniques at ul-
tralow temperatures (Lounasmaa, 1974c) or the construc-
tion of the rotating >He cryostats in the Laboratory of
Atomic and Solid State Physics at Cornell University (J.
D. Reppy, private communications) and in the Low Tem-
perature Laboratory at Helsinki University of Technology
(Hakonen, Ikkala, Islander, Markkula, Roubeau,
Saloheimo, Garibashvili, and Tsakadze, 1983).

Rotating superfluid 3He was investigated experimental-
ly for the first time in 1981 (Crooker, Hebral, and Reppy,
1981; Hakonen, Ikkala, Islander, Lounasmaa, Markkula,
Roubeau, Saloheimo, Volovik, Andronikashvili, Gari-
bashvili, and Tsakadze, 1982; Ikkala, Volovik, Hakonen,
Bun’kov, Islander, and Kharadze, 1982). By now, several
different measurements have been conducted on rotating
3He- A4 and >He-B, including (i) NMR experiments (e.g.,
Hakonen, Ikkala, Islander, Lounasmaa, and Volovik,
1983), (ii) persistent-flow experiments (Gammel, Hall, and
Reppy, 1984; Hall, Gammel, and Reppy, 1984; Pekola,
Simola, Nummila, Lounasmaa, and Packard, 1984; Gam-
mel, Ho, and Reppy, 1985; Pekola and Simola, 1985), and
(iii) experiments with ions (Simola, Nummila, Hirai,
Korhonen, Schoepe, and Skrbek, 1986). It is not our pur-
pose to review experiments; however, in order to make the
paper self-contained, we briefly mention the most impor-
tant NMR data on rotating *He- A4 and *He- B, which have
been instrumental in achieving progress in the theoretical
investigation of quantized vortices in superfluid He.

Il. SUPERFLUID PHASES OF LIQUID 3He

The phase transitions of liquid *He into the superfluid
states, discovered by Osheroff, Richardson, and Lee
(1972; see Fig. 3), are accompanied by a spontaneous
breaking of symmetry (Landau and Lifshitz, 1980), like
any other phase transitions of condensed matter into or-
dered states.

Above the critical phase-transition temperature 7T,
liquid 3He has all the symmetries allowed in condensed
matter. This total symmetry group G of physical laws in
condensed matter contains the following subgroups:

G =(t XSO X P)x SO X (T X U(1)) . (2.1)
Here ¢ is the group of translations, while SO denotes

the group of space rotations, and P abbreviates the space
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parity transformation. These three groups form the Eu-
clidian group which is broken in crystals and liquid crys-
tals.

The separate spin rotations of the group SOSS’ may be
considered as independent symmetry operations in those
substances in which the spin-orbital coupling is small
enough. This is the situation in liquid 3He, where the
magnetic dipole interaction between nuclear spins is negli-
gibly small in comparison with the energies characterizing
the superfluid transition.

Time-inversion symmetry T is broken in ordered mag-
nets, both antiferromagnets and ferromagnets, while the
breaking of the gauge symmetry group U(1) gives rise to
superfluidity.

Most of these symmetries are simultaneously broken in
liquid *He below T, where there spontaneously appears a
Bose condensate of Cooper pairs that display internal de-
grees of freedom for both spin and orbital motion. This
results in the unique and varied behavior of the superfluid
phases of *He, which combine the properties of liquid
crystals, ferromagnets, and antiferromagnets, or “spin
liquid crystals,” and superfluids (for reviews, see
Lounasmaa, 1974a, 1974b; Leggett, 1975; Wheatley, 1975;
Anderson and Brinkman, 1978; Lee and Richardson,
1978; Wolfle, 1979; Mineev, 1983; Volovik, 1984b;
Mineev, Salomaa, and Lounasmaa, 1986; Wolfle and
Vollhardt, 1987).

A. The order parameter in superfluid He

The Bose condensate of Cooper pairs in a homogeneous
Fermi liquid is described by the off-diagonal pair correla-
tor (see, for example, the review by Leggett, 1975):

Fap(K)=(ay,a _ys) , (2.2)

which has the meaning of a wave function for the Cooper
pair. Here ay, is the annihilation operator for the particle
with momentum k and with spin index a. The Cooper
pairing occurs between particles with opposite momenta,
k and —Kk, on the Fermi surface.

The correlator F,;(k) is the order parameter in super-
fluid Fermi systems, which vanishes above T, and is fi-
nite below T,. The “gap” function A,,(k), which de-
scribes the quasiparticle energy spectrum, is expressed
through F,, (k) by the pair potential ¥V (k,k’):

Ak)= 3 V(kk)F(K), 2.3)
<

and the quasiparticle energy spectrum Ejy is determined
by the eigenvalues of the Bogoliubov matrix

g Ak)
A R , (2.4a)

where g is the quasiparticle energy in the normal Fermi
liquid, counted from the Fermi surface & ~vp(k —kp).
In the so-called unitary phases (Leggett, 1975), where A is
proportional to the unitary matrix, (ATR)gp < 8gp, ONE
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finds for the quasiparticle energy spectrum

Ey={es++Tr[AT(K)Ak)]} 2. (2.4b)

The simplest expression for the gap function is ob-
tained near T, in the Ginzburg-Landau (GL) region. Ac-
cording to the Landau theory of phase transitions (Lan-
dau and Lifshitz, 1980), the order parameter near T, is
defined by only one of the irreducible representations of
the total group G. Contributions from all the other repre-
sentations are relatively smaller in proportion to the pa-
rameter 1 — T /T, << 1.

The relevant representation for superfluid °He is
characterized by the quantum numbers S=1 and L™=1
(see, for example, Leggett, 1975), where L™ is the inter-
nal angular momentum of the Cooper pairs, describing
the relative orbital motion of the *He atoms in a pair, and
S is the nuclear spin of a pair (see Fig. 4).

Dictated by the dimension (3 X 3) of this representation,
the order parameter A, (k) is defined by nine complex
values. These are the pair amplitudes a,, of the eigen-
states for the pair spin and orbital momentum projections
with the eigenvalues S, =u and L™=v in the wave func-
tion A of the Cooper pair:

k

b(k)— za,uvyl v(k)(Xl,p ab>s k-—- P (2.5)
F

Here Y, and X;, are the eigenfunctions of the states

with Lint— 1, L"“—v, and S=1, S;=u, respectively:
fiszl V=VY1 v Y 1,0 =i€z s
(2.6a)
Yl,_‘tl_ ,‘/E +l ) ’
S Xi,p=tX1,u X1,0=803,
o g (2.6b)
X1,11=%(01ii02) .
Above, g denotes the antisymmetric 2 X 2 matrix
0 1
g = _1 0 (2.60)

while o0, 0,, and o3 are the Pauli spin matrices.

Usually it is more convenient to use linear combina-
tions of these eigenfunctions, which have more transpar-
ent transformation properties; these are the.vector k in
the orbital space and the vector go in the spin space. The
corresponding amplitudes A4 ,; of the order parameter,

Ay (K)=Aoi(g0%) gk (2.7)

form a 3X 3 matrix, which transforms as a vector under a
spin rotation for given orbital index (i)—and as a vector
under an orbital rotation for given spin index (a).

B. Broken symmetries in superfluid *He

Below the superfluid transition temperature T, the
symmetry group G in Eq. (2.1) is spontaneously broken.
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This means that the “vacuum” states of the superfluid
phases, described by the order parameter a,, (or 4,;), are
not invariant under the total symmetry group G of the
physical laws. This order parameter transforms under the
action of the various elements of the group (2.1) in the
following fashion:

9
or
1

a
; rx ar Znv (2.8a)

a~ a o -~ 1

L=Lext+Lmt, LeXtAai=Tr>< Ay
int ; T ext

L}?Aai=_lekilAaI7 Lexa;w:

£ int _
Lz ay,=vay,,

SpAai=—iegayAyin S,a=pa,, (2.8b)
U¢Aai=ei¢Aai s U¢A:i _I¢A:n '

. (2.8¢)
U¢am,:e'¢am, ,
PA(t)=—Ag(—1), Pay,(n)=—a,(—1), (2.8d)
TAa,—-Aa,, Taw—a_y v (2.8¢)
tyAoi(r)=Agi(r—b), tpa,,=a,,(r—b). (2.8f)

The angular momentum operator L in (2.82) is the gen-
erator of the group SOY’ for space rotations. It includes
both the center-of-mass rotational motion (£ ) and the
internal rotations of the Cooper pairs (L), Even for
homogeneous superfluids, in which L®*'=0, the vacuum
state changes under rotations: f,Aai;éO. This means, in
particular, that the symmetry SO%L) is broken for any su-
perfluid phase of liquid 3He, which is a direct conse-
quence of the nonzero internal orbital momentum
(L™=1) of the Cooper pairs.

Due to the spin triplet nature (S—l) of the Cooper
pairing in superfluid *He, the SOY> symmetry is also bro-
ken [Eq. (2.8b)]. The transforrhation Uy from the group
U(1) changes the phase factor of the order parameter
(2.8¢c), thus manifesting the breaking of gauge symmetry.
Space parity P is broken even for the homogeneous liquid,
since the order parameter changes sign under this
transformation (2.8d); this is an immediate consequence
of pairing with an odd value of pair orbital angular
momentum: L™=1. The time-inversion symmetry T
(2.8e) is conserved only for real order-parameter ampli-
tudes A,;; this is possible for *He-B, but not for *He- 4.
Thus the only symmetry group that is not broken in *He
below T, is translational symmetry: a translation #y
through the vector b in (2.8f) does not change the order
parameter of homogeneous superfluids.

C. The most symmetric superfluid phases

For a given vacuum state (with a given form of the or-
der parameter 4,;), however, there exist elements of the
group G—besides translations—which do not change the
Bose condensate. These elements form the group H of
the symmetry of the vacuum, which is a subgroup of G.
All the most important physical properties of a given vac-
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uum state, which distinguish it from the other vacuum
states, are completely determined by the group H. Thus
there are different types of vacuum states, or different su-
perfluid phases, and the symmetry classification of the
possible superfluid phases must enumerate all the possible
subgroups H of the group G.

This enumeration of the different classes of superfluids
is not yet completed [though significant progress was re-
cently reported by Bruder and Vollhardt (1986)], but the
most symmetric vacuum states—the so-called “inert”
phases (Barton and Moore, 1974a, 1974b)—are known.
Due to their extreme symmetry (they belong to the maxi-
mal subgroups H of the group G: that is, only the nor-
mal state is more symmetric), they have a very useful
property: they are always solutions of the Gor’kov equa-
tions (or the Ginzburg-Landau equations near T, ) for the
order parameter. Therefore an inert phase has a fair
chance of providing the absolute minimum of energy.

There are eight inert phases (Barton and Moore, 1974b)
described by the order parameters A, (or a,,) in Table I,
where X;, 9;, 2;, and X4,94,Z, are unit vectors in the orbi-
tal and spin frames, which may be chosen to be different
(see Fig. 4). These vectors also give the transformation
from the matrix A4,, to the pair amplitudes a,,,:

Agi= 2 A'gk}la,uv ’
v | 1 (2.9)
Aotiy=ati)» l§1)=7§‘(5€\a(t)ii}7a(i)) .

The first six superfluid phases in Table I belong to
symmetry groups H, which contain one or two continu-
ous subgroups. These are either subgroups of the broken

groups SOY and SOY", with generators §z and iz of ro-

tations around one axis Z, or combined groups with the
generators J=L+4S, S,—1, iz—I, or Lz+§z. Here 7
denotes the generator of the gauge group U(1):

TAgi=Ay, TAY=—A4 . (2.10)

The bipolar and a phases only display discrete symme-
try. However, their discrete groups H are also maximal,
so that these phases are also most symmetric. The
discrete symmetry is also important for the planar phase,
serving to make it an inert phase, too.

The order parameter for a given superfluid phase, i.e.,
for a given group H, may be found from the solution of
symmetry equations. For example, the superfluid 4
phase, or the Anderson-Brinkman-Morel state (see Ander-
son and Morel, 1961; Anderson and Brinkman, 1973),
corresponds to a symmetry group H 4, which contains the
two generators §’Z and L iz"t——f. Thus the A-phase order
parameter, which should be invariant with respect to H ,
is obtained as a solution of the following two symmetry
equations:

S,a,,=0, (L™—1)a,,=0. 2.11)

This, according to Egs. (2.8a) and (2.8b), gives all
a,,=0, except for the ag, component; the corresponding
A, is obtained from Eq. (2.9):

Aa,-=—‘/%2a(5c‘,~+iﬁ,~ g, - (2.12)
Cooper pairing in the 4 phase thus occurs in the state
with the quantum numbers S=1, §,=0, L™=1, and
Li"—1. However, far from T, all other odd representa-
tions (with odd L™, but with the same quantum numbers
S, =0, L™=1) should appear, since L™ is not a good

TABLE I. The most symmetric (inert) superfluid phases with L =1 and S =1. Of these eight possible superfluid phases for liquid
3He, only the 4 and B phases occur in zero magnetic field (see Fig. 1). In an applied magnetic field, the A4, phase is also stabilized in
the_close vicinity of T,. Several of the other superfluid phases appear in the cores of quantized vortex lines in rotating *He- A and
3He-B. The bipolar and « phases possess discrete symmetry only; hence there exist no continuous symmetries, i.e., no good quantum

numpbers for the Cooper-pair wave function.

Quantum numbers
of the Cooper pairs

Nonzero pairing
amplitudes a,,

Maximally Vector order
symmetric phase parameter A,
B phase Bai
A phase Z2o(Xi +i9;)

or
Xo(Xi+iP:)
B phase (Ko +Pa)zi
Polar phase ZaZi
A, phase (Ko + P )X +i9;)

P NP NN
XaXi+Yali
PPN PPN
XaXi+1YaYi

/z\aé\i+5‘\afi92mﬂ

Planar phase
Bipolar phase
a phase

S B —2m/3

+Yalie

a,_=ap=a_; J=0
Qo4 S,=0, L,=1
or or
a,,=a_, S;,=1, L,=1
and
S;=-—1, L,=1
a,o S;=1, L,=0
ag S;=L,=0
a4+ S;=L,=1
a,_=a_, J,=0
a__=a,,=la_,=ia, _ None
agp=—2a,,=—2a__ None

=i =

2
a, _=l—=a_
v3 * v3 *
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quantum number in the nonlinear Gor’kov or Ginzburg-
Landau equations—as distinct from S, and L™, which
are conserved due to the symmetry equation (2.11).

An alternative representation for the 4 phase may be
obtained by choosing the spin quantization axis in 4,; of
Eq. (2.12) along X (or ) (Leggett, 1975). In this case,
since £ =+[(X£+i)+(X—ip)], there exist two nonzero
amplitudes a, , =a_; i.e., the 4 phase may as well be
considered as the equal solution of two superfluids with
different projections of the Cooper-pair spins: p= 41
and u= —1, but with the same projection, v=+ 1, of the
Cooper-pair orbital angular momentum.

In an analogous manner, the superfluid B phase, or the
Balian-Werthamer state (see Balian and Werthamer,
1963), corresponds to the group Hp with the generator
F=L 8. Therefore the B-phase order parameter is
obtained as the solution of the symmetry equation

34,=0. (2.13)

In other words, Cooper pairing in *He-B occurs in a state
with the total angular momentum quantum number J=0.
The corresponding solution yields

Agic8y; . (2.14a)
or three equal nonzero amplitudes
la,_|=la_,|=law|=75|T(4)]|, (2.14b)

i.e., the B phase is the solution—in equal proportion—of
three interpenetrating superfluids with the following
Cooper-pair quantum numbers: (u=+1, v=-1),
(u=—1, v=+1), and (=0, v=0). Due to the symme-
try of the B phase, no other components with L™s£1 ap-
pear, even far from T,.

D. The Ginzburg-Landau functional

The relative stability of the most symmetric phases
near T, is found from a consideration of the Ginzburg-
Landau free-energy functional, which must be invariant
under the total symmetry group G in Eq. (2.1); this essen-
tially restricts the number of fourth-order terms in the
bulk energy as well as the number of gradient terms.

The bulk condensation-energy term in the Ginzburg-
Landau free-energy functional, Fz[A,;], in superfluid
3He is given by

Fp=—0AgAoi+Bi1Ay Ay AgiApg+PBrAniAgAf;Ag;
+B3A A AajAp+BiA s Ap Al Ay
+BsAzApiAgidg; , (2.15)

where a=N(0)(1—T/T,)/3, with N(0)=m*kgp/2m7°#*
abbreviating the density of the >He quasiparticle states
(m* denotes the effective He mass) for one spin projec-
tion at the Fermi level; the coefficients 3; of the fourth-
order invariants are in the weak-coupling approximation
given by
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—2B1=B,=B3=Bs=—Ps , (2.16)
with
TN (0)&(3)
—Bi=Bo= . 2.17
Bi=Fo 240(7T)? (2.17)

Several theories for the “strong coupling” corrections
exist (e.g., Sauls and Serene, 1981; Bedell, 1982). In par-
ticular, the ’s may be described simply in terms of the
spin-fluctuation (paramagnon) parameter 8§, which de-
pends on pressure (Anderson and Brinkman, 1973, 1978):

Bl=—(1+0'18)309 Bz=(2+0.28)ﬁo >
B3=(2—0.058)By, Bs=(2—0.558)H, ,
Bs=—(240.78)8, .

(For a recent review and a comparison of different param-
etrizations for the B’s, see Levin and Valls, 1983.)

The gradient energy in the Ginzburg-Landau functional
is given by

Fg=710;Aqj0;Agj+720;A00;A5;+v319; A0, A%; ,

(2.18)

(2.19)
where for weak coupling
vE . )
Y1 =yz=73=y°=7§(3)N(0)m =5N(0)& .
(2.20)

Here & is of the order of several hundred A and it defines
the coherence length
172

§o

I— _—— 0
[(1—T/T)]V*°

a

ST = (2.21)

which characterizes the spatial extent of an inhomogenei-
ty, at which the gradient energy becomes comparable with
the bulk energy in the liquid.

Provided that the size of the inhomogeneity region is
larger than £g;(T), the gradient terms may be neglected,
and the superfluid phases are determined by the minimi-
zation of the bulk energy (2.15) alone.

Only two of the eight most symmetric inert phases in
Table I exhibit an absolute minimum of the bulk free en-
ergy in practicee. If the strong-coupling parameter
6 <0.46, the B phase corresponds to the absolute
minimum

Ayi=A8p(T)dy;, a,_=a_,=ayn=A3(T),

(2.22)
a

2(Bas+3B12)

where the symbol B;... ; denotes the sum ;4 - - - +B; of
the corresponding f’s. For 6 > 0.46, the 4 phase

Agi=A4(T)2,(%;+i9;), ao.=V2A,4(T),

A3(T)=

(2.23)
a

4Po4s

becomes stable.

AY(T)=
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The other phases [e.g., the B phase, the polar phase, and
the noninert axiplanar phase (Mermin and Stare, 1974)]
exist in the cores of quantized vortices of the size ~&gp,
where the gradient energy is essential. Near T, the B
phase becomes unstable in a magnetic field towards the
formation of the A4 phase, and in the close vicinity of T,
the A phase becomes unstable towards the formation of
the A4, phase (see Fig. 3). This is a result of the symme-
try change due to the magnetic field.

E. Magnetic interactions in superfluid *He

There are two different magnetic interaction terms in
the energy, one linear and the other quadratic in an ap-
plied magnetic field. The principal effect is due to the
Pauli susceptibility of a Fermi liquid, which has no con-
tribution from the pairs with zero spin projection on the

magnetic field (4 =0). Therefore a surplus in the magnet-

ic energy appears due to the formation of Cooper pairs
with 1 =0, in comparison with normal *He:

Foy=gpH* 3, |ao, |*=goyHoHpAoi A . (2.24)
The magnetic coupling constant g,y may be expressed in
terms of the difference between the normal-phase suscep-
tibility Xy and the susceptibility Xz of *He-B, which is
reduced due to the ag component in the B phase [Eq.
(2.14)]:

1 Xn—X3p
820=7 A2 ) (2.25)
thus g,y is positive. The energy [Eq. (2.24)] makes the 4
phase advantageous near 7T, because, by reorienting the
spin axis, one may eliminate the components a,.

The linear term (Ambegaokar and Mermin, 1973) ori-
ginates from the interaction of a magnetic field with the
magnetic moment M of the Cooper pairs:

M=gipZplau|?. (2.26)
v

This magnetic moment is nonzero only for a nonunitary
order parameter and results from the small asymmetry
between the *He quasiparticles and quasiholes on the Fer-

mi surface.
Thus the linear magnetic energy is

Fig=—M-H=—gzyH Y p|a,,|*
nv

= —gnieapy HoAgAy; . (2.27)
Near T,, this term causes nucleation of the nonunitary
magnetically ordered A4, phase, in which the Cooper pairs
have a negative u=—1 (only a__ is nonzero), and thus a
positive magnetic moment #yu (y=—2.0378x10*
G~ l!sec™! is the gyromagnetic ratio for the *He nuclei;
since ¥ is negative it produces a negative gz). The pa-
rameter g,y may be extracted from recent experiments
(Israelson, Crooker, Bozler, and Gould, 1984) on the 4 ;-
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phase boundary in an external magnetic field:

gm=%yN(o>§l— , (2.28)

where 7 changes from 4 X 1073 (at zero pressure, p=0) to
2.2 1072 (at p=29 bars).

Another important contribution to the free energy re-
flects the tiny magnetic dipole interaction between the
3He nuclei, which couples the spin and orbital indices of
the order parameter (Leggett, 1973, 1974),

Fy=g4( A Agx + Ay Ag) . (2.29)
The characteristic dipole length
v 172
o ‘
= [— > (2.30)
5a 2,

at which the gradient energy of distortion is comparable
with the dipole energy (2.29), is of the order of 103 cm.
For comparison, the characteristic magnetic length for
the interaction (2.24) equals ‘

_e, e (2.31)
§2H—§d H ’ .

where the “dipole field” H, is of the order of 25 G. For

large fields H >>H,, the magnetic energy (2.24) dom-
inates.

Ill. SUPERFLUIDITY OF 3He- A

A. Degenerate states of 3He- A

Cooper pairing in the superfluid 4 phase occurs in the
state with the projection S, =0 on the spin quantization
axis, which is denoted by d, and with internal orbital

‘momentum projection Li™=1 on the orbital quantization

axis, denoted by I (see Table I). If one neglects the spin-
orbital (dipole) interaction (2.29), these quantization axes
may be chosen independently.

The energy does not depend on the orientation of d and
1, thus reflecting the degeneracy of the superfluid state as
a result of the broken symmetry G. In order to.express
the order parameter A,; (2.23) in the frame with arbitrary
d and /, one must introduce two further unit vectors in
the orbital frame, e; and e,, which are orthogonal to I,
such that the general A4-phase order parameter is

Agi=A 4 (Tdy(ey;+iey)e'® (3.1)

where we have also introduced the phase ® of the Bose
condensate.

The parameters d, e, +ie,, and P define all the degen-
erate vacua of superfluid *He- 4; hence they are called the
degeneracy parameters of the ordered state (see Fig. 5).
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FIG. 5. The orthonormal order-parameter triad of the orbital
degrees of freedom in *He-A. Together with the global phase
@, the degeneracy parameters of the 4 phase are also e;+ie,
and d. Owing to the nuclear dipole interaction, the vector d
tends to orient parallel with /—a behavior referred to as “dipole
locking.” When other interactions domindte over the nuclear
dipole force, dipole unlocking occurs, whence d is no longer
parallel with I. This takes place in the cores of quantized vor-
tices in He- 4.

B. Magnetic anisotropy

The vector d, which appears due to the breaking of the
SO symmetry, specifies the direction of the spontaneous
magnetic anisotropy axis. The magnetic susceptibility in
the A4 phase is a uniaxial tensor,

Xij =X“d,d]+xl(8,]—d,dj) > (3.2)

and this is responsible for the orientational effect of the
magnetic field on the d vector,

— s XyHH;=—5X H>+5(X,—X,)(d-H?. (3.3)

The magnetic anisotropy is very large in the 4 phase (of
order unity), especially at low temperatures, where X;—0
(Leggett, 1975). Near T,, one has X, —X,=4A%g,y >0
according to Eq. (2.24); therefore the spin axis d is orien-
tated at equilibrium in the transverse plane—provided
that there are no other orientating effects.

The d vector does not display the breaking of time-
inversion symmetry, since 7d=d. Therefore the nuclear
spin subsystem has no features of ferromagnetic or anti-
ferromagnetic order, as distinct from the orbital subsys-
tem, with a tiny electronic ferromagnetism along the [/
vector (Leggett, 1977; Paulson and Wheatley, 1978).

Due to the spin-gauge symmetry (the A-phase state is
invariant under d— —d, ®—®+7), the d vector may be
considered a bilateral vector, or director, in all cases in
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which the change of phase & is unimportant. Thus d
resembles the director in nematic liquid crystals (de
Gennes, 1975), and the A phase may as well be referred to
as a spin nematic (Andreev and Grishchuk, 1984). The
difference between d and a director vector becomes quite
apparent, however, in connection with the half-quantum
vortices (see Sec. IV.B.3 below).

C. Liquid-crystal-like properties of 3He- A

The orbital vector I, which appears due to the breaking
of the SO(3L ) symmetry, indicates the direction of the orbi-
tal momentum of the Cooper pairs, and therefore changes
sign under time inversion, 7!= —1I, thus producing the
orbital ferromagnetism along I. It also defines the spon-
taneous orbital liquid-crystal-like anisotropy in 3He- 4.
All physical quantities connected with the orbital subsys-
tem of 3He- 4 have uniaxial anisotropy: viscosity, normal
fluid and superfluid densities, heat conductance (Wolfle,
1973; Graham, 1974), dielectric constant (Swift, Eisen-
stein, and Packard, 1980), ion mobility (Salomaa, 1982;
Salmelin and Salomaa, 1987a), etc.

The [ vector also defines the nodes in the gaps of the
3He quasiparticle excitation spectrum. According to Egs.
(2.4), 2.7), and (3.1), the *He quasiparticle energy in the
superfluid 4 phase is

Ey=[e} +A4(Rx D, k=5 (3.4
F

These nodes in the directions 2][1 generate the unusual
superfluid properties of the 4 phase at low temperatures,
where the low-energy excitations near the nodes become
essential.

In particular, in the presence of I-vector textures, the
nodes produce a nonzero density of states at the Fermi
level, and therefore a nonzero density of the normal com-
ponent at T=0 with nonanalytic behavior (Volovik and
Mineev, 1981; Combescot and Dombre, 1983, 1986; Dom-
bre and Combescot, 1984). Moreover, they produce an
anomalous current and other effects which are quite
analogous to the chiral anomalies in gauge theories (Volo-
vik, 1985, 1986a, 1986b, 1986¢c, 1986d; Balatsky, Volovik,
and Konyshev, 1986; Combescot and Dombre, 1986; see
also Sec. VIIL.D.2).

D. Combined gauge-orbital symmetry

More important than the density of states for our
present purposes, is another feature of the liquid-crystal-
like / texture: in the presence of I textures, the continuous
superflow is nonpotential (Ambegaokar, de Gennes, and
Rainer, 1974; Mermin and Ho, 1976). This is a result of
the combined gauge-orbital symmetry of the A phase
(with the generator L i,“‘-—f ), which intrinsically couples
the liquid-crystal-like and superfluid properties.

This combined gauge-orbital symmetry means that a
rotation of the orbital part e;+ie, of the order parameter
(3.1) by any angle a about the axis I does not change the
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order parameter, provided this rotation is simultaneously
accompanied with a gauge transformation U, that
changes the phase ® of the Bose condensate: ¢—P+a.
It is important that the angle @ may depend on the coor-
dinate. Even in this case the order parameter remains in-
variant. Thus He-A4 possesses local gauge invariance,
which previously was the sole privilege of quantum field
theories [another local gauge invariance, as well as a gen-
eral invariance, exists for low-energy fermionic excita-
tions near gap nodes, producing a direct analogy between
the 3He excitations and chiral fermions within quantum
electrodynamics (Volovik, 1986b)]. This results, in partic-
ular, in nonpotential (V X v;5£0) superflow in textures.

The existence of frictionless superflow v, is in any
superfluid a consequence of the breaking of the U(1)
gauge symmetry. There appears an overall phase ® of the
Bose condensate, which in a homogeneous superflow with
constant vj is linear in the coordinate r:

M
= -;i—vs-r . (3.5)
Here M=2m; is the boson mass in the Bose condensate,
i.e., the Cooper-pair mass. In an inhomogeneous super-
flow, the superfluid velocity is usually generalized as

#i
=—Vo 3.6
v MV , (3.6)

thus resulting in potential (curl-free) superflow.

However, this generalization is not correct for the A4
phase, as the above expression is not invariant under local
combined gauge-orbital symmetry, which transforms
vs—>V;+(#/M)Va. Since the superfluid velocity as a
physical quantity should not change under this transfor-
mation, which does not change the state of the system, it
should be generalized so as to include the liquid-crystal
parameters e; and e, as well,

#
VS=—E(V<D+e”Ve2,~) . (37)

This expression is already invariant under the local com-
bined symmetry: v,—v,. However, the vorticity of su-
perflow, V X v;, now depends on the I texture by means of

1
+5ps (I X v, 2]+2

7
Fgradz[%py(l'vs )2 —M—

1
+2

The quadratic magnetic-field energy in Eqgs. (2.4) and

(3.3) is
Fop=5X,—X;)(d-H)? (3.11)

and, finally, the dipole interaction equals, according to
Eq. (2.29),

Fy=—2g,A%(d-1)*. (3.12)
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] [P((1-V)d)* +pgp((I X V)d, )2]+—~[Cvs (VX1)—Col-vg)(l- (V><l))]

the celebrated Mermin-Ho relation (Mermin and Ho,
1976), following from Eq. (3.7):

VXVSI eik,l,-Vlk XVI] . (3.8)

A
2M
Therefore the A phase is irrotational only when the
right-hand side of Eq. (3.8) is zero; a planar [ field, for ex-
ample, is such an [/ texture. ‘

The nonpotential character of the superfluid velocity
reflects the fact that the gauge group becomes coupled
with the non-Abelian group of space rotations through
the combined symmetry. Such conservation of combined
symmetry with the violation of separate symmetries is
also known as a broken relative symmetry (Liu, 1979,
1982). For a comprehensive discussion of the conse-
quences of broken relative symmetry on the superfluid
properties of the A phase, see the recent review of Volo-
vik (1984b).

The same combined symmetry occurs in connection
with the electroweak interaction in particle physics, only
the orbital rotations are to be replaced by isotopic spin ro-
tations. As a result, the properties of the 4 phase and the
Higgs field in the Weinberg-Salam model (Weinberg,
1967; Salam, 1968) should share many common
features—including continuous vorticity, in particular.

E. Energy, superflow, and orbital current in *He- A

In the London limit, in which the size of an inhomo-
geneity in a superfluid is larger than the coherence length
£GL, so that the system is locally in the 4 phase, the ener-
gy depends only on the degeneracy parameters of the A-
phase pairing state: d, e;+ie;, and ®. Due to the local
combined symmetry, e;+ie, and ® cannot contribute to
the energy explicitly, but must rather enter in invariant
combinations, such as I and v;. Therefore the general ex-
pression for the A-phase energy, which is valid
throughout the whole A4-phase region, is as follows:

F:Fgrad +F;+Foy, (3.9)

where the gradient energy is (Brinkman and Cross, 1978)

2
[K (V-1 4+K(I(VXDY?+K3(IX(VXD)?]

(3.10)

r

Near T, the coefficients in Eq. (3.10) may be obtained
from Eq. (2.19):

p p=2K1 =2K2=

z{%

2K3=Cy=2C
2
4’]/0A2A ( T) .

pY=plp=1p; =

(3.13)
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(For the values of these parameters far from T, see Willi-
ams, 1979; Williams and Fetter, 1979.)

The first term in Eq. (3.10) is the kinetic energy of an-
isotropic superfluids with the supercurrent

s =pll(I1-v) +pi(vy—1(I-vy)) , (3.14a)

where p!' and p; denote the longitudinal and transverse
components of the superfluid density tensor.

The second term in (3.10) is the energy of the liquid-
crystal field / distortion (de Gennes, 1973), where K, K;,
and K are the twist, splay, and bend coefficients, as in
liquid crystals. The third term, with p'slp and pip referring
to the longitudinal and transverse components of the spin
rigidity tensor, together with the dipole energy (3.12), cor-
responds either to the energy of two-sublattice antifer-
romagnets with the antiferromagnetic axis d, or to a spin
nematic, both with an easy-axis anisotropy along the I
vector.

Finally, the fourth term in (3.10) originates from the in-
teraction of the v, field with the orbital current,

#

. #
me=ﬁCV><l-——ﬁCol(l-(V><l)) . (3.14b)

This current is produced by internal rotation around / of
Cooper pairs, which do not compensate each other if the /
texture is inhomogeneous.

IV. TOPOLOGY OF VORTICES IN ®He- A

A. The topological and symmetry
classification schemes

The large number of the internal degrees of freedom—

five in *He- 4, with two for the unit vector d and three
for the order-parameter triad e, e,, and I—and the rich
hierarchy of interactions with several length scales—é&g;,
&4, and &,zy—produce a considerable variety of different
stable textures in the superfluid phases of 3He, such as
vortices, helical textures, solitons, disgyrations, boojums,
hedgehogs, domain walls, monopoles, and instantons.

The theoretical investigation of textures in He, and in
other ordered forms of condensed matter, proceeds
through three consecutive stages. In the first stage, the
textures are grouped into large classes defined by their
distinct topological invariants, or topological ‘“charges”
(for reviews on topology in condensed-matter physics, see
Mermin, 1979; Michel, 1980; Mineev, 1980; Trebin, 1982;
Kléman, 1983).

