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The most important single attribute of noncovariant gauges is their ghost-free nature. Although nonco-

variant gauges have been an integral part of quantum field theory for many decades, their effectiveness in

the quantization of non-Abelian theories and their broad range of applicability have only recently been ap-

preciated by theorists at large. The purpose of this review is to explain and illustrate the essential charac-
teristics of some typical noncovariant gauges, such as the axial gauge, the planar gauge, the light-cone

gauge, and the temporal gauge. The author's aim is to acquaint the reader not only with the basic proper-

ties of these ghost-free gauges, but also with their deficiencies and advantages over covariant gauges, their

computational idiosyncrasies, and their dominant areas of application.
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t. iNTRODUCT)ON

A. Overview

After playing second fiddle to their covariant counter-
parts for many a decade, noncovariant gauges are finally
making a name for themselves by acquiring an ever.
increasing share of the flourishing, if risky, "gauge mar-
ket." There are sound reasons for this popularity, the
most important one being the decoupling of fictitious par-
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1068 George Leibbrandt: introduction to noncovariant gauges

ticles, or ghosts, from the theory. As a result, all Feyn-
man diagrams involving ghost loops can be shown to van-
ish, a circumstance that simplifies perturbative calcula-
tions. There is another reason why ghost-free gauges are
popular. Some of today's most sophisticated models, like
superstring theories in the light-cone gauge, are more
tractable, and certain field-theoretic properties, such as
the ultraviolet finiteness of supersymmetric Yang-Mills
theory, are more transparent in a noncovariant gauge.

A powerful and indispensable tool in theoretical discus-
sions, from quantum electrodynamics to gravity and
superstring theories, ls the principle of gauge invallance.
One of the earliest references to gauge -invariance dates
back over 50 years to the pioneering work of Weyl, who
exploited this principle in the quantization of the
Maxwell-Dirac field Cu. riously enough, this quantization
was performed in the temporal gauge, which is one of the
ghost-free gauges to be reviewed in this project.

To quantize a theory with gauge symmetry it is neces-
sary to eliminate the unphysical gauge degrees of free-
dom. The standard procedure is to break the gauge syrn-
metry by imposing a gauge condition on the field vari-
ables. The explicit form of this gauge condition is, within
the confines of a giveh theory, largely dictated by compu-
tational convenience. Even so, the number of gauges is
vast: some are linear and covariant, others nonlinear;
some are homogeneous but noncovariant, others inhomo-
geneous, and so forth.

Fortunately, we can divide the majority of gauges into
two categories. The first category consists of covariant
gauges like the Feynman gauge and the Landau gauge,
whose reliability has been tested in numerous computa-
tions. The second category contains the noncovariant
gauges, including the familiar Coulomb gauge and the
gauges to be studied in this paper, namely, the axial
gauge, the planar gauge, the light-cone gauge, and the
temporal gauge.

The purpose of this article is to study the essential
features of these four gauges, all of which belong to the
"axial" type and are defined in terms of a fixed, nonco-
variant vector. We caution the reader not to regard this
review as the final word on ghost-free gauges, but to view
it merely as a guide to the literature and to keep an open
mind, especially about issues currently under attack.
Among the unsettled problems are the proper use of the
Coulomb gauge in non-Abelian theories, the correct im-
plementation of the temporal gauge in the context of path
integrals, and the overall role played by the principal-
value prescription in the treatment of spurious singulari-
ties.

Finally, a comment about the limitations of this pro-
ject. We have omitted, except for occasional mention,
such important topics as the Coulomb gauge and stochas-
tic identities. Nor is there any detailed discussion about-
phenomenological aspects or the impact of fermions. We
also decided, for the sake of brevity, to present the axial,
planar, and light-cone gauges in the elegant and con-
venient path-integral formalism, and the bulk of the ma-
terial on the temporal gauge in the canonical formalism.

B. The gauge zoo

Covariant gauges

I.r,„=— (8"3„' )
2X

(1.2)

A, is the gauge parameter that is taken to be real. For
A, ~O, systems (1.1) and (1.2) yield the Landau gauge, and
for k —+1 we recover the Feynman gauge.

In order to help us pinpoint both the similarities and
differences between covariant and noncovariant gauges,
we recall the following dominant features of covariant-
gauge Feynrnan integrals.

(1) The divergent parts of all one-loop integrals are local
functions of the external momenta. (Their finite parts
may, of course, be nonlocal functions of the external mo-
menta and masses. )

'
(2) The divergent parts of one-loop integrals give rise to

simple poles only.
(3) Naive power counting is valid.
(4) A Wick rotation from Minkowski space to Euclide-

an space may always be performed without crossing a
pole, because Feynman's i c prescription places the poles
of a typical propagator like (q —m +iE) ', s&0, in the
second and fourth quadrants of the complex qo plane.
Thus qo ——+(q +m —ie)' gives two poles, qo

—'

=+(q +m )' +is', with E'= —,E(q +m ) '~, where m

is a mass parameter. (See Fig. 1.)
(5) Covariant-gauge integrals preserve Lorentz invari-

ance, which permits application of the efficient tensor
method. For the integral

I„,= I d'"qq„q. lq'(q —p)'] ',
for instance, symmetry considerations and Lorentz invari-

~Unless otherwise specified, we shall work in the context of
Yang-Mills theory (Klein, 1939; Yang and Mills, 1954; Shaw,
1955},where 2„'(x) denotes the gauge field.

The success of covariant gauges extends over many
years and there is no denying that even nowadays the ma-
jority of calculations in quantum field theory are per-
formed in such popular covariant gauges as the Landau
gauge and the Feynman gauge. Of course there are com-
pelling reasons for this popularity. Technical problems
are under control and there exist elegant procedures —for
example, in the framework of dimensional
regularization —for computing covariant-gauge Feynman
integrals.

Especially prominent among the covariant-gauge
choices has been the Feynman gauge, which can be de-
duced from the generalized Lorentz gauge'

8"A „'(x)=B'(x),
where 8 is an arbitrary function that is independent of
the gauge field, and where the gauge-fixing part of the
Lagrangian density is given by
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I q

li

general axial gauge specified by

n" A&(x)=0, p=0, 1,2, 3, n =no —n (1.4)

0 (+)
x q

n„=(no, n) is an arbitrary constant vector that defines a
preferred axis in space, hence the name "axial" gauge.
Different functional forms of the gauge-fixing part Lr,„
of the Lagrangian density, coupled with special values of
n, give rise to some particularly convenient axial-type
gauges, 'such as the pure axial gauge (n &0), the planar
gauge (n & 0), the light-cone gauge (n =0), and the tem-
poral gauge (n &0). (See also Tables I—III.) These
gauges form the nucleus of the present review.

The pure axial gauge, also called the homogeneous axial
gauge, is specified by

n" A&( x)=nA'(x—)=0, n &0,
FIG. 1. Location of poles in the complex qo plane. with

Lr,„=— (n A'), a—+0
2A

(1.6)

2. Noncovariant gauges

One of the oldest noncovariant gauges is the Coulomb
gauge, or radiation gauge:

k
A "(x)=0, k = 1,2,3,

Bx
(1.3)

which has been applied literally by generations of physi-
cists, chiefiy in quantum electrodynamics. In non-
Abelian models, the dominant noncovariant gauge is the

ance dictate an ansatz of the form

I„„=A(p')o„„+B(p)p„p, .

The coefficients A,B are determined by multiplying I&,
first with p„p, then contracting p and v, and finally
solving the resulting two equations for A, B.

These five properties have been tested extensively and
are firmly established. In fact, most of them are also
shared by noncovariant gauges (Sec. I.B.2).

Covariant gauges possess three major advantages: They
preserve relativistic invariance; they are easy to apply,
particularly in conventional theories like quantum electro-
dynamics; and there exists a-uniform prpscription for the
momentum-space singularities of the propagators, known
as Feynman's ic prescription. But there are also disad-
vantages in using covariant gauges. The principal draw-
back is the need for ghost particles, which complicate per-
turbative calculations, especially in non-Abelian theories.
In addition, most covariant gauges are plagued by Ciribov
copies (Bassetto, 1987). Another disadvantage surfaces in
the treatment of sophisticated models such as supersym-
metric Yang-Mills and superstring theories, which are
awkward to handle in a covariant gauge, yet become
amazingly tractable in noncovariant gauges like the
light-cone gauge. It is this limited range of applicability
that has led to the current fascination with noncovariant
gauges.

(footnote 2), where a is the gauge parameter. Similarly,
the planar gauge is defined by

n A'(x) =B'(x), n &0, (1.7)

n.A'(8 In )n.A', a=+1,
20!

and the light-cone gauge by

n.A'(x) =0, n =0,

(1.8)

(1.9)

(1.10)

(1) Their divergent parts are generally local functions of
the external momenta.

(2) They yield at most simple poles.
(3) They obey naive power counting.

See footnote 4.

Noncovariant gauges possess three major advantages.
(1) Ghosts decouple from physical S matrix elements

(although ghosts are required in the discussion of the
Becchi-Rouet-Stora identities) .

(2) Some aspects of field theory become more transpar-
ent in a noncovariant gauge, such as the proof of ultravio-
let finiteness of supersymmetric Yang-Mills theory in the
light-cone gauge.

(3) Certain sophisticated models like superstring
theories are more tractable in a ghost-free gauge.

However, noncovariant gauges also possess disadvan-
tages. Feynman integrals are trickier to handle and
higher-order loop calculations become more demanding.

It may come as a surprise, but ghost-free gauges share
many of the properties of covariant gauges, provided a
sensible prescription is used for the unphysical singulari-
ties of (q n) '. This is certainly true for the special
gauges in Eqs. (1.5), (1.7), and (1.9), whose Feynman in-
tegrals possess these characteristics to one-loop order:

Rev. Mod. Phys. , Vol. 59, No. 4, October 1987
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TABLE I. Principal covariant gauges.

(1) generalized Lorentz gauge' ":
F'=0"A„'(x)=B'(x), p =0, 1,2, 3,
Lf,„——— (8"A )

2k
(a) The choice A, —+0 gives the Landau gauge (or transverse Landau gauge). '"
(b) The choice A,~1 leads to the Feynman gauge. "
(c) The generalized Lorentz gauge with 8 =0 is sometimes called the Fermi gauge.

(2) 't Hooft gauges ('t Hooft, 1971a, 1971b; Abers and Lee, 1973; Itzykson and Zuber, 1980;
Ryder, 1985):

F =a~A„' g(.—, r &)=B,
Lr,„=— (f)"A „' —ig(U, r 'p) )2,1X

2g P

where g is the gauge parameter (for historical reasons we use the letter g rather than 2); U/V 2
is the vacuum expectation value of the Higgs field y, and t' are generators.

(a) The choice $~0 yields the renormalizable Landau gauge.
(b) The choice g~oo gives the unitary gauge. " See also Weinberg (1973).

(3) Background field gauge (De Witt, 1967b, 1967c; 't Hooft, 1975; Abbott, 1981; Capper and
MacLean, 1981; McKeon et gl. , 1985b; Sohn, 1986):

F'= 8"Q„'(x)+gf 'b'A „Q'~= B'(x),
where Q„' and A ~ denote quantum fields and background fields, respectively,

( gP Q
& +gf a bc A

b
QcP)2.1

'Abers and Lee (1973).
Coleman (1975).

'Faddeev and Slavnov (1980).
dHuang {1982).
'Itzykson and Zuber (1980).

TABLE II. Principal noncovariant gauges.

(1) Coulomb gauge or radiation gauge' ' [see also Heckathorn (1979), Muzinich and Paige
(1980), and Adkins (1986)]:

F'=a'A„'(x)=0, k =1,2, 3,
(gkA &)2 0

2A
(2) (a) Axial gauge, or pure axial gauge, or homogeneous axial gauge (Sec. IV):

F'=n "A„'(x)=0, n (0, n =no —n

Lp, ————(n "A„'), o.~0 .2'
(b) Inhomogeneous axial gauge:
F'=n "A„'(x)=a'(x), n ~0,
Lf,„=— (n "A„')2'

(3) Planar gauge (Sec. V):
F'=n&A„'(x) =8'(x), n (0,
Lf;„——— n A'9 n A', +=+1 .

"1
2cxn

(4) Light-cone gauge (Secs. VI and VII):
F'—=n"A'„(x)=0, n =0,
Lf„=— {n"Ap), a—+0 .

2A
(5) Temporal gauge, or Heisenberg-Pauli gauge, or Weyl gauge (Sec. VIII):

F'=n"A„'=Ao, n )0, np ——(1,0,0,0),
Lf;„=— (n "A„'), a~0 .

2&x

'Abers and Lee (1973).
Coleman (1975).

'Faddeev and Slavnov (1980).
Huang (1982}.

'Itzykson and Zuber (1980).

Rev. Mod. Phys. , Vol. 59, No. 4, October 1987
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TABLE III. Other gauges.

(1) Abelian gauge ('t Hooft, 1981; Min et al. , 1985).
(2) Dirac gauge (Dirac, 1959; see also Fradkin and Tyutin, 1970).
(3) Flow gauges (Chan and Halpern, 1986).
(4) Fock-Schwinger gauge, or coordinate gauge (Fock, 1937; Schwinger, 1951; Cronstrom, 1980;
Shifman, 1980; Durand and Mendel, 1982; Kummer and Weiser, 1986):

F'=(x"—z")A„', z is "gauge parameter. "
(5) Nonlinear gauge conditions (Dirac, 1951; Nambu, 1968; 't Hooft and Veltman, 1972;
Fujikawa, 1973; Shizuya, 1976; Zinn-Justin, 1984).
(6) Poincare gauge (Schwinger, 1970; Dubovikov and Smilga, 1981; Brittin et al. , 1982; Skager-
stam, 1983):

F'—=x"A„'(x) .
(7) 't Hooft —Veltman gauge ('t Hooft and Veltman, 1972; Mann et al. , 1984; McKeon et al. ,
1985a).F:—8 A +A2, g gauge parameter,

I.f,„————(B.A+RA )

(8) Wess-Zumino gauge (Wess and Zumino, 1974b; Gates et al. , 1983).

(4) Feynman integrals in the pure axial gauge and pla-
nar gauge satisfy the couanant gauge -property (5), but
Feynman integrals in the light-cone gauge do not.

We shall examine these and other properties later in the
relevant sections.

3. Some interesting gauges

The next three tables contain some high-profile gauges,
as well as a few lesser known ones. Using the same nota-
tion as in Sec. III we represent the homogeneous gauge
condition by I' =0, the inhomogeneous gauge condition
by I"=8'(x), where 8' is a function of x, and the
gauge-fixing part of the Lagrangian density by I.r,„. For
the gauge parameter we shall adhere, whenever possible,
to the following convention: in covariant gauges, we
denote the gauge parameter by A, , and in noncovariant
gauges by n.

C. Outline

Section II contains some elementary definitions from
group theory and the theory of gauge fields, while Sec. III
reviews the general notion of a gauge constraint. An im-
portant tool is the Faddeev-Popov determinant, which is
derived in the axial gauge and the Lorentz gauge.

Section IV deals with the axial gauge. After some
theoretical considerations emphasizing the decoupling of
ghosts, we discuss the principal-value prescription and
evaluation of axial-gauge Feynman integrals. In the
second half we obtain a Ward identity, look at renormali-
zation and unitarity, and compute the gluon self-energy in
the general axial gauge, a&0, and the pure axial gauge,
a=0. The section concludes with a description of Ein-
stein gravity in the pure axial gauge.

The planar gauge in Sec. V is characterized by +=+1
and by a. gauge-fixing part that differs substantially from
that in the axial gauge. %"e witness once again the decou-
pling of ghosts, but also draw attention to the non-
transversality of the Yang-Mills self-energy and the im-

portance of ghosts in the context of Becchi-Rouet-Stora
(BRS) invariance.

Sections VI and VII are devoted to the light-cone
gauge. Section VI begins with a.brief history and some
basic definitions, and then focuses on the main problem:
the correct treatment of the unphysical singularities aris-
ing from factors like (q n) ' in the gluon propagator.
We explain why the principal-value prescription is unsuit-
able for the light-cone gauge and suggest an alternative
method. A fascinating feature of the new prescription is
the appearance, in the gluon self-energy and three-gluon
vertex, of nonlocal expressions that require the introduc-
tion of nonlocal BRS-invariant counterterms. The useful-
ness of the light-cone gauge and its tremendous range of
applicability are further underscored in Sec. VII by de-
tailed examples from gravity, superstrings, and supersym-
metric Yang-Mills theory.

Section VIII starts with a review of the history and
main attributes of the temporal gauge. This capricious
gauge continues to baffle investigators for a variety of
reasons, one difficulty being the correct implementation
of Gauss's law. We study the quantization of gauge
theories in the temporal gauge in both the canonical and
path-integral formalisms, and we also consider some re-
cent pragmatic approaches. Our philosophy for this sec-
tion is to inform the reader of the pros and cons of the
temporal gauge, but at the same time to refrain from ex-
tolling the virtues of any particular viewpoint.

The feasibility of performing two-loop calculations in
the light-cone gauge is explored in Sec. IX, where we also
comment on stochastic quantization and stochastic identi-
ties. The article concludes in Sec. X.

There are three appendixes. Appendix A lists a few
axial-gauge integrals, while Appendix B summarizes the

In the English version of the book by Faddeev and Slavnov
(1980), this gauge has erroneously been translated as the "Ham-
ilton gauge. " The proper translation should have been "Hamil-
tonian gauge. " The author is grateful to Professor L. D. Fad-
deev for clarifying this point.

Rev. Mod. Phys. , Vol. 59, No. 4, October 3987



1072 George Leibbrandt: Introduction to noncovariant gauges

I I. BASIC DEFINITIONS

In this section we establish our notation and review
some definitions from the theory of gauge fields. The
subject of gauge fields has grown tremendously in signifi-
cance during the last decade and a half and now per-
meates essentially every area of modern quantum field
theory.

The study of gauge theories is aided considerably by the
use of Lie groups, among which the compact simple and
semisimple Lie groups are of particular interest. We re-
call the following definitions from the theory of groups:
(1) A Lie group G is a group of operators that depend on
a set of continuous parameters. (2) A Lie group G is
compact if the parameters of G vary over a finite, clued
region. (3) A Lie group G is said to be simple if it has no
nontrivial invariant subgroup; G is called semisimple if it
has no invariant Abelian subgroup. Instead of dealing
with the whole Lie group, it is often advantageous to
work with the corresponding Lie algebra, defined by the
group generators and their commutation relations.

Next we introduce the notion of gauge field. A gauge
field A& is a vector field that may be expressed as
A„—= g, t'A„, where a =1, . . . , X —1, for SU(Ã), and
p=0, 1,2, 3; A@ are the components of Az, while t,
denotes the generators of the gauge group G. The latter is
usually taken to be a simple compact Lie group. The gen-
erators t, are linear operators satisfying the commutation
relations

[ t~ ~ tb ]= t~ tb —tb t~ = g fizb tc ~

C

a, b,c=1, . . . , N —1, (2.1)

where f;b =f,b, are totally antisymmetric structure con-
stants of G, and N labels the dimension of the group.
takes its values in the adjoint representation of G.

Furthermore, if the generators commute,

[ta~tb] =0 i (2.2)

6 is called a commutative, or Abelian, Lie group and the
associated field A& an Abelian gauge field. Conversely, if
the generators do riot commute, i.e., if ihe structure con-
stants in Eq. (2.1) differ from zero, we call G a noncom-
mutative or non-Abelian Lie group and the corresponding
field A& a non-Abelian gauge field.

tensor components of T& q appearing in Sec. IV. Final-
ly, Appendix C contains a collection of both massive and
massless integrals in the light-cone gauge.

We shall adhere, whenever possible, to the notation of
Bjorken and Drell (1964) and work in natural units
A=c =1. Space-time indices are denoted by greek letters
p, v, o., etc., ranging over 0,1,2,3. Internal-symmetry in-
dices are represented by latin letters a, b, c, etc. , ranging
over 1,2, . . . , X —1, for SU(N), X being the dimension
of the symmetry group. No distinction is made between
upper and lower /atin indices. VVe use a metric tensor g&
whose diagonal elements in Minkowski four-space are
given by (+ 1, —1, —1, —1).

Of special interest to the theorist are the transformation
properties of these gauge fields. Suppose we are given a
Lagrangian density I of an X multiplet I y, I

=4 of sca-
lar fields, a = 1, . . . ,X, which transforms according to an
irreducible representation of a compact simple Lie group
G (Itzykson and Zuber, 1980):

q ~p'= U(g)q, U '(g) = U (g), (2.3)

where g(x) is the generic element of G and U(g) is an
X&&N unitary matrix. It usually suffices to work with
the infinitesimal transformation

4'(x) ~%'(x) exp[ —iem(x)],

A„(x)—+A„(x)+Ops(x),

(2.6)

where A&(x) is the photon field, %(x) the spinor field,
and e, m denote, respectively, the charge and mass of
4'(x); m(x) is the gauge parameter connected with the
transformations (2.6). Here the group of transformations
G is U(1), the group of unitary transformations in one
dim en sion.

As a second example consider the Yang-Mills (YM) La-
grangian density for a massless vector field A &..

~YM 4 (Fpv) ~ a =1, . . . , N —1, v,p=0, 1,2, 3,
(2.7)

where the field strength F& reads

F„'„=BqA '„—8 A q +gf' 'A „A'; (2.8)

g is the strong coupling constant that sets the scale be-
tween gauge fields and matter fields (Huang, 1982), andf' ' are the structure constants introduced in Eq. (2.1).

g=FO+~ ~

where go is the identity, cu are arbitrary infinitesimal
gauge functions, and t' group generators,
a=1,2, . . . , X —1, for SU(1V). If co' depends on the
space-time variable x", the gauge group is called local; if
co' is independent of x", one speaks of a global gauge
group. If co' is x dependent, we must introduce a gauge
field A„, which transforms as

A„(x)—+sA„(x)=g (x)A&g '(x)+ [B~(x)]g '(x)
(2.4)

and leads to a gauge theory. To say that a certain dynam-
ical theory is a gauge theory simply means that the defin-
ing Lagrangian density L, is invariant under the gauge
transformations (2.3) and (2.4).

The concept of gauge symmetry plays an essential role
in quantum field theory. Consider, for instance, the
theories of quantum electrodynamics (QED) and quantum
chromodynamics (QCD). Quantum electrodynamics is an
Abelian gauge theory, since its Lagrangian density I.QED,

LIED = —, (F„) +% (i y —d+ey A )%' —m%'4,
(2.5)

Bp Fp =BI A

is invariant under the Abelian gauge transformations

V(x)—+ exp[ieco(x)]V(x),

Rev. Mod. Phys. , Vol. 59, No. 4, October 1 987
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The Lagrangian density (2.7) is invariant under the finite
gauge transformation (2.4); the corresponding infi ni
tesimal gauge transformation reads

5 A„'(x)=B„co'(x)+gf'"'co"(x)A „'(x) . (2.9)

For an elegant geometrical definition of the gauge field
we refer the reader to Faddeev and Slavnov (1980), or to
Konopleva and Popov (1981). This completes our very
brief review of some basic gauge theory concepts.

