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The theoretical framework for describing the production of direct photons in hadronic collisions is re-

viewed. A detailed comparison between the theoretical predictions and existing data is presented along with

a critical evaluation of the various sources of theoretical uncertainty. The information available from
direct-photon experiments is contrasted with that learned from jet or single-hadron production. Prospects
for new types of measurements in future experiments are also presented.
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I. INTRODUCTION

Over the last decade, quantum chromodynamics (QCD;
Fritzsch, Gell-Mann, and I.eutwyler, 1973) has emerged
as a viable theory of the strong interaction. In this theory
the interactions of hadrons are described in terms of the
interactions among the hadronic constituents —quarks
and gluons (occasionally referred to collectively as par-
tons). One of the key features of the theory that has set it
apart from earlier field-theoretic descriptions of strong-
interaction dynamics is the property of asymptotic free-
dom (Gross and Wilczek, 1973a; Politzer, 1973). This
term is used to describe the weakening of the effective
quark-gluon coupling at short distances or, equivalently,
large momentum transfers. The feature of asymptotic
freedom allows the apphcation of well-known perturba-
tive techniques to the problem of obtaining predictions
for processes that are dominated by short-distance in-
teractions. It is for this reason that large-momentum-
transfer processes have played an important role in the
program of testing QCD.

It is a fortunate fact that the characteristic scale A for

the momentum-transfer dependence of the effective or
"running" coupling a, is on the order of several hundred
MeV. One consequence is that there are kinematic re-

gions that can be readily accessed where a, is sufficiently
small to allow the use of perturbation theory. A
comprehensive review of the various methods used to
determine u, has been provided by Duke and Roberts
(1984), who include a thorough discussion of the experi-
mental results.

The experiments that have been the easiest to interpret,
and that, therefore, have provided the cleanest tests of the
theory, all involve at least one electromagnetic vertex.
Examples include e+e annihilation, deep-inelastic
scattering of leptons from nucleons, and high-mass lepton
pair production in hadronic collisions. The pointlike na-
ture of the quark-photon vertex allows for the control of
the reaction kinematics at the level of the parton interac-
tions. With a definite theory for the short-distance phe-
nomena, such processes can be used to study the substruc-
ture of the initial-state hadrons and the manner in which
the scattered constituents give rise to the final-state had-
rons. However, it is also important to verify the descrip-
tion of the short-distance interactions and, therefore, it is
necessary to consider processes in which the constituents
of one hadron can undergo hard scatters with those of
another hadron. The production of hadrons with large
transverse momentum in hadron-hadron interactions can
provide such information. These reactions have been
studied extensively, and a consistent description of the
data can be obtained using QCD. Recently the produc-
tion of large-transverse-momentum hadronic jets, espe-
cially at the very high energies available at the CERN
SppS Collider, has emerged as another area in which
QCD is able to provide a good description of the data.
Here the term "jet" refers to a collimated collection of
hadrons emerging from a hard-scattering reaction. Jets
result from. the process of hadronization, wherein the
scattered partons are converted to the hadrons appearing
in the final state. The four-vector of the jet is closely re-
lated to that of the parent parton, so that by studying jet
production one can get closer to the underlying parton-
level kinematics.

Hadron-hadron processes are rather complicated at the
level of the constituent quarks and gluons. Many sub-
processes have to be summed over, and, for example, in
the calculation of the invariant cross section for single-
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particle inclusive hadron production using three quark
flavors, there are 127 separate two-body scattering contri-
butions. Furthermore, one really is interested in studying
the interactions of the constituents, and the final-state
hadrons provide, at best, an indirect probe. Jets are, in
principle, better in this regard, but there are ambiguities
related to the algorithm used to identify the jets experi-
mentally, and one still has the same number of sub-
processes to disentangle. It is, therefore, of interest to
consider a large-momentum-transfer hadron-hadron
scattering process in which one can directly constrain the
underlying kinematics of a small number of subprocesses.
Such a reaction is direct-photon production. Here the
term "direct photon" is taken to mean a photon that ori-
ginates from an interaction related to the hard scatter and
not from the production of a hadron that subsequently
decays electromagnetically. Since the direct photon ori-
ginates in the hard-scattering subprocess, one has a more
direct probe of the interaction. Furthermore, the photon
couples to electric charge, while the quarks and gluons in-
teract via the color charges. Thus direct-photon produc-
tion yields information that is complementary to that ob-
tained from hadron and jet production.

Although the above argument in favor of measuring
direct-photon production may seem reasonable, one must
still worry about the question of rate. At first glance, one
might expect that the y/hadron ratio would be of order a.
Actually, however, it is the y/jet cross-section ratio that
is of order a. This is easily understood since the dom-
inant subprocesses for direct-photon production are simi-
lar to those for jet production, except that a gluon is re-
placed by a photon. Furthermore, it is experimentally
known that the jet/hadron ratio varies between 10 and
10 depending on the kinematic region of interest. There-
fore the photon/hadron ratio might well be of order 1 or
larger. In reality there are more subprocesses for jet pro-
duction, so that this is somewhat of an overestimate.
Nevertheless, experiments have already shown that the
y/m. ratio is sizable and approaches one at the highest pT
values for which data are available. These data have es-
tablished that the direct-photon signal can be measured in
the high-pT region, therefore opening the way for more
detailed measurements of the process.

A process closely related to direct-photon production is
that of lepton pair production. This, too, is basically an
electromagnetic probe of the hard-scattering process.
This process is somewhat more complicated due to the
presence of another kinematic variable —the dilepton in-
variant mass. The production of massive lepton pairs at
large transverse momentum provides a classic example of
a problem with two large scales. Although more compli-
cated than processes with a single large scale, a formalism
for this problem has been developed (Altarelli, Ellis,
Greco, and Martinelli, 1984; Collins, Soper, and Sterman,
1985).

Recently a review by Ferbel and Molzon (1984) of the
experimental status of direct-photon production was pub-
lished. There a summary of existing experimental results
was presented along with a comparison with various

theoretical calculations. In addition, a discussion of
"second-generation" experiments was presented. The pur-
pose of this paper is to provide a detailed description of
the theoretical calculations that have been performed for
direct-photon production. In this sense, this work is in-
tended as a complementary review that can be used in
conjunction with the work of Ferbel and Molzon. Furth-
ermore, new data have recently become available for
direct-photon and jet production. The increased coverage
in pz and center-of-mass energy have made it possible to
present a mo' re detailed phenomenological analysis than
was previously possible. New theoretical work in the area
of next-to-leading-logarithm calculations has also been
completed in the last year. The results will be reviewed in
some detail, and their impact on future theoretical analy-
ses of data will be discussed.

In the next section the basic theoretical formalism will
be reviewed. Particular attention will be paid to sources
of theoretical uncertainty and how this may be reduced in
the future. Section III contains a comparison between the
theoretical predictions and existing data. Since the max-
imum amount of information can be extracted from
direct-photon production only when it is compared with
other high-pT processes, a brief comparison with data on
jet and single-hadron production is also included. This
will serve as a check on such things as the choice of dis-
tribution and fragmentation functions, factorization scale,
etc. The goal is to see whether or not a consistent
description of hadron, jet, and photon production can be
obtained. In this context the role of calculations of next-
to-leading logarithm contributions will be discussed. Sec-
tion III also contains a discussion of types of measure-
ments that can be performed using the forthcoming
second-generation detectors. These include measurements
of parton-parton scattering angular distributions, the ex-
traction of information on gluon distributions, and more
detailed hadron-photon correlation measurements. Sec-
tion IV contains a final discussion and summary. In or-
der to preserve continuity in the text, an Appendix has
been provided that contains details concerning the nota-
tion, kinematics, and the calculation of the observables
discussed in the review.

I l. FOR MALlSM

A. Cross sections and other observables

The application of QCD to various hard-scattering pro-
cesses has been reviewed frequently. Some useful refer-
ences for general applications include those of Field,
1978; Ellis and Sachrajda, 1979; Reya, 1981; Owens,
1982b; and Pennington, 1983. The specific results needed
for describing high-pT hadronic interactions have also
been reviewed in the past. Rather than repeat the basic
background material in detail, I shall assume some fami-
liarity with the hard-scattering formalism. Reviews that
may be of use in understanding the formalism and past
interpretations of the data include those of Sivers, Brod-
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sky, and Blankenbecler, 1976; Ellis and Stroynowski,
1977; Jacob and Landshoff, 1978; McCubbin, 1981;
Owens, 1982a; and Mg61er, 1984.

As an aid to someone who is unfamiliar with the
kinematics and notation used in describing high-pT phe-
nomena, a brief summary is contained in the Appendix.
Included there as well is a brief summary of the expres-
sions for the observables discussed in this review.

The use of perturbation theory in QCD calculations is
made possible by the feature of asymptotic freedom. If a
process involves a large momentum transfer, then the
running coupling a, (to be discussed in detail below) may
be small enough to justify the use of perturbative tech-
niques. Thus, for example, one can calculate perturba-
tively the hard scattering of the hadron constituents in
high-pT processes. However, we deal experimentally with
beams and targets consisting of hadrons, not partons.
The calculation of the momentum distributions of partons
inside hadrons requires knowledge of hadron wave func-
tions in regions in which perturbation theory cannot be
applied and we do not, as yet, have the ability to calculate
such wave functions nonperturbatively. Accordingly, one
must find a method to bridge the gap between what can
be measured experimentally and what can be calculated
perturbatively.

The prescription provided by the parton model has met
with much success in describing a variety of large-
momentum-transfer processes. Here it is assumed that
one can factorize the process into two parts by utilizing
the impulse approximation. The probability of finding a
parton a in a hadron 3 with a momentum fraction lying
between x and x +dx is denoted by the distribution func-
tion G, &z(x). The probability of obtaining a hadron C
with a momentum fraction between z and z+dz from a
parton c is denoted by the fragmentation function
Dc~, (z). These functions cannot be calculated using per-

FIG. 1. Schematic representation of a high-pT reaction factor-
ized into parton distribution functions (6), parton fragmenta-
tion functions (D), and a hard-scattering subprocess.

turbation theory and must, therefore, be- obtained from
data for various types of hard-scattering processes. The
cross section for the process under consideration is then
built up by an incoherent summation over all possible
constituent scatterings, each of which is weighted by the
appropriate parton distribution and fragmentation func-
tions. In the parton model the hard scattering is
described by the lowest-order subprocesses which„ for
high-pT particle, jet, or photon production, correspond to
two-body scattering. This is shown schematically in Fig.
1. The corresponding expression for the invariant cross
section is

do 5 deEc 3
(AB~C+X)= g dx, dxbdz, G«„(x,)Gb&~(xb)DC&, (z, ) 2 (ah~cd)5(s+t+u) .

d pc abed
'

z, ~dt

The 5 function appearing in Eq. (1) is appropriate for the
two-body scattering of massless partons and follows sim-

ply from two-body phase space. Furthermore, the initial
and final partons have been assumed to be collinear with
the corresponding initial and final hadrons, i.e., no parton
transverse-momentum (kT) smearing has been included.
The effects resulting from the inclusion of nonzero parton
kz's will be discussed later.

The parton distribution and fragmentation functions
must be determined by measurements made using some
reference process. For example, the distribution functions
are often determined by measurements made in deep-
inelastic lepton-nucleon scattering, and fragmentation
functions are often studied in e+e annihilation or
deep-inelastic scattering. In these processes the virtual
photon or weak boson serves as a probe of the distribution

being studied, and the invariant mass squared of the vir-
tual boson can be taken as an indicator of the length scale
that is being probed. In this sense a large virtual mass
corresponds to a short distance and vice versa. In the
parton model these distributions do noi depend on the
value of the virtual mass and, therefore, are said to be
scale invariant.

The prescription corresponding to Fig. 1 and Eq. (1)
corresponds to retaining only the lowest-order scattering
subprocesses which, , in this case, corresponds to just two-
body scattering. In QCD perturbation theory one must,
of course, consider the contributions from more compli-
cated scatterings. When higher-order subprocesses are
considered, one encounters a variety of singularities that
must be treated with care in order to obtain finite results.
For example, consider the Feynman graphs shown in Fig.
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2. Those in Fig. 2(a) are for the QCD Compton subpro-
cess gq~yq, while those in Fig. 2(b) are for the annihila-
tion subprocess qq ~) g. Figures 2(c)—2(e) represent
some of the various 0 (aa, ) subprocesses that contribute
to direct-photon production. The eight graphs in Fig. 2(c)
arise from allowing an additional gluon to be present in
the final state of Compton process in Fig. 2(a). Consider
the first graph in Fig. 2(c), in which a gluon is radiated
from the incoming quark leg of the Compton subprocess.
If the initial quark and the emitted gluon become col-
linear, then the internal quark line to which they are con-
nected will become "on-shell, " i.e., the invariant mass cor-
responding to the internal quark line will become zero. In
QED such a configuration would contribute to the radia-
tive corrections for the particular process, and there
would be a logarithmic correction proportional to
1ns/m~, ~«„,where s is the square of the center-of-mass
energy. In QCD, however, the partons are treated as
massless and the logarithm becomes infinite. This class
of singularities is referred to, appropriately, as mass
singularities. These logarithmically divergent terms
would appear to ruin the calculation. However, it can be

(a)
if1AI1fMW

(b)

~oooooo

pOoooo

Kooooo

lj oooo oo o oo KARA

(e)

FIG. 2. Selection of Feynman diagrams for direct-photon pro-
duction: {a}O{aa, ) Compton subprocess; {b} O{acx,} annihila-
tion subprocess; {c}O{o.o., } subprocess gq~yqg; {d} O{o.a, }
subprocess qq~ygg; {e}one-loop graphs for the Compton sub-
process that contribute to the 0{au,}calculation.

shown that these singularities are universal in the sense
that they appear in the same way in all subprocesses con-
taining a given species of parton. It can also be shown
that the singularities can be factorized or separated from
the relevant subprocesses (Ellis, Georgi, Machacek, Pol-
itzer, and Ross, 1978, 1979; Gupta and Mueller, 1979).
The use of this factorization theorem allows one to
separate out the mass singularities and absorb them into
the uncalculated portions of the distribution and fragmen-
tation functions. These are, in turn, specified through the
use of some reference process such as deep-inelastic
lepton-nucleon smttering or e+e annihilation. In a
sense, then, the problem of the mass singularities is
sidestepped by using reference processes to define the
various parton distribution and fragmentation functions.
These finite quantities are then used in the calculation of
other hard-scattering reactions.

In addition to the mass singularities there are ultravio-
let singularities associated with the loops appearing in the
graphs of Fig. 2(e). These must be regulated by some
technique (such as dimensional regularization) and then
subtracted. These two steps constitute the process of re-
normalization. Finally, the remaining infrared or soft
singularities will cancel when the results for all of the
loop graphs [such as Fig. 2(e)] and the tree graphs [such
as Fig. 2(c)] are added together. It would be beyond the
scope of this review to give the details of the above pro-
cedures whereby the higher-order corrections are rendered
finite. However, this has been discussed in great detail by
Buras (1980), for example.

One way of viewing the factorization procedure is to
think of partitioning a given process in the manner indi-
cated in Fig. 1. There is a hard smttering that takes place
between the interacting partons and that can be calculated
perturbatively. The distribution and fragmentation func-
tions relate the partons to the external hadrons. So far,
this is just the usual parton model picture. Now, howev-
er, certain elements of the parton scattering processes can
be thought of as being radiative corrections to the incom-
ing and outgoing partons. These radiative corrections
give rise to momentum-dependent distribution and frag-
mentation functions. The original scale-invariant distri-
butions have now been modified, and the changes with
momentum transfer are referred to as scaling violations.

In order to implement the factorization discussed
above, it is necessary first to specify a momentum scale at
which the procedure is to take place. The term "scale" is,
perhaps, somewhat overused. However, the terminology
is often encountered in the literature and I shall continue
to use it here. In the present context "scale'* can be
thought of as being synonymous with variable. The fac-
torization scale, denoted by M, is defined in terms of the
kinematic variables that describe the process under con-
sideration. The net result is to introduce a logarithmic
M dependence into the distribution and fragmentation
functions coming from the radiative corrections men-
tioned above. This logarithmic behavior is, in fact, the
remnant of the mass singulariti. es that have been factor-
ized off. If one works to all orders of perturbation theory
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da, (t)
dt

=p[a, (t)], (2)

where t =ln(Q /p ) and the function p determines the
change in the coupling as the renormalization point p is

and retains the leading logarithmic contribution from
each order, then this is the so-called leading-logarithm ap-
proximation. The final answer, then, in this approxima-
tion, consists of M dependent distribution and fragmen-
tation functions convoluted with the lowest-order parton
scattering subprocesses. It is also possible to include sys-
tematically the next-to-leading-logarithm contributions,
as will be discussed later in this section.