Due to conservation of topological charge, textures
from a given topological class cannot be continuously
transformed into a texture in another class, while continu-
ous deformation between textures within the given class is
allowed by topology. The homogeneous state has zero to-
pological charge; therefore textures with nonzero charge
are topologically stable. They cannot dissolve into the
uniform vacuum state in a continuous manner.

Rev. Mod. Phys., Vol. 59, No. 3, Part |, July 1987

At the second stage, textures within a given topological
class are subdivided into symmetry classes (Salomaa and
Volovik, 1983b, 1985a, 1985b; Balinskii, Volovik, and
Kats, 1984)—essentially in the same manner as in the
classification of the bulk superfluid phases. However,
there occurs an interplay between symmetry and topology:
some symmetry classes are strongly prohibited in given
topological classes (see below). The textures with dif-
ferent internal symmetries display different physical
properties, such as a spontaneous magnetic moment, an
electric dipole moment, or a spontaneous supercurrent.

Finally, in the third stage, the numerical analysis of the
textures is carried out. One then finds the texture inside
each symmetry class with the minimal energy, and possi-
ble transitions between textures displaying different sym-
metries are investigated.

In this section, we consider the topological classifica-
tion of the different vortex textures in superfluid *He- 4.
The degeneracy parameters in a texture depend on the
coordinates, and these spatial variations serve to define a
mapping of the coordinate space X into the space R of
the degenerate states. In the case of vortices—and other
linear defects—the topological classes are defined by the
elements of the first homotopy group, m(R), which
describe the classes of continuous mappings of the closed
contour around the defect line into the space R.

B. The small-distance topology of vortices

Due to the hierarchy of interactions, the order-
parameter space R depends on the distance r from the
linear defect. This makes the vortex textures quite com-
plicated: the vortex may have two or more cores, one in-
side the other.

Let us first consider the small-distance topology of vor-
tices. In the \vicinity of the vortex axis,
EoL<r <(&4,62p), the dipole and magnetic anisotropy
energies, Egs. (3.11) and (3.12), may be neglected and the
space R for the A phase is the five-dimensional manifold
(Volovik and Mineev, 1976b, 1977a)

R, =(8*%XS03)/Z, . (4.1)

Here S? is the sphere of the spin vector d, the SO is the
space of the possible orientations of the orbital frame e;,
€, and I. The factorization of these spaces by the discrete
group Z, reflects the discrete combined spin-gauge sym-
metry of the A phase: this state (3.1) does not change if
the spin rotation, which transforms d into —d, is accom-
panied with the gauge transformation U,: ®—® 7.
The first homotopy group of this space,

7TI(RA )=Z4 N (4.2)

contains four elements. This means that there are four
different topological classes of linear defects, which we
shall identify with the numbers N=0, i—;—, and 1. These
topological charges obey the following summation laws,
corresponding to the cyclic group Z,:
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0 5 -7 1

0 0 < - 1
3 P o -1

-7 -7 0 1 B

1 1 — 5 0
4.3)

The combination laws govern the fission and fusion
processes of linear defects. For the sake of illustration,
we shall next proceed to enlist several of the simplest
representatives for each of these different topological
classes.

1. Defects with topological charge N=1

Here we enumerate several symmetric representatives
of the class with the topological charge N=1 in the re-

gion g1 <7 <(£4,6m):

d=1=2, e +ie;=x+iy, ®=(2k—1)¢, (4.4a)
d=3, 1=F, e, +ie,=2—id, ®=2k¢, (4.4b)
d=3, 1=¢, e +ie,=2+if, ®=2k¢, (4.4c)
d=I=7F, e, +ie,=2—ip, ®=2k¢, (4.4d)
d=I=¢, e +ie,=5+if, ®=2ko . (4.4¢)

P

In the above, Z, 7, and $ denote the unit vectors of a
cylindrical coordinate frame, and k is an integer. Equa-
tion (4.4a) describes pure phase vortices with an odd num-
ber [m =(2k —1)] of circulation quanta. According to
Eq. (3.7), the superfluid velocity in these vortices and its
circulation around the vortex axis obey

—-—V<I> ¢ ¢ v, -dr= mﬂ-. 4.5)

The quantum of circulation is 4 /M, where M=2m; for
the superfluid phases of *He (h/2m;=0.662x10"3
cm?/sec), and M =m, for He II (h/m4-—0 9971073
cm?/sec).

Equations (4.4b) and (4.4c) describe defects in the I
field: radial (I=7) and tangential (/= ¢ disgyrations (de
Gennes, 1973), respectively, combined with vortices hav-
ing an even number (m=2k) of circulation quanta. In
Egs. (4.4d) and (4.4e), these disgyrations are accompanied
with radial and tangential disclinations in the d field: All
these defects may transform into each other continuously,
since they belong to the same topological class.

The defect with minimal energy in this class is essen-
tially defined by the minimization of Eq. (3.10) in the
London limit. With the Ginzburg-Landau parameters of
Eq. (3.13), this minimization tends to favor the pure radi-
al disgyration in Eq. (4.4b) with k=0 [see Sec. V.C, Eq.
(5.26)]. That is, the pure phase vortex is unstable towards
the formation of a radial disgyration at small distances
(Volovik and Mineev, 1977a; Brinkman and Cross, 1978).

In all defects with N=1, the degeneracy parameters
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possess a singularity on the vortex axis. In the pure phase
vortices the singularity is in the phase ® which, according
to Eq. (4.5), produces a divergent superfluid velocity,
while in the case of the disgyration, the / field is singular
and thus its gradients become unbounded. Therefore, in
order to avoid divergent energy, the A-phase state should
be destroyed in the core region of order £g; near the vor-
tex axis, where the density of the gradient energy (2.19) of
the singularity becomes comparable with the
condensation-energy density (2.15).

Hence defects with the topological charge N=1, as
well as any other defects with nonzero topological
charges, have a singular “hard” core with radius ~§&gy.
Outside the hard core of the pure phase vortex, superflow
is potential; thus in this state all the vorticity, V X vy, is
concentrated inside the hard core. During the transfor-
mation of this vortex into a radial disgyration, vorticity
continuously “flares out” from the hard core of the singu-
larity. The actual structure of the hard core depends on
the symmetry and will be considered in Sec. V; it is deter-
mined by the competition between the gradient [Eq.
(2.19)] and bulk [Eq. (2.15)] energies. For a pure phase
vortex, the vorticity is concentrated in the origin or distri-
buted continuously inside the hard core, depending on the
core symmetry.

2. Continuous defects
Let us next write down some of the symmetric states in

the trivial class with N=0, both singular and nonsingu-
lar, in the region £gp <7 <(£4,&21):

d=1=2, e +ie,=x+iy, ®=0, (4.6a)
d=1=2, e+ie,=X+ip, ®=2k¢, (4.6b)
d=I=7F, e,+ie,=5—ip, ®=(2k +1) , (4.60)
d=3, I=F, e|+ie,=2—ip, ®P=02k+1)¢ . (4.6d)

Besides the nonsingular homogeneous state in Eq. (4.6a),
this class contains singular pure phase vortices with an
even number (m=2k) of circulation quanta [Eq. (4.6b)],
and the combination of a disgyration with singular pure
phase vortices having an odd number (m=2k +1) of cir-
culation quanta in Egs. (4.6¢c) and (4.6d). These singular
states are topologically unstable, i.e., they may be de-
formed into the state without any singularity in the de-
generacy parameter fields. Consequently, the singular
core of these vortices, with radius ~ &g, may be smooth-
ly dissolved, producing continuously distributed vorticity.
For example, the vortex with m = —2 quanta of circu-
lation [Eq. (4.6b), with kK = —1] may be smoothly de-
formed into the continuous (without a singular core of
size £gr) Anderson-Toulouse-Chechetkin (ATC) vortex
(Chechetkin, 1976; Anderson and Toulouse, 1977), having
the same asymptotics. The degeneracy parameters and
the superflow velocity in the ATC vortex are as follows:
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d=1=Zsinn(r)+7Fcosn(r) ,

(e, +iey)e®=[2 cosn(r) —Fsinn(r)—idle ¢, (4.7)
# . ~
Vs=— 70 [l+sm77(7T)]¢ .

Here 1 changes from 7/2 at r— oo to —/2 on the vor-
tex axis (»=0) (see Fig. 6).

At infinity, this continuous vortex appears like a pure
phase vortex with m =—2 quanta of circulation:
v,=—2(#/Mr)¢. However, v, vanishes smoothly on the
vortex axis, while both d and ! become uniform near the
axis, with d(0)=I(0)=—2, but different from their
asymptotic form d(e)=1I(o0)=2. This vortex has con-
tinuously distributed vorticity:

i cosp Ay

VXvs= M o

concentrated in the broad region where the / field is inho-

mogeneous. If there are no external fields, the extension
of this region is only limited by the boundaries.

(4.8)

“classical” He II vortex: continuous ATC vortex:

(a) ¥ (r) (a) T
Yoo ARYA
NN
— NN
vs (1) /‘\ /\
(b) (b) vg(T)
3 ~1
T
0 T 0 T
(c) w (1) (c) % (r)
'L2 2
_—l“l 1
0 T 0 T

FIG. 6. Comparison of the ‘“classical” singular pure phase
vortex—Ilike that in He II-—and the continuous Anderson-
Toulouse-Chechetkin (ATC) vortex texture. (a) The order pa-
rameter ¥(r) in the classical vortex line displays a node where
the phase becomes singular, while the order-parameter field /(r)
in the ATC texture is everywhere continuously distributed. (b)
The superflow velocity field vs(r) diverges for the classical vor-
tex on its axis where the gradient of the phase ® is singular,
while the superflow velocity distribution in the ATC texture is
everywhere finite; it exhibits a maximum beyond which the
velocity profile tends to the asymptotic 1/7 form. (c) The circu-
lation of superflow, k(r), around the vortex line is quantized for
the classical vortex for any distance from its axis, while the cir-
culation in the ATC texture is only quantized asymptotically for
large distances (two quanta of circulation).
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Another important example of a nonsingular texture,
the Mermin-Ho (MH) texture (Mermin and Ho, 1976),
may be obtained by the deformation of one of the defects
in Eq. (4.6c) with the elimination of the singularity at the
origin. This texture is again given by Eq. (4.7), but now
with the different boundary conditions 7(o0)=0 and

(a)

(b)

(c)

0 T

FIG. 7. The I-vector distribution in the Mermin-Ho (MH) tex-
ture. (a) Projection of I, on the cross-sectional plane of the
cylindrical container. (b) Side view of the I-vector texture illus-
trates the “escape into the third dimension.” (c) The distribu-
tion of circulation in the Mermin-Ho texture is continuous, like
that of the Anderson-Toulouse-Chechetkin texture in Fig. 6, but
the total circulation in the MH vortex texture is unity, while it
equals two in the ATC texture.
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n(0)= —m/2. Asymptotically, it behaves like a vortex
with a unit quantum of circulation m =—1, with
Vy= —(h/Mr)$, combined with a radial disgyration:
1=7 [Eq. (4.6c) with k = —1]. This texture should exist
in a cylindrical vessel where the boundary conditions (I
parallel to the normal of the boundary) require /=7 on
the wall (see Fig. 7).

If the asymptotics are not fixed, the ATC and MH tex-
tures, both having the topological charge N=0, may be
continuously transformed into each other, as well as into
the homogeneous state. However, the container walls—or
any additional interactions at a large distance from the
axis—partially fix the asymptotics, and this gives rise to
the variety of topologically different textures (Mineev and
Volovik, 1978), even inside the class N=0 (see Sec. IV.C).
These textures are characterized by additional topological
charges which distinguish them. Formally, these topolog-
ical invariants specify the classes of mappings with boun-
dary conditions taken into account; such classes form the
so-called relative homotopy group.

3. Half-integer vortices

The most symmetric defects in the classes N =+ for
the region of distances £g1 <7 < (&4,621) are

d=ZXcospp+Psinpp, ®=(12k++)d,
. 4.9)
e1+ie2=5c\+i5’\ ’

where p is a half-integer. These two classes of linear de-
fects contain the singular vortices with a half-integer
number of circulation quanta, m =2k +N; e.g., the su-
perfluid velocity and the circulation of the superflow field
for k=0 are given by

vs=i—21——137¢, ¢ vs—dr=i%3h4— ,
with the vorticity being concentrated in the hard cores.
The possible existence of these vortices is a result of the
discrete combined gauge-spin rotation symmetry of the A
phase: d— —d, ®—>®+7 (Volovik and Mineev, 1976b;
Cross and Brinkman, 1977).

Encircling the vortex line, the phase ® only changes by
7, thus changing the sign of the order parameter A,;.
This change in sign is compensated by the reversal of d,
provided that the index p of this vector field is a half-
integer (see Fig. 8). Therefore these vortices in the super-
flow field are simultaneously disclinations in the magnetic
anisotropy d field with half-integer Frank index, analo-
gous to the topologically stable disclinations in nematic
liquid crystals (de Gennes, 1975).

The half-quantum vortex with the circulation quantum
m and the disclination with the half-integer index p can-
not exist separately, demonstrating one of the several to-
pological mechanisms of confinement in superfluid *He.
This is the principal difference between the d vector in
the A4 phase and the director in nematic liquid crystals,
where isolated half-integer disclinations exist.

(4.10)

Rev. Mod. Phys., Vol. 59, No. 3, Part |, July 1987

FIG. 8. A schematic illustration of an isolated half-quantum
vortex in superfluid >He- 4. Shown are both the spin anisotropy
d-vector field (solid lines) and the simultaneous phase field ®
(dashed lines), chosen to be represented here by the vector
u=Xx cos(®+do)+9 sin(®+¢o), with $o=m/2=const. The
singularities for both of these fields occur on the same axis (con-
finement). :

C. The large-distance topology of vortices

1. Zero-field vortices

At large distances from the vortex axis, the magnetic
and dipole interactions (3.11) and (3.12) restrict the free-
dom of the order parameter. Let us first consider the sit-
uation in low fields, with H <<25 G. In this case, there is
a region of distances £; <r < &,5, where the dipole energy
is essential, while the magnetic field may be neglected.
This region is relevant also for vortices in a vanishing
magnetic field, where £, = . The space of the degen-
erate A-phase states R is truncated in this region, since d
is “dipole locked” with / (i.e., d||l), and only the space of
rotations of the orbital frame survives (Toulouse and
Kléman, 1976):

R§=S0;. 4.11)
The first homotopy group of this space,
m(RI)=Z,, 4.12)

contains only two elements, N=0 and N=1; the half-
quantum vortices do not exist in this region owing to di-
pole locking.

It is crucial to note that, unlike the d vector, the vector
1 is single valued and cannot change sign after encircling
the half-quantum vortex. Thus / cannot follow d in a
half-quantum vortex, which violates the dipole-locking re-
quirement. As a result, the half-quantum vortex gives
rise to a soliton wall of width ~£&; (Volovik and Mineey,
1977a; Brinkman and Cross; 1978); this is illustrated in
Fig. 9.
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FIG. 9. Formation of soliton from a half-quantum vortex at
distances larger than £;: a disclination in the d field with half-
integer Frank index cannot be accompanied with such a dis-
clination in the I field. This discrepancy produces the soliton
wall on the left-hand side of the disclination axis.

The simplest representatives of nonsingular vortices
with N=0 are, as before, the ATC and MH textures with
vorticity concentrated in a broad region. The most sym-
metric singular defects of the class with N=1 in the re-
gion £; <r <&y are the pure phase vortex [Eq. (4.4a)]

and the dipole-locked disgyrations [Egs. (4.4d) and (4.4¢)]. .

The energetically stable defect of this class (N=1) is in
this region defined by the minimization of Eq. (3.10),
with dipole-locked d||l. With the parameters of Eq.
(3.13), this defect has a rather complicated form: it is a
one-quantum vortex with broken axisymmetry and with
an inhomogeneous distribution of the [ field (see Sec. V.C;
Volovik and Mineev, 1977a; Volovik and Hakonen, 1981).

This vortex has two cores: the large “soft” core of the
order of the dipole length £; and the small “hard” core
with radius ~§&gp. Outside the soft core, I and d are
locked. In the soft-core region, where the gradient energy
of the vortex texture becomes comparable with the dipole
energy, dipole unlocking occurs. Inside this dipole-
unlocked soft core, in the region £g; <r <&, this vortex
continuously transforms into the linear defect with
minimal energy, Eq. (3.10), without dipole locking, i.e.,
into the dipole-unlocked radial disgyration [Eq. (4.4b); see
Sec. V.C], which has a “hard” core with radius of the or-
der of £gp. Since the radial disgyration has no singular
vorticity, all its vorticity is continuously distributed in the
soft core. Therefore the singular vortex line in the class
N =1 has, nevertheless, continuous vorticity.

2. Vortices in small magnetic fields

Let us now take into account a weak magnetic field
(hence &, > £4). There appears a new region of distances
r > &y > &4 from the vortex axis, where the magnetic an-
isotropy [Eq. (3.11)] further restricts the order-parameter
space R, locking d into the plane perpendicular to H.
This space consists of two circles:
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RSS!, (4.13)

One circle is the space for the phase ®, while the other
circle is the space for both the d- and I-vector fields,
which are dipole locked and confined in a plane. Super-
fluid velocity is potential in this region, since the I field
has a planar structure, i.e., VXv,=0 at distances
r > (&25,€4) according to Eq. (3.8).

The first homotopy group of this space,

m(RI=2Zx2Z , (4.14)

contains two different groups of integers, m and p, which
are the winding numbers for the phase ® and for the
fields d||l, respectively. The topological class (m,p) con-
tains disclinations with index p combined with vortices
having m quanta of circulation. The simplest representa-
tion in this class is

d=I=X cosp (¢ —¢o)+J sinp (¢ —y) ,

e +ie,=2+i(IX2), (4.15)

i~ a
P=m¢, vszmﬁ-r—q}, H|Z.

Thus, due to an additional magnetic interaction far from
the vortex axis, defects of the two large topological classes
with N=0 and N=1 acquire additional topological
charges m and p. The distributions of these subclasses in-
side the large class is as follows: the defects with even
m +p belong to the class with N=0, while the defects
with odd m +p belong to the class with N=1. The de-
fects in Eq. (4.15) have a soft core with radius ~§&,y,
with the core structures depending on the sum m +p (see
Secs. IV.C.3 and IV.C4).

3. Topology of the soft core of continuous vortices
in low fields

Defects with even m +p belong in the trivial class
N=0 in the region r < &,y; therefore the order parameter
can be made continuous inside this region. Thus these de-
fects only have one core (a dipole-locked soft core) of the
order of &, and no smaller core inside the region
r <&,y Inside this soft core, the dipole-locked vectors I
and d flare out from the (X,y) plane, providing continu-
ous unwinding of the quantum numbers p and m, and
thus continuously distributed vorticity. These vectors
have definite topological structure in the dipole-locked
soft core.

Integrating the Mermin-Ho relation (3.8) along the sur-
face o crossing the soft core with the edge on the contour
L outside the core, one obtains the relation between the
circulation quantum number m and the quantum number

al

, 4.16
a ( a)

_ 1 ol
my= fadxdy I’B;X

describing the continuous mapping of the soft-core region
onto the unit sphere, which is produced by the / field in
the core:



550 M. M. Salomaa and G. E. Volovik: Quantized vortices in superfluid *He

FIG. 10. Topology of the continuous Mermin-Ho (MH) vortex texture in the I-vector field (arrows) can be studied in the order-
parameter space S? through the mapping I(r) of the cross section of the MH texture onto the “northern” half of the unit sphere.

1, 1M woM )
Zm-T2 7 ¢Ld_rvs—2h fads V Xvg
1 ol  al
T 4r fadxdy ! axxa
=m; . (4.16b)

In this mapping, the I vector (together with the d vec-

tor) covers the unit sphere 7, times. The index i, is an
integer for vortices with even circulation quantum num-
bers m [7;=1 for the ATC texture, modified to restrict
I( ) to the plane, e.g., I(0)=X], and a half-integer for
odd m (/; =+ for the MH texture). In the case of the
MH texture, the I vector covers only the “northern” hemi-
sphere (see Fig. 10). For both textures, superflow is po-
tential outside the dipole-locked soft vortex core &,5, ac-

FIG. 11. Schematic illustration of the three cores of the singular *He- A vortex in a low magnetic field. Arrows indicate the l-vector
distribution, while the d-vector field is denoted by lines without arrowhead. In the outer soft-core region £; < < &5, the I and d vec-
tors are dipole locked, but may deviate from the plane. For & <r» <&, the d field remains constant, while the I field produces the
unwinding of phase and forms a singularity at » ~& (hard core). Inside this hard vortex core, r <&, the superfluid A-phase pairing
state is broken, and pairing into new superfluid phases results, thereby resolving the I-field singularity. The vortex-lattice constant is

tq. (Here £ means £gr.)
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cording to the Mermin-Ho relation (3.8), since the I-
vector field is locked in a plane and the right-hand side of
Eq. (3.8) is zero. Therefore all the vorticity is concentrat-
ed inside this core. Thus the application of a magnetic
field results in the localization of vorticity in the soft
cores of the ATC and MH textures.

4. Vortices with three cores

Defects with an odd sum m +p belong to the nontrivial
class N=1 in the region £; <7 <&,y, and to the same
class N=1 in the region &gy <7 <&y; therefore all of
them, including the one-quantum vortex (p=0, m=1),
should have three concentric cores (&,y, &4, and £g;) in-
side each other (Volovik and Hakonen, 1981; see Fig. 11).
The outermost core is the dipole-locked core of size &,5,
inside which I and d are locked but may deviate from the
plane: they are fixed in a plane by the magnetic field only
outside this core. In the second (dipole unlocked) soft
core, of size &4, I, and d are unlocked and the vortex with
m=1 transforms into a disgyration in the / field with a
uniform d field, which in turn has a singular hard core of
size £gp where the A-phase state is broken. Whether the
vorticity is concentrated inside the soft dipole-unlocked or
soft dipole-locked core depends on the details of the gra-
dient energy [Eq. (3.10)]. In the third “hard” core, of size
£GL, the A-phase state is broken: the hard core is normal,
or consists of new superfluid states. ‘

5. Topology of vortices in high fields

The high-field situation is typical for NMR experi-
ments on vortices (Hakonen, Ikkala, Islander, Lounasmaa,
and Volovik, 1983), since they have been carried out in an
external magnetic field H ~300 G >>25 G. In this case,
there is a hierarchy of length scales for the vortices; dif-
ferent from that for the low-field vortices: &g, €25, and
§a- ’

At the largest distances, r >&; > &5, where both the
magnetic field and the dipole energies are essential, the
linear defects are described by the same homotopy group
(4.14) as before, with the indices m,p. However, their
core structures are different, because the intermediate re-
gion is now &y <7 <&4. In this regime, there is no di-
pole locking, but d is locked in a plane by the magnetic
field, and its sphere S? in Eq. (4.1) is restricted to the cir-
cle S'. Thus the space of degenerate states in the region

S <r <&gis

RE=(5'%xs03)/2, , (4.17)
with the homotopy group
m(RH=Zx2Z, . (4.18)

In addition to the charge N of the group Z,, the topo-
logical classes of the defects are also characterized by the
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integer charge p of the group Z, which denotes the index
p of disclinations in the d field.

Topological stability of the disclinations in this inter-
mediate region results in the fact that the nonsingular
ATC and MH textures have quite different core struc-
tures and, therefore, very different energies. The ATC
texture has only one (dipole-unlocked) soft core of size &4,
inside which unwinding of the phase ® occurs due to the
fountainlike I texture, while d remains nearly constant.
The MH texture has a disclination in both the / and the d
fields, with p=1 in the region r > &,y. At a smaller dis-
tance, i.e., inside the dipole-locked core in the region
&g <r <&y, the I-field disgyration is unwound (see Fig.
12). This disclination in the d field in turn has another
smaller soft core of size &,y < &4, inside which d “escapes
into the third dimension,” i.e., comes out from the plane,
destroying the singularity.

This double-core structure of the MH vortex, with
large gradients in the region of the smaller core, makes it
energetically unfavorable in comparison with the one-core
ATC texture (see Sec. V.C.2). Thus the ATC vortices be-
come the only nonsingular textures that are advantageous
in a rotating vessel in the presence of a high magnetic
field (Volovik and Hakonen, 1981; Zotos and Maki,
1984b; Fetter, 1985).

5,78,

€n~Eq

low field high field

FIG. 12. The Mermin-Ho vortex textures in a low and in a
high magnetic field. The solid curves denote the I-vector distri-
bution, while the dashed lines indicate the d-vector field. In
low magnetic fields, with &5 > &4, the I and d vectors are di-
pole locked, and both form a continuous vortex texture. In a
high magnetic field, dipole unlocking occurs, and d does not
follow I. Here &,y < &4, and while I remains continuous, d be-
comes singular with the singularity being resolved in the inner
core of size &,y. :
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6. Structural core transition with a change
of topological charge

It is important to recognize that the ATC core struc-
ture in high fields is topologically different from that in
low fields. In the latter case, d follows I everywhere in
the texture and therefore the index has the same value
mg=1 as the index i, for the I field in Egs. (4.16):

(4.19)

Hence we find for the low-field ATC texture mig=m;=1.
In the limit of large magnetic fields, the d vector in the
ATC texture is locked into a plane inside the soft core

low field high field

ava AN
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| | | e
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f W \I AR AN |
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| |

DI 7Y PR €

=1

~£&4, and cannot follow /; therefore, while 7i; =1, the in-
dex /iy =0 [see Fig. 13(a)]. Thus, on decreasing the mag-
netic field, one should expect to find a structural change
from the high-field ATC vortex into a low-field ATC
vortex, with a jump of the topological charge 7, associ-
ated with the d field in the soft core of the vortex (Volo-
vik and Hakonen, 1981; Zotos and Maki, 1984b).

The change in 7, may occur, for example, through the
creation of a point defect, or “hedgehog” [see Fig. 13(b)],
in the d field with the topological charge miy;=1. This
hedgehog structure, created at the edge of a vortex line on
the wall of the container, should move along the vortex

‘axis to the other termination point of the vortex, thus pro-

ducing the charge /iy of the vortex [see Fig. 13(c)]. The
finite time needed for the creation of the hedgehog would

metastable
low-field
ATC texture

N
1f\ /\;
/\V\l

() I/ \ hedgehog
L7 7 TNV N\
(|
'm ml
' SN stable
|m|m| high -field

ATC texture

hedgehog

FIG. 13. (a) The Anderson-Toulouse-Chechetkin (ATC) textures in a low magnetic field (dipole locking) and in a high field (dipole
unlocking). Solid curves, I; dashed curves, d. (b) A “hedgehog,” i.e., a point singularity, in the d field, while moving in the direction
indicated by the arrows, annihilates the topological invariant of the metastable d field (ahead) and forms the stable high-field ATC
texture (behind). (c) Only the d-vector field is shown here for the monopolelike hedgehog; the arrows illustrate the motion of the

hedgehog.
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mean a large metastability of the expected vortex-core
transition. It is possible that the d-field hedgehog could
be detected by NMR during such a transition. This struc-
ture has a specific NMR signature: the spectrum of
spin-wave modes in the vicinity of a hedgehog is
equivalent to the spectrum of an electron in the vicinity of
a magnetic Dirac monopole.

7. Singular vortices in high fields

As in the case of low magnetic fields, the one-quantum
vortex (p=0, m=1) in high fields also has three cores, in
principle. In the dipole-unlocked soft core of size & , the
I vector is unlocked from d and the vortex transforms
into a disgyration in the [ field with a hard core of size
&oL- The d vector is locked in a plane inside £; and has
zero topological charge, p=0; this field may have an in-
termediate core of size £,y <&,, inside which d can es-
cape from the plane. This deviation from the plane is
usually negligibly small; therefore only two cores are
relevant for the one-quantum vortex: a dipole-unlocked
soft core (~£&4) and a hard core (~£&g;) (Seppild and
Volovik, 1983; Vulovic, Stein, and Fetter, 1984; see Fig.
14).

The vorticity of this one-quantum high-field vortex, as
well as the vorticity of the nonsingular ATC high-field
vortex textures, is concentrated in the dipole-unlocked
soft-core region, since outside the soft core the I texture is
locked into a plane.

D. Topology of periodic vortex textures
in a rotating container

1. Lattice of isolated vortices

If one neglects the centrifugal forces in the rotating
container, which produce the density profile, the effect of
rotation on superfluids is equivalent to the effect of an
external magnetic field on a charged liquid. The gradient
energy (2.19) must contain the covariant derivative D in-
stead of the ordinary V; thus

DAy =(V—iA)Ay, DAL=(V+iA)AY , (420

where the vector potential A is proportional to the
normal-fluid velocity v, =€ Xr in the rotating container:
—Ig—vn = —Aﬁi QXr.

For the energy of the A phase in the London limit, this
corresponds to the change v,—v, —Q Xr in Eq. (3.10). If
the superfluid were at rest under rotation, i.e., if one had
vy =0, then, due to the Q Xr term, its energy would in-
crease proportionally to R* with the radius R of the
vessel, which is faster than the increase of volume. In or-
der to avoid such a divergence of energy per unit volume,
the condition of solid-body-like rotation must be fulfilled.
On the average, the superfluid velocity v, should increase
as X, in order to compensate the vector-potential field:

A= (4.21)
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(vi)=QXxr, (VXv,)=2Q. (4.22)
In superfluids that exhibit potential superflow (such as
He II, 3He-B, and 3He-A in a high magnetic field with
potential superflow outside the soft core of the vortices),
nonzero vorticity may exist only due to the presence of
isolated quantized vortices. If each vortex line has m
quanta of circulation, then Eq. (4.22) defines the density
of vortices n, per unit area of the vessel. Since the aver-
age vorticity in the vortex array is n,m (h /M), one finds
2MQ
my==_"= (4.23)
The energy of a superfluid containing a vortex array
with this density is now proportional to the volume of the
container. However, this energy is different for the vari-
ous types of vortices and distinct possible configurations
of the vortex lattice. Different systems of vortices may be
compared either in terms of their energy per unit volume
or—equivalently—in terms of the energy per quantum of
superflow.

2. Smooth vortex textures

This picture of isolated vortices is only valid if the
cores, where the vorticity is concentrated, are nonoverlap-
ping. For the *He-4 vortices in a high magnetic field,
this is valid even for the highest available rotational ve-
locities  ~2 rad/sec: the distance between the vortices,
rq~ny '”2~1072 cm, is larger than the dipole-unlocked
soft-core size, which is of the order of g,‘,,,~10_3 cm,
where the vorticity is concentrated. In low fields, the vor-
ticity of nonsingular vortices (and possibly that of singu-
lar vortices as well) is concentrated in the dipole-locked
soft core with size of the order of &,5 > &,, and the over-
lapping of vorticity of the nearest vortices becomes im-
portant. Thus, instead of isolated vortices, one finds con-
tinuously distributed vorticity, which also should satisfy
the solid-body rotation condition (4.22).

This texture has an equivalent to Eq. (4.23), provided
that the vortex texture is periodic in the rotating equilibri-
um state (Volovik and Kopnin, 1977). In an external
magnetic field a charged liquid may be periodic only pro-
vided that the quantization condition on the magnetic
flux is fulfilled. The total magnetic flux HS; through
an elementary cell S, of the periodic structure is quan-
tized in units of the elementary flux quantum ¢y=h /e
(see, for example, Brown, 1964; Zak, 1964a, 1964b):

HS ooy =m¢0 . (4.24)

The transcription of this equation into the language of ro-
tating superfluids yields the quantization rule

1k
2 M-
Together with the solid-body-like rotation condition

(4.22), this produces the quantization rule for the circula-
tion of superfluid  velocity along the boundary L of a

QS o= (4.25)
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FIG. 14. The singular one-quantum vortex in *He- 4 in a high magnetic field. Compare with the three-core structure in Fig. 11 (no-
tations are the same in both figures). The region between £, and £,y is absent in high fields: only the dipole-unlocked soft core

remains.

primitive cell of the vortex lattice with area S o: For the nonsingular vortex texture, one may apply Eq.
(4.16b), which couples m with the index 7i; of the I field

¢Ldl"vs= fs lldS'VXVs=Sce11'<V><Vs) in the cell:
=29.Sce"=m5hl— . (4.26) mp=5m . 4.27)
Thus each primitive cell behaves like a vortex with m Here m; is the number of times the / vector in the primi-

quanta of circulation. tive vortex-lattice cell covers the unit sphere, or—in other

ST )
= 7 %/’E\@;JWJI%
== 7 = /j[_

FIG. 15. Periodic hexagonal [ texture (arrows) of continuous ATC vortices in rotating superfluid *He- 4 when H =0. Each elementa-
ry cell (one of which is darkened) of the lattice is a continuous vortex with two quanta of superfluid circulation ¢ v,-dr along and

around the cell boundary (dashed).
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words—7; is the degree of the mapping of the two-
dimensional torus (the primitive lattice cell with periodic
boundary conditions is equivalent to a torus) onto the
sphere. This index should be an integer; therefore a non-
singular texture should possess an even number m of cir-
culation quanta along the cell boundary.

The simplest example of a nonsingular low-field texture
with m=2 is a hexagonal periodic structure of ATC vor-

tices, displayed in Fig. 15 (Volovik and Kopnin, 1977). -

An example of a texture with m=4 is given in Fig. 16
(Fujita, Nakahara, Ohmi, and Tsuneto, 1978; Tsuneto,
Ohmi, and Fujita, 1978; Nakahara, Ohmi, Tsuneto, and
Fujita, 1979). The primitive cell contains four different
nonsingular one-quantum MH vortices, producing four
quanta of circulation per cell. According to Eq. (4.25),
the area of the four-quantum unit cell is twice as large as
that for the two-quantum unit cell. Different symmetry
subclasses of textures are possible inside a given topologi-
cal class with fixed 7;. The symmetry of vortex lattices
in terms of magnetic classes is discussed by Sonin and Fo-
min (1985). ‘

Note that even though [ is periodic in the texture, the
order parameter A,; is not. In analogy with the charged
system in a magnetic field, the texture should be periodic
under ‘“magnetic” translations (Peierls, 1933), i.e., the
translation r—»r+b combined with a Galilean transfor-
.mation

Aa‘_(r)_)Aai(r_{__b)ei(M/ﬁ)(QXb)q' . (4.28)

The only truly periodic quantities are those which are
Galilean invariant, such as /, d, and v, —v,,.

