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This work completes a two-part review on waves in gases, of which the first part [Rev. Mod. Phys. 58, 117
(1986)] dealt with the modern aspects of acoustics of jets, turbulence, and ducts; this second part extends
the range of topics from sound to magnetic, internal, and (to a lesser extent) inertial waves, thus considering
all four restoring forces (pressure, gravity, and Lorentz and Coriolis forces). The motivations for the study
of these waves were outlined in the introduction to Part I. Part II reviews the coupling of acoustic, magnet-
ic, and internal waves, in four stages: in Sec. I dispersion relations are used to study the propagation and
radiation of magneto-acoustic-gravity-inertial waves in media for which the wave speeds and scattering
scales are constant; in Sec. II the case of linear waves in stratified media, with nonuniform propagation
velocity, is then discussed by means of special functions, appearing as exact solutions of second-order prob-
lems; in Sec. III the study of linear waves with variable propagation speeds is extended to certain classes of
higher-order problems including a discussion of cutoff frequencies, critical levels, partition of energy, mode
coupling and conversion, etc; in Sec. IV the preceding studies are extended to damped and nonlinear waves,
to include dissipation with variable damping scales and large disturbances in media under nonuniform
external forces, such as magnetic flux tubes. The conclusion (Sec. V) sums up both parts of the review, in
the sense that it deals with all types of waves in fluids; it mentions a few currently controversial topics,

Interaction of sound with magnetic

points out some directions for future research, and indicates methods available to address these issues.
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We extend the study of waves in fluids (Brekhovskikh,
1960; Chandrasekhar, 1961; Tolstoy, 1973; Whitham,
1974; Lighthill, 1978), from the classical case of acoustics
(Rayleigh, 1877, Landau and Lifshitz, 1953; Beranek,
1954; Mason, 1964—1973; Morse and Ingard, 1968; Gold-
stein, 1976; Levine, 1978; Pierce, 1981; Brekhovskikh and
Lysanov, 1982; Dowling and Ffowcs-Williams, 1983) to
other types of waves, viz., magnetic (Alfvén, 1948; Lan-
dau and Lifshitz, 1956; Cowling, 1960; Alfvén and Falt-
hammar, 1962; Ferraro and Plumpton, 1963; Shercliff,
1965; Cabannes, 1970), internal (Pedlosky, 1960; Yih,
1965; Philips, 1966; Delloue and Halley, 1972; Turner,
1973; Beer, 1974; Hines, 1974; Gossard and Hooke, 1975;
Kraus, 1977), and inertial (Eckart, 1960; Tolstoy, 1963;
Greenspan, 1968; Acheson and Hide, 1973; Moffatt, 1978;
Gill, 1982). In the study of the interaction of these four
types of waves, we should consider a fluid under all four
restoring forces, viz., pressure, gravity, and Coriolis and
Lorentz forces, e.g., a compressible, self-gravitating, rotat-
ing gas under magnetic fields. The main examples of
such a fluid are to be found in astrophysics, e.g., in galax-
ies or stars, of which the closest, which has been the sub-
ject of more detailed observation, is the sun (Bray and
Loughhead, 1974; Athay, 1976; Bruzek and Durrant,
1977; Gabriel and Elliot, 1980; Bonnet and Dupree, 1981;
Stenflo, 1982; Gough, 1986). The main aim of the present
work is to examine the physics of waves under all four re-
storing forces. In order to provide a brief illustration of
their properties, while avoiding lengthy “morphological”
descriptions, we choose as a standard example or “test
laboratory” the phenomena in the outer, visible layers of
the sun. Although much progress has been made in the
study of the physics of the solar atmosphere (Parker,
1979; Gabriel and Mason, 1982; Priest, 1982a, 1982b), the
interpretation of most observations is still a subject of
controversy between many competing theories. Although
we do provide, by means of references (Leibacher, 1985),
an indication of alternative theories, our aim is not to say
the last word on solar physics, but only to use the sun as a
demonstration laboratory (provided by nature) to study
the physics of interacting acoustic, magnetic, and internal
waves.

The subject has many ramifications, some of which



L. M. B. C. Campos: Interaction of sound with magnetic and internal modes 365

were mentioned in the introduction to Part I, so that we
need add here only a few more references, adequate for
the beginning of a literature search. The sun is the star
closest to the Earth, and thus the most accessible probe of
theories of stellar structure and evolution (Eddington,
1926; Chandrasekhar, 1957; Clayton, 1968; Reddish,
1978) and of dynamical and atmospheric processes (Miha-
las, 1939; Chandrasekhar, 1942; Unsold, 1955; Athay,
1972; Swihart, 1981). The various types of stars (Rosse-
land, 1949; Schatzman, 1958; Shklovskii, 1968; Kopal,
1978), together with interstellar matter (Spitzer, 1968,
1978), form galaxies and galactic clusters (Mihalas and
Binney, 1968; Fall and Lynden-Bell, 1981), which are the
largest  “structures”  considered in  astrophysics
(Ambartsumy’an, 1958; Pacholczyk, 1970; Kourganoff,
1980) and cosmology (Hawking and Ellis, 1973; Segal,
1976). Astrodynamics and celestial mechanics (Danby,
1962; Herrick, 1971; Hagihara, 1972) are also relevant at
the opposite end of the scale, that of the solar system
(Kuiper, 1953; Alfvén, 1954; Lyttleton, 1968; Pottasch,
1984); our knowledge of our solar system’s constituent bo-
dies (Urey, 1952; Lovell, 1954; Krinov, 1960; Kopal,
1962) has improved significantly in recent years as a
consequence of space exploration (Kaufmann, 1978) by
satellites and probes (Helvey, 1960). Although the Earth
(Jeffreys, 1924a; Chapman and Bartels, 1962; Stacey,
1969; Jacobs, 1975) is also an astronomical body, the
study of its dynamics (Todhunter, 1873; Love, 1911;

Scheidegger, 1963; Melchior, 1978; Lapwood and Usami,

1981) is considered to be a part of geophysics. The latter
also includes the physics of the ionosphere (Stormer,
1955; Van Allen, 1956; Ratcliffe, 1960, 1972), which re-
sults from the trapping of the solar wind by the Earth’s
magnetic field, and relates to solar-terrestrial physics
(Akasofu and Chapman, 1972). A scientific discipline of
common interest to geophysics and astrophysics is the
study of phenomena in plasmas (Dungey, 1958; Drum-
mon, 1961; Shohet, 1971; Ecker, 1972; Sitenko, 1982; Ni-
cholson, 1983). The references given are only a small
sample, since progress in most of the topics mentioned is
sufficiently rapid to justify the publication, on average, of
a new book every few years [recently the pace has ac-
celerated, e.g., in solar physics (Thomas and Athay, 1961;
Bray and Loughhead, 1974; Athay, 1976; Bruzek and
Durrant, 1977; White, 1977; Priest, 1982a, 1982b; Stur-
rock, Holzer, Mihalas, and Ulrich, 1986)], besides several
conference proceedings and review volumes every year.
Although physical processes in the sun (Parker, 1985)
have analogs elsewhere, e.g., in other stars (Linsky, 1985;
Noyes, 1985), for purposes of illustration of various phe-
nomena, we shall concentrate on the solar case, in order to
try to build up a global, though arguable, picture (Sec.
IV.C.6—1IV.C.8; see Table III below).

I. DISPERSION RELATIONS FOR ANISOTROPIC WAVES

Waves in fluids and other media can be classified as
“large” or “small” in amplitude, depending on the magni-
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tude of the perturbation relative to the mean state. Even
if the equations of motion are nonlinear (as is generally
the case with fluids), they can be linearized for waves of
small amplitude, allowing the use of the principle of su-
perposition. Thus waves of small amplitude can be
described by linear partial differential equations, which
can be subclassified into those with “variable” and “con-
stant” coefficients. The variable coefficients correspond
to media whose properties with regard to waves are
nonuniform or unsteady, e.g., the propagation speeds,
scattering scales, damping rates, etc., depend on position
or time. Such linear wave equations can be solved exactly
only for simple forms of the coefficients, requiring the
use of special functions, which describe a rich variety of
physical phenomena underlying their peculiar mathemati-
cal properties. The simplest to study are linear waves in
media with constant parameters, i.e., uniform wave
speeds, damping rates, scattering scales, etc. They are
described by linear equations with constant coefficients,
which can always be solved by Fourier analysis, that is,
which permit (Sec. I.A) plane-wave solutions. It then be-
comes a matter of algebra to determine the dispersion re-
lation (Sec. I.B), expressing frequency as a function of
wave vector; from the latter the properties (Sec. 1.C) of
propagation and radiation can be derived for a wide
variety of waves, isotropic and anisotropic, dispersive and
nondispersive, dissipative or undamped. Thus the disper-
sion relation is the starting point for a study of wave
properties, and we choose as reference waves in fluids
under all four restoring forces.

A. Magneto-acoustic-gravity-inertial waves

Of the four types of waves in fluid, sound has been a
subject of study (and speculation) since antiquity, inertial

- waves (Kelvin, 1880) and internal waves (Stokes, 1847)

have been studied since the last century, and purely mag-
netic modes (Alfvén, 1942) are the last to have been
discovered. Thus magnetic waves in ionized fluids were
found long after electromagnetic waves in vacuo or dielec-
trics (Maxwell, 1873; Stratton, 1941), and also later than
piezoelectric waves in crystals (Voigt, 1898; Cady, 1946).
An incidental parallel is that electromagnetic waves were
predicted theoretically (Maxwell, 1864) before being ob-
served experimentally (Hertz, 1888), as were magnetic
waves eighty years later: they were predicted theoretically
to exist (Alfvén, 1942) and to play a major role in solar
physics (Alfvén, 1945, 1947) and then were found in labo-
ratory experiments (Lundquist, 1949; Lehnert, 1951), be-
fore being observed in the interplanetary medium (Belch-
er, Davis, and Smith, 1969; Belcher and Davis, 1971), and
in the solar wind (Burlaga and Turner, 1976; Denskat and
Burlaga, 1977) and atmosphere (Sawyer, 1974; Giovanelli
and Beckers, 1982). The coupling of Alvén waves with
sound, as magneto-acoustic waves (Astrém, 1950; Herlof-
son, 1950; Banos, 1955; Lighthill, 1960; Campos, 1977),
received more attention than the effects of rotation
(Lehnert, 1954, 1955) and gravity (Howe, 1969) during the
1950s and 1960s, which were a period (Bullard, 1955;
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Weinberg, 1962) of rapid expansion of MHD (magneto-
hydrodynamics). The study of three-wave couplings, viz.,
the consideration of MHD waves in stratified media, such
as oscillations of compressible, ionized atmospheres, start-
ed with studies of reflections at interfaces (Ferraro, 1954;
Stein, 1971) and rapidly evolved to the study of magneto-
acoustic-gravity waves in gradually varying media (Yu,
1965; McLellan and Winterberg, 1968; Bel and Mein,
1971; Chen and Lykoudis, 1972; Michalitsanos, 1973;
Stein and Leibacher, 1974; Yeh, 1974; Leroy and Bel,
1979; Campos, 1982; Thomas, 1982). In the context of
magneto-atmospheric waves it is possible to find “pure”
acoustic waves (Campos, 1984a) or shocks (Foukal and
Smart, 1981) guided by the magnetic field, as well as
more complex phenomena, e.g., coupling with rotation, ei-
ther uniform (Suess, 1975; E1 Mekki, 1985) or differential
(Fearn and Proctor, 1983).

1. Pressure, buoyancy, Lorentz, and Coriolis forces

In order to describe waves in gases, we start from the
general equations of compressible fluids under gravity,
magnetic, and inertial forces, in the presence of dissipa-
tion by viscosity, electrical resistance, and thermal con-
duction and radiation. The momentum equation states
that the viscous stresses (right-hand side) balance all the
forces present, viz., the inertial force (mass multiplied by
total=local 4 convective acceleration), the forces associ-
ated with rotation (Coriolis, nonuniform rotation term,
and centrifugal), the gas pressure gradient, gravity, and
magnetic force, i.e.,

C[V+(V-V)V4+2QAV 4+ QAX + QA(QAX)]
+VP +GI' —(u/4m)HA(VAH)
=V, V3V (v 4+ /3)V(V-V), (1)

where an overdot denotes partial derivative with regard to
time. For example, if X is the fluid particle displace-
ment, then X=0X/3t=V is the flow velocity, and the
remaining variables appearing in Eq. (1) are the mass den-
sity ', gas pressure P, acceleration of gravity G, and
magnetic field H, and u,v,,v, denote, respectively, the
magnetic permeability and incompressible and compressi-
ble kinematic viscosities. In the MHD approximation it
is assumed that the ionized fluid has no charge, i.e., posi-
tive and negative charges balance, although, since ions
and electrons usually have different velocities, a net con-
duction current can exist. The displacement current is
neglected relative to the conduction current, allowing the
exclusion of electromagnetic waves, and the elimination

of Maxwell’s equations for the magnetic field H yields.

the induction equation:

H+VA(VAH)= (¢} /4muo)V?H
+(c2/4mun)VA[HA(VAH)] , )

where c, is the speed of light in vacuo. Equation (2)

states that in a perfectly conducting medium, o= 0 =1,
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the magnetic field is frozen into the fluid and “lags” in
the presence of finite Ohmic o or Hall 1 conductivities.

2. General equations of self-gravitating
magnetohydrodynamics

The nonrelativistic gravity field is potential and created
by mass:

VAG=0, (3a)
V-G=4nTk, , (3b)

where k, denotes the gravitational constant. The conser-
vation of mass is stated by the equation of continuity:

N4+V(I'V)=0 4)

for a single chemical species, in the absence of mass dif-

fusion. The equation of energy states that production of

entropy s, in a convected frame, is due to dissipative pro-

cesses associated with the incompressible and compressi-

ble viscosity, electrical resistance, and thermal conduction

and radiation (the latter for a “grey” body of opacity v):
v, v, 2

. 2
F(S+V VS)— Vi axj -+ ax[ + 3 (V V)SU

+v(V-V)2+(c /16720 )(VAH)?

+V-(,VT)+(5/v)T*, (5)

where T denotes the temperature, and «,& the thermal
conductivity and Stefan-Boltzmann constant, respectively.
Since we have 12 variables, consisting of three vectors
(displacement X or velocity V, magnetic field H, and
gravity G) and three scalars (density I', entropy s, and
pressure P, or temperature T'), we need the same number
of equations, viz., three vector—momentum (1), induction
(2), and -gravity [Egs. (3a) and (3b) are equivalent to
G=Vy¥ where the gravitational potential 1) satisfies
Poisson’s equation V?=4rk,']—plus three scalar
equations—continuity (4), energy (5), and the equation of
state, in the form P(T,s), relating pressure to density and
entropy. The preceding system of equations has been re-
stricted only in neglecting plasma and relativistic effects
and in making various simplifying assumptions concern-
ing diffusion terms.

3. Undamped waves of small amplitude

We shall consider, in the first instance, undamped
waves, for which all dissipation terms on the right-hand
side (rhs) of Egs. (1), (2), and (5) can be omitted; in this
case, the equation of energy (5) states that the entropy s is
conserved, ds /dt =0, in a convected frame
d/dt=98/3t +V-V, and the equation of state P(I',s) im-
plies that pressure and density I" are related by
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(P+V-VP)=CXT'+V-VI'), (6a)
C?=(3P/3I), , (6b)

where C denotes the adiabatic sound speed. The equa-
tions of self-gravitating mass [(3a) and (3b)] can be impor-
tant for the study of global oscillations (Unno, Osaki,
Ando, and Shibaiashi, 1979; Cox, 1980) of large fluid bo-
dies such as stars (Eddington, 1926; Schwarzschild, 1958;
Skilling, 1968; Tassoul, 1978). These equations are un-
coupled from the wave motion in the Cowling (1941) ap-
proximation, which neglects (Pekeris, 1938; Ledoux and
Walraven, 1957) the perturbation in the gravitational po-
tential. For oscillations of physical extent much smaller
than the planetary or stellar scale, the gravity G=g can
be treated as a constant, external force field, much as the
angular velocity € is supposed to be given; the nonrela-
tivistic treatment limits the displacement X from the ro-
tation axis to tangential velocities | QAX |2 <<c% much
smaller than the speed of light. For waves of small am-
plitude, we may decompose the total flow variables, viz.,
the displacement X, velocity V, pressure P, density I,
and magnetic field H, into a steady, nonuniform mean
state of rest (r,0,p,p,B) and a perturbation (&,v,p,5,h):

X,V,P,T',H(x,t)=r1,0,p,p,B(x)+&,v,p,p,h(x,?) . (7a)

We may now substitute Eq. (7a) in the general equations,
subtract the mean-state equations, neglect nonlinear
terms, and retain only the terms linear in the perturba-
tions:

E+2QAE+QAE+QAQAE)+p~ 'Vo—(p/p)g
—(u/4mp)[BA(VAh)+hA(VAB)]=0, (7b)

for the linearized, inviscid momentum equation.
4. Wave operator for particle displacement

The linear, nondiffusive equations of induction (2), con-
tinuity (4), and adiabaticity (6a) can be used to express all
wave variables, viz., the magnetic field h, density pertur-
bations p, and pressure perturbations p, in terms of the
displacement

h=VA(BA£), (8a)
p=—V-(p€) , (8b)
P=—pcXV-E)—pg-E—(u/4m)E[BA(VAB)], (8¢)

where all other quantities, i.e., mass density p, gravity g,
and magnetic field B, refer to the mean state. In the first
and second terms of Eq. (8c),

—cXp+£-Vp)=—pcHV-E)

and —&-Vp, respectively, we have used the linearized adi-
abatic sound speed ¢ and the equation of momentum for
the mean state:

c?=(3p/3p)s=yp/p=YRT , (9a)
Vp —pg—(u/4m)BA(VAB)=0 . (9b)

In Eq. (9a), ¥ denotes the ratio of specific heats, and we
have used the equation of state for a perfect gas, p =pRT,
with R the gas constant. Equation (9b) specifies the
magneto-hydrostatic equilibrium of the atmosphere. Sub-
stitution of Egs. (8a)—(8c) into Eq. (7b) yields the linear,
nondissipative wave equation for the particle displace-
ment:

E+20AE+QAE+QAQAE)—p~ 'V -[pcX(V-E)]—p~ 'V[p(g-£)]—gV-(p&) — (1 /4mp)V {£-[BA(VAB)]}

—(u/4mp) {BA[VAVA(BAE)]+[VA(BAE)JA(VAB)} =0 . (10)

The magneto-acoustic-gravity-inertial wave equation (10)
balances the acceleration (first term) against the combined
effects of rotation (second-to-fourth terms), compressibili-
ty (fifth), gravity (sixth and seventh), and magnetic field
(eighth and ninth); it allows for the presence of three
external force fields, namely, nonuniform and unsteady
rotation (x,#), nonuniform but steady magnetic field
B(x), and arbitrary gravity g. It is fairly general, since it
applies to adiabatic propagation in any fluid (it may be a
liquid or a gas, perfect or not) with any stable density or
temperature stratification; the general wave operator (10)
extends the result for magneto-atmospheric waves
(McLellan and Winterberg, 1968; Bray and Loughhead,
1974; Campos, 1983b; Thomas, 1983) to include the ef-
fects of rotation together with arbitrary stratification of
the fluid.

5. Conservation of vorticity and propagation
of dilatation

The simplest instance of the wave equation (10), con-
cerns “pure” sound in a compressible fluid, in the absence
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[
of external fields Q=B=g=0, viz.,
0=E—p~'V-[pcXV-£)]
—E—cV(V-E)—y(V-E)p~'Vp , oan

where the last term vanishes for a homogeneous medium.
Taking the curl and div of the first two terms, we have

9X(VAE)/3t?=0, (12a)
(8%/0t2—c?V?)(V-£)=0, (12b)

which shows that for sound waves the vorticity is con-
served (12a) and the dilatation propagates (12b) at sound
speed. In the case of a homogeneous perfect gas at con-
stant temperature, the sound speed c is a constant, and
Eq. (12b) has plane-wave solutions:

Exn= [ " X(ko) expli (k-x—on)]dkdo, (13)

with a spectrum X that depends on frequency w and wave
vector k. The conservation of vorticity VA£E=0 implies
that the fluid particle displacement is aligned with the
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wave normal kAX =0, i.e., the wave is longitudinal, and
consists of compressions and rarefactions without shear.
The classical wave equation (12b) for the dilatation in a
medium at rest (the generalization to flowing media was
given in Sec. ILB of Part I) leads to the dispersion rela-
tion,

w=x*ck , (14a)
u=w/k==+*c, (14b)
w=0w/dk=+*cn, (14¢)

and hence to the phase speed (14b) and group velocity
(14c). These demonstrate the well-known fact that acous-
tic waves travel at sound speed ¢ in the wave-normal
n=k/k direction, i.e., their propagation is isotropic and
nondispersive. The speed of propagation of sound is in-
dependent of direction and wavelength, because the corre-
sponding restoring force, the gas pressure, is isotropic,
and in a homogeneous medium there is no length scale to
define an interaction parameter together with the wave-
length.

6. Coupling of internal and acoustic modes

The isotropy and nondispersive property of sound are
both broken in the presence of gravity, which introduces a
preferred direction and causes a density stratification. If
we choose gravity to be vertically downwards,
g=1(0,0,—g), the equation of hydrostatic equilibrium
[Eq. (9b) with B=0] implies

g=—p 'Vp=—(c?/y)V Inp=c?/yL , (15a)

=—(Vlnp)~!'=RT/g, (15b)

in an isothermal atmosphere of a perfect gas, for which
the sound speed ¢ [Eq. (9a)] and density scale height L
[Eq. (15b)] are both constants. The wave equation (10),
without rotation and magnetic field 2 =0=B, simplifies
to

E—cV(V-E)—(y—1)g(V-E)—V(g-£)=0, (16)

which is the acoustic-gravity wave operator. It has
plane-wave solutions (13) in an isothermal atmosphere,
implying that

0*X —c%k(k-X)+i(y—1)gk-X)+i(g-X)k=0 . 17

We choose the x; axis opposite to gravity, and the x; axis
so that the wave vector k lies in the (x;,x3) plane, i.e.,
k=(k;0,k ). It follows from Eq. (13) that the wave par-
ticle displacement X lies in the plane of gravity g and the
wave vector k:

a)z—czkﬁ
—Czk”kl —l(

y—1)gk;, o?’—c’ki—iygk,

X,
=0.

X3
(18)

For waves to exist, the vector X=(X{,0,X3) should not
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vanish, so the determinant of the dispersion matrix in Eq.
(18) must be zero, yielding the dispersion relation

o*—(c?k>+iygk o +(y —1)g%k} =0, (19)

which reduces to that for pure sound (14a), in the absence
of gravity g =0.

7. Cutoff frequencies due to stratification
and compressibility

In the presence of gravity g0, it is convenient to solve
the dispersion relation (19) for the vertical wave number
k, (in the direction opposite to gravity):

ki +(i/L)k; —[w?/c®—k{ +(y —1)(gk, /oc)*]=0
(20)

as a function of frequency w and horizontal wave number
k, (perpendicular to the direction of stratification), viz.,

ky=—i/2L +[(0*—0})/c = k}(1—wl/0M]?, (1)

where w; and w, define, respectively, the internal (or
Briint-Vaisala) and acoustic cutoff frequencies:

o=Vy—1Wg/e)=Vy—1lc/yL), (22a)
<w,=c/2L =vg/2c . (22b)

The reason for this designation is that, for frequencies be-
tween the cutoffs w; < w < w,, the vertical wave number is
pure imaginary k, =ia, and only standing modes exist:

exp(ik x;)=exp(—ax;) .

Above the upper o > w, and below the lower o <w; cut-
offs, the vertical wave number has a real Re(k, )40 prop-
agating part, and the imaginary part Im(k;)=—1/2L
corresponds to amplitude growth with altitude,

| exp(ik;x3) | =exp[ —Im(k, )x3]=exp(x3/2L),

on twice the scale height. Above the upper cutoff o > w,,
we have acoustic waves, unaffected by gravity for very
high frequencies (k, ~w/c for ®?>>w3) and modified by
gravity as the cutoff w, is approached; below the lower
cutoff o <w;, we have gravity modes, unaffected by
compress1b111ty for very low frequencies (k, ~k 0/ for
o? <<w?) and modified by compressibility as the cutoff o,
(or Briint-Vaisala frequency) is approached. The gravity
mode cannot propagate vertically, and in this case, k=0,
only the one cutoff remains, namely, w, for acoustic-
gravity waves. Both cutoff frequencies are decreasing
functions of temperature, w;,w,~ 7T ~!/2, and the corre-
sponding cutoff periods increase with the square root of
temperature, 71,7, =217 /®q, 217 /w5~ T2

8. Mass supply to the corona and spicules

The property described above may be relevant to waves
in the solar atmosphere, which consists (De Jager, 1971;
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Athay, 1976; Bruzek and Durrant, 1977; Priest, 1982a) of
three “layers”: (i) The brightest, below which direct ob-
servation is impossible, is the photosphere, where the tem-
perature decays with altitude, as required by radiative-
convective processes. (ii) Above this is the chromosphere,
which gives the sun its color, where the temperature gra-
dient is reversed to positive, through a temperature
minimum. (iii) The temperature then increases sharply,
from less than 10* K in the chromosphere, across a “thin”
transition region, to over 10° K in the corona, which is
the outermost layer, readily visible during eclipses.
Acoustic waves with a five-minute period, which have
been observed for a long time (since Leighton, Noyes, and
Simon, 1962), can propagate in the photosphere and coro-
na, but become evanescent in the chromosphere, in the re-
gion near the temperature minimum, where the cutoff
period 7,=200 s is less than the wave period 7=300 s.
Acoustic waves have a zero mean velocity v and density
p'=pv/c  perturbations, but the mass flux
j=p'v=pv?/c=pv, is nonzero, to second order, and im-
plies a mass transport of a magnitude equal to that associ-
ated with a steady flow of velocity v, =v?/c. The actual
existence of a steady flow, i.e., wave-induced streaming,
should be checked by a nonlinear calculation, including
induced pressure gradients. For the purpose of estimating
the mass flux, we take ¢ =10 km/s for the sound speed
and v =1 km/s for the velocity perturbation in the photo-
sphere; the equivalent “steady” flow velocity is v, = 10*
cms™!, and, for a mass density p=3X10"7 gecm™3, the
mass flux is jo=3X10"3 gem~2s~!. As the waves prop-
agate upward through the chromosphere, they traverse an
evanescent region about 14 scale heights thick, and thus
there is a reduction of e=e ~’=8.3x 1077 in the mass
flux, to j; =gjo=2.5%10"° gcm~2s™! at the base of the
corona. This corresponds to the net upward mass flux
in spicules, which are (Beckers, 1968, 1972) jetlike flows
in the low corona carrying a mass flux of
j2=0.2j;=5.0x10"1° gecm—2s~!; we note here that the
excess of upward over downward jets is 20%. This mass
flux is sufficient to supply the corona with the mass flux
j3=3.0x10""" gem~2s~! it loses in the solar wind
(Ulmschneider, 1971a), with an excess of mass
Aj=j,—j3=4.7x10"1"" gem~2s~!, which falls back
through the transition region, causing (for a mass density
p1=3.0x10"17 gecm™3) downflow velocities v, =AJ /p;
=1.6x10% cms~! of about 16 km/s, which are in the
range 10—25 km/s of observations (Pneuman and Kopp,
1977, 1978; Mein, Simon, Vial, and Shine, 1982; Engvold,
Tandberg-Hanssen, and Reichmann, 1984). Thus acoustic
waves could establish the mass balance in the solar atmo-
sphere by supplying, from the photosphere to the corona,
the mass the latter loses in the solar wind.

B. Wave properties and propagating fields

This outline of the mass transport in the solar atmo-
sphere would suggest that the spicules, i.e., upward jets in
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the solar atmosphere, are acoustic waves, of large ampli-
tude, guided along the magnetic field. It is possible to
construct a model based on acoustic-gravity waves (Cam-
pos, 1984a) which complies with most of the observations
of spicules (Mouradian, 1967; Pasachoff, Noyes, and
Beckers, 1968; Michard, 1974; Mouradian and Simon,
1975; Bohlin et al., 1977; Mouradian and Soru-Escaut,
1976; Moore et al., 1977; Mosher and Pope, 1977; La-
bonte, 1979; Kulidzanishvili, 1980; Poletto, 1980; Rabin
and Moore, 1980; Ajmanova, Ajmanov, and Gulyaeyv,
1982; Withbroe, 1983; Gaizauskas, 1984; Hasan and Keil,
1984; Landman, 1984b, 1986). For example, the spicule
velocity corresponds to the speed of an acoustic-gravity
wave (Campos, 1984a), and the sun’s general magnetic
field is sufficient to guide it, in the low corona, since there
the magnetic pressure exceeds the gas pressure (Sec.
I.B.8). The dissipation of the large-amplitude acoustic
wave (by “eddy” viscosity), when balanced against
thermal radiation, leads (Fig. 1) to a theoretical profile of
temperature versus altitude [Fig. 1(b)], which is consistent
with empirical data (Beckers, 1972); the observed profile
of mass density [Fig. 1(a)] corresponds to an atmosphere
in hydrostatic equilibrium, upon which is superimposed a
compression front associated with the wave. There exist
many other models of spicules, based on (i) magneto-

SPICULE MODEL

log p (g/em™3)
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FIG. 1. Profiles of (a) mass density and (b) temperature vs alti-
tude, observed in spicules (triangles; Beckers, 1968), compared
with the predictions (solid curve; Campos, 1984a) of the theory
of acoustic-gravity waves of large amplitude, with viscous and
radiative damping.
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hydrodynamic shocks (Thomas, 1948; Uchida, 1961) that
displace the transition region upward (Osterbrock, 1961;
Hollweg, 1982a); (ii) ejection of material by magnetic field
reconnection (Petschek, 1964; Pikelner, 1971), possibly
with other supporting forces (Uchida, 1969; Blake and
Sturrock, 1985); (iii) instabilities (Kuperus and Athay,
1967; Defouw, 1970, Sparks and Van Hoven, 1985),
which may (Roberts, 1979) or may not (Hollweg, 1979;
Venkatakrishnan and Hasan, 1982) develop into upward
motions; (iv) various types of jets (Hasan and Venkatak-
rishnan, 1981; Shibata, 1982; Suematsu et al., 1982;
Suematsu, 1985; Shibata and Uchida, 1986) and energy
exchange mechanisms (Athay and Holzer, 1982; Athay,
1982, 1984; Kulidzanishvili and Zhugzhda, 1983;
Hollweg, 1984a). It is beyond the scope of the present re-
view to discuss in any detail these spicule models; they
demonstrate that waves can carry mass and energy in at-
mospheres, and support a continuation of the study of
wave properties.

1. General second-order wave equation

We have discussed two particular instances, namely,
sound (Sec. I.A.5) and acoustic-gravity modes (Sec. I.A.6),
of magneto-acoustic-gravity-inertial waves (Sec. 1.A.4).
Before proceeding to analyze (Sec. 1.B.4—1.B.7) further
instances of this, we note that we shall always be dealing
with particular cases of the general, linear second-order
vector wave equation:

Aﬂmnazé‘l /axmax,, +lem 8251 /ataxm +Cj182§l /81‘2
+Dﬂma§1/axm +Eﬂa§,/at+FJ,§1=0 . (23)

Equation (23) includes, as particular cases, the wave equa-
tion for the displacement, in nondissipative fluids, in iso-
tropic and anisotropic elastic bodies (Love, 1927; Achen-
bach, 1973; Hudson, 1978), and piezoelectric waves in
crystals (Cady, 1927). Assuming that all coefficients in
Eq. (23) are constant, there exist plane-wave solutions
[Eq. (13)], and the wave operator (23) leads to the disper-
sion matrix

Hjl = (Ajlmnkmkn —-Bﬂmkma)"—le(Oz—Fiﬂ)

+i(Ejo—Djpnky,) . (24)

The wave spectrum X satisfies
;(k,0)X;(k,0)=0, (25a)
Det[I1;;(k,w)]=0, (25b)

and in order for waves to exist X cannot vanish identical-
ly, implying that the determinant of the dispersion matrix
is zero. Equation (25b) is a polynomial equation, whose
roots specify the dispersion relation

o=f(k), (262)
and hence the phase speed
u=w/k=k~'f(k) (26b)
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and group velocity

w=0w/dk=3f/dk . (26¢)

Since the determinant (25b) is at most of rank 3, there are
no more than three pairs of roots, and it follows that gen-
eral magneto-acoustic-gravity-inertial waves have, at
most, three pairs of modes. The number may be less, if
certain roots coincide, e.g., acoustic waves have one mode
(Sec. I.A.5) and acoustic-gravity waves two modes (Sec.
I.A.6); it is possible to have three distinct pairs of modes
by coupling only two restoring forces, e.g., for magneto-
acoustic waves (Sec. 1.B.7).

2. Homogeneous operator and nondispersive waves

Suppose that in Eq. (23) all coefficients of terms of first
and zero order vanish, Dj,=E;=F;=0, so that the
wave equation is homogeneous and of the second degree,

Ajin3°E1 /3Ky 3%, + By 8°€1 /313,y + C13°€1 /017 =0,
(27)

the dispersion matrix is a quadratic function of wave vec-
tor and frequency,

HjI:Ajlmnkmkn_lemkm“)‘+‘cj1w2 > (28)

and the roots of its determinant (25b) are linear relations
between frequency and wave vector,

= AIkI ’ (29a)
u=An;, (29b)
wy=A4; . (29¢)

The linear dispersion relation (29a) implies that the coeffi-
cient A coincides with the group velocity (29¢), while the
phase speed (29b) is the group velocity projected in the
wave normal direction n=k/k. Since neither the phase
speed (29b) nor the group velocity (29c) depends on the
wave number k= |k| or on wavelength A=2w/k, the
waves are nondispersive, i.e.,, a packet of waves of dif-
ferent lengths remains together, as all wave components
move at the same speed; conversely, if the wave equation
contains derivatives of different orders, the dispersion
matrix is not homogeneous, its roots yield nonlinear rela-
tions between frequency and wave vector, the phase speed
and group velocity depend on wavelength, and waves are
dispersive. In other words, a wave packet spreads out as
it moves, because components of different wavelengths
move at distinct speeds, i.e., “lag” or “advance” relative
to each other. On inspection of the equation of linear,
nondissipative waves in fluids (10), it is clear.that acoustic
and magnetic terms have only second-order derivatives (in
homogeneous media), whereas gravity and rotation intro-
duce first-order derivatives. Thus the only nondispersive
modes are acoustic (Sec. I.A.5), magnetic (Sec. I.B.6), and
magneto-acoustic (Sec. 1.B.7) waves in homogeneous
media; all other waves in fluids are dispersive, viz., (i)
internal waves (Sec. I.B.4) and inertial waves (Sec. 1.B.5);
(ii) all five two-wave couplings (except magneto-acoustic),
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such as acoustic-gravity waves (Sec. 1.A.6); (iii) all four
three-wave couplings; and (iv) the single four-wave cou-

pling.

3. Laplacian operator and isotropic waves

Suppose that in the wave equation (23) all coefficients
are isotropic tensors, i.e., are given by

Ajlmn=A18jm81n +A28j18mn »
len :Bejlnv’
le=C8jh Djln =Dejln ’

etc., in terms of Kronecker 8; or permutation e, tensors.
The wave equation can be written in the vector form

A\V(V-E)+A,VE+B(VAE)
+CE+D(VAE)+EE+FE=0. (30)

Taking the divergence of Eq. (30), it follows that the dila-
tation V-£ satisfies a scalar wave equation

(AV?4+C3%/3t*+ED /3t +F)(V-£)=0, (31)

with 4=A4,+ A,, where spatial derivatives appear only
through the Laplacian operator V>=29%/0x;0x;. The
dispersion polynomial depends on the wave vector k only
through the wave number k= |k |, that is,

I(k,w)=Ak?*+Ceo?—F +iwE ; (32)

its roots are generally nonlinear relations between fre-
quency and wave number:

o=f(k), (33a)
u=k='f(k), (33b)
w=(df /dk)n , (330)

implying that the group velocity (33c) lies in the wave-
normal direction n=k/k, and the phase speed (33b) is
isotropic. Conversely, if the wave equation involves spa-
tial derivatives other than the Laplacian, the wave normal
appears in the dispersion polynomial (32) and dispersion
relation, and thus the group velocity is no longer parallel
to n, nor is the phase speed independent of n. In the case
of isotropic waves, the propagation speed is independent
of direction, and wave fronts are spherical, whereas, with
anisotropic waves, the propagation speed is direction
dependent, and the wave fronts are not spherical. On in-
spection of the magneto-acoustic-gravity-inertial wave
equation (10), it is clear that only the acoustic term is iso-
tropic, and the presence of gravity, magnetic field, or ro-
tation introduces anisotropy. In order to have waves that
are both nondispersive and isotropic, we have to satisfy
Egs. (29a)—(29c) and (33a)—(33c) simultaneously; this
leads to the dispersion relations (14a)—(14c¢) for sound,
and shows that the only isotropic, nondispersive wave
equation 4V?4B3%/3t2+C is essentially the classical
wave equation (with BA <0, plus a constant, as in
Helmholtz’s equation).
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4. Internal oscillations along line of steepest descent

Of the four types of waves in fluids under a single re-
storing force, we have considered so far only acoustic
waves (Sec. II.A.5), which are the high-frequency limit
w/w, ®/w,y, L— « of acoustic-gravity waves (21),

ki=w?/c?—k} . (34a)
The opposite, low-frequency limit ®,/w, @,/0— « is
k,=—i/2L +k(0}/0*—1) . (34b)

From Eq. (34a) we obtain (14a) for the total wave number
kzskﬁ +k?; it is real, showing that plane sound waves
have constant amplitude, and the linear relation between
frequency and wave number shows that acoustic waves
are isotropic and nondispersive. For gravity waves, the
vertical wave number has an imaginary part
Im(k;)=—1/2L, implying that the wave amplitude
grows exponentially with altitude z=x; on twice the
scale height

| explik,z) | =exp(z/2L) ;

the total wave number k>=[Re(k, )]2-+—kﬁ depends both
on frequency w and the angle 6 of the wave normal n to
the vertical (opposite to gravity):

o=k /k =0 sind=w,(k-m/k) . (352)

From Eq. (35a) it is clear that internal waves cannot prop-
agate vertically along or opposite to the gravity field
(0=0 for k,=0 or 6=0,7), and as the wave frequency
increases, the wave vector k tilts closer to the horizontal,
until, for horizontal propagation it equals the buoyancy
frequency (w=w, for k =k or §=m/2), which is the
cutoff frequency (21b) above which internal waves are
evanescent. From Eq. (35a), where m is the unit horizon-
tal vector in the plane of the wave normal n=k/k and
gravity g, we can calculate the group velocity

w=0w/dk=(w,/k3)[(mk?—(k-m)k]
=(w;/k)[nA(mAn)], (35b)

showing that it is larger for longer waves |w| ~1/k ~A.
The fluid particle displacement and the wave energy flux
are directed along the component of m transverse to n,
i.e., (i) they lie in the plane orthogonal to the wave normal
direction, as appropriate to an incompressible, transverse
wave; (ii) in this phase plane, the oscillation takes place
along the line of steepest descent, for which buoyancy is
most effective at balancing inertia. ‘

5. Inertial flux along direction of maximum separation

The other restoring force, besides gravity, that leads to

‘anisotropic and dispersive waves is the Coriolis force;

wave dispersion is associated with the presence of a cutoff
frequency for internal waves, and we shall show that this
also applies, in a different way, to inertial waves. We
consider transverse motions V-v=0, in the absence of
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gravity and magnetic field, g=0=B, and in the presence
of uniform rotation, Q=constant. The linearized
momentum equation (8) takes the form

E+20AE+p'Vp +V[(QAE)?/2]=0, (36a)

where the centrifugal force QA(QAE) per unit mass has
been written as the gradient of the centrifugal energy
(QAE)?/2. For incompressible motions, it is usual to
make the Boussinesq (1878) approximation, which
neglects gradients of mean state density, e.g., in

VA(p~Vp)=V(p~)AVp =p~*VpAVp .

Omitting the latter term when taking the curl of (36a), we
obtain (36b):

VAE=—(Q-V)E, (36b)
V% —(Q-V)*£=0, (36¢)

and thus, by applying 8/9tVA once more, bearing in
mind that, for incompressible motions V-£=0 we have
VA(VAE)=V2€ follows (36c). The dispersion relation
(36¢) for inertial waves,

o=(Q-k)/k=Qk, /k =Q-n=Q cosO , (37a)

has both similarities to and differences from Eq. (35a) for
internal waves: (i) the cutoff frequency is the angular
velocity Q instead of the buoyancy frequency; (ii) the
wave-vector component along the axis of rotation
k, =Q-k/kQ replaces the component transverse to gravi-
ty k= |kAg]| /kg. Thus inertial waves cannot propa-
gate transversely to the axis of rotation (w=0 for k; =0
or O0=1/2), their frequency increases as the wave vector
tilts closest to the angular velocity, and for propagation
along the rotation axis it reaches the angular velocity
(w==*Q for k, =+k or 6=0,), which is the cutoff fre-
quency beyond which only standing modes exist. The
group velocity

w=0w/0k=[Q/k —k ~3(Q-k)k]=k ~'[nA(QAn)]
(37b)

is larger for longer waves |w| ~1/k ~A, as for internal
waves; in contrast with the latter, for which oscillation
takes place along the line in the phase plane making the
least angle with gravity, inertial waves maximize the an-
gle with the rotation axis, so that rotational forces are
more effective at balancing fluid acceleration. Thus, for
inertial waves, the energy flux travels along the projection

_ of the angular velocity Q in the direction transverse to the
wave normal n, in the direction of nA(QAn)
=0 —(n.Q)n, giving the largest possible separation from
the axis of rotation.

6. Alfvén waves along magnetic field lines
Having considered acoustic (Sec. I1.A.5), internal (Sec.

1.B.4), and inertial (Sec. 1.B.5) waves, we now turn to the
remaining type of wave in gases under a single restoring
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force, namely, Alfvén waves in the presence of a magnetic
field. Omitting gravity and rotation, & =0=g, in Eq.
(10), we obtain, for incompressible modes V-£=0, in the
presence of a uniform magnetic field, B=consts£0, the
Alfvén wave equation

E—a*(b-V)E+ab-V)V(b-£)=0, (38a)
a’=uB?/4mp , (38b)

where b=B/B is the unit vector along magnetic field
lines and a the Alfvén speed. From Eq. (38a) it follows
that the component of the fluid displacement along the
magnetic field £-b is conserved, 3%(£+b)/8t2=0, and the
transverse component is propagated:

(8%2/8t2—a%3?/3b2)(£—(£-b)b)=0, (39a)
along magnetic field lines,
3/3b=b-V=B~YB-V) . (39b)

Thus Alfvén waves in three-dimensional space propagate
one dimensionally along the magnetic field, as transverse
motions along a stretched elastic string; the analogy is ex-
act, since the propagation speed is V'T /p for oscillation
of a string under elastic tension 7, and for Alfvén waves
[Eq. (38a)] we have a =V'T/p, with T=uB?/87 the
magnetic tension. ‘The dispersion relation corresponding
to Eq. (39a),

o=1=*a(k'b), (40a)
implies that the group velocity
w=*ab (40b)

is the Alfvén speed along magnetic field lines (of direction
b=B/B), and the phase speed

u =+ta(n'b) (40c)

is its projection on the wave-normal direction u =w-n.
We can classify the waves in fluids as (i) isotropic and
nondispersive: acoustic (or sound); (ii) anisotropic and
nondispersive: Alfvén (or magnetic); (iii) anisotropic and
dispersive: internal (or gravity) and inertial (or gyroscop-
ic). Besides these (})=4 waves under a single restoring
force, there are (3)=6 two-wave couplings under two re-
storing forces, (3)=4 three-wave couplings excluding one
restoring force, and one four-wave coupling including all
restoring forces. All the multiwave couplings are disper-
sive and anisotropic, since they involve either gravity or
rotation or both, with a single exception: magneto-
acoustic waves are anisotropic and nondispersive, and we
take them as the last example of dispersion relations for
waves in fluids.

7. Slow and fast modes and weak and strong fields

If we neglect gravity and rotation, g=0={2, and con-
sider a homogeneous medium under a constant magnetic
field, we obtain from Eq. (10) the magneto-acoustic wave
equation
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E—cV(V-E)—a*[(b-V)2E—(b-V)V(b-£)]
—aY[b(b-V)(V-£)—V(V-£)]=0, (41)

whose terms may be classified as follows: (a) second-
order time dependence, allowing waves propagating in op-
posite directions, and their superposition into standing
modes; (b) acoustic term [Eq. (11)], involving the sound
speed [Eq. (9a)] and dilatation V-£ [Eq. (12b)]; (c¢)
Alfvén-wave term [Eq. (38a)], involving the Alfvén speed
[Eq. (38b)] and propagation along magnetic field lines; (d)
magneto-acoustic coupling, involving the Alfvén speed a
and dilatation V-£. Considering a plane-wave solution
[Eq. (13)] of Eq. (41), we obtain

0*X —(c*+adk(k-X)—a?[(k-b)>X —k(k-b)(b-X)
—b(k-b)(k-X)]=0. (42)

Choosing the x; axis along the wave vector k=(k,0,0)
and the x, axis such that the magnetic field b=(b,,b,,0)
lies in the (x,x,) plane, we have

cr+a®i—u®> —a’,b, 0 X,
—a%bb, a*i-u? 0 X, |=0, 43
0 0 a’b?—u?| |X; '

where u =w/k denotes the phase speed. The decoupling
of the 33 dispersion matrix (43) into two parts shows
that (i) the displacement X; transverse to the plane of
wave vector k and magnetic field B corresponds
[ =ab;=a(b-n)] to an Alfvén wave [Eq. (40b)], which
extends without modification from incompressible (Séc.
1.B.6) to compressible (Sec. I.B.7) fluids, since it involves
no dilatation V-£=0; (ii) the displacement (X,X,) in the
plane of the wave vector and magnetic field (k,B) corre-
sponds to two coupled modes, satisfying the dispersion re-
lation

u*—(@’+cHu?+a%3bn)?=0, (44)
which has two roots:
ur=5(|cn+ab|+|cn—ab]|). (45)

Thus acoustic waves, propagating at sound speed c in the
wave-normal direction n, combine in two ways with
Alfvén waves, traveling at Alfvén, speed a along magnet-
ic field lines b, to form slow u_ and fast u_, waves, so
designated because the phase speed of the former does not
exceed, and the phase of the latter does not fall below, the
sound speed ¢ or Alfvén speed a [u_ <min(a,c) and
u . >maxl(a,c)].

8. Heating of chromosphere by Alfvén waves

The slow and fast modes decouple in the hydrodynamic
limit of a weak magnetic field, or large plasma B=c?/a?,
for which the sound speed is much larger than the Alfvén
speed, and the gas pressure predominates over the mag-
netic pressure. They also decouple in the magnetodynam-
ic limit of a strong magnetic field or small plasma, for
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which the sound speed is much smaller than the Alfvén
speed, and the gas pressure is dominated by the magnetic
pressure:

¢?>>a* u_=a(bn), u, =c; (46a)
a’s>c%: u_=c(bm), u,=a, up=a(bn). (46b)

Thus, in the weak-field limit [Eq. (46a)], the sound waves
are the fast mode, and the Alfvén waves the slow mode,
i.e., the three MHD wave modes coalesce into two; in the
strong-field limit [Eq. (46b)], the Alfvén wave remains
ug, propagating at Alfvén speed a along magnetic field
lines, the fast mode u , propagates at Alfvén a speed in
all directions, and the slow mode u _ is an acoustic wave
¢ constrained to move along magnetic field lines b. This
shows that, in the strong-field limit, gas pressure cannot
overcome the magnetic stresses, and thus acoustic waves
are guided along magnetic field lines as if the latter were
rigid tubes; the guidance of acoustic waves along the mag-
netic field lines was mentioned (Sec. I.B) in connection
with spicules and the mass balance in the solar atmo-
sphere. Concerning the energy balance, it should be es-
tablished by hydromagnetic rather than hydrodynamic
waves, since it is well known that magnetic regions of the
sun are hotter than nonmagnetic regions. Of the three
magneto-acoustic wave modes, Alfvén waves propagate
along a magnetic field of arbitrary direction, and their
transverse magnetic field perturbations h are associated
with electric current j=(c/4m)VAh. The heating by
Joule effect g =j2/0, where o is the conductivity, may be
balanced against thermal radiation losses, to yield a
theoretical temperature profile [Fig. 2(b)] consistent with
observational data; we have chosen for comparison the
empirical models known as the BCA (Bilderberg continu-
um atmosphere; Gingerich and De Jager, 1968), HSRA
(Harvard-Smithsonian reference atmosphere; Gingerich,
Noyes, Kalkofen, and Cuny, 1971), and VAL (Vernazza,
Avrett, and Loeser, 1973, 1976, 1981); the consistency of
theory and observation extends from the profile of tem-
perature versus altitude [Fig. 21(b)], to that of mass densi-
ty [Fig. 2(a)], calculated on the basis of hydrostatic equili-
brium.

C. Dynamic and magnetic generation and radiation

The theoretical and empirical temperature profiles [Fig.
2(b)] demonstrate the existence in the chromosphere of a
temperature minimum; the latter is a feature of all the
empirical chromosphere models developed over the last
two decades (Athay, 1965, 1966a, 1985; Lambert, 1971;
Ayres and Linsky, 1976; Morrison and Linsky, 1978; Bas-
ri, Linsky, Bartoe, Bruecker, and Van Hoosier, 1979;
Cram and Damé, 1983; Skumanich, Lean, White, and
Livingston, 1984). The temperature minimum gives evi-
dence of mechanical heating, since in equilibrium the
temperature would decrease monotonically with altitude,
and there are no local energy sources sufficient to com-
pensate for radiative losses. The mechanical heating was
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FIG. 2. Profiles of (a) mass density and (b) temperature vs alti-
tude, as predicted (solid curve; Campos, 1984b) by resistive dis-
sipation of Alfvén waves in the presence of thermal radiation, in
comparison with three empirical models: O, the Bilderberg con-
tinuum atmosphere (BCA; Gingerich and De Jager, 1968); A,
the Harvard-Smithsonian reference atmosphere (HSRA;
Gingerich, Noyes, Kalkofen, and Cuny, 1972); O, the VAL
standard III model F (VAL 3F; Vernazza, Avrett, and Loeser,
1981).

originally attributed to waves, either magnetic (Alfvén,
1945, 1947) or acoustic (Biermann, 1946, 1948;
Schwarzschild, 1948), whose presence in the chromo-
sphere was subsequently substantiated by observation
(Bonnet et al., 1982; Damé, Gouttebroze, and Malherbe,
1984). The theories based on heating by acoustic
waves/shocks were developed for the sun (Schatzman,
1949; Ulmschneider, 1971a, 1971b) and proposed for oth-
er stars (Ulmschneider, 1979, 1982) until observations de-
finitely established that the acoustic energy flux decayed
rapidly with altitude due to reflections, and is several or-
ders of magnitude short (Mein, 1978; Provost and Mein,
1979; Mein and Mein, 1980; Schmieder and Mein, 1980;
Bruner, 1981; Mein and Schmeider, 1981) of that needed
to compensate for radiative losses in the middle and high
chromosphere, transition region, and corona. Thus, only
hydromagnetic waves remain as a viable mechanism for
the heating of the solar atmosphere, and there is universal
agreement that their energy flux, at photospheric levels, is
sufficient, ~10’—10% ergcm~2s~!. There is, however, a
long-standing and still unresolved controversy over the
mechanisms involved. Some argue that most of the
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Alfvén wave flux is not deposited in the chromosphere or
low corona, i.e., it either propagates through or is reflect-
ed (Osterbrock, 1961; Hollweg, 1972, 1978, 1981a; Bel
and Leroy, 1981; Leroy, 1981; Schwartz and Leroy, 1982),
while others propose various physical mechanisms cap-
able of dissipating enough wave energy to compensate for
thermal radiative losses (Alfvén, 1948; Uchida and Ka-
buraki, 1975; Ionson, 1982, 1984; Heyvaerts and Priest,
1983; Campos, 1984b; Hollweg, 1984b, 1984c, 1984d;
Hollweg and Sterling, 1984; Nocera, Leroy, and Priest
1984; Sakurai and Granik, 1984). The fundamental idea
under consideration is whether waves could establish mass
and energy balances in the solar, and possibly other stel-
lar, atmospheres (Withbroe and Noyes, 1977; Linsky,
1980; Campos, 1984c); a detailed modeling of these physi-
cal processes depends on the mechanisms of generation
(Lighthill, 1952, 1954; Kulsrud, 1955; Parker, 1964; Stein,
1967, 1981; Campos, 1977, 1978a; Ulmschneider and
Stein, 1982) and radiation (Lighthill, 1960, 1964, 1967,
1978; Campos, 1982, 1983b; Adam, 1982a; Adam and
Thomas, 1984) of waves in fluids, to which we now turn.