An additional modification to Eq. (1) must be made
when the effects of higher-order terms are incorporated.
It is possible to take into account certain vertex and gluon
propagator corrections by replacing the strong coupling
constant with one that depends on a momentum scale
characteristic of the process considered. This scale-
dependent, or running, coupling e, is introduced in the
process of solving the renormalization group equation.
When the process of renormalization is implemented, it is
necessary to specify a point at which the coupling of the
theory will be defined. This renormalization point mill be
denoted by a momentum transfer p. Now, different
choices of p will result in different values for the coupling
a, . Since o,, is dimensionless, the dependence on the re-
normalization point in regions of large momentum
transfers Q must be through dimensionless ratios of the
form Q /p . The dependence of a, on Q is given by

changed. p can be calculated for QCD using perturbation
theory (Gross and Wilczek, 1973a; Politzer, 1973), with
the result that to two-loop order

P(a, ) = ba—, ca—, ,

where

33—2f 153—19f
12m 24+2

with f denoting the number of quark fiavors. If Eq. (2) is
integrated using the one-loop approximation for p (c=0),
one finds

a, (0)
a, (t) = 1+a, (0)bt

The explicit dependence on a, (0) can be removed by de-
fining a scale parameter A by

A =pe
so that

, ( ')= (3)
(33—2f)ln(g /A )

The large momentum variable Q need not necessarily
be the same as the factorization scale M . The constant
A appearing in Eq. (3) sets the scale for the Q depen-
dence and will be discussed in more detail in connection
with the next-to-leading-order corrections.

In the leading-logarithm approximation the modified
form of Eq. (1) is now

Ec —— (AB~C+X)= g dx, dxbdz, G,&~(x„Md)Gbzz(xb, Md )Dc&,(z„Mf) 2 (ab ~cd)5(s+ t+ u ),do 2 5 dO

d pc abed zc 7r
(4)

with the subprocesses calculated using the strong running
coupling of Eq. (3). For the case of hadron or jet produc-
tion the relevant subprocesses include all possible two-
body quark-quark, quark-gluon, and gluon-gluon scatter-
ings. For the case of direct photons one must consider, as
well, the subprocesses qg~qy and qq~gy. The expres-
sions for these subprocesses are summarized in Table I.

Notice in Eq. (4) that allowance has been made for dif-
ferent factorization scales for the fragmentation and dis-
tribution functions. There are thus three different scales
that must be chosen —Q, Md, and Mf. The distinction
among the various scales is relevant when one considers
the next-to-leading-logarithm corrections. However, the
distinction can, in principle, be ignored if one is working
only in the leading-logarithm approximation, since then
all large momentum scales are equivalent.

It is perhaps appropriate at this point to discuss briefly
the limitations on the region of validity of Eq. (4). The
leading-logarithm approximation relies on the presence of
a single large momentum scale that characterizes the pro-
cess under consideration. For high-pT reactions, such a
scale cauld be pz, far example. The fact that there
should be only a single large scale can be shown by the

following simple argument. Suppose that one has two
such scales —Q~ and Q2 ——kg~, where k is a constant.
Then,

lngz ——ln(Q ~ )[1+(ink)/(lng ~ )]

=In(g()[1+ . . ]

=ln(gi ),

where the dots serve to indicate that the terms dropped
contained nonleading logarithmic terms. Therefore all
large scales are equivalent in the region where the
leading-logarithm approximation is truly applicable. This
region is where s — t ——u and —a, (Q ) is much less
than one. In practice, these two constraints are often sa-
tisfied only in regions for which there are no data. Thus,
when comparing predictions based on the leading-
logarithm approximation with available data, it may well
make a significant difference as to which choice is made
for the large scale. Examples of this will be discussed fur-
ther in Sec. III.

The formalism used in deriving Eq. (4) can also be used
to generate predictions for other types of observables,
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TABLE I. Expressions for the parton-parton two-body scattering differential cross sections. A factor of mn, /s has been factored
out of the purely strong-interaction processes. Factors of mo.o., /s and mo; /s have been factored out of the single- and double-
photon subprocesses, respectively. eq denotes the fractional charge of a quark. All of the Mandelstam variables refer to the parton
level (the caret symbol used in the text has been deleted for clarity).

Subprocess

qq'~qq' 4 s +u
9 t2

Cross section

qq qq t2 +4 s+u s+t
u

qq~q'q ' 4t+u
9 s2

4 s+u u+t
t2 2

8 u

27 st

gq ~gq 4 s u s+u
9 u s

qq ~gg
32 t u 8 t+u
27 u t 3 S2

Rg ~qq 1 t u 3t+u—+—
6 u t 8 s2

gR ~gg 9 tu su
3—————

s2 t2

2
eq u s+
3 s u

8 2 u—e —+—
9 ' t u

qq zr 2 4 t u—e —+—
3 u t

2

ln —— +2 ln
8m' 8 u' t u t

2

+u
1

2 s 2$ —u
1

s2 2

t2 u t u

2 2

+ 2
ln —+m +2 ln-t —u t

s u s u

2

1 s +t
1

2 s
2

s t
1

s s +u
1 2 s

2
$ u

1
$2 2 2 2

2 u2 t u t t2 u t u

2 2t+u ~2t ~ ~t —u~ t

s u s u.

s+t s s —t s+u s s —uln —— + + ln ——+
2
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such as correlations between a high-pT trigger hadron or
photon and additional hadrons or photons in the event.
Such correlations will be discussed in Sec. III in detail.
The required expressions are collected in the Appendix.

B. Distribution and fragmentation functions

In order to use Eq. (4) one must have available the
relevant distribution and fragmentation functions at the
appropriate factorization scales. These are typically ob-

tained by first fitting some parametrization to data from
deep-inelastic scattering or e+e annihilation at a scale
Qo. The evolution from Qo to some other scale Q can
then be calculated using the Altarelli-Parisi equations (Al-
tarelli and Parisi, 1977) for the distribution functions or
their equivalent for the fragmentation functions (Owens,
1978; Uematsu, 1978). These are a set of coupled
differential-integral equations that describe the Q depen-
dence of the quark and gluon distribution or fragmenta-
tion functions. For the case of the distribution functions,
they are

and

dGq ~z(x, Q )

dt

dGgi& (x,Q )

dt

~.(Q') j [&„(x/y) G,, ~~(y, Q')+P„(x/y)G,~~ (y, Q')]

a, (Q') & dy y &gq(x/y)Gq. /g(y, Q')+&gg(x/y)Gg/g(y, Q')
2~ ~ y 1

(5a)

(5b)

Here t is defined as ln(Q /A ). The splitting functions
P;~ can be found in Altarelli and Parisi, (1977), for exam-
ple, and are simply the inverse Mellin transforms of the
appropriate anomalous dimensions specified by the theory
(Gross and Wilczek, 1973b).

Recently an analysis of data from deep-inelastic
scattering, J/f, Y, and high-mass dilepton production
was performed in order to determine a set of nucleon-
parton distributions (Duke and Owens, 1984). If one uses
only deep-inelastic scattering data, there is not a great
deal of sensitivity to the gluon distribution function.
There is, instead, a strong correlation between the shape
of the gluon distribution and the value of A obtained in
the fitting process (Barnett and Schlatter, 1982; Devoto,
Duke, Owens, and Roberts, 1983). A harder (i.e., flatter)
gluon distribution results in a larger value of A and vice
versa. In addition, with the data sets currently available,
the precise choice of W and Q cuts, the Fermi motion
corrections, the parametrization choice, and the fitted x
range can strongly influence the final results (Devoto,
Duke, Owens, and Roberts, 1983). For these reasons it
was decided to use data from J/g, Y, and dilepton pro-
duction in the analysis, in an attempt to obtain more con-
straints on the fitted distributions. The results, referred
to as Set 1, yielded a relatively soft gluon distribution that
behaves roughly as (1—x) at Q = 10 GeV and a value
for A of 200 MeV. Of course, it can be argued that nu-
clear effects might complicate the interpretation of those
dilepton data obtained using nuclear targets, and that the
use of the J/P and Y data requires model-dependent as-
sumptions. Accordingly, a fit only to the deep-inelastic
data was performed, and the gluon distribution was con-
strained to be somewhat harder. This resulted in the Set 2
distributions with a value for A of 400 MeV. The input
gluon distributions at Qo ——4 GeV are shown for the two

2.0

1.0
x
(3
x 0 5

1

2
4 GeV

(a)

0.0

3.0

Al

O 2.0
x

x 1,0

Q = 1000 GeV

0.0

0.75—
Q
x 050
x

0.25

(c)

0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X

FICx. 3. Comparison of some of the Set 1 (solid curves) and Set
2 (dashed curves) parton distribution functions from Duke and
Owens (1984): (a) gluon distributions at Q =4 GeV; (b) gluon
distributions at Q =1000 GeV; (c) u-quark distributions at
Q = 1000 GeV . Each distribution has been multiplied by x.

sets in Fig. 3(a), while 3(b) shows a similar comparison at
Q =1000 GeV . As the value of Q is increased, the
evolution drives the two gluon distributions closer togeth-
er. The larger value of A associated with the harder
gluon results in a faster evolution than for the softer
gluon. Therefore at very large momentum transfers the
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differences between the predictions obtained with the two
different sets of distribution functions tend to diminish.
Specific examples of this effect will be shown in Sec. III.
In Fig. 3(c) the u-quark distributions from both Sets 1

and 2 are compared at Q = 1000 GeV . Again, very little
difference can be observed between the two at this large
value of Q . Convenient parametrizations of the two sets
of nucleon distributions can be found in Duke and Owens
(1984). That reference also compares the parametriza-
tions with others that have appeared in the literature.
Additional details of the analysis and the parametriza-
tions may be found in the indicated reference.

High-pT data are also available from pion beams. A
companion analysis to that of Duke and Owens has been
performed for pions (Owens, 1984), and parametrizations
corresponding to Sets 1 and 2 nucleon distributions are
contained therein. These two sets of pion and nucleon
distributions will be used throughout the remainder of
this review.

The fragmentation process, whereby the scattered par-
tons generate the hadrons in the final state, has been stud-
ied extensively in a variety of reactions, with the bulk of
our present information coming from e+e annihilation
studies. It is well known that if one wishes to describe ac-
curately the distributions of all of the hadrons simultane-
ously, then the simple concept of fragmentation functions
is not adequate. Instead, one needs to use more elaborate
event generators based on string or cluster models. How-
ever, the generalization of such models to high-pT
hadron-hadrori processes is a subject that is still under ac-
tive investigation (Sjostrand, 1985; Gottschalk, 1986).
Fortunately, the types of observables that will be con-
sidered in this review do not require the simultaneous
tracking of all the hadrons in a particular event. For
single-particle cross sections and two-particle correlations,
it often turns out that a simple set of fragmentation func-
tions is sufficient, as will be shown shortly.

The fragmentation functions to be used in this review
were obtained by first fitting data on hadron production
from relatively low Q deep-inelastic scattering and
e+e annihilation experiments. The fragmentation prod-
ucts include pseudoscalar and vector mesons as well as
baryons. The Q dependence was calculated using the ap-
propriately modified evolution equations (Owens, 1978;
Uematsu, 1978), and the vector mesons were then allowed
to decay, with the appropriate decay branching ratios tak-
en into account. This procedure is discussed in detail by
Owens (1979), who also gives the specific input parame-
trizations used. After the Q evolution and meson decay
steps, the fragmentation functions depend on both the
momentum fraction z and Q . The various distributions
were stored in a set of two-dimensional arrays, and inter-
polation between the tabulated Q and z points was used
to obtain the functions at the necessary values.

It is possible to illustrate the adequacy of these frag-
mentation functions by comparing them with data on the
z distributions of charged hadrons as measured both in
high Q e e anmhilation and in high-pT jet produc-
tion. In Fig. 4 the predictions based on the above simple

~ - ~ -~ W = 34 GeY
A = 400 MeY

10
0.4 0.6 0.8 1.0

FIG. 4. Comparison between the predictions of the simple frag-
mentation functions discussed in the text and data on hadron
production in e+e annihilation from Althoff et al. (1984).

fragmentation functions are compared with the charged-
hadron z distributions obtained by the Tasso Collabora-
tion (Althoff et al. , 1984). Although the good agreement
is encouraging, a number of cautionary comments are
necessary. First, the amount of scaling violation shown
can also be described by a model that incorporates mass
effects as well as some transverse momentum in the frag-
mentation process. Therefore the observed scaling viola-
tions may not really be testing the perturbative evolution.
Second, heavy-quark production has not been included in
the theoretical curve, even though this accounts for a
large part of the cross section. However, as a result of the
heavy flavor decays, these effects contribute to a lower re-
gion of z than is required for high-pT particle production,
for which it is the high-z region that is most important.
Thus the agreement shown in Fig. 4 indicates that the
fragmentation functions should be adequate for studying
quantities that depend on the z dependence of particle
production in the high-z region. This point is
strengthened by the results shown in Fig. 5, which is a
comparison of high-pT jet fragmentation data with pre-
dictions based on the simple fragmentation functions.
The data shown by the solid circles are from the AFS
Collaboration (Akesson et al. , 1984) and were obtained at
the intersecting storage rings (ISR) using proton-proton
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mentation function than that shown by the solid circles in
Fig. 5. However, the two data sets are consistent once the
systematic errors are taken into account.

Taken together, the results in Figs. 4 and 5 lend sup-
port to the idea that the simple fragmentation functions
discussed here are adequate for describing those distribu-
tions in high-pT processes that deal with one- or two-
particle distributions.

In the preceding section it was briefly mentioned that
direct photons are produced primarily through the two
subprocesses qg~qy and qq~gy. In addition, however,
one must also consider the possibility of bremsstrahlung
from the quarks participating in the hard scattering. The
photon couples to the electric charge of the quarks, and
the resulting pointlike vertex is the same as in quantum
electrodynamics. Thus the effective fragmentation func-
tions for obtaining photons from partons can be calculat-
ed. The resulting expressions are

10
0.6 1.0

zDr~q (z, g )=e; [1+(1—z) ]ln(g /A )2'

zDrgg(z, g )=0,

(6a)

FIG. 5. Comparison between the predictions of the simple frag-
mentation functions discussed in the text and data for jet frag-
mentation from the AFS CoHaboration (Akesson et al. , 1984)
and from the UA-1 Collaboration (Arnison et al. , 1986bj.

collisions at v's =62.4 CreV. At this energy, and in the

pT range studied, the dominant process should be quark
fragmentation. On the other hand, at the energies avail-
able at the CERN SOS Collider —v s =540—630 CieV—
the jets in the pT region around 30—60 G-eV should result
predominantly from gluons. The data shown by the open
circles in Fig. 5 are from the UA-1 Collaboration (Ar-
nison et aI. , 1986b) and are for jet fragmentation at an
average pr of 36 GeV. The steepening of the z distribu-
tion is well described by the simple fragmentation func-
tions and is due both to the perturbative evolution and to
the fact that the input gluon fragmentation function was
chosen to be slightly steeper than the valence quark frag-
mentation functions. It should be noted that data from a
more recent run at the ISR by the AFS Collaboration

0
(Akesson et a/. , 1986a) show a somewhat harder frag-

where e; is the fractional charge of the ith quark. In the
derivation of Eq. (6) an integration must be performed
over the transverse momentum of the photon with respect
to the quark. The upper limit for this integration has
been taken to be the typical hard-scattering momentum
scale Q discussed previously. The divergence associated
with the lower limit is regulated for massive quarks by
the quark mass itself. However, for massless quarks some
infrared cutoff is needed. The size of this cutoff should
be that of some characteristic hadronic scale. In Eq. (6a)
the cutoff has been replaced by the QCD scale parameter
A. The leading logarithm terms are unaffected by this re-
placement. Other choices would affect only the nonlead-
ing 1ogarithms, and, as such, would be beyond the
leading-logarithm approximation.

The photon fragmentation functions evolve with Q
just as the usual hadronic fragmentation functions do, as
a result of gluon bremsstrahlung and qq pair production.
The result is a softening of D&&q and the introduction of a
new fragmentation function Dr&q, which was previously
zero. The Q evolution can be derived from a set of cou-
pled equations similar to Eq. (5), but with an added term,
I'~«, that describes the splitting q~yq. The resulting
evolution equations are

dDriq (z, Q )

dt + [D&~q (y, g )Pqq(z/y)+D&~g(y, g )Pgq(z/y)]
a 21+(1—z) ~ (Q ) ' dy
2m' z 2m. ~ y

dDrgg(z, g )

dt
a, (g') & dy g Drqq (y, g')I'«(zly)+D q. (y, g')& (zg/y)2m. z y

(7b)
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These evolution equations are very similar to those used
to derive the evolution of the parton distributions in a
photon (DeWitt, Jones, Sullivan, Williams, and Wyld,
1979) and can be solved in a similar manner. For each
distribution there is a leading term that is proportional to
ln( Q /A ), and the functional form of the coefficient can
be calculated using the above equations. However, in or-
der to solve completely for the fragmentation functions,
one must specify the appropriate boundary conditions for
Eq. (7). These will contribute nonleading terms and must
be taken either from data or from some set of model-
dependent assumptions. The corresponding problem for
the distribution functions of partons in a photon (the pho-
ton structure function, in other words) has been discussed
extensively in the literature (Bardeen, 1984; Gliick, Gras-
sie, and Reya, 1984; Owens, 1985b).