Ill ~ CHOOSING A GAUGE

Gauge symmetry plays an essential role in many
theoretical models from QED to supergravity and super-
symmetric string theories. According to the preceding
section, invariance of the Lagrangian density under a set
of gauge transformations implies a certain freedom in de-
fining the fields. The central question is, therefore, what
are the implications of this "gauge freedom" for either
canonical quantization or for path-integral quantization?

In the context of canonical quantization the general
procedure is to construct a complete set of canonical coor-
dinates and momenta whose values at an initial time
t=to determine their values at some future time t [see,
for instance, Coleman (1975), Kummer (1976), or Lee
(1976)]. However, if there is a "gauge freedom, " it is im-
possible to find such a complete set of coordinates and
conjugate momenta, since one may always choose a gauge
transformation that vanishes at t = to but is different
from zero for t & to. In the case of the photon field, for
example, not all components of A&(x) are dynamical vari-
ables, and it becomes impossible to construct an indepen-
dent set of canonical coordinates and momenta (Faddeev,
1976).

In the framework of path-integral quantization, charac-
terized by functional integration over the field A&(x), the
gauge degrees of freedom manifest themselves in a dif-
ferent manner. Due to gauge invariance, there now exist
infinitely many fields A„(x) that are physically
equivalent to Az(x) and are related by transformations of
the form Eq. (2.4). Integration over these gauge-
equivalent fields A& produces an infinite volume factor
that is proportional to f g~ dg(x) in group space, and
whose presence in the generating functional leads to ill-
defined Green functions.

For a consistent quantization in either formalism it is
clearly mandatory to eliminate the troublesome gauge de-
grees of freedom. This may be achieved by imposing on
the system an auxiliary constraint, called a gauge condi-
tion, or choice of gauge, of the form

F'[ Ap( x);y( x)]=0, b, a=i, . . . , X —1; (3.1)

X is the dimension of the group, and I" is a local func-
tional of 3& and y, with values in the Lie algebra, where
y denotes all other fields (Itzykson and Zuber, 1980). The
gauge condition (3.1) represents the equation of a hyper-
surface and may be covariant like the Feynman gauge, or
noncovariant, such as the planar gauge or light-cone
gauge. Condition (3.1) is usually linear like the Coulomb

or

with

det(M+ )—:det
b &0

5F'(x)
5~ (y)

det(M~) =det, Df cb &0,5F'[A]
5A„'(x)

(3.3a)

(3.3b)

D~„=g~5„+gf„,A~(x), a~-=
BXp

(3.4)

For infinitesimal transformations g(x) =go+co(x), where

go is the identity transformation, the Jacobian matrix M
is given by

5F'[gA (x)]
M,bx,y —=

b5' (y) s(x)=g,

5Fc
, D„'"„54(x—y) . (3 &)

sa„'
We illustrate the above formula for the Lorentz gauge

and the axial gauge.
Example l. Let us first compute det(MF) in the

Lorentz gauge F[A&]—=8~A&(y) =0, in the case of QED,
an Abelian gauge theory. Under an infinitesimal gauge
transformation, the field A& transforms as

5A~ =B„co(x), (3.6)

where to(x ) is a local gauge function. Noting that
5F/5A&(x) =B~5(x —y), we obtain from Eq. (3.3b)

det(M+)=det D z ——det(B"8 )=det(B ) . (3.7)

In QED, the factor det(B ) is a constant that can be readi-
ly absorbed into an overall normalization constant N [cf.
Eq. (3.13)].

Next consider the Yang-Mills field A&, a non-Abelian
gauge field, with

5A„'=D„' cob(x) =B„co'(x)+gf' 'co"(x)A„'(x) . (3.8)

Here 5F'/5A„' =5"8~5(x —y), so that

det(MF) =det, D&

det[5 cgp(c5 bg +cgfcbdA d )]

=det[B 5' +gf' "d"„A„"(x)+gf'""A„(x)B„"]

=det[i3 5' +gf' dA&(x)B"„], (3.9)

gauge, but it may also be nonlinear.
The gauge constraint (3.1) has to fulfill two important

criteria (Faddeev and Slavnov, 1980). First, it must be
satisfied by the transformed fields gA and sy, namely,

F'[gA„"(x) st(x)] =0, (3.2)

and, second, for a given A
&

and y, system (3.2) must yield
a unique solution g(x) subject to certain boundary condi-
tions. The second criterion implies the nonvanishing of
the Jacobian determinant (we take y=0, for simplicity)
with respect to infinitesimal transformations:
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1074 George Leibbrandt: Introduction to noncovariant gauges

since 8~A& ——0. Unlike the Abelian case, det(MF) de-

pends now on the gauge field and is no longer a constant.
As we shall see later [cf. Eq. (3.18)], the factor det(M~)
leads to ghost particles.

Example 2. We evaluate det(M+) in the axial gauge
F'[A &]:n—&A

&
——0, specified by the noncovariant vector

n&. Here

f +dg(x)b. F[gA] Q 5(F'[sA (x)])=1,

with the interpretation that

AF [A]=det(Mp )

f ~ dg(x) +5(F'[gA„(x)])

(3.12)

5r' =5"n"5(x —y),5A'
P

so that

det(MF ) =det(5"n "[5' 8„+g f '""A„])

=det(n d5' +gf' 'n A')

=det(M, „;,&) .

(3.10)

(3.11)

Since n A'=0, we find that det(M, „;,&)=det(n B5' ),
the gauge field having decoupled.

The factor det(MF), frequently denoted by b,+[A] in
the literature, can also be introduced by requiring that

"compensates" for an infinite volume factor arising from
integration over the gauge group. We shall not pursue
this approach, since it is discussed extensively in the
literature [see, for example, Capper et al. (1973), Coleman
(1975), Lee (1976), Taylor (1976), Faddeev and Slavnov
(1980), Itzykson and Zuber (1980), Ryder (1985)].

Let us incorporate condition (3.1) into the generating
functional of the Green functions. Suppose L (x) is a La-
grangian density invariant under a simple compact Lie
group (Lee, 1976), and let J„'(x) be an external c-number
vector source function for the field A&. The generating
functional may then be written as

Z[Jz]:e"—=K f D(A)det(MF) g5(F'[A]) exp i f d x[L(x)+J"A„(x)]
X

(3.13)

where

D(A)= Q + QdA„'(x), a=i, . . . , X —1,
is a local gauge-invariant measure (Capper et al. , 1973), and 8'[J„'] generates connected Green functions. The depen-
dence on y [cf. Eq. (3.1)] has been dropped in Eq. (3.13) for convenience. The normalization factor N should be such
that 8'[Jz] vanishes for J„' =0 (Coleman, 1975).

The generating functional Z may be cast into "practical form" by rewriting both the Jacobian determinant det(M+)
and the functional 5(F'[A]) as exponentials of an action. Concerning 5(F') it is advantageous to replace (3.1) by

F'[Ap(x)] =8'(x),
where 8'(x) takes its values in the Lie algebra, so that

Z[J&]=Kf D(A)det(M+) Q 5(F —8 ) exp i f d x[L (x)+J"'A„']
X

(3.14)

(3.15)

Since (3.15) is independent of 8, we may apply 't Hooft's technique ('t Hooft, 1971a, 1971b) and integrate over 8 with
the help of a judiciously chosen weight function o [8 ],

o[B ]= exp — f d x[8'(x)]
2A,

in which case

(3.16)

Z[J&]=Kf D( A) edt( M+) exp i f d x L(x) (F [A]) +J" A„— (3.17)

with A, a real parameter.
The nonlocal functional det(MF) can be exponentiated

in a variety of ways. A particularly elegant representa-
tion, based on the anticommuting c-number fields ri, (x)
and Tl, (x), reads (Coleman, 1975; Faddeev and Slavnov,
1980; Itzykson and Zuber, 1980)

det(M~)= f D(g)D(g) exp i f d x ri (x)M blab(x)

(3.18)

where the phase of the exponent (gMg) is conventional

I

(Lee, 1976). The fields q and g represent ghost particles
and obey Fermi statistics (Feynman, 1963; De Witt,
1967a, 1967b, 1967c; Faddeev and Popov, 1967; Mandel-
stam, 1968). Here these ghosts are scalar particles, but in
quantum gravity, for example, they are oriented vector
particles. The purpose of ghost particles is to eliminate
the unphysical polarizations arising from closed loops. ln
short, they restore the unitarity of the scattering matrix
and the transversality of the scattering amplitudes. For
more details we refer the reader to Faddeev and Popov
(1967), Fradkin and Tyutin (1970), Coleman (1975), Lee
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George Leibbrandt: Introduction to noncovariant gauges 10?5

(1976), Faddeev and Slavnov (1980), and Itzykson and
Zuber (1980).

Substitution of Eq. (3.18) into (3.17) yields the generat-
ing functional

Z[JI„g,g]=%f D(A)D(g)D(g)exp i f d xL'(x)

where
(3.19)

with

L'(x) =L;„„+Lr,„+Lsh„,+L,„,=L'(—A, rl, g;A, ,g ),

L;„„=—4 (I'„'„)

F;„=a„A'„—a.A „'+gf'"'A „'A'„,

Lf;„——— (F'[A„])
2A,

I.gh.„——gag,
L,„,=J" A ~ +g 'rl'+ g ~p .

M is given by Eq. (3.5), and g and g are anticommuting
c-number sources for the fields g and q, respectively.
Formula (3.19) gives rise to well-behaved Green functions.
As mentioned already, the term —1/2A, (F'[A]) breaks
the gauge symmetry, while the factor det(M+) "compen-
sates" for an infinite volume factor that arises from in-
tegrating over points in the manifold of A„'. Variation of
A& in Z[J„,g, g] leaves Z invariant, 6Z =0, and leads to
Ward identities, which will be studied in the next section.

gauges remained marginal until the early 1970s, when
more and more researchers began to exploit the absence of
fictitious particles in noncovariant gauges (Fradkin and
Tyutin, 1970; Mohapatra, 1971, 1972; Delbourgo et al. ,
1974; Gross and Wilczek, 1974; Kainz et al. , 1974; Kum-
mer, 1975). Encouraged by the ghost-free formulation of
QCD (Crewther, 1976; Frenkel and Meuldermans, 1976;
Frenkel and Taylor, 1976; Konetschny and Kummer,
1977; Amati et al. , 1978; Ellis et a/. , 1978, 1979; Hum-
pert and van Neerven, 1981a, 1981b), people wasted little
time in applying the axial gauge to other non-Abelian
models, notably gravity (Matsuki, 1979; Delbourgo, 1981;
Capper and Leibbrandt, 1982b, 1982c; Capper and
MacLean, 1982; Winter, 1984) and supergravity (Matsuki,
1980).

The purpose of this section is to examine the principal
features of the pure (or homogeneous) axial gauge and
then illustrate them with specific examples from Yang-
Mills theory, Einstein gravity, and supergravity. We shall
review the axial gauge only in the path-integral formal-
ism. Discussions in the framework of canonical quantiza-
tion may be found, for example, in Schwinger (1963),
8urnel (1982b), Huang (1982), Cheng and Li (1984),
Bassetto et al. (1984), and Cheng and Tsai (1986). See
particularly the recent paper by Simoes and Girotti (1986)
on the quantization of non-Abelian gauge theories in a
"completely fixed" axial gauge. These authors analyze in
detail the residual gauge invariance in the axial gauge
generated by local x -independent gauge transformations.

IV. THE AXIAL, GAUGE

A. General considerations

Introduction

As mentioned in Sec. I, the axial gauge (n.A =0) was
originally introduced by Il ummer (1961) in a paper deal-
ing with the quantization of the free electromagnetic
field. A year later Arnowitt and Fickler (1962) used the
axial gauge in the form A3(x)=0 to investigate the
quantization of non-Abelian gauge theories. With its
help, Arnowitt and Pickier were able to examine not only
consistency between the Lagrange and Heisenberg equa-
tions of motion, but also consistency between the equa-
tions of constraint- and the dynamical equations. They
also found that the axial gauge permitted a solution of the
constraint equations, in contrast to the Coulomb gauge
8 Ak ——0, k=1,2, 3, where the constraints can only be
solved approximately. Shortly thereafter, Schwinger
(1963) studied the axial gauge in an article dealing with
the equivalence between the Lorentz and Coulomb gauge
formulations of non-Abelian field theories. Later, Yao
(1964) carried out the first quantization of electrodynam-
ics in the gauge A3(x) =0 and then used it to demonstrate
that the assumption of manifest Lorentz covariance was
not essential in proving the spin-statistics theorem.

Despite their technical advantages, interest in axial-type

2. Decoupling of ghosts

Consider the Yang-Mills Lagrangian density for a
massless vector field A& in the presence of an external c-
number source J&(x), which depends only on the space-
time variables x":

L VM =I -+I f.+I--t+L ghost

2(x

L hOSt
=q &~DP q I eX~

=J I'A
P ~

(4.1)

while g and f' ' have the same meaning as in Eq. (2.8).
The axial gauge is then specified by

n "A„'(x)=0, n &0, (4.2)

with „=n(n , o). n[For a distinction between n &0 and
n & 0, see the papers by Delbourgo and Phocas-
Cosmetatos (1979), Humpert and van Neerven (1981b),
Burnel (1982a, 1982b, , 1983), Burnel and van der Rest-

where the fields g' and g' represent fictitious particles
and obey Fermi statistics, and

Fq dpA' d Ap+g——f'"'A„—A',
QQbd + IobcA c

p p p
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1076 George Leibbrandt: Introduction to noncovariant gauges

Jaspers (1983).] Taking the limit a~0 we obtain the
pure (homogeneous) axial gauge.

As stressed several times before, the principal advan-
tage of the axial gauge arises from the effective decou-
pling of the fictitious particles in the theory. According
to Taylor (1986), it is convenient to distinguish between
the decoupling of closed ghost lines and the decoupling of
open ghost lines. %'hile closed ghost lines may occur in
any Feynman diagram, open ghost lines occur only in
some of the terms entering the BRS identities. We shall
illustrate the decoupling of ghosts by two distinct argu-
ments. [A third argument is given in Sec. V, near Eq.
(5.11).]

Let us first consider the ghost Lagrangian

In order to see at what stage of the computation the
decoupling process actually occurs, it is useful to work
with the Faddeev-Popov determinant det(MF) [cf. Eqs.
(3.11) and (3.13)]:

det(M~)=det(n d5' +gf' 'n &') . (4.5)

Following Frenkel (1976), we initially write (f' are ma-
trices)

det(M&) = exp(Tr inM+)

= exptTrlnn 8+Trl n[1+g(n d) 'f'n &']I

=det(n B)exp[Trln[1+g(n 8) 'f'n A']I,
(4 6)

—a p ab b
LghOSt=n & DP n
Dab gaby +gfabc' c

nPDab Qabn Q+gfabcn gc
P

(4.3)

(4.4a)

(4.4b) (4.7)

and then apply the formula (Abers and Lee, 1973; Itzyk-
son and Zuber, 1980)

co
( 1)n+1

Trln(1+L) = g Tr(L")
n=1

Since the ghost vertex is proportional to nz, the gluon
propagator G& satisfies n "G& ——0, for a =0. Hence,
ghosts decouple in any Feynman diagram, whether the
ghost lines are open or closed. This simple argument ap-
plies both to the axial gauge and the light-cone gauge
(n =0).

to obtain
ao

( )n+1
det(Mb)=det(n 8) exp g g Tr[(n g) 'f'n g']".

n=1

Since the trace includes integration over coordinates, we
have explicitly

a&
( g)n +1

det(MF) =det(n 8) exp g d x, d x„
n=l

&&Tr[ni'G(x& —x2)f'A'~( x2)n G(x2 —x3) . G(x„—x))f A„(x, )] (4.8)

where x;, i =1, . . . , n, are Euclidean coordinates and
G(x; —xJ ) satisfies

gabG' (q)=
(2m. ) "q n

(4.9)

n BG(x; —x) ) =5 (x; —xi ), i,j = 1, . . . , n;
in 2'-dimensional momentum space

The factor det(n 8) in Eq. (4.8) is inconsequential and

4This limit is connected with the representation of the 6 func-
tion (Abers and Lee, 1973; Dittrich and Reuter, 1986):

5[n 3']= lim(2vra) '~ exp i d z (n 3'—)z4 1

a~o 2'
A second way of implementing the axial-gauge condition (4.2) is
to employ a gauge-fixing term of the form I.f;„——C'n. A', where
C'(x) is a Lagrange multiplier field (see, for instance, Delbour-
go et a/. , 1974; Kummer, 1975, 1976; Antoniadis and Floratos,
1983; Capper et a/. , 1986).
5The author is grateful to Professor J. C. Taylor for providing

him with the following analysis in terms of open and closed
ghost lines.

A simplistic argument would be that implementation of the
constraint n. A '=0 in Eqs. (4.4b) and (4.3) leads to
I. „„,=q 6'bn. ahab.

q+pg+ 'p Al-

FKj'. 2. Ghost loops with m external gauge bosons attached to
it. Broken lines represent ghost particles, while wavy lines
denote external gauge bosons.
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may be absorbed into the normalization constant, such as
X in Eq. (3.13). As for the exponential factor in Eq. (4.8),
each term inside the summation symbol gives rise to a
single connected ghost loop of order n (Frenkel, 1976;
Matsuki, 1979), with n external gauge bosons attached to
the ghost loop. In 2'-dimensional momentum space, this
graph yields integrals that are proportional to

I= ~, A=01, . . . , n,
(q n)" (4.10)

and thereby vanish in the context of dimensional regulari-
zation (Frenkel, 1976; Matsuki, 1979). Note that the
letter q in Eq. (4.10) differs from the q in Fig. 2. The net
result is an effective decoupling of the scalar ghost parti-
cles in the generating functional Z[J&] and hence from
the gauge field A„'(x). The argument between Eqs. (4.5)
and (4.10) applies only to closed ghost loops but is valid

FIG. 3. Gauge boson propagator.

for both the axial gauge and the planar gauge (Taylor,
1986). Although this analysis was carried out for the par-
ticular gauge choice F'[A]:n.A—'=0, it holds equally
well for the more general condition F'= n.A'—=B'(x),
where B, an arbitrary function of space-time, is indepen-
dent of the gauge field.

3. Feynman rules

The Feynman rules in the axial gauge follow from the
Yang-Mills Lagrangian density (4.1). In the general axial
gauge, where a&0, the bare gauge field propagator reads
(Fig. 3)

,b —i6"
(2m)(q +. ic). qpnv+qvnp n +aq

+qpqv 2, c)0 .
q n (q n)

(4.11)

Letting o.'~0 in Eq. (4.11),we get the bare gauge field propagator in the pure axial gauge (n & 0):
r

—I.S" O'I nv+qvnI n

(2m) (q +is) " q'n "
(q n)

while the ghost propagator is given by (Fig. 4)
ab

G'(q) =
(2~) q n

A prescription for the unphysical poles of (q n) ~, /3=1, 2, will be discussed in Sec. IV.B.
The Lagrangian density (4.1) also implies the following axial-gauge vertices (Itzykson and Zuber, 1980).
(1) Three gluon vertex (Fig-. 5):

I';.', (p, q «) =+gf"(2~)"&"(p+q+r)[g„.(p q),+g.,(q —«)„—+g„(»—p).] .
(2) Four-gluon vertex (Fig. 6):

W& '&(p, q, s,r)= ig (2m) 5—(p+q+r+s)[f' f" (g&&g g& g &)+f"—'f'" (gz g& g& g& )—
+f""f"'(g„.g p g„pg .)] . —

(4.12)

(4.13)

(4.14)

(4.15)

We also note, for completeness, the (3) ghost ghost-
gluon vertex (Fig. 7):

U„' '(p, k, q)= —igf'~'n„(2')2"5'"(k+p q) . (4.16)—

B. Axial-gauge integrals

1. Prescription for unphysical poles

The three propagators in Eqs. (4.11)—(4.13) contain the
notorious factor (q.n ) ' leading to integrals of the form

ckq qp etc. , d q =dq,
(q —p) q n q (q —p) (q n)

(4.17)

I

where 2' is the dimensionality of complex space-time and
co =2 corresponds to Minkowski 4-space, with metric
(+ 1, —1, —1, —1). The central question is how to handle
the unphysical poles arising from (q n) ' when q n=0. .
One reasonably successful approach has been to employ
the principal-value (PV) prescription (Schwinger, 1963;
Gel'fand and Shilov, 1964; Yao, 1964; Frenkel and Tay-

, p,a, p

I)

FIG. 4. Ghost propagator. FIG. 5. Three-gluon vertex.
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1078 George Leibbrandt: Introduction to noncovariant gauges

q, b, v k,a, p

s,d, o

FIG. 6. Four-gluon vertex.

lor, 1976; Kazama and Yao, 1979; Konetschny, 1983;
West, 1983):

FIC». 7. Ghost-ghost-gluon vertex.

+- d'q
I(p, n)= f — 4M(q, p, n),

(2m)

q, c

(4.20)

1PVX
(q n)~

1 +
(q ll +i/2) ( —q n+ 1'p)

/2 & 0, p=1,2, 3. . . (4.18a)

1 1
. +

(q n+ip)p (q n ip)~—

where M(q, p, n) is typically a function of (q —p), q n,
q, etc., with q n =q4n4+q'll and n =n4+H,
n„=(n4, n), @=1,2, 3,4. The main steps in the computa-
tion of Eq. (4.20) may be summarized as follows.

(1) Define Eq. (4.20) over 2'-space, i.e., work with di-
mensional regularization:

1 = q n
PV)& = lim, p) 0,

q ll p~o (q.n ) +/2

PVX, = lim q,' —p1 . ( n)—
(q n) p o [(q.n) +p ]

(4.19a)

= lim 1+2p, (4.19b)
1

p~O Bp (q n) +p
with similar expressions for /3=3, 4, . . . . In this article
we advocate the Euclidean-space approach, since it is
simpler and more reliable than Minkowski-space
methods.

2. Evaluation of axial-gauge integrals

Consider the four-dimensional divergent integral, de-
fined over Euclidean four-space:

(4.18b)

which respects both power counting (K.ummer, 1975) and
unitarity (Konetschny and Kummer, 1976).

The PV prescription (4.18) allows us to compute, in
principle, all axial-type integrals, in either Minkowski
space or Euclidean space. In Minkowski space, one first
combines (q.n+ip)~ with the remaining terms in the
denominator, and then repeats the procedure for
( —1)~/'( qn+—ip)~, replacing +n„by n„, as a—dvo-
cated by Konetschny (1983). Alternatively, one may as-
sume from the very outset that the integrals (4.17) are de-
fined over Euclidean space and apply Eq. (4.18b) in the
form

I(p, n)= f M(q, p, n), d "q=—dq .dq

( 2 )2co

(2) For integrands containing multiple factors of n",
like

1 1

q n(q p)'n (q n)—(q.—p).n

etc., employ the decomposition formula

q n(q —p) n p n (q p) n— q n
p g0.

