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I. INTRODUCTION

Nuclei consist of many strongly interacting protons and
neutrons. In spite of their complexity, many nuclei exhib-
it, in their low-lying spectra, a relatively simple structure.
Many regularities of nuclear energy levels have been
described by the shell model in terms of wave functions of
single nucleons moving independently in a (spherical) stat-
ic central potential well (Haxel, Jensen, and Suess, 1949';
Mayer, 1949). In nuclei with few protons and neutrons
outside (or missing from) closed shells (valence nucleons),
level energies and other nuclear properties have been suc-
cessfully calculated. Simple shell-model configurations
have been used with Hamiltonians containing effectiue
two-nucleon interactions. This is the situation in many
light nuclei and in the neighborhood of magic numbers in
medium-mass and up to heavy nuclei (deShalit and Talmi,
1963).

As the number of valence nucleons increases, the direct
application of the shell model becomes prohibitively diffi-
cult. On the other hand, other regularities emerge from
the experimental data. Energy levels of many nuclei can
be grouped into bands characterized by electric quadru-
pole transitions within bands, which are very much
enhanced over the single-nucleon values. In some regions

of nuclei, levels can be grouped into rotational bands with
energies proportional to J(J'+ 1). In such bands,
enhanced electric quadrupole transitions are observed that
can be derived from one intrinsic quadrupole moment.
Such collective spectra found a simple interpretation in
terms of a deformed shape of the nucleus rotating around
an axis perpendicular to its axis of symmetry (Bohr, 1951,
1952; Bohr and Mottelson, 1953). Even-even nuclei,
which are the nuclei considered here, were described in
terms of a quadrupole deformation of the nuclear surface.
Such a deformation is defined by five variables az
(@=+2,+1,0), forming the components of a quadrupole
tensor. A possible scalar component was eliminated by
requiring that the volume be conserved. An equivalent
description was given by two variables P and y defining
the quadrupole deformation in the body-fixed frame of
reference (that of its three principal axes). The orienta-
tion of this body-fixed frame in space was defined by the
Euler angles adopted as the other three variables. A
second-order differential operator in these variables was
written down (Bohr Hamiltonian) whose eigenfunctions
should give a good description of collective states in nu-
clei. Once a potential energy is defined as a function of P
and y in the Bohr Hamiltonian, V(P, y), it is possible to
solve the differential equation. For certain potentials, ap-
proximate solutions were obtained that are particularly
simple. These correspond to vibrational, rotational, or y-
unstable nuclei. Several attempts have been made to ob-
tain solutions appropriate for any type of collective
motion. The potential energy was either introduced
phenomenologically (Gneuss and Greiner, 1971) or related
to a microscopic calculation in a deformed basis (Kumar
and Baranger, 1968; Kumar, 1983). In general, the solu-
tions had to be obtained by rather involved numerical in-
tegrations.

An equivalent way to formulate the problem is to adopt
as a complete set of orthogonal states the wave functions
of the five-dimensional harmonic oscillator. Such states
are solutions of the differential equation if the potential
energy in the Bohr Hamiltonian is a quadratic function of
the five variables cz&. Such eigenstates can be convenient-
ly expressed as states of bosons that are the components
of a rank-2 spherical tensor. This is how d bosons (with
angular momentum J=2) were introduced for the
description of collective quadrupole states. In the case of

Reviews of Modern Physics, Vol. 59, No. 2, April 1987 Copyright 1987 The American Physical Society



340 F. lachello and I. Talmi: Shell-model foundations of the IBM

vibrations around a spherical equilibrium shape, such a
description is rather simple. If, however, the equilibrium
shape is deformed (Po&0), the description of rotations
and vibrations around that shape in terms of d bosons be-
comes very difficult. A step toward a simplified descrip-
tion of nuclear states in terms of d bosons was made by
introducing states that form bases of irreducible represen-
tations of the group U(6) (Janssen, Jolos, and Donau,
1974; Jolos, Donau, and Janssen, 1975). The fully sym-
metric irreducible representations of U(6) are character-
ized by an integer X. This number determines the max-
imum number of d bosons that may appear in a state of a
given representation, hence the name truncated quadru-
pole model (TQM) given to this model (Paar, 1979). The
advantage of the U(6) group is that it contains as a sub-

group the SU(3) group. The group SU(3) had been intro-
duced earlier by Elliott (1958) in order to provide a shell-
model description of rotational spectra. In simple analo-

gy, rotational spectra could be obtained from states of d
bosons. The actual construction of the relevant Hamil-
tonians and the irreducible representations is not a simple
matter. The space associated with d bosons is five dimen-
sional, and the generators of U(6) [and SU(3)] are compli-
cated expressions in the creation and annihilation opera-
tors of d bosons.

Meanwhile, an alternative description was independent-
ly developed. In that approach, called the interacting bo-
son model {IBM},s bosons (with J=0) are added to the d
bosons, thereby constructing a six-dimensional space (Ari-
ma and Iachello, 1975). Thus representations and opera-
tors of U(6) can be conveniently constructed. The number
X characterizing the fully symmetric irreducible represen-
tations of U(6) turned out to be simply the total number
of s and d bosons. A simple Hamiltonian was construct-
ed with single-boson terms and boson-boson interactions.
The eigenvalues and eigenstates of this Hamiltonian could
very well reproduce, for various values of the parameters
adopted, various types of collective states like vibrational
and rotational spectra.

The successful IBM (or IBM-1, as it is called now) can
be viewed as a phenomenological model that can yield, in
an elegant way, the solutions to problems posed by collec-
tive Hamiltonians. The d bosons could be viewed as
quanta of surface vibrations, whereas the s bosons would

be, in this view, an artificial device to simplify the
mathematics. The integer X would just determine in
some way the number of discrete (bound) states of the col-
lective Hamiltonian. Furthermore, since it was shown
that in the limit in which the number X is large the solu-
tions of the boson Hamiltonian approach those of the col-
lective model (Dieperink, Scholten, and Iachello, 1980),
the boson model could be viewed as a simpler version of
the collective model. Thus, from this point of view,

IBM-1=TQM ~ Collective Model .

The question was raised whether the boson model had a
deeper significance and could be related to the shell

model. It was suggested that the simplest fermion states

Shell Model —AIBA~IBM-2 . (1.2)

The interacting boson models 1 and 2 have attracted the
attention of many authors. In particular, several schemes
have been devised by means of which the parameters of
the IBM-2 Hamiltonian and other operators can be relat-
ed to the parameters of the shell mode1. In this article we
review the concepts on which the majority of these pro-
cedures are based. We also briefly mention further exten-
sions of the interacting boson models (IBM-3 and -4) and
address some of the remaining problems.

II. THE INTERACTING BOSON MODEL 1

Before addressing the question of the relation between
the interacting boson model and the shell model, we brief-
ly review the original version of the model (interacting bo-
son model 1). In this version (Arima and Iachello, 1975,
1976, 1978, 1979) it was assumed that low-lying collective
states of even-even nuclei could be described as states of a
given (fixed) number % of bosons. Each boson could oc-
cupy two levels, one with angular momentum J=0 (s bo-
son) and another, usually with higher energy, with J=2
(d boson). In order to find the eigenstates of this assem-
bly of bosons, an appropriate Hamiltonian was construct-
ed and diagonalized. The simplest nontrivial Hamiltoni-
an was assumed to contain only single-boson energies and

that can correspond to s and d bosons are pairs of identi-
cal valence nucleons coupled to J=0 and J=2 (Arima et
al., 1977; Otsuka et al., 1978). Correlated J=O (S) and
J=2 ( D) pairs of identical nucleons have a simple
description in terms of generalized semority (Talmi, 1971,
1973; Shlomo and Talmi, 1972). They can be used to con-
struct shell-model eigenstates of valence protons or of
valence neutrons, as in "semimagic nuclei. " In nuclei
with both valence protons and neutrons, the strong and
attractive seniority-breaking interaction between protons
and neutrons must play a dominant ro1e. If a
quadrupole-quadrupole interaction is adopted, eigenstates
will include coherent admixtures of proton (m) and neu-
tron (v) states built of S,D and S,D, pairs. This
shell-model description led to a boson model with proton
s and d bosons and neutron s and d bosons (Arima
et al. , 1977; Otsuka et ai., 1978). The boson Hamiltonian
should include a strong and attractive quadrupole interac-
tion between proton and neutron bosons. This is a more
detailed model in which effects of the numbers of valence
protons and valence neutrons can be studied separately. It
is called the interacting boson model 2 (IBM-2). It gives
better agreement with experimental properties than IBM-
1 and with parameters whose dependence on proton and
neutron numbers is rather regular. Since it is derived
from the shell model, it is sometimes called interacting
boson approximation (IBA). The two abbreviations IBA
and IBM have been used interchangeably in the literature.
Although properly speaking the abbreviation IBA should
be used for the approximation and IBM for the model, we
shall henceforth follow common usage. Thus
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boson-boson interactions. Such Hamiltonians can be con-
structed by using boson operators which wi11 now be de-
fined.

It is convenient to use the formalism of second quanti-
zation. We thus introduce creation operators dz and s,
which create a single d boson in a state with J,=p and a
single s boson, respectively. These operators satisfy with
the corresponding annihilation operators d&, s the usual
Bose commutation relations. Using these operators, one
can write down single-particle (boson) operators as fol-
lows:

d&d&, d&s, s dz, s s. (2.1)

There are, altogether, 36 such independent operators. To
construct a Hamiltonian that is invariant under rotations,
it is more convenient to use certain linear combinations of
the operators (2.1). These should be operators that
transform in a simple way under rotations. The creation
operators dz transform under rotations like the states of a
single d boson, d& ~0). They transform as the com-
ponents of an irreducible (spherical) tensor of rank 2. An
irreducible tensor of rank 2 can be formed also from the
annihilation operators dz using the definition

d„=( —1) "d „=( —1)"d (2.2)

(2.3)

as well as

d@s, s

with rank 2 and the scalar (rank 0)

(2.4)

One can now define a complete set of irreducible tensor
operators by

(dt Xd)„'"'= g (2p2p'
~

22k~)dpd„, & =0, 1,2, 3,4,

s s

The most general Hamiltonian with single-boson terms
and boson-boson interactions, which is invariant under ro-
tations (commutes with J), can now be constructed. It is
a linear combination of all possible scalar products of the
irreducible tensors in Eqs. (2.3)—(2.5). In addition, the
two single-boson scalars can be added, i.e., Eq. (2.5) and
the k =0 tensor in Eq. (2.3). Since all single-boson opera-
tors do not change the total number of s and d bosons,
neither does the Hamiltonian constructed from them. It
commutes with the number operator

X=s ts+ g d„d„=sts+ (dt d ),
P

(2.6)

whose eigenvalues N are appropriate quantum numbers
for the eigenstates of the Hamiltonian.

