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Recent numerical Monte Carlo simulations of the hadron spectrum are reviewed. After a general introduc-
tion, different ways of calculating the hadron masses in the "quenched approximation" (i.e., neglecting vir-
tual quark loops) are described and the latest results are summarized. The pseudofermion method and the
iterative hopping expansion method for the introduction of dynamical quarks is discussed, and the first re-
sults for the hadron spectrum including the effect of virtual quark loops are reviewed. A separate section is
devoted to the discussion of questions related to scaling with dynamical quarks.
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particles would be theoretically calculated. The number
of free parameters for the description of hundreds of had-
ron masses (and other static hadron properties) is remark-
ably small: besides the A parameter for the color gauge
coupling there are only the quark masses for different fla-
vors (six for the moment). It is quite certain that the ex-
perience gained in lattice QCD will be extremely useful
beyond the theory of hadrons as well, in other relativistic
quantum field theories. Large-scale numerical computa-
tion could help in the future to extend our theoretical
understanding to 'areas where detailed phenomenological
study is not (or not yet) feasible.

At present we are obviously only at the beginning of
this, almost revolutionary, development. The first efforts
to develop the numerical methods needed for hadron mass
calculations were initiated only about three years ago.
The first investigations necessarily had an exploratory
character. Still, progress in the field seems to be rather
rapid, and as is usual in such cases, a great number of pa-
pers (good and bad) has been produced. This makes a re-
view somewhat difficult and certainly incomplete.
Nevertheless, I have tried to give a coherent introduction
and a detailed list of references to at least some of the in-
teresting topics in the field.

The numerical calculation of the hadronic mass spec-
trum is one of the great challenges in lattice quantum
chromodynamics. As a result of many years of exper-
imentation with strongly interacting particles, the masses
of many hadrons are known to good precision. The con-
frontation of this important and extensive body of empiri-
cal knowledge with the quantum chromodynamics (QCD)
theory has two important aspects: first, it can provide ir
refutable evidence, which up to now has been missing, for
QCD as the correct theory of strong interactions; second,
in case of a successful reproduction of the known hadron
masses we would have a marvelous demonstration of the
capabilities of a new approach in theoretical particle
physics, namely, large-scale computation. In fact, this
would be the first time ever that masses of elementary

II. CALCULATION OF HADRON MASSES

y„..„,(ax)

The quark fields in Euclidean lattice QCD are
described by anticommuting (Grassmann) variables de-
fined on lattice sites x =(x&,xz, x3,x4); 1(x~(N„(the
lattice size is N, NzN3N4). It is convenient to use dimen-
sionless fields; therefore the connection between continu-
um fields and lattice fields is given by ( a= lattice spacing)

1/2 1/2

1(„„,(ax) P . (2 1)

Based on a lecture given at the Aspen Center for Physics, Au-
gust 1984. K =(Sr +2am) (2.2)

Here K is, in general, an appropriately chosen normaliza-
tion factor. For Wilson lattice fermions K is the "hop-
ping parameter, " which is related in the free-fermion case
to the bare mass rn by
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where r is the "VA'lson parameter" satisfying 0& r (1.
The quark part of the QCD lattice action with Wilson
fermions (Wilson, 1974, 1977) is then

1 —2E g (r coskp —
ty@slnkp)

p&0

1 —2K g (r coskp+ 1 y~s111kp )
p&0

S'f = X &~Q~.&

Q~„=5~ IC—g (r+y„)U(x,p)5 „+„-.
p

(2.3)
1 —2K g r cosk„+4Ã g sin k„

p&0 p&0

(2.8)

+
Qy» =ysQ hays (2.4)

with +5=p (f2p3g4 as usual. In the free case
[ U(x, p) = 1] the quark propagator Q

' can be easily ob-
tained by Fourier transformation. On a finite lattice with
periodic boundary conditions the pth component of the
momentum k& ——ap&

——2+v&/X& has values in the Bril-
louin zone (Bz is an arbitrary integer):

Bp+ 1 & vp &Bp+Xp . (2.5)

Introducing the notation

V)X ) V4X4
(k,x) =2~ (2.6)

we can write the free quark propagator with
% =X(&2%3%4 as

G Q
—I( V 1) N —1 g —i( , k»y)G

k
(2.7)

The momentum-space free propagator Gk is

The SU(3) link variables are denoted here by U(x,p).
They satisfy U(x,p)+ = U(x +p, , —p) (P is a unit vector
in the direction p). The Euclidean Dirac matrices are de-
fined according to y„=yz ———y „, and g„means a
summation over both positive and negative directions:
p=+1,+2,+3,+4.

The "quark matrix" Q in Eq. (2.3) is neither Hermitian
nor anti-Hermitian, but obeys

This form shows how the fermion doubling problem is
solved for Wilson fermions. In the continuum limit
k&

——
ap& —+0 the denominator is proportional to
C

2E +k„k„~a (m +p„p„) . (2.9)

At the other corners of the Brillouin zone, however, the
mass in the denominator is m„=(m+2wra '), if the
number of momentum components with k~ —~=—ap& is
m=1,2,3,4. Therefore the mass m tends to infinity for
a —+0, and the unwanted extra fermions decouple from
the physical fermion with mass m.

The global symmetry properties of the Wilson lattice
fermion action can be immediately seen in Eq. (2.3). For
A'f flavors the quark matrix is block diagonal in flavor.
In the individual blocks the hopping parameter has the
value of Kf belonging to the bare quark mass rnf of the
flavor in question (f =u, d, s, c,b, t, . . . ). For nondegen-

oy Nfcrate flavors the action has an exact U(1) symmetry
corresponding to the conservation of the quark number in
each flavor. For Kf Aavors with degenerate mass, the
global symmetry is U(Nf)=U(1)SSU(Nf). The axial
part of the global chiral U(1)SU(Nf)SU(N~) symme-
try is, however, explicitly broken by the Wilson term pro-
portional to r, even in the case of zero bare mass mf ——0.
The expected situation in QCD is that the axial-vector
symmetry is spontaneously broken by the vacuum expec-
tation value of gg; therefore in the Wilson fermion for-
mulation one has to assume that for vanishing lattice
spacing the explicit breaking goes over into a spontaneous
breaking.

The anticommuting Grassmann variables are not well
suited for numerical calculations. Therefore it is con-
venient to perform the fermion integration by using the
bilinearity of the action in fermion fields. In general, the
expectation value of a quantity F(v, tP, Q) is defined as

I II df dQ» II dv(x, p) ex, p&0
/

For a purely gluonic quantity, depending only on the gauge field U, this is equivalent to

J dU exp[ —S,tt( U)]E( U) dv: II II dv(x, i ). —
dUexp[ —5 tt(U)] „o (2.11)
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The effective action Scff ln the gluonic sector is the sum of the pure gauge action Ss and the negative logarithm of the
Matthews-Salam determinant encountered at the integration over the fermionic degrees of freedom:

S,ff( U) = Ss ( U) +.S,ff ( U), S,ff( U) = —ln detQ ( U) . (2.12)

The quantities explicitly depending on the quark fields can also be evaluated from the effective action in the gluonic sec-
tor. For the product of purely fermionic variables we have, for instance,

fd U exp[ —S,ff( U)]det(„, . . . „,, . . . , )[Q '( U)]
~"1~~1 "2 2 ~"n n J dU exp[ S ( U)]

Here the determinant in the numerator is built from the matrix elements Q '( U)„, of the quark propagator in the back-
ground gauge field U. Note that the indices (r,s) are abbreviations for all sorts of indices of the quark field, namely,
color, spin, and flavor indices.

The hadron masses can be calculated from the expectation values of correlation functions of composite operators car-
rying different quantum numbers. The choice of the composite operators is to a large extent arbitrary. In fact, for given
v'alues of the coupling constants one has to find the optimal operator, which has a strong enough coupling to the hadron
in question and, at the same time, can be evaluated numerically without too great difficulty. In practice this means that
in most cases the simplest local multiquark composite operators are taken. Let us now restrict ourselves to the ground-
state mesons and baryons [in the sense of SU(6)] containing u, d, and s quarks. The spin dependence of the operators is
dictated in this case by the relativistic generalization of SU(6) symmetry [for a review and references, see Pais (1966)].
The J =0 + pseudoscalar mesons are described by bilinear composite operators like, for instance,

(m+) pa (K+ ) pa
g x dxaa V5, apex ~ 'IN x Sxaa75, apex (2.14)

Here ux', d„', and sx' stand for the u , d , and-s-f-lavor components of the quark field tt1„', respectively. The indices
a,P, . . . , denote Dirac spin indices, whereas a, b, . . . , are the SU(3) color indices. The corresponding 1 vector-
meson fields are ( k = 1,2,3)

(p+) ~ pa (x++) — pa
Pxk

——dxa~gk aux, gxk =Sxaggk aux (2.15)

For the baryons, the trilinear composite operators can be chosen in different ways (see, for example, Joffe, 1981). In the
spin- —,

' octet one can use, for instance,

(p) aa Pb yc Pb yc (X+ ) aa Pb yc Pb yc'pxa=Eabc( 1 5)py x ( x dx dx x )~ %xa E b (aCcY5)pyu (xx sx x x

'=s, ,(Cy ) [u '(dpsy' s~ dy')+—d '(s~ u ' ups '—) 2s '(u—pd ' d~ uy—')]
(-„o) aa Pb yc Pb yc0'xa eabc(C3 5)pysx (Sx ux —ux Sx ) .