1 1= —, lim
p 0 (q n+i/2)~ (q n ip, )~—

and keep p different from zero until all parameter in-
tegrations have been completed.

(4) For the sake of convenience, parametrize the propa-
gators according to

00 dna"-'e- ~, W)

(5) Integrate over momentum space by using the gen-
eralized Gaussian integrals (Capper and Leibbrandt,
1982b):

(3) Replace (q n ) ~ by the principal-value prescription
(4.18b):

1 1P~PVX
(q 'n)~ (q )~n

f d "q exp[ aq 2pq p y(q—n) ] =— — exp
( +y 2)1/2

yp'(p n)'
a(a+yn')

(4.21a)

p
—1/2

f d- q qz exp[ —aq —2/3q p —y(q n) ]=— 'Vp n p2 2

p —np exp
o.+yn

yp'(p. n )'
a(a+yn )

(4.21b)
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George Leibbrandt: 1ntroduction to noncovariant gauges 1079

where Ia, 13,yI &[0,1] are Feynman parameters. Similar
formulas containing q&q, q„q q, etc., in the numerator
may be deduced from Eq. (4.21a) by operating, respective-
ly, with 8 /Bp&Bp„, 8 /Bp„Bp Bp, etc. , on both sides of
Eq. (4.2 la).

(6) Integrate over Feynman parameters by following,
for instance, the outline in Leibbrandt [1975, steps
(v)—(viii), Sec. II.B.1].

The procedures (1)—(6) of this paper permit us to evalu-
ate the divergent and finite components of axial-gauge in-
tegrals. For example, the divergent part of

f dqq„[(q p) q —n]

C. Ward identity

Z= exp i f d z —4(E&„—)
I

(n A') +J"'A'2' p

D(A)—= + g +dA„'( ),
(4.24)

In the axial gauge the Ward identity for the self-energy,
with Lr)„= —(2a) '(n A'), is derived from the generat-
ing functional for complete Green functions

z[J„']=Nf D(A)z,

reads

d1v
2p n p n I (422)

(q —p)'q n n' " n'
5A„'(x) =(5"B„+gf''A„)co'(x) (4.25)

where Lsi,0S, has been omitted since the fictitious particles
were shown to decouple (Sec. IV.A.2). The effect of the
gauge transformation

where

I—=divergent part of f dq[q (q —p) ]

dq i ( —m)"I (2—co)[&co—1)]
q'(q —p)' (p') "I (2a~ —2)

(4.23)

on Z gives 5Z=O and leads to (Capper and Leibbrandt,
1982a)

iN f D(A)Z nB"n A—' d""J&+—gf "J"A& ——0,1

a

(4.26)

thus in Euclidean space I=a /(2 —co), while in Min-
kowski space I=i' /(2 co) Ot—her .massless axial-gauge
integrals are given in Appendix A and in Capper and
Leibbrandt (1982b).

Integrals containing several q&'s in the numerator may
also be computed by the elegant tensor method (Kainz
et aI., 1974; Capper, 1979; Tkachov, 1981; Jones
and Leveille, 1982; Leibbrandt, 1984b), provided certain
basic integrals are already known. Lee and Milgram
(1983a, 1983b) have derived a formula for

f dq(q )"[(q—p) ]"(q.n), Ip, v, o I C(7, in terms of
Meijer functions by using a mixture of dimensional and
analytic regularization [see also Lee and Milg ram
(1985b)].

Although the PV prescription (4.18) leads to consistent
one-loop integrates in both the axial and the planar gauge,
it is by no means an ideal technique (Wu, 1979; Lee and
Milgram, 1985a; Bassetto and Soldati, 1986; Cheng and
Tsai, 1986) and should not be applied indiscriminately to
just any gauge. For example, the PV technique is known
to be inappropriate for the temporal gauge (Sec. VIII) and
to give wrong results in the light-cone gauge (Sec. VI).
Difficulties with the PV prescription have also been en-
countered in the treatment of infrared divergences (Gast-
mans and Meuldermans, 1973; Marciano and Sirlin, -1975;
Gastmans et al. , 1976).7

with B„=B/Bx". Differentiating Eq. (4.26) functionally
with respect to the external current J'„(y) and equating J&
to zero, we obtain in coordinate space

~ ~0 T — nB" nA'(—)xA~~(y)+8"5 (x —y)5'~
CX

)f~"0'"tx —yM'(y) 0)
—=0, (4.27)

—g(2n. ) "f' '8'„(q) =0 . (4.28)

The term 8', (q), which is the Fourier-transformed vacu-
um expectation value of A'„(y), corresponds to a massless
tadpole and vanishes in the context of dimensional regu-
larization (Capper and Leibbrandt, 1973). Hence Eq.
(4.28) reduces to

where T is the time-ordering operator. Fourier-
transforming Eq. (4.27) with the help of the definitions

5 "(x —y) =(2n. )
"f d "q e' '"

(0
~
T[A&(x)A (y)]

~
0) = f d "q e' '" ~'D&„(q),

we arrive at the Ward identity

1 n"q nD~ (q)+i(2—m)q 5'.

qnn "G~ (q)+i(—2') q„5 =0,1

CX
(4.29)

7The author is grateful to Professor A. Burnel for bringing
these references to his attention.

where Gz (q) —=G„„(q)5' is the bare a-dependent propa-
gator to one-loop order, given in Eq. (4.11). Multiplica-
tion of Eq. (4.29) by (G&„) '=(Gz~„) ' —II„'" leads to
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the Ward identity

(4.30)
—1 ~ 2 1

(Go„,) =I q g„—q&q + —n„n

with H@ denotes the one-loop gluon self-energy,

II ah( ~0) g 2facdf bed +, V „J. g,.—s»)+, , V nJ, s~—, )(~ m. —~ n. ) I.
3 3n' " "' 3(n')'

D. Renormalization and unitarity

Renormalization of Yang-Mills theory in the pure
(homogeneous) axial gauge was established by Konetsch-
ny and Kummer [Konetschny and Kummer (1975,
1977); Kummer (1975, 1976)] over 10 years ago, and has
contributed significantly to placing the pure axial gauge
on an equal footing with covariant gauges. We do not in-
tend to review here the literature in detail, since the origi-
nal papers are sufficiently explicit, but shall confine our-
selves to a few short remarks.

Working to order 0(g ), Kummer demonstrated as
early as 1975 the following identity between the divergent
parts of the wave-function renormalization constant Zz
and the renormalization constants for the 3-vertex and 4-
vertex, Z3 and Z4, respectively,

(Zg)d;„=(Z3)d;„=(Z4)d;, .

This equality implies, among other things, the gauge in-
dependence of (Zz )d;„(Kummer, 1975). In the same vein,
Beven and Delbourgo (1978), verifying a general theorem
of Konetschny and Kummer (1977), studied the equality
of the infinite parts of the renormalization constants in
various gauges.

General axial gauges, with n &0, require the appear-
ance of noncovariant n&-dependent counterterms. Such
counterterms may possess both finite and infinite parts.
Whereas the infinite parts of these counterterms can be
shown to be couariant in the gauge n 3'=0 (Konetschny
and Kummer, 1977), it was noted by Leibbrandt et al.
(1982) that in inhomogeneous gauges of the planar type,
Lorentz-noncovariant infinite counterterms are admitted
by the solution of the Slavnov-Taylor identities, which de-
pend on the gauge parameter a and on the noncovariant
vector n@, and surface already at the one-loop level. It is
interesting to note in this connection that nz-dependent
counterterms contributing to a "nonmultiplicative" renor-
malization of the wave function are already apparent in
the gauge n 2 =0 (Konetschny, 1978). The general re-

normalization program requires the addition of a finite
number of local counterterms to the renormalized action,
so that physically observable S matrix elements are finite
and the symmetries are conserved (Itzykson and Zuber,
1980). Therefore proofs of renormalization based upon
this program have no difficulties accommodating nonco-
variant counterterms as well (for n A'=0, see Konetsch-
ny and Kummer, 1975, 1977). Of course, a "multiplica-
tive" renormalization, as in covariant gauges, cannot be
performed in general.

In 1976, Konetschny and Kummer established unitarity
in the pure axial gauge (a =0) by working with the imagi-
nary part of the S matrix and then proving cancellation
of the unphysical degrees of freedom. Their proof is con-
ceptually simpler than for covariant gauges, because there
are no fictitious particles with which to contend. The
presence of spurious poles from (q n) ', on the other
hand, poses certain technical challenges, resulting, for in-
stance, in the modification of the Cutkosky cutting rules
(Cutkosky, 1960). Naively speaking, unitarity is
guaranteed by the use of the principal-value prescription.
According to Konetschny and Kummer (1976), ". . . the
principal value is real by definition and therefore does not
contxlbutc to thc imaginary part lnvolvcd in the uIlltaIlty
equation. "

Discussions of other relevant topics, such as the gauge
independence of matrix elements of operators between
physical bound states (Kummer, 1980), of Lorentz invari-
ance and gauge independence of the S matrix, etc., can be
found in the literature, notably in Konetschny and Kum-
mer (1975, 1976, 1977), Frenkel (1976), and in Konetsch-
ny (1978).

E. Applications

We illustrate the use of the axial gauge in quantum
chromodynamics and pure Einstein gravity. Other appli-
cations can be found in the listed references.

8En order to avoid any danger possibly related to the limit
n —+0, these authors assumed a gauge-fixing term of the form
I.f;„=C'n. .A', with C' an auxiliary Lagrange multiplier field.

En non-Abelian theories, ghost fields were originally intro-
duced for the sole purpose of preserving unitarity in the frame-
work of covariant-gauge quantization.
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1. Quantum chromodynamics sity

a. Gluon self ene-rgyin the pure axial gauge (a=O) (4.31)

As our first example we consider the gluon self-energy
II&„to one-loop order (Fig. 8). From the Lagrangian den-

we obtain for the gluon loop in Fig. 8(a) (Frenkel and
Meuldermans, 1976)

II&&(p) = z (factors) f dq V&'",(p, q, —(p+q))G" ~(q)V&' ", (p', q, —(p+q))G,","'(p —q), ('4.32)

whHe the contribution from Fig. 8(b), corresponding to a tadpole diagram, vanishes in dimensional regularization
(Capper and Leibbrandt, 1973). G'~ (q) is the bare gluon propagator in the limit as a~0, Eq. (4.12), and Vz ', denotes
the three-gluon vertex given by (Capper and Leibbrandt, 1982a)

V;.";(p,q, —(p +q» =gf"(2~)'"l g,.(p ——q), —g.,(2q+p»), +g.,(2P+q).] . (4.33)

Multiplying out the integrand and using the decomposi-
tion formula from Sec. IV.B, we can rewrite II&&(p) as a
sum of integrals whose dependence on n„ in the denomi-
nator is proportional either to (q n) or [(p —q) n]™,
m =0, 1, or 2. Since a shift of the integration variable
from q& to (p q)z re—places [(p —q) n] by (q n)
we see that all self-energy integrals are only proportional
to (q n)™,.m =0, 1, or 2. Using the appropriate formu-
las in Appendix A, together with the tadpole integrals

J dq/q =0, fdq/(q n) =0,
etc. , we find for the one-loop gluon self-energy in the pure
axial gauge (Frenkel and Meuldermans, 1976; Capper and
Leibbrandt, 1982a):

III',(p) =—,g 6'"CvM(pi„p~ pgp~)—I ~ (4.34)

b. Gluon self energy i-n the general axial gauge (a~O)

Computation of the gluon self-energy in the general ax-
ial gauge, a&0, is identical in procedure to the a =0 case,
differing solely in the degree of complexity. With
Lr,„=——(1/2a)(n 3') and Vz ', the same as in Eqs.
(4.31) and (4.33), respectively, the extra complexity arises
from the cx-dependent term in the propagator 6&,

where f""f '"=CvM5 and I is defined in (4.23). Clear-
ly, II&,(p) is tvansuevse, in agreement with the Ward iden-
tity (4.30).

(q„n +q n„) (n +aq )
Gp~(q~A+0) 2~ 2 gp~

(2m) "(q +iE) q n
+9'p9v

(q n)

The final expression for the divergent part of the gluon self-energy reads (Capper and Leibbrandt, 1982a)

(4.11')

11„".(P ~&0)=g'&"C&M 11 4cxP 2 4a+ (p~, —g„,p )+ (p np„—p n„)(p np„pn ) I . —
3n' ' "' 3(n')' (4.35)

Although Eq. (4.35) satisfies the transversality condition
p"II& (p, a&0)=0, in accordance with the identity (4.30),
II„' now depends on a as well as n„and will require
more complicated counterterms.

2. Pure Einstein gravity

In view of the fiendish complexity of the gravitational
interaction, the number of explicit calculations in nonco-
variant gauges is even sparser than in traditional covari-
ant gauges like the Feynman gauge (Capper et a/. , 1973).
One of the earliest studies in the pure axial gauge was car-
ried out by Matsuki (1979), who analyzed the behavior of
infrared gravitons in ordinary Einstein gravity. He
demonstrated that the associated ghost fields decouple
from the graviton field, as expected, and that the dom-

n "y~,(x)=f,(x), n &0, (4.36)

where f, is an arbitrary vector function, which does not
affect the final result, and where the physical graviton
field qv& is defined by

2gpv =pv+ vypv ~ x =32mG

6 is Newton's constant, gz is the metric tensor, and 5z

inant infrared divergences exponentiate in the spirit of
Bloch-Nordsieck and then vanish in the graviton scatter-
ing amplitude. In the present graviton self-energy exam-
ple, we wish to acquaint the reader with some of the
subtleties symptomatic of the axial gauge, emphasizing
particularly its ultraviolet behavior and the associated
Ward identities to one-loop order.

In quantum gravity, the axial-gauge condition reads
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trans (p ) +I i
22 2

+pv, per(P~~=O) =
120 Fpv, per(3 ~T ) i (4.40a)

F&„p is a function of y=—(p n ) '(p n) and of the tensors T„'„p, i =1, . . . , 14; the nontransverse portion reads

Ilp~~ p (p cx 0) 3 p [ Tp p +Tp p Tq p + (2y ) Tit p 2Ty p +4Tp p~ 2(p)
'

Tq p ](p ) K I (4 40b)

Note that II& q~, a local function of p~, is nontvansverse even for a=O, in contrast to the Yang-Mills self-energy, Eq.
(4.34). The question has been raised whether it is possible to recover the transversality of II„,p for a&0 by choosing,
for example, a gauge-breaking term like (Capper and Leibbrandt, 1982c)

1 p 8
n "g„„-,n q, t)'—= t)qt)„, nz~O .

2a

The answer is negative: There does not appear to exist a real value for a for which the infinite real part of the graviton
self-energy is transverse. On the other hand, Winter (1984) has recently shown that the imaginary component of the
graviton self-energy is transverse.

The nontransversality of the infinite real part Ilp. ,p. emerges logically from a study of the appropriate Ward identity.
The gravitational %'ard identity in the axial gauge can be derived from the generating functional

Z[J&„]=N fD(p)Z, Z =exp i fd"z(LE;„+Lr„+J„,Q') (4.41)

here J& (x) is an external c-number source, N is a normalization factor, and D(y) =D(pop, ). Application of the gauge
transformation

5y„(x)=A„q(x)gq(x), gq arbitrary gauge parameter,

A„(x)=it. '(5, B„+5„B)+(y P„+y „B,+t)~„,),
to Z[J&„]implies 5Z=0, and gives

N fD(q) ir Bgpq(x)5(x —y)+Cgp (x)5(x y) —i(aa') n~—Bq q(x)nrqr (x)Pgp(y)

(4.42)

nCp„q(x)n—pr (x)p~p(y) exp i fd z(LE;„+Lr,„+Jp,+ ) =0,
CX

+pvp=~vp~p+~pp~v ~ 0 pv, p:9 pv~~+ ~ Cpvp =9 pv, IJ. +0pv~p+'Ppp, v+9 pp~v 0 pv, p ~

(4.43)

leading eventually to the gravitational Ward identity

(5,"~ +5;~"»,.,~pV» —F~p,,V» =0 (4.44)

F~p q(p), defined by

(0
~ T[n "C„„q(x)nrqrr(x)yqp(y)]

~

0)

shown diagramatically in Fig. 11. The new function

P2 + ~3I 3

pq

~ ~ ~ o~s~o ~e~ ~ ~ ~ ~ ~ ~ ~

P3
~ ~ ~ ~ ~ ~ ~ ~ W

t
+ ——Q

0

=Q

fd' pe'P'" ~'G~p, (p)F, p(p), (4.45)
it(2~)

corresponds to the pincer diagram in Fig. l2 and is seen
to depend on both n& and a. %e stress that F~~ p does
not vanish for u=O, i.e.,

limF~p q(p)&0,
a—+0

explaining, so to speak, the nontransversality of
II„q (p, a =0). For the complete expression of F~p q and

FIG. 10. Three-graviton vertex used in the computation of the
graviton self-energy.

FIG. 11. Gravitational Ward identity in the axial gauge
(momentum contractions on the left leg, as in Fig. 14, are im-
plied).

Rev. Mod. Phys. , Vol. 59, No. 4, October 1987



1084 George Leibbrandt: Introduction to noncovariant gauges

further discussions, see Capper and Leibbrandt [1982b,
especially Eq. (3.11)].

The structure of counterterms has been analyzed in
gravity by Matsuki (1985) and in Yang-Mills theory by
Gaigg et al. (1986), while Delbourgo (1979), Baker (1981),
West (1982), Sbrensen (1983), and others have studied the
infrared behavior of the gluon propagator. Kalashnikov
and Casado' (1984), on the other hand, considered the
infrared limit of the three-gluon vertex. The axial
gauge has also been examined in the context of the
BPHZL (Bogoliubov-Parasiuk-Hepp-Zimmermann Low-
enstein) subtraction scheme (Kreuzer et al. , 1986) and in
supersymmetry (Capper et al. , 1986).

V. THE PLANAR GAUGE

A. Theory

Introduction

Although the axial gauge (a=O) possesses a number of
significant advantages over covariant gauges, its applica-
tion' to quantum chromodynamics and other non-Abelian
theories has been hampered by the complicated structure
of the gauge field propagator. The main culprit is the last
term in Eq. (4.12), proportional to q„q n l(q n), which
aggravates considerably the analysis of perturbative calcu-

~ ~ ~ ~ ~e~ i+ ~~ ~ ~ ~

FIG. 12. "Pincer" diagram for the one-loop contribution to
F~p~ in the axial gauge.

n "A &(x)=8'(x), n &0, a&0,

gQQ2 gQ
2cx7l

leading to the bare gluon propagator

(5.1a)

(5.1b)

lations in quantum chromodynamics and elsewhere. It
was this unwieldy nature of the gluon propagator that en-
couraged theorists to search for other ghost-free gauges
having simpler propagators.

In their analyses of hard processes in QCD, Kummer
(1976) and Dokshitzer et al. (1980) discovered the planar
gauge, which is intimately related to the axial gauge but
possesses a more attractive gluon propagator (Lipatov,
1975; Dokshitzer, 1977). In massless Yang-Mills theory,
the general planar gauge is defined by

—in"
Gab( )

q„n, +q„n„q„q„(1 a)n-"+ ""
q pl (q-n)

c&0. (5.2a)

As o.—+ l, we obtain the propagator in the planar gauge,

.gab
G„'"„(q,a = 1)= g~—

(2~) (q +i E) q n
(5.2b)

which is certainly simpler and easier to employ than the axial-gauge version, Eq. (4.12). The spurious poles of (q n) in

Eq. (5.2b) can be treated by the principal-value prescription (4.18), just as in the case of the axial gauge. In fact, the en-

tire procedure of Sec. IV.B.1 applies also to Feynman integrals in the planar gauge. In short, planar-gauge integrals are
the same as axial-gauge integrals. (See Appendix A. ) The three-gluon and four-gluon vertices are also the same as in the
axial gauge [Eqs. (4.14) and (4.15)].

The planar gauge is blessed with other attractive features. Apart from being ghost-free and possessing a relatively sim-

ple propagator, the gauge is devoid of Gribov gauge copies, like the axial gauge (Gribov, 1977, 1978; Sciuto, 1979; Basset-
to et al. , 1983; Weisberger, 1983), massless Yang-Mills theory is renormalizable (Andrasi and Taylor, 1981; Mil shtein
and Fadin, 1981), and collinear divergences appear only in self-energy components (Andrasi and Taylor, 1981). The pla-
nar gauge has been employed primarily in perturbative QCD, especially in the study of hard processes (Dokshitzer et al. ,
1980; Humpert and van Neerven, 1981a, 1981b; Bassetto et al. , 1983, 1984). The gauge has also been used in the renor-
malization of the twist-four operator and of composite operators in gauge theories (Andrasi and Taylor, 1983a, 1983b).
The implementation of the planar gauge in the canonical formalism was carried out by Bassetto er al. (1984).

The key difference between the planar gauge and the axial gauge occurs in the respective self-energies and Ward identi-
ties. Not only is the planar-gauge Ward identity [(cf. Eq. (5.16)] more intricate than in the pure axial gauge (u=O), but
so is the one-loop gluon self-energy. , which turns out to be both nontransverse and n„dependent [cf. Eq. (5.19)]. These
intricacies necessarily complicate the renormalization program (Andrasi and Taylor, 1981; Mil shtein and Fadin, 1981).
Before discussing them, we shall demonstrate the decoupling of ghosts in the planar gauge.

~ The author is grateful to Dr. S.-I.. Nyeo for bringing this reference to his attention.
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I

2. Decoupling of ghosts

In order to illustrate the decoupling of ghosts in the planar gauge, we follow Dokshitzer et al. (1980), expressing the
generating functional

Z[J„]=N fD(A)det(M+)exp i fd x L;„„(x) —n A'c)~n A'+ J„'A'~
2(X7f

(5.3)

Z[J„]=N fD(A)det(M~)f [A]exp i fd x[L;„„(x)+J&A'I'] (5.4)

where
r

F [A&]:n.A —(x)=B (x), f[A]:exp— i(—2an~) ~ fd~x n A c)2n A'

Implementation of the planar gauge amounts to using the weight function
r

f[8]=exp —i(2an )
' fd "x8'c) 8'

(5.5)

with D 8 B =const. According to Faddeev and Popov and replacing g x in Eq. 3.12 by 0 x

det(M) fD(Q)5(B' n ~—A') =const,

where

A'=A'+c) co'+gf' 'co A'
P P P IJ

(5.6)

0 is given by A=DO+co (co=co'r', r' are generators) and represents an infinitesimal gauge transformation, Qo being the
identity transformation. Inserting fD (8)f[8]=const into Eq. (5.6), we obtain

with

det(M) f fD( 8) D(A) 5( 8' —n A')exp —i(2an )
' fd xB'"c)8' =const, (5.7)

D(Q)5(B' nA—') =D(fl)5[(B' n'A—') ndco' —gf' 'co n A—'] .

But in the vicinity Qo,

.Qg g +op g g O

so that

(5.8)

D(A)5(8' nA'—) =D(co)5( nBco' gf—' 'co n A'—) .