The requirement that the boson Hamiltonian be Hermi-
tian (and real) implies that the two quadrupole operators
(2.4) should appear only in certain combinations. Still,
the number of terms is high. There are altogether nine
possible scalar products in addition to two single-boson
terms. The scalar products, however, are not all linearly
independent. Due to the symmetry of the boson states
there are only three allowed states of two d bosons, with
L, =0,2,4. States with odd values of I. are antisymmetric.
Thus any two d-boson interactions can have at most three
independent terms. Hence there are only three indepen-
dent combinations of the five scalar products of the ten-
sor operators [Eq. (2.3)]. In order to bring out this fact it
is possible to transform all scalar products by cganging
the order of coup1ings. Due to the commutation rela-
tions, this will yield single-boson terms in addition to the
two-boson interactions. The resulting Hamiltonian can
then be expressed in the following form:

H =E,s s+Ed(d .d)+ —, y cL [(d Xd )' '(d Xd)]' '+ —,
'

vo[(d Xd )o"s'+(st)'(d Xd)o ']
L =0,2, 4

+ v I[(dtXdt)' 'Xds]' '+[s dtX(dXd)' ']' 'I+ —'u (st) s + —sos(dt d) .2 0 0 2 0 v'5 (2.7)

I

This Hamiltonian contains nine parameters, two coefficients of the single-boson energies and seven of the boson-boson
interactions. The fact that the total number of bosons N =n, +nd commutes with the Hamiltonian can be used to sim-
plify Eq. (2.7) to the form

H =EN+ —,
' uoN(X —1)+E'(d d)+ —,

' g .cI [(dtXdt)' '(d Xd)' ']
L =0,2,4

+ —,vo[(d Xd )0's +(s ) (d Xd)0 ]+ v2I[(d Xd )' 'Xds]o '+[stdtX(d Xd)' ']0 'I . (2.8)

The single d-boson energy c' and the coefficients cL in
Eq. (2.8) are appropriate linear combinations of the pa-
rameters appearing in Eq. (2.7). The first two terms in
Eq. (2.8) contribute equally to all states with given ¹

Thus only six parameters are avai1able for the analysis of
level spacings and eigenstates in the most general Hamil-

tonian [Eq. (2.8)].
To calculate rates of electromagnetic transitions, the

eigenstates should first be found by diagonalization of the
Hamiltonian in the space of K bosons. The matrix ele-
ments of the transition operator between these states
should then be calculated. The most important transi-
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tions, which reveal the nature of the low-lying collective
states, are electric quadrupole (E2) transitions. It was as-
sumed in the model described in this section that the E2
transition operator is a single-boson operator. The most
general real and Hermitian single-boson quadrupole
operator is given by

T~ =cx2(dps+5 dp)+P2(d Xd)I, (2.9)

The E2 transition operator is thus determined by two nu-
merical coefficients o.2 and p2. Other operators can also
be constructed in a similar way.

For a detailed comparison of the boson-model predic-
tions with experiment, the Hamiltonian H is diagonalized
in an appropriate basis, thus obtaining the level energies
and eigenfunctions. Rates of electromagnetic transitions
are then calculated by taking matrix elements of the ap-
propriate operators between eigenstates of the system.
The boson mode1 has been used in this fashion to account
for a variety of properties of nuclei (see, for example, Ari-
ma and Iachello, 1984, and the forthcoming article by
Casten and Warner in this journal). When used in this
form, the boson model is approximately equivalent to the
collective model of Bohr and Mottelson, at least for the
low-lying states, and several authors have considered in
detail the relation between the two models. One particu-
lar aspect of the model, however, which has contributed
to its success, is the fact that under certain conditions,
i.e., with a certain choice of the parameters in Eq. (2.8), it
is possible to calculate all properties of the system in a
compact analytic form. In such limiting situations, the
special structure of the resulting spectra is clearly
displayed and can serve as a guide for the general case.
Such limits also provide definite sets of eigenstates of the
X boson system, which can be used as convenient bases
for calculating the Hamiltonian matrix in any case. The
analysis of such states relies on the use of the elegant and
powerful methods of group theory. Since this aspect has
been emphasized before several times, we shall present it
here only briefly.

The single-boson operators (2.3), (2.4), and (2.5) are
generators of the Lie algebra of the U(6) group. Acting
on the set of single-boson states d„~0),s ~0), which
span a six-dimensional space, they transform it into itself.
The Hamiltonian (2.7), constructed from scalar products
of these generators, has nonvanishing matrix elements
only between states that transform irreducibly among
themselves under these generators. Hence eigenstates of
the Hamiltonian form bases of irreducible representations
of U(6). Fully symmetric states of s and d bosons belong
to the fully symmetric irreducible representations charac-
terized by the integer N. The various limits are obtained
by considering subgroups of U(6).

The simplest Lie subalgebra of U(6) contains the gen-
erators (2.3) and (2.5), which commute with the number
operator nd = (d d ). This is the algebra of U(5) XU(1).
The generator (2.5), n, =s s, can be eliminated by using
N =nd +n„as carried out in Eq. (2.8), and the subgroup
considered is simply U(5). The most general U(5) Hamil-

+y [10(dtX d )"'(dt Xd )"'—6(dt d )] . (2.10)

The eigenvalues of (2.10) can be written down in terms of
those of the pairing term nd(nd+3) —r(r+3) and of the
square of the angular momentum L =v 10(d t Xd )"~,

End+ —,and(nd —1)+p[nd(nd+ 3)—r(r+3)]

+y [L(L+1) 6—n„] . (2.11)

In (2.11), r is the seniority of the d bosons and assumes
the values nd, nd —2, . . . , 1, or 0. The spectrum given
by (2.11) is that of an anharmonic uibrator.

Another subgroup of U(6) is O(6), the group of real
orthogonal transformations in the six-dimensional space
of s and d bosons. The generators of the O(6) Lie alge-
bras are (dtXd)"', (d Xd)' ', and (d s+std). The most
general O(6) Hamiltonian can be expressed as

A ,'[dt.d —(st)](d—d —s )

+B—, g (d Xd)'"'(d Xd)'"'

+ C10(dtXd)"' ~ (dtXd)'" (2.12)

The eigenvalues of the pairing operator in (2.12) are given
in terms of the seniority cr as N(N+4) o(cr+4)—, wh. ere
o.=A; N —2, . . . , 1, or 0. The second term is diagonal
in the seniority ~ of d bosons only. Hence the eigenvalues
of (2.12) are given by

4 A [N(N+4) cr(o +4)]+—, Br(v+3)+ CL—(L+ 1) .

(2.13)

The spectrum given by (2.13) corresponds to that of a
y-unstable nucleus.

There is still another subgroup of U(6) that contains as
a subgroup the O(3) group induced by spatial rotations.
This requirement is imposed by the rotational invariance
of the Hamiltonian leading to eigenstates with definite an-
gular momenta. The SU(3) group has generators

g =dts+std— (d'Xd)"',
2

(2.14)

L =&10(dtXd)'" .

The most general SU(3) Hamiltonian can be written as

—21cg Q Ic'L .L. — . (2.15)

The eigenvalues of (2.15) can be expressed as

( ', Ic tc')L(L+1) Ic—(A, —+p2+A.p+ 3A—, +3@). (2.16)

The quantum numbers A, ,p characterize the irreducible
representations of SU(3). For any given A, ,p, the spec-
trum given by (2.16) is a rotational spectrum.

tonian is obtained by putting uo ——0 and U2
——0 in Eq.

(2.8). It can be expressed as the linear combination

an~+ —,ctnd(n~ —1)+p(d .d )(d d )
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The boson model discussed so far, IBM-1, can be con-
sidered and judged as a purely phenomenological model
much in the same way as the collective model of Bohr
and Mottelson. The model could be interpreted by giving
physical meaning only to d bosons, which could be
viewed as describing quadrupole surface vibrations
around a spherical equilibrium shape. The s boson could
be looked upon as a mathematical device that merely sim-
plifies the construction of U(6) generators and representa-
tions. The integer N would then characterize the fully
symmetric irreducible representations of U(6). It deter-
mines the total number of boson states in the given repre-
sentation that would approximately correspond to the
number of discrete (bound) states of the collective Hamil-
tonian (TQM).

There is an interesting illustration of such a physical
situation. This is the boson model developed for bound
states of diatomic molecules (Iachello, 1981; Iachello and
Levine, 1982). The collective Hamiltonian contains in
that case only three dynamical variables: the three com-
ponents of the vector r connecting the nuclei of the two
atoms. It contains the usual kinetic energy term and po-
tential energy, which is a function of r =

~

r
~

. This is in
simple analogy with the nuclear collective Hamiltonian,
in which the potential energy is a function of I3 and y
only. The three Euler angles appear only in the kinetic
energy in the same way that the angles 8 and y do in the
molecular problem (Fig. 1).

If the potential has a minimum at r=O, for small
values of r the collective Hamiltonian is that of a three-
dimensional harmonic oscillator. Instead of solving the
Schrodinger equation, the simple algebraic approach
could be used by introducing three creation and annihila-
tion operators p& and p&, which are the three components
of a p boson. The appropriate Hamiltonian is (p -p)+ —,

with eigenvalues nz+ —,'. A more difficult problem arises
when the minimum of the potential is at ra&0 (dipole de-

(0)

Z
J(

(b)

P, y, 81,8~,8~ r, 8, @

FIG. 1. Illustration of the collective degrees of freedom of nu-
clei (a) and molecules (b). For a deformed body with quadru-
pole deformation there are five degrees of freedom
(I3 1 9/ 9$ '93}, while for a diatomic molecule there are only
three (r, O, y).

formation). If the potential well is sufficiently deep, the
low-lying levels will form a rotational band with energies
proportional to L(L+1). Higher rotational bands are
based on higher vibrational levels, and energies are given
approximately by a +bu+cv +BL(L+1), where U is the
vibrational quantum number.

The use of p bosons alone to obtain solutions corre-
sponding to this more difficult case appears to be rather
complex. However, both solutions, spherical and de-
formed, could be simply obtained by introducing an s bo-
son with J =0+ in addition to p (with J = 1 ). The
corresponding space is four dimensional with group struc-
ture U(4), the Uibron model. The Hamiltonian for this
model is constructed from the operators of U(4) much in
the same way as Eq. (2.7),

~=s,s s+sp(p p)+ —, y cI.[(p Xp )' '(pXp)' ']+ —,Uo[(p Xpt)0's'+(s )'(pXp)0 ]+—,~0(s )'s'
L =0,2

Q)+ s s(p p).v'3 (2.17)

In the case of diatomic molecules, p bosons as well as s
bosons do not have any microscopic underlying picture.
The number X simply determines the number of states in
the irreducible representation that approximately corre-
spond to the bound eigenstates of the Schrodinger equa-
tion. This boson model gives a very good description of
low-lying levels of actual diatomic molecules. It is an
ideal example of a successful boson model of a collective
Hamiltonian. The collective degrees of freedom in the
present case are the components of a dipole (given by the
vector r). The collective electromagnetic transitions are
thus of electric dipole type E1, and the corresponding real
and Hermitian operator is

As in the case of the interacting boson model, for spe-
cial values of the parameters in Eq. (2.17), the eigenvalues
of the Hamiltonian can be written down in a closed for-
mula. Such is the case if the Hamiltonian is constructed
from the generators of O(4), which form a Lie subalgebra
of the U(4) one. The generators of O(4) are given by the
operator in Eq. (2.18) and the angular momentum vector
~6(p Xp)'". The most general O(4) Hamiltonian can be
expressed by a linear combination of the scalar products
of these two operators, or in analogy with Eq. (2.12) by

&—,
' [pt p —(s )'](p.p —s')+&6[(p Xp) ~.(ptXp)~ ~] .

