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This is a pedagogical review of some aspects of quantum field theories in the limit in which the number of
internal degrees of freedom is large. The focus is on large-N QCD. The authors briefly discuss several
well-known approaches to a solution of the N = limit: loop equations, classical actions, and master
fields. Eguchi-Kawai models are discussed in detail, and some recently obtained numerical results are re-

viewed.
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I. INTRODUCTION

Most interesting quantum field theories and statistical
systems contain internal-symmetry groups. In many
cases the number of internal degrees of freedom may be
regarded as a free parameter. In the limit in which N,
which is some measure of the number of internal degrees
-of freedom, becomes large, the dynamics of such theories
very often simplify. One could then develop a systematic
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approximation scheme by studying the N = « limit and
then considering finite-N corrections—leading to an ex-
pansion in powers of 1/N. This “large-N approxima-
tion” has provided a valuable framework for studying
several models. Frequently, the zero-order approximation
(i.e., at N = o) is fairly close to the real finite- N theory,
even when N is small.

In the context of particle physics the 1/N expansion
was introduced by ’t Hooft (1974), who proposed a gen-
eralization of the standard SU(3) gauge symmetry of
QCD to SU(N) and an expansion in powers of 1/N. In
fact, 1/N is the only known free parameter in QCD (Wit-
ten, 1979a). We consider an SU(N) gauge theory coupled
to Ny flavors of quarks in the fundamental representa-
tion, described by the Lagrangian

=é2—Tr(FMF‘“')+1,—b(x)D1/J(x) : (1.1)
F

wv is the standard non-Abelian gauge field, and ¥(x)
denotes the quark field. ’t Hooft considered the limit

N—o with Ny,g’N = fixed . (1.2)

The dominant Feynman graphs in this limit can be classi-
fied according to simple topological considerations
(’t Hooft, 1974; Witten, 1979a; Coleman, 1982). This al-
lows one to study meson phenomenology at N = co—
which turns out to be remarkably similar to that in the
real world.

In the real world N =3, and it may be argued that + is
not a terribly small number. However, the true expansion
parameter in the large- N expansion is probably not sim-
ply 1/N, but a/N, where « is some number. It is certain-
ly possible that « is in fact very small—in that case the
large- N approximation is reliable. A similar situation
occurs in QED. Here the coupling constant e is about
0.3—certainly not too small. But the real expansion pa-
rameter in QED is e%/4r, which is certainly small
enough to ensure the reliability of the perturbation expan-
sion (Witten, 1979a). In QCD we do not know yet how
small «a is, but the qualitative success of large-N meson
phenomenology certainly indicates that « is small.

Veneziano (1976) has proposed a different large- N limit
for QCD. This is defined by

Ny 2 .
N—>woNs— o, —]V,g N,g°Ny= fixed .
Copyright ©1987 The American Physical Society 235
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The Veneziano limit provides a better explanation of cer-
tain aspects of low-energy phenomenology. The 't Hooft
limit is, however, much simpler and has been studied in
much more detail. In this paper we shall almost ex-
clusively deal with the *t Hooft limit.

Over the past ten years there has been vigorous activity
in the field of -large-N expansions—both for four-
dimensional QCD and for other two-dimensional models.
Several classes of models can be solved exactly in the
N = oo limit, leading to valuable physical insights (for a
review, see Coleman, 1982). More recently, following the
work of Eguchi and Kawai (1982), it has become clear
that at N = 0, field theories become equivalent to matrix
models living at a single point. The advent of these ‘“re-
duced models” (or Eguchi-Kawai models) has raised new
hopes for a quantitative understanding of the N = o lim-
it of theories like QCD. In particular, large-N theories
are now amenable to numerical simulations, which are
providing interesting nonperturbative information.

In this paper we shall present an overview of some as-
pects of the large-N limit. This is not intended to be a
comprehensive review of the subject; rather we shall con-
centrate on a few specific topics. We shall mostly talk
about large- N QCD, but several other models will also be
discussed mainly for illustrative purposes. Our main
focus will be on Eguchi-Kawai models, and we shall pay
more attention to those aspects of large-N formalism
which are necessary for an understanding of these models.

In Sec. II we briefly discuss several phenomenological
aspects of large-N QCD: mesons, baryons, and the 7’
problem. Most of the discussion consists of statements of
results without proofs—detailed reviews on the subject al-
ready exist in the literature (Coleman, 1982).

In Sec. III we discuss more theoretical aspects of the
large-N limit. Factorization and its consequences are ex-
plored. These include loop equations, saddle-point
methods, and master fields. We derive the loop equations
for the lattice gauge theory. The discussion of saddle-
point methods and classical Hamiltonians is brief. Once
again, these topics are covered in other review articles
(Yaffe, 1982).

In Sec. IV we introduce Eguchi-Kawai models and
quenched Eguchi-Kawai (QEK) models. The perturba-
tion expansion of QEK models and their equivalences
with field theories are discussed.

In Sec. V we discuss the twisted Eguchi-Kawai (TEK)
models.

In Sec. VI we summarize some of the numerical results
obtained with QEK and TEK models.

Il. HADRON PHENOMENOLOGY

Perhaps the most immediate appeal of the large-N ex-
pansion lies in the fact that the phenomenology of QCD
in the N = o0 limit is remarkably similar to that of the
real world. The dominant Feynman graphs at N = o
may be classified by simply counting the powers of N ('t
Hooft, 1974; Veneziano, 1976; Witten, 1979a). For exam-
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ple, the graphs that contribute to the connected part of an
n-point function of fermionic currents are all O(N) and
have the following properties:

(1) They are planar.

(2) There are no internal fermion loops.

(3) All current insertions are on a single fermion loop
that forms the boundary of the graph.

Similarly the graphs contributing to connected Green’s
functions of gauge-invariant operators constructed out of
gauge fields alone are O(N?) and (1) are planar and (2)
contain no fermion loops. In general, each fermion loop
costs a factor of 1/N, while each nonplanar crossing is
suppressed by 1/N2.

Assuming that the N =« theory confines, so that
propagating states are color singlets, it is now possible to
study properties of hadrons. This is done by applying the
above rules and analyzing the intermediate states that
contribute to the various n-point functions. A detailed
discussion may be found in the papers of Witten (1979a)
and Coleman (1982). We shall simply quote the relevant
results. )

(a) Mesons. The properties of mesons at large N are
qualitatively consistent with those in the real world.

(1) Mesons are stable: their decay amplitudes are
O(1/V'N). _

(2) Mesons are noninteracting: scattering amplitudes
are O (1/N).

(3) Meson masses are finite, i.e., they are O (1).

(4) The number of mesons are infinite.

(5) Exotics are absent.

(6) Zweig’s rule holds. ,

In fact, the 1/N expansion is the only known frame-
work within QCD that provides an explanation for
Zweig’s rule.

(b) Glueballs. A similar analysis of glueball states re-
veals the following.

(1) Glueballs are stable.

(2) Glueballs are noninteracting: a vertex involving !
glueballs is suppressed by O (1/N'~1).

(3) There are infinitely many glueballs.

(4) Glueballs do not mix with mesons: a vertex involv-
ing k mesons and  glueballs is of O (1/N*+k/2—1),

(c) Baryons. Baryons pose a special problem at N = .
This is because a baryon in an SU(N) theory must be
made out of N quarks, while a meson is always made out
of a quark-antiquark pair, irrespective of N. This feature
makes baryons behave in a fashion quite different from
mesons (Witten, 1979a).

(1) Baryon masses are O (V).

(2) The splitting of various excited baryonic states is
o(1).

(3) Baryons interact strongly amongst themselves: the
typical baryon-baryon or baryon-antibaryon vertex is
O (N).

(4) Baryons interact with mesons with O (1) couplings.

The above properties of baryons are remarkably similar
to those of solitons in weakly coupled theories. Consider,
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for example, monopoles in a model with a weak coupling
constant g2. The monopole mass is O (1/g?), but the en-
ergies of excitations around the monopole background are
O(1). The monopole-antimonopole scattering amplitude
is 0(1/g?), while the monopole—electron scattering am-
plitude.is O(1). This led Witten to suggest that baryons
are in some sense solitons of large-N QCD, with N play-
ing the role of 1/g? (Witten, 1979a).

The precise sense in which baryons are solitons was not
clear until recently. Low-energy hadron phenomenology
is well summarized by an effective SU(N;)XSU(Ny)
chiral model, where Ny denotes the number of flavors of
quarks. The effective Lagrangian is given by

Z=r% [ d*% Tr@LUN* V) ,

with possible additions of Wess-Zumino terms to account
for the anomalies (Wess and Zumino, 1971; Witten,
1983a). Now, f,z, is of order N; hence, at large N, ff, can
act as a semiclassical WKB parameter—and the theory
can have solitonic sectors. In fact, it has been known for
a long time (Skyrme, 1961) that the chiral model possesses
topologically stable fermionic solitons—the
“skyrmions”—that can be interpreted as baryons. This
idea has been revived recently (Balachandran et al., 1982;
Witten, 1983b). The static properties of baryons comput-
ed in this framework seem reasonable (Adkins, Nappi,
and Witten, 1983). At present this approach is being vi-
gorously pursued. A different approach, which can, in
principle, also deal with the chiral-symmetry-restored
phase of QCD (at high temperatures), is based on a
Nambu—Jona-Lasinio-type model (Dhar and Wadia,
1984).

(d) The n’' problem. The large-N limit provides in-
teresting insights concerning the U(1) problem. With
three flavors of quarks, the standard Lagrangian of mass-
less QCD has a U(3) X U(3) chiral symmetry at the classi-
cal level. However, the axial symmetries are spontaneous-
ly broken and the corresponding Nambu-Goldstone (NG)
bosons appear as the light pseudoscalar mesons. In nature
one observes eight light pseudoscalars—the s, k’s, and
the 7—instead of nine such mesons expected to arise from
the breaking of axial U(3). The lightest SU(3) singlet
pseudoscalar is the 7', with a mass of about 1 GeV—
much too heavy to be the expected ninth Nambu-
Goldstone boson. The resolution of this problem lies in
the fact that the U(1) axial current has an anomaly. The

corresponding charge is actually not conserved, and hence

there is no ninth NG boson. What then is the 1’?

It might be argued that the " would have been a NG
boson had it not been for the anomaly: the anomaly splits
the ' from r, k, and 7. For this to make any sense there
must exist a limit in which the anomaly turns off. The
N = « limit is precisely such a limit. This is because the
anomaly equation reads

2
s_ 8Ny =
0= S TrE P
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In the limit Ny= fixed, N— o with g2N = fixed, the
right-hand side vanishes.

On the basis of results obtained in other models, Witten
(1979b) argued that in the leading order of the 1/N ex-
pansion the vacuum energy of pure QCD depends on 0,
the vacuum angle. Then the requirement that this 6
dependence vanish in the zero-quark-mass limit leads, in
the 1/N expansion, to the existence of a meson whose
mass squared is of order 1/N. This is precisely the 7'.
The 7’ is thus a genuine Nambu-Goldstone at N = .
For finite N, ' is a pseudo-Goldstone boson, with a
(mass)? proportional to the symmetry-breaking term—
which is of order 1/N.

I, FACTORIZATION, LOOP EQUATIONS,

MASTER FIELDS, SADDLE POINTS,
AND ALL THAT ‘

A. Factorization of gauge-invariant quantities

The crucial feature of the large-N limit that gives rise
to many of its intriguing theoretical properties is factori-
zation. Stated in general terms this means that the con-
nected Green’s functions of invariant quantities are
suppressed relative to the corresponding disconnected
pieces by powers of 1/N. Hence at N =0 expectation
values of products of invariant quantities may be replaced
by products of expectation values. Let us illustrate this in
large-N QCD by using the perturbation rules stated in
Sec. II. Let B; denote fermionic current operators and G;
denote gauge-invariant operators made out of gluon fields
alone. Then, according to the rules of Sec. II,

(BB, " B,).=0(N),
<B1 ---B,Gy- - Gm>c:O(N) ,

(Gy+* " Gp)e=0(N?).

(3.1

From these equations it immediately follows that
<Bl"‘Bn)c 1
(B){B;) (B, Nl

<Bl"'BnG1"‘Gm>c
(B)(By) -+ (B,){G) - {Gp)

’

=o|

<G1"'Gm>c _
(Gl"'<Gm) -

o

1
N2m -2 *

Factorization may be proven also in the lattice strong-
coupling expansion. As yet there has been no convincing
general proof; it is, however, reasonable to assume that it
is generally valid. '

Do all gauge-invariant operators factorize? In general,
no. Several examples have been cited in the literature
(Haan, 1981; Green and Samuel, 1981). However, all
“reasonable” operators do factorize. To determine which
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E3)

operators are ‘‘reasonable,” one has to construct analogs
of coherent states for the sequence of theories character-
ized by a given value of N. Let |u) and |u’) denote
such coherent states. An operator A is called “classical”
if its coherent-state matrix elements have a finite N— oo
limit, i.e.,

Lim Se 1A lu) _ g (3.3)

Noew (ulu')

All such classical operators are reasonable and do factor-
ize (Yaffe, 1982). Examples of such operators in QCD
are Wilson loops, fermion bilinears (like B;), and pure
gauge operators like TrF,,F*¥ or TrF,, F*". In fact, the
important properties of the large- N limit discussed below
are consequences of factorization of these classical opera-
tors (Yaffe, 1982).