For the spin- —, decuplet one can consider

(4++ ) aa Pb yc (X**) aa Pb yc aa Pb yc aa Pb yc
Pxka Eabc(C/k)pyux ux ux ~ 1(xka Eabc(CVk)py(ux ux Sx +ux x ux +Sx x x

( ~)fcO) aa Pb yc aa Pb yc aa Pb yc (0 ) aa Pb yc=Gabe(C/k )Py(S» Sx u» +$» u» Sx + ux Sx Sx )& 1P»ka =Babe(C/k )Pysx Sx Sx r

(2.16)

(2.17)

where Eab, denotes, as usual, the totally antisymmetric SU(3) unit tensor, and C is the Dirac matrix for charge conjuga-
tion. In the numerical calculations it is customary to use the following representation of Euclidean Dirac matrices:

0 0 0 i 0 0 0 1

0 0 i 0 0 0 —1 0
0 —i 0 0' ~ 0 —1 0 0'
—i 0 0 0 1 0 0 0

0 0 i 0
0 0 0 —i
—i 0 0 0
0 i 0 0

(2.18)

0
P4 —

p

0

0 0 0 0 0 1 0 0 0 0 —1

1 0 0 0 0 0 1 0 0 1 0
0 1 0 'V5

1 p 0 p
—'Y i'VQ'374 C 0 1 p 0

0 0 —1 0 1 0 0 1 0 0 0

The expectation value of the product of two hadron operators can be expressed, using Eq. (2.13), by the products of the
quark propagators in some background gauge field configuration U. For the quark flavors u, d, and s one has to take in
the propagator the hopping parameter values K„, Kd, and K„respectively. (The small mass difference between u and d
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quarks is, however, usually neglected: IC„=Ad. ) Writing out indices explicitly, let us introduce
—1 —1 —1

Uxaa ypb =Q ( U~+ +a )xaa ypb ~ Dxaaypb =Q ( U~+ +d )xaaypb~ ~xaaypb =Q ( Ur+ +s )xaa ypb

Then, for instance, for (qr„' 'pry ') and (qr„'~k 'py~~ '), one has to calculate, respectively,

[75Uxy) 5Dy I Tr I) k yx3 I yx I

(2.19)

(2.20)

where Tr„stands for a trace over spin and color indices. Formulas such as Eq. (2.20) apply to all flavor-nondiagonal
mesons. For mesons like g, q', m, y, . . . , some combination of Aavor-diagonal operators such as

(uu) — ~ pa
0 x +xaa ~ apex (2.21)

is needed (I is some Dirac matrix). For the expectation value (y„'""'yy""') the general expression (2.13) involves the
combination

Tr II Uyl" Uy I
—Tr II U ]Tr Il Uyyj (2.22)

In order to obtain baryon masses, we must have the necessary combinations of quark propagators. For the proton (and
similarly for = and X+ ) these are

Eabcedef(+) 5)Py( Y5)ey( xaaysdUxPb yeeaxycypf + Uxaa yedUxPb ybe+xrcyq&f ) .

For the A baryons they are

Eabcedef( V5)Py(+1 5)ey[ UxaaybdDxPb yee~xycyyf +Dxcsaybd UxPb yee~xycyqf +4~xaaybd UxPb yeeDxycyyf

UxcIa, ycdaxPb, y5e~xyc, yyf Dxaa, ycd UxPb, y6e~xyc, yyf 2 xaa, ycdaxPb, yqe~xyc, y5f

2Dxaa yed Uxpbype~xyc ybf 2~xaayedDxpb ype Uxyc ybf 2~xaayed Uxpb ype+xyc ybf ]

For the 6++ baryon (and similarly for II ) the propagators are

Eabcedef (~7k )Py(CXk )ep( Uxaaybd UxPb yee Uxyc ypf +2Uxaa yed UxPbybe Uxyc yyf )

For the X*+ baryon (and similarly for =*
) the propagators are

Eabcedef(C Yk )Py( Yk)ey( Uxaa ysd UxPb yee~xyc yq f +2Uxaa yed UxPb ybe~xyc ypf )

(2.23a)

(2.23c)

(2.23d)

The numerical calculation of the hadron masses is based
on the Kallman-Lehmann representation of two-point
functions. In the Euclidean region for a spinless field
y(x) (for simplicity) we have

(0
I T[/ (x)g(y)] I

0) = f, dm'p(m')b, ( —y;m'),
Pal

O

(2.24)

1
11m

~x4 y4~~~ Ix4 y41

Xln dx 0 T gxyy 0 (2.27)

Another possibility is to perform a Fourier transforma-
tion,

with a positive spectral weight function p(m ) and the
Euclidean propagator

f dx&e ' ' fd x (0
I
T [y(x)y(0)] I

0)

"dm' ~ (2.28)
d k e

AE(xm )=
4 2(2m. )4 m2+k, k

(2.25)

Projecting out the zero three-momentum intern1ediate
states by an integration over three-space, one obtains for
this "time slice"

f d'x(0I TIq(x)q(y)]
I
0)

= f dm p(m )e ' ' . (2.26)

Stable single-particle states contribute by a 6-function
term. in p, whereas multiparticle intermediate states give a
continuum contribution. For large Euclidean time
separations the lowest mass mo dominates, and we have

This shows the particle poles in the (real) energy variable
E = —i+4.

Both Eqs. (2.26) and (2.28) can, in principle, be used to
extract the lowest masses from the expectation values of
products of multiquark operators as in Eqs. (2.14)—(2.17).
One has, however, to keep in mind that the formulas are
exact only in the continuum limit. On a finite lattice
there are O(a) corrections due to the finite lattice spacing
a, as well as finite size effects due to the finite physical
extension of the lattice. [For some exact results about the
spectrum of finite lattice pure gauge theory in the strong
coupling region see, for instance, Schor (1983, 1984) and
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I. Montvay: Numerical calculation of hadron masses 267

O'Caroll (1984; O'Caroll and Barbosa, 1985).] An impor-
tant modification to Eq. (2.26) is due to the periodic
boundary conditions, which are introduced in most calcu-
lations in order to minimize finite-size effects. Due to the
periodicity, a signal can propagate between two points in
different ways. Neglecting propagations with more wind-
ings, we can replace the simple exponential behavior
(2.26) in the case of mesons by

—x4am —(K4 —x4 )gag
e +e (2.29)

Here the time difference x4 is given in lattice units, and
1V4 is the lattice size in the Euclidean time direction. For
baryons, the corresponding formula is more complicated
because TCP invariance implies the propagation of the
opposite parity (charge conjugate) state in the opposite
time direction; therefore Eq. (2.29) is replaced by

+(1—yq)(c+e ' ++c e ' ) . (2.30)

Here c+ and c give the coupling strengths of the two
opposite parity states with masses m+ and m, respec-
tively. In addition to showing the effects of finite time
extension, the spectrum is, of course, also influenced by
the finite spatial extension L of the lattice. A dimension-
less measure of the finite size is g:Lm o [wi—thIp =m0(L ) the lowest mass in the given channel]. For
large L, the mass on the finite lattice tends to the physical
mass Mo ——limL mo(L), and the deviation behaves as
(I.uscher, 1984)

III. MONTE CARLO CALCULATIONS
IN THE QUENCHED APPROXIMATION

A. Generalities

—a- -+p(g)a — a
Ba Bg

m =O(a) . (3.1)

The numerical evaluation of the fermion part of the ef-
fective action S,rf in Eq. (2.12) is rather time consuming,
because the "quark determinant" det Q is essentially non-
local. The nonlocality is due to the fact that S,f~ de-
scribes the effect of closed virtual quark loops, and light
virtual quarks can propagate to large distances. (For a
discussion of the quark determinant see the next section. )

In the "quenched" or "valence" approximation (Hamber
and Parisi, 1981; Marinari et al. , 1981a; Weingarten,
1982) virtual quark loops are omitted by neglecting the
dependence of S~rr(U) on the gauge configuration U. In
this case in Eqs. (2.11) and (2.13) S~ff cancels out, and the
effective gauge field action S,ff( U) can be replaced by the
pure gauge action S~(U). The quenched approximation is
expected to give a reasonable (say, within 10%%uo) descrip-
tion of the hadron spectrum at least in the flavor nonsing-
let channels. This expectation is based on the
phenomenological Okubo-Zweig-Iizuka rule (Okubo,
1963; Zweig, 1964; Iizuka, 1966) and on some theoretical
results obtained in the 1/N, expansion (K, =number of
colors) ('t Hooft, 1974).

Since the gauge field configurations in the quenched
approximation are distributed according to the pure gauge
action, the scaling of the hadron masses m has to follow
the renormalization-group equation (RGE) without
quarks:

Mp —nap
5p=—

7' p

cl —c2( (2.31)

The constants cI 2 depend on the quantum numbers. A
more detailed formula (Luscher, 1984) relates 50 to some
elastic scattering amplitude, and hence c~ turns out to be
proportional to some coupling constant squared. The oth-
er constant c2 is of order 1, so that finite-size effects
should fast disappear once some critical size is reached.

—1 dx
m =a exp

so p(x)
(3.2)

If the integration constant gp is replaced by an overall
factor c, one can write, in analo'gy with Eq. (5.4),

Here p(g) is the Callan-Symanzik p function of the pure
gluon theory on the lattice, and the right-hand side is due
to the scale-breaking lattice artifacts. (For a~0 it goes
to zero by some power of a. ) The solution of Eq. (3.1) is

m =c a (pog ) exp2 —Pi/2Po

2pog

1 1
dx +

X ~ pX
=cm +1a« (3.3)

Here A~,« is the A parameter of pure lattice gauge theory,
and po and p& are the first two (universal) expansion coef-
ficients of p(g) given by Eqs. (5.2) and (5.3) with N, =3
and Nf ——0. The integral piece in the exponent is not
universal; it depends, for instance, on the particular form
of lattice action chosen for Sg(U). But, compared to the
universal g term, it becomes small in the continuum
limit g~0.

In order to obtain the two-point functions of the ha-

dronic multiquark operators in the quenched approxima-
tion, one has to calculate the expectation value of expres-
sions like those in Eqs. (2.20)—(2.23). In the case of fla-
vor nonsinglet mesons the required combination of quark
propagators can be represented by Fig. 1 [see Eq. (2.20)].
For the flavor singlet mesons, like those in Eq. (2.22), one
needs combinations as given in Fig. 2, whereas for the
baryons in Eqs. (2.23a)—(2.23d) one has to calculate com-
binations like those shown in Fig. 3. In the cases of Figs.
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FIG. 1. The quark propagator configuration needed for flavor
nonsinglet mesons.