(2.19)

T~ =cx)(p~s+s p@) (2.18) Hence the eigenvalues of (2.19) are given by
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—,2 [X(%+2)—co(co+2)]+BL (L + 1), (2.20)

where the seniority m is equal to co=%, Ã —2, . . . , I, or
0. For any given value of co, there is according to (2.20) a
rotational band with I.=co, ~—1, ~—2, . . . , Q. The
quantum number co can be related to the vibrational quan-
tum number u by u =(X—co)/2. Another simple limit is
obtained when one considers only operators that commute
with n~ = (p p ). The corresponding algebra is that of
U(3) U(1). Eliminating the operator n, =s s yields sim-

ply U(3). The U(3) Hamiltonian can be written in analo-

gy with Eq. (2.10) as

En&+ 2 an&(n~ —1)+y6[(pt &&lT)'" ~ (pt&&p)'"],

with eigenvalues

en~+ —,'an~(n~ —1)+yL(L+1) .

(2.21)

(2.22)

The spectrum given by (2.22) is that of a three-
dimensional anharmonic oscillator.

III. THE INTERACTING BGSQN MODEL 2

A. The model

Although the collective model and the interacting bo-
son model 1 successfully describe many situations in nu-
clei, it seems desirable to go beyond them and attempt a
microscopic calculation of collective properties of nuclei.
There are, in principle, two ways to compute microscopi-
cally collective properties of nuclei. One is to start from
the spherical shell model, which, in addition to being suc-
cessful, provides a complete basis for any microscopic cal-
culation of nuclear properties, and the other is to start

' from independent nucleons moving in a deformed poten-
tial well. For the collective model, the avenue starting
from the deformed potential well has been investigated in
detail by Kumar (1983). The avenue starting from the
spherical shell model appeared to be the natural one for
deriving the collective Hamiltonian within the framework
of the interacting boson model. We shall henceforth call
the spherical shell model simply "the shell model" and
the model using a deformed potential well "the Nilsson
model" (Nilsson, 1955). The avenue starting from the
shell model seemed more appealing, since nuclei with a
few valence nucleons outside of (or missing from) closed
shells are well described by it, while a description of the
same nuclei in terms of the Nilsson model encounters
serious difficulties.

The shell-model description of collective states in nu-
clei has been a long-standing problem. For nuclei with
many valence nucleons, the straightforward application of
the shell model becomes prohibitively difficult. Shell-
~odel wave functions constituting a complete set could
have been combined to yield all kinds of collective states.
This, however, would have little value as the complexity
of the problem seemed enormous. No simple coupling
scheme was found that could give an adequate description
of the large variety of collective states found in nuclei.

The best and most successful attempt has been the elegant
SU(3) model of Elliott (1958). This model demonstrated
for the first time how the motion of individual nucleons
can lead to collective rotational spectra. It cannot, how-
ever, accommodate in a straightforward way the large
spin-orbit interaction that leads to the shell model. Thus
this model gives good results in some light nuclei, but it
cannot be applied directly to the situation in many
medium-mass and heavy nuclei.

The success of the boson model in describing in a uni-
fied manner the various kinds of collective spectra, vibra-
tional, rotational, etc. , offered a renewed challenge. A
scheme within the shell model that would correspond to
the set of s- and d-boson states would offer a successful
shell-model description of collective states in nuclei. The
basic elements of the boson model are s bosons and d bo-
sons defined in a fixed frame of reference, and thus corre-
sponding building blocks must be found in the shell
model. In looking for these, as we shall presently see, the
presence of s bosons and the conservation of N play a
most important role.

The simplest building blocks with J=O and J=2 are
pairs of identical nucleons coupled to J=0 and J=2,
respectively. Such pairs could be pairs of valence nu-
cleons, but they could also be nucleon-hole pairs. The ex-
citation of a nucleon from closed shells should lead to a
state with high energy. Furthermore, to obtain a 0+ pair
the nucleon should be excited to the second higher shell.
It was thus suggested that the basic building blocks of the
interacting boson model are nucleon pairs (Arima et al. ,
1977; Otsuka et al., 1978). Another argument for consid-
ering nucleon pairs rather than nucleon-hole pairs is of-
fered by the conservation of 2V; The total number of nu-
cleon pairs is obviously conserved, whereas no simple con-
servation law would emerge from nucleon-hole pairs.

At this point we should recall that nuclei are built of
protons and neutrons, a fact not explicitly recognized
when IBM-1 or the collective model is used. We must
specify which nucleon pairs we should use, proton-proton
and neutron-neutron, or perhaps proton-neutron pairs. In
most medium-mass and heavy nuclei where collective
spectra appear, valence protons and valence neutrons are
in different major shells. This prevents the coupling of a
proton and neutron to J=0 and positive parity. We con-
clude that the natural approach is to consider pairs of
valence protons and pairs of valence neutrons whose num-
bers are separately conserved as well as their sum
X=iV +X . The corresponding model is called the in-
teracting boson model 2, or IBM-2, in order to emphasize
that there are two types of collective degrees of freedom,
proton bosons (m ) and neutron bosons (v) (Fig. 2).

Employing coupled pairs of protons and neutrons as
building blocks for collective nuclear states does not im-

ply that the proton-neutron interaction is ignored. As we
shall see later, the strong and attractive interaction be-
tween protons and neutrons plays a dominant role in the
present approach. It has been recognized in the past as
giving rise to an attractive central potential as well as to
nuclear deformation, and it will be introduced here as well
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Proton Bosons Neutron Bosons
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FICx. 2. (a) Schematic representation of the shell-model prob-
lem for '&4Xe64, (b) the boson problem, which replaces the shell-
model problem for '54Xe64. Both in part (a) and in part (b) the
nucleons (a) or bosons (b) can be arranged in all possible ways
consistent with the si.ngle-particle levels and Fermi (a) or Bose
(b) statistics. Of all these possible ways only one is shown in the
figure.

at the proper stage. When discussing the proton-neutron
interaction, it should be stressed that any state with
valence protons and neutrons can be constructed by cou-
pling all possible proton states to all possible neutron
states. If valence protons and neutrons are in different
(major) shells, all such states will correspond to states
with good isospin given by

T=(%g —Z~ )/2, (3.1)

where Nz and Zz are the total number of neutrons and
protons. In such situations, the proton-neutron interac-
tion (V ='+ V = )/2 may be quite different from
proton-proton and neutron-neutron interactions, V

Another point concerns the consideration of only
valence nucleons. We aim at constructing from sheH-
model wave functions coherent combinations that will ex-
hibit collective features. It is well known that even in
simple shell-model configurations of a few valence nu-
cleons polarization of the closed shells is evident. Still, if
the polarizations by individual nucleons are small, the ef-
fect may be expressed by renormalization of the various
single-nucleon operators. We take the same view for the
boson model by introducing polarizations of the core
through effective boson charges. More will be said later
on this problem.

several years before the Bardeen, Cooper, and Schrieffer
(BCS) theory of superconductivity. BCS theory has been
extensively applied to nuclei, but there are three argu-
ments against its use in the present context. First, it diag-
onalizes the rather artificial pairing interaction, which is a
poor choice for the effective interaction between nucleons.
Second, it does not conserve the particle numbers. This is
no problem for electrons in metals, but it is a major prob-
lem for the case of a dozen or so valence nucleons. One
way out of this difficulty is to use BCS theory projected
onto the correct particle number. This theory, PBCS, is
essentially equivalent to that discussed below. A third ar-
gument, particularly important here, is that the BCS
theory treats J=2 pairs very differently from J=0 pairs.
In trying to construct nucleon states similar to those of s
and d bosons, a better approach is to treat them on the
same footing. Such an approach is offered by the theory
of generalized seniority (Talmi, 1971, 1973; Shlomo and
Talmi, 1972). It is a generalization of Racah s seniority,
which we shall now briefly outline.

The seniority scheme was introduced for identical fer-
mions in a single j orbit (l orbit for electrons in atoms). It
is based on considering pairs coupled to J=O as created
by the operator

(3.2)

The operator that annihilates a pair is the Hermitian con-
jugate SJ=(S~) . The operator SJ~SJ measures in some
way the amount of J=O pairing. It has the eigenvalue
(2j+ 1)/2 for the (j J=0) state and 0 for all other states
of the j configuration. The seniority scheme in the j"
configuration is defined as the set of eigenstates of this
operator.

An interesting property of the operators S&. ,SJ and SJ,
O & t 2J+1

SJ 2 y +J ppgaJ 4
(3.3)

is that they form a Lie algebra identical to that of the
components of the angular momentum [SU(2) and O(3)],
called quasispin (Kerman, 1961). In treating properties of
the pairing interaction S~ Sz, one can use either the quasi-
spin labels W, W or the seniority U and particle number
n. The particle number n is simply related to the expec-
tation value W of S~ by

~0 12 2j+1 (3.4)
2 4

The seniority v is related to W by a similar expression,

B. Nucleon pairs and seniority

2j+ 1

4 2
' (3.5)

Let us now turn our attention to the interacting boson
model 2 and thus to pairs of identical nucleons. Pairs
with J=O have been used extensively in the past, begin-
ning with the pioneering work of Racah (1943) for atomic
electrons. This method was successfully applied to nuclei S

~

j"UJM) =0. (3.6)

The seniority U of a state, is, loosely speaking, the number
of unpaired nucleons. More precisely, a state in the j'
configuration with seniority U has no paired nucleons and
satisfies
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The eigenvalues of the pairing interaction SjSJ. are given
by

(SS)=—1 tl —v
J J (2j+3 n——u) . (3.7)

Dp = QPjj' g (jmj I
l jj 2p)oj, moj', m'

jj' Ql+5jj' mm'

(3.9)

In analogy with v =2 states, states with one D pair and
(N —1) S pairs, (S ) 'D ~0) can be considered, and

G,I, . . . , pairs can be constructed in a similar fashion.
The states with one D pair (or G,I, . . . ) can be as-

signed generalized seniority v =2. The situation becomes
more complex if one attempts to create fermion states
with more than one D ~ operator, for example,
(D XD )~

~

0). For J=0 this state will, in general, not
be orthogonal to the state (S )

~

0). In order to overcome
this difficulty, one must orthogonalize the fermion states
at each step when constructing states with many D pairs.
In order to preserve as much as possible the advantages of
the seniority scheme, one can project out of any state
(S )

' (D")qM
~

0) all components of the form

(S )
' 'BqM

~
0), where BJM

~

0) is a state with u —2
nucleons.