The reason for going into such detail concerning the
photon fragmentation functions is their logarithmic
growth with Q . Put another way, the photon fragmenta-
tion functions are proportional to cz/a, (Q ). Now, the
lowest-order two-body subprocesses are proportional to
aa„whereas the two-body parton-parton subprocesses are
proportional to cz, . However, if one convoluies the
parton-parton subprocesses with the fragmentation func-
tion of a parton to a photon, the resulting contribution is
of order aa, . Therefore it is conceivable that the brems-
strahlung photons could be produced at a rate comparable
to those coming from the annihilation and Compton sub-

processes. This is a point of some importance, since the
underlying parton kinematics is quite different for the
two cases.

In the following, I shall use the leading term for each
of the fragmentation functions that results from solving

Eq. (7). The subleading terms coming from imposing
boundary conditions at some Qc will not be included,
since the relevant data are not available. However, experi-
ence with the corresponding problem in the case of the
photon structure function suggests that the leading term
will be approached from below in the high-Q limit and
that, therefore, the predictions for the bremsstrahlung
component to be presented later are actually overesti-
mates.

It is useful to have some simple parametrizations for
the photon fragmentation functions. The following set is
compact and accurately reproduces the exact leading-
logarithm solution:

10
t——zD (z) (QED)

7/u

zD (z)

~ "."zD (z) (x10)
fig

0.01
0 0.2 04 0.6 0.8 1.0

FICr. 6. Photon fragmentation functions: lowest-order QED
prediction for u-quark fragmentation (dashed curve); leading-
logarithm @CD prediction for u-quark fragmentation (solid
curve); leading-logarithm QCD prediction for gluon fragmenta-
tion (dotted curve). For ease of plotting, the gluon curve has
been multiplied by 10. A common scale factor and the logarith-
mic Q2 dependence have been divided out.

Eq. (6) are shown for a u quark as well. In all three cases
an overall factor of ln(Q /A ) has been removed. It is
clear that whereas the Q dependence is the same in both
Eqs. (6) and (8), the shapes of the quark fragmentation
functions are quite different. The QCD evolution (due
primarily to gluon bremsstrahlung) has considerably
softened the quark fragmentation function in the high-z
region. The evolution has also given rise to a small gluon
fragmentation function, but one can see that it is
suppressed to a large extent in the high-z region, which,
after all, is the dominant region for high-pT photon pro-
duction. These results will be used in Sec. III, where the
relative rates of the bremsstrahlung, Compton, and an-
nihilation terms will be discussed.

2) a z 2.21 —1.28z+ 1.29z
2~ '

1 —1.63ln( 1 —z)

+0.002(l —z) z ' ln(Q /A ) (8a)

and

zDygg(z, Q ) = 0.0243(1 —z)z 97ln(Q2/A ) .
2m-

(8b)

In Fig. 6 the results from Eq. (8) are shown for both
the gluon and the u quark. For comparison the results of

C. Higher twist contributions

The two-body subprocess cross sections listed in Table I
all have in common the feature that dimensionally they
are proportional to GeV and that this dimension must
be supplied by some combination of s, t, and u. This fol-
lows from the fact that the relevant strong and elec-
tromagnetic couplings are dimensionless and that there is
no other mass scale for the subprocesses, the partons al-

ways being treated as massless. %'hen combined with Eq.
(1), this result allows one to construct a scaling relation-
ship for the invariant cross section. This may be done
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equally well for jets, hadrons, or photons —I shall use
photons for the purpose of this discussion. The invariant
cross section depends, in general, on three kinematic vari-
ables. These can be chosen in such a way that two are di-
mensionless, e.g., s, xT, and 0 or, equivalently, p~, xT,
and 8. If we consider the behavior of the invariant cross
section when the two dimensionless variables are held
constant, then the dimensionality argument given above
allows us to determine the dependence on the third
(dimensioned) variable. Specifically we can write

Z(x„e)E (AB~y+X) =
'dp PT

(9)

with n=4 and where F(xT,O) is a dimensionless func-
tion. However, when one makes the transition from the
parton model to QCD perturbation theory, as embodied
in Eq. (4), the simple dimensional arguments no longer
hold. The QCD scale parameter A, whose existence can
be traced back to the need for specifying a renormaliza-
tion point that has the dimensions of a momentum, al-

lows for more complicated dependences on the kinematic
variables. Specifically, there is the logarithmic depen-
dence on the factorization scales and the logarithmic
dependence on the argument of the running coupling.
Both of these logarithmic dependences tend to enhance
the rate of decrease of the cross section with increasing
pT. That is, the power of 4 in Eq. (9) is increased some-
what, the exact amount depending on the kinematic re-
gion and the actual reaction considered. The effect- is
largest for hadron production because of the extra scale
violation associated with the fragmentation functions, and
it is smallest for direct-photon production because there is
one less factor of a, .

Experimentally, it was observed that the data for high-

pT meson production obeyed Eq. (9) rather well, provided
that n=8 was used. The scaling violations could, at
most, raise the value of n from 4 to approximately 6. The
net result was that the cross section was underestimated
theoretically in the region of pT below about 7 GeV, for
Vs in the ISR range or below, i.e., below about 60 GeV.
One method of resolving this disagreement would be to
have additional production mechanisms that obeyed scal-
ing laws different from those of the simple two-body sub-
processes discussed thus far. One such model was pro-
posed by Blankenbecler, Brodsky', and Gunion (1972,
1973, 1975) and was termed the Constituent Interchange
Model, or CIM. The application of this model to high-pT
processes is reviewed in detail by Sivers, Brodsky, and
Blankenbecler (1976) and Blankenbecler, Brodsky, and
Gunion (1978). The CIM is characterized by subprocesses
that involve composite objects, e.g., mesons, baryons, and
diquarks, in addition to quarks and gluons. The original
CIM calculations contained phenomenological couplings
that carried dimensions and that therefore resulted in sub-
processes obeying different scaling laws. In Jones and
Gunion (1979) it was demonstrated that a consistent
description of the high-p~ meson and baryon production
data could be obtained by combining the various CIM

subprocesses (such as Mq —+Mq, qq~MM, etc., where M
stands for a meson) with the lowest-order QCD sub-

processes discussed above. This same approach was ap-
plied to direct-photon production in Horgan and Schar-
bach (1981)and in Ruckl, Brodsky, and Gunion (1979).

The existence of these additional subprocesses gives rise
to new types of quantum number correlations. For exam-
ple, the presence of the m q +n —q subprocess gives rise
to a large m /sr+ cross-section ratio in m p interactions
that increases with increasing transverse momentum
(Jones and Gunion, 1979). Such correlations were sought,
but effects of the predicted size were not found (Frisch
et al. , 1980). Subsequently, techniques were developed
for calculating the normalizations of the CIM sub-
processes within QCD, and the phenomenological cou-
plings were found to give contributions that were of order
10 times too larger (Farrar and Fox, 1980). In Berger,
Gottschalk, and Sivers (1981) a similar but more detailed
study of the dominant CIM terms was made. Their con-
clusion was that the CIM terms could have a significant
effect in the region of pT (6 GeV/c with xT &0.5. This
region lies outside that covered by presently available
data. %'hile these studies resolved the question of the
quantum number correlations by lowering the normaliza-
tion of the CIM terms, there remained the need for a
solution to the problem of the scaling behavior. More
will be said about this point later.

This capsule summary of the history of CIM calcula-
tions is meant only to serve as an introduction to the
present-day higher twist calculations and does not ade-
quately reflect the huge amount of theoretical and experi-
mental effort that have been devoted to this topic. The
interested reader is referred to the literature listed above.

The current terminology for the types of subprocesses
that used to comprise the CIM is "higher twist" —a
phrase that, itself, is a relic of the past when the operator
product expansion was the chief tool for obtaining pertur
bative QCD predictions for deep-inelastic scattering.
Simply stated, the term as used today refers to contribu-
tions that are suppressed by powers of large momenta
with respect to the leading terms. This power-law
suppression is to be distinguished from the logarithmic
modifications that have been discussed above.

For reactions involving photons, several calculations
have been performed for subprocesses for which the nor-
malization can be calculated in terms of experimentally
measured quantities. Specifically, calculations have been
performed using the subprocess yq~~q (Bagger and
Gunion, 1982) in a study of the relative sizes of the higher
twist and leading twist terms in high-p~ photoproduction.
The time-reversed subprocess mq~yq was used in a simi-
lar study for direct-photon production (Berger, 1982).
Both of these calculations start by assuming a model for
the pion wave function P (x,Q ), which is defined as the
probability amplitude for finding a quark and an anti-
quark in the pion with momentum fractions x and
(1—x), respectively, and which are collinear up to trans-
verse momenta of order Q. P can be related to the pion
electromagnetic form factor F:
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Q E (Q )= —,'~C2(R)a, (Q ) 2 I P (x, Q )

The asymptotic form of the pion form factor can be cal-
culated, and some data exist at relatively low Q, as well.
Therefore, it is possible to obtain a model-dependent esti-
mate for the pion wave function P (Bagger and Gunion,
1982; I.epage and Brodsky, 1980). The invariant cross
section for direct-photon production takes the form
(Berger, 1982)

(10a)

where the subprocess cross section is given by

(ezs+ e &
u )= —aaF (s) + (10b)

Here e~ and e2 label the quark (not antiquark) electric
charges in the pion.

In Eq. (10b) the presence of the pion form factor gives
an extra factor of s in the denominator. This gives rise to
a pT scaling form in the sense of Eq. (9). One might ex-

pect this contribution to dominate those of the Compton
and annihilation graphs (the so-called leading twist terms)
at sufficiently small pr. In addition, notice that in Eq
(10a) there is only one structure function, whereas the
two-body leading twist subprocesses all involve two struc-
ture functions in the initial state. The structure functions
typically fall off as a power of (1—x), the precise ex-

ponent depending on the parton flavor and the type of
parent hadron. Furthermore, the argument x goes
smoothly to I as the edge of' phase space is approached.
In this region, therefore, the leading twist terms are
suppressed by an additional factor of (1—x) to a power,
relative to the higher twist contribution.

I have used the pion wave function given in Bagger and
Gunion (1982) to estimate the size of the higher twist con-
tribution relative to that for the leading twist terms. At
Vs =31 GeV for 8=90' and pT below about 7 GeV, the
higher twist contribution is suppressed by about 2 orders
of magnitude relative to the leading twist predictions to
be discussed in Sec. III. However, as one approaches the
edge of phase space, the leading twist contribution
steepens and that of the higher twist term flattens, leading
to an eventual crossover, as expected. This crossover is in

a region where xT near 1 and the cross section is extreme-

ly small. It is therefore likely that a careful study of
specific triggers that exploit the characteristic signatures
of the higher twist subprocesses will be required in order
to separate the two contributions. Additional discussion
of the phenomenology of the higher twist terms can be
found in Berger (1982). There the relative suppression be-

tween the two types of terms is somewhat less than that
quoted above, since not a11 of the possible contributions
from the leading twist terms have been included. Howev-

er, the trend is the same.

One may wonder whether there are any other higher
twist contributions that could make significant contribu-
tions. The crossed subprocess qq ~@M will be
suppressed by a combined spin and color factor of
Moreover, the presence of a second structure function in
the initial state provides further suppression. Terms in-

volving diquarks, such as q(qq)~yq, will be similarly
suppressed. Furthermore, the normalization is not easily
calculated for the diquark subprocesses.

At this point it appears as if the higher twist terms do
not make significant contributions in the regions where
data are available. However, they can become important
near the edge of phase space, and their effects have been
found in several recent experiments. For example, in
high-mass dimuon production by pions the polarization
of the dimuon system is predicted to have a strong varia-
tion as x~~1 (Berger and Brodsky, 1979; Berger, 1980a,
1980b) due to the presence of higher twist subprocesses
mq~y*q. Several experiments have now detected this ef-
fect (Anderson et al. , 1979; Palestini et al. , 1985). A
second example is in the production of jets by pion beams.
The subprocess nq —+gq produces events with two high-pT
jets and few forward-going particles, i.e., the usual beam
jet is missing. Evidence for events of this type has recent-
ly been reported by the E-609 Collaboration (Naudet
et al. , 1986).

In summary, there is Inounting evidence for higher
twist effects near the edge of phase space and at approxi-
mately the expected level. Whereas these effects are too
small to be detected in the kinematic regions covered by
current direct-photon data, it may be possib1e to find
them with a high-statistics experiment and a specialized
trigger.

D. kT smearing

In the previous discussion it was pointed out that the
original leading-logarithm calculations for high-pT had-
ron production all gave results that were below the data in
the pz region below about 7 GeV, for v's below about 60
GeV. Furthermore, the scaling law obeyed by the data,
which clearly showed n= 8 for meson production, did not
agree with the leading-logarithm QCD predictions, which
gave n =6. The CIM subprocesses were discussed as one
possible way of simultaneously solving both of these defi-
ciencies. A second attempt centered on the idea that the
colliding partons might have some initial transverse
momentum kT with respect to the incoming hadrons.
This analog of the Fermi motion of nucleons in a nucleus
would give rise to a smearing out of the pT spectrum.
Since the invariant cross section falls at the rate of an or-
der of magnitude per GeV of pT in this region; it would
not take a large amount of smearing to make a significant
effect. There could also be an additional smearing due to
the kT associated with the fragmentation in the final
state.

The steeply falling single-particle spectrum results from
a number of different factors. First, for coHinear interac-
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tions, as the transverse momentum of the observed parti-
cle is increased, the minimum values of s, t, and u all in-
crease in magnitude. Thus the cross sections for the indi-
vidual subprocesses decrease. Second, the minimum
values of x, and xb [see Eq. (A5)] also increase. This
occurs in a region in which the parton distribution func-
tions are rapidly decreasing functions of x. Finally, the
average value of z in the fragmentation increases with in-
creasing transverse momentum, which leads to an addi-
tional decrease of the cross section from the fragmenta-
tion functions. The net result of these effects is the rapid
falloff seen in both the data and the calculations.

Now, suppose that the initial partons are not quite col-
linear with the beam and target axis, i.e., that the initial
partons themselves have some transverse momentum kT.
Since part of the total transverse momentum is supplied
by the initial quarks themselves, the amount supplied by
the hard scattering is decreased. Thus the existence of kr
can lead to an increase in the cross section. (If a single-
arm trigger is used, it will preferentially select those
events in which the initial quarks already had some trans-
verse momentum toward the detector. This phenomenon
is sometimes referred to as "trigger bias. ")

As discussed above, the problem in the moderate-pT re-
gion is not so much that the cross section is too low, but
rather that the scaling behavior is wrong. Consider what
happens when pT is increased while xT is held constant.
The x, and xb integration ranges stay the same while
both pT and s are increased. Therefore, as can be seen
from the kinematics in the Appendix, the minimum
values of s, t, and u also increase. Suppose that the par-
ton k~ distribution is assumed to arise via the uncertainty
principle and the fact that the partons are confined within
the hadrons. In this case the average value of the parton
transverse momentum would be set by a characteristic ha-
dronic size and the distribution would not change with s.
This would mean that the effect of the smearing on the
parton Mandelstam variables would become less pro-
nounced as s increased at fixed xz. But this means that
the cross section would fall more rapidly with increasing

pT (or s) at fixed xT than if the smearing were not
present at all. Therefore the scaling exponent n in Eq. (9)
would be increased. It is for this reason that various
models for the inclusion of these "intrinsic" transverse-
momentum effects have been proposed. Phenomenologi-
cal studies of these effects include, for example, those of
Feynman, Field, and Fox (1978), Owens and Kimel
(1978), and Field (1979).

In the parton model approach it is assumed that the
average value of the intrinsic transverse momentum re-
Aects the size of the hadron via the uncertainty principle.
This leads to the expectation that (kT) may be in the
range of several hundred MeV. This is in accordance
with the observation that inclusively produced pions have
an average pT of about 300 MeV, This simple idea is
complicated by the fact that there are other sources of
parton transverse momenta as soon as one considers the
various subprocesses given by QCD. For example, the
2~3 subprocesses with an additional radiated gluon give

rise to the same type of effect as discussed above. In fact,
it is difficult theoretically to separate the intrinsic kT
from the radiative corrections, since they ultimately come
from the same source —quark and gluon interactions.