1. Waves forced by multipole sources

The linear, nondissipative magneto-acoustic-gravity-
inertial wave equation (10) is a vector equation of second
order and leads to a system of partial differential equa-
tions of second, fourth, and sixth orders in the cases hav-
ing, respectively, one, two, and three modes. The order of
the system is increased by the presence of (i) viscosity,
which increases the order of the linearized momentum
equation from two in Eq. (7b) to three, by the addition of
the viscous stresses

ViV + (vy+v, /3)V(V-E)

from Eq. (1); (ii) electrical resistance, which increases the
order of the linearized induction equation from one in Eq.
(8a) to two, by the addition of the Ohmic (c2/4muo)V>h
and Hall (c%/4mun) VA[BA(VAh)+hA(VAB)] terms
from Eq. (2); (iii) thermal diffusion, e.g., conduction, con-
vection, or radiation, which replaces the adiabatic equa-
tion (6a), which is of first order, by the energy equation
(5) specifying entropy production, which is of second or-
der, e.g., in the linear conduction term V-(kVT); (iv) per-
turbations in the gravitational field G=V1 or potential
1, which add to the system [(3a) and (3b)], a pair of equa-
tions equivalent to the Poisson equation VZ=4rk,p,
which is of second order. Thus the system of equations
for waves in fluids can be increased in order up to 8 by
the inclusion of perturbations in the gravitational poten-
tial, and up to 10, 11, or 12 by accounting for single, dou-
ble, or triple diffusion. In all cases, as long as all the
coefficients of the linear partial differential equations are
constant, it is possible to eliminate for any wave variable,
e.g., the displacement &, leading to the equation

[00;1(3/0%,3/81)1&(x,1)

:an+mSil e ,-n/at'"ax,»l M ax,-naxj ’ (47)
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where the wave operator [J; on the lhs is a matrix whose

terms are polynomials of spatial 3/9x and temporal 3/3¢

derivatives of arbitrary order. The forcing term on the
rhs models the sources generating the waves; it may be
determined from the nonlinear terms of the fundamental
equations by the “wave analogy” Part I (Sec. ILA.1), of
which we give a detailed example below (Sec. 1.C.5). For
the moment, it is sufficient to note that we allow the
source term to be a monopole S, a dipole S;, a quadrupole
S;j, or an arbitrary multipole S; ... i,» to which a time

derivative 8™ /3t™ of any order m may be applied.

2. Exact intégration over wave-number space

The source multipole has a Fourier spectrum:
~ —a + o0
S, ... (k0)=(2m) f_w Sip.i (%,0)
Xe!*kx=00g3kde (48)

where k denotes the wave number and o the frequency.
The wave operator [J;; has constant coefficients, and thus
plane-wave solutions [Eq. (13)] exist, whose spectrum X
satisfies an algebraic relation (49a), which replaces the
differential equation (47),

(49a)
(49b)

;X;=S; ,

Si=(— )'"i"+"‘“w"‘k,-l...kinkjgil...i,, .

Equation (49b) is the: forcing spectrum, and Il; the
dispersion matrix, which coincides with the wave operator
Oj with the substitutions 8/3x— ik, 3/0t — —iw:

Hj[(ik,—iw)EDﬂ(a/ax,a/at) ’
I=Det(IT;) .

(50a)
(50b)

The determinant (50b) specifies through IT=0 the disper-
sion relations for all wave modes. The algebraic relation
(49a) may be inverted, for arbitrary (k,w), as

X;j=A,;117'5;,
AjIHlm El—Iajm ’

(51a)
(51b)

where A is the matrix of cofactors, and II'A 1 the in-
verse of Il;. Substituting Eq. (51a) into (13), we obtain
the wave field

gxn= [T UAS) /Ml Rk dey,  (52)

=k(1),w=wm(k)

k
E(x,~i2m)* 3 (|Ro |72 [

where the integration is performed for each mode w,,
along the subspace k$=k,, for a dissipative plane wave,
and where we assume that the wave-number space has
nonzero curvature [ Ro540 in Eq. (54)]. If Ry=0, i.e., at
an inflexion, the tangent surface is of third degree and the
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in terms of the source spectrum [Egs. (48) and (49b)].
The integral (52) has poles for the frequencies w such that
N(k,w)=0, i.e., II(k,w) is evaluated by a sum of residues,
one for each dispersion relation w(k) of each mode. In
the case of simple poles, the wave field is given by

o=0,,(k) _
gx,n=2mi3 [ A;1S)(311/3w) ™!

RIEESTMED

X d’k, (53)

where the sum Y, = extends over all simple roots w,,(k)
of II(k,w)=0, i.e., over all wave modes, and the integra-
tion, for each mode w,,(k), is performed over the wave-
number space ® =, (k).

3. Asymptotics of nondissipative and damped waves

In order to simplify further the exact solution [Eq. (53)]
of the wave equation (47), we seek an asymptotic approxi-
mation to the radiation field received by a distant ob-
server, i.e., an approximation evaluated to lowest order in
|x| ~!. If the wave-number space w,,(k) is flat, as it is
for a nondissipative plane wave, all elements radiate to
the far field, and no simplification of Eq. (53) is possible,
even asymptotically. If it has a single curvature, then the
observer in the far field will receive most of the radiation
from those elements for which the normal dw,, /dk=wu,,
or group velocity points to him. If the wave-number
space has a single curvature R, it can be approximated in
the vicinity of the x; axis, which we take to be pointing
to the observer, by the tangent cylinder:

Om(K) =@ (KO 4 5 Ro(k; —kP4+0((ky—kD)P) . (54)

Substitution of Eq. (54) into (53) allows us to evaluate to
lowest order in 1/t the integral in dk, which is of Gauss-
ian type:

e : 0y2 043
S expl—(i /2)Ro(ky —k Yt +0((ky —k$)*)e]dk,

=127/ Ry |t explido)[1+0(t~1?)], (55a)
do=(m/4)sgn(R,) , (55b)

where the sign function sgn(R,) appearing in the phase
shift (55b) is +1, depending on whether the curvature is
positive, Ry>0, or negative, Ry <0. The asymptotic
wave field is given [Eqgs. (53) and (55a)] by

A,.,E,(an/aw)—‘ expli (k9 +kox,+kixy—wt +¢g)1dk,dk, (56)

I

Gaussian integral [(55a) and (55b)] is replaced by an Airy
integral (Lighthill, 1978), which describes the transition
between light and shadow near a caustic and leads to a de-
cay like ¢~!/3, Higher-order terms, up to n, could be
treated similarly and would lead to a decay like ¢ 1/,
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4. Plane, cylindrical, and spheroidal waves

We thus have six cases to consider, by combining non-
dissipative or dissipative waves with wave fronts having
none, one, or two curvatures. We have already given the
exact wave field [Eq. (53)] for plane, nondissipative waves
(no simplification in this case) and for plane, dissipative
modes with curvature Ry of the wave-vector space w(k),
the asymptotic form [Eq. (56)]. For nondissipative
cylindrical waves, we have relations like Eq. (54) with R;

ki=k
& (x,0)~idm® 3 (|RoRy |t |x )72 [

the spatial curvature and ¢, the corresponding phase
shift, leading to a formula similar to Eq. (56) with |x |
replacing ¢. For dissipative cylindrical waves, Eq. (54) is
replaced by

Om(K) =@, (KD +TRo(ky —kP+ TR (ky—k3)?, (57)

involving one space curvature R and one time curvature
Ry, so that we can evaluate asymptotically the dkdk, in-
tegrals in Eq. (53), obtaining for the wave field

X A;Si(311/3w) ™ expli (k9x; +k9x) —ksx; —wt +o+¢1)]dks ,  (58)

which involves only one integration. For nondissipative
spheroidal waves, we have Eq. (57) with R|,R, the prin-
cipal curvatures of the wave front. Since ¢ is replaced by
| x|, the wave field is given by Eq. (58) with the follow-
ing changes: (i) the term (RoR ¢ |x|)~!/?is replaced by
R~'2|x| !, where R =R R, is the Gaussian curvature,
so that the amplitude of the wave increases as radiation
takes place through a smaller fraction 1/R of the solid
angle 472, i.e., through a “pencil beam”; (i) the phase
term ¢=¢,+¢,=(7/4) [sgn(R)+sgn(R,)] vanishes for
anticlastic beams, which have principal curvatures with
opposite signs (¢ =0 for R R, <0), e.g., a parabolic hy-
perboloid, while for synclastic beams (R R, > 0) we have
¢, =m/2 for divergent (R|,R,>0) and ¢_=—m/2 for
convergent (R{,R, <0) beams, so that the phase jump
across a focus is A¢=¢, —¢_ == (Landau and Lifshitz,
1966). In the case of dissipative spherical waves, we have
two space curvatures R;,R, and one time curvature Rg:

3
Om(K)=0, (k) +5 3 R;_i(kj—k{)*, (59)
ji=1

allowing the evaluation of all integrals in Eq. (53), leading
to

£i(x,0)~i(2m)*2 3, (¢ [RoR R, | )71 | x| 7'A;S;
X (BI1/3w) Lexp{i[ koXx —@,, (ko)t

+¢o+d1+¢1}

(60)
as an explicit formula for the asymptotic wave field.

5. Hydrodynamic and hydromagnetic source dipoles

In order to apply Egs. (53), (56), (58), and (60) to the
calculation of radiation fields, we need the dispersion ma-
trix (50a) for the modes in question (51b), and the forcing
spectrum (49b) for the source multipole (48). Since we
have already discussed dispersion relations in some detail
(Secs. I.A and 1.B), we now concentrate on modeling the
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r
“sources” of waves by using the “wave analogy” (Part I,
Sec. I1.A.1), in a form that generalizes the acoustic case to
include the effects of external magnetic fields. We start
from the general equations of magneto-hydrodynamics
[Egs. (1), (2), (4)] without gravity or rotation, G=0=Q,
and neglect dissipative terms for simplicity. We consider
the flow to consist [Eq. (7a)] of a homogeneous, mean
state of rest (constant p,p,B) plus a nonuniform and un-
steady perturbation. When substituting Eq. (7a) in the
general equations, we retain, besides the linear terms in
Eqgs. (7b), (8a), and (8b), all the nonlinear terms, which we
collect on the rhs, so that the equations remain exact:

h+B(V-v)—(B-V)v=VA(vAh) , (61a)

p+pV-v=—V-(Bv), (61b)

V+(b2/p)Vp+(uu/4mp)[V(B-h)— (B-V)h]
=—3(pv/p)/dt —p~ 10T} /3tdx; , (62a)

where Tg- denotes the tensor

Ty =pv;v; +(p —c*p)8;; — (u/4m)(hh; — h?8;) . (62b)

Eliminating between the linear terms on the lhs of Egs.
(61a), (61b) and (62a), we obtain the magneto-acoustic
wave equation (41), which we denote [;;v; =0, choosing
the velocity perturbation v as the wave variable. If we re-
tain the nonlinear terms on the rhs of Egs. (61a), (61b),
and (62a), then an exact equation follows, where the prop-
agation operator is forced:

[0;;(9/9%,0/31) v (x,0)= —p~'0*T;; /3tdx; ,  (63)
by the tensor
(64a)
(64b)

— 70 4
Ty=T;+Ty,
T} /3t = —(u/4m[VA(VAR)]; +B; .

Here we have used the notation a;*b; for the symmetric

tensor product of two vectors:
a;#bj=a;b;+a;b;—5(ab)y; , (65)

which satisfies a;%b;==(a‘b). The tensor T, defined
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by Egs. (64a), (64b), and (62b), consists of nonlinear terms
and is significant only in regions of large disturbances,
which act as hydrodynamic and hydromagnetic sources of
waves.

6. Reynolds and Maxwell stress quadrupoles

If, in the source tensor (62b), we separate the pressure
p=P+1/2pv? into the dynamic pressure 5pv’ and a
“compressible” part P, it contains the following hydro-
dynamic and hydromagnetic tensors:

%pvzﬁij , (663)

(66b)

1
T;=+ pv, *Vj=pU;V; —

2
Ti=

Equation (66a) consist of the Reynolds stresses pv;v;,
from which is subtracted the dynamic pressure, and Eq.
(66b) is the Maxwell stress tensor; they can be derived,
respectively, from the dynamic +pv;u; and magnetic
—(u/8m)h;h; pressures, by replacing the inner product
a;a; =a-a by the symmetric tensor product a; *a;, defined
by Eq. (65). They represent the generation of magneto-
acoustic waves by hydromagnetic turbulence that acts as a
quadrupole source. The remaining terms in the source
tensor also divide into a dynamic and a magnetxc contri-
bution, respectively, Tg-E([_’ —025)8,-] and T,] given by
Eq. (64b). The dynamic contribution is nonvanishing if
ﬁ#czﬁ, i.e., for nonadiabatic propagation or nonuniform
sound speed. The magnetic contribution (64b) vanishes
for a perfectly conducting fluid, for which the velocity v
and magnetic field h perturbations are aligned vAh=0,
and is due to finite conductivity. The two terms T,J,T"'
represent the generation of magneto-acoustic waves by
ionized, inhomogeneous regions, and are equivalent to
force dipoles, e.g.,

8[(17-c217)8,-j]/8xj=

The hydrodynamic contribution 77, = T i+ T,% —ojj, from
which the viscous stresses o;; are subtracted, is the
Lighthill (1952, 1954) tensor, which is the quadrupole
source in aerodynamic acoustics [Eq. (67a)],

V(p—c%p) .

(67a)
(67b)

T = 2pv,’kv]—Hp—c p)S,J—a,J ,

Oij -——vl(av,-/axj—i—avj/ax,-)+(v2—§v1)(V'v)6,-j .

In order to obtain the total source of magneto-acoustic
waves T; =T;;+T; j, we have to add to Lighthill’s hydro-
dynamic tensor [Egs. (67a) and (67b)] a hydromagnetic
tensor T,] T2 T,j——é‘,-j (Campos, 1977), consisting of
analogous nondlssipative terms [Eqs. (66b) and (64b)]:

AT} /3t =—(u/2m)h; % h;
—(u/4m)[VA(vAh)]; % B; —9&;; /0t , (68a)
with a dissipative term

gijz(cz/mmo)(vz_h),.*B (68b)
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involving the Ohmic resistivity 1/o, which takes the place
of viscous stresses [Eq. (67b)]. Recalling the decoupling
of magneto-acoustic modes [Eq. (43)], we see that the
wave generation equation (63) implies that the com-
ponents of the source tensor T}; may be classified as fol-
lows: (i) the compress1ons/tract10ns T11,T,, and shear
stresses 7';, =75, in the plane (x;,x,) of the magnetic
field B and wave vector k generate slow and fast modes
only; (ii) the transverse compressions/tractions T3, along
the axis x; orthogonal to the (B, k) plane, generate Alfvén
waves only; (iii) the cross shears T13=7T3; and T,3=7T73,
generate all three (slow, fast, and Alfvén) modes.

7. Monopole sources and the intensity law

The quadrupole source Tj; scales like the dynamic and
magnetic pressures, respectxvely, in the hydrodynamic
[Eq. 66a] and hydromagnetic [Eq. (66b)] terms, so that
T~3pU?+uB?/87, and the forcing spectrum [Eq.
(49v)] S, _wk,T,/p scales as S~wk(U?+uB?/4mp)
~cok(U2+A ), where A is the Alfvén speed 4 =uB?*/
47p. For a nondissipative spherical wave, the form analo-
gous to Eq. (60) involves as factors R ~1/2~k and

Aj | 3M/3k | T~ kT 'Ay ~kl; ' ~ kw2,

implying an overall factor ~ k3w~ 1(A42+ U?)I3, where [ is
the scale and ~/° the volume of the source region. The
wave number kK =w/u is related, through the phase speed
u, to the frequency w~ U /I, which is determined by the
flow velocity U in the source region and the length scale
I. Thus, the asymptotic velocity perturbation scales as

v~(I/u) | X | MU /u)™(U*+ 4% , (69)

with the exponent n =0, ——% or —1 for spatial decay
given, respectively, for plane, cylindrical, and spherical
waves, and the power m =2,1,0 for quadrupole, dipole,
and monopole sources, i.e., stresses, forces, and
mass/energy supply, which involve progressively fewer
factors in the forcing spectrum (49b). The intensity of ra-
diation scales as 1 ~puv2' per unit area for a plane wave,
is multiplied by the perimeter ~ | x| of a cylinder (per
unit length) for a cylindrical wave, and is multiplied by
the area of a sphere ~ | x|? for a spherical wave. Thus
the spatial dependence drops out for nondissipative waves,
and damped waves have an additional time decay that
prevents them from reaching the far field. In the former
(nondissipative) case, the intensity of radiation in the far

field, I~puv?|x|~?", is given by the magneto-
hydrodynamic scaling law
I ~p(I2/u)(U /u)*™U*+ 4%, - (70)

which applies to waves of all geometries, apart from a
directivity factor omitted in Eq. (70) and contained in Eq.
(60). Since the waves are assumed to be generated by a
flow with velocity U small relative to the phase speed u,
the factor (U /u)? << 1 shows that emission by monopoles
(m =0) is much more efficient than by dipoles (m =1),
and the latter emission in turn predominates over that of



378 L. M. B. C. Campos: Interaction of sound with magnetic and internal modes

quadrupoles (m =2). Two particular cases of Eq. (70) are
I, ~p(1*/e)(U /e)™™U* , (71a)
Iy ~p(I2/u)(U /u)*™A* . (71b)

These are, respectively, the hydrodynamic law of intensity
of sound radiation (¢ speed) in aerodynamic acoustics
(Part I, Sec. ILLA), when the magnetic field is absent, and
the magnetodynamic law of intensity of radiation of
magneto-acoustic waves, when the magnetic pressure
dominates the gas pressure. When they are comparable,
the general law (70) should be used.

8. Generation of waves by the photospheric granulation

In the sun, waves can be observed in the deepest visible
layer, the photosphere, which is the “base” of the atmo-
sphere and overlies the convection zone. The existing
models of the photosphere (e.g., Morrison and Linsky,
1978) overlap to some extent with those of the chromo-
sphere above (see earlier references in Sec. I.C). The main
distinguishing feature is the presence in the chromosphere
of granulation, i.e., a network of convection cells extend-
ing deeper into the convection zone; the motions and ener-
gy processes in the photospheric granulation have been

the subject of detailed observations (Wittman, 1981; Mat-
tig, Mehltretter, and Nesis, 1981; Bassgen and Deubner,
1982; Muller, 1985; Berton, 1986; van Ballegooijen, 1986)
and simulations (Nordlund, 1982, 1985; Wohl and
Nordlund, 1985). The motions are predominantly upward
at the centers and downward at the boundaries of
granules and supergranules, where most of the magnetic
field emerges in the form of intense kG-strength flux
tubes. At the level of observational resolution presently
achieved (about 0.5—2.0"” ~700—1500 km) it is possible to
conclude that the magnetic field is below detection
threshold (less than about 5 G) at granule centers (it could
be absent), and in contrast is strongly concentrated at
granule boundaries. Magnetic field strengths of 1—2 kG
have consistently been reported there (Weiss, 1978; Golub,
Rosner, Vaiana, and Weiss, 1981; Howard and Labonte,
1981; Stenflo, 1982; Stenflo and Harvey, 1985), but the
scale of the magnetic flux tubes (about 0.1 ~ 150 km) is
still beyond the available resolution from the Earth, so
that direct observation may be possible only from future
space-based magnetic sensors. The granule boundaries are
ionized, inhomogeneous regions and act as dipole sources
of waves. Although they occupy a small fraction (less
than 1%) of the solar disk, they radiate about half of the
energy flux. Since the magnetic fields are weak or absent
(a few Gauss at most) in cell centers, these regions of hy-
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dromagnetic turbulence act as quadrupole sources and are
less efficient than dipoles; thus although they occupy a
much larger area, they could radiate about as much as cell
boundaries. The source mechanisms represented by the
relevant stress-tensor components (Fig. 3) generate all
three types of magneto-acoustic modes. The hydro-
dynamic modes, viz., sound waves, may be expected to
dominate the mass balance (Sec. I.A.7), while the hy-
dromagnetic modes, e.g., Alfvén waves, may dominate the
energy balance (Sec. 1.B.7). As evidence of this we have
shown that acoustic waves can supply to the corona, in
their compression front, a mass flux of 3x10~1!!
gem~2s™!; multiplying by the solar disk are a
D =7R*=1.52X10% cm?, where R =6.95X10" cm is
the solar radius, yields the mass loss 4.55x10° gs™! in
the solar wind. Concerning the energy balance, we use
the intensity equation (70), with the proportionality factor
5 (Campos, 1986b) for Alfvén waves u =4, viz,
Iy=5p(D/A)(U*+ A%?. We have assumed monopole ef-
ficiency, since (Parker, 1964), in an atmosphere, the densi-
ty effects of stratification enhance wave generation mech-
anisms, as for volume changes. Using p=3x10""
gcm‘3 for the mass density, U =1 km/s for the flow
velocity, and 4 =5 km/s for the Alfvén speed, we obtain
an estimate of intensity Jo~3X 10°* ergs™!, which is of
the order of the solar radiation loss. Although these esti-
mates are not precise and depend on parameters some of
which have considerable observational scatter, they show
that waves can carry mass and energy fluxes that are of
the order of magnitude of solar losses.

Il. LINEAR WAVES IN STRATIFIED MEDIA

We have seen that Fourier analysis provides a con-
venient and powerful method (Sec. I.A) for studying wave
propagation and amplification/decay through the disper-
sion relation (Sec. I.B), and generation and radiation by

"means of asymptotic approximations (Sec. I1.C). This
method applies to linear partial differential equations
with constant coefficients (with or without forcing), i.e.,
to waves of small amplitude in media for which the wave
speeds (and other parameters, such as damping or scatter-
ing lengths) are constant, that is, homogeneous media.
The method fails for linear waves in inhomogeneous
media such that the wave speed changes on a scale com-
parable to (or shorter than) a wavelength, since in that
case the waveforms cease to be sinusoidal, i.e., a complex
exponential is not generally a solution of a linear differen-
tial equation with variable coefficients. For example, in
the case of acoustic-gravity waves in an atmosphere, since
the sound speed depends only on temperature for a per-
fect gas, the Fourier method applies strictly only in iso-
thermal conditions. A different approach must be used in
nonisothermal atmospheres (Sec. II.A). Concerning pure-
ly magnetic modes, i.e., Alfvén waves, the Alfvén speed is
constant in a homogeneous medium (of uniform density)
under a constant magnetic field (in strength and direc-
tion), in which case the waves are sinusoidal.

Rev. Mod. Phys., Vol. 59, No. 2, April 1987

In an atmosphere the mass density p(z) decays with al-
titude, and the Alfvén speed is constant only if the mag-
netic field decays in strength like B (z) ~V p(z); moreover,
the Maxwell equation V-B=0 implies that B, =0, i.e., it
must be horizontal. If the magnetic field does not decay
in the required manner, or if it has a nonzero vertical
component, as it does in the presence of an oblique uni-
form magnetic field, the Alfvén speed varies with altitude
in an atmosphere and distorts the waveform into a non-
sinusoidal shape. The restrictions stated before apply to-
gether in the case of magneto-acoustic waves in an atmo-
sphere, i.e., waves are sinusoidal (Yu, 1965; Adam, 1977a;
Thomas, 1982) only if (i) the atmosphere is isothermal, so
that the sound speed is a constant, and the mass density
p(z)~e —2/L decays exponentially with altitude z normal-
ized to the scale height L; (ii) the magnetic field is hor-
izontal and decays exponentially B(z)~e ~%/?L, but on
twice the scale height. These restrictions guarantee uni-
form sound and Alfvén speeds, and thus a constant ratio
of gas to magnetic pressure, which excludes the possibility
of wave transformation; more generally, the sound and
Alfvén speeds may be nonuniform and evolve differently
with altitude, in which case not only is the waveform dis-
torted into a nonsinusoidal shape, but also mode conver-
sion becomes possible (Sec. I1.C), e.g., an acoustic wave in
a region of predominant gas pressure may become a mag-
netic mode as it propagates into a region of dominant
magnetic pressure.

A. Acoustic-gravity waves in nonisothermal
atmospheres

Internal and acoustic-gravity waves (Eckart, 1960;
Pedlosky, 1960; Tolstoy, 1963; Beer, 1974; Gossard and
Hooke, 1975) were studied first in isothermal conditions
(Stokes, 1847; Lamb, 1879; Rayleigh, 1890; Biermann,
1948), and the extension to nonisothermal atmospheres
has been made by considering “arbitrary” temperature
profiles with gradients everywhere small (Moore and
Spiegel, 1948; Brekhovskikh, 1960; Liu and Yeh, 1974;
Lighthill, 1978), or specific temperature profiles allowing
for arbitrarily large gradients (Lamb, 1910; Groen, 1948;
Thorpe, 1968; Lindzen, 1970; Campos, 1983c). The com-
mon occurrence of these waves in the ocean (Philips,
1976; Kraus, 1977) and atmosphere (Delloue and Halley,
1972; Hines, 1974) has motivated the study of the effects
of temperature (and salinity) gradients on acoustic-gravity
waves. These waves have also been extensively studied in
the solar atmosphere, in connection with mass and energy
transport (see Secs. I.B and I.C for references) by waves
and related oscillatory phenomena (Tavakol and Twor-
kowski, 1981; Leibacher, Gouttebroze, and Stein, 1982).

A curious natural phenomenon is the generation of
acoustic-gravity waves in the Earth’s atmosphere during
solar eclipses, as the shadow of the moon moves superson-
ically, cooling the air mass and producing a “bow wave”
(Seykora, Bhatnager, Jain, and Streete, 1985). Acoustic-
gravity waves in an isothermal atmosphere (Part I, Sec.
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V.A) have (i) a sinusoidal waveform, since the sound
speed is constant; (ii) a velocity perturbation amplitude
that grows exponentially v~1/Vp~e?/?F as a result of
conservation of the energy flux F =pv?c. In the presence
of small temperature gradients, in the sense that the
length scale !/ over which the temperature changes is
much larger than the wavelength A, we may model the
waves as ‘“‘rays” and expect the properties (i) and (ii) to
hold ““locally.” This corresponds to the WKBJ approxi-
mation, named after those who used it first in formal
analysis (Jeffreys, 1924b) and quantum mechanics
(Wentzel, 1926; Kramers, 1926; Brillouin, 1926), although
it had been used before for water waves (Green, 1837) and
in the acoustics of horns (Rayleigh, 1916). This approxi-
mation, when applied to the gravity and acoustic cutoff
frequencies, would specify the latter as slowly-varying
functions of altitude, determining the level at which a
wave of a given frequency is reflected. An exact theory,
allowing for significant temperature gradients on the scale
of a wavelength, shows that the cutoff frequency, separat-
ing propagating waves from standing modes, is a fixed
quantity, independent of altitude. Moreover, in the pres-
ence of strong temperature gradients, the properties (i)
and (ii) do not hold, i.e., the waveforms are nonsinusoidal
and amplitude growth is not exponential. When the tem-
perature profile levels off to uniform, the sinusoidal
waveform and exponential growth is regained, but there is
a complex factor due to the history of the propagation of
the wave through the temperature gradients. The
modulus of this complex factor is the reflection coeffi-
cient, and the argument is the phase shift experienced by
the wave when crossing the nonisothermal region. The
WKBJ approximation neglects reflections (reflection coef-
ficient equal to zero for propagating waves, and unity for
a standing mode) and estimates phase shifts by integrating
the local vertical wave number over altitude.

1. Convective stability and adiabatic temperature gradient

Before considering waves in a nonisothermal atmo-
sphere, it is appropriate to discuss the conditions of
equilibrium and stability of the mean state. In the ab-
sence of a magnetic field, the condition of hydrostatic
equilibrium [Eq. (9b)] states that the pressure gradient
balances the weight of fluid:

dp/dz=—pg=—p/L , (72a)

where we have introduced the pressure scale height
L =—[d(Inp)/dz]~'. When calculated for a perfect gas,
L is

L=p/pg=RT/g=c*/yg . (72b)

A uniform magnetic field, B ~const, exerts no force, i.e.,
the last term of Eq. (9b) vanishes, so that it does not af-
fect the hydrostatic equilibrium [Eq. (72a)]. The latter is
convectively stable if a fluid parcel, when disturbed from
its equilibrium position, tends to return to it, and neither
to remain in the new position (neutral equilibrium) nor to
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be displaced farther (instability). Thus a necessary and
sufficient condition for stability is that the actual atmos-
pheric density gradient, in modulus | dp/dz |, be larger
than the adiabatic value | (dp/dz),, |, so that a fluid par-
cel displaced adiabatically upward will be denser than its
surroundings and will tend to fall back to its original po-
sition, while a parcel displaced downward will be less
dense than its surroundings and will tend to rise to its
original position. Since the mass density gradient in an
atmosphere is negative, we have

dp/dz <(dp/dz)eq=c~*dp /dz=—pg /c*=—p’g /yp ,
(73a)

where adiabatic pressure and density changes dp =c2dp
are related by the sound speed (9a) and we have used the
condition (72a) of hydrostatic equilibrium. For a perfect
gas, p =pRT, the stability condition (73a) reads

dT /dz =(pR) ™ 'dp /dz —(p /p*R)dp/dz >—g /R+g /YR .
(73b)

Since the displaced fluid element is in pressure balance
with its surroundings, condition (73a), in which the mass
density gradient is smaller than the adiabatic value
(Newcomb, 1961), implies that the temperature gradient
(73b) is larger than the adiabatic value (Eddington, 1926;
Landau and Lifshitz, 1953):

dT/dz > —g(1—1/y)/R=—g/C,
=—RT/C,L =—c*/yC,L

=(dT/dz)a (74)

where we have introduced the specific heat at constant
pressure C, (Callen, 1970), the scale height L [Eq. (72b)],
and the sound speed ¢ [Eq. (9a)]. We conclude that a per-
fect gas is stable in an isothermal atmosphere or any at-
mosphere with temperature increasing with altitude, as
well as for moderate negative temperature gradients, not
exceeding in modulus the value g/C,.

2. Buoyancy force and internal frequency

The displacement § of a fluid parcel in an atmosphere
is determined by the balance of inertia and buoyancy
forces,

d*/di*=Fy¢ , (75)
F,=(g/p)[(dp/dz)—(dp/dz) 4] , (76)

where the buoyancy force per unit mass and height (76) is
proportional to the acceleration of gravity and to the
difference in mass density gradients between the actual at-
mosphere and a “virtual” adiabatic displacement. The
equation of motion (75a) can be written in the form of a
harmonic oscillator,

d*¢/dt* +wit=0,
wi=—F,=—gd(lnp)/dz —g?/c?,

(77a)
(77b)
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where w; is the buoyancy (or Briint-Vaisala) frequency
and we have used Eq. (73a) in (77b). For a perfect gas
[Eq. (9a)] in hydrostatic equilibrium [Eq. (72a)], we have

d(Inp)/dz +d (InT)/dz=d (Inp)/dz
=p~ldp/dz
= —-pg/p = —--yg/(:2 , (78a)

so that the buoyancy frequency (77b) can be written

03=(g/T)dT /dz +(y —1)g*/c?

=(y—1)g2/c*[1—(dT /dz)/(dT /dz),q] .  (78b)

Here we have introduced the adiabatic temperature gra-
dient (74). From Egs. (77a) and (78b) we conclude that (i)
if the temperature gradient is subadiabatic, dT/dz
<(dT /dz),4 <0, which implies (dT /dz)/(dT /dz),q >1,
we have an imaginary frequency w? <0 in Eq. (78b), the
displacement ¢ is monotonic in Eq. (77a), and the atmos-
pheric equilibrium is unstable; (ii) the condition of mar-
ginal stability, that the displaced fluid parcel stay in
equilibrium with its surroundings, d?{/dt*=0, is that
@0;=0 in Eq. (78b) and that the temperature gradient
dT /dz =(dT /dz),; equal the adiabatic value [Eq. (74)];
(iii) in a stable stratification [Eq. (74)] with superadiabatic
temperature gradient dT/dz >(dT/dz),;3 <0, so that
(dT /dz)/(dT /dz),q < 1, the buoyancy frequency w; is
real [Eq. (78b)], and a displaced fluid parcel oscillates
[Eq. (77a)] at this frequency around its original equilibri-
um position.

3. Vertical velocity for oblique waves

The velocity perturbation of a three-dimensional
acoustic-gravity wave satisfies v=0&/9¢, the same equa-
tion (16) as the displacement £, where, in a nonisothermal
atmosphere of temperature profile T(z) as a function of
altitude z, the sound speed C(z) is nonuniform [Eq. (9a)].
Thus the waveform will be sinusoidal in time ¢ and on the
horizontal coordinate x, but not in altitude z, so that we
may introduce the Fourier representation

+ o0
v(z,x,t):f_Oo fW(z,k“,a))exp[i(k“x —ot)]dkdo ,
(79a)

where W is the velocity perturbation spectrum, at altitude
z, for a two-dimensional wave of frequency @ and hor-
izontal wave number k| in the x direction (we neglect
propagation in the y direction k,=0). The vertical and
horizontal components of the acoustic-gravity wave equa-
tion (16) read

w2W2+C2( Wz”"*‘lkHW)é)—(?/—l)lk”gWx —'Vng’=O s
(79b)
(wz—kﬁc2)Wx+ik||(c2Wz'—ng)=0 R (79¢)

where primes denote derivative with regard to altitude,
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that is, W,=dW,/dz. We can eliminate the horizontal
velocity spectrum W, from the system [Egs. (79b) and
(79¢)], thus obtaining a single scalar wave equation of
second order for the vertical velocity perturbation spec-
trum W,:

AW, —ygW, + A*'W,=0, (80a)

A’=0’—c’kf +(y — 1)k g /@) . (80b)
In Eq. (80a) we have omitted the term

(2 [W, —g (k) /)W, 1/ [(w/kc)*—1], (80c)

which vanishes (i) for vertical waves, k=0, in noniso-
thermal atmospheres, ¢’540 and (ii) for oblique waves,
k50, in isothermal conditions, ¢’=0. For (iii) oblique
waves in nonisothermal atmospheres, k) 5£0£4c’, the term
(80c) is negligible provided that the scale height (72a)
varies slowly |dL /dz | <<1, i.e., for moderate tempera-
ture gradients |d7T /dz | <<g/R, which are consistent
with atmospheric stability [Eq. (74)].

4. Conditions for validity of the ray approximation

In an atmospheric layer of thickness small compared
with the radius of a planet (e.g., the Earth) or a star (e.g.,
the sun), we may use the plane-parallel approximation
[Egs. (792)—(79¢)] with uniform acceleration of gravity; if
the layer is isothermal, the sound speed c is also uniform
for a perfect gas [Eq. (9a)], and the wave equation (80a)
has constant coefficients, i.e., a complex exponential solu-
tion exists:

W,(z)=Wyexplik,z) , (81a)

¢k +ik,yg —A2=0, (81b)

with constant amplitude W, and vertical wave number
k,, the latter satisfying the same polynomial equation
(81b) of the second degree as before [Eq. (20)]. Its roots
show that the vertical wave number is generally complex,
k, =—i/2L £K, implying that

W,(z)=Woe?/?Le *iKz | (81c)

K?*=A%/c?>—1/4L% , (81d)

" i.e., the wave amplitude grows exponentially on twice the

scale height [Eq. (81c)], and the waveform is sinusoidal
with effective wave number given by Eq. (81d). In a non-
isothermal atmosphere, dT/dz+0, with length scale
I=[d(InT)/dz]~! for variation of temperature, the solu-
tion (81c) will hold “locally,” i.e., with the scale height L
(72a) and effective wave number K (81d) calculated as a
function of altitude z, provided that the wavelength
A=2m/K be short, in the sense K2/?>>1 of the WKBJ or
ray approximation, viz., A2 <<4w?l? (also used in Sec.
IV.C.2 of Part I). The effective wave number [Egs. (81d)
and (80b)] is real:

K*=[(0/w,)?—1]/4L*—k{[1—(0;/®)*],  (82a)

for propagating gravity and acoustic modes, of frequen-
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cies, respectively, below w; and above w,, where the cutoff
frequencies are given by Egs. (22a), (22b), and (78b) as a
function of altitude:

w1(2)={V1=1/yg/V'R ,(g/2Vy /R }[T(2)]~/*.

(82b)

Note that the gravity cutoff (82b) coincides with the “lo-
cally isothermal” form of the internal frequency
ot=(y—1)g?/c*=(1—1/y)g*/RT [Eq. (78b)], and the
acoustic cutoff (82a) in a “locally isothermal” atmosphere
coincides with w3=yg2/4RT =y%g*/4c*=c?/4L?, the
cutoff for sound in an exponential horn (Sec. IV.B.1, in
Part I), for which the mass per unit length varies like the
mass per unit altitude in the isothermal atmosphere.
Since the cutoff frequencies [Eq. (82b)] increase with alti-
tude in an atmosphere cooling with altitude, dT /dz <0, a
gravity wave of frequency o such that it propagates at al-
titude z,, i.e., @ <w(zq), will propagate at all higher alti-
tudes z >z, since w <w(zg) <®;(z); an acoustic mode
propagating at an altitude z,, for which @ > w,(z), may
become evanescent at a higher altitude z, such that
w=uw,(z,), implying that this is the level at which it is re-
flected. Corresponding results can be obtained for down-
ward propagation or atmospheres heating with altitude.

5. Three-parameter family of atmospheric models

In order to study the propagation of linear acoustic-
gravity waves in a nonisothermal atmosphere, without re-
lying on the ray approximation, we must specifiy a tem-
perature profile T(z), allowing for non-negligible gra-
dients. We choose the three-parameter family of atmos-
pheric models, with temperature profiles

T(z2)=T +(To—T,)e *'=T_ (1—ae~*""),
a=1—To/T ,=1—(co/c,)?,

(83a)
(83b)

which allows independent choice of (i) the initial T
=T(0) and asymptotic T, =T () temperatures, e.g.,
atmospheres heating (T, >T, or O<a < 1) or cooling
(T, < Ty or a <0) with altitude, including the isothermal
case (T, =T, or a=0) as separation; (ii) the temperature
gradient

dT /dz =(dT /dz)ee ~*", (84a)
(dT /dz)y=(T, —Ty) /I, (84b)

which is everywhere of the same sign (the temperature
profile is monotonic), attains its maximum value (in
modulus) at the base (level z=0) of the atmosphere,
where the temperature gradient can be chosen by specify-
ing the length scale / for temperature change. The condi-
tion of convective stability [Eq. (74)] is satisfied by Eq.
(84a) at all altitudes, for any atmosphere heating with alti-
tude T, > Ty, in the isothermal case T, =T, and also
for atmospheres cooling with altitude T, <7, to an
asymptotic temperature T, >To—gl/C,, only in the
latter case we must restrict the scale of temperature
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change to / <(Ty—T,)C,/g. For vertical waves k=0,
Eq. (80a) with A=w in (80b) is valid in nonisothermal at-
mospheres, without further restriction. For oblique waves
in nonisothermal atmospheres, k40, the neglect of the
term (80c) in (80a) requires that |d7T /dz | <<g/R, and
thus imposes a more severe restriction [Eqgs. (84a) and
(84b)] I>R |T,—Ty|/g=|L,—Ly| on the length
scale / of temperature change, for both atmospheres that
are heating and those that are cooling with altitude. The
temperature profile [Eqgs. (83a) and (83b)] coincides with
that of the sound speed squared for a perfect gas [Eq.
(9a)], and the wave equation [(80a) and (80b)] for the vert-
ical velocity perturbation spectrum reads

(1—ae 2/YW;' —L ='W, +[w?/c% +(y — 1)k g /c , )

—ki(1—ae=*/YW,=0,

(85)

where ¢, denotes the asymptotic sound speed c2

=yRT _=vyL g, and c¢( [appearing in Eq. (83b)] the ini-
tial value. We perform in Eq. (85) the obvious change of
independent variable

t=ae~ ", (86a)
W,(z3k o) =%(E) , (86b)

as well as the related change of dependent variable (86b),
so that the wave equation (85) with exponential coeffi-
cients in altitude transforms into one with polynomial
coefficients in the new variable &,

(1=5)8%" +(1+1/L =56
+ {0l /20,L + k{1 [(0 /@) — 11+ k[ 1%} =0 ,

(87)

where the prime now denotes derivative with regard to the
variable &, viz., ¥'=d¢/d{. In the wave equation (87),
the cutoff frequencies [Eq. (22b)] and scale height [Eq.
(15b)] are calculated for the asymptotic temperature T,
suggesting that the latter alone determines the filtering
conditions for acoustic-gravity waves in the family of
nonisothermal atmospheric models [Eq. (83a)].

6. Cutoff frequency as a global property

We define generally a cutoff frequency as the frequency
separating the wave spectrum into two ranges: one range
with phases, corresponding to propagating waves, and the
other range without phases, corresponding to standing
modes. Thus the cutoff frequencies separate real from
complex solutions of the wave equation (87). The latter
has polynomial coefficients of degree three, suggesting
that we perform the change of dependent variable

W, (z;ky,0)=P(&)=C""LD(E) , (88a)

where the constant v may be chosen at will. After substi-
tution of Eq. (88a) into (87), we choose v so as to cancel
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the coefficient of ®, which is constant, i.e., not multiplied
by &:
V—v+(0/20,)* —k{L 1 —(0;/0)*]1=0 . (88Db)

This choice of v implies that all terms of the wave equa-
tion have a common factor §, which can be dropped out,
lowering the degree of the polynomial coefficients from
cubic in Eq. (87), to quadratic:

(1=5E@" +[(1+1/L +2vl/L)—(1+2vl /L)E]®’
+[kfIP—(vl/L)*]®=0. (89)

Although the two equations (88b) and (89) are the conse-
quence of the same mathematical transformation (88a),
we consider here the physical interpretation of the former
(88b), and defer to the next section the consideration of
Eq. (89). Equation (88b) is readily identified as the
dispersion relation [Eq. (20) with (22a) and (22b), or
equivalently (82a) with (81b)] for acoustic-gravity waves
in an isothermal atmosphere at asymptotic temperature
T ., where

v=—ik, L =—++iKL , (90a)
k,=—i/2L K, (90b)

and where K is the effective vertical wave number [Eq.
(82a)]. It is clear that for frequencies between the cutoffs,
W, < < i, the effective wave number K is pure imagi-
nary [Eq. (82a)], hence v is real [Eq. (90a)], and so the
solutions of Eq. (89) are real, i.e., have no phases and
represent standing modes. For frequencies below the
lower cutoff w <, or above the upper cutoff @ > w,, the
effective wave number K is real [Eq. (82a)], and hence v
is complex [Eq. (90a)], and phase terms appear in the
solutions of Eq. (89), which represent propagating waves,
viz., gravity and acoustic modes, respectively. Note that
the ray approximation would predict, for the model (83a),
that the “local” cutoff frequencies would vary with alti-
tude [Eq. (82b)] as w;,(z)~(1—ae _2/1)_1/2601,2(00),
where w;,( ) are the cutoffs for the asymptotic tem-
perature T ; the exact theory shows that the global cut-
off frequencies are constants, w; (), and in this case
coincide with the cutoffs for an isothermal atmosphere at
temperature T . The result that the constant cutoffs are
determined from the asymptotic temperature is model
dependent, i.e., it holds for the family of atmospheric
models (83a) and might not hold for other temperature
profiles. The conclusion that the global cutoff frequen-
cies are constants applies to acoustic-gravity waves in any
nonisothermal atmosphere, since the separation between
standing modes and propagating waves, without and with
phases, respectively, always divides the spectrum into
ranges, independent of altitude.

7. Reflection factor due to temperature gradients

The result in ray theory that the cutoff frequencies
1,5(z) vary with altitude serves mainly to determine the
altitude z, at which a short wave of high-frequency o be-
comes evanescent, ® =w(z,), and is “totally” reflected.
Thus the ray approximation allows only two conditions:
first, the wave is not reflected below z,, i.e., the reflection
coefficient is zero [R(z)=0 for z <z,], and second, on
reaching z,, the wave is totally reflected, i.e., the reflec-
tion coefficient becomes unity [R(z)=1 for z >z,]. The
exact theory shows that long waves, of low frequency, do
not suffer such abrupt “total” reflection, but are gradually
reflected by temperature gradients, leading to a reflection
coefficient R (z) varying continuously with altitude. This
reflection coefficient is generally complex for propagating
waves, including a phase shift due to the variation of
wave speed with altitude, which reduces to an integration
of the “local” phase only in the case of high-frequency
waves satisfying the ray approximation. We illustrate the
calculation of the exact reflection coefficient in the case
of acoustic-gravity waves in an atmosphere with tempera-
ture profile (83a), for which the second-order wave equa-
tion has been transformed to the type (89), with quadratic
coefficients. A linear, second-order differential equation
with quadratic coefficients is always reducible to the hy-
pergeometric type (Kamke, 1944); in fact, Eq. (89) is al-
ready in the hypergeometric form, with parameters a,f3,y
(Caratheodory, 1953) satisfying

Yo=1+(/L)(1+2v), (91a)
ag+PBo=2vi/L , (91b)
aoBo= (vl /LY?—k}I*, (91c)
i.e., using Eq. (90a), we obtain
apBo=vl/Ltk |l =—1/2L+k\l +iKl, (92a)
Yo=1+2iKI , (92b)

where k|| is the horizontal wave number (79a) and K the
effective vertical wave number (82a). The solution of the
hypergeometric equation (89) is

D(L)=A4, F(a,B;v;E)
+A_TF(l4a—y,1+B8—y;2—y;8), (93

where A, are arbitrary constants of integration. They
are interpreted as the amplitudes of upward-propagating
A, and downward-propagating 4 _ waves, since the two
particular integrals in Eq. (93) scale, according to Eqg.
(88a), as

1/L —
Wiz3k),0)=C" F (a0, Bovae)s " TP (1+ag— 70,1+ Bo— 02— 7658)
~e?/Le YK (| /2L kI +iKl,—1/L —k 1 +iKI;1+2iKI;0e ~*"") (94)
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where we have used Eqs. (88a) and (86a).

8. Evolution of amplitude and phase with altitude

Choosing an upward- or downward-propagating wave,
i.e., respectively, the plus or minus sign in Eq. (94) and
first or second term in Eq. (93), and determining the am-
plitude 4 . from the initial perturbation, we obtain

W3 (z;k),0)=W; (0;k )
X e/ e tikz(1 R (z;a,k LKD)},  (95)

which corresponds to an acoustic-gravity wave in an iso-
thermal atmosphere at asymptotic temperature 7 (first
three factors), modified by the reflection factor

R*(z;a,k LK)=1—F§(ae =) /F§(a), (96a)
F3(§)=F(—1/2+k I+iKl,—1/2

—k [ £iKl;1+2iK1;E) , (96b)
which is specified by the hypergeometric functions (96b)
for the temperature profile (83a). In the isothermal case
(T,=Ty or a=0) there is no reflection of acoustic-
gravity waves at any altitude R (z)=0, and the last factor
in (95) can be omitted. The latter factor is important in
the presence of temperature gradients (7', T or a=0),
since then the reflection factor varies from zero initially,
R (0)=0, to become a complex function of altitude, R (z),
consisting of an amplitude change |1—R(z)| and a
phase shift arg[1 —R (z)] in Eq. (95). Stronger reflections
and larger phase shifts occur in the region ae =%’/ <1 or
larger temperature gradients. Asymptotically, at high al-
titude ae << 1 or z>>I1na, as the temperature stabi-
lizes, T'(z)—T,,, there is no further reflection or phase
shifting, and the reflection factor tends to the constant
value RE =1—1/F§ (a), where F§ (a) is [Eq. (96b)] the
inverse of the transmission factor. Acoustic-gravity
waves in a nonisothermal atmosphere [Eq. (83a)] are illus-
trated in the case of vertical propagation k=0, for
which the present solution involves no approximations;
vertical propagation is possible only for the acoustic
‘mode, at frequencies @ above the acoustic cutoff
w>wy=c, /2L. The logarithms of wave amplitude and
phase difference, normalized to the initial value, are plot-
ted, respectively, on the lhs and rhs of Fig. 4 as a function
of altitude z, made dimensionless by dividing by the scale
height. We choose as a reference case A, a frequency
twice the cutoff @ =2w,, an asymptotic temperature 1 or-
der of magnitude larger than the initial value
T,/To=10, and an initial temperature gradient (84b)
specified by [ =L as T'(0)=(T, —T,)/L. We change in
turn B the asymptotic temperature to a case of cooling
with altitude T',, =Ty/2; C, the frequency to a high, al-
most “ray” value w=10w,; D, the temperature gradient
to a steep rise / =L /4. It is clear that faster (slower) am-
plitude growth and larger (smaller) phase shifts occur for
(i) larger (smaller) wave frequency w relative to the cutoff
w,; (ii) steeper (shallower) temperature rise, or larger
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FIG. 4. Logarithm of amplitude (left) and phase (right) vs alti-
tude z divided by scale height L, for acoustic-gravity waves
propagating vertically in a nonisothermal atmosphere with tem-
perature profile (83a), in the following cases: A, wave frequency
® twice the cutoff value w, i.e., ® =2w,, asymptotic temperature
T, an order of magnitude larger than initial temperature T,
ie., T, =10T,, and temperature gradient parameter / equal to
asymptotic density scale height L =/ (reference case); B, like the
reference case, but with asymptotic temperature half the initial
value, T, =T, /2; C, like the reference case, with wave frequen-
cy 10 times the cutoff, @ =10w,; D, like the reference case with
temperature gradient parameter one-quarter the asymptotic
density scale height, / =L /4.