Substitution of Eq. (5.9) into (5.7) yields

det(M)= ffD(8)D(co)5( ndco' gf' 'co n A')—e—xp i(2an —)
' fd x 8'"d 8'

(5.9)

(5.10)

Since n.A'=8' from Eq. (5.8), and 8'(x) is integrated out, the right-hand side of Eq. (5.10) is indeed independent of the
gauge field A&,

det(M)&function of A„', (5.11)

which is tantamount to saying that the ghost fields have effectively decoupled from A~. Accordingly it is legitimate to
absorb the Faddeev-Popov determinant det(M) in Eq. (5.3) into the normalization factor N.

This third decoupling argument —the first two were discussed in Sec. IV.A.2—seems to apply only to closed ghost
loops, but is valid in both the axial gauge and the planar gauge (Taylor, 1986).

B. Ward identity and Yang-Mills self-energy

1. The Ward identity

The Ward identity in the general planar gauge may be derived from the complete generating functional for Careen
functions [cf. Eq. (3.19)],
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Z[J,]=NfD(A)exp i fd"z[ ——,'(F„' ) —(2an ) 'n 3'8 n A'+J' A'], n A'=n "A„', (5.12)

gee gf ebc

qtt+ 8tt(q) =0, (5.13)
(2~) " (2')

where D&'t3(q) and W& (q) are, respectively, defined by

(Oj T[A„'(x)At3(y)) ~0) = fd2"qe'~'" ~'D t3(q),

(5.14a)

(0
~
T[Att(x)n A "(y)B n A'(y)]

~
0)

d2 qe'q'" "'Wtt'(q) . (5.14b)

T denotes the conventional time-ordering operator. The
last term in Eq. (5.13) corresponds to a massless tadpole
diagram and can be omitted. Moreover, since the second
term in Eq. (5.13) does not contribute to lowest order (no
loops), Dz'tt(q) reduces to the bare propagator G„"p(q,a)
given in Eq. (5.2a). Hence Eq. (5.13) becomes

l CXPl 5
n "G„p(q,a) = qp .

(2') "q.nq
(5.15)

To obtain the one-loop contribution to the Ward identity
(5.13), we multiply the latter by the bare inverse propaga-
tor (G'„„) ' giving

where the ghost Lagrangian density I.gh„, has purposely
been omitted, since ghost fields were just shown to decou-
ple from the gauge field A&. Performing the gauge
transformation (4.25) on Z[J,] and applying the pro-
cedure discussed between Eqs. (4.25) and (4.28), we obtain
in momentum space (Capper and Leibbrandt, 1982a; see
also Mil'shtein and Fadin, 1981)

2 ~abc
q "q n~D" ( ) —'g'

2 P 2

t abc( 2 )2'
q~II jy(q, a) = Ffy" (q, a) .(5.16)

XI (2—co)(2') '
ny —q, q (5.18)

For nonvanishing values of cx, the right-hand side of
Eq. (5.17) is clearly different from zero, suggesting an
n&-dependent and nontransuerse gluon self-energy, con-
trary to the claim in Dokshitzer et al. (1980). The prop-
erties of II&„have been confirmed by an explicit calcula-
tion, as summarized in the subsequent section.

2. Gluon self-energy

Use of the propagator (5.2b) and of the three-gluon ver-
tex (4.14), together with the integrals in Appendix A, give
the following structure for the gluon self-energy (Fig. 15)
to one-loop order (Andrasi and Taylor, 1981; Capper and
Leibbrandt, 1981, 1982a; Mil'shtein and Fadin, 1981):

Ffy '(q, a) is the amputated one-loop contribution to
Wy '(q, a), shown in the "pincer" diagram of Fig. 13:

Wt"'(q, a) =Gty'f(q, a)Ffyb'(q, a) . (5.17)

e note that the function Fy '(q, a) vanishes identically
the»ial gauge. The Ward identity (5.16) may be

represented diagrammatically by Fig. 14, where the two
bars on the left leg imply contraction with q~. Here Hz
is the one-loop gluon self-energy, Eq. (5.19), while the
divergent component of Ffy"' is given by (Capper and
Leibbrandt, 1981)

Ffy '(q, a) = 2ivr ga—q nq f f'

II~ (q,a)= —g CYM5' , (q~q~ g»q —) 2a(q„—q —
g& q ) —[2n~n —q qn(q~n +q —n&)] I, (5.19)

where I=i sr I (2 co) and f—""f'"=5'"CYM. It is readily checked that this self-energy expression obeys the Ward iden-
tity (5.16). But since II&, is both gauge dependent and nontransverse for a= 1, the pleasant feature of multiplicatiue re-
normalization, characteristic of the pure axial gauge (a=O), is lost in the planar gauge. To illustrate this for the bare
gluon propagator, for example, we follow Konetschny (1982), who writes the corrected propagator G„',

G„' =G„+G„~H~ G, G„" =5'bG„'

G„'„(q,a)=
(2n) (q +iE)

(qpn~+q~n~ ) can II3
(1—II )g„— " "

1 —II, —
q 'll (q n)

El 2cxo q n
+qpq I —II) —a ——— H3 +0

(q n) (q n) (q n)
(5.20)

where the scalar functions II;(q, 2(q n ) /q ) = II;, i = 1,2, 3, are defined through the relation (Konetschny, 1982)
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Ilpv(q) =(qyqv —gp q )IIi+ qp —"p, q'n
q

q —n
q n

1II2+
q n

np qv —nv +nv qp —npq'n q'n

(5.21)

For u = 1, the corrected propagator is approximately equal to

Gp (q,a= 1)= 2 (1—II))g„„—
(2m) "(q +is. )

(q„n.„+q n„) n II32

1 —II)—
q n (q.n)

n 2n qn—q q H+ II +0" '(q n) (q n) (q n)
(5.22)

which is certainly not multiplicatively renormalizable.
The general conclusion is that massless Yang-Mills theory
is renormalizable in the planar gauge, but not multiplica
ti Uely renormalizable.

C. Importance of ghosts

As shown in Sec. V.a.l, one can derive the proper
Ward identity by omitting Lsh„, from the generating
functional for.Green functions, Eq. (5.12). While the ab-
sence of Lsh„, might seem perfectly logical in view of the
ghost-free nature of the planar gauge, it is incorrect to as-
sert, nonetheless, that fictitious fields may also be discard-
ed in other theoretical contexts involving the planar
gauge. Ghosts are not only ".. . helpful in proving the fi-
niteness of the renormalized Green functions, " according
to Mil'shtein and Fadin (1981), but they are actually
necessary in the framework of Becchi-Rouet-Stora invari-
ance (Becchi et al. , 1974, 1975), as emphasized by
Andrasi and Taylor (1981).

Since ghosts play an equally important role in the
light-cone gauge, we thought it might be instructive to
reproduce here the essential arguments of Andrasi and
Taylor (1981). These authors work with the Yang-Mills
Lagrangian density

5S'
+(an ) '8 (n.A')

5—8 (5.24a)

and the ghost equation

5S' „5S'
5—a 5Jap

(5.24b)

It is advantageous (Lee, 1976) to work with the generating
functional I for one-particle-irreducible Green functions,
with the gauge-fixing term omitted, in which case Eqs.
(5.24) become, respectively,

5r 5I 5I. 5r
d x +5A' 5J'" 5g' 5K'

=0 (5.25)

where the ghost term reads

I. „„,=~'(n„a"~'+gf'b'n„Ab~~')

+J'"(d„ri'+gf '"'A „g')—,' gf '"'K'g—ri'.

Here g„q, are ghost fields, and J,p,E, external sources;
the quantities J, , g„g, are anticommuting. The action
S'= x I.' obeys the Becchi-Rouet-Stora identity

5S' 5S' 5S' 5S'
5A' 5J' +

5 ' 5K'
p 77

L'=L+Lr,„, L = —
4 F„'g'"'+Lsh„, ,

Lr,„=—(2an ) 'n A'5 n A'. ,
(5.23)

and

5I —n" =0.5I
5Jap

(5.26)

The divergent parts D of the generating functional I then
satisfy the BRS identity (Andrasi and Taylor, 1981)

q-k

FIG. 13. "Pincer" diagram for the one-loop contribution to
I'+~' in the planar gauge. Wavy lines correspond to Yang-Mills
fields. FIG. 14. Yang-Mills Ward identity in the planar gauge.
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6S 5 6S 5 6S 5
5A„' 5J'" 5J'" 5A„' 5g' 5K'

6S 6
+5K 5: (5.27)

+tt~vPK'], (5.28)

Andrasi and Taylor proceed to express the general solu-
tion for D as

D= J d x( —,'atF„'g—'" , a2n—„—n,F't" F"i„)+oG,
(5.29)

and then to derive the following values for the divergent
constants a;, i =1, . . . , 5:

11g'CYM
Q I =

48m c.
Q2 =0, E.—:4—26);

g CYM g CYM
2 2

a3 ———a& ——— a& ——

8~ c 4n ~c

(5.30)

The coefficient ai corresponds to coupling-constant re-
normalization, while a3 and a4 represent field renormali-
zations. Notice, in particular, the nonzero value of the a5
term corresponding to ghost renormalization.

Moreover, we remind the reader thai the Feynman
graphs entering the BRS analysis are different, in general,
from those needed for the Ward identities. Whereas
Ward identities involve, for example, pincer diagrams, the
BRS approach requires ghost diagrams instead. [See in
this connection the work by Capper and MacLean (1982).]
Both approaches lead of course to the same conclusion,
namely, that the one-loop Yang-Mills self-energy is non-
transverse, and that massless Yang-Mills theory is not
multiplicatively renormalizable. We shall see in Sec. VI
that the above BRS approach, with its exphcit use of
ghost fields, also works admirably in the more intricate
light-cone gauge, albeit with a modified ansatz for the
functional G in Eq. (5.28).

Vl. THE LIGHT-CONE GAUGE. PART I

A. Introduction

1. Preliminaries

The history of the light-cone gauge is as colorful and
fascinating as that of any noncovariant gauge. Originally
the light-cone gauge was a gauge "to fortune and to fame
unknown. " It was regarded as an odd, if not freakish,
member of the family of axial-type gauges that existed
more by accident than by inventive planning.

But before we delve into the light-cone gauge, we
should say a few words about the related, but not identi-

where cr is a nilpotent operator, o =0. Employing the
ansatz

G= Jd x[a3A&(J'"+n"ri')+a4n"A„'(n Ji„+n r)') FIG. 15. One-loop Yang-Mills self-energy in the planar gauge.

cal, subject of light con-e coordinates. These were first in-
troduced for any four-vector x"=(x,x',x,x ) by Dirac
(1949) in the form x+-=(1/v 2)(x +x ), x=(x',x ),
where x+ is traditionally called the Iighf-cone time andx,x ',x are the /ight-cone positions. In his article
"Forms of relativistic dynamics, " Dirac describes various
structures of relativistic dynamical systems, among them
the so-called front form. He defines a fr ont, 1.e., a
plane-wave front, as a three-dimensional surface in
space-time that moves with the velocity of light. The
front is associated with a subgroup of the Poincare group
that leaves the front invariant. One of the advantages of
the front form is the absence of a square root in the Ham-
iltonian, avoiding thereby particles of negative energy.
What is equally important is that Dirac's formulation in
terms of light-cone coordinates is, to quote Brodsky and
Ji (1986), ".. . frame-independent, the momentum is al-
ways finite. " For this reason it is regrettable that the ex-
pression "light-cone frame" is sometimes in the literature
confused with or replaced by the phrase "infinite-
momentum frame. "

The infinite momen-tum frame was originally discussed
by Fubini and Furlan (1965) in the context of current
algebra "as the limit of a reference frame moving with al-
most the speed of light" (Kogut and Soper, 1970). It was
subsequently studied by Weinberg (1966), Bardakci and
Halpern (1968), and others. In 1970, Kogut and Soper
developed a canonical formalism for quantum electro-
dynamics in the infinite-momentum frame that was later
extended to massive quantum electrodynamics by Soper
(1971). Despite the pioneering work of Kogut and Soper,
and that of Bjorken et al. (1971) and Tomboulis (1973),
on the quantization of the electromagnetic and Yang-
Mills fields in the light-cone frame, interest in the Iight-
cone gauge' ' during the period 1973—1976 remained

~~Root (1973) and other authors employ the name "light-
front" form.

~2Some authors prefer to use the phrase "null-plane gauge" or
"light-front gauge" instead of "light-cone gauge. '* The reason,
according to Aragone {footnote 13) and Gambini (1973), is that
".. .cones are not characteristic hypersurfaces at their vertex
(Hormander, 1963)," whereas ".. .the null hypersurfaces
x+ =constant, or x =constant, are good simple characteristics
at any of their points, they do not present singular points. . . ."

~ The author is grateful to Professor C. Aragone for clarifying
remarks on this matter and for bringing Hormander's reference
to his attention.
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sparse and was confined to a few researchers (Chakrabarti
and Darzens, 1974; Cornwall, 1974; Gross and Wilczek,
1974; Kaku, 1975; Scherk and Schwarz, 1975; Hagen and
Yee, 1976).

Towards the late 1970s, however, articles by Konetsch-
ny and Kummer (1975, 1976, 1977), Kummer (1976),
Beven and Delbourgo (1978), and Konetschny (1978) on
the renormalizability of Yang-Mills theory in the axial
gauge and on the unitarity of the scattering matrix had
managed to dispel some of the ingrained skepticism about
noncovariant gauges, and researchers were willing to take
a fresh look at the pros and cons of the light-cone gauge.
By the end of 1982, several positive features had emerged
from studies in perturbative QCD (Curci et al. , 1980;
Furmanski and Petronzio, 1980; Floratos et al. , 1981;
Kalinowski et al. , 1981; Konishi, 1981). For instance, in
deep-inelastic processes, only planar diagrams are needed
to evaluate the dominant contributions in the leading-
logarithmic approximation (Pritchard and Stirling, 1980).
The major technical problem seemed to be a lack of a
consistent prescription for the unphysical poles of
(q n) . The principal-value prescription violated power
counting, as well as other basic criteria, and was therefore
unsatisfactory for the light-cone gauge.

Early in 1982, Mandelstam (1982) suggested a new
prescription for the light-cone gauge and used it to
demonstrate the ultraviolet finiteness of the X =4 super-
symmetric Yang-Mills model. Later that year, an
equivalent prescription was discovered independently by
the author and implemented for the first time in the con-
text of dimensional regularization (Leibbrandt, 1982,
1984a). Together with Brink, Lindgren, and Nilsson
(1983), and Bengtsson (1983), Mandelstam (1983) was one
of the first to emphasize the computational advantages of
the light-cone gauge in supersymmetric theories. The
reputation of the gauge was further enhanced in 1984 by
the fact that the sophisticated superstring models based
on the semisimple Lie groups Spin32/Z2 and Es X Es
were originally tractable only in the light-cone gauge.
Since that time the gauge has found numerous other ap-
plications, for example, in studies on stochastic quantiza-
tion (Parisi and Wu, 1981; Zwanziger, 1981; Egorian and

Kalitzin, 1983; Hiiffel and Rumpf, 1984), Nicolai maps
(Nicolai, 1980, 1982), and stochastic identities (de Alfaro,
Fubini, and Furlan, 1985).

The aim of this section is to describe the prominent
features of the light-cone gauge and to illustrate its
tremendous range of applicability with several examples.

2. Definitions and Ward identity

~inv . 4 (F/lv) t ~fix (n AP
2A

L,,„,=JpAg" ——J'.A, I.ghost ——g n"Dp r/ j

Fp„d„A',—8 —A—„'+gf' 'A„A',

(6.1)

where the various symbols have the same meaning as in
Eq. (4.1). The light-cone gauge is a noncovariant physical
gauge, which is defined by

n"A„'(x)=B'(x), n =0,
with n„=(n on), and where 8' may or may not be zero.
If 8 =0, condition (6.2) is to be understood as the limit
a —+0 [in the notation of Eq. (6.1)]. Condition (6.2) does
not specify the light-cone gauge uniquely, because
n.A'=0 remains invariant under gauge transformations
that do not involve one of the coordinates, say, x, where
x —+ = (1/v 2)(x +x 3). Compare Mandelstam (1983).
This freedom in the choice of the x coordinate implies
an ambiguity in the i E prescription for the factor (q n )

which will be studied in Sec. VI.B. Moreover, the light-
cone gauge destroys manifest Lorentz invariance by
breaking the group SO(1,3) to the subgroup
SO(l, l) XSO(2) (footnote 14) (Namazie et al. , 1983).

From Eq. (6.1), the bare light-cone gauge propagator
reads (a&0)

We begin with some definitions from Yang-Mills
theory and then discuss an important Ward identity.

For a massless gauge field A& with coupling constant
g, the Lagrangian density reads

~YM ~ inv +~ fix +~ext +~ghost ~

and for a=O, '

(q„n, +q.n„) aq'q„q„
(2m) "(q +iE) q n (q n)

(6.3)

,b ig b (q„n„+q n„)
G„' (q,a=0)= g

(2m) "(q +is) q n
c)0, (6.4)

while the three-gluon vertex has the same form as in the axial gauge, Eq. (4.14):

1„':~(p,q, r)=gf"(2~)'"6'"(p+q+r)[g„(p q) +g (q r)„+—g „(r—p) ] . — (6.5)

In the remainder of this section we work with four components. The two-component formalism of the light-cone gauge is used in
Sec. VII.C.
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The derivation of the Ward identity for the gluon self-
energy is similar to that in the axial gauge, Sec. IV, and
will be omitted in favor of a few short remarks.

Since ghosts decouple in any Feynman diagram wheth-
er the ghost lines are open or closed (see Sec. IV.A), the
term Lgh„, may be dropped from the generating function-
al for complete Careen functions,

ztJ,']=+JD(~)z,
(6.6)

B. Evaluation of light-cone gauge integrals

Prescription for unphysical poles

Until about 1982 the spurious singularities of (q n )

in light-cone gauge integrals such as

q, qp~np, q p

q +is q —p

+iraq

n

were invariably treated by the principal-value prescription

Z=exp i Jd z —, (F„',) —(n—A') +J' 2'
2o.

Using the invariance of Eq. (6.6) under the gauge
transformation

q.n

1 1 1 1~PV)& =—lim
q n 2J o q n+ip qn —ip

p &0 . (6.9)

qnn "—G&, (q,a)+ q, — 8', (q) =0, (6.7)(2~)'" (2~)'"

where Gz„(q,a) is the bare propagator to one-loop order
and 8', (q) denotes the Fourier-transformed vacuum ex-
pectation value of A'„(x). Since the tadpole term B'(q)
vanishes in dimensional regularization, Eq. (6.7) reduces
to the Ward identity

q"Ilp (q) =0, (6.8)

which also follows from BRS invariance (Taylor, 1982).
The one-loop Yang-Mills self-energy Hz in the light-cone
gauge is shown in Fig. 16 and given in Eq. (6.34).

The fact that the Ward identity (6.7) can be derived
without ghosts might leave the erroneous impression that
consideration of ghost fields in Eq. (6.1) is completely su-
perfluous. This is not the case. There are situations in
which the powerful consequences of BRS invariance pro-
vide a welcome tool for analyzing the renormalization
structure.

5A' =(5"d„+gf' '&~)~'(x),

and proceeding as in Sec. IV between Eqs. (4.21) and
(4.26), we obtain the Ward identity

While this prescription seems to work reasonably well for
the axial and planar gauges, it is unsuitable for the light-
cone gauge, where it violates power counting and leads to
one-loop integrals whose divergent components are either
nonlocal or contain double poles. Prescription (6.9) may
even fail to satisfy the appropriate Ward identities. The
question one has to answer is whether these difficulties
are symptomatic of the light-cone gauge per se, or wheth-
er they are caused by the prescription itself. It is possible,
after all, that (6.9) is mathematically ill-defined for
n =0.

To see that this is indeed the case, we observe that for
no&0 (as required by n =0), the poles of (q n+ip)
namely, qo

—' ——(q n+ip)/no, lie on a line parallel to the
imaginary qo axis, i.e., they appear in the first and fourth
quadrants of the complex qo plane. We assume no&0
and q n) 0 (Fig. 17). The location of qo(+) and q(o

prevents us from making a Wick rotation to Euclidean

Imq

p,a, p
1/2 x---

E

I

I

(p, (-)

I

I

l

I

Req

p, a
+ 1/2x

FICx. 16. Yang-Mills self-energy to one loop. (a) Pure Yang-
Mills self-energy diagram in the light-cone gauge; (b) massless
tadpole diagram, vanishing in dimensional regularization.

FIG. 17. Poles of a typical Feynman propagator such as
(q +is) ', denoted by a cross, lie in the second and fourth qua-
drants, whereas the poles connected with the principal-value
prescription (6.9), and denoted by an asterisk, are seen to lie in
the first and fourth quadrants of the complex qo plane.
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1+. p&0
iq4 I

n
I +q n —iiM

q n+iq. 4 I
n

I= lim
p o (q n+iq4

I nI )2+@2
(6.10)

This result is unacceptable, however, because the complex
denominator often leads to poorly defined parameter in-
tegrals of the form

1f dpp '(1 —p) " '=1(co)l ( —co)/1(0) .

In summary, application of the principal-value prescrip-
tion to the light-cone gauge creates more problems than it
solves and ought to be avoided at any cost.

At the beginning of 1982, Mandelstam (1982) proposed
a new light-cone gauge prescription for (q n ),which is
not of the principal-value type, and used it to demonstrate
the ultraviolet finiteness of N =4 supersymmetric Yang-
Mills theory (Mandelstam, 1983). Later in 1982, the au-
thor independently discovered the following equivalent
prescription and implemented it in the framework of
dimensional regularization (Leibbrandt, 1982, 1983b,
1984a):

momenta without encircling one of these poles (Leib-
brandt, 1984a). By comparison, the poles of a typical
Feynman propagator like (q +i e) ' lie in the second and
fourth quadrants.

Nor does the principal-value prescription work for
momentum integrals like fd q[q (q —p) q n], which
are already defined over Euclidean space . Since
q.n =q4n4+ q.n, and since n =n 4+m =0 implies
n4 +i——

I
n I, prescription (6.9) gives (we use

n4 +——i InI)
1 1 . 1PV ~ =—lim

q n 2& o iq4 I
n

I
+q'n+'iM

choice for n& is n&
——(no, —n). In terms of nz and n~,

Mandelstam's prescription reads (Mandelstam, 1983)
1 . 1= lim, , c&0.

o+ q.n +iraq. n
(6.12)

2. Light-cone gauge integrals

We illustrate prescription (6.11) by evaluating the basic
integral,

I=fd "qI[(q p) +—ie]q nI.
first in Minkowski, then in Euclidean space.

(6.13)

a. Minkowski space

Substituting

1 qono+ q.n=hm 22
Mini E o qono (q n) +is (6.14)

The two prescriptions (6.11) and (6.12) give identical re-
sults (Lee and Milgram, 1986a), at least to one-loop order,
and avoid the difficulties created by procedure (6.9).
Prescription (6.11) was subsequently recovered by Basset-
to et al. (1985) in the context of canonical quantization.