A particularly good reaction for studying these
transverse-momentum effects is high-mass lepton pair
production. The lowest-order subprocess is qq —+I+(
If only this subprocess is used, the transverse momentum
of the lepton pair gives a direct measure of the intrinsic
parton transverse momentum. For example, data at
v s =27.4 GeV (Kaplan et al. , 1978) indicate (pr ) =1.9
GeV . This corresponds to an intrinsic (kT) of 0.95
GeV or, assuming a Gaussian shape; ( kr ) =864 MeV—
clearly larger than expected. However, the next-order
subprocesses —gq ~I+I q and qq ~I+I g—will give
rise to a lepton pair transverse-momentum distribution
with a characteristic pT tail at high values of pT. If
these terms are included, then the value of the intrinsic
kz is reduced to about 600 MeV (Field, 1978). The con-
volution is, however, a model-dependent prescription for
incorporating the effects of the intrinsic kT. Neverthe-
less, this example demonstrates that the amount of intrin-
sic kT needed to describe the data is strongly affected by
the amount of QCD dynamics included in the calculation.
In general, as more calculable QCD terms are included,
the size of the deduced intrinsic term is decreased.

Those who are interested in studying this issue in more
detail should consult the papers of Altarelli, Ellis, Greco,
and Martinelli (1984) and Collins, Soper, and Sterman
(1985), in which a complete formalism for describing the
lepton pair pz distribution has been worked out.

In addition to the theoretical problems of defining "in-
trinsic transverse momentum, " there are also ambiguities
in how one incorporates the distributions into a specific
calculation. Various assumptions must be made, and this
introduces a certain amount of model dependence into the
calculations. In what follows I shall describe a particular
way of handling the k~ smearing, but it is by no means a
unique description. The first step is to make the follow-

'

ing replacement in Eq. (4),

dx, G,~~(x„Q)~dx, d kz;f(kryo)G, ~~(x„Q),

where the distribution f(kT, ) is taken to be of the form

(12)

for which the relation (kT) =4(k )Tier is satisfied. A
substitution of the same form as Eq. (11) is also made for
parton b.

Having made the assumption that the intrinsic
transverse-momentum distribution can be factored out of
the longitudinal distribution as shown in Eq. (11),we need
next to decide how to construct the four-vectors of the
colliding partons. The prescription that I shall use is to
define the momentum fraction x in terms of the light-
cone variables. If we ignore parton and hadron masses,
then
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x, =(E,+p, l)/V's

and the parton four-vector is

S'a=«. kT. p.i»
with

2
kTaE.= —x,vs+2, x~&s

L

and

kT.
pal = xa v &-

Xg~s

Similar expressions exist for partons b and c, except that
allowance must be made for the fact that the longitudinal
momentum of b is in the opposite direction from that of
a.

With these expressions it is reasonably straightforward
to evaluate the invariant cross section with kT effects in-
cluded. The invariant cross section for hadron produc-
tion now involves an eight-dimensional integration, so
that Monte Carlo techniques are usually employed. There
are several subtleties left to discuss, however. In the for-
mulation shown above, it is possible for p, I to become
negative if ~kT,

~

exceeds x, vs. Such events must be
discarded in the evaluation of the integral, since this cor-
responds to having the parton going toward the wrong
hemisphere. A.iso, if the kT's become too large, one or
more of the Mandelstam variables can approach zero, and
excessively large weights will then be generated. This cor-
responds to a situation in which the large transverse
momentum is being generated by fluctuations in the in-

trinsic kT distribution and not by the hard scattering it-
self. Such a situation is difficult to reconcile with the use
of perturbation theory, in which a, is assumed to be small
due to the presence of the large momentum transfer. The
cutoff procedure mentioned above avoids this problem.
An alternative method for avoiding the s-, t-, and u-

channel singularities is to give the partons an off-shell
mass proportional to kT (Caswell, Horgan, and Brodsky,
1978). The expression for this off-shell mass can be de-
rived by working out the kinematics for a massless parton
splitting into another massless parton plus one that is
off-shell and has a transverse momentum kT with respect
to the initial parton. This procedure is often referred to
as off-shell kinematics, whereas the procedure discussed
previously uses on-shell kinematics throughout. In actual
practice, if one uses some cutoff scheme in order to avoid
the propagator poles and if (kr ) is not too large, the
various schemes yield similar results.

In Sec. III a detailed comparison between the theoreti-
cal predictions and the data will be presented. At that
time the effects of the on-shell kT-smearing approach will
be discussed further.

E. Next-to-leading-order calculations

Up to this point in the review the contributions from
subprocesses with more than two partons in the final state

have been treated only in the leading-logarithm approxi-
mation. Before discussing the nature of the higher-order
calculations, a few comments concerning terminology
may prove helpful. The leading-logarithm calculations
discussed thus far have been based on the factorization
ansatz implicit in Fig. 1. The hard-scattering subprocess
is calculated using perturbation theory. The first term in
the series will start with a characteristic power of u„e.g.,
a, for two-body parton scattering. All higher-order sub-
processes, i.e., those with more than two partons in the fi-
nal state, are treated in the leading-logarithm approxima-
tion, and the results are incorporated into the various
scale-dependence distribution and fragmentation func-
tions. In addition, the one-loop expression for the run-
ning coupling is used. This procedure represents an all-
orders calculation, but one in which only the leading-
logarithm terms are retained. In this approximation, the
additional partons, beyond those present in the lowest-
order term, are parallel to the beam, target, trigger, or
recoil directions. Therefore the kinematics is unchanged
from that used for the lowest-order calculation. The next
step in improving upon the leading-logarithm approxima-
tion would be to retain all those terms which are
suppressed by one power of a large logarithm with respect
to the leading logarithm terms. Such a calculation also
includes terms with no large logarithms. These are some-
times referred to as the "constant pieces. " To do this re-
quires that the next term in the hard-scattering series be
calculated exactly. In the case of parton-parton scatter-
ing, this means calculating the O(a, ) contribution. Thus
such a calculation is sometimes referred to as a next-to-
leading-order calculation. The result obtained is equal to
the leading-logarithm result plus all the next-to-leading
logarithm terms (including the constant pieces) and is
therefore sometimes referred to as a next-to-leading-
logarithm calculation. However, both terms refer to the
same type of calculation.

There are at least two reasons for wanting to calculate
the next-to-leading logarithm terms. The first has to do
with the appropriate choices for the factorization scales
and the argument of the running coupling, and the second
is related to the question of whether or not the perturba-
tion series is converging. As was discussed earlier in this
section, the parton distribution and fragmentation func-
tions must be defined using some suitable reference pro-
cesses. Furthermore it is necessary to specify the factori-
zation sca1es in terms of the kinematic variables for the
reaction being studied. These two steps together consti-
tute a specific factorization prescription. A detailed study
of the effects of various prescription choices is contained
in the article of Celmaster and Sivers (1982), where addi-
tional references to this subject may be found. In addition
to the factorization prescription, a renormalization scheme
must also be chosen in order to treat the ultraviolet singu-
larities that arise from loop graphs such as those in Fig.
2(e). The specific choice made will, in turn, serve to de-
fine the running coupling a, . If, in the calculation of
some process, all orders of perturbation theory were re-
tained without approximation, then the final answer
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would be independent of the various choices made for the
factorization prescription and. the renormalization
scheme.

In the leading-logarithm approximation we have seen
that there is an equivalence among all "large scales. "
However, this equivalence is only a formal one, and the
actual numerical value of the result often depends quite
strongly on the choices made. When the next-to-leading
logarithm terms are retained, some of this sensitivity is
reduced, since a change in the factorization scale is par-
tially compensated by the subleading logarithms. Indeed,
one method for specifying the factorization scale is to
choose the definition that minimizes this sensitivity
(Stevenson, 1981a, 1981b). In addition, there is no depen-
dence on the renormalization convention at the leading-
logarithm level. In order to determine the QCD scale pa-
rameter A in a particular renormalization scheme (MS,
MOM, etc.), at least the next-to-leading terms must be
calculated.

The second, related point concerns the convergence of
the perturbation series. In some instances the series ap-
pears to be under control, in the sense that the next term
in the perturbation expansion is sensibly small with
respect to that which precedes it. However, there are
well-known cases in which the corrections are quite large.
One such example is the production of lepton pairs in
which the next-to-leading-logarithm calculation yields a
contribution nearly as large as the leading one. A termi-
nology has evolved whereby this is usually described in
terms of a "K factor, " the precise definition of which
varies to some extent. Since the term has different mean-

ings for different people, I shall refrain from using it
wherever possible. However, it will occasionally be neces-
sary to discuss results quoted in terms of a E factor. For
the purpose of this review I shall define it in the following
way. Write the perturbation series result for some process
at the parton level as

(13)

so that the deviation of E from 1 gives a measure of the
importance of the higher-order terms in the series. In the
lepton pair production example the next-to-leading terms
alone give rise to a SC factor of approximately 2, making
it difficult to have much faith in the convergence of the
series. It appears, however, that at least a portion of the
perturbative correction can be. exponentiated, with the
remaining corrections being relatively small. This ques-
tion of exponentiation has recently been discussed by Ster-
man (1986, 1987). A review of earlier work can be found
in these references as well.

A complete next-to-leading-logarithm calculation exists
for the single-photon inclusive invariant cross section
(Aurenche, Douiri, Baier, Fontannaz, and Schiff, 1984,
1985). A selection of the graphs considered is shown in
Fig. 2. This calculation includes all subprocesses in
which the photon interacts directly in the hard scattering.
In principle, one should also include all possible 2~3 or-
der u, subprocesses convoluted with the order a/u, pho-
ton fragmentation functions. These contributions have

not been included in the present calculation. The calcula-
tion of all 2~3 parton subprocesses by Ellis and Sexton
(1986) now makes this a straightforward, although
1engthy, task. However, the neglect of these terms is not
unreasonable, since they are corrections to the brems-
strahlung contribution, which is already rather small.

1. Complete calculations

In order to understand some elements of the next-to-
leading-order calculations to which we shall refer later, it
will be useful to outline the procedures utilized in such a
calculation. This discussion will be extremely brief, and
additional details can be found, for example, in the paper
of Buras (1980). The graphs shown in Fig. 2(e) give rise
to a variety of infrared and ultraviolet singularities, which
must be regularized or rendered finite. The most com-
mon procedure utilized today is called dimensional regu-
larization ('t Hooft and Veltman, 1972). This method is
easy to implement and has the technical virtue of being a
gauge-invariant regularization scheme. The calculation i.s
first performed in n =4—2e space-time dimensions,
which converts the logarithmic singularities into poles in

The ultraviolet singularities thus isolated can be sub-
tracted off once a specific renormalization scheme has
been chosen. Subsequently, the infrared singularities as-
sociated with the virtual graphs [such as Fig. 2(e)] are
canceled by corresponding singularities in the tree graphs
[such as Fig. 2(c)]—in QED this is a consequence of the
Bloch-Nordsieck theorem (Bloch and Nordsieck, 1937).
Finally, the collinear singularities, which give- rise to the
scaling violations in the distribution and fragmentation
functions, must be removed. Their effects are already in-
cluded in the leading-logarithm portion of the calculation.
The result remaining after this procedure constitutes the
next-to-leading-logarithm contribution. The relative size
of this contribution, with respect to that of the leading
terms, is controlled, in part, by the choices made for the
factorization and running coupling scales. Indeed, dif-
ferent choices can even lead to a change of sign for the
next-to-leading terms. The dependence on the choices for
these scales can be exploited in a variety of ways. For ex-
ample, it may be possible to find a range of values for the
scales over which the total result shows little variation.
This represents an approximation to the stability, which
should be possessed by an exact, all orders calculation. It
may also be possible to choose the scales in such a way
that the next-to-leading contribution becomes zero. In
practice, these two schemes often yield very similar re-
sults for the final answer. Specific examples will be
presented in Sec. III.

2. K factors and soft gluons

The calculation of the next-to-leading-order corrections
is a rather lengthy process, which often results in cumber-
some expressions involving many terms. Approximate
methods that would at least indicate whether large pertur-
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bative corrections are present in a given process have,
therefore, been sought. One such approach (Contogouris,
Papadopoulos, and Ralston, 1981, 1982) makes use of the
fact that the largest corrections are often associated with
virtual diagrams that can give rise to terms containing
factors of n . These result from the analytic continuation
of various logarithms from spacelike to timelike regions.
This particular class of terms can be calculated in what is
known as the "soft-gluon approximation. " As mentioned
above the singularities associated with the virtual graphs
are canceled by singularities coming from tree graphs.
The relevant tree-graph singUlarities originate from a re-
gion in phase space corresponding to vanishing momenta
for the unobserved final-state gluons. It is possible to
make a systematic expansion of the various integrands,
dropping terms that are proportional to positive powers of
the vanishing gluon momenta. This results in a consider-
able simplification, and the full result is proportional to
just the lowest-order term. A second type of m term is
associated with soft collinear gluon bremsstrahlung and
can be calculated in an approximate manner (Conto-
gouris, 1982). A systematic study of such terms has been
presented by Contogouris and Tanaka (1985, 1986). They
find that the answer is always of the form

o.=o'ol 1++~(Q )C]

where C is a subprocess-dependent constant. The pro-
ponents of this approach claim that one can reliably
determine which reactions are going to have large next-
to-leading-order corrections and, further, that the magni-
tude of the corrections can be approximately determined.
A survey of results (Contogouris and Tanaka, 1986) ob-
tained for processes involving real photons offers some
support to this contention, although not without qualifi-
cation.

There is, however, a basic limitation to this approach.
The simple form shown in Eq. (14) does not contain the
full dependence on the renormalization or factorization
schemes that is found in the complete next-to-leading-
order calculation. Therefore it is not possible to use the
soft-gluon results in a systematic program for measuring
A in a particular renormalization scheme. Furthermore
there is no way to use one of the optimization techniques
to determine the factorization scale.

For some processes the complete next-to-leading-order
calculations have been performed. It has, therefore, been
possible to compare the exact results with those from the
soft-gluon approximation. The two sets of results are
often in reasonable agreement, provided that the factori-
zation and running coupling scales are chosen to be equal
to a large momentum that is characteristic of the process,
e.g. , pT in the case of direct-photon production (Conto-
gouris and Tanaka, 1986). Of course, if one has the com-
plete calculation available, the relative size of the leading
and next-to-leading terms can be varied by choosing dif-
ferent scales, while the same is not true in the soft-gluon
approach. It is for this reason that some care must be
used when interpreting the soft-gluon results.

In many cases the soft-gluon "K factors" lead to an in-
crease of the leading-logarithm predictions by a factor of
about 2. Such a variation can also be achieved by reason-
able variations in the choice of the factorization and run-
ning coupling scales. Specific examples will be presented
in the next section.

At this point all of the major ingredients of typical
QCD calculations for high-pT processes have been
covered. In the next section specific examples of such
calculations will be compared with data. Special attention
will be devoted to the topics discussed in this section,
such as the choice of the factorization scales, the effects
of nonleading logarithms, and kT smearing.

ill. COMPARlSON WITH DATA

A. Jet and single-particle cross sections

Having reviewed the basic formalism for calculating
cross sections for high-pT processes, it is now time to
compare the theoretical results with the data. At first
this comparison will be restricted to predictions based on
the leading-logarithm approximation. This means that
there will be a certain amount of freedom in choosing the
various factorization and running coupling scales. For
now, I shall take all of these scales to be the same, and
refer to the common scale as Q . In addition, the uncer-
tainties associated with different choices for the distribu-
tion functions, the QCD scale parameter A, and parton
kT smearing must all be examined. It would, of course,
be possible to perform a systematic study of these uncer-
tainties using just the data for direct-photon production.
However, the basic formalism applies equally well to had-
ron and jet production, for which data are available over a
similar kinematic range. By using data on all three types
of processes we shall be able to explore more thoroughly
the basic predictions of the formalism developed in Sec.
II. The main goal of this section is to demonstrate the
strengths and weaknesses of the leading-logarithm ap-
proximation as applied to large-transverse-momentum
processes. %'ith this as background the reader will be
better able to appreciate some of the subtleties associated
with the next-to-leading-order calculations.

Many authors have published leading-logarithm calcu-
lations for the types of observables to be discussed in this
section. Indeed, one style of review would be to simply
collect a representative sampling of such calculations and
present them together. However, such an approach does
not allow for the careful investigation of the various fac-
tors discussed in Sec. II. Therefore I have elected to per-
form all of the leading-logarithm calculations discussed in
this section. This approach will allow me to discuss
separately the uncertainties associated with the parton
distributions, scale choices, etc. Similar work by other
authors will be discussed at the relevant points in the text.