(smaller) temperature gradients, between the same initial
and asymptotic temperatures; (iii) atmospheres heating
(cooling) with altitude.

B. Alfvén modes and waveform shearing

Acoustic-gravity waves are observed in the sun, not
only as motions in the outer, atmospheric layers, but also
as global oscillations or p modes (Brookes, Isaak, and Van
Der Raay, 1976; Deubner, 1981; Fossat, Grec, and
Pomerantz, 1981; Scherrer, Wilcox, Christensen-
Daalsgard, and Gough, 1982). The inversion of solar os-
cillation frequencies has been used to construct models of
the solar interior (Christensen-Daalsgaard and Gough,
1981; Scuflaire, Gabriel, and Noels, 1981; Shibaiashi and
Osaki, 1981), and the subject has developed into the rapid-
ly expanding field of helioseismology (Deubner and
Gough, 1984; Leibacher, 1985; Deming et al., 1986). The
observation of rotational splitting of these global oscilla-
tions (Duvall and Harvey, 1984) has been used to deduce
the rotation curve as a function of depth (Duvall et al.,
1984), demonstrating the existence of a core (Claverie,
Isaak, McLeod, and Van Der Raay, 1981) rotating much
faster than the surface (Howard, 1984). Asymptotic ap-
proximations have been used for the identification of the
modes for higher orders or degrees (Tassoul, 1980), which
reduce essentially to the WKBJ approximation (Gough,
1984). The high-quality data thus obtained on the solar
interior has raised fresh issues, such as an apparent
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discrepancy between the solar neutrino flux (Bahcall
et al., 1982; Joseph, 1984; Bahcall, 1986) and the nuclear
reaction rates in the solar core implied by the temperature
profile, derived by inversion of p-mode frequencies. The
rapid rotation of the solar core testified to by the rotation-
al splitting raises the question of its magnetic decoupling
from the outer layers of the solar interior, which rotate
much more slowly. Other issues include the calculation
of the quadrupole moment of the sun (Campbell and
Moffat, 1983), the existence of torsional oscillations (La-
bonte and Howard, 1982; Labonte, 1984), the observation
of g modes (Kuhn, Libbrecht, and Dicke, 1986; Wentzel,
1986), the properties of the core (Faulkner, Gough, and
Vahia, 1986; Libbrecht, 1986) and convection zone
(Schmitt, Rosner, and Bohn, 1982; Guenther and Gilman,
1985), and oscillations perpendicular to the galactic disk
(Shuter and Klatt, 1986). The study of solar oscillations
is relevant not only as an example of stellar pulsation
theory (Cowling, 1941; Ledoux and Walraven, 1957; Tas-
soul, 1978; Cox, 1980; Gabriel, Noels, Scuflaire, and
Mathys, 1985), but also as an important test case of many
aspects of the theory of formation and evolution of stars
(Acheson, 1978; Woolfson, 1979; Lebovitz, 1981; Hill and
Logan, 1984). In the outer, atmospheric layers, the global
oscillations correspond (Foing, Bonnet, and Bruner, 1986;
Schmieder and Mein, 1986) to acoustic modes (Leibacher
and Stein, 1971; Stein, 1982), and it has been reported,
without subsequent confirmation from other sources, that
gravity modes could also exist (Hill, Goode, and Stebbins,
1982). The acoustic modes are mostly trapped, standing
waves (Lites, Chipman, and White, 1982), which are at-
tenuated in sunspots (Thomas, Cram, and Nye, 1982),
where the magnetic field strength (Deinzer, 1965) is of the
order of 2 kG. The sunspots were first observed by
Galileo in the XVIth century, as dark patches on the solar
surface, and their number and evolution during the solar
cycle (Moore and Rabin, 1985; Schatten and Mayr, 1985;
Gilman and Howard, 1985, 1986) affects solar irradiance
(Willson and Hudson, 1981; Willson, Gulkis, Janssen,
Hudson, and Chapman, 1981) and is an indicator of solar
rotation (Schroter, 1985) at the surface (Balthasar, Lustig,
Stark, and Wohl, 1986). The sunspots in the photosphere,
together with coronal arches and loops, are examples of
regions of strong magnetic field, i.e., magnetic pressure
comparable to or larger than gas pressure, in the solar at-
mosphere; the physical conditions in these solar magnetic
regions support Alfvén waves, which have been the sub-
ject of an extensive literature (Ferraro, 1954; Hide, 1955;
Ferraro and Plumpton, 1958; Zhugzhda, 1971; Hollweg,
1972, 1978, 1981a, 1981b, 1984a, 1984b, 1984c; Thomas,
1978; Leroy, 1980, 1981, 1983; Nye and Hollweg, 1980;
Bel and Leroy, 1981; Zhugzhda and Locans, 1982; Cam-
pos, 1983a, 1983d; Parker, 1984a; Schwartz, Cally, and
Bel, 1984; Mariska and Hollweg, 1985).

1. Alfvén speed and the magnetic “‘gas”

For acoustic-gravity waves in an atmosphere, the varia-
tion of sound speed with altitude is a crucial factor. For
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Alfvén modes we should start by considering the Alfvén
speed (38b), which is given by

a’=2P/p,
P=uB?*/8m,

(97a)
(97b)

where P is the magnetic pressure and p the mass density.
Thus both the sound [Eq. (9a)] and Alfvén [Eq. (97¢)]
speeds scale as the square root of pressure divided by den-
sity, with the gas p and magnetic P pressures appearing in
the expressions for, the sound ¢ and Alfvén a speeds,
respectively. The coefficient in the adiabatic sound speed
[Eq. (9a)] is the ratio y =C, /C, of specific heats at con-
stant pressure C, and volume C,, which is given, for a
perfect gas whose molecules have only translational and
rotational degrees of freedom (no, vibration or quantum
effects), by (Landau and Lifshitz, 1967)

7=1+2/N:2’%)%7%— )
N =2,3,5,6,

(98a)
(98b)

where N is the number of degrees of freedom of a mole-
cule: (i) for a monatomic gas, molecules have only N =3
degrees of freedom (all translational), and the adiabatic
exponent is y = % =1.67, e.g., for fully ionized hydrogen;
(ii) for a diatomic gas or polyatomic molecules whose
atoms are aligned, there are two rotational degrees of free-
dom, for a total of N =S5, corresponding to an adiabatic
exponent ¥ =~ =1.40, e.g., for oxygen at room tempera-
ture; (iii) for a polyatomic gas, with three-dimensional
molecules, the number of degrees of freedom is that of a
rigid body, N =6 (three each for translation and rotation),
and the adiabatic exponent is ¥ =+ =1.33; (iv) for the
Alfvén speed, the adiabatic exponent is replaced by the
value y=2, corresponding to two degrees of freedom,
N =2, ie., the “magnetic gas” consists of molecules
whose only permissible motion is two-dimensional
translation, transverse to the magnetic field lines B. Thus
acoustic waves are isotropic and longitudinal because the
gas pressure is independent of direction and is a normal
stress. Alfvén waves are anisotropic and transverse be-
cause the waves propagate along the magnetic field lines,
which support tension through transverse displacements.

2. Equations for velocity and magnetic perturbations

The Alfvén speed [Eq. (97a)] is constant in a homo-
geneous medium under a uniform magnetic field, in
which case the waves are sinusoidal. The waves cease to
be sinusoidal, in a homogeneous medium, in the presence
of a nonuniform magnetic field, e.g., one that is increas-
ing for magnetic “focusing.” In an atmosphere the mass
density p(z) decays with altitude, and preservation of a
sinusoidal waveform requires a constant Alfvén speed
[Eq. (38b)] and hence a magnetic field decaying in
strength as B(z) ~V p(z). If we require a one-dimensional
magneto-hydrostatic equilibrium, depending only on alti-
tude z, the Maxwell equation stating the nonexistence of
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magnetic charges, 0=V-B=dB,/dz, implies that the
magnetic field can have no vertical component B, =0, i.e.,
it must be purely horizontal. Thus the Alfvén speed will
not be uniform and the Alfvén waves will be non-
sinusoidal if the magnetic field has a vertical component.
For example, in an isothermal atmosphere (see Sec. V.A.1
in Part I), the mass density decays exponentially with
height p(z)=pge ~?’% on the scale height L [Eq. (15b)],
and thus, in the presence of a uniform external magnetic
field B, the Alfvén speed increases exponentially on twice
the scale height:

z2L (99a)

(99b)

a(z)=age
a? =uB?/4mp, ,

from an initial value a, at the base (z =0) of the atmo-
sphere. For a pure Alfvén wave in an atmosphere, under
a uniform magnetic field B, in the absence of rotation,
bearing in mind that the motion is incompressible
(V-v=0) and transverse (h-B=0) and causes no density
or pressure perturbation (p=0=p), the linearized induc-
tion and momentum equations [(8a) and (7b)] read

h=(B-V)v,
v=(a?/B)B-V)h ,

(100a)
(100b)

in terms of the velocity v=0& /9t and magnetic field h
perturbations. Eliminating between [(100a) and (100b)],
and bearing in mind that the external magnetic field B is
uniform but the Alfvén speed may not be, we obtain for
the velocity [Eq. (75)] and magnetic field [Eq. (76)] per-
turbations, respectively, the following wave equations:

v—a?3’v/3b%*=0, (101a)

h—0(a23h/db)/3b =0 , (101b)

where d/0db denotes the derivative along magnetic field
lines [Eq. (39b)]. If the Alfvén speed is constant, e.g., if
the medium is homogeneous under a uniform magnetic
field, the velocity and magnetic field perturbations satisfy
the same wave equation (101la), i.e., the classical wave
equation in one dimension, as for the transverse oscilla-
tions on a string of uniform thickness. If the Alfvén
speed is nonuniform, e.g., for an atmosphere under a
magnetic field with a nonzero vertical component, the
Alfvén wave equation for the velocity v is similar to that
for a string (101a) of varying thickness, e.g., a “whip” of
exponentially decreasing cross section, for isothermal con-
ditions and uniform magnetic field [Eq. (99a)]. For the
magnetic field perturbation h, the wave equation (101b)
has an extra term, —2a(3da/0b)oh/0db, relative to that
for the velocity v [Eq. (101a)], and this additional scatter-
ing effect implies that the two wave variables evolve dif-
ferently.

3. Balance of energy density and flux

Associated with the velocity v and magnetic field h
perturbations of an Alfvén wave are the kinetic and
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compression energy densities,
(102a)
(102b)

E,= %P v? ’

E,=uph?/8m .
Their rate of change in time can be obtained by multiply-
ing the momentum equation (100b) by pv and the induc-

tion equation (100a) by uh/47. Adding the resulting for-
mulas, we obtain the equation of energy

E+V-F=0, (103a)
E=E,+E, , (103b)
F=(u/4m)B(h-v) , (103c)

stating the balance (103a) of the total (kinetic plus mag-
netic) energy density (103b) and the energy flux (103c). If
the Alfvén speed is constant, sinusoidal waves exist:

V,h(X,l)=(V0,h0)€i(k’x—wt) ,

hy/B =vy/a ,

(104a)
(104b)

and the amplitudes of the velocity v, and magnetic field
h, perturbations are related by Eq. {104b), which is ob-
tained by substituting Eq. (104a) into (100a) or (100b) and
using the dispersion relation w = —a (k-b) for sinusoidal
Alfvén waves [Eq. (40a)]. Equation (104b) implies the
equipartition of kinetic and compression energies,

Ep=ph*/8m=phl/8m=uB*}/8ma’®
= %PU(ZJ = %pvzzEv ’

so that the total energy density (103b) and flux (103c) can
be given equivalently by either of two expressions:

E =2E,=2E, =pvi=uph/4r ,
F=pvdab=(uh}/4m)ab=Eab ,

(105a)
(105b)

i.e., the energy F is equal to the energy density E multi-
plied by the Alfvén speed a, in the direction b=B/B of
magnetic field lines. If the Alfvén speed is nonuniform,
the velocity perturbations v and magnetic field perturba-
tions h evolve differently as functions of space x, because
they satisfy distinct wave equations. Thus Eq. (104b)
does not hold for all x, and the theorem of equipartition
of energy (105a) and simple formula (105b) for the energy
flux break down.

4. Properties in the WKBJ or ray approximation

Alfvén waves in an atmosphere differ from those in a
homogeneous medium, for the same magnetic field; the
reason is that, although gravity does not appear explicitly
in the wave equations (101a) and (101b), it causes the
mass density and hence the Alfvén speed to vary with al-
titude, which in turn changes significantly the properties
of the waves: (i) the waveforms become nonsinusoidal
and (ii) equipartition of kinetic and magnetic energies is
violated, even for a uniform external magnetic field. We
shall now discuss the substitute forms of properties (i) and
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(ii) for Alfvén waves in general nonisothermal atmo-
spheres under arbitrary magnetic fields consistent with
one-dimensional magneto-hydrostatic equilibrium. Using
the wave frequency w, scale height L, and Alfvén speed a,
it is possible to form only one dimensionless parameter,
namely, the compactness:

(106a)
(106b)

e(z)=L (z)w/a(z)=gqe ~?/*L ,

g=wL /ay .

The compactness decreases exponentially with altitude in
the case of an isothermal atmosphere under a uniform
magnetic field, for which the scale height L is a constant
[Eq. (72b)] and the Alfvén speed is given by Eq. (99a).
For a wave of high frequency, in the sense of compactness
initially large €3>>1, the ray approximation applies, and
the energy flux (105b) must be constant in the absence of
reflections; thus we obtain the following scaling laws
(Campos, 1983d) for the velocity vy and magnetic field 4,
perturbations:

]-——l/2~ez/4L , (107a)

(107b)

vo(z) ~[p(z)a(z)

ho(z)~[a(2)]~ /2 ~e=2/4L

We find that the velocity increases while the magnetic
field decays on four times the scale height, in the case
(Wallen, 1944) of an isothermal atmosphere under a uni-
form magnetic field. In such a case both the kinetic [Eq.
(102a)] and magnetic [Eq. (102b)] energies decay on twice
the scale height E, ~e~?/?L ~E,, so that (i) the initial
equipartition of energies is preserved, as long as
[e(z)]*>>1, i.e., for the altitude range z <<z, =2L In(g,);
(i) the total energy density (77b) decays, E ~e ~*/?L in a
manner that compensates for the increase [Eq. (99a)] in
the Alfvén speed a, leading to a constant energy flux
Ea =F ~const. The preceding results will break down,
even for a wave of high frequency, w®>>(ay/L)? after
the wave has propagated a -sufficient distance,
z>>z9=2L In(wL /ay); they will hold nowhere, not even
initially, if the wave frequency is low, w <a,/L.

5. Exclusion or “rigging” of the magnetic field

We shall now consider the high-altitude or asymptotic
limit of small compactness, which holds for low-
frequency waves everywhere and for high-frequency
waves at a sufficient distance. For any nonisothermal at-
mosphere, the density p(z)—0 decays with altitude, and
provided that the nonuniform magnetic field decays to a
finite value, B(z) >8>0 as z— o0, Or decays to zero, but
more slowly than Vp(z), the Alfvén speed [Eq. (99a)]
diverges a(z)—>c as z— . It follows from the wave
equations for the velocity (101a) and magnetic field
(101b), that is, from the terms a2d%/dz> and
2a(da /dz)dh /3z, respectively, that d%v/9z2, 9h/dx—0
as z— oo for vertical propagation, implying that the velo-
city perturbation grows linearly:
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U(Z,t)~(d12 +d2)e_iwt ’
h(z,t)~i(B,/w)d e %

(108a)
(108b)

where d;,d, are constants and where the induction equa-
tion (100a) with (B-V)=B,0/0z was used to obtain the
magnetic field perturbation [Eq. (108b)], which is bound-
ed. In an isothermal atmosphere, the kinetic energy den-
sity [Eq. (102a)] decays as E, ~z% ~?/L, and the magnetic
energy density [Eq. (102b)] tends to an asymptotic value
E, ~(u/87)(B,d,/w)*, which is a constant fraction
(di/w)* of the background magnetic energy uBZ2/8r.
Thus, for a vertically propagating Alfvén-gravity wave,
all energy is asymptotically magnetic, i.e., the opposite of
equipartition. The interpretation is that the magnetic
field perturbation of the wave is rigged into the back-
ground magnetic field, and the atmosphere oscillates up
and down like a “lid,” preserving the fraction of back-
ground magnetic energy corresponding to the wave. For
a standing mode, perfectly reflected from infinity, the
amplitude of the velocity perturbation is asymptotically
finite [d; =0 in (108a)], and the magnetic field perturba-
tion decays to zero. In an isothermal atmosphere the de-
cay proceeds in powers of e ~?/L, or submultiples of the
scale height L, e.g., the kinetic energy density [Eq. (102a)]
decays on the scale height E, ~e ~*/L, and since the mag-
netic field perturbation decays like the density on the
same scale 7 ~p~e~?/L, the magnetic energy density
(102b) decays twice as fast, E, ~e ~2?/L, Thus, for stand-
ing Alfvén waves, the total energy is biased in favor of the
kinetic energy, and it decays E ~E, ~e ~*’L~p like the
density. Thus reflections cause the energy and the field
perturbation of the wave to be excluded from the upper
layers of the atmosphere.

6. Propagating waves in an oblique field

We confirm Secs. I1.B.4 and IL.B.5 by calculating ex-
actly the wave fields for an isothermal atmosphere under
a uniform magnetic field; the low-altitude and high-
altitude limits yield, respectively, Egs. (107a) and (107b)
and (108a) and (108b) and specify the constants appearing
in these formulas. For an oblique magnetic field making
an angle 6 with the vertical, the wave equation (101a) for
the velocity perturbation reads

[8%/031% —aje*/ (sin6d /3x +c0s63 /0z)*]v, (z,x,)=0 .
(109)
We seek a solution in the form of Eq. (79a), with

W, (z;k),0)=exp(—ik,z tanB)i(z) , (110a)

where k|, denotes the horizontal wave number and w the
frequency, and the altitude dependence is specified by the
function ¥(z), which satisfies

V' +(w/ag)sec’@e /I h=0 . (110b)

Using as an independent variable twice the compactness
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[Eq. (106a)], with the Alfvén speed projected in the verti-  ®(&)=A,Jo(E)+A4,Yo(E)=A_HP (&) + A, HP (),
cal direction, i

(112a)
— —z/2L

£=(20L /accosd)e ’ (111a) where A, and A . are arbitrary constants of integration.
D) =1Y(z), (111b) For example, for an upward or downward propagating
wave, traveling in the direction of increasing or decreas-
transforms Eq. (101b) into a Bessel equation of order zero ing z, or, by Eq. (111a), decreasing or increasing &, we
in the variable §, with Bessel J,, Neumann Y,, and choose the Hankel function H 82)/H é,” and determine the
Hankel H{"? functions of order zero (Watson, 1944), amplitude A , /A4 _ from the initial velocity perturbation:

| .
W, (z;k),0)=W,(0;k,0)exp( —ik z tan0) { H " [ (2oL /aycos®)e ~2/*]/H M (2oL /agcosh)] (112b)

In the case of vertical propagation §=0, we obtain for the velocity W, and magnetic field H, perturbation spectra,
respectively,

W, (2;0,0)=W,(0;0,0){H" > [(20L /ag)e ~*/*]1/Ho(20L /ay)} , (113a)
H,(z;0,0)=i(B/ag)W,(0;0,0)e ~2*L{H{"¥[(2wL /ag)e ~*/*L1/H ¥ (2wL /a,)} . (113b)
' I
The Bessel function approximations (McLachlan, 1934) tion (112a), involving the superposition of upward- and
for large and small & [Eq. (111a)] yield, respectively, the downward-propagating waves. These waves have ampli-
low-altitude limit tudes of A in the nth layer n =1,...,N —1, together
. . . . (N) -
. _ ) JaL with upward propagation or reflection in 47"’ in the up-
Wy (2;0,0)=W,(0;0,0)e* ™" , (1142) permost, or Nth layer, depending on whether the wave is

H,(z;0,0)=H,(0;0,0)e —z/4L (114b) vertical or oblique. The 2N —1 constants are determined

by 2N —1 boundary conditions, that is, the initial velocity
which confirms the results (107a) and (107b) of the ray at the base of the layer n =0, and the 2(N — 1) conditions

approximation (Sec. I1.B.4), and the high-altitude limit of continuity of velocity and total (gas plus magnetic
W, (2:0,0) ~[W,(0;0,0)/H? (20L /ay) pressure)‘ at the N —1 i.nterfaces between the N layers.
4 o) ~1W, 0 o)l The ratio A" /AP indicates the strength of the
X[iz/mL +1—i2y. /7 downward-reflected wave in the nth layer when compared

. with the upward-incident wave. An extreme case is that
—i(2/mn(20L /a,)] , (1152) ¢ fotal reflection A, =A_, equivalent to 4,=0 in Eq.

H,(z;0,0)~ —(B /7rcoL)[Wy(O;O,a))/H&l’Z’Qa)L /ag)], (112a), so that the velocity perturbation is specified by Eq.
(115b) (112b) with Bessel functions J, replacing the Hankel

functions HY"?. In this case the velocity perturbation is

where 7y, is Euler’s constant and specifies the constants ~ bounded at high altitude, since Jo(5)—1 as z—oo and
d1,d, appearing in the asymptotic laws [Egs. (108a) and §—0 in Eq. (111a). In the case of vertically standing
(108b)]. In the case of an oblique magnetic field 640, the =~ modes, perfectly reflected from a layer several scale
velocity perturbation (108a) leads to a magnetic field per- heights away, so that { << 1, Egs. (113a) and (113b) with

turbation H, ~dz +d, which diverges with altitude and Jo replac'ing H"? show that resonances of th? veloc?ity
implies a diverging magnetic energy density, unless we set perturbapon occur when the denominator vanishes, i.e.,
A,=0 in Eq. (112a); in this case, the velocity and mag- for the eigenfrequencies

netic field perturbations, as well as the magnetic energy, .

are all bourfded, and the wave field is specifiged by Jo aiya ©,=agj, /2L , (116a)
standing mode, i.e., Alfvén waves in an oblique magnetic 0n/01=jn/j1 (116b)
field are reflected into standing modes, and cannot propa-

gate through the atmosphere to infinity. where j, denotes the roots of the Bessel function J.

Note that while the absolute values of the eigenfrequen-
cies depend on atmospheric properties [Eq. (116a)], their
ratios do not, but are specified by fixed numbers [Eq.
(116b)]. Substituting Eq. (113a) into the Fourier integral

7. Eigenfrequencies and eigenfunctions
of standing modes

When considering Alfvén waves in an atmosphere con- (79a), which for vertical propagation involves only an in-
sisting of multiple isothermal layers, we can take the solu- tegration in frequency,
J
+ o i
v (z,0)= [ W,(0;0){Jo[(2wL /ag)e ~*/*1/Jo(20L /ag)}e ~*dw , (117

we find that the eigenfrequencies correspond to roots of the denominator, i.e., simple poles. Thus the integral can be
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evaluated by the theorem of residues, as

Uy(Z,t)=-—-1Ti 2 Wy(O;a)n )[Jl(jn)]_lexp(—iw,,t)JO(j,,e_Z/ZL) ,

hy(z,t)= — (7B /wL)e ~*/*L S W,(0;0,)Ljn /1 (jn)Jexp( — i, 1)1 (jue ~*/2F) .

The velocity (118a) and magnetic field (118b) perturba-
tions thus consist of a superposition of standing modes, of
all eigenfrequencies w, present in the initial spectrum
W,(0;w,)5#0. The low-altitude approximation to Egs.
(118a) and (118b) satisfies the ray law (Sec. I11.B.4); the
velocity perturbation (118a) is bounded asymptotically at
high altitude, and the magnetic field perturbation (118b)
decays like the density &, ~e~?L_p (in agreement with
the predictions of Sec. IL.B.5).

8. Oscillations in sunspot umbras and prominences

The property of Alfvén waves, of being reflected in at-
mospheres for which the density decays and of rapidly in-
creasing in speed with altitude, could lead to the appear-
ance of standing modes. In fact, oscillations have been
observed in magnetic regions of the sun, such as prom-
inences (Landman, Edberg, and Laney, 1977; Bashkirtsev,
Kobanov, and Mashnich, 1983; Jensen, 1983; Bashkirtsev
and Mashnich, 1984; Wiehr, Stellmacher, and Balthasar,
1984; Landman, 1985; Balthasar, Knolker, Stellmacher,
and Wiehr, 1986), filaments (Malherbe, Schmieder, and
Mein, 1981), active region spicules (Kulidzanishvili and
Zhugzhda, 1983; Berton and Rayrole, 1985), and most
notably coronal loops and sunspot atmospheres. Several
of these oscillations have been attributed to Alfvén waves
(Jensen, 1983; Sterling and Hollweg, 1984), and we con-
centrate here on the sunspot modes. There are extensive
observations of oscillations in the umbrae of sunspots
(Staude, 1981; Nicolas, Kjeldseth-Moe, Bartoe, and
Bruecker, 1982; Gurman and Athay, 1983; van Ballegooi-
jen, 1984; Yun, Beebe, and Bagget, 1984; Lites, 1986a,
1986b), where the magnetic field is nearly vertical (Beck-
ers and Schroter, 1968; Henze et al., 1982; Adam, 1985;
Berton, 1985; Ye and Jin, 1986), demonstrating the pres-
ence of five-minute and three-minute modes, as well as
shorter periods (Rice and Gaizauskas, 1973; Schroter and
Soltau, 1976; Soltau, Schroter, and Wohl, 1976; Gurman
et al., 1982; Lites, White, and Packmann, 1982; Kneer
and Uexkiill, 1983; Uexkiill, Kneer, and Mattig, 1983,
Lites, 1984; Nye, Thomas, and Cram, 1984; Soltau and
Wiehr, 1984; Thomas, Cram, and Nye, 1984; Kneer and
Uexkiill, 1985; Uexkiill et al., 1985). The umbral oscilla-
tions have been modeled in terms of Alfvén (Uchida and
Sakurai, 1975; Campos, 1986b), acoustic (Leibacher,
Gouttebroze, and Stein, 1982; Gurman and Leibacher,
1984), and flux tube modes (Hollweg and Roberts, 1981;
Cally, 1983). Two competing theories based on fast
(Scheuer and Thomas, 1981; Thomas and Scheuer, 1982;
Thomas, 1984) and slow (Zhugzhda and Makarov, 1982;
Zhugzhda, 1984; Zhugzhda, Staude, and Locans, 1984;
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(118a)

(118b)

f

Staude, Zhugzhda, and Locans, 1985; Zhugzhda, Locans,
and Staude, 1985) magnetohydrodynamic modes have
been pursued most persistently. We illustrate in Fig. 5 the
waveforms for the magnetic field (b) and velocity (a) per-
turbations, for the first three modes of Alfvén waves,
trapped between the anchoring level of magnetic field
lines in the convection zone and the sunspot atmosphere,
which acts as an upper reflector. The frequencies and
amplitudes of the modes are consistent (Campos, 1986b)
with available observations and indicate that the anchor-
ing depth of magnetic field lines in the convection zone,
about 10 mm below the photosphere, corresponds to the
depth of origin (Parker, 1984b) of ephemeral magnetic re-
gions on the solar surfaces. The considerable variability
(+10%) observed in the wave periods can be explained by
small displacements (<0.1 Mm) of the anchoring depth
of magnetic field lines, and the model may also be sup-
ported by some evidence (Mullan and Owens, 1984), in
the solar wind, of the presence of Alfvén waves originat-
ing from sunspots.

C. Magnetosonic waves and critical levels

Having considered separately acoustic-gravity (Sec.
II.LA) and Alfvén (Sec. I1.B) waves, which are due to the
balance of inertia and the gas and magnetic pressures,
respectively, we now consider their coupling into
magnetosonic-gravity waves. The latter are described by
a second-order wave equation for oblique waves in a hor-
izontal magnetic field, and we defer to subsequent con-
sideration (Sec. III) the more general case of an oblique
magnetic field, which leads to a wave equation of the
fourth order. Horizontal magnetic fields do occur in the
solar atmosphere, at the top of loops, arches, and other
closed magnetic structures in the corona, as will be dis-
cussed subsequently (Sec. III.C). Here we merely mention
in passing that the magnetic field in a sunspot emerges
nearly vertically in the umbra, where the oscillations are
observed (Sec. I1.B.7), and then tilts towards the horizon-
tal in the penumbra, where running waves have been ob-
served and interpreted as magnetosonic-gravity modes
(Nye and Thomas, 1974, 1976b; Cally and Adam, 1983;
Zhugzhda and Dzhalilov, 1984c). The study of
magnetosonic-gravity waves (Nye and Thomas, 1976a;
Summers, 1976; Adam, 1977b; Campos, 1983a, 1983d)
shows that they resemble acoustic-gravity waves in re-
gions of predominant gas pressure and become compres-
sive Alfvén waves in regions of dominant magnetic pres-
sure. The transition between the two regimes involves a
hydromagnetic critical level, whose properties have been
considered in some detail in the literature (Thomas, 1976;
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OSCILLATIONS IN UMBRAE OF SUNSPOTS
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FIG. 5. Waveforms of (a) velocity perturbations and (b) mag-
netic field perturbations vs altitude z divided by scale height, for
the first three standing modes of Alfvén waves, along magnetic
field lines anchored at altitude z =0 and perfectly reflected at a
distant layer z/L >>1, as a model of oscillations in sunspot um-
brae. :

El Mekki, Eltayeb, and McKenzie, 1978; Adam, 1984;
Schwartz, Bel, and Cally, 1984; Campos and Leitao, 1985;
Campos, 1987b). A critical level appears mathematically
as a regular singularity (Ince, 1926) in the wave equation
and corresponds physically to a layer where waves are re-
flected, or absorbed, or transformed into another mode, as
a consequence of the interplay between two competing ef-
fects. Critical levels were first studied for internal waves
propagating against a stream (Bretherton, 1966; Booker
and Bretherton, 1967), they occur where the velocity of
the shear flow balances the wave speed, so that waves can
propagate no further. Similar phenomena occur in the
tracing of sound rays in a wind (Lighthill, 1978), with ei-
ther absorption of tangential rays or cusp reflections at
the critical level. Critical levels can also occur in the
presence of rotation (Acheson, 1972; El Mekki, 1983;
Ritchie, 1985) and magnetic fields (McKenzie, 1973; El-
tayeb, 1977; Rudraiah and Venkatachalappa, 1979; Ru-
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draich, Venkatachalappa, and Sekar, 1982). The aspects
of plasma physics related to the magnetosonic-gravity
wave and its associated hydromagnetic critical level in-
clude the questions of stability (Sakai, 1983), resonances
(Southwood, 1974; Rae and Roberts, 1982a), and the
Alfvén continuum (Kieras and Tataronis, 1982; Connor,
Tang, and Taylor, 1983; Mahajan and Ross, 1983; Maha-
jan, Ross, and Chen, 1983). If the wave amplitude be-
comes large at the critical level it may be necessary to
consider nonlinear effects (see Sec. IV.C), and if the phase
varies very rapidly, leading to steep gradients, dissipation
may be significant (see Sec. IV.A).

1. Mode conversion from acoustic to Alfvén

In the absence of rotation, =0, and in the presence of
a uniform external magnetic field, Eq. (10) simplifies to
the equation for magneto-acoustic-gravity waves, where
we use as a wave variable the velocity perturbation v=¢,

V—c2V(V-v)—(y—1)g(V-v)—V(g-v)
=a[(b-V)2v—(b-V)V(b-v)—b(b-V)(V-v)+ V(V-v)] .

(119)

The terms on the lhs, involving the sound speed ¢, adia-
batic exponent ¥, and acceleration of gravity g, corre-
spond to acoustic-gravity waves [Eq. (16)], while the
terms on the rhs, involving the Alfvén speed a and direc-
tions b of the magnetic field, are the same as in the
magneto-acoustic wave equation (41). Equation (16) has
constant coefficients in an isothermal atmosphere (Sec.
I.A.4), and Eq. (41) also has constant coefficients in a
homogeneous medium under a uniform magnetic field
(Sec. IL.B.7); however, when gravity and magnetism are
coupled, e.g., in an isothermal atmosphere under a nonun-
iform magnetic field, the Alfvén speed a varies with alti-
tude [Eq. (99a)], and we can use a Fourier representation
[Eq. (79a)] only in frequency w and horizontal wave num-
ber k| for two-dimensional waves. The dependence on al-
titude z is specified by substituting into the wave equation
(119), where we assume a horizontal magnetic field
b=(1,0,0). We obtain

OP W2 W, +ik Wy —ik g (y — )W,
—ygW,+a*( Wz”~kﬁWz)=0 ,
(wz-—czkﬁ)Wx—i—ikH(csz’—ng):o ,

(120a)
(120b)

where the only difference from the acoustic-gravity case
(79b) and (79c¢) is an additional term involving the Alfvén
speed in the first equation (120a). Eliminating W, we ob-
tain the wave equation for the vertical velocity perturba-
tion spectrum:

[c24+(1—k?c?/0®)a® W) —ygWi+A2W,=0, (121a)
Il

Ap=(0?—c*, )1 —kla* /oM +(y — 1)k g /0)?,
(121b)
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which reduces to Egs. (80a) and (80b) in the absence of a
magnetic field a=0. The ratio of sound [Eq. (9a)] and
Alfvén [Eq. (97a)] speeds squared, (c/a)?>=(y/2)(p/P),
scales, through half the adiabatic exponent ¥, on the ratio
of gas pressures p and magnetic pressures P. Thus, in a
region where the gas/magnetic pressure predominates, the
sound speed is much larger/smaller than the Alfvén
speed, and the magnetosonic-gravity wave equation
[(121a) and (121b)] reduces either to that of acoustic-
gravity waves [Eqgs. (80a) and (80b)] or to that of
compressible Alfvén modes:

a*wy —[yg/(1—kic? /oM)W, +[(w®—kTa?)
+(y— Dk g /@) /(1—kfc?/0?) W, =0 .
(122)

The property of magnetosonic-gravity waves include, as
particular cases, acoustic and Alfvén-type behavior, raises
a number of issues: (i) Bearing in mind that acoustic-
gravity waves have cutoff frequencies (Sec. II.A), while
Alfvén waves are not filtered in an atmosphere (Sec. I1.B),
do magnetosonic-gravity waves inherit the cutoff frequen-
cies of the former, or are these modified by the magnetic
field? (ii) Bearing in mind that, when a magnetosonic-
gravity wave propagates from a region of dominant gas
pressure to one of dominant magnetic pressure, the waves
transform from acoustic to Alfvén-type, what are the
properties in the region of comparable gas and magnetic
pressures, where mode conversion occurs?

2. Methods of calculation of cutoff frequencies

We discuss issue (i), namely, the cutoff frequency, first
for vertical waves, for which the calculations are simpler
than for oblique modes, while the arguments involved are
much the same in both cases. Vertical acoustic-gravity
waves are specified by Eq. (79a) with k| =0:

W) —ygW, +0*W,=0. (123a)

The presence of a horizontal magnetic field is accounted
for by replacing the sound speed squared by its sum with
the Alfvén speed squared,

(c4+a®> )W, —ygW, +0*W,=0, (123b)

which is the equation for vertical magnetosonic-gravity
waves [Egs. (121a) and (121b) with k), =0]. Since vertical
acoustic-gravity waves have [see Eq. (22b)] the cutoff fre-
quency w,=c /2L in an isothermal atmosphere, it might
be supposed that the same transformation ¢2—c2+a? as
from Egs. (123a) to (123b) would specify the cutoff fre-
quency for vertical magnetosonic-gravity waves, as

o=Vec’+a*/2L =0 ,V1+1/83,
B=c%/a’=yp /2P,

(124a)
(124b)

where the effects of the magnetic field appear through the
plasma . The result [Eq. (124a)] is often quoted in the
literature (e.g., Bel and Mein, 1971; Michalitsanos, 1973;
Bray and Loughhead, 1974; Stein and Leibacher, 1974;
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Athay, 1976; Priest, 1982a), as the cutoff frequency for
vertical magnetosonic-gravity waves; however, the argu-
ments that could be used to prove Eq. (124a) face insur-
mountable objections (Thomas, 1982; Campos, 1985a), as
will be shown with three examples. First, it is known that
for propagation perpendicular to the magnetic field
[b-n=0 in (45)] the phase speed of fast magnetosonic
waves is u, =(c?>+a?)'/% although this result explains
the transformation from the acoustic wave equation
(123a) to the magnetosonic-gravity wave equation (123b),
it cannot justify the cutoff frequency (124a), since the
theory of magneto-acoustic waves applies to a homogene-
ous medium, and such media have no cutoffs. Second,
the acoustic cutoff frequency w,=c /2L can be deduced
from the dispersion relation for vertical acoustic-gravity '
waves, i.e., Eq. (20) with k=0,

k2 +(i/L)k, —?/c?=0,
ky=—i/2L+(0/c)V 1—(0,/0)?,

(125a)
(125b)

since in an isothermal atmosphere all coefficients of Eq.
(123a) are constant, and a sinusoidal solution
W, ~explik,z) exists. A similar argument fails to apply
to the magnetosonic-gravity wave equation (123b), which
was deduced for a uniform external magnetic field, since
the condition of constant sound speed c, i.e., an iso-
thermal atmosphere, leads to an Alfvén speed a varying
with altitude [Eq. (99a)], so that Eq. (123b) has no
sinusoidal solutions. Third, Eq. (124a) could be tentative-
ly justified on the basis of the WKBJ approximation, i.e.,
assuming an approximately sinusoidal waveform
W, ~explik,z), leading to a “local” dispersion relation
similar to Egs. (125a) and (125b) with c?+a? replacing
¢?; bearing in mind that the Alfvén speed varies on twice
the scale height [Eq. (99a)], we see that the WKBJ ap-
proximation applies in this case to wavelengths shorter
than the scale height A% <<4L?, so that the cutoff limit of
infinite wavelength A— o cannot be applied, and the
reasoning leading to Eq. (124a) fails once more.

3. Compressive filtering and magnetic transparency

The preceding examples indicate that, since the cutoff
frequency corresponds to the limit of infinitely spaced
nodes A— oo, it can only be derived from an exact solu-
tion of the wave equation. In the case of acoustic-gravity
waves in an isothermal atmosphere, the wave equations
(79b) and (79c) have constant coefficients; thus a
sinusoidal waveform solution W, ~exp(ik,z) together
with the dispersion relation (20) is an exact solution, from
which valid cutoff frequencies [Egs. (22a) and (22b)] can
be deduced. In the case of magnetosonic-gravity waves in
an isothermal atmosphere, under an extérnal uniform hor-
izontal magnetic field, the wave equations [(121a) and
(121b)] involve a constant sound speed [Eq. (7a)] and vari-
able Alfvén speed [Eq. (99a)], and thus we derive an ex-
act, nonsinusoidal solution, before reconsidering the
matter of cutoff frequencies. If we perform the changes
of independent § and dependent @ variable,
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=—[(c/ag)*/(1—k{c*/o™)]e ~*/",
W,(z;k,0)=exp(k2)®({) ,

(126a)
(126b)

the wave equation [(121a) and (121b)] transforms into a
hypergeometric type:

E(1— )" +[(142k L) —2(1 +k, L)E]D’

—[kyL +(@/20,)*+(k Lo /0)*1®=0, (127)

with parameters a, 31,7 satisfying
v1=14+2k L =+, (128a)
By =K2L2+(k L +3), (128b)

where we have introduced the effective vertical wave"

number K [Eq. (82a)], leading to the explicit forms for
the parameters

ay,By=1/2+k L+iKL ,
V1= 1 +2k||L .

(129a)
(129b)

It is now clear that for frequencies between the cutoffs
w] <o <w, the effective wave number K is pure imagi-
nary [Eq. (82a)], the coefficients (129a) and (129b) are all
real, and thus the wave has no phase, i.e., is a standing
mode. Wave propagation is only possible for real effec-
tive wave number K, i.e., below the lower cutoff o <w;
[Eq. (22a)] for a magneto-gravity mode modified by
compressibility, or above the upper cutoff o >w; [Eq.
(22b)], for the magneto-acoustic mode modified by gravi-
ty. Thus we conclude that the cutoff frequencies are the
same for acoustic-gravity waves in the absence of a mag-
netic field and for magnetosonic-gravity waves in the
presence of a uniform horizontal magnetic field, that is,
they are given by Egs. (22a) and (22b) for oblique (Tho-
mas, 1982) and Eq. (22b) for vertical (Campos, 1983d)
propagation. Thus Eqgs. (124a) and (124b) are incorrect,
since a horizontal magnetic field does not affect wave fil-
tering; this conclusion does not extend to oblique magnet-
ic fields, which will be shown subsequently (Secs. II1.C.2
and III.C.3) to affect cutoff frequencies. In conclusion,
the filtering of magnetosonic-gravity waves is a purely
compressive effect, as for acoustic-gravity waves; it is not
changed by the presence of a horizontal magnetic field,
which is “transparent” to the wave spectrum, much in the
same way as Alfvén waves are not filtered in an atmo-
sphere.

4. Power-type and logarithmic leading terms

We now turn to question (ii) concerning wave transfor-
mation, from the point of view of general critical level
theory. A second-order wave equation can be written in

the form
W' +P(z)W +Py(z)W =0, (130)

where W denotes a wave variable, a prime denotes a
derivative with regard to altitude z, and the functions
Py(z), P(z) specify the atmospheric properties. If these
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functions are analytic in z, then an analytic solution of
Eq. (130) exists at all altitudes, i.e., no singularities or
critical levels occur. For example, in the case of Alfvén-
gravity waves [Eqgs. (110b)], we have P,(z)=0 and
Py(z)~e /L, and the exact solution, in terms of Hankel
functions (112a), is a power series (possibly including a
logarithmic term) that converges at all finite altitudes. In
the case of magnetosonic-gravity waves [Eq. (121a)], we

have
[+ (1—kc?/0®)a?][P1(2),Py(2)]=—yg, AL,  (131)

so that a singularity occurs when the term in square
brackets vanishes, i.e.,

a e i=(k,/0)?,
zo=LIn[(c/ay)*/(1—kic?/a})] .

(132a)
(132b)

Therefore, in the case of an isothermal atmosphere [con-
stant sound speed c¢ given by Eq. (9a)], under a uniform
magnetic field [Alfvén speed a specified by Eq. (99a)], the
critical level is located at the altitude z, [Eq. (132b)]. A
singular point z =z, of the differential equation (130) is
called regular (Poole, 1937) if the functions P,,P(z)
have, at most, a single or a double pole, respectively, at z.,

(133a)
(133b)

P(2)=(z—z)"'p\(2),
Py(2)=(z —z.) " ?pol2) ,

where pg,p;(z) are analytic functions, i.e., have conver-
gent power series

iD= gulz—z)", (134a)
n=0

polD= 3 Yz -z, (134b)
n=0

with known coefficients ¢,,¥,. For example, in the case
of magnetosonic-gravity waves, the critical level [Egs.
(132a) and (132b)] is a regular singularity, since P{,P; in
Eq. (131) both have a simple pole at z =z,. In the neigh-
borhood of a regular singularity [Eqgs. (133a) and (133b)],
the wave equation (130) has a power series solution:

W)=z —2,0° S Wz —z,)",

n=0

(135a)

starting with a power of exponent o. Substituting Egs.
(135a) and (134a) and (134b) into (130), and equating coef-
ficients of successive powers of (z —z.) to zero, yields to
lowest order the indicial equation

o+ (pog— 1o +1o=0, (135b)

specifying o, and the higher orders specify the coeffi-
cients W, of the solution (135a) in terms of ¢,,¥, in Egs.
(134a) and (134b). The indicial equation of (135b) is of
the second degree and has two roots, o1,0,. If they are
distinct and do not differ by an integer, the corresponding
particular integrals W‘,1 and W, are linearly indepen-

dent; otherwise, say, for a double root oy, it can be shown
(Forsyth, 1885; see also Secs. II1.B.4 and IIL.B.5) that a
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second particular integral, linearly independent from W,
in Eq. (135a), is given by

W, (2)= lim 3[W,(2)]/90 ~(z —z.)In(z —z.) ,  (136)
U—)o’o

which has a logarithmic singularity. We conclude that
the nature of the singularity of the wave field at a critical
level, viz., at a branch point for complex singularity in
Eq. (135a), or logarithmic singularity in Eq. (136), can be
predicted on inspection of the indicial equation (135b) if
we assume that the series (135a) following the leading
term converges.

5. Nature of singularities and convergence of solutions

In much of the literature on critical levels it is not
proven that the series (135a) following the leading term
converges, perhaps because such a demonstration usually
requires an explicit formula for the nth coefficient W,,
which may be difficult or tedious to obtain. If the series
does not converge, then it introduces another singularity,
competing with that in the leading term, and so three pos-
sibilities arise: (a) if the singularity arising from the series
is stronger than the leading term, the latter is irrelevant,
since the wave properties at the critical level are deter-
mined by the former; (b) if the series gives rise to a singu-
larity opposite to the leading term, they cancel, and the
wave field is regular at the critical level; (c) if the series
yields a singularity weaker than the leading term, the
latter determines wave behavior at the critical level, as in
the case of a convergent series. We shall give an example
of case (b), i.e., cancellation of singularities, which occurs
in the case of the critical level for magnetosonic-gravity
waves. This critical level is located at an altitude z, [Eq.
(132b)], which transforms to the point |{| =1 for the
variable (126a). The hypergeometric equation (127) -can
be written, in the vicinity of the unit point £=1, in the
form of Eq. (130), with

Py(§)=(&—D7[2(1+kyL)—(1+2k L)E] ,
Po(£)=(&—1*{[(k L +5)+K*L2)(1—1/£)}

(137a)
(137b)

emphasizing the functions pg,p(§) in Egs. (133a) and
(133b), which appear in brackets in Eq. (137a) and in cur-
ly brackets in (137b) and are analytic at {=1, with lead-
ing terms @p=1, =0 [Egs. (134a) and (134b)]. Thus
the indicial equation (135b) is 02=0, i.e., has a double
root, and if the series that follows converges, the wave
field at the critical level is a linear combination of Egs.
(135a) and (136) with o=0, i.e., has a logarithmic singu-
larity:

W, (z;k,0)~[A1+4,In(z —2.)][1+0(z —z.)] . (138a)

This conclusion appears to be confirmed if we seek a solu-
tion of the hypergeometric equation (127), with parame-
ters [(1292)—(129¢)] in terms of the variable 1—¢, since
such a solution appears (Erdelyi, 1953) as a linear com-
bination of hypergeometric functions of the first F and
second G kinds:

Rev. Mod. Phys., Vol. 59, No. 2, April 1987

D(§)=BF(a;,B;1;1-8)+B,G (ay,B1;1;1-8) ,

and the former F is regular, whereas the latter G has a
logarithmic singularity. Thus it has been repeatedly stat-
ed in the literature (McKenzie, 1973; Adam, 1977b; El
Mekki, Eltayeb, and McKenzie, 1978; Thomas, 1983) that
magnetosonic-gravity waves have a logarithmic singulari-
ty at the critical level. For nonevanescent waves, o > k| c,
and the variable { is less than zero in Eq. (126a), so that
the critical level is located at {=—1 and not at §=1. It
follows that the hypergeometric series (138b) have vari-
ables greater than unity, 1—¢{> 1, and thus do not con-
verge, i.e., the existence of the logarithmic singularity is
not proven by Egs. (138a) or (138b). The logarithmic
singularity does exist if (138b) converges, i.e., for 1 - < 1
or § <0, which corresponds [by Eq. (126a)] to evanescent
waves o < kc. The numerical calculations of compressi-
ble modes in atmospheres with magnetic fields tilted as
close as 5° to the horizontal show no evidence of a singu-
larity being approached (Schwartz and Bel, 1984), but
they do not prove the nonexistence of the singularity,
since the critical level only exists for a strictly horizontal
magnetic field (Schwartz, Cally, and Bel, 1984; Campos,
1985a; see Sec. III.C). In conclusion, the existence of a
logarithmic singularity for magnetosonic-gravity waves,
in an isothermal atmosphere, under a uniform horizontal
magnetic field, is proven only for evanescent waves
o <kc; it will be shown below that no such singularity
occurs for propagating waves o > k,c or § <O0.

(138b)

6. Reflection of oblique and absorption of vertical waves

In order to clarify the properties of waves at a critical
level, it is important to prove the validity and convergence
of the solutions of the wave equation. The hyper-
geometric equation has solutions in terms of hyper-
geometric functions of any (Forsyth, 1885) of the six vari-
ables

5, 1-¢, 1/6, 1/(1=8), §/(&E—1) .

In the present problem, the variable £ <0 in Eq. (126a),
the worst choices of variable among the six are 1 —§> 1
and 1—1/£> 1, since they lead to hypergeometric series
with variable greater than unity, that diverge, as, for ex-
ample, in Eq. (138b). If we choose 1/£, we obtain a solu-
tion valid for large &, viz., |1/§| <1 or | {| > 1, which by
Eq. (126a) corresponds to low altitude z, i.e., z below the
critical level z, [Eq. (132b)]. Thus the wave field is given
for |§| >1 by (Gradshteyn and Rhyzik, 1980)

P(§)=A4 (= °Fla,1+a—y;1+a—B;1/6)
+A_(—=E) PF(B1+B—y;1+B—a;1/8) ,
(140)

(139)

where A, are arbitrary constants of integration. Using
Egs. (126) and (129a)—(129¢), it is clear that, below the
critical level 0 <z <z, the vertical velocity perturbation
spectrum is given by
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Wz(z;k”,a))=A+ Wz+(2;k||,(l))+A_ Wz_(Z;k”,CO) )

(141a)-

as a linear combination of upward-propagating ( W) and
downward-propagating ( W~ ) waves, respectively,

Wzi(,z;k“,a))EeZ/ZLei"KZF(% +k, L +iKL, 5 —k,L
+iKL;1+2iKL;1/€) .
(141b)

W Xz;k ,0)=exp(+k 2)F (5 +k| L +iKL,++k L —iKL;14+2k L;¢) .

Here we have acoustic-gravity waves (first two factors)
modified by the magnetic field (hypergeometric function).
Above the critical level, « >z >z, we have |{| <1 and
use the solution (93) in the variable &, in other words, the

wave field

W,(z;ky,0)=A4, W, (z;k|,0)+ A, W2z;k ,0)  (142a)

is a superposition of growing W! and evanescent W?
waves, respectively,

(142b)

The amplitudes below the critical level 4. [Egs. (141a) and (141b)] and above 4,4, [Egs. (142a) and (142b)] are related
as the hypergeometric functions of variables £ and 1/ (Abramowitz and Stegun, 1964)

Ay ={T(1£2k L)T(—2KL)/[T(12 kL —iKL)1*} A 5+ {T(1 =2k L)T(+2KL) /[T(1+k L +iKL)*} 4y ; .

For oblique waves k540, in order that the wave field be
bounded at high altitude [Eq. (142a)], we must set 4, =0,
so that generally 4 0-£A4_, i.e., we have upward (in-
cident) and downward (reflected) waves below the critical
level [Eq. (141b)], which thus acts as a reflector. For
vertical waves k=0, the two particular integrals (142b)
coincide, and the wave field is given, above the critical
level, by a linear combination of hypergeometric functions
of the first F and second G kinds:

W,(z;0,0)=AFi[ —(c/ay)’e ~*'*]
+A2G1[—(C/ao)2€ _Z/L] ,

1 1 (144)
F\,G(§)=F,G (% +iKL,+ —iKL;1;£) .