The seniority scheme can be and has been used to derive
many properties of shell-model states of the j"configura-
tions.

In most medium-mass and heavy nuclei, the valence
nucleons are distributed over several j orbits in a major
shell. In order to treat this situation, a generalization of
the concept of seniority in a single j shell is called for. A
simple generalization would be to consider the linear com-
binations S = gj S~. ,S= gj SJ, and S = gj Sj. These
operators would still form an SU(2) algebra, and one
could use the elegant methods of group theory to analyze
the situation (Kerman, 1961). This situation would be the
case if, for example, the single-particle orbits j were all
degenerate and the interaction were the pairing one. The
actual situation in nuclei is rather different. One thus
needs to consider a more complex form, called generalized
seniority (Talmi, 1971),by using an operator that creates a
correlated J=0 pair having the form

S = gaj.SJ (3.8)
J

with unequal amplitudes of o.j. This generalized operator
has with its Hermitian conjugate rather complicated com-
mutation relations, and no simple closed Lie algebra is ob-
tained. Still, in analogy with v =0 states, states with
J=0 of the type (S )

~

0), where N =n/2 is the number
of pairs, can be constructed and their properties investi-

gated.
The concept of correlated pairs can be extended to in-

clude pairs with angular momentum J larger than 0. For
example, we can define operators that create correlated
pairs with J=2 by

D„= z[Q„,S l (3.10)

An example of nuclei well described by the generalized
seniority scheme are the tin isotopes. We show in Fig. 3
the location of the J=2 states, which can be ascribed to
generalized seniority v =2, above the ground state.
Despite the large number of valence neutrons (or neutron
holes), up to 16, there is no indication of a real lowering
of these J=2 states. The situation is similar for lead iso-
topes (below and above the magic neutron number of 126)
and for the isotones with a neutron number of 82 (below
and above the quasimagic proton number of 64). The
small variations in 0—2 spacings in semimagic nuclei
should be contrasted with the dramatic changes in 0—2
spacings when nucleons of the other kind are added, or
with the changes of level spacing in odd nuclei. Thus one

2+ 1354
1300 1293

07 1207 ~i2 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
102S~ 104S~ 106S„108' I IOsn 112S„ I 14S~ 116S~ 118S~ 120' 122Sn I24sn 126Sn 128sn 130Sn

FIG. 3. Systematics of the I"=2+ levels in Sn isotopes.

The generalized seniority scheme constructed in this
way has two virtues. First, nuclei with only valence neu-
trons or protons (semimagic nuclei) appear to be well
described by it. It was shown that within this scheme the
states (S ) ~0) and (S ) 'D

~

0) have simple proper-
ties. Ground-state energies (binding energies) are linear
and quadratic functions of X with no breaks correspond-
ing to subshells. The spacings between ground state and
the first excited J=2 states are independent of N. They
are constant throughout the major shell considered.
These features arise if the coefficients aj and pjj in Eqs.
(3.8) and (3.9) are constant throughout the major shell. In
some calculations (broken-pair approximations) wave
functions like Eqs. (3.8) and (3.9) are used as uariational
functions, with coefficients aj and pjj determined for
each X from a given Hamiltonian. If, for a given shell-
model Hamiltonian, these coefficients are changing with
X, the regular features of semimagic nuclei may not be
reproduced. It is thus important to check that the results
of the calculations produce coefficients aj and pjj, which
do not change appreciably with X. Finally, in the gen-
eralized seniority scheme, only one state, (S ) 'D 0),
has nonvanishing matrix elements of the quadrupole
operator to the ground state (S")

~

0). This last property
holds for a single-nucleon quadrupole operator Q, which
satisfies the condition (Shlomo and Talmi, 1972; Ginoc-
chio and Talmi, 1980)
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must conclude that the basic effective interaction between
identica1 nucleons is such that generalized seniority holds.
One can use this empirical evidence in two ways, either by
deriving the necessary and sufficient conditions that the
fermion Hamiltonian H must meet in order that general-
ized seniority be satisfied (Talmi, 1971, 1973; Shlomo and
Talmi, 1972), or by disregarding effective interactions
that violate it. For example, the ver„~ popular pairing plus
quadrupole interaction is unrealistic for identical parti-
cles.

The quadrupole portion of it violates generalized
seniority, and it will lead to a lowering of the J=0—J=2
separation not observed experimentally in semimagic nu-

clei. Only small strengths of an explici. t quadrupole in-
teraction can be tolerated by experiment, as will be dis-
cussed below. It is also perhaps worth noting that in the
case of the isotopes with a neutron number of 82, the
(0—2) level spacings slightly increase with the number of
valence protons. This would imply that, in addition to in-
teractions that are diagonal in generalized seniority, there
is in this case a small quadrupole term that is repulsive.

The second virtue of the generalized seniority scheme is
that it leads naturally to a connection between fermion
states built from S~ and D~ pair operators and states of s
and d bosons. One may construct a one-to-one correspon-
dence (mapping) in the following way:

Fermion space

(S ) iO) J=O
(S'P-'D'~0) J=2

H(S )"—'(DtXD )' 'iO) J=4,2,0

Boson space

(s )"~0)
( t)N —Id'

~

0)
t)N —2(d1'~ d t)(J)

~
0)

(3.11)

U
Ply =

2
(3.12)

Equation (3.12) is the basic underlying microscopic struc-
ture of the interacting boson model.

In addition to constructing a correspondence (or map-
ping) of states, one can also construct boson Hamiltonians
whose eigenstates are given by Eq. (3.11). As a simple ex-
ample, one may consider a boson Hamiltonian that repro-
duces the features of generalized seniority. The boson
Hamiltonian

VQ(s s)+ V2(d d)+ —,
' W(s ) s +W(s s)(dt d) (3.13)

has eigenvalues VQN+ —,
' WN(N —1) in the states

(s )
~
0). It has the eigenvalues VQ(N —1)+V2

+ —, WN(N 1) in the state—s (s ) 'dt ~0), as can be
verified by using the Bose commutation relations. Any
state (3.11) with given n, and n~ is an eigenstate of (3.13)
with the eigenvalue

VQn + V2n(f + Wn, (n, —1)+Wn, n~ (3.14)

One should remark that in this example the boson Hamil-
tonian (3.13) is not the first term in a "boson expansion"
of the shell-model Hamiltonian. The boson operators are
not approximate creation operators of fermion pairs.
Unlike S and D~, which have very complicated commu-

where the operator H denotes a projection into states
from which components with S pairs have been project-
ed out. The correspondence is such that the boson num-
ber N is half the particle number, while the number of d
bosons is half the generalized seniority,

tation relations with their Hermitian conjugates,
s,d&,s,d@ satisfy exactly the boson commutation rela-
tions. The last two terms in (3.13) do not represent four
fermion interactions that are not present in the shell-
model Hamiltonian. The boson Hamiltonian (3.13) is just
a model that reproduces the eigenvalues of the shell-
model Hamiltonian for a limited and very special set of
fermion states. It contains only single-boson terms and
boson-boson interactions, and yet it reproduces exactly
eigenvalues of nucleon states in which the Pauli principle
is strictly obeyed.

The question can now be raised whether the mapping
(3.11) includes shell-model states that correspond to every
boson state. This is certainly not the case if X & 0, where
0= g. (j+—,

'
) is the pair degeneracy of the shell. All

fermion states of N ~ 0 vanish, whereas there are boson
states for any X. Hence beyond i%=Q the correspon-
dence between fermion pair states and boson states must
simply be discontinued. As we shall see in the following,
the correspondence should be modified even for N & 0/2.
Even for smaller values of X there are cases in which the
Pauli principle forbids certain couplings of the D opera-
tors. The answer to this question depends on the shell-
model space considered. If the shell-model space is
severely limited, the correspondence may not be possible.
For realistic shell-model spaces such as those encountered
in the shells 50—82, 82—126, . . . , the correspondence
can be established, at least for the low-lying states.
Ginocchio (1980) has shown that there are several semi-
realistic cases in which the correspondence can not only
be established, but is exact. The model of Ginocchio
makes use again of the elegant methods of group theory,
and it is the generalization of the quasispin group SU(2)
to cases that include D pairs. The operators defined in
the space k+ —,

'
&j& k —

2 (integer k ),
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y( )j—m t t (St)t
jm

3
2

(3.15)

&„'"'=2+( —)"+'+'"+j[(2j+1)(2j+I)]'".,
JJ 2

j r
(~).(aj Xaj )q

2

form the closed Lie algebra of SO(8). In Ginocchio's
model there is a one-to-one correspondence between boson
and fermion states, and one can construct boson Hamil-
tonians that give exactly the same eigenvalues as the cor-
responding fermion Hamiltonians. It thus provides an ex-
ample of a fermion system where the truncation to the
S-D space is exact. The model has been generalized re-
cently by Wu et al. (1986).

Another problem associated with the mapping (3.11) is
that the fermion seniority U cannot exceed Q. From this
it follows that the set of states constructed by jV ~ 0/2 s
and d bosons cannot correspond to a set of states of X, S,
and D pairs. The bosons are not limited by the Pauli
principle, and their states also include states with

nd &I1/2 d bosons. There is, however, a natural way to
establish the correspondence between boson states and fer-
mion states beyond the middle of the shell. One can
make use of the general property of Fermi systems that a
configuration with 2X particles can be equally well

described as a system of 2(Q —jV) holes in the closed
shell. Hence, beyond the middle of the shell, we map onto
boson states fermion hole pair s-tates rather than fermion
pair states.

The operator S that creates a correlated fermion pair
with J=O has been defined by Eq. (3.8). The operator
that creates a hole pair (with J=0) in the closed shell S'
should make S'(S ) ~0) proportional to (S )

'
~

0). It
can be expressed by using the Hermitian conjugates of the

Sj as g. ajSJ. The condition written above then implies

that aJ =1/aj. We conclude that the pair annihilation
operator, apart from normalization, is given by (Talmi,
1982)

(3.16)

Dp= 2[Q, S'], (3.18)

where Q& is the operator defined by Eq. (3.10). Using the
relation between the coefficients aj, /3jj', and those of Qz,
the Pjj can be written explicitly as (Johnson and Vincent,
1985)

~jj ~jj aj j (3.19)

C. The proton-neutron interaction and
nuclear deformation

We have seen that the interaction between identical nu-
cleons gives rise to the generalized seniority scheme as ex-
perimentally observed in semimagic nuclei. Among the
main properties of the seniority scheme are constant spac-
ings of the 0+ and 2+ states and a relatively small (a few
single-particle units) B(E2) value between the 0+ and 2+
states. This situation is drastically changed when both
valence protons and neutrons are present. In these nuclei
the 0—2 spacing sharply decreases with increasing num-
ber of valence nucleons, and there is a corresponding in-
crease in the B(E2) value for the 2—0 transition. This ef-
fect, related in the collective model to the occurrence of
deformation, is thus a consequence of the proton-neutron
interaction.