V. SYMMETRY OF VORTICES IN 3He- A

A. Axial and discrete symmetries of vortices
in superfluids

1. Symmetry of linear defects

In the preceding section we considered the topologically
different classes of vortices and illustrated these classes by
their simplest representatives. However, these examples
are not necessarily solutions of the corresponding
Ginzburg-Landau (or Gor’kov) equations for all length
scales. A vortex solution may be rather complicated, re-
quiring a minimization procedure that involves trial func-
tions with a large number of amplitudes. This is different
from the He II vortex, which is described by just one
complex amplitude ¥(r)= |¢¥(r) | e™™?, such that only a
single radially varying function |(r)| is involved. How-
ever, a symmetry analysis is a powerful tool, providing

essential restrictions on the number of the amplitudes.

This analysis, moreover, allows one to describe the possi-
ble phase transitions, which should accompany the sym-
metry breaking, as well as to characterize the distinct
physical properties of the broken-symmetry states.

The symmetry classification of defects in condensed
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FIG. 16. (a) and (b): Two possible periodic lattices of continu-
ous Mermin-Ho vortices with four quanta of circulation, m =4,
per primitive cell. Every cell contains four Mermin-Ho vortices,
each with unit quantum of circulation, m =1; &, I down; ©, I

up.

matter is analogous to the classification of the ordered
states of the system themselves. In order to find all the
physically different, say, linear defects, it is sufficient to
enumerate all the subgroups H of such a symmetry group
G, which is relevant for the given type of defect. The ex-
istence of a line defect restricts the Euclidian group to
D, Xt% where D includes rotations around the vortex
axis 2, rotations by 7 around a perpendicular axis, and
space inversion P; here ¢* denotes translations along Z.

The magnetic field and dipole interactions are impor-
tant for vortices in 3He- 4; a magnetic field restricts the
separate spin rotations, while the dipole energy complete-
ly destroys them. However, neither one violates the sym-
metry D, if the field is along the vortex axis. Thus, in
the presence of the line defect, the symmetry group G of
physical laws is reduced to

G =(D_ X)X (TXU(1)) . (5.1)

The most symmetric linear defects correspond to the
maximal subgroups H of G, possible for a given topologi-
cal class. The maximal symmetry groups H have two
continuous subgroups, with the following generators
(Salomaa and Volovik, 1983b, 1985a):

O0=J,—nI, (5.2)
s p s 10
pz_qI’ D= i aZ . (53)

Here n is an integer, which has the meaning of the total
angular momentum eigenvalue of the vortex, while g is an
arbitrary real number. For such physical quantities f
which are gauge invariant (If=0), these two symmetries
mean axisymmetry and translational invariance along the
vortex axis, respectively.

2. Vortices in He |l

Let us find the representatives of the symmetry class
(n,q) of linear defects in He II, where the order parameter
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is a complex scalar 3, with the following action of the
generator of gauge symmetry: I¢p=1, T¢*=—y*. Su-
perfluid He II has no internal structure; therefore
7,=(1/i)(3/3¢).

The order parameter ¥, which is invariant under the
continuous symmetries in Egs. (5.2) and (5.3), must satis-
fy the symmetry equations

o= L2 _,ly—0o |19 _,ly=

oY= [i 36 n =0, e q |[¢v=0. (5.4)
They have the solution

Y(r)=C(r)e"te® (5.5)

where C(r) denotes an arbitrary complex amplitude that
is a function only of the radial distance » from the axis of
the line defect. This is a quantized vortex line with n
quanta of circulation.

Since the bosons in He II have no internal structure, all
the angular momentum originates from the superflow
around the vortices, which is why the total angular
momentum quantum number n coincides with the circu-
lation quantum number m, i.e., n =m for He II. This
quantum number is simultaneously the topological charge
for the He II vortex. For g0, Eq. (5.5) also describes
superflow along the z direction with the homogeneous
velocity v, =(#/M)q. For n=0, the function C(r) must
vanish on the axis in order to avoid a divergent kinetic en-
ergy; therefore superfluidity is always broken on the axis
of a He II vortex, where all the vorticity is concentrated.

In addition to the two continuous symmetries in Egs.
(5.2) and (5.3), the maximal symmetry group for
vortices—with n=x0—also has a discrete symmetry sub-
group. This consists of discrete elements of G (time in-
version T, space parity P, and rotations O,(‘J,), by 7 around
the perpendicular axis x) in the following combinations,
which are denoted by P;, P,, and P; (Salomaa and Volo-
vik, 1983b, 1985b):

P\~P, P;~TO!), P,=P;P, . (5.6)

The pure symmetry T is not conserved in the vortex,
since the time-inversion operation changes the direction
of superflow circulation around the vortex axis
(Tm = —m). Therefore T may enter into a symmetry
operation only in combination with other symmetry ele-
ments: O,(c",), for vortices (and P for disgyrations; see Sec.
V.E).

Above, in Eqgs. (5.6), the symbol ~ means that these
elements of the group may also include the gauge
transformation U, i.e., multiplication by e™. For exam-
ple, P, depending on the topological class, means either
pure space parity P or space parity combined with U,.
Which parity is relevant will be seen below; however, ir-
respective of this, for any physical quantity f that-is
gauge invariant (i.e., 7r=0), P, coincides with P. It is
important that if the gauge transformation is not taken
into account, the classification of the vortices in super-
fluid *He may be expressed in terms of the magnetic
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classes (Landau and Lifshitz, 1984).

The most symmetric vortex should be invariant under
the symmetries (5.6). [In terms of the magnetic classes,
the most symmetric vortex belongs to the class
D 4(C ,p).] The symmetry P, requires that the function
C(r) in Eq. (5.5) for the He II vortex be real (apart from
an arbitrary constant phase factor). The space parity
operator P; for the n-quantum vortex in He II equals
PU,,, since only this combination is consistent with the
solution (5.5) for the vortex in this topological class. The
P, symmetry requires g =0; in what follows, we shall
consider only the vortices with ¢ =0. (However, see Secs.
V.D.4 and VIIIL.C.6 for the w vortices, where the z depen-
dence of the vortex texture is important.)

3. The most symmetric vortices in He

In order to find the most symmetric vortices in super-
fluid 3He, it is necessary first to solve the axisymmetry
equation Qam,zo, which in the case of 3He yields [see
Egs. (5.2) and (2.8a)]

A 13 a4

Qa,,= 7£+le"t+sz—n au,=0. (5.7
The general solution of this equation is

(1) =C,(r)e " —#=¢ (5.8)

Here, not all of the C,, need to vanish at the origin: if
any n—pu—v=0, then C,, at r =0 may be nonzero; this
allows for the possibility of axisymmetric vortices that
display no destruction of superfluidity in the hard core of
the *He vortices.

The discrete symmetries in Eq. (5.6) restrict the number
of possible parameters C,,(r). The P; symmetry opera-
tion, consistent with the solution (5.8), may be defined in
two different ways: P;=P(U,_)", as in He II, or with the’
opposite sign, P;=P(U,)"*'=—P(U,)". These func-
tions C,,(7) transform under the symmetry P, in the fol-
lowing ways, depending on the form of Py:

PiC,,=(—1F*+"C,, for Py=P(U,)"*!, (5.9)
PiC,,=(—1F+"+IC,, for Py=P(U,)". (5.10)

Thus, if the symmetry P, is given by Eq. (5.9), the
most symmetric vortex, which obeys P,C,,=C,,, has ei-
ther five nonzero functions C,,, for even (u+v),

Civ» Cor, Coor» C_,, C__, (5.11)

or—if the symmetry P, is given by Eq. (5.10)—it has four
nonzero functions C,, for odd (u+4v):

Cio Cots Co_, C_o. (5.12)

Since there is no additional symmetry that couples the
amplitudes  C,,, all the vortices in superfluid 3He have
nonunitary components and, therefore, have a net core
magnetization. [See Salomaa and Volovik (1983b), and
Sec. VIII for the B-phase vortices, and Passvogel,
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Tewordt, and Schopohl (1984) for the magnetization of
the continuous A-phase vortices.]

The number of amplitudes increases, however, if the
conservation of P, symmetry is not compatible with to-
pology. The topological constraints break the P; symme-
try for the half-quantum vortices and for the continuous
vortices (Sec. V.B). In these cases, the most symmetric
vortices within a given topological class are not P,
symmetric—and therefore have additional components.

Another restriction is imposed on the 3He vortices by
the symmetry P, in Eq. (5.6). Through an appropriate
choice of common phase factor for the C,,, this transfor-
“mation may be reduced to complex conjugation:

P,C,,=C}, . (5.13)

Therefore, in the most symmetric vortices, all the C,,, are
real (apart from the common constant phase factor).
Thus, the most symmetric vortices in superfluid 3He are
described by an integer n, the total angular momentum
quantum number, and have at least four (or five) real
functions C,,(r)—in contrast with the single real func-
tion C(r) for the vortices in He II [cf. Eq. (5.5)].

In the 3He- B vortices the nonzero Cu.(r) in the asymp-
totics are C,_=Cy=C_, according to Eq. (2.14b),
and each of these has the same phase factor e, as fol-
lows from Eq. (5.8). The symmetry P;, compatible with
these asymptotics, is given by Eq. (5.9). Thus the most
symmetric vortices in 3He-B have exactly five indepen-
dent real functions Cu(r), and

m=n. (5.14)

That is, in these vortices the angular momentum index n
coincides with the circulation quantum number m,
since—as is the case with He II—there is no internal an-
gular momentum in the B phase. This vortex was first
considered by Ohmi, Tsuneto, and Fujita (1983).

4. Vortex “isospin” in *He- A

Examples of axisymmetric vortices in 3He- 4, with the
topological charges N =0 and N =1, are given by Egs.
(4.6) and (4.4), respectively. For the pure phase vortices
[Eqgs. (4.4a) and (4.6b)], the integer n is expressed through
the circulation quantum number m: n=m +1. Howev-

er, this is valid only for vortices with the asymptote -

I(0)=%; for the other axisymmetric asymptote, with
I( )= -2, the index n assumes the value n =m — 1.
Therefore, for the axisymmetric pure phase vortices, we
find the following relation between the total angular-

momentum quantum number z and the circulation quan-

tum m (Fuyjita and Tsuneto, 1975):

n=m+2-1o0) . (5.15)

This equation is also valid for any other axisymmetric
vortices in Egs. (4.4) and (4.6), and even for the continu-
ous ATC and MH textures given by Eq. (4.7). In the MH
texture, one has Z-1( w0 )=0.
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The quantum number n thus resembles the total angu-
lar momentum of a particle with the unitary “isospin”
I( ), whose projection on the quantization axis Z (vortex
axis) assumes the values 0, or +1. This is the result of the
internal angular momentum of the Cooper pairs in the 4
phase, which is directed along the I vector. Thus, the
structure of the axisymmetric vortex in the 4 phase de-
pends essentially on the orientation of the I field in the
bulk liquid with respect to the vector Q of the angular

. velocity of rotation.

5. The most symmetric vortices in *He- A

From all the vortices in the examples of Egs. (4.4) and
(4.6), only the pure phase vortices are the most sym-
metric. The relevant P, transformation for them is given
by Eq. (5.10). Therefore, in the general case, they are
described by only four independent real functions [see Eq.
(5.12)]. However, even this number may be reduced if the
smallness of the dipole coupling is taken into account.

Let us first consider a situation in which the dipole en-
ergy may be neglected, e.g., well inside the soft core of
singular vortex textures. In this case there are two
separate continuous symmetries:

O="L,—nl, §,. (5.16)
The symmetry §, requires that d be parallel to 2. This
completely rules out the consideration of half-integer vor-
tices: their topology requirement that d be nonuniform is
inconsistent with the symmetry .§z. This is one of many
examples of mutual incompatibility of the topology and
symmetry requirements in superfluid *He (see also Sec.
V.B). The topology of the half-quantum vortex is also in-
compatible with the symmetry P;, which requires
d(r)=d(—r).

Thus, we consider the singular vortices of the topologi-
cal class N =1. (We also consider the singular vortices
within the class N =0. These vortices are, of course, un-
stable towards the elimination of the singularity;

" nevertheless, it is important to know their symmetry in

order to understand what symmetry is broken when they
transform into the nonsingular texture.) The most sym-
metric vortices with N =1 are given in the region
EcL<r <&; by Egs. (4.4a)—(4.4c), with Eq. (5.15) for n
[and with Eq. (4.6b) for N =0]. In the region r <&gp,
they are described by Eq. (5.12).

However, due to the additional continuous symmetry
3’,, the number of independent functions C,, in the most
symmetric vortex is reduced to two: Co, and Cy_.
They correspond to the amplitudes of the Cooper-pair
states with zero spin projection (S,=0). Therefore the
most symmetric vortices in He- 4 with integer quanta of
circulation m have the following general expression in the
whole region r <&, (Salomaa and Volovik, 1985b):

Agi=A 5[ Coy (PNE; +iP; e —D¢

+Co_ (P& —ipyeint18] (5.17)
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Here Cp,(0)=1 and Cy_(0)=0 for the vortex with
m=n —1 quanta of circulation and I(w)=2%, while
Coi(0)=0 and Cy_(ew)=1 for the vortex with
m =n +1 circulation quanta and /(e )= —Z%. Note that
the order parameter should be zero on the vortex axis for
all these axisymmetric vortices, except for the doubly
quantized vortices with [(ew)=%, m=—2 [where
Co_(0)£0], and with Il(ew)=—%, m =2 [in which
Co. (0)5£0].

Equation (5.17) for the most symmetric vortices is valid
even at large distances r > &4, where the dipole energy is
essential: the contributions of the components C ,,,C_g
in Eq. (5.12) are small in proportion to (£g1./£4)?%, in com-
parison with Co, ,Co_.

Thus, the most symmetric singular vortices in *He- 4,
belonging to the topological classes N =0 and 1, are
characterized by the integer index m of the number of cir-
culation quanta and by the projection on the vortex axis
of the asymptote of the [ field [I( o )= *Z%, which resem-
bles the spin of a particle] and are described by two real
functions of the radial distance » from the vortex axis.

However, the most symmetric vortices are unstable in
SHe-A: their energies may be diminished by the spon-
taneous breaking of both axial and discrete symmetries.
For example, it is energetically more advantageous for the

singular doubly quantized N =0 vortex to transform into
the continuous ATC texture, in which parity P is—
inevitably—broken.

B. Broken space parity in continuous vortices:
symmetry versus topology

The symmetry requirement is often incompatible with
topological constraints. In particular, the space parity P
should be broken for definite topological classes of con-
tinuous vortex textures. Let us consider this with the ex-
amples of the ATC and MH textures.

Since I(r) transforms under the P; transformation as

P(r)=Il(-r1), (5.18)
the P, symmetry requires
Ir)=I(—1) . (5.19)

This equation is incompatible with an axisymmetric dis-

tribution for the / field, which would require
lL(r)==1,(-1). (5.20)

Equations (5.19) and (5.20) are only satisfied in the homo-
geneous case /||, with I} =0 (see Fig. 17).

y
X

FIG. 17. Illustration of the transformation properties of /(r) under the different discrete parity changes discussed in the text. Both /
and r may be changed under the symmetry operations (here the radius vector r is chosen along the x axis); for example, the rotation
O, (rotation by the angle 7 around the y axis) transforms r— —r. [l is chosen here in the (x,z) plane.]
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Therefore, in nonsingular axisymmetric vortices (ATC
and MH) with inhomogeneous [ fields, which are energeti-
cally favored over singular vortices in the same class
N =0, space parity is spontaneously broken. There exists
an even more general law, valid also for nonaxisymmetric
continuous textures: in continuous vortices with odd to-
pological charge 7, in Eq. (4.16a), the space parity P is
broken. According to Eq. (5.18), the I vector in the P;-
symmetric texture assumes each value twice (or an even
number of times): in the point ry and in the diametrically
opposite point —ry. This is in contradiction with the con-
dition of odd topological charge 7, [Eq. (4.16a)], which
shows that the I vector covers the unit sphere 7, times
and therefore assurnes each value an odd number of times
for the ATC texture and covers a half-sphere for the MH
texture. Thus parity in nonsingular textures is broken
solely due to topological reasons.
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As a consequence of the spontaneously broken symme-
try P;, the vortex texture is twofold degenerate. For ex-
ample, there are two different states (see Fig. 18) with the
same energy for the ATC vortex having m =—2 and
with I( 0 ) =2

1=Zsinn(r)+Fcosn(r),
(5.21)

# . ~
V== [1+sinn(r)]d ,

where 7( o )=m/2 and 7(0)= —m/2. These states are
mapped onto each other through the P; transformation
[see Eq. (5.18)].

It is important that the symmetry P, may be broken in
two different ways, depending on which discrete symme-
try in Eq. (5.6) is still retained, P, or Ps; the correspond-
ing vortices are denoted by v and w (Salomaa and Volo-

)
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FIG. 18. Schematic illustration of the continuous ATC vortex in the two possible degenerate v states, v* and v, in (a) and (b),
respectively. Arrows indicate the I vector. Above, view from the top; below, side view. These two degenerate states are mapped into

each other through a parity transformation.
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vik, 1983b; Seppala, Hakonen, Krusius, Ohmi, Salomaa,
Simola, and Volovik, 1984). The ATC vortex in Eq.
(5.21) is the v vortex, since the combined symmetry P, is
conserved in this case. The axisymmetric nonsingular w
vortex, with m = —2 and with /(o0 ) =2, displays a twist-
ed I texture with the symmetry P; (see Fig. 19):

I=?sinn(r)i$cosv7(r) ,
(5.22)

# . ~
Vi=—7 [1+siny(r)]d .

This vortex has twofold degeneracy as well; the two states
also transform into each other through space inversion
P,.

Moreover, it is possible that all the discrete symmetries
in Eq. (5.6) are simultaneously broken, due to energy con-
siderations. The corresponding vortex is denoted as the
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uvw vortex (the u vortex, the P, symmetric vortex with
broken symmetries P, and P;, is impossible among the
continuous vortices with m = —2 and therefore with odd
m;= —1). The corresponding axisymmetric ATC texture
in the uvw vortex is

T=2%sinn(r)+cosn(r)[ $cosalr)+7 sina(r)] ,
(5.23)

i . A~
V= — Mr[1+s1nn(r)]¢ .

This vortex has fourfold degeneracy. The four states are
obtained from each other through the application of the
elements P,, P,, and P;, which form the group Z, X Z,.
Due to different spontaneously broken symmetries, the
v and w vortices also display distinct physical
properties—to be discussed in Sec. V.D—while the wvw
vortex shares properties of both the v and w vortices. In
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FIG. 19. The continuous ATC vortex in the two possible w states, w* and w ~, in (a) and (b), respectively, which are mutually degen-

erate.
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terms of the magnetic classes, the axisymmetric v, w, and
uvw vortices with broken parity belong to the classes
C.,(C,), D (C.), and C, respectively. The axisym-
metric u vortex corresponds to the class C .

and tangential [Eq. 4.4e)] (p =1, m =0, l=$) disgyra-
tions. Let us also include a nonaxisymmetric pure phase
vortex (p =0, m =1) with I=d=X, for the sake of the
following argument, and compare their respective energies

[Eq. (3.9)] in the region £; <# <R, where R is an external

cutoff radius (the radius of the container or the intervor-
C. Broken axisymmetry in the *He- A vortices tex distance), which naturally serves as the upper logarith-
. mic cutoff for the divergent energy of the linear defects:

As distinct from parity, which is broken due to topolo-

- DYy 2L
gy, axisymmetry Q is spontaneously broken purely for E(p=0,ml=2)=m"psx , (5.242)
reasons of energetics. E(p=1,m,I=7%)=(m?%; +K, +p§p)K ; (5.24b)
E(p=1,ml=§=(m%l+Ks+pll)x, (5.24¢)
1. Singular vortices with broken axisymmetry P ¢ . Ps 3T P
E(p=0,m,I1=%)=5mpll+pL ), (5.24d)
Let us first consider the energy of the singular vortices her
in the class N =1 in the absence of an applied magnetic where
field and outside the soft-core region, r > &y, i.e., in the 11 # R
dipole-locked region. The best candidates for the vortex =S5\ M lng : (5.24¢)

with minimal energy among vortices possessing axisym-
metry are the pure-phase vortex [Eq. (4.4a)] (p =0,
m =1) and the radial [Eq. (4.4d)] (p=1, m =0, I=F)

Near T,, where the parameters involved in Egs. (5.24) are
given by Eq. (3.13), the ratios between these energies are

E(p=0,m=1,1=32):E(p=1,m =0,l=F):E(p =1,m =0,]=§):E(p =0,m =1,l=8)=2:3:3:2 . (5.25)

Thus, although the pure phase vortex with /=2, m =1 has the lowest energy among the axisymmetric vortices in the
topological class N =1, it is unstable towards the formation of a nonaxisymmetric vortex with /=% (Volovik and
Mineev, 1977a). This is the result of the anisotropy of the superfluid density tensor p§> pll: superflow circulating
around the vortex line tends to lock the I vector into the plane of flow. A more accurate estimation of the vortex with
minimal energy in the class with topological charge N =1, which takes into account both that in the nonaxisymmetric
vortex I may deviate from the X direction and that the phase ® may deviate from ¢, gives 1.4 instead of the 5 in Eq.
(5.25) (Volovik and Hakonen, 1981).

Another logarithmic contribution to the vortex energy comes from the soft-core region, where the ratio between the en-
ergies of vortices deviates from Eq. (5.25). Inside the soft core, where it is energetically more advantageous to make the
d vector constant, the d field does not contribute to the energy of disgyrations, which makes them more profitable. . The
energies of the corresponding vortices in the soft-core region are given by Egs. (5.24)—without py—and with the change
In(R /§4)—1In(£,4/€). As a result, the ratios of the soft-core energies for the vortices near T, are as follows:

E(p=0,m=1,1=2):E(p =1,m =0,l=P):E(p =1,m =0,l =):E(p =0,m =1,I=8)=2:1:2:1.4 (5.26)

which gives preference to the radial disgyration.

Therefore the linear defect with minimal energy in the topological class N =1 has the form of a nonaxisymmetric vor-
tex outside the soft core and that of the axisymmetric radial disgyration well inside the dipole-locked soft core. (The
nonlogarithmic energy of the intermediate region, where the vortex continuously transforms into a disgyration, may be
neglected in the logarithmic approximation.) The broken axisymmetry thus tends to be restored inside the soft core.

2. Continuous vortices with broken axisymmetry

An axial magnetic field strengthens the nonaxisymmetry of singular vortices, because it also locks the d and I vectors
into the plane of flow in the region » >£;,&,5. In a magnetic field continuous vortices also become nonaxisymmetric
outside their soft cores, of size max(£,,£y), which they acquire in a magnetic field. Let us compare the energies of vor-
tices in the class N =0 with /L H outside the core: the Mermin-Ho textures (p =1,m = —1,I=7), (p =1,m =—1,l=¢)
and the ATC texture with broken axisymmetry outside the soft core. The logarithmic energies outside the soft-core re-
gion are given by Egs. (5.24) with §;—max(&,,&,5). The ratios of the corresponding energies are

Ep=1,m=L1=P)E(p=1,m=1,1=3):E(p =0,m =2,1=%)=4.5:3.5:6 . (5.27)

Rev. Mod. Phys., Vol. 59, No. 3, Part |, July 1987



562 M. M. Salomaa and G. E. Volovik:

Here the tangential MH texture is preferable. However,
when the vortex array is in a rotating container, one
should compare the vortex energies per quantum of circu-
lation, i.e., E(m)/m. For these energies, the correspond-
ing ratios are

4.5:3.5:3. (5.28)

Moreover, the MH texture has an additional logarithmic
energy inside the soft-core region, due to the stability of
disgyrations in high fields (see Sec. IV.C.5).

Therefore, among the nonsingular vortex textures in ro-
tating 3He-4, under a large enough magnetic field
(€, <<rq, where rq ~n,”'/? is the intervortex distance),
the nonsingular doubly quantized nonaxisymmetric vor-
tices are the most advantageous (at least close to T, since
far from 7T, parameters in the gradient energy may
change the ratio of the vortex energies; see Muzikar,
1979).

Thus there are iwo candidates for the vortex array in
rotating superfluid >He-4 in a large enough magnetic
field: a system of doubly quantized nonsingular vortices,
and a system of singly quantized vortices; both are non-
axisymmetric outside their soft cores. Vortices with a
half-integer quantum of circulation would have a large
bulk energy due to violation of the dipole constraint d||/,
and cannot therefore successfully compete with the others
in an open geometry (see, however, Sec. V.F).

The doubly quantized vortices have an energy twice as
large per unit quantum of circulation outside the soft
core, but the singly quantized vortices have an additional
logarithmic energy in the region outside the hard core.
Therefore only detailed calculations of the structure and
the energy of both textures may determine which one of
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Quantized vortices in superfluid *He

these vortices is preferable. Preliminary numerical calcu-
lations have shown that the singly quantized vortex has
slightly less energy per quantum of circulation than the
doubly quantized vortex if the angular velocity of rota-
tion, (, is less than ~3 rad/sec (Seppild and Volovik,
1983; Vulovic, Stein, and Fetter, 1984).

Let us next write down the simplest representations of a
nonaxisymmetric doubly quantized vortex in a large mag-
netic field (§,5 << &), a situation that occurs in the exper-
iments on rotating *He (Seppild, Hakonen, Krusius,
Ohbmi, Salomaa, Simola, and Volovik, 1984; see Fig. 20).

The P;-symmetric w vortex (magnetic class D) is

d=p, l=9sinn(r)*cosn(r)(X sing —Z cos¢) ,

vs=$%[1+sim7(r)] , (5.29)

(e, +iey)e®=e?[(—X sing +Z cosd)sinn(r)
+9 cosn(r)+i(Zsing +X cosd)] ,

where 1)(r <<&4)=—m/2, 7(r >&4)=m/2, and I{ 0 ) =5J.
The P,-symmetric v vortex (magnetic class C,,) is

d=p, I=ypsinn(r)tcosn(r)(Zsing—% cosé) ,

~ #i .
vy=¢ Mr[l—{—smn(r)] , (5.30)

(e;+iey)e’®=e[(—2% cos¢—Z sing)siny(7)
P cosn(r)+i(2 cosp —X sing)] ,

with the same asymptotics for 7(r) as those following Eq.
(5.29) above.

The lfield projection in the transverse plane has in-
teresting properties for both the v and the w vortices.
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FIG. 20. The calculated (a) continuous doubly quantized v vortex with symmetry P, and (b) continuous doubly quantized w vortex
with symmetry P;. Both have similar NMR signature, but have different focusing properties for ions, which thus in principle may
make it possible to distinguish between these structures (see Fig. 21). Arrows indicate the projection of the I vector into the (x,y)

plane. The radii of the displayed areas are ~5&,.
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(a)

FIG. 21. The continuous representation of the same I, field as
in Fig. 20 associated with 4m-vortex configurations, according
to Zotos and Maki (1984a). The arrows indicate the I, direc-
tion. (a) The radial-hyperbolic pair (v vortex); (b) the circular-
hyperbolic pair (w vortex). The lines of the [ field coincide with
the projection of ion trajectories into the cross-sectional plane of
the vortex. In (a), the lower “quark” in the v+ vortex is a
focusing center for ions, while the w¥ vortices, as well as the
v~ vortex (with opposite parity, or with opposite orientation of
1,), have no focusing centers. Note that the topology of the ion
trajectories is completely determined by the symmetry of the 47
vortices.

Rev.-Mod. Phys., Vol.-59, No. 3, Part |, July 1987

Since the I-vector field covers all the unit sphere, there are
two points in the vortex, r; and r,, where [ is strictly
parallel to the vortex axis: I(r;)=2% and I(r,)=—2. At
these points, the projection field I, has singularities with
the winding numbers m =1 and — 1. This resembles the
bound quark-antiquark pair in the instanton theory
(Fateev, Frolov, and Schwarz, 1979). These quarks are of
direct importance for NMR properties (see Sec. VLB), as
well as for the ion-vortex interaction (Maki and Zotos,
1984). The singularity with m = — 1 has a hyperbolic dis-
tribution of the I, field, while the singularity with
m = +1 has a radial distribution for the v vortex and a
circular distribution for the w vortex [see Fig. 21 (Zotos
and Maki, 1984a)].

Numerical calculations of the energy (3.9) give prefer-
ence to the w vortex [circular-hyperbolic pair of quarks;
Eq. (5.29)] over the v vortex [radial-hyperbolic pair; Eq.
(5.30)] (Seppald, Hakonen, Krusius, Ohmi, Salomaa,
Simola, and Volovik, 1984; Zotos and Maki, 1984a; Maki
and Zotos, 1985a).

3. Distortion of the vortex lattice

Due to the spontaneously broken axisymmetry of the
3He-A vortices, the vortex lattice becomes distorted
(Ohmi, 1984). If 9 is the direction of the I-vector field in
the bulk liquid outside the soft cores of the vortices, then
the hydrodynamic energy of the rotating liquid outside
the core is anisotropic: :

=30y, — Qx4 55 (v + Q)2 . (5.31)

However, a change in the length scale, different for the
different directions

- ~ = 1 ~ 1
X=Xp, Us=VUgP, Y=YP 5 VUsx =UgxP ’
1 11/4
s

py

restores the isotropy of the liquid in the distorted coordi-
nate frame:

F=3(pipy) (¥ —QxD? .

(5.32)
P =

(5.33)

The vortex lattice is symmetric in this frame, e.g., a
square or hexagonal lattice. Therefore, in the laboratory
frame, it is distorted, becoming a rectangular or rhombic
lattice, correspondingly, with the same area of the primi-
tive cell, but with the ratio of lengths obeying r§ /rh =p?
(see Fig. 22 for the hexagonal case).

D. Physical properties of vortices with broken parity

Spontaneous breaking of discrete symmetry in the soft
core of the *He-A vortices results in the appearance of
new physical properties for these vortices (Volovik,
1984a): there arise, depending on the type of vortex, v or
w, a spontaneous electric polarization D, along the vortex
axis, an axial supercurrent j,, and an axial spin current j?
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(the axial spin current with z projection on the vortex 1. Axial superflow in the w vortex
axis).

These three physical quantities have the following If there is P; or P, symmetry in the vortex, then, ac-
transformation properties under the symmetry operations cording to Eq. (5.34a), the net supercurrent j, through the
P, P,, and P, in Eq. (5.6): cross section of the vortex-core region is zero. Therefore

a nonzero spontaneous axial superflow in the core of the
Pije=—jz Prj;=—Jzs P3jz=J; (5.34a)  vortex may arise only if the P; and P, symmetries are

broken simultaneously. This is just the case for the w
P\D,=-D,, P,D,=D,, P;D,=—D,, (5.34b)  vortex. For example, the total supercurrent through the

cross section of the dipole-unlocked soft core of the w
Pij;=—Jj; Pyj;=j;, P3j;=—j;. (5.34c)  vortex [Eq. (5.29)] is

(a)

FIG. 22. (a) The periodic hexagonal lattice of axisymmetric vortices. (b) The rhombic lattice (distorted hexagonal lattice), which is
energetically favored for a lattice of nonaxisymmetric vortices, such as those in Fig. 20.. One vortex-lattice cell is shaded in each pic-
ture, and bordered by the dashed lines.
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. . h o . .
Jz= f]-ds=i—2—ﬁ fo [Cocos’n +(pt —pl)cosn siny(1+siny)]dr .

The sense (+) of the supercurrent is arbitrary, thus re-
flecting the twofold degeneracy due to the spontaneously
broken discrete symmetry. Note that at 7 =0, where
pll=pt=p, only the orbital current [Eq. (3.14b)] contri-
butes to the core supercurrent. Since the C, term in the
orbital current at T =0 arises from the chiral anomaly
(Volovik, 1985, 1986a; Balatsky, Volovik, and Konysheyv,
1986; Combescot and Dombre, 1986), a measurement of
the core supercurrent may experimentally prove the ex-
istence of the anomalous supercurrent in *He- 4 (see also
Sec. VIIL.D.2).

In an analogous way, the v vortex has both a spontane-
ous electric polarization and a spin supercurrent along the
vortex axis. For the v vortex [Eq. (5.30)], the spin super-
current is zero, because the spin vector d is kept constant
in this trial function. However, there are no symmetry
arguments that fix d. Therefore, in the real v vortex,
there occurs a net spin supercurrent through the cross sec-
tion of the quantized vortex line:

.z . h
Jz= f]:p'ds“’_ﬁpspgd . (5.36)

2. Spontaneous electric polarization in the v vortex

The electric polarization in superfluid *He arises be-
cause of the so-called flexoelectric effect, which is well
known for ordinary (nonsuperfluid) liquid crystals (de
Gennes, 1975). This polarization is caused by the bending
of the anisotropy axis, which produces a small deforma-
tion of the atomic He shells (Volovik, 1984a). By analo-
gy with a nematic liquid crystal, the electric polarization
P(r) may be written

P(r)=pB1(V-1)+B(1-V)I , (5.37)

where the flexoelectric parameters f3; are estimated to be
2
T
1—— | Vv,
T

c

Bi—B;~10""—10""

(5.38)

-1 T
Bi-+Br~10 [1 .

c

V.

Symmetry also allows for terms of the types I X (v, —v,)
and I X Av; in the polarization expression (5.37).