B. Loop equations

One important consequence of factorization is that
there exist closed Dyson-Schwinger equations relating in-
variant expectation values. For gauge theories the
relevant quantities are Wilson loops. We shall refer to
these as loop equations. The phenomenological success of
string models suggests that the long-distance behavior of
QCD is some kind of a string theory. It was suggested by
Nambu (1979), Polyakov (1979), and Gervais and Neveu
(1979) that the Wilson loop average may be regarded as
the wave functional for a closed string. Equations for the
Wilson loop were derived, and these resembled classical
string equations. Later Makeenko and Migdal (1979)
showed that at N =« Dyson-Schwinger equations of
Wilson loops form a closed system. (These equations are
different from those obtained by the earlier authors.) We
shall discuss these equations in the context of lattice
gauge theories (Eguchi, 1979; Foerster, 1979; Weingarten,
1979).

Consider the pure U(N) gauge theory defined on a hy-
percubic lattice with the standard Wilson action:

S=B3 3 TrU,(x)Ux +0)U}L(x +vUL(x)+H.c.],
X p>v

(3.4)
where B=1/g2 and g? is the bare coupling. U,(x) is the
standard link matrix belonging to U(N) in the direction u
and originating at the site x. We have, as usual,

U_,(x)= Uf,(x —u) .

Let A? be the generators of U(N) normalized in the stan-
dard fashion. These obey

' Z(Xa)ij(}\a)kl: ,-k8,~, . (35)

a

We now consider the quantity

X4O)= [ [T U, (O[T U, (x)U,(x +p) - -~ Je ™S
X

(3.6)
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The quantity within square brackets is the ordered prod-
uct of links around the curve C shown in Fig. 1, with a A?
in front of it. For the moment, we have chosen C to be
simple, i.e., without any self-intersection. Note that
X%C) is identically zero. But that is irrelevant to our dis-
cussion.

Let us now make an infinitesimal change of variables
on the link U, (x), keeping all the others fixed:

U,(x)—(14ieA)U,(x) ,
ie., '

8, U, (x)=ielU,(x),

8, U} (x)= —ieUL(x)A® .
Evidently,

S 5,X%c)=0. 3.7)

The variation on the left-hand side of Eq. (3.7) consists of
two types of terms.

(a) Source terms obtained by varying the operator. This
is easily seen to be

ie [ [1dU.(x) |3 TrAAU,(x) - ] |e®
X, a

=ieNZ{TtW(C)), (3.8

where we have used the completeness relation, Eq. (3.5).
W (C) is the Wilson loop operator along the curve C:

W(C)=U,(x)Uy(x +p) - Uylx —p),
and Z is the partition function:
Z= [[IdUu(x)e".
xp
(b) Equation-of-motion terms obtained by varying the

action. This is given by

8,8 = 3, Tr[AU,(x)— AU} (x)], 3.9)
v£p

14 C

e

H

FIG. 1. The “Simple” Wilson loop.
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where U,(x) denotes the plaquette in the (uv) plane con-
taining the link U,(x). The sum in Eq. (3.9) includes all
such plaquettes,

Up()= U, () U, (x +p) U} (x +9Ux)
and Eq. (3.9) contributes to ¥, §,X*C) a term

S —ieBZ{(Tt[W(C)U,(x)—W(C)UJ(x)]) . (3.11)
V£

(3.10)

Combining Egs. (3.8) and (3.11), we can now write Eq.
(3.7) as

%{TrW(C))= > B -I—(TrW(C)UI,(x»

vin N | N

- %(TrW(C)UJ(x)) , (3.12)

which is the loop equation we wanted to derive. Equation
(3.12) is shown diagrammatically in Fig. 2.

So far we have not used the factorization property.
The reason we did not need factorization is that we start-
ed out with non-self-intersecting loops. However, as Fig.
2 immediately reveals, the loop equations relate simple
loops to self-intersecting loops. Thus to obtain a closed
set of equations for Wilson loops one must also consider
the latter—and this is ‘Where factorization enters the
game.

Self-intersecting loops on the lattice are loops in which
a given link occurs more than once. For simplicity, we
shall consider only those loops in which a given link can
occur not more than twice. These can be of two types:
one in which the links occur in the same direction [Fig.
3(a)] and one in which they occur in opposite directions.
Consider a loop of the first kind. This may be written as

TrW(C)=TrW(C)W(C,) ,

where W(C;) and W (C,) denote the Wilson loop opera-
tors along C; and C,, respectively, with the link U,(x)
appearing as the first link in both W(C;) and W(C,).
To deduce loop equations one starts with the quantity

X%C,Cy)= [ [1dU,(x)eSTr[ AW (C))W(C,)] . (3.13)
X, :

The equation-of-motion term in the variation of

X,(C,C,) is identical to that of a simple loop. The

source term, however, contains two pieces. The first

piece, coming from the variation of U,(x) in W(Cy), is
simply given by

IENZ{TrW (C{)W(C,)) =ieNZ{TtW (C)) .

i Delec T2

FIG. 2. Dyson-Schwinger equation for the simple loop.
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C2

G
X

FIG. 3. Self-intersecting Wilson loops.

as in simple loops. The second piece occurs when the
variation hits the U, (x) contained in W(C,). In the usu-
al fashion [i.e., using Eq. (3.5)] this yields a term

IeZ{TtW(C{)TtW(C,)) . (3.14)

For any finite N, the quantity (3.14) is not a Wilson loop
operator, and one does not have a closed equation for
loops. However, at N = oo Eq. (3.14) factorizes into

ieZ{TrW(C)){TtW(C,)) , (3.15)

so that one now has a product of Wilson loops. The full
Dyson-Schwinger equations are now closed equations for
Wilson loops alone. For self-intersecting loops of the
second kind [Fig. 3(b)], the derivation is analogous. The
extra source term, Eq. (3.15), now occurs with a negative
sign. The final form of the loop equations reads (Wadia,
1981¢)

1 1
—A-T-(TrW(C))i—ZV(TrW(Cl))(TrW(Cz))

_B L
= E,L v {TIW(C)Up(x)

— T OT) |, (3.16)

where the + (—) sign is for self-intersections of the first
(second) type.

Similar loop equations may be derived in the presence
of quark fields. This would, in general, involve relation-
ships between Wilson loops and quark-string-antiquark
operators. In the usual large-N limit (i.e., in which the
number of flavors is held fixed), a string cannot split
forming a quark-antiquark pair (since fermion loops are
suppressed). However, this can happen in the Veneziano
limit (Foerster, 1979; Das, 1983).

Continuum forms of the loop equations can also be de-
rived (Makeenko and Migdal, 1979). These are essentially
continuum versions of Egs. (3.16), which now involve
suitably defined derivatives of Wilson loops. These
derivatives in loop space have to be regularized in an ap-
propriate manner. Details of this formalism may be
found in the review of Migdal (1983).

The existence of loop equations in the N = oo limit
shows that QCD, in some sense, may be written as a
string theory. However, the loop equations for the four-
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dimensional theory remain unsolved. Migdal and his col-
laborators have made some progress in this direction.
They have shown that there exist self-consistent solutions
in which the Wilson loops obey an area law. The theory
has, in fact, been reduced to a fermionic string theory—
which, however, remains unsolved. Recently there has
been some progress in attempts to solve these equations
numerically (Marchesini, 1984). One of the major diffi-
culties in the program is the fact that the various Wilson
loops are not all independent of each other.

Dyson-Schwinger equations may be derived for various
other theories. Exact solutions are readily obtainable for
vectorlike models—these can, however, be solved by vari-
ous other methods. For most nontrivial models, like the
matrix model and chiral models, there exists no exact
solution as yet.

While it is true that a solution of the loop equations
would provide all gauge-invariant Green’s functions, it is
certainly not true that they would provide all information
about the theory. Examples of physical quantities that
loop equations alone cannot determine are the spectrum
and scattering amplitudes. These require, in the present
framework, calculation of connected correlations of
gauge-invariant operators—which vanish by factorization.
Such quantities can, however, be obtained (in principle) in
the classical Hamiltonian approach, which we shall brief-
ly discuss below.

C. Master fields and saddle points

Consider two invariant classical operators A and B.
Factorization implies

(AB)=(A)(B) at N=co .
When A =B this becomes
(4%)=(4)?,

which means that fluctuations vanish at N = . This has
led Witten (1980) to argue that at N = « the functional
integral is evaluated by a single field configuration called
the master field. For gauge theories one has, of course, a
master orbit—i.e., a trajectory in configuration space
whose points are related to each other by a gauge
transformation. While the master field certainly exists, it
is not clear how to evaluate it except for trivially soluble
models. Recently, recursive procedures have been
developed to find the master field numerically (Yaffe,
1984), and equations obeyed by master fields have been
obtained by several methods (Greensite and Halpern,
1983; Jevicki and Rodrigues, 1984).

The absence of fluctuations at N = o0 also suggests
that the large-N limit is some kind of a classical limit.
To get a feeling for the nature of this limit we now dis-
cuss a soluble model in the framework of the quantum
collective field method (Jevicki and Papanicolaou, 1980;
Jevicki and Sakita, 1980, 1981; Sakita, 1980; Jevicki and
Levine, 1981). Let us consider the linear U(N) sigma

(3.17)
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model involving a field ¢;(x) in the fundamental repre-
sentation of U(N). The action of the lattice is given by

S=3 |73 |@ix +p)—gi(x) |
x p,i

+3m? S of (x)gi(x)

2

A
+ . (3.18)

> @f (x)p;(x)

and the partition function is

Z = [ I1d¢}(x)de;(x)exp(—S) . (3.19)

We shall consider the limit
N-— o, A= fixed .

Now, each term in the action is of order N. By rescaling
the variables we may bring N out in front of the entire ac-
tion. One might think that for large N the integral is
then dominated by the saddle point of the action. This is
wrong. The reason is that the measure J] dg] (x)dg;(x)
grows exponentially with N. In other words, there is a
large entropy that must be taken into account in the
minimization of the free energy. To extract the N depen-
dence of the measure we go over to invariant collective
variables defined by

o' xy)=3 @i (X)p;(y) , (3.20)

and introduce

1= [[do'1T] 8 |o'(xp)— 3 of (x)gi(y)

x,y i
into the partition function, Eq. (3.19). Z now becomes
Z= [ [do'V[o'le ST, (3.21)
where S[o’] is the action written in terms of the o”’s,

Slo'l=+ 3 K, (x,p)0'(x,y)+ +m?Y o'(x,x)
X Pl x

__1).\‘7_ S [o7(x,%)]2 - (3.22)

and
K, (x,y)=28(x,y)—8(x,y +@2)—8(x,y — &)

is simply the second derivative operator on the lattice.
The Jacobian J[o'] is given by

Jlo'l= [ [de*de]l []8 |o'(xp)— 3 of @iy | .
N x,y i
This may be evaluated by the saddle-point method at

large N (Wadia, 1981b) by exponentiating the delta func-
tion:
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J[o']= [ [de*de] T dAlx,p)exp

X,y

i3 Ay,x)
x,y .

Performing the integration over ¢ and ¢*, one has

J[o']= f I1 dA(x,p)exp [2 [iA(y,x)o'(x,p) — N InA(x,)8(p,x)] ] .
xy xy

Since each term in the exponent is of order N, J[o'] is
given by the saddle-point value

Mx,p)=—iNo' ~Ux,y) .
This yields

Jlo']=exp [N 3 Ino'(x,x) | . (3.25)

The whole partition function may now be written in terms
of the order-one collective field o(x,y) defined by

U(x’y)='2_1]\_f0"(x’)’) »
Z = [ [dolexp(—NSlol), (3.26)
where
- Selo]= X K,(x,p)o(y,x)
x'y?#
2 4\ )
+m ZO'(X,X)— —17 2 [a'(x’x)]
(3.27)

— > Ino(x,x) .