The interaction between a proton in the j orbit and a
neutron in the j' orbit can be expressed as

(jj 'JM
~
V, ~jj 'JM )

= jj'jM Q j"k(U„'"' L(,'') jj'jM)~
~

~ ~

k

It is seen that for a single j orbit or for equal nj, S is
simply the Hermitian conjugate of S . For unequal o.j
values, where j orbits with larger aj are filled in the be-

ginning of the shell, it follows from Eq. (3.16) that the j
holes at the end of the shell are indeed those with smaller

aj (larger I /aj ). A similar procedure can be used to con-
struct the D-pair annihilation operator,

)j+j'+J j (3.20)

In Eq. (3.20) the irreducible tensor operators U'"' are de-

fined as having reduced matrix elements equal to unity.
The coefficients I'k of the tensor expansion can be ob-
tained from experiments, if available, by inverting Eq.
(3.20), and are given by

(3.21)

It can be constructed by (Talmi, 1982)
If the protons and neutrons are in the same orbit, an in-
teraction [Eq. (3.20)] with j =j ' and coefficients Fk,
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determined by Eq. (3.21) from actual energies, is the
correct charge-independent interaction. It reproduces ex-
actly the T= 1 levels with even J values and the T=O
levels with odd J. If the j protons interact with j' neu-
trons and the neutron j' orbit is completely filled, then
matrix elements are given by

V(j jg) = —,[V(jj 'J, T=O)+ V(jj 'J, T= 1 )] . (3.22)

In such cases, moreover, all states obtained by coupling j
and j' are allowed, the tensor expansion is unique, and
Eqs. (3.20) and (3.21) are valid. All states constructed
with j protons and j' neutrons correspond to states with a
well-defined isospin, which is equal to (Xz —Zz )/2.

Information on the proton-neutron interaction is avail-
able from experimental data in some light and medium-
mass nuclei, for example, from 1f7/2 configurations.
This information indicates that among the various Fk
values in Eq. (3.21), the coefficient of the quadrupole
term F2 is considerably larger (more attractive) than oth-
ers (see, for example, Talmi, 1983). A drastic simplifica-
tion of the proton-neutron interaction is to consider only
a quadrupole-quadrupole interaction,

(3.23)

trast with the situation for the proton-proton and
neutron-neutron interaction, which, as discussed in Sec.
III.B, is of the seniority-conserving type. It may be
surprising that there is apparently no quadrupole term in
the interaction of identical nucleons. The reason is sim-
ply that the expansion [Eq. (3.20)] is not unique if only
T= 1 states are considered. A quadrupole term may well
be present in the proton-proton and neutron-neutron in-
teractions, but its seniority-breaking effect is canceled by
the presence of other even-rank multipole terms. I4 is
then possible to expand the T=I interaction in terms
only of odd tensors and a monopole term (deShalit and
Talmi, 1963).

The approximation (3.23) suggests a possible truncation
scheme for large-scale shell-model calculations that leads
to the interacting boson model 2. In this scheme, one first
constructs a complete set of states of the valence protons
given by

I aQ M ), where a are additional quantum
numbers (labels) of states that have the same values of J
(and M ). The analogous set of neutron states is given by

I
a+,M, ). A complete set of states of given numbers of

valence protons and neutrons is obtained by coupling the
proton and neutron states as

Analysis of the experimental data also indicates that there
is a strong and attractive monopole (k =0) term. If one is
interested only in the calculation of level spacings, this
proton-neutron monopole term may not be important.
However, it plays a major role in the evaluation of bind-
ing energies. After the quadrupole (k=2) and monopole
(k =0) terms, the next important one is the hexadecapole
(k=4) term, etc. The fact that the main proton-neutron
interaction is of a quadrupole-quadrupole type is in con-

X
I
a& M„)

I
aP M ) . (3.24)

In this set of states one can then evaluate matrix elements
of the proton-neutron interaction. For example, for a
quadrupole-quadrupole proton-neutron interaction [Eq.
(3.23)], one has

J J J
( ~. ~~MI(U'." U'.")I ~.' CPM)=( 1) "+ +—

, , ( ~.IIU."'II ~„')( P, IIU',"II P;). (3.25)

An effective truncation scheme should maximize the matrix elements (3.25). For that, a convenient set of states for the
valence protons and valence neutrons are those discussed in Sec. III.B and provided by generalized seniority,

(S'.) IO), (S'.) "IO), (S'.)
. D„' IO), (S'.) D', IO), . . . . (3.26)

If the U'„' and U', ' in Eq. (3.23) are proportional to the corresponding quadrupole operators defined in Eq. (3.10), the
states (3.26) will have large matrix elements of the proton-neutron interaction.

In the truncation scheme outlined above basis states are constructed with operators of the form

™ mS„= Q nJ ( —) aJ ~ aJ m , Sv = g a~ ( —)
" "aJ m aj pf

Jv

D &
——+13, g (J m J'm' Ij j'2p)aJ a,

I 1 IJ J J j 77l Pl

1 .I I . IDvp = g ~J JI g JvmvJ v v I JvJ vs' aj,m a&I
I . pJ~J J j m m

(3.27)
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They are given by the states

lid n n

I[(S ) (D ) g ]X[(S ) "(D ) g ]I (3.28)

problem in the truncated space by a boson problem. A
mapping of the fermi states of the S-D space onto boson
states can be simply achieved using the results of Eq.
(3.11). One introduces proton and neutron s-d bosons,
s d,s,d and constructs boson states as

for which components of lower proton and neutron
seniorities have been projected out. The numbers of pro-
ton and neutron pairs in the set (3.28), called the S-D
space, obey the relations

n, +nd N——:, n—,—n,+nd =X = , n,—. (3.29)

This truncation is a tremendous simplification of the
original shell-model problem. For example, in '6zSrn92,

the 12 valence protons occupy the orbits in the 50-82 shell

and the 10 valence neutrons the orbits in the 82-126 shell.
The number of states with positive parity and J=0 is 41,
654, 193, 516, and 917; that of states with J=2 is 346,
132, 052, 934, and 889; and that of states J=4 is 530,
897, 397, 260, and 575. A full shell-model calculation for
these nuclei is beyond the reach of today's computers. Qn
the other hand, the number of J =0 states in the truncat-
ed space is about 30, producing a difficult but manageable
problem.

Replacing the giant matrices of the proton-neutron
problem by those constructed in the S-D space results in a
tremendous reduction in size. Still, rather formidable
complications face any actual shell-model calculation.
The fermion states of the S-D space are still very compli-
cated and difficult to work with due to the Pauli princi-

ple. One thus may attempt to replace the shell-model

S-D

FIG. 4. A representation of the procedure suggested for con-
structing the boson Hamiltonian and transition operators. F is
the full shell-model valence space. The dimensions of the S-D
(and s-d) spaces are not in scale. The actual scaled space would.

be a tiny dot in F.

n&

l[(& ) (d )yg ]X[(&„) "(d )yg ]IM ~0) . (3.30)

The corresponding boson model is the interacting boson
model 2 (IBM-2). The entire procedure (truncation and
mapping) is schematically illustrated in Fig. 4.

In addition to the truncation to the S-D space and
mapping onto boson states, it is necessary to find a boson
Hamiltonian that will have the same eigenvalues as the
fermion Hamiltonian. We saw in Sec. III.B examples of
boson Hamiltonians corresponding to Hamiltonians of
identical nucleons. In the present case it is also necessary
to find proton-neutron boson interactions that correspond
to proton-neutron nucleon interactions. For an interac-
tion of the type (3.23), it is sufficient to find boson quad-
rupole operators that will have between the states (3.30)
the same matrix elements as the nucleon quadrupole
operators between fermion states in the S-D space. For
more complex interactions, one may need other boson
operators.

IV. MICROSCOP IC CALCULATIONS

A. Calculations in a spherical basis

In previous sections we have outlined the connection
between the shell model and the interacting boson model.
There are several steps in going from actual shell-model
calculations in a very large space to the boson system.
The first step is the drastic truncation of the shell-model
space into the S-D space. The second step is establishing
a mapping between steps of the S-D space and states of
s,d,s,d boson space. Finally, a boson Hamiltonian
should be constructed that will have the same eigenvalues
as the shell-model Hamiltonian for corresponding fer-
mion states. The same procedure must be repeated for all
operators of interest, for example, for the quadrupole
operator to be used for calculation of rates of E2 elec-
tromagnetic transitions. As mentioned above, there are
simple cases in which this procedure is exact and can be
carried out explicitly. In more realistic cases, approxi-
mate procedures must be devised. In order to check the
usefulness of each approximation scheme, it is necessary
to compare its results with those of exact calculations in
cases where exact calculations can be done (i.e., for small
numbers of valence nucleons). The first question that
could be asked is how good is the truncation to the S-D
space. Two remarks are in order here. First, the answer
to this question depends on the effective interaction that
is chosen. This poses a problem, since this interaction is
not sufficiently well known. There is up to now no reli-
able way to obtain it from the interaction of free nucleons
by using methods of many-body theory. In cases in
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A2=
1/2 1/2

(j'(D)2
f f

U"'f fj'(s)o),

1/2 1/2 (4.&)

(J'(D)zf
f

U'"f
f

j'(D)2) .

An appropriate choice of the coefficients a2 and P2 given
by Eqs. (4.2) will reproduce the fermion results for all
values of X between states with nd ——0 and rid ——1. %'hat
can be said about matrix elements between states with
higher values of nd and nd+1? This question has been
investigated extensively. Again it is instructive to consid-
er the case of a single j shell for which exact results can
be derived. One obtains

1/2 1/2
1

5

0+ 1 —X—n~

0+ 1 —2nd

1/2
Q —2N
0—2nd

(j'(D)2
f f

v'"
f

fj'(s)o),

We thus obtain for the boson operator (4.1) coefficients
that depend on boson numbers X and nd. As lang as nd
is sma11 compared to 0, the Pauli principle is not very ef-
fective, and matrix elements between fermion pairs are
proportional to those between corresponding boson states.
The simple OAI mapping, however, becomes worse as nd
increases for fixed ¹ More elaborate mappings are need-
ed to discuss situations in which nd is comparable to Q.
An example of these elaborate mappings is provided by
the method of Yang Li-Ming (1983).

1. The single j shell

I

24 32

F
(MeV) g+

I
' I ' I

' I

56aa

2.0—

FIG. 6. Energy spectra of even-even nuclei for fixed proton
number, n =2%„=6,and varying neutron number, 0& n & 32,
in the single j-shell approximation.