Since, at high altitude, z-—»o, we have {=—(c/
ag)?e ~?’£—0, and the function of the first kind tends to
unity, F(£)—1, whereas that of the second kind has a
logarithmic singularity G ({)—Ing, the velocity perturba-
tion of a vertical magnetosonic-gravity wave grows linear-
ly at high altitude:

W,(z;0,0)~A, +A_[im—z/L +2In(c/ay)], (145)

as in the case of Alfvén-gravity waves [Egs. (108a) and
(115a)]. The reduction of the rate of growth, from ex-
ponential far below the critical level, [Eq. (141b)] to linear
far above it [Eq. (145)] demonstrates the partial absorp-
tion of vertical magnetosonic-gravity waves in its vicinity.

7. Phase limiting and amplitude selection

Although we now have all the elements needed to
analyze reliably wave properties at the critical level, it is
convenient to summarize briefly the method of approach
that we have adopted. A critical level is a singularity of
the wave equation at an intermediate altitude z =z_; thus
if a wave has one critical level, the corresponding wave
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(143)

f

equation may have up to three singularities, the other two
specifying the initial z=0 and asymptotic z = wave
fields. By a suitable change of independent variable, e.g.,
from altitude z to £, which is proportional to the mass of
the atmosphere ee‘” L, the critical level may be placed
at the unit point {(z.,)=1 and the initial and asymptotic
fields at £=0,0. A linear, second-order differential
equation with regular singularities at {=0,1, «o is neces-
sarily of the hypergeometric type, and thus it is not
surprising that the wave equation (122) was transformed
into this form. The transformations between the six vari-
ables of Eq. (139), which allow solution in terms of hyper-
geometric functions, are such that they interchange
among themselves the points {=0,1, «, i.e., they preserve
the location of the singularities of the equation. The
51=120 transformations between the six variables of Eq.
(139) form a group (Klein, 1933), i.e., any sequence of
transformations leads to another transformation of the
same set. In fact, all transformations can be obtained
from any two of them, which form a generating set. We
may investigate the wave field at the critical level by us-
ing either the low-altitude [Eqs. (141a) and (141b)] or
high-altitude [Eqgs. (142a) and (142b)] solutions to ap-
proach it from below and above, respectively. The critical
level (132b) is located at the point {= —1, which lies on
the radius of convergence || =1=|1/{| of both solu-
tions, but outside the real axis. The low-altitude solution
(141b) has parameters a,=1/2+4k, L +iKL, B,=1/2
—k L+iKL, y,=1%2iKL, satisfying a,+pB,—v,=0,
while the high-altitude solution (142b) has parameters
ay=1/2+kL +iKL, Bs=1/2+k L —iKL, vi=1
+2k L, which also satisfy a3+ B3 —7y3=0. Since the hy-
pergeometric series (with parameters «,,y such that
a+fB=7) converges (Whittaker and Watson, 1902) at the
point £= —1 on its radius of convergence, we have two
distinct proofs that the amplitude and phase of the wave
are finite at the critical level; they are specified by the ex-



L. M. B. C. Campos: Interaction of sound with magnetic and internal modes 395

pansions (141a) and (141b) or (142a) and (142b), which
converge there (Campos and Leitao, 1986; Campos,
1987b). Thus the logarithmic “singularity” in the leading
terms of Eqgs. (138a) and (138b) must be balanced by the
divergent series that follow, since the whole expression is
finite. The statement that the energy flux of
magnetosonic-gravity waves has a discontinuous jump at
the critical level (El Mekki, Eltayeb, and McKenzie, 1978)
can only hold in the presence of a singularity. The in-
clusion of dissipation by thermal radiation (Cally, 1984)
shows that the energy flux changes continuously across
the critical level. The preceding analysis proves that, even
for linear magnetosonic-gravity waves, in the absence of
dissipation, the amplitude and phase are finite at the criti-
cal level, and thus the energy is reduced continuously, as
oblique waves are reflected and vertical waves partially
absorbed, in its vicinity.

We have shown that linear, nondissipative
magnetosonic-gravity waves, in an isothermal atmo-
sphere, under a uniform horizontal magnetic field, have a
critical level, which may be of one of the following three
types: type I, a singular layer, where the amplitude is log-
arithmically infinite [Eqgs. (138a) and (138b)], for evanes-
cent waves @ > k) c; type II, a reflection layer for oblique
k0, propagating o <k;c waves, which are reflected
[Egs. (141a) and (148b)] at the critical level [Egs. (132a)
and (132b)]; type III, a transition layer for vertical waves
k; =0, which are transformed from exponential ampli-
tude and linear phase below the critical level [Egs. (141a)
and (148b)] to linear amplitude and bounded phase above
the critical level [Egs. (144) and (145)] at
z,=2L In(c /ay). Note that, in the case of the singular
layer or critical level of type I, the singularity is at {=1
in the range 0<{ < o of the variable, whereas in the
cases of reflection and transition layers (i.e., critical levels
of types II and III, respectively) it lies on the unit circle
outside the real axis |§ | =148.

8. Characteristic curves for normalized wave variables

The process of conversion can be demonstrated in more
detail by deducing an exact expression for the wave field,
valid at all altitudes, and using it to calculate the ampli-
tude and phase at the critical level and plot the
waveforms in its vicinity. Of the six variables in Eq.
(139), bearing in mind that { <0 in Eq. (126a) for all alti-
tudes, two are smaller than unity everywhere, viz.,
1/(1—8)<1 and §/(§—1)<1, and thus lead to global
solutions of the wave equation. The identity

F(a,Byy;1/6)=(1—1/8)"Fla,y —B;y;1/(1—£)]
(146)
suggests that we use the former variable 1/(1—¢), and to-
gether with Eq. (141b) specifies the upward-propagating

W, and downward-propagating W _ waves, respectively,
by
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Wiizikw)=(1—1/8) I (g—1)=1/27iKE
XF3[1/(1=01,
F3(&)=F[3+k L
+iKL,+ +k L +iKL;1+2iKL;1/(1—-{)] .
(147b)

(147a)

Equations (147a) and (147b) specify exactly the wave field
at all altitudes, including at the critical level z. [Eq.
(132b)] or &(z.)= —1, where the amplitude and phase of
the wave field are given by the modulus and argument of

WE(zek o) =2 KL —i2pE (L) (148)

The wave field is given at all altitudes by Eq. (141a) as a
linear combination of upward-propagating W,™ and
downward-propagating W, waves [Egs. (147a) and
(147b)], with amplitudes 4, and A4 _ specified by two
suitable initial boundary or asymptotic conditions. We
choose for illustration an upward-propagating wave, nor-
malizing the vertical velocity perturbation spectrum
(147a) to its value at the critical level [Eq. (148)] and
choosing as independent variable the distance from the
critical level divided by the scale height:

W (Y;0)=W, (2;0,0) /W, (2,;0,0) ,
Y=(z—z)/L .

(149a)
(1490b)

We choose a vertical wave k=0, which suffers absorp-
tion in the vicinity of the critical level, and for which the
ratio of Egs. (147a) and (148) simplifies to

W (Y,0)=[2/(1+e~¥)]\/2+KL

X{F [1/(1+e"N]/F.(1/2)},
Fy(£)=F (5 +iKL,5 +iKL +2iKL;£) .

(150a)
(150b)

The wave field [(150a) and (150b)], normalized relative to
the critical level, is independent of the magnetic field
strength, which affects only the location [Eq. (132b)] of
the critical level z, =2L In(c /a,) and the absolute ampli-
tude and phase there [Eq. (148)]. The relative values
[(150a) and (150b)] depend only on the ratio of wave o to
cutoff frequency w,, Q. =w/w,=2wL /c, which appears
in the effective wave number K =Re(k,;) for vertical
waves [Eq. (125b)], 2KL =V Q?—1. The normalized am-
plitude and phase difference, that is, the modulus and ar-
gument of Eq. (150a), are plotted for several values of the
dimensionless frequency Q,, in Fig. 6, as a function of
distance Y from the critical level [Eq. (149b)], showing
that (i) the amplitude growth is independent of frequency
far below the critical level (acoustic-gravity waves), and
the wave absorption in the vicinity of the critical level re-
sults in a smaller amplitude growth above, the reduction
being larger for waves of lower frequency; (ii) the phase
differences increase as the ratio of wave @ to cutoff fre-
quency w, becomes larger, but phase growth is reduced
across the critical level, from linear far below to bounded
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WAVES NEAR A CRITICAL LEVEL

agw0 sz

y (= s L 5
5 1440° 720° 3 720° “1440°
amplitude phase

FIG. 6. Amplitude (left) and phase (right) of magnetosonic-
gravity waves, normalized to their value at the critical level z,
and plotted vs dimensionless distance Y=(z —z.)/L (altitude
difference divided by scale height L), for a wave propagating
vertically upward, with a frequency » multiplying the cutoff
value w; by a factor Qx=w/w,=1,2,3,5,10.

far above. Thus the critical level limits the phase of
magnetosonic-gravity waves and selects their growth ac-
cording to frequency.

lll. HIGH-ORDER WAVES WITH VARIABLE
SPEED

We have so far considered the exact theory of linear
waves in atmospheres, with variable propagation speed
(Sec. II), in cases for which the wave equation is of second
order and solutions can be obtained in terms of well
known special functions, such as Bessel (Sec. I1.B) and
hypergeometric (Secs. II.A and I1.C) types. The second-
order wave equations arise for general acoustic-gravity
waves (Sec. II.A), in the absence of a magnetic field, and
for purely transversal Alfvén waves (Sec. I1.B), propaga-
ting along a magnetic field of arbitrary direction. The
coupling of compressibility and magnetism leads (a) to a
second-order wave equation, for oblique propagation, only
in the case of magnetosonic-gravity waves (Sec. I1.C), in a
purely horizontal magnetic field; and (b) to wave equa-
tions that are also second order for vertical propagation,
in a vertical magnetic field, because the Alfvén and acous-
tic modes are decoupled. An acoustic wave propagating
along the magnetic field is unaffected by it, since the gas
motion does not displace magnetic field lines or generate
magnetic tension. The occurrence of second-order
magneto-atmospheric wave equations in both cases (a)
and (b) above can be understood in terms of decoupling of
slow u_ and fast 4, modes [Eq. (45b)] of magneto-
hydrodynamic waves, which occurs only for propagation
either (a) transverse to, or (b) along, the magnetic field. If
b-n=0, we have ui =c?+a? and u_ =0, corresponding
in an atmosphere to magnetosonic-gravity waves (Sec.
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I1.O); if b-n=1, we have u  =c, u_ =a, corresponding
in an atmosphere to decoupled acoustic-gravity (Sec. II.A)
and Alfvén (Sec. I1.B) waves. In other cases, the slow and
fast modes are generally coupled, implying a dispersion
relation of the fourth degree in the magneto-
hydrodynamics of homogeneous media and a wave equa-
tion of the fourth order with variable coefficients for
magneto-atmospheric waves. Thus the wave equation is
of the fourth order, for example, for oblique waves in a
vertical magnetic field (Ferraro and Plumpton, 1958;
Weymann and Howard, 1958; Lust and Scholer, 1966;
Scheuer and Thomas, 1981; Leroy and Schwartz, 1982;
Schwartz and Leroy, 1982; Zhukov, 1985). It is likewise
of fourth order for waves (vertical or oblique) in an ob-
lique magnetic field (Zhugzhda and Dzhalilov, 1981,
1984a, 1984b, 1984c; Zhugzhda and Makarov, 1982;
Schwartz and Bel, 1984; Zhugzhda, 1984; Campos,
1985a). More complex geometries, including rotation and
the addition of other effects, such as dissipation by fluid
viscosity, electrical resistance, and thermal conduction or
radiation, can lead to wave-diffusion equations of higher
order (Sec. I.C.1) as, for example, in the theory of magne-
toconvection (Proctor and Weiss, 1982). Wave equations
of higher than second order also occur for other types of
waves in fluids, e.g., sound in vortical flows (Mohring,
Miiller, and Obermeier, 1984) and instability waves in
viscous flows (Drazin and Reid, 1981), besides problems
in thermoelasticity, magnetoelasticity, and plasma phys-
ics. With applications to the latter field in mind, a
method has been developed to solve linear wave equations
of arbitrary order, with linear coefficients (Gambier and
Schmitt, 1983). For waves in isothermal atmospheres, the
coefficients are usually either constant or exponentials of
altitude, and a method of solution of linear wave equa-
tions, of arbitrary order, with exponential coefficients, is
appropriate (Campos, 1985a).

A. Initial and asymptotic wave regimes

The study of high-order ( >3) waves in atmospheres is
usually approached in one of three ways: (a) numerical
solutions (Weymann and Howard, 1958; Lust and
Scholer, 1966; Scheuer and Thomas, 1981), which are ex-
pedient but somewhat lacking in physical interpretation;
(b) analytical methods, e.g., power series or matrix expan-
sions (Ferraro and Plumpton, 1958; Lyons and
Yanowitch, 1974; Leroy and Schwartz, 1982; Schwartz
and Leroy, 1982; Schwartz and Bel, 1984), which become
tedious to calculate beyond the first few terms; (c) exact
solutions in terms of special functions (Zhugzhda and
Dzhalilov, 1981, 1984a, 1984b, 1984c; Zhugzhda, 1984) of
generalized hypergeometric type (Bailey, 1935) or Meijer
G-type (Luke, 1975), which are complicated, requiring
transformation diagrams for their interpretation. We
shall present an analytic and explicit method of solving
wave equations, in which the mathematical procedures
have a ready (or ‘“parallel”) interpretation in terms of
physical properties. The method applies to linear dif-
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ferential equations of any order, whose coefficients, e.g.,
propagation seeds, scattering scales, or damping rates, are
either constant or exponential functions of altitude. The
method relies on the transformation of the wave equation
into a standard type, to which can be reduced equations
with exponential coefficients, and also equations with cer-
tain types of double power coefficients. Once the wave
equation is written in the standard form (Sec. IIL.A.1), it
is possible to deduce, on inspection, with no need to solve
it, a number of properties, such as (i) the asymptotic laws
(Secs. ITI.A.6 and II1.A.7) for the amplitude and phase of
wave variables at high altitude, and thus the scaling of
velocity, magnetic field, density, gas, and magnetic pres-
sure, as well as kinetic, magnetic, compression, and poten-
tial energy densities; (ii) the cutoff frequencies (Secs.
II1.C.2 and III.C.3) separating standing modes from prop-
agating waves, both in the cases of constant coefficients,
when dispersion relations can be used, and for variable
coefficients, when the WKBJ approximation becomes un-
reliable for this purpose; (Secs. II.A.6 and I1.C.7); (iii) the
existence and location of critical levels (Sec. I11.C.4) and
the properties of the wave field there (Sec. IIL.C.5), e.g.,
whether the amplitude and phase are finite, or whether
logarithmic or power-type singularities occur. The
method also leads readily, without any further manipula-
tion, and in a standard way, to exact solutions (Sec. II1.B)
for the wave fields, converging for all frequencies at all
altitudes, except possibly at critical levels, where the na-
ture of the singularity, if it exists, is specified. These ex-
act solutions involve special functions equivalent to the
generalized hypergeometric type (Sec. III.C.6), of three
kinds: (a) for nondegenerate cases (Secs. III.B.2 and
II1.B.3), functions of the first kind ®, generalizing to
higher order the Bessel J or hypergeometric F type, and
having power singularities; (b) in degenerate cases, func-
tions (Secs. III.B.4. and IIL.B.5) of the second kind VW,
generalizing the Neumann Y or hypergeometric G type,
which have logarithmic singularities; (c) for propagating
waves, in the direction of increasing/decreasing & (Sec.
II1.C.6), functions of the third kind ©'2)(£), generalizing
the Hankel H'"? type, which are linear combinations
@®+b,,¥ of the first two kinds, with the constants b,
chosen so as to satisfy the appropriate radiation condi-
tion.

1. Standard form of wave equation

Waves of small amplitude, in a medium for which the
wave speeds, scattering scales, and damping scales are
constant or vary exponentially only in one direction, e.g.,
an isothermal atmosphere under constant external force
fields, satisfy a linear partial differential equation of order
N, and of the following type:

N

>, [a;(3/31,0/3y)

j=0
+e~*"1b;(3/31,8/3y)IL7d’ /dz! |w(z,x,0)=0,

(151)
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where the wave variable w generally depends on time ¢
and space (x,z) and where we have singled out derivatives
d /dz in the direction of stratification or altitude z and
left temporal 3/0¢ and horizontal spatial 3/dy derivatives
in the coefficients a;,b;, which are arbitrary polynomials
of their arguments. Using Fourier analysis in the hor-
izontal plane y and time ?, we obtain

wl(z, x,t)= fo W(z;k,w)

Xexp[i(k||y—cot)]d2k”dw . (152)
The perturbation spectrum W, for a wave of frequency w
and horizontal wave vector k|, satisfies the ordinary dif-
ferential equation

N .
20 [a;(—iw,ik)) +e~*"b;(—iw,ik))ILId'W /dz/ =0 .
j=

(153)

Performing the change of independent variable,
§=—boe ", (154a)
Wi(z;k),0)=2(0), (154b)

where §,>0 is an arbitrary positive constant, we
transform the wave equation (153) into the standard type

[R(&d/dE)—ES(6d /dE)]D(5)=0, (155)
where R,S are the polynomials
R (&)= 2 (—Ya;€ (156a)
j=0
SE)= 3 (—Vb&, (156b)
j=0

of degrees, respectively, r,s <N (the degrees will be

r,s =N if ay#£0s£by, and lower, if one of the leading

coefficients vanish). Not only Eq. (153), but any wave

equation of the type '
N . — . . .
S (@5 +b;5 THd/®/dE =0 (157)
j=0

can be rearranged into the form of Eq. (155), with the

coefficients a;,b; of the polynomials R,S determined

from @;,b;.

2. Atmosphere under oblique magnetic field

It is clear from Eq. (153) that the horizontal wave vec-
tor k; and frequency w appear in the standard form of
the wave equation (155) only in the coefficients a;,b; of
the polynomials (155a) and (158b); thus the method of
analysis with regard to altitude z is basically the same for
vertical k=0 and oblique k;7=0 waves, although the
latter case tends to have a more tedious algebra, i.e., more
complicated coefficients a;,b;. For the purpose of illus-
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trating the method we choose vertical waves in an atmo-
sphere under a magnetic field of arbitrary direction. Tak-
ing the x axis in the plane of gravity g and the magnetic
field B, we have g=(0,0,—g) and B=B(m,0,n)
= B(sinb,0,cos0), where O is the angle of the magnetic
field with the vertical, and B the magnetic field strength
(modulus of B). In the absence of rotation, =0, and
presence of a. uniform magnetic field, B=const, the
linearized momentum equation (7b) and induction equa-
tion (8a) read

V—cV(V-v)—(y —1)g(V-v)—V(v-g)

—(u/Amp)[(B-V)h—V(B-h)]=0, (1582)

h—(B-V)v+B(V-v)=0, (158b)

in terms of the velocity vzé" and magnetic field h pertur-
bations, where the equations of continuity (8b) and adia-
baticity (8c) were used to simplify Eq. (7b) into the form
(158a). The Maxwell equation V-h=0 implies that, for a
vertical wave, 0h,/9z=0 and the vertical component of
the magnetic field perturbation 4, is conserved. The hor-
izontal components of the magnetic field perturbation
(hy,h,) and the three components of the velocity pertur-
bation (vy,v,,0,) satisfy Egs. (158a) and (158b):

U, —c) +vgu,+(a’/B)mh =0, (159a)
U, —(a?/B)nh =0, (159b)
hy +B(mv,—nv,)=0, (159c¢)
v, —(a?/Bnh =0, (159d)
h, —nBv, =0, (159)

where we have introduced the Alfvén speed a [Eq. (38b)],
and where the overdot(s) and prime(s) denote derivatives
with respect to time ¢ and altitude z, respectively, i.e.,
f=0f/dt and f'=03f/dz. The time derivatives of the
mass density p [Eq. (8b)] and gas pressure 7 [Eq. (8c)]
perturbations are specified, respectively, by

(1596)

ﬁ.=.—"(PUz)’ ’
p= (159g)

—pc 2vz, +pgv; ,

in terms of the velocity perturbation v, and atmospheric
density p.

3. Decoupling into second-order waves

It is clear that Eqgs. (159d) and (159¢) decouple from the
remaining three equations of the system (159a)—(159¢),
and eliminating the wave variables v,,h, between (d) and
(e), we obtain

U, —n’a’v,=0, (160a)
h,—n*a’h) =0, (160b)

which coincide with Egs. (101a) and (101b) for Alfvén-
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gravity waves, where the derivative along the magnetic
field lines is 3/3b =co0s6d/dz =nd/dz, with 6 denoting
the angle of the magnetic field with the vertical. The
velocity perturbations (v,,v,) in the plane of gravity and
the external magnetic field (g,B), and the horizontal mag-
netic field perturbation in the same plane 4., are general-
ly coupled [Egs. (159a)—(159c)] and form a fourth-order
system in the case of a strictly oblique external magnetic
field, i.e., one that is neither vertical nor horizontal. In
the case of a vertical magnetic field (n=1, m=0), the
fourth-order system (159a)—(159c) decouples into two
second-order waves: (i) the horizontal velocity v, and
magnetic field A, satisfy

U, —(a*/Bh =0, (161a)

h,—Bv.=0, (161b)
which lead to the Alfvén-wave equations

U, —at) =0, (162a)

h,—(ah,) =0, (162b)

which are indistinguishable from those in the y direction
[Egs. (160a) and (160b)], since in a vertical magnetic field
(n=1) all horizontal directions are equivalent; (ii) the
vertical velocity v, lies along the external magnetic field
and hence is not affected by it. Thus Eq. (159a),

b, —c’v; +ygu; =0, (163)
coincides with that for vertical acoustic-gravity waves (see
Sec. V.A.3 of Part I), or Eq. (32). In the case of a hor-
izontal magnetic field (n=0, m=1), the velocity pertur-
bation v, aligned with the field is conserved, x=0, by Eq.
(159b), and the system goes from fourth to second order,
i.e., the vertical velocity perturbation v, and horizontal
magnetic field perturbation 4,, both in the plane of gravi-
ty and the external magnetic field, satisfy Eqgs. (159a) and
(159c¢):

U, —c) +vgu,+(a®/Bh =0, (164a)

h,+Bv,=0, (164b)
which lead to the wave equations

U, —(c*+a* ) +ygv, =0, (165a)

hy—[(c*+a*h;]+vghy=0, (165b)

corresponding to vertical magnetosonic-gravity waves
[Eq. (165a) leads to (123b), for a wave of frequency o,
that is, v, =W,e ~'*]. We have thus shown that vertical
waves in an atmosphere, under a uniform, nonoblique
magnetic field, are always of second order, viz., Alfvén
[Egs. (162a) and (162b)] and acoustic-gravity [Eq. (163)]
waves for a vertical field, and magnetosonic-gravity
waves [Egs. (165a) and (165b)] for a horizontal, external
magnetic field.
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4. Fourth-order hydromagnetic-gravity waves

In the case of a strictly oblique magnetic field, i.e., one
that is neither horizontal (n=£0) nor vertical (m=£0), the
Alfvén wave perturbations [Eqgs. (160a) and (160b)]
remain in the direction perpendicular to the gravity and
magnetic field, and in the latter plane (g,B) we have a
fourth-order hydromagnetic-gravity wave, specified by
Eqgs. (159a)—(159c¢), so designated because it includes, as
particular cases, all the second-order waves considered be-
fore, viz., acoustic-gravity [Eq. (163)], Alfvén [Egs. (162a)
and (162b)], and magnetosonic-gravity [Eqs. (165a) and
(165b)]. The system of equations (159a)—(159¢) for
hydromagnetic-gravity waves can be reduced for any of
its three variables, leading to wave equations of the fourth
order:

72 2.1

By —(c24a®)i ) +ygi L —nlatygy) +n2aXc?.) =0,

(166a)
'13;~a2£;:—az(c2a‘2iz;,)"
+ygi L +n2a¥c™)) —ygnta)' =0, (166b)
h,—[(c?+adh I'+vgh
—ygm¥a*h,)" +n?[cHa*h,)') =0, (166c)

for the vertical [Eq. (166a)] and horizontal [Eq. (166b)]
velocities, and horizontal magnetic field [Eq. (166¢)] per-
turbations, respectively. All the wave equations [(160a),
(160b), (162a), (162b), (163a), (165a), (165b), (166a), (166b),

(166¢)] apply to nonisothermal atmospheres under a uni--

form magnetic field of arbitrary direction, for which both
the sound speed. ¢ [Eq. (92)] and Alfvén speed a [Eq.
(38a)] are generally nonuniform; in the isothermal case,
the sound speed is a constant [Eq. (9a)], but the Alfvén
speed is not [Eqgs. (99a) and (99b)]. Thus in all cases the
wave equations are different for distinct wave variables.
For vertical waves k=0, the Fourier decomposition (79a)
is restricted to frequency:

+ .
Vg Ux by (z,8) = f_w W, Wy, H(z;0)e “do , (167)

and we choose as wave variable for subsequent study the
vertical velocity perturbation spectrum W,=W, for all
waves except the Alfvén-gravity mode, for which we
choose W, =W (since in this case W, does not propa-
gate). The equations for Alfvén [Eq. (162a)], acoustic-
gravity [Eq. (163)], magnetosonic-gravity [Eq. (165a)],
and hydromagnetic gravity [Eq. (166a)] waves thus yield,
respectively,

L*W" —LW'+aW =0, (168a)
W' —aBe W =0, (168b)
(14Be*L)L2W" —Be ~*'L(LW' —aW)=0, (168c)
nA LW —L3W"")+a(1+Be ~*/F)L2w"

—afe LW —aW)=0, (168d)
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where W is the appropriate velocity perturbation spec-
trum, and the parameters

ao=w?L?/c?~(27A/L)?,
Bo=c2/aj=(y/2)(p/P),

(169a)
(169b)

are (i) the square of the acoustic compactness, which com-
pares the wavelength A of sound to the scale height L and
is large in the ray limit @y >>1; (ii) the initial plasma f3, or
ratio of squares of sound ¢ [Eq. (9a)] and Alfvén a, [Eq.
(99a)] speeds, which is proportional, through half the adi-
abatic exponent ¥, to the ratio of gas p and magnetic P
pressures [Eq. (99b)]. We shall proceed in parallel with
all four cases (168a)—(168d). The earlier results on
acoustic-gravity waves (Sec. IL.A), Alfvén waves (Sec.
I1.B), and magnetosonic-gravity waves (Sec. II.C) can be
used to check the present method as well as to demon-
strate that this approach is more straightforward. More-

‘over, the hydromagnetic-gravity waves [Eq. (167d)] in-

clude all of the earlier three modes as particular cases and
demonstrate the application of the present method to a
higher-order problem.

5. Column mass as altitude variable

All of the preceding wave equations [(168a)—(168d)]
can be transformed to the standard form of Eq. (155) by
means of a change of variable [Eq. (154a)], where the con-
stant & is chosen for convenience to be

E=—e %L, _agBoe %, or —Boe*L, (170a)

W(z;0)=D() . (170b)
These variables apply to the following cases, respectively:
(i) For the acoustic-gravity wave equation (168a), which
has constant. coefficients, the choice of &, is immaterial,
e.g., we take {o=1. (ii) For the Alfvén-gravity wave
equation (168b) we take Co=aBy=(wL /ay)?, which is
[Egs. (169a) and (169b)] the square of the compactness for
the initial Alfvén speed a,. (iii) For the magnetosonic-
gravity wave [Eq. (168c)] and hydromagnetic-gravity
wave [Eq. (168d)], we take §y=/3y, the plasma f3 at alti-
tude z=0, so that —&=/pge =2/L— (¢ /a)? is the plasma 3
at arbitrary altitude z. The mass of the isothermal atmo-
sphere, per unit area, above the altitude z, is given by

m@)= [~ p&dg=po [~ e *tdg=poLe /",

(170c)

. and thus in all cases described by Eq. (170a) the choice of

variable { amounts (to within a constant factor) to
measuring altitude z on the scale of the column mass [Eq.
(170c)]. Since the changes of variable (170a) transform all
four wave equations [(168a)—(168d)] into the same stan-
dard type [Eq. (155)], each wave is characterized by the
polynomials R,S:
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R(E)=E+E+ay=(E—+ —iKLNE—++iKL), (171a)
S1(€)=0, (171b)
Ry(§)=¢%, (1722)
Sy(&)=ay, (172b)
R3(§)=&, (1732)
S3(E)=E+E+ap=(E —5 —IKL)NE—~+ +iKL), (173b)
Ry(&)=nEXE* +E+ap/n?)

=n2EE—+ —iKoL)(E—+ +iK,L) (174a)
S4(&)=ag(£2+E+ao)

=ag(f—+ —iKL)E—++iKL) , (174b)

for acoustic-gravity [(171a) and (171b)], Alfvén [(172a)
and (172b)], magnetosonic-gravity [(173a) and (173b)],
and hydromagnetic-gravity [(174a) and (174b)] waves,
respectively. K =Re(k,) denotes the effective vertical
wave number, as for acoustic-gravity waves [Eq. (125a)],
or magnetosonic-gravity waves in a horizontal magnetic
field, and K, denotes its modification by an oblique field,

n=+1,

KL =(a*—+)1%, (175a)

KoL =(a?/n*— )12, (175b)

The acoustic-gravity wave equation is the only one with
constant coefficients, so that one polynomial (171b) van-
ishes, S| =0; for all other wave equations, with variable
coefficients, none of the polynomials vanish. The highest
degree of the polynomials R,S is the order of the wave
equation, i.e., second order for acoustic-gravity, Alfvén-
gravity, and magnetosonic-gravity, and fourth order for
hydromagnetic-gravity waves.

6. Scaling laws for amplitude and phase

As a first step in the use of the polynomials R,S [Egs.
(156a) and (156b)] to specify the properties of waves P
described by Eq. (155), we consider the asymptotic wave
fields, at high altitude, as z— « and {—0. The wave
equation (151) then reduces to one with constant coeffi-
cients, viz.,

> a,d'w/dz"=0, (176a)
j=0
w(z)~e %L =exp(—o0,z/L)exp(—io,z/L) , (176b)

where o is a single root R(o)=0 of the polynomial
(156a), generally complex o=0,+io;. Equations (176a)
and (176b) hold asymptotically for wave equations with
variable = coefficients, e.g.,  Alfvén-gravity and
hydromagnetic-gravity, and at all altitudes for wave equa-
tions with constant coefficients, e.g., acoustic-gravity. It
shows that the single roots o of the polynomial R (0)=0
specify the asymptotic wave field as follows: (i) the real
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part o, =Re(0) specifies the amplitude law, viz., bounded
for 0,=0, and exponentially growing/decaying, respec-
tively, for o, <0 or o, >0, with length scale L /| o, | ; (ii)
the imaginary part oy,=Im(c) specifies the phase law,
viz., standing mode for o,=0, linear phase for o,s40,
with upward or downward propagation, respectively, for
o5 <0 or o, >0, with effective wave number |o, | /L. If
o is a root of multiplicity g of the polynomial R (0)=0,
the preceding law [Eqgs. (176a) and (176b)] is modified by
a complex polynomial of degree g —1,

W(z)~exp(—o,z/L)exp(—iosz/L)

q—1 .
> ¢zl |, (176¢)
j=0

which affects both amplitude and phase. We apply these
results to acoustic-gravity, Alfvén-gravity, and hydro-
magnetic-gravity waves (deferring further consideration
of magnetosonic-gravity modes until Sec. III.C). For
acoustic-gravity waves [Eq. (171a)], the polynomial R,
has two  distinct, complex conjugate  roots,
o= —++iK,L, and thus waves [Eq. (176b)] grow ex-
ponentially on twice the scale height and have effective
wave number K, [Eq. (175b)], in agreement with Eq.
(81a) for a vertical field n=1. For Alfvén-gravity waves
[Eq. (172a)], the polynomial R, has a double g=2 root
o=0, while the wave field [Eq. (176¢c)] grows linearly
with altitude, in agreement with Eq. (108a), and has a
bounded phase, specified by the difference between
Im(d;)=m/2 [since d, is positive imaginary by Eq.
(115a)] and the initial phase. In the case of
hydromagnetic-gravity waves [Eq. (174a)], the polynomial
R, has four roots, viz., the complex-conjugate pair
o= —++iKL of acoustic-gravity waves, and the double
root 0=0 of Alfvén-gravity waves. Asymptotically, the
velocity perturbation of the former component is aligned
with the external magnetic field, v,/v, ~n/m, i.e., the
motion consists of compressions along magnetic field
lines, while the velocity perturbation of the latter com-
ponent is aligned transverse to the external magnetic field,
v,m +v,n ~0, i.e., the motion consists of transverse de-
flections of magnetic field lines. Thus, we conclude that
the fourth-order hydromagnetic wave consists of two
second-order components coupled together, namely, a
dynamic and a magnetic component, resembling asymp-
totically an acoustic-gravity and an Alfvén-gravity wave,
respectively.

7. Kinetic, compression, potential, and magnetic energies

The initial wave fields, at low altitude, in the sense of
small z and £ >>1, can be obtained (as in Sec. I1.B.4) from
the ray approximation, provided that the energy density
and flux be known. Since the acoustic- and Alfvén-
gravity waves are particular cases of the dynamic and
magnetic components, respectively, of the hydro-
magnetic-gravity wave, we need only consider the latter.
Its energy density consists of kinetic energy E, [Eq.
(102a)], magnetic energy E; [Eq. (102b)], potential energy
E,, and compression energy E,, with the last two speci-
fied by



L. M. B. C. Campos: Interaction of sound with magnetic and internal modes 401

(177a)
(177b)

E,=5plw,/0)v},
=75(c2/pp?,

where w, [Eq. (22a)] is the gravity (or Briint-Vaisala) cut-
off frequency and p the density perturbation. For the
dynamic component, since the sound speed is a constant,
the conservation of the energy flux implies that of the ki-
netic energy [Eq. (102a)], and so the velocity perturbation
v~p~ 12 ~e??L grows exponentially on twice the scale
height; the mass density and gas pressure perturbations
[Egs. (159f) and (159g)] decay on the same scale,
D,p~pv, ~e~?/2, The magnetic field perturbation is a
higher-order effect for the dynamic mode, i.e., it decays
as the atmospheric density h, ~p~e ~?/L exponentially
on the scale height, while the magnetic pressure perturba-
tion P=ph?/8m~e %L decays twice as fast. These re-
sults apply in four cases: Case A is the dynamic com-
ponent, whether standing or propagating, at high or low
altitude. Case B is the magnetic component at low alti-
tude, for which the argument of Sec. I1.B.4 also applies,
and shows that the velocity perturbation grows, v ~e?/4L,
and magnetic field perturbation decays exponentially,
h~e~?/*L, on four times the scale height [as in Egs.
(107a) and (107b)]. The corresponding results for the
mass density and gas pressure, p,p ~pv ~e —32/4L indicate
an exponential decay on —';— the scale height, and for the
magnetic pressure P~e 2’2 a decay on half the scale
height. Case C is the magnetic component at high alti-
tude, with propagating waves, for which the velocity per-
turbation diverges linearly v~z and the magnetic field
perturbation tends to a constant 4 ~#4  [as in Egs. (108a)
and (108b)]; it follows that the mass density and gas pres-
sure decay as p,p ~pv ~ze ~*’L, and the magnetic pressure
tends to a constant P~uh? /87=E_. The remaining
instance, case D, is the standing magnetic component at
high altitude, for which the velocity perturbation is
bounded, v ~v, and thus the mass density, gas pressure,
and magnetic field perturbations p,p,h ~p~e ~/L all de-
cay exponentially on the scale height, while the magnetic
pressure P ~e =%/l decays twice as fast. Note that the
dynamic component satisfies the same laws (case A), at
low or high altitude, for propagating waves and standing
modes; for the magnetic component, we have to distin-
guish the low-altitude field (case B), from the high-
altitude limit, which differs for propagating waves (case
C) and standing modes (case D).

8. High-speed parﬁcle streams from coronal holes

We have indicated in Table I, for all cases (dynamic
and magnetic component, standing or propagating, at low
or high altitude) the scaling of wave variables (velocity,
magnetic field, mass density, and gas and magnetic pres-
sure perturbations), as well as of the energy densities (ki-
netic, compression, potential, magnetic, and total). For
the dynamic component (case A), the dynamic energy
densities (kinetic E, ~Eq, compression E, ~E,, and po-
tential E, ~E;) are constant (with equipartition of the
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first two), and the magnetic energy decays E, ~e ~%/%, so

the total energy is constant and equal to the dynamic con-
tribution, E~E,+E,+E; ~2E;+E;. For the magnetic
component at low altitude (case B), all energies decay on
twice the scale height, E,,E,,E,,E;, ~e —z/2L j e., inverse-
ly to the Alfvén speed a [Eq. (99a)], and the same applies
to the total energy E =E,+E,+E,+E;,~e */*L, for
which all four contributions are important. For the
standing magnetic component at high altitude (case D),
all energies decay, viz., the dynamic E,,E,,E, ~e~ %L on
the scale height, and the magnetic Ep~e‘22/ L twice as
fast, so that the total energy E ~E,+E,+E,~e L is
dynamic and decaying. In the remaining instance (case
C), for the propagating magnetic component at high alti-
tude, the dynamic energies (kinetic, compression, and po-
tential) decay as E,,E,,E; ~z%~%/L, and the magnetic
energy is constant, E, ~u% /8m=E_, so that the total
energy E~E,~E_ is magnetic and constant. Strictly
oblique magnetic fields, i.e., fields that are nowhere verti-
cal or horizontal, occur in the solar atmosphere in open
magnetic structures, such as coronal holes (Levine,
Altschuler, Harvey, and Jackson, 1977; Munro and Jack-
son, 1977; Pineau des Forets, 1979; Pneuman, 1980; Ray-
mond and Doyle, 1981; Summers, 1983; Osherovich,
Gliner, Tzur, and Kuhn, 1985). The high-speed particle
streams observed in the solar wind. originate in coronal
holes, and it is believed that waves accelerate the particles
(Habbal and Leer, 1982; Hu, 1982; Fla, Habbal, Holzer,
and Leer, 1984; Davila, 1985); indeed, they have been
detected in spacecraft observations (Belcher, Davis, and
Smith, 1969; Belcher and Davis, 1971; Denskat and Bur-
laga, 1977). The waves in high-speed streams in the solar
wind have a magnetic energy that is a constant and sub-
stantial fraction of the background magnetic field, as for
the magnetic mode of hydromagnetic-gravity waves; these
waves also have a significant thermal energy contribution,
indicating that the dynamic component is also present.
The waves are nonsinusoidal, giving evidence of
waveform shearing by the nonuniform Alfvén speed, typi-
cal of magneto-atmospheric waves. The oscillations are
neither purely transversal (Alfvénic) nor purely longitudi-
nal (acoustic) relative to the external magnetic field,
showing that both the dynamic and magnetic components
of the hydromagnetic-gravity waves are present. Thus we
conclude that the observations of waves in high-speed
particle streams in the solar wind, issuing from coronal
holes, are consistent with the properties of fourth-order
hydromagnetic-gravity waves, with coupled second-order
dynamic and magnetic components.

B. Exact solutions at all altitudes and frequencies

We have argued that the two components of the solar
wind (Armstrong and Woo, 1981; Wu, Steinholfson, and
Tandberg-Hansen, 1981; Bruecker and Bartoe, 1983; Eyni
and Steinitz, 1983; Cuperman, Tzur, and Dryer, 1984;
Axford, 1985) have distinct origins: (i) the average solar
wind (Parker, 1960, 1965; Hollweg, 1970) results from the
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TABLE I. Evolution of wave variables and energies: Case A, dynamic component, standing or propa-
gating, low or high altitude; Case B, magnetic component, standing or propagating, low altitude; Case
C, magnetic component, propagating, high altitude; Case D, magnetic component, standing, high alti-

tude.
Dynamic Magnetic
Field component Standing or Standing Propagating
Wave type propagating mode wave

Low altitude: Case A Case B Case B
Wave amplitude

Fluid velocity e/ e/ e/

Magnetic field e—2/2L e~k e~/

Mass density e —2/2L e —32/4L e —32/4L

Gas pressure e—2/2L o —3/4L o —32/4L

Magnetic pressure e /L e~k e~/
Energy density

Kinetic E, e 22k e—2/2L

Compression E, e 2L e~/

Potential E, e %2 e 22k

Magnetic e —2/L e —2/2L e —2/2L

Total 2Ey+E; e 2% e %2k
High altitutde Case A Case D Case C
Wave amplitude

Fluid velocity e/ Ve z

Magnetic field e~z e~z/L he

Mass density e 22 e/t ze /L

Gas pressure e 2/ e—#/L ze—#/L

Magnetic pressure e~/ e—2/L uh? /87=E,
Energy density

Kinetic E, e~%/L z% —#/L

Compression E, e—z/L 22e—%/L

Potential E, e—/L 220 —%/L

Magnetic e—2/L e—22/L : E.

Total 2E,+E, e /L E.

thermal expansion of the corona (Newkirk, 1967; Suess,
1982; Osherovich, Gliner, and Tzur, 1985), whose mass
loss is resupplied by acoustic-gravity waves in spicules
(Sec. I1.A.8); (ii) the high-speed particle streams originate
from coronal holes, where the hydromagnetic-gravity
waves accelerate matter as they propagate outwards with
the solar wind (Sec. III.A.8). Stars other than the sun also
have a mass loss, and in some cases the stellar winds have
much larger mass fluxes (Lago, 1982; Penston and Lago,
1983; Lago, Penston, and Johnstone, 1985; Sa, Penston,
and Lago, 1986), with evidence of acceleration by hy-
dromagnetic waves of Alfvénic type (Underhill, 1963;
Lago, 1984). In solar spicules, the magnetic field is nearly
vertical, and thus (Sec. III.A.3) acoustic-gravity and
Alfvén-gravity waves could coexist. The acoustic-gravity
waves have a vertical velocity perturbation and are associ-
ated with a compression front, which carries the mass
flux. Spicules are nearly isothermal, and thus the phase u
and group w velocities may be calculated from the effec-
tive wave number K =Re(k, ) in Egs. (125b) or (175a) as
follows:

ug=w/K=cV'1—(w,/0)*,
wo=0w/3K =c/V'1—(w,/w)* .

(178a)
(178b)
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The temperature 7'=1.8X 10* K in spicules corresponds
[Egs. (9a) and (15a)] to a sound speed ¢ =1.58x10°
cms~! and scale height L =5.47x 107 cm, and thus [Eq.
(22b)] to a cutoff period 7,=4mL /c=420 s. For a wave
with a five-minute period, 7=300 s, we have
wy/u =71/7,=0.71. Note that the group velocity [Eq.
(178b)] of the energy flux, wy=11 km/s, is always lower
than the sound speed, ¢=16 km/s, while the phase speed
[Eq. (178a)] of the compression front, uy=22 km/s, is al-
ways larger, ug>c >wgy. The speed of the compression
front, ug=22 km/s, agrees with the observed velocity of
mass motions, 20—30 km/s, which is remarkably con-
stant over the considerable height (10* km) of spicules
(Beckers, 1968, 1972). These velocities are vertical. Hor-
izontal velocities, increasing linearly with altitude, have
also been observed (Kulidzanishvili, 1980), v, =c;z +c¢,
with ¢;=9.3x10"% s~ ! and ¢,=—1.4Xx10° cms™ L
These horizontal perturbations can be explained by an
Alfvén-gravity wave, propagating vertically, for which
the asymptotic velocity [Egs. (108a) and (115a)] is also
linear. The coefficients d,,d, are given by

HE (2oL /ay){d,,d,}
=vo/mL, 2o /7)Y« + (2L /ay)] .  (179)
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These coefficients, for an initial Alfvén speed
ap=1.52%10" cms™! and velocity perturbation
vo=1.00x10° cms~! in spicules, lead to the values
¢;=7.5%10"2 s~ and ¢, =—1.07X10° cms™!, which
are broadly consistent with observation.

1. Regular singularity and series expansion

The asymptotic laws for the wave fields can be deduced
qualitatively [see Eq. (108a)] by simple arguments (as in
Sec. I1.B.5), but the explicit form of the coefficients, Eq.
(179), is determined by taking the limiting form of an ex-
act solution, as in Sec. IL.B.6. The present method can be
used not only to yield asymptotic approximations (Sec.
II1.A.6), but also to provide exact solutions, valid at all al-
titudes and for all frequencies, for waves of any order. To
show this, let us take as applications second-order Alfvén
and fourth-order hydromagnetic-gravity waves. The gen-
eral wave equation (157) can be written in the form

N—1
NaNp/dgN + 3, Epi(§)di®/dE =0, (180a)
j=0
pi(§)=(A4;+B;{)/(Ay +ByE)=A;/Ay[1+0(0)],
(180b)

where the functions (180b) are analytic at the origin {=0,
which is thus a regular singularity of the Nth-order dif-
ferential equation (180a). This is a generalization of Egs.
(130), (133a), and (133b), which for a regular singular
point z =z, of a second-order equation reads

(z —z.w"” +(z —z,)p1 (2w’ +po(z)w =0, (181)

with pg,p; analytic functions of z. As before in Eq.
(135a), the general wave equation (155), now of arbitrary
order, has a power series solution:
D,()=¢" 3 ;¢ (182)
j=0
where the exponent of the leading power, called the index
o, and the recurrence formula for the coefficients, ex-
pressing all of cy,c,, ..., in terms of ¢, are to be deter-
mined. Note that ¢y is undetermined, since Eq. (155) is
linear, and thus we can set cq=1; the leading term £ cor-
responds, by Eq. (154a), to the asymptotic approximation
(176b) considered in Sec. IIL.A.6. and we need all of the
following terms for an exact solution.

2. Single indices and functions of the first kind

The operator {d /d{ has the property that, when ap-
plied to a power &7, it yields the same power multiplied
by the exponent o, that is, {(d /d{){°=0{°. This proper-
ty extends to an arbitrary polynomial of the same opera-
tor, R({d/d§)E°=R (o), and renders straightforward
the substitution of the power series (182) into the wave
equation (155) of arbitrary order:
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0= 3 ¢[R(0+)E +—S(o+NEH+1]
j=0

—coR(E+ 3 £ [e;R(0+)—¢; 1S (o+j—1)] .

ji=1
(183)
Equating to zero the coefficients of £7,£7+!, ..., we ob-
tain the recurrence formula for the coefficients:
¢;=[S(c+j—1)/R(o+j)]c;_1
- If[1 [S(o+I—1)/R(o+))], (1842)

using co=1. Note that if ¢;=0 we would have all ¢; =0,
and a trivial solution ®=0 would result [Eq. (182)].
Equating to zero the coefficient of &9, we have
coR (0)=0, and since c¢¢#0, the index o is a root o; of
the polynomial (156a):
r r
0=R(0)= 3 a;(—aV=(—Va, [[(c—0)). (184b)
j=0 j=1

The condition R (0)=0 is precisely the same as that used
in Sec. IIL.A.6 for the asymptotic expansion [Eq. (176a)]
in z— o0, which is the leading term (154a) in {—0. Sub-
stituting Eq. (184a) into (182) we conclude that the wave
equation (155) has, for particular integrals, functions of
the first kind:

o, » . J Slo;j+1-=1)
<I>](§)E§ J 1+ 2 gJI_I TZO’—‘-—I) s
J

j=1 I=1

(185a)

which have at most a power-type singularity whose ex-
ponent o; is a root of Eq. (184b). If R (o) has only single
roots, i.e., if o;=o0; for jsl, the particular integrals
P;, P, are linearly independent, and the general integral
of Eq. (155) is

D)= 3 C;P,8), (185b)
ji=1

where the C; are arbitrary constants of integration.

3. Convergence and self-transformation of the equation

We have yet to prove the convergence of the series
(185a) for a function of the first kind, whose ratio of
succeeding coefficients (184a) is c;/c;_~j*~"—0, as
Jj—> o, provided that 7 >s. Thus, if the polynomial R is
of greater degree than S, the series (185a) for a function
of the first kind converges for all £ < . Moreover, in
this case Eq. (155) is of degree r, so that the general in-
tegral (185b) has r constants of integration (C,,...,C,),
as it should have. If, instead, we had s >r, then
cj/cj_1~j*"— o0 as j— o0, and the series (185a) would
diverge for all {£0. The reason is that, in the case s > 7,
the variable { is not suitable, as is also indicated by the
fact that Eq. (185b) has a number of constants of integra-
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tion r less than the order s of Eq. (155). In the case s > r,
we should use the variable

é‘: l/g s
which transforms Eq. (155) into another of the same type,

[S(—E&d/dE)—ER(—Ed /dE)]D(E)=0, (187a)

(186b)

with the roles of the polynomials R,S interchanged. Thus
the particular integrals of Eq. (187) are

®,(1/¢)
Ly .
=714+ 3 ¢TI R =1 —v))/S(—1—v)] |,
j=1 I=1
(187b)

by analogy with Eq. (185a), where the indices v; are now
the roots of the polynomial S,

s . s
0=S(—v)=3 bv=b; [T (v—v;) . (188a)
j=0 j=1
The ratio of succeeding coefficients of Eq. (187a) is
R(1—1—v;)/S(—1—v;)~j"7°—0

as j— o0, since s > r, providing that the series (187a) con-
verges for all £40. If all the roots of (188a) are distinct,
the particular integrals (187a) are linearly independent,
and the general integral is given by

o(O)= 3 TB,(1/0)

j=1

(188b)

where the number of constants of integration E‘j equals
the order s ( >r) of Eq. (155).

4. Multiple indices and functions of the second kind

We have obtained solutions of the wave equations
[(155), (156a) and (156b)] in the cases » >s when the poly-
nomial R is of higher degree than s [Eqgs. (184b), (185a),
and (185b)], and also in the reverse case s > r [Eqgs. (187b),
(188a), and (188b)] (we defer until Sec. IIL.C. the con-
sideration of s =r). Both general integrals (185b) and
(188b) involve only functions of the first kind, on the as-
sumption that indicial equations, (184b) and (188a),
respectively, have all roots distinct. If a root, say o, of
Eq. (184b), is of multiplicity g > 2, then the corresponding
g constants of integration in Eq. (185b) coalesce into one,
i.e., it cannot be the general integral of an equation of or-
der r, since only »—g+1 constants of integration
remain. In the case of a root of multiplicity g, we need to
find (¢ —1) new particular integrals, which will turn out
to be functions of the second kind ¥. They must also be
linearly independent, both among themselves, and from
functions of the first kind. Functions of the second kind
are also needed if two indices differ by an integer, e.g.,
o,—0o1=m >0, since in this case ®({) involves a factor
R (0{+m)=R(0,)=0 in the denominator, and the solu-
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(186a) -

tion of the first kind [Eq. (185a)] breaks down, being re-
placed by one of the second kind. The solution of the
first kind, which corresponds to single roots of Eq. (184b),
is associated with an exponential asymptotic wave field,
and the solution of the second kind, which corresponds to
multiple roots of Eq. (184b), introduces. the polynomial
modification (176¢) in the asymptotic law. In order to in-
troduce the function of the second kind exactly, rather
than just to leading order, we start from the wave equa-
tion (155), and seek a solution of the form (182), with
coefficients c; satisfying the recurrence relation (184a)
and arbitrary index o, so that the whole equation equals
the first term of Eq. (183):

[R(8d/dE)—E5S(6d /d )P, (5)=cob R (o) .