The light-cone gauge prescription (6.11) possesses im-
portant properties: (1) It permits a Wick rotation. (2) It
satisfies power counting. (3) All basic one-loop integrals
are local. (4) The divergent parts of basic one-loop in-
tegrals are at most proportional to simple poles. (5) The
prescription leads in general to Lorentz-noninvariant in-
tegrals. In a basic integral there is merely a single factor
(q n ) r, y = 1,2, 3, . . . , N. Note that the first four prop-
erties are the same as for couariant gauges, and that the
light-cone gauge shares property (5) with the axial and
planar gauge.

qn*= lim, c&0,
q n, 0+ q nq. n +is

(6.11) into I and observing that the resulting integrand is not
Lorentz invariant, we first write

with poles in the second and fourth quadrants of the com-
plex qo plane, and where n& is an arbitrary 4-vector,
satisfying (n*) =0, n n*= 1 (footnote 15). A convenient

q dqo,

then integrate over qo and q separately:

d q(qono+q. n)I= lim
o+ [(q —p ) + is][qon o —(q n) +is] (6.15a)

= lim f dx A f d " 'q f dqo(qono+q. n)[(qo B/A) (d/A )—+iE/—A], d=B AC, —
o+ OO

A=x+(1 —»no B=xpo, C=xpo —x(q —p)' —(1—x)(q n)',2 2

(6.15b)

where the denominator in Eq. (6.15a) has been combined according to Feynman. The various integrations lead to (Leib-
brandt, 1984a)

~5The author is grateful to Professor J. C. Taylor (1986) for providing him with this definition of n„*.
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d g Q' —P g 'I1 = E& I 2 —cg —P 'nP n = I, co 2
n'n n n* (6.16)

which is local, but Lorentz noncovariant, and agrees with power counting. Here n n."=2n =2no, while I=in I (2—co)
has already been defined in Eq, (4.23). Comparison of Eq. (6.16) with the result in the axial gauge, namely, 2p nI/n,
shows that the light-cone gauge is not a limiting case of the axial gauge when n ~0

b. Euclidean space

The transition from Minkowski to Euclidean space is effected by the transformation

qo =1q4 q =q ~ no =n4 ~

so that prescription (6.11) reads
r

I q n+~q4n4= lim
q n E/g] c~o+ —q4n4 —(q'n) +le

and I becomes

(6.17)

(6.18)

+ 00 q H+lg4n4I=i d q dg4
[(q4 —p4)'+(q —p)'][q4n4+(q»']

(6.19)

where the is has been dropped and d "q replaced by i d 'qdq&. We note that no is not rotated in (6.17). Rather than
combine the propagators according to Feynman, as was done in Minkowski space, it is more efficient in Euclidean space
to apply the exponential parametrization

1 1 X —1daa exp( —aA), A ~0, %=1,2, 3, . . . ,

glV111g

I=i f da d/3e ~~ f d q f dqg(q'n+iqgng )e

E =/3q —2' p+a(q n) + (/3+an&)q& 2Pq4p4 —.
Integration over q4 and q yields (see Appendix C)

I=i~ p.n* f dad/3/3 (/3+an4) expI Pp +Pp +—[ a/3(p—n) +/3. p4]l(P+ang)I .

(6.20)

Rescaling a to ain4 and introducing the new parameters
(A, ,g) via

a=A(1 —g), /3=A/, f dad/3~
2 f dg f A, dl. ,

3. Other technical aspects

a. Tensor method

Prescriptions (6.11) and (6.12) permit evaluation of any
light-cone gauge integral by the conventional Feynman
parameter technique, in either Minkowski space or Eu-
clidean space. For some integrals we may replace this
safe, but often onerous, Feynman approach with the
shorter tensor method, which exploits the Lorentz invari-
ance and symmetry of integrals like

(6.21)

we eventually get

(6.22)

where I denotes the divergent part of

d "q m"I"(2—co)(p ) [I (co —1)]
q (q —p) r(2~ —2)

dq F(qp, qpq~, . . . )

G(q, (q —p) )
(6.23)

I[p4n4+(p n) ],n4= ,'n n*, —
n.n*

=m I (2—co), co~2+ .

2 2 2
p =p4+p

We see from Eq. (6.22) that the integral I is local in the
external momentum p~ for co ~ 2, but Lorentz noncovari-
ant.

and which is known to give satisfactory results for both
covariant-gauge integrals and axial-gauge integrals (Kainz
et aI. , 1974; Capper, 1979; Tkachov, 1981; Capper and
Leibbrandt, 1982b; Jones and Leveille, 1982). If certain
scalar integrals have already been computed, the tensor
method allows us to evaluate integrals like (6.23) efficient-
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ly and without further integration.
Take, for instance, the Euclidean-space integral

I„=fd qq„[q (q p—) q n]. (6.24)

from the expression

~

~
~

dg gp =n~I/n 'n
q'(q p—)'q n

(6.30)

p„,n„being free parameters. In the axial gauge (n &0),
the tensor method involves the ansatz

The appropriate ansatz for Eq. (6.30) is

Ip =Qpp +bnp (6.25)
=nz(I/n n')+n h(n, n', p),

~

~

q'(q —p)'q n
(6.31)

multiplying Eq. (6.25) by n& and p&, respectively, and
solving for the divergent parts of a and b: a

~ d;,
——0,

b
~ d;, ——I/nz. Thus

I;""' ld;, = fd'"qq„[q'(q p}'q—n] '

=n&I/n, n &0. (6.26)

However, in the light-cone (lc) gauge where n =0, the
correct ansatz for Eq. (6.24) reads

Ip =App +Bnp +Cn p (6.27)

with the divergent parts of the coefficients A, B, and C to
be determined. The unusual structure of Eq. (6.27) can be
justified in the framework of the elegant Newman-
Penrose tetrad scheme (Newman and Penrose, 1962,
1963), where any four-dimensional vector is expressible in
terms of four null Uectors, as explained by Leibbrandt
(1984b). Exploiting, moreover, the assumptions of locali-
ty and power counting, we obtain A

~
d;„——B

~

d;„——0,
C

~
d;„I/n n '——, so that

Setting n equal to zero in Eq. (6.32} and observing that
the first term on the right-hand side is already symmetric
in the indices, we may choose h =0 to get the divergent
part of the integral

, =n„*n,'I/(n n*)'.~
~

q (q p) (q—n)
(6.33)

Similar examples are studied in Andrasi et al. (1986).

where the function h must be chosen so that the answer
for I& is symmetric in p, v. Moreover, h should conserve
n&, be local in p&, and of dimension [n ]. Differentia-
tion of Eq. (6.31) with respect to n, gives, holding n„*

fixed,

2 ~ 2 ~ 2
~~ ~

I~

~

~

2
~

v

~
v I

dg /pe npn ~ ()QI—n —2n, h .
q (q —p) (q n) (n n") Bn,

(6.32)

Ip =n@I/n'n, n =0 . (6.28)
C. Application to Yang-Mills fields

Notice that the result (6.28) conserves n„', a property
characteristic of all light-cone gauge integrals treated with
the prescriptions (6.11) and (6.12). The appearance of the
term Cn„* in Eq. (6.27) is related to the fact that the
light-cone vector n& has linearly dependent components.

b. The operator 8/Bn„

We illustrate the light-cane prescription (6.11) in the
case of quantum chromodynamics, first, by reviewing the
Yang-Mills self-energy and then by analyzing the three-
gluon vertex function to one-loop order. The three-gluon
vertex is studied in some detail in order to display the im-
portance of ghosts in the derivation of nonlocal BRS
counterterms.

Ip —— pgv

q (q —p) (q n)
(6.29)

Application of the operator 8/Bn„ to a known integral
generates new light-cone gauge integrals, provided n& is
kept fixed and the final indices are symmetrized (Andrasi
et al. , 1986). We illustrate the procedure by evaluating
the integral

1. Yang-Mills self-energy to one loop

The relevant Lagrangian density for this calculation is
given in Eq. (6.1), but with (L,„,+I.sh„, ) omitted. Appli-
cation of the Feynman rules (6.4) and (6.5) and of
prescription (6.11) leads to the following expression for
the Yang-Mills self-energy in Fig. 16 (Leibbrandt, 1984a):

divtI&„(p)=in I (2—co)CvMg 5' —", (p g&, —p&p„)+ „(p&n +p,n„*)
n'n+,[2p n„n„pn(p„n, +p„—n&)]—,(nzn, +n,n„}p.nn. n* n.n* (6.34)

where f"f"' =5'bCvM. For a more recent study of the
gluon self-energy, see Dalbosco (1986).

Apart from the traditional factor, —", (p g„—pzp ), the
self-energy in the light-cone gauge differs drastically from

I

that in the axial and planar gauges, Eqs. (4.34) and (5.19),
respectively. Not only is Eq. (6.34) gauge dependent and
Lorentz noninvariant, but it is also nonlocal in the exter-
nal momentum p&, the nonlocality arising from use of the
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10S4 George Leibbrandt: Introduction to noncovariant gauges

decomposition formula

d g d
q.n(q —p) n p n

1 1+qn (q —p)n p„&0

(o)

(6.3S)

in integrals like

J d "q[(q —p) q.n(q p—) n].

Despite the presence of n* terms, II„', obeys the simple
Ward identity p II„' (p)=0, derived previously in Eq.
(6.8). Obviously the nonlocal term 4n„n p n*p. /
(p nn n ) would be damaging for the renormalization
program if such a term would turn out to be necessary in
order to obtain finite S matrix elements. In fact, we shall
see in the next section that the nonlocal factors in the
self-energy and vertex functions can be matched by a suit-
able BRS ansatz for the counterterms.

Before leaving this section, we note that the light-cone
gauge formalism has also been applied to the one-loop
quark self-energy (Fig. 18) and the quark-quark-gluon
vertex function (Fig. 19), which were shown to respect the
Ward identity (Leibbrandt and Nyeo, 1984). Other recent
publications include Natroshvili et al. (198S), Mann and
Tarasov (1986), Gaigg et al. (1987), and Ho-Kim et al.
(1987).

,d, p
()

. ()
)

FIG. 19. Permian-fermion-gauge vertex diagrams. (a) QED-
like fermion-fermion-gauge vertex diagram. W'avy and solid
lines correspond, respectively, to gluons and fermions. (b) Non-
Abelian fermion-fermion-gauge vertex diagram.

2. The three-gIuon vertex and nonlocal BRS
counterterms

One may gain further insight into the overall structure
of nonlocal terms and the importance of ghosts by exam-
ining the vertex 'I

& '(p, q, r) in Fig. 20. The presence of
nonlocal terms in the reduced vertex function
I &„' (p, 0, —p) was first established by Andrasi et al.
(1986), and Lee and Milgram (1986a), and in the general
three-gluon vertex I „','(p, q, r) by Dalbosco (198S). The
results of Dalbosco were later verified by Lee and Mil-
gram (1986b), and Leibbrandt and Nyeo (1986d). In
Dalbosco's elegant notation (Dalbosco, 198S), the diver-
gent part of I „'„'(p, q, r) reads, to one-loop order

divI & '(p, q, r)=2xf '[( '6 A —8(')—C —D' ')

+(E(1)+E(2) 2g(&) H)]

(6.36)

()

$) q, b,v

I

I( q, b, v

A»~ ger(q r)„+g.„(—r p).+g»(p——q).

=[g. (q r)„]"—
8&" ——[g„n&n *.(q r) /n. n *]"—,

C„„=[g,n~n (q r)/n n']",—.

Dz„' ——[(q r)z(n„n*+n—*„n )/n n']",

-q-P c: &

where the first four terms are local, (c) 1)

((

1f qbv
()

)

+ 1/2x

q-P, G,P

FIG. 18. One-loop fermion self-energy diagram. The wavy line
corresponds to a gluon field, while the solid lines denote fer-
mions.

FIG. 20. Three-gluon vertex diagrams. (a) Triangle diagram;
(b), (c), and (d) are "swordfish" diagrams.
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while the remaining ones are nonlocal: S„„„,= Jd x(+ 2a)F„'g~ ') o—X . (6.44)

q I & '(p, q, r) =igf' '[II„(r)—II„(p)], (6.37)

where II„ is given in Eq. (6.34), we shall use the
Slavnov-Taylor identities (Taylor, 1971; Slavnov, 1972) to
postulate a suitable counterterm Lagrangian.

Following the procedure between Eqs. (5.25) and (5.27),
we find that the divergent part D of the generating func-
tional is given by

D= Y+o'X, (6.38)

(6.39)

d4 6S 5 5S 5
gg 0 gag gJQ gg pg

5S 5 5S 5
5g'. M' 5K' 5g'

(6.40)

where Y is gauge invariant and oX gauge noninvariant.
J',X' are sources and rt„T), ghost fields. The coefficient
a2 in Ymay be dropped. [See Gaigg et al. (1986) for re-
lated material. ] The functional X is basically arbitrary,
but it should conserve ghost number Xg (Lee, 1976;
Itzykson and Zuber, 1980; Nyeo, 1986b) and have the
proper dimension of mass.

We return to Eq. (6.38). Since II~„and I „'„' contain
both local and nonlocal terms, it seems reasonable to en-
dow the functional X with similar characteristics. Ac-
cordingly, we shall assume the ansatz

X=fd x(Xi„,i+X„,„i„,i), (6.41)

X)„,) ——a 3 A „'(J"'+7) 'n" )
1

+ann*A 'n"(J„'+g'n„)+a6g'K',

(6.42)

B&' ——[g,~n&(n qn* q. n—rn' r)l(n n.'n p))",
E~" [——p~n, n~(n qln q n*—rl.n r)ln n*]",
E„'„' =[(q r)&—n, n (n'.qln q+n' rln r)/n n*]",
H& ——n„n n [(q n* r rn—* q)/(n n*n qn r)]" .

Here pz, q&, r& are incoming momenta with (p+q
+ r)& 0, z=——g CvMI (2 to)/—(4n), g is the strong cou-
pling constant, and the symbol [ . ]" denotes cyclic
permutation of the indices (p, v, cr) and of the momenta
(p, q, r).

The next challenge is to construct a BRS-invariant
counterterm Lagrangian that will match the nonlocal
parts in the self-energy and vertex functions. Encouraged
by the fact that I &",

' respects the Ward identity (Leib-
brandt and Nyeo, 1986d):

where A&, . . . ,H„are given in Eq. (6.36). By expli-
cit computation all ghost diagrams vanish (see Figs. 21
and 22), the chief reason being that n "G„' =0 C.ompar-
ison of (6.45) with Eq. (6.36) leads to the coefficients

11a, =+—,~, a, =O,

a& ———az ——a7 —— 2~/n n— (6.46)

The coefficient a6 vanishes from a study of the ghost dia-
grams. Notice that the last four terms in (6.45) corre-
spond to the nonlocal terms in Eq. (6.36).

Due to the presence of nonlocal counterterms, and
despite considerable effort in recent years, there remain a
number of unresolved questions about the renormalization
structure of Yang-Mills theory in the light-cone gauge,
which has been studied by various groups, including
Bassetto (1985, 1986), Bassetto et al. (1985, 1986), Lee
and Milgram (1985c, 1986a), Andrasi et al. (1986), Nyeo
(1986a, 1986b, 1986c), and Leibbrandt and Nyeo (1986c,
1986d). The general hope is that the nonlocal divergent
terms can be controlled in a systematic way by working,
for example, in an extended BRS formalism, or by prov-
ing that nonlocal terms eventually cancel in all "observ-
able" quantities. This second and, from a historical point
of view, more appealing approach has been studied suc-
cessfully by Bassetto et al. (1987).

Vll. THE LIGHT-CONE GAUGE. PART II

A, Supersyrnrnetric Yang-Mills theory

1. Introduction

The purpose of this section is to apply the light-cone
gauge to a study of the finiteness properties of supersym-

Il

If qbv

)'q
/

/
/

I)

~P qbv
II

/y
/

As shown by Leibbrandt and Nyeo (1986d), the counter-
term for the three-gluon vertex has the form

gf' '[ —2a~A —3a3A+n n*(a5B'" a4—C a4—D' ')

+ n n (2a5B' a5—E +a7E ' a7—H)]q~~,

(6.45)

X„,„&„,& a5(n*B /n~B"——)n, A "n "(Jq+g'nt„)

+a7gf' '[(n "d /n„B")n, A,'n At„]

X [(n'B,) '(Jz+g'nz)n~] .

Hence the counterterm action is given by

(6.43)

,a,p P~C~p q-p, c,p

FIG. 21. Ghost-loop diagrams vanishing in noncovariant
gauges (cf. Fig. 2). Dashed lines represent ghost fields; wavy

lines, gluon fields.
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1096 George Leibbrandt: Introduction to noncovariant gauges

(a) 2. N =4 supersymmetric Yang-Mills theory

The Lagrangian density for the X =4 supersymmetric
Yang-Mills model (Gliozzi et al. , 1976, 1977) can be
written as (Namazie et al. , 1983)

1.= —, (F„—) i%' —7% + , V„—H ~V"H
i3

— g (H i'.+.'XC 'e~-+ H. c. )
2

2— II ~XII~'lI XHaP y5 ~

(7.1)

c)

FICr. 22. Ghost-related diagrams. (a) J-co ghost diagram, with
dashed lines representing ghost fields; (b) J-A-co vertex diagram;
(c) J-A-cu vertex diagram; (d) E-m vertex diagram.

metric Yang-Mills theories. G-ell-Mann and Schwarz
(1977) had suggested some time ago that the X =4 super-
symmetric Yang-Mills model might be ultraviolet conver-
gent. The problem was subsequently analyzed by two dis-
tinct methods, the Lorentz-covariant method and the non-
covariant light-cone gauge technique. Despite the loss of
manifest Lorentz covariance, the light-cone technique
seemed superior. It was easier to apply and it permitted
implementation of the full % =4 supersymmetry. With
the proof of the ultraviolet finiteness of the X =4 Yang-
Mills model by Mandelstam (1983), and the pioneering
work of Brink et al. (1983a, 1983b), the reputation of the
light-cone gauge as an effective and viable gauge was fi-
nally established. There soon appeared other articles on
the % =4 model (Namazie et al. , 1983; Capper et al. ,

1984; Ogren, 1984; Brink and Tollsten, 1985; Leibbrandt
and Matsuki, 1985), as well as on the %=2 model
(Smith, 1985a, 1985b) and on X=1 (Capper and Jones,
1985a, 1985b).

Our plan is to summarize the principal steps leading to
the light-cone gauge superfield formulation of the X =4
model as given by Brink et al. (1983b). These steps in-
clude elimination of the unphysical field components,
embedding of the rem. aining physical modes in a complex
scalar superfield y and, finally, rewriting of the Lagrang-
ian as a function of the light-cone superfield y. We base
our review on Sec. II of Namazie, Salam, and Strathdee
(1983), highlighting those features characteristic of the
light-cone formalism.

+gAp X . (7.2)

The Lagrangian (7.1) may be rewritten in light-cone
form by defining, in four-dimensional space-time,

2

xT —— (x +ix ), xT —— (x ix ), —1 ~ 2 — 1 1 ~ 2

2 2

x"x =2(x+x —xTxr)P

(7.3)

A+ — (Ao+A3), Ap ——(AO, A), A2, A3)
1

2

1 . — 1
AT —— (A$ —iA2), Ar —— (A$+iA2),

2
'

2

(7.4)

where the subscript T labels the transverse components.
Ii is customary to call x+ the light-cone time, or evolu-
tion parameter, and x, x~, xT the spatial light-cone
coordinates. Equations of motion containing 8+ =8/Bx+
are, therefore, dynamical equations, whereas those not in-
volving 8+ are treated as constraint equations. Imposi-
tion of the light-cone gauge condition n "A& ——0, or

A =0 (7.5)

for the special choice nz ——(1,0,0, 1), allows one to use the
constraint equations to eliminate some components of the
various fields in favor of the remaining physical degrees

F@ ——B„A —0 Ap+gAp &A, p, v=0, 1,2,3,
where A& is a Yang-Mills field, 4 a chiral spinor, H p a
scalar, and a,P= 1,2, 3,4 are SU(4) indices. Gauge indices
are suppressed in this section and all fields are in the ad-
joint representation of the gauge group. C is the charge-
conjugation matrix. This X =4 model possesses the fol-
lowing symmetries: (1) a local symmetry (any semisimple
gauge group, with all fields in the adjoint representation);
(2) a global supersymmetry and a global SU(4) symmetry,
under which the supersymmetry charge transforms as a 4.
This implies that there is only one independent coupling
constant g. Moreover, 4 -4, 'P~-4, and H &-6 of this
SU(4), with the "reality" condition H p —,E prsH ——r im-

posed, and Hr =(H&s)*. An asterisk means complex
conjugation and the superscript T in Eq. (7.1) indicates
the transpose. 7=y"V„, where V„ is the gauge derivative
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a+ (d—) '(V-,a W, +V,d 2, Z—), (7.6)

1 . — 1
Vr —— (V( —iV2), VT —— (V, +iV2) .

V'2 2
/

We recall that the nonlocal operator 1/8 represents an
indefinite integral and will, therefore, be burdened by the
usual integration constant ambiguity. In momentum
space the ambiguity asserts itself when p =0. For loop
integrations it is important to handle the unphysical
singularities of (p n) .' = (p )

' by a meaningful
prescription that must satisfy power counting. Such a
prescription has been given by Mandelstam (1983) and,
independently, by Leibbrandt (1982, 1984a).