In Eq. (3.26) both S¢[o] and the measure do are of or-
der one. Hence for large N the integral may be evaluated
by the saddle point of S.¢. The saddle-point equation is

EK,L(x,y)+m28(x,y)+ %ooﬁ(x,y)——-a*l(x,y) , (3.28)
n

where
ogo=o0(x,x) .
In terms of the Fourier components defined by

+7 d% s

(x,p)= ek =g, | (3.29)
SPOV= 2 k
one has

T 43 sin%k, /24+m?+4(A/N)oy
N

where o is determined by the self-consistent gap equation
+7 %
—r (2mf F
o= d% 1 '
(2m)* 43 sin’*k, /2+m?+4(L/N)og
u

ogo=0(x,x)=
(3.31)

In fact, Eq. (3.28) is simply the Dyson-Schwinger equa-
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a'(x,y)— 3 @i(x)p;] ()

. (3.23)

(3.24)

r

tion for the model. In this case Egs. (3.30) and (3.31) pro-
vide all the correlation functions of the model—since all
invariant n-point functions are products of two-point
functions by virtue of factorization. However, the large-
N effective action, Eq. (3.27), contains much more infor-
mation than the loop equations. This is because one can
now perform small fluctuations around the solution to the
Dyson-Schwinger equations, thereby extracting the spec-
trum of the theory.

The collective field program has been carried out in the
Euclidean (Jevicki and Sakita, 1981) as well as in the
Hamiltonian framework (Jevicki and Sakita, 1980; Sakita,
1980). For the gauge theory the collective variables are
the Wilson loop operators W (C) along all possible loops
C. In the Hamiltonian framework these loops are all spa-
tial; in the Euclidean approach there are temporal loops
as well. We shall not enter into the details of this formal-
ism, but simply discuss the main issues.

The loop-space Hamiltonian may be written as (Sakita,
1980; Jevicki and Rodrigues, 1984)

2

- _gz 3 #o(C,cHr(c)

+1 S oltC0-(c,cholC)

- i S [eP)+@P)] |, (3.32)
P

where

UC,CY=—23 S[EADe(OIE*De'(CN],
|l «a

o (3.33)
o(C,C"Y=23 EXDE *(Dp(C) ,
La

and @(C) is the Wilson loop operator around the spatial
loop C. E“(]) is the standard electric field operator along
the link /. @(P) denotes the elementary plaquette Wilson
loop and @(P) the conjugate loop. w(C) denotes the
momentum conjugate to ¢(C) in loop space. The pro-
cedure by which the above Hamiltonian is obtained is
analogous to that used in obtaining the collective field ac-
tion for the sigma model. One makes a change of vari-
ables from the links U; to the Wilson loops ¢(C) (which
form an overcomplete set of variables). Subsequently a
canonical transformation is performed to go over to vari-
ables in terms of which H is explicitly Hermitian. Note
that the @(C)’s are not independent of each other. How-
ever, it has been argued that in the large-N limit, ¢(C)’s
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and their conjugates 7(C)’s may be regarded as indepen-
dent variables.
By a rescaling of variables,

¢—>No, g>—>N"1A,

N? factors out of the effective potential:

V@)=~ 3 000~ 1(C,Cha(C)

——%2—2[¢<P>+<p<i5>] .
k P

One might think that the expectation values of @(C) in
the large- N limit are given by the saddle point of Vg,

O Verr(@)

5¢ =0.

This is, however, incorrect in the weak coupling region
(Jevicki and Rodrigues, 1984) because of nontrivial in-
equalities coming from the fact that Q(C,C’) is positive
definite. Vg has to be minimized in the presence of these
constraints. It has been shown, however, that a set of
master variables can be introduced to transform the prob-
lem to that of an unconstrained minimization (Jevicki and

Rodrigues, 1984). This approach has been pursued nu- °

merically for some models.

Another approach to the large-N limit is that of “con-
strained classical solutions” (Bardakci, 1981a; Halpern,
1981). We shall illustrate this method for a simple one-
vector model consisting of a single N-component vector
x;(2) evolving in time. The relevant matrix elements are
vacuum expectation values of index-ordered products of
operators, like

(0] R(2)-£ (2% (1)-R(2") | 0) .

Let us insert a complete set of quantum eigenstates after
each field operator. Due to the restriction to index-
ordered products, such intermediate states must
transform either as O(N) vectors or as O(N) singlets.
Factorization further implies that the only singlet state
that can contribute to the leading large- N behavior is the

ground state. One thus needs only the following matrix

elements:

(n,i I.;C\] |O>=8,]qn/\’ N .
Here n labels the number of O(N) vector eigenstates, i is
an O(N) index labeling the states within such a multiplet,
and g, is the “reduced” matrix element. Since all states

are eigenstates of the Hamiltonian, the g,’s have a simple
time dependence:

gn()=e""""g,(0) ,

where w, =FE, —E, is the excitation energy of the nth
eigenstate. Taking matrix elements of the quantum equa-
tion of motion,

2 H2V(R D% =0
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[where V(% 2) is an O(N)-invariant potential], and using
factorization, one has the following equation for the re-
duced matrix elements:

4 +2V'(q-9%)q, =0 .

Thus g¢,’s obey a classical equation of motion. These
equations must, however, be supplemented by constraints
obtained by taking vacuum expectation values of the com-
mutation relations:

Z(q:tj,,—q':q,,)zl .

A similar set of constrained classical equations may be
obtained and solved for the familiar vector models. The
approach has also been extended to gauge theories (Bar-
dakci, 1981b, 1982).

The precise nature of the “classical” limit at large N
has been investigated in detail by Yaffe (1982). Essential-
ly one constructs analogs of coherent states of quantum
mechanics for the sequence of theories labeled by N.
Under certain conditions (on the state space and opera-
tors), the expectation values of operators in these coherent
states behave as classical dynamical variables in the
N = o0 limit. The quantum dynamics of the large-N
theory reduces to classical dynamics governed by a classi-
cal Hamiltonian, which is just the coherent-state expecta-
tion value of the quantum Hamiltonian. This fact has
been recently exploited to construct a numerical method
to solve large-N theories (Brown and Yaffe, 1985). The
relevant coherent states are generated by the action of a
Lie group (the coherence group) on a fixed initial state
(usually taken to be the strong coupling vacuum). For
gauge theories, the coherence group is generated by the
Lie algebra consisting of arbitrary linear combinations of
the (untraced) loop operators and loop operators with one
electric field insertion. The numerical method involves
minimization of the classical Hamiltonian in the space of
coherent states, suitably truncated, by a Newton minimi-
zation scheme. In this procedure, choice of Riemann nor-
mal coordinates in the classical phase space is extremely
useful. Once the minimum is obtained, the large-N glue-
ball or meson masses are computed by calculating the
second derivative of the Hamitonian around the
minimum. Similarly, particle decay widths are obtained
from third derivatives, four-particle scattering amplitudes
from fourth derivatives, and so on. There seem to exist
consistent truncation schemes that render the method
practicable. This method has been successfully tested for
the exactly soluble one-plaquette model and applied to
(2 4+ 1)-dimensional gauge theories. There also exists a
Euclidean version of the method. Fermions can be in-
cluded without much difficulty. A detailed presentation
is contained in Brown and Yaffe (1986).

IV. EGUCHI-KAWAI MODELS AND QUENCHING

A. Basic ideas for reduction in large N

Recently, Eguchi and Kawai (1982) pointed out a re-
markable consequence of factorization. They showed that
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under certain conditions one can completely forget about
the space-time dependence of fields at N =o. We con-
sider the standard U(N) lattice gauge theory. From this
field theory one could obtain a matrix model by making
the following replacement:

Uﬂ(x)_’Uu . 4.1)
The standard Wilson action becomes

S—Sgx =83 Tr(U,U,ULUL +H.c.) . 4.2)
The quantity corresponding to a Wilson loop operator,
W(C)=Tr[U,(x)U,(x +u)U,(x +u+v)---1, 4.3)
is given by

WR(C)=Tr( v.u,u,---), ) . 44

which is just an ordered product of the reduced variables
U, in the same order in which the corresponding links
appeared in W(C). The partition function of the reduced

model is given by

Z= [ [1dU,exp(—S), 4.5)
y73

and reduced averages are obtained in the ensemble defined
by Eq. (4.5):

(TeWa(C)=— [ [1dU,TrWx(Cle 5 . @46)

M
One could derive Dyson-Schwinger equations for
(Wx(C)) in the same way as in the field theory. Consid-

er the simple loop of Fig. 1 once again. The quantity
Wx(C) for this loop is given by

;
Wr(C)=U,UUL---U,) .

|

To derive Dyson-Schwinger equations we start with the
quantity

X2(C)= [ [1dULTAUU, -+ e ¥, (47)
’ ‘

which is the direct analog of Eq. (3.6), and follow exactly
the same steps as in Sec. III. The contribution from the
variation of the action (the equation-of-motion term) is
exactly the analog of Eq. (3.11), viz.,

S —iefZ(THWa(O)U, . 1~ TH{ Wr(C)U' ]

veEp
+THWR(OU, _1-Tr[Wr(OU, 1),
(4.8)
where
v ,=U,U,UU}
I“’+ prvyu~y o
i (4.9)

tyt
U,-=UUULU, .

We note that U;W* (UM_) would correspond [via Eq.
(4.1)] to a plaquette in the (u,v) plane [(u, —v) plane].
Thus Eq. (4.8) is the reduced version of the right-hand
side of the equation in Fig. 2. The source terms come
from variations of the U,’s contained in Wx(C). When
the variation hits the first U, in Wx(C), one has, in anal-
ogy to Eq. (3.8),

IENZ{TrWx(C)) .

But now we have some extra source terms. These terms
come from variations of all the other U,’s contained in
Wr(C). Such terms are not present in the field theory
case, since one could vary only the link U,(x)—in fact
such terms would occur only if the loop were self-
intersecting. These extra source terms in the Eguchi-
Kawai model are typically of the form

ie [ [1dU,e S Tr(A°U,U, - - - MU, U,U, " - - U,)=isZ(Tr(U, U, U} - U,)THU, U U, - U,)) .
I

Here the variation has hit a U, that corresponds to the
link starting at the point y in Fig. 1. Using factorization,
the above quantity becomes

ieZ(TH(U,U, U} -+ U){TH(U,U,U, - U,)) .
(4.10)

This is a product of U,’s along open lines, i.e., the two
open lines joining x and y. The Dyson-Schwinger equa-
tions for the Eguchi-Kawai model are identical to those
of the field theory only if such open lines vanish.

The Eguchi-Kawai (EK) model, being a single-point
theory, does not have any local gauge invariance. The ac-
tion, Eq. (4.2) (as well as the measure), are, however, in-
variant under the following transformations:
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r

U,—~Su,s~', (4.11a)

U,—e'%U, . (4.11b)
Equation (4.11a) is the remnant of local gauge invariance
of the original field theory, while Eq. (4.11b) is a [U(1)}?
symmetry [ Z§ for SU(N)]. The open-line traces in Eq.
(4.10) are invariant under Eq. (4.11a), but not under Eq.
(4.11b). Only Wilson loop operators along closed loops
are invariant under both the symmetries. Eguchi and
Kawai argued that the [U(1)]¢ symmetry protects terms
like Eq. (4.10) from acquiring a nonzero value—and
hence the model (4.2) has the same Dyson-Schwinger
equations as the parent lattice gauge theory. Assuming
that the entire content of the N = « limit is contained in
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the Dyson-Schwinger equations, it then follows that the
reduced model described by Eq. (4.2) is completely
equivalent to the standard Wilson theory at large N.

In the strong coupling region this is certainly true. The
matrices U, are all fluctuating randomly: the eigenvalues
of U, would be uniformly spread over the unit circle,
thus maintaining the [U(1)]¢ symmetry. In fact, this
symmetry is unbroken for all coupling for dimensions less
than or equal to two. It was, however, soon pointed out
(Bhanot, Heller, and Neuberger, 1982a) that in weak cou-
pling the symmetry (4.11b) is spontaneously broken for
dimensions greater than two. The N eigenvalues of U,
all tend to be equal to each other. The Eguchi-Kawai
model as it stands is not equivalent to the standard lattice
gauge theory in weak coupling—and hence certainly not
in the continuum limit.

B. The quenched Eguchi-Kawai (QEK) model:
¢* theory

Bhanot, Heller, and Neuberger (1982a) proposed a
modification of the naive Eguchi-Kawai model, in which
the above-mentioned [U(1)]¢ symmetry does not break in
weak coupling; their model is known as the quenched
Eguchi-Kawai (QEK) model. We shall not describe the
QEK model as originally formulated. Rather, we shall
present it in the framework of more general considera-
tions about the reduction mechanism in large- N theories.

A general formulation of reduced models has emerged
in a series of papers beginning with the work of Parisi
(1982). Consider a scalar field theory with the field ¢(x)
in the adjoint representation of U(N). The lattice action
is given by

S=3 |3 +Tr|ex +u)—gx) |2
x |n

+ +m Trg*(x)+ —g]\?Tr¢4(x) (4.12)

[p(x) has been written as a N XN Hermitian matrix].
The large- N limit of this model is defined by

g= fixed, N—>oo .

The perturbation expansion of this model is very similar
to that of the gauge theory—the leading-order diagrams
are all planar.