The Appendix contains expressions for the various ob-
servables that mill be used in this review. Perhaps the
simplest is the cross section for di-jet production [see Eqs.
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(A7) and (A9)]. If one considers only 2~2 hard scatter-
ing in the leading-logarithm approximation. and uses col-
linear kinematics, then measuring the momenta of both
jets completely determines the parton-level kinematics.
Data are available from the UA-2 Collaboration (Appel
et al. , 1985) at v s =546 and 630 GeV for di-jet masses
above 30 GeV. This corresponds roughly to pT's being
above 15 CxeV, since the data have been presented with
both jets havmg

~ g ~

&0.85, where g is the jet's pseudora-
pidity. In Fig. 7 predictions are shown for the jet mass
distributions at both energies, along with the data of the
UA-2 Collaboration. Integrations over the above pseu-
dorapidity range have been performed. The solid and
dashed curves correspond to Set 1 (A=0.2 GeV/c) and
Set 2 (A=0.4 GeV/c) structure functions, respectively.
The choice Q =2pT has been used. The two sets of par-
ton distributions yield very similar predictions over the
mass range shown. As was discussed in Sec. II.B, the
evolution of the distribution functions drives the two sets
to very similar shapes at high values of Q . For this
kinematic range there is, therefore, little reason to prefer
one set over the other. Data have also been presented by
the AFS Collaboration (Akesson et al. , 1986a) at
~s =63 GeV. These are compared with Sets 1 and 2 pre-
dictions in Fig. 8. Again, with Q =2pz, the theoretical
curves describe the data rather well. Notice that the
difference between the two curves is somewhat larger here
due to the lower values of Q . This trend continues as
the energy is lowered further. Predictions using the same
choices as discussed above are compared in Fig. 9 with
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di-jet data at Vs =27.4 GeV from experiment E-609 at
Fermilab (Arenton et a/. , 1985). Again the spread be-
tween the two curves has increased. However, the
theoretical band is in reasonable agreement with the data,
especially if ones takes into account the 7% uncertainty
in the transverse-momentum scale. Incidentally, note that
the three data sets shown in Figs. 7—9 are all presented
for slightly different observables. Therefore the data sets
cannot be directly compared with each other. In particu-
lar, it is not possible to see if they satisfy a scaling law of
the form shown in Eq. (9). Nevertheless, the differences
between the different observables have been taken into ac-
count in the theoretical calculations, and the agreement
between the predictions and the data shows that the ob-
served energy dependence is in agreement with the
theoretical expectations.

Next, consider the single-jet cross section [see Eq.
(A3)]. New results from the UA-1 Collaboration (Ar-
nison et al. , 1986a) and the UA-2 Collaboration (Appel
et al. , 1985) are shown in Fig. 10 together with theoreti-
cal predictions made with the Set 1 distributions and

Q =pr (solid curve), pr/4 (upper dashed curve), and 4pT
(lower dashed curve). This observable involves a single
integration over one of the parton momentum fractions,
which tends to further decrease the differences between
predictions from Sets 1 and 2 distributions —for this case

they are barely distinguishable. The variation due to dif-
ferent definitions of Q is larger than that due to the dis-
tribution choice and, for clarity, only the Set 1 predictions
are shown.

The variation in the cross section shown in Fig. 10 due
to the different Q definitions amounts to about a factor
of 3 across the entire pz range shown. This variation is
larger than that which would result from choosing a sin-
gle scale and introducing "E factors" as calculated using
the soft-gluon approximation. As mentioned in Sec. II.E,
such K factors do not contain the next-to-leading terms
that partially compensate for changes in the Q defini-
tion. Thus one does not know a priori which of the
choices should be used when the K factors are included.
To put this another way, any set of predictions obtained
using the K factors can be duplicated without them, but
with another choice made for the definition of Q . This
ambiguity is a feature of the leading-logarithm approxi-
mation that must be understood and allowed for.

Predictions for the single-jet cross section at lower ener-
gies are compared with available data in Fig. 11. All
three data sets have been analyzed in the same way, using
similar jet definitions. This is an important point, espe-
cially at the lower energies where the jet signals are rela-
tively harder to separate from the minimum-bias back-
ground. The three curves at each energy correspond to
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FIG. 11. Comparison between data for the inclusive single-jet
invariant cross section and several leading-logarithm predic-
tions. The notation is the same as for Fig. 10. Cl and 0, AFS
Collaboration (Akesson et aI., 1983); 0, E-609 (Corme11 et al. ,
1985).
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the same scale choices as for Fig. 10. Notice that the
spread between the two dashed curves varies between a
factor of 5 to 6 in this energy range, whereas it was about
a factor of 3 for the higher energies shown in Fig. 10.
This again reflects the more rapid variation of the loga-
rithms at the lower values of Q .

From the results shown in Figs. 7—11 and the discus-
sion above, it should be clear that the overall normaliza-
tion of a particular process is not predicted with great ac-
curacy in the leading-logarithm approximation. The sen-
sitivity to the choices made for the factorization scale,
and for the argument of the running coupling, can lead to
relatively large variations between otherwise identical cal-
culations. On the other hand, on the optimistic side, the
scale change by a factor of 16 shown in Figs. 10 and 11
results in a somewhat smaller change in the cross sections.
More to the point, however, is the fact that the energy
dependence of the various observables is predictable in
that it depends only slightly on the choices of scale.

In order to pursue this last point, I have plotted the ra-
tio of the jet cross sections from both the UA-1 and UA-2
Collaborations at Ms=546 and 630 GeV in Fig. 12.
Shown also is the prediction for Q =pT. For compar-
ison, the curves for Q =4pT and pT/4 lie within a few
percent above and below the solid curve, respectively.
The differences are too smaH to be shown accurately on
this scale. This is an example of a prediction that has vir-
tually no dependence upon the factorization scale or the
choice of the parton distributions. Rather, the energy
dependence follows from dimensional arguments with
some modest logarithmic corrections from the running
coupling and from scaling violations in ihe distribution
functions.

The preceding point can be investigated further by ex-
tracting the power-law behavior of the data at fixed
values of xr and 0, as discussed in Sec. II.D [see Eq. (9)].
For example, the data of the AFS Collaboration (Akesson

et al. , 1983) yield n =5.3+0.2 for v s between 45 and 63
GeV. The UA-2 Collaboration (Appel et a/. , 1985) finds
n =4.5+0.3 for &s between 546 and 630 GeV. On the
other hand, a global fit to both data sets yields
n =4.74+0.06. The decrease of n with increasing values
of s is indicative of a violation of the scaling prediction
contained in Eq. (9). This is a manifestation of the loga-
rithmic Q dependence referred to above. For compar-
ison, recall that the parton model scaling prediction is
n=4, so that the deviations from exact scaling in this
kinematic region are not large, and they decrease as the
energy increases. This latter point is easily understood:
as the arguments of the logarithms keep increasing, the
rate of change of the logarithm terms becomes ever small-
er.

Another interesting point is raised when we compare
the results for the di-jet calculations in Figs. 7—9 and
those for the single-jet cross sections in Figs. 10 and 11.
For the di-jet case, a good description was obtained with

Q =2pT. On the other hand, the single-jet data seem to
be best described by a somewhat smaller choice. The
curves in Figs. 10 and 11 suggest that an appropriate
choice would be Q =pT/2. It is possible that this differ-
ence may simply be attributable to the rather large sys-
tematic errors inherent in the calorimetric measurement
of jet cross sections (45% for the UA-2 Collaboration and
70% for the UA-1 Collaboration, for example). On the
other hand, it must be remembered that the next-to-
leading-order corrections to the leading-logarithm approx-
imation will be different for the single-jet and di-jet cross
sections. It would therefore be interesting to see if both
cross sections could be described with a common set of
choices for the various scales. Notice that the soft-gluon
approach would predict the same form for the higher-
order corrections for the two types of cross sections and
therefore would not account for the difference.

A final comment is in order concerning the comparison
with jet cross sections. I have simply identified the outgo-
ing parton four-vectors as being identical with those of
the outgoing jets. Nowhere in the leading-logarithm ap-
proximation is there any allowance made for variations in
the experimental definition of a jet. In order to see such a
variation, the next-to-leading logarithms must be includ-
ed. It is thus rather remarkable, as well as encouraging,
to see the good agreement between the theory and data
shown in Figs. 7—12. There is clearly room for more
theoretical work, however, because the next-to-leading-
logarithm calculations should help to reduce the level of
uncertainty associated with the overall normalization of
the theoretical curves.

Next consider the predictions for single-particle invari-
ant cross sections [see Eqs. (A4) and (A5)]. Figure 13
shows a comparison between the theoretical predictions
and m data at v s =540 GeV from the UA-2 Collabora-
tion (Banner et al. , 1985). The two photons from the m.

decay have not been resolved for these data. Therefore
the data actually correspond to a combination of m,
direct-photon, and q contributions. The theoretical
curves were obtained by adding the results for both m

Rev. Mod. Phys. , Vol. 59, No. 2, April 1987



J. F. Owens: Direct-photon production

10
-31

10

10

10

O
Q)
U

cu -34
E 10

C9
CLo

-35
10

lU

-36
10

-37
10

ev
ed
)

-32
10

-33
10

g) -34
(g 10
E

35~10

LU

-36
10

V

-38
10

0 10 20 30
p, (GeV)

40
-38

10

FICx. 13. Comparison between data for inclusive m production
(Banner et al. , 1985) and the leading-logarithm predictions dis-
cussed in the text.

and single-photon production. (Including an g contribu-
tion could increase the predictions by about 20% of the

signal. ) Again, Sets 1 and 2 predictions are shown by
solid and dashed curves, and in this case they are nearly
indistinguishable over almost the entire pT range shown.

In Fig. 14 a similar comparison is made using data for
charged-pion production (Breakstone et al. , (1984). The
dotted curve shows the effect of including kT smearing
with (kz-) =0.90 GeV with the Set 2 distributions. This
value of (kr) corresponds to (kz. ) =0.84 GeV, since a
Gaussian distribution has been assumed. This large value
is used simply to demonstrate typical effects of applying
the kT-smearing formalism of Sec. II.D. Other values
can certainly be used, as the whole procedure is just a
model, after all. A.pplying kz- smearing with the Set 1

distributions raises the solid curve approximately to the
dashed one and, for clarify, the result has not been shown.
The same features are examined further in Fig. 15, in
which, a comparison with n data (Kourkoumelis et al. ,
1980) is shown. The data in Fig. 15 correspond to pions
in which both of the decay y's have been resolved. There-
fore no direct-photon component has been included in the
theoretical curves. From the results shown in both Figs.
14 and 15, one can clearly see that the kT-smearing ef-
fects are more significant for the steeper, low-energy pre-
dictions.

The curves in Figs. 13—15 have been obtained using
Q =pT, where pz. is that of the hadron. Due to the frag-
mentation process, this is somewhat less than the trans-
verse momentum of the parent parton (or jet). Curves
corresponding to other choices for Q have not been
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FIG. 15. Comparison between data for inclusive m. production
{Kourkoumelis et al. , 1980) and the leading-logarithm predic-
tions discussed in the text. The notation is the same as for Fig.
14.

FIG. 14. Comparison between data for inclusive m+ production
(Breakstone et ai. , 1984) and the leading-logarithm predictions
discussed in the text.
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shown, but there is clearly the same degree of flexibility
here as was shown for the jet cross sections. Further fine
tuning of the predictions would be of little benefit, at this
time. The major point to be made here is that the energy
dependence is correctly described from vs =540 GeV
down to energies in the ISR range, for p~ above about 7
GeV. Notice, however, that at lower pT values there is a
tendency for the theory to fall systematically below the
data as the energy is reduced. The addition of kT smear-
ing raises the curves somewhat, providing a better
description of the data. However, as discussed in Sec. II,
the smearing procedure is model dependent. This subject
will be discussed in more detail with regard to the corn-
parison with the direct-photon data.

Incidentally, one might wonder why kT effects were
not necessary for the description of the jet data in Fig. 11.
In part this is due simply to the larger errors on the data.
In addition, there is the fact that kT effects are somewhat
less important for jet production than for hadron produc-
tion at the same values of pT and vs. This is due to the
somewhat flatter pT dependence of the jet cross section.
Although not shown, kT smearing of the magnitude used
above would increase the predictions for ~s =27.4 GeV
by about a factor of 2 at pT ——3 GeV, with the size of the
effect smoothly decreasing with increasing pT. The effect
at fixed pT is smaller at the higher energies.

As mentioned in the discussion of kT smearing in Sec.
II, the enhancement is due to having a single-arm trigger
that will preferentially select those events in which the
parton-parton center-of-mass frame possesses some trans-
verse momentum toward the trigger. This effect can be
nearly eliminated, however, if one uses a double-arm
trigger, since then there is no preference for any trans-
verse motion of the parton-parton system. A detailed dis-
cussion of kT smearing and double-arm triggers can be
found in the paper of Baier, Engels, and Petersson (1979).
The CCOR Collaboration (Angelis et a/. , 1982) has mea-
sured the m m cross section using a double-arm trigger.
With the m 's on opposite sides of the event, the kT-
smearing effects are minimized. The CCOR data for the
di-pion mass distribution have been presented with a
series of cuts on the di-pion rapidity (

~

Y
~

& 0.35), on the
pT imbalance between the two pions (& 1 GeV), and on
the parton-parton center-of-mass scattering angle
(cos8*&0.4). In order to enforce these cuts in the pres-
ence of parton kT effects it is necessary to use a Monte
Carlo simulation. Such a program has been written and a
comparison between calculations with or without the kT
effects included shows essentially no difference, within
the statistics of the Monte Carlo simulation. It is there-
fore possible to ignore the kT effects for this observable
and to use the simplification of collinear kinematics, thus
obtaining a simple expression for the di-pion -mass distri-
bution, into which it is easy to incorporate the effects of
the CCOR cuts. This is discussed in detail in the Appen-
dix.

The CCOR di-pion data are shown in Fig. 16, along
with the theoretical results from the Set 1 distributions.
In this experiment the m decay photons were not
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FIG. 16. Comparison between data for neutral di-pion produc-
tion (Angelis et al. , 1982) and the leading-logarithm predictions
discussed in the text.

resolved, so a direct-photon contribution has been includ-
ed in the theoretical curves. The good agreement shown
in Fig. 16 serves to illustrate the utility of a double-arm
trigger in removing the need for introducing model-
dependent kT-smearing effects. However, it must be
mentioned that the overall normalization depends even
more strongly on the Q choice than in the case of jets.
This results from having two fragmentation functions in
the final state, both of which have scaling violations.

The main points of this introductory subsection can be
summarized as follows.

(1) The energy and pT dependence of single-jet and di-
jet data can be described well using the leading-logarithm
formalism.

(2) The overall normalization of the various jet cross
sections is consistent with the range obtained within the
leading-logarithm approximation.

(3) The single-particle data are also described well in
the high-pT region. If one includes model-dependent par-
ton kT effects, the region of agreement can be extended to
lower pT and vs values.

(4) The parton kT effects increase in importance as the
cross section becomes steeper in pT. They are thus most
important for the single-particle predictions and less so
for jets and direct photons.

(5) The effects of parton transverse momentum can be
reduced by considering observables with two hadrons or
jets in which the transverse momenta are constrained to
be approximately balanced.
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In this subsection I have dealt exclusively with data for
high-pT cross sections. More data are available for dif-
ferent observables, such as two-particle correlations,
away-side pT distributions, etc. It would go beyond the
scope of this review to include a comprehensive summary
of all of these data. Rather, my goal here has been to il-
lustrate the features and limitations of the leading-
logarithm approximation as used in the description of
high-pT jet and single-particle cross sections, in prepara-
tion for a more detailed discussion of the direct-photon
data. It is to this subject that I now turn.

B. Direct-photon cross sections

The relative simplicity of direct-photon production was
recognized at an early stage in the development of high-

pT phenomenology (Farrar, 1977). Accordingly there
were many suggestions for methods of testing QCD using
high-pT photon-triggered data. Some early studies in-
clude those of Soh, Pac, Lee, and Choi (1978), Halzen and
Scott (1978a, 1978b, 1980a, 1980b), Benary, Gotsman,
and Lissauer (1981), and Contogouris, Papadopoulos, and
Hongoh (1979). The importance of studying the correla-
tions between the trigger photon and associated hadrons
or jets was also pointed out by many authors. Some of
the early references include the papers of Cormell and
Owens (1980), Baier, Engels, and Petersson (1980), Conto-
gouris, Papadopoulos, and Papavassiliou (1981), and
Dechantsreiter, Halzen, and Scott (1981). Additional dis-
cussion of the earlier theoretical and experimental work
may be found in the review by Ferbel and Molzen (1984).
Some of the more recent experimental results are reviewed
by Rutherfoord (1985), Treille (1985), and Ferbel (1986).