FICi. 3. The same as Fig. 1 for baryons.

1 and 3 it is enough to consider quark propagators
originating from a single point, say x. This is because the
orientation of the propagator lines can be reversed by us-

ing Eq. (2.4). This in turn means that for the flavor non-
singlet mesons one has to calculate the expectation value
of expressions like

Trse(Q~y 'I )'sQxy '+1'51 ) . (3.4)

B. Iterative methods for the calculation
of quark propagators

Here I is some Dirac matrix describing the spin. In this
connection let us note the special role of the flavor non-
singlet pseudoscalar mesons with I y5 ——y& ——1. In this
case there are no cancellations in the spin trace in Eq.
(3.4), and the decrease of the hadron propagator for large
distances is the slowest, corresponding to the smallest
mass. This observation is the starting point for the
derivation of several rigorous mass inequalities (see, for
instance, Nussinov, 1983; Weingarten, 1983b; Witten,
1983).

The case of the flavor singlet mesons in Fig. 2 is much
more difficult than the propagator configurations in Figs.
1 and 3. First of all, quark propagators starting from two
different points are needed. This means that one has to
evaluate the quark propagators from every starting point
of at least several time slices. The second, potentially
even more dangerous, difficulty is that the second term in
Eq. (2.22) contains a nonconnected piece that has to be
subtracted. This requires very high statistics, and even
then the measurement of the correlation at large distances
is rather questionable. (For a suggestion as to how to
overcome these difficulties see Hamber et al. , 1983a.)
The only attempt, up to now, to calculate flavor singlet
meson masses and mixing with glueballs was made re-
cently in the quenched approximation on a small (4 X 8)
lattice in SU(2) gauge theory (Fukugita et a/. , 1984b).

the required matrix elements of the quark propagator
Q '. Several standard numerical matrix inversion
methods (Lanczos, 1950; Householder, 1964; Varga, 1965;
Stoer and Bulirsch, 1980) have been tested and successful-
ly applied. The most popular are the variants of the
Gauss-Seidel method and the conjugate-gradient method.

Let us write the quark matrix Q in Eq. (2.3) as

Q =1—KM,

M„„=g (r+y„)U(x, p)o
X P

(3.5)

The simplest iteration for p—:Q i (i=some initial vec-
tor) is the "Jacobi iteration":

p„+, i +——KMp„(n =0, 1,2. . .),
po=E, p = 11m p~

(3.6)

Iterating point by point, that is, taking on the right-hand
side the already calculated elements of p„+&

instead of the
old p„, gives the "Gauss-Seidel iteration. " This corre-
sponds to the decomposition I=MI+M„, where MI has
nonzero elements only below the main diagonal (and there
M =MI,. M„=O). The iterative equation now becomes

p„+& i+K(M——lp„+&+M„p„) . (3.7)

p. +i=p. +~(1—QS. )

Then, going a step further, with

J +1 PP +(1 P)J +1+~p(1 QP +1)

(3.9)

(3.10)

In order to improve convergence one can also introduce a
relaxation parameter X and set

p„,=(1—A)p„+A[1+K(M/p„+/+M„p„)] . (3.8)

For small quark masses, still better convergence can be
achieved by a "second-order" method. Returning to the
simple expression in Eq. (3.6), even if point-by-point itera-
tion is done, we can write the "first-order" iteration in
Eq. (3.8) as

The main task in quenched hadron mass calculations is
the inversion of the quark matrix Q, in order to obtain

one obtains the "second-order" iteration:

p„+z——p„+A,(1 ApQ)(i ——Qp„) . (3.11)

FICi. 2. The same as Fig. 1 for flavor singlet mesons.

By an appropriate choice of the two parameters X,p a
good convergence can be achieved even for smaller values
of the quark mass.

The other popular and effective method for the inver-
sion of the quark matrix is the "conjugate-gradient"
method. It begins with a guess at po for p =Q 'i Then.
one has to calculate
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I. Montvay: Numerical calculation of hadron masses 269

ro —Q+(i —Qpo) . (3.12) C. Hopping expansion method

If the length
~

ro
~
=[(ro ro)] is zero, than po is the

solution. Otherwise, for n =0, 1,2, . . .,

I"n+ I = I'n—

(3.13)

f Qh
h

'I

If
~
r„+~

~

=0, then p„+, is the solution, because

Qp. ~i=Qp. +Q+ 'r.

=Qp. -i+Q+

Another way to obtain information about hadronic
two-point (or many-point) amplitudes avoids the direct
numerical inversion of the quark matrix by concentrating
on the expansion coefficients in powers of the hopping
parameter K. Knowing the hopping parameter expansion
coefficients to sufficiently high orders, and assuming the
analyticity of the amplitudes at K=O, one can investigate
different features of the amplitudes at the physical values
of K. The starting point (Wilson, 1977; Hasenfratz and
Hasenfratz, 1981;.Hasenfratz et a/. , 1982a, 1982b; Lang
et al. , 1982; Stamatescu, 1982) is a formal Taylor expan-
sion like

= ' ' ' =Qpo+Q "o=i .

For
~
r„+,

~

&0 one calculates

I"n+1
n+1 ~ +1+

(3.14)

(3.15)

(1 KM—) '= g K&M&

j=o
(3.16)

S~tt = —ln det(1 KM) =——Tr ln(1 —KM)

or, for the fermion part of the effective action in Eq.
(2.12),

and returns to Eq. (3.13) for the next n It can. be shown
that the solution is always obtained in a finite number of
steps.

On large lattices, computer memory limitations often
pose a problem for the iterative methods because the
iterated vectors have many components (and the gauge
configuration itself takes a lot of storage space). The usu-
al way of circumventing these difficulties is to partition
the inversion of the quark matrix Q, which is possible be-
cause of the locality. A simple way to do this is to organ-
ize the iteration according to time slices. In this way it is
enough to keep only a few (usually up to 3) time slices in
the memory (Bowler, Kenway, et al. , 1984).

(3.17)

From the expansion coefficients in Eqs. (3.16) and (3.17)
one can construct the expansion coefficients of the ha-
dronic amplitude in question and then, either by direct
application of the hopping parameter series (if the series
converges) or by some analytical continuation method,
one can calculate the amplitude at the desired value of K.
Applying the explicit form of the "hopping matrix" M in
Eq. (3.5), it is possible to represent the hopping parameter
series as a sum over curves on the lattice. For instance,
one can write Tr(M") as

Tr(M") = 5 „-6„„„- . 5 „-Tr, [U(x„,p„).. . U(x2, pz)U(x&, p&)]
~nI n

XTr, [(r+y„) (r+y„)(r+y„,)] . (3.18)

Due to the 5 functions, the sum runs here over all closed
loops. A similar representation of (M )~„ is possible in
terms of loops running from point x to point y. Al-
though this representation is physically rather suggestive
and appealing, it has the practical disadvantage that the
number of curves at high orders is very large. For in-
stance, at 12th order there are more than 4&(10 closed
curves going through a given link, and at 16th order al-
ready more than 6X10 (the number increases exponen-
tially; Berg et al. , 1982). It is quite clear that the evalua-
tion of the traces in Eq. (3.18) requires a prohibitively
large number of mu1tiplications already in these orders.
This was the reason why the first numerical calculations
of the hadron spectrum (Hasenfratz et al. , 1982a, 1982b)
were restricted to low orders. A sufficiently high-order
hopping expansion is possible with the numerical iterative

method (Hasenfratz and Montvay, 1983, 1984). If one
wants to obtain, for instance, the matrix element

(g ~

M"
~

i ), then one uses

( g ~

M"
~

i ) = g (g
~

M
~

h ) (h
~

M" '
~

i ) . (3.19)

This shows how (g
~

M"
~

i ) is built up from the lower-
order matrix elements (h

~

M" '
~

i ). Due to the
nearest-neighbor structure of the hopping matrix M [see
Eq. (3.5)], the consecutive steps of the iteration for
(f ~M" ~i) can be visualized as represented in Fig. 4.
From some starting point, in a given order, a finite num-
ber of points is reached. During the iteration it is possible
to choose the boundary conditions for the quarks indepen-
dently from the given boundary conditions (usually
periodic) of the gauge configuration. In the case of the
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C wE Q ~ C
I

0 C

~ ~ ~

FIG. 4. Illustration of the iteration for the calculation of the
hopping expansion coefficient tf ~

M"
~

i ). &n every step the
open points are calculated from the solid ones.

"periodic box" iteration, the quarks also obey periodic
boundary conditions. In the "copied gauge field" itera-
tion the quarks propagate without boundaries over the
periodic gauge field background. A mixture of both ap-
proaches is also possible: "periodic box" in the space
directions and "copied gauge field" in the time direction.
The advantage of the copied gauge field iteration over the
periodic box iteration is that the quark propagators are
defined for continuous momenta [not just for the discrete
values in Eq. (2.5)]. Therefore it is possible analytically to
continue the hadron propagators to real energies by carry-
ing out a Laplace transform with real E = iP 4, instead-
of the Fourier transformation in Eq. (2.28). This allows
us to look directly for the particle singularities (for fixed
E in the hopping parameter variable) by a Pade-
approximant technique. In such a way direct information
is obtained on the nature of the singularity, and the locali-
zation of cuts or multiple poles [e.g. , due to radial excita-
tions (Hasenfratz and Montvay, 1984)] becomes possible.
This is potentially a very useful technique in an un-

quenched spectrum calculation with light dynamical
quarks, where the resonances (p, b, . . . ) are "hidden"
behind multiparticle cuts. The price of a high-order cal-
culation with copied gauge field iteration is the growing
number of points reached in higher orders (and hence the
growing length of the arrays in the computer program).
For illustration, the number of points with given distance
l =0, 1, . . . , 16 on a four-dimensional hypercubic lattice
is given in Table I.