A naive Eguchi-Kawai reduction prescription, i.e.,

p(x)—@,

does not lead to a model that is equivalent to Eq. (4.12).
We consider, however, the reduction prescription

@(x)—> Dy (x)gDg (x) , 4.13)
]
dkl' ikE—kix, , § dkf
— L BT N e 1t
f I,} l o ’Zje <§0u¢’ﬂ> f H 2
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b o K=K,

where

is a matrix in the internal symmetry space. We shall refer
to Egs. (4.13) and (4.14) as the quenched momentum
prescription. Applying this prescription to the action, Eq.
(4.12), and factoring out the volume, one obtains the re-
duced action

SGik=7 > | @y |*|2d +m> =23 cos(kl —kt)
ij I

£
N
which will be shown to be equivalent to the field theory,
Eq. (4.12), at N =o. To spell out the precise sense in
which these are equivalent, one must have a prescription
that relates averages in the reduced theory to those in the
field theory. Let us consider an invariant functional
fle(x)] of the field. The statement of equivalence then
reads

+ =Tre* (4.15)

dk ;
e (fIDr(x)pDy(x)]) ,

<f[¢(x)]>ﬁeld theory = f H
i

(4.16)
where the average of a quantity O in the reduced model is
defined by (for a fixed value of the k’s)

—~ _glk)
<0>-—=——Z1 [ deye "0, 4.17)
k ij

(k
Zi= [ [Tdeye ~Six (4.18)
ij

The origin of the epithet “quenched” is now clear. The
action Sqgx defines an ensemble in which averages are to
be taken for a fixed value of k. A quenched average over
k is then performed. The k’s are dynamical variables, but
not on the same par as the ¢;’s.

The form of the reduced action, Eq. (4.15), looks like
the momentum-space action of the field theory, with
kf —k} behaving as the momentum. To make the con-
nection precise, consider the zero-order propagator in the
reduced model:

1
 2d — 3 cos(k),—k},)+m?
u

Gy={@liws) , (4.19)

which certainly looks like the usual momentum-space
propagator. To show that this is really so, consider Eq.
(4.16) with

Flex) =" (x)g(0) .
The right-hand side becomes

1

: . (4.20)
2d — 3, cos(kf'—k¥)+m?
u
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Note that Eq. (4.20) diverges badly for i =j. To avoid
this we impose the constraint

¢ii =0 . (4.2 1)

These are N constraints amongst N2 variables. Hence
they are irrelevant in the leading-order behavior at large
N.
Equation (4.20) may be viewed in two equivalent ways.
(a) One could make a change of variables to

pr=Ki—kf', gt=(kErkp) .

With this, Eq. (4.20) becomes

d
Nin-1 [ (dp P : , (4.22)

2m)¢ 2d — 3, cosp, +m?
n

which is, up to 1/N corrections, equal to the usual propa-
gator

(Tre'(x)p(0)) (4.23)

in the field theory. Note that the difference between Egs.
(4.22) and (4.23) is of order 1/N due to the presence of
the constraint of Eq. (4.21).

(b) An alternative way of viewing this is to note that it
is not necessary to perform the momentum integrations.
This is because one can write

S fkf—k=3 fpt), (4.24)
ij i i

where
pi=kl'—ki*,

and f is any function. Now, p# lies in the Brillouin zone
—mT<pi<+m

(all momenta are in units of the inverse lattice spacing).
Let us divide this hypercube in momentum space into N
parts and choose the p/’s densely and uniformly over the
entire hypercube. In other words, each of the N parts in
labeled by an index i which runs from 1 to N. The p} are
chosen to be the particular momentum at the center of the
cell labeled by i. Then, by the definition of a Riemann in-
tegral,

+7 d T
/. (amd/ P =im o 2 fp)

(4.25)

Using this in Eq. (4.20) one gets the same result for
N =« as in Eq. (4.22).

The latter way of viewing the sum in Eq. (4.20) tells us
how large N is. From Eq. (4.25) one sees that there is a
total of N momenta to sum over. Now, if the original
field theory is defined in a periodic box of side L, one has
L? momenta. Thus for the reduced model to be

equivalent to the field theory one must have
N=L?. (4.26)

We have demonstrated Eq. (4.16) for the two-point
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function to 0(g®). Of course, the equivalence holds order
by order in the perturbation expansion. A perturbation
expansion of the action Sqrx may-be derived in the usual
fashion. The lowest-order propagator suggests that we
represent each propagator by a double line [Fig. 4(a)],

.with each line carrying .a group index. This is the usual

representation in the corresponding field theory ('t Hooft,
1974). However, here one assigns this double line a

" “momentum” (k; —k;). The propagator is, by definition,

zero when i =j (this follows from the constraint ¢;; =0).
Vertices are similarly represented in Fig. 4(b). If k; —k;
is to behave as a momentum, it must be conserved at each
vertex. From Fig. 4(b) it is easily seen that this is true. In
fact, the reason this is true is that each index line at the
vertex flows in once and flows out once—as required by
the internal symmetry of the theory. Thus the internal
symmetry always guarantees momentum conservation;
We shall present a more detailed explanation of this fact
later. ' ‘

Using the Feynman rules of Fig. 4 one can now com-
pute any correlation function. Let us illustrate this for
the O(g?) correction to the propagator. The relevant
Feynman diagram is shown in Fig. 5. The contribution to
(¢,;qp,-j) from this graph is given by
g’ '

N IEI(GU )2G; Gy Gy - (4.27)

The corresponding graph in the field theory is given by

eN [ [G )G (@G (NG (p —q —1) .

dq
2T

dr
2T

(4.28)
Renaming variables in Eq. (4.27),
ki“‘kj=p’ ky—k;=r,
k—k;=q, 7(k+k+k.+k)=Q,

(a)

1
2d -3 Cos (k,, k) + m?

~

J
i

(b)

~ 9
N

FIG. 4. Feynman rules for the ¢* QEK model.
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‘_‘ ‘ —.

- ~pYx =

j
FIG. 5. Feynman graph for O (g?) contribution to the propaga-
tor.

one can now verify Eq. (4.16) explicitly in a way analo-
gous to the zero-order case.

The equivalence stated in Eq. (4.16) holds only for pla-
nar graphs to all orders in perturbation theory because
our way of assigning momenta to propagators in the re-
duced model does not' work for nonplanar diagrams. In
any nonplanar diagram of the field theory there is always
at least one propagator that has its two indices equal to
each other (e.g., Fig. 6). This would automatically be zero
in the reduced model. Since the leading diagrams in the
large- N limit are planar, the QEK model of Eq. (4.15) is
equivalent to the field theory of Eq. (4.12) at N = co—at
least to all orders of the perturbation expansion.

There is another way to understand this equivalence—
within the framework of stochastic quantization. Any

N=64
1O
- ..
— L]
L4 °
0.5 . X(1.1) e
| a X(2.2) a
4 R X(3.2) a
X al X(4.2) o
a 4 ., X(3.3) =
\ o. x(43) o
o2l N 77 e
\ﬁ\\g o o
», o
e
o.lf
JEr_/AL=264
1 { |

1
0.35 036 037 038 039
B

FIG. 6. X ratios for the N =64 TEK model at zero tempera-
ture (reprinted from Fabricius and Haan, 1984).
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quantum theory may be viewed as a dynamical statistical
system evolving in a fifth “time” according to a Langevin
equation with a Gaussian random noise (Parisi and Wu,
1981). The quantum averages are then equal to the long-
time limit of stochastic averages of this equivalent
Langevin system. In this framework it is easy to see how
the space-time dependence of the fields factors out in the
large-N limit, exactly according to the quenched momen-
tum prescription (Alfaro and Sakita, 1982).

C. The QEK gauge theory

One might think that constructing a QEK model for
the lattice gauge theory is straightforward: one simply
needs to replace the original Eguchi-Kawai reduction
prescription by a quenched momentum prescription for
links. This is wrong. Consider the reduction ansatz

U, (x)—Dy(x)U,Di(x) . (4.29)
For a fixed value of {k} the partition function becomes
Zy= [ dU,exp [B S (U, pku,pEDrUiD Ul

u>v

+ H.c.) |,

where

(DX

u (4.30)

Since the D,’s commute, the QEK action may be rewrit-
ten as

Seex =B 3, Tr[(U, Dl U, D¥) (U, DF) (U, D)

uw>v
+H.c. (4.31)
One can, however, make a change of variables:
’ k
v,—-U,=U,D, . (4.32)

Since the Haar measure dU,, is invariant, it is easy to see
that in terms of U,, Z; is the partition function of the
naive Eguchi-Kawai model. Replacing the naive EK
reduction rule by the quenched momentum prescription
did not change anything.

To get around this impasse, we need to alter either the
integration measure (Das and Wadia, 1982; Gross and Ki-
tazawa, 1982; Migdal, 1982) or the action (Chen, Tan, and
Zheng, 1982). There is no unique way to change the mea-
sure. In the QEK model the remnant of gauge symmetry
is

U,D,—S(U,D,)S™". (4.33)
One could first fix the gauge in a suitable fashion (say the

Lorentz gauge) and introduce into the measure the con-
straint (Das and Wadia, 1982)

(IOgU# ),-,-=O . (434)
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Another approach involving prior gauge fixing has been
discussed by Parisi and Zhang (1983).

Gross and Kitazawa (1982) used a procedure that in-
volved a gauge-invariant constraint and hence did not re-
quire prior gauge fixing. The measure they used may be
written as

[ I14u.cwu,,n,), 4.35)
i

where

c(,,p)=1II [ av.aD,)8U,D,—V,D,V})
uw

(4.36)

and

: B pp
A(D,)= [] sin® _’E_ﬁ_l

1<J
Here V, denotes a U(N) matrix. The delta function con-
strains the eigenvalues of U,D, to be equal to those of
D,. Since eigenvalues are invariant under the similarity
transformation [Eq. (4.33)], this is an explicitly gauge-
invariant constraint. A similar measure has also been
proposed by Migdal (1982).

The effect of the constraints (4.34) and (4.36) is to de-
stroy the invariance of the measure under the change of
variables in Eq. (4.32). Recall that the naive EK model
does not work because in weak coupling the eigenvalues
of (U,D,) tend to cluster around the same value. The
constraint implied in Eq. (4.36) forces the eigenvalues to

be equal to e™" and therefore to be randomly distributed
over the unit circle, since the k’s are totally random in the
quenched model. This ensures that the correct vacuum is
U,=1. Equation (4.33) achieves the same end by con-
straining the diagonal elements of logU,,. (Since the diag-
onal elements are not gauge invariant, one needs a prior
gauge fixing.) Quenching thus prevents the [U(1)]¢ from
breaking, and hence forces all open lines to vanish.

To investigate the weak coupling perturbation expan-
sion of the model, we expand U, , around the vacuum,

U,=expligd,) , (4.37)

in powers of g and fix a gauge [which is already done if
one uses the constraints specified by Eq. (4.33)]. There is
a one-to-one correspondence between the Feynman graphs
of the reduced model and those of the gauge theory, just
as in the Treg* model. In terms of the A,’s the con-
straints (4.33) become

(A4,); =0, (4.38)

which is the direct analog of the constraint ¢; =0. The
constraints in Eq. (4.36) also translate into equations re-
lating (A4, ); with the other (A4,);;, but those equations
are different in different orders of perturbation theory.
These, in general, generate new vertices apart from those
contained in the action, leading to new tadpole graphs.
Gross and Kitazawa (1982), however, showed that all
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such tadpole graphs vanish after the integration over the
k’s is performed.

While all the various types of constraints lead to re-
duced models that are equivalent to the gauge theory, for
numerical purposes it is particularly convenient to use the
measure (4.36), since it is explicitly gauge invariant. In

fact, the QEK model with this measure is equivalent to

the model proposed by Bhanot, Heller, and Neuberger
(1982a). The full partition function is given by

Zi= [ [1dU,dV,AD)8(U,D,—V,D,Vie "®X,
173

(4.39)
with Sqpk given by Eq. (4.31). Now we integrate out the
U,’s. Due to the delta function this amounts to replacing
U,by V,D, VLDI,. Z; now becomes

Zi= [ TI1dV,AD,exp(—Soex) , (4.40)
73
where
. t ty ptyty pipt
Sqex =B > Tr( VuDuV Vi DJV.V, DV, V,DV,
u>v
+H.c.), (4.41)

which is precisely the model of Bhanot, Heller, and Neu-
berger (1982a).

D. Quarks in QEK models

So far we have dealt with theories involving fields in
the adjoint representation of the symmetry group. Fields
in the fundamental representation may also be incorporat-
ed in a straightforward manner. In fact, a general
quenched momentum prescription reads

p(x)—D(x)@, (4.42)

where the representation content of ¢ determines that of
D (x). Thus for a field in the fundamental representation,

i (x)—>D{x)p;

with the D’s given by Eq. (4.14).