As in the previous discussions of jet and single-particle
data, I shall begin the comparison between theory and ex-
periment using data at the highest available energy. The
UA-2 Collaboration has reported data for direct-photon
production in pp collisions at vs =630 GeV (Appel
et al. , 1986). In this work a background subtraction was
made to remove meson-induced signals. Corrections were
included to account for various cuts made as part of the
event selection. However, it should be noted that an isola-
tion cut on the photon candidates was used in order to
reduce the m and g backgrounds, and this partially
suppressed the bremsstrahlung contribution. In Fig. 17
the data at g=0 are compared with predictions obtained
with the Set 1 distributions. The Q definition was taken
as pT/2, following the comparison with the single-jet
data. The full leading-logarithm calculation is shown by
the solid curve, whereas the dotted curve shows the effect
of excluding the bremsstrahlung contribution. This latter
curve is included in order to give a feeling for the possible
effects of the photon isolation cut. The agreement with
the data appears to be satisfactory. The Set 2 distribu-
tions can also be employed and, with a suitable change in
the Q definition, they yield similar predictions. It is
worth noting that the bremsstrahlung contribution is
about 30% of the total shown by the solid curve in Fig.
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FIG. 17. Comparison between data for direct-photon produc-
tion at g=O from the UA-2 Collaboration (Appel et aI., 1986}
and the leading-logarithm predictions discussed in the text.

17 in the region where there are data. This is shown more
clearly in Fig. 27 below and is discussed in detail later iri
this section. If only the inclusive cross section is being
considered, the question of whether or not to include the
bremsstrahlung component is not too significant, since
the overall normalization can easily be shifted by a simi-
lar amount, as has been discussed previously. However,
the nature of the bremsstrahlung contribution does be-
come important when questions regarding correlations are
considered, as will be discussed later.

In the same reference, the UA-2 Collaboration also
presented data on the photon and ~ cross sections at
q=1.4, with the photon contribution to the m. cross sec-
tion already subtracted. In Fig. 18 these data are com-
pared to the Set 1 predictions. For consistency with the
previous single-particle calculation, Q =pT was used.
Using Q =pI!2 for the vr calculation, as was done for
the case of direct-photon production, would increase the
prediction by about 50%%uo.

Data for pp interactions have been obtained at the ISR
by several groups. At v s =63 GeV, the CCOR Colla-
boration has presented their results in the paper of
Angelis et al. (1980). These data were obtained with an
isolation cut on the photon candidates. The resulting
cross section must be corrected for this cut in order to ob-
tain a fully inclusive cross section. A multiplicative fac-
tor of 0.8 is quoted for this correction. The inclusive
cross-section data, including the factor of 0.8, are shown
in Fig. 19 by the solid triangles.
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Additional data at Vs =63 GeV have been presented
by Anassontzis et al. (1982). These data have been fully
corrected for the effects of the photon isolation cut and
correspond to a fully inclusive measurement. Inclusive
cross-section data from the same group at vs =45 GeV
are presented in the paper of Burkert (1983). Both data
sets are shown in Fig. 19 by the open circles. The errors
shown include both statistical and systematic uncertain-
ties.

Preliminary data from the AFS Collaboration at
vs =63 GeV (Akesson et al. , 1985) are shown in Fig. 19
by the solid circles. Only the statistical errors are shown;
there is an additional overall 24%%uo systematic uncertainty.

There is broad agreement among the various data sets
shown in Fig. 19, once the systematic errors are taken
into account. The comparison between the older data sets
is discussed in some detail by Ferbel and Molzon (1984).
Predictions obtained with the Set 1 distributions with

Q =pT/2 are shown by the solid curves in Fig. 19.
There is reasonable agreement with the data at the upper
end of the pT range, but there is a systematic tendency to
underestimate the data for pT below about 6 GeV. This is
similar to the situation for single-pion production. The
effect of including parton kT smearing with (kT) =0.9
GeV is shown by the dashed curves. The increase is
about a factor of 1.6 at pT ——3 GeV, and the two calcula-
tions merge smoothly as pT increases.

Two experiments, NA-24 and NA-3, have obtained
data with m+, m, and proton beams at v s =23.7 and
19.4 GeV, respectively. The NA-24 data have y =0 and
were obtained with a hydrogen target. The preliminary
data from DeMarzo et al. (1985) are shown in Fig. 20.
Again, the solid curves were obtained with the Set 1 dis-
tributions and Q =pT/2. The dashed curves show the ef-
fect of including kT smearing, as discussed in Sec. II.
Notice that the increase of the cross section is largest for
the steeper proton cross section. At pT ——3 GeV the in-
crease is about a factor of 2, illustrating the greater im-

portance of the smearing for lower energies.
The data from the NA-3 experiment (Badier et al. ,

1986) are shown in Fig. 21. These were obtained with a
carbon target, and I have rescaled them assuming an A '

dependence. The open and closed symbols correspond to
two different triggers, and are for slightly different rapi-
dity intervals. The curves were calculated by averaging
the invariant cross section over the range —0.4(y ( 1.0,
which corresponds to the average of the two regions
covered by the different triggers. It is important to per-
form the averaging, because there is a significant rapidity
dependence over this broad interval. The effect becomes
rather pronounced at the high end of the available pT
range. At this low value of ~s, the leading-logarithm
predictions shown by the solid curves are definitely below
the data over the entire measured pr range. The model-
dependent kT smearing is able to bring the predictions
upward in approximate agreement with the data. Notice
that the effect of the smearing has increased again with a
lowering of the energy; Also shown in Fig. 21 is the re-
sult of changing to the Set 2 parton distributions for the
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~s = 23.7 GeV Set 1
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case. The dotted curve is somewhat higher than the
dashed one, in part because of the harder pion and
nucleon-gluon distributions in Set 2, and also as a result
of the larger value of A used with Set 2.

Figures 22 and 23 show the ratio of the m —and
~+—induced direct-photon cross sections from the NA-24
and NA-3 experiments, respectively. The Set 1 predic-
tions are shown by the solid curves, and the dotted curve
ill Fig. 22 coI'I esponds to the Set 2 distributions. This
cross-section ratio is insensitive to the k~ smearing be-
cause of the ratio's slow growth with pz.

In the absence of photon bremsstrahlung contributions
there are only two hard-scattering subprocesses for pro-
ducing direct photons. These are the Compton sub-
processes gq~yq, illustrated in Fig. 2(a), and the annihi-
lation subprocess qq —+yg, shown in Fig. 2(b). If only the
Compton term contributed, the ratio of the ~ and m. +

cross sections would be constant at one. However, the
presence of a u quark in the n, as opposed to a d in the
m+, means that the annihilation subprocess will make a
relatively larger contribution in the m case. This follows
both from the larger charge for the u quark and from the
fact that the u-quark distribution in a proton is larger
than that of the d quark. At low pT the gluon distribu-
tions are important, so that the Compton process doID-
inates and the ratio is near unity, as shown in both Figs.
22 and 23. As the transverse momentum increases, the
annihilation process makes an increasingly important con-
tribution and the ratio rises. The predictions shown in
the figures are compatible with the existing data. In par-
ticular, notice the relatively small difference between the
predictions of the two sets of distributions. The effect of
the harder Set 2 gluons is washed out by the integrations
performed to calculate the single-photon invariant cross
section. A double-arm measurement, in which the
kinematics can be more tightly constrained, would be
more sensitive to different gluon shapes. This will be dis-
cussed in detail in the next subsection.

The preceding results show that it is possible to
describe the single-photon invariant cross section ade-
quately within the context of the leading-logarithm ap-

-40
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FIG. 21. Comparison between the leading-logarithm predic-
tions discussed in the text and data for inclusive photon produc-
tion from the NA-3 experiment (Badier et al. , 1985) with pro-
ton {upper), ~+ (middle), and m {lower) beams.

PIC. 22. Comparison between theory and experiment for the
ratio of direct-photon production from ~ and ~+ beams. The
data are from the NA-24 experiment {DeMarzo et al. , 1985).
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ratio of direct-photon production from ~ and ~+ beams. The
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proximation, suitably augmented by the model-dependent
kT smearing. However, the prescription for the predic-
tions presented here is not unique. For example, a
description of similar quality has beeri presented by Ar-
gyres, Contogouris, Sanielevici, and Tanaka (1984), Con-
togouris, Mebarki, Tanaka, and Vlassopulos (1985), and
Contogouris, Mebarki, and Tanaka (1986). These calcula-
tions all utilize the leading-logarithm approximation, kT
smearing with a somewhat smaller value for (kr ), and E
factors calculated in the soft-gluon approximation. The
increase from the E factors is compensated in part by
choosing Q =pT. The results are quite similar to those
shown here. While this flexibility may be viewed as a
weakness of the leading-logarithm approximation, one
can still conclude that the general features of the data are
in accordance with the theoretical expectations. What is
needed is a way to remove some of the flexibility associat-
ed with the theoretical calculations.

The crucial ingredient needed to improve the precision
of the theoretical predictions is a complete next-to-
leading-logarithm calculation. A calculation based on all
O(aa, ) subprocesses in which the photon participates
directly in the hard scattering has been performed
(Aurenche, Douri, Baier, Fontannaz, and Schiff, 1984).
Some of the relevant Feynman graphs have already been
shown in Fig. 2. As was discussed previously in Sec. II.E,
the presence of the next-to-leading logarithms helps to
stabilize the theoretical predictions, by making them less
sensitive to variations in the definitions of the factoriza-
tion scales and the argument of the running coupling. Of
course, if the exact calculation were performed to all or-
ders of perturbation theory, then the result would not de-
pend on the particular choices made; however, with an
approximate calculation some dependence on the choice
of scales will remain. This opens up the question of how
to make the optimal choice of scales for a particular cal-
culation. Various schemes for selecting the optimal scales
have been reviewed by Duke and Roberts (1985). For the
case of direct-photon production, this problem is under
study by the Bielefeld/LAPP/Orsay group (Aurenche,

Baier, Fontannaz, and Schiff, 1986b). Using their next-
to-leading-order results they have sought to determine the
optimal factorization and running coupling scales with
the PMS criterion (Stevenson, 1981a, 1981b; Politzer,
1982). The basic idea is to vary both the coupling (a, )

and the factorization scale (Md) until a stationary point
for the cross section is found. This point then represents
the optimal perturbative result to a given order. The frag-
mentation scale (Mf) is not varied since, as discussed
above, the bremsstrahlung component does not make a
large contribution in the high-pT region. The optimiza-
tion procedure must be carried out at each point in phase
space. A sample result is shown in Fig. 24 (Aurenche,
Baier, Fontannaz, and Schiff, 1986b). The factorization
scale for the distribution functions is parametrized as
Md ——C~pT, and the results are shown as a contour plot2= 2

of the invariant cross section in units of 10 3 cm2/GeV
at pT ——10 GeV and 1/s =63 GeV. The plot shows a
saddle-point structure, with the stationary point corre-
sponding roughly to CM ——0.2. Note that, in the vicinity
of the stationary point, the sensitivity to the factorization
scale nearly vanishes. The dependence on the coupling
near the stationary point is such that the optimized cross
section is a maximum —varying a, for fixed CM causes a
decrease of the cross section. This is in accordance with
the parabolic dependence that results from an implemen-
tation of the PMS scheme. Given an optimal value for
the coupling, it is possible to work backward and deduce
what value one must choose for Q; this point has been
discussed by Stevenson (1981a, 1981b). For the result
shown in Fig. 24, the approximate value for Q at pT ——10
GeV is about 5 GeV if a, is evaluated with four flavors,
AMs ——200 MeV, and the two-loop expression is used.
Clearly, the optimal scale for Q is much less than pT.
Although this work is still in progress, some preliminary
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FKx. 24. Contour plot for direct-photon production in pp col-
lisions from Aurenche, Baier, Fontannaz, and Schiff (1986b).
The contours are for constant cross section at pT ——10 GeV and
V s =63 GeV from a next-to-leading-1ogarithm calculation
(Aurenche et al. , 1986}. The units are 0.1 pb/GeV: o, two-
scale PMS result; 6, one-scale PMS result;, FAC result. The
contours form a saddle-point structure with the dashed curve
showing the ridge line.
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conclusions are available. First, the optimized cross sec-
tion yields factorization scales that tend to be somewhat
smaller than the "conventional" choices. Moreover, the
argument of the running coupling tends to be much
smaller than the factorization scale. In the region of pT
below about 10 GeV, this latter effect leads to a fairly ra-
pid variation of the running coupling, which, in turn, re-
sults in a significant increase in the predictions at fixed-
target energies, and a less dramatic effect at collider ener-
gies, when compared with the single-scale calculations
used above. This point will be reexamined when we dis-
cuss correlations.

For comparison, two other optimization results are
shown in Fig. 24. The triangle denotes the result if the
factorization scale and the argument of the running cou-
pling are fixed to be the same. This is the so-called "one-
scale" PMS result. The square denotes the result of the
method of fastest apparent convergence (FAC) (Grunberg,
1980, 1984). In this technique, the factorization scale and
the argument of the running coupling are again taken to
be the same and are varied until the next-order correction
vanishes. Notice that all three results are within a few
percent of each other.

Optimized predictions have been published in conjunc-
tion with NA-3 and NA-24 results. The predictions are
in good agreement with the data from both groups. This
is important, since there is very little flexibility remaining
in these optimized predictions. For example, there ap-
pears to be no need for large kT-smearing corrections.
The 2—+3 sub-processes contribute some of the smearing
effect, but here the contribution is calculated without any
model assumptions. There could, in principle, be a small
"primordial kT" contribution, but presumably the average
value of kT would be much less than that used in the
model-dependent results discussed previously. As was
mentioned in Sec. II.D, as additional QCD perturbative
contributions are included, the need for phenomenological
smearing corrections is decreased. Additional attractive
features of the optimization procedure are that it provides

- specific choices for the various scales, and that the calcu-
lation is relatively stable with respect to small variations
about the optimum point.

It may appear that the optimization procedure is rather
complex in that the predictions at each point in phase
space must be optimized separately. However, in practice
it should be possible to parametrize the dependence of the
various scales in a reasonably simple way and then fix the
parameters by optimizing at a few points. In this way op-
timized predictions should be obtainable without too
much more effort than usual. The reward for the extra
effort is a decrease in the model dependency of the result.
In this regard, it is worth noting that other schemes for
fixing the various scales (such as the method of fastest ap-
parent conversion, for example) have been found to yield
results similar to those obtained with the PMS scheme.
This is encouraging, since that means that the remaining
model dependency is not large.

Summarizing this section, we have seen that the
theoretical, predictions for the direct-photon invariant

cross section are in accordance with the data. The large
degree of Aexibility associated with the leading-logarithm
calculations and the model-dependent kz- smearing can be
reduced once the next-to-leading-logarithm corrections
are included. It is now time to turn to other observables
that can be of use in providing further tests of the theory.

C. Correlations

The subject of correlations in direct-photon production
is interesting for several reasons. First, the simple struc-
ture that exists at the lowest order of perturbation theory
makes several striking predictions for the correlations be-
tween the trigger photon and associated high-pT hadrons.
These predictions can be used to test the validity of the
QCD description of the process of direct-photon produc-
tion. Second, simultaneous measurement of the four-
vectors of the trigger photon and the recoiling away-side
jet (or even the leading away-side hadron) allows the
underlying parton-level kinematics to be more tightly con-
strained than is the case for the single-photon invariant
cross section. This, in turn, can be used to provide con-
straints on, or perhaps even measurements of, various
parton distribution and fragmentation functions. The
methods by which correlation measurements can be so
employed is the subject of this section.

1. Toward-side hadrons

First, consider correlations between the trigger photon
and hadrons that are on the same side of the event, i.e.,
that have an azimuthal angle P within +90' of that of the
photon. Such hadrons originate from the bremsstrahlung
processes discussed in Sec. II. One of the high-pT scat-
tered partons radiates a hard photon, and the remainder
fragments into hadrons in the usual way. The presence of
the accompanying same-side hadrons is thus the signal of
the bremsstrahlung component of the production mecha-
nism. This contribution to the photon yield partially ob-
scures the simpler direct-photon contributions from the
Compton and annihilation terms that are characterized by
the presence of isolated high-pr photons. In principle,
the direct and bremsstrahlung components can be separat-
ed by grouping the events into two classes —those with ac-
companying same-side hadrons and those without. This
simple idea is complicated by the fact that in order for a
bremsstrahlung photon to have a large transverse momen-
turn, it must take a significant fraction of the parent
parton's momentum. This means that the accompanying
hadrons will have relatively low transverse momenta and
may be difficult to isolate from the beam and target rem-
nants. In addition, the fragmentation process will give
the hadrons some transverse momentum with respect to
the original parton direction of motion. When this is
combined with the relatively small longitudinal momen-
tum fraction possessed by an individual hadron, it be-
comes likely that, on average, there will be a sizable angu-
lar separation between the photon and the associated had-
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rons. The photon in a bremsstrahlung event may, there-
fore, appear to be isolated from the hadrons in the event.