It remains to express J in terms of propagating
modes. Following Namazie et al. (1983), we write the
chiral fermion field 4 as

of freedom. In the light-cone gauge (7.5), the equations of
motion for A&,

J,=V"F„„, p, v=(+, , T—,T)

can be solved for A+ ..

g e(~—i~)/'2g g a~e (~+i~)/'2g a
a a~ (7.11)

while the coordinate vector x"=(x+,x,x,x ) changes
according to

x +——+e —+ x —+, —oo & A, & + oo,+g +

xT~e xT, x T~e xT, 0& v (2m .
(7.12)

Under light-cone supertranslations these variables
transform as

0 —+0 +c, 0 ~8 +c.
l — lx+~x+, x ~x +—(OE —sO)+ —sE,
2 2

(7.13)

and its complex conjugate, and then proceeded to embed
these physical components in a scalar light co-ne superfield

y (x~,8,8 ) defined on N =4 extended superspace
Ix",O, 8~I (Brink et al. , 1983a; Mandelstam, 1983). The
coordinate 0 and its complex conjugate 0, o.=1, . . . , 4,
are Cxrassmann parameters, transforming under SU(4) as
a 4 and 4, respectively. In the light-cone gauge, an
SO(1,1)XSO(2) subgroup of the Lorentz group survives
intact; under this subgroup,

Xa
'P =2

0

(7.7)

XT~XT~ XT~XT ~

with s~ an infinitesimal anticommuting parameter.
As usual, it is possible to define spinor covariant

derivatives (Salam and Strathdee, 1978) on the extended
sup erspace

and then use the Dirac equation to solve for the unphysi-
cal component g, D = +—88, D = ——88, (7.14)

8 l .
— 8 l—

2 '
BO 2

Hence

1

EB
(iVTX +gH pXXp), u, p=1,2, 3,'4 (78) which satisfy the following anticommutation relations:

f D~,Dpj =0, ID ~,D PI =0, ID~, D PI = i5Pd—
J = —2igg ~g ——II I'&&0 H &,

so that A+ becomes

(7.9) (7.15)

8/88 and 8/BO act as right and left derivatives, respec-
tively. The scalar superfield y is chiral in the sense that

A+ =(B—) VrB —AT+VTB —AT+2igX~XX~
Day=0, (7.16)

+ gII ~XB II paP (7.10)
and since the N =4 multiplet is CPT self-conjugate, y
obeys the "reality" condition

By eliminating A, g~, and A+ by means of Eqs. (7.5),
(7.8), and (7.10), Brink et al. (1983a) managed to rewrite
the Lagrangian (7.1) in terms of the set (Ar, X~, H~p)

D,D D D y=(d ) y; (7.17)

Eq. (7.17) implies that the superfields y and y are linearly
dependent. Explicitly,

—(i/2)888 (x)+ . 8 X (x)+ 88pH P(x) ——,E Pr 8—
OpO X (x)+ —,E Pr 8 OpO 8 8 A (x) . (7.18)

EB

It then follows from the SO(1,1)X SO(2) light-cone symmetry that

y~e ' y, y~e +' y, d O~e ' ' 'd"0, d O~e ' +' 'd t9, B~~e+ B~, BT~e

(7.19)
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3. Superfield representation

In terms of the superfield y, Eq. (7.18), the Lagrangian (7.1) now assumes the light-cone gauge form [see Eq. (4.10) of
Brink et al. (1983a)]

L = d Od 0 —cp. y+ —g y cpgBTcp+ H. c.4— 1 8 2 1

2 (Q ) 3 iB +

(7.20)

which is manifestly invariant under the global symmetry
expressed by the transformations (7.11)—(7.13).

The light-cone gauge superfield formulation of the La-
grangian (7.20) provides a convenient starting point for
proving the ultraviolet finiteness of the X =4 supersym-
metric Yang-Mills model. By examining the detailed
structure of each vertex in an arbitrary amplitude of the
theory, Mandelstam (1983) showed that sufficiently many
powers of momentum are associated with each external
line so as to render the corresponding Green function
"power counting ultraviolet finite. " A crucial ingredient
in the proof is his light-cone prescription that allows the
amplitude to be Wick rotated to Euclidean space, so that
naive power counting is indeed valid.

Further details may be found in Namazie et al. (1983),
who proceed to demonstrate, among other things, that the
off-shell finiteness of the X =4 Yang-Mills theory
remains intact even when supersymmetry is broken expli-
citly by the addition of mass terms for the scalars and spi-
nors of the model. In addition, the local symmetry can be
spontaneously broken. For an SU(2) gauge group, for in-
stance, the resulting theory has a spectrum that is entirely
massive and, hence, both infrared and ultraviolet finite.

This completes our brief review of the basic light-cone
gauge nomenclature in supersymmetric Yang-Mills
theory.

Ein + fIX

pvL'Ein = + g—g +pe,
K

Lr,„= (2a—) '(n "gp ), n "nq ——0,

(7.2 la)

(7.21b)

(7.21c)

n "g„=O, n~n„=O; p, v=0, 1,2,3, (7.22)

is implemented by letting the gauge parameter o. in Eq.
(7.21c) approach zero. In the absence of matter,
Einstein's equations for the gravitational field in empty
space read (cf. Capper and Leibbrandt, 1982b)

(7.23)

In order to reduce LE;„ to two-component form, it is
advantageous to employ light-cone coordinates defined in
four-dimensional space-time by

x+-= (x +x ), x=(x',x ),
2

where the nomenclature is the same as in Eq. (4.37). R„
is the Ricci tensor, g=det(g„, ), and g" g =6",. LE;„
describes massless, helicity-two gravitons: it is invariant
under general coordinate transformations and possesses,
therefore, gravitational gauge symmetry. The light-cone
gauge condition

B. Applications in gravity

1. Pure gravity

x x =(2x+x —x x)

x y =(x+y +x y+ —x y)

and, in d-dimensional space-time, by

(7.24a)

Scherk and Schwarz (1975) and Kaku (1975) were
among the first to study pure gravity in the light-cone
gauge (Root, 1973). By eliminating the redundant degrees
of freedom of the metric tensor g&, and expressing the
latter in terms of two physical transverse modes, they
were able to simplify the Einstein-Hilbert Lagrangian
density LE;„considerably. Simplification of the theory
and ease of computation are the major advantages of the
light-cone formalism, both for Einstein gravity and other
sophisticated theories, like supergravity or supersym-
metric string theories. As in Sec. VII.A, the purpose of
this part is to acquaint the reader with those features
characteristic of the light-cone gauge. With this in mind
we shall summarize the main steps in the elimination of
the redundant modes of g&, following closely the ap-
proach of Scherk and Schwarz (1975).

Consider the Lagrangian density

x+—= (x +xd '),
2

x=(x', . . . , xd 2)=(xJ),
(7.24b)

and to treat x + as the light-cone time, andx,x', . . . ,x" as the spatia1 light-cone coordinates or
light-cone positions. Note that the definition (7.24)
differs slightly from (7.3) for supersymmetric Yang-Mills
theory. For ease in checking back with the original litera-
ture and rather than running the risk of introducing er-
rors by standardizing the notation, we decided to main-
tain as much as possible the notation of the original refer-
ences.

Our primary task is to express LE;„ in terms of physi-
cal propagating modes only. We recall that the sym-
metric tensor g„has originally ten components. The
four gauge conditions
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n "go~=0) n "np =0) p) v=+) —) 1)2 (7.25) with

reduce that number from 10 to 6, while gravitational
gauge invariance eliminates another four redundant
modes. .In four dimensions the graviton field possesses,
therefore, two physical degrees of freedom, whereas in d
dimensions the number of propagating modes equals
—,
' (d —2)(d —1)—1 (Goroff and Schwarz, 1983).

To demonstrate the elimination of the redundant g„
modes, we follow Scherk and Schwarz (1975), who define
new variables V, y,j., and y by writing, respectively,

e ~

gjl—e fg) L)J = 1)2

det(y;j ) = 1,
g+ =e

(7.26)

(7.27)

(7.28)

where the symmetric, unimodular matrix y;J. is character-
ized by two independent variables, p and O:

cosO sinO e~ 0 cosO —sinO

—sinO cos8 0 e —~ sinO cosO

y'"yjk ——5j' . (7.29)

The next step is to replace the gauge constraints (7.25) by
the more suitable set (n+ =v 2, n =0)

g++ g+1 8+2 (7.30a)

(7.30b)

and then to rewrite 4, g, and g; in terms of y;~. We
first consider %. Substitu'tion of Eqs. (7.26), (7.27), (7.28),
and (7.30a) into Eq. (7.23) yields

R++ =2(B+qr)(8+4) —2(B+) 4
—(8 'P)'+ —,'(i) y"8 y;, )=0,

leading to the solution (imp = —,
' 4)

'p= —,'(a, )-'(a y'ja, y,j),

(7.31)

(7.32)

where the nonlocal operator (8+) ' is equivalent to the
operator (8 ) ' used in Sec. VII.A.

The componen'ts g; and g, on the other hand, fol-
low from g&+g&, 5,+ and g"+g&————5+, respectively:

g;= —e'~ 'y,,g+J, i j=1,2,
g =e y"g;g —e g++

(7.33a)

(7.33b)

~ ~

+y ~if 'i)jl km 2 y ilail i)j3 km)

+e (4d+8 O' d+y'jB y;j )—
+e

B+
1 Rj, i j,k, m =1,2,

8+

(7.34)

where g+, ——5,+=5+=0; g+j may be deduced from

R+j ——0, and g++ from R+ ——0. Equations (7.32) and
(7.33) permit us to write all three variables %', g;, and

g as functions of y,j, so that LE;„ finally becomes [see
Eq. (3.17) of Scherk and Schwarz, 1975]

R, = ,'-e'(a, y "a,yj„+a,ea,e —3a a, e)

We have succeeded in rewriting Einstein s Lagrangian en-
tirely in terms of the physical degrees of freedom of the
graviton. The relative simplicity of the two-component
version (7.34) is partially offset by its lack of locality and
manifest Lorentz covariance, two features reminiscent of
most light-cone gauge formulations.

This completes our review, according to Scherk and
Schwarz (1975), of the elimination of the nonpropagating
modes in pure gravity, and of the derivation of LE;„ in
light-cone form.

The structure of four-dimensional gravity was also ex-
amined by Kaku (1975), who eliminated the eight redun-
dant components by integrating functionally over
g++, g+, g+', g, g ', and det(g, j ). Goroff and
Schwarz (1983), on the other hand, studied pure gravity in
d dimensions. They showed that the theory possesses an
SL(d —2,R) symmetry, so that the graviton may be iden-
tified with the coset SL(d —2,R)/SO(d —2), SO(d —2)
being the helicity group. Recently, Ogren (1986) evaluat-
ed the one-loop self-energy in light-front gravity.

2. Supergravity

Since the early 1980s the light-cone formalism has also
been applied to different models of supergravity, but with
a lower success rate than in Yang-Mills theory because of
the nonpolynomial structure and greater complexity of
the gravitational interaction. Nevertheless, the presence
of only physical modes in the light-cone gauge and the
absence of ghosts have led to simpler and more attractive
supergravity theories in which the transformations obey a
global super-Poincare algebra.

Among the earliest contributors to the field was
Bengtsson (1983), who studied the linear structure of
X=1 supergravity in four dimensions, constructing the
dynamical supersymmetry transformations and deriving
the Hamiltonian to first order in the gravitational cou-
pling constant ii. Bengtsson et al. (1983a, 1983b) con-
structed cubic interaction terms for massless fields of ar-
bitrary helicity and for all maximally extended supermul-
tiplets. Extended supergravity in ten dimensions was in-
vestigated by Green and Schwarz (1983). In 1984,
Randjbar-Daemi et al. computed the vacuum energy in
11-dimensional supergravity, and a year later Randjbar-
Daemi and Sarmadi (1985) analyzed the graviton-induced
compactification of a (4+ X)-dimensional space-time into
the group (Minkowski)4)& S

C. Strings and superstrings

Introduction

In Secs. VI, VII.A, and VII.B, we illustrated the practi-
cal side of the light-cone gauge in the case of ordinary
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Yang-Mills theory, supersymmetric Yang-Mills theory,
and Einstein gravity, respectively. The purpose of the
present discussion is to introduce the notational frame-
work of the light-cone gauge formalism for supersym-
metric string theories, which burst onto the scene in 1984
and have since captured the imagination of a diverse spec-
trum of particle physicists. While the basic idea of the
light-cone gauge, namely, elimination of the nonpropagat-
ing fields and reformulation of the theory in terms of
physical modes only, is the same for all models, the reader
will have noticed a gradual increase in the complexity of
the light-cone formalism, coupled with minor but annoy-
ing changes in notation. This trend continues for the
various supersymmetric string theories, or superstring
theories for short, including those based on the gauge
groups Spin32/Z2 and EsXEs. Since the original super-
string model of Green and Schwarz (1982) and numerous
subsequent calculations are formulated in the light-cone
gauge, we decided to include here a few remarks on the
implementation of this exceedingly versatile gauge. We
stress that the present discussion is in no way Ineant to re-
place the excellent review articles available in the litera-
ture (Mandelstam, 1974; Scherk, 1975; Green, 1982;
Schwarz, 1982).

Superstring theories emerged from dual string models
(Veneziano, 1968) that were developed between 1968 and
1975 as a theory of hadrons, but were later abandoned be-
cause they were unable to provide a satisfactory physical
description of the hadronic world (see, for instance, Ales-
sandrini et al, 1971; Frampton, 1974; Jacob, 1974;
Veneziano, 1974). Among the defects of the "old" string
theory were the appearance of massless states in the ha-
dronic spectrum and a lack of awareness for the need of a
critical dimension of space-time, a dimension that differs
from 4 and in which these theories were meaningful. To-
day we know that the critical dimension for bosonic
string theories is 26; for fermionic string theories, 10.
However, with the discovery of supersymmetry (Gol'fand
and Likhtman, 1971;Volkov and Akulov, 1973; Wess and
Zumino, 1974a, 1974b) and supergravity (Deser and Zu-
mino, 1976; Ferrara et al. , 1976; van Nieuwenhuizen,
1981), and with the development of various grand unified
models, the conceptual framework of quantum field
theory changed dramatically and led to a revival of the
ideas of Kaluza (1921) and Klein (1926). [For a review,
see Duff et al. (1986).] In essence, particle physicists be-
came "conditioned" to working with higher dimensions
and were, therefore, quite willing to consider the implica-
tions of the radically new theory of superstrings.

Superstring models appear to be good candidates for a
unified theory of the known interactions, offering for the
first time a realistic opportunity for combining quantum
mechanics with general relativity. The models based on
the semisimple gauge groups E8 & E8, and Spin32/Z2, are
particularly attractive, since they are free of tachyons, ul-
traviolet finite, and anomaly-free to one-loop order.
Nevertheless, superstring theories are not easy to work
with. They demand a different mode of thinking and the
application of unconventional mathematics. For this

reason, many of the calculations have been and still are
being carried out in the light-cone gauge, which, as we
know, breaks Lorentz covariance. The first-quantized
light-cone gauge string action is supersymmetric, Lorentz
noncovariant, and possesses the following two sym-
metries: It is invariant under Weyl rescaling and
reparametrization of the two-dimensional world-sheet
coordinates. Since we wish to implement, the light-cone
gauge, we need to concentrate on the second invariance,
because fixing the gauge is equivalent to choosing a
specific parametrization.

There are closed and open strings. Closed strings can
be classified as being either of type I or of type II. Type I
theories contain only states that are symmetric under the
interchange of the oscillators a'„~P'„[cf.Eqs. (7.48) and
(7.50)], while type II theories contain states that can be ei-
ther symmetric or antisymmetric under the interchange
a'„~p'„. In addition, there exist planar, orientable, and
nonorientable strings, but for a thorough discussion of
these and related properties we refer the reader to the
literature.

The remainder of this section is organized as follows.
In Sec. VII.C.2 we review ordinary (bosonic) strings and
in Sec. VII.C.3, superstrings. As indicated, there are both
open and closed strings, but we shall not distinguish be-
tween these two categories except in situations where the
distinction is essential, as in the case of boundary condi-
tions, for example.

2. Strings

Consider a string spanning a two-dimensional surface
in space-time, a world-sheet that is parametrized by the
variables cr and r (Scherk, 1975). This world-sheet is
described by the coordinates X"(cr,r), where o. is the spa-
tial coordinate that labels points along the string,
0 & o. & m, and where ~ may be identified with the time pa-
rameter. In other words, the zero component of X~(o,r),
namely, X, may be chosen proportional to the time ~,
X ~ r, as emphasized by Schwarz (1982). The metric as-
sociated with the two-dimensional world-sheet is denoted
by g~p(cr, r), ct,p= 1,2; the space time metric is la-beled by

and taken to be the flat Minkowski metric

g„=diag( —1,1, . . . , 1) . (7.35)

Following the work of Nambu (1970) and Goto (1971),we
can write the string action as (Schwarz, 1982)

ct,P= 1,2, (7.36)

where g—:detg tt and p, v=(0, 1, . . . , D —1). D is the di-
mension of space-time and equal to D =26 for the boson-
ic string; the parameter 0.' denotes the Regge slope and
has dimension [ct']= (length), while fi=c = 1.

As mentioned earlier, the action (7.36) is invariant
under Weyl rescaling of the world-sheet metric,
g p

—+e ' "g p, and under reparametrization of the coor-
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(a~„)(a~~)=0, a.—=ajao, «c. ,

(a~~)2+(a~~)2=O .
(7.37a)

(7.37b)

Unfortunately, the constraints (7.37a) and (7.37b) do not
completely specify the coordinate system for the string,
since the associated two-dimensional world-sheet admits
infinitely many orthogonal systems. In order to remove
the remaining gauge degrees of freedom, we select a
specific axis' n& in space by constructing n&X, with nz
an arbitrary D-dimensional vector. %"e then choose n&X"
proportional to the evolution parameter z:

dinates o,r:. cryo'(cr, r), ~~v'(o, 2 ). See Goddard et al.
(1973). I.et us take a closer look at the last symmetry.
Since invariance under reparametrization implies a certain
gauge freedom, we are at liberty to work in whatever
gauge we choose. A particularly convenient gauge is the
orthonormal gauge (Douglas, 1939; Goddard et al. , 1973;
Scherk, 1975; Schwarz, 1982), which may be defined as

equation

82

Bo

a2

ad
X'(o,~)=0, i =1,2, . . . , D —2, (7.44)

subject to the following boundary conditions for open and
closed strings, respectively,

i
Xppeg ( 0'y r) a

Xopen(o'~r)
a.=0 BcT

CT =S'
(7.44a)

X,'i„,d(0, &)=X,')os,p(n, r) . (7.44b)

Xop,„(cr,r) =x'+ 2a'rp'+2i a' g —a'„cos(no )e
n&0

while quantization of the string gives

(7.45)

To solve system (7.44) and (7.44a) for open strings, one
simply expands X' in terms of normal modes, so that

n„X"(r)=n„x"(r—) =n„xi'+ 2a'n„p"r, (7.37c)
[x",p"]=i21"", p, v=o, 1, . . . , D —1, (7.46)

where pi' is the total D momentum of the string (Scherk,
1975), x" an integration constant, and the x"(2) are
"center-of-mass" coordinates given by

~ ~[a',aj ]=m5 +„p5",
ij =1,2, . . . , D —2, m, n =1,2, . . . . (747)

1xi'(r) =—f X"(o,r)do . (7.38) At this stage it is customary to introduce the lowering
and raising operators a„' and (a„'), respectively,

Equations (7.37) form a unique orthonormal system
that may be further simplified by choosing n„ lightlike,
n =0 (the resulting gauge constraint is also referred to as
the transverse gauge), and by working in D-dimensional
light-cone coordinates:

X +—= (X +X ')
vZ

(7.39)

X=(X', . . . ,X ) =(X'), i =1,2, . . . ,D —2, (7AO)

X I'=21 ~i'Y"= —X+% ——X-Y++X'Y' .P (7.41)

Notice the difference in the overall sign between Eqs.
(7.41) and (7.24a), which is due to the metric (7.35). With
nz ——(1,0, . . . , 0, 1), and in view of Eq. (7.37c), the light-
cone condition reads

X+(cr,~) =x+(2.) =x++2a'p+r, (7.42)

while the string action (7.36) reduces to (Schwarz, 1982)

S"= ', f "do f 'dna~'a X',4',"
ex=i, 2, i =l, . . . , D —2 . (.7A3)

Note that the choice of such an axis breaks manifest Lorentz
covariance.

Since it is possible to express X in terms of X—see the
detailed discussion in Scherk (1975)—the dynamical con-
tent of the theory is completely determined by the trans-
verse coordinates X'(o,r). The latter satisfy the free wave

I

Q~= a„, (it~) = a ~, n =1,2, . . . ,
n n

(7.48)

which describe infinitely many harmonic oscillators.
Ghost states are absent, because we are working in a phys-
ical gauge, the light-cone gauge.

The solution of system (7.44)—(7.44b) for closed strings
is similar to the open case and leads to (Moffat, 1986;
Schwarz, 1982; Dine, 1986)

X,',.„,( ~o) =x'+ia' g —(a'„e-""'-'
nxo n

+pi 2in (r+n—)
) (7.49)

where the first term in the sum represents waves moving
along the string to the right, or "right movers, "while the
second term represents waves moving to the left, or "left
movers. " Quantization of this string system yields

[x",P'] =i 2)i'

~ ~[a',aJ ]=m5 +„p5'J,

[p', p~ ]=m5 +„p5'J,

[a',pj ]=o,

(7.50a)

(7.50b)

(7,50c)

(7.50d)

where the indices have the same range as in Eqs. (7.46)
and (7.47).

In summary, the first-quantized bosonic string theory
in the light-cone gauge has a critical dimension of D =26
and yields (D —2) massless states in the open case, and
(D —2) states in the closed case. Its major defects are
the appearance of tachyons and the absence of fermions.
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Although we have purposely restricted our discussion to
the light-cone gauge, we should mention that progress
during the past couple of years has also been made on the
coUariant formulation of bosonic strings.

3. Superstrings

The supersymmetric string has bosonic as well as fer-
mionic degrees of freedom, is free of tachyons, is ultravio-
let finite —at least to one-loop order (Dine, 1986)—and
has a critical dimension of D = 10. The superstring
represents a decisive improvement over the bosonic string,
especially since anomalies can be shown to cancel at the
one-loop level, provided the gauge group is Spin32/Z2
(Green and Schwarz, 1984).

The original first-quantized version of superstrings by
Green and Schwarz (1982) was formulated in the light-
cone gauge, because it was not clear in 1982 how to con-
struct a superstring action that was both Lorentz covari-
ant and supersymmetric. Since that time considerable
progress has been made in constructing covariant models,
and in establishing equivalence between the light-cone
gauge formulation and the covariant formalism.

Apart from work in the first-quantized version, much
effort has gone into deriving a second-quantized, field-
theoretic formulation of interacting superstrings (Kaku
and Kikkawa, 1974; Neveu and West, 1985, 1986; Banks
and Peskin, 1986; Hata et ai. , 1986; Samuel, 1986; Siegel
and Zwiebach, 1986; Witten, 1986). In this framework
the string field is represented by a scalar functional of the
light-cone string coordinates (Green, 1986), and there ex-
ist now creation and destruction operators for strings.
This functional formulation (Hsue et a/. , 1970; Gervais
and Sakita, 1971; Polyakov, 198la, 1981b) is being pur-
sued both in the light-cone gauge (Mandelstam, 1985;
Restuccia and Taylor, 1985) and in a covariant setting
(Green, 1986; Ohta, 1986; see also West, 1986). Here we
shall take a brief look only at the first-quantized super-
string formalism in the light-cone gauge.

As remarked earlier, superstrings contain both bosonic
and fermionic degrees of freedom, i.e., a superstring is
characterized by the coordinates tX'",0 'I, which define
a superspace. X"(o.,~), p, =0, 1, . . . , D —1, are the usual
bosonic space-time coordinates in D dimensions, while
0"'(o,~) are Grassmann coordinates expressing the fer-
mionic degrees of freedom. The two-component object
O~, 3 =1,2, a =1,2, . . . ,2, transforms like a spinor
in D-dimensional space-time, thereby connecting bosons
and fermions (Schwarz, 1982; Green, 1986). Since the
critical dimension for superstrings is D = 10, there are ex-
actly D —2=8 physical modes [matching the number of
transverse components X'(cr, r)] and eight physical spinor
modes. The variable 0 ' is assumed to be self-conjugate
(Majorana) and obeys the chirality (Weyl) condition
(Schwarz, 1982; Green, 1986)

where (y")' are space-time Dirac matrices in a Majorana
representation, g"=+1, y»=y y'. . .y, and Iy",y I= —qj", where the last negative sign is due to the par-
ticular choice of Minkowski metric,
=diag( —1,1, . . . , 1).