In gauge theories, internal quark lines are, of course,
absent at N = w. However, one might study the meson
spectrum by looking at, say, {(x)J(0)).. In the QEK
model this connected correlation cannot be a function of
x. This is because (x) is a local color singlet and hence
translationally invariant in the reduced model. In index
space this means that there can be no net index flow into
a Y insertion, and hence no nonzero momentum. Gross
and Kitazawa (1982), however, suggested that one can
nevertheless force a net momentum to flow along the
external quark lines. This would not jeopardize anything
else, since there are no internal quark loops.

A more systematic approach is to consider a reduced
model for the Veneziano limit of QCD. Such a model has
been constructed and shown to be equivalent to the field
theory (Levine and Neuberger, 1982a; see also Klinkha-
mer, 1984a).
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E. Other models

The quenched momentum prescription may be applied
to a variety of other models. For models involving funda-
mental representation fields only [e.g., the (@?)? theory] it
readily yields an expression for the master field (Das and
Wadia, 1982; Gross and Kitazawa, 1982). Consider the
linear sigma model discussed in Sec. III. The two-point
correlation function is given by

o(x)= % <§ <P}"(x)<Pi(0)>

+m dip elP*
-7 (2m)? 43 sin’p, /2+m>+4(A/N)oy
M

where the quantity o, is determined by the self-consistent
gap equation:
+7 % 1
-7 (2m)? 43 sin’k, /2+m>+4(A/Noy
I

o=

Evidently, one would get the same equation in the QEK
version of the model. The correlation function of the re-
duced fields is simply

1
T 43 sin?kf/2+m2+4(A/N)oy
N

(pi i)

and one obtains @(x) by the direct analog of Eq. (4.16). It
is clear that Eq. (4.44) is obtainable from the reduced
master field ¢;,

~ 1

Pi=
43 sin’kf /2+m*+4(A/N)oy
y73

172 »

which, when plugged back into the reduction prescription,
leads to the master field of the full field theory:

ik#x
e 'H

172 -

a),'(X) =
l4 S sin’kf /2+m?+4(A/N)og
u

This correctly reproduces o(x) since, as argued earlier, a
sum over the index i is equivalent. to a momentum in-
tegration at N = 0.

The master fields of other vectorlike models can be ob-
tained in a similar manner. Gross and Kitazawa (1982)
have also obtained the master field of two-dimensional
pure QCD.

QEK  models have been  constructed for
SU(N)XSU(N) chiral models (Heller and Neuberger,
1982a, 1982b; see also Bhanot, 1983; Green, 1983). In
fact there has been some progress in attempts to solve the
two-dimensional chiral model analytically (Bars, Gunay-
din, and Yankelowicz, 1983).
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F. Hamiltonian versions

Reduced models have been constructed for large-N
Hamiltonian theories (Neuberger, 1982; Kitazawa and
Wadia, 1983). This involves the reduction of the spatial
dependence of fields, while retaining the temporal depen-
dence. Thus typically the reduction prescription would
read

@(x,t)—Dy (x)p()DL(x) ,

with x denoting the (d —1)-dimensional spatial position
vector. The resulting model is simply a one-dimensional
field theory, i.e., quantum mechanics. It has been argued
that reduced Hamiltonians may be used to extract the
glueball spectrum (Levine and Neuberger, 1982b). This
cannot be done in Euclidean reduced models—one re-
quires connected correlations of Wilson loops, which van-
ish due to factorization. Furthermore, Hamiltonian for-
mulations can be used to obtain reduced models at finite
temperature (Neuberger, 1983). This is done by simply
restricting the total time extent of the box to a fixed value
and imposing periodic boundary conditions in the usual
manner. :

G. QEK models in the continuum

All the above considerations may be applied to a field
theory defined with a continuum regularization, e.g., a
momentum cutoff. The quenched momentum prescrip-
tion of Eq. (4.13) then readily yields the following expres-
sion for derivatives:

— 8,85 — (Kl — k)8l .

In fact, even in gauge theories a momentum cutoff pro-
vides a gauge-invariant regularization in the continuum
(Gross and Kitazawa, 1982). This is because Ward identi-
ties are satisfied before integration over the momenta {k}.

H. The meaning of the quenched
momentum prescription

We shall conclude this section by trying to investigate
the meaning of quenched reduction. We consider the
quenched momentum prescription once again,

@(x)— Dy (x)pD (x) ,
[Di(x)];;=05;jexpli (kf'—ki')x,] .

Unlike the field in the naive EK model, the field ¢(x) is
not translationally invariant at N =o. Rather, the
translation group is represented within the internal sym-
metry group. At N = there are a large number of
internal degrees of freedom. Some of these are used as
“momenta.” Since the translation group is Abelian, it is
natural to represent it in the diagonal [U(1)]" subgroup of
the internal U(N) symmetry—and this is precisely what
Eqgs. (4.13) and (4.14) represent. In the next section we
shall consider a different way of representing translations



Sumit R. Das: Some aspects of large-N theories 249

inside the internal symmetry group that works for an in-
teresting class of models.

V. THE TWISTED EGUCHI-KAWAI (TEK) MODEL

A. General introduction

In the previous section we saw that quenched reduced
models are obtained by representing translations within
the diagonal subgroup of the internal symmetry  group.
In a sense this is a natural thing to do, since translations
between two given points along different routes commute.
However, if a theory contains fields that are in zero N-
ality representations of SU(N) groups (like pure gauge
theory), one has a much wider range of possibilities. One
can now represent translations by matrices that fail to
commute by an element of the center of the group, Zy.
Since zero N-ality fields are blind to the center, transla-
tions along different routes would still commute. Such a
reduction scheme is the basis of twisted Eguchi-Kawai
models (Eguchi and Nakayama, 1983; Gonzales-Arroyo
and Okawa, 1983a). Consider a field theory defined on a
lattice containing a field ¢(x) in the adjoint representation
of SU(N). The twisted reduction prescription is

@(x)—D (x)eDT(x) , (5.1)
where
D(x)= [ (T, (5.2)
72

and I, are traceless SU(N) matrices obeying the 't Hooft
algebra

r,r,=z,r,r,. (5.3)
Z,, is an element of the center of the group Zy,
2ari
Z,,=exp —-Z'V—“nw, , (5.4)

where n,, is an antisymmetric integer-valued d Xd ma-
trix (in d dimensions). Thus I, is the matrix that imple-
ments translations by one lattice spacing in the u direc-
tion by means of adjoint action on ¢. Since I', acts by
adjoint action, the noncommutativity of the I',’s does not
lead to noncommutativity of translations. This would not
be true if there were fields in the fundamental representa-
tion.

The reduced action is obtained by substituting Eq. (5.1)
into the action of the field theory, i.e.,

1 t
Stex(@,ny,)= vol S[D(x)pD'(x)],

and the partition function is given by

Zrex = [ [delexp(—Stex) , (5.5

for a fixed value of Z,,. The expectation value of any
functional of the reduced field ¢ is given by
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1 —StEK
(O(@))rex = - [ ldglo(g)e . (5.6)

The correspondence between correlation functions of the
reduced model with those in the field theory is as follows.
Let f[@(x)] be any invariant functional of the field ¢(x).
Then

CFL@(x)]) fieta theory= {F [ D (x)pD 1 (x)] ) 1ex - (5.7)

All these relations are for a fixed value of Z,,. Note we
are not summing over various translation matrices as in
the QEK model. Of course, Eq. (5.7) would not hold for
any Z,,. In fact, Z,, must be chosen so that Eq. (5.7)
holds. The choice of Z,,, which respects this
equivalence, depends on the specific model and on the
dimensionality of space-time.

B. The TEK gauge theory

Let us now apply the twisted-reduction idea to lattice
gauge theory and figure out what Z,, should be
(Gonzales-Arroyo and Okawa, 1983a). The reduction rule
for the link matrices is a direct generalization of Eq. (5.1):

U,(x)>D(x)U'D}(x), (5.8)

with D(x) given by Eq. (5.2). The standard Wilson ac-
tion now becomes (apart from the trivial volume factor)

Stex =B 3, Te(U,T,U,CLCUITIUY  +He. (5.9
p>v )

Using the algebra of I' matrices in Eq. (5.3), this becomes

Stex =B 3, Tt[Z, U, T )U,T)U, T ) (U,
u>v

+H.c. (5.10)

The partition function of the TEK gauge theory is given
by

Zrgx= [ T1dU,exp(—Six) (5.11)
I

where dU,, is the standard Haar measure. Making a
change of variables,

U,—U,T,=U,, (5.12)

and using the invariance of the Haar measure, one gets

Zrex= [ [1dU,exp(—Stex) , (5.13)
N

Stex =8 3, Tr(Z,,U,U,ULU) +H.c. (5.14)
B>v

The reduced form for the Wilson loop operator is ob-

tained by simply plugging in the reduction rule, Eq. (5.8).

In terms of the U, variables, one has

N
1z, »

uv

Wg(C)= To(U,UU, ). (5.15)

The quantity inside the trace is simply an ordered product
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of U,’s in the same order in which they appeared in the
field theory. NPM denotes the number of plaquettes in
the (uv) plane in the minimal surface spanning C.

Everything looks just like the naive Eguchi-Kawai
model, apart from some Zy factors. However, it is these
Zy factors which, when properly chosen, force the sys-
tem to the correct vacuum at weak coupling.

The derivation of the Dyson-Schwinger equations for
Wxr(C) in the TEK model is exactly like that in the
Eguchi-Kawai model. Once again these equations are
identical to the loop equations of the gauge theory, apart
from products of traces of U,’s along open lines. We
consider such an open line extending from the origin to
the point {k,}. The remnant of gauge symmetry in the
TEK model is the same as Eq. (4.11a). The [U(1)]¢ sym-
metry is now a (Zy)? symmetry [since we are dealing
with an SU(N) theory],

U,—~Z,U,(Z,eZy) . (5.16)

Once again, in strong coupling this symmetry is
unbroken—forcing all open lines to vanish. In weak cou-
pling U, fluctuates around the vacuum value ULO), which
minimizes the action. This is easily seen to be

(0)
vo=r,. (5.17)

Thus in extreme weak coupling the trace of products of
links along the open line from O to (k) is easily seen to
be

V(k)=2 Tr [L(T,)% .
u

where Z is a Zy factor that depends on the particular

route taken from O to {k,}. To see whether this trace

vanishes, let us first prove the following simple theorem.
Theorem: Let A and B be two SU(N) matrices and let

AB=¢"B4 | (5.18)

such that 842wk for any integer k. Then (i) 8=2wn/N
where n is an integer less then N and (i) TrAB
=TrA =TrB =0. To prove (i), we take the determinant
of both sides of Eq. (5.18):

(e _1)det(4B)=0 .

Since det(AB)#0 and 842wk, one must have §=2mn /N.
To prove (ii), we take the trace of Eq. (5.18). This gives

(e —1)Tr(4B)=0 .

Since e’®-£1, Tr( AB)=0. Similarly, from Eq. (5.18),
A=e"%BABT .

Now let us substitute
A=T, and B=V(k)

in the above theorem. By virtue of the algebra in Eq.
(5.3), a relationship of the type (5.18) holds. Thus Tr¥V (k)
can be nonzero only if

[V(k),T,]=0 for all x . (5.19)
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Using the explicit form for V' (k) this leads to the condi-
tion :

kunua=q.N , (5.20)

where g, are integers (modN).
(a) In two dimensions, n,,, being antisymmetric, must
be of the form

Nua=ng,, (n=integer) .
Equation (5.20) may then be inverted to give

nk,=gug,N . (5.21)

Now we choose n =1. Then Eq. (5.21) means that for all
open lines whose trace is nonzero, k, is proportional to
N. We let the parent field theory be defined in a box of
size N with periodic boundary conditions. Then the
nonzero V(k)’s correspond to open lines in the field
theory that run from one end of the box to the other and
hence are closed by boundary conditions. However, these
open lines are nonzero even in the field theory—and such
terms are present in the loop equations of the field theory.
All other open lines vanish. Hence the TEK model with
n =1 has identical loop equations with those of the field
theory.

(b) In four dimensions we shall consider twists of the
form

TRy =0N , (5.22)
where o is an integer (mod N) and

Aoy =5 Epvaplap - (5.23)
Furthermore, -

Ayl oy =0N8,, . (5.24)

Equation (5.24) may be used to invert Eq. (5.20), leading
to

ok,=n,4q, . (5.25)
Let L be some integer, and let

N=L?. (5.26)
Let us choose the symmetric twist:

nuy=L forall v>pu . (5.27)

Then o =1, and Eq. (5.25) means that k, must be propor-
tional to L. Using the same argument as in the two-
dimensional case, one sees that the TEK model with the
twist given by Eqgs. (5.26) and (5.27) is equivalent to the
field theory defined on a periodic box of size L.

For odd numbers of dimensions, the matrix Ry 18
singular, and it is awkward to construct twists (see, how-
ever, Gocksch, Neri, and Rossi, 1983).