In Fig. 25, results from the AFS Collaboration
(Akesson et aI., 1982) are shown for the azimuthal distri-
bution of charged particles relative to y and rr triggers.
The large peak at p =sr is from the recoiling jet, while the
small peak near /=0 in the m case is from the hadrons
associated with the trigger. Notice that the forward peak
is essentially absent in the case of a y trigger. These data
have been corrected for the effects of the m decays on the

y distributions.
The dashed lines in Fig. 25 indicate the charged-

particle distributions measured in minimum-bias events.
If this is interpreted as the charged-particle background
from the beam and target jets, the ratio of the bremsstrah-
lung cross section to the total photon cross section can be
measured. The results are shown in Fig. 26 by the solid
circles. As a second estimate, the charged-hadron distri-
bution at /=70' was used to estimate the background.
The resulting bremsstrahlung ratio is shown in Fig. 26 by
the open circles. The predictions from both the Set 1 and
the Set 2 distributions are also shown in Fig. 26. Al-
though the errors are large, the data are consistent with
the theoretical prediction of a modest bremsstrahlung
contribution that decreases with increasing transverse
momentum. The theoretical curves suggest that the fall-
off with pT is rather slow, and that one must be prepared
to deal with a bremsstrahlung "background" until rather
large pT values. Another point worth mentioning is that,
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FIG. 26. Experimental estimates of the ratio of the bremsstrah-
0

lung contribution and the total photon rate from Akesson et al.
(1982) compared with the theoretical estimates discussed in the
text. The two data sets correspond to different methods of per-
forming the subtraction of the background due to the beam and
target fragments.

3-

2-

~ 7r

~ ~

up to logarithmic scaling violation corrections, the brems-
strahlung total ratio is basically a function of xT. There-
fore one must be prepared to accept rather significant
bremsstrahlung contributions at the energies and trans-
verse momenta encountered in typical pp collider experi-
ments. For example, the bremsstrahlung/total ratio is
shown versus xT for several values of vs in Fig. 27.
Clearly the effect is significant.
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FIG. 2S. Azimuthal distributions of the summed pT of charged
hadrons for different bins of y or m trigger momentum. The y
data have been corrected for the effects of meson-induced back-
ground. The data are from Akesson et aI. (1982).
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FIG. 27. Theoretical predictions for R " ' at various center-
of-mass energies shown vs xT.
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2. Away-side hadrons
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FIG. 28. Comparison between theoretical predictions and ex-
0

perimental data from Akesson et al. (1982) for the ratio of posi-
tive to negative hadrons opposite a neutral trigger. The y data
have been corrected for the effects of the meson-induced back-
ground.

Consider next the correlations between the trigger pho-
ton and hadrons that are on the opposite side of the event,
i.e., those having an azimuthal angle P relative to the pho-
ton that is larger than +90'. If the hadrons have suffi-
ciently large transverse momentum, then they can be in-
terpreted as having resulted from the fragmentation of
the recoiling parton. In the case of the Compton process
this will be a quark, whereas for the annihilation contri-
bution it will be a gluon. ' Since the photon couples to
electric charge, the expectation for the Compton process
is that the recoiling quark will most likely be a u quark.
In proton-proton collisions the ratio of u to d quarks on
the away side will be approximately 8, with a factor of 4
coming from the square of the quark charge and a factor
of 2 from the fact that there are two valence u quarks and
one valence d quark in the proton. This 8-to-1 ratio at
the quark level gives rise to an expectation of a large ratio
of positive to negative hadrons on the away side. This ex-
pectation must be modified somewhat since u quarks can
give rise to negative hadrons, and d quarks can yield posi-
tive hadrons. Nevertheless, there should be a substantial-
ly larger fraction of positive hadrons in direct-photon
production than in high-pT events with a hadron trigger.
Furthermore, for a fixed value of the trigger pT, this frac-
tion should increase with the away-side pT, this follows
because the average value of z in the fragmentation pro-
cess increases, and this increases the correlation between
the charge of the hadron and the charge of the fragment-
ing quark. Calculations of this away-side charge ratio are
shown in Fig. 28 together with data from (Akesson et al.
(1982). The expected rise with away-side pr is consistent
with the data, although the errors are sufficiently large
that a definite conclusion cannot be drawn. For compar-
ison, results are also shown for events with a m trigger.
Again, the errors are large, but the predictions seem to

conform to the trends of the data. For additional discus-
sions of away-side correlations see Baier, Engels, and
Petersson (1980) and Benary, Gotsman, and I.issauer
(1983).

At this time, extensive correlation studies are available
only for proton-proton interactions. However, second-
generation experiments using other beams will be able to
explore such correlations in greater detail. For example,
by taking appropriate combinations of beam types it
should be possible to isolate a sample of events dominated
by the annihilation process. For this sample the away-
side charge ratio should be approximately 1, since the
fragmenting parton would be a gluon.

3. Measuring parton distribution
and fragmentation functions

The possibility exists to go beyond simple away-side
charge ratios and actually measure fragmentation and dis-
tribution functions. In order to do this, one must be able
to reconstruct the away-side jet, and thereby constrain the
parton scattering kinematics. An interesting example that
serves to illustrate the potential of such measurements is
provided by some recent preliminary results from the
AFS Collaboration, which were presented at the 1985 Eu-
ropean Physical Society Conference at Bari. A discussion
of the results may be found in the review talk on large-
momentum-transfer processes by Treille (1985). In Fig.
29 data are shown for the pT distribution for events in
which the photon and recoiling jet both have pseudorapi-
dities near zero. In the absence of a bremsstrahlung con-
tribution, with its extra degree of freedom coming from
the fragmentation process, the leading-logarithm predic-
tions for this observable would require no integrations.
The momentum fractions of the colliding partons would
both be just xT. The situation is quite analogous to that
for the di-jet cross section discussed earlier. However,
here there are only two subprocesses, provided that one
can neglect the bremsstrahlung component. The data
shown in Fig. 29 have been subjected to a photon isolation
cut in an attempt to suppress the bremsstrahlung contri-
bution. The effectiveness of this cut is difficult to assess,
however. The solid and dashed curves in Fig. 29 show
the Set 1 predictions with and without the bremsstrahlung
contribution. The Q definition was chosen to be pT/2.
Clearly, both curves are somewhat flatter than the data.
if the final data show this same effect, then this may be
an indication that a softer gluon distribution is needed.

It is worth recalling that the di-jet data in Figs. 7—9
were well described by the same formalism that yields the
predictions shown in Fig. 29. If a softer gluon distribu-
tion is needed to describe the direct-photon data, then
some other alterations will be needed to restore good
agreement with the di-jet data. Of course, there is still the
flexibility of changing the Q definition so as to alter the
overall normalization when using the leading-logarithm
approximation. An interesting analysis would be to study
simultaneously both the di-jet and the photon-jet cross
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FIG. 29. Comparison between the theoretical predictions dis-
cussed in the text and data for y-jet pT distribution from the
AFS Collaboration (Akesson et ah. , 1985).

FICx. 30. Comparison between the theoretical predictions dis-
cussed in the text and data for y-jet mass distribution from the
AFS Collaboration (Akesson et al. , 1985).

sections in the next-to-leading-logarithm approximation.
The photon-plus-jet data from the AFS Collaboration

have also been presented as a function of the photon-jet
invariant mass. At the level of two-body subprocesses,
this is just the parton-parton center-of-mass energy V s.
If only the Compton and annihilation contributions were
present, then the mass and pT distributions would be sim-

ply related because M =ZpT at g&
——g2 ——0. Specifically,

at pT ——M/2

do do
dq, dq dp dg, dq dM

However, the data for the two distributions are nearly
equal, with the mass distribution being somewhat larger
in the middle region. This may indicate a substantial
bremsstrahlung component, as can be seen by comparing
the solid curves in Figs. 29 and 30. The addition of the
bremsstrahlung component brings the two distributions
into near equality, since the effect is relatively larger for
the mass distribution than for the pT distribution. In the
bremsstrahlung case the transverse momentum of the
photon is reduced by a factor of z from that of the parent
parton. Therefore the bremsstrahlung contribution at a
fixed value of photon pT actually originates from a
scattering configuration in which the parent parton had
pz /z. The steep pT dependence of the cross section
means that the bremsstrahlung contribution is suppressed
relative to that of the Compton and annihilation sub-
processes. This is the usual suppression due to the extra
fragmentation. On the other hand, the photon-jet invari-

ant mass is reduced only by a factor of vz, so that the
suppression is less and the bremsstrahlung contribution is
relatively more important. An additional possibility is
that the jet identification algorithm results in a photon-jet
mass that does not satisfy M =2pT, where pT is the
transverse momentum of the photon. This would alter
the simple relation between the two distributions. Such
questions will have to be resolved in order to exploit fully
the potential of observables such as these.

Two papers have recently appeared in which the
photon-jet correlation data are discussed. In the paper of
Argyres, Contogouris, Mebarki, and Vlassopulos (1986),
results similar to those shown in Figs. 29 and 30 are
presented. In addition, several other parton distributions
are used in order to compare with the data. The best
comparison is found with the CDHS distributions, which
are very similar to Set 1, except that the gluon is some-
what softer. A separate analysis has been published by
Aurenche, Baier, Fontannaz, and Schiff (1986a). They
point out that, in the two-scale optimized predictions, the
running coupling always has an argument smaller than
the factorization scale. Even though a complete next-to-
leading-order calculation has not been performed for the
photon-jet cross section, they argue that this may be true
for the optimized correlation calculation as well. If this is
true, then the cross-section predictions will be increased,
especially at the lower end of the pT scale. They show
that the Set 1 distributions yield a result in substantial
agreement with the data. Clearly there is room for more
progress in this area on both the theoretical and the exper-
imental sides.
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4. Measuring parton-parton scattering angular
distributions

Recently, the UA-1 (Arnison et a/. , 1984) and UA-2
(Bagnaia et a/. , 1984) Collaborations have presented re-
sults on the angular distributions of parton-parton scatter-
ing averaged over all of the contributing subprocesses. As
shown by Eq. (A10), the two-jet cross section can be writ-
ten as a differential cross section with respect to cosO",
where 8* is the parton-parton center-of-mass scattering
angle. Experimentally, a boost is performed from the lab-
oratory frame to the di-jet rest frame, and 0* is then
determined for the event as the angle between the di-jet
axis and the hadron-hadron axis. This assumes that the
initial-state hadrons are collinear in this frame, which will
be the case as long as the transverse momenta of the two
jets are equal. The theoretical expression involves no in-
tegrations, since the measurement of the four-vectors of
each jet completely determines the kinematics, provided
that parton kT effects are negligible. The result is a
weighted average of the quark-quark, quark-gluon, and
gluon-gluon scattering angular distributions. The data
from both groups are shown in Fig. 31, together with the
predictions from the Set 1 distributions with Q =pT,
shown by the solid curve. The agreement is quite good;
It is interesting to note that the role of the scaling viola-
tions in the parton distributions and the variation of the
running coupling are essential for obtaining the good
agreement shown. To see this, note that increasing cosO*

results in a decrease in pT for fixed di-jet mass. %"ith x,

~ too

I

CD

C)
C3

IO

, 3,
I

O

and xb fixed, decreasing pT results in a relative increase
of the parton distributions. In addition, the running cou-
pling also increases. The net result is a relatively steeper
angular distribution, since the distribution is normalized
to unity at coso =0. For comparison, the choice
Q =s/4 results in the dashed curve. With this choice,
there is no scaling violation or change in the running cou-
pling as cosO* is varied at fixed di-jet mass. The results
are correspondingly less steep in cosO .

A similar analysis was presented by the CCOR Colla-
boration (Angelis et a/. , 1982), in which leading m 's were
used in place of jets. This complicates the theoretical in-
terpretation somewhat, but a reasonably compact result-
can be derived as shown by Eq. (All). A selection of the
data is shown in Fig. 32, together with the Set 1 predic-
tions obtained with Q =pT (solid curves) and Q =s/4
(dashed curves). The same trend is present as for the di-
jet case. It is interesting to note that the distributions ob-
tained with the di-pion trigger are somewhat steeper than
those obtained with the di-jet trigger. This is due in part
to the factor of pz~', which appears in Eq. (All) and re-
sults from the Jacobian used to transform from the par-
ton variables to those defined by the CCOR group.

The same type of measurements as shown in Figs. 31
and 32 can be performed using y-jet or y-hadron final
states. The y-jet measurements would be the most
straightforward to interpret since, in the absence of the
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FIG. 31. Comparison between the leading-logarithm predic-
tions discussed in the text and data for the subprocess averaged
parton-parton angular distribution: , as measured by the
UA-1 Collaboration (Arnison et al. , 1984); o, as measured by
the UA-2 Collaboration (Bagnaia et a/. , 1984).

FKx. 32. Comparison between the leading-logarithm predic-
tions discussed in the text and data for the subprocess averaged
parton-parton angular distribution as measured by the CCOR
Collaboration using a n m. trigger (Angelis et al. , 1982).
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proton and antiproton beams, for example. However, the
actual situation is much more complex due to the pres-
ence of several other sources of photon pairs. One is the
subprocess illustrated in Fig. 34(b), gg~yy. The gluon
distribution is comparable to or larger than the quark dis-
tributions at low x values. Therefore, this subprocess can
make a significant contribution to the photon yield at low
values of xT. This has been discussed by Combridge
(1980) and Carimalo, Crozon, Kessler, and Parisi (1981).

Another important source of photon pairs is direct-
photon production from qq~yg and gq~yq, with the
second photon originating from bremsstrahlung from the
recoiling parton. This contribution can be comparable to
or larger than that of the two Born term subprocesses. In
addition, there will be a contribution from the usual two-
body parton-parton subprocesses, in which both recoiling
partons give rise to bremsstrahlung photons.

As a result of these various additional sources of pho-
ton pairs, the production process is not as simple to inter-
pret as it might appear to be at first sight. However, each
of the contributions can be calculated, so that tests based
on this reaction are still possible, as is discussed in the pa-
per of Contogouris, Marleau, and Pire (1982). A detailed
review of two-photon hadroproduction, treated in the
leading-logarithm approximation, can be found in Berger,
Braaten, and Field (1984). Indeed, even the next-to-
leading-logarithm corrections have been calculated
(Aurenche, Douiri, Baier, Fontannaz, and Schiff, 1985).

Recently, three experimental groups have obtained re-
sults on the cross section for the production of photon
pairs. The results of the AFS Collaboration (Akesson
et al. , 1986) are shown in Fig. 35, along with earlier re-
sults from Kourkoumelis et al. (1982). A charged multi-
plicity cut was used in isolating the candidate events, and
consequently the bremsstrahlung contribution should be
reduced to some extent. However, as has been discussed
previously, this reduction is difficult to calculate accu-
rately if leading-logarithm kinematics are used. The pre-
diction from just the qq and gg subprocesses of Fig. 34 is
sho~n by the dashed curve, awhile the solid curve has the
bremsstrahlung contributions included. Notice that the
latter terms increase the cross section by up to a factor of
3. The Set 1 distributions were used for these curves with

Q =pT/2. The slight turnover at the low-pT end is due
to a cut that required that each photon have pT) 1.1

GeV. Within the rather large errors, the comparison be-
tween theory and experiment appears to be reasonable ex-

cept, perhaps, at the lowest point. However, it should be
noted that possible backgrounds from massive states de-
caying into two photons have not been taken into account.
This may account for the discrepancy in the low-mass re-
glOIl.

The NA-3 Collaboration has also obtained results on
the photon pair cross section from proton, ~, and ~+
beams at a beam energy of 200 CseV (Badler. er Ql. , 1985).
The data are in the region of transverse momentum below
3 CieV, and are, therefore, in a region where perturbation
theory may not be applicable. The cross sections have
been compared with theoretical predictions obtained using

10"
pp = ~+X
~s = 63 GeV

o AFS
R-806

-33
~+ 10

E

-34~ IO

Full——No brems

-35
10

Mass (GeV)

FIG. 35. Comparison between the theoretical predictions dis-
cussed in the text and data for two-photon hadroproduction: 0,
from Akesson et al. (1986b); , from Kourkoumelis et al.
(1982). The R-806 data has been plotted as in Akesson et al.
(I986b).