Taking o to be any single root o; of Eq. (184b), we obtain
the corresponding function of the first kind (185a). If o
is a root of multiplicity ¢ > 2, then

R(0)=0((0—0p)9) ,
lim &'[R (0)]/30'=0,

o—0(,

for all /=0,1,...,q —1. Thus, differentiating Eq. (189)
I times with regard to o, and letting c— 0, we find that
the rhs vanishes, and we obtain g solutions of Eq. (155):

[R(&d/dE)—ES(Ed /dE) WP (E)=0, (191a)
1=0,1,...,qg—1, YJ(&)= lim 3 ®o(£)]/30’,  (191b)
U—"UO

(189)

(190a)
(190b)

where the function W'?(&)=®,(¢) is of the first kind, and
W) for all other I=1,... ,q —1 are of the second
kind.

5. Logarithmic singularities and complementary
functions

From Eq. (191b) it follows that the leading term of the
Ith function of the second kind is

W(§) ~ lim 3%(£°) /30’ ~(In§)’g”°

0’-—)0’0

(192)

in agreement with Eqgs. (154a) and (176¢). Equation (192)
also shows that all the particular integrals are linearly in-
dependent, both from functions of the first kind (different
0¢) and from other functions of the second kind (different
). The Ith function of the second kind,
-1
V() =D, (H)+ 3 In&)™xP™(¢) ,
m =0
consists of the function of the first kind, ®,(£)~0 (£7),
multiplied by a logarithmic singularity to the /th power,
followed by “less singular” terms; the latter are a sum of
powers of logarithms (In§)™, with m =0, ...,/ —1, mul-
tiplied by succeeding complementary functions
XEm(g)~0(£9+™), each of which is a power series con-
verging for all £ < « as a function of the first kind, but of
higher order, X *™(&) ~ £™®,(&). The simplest (and most
common) case is that of a double root, g=2, for which we
have [Egs. (182) and (184a)] a function of the first kind,

(193)
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@, (E)=yLAE) and one function of the second kind,

= |1+ S ET1IS(o+I -V /R(o+D] |,

j=1 I=1

W (&) =V (&) =3[@,(£)] /30

(194) =(In/E)P(E)+X4(£) .

(195a)

Here a simple logarithmic singularity multiplies the function of the first kind [Eq. (194)], to which is added the comple-

mentary function

o ] il
X=X =3 IS0+l —1)/R(c+D] S [S(o+]—1)/S(c+I—1)—R"(c+D/R(a+])],

j=1 I=1 m=1

where a prime denotes derivative with regard to o, or the
argument of the polynomial, e.g., R'(§)=dR /d¢&.

6. Radiation conditions and functions of the third kind

For high-frequency waves at low altitude, the ray ap-
proximation implies that functions of both the first and
second kinds are a superposition of downward- and
upward-propagating waves:

, D), P(E)~(Cyy,Cryle T4 (Cyy,Crrde ~*2 . (196a)
The functions of the third kind,
OLD(E)=D(E)—(Cy1 /Chp,Cr  /C)W(E) ,  (196b)

are a linear combination of the first and second kinds,
such that 6% /01 satisfy the radiation condition in the
direction of decreasing or increasing &, respectively, i.e.,
upward or downward propagating:

O'* () ~(A/Cpp, —A/Cpy)e ™,
A=CCy—CaCyy -

(197a)
(197b)

Functions of the third kind have a logarithmic singulari-
ty,

9(2’1)(§)~§0[1—(CII/CIZ’C21 /sz)lng] ’

like functions of the second kind. As an example of the
use of the three kinds of functions, we consider Alfvén
waves, which are described by Eq. (155), with the polyno-
mials (172a) and (172b). The polynomial R, is of higher
degree, r=2, than the polynomial S,, which is a constant,
s=0, and the appropriate indicial equation (184b), 6*>=0,
has a double root. The function of the first kind [Eq.
(185a)] is

D(8)=1+ i §jﬁ (a/1?)= i (@&)(j1n—2

ji=1 I=1 j=0

=Jo(2V —al)=Jy[(2wL /agle ~*/?E],  (199)

which is a Bessel function of variable

2V —al=2VaBe ~**=(2wL /agy)e ~*/* ,
where we have used Egs. (170a), (169a), and (169b). The
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(198)

(195b)

T
complementary function (195b), together with the func-
tion of the first kind (199) specify the Neumann function:

© | J !
XoO=1+ 3 &I[ @/ S (2/m)
j=1 I=1

m=1

8

=3 (YN 29 +1)=Zy(2vV'=af), (200a)
j=0

J

Il

Vo(§)=In(2V —al)o(2V —al)+Z(2V —af)

=Yo[(2wL /agy)e ~*/?] . (200b)

The linear combination of functions of the first (199) and
second (200b) kinds, for propagation in the direction of
decreasing or increasing, respectively, i.e., upward or
downward propagating, are Hankel functions:

HPV 2V Zal)=Jy(2V —ab)+iYy(2V —af)
=H[(20L /ag)e ~*/*]

—e?/AL

exp(tiowz/ay) , (201)

which correspond to functions of the third kind (196b),
with iCyy=Cy, C,;=iCy. The Alfvén-gravity wave
field is specified by a linear combination of functions of
first (199) and second (200b) kinds, or of the third kind
(201), in agreement with Egs. (112a) and (112b) with the
factor cos6 in Eq. (112b) equal to unity for vertical propa-
gation 6=0.

7. Coupled dynamic and magnetic wave components

In the general case of hydromagnetic-gravity waves in
an oblique magnetic field, the standard equation (155) has
a polynomial R, of degree r=4 [Eq. (174a)], and another
S, of degree s=2 [Eq. (174b)], so the appropriate indicial
equation is Eq. (184b). It has four roots, viz., a complex-

© conjugate pair a,,2=-—%iiKoL and a double root

034=0, which specify the dynamic and magnetic com-
ponents, respectively, of the wave field. Concerning the
latter, the function of the first kind (194) is
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L
Do) =14 3 (aot/n?V [] [(12—1 +ap)/IX1*+1 +ao/nV)],

j=1 =1

(202a)

or, using Eqgs. (169a) and (169b), (170a), and (170b), in terms of altitude,

o . ) J
Folz/L)=®y(&) =1+ 3 (oL /agn)?(j1)~le ~2/E [ [(1 — 3 —iKL)(I — 5 +iKL)/(I + 5 +iKoL)I ++ —iK,L)] ,

j=1 =1

(202b)

showing that it is a standing mode (real, no phase), with bounded amplitude F(z/L)—1 as z— «. The function of the

second kind,

Wo (&) =D E)INE) +X o £) =X o —Be ~*/L) +In(B—im—2z/L)Fy(z/L)=H (z/L) ,

w I
XolO= 3 ETLISU-D/RD] S [S'm —1)/S(m
m=1

j=1 I=1

—1)—R’'(m)/R(m)],

(203a)

(203v)

involves a complementary function (203b) of higher order, X((§)~0(&), than the function of first kind, ®y(§)~0O(1).
The asymptotic field is specified by the term In{= —z /L +im+Inf3, implying a linearly diverging amplitude and bound-

ed phase. For the dynamic component the complex-conjugate roots o ;= — T

the first kind [Eq. (194)] appear:

—1/2%iKoL

j=1 =1

* L J
14+ 3 (g /n?Ve /LT [SU —5 +iKoL) /R (1 — 5 +iK,L)] |,

+iK L are distinct, and only functions of

(204a)

i.e., they are complex conjugates ®% =®_. Using Egs. (169a) and (169b), (170a) and (170b), and (175a) and (175b), we

may give these as functions of altitude, by

—1/2+iK)L

Gi(Z/L)E(—-B) (Di(é-):ez/zLeiiKOz

0

X |14+ 3 (oL /agn)¥(j1) =% ~F=/k
j:l
J
x [T ([0 —1£iKoLY?+K>L?1/[(1 — + TiKoL)IF2KoL)]} | . (204b)
I=1

In other words, to leading order, G, are upward- or
downward-propagating acoustic-gravity waves. Thus the
dynamic [Egs. (204a) and (204b)] and magnetic [Egs.
(202a) and (202b) and (203a) and (203b)] components of
the fourth-order hydromagnetic-gravity wave appear to
leading order as acoustic-gravity and Alfvén-gravity
waves, respectively, with coupling in all terms of higher
order. \

8. Application of boundary and initial conditions

The vertical velocity perturbation spectrum of a
hydromagnetic-gravity wave is given generally by a linear
combination of the standing [Eq. (202b)] and propagating
[Eq. (203a)] magnetic components and the upward G
and downward G _ dynamic components:

W, (z;0)=AF(z/L)+A,H(z/L)

+A43G  (z/L)+A4,G _(z/L), (205)

where the constants A4; to A4 are determined by boun-
dary, initial, or radiation conditions. For example, for a
standing mode we suppress H(z/L) by setting 4,=0,
and combine the complex-conjugate pair G, =G into

I

the real expression G, +G_=2Re(G.) by setting
A4,=A3;, leaving only two constants 4,43 to be deter-
mined,

W,(z;0)=AF(z/L)+ A3[G . (z/L)+G _(z/L)] .
(206a)

For an upward- or downward-propagating wave we select
G ;. for the dynamic component and the appropriate func-
tion of the third kind [Eq. (196b)] for the magnetic com-
ponent:

W,(z;0)=A4,0%V(—Be L)L 4,G.(z/L) . (206b)

In both the standing [Eq. (206a)] and propagating [Eq.
(206b)] cases, the two remaining constants 4,43 could
be determined from initial conditions, e.g., specifying the
initial spectrum of the vertical W,(0;w) and horizontal
W, (0;w) velocity perturbation spectra. In general, in a
multilayer model, the solution (205) would be used in each
layer, along with four boundary conditions, applied at
each interface between two layers: (i) and (ii) continuity
of horizontal W, and vertical W, velocity perturbations
(assuming there is no shear flow); (iii) continuity of total
pressure, i.e., gas P, plus magnetic Py =uH?2/8; (iv) con-
tinuity of the horizontal magnetic field component H,, if
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there are no surface electric currents. In the presence of
surface electric currents J, the horizontal magnetic field
would have a jump [ H, ]=(c, /4m)J,.

C. Wave filtering, absorption, and transformation

The components of the hydromagnetic-gravity wave,
both dynamic [Eq. (204b)] and magnetic [standing (202b)
or propagating (203a)], are given by expressions that are
exact and that converge for all altitudes and values of pa-
rameters. The convergence is rapid, both in altitude, since
the series proceed in powers of Eq. (154a),
[(e=2LY=¢~//L] and in order, since the jth coefficient
scales like ¢;~(j!)~?%, which is a convergence faster than
the ordinary transcendental functions c;~(j1)~!. Thus
the series can be calculated rapidly (Campos and Leitao,
1987), to high accuracy, with a few terms; for example,
the plots in Fig. 7 took less than one second computing
time in an IBM 8031 computer. The hydromagnetic-
gravity wave fields depend on three parameters, namely,
the compactness or dimensionless frequency [Eq. (169a)],
the initial plasma f3, defined for Eq. (169b) at altitude
z =0, and the angle 0 of inclination of the magnetic field
to the vertical, n=cosf. We choose for illustration in
Fig. 7 the standing magnetic component, whose ampli-
tude is bounded at infinity and normalized to unity. The
basic case is taken to be

Q,=oL/c=3, (207a)
B=(c/ay)?*=1.0, (207b)
0=45", (207¢)

407

i.e., a wave of dimensionless frequency Q,=6(w/w,)
equal to 6 times the cutoff w,=c /2L, in an atmosphere
for which the sound and Alfvén speeds are equal to alti-
tude z =0 (207b), in the presence of a magnetic field of
intermediate inclination 6=45°. We change each parame-
ter in turn, giving the values

Q,=0/20,=1,2,3,4,5, (208a)
£=0.1,0.5,1.0,2.0,10.0 , (208b)
6=15°30°45°,60°,75° . (208¢)

Thus we allow frequencies (208a) from twice the cutoff
=2, to the ray limit = 10w,, a plasma 3 (208b) rang-
ing from initial dominance of magnetic << 1 to initial
dominance of gas B>>1 pressure, and five equally spaced
inclinations (208c) to the magnetic field.

1. Effects of frequency, plasma B, and inclination

The effects of changing each of the three parameters in
turn are illustrated in Fig. 7, as follows:

(a) As the frequency increases (left-hand side), the
waveform oscillates more at low altitude z <2L, where
Be~?’E—1 and the gas and magnetic pressure are com-
parable, but as the magnetic pressure predominates,
z > 3L, the magnetic field resists transverse oscillations
and the amplitude becomes almost uniform (it can be seen
that there is a node at z=0 for Q,=3, i.e., the first
standing mode of the magnetic component of vertical
hydromagnetic-gravity waves has the frequency
©w=6w,=3c/L, and the second mode a frequency

STANDING HYDHbMAGNETlC- GRAVITY MODES

5]
2/L z/L
n
n:1
-
2
Bo=1 3 nz3
| a
0-45° 3 5 ©:=45"
2]
1.30
g
6.77
F F
Rl 1 A
L. ] L

W)

z/L

4l

n=3
Bo=1 9:75°
60°
45°
30°
15°

Ny

frequency

plasma-B,

inclination

FIG. 7. Waveforms of the magnetic component of a fourth-order hydromagnetic-gravity wave, standing vertically in an atmosphere;
the reference case is a wave of frequency w, 3 times the cutoff value w,, i.e., @ =3w,, an initial plasma f3 (at altitude z =0) equal to
unity, Bo=1, and a uniform external magnetic field at equal angle to horizontal and vertical, 6=45°. The plots, vs altitude z divided
by the scale height L, demonstrate the effects of changing (left) wave frequency to Qs =w/w;=1,2,3,4,5, (center) initial plasma S to
B0=0.1,0.5,1.0,2.0,10.0, and (right) angle of inclination of magnetic field to the vertical to 6=15°,30°45°,60°,75°.
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@ > 10w,=5c /L, for initial plasma 3 unity and magnetic
field tilted at equal angles to horizontal and vertical).

(b) As the initial plasma f3 decreases (center), the alti-
tude at which sound ¢ and Alfvén speed age?’*F become
equal, ¢ =al(z.), reduces, z,=2L In(c/ay)=L Inf3, and
the altitude of equal gas p(z)=vypoc? e ~?/ and magnetic
P=poa®/2  pressures p(z,)=P also  reduces,
z,=L 1n(yc2/2a(2))=L In(y/2), so that, for small initial
B (B <<1) the magnetic pressure dominates throughout,
and the wave amplitude is almost uniform. For large ini-
tial B (B>>1) there is oscillation while the decaying gas
pressure p ~e —2/L is still larger than or comparable to the
constant magnetic pressure P, but when the latter takes
over, the z >>z,, the oscillation is checked.

(c) The inclination of the magnetic field (right-hand
side) has little effect on the waveforms—the amplitude is
slightly smaller at intermediate altitudes for a magnetic
field less tilted to the vertical, which more effectively con-
strains the motion, showing that the main effect is that of
magnetic field strength, not direction (for example, the
frequency of the first standing mode Q,=3 or
w=6w,=3c/L applies to the initial plasma 8 of =1,
i.e., a magnetic field strength B =1/4mpea =1 4mpec,
and is nearly independent of magnetic field inclination in
the range 15°< 6 <75°).

2. Criterion for identification of cutoff frequencies

We proceed with the general method for solving the
wave equation in the standard form (155) by giving a cri-
terion for the identification of cutoff frequencies. The
latter can be calculated from the dispersion relation for
wave equations with constant coefficients, e.g., acoustic-
gravity waves in an isothermal atmosphere (Sec. 1.A.7),
but for wave equations with variable coefficients, the ray
approximation is unreliable as a method of estimating
cutoff frequencies, e.g., it gave incorrect values both for
acoustic-gravity waves in nonisothermal atmospheres
(Sec. II.A.4) and magnetosonic-gravity waves in an iso-
thermal atmosphere under a horizontal magnetic field
(Secs. II.C.2 and II.C.3). In the latter cases, the correct
cutoff frequencies were found from the exact solutions of
the wave equations, which have variable coefficients, re-
quiring special transformations. The present method not
only solves such equations in a standard way (Sec. IIL.B),
but also reliably specifies the asymptotic fields (Sec.
III.A.6) and cutoff frequencies (Sec. III.C.2) (the WKBJ
approximation can do neither), on inspection of the wave
equation, with no need to solve it. In order to obtain the
criterion of identification of cutoff frequencies for the
wave equation (155), we note that, if the polynomials R,S
have complex roots, waves have phases and can propa-
gate, whereas if all roots are real, there are no phases, and
only standing modes exist. Thus the cutoff frequencies
separating standing modes from propagating waves [Eq.
(155)] correspond to double roots of the polynomials R,S
[Egs. (156a) and (156b)], separating real from complex
roots. The first three cases of vertical waves in Sec.
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III.A.5 may serve as examples for comparison with earlier
results: (i) for acoustic-gravity waves [Egs. (171a) and
(171b)] the polynomial of degree two R has a double root
ay=, corresponding by Eq. (169) to the cutoff frequen-
cy wr=c/2L [Eq. (22b)] for vertical waves; (ii) for
Alfvén-gravity waves [Egs. (172a) and (172b)], the poly-
nomial R, is independent of frequency, i.e., there is no
cutoff frequency, and the waves are not filtered; (iii) for
magnetosonic-gravity waves [Eqs. (173a) and (173b)], the
polynomial Rj; is independent of frequency, like R, for
Alfvén-gravity waves, and the polynomial S; coincides
with R; for acoustic-gravity waves; thus the cutoff
aoz%, wy=c /2L of acoustic-gravity waves is inherited,
in the presence of a horizontal magnetic field, by
magnetosonic-gravity waves (Sec. I.C.3).

3. Spectral separation and mode mixing

The most general case is that of vertical hydromagnetic
waves in an oblique magnetic field [Eqs. (174a) and
(174b)], for which both polynomials S4,R, have double
roots, respectively, for ao=+,n2/4, corresponding to the
two cutoff frequencies

(209a)
(2090b)

wo=nw,=nc /2L
SCL)2:C/2L .

The lower cutoff wq depends, n =cosf < 1, on the inclina-
tion of the magnetic field 6 to the vertical, but not on its
strength, whereas the upper cutoff w, is totally indepen-
dent of magnetic field (strength and direction). The upper
and lower cutoffs w, and wg specify the unmodified and
modified effective wave numbers K and K, respectively
[see Egs. (175a) and (175b)],

K =(w/c)V 1—(wy/0)?, (210a)

Ko=(w/nc)V 1—(wy/w)? . (210b)

The lower cutoff wy [Eq. (209a)] and modified effective
wave number K, [Eq. (210b)] appear to leading order in
the dynamic component of the wave field [Eq. (204b)].
The reason for the dependence on the inclination 6 of the
magnetic field to the vertical is that acoustic-gravity
waves, at high altitude (where the magnetic dominates the
gas pressure), must follow magnetic field lines, and thus a
scale height L corresponds to a distance of propagation
L /cos6=L /n, and the cutoff c¢/2L for a vertical field
becomes c¢/2(L/n)=nc/2L for an oblique one. The
upper cutoff w, [Eq. (209b)] and unmodified effective
wave number K [Eq. (210a)] appear in the magnetic com-
ponent, e.g., Eq. (202b), so that each component of the
hydromagnetic-gravity wave has its own cutoff and effec-
tive wave number. The two cutoffs [(209a) and (209b)]
and the effective wave numbers [(210a) and (210b)] for
vertical waves degenerate into one, in two cases: (i) for a
vertical magnetic field, n =1, the two cutoffs and wave
numbers coincide, into those (wg=w,=c /2L, Kq=K) for
acoustic-gravity waves; (i) for a horizontal magnetic field
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n =0, the dynamic cutoff [Eq. (209a)] vanishes, w,=0,
and only the magnetic cutoff [Eq. (209b)] remains, the
magnetosonic-gravity waves, which have the same cutoff
wy=c /2L and effective wave number K [Eq. (210a)] as
acoustic-gravity waves. In general, vertical hydromagnet-
ic waves in strictly oblique (i.e., nonvertical and nonhor-
izontal) magnetic fields have two cutoff frequencies
[(209a) and (209b)], the same number as oblique (i.e., non-
vertical) acoustic-gravity waves in the absence of a mag-
netic field (Sec.II.A.4) and magnetosonic-gravity waves in
a horizontal magnetic field (Sec. I1.C.3). There is, howev-
er, an important difference: (i) the acoustic-gravity and
magnetosonic-gravity waves are of second order, and so
‘the cutoffs [Eqs. (22a) and (22b)] separate bands in the
spectrum, viz., there is an evanescent band w; <® < w,,
separating gravity and acoustic modes, respectively, below
o) <w and above @ > w,; (ii) the hydromagnetic-gravity
waves are of the fourth order, and thus the cutoff [(209a)
and (209b)] apply independently to the dynamic w, and
magnetic w, components, i.e., each is standing below and
propagating above, its own cutoff. Thus the spectrum of
hydromagnetic-gravity waves allows mode mixing as fol-
lows: (i) for frequencies below the lower cutoff, @ < wo,
both the dynamic and magnetic components are standing;
(ii) for frequencies above the upper cutoff (o > w,), both
components are propagating; (iii) for frequencies between
the cutoffs (wg < @ < w,), the dynamic component is prop-
agating and the magnetic component standing. The situa-
tion inverse to (iii), i.e., dynamic component standing and
magnetic component propagating, is not usually possible
(since the conditions w <y and w > w, are incompatible
with w,>wp), and can only occur above both cutoffs
@ > w,>wq if we choose suitable boundary conditions in
Eq. (205), so as to reflect the dynamic (A3;=A4,4) but not
the magnetic ( 4,5+0) component into a standing pattern.

4. Existence and location of critical levels

In order to conclude our presentation of the method of
solving the wave equation (155), we still have to consider
the case when the polynomials R,S [Eqgs. (156a) and
(156b)] are of the same degree, r =s =N (which was not
treated in Sec. IIL.B). The case r =s is important since, if
r=~s, the wave equation has solutions converging for all z,
viz., Eqgs. (184b), (185a), and (185b) for r >s and (187b),
(188a), and (188b) for s > r, so that there is no singularity
of the wave equation at intermediate altitude, and critical
levels do not occur. Thus a necessary condition for the
wave equation (155) to have critical levels is that the poly-
nomials R,S [Egs. (156a) and (156b)] be of the same de-
gree, r =s=N, i.e., ay%0%4by. This condition is not
sufficient, i.e., if » =s, then one or more critical levels
may or may not exist. In order to clarify this point, it is
sufficient to consider the values of the coefficients ay,by
of the leading powers of R,S, as we now show. If the po-
lynomials R,S [Egs. (156a) and (156b)] are of the same
degree, r =s =N, we can use two solutions of the wave
equation (155): (i) the solutions (184a), (185a) and (185b)
apply if
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| <j1im lcj/cj—1| = lim | [S(oc+j—1)/R(oc+))]]
—> 00 J—>

=|by/ay | =M, (211a)

i.e., the series (285b) converges inside the radius of con-
vergence M; it also applies (154a) in the high-altitude
range z >z, =L In({o/M); (ii) the solutions found in
(187b), (188a), and (188b) converge on the outside of the
inverse of M,

[€] > lim |[R(1—j—v)/S(—j—v)| = |ay/by |
Jj— oo

=1/M, (211b)

and applies [Eq. (154a)] in the low-altitude range
z <zy=L In({oM). Thus, three cases can arise, depending
on the values of M= | by /ay |, which is the modulus of
the ratio of the leading coefficients of S,M [Egs. (156a)
and (156b)]: (i) if M >1, the two regions [(211a) and
(211b)] overlap, z, <z;, and since at least one analytic
solution exists for all z (in fact, both solutions hold for
z; <z <zy), there is no singularity or critical level; (ii) if
M =1, then z,=z,=z,, and one solution applies below
z <z, and the other above z >z ; the altitude z, =L Ing,,
which corresponds to a critical level; (iii) if M > 1, then
z;>z;, and neither solution applies in the annulus
1/M < |{| <M, corresponding to the altitude range
Z| <z <z, so that both

zy=L In(py/M) , (212a)

z,=L In(poM) , (212b)

are critical levels, and more could exist in between [this
possibility could be investigated by continuation of the
function ®(&) into the annulus]. Applying these criteria
to the present case, we conclude that (i) for magneto-
atmospheric waves [Eq. (155)], the polynomials R,S are
of dissimilar degree [Egs. (171)—(174)] in all cases except
for a horizontal magnetic field [Eqs. (173a) and (173b)],
i.e., no critical level exists for acoustic (r =2>s =0),
Alfvén (r=2>s5=0), and magnetosonic-gravity
(r=4>s=2) waves, since (McKenzie, 1973), a nonzero
vertical component of the magnetic field allows the wave
to propagate through, instead of being absorbed at, the
critical level; (ii) in the case of a horizontal magnetic field,
the polynomials R,,S; are of the same degree [Egs.
(173a) and (173b)], r =2=s, with identical leading coeffi-
cients a, =1=b,, so that M =1 in Egs. (211a) and (211b)
and magnetosonic-gravity waves have a critical level [Eqgs.
(212a) and (212b)] at the altitude z,=z;=z,=L Inf,
=2L In(c/ay), determined by the initial plasma B [Eq.
(169b)], in agreement with Eq. (132b) in the case of verti-
cal waves k=0.
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5. Amplitude and phase at the critical level

We have shown that, for the general wave equation
(155), the possibility that a critical level exists depends on
the polynomials R,S [Eqgs. (156a) and (156b)] being equal
in degree, ¥ =s =N, and that the location of this critical
level is determined by the leading coefficients ay,by. We
now show that the coefficients ay _;,by 1 of degree one
unit lower decide whether or not the amplitude and phase
of the wave are finite at the critical level. Mathematical-
ly, the question being posed is whether the series (185a)
converges on the boundary |§| =M of the region (211a),
i.e., at the critical level .z =z; [Eq. (212a)], and similarly
for Egs. (187b), (211b), and (212b). In order to investigate
the behavior of the series (185a) on its boundary of con-
vergence, we need the ratio of two succeeding coefficients
(184a) to O(1/)),

CJ/CJ_1=(bN/aN)[1—A_]/O(_] —2)] s
AEaN—l/bN_bN—l/bN+N >

(213a)
(213b)

where A=X +iY is generally complex. Note that, as
Jj— o0, Eq. (213a) reduces to Eq. (211a). The real part
X =Re(A) of Eq. (213b) determines the behavior (case )
of the series (Bromwich, 1927) on the boundary of conver-
gence |§|=M=|by/ay|, except at the point
E=by/ay, viz., (i) if X <O the series diverges, (ii) if x =0
it oscillates, (iii) if O <X <1 it converges conditionally,
(iv) if X >1 it converges absolutely. On the point
&=by/ay the behavior (case 3) of the series (Knopp,
1947) is given by X and Y=Im(A), the imaginary part of
Eq. (213b), viz., () if X <1 it diverges, (ii) if X > 1 it con-

®,(6)=¢ |14+ S [(— )V ~"(by /a,EY

j=1

verges, (iii) if X =1 it diverges for Y =0 and oscillates for
Y=£0. The implications of the behavior of the series are
as follows: (i) if it diverges (oscillates) the amplitude
and/or phase of the wave are unbounded (indeterminate)
at the critical level; (ii) if it converges the amplitude and
phase of the wave are determined at the critical level by
summing series, with rearrangement of terms allowable if
it is absolutely convergent, but not allowable if it is condi-
tionally convergent. For magneto-atmospheric waves, a
critical level occurs only for a horizontal magnetic field,
in which case [Egs. (173a) and (173b)] the wave equation
(155) has polynomials of degree r =s =2=N, with two
leading coefficients a,=b,=b,a; =0, so that A=1 in
Eq. (213b). The critical level z, =L Inf3, corresponds [Eq.
(170a)] to &= —fBoexp(—z./L)=—1, which lies on the
circle of convergence |{|=|b,/a,| =1, but does not
coincide with the point b,/a,=1, i.e., we have case «
above, conditional convergence, with X =1. Thus, for a
magnetosonic-gravity wave, the amplitude and phase are
finite at the critical level and may be obtained by sum-
ming the series solution [Eqs. (147a) and (147b)] without
rearranging the terms (148).

6. Generalized and ordinary hypergeometric functions

The solution described above can also be obtained from
the present method, as we now show. The general func-
tion of the first kind [Eq. (194)], with the polynomials
R,S factorized in their roots, o; [Eq. (184b)] and v; [Eq.
(188a)], respectively, are

% TIl o+l —v—D - (041 —vg—D/o+l—a)) - (o+]—a,)]

I=1

— 7 .
=p% \Flo—vy,...,o—v,,o—0o;+1,...

where F is a generalized hypergeometric function,

,,Fm(al, P ,a,,;/j'l, e

j=1 I=1

B ---TB,)
T Ty Tay,) 2@/]'),{_[0 T+B)--TU+B,)

j=0

with variable £ ~& ~e ~?/L and parameters determined by

,0—0,+ 1;(—=)Y by /a,)E],

(214a)

) i
Bm;E)=14+ 3 I U +a;—1) - U4a,—D/IUT+B;— DU +B, —1)]

i TU4a) - TU+a,)

(214v)

i»0;, which are the roots of R,S. Since o is equal to one of

o1, . ..,0,,say 0=0, the generalized hypergeometric function (214a) is always of the type (F, _;:

®,(8)= lim O (&) =" \F, _[o1+]—vi—1,...,00+]+v;— Lo+l —0s, . ..
0’—)0’1

o1+l —0, (=P T(bs /a)E],  (215)

with variable £ ~¢, and s upper and » — 1 lower parameters. It would be possible to introduce similarly the generalized
hypergeometric functions of the second and third kinds, which correspond to W, and ©\!'?), respectively, and many of
the properties indicated before could be justified in terms of these functions. The fact that Egs. (155) and (157) are solv-
able in terms of generalized hypergeometric functions is known (Bailey, 1935; Erdelyi, 1953; Luke, 1975); and the direct
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approach to the problem adopted here yields, in a convenient form, the properties of waves described by the wave equa-
tions (151) and (153) with constant or exponential propagation speeds, scattering scales, or damping rates. In particular,
in the case of second-order waves, s =2=r, the solution can always be expressed in terms of hypergeometric functions
[Eq. (215)] of Gaussian or ordinary type ,F;. For example, for magnetosonic-gravity waves in a horizontal magnetic
field [Egs. (173a) and (173b)] the solution can be expressed as follows: (i) below the critical level || > 1, the indices
Vo= — + +iKL are distinct [Eq. (188a)], and the solutions (187b)

DL (1/8)=¢12FEL 1 4 ﬁ‘, cGn-t fI [(] — 5 +iKL)?/(1+2iKL)]
ji=1 =1

=e?/? e K2F (5 +iKL, 5 +iKL;1+2iKL; — By 'e*’t)

A+ (216a)
appear in terms of functions of the first kind only; (ii) above the critical level || <1, there is a double index o =0, and
the solution [Eq. (185a)] involves functions of the first kind:

Do) =1+ i &Gn-2 f[ [(I —3/2—iKL)(I —3/2+iKL)]=F(+ +iKL,+ —iKL ;1; —Boe ~?/) ,

j=0 I=1

(216b)

as well as a function of the second kind G, with the same
parameters and variable. The wave fields of
magnetosonic-gravity waves, below the critical level
(216a) and above it (216b), agree with Egs. (142b) and
(144b), respectively, in the case k|, =0 of vertical propaga-
tion.

7. Approach to critical level conditions

We have illustrated (Fig. 6) the amplitude and phase of
a magnetosonic-gravity wave, in the vicinity of the criti-
cal level, for a purely horizontal magnetic field (Sec.
I1.C.8). The extension to an oblique magnetic field leads
to the case of hydromagnetic-gravity waves, which we
have illustrated (Fig. 7) for the standing magnetic com-
ponent (Sec. III.C.2), we now consider (Fig. 8) the
upward-propagating dynamic component G, [Eq.
(204b)], for the same three parameters as in Sec. IIL.C.1.
Although in the case of an oblique magnetic field there is
no critical level, we can illustrate the approach to it as the
magnetic field tilts closer to the horizontal. In Fig. 8 we
plot the logarithm of amplitude (lhs) and phase (rhs) of
the dynamic component of an upward-propagating
hydromagnetic-gravity wave versus altitude z made di-
mensionless by dividing by the scale height L. We con-
sider Egs. (207a)—(207c) as representing the basic case A,
and give each of the parameters in turn another value,
namely, the highest in Eqs. (208a)—(208¢c). From Fig. 8
we arrive at the following conclusions regarding the effect
of each of the three parameters: case B, as the frequency
increases from a moderate value Q, =3 or v =6w, to the
ray limit Q, =5 or o = 10w, (so that w?>>w3), there is lit-
tle change in the amplitude (lhs) and a marked increase in
the phase (rhs), because for magnetic pressure larger than
or equal to gas pressure the dynamic component resem-
bles and acoustic-gravity wave, whose amplitude growth
~e?/2L is independent of frequency and whose phase shift
is proportional to frequency; case C, as the initial plasma
B is increased from 1 to 10 at the base of the atmosphere,
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the gas pressure dominates over the magnetic pressure
over the first two scale heights z <2L, allowing (lhs) a
more marked amplitude growth, until it is checked at
z >3L as the magnetic pressure takes over, while phase
(rhs) is little affected by magnetic field strength, since os-
cillations occur along magnetic field lines; case D, tilting
the magnetic field from an intermediate angle 6=45° to
near horizontal 6=75° has little effect on amplitude
growth (lhs), which is determined mainly by the decay in
atmospheric density, specified, for a uniform magnetic
field, by hydrostatic equilibrium. The effect of magnetic
field inclination is more marked on phase (rhs)—as the
magnetic field tilts closer to the horizontal 6—90°, the

PROPAGATING HYDROMAGNETIC-GRAVITY WAVES

o 8 ca

L
] o 1 ] an 27 o

logarithmic amplitude phase difference

FIG. 8. Logarithm of amplitude (left) and phase (right) vs alti-
tude z divided by scale height L, for dynamic component of
fourth-order hydromagnetic-gravity wave, propagating vertical-
ly, in the following cases: A, reference case like that of Fig. 7,
viz., wave frequency w, 3 times the cutoff value w,, i.e., = 3w,,
initial plasma f3 unity, By=1, and magnetic field at 6=45° to
the vertical; B, like the reference case, but with frequency 5
times the cutoff value, w=5w,; C, like the reference case, with
initial plasma f3 one order of magnitude larger, B,=10; D, like
the reference case, but with the magnetic field tilted 6=75°
away from the vertical (i.e., 15° from the horizontal).
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dynamic cutoff frequency [Eq. (209a)] reduces, wy—0,
and thus the important ratio Qy=w/wo=wL /nc of wave
o to cutoff frequency increases, leading to larger phase
shifts; thus, although the amplitude of the wave is bound-
ed at the critical level, the phase varies rapidly in its vi-
cinity, leading to large gradients of the waveform, i.e., to
intense dissipation and heating, even if the diffusivities
are small.

N

8. Closed and open magnetic regions

The absence or presence of critical levels can explain
the basic difference [Fig. 9(a)] observed between closed
and open magnetic regions on the solar corona. In the
open magnetic regions, such as coronal holes, the magnet-
ic field is nowhere horizontal, so critical levels do not ex-
ist, there is no intense heating, these regions remain dark,
and as the waves are not absorbed, they are available to
accelerate high-speed particle streams and propagate out
with the solar wind, where they are observed (Sec.
II1.B.8). In the closed magnetic regions, such as coronal
loops and arches, the magnetic field is horizontal at least
at one point, the top, and very inclined in its vicinity, so
that there is a critical level as well as marked phase
changes, leading to efficient dissipation and explaining
why these regions are bright and hot and dominate the co-
ronal energy balance. The widely reported observation
that coronal loops are bright and coronal holes dark
agrees with the evidence for wave dissipation in the form-
er (see references below) and wave propagation outwards
from the latter (references in Sec. III.A.8). The distinc-
tion proposed here, between coronal holes without, and
coronal loops with, critical levels, gives one possible phys-
ical explanation for those observations. Coronal loops
have been observed in Ha, radio, ultraviolet, and x-ray
wavelengths (Vaiana and Rosner, 1978; Pallavacini et al.,
1981; McConnel and Kundu, 1983; Loughhead and Bray,
1984; Bray and Loughhead, 1986). Two main areas of
research have been static stability (Chiuderi, Einaudi, and
Torricelli-Ciamponi, 1981; Landini and Mosignori-Fossi,
1981; Van Hoven, Ma, and Einaudi, 1981; Kuin and Mar-
tens, 1982; Wolfson, 1982; Batistoni, Einaudi, and
Chiuderi 1985; Cramer and Donelly, 1985; McClymont
and Craig, 1985a, 1985b) and dynamical heating processes
(Habbal, Leer, and Holzer, 1979; Galeev, Rosner, Serio,
and Vaiana, 1981; Torricelli-Ciamponi, Einaudi, and
Chiuderi, 1982; Martens and Kuin, 1983; McNeice, 1985).
Although the arches and loops are more readily visible as
magnetic structures in the “average” corona (Pottasch,
1960, 1964; Athay, 1966b; Bessey and Liebenger, 1984;
Fisher and Sime, 1984; Low, 1984; Osherovich, Tzur, and
Gliner, 1984; Osherovich, Gliner, and Tzur, 1985; van
Ballegooijen, 1985; Withbroe, Kohl, Weiser, and Munro,
1985; Wolfson, 1985), their “footprints” extend through
the transition region to the chromosphere, where the tem-
perature rises sharply from about the chromospheric
value of about 10* K to the coronal value of over 10° K
(Kopp and Kuperus, 1968; Burton, Jordan, Ridgeley, and
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Wilson, 1971; Moore and Fung, 1972; Jordan, 1976, 1980;
Dere, Bartoe, and Bruecker, 1982; Mariska et al., 1982;
Antiochos, 1984). Significant mass motions are observed,
in the form of, transients such as ejections in the corona
(Low, 1982; Oran, Mariska, and Boris, 1982; Bruecker
and Bartoe, 1983; Cargill and Pneuman, 1984; Fisher and
Garcia, 1984; Karpen, Oran, and Boris, 1984; Low,
1984b; Schmieder, Mein, Matres, and Trandberg-Hanssen,
1984; Wagner, 1984; Jackson, 1985; Sawyer, 1985; Simnet
and Harrison, 1985), and steady flows in the transition re-
gion (Dumont et al., 1980b; Gebbie et al., 1981, Dumont,
Mouradian, and Pecker, 1982; Mein, Simon, Vial, and
Shine, 1982; Mouradian et al., 1982; Athay, Gurman, and
Henze, 1983; Dumont et al., 1983; Dufton, Kingston, and
Keenan, 1984; Fang et al., 1984; Mariska, 1984; Owocki
and Canfield, 1986). The transition region from the chro-
mosphere to the corona, where intense heating occurs,
could be identified with the critical level, where vertical
magnetosonic-gravity waves are absorbed. The critical
level is located where the sound and Alfvén speeds are
equal, i.e., the gas pressure p=(2/y)P =‘uBﬁ/47ry,
where PEyBﬁ /8w is the magnetic pressure, for the hor-
izontal magnetic field component. If we take B=2G,
the gas pressure at the critical level is estimated as
p~1.7x107! dyncm™2, which is consistent with the gas
pressure in the transition region, across which pressure
varies slowly compared with temperature 7" and density p,
i.e., p~1/T. Above the critical level the velocity pertur-
bation of the magnetosonic-gravity wave grows linearly
with altitude, v~z, so that e’~e*“~1/p~T, and the
velocity perturbation is proportional to the logarithm of
temperature. This result is borne out by observations
[Fig. 9(b)] of nonthermal velocities in the transition re-
gion (Vial, Lemaire, Artzner, and Gouttebroze, 1980), in
the temperature range from T ~ 10* K (chromospheric) to
T ~10° K (coronal).

IV. RESISTIVE DAMPING AND MAGNETIC
STRUCTURES

The preceding analysis has shown that the presence of a
magnetic field changes substantially the properties of
waves in an atmosphere. Oblique Alfvén-gravity (Sec.
I1.B.6) and magnetosonic-gravity (Sec. II.C.6) waves are
reflected; vertical Alfvén-gravity waves can propagate,
with asymptotic properties (Sec. IL.B.5) very different
from those of a homogeneous medium; vertical
magnetosonic-gravity waves are absorbed at a critical lev-
el (Secs. IV.C.7 and II.C.8); and oblique magnetic fields
couple these modes into fourth-order waves with a new
cutoff frequency (Secs. III.C.2 and II1.C.3). Observations
also suggest that the magnetic field plays a dominant role
in the physics of the solar atmosphere (Gabriel, 1976;
Svalgaard and Wilcox, 1978; Golub, Rosner, Vaiana, and
Weiss, 1981; Howard and Labonte, 1981; Giovanelli and
Jones, 1982; Anzer and Galloway, 1983; Snodgrass, 1983;
Hoeksema, 1984; Athay, Jones, and Zirin, 1985; Stenflo,
1985; Stenflo and Vogel, 1986). This is the case for all
visible layers: (i) in the photosphere, the magnetic field is
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concentrated in intense flux tubes, at the boundaries of
granules; (ii) in the chromosphere, the “active” regions of
‘strong magnetic field, e.g., above sunspots, are hotter than
“quiet” regions, where the magnetic field takes smaller
average values; (iii) in the transition region there are
bright closed structures, such as loops and arches, and
dark open structures, such as “holes,” which dominate the
energy and mass balances, respectively; (iv) in the corona,
transients like ejecta, and quiescient structures like prom-
inences, are associated with magnetic forces. The origin
of the solar magnetic field is probably the dynamo effect,
which manifests itself in field topology and solar activity
(Moffatt, 1976,1978; Parker, 1977; Cowling, 1981; Dur-
ney, 1983; Eddy, 1983; Berger and Field, 1984; Yoshimu-
ra, Wu, and Wang, 1984; Pudovkin and Benevolenska,
1985; Ruzmaikin, 1985; Tong, Lu, Mao, and Han, 1985;
Wood and Moffatt, 1985); the dynamo is probably located
in the convection zone, and the magnetic field emerges in
the photosphere through complex motions involving mul-
tiple (i.e., electrical, viscous, and thermal) diffusion,
which expel the magnetic flux to the boundaries of con-
vection cells, leading to the concentration of magnetic
flux in intense tubes at the boundaries of granulation
(Weiss, 1978; 1981a, 1981b; Knochbloch and Proctor,
1981; Arter, Proctor, and Galloway, 1984; Glatzmaier
and Gilman, 1982; Proctor and Weiss, 1982; Proctor,
1983; Marcus, Press, and Teukolsky, 1983; Rabin, Moore,
and Hagyard, 1984; Simon and Wilson, 1985; Wang, Zi-
rin, and Shi, 1985; Zwaan, 1985). Magnetohydrostatic
equilibrium (Nakagawa, 1974; Serio et al, 1981; Aly,
1984; Low, 1984a; Melville, Hood, and Priest, 1984), can
be used to model large-scale atmospheric magnetic fields
(Gliner, 1984; Wolfson, 1985), as well as “local” fields in
quiescent regions like coronal prominences (Tsubaki,
1975; Milne, Priest, and Roberts, 1979; Osherovich, 1982;
Heasley and Milkey, 1983; Galindo-Trejo and Schindler,
1984; Landman, 1984; Leroy, Boomier, and Sahal-
Bréchot 1984; Nikolsky, Kim, Koutchmy, and Stellmach-
er, 1984; Anzer and Priest, 1985; Hirayama, 1985;
Osherovich, 1985). Most magnetic features in the solar
atmosphere, e.g., spicules (Sec. I.LA.8) and fibrils, are
“dynamical” (Nakagawa and Levine, 1974; Nakagawa
and Tanaka, 1974; Levine and Nakagawa, 1975; Parker,
1982a, 1982b, 1982c, 1982d; Low, 1984c; Bogdan and
Lerche, 1985), and the most significant phenomena, such
as oscillations and heating, are also unsteady; this is the
reason why waves may be the key to understanding the
global mass and energy balances in the solar atmosphere.

A. Ohmic dissipation of hydromagnetic waves

The heating of an atmosphere by waves requires the
presence of dissipation mechanisms—in the case of the
sun, viscosity (Yanowitch, 1967a, 1967b; Adam, 1975;
Maeland, 1982), thermal conduction and radiation (Lyons
and Yanowitch, 1974; Webb and Roberts, 1980; Press,
1981; Mihalas and Mihalas, 1983; Roberts, 1983a; Cally,
1984; Mihalas, 1984), and electrical resistance, which has
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been considered for homogeneous media (Alfvén, 1947;
Lehnert, 1952), turbulent ionized fluids (Batchelor, 1950;
Moffatt, 1978), loop resonances in the LCR-circuit analo-
gy (Ionson, 1982, 1984, 1985), and magneto-atmospheric
waves, using exact solutions (Campos, 1983e, 1983f) and
the phase-mixing approximation (Heyvaerts and Priest,
1983; Nocera, Leroy, and Priest, 1984; Sakurai and
Granik, 1984; Steinholfson, 1985). We have already con-
sidered atmospheric waves in the presence of viscous dis-
sipation (Secs. V.A.2.—V.A.8, in Part I), and concentrate
here on electrical resistance, deferring the case of thermal
damping to the next section (IV.B.7 and IV.B.8). The
LCR-circuit analogy for magneto-atmospheric waves
neglects the variation of atmospheric properties with alti-
tude, through the use of constant or “lumped” coeffi-
cients. This is equivalent to replacing oscillations in a
tapering string by oscillations in a uniform string, or
sound in a horn of varying cross section by sound in a
uniform tube; any second-order wave, e.g., Alfvén-gravity
or magnetosonic-gravity type, is reduced to the same
LCR circuit, with the sole difference lying in the values
of the “lumped” inductance, resistance, and capacitance,
whose estimation is uncertain to the extent of variation of
wave speeds and damping rates with altitude. The LCR-
circuit analogy with forcing shows that, in resonance con-
ditions, the energy extracted is independent of the electri-
cal diffusivity, i.e., as long as the diffusivity is nonzero,
the wave field evolves so as to yield a given rate of energy
dissipation. This property is analogous to the absorption
of vertical magnetosonic-gravity waves at the critical lev-
el, since energy deposition requires a nonzero diffusivity,
but the amount of the energy lost by the waves is deter-
mined by the reduction of their rate of growth in the vi-
cinity of the critical level, from exponential far below to
linear far above. The same result, viz., a rate of dissipa-
tion -independent of the diffusivity, is obtained by phase
mixing of Alfvén waves in a region of rapidly varying
wave speed, since adjoining wave components acquire dif-
ferent phases, and their mixing produces large waveform
gradients that increase until the available diffusivity,
however small but nonzero, produces the required dissipa-
tion rate. The process is relevant to magnetosonic-gravity
waves near a critical level, since in its vicinity the propa-
gation speed changes rapidly from an almost acoustic to
almost Alfvénic form, causing large phase shifts, hence
steep waveforms, and intense dissipation, even if the dif-
fusivity is small. Since we have considered earlier the
coupling of compressibility with viscous damping, i.e.,
viscous acoustic-gravity waves (Sec. V.A. of Part I), we
concentrate now on the coupling of magnetism with elec-
trical resistance, i.e., resistive Alfvén-gravity waves; this
will lead us to the comparison of properties in Table 11,
which will be gradually justified in the exposition that fol-
lows.

1. Viscous and resistive Alfvén waves

We consider Alfvén waves, propagating in the z direc-
tion of the external magnetic field Be,, with velocity and
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TABLE II. Hydrodynamic and hydromagnetic waves in atmospheres.

Wave Hydrodynamic Hydromagnetic
Example Viscous acoustic gravity Resistive Alfvén gravity
Perturbation Velocity Velocity Magnetic field
Type Longitudinal Transversal Transversal
Atmospheric properties:
Propagation
Speed Sound Alfvén
Nonisothermal atmosphere Bounded? Unbounded®
Isothermal case Constant® Exponential growth®®

Dissipation
Mechanism
Nonisothermal atmosphere
Isothermal case

Cutoff frequency

Energy densities

Undamped waves

Initial wave field
Amplitude
Phase
Equipartition
Total energy
Energy scaling

Asymptotic, standing modes
Amplitude
Equipartition
Total energy

Kinematic viscosity
Unbounded®
Exponential growth®
Yes

Kinetic, compression

Exponential growth®
Linear growth®

Yes

Kinetic + compression
Constant

Exponential growth®
Yes
Kinetic + compression

Energy scaling Constant

Asymptotic, propagating waves

Amplitude Exponential growth®
Phase Linear growth*
Equipartition Yes

Total energy

Energy scaling Constant

Kinetic + compression

Electrical resistivity
Bounded?

Constant"

No

Kinetic, magnetic

Exponential decay’
Linear growth!

Exponential growth!
Linear growth!

Yes

Kinetic + magnetic
Exponential decay™

Constant

No

Kinetic
Exponential decay”

Exponential decay”

Linear growth Constant
Constant Constant
No

Magnetic

Constant

# Atmosphere with bounded temperature.

® Nonzero magnetic field and decaying density.
¢ Perfect gas.

4 Uniform magnetic field.

¢On twice the scale height ~e
f Nonzero kinematic viscosity and decaying density.

z/2L

magnetic field perturbation in the x direction, B=(4,0,B)
and v=(v,0,0), so that the viscous momentum [Eq. (1)]
and resistive induction [Eq. (2)] are

v—(a?/B)dh /3z =v\V? , (217a)
h—Bov/3z =XV . (217b)

Here V?=02/03z2+09%/3y? is the Laplacian operator; we
have neglected rotation Q=0 and the Hall effect, respec-
tively, and introduced the Alfvén speed a [Eq. (38a)] and
the magnetic diffusivity X =c2 /4mun, the latter with di-
mensions similar to those of the kinematic viscosity v.
Only the incompressible viscosity v; [and not the
compressible viscosity v, in Eq. (217a)] appears, because
Alfvén waves, being transversal, do not cause density or
pressure perturbations. For this reason, we do not need
the equation of energy (5), and Alfvén waves are not af-
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fected by thermal conduction and radiation at the linear
level. The Alfvén wave equations (217a) and (217b) are
exactly linear, even for waves of finite amplitude, since all
nonlinear terms cancel. The convective acceleration
(v-V)v=0 vanishes, since V=e,0/dy 4€,0/0z and
v=ve,; Alfvén waves propagate not only perturbations of
velocity v and magnetic field h, but also a nonzero elec-
tric current j=(c /47w )VAh, producing a Lorentz force
¢+ 'jAh, which couples nonlinearly to compressive fast
and slow modes, and through them to thermal conduction
and radiation. We defer the study of nonlinear effects to
Sec. IV.C, and concentrate here on linear, dissipative
waves, described by Egs. (217a) and (217b) for the Alfvén
type, where the Alfvén speed a, viscous diffusivity v, and
electrical diffusivity X may all depend on the coordinate
z, e.g., altitude. Elimination of v and h between (217a)
and (218b) leads to fourth-order equations, for the veloci-
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TABLE II. (Continued).