The required order in the hopping expansion depends
on the gauge coupling P=—2X,g and on the quark mass
(it is higher for larger P and for smaller quark mass). At
P=5.7 in SU(3) (X,=3), for instance, good results can be
achieved in 32nd order. In the test case of free Wilson
fermions (with r= 1), the position of branch-point singu-
larities in the multiquark amplitudes are reproduced in

32nd order within 1—2 % in the case of mesons and
4—5 % in the case of baryons (Kunszt, 1983). For
nonzero coupling (g&0, P& ac) the situation is most
probably even better. The order of the quark propagator
calculation is chosen in such a way that, for the required
hadronic amphtude, some given order can be achieved.
For instance, a 32nd-order calculation of the mesonic am-
plitude in Fig. 1 requires that the quark propagator itera-
tion run up to the maximum distance i=16 from the
given initial point (see Fig. 4). It can be easily seen that
with this set of quark propagators the baryonic amplitude
in Fig. 3 can be calculated up to 33rd order. It is also
clear that mesonic amplitudes contain only even powers
of K, whereas the baryonic ones contain both even and
odd powers.

D. Results for Wilson fermions

Quenched hadron mass calculations with Wilson
quarks have been performed by many authors; besides the
references we have already mentioned (Hamber and Par-
isi, 1981; Hasenfratz, Hasenfratz, Kunszt, and Lang,
1982a, 1982b; Weingarten, 1982; Kunszt, 1983; Hasen-
fratz and Montvay 1984) see also Fucito, Martinelli, et al,.
(1982); Bernard, Draper, and Olynyk (1983); Bernard,
Draper, Olynyk, and Rushton (1983); Bowler et al.
(1983); Fucito et al. (1983); Fukugita et al. (1983, 1984a);
Gupta and Patel (1983a, 1983b); Hamber and Parisi
(1983); Lipps et al. (1983); Martinelli, Parisi, et al. (1983);
Patel and Gupta (1983); Weingarten (1983a); Bowler,
Chalmers, et al. (1984); Konig et al. (1984); Itoh et al.
(1984); Langguth and Montvay (1984); Billoire et al.
(1985). Qualitatively rather good results for the spectrum
were reported even in the earliest pioneering papers, al-
though the physical lattice was still very small, typically
less than 1 fm. [The situation became even worse when
more precise string-tension measurements (Gutbrod et al. ,
1983; Parisi et al. , 1983; Barkai et al. , 1984; Hasenfratz
et al. , 1984b; Otto and Stack, 1984) suggested an even
smaller lattice spacing than was thought before. ] The im-
portance of some minimum lattice size was soon realized,
however (Bernard, Draper, and Olynyk, 1983; Bowler,
Pawley, et al. , 1983; Gupta and Pastel, 1983a; Hasenfratz
and Montvay, 1983; Martinelli, Parisi, et al. , 1983; Pol-
itzer, 1984). Some exploratory studies on larger lattices
showed (Lipps et al. , 1983; Hasenfratz and Montvay,

TABLE I. The number of points XI with given
dimensional hypercubic lattice.

lattice distance {measured in 1inks) in a four-

32 192 360 608 952 1408

1992

10

3608

13

5928 7392 9080

16

11 008
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1984; Konig et al. , 1984; Billoire et al. , 1985) that the
most drastic finite size effects go away if the spatial size
of the lattice reaches 1.7—2.0 fm and the temporal size is
roughly twice as much. The larger temporal size is need-
ed for the separation of the lowest state from radial exci-
tations. The elongated lattice for the calculation of quark
propagators can, however, be prepared by copying a sym-
metric lattice periodically twice in the time direction. In
the hopping expansion method this is done anyway, if the
copied gauge field iteration is applied. In this case one
has, however, to perform a high-enough-order calculation
to exploit efficiently the distant time slices. In practice
this means that, for an effective time elongation 1V„
roughly an order 2X, is required in the copied gauge field
hopping -expansion.

Assuming a string tension v x=420 MeV, the recent
SU(3) string-tension calculations give for the lattice spac-
ing

a(P=5.7)=0.21 fm,

a(P=5.8)-0.16 fm,

a(P=6.0)=0.12 fm .

(3.20)

&, —1
K,',"'"=0.125+0.010 178 6 g

2&c
(3.21)

This also shows that in this region important nonpertur-
bative (or higher-order) effects are present.

Besides finite size effects, the other limiting feature of
the existing calculations is the statistics. Most calcula-
tions use fewer than 20 propagators per K value. In
Langguth and Montvay (1984) 80 meson propagators and
40 baryon propagators were collected, whereas Konig
et al. (1984) had 72 propagators per K value. The experi-
ence with higher statistics shows that, for light quark

Therefore the minimum required lattice sizes are roughly
8 X16 (at p=5.7), 12 X24 (at p=5.8), and 16 X32 (at
p=6.0). Note that the lattice scale between p=5.7 and
p=6.0 changes more rapidly than "asymptotic scaling"
with the two-loop perturbative p function p(g)~—Pog —P&g in Eqs. (3.2) and (3.3) would require. Of
course, hadron masses on the lattice should also scale ac-
cording to Eq. (3.20), in order to be consistent with a con-
tinuum (scaling) behavior. The present situation is not in
contradiction with such a behavior between p=5.7 and
p=6.0 (see Table II). The errors are, however, still some-
what large, and the p=6.0 results presumably suffer from
somewhat more finite-size effects. The results of Konig
et al. (1984) may be better from this point of view, but it
is not clear what is the influence of the (approximate)
blocking procedure introduced by Mutter and Schilling
(1984a, 1984b).

Note that the critical hopping parameter value K„,
where tht„. pion mass vanishes, is substantially larger at
p=5.7 (g =0.95) and p=6.0 (g =1.0) than the one-

loop perturbative value (Kawamoto, 1981; Stehr and
Weisz, 1983):
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272 t. Montvay: Numerical calculation of hadron masses

masses, the calculation of a few, hundred propagators is
probably not an exaggeration.

Comparing the numbers in Table II to experimental
masses, it turns out that there is a rough agreement be-
tween the overall scale given by the masses and the scale
(3.20) obtained from the string tension. The mass ratios,
however, deviate from the right ones: the ratio mz/mz
comes out around 1.8, and the 6-p mass splitting has a
tendency to be too small. [Note in this regard that Bil-
loire et al. (1985) used nonrelativistic baryon operators
instead of the standard relativistic ones of Eqs. (2.16) and
(2.17). The standard operators would have given higher
baryon masses. ] The disagreement of mass ratios could
come from the explicit breaking of chiral symmetry intro-
duced by Wilson lattice fermions, but perhaps even more
probably could be characteristic of the quenched approxi-
mation.

E. Kogut-Susskind fermions and variant actions

There exist also several quenched hadron spectrum cal-
culations (Marinari et al. , 198la; Hamber et al. , 1982;
Hamber and Parisi, 1983; Billoire, Lacaze, et al. , 1984a,
1984b; Billoire, Marinari, et a/. , 1984; Bowler, Chalmers,
et al. , 1984; Gilchrist et al. , 1984a; Marinari et a/. , 1984;
Billoire et al. , 1985) with Kogut-Susskind lattice fer-
mions (Banks et al. , 1977; Susskind, 1977; Kawamoto
and Smit, 1981; Gliozzi, 1982; Kluberg-Stern et al. „

1983). In this formulation the problem of chiral symme-
try and the associated proliferation of fermion degrees of
freedom is treated differently. For zero bare quark mass
there is an exact U(1)„„„,U(1), „;,~ symmetry of the lat-
tice action, and the spontaneous breaking of the U(1),„;,~
part implies the existence of a massless Goldstone boson
in the strong coupling region (Blairon et al. , 1981;
Kluberg-Stern et al. , 1981; Jolicoeur et al. , 1984). Flavor
symmetry (like isospin, etc.) is, however, explicitly bro-
ken; therefore an important problem for numerical calcu-
lation is to study the masses of non-Goldstone pseudosca-
lar mesons. This was done for SU(2) gauge theory by Bil-
loire, Lacaze, et al. (1984a, 1984b), and the result showed
near P=2.3—2.4 strong evidence for various light fla-
vored pseudoscalar mesons, in accordance with a
Nambu-Goldstone realization of full chiral symmetry in
the continuum.

The extraction of hadron masses from the hadronic
two-point functions is a nontrivial task for Kogut-

Susskind fermions, especially in the baryon sector. This
is due to the mixing in Aavor and spin-parity caused by
the explicit symmetry-breaking terms. In the case of
SU(3) color, up to now only the simplest (local) hadronic
operators have been considered; therefore the interpreta-
tion of the numerical results in terms of the masses may
have some systematic uncertainty. For a collection of
some recent results see Table III. Comparing the values
at 13=5.7 (where finite size effects are presumably small-
er) to those in Table II, we see reasonable agreement for
the nucleon mass. In the case of the p mass, however,
where the errors are small, there is a definite disagree-
ment: the apparent lattice spacing seems to be about a
factor 1.6 smaller for Wilson fermions. Correspondingly,
there is no problem with the m~/mz ratio for Kogut-
Susskind quarks. This is actually not a surprise, since
this ratio is essentially correct already in strong coupling
(Kluberg-Stern et al. , 1981; Jolicoeur et al. , 1984). In
summary, the quenched hadron mass calculations with
Kogut-Susskind fermions are promising, but the difficult
problem of mixing (in flavor and in spin-parity) deserves
further study, in particular in the case of nondegenerate
flavor masses (Gockeler, 1984; Golterman . and Smit,
1984a, 1984b).

In addition to changing the fermion part of the action,
we can'also change the gauge part, for instance, in order
to improve the scaling properties in the intermediate cou-
pling range. Some attempts in this direction have already
been made (Bowler, Marinari, et al. , 1984; Itoh et al. ,
1984; Marinari et al. , 1984), but within present precision
there are no substantial deviations from the simple Wilson
gauge action.