We have so far considered only simple twists. There
can be in general a wide class of twists leading to interest-
ing structures (Brihaye, Maiella, and Rossi, 1983; Fabri-
cius, Haan, and Filk, 1984).
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C. Twist-eating configurations

We now investigate the vacuum of the TEK theory. In
d dimensions we need d traceless matrices I',, satisfying
the algebra

r,r,=z,r,r,.

Since I, denotes the translation operator for a single lat-
tice spacing along the u direction, none of these matrices
can be products of the others. Furthermore, these ma-
trices are determined only up to unitary transformations.
van Baal (1983) has discussed a general procedure for
constructing the twist-eaters, i.e., the I',’s, given the twist
matrix n,,. We shall, however, restrict ourselves to the
simple twists referred to above. For two dimensions, the
algebra is given by
2mi

F1F2=exp F2F1 .

These matrices have been constructed by ’t Hooft (1981).
They are given by, modulo unitary transformations:

0100 --- 0
o010 --- 0
I‘1==})== ’
1 000 --- O
(5.28)
1
o2 /N 0
=0= o4mi/N
o ,

In four dimensions, with the twist given in Eq. (5.27), one
must have four L?x L? matrices satisfying

r,r,=e*"/Ir,Ir, .
These may be constructed in a fashion entirely analogous
to the construction of representations of Clifford algebras.

A particularly convenient choice is given by the direct-
product matrices:

[y=0.90,, I'=Q.P,®0; ,
=P2Q,, I'=12Q0; , '

(5.29)

where P; and Q; are the L XL matrices given by Eq.
(5.28), with N replaced by L.

From Egs. (5.28) and (5.29) it is now clear why the
[Zy]® symmetry (which protects open lines from acquir-
ing any nonzero value) is not broken even in weak cou-
pling. The eigenvalues of each of the I',’s are given by
the set (1,e2™/L 4mi/L  o2mL—1i/Ly "which are thus
uniformly distributed over the unit circle. This explicitly
respects the (Zy)? symmetry, since the action of the sym-
metry is simply to shuffle the eigenvalues.

Note that the I',’s for the four-dimensional case obey

ri=1.

This is simply a manifestation of the fact that T, is the
translation operation in a periodic box of extent L.

D. Planar perturbation theory

In the quenched Eguchi-Kawai model, the reduced
field @;; itself became the analog of the fields of the
parent theory in the momentum representation. In the
TEK model, “momenta” are generated from the I' ma-
trices themselves. The weak coupling perturbation expan-
sion is performed by expanding U, about the vacuum I':
iga

LT 1

U,=e w Au=a, .

n (5.30)

where f=1/g2 a, is the reduced gluon field. Usually
one expands @, in a basis formed by the standard A ma-
trices. In our case it is useful to use the following basis in
the Lie algebra of SU(N):

kO kl kZ k3
A(g)=TT; T,°Ty, (5.31)
where
1_
kv=z wy s (5.32)

and g, are integers in the range 1 <gq, <L [except g, =L
for all u to ensure tracelessness of A(q)]. The A(q)’s
form a set of N?>—1 traceless, unitary, linearly indepen-
dent matrices. Let us list some useful properties of 4 (q):

AL —q)=A(—q), (5.33)
AT (g)=4(—gexp %’;—’kk [ k) l ) (5.34)
Tr[A(q)A(gs) - - A(q,,)]=N[8(Eq,~)]éxp—21—7;i AL (5.35)
i<j
Ti[A47(g1)A(qy) - - - A(g)]=N& | —q,+ é g exp—2NLi > (k; | kj)exp A;iuﬂ | ki) l , (5.36)
i=2 i<j
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where

<ki ij>= 2 n,,#(k,- )#(kj)v .

w>v

(5.37)

These relations may be easily derived from the basic com-
mutation relations. The reduced field a, is expanded in
the basis {A4(q)}:

4,=—— S a4 . (5.38)

L% {g)

The value of a will be derived below. To ensure the Her-
miticity of a,, one must require
. (5.39)

a,(g)=a,(—qlexp —%(k [ k)

The basic property of the A4(q)’s, which allows one to in-
terpret the ¢’s as momenta, is

Tud(@T=exp |- 2g, |4(q), (5.40)

which can be easily shown from the commutation rela-
tions. Let us consider the field a,(x) in the parent field
theory. The reduction prescription relates this to the re-
duced field a, by

a,(x)=D(x)a,D'(x),
where, as before,
D(x)=[I (T .
n
We consider a translation of a single unit in the u direc-
tion in the field theory:
ay(x +u)=D(x +u)a,LDT(x +u)

a,(x +u)=217 ~2m Mg (9)D (x)4 (9)DT(x) .
q
(5.42)
This clearly shows that
2mq,
P,= 7 (5.43)

where P, behave as the lattice momenta in a box of size
L and a,(q) are the momentum-space components of the
fields.

To perform the perturbation expansion one has of
course, to, fix a gauge. The analog of the Lorentz gauge
is, for example,

> (T,a,Tl—a,)=0. (5.44)
N

The kinetic piece for a, now becomes

283 Tr(T,a,T}—a,)?. (5.45)
m,v

Using the expansion (5.38) and Eq. (5.40), we obtain

L
T li—ay=—25 3" ~Daiga(q) .
q

Plugging this into Eq. (5.45) and using
Tra'(g,)4(g,)=N8(g1 —q>)

[which follows from Eq. (5.36)], one has for the kinetic
term
_i 2d —2
N S5 -23cos
q u v

%T—qv ay(qa,lq), (5.46)

which shows readily that the zero-order propagator has
the same form as that on an L* periodic lattice. Consider
the zero-order propagator in coordinate space. Using the
reduction rule and applying Eq. (5.40) repeatedly, one has

=D (x)T,a,T}Dx),
which, by Egs. (5.38) and (5.40), becomes

(5.41)

]

Tr(au(x)av(0)>=5va—ZLEe_zm./l‘q.x(a;(q)a“(q)>
fa}
. 1
_ —2mi/Lq-x .
W{qE}e 2d —2 Y (cos2w/Lg,)
v

In the L — oo limit, the sum over {g} goes over to an in-
tegral over the Brillouin zone:

[2—>Ldfddq .
q}

Thus, the claim of equivalence stated in Eq. (5.6) is true if
N?=L?, (5.48)

which is certainly true for the twists we considered for
d =2 and 4. In fact, Eq. (5.48) is a general statement
about the order of N in TEK models. This is to be con-
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(5.47)

trasted with QEK models where one had N =L°%.

The various interaction terms in the reduced action
may be written down in an entirely analogous fashion.
The momenta {g} are always conserved at each vertex,
since a term involving a product of »n gluon fields would
have the trace

Tr[A(ql)' T A(qn)] ’
which is proportional to 8(2g;) by Eq. (5.35). The

momentum dependence of the vertices is also identical to
that in the field theory, apart from the phase factor
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: n
exp %Vﬂ > (ki|k;)

i<j=1

(5.49)

which comes from the above trace. The Feynman graphs
for various Green’s functions of the TEK model are thus
in one-to-one correspondence with those of the field
theory, with the following differences.

(a) There is an extra phase in each n-gluon vertex, as
given by Eq. (5.49).

(b) If a,(q) is to be identified with the momentum-
space gluon field, the propagator should be
(au(g)a,(—q)) rather than {a(q)a,(q)). This gives an
extra phase factor of exp[(—2mi/N)(k |k)] for each
propagator (k,=1/L#,,,q,, )—as evident from Eq. (5.39).

(c) In the graphs of the reduced theory there is no
remaining trace over the internal symmetry group—the
trace has already been performed when the action is writ-
ten in terms of a,(g)’s.

The presence of extra phase factors is a potential problem
in arbitrary Feynman graphs unless they cancel. A typi-
cal phase factor has the form

exp 21” =—(k|k') |=exp(iLA,,P,P,),

where the p’s are the lattice momenta P, =2wq, /L, and
A,,’s are coefficients that can easily be determined. One
thus has (in the limit L — o ) momentum integrals of the
form

d P tLAF PP
Vv v (P)
mnit 4

For large L the phase factor rapidly oscillates, leading to
a zero answer. In fact (provided the integral above is reg-
ularized in the ultraviolet and infrared), the Riemann-
Lebesgue lemma states (Eguchi, 1983)

1
. iNt
A}me foe 'f(t)dt ~O N

1 ] . (5.50)

Thus in d dimensions a diagram containing nonzero
phase factors vanishes as O (1/L¥).

It turns out, however, that in all planar diagrams the
phase factors at vertices exactly cancel those coming from
propagators. Furthermore, all nonplanar diagrams have
nonzero phase factors. Hence they are suppressed by
O(1/L%)=0(1/N? (Eguchi and Nakayama, 1983;
Gonzales-Arroyo and Okawa, 1983a). We shall not re-
peat the demonstration of this cancellation. For the
gauge theory this is discussed in detail in the original pa-
per of Gonzales-Arroyo and Okawa, while a similar dis-
cussion for matrix models is contained in the work of
Eguchi and Nakayama (1983).

In the field theory all planar diagrams have the same N
dependence. This comes about by a combination of fac-
tors of N contained in the vertex (through N dependence
of the coupling g2, since g2N is fixed) and those coming
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from the sum over color indices. As noted above, the dia-
grams of the TEK model do not contain any index sums.
Thus all vertices in the TEK model must be O(1) (Das,
1983). We consider the d-dimensional model. For gen-
erality le¢ N=L™. A term in the action involving n
gluon fields has a sum over (n — 1) momenta—one of the
momentum sums being killed by momentum conserva-
tion. In counting the powers of L in the n-gluon vertex,
care must be taken to convert momentum sums into in-
tegrals, since these involve powers of L and hence powers
of N. The L dependence of this vertex is then

(i) L™ from the trace over products of A4 (g)’s.

(ii) L —*" from the normalization factor in Eq. (5.38).

(iii) (L9)"~! from conversion of a sum over (n —1)
momenta into integrals.

(iv) (N)~(n =272, —m(n=2)/2 from the coupling. (The
n gluon fields bring down a factor of g”. Due to the
overall 1/g2, one is left with g”~2. Since g?N is fixed,
the above N dependence follows.)

Thus, the total L dependence is
L n(d—m/2—a)+(2m —d) X

For this to be O(1) for all values of n, one must-have
m=d/2, a=d—-m/2, (5.51)

which gives a=3 for d =2, a=3 for d =4, and our
known results—N =L for d =2 and N =L? for d =4.
This ensures that all planar graphs in the reduced model
have the same N dependence.

E. Quarks in TEK models

As mentioned earlier, it is not possible to construct
TEK models for theories containing fields in the funda-
mental representation, since these fields carry a Zy
charge. Thus quarks cannot be incorporated in a straight-
forward fashion. However, if the number of flavors of
quarks also goes to infinity, it is possible to undo the twist
in color space by an opposite twist in the flavor space
(Das, 1983). This yields a twisted reduced model for the
Veneziano limit of QCD. Consider a quark field theory
transforming as the (N,,N r) representation of the
(color) X (flavor) group SU(N,)XSU(Ny), denoted by
Yio(x). Here i=1,...,N, is the color index, and
a=1,...,Ny is the flavor index. The twisted reduction
prescription is

W(x)=Dx)WP(x),

- (5.52)
#(x)=P(x)¥D'(x),
where D (x) is, as before,
D(x)=[L(r)™*
and ’ (5.53)
Px)=TI(G)™".
u
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Translation invariance is maintained if the G,’s obey the
same algebra as ',

G,G6,=Z,,G,G, .

Models for Ny=N, can now be readily constructed with
the standard QCD Lagrangian and can be shown to be
equivalent to the corresponding field theory in the
Veneziano limit:

]Vc’]\,f_’°O >
Ny/N.=1, g*N,=g>N,=fixed .

It is problematic to incorporate Kogut-Susskind fer-
mions in a fully reduced model, since by their very nature
these fermions essentially live in a unit hypercube rather
than a point. However, partially reduced models with
Kogut-Susskind fermions can be constructed. This can,
in fact, be done for a variable ratio Ny/N, (Fabricius and
Korthals-Altes, 1986).

F. Hot TEK models

With the quenched momentum prescription one could
retain the temporal dependence of fields and reduce their
spatial dependence. To get a finite-temperature theory,
one could simply consider a finite temporal extent and
impose periodic boundary conditions (Neuberger, 1982).
In the TEK model there are difficulties in implementing
this method in a straightforward fashion due to the singu-
lar nature of twist matrices in odd dimensions. Neverthe-
less, Gocksch et al. (Gocksch, Neri, and Rossi, 1984)
have shown that with a spatially chosen spatial twist n;
one can construct a partially reduced model (i.e., with no
reduction along the temporal direction) that is equivalent
to the finite-temperature theory up to one loop in pertur-
bation theory. It is not clear, however, whether this
equivalence persists to all orders or nonperturbatively.

There is, however, another way of constructing TEK
models that is rigorously equivalent to a finite-
temperature field theory, which we now discuss (Klinkha-
mer and van Baal, 1984).