415

Wave Hydrodynamic
Example Viscous acoustic gravity
Perturbation Velocity
Type Longitudinal

Hydromagnetic
Resistive Alfvén gravity
Velocity Magnetic field
Transversal Transversal

Dissipative waves
Critical level

Type Reflecting layer

Low-altitude regime Compressive
High-altitude regime Viscous

Cause Viscous stress-strain
Boundary condition Dissipation

Initial wave field

Amplitude Exponential growth®
Phase Linear growth®
Equipartition Yes
Total energy Kinetic + compression
Energy scaling Constant
Asymptotic field, standing mode
Amplitude Constant
Equipartition No
Total energy Kinetic

Energy scaling
Asymptotic field, propagating wave

Exponential decay"

Amplitude Constant
Phase Constant
Equipartition No

Total energy Kinetic

Energy scaling Exponential decay"”

Transition layer
Resistive
Magnetic

Joule effect
Damping

Exponential or constant®
Linear growth

No

Kinetic + magnetic
Exponential or constant?

Exponential or constant®
Linear growth!

Constant Exponential decay'
No

Kinetic

Exponential decay'

Linear growth Constant
Constant Constant
No

Magnetic

Constant

8On the scale height ~e?/%.

" Constant rate of ionization.

{On four times the scale height ~
10n four times the scale height ~e
X On effective wave number ~ e %z,
'0n Alfvén wave number ~e'%?/9,
™ On twice the scale height ~e ~?/2%,
"On scale height ~e ~%/L,

ez/4L
—z/4L

°As exp[z(1/L —V w/2X)), i.e., exponential growth for w < 2XL?, decay for ® >2Y¥L?, and constant for 0 =2XL>2.

P As the square of footnote n.

ty and magnetic field perturbations, respectively, of
viscous and resistive Alfvén waves:

V—a%" —vV% —aXVHa ") +vXa?VHa ~*V)=0,
(218a)

h—(a?h') —(vi+X)V2h +vXV*h =0, (218b)

where we have assumed constant electrical diffusivity X
and viscous diffusivity v;, and where the other parame-
ters, viz., (a,v;) in Eq. (218a) and (a,X) in Eq. (218b),
may depend on z. Dot and prime denote derivatives with
respect to time and altitude, f =9f/dt, f'=0df /9z, and
V2 is the Laplacian V2f =f"+3%f/3y2 In the absence
of dissipation, X =0=v;, Eqgs. (218a) and (218b) reduce to
Egs. (162a) and (162b). The wave equations for viscous
and resistive Alfvén modes are generally distinct for the
velocity perturbations [Eq. (218a)] and magnetic field per-
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turbations [Eq. (218b)], and only coincide,
[0%/3t?—a?d%/dz?
— (X +v)VR/+Xv Vg, by (3,2,6)=0,  (219)

if the Alfvén speed a and viscous and electrical diffusivi-
ties, v; and X, respectively, are all constant.

2. Weak-damping and phase-mixing approximations

If the diffusivities v;,X are small, we can neglect their
product v X, and the equations of viscous and resistive
Alfvén waves [Egs. (218a) and (218b)] drop from fourth
to second order in z; in the case of the velocity perturba-
tion (218a) we obtain

% /3t* —a?d% /0z% = (v, + X )( 3%/3z%*+ 8% /3y*)dv /¢t ,
(220)
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where the external magnetic field B(y) and Alfvén speed
a(y) can only depend on the coordinate y transverse to
the plane (x,z) of the direction of propagation B=Be,
and of the velocity and magnetic field perturbations
v||h||e,. The waves may propagate along open or closed
magnetic field lines, which correspond, respectively, to
conservation of frequency w or longitudinal wave number
k| (parallel to B), related by w=ka. Since the medium

|
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may be inhomogeneous in the transverse or y direction,
the wave number k|, may depend on y, and we seek a
solution of Eq. (195) in the form
+
vzt = [ [ Wy2expli(k(p)z —onldwdk, .
(221)

Substituting Eq. (221) into (220) we obtain

W, —[a?— i+ X)Wy +2ik Wy, — k2 Wy ) +io(X +v1)[dWy /3y +2iz (dk, /dy)dW, /3y

Note that in the absence of dissipation, X =0=v,, the
waveform would be independent of z, and thus the weak-
damping approximation may be stated 0/0z <<k); also,
for altitudes or distances of propagation much larger than
the length scale of variation of the wave number,

z>>{d[Ink(»)]/dy} =1,

the phases of the waves may have evolved differently on
adjoining magnetic field lines, leading to phase mixing.
The combined weak-damping and phase-mixing approxi-
mations simplify Eq. (222) to the third and last terms,

W'=—z%8,—i)"'[(dk /dy)* 2k W , (223a)
Se=a’/oX +vy), (223b)

where 8, is a dimensionless inverse damping parameter,
i.e., large for small diffusivities, low-frequency waves, and
large Alfvén speed. From Eq. (223a) it follows that the
wave field decays at large distances as

W (y,2)=W (p,0)exp[ — (k2°/11)/6(8, —i)] , (224a)
Li=ky(dk,/dy)~", (224b)

with the increase of distance of propagation z measured
on the wavelength A, =27/k| and on the length scale
(224b) of inhomogeneities, the effect being more marked
for larger diffusivity 1/6,. The solution (224a) has a
phase term, which was omitted in the original paper on
phase mixing (Heyvaerts and Priest, 1983) under the as-
sumption that 8, >>1 in Eq. (224a).

3. Competition of magnetism and electrical diffusivity

The equations of dissipative Alfvén-gravity waves
[(218a) and (218b)] drop from fourth to second order in
space, if one of the two diffusion processes, fluid viscosity
or electrical resistance, is absent, regardless of the magni-
tude of the other. Assuming vertical waves, of frequency
o [Eq. (167)], we find that Egs. (218a) and (218b) simplify
to

Wi 4(w/aPW,—(i/8)a*(a >W,)"=0,
a~a’H,) +(w/a’H, —(i /8)H; =0,

(225a)
(225b)

where the inverse damping §=a?/wX is calculated for the
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+iz(d*ky /dy* )Wy —zX(dk, /dy?W,]1=0 . (222)

[

electrical diffusivity X alone, and the external magnetic
field B is assumed to be vertical and uniform. In a non-
isothermal ionized atmosphere (Chapman and Cowling,
1949; Spitzer, 1956), with bounded temperature, the elec-
trical conductivity 7 is finite and nonzero, and so the
electrical diffusivity X =cZ% /4mun is bounded; the Alfvén
speed [Eq. (38b)] is unbounded for a nonzero external
magnetic field, as the density decays to zero at high alti-
tude. The combination of bounded diffusivity and un-
bounded propagation speed should lead to the appearance
of a critical level, separating a low-altitude region of dom-
inant diffusion from a high-altitude region where propa-
gation predominates. This picture of resistive Alfvén
waves in an atmosphere is precisely the opposite of that of
viscous acoustic-gravity waves (Sec. V.A. of Part 1), for
which the sound speed is bounded and the viscous dif-
fusivity is unbounded. In the latter case, of bounded
propagation speed and unbounded diffusivity, a critical
level also exists, but it separates a low-altitude region
where propagation predominates from a high-altitude re-
gion where damping is dominant. We shall show, in due
course, that this “inversion” in the location of the propa-
gation and damping regions will change the character of
the critical level (Sec. IV.A.8) and the type of boundary
condition (Sec. IV.A.7) needed to render the wave field
unique. In order to calculate the wave fields explicitly,
we consider an isothermal atmosphere, for which the
Alfvén speed squared [Eq. (99a)] increases exponentially
on the scale height, and, if the rate of ionization is con-
stant, the electrical diffusivity X is a constant. This is the
inverse of viscous acoustic-gravity waves in an isothermal
atmosphere, for which the sound speed is constant (Sec.
V.A.4 of Part I), but the viscous diffusivity increases ex-
ponentially on the scale height. We note, in passing, that
the fourth-order wave equations [(218a) and (218b)] for
viscous and resistive Alfvén waves, in an isothermal at-
mosphere with constant rate of ionization, have constant
or exponential coefficients, i.e., are of the type (151), and
can be solved by the general method of Sec. III.

4. Equations reducible to the hypergeometric type

Since we wish to make a direct comparison of viscous
acoustic-gravity and resistive Alfvén waves, we shall take
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as a .starting point the inviscid momentum equation
[217(a), with v;=0] and resistive induction equation
(217b):

v, =(a?/B)h, , (226a)

hy —Buv,=Xh, . (226b)

Bearing in mind that the Maxwell equation V-B=0 im-
plies that the external vertical magnetic field B is uni-
form, we see that Eqgs. (226a) and (226b) can be eliminated
for the velocity perturbation v and magnetic field pertur-
bation A, respectively:

Uy —a?vy —a?[X(a "%, )} =0, (227a)

b, —(a*h.y —Xh=0. (227b)

The wave equations for the velocity and magnetic field
perturbations of resistive Alfvén, waves hold for Alfvén
speed a(z) and electrical diffusivity X(z), varying in the
direction of propagation z. In the case of vertical waves,
in an isothermal atmosphere, under a uniform magnetic
field, and with constant rate of ionization, we have con-
stant B,X and a’'/a =2L, so that the vertical velocity per-
turbation spectrum satisfies

(@%e?’ T —iwX )W} +2i(wX /LYW, +(0*—iowX /L*)W,
=0. (228)

The resistive Alfvén wave propagates not only a velocity
perturbation v, but also a magnetic field perturbation A,
which can be calculated from the former by Egs. (226a)
and (226b):

h, =B, +X[(B/a*}) , (229a)
H,(z;0)=i(B/)[1—(i/8)e 2 F1W,
—(B/wL)8 le—*tw, . (229b)

Since the magnetic field perturbation 4 is transverse to
the direction of propagation of the resistive Alfvén wave,
the latter also propagates an electric current j, which is
specified by the Maxwell equation j,=(c, /4m)h, and
momentum equation (226a) as

Jy=(c« /4m)hy;=(c B /4ma*), , (230a)
T, (z30)=—i(0cp/uB)Wy(zio)
= —(wcypo/uBle "W (z;0) . (230b)

The wave equation (228) is of second order, with exponen-
tial coefficients, i.e., of type (153), with polynomials [Egs.
(156a) and (156b)] both of second degree, and thus its
solution can be expressed (Sec. III.C.6) in terms of ordi-
nary hypergeometric functions of type ,F;. We have al-
‘ready encountered three other instances of reduction of
linear second-order differential equations with exponen-
tial coefficients to the hypergeometric type: (i) vertical
viscous acoustic-gravity waves in an isothermal atmo-
sphere with uniform kinematic viscosity (Sec. V.A of Part
I); (ii) oblique acoustic-gravity waves in a three-parameter
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family of nonisothermal atmospheres, with exponential-
like temperature profile (Sec. II.A); and (iii) oblique
magnetosonic-gravity waves in an isothermal atmosphere,
under a uniform horizontal magnetic field (Sec. IL.C).
The present problem, viz., vertical resistive Alfvén-gravity
waves, in an isothermal atmosphere, with uniform vertical
magnetic field and constant rate of ionization, is the
fourth such instance, as we now show.

5. Magnetic propagation in the high-altitude range

We perform the change of variable (154a), where &, is
— /8, with 8 the inverse damping parameter:

E=ilwX/aY)e *t=(i/8)e %L,

W, (z;0)=D() .

(231a)
(231b)
Equation (228) transforms to a hypergeometric equation:

(1= +(1-30)P' —(1+ie5/8)®=0,  (232)

where g, is the initial compactness [Eq. (106b)]. The pa-
rameters of the hypergeometric equation satisfy y,=1,
and as+Bs=2, asBy=1+ie3/8=1+iwL?*/X, so that
they are given by

(233a)
(233b)

?’4=1 s

oy Ba=1+V —ies/8=1+(i —1)LVw/2X .
Since the parameter 7, is unity, the general integral of the
hypergeometric equation (23b) is a linear combination of

the functions of the first and second kinds, F and G,
respectively:

W, (z;0)=A,F,[(i/8)e >+ A,G,[ (i /8)e ~?/L] ,

(234a)
Fy,G(6)=F,G(14(i —1)LV@/2X,1
—(i -1 LVw/2X;1;§) . (234b)

Asymptotically at high altitude, as z— o and {—0 in
Eq. (231a), the function of the first kind tends to unity,
F,—1, and that of the second kind has a logarithmic
singularity,

Gy~In[—(i/8)e *F=—z/L —in/2—Inb .

Thus the velocity perturbation of resistive Alfvén-gravity
waves grows linearly with altitude in the asymptotic re-
gime:
W (z;0)~—Ayz/L + Ay —A,[in/2+1In(a*/wX)] .
(235a)

The perturbations of magnetic field [Eq. (229b)] and elec-
tric current [Eq. (230b)] associated with Eq. (235a) are

H(z;w)~—i(B/wlL)A, , (235b)
J(z;0)~ —i(poc, /uBL)Ayze ~/L . (235c¢)

We conclude that the asymptotic fields of resistive
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Alfvén-gravity waves satisfy laws qualitatively similar
[Eq. (108a)] to those of nondissipative Alfvén waves
[compare Egs. (235a) and (115a)], because in the high-
altitude range propagation predominates over dissipation.

6. Dominant diffusion in the low-altitude range

The preceding solution [Egs. (234a) and (234b)] is only
valid for |§| <1 in Eq. (231a), i.e., for the high-altitude
range z >z3, above the critical level, which is located, in
the present case, at the altitude (236a) and for resistive
Alfvén-gravity waves in atmospheres with general Alfvén
speed a(z) and electrical diffusivity X(z) profiles, at z3
satisfying (236b):

z3=—L Ind=L In(wX /a}) ,
X(z3)o=[a(z;)]*.

(236a)
(236b)

Below the critical level z <z;, we have |{| >1 by Egs.
(236a) and (231a), and the solution (140), in terms of hy-
pergeometric functions of variable 1/¢, should be used.
Thus the velocity perturbation of resistive Alfvén-gravity
waves is specified, in the low-altitude range z <z, below
the critical level, where diffusion predominates over prop-
agation, by a linear combination

Wizi0)=A, WH(z;0)+A_W{ (z;0) (237a)
of the functions
Wi(z;w)=explz/L+(i —1)zVw/2X]

XF(1+(i —1)LV @ /2X,1+(i —1)LV 0 /2X;1

(i — DV 20/X; —i8e*") . (237b)

The leading term of Eq. (237b), viz.,
WZE(z;w)~explz/L ¥k z)exp(+ik,z) , (238a)
ki=Vw/2X , (238b)

shows that the phase is determined by an “effective wave
number” (238b), which is specified by the wave frequency
o and electrical diffusivity X. This wave number is the
real part, kK, =Re(k,), of the wave number k,, corre-
sponding to the dispersion relations

io=k2X , -
dv /3t =Xd% /8z? ,

(239a)
(239b)

for the classical diffusion equation (239b) for the velocity,
and shows that indeed Ohmic dissipation dominates, to
leading order, magnetic propagation, for resistive Alfvén
waves in the low-altitude range. If we perform the substi-
tution (146), we obtain from Eq. (237b) the wave fields
WZ in the form

WE(z;0)=(1—i8e?/ L)1 TN =DLYV o/Xexp[ 7 /L +(i —1)k,z]
XF(1+(i —1)LV®/2X,+(i —1)LV'©/2X;1

(i —DLV20/X;(1—i8e?/F)~1) |
(240a)
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This form is valid over the entire altitude range, including
at the critical level where the amplitude and phase are fi-
nite and specified by

Wxi(z3;w):(1_i)li(l—i)LV—a{/_Z)(
XF(1+(i —1) LV w/2X,+(i — 1)LV ©/2X;1

(i — DLV 20 /X;(1+0)/2) . (240b)

7. Damping condition for dissipative waves

Since the resistive Alfvén wave propagates an electric
current, we must require that the total energy dissipated
by Joule effect, in a column of gas extending over the en-
tire height of the atmosphere (up to infinity), be finite:

-1 re .y 2
Ex=- [ V@0 | %2
ci

=~ [ 4B (z;0)/dz |%dz .

(241)

Substitution of Eq. (235a) into (241) shows that this con-
dition is satisfied for all 4, and A, [in Eq. (234a)], i.e.,
since for resistive Alfvén waves in the high-altitude range
propagation dominates dissipation, the dissipation condi-
tion (241) is always satisfied and does not serve to deter-
mine any of the constants of integration in Egs. (234a)
and (234b); this contrasts with the case of viscous
acoustic-gravity waves, for which dissipation is dominant
in the high-altitude range, and the dissipation condition
(Sec. V.A.6 of Part I) eliminates one of the particular in-
tegrals. Thus, in the case of resistive Alfvén waves, we
have to replace the dissipation condition by a different
“damping” condition that will be effective in the low-
altitude range. In a homogeneous medium, a damped
wave has a decreasing amplitude, but we could not impose
such a property on a dissipative atmospheric wave, be-
cause the density decrease with altitude (stratification ef-
fect) tends to increase wave amplitude—if stratification
predominates, the wave still increases in amplitude in
spite of dissipation, and conversely, if dissipation predom-
inates, it decreases in amplitude, whereas if the two bal-
ance the amplitude is constant. Thus a damping condi-
tion (Campos, 1983d) should be a relative statement com-
paring dissipative and nondissipative waves in the same
stratification conditions: the presence of dissipation
should reduce the amplitude of the wave, when compared
with a nondissipative wave in a medium with the same
stratification. If we apply this damping condition in the
low-altitude range [Eq. (238b)], it is clear that the pres-
ence of electrical resistance decreases the amplitude of the
W, solution by exp( — k,z), whereas it increases the W~
solution by exp(-+ k;z), so that we must suppress the
latter, and may retain the former, by setting 4  £0=4_
in Eq. (237a). The remaining constant of integration A4
is determined from the initial velocity perturbation. The
choice of the solution W, in Eq. (240a) implies that the
wave field in the low-altitude region [Eq. (238b)] has, to
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leading order, an amplitude evolution (Sec. V.A of Part I), the critical level acts as a reflecting
layer, since viscous dissipation is dominant in the high-

| W (z;0) | ~explz/D5) (2422) altitude range, and excludes wave propagation there; (type
1/L=1/L —V@/2X , (242b) IID) for resistive Alfvén waves (Sec. IV.A) the critical level

acts as a transition layer, between a low-altitude region of

which is exponential on a scale I,; this scale coincides dominant dissipation and a high-altitude region where
with the scale height L, reduced on account of electrical waves may propagate unhindered by damping; (type I) for
resistance. The effective length scale /; in Eq. (242b) nondissipative magnetosonic-gravity waves (Sec. I1.C), the
demonstrates the competition between density stratifica- critical level is of type III or II, i.e., a transition layer for
tion and electrical resistance, which tends to cause wave vertical propagation, or a reflecting layer for oblique
growth or decay with altitude. The net result is that there propagation, and in the case of evanescent waves is a
is wave decay for X <w/2L? ie, high frequencies singular layer, i.e., a critical level of type I. For viscous
®>2XL? and wave growth for X >w/2L? i.e., low fre- acoustic-gravity waves, letting viscosity vanish does not
quencies @ <2XL? The amplitude is constant if the two  recover nondissipative acoustic-gravity waves, because the
effects balance, X=w/2L? ie., for the frequency critical level recedes to infinity but still reflects the waves,

2 . . .

@y =2XL". producing downward-propagating components, which
would not exist in the nondissipative case. For resistive

8. Critical level as a transition layer Alfvén waves in the low-altitude range, where electrical

diffusivity predominates, in the limit of perfect conduc-

The damping condition has succeeded in determining  tiVity 7—0 and X — oo, the waves grow [Eqs. (242a) afd
one of the constants of integration, in the case of resistive ~ (242b)] exponentially on the scale height | W, |

Alfvén waves in an atmosphere, for which purpose the ~exp(z/L), which also differs fforfl the amplitude law
dissipation condition was useless; conversely, the dissipa- [Eq. (170a)] for nondissipative Alfven.waves at low alti-
tion condition is capable of determining a constant of in- tude (Sec. I1.B.4). Propagation predominates over dissipa-

tegration in the case of viscous acoustic-gravity. waves tion in the high—alt'itude range, and we may expect the
(Sec. V.A.6 of Part I), for which the damping condition nondissipative solution to be recovered in t.he limit of van-
would be trivially met, since viscous acoustic-gravity ishing diffusivity X—0, as we now confirm. When the
waves always grow more slowly (at most linearly) than diffusivity reQuc¢s, X —0, the parameters (233b) .Of the
nondissipative acoustic waves (which grow exponentially). hypergeometrxc.functxons of the first and second2 kinds, F
Thus the damping (Campos, 1983d) and dissipation and G, resp'ectlvely, become large, a4,8;3~wL"/X— oo,
(Yanowitch, 1967b) conditions may each be of use for and the relation

waves in diffusive atmospheres, that is, for the cases in

which dissipation predominates over propagation either in lim F,G(a,B;v,5)=Jy, Y0(2\/‘_—&BZ) (243)
the low-altitude region, below critical level, or in the f— o

high-altitude region above critical level. We have thus

found three types of critical levels for vertical waves in at- shows that we obtain Bessel function’s J, and Neumann

mospheres: (type II) for viscous acoustic-gravity waves functions Yy
|

;in})F,G((i — 1LV @ /2X,(i — 1)LV @/2X;1;i (0X /ad)e ~2/L)=Jy, Yo[ (2L /ay)e ~3/* ], (244)

T
which specify [Egs. (111a) and (112a)] nondissipative tive to heating theories based on dissipation of propaga-
Alfvén waves. ting or resonant magneto-atmospheric modes (Alfvén,

1947; Osterbrock, 1961; Hollweg, 1972, 1978, 198l1a,

1981b, 1984a—1984d; Adam 1977a, 1977b, 1981, 1984;

B. Magnetic slabs and flux tubes Leroy and Bel, 1979; Leroy, 1980, 1981, 1983, 1985; Bel
and Leroy, 1981; Kuperus, Ionson and Spicer, 1981;

Wave dissipation is one of the mechanisms proposed in Hollweg, Jackson, and Galloway, 1982; Ionson, 1982,

connection with the controversial, and still unresolved, 1984, 1985; Leroy and Schwartz, 1982; Schwartz and
problem of heating the solar and stellar atmospheres. A Leroy, 1982; Campos, 1983a, 1983b, 1984b, 1984c, 1985a;
variety of nonwave heating mechanisms have been pro- Hollweg and Sterling, 1984; Pasachoff and Landman,
posed, based on magnetic, electrical, and thermodynamic 1984; Schwartz and Bel, 1984; Schwartz, Cally, and Bel,

effects (Lerche and Low, 1980; Lindsay, 1981; Parker, 1984; Campos and Leitao, 1986). We have argued that
1981a, 1981b; Sturrock and Uchida, 1981; Hinata, 1983; the absorption of vertical magnetosonic-gravity waves at
Mestel and Moss, 1983; Spicer, 1983; Heyvaerts and the critical level, which is located in the transition region,
Priest, 1984; Qing, Zuang, and Youyi, 1984; Rabin and could explain the intense heating in closed coronal struc-
Moore, 1984; Schatten and Mayr, 1984; Kumar and tures and the sharp temperature rise to over 10° K in the
Narain, 1985; Browning and Priest, 1986), as an alterna- corona (Sec. ITI.C.8). This view was supported by a com-
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FIG. 9. Comparison (left) of closed and open magnetic regions in the solar corona, characterized, respectively, by the presence or ab-
sence of critical levels, and resulting features; comparison (right) of nonthermal velocities observed in the solar transition region (Vial,
Lemaire, Artzner, and Gouttebroze, 1980), with the theoretical scaling (solid curve) of the velocity perturbation of vertical

magnetosonic-gravity waves vs atmospheric temperature.

parison (Fig. 9) of the predicted wave velocity perturba-
tion and observed nonthermal velocities, as a function of
temperature. The dissipation of Alfvén waves is more
gradual, and could explain (Sec. 1.B.8) the more gradual
temperature rise (and associated almost exponential densi-
ty decay) in the chromosphere (Fig. 2). As further sup-
port for this view, we compare in Fig. 10 the horizontal
nonthermal velocities observed in the chromosphere
(Beckers and Canfield, 1975), with the (horizontal) veloci-
ty perturbation of an Alfvén wave, propagating vertically
in [Fig. 10(a)] a uniform external magnetic field (Campos,
1984b) and [Fig. 10(b)] a magnetic flux tube (Hollweg,
1981a). Both plots are broadly consistent, showing that
both magneto-atmospheric waves and magnetic flux tube
modes are relevant to the physics of the solar atmosphere;
the reason is that the magnetic field configuration in the
solar atmosphere (Gabriel, 1976; Anzer and Galloway,
1983), sketched in Fig. 11, shows an evolution from in-
tense magnetic flux tubes, concentrated at the boundaries
of the granulation in the chromosphere, to an almost uni-
form magnetic field, in the high chromosphere, transition
region, and corona, as the flux tubes fan out rapidly in the
low chromosphere and merge in the mid chromosphere.
The basic modeling of magnetic flux tubes concerns their
equilibrium and dynamics (Parker, 1981a, 1981b; Spruit,
1981a, 1981b; Van Ballegooijen, 1982; Simon, Weiss, and
Nye, 1983; Osherovich, 1984; Stenflo and Harvey, 1985;
Pizzo, 1986), and the stability of the associated magneto-
atmospheric structures (Zweibel, 1981; Adam, 1982a,
1982b, 1982c; An, 1984; Gaffet, 1984; Hasan, 1984, 1985;
Roberts, 1984a; Vainshtein and Parker, 1986; Yeh, 1986).

Rev. Mod. Phys., Vol. 59, No. 2, April 1987

These magnetic structures can act as waveguides (Spruit
and Roberts, 1983) for surface and body modes, viz., in
flux tubes (Roberts and Webb, 1978, 1979; Hollweg,
1981a; Rae and Roberts, 1982b; Edwin and Roberts, 1983;
Parker, 1983; Bogdan, 1984; Narayan and Somasun-
daram, 1985; Cally, 1986; Hassan, 1986; Lee and Roberts,
1986) and on interfaces or in slabs (Wentzel, 1979a;
Roberts, 1980b; Rae and Roberts, 1981; Roberts, 1981a,
1981b; Edwin and Roberts, 1982; Somasundaram and
Uberoi, 1982; Rae and Roberts, 1983a, 1983b; Roberts,
Edwin, and Benz, 1983, 1984; Narayan and Somasun-
daram, 1985), both of which can support dissipation
mechanisms (Wentzel, 1979b; Lee, 1980; Webb and
Roberts, 1980; Spruit, 1982; Gordon and Hollweg, 1983;
Roberts, 1983a).

1. Magneto-hydrostatic equilibrium and stability
of a perfect gas

The magneto-atmospheric waves studied earlier (Secs. 1,
II, III, and IV.A) and the flux tube modes to be con-
sidered below (Secs. IV.B and IV.C) are the two possible
cases of unsteady motions, in a gas under gravity and
magnetic fields, for which stratification is one dimension-
al, i.e., mean-state quantities may depend on one coordi-
nate, such as altitude z, but are uniform in the transverse
(x,y) plane. The equation of magneto-hydrostatic equili-
brium  (9b), for gravity pointing downwards,
g=(0,0,—g), and pressure p, density p, and magnetic
field B depending only on altitude z, reads
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HORIZONTAL VELOCITIES IN THE SOLAR CHROMOSPHERE
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FIG. 10. Comparison of nonthermal horizontal velocities ob-
served in the solar chromosphere (X, Beckers and Canfield,
1975) with the velocity perturbation of Alfvén waves, calculated
theoretically (solid curve) for vertical propagation in (a) an at-
mosphere under a uniform magnetic field of strength
B,,,Bo,Bms=12.7, 60, 108 G, corresponding to the mean B,,,
root-mean-square B, and average Bo=(B,, +Bmns)/2 mag-
netic field strength in the solar photosphere (Campos, 1984c);
(b) a magnetic flux tube, in magneto-hydrostatic equilibrium
with VAL-III model of the solar chromosphere (Hollweg,
1981a), for three values of the energy flux in ergcm 2s~1.

(p +uBf/8m) +pg =0,

where a prime denotes derivative with regard to altitude,
the horizontal magnetic field

B\ (z)=By(z)e, +B,(z)e,

is an arbitrary function of altitude, and the vertical B;
magnetic field component B=B,+B,e, is constant, on
account of Maxwell’s equation 0=V-B=B. Equation
(245b) shows that one-dimensional magneto-hydrostatic
equilibrium is possible only in two cases: (i) Bj=0, in
which case.the éxternal magnetic field is uniform, but of
arbitrary direction relative to the vertical, i.e., the case of
general hydromagnetic-gravity waves (Sec. III), including
as particular cases acoustic-gravity, Alfvén-gravity and
magnetosonic-gravity waves; (ii) the vertical magnetic
field component is zero, B, =0, in which case the hor-
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(245a)

MAGNETIC FIELDS IN SOLAR ATMOSPHERE

FIG. 11. Diagram of magnetic field pattern in the solar atmo-
sphere (Gabriel, 1976), showing (bottom) the magnetic flux
tubes emerging at the edges of granules in the photosphere, fan-
ning out with altitude in the chromosphere, and eventually
merging into a uniform magnetic field in the transition region to
the corona.

izontal magnetic field B)(z) can have an arbitrary depen-
dence on altitude, leading to waves in flux tubes, current
sheets, and magnetic slabs. In the case (i) of a uniform
magnetic field, Eq. (245a) reduces to the equation (72a) of
magneto-hydrostatic equilibrium, that is, for a perfect gas
p =pRT, the gas pressure p and mass density p stratifica-
tion laws are

p(2)/p(0)=p(2)T(2)/p(0)T (0)=exp[ —n (2)],  (246a)
n@= [ g/RIT®)de= [[[LHI'dE, (246b)

for a given temperature T7(z) or  scale height
L (z)=RT(z)/g profile. In this case the condition of con-
vective stability for a perfect gas is Eq. (74). In the case
(i) of a horizontal nonuniform magnetic field, the
magneto-hydrostatic equilibrium is affected, by adding to
the gas pressure gradient p’ the magnetic pressure P’

(247a)
(247b)

p'=—pg +P'=—p/L+P",
P(z)=(u/8m)[B(2)]*.
The gas pressure profile (247a) is given by

p@)=[pot [, P@lexpln (©)1dE |expl—n(2)], (2470

which reduces to Egs. (246a) and (246b) in the case of
magnetic field of constant strength, P'=0. The condition
of convective stability (73a) is not changed in the presence
of a horizontal nonuniform magnetic field (Newcomb,
1961), on the condition that dp /dz is replaced by the gra-
dient dP, /dz of the total P, =p + P (gas plus magnetic)
pressure. The evaluation of the temperature gradient in
Eq. (73b) is modified, because (Thomas and Nye, 1975)
the gas pressure gradient is specified by magneto-
hydrostatic [Eq. (245a)] instead of hydrostatic [Eq. (72a)]
equilibrium:



422 L. M. B. C. Campos: Interaction of sound with magnetic and internal modes

dT/dz > —g(1—1/y)/R —(pR)~'d (uB} /8)/dz

=(dT /dz),g—(pR)"'dP/dz . (248)

Thus a magnetic field increasing dP /dz> 0 with altitude
stabilizes the atmosphere, since it opposes parcel displace-
ments from the equilibrium position, while a field that de-
creases with altitude, dP/dz <0, destabilizes the atmo-
sphere, since it favors parcel displacements from the
equilibrium position. An isothermal atmosphere,
dT /dz=0, may be destabilized, dP/dz <pR (dT /dz),4,
by a magnetic field decaying rapidly with altitude. For
example, in the case of constant Alfvén speed
By~e L, P~e~*/L dP/dz = —(Py/L)e ~*'F, convec-
tive stability, pRPy/L <g/C,, requires that the initial
magnetic field strength B, in P, :,uB(Z, /8w satisfy
B} <8mLg /Cpu.

2. Wave speeds in a slender flux tube

The slender flux tube is a particular case of a horizon-
tal nonuniform magnetic field B (z)=B(z), which is as-
sumed to be uniform inside the tube and vanish outside,
so that its nonuniformity reduces to a jump in magnetic
field strength at the surface of the flux tube. If the tube
is axisymmetric with radius » =R (z), the jump of the
magnetic field strength at the surface implies that the
electric current density is a 8 function, i.e., the “surface”
of the tube is a current sheet. We denote by (p;,p;,T;)
and (p,,p.,T.) the gas pressure, mass density, and tem-
perature, respectively, inside and outside the tube. The
conditions of thermal and mechanical equilibrium of the
tube and surrounding medium require that the tempera-
ture be continuous across the interface and that the jump
in gas pressure equal the magnetic pressure:

T,(z)=T,(z), (249a)

Pe(2)=p;(2) +p[Bo(2)1* /87 . (249b)

Thus the gas pressure and mass density are always lower
inside the tube than on the outside, and the sound speed is
the same inside (¢;) and outside (¢, ) the tube, ¢, =c; =c,
and has a constant ratio to the Alfvén speed:

(250a)
(250b)

pe(2)=pi(2)+ya?/2c?,
c(z)/c(0)=a(z)/a(0) .

Since the gas pressures decay exponentially in the same
way [Eq. (246a) for constant or zero magnetic field
strength] inside and outside the tube, the magnetic pres-
sure decays in the same way, on the exponent n [Eq.
(246b)], and the magnetic field strength on its half n/2:
B(z)=B(0)exp[ —3n(2)], (250c)

R(z)=R (0)exp[4n(2)], (250d)

implying, by magnetic flux conservation BR?~const,
that the radius of the flux tube increases with altitude on

one-fourth of the same exponent [Eq. (250d)]. In the case
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of an isothermal atmosphere, n(z)=z/L, not only the
sound speed ¢ but also the Alfvén speed a is constant,
since the decay of the mass density with altitude is com-
pensated by the decrease of magnetic field strength, or
fanning out of the magnetic field lines, according to

p(2)/p(0),p(2)/p(0),B(2)/B(0),R (z) /R (0)

=e_Z/L,€ —z/L,e——z/ZL,ez/4L X (251)
The slender flux tube approximation requires that the ra-
dius of the tube be much smaller than the scale height,
R (z) << L; the fanning out of the tube with altitude
means that it eventually violates the slenderness condi-
tion; in the isothermal case, for example, it holds only for
z <<L[InL /R(0)]. The property that the sound and
Alfvén speeds are both constant in isothermal conditions
and vary with altitude in the same proportion for an arbi-
trary nonuniform temperature profile renders the study of
waves in slender flux tubes analytically simpler than that
of magneto-atmospheric waves in a uniform magnetic
field. For unbounded waves in isothermal conditions the
sound speed, but not the Alfvén speed [Eq. (99a)], is con-
stant, and in nonisothermal conditions both speeds vary
with altitude in dissimilar ways; on the other hand, the
study of modes in an isolated flux tube is usually algebrai-
cally more tedious than that of waves in an unbounded at-
mosphere, since the flux tube requires the use of boundary
conditions across the tube “wall” or current sheet. The
matching of two or more wave fields across interfaces
also occurs for multilayered atmospheres, and the boun-
dary conditions to be applied are similar in both cases,
e.g., continuity of displacement and total pressure.

3. Association in series and tube speed

The simplest, “two-dimensional” model of a flux tube,
of infinite extent in the y direction, is the magnetic slab,
consisting of two interfaces z ==+z,, with uniform but
different magnetic fields inside |z | <z, and outside
| z | >zp. The magnetic slab is a double current sheet,
and an even simpler case is a plane magnetic interface
z=0, separating uniform fields of different strengths. If
we denote by k|;=k-B/B the wave number in the direc-
tion of the magnetic field, and by k; =(k2—kﬁ)1/2 the
orthogonal component, the velocity perturbation in the
latter direction is given by Eqgs. (121a) and (121b):

W, +kiw,=0, (252a)
ki E(wz—kﬁa2)(a)2—kﬁc2)/[a)2(a2+c2)——kﬁa2c2] ,
(252b)

where we have neglected gravity, g=0, so that all coeffi-
cients are constant and the waves sinusoidal,
W, ~explik,z). Since we are considering magneto-
hydrodynamic waves in a homogeneous medium under a
uniform magnetic field, the transverse k; can be ex-
pressed in terms of the longitudinal k| wave number, us-
ing the dispersion relation (44) for the phase speed
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u =w/k, with kzzkf—}—k,z,, which leads once more to

Eq. (252b). This equation can be factorized
ki =(w’—kia®N0?— kib?) , (253a)

(253b)

”cz)/(c +a*Nw?—
b ?=q"%+c?,

where we have introduced the tube speed b, whose inverse
square is given by the sum of the inverse squares of the
sound speed ¢ and Alfvén speeds a, as for the law of asso-
ciation of resistances in series, implying that the tube
speed never exceeds that of the other two, & <min(a,c).
We may expect the tube speed to apply to the longitudinal
wave propagation in flux tubes, which is affected both by
gas pressures and by magnetic stresses, the latter acting as
for sound in a collapsible tube, and this will be confirmed
subsequently (in Sec. IV.B.5). In the present case, of
magneto-hydrodynamic waves in a homogeneous medi-
um, the propagating variables are, in addition to the
transverse velocity perturbation, v, a longitudinal veloci-
ty perturbation v, and magnetic field perturbations 4,
(longitudinal) and A, (transverse);

v =vic’k k; /(0 —kic?),

h”,hl =(B/0))Ul(kl,'—k”) »

(254a)
(254b)

where we have used Egs. (8a) and (79¢). The gas pressure
perturbation P, and magnetic pressure perturbations P,
associated with Eqgs. (254),

Pg:(pcz/a))(vuk” +vlkl)

=(p/w)c’k v, /(1—kfc?/0?) , (255a)

P, =,uh”B/47r=(,uBZ/41m>)vlkl=(p/a))a2klvl R
(255b)
add to the total pressure:
P,=P,+P,
=(p/w)c*+adk v, [(0*—kfb*) /(0*—kfcD)],
(256)

where we have introduced the tube speed.

4. Alfvén waves on a current sheet

We consider an interface z=0, separating two regions
of uniform transverse and parallel magnetlc flelds (B; for
z<0 and B, for z>0),

Z)=[Bi+(Be —-B,')H(Z)]ex ’
J(z)=(cy /4mu)(B, —B;)8(z)e, ,

(257a)
(257b)

where H (z) denotes Heaviside’s unit function (1 for z> 0
and O for z<0), and 8(z) Dirac’s 8 function, showing that
the interface is a current sheet, with surface current pro-
portional to the difference of magnetic fields. [Equation
(257b) follows from - (257a) using Maxwell’s equation,
VAB=(4mu/c,)J.] Considering  three-dimensional
waves, the wave fields are given on the two sides of the
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interface by
v24(x,,2,8) =W,  (2)expli (kyx +kyy —o1)] (258a)
W, .(z)=A4; .explik;,z) , (258b)

where we have separated the transverse wave numbers
ky,k, which are continuous, from the wave number k,
normal to the interface, which is discontinuous and given
by Eq. (252b):

(0®—klal )(w®—klc?)

[oXaf, +c?)—klat.c?]

k= (259a)
Here k,=k, is the wave number along the magnetic
field, and the sound speed c is continuous, but not the
Alfvén speed a;,. Noting that the wave number trans-
verse to the magnetic field is k| :(k +k )172 we obtain
for the total pressure [Eq. (256)]
P,e(z)-—(p,e/w)(co —k a )
X (kf+ ki) VW, (2) . (259b)

The boundary conditions at the interface state the con-
tinuity of normal velocity W, (or displacement —iW, /w)
and total pressure,

W;(0)=W,(0),
P,(0)=P,(0) .

(260a)
(260b)

The first condition (260a) implies that the amplitudes of
the waves [Eq. (258b)] are the same on both sides of the
interface 4;=A,, and the second condition (260b) yields,
by Eq. (259b), the dispersion relation

pil@® —kial Nk} + k) +p (> —kial) (k) +k{)2=0

(261)

where we have taken positive roots of the radicals. The
dispersion relation can be analyzed in three cases: (i)
waves propagating on both sides of the interface
k2 k2> 0; (i) waves propagating on one side and evanes-
cent on the other, i.e., tunneling k?*k?<O; (iii) waves
evanescent on both sides, i.e., surface waves k,~2,k3<0.
We give two examples of case (iii): (a) In the incompressi-
ble limit ¢— «, for which k,%e—>—k,f by Eq. (259a), the
dispersion relation (261) implies that

=0’/k>=(p;al +peal)/(pi+pe) (262)

showing that Alfvén surface waves propagate at a phase
speed ay, which is the root mean square (rms) of the
Alfvén speeds on the two sides of the interface, weighted
by the mass densities. (b) This phase speed is also ob-
tained from Eq. (261), in the limit of short waves trans-
verse both to the interface and to the magnetic field
ky2 >>k? k2, which are compressible surface modes but
also propagate at the rms Alfvén speed.
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5. Cutoff frequencies for the tube modes

We now turn to vertical (instead of three-dimensional)
motions, in a flux tube (instead of an interface), including
gravity (which was omitted in Secs. IV.B.3 and IV.B.4).
Thus we start from the general equation (10) without ro-
tation, =0, with uniform gravity pointing downwards,
g=(0,0, —g), and horizontal magnetic field varying with
altitude B(z), leading to the following equation for the
velocity: v=§ perturbation spectrum [Eq. (167)], with
w,=w:

L2W" —2LW'+[(0*—wy)L?/b>
+(1—y/2)woL /c)*TW =0, (263)

where the gravity cutoff is given, in nonisothermal condi-
tions, by

wi=(g/LY1—1/y+L"),
W(z;0)=exp[—n(z)/41X(z;0) .

(264a)
(264b)

The transformation (264b) eliminates the middle term and
shows that X satisfies the standard equation

X" +[(0*—w?2)L%/b?]1X =0,
0?=wi+(b/L+—1/y+—1/y+L"),

(265a)
(265b)

with cutoff frequency w, for the velocity. The pressure
perturbation is related to the velocity by Eq. (8c), so that

P(z;0)=(p/0)[gW +(c*—a?/2L)W'], (266)

implying a generally different wave equation and cutoff
frequency w,. In the case of an isothermal flux tube, all
coefficients are constant, and the cutoff frequencies for
the pressure w, and velocity [Eq. (265b)] coincide:
0} =(g/LY1—1/yP+b/LX5—1/yP?=0p . (267
This result is analogous to the acoustics of horns (see
Secs. IV.A.4 and IV.A.5 in Part I), for which the cutoff
frequencies are generally different for the pressure w, and
velocity w,, and only coincide, w, =w,, for an exponential
duct of cross section S(x)=S(0)exp(£x /L), for which
the mass of fluid per unit length varies exponentially
m (x)=m (0)exp(Fx/L). For longitudinal modes in a
magnetic flux tube, the cutoffs coincide in the isothermal
case, for which the mass density evolves exponentially,
plx)=p(0)exp(Fx /L), respectively, for a wave propa-
gating upward, x =z, or downward, x = —z, where x is
the coordinate in the direction of propagation. Thus the
analogs of acoustic waves in a rigid horn are tube modes
in a flux tube, for which the sound speed c is replaced by
the tube speed b [Eq. (253b)].

6. Duct, acoustic, and Alfvén analogies

In the isothermal case, the vertical velocity [Eq. (264b)]
of the tube mode (265a) is given by
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W(z;0)=W (0;0)e* *Fexp(+iK . z) ,
K. =(0/b)[1—(0,/0)*]'?,

(268a)
(268b)

where the effective wave number K, [Eq. (268a)] is given
by the same expression (210a) as for acoustic-gravity
waves, with the tube speed b [Eq. (253b)] replacing the
sound speed ¢, and the cutoff frequency w, [Eq. (265b)]
the acoustic cutoff w, [Eq. (22b)]. The exponential ampli-
tude growth, on four times-the scale height, is different
from that of acoustic-gravity waves, which grow exponen-
tially on twice the scale height [Eq. (81c)]. The reason is
that an acoustic-gravity wave samples a constant section
of the atmosphere, so that the conservation of the energy
flux, F=pcW?2, requires that the velocity perturbation

DIAGNOSTIC DIAGRAMS FOR MODES OF MAGNETIC SLABS

0-mr2 6-ns2

FIGURE XXIV

FIG. 12. Wave diagrams (Rae and Roberts, 1983a) for identifi-
cation of the possibility of fast (F) or slow (S) magneto-
hydrodynamic modes, existing in a medium structure either by a
single magnetic interface or by a double interface forming a
magnetic slab. The examples given (a)—(d) include all four pos-
sible cases for magnetic slabs (three cases for magnetic inter-
faces), as follows: (P) propagation inside and outside the slab
(on both sides of the interface); (T) tunneling, i.e., propagation
outside (on one side) and evanescence inside the slab (on the oth-
er side of the interface); (S) surface waves, evanescent both out-
side and inside the slab (on both sides of the interface); (B) body
waves, propagating inside the slab and evanescent outside. The
polar coordinates are the phase speed for radius, and the angle 6
of the wave vector with the normal to the interface(s); a,b,c
denote the Alfvén, tube, and sound speeds, respectively;
a,b,5,f =(a,b,s,f)cosd are the projections of the Alfvén wave
speed a, tube speed b, slow s, and fast f wave speeds along the
normal to the interface(s); the suffixes i,e stand for interior and
exterior of the slab, or the medium on each side of the interface.
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grows on the inverse square root of the mass density
W ~1/Vp, i.e., exponentially on twice the scale height
W ~e?/?L in the isothermal case, viz., the velocity pertur-
bation e-folds in two scale heights. A flux tube in an at-
mosphere fans out with altitude, so that the conservation
of the total flux, F=pbW?R?, introduces in the ampli-
tude of the velocity perturbation a factor like the inverse
square root of the tube’s radius W ~1/VpR, which
reduces the rate of growth (251) to half the former value,
i.e., exponential of 4 times the scale height W ~e?/4f,
This is the rate of growth (107a) for Alfvén waves of
large compactness (Sec. 11.B.4), which are dominated by
the magnetic pressure; a similar scaling applies to
compressive waves in a flux tube, because the boundary
conditions imply that the gas pressure evolves in a similar
way to the magnetic pressure. We have given examples of
three types of magneto-hydrodynamic waves, in particu-
lar cases of magnetically structured atmospheres, viz.,
Alfvén and fast surface modes on a current sheet (Sec.
IV.B.4), and slow tube modes in a slender flux tube
(present section). The same three types appear in more
complex structures, with a large number of coupling pos-
sibilities if there is more than one current sheet, as in the
case of a magnetic slab, illustrated diagramatically in Fig.
12. Having considered nondissipative propagation in
Secs. IV.B.3 to IV.B.6, we conclude the examples of linear
waves in magnetically structured atmospheres by consid-
ering damped modes (Secs. IV.B.7 and IV.B.8). Of the
main magneto-hydrodynamic (as distinct from plasma)
dissipation mechanisms, we have already discussed fluid
viscosity (Sec. V.A of Part I) and electrical resistance
(IV.A), so we consider next thermal diffusion. The con-
sideration of nonlinear acoustic waves has led to problems
reducible to the heat conduction equation (Sec. V.C. of
Part I), and thus we examine next thermal radiation,
which is of particular importance in solar and stellar at-
mospheres (Kneer and Heasley, 1979; Kneer, 1980, 1983).
In order to retain the comparison of magneto-atmospheric
waves with flux tube modes we shall consider compressive
motions in a flux tube with radiative relaxation.

7. Radiative damping in a magnetic cylinder

We shall consider radiative damping according to
Newton’s law of cooling, which replaces the energy equa-
tion (5) by

(P+v-VP)=cXI +v-VI')—P/7g , (269a)

where 7 is the radiative damping time. In the limit of
no damping, 7 — o, Eq. (269a) reduces to the adiabatic
condition (6a), where c is the adiabatic sound speed (6b);
in the opposite limit, of radiative damping time much
shorter than wave period 7, Eq. (269a) simplifies to
dP/dt = —P /7 for 7 <<, showing that, in a convect-
ed frame, d/dt=0/dt +v-P, the pressure
P(t)=P(0)exp(—t/7g) decays exponentially in the time
scale 7g. Linearizing Eq. (269a), and eliminating for v,,
together with the equations of momentum (7b), induction
(8a) and continuity (8b), we obtain for a planar geometry,
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appropriate to free space or a magnetic interface or slab,
an equation with plane-wave solutions
v, —(k; /0, =0, (269b)
v,(z,x,t)=voexpli(koz +kx —wt)], (269c¢)

where the wave number k; in the presence of radiation is
given by

2_ (0)2-— 2 2)((02__ 2 2¢)
" kia c21// w*(a? +c2)¢'
Yy=(io+1/mgy)/io+1/78),

(270a)

(270b)

i.e, in the limit of no damping, 7g — 0, 1¥—1 and
k;—k,, so that Eq. (270a) reduces to (252b). In the case
of cylindrical geometry, the wave number is the same, but
Eq. (269a) is replaced by a Bessel type for the radial direc-
tion

[r~Yrv,) ] —(k;i /@), =0,
v,-(r,z,t)=A,~.71(k,~r)exp[i(k”z —wt)] .

(271a)
(271b)

We have chosen a modified Bessel function of the first
kind, J,, which is finite on the axis of the cylinder (and
suppressed -the function of the second kind, which would
have a logarithmic singularity). For waves in free space
the dispersion relation [(270a) and (270b)] may be written,
in terms of the horizontal k| and total k2=k; +kﬁ wave
number,

+c2)wd—(i /TR kM /Yy +a®)w?
fa’?/y=0,
(272a)

@+ (i /1g)o*—k*a?
+k2k i 2a a)—l—(z/TR)k

which is of fifth degree in the frequency @ and involves
the adiabatic ¢?=yRT and isothermal ¢2/y =RT sound
speeds. In the limit of no damping, 73 — «, the disper-
sion relation becomes

o*—k¥a*+cw? + kK3 ia 2¢2=0, (272b)

or that of ordinary magneto-hydrodynamic waves [Eq.
(44) with u =w/k and k-b=k) ], which is a biquadratic

. (degree one unit lower in w) and features only the adiabat-

ic sound speed. In order to obtain the dispersion relation
for radiative modes in a magnetic cylinder, we need not
only the interior solution (271b), but also the exterior
solution:

ve(r,z,0)=A,Y;(k,r)expli (kyz —ot)] , (273a)

k2=k*—o?/c2Y, , (273b)
where we have chosen in (273a) the modified Bessel func-
tion of the second kind ¥;, which is bounded at infinity,
and the radial wave number (273b) calculated from the
sound speed, assuming the magnetic field to be zero out-
side the cylinder. Matching the radial velocity v, and to-
tal pressure P, across the radius R yields
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p,-(coz—kﬁaZ)kjo(kiR)_Yl(keR)

+p.0*k; T, (k;R)Yo(k,R)=0, (274)

which is a transcendental dispersion relation for a mag-
netic cylinder of arbitrary radius.