F. Other static hadron properties

Qnce the hadron mass calculation is under control, one
can start to calculate a 1arge number of different static
hadronic matrix elements, which are of interest in strong
and electroweak interactions (Bernard et al. , 1982; Fucito,
Parisi, and Petrarca, 1982; Martinelli, Parisi, et al. , 1982;
Ali and Montvay, 1983; Brower et aj'. , 1984; Cabibbo
et ah. , 1984; Gottlieb et ah. , 1984; Velikson and Weingar-
ten, 1985). Many of these matrix elements involve the
electromagnetic or weak currents that are conserved in
the continuum. Such conserved vector currents can be de-
fined on the lattice, too (Karsten and Smit, 1981). For
Wilson fermions the appropriate choice is (for 1Vf =3 de-
generate quarks)

TABLE III. Some results of quenched hadron mass calculations with Kogut-Susskind fermions.

m~a

mrna
(m a) /(m~a)

P=5.7
(gilchrist et al. ,

1984a, 1984b)
10'x 16

0.98+0.06
1.21+0.14

7.6

(Bowler, Chalmers, et al. , 1984)
8 X16 (copied)

0.88+0.06
1.05+0.30

7.0

p=6.0
(Billoire et al. ,

1985)
10 X20

-0.37
-0.5
-6.5
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FIG. 5. The quark propagator configuration for a matrix ele-
ment of flavor nonsinglet point-split current in Eq. (3.22).

action and compare the results with and without such
fields.

An important piece of information can be obtained by
calculating matrix elements of the nonleptonic demy
Hamiltonian (for E mesons, D mesons, Ii mesons, etc.).
The required quark propagator diagrams (Brower et al. ,
1984; Cabibbo et al. , 1984) are shown in Fig. 6. The last
diagram in the figure is, unfortunately, as difficult as the
second part of Fig. 2, but the evaluation of the first two
quark propagator configurations already gives some use-
ful information.

(3.22)

The Gell-Mann matrices A,, ( s =0, 1, . . . , 8) act here in
flavor. It can be shown that, as a consequence of the
equations of motion 5Sf/5g =5Sf/5$„=0, the current
in Eq. (3.22) satisfies the "conservation equation"

g (V.'„—V' )=O.
p&0

(3.23)

The advantage of the conserved current in Eq. (3.22) over
the "naive" local currents like const&&f„y„g is that, as a
consequence of Eq. (3.23), the strength of V„'~ is not re-
normalized. Therefore the matrix elements of the vector
current in Eq. (3.22) can be directly compared to measur-
able quantities. In the case of other (for instance, axial-
vector) currents, the only way to determine the multipli-
cative renormalization is, at present, one-loop perturba-
tion theory (Martinelli and Zhang, 1983, 1983b; Meyer
and Smith, 1983; Groot et al. , 1984; Martinelli, 1984),
which is unreliable in the intermediate coupling constant
range. [Examples of the failure of low-order perturbation
theory are given by K„—see Eq. (3.21)—and by the
"overshooting" of asymptotic smling according to Eq.
(3.20).j

The mlculation of two-point current amplitudes from
Eq. (3.22) requires the quark-propagator combinations de-
picted in Fig. 5. This is somewhat more difficult than the
combination in Fig. 1 for the local currents, because the
quark propagator has to be evaluated from two neighbor-
ing initial points. (For a first attempt see Ali and
Montvay, 1983.)

Another way to calculate q =0 matrix elements (like
nucleon magnetic moments; see Bernard et al. , 1982;
Martinelli, Parisi, et al. , 1982) is to introduce an ap-
propriate external classical field in the fermion part of the

G. Outlook

In conclusion, the status of quenched lattice calcula-
tions can be considered as satisfactory. The quality of the
present results corresponds reasonably to the invested ef-
fort. It is quite clear, however, that further improvement
is both necessary and possible. Since the quenched calcu-
lation is, technically speaking, a part of the final task
with dynamical quarks, high-standard quenched calcula-
tions are absolutely necessary. An example of a nice
"two-star" quenched calculation of the hadron spectrum
would be to take a 12 &&24 lattice at p=5.7, an 18 &&36
lattice at p= 5.8, or a 24 )(, 48 lattice at p= 6.0 with
several thousand quark propagators per quark mass. The
corresponding hopping expansion mlculations would be
48th order on a 12 gauge field at p=5.7, etc. In this case
the optimal iteration for the quark propagators is presum-
ably on a periodic spatial box, with copied gauge field in
the time direction. In such calculations finite size effects
would probably be very small (in the range of a percent)
and the statistics would be enough to have a good accura-
cy for light quark masses (perhaps 0.03—0.05 in lattice
units).

IV. DYNAMICAL QUARKS

A. General formulas

As discussed at the beginning of the previous section,
the quark part S~ff of the effective gauge field action in
Eq. (2.12) describes the effect of closed virtual quark
loops on the gauge field dynamics. The resulting interac-
tion is inherently nonlocal, even if the original fermion
action (before the integration over the anticommuting fer-
mion variables) was local. This nonlocality is the reason
why it is so difficult to include dynamical quarks in the
numerical mlculations.

In the updating procedure the change of the action is
always needed for a given change of a link variable
U(x,p). From Eqs. (2.12) and (3.5) it follows that

FICi. 6. Quark propagator configurations needed for nonlepton-
ic decay matrix elements. The points connected by a dotted line
are at the same site.

1 —KM(U')
b, S~ff =Shirr( U') —S~rr( U) = —ln det

Introducing the notations

(4.1)
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M U'
D —= = [1 K—M( U)] 'bM,

1 K—M(U)

bM„,„,= g (r +y„)bU(xp)6„

b, U(x,p)—:U'(x, p) U(x—,p),

(4.2)

quark determinant det(1 —KM) can, in principle, also be
considered as a part of the gauge-field-dependent quantity
to be evaluated with the pure gauge statistical distribution
dU exp[ —Ss(U)]. Denoting such pure gauge field aver-
ages by ( )p, we can write the expectation value (F) in
Eq. (2.11), for instance, as

one obtains

AS~~r = —ln det(1 KD)—= —Tr ln(1 —KD)
(Fe ")pF
( eff)

(4.4)

" x~
Tr(D~) .

J

These formulas are actually valid for a single quark flavor
with hopping parameter K. In the many-flavor case the
Wilson fermion action is block diagonal in flavor, so
AS,ff is a sum over flavors with different hopping param-
eters K~K~ ( q =u, d, s, . . . ).

In expectation values as Eqs. (2.11) and (2.13), the

According to this formula one has to perform the Monte
Carlo updating with the simple gauge field action Sg( U),
and then calculate S,ff on the given gauge configurations.
We shall see below that such a procedure is impractical
for small quark masses, but for theoretical understanding
it could still be useful. In particular, if the quark part of
the effective action S~rr can be considered small, one has
the expansion (Joos and Montvay, 1983)

(F)=&F)p—[(ScrrF&p —&Scrr&p(F&p]+ 2 &S&rr F&p —&S&rr &p&F&p

—2[&S.'ff )o&S.'ffF)o+2(S.'ff )o'(F & ]+ (4.5)

5F:F—(F)p, 5—Sgff =Sgff (S,ff)p (4.6)

one has

Here, on the right-hand side, only the fluctuations of S,ff
matter; that is, with

change in the physics (i.e., in mass ratios, etc.) is accom-
panied by a rather inconvenient shift in the scale. The
shift in bare parameters can be seen already in the
lowest-order approximations to S,ff. According to Eq.
(3.17) we have

&F) = &F).—(SS'„,nF &,+-,' ((~S&„)'~F),+

(4.7)

eff
~Sq l&

This shows how the nonlocality of S,ff reflects the phys-
ics; although S,ff extends over the whole lattice, in expec-
tation values only its correlated fluctuations matter; there-
fore the nonlocality of S,ff is practically restricted to re-
gions in which correlations are actually produced by vir-
tual quark propagation. In Eq. (4.7) (F)p corresponds to
the quenched approximation, and the further terms on the
right-hand side represent the corrections to it. The diffi-
culty in the application of Eq. (4.4) or (4.7) to the calcula-
tion of unquenched averages lies in the fact that, in a
gauge configuration ensemble produced by the pure gauge
action, the fluctuations of S,ff are very large for light
quarks. As an example, this is shown in Fig. 7 for the
SU(2) gauge group on a 10 lattice with N~= 1 flavors.
Therefore, Eqs. (4.4) and (4.7) can be applied in practice
only for heavy quarks. In the above example the meson
masses could be determined only for dynamical quark
masses amq =(2K&) —(2K, ) &0.2 (roughly 200 MeV
in physical units; Montvay, 1983).

Another way to represent the difficulty of numerical
calculations with dynamical fermions is to recall the ex-
pectation that the bulk part of the quark determinant is
needed just to produce the required renormalization of
bare parameters. This means that a relatively small

10-

030 16

-10—

FIG. 7. The dependence of the fermion part of effective action
S,ff (the average subtracted: 5S,qt=S,qr

—(S,n )p) on the hop-
ping parameter K, for 20 different gauge configurations {Joos
and Montvay, 1983). The color group is SU(2) at P=2.3 and

%f—1 flavor is taken.
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Oo +J OO

S~rf —g Tr(Mj) —= g S,ffj' .
j=i J j=l

(4.8)

Let us now consider only the Wilson parameter value
I

r = 1. In this case Eq. (3.18) implies that the first nonvan-
ishing term is S~rr ' (and only even values of the index j
contribute). It can be easily shown that the first two non-
vanishing terms look like

S ff ——16K Ny g ReTrU = —4K Nj' g g g ReTrU&„
Cl x p&0 v~+p

K
x p&Oval

' '
vg

S,g ——S,g +S,gq q(4) q(6)

(4.9)

Here NJ degenerate flavors are taken and 2 is a positively oriented plaquette, also denoted in the second form of S~tr ' by
(pv). In the 6th-order term the factor T~„, . . .