Integrating the electric polarization density P(r) in Eq.
(5.37) over the cross section of the twofold-degenerate
doubly quantized v vortex [Eq. (5.30)], we obtain the di-
pole moment D, per unit length of the vortex line as

© 9
D,=+7(B,—p,) fo r—é—iLcoszﬂr]dr . (5.39)

This quantity is proportional to the soft-core radius of the
vortex:

‘ Dz ~(B1_32)rcore: rcore=max(§dv§2H) . (5.40)
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(5.35)

The twofold degeneracy of the v vortex makes possible
topologically stable kinks, or point solitons, separating the
two parts of the vortex line with opposite electric polari-
zations. Such a point on the vortex line is associated with
an electric charge e*, of the order of

e*~D,~107 % . (5.41)

In the above, e denotes the elementary charge of an elec-
tron, and 7., is chosen to be of the order of the dipole
length £;~107% cm. One half of this amount of electric
charge ought to be concentrated on the termination point
of the vortex line at the surface of the container.

If one neglects intervortex interactions, the signs of
these charges at the surface are random due to the disor-
der in the direction of the vortex polarization D,. Thus
the bulk liquid exhibits no features of the broken symine-
try.

Note also that, besides the net electric polarization
along the core in the v vortex, both v and w vortices have
a radial polarization which decreases with distance from
the vortex axis. This means that the soft core may also
have a net electric charge with linear density ~(3;+f3,).
Therefore the processes of creation and annihilation of
vortices on the sample boundaries are likely to be accom-
panied by electric currents.

3. Ordering of the “Ising” variables

The interactions of the vortices may produce a “fer-
romagnetic” ordering of the signs of D, in the v vortices,
and of the signs of j, in the w vortices. Let us illustrate
this with the example of w vortices. We show that a bulk
superflow must spontaneously arise due to the interaction
with currents in the vortex cores. The local axial super-
currents of the vortices, j,, == |j, |, where a counts the
vortices in a vortex array of rotating 3He- 4, interact with
the homogeneous external v, field along the rotation axis.
As a result, the energy density of homogeneous bulk su-
perflow along the axis of the container is given by

—;'pgv_vszz — Uz zfza . (5.42)
a

Here we take into account that the I vector outside the
soft cores of vortices is locked in the (X,§) plane; there-
fore the transverse superfluid density p; is essential for an
axial superflow. The sum over a in Eq. (5.42) is for vor-
tices per unit area. If the unit area contains n_ vortices
with positive j, and n_ vortices with negative j,, their
sum total being equal to n,=n_ +n_, then the net ener-

gy of the superflow is
2PV — | js |vg(n—n_). (5.43)

The minimum of this energy corresponds either to
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n_=0, n,=n,, vg=n,|j,|/p; (5.44a)

or to

n,=0, n_=n,, vgy=—n,l|j,|/p;s . (5.44b)

Thus, it is more advantageous for the w vortices to be
orientated uniformly. Due to this ordering, a bulk super-
current pﬁvsz appears, which on the average compensates
the coherent axial supercurrents in the soft cores of the w
vortices (see Fig. 23). The twofold degeneracy of the su-
perflow [Eq. (5.44)] reflects the spontaneous broken sym-
metry in the bulk liquid.

An analogous indirect interaction of the v vortices
through the bulk spin supercurrent is expected to result in
the spontaneous uniform “ferromagnetic” ordering of the
local spin supercurrents in the v vortices. Simultaneously,
the v vortices become electrically polarized: there occurs
a net surface density of electric charge e*n,, which re-
sults in a spontaneous electric field in the rotating bulk
liquid 3He, given by

4me*n, ~1072—-10"! uV/cm . (5.45)

4. Helix in the w-vortex array

We have thus far discussed consequences of the break-
ing of discrete symmetry only. The simultaneous break-
ing of both discrete and axisymmetry should produce
another interesting effect for the w vortices in *He- 4.
The I field in the bulk superfluid outside the soft vortex
core is homogeneous and is oriented in an arbitrary direc-

l
>

l
L

Frv_v_v

|
—_l €
FIG. 23. Schematic illustration of superflow in w vortices. The
interaction between the countersuperflow fields in the bulk
liquid serve to orient ferromagnetically directions of superflow
inside the cores of w vortices. These directions act like “Ising”
variables. Such a ferromagnetic ordering of the Ising variables
(with all the vortices of the same type, w* or w~) may be ener-
getically favored over the state with disordered supercurrents-or
with alternating w* and w ™ vortices (antiferromagnetic order-
ing).

Ty E,
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tion in the (%,9) plane. This continuous degeneracy in
the plane reflects the spontaneously broken axisymmetry
of the 4-phase vortices. ’

Due to the broken space parity in the vortices, this
homogeneous [ field may transform to an / texture, which
resembles a cholesteric spiral (de Gennes, 1975),

Iy =X singz +J cosqz , (5.46)

with 1(VX1)|pux=¢- A nonzero inverse period of the
helix g appears due to the interaction of the bulk
1 (VX 1)pu field with the local 1-(V X1),cq field in the
cores of the w vortices:

2

F~ K> (1(V X1))pu

x> fsa (1-(V X I))iocadS - (5.47)

For the simplest w vortex [Eq. (5.29)], integration over
the cross section S, of the soft core of vortex a and a
summation over the “positive” and “negative” vortices
with number densities n_ and n _, respectively, yields for
the pitch ¢

g=—3 fs (1-(V X 1))ocadS

=—(n,—n_ )T fo‘” sin2n dr . (5.48)

2

In parallel with the case of the interaction of vortices
with an external superflow, the interaction (5.47) of the
external (I+(V X))k with the internal (I:(V X1))gca Of
the vortex cores favors “ferromagnetic” ordering with
n, =0, n_=n,, or with n_=0, n,=n,. Then the
period, or “pitch,” of the cholesteric spiral 27g ~! is of
the order of (n,7ore) ™ '

The helix can only appear for the w vortex, which fol-
lows from the transformation properties of g under the
symmetry operations in Eq. (5.6):

qu:“"q, Pyg=—q, P3qg=q. (5.49)

A nonzero g appears only if both the P; and P, sym-
metries are broken simultaneously, i.e., in the w vortex.
(A bulk superflow along ! may also arise, since I-v, has
the same symmetry properties as g.) This property of the
w-vortex array may be used for experimental identifica-
tion with ultrasonic techniques, since the ultrasound ab-
sorption is very sensitive to the direction of the [ field.
The physical properties of the 4- and B-phase vortices
with broken symmetry are summarized in Table II.

Superflow along the w-vortex axis could also be ob-
served with ultrasound applied along the vortex axis: for
a randomly disordered superflow array, there should
occur a Doppler splitting of the ultrasound absorption,
while in the case of fully aligned superflow, only a single
Doppler-shifted ultrasound absorption spectrum would be
observed.

The “ferromagnetic” ordering of the w vortices could
also change the spectrum of the Kelvin waves in the vor-
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TABLE II. Broken-symmetry properties displayed by vortices with discrete v and w symmetries in the

superfluid 4 and B phases of *He.

v vortex

w vortex

Results of
broken- parity

net electric polarization
of the core and spin

Net superflow in
the vortex core

supercurrent along
the vortex axis

Linear terms in
gradient energy
for polarized
vortices with
broken parity

Results of the
broken axisymmetry
in the *He-B
vortex core

©-n)(V-n) in ‘He-B

(n-VXn) in *He-B
(1-Vx1) and (1-v,)
in *He-4

Anisotropy vector (or director)
b in the transverse plane
Twist (spiral) of b
along vortex axis

with the pitch
Y
g=b-|2X az

tex array (Sonin and Fomin, 1985); these waves are oscil-
lations in the vortex array with wave vector p along the
vortex axis z. The broken P; symmetry of the w vortex
array allows for a term linear in p in the spectrum:

co=29+vsp2+a%qp , (5.50)
where v, is the rigidity of the vortex line, g is given by
Eq. (5.48), and « is a factor of order unity.

In the absence of an external magnetic field, when the
core size of a nonsingular vortex coincides with the size of
the primitive cell, rq~n, %, the parameter
g ~n,rq~n)’? is proportional to V. Thus, for small
Q, the frequency of the Kelvin wave increases at fixed p
with Q as V'Q. An observation of such behavior would
support the occurrence of the w vortices in rotating super-
fluid 3He-4. However, dissipation effects [not included
in Eq. (5.50)] may mask the phenomenon.

E. Symmetry classification of singular vortices
with two cores

While the continuous vortices in 3He-4 may exist in
two different states, v and w, the classification of singular
vortices in the A phase is more complicated due to the
two length scales (£ and &p) in the vortex-core structure.
As a result, the discrete and axial symmetries of the maxi-
mally symmetric singular vortex in Eq. (5.17) may be bro-
ken in the hard core and in the soft core of the singular
vortices independently, and in a different manner: this
produces a rich spectrum of possible vortex structures
(Salomaa and Volovik, 1985b).

The discrete symmetry classification of vortices does
not depend on the continuous symmetry in an essential
way. Therefore, for the sake of simplicity and clarity, we
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here confine ourselves to axisymmetric vortices. It is also
likely that axisymmetry is indeed realized in the parallel-
plate geometry, where the reorientation of the I vector by
superflow is prevented by the boundary conditions, which
lock I normal to the plates. In this geometry, with the
plates normal to the axis of rotatioq\ Q, the I vector may
be orientated in two directions: I-Ql=+1. As we have
discussed, the vortex structure essentially depends on this
“isospin” quantum number (see Sec. V.A.4), which
changes sign if the sense of rotation is reversed.

According to the general classification, the breaking of
discrete symmetry in Eq. (5.6) may give rise to the u, v,
or w vortices with the respective symmetries P,, P,, or
P;, and to the wvw vortex with no discrete symmetry.
However, this classification is very rough for the 4-phase
vortices with two different cores and is only rigorous for
the continuous vortex with just one core, the soft core,
where the A-phase state is not disrupted.

1. Vortex substates

In order to facilitate a more refined classification of the
vortices with two types of cores, one needs to specify the
region where the symmetry breaking takes place. There
are four important regions to consider: Region I of the
dipole-locked asymptotics, r >>£p, which contributes a
logarithmic term to the vortex energy; the texture in this

- region has the maximal discrete symmetry, Eq. (5.6),

which we denote as the o symmetry; Region II of the soft
core, r~&p; Region III of the intermediate dipole-
unlocked asymptotics, £p >>r >>E&gy, which also gives a
logarithmic contribution to the vortex energy; and finally
Region 1V of the hard core, r~£gy.

The discrete symmetry o, which is broken in the soft
core, may in principle be restored in Region III, since this
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region has a large logarithmic contribution to the vortex
energy and may form a vortex state independently of the
other regions. (For example, in the case of the non-
axisymmetric vortices, axisymmetry may tend to be re-
stored in this region; see Sec. V.C.1.) Then the restored
discrete symmetry may again be broken in Region IV, but
in a different way.

Therefore there exists a large variety of distinct vortex
substates, which we specify by a code of three letters, cor-
responding to the symmetries in the different Regions II,
I1I, and IV, respectively. For example, the least sym-
metric uvw vortex state may be in the substate v —o —w
(which has the symmetry P, in the soft core, the total
symmetry o in Region III, and symmetry P; in the hard
core) or in the substates w —o —v, v —v —uvw, etc. The
P,-symmetric v-vortex state may thus contain four dif-
ferent substates: v—v—v, v—o0 —0, vV—0 —v, and
0 —o0 —v, and the P;-symmetric state w also has four
substates: w—w—w, w-—o0—0, w—0—w, and
0—0—w.

2. Extended symmetry of the m =1 vortex

However, the most interesting classification is found
for vortices with the quantum number n =0, i.e., the
one-quantum vortex (with m =—1, if I- Q=1, and with

m=1, if 1-0=—1). Since S,+L,=0 for thlS vortex
class [see Egs. (5.2) and (5.15)], new elements of discrete
symmetry may emerge in the intermediate asymptotics of
Region III. Besides the elements of o symmetry in Eq.
(5.6), there may also occur new elements due to different
combinations of the three basic transformations T, P, and
U,, where by U, we denote the element 0,2’1), (here again
we do not consider a gauge transformation U, which
does not influence any of the observable variables: I,v,,
electric polarization, etc.). Time-inversion symmetry is
broken in the A phase because 7= —I. Therefore T
may enter in a combined symmetry only.

Hence there exist three different sets of possible
discrete symmetries for the asymptotics of linear defects
in the A phase, which we denote the 0y, 0,, and 03 sym-
metries:

P, TU,, PTU,, (5.51a)
U, PT, PTU,, (5.51b)
PU,, TU,, PT. (5.51¢)

The o, symmetry in Eq. (5.51a) is just the o symmetry
(5.6), which characterizes the vortices in the 4 and B
phases, while the symmetries 0, in Eq. (5.51b) and o3 in
Eq. (5.51c¢) characterize a radial disgyration (/ =7, vy=0)
and a tangential disgyration (/= ¢ v, =0), respectively.
Both display continuous symmetry S,+L,=0 and may
thus serve as the intermediate asymptotics in Region III
of the vortex with » =0.

We denote the most symmetric defect with the asymp-
totics of a radial disgyration as the o, defect and that
with the asymptotics of a tangential disgyration as the 03
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defect. Then, by x,y,z we denote the defect structures ob-
tained by breaking the symmetries 0, or o3, i.e., the U,
symmetric, the TP symmetric, and the PU, symmetric
linear defects, respectively.

These new symmetries, Eqs. (5.51b) and (5.51c¢), give
two adgitional substates for the v-vortex state with m =1
and I-Q=—1, v—0,—0, and v —0,—v; two substates
for the w vortex, w —o03—03 and w —o3; —w; and many
additional wvw vortices, v —0, —X, W —03 —2, etc.

For example, the axisymmetric m =1 vortex with
I-Q= —1 (Fetter, Sauls, and Stein, 1983) is a pure phase
vortex in Region I, which transforms into a radial dis-
gyration in Region III, and then to the polar phase (Muzi-
kar, 1978) in Region IV. Within our classification, it is
the substate v —o0,—o0, of the v vortex. In Regions III
and IV, the constraints imposed by the symmetry o, in

Eq. (5.51) [U,Coy=(—1)"Co_,=C,, and TPU,Cy,
=Cg,=Cy,] require the following form for this
U —0,—0, VOrtex:

Agi=A48, S A\/Coje ~ " =A ,2,(as; +ibd;) , (5.52)

where a(r) and b(r) are real functions, both tending to
unity for r >>£gy, in order to form a radial disgyration.
While the singularity in ¢ at the vortex axis forces the
prefactor b (r) in Eq. (5.52) to tend to zero for r =0, the
coefficient a(r) need not vanish. Therefore the
v —0,—0, vortex always contains the polar phase on its
axis (with nonzero agy, see Table I). Other superfluid
phases may appear if the continuous symmetries w1th
generators S and L are broken in the hard core.

F. Half-quantum vortices
in the parallel-plate geometry

1. Isolated half-quantum vortices

In an open geometry, the vortices with m =+ % in Eq.
(4.9) always possess a large dipole energy (see Sec. V.C.1)
and are, therefore, less advantageous than the vortices
having m =1,2. This vortex with m =+ is the source of
a planar soliton with its edge on the vortex (see Fig. 9); it
expends a dipole energy proportional to the volume of the
soliton. Hence, in order to facilitate the existence of vor-
tices with m = %, the dipole energy must be neutralized.

There is an effective way of getting free of the dipole
energy: to use a parallel-plate geometry with the distance
ro <&, between the plates and with a magnetic field
H >>25 G, which is applied parallel with the normal v to
the plates (Volovik and Salomaa, 1985a). In this case [ is
always parallel to v (axis 2), and dlv: d=X cosa+J sina
(see Fig. 24). Therefore, although the dipole energy
possesses a maximum value, it is a constant independent
of the type of the vortex. If ©Q||v and ® and d depend
only on the coordinates transverse to I and v, the free-
energy functional (3.9) for the rotating liquid reduces to
the form
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FIG. 24. A parallel-plate geometry, with spacing 7o < &4, serves
to freeze the I vector (arrows) in the A4 phase perpendicular to
the walls. In the presence of an external magnetic field H, ap-
plied parallel to the normal of the plates, the d vector (lines
without arrowhead) is in the plane of the plates. Singular vor-
tices are expected to occur in rotating superfluid *He- 4 in this
geometry; at a lower temperature, T ~0.7T,, half-quantum vor-
tices have been estimated to be energetically favored.

2 2

F= Py +pep( Vi)

qu>——ﬁj‘£ﬂ><r

114
2 | M

(5.53)

Let us compare the energies E per quantum of circula-
tion for the different types of vortices, with m =%, 1,
and 2, in the logarithmic approximation. The half-
quantum vortex, accompanied with a half-quantum dis-
clination, has the energy
2 R
In £’

where R =rg ~n,,“1/ 2 is the intervortex distance.

The axisymmetric singly quantized vortex in this
geometry is the pure phase vortex with m =1 at distances
7 >rqy from the vortex axis; at » <r this is a radial dis-
gyration. Thus its energy equals

7
M

#i

M (5.54)

Elm=1)/4=+(p} +pl)

1 R Yo
In—+KIn—
Ps ro R £
Finally, the doubly quantized vortex—the axisym-
metric ATC texture which is a pure m =2 vortex outside
the soft core of size ry—has the following energy per unit
quantum of circulation:

Em=1)=—

) (5.55)

2
#i

M

1
2

lnB— .
ro

E(m =2)/2=2p; (5.56)

For temperatures near T,, where p; =ngp:4K 1, and
choosing parameters rq~10"2 cm, ro~10"*% cm, and
EGL~10"° cm, we find in the logarithmic approximation

Em=+)/vE(m=1:E(m=2)/2=1:2:% . (5.57)
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Therefore vortices with m =+ may compete with the
m =1 vortices, although in this approximation the latter
are energetically favored. However, the energy of the
m =+ vortices can be lowered because (i) the nonloga-
rithmic corrections to the energies of the vortices with
m =1 and 2, which result from the nonuniform distribu-

“tion of I, are essential; and (ii) at T~0.7T,, the superfluid

density anisotropy ratio pip/pi decreases down to ~0.5,
resulting in an essential decrease in the energy of the
m =+ vortices with lowering temperature.

While the signs of the circulation quanta m for the vor-
tices should be equal in the vortex array [the sign of m is
defined by the sign of the “magnetic” field Q@ in Eq.
(5.53)], the signs of the index p=++ for the d-vector
field in a half-quantum vortex array are not fixed, since
there is no corresponding “magnetic” field acting on the
angle a as rotations act on ®. Therefore, in order to
avoid the divergence of the free energy (5.53) per unit
volume, there should exist no surplus of vortices with a
given “charge” p. Hence the system of disclinations
resembles a two-dimensional plasma of electric charges
p==++, which interact logarithmically; the electroneu-
trality condition should be fulfilled.

2. Vortex molecule with soliton glue

An interesting situation occurs in a magnetic field that
is slightly tilted, by the angle 6 << 1, with respect to the
rotation axis Q||v||Z:

H=H(Z cosf+X sinf) . (5.58)

The d vector is perpendicular to H, and it therefore as-
sumes the value

d=(Zsinf —X cosf)cosa +¥ sina . (5.59)
The energy F (5.53) now equals ' »
2 2
1| 4 1 M
F=— | M
) M Ps Vl(b P Q Xr
+pel (V@) + £ %sin*0 sin’a] (5.60)
with
ol
S|
AL
Psp

In comparison with Eq. (5.53), Eq. (5.60) has an addition-
al dipole term, which tends to make the angle a equal to 0
or 7. This new term is associated with the characteristic
length £;=£,, /sinf. Provided that this length is larger
than rq, i.e., if 6 <<&4, /rq, we may neglect the dipole in-
teraction, and the system of m = % vortices with alternat-
ing p, which should exist at T~0.7T,, is not distorted.
At larger values of 9, there appears a planar soliton be-
tween adjacent pairs of vortices with opposite p, i.e., a
domain wall of width ~&,, where a changes from O to
(see Fig. 25). This produces another example of confine-
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FIG. 25. (a) Calculated texture of the magnetic anisotropy vector d around a pair of vortices with one-half circulation quantum.
This texture shows disclinations with half-integer Frank indices p = % and — % in *He- 4 confined between parallel plates (the plane
of the figure is parallel with the plates). ® and ® represent intersections of the vortex lines—each with m =%, but with p corre-
spondingly + % and — —;——with the plane of the figure. The external magnetic field is slightly tilted by the angle 8 with respect to the

normal to the plates; as a result, there appears a topological soliton between neighboring vortices possessing the opposite signs i»;—.

Outside the solitons, the d vector is directed along the projection of the magnetic field onto the plane. This yields the minimum of the
spin-orbital (dipole) energy (@=0 or a=m). The half-quantum vortex separation R =1.1Z, was used for this figure, where
Ep=Ep/sind. Each of the half-quantum vortices has the same circulation quantum m =%, so that at a large distance an isolated
half-quantum vortex molecule appears like a singly quantized vortex line, with m =1. (b) The computed energy E, of the topologi-
cal d soliton in (a) as a function of R (in units of £,). Here the hydrodynamical energy E,,; and the total pair energy E,,; were cal-
culated using pip/p§=0.7. (c) The calculated equilibrium half-quantum pair size R, [in units of £;=£,, /sin(6)] as a function of
the temperature-dependent ratio between the perpendicular components of the superfluid spin density and the superfluid density ten-
sors. (d) The distribution of the magnetic anisotropy field d in the periodic structure which should arise under rotation (Salomaa and
Volovik, 1985c¢).
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ment in *He: the two defects cannot be separated, because
of their energy of attraction. The energy of the soliton
coupling them is proportional to the intervortex distance
R.

This texture (two half-quantum vortices interconnected
by a soliton) was calculated numerically (Salomaa and
Volovik, 1985c). First the part of F depending on « in
Eq. (5.60) was minimized for a given distance R between
the vortices in the vortex molecule; a resulting texture is
displayed in Fig. 25(a). The distance R is determined by
the competition of the attraction between the vortices due
to the soliton string—this energy is proportional to R—
and of the repulsion of the vortex pair due to the positive
logarithmic interaction of the vortices with equal circula-
tion quanta m. The equilibrium vortex-molecule size is
presented in Fig. 25(c) as a function of the temperature-
dependent anisotropy parameter pip/psl.

3. Nonconservation of quantum numbers
with half-quantum vortices

The half-quantum vortices have an interesting effect on

the collective modes in >He- 4. These boson excitations of

the He- A vacuum are characterized by specific quantum
numbers, among which there is the pair spin projection S,
on the spin quantization axis d. Since d reverses on cir-
cling the vortex axis, the same occurs with the quantum
number S,: When the boson adiabatically encircles the
vortex line, its charge S, changes to the opposite. This is
analogous to the change of parity or electric charge in the
grand unified theories when an elementary particle circles
a hypothetical singular line (Schwarz, 1982).

In both of these cases, *He- A4 and grand unified theory
(as well as in the case of nematic liquid crystals), the ex-
istence of these singular lines is a consequence of the
spontaneous breaking of the continuous symmetry G,
with the conservation of a discrete subgroup of this
group. In 3He- A, the continuous group SOY X U(1) is
broken, while the 3He-4 vacuum is invariant under a
discrete combined symmetry transformation, which
changes the sign of d. As a result, d may be continuously
transformed into —d on moving along the non-singly-
connected region (see Fig. 8).

Analogously, in the grand unified theory, some large
continuous group, e.g., SO(20), may be broken, while the
vacuum retains invariance under its discrete subgroup,
which transforms left particles into right ones. In this
case, one may continuously approach the world on the
other side of a mirror without breaking the mirror; it is
enough just to encircle the line. ’

The topological charge of a point singularity
(hedgehog) in the d field in *He-A4 changes sign after
encircling the half-quantum vortex (Volovik and Mineev,
1977a). Thus, in the presence of a half-quantum vortex
one may obtain the net (e.g., positive) charge from the
vacuum by the creation of pairs of hedgehogs (or bosons)
with opposite charges and by moving the negative charges
around the vortex line.
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4. The Aharonov-Bohm effect

Another effect of these novel singular lines on the col-
lective modes is an analog of the Aharonov-Bohm effect,
which results from the half-integer circulation (Khazan,
1985). Let us consider this effect with an example of one
of the different collective modes in *He- A, namely, the
“clapping mode” (for a review of collective modes in su-
perfluid 3He, see Wolfle, 1977). In this mode, the
L™= _1 component of the order parameter is oscillating
on the background of the L™=1 vacuum in the 4 phase:

Aa,-—-—AA[E\a(J’c\,—%—lﬁ,)-f-lp(fl—lj’\,)] . (5'61)

Here ¢ is a complex amplitude of the state with
L;™=—1, which is zero in equilibrium. In a parallel-
plate geometry, in the presence of a vortex with m quanta
of circulation, ¥ obeys the wave equation (Khazan, 1985)

2
Y+ (wi+ U . (5.62)

ot? i

2
¥ _ [z_A

Here @y and ¢ are the energy gap and the velocity of this
mode.

Besides the scalar potential U, the m-quantum vortex
also produces a vector potential A in Eq. (5.62) for this
mode, due to the superflow: '

A=v¢=%$. (5.63)
This corresponds to the motion of a charged particle in a
magnetic field, which is concentrated inside the vortex
core,

H=VX A=2rm28,(r) , (5.64)

i.e., the situation is totally analogous to the Aharonov-
Bohm effect (Aharonov and Bohm, 1959).

The particle (here the collective mode) with wave num-
ber g is scattered on this magnetic field tube (half-
quantum vortex) with the differential cross section

_ sin?rm do
2mq  sin%(6/2)

This additional scattering is absent for the vortices with
an integer number m of circulation quanta. Therefore an
increased “Aharonov-Bohm” width of the clapping mode
due to rotation would indicate the existence of the half-
quantum vortices in a sample of superfluid >He- 4, rotat-
ing in the parallel-plate geometry (the NMR properties of
the half-quantum vortices are discussed in Sec. VI.C).

do

(5.65)

G. Possible phase transitions in rotating 3He- A

Due to the large variety of different topological and
symmetry classes of vortices and vortex textures in *He-
A, a large number of phase transitions between these con-
figurations are possible in a rotating container. They may
be divided into several groups as follows.
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(i) Transitions between vortices from different topologi-
cal classes. Examples include the singular singly quan-
tized vortex array<>continuous doubly quantized vortex
array transition, with a change in the topological charge
N; the low-field ATC vortex<>high-field ATC vortex
transition, with a change of the topological charge iy
[Eq. (4.19)], etc.

(ii) Transitions with a change in the symmetry of the
isolated vortex. Examples include v<>w transitions, axial-
ly symmetric«>nonaxisymmetric transitions, either in the
inner or outer cores, or both, etc.

(iii) A change in the symmetry of the vortex array,
which takes place at sufficiently high angular velocities of
rotation. Examples include a change .in the circulation
quantum per primitive vortex-lattice cell, a transition into
a helical texture, etc.

(iv) Successive transitions in the vortex texture in a
slowly rotating vessel, when the continuous increase in
angular velocity results in a step-by-step change of the to-
tal circulation number in the vessel (see, for example,
Soda and Shiwa, 1978; Williams and Fetter, 1979).

VI. NMR ON VORTICES IN 3He- A
A. Spin waves in 3He- A

1. Leggett equations for spin dynamics

The NMR technique has as yet provided the most ver-
satile tool for extracting information on vortex structures
in the superfluid 4 and B phases of liquid *He. In the
NMR experiments on these ordered liquid magnets, col-
lective magnetic modes, or spin waves, are excited by an
external rf magnetic field. The spectrum of spin waves
depends on the orientation of the order parameter and its
distribution in space in an essential manner; this makes
possible the detection of different textures—including the
vortex textures, in particular.

Propagating spin waves in He-A4 are coupled oscilla-
tions of the spin density S with the spin part d of the or-
der parameter. The dynamics of these variables are
governed by the NMR equations derived by Leggett.
These may also be obtained from the routine scheme of
Poisson brackets for the spin-rotation group SOY,
relevant for the spin dynamics (the spin density S is the
generator of this group):

{Sa(1),Sp(r')} =e4p,S,(r)8(r—1') (6.1a)
{Sa(r),dg(r')} =eyp,d,(r)8(r—1') (6.1b)
The Leggett equations in >He-A (Leggett, 1974;

Buchholtz, 1978) are the Liouville equations for S and d:
SS

%‘: (d,H]) . (6.2b)
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The energy H includes contributions of the order-
parameter field, Eqgs. (3.10) and (3.12), and the magnetic
energy (3.3) in terms of the spin density S:

=3 '}’ZS -1 aﬁSﬂ—H S+Fgrad +Fd > (6.3)

where the anisotropic susceptibility is given by Eq. (3.2).
Substituting Eq. (6.3) into Egs. (6.2), and employing the
Poisson brackets (6.1), one obtains the Leggett equations

S _ S H-dx T | gyy, Femd (6.42)
ar X ><adJ“X'an’ “a
ad =ydx |H- Vil (6.4b)
ot 1

In NMR experiments on rotating °He, transverse
continuous-wave NMR has been used (Ikkala, Volovik,
Hakonen, Bun’kov, Islander, and Kharadze, 1982;
Hakonen, Ikkala, Islander, Lounasmaa, and Volovik,
1983; Hakonen, Krusius, Salomaa, Simola, Bun’kov,
Mineev, and Volovik, 1983; Hakonen, Krusius, and
Seppild, 1985). In this case the rf field H; is transverse
to the constant magnetic field H,=HZ, which is of the
order of 300 G. In such a high field, the equilibrium d
texture is locked in the (X,§) plane:

dy(r)=X cosa+7¥ sina . (6.5)

2. Schrodinger equation for the spin-wave modes '

The spin modes excited in the transverse NMR are cou-
pled oscillations of the transverse spin density S; 1 Hy, and
of the longitudinal deviation of d from its equilibrium
value, d=d(r)+¢Z.

Using Eq. (6.4b), one may express the 2 X dy component
of spin density S, through ¢:

X
£xdyS, = —i ¥ S (6.6)
ot Y
and from Eq. (6.4a), with scalar multiplication by d, the
other d, component of S, is obtained in terms of :

Xy
dy:S, = —1,/1H7 6.7)

After scalar multiplication of Eq. (6.4a) by Z X d,, and
expressing S, through 1 by means of Egs. (6.6) and (6.7),
we obtain the wave equation obeyed by the transverse spin
mode (see, for example, Maki and Kumar, 1977; Fetter,
1983; Vulovic, Stein, and Fetter, 1984):

2
Y (2H? 4 Q%)Y+ QL (UY+ DY) 6.8)
a 2

where the spin-wave potential U for transverse spin
modes is given by

(IxXVa)?

ps”uv )2H

Ur=— ‘(leo)z-f—lzz-f‘gzZu
Psp

(6.9)
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and D is the kinetic-energy operator

Il __ oL
Dy=—£, |ap+ 222y | .
sp
In Eq. (6.8), we introduced the transverse NMR fre-
quency shift Q 4 in the homogeneous bulk liquid (Leggett,
1973)

(6.10)

24 :
Y2484 6.11)
X1

The transverse NMR frequency in the homogeneous
liquid, with /||dLH, and when U =0, is the frequency of
the spin wave excited by the homogeneous field, i.e., with
infinite wavelength. Using Eq. (6.8), it is found to have
the form

Q%=

O ou=7H*+0Q% . (6.12)

Textures produce the attractive potential Eq. (6.9),
which is more effective if I deviates from d. This takes
place in solitons (Maki, 1978; Gould, Bartolac, and
Bozler, 1980), and also occurs in the dipole-unlocked soft
cores of vortices (Volovik and Hakonen, 1981); thus soli-
tons and high-field vortices produce potential wells,
which are one dimensional and two dimensional, respec-
tively. In both cases, there always exists a bound state
with negative energy E, which corresponds to the local-
ized spin-wave frequency below the continuum part of the
spectrum:

Dloe=0u+EQY, E<0; (6.13)
here E is the eigenvalue of the “Schrodinger” equation
EYy=(D+U) . (6.14)

The lowest bound state may also be found using the
variational principle:

[ avwu +py
[ avy?

E =min (6.15)

The excitation of localized spin modes. results in an addi-
tional (satellite) absorption peak in the NMR experiments
at the frequency w,., given by Eq. (6.13) (see Fig. 26).
This was resolved for the high-field vortices in 3He-A4 by
Hakonen, Ikkala, and Islander (1982). The intensity of
the satellite peak, I, is given by the overlap of the spin-
wave function with the rf magnetic field, which is uni-
form.

In the case of rotating *He- 4 in a high magnetic field,
where identical well-separated singular or nonsingular
vortices produce identical two-dimensional potential wells
by their dipole-unlocked soft cores, the localized spin-
wave modes with identical frequency are excited indepen-
dently. The net intensity of the vortex satellite peak is
thus proportional to the vortex density »,, and its intensi-
ty (oscillator strength) relative to the intensity of the bulk
absorption peak is
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2
he [ [axayy]
Touk ' fdxdytp2

(6.16)

which is thus proportional to the angular velocity of rota-
tion; this was confirmed experimentally by Hakonen, Ik-
kala, and Islander (1982).

Equations (6.13)—(6.15) and (6.10) are also valid for
longitudinal spin waves, excited in longitudinal NMR by
H||Ho. These spin modes are coupled oscillations of S,
and d,. The corresponding bulk NMR frequency and
spin-wave potential are

(6.17)
(6.18)

o7, bu=2% ,
Up=—[2(Ixdo)*—17] .

N MR g bsorpfib

FIG. 26. Experimental NMR spectra of stationary and rotating
3He- 4 (Hakonen, Ikkala, and Islander, 1982). The additional
broadening. of the main peak, due to rotation, is clearly ap-
parent; the shift of this peak towards higher frequencies from
the Larmor frequency is related to the spin-orbit coupling. The
small satellite absorption peak, which appears in the NMR sig-
nal during rotation, is caused by the excitation of localized spin
waves trapped by the continuous vortex textures.
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B. NMR on continuous vortices in *He- A—singular
versus continuous vortices

The bound-state spin-wave energies were calculated for
the continuous w and v vortices, defined by Egs. (5.29)
and (5.30). In these trial functions, d was assumed uni-
form: d=p; this is the common asymptote for [
I()=y. The spin-wave potential for this case, which,
according to Eqgs. (6.10) and (6.18), is

Ur=—QI2+12), U =—QI2+1?), (6.19)
has a minimum at the points where [||Z for transverse
spin waves, and where !||X for longitudinal spin waves.
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Quantized vortices in superfluid *He

Due to the topological constraint expressed by Eq. (4.16a),
the I vector passes through all the points on the unit
sphere in the continuous doubly quantized - vortices.
Therefore, in both the v and the w vortices, there should
be at least two points (“quarks”; see Sec. V.C.2) where Uy
is minimal (/=%%), and two other points where U; is
minimal (I = +X); see Fig. 27.