The symmetric-twist TEK model [for an SU(N) gauge
theory] is equivalent to the corresponding field theory de-
fined in a periodic box of size L (N =L?). This means
that at N = 0, the box size goes to infinity in all direc-
tions. If it were possible to construct twists such that at
N =« the spatial extent of the box went to infinity while
the temporal extent remained finite, one would have a
single-point model equivalent to a finite-temperature field
theory (with the inverse temperature given by the tem-
poral extent). Klinkhamer and van Baal (1984) have con-
structed several such twists. Let us write down the most
useful one. The twist tensor is given by

0 —2kX4k%2—1) 2k(4k>—1) 2k*(4k>—1)
0 2k (2k +1) 4k2—1
Nuv=No 0 2k (2k —1) |’
0
(5.54)

Rev. Mod. Phys., Vol. 59, No. 1, January 1987

where N and k are integers. N is related to Ny and k by
N =2N}k(4k*—1) . (5.55)

The TEK model with the above twist is then equivalent,
at k =0, to a gauge theory in a periodic box of sides
NoXN; XNzXN3 where

Ny =2Nok(2k —1),
N,=Ny(4k?*—1),
N3 =2Nok (2k +1) .

This is obviously a finite-temperature theory. The lattice
temperature 7T is
1
N, od ’

(where a is the lattice spacing) and becomes equal to the
physical temperature in the limit Ny— o0, a—0 with
(Noa)="{fixed.

At sufficiently high physical temperature the gauge
theory is expected to deconfine. The order parameter for
deconfinement is the Polyakov-Wilson line,

No—1
W=Tr [ Uo(x,0),

t=1

(5.56)

where Uy(x,?) is the timelike link originating at the site
labeled by (x,?) [x is the (d — 1)-dimensional position vec-
tor]. W is thus the product of links along a straight time-
like line running from one end of the box to the other and
hence closed by virtue of periodic boundary conditions.
In the confined phase, W =0, while W40 signals decon-
finement.

In the above “hot”-twist TEK model the reduced Wil-
son line is simply given by

NO
WR =TrU0 . (5.57)

An extreme weak coupling, the functional integral is
dominated by the following twist-eating configuration:

(0) —1 o p2k(2k +1)(4k2—1) q 4k (1—4k2)
Uy'=0Q;1 ®P; [0}

’

0) _ pk+1 o p2k(2k + 1)k +1) 5 —(2k +1)2
Ui’'=P;7 ®P; Q3

UL — p, @ p2kk+1 g —4k (5.58)
2 = 1® 2 Q2 ’

(0) 1—k (1—2k2)(2k —1) 2k —1)2
Uiy'=Pi "®P, Q3 )

where (P,Q;) are No XNy matrices of the form given in
Eq. (5.28), and (P,,Q,) are similar M, XM, matrices
where M, =2Nyk (4k?—1). Thus in weak coupling

NO
W=TrU,°+0,

while in strong coupling TrU Z)VO =0 due to standard
reasons. Hence at some intermediate coupling there is a
deconfining phase transition. Numerical results on this
transition will be discussed in the next section.

The hot twist discussed above is one of several choices
that generalize the TEK model to finite temperature. A
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general analysis of hot twists has been carried out by Fa-
bricius and Korthals-Altes (1984).

Hot twists may also be used to write down Hamiltoni-
ans for TEK models (Klinkhamer, 1984b). This is done
by considering the hot-twist model for Ng=1 and writing

ZTEK(NO= 1 )‘:Tr?TEK

for ayg—0, and ?TEKzexp(—aofITEK), where ﬁTEK is
the desired Hamiltonian.

There is an alternative way to simulate finite-
temperature effects in lattice gauge theories. This in-
volves a symmetric box, i.e., the same number of lattice
sites in all directions, but with asymmetric lattice spac-
ings. Euclidean invariance in the continuum limit then
necessitates use of asymmetric couplings, i.e., different
couplings in front of spacelike and timelike plaquettes.
Let a and a, be the spacelike and timelike lattice 'spac-
ings. When

t=a/a,

is large enough, the physical-temporal extent is much
smaller than the spatial extent, and one has a finite-
temperature situation. The action now reads

3 3
Szz Ba‘ 2 Pij+B'rzPOi ’ (5.59)

i#j=1 i=1

where P;; and Py; are the standard spacelike and timelike
plaquettes; respectively. The two bare couplings f3,(a,&)
and f3.(a,£) are functions of &, but in the weak coupling
region they are related to each other to respect Lorentz in-
variance (Karsch, 1982):

1 1 2
(a,8)= —c,(E)+0(gE) ,
Bota )=+ Fes(E)+Oleh .
Bla,f)=—F— +Ec,(6)+0(gh) .
gr(a)

g2(a) is the Euclidean coupling on a symmetric lattice.
The functions ¢, (&) and c¢,(£) are known in perturbation
theory.

A TEK version of the above model may easily be con-
structed (Das and Kogut, 1984c, 1984d). The reduced ac-
tion now reads

3
S= —BO' 2 Z,]TT(U,UJU,TUJT)
istj =1

3
—B, S ZoTr(UU; USU) +H.c.

i=1

(5.61)

The twists in Eq. (5.61) are the symmetric twists—the
same as in the zero-temperature TEK model.

G. Other TEK models
TEK versions of other models containing zero N-ality

fields may be constructed in a way essentially like that of
the gauge theory. Several such models have been con-
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structed and studied. Of particular interest are two-
dimensional chiral models. These models share some
features of the four-dimensional gauge theory: they are
asymptotically free and they have the same Migdal-
Kadanoff recursion relations. TEK chiral models have
been constructed and studied using Monte Carlo methods
(Eguchi and Nakayama, 1983; Aneva, Brihaye, and Rossi,
1984; Das and Kogut, 1984a; Gonzales-Arroyo and
Okawa, 1984).

H. Continuum TEK models

TEK models for continuum theories may be construct-
ed, at least formally (Gonzales-Arroyo and Korthals-
Altes, 1983). We consider, for example, a two-
dimensional model. The algebra of the twist matrices
reads

2mri
Tol'j=e——TI'1T .
ol eN ilo

Let us write I',=exp(iy,). Then the y,’s obey the alge-
bra

(5.62)

2mri
Vil=——-1, 5.63
[Yo71] N (5.63)
where I is the identity matrix. One can now write
D(x)=exp ¥k (5.64)

and proceed to reduce a field theory in the same way as
we did for continuum QEK models. However, it is clear
that the matrices ¥, do not have any finite-dimensional
representation. This limits the usefulness of this formula-
tion.

I. QEK vs TEK

Let us conclude this section by a comparison of the two
ways of reducing a large-N gauge theory. In the QEK
reduction N is as large as the volume of the equivalent
field theory, i.e.,

N=L?.
In the TEK models, however,
N=Ld%2

Thus, for a given N, finite-volume effects are less severe
in TEK models. For numerical simulations of these one-
point models the TEK model is much better since, for the
same value of N, one is simulating a much larger system.
The formulation of TEK models is, of course, much more
elegant than their QEK counterparts. The integration
measure is simple and does not involve constraints.
Furthermore, even in the pure gauge theory the leading
finite- N corrections in the QEK model are of order 1/N
due to the presence of constraints. For the TEK model
these corrections are of order 1/N2, just as in the full
field theory. Moreover, since for TEK models N2=L*,
finite- N corrections are simply finite-volume corrections.
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One disturbing feature of all reduced models is that the
large-N and thermodynamic limits have to be performed
simultaneously. In a general field theory there is no a
priori reason why these two limits should commute. It
would be much nicer if one could obtain a reduced model
for any finite volume. This would allow one to take the
large- N limit for a finite volume and finally take the ther-
modynamic limit. Such models have not, however, been
constructed so far.

VI. NUMERICAL RESULTS

With the advent of Eguchi-Kawai models it has be-
come possible to simulate large-N field theories numeri-
cally. Monte Carlo and Langevin equation method stud-
ies have been carried out for several interesting models
and have yielded important insight into the nonperturba-
tive structure of these theories.

A. QEK models

Bhanot, Heller, and Neuberger (1982a) have performed
Monte Carlo simulations on the naive Eguchi-Kawai
model and have shown, by considering the order parame-
ter ((1/N)TrU, ), that the [U(1)]? symmetry protecting
open lines from acquiring nonzero values is broken. They
also showed that this symmetry is not broken in the QEK
model. These calculations were performed with N =5.

The evidence for breaking of the [U(1)]¢ symmetry for
the EK model has been confirmed by more accurate stud-
ies by Okawa (1982a), where an efficient way of updating
the links was used. This was done for various values of N
up to N =10. Studies of the QEK model for higher
values of N (up to N =20) (Bhanot, Heller, and Neu-
berger, 1982b; Okawa, 1982b) showed that this model has
the same phase structure as that expected from the stan-
dard Wilson theory. In particular, the QEK model with
the standard Wilson action has a first-order phase transi-
tion at about B8/N =0.3. This is not a deconfining transi-
tion; rather, it has the same nature as the transition ob-
served at N =4 and 5. It has also been checked that
quantities like the internal energy behave in accordance
with the results of a weak coupling perturbation expan-
sion around the correct vacuum in the relevant region.
Monte Carlo studies of the quenched chiral model in two
dimensions have also been performed (Heller and Neu-
berger, 1982b; Bhanot, 1983). As opposed to earlier ex-
pectations, detailed studies show that there is no first-
order phase transition in this model.

B. TEK models

As discussed earlier, TEK models are better suited for
numerical work. Extensive numerical simulations of vari-
ous TEK models have been carried out. In the following
we summarize some of the important results.
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1. Two-dimensional chiral models

Two-dimensional SU(N)XSU(N) -chiral models pos-
sess several properties similar to those of the four-
dimensional gauge theory. They are asymptotically free
and possess a mass gap. Recently an exact solution to a
chiral model for N =2 has been obtained (Polyakov and
Wiegmann, 1983). The action on the lattice is given by

S=B3 3 TrU'x +u)U(x)+H.c.], (6.1)
x p
where U(x) belongs to SU(N). The TEK version of this
model is given by

S=B3 T, U'T/U+H.c), (6.2)
I

where the I', are the two-dimensional twist matrices. A
particular representation of these twist matrices is simply
provided by the matrices P and Q defined in Eq. (5.28).
This model has been shown to be completely equivalent to
the corresponding field theory (Aneva, Brihaye, and Ros-
si, 1984; Das and Kogut, 1984a), and has been studied by
Monte Carlo methods for N =12, 24 (Das and Kogut,
1984a) and for N =10, 20, 30, and 50 (Gonzales-Arroyo
and Okawa, 1984). Invariant quantities like the internal
energy,

(E)=Re3 (TrUT,U'T)) 6.3)
n

agree very well with the corresponding object computed in
the field theory in the strong and weak coupling limits.
Both the studies also indicated that there is no first-order
phase transition at intermediate couplings. The two-point
correlation function,

G(x)=Yb—ReanD(x)U*D*(x)) ) (6.4)

was also computed to look for a mass gap (Das and Ko-
gut, 1984a). While some evidence for an exponential fall-
off of G(x) was found, the statistics were not good
enough to compute a mass gap reliably in the continuum
limit. The study of the correlation function, however, re-
vealed a strange nonanalyticity in the weak coupling edge
of the intermediate coupling region. In very long runs the
system seemed to flip between a “normal” state and an
“abnormal” state. In the normal state the behavior of
various quantities was consistent with that at other values
of B. In the abnormal state, however, the internal energy
was slightly lower and, more dramatically, the correlation
function was highly disordered, even becoming negative
at large x. Of course, G (x) cannot be negative in a field

 theory satisfying clustering properties—these effects

would go away at large N, where the TEK model is
equivalent to a field theory.

An explanation of this peculiar behavior has been of-
fered in terms of instantonlike finite-action saddle points
of the model (Klinkhamer, 1984c). Such nontrivial sad-
dles in the TEK gauge theory have been found earlier
(van Baal, 1983) and interpreted as analogs of torons. For
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the chiral model these are of the form

U=D(n)=IT;", (6.5)

with a classical action equal to 87°n? for small n. The
contribution of small fluctuations around such a saddle
point to various quantities may be computed. The contri-
bution to the internal energy E” is given by

2mn

E"=
CcOos N

(2+ <E >%'aussian) ’ (6.6)

while that to the correlation function G” is given by

2mn
N

G"(x)=cos (x14+x,)

X (6.7)

1—<2 ll—cos%q-x

q

)

The results for n =1 seem to be consistent with the
behavior observed in the Monte Carlo runs. The abnor-
mal behavior thus probably reflects the fact that the sys-
tem falls into one of the nontrivial extrema. It is, howev-
er, not clear how this happens, in spite of the enormous
suppression due to the Boltzmann factor. Equations (6.6)
and (6.7) clearly show that the negativity of G(x) for
large x is a finite- N effect, for large N the cosine factor
in front of the expression for G” goes to one, and G(x)
becomes positive.