IV. SUMMARY AND CONCLUSIONS

The study of large-momentuIn-transfer hadron-hadron
scattering has contributed substantially to our under-
standing of the nature of short-distance parton-parton in-
teractions. Especially with the advent of the high-energy

pp colliders, such interactions have been successfully
described by utilizing the well-known techniques of per-
turbation theory. We are now at a point where the so-
ph1st1cat1OIl of direct-photon exper11Ilents Is y1eld1ng data
that can be combined with jet and hadron data to provide
new and exciting information on the underlying parton
distribution and fragmentation functions and the parton-
parton scattering processes themselves.

In this review I have tried to emphasize each of the ma-
jor ingredients that goes into the calculation of a typical
hard-scattering process. The range of possible theoretical
predictions depends on the assumptions and approxima-
tions utilized. Special attention was devoted to the impre-
cision that is inherent in the use of the leading-logarithm

the program of Aurenche, Douiri, Baier, Fontannaz, and
Schiff (1985). The ~ data are about a factor of 6 above
the predictions, and the corresponding factor for the pro-
ton data is about 30. There is, however, a tendency for
these ratios to decrease with increasing transverse
momentum. In addition, the experimental errors are still
large. Clearly, additional high statistics data will be need-
ed at a variety of energies before any detailed conclusions
can be drawn.
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approximation. We are now in the fortunate position of
having available all of the basic ingredients needed for the
calculation of the next-to-leading-logarithm corrections
for various observables. Some of these calculations have
already been completed, mostly for the single-particle in-
variant cross section. The new data becoming available
for more complicated observables, such as the di-jet or
photon-jet cross sections, provide a real challenge for
theorists to complete the required higher-order calcula-
tions.

The single dominant conclusion that I wish to stress is
that there is broad agreement between the data and the
theory in all the cases examined here —jets, hadrons, and
photons. The data appear to support the theoretical ex-
pectations for the energy dependence, event structure, and
even normalization, although the uncertainties, particular-
ly on the last quantity, are large. This certainly provides
strong encouragement to tackle the additional calculations
necessary in order to further refine the comparison with
the data.
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APPENDIX

The purpose of this appendix is to provide a compact
summary of the theoretical expressions used in calculat-
ing the various observables discussed in this review. This
summary will presumably be of benefit to persons newly
introduced to this subject and will also serve to delineate
the limitations of the formalism used.

By now a reasonably standard notation has evolved for
describing large-transverse-momentum phenomena. For
the sake of completeness, however, the notation used in
the review is summarized first. Upper-case letters will be
used to designate hadrons, in either the initial or the final
state, such as A +B~C+X, etc. Lower-ease letters will
be used when referring to the hadron constituents that are
undergoing the hard scatters.

When discussing the kinematics for single-particle in-
clusive reactions it is useful to use the Mandelstam vari-
ables. If A and 8 are the initial-state hadrons arid C is
the observed final-state hadron with four-vectors pz, pq,
and p~, respectively, then the Mandelstam variables are
defined as

s =(p~+p~)' t =(p~ —pc),2

u =(pa —pc) .2

The variable s is simply the square of the center-of-mass
energy, while t and u are the squares of the four-
momentum transfers from particles A and 8 to particle
C. A similar set of variables exists for the constituent
scattering subprocess a +b~c +d, and a "caret" symbol
will be placed over the variable in this case. For the case
of massless two-body scattering the Mandelstam variables
satisfy the constraint s+ t+u =0

A number of additional variables will be encountered in
discussions of large-transverse-momentum processes.
These include momentum components that are transverse
or longitudinal with respect to the beam direction. These
are denoted by pT and p~, respectively. Occasionally
reference will be made to their scaled counterparts
xT ——2pT/v s and xF ——2pl/Vs. With these definitions
the allowed ranges of xT and xF are (0,1) and ( —1,1),
respectively, if the masses of the hadrons are neglected.
Another variable that is often used is the rapidity y,
which is defined as

E +pi
ln

This expression, when evaluated for a massless particle,
has a much simpler form. Then, y =ln cotO/2, where 0 is
the center-of-mass scattering angle. This latter form is
convenient experimentally, since one needs to know only
8. For a massive particle the quantity lncot8/2 is called
the pseudorapidity, usually denoted by g. Note that for
many high-energy processes the dependence on the parti-
cle masses is negligible and that, therefore, the rapidity
and pseudorapidity become equivalent.

In the derivations that follow, it will often be necessary
to work directly with the four-vectors of the interacting
partons. Suppose that parton a carries a fraction x, of
hadron A's longitudinal momentum and that a similar
definition for xb exists for parton b. Then in the overall
hadron-hadron center-of-mass system the four-vectors for
a and b can, assuming massless partons and neglectirig
any parton transverse momenta, be written as

x.Vs Xb +S
p, = (1,0 0, 1) and pb

—— (1,0 0, —1),
2 2

where the positive z axis is taken to be along ]he direction
of the incident hadron A. If the scattered parton c has
transverse momentum p~ and rapidity y~, then its four-
vector is just

p~ =pT(cosh/), 1,0,slnhg) ) .

With these results it is easy to evaluate the Mandelstam
variables at the parton level:

s =xgxbs, t = —XgpT V S e

3' Iu = —x,pT v~s e
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498 J. F. Owens: Direct-photon production

For the case of two-body scattering, the parton Mandel-
stam variables can also be written in terms of the four-
vector of the recoiling parton d, in the event that correla-
tions are being studied. Let

pd —pT(cosh72, —l, 0, slnhgp ) .

Then, t and u may also be written as

—
V2t= xbp—Tv's e and u = x,pT—v~s e

The following expressions have all been obtained using

massless collinear kinematics. The discussion in Sec.
' II.E

should be sufficient to enable one to generalize these re-
sults to the case in which parton kT effects are included.
However, this usually requires the use of Monte Carlo
techniques, due to the resulting large number of integra-
tions. For reasons of compactness, the various Q depen-
dences will not be explicitly shown in the following equa-
tions.

Starting with two-body scattering at the parton level,
the partial cross section for the inclusive production of
two partons can be written as

do(AB cd)= QG, zw(x )dx Gbfa(xb)dxb X IM(ab~cd)
I

(2~) 5 {p.+pb P pd)=1 dpdpd
2S gb (2~) 2E, (2n) 2Ed

(A I)

There are implied spin and color sum/averages in the above expression. At the level of two-body scattering, one associ-
ates a jet with each of the outgoing partons. Ho~ever, when more complicated final states are taken into account, e.g.,
2~3 processes, the jet must be carefully defined using energy and angular size cuts, for example.

In order to convert Eq. {Al) into the invariant cross section for inclusive single-jet production, it is easiest to use

3
Pd 2=d pd5{pd)

2Ed

to integrate over pd using the four-dimensional 5 function. In addition, with massless partons 5(pd) may be replaced by
5(s+t+u). This results in

0 S d0E
3

(AB~j et+X) = g dx, dxbG, &z(x, )Gbzz(xb) — (ah~cd)5(s+t+u),
d p abed

where the differential cross section for tII1e two-body parton scattering subprocesses is denoted by

(A2)

(ah~cd)= g I
M(ah~cd)

I

dt ]6ns 2

The argument of the 5 function in Eq. (A2) can be expressed in terms of x, and xb using the results given above. The xb
integration may then be done with the final result

0 1 2 XaXb d0E
3 (AB +jet+X) = g— dx, G«z(x, )Gbz~(xb) — (ab +cd), —

d p b d a min rt 2x, —xTe~
(A3)

where xb ——(x,xre )/{2x —xTe ) and x~;„={xre )/(2 —xre ). Equation (A3) is also applicable for the calculation
of the direct-photon inclusive invariant cross section resulting from the subprocesses qq ~yg and gq —+yq.

Next, in order to calculate the single-particle inclusive invariant cross section, the fragmentation function Db&, (z, )
must be included. This function, when multiplied by dz„gives the probability for obtaining a hadron It from parton c
with the hadron carrying a fraction z, of the parton's momentum. Using d p/E =z, d p, /E„we find that the resulting
expression is

0 S d0E
3

(AB~h +X)= g d dxbd xG,z&„( )Gxby~( b)Dxbq, ( ) z2 (ah~cd)5(s+t+u) .
d p abed re,' (A4)

As in the previous case, the argument of the 6 function may be expressed in terms of the parton kinematic variables,
and the z, integration may then be done. The final form for the cross section is

d 0 1 1 d0E
3

(AB~h+X)= g dx~ dxbG, ~~(x, )Gb~~(xb)Dbi, (z, ) (ah~cd),
d p amin bmin 7rzc dt

where

(A5)

Xy Xy—V
x~x Te

~c + Xb min
2xb 2xg 2xg —xTe

X~eV
and Xamin = 0

2 —xre

Rev. Mod. Phys. , Vol. 59, No. 2, April 9987



J. F. Owens: Direct-photon production

Equation (A5) is also applicable for the calculation of the single-photon inclusive invariant cross section when the pho-
ton results from the fragmentation from one of the scattered partons. In this case one must replace D&«with Dr&, .

The above equations for the invariant cross sections include a summation over all of the possible two-body parton
scattering subprocesses. The expressions for these are given in Table I. In addition, the summation implies a symmetri-
zation under t and u interchange, i.e., interchanging the beam and target. Note that for the case of three quark flavors
there are 127 terms contributing to the inclusive single-particle cross section.

The partial cross section in Eq. (Al) can also be used as the basis for calculating a two-jet inclusive cross section. In
the absence of parton kT effects, the transverse-momentum components of the 5 function ensure that the jets are pro-
duced with equal and opposite transverse momenta. The di-jet cross section can then be written in terms of the rapidities
of the two jets and the transverse momentum pz- possessed by each:

do
2 (AB~j«, +jet, +X)=g J dx, dx~G, ~„(x,)G&~s(x&)

dy] dy2dpT ab

s dcT vs Vs
X — -(ah~12)5 x, +xt, —pT coshy~ —pT coshy2

dt 2 2

Vs Vsx5 x, —xb —pT sinhy& —pT sinhy2
2 2

(A6)

The two 5 functions appearing in Eq. (A6) are the energy and longitudinal parts of the original four-dimensional 5 func-
tion appearing in Eq. (Al). Together, they allow the integrations on both x, and xb to be carried out. The resulting
two-jet cross section is

do do
2 (AB~jet~+jet2+X) =g x, G,z„(x,)xqG~ts (xh ) (ah ~12),

dy & dy2dpT ab dt
(A7)

where

x, = (e +e ) and xg —— (e +e ) .pT —3') —
V2

s s

Another variable that is often used in studies of jet production is the di-jet invariant mass Mzz. This is easily shown to
be given by

M~~ =2pT[1+cosh(y& —y2)], (AS)

if the masses of the individual jets are neglected. The mass distribution is given by

do ~)J
dy&dyqdMJJ 1+cosh(y& —y2) dy, dy2dpz,

(A9)

Equation (A9) has been used to calculate the curves shown in Fig. 7.
The di-jet cross section in Eq. (A7) has no integrations remaining to be performed. That is, knowledge of the four-

vectors of the two jets has completely determined the kinematics of the parton scattering process. Thus it is possible to
use Eq. (A7), or an equivalent expression, to determine the parton-parton scattering angular distribution, averaged over
all of the participating subprocesses. I.et 8* be the parton-parton center-of-mass scattering angle. Then, Eq. (A7) can be
rewritten as

de
dxadxbd cosO

XaXbS dcTg G, gg (x, )Gggg(xg ) (ab ~12),
2 d"t

(A10)

where x, and xb have the same values as for Eq. (A7).
It is also possible to perform similar measurements with the two jets replaced by high-pT hadrons. In this case the ex-

pressions are somewhat more complicated by the fact that the hadrons represent fragments of the jets. It is useful to de-
fine several additional variables. Let M and Y be the invariant mass and rapidity of the dihadron system, respectively.
Furthermore, let 6 denote the difference between the two hadron transverse momenta. That is, 6 is the transverse
momentum of the dihadron system. In general, 6 is a two-dimensional transverse vector. However, for the simplified
kinematics being considered here, 6 and the transverse momenta of the two hadrons will all lie in the same plane. In ad-
dition, let MJJ and Y~z denote the invariant mass and rapidity of the di-jet system, respectively. In the event that parton
kT effects are neglected, it is straightforward to derive the following relations:
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500 J. F. Owens: Direct-photon production

2 2M =z,z2MJJ, b. =pg~(z, —z2),
1/2

MT +1 1 +cosO
YJJ

——Y+ln —ln +M z2 2

1/2
&2 1 —cosO'

with M7. ——+M +b,

Here pTj is the transverse momentum of the jet that fragments into the observed hadron. With the simplified kinematics
resulting from the neglect of parton kT effects, the two jets have balancing transverse momenta, and pTj is given by

M
pz~ —— (1—cos 0*) .TJ

With these results it is possible to construct the following differential cross section:

dM dYdhd cosO* dM~~dF~~d cosO*

&&Db ~J (z, )Db g) (zp)6(M z)z2—MJJ )6[6,—(z, z2)pT—J]

MT~5 Y —Y —ln- +lnD
1+cosO' + Z2

1/2
1 —cosO

where

do 1 do.

dMjjd Yjj d cosO* dP 1 d/2' Tj

from Eq. (A7). The 6 functions allow three of the integrations to be performed. The final expression may be written as

with

d0 d0 2„Dbi, (zi»b y, (z2)
dM dYdhd cos0* dMJJdY~/d cosO* ' ' ' ' z~pTJ(z~+z2)

(Al 1)

1I "=Y+—ln 1+ —ln(r cosO" +
M

), ~zz ——~z&( —r++1+r ), r =
M sinO

M"= and e " (~z) (min(l, r+')/1+r ) .2
B

The jet cross section in Eq. (A 1 1) is given by

d0 XgXb d0g G,~~(x, )Gb)e(xb) (ah~cd),
dMJ~dYJJd cosO 2 gbqd dt

Y" —Y"
with x, = (M~~ /v s )e " and xb (M/J. /——~s )e

This particular form for the dihadron cross section is particularly well suited to the implementation of the cuts used by
the CCOR Collaboration (Angelis et al. , 1982). As discussed in Sec. III.C.4, symmetric high-pT trigger experiments are
not particularly sensitive to parton kT-smearing effects and, therefore, Eq. (Al 1) yields results that are in close agree-
ment with a detailed Monte Carlo calculation in which kT effects are included.

Parton scattering angular distributions can also be measured in reactions in which one of the arms contains a photon.
For the case of a bremsstrahlung photon, Eq. (A 1 1) can be used with the appropriate photon fragmentation function ap-
pearing in the integrand. If, however, the photon originates directly from a two-body subprocess such as qg~yq or
qq~yg, then the z& fragmentation function should be replaced by 6(1—z&), allowing the last integration to be per-
formed.

The formalism discussed above can be used to determine the shapes of the parton-parton scattering angular distribu-
tions. In addition, correlations between the trigger photon and the recoiling away-side hadrons in direct-photon events
can also yield useful information. In principle it would be best if the entire away-side jet could be reconstructed, so that
each hadron could be assigned its respective momentum fraction z. In practice, it is often difficult to uniquely assign
soft hadrons to a particular jet, and an alternative method is needed. A useful variable in this instance is x„defined as

PTh PTy
2

PTy

where pT& and pTI, are the transverse momenta of the trigger photon and the observed away-side hadron, respectively. If
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parton kT effects and hadron masses are neglected, x, becomes equal to the usual momentum fraction z. If only the sub-
processes gq ~yq and qq —+yg are used, then the x, distribution can be calculated using

de ~d(7dx, dxsG, gg(x, )Gb)g(xb)s (ab~yd)Dt, gd(x, )5(s+t+u) .
dP y dP TydX~ ~bd dt

(A12)

In Eq. (A12) the integration ranges for x, and xb are the same as for Eq. (A5). If, on the other hand, bremsstrahlung
photons are included in the trigger, then the photon can have less than the full energy of the parent jet. In this case the
away-side hadron can actually have a larger transverse momentum than the trigger photon, and x, can be greater than
one. The presence of the photon fragmentation function means that one additional integration must be performed. The
resulting expression is

do. 1 do
2

——g dx, dxb G, ~~ (x, )Gb&z(xs ) (ah ~1'd)Dy tc(zc )Dhld(zz )
AT dX b d amin bmin dt

(A13)

where

Z2 —Xgz ]

XT y XT y
ZI —— e + e

2Xb 2x~

z &,„——min(1/x„ 1 ),
—3')

xgxTe
Xbmin

2x z 1
—xTe
3')

xTe
Xamin =

2zlmax xTe
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