8. Isothermal and adiabatic sound speeds

We choose for comparison the following two cases: (a)
acoustic-gravity waves in a radiating unbounded atmo-
sphere, in the absence of a magnetic field, =0, for which
the dispersion relation (272a) drops from fifth to third or-
der:

&>+ (i /1R )0? —k*c*w—(i /TR )k /y=0; (275a)

(b) tube modes in a slender magnetic cylinder, k;R << 1,
for which the transcendental dispersion relation (274)
reduces to a cubic:

(c2+ad)’+ (i /g Na?+c2/y)w?

—k*?a*w—(i/Tg )k?a*c?/y=0. (275b)
In the adiabatic limit 7x— «, Eq. (275a) gives pure
acoustic waves w?=k?c?, and Eq. (275b) pure tube modes
w?=c2a%k?*/(a®>+c?)=k?b?, where b is the tube speed
[Eq. (253b)]. Dispersion relations with complex roots can
be analyzed either in space or in time. Spatial analysis as-
sumes a real frequency o and yields complex roots
k =k, +ik, for the wave number, whose real part speci-
fies the wavelength A=2#/k,, and whose imaginary part
the amplitude law in space, e.g., growth
| exp(ikz) | =exp( —k,z) for kg <O, as used before for
magneto-atmospheric waves. Temporal analysis assumes
a real wave number k and yields complex roots
w=w,+io, for the frequency, whose real part specifies
the wave period 7=27/w,, and whose imaginary part the
amplitude law in time, e.g., decay |exp(—iw?)|
=exp(w,t) for wg <0, for damped modes, which we con-
sider below. We solve both dispersion relations [(275a)

|

@ = tkbo{1+(y—1)a[4c?+(5—y)al(rg /75 /@a* +c2/y )} —(i /201 —=1/y)a*(1g /75) /c*/y +a?,

bol=y/c*+a?=c5’4+a"?;

(iii) in the third, purely damped mode, the phase speed is
different in free space,

= —ikc(rs/75) , (280a)
and in the flux tube,
wy=—i(ke/y)b/b)Ts/TR) - (280b)

C. Nonlinear dispersive waves and solitons

The preceding account of linear wave modes in magnet-
ically structured atmospheres has outlined some of their
similarities with, and differences from magneto-
atmospheric waves. Although the topic of flux tube and
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and (275b)] for small and large values of the ratio 7 /75,
where 7g=(kc)™! is the time taken by an acoustic wave
to propagate a distance 1/k =A/2m, which is (27)~!
times the wavelength A. In the limit 7z >>7g, radiative
damping is a weak modification of adiabatic propagation:
(i) in free space the acoustic wave propagates at a phase
speed slightly lower than the adiabatic sound speed c,

@} 2= tke[1—(y —1)(y +3)cos’0(rs /15 )?/87?]

— (@21 —=1/y)ke(Ts/TR) , (276a)
where 6 is the angle of the wave number to the vertical,
k, =k sinf, and is damped; (ii) in a slender flux tube, the
phase speed is slightly lower than the tube speed b,

ol =1kb{1—(y —1)[3+(c>+ya?) /(c?+a?)]
X (15 /T )*/87%)

—(i/2)(1=1/9)b /) /1r (276b)

and there is also damping; (iii) in both cases there is a
third, purely damped mode,

(277a)
(277b)

w%": —ik (C/’}/)(TR /Ts) ,
exp( —iwst)=exp[ —(cTg /yTs)kt] .

In the limit 75 << 75, radiative damping is sufficiently
strong to overcome adiabaticity, and imposes isothermal
conditions: (i) in free space, the phase speed is slightly
larger than the isothermal sound speed ¢y,

@} 2= Fkeo[14(y —1)(y —5) /8y cos?0(7s /75 )*]
—(i/2)(1—1/y)kc /cosO(Ts /TR ) , (278a)
ct=c?/y=RT; (278b)

(ii) in a slender flux tube, the phase speed is slightly larger
than the isothermal tube speed b

(279a)
(279b)

r

current sheet waves is barely a decade old, research on
this subject has been pursued vigorously, and a reasonably
exhaustive survey would require a full-size review, which
unfortunately is not available, so that reference to the
original papers is essential. Since the current limit of
“high-resolution” observations of the sun (Bruecker, 1980)
is about 0.5 arc seconds, equivalent to 700 km, and the
transverse scale of flux tubes is about 0.1 arc seconds, a
new generation of instruments, possibly space-based, with
an order-of-magnitude greater resolution, will be needed
before “sausage,” “kink,” or torsional tube modes can be
observed; it has been claimed (Roberts, Edwin, and Benz,
1983, 1984) that certain observations of short-period co-
ronal transients can be related to tube modes. An even
more recent subject, developed in the last few years, is
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that of nonlinear, dispersive waves or “solitons” in mag-
netic flux tubes (Roberts and Mangeney, 1982; Roberts,
1983b, 1984b, 1986; Hollweg and Roberts, 1984; Ruder-
man and Merzlakov, 1984; Edwin and Roberts, 1986;
Merzlakov and Ruderman, 1986). No direct observation-
al evidence is yet claimed for the existence of “solitons”
in the solar atmosphere, although such phenomena as co-
ronal mass ejections or “plasmoids” and moving magnetic
“features” in the chromosphere might qualify. Other
types of nonlinear, transient disturbances in magnetic at-
mospheres have been considered, including waves (Chiu,
1971; Barnes and Hollweg, 1974; Adam, 1975; Lacombe
and Mangeney, 1980; Shukla, 1983; Kalkofen,
Ulmschneider, and Schmitz, 1984; Petrukhin and Fainsh-
tein, 1984a, 1984b), shocks (Wentzel and Solinger, 1967;
Hollweg, 1982b; Kumar, 1984) and nonlinear tube waves
(Hollweg, Jackson, and Galloway, 1982; Herbold,
Ulmschneider, Spruit, and Rosner, 1985; Maxwell, Pryer
and MclIntosh, 1985; Verma, Srivastava and Singh, 1985;
Achterberg and Blandford, 1986; Srivastava, Leutloff,
Vishwakarma, and Kumar 1986). An important non-
linear phenomenon in the solar atmosphere is magnetic
reconnection (Priest, 1982b, 1985, 1986; Arion, 1984,
Forbes and Priest, 1984; Heyvaerts and Priest, 1984;
Sakai, Tajima, and Brunel, 1984; Forbes, 1986; Taylor,
1986), which is associated with the coalescence of null
points, and thus rearrangement of the magnetic pattern.
Such rearrangement certainly occurs during solar flares, a
phenomenon that has been extensively studied. Observa-
tional studies include those of Svestka, 1972; Dennis,
Frost, and Orwig, 1981; Orwig, Frost, and Dennis, 1981;
Emslie, Brown, and Machado, 1981; van Beek et al.,
1981; Dere and Cook, 1983; Feldman, Doschek, and
" McKenzie, 1984; Fisher, Canfield, and McClymont, 1984;
Fisher and Munro, 1984; Moore, Hurford, Jones, and
Kane, 1984; Seely and Feldman, 1984; Tandberg-Hanssen
et al., 1984; Veck et al., 1984; De Jager and Svestka,
1985; Pudovkin, Zaitseva, and Puchenkina, 1985; Raoult,
Pick, Dennis, and Kane, 1985; Rust, Simnet, and Smith,
1985; Dulk, Bastian, and Kane, 1986; Tanaka and Zirin,
1986. Theoretical studies include those of Meyer, 1968;
Levine and Nakagawa, 1974; Low, 1980; Ricchiazzi, and
Canfield, 1983; MacNiece, McWhirter, Spicer, and Bur-
gess, 1984; Ngai and Emslie, 1984; Fisher, Canfield, and
McClymont, 1985a, 1985b, 1985¢c). The physics of solar
flares is well documented in the literature, both in the
form of symposia (Priest, 1982b) and of reviews (Priest,
1986); the applications of magnetic reconnection have
been extended from the theory of solar flares to that of at-
mospheric heating (see Sec. V.A.2 below).

te 2% A S ik(z—y)
[, Uknuke™dk=—— [ " [ utkw(p,0e™* > dydk

f+w
T J e

Rev. Mod. Phys., Vol. 59, No. 2, April 1987

v(1,0G (y —2)dy =0, G,G(2)=27)"" [

1. Semispectrum and Whitham’s equation

We derive the general equation describing the propaga-
tion of weakly nonlinear, dispersive waves. We take as a
starting point the dispersion relation for linear waves, or
definition of phase speed u (k)=w/k,

o=u(kk (281a)
9 [t i(kz —o1)
5 ] Wik dk do
9t j(kz —o1)
+— [ T ukWk,wle " ~dk du =0, (281b)
0z Y-

where (281b) follows from (281a) by assuming plane-wave
propagation ~exp[i(kz —wt)], for which w~id/3d¢ and
k ~—id/9z when we multiply by the wave spectrum
W (k,®) and integrate over wave number k and frequency
®. We may introduce the semispectrum U, which de-
pends on wave number and time:

Ukn=02m~" [T wikordo, (282a)
——f U (k,D)e™dk
d +eo ikz
+o- [ T uUkne™dk =0, (282b)
9z Y-

where (282b) is obtained from (282a) by integrating in fre-
quency; if we integrate further in wave number k, we ob-
tain the velocity perturbation

b(z0)= f“"’f W (k,w)e’ = =dk de

_f U(k,t)e*dk | (283a).

dv /31 +B,0dv /32 +(3/32) [ " u(k)U (k,nedk =0 ,

(283b)

where (283b) coincides with (282b) in the first and third
terms, which are linear in v, and we have added arbitrari-
ly the second, nonlinear term, in the form of a convective
acceleration vdv/dx, multiplied by a parameter 3, that
indicates the importance of nonlinearity relative to disper-
sion and is determined by the physics of the particular
problem, as an input to the present general procedure.
The third term of the wave equation (283b) involves the
semispectrum U (k,t), instead of the velocity perturbation
v(z,t). We express it in terms of the velocity perturbation
by using the inverse of Eq. (283a):

(284a)

+ 0 .
_u(kle*dk . (284b)
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G (§) is the inverse Fourier transform of the phase speed
[Eq. (284b)], and Eq. (284a) is its convolution with the
velocity perturbation v(z,¢). Substituting Eq. (284a) into
(283b), we obtain the Whitham integro-differential equa-
tion for weakly nonlinear, dispersive waves:

du/8t +Buwdv /32 +(3/32) [ Gy —2w(y,0dy =0 ,

(285)
whose terms may be interpreted as follows, taking the
wave variable v(z,t) to be velocity perturbation: (i) the
first term is the local acceleration, or local time deriva-
tive, for unidirectional waves; (ii) the second term is a
convective acceleration v3dv /dz, with a nonlinearity factor
B determined from the equations of motion, e.g., by a
multiple-scales approach; (iii) the last term is obtained
from the phase speed u (k) of a linear, dispersive wave, by
taking its inverse Fourier transform (248b) to obtain the
phase velocity G (&), then convoluting with the wave per-
turbation, and finally differentiating with regard to z.

2. Long “sausage’” modes in a nonisothermal slab

As a first example of the application of Whitham’s
equation (285), we consider waves in a magnetic slab, i.e.,
a region z < |zo| of uniform transverse magnetic field,
B=Bye,, in a medium otherwise not subjected to mag-
netic fields:

B=By[H(z +z9)—H(z —z)]e, ,
J=(cuBo/4mu)[8(z +2¢)—8(z —z¢)]e, ,

(286a)
(286b)

where H and 8 denote Heaviside’s unit function and
Dirac’s 6 function, respectively, and Eq. (286b) shows
that the interfaces z =z, are current sheets. If we ig-
nore gravity, the velocity perturbation of a two-
dimensional wave in the plane (x,z) satisfies Eqgs. (252a)
and (252b) inside the slab:

W' +k}W;=0, (287a)
k}=(w?—kja*Nw?—kic)/(a*+ci ) w? —k{b?) ,
(287b)

where b is the tube speed (253b) calculated for the Alfvén
speed a =a; and sound speed c; inside the slab. Outside
the slab there is no magnetic field, a; =0, and if the tem-
perature is different, the external sound speed ¢, will be
different from the internal value c;, and Egs. (287a) and
(287b) will be replaced by the equations

W, +k2W,=0, (288a)
J=ki—w?/ct . (288b)
The solutions of Eqs. (287a) and (288a) are
Atexp[ +k,(z+29)], z<—z2¢ , (289a)
A, cosh(k;z)+ A _sinh(k;z) ,
W(z,0)=
—2z0<z<2o, (289b)
A~exp[ —k.(z —z9)], z>2z¢, (289¢)
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where outside the slab |z | >z, we have chosen exponen-
tial fields decaying at infinity [Eqs. (289a) and (289c¢)]
with amplitudes 4%, and inside the slab [Eq. (289b)]
there is a superposition of symmetric or “sausage” and
unsymmetric or “kink” modes, respectively, the cosh and
sinh terms with amplitudes 4, and 4_. The four am-
plitudes, for two modes outside the slab (4 %) and two
waves inside the slab (A4, ), are related by four boundary
conditions, stating the continuity of normal velocity (289)
and total (gas plus magnetic) pressure (256) at the inter-

face. This leads to the dispersion relation
pilw? —kfak, =p,0*k;Sh(kizo) , (290a)

valid for wzzkﬁcf, where tanh and coth refer to
“sausage” and “kink” modes, respectively. We consider
the symmetrical “sausage” mode, in the limit of long
wavelength, k;zy << 1, for which Eq. (290a) simplifies to

(290b)
(290c)

The Alfvén mode (wz—kﬁaz) in Eq. (290b) drops out
when we use Eq. (287b) to deduce (290c). The latter
shows that two long “sausage” modes are possible,
w?~kfb% kic2, in a nonisothermal magnetic slab:

@?=k{b[1—kzop,c.(c}—b2) /p;(c} +a*)ci—bH)'?],
(291a)
w*=kic2{1—[kzopeci(cl—cl) /pi(ci+a*)ci—b)T) .

(291b)

pi(wz_kﬁa 2)ke :Pewzkizlo ’

pikela?+c )N —kib?)=p, 0w’ —kict)zg .

These are (a) a “tube” mode w ~ +k b, if [Eq. (291a)] the
tube speed b is less than the external ¢, sound speed,
b <c,; (b) an “acoustic” mode w~=*Kk)c,, if [Eq. (291b)]
the slab is either slightly cooler than the surrounding
medium, c, > ¢;, or sufficiently hotter, ¢, <b <c;.

3. Korteweg-De Vries and Benjamin-Ono equations

In an isothermal slab, the only long ‘“sausage” mode is
the tube wave [Eq. (291a)], for which the phase speed
u(k)=w/kis

u(k)=b(l—a; |k |),
a;=(20/2)p./pi)(1+a?/c?) 372,

(292a)
(292b)

In a nonisothermal slab sufficiently hotter than the envi-
ronment, b >c,, we have the acoustic mode [Eq. (291b)]
with phase speed

uy(k)=c,—a,k?, (292¢)
a, =(c.z5/2)p, /picHci—cH) /(i +a*)cZ—b2)] .
(2924d)

If the slab is slightly cooler than the surrounding medi-
um, ¢; <c¢,, we have both the “acoustic” [Egs. (292¢) and
(292d)] and the “tube” [Eqgs. (292a) and (292b)] modes, the
latter with parameter «; given by
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c2—b)/(ct+a)(1—b2/cH~12,

a,-=(zo/2)(pe/p,-)[(
(292¢)
which reduces to Eq. (292b) in the isothermal case

c.=c;=c. We may write the two phase speeds [(292a)
and (292c)] together in the single expression:

1
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u(k)=uo(l—a; |k |)—a.k?, (293a)
ug=u(0)=b,c, , (293b)

for the tube (uy=b,a,=0) and acoustic (uy=c,,a; =0)
modes, respectively. Taking the Fourier transform (284b)
of Eq. (293a), and then (284c), we find that the convolu-
tion with the velocity perturbation yields

G(Z):ZT— _+w [ug(l—a; | k | )—a.k?le " *dk =ud(z)+a; /m2> +,8"(z) , (293¢)

VuG = f_+ v(1,0)G (y —2)dy =ugv( z,z)+9i—— f v (1, 0y —2)"'dy +,(3%/3z%(z,0) , (293d)
which, substituted in the Whitham equation (285), yields

dv /0t +uydv /92 + B, vdv /92 +a,d% /323 —(q; /w)(az/az%f (y —z)"Ww(y,t)dy =0 . (293e)

This is the Kortweg-De Vries—Benjamin-Ono equation,
whose terms are interpreted as a plane, unidirectional
wave of speed u, (first two terms), with a convective ef-
fect with nonlinearity factor 3, (third term), and surface
and internal dispersion with coefficients a,,a; (fourth and
fifth terms, respectively), so that Egs. (293e) is a nonlinear
doubly dispersive wave equation. Setting a, =0s4a; and
uo=>b(a,#0=qa; and ug=c,), we obtain the long longi-
tudinal or “sausage” tube (acoustic) mode, in a magnetic
slab, in an isothermal equilibrium slightly cooler than its
surroundings, which satisfies the Benjamin-Ono
(Korteweg-De Vries) equations, viz.,

d0v /0t +bdv /3z + B;vdv /9z

+Hay/m@ /82 [y~ gundy =0,

(294a)

dv /3t +bdv /3z +B,vd /dz +a,d% /3z3=0 . (294b)

Equation (294a) is the nonlinear internal wave equation,
and (294b) the surface dispersion wave equation; the
respective nonlinearity factors [8; and 3, are determined
from the equations of motion, e.g., by a multipole scales
approach. Both equations have “soliton” solutions, i.e., as
“humps” of constant scale 1//, moving without deforma-
tion at constant speed s:

viz,t)=vo/[1+14z —s;1)?], (295a)
Li=voB; /4a; , (295b)
s;=b +voB; /4, (295¢)
v(z,t)=vgsech?[L(z —s,1)] , (296a)
I, =(voB,/12,)'?, (296b)
S, =c,+0f33/3 . (296¢)

Thus we have an algebraic [Egs. (295a)—(295¢)] “hump”
for internal nonlinear dispersive waves and a transcenden-
tal [Eq. (296a)—(296c)] “hump” for surface nonlinear
dispersive waves.
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4. Leibovich-Pritchard-Roberts equation
in a magnetic cylinder

Since a magnetic slab is a degenerate two-dimensional
flux tube, we may expect a three-dimensional, axisym-
metric magnetic waveguide, which also supports tube
modes, to lead to a modified Benjamin-Ono equation
(Roberts, 1986), which may be called the Leibovich-
Pritchard-Roberts equation, having been found, in the
first instance, for weakly nonlinear waves in rotating
fluids (Leibovich, 1970; Pritchard, 1970, studies the same
problem but does not give the equation explicitly). A
magnetic field B=B(z)e, varying transversally, i.e.,
oriented in the x direction but varying in the z direction,
is compatible (Sec. IV.B.1) with one-dimensional
magneto-hydrostatic equilibrium, with gravity g= —ge,
in the z direction. If we consider a uniform field (or one
varying by jumps across current sheets), in the absence of
gravity, g=0, we obtain Eqgs. (287a) and (287b) for two-
dimensional waves. If we allow the magnetic field
B=By(z)e, and density p(x) to vary continuously, then
Eqgs. (287a) and (287b) are replaced by

[p(@®—kfa®)W,) —pki(0*—kia® ) W,=0, (297a)

(w? ——k”a YW, =0. (297b)
In the case of a homogeneous medium and uniform mag-
netic field, p, By~const, the Alfvén mode w= tka
decouples in Eq. (297a) and we regain Eq. (287a). In the
case of three-dimensional disturbances (k;=k,, k=k,,
ky5-0), the velocity perturbation in the y direction, trans-
verse to the directions of stratification and of the magnet-
ic field, is decoupled (as in Secs. II.A.2 and II.A.3), and
the corresponding mode is an Alfvén wave [Eq. (297b)]
leading, in the case of nonuniform Alfvén speed a(z), to
the appearance of the Alfvén continuum (Rae and
Roberts, 1981). In the case of three-dimensional distur-
bances, we can also use cylindrical coordinates, with r,0,x
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the radial, azimuthal, and axial coordinates, respectively.
For example, for an axisymmetric magnetic field
B=B(r)e,, i.e., parallel to the axis and varying radially,
the radial velocity perturbation is given by

PPW" 4+ rW —(n?+k2r)W =0, (298a)

v,(r,0,x,t)=W(r)exp[i (n0+kx —ot)], (298b)

where the radial k, =k, and axial k; =k, wave numbers
are related in the same way as for a slab [Egs. (252a),
(253a), and (253b)]. We have assumed that the magnetic
field is uniform, or varies by jumps across cylindrical sur-
faces, and for the fundamental (n=0) axisymmetric
mode Eq. (298a) reduces to Eq. (271a) with v,=W. An
example is the case of a magnetic cylinder of radius R,
for which the dispersion relation (274) simplifies, in the
long-wavelength limit k£, 7 << 1, to

2piko(@0® —kfa®) ¥ (k,R)+p.k;Rw*Yo(k;R)=0, (299a)

which corresponds to a tube wave, of phase speed
u3=w/k, given by

us(k)=b —2a,k?Y,[(b/a)| k |R], (299b)

a,=(p./p;)(b/a)*bR?/8 . (299¢)

Using the inverse Fourier transform of the modified
Bessel function of the second kind Y, we obtain

6= [ 7 {b—2a,k?To[(b/a) | k | R)Je~*dz
=b8(z)+(a, /m)d?/dz?)[(bR /a)* 422172 .
(299d)

Substitution in the Whitham equation (285) leads to the
Leibovich-Pritchard-Roberts equation:

dv /3t +bdv /9z + B, /3z +(a, /7)(d /dz*) f_+°° [(BR /a)*+(y —2)*1~ V2 (y,t)dy =0 , (300)

which describes long longitudinal tube modes in a mag-
netic cylinder of radius R.

5. Benjamin-Ono-Burgers equation for thermal diffusion

As a final example of the Whitham equation, we recon-
sider long tube modes (Secs. IV.C.2 and II.C.3), in the
presence of thermal conduction and radiation; the equa-
tion of adiabaticity (6a) is replaced, in the presence of ra-
diative cooling according to Newton’s law, by Eq. (269),
and if we include thermal conduction g,, gives way to the
equation of energy (5), in the form
CC,(T+V-VT)—(P+V-VP)

=, VT —p(T'C, /mx (T —Ty), (301a)

where C,,C, are the specific heats at constant volume and
pressure, and T,T, the temperature of the gas and its
value for isothermal equilibrium. A multiple-scales ap-
proach, applied to the equation of energy, together with
continuity and momentum,
o(I'S) /0t +o(I'SV)/dx

=0=0V /3t +VaV/dz+T~'13P/3z, (301b)

where S is the cross section of the magnetic flux tube,
leads, for a perfect gas P =RT'T, to (Edwin and Roberts,
1986)

dv /3t +bdv /dz + ;v /3z + (a; /7)(d*/dz?)
+ oo
X f~ (y —2)"Wwy,tdy =a,0% /3z*+a,v .

(302a)

Here q; is given by Eq. (292b) and the remaining coeffi-
cients f3;,a.,a, by
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[
Bi=a’*[(y+1)a*+3c?]/2(c*+a?)?, (302b)
a,=(y—1)b%,/2pCyc?, (302¢)
a,=(y—1)b2/2yc?rg . (302d)

The Benjamin-Ono-Burgers equation (302a), describes
long nonlinear ‘“‘sausage” modes in a thermally conduct-
ing and radiating magnetic flux tube, and consists of the
following terms: (i),(ii) linear plane waves propagating at
the tube speed [Eq. (253b)]; (iii) convective acceleration,
with nonlinearity factor (302b); (iv) internal dispersion
[Eq. (292b)], as in the Benjamin-Ono equation (294a); (v)
diffusion by thermal conduction [Eq. (302b)], as in the
Burgers equation [Eq. (283) of Part IJ; (vi) diffusion by
thermal radiation [Eq. (302d)], leading to a term ~uv, as in
the Klein-Gordon equation. Comparing Eq. (302a) with
the Whithan equation (285), it is clear that the nonlineari-
ty factor is (302b), and the function G (z) is given by

G(z2)=bd(2)+a; /72’ —a,8'(z)—a,H(z) , (303a)

which reduces to Eq. (293c) in the absence of diffusion,
a,=0=aqa,. The Fourier transform of Eq. (303a) yields
the phase speed

c(k)y=b—a;b |k | +ila.k+a,/k), (303b)

for a tube mode in a thermally conducting and radiating
gas. This could be checked by a long-wavelength approxi-
mation to the equation of sausage modes in a thermally
conducting and radiating magnetic slab. The Benjamin-
Ono-Burgers equation combines the two main types of
waves in fluids, depending on the effect that balances
nonlinearity. Equations balancing nonlinearity to second
order with linear dissipation are generally of the Burgers
type (Burgers, 1948, 1974; Lighthill, 1951; Adam, 1975;
Crighton, 1979; Campos and Leitdo, 1987); they describe
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“shock fronts” with smoothing and decay by diffusion
and have been considered in Sec. V.C of Part I. Equa-
tions balancing nonlinearity with dispersion are of the
Korteweg-De Vries, Benjamin-Ono, and generalized types
(Korteweg and De Vries, 1895; Benjamin, 1967; Leibo-
vich, 1970; Whitham, 1974; Ono, 1975; Miles, 1981;
Roberts, 1986); they describe “solitons” of permanent or
decaying shape and have been considered in Secs.
IV.C.1-IV.C.5 of this paper.

6. Hydrodynamic waves and the mass balance

Since no comparisons with observation have been made
in the literature on “solar” solitons, we may conclude by
summarizing the evidence that arguably supports the ex-
istence of other types of waves in the solar atmosphere,
starting with hydrodynamic waves and the mass balance.
The solar corona loses mass in the “average” solar wind
and is resupplied by the upward mass flow in spicules,
which can be interpreted as acoustic-gravity waves: (al)
the spicules are more concentrated at the boundaries of
the supergranulation, which are the regions of larger hy-
drodynamic and hydromagnetic stresses (Sec. 1.C.6) re-
sponsible for wave generation in the photosphere; (a2) the
mass flux in acoustic-gravity waves at the photosphere is
reduced, on traversing an evanescent region around the
chromospheric temperature minimum, to a value compar-
able to the mass flux in spicules at the base of the corona;
(a3) the mass flux in spicules compensates for the coronal
mass losses in the solar wind, with an excess of matter
that falls back, explaining the downflow velocities
~10—20 km/s observed in the transition region; (a4) spi-
cules trace the solar magnetic field, because in the corona
the magnetic pressure exceeds the gas pressure, and acous-
tic waves travel along magnetic field lines (Sec. .B.7); (a5)
the velocity of matter in spicules, ~20—30 km/s, corre-
sponds to the phase speed of the compression front of
acoustic-gravity waves (see beginning of Sec. IIL.B); (a6)
the temperature profile in spicules [Fig. 1(b)] corresponds
to that of a thermally radiating atmosphere heated by
viscous dissipation of acoustic-gravity waves; (a7) the
viscous damping length and time correspond to the height
~10* km and lifetime ~10 min of spicules (Campos,
1984a); (a8) the density profile in spicules [Fig. 1(a)] cor-
responds to the superposition of a nonlinear wave
compression upon an atmosphere in hydrostatic equilibri-
um; (a9) the acoustic-gravity wave becomes nonlinear as it
propagates upward in an atmosphere of decaying density,
and reaches shock strength at the top of the spicule, when
matter breaks magnetic confinement and the spicule
disappears (see Campos, 1984a, Fig. 3, bottom); (al0) ma-
crospicules observed in coronal holes are larger than spi-
cules in the ordinary corona because of the reduced densi-
ty in the former regions, but they have comparable total
energy, predominantly potential, and undergo similar
physical processes; (all) spicules are much cooler and
denser than the surrounding corona because they are hy-
drodynamic modes subject to a weak viscous damping,
whereas in the corona hydromagnetic modes can be dissi-
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pated by electrical resistance and other plasma diffusion
mechanisms.

The high-speed particle streams originating from co-
ronal holes can be explained by fourth-order hydromag-
netic gravity waves: (bl) these have a dynamic com-
ponent, similar to acoustic-gravity waves in spicules or
macrospicules, and, in addition, a magnetic component,
similar to an Alfvén wave (Sec. III.A.6); (b2) the coex-
istence of Alfvén and acoustic-gravity waves in spicules
explains (see beginning of Sec. IIL.B) the observed linearly
growing horizontal velocities by the former, and the verti-
cal velocities and mass transport by the latter; (b3) coron-
al holes are regions where the magnetic field is never
purely horizontal, i.e., critical levels do not exist (Sec.
III.C.4), and the resulting lack of wave absorption ex-
plains why regions of open magnetic field in the solar
corona are darker and cooler than their surroundings; (b4)
since the hydromagnetic-gravity waves are not absorbed
in open magnetic structures, they can propagate out with
matter and accelerate it, forming the high-speed particle
streams in the solar wind observed to originate from co-
ronal holes (Sec. III.A.8); (b5) the waves in these high-
speed solar winds have a magnetic energy that is a con-
stant and significant fraction of the background magnetic
energy, as predicted for the magnetic component of a
fourth-order hydromagnetic-gravity wave (Fig. 7); (b6) the
waves in the high-speed solar wind have, in addition to a
magnetic energy, a thermal energy, showing that the
dynamical component of the fourth-order hydromag-
netic-gravity wave is also present (Sec. III.A.7); (b7) the
waves in the high-speed solar wind are nonsinusoidal, due
to the deformation of the waveform (Sec. II.B.1) caused
by the rapid variation of Alfvén speed with altitude; (b8)
the waves are neither longitudinal nor transverse, because
the dynamic and magnetic components of the fourth-
order hydromagnetic wave are coupled and thus propa-
gate together.

7. Hydromagnetic waves and the energy balance

Having considered the mass balance, we proceed to the
energy balance or heating of the solar atmosphere by hy-
dromagnetic waves, which we consider separately for the
chromosphere (c) and transition region and corona (d).
The heating of the chromosphere could be explained by
Alfvén waves: (cl) the solar chromosphere is hotter over
granulation boundaries than over granulation centers, and
the former are ionized inhomogeneous regions of
enhanced hydromagnetic wave generation (Sec. 1.C.7); (c2)
Alfvén waves can propagate in the nearly vertical magnet-
ic field over granule boundaries, and in the inclined mag-
netic field over cell centers (Sec. III.A.2), and thus can
heat regions of the chromosphere above both granules and
their boundaries; (c3) these two regions require compar-
able mechanical energy fluxes, and the energy flux in
Alfvén waves, at photospheric level, is adequate, as well
as comparable to the radiative losses of the sun (Sec.
I.C.8); (c4) the temperature profile of the chromosphere
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[Fig. 2(b)] can be modeled by balancing resistive dissipa-
tion of Alfvén waves against radiative losses in the grey
approximation; (c5) the density profile associated with
this temperature profile, on the basis of hydrostatic
equilibrium, is also consistent with empirical data [Fig.
2(a)]; (c6) the empirical radiative losses of the solar chro-
mosphere (Avrett, 1981) can be matched by dissipation of
Alfvén waves (Campos, 1984c; Hollweg, 1984d); (c7) the
nonthermal horizontal velocities observed in the chromo-
sphere (Fig. 10) are consistent with the linear amplitude
growth of Alfvén waves of small compactness in an atmo-
sphere (Sec. IL.B.5).

The heating of the transition region and corona could
be explained by magnetosonic-gravity waves: (d1) these
waves are similar to acoustic-gravity modes in the chro-
mosphere, and to compressive Alfvén modes in the coro-
na, and the mode conversion (Sec. II.C.1) occurs in the vi-
cinity of the critical level in the transition region; (d2) the
latter is a region of gas pressure varying slowly compared
to mass density or temperature in agreement with the
constant gas pressure near a critical level; (d3) the gas
pressure in the transition region is comparable to the
magnetic pressure due to the horizontal component of the
magnetic field, as required (Sec. II.C.8) at a critical level;
(d4) as the critical level is traversed, the growth of wave
amplitude with altitude is reduced (Fig. 6), corresponding
to absorption of wave energy by the medium; (d5) the crit-
ical level exists only for a purely horizontal magnetic
field, i.e., at the top of coronal loops and arches, and the
resulting heating explains why these closed magnetic re-
gions are hotter and brighter than the surrounding corona
(Fig. 9, left); (d6) as the magnetic field tilts to nearly hor-
izontal at the top of closed magnetic structures,
hydromagnetic-gravity waves, although they have finite
amplitude, vary rapidly in phase (Fig. 8), and the result-
ing large gradients in the waveform allow effective dissi-
pation by small diffusivities; (d7) the nonthermal veloci-
ties in the transition region (Fig. 8, right) grow linearly
with the logarithm of temperature, as predicted (Sec.
III.C.8) for magnetosonic-gravity waves; (d8) as the
hydromagnetic-gravity waves propagate into the corona,
after traversing the critical level, their amplitude grows
slowly and phase is bounded (Fig. 6), so that no further
heating occurs, and the corona is nearly isothermal, re-
taining the temperature of the top of the transition region;
(d9) since magnetosonic-gravity waves are similar to
acoustic-gravity waves when the gas pressure exceeds or is
comparable to the magnetic pressure, they are not distin-
guishable in the chromosphere, where acoustic modes are
often observed; (d10) the magnetosonic-gravity waves in-
teract most strongly with the medium, i.e., are absorbed,
at the critical level in the transition region, which is the
region where empirical data indicate wave amplitude “sa-
turation” occurs, and atmospheric heating is most intense.

8. The role of waves in the solar atmosphere

In the outline of the mass balances (Sec. V.C.6) and en-
ergy balances (Sec. IV.C.7) in the solar atmosphere, by hy-
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drodynamic and hydromagnetic waves, respectively, we
have considered only propagating waves, since standing
modes have zero mass and energy fluxes in the absence of
dissipation, although they can lose energy gradually by
damping or substantially by resonance. Standing modes
certainly exist on the sun: (el) the large temperature
“jump” from the chromosphere to the corona strongly re-
flects acoustic-gravity waves; (e2) oblique Alfvén (Sec.
I1.B.7) and magnetosonic-gravity (Sec. I1.C.6) waves are
substantially reflected even in an isothermal atmosphere
by the large increase of the Alfvén speed with altitude,
due to the decay in density over many scale heights.
Standing oscillations have been observed in several re-
gions of the sun, from the coronal prominences to the
umbrae of sunspots. We choose as an example the latter,
which can be explained as standing Alfvén-gravity waves;
(e3) the frequencies of the first five modes, 300, 180, 135,
100, 70 s, agree in their ratios with the observed values,
most notably the five- and three-minute oscillations; (e5)
the absolute values of the frequencies indicate that the
Alfvén waves, which propagate along magnetic field lines,
are reflected at anchoring points at a depth into the chro-
mosphere (~ 10* km) consistent with the depth of origin
of ephemeral magnetic regions on the sun (Parker, 1984);
(e6) the upper reflection occurs either abruptly, at the
temperature jump in the transition region, or gradually, in
the mass density gradient in the chromosphere, and its ex-
act location does not significantly affect the frequencies,
since the Alfvén speed is large and the waves spend a
small fraction of the time in the sunspot atmosphere; (¢7)
the observed +10% variability of periods can be ex-
plained by small displacements, ~ 10> km, of the anchor-
ing depth of magnetic field lines, i.e., the lower reflectors,
near which the Alfvén speed is lowest and the wave
spends most of the time; (e8) the magnetic field perturba-
tion [Fig. 5(a)] oscillates mostly in the subphotospheric
layers, above the velocity node at the anchoring points of
the magnetic field lines, and then decays in the upper at-
mospheric layers; (€9) the velocity perturbation [Fig. 5(b)]
also oscillates mostly in the deeper subphotospheric
layers, but tends to a constant nonzero value in the atmos-
pheric layers, consistent with the empirical data for the
first two modes, for which data is available; (e¢10) the
Alfvén wave, which has horizontal velocity perturbations
in subphotospheric layers, couples nonlinearly with slow
and fast compressive modes in the photosphere, leading to
the observation of vertical velocity components in the
chromosphere.

The hydromagnetic waves considered before are linear,
since the velocity perturbation does not exceed the Alfvén
speed, which increases rapidly with altitude; the acoustic-
gravity waves in spicules become nonlinear because the
sound speed increases more slowly than the velocity per-
turbation, and the latter eventually becomes comparable
with the former. Nonlinear soliton-type waves could pos-
sibly explain coronal mass ejections, moving magnetic
features, and other large disturbances of “permanent”
shape. Phenomena giving rise to large-scale liberation of
energy, such as the magnetic reconnection leading to
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flares, produce shock waves, which are regularly observed
in the solar wind. The role of waves in the solar atmo-
sphere is summarized in Table III, which should not be
taken as definitive, as there is, at present, no consensus on
the role of waves in the solar atmosphere. In order to in-
dicate the extent of differences in current views, we give
two examples: (a) for the same phenomenon several dif-
ferent explanations are proposed, e.g., models of umbral
oscillations have been presented on the basis of Alfvén,
slow and fast waves, and flux tube modes; (b) a given
wave mode is used to explain widely different phenomena,
e.g., Alfvén waves have been invoked to explain umbral
oscillations, chromospheric heating, coronal loop reso-
nances, and acceleration of the solar wind. Table III gives
a coherent picture of the phenomena in the solar atmo-
sphere backed by 55 [(al)—(all) + (b1)—(b7) + (c1)—
(c7) + (d1)—(d10) + (el)—(e10)=55] pieces of “evidence,”
but it can be contested, on the basis of (i) accuracy or in-
terpretation of empirical data, although we have relied
mostly on “phenomena” reported by several observers; (ii)
validity or magnitude of the effects reported, although
most statements are supported by model calculations; (iii)
availability of several other alternative explanations for
each individual observation, although partial explanations
tend not to add up to a coherent global picture. It is
beyond the scope of the present review to go into much
detail about the observation and modeling of solar phe-
nomena, but the references given are adequate to start a
literature search on most topics mentioned. In con-
clusion, Table III outlines a tentative global picture of the
role of waves in the solar atmosphere and serves as a gen-
eral indication of some of the physical phenomena that
may be associated with unsteady motions in stratified and
magnetized gases.

V. DISCUSSION

This review of waves in gases has been presented in two
parts, with a common introduction (Sec. I of Part I) deal-
ing with the motivations for the study of the subject and
its applications in science and technology. The present
concluding discussion is also common, as it is concerned
with an outline of possible lines of future development of
the subject, including (A) an indication of currently con-
troversial issues, (B) suggestions for new research, and (C)
comments on available methods. Part I (i.e., Campos,
1986a) was-concerned with modern aspects of the classical
subject of acoustics, while Part II dealt with the basic
properties of magneto-acoustic-gravity waves, which have
been the subject of substantial research in last few de-
cades. It is perhaps a reflection of the somewhat perenni-
al character of scientific methods that both subjects, old
and new, could be organized similarly, i.e., the basic unity
of the methods used to study waves in continuous media
has allowed a parallel arrangement of the review of acous-
tic waves (Part I) and that of the generalization to
magneto-acoustic-gravity-inertial waves (Part II), as can
be seen by comparing the four main sections of each part.
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Section II of Part I deals with the extension of the classi-
cal Kirchhoff method of studying acoustic radiation by
“known” sources placed in a medium at rest, to the gen-
eration of sound by “natural” sources in inhomogeneous,
nonuniform flows; Sec. I of Part II, deals with the exten-
sion of the traditional method of Fourier analysis, used to
study the propagation (isotropic or anisotropic, dispersive
or not) of waves under one or more restoring forces (pres-
sure, gravity, Lorentz and Coriolis forces), to the calcula-
tion of radiation fields by asymptotic methods. Section
III of Part I is concerned with refraction of sound in in-
homogeneous moving media, that is, the diffraction of
acoustic rays in turbulence and the scattering of sound by
irregular interfaces, which apply to short and long waves,
respectively; Sec. II of Part II deals with the exact diffrac-
tion theory of linear waves, i.e., describes the propagation
of waves of arbitrary wavelength in a compressible and
ionized atmosphere. Section IV of Part I is concerned
with the general properties of sound in ducts of nonuni-
form cross section, i.e., in horns and nozzles, respectively,
both in the absence and in the presence of accelerated or
decelerated mean flow; Sec. III of Part II presents a gen-
eral method for studying higher-order waves in media
with properties varying in one direction (wave speeds,
scattering scales, and damping rates) according to ex-
ponential or bi-power laws, e.g., the coupling of second-
order modes into fourth-order waves. The last section of
Part I, is concerned with viscous dissipation of acoustic-
gravity waves, nonlinear propagation in free space and
ducts, and “burgulence,” i.e., nonlinear, damped waves of
“shock” type with dissipative limitation of gradients, and
ultimate decay; the fourth section of Part II deals with
resistive dissipation of hydromagnetic waves in atmo-
spheres, propagation in magnetic structures such as inter-
faces, slabs, and flux tubes, and “solitons,” i.e., nonlinear,
dispersive waves of “permanent” form with dissipative
decay. Table IV lists some of the topics considered and
demonstrates the complementary nature of the two parts
of the present review on waves in gases.

A. Subtle points and controversial issues

Part I of this review, on acoustics of inhomogeneous
and moving media, is somewhat shorter than Part II,
dealing with the coupling of compressibility, gravity,
magnetism, and (to a lesser extent) rotation, partly be-
cause the presence of several restoring forces in the latter
cases, compared to one in the former, can lead to more
complex phenomena. Another reason for Part I to be
shorter is that we have not reviewed the basic aspects of
acoustics, which are well known and noncontroversial, ex-
cepting only the more involved applications, e.g., sound in
nonuniform (accelerated, sheared, or turbulent) flows;
concerning the magneto-acoustic-gravity waves in Part II,
there are a number of contradictory results in the litera-
ture, on such basic issues as cutoff frequencies, amplitude
and phase laws, and wave properties at the critical level,
and a review on the subject must address these. When
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TABLE 1V. Classification of waves and associated phenomena.

Nondispersive—acoustic, Alfvén, and magneto-acoustic (Secs. II-V of Part I, See I of Part II)

high-frequency (Secs. III.C, IV.C of Part I; II.LA and C of Part II)
all frequencies (Secs. IV, V.A of Part I; I-III of Part II)

Properties
Amplitude Linear (Secs. II-V.A of Part I; I-IV.B of Part II)
Nonlinear (Secs. V.B and C of Part I; Sec. IV.C of Part II)
Directivity Isotropic—acoustic (Secs. II and V of Part I)
Anisotropic—all others (Secs. I-IV of Part II)
Dispersion
Dispersive—all others (Secs. I-IV of Part II)
Type Longitudinal—acoustic (Secs. II-V of Part I)
Transverse—Alfvén, gravity, inertial, and couplings (Secs. I-IV of Part II)
Mixed—all couplings with acoustic waves (Secs. I-IV of Part II)
Medium
Composition Homogeneous (Secs. II-IV of Part I; I of Part II)
Stratified (Secs. II-IV of Part II)
Convection At rest (Secs. IILA, IV.A and B, V.A of Part I, I-IV of Part II)
In motion (Secs. IILA and B, III, IV.C, V.B and C of Part I)
Boundaries Free space (Secs. II, III, V of Part I; I-IV.A of Part II)
Waveguides (Sec. IV of Part I; IV.B and C of Part II)
Obstacles Interfaces and walls (Secs. IIL.A, IV of Part I; IV.B and C of Part II)
Turbulence and flows (Secs. IIL.B, IV.C of Part I)
Continuous stratification (Sec. V.A of Part I; I-III, IV.A of Part II)
Process
Generation Monopole source (Secs. ILA and C of Part I)
Force dipoles (Secs. II.LA and C, IV.C of Part I)
Quadrupole stresses (Sec. IILA of Part I; I.C of Part II)
Propagation Dispersion relations (Secs. III.C, V.C of Part I; I, IV.B and C of Part II)
Special functions (Secs. IV, V.A of Part I; II, III, IV.2.1 of Part II)
Nonlinear transformations (Sec. V.C of Part I; IV.C of Part II)
Refraction Scattering: low-frequency (Sec. III.LA of Part I)
Diffraction:
Refraction:
Dissipation Nondissipative (Secs. II-IV, V.B of Part I; I-III, IV.B of Part II)
Dissipative (Secs. V.A and C of Part I; IV.A and C of Part II)
Consequences
Diffusion Viscosity (Secs. V.A and C of Part I)
Electrical resistance (Sec. IV.A of Part II)
Thermal (Sec. V.C of Part I; IV.C of Part II)
Methods Exact (Secs. IV, V of Part I; I-III of Part II)
Approximate (Secs. II, III of Part I; IV of Part II)
Numerical (Secs. II, III, V of Part I; I-III of Part II)
Applications Physics (Secs. I-V of Part I)

Engineering (Secs. I-V of Part I)

Astrophysics (Sec. I of Part I, Secs. I-IV of Part II)

presenting a topic, in either Part I or Part II, that has
been the subject of incompatible statements in the litera-
ture, we have adopted the following procedures: (i) to
outline each of the relevant arguments used in the litera-
ture, presenting them in a way that is adequate to show
strong and weak points; (ii) to give a careful discussion of
a method that might resolve the issue in an unambiguous
manner; (iii) to mention other independent and alternative
methods of proving or checking what is believed to be a
“correct” result; (iv) to indicate the assumptions made,
and the circumstances in which different results could be
expected. Obviously, there is no assured method of
resolving controversial issues, but it is felt that the pro-
cedure above gives a fair chance to all points of view,
while trying to arrive at a conclusion that is as reliable as
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possible. A word of caution on controversial issues in the
literature is perhaps always worthwhile, since (a) the
newcomer to the field should be warned that the opinion
on a controversial matter expressed in a few papers may
not reflect a consensus, or be accepted without reserva-
tion; (b) the specialist in the subject should bear in mind
that, whenever in the course of a work it is necessary to
take sides on a controversial issue, that particular point,
and deductions from it, may come under critical examina-
tion by other workers in the field. Thus, if it is not possi-
ble, in a given work, to use a method independent of, or
invariant with regard to, controversial issues, it is at least
advisable to check the suitability of the method and valid-
ity of the conclusions derived from it. We proceed to in-
dicate some of the topics on waves in gases which have
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given rise to some disagreement in the literature, in order
to point out the basic issues in question.

1. Critical levels of atmospheric waves

We begin our consideration of controversial topics with
the subject of critical levels, which can occur for waves
subject to two competing effects of varying relative mag-
nitudes, such that one dominates in one region, and the
other in another region, implying that “mode conversion”
occurs between the two. For example, critical levels do
not occur for viscous acoustic or resistive Alfvén waves in
homogeneous media, with constant wave speeds and
damping rates; but for both viscous acoustic-gravity
waves (Sec. V.A of Part I) and resistive Alfvén waves
(Sec. IV.A of Part II), the dissimilar laws of variation of
wave speed and damping rate with altitude, in an atmo-
sphere, lead to the appearance of a critical level. The crit-
ical level appears mathematically as a singularity in the
wave equation, and may imply that the wave energy is not
fully propagated across the critical level, as a consequence
of absorption, reflection, or mode conversion, according
to whether it is a critical level of type I, II, or III (i.e.,
singular, reflecting, or transition layer). Nondissipative
acoustic-gravity waves, in an isothermal atmosphere, and
Alfvén waves in an atmosphere under a uniform magnetic
field, have no critical levels, since there are no varying
competing effects in either case—the gas pressure and
buoyancy decay at the same rate for the former, and the
latter is affected by the constant magnetic pressure alone.
Since the critical level occurs for these waves only in the
presence of dissipation, it might be expected that the limit
of zero diffusion would lead back to the nondissipative
solution, but this may actually be true or untrue, depend-
ing on whether the critical level recedes to + c0 Or — o0.
In the case of viscous acoustic-gravity waves, the limit of
zero viscous diffusivity corresponds to a critical level
receding to + oo, and still reflecting waves, so that non-
dissipative acoustic-gravity waves, which are not reflected
in an isothermal atmosphere, are not regained (Sec. V.A.7
of Part I). For resistive Alfvén waves in an atmosphere,
the limit of zero magnetic diffusivity implies a critical
level at — 0, so that it no longer affects waves, and the
nondissipative case is indeed regained (Sec. IV.A.8). Thus
a critical level can affect waves everywhere, although its
effect is greater in its own vicinity, and the question arises
of whether waves have a finite or continuous amplitude
and phase at the critical level.

Wave properties near the critical level are usually stud-
ied (Bretherton, 1966; Booker and Bretherton, 1967) by
means of a series expansion in its vicinity, assuming that
the singularity is regular; the leading term of the series
specifies the properties of the wave field at the critical
level, where the remaining terms vanish by comparison,
assuming that the series converges. The verification that
the series expansion for the wave field near the critical
level does converge is seldom made in the literature,
perhaps because explicit formulas for the nth coefficient
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are needed and may be difficult or tedious to find in a
particular application; however, if the series fails to con-
verge, it introduces another singularity, which may dom-
inate or cancel that in the leading term. An instance of
the latter case is given by oblique propagating
magnetosonic-gravity waves in an atmosphere under a
horizontal magnetic field (Sec. IL.C): (i) these are reported
in the literature to have (Sec. I.C.4) a logarithmic singu-
larity at the critical level, on the basis of the leading term
of a divergent series; (ii) the latter exactly balances the
singularity in the leading term, so that the wave has a fi-
nite amplitude and phase at the critical level, as shown by
a convergent expansion (Sec. II.C.8) using a more suitable
altitude variable.

2. Cutoff frequencies for nonuniform propagation

The existence of a critical level for waves in an atmo-
sphere may require not only the presence of competing ef-
fects of varying relative magnitude, but also a suitable
geometry of the restoring forces. For example, in the case
of nondissipative magneto-atmospheric waves, the com-
petition is between the decaying gas pressure and buoyan-
cy on the one hand, and, on the other hand, the magnetic
pressure, which does not decay if the magnetic field is
uniform or in excess of a nonzero value. The critical level
will exist only for a purely horizontal magnetic field, for a
nonzero vertical component would allow waves to propa-
gate through, instead of being absorbed. The case of
magnetosonic-gravity waves, in an atmosphere under a
horizontal magnetic field, is the subject of contradictory
statements in the literature, not only concerning the wave
amplitude at the critical level (Sec. V.A.1), but also with
regard to the cutoff frequencies. Taking as reference the
cutoff frequencies of acoustic-gravity waves, it has been
stated that magnetosonic-gravity waves either (a) have the
same filtering properties, or (b) have the cutoff frequen-
cies modified by replacing the sound speed ¢ by

(e +aHV?=c(1+1/B)"?, where a is the Alfvén speed

and B=c?/a? is the plasma B. In order to explain the
origin of the discrepancy, we recall that the cutoff fre-
quency separates propagating waves from standing modes
and thus corresponds (Thomas, 1982) to the limit of infin-
itely spaced nodes, i.e., infinite wavelength A— 0 ; thus
the cutoff frequencies can only be obtained from exact
solutions of the wave equation. For example, for
acoustic-gravity waves in an isothermal atmosphere, the
sound speed and scale height are constant, and the disper-
sion relation is an exact solution, from which filtering
properties may be deduced reliably. In the case of
magnetosonic-gravity waves in an isothermal atmosphere
under a horizontal uniform magnetic field, (i) the Alfvén
speed varies with altitude, and thus the “local” form of
the dispersion relation, which is used to justify statement
(b) above, is limited to short waves, so that the limit of in-
finite wavelength cannot be taken (Sec. II.C.2); (ii) an ex-
act solution, valid for all wavelengths, can be obtained in
terms of hypergeometric functions and proves the state-
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ment (a) that the cutoff frequencies are the same as for
acoustic-gravity waves (Sec. I1.C.3); (iii) the latter con-
clusion can be confirmed by the general criterion for the
identification of cutoff frequencies, showing that a hor-
izontal magnetic field has no effect on the cutoff frequen-
cy for vertical magnetosonic-gravity waves (Sec. II1.C.2);
(iv) the conclusion does not extend to oblique magnetic
fields, since in that case vertical waves are coupled
fourth-order modes, with two cutoff frequencies, one of
which depends on magnetic field direction but not
strength. This sequence of four statements (i)—(iv) is an
example of the method, indicated at the beginning of Sec.
V, of trying to clarify controversial issues in the litera-
ture.