Thus each vortex produces a double-well potential both
for the longitudinal and transverse modes (Seppila,
Hakonen, Krusius, Ohmi, Salomaa, Simola, and Volovik,
1984; Zotos and Maki, 1984a; Maki and Zotos, 1985a,
1985b). However, the two wells are close to each other.
Thus there exists only one state, the ground state, that is
symmetric.
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FIG. 27. The computed potential wells for transverse ( T') and longitudinal (L) spin-wave modes for the continuous v and w vortices

in He- 4 displayed in Figs. 20 and 21.

The potential well Uy (UY’) for the w vortex is obtained approximately from U (Uf) by a

90° rotation about £, and vice versa. Therefore these two vortex states, v and w, cannot be distinguished from each other by the use

of NMR alone.
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The soft core in the singly quantized vortex proves to
be nearly half the size of the core of the continuous vor-
tex, mostly because / traverses half the area on the unit
sphere. This makes the potential well in singular vortices
shallow, and results in a small value for the binding ener-
gy E << 1. On the other hand, the extent of the ground-
state wave function increases, thus producing the large in-
tensity I, in Eq. (6.16).

A comparison of the theoretical (Seppalda and Volovik,
1983; Vulovic, Stein, and Fetter, 1984) and experimental
(Hakonen, Ikkala, and Islander, 1982; Hakonen, Ikkala,
Islander, Lounasmaa, and Volovik, 1983; Hakonen,
Krusius, and Seppild, 1985) values in *He-A indicates
that in high magnetic fields the doubly quantized con-
tinuous vortices seem to be created under rotation, al-
though the energy of such a texture is slightly larger than
that of the singular vortex array.

This circumstance may be attributed to the large meta-
stability towards the creation of singular vortices with a
hard core, in comparison with the continuous vortices.
(See the discussion in Hakonen, Ikkala, Islander,
Lounasmaa, and Volovik, 1983; on the creation mecha-
nism of continuous vortices, see Anderson and Toulouse,
1977; Ho, 1978a, 1978b, 1978c; Hall and Hook, 1986.)

In 3He-B, where only singular vortices are allowed by
topology, the time needed for reaching the equilibrium
vortex texture after rotation has been started is much
longer in comparison with 3He- 4. This circumstance also
favors continuous vortices in the A4 phase. Since continu-
ous vortices are created first, they occupy the whole vor-
tex lattice; thus there remains no space for singular vor-
tices.

—

a) (b)
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A direct transformation of a continuous vortex into
two singular vortices, with formation of the hard core,
seems highly improbable. Although this transformation
is allowed by topology, since the summation laws for both
N (0=1+1) and m 2=1+1) are fulfilled, the creation
of singularities from a continuous texture requires that a
large potential barrier be overcome. A simplified version
of this fission process is shown in Fig. 28. The intermedi-
ate objects are monopoles, i.e., point singularities in the /
field, accompanied by a singular vortex tail, which pro-
vides confinement in the  monopole-antimonopole pair
(Blaha, 1976; Volovik and Mineev, 1976a; Hu, Kumar,
and Maki, 1977; Soni, 1978).

Monopoles carry away the topological charge 77i; of the
continuous texture. The v, field near a monopole resem-
bles the vector potential (the field A) near a magnetic
Dirac monopole. These objects may possibly be detected
in the process of phase transitions from continuous to
singular vortex texture, or during the creation of continu--
ous vortices.

C. NMR on the half-quantum vortex

The half-quantum vortex (HQV), which becomes stable
in the parallel-plate geometry (see Sec. V.F), produces an
analog of the Aharonov-Bohm effect (Salomaa and Volo-
vik, 1986b) of the type considered in Sec. V.F.4 for trans-
verse spin waves. This is another result of the double-
valuedness (Maki, 1986) of the spin-wave function ¥ in
Eq. (6.8) in the presence of a HQV, which follows from
its topology (Salomaa and Volovik, 1986b; Hu and Maki,
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FIG. 28. The fissioning of a nonsingular (N =0) vortex with two quanta of circulation (m =2) in (a) into two singular (N =1) singly
quantized (m =1) vortices in (d). This process involves two monopoles with opposite charges (radial and hyperbolic points, respec-
tively) as the intermediate objects in (b) and (c). The monopoles are hedgehogs in the ! field [see Fig. 13(c) for a hedgehog in the d
field], and display the same distribution of the superflow v, field near the poles as the gauge field A in the vicinity of a magnetic

Dirac monopole.
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1987): the function v, as well as the d field, changes sign
after circling the HQV line. ¥ may be regularized by in-
troducing the phase A, which changes by 7 upon circling
the HQV:

y=ey.
Here 3 is a regular, single-valued function. The
Schrédinger-type equation for 9 is obtained by substitut-
ing Eq. (6.20) into Eq. (6.8). For the parallel-plate
geometry, with /=2 and with lz:dl(x,y), this yields the
equation

(6.20)

2
Bi=gi | Y-a | Gr0d,

(6.21a)

o*=(yH?+EQ% —Q%cos20 , (6.21b)

which corresponds to the “Schrodinger” equation (6.14)
with scalar potential

Ur=—£&% (Va)*—sin?@sin’a . 6.22)

However, an inherent vector potential A=VA appears
with the consequent “magnetic” field B=V X A, which is
concentrated in the cores of the half-quantum vortices.
For one HQYV at the origin, one finds

B=2mmz8(r) . (6.23)

This field corresponds to half a quantum of “magnetic”
flux carried by the vortex core, since m = i% ; thus, the
vector potential cannot be eliminated through a gauge
transformation. -
Note that in the vicinity of the HQV, the scalar poten-
tial (6.22) diverges near the origin,
1 §:211

Ur~———-,
T 4 r2

(6.24)
since a=¢/2 and Va:(—;-r)gg. However, this singularity
is completely neutralized by the square of the vector po-
tential A2, which has the same singularity—but with the
opposite (positive) sign:

18
4 42

As a result, there is no “fall to the origin” in the HQV,
which, nevertheless, should take place in a disclination
with an integer index p.

The Aharonov-Bohm effect for the HQV’s should pro-
duce additional spin-wave scattering, which is analogous
to the scattering of the collective clapping mode (Sec.
V.F.4). However, there is an important difference: while
in an acoustic experiment the wave number q is large, in
the NMR experiment g—0. This means that in an axial
magnetic field H, where 0=0, there is no Aharonov-
Bohm scattering in the limit ¢—0; in this case there ex-
ists an exact solution of Eq. (6.2): 1 =const,E =0, which
corresponds to the bulk NMR without any broadening.

The situation changes when the field is tilted, 6540, and
an effective g appears due to inhomogeneity. In this case,

£ A? (6.25)
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both the Aharonov-Bohm scattering and the ordinary
spin-wave scattering on solitons should broaden the main
NMR peak. This broadening should be essentially larger
than that due to spin-wave scattering on vortices with in-
teger quanta of circulation (for spin-wave scattering on
integer-quantum vortices, see Fomin and Kamenski,
1982), since the cross section of the soliton, ~&, /sin, is
much larger than the cross section for the singly or dou-
bly quantized vortices with cross section of the order of
their soft core, which is also of the order of the distance
between the plates. Therefore the HQV’s may be identi-
fied by an abrupt increase in the NMR linewidth at the
temperature T ~0.7T,, where the transition from singly
quantized vortices to HQV’s is expected to occur.

VIl. PROPERTIES OF SUPERFLUID ®He-B

A. Degenerate states

The Cooper pairs in superfluid *He-B are in a pure
state with the total angular-momentum quantum number
J =0 [see Egs. (2.13) and (2.14)]. This isotropic state is,
however, manifestly different from the isotropic state in
ordinary superconductors, where J =0, too. In addition,
Cooper pairs in s-wave superconductors are invariant
under separate spin and orbital rotations, S =0 and
L =0.

There is no such invariance in 3He-B, where the
Cooper-pair wave function (2.14) is invariant only under
simultaneous combined rotations around the same axis by
the same angle. A separate rotation, e.g., of spin,
described by the rotation matrix R,g, transforms the or-
der parameter (2.14) into another order parameter, corre-
sponding to a different state:

Aai_)RaﬁABi:ABRai . (71)

The degenerate states in *He-B are thus described by the
matrix R,;, as well as by the phase ® of the Bose conden-
sate, and the general form for the order parameter is

14(11':A1;(71)Ral‘ei(I> . (7.23.)

It is convenient to express the orthogonal matrix R,; by
the angle 6 and the axis # of the rotation, described by
the following rotation matrix:

Rp=08,3—(1—c080)(8,8—nohg)—eqp,n,sind .  (7.2b)

Note that the state described by Eq. (7.2a) is by no means

1 AN . .
an eigenstate of the operator 3=f‘“‘+ S, but rather it is
A
now the eigenstate of another operator, J ®;

?(R)Aaiz(), ng)zf i'm+Rai§a . ’ (7.3)

Above, T ® denotes an operator of combined rotations,
which is obtained from J by rotation of the spin space.
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B. Gyromagnetism of Cooper pairs in *He-8

The invariance of the B-phase state under the combined
symmetry with the generator J® results in the unusual
gyromagnetic properties of this superfluid (Leggett and
Takagi, 1978; Liu and Cross, 1978; Combescot, 1980;
Volovik and Mineev, 1984; Mineev, 1986). From Eq.
(7.3) it follows that the average internal orbital moment
(L") in the state of Cooper pairs with the wave function
(7.2) may be expressed through the average spin moment:

(LiMy=—Ru(S,) . , (7.4)

This is trivial for 3He-B at equilibrium since both (L")
and (S) are zero in this isotropic state; however, due to
the rigidity of the Bose condensate, Eq. (7.4) remains
valid even for the slightly perturbed B phase. As a result,
an Einstein—de Haas effect arises in an external magnetic
field, which induces an average spin density of Cooper
pairs (S) ~H. Owing to the rigidity of the Cooper pairs,
this in turn, according to Eq. (7.4), produces an average
orbital momentum, given by

(Li"Y ~R H, . (7.5)

Therefore the electrically neutral Cooper pairs start to ro-
tate in a magnetic field. In the conjugate Barnett effect,
the rotation of the liquid with angular velocity Q, which
gives rise to the average orbital momentum of the Cooper
pairs, simultaneously produces a net spin density S~RQ
and, therefore, the nuclear magnetic moment

My~R,Q,; . (1.6)

C. Relative spin-orbital anisotropy
in the isotropic liquid

Note the fundamental difference between gyromagne-
tism in ordinary substances and that in He-B. In an iso-
tropic condensed medium the magnetic moment is paral-
lel to the orbital momentum, while in isotropic *He-B
these moments are not parallel: they are coupled through
a rotation represented by the matrix R,; in the order pa-
rameter (7.2). Therefore 3He-B presents a unique situa-
tion: while both the orbital and spin properties of this su-
perfluid are isotropic, there occurs a kind of relative an-
isotropy represented by R

This relative anisotropy of the magnetic and orbital
properties in the isotropic liquid is manifested also
through the following effect: if any anisotropy axis n‘*’
of the orbital properties is induced by external conditions,
there simultaneously appears an anisotropy axis
n‘'=Rn'2 for the magnetic properties. For example, the
container wall produces an anisotropy in orbital space,
with the anisotropy axis along the normal ¥ to the wall.

This automatically results in a magnetic axis n'S=R%
near the wall and, therefore, in the surface term of the
magnetic anisotropy energy (Brinkman and Cross, 1978):
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Foug=—d(H R V)", 1.7

with d ~&(Xy —Xp). This gives the boundary condition
for the order parameter R,; in the presence of an applied
magnetic field: the vector R,/; should lie parallel to the
external field H.

An analogous bulk magnetic anisotropy is produced,
for example, by superflow, which defines the anisotropy
axis along vy, —v, in orbital space (Brinkman and Cross,
1978)

_Bflow[H Rai vsi_vni)]2 ’ (7.8)

where Bpow~ Xy —Xp )EL1 (M /#)%. On the other hand,
the interaction (7.8) means that the superfluid density,
which is a scalar in zero field, becomes a tensor in an ap-
plied magnetic field, with

FH flow =

+ps (8,] —n,( n]L))

2

s (L
Pij =P|s|ni

SoL (7.9)

Eonr

where the orbital anisotropy axis n'")||[RH. (This effect
is, however, absent at T =0, where pi ”—-p ) Thus the
anisotropy in spin properties, induced by an applied mag-
netic field, produces the orbital anisotropy axis n

Owing to the energies Fy g0, and Fg,y, the order-
parameter matrix R; is orientated in the bulk B phase by
the combined actions of magnetic field and superflow, or
of magnetic field and boundary, respectively. In the ab-
sence of superflow and far from boundaries, the orienta-
tion of the order parameter by magnetic field occurs only
due to the tiny dipole forces.

pi "—p.lsl =2'Bﬂow ~Ps

D. Small dipole anisotropy and textures

The dipole energy (2.29) partially lifts the degeneracy
of the B phase: now only the rotation axis n in Eq. (7.2b)
is arbitrary, while the rotation angle 6 is fixed by the di-
pole energy (2.29)

Fd “—‘gdA%(T)(RaaRBﬂ"‘RaBRBa)

=4g,A%(T)(cosO+2 cos?0) , (7.10)
which is minimal at the “magic” angle
Op=arccos( — 4 )~104° . (7.11)

This angle is manifested in various NMR experiments
(e.g., Corruccini and Osheroff, 1978; Borovik-Romanov,
et al., 1983; Golo, Leman, and Fomin, 1983).

The dipole forces also deform the Cooper-pair state,
and thus produce a small anisotropy for both the orbital
and magnetic properties, with the anisotropy axis along n.
Since ﬁn:n, this is a common axis for both the orbital
and the magnetic subsystems. The magnetic anisotropy
energy (see, for example, Osheroff, 1977),

2

for ,  (7.12)

Fig=—a(n-H? a~Xy—Xp)
§a
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is 5 orders of magnitude less than that in the A phase,
since it is produced by tiny dipole forces. However, in the
absence of superflow and far from the boundaries, this is
the only orientating effect for the vector n in the bulk
liquid. The characteristic length of this interaction

Ean~ §2lg§d

(7.13)

is of the order of 1 mm in fields of order 100 G, which is
to be compared with the size of the container (the radius
of the cylinder R =2.5 mm in the NMR experiment on
rotating 3He; see Hakonen, Ikkala, Islander, Markkula,
Roubeau, Saloheimo, Garibashvili, and Tsakadze, 1981,
1983). Thus, textures produced within ~§&zy of the con-
tainer walls by the combined action of magnetic anisotro-
py energy (7.12) and boundaries are practically always im-
portant in 3He-B. The first traces of the quantized vortex
lines in 3He- B were found due to the influence of vortices
on textures (Ikkala, Volovik, Hakonen, Bun’kov, Islander,
and Kharadze, 1982). Therefore we are motivated to con-
sider the order-parameter textures in some more detail.

The textures are obtained by minimization of the ener-
gy (7.12) and the gradient energy (2.19), which for *He-B
near T, has the form

Faraa =YoAR(D(V;R;)(V;R ;)

+2(V;Rp *+5(VD)?], (7.14a)
or in terms of the n-vector field

Fyra{n} =aH€, 4[(V;n)?— 5 (V3V-n+V30-VXn)?] ,

(7.14b)
where we have defined
10A3%
2 BYo0
= (7.14¢)
oH aH?

The boundary conditions for n follow from the minim-
ization of the surface energy (7.7). The typical axisym-
metric n texture, arising in the cylindrical experimental
cell in an axial magnetic field H||Z, is the flare-out tex-
ture, illustrated in Fig. 29 (Hakonen and Volovik, 1982;
Spencer and Ihas, 1982; Maki and Nakahara, 1983):

n=2‘cos/3(r)+sinB(r)[$sina(r)—?cosa(r)]. (7.15)

Here a(R)=60° and B(R)=arccos(1/V'5)=63.4° mini-
mize the surface ‘energy Eq. (7.7)] at the container wall
(r =R) and B—0 in the bulk liquid in order to minimize
the magnetic anisotropy energy Fyy=aH’sin’B (apart
from an additive constant). At small distances r from the
container axis, the polar angle B varies linearly with r
(Maki and Nakahara, 1983):

R
Ean

Here B, is the calculated value in the limit &z <<R
(Hakonen and Volovik, 1982).

12 (R/E4 1)
e d,H .

B=pBr, B1=1.38 (7.16)
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FIG. 29. (a) Side view (top) and a projection into the cross-
sectional plane (bottom) of the axisymmetric “flare-out” n-
vector texture occurring in >He-B inside a cylindrical container
of radius R =4£y; boundary condition fixes the angles a and B
of n in Eq. (7.15) to a=60° and S=63.4" at the inner surface of
the container, and n spirals towards the axis of the cylinder,
parallel to Q, where it is vertical. The spatial variation of the
angle B(r) near the cylinder axis provides the spin-wave poten-
tial, giving rise to the resonance peaks shown in Figs. 30. (b)
Calculated distributions of the angles a(r) and B(r) for different
values of the parameter A, which characterizes the orientational
effect of vortices on the n vector [see Eq. (7.21)]. In the station-
ary case when there are no vortices, A=0. Note how the slope
of B(r) at the cylinder axis (r =0) increases rapidly with A, i.e.,
with Q. For increasing A, a plateau region appears [the plateau
in B(r) gives rise to the shifted NMR peak in Fig. 47], where B
is approximately constant.
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E. NMR on textures in superfluid *He-B

Superfluid *He-B does not exhibit any appreciable
transverse NMR frequency shift in the bulk liquid where,
according to Eq. (7.12), n||H (.e., B=0). However, tex-
tures with [B-£0 cause the resonance peak to shift to
higher frequencies. In magnetic fields H >>25 G, the fre-
quency shift from the liquid with B=const is (see, for ex-
ample, Osheroff, 1977)

2
= 2;/;1 sin?B,

wo—yH (7.17)

where Qp is the longitudinal resonance frequency in the
bulk B phase.

As in the case of *He-A in the presence of textures,
bound spin-wave modes are excited in NMR with fre-
quencies corresponding to the eigenvalues of the
Schrédinger equation, with the sin?8 term serving as the
spin-wave potential:

H Q%E (7.182)
CTYE=Em ‘
Ey=(U+D)y, (7.18b)
U=sin’B(r), D=—(&)2£2v?, (7.18¢)

where &£; ~ 1072 cm is the dipole length in *He- B.

The flare-out texture [Eq. (7.15)] produces a harmonic
potential well U(r)~3r? near the origin for bound spin-
wave modes. This results in a series of satellite peaks
with equal spacing (Hakonen and Volovik, 1982; Maki
and Nakahara, 1983; see Fig. 30),

E=(n+1)($)V%,B, .

Here, n =0,2,4, . .., because, due to Eq. (6.16), only the
even harmonics are excited by a uniform rf magnetic field
(see Fig. 31).

Note the difference between the bound spin waves of
textures in *He-A4 and those in 3He-B. The textures in
He- B are very shallow and extended; therefore there are
many broad eigenstates with small energies. In 3He- 4,
the spin-wave potential of textures is concentrated in
small regions of the order of £; ~ 1073 cm and, as a rule,
allows only one very localized eigenstate with a large en-
ergy. Therefore, in order to have an appreciable satellite
peak, one needs a large number of identical textures (soli-
tons or vortices) in *He-A, while in *He-B one (bulk-
liquid) texture gives rise to several observable satellite
peaks.

(7.19)

F. NMR on vortices in *He-B
1. Orientational effects of vortices on the order parameter

Since the order parameter R,; in *He-B is real, there is
no continuous combined symmetry that would couple the
superfluid and magnetic—or liquid-crystal-like—
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properties of 3He-B. Therefore the quantized vortices in
3He- B are pure phase vortices,

Aai:ABRaieim¢ s (7.20)

which for any m=£0 have a singular hard core of a size of
the order of £g;, where the B phase is distorted. The
only difference from vortices in He II can be in the hard-
core structure.

These vortices have been found in the NMR experi-
ments through their orientational effect on the n texture,
which changes the potential well for bound spin waves
(Ikkala, Volovik, Hakonen, Bun’kov, Islander, and
Kharadze, 1982; Hakonen, Ikkala, Islander, Lounasmaa,
and Volovik, 1983). The rotation of the container has two
additional effects on the n texture.

(i) f"irst, there is an anisotropy axis along the vortex
axis Q for orbital properties; this, according to the rela-
tive anisotropy of *He- B, simultaneously produces a mag-
netic anisotropy along the axis n®=RQ. Provided that
the 3He-B vortices are axisymmetric, the corresponding
magnetic anisotropy energy is given by (Gongadze, Gur-
genishvili, and Kharadze, 1981; Hakonen and Volovik,
1982; Maki and Nakahara, 1983; Salomaa and Volovik,
1985a)

Fv,H = %}‘a (HaRaiﬁi )2 . (7.21)

This energy is produced by averaging of the orientational
effects of isolated vortices over the vortices in a unit
volume. In Eq. (7.21), the phenomenological vortex pa-
rameter A has been introduced, which characterizes the
orientational effect. of axisymmetric vortices on the n
field, as measured in units of the orientational effect of a
magnetic field in Eq. (7.12). The vortex parameter A is
proportional to the number density of vortices, n, [cf.
Eqgs. (8.27)].

(ii) Another orientational effect on the order parameter
in the rotating B liquid is due to gyromagnetism. The
gyromagnetic energy is expressed through another
phenomenological parameter «:

Fym=tka(H R ,Q,;) . (7.22)

This effect was first thought to be of pure bulk nature
(Volovik and Mineev, 1983), without any connection to
quantized vortices, but immediately after the experimen-
tal observation of gyromagnetism (Hakonen, Krusius,
Salomaa, Simola, Bun’kov, Mineev, and Volovik, 1983) it
was identified with the magnetism of the vortex cores.

Therefore, in a rotating container, the combined orien-
tational effect on the angle 3 in the presence of an axial
field H= + HZ, with

(HoR %)=+ H(1— 3sin’B) (7.23)
is, apart from an additive constant,
Fyp+F,p+Fyn=aH%in’8 [1—AF -I"; +3Asin?B

(7.24)
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For the effect of A on the 7 texture, see Fig. 29(b). The
effect of rotation on the texture becomes more transparent
if the last term on the right-hand side of Eq. (7.24) may
be neglected, i.e., if only small values of B are important;
this is the situation in the center of the sample cell, where
the spin waves are localized. Rotation simply renormal-
izes the magnetic anisotropy parameter a and, therefore,
the characteristic length &, 5 in Eq. (7.14¢c):

—172

1-AF =

H (7.25)

Sau—Ean> San=C%an

As a result, the spectrum (7.19) and (7.16) of excited
bound spin-waves modes is modified under rotation
(Hakonen and Volovik, 1982; Jacobsen and Smith, 1983;
Maki and Nakahara, 1983), and this was detected with
use of the NMR technique (Ikkala, Volovik, Hakonen,
Bun’kov, Islander, and Kharadze, 1982). Moreover, the
spin-wave spectrum depends on the sense of the magnetic
field H relative to , which was also detected in the
NMR experiments (see Fig. 32; Hakonen, Krusius,
Salomaa, Simola, Bun’kov, Mineev, and Volovik, 1983).

A more pronounced effect of rotation was obtained in a
magnetic field tilted with respect to the rotation axis 0
(see Fig. 33; Bun’kov, Hakonen, and Krusius, 1983;
Bun’kov, Krusius, and Hakonen, 1983; Bun’kov, Gurgen-
ishvili, Krusius, and Kharadze, 1984). In this case the
angle B between n and H is nonzero in the bulk liquid
due to the combined orientational effect of the magnetic
field and the vortices on the order parameter n; this pro-
duces a substantial frequency shift of the whole NMR ab-
sorption line according to Eq. (7.17).

2. The vortex-core transition and the core magnetization

The data on A [Fig. 34(a); Bun’kov, Hakonen, and
Krusius, 1983] and « [Fig. 34(b); Hakonen, Krusius,
Salomaa, Simola, Bun’kov, Mineev, and Volovik, 1983],
extracted both from the bound spin-wave spectrum and
the frequency shift, manifest the following important
features: both A and «k are proportional to the angular
velocity of rotation (2, i.e., to the density of vortices n,;
both A and « have a jump discontinuity at the tempera-

s

FIG. 30. Measured NMR absorption Spet:tra (Hakonen, Ikkala, Islander, Lounasmaa, and Volovik, 1983; Hakonen, Krusius, Salme-
lin, Salomaa, Simola, Gongadze, Gurgenishvili, and Kharadze, 1987): (a) at p =29.3 bars for T =0.45T,; (b) at p =10.2 bars for
T =0.50T,. Data are shown both in the stationary case and during rotation. The series of almost evenly spaced sharp spin-wave sa-
tellites results from the coherent nuclear motion of the Cooper-pair spins. The separation between the peaks at vp,vy,V, . . . is larger
during rotation than in the stationary liquid. The envelope of the observed oscillatory curve corresponds to the flare-out textures in
Fig. 29.
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ture T,, which does not depend on Q or H, nor on the an-
gle between them in the fields of H =284 and 568 G, de-
pending only on pressure p. The linear dependence of A
on ) supports the hypothesis that the orlentatmg effect
(7.21) is due to quantized vortex lines.

The independence of T,(p) from H means that the
structural rearrangement occurs over distances much less
than the characteristic length £,5 (~10~* cm for these
fields). This rules out any transition in the bulk B phase,
as well as rearrangements in the type of the vortex lattice,
since the intervortex distance is 1072 cm. The observed
discontinuities could be caused by a textural transition in
the surface layer of thickness £gp near the container
walls, or in the cores of quantized vortex lines. The first

_spin-wave spey

o

possibility contradicts the results of measurements in tilt-
ed magnetic fields, where the shift of the main peak
comes essentially from the bulk liquid independently of
the boundary conditions, as well as from the fact that T,
does not depend on ().

The only hypothesis (Ikkala, Volovik, Hakonen,
Bun’kov, Islander, and Kharadze, 1982) that fits all the
data is that the transition occurs inside the hard singular
core of size g1 <<&,y; in this case T, is a characteristic
of an isolated vortex line and therefore does not depend
on the vortex density n,, nor on the magnetic field H. A
dependence on H is expected in higher fields, where &,
becomes comparable with £g;. The jump in A and the
metastability phenomena (Bun’kov, Hakonen, and

FIG. 31. The calculated spin-wave spectrum in the potential of the flare-out texture. (a) For A=0 in the stationary state, the spec-
trum is very well approximated by that of a harmonic oscillator. (b) For large angular velocities of rotation (here A = 10), the B(r) tex-
ture is strongly modified by rotation [see Fig. 29(b)], and the spectrum is no longer evenly spaced. [Dashed lines indicate U (r), the
spin-wave potential in Eq. (7.18¢).]
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Krusius, 1983) show that the transition in the core is of
first order.

The jump in « at 7, (Hakonen, Krusius, Salomaa,
Simola, Bun’kov, Mineev, and Volovik, 1983) thus sup-
ports the hypothesis that at least a part of the gyromag-
netic effect is related to the vortex core. Since there are

0.03

002

001

Spin-wave resonance frequency (arbitrary units)

=

1 A 1
0 0.5 0.6 0.7

VAR

FIG. 32. The spin-wave resonance frequency as a function of
the reduced temperature for the first three satellites v,,v;, and
v,, of Fig. 30(a) at Q2=0.6 rad/sec. The data (Hakonen,
Krusius, Salomaa, Simola, Bun’kov, Mineev, and Volovik, 1983)
illustrate the vortex-core transition at 7,=0.67. and a
gyromagnetic effect due to the magnetic moment of the vortex
cores: the resonance frequency measured during rotation with
Q parallel to the magnetic field H (open circles, v*) differs
from that with € antiparallel (solid circles, v~ ) in accordance
with Eq. (7.22). The effect is large at T <0.67T,, but hardly
visible for 7' >0.6T,; the vortices below and above the transi-
tion temperature have different core structures and, therefore,
different intrinsic magnetic moments.

nonunitary components in the core, it contains a frozen
magnetic-moment density, directed along the spin axis of
the vortex n'®=RQ:

M, =M,RQ . (7.26)
The origin of the net magnetization in the vortex core is
again the combined spin-orbital symmetry: the super-
flow, circulating around the core, produces an internal ro-
tation of Cooper pairs with Limllﬁ, which is more pro-
nounced in the core. This, according to Eq. (7.4) follow-
ing from combined spin-orbital symmetry, produces the
net spin density in the core. This, in turn, gives rise to the
gyromagnetic energy of the vortices, which is linear in H
and 2, and obtained by averaging over identical vortices
with density n,:

Flo=—H-3 fsa M, (r)d?r

=—H,R,;Qn, f M, (r)d% . (7.27a)

vortex core

Thus, the contribution of vortices in the parameter k of
Eq. (7.22) is

5

- 2
= 4a Mo fvortex cored rM,(r) . (7.27b)

The magnitude of M,, extracted from experimental
data on the gyromagnetic parameter k, corresponds to
10~ nuclear magnetons per one nucleus of liquid *He
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FIG. 33. The frequency shift of the NMR absorption peak in a
tilted magnetic field, measured at 2 =1.40 rad/sec. The angle
p between © and H is quoted. The open and solid symbols
represent forward and reverse rotation, respectively. For pu=25°
and 155°, the directions of @ and H are shown by the arrows.
The NMR signals in the inset were measured at 7T =0.537T,
with u=25° (Hakonen, Krusius, Salomaa, and Simola, 1987).



M. M. Salomaa and G. E. Volovik: Quantized vortices in superfluid *He 583

containing the equilibrium density of vortices at Q~1
rad/sec, which is in reasonable agreement with the
theoretical estimate of the core magnetization (see Sec.
VIII.C.1). [The magnetic moment of quantized vortices
was first predicted by Sauls, Stein, and Serene (1982) for a
3P, neutron superfluid. Independently from this work,
the core magnetism was estimated by Hakonen, Krusius,
Salomaa, Simola, Bun’kov, Mineev, and Volovik (1983),
and by Ohmi, Tsuneto, and Fujita (1983).] On the other
hand, the derivation of the bulk gyromagnetic effect
(Mineev, 1985) shows that it is much smaller than the
gyromagnetic effect due to vortices, thus the experimental
K essentially corresponds to the vortex-core magnetization
(Salomaa and Volovik, 1983b, 1985a).

Therefore the experiments (Ikkala, Volovik, Hakonen,
Bun’kov, Islander, and Kharadze, 1982; Hakonen,
Krusius, Salomaa, Simola, Bun’kov, Mineev, and Volovik,
1983; Pekola, Simola, Hakonen, Krusius, Lounasmaa,
Nummila, Mamniashvili, Packard, and Volovik, 1984) in-
dicate the existence of two different vortex-core states in
rotating superfluid 3He-B, distinguished by different
hard-core structures and associated with different magni-
tudes of their respective magnetic moments, which are
concentrated in the core. Hence, the possible structures of
the singular cores of quantized vortex lines in *He-B are
to be investigated next.

VIll. CORE STRUCTURES OF VORTICES IN ®*He-B

A. The most symmetric o vortex

1. Axial and discrete symmetries of the o vortex-

In investigating the hard core of the *He-B vortices,
one may neglect the dipole interaction at low magnetic
fields. Far from the hard core, the asymptotics of the or-
der parameter of a vortex with m quanta of circulation is
given by Eq. (7.20). This asymptotic form is axisym-
metric, with the generator of symmetry

O0=T®—ml, TR=L,+R,S,, (8.1)

corresponding to Eq. (5.2) with n =m. The general solu-
tion of the axisymmetry equation @A «i =0 gives the same
nine complex amplitudes a,,(r) as in Eq. (5.8) of the
states with spin projection u and orbital momentum pro-
jection v:

(1) =Ap(T)C,,(r)em—#=% (8.2)

However, the axes of the spin and the orbital coordi-
nate frames are rotated with respect to each other through
the matrix R, i.e., the order parameter 4,; is expressed
in terms of a,, in Eq. (2.9), with the unit vectors of the
two sets of coordinate frames (see Figs. 4) related by

Za=RuiZ;, Ra=Rui%;, Joa=RoPi - (8.3)
The discrete symmetry of the asymptotics is that of Eq.
(5.6), with the elements

P,=P(U,)™*, P,=P,P;, P;=TO!) . (8.4)
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Their action on C,,(7) is given by Egs. (5.9) and (5.13).
The most symmetric vortex, which retains the full sym-
metry of the asymptotics, and which we denote as the o
vortex, obeys

Plev:PZCyv=P3Cyv=Cyv > (8.5)

and thus possesses five real C,,, with even p+v [Eq.
(5.11)]. As distinct from the A-phase vortices, all five
amplitudes are independent. In the A phase, there occurs
an additional continuous symmetry at small distances,

12— T T T
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FIG. 34. The normalized (a) vortex and (b) gyromagnetic pa-
rameters, A/Q and k/QH, respectively, extracted from the
tilted-field measurements (Fig. 33). The measurements and the
analysis were done for p =29.3 bars. The different symbols
refer to separate experiments. The solid lines are extracted
from a comparison of the calculated spin-wave eigenfrequencies
(see Fig. 31), with the measured NMR spectra in Q||H (see Fig.
30). Error bars are indicated for « in Eq. (7.22). For T >0.6T,,
k is so small that it cannot be resolved from the spin-wave
analysis (Hakonen, Krusius, Salomaa, Simola, Bun’kov, Mineev,
and Volovik, 1983).
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TABLE III. The group-theoretical symmetry classification of axisymmetric quantized vortex lines in
superfluid *He-B. For singly quantized vortices (m = 1), the core fluid can be normal ( N) or superfluid
(consisting of the superfluid 4 phase and the ferromagnetic superfluid 3 phase). For doubly quantized
vortices, the core is always of the superfluid 4, phase, while for axisymmetric vortex lines with three or
more quanta of circulation, the core matter is normal liquid *He.