The next task is to give the form of the light-cone con-
straints on the superspace coordinates IX",O"'I. For the
bosonic coordinates X", the constraint is, of course, the
same as in Eq. (7.42),

X+(cr,r) =x ++2a'p+~, (7.52)

with

- (r'+7')

To obtain the symmetric string action, one just adds to
Eq. (7.43) the Dirac action for spinors,

i(4~) 'fdo fdrOy paO,
so that the total action is given by (Schwarz, 1982)

S'= ' f d~f'd~ ,'a~, a x'
a

+gQ~ y p () Q~

i =1,2, . . . , 8, a=. 1,2 . (7.54)

Here

(O~)Aa (O+ )Bb(~0)ba( 0)EA

a, b =1,2, . . . , 32,
and (p ) are two-dimensional world-sheet Dirac ma-
trices with

r

0 —i 0 i
0 1

i 0 P=
i 0

The light-cone action (7.54), first proposed by Green and
Schwarz (1982), is invariant under the supersymmetry
transformations

8Xi (p +
)
—I /2 —

~&O

~O"=& (p ) 1 1' (p'aX~)E. @=0 9

(7.55)

(7.56)

c being Majorana-Weyl spinors in ten dimensions.
The equations of motion for X' and 0"' follow readily

from the string action (7.54). For open strings, X'(a, r)
satisfies

but for the spinor 8"' the light-cone condition assumes
quite a different form (Schwarz, 1982):

(y+)'"O" (o,~)=0, & =1,2, ab =12, . . . , 32,

(7.53)

—(1+g"y»)' O~ (cr, ~)=0,
3 =1,2, a, b =1, . . . , 32, (7.51)

a a x'(~, ~)=0, a =— (a,+a.),1

2

with boundary conditions

(7.57)
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a Xppe~ (0'
y 7)

while 0 ' obeys

a
Xopen( iri r )

o=0 0 CT=K

(7.58)

a 8"=0, a 0"=0,
with boundary conditions

(7.59)

~ t 1 l —l1tV E+2ia' g —a'„e '" —a' „e+'"'
7l

(7.61)

and

QIE la(iT &) g Q& e in (T——K)

n =—oo

(7.62a)

Qzg(a &) g pae in(r+—u)

n = —oo

(7.62b)

with o,' „=o."„,0"' „=0"'„
This concludes our brief introduction to superstrings in

the light-cone gauge, but we would be remiss if we did not
at least mention a second type of superstring, the heterotic
string of Gross, Harvey, Martinec, and Rohm (1985). The
heterotic string is a hybrid theory, combining the D =10
fermionic string with the D =26 bosonic string. Gross
et a/. have demonstrated that the heterotic string, with
N =1 supersymmetry, is likewise finite, free of tachyons,
and anomaly-free, provided the gauge group is E8XE8 or
Spin32/Zz. For a detailed discussion of the heterotic
string, which has only been constructed in the light-cone
gauge, we refer the reader to Dine (1986), Gross (1986),
and Moffat (1986).

VIII. THE TEMPORAL GAUGE

A. Introduction

The temporal gauge is the last of the four axial-type
gauges to be surveyed in this review. The temporal gauge
is almost as old as quantum mechanics itself, having been
used half a century ago by Weyl (1931), Heisenberg and
Pauli (1930), and others in the quantization of the
Maxwell-Dirac field. In quantum electrodynamics the
temporal gauge is given by Ao(x)=0 and in Yang-Mills
theory by Ao(x)=0, with the constant 4-'vector n~ taken
timelike: n =no —n &0.

In recent years, the problems related to the quantiza-
tion of gauge theories in the temporal gauge have been
studied both in the context of canonical quantization and
within Feynman's path-integral formalism. At the same
time, practical calculations have received about equal at-
tention (Baluni and Grossman, 1978; Goldstone and

0""(O,r) =O~ '(O, r), 0'"(n, r) =. Q" '(m, r) .. (7 60).

Systems [(7.57) and (7.58)] and [(7.59 and (7.60)] lead to
the following open-string solution:

X'(o, r) =x'+2a'p'r

Jackiw, 197'8; Polyakov, 1978; Frenkel, 1979; Rossi and
Testa, 1980a, 1980b, 1984a; Muller and Ruhl, 1981;Leroy
et al. , 1984). The temporal gauge has been applied to the
vacuum tunneling by instantons (Rossi and Testa, 1984b)
and to the computation of mass singularities from planar
graphs. It has also appeared in connection with one-loop
thermodynamic potentials (Actor, 1986), Nicolai maps
(Claudson and Halpern, 1985; Bern and Chan, 1986), lat-
tice gauge formulations (Curci et al. , 1984), and gluon
plasma (Kajantie and Kapusta, 1985).

The difficulties encountered in the quantization of
gauge theories in the temporal gauge may be traced back
to the condition Ao(x) =0, which does not fix the gauge
uniquely. ' The point is that time-independent gauge
transformations are still a symmetry of the action. This
residual invariance manifests itself as an unphysical pole
in the longitudinal part of the gauge field propagator. To
solve this delicate problem, the following schemes have
been proposed.

(1) The canonical quantization scheme In .this ap-
proach one tries to eliminate the unwanted degrees of
freedom associated with time-independent gauge transfor-
mations (Goldstone and Jackiw, 1978; Bjorken, 1980;
Christ and Lee, 1980; Hailer, 1986). The procedure can
become complicated, especially in non-Abelian models,
and does not lead to a practicable set of "Feynman rules. "

(2) The pragmatic approach. Its basic idea is to remove
the ambiguities arising in integrals like

f dq [(q p)'q —n] ', f dq[(q p) q —(q n)']-',

etc., by finding a suitable prescription for
(q n) ~, a=1,2, . . . . This strategy, pursued by Carac-
ciolo et al. (1982), Curci and Menotti (1982), Landshoff
(1986a), Steiner (1986), and others, has led to several con-
crete results and some much needed insight into the tech-
nical subtleties. It is too early to say how successful this
approach will turn out to be, since none of the consistency
checks have been carried out beyond the one-loop level.

(3) The path integral appr-oach. In this scheme, Rossi
and Testa (1980a, 1980b, 1984a, 1984b), Leroy et al.
(1984a, 1984b), and Chan (1986) achieve quantization by
invoking the Faddeev-Popov prescription. Working with
a finite-time propagation kernel (Feynman and Hibbs,
1965), they are able to (1) identify the physical states, (2)
derive a set of consistent Feynman rules, and (3) prove
equivalence between the temporal gauge and Coulomb-
gauge formulations. Starting from first principles, we are
led to a functional representation for the Feynman propa-
gation kernel, which then allows us to derive a perturba-
tive expansion. There are no spurious singularities in the
gauge field propagator and hence no ambiguities in the
loop integrals. Practical problems, related to the com-
plexity of the perturbative expansion, have been solved to
some extent by Chan (1986). For a recent discussion in

~7Leroy et al. (1986) have considered fixing the gauge com-

pletely by adding an extra gauge constraint (Curci and Menotti,
1984; Girotti and Rothe, 1985).
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the framework of functional integration we refer the
reader to Slavnov and Frolov (1986).

8. Path-integral approach

Let us apply the finite-time path-integral method to the
temporal gauge. The main ingredient in this approach is

the Feynman propagation kernel K(A2, T/2;A~, —T/2)
which represents the amplitude for finding the field in the
configuration A2(x) at time t =+T/2, if it was in the
configuration A~(x) at time t = —T/2 (footnote 18). In
Euclidean space, the kernel is given by the functional in-
tegral (Rossi and Testa, 1980a, 1980b)

K ( A2, T/2; Ai, —T/2) = f —T/2&t (T/2

A~(x)
Dg(x, t) f, ,

5A„(x)e-'5(U'g'A, ),

A(x, T/2) = A2(x), A(x, —T/2) = Ai(x), (8.1)

where we have used the identity

1=~f II—T/2(t & T/2
Dg (x,t)5( 'g'A

o ); (8.2)

g (x) is a generic element of the local gauge group G, and
U(g) an N &N unitary matrix, for SU(X). 6 is the fami-
liar Faddeev-Popov factor, and Dg is the invariant Haar
measure over the group of all gauge transformations.
This measure is an infinite product of invariant measures,
taken at each time tH[ —T/2, T/2] and at each point in
space. Changing variables,

U(g) (8.3)

we can employ the delta function in Eq. (8.1) to integrate
over Ao. Notice, however, that this change affects the
boundaries of the functional integral, namely, A& and A2.
Since 5(AO ——0) is invariant under time-independent gauge
transformations and since b. is a field-independent (infi-
nite) constant and may be dropped, we obtain from (8.1)

only those eigenstates of H that are invariant under 60
(i.e., the physical states). These states are annihilated by
the Gauss operator, which, as is well known, is the gen-
erator of the time-independent gauge transformations.
Finally, we note that the conjugate momentum in this
representation is given by

5II(x, to) =A(x, to)~ —.
i 5A(x)

so that the Hamiltonian reads

(8.13)

$2II = f dx —— + ,FJ(x)Fi—(x)
2 5A'(x}5A'(x)

(8.14}

C. Canonical approach

Further details, especially on the implementation of
Gauss's law, can be found in the cited literature.

K(A2, T/2; Ai, —T/2)=K(A2, Ai,'T)

Dg X + A2~A), T

(8.4)

1. The Abelian case

K(A2, A, ;T)= f 5A(x)e

A(x, —T/2) = A)(x), A(x, T/2) = A2(x),
T/2

S(Ao ——0)= f dt f dxL(AO ——0),
L (Ao ——0)= —,A,'A ';+ , F,JFPj, —

A ~t=BA /Bt, a =1,2, . . . , N 1, i j =1,2, 3,—
F„=a,A,

'—a, A,'+gf "'A,'A,'.

(8.5)

(8.7)

(8.8)

(8.9)

(8.10)

%e begin our review of canonical quantization with a
discussion of the Abelian case in Minkowski space. Con-
sider the classical Lagrangian density

LEM(x) = —
4 F~„F", Fp 'dqA„d+p, —— —

p, v=0, 1,2, 3,

(8.15)

LEM(x) = —,(B.B—E E), B—:V)& A, E—:— A —VAO,
1 a

Bt

x =t = time,

K(A2 Aj T) (A2~~
~
Al)

A(x, to) i A) =A(x)
i
A) .

(8.11)

(8.12)

The gauge integration in Eq. (8.5) effectively leaves in K

In (8.5}, Go is the group of time-independent gauge
transform ations that tend to the unit operator as

~

x
~

~ oo. To motivate the gauge integration in Eqs. (8.5)
and (8.6), we recall that K is just the matrix element of
the (Euclidean) operator e in the coordinate represen-
tation, namely, in the representation in which the. field
variables are diagonal at time t = to.

where A„(x) is the four-vector potential and F„(x)is the
field strength. For the Hamiltonian formulation it is
essential to identify the canonical coordinates and canoni-
cal momenta. Choosing A„ to be the field variables and
F„o the corresponding canonical momenta, we observe
that not all of the components of Az can be independent,
since LE~ in Eq. (8.15) does not contain Foo. Hence

In this section, three-vectors are frequently denoted by bold-
face: E:—4,'E;), i =1,2, 3.
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Since Maxwell's theory is gauge invariant (Heisenberg and
Pauli, 1930; Weyl, 1931; Feynman, 1977), we may set
Ap(x) equal to zero, leading to Maxwell's equations

V E=Jp(x), (8.17)

(8.18)

where J& is a conserved current. [The current component
in Eq. (8.17) has been added "by hand" for later conveni-
ence.] The total Hamiltonian reads

H = —, f d x[E.E+(V)&A) ], (8.19)

and the theory is quantized by imposing the equal-time
commutation relations (Itzykson and Zuber, 1980),

[A;(x),EJ(y)] 0 & i5,J——6 (x y)—, (8.20a)

[A;(x),Ai(y)] p &&
——0,

[E;(x),EJ(y)] p p
——0 .

(8.20b)

(8.20c)

We observe that Eq. (8.17) appears to be inconsistent with
(8.20a), and that it is not a dynamical equation, but rather
a constraint equation known as Gauss's latp (Willemsen,
1978; Jackiw, 1980). Implementation of Gauss's law
(8.17), and of the temporal gauge constraint Ap(x)=0,
eliminates all unphysical degrees of freedom from the
theory.

We shall now take a closer look at the role played by
Gauss's law operator G,

G (x)—:V.E—Jp(x), (8.21)

in removing the unphysical modes from a gauge-invariant
theory such as QED. What is crucial here is to note that
imposition of the constraint Ap(x)=0 removes some de-
grees of freedom, but by no means all. The question is
where do the remaining, i.e., residual, degrees of freedom
come from and how are they to be eliminated? [In quan-
tum mechanics, the residual degrees correspond to the
center-of-mass degrees of freedom (Bialynicki-Birula and
Kurzepa, 1984).] As emphasized in Sec. VIII.B, residual
gauge invariance is due to local, time-independent gauge
transformations that are generated precisely by Gauss's
law operator 6(x), Eq. (8.21). Since the Hamiltonian H
is independent of these residual gauge degrees of freedom,
it must commute with G,

there is no momentum that is conjugate to Ao. - Accord-
ingly one defines A;(x), i =1,2, 3, as the independent
canonical coordinates and F;o as the corresponding conju-
gate momenta, I';0 being the electric field:

(8.16)

6(x) iP)=0, (8.23)

where
~

P) are physical states. The problem of consisten-
cy between Eq. (8.20a) and Eq. (8.23) has been the subject
of some debate, both in the Abelian and non-Abelian case
(Kakudo et al. , 1983; Hatfield, 1984; Partovi, 1984; Rossi
and Testa, 1984b). The difficulty can be resolved most
readily in the formalism of Rossi and Testa (1984b), dis-
cussed in Sec. VIII.B. In the simple case of the Maxwell
field, the physical states are just the transverse fields,
while the longitudinal field components are nondynamical
and must be eliminated. With this in mind, one first
decomposes A and E into transverse ( T) and longitudinal
(L) parts,

A= AL+ AT, E=EL +ET, (8.24)

EL, (x)=V(V ) 'Jp(x)

= —V„ f d'y (4'
~

x—y ~

) 'Jp .

(8.26)

(8.26a)

Substitution of Eq. (8.26) into (8.25) effectively removes
the nondynamical variable EL. Notice that the solution
for EL is easy here, because the theory is linear and its
Hamiltonian at most quadratic in the potentials A&.

2. The non-AbeIian case

The purpose of the ensuing discussion is to mimic the
procedure of the preceding section in the non-Abelian
case, paying particular attention to the generalized version
of Gauss's law operator 6'(x),
6'(x) =D' .E (x)—Jp(x),

(8.27)
Dz 6~dj+gf b'Az', j——=1,2, 3, a, b, c, = 1, . . . , 8,
Jz being a conserved current. Since the construction of
physical states in the temporal gauge

Ap(x)=0, a =1,2, . . . , 8, (8.28)

is intimately associated with the operator G'(x) (Eylon,
1978; Senjanovic, 1978; Hatfield, 1984; Rossi and Testa,
1984b; Buchholz, 1986; Yamagishi, 1986), we shall briefly
highlight the main steps leading to the formal elimination
of the longitudinal degrees of freedom in the Hamiltoni-
an, Eq. (8.45).

Consider the Lagrangian density

so that Eq. (8.19) becomes

H = —, f d x [ET ET+EL EL+(V)&AT) ], (8.25)

and then invokes Gauss's law (8.17) to extract the longitu-
dinal component of the electric field EL (Bjorken, 1980):

[H, G] =0, (8.22) L = —~Fzg'"', p, v=0, 1,2, 3, a =1, . . . , 8,
so that G is, in fact, a constant of the motion. In order to
remove the inconsistency between Eqs. (8.17) and (8.20a),
it is customary to define the Hamiltonian system by Eqs.
(8.15), (8.19), (8.20a), subject to the condition that the
physical states of the theory obey (Willemsen, 1978; Par-
tovi, 1984)

F„',=a„A', —a.A„'+gf '"A,'A '. ,
(8.29)

which is independent of Eoo, so that Ao cannot be con-
sidered a dynamical variable. In analogy with QED, the
I'ndependent canonical coordinates are A, i =1,2, 3, and
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the corresponding conjugate momenta are I',"o,

(8.30) define Ei by

(8.39)

doE,
"=DJ' FJ, , (8.31)

where E is the color electric field (Feynman, 1977). In
the temporal gauge, Eq. (8.28), the equation of motion for
E is

EQ y g (8.40)

and then exploit Gauss's law (8.32) to solve for the vari-
able y'(x). [See Appendix A of Bjorken (1980).] Substi-
tution 6f Eqs. (8.39) and (8.40) into (8.32) gives

Gauss's law constraint reads [cf. Eq. (8.27)] V Dab b gf abcAb Ec +Ja (8.41)

DJ' (A)EJ (x)=J(')(x), (8.32)

and the canonical equal-time. commutation relations are
given by

leading to the formal solution

y'(x) = I d3y K'b(x y'A)[gf ' Az(y) Er(y)+ Jo(y)] '

(8.42)
[A (x),EJ (y)] o o i5;~——6' 6 (x y)—,

[A (x),AJ (y)] 0 0
——0,

[E (x),EJ(y)] o 0 ——0.
The Hamiltonian reads

(8.33a)

(8.33b)

(8.33c)

the kernel K (Bjorken, 1980),

K —= [V.D(A)]

satisfies

(V.D),bK(x,y;A)b, =5 (x—y),

(8.43)

(8.44a)
8

H= —,
' g jdx[(E)+(B)], (8.34) =V K(x,y;A)„gf,b~Az"V—Kb, .

(8.44b)

B'—=V&& A + ,'gf"A'X A'—. (8.35)

As in Maxwell's case, the equal-time commutation rela-
tion (8.33a) is inconsistent with the constraint (8.32). To
remedy the situation and, at the same time, incorporate
Gauss's law into the Hamiltonian structure, we demand
that only those states of the full Hilbert space be accept-
able that satisfy the subsidiary condition

G'(x)
~

P) =0, (8.36)

where
~

P) are physical states (Bjorken, 1980; Jackiw,
1980). The residual gauge invariance of the theory may
again be attributed to Gauss's law operator

G'(x) =DJ (A)Ej~ 10(x), —

generating local, time-independent gauge transformations.
Since the Hamiltonian (8.34) does not depend on these
residual degrees of freedom, it must commute with G'(x):

[H, G'] =0 . (8.37)

A more challenging task is to render ineffective the
longitudinal components of the vector potential and elec-
tric field. Following Bjorken's clear analysis (1980), we
split A' and E' into transverse and longitudinal parts,

A'= AT+ AL,

with the color magnetic field B' defined by (Feynman,
1977; Huang, 1982) / h

Hence one may formally solve for y', compute Vy'=EL, ,
and then rewrite the Hamiltonian (8.34) in terms of the
~a~iables ET and AT only:

8

H= —, g J d x[E'T.E'T+(V/AT) +(Vp') ] (845)
a=1

Concerning the elimination of EL, the major difference
between QCD and QED lies in the appearance of the
operator (V D) ' in Eq. (8.41), in place of the operator
(V )

' in Eq. (8.26), since V D is now a function of the
vector potential A. For weak coupling, the dependence
on A in the second term of Eq. (8.44b) is small compared
with V K„, and the situation is similar to QED. For
large values of AT, on the other hand, the explicit solu-
tion for y' is much harder to attain. We shaH not pursue
this topic here, but refer the curious reader to the follow-
ing papers: Gribov (1977, 1978), Mandelstam (1977),
Jackiw (1978, 1980), Singer (1978) and Bjorken (1980, Ap-
pendix A).

D. Pragmatic approaches

In pure Yang-Mills theory the bare gauge field propa-
gator in the temporal gauge (8.28) is given by (Kummer,
1975; Konetschny and Kummer, 1976; Burnel, 1982)

gpfl ~+g ~np . n /pe ~G„'„(q)= g& — +, n &0, s&0,
(2m. ) "(q +iE) "

q n (q n)
(8.46)

where the last term in (8.46) reflects the residual gauge invariance of the theory. The crucial question again is how to in-
terpret the unphysical singularities arising from (q n ), a = 1,2. Since the propagator (8.46) has the same structure as
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in the homogeneous axial gauge one might be inclined to think that the principal-value prescription would also give
reasonable results in the temporal gauge. But recent calculations do not seem to support this view.

As noted in Sec. VIII A, the residual gauge invariance manifests itself as an unphysical pole of (q n. ) in the longitu
dinal part of the gluon propagator. Application of the principal-value prescription, for instance, leads to the longitudinal
propagator (Lim, 1984)

i5~ ab dp ' p' j ik (X2 X&)
G;~J (xp, tp, x(, t) ) = —

~
t2 t) ~—

(2m. ) k
2 1

while the prescription of Caracciolo, Curci, and Menotti (1982) gives the form (Yamagishi, 1986)
~@

bL, dk kI kJ Ek'(X2 X])
G,', (x„t„x„t,)= [ ~

t, —t,
~

+(t, +t, )+P]
2 (2n) k

2 j.

(8.47)

(8.48)

P being a constant. The form of the longitudinal gluon propagator has also been scrutinized by Frenkel (1979), Miiller
and Riihl (1981),Dahmen et al. (1982), and Girotti and Rothe (1986). Since this form depends on the choice of regulari-
zation and can be tested by computing the Wilson loop, for example, we have some control over the type of prescription
to be chosen for (q.n) . A good case in point is the calculation of Caracciolo, Curci, and Menotti (1982). (See also the
article by Landshoff, 1986b.) They found that use of the principal-value prescription at the one-loop level did not lead,
as anticipated, to exponentiation of the time dependence of the Wilson-loop operator.

More recently, Landshoff (1986a) has proposed a different prescription, which he calls "a-prescription. " It consists of
replacing Eq. (8.46) with the propagator

ab (q&n~+q, n&)q n n qzq„—a n n&n,2 2 2

(2m) (q +iE) "
(q n) +a (n ) (q.n) +a (n )

c, )0, (8.49)

performing all calculations with a&0, and letting a~O only at the end. Note that the structure of Eq (8.49. ) does not
imply a principal-value prescription for (q n), a situation reminiscent of the light-cone gauge (Mandelstam, 1983;
Leibbrandt, 1984a).

The propagator (8.49) possesses a number of pleasant features [e.g., translation invariance, also n" G&„( q)= 0] that
prompted Steiner (1986) to search for an "explanation" of Landshoff's scheme. He suggested that Landshoffs a
prescription may be derived from an improved temporal gauge of the form

A (')(x) =aqF(x), (8.50)

where p' is a functional of 3 (x) and the parameter a in Eq. (8.50) is related to Landshoff's a in Eq. (8.49). Steiner's
soft temporal gauge is then defined by the limit a~O (Chan and Halpern, 1986). The ansatz (8.50) gives the bare propa-
gator

ab

(2~)z ~ (q n) +a. (8.51)

where I, is a gauge parameter and the components
G&,'(q), i =1,2, 3, can be found in Steiner (1986). De-
bate on this topic continues.