~
is the Dirac trace given by

—32 for (pv) vg)=

?~ ~

—. —16 for (pv&. v5)=
I(pv& ~ ~ ~ v5)

~~
i~ I—16 for (Ij,v, . v, )=

(4.10)

As is shown by Eq. (4.9), the 4th-order term corresponds
to a shift

613=16N, NOMIC (4.11)

in the coefficient I3=2N, g of the one-plaquette gauge
action. Since hP is positive, the lattice spacing is de-
creased by S~rr ' (and also by the whole S~rf). The
lowest-order terms in Eq. (4.9) show how, by the applica-
tion of Eq. (3.18), the quark part of the effective action
can be decomposed into a sum over closed Wilson loops
multiplied by some Dirac trace and combinatoric factors.
Since the mean values of more complicated Wilson loops
are correlated to the single-plaquette expectatipn value, it
is not very surprising that the mean value of S,rr can be
approximated quite well by (Joos and Montvay, 1983)

the "pseudofermion method" of Fucito, Marinari, Parisi,
and Rebbi (1981) this is done by introducing a complex
scalar "pseudofermion" field cp, having the same number
of components as the anticommuting quark field g . The
quark propagator matrix elements are obtained by run-
ning a separate Monte Carlo calculation for the pseudo-
fermion field over a fixed gauge field configuration. The
action of the pseudofermions is given by the matrix

n =g+g—=1 LCM ~M++—X'M+M (4.14)

detg =v'detQ . (4.15)

This is positive definite, as required for a Monte Carlo
calculation, and, due to Eq. (2.4), its determinant is relat-
ed to the quark determinant by

S.tr= Set(%+8'~~ ) .8') )
(4.12)

The matrix elements of the quark propagator can be ob-
tained as

Here 8'&& is the single-plaquette expectation value and
S,'g (IC) is the free-quark effective action [see Eq. (2.8) for
the derivationj

f~lI ~%%'i~(QV')jexp( 0'k &kjA)—
(4.16)f~g ~+exp( gk IIkjgj)—

S',g(K)= 2N, Ny+ln —1 2Kr g cos—k&
k p&0

+4' g sin kz
p&0

(4.13)

Since the quark matrix in Eq. (2.3) has only nearest-
neighbor matrix elements, the pseudofermion action Q ex-
tends up to next nearest neighbors. In the pseudofermion
Monte Carlo it is convenient to introduce the auxiliary
field (Hamber et al. , 1983a)

The approximation formula (4.12) works well only for the
average; the fluctuations of S,tr are, unfortunately, not
properly reproduced.

B. Pseudofeermion method

~l. —Qlj V j
With X Eq. (4.16) can be written as

f~%' ~% exp( —&j &k)p. &,.
~ ~

f dlp+dlp exp( —Xk X~)

(4.17)

(4.18)

For gauge field updating with dynamical fermions, ac-
cording to Eqs. (4.1)—(4.3), matrix elements of the quark
propagator Q '=(1—KM) ' have to be calculated. In

In principle, the pseudofermion Monte Carlo has to be
run after every change of a single link. This would cost,
however, an enormous amount of time; therefore the ma-
trix elements Q,j

' are usually kept for a full sweep over
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276 I. Montvay: Numerical calculation of hadron masses

the gauge variables and then evaluated again. This im-
plies some violation of the detailed balance condition for
the Markov process of Monte Carlo integration. Another
approximation usually introduced in the pseudofermion
method is, in the expansion (4.3), to take only the lowest-
order term with j=1. Since D is proportional to the
change AU of the link variable, this is a good approxima-
tion for small changes AU~0.

The pseudofermion method was tested first in the two-
dimensional Schwinger model (Marinari et al. , 1981b;
Burkitt et al. , 1983; Otto and Randeira, 1983). First
studies in QCD were carried out on small (2" and 4 ) lat-
tices (Azcoiti and Nakamura, 1983; Bhanot et al. , 1983;
Otto, 1984). Some results for the plaquette expectation
value and (Pg) were obtained on an 8 lattice by Hamber
et al. (1983b) with Kogut-Susskind fermions. We have
seen in the previous section that, at least in the quenched
approximation, good results for the hadron spectrum can
be achieved on an 8 lattice copied at least twice in the
time direction for the quark propagator calculation. Such
a lattice size is not yet achieved in pseudofermion calcula-
tions of the hadron spectrum, but some studies on 4"
(Azcoiti et al. , 198S) or four-times copied 4 (Hamber,
198S) lattices have been performed with Xl = 3 light Wil-
son quarks.

C. Iterative hopping expansion method

The matrix elements of the quark propagator required
for gauge field updating with dynamical fermions can
also be- directly evaluated in a hopping parameter expan-
sion. The change in the quark part of the effective action
is given in Eq. (4.3) by the matrix D, which has the de-
tailed structure

D11 D12

D» ——(1—KM) „-(r +y„)b U(x, p, ),
D, 2 =(1 KM)„„'(r——y~)EU(x, p)+,

D~, =(1—KM) ' - -(r+y„)b«(x, lj, ),
D22 ——(1 KM)„'„- (r y—„)AU(x,p, )+ .—

(4.19)

1=4,6, . . .
(4.20)

D22 —— g KM(U) - (1—yp)b, U(x, p)+ .
1=3,5, . . .

In what follows only the case r= I will be considered. In
this case the nonzero contributions in the hopping expan-
sion look like

D)) —— g K'M ( U) -(1+y„)b, U(x,p),
1=3,S, . . .

D)2= g K'M(U)„'„(1 y„)b,U(x,p)+, —

The "periodic box iteration" of the hopping parameter
series (Hasenfratz and Montvay, 1983, 1984) was adopted
for unquenched updating by Montvay (1984). To speed
up the code for the evaluation of the required matrix ele-
ments M( U) in Eq. (4.20), a useful observation is that it
is enough to compute only for half of the initial spin in-
dex values. In the Dirac matrix representation given by
Eq. (2.18) this is trivial on links in the direction @=4,
since (1+y4) is nonzero for only half of the index values.
For the other directions one can use, for instance,
k= 1,2,3,

1+/4 1 —y4(I+&k) =(1+1'k) )'k (4.21)

This shows how the two lower components of, say,
M(U) -(1+@k)can be expressed by the upper two.

X,X +k
The average relative weight of the different orders of

the hopping parameter series in Eq. (4.20) is shown in
Table IV for some representative cases. It can be seen
that the hopping expansion converges, on the average,
reasonably well within 16th order. At 16th-order calcula-
tion would, however, still take too much time. Calcula-
tions have actually been performed (Langguth and
Montvay, 1984; Montvay, 1984)—on every link —to 8th
or 12th order. This still takes a lot of time: one sweep on
the 8 lattice (Langguth and Montvay, 1984) took -40
min in 8th order and -240 min in 12th order on the
CYBER 205 at Karlsruhe University. It is very impor-
tant to keep in mind that it is possible to correct, at least
in the average, for the omitted higher orders. This is due
to the fact that the higher-order coefficients are strongly
correlated to the lower ones. Such a correlation is already
suggested by the approximate validity of Eq. (4.12). Us-
ing the correlation allows one to estimate the result of the
l „=16 order series from some lower-order (e.g. ,1,„=8 or l,„=12) calculation. For instance, in the 6
calculation of Montvay (1984), the l,„=16result could
be obtained in the average by multiplying the l „=8
number by a factor A, =1.14. The same factor needed
from I „=12to I „=16was X=1.03. This achieved a
substantial gain in computer time but, of course, in-
creased the error for the quark determinant. Monitoring
the difference from time to time on a few hundred links
revealed that the estimate based on the extrapolation froml,„=8 deviated on the average from the exact 1,„=16
value by —16%%uo. The corresponding average deviation
for I „=12 extrapolated to I „=16 was 5%. The error
in the determinant ratio caused by this extrapolation was
far from being normally distributed. In Inost cases the
deviation was much less than the average, but sometimes
(in a few percent of cases) errors on the order of 100%%uo

also occurred. It seems plausible that the effect of the
few cases in which the error due to the extrapolation from
the lower order to I „=16 is large averages out and does
not influence the updating process in the long run. It is
also possible to improve the extrapolation to higher orders
by a more elaborate use of the covariance matrix between
individual lower- and higher-order expansion coefficients.
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TABLE IV. The average relative magnitude (in percent) of different orders of hopping expansion in
AS,ff. The numbers in the table are obtained from the ratio of the absolute value of a given order divid-
ed by the sum of the absolute values up to 16th order. The first row was obtained on a 6 lattice

'(Montvay, 1984), the last two rows on an 8 lattice (Langguth and Montvay, 1984). In both cases 10 hits
per link were done in the Metropolis updating and Xf——3 degenerate quark flavors were considered.

10 14

P=5.7
K=0.15

44.0 27.9 15.1 3.3 1.5 0.8

K=0.163
35.2 27.9 17.7 9.6 5.8 2.6 1.2

B:
p= 5.3

K=0.168
24.2 23.3 17.0 13.7 10.1 7.7 4.0

First results on the hadron spectrum using the hopping
expansion method in updating with light dynamical
quarks were obtained by Langguth and Montvay (1984)
on an 8" lattice. Xf ——3 degenerate quark flavors were
considered at two points in the (P,p~) plane

point A: P=5.4, p~ =3.0675. . . (K~ =0.163)
(4.22)

point B: P=5.3, pz ——2.9762. . . (K =0.168) .

For comparison, an 8 quenched calculation was per-
formed, too, at P=5.7. Some planar Wilson-loop expec-
tation values are given in Table V for these three cases.
Planar and off-axis elongated %'ilson-loop expectation
values were also measured in order to determine the static
energy E of an external SU(3) color charge pair by

aE(R) = —lim —inW(R, T) .1

T~oo T
(4.23)

Here 8'(R, T) stands for a Wilson loop with length T in
the time direction and Euclidean distance R between the
end points in fixed time slices. On the 8 lattice, T is, of

course, restricted to T & 4 by the periodic boundary con-
ditions, and R has possible values R= 1, W2, v'3, 2, v 5,
v'6, ~8, 3, and v'10 (larger values of R were not con-
sidered because of statistics limitations). The obtained
static energies are shown in Figs. 8(a)—8(c). The expected
screening due to the virtual quark pairs (Joos and
Montvay, 1983) cannot be seen. The static energies with
dynamical quarks are, in fact, remarkably similar to the
quark-antiquark potential in Fig. 8(c). Very probably, the
distance between -the external color charges is not large
enough (R =v'10 corresponds roughly to -0.5 fm, as we
shall see below).