Discrete C,, with C,, with States of vortex-core matter
Vortex symmetry u+v even n+v odd m=1 m=2 m>3
o Py,Py,Ps Real Zero N A N
u P, Complex Zero N A,y N
v P, Real Real A and B A N
w P, Real Imaginary A and B Ay N
uvw None Complex Complex A and B Ay N

where the dipole forces may be neglected, which serves to
reduce the number of the functions C,,,,.

In 3He-B, even after neglecting the dipole forces, there
remains only one continuous symmetry, Eq. (8.1), since
the B-phase state itself produces an effective intercou-
pling between the spin and orbital subsystems. Therefore
the number of independent functions C,, in the most
symmetric vortex cannot be further reduced.

For the singly quantized o vortex, all the amplitudes
a,, tend to zero at the center of the vortex, since their
phases,

Dy, =(m—u—vg, (8.6)
display a discontinuity on the vortex axis. For m =1:
O, =Pp=P_,=—P, , =7D__=¢. (8.7)

That is, the most symmetric vortex with m =1 possesses
a normal core. [However, the doubly quantized o vortex
(Salomaa and Volovik, 1984) has a nonzero component
a,,=ApC, , (r=0)£0, which corresponds to the 4,
phase on the vortex axis (see Table III).] Far from the
hard core, the amplitudes a_ , and a__ vanish, while
the others should tend to unity, thus producing the bulk
B-phase state, represented by

The o vortex possesses a magnetic moment [see Eqg.
(2.27)], given by (Ohmi, Tsuneto, and Fujita, 1983)

Ma(r)zRai?iM(r) ’

M(r):ng 2”"“#1} ‘ 2
uv

=g1uAH(T) D[ C i) 2= | C_y(n) |2 .

(8.9)

The integral over the cross section of the vortex core gives
a nonzero value, since there is no additional symmetry.
The time-inversion T symmetry

TCphy=C*, _, (8.10)

—which would make M equal to zero—is violated in all
the *He- B vortices.

2. Core structure of the o vortex

The core structure of the o vortex was found by minim-
izing the Ginzburg-Landau free energy, Egs. (2.15) and
(2.19), expressed in terms of the C,,. Scaling the distance
in terms of the coherence length (2.21), r =& 7, we ob-

a,_(w)=agplw)=a_,(w)=Ag(T)e™* .  (8.8)  tain
|
4 2
F=T |37 | ps [y @77+ fma) s (8.11a)
fb: _C[,WC:V +ﬁ1 | C;:vcf—p,,—v ! 2+EZ(C#VC;V)2+§3C#VC;KCP’_VC;’“K
+E4C;Kcvxcjpc;zp+E5Cy,vc-pkc:;vC*—pK > (8.11b)
d (m —p—v) 000k ,(m—pu—v') i«
fgrad: 2 ’V|—:C;w‘v — C,uv IV | —,:C;“/—V C[“,'
o' oF 7 or
3 2 2
+2 [ 35wt [—'tﬁ—‘l | Cuv 7] (8.11¢)
v r '
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where p; is the superfluid density in the bulk liquid,
2

YoA%(T)

ps=10 (8.12)

and

Bi
2(B3as+3B12)

The result of minimizing Eq. (8.11) within the symme-
try class of the o vortex with m =1 is shown in Fig. 35
(Ohmi, Tsuneto, and Fujita, 1983; Salomaa and Volovik,
1983b; the simpler version of the o vortex, with
C,,.=C__=0, was investigated by Passvogel, Scho-
pohl, and Tewordt, 1983).

Figure 36 displays the bulk and gradient energy densi-
ties as functions of the radial distance from the o-vortex
axis. While fz tends to zero on the vortex axis, which
consists of normal liquid *He, f, grad Obtains its maximum
value at r =0. This behavior is just like that in the “clas-
sical” quantized vortices in He II.

The axial component of the superfluid density tensor in
the vortex

1
le(r):Psg 22 IC[LO‘2+2 IC;W|2 »
" v

Bi= (8.13)

(8.14)

T T T I

o vortex

0.0 25 5 10 25 ®
/€

FIG. 35. The structure of the most symmetric singly quantized
vortex, the o vortex (Ohmi, Tsuneto, and Fujita; 1983), in super-
fluid *He-B at the weak-coupling limit. Here the real pairing
amplitudes C,(r) (with C,, =0 for u+v odd) are scaled so that
the bulk *He-B order parameter at r=c is described by
C,_(0)=Cplow)=C_,(0)=1. Radial distances r from the
vortex axis are measured in units of the Ginzburg-Landau
coherence length £, (T) [in Eq. (2.21)]. The scale is linear in 7
for r <5&gL, and varies as 1/r for r > 5&gy, so that the struc-
ture of an isolated vortex line can be represented for 0 <r < 0.
This normal-core vortex structure has a weak pressure depen-
dence.
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FIG. 36. The radial distribution of the normalized free-energy
density for the singly quantized o vortex in the weak-coupling
limit. Note that, because of the normal vortex-core structure,
the bulk condensation energy fp tends to zero for r—0 and
there remains only a finite gradient energy fg on the vortex
axis. The total free-energy density fi, is a monotonically de-
creasing function of r.
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FIG. 37. The calculated normalized superfluid density p; of the
o vortex presented in Fig. 35. This figure shows py, the com-
ponent of the superfluid density tensor parallel with the vortex
axis. The o-vortex core is normal, with p,(r =0)=0, as for the
“classical” “He vortex illustrated in Fig. 6.
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displayed in Fig. 37 for the o vortex, also behaves as in
He II: pg(r =0)=0. The magnetic moment of the o vor-
tex and its contribution to the magnetic anisotropy of the
core will be discussed later.

B. The v vortices with broken parity
1. Spontaneous breaking of space parity
The free-energy minimum corresponding to a vortex

solution in a given symmetry class is always an extremum

(a)

axisymmetric v vortex:low pressure
15 .

Cuv(r)‘

-05

1 1 1 1
00 25 5 10 25 <

of the free-energy functional in the whole function space
(see Table III). However, this extremum may not be a
true minimum, but rather a saddle point. As in 3He- 4,
the most symmetric o vortex may be unstable towards the
breaking of space parity and/or axisymmetry.

Let us first relax the conditions (8.5) of the discrete
symmetry, but retain the axisymmetry Q. Numerical cal-
culations near 7, show that in the whole region of the
strong-coupling parameter 0 < 8 <0.46, where the B phase
is stable, the minimum of the Ginzburg-Landau free-

(b)

axisymmetric v vortex:high pressure

cuv(r)
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FIG. 38. The calculated structure of the axisymmetric v vortex (with broken parity) as a function of pressure in the Ginzburg-
Landau regime (Salomaa and Volovik, 1983b, 1985a). It is possible that this superfluid core-vortex structure is the one observed in the
NMR experiments on rotating bulk superfluid *He- B in zero magnetic field at high pressures. The upper curves represent the same
five pairing amplitudes C,.(r) (for u+v even) that also occur in the maximally symmetric o vortex; the lower curves display the four
additional pairing amplitudes C,,(r) (with p+v odd; 4 phase and the spontaneously ferromagnetic 8 phase and their dual phases)
that exist in this P,-symmetric vortex structure. The scales are as in Fig. 35. (a) The weak coupling (zero-pressure) limit §=0.0. (b)
Polycritical point §=0.46. Note that in contrast to the o vortex displayed in Fig. 35, the structure of this v vortex is a strong function
of pressure; in particular, the superfluid core depends sensitively on pressure.
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energy functional (8.11) in the class of axisymmetric vor-
tices with m =1 corresponds to the P,-symmetric v vor-
tex, with broken symmetry P;, while the o vortex is un-
stable towards the formation of the v vortex and corre-
sponds to a saddle point of the Ginzburg-Landau func-
tional (Salomaa and Volovik, 1983b, 1985a; Passvogel,
Tewordt, and Schopohl, 1984).

The v vortex has all nine real functions C,,(r) (see Fig.
38). The temperature corrections to the Ginzburg-
Landau structure of the v vortex have been obtained
(Passvogel, Tewordt, and Schopohl, 1984). Two of the
amplitudes, ag, =ApCq, and a,o=ApC,, remain fi-
nite on the vortex axis. They correspond to the A4 phase
and the B phase (see Table I) in the vortex core. This
nonunitary 3 phase is principally responsible for the large
magnetic moment of the v vortex, as compared with that
of the o vortex.

2. The A-phase core of the axisymmetric v vortex

Figure 38 shows the change in the structure of the v
vortex with increasing strong-coupling parameter &,
which changes with pressure from 6~0 at P=0 to

6=0.46 at the polycritical pressure (see Fig. 1). A most -

interesting behavior is exhibited by the superfluid core at
8=0.46, in the immediate vicinity of the polycritical
point, where the B phase is about to become metastable in
the bulk liquid and the A4 phase becomes stable. With
further increase of 8, the amplitude Cy, of the A-phase
component in the core begins to increase towards its value
in the bulk A phase,

172
A 38,4+
Cos | oo CBI (A =12 24 _ | P12t Puss
Ap Baas
172
_ | 3=0.45 8.15)
2105 | @ &

while the B-phase amplitude decreases for increasing
values of & right on the vortex axis (the extension of the B8
phase increases dramatically, however, in the outer core
region, resulting in roughly the same integrated value for
the normalized vortex magnetization; see Sec. VIILC).
That is, the vortex core becomes the bulk 4 phase. The
extension of this 4-phase nucleation center increases with
5.

The free-energy density for the v vortex is shown in
Fig. 39. The bulk condensation energy fz(r) remains fi-
nite everywhere, and the gradient energy fg(7) is appreci-
ably reduced on the vortex axis from its value in the o
vortex, Fig. 36, because of the escape of the superfluid
into new pairing states. The total energy density fi(7)
displays an extremal value at a finite distance from the
vortex axis. This can be interpreted as the result of a
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FIG. 39. Components of the free-energy density in the axisym-
metric v vortex with superfluid core. Note that the bulk con-
densation energy fp remains finite everywhere. (a) For 6=0,
the condensation-energy density is diminished by 29% from its
bulk equilibrium value; (b) for §=0.46, the condensation-energy
loss on the vortex axis from its bulk value is only 6%, since for
this value of 8 the transition to the 4 phase in bulk superfluid
3He is in close proximity. The gradient energy fg is greatly di-
minished at » =0 from that of the o vortex in Fig. 36 because of
the escape of the superfluid to other pairing states. Note that
the total energy density fi, as well as the bulk condensation-
energy density fp, exhibits extremal values at a finite distance
from the vortex axis. This may be visualized as resulting from
a domain wall that separates the bulk B phase from the A4
phase in the vortex core.
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domain wall separating the bulk B phase from the A4
phase, nucleated at the vortex core. For §=0 [Fig. 39(a)],
the domain wall is close to the vortex axis, and the 4
phase in the core produces a condensation-energy density
appreciably higher than in the bulk B phase. At §=0.46
[Fig. 39(b)], the A phase in the core results in almost the
same low condensation-energy minimum as in the B
phase. The vortex-core radius is much increased, and the
A -B boundary separating the superfluids in the bulk and
in the vortex-core regions is more pronounced. This sug-
gests that the axisymmetric v vortex is more advanta-
geous in the vicinity of the transition to the 4 phase, due
to a proximity effect. Therefore it is a good candidate for
the high-pressure vortex.

The normalized superfluid density for the axisym-
metric v vortex is shown in Fig. 40. Unlike the o vortex,
or the “classical” vortex line in He II, this axisymmetric v
vortex possesses a finite superfluid density everywhere, in-
cluding, in particular, the vortex axis. Figure 41 illus-
trates the axisymmetric distribution of supercurrent in the
v vortex.

In the vortex core, the nucleation of the superfluid 4
phase leads to the appearance of nodes in the *He quasi-
particle energy gap (local I-vector field with its associated
superfluid flow properties). This results in vortices in the
k space, which are discussed in Sec. VIIL.D.

Owing to its A-phase core, the axisymmetric B-phase v
vortex may act as a nucleation center for the superfluid 4

T T T T
v vortex
1.0
>
k)
=g
[
o
©
'S
-T:' 0.5
(]
Q.
3
n
0'0 BSOS & &
0.0 25 5 10 25 o
r/Eg,

FIG. 40. The component of the normalized superfluid density
along the vortex axis, calculated for the axisymmetric v vortex
in Fig. 38(a). Note that unlike the case for the o vortex (Fig.
37), here the superfluid density remains finite everywhere, in-
cluding the vortex axis. This is because of the superfluid core
structure of this quantized vortex line.
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phase in the metastable superfluid B phase. As a result,
in the presence of vortices, there should exist a catas-
trophe line in the (p,T) plane, at which the metastable B
phase becomes unstable towards the spontaneous growth
of the A-phase core region. According to the calculated
structure of the high-pressure v vortex, its energy per unit
length may be qualitatively expressed in terms of the
vortex-core radius 7o :

2
R

rcore

(8.16a)

E =7Trc2:ore(FA —Fp )+27Trcoreas +7ps In

A
M

The first term is the condensation energy of the A-phase
core region, in comparison with the bulk B-phase energy,
the second term is the energy of the domain wall, with o,
denoting the surface energy of the interface between the
A and B phases, while the last term is the hydrodynami-
cal energy of the vortex outside the core.

Minimizing Eq. (8.16a), it follows that a finite core size
exists only provided that the difference between the bulk
B-phase energy and that of the 4 phase does not exceed
the critical value .

L I i 1

v vortex

supercurrent

00 25

FIG. 41. The tangential supercurrent in the superfluid-core
axisymmetric v vortex at a high pressure [6=0.46, Fig. 38(b)].
Here the superflow tends to the potential flow regime only for
radial distances 7 > 7. from the axis, where the vortex-core ra-
dii are shown in Fig. 51. For r <7y, the superflow distribu-
tion is governed by the nodes of the energy gap on the Fermi
sphere. In particular, note that, close to the vortex axis, there is
a region where the superflow is counterrotating. Since p;(r =0)
remains finite (Fig. 40), while j; tends to zero at »—0, this may
be visualized as.a solid-body rotation of the superfluid near the
vortex axis.
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(Fg '_FA )cr=
2ps

s . (8.16b)

M

At the critical threshold value [Eq. (8.16b)], the vortex be-
comes unstable towards spontaneous increase of the core
radius to infinity, thus producing the transition to the 4
phase without overcoming any energy barrier, as in the
wetting transition. (On the metastability effects at the
A<>B phase transition, see Leggett, 1984; Salomaa,
1987b). From numerical calculations of the core structure
in the Ginzburg-Landau region, it follows that the insta-
bility of the axisymmetric B-phase v vortex takes place at
the value 6§ =<0.5.

3. Asymptotics in the axisymmetric v and w vortices

The superfluid-core v vortex has one more property
that distinguishes it from the o vortex and the classical
quantized vortex line in He II. The order parameter falls
off as 1/r, distinctly from the 1/72 behavior in the o vor-
tex and the He II vortex (Passvogel, Tewordt, and Scho-
pohl, 1984; Hasegawa, 1985). This is a result of the fact
that the degeneracy of states in >He-B is larger than that
in He II (Hasegawa, 1985), where the only degeneracy pa-
rameter is the phase ®. The degeneracy parameters in the
ordered systems constitute additional slow hydrodynami-
cal variables; therefore they fall slowly, if at all. The
phase, for example, does not decrease outside the vortices,
since P=mg. ,

The degeneracy parameters in *He-B also contain the
components of the matrix R,;. If there were a linear cou-
pling between R,; and ®, like that in *He-A4 between /
and P, the matrix would not tend to a constant value at
infinity. However, such an interaction is absent due to
the different time-inversion properties of R, and @
(TR, =R, while T®= —®P); therefore R,; has the de-
finite constant asymptotic form R (), with a power-
law falloff for the deviation 8R,; of R,; from this value.
This power law is defined by the solution of the
Ginzburg-Landau equation for R,; outside the vortex
core, which follows from the minimization of Eq. (7.14a).

Let us introduce the small three-dimensional angle 0,
which describes the deviation 8R; from its value R (o0 )
at infinity. Then the general expression for the energy of
the 0 field, which follows from Eq. (7.14a), is given by

a(VOY+b(V;0)*. (8.17a)
In the most symmetric o vortex, the symmetries P, and
P;—as well as axisymmetry—require that 6=0. In the
axisymmetric v vortex, the symmetry allows a nonzero 6
of the form 9(r)=9(r)$, while in the axisymmetric w
vortex one has 6(r)=6(r)7. In both cases the equation for
6, obtained by variation of Eq. (8.17a), is

=0, (8.17b)
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and yields 6~ 1/r. This asymptote is also valid at dis-
tances larger than the dipole length &,;, where the dipole
energy partially lifts the degeneracy. In this case, O(r)
corresponds to the small deviation of the degeneracy pa-
rameter, the n vector, from its asymptotic value n( o0 )=2:
m=0Xxn(w).

4. Spontaneous breaking of axisymmetry in the v vortex

The v vortex displays at low pressure a further breaking
of symmetry: in addition to the parity P, the axial sym-
metry Q is broken (Thuneberg, 1986b; Volovik and
Salomaa, 1985b; Salomaa and Volovik, 1986a).

Nonaxisymmetric B-phase vortices were first con-
sidered by Theodorakis and Fetter (1983); they used trial
functions of the type A q;=A(r)R i[85 —f (r)§i5y Je*® and
found that the nonaxisymmetric vortex with §=Xx1Z has
the minimum energy among the vortices within this class.
Their vortex is a simple version of the o vortex, with
director-type nonaxisymmetry. The energy of their vor-
tex was, however, larger than that of the axisymmetric v
vortex; therefore further analysis was motivated. In par-
ticular, Salomaa and Volovik (1983a) suggested that the
mechanism of the vortex-core transition in 3He-B could
be the breaking of axisymmetry.

Thuneberg was the first to perform a full two-
dimensional energy minimization by solving numerically
the Ginzburg-Landau differential equations (Thuneberg
ingeniously employed the method of functional fixed-
point iteration in 2D x -y space, similar to that employed
by Thuneberg for the problem of the *He- B state near the
surface (Thuneberg, 1986a); his results are illustrated in
Fig. 42. At all pressures the energy of the axisymmetric o
vortex is clearly higher than the energies of the axisym-
metric v vortex or the nonaxisymmetric “double core”
new vortex with two points of local minima in the energy
density. At low pressures the ‘“new” vortex has the lowest
energy. With an increase of pressure, the energy differ-
ence between the new vortex and the axisymmetric v vor-
tex decreases and their energies are equal at about 3 bars
below the tricritical pressure; in agreement with the ex-
perimental data of Fig. 1, Thuneberg’s calculations show
that the axisymmetric v vortex becomes stable at higher
pressures and that the transition between the two vortex
cores may be of first order.

As distinct from Thuneberg’s calculations, we use the
symmetry approach (Volovik and Salomaa, 1985b;
Salomaa and Volovik, 1986a), which allows one to distin-
guish the possible ways of breaking axisymmetry and the
physical consequences of the different types of broken
symmetries.

Let us relax the condition of axisymmetry, QAai=0,
and investigate the stability of the axisymmetric v-vortex
state towards perturbations that break axisymmetry. The
nonaxial perturbations 84,; on the background of the
“vacuum,” which in this case is the axisymmetric v-
vortex core state, are characterized by the quantum num-
ber Q, which is conserved in this vacuum (Salomaa and
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FIG. 42. Energies of the axisymmetric o and v vortices, and
the nonaxisymmetric v vortex, as functions of pressure accord-
ing to the numerical calculations of Thuneberg (1986b). The
axisymmetric v vortex is the energy minimum only at a few bars
below polycritical pressure.
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Volovik, 1985a). Therefore perturbations 84 ‘2’ are speci-
fied by the integer Q according to the following equation:

054 2=0642, (8.18)
which has the solutions
8a2 =CQ(r)e!@+1-1="1 (8.19a)

Thus, the general expression for a,, in an m-quantum
vortex is

ay(r¢)=e'm—r=V$3 CQ)(r)ei0¢ (8.19b)
0

The perturbations c,‘,? with different Q are not coupled
with each other in the linear approximation (however, due
to discrete symmetry, the perturbations with the same
| @ | are mixed). Therefore one may look for the insta-
bility at each nonzero | Q | independently.

The most important perturbations are those with
| @ | =1 and 2 (see Fig. 43). An instability towards the
harmonics with | Q | =1 generates through the non-
linearity of the Ginzburg-Landau equations, the oc-
currence of all the other harmonics, i.e., the symmetry
under rotations about the vortex axis is completely de-
stroyed. In the plane transverse to the vortex axis, there
appears in this case a preferred direction denoted by a
unit vector b1%. This “vector”’-type instability is analo-
gous to the broken axial symmetry in the A phase, where

Q=3

(d) (f)

FIG. 43. A schematic illustration of the possible nonaxisymmetric sectors of the vortex-core matter in superfluid *He-B. (a) The
axisymmetric ‘“vacuum” state, specified by the quantum number Q =0. (b) The possible “vector” instability, having | Q | =1. (¢
The “director” instability with | Q | =2. (d) Due to the complicated order-parameter structure, the sector with | Q | =2 also admits
the investigation of the quadrupole instability with a fourfold symmetry axis. The sector with | Q | =3 allows us to investigate insta-
bilities towards (e) the formation of threefold symmetry axis core vortices and (f) vortices with sixfold axis core. Sectors with
| @ | >4 are responsible for nonaxisymmetric vortices with normal core only.
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in the transverse plane there appears the preferred direc-
tion, specified by the ! vector: I( ) [see Sec. V.C, Egs.
(5.29) and (5.30)]. This analogy is strong, since the v-
vortex core in 3He-B contains the superfluid 4 phase,
with the I vector directed along the vortex axis, and the
vector-type instability means that 1(0) tilts from the vor-
tex axis towards the direction of b. Therefore b has the
same time-inversion property as T. Tob=—b.

The | Q | =2 instability generates only even harmon-
ics. In this case, the symmetry C, with respect to a rota-
tion by the angle 7 about the vortex axis is retained, and
b becomes a bilateral vector, or director, which indicates
only the direction of the anisotropy axis in the transverse
plane, but not a physical vector (thus, here Tb=b).
However, for special discrete symmetry, the | Q | =2 in-
stability may generate a vortex with fourfold symmeitry in
the core (see Sec. VIILE).

We found that the axisymmetric v vortex, as well as the
o vortex, is stable towards small nonaxial perturbations
with the nonaxisymmetry quantum numbers |Q |
=1,2,... (see Fig. 43), thus proving, in particular, that
this v-vortex state is a local free-energy minimum.

However, at low pressures the axisymmetric v-vortex
state proves to be unstable towards large perturbations
with | Q | =2, but not with | Q | =1. This means that
there exists another local free-energy minimum corre-
sponding to the nonaxisymmetric v vortex with a
“director”-type core anisotropy in the transverse plane.
The structure of this C,-symmetric v-vortex state [mag-
netic class C,,(C,)] was computed with trial functions
containing harmonics with Q =0, + 2, and —2. The re-
sult is shown in Fig. 44. In spite of such a truncation, the
result practically coincided with the exact numerical cal-
culations by Thuneberg (1986b); this is because the
remaining even harmonics may be neglected, since they
vanish both in the origin and at infinity. Thus, the vortex
described numerically by Thuneberg (see Thuneberg,
1986b) is nothing but the C,-symmetric v vortex, also ob-
tained by the present authors (Volovik and Salomaa,
1985b; Salomaa and Volovik, 1986a) using a different
method. :

In this C,-symmetric v-vortex state, four amplitudes
are nonzero on the vortex axis: besides the amplitudes
Co4+ and C g in the axisymmetric v vortex, there appear
the two additional components Cy_ and C_;,. The ap-
proximate relation C_o~C_, on the vortex axis indicates
the existence of the so-called axi-planar phase in the vor-
tex core:

1 A A A A
Aai(o)z_‘/_—z[ (CLo+C_0)%aZ; +(Coy +Co_ )2, %;

+i(Cop —Co_ )2 9;]1. (8.20)

This noninert biaxial phase was first predicted by Mer-
min and Stare (1974, 1977). The physical properties of a
vortex, related to the breaking of axisymmetry, was dis-
cussed in Sec. VIII.C.6, while the internal topology of this
vortex is presented in Sec. VIII.D 4.
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FIG. 44. The structure of the singly quantized nonaxisym-
metric v vortex (Thuneberg, 1986b; Volovik and Salomaa,
1985b). In the representation of Salomaa and Volovik (1986a),
the order-parameter components are conveniently truncated into
the three sectors Q =0 and +2. The radial axis is as in the o
vortex, Fig. 35; the five order-parameter components also occur-
ring in the most symmetric o vortex are displayed by the follow-
ing fine curves: Cy, solid; C, _, dotted; C_,, dashed; C, ,,
short-long-dashed; C__, dot-dashed. The four additional
Cooper-pairing amplitudes occurring in the axisymmetric v vor-
tex are displayed with heavy curves: Cy,, solid; Co, dashed;
Co_, dotted; and C_,, dot-dashed. The Q =0 sector, ensures
that at r = oo the vortex state is a pure-phase vortex with unit
quantum of circulation m =1. The v-symmetric sector of
Q = —2 introduces large superfluid components C,_ and C_,
in the core, which are responsible for the restructuring of the
Q =0 sector. In particular, the additional amplitudes appearing
in the vortex wave function by this sector resemble those of an
axisymmetric vortex line with the opposite quantum of circula-
tion: m = —1, i.e., a counterrotating vortex. The v-symmetric
sector of Q@ =+2 possesses only small components for
0<r< .

C. The physical properties of vortices in He-B

Here we begin by considering the axisymmetric v vor-
tex, and then discuss the nonaxisymmetric v vortex.
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1. The magnetic moment in the vortex core

The reduced magnetic moment m= (|C,,|?
— | C_,|? is displayed in Fig. 45 for both the o and v
vortices (for the integrated values, see Salomaa and Volo-

|

" 4aq 3

5 1 AZ © ~ o~
Ky = _“?/N(O)nf%@z”u fo drr 2 (|CP 2= [C_yP) P .

This « is positive, since the gyromagnetic ratio ¢ for the
3He nucleus is negative: y=—2.04x10* G~ !sec!.
This is in accordance with the NMR experiments
(Hakonen, Krusius, Salomaa, Simola, Bun’kov, Mineeyv,
and Volovik, 1983), which also gave a positive k. On the
other hand, a calculation of the bulk value of « for *He-B
without vortices, Ky, shows that it is negative and much
smaller than k, (Mineev, 1986). Therefore one may con-
clude that the experiment measures the magnetic moment
of the vortices.

For a rough estimate of the order of magnitudue for «,,
let us choose the following values for the parameters in-
volved [all the parameters are taken at the pressure p =18
bars (Theodorakis and Fetter, 1983; Israelsson, Crooker,
Bozler, and Gould, 1984) and are in cgs units]:

03 T T T T

vortex madgnetization

m(r)

0.0 25 5 10 25 o

FIG. 45. The normalized magnetization  density
ﬁ(r)=2V(C2+V—C27V) for the axisymmetric o and v vortices
in *He-B in the weak-coupling limit. The large value of the v-
vortex magnetization is essentially due to the distribution of the
spontaneously ferromagnetic 3 phase in the core. The vanishing
of the o-vortex magnetization on the vortex axis is due to the
normal core.
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vik, 1985a). It is important that the integrated value
d7 7 m(F) is positive. This produces a positive contri-

bution to the gyromagnetic parameter k. According to

Egs. (7.27b), (8.9), and (2.28),

(8.21)
[
7=0.016, n,=0.3x10* (at Q=1 rad/sec) ,
A2—10-% [1—-L || N()=10%,
. T,
(8.22)
£2=1.6x10"1 - L , a=10"12
TC
T,=3.2x10"1.
Then we find
k~1Gx [ TdFr(|Cyy|?~|C_,|?). (8.23)

A detailed comparison with experiments is rendered diffi-
cult because the most reliable data for x are obtainable
only far from T,. The experimental value of k at p =18
bar and at temperatures 0.5 <7 /T, <0.7 may be written
as

T
0.8——
T,

4

k(Q2=1 rad/sec) ~50 G X (8.24)

Near T,, k is essentially smaller, which is in reasonable
agreement with the calculated magnitude of the vortex
magnetization, Eq. (8.23), near T,.

2. The magnetic anisotropy of the axisymmetric vortices

The isotropic bulk superfluid *He-B becomes aniso-
tropic near the vortex axis, where new anisotropic super-
fluid phases appear. Due to the magnetic anisotropy en-
ergy F,y in Eq. (2.24), which is concentrated in the vicin-
ity of the core, the vortex cores influence the orientation
R, of the vortex asymptotics [Eq. (7.20)]. Substituting
Agk=Ry;A4 ﬁc, where A ;}( is the vortex-core order parame-
ter with the asymptotics A ;}(( o0 )=A38jke’¢, into Eq.
(2.24), and averaging over the vortex cores with density
n,, one obtains the magnetic anisotropy energy

FZH:Xij(RaiHa)(RBjHB) 5 (8.25a)

with the magnetic anisotropy tensor X;; depending only

on the vortex-core structure,
Xiy=ganm, [ dPraf(af)*, (8.25b)

where the integral is over the cross section of the vortex.
The tensor structure X;; depends on the symmetry of
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the vortex core. If the core is axisymmetric, the tensor X ;
is uniaxial with the anisotropy axis Z (or (1) along the vor-
tex axis:

Xij =X08ij +Xaﬁiﬁj . (826)

The second term in Eq. (8.26) produces the combined
orientational effect F, g in Eq. (7.21) of vortices and the
magnetic field on the bulk order parameter R,;. Thus,
the vortex parameter A in Eq. (7.21) is expressed in terms
of the vortex-core order parameter

(8.27a)
with
Xo=182mn, [ d?r[—AQ(AL)* +34%(4%)*]

ro/€
=ty —xpn2mn,g [ °

. dFFAF) , (8.27b)

where

AP = 3 [1Coy(F) 2= F | Co(P) 2= 5 | C_(M]?].

(8.27¢)
Above, the intervortex spacing is denoted as rq ~n, /%
it serves as the cutoff for the logarithmically divergent in-
tegral, because the asymptotics of A in Eq. (8.27c¢), calcu-
lated analytically from the free energy in Eq. (8.11), fall
off as 1/r2

3B,
Baas

2
=, (8.28)
.

1+

MF—o0)=

where m =1 for the singly quantized vortices.
There are roughly two principal contributions to the
vortex parameter A: the orientational effects coming

from the core anisotropy and those from the asymptotic

region. The asymptotic part, Eq. (8.28), is due to the su-
perflow around the vortex line; it is described by Eq. (7.8),
which is valid not only in the Ginzburg-Landau region
but in the whole regime of *He- B (Gongadze, Gurgenish-
vili, and Kharadze, 1981). The integral of this contribu-
tion is logarithmically divergent due to the (1/7) behavior
of the superfluid velocity. This flow contribution to A
must vanish for 7—0, where the anisotropy of superflow
disappears: at T =0 the superfluid density p; must coin-
cide with the total density p in He-B. Therefore the
phenomenological parameter Bg,,, in Egs. (7.9) and (7.8) is
zero at T =0. Since the flow contribution does not de-
pend on the vortex-core structure, the jump in A at the
vortex-core transition temperature 7, and the finite value
of A for T—0 (see Fig. 46; Hakonen, Krusius, Salmelin,
Salomaa, Simola, Gongadze, Gurgenishvili, and
Kharadze, 1987) show that a substantial part of A comes
from the magnetic anisotropy inside the core. The
theoretical estimates for A (Salomaa and Volovik, 1985a)
are in reasonably good agreement with experimental
values.
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FIG. 46. The experimental vortex parameter A(T), extracted
from the measured data: [, in an axial field, 570 G; @, in a
magnetic field tilted by the angle 25°, 570 G; A\, in a magnetic
field tilted by the angle 25°, 284 G. A proved to be proportional
to 2, thus providing the vortex origin of the magnetic anisotro-
py of the rotating liquid. At low temperatures A(7) tends to a
constant value (Hakonen, Krusius, Salmelin, Salomaa, Simola,
Gongadze, Gurgenishvili, and Kharadze, 1986) arising from the
vortex-core contribution alone.

3. Consequences of broken parity in the vortex core

As in the A phase (see Sec. V.D.2), also.in the v vor--
tices in superfluid *He-B, the broken P; and P; sym-
metries produce a spontaneous electric polarization. The
quantity D is here proportional to the core radius of these
vortices, which is of the order of £5;. The estimation of
D may be performed readily on recalling that the cores of
these vortices consist predominantly of the A phase, so
that the same flexoelectric parameters $3; as in Egs. (5.37)
to (5.40) are involved:

D~ +Q(8—By)éqL -

As in the A4 phase, the twofold degeneracy of the v vor-
tex gives rise to the possibility of having topologically
stable kinks, or point solitons, separating the two parts of
the vortex line with different electric polarizations. Such
a point on the vortex line has an electric charge e* associ-
ated with it; the charge is of the order of

e* ~(B1—Br)E~10""e .

An equal amount of electric charge should be concentrat-
ed on the surface of the container at the point of termina-
tion of the vortex line.