Concerning the pragmatic approach, the present situa-
tion may, therefore, be summarized as follows.

(1) Momentum-space prescriptions, containing
Got(q)&0, have been derived by Steiner (1986) and Cheng
and Tsai (1986), but are of little practical value.

(2) Several authors (Caracciolo et al. , 1982; Leroy
et al. , 1984; Cxirotti and Rothe, 1986) have considered the
addition of a nontranslation invariant part to the propa-
gator in t space, such as (t&+t2) in Eq. (8.48). This
prescription for the temporal gauge has been obtained in
different ways, but is again only of limited practical use.

{3) Landshoff's a prescription {Landshoff, 1986a) has
several advantages and is straightforward, but it has not
been proved.

(4) Steiner's "proof" of Landshoff's a prescription
(Steiner, 1986) remains to be completed.

(5) The difficulties in Minkowski space and Euclidean
space should be tractable by the same prescription.

(6) Since the problems in the temporal gauge
Ao ——0 (n &0) are related to those in the axial gauge
A 3 —0 (n & 0), it would be helpful to have a mechanism
that interpolates between these two gauges.

E. Conclusion

As is evident from the general discussion, the temporal
gauge is suitable in selected circumstances, but it is cer-
tainly not an easy gauge with which to work. Apart from
the formal difficulties encountered in the strong coupling
limit, nagging problems persist in the computation of
one-loop momentum integrals. What is missing here is a
simple, unambiguous prescription for the unphysical
singularities of ( q n ),a = 1,2, a prescription that obeys
power counting, that is equally applicable in Euclidean
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and Minkowski space, and that also satisfies other re-
quirements such as locality. ,a

IX. RELATED TOPICS
Ps~~A

1/6 x ===-======

A. Higher-loop integrals
b,

The feasibility of performing higher-loop calculations
in the light-cone gauge has been demonstrated by several
groups. Leibbrandt and Nyeo (1986a) have evaluated
various Feynman integrals arising in the two-loop Yang-
Mills self-energy, while Capper, Jones, and Suzuki (1985)
have computed the scalar anomalous dimension in a gen-
eral gauge theory. Working in the context of supersym-
metry to two-loop order, Capper and his co-workers con-
cluded that the light-cone gauge is manifestly supersym-
metric and free of auxiliary fields. Smith, on the other
hand, was the first to tackle the two-loop beta function in
N =2 Yang-Mills theory and to compute the counterterm
for the four-point function to two-loop order (Smith
1985a, 1985b, 1986). The consensus at this stage is that

FIG. 23. Two-loop Yang-Mills self-energy diagram in the
light-cone gauge.

two-loop integrals can indeed be calculated consistently
and unambiguously, but that some of the integrals —for
instance, those with overlapping divergences —are certain-
ly more complicated than in the axial gauge. The in-
creased complexity may be attributed to the vector n&, as
will be illustrated now.

Consider the two-loop self-energy in Fig. 23, which
gives rise to the double integral (Leibbrandt and Nyeo,
1986a)

dk

k [k —(p —q)]

leads to the intermediate expression

1~(p) = t ( —m) I (2—co)[I (co —1)] dq q„
q'[(p —q)']' "q n

The remaining qz integration gives (see Appendix C.4)

dq dk qqI (p)= f f 2 z
" 2, n'=0, d' k=dk, d'"q—=dq .

q k (q —p+k) q n

Application of the light-cone gauge prescription (6.11) and integration over k„, with

i ( —vr)"1 (2—co)[I (co —1)] [(p —q) ]
1 (2' —2)

(9.1)

(9.2)

dq q&

q —s'

2i ( —~)"1 (4—2')p n*

(n n*) I (2 —co)

1 1

X f, f, dxdyy--'0'"-' n. n H
n~ yn n pz—+xy(p nn&+p n n&}

2(2~ —3)p n* (9.3)

and H =(1—y)p +2xyp np n "In n*. Substituting Eq. (9.3) into (9.2) and noting that

we obtain for the divergent part of I„,

I„(p)= p n& —2p n*p„+ n&+ n&, co~2( —~) "I"(2—~) 2 * * 2pnpn * (p'n ) +
2n'n n n n n

(9.4)

~ ~

dq dk q.k
q k (k —p+q) q nk n

(9.5)

which is seen to possess only a simp/e pole.
There are other two-loop integrals in the self-energy,

Fig. 23, such as

which give rise to both single and double poles. The in-
tegral (9.5) is particularly challenging since it contains an
overlapping divergence (Leibbrandt and Nyeo, 1986a).
Other two-loop integrals and clever schemes of evaluation
can be found in Capper et al. (1985) and Smith (1985a,
1985b, 1986).

Rev. Mod. Phys. , Vol. 59, No. 4, October 1987



George Leibbrandt: Introduction to noncovariant gauges 1109

B. Stochastic quantization

Noncovariant gauges also play a significant role in the
area of stochastic quantization (Parisi and Wu, 1981). We
shall, therefore, review some of the basic features of the
stochastic approach, which is based on the celebrated
Langevin equation of nonequilibrium statistical mechan-
1cs:

By 5S
(x,r) = — +g(x, r),

B1 5y x, 1
(9.6)

where S denotes the action of the field theory under study
in (4+1)-dimensional Euclidean space (we may, for ex-
ample, consider a real, self-interacting scalar field y), and
where r is an extra dimension usually called the "ficti-
tious" time. The system evolves with respect to ~, reach-
ing an equilibrium distribution for r—++ ao. The random
variable g(x, r) in Eq. (9.6) is a Gaussian "white" noise
with correlations

(g(x, r))„=0,
(g(x, r)g(x', r'))„=25 (x —x')5(r —r') .

(9.7)

The stochastic formalism is particularly relevant for
gauge-invariant theories, since neither ghost particles nor
gauge-fixing terms are required (Parisi and Wu, 1981;
Namiki et al. , 1983; see also Zwanziger, 1981). The ab--
sence of ghost fields suggests a possible link between sto-
chastic quantization and quantization in a noncovariant
gauge. Such a link has recently been discussed by Huffel
and Landshoff (1985), who showed that it is possible to
formulate a stochastic perturbation theory that repro-
duces conventional theory in the axial gauge [see also
Landshoff (1986b) and Chan and Halpern (1986)].

But there is another noncovariant gauge that is even
more popular than the axial gauge. This is the light-cone
gauge of Secs. VI and VII that has proven remarkably ef-
fective in studying the relationship between supersym-
metry and stochastic quantization (deAlfaro et al. , 1984;
Amati and Veneziano, 1985; Floreanini, 1985; Floreanini
et al. , 1985). The origin of this intimate relationship be-
tween supersymmetry and stochastic processes (Parisi and
Sourlas, 1979, 1983; Cecotti and Girardello, 1983) may be
traced back to the existence of Nicolai maps (Nicolai,

The correlations are defined by performing averages over
the noise g with Gaussian distribution. Let us suppose
that Eq. (9.6) can be solved for some initial conditions
and denote the solution by yv(x, r), indicating explicitly
the dependence on q. Correlation functions over yz are
then defined, as in Eq. (9.7), by performing Gaussian
averages over q. The basic claim in stochastic quantiza-
tion (Parisi and Wu, 1981; Floratos and Iliopoulos, 1983;
Grimus and Huffel, 1983) is that as the fictitious time
~~+ ao, the stochastic averages approach quantum
Green 'functions, namely,

lim (y„(x&,r) . y„(x„,r))„=(y(x~) . y(x„)) .
T~+ oo

(9 8)

1980, 1982). The proof, for example, that %=1 super-
symmetric Yang-Mills theory is a four-dimensional field
theory with a local Nicolai map (de Alfaro et al. , 1984)
has to date only been possible in the light-cone gauge
(Amati and Veneziano, 1985). The importance of the
light-cone gauge is also highlighted in the construction of
stochastic identities for supersymmetric Yang-Mills
theories (de Alfaro et al. , 1984, 1985; de Alfaro, Fubini,
and Furlan, 1985; Lechtenfeld, 1986).

We are fully aware that our microscopic review of sto-
chastic quantization does not do justice to this fascinat-
ing, provocative topic, but we hope that the interested
reader will find an opportunity to consult the original
literature and a forthcoming review by Damgaard and
Huffel (1987).

X. CONCLUDING REMARKS

In this review we have concentrated on four prominent
noncovariant gauges: the axial gauge, the planar gauge,
the light-cone gauge, and the temporal gauge. Our aim
has been to acquaint the reader not only with the basic
properties of these ghost-free gauges, but also with their
advantages and deficiencies, their computational idiosyn-
crasies, and their different ranges of applicability. As
seen from the discussion in the main text, the usefulness
of a particular gauge depends ultimately on its effective-
ness in eliminating the unwanted gauge degrees of free-
dom, and on the availability of a reliable prescription for
(q n) '. In this context, the axial gauge and the planar
gauge are in good shape, both from a theoretical and tech-
nical point of view. The standard prescription for
(q.n) ' for these two gauges has been the principal-value
prescription, which provides internally consistent in-
tegrals at the one-loop level and leads to satisfactory
answers in most practical calculations. But there are ex-
ceptions. For instance, it was noted in Sec. VIII that ap-
plication of the principal-value prescription in the axial
gauge does not lead to exponentiation of the time depen-
dence of the Wilson-loop operator.

The related, but computationally superior, light-cone
gauge is endowed with unusual characteristics, including
an unorthodox prescription for ( q n) '. The new
prescription, which is not of principal-value form, satis-
fies locality and naive power counting, and permits an
unambiguous evaluation of one- and two-loop integrals.
A novel feature of this prescription is the appearance of
nonlocal expressions in the gluon self-energy and three-
gluon vertex, which require the introduction of nonlocal
counterterms. As a result of these counterterms, and
despite progress in this area during the last two years,
there remain some unresolved questions about the BRS
approach to the renormalization structure of Yang-Mills
theory in the light-cone gauge.

Further effort and fresh ideas are also needed in order
to place the tricky temporal gauge on a level with the oth-
er noncovariant gauges. The key problem is that the tem-
poral gauge choice is not sufficiently powerful to elim-
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inate all degrees of freedom. There remains in the theory
a residual gauge symmetry that is due to Gauss's law
operator generating local, time-independent gauge
transformations. While canonical quantization in the
temporal gauge is satisfactory for Abelian models, it is
problematic in non-Abelian theories, especially in the
strong coupling limit. Uncertainties also prevail in the
covariant path-integral formalism, where absence of a re-
liable prescription for (q n) ' tends to undermine user
confidence. However, given the tenacity and eternal opti-
mism of theorists, it seems only a matter of time before
the temporal gauge will be placed on a firm mathematical
foundation.

Today's preoccupation with gauges is neither new nor
surprising. What is novel perhaps is the guarded
enthusiasm with which the search for and study of suit-
able gauges is being conducted, an enthusiasm that will
likely persist as long as there is a demand for non-Abelian
models with gauge symmetry. We hope that this article
will encourage judicious application, and provide some in-
sight into the character and potential usefulness, of non-
covariant gauges.
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APPENDIX A: AXIAL-GAUGE INTEGRALS

We list, in connection with Sec. IV.B, the divergent
parts of some massless one-loop integrals in the axial-
planar gauge. Here n &0, d "q:—dq, and I is defined by
[cf. Eq. (4.23)j

I=divergent part of f dq[q (q —p) j

1r2/(2 —co), Euclidean space,
i1r /(2 —co), Minkowski space .

The integrals listed below have been collected from

dq 2p 'n—I,
(q p—)qn n

dq qp

(q p)—qn
2pn pn

pp —np I,
n n

dq qpqv

(q p—) q n.
—2p.np (p.n) 3

3n2 p2n2 P p2 p p.

4(p n)
4 npn~

p n

3p 'n+ 2 2 (ppnv+pvnp)
p n

f dqq
(q p)—qn

r

—2p np 2(co+1)(p.n) —3
3Il p 2n 2

60=2

1 — I,2p np 2(p n)
n2 p2n2

dq —2—I,
(q —p) (q n) n

r

dq qp

(q —p)'(q. n)'
—2 2p n

pp np 2
I 9

n n

dq qpqv 2(p n)

(q —p) (q n) n

n
&pe —

2 pppv(p.n)

2+ (ppnv+pvnp)p'n

4
2npn~ I 9

n

f dq q' 2p' 2'(p. n)

(q —p)(qn) n pn
r

2p 4(p n)2
2

p
2n 2

J

, CO=2

=finite,
q(q p)qn—

dq qp

q(q p)qn-

f q(q p)q n— .

1

2 npI 9

n

p.n
5p + (p~n +p n~)

p n

2
2npn I,

nf, , =finite,
(q —p) (q —k) q.n

(q —p) (q k) q nn— .

Capper and Leibbrandt (1982b) and Leibbrandt (1983a):
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f dq qpqv p n 15„„+ (p„n, +p,n„)
(q —p)(q k—)qn 2n " pn

2
2 n@n~ I

k.n 15„+ (kpn, +k„n„)
2n " kn

2
n~n I,

n

8 2 —1Tpp ——(n)(5„pn„n+5„n,np+5,pn&n+5„n„np)
2 —2

Tpv, pa =(P ) P14pvPppa r

10 2 . —1
Tpv, pa =(4p p n) (nppvpppa+nvpppppa+nppppvpa

+naPpPvPp) r

11 2 2 —1
Tlrv pa (2P n ) (P&P„npn +PpPanzn„)

=[4(p n) .] '(p„n +p n„)(ppn +p np),
13 2 —1

Tlrv pa (4p nn ) (p„nvnpna +p„n„npn

f dqq
(q —p) (q —k) q.n

co(p +k).n

n

I.2(p +k).n

n

co=2

+Ppn pnan v+Pa1l pn vll p)
14

Tpv pa (1l ) 1lpnvnpna '

APPENDIX C: I IGHT-CONE GAUGE INTEGRALS

APPENDIX 8: THE TENSORS T„'„p

We list the 14 independent tensors (Matsuki, 1979) that
appear in the text in connection with the graviton propa-
gator, Eq. (4.38a), and the nontransverse component of
the graviton self-energy, Eq. (4.40b). The tensors T'» pa,
i =1, . . . , 14, are formed from n&, p„, 5&„, and satisfy
T„'„p ——T„'„p ——T„' p

——Tp &„(C pap reand Leibbrandt,
1982b):

T„p =2 '(5„p5„+5p 5„p),
2

Tpv pa =5pPpa r

2 —1

p»pa (P ) (5pvpppa +5papppv)'
4

Tpv pa = (2p n) (5pvppno +5p+o 1lp+ 5popp

+5p p n„),
5
pvpa (n ) (5pvnpn a +5pall p 1l v )

6
pvpa p ppPvpa+5papvpp+5vpp ppa+5vopppp),

T„',pa (2p n) '——[ (5„g. „+-5.g„)n +(5„p„+5„ap„)n,
+(5ppnv+5„np)p

+(5„n +5„n„)p ],

1. Gaussian integrals

(a) Gaussian integrals in one dimension:

Vp=Aq4 2Bq4, Ep—=B /A, —2 2

A,B are arbitrary coefficients,

f+~ —Vo
1/2

dq4e =, e

+ ao —Vo Bm Eo
1/2

dq4q4e =
3/2

f dq, q,'e
1 B E0
322 g 5/2

+ oof dq, q,'e '=BE'~2 3 B E
e '.

2A 5/2 g 7/2

(b) Gaussian integrals in (2' —1) dimensions:

This appendix contains a partial list of massless and
massive one-loop integrals in the light-cone gauge that are
relevant for the discussion in Secs. VI, VII, and IX.A.

V:—yq —2pq. p+a(q n)2,
2 2 2( )2

A =y+ an, a,p, y are arbitrary coefficients,
y yA

f ed —1 /2 1 —co

d 2' —1 —V ~ 7 Eqe 1
e

d2 —1 —v lr y P a P Eqqe =, p — e

~a)—1/2 1 —a)
d2ro 1.ne ——v ~ y PP n E

g 3/2
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eE,

co—1 /2 1 —cof d " 'qqq. rie
2P p n anp nD+ P—

C0 —1/2 —co+ ~f d " 'q(q. n)q e = ~ P co+ ——
g 3/2 2

3an p 2 2a(p n) a n (p n)

y g g2
E

2. One-loop massless Feynman integrals in 2~ space

All integrals in this section and the next have been derived by applying the light-. cone prescription, Eq. (6.11). The
variable I is defined in Eq. (4.23), and d q:—dq.

(a) Two propagators:

dq

(q —p) qn
I,2p n

n.n*

dq q&

(q —p)2q. n

, 2p'n g p'n
2p — n — n I,

n n' " n.n* " n n'

dq qzq~

(q p) q —n.n n

—p np'n 2p'n g g p n 2(p n)5 „— „(p„n„+p„n„)— „(p„n„+p n )+2p~„+ „n„n„
n n* n n* n n* (n.n")

2p np n", , 2(p n*)
(n n*)' " ' " 3(n n*)'

dqq
(q —p) q n

zp. n*
2 3p.np n*

n.n* n n'

dq

q —p q'n

dq q&

(q —p) (q n)

=finite,

2p n
n

(n n*)

co —2—2p. np. n I,
n'n

q ~~
~
~~

~

~
2

~~ p I n
~

~

2
I ~

~~ ~ v
~

~ ~
~ ~ ~p I~

~ ~
~

~
~ ~ 2~ I n

~

~

~ v
~

v ~
~ ~

7

(q p)2(q —n)2 (n.n")2 " " " n.n' " n.n*
2

dqq p n

(q p) (q n—) . n n*

(b) Three propagators:

cd=2

dq

q q —p qn

2 ~ ~

2 I

dq q&

q (q p)q n— .

2 I

dq qpq~

q (q p) q.n-
dq

q q —p q n

q q —p q n

dq q@q

q (q —p) (q n)

=finite,

1 )fcI
n.n*

=finite,

=finite,

=(n n*) n„*n,*I,

[p n*n n*6„,+n n*(p„n„*+p„nz) p.nnzn' —p n*(n—&n„*+n nz)]I,
2(n n*)
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q qpqvqpf p 2 2 T(n n ) [n n p n (5p~p +5ppn +5 p7lp')+n n (p„n nz +p„n&np +p&n&n )
q (q —p) (q n)

=finite,

=finite,

=fllllte .

q(q p)q—n

2 ~ 4 ~

dq q&

q (q p—)"q n.
dq qpqv

q(q —p)qn

—2p n*(n„n'nz+n n„*nz+nznzn„*) 2p—nn&n„nz ]I,

The remaining integrals in this section and the next have been obtained with the help of the decomposition formulas

1

(q p)—nq n. 1 1

p n (q p)—n. q n

1

(q —p).n (q n)

dq

qqnq —p.n

dq q~

qqnq —p'n

qqnq —p n

q q —p nqn
dq q„

q —p 'n q'n

dq qpqv

q q —p nqn
dq

(q —p) (q —p) n (q n

dq qp

(q —p) (q —p) n(q n)2

pqv

(q —p) (q —p).n (q.n)

1 1
, p.n&0,

(p n) q.n p n(q n)(p n) (q —p) n

—2p 'n I,n.n*p.n

2 (p n*n&+. 2p.nn& )I,(n.n*)'p n

[n n p np n5&. —.—,(p n*) n„n„2p.np. —n'(n@n„'+n nz) —2(p.n) n„*n~]I,
(n n')'p n

I,—2p 'n

n n'(p n).
(p n*n~+2p n

(n.n") (p n)

(p n'n„2n. n'p„)I—,
(n n') (p n)

[2(n n*) p&p nn'p. n "(p„n—„+p n&)+ —,(p n*) n&n 2(p n) n—&n ]I .
(n n') (p.n)

(c) Four propagators:

In n*p np n*5„„.—2[p np n'(n&n,*+n„n„')+—,'(p n*) n&n„] —2(p n) n&n„' II,
(n n*) (p n).

I,—2p n
)~ n n*(p n)'

dq

q (q p) q.n(q —p) n-
dq q&

q (q p) q n(q —p—).n

=finite,

=finite,

q qpqvd =(n.n*)
q (q p) q.n(q —p) n— pn " " pn

f dq

q (q —p) (q —p).n(q n)

dq q~

q (q —p)2(q p) n(q n—)

f dq qpq~

q (q —p) (q —p).n (q n )

=finite,

=finite,

, 2 2( nn 5„,+n„—n, +n„n„)I .
(n n*) (p n). .
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3. Massive light-cone gauge integrals in 2' space

In the following one-loop integrals, m is a mass, n =0, and d q =dq (Leibbrandt and Nyeo, 1984):

dq
- 2pn *—

2 2 e +»
[(q —p) —m ]q n n n.

dq q&

[(q p)—m—]q n

dq

q q —p —m qn

r m, 2p. np n', 2p n* (p n')
n n* " {n n")' "

n n* " (n n")' "

2 ~ 2 ~ 2
~t

q [(q p) —m—]q n
n *I+I'4

n n*

q [(q —p) —m ]q n

1 )fc

n@5 +n 5p +n 5p-
4n. n *

dq

q [(q —p) —m ][(q k) —m]q—n

q [(q —p) —m ][(q —k) —m ]q n

dq qpqv

q2[(q —p)2 —m ][(q k) m]q. n— —

2

dq qpqvqc

q [(q —p) —m ][(q k) m]—q n— (npn~n~+n~n~n~+n~npn~) I+F9,n.n*

dq q„q„
[(q —p) —m ][(q k) —m]q —n

(p +k)„n'+(p +k)~„* , n—„*n„"
2n n* n'n

(p +k) n'.
(n&n„+n n„)+(p+k) n*5„ I+F~o,

n n'

where I=i ~ (2/e), 2' =4—E, and the FJ's, j= 1,2, . . . , 10, are finite expressions that are known exactly.

4. Special integrais (n2=0)

The following integrals arise in the computation of two-loop massless Feynman integrals in the light-cone gauge [see
Sec. IX.A, and Leibbrandt and Nyeo (1986a)]:

dq(q )"
(q —p)'(q n)'

4i( —rr)"I (4—2')(p n*) I'd d (1 ) (1 )p„
I'(1 —co)(n n*)

2co —4
2(1 —u)(1 —u)p np n*

X UP+ n-n*

dq(q +tq. nq n*)" ' 4i ( —~)"I (4—2')(p n*)
(b)

~
~

~

(q —p) (q n) . I"(1 co)(n n*—)

X J du du(1 —u)v (1—u) (1+.uutno)

2 2' —4
2 2(l —u)(l —u +uutno)p'np'n

X UP +
(1+uvtno)n n*

1

where I; is a parameter and no ——n;
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(c)
dq qp

q q —p qn
i ( —m) I (o+1 —ro)n'

dxdyy" H
r(o)n n' 0

2i( —m. ) 1(o.+2—co)p n* i '

2t ( n')"—I (cr+2 to)p—np .n*

I (cr)(n n*)

2i( —m) I'(o+2 —co)(p n ) dx dgxg H
I (cr)(n n*) 0"

where H=(1 y)p —+2xyp. np n In n*, and o is a com-
plex number.
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