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The article reviews the two-dimensional Coulomb gas model and its connection to vortex fluctuations for a
two-dimensional superfluid. The neutral and non-neutral versions of the Coulomb gas are discussed and
the relation to an equivalent sine-Gordon field theory is given. The charge-unbinding picture is used to elu-
cidate some essential properties of the Coulomb gas. Derivations of approximate renormalization equa-
tions are sketched and the phase transition for the neutral two-dimensional Coulomb gas is described. The
Kosterlitz renormalization-group equations are reviewed in some detail. The vortex-Coulomb gas charge
analogy is carefully explained. The connections between experiments for 4He films and superconducting
films and the neutral and non-neutral versions of the Coulomb gas are outlined using concepts like the
universal jurnp and the Coulomb gas scaling relations. The properties of a dynamical version of the
Coulomb gas, corresponding to vortex dynamics, are discussed and related to experiments. An analogy
with Maxwell's equations in two dimensions is also given.
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chemical potential for a neutral
pair with large separation
difference in chemical potential
between a negative and a posi-
tive particle
Coulomb potential for a point
charge

Coulomb potential including a
background screening
linearly screened Coulomb po-
tential
screening length (defined
through VL )

screening length due to back-.

ground charge (serves as an in-
frared cutoffl
grand partition function
phase-space d1v1s1on

number of positive (negative)
particles in a configuration

total number of particles in a
configuration
configuration energy

temperature
volume

fugacity for a positive (negative)
particle

= fugacity for a neutral pair
with small separation

density of free positive (nega-
tive) particles
charge density. The charge
density for a configuration of
N particles is given by
hn(r)=g; s~f„(

~

r —r;
~

).
dielectric constant describing
the polarization due to bound
pairs
linear-response dielectric func-
tion
dielectric constant (a caret
denotes Fourier transform)
length-dependent dielectric con-
stant
free-energy density
free-energy density due to
bound pairs
free-energy density due to free
particles

I. INTRODUCTION

This article is an attempt to describe the physics of the
Kosterlitz-Thouless transition and its connection to some

physical realizations for superfluid films and supercon-
ducting films. It is not intended as a review in the sense
that every possible angle is covered. Rather it is a review
based on a single perspective, the Coulomb gas perspec-
tive.

The physics of the two-dimensional Coulomb gas is
especially easy to grasp and visualize. By expressing as
much as possible in terms of this model one gains an in-
tuitive understanding that goes quite far. Hopefully, a re-
view based on this perspective may be of some use to a
more general audience.

To some extent it may also help to bridge a gap be-
tween the extremes of the esoteric theorist on the one side
and the practical experimentalist on the other; this gap
may, perhaps, sometimes take the form of two quite dif-
ferent persons having trouble communicating. Two such
persons will, however, undoubtedly agree that the present
article treats aspects of their respective special interests
quite inadequately, if indeed at a11. Nevertheless, my
hope is that such shortcomings to some extent are com-
pensated for by the intuitive insight gained by the
Coulomb gas perspective.

The subject derives from the idea that the quasi-long-
range order for two-dimensional XY-like systems is des-
troyed by vortex unbinding (Berezinskii, 1971; Kosterlitz
and Thouless, 1972, 1973). This will be referred to as the
Kosterlitz-Thouless (KT) transition following what seems
to be the most common usage. The renormalization-
group equations for the Kosterlitz-Thouless transition
were constructed by Kosterlitz (1974). This led to the
prediction of a universal jump of the superfluid density
for superfluid films (Nelson and Kosterlitz, 1977). This
prediction was tested against experiments on He films
and good agreement was found (Bishop and Reppy, 1978).
A dynamic theory was developed (Ambegaokar et al. ,
1978, 1980). It was realized that these ideas should also
apply to superconducting films (Beasley et al. , 1979;
Doniach and Huberman, 1979; Halperin and Nelson,
1979; Turkevich, 1979).

Outlined in this way the subject has been covered from
various angles and to various degrees of completeness in
several review articles, e.g., those of Kosterlitz and Thou-
less (1978), Halperin (1979), Nelson (1980, 1983), Hebard
and Fiory (1982), Minnhagen (1984a), and Mooij (1983,
1984).

A considerable amount of the work done on the subject
so far consists of attempts to tie various experimental ob-
servations to the predictions obtained from Kosterlitz
renormalization-group equations or to the dynamical
theory of Ambegaokar et al. (1978, 1980), which is based
on these renormalization-group equations.

The present article puts more emphasis on the proper-
ties of the two-dimensional Coulomb gas per se and less
on some of the more specific results obtained from the
Kosterlitz renormalization-group equations. One reason
for this is that the critical region to which the
renormalization-group equations strictly apply may be
very narrow and, possibly, to a large extent inaccessible to
experiments. From this point of view, more general and
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less detailed properties of the two-dimensional Coulomb
gas may have a larger validity range in relation to the ex-
periments and may, because of this, provide a firmer link
to experiments.

The subject is in many respects still quite open, espe-
cially as regards the precise connection between theory
and experiments. This article focuses on what may be
judged to be the core of the present understanding of the
subject.

The general outline of the article is as follows: Sec. II
describes the two-dimensional Coulomb gas model, its re-
lation to a sine-Gordon field theory, and expansion ap-
proaches. The renormalization-group equations, together
with their limitations and possible extensions, are dis-
cussed in Sec. III. The connection to vortex fluctuations
for two-dimensional superfluids is given in Sec. IV, while
Sec. V contains examples of experiments on He films and
superconducting films reflecting "static" Coulomb gas
properties. Dynamical aspects are discussed in Sec. VI,
and examples of experiments reflecting "dynamical"
Coulomb gas properties are given. Section VII contains
various comments. The article is concluded by Sec. VIII,
where some final remarks are given.

where V(r) depends on the space dimension (iD,
i= 1,2,3),

r, 1D,
V( r) — ln(r), 2D,

1/r, 3D .
(2.2)

Consequently the interaction for the two-dimensional
Coulomb gas depends logarithmically on distance. Gne
may also note from Eq. (2.2) that the dimension of charge
in two and three dimensions differs by a factor
(length)'~, since in both cases s V(r) has the dimension
of energy, i.e., s(two-dimensions) = s(three-dimensions)!
(length)'~ . Thus in two dimensions s has the dimension
of energy.

1. The Coulomb gas model

ed by s, and units are chosen such that s=+1. The
charges interact via the Coulomb interaction, which is de-
fined by Poisson's equation,

(2.1)

II. THE TWO