The w, p, p, and 5 masses were determined on the 8"
configurations by 32nd-order (for the baryons 33rd-order)
"copied gauge field" iteration in the hopping parameter.
(See Sec. III.) The results are shown in Figs. 9(a)—9(c) as
a function of the quark mass p=(2K) ' in the quark
propagator. The quenched calculation [Fig. 9(c)] has al-
ready been discussed in Sec. III.D (see Table II). In the
physical points, where the quark mass in the determinant
is equal to the quark mass in the propagator (p, ~ =p), the
unquenched result is

point A: am =0.79+0.01, am& ——0.95+0.01

am& ——1.62+0.02, am ~ ——1.74+0.02;
point 8: am =0.3+0 2, am& ——0.62+0.05,

am~ =0.85+0.15, am~ =1.09+0.15=am&+(0.24+0.09) .

(4.24)

TABLE V. Wilson-loop expectation values WJ =
3 TrCJ in points A and 8 [see Eq. (4.22) for parame-

ters]. The numbers in parentheses are the estimated errors in last numerals. In the last line the
Wilson-loop expectation values on the configurations used for the quenched calculation at p=5.7 are
given.

A

B
1Vf——0
P=5.7 I

0.5298(9)
0.5428( 10)

0.2996( 12)
0.3205( 12)

0.1719(11)
0.1912(13 )

0.1099(10)
0.1295(8)

0.5468( 10) 0.3218( 11 ) 0.1922( 11) 0.1298(8)

0.0428( 8)
0.0546(9)

0.0557(7)

0.0128(7 )

0.0175(9)

0.0186(7)
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aV
J&

I3=5C

Nf =3
K = 0.163 aV

Kq =0.168, gq =2.9762...

0.5—

I I I I I I I I
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1 ~2 1t3 2 f5 1t6 ~8 3 ~)0 r/0
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W2 /3 2 j5 &6 /8 3710 r/a

FIG. 8. The static energy of an external quark-antiquark pair as a function of the lattice distance: (a) /3= 5.4, K~ =0.163 with Nf = 3
degenerate flavors (point A in Langguth and Montvay, 1984). (b) P=5.3, IC~ =0.168 (point 8 in Langguth and Montvay, 1984). (c)
P=5.7 in the pure gluon theory The gau.ge configurations are those in the quenched calculation of Langguth and Montvay (1984).

It can be seen that point 8 is quite close to the critical
line p„(P), where the pion mass (as well as the quark
mass) vanishes (see Fig. 10). This is the reason for the
deterioration of convergence for AS~rr, as shown by the
last line of Table IV, and it implies an unknown systemat-
ic error in point 8. Taking (p~ —p„)=0.06 in point 3
and (pz —p„)=0.01 in point B as an estimate of quark
mass in lattice units, and using Eqs. (5.15)—(5.17), one ob-

tains for the renormalization-group invariant quark mass
M& and lattice spacing a

point 3: M~=170 MeV, a=0.87 GeV

point B: M~=30 MeV, a=0.76 Q-eV
(4.25)

[These numbers are different in Langguth and Montvay
(1984), because there Eq. (5.16) with c=1 was taken. The
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am

N) =3

l3 = 5.4,

Kq -"0.163 jj,q»- 3.0675 ...

Qm
i' t

Nf =3
0 =53

Kq 0 168 gq 2 9762"~

2.0—

1.5—

10—
1.0—

0.5—
0.5

2.9 3.0
I

3.1 32 3.3

2.9 3.0 3.2

am

2.0—

c. I

2.9 3.0
I

3.1 3.2 3.3

F&G. 9. Hadron tnasses as a function of quark-mass. parameter in the quark propagator p=(2&) '. (a) I3=5.4, lt. =0.163 with

Nf =3 degenerate flavors (point A in Langguth and Montvay, 1984); (b) 13=5.3, If~=0.168 (point 8 in Langguth and Montvay,
1984); (c) quenched approximation for 13=5.7 (Langguth and Montvay, 1984).

estimate for c in Eq. (5.17) is probably closer to reality. ]
Assuming the validity of asymptotic 'scaling (with zero
quark mass) in point B, the obtained value of the A pa-
rameter is A&„(Xf—3)=1.7 MeV. This corresponds
(Kawai et al. , 1981;Weisz, 1981) to A '

~
—180 MeV. Of

course, the question of asymptotic scaling (or scaling in

general) cannot be decided on the basis of only two points
in the (P,p~) plane. Some evidence that both points 3
and B are within the scaling region comes, however, from
the fact that rotation symmetry is well satisfied for the
static energies shown by Figs. 8(a) and 8(b).

A direct comparison of the results in Eq. (4.24) with
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Pq-4

$lq= 3

FIG. 10. Tentative shape of the scaling region in the (P,p~)
plane with Xf——3 degenerate %'ilson Aavors. Scaling could be
valid for purely gluonic quantities to the right of the line {SG),
for all quantities to the right of the line (SQ). The critical line
with zero quark mass is p„(13), its perturbative one-loop ap-
proximation is the dashed line. The curves p~ belong to con-
stant RGI quark masses {"constant physics"). The position of
the two points 3 and 8 measured in Langguth and Montvay
(1984) is al;- shown.

(5.1)

Here and in what follows it will be assumed, for simplici-
ty, that the different quark flavors are degenerate in mass.
The expansion of the renormalization-group functions is

r(g)=re +wig + '
(5.2)

two-loop perturbative I3 function) is not yet reached in the
intermediate coupling range, where most of the Monte
Carlo calculations of physical quantities are performed.
There is, however, an important region where dimension-
less ratios of physical quantities are, to a good approxima-
tion, independent from the bare coupling. In this "scaling
region, " physics is dictated by the continuum theory, and
the change of the lattice scale is given by some general
nonperturbative P function. In order to perform an op-
I.imal numerical calculation, a precise knowledge of the
scaling region and of the P function is very important.

In the case of a lattice gauge theory with dynamical
fermions, a similar situation is to be expected. The addi-
tional complication In this case Is, howevel, that the scal-
ing properties depend on two parameters: not only on the
gauge coupling, but also on the dynamical quark Inass.
Before discussing the quark mass dependence of the lat-
tice renormalization scheme, let us first briefly summarize
some facts about the renormalization-group equation
(RGE) with quarks.

In a mass-independent renormalization scheme (for a
review, see Peterman, 1979) the RGE for a physical quan-
tity I'(p, g, m) depending on the renormalization-point
mass parameter p, the renormalized coupling g, and
renormalized-quark mass m, is

the quenched masses in Table II is difficult because of the
different quark mass dependences and because of the shiA
in scale. In spite of this, one can see already in point 2,
with quark mass Mq —170 MeV, that the p/p mass ratio
is decreased if one compares similar values of (p —p„) in
Figs. 9(a) and 9(c). The pip ratio in point 8 with

Mq 30 MeV is mz/mz 1.35, considerably lower than
in the quenched case. The error is, however, still some-
what large to draw a definite conclusion.

V. SCALING WITH DYNAMICAL FERMIONS

Detailed study of scaling properties in pure gauge
theory has shown [for SU(2) see Gutbrod and Montvay,
1984; Mackenzie, 1984; Patel et aI., 1984; for SU(3) see
Gupta et al. , 1984; Hasenfratz et al. , 1984a; Bowler
et al. , 1985] that asymptotic scaling (corresponding to the

I

In QCD with SU(X, ) color and Wf flavors we have

1

(4m )

11'
3

22Vf

3

34&c 132Vc
f (5.3)

J

(4m)'

These are the universal expansion coefficients. All other
coefficients depend on the renormalization scheme (lattice
action, etc.).

The two standard solutions of the RGE (the so-called
standard "renormalization-group invariants") are the A
parameter and the renormalization-group invariant (RGI)
quark mass M:

pq /2po —I /2pog g 1 — 1 1

A=@(Pog ) ' 'e exp — dx
x Pox ~ g~

(5.4)
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(The normalization of M here follows that of Gasser and
Leutwyler, 1982.) Every physical quantity is a function
of A and M only; therefore the "curves of constant phys-
ics" in the (p,g, m) space are parametrized by
M, A=const. Using the freedom of finite renormaliza-
tions, it is possible to introduce new renormalized param-
eters by

g =gZ)(g, A, ), p —=p, m =mZ2(g, A, ), (5.5)

where A, =M/A is a dimensionless measure of the RGI
quark mass, and the functions ZJ (j=1,2) are assumed to
have the small-g expansion

Z~ (g, A, ) = 1+aj (A, )g + (5.6)

Introducing the dimensionless variable l =m'/p, for the
renormalized-quark mass, one obtains from Eq. (5.1) the
new RGB

+Ps(g l)
~

+P (g
Bp g '

Bg

BZi
P, (g', l)= /3(g) Z~+g

Bg

The new renormalization-group functions are related to
the old ones by

1
afpzq =

2 q

1
=Pq —Vcr ~

cr
(5.10)

In the case of Kogut-Susskind fermions the critical (zero)
quark mass is not renormalized, so this step is not neces-
sary.

The next step, for any fermion formulation, is to find
the lines where the hadron mass ratios are constant.
These are the "lines of constant physics" where the RGI
quark mass is constant. Of course, scaling for finite lat-
tice spacing is always somewhat broken by lattice ar-
tifacts; therefore "constancy" always means within given
errors and within a given class of hadron masses. To fix
the renormalization scheme completely, it is reasonable to
assume that the value of hadron masses (or equivalently,
of a singled-out hadron mass) is constant along the "lines
of constant physics. " Furthermore, if one is free to define
the value of, say the proton mass for quark mass values
different from the physical case, one can arrange that the
value of the A parameter be independent from the RGI
quark mass. [See Eq. (5.9).] By this approach, the value
of the lattice spacing a is fixed everywhere in the "scaling
region" where the "lines of constant physics" can be de-
fined at all. Since there seems to be no reason why this
convention should define a quark-mass-independent
scheme, the RGB on the lattice has a quark-mass-
dependent form corresponding to Eq. (5.7):

() lnZ2
P}(g',l) = —l 1+y(g) —P(g)

Bg . s =g[s' ~]
(5.8) —a +pg(g, pq) +p„(g /Jq) P =O(a) .