The truncation-mapping procedure can be carried out
in analytic form in the schematic case of a single j shell
for'protons and a single j shell for neutrons. In this case,
the generalized seniority becomes exactly the fermion
seniority. Otsuka (1978) has calculated the spectra of all
even-even nuclei in the major shell 50-82, treated as a sin-
gle j shell with j=—, (Fig. 6). He used a 5-function in-

teraction between identical nucleons (proton-proton and
neutron-neutron). I.O

22

0~
4+

22

V( x —x') = —Vo 5( x—x' }, (4.4)

with strength Vo adjusted to give a separation of 1.4 MeV
between the ground state and the first 2+ state in
semimagic nuclei. In addition, he used a quadrupole in-
teraction between protons and neutrons,

k (
U(2) .U(2) )

Comparing Otsuka's calculation (Fig. 6) with the experi-
mental situation (Fig. 7), one can see that the qualitative
features of the experiment are reproduced by his schemat-
ic calculation. The calculation appears to yield not only
the ground-state band, but also other low-lying excited
bands. A more detailed effective interaction is expected
to give better quantitative agreement with the data, but

2l

I I I I I I I I I I I I I I I

50 54 58 62 66 70 74 78 82
Neutron Number

FIG. 7. Experimental energy spectra (circles, squares, and tri-
angles) of Ba isotopes, Z =56 (n =6). The lines indicate
phenomenological fits to the data (Puddu, Scholten, and Otsu-
ka, 1980). The experimental spectra are shown here to point out
the similarity with those calculated in the single j-shell approxi-
mation and shown in Fig. 6.
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the gross features emerge even with the schematic interac-
tion. These features seem to depend rather strongly on
the existence of major closed shells and on the number of
valence protons and neutrons, n„and n .

n~=4
np =-4

2. Several degenerate shells

Otsuka (1981a, 1981b) has extended his calculations to
the case of degenerate j shells with the surface delta in-
teraction (Arvieu and Moszkowski, 1966) between identi-
cal nucleons. In that case the coefficients a~ are equal
[apart from a phase factor ( —) ] and the quasispin for-
malism can be applied directly. In order to obtain the
coefficients PJJ', Otsuka first constructed the J=2 pair
operator according to Eq. (3.10),

F„=fS QF, I ] (4.6)

where Qz is the fermion quadrupole operator

QF,~=X&JJ (aj &«J') (2) (4.7)
0 — 0+

(BA( NR) EXACT

0+—
I BA(R)

with coefficients yij, taken from the surface 5 interac-
tion. The D-pair creation operator is then given by

(4 8)

1~II = &~I + ~pg
—

Hg~E —Hgg
(4.9)

In the case of the interacting boson model, it appears that
the main renormalization effect is caused by the omission
of pairs with angular momenta J~ 2. In particular, the
largest contribution appears to come for 6 pairs (J =4).
Although the percentage of 6 pairs contained in the low-

where H is a projection operator onto states of good
seniority. The mapping was done as in the case of a sin-
gle j shell. Otsuka considered the case of degenerate
1g7/2 2d5/2 2d3/2 and 3s~/2 shells. His intention was
that of studying the "goodness" of the truncation-
mapping procedure by comparing it with exact shell-
model calculations. He found that the truncation-
mapping procedure yields spectra that qualitatively agree
with the exact spectra, Fig. 8, but that quantitatively
differ.

Why are there quantitative differences'? The answer
may be simply that the boson model is not a good approx-
imation in the schematic case of degenerate orbits and
surface 5 interaction. Still, there may well be other im-
portant effects responsible for this behavior. Whenever a
space is truncated from large to small, one expects renor
malization effects to occur. The interaction used in the
large space must be renormalized when used in the small
space. It thus becomes an "effective" interaction. Con-
siderable effort in the last few years has gone into the
construction of the effective boson interaction. A way to
construct it is provided by Feshbach's projection method.
In this method one divides the space into two parts (called
P and Q). The effective interaction in the small space P
1S given by

FIG. 8. Effects of the renormalization due to 6 pairs as calcu-
lated by Otsuka (1981a, 1981b). The exact shell-model calcula-
tions for four proton particles and four neutron holes (EXACT)
is compared with the results of the truncation-mapping pro-
cedure without renormalization (ISA-NR) and with renormali-
zation (IBA-R).

lying states of nuclei might be small, it has major effects
on some parts of the effectiue interaction Otsuka t.reated
these effects using Feshbach's projection method, and his
results are shown in Fig. 8, One can see that although the
structure of the spectrum remains unchanged, it is
compressed, and it now agrees quite accurately with the
exact shell-model result. The introduction of 6 pairs
through renormalization effects may indeed be crucial for
a quantitative comparison with experiment.

3. Several nondegenerate shells

The calculations described above of a single j shell and
degenerate shells serve as guidelines for understanding the
basic features of the results. For comparison with experi-
ments, one needs to consider the realistic case of several
nondegenerate shells. This problem has been attacked by
several authors using a variety of methods. These are list-
ed in Table I. We briefly comment here on those calcula-
tions in which the method is carried to its end, and spec-
tra and electromagnetic decay properties of nuclei are ex-
plicitly calculated.

We begin by considering the results of Yang Li-Ming
et al. (1984) for the Sm isotopes. These isotopes are par-
ticularly interesting since one observes here a transition
from spherical to deformed. The input in this calculation
are single-particle energies taken either from experiment
or from previous calculations. The effective nucleon-
nucleon interaction is taken to be pairing, quadrupole
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TABLE I. Partial summary of current approaches to the microscopic structure of the interacting boson
model in a spherical basis. Full references are given in the reference section at the end of this paper.

Authors Method

T. Otsuka, 1978, 1981a, 1981b
A. Klein and M. Vallieres, 1981
H. B. Geyer and F. J. W. Hahne, 1981
S. Pittel, P. D. Duval,

and B. R. Barrett, 1982a, '1982b, 1983
Y. K. Gambhir, P. Ring,

and P. Schuck, 1982a, 1982b
G. Bonsignori, K. Allaart,

and A. van Egmond, 1983, 1984
D. Brink and M. Zirnbauer, 1982
E. Maglione, F. Catara,

A. Insolia, and A. Vitturi, 1982
L. M. Yang, D. H. Lu, and

Z. N. Zhou, 1984
Z. S. Yang, Y. Liu, and H. Qi, 1984
G. O. Xu, 1984
C. L. Wu and D. H. Feng, 1984
C. T. Li, 1984a, 1984b
A. Faessler and I. Morrison, 1984

Generalized seniority
Kinematical method
Dyson representation
Generalized seniority

Broken-pair approximation

Broken-pair approximation

Dyson representation
Collective pair approximation

Operatorized Bogoliubov transformation

Modified Jancovici-Schiff substitution
Variable mean field
Composite particle representation
Projected quasiparticle
Generalized seniority

pairing, and quadrupole-quadrupole for proton-proton,
and neutron-neutron and quadrupole-quadrupole for
proton-neutron. The corresponding strengths are shown
in Table IE. The calculated energy spectra are compared
in Fig. 9 with experiment. The agreement is good. The
calculations of Yang Li-Ming et al. (1984) include to
some extent the effects of the Pauli principle through nd-
dependent coefficients in the boson Hamiltonian. They
do not include G pairs. The effect of G pairs appears to
be reflected in a renormalization of the fermion interac-
tion. For example, the adoption of a quadrupole-
quadrupole interaction between identical fermions is not
in line with what has been said in Sec. III. It may be at-
tributed to the neglect of 6 pairs and other configura-
tions.

Similar results have been obtained by Yang Ze-Sen
et al. (1984), who have computed the spectra of the Er
isotopes. In this calculation the single-nucleon energies
are assumed to be given by standard values. The interac-
tion between nucleons is again given as before by pairing,
quadrupole pairing, and quadrupole-quadrupole for iden-
tical particles, and by quadrupole-quadrupole for

nonidentical particles. The values chosen (in MeV) are
6, -O.04S, 6, -O.O4S, G, -O.O3S, G, -O.O2O,
~ -0.09, w -0.06, and ~ -0.04. These values do not
conform to the standard accepted values. In particular,
the quadrupole-quadrupole interaction between like nu-
cleons is even larger than in Table II. Although the com-
puted spectra agree reasonably weH with experiments, it
seems that the method used in the calculations requires
larger renormalization effects than that used in the calcu-
lation of Yang Li-Ming et al.

B. CalcUlations in a deformed basis

The scheme discussed above, namely, the truncation of
the shell-model basis to S and D pairs and the subsequent
mapping to a boson basis, has been carried out assuming
as a starting point the spherical shell model. This ap-
proach emphasizes the seniority-type interaction through
the use of a generalized seniority scheme. The proton-
neutron quadrupole-quadrupole interaction is added sub-
sequently. This interaction thoroughly mixes the basis
states of the type

TABLE II. Parameters of the nucleon interaction (MeV} used in the calculation of Yang Li-Ming et al.
(1984}.

Isotope

Pairing

Quadrupole pairing

Quadrupole-quadrupole

Proton-neutron
quadrupole-quadrupole

0.11
0.11
0.045
0.026
0.05
0.06

0.135

0.11
0.11
0.045
0.028
0.06
0.06

0.135

90

0.11
0.11
0.046
0.030
0.07
0.07

0.16

0.11
0.11
0.047
0.030
0.08
0.08

0.183

0.11
0.11
0.048
0.035
0.09
0.09

0.19
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E
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Op

number must be restored by projection is one wants to
construct the actual states. The operator A can be
rewritten in terms of spherical pairs

A =QXJAO (4.13)
J

where xJ denotes normalized amplitudes and Ap ' is ob-
tained by projecting from A onto an angular momentum
J and M& ——0 component. Using the notation of nucleon
pairs we write

A =xpS +X2Dp+X4Gp+ (4.14)

The states (4.12) are then mapped onto boson states

(~'.) "(~'.) "~0), (4.1S)

08'
I i l

86 90
NEUTRON NUM BER

I

94 98
where the boson operator A, is given by

=XpS +X28p +X4gp + (4.16)

FIG. 9. Levels of '" ' Sm as calculated by Yang Li-Ming
et al. (1984). The circles, squares, and triangles represent the
experimental values.

n d

I [(S ) (D )rg ]X [(S ) "(D )rg ] IgM ~

o) (4.10)

One can imagine a different scheme in which the starting
point is the dominant role played by the quadrupole-
quadrupole interaction (Bohr and Mottelson, 1980). This
scheme can be implemented by constructing a
truncation-mapping procedure based on nucleons moving
in a deformed well (Nilsson model). A truncation pro-
cedure can then be performed as follows. The proton-
neutron quadrupole interaction is first taken to create a
deformed potential well for the independent motion of the
nucleons. The proton-proton and neutron-neutron in-
teractions are then introduced, and the result is that each
pair of identical nucleons is distributed over several
Nilsson orbitals. If this interaction is the simple-minded
pairing interaction, the problem can be treated in the BCS
approximation. A more accurate procedure is to carry
out a Hartree-Fock-Bogoliubov calculation. In either
way, the resulting wave functions (with definite nucleon
number) can be expressed in terms of a deformed pair
operator A creating a coherent mixture of Nilsson pair
states,

A =g~kAk=g&k aka —k
k k

(4, 11)

where k now labels the quantum numbers of a particle in
a deformed potential well. The ground state of a de-
formed nucleus with X proton pairs and N, neutron
pairs can be written as

(A ) "(A,) ~0) . (4.12)

Since the. operators A do not conserve angular momen-
tum, the state (4.12) is an intrinsic state that contains
many values of the angular momenta. This quantum

The boson Hamiltonian and transition operators can then
be obtained by equating matrix elements between corre-
sponding fermion and boson states.