However, the interaction between the vortices is very
small, compared with that in the A phase, so that these
electric charges of the vortices are randomly disordered in

(8.29)

(8.30)
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SHe-B. Thus, the bulk liquid displays no features of the
broken symmetry. The situation will be different if a
strong orientating electric field is applied for some period
of time along the axis of rotation. In this case, there will
result a surplus of vortices with their polarizations D
along the electric field, and the rotating bulk superfluid B
phase will acquire features of the broken symmetry. As a
result, linear terms in the gradient energy will appear,
which are compatible with the P, symmetry of the v vor-
tex,

Fit) = +KY0(R 4 ViR i — R ViR o)

=K™Y2(1—cos0)(Q-n)(V-n), (8.31)

where the estimate for K’ of the v-vortex array, with the
densities n and n_ of vortices with given charge, is

2
i

M (8.32)

K(")Nps("+ —n_)scL

Equation (8.31) produces an additional orientating effect
on the order-parameter texture in the rotating B phase,
which is due to the presence of polarized vortices, i.e.,
vortices with coherently orientated Ising variables. This
effect should be more pronounced in a weak magnetic
field, where the bulk orientational effects are small.
Thus, if in the rotating B phase v (or uvw) vortices are
present, the NMR ‘eigenfrequency will change after the
strong electric field is turned on for a time sufficient to
polarize the vortex cores coherently.

In the case of the P;-symmetric w vortex, as well as
that of the uvw vortex, with spontaneous superflow along
the vortex axis, the corresponding linear term in the gra-
dient energy, compatible with the P; symmetry, is given
by

(w)
Flilfl -_‘K(w)eimnRaiVmRan

=K2(1—cos0)(n-(Vxn)), (8.33)

with the same estimate for K’ as in Eq. (8.32). This
term will produce a cholesteric spiral for the n vector in
the case of coherently orientated w vortices if the n vector
in the bulk liquid is not fixed by the magnetic field. This
occurs when the vortex parameter A exceeds unity, in
which case the axial symmetry of the n texture is spon-
taneously broken in an axial field (see the next section),
even if the vortex-core structure retains its axisymmetry.
The vortex in the magnetic class D,;4(S,) displays neither
spontaneous axial superflow, nor spontaneous electric po-
larization.

4. Breaking of axisymmetry in the vortex texture
outside the cores

The axisymmetry of the whole n texture is broken in
the vortex array at some critical value of the angular velo-
city of rotation, at which the vortex parameter A is unity
[Gongadze, Gurgenishvili, and Kharadze (GGK), 1981].
According to Eq. (7.24), where we may neglect the small
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gyromagnetic parameter «/H, the equilibrium angle 3 be-
tween n and H||Q becomes nonzero in the bulk if A > 1:

4 A—1

sin?B= e (8.34)

The deviation of the n vector from the axis of the
cylindrical container is axisymmetric in small fields, since
boundaries are important. However, in a large magnetic
field (44 <<R), where the influence of the boundaries
may be neglected, the n vector should deviate uniformly
from the container axis: n=2 cosf4 X sinf, with 8 from
Eq. (8.34). Therefore axisymmetry of the texture becomes
broken at A>1: an anisotropy axis in the transverse
direction X appears, and the vortex texture becomes de-
generate.

For the w vortices, the broken axial symmetry of the
texture will produce the effect discussed in the previous
subsection: if the vortices are of the w type and polar-
ized, then due to the linear term in Eq. (8.33), a cholester-
ic spiral will appear, n=2 cosf-sinB(X cosqgz + ¥ singz).
The same spiral should appear for the vortices of class
D,4(S,), since, due to the breaking of rotational symme-
try of the texture, they acquire the features of the w vor-
tices.

The GGK textural transition with breaking of axisym-
metry has been seen experimentally due to the shift of the
main peak in NMR in an axial field (Hakonen, Krusius,
Salmelin, Salomaa, Simola, Gongadze, Gurgenishvili, and
Kharadze, 1987). This shift is proportional to sin’8 [Eq.
(7.17)] and exists only at A > 1 [Eq. (8.34)]; it is shown in
Fig. 47.

L

0 rad/sec 114 rad/ sec

i P

N

145 rad/sec 1.99 rad/ sec

FIG. 47. The textural Gongadze, Gurgenishvili, and Kharadze
(GGK) transition observed with NMR in an axial field, accord-
ing to the experiments of Hakonen, Krusius, Salmelin, Salomaa,
Simola, Gongadze, Gurgenishvili, and Kharadze (1987). For
Q=0 and Q=1.14, the peak position is unshifted (one arrow),
while at 2=1.45 and 1.99, the shift of the peak is pronounced
(pair of arrows, with the unshifted position indicated by a
dashed arrow). The shift appears at some Q below 1.45, where
A crosses the threshold value A, =1. For a finite geometry, this
phenomenon may be understood in terms of the textural
changes induced by rotation in Fig. 29(b).
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5. Broken rigidity of the vortex asymptote

Another transition with breaking of axisymmetry is
predicted in high magnetic fields (Sonin, 1983, 1984). It
takes place in the asymptotics of the isolated vortex. In
considering the orientating effect of the vortices, we took
for granted that the asymptotics of the vortex, Eq. (7.20),
is the same everywhere outside the hard core. However,
this rigidity of asymptote is violated in high fields. Let us
consider the orientating effect, Egs. (7.21) and (8.27), of
vortices on the n texture prior to averaging over the vor-
tices. This effect is concentrated in the vortex core and in
the vicinity of the core on the (1/r) tail of the superflow.
Since the core size is much less than the intervortex dis-
tance, rq~10~2 cm, at the typical angular velocities of
rotation, ) ~ 1—2 rad/sec, the core effect may be approxi-
mated by two-dimensional 8-function potentials, counted
by the index a of the vortex:

F,,H:E—M(HL,RG,-&A)[)ZZ82(r—ra). (8.35)
’ 5 n, p
The normalization of the prefactor of the 6 functions is
chosen in such a way that integration over the vortices
reproduces Eq. (7.21).
The rigidity of the asymptote R; is provided by the
gradient energy. If this energy (7.14) is neglected, the n

texture, obtained by the minimization of Eq. (8.35) and

Foaa+F,y+Fyp=%aH? |35 y(Va)+ %—cosza > 8(r—r,)+2(1—cosa) | .
v a

The instability of the uniform state (a=0) towards the
axially nonsymmetric  nonuniform  perturbations
[a(r)£0] occurs when the linearized equation for a(r),
obtained from Eq. (8.37), first acquires a negative eigen-
value; this takes place at the following critical value of
&4y (Sonin, 1983, 1984):

2 2AIn(rg /&)

d,H— .

3mm, (8.38)

The corresponding critical field H,, obtained from Eq.
(7.14c), which expresses Esp in terms of H, does not
essentially depend on the angular velocity, since A~n,,
and is of the order of 1 kG.

Note the difference between the GGK and Sonin tran-
sitions: The first is a collective effect of the vortex array
on the n texture, which becomes nonaxisymmetric at
A > 1, i.e., when the density of vortices is high enough. In
contrast, the Sonin transition is the property of an indivi-
dual vortex line (the breaking of rigidity), and the critical

field does not essentially depend on the vortex density.

However, the interplay of these transitions is possible.
The Sonin transition can be detected experimentally.
For H > H,, the rigidity of the vortex asymptotics is bro-
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the bulk anisotropy energy (7.12), is nonuniform—being
different far from and close to the core. Near the core,
the n vector is directed in such a way that the spin an-
isotropy axis of the vortex ﬁi,s )=Rm~ﬂ,- is perpendicular
to H: this minimizes Eq. (8.35) in the core, while far
from the core, in the bulk liquid, n is parallel to H, and
7 S| |H as well. Thus, besides the hard core, the vortex
has a soft core, where the 7 ) field changes from parallel
to perpendicular direction. However, this nonuniform
double-core state is disadvantageous at small enough
fields due to the gradient energy, which in this case
exceeds the orientational energies of vortices. Therefore,
at small fields, the n-vector distribution should be uni-
form: n||# ®||H, i.e., the asymptote of the vortex is rigid
and the vortex has only one core: the hard core.

The uniformity is broken in high enough magnetic
fields, H > H,, when the orientational effect of the vortex
core dominates the gradient energy. At the critical mag-
netic fields H,, the uniform n texture becomes unstable
towards perturbations which cause 7 ) near the core to
deviate from the direction of the magnetic field:

() (8.36)

7' =2 cosa(r)+X sina(r) .
Thus, the translational symmetry of the. n texture is also
broken at this transition. In terms of the angle «, the to-

tal energy of the n texture is

(8.37)

ken, and this will result in the weakening of the orienta-
tional effect of the vortices on the order-parameter texture
in the bulk superfluid outside the cores. Thus, the effec-
tive value of A, as measured by NMR, should decrease at
H > H,. An abrupt drop in A is also possible, if this tran-
sition is of first order.

6. Properties of vortices with broken axisymmetry

The breaking of axisymmetry in the core of the v vor-
tex, which conserves all the properties of the v vortex con-
nected with the broken parity, produces new properties re-
lated to the appearance of the preferred direction b of the
vortex-core anisotropy in the transverse plane. First,
there appears an additional Goldstone mode for the vor-
tex, besides the usual oscillations of the vortex line: oscil-
lations of the b vector can propagate along the vortex
axis.

For the w vortex with broken axisymmetry, the b vec-
tor forms a spiral texture along the axis, since the expres-
sion Q-bX(02-V)b has the symmetry of the w vortex.
The pitch of the spiral is of the order of the vortex-core
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size. As distinct from the collective twist of the  and n
textures in the A-phase w-vortex array (see Sec. V.D.4)
and the axially symmetric polarized B-phase w-vortex ar-
ray (see Sec. VIIL.C.3), the twist of the b field is the prop-
erty of an individual nonaxisymmetric w vortex, since b
is only defined in the vortex core.

Second, the interaction of vortices with the order pa-
rameter n in the bulk superfluid is modified: the total
orientational effect of vortices on the order parameter
now has a more complicated structure. For the non-
axisymmetric vortex, the magnetic anisotropy tensor X;
contains additional components. In the most general case
of the completely asymmetric uvw vortex, with all the
discrete symmetries broken, the symmetric tensor X;; con-
tains five components. Four of them, excluding Tr(X),
produce the orientation effect. The number of com-
ponents is reduced if symmetry elements are present.

For the v vortex, with completely broken axisymmetry
(magnetic class Cy,), i.e., with vector-type asymmetry, the
tensor X;; contains four components:

Xex 0 Xy
Xy=|0 X, O (8.39)
X O X

Here X,, =X, and the axis of the U, transformation in
the PTU,X,,=—X,, symmetry is directed along y,
which corresponds to real C\2’ in Eq. (8.19). The com-
ponents X, and X, are zero due to the PTU, symmetry:

PTU Xy = —Xyy, PTU Xy, =—X,, . (8.40)

For the v vortex with C, symmetry [magnetic class
C,,(C,)] ie., with director-type asymmetry, X,, also
equals O:

Xee O O
Xj=|0 X, O (8.41)
0 0 X

Introducing the unit vector b along the x axis, we may
write the orientational part of the vortex magnetic an-
isotropy energy [Eqgs. (7.21) and (8.27)] for the case of Eq.
(8.39) in the following form:

Fy i =%a(A(HoR o0 P+ Ap(H R i) (H R ;b))

+ 5 An{ (HR by —[HoR (O xB5), 1)),

(8.42a)

where
Faln=W gz — 35X —7Xx) (8.42b)
Lar,=2X,, , (8.42¢)
Takn =N —X,y) . (8.42d)

In the case of an axisymmetric vortex, as well as that of a
nonaxisymmetric vortex of the magnetic class D,4(S,),
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where X,, =0 and X,, =X,,, Eq. (8.42a) transforms into
Egs. (7.21) and (8.27) with A=A,;.

In the nonaxisymmetric v vortex, two additional pa-
rameters A, and A,, appear, while A,=0 if the C, sym-
metry is conserved. [The parameter A,, for the C,-
symmetric vortex was introduced by Theodorakis and
Fetter (1983) and by Salomaa and Volovik (1983a).] All
these parameters may be extracted from NMR experi-
ments, which will permit the identification of the vortex
symmetries. For example, the type of nonaxial instability
may be probed in an axial-field NMR experiment. In this
case, the angle 3 between n and H is nonzero in bulk
liquid only if A,,540, i.e., for vortices with vector-type in-
stability:

2
A

2
Sin = .
B 10(1—Aqy)?

(8.43)
This estimate is obtained by minimization of Eq. (8.42)
fol' | A‘l?. I << 1, and with }\.22 <<)\,“ < 1.

An interesting possibility - of orientational transitions
and metastable vortex states may be related to the orienta-
tion of the b vectors of isolated vortices. This orientation
may be coherent or chaotic, depending on the details of
the vortex structure and the interaction of vortices with
the external field. This influences the effective A values
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FIG. 48. The hysteresis effect associated with the vortex-core
transition: the NMR frequency change Av (normalized by the
maximum frequency shift in 3He-B) as a function of the re-
duced temperature. In this measurement, at p =29.3 bars,
H =284 G, and with the tilting angle 4 of H from Q equal to
25°, the cryostat was continuously rotated at Q=1.4 rad/sec
during cooldown (open circles) and warmup (closed circles).
Thermal hysteresis near T, =0.6T, is evident on comparing the
data points with the solid curve, showing the measured equili-
brium behavior.
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found in experiments. For example, the measured A,; is
different for uniform and random distributions of the b’s:

}\'uniform=7\'random+ % [ )\'22 | . (8.44)

This may explain the curious hysteresis behavior observed
during cooling under continuous rotation (Pekola, Simola,
Hakonen, Krusius, Lounasmaa, Nummila, Mamniashvili,
Packard, and Volovik, 1984), in which a new metastable
state with larger A seems to exist (see Fig. 48). Note that
below the T=0.67, transition, the NMR shift under
continuous rotation (open circles) is larger than the NMR
shift for the stable vortex state (solid circles, for
T <0.6T,).

The gyromagnetic energy [Eq. (8.21)] is also modified
if the v vortex has a vector-type instability. In this case,
the magnetic moment of vortices has a component along
the b vector,

My=—2ak (RO +K:R ;) , (8.45)
and the corresponding gyromagnetic energy is
Fom=%a[i(HoR Q) + 1) HyR ;b;)] . (8.46)

For the C,-symmetric v vortex, and for the vortex in the
class D,4(S,), one has k,=0, identically.

D. Topology and boojums on the Fermi surface
in the core

1. Nodes in the energy gap

The nonunitary structure of the vortex core in the B
phase is intimately related to the properties of the He
quasiparticle spectrum inside the core, in particular, to
the topology of the nodes in the energy gap. In triplet
pairing, there are in general two branches of the quasipar-
ticle excitation spectrum, according to the two eigen-
values of Eq. (2.4),

E,=[|Adk) |2 4vptk —kp)?]'2,
E,=[|Ak) |2 4vdk —kp)] 2,

(8.47a)
(8.47b)

which correspond to the two possible opposite spin pro-
jections for the *He quasiparticles. For a unitary state,
these energies coincide. The direction of the quasiparticle
spin quantization axis, which in the general nonunitary
case depends on k, and the magnitudes of the gaps AT(ic\ )
and A l(l?) are obtained upon diagonalization of the 22
gap matrix A(k) [Eq. 2.7)],

UkAR)T(k)T= ,

~ (8.48)
0 Ayk)

where U(k) is a unitary transformation (spin rotation
matrix).
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For an arbitrary order parameter A4,;, the nodes of the
energy gaps may be found from a consideration of the
determinant for the gap matrix A(k):

~

det[A(k)] = — A ik A gik; = A(K)A(K) . (8.49)

If one finds that det[//&(l/c\ )]1=0 for a given %, then at least
one of the gaps, A; or A, is zero. ‘

For the bulk unitary B phase, with the superfluid order
parameter given by Egs. (2.7) and (2.14), one finds

det(A)=—A%(T), (8.50)

so that there exists no nodes in the energy gap [see Fig.
(49a)].

For the bulk unitary superfluid A4 phase, with the order
parameter (2.23), both of the two species of *He quasipar-
ticles, with spin projections ++ on the spin quantization
axis d, display a node for k parallel to the orbital quanti-
zation axis I =e; X e, [see Fig. (49b)]. The corresponding
determinant is [cf. Eq. (3.4)]

det[A(k)]=A%(T)[ (ey-k )2 —(e;-k )?

—2i(e;-k)eyrk)], (8.51a)

| det[A(k)] | =AZ(T)(k xT)*. (8.51b)

2. Real-space versus k-space vortices

The nodes in the energy gap define almost all the super-
fluid properties of *He, including the peculiar continuous
vorticity of superflow, which appears in textures where
the positions of the nodes (in the 4 phase, the / vector)
are distributed continuously in space. This results from
the vortex nature of the nodes. The gap determinant
detA(k) is a complex scalar and may be represented in
terms of its modulus and phase:

(a) (b)

FIG. 49. The energy gap for *He quasiparticles in the quasi-
isotropic superfluid *He-B and in the anisotropic superfluid
3He- A. The gap in *He- A goes to zero at two points (boojums)
on the poles of the Fermi sphere.
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detA(k)= | detA(k) | e?®X) | (8.52)

In the presence of the texture, the phase ® depends both
on the real-space coordinates r and on the pair momen-
tum k: ®=&(k,r). This generalizes the ordinary r-
dependent phase of the Bose condensate to more subtle
structures of the gap, including the k dependence, in par-
ticular, which is specific for Cooper pairing with nonzero
orbital angular momentum. The phase ®(k,r) may
display a vortex singularity in the five-dimensional (k,r)
space (three coordinates of r and two for k on the Fermi
sphere), which generalizes the concept of an ordinary
quantized vortex singularity in the r space: the phase ¢
changes by 27N (with N an integer) upon encircling the
vortex axis. On the vortex axis, the phase is not well de-
fined and therefore the modulus of detA(k,r) becomes
zero. The dimension of the vortex axis in (k,r) space, i.e.,
the dimension of the manifold where detA(k,r)=0 is
three, as may be seen from the example of an o vortex in
*He-B.

Let us consider the simplest (nonrealistic) ansatz for an
m-quantum o vortex in the B phase,

A (k,r)=Ag(r)(god)pk,e™® (8.53)

where there would be a B phase everywhere within the
core, except for the origin r =0, where Ap(0)=0. The
determinant, detA(Kk,r), for this ansatz [see Eq. (8.50)],

detA(k,r)= —A](r)e?m¢ | (8.54)

is independent of k, and thus vanishes at » =0 for all k
on the Fermi sphere. Therefore the dimension of the vor-
tex axis in (k,r) space is 3=1 + 2 (dimension 1 for the
vortex line in r space plus the dimension 2 of the Fermi
sphere). Note also that the topological invariant N for
this vortex is N =2m.

Another realization of the vortex singularity in the
phase ®(k,r) is the node in the energy gap of the uniform
A-phase state. According to Eq. (8.51a), the phase ®(k)
changes by 47 when circling the axis k, in k space.
Thus, the uniform A-phase state has the vortex singulari-
ty in k space with N =2, while the singly quantized o
vortex in the B phase has the vortex singularity in r space
with the same N =2. Since these objects are described by
the same phase winding number N, they are different
realizations of the same vortex in (k,r) space and may
transform into each other through a continuous change of
Ay (k,r). The transformation process is simply the
reorientation of the three-dimensional vortex axis in (k,r)
space: the axis is parallel to the r space in the uniform A4
phase, but occupies 1 + 2 dimensional subspace of (k,r)
space in the B-phase o vortex. Because of these transfor-
mations, singular vorticity of the quantized vortex in r
space may be smoothened by “flaring out” of the vortex
into k space. This occurs, for example, when the singular
doubly quantized vortex in *He-A transforms into the
nonsingular ATC vortex. The same mechanism takes
place in the singular *He- B vortex, where the normal hard
core in the o vortex becomes superfluid due to “flaring
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out” of singularity, when the o vortex transforms into the
v vortex. This also gives rise to the continuous phase slip
in superfluid 3He, as distinct from He II, where only
singular vortices produce phase slips.

The mechanism for the “flaring out” of singular vorti-
city in the fifth dimension couples the real-space topology
with the topology of the Fermi surface, which is a spheri-
cal surface for superfluid *He—a topologically nontrivial
object (for heavy-fermion superconductors, the Fermi sur-
face may have different topology). The important notion
in this theory is the motion of the “boojum on the Fermi
surface” (Volovik and Mineev, 1982; Salomaa and Volo-
vik, 1985a; Salomaa and Volovik, 1986¢), the intersection
of the vortex line in k space with the Fermi surface.
They resemble the point vortices that may occur on the
surface of a container in real space; such objects were first
introduced by Mermin (1977) and called “boojums.” In
the k space, the “vessel” that contains the Fermi sea of
3He atoms is the Fermi surface.

The topological charge N for a boojum on the Fermi
surface is equal to the phase ¢ winding number of the in-
tersecting vortex line if the vortex line leaves the Fermi
sphere and — N if the line enters the Fermi sphere. For
example, the north-pole boojum in the A phase has a to-
pological charge N =2, while the south-pole boojum has
N=-2.

The singly quantized o vortex has no nodes in the gap
and therefore no boojums anywhere across the core, for
det[a(ic\)] never goes to zero. Only at the origin where
the normal state occurs does det[&(l/c\ )] vanish together
with the order parameter over all of the Fermi surface.
The vanishing of the gap at the origin and the absence of
vortices in k space are related. Since there is no escape of
an r vortex into k space, the vorticity in the singly quan-
tized o vortex is strictly singular: the circulation of su-
perflow along any path embracing the vortex axis is 27,
irrespective of the path chosen, and the superfluid veloci-
ty has a singularity on the vortex axis, thus making the
order parameter vanish, 3(1? ,r=0)=0. )

The singularity in the order parameter may be dis-
solved, provided that the singular vorticity in r space
transforms into a k-space vortex line, i.e., pairs of boo-
jums associated with opposite topological charges appear
at the Fermi surface for some finite distance from the
vortex axis. Here we choose to denote this distance where
the nodes in the 3He quasiparticle excitation spectrum
first appear as the vortex-core radius (7...), since every-
where in the core region inside this radius superflow is
nonpotential.

For decreasing distances r <7y, from the vortex axis,
these boojums move continuously in k space, covering on
their way certain parts of the Fermi surface. There is a
powerful topological rule, which serves to couple the
real-space topology with the topology of the Fermi
sphere: in order to completely resolve the m-quantum
vortex singularity in real space, the total area of the Fer-
mi sphere covered by all the boojums with positive charge
N =+1 should equal m times the area of the Fermi
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sphere, 4k}, provided that one takes into account the
sign of surface orientation (Volovik and Mineev, 1982).
This is easy to check in the example of the continuous
ATC vortex in the 4 phase. This ATC vortex is obtained
by dissolving the doubly quantized (m =2) vortex singu-
larity due to formation of I texture with I covering the
unit sphere once [see Eq. (4.16)]. Since [ indicates the po-
sition of the boojum with N =2 on the Fermi sphere (or,
what here is equivalent, two boojums—each with N =1),
the total area covered by two boojums with N =1 is twice
the area 4wk? of the Fermi sphere.

1
M M
m= 71— ¢ around core T Vs = 7; over coredr-(V X V)
_ dxdy [, ok
- ; f over core 441 la ox

Hence, for dissolving one quantum of vorticity in the
3He- B o-vortex core, the boojums should cover the Fermi
surface once. However, this topological requirement is in-
compatible with the symmetry of the o vortex (see Sec.
V.B). Thus, for smoothing the singularity, the parity P
should be broken and the o vortex should transform into
the v vortex.

3. Topology of k-space vortices in the axisymmetric
v-vortex core

Let us next consider the topology of boojums in the
singly quantized axisymmetric v-vortex structure in some
detail. Specifically, let us find how the positions of the
boojums on the Fermi surface in the v vortex depend on
the coordinate r=(r,¢) in real space. Due to axisym-
metry, the positions k(r) of the boojums are determined
by two parameters, a(r) and 3(r):

k(r)=2 cosP(r)+sinB(r)[F cosa(r)+ @ sina(r)] .  (8.56)

Here 8 and a denote the polar and azimuthal angles on
the Fermi sphere, where [3(r) is measured with respect to
the axis (2) of the vortex, while a(r) is measured from the
direction 7 of the radial vector in real space; for an illus-
tration, see Fig. 50.

These parameters a(r) and [B(r) obey the following
equation at the directions in which the nodes of the gap
occur:

det[A(k)]=0. (8.57)

This equation has four solutions in the v vortex for
r <7ore» Where the core radius is indicated in Fig. 51 for
different values of 8. These solutions represent two pairs
of boojums on the Fermi sphere, defined by the vectors I,
and /,. One pair contains the boojum 1+ with the topo-
logical charge N =+ 1 and with angles 8i(r) and ai (r)
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This relation between the real-space and k-space topol-
ogy may be expressed in terms of the generalized
Mermin-Ho relation in Eq. (3.8). Let us introduce the
vectors I, in the directions of the boojums with N =+1
(in the A phase, there are two such boojums, with
1, =1,=1; in the most general case of p-wave pairing, four
boojums are possible); then the number of superflow cir-
culation quanta m around the vortex with dissolved vor-
tex singularity is expressible in terms of the gradients of
the 1, fields:

al,
dy

(8.55)

|

of vector 1;, illustrated in Fig. 51, and the diametrically
opposite boojum 1~ with the topological charge N = —1
and with the corresponding angles Bi (r)=m—pBi (r) and
ai (r)=m+aj (r). The respective positions of the second
pair of boojums, 2*(I,) and 27, are given by

B (r)=B7(r), af(r)=—ai(r) (8.58a)

and

+

Br (N=m—B7(r), ay(r)=r—ai(r). (8.58b)

The angles 35 () and a; (r) of the boojum 27 are also
shown in Fig. 51. At the core radius, boojums 1% and 2~

vortex axis

-~

z
z

quasiparticle
momentum

Fermi sphere

FIG. 50. Schematic illustration of the direction of *He quasi-
particle momentum on the Fermi sphere in terms of the angles
a and B3, defined in Eq. (8.56), for a quasiparticle located at dis-
tance r from the vortex axis.
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mutually annihilate each other; boojums 2% and 1~ also
coalesce together, so that no boojums remain for distances
¥ > Feore-

Figure 52 illustrates the computed cross sections of the
Fermi surface for the axisymmetric v vortex, shown in
Fig. 38. Here ldet[a(ic\ )]| is drawn in the plane that
contains all four nodes. These cross sections are given for
several different chosen distances r from the vortex axis.
Note that for 7 >7.y., the magnitude | det(A) | is
represented in the equatorial plane (8=mw/2), where boo-
jums first appear at r =r_.. On the vortex axis, two
boojums with N = +2 exist on the poles of the Fermi sur-
face, which corresponds to the A phase with its / vector
directed along the axis I;=1,=1=%. They split at rs£0
into two pairs of boojums, each with N==*1 at » >0.
For r tending to r.y., the boojums move towards the
equator, where the opposite topological charges annihilate
each other at r =r,.. Nodes then disappear for r > r g
It is quite easy to verify that the boojums with a positive
topological charge do cover all the Fermi surface once:
actually the area on the Fermi surface covered by the boo-
jum /| with charge N =+1is

boojums’ positions
(NE]
T
8
=
N

FIG. 51. The angles a(r) and B(r), obtained as solutions of Eq.
(8.57), which determine the positions of boojums (nodes) in the
3He quasiparticle energy gap on the Fermi sphere for the singly
quantized axisymmetric v vortex. The three sets of curves
[(a),(b),(c)] correspond to three different values: (a) 6=0.0; (b)
8=0.3; (c) §=0.46. Also shown in this figure is the vortex-core
radius 7., Which in this paper is defined as the distance at
which nodes in the *He quasiparticle energy gap first appear.
The core radius is measured in units of the Ginzburg-Landau
coherence length: #=r/Eg. Angles ai and B7 refer to the po-
sition of the I; vector of boojum 1% with unit positive topologi-
cal charge, while a; and 3; refer to boojum 2~ with unit nega-
tive topological charge (or the position of —I, vector). At
7 =T, these two boojums with opposite charges annihilate
each other. i
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which comprises one-half the Fermi sphere. Therefore, in
the axisymmetric v vortex with m =1, each I, covers
one-half of the Fermi sphere, thus providing the unwind-
ing of the circulation quantum, m =1=+ + = in accor-
dance with Eq. (8.55). (Note that the scenario of the to-
pological flaring out of the singularity is different in the
nonaxisymmetric v vortex—see Sec. VIII.D.4—and it is
just this difference that may explain the first-order nature
of the phase transition in the core.)

The features described above serve to render the prob-
lem of scattering of superfluid *He quasiparticle excita-
tions off the quantized vortex line in superfluid *He-B an
interesting one. The calculation of the coefficient of mu-
tal friction of the vortex lines with the liquid *He (Hall,
Gammel, and Reppy, 1984) must include a solution of the
continuum part of the scattering problem. Unlike the
solutions for vortices in ordinary s-wave superconductors,
the solutions of the Bogoliubov—de Gennes equations
here yield a spectrum of bound fermion quasiparticle
states (Combescot and Dombre, 1983, 1986; Maki and
Combescot, 1985) even for finite distances r <7y, not
only on the vortex axis. This equation is identical to the
Dirac equation (more accurately, the Weyl equation) for
charged massless chiral fermions moving in electromag-
netic and gravitational fields (Volovik, 1986b, 1986d).
The part of the vector potential A of the electromagnetic
field in *He- 4 is played by the vector I for the boojum po-
sition: A(r,z)=kpl(r,t) (Combescot and Dombre, 1986).
If the doubly quantized boojum is split into two boojums,
an additional field acting on the fermion appears, which
corresponds to the weak interaction (Volovik, 1986b).
Any I texture with nonzero curl I produces the “magnet-
ic” field B=rotA, as a result of which the discrete bound
states of quasiparticles near the boojums are generated,
corresponding to the Landau levels for electrons in a mag-
netic field.

Many interesting physical phenomena are connected
with the boojums. They give rise to the anomalous mass
current [the second term in Eq. (3.14b)], nonanalytical
gradient expansion, nonconservation of the linear momen-
tum of superflow at T =0, the paradox of the orbital an-
gular momentum, the nonzero density of the normal com-
ponent at T =0, etc. Since the interaction of fermions
with some of the collective variables of the order parame-
ter A, is identical with the interaction of the chiral fer-
mions with photons, W bosons, and gravitational field,
these phenomena are of the same origin as the chiral
anomaly and vacuum polarization effects in quantum
field theory (Balatsky, Volovik, and Konyshev, 1986;
Volovik, 1986a, 1986b, 1986¢, 1986d).

In particular, the creation of the quasiparticle current
in a space- and time-dependent I texture, which takes
place due to the vanishing of the gap at the boojum, is
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completely equivalent to the creation of a chiral current
from the vacuum in the presence of electric and magnetic
fields. These creation processes are even described by the
very same equation. The source of the chiral current in
quantum electrodynamics with massless fermions is given
by the Schwinger equation’

e2

1672
while the source of the quasiparticle momentum in the /
texture of *He- 4 is obtained after multiplying Eq. (8.60a)
by the quasiparticle momentum kgl near the boojum:

kil kRl .
L (EB)=—5-VxD).
272 27

Here we used E:kFi and B=k;V X1 for the analog
“electric” and “magnetic” fields in *He- 4, imitated by the
time- and space-dependent [ texture.

2
F e € _E.B .

,quaﬁs 2772 (860&)

(8.60b)

1.6

18
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The moving v vortex, with a time- and space-dependent
I texture (boojums), also serves as a source for the quasi-
particle current even at T =0. Thus, the moving quan-
tized vortex line experiences an additional force during
motion. However, the dynamics of the vortices is beyond
the scope of our present review.

4. The nonaxisymmetric v vortex is a half-quantum pair

The scenario for the flaring out of the vortex singulari-
ty in momentum space for the nonaxisymmetric v vortex
is topologically different from that in the axisymmetric
vortex: the core of the singly quantized nonaxisymmetric
v vortex in rotating *He- B has been found to display nov-
el topological structure—it is a bound pair of vortices with
half-integer circulation (Salomaa and Volovik, 1986c¢).
Such vortices have been considered in Sec. V.F for the
case of the rotating superfluid 4 phase, where they are an

+1-1=0

r=repe=19

20

23

(0]

FIG. 52. The computed magnitude of the *He quasiparticle energy gap Idet[ﬁ(l? 1] =A,(k)A,(K) as a function of the quasiparticle
momentum and the reduced radial distance 7=r /&gy, from the vortex axis. For r <.y, we choose the cross-sectional plane of the
Fermi surface such that it contains all four different nodes; this plane can be readily visualized with the help of Figs. 50 and 51. For
r =0, there is a pair of boojums on the antipodal points with double topological charges, N =+2 (I;=1,). For r > 0, these divide into
two pairs of boojums, each carrying unit topological charges N = +1. For increasing r, the boojums move continuously towards the
equatorial plane, where they annihilate each other (+1—1=0) at =7y, as shown in Fig. 51. For 7> 7., the energy gap is
strongly anisotropic, but no more nodes exist. For »r— oo, one obtains the isotropic B-phase energy gap.
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admixture of a vortex and a disclination in the magnetic
anisotropy vector d. These objects were predicted to
occur for T <0.7T,; however, no evidence has yet been
found for half-quantum vortices in the NMR experiments
on rotating *He- 4. Nevertheless, an identification of the
vortex-core transition observed in rotating *He-B as a to-
pological phase transition involving half-quantum vor-
tices has been suggested.

In the axisymmetric v vortex, whose core topology is
summarized in Fig. 53, the singularity in the vortex core
is resolved through the formation of point vortices in
momentum space, such that superfluidity is not broken
on the vortex axis.

Let us now consider the topology of boojums in the
case of the singly quantized v-vortex structure with bro-
ken axisymmetry, specified by the nonaxisymmetry quan-

with Q =2, and with a,,(Q) as in Eq. (8.2). Specifically,
let us find the boojums on the Fermi surface in this vortex
and investigate how they depend on the coordinate r in
space. Since this v vortex is axially nonsymmetric, the
positions of the boojums determined by two angles a and
B depend not only on r, but also—distinctly from Eq.
(8.56)—on the cylindrical coordinate ¢:

k(r,¢)= % cosB(r,¢)
+sinB(r,qS)[?cosa(r,qS)+$siha(r,¢)] .