Gonzales-Arroyo and Okawa (1984) pointed out that in
the TEK chiral model there are large finite- N corrections
for noninvariant quantities. In particular they showed
that (TrU) does not vanish in the weak coupling limit.
However, the value of {TrU ) in weak coupling decreases
rapidly as N increases, so that at N= o0, (TrU) =0, as in
the field theory.

2. Four-dimensional gauge theory at zero
temperature

Detailed Monte Carlo studies of the four-dimensional
pure gauge theory at zero temperature have been per-
formed for N =36 (Gonzales-Arroyo and Okawa, 1983b)
and for N =64 (Fabricius and Haan, 1984). In these
studies both Wilson loops and internal energies were mea-
sured. The string tension is extracted from the X ratio,

WILJIWI —1,J —1)
wIJ-1)wWI—-1J) "’

where W (1,J) denotes a rectangular Wilson loop of size
IXJ. These studies show that physical quantities do not
depend significantly on N.

The standard TEK model with the Wilson action
shows a first-order phase transition at /N =0.36+0.02
(Gonzales-Arroyo and Okawa, 1983b). This is manifested
by a jump in the internal energy by about 0.8 at this value
of B/N. This transition is a bulk transition: it does not
spoil confinement, but the string tension is discontinuous.
The bulk transition is similar to the third-order phase

X(I,J)=—In (6.8)
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transition found in the two-dimensional Wilson theory at
N = (Gross and Witten, 1980; Wadia, 1979). The
string tension measured on the weak coupling side of the
transition shows some tendency towards asymptotic scal-
ing. In particular, for N =64, while X(3,3), X(4,2), and
X(3,2) show some scaling, X(4,3) definitely does not (Fa-
bricius and Haan, 1984). These results are summarized in
Fig. 7. It is fair to say that asymptotic scaling has not yet
been established in TEK models on the basis of string ten-
sion studies. Nevertheless, let us quote the values of the
string tension derived from the existing data:

Vo /AL =280%20 (Gonzales-Arroyo and Okawa, 1983b),
, 6.9)
Vo/A; <264 (Fabricius and Hann, 1984) ,

where A; is the lattice A parameter. In terms of A,
the A parameter with minimal subtraction, these values
are

Vo /Amnin=19+2 (Gonzales-Arroyo and Okawa, 1983b) ,
(6.10)
Vo /Amin < 18 (Fabricius and Hann, 1984) .

This may be compared with the corresponding values for
SU(3) and SU(2):
Vo /Amin=16+3 [SU(3)]
(Bhanot and Rebbi, 1981; Pietarinen, 1981;
Creutz and Moriarty, 1982) ,
V0 /Amin=10%2 [SU(2)] (Creutz, 1980) . e

These values are not too different from those obtained at
N = w0, indicating that the N = « theory has a behavior
fairly similar to that of the realistic SU(3) theory.

Migdal et al. (1984) have used Langevin equation

el & ¢ N=25 { N=36
P
o 120} ; 130}
wl L
= sof 5 § of {
a0t 90
520 25 30 35 5 20 25 30 35
3 3
l § N=49 N=64
a0l 3 140} 3
<L r
F 2o} § ¢ < 120] 3 t i
L =
100} 100}F
5 20 25 30 35 620 25 30 35
3 3

FIG. 7. T./Ag vs & for asymmetric-coupling TEK model at
N =64 (reprinted from Das and Kogut, 1984d).
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methods to study the TEK model for N =9, 16, 25, and
36. While they found plaquette energies to be indepen-
dent of N for N greater than 16, larger Wilson loops

showed detectable 1/N? corrections. This is direct nu- -

merical evidence for the fact that finite-N corrections in
the TEK model start at O(1/N?). Combining their data
with those of Gonzales-Arroyo and Okawa (1983b), Mig-
dal et al. obtained an improved value for the string ten-
sion:

Vio/A;~345 . (6.12)

Migdal et al. have also calculated the density of eigen-
values p;;(a) of the untraced Wilson loop matrix:

uy=zBulvivliuy . (6.13)

In . the strong coupling side of the phase transition the
eigenvalues are distributed uniformly over the entire inter-
val (—,7). However, for B/N >0.36, a clear gap is seen
in the spectrum—the magnitude of the phases of the
eigenvalues are all less than some number «., i.e.,

la| <ac<m.

This behavior of p(a) is identical to that in the solvable
two-dimensional theory (Gross and Witten, 1980; Wadia,
1979). In fact p; () shows excellent agreement with the
exact formula obtained in two dimensions. Such an
agreement has also been observed in the SU(2) theory
(Makeenko et al., 1982; Belova et al., 1984). Knowledge
of the spectral density may be used to compute the vari-
ous moments of the Wilson loop matrix:
,uf,J=<—jlvtr( U,"J)>

“+T
= pla)cosnada .

(6.14)

Some of these moments turn out to be negative. It has
been argued that this is evidence for a lack of correspon-
~dence between N = o QCD and the naive Nambu-type
string theory (Migdal et al., 1984).

In the above-mentioned studies clear evidence for scal-
ing has not been found. Clearly a much more careful in-
vestigation has to be carried out before drawing any firm
conclusion about the physics.

3. Four-dimensional pure gauge theory at finite
temperature

At a sufficiently high temperature gauge theories are
expected to undergo a deconfinement phase transition.
Such a phase transition may be observed in the laboratory
in the near future. At the theoretical level the deconfin-
ing transition has indeed been observed and studied in
SU2) (Kuti et al., 1981; McLerran and Svetitsky, 1981)
and SU(3) (Celik et al., 1983; Kogut et al., 1983; Svetit-
sky and Fucito, 1983) pure gauge theories. For SU(2) the
transition is second order, while SU(3) shows a strong
first-order transition—in conformity with expectations
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based on general universality arguments (Svetitsky and
Yaffe, 1982). For N >4, universality arguments do not
predict the order unequivocally. However, strong cou-
pling mean-field studies show a first-order transition
(Green and Karsch, 1984; Gross and Wheater, 1984; Ogil-
vie, 1984). Numerical studies for SU(4) seem to vindicate
these predictions (Batrouni and Svetitsky, 1984; Wheater
and Gross, 1984). It has been argued that the N =
theory shows a first-order transition (Gocksch and Neri,
1983; Ogilvie, 1984; see, however, Pisarski, 1984).

The deconfinement transition in pure SU( 0 ) QCD has
been studied quite extensively by Monte Carlo simulation
of TEK models. This sheds important light on the con-
finement mechanism, and comparison of the results with
those of the SU(3) theory provides a basis for examining
the validity of the large- N approximation itself. Further-
more, deconfinement serves as an excellent laboratory for
studying the continuum limit of lattice gauge theories.
This is particularly so if the transition is first order. In
that case it is fairly simple to pin down the critical tem-
perature for deconfinement quite accurately. In terms of
the critical coupling g2, the deconfining temperature 7,
is given by

1

= Noa(@d) ’ (6.15)
where N, is the temporal extent of the box and a(g?) is
the lattice spacing at coupling g.. One could now mea-
sure g, for various values of N, and test whether Eq.
(6.15) is consistent with the asymptotic freedom predic-
tion for a (g2). If so, one is simulating continuum physics
and T, is the physical deconfinement temperature. [The
early SU(2) and SU(3) studies seemed to show such a scal-
ing behavior. Recent work on SU(3) (Kennedy et al.,
1985), however, shows that asymptotic scaling does not
set in before Ny=10.]

Gocksch et al. (1984) performed Monte Carlo simula-
tion of their version of the hot TEK model for N =11
and Ny=2 and 3. They indeed found a sharp jump in the
thermal Wilson line with evidence for coexisting phases
and interpreted this to be a physical first-order deconfin-
ing transition. It is not clear, however, whether this was
really so, as we shall see shortly. Furthermore, this model
has been shown to be equivalent to the finite-temperature
field theory only up to one loop in the perturbation ex-
pansion. An exact equivalence has yet to be shown. In
addition, there is no evidence for scaling in the data.

There is a serious problem in studying deconfinement
at N = o. The zero-temperature theory with the Wilson
action has a first-order bulk phase transition. This transi-
tion is also present in the finite-temperature theory. Since
the string tension drops discontinuously as one crosses
this transition from the strong coupling side, the confine-
ment length increases abruptly. For moderate values of
Ny this makes the confinement length larger than N,
thus simulating a deconfining transition and forcing the
Wilson line to jump discontinuously. The bulk transition,
however, has nothing to do with physics—it is a lattice
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artifact. Thus the ‘“deconfinement” it induces is not
physical deconfinement. The interference between the
bulk transition and the deconfinement transition has been
observed in Monte Carlo simulations of the asymmetric-
twist hot TEK model for Ny=2,3 (Das and Kogut,
1984b). Further simulations (Fabricius, Haan, and Klin-
khamer, 1984) indicate that this interference persists up to
Noy=4. To obtain any information about physical decon-
finement, one must ensure that the two transitions are
clearly separated.

In principle such a separation is possible. For suffi-
ciently large N, the deconfinement transition is pushed
into the weak coupling region, while the bulk transition
remains where it is (around 8/N =0.350). However, this
is a rather impractical method. From Egq. (3.55) N grows
as N (2,. For the minimal value of K, i.e., K =1 (for which
the above simulations have been performed), N =96 for
No=4 and N =150 for Ny=5. This is extremely time
consuming even on large supercomputers.

SU(N) lattice gauge theories with the Wilson action
have bulk transitions for N >4 which are artifacts of the
particular action chosen. In fact, the interference between
bulk and deconfinement transitions has been observed for
N =4 (Batrouni and Svetitsky, 1984). For finite N, how-
ever, one can add a negative adjoint piece to the action
and adjust the adjoint coupling to get rid of the bulk tran-
sition altogether. This allows one to study deconfinement
freed of the effects of the bulk transition (Batrouni and
Svetitsky, 1984). At N = « this trick does not work,
essentially because the “mixed” action theory is now
equivalent to a Wilson theory with a redefined coupling
(Makeenko and Polikarpov, 1982; Samuel, 1982; Das and
Kogut, 1984c).

Nevertheless, it is indeed possible to decouple the tran-
sitions in the asymmetric coupling version of the hot
TEK model (Das and Kogut, 1984c). This formulation
has the advantage of having a continuously adjustable
parameter—the asymmetry parameter £. Since the twists
are the same as the symmetric twists of the zero-
temperature TEK model, the possible values of N are
much less restricted than those of the asymmetric-twist
model. Monte Carlo simulations with N =16, 25, 36, 49,
64, and 81 (Das and Kogut, 1985a, 1985b) show that with
a sufficiently large & the bulk transition disappears. The
Wilson line, however, continues to jump in a discontinu-
ous fashion, providing evidence for a first-order deconfin-
ing transition freed from the effects of any bulk transi-
tion. This is supported by the presence of two-state sig-
nals and hysteresis loops. In most cases this happens at a
value of & for which the critical coupling is not in the
weak coupling region. At N =64, £=1.5 and N =81,
£=1.5 the bulk transition is still present, but is clearly on
the strong coupling side of the deconfinement transition.

The N =64 data, in fact, show some tendency towards
scaling. Let T, denote the physical deconfining tempera-
ture. If a(B./N) is the spatial lattice spacing at the criti-
cal coupling B, and £ is the asymmetry parameter, one
has
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Te= Lo (6.16)

If B, is in the asymptotic scaling region, one would have

T _¢

Az L

51/121
247* B

11 N

1N
48 B,

where Ag is the “Euclidean” A parameter. Reversing the
argument, one could calculate T,/Ap using Eq. (6.17)
and see whether this is independent of § and L. For N
less than 64 one does indeed find a gross violation of scal-
ing. For N =64, however, there is some tendency to-
wards scaling. This is evident from Fig. 7, where T./Ag
is plotted against £ (a flat curve signifies perfect scaling).

To establish scaling properly much more work has to
be done. Nevertheless we can get some idea of the value
of T, assuming that scaling has already set in. The
N =64, £=1.5 data give

] ) (6.17)

Using the string tension data quoted earlier (Fabricius and
Haan, 1984), one has

[

Vo

compared to

=0.42+0.05,

4

Vo

The value of T,/V'o at N = o is thus rather close to that
at N=3. To get a really good number, however, one
must evaluate o on the asymmetric lattice. This involves
computing the connected correlations of Wilson lines,
which vanish in TEK models due to exact factorization.

Clearly more work is needed to establish scaling prop-
erly and to extract physically meaningful numbers. The
numerical work done so far is certainly encouraging,
though not definitive. The fact that the deconfinement
temperature in physical units is close to the SU(3) value
indicates that the confinement mechanisms at N = « and
3 are similar. This means-that the large- N approximation
is probably a good approximation to the real world. It is
certainly worthwhile to continue to investigate the large-
N limit, particularly on the analytic front, where there is
more chance of success than for the N =3 theory.

=0.50+0.05 (N =3).
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