The truncation-mapping procedure in the deformed
well has been used by several authors in order to study
two problems:

(1) How good is the truncation to S and D pairs if the
interacting boson model has to be consistent with the
Nilsson model (or the results of Hartree-Fock-Bogoliubov
calculations)' ?

(2) What is the explicit construction of the boson Ham-
iltonian and operators'?

Although a full microscopic description of collective
states that includes all nuclei from spherical to deformed
can only be done within the framework of the spherical
shell model (Sec. IV.A), one may view the mapping in a
deformed basis as a convenient way to maximize the ef-
fects of the quadrupole-quadrupole interaction in de-
formed nuclei.

The two problems listed above have been attacked by
several authors. Some of them are listed in Table III.
The results of the calculations performed so far appear to
indicate that the probability of having S-D pairs in the
pair operator [Eq. (4.14)], xo+x2, is ) 85%%uo if one as-
sumes the Nilsson model with a deformation parameter
5-0.30 and a pairing gap 6-1.0 MeV. The same result
is obtained by using an HFB approach. Although this re-
sult is very encouraging, several comments are in order.
The first concerns the relation between the probability of
having S-D pairs in the state (4.12) and that in the
single-pair state (4.14). If the latter is smaller than 1, it is
obvious that the larger the X, the smaller is the probabili-
ty in the state (4.12). This probability, which may become
very small for large X, is not a proper measure of the suc-
cess of the truncation into the S Dspace. A proper -mea-
sure is provided by the matrix elements of the shell-model
Hamiltonian in states (At)

i
0). Since this Hamiltonian

has only one- and two-body operators, the only important
states are A

~
0) and (A )

~

0). The S Dprobability for-
these states appears to be rather high.
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TABLE III. Partial summary of current approaches to the microscopic structure of the interacting bo-
son model in a deformed basis. Full references are given in the reference section at the end of this pa-
per.

Authors

A. Bohr and B. R. Mottelson, 1980
D. R. Bes, R. A. Broglia,

E. Maglione, and A. Vitturi, 1982
T. Otsuka, A. Arima, and N. Yoshinaga, 1982
J. Dukelsky, G. G. Dussel,

H. M. Sofia, and S. Pittel, 1982
J. Dukelsky and S. Pittel, 1983
E. Maglione, F. Catara,

A. Insolia, and A. Vitturi,
1983, 1986a, 1986b

K. Sugawara-Tanabe and A. Arima, 1982
T. Otsuka, 1984a, 1984b
T. D. Cohen, 1985
W. Pannert, P. Ring, and

Y. K. Gambhir, 1985
M. Sambataro, H. Schasser,

and D. M. Brink, 1986

Method

Nilsson + BCS
Nilsson + BCS

Nilsson + BCS
Nilsson + BCS

HFB
Nilsson + BCS

HFB
Nilsson + BCS
Self-consistent mapping
HFB

Generator Coordinate

T(E2) BQ 8+ Q
8 (4.17)

A second point is the need for projecting good angu1ar
momentum from the state (4.12). In this state there are
states with angular momenta considerably higher than
J =2K„+2&„which is an upper bound for states in the
S-D space. All states with higher values of J do not in-
clude S and D pairs at all. Hence, in states with lower
values of J, the weight of S-D states is higher than im-
plied by the values of xo and x2. Finally, whereas the ex-
pansion of a single-pair state (4.13) is unique, this is no

longer true for states projected from (A ) (A, ) "~ O).
For example, when considering the case with % =2,
% =2, the J=0 state due to two 6 pairs may well over-
lap with the (D XD )0

' and (S )
~

0) states.
A major conclusion of most calculations carried out so

far in a deformed basis (as, for example, the recent calcu-
lations of Pannert, Ring, and Gambhir, 1985) is that the
effects of G pairs cannot be neglected and must be includ-
ed either explicitly or by renormalization. Otsuka (1984)
has devised techniques to deal with these effects, as well
as those of the Pauli principle. He has used his technique
to evaluate the boson image of the quadrupole transition
operator

e =I.7 e, and e =0.7 e. The values shown there were
obtained by equating matrix elements of the appropriate
operators between states in the ground-state band. Once
this is done, one must test the consistency of the scheme
by comparing boson and fermion calculations for other
bands (13 and y). Some preliminary calculations have been
reported by Otsuka (1984) and Vitturi and Maglione
(1984).

V. OTHER TOF IGS

A. F spin and lsospin

In the interaction boson model 2, collective states of
nuclei are constructed from pairs of protons and neutrons.
Instead of using explicitly proton and neutron labels, it
has proven to be convenient to introduce a formalism
similar to isospin, but applied to bosons. Proton and neu-
tron bosons can be assigned a quantity, called I' spin, of
value I'= —, (Arima et al. , 1977). Proton bosons then
have I'0 ———,, while neutron bosons have I'o ————,. The
basis states for the interacting boson model 2 are then

with

Q p (dpp+spdq)+Xp——(dp xdp)' ', p=~, v .
TABLE IV. Interacting boson model. parameters as obtained by
Otsuka (1984).

Otsuka's results are shown in Table IV. He has also
evaluated the strength of the proton-neutron boson in-
teraction

V, = —~Q Q (4.19)

also shown in Table IV. The calculations reported in the
table are performed by using 6-0.25, 5-0.9 MeV,

Parameter

x~
X'p

e~(e fm )

e (efm )

(MeV)

With
renormaliz ation

—0.86
—1.18
12.0
10.0
0.094

Without
renormahz ation

—0.80
—1.03
10.6
6.7
0.120
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constructed by multiplying proton basis states with those
for neutrons, as in Eq. (3.30). It follows that one can ob-
tain not only states that are symmetric in the proton and
neutron degrees of freedom, but also states with partial
symmetry. A convenient way to display the symmetry
character of the resulting wave functions is through the
use of Young tableaux. Since we have two types of parti-
cles, the resulting Young tableaux are two-rowed and can
be obtained by multiplying the appropriate Young ta-
bleaux for protons and neutrons. For example, the wave
functions corresponding to N„= 1 and N, = 1 can be ob-
tained from the product

[I] [11=[2] [11]. (5.1)

The wave functions [2] are totally symmetric, while those
with Young tableaux [11]are antisymmetric. In general,
Young tableaux are of the form

Ni

~ ~ ~

(5.2)

Instead of the quantities N~ and N2 one can use the
quantities

Majorana operator M

H=c(n. d +nd )+I~Q Q, +I,'M, . (5.5)

+gz(d Xd )"'(d Xd )' '

+gz(d~, —d~ ) (d s,—d s ) . (5.6)

The eigenvalues of Eq. (5.6) are 0 for symmetric states of
two bosons, and, if gz

———2g& ———2/3 ——1, the eigenvalues
are + 1 for antisymmetric states (J=1,3 and the an-
tisymmetric J=2 state). The terms with g~ and g3 have a
direct shell-model meaning. They express the interaction
of a proton pair and a neutron pair in the J= 1 and J=3
states. The term with gz, however, can be shown to have
no microscopic analog; Its occurrence may be attributed
to renormalization effects (Otsuka, 1978; Scholten, 1983;
van Egmond and Allaart, 1984). To see the effect of the
Majorana operator in general, it is necessary to look at its
eigenvalues. These can be obtained by using explicitly the
F-spin operators of the bosons,

This operator distinguishes between states with different
symmetry character. It is a two-boson operator defined
by

M, =g, (d„Xd )"'(d Xd, )'"

N) —N2
N =N I+N2 ——N +N, F=

2
(5.3)

, [N(N+2—) 4F(F+1)]—. (5.7)

H =E(n„+n„)+~Q Q„, (5.4)

where the operators Q are given in Eq. (4.18). Since no

Q .Q and Q Q interaction is present in Eq. (5.4), this
Hamiltonian is not fully symmetric. In many applica-
tions, another operator is added to Eq. (5.4), called the

to label the states, i.e., the total boson number and the
value of the F spin. The occurrence of states that are not
totally symmetric is a new aspect brought in by the cou-
pling of protons and neutrons. Their prediction and re-
sulting recent discovery (Bohle et al. , 1984) constitute
one of the main achievements of the interacting boson
model 2.

The introduction of F spin poses two questions:
(1) To what extent is F spin a good quantum number if

one starts from a microscopic theory of the boson model?
(2) What is the relation between the interacting boson

models 1 and 2?
VVe begin by considering the first question. It is clear

here that F spin is an exact quantum number if the IBA-2
Harniltonian is fully sym. metric between protons and neu-
trons, i.e., if the Hamiltonian is a scalar in F spin or con-
tains at most explicit dependence on F and Fo (which
are diagonal in F spin). In actual cases, the Hamiltonian
will not have this property. In fact, the microscopic
theory of the model leads to a Hamiltonian that can be
schematically written as

Hence, if A,
' is positive, states of Eq. (5.5) with symmetry

character F~F „will be pushed upward. The question
of whether or not F spin is a good quantum number de-
pends on the interplay between the quantities A,

' and x in
Eq. (5.5). Novoselski and Talmi (1985), using gz-0, find
that for realistic values of the parameters used to describe
the spectrum of ' Hf, the 0+ ground state of this nucleus
contains 82.1% of F=F,„and 16.4% of F =F „—l.
Other authors find smaller admixtures of F=F,„—l.
The amount of these admixtures in the low-lying states
depends on the IBA-2 Harniltonian used. A possible way
to probe F-spin admixtures experimentally is by analyzing
M1 transition rates between low-lying states.

A relation between the IBM-1 and IBM-2 can be ob-
tained by projecting the operators of the interacting boson
model 2 onto the set of states with maximum values of
the F spin, F F,„=NI2 (Harter e—t al. , 1985; Novosel-
ski and Talmi, 1985). The projected Hamiltonian can be
identified with an IBM-1 Hamiltonian. It does not al-
ways give results that are as good as those obtained from
the original IBA-2 Hamiltonian. This indicates that go-
ing from IBA-2 to IBA-1 involves a further renormaliza-
tion of the parameters.

The introduction of F spin also raises the question of
its relation to isospin. In medium-mass and heavy nuclei,
protons and neutrons occupy different major shells, while
neutrons occupy the 82-126 major shell. For these nuclei
the introduction of F spin poses no major problem. How-
ever, if one wants to describe with the interacting boson
model collective states in light nuclei, in which protons

Rev. Mod. Phys. , Vol. 59, No. 2, April 1987



358 F. laehello and I. Talmi: Shell-model foundations of the IBM

and neutrons occupy the same single-particle orbits, one
must take into account the charge independence property
of the nucleon-nucleon interaction. This is one of the best
established facts of nuclear physics.