These angles may be determined by obtaining solutions of
the complex-valued equation (8.57): detf Ak )]
:Am-l/c\,-Aajl/c\jzo for the directions where the gap nodes
occur. This yields

(8.62)

tum number | Q |. This vortex may be represented as DU —p—8u8-p)=0, (8.63a)
[cf. Eq. (8.19b)] 7
0@ (1)=a,,(Q =0)+¢%a,,,(+0)-+e~%a,,(—Q) 2 it 8ul —)=0 (8.63b)
(8.61) where
J
Su={Cuo+[Cpuo(+)+Cpo(—)]lcosQ¢}cosB
+ s‘lf—f {Cus +Cu_+cosQ¢[Cpy (+)+Cp (—=)+C,_(4+)+C,_(—)]cosa
—sinQ¢[C,, (+)—C,_(—)—C,_(+)+C,_(—)]sina} (8.64a)
and
8= [Cpo(+)—Cpo(—)]IsinQ¢ cosp
+ S\i;liﬁ {Cuy —Cpu_ +c08Qd[Cy i (+)+Cpy (=) —C,_(4+)—C,_(—)]sina
+sinQ@¢[Cp (+)—C, (—)+Cy_(4+)—C,_(—)]cosa} . (8.64b)

Above, C,, (%) refer to the nonaxisymmetric sectors in
the Cooper-pair amplitudes of Eq. (8.61) with Q =+2,
respectively, while C,, denotes the sector with Q =0.
We shall exploit the amplitudes C,,(Q) of Fig. 44.

Figure 53(b) illustrates a summary of our analysis. The
core region of the singly quantized nonaxisymmetric vor-
tex, where vorticity escapes from real space to momentum
space, may be conceived of as a composite object—a v-
vortex “molecule.” In the core, where the boojums /; and
I, appear, there occur two centers, separated by the dis-
tance Rp,;, which can be identified as half-quantum vor-
tices. These HQV’s have further inner core regimes of ra-
dius ryqy, which are attached to a soliton “string,” topo-
logically confining the HQV’s—or “quarks”—in the v-
vortex molecule, as in the 4 phase (cf. Sec. V.F.2).

Outside the cores of the HQV’s, in the “planarlike”

phase, the nodes in the energy gaps Al(l/c\ ) and Az(l/c\ ), and
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I

hence I, and I,, lie predominantly in the cross-sectional
plane of the vortex,

x cos% +y sin£

R (8.65)

1y, =% cosntsiny

with § changing by 27 around each HQV and with
n=m/2. The planar distribution of I, and I, means that
there is no vorticity outside the HQV cores, according to
the Mermin-Ho relations. Therefore all the vorticity is
concentrated in the axi-planar cores of the HQV’s, where
n=m/2, and the vectors I; and I, deviate from the plane
and become mutually nonparallel.

Note that the directions of the I vectors interchange
upon encircling either HQV: [,=2l,. Hence disclinations
occur simultaneously in both /; and I,; this resembles the
d-field disclination for the HQV in the A phase [see Fig.
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25(a)]. In order to prove that the two ‘“quarks” really
represent objects with fractional topological charge, one
-may verify that each point vortex covers one-fourth of the
Fermi surface. Thus, according to Eq. (8.55), the circula-
tion number m around the HQV is one-half:

M ¢ d
m =—"— Y around HQV Vs AT

T h
al al al al
~f dxdy |, 0 O .02 02
over HQV core 447 ox ay ox By
NN (8.66)

The smooth winding I,==l, around the HQV reverses
orbital quantum numbers of excitations, such as fermion
quasiparticles. This is analogous to the properties of the
singular lines postulated to occur according to the grand
unified theories (Schwarz, 1982). Moreover, due to topo-
logical constraints, the HQV’s cannot exist separately, a
condition demonstrating a possible topological mecha-
nism of confinement. This makes the identification of
such objects of great interest in a general context of phys-
ics.

E. Discussion of the possible nature
of the vortex-core transition

Since the C,-symmetric v vortex presently seems to be
the most stable one near T, at least at low pressures, it
may tentatively be identified with the vortex in Region I
of the phase diagram in Fig. 1 (see Fig. 54). It remains to
identify the vortex-core structure at high pressures. It is
important that the ‘“director”-type breaking of axisym-
metry proves to be of first order. Therefore the high-
pressure vortex could be the axisymmetric v vortex, which
has a lower free energy close to the polycritical pressure:
This is supported by numerical work of Thuneberg
(1986b) and by Salomaa and Volovik (1986a) near T,,
which shows that at high pressures this vortex has less en-
ergy than the C,-symmetric one.

However, recalling the variety of possible transitions in
rotating *He- A4 (see Sec. V.G.), one may expect that the
symmetry change is not the only possible reason for the
phase transition in the vortex core. Volovik and Mineev
(1982) were the first to propose that the observed vortex-
core transition in *He-B could be due to a change in the
topology of boojums in the vortex-core matter. The phase
transition proved to be different—but more interesting—
than that put forward by them: the dimerization of a
one-quantum vortex (the high-pressure vortex) into a pair
of half-quantum vortices (the low-pressure vortex), pro-
ducing a new topological feature—the transformation of
boojums into one another after circling either half-
quantum vortex. Figure 54 presents the tentative topolog-
ical identification of the vortices involved in the core
transition in rotating 3He-B. The first-order nature of the
core transition may follow from the change in the topolo-
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gy at the bifurcation process of the vortex core.
Other possibilities cannot be excluded, since the compu-
tations are sensitive to the actual numerical values of the

- five B parameters as functions of pressure, which are not

known with good precision. In particular, it is possible
that a third—metastable—vortex state occurs in *He-B
during continuous rotation (see Fig. 48). This could be
due to the spiral vortex textures, with pitch of the order
of the coherence length; alternatively, it might be identi-

» fied with another nonaxisymmetric vortex (Volovik and

Salomaa, 1987), also possessing | Q | =2 (see Fig. 55), but
with similar topology to that of the axisymmetric v-
vortex. No topological barrier would occur for a transi-
tion into this metastable state. This new nonaxisym-
metric vortex state belongs to the magnetic class D,;(S,)
(see Table IV).

The symmetry group D,4(S4) is formed from the com-
bined symmetry elements PC, and TU,. The quantity
> v ;v possesses a fourfold symmetry axis; therefore
the vortex-core cross section displays the symmetry of a
square (“‘vortex with square core’; see Fig. 56), as distinct
from the axisymmetric v vortex with a “round core” and
the nonaxisymmetric v vortex with a “double core.” The
properties of this vortex state, which follow from the
symmetry and may be used for its identification, are as
follows: as in the o vortex, there occur no spontaneous
axial mass and spin flows, nor any spontaneous electric
polarization; only a single component A;; of the vortex
magnetic anisotropy tensor survives, since the anisotropy
vector b in the cross-sectional plane is absent due to the
fourfold symmetry. However, as distinct from the o vor-
tex, superfluidity is not broken in the core; this is due to
the formation of boojums on the Fermi surface. The to-
pology of the boojums in this new “square” vortex state is
the same as in the “round” core of the axisymmetric v
vortex, and, therefore, it is distinct from that of the
nonaxisymmetric v vortex, which is the bound, pair of
half-quantum vortices. Therefore it is possible that far
below T, there exists a topological barrier between the
D,,(S,) and the C,,(C,) vortices, and hence D,4(S,)
may become locally—or even absolutely—stable far away
from T,.

Clearly, the present tentative identification of the
vortex-core structures in >He- B need not be final. Further
work is in progress, especially on the spiral vortex tex-
tures. Moreover, the “vector”-type vortex instability may
become important. An analogy may be made, again, with
the situation in the 4 phase, where competition occurs be-
tween the v and w vortices, both with a “vector’-type
asymmetry [see Egs. (5.29) and (5.30)]. Note that the
nonaxisymmetric w vortex, which necessarily has a twist
(spiral) in the vector (or director) anisotropy axis b (see
Sec. VIIL.C.6), with pitch of the order of the vortex-core
size, has not yet been reported near 7T,. This v<>w transi-
tion is necessarily of first order—since the symmetry
groups for the v and w vortices are not subgroups of each
other. (See the symmetry subordination scheme in Table
IV, which includes the four vortices in 3He-B that have
been found numerically, as well as the nonaxisymmetric
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FIG. 54. Phase diagram of *He; compare with Fig. 1. Accord-
ing to our present understanding (Salomaa and Volovik, 1986c¢),
we tend to identify the change in the vortex-core structure in
3He-B as the topological transition between two inequivalent
ways in which vorticity can flare out (Volovik and Mineev, 1982),
illustrated in Figs. 53(a) and 53(b) for the axisymmetric and
nonaxisymmetric vortices, both with v symmetry. The vortex-
core transition signals this topological bifurcation in the escape
of vorticity into the momentum space.

w and uvw vortices, which have not been reported thus
far. Arrows indicate the direction of the symmetry break-
ing.) It is important that the first-order vortex-core tran-
sition is observed far from T, (although there is some in-
dication that the low-pressure end of the T, line may ap-
proach T,.), while the axisymmetric and nonaxisymmetric
v vortices were found near T,.

It is possible that, away from T, there exist additional
T, lines of second-order vortex-core transitions, which
have not yet been observed with NMR, due to the con-
tinuous nature of second-order phase transitions. There-
fore the vortices observed far from T, may in principle
differ from those near T,. Thus whether the observed
transition is indeed connected with the breaking of
axisymmetry may be determined only by experiments.
This seems to be possible, since the additional vortex-core
anisotropy in the transverse plane changes the interaction
of the vortices with the order parameter in different ways,
depending on the type of anisotropy (see Sec. VIIL.C).

Since there are so many different possibilities for
vortex-core transitions (see also Sec. V.G), one may only
be surprised that nature so far has chosen only one of
them in rotating superfluid >He-B.

IX. DISCUSSION

Prior to experiments on the rotating 4 and B phases of
superfluid >He, it was anticipated that new continuous
“coreless” vortices would be found in rotating *He- 4.
Vortices in rotating *He-B had not been considered
theoretically in any detail, and it was, in fact, quite com-
monly believed that the B-phase vortices would be dull in
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comparison with those in the 4 phase—simple phase vor-
tices, like those occurring in superfluid *He, with no par-
ticular internal structure and with a normal core.

- However, even the first NMR measurements on the ro-
tating B phase revealed a discontinuity in the NMR spec-
trum, which are attributed to a phase transition in the
vortex-core structure (Ikkala, Volovik, Hakonen, Bun’kov,
Islander, and Kharadze, 1982). Subsequent measurements
indicated that there is a clear discontinuity in the

05 : ; .
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FIG. 55. The metastable nonaxisymmetric vortex in *He-B. It
possesses | Q | =2 components with odd u +v only, in addition
to the o-vortex sector with | Q | =0. This vortex is metastable
(i.e., a saddle point or a local minimum) in the whole
Ginzburg-Landau regime towards the nonaxisymmetric v vor-
tex, but may become stable far from T,. It has symmetries PC,
and TU, (Volovik and Salomaa, 1987).
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TABLE IV. The vortex symmetry subordination scheme in su-
perfluid *He- B. Arrows indicate symmetry breaking; P is space
parity, TU, is time inversion combined with rotation 7 about a
transverse axis, while C,, C,, and C,, are groups of rotations
about the vortex axis by 7,7 /2, and by an arbitrary angle (axial
symmetry).

P.TU, .Cq PTU, .Cq

axisymmetric

o vortex v vortex

l

————— — — —breaking of axisymmetry— — —

i

vortices

PC,.TU PTU,.C
nonaxisymmetric “ 2 2 2
vortices new “vw' vortex v vortex
—————— breaking of translational invariance —
-r— = S = r— - - 7"
spiral ! TU,.C ! ! C [
p | 22 — 2 !
vortices: | w spiral | I uvw spiral 1
L —_ - - = — S —

gyromagnetic effect, observed under rotation, that was as-
sociated with the vortex-core transition as well. The
vortex-core transition was also seen in the gyroscope ex-
periments on persistent currents in *He- B (Pekola, Simo-
la, Hakonen, Krusius, Lounasmaa, Nummila, Mamniash-
vili, Packard, and Volovik, 1984; Pekola and Simola,
1985). These observations launched an intensive theoreti-
cal effort to explain the experimental discoveries. Indeed,
a close collaboration between experiment and theory has
been instrumental in identifying the nature of the physical
phenomena involved.

From the symmetry analysis, it was realized that it is
possible to have five different types of axisymmetric
quantized vortex lines in rotating *He-B, with different
internal symmetries. This led to the theoretical discovery

CODV (Coo)

Dyg (S4) C,, (C))

FIG. 56. The form of the cross section for the different vortex
cores in *He-B. Inside the core, boojums on the Fermi surface
(zeros of the energy gap for the fermion excitations) appear. At

_ the points indicated, the I vectors: of the boojums are parallel to
the vortex axis. (a) The axisymmetric v vortex with “round”
core. (b) The metastable nonaxisymmetric vortex with “square”
core. (c) Nonaxisymmetric ‘“double”-core v vortex: a half-
quantum pair.
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of superfluid-core v vortices, with space parity P as the
broken discrete vortex symmetry. The gyromagnetic ef-
fect detected in the experiment is now known to be associ-
ated with the vortex magnetization, which is concentrated
in the hard-core vortex matter. It is important to realize
that new spontaneously ferromagnetic superfluid phases
nucleate in the vortex core, explaining the large magni-
tude of the vortex-core magnetization and the magnetic
anisotropy in the rotating B phase. Though there are
several possibilities for different axisymmetric vortices, it
was found that the vortex-core transition may be associat-
ed with the topological change accompanying the break-
ing of axisymmetry Q of the v vortex. This can be readi-
ly understood in terms of superfluid condensation-energy

‘considerations. The change in the vortex-core magnetiza-

tion follows from the different superfluid core structures
on either side of the phase-transition line.

FIG. 57. The vortex ring in *He-B acquires at low pressures a
new topological charge due to breaking of axisymmetry Q in the
hard core. The phase ® winds transverse to the vortex axis. In
addition, the winding of the anisotropy axis b in the cross-
sectional plane through the angle 6=2mp along the vortex ring
leads, for example, to rings with charges j/ =0,-;—, and 1, illus-
trated here for a vortex ring with hard core possessing C, sym-
metry. In the absence of this symmetry, vortex rings with half-
integer spiral index p—like those in (b)—are forbidden, for to-
pological reasons.



M. M. Salomaa and G. E. Volovik: Quantized vortices in superfluid 3He 607

For vortex rings >He-B (see Fig. 57), the broken
axisymmetry Q of the v vortices with superfluid core re-
sults in a total of three topological invariants: (i) The
usual winding of the phase ® of the order parameter
around a path encircling the curved vortex closing on it-
self to form the ring. (ii) The winding of the vortex-core
anisotropy vector b around a path along the vortex ring
through the angle 6=2mp, where p denotes an integer in-
dex for | Q | =1, while p may also assume half-integer
values in the case of | Q | =2, with the vortex core pos-
sessing C, symmetry. (iii) A topological charge, not illus-
trated in Fig. 57, that is analogous to the 73 homotopy of
the A-phase vortex ring (Volovik and Mineev, 1977b; Ho,
1978c¢); for both the axisymmetric and the nonaxisym-
metric v vortices in *He-B with superfluid core, this
charge originates from boojums on the Fermi surface.

The symmetry classification of vortices is useful in a
broad context, e.g., for the superfluid A4-B-phase boun-
dary, which may exist in six different states and has re-
cently been found to undergo a phase transition during
motion (Salomaa, 1987b). Symmetry is even useful in
connection with the Abrikosov vortices (Abrikosov, 1957)
in ordinary s-wave superconductors—not to mention the
vortices in the heavy-fermion systems, where unconven-
tional superconductivity appears to be possible (Stewart,
1984). While the s-wave order parameter tends to zero on
the vortex axis, due to a singularity in the phase ®, the
p-wave pairing amplitude necessarily appears in the vor-
tex core if the spin-orbit interaction is taken into account,
since there is a linear coupling between these components.
Moreover, just as for the new superfluid components of v
vortices in *He-B, this amplitude has no phase winding
around the origin, due to the symmetry requirement, and
this means that the p-wave pairing amplitude, unlike the
conventional s-wave amplitude, is nonzero on the axis of
the Abrikosov vortex (see Fig. 58).

In rotating 3He- 4, a satellite NMR absorption line was .

detected during rotation (Hakonen, Ikkala, and Islander,
1982). The finding that the satellite intensity was propor-
tional to the angular velocity of rotation, {2, and, conse-

vortex axis

s-wave amplitude

.. p-wave amplitude

core region

FIG. 58. Schematic illustration of the Abrikosov vortex in an
s-wave superconductor in the presence of spin-orbit interaction.
The vortex acquires new superconducting p-wave pairing com-
ponents concentrated in the vortex-core region. These could be
observable, in principle, through the modification of the low-
temperature specific heat.
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quently, to the number density of the quantized vortices,
made the identification of the satellite as a vortex effect
quite plausible. The intensity and the frequency shift of
this “vortex satellite” is only consistent with theoretical
calculations made for bound spin-wave modes localized
on continuous, doubly quantized “coreless” vortices in the
‘A phase. However, here it is again possible to have
several different vortex types, and the observed vortex sa-
tellite peak is, in fact, found to be consistent with either
of two different continuous vortex textures, with internal
symmetries of the v and w types; NMR alone cannot dis-
tinguish between these two possibilities, and further ex-
perimental work is required in order to identify none-
quivocally the continuous vortex textures in the rotating
A phase. :

Many interesting experiments have yet to be performed
on the rotating superfluid 4 and B phases of *He, with
several different techniques. It would be of great funda-
mental interest to measure the intrinsic angular momen-
tum in the A4 phase, and that induced by an external mag-
netic field in the B phase (see Mineev, 1986, and refer-
ences therein).

With further applications of the NMR method, one can
investigate whether in the A-phase singular vortices will
indeed occur in the parallel-plate geometry, as expected.
In addition, with NMR one may find the expected transi-
tion at a lower temperature from such singular vortices
into a lattice of half-quantum vortices. Further NMR ex-
periments on vortices in the rotating B phase should be
performed in order to check the suggested nature of the
vortéx-core transition, i.e., the bifurcation of vorticity as-
sociated with the appearance of half-quantum vortices,
and to study it at high magnetic fields. In particular, as
discussed in Sec. VIIL.C.5, the broken rotational symme-
try of the vortex line is expected to generate new and ex-
perimentally verifiable NMR properties.

An ultrasonic study of vortex textures in the rotating 4
and B phases is expected to be potentially comparable in
its versatility with the NMR method. In the rotating A4
phase, ultrasound could probe the [ field in the vortex tex-
ture (Nakahara, Ohmi, Tsuneto, and Fujita, 1979), in par-’
ticular, to distinguish between the continuous v and w
vortices (Maki and Zotos, 1984). It could also be used to
discover the helix predicted in Sec. V.D.4 of the present
paper. Provided that one could perform ultrasonic inves-
tigations on the half-quantum vortices in the A phase,
one might possibly detect the analog of the Aharonov-
Bohm effect on the collective modes, mentioned in Sec.
V.F.4. Ultrasound spectroscopy of the rotating B-phase
textures would be quite interesting as well; one could
probe the *He quasiparticle bound states in the superfluid
core vortices. This could yield information about the to-
pology of the superfluid energy gap around the Fermi sur-
face inside the vortex-core region, as well as information
on the change in topology of the n texture due to vortices
(Mineev and Volovik, 1984).

First experiments on the mutual friction of vortex lines
with the normal excitations of superfluid *He have been
performed at Cornell University (Hall, Gammel, and Rep-
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py, 1984). Such measurements are clearly of fundamental
interest in both the superfluid 4 and B phases; the details
of the supporting theory of mutual friction in superfluid
3He should be worked out (see Hall and Hook, 1986). An
investigation of the friction force due to the creation of
the 3He excitations during the vortex motion is also im-

portant. The excitations should be created even by mov- .

ing B-phase vortices because of the gap nodes in the fer-
mionic spectrum in the vortex core. This effect is analo-
gous to the chiral anomaly in quantum field theory,
where the chiral current arises under the external fields
(see Sec. VIIL.D.2). The effect of this chiral anomaly on
the vortex dynamics is expected to be pronounced at low
enough temperatures, 7 <<7,, where this mechanism
predominates over the ordinary mutual friction force.

Ion motion also provides a unique microscopic probe
for the investigation of vortex textures. While ion trap-
ping by the superfluid core vortices in both phases is ex-
pected to be extremely weak (Mineev, 1984; Mineev and
Salomaa, 1984), the focusing of ions by the anisotropy of
the vortex-core region (Salomaa, 1982; Maki and Zotos,
1984; Salmelin and Salomaa, 1987b) can be employed to
study the continuous vortex textures in the A4 phase
(Simola, Nummila, Hirai, Korhonen, Schoepe, and
Skrbek, 1986; the anisotropy of the A-phase ion mobility
was recently evaluated by Salmelin and Salomaa, 1987a).
This may help one to distinguish between vortices with
different internal symmetries, since the symmetry deter-
mines the focusing properties of the A-phase vortices.
Moreover, first experiments suggesting the presence of a
new vortex state have been reported (Simola, Skrbek,
Nummila, and Korhonen, 1987). This new state is
characterized by a high ion mobility along the core.
Salmelin and Salomaa (1987b) explain how this high
core-phase mobility may be understood, provided the vor-
tices in rotating *He- 4 in the new vortex state are singu-
lar, and with a superfluid polar-phase core.

Vortex. oscillations in rotating superfluid *He are ex-
pected to display a much wider variety than those in su-
perfluid “He. For example, it would be interesting to ob-
serve the Kelvin waves of the w-vortex array in the A4
phase (Sonin and Fomin, 1985). This would be one of the
manifestations of broken parity. The other consequences
of broken parity should be investigated as well: spontane-
ous superflow and electric polarization. In particular, a
measurement of the spontaneous superflow in the vortex
core at T <<T, would confirm the existence of the
anomalous current in *He- 4, originating from the chiral
anomaly due to the gap nodes (see Sec. V.D.1). Further,
the predicted Goldstone oscillation of the “director”-type
anisotropy axis of the nonaxisymmetric v vortex in *He-B
could verify the tentative identification of the vortex-core
transition discussed in Sec. VIIL.B.5. The coherent and
random distribution of the vortex anisotropy axis b may
be investigated in transient effects. The half-quantum
vortex lattice could exhibit both optical and acoustic
modes of vortex oscillations because of the internal struc-
ture of the vortex pair, a half-quantum “vortex moie-
cule,” which serves as a nontrivial primitive lattice cell.
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In addition to the vortex transition observed in the ro-
tating B phase and attributed to a change in the hard-core
structure of the quantized vortex lines, one may find
several new transitions in both rotating superfluid A4 and
B phases. In *He- 4, it would be interesting to obtain evi-
dence for the occurrence of singular vortices, which can
possess three different core regimes, as discussed in Sec.
IV.C.4; transitions may occur in each of these different
regimes independently of each other. This leads to several
new possibilities for vortex-core transitions.

Singular half-quantum vortices may also occur at a
lower temperature. Again, the core structures of the
half-quantum vortices may undergo phase transitions.
For the B-phase vortices, new vortex-core transitions may
occur in different regimes of the phase space. In particu-
lar, in high magnetic fields there should be a transition in
the soft-core structure of the vortex line with the breaking
of the rigidity of the vortex asymptotics. New transitions
are also possible in the hard-core structure, as is the for-
mation of hedgehogs and monopoles as the intermediate
objects in the process of vortex formation and during vor-
tex transitions in He-A4. Moreover, stable monopoles,
which have many features in common with the Dirac and
’t Hooft-Polyakov magnetic monopoles, may be observed
under rotation at the 4-B interface (Salomaa, 1987a).

The novel physical properties of quantized vortex lines
in rotating superfluid 4 and B phases serve to make these
structures some of the most interesting objects in
condensed-matter physics. In the investigation of the
quantized vortices in superfluid >He, the close interrela-
tionship between experimental efforts and theoretical in-

" vestigations has been crucially important. While several

novel features of the quantized vortex lines in superfluid
*He have already been found—and identified—and in-
teresting new effects have also been predicted, it is to be
expected that surprises await us in this system, which
displays an unprecedented richness of physical phenome-
na.
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FIG. 1. Phase diagram of *He (Ahonen, Haikala, Krusius, and
Lounasmaa, 1974). The intersection of the T,z curve, separat-
ing the 4 and B phases, and the T, curve is called the polycriti-
cal point (PCP). When superfluid *He-B was rotated in an
open-volume NMR cell, a first-order vortex-core transition was
observed (Ikkala, Volovik, Hakonen, Bun'kov, Islander, and
Kharadze, 1982) upon crossing the dashed T, line in the (p,T)
plane. O, H =284 G; ®, H =568 G. Note that at high pres-
sures the core-transition temperature is roughly parallel to the
A-B transition, but curves towards T, below the polycritical
pressure (Pekola, Simola, Hakonen, Krusius, Lounasmaa, Num-
mila, Mamniashvili, Packard, and Volovik, 1984). The first-
order vortex-core transition can possibly be associated with two
distinct vortex free-energy minima, illustrated schematically in
the insets and identified tentatively in Fig. 54.



FIG. 10. Topology of the continuous Mermin-Ho (MH) vortex texture in the l-vector field (arrows) can be studied in the order-
parameter space S through the mapping /(r) of the cross section of the MH texture onto the “northern” half of the unit sphere.



FIG. 11. Schematic illustration of the three cores of the singular *He- A vortex in a low magnetic field. Arrows indicate the l-vector
distribution, while the d-vector field is denoted by lines without arrowhead. In the outer soft-core region &; <r < &y, the I and d vec-
tors are dipole locked, but may deviate from the plane. For £ <r <&, the d field remains constant, while the [ field produces the
unwinding of phase and forms a singularity at » ~& (hard core). Inside this hard vortex core, r <&, the superfluid A-phase pairing
state is broken, and pairing into new superfluid phases results, thereby resolving the I-field singularity. The vortex-lattice constant is
ro. (Here £ means £gy.)



FIG. 14. The singular one-quantum vortex in *He- A in a high magnetic field. Compare with the three-core structure in Fig. 11 (no-
tations are the same in both figures). The region between £, and &y is absent in high fields: only the dipole-unlocked soft core
remains.
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FIG. 2. Tentative identification of the two free-energy minima
involved in the vortex-core transition of Fig. 1. At low pres-
sures the nonaxisymmetric v vortex I with axi-planar core pro-
vides the free-energy minimum, while at high pressures the
axisymmetric v vortex II with A-phase core becomes more ad-
vantageous. Circulation quantization escapes from real r space
into momentum k space at the hard-core radius r... The
axisymmetric v vortex has a round core, while the nonaxisym-
metric v-vortex core is a “molecule,” consisting of two half-
quantum vortices. The vortex-core transition is a topological
change between two inequivalent ways of accommodating vorti-
city (Volovik and Mineev, 1982; Salomaa and Volovik, 1986c).
See Figs. 53 and 54.
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FIG. 26. Experimental NMR spectra of stationary and rotating
*He- A (Hakonen, Ikkala, and Islander, 1982). The additional
broadening of the main peak, due to rotation, is clearly ap-
parent; the shift of this peak towards higher frequencies from
the Larmor frequency is related to the spin-orbit coupling. The
small satellite absorption peak, which appears in the NMR sig-
nal during rotation, is caused by the excitation of localized spin
waves trapped by the continuous vortex textures.



FIG. 3. Phase diagram of the low-temperature phases of sta-
tionary “He (Osheroff, Richardson, and Lee, 1972; Mermin and
Lee, 1976). The zero-field cross section coincides with that in
Fig. 1. Superfluid *He-B occurs at low temperatures and/or
pressures, while superfluid *He- A is stabilized in a small region
at high temperatures and pressures. With increasing magnetic
field H, the A-phase regime increases at the expense of the B
phase. In addition, the nonunitary superfluid *He- A4, phase ap-
pears in a magnetic field between the A phase and the normal
Fermi liquid in a narrow temperature regime. New superfluid
phases nucleate inside the cores of quantized vortex lines in su-
perfluid *He under rotation.
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FIG. 30. Measured NMR absorption spectra (Hakonen, Ikkala, Islander, Lounasmaa, and Volovik, 1983; Hakonen, Krusius, Salme-
lin, Salomaa, Simola, Gongadze, Gurgenishvili, and Kharadze, 1987): (a) at p =29.3 bars for T =0.45T; (b) at p =10.2 bars for
T =0.50T,. Data are shown both in the stationary case and during rotation. The series of almost evenly spaced sharp spin-wave sa-
tellites results from the coherent nuclear motion of the Cooper-pair spins. The separation between the peaks at vo,vi,V, . . . is larger
during rotation than in the stationary liquid. The envelope of the observed oscillatory curve corresponds to the flare-out textures in

Fig. 29.
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FIG. 31. The calculated spin-wave spectrum in the potential of the flare-out texture. (a) For A=0 in the stationary state, the spec-
trum is very well approximated by that of a harmonic oscillator. (b) For large angular velocities of rotation (here A =10), the B(r) tex-
ture is strongly modified by rotation [see Fig. 29(b)], and the spectrum is no longer evenly spaced. [Dashed lines indicate U(r), the
spin-wave potential in Eq. (7.18¢).]
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FIG. 4. (a) The relative motion of particles constituting the Cooper pairs in superfluid *He corresponds to a relative p-wave state
(L™=1), with the pair orbital angular-momentum projection e obtaining the three possible values v=+1 and 0. The orbital
angular-momentum quantization axis is denoted by ;. (b) The Cooper-pair spins in superfluid *He are in a total triplet state (S =1).
The projection S, on the spin quantization axis Z, may obtain the values p=+1,0. (c) The Cooper-pair structure in the superfluid 4,
A,, B, and B phases of *He may be visualized as follows. In *He- 4, the pair orbital-momentum projection is v= + 1, while the pair
spin projection is i =0; thus, the order parameter equals W=Y, ;| 114+ 11), where the first and second entries refer to the orbital
and spin degrees of freedom, respectively, and Y, , denote spherical harmonic eigenfunctions of L™ =1, with L;"=v. The direction
of the pair orbital momentum defines the I vector in the A phase. The spin degrees of freedom are described by the magnetic aniso-
tropy vector d, on which the projection of the Cooper-pair spin is zero: S-d=0. In *He-4,, ¥=Y, ;| 11), the pair orbital momen-
tum projection v=+1, and only one spin projection is present, resulting in ferromagnetic nuclear spin alignment. In *He-B,
V=Y, 1|1 +Y 0| t44+11)+Y, | 11), the three possible orbital and spin projections occur with equal weight. Because of the
broken relative spin-orbit symmetry, the quantization axes are coupled in equilibrium *He- B through an order-parameter matrix of
rotation: Z,=R,7Z;. In the spontaneously ferromagnetic B phase, ¥=1Y,,| 11), the roles of the orbital and spin degrees of freedom
are conjugate to those in the 4 phase. This 3 phase has not been found to exist in the stationary bulk superfluid *He, but is theoreti-
cally found to nucleate in the axisymmetric v-vortex core in rotating *He- B. (See Fig. 38.)
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FIG. 53. Topological structure of the two vortices found to be stable in *He-B. (a) Topological structure of the energy gap in the cross-sectional plane of the axisymmetric v-vortex core
(Salomaa and Volovik, 1985a), proposed to occur in rotating superfluid *He-B at high pressures. Point vortices, or boojums, on the Fermi sphere first appear in the “planarlike” phase
at the distance 7, signalling the radius at which the flaring out of vorticity from real space into momentum space first starts. Vorticity is supported in the core by the continuous
winding—in the “axi-planar-like” phase—of the I vectors for the quasiparticles with spin projection up (/,) and for those with spin projection down (1;). As the I vectors “escape into
the third dimension” (cf. Fig. 7 for an analogous situation in the MH texture), the vortex singularity “escapes into the fourth and fifth dimensions” in the (r,k) space. They change
from antiparallel at r =7, to parallel at » =0 on the vortex axis, where the ** A-phase-like” core occurs. This summarizes the inner structure of the core for vortex II in Fig. 2(b). The
topological model for the core structure of the nonaxisymmetric v-vortex molecule (Salomaa and Volovik, 1986c), suggested to occur in rotating *He-B at low pressures (Thuneberg,
1986b; Volovik and Salomaa, 1985b). On the basis of their topological properties the two centers, separated by the distance Ry, have been identified each as a half-quantum vortex
(HQYV) confined in the v-vortex molecule. Each HQV is accompanied by a disclination in the [-vector field with half-integer winding number—or topological charge—which reverses /,
into I, (and vice versa) on circling once around either HQV. The I vectors lie predominantly in the cross-sectional plane of the v-vortex molecule (“planarlike” phase). However, inside
the inner cores of radius ryqy, these vectors flare out of the plane, deviate from each other (in the “axi-planar-like” phase), and each covers one-quarter of the Fermi sphere. The spa-
tial variation in the directions of the point vortices on the Fermi surface may be regarded as forming a string which topologically confines the HQV pair (vortex I in Fig. 2). This “bag”
model of the v-vortex core “molecule” resembles the structure of hadrons with the half-quantum vortices corresponding to quarks.
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FIG. 54. Phase diagram of *He; compare with Fig. 1. Accord-
ing to our present understanding (Salomaa and Volovik, 1986c),
we tend to identify the change in the vortex-core structure in
‘He-B as the topological transition between two inequivalent
ways in which vorticity can flare out (Volovik and Mineev, 1982),
illustrated in Figs. 53(a) and 53(b) for the axisymmetric and
nonaxisymmetric vortices, both with v symmetry. The vortex-
core transition signals this topological bifurcation in the escape
of vorticity into the momentum space.