3. Initial and asymptotic amplitude laws

The same method, in connection with another contro-
versial aspect of propagating (i.e., nonevanescent)
magnetosonic-gravity waves, in a uniform horizontal
magnetic field, namely, their properties at the critical lev-
el, leads to the following conclusions: (i) the “logarithmic
singularity” corresponds to the leading term of a diver-
gent series expansion (Sec. II.C.4), and the singularity in-
troduced by the series exactly cancels it; (ii) the latter
statement follows from the exact solution of the problem
in terms of a more suitable altitude variable, which speci-
fies exactly the wave field at all altitudes, including the
critical level (Sec. II.C.3); (iii) the result that the wave am-
plitude and phase are finite at the critical level are con-
firmed in two distinct ways, by proving the convergence
of both the high- and low-altitude solutions at the critical
level (Sec. I1.C.7); (iv) the general method investigation of
the properties of waves with exponential wave speeds,
confirms the existence of the critical level and its location
(Sec. III.C.4) and also confirms that the wave amplitude
and phase are finite there (Sec. III.C.5).

In addition to the issues of the cutoff frequencies and
critical levels, a third somewhat controversial issue occurs
in the literature on magneto-atmospheric waves, namely,
that of laws of variation of wave amplitude and phase
with altitude. The situation is somewhat similar to the is-
sue of the cutoff frequencies, in the sense that use of the
dispersion relation yields reliable results, namely, ex-
ponential amplitude and linear phase evolution, for waves
with constant speed of propagation, e.g., acoustic-gravity
waves in an isothermal atmosphere (Secs. II.A.7 and
IILA.4); in other circumstances “local” forms of the
dispersion relation assume complex exponential wave
fields and thus prove nothing concerning amplitude or
phase laws, e.g., they are, respectively, not exponential
and nonlinear for acoustic-gravity waves in the presence
of temperature gradients (Sec. II.A.8). Concerning mag-
netic waves, since the Alfvén speed increases rapidly with
altitude, the reference wavelength A=2ma/w rapidly
exceeds the scale height, so that the waves become non-
sinusoidal; the ray approximation applies to high-
frequency waves over a short distance a /w <<L /21, and
leads, by the conservation of the energy flux, to velocity
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perturbations increasing exponentially at half the acoustic
rate. For low-frequency waves at any altitude, and high-
frequency waves at a sufficiently large altitude, the ray
approximation breaks down, and the wave equations can
be solved in the opposite limit of small compactness
(oL /a)* << 1; this leads to linear amplitude growth for
propagating waves and bounded amplitude for standing
modes, with bounded phase in the former case. These
amplitude and phase laws apply to the velocity perturba-
tion in general atmospheres and can be checked from ex-
act solutions for simple cases, e.g., isothermal atmo-
spheres and uniform magnetic fields. The amplitude and
phase laws for (a) acoustic-gravity and (b) Alfvén waves
serve as reference cases of magneto-atmospheric waves,
e.g., for magnetosonic-gravity waves in regions of
predominant (a) gas pressure and (b) magnetic pressure,
and also for the (a) dynamic and (b) magnetic component
of fourth-order hydromagnetic-gravity waves.

4. Constraints for dissipative and stratified media

When considering waves in unbounded media, it is
necessary to specify an appropriate boundary condition at
“infinity,” e.g., for second-order wave equations, the
boundary value problem in one dimension involves two
constants of integration, one determined by the initial
wave field and the other by another condition; the latter
condition is simple in the case of a bounded medium, e.g.,
zero displacement at a rigid reflector, or wave velocity
perturbation equal to normal surface velocity at an
“opaque” driver. In the case of an unbounded medium,
the former reflection condition is replaced by an asymp-
totic condition; in the presence of one or more partially
transmitting reflectors, the continuity of total pressure
and normal displacement is used at each interface, but the
asymptotic condition is still needed in the unbounded
layer, beyond the last partial reflector. For waves in an
unbounded, homogeneous medium, the radiation condi-
tion can be used to specify an outward-propagating wave,
uncontaminated by waves propagating inward, which
would bring energy from sources at “infinity.” In the
case of a stratified medium, the radiation condition may
be-inappropriate, e.g., waves propagating upward in an at-
mosphere may suffer reflections, which produce
downward-propagating waves, in the absence of any
source at infinity. For dissipative waves in homogeneous
media, it is sometimes useful to apply a decay condition,
requiring the amplitude to decay (in space or time), on ac-
count of dissipation; for dissipative waves in a stratified
medium, the decay condition may not hold, e.g., waves
tend to grow in amplitude in an atmosphere, as the densi-
ty decays with altitude, and dissipation may be insuffi-
cient to reverse this. Thus the question arises of the
choice of a second boundary condition for dissipative
waves in an atmosphere; such a boundary condition must
be valid, i.e., hold true, and also be relevant, i.e., serve to
determine one constant of integration. Two valid boun-
dary conditions for dissipative waves in stratified media
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are (i) the dissipation condition (Yanowitch, 1967a) stat-
ing that the total energy dissipated by the wave, over an
infinite column of fluid, from zero to infinity, must be fi-
nite; (ii) the damping condition (Campos, 1983e), stating
that the dissipative wave must have a smaller amplitude
than a nondissipative wave in the same medium. While
all dissipative waves in atmospheres satisfy both condi-
tions, in some cases one is trivially satisfied and the other
determines a constant of integration, i.e., the former is an
irrelevant and the latter a relevant constraint. For exam-
ple, for acoustic-gravity waves in a viscous atmosphere,
the sound speed and static viscosity are bounded, and the
kinematic viscosity increases as the mass density decays
with altitude; it follows that the viscosity is dominant at
high altitude, and the integral dissipation condition is
(Sec. V.A.6 of Part I) the relevant constraint. In the case
of Alfvén waves in an imperfectly conducting atmo-
sphere, the magnetic diffusivity is bounded and the
Alfvén speed unbounded; thus dissipation is negligible at
high altitude, and the dissipation condition is irrelevant,
but the damping condition (IV.A.7) serves as a constraint.

5. Boundary conditions at a moving interface

Another case in which the application of boundary con-
ditions requires some care, and which has lead to a long-
lasting controversy in the literature, is the scattering of
waves by an interface separating two media in relative
motion. For the purpose of discussion of the issue in
question, it is sufficient to consider the simplest case of
sound incident upon a plane interface separating a jet
from a medium at rest; the laws of reflection and
transmission of waves by a plane interface are traditional-
ly obtained by applying suitable boundary conditions re-
lating the former two to the incident wave field. For ex-
ample, in the case (Landau and Lifshitz, 1967b) of elastic
waves, the normal displacement and stress must be con-
tinuous, and for electromagnetic waves (Stratton, 1941)
the jump in a normal electric and transverse magnetic
field is determined by the surface electric charge and
current densities, respectively. For wave reflection and
transmission by a plane interface between two fluids at
rest (or moving at the same velocity, i.e., in relative rest),
the two boundary conditions are continuity of (i) the nor-
mal stress, e.g., gas pressure for sound, gas plus magnetic
pressure for magneto-hydrodynamic waves, gas plus radi-
ation pressure for acoustic waves in a radiating fluid, (ii)
normal displacement or velocity, which differ in a factor
involving the frequency, i.e., identical for media at rest,
and involving the same Doppler shift for media moving
at the same velocity. The former, dynamic boundary con-
dition (i), expressing force balance, is universally adopted,
whereas the latter, kinematic boundary condition (ii) is
used variously in displacement or velocity form; this
difference in (ii) is of no consequence for scattering by
plane interfaces between media at relative rest, since the
Doppler factor relating normal displacement to normal
velocity is the same, and drops out of the equation, and
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continuity of either one implies that of the other. The sit-
uation is distinct for an interface separating media mov-
ing at different velocities, e.g., a jet in a still atmosphere,
since then the Doppler-shifted frequency is different on
both sides, and so is the relation between displacement
and velocity; it follows that in the case of a plane inter-
face between media in relative motion, the continuity of
the normal components of displacement and velocity are
incompatible, and different choices have been made in the
literature (Sec. III.A.3 in Part I). The boundary condi-
tions at an interface can be deduced by integrating the
equations of motion across the discontinuity, i.e., apply-
ing the equations of motion across a thin layer matching
the two media continuously, and letting the thickness tend
to zero. Unfortunately there have been in the literature
claims of mathematical proofs of the continuity of both
velocity and displacement, and, inevitably, some dispute
on the validity of such demonstrations, since they cannot
both be correct. From a physical point of view, it is clear
that the fluid must remain “attached” to the moving in-
terface at all times, and this implies the continuity of the
normal component of the displacement at the interface, in
all cases: if the media on opposite sides are at relative
rest, the normal velocity will also be continuous, whereas
if they are in relative motion the normal velocity is
discontinuous, on account of the different convection ef-
fects on the two sides of the interface. Thus we have
adopted (Sec. IL.A of Part I) the continuity of the normal
component of displacement, which has led to results on
sound transmission from jets that are consistent with ob-
servation, as concerns both directivity (Munt, 1977) and
spectra (Campos, 1978a, 1978b). We must, however, bear
in mind that relatively recent research work includes op-
posite claims as to whether continuity of velocity (Myers,
1980) or displacement (Poirée, 1982) should hold for
scattering of sound by moving interfaces.

6. Correlation function for random phase shifts

The scattering of sound by plane interfaces causes only
amplitude changes associated with the reflection or
transmission of part of the wave energy. In the case of an
irregular interface, the scattering occurs at different
“heights” for distinct horizontal coordinates, resulting in
phase shifts, which are random if the shape of the inter-
face is aleatory; the transmission of sound through tur-
bulence also leads to random phase shifts. Thus an irreg-
ular moving interface, or the layer of turbulence entrained
with it, transforms a phase-coherent incident wave into a
transmitted field for which wave variables, e.g., the acous-
tic velocity or pressure, have random phase shifts. Such
incoherent wave fields can be characterized by the acous-
tic energy flux, which is quadratic in the wave variables
and hence is determined by the statistics of the random
phase shifts, including their correlation function. Taking
a one-dimensional, spatial-only correlation for simplicity,
it follows from the concept of correlation length L that
phase shifts are almost uncorrelated over larger separation
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z>L, and a “popular” simple form of the correlation
function is Ey(z)=exp[ —(z/L)?]. There are, however,
some applications for which it is not suitable. For exam-
ple, in the case of scattering by the moving irregular inter-
face of a jet, the conservation of the volume occupied by
the mean flow (assumed to be incompressible) requires the
correlation function E (z) to have zero integral from — oo
to + oo, which is not true of E((z); the latter has positive
integral, and implies an expansion of the jet. The concept
of correlation scale L as the separation z <L beyond
which the correlation E (z) << 1 is small, is not affected if
we multiply the preceding correlation function Ey(z) by a
polynomial  g(z/L). The correlation function
E(z)=q(z/1)E((z) is still small for z >>L, when the neg-
ative exponential in Ey(z)=exp[ —(z/L)?] dominates; the
polynomial ¢(z/L) modifies the correlation function
mainly at small separations, e.g., we can satisfy the condi-
tion of volume conservation or zero integral of E(z) by
choosing a symmetric polynomial of degree two, viz.,

g\(z/LY=1-2z%/L? .

The type of correlation function E(z/L)=gq,(z/L)E(z)
has been observed for the random phase shifts of elec-
tromagnetic waves propagating in the atmosphere (Tatar-
ski, 1971) and sound transmitted across turbulent jets (Ho
and Kovasznay, 1976). The main difference between the
two correlation functions is that Ey(z)>0 for all z, so
that the two wave components always have phases with
the same sign, whereas E,(z) changes sign for z =L /V2,
so that waves with larger separation have phases with op-
posite signs. The signs of the phases is important in con-
nection with wave interference and affects the shape of
the spectra for sound transmission across turbulent and
irregular jets. The positive correlation function leads to
hump-shaped spectra with a single maximum (observed
by Candel, Jullienne, and Julliand, 1975), whereas the
correlation function with sign reversals leads to spectra
with sidebands (observed by Candel, Guédel, and Julienne,
1976); the latter are illustrated in Fig. 6 of Part 1.

7. “ldentification” and modeling of sources of sound

Scattering by interfaces and diffraction by turbulence
mask the source of sound, thus changing the directivity
pattern and energy spectrum of the wave source. Even
when scattering and diffraction effects are absent, e.g.,
when we have a wave field in free space, without obstacles
or reflectors, the “location” or “identification” of wave
sources is intrinsically ambiguous. The literature on noise
control contains what is perhaps an overabundance of
claims to have “located” or “identified” the sources of
sound in specific circumstances. It should be borne in
mind that there are infinitely many different source dis-
tributions capable of producing the same wave field—if
we choose an arbitrary point in space, there exists a super-
position of multipoles concentrated at that point that pro-
duces the desired wave field, and a different set of mul-
tipoles at another point produces the same wave field.
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Thus, when considering the generation of waves, it is
safer to present the discussion in terms of “model”
sources, i.e., source distributions that produce the ob-
served wave field; the actual “location” of the source re-
gion can be difficult task. For example, the noise of an
aircraft in flight (Campos, 1984b, 1986c), arising from a
turbine engine, may result not only from blade vibration,
but also from shedding of vorticity, which emits sound as
it is convected by the flow, leading to an “apparent”
sound source somewhere downstream of the turbine, i.e.,
not on the turbine itself.

The identification of the physical mechanism of wave
generation can be made by a method analogous to the
“acoustic analogy” (Lighthill, 1952, 1978), which applies
both to sound and to other types of waves (Campos, 1977,
1978a), justifying the designation of “wave analogy” in
Sec. II.LA.1 of Part I. A successful application of the
“wave analogy” requires an unambiguous interpretation
of all terms in the exact, nonlinear wave equation. In the
original “acoustic analogy” (Lighthill, 1952), the linear,
nondissipative terms coincide with the well-known classi-
cal wave equation, and all the remaining nonlinear and
dissipative terms can be grouped in a source quadrupole,
the “Lighthill tensor,” which models the generation of
sound by turbulence in a medium otherwise at rest. An
attempt to model the generation of sound by shear flows
has led to an equation (Lilley, 1973) containing a number
of “interaction” terms, which have been variously inter-
preted as describing wave propagation, scattering by the
shear flow, or generation mechanisms; the ambiguity in
the interpretation of terms, has led to doubts on how this
“analogy” should be applied. Even when, together with
some ad hoc assumptions, it leads to results in agreement
with observation (Mani, 1976a, 1976b), alternative
methods of proof are sought (Dowling, Ffowcs-Williams,
and Goldstein, 1978) as an additional justification. An
example of unambiguous application of the “wave analo-
gy” is the extension of the acoustic analogy to sound gen-
eration in nonuniform, steady flow: (i) the wave equation
is deduced first (Sec. IL.B of Part I), using a variational
method (Campos, 1986a), valid for potential flow; (ii) the
consideration of the exact equations of vortical, inhomo-
geneous flow shows that the preceding wave equation is
forced (Sec. II.C of Part I) by dipole sources, correspond-
ing to vorticity (Powell, 1964) and inhomogeneities
(Howe, 1975). A similar two-stage procedure is adopted
to extend the “acoustic analogy” to include electromag-
netic forcing (Kulsrud, 1955; Campos, 1978a) or to model
the generation of magneto-acoustic waves (Sec. I.C of
Part II).

B. Open problems and suggestions for research

The purpose of a review is to outline the current state
of knowledge in a given field, and thus it suggests, by im-
plication, areas that require further research or that are
still unexplored. Since it is not possible to describe in
anything near an exhaustive manner the field of waves in
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gases, we have classified the subject into broad sections
and discussed in some detail a few basic topics, leaving
others as references; some applications were mentioned in
a cursory manner, with the details of experiments, obser-
vations, modeling and calculations given in additional
references. Thus the references listed in the support of
the present review consist of (i) a moderate number of
basic papers describing important advances in the field,
which should be quoted regardless of age, (ii) a larger
number of recent works, which demonstrates the main
lines of enquiry pursued in the last few years and indicate
the current state of knowledge in active research fields.
We have limited the repetition of references in Parts I and
IT as much as possible to cases where the relevance of the
works to the present subject makes such double quotation
almost inevitable.

Whenever a result is stated under restrictive assump-
tions, the possibility exists, in principle, to generalize it,
by removing the restriction; the pursuit of generality for
its own sake may not always be productive, as some as-
sumptions are of lesser practical importance than others.
The assumptions made in a given problem may be classi-
fied into two broad categories: (i) assumptions that sim-
plify the solution of a problem and.are satisfied by most
practical applications, so that the additional complexity
of the generalization obtained by removing the assump-
tion may be unwarranted; (ii) assumptions that are made
in order to render a problem tractable by existing or
modified methods, but that do restrict their domain of ap-
plication, in the sense that there are situations in which
the assumption is not met, and the importance of such
cases warrants further study. The desirable generaliza-
tions may include applying methods developed in one
field to another area, for which they are well suited, possi-
bly with modifications; in some cases, undoubtedly rarer,
a problem may suggest an entirely new or substantially
new method, or a novel approach, e.g., in cases where sub-
stantial experimental or observational evidence exists,
without supporting quantitative modeling.

1. Generation of internal and inertial waves

An example of a combination of a novel and a classical
approach is the formulation of the ‘“‘acoustic analogy”
(Lighthill, 1952), which has played a pioneering role in
the development of modern aerodynamic acoustics (Gold-
stein, 1976) by providing a way of modeling spontaneous
sound generation in natural and engineering flows; the
method extends into a “wave analogy,” which is in princi-
ple applicable to any system of equations of motion (Sec.
IILA.1 of Part I) and could possibly lead to similar
developments concerning other types of waves in fluids,
viz., magnetic, gravity, and inertial, as well as the cou-
pling between them and with sound. The consideration of
sound emission by ionized inhomogeneities points to some
analogies between hydrodynamics and electromagnetism;
e.g., the electric force exerted upon charges corresponds to
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the displacement force on blobs of density distinct from
that of the surrounding fluid (Sec. IL.C.3 of Part I), and
the magnetic force exerted upon electric currents corre-
sponds to Lamb’s vector specifying the force on vortices
(Sec. II.C.4 of Part I). The coupling of compressibility
and magnetism, in connection with the generation of
magneto-acoustic waves, also demonstrates a correspon-
dence between dynamic and magnetic effects; e.g., the
source quadrupole modeling the generation of such waves
by hydromagnetic turbulence consists of modified Rey-
nolds and Maxwell magnetic stresses (Sec. I.C.6 of Part
IT). Other analogies apply to dipole sources and dissipa-
tion tensors, and include, as a consequence, a correspon-
dence between the gas and magnetic pressures, which is
frequently used in transposing results from acoustic to
magnetic waves, e.g., in the comparison of sound and
Alfvén speeds (Sec. II.B.1). Thus the question is raised of
whether the modeling of the generation of internal and
inertial waves could give rise to analogies reminiscent of
those relating acoustic to magnetic waves; such analogies,
if found, would not only allow some of the substantial
knowledge accumulated in acoustics to be transposed to
other waves, but it could also contribute towards a more
unified view of waves in fluids.

2. Multiple refraction by interfaces and turbulence

The process of distortion of a wave during refraction in
a random medium, e.g., scattering by irregular interfaces
or diffraction by turbulence (Campos, 1984d) is a com-
mon observation for acoustic, radar, radio, and other sig-
nals, but the modeling of such phenomena still leaves
much scope for improvement. The simplest theory of
scattering by an irregular interface in motion, replaces the
interface by an assembly of flat, horizontal radiators,
placed at correct heights relative to the mean position, to
yield accurate phase shifts for plane waves. The interfer-
ence pattern of the scattered waves would be modified if
account were taken of the inclination of the facets, i.e.,
this would tend to increase the spectral broadening; more-
over, if the Rayleigh-Born approximation were not made,
i.e., if the local curvature of the interface were taken into
account, the transmitted and reflected waves would cease
to be plane, leading to further changes in their spectra.
The diffraction of sound by turbulence is readily studied
in the ray limit, for wavelengths much shorter than the
scale of eddies, causing random phase shifts (Sec. II.C.2
of Part I), but no significant amplitude changes, in an in-
compressible mean flow. The case of sound of wave-
length comparable to the scale of the eddies (Lighthill,
1953) demonstrates significant changes both in amplitude
and phase, due to a combination of backscattering of
some acoustic energy and redirection of the rest. The in-
teraction of sound and flow of comparable scales can also
trigger instabilities, as demonstrated by the acoustic exci-
tation of jet noise, i.e., an acoustic tone can modify the
structure of a turbulent jet, leading to a substantial in-
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crease in radiated noise (Bechert and Pfizenmaier, 1975).
Both scattering by steeply irregular interfaces and diffrac-
tion by strong turbulence can lead to the phenomenon of
multiple refraction; the tracking of many successive re-
fractions in space-time may become a complicated task,
in which case a description in wave-vector frequency
space may be preferable (Howe, 1973). Multiple diffrac-
tion also occurs for sound transmission across double-
sided jets, which can support multiple internal refractions
(Sec. III.C.4 of Part I) and act as efficient noise suppres-
sors in modern turbofan engines. Although most of these
topics have been the subject of more or less research, our
understanding of wave propagation with multiple refrac-
tion in random media still leaves much scope for im-
provement.

3. Acoustics of ducts with shear flow

The propagation of sound in a tube of constant cross
section, without flow or with a uniform flow, is a classical
waveguide problem. The propagation of sound in the
ducts commonly found in engineering practice often in-
volves two additional “complications,” namely, (i) reflec-
tions from the walls if the cross section varies, e.g., as in a
horn or nozzle (Campos, 1985b); (ii) refraction by a shear
flow profile, e:g., with zero velocity at the walls and max-
imum velocity on the axis (Mdhring, Miiller, and Ober-
meier, 1983). Concerning the acoustics of nonuniform
ducts, a number of general properties can be proven in the
absence of a mean flow, when reflection from the walls is
the only effect (Campos, 1984e¢). The addition of a mean
flow implies, by volume conservation at low Mach num-
ber, that it must be accelerated as the cross section
reduces or decelerated as the cross section increases, and
the resulting nonuniform convection of sound complicates
the calculation of the wave field (Campos, 1984f). The
fact that the mean flow velocity must vanish at the walls
implies that its profile in the duct must be sheared, and
the transverse nonuniformity is represented by the pres-
ence of vorticity in the mean flow. Exact solutions of the
acoustic equations in a shear flow in a uniform duct, are
even more rare than for a “plug” flow in a nonuniform
nozzle. The difficulties of accounting simultaneously for
the effects on sound of (i) the nonuniform convection by
accelerated or decelerated flow and (ii) the interaction
with vorticity present in a sheared mean flow are consid-
erable, since the mean flow velocity would vary in two
directions. The tendency of the literature to split into ei-
ther shear flow in uniform ducts or plug flow in nonuni-
form nozzles is thus understandable, as a way to gain in-
sight into a single set of phenomena at one time. It is no
less true, however, that in many practical applications the
acoustic nozzles contain flows that are both sheared and
accelerated (or decelerated); such problems have been
tackled mostly by approximate methods, e.g., parametric
expansions that apply with a few terms only (Nayfeh,
Kaiser, and Telionis, 1975) if the reflections from the

Rev. Mod. Phys., Vol. 59, No. 2, April 1987

walls are weak. Thus the area of acoustics dealing with
the interaction of reflection from tapered duct walls and
convection by sheared mean flow still needs some fairly
basic research.

4. Radiation patterns and scaling laws

When studying a “new” type of wave, in the sense of
including additional restoring forces, scattering mecha-
nisms, or dissipation processes, the method almost always
used in the first instance is to consider the dispersion rela-
tion. This can be obtained by Fourier analysis, assuming
the waves to be sinusoidal, and specifies their propagation
properties, e.g., isotropic or anisotropic, dispersive or non-
dispersive (Secs. I.B.1—1.B.3). For anisotropic waves the
question arises of how to calculate the directivity pattern,
i.e., the amount of energy radiated in each direction; the
radiated field can be calculated (Sec. I.C.1) by Fourier
analysis applied to the “forced” wave equation, consisting
of the propagation operator (on the lhs) and multipole
sources (on the rhs). The radiation integrals are often
tedious to evaluate, but they simplify asymptotically for
an observer in the far field, who receives most of the radi-
ation from the points on the wave-number surface w(k)
where the group velocity dw /dk (aligned with the normal)
points directly to him, and the rule is readily applied to
the many wave types for which wave-number surfaces are
illustrated in the literature. The calculation of the radia-
tion field depends (Secs. I.C.3 and 1.C.4) on (i) whether
the wave-number surface is flat, singly curved or doubly
curved, i.e., whether the wave fronts are plane, cylindri-
cal, or spheroidal; (ii) whether the waves are dissipative or
nondissipative, since the frequency is conserved in the
latter but not in the former case, requiring extension from
the three-dimensional wave-vector k space, to the four-
dimensional space (k,w) obtained by including frequency
o as an additional coordinate; (iii) whether the wave-
number surface is of second order at the radiating points,
and the presence of inflexion edges, etc., leads to higher-
order terms, corresponding to caustics and focusing phe-
nomena. If the radiation laws are applied to the model
sources (Sec. V.B.1) responsible for the generation of the
waves in question, it is possible to obtain scaling laws for
the intensity of radiation. Such scaling laws are useful in
comparing the efficiency of radiation of a given wave by
different physical mechanisms, i.e., in helping to decide
which of several possible wave excitation processes is like-
ly to predominate in a given set of circumstances. More-
over, if the constant factor in the scaling law is deter-
mined, say, from a particular case, the absolute intensity
of radiation can be predicted for the same wave in similar
circumstances, giving an indication of the importance of
the wave phenomenon in energy terms. Since dispersion
relations and wave-number surfaces have been presented
in the literature for many types of waves, the extension to
radiation laws and intensity scaling is a useful additional
result, which is not difficult to obtain from them.
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5. Mode coupling and high-order waves

The Fourier analysis or dispersion methods, which are
a very convenient method for studying linear waves in
homogeneous media, cease to apply in the presence of
density stratification or nonuniform force fields, which
cause the wave speeds, scattering scales, or damping rates
to become nonuniform. In such cases, attempts to apply
“local” dispersion relations through the ray approxima-
tion can lead to incorrect cutoff frequencies (Sec. V.A.6).
The laws of variation of amplitude and phase with alti-
tude cannot be determined either, since the WKBJ ap-
proximation assumes complex exponential wave fields,
i.e., exponential or constant amplitude and linear or zero
phase. Linear waves in stratified media have a wealth of
important properties not shared by waves in homogeneous
media, such as cutoff frequencies, critical levels, non-
sinusoidal waveforms and nonlinear phases, associated
with phenomena of spectral filtering, wave absorption,
waveform deformation, and phase shifting, which can be
described in detail by the exact solutions of linear wave
equations with variable coefficients. Such exact solutions
have been obtained mostly for simple forms of the coeffi-
cients, corresponding to atmospheres either isothermal or
with simple temperature profiles, under magnetic fields
that either are uniform or evolve in a simple way. Addi-
tional exact solutions of second-order wave equations, for
acoustic-gravity, Alfvén, or magnetosonic-gravity waves
in nonisothermal atmospheres and nonuniform magnetic
fields, would be useful in their own right and as further
checks on the general properties of magneto-atmospheric
modes. The latter have several modes, and, except for
particular geometries, couple second-order waves into
motions described by wave equations of the fourth and
higher orders. We have presented a method (Sec. III) for
exact solution of linear wave equations of arbitrary order,
with coefficients that are either a combination of con-
stants and exponentials [Eq. (153)] or a combination of
powers [Eq. (157)]. The method includes simple algebraic
rules for the reliable determination of asymptotic ampli-
tude and phase laws (Sec. III.A.6) and cutoff frequencies
(Sec. III.C.2), as well as criteria for the existence and loca-
tion of critical levels (Sec. III.C.4) and wave properties
there (Sec. III.C.5). The method includes second-order
waves as particular cases, and was illustrated by consider-
ing vertical hydromagnetic-gravity waves in an oblique
magnetic field, which are described by a fourth-order
wave equation (Sec. III.A.6). The method could also be
applied to other fourth-order magneto-atmospheric waves
discussed in less analytical detail in the literature, i.e., to
oblique waves in a vertical magnetic field (Ferraro and
Plumpton, 1958), or to oblique waves in oblique magnetic
fields (Zhugzhda and Dzhalilov, 1984a), say, in cases
where the horizontal wave number is either in the plane
of gravity and the magnetic field, or orthogonal to it.
The most general geometry for magneto-atmospheric
waves in isothermal conditions, under uniform gravity
and magnetic fields, that is, with gravity, the magnetic
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field, and the horizontal wave vector not coplanar, is
amenable to analysis by the same method, with more
complicated algebra.

6. Multiple diffusion and boundary layers

The method discussed in Sec. III is relevant to waves of
any order with exponential (or certain types of power-law)
wave speeds, scattering scales, or damping rates, and thus
applies to a variety of problems concerning both atmos-
pheric and other waves. For example, Alfvén waves in an
atmosphere with electric resistance (Campos, 1983e) and
magnetosonic-gravity waves in a thermally radiating at-
mosphere (Cally, 1984) are second-order cases; an instance
of the fourth order is acoustic-gravity waves in a viscous
atmosphere in the presence of thermal conduction (Lyons
and Yanowitch, 1974). The method applies as well to
other types of doubly or multiply diffusive atmospheric
waves, e.g., Alfvén waves with viscous and resistive
damping (Sec. IV.A.1), acoustic-gravity waves in the pres-
ence of thermal conduction and radiation, and
magnetosonic-gravity waves under any combination of
these four diffusion processes. The analogous problems
of plasma waves in Epstein-type layers with exponential
profiles can be dealt with by the same method, even for
higher-order waves. Similar linear wave equations with
variable coefficients occur in the acoustics of ducts, if dis-
sipation by viscous or thermal processes is included, ei-
ther in the absence of flow, e.g., wave damping in horns,
or in its presence, e.g., acoustics of turbulent flow in noz-
zles, using an ‘“eddy viscosity” to represent turbulent
stresses. The equations describing the interaction of
sound with vorticity (Mohring, Miiller, and Obermeier,
1983) have been solved only for the linear velocity profile,
which is associated with a particular decoupling, reducing
the order of the wave equation from three to two; the case
of an exponential velocity profile would preserve the cou-
pling of vorticity and sound, resulting in a third-order
wave equation, which is within the capabilities of the
method. The exponential shear flow velocity occurs for
the asymptotic suction profile, which is a case of a boun-
dary layer having a uniform shape along a plate, obtained
by applying uniform suction to withdraw slow ‘air”
through the wall. The stability of the asymptotic suction
profile is specified by a generalization of the Orr-
Sommerfeld (Drazin and Reid, 1981) equation, which is
of fourth order with exponential coefficients, i.e., solvable
by the same method. The truncated Tollmien-Schlichting
form of the stability equation for viscous flow, which
remains of fourth order, and the inviscid case of the Ray-
leigh equation, which drops to second order, are again
equations solvable by the method indicated in Sec. III.
The stability of a boundary layer is modified, on a curved
wall, by the presence of Gortler vortices, which are
described by a set of simultaneous differential equations
that have exponential coefficients, as in the case of the
asymptotic suction profile. The method described in Sec.
III could be used by expressing each of the velocity com-
ponents in an exponential series, with the recurrence for-
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mula for the coefficients C; in the case of one dependent
variable ® in Sec. IIL.B.1 replaced for N independent
variables ®, with a=1, ..., N, and with coefficients C, ;
related by a recurrence matrix specifying C, ; in terms of
Ca’j __] .

7. Multidimensional stratification, flux tubes,
and nonlinear dispersion

Returning to magneto-atmospheric waves, it has been
shown that one-dimensional magneto-hydrostatic equili-
brium (Sec. IV.B.1) is only possible for a uniform magnet-
ic field or a horizontal magnetic field varying with alti-
tude; the case of an oblique nonuniform magnetic field
would lead, necessarily, to two-dimensional stratification,
say, in the (x,z) plane, and if the latter were of exponen-
tial type, the method of Sec. III could be used in two in-
dependent variables {~e ~?/L and £~e 7/, leading to
solutions in terms of Appell-type hypergeometric func-
tions (Erdelyi, 1953). A simple way of having a magneti-
cally structured atmosphere consistent with magneto-
hydrostatic equilibrium is to consider magnetic flux tubes.
The magneto-acoustic waves in flux tubes have some
properties similar to those of sound in convergent ducts,
with the reduction in cross section providing the decrease
in mass density per unit length similar to an
atmosphere’s, and the sound speed modified by the mag-
netic stresses as for the elastic tension in a collapsible
tube. This raises the question of the extent to which the
general properties of sound in horns (Sec. IV.B of Part I)
have analogs for flux tube modes, a positive example be-
ing given in Sec. IV.B.5 of Part II. A possible further
analogy would relate the acoustics of nozzles (Sec. IV.C
of Part I) to the modes in magnetic tubes with flow, e.g.,
as in straightened coronal loops or arcades. The study of
waves in flux tubes relies on the assumption of slender-
ness (Sec. IV.B.2 of Part II), which becomes invalid as the
tube flares out with height. The theory of waves in thick
flux tubes is still in its infancy, with the first research into
this topic appearing only recently (Pizzo, 1986). Other
properties that are still subject to conjecture (Parker,
1979) include the association of flow with magnetic flux
tubes and the interaction and merging of flux tubes. To
give an example, tube modes (Sec. IV.B of Part II) prob-
ably occur (a) in the solar photosphere, where the magnet-
ic field is concentrated in narrow tubes at granulation
boundaries, and (b) in the high chromosphere, where the
tubes have merged into a uniform magnetic field, so that
magneto-atmospheric wave theory (Sec. II) applies. The
transition between regimes (a) and (b) may involve wave
propagation in merging flux tubes in the middle chromo-
sphere, and has not been modeled in any detail. The two-
dimensional analog of the flux tube is the magnetic slab,
which consists of two surface currents enclosing a tangen-
tial internal magnetic field different from the exterior
field; both the magnetic slab and the magnetic interface,
which is a single current sheet, have been studied mostly
in the absence of gravity, using dispersion relations result-
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ing from boundary conditions. The dispersion relations
for flux tube, magnetic slab, and current sheet modes can
be put into Whitham’s equation (Sec. IV.C) to describe
weakly nonlinear waves, with or without dissipation; de-
pending on the form of the terms in the dispersion rela-
tion, equations of the type named after Burgers, Korteweg
and De Vries, Benjamin and Ono, Leibovich, Pritchard,
and Roberts, can be obtained (Sec. IV.C.5). Wave modes
with dispersion relations having different terms could
lead to other “new” nonlinear wave equations.

C. Methods available, their advantages and scope

The presentation of a review usually gives preference to
general methods, which are adequate for the solution of a
class of problems as wide as possible, thus providing for
economy of exposition as well as a powerful analytical
tool. Since each method tends to be particularly suited to
a certain class of problems, when dealing with several
problems it may be appropriate to use different methods.
The most suitable method for each problem is that which
leads most simply to reliable results; by contrast, a less
appropriate method may be intrinsically unreliable or in-
volve intricate calculations that are prone to error.
Among the range of methods that have been successfully
applied to waves in gases are the following six groups: (i)
direct elimination among the fundamental equations to
arrive at a wave operator (Sec. V.B of Part I and L.A. of
Part II) or use of a suitable variational principle (Sec. ILA
of Part I); (i) solution of linear wave equations with con-
stant coefficients by Fourier analysis (Sec. I of Part II) for
boundary-value problems, and by Laplace transforms for
initial-value problems; (iii) exact solution of linear wave
equations with simple forms of nonuniform coefficients
by means of special functions (Sec. IV of Part I and Secs.
II and III of Part II); (iv) approximate solution of linear
wave equations with “arbitrary” variable coefficients
satisfying certain constraints, allowing the use of ray,
compactness, initial, or asymptotic methods (Sec. III of
Part I); (v) exact solutions of nonlinear wave equations by
special transformations in some cases, and more often by
approximate methods, such as parametric expansions; (vi)
numerical procedures whenever the analytical methods
fail to give reliable or understandable results, e.g., at a
“late” stage like summing a series solution or finding the
roots of a dispersion relation, or at an “early” stage, like
computing the solution of a wave equation by finite
differences or elements. The two parts of this review
have concentrated on the analytical methods that yield
most readily information on the physics of waves, and it
is therefore appropriate to conclude with a discussion of
available methods that place more emphasis on the nu-
merical aspects. An outline of the methods available for
the study of waves in gases (Sec. V.C) is a sequel to the
list of open problems requiring further research (Sec. V.B)
and may also suggest alternative ways of examining the
controversial issues presented in Sec. V.A.
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1. Boundary-value and initial-value problems

The dispersion relation for linear wave equations with
constant coefficients may be obtained either by substitut-
ing a complex exponential solution, or by Fourier or La-
place transforms. The Fourier transform is well suited to
boundary-value problems, in which the constants of in-
tegration are determined by imposing conditions on the
wave field at specific positions, for all time; it is also a
convenient way of obtaining the radiation field of a
source with a given spatial and temporal distribution, or
equivalently, a given directivity and spectrum. The La-
place transform is suited to initial-value problems, for
which the wave field is specified in all space at time ¢ =0,
and its subsequent evolution for all times ¢ > O is sought;
the initial problem is useful when there is uncertainty as
to how to meet causality, i.e., how to exclude waves com-
ing from “infinity,” or when there is some uncertainty as
to which boundary condition applies at infinity, since the
evolution of the initial wave field will indicate how it
evolves ultimately as — o« . The initial-value problem, as
compared with the boundary-value problem, involves the
inversion of a Mellin integral instead of a Fourier in-
tegral, complex analysis being often used in both cases.
The discrete spectrum appears on the complex plane as a
succession of isolated poles, whereas the continuous spec-
trum may correspond to branch cuts. The evaluation of
residues at the poles can specify the eigenfunctions corre-
sponding to each eigenfrequency, a technique that works
even for linear waves in stratified media, for which wave
speeds depend on space but not on time (Sec. ILB.7).
Generally speaking, Fourier and Laplace transforms can
be used in any spatial or temporal coordinate not appear-
ing in the coefficients of the linear wave equation.

2. Ray, compactness, and asymptotic approximations

When the coefficients of the linear wave equation de-
pend on one spatial coordinate, say z, with a length scale
L, the wave field can be calculated approximately in the
limits of short or long waves: (i) if the wavelength is
much longer than the length scale A >>L the inhomo-
geneity of the medium may be treated as an interface (Sec.
IIT.A of Part I), reflecting and transmitting an incident
wave, according to the appropriate boundary conditions
(Sec. III.A.2); (ii) if the wavelength is much shorter than
the length scale, A <<L?, then ray theory (Sec. IIL.C of
Part I) can be applied, to specify significant phase shifts
and moderate amplitudes, within its limitations. The two
limits cannot be matched, since neither the compactness
(i) nor the ray (ii) approximations hold in the case of
wavelength comparable to the length scale A~L. Anoth-
er approximation that may hold for waves in homogene-
ous or stratified media is the consideration of initial and
asymptotic wave fields, respectively, for small and large
distances from the source. If the inner and outer regions
do not overlap, then matching of the two solutions is
again not possible. In the case of an atmospheric critical
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level, matching of the low- and high-altitude wave fields
may be possible, but a solution valid in the neighborhood
of the critical level may shed more light on the problem.
Parameters other than distance or compactness may be
used in expansions of the wave field, with overlapping
inner and outer solutions, allowing their matching; the
convergence of parametric expansions is often implicitly
assumed without proof, and the matching procedure may
require particular care (Crighton and Leppington, 1973).
The description of the transition between the initial and
asymptotic wave fields, and the matching of the ray and
compactness limits across the intermediate frequency
band, are both included in an exact solution of the wave
equation, valid for all distances and frequencies.

3. Exact solutions and special functions

The exact solution of linear wave equations with vari-
able coefficients can be obtained, for ' boundary-value
problems, in terms of special functions, e.g., of Bessel or
hypergeometric type. The forced wave equation can then
be solved by a bilateral integral transform, using as ker-
nel, instead of the exponential in the Fourier transform,
the special function that is a solution of the unforced
equation, e.g., a Hankel transform for a Bessel-type wave
equation. The initial-value problem will require a unila-
teral transform in time ¢, with integration in the range
0— oo [instead of a bilateral transform in space x, with in-
tegration in the range (— 0, + o ) for the boundary-value
problem]. The exact diffraction of waves in stratified
media is associated with the properties of the special
function specifying the wave field. Each special function
has its own set of properties, although general approaches
exist applying these to a variety of functions (Courant and
Hilbert, 1953; Erdelyi, 1953; Morse and Feshbach, 1953;
Campos, 1984g, 1985c, 1986f, 1986g). The criticisms
sometimes made of exact solutions of linear wave equa-
tions with variable coefficients is that they (i) tend to be
complicated, and (ii) are restricted to a particular stratifi-
cation profile anyway. Concerning criticism (i), if by a
simple solution is meant a finite combination of elementa-
ry functions, then a linear wave equation with variable
coefficients only exceptionally (Sec. IV.A.6 of Part I) has
such solutions, and the approximate methods seeking
such simple solutions are necessarily of restricted validity,
e.g., the case of the ray approximation. Moreover, even
though special functions, identified with series expansions
or integral representations, are required as exact solutions,
certain wave properties, such as cutoff frequencies, criti-
cal levels, and asymptotic fields, can be determined by
algebraic means, in cases for which approximate methods
are unreliable (as shown in Sec. III). Concerning criticism
(ii), it is sometimes possible to obtain general laws for
waves in nonhomogeneous media, subject only to generic
restrictions on the stratification profile; in these cases, an
exact solution for a particular profile serves as a check on
the general law and specifies in detail all coefficients or
parameters appearing there.
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4. Nonlinear waves and variational methods

The methods of solution of nonlinear wave equations
are generally less effective than in the linear case, since
the principle of superposition and other methods of gra-
dual construction of a solution usually break down. The
exact solution of nonlinear wave equations may be possi-
ble, in the absence of dissipation and dispersion, by the
method of characteristics, and in the presence of dissipa-
tion or dispersion, by special transformations that render
the equations linear in specific cases, e.g., the transforma-
tion of the Burgers equation into the heat equation, and
the hodograph transformation linearizing plane homen-
tropic flow equations by using the velocity as an indepen-
dent variable (Von Mises, 1958). More often nonlinear
wave equations can be solved, if at all, only by tedious
procedures, such as the inverse scattering approximation
(Whitham, 1974). Approximate methods, such as
parametric expansions, appear to be generally possible
(Nayfeh, 1973), but their convergence is seldom proven,
and their application cumbersome beyond the lowest or-
ders. It is generally possible to replace the equations of
motion by a variational principle, the difficulties in elim-
inating for the wave equation giving way in this case to
the manipulations required to find a Lagrangian. Once
the Lagrangian is found, assuming that it is valid for non-
linear perturbations, the linear case is obtained by neglect-
ing all terms beyond second order. Thus variational
methods are usually not much more difficult for non-
linear than for linear waves. The Lagrangian is quadratic
in the latter case, and has terms of higher order in the
former. If the Lagrangian does not depend explicitly on
time, the variational method leads readily to a conserva-
tion equation, in which the energy flux and density can be
reliably identified. By contrast, trying to derive an energy
equation from the equations of motion, for waves in a
heterogeneous medium, may not be an easy task, bearing
in mind the need to distinguish (Lighthill, 1978) between
terms corresponding to the mean state, the wave perturba-
tions, and their interaction. Such a distinction is readily
made (Landau and Lifshitz, 1949, 1953) in the Lagrang-
ian, since, on substitution in the Euler-Lagrange equation,
(i) the zero-order terms disappear, i.e., are irrelevant in the
Lagrangian, (ii) the first-order terms specify the mean
state, i.e., do not affect the perturbations, (iii) the quadra-
tic terms describe linear waves, (iv) the terms of higher
than second order specify nonlinear effects.

5. Well-posed problem and fully justified algorithm

When trying to solve linear wave equations in stratified
media with elaborate profiles, dealing with nonlinear
wave equations for which no simplifying transformations
are known, or solving problems with boundaries of com-
plicated shape, there may be no alternative to the use of
numerical methods. The point, sometimes raised, that
direct numerical solution of a wave equation may appear
to be “simpler” than an analytic method tends to ignore
all that is needed to justify fully a numerical algorithm.
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In fact, it is necessary (i) to prove that the wave equation,
together with boundary and initial conditions, has at least
one solution, (ii) to establish the conditions under which
the solution is unique, (iii) to deduce properties of the
solution sufficient to allow the choice of an algorithm
that converges to it, (iv) to choose parameters such that
the convergence be assured, (v) to check that the possible
accumulation of errors does not invalidate the numerical
results. As examples of problems that fail to meet the cri-
teria above we give the following: (i) if a wave problem is
over-specified with incompatible boundary or initial con-
ditions, the solution does not exist; (ii) if the radiation
condition is not correctly applied in an unbounded medi-
um, contamination by arbitrary waves coming from infin-
ity may occur, leading to nonuniqueness; (iii) if a wave
equation has a discontinuous solution, e.g., a shock, a
method of solution applying to smooth functions may fail
to approximate it; (iv) in a procedure using finite differ-
ence in space Ax and time Aft, the ratio Ax :At should not
exceed the wave speed, otherwise causality is violated,
since signals cannot propagate at the required speed; (v)
since a wave is a signal, the errors in the initial waveform
propagate with it, e.g., in the case of multiple reflections
the errors may accumulate and render meaningless the
computation of higher-order harmonics. The preceding
examples show that a valid application of numerical
methods requires either a careful mathematical justifica-
tion or a verification that the algorithm is consistent with
the physical properties of waves, or preferably both.

6. Numerical instabilities and trial functions

There are situations in which a numerical procedure is
applied ad hoc to a wave equation, without a priori
mathematical proof of steps (i)—(v) in Sec. V.C.5, and in
cases in which the wave properties are not sufficiently
well known to give confidence in the algorithm. In these
situations “numerical instabilities” may occur, for any of
the following reasons, which lead to failure of the
method: (i) the problem is ill posed, i.e., has no solution;
(i) the solution exists but is not unique, and the algorithm
jumps among several possible solutions; (iii) the solution
exists and is unique, but has properties such that the
chosen algorithm cannot approximate it; (iv) the algo-
rithm can potentially converge to a unique solution, pro-
vided that a more appropriate choice of parameters, e.g.,
step size, is made; (v) the algorithm has tended to the
solution, but the accumulation of errors has rendered the
result useless. The appearance of numerical instabilities
in such cases is a warning that the algorithm has failed,
and steps should be taken to modify it in a mathematical-
ly valid way, so that a reliable physical interpretation may
be given to results. The worst case is perhaps that of an
invalid algorithm, which has “converged” to something
other than the solution of the problem, with no numerical
instabilities to warn that something is amiss, thus lending
credibility to an incorrect result, with the attendant risk
of an erroneous interpretation. There exist algorithms,
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such as ““trial solutions,” that do not normally exhibit nu-
merical instabilities, but their accuracy may be very diffi-
cult or impossible to estimate reliably, in the absence of
solutions by other methods. A “trial solution” is a func-
tion, usually involving some parameters, which is offered
as a guess at the solution of a problem. Substitution into
the wave equation and all boundary and initial conditions
should then specify uniquely the parameters. Usually
some insight is required in guessing a true solution that
satisfies all the conditions, and more often either the wave
equation or some boundary or initial condition is met
only to a certain level of approximation by the “trial solu-
tion.” The method of trial solutions can be combined
with a variational principle, i.e., the action integral can be
calculated for the class of “trial functions” and the pa-
rameters chosen so as to yield an extremum, e.g., a rela-
tive minimum; the exact solution would yield a still lower
absolute minimum. Since the exact solution is not
known, the absolute minimum is undetermined, and thus
we do not know either how close or how far the relative
minimum in the class of trial functions is to the absolute
minimum. This is an example of the difficulty of es-
timating the accuracy of a trial solution to a problem,
short of knowing the exact solution, in which case the
former is of less interest, except as a simpler approxima-
tion.

7. Combination of analytical and numerical methods

The preceding account of numerical methods (Secs.
V.C.5 and V.C.6) is not meant to cast doubt on their use-
fulness, since there are problems for which they offer the
only approach; it merely serves as a warning that numeri-
cal algorithms may be deceptively simple while conceal-
ing deeper mathematical problems, and that their applica-
tion is no substitute for a clear understanding of the phys-
ics of the problem. It may be argued that the application
of numerical methods should be deferred until as “late” as
possible in a problem, on the following grounds: (a) the
analysis of the problem may justify some of the steps (i)
to (v) stated in Sec. V.C.5, allowing simpler proofs of the
remaining points needed to validate the algorithm; (b) the
use of numerical procedures at a later stage minimizes the
accumulation of errors of computation; (c) a better
knowledge of the solution can be used to construct a more
efficient program, faster to run and with fewer require-
ments on memory; (d) analytic methods usually afford
greater physical insight, which increases confidence in the
interpretation of the numbers or graphs that appear as the
output of a program.

The preceding remarks suggest the following gradual
method of approach to wave problems, simple or com-
plex: (i) to consider first linear disturbances in homogene-
ous media, using the dispersion relation to find whether
the waves are isotropic or dispersive and to determine
their phase and group velocities, the shape of wave-
number surfaces, and the wave variables that are pro-
pagated, e.g., longitudinal, transverse, or mixed; (ii) if the
medium is stratified, to obtain approximations to the
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wave fields in various cases (initial and asymptotic, low
and high frequency), for plausible forms of the stratifica-
tion profiles; (iii) to check the results of (ii) by compar-
ison, if possible, with exact solutions for waves in simple
but relevant stratification profiles, determining cutoff fre-
quencies, amplitude and phase laws, etc.; (iv) to examine,
if appropriate, the energy density and flux associated with

-the waves, using variational methods or the equations of

motion; (v) to consider nonlinear effects, if the distur-
bances are of large amplitude, by substituting the disper-
sion relation for linear waves in Whitham’s equation (Sec.
IV.C.1) and checking the latter against suitable approxi-
mations or expansions of the equations of motion or a
variational principle accurate to higher than second order;
(vi) to apply numerical methods to linear equations with
coefficients of complicated functional form, or to non-
linear equations that are “untractable” by analytical
methods, using all of the preceding steps as a background
to validate the algorithm and interpret the result. It is
felt that this combination of analytical and numerical
methods is synergistic, that is, the two approaches rein-
force each other; by employing analytic methods we gain
physical insight into the phenomena, and then proceed to
more complex problems by using numerical algorithms in
a reliable manner.
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