As remarked above, isospin symmetry is not of much
help in configurations in which valence protons are in a
set of j orbits that are fully occupied by neutrons. All
states of such configurations correspond to states with the
same value of isospin, which is one-half the difference be-
tween the total number of neutrons and protons,
T=(N~ —Zq)/2. Thus for these nuclei all states con-
structed with proton and neutron pairs in different orbits
correspond to states with the same value of isospin,
though they may have different values of I' spin. In light
nuclei, this is no longer the case, and some care must be
taken when applying the interacting boson model to such
cases.

The simplest way to exploit the charge independence of
the Hamiltonian when protons and neutrons occupy the
same orbit is through the use of the isospin formalism.
The use of this formalism is not mandatory. One could
still use the proton-neutron formalism and obtain exact
results, provided the interaction were charge independent.
A boson Hamiltonian constructed under these conditions
would be more complicated than Eq. (5.4). For example,
it would contain other interactions between d and d bo-
sons, (d„&&d )'"'(d Xd )'"', with k = 1,3,4, in addition
to the k =2 term. We shall not discuss this possibility in
detail. Instead we shall describe an elegant way intro-
duced by Elliott and White (1980) to incorporate isospin
into the boson model for cases in which protons and neu-
trons occupy the same set of orbits. These authors intro-
duce, in addition to the T = 1 proton-proton and
neutron-neutron pairs (with MT ——+ 1 and MT ———1),
proton-neutron pairs with T =1, MT ——0. This model is
called the interacting boson model 3, since it has three
types of bosons. The proton-neutron T=1 pairs are
called 5 pairs. Instead of using explicitly the labels ~, v,
and 5, one can use here the formalism of isospin T. The
three types of bosons, m, v, and 5, form an isotopic triplet
with T=1.

Boson Hamiltonians with the same physics content as
Eq. (5.4) can be written down in the isospin formalism.
The single-boson terms E[(d d )+(d d, )] can be re-

placed by a term proportional to (d .d)T 0, which also
contains a (ds ds) term. The latter explicitly guarantees
that the energy of a proton-neutron pair in T = 1 states is
the same as that of proton-proton and neutron-neutron
pairs. Boson-boson interactions can be written down to
yield given matrix elements in states of two bosons with
T =0, T = 1, and T =2. These should be different in or-
der to describe the experimental situation. For example,
the low-lying spectrum of 0 (T =2) is qualitatively dif-
ferent from that of Ne (T =0), despite the fact that both
nuclei have four particles in the 8-20 shell. Their differ-
ence has been discussed in the previous sections and at-
tributed to the fact that the basic interaction between
identical nucleons is of the seniority-conserving type,
while that between nonidentical nucleons is of the quadru-

pole type.
The interacting boson model 3 enlarges the scope of the

boson model and provides a description of light nuclei. In
the usual IBM-2, the boson description of 0 (T =2) is
in terms of two s and d bosons with an F spin value of
I' =1. In Ne, however, it is the low-lying levels, with
T =0, that have an approximate boson description of one
s or d and one s or d bosons. These states also have
maximum F spin (F=1), but different eigenvalues of the
IBA-2 Hamiltonian. The shell-model structure of the
T =2 levels in oNe, which correspond to 0 levels, does
not allow a good IBM-2 boson description at all. In
IBM-3, the T =2 levels of Ne have instead a good boson

description given by the MT ——0 projection of the MT ——2
boson states O. Such T=2 levels are also well described

by IBM-3 bosons in F (with MT ——1). In addition, the
introduction of 5 bosons may be used to obtain a descrip-
tion of the T =1 levels of F. The latter is an odd-odd
nucleus, which is beyond the scope of IBM-2.

Finally, one may attempt a further extension of the bo-
son model to include, in addition to T =1 pairs, proton-
neutron pairs with T =0. This extension, called the in-

teracting boson model 4, has been suggested by Elliott and
Evans (1981). The microscopic structure of this model

suggests an identification of the T = 1 boson with nucleon
pairs with T = 1 (and spin S =0), while the T =0 bosons
are identified with nucleon pairs with T =0 (and spin
S = 1). This microscopic structure thus relies on a spheri-
cal shell model with L-S coupling. It is appropriate only
for light nuclei, since the presence of the spin-orbit in-
teraction destroys L-S coupling in favor of j-j coupling.
This IBM-4 model is the boson analog of the Wigner su-
permultiplet scheme.

The microscopic foundations of the interacting boson
models 3 and 4 have been investigated recently by Evans,
Elliott, and Szpikowski (1985) and by Halse (1985).

B. Valence nucleons versus all nucleons

The various forms of the interacting boson model dis-
cussed so far assume, in the majority of cases, as a micro-
scopic starting point the spherical shell model with only
active valence particles. An important question is to what
extent this is a justifiable approximation. This approxi-
mation is somewhat in contrast with a picture of collec-
tive states in nuclei as rigid rotations of the entire nucleus.
There are two physical quantities that are particularly
sensitive to this question. The first quantity is related to
magnetic properties of collective states in nuclei. The
magnetic M1 operator can be written in IBM-2 as

(5.8)

where g and g are the proton and neutron boson g fac-
tors and L,L the corresponding angular momentum
operators. In heavy nuclei, some microscopic calculations
of g and g yield g —1, g -0, since the contribution of
the spin part cancels out to some extent, and only the or-
bital contribution remains. Using Eq. (5.8), one can com-
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pute the matrix elements of the Ml operator between the
ground state and the first excited 1+ state of deformed
nuclei. This state corresponds to a rotation around the
average axis of proton and neutron distributions. Due to
zero-point oscillations of one distribution relative to the
other, such a rotation is possible and-is the lowest excited
1+ mode. This mode is sometimes called a twisting oscil-
lation. One then obtains (Dieperink, 1983)

P

2.0—

8 (M 1;0i+~1 i ) =+ + 4' E„
( — )'.

(5.9) $.0

This B (M 1) value is thus directly related to the number
of proton and neutron particles taking part in the collec-
tive motion. Insertion of the appropriate values yields
8(M1;1)—2pz in ' Gd. This value becomes instead
—12@~ if all nucleons are supposed to take part in the
collective motion. The experimental value —1.6p&
(Bohle et al. , 1984) appears to support the shell-model as-
sumption that most of the contribution to the low-lying
collective states comes from valence nucleons. The core
is, to a large extent, inert, and the valence particles "slide"
on it.

The second quantity that is particularly sensitive to this
question is related to electric properties of collective
states. The electric E2 operator can be written in IBM-2
as

0,5

0.0—

I

0
I

4 6
No. of Neutron-Hole Boson@

I

IO

FIG. 10. 8(E2) values of transitions from 0+ ground states to
first excited 2+ levels plotted as a function of the number of
neutron-hole bosons (Novoselski and Talmi, 1986).

(5.10)

where e and e are boson effective charges. In the mi-
croscopic theory of the interacting boson model, the effec-
tive boson charges e and e are related to the fermion
charges. Even with effects of the renormalization due to
6 pairs and other pair degrees of freedom, it is not possi-
ble to describe the experimental results starting from fer-
mion effective charges ez ——e, e„=0. One needs fermion
effective charges of the order of ez —1.7e, e„-0.7e, as
mentioned above in Sec. IV.B. This indicates that contri-
butions from other shells are important. The need for ef-
fective quadrupole charges is well known in the shell
model. Even a single nucleon outside closed shells may
cause a polarization of the core. The polarization charge
is attributed to the neglect of 2%co, 4~, . . . , excitations.

Both in the shell model and in the boson model the ef-
fects of core polarization can be described by introducing
effective charges. However, this description can be im-
proved by explicitly including some of the omitted config-
uration. Park and Elliott (1986) have recently studied this
problem by coupling to the low-lying states the giant
monopole and quadrupole resonances (also described by
bosons s' and d'). Similar results have also been obtained
by Scholten (1984).

We remark here that it appears from phenomenological
fits that as long as only 8(E2) are considered, the use of
effective charges is sufficient to describe the data. Once
effective charges have been given to proton and neutron
bosons, the boson model naturally produces the large

enhancement of E2 transition strengths observed in the
middle of major shells. This enhancement arises from
coherent contributions of states of proton and neutron s
and d bosons. No extra effect is needed to explain the
data. An example is given in Fig. 10 (Noveselski and Tal-
mi, 1986), in which one can observe that the same effec-
tive charges used in the middle of the shell describe the
situation in semimagic nuclei (the points at neutron num-
ber 82). It should be stressed that such constant values of
e and e, were determined from experiments only for nu-
clei with O(6)-like spectra. The situation may be more
complicated in the case of strongly deformed nuclei.
There it may be necessary to introduce further renormali-
zation effects (see Table IV).

The E2 transition density may be measured (e.g., by
electron scattering) not only at the photon point but also
at other values of the momentum transfer. Such measure-
ments give information about the radial dependence of
the E2 operator due to core polarization. It appears that
the effect of core polarization is not uniformly distributed
over the nuclear volume, but is mostly located at the nu-
clear surface. . Nonetheless, even for transition densities,
once core polarization effects have been included through
the use of boson effective form factors, the further
enhancement observed in the middle of the major shells is
automatically obtained in the boson model. In other
words, the same transition densities can be used to
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describe semimagic nuclei as well as nuclei in the middle
of the shells (DeJager, 1984; Goutte, 1984).

Vl. CONCLUSIONS

The main purpose of this paper has been to present the
conceptual relationship between the shell model and the
interacting boson model. We have also briefly surveyed
detailed shell-model calculations that attempt to explore
this relationship in a more quantitative way. Quantitative
calculations are difficult for two reasons. The first diffi-
culty is the lack of a detailed knowledge of the effective
interactions in the shell model. The second is that ap-
proximations must be adopted to perform the calcula-
tions, and these give rise to renormalization effects that
are difficult to evaluate. Several calculational schemes
have been suggested to deal with these problems. These
schemes have, in some cases, been implemented to their
ends. The corresponding results are very encouraging.
The overlap between the full shell-model wave functions
and those in the S-D space seems to be appreciable. This
indicates that it may be possible to take into account the
contribution of states not included by renormalization of
the parameters of the model. Estimates of such renormal-
ization effects produce results that are in fair agreement
with experiment. Use of more accurate effective interac-
tions may improve the agreement even further.

The calculations starting from the spherical shell model

are well defined, and their interpretation is straightfor-
ward. In eases where the effects of 6 pairs have been in-

corporated, they agree quantitatively with experimental
data. Starting instead from a deformed potential well,

there are additional complications, and the interpretation
is not so clear cut. Most calculations here have been per-

formed to test the validity of the 8 Dtruncation -rather
than for comparison with experiment. Even here, the re-

sults seem to indicate that the S-D truncation is a reason-

able approximation. There are physical observables that
seem to be strongly affected by contributions from G

pairs. However, inclusion of these pairs seems to repro-

duce the full results surprisingly well. Since the contribu-

tions of 6 pairs in the states considered are small, it is

plausible that it will be sufficient to treat those admix-

tures in perturbation theory. Consequently, those contri-

butions could most probably be included by renormaliza-

tion of the parameters. However, further work remains to
be done before we shall be able to compare the results of
the calculations with experiments.
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