8

p(g)=ly(g) .
p

It can also be shown that the new and old RGI's are relat-
ed by

A'=A exp
ai(A, ) M'=M . (5.9)

Using the lattice as a perturbative renormalization
scheme, the simplest convention is to keep the mass-
independent scheme corresponding to Eq. (5.1). This was,
in fact, done in previous work on the RGI quark mass
(Gonzalez-Arroyo et al. , 1982; Hamber and Wu, 1983;
Gockeler, 1984; Golterman and Smit, 1984a, 1984b). In
the nonperturbative region, however, where the numerical
calculations are done, it is more convenient to define the
renormalization scheme by the hadron masses. In the
case of Wilson fermions one has to find first the critical
line p„(p) in the (p,p~) plane [with p=2X,g for the
gauge coupling, as usual, and p, ~

—= (2K~) ', where IC~ is
the hopping parameter of the dynamical quarks]. In per-
turbation theory this is equivalent to canceling the linear
divergences in the quark self-energy. In general, p„(/3) is
the line where the lowest 0 mass and the (bare, renor-
malized, and RGI) quark mass vanish. Having the value
of the critical hopping parameter K„=(2p„) ', one can
define the bare quark mass parameter m& (in lattice units)
by

(5.11)

Here the right-hand side represents the scale-breaking lat-
tice artifacts, which in the continuum limit a —+0 tend to
zero at least as fast as (some power of} the lattice spacing.

The "lines of constant physics" @~=@~(g) are deter-
mined by the differential equation

dp~(g) p„(g,p, )

dg pg(g, p~)
(5.12)

The different values of the RGI quark mass belong to
solutions with different initial conditions. Defining the
single variable p function for a given RGI quark mass by

p, (g) —=p~(g, p, (g)), (5.13)

we obtain the single variable RGB for this quark mass,
r

—a +p~(g) p =O(a) .
Ba ' Bg

(5.14)

The quark mass dependence of the p function p~(g) is as-
sumed to appear only in the higher-order nonuniversal ex-
pansion coefficients pz, y~, . . . [see Eq. (5.2)]. Hence for
g ~0 (p~ ao ) the quark mass dependence disappears and
the renormalization scheme becomes indistinguishable
from the mass-independent scheme of lattice perturbation
theory. This (perturbative) mass-independent regime is,
however, presumably very difficult to reach by numerical
hadron mass calculations.
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aMq —c (P)(pq —p„)=c (P)amq

with some function c (p). Having nothing better, one can
take for c (p) the perturbative expression (Gonzalez-
Arroyo et a/. , 1982; Hamber and Wu 1983; Gockeler,
1984; Golterman and Smit, 1984a, 1984b) at some arbi-
trarily fixed coupling P(g )

c(P)=(2Pog ) (5.17)

The numerical value here corresponds to Xf——3 and
P=5.4 in SU(3).

An important question to ask at this point is what the
scaling region might look like in the available part of the
(P,pq) plane. For pq~ oo the quark mass tends to infini-

ty and the theory reduces to a pure gauge theory. In this
case the gluonic quantities (such as string tension, glueball
masses, gluonic energy density in thermodynamics, etc.)

show approximate scaling for p) 5.7. In the region of
light quark masses the results of a recent calculation
(Langguth and Montvay, 1984) indicate that a tentative
shape of the scaling region for light dynamical quarks
could look something like that shown in Fig. 10. Note
the difference between the scaling regions of pure gluonic
quantities and those of quantities containing heavy quarks
explicitly (such as heavy-quark bound-state masses, quark
energy density in thermodynamics, etc.).

VI. SHORT GUII3E TO THE MOST RECENT

LITERATURE

These lecture notes were completed in joecember 1984.
Since then several important steps have been taken on the
way to our final goal, a reliable numerical calculation of
the hadron masses in lattice @CD. Here I shall try to
give a short overview of the most recent literature on a
few selected topics. I hope this short guide will be useful
even if the content of the papers is not discussed in detail.

Quenched hadron mass calculations. Considerable ef-
fort was recently invested in increasing the lattice size and
statistics of the quenched calculations. The gauge cou-
pling and the bare quark mass were pushed toward small-

Since the perturbative regime is presently out of range,
in thc intcImediatc coupling some pragmatic definition of
the quark mass can be very useful. A possibility (Lang-
guth and Montvay, 1984) is to introduce the RGI quark
mass (Mq ) by the lowest vector-meson mass m,

m, =2Mq+E(Mq) .

For heavy quarks (like c, b, or t) E(Mq) can be taken, to
a good approximation, from the Schrodinger equation, as-
suming some quark-antiquark potentia1. For light quarks
( u, d, and s) we can take, as an empirical value,
E (Mq )=0.75 GeV, which agrees well with the p- and @-
meson mass. In order to fix the lattice scale, in addition
to Eq. (5.15) still another relation is needed. Near the
critical line p„, where the RGI quark mass is sma11, one
can assume

er values. In the computation of Barkai et al. (1985), the
lattice size was 16 )&32 and Kogut-Susskind quarks were
considered at P=6.0 and amq)0. 01. The WuPPertal
group collected several hundreds of quark propagators on
16 &&28 and 16 &56 lattices using the approximate block
diagonalization method (Konig et al. , 1984; Miitter and
Schilling, 1984a, 1984b; Konig, Mutter, and Schilling,
1985; Konig, Mutter, Schilling, and Smit, 1985). A
quenched calculation was also performed by using a
renormalization-group improved SU(3) gauge action with
Wilson quarks on 16 &(32 and 12 &&24 lattices (Itoh
et al. , 1986).

Flavor interpretation of Xogut Sussk-ind fermions. In
the case of Kogut-Susskind ("staggered") fermions the
projection to a single Dirac fermion species can be defined
in momentum space (Sharatchandra et al. , 1981) or local-
ly in coordinate space (Gliozzi, 1982; Kluberg-Stern
et al. , 1983; see also Kitazoe et al. , 1978). In order to
construct appropriate local hadron operators, one must
first classify lattice operators according to the irreducible
representations of the full lattice symmetry group of the
staggered fermions (Golterman and Smit, 1984a, 1984b,
1985; Morel and Rodrigues, 1984; Parisi and Cheng,
1984; Golterman, 1986; Joos, 1986). Next one would like
to know how these representations are imbedded in the
representations of the continuum symmetry and whether
the symmetries broken by the lattice regularization are re-
stored at all in the continuum limit. In this respect re-
markable progress was made recently by Jolicoeur et al.
(1986), who were able to give the explicit connection be-
tween the momentum-space and coordinate-space flavor
definitions and to support the correct flavor interpretation
in the continuum by detailed calculations in the Gross-
Neveu model.

Dynamica/ quark methods. The main research area in
numerical @CD calculations recently has been the study
and improvement of the numerical methods for dynami-
cal fermions. A comparative study of different algo-
rithms (Weingarten, 1985) showed that the asymptotic
growth of the required CPU time for a large number of
lattice points (K) and small quark masses ( mq ) is expect-
ed to be proportiona1 to X"/fpzq for the Metropolis algo-
rithm proposed by Weingarten and Petcher (1981). For
the pseudofermion algorithm, the same estimate gave
X /rnq, although with a larger proportionality factor.
The estimated total number of arithmetic operations
necessary for a reliable computation of hadron masses is,
according to this paper, almost prohibitively large
( —10's). A very large number of arithmetic operations
seems necessary also for the iterative hopping parameter
algorithm if very light quarks (like the physical u and d
quarks) are dynamically included (Montvay, 1985).

In addition to Monte Carlo updating, different algo-
rithms based on differential equations have been tested
and developed. In the framework of stochastic quantiza-
tion (Parisi and Wu, 1981), the updating of the field con-
figurations can be performed by the Langevin stochastic
differential equations (Drummond et al. , 1983; Guha and
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Lee, 1983; Halpern, 1983; Hamber and Heller, 1984). The
Langevin method has been tested and further developed in
the case of gauge theories with fermions in several papers
(Batrouni et al. , 1985; Ukawa and Fukugita, 1985;.Ba-
trouni, 1986; Kronfeld, 1986; Martin et al. , 1986). The
advantage of this method is its flexibility in allowing for
specific improvements, for instance, in order to fight crit-
ical slowing down (Batrouni et al. , 1985). It is also possi-
ble to combine the Langevin algorithm with the micro-
canonical (or "molecular dynamics") equations (Duane,
1985; Duane and Kogut, :1985). Such a hybrid algorithm
is able to combine the advantages of both methods: ergo-
dicity (from Langevin) and relatively large step size (from
molecular dynamics). Large-scale calculations with the
hybrid algorithm showed that there is a sharp crossover
between strong coupling behavior and approximate
asymptotic' scaling (Kogut, 1986a, 1986b). Similar con-
clusions were obtained with the pseudofermion method
(Gavai and Karsch, 1986).

The pseudofermion algorithm has received a lot of at-
tention. Its comparison with an "exact" algorithm on a
4 lattice showed a quantitatively good agreement (Gavai
and Goksch, 1986). After such encouraging experiences
several groups have begun larger hadron spectrum calcu-
lations with Kogut-Susskind fermions using the pseudo-
fermion method. In the simpler case of SU(2) gauge
fields, Laermann et al. (1986b) obtained reasonable meson
masses on an 8 X 16 lattice for 13 between 1.85 and 1.95
and amq ——0.035—0.20. This group also observed the ex-
pected screening of the interquark potential on the same
size lattice for P=1.85—2.5 and am~ =0.05—0.20 (Laer-
mann et al. , 1986a). In the physical case of an SU(3)
gauge field, Fucito et al. (1986) calculated the hadron
masses on 12 &8 lattices triplicated to 12 &24 for the
propagator calculation. At P=5.4 and am& between
0.1—0.02 their statistics is still not very large, but the first
results look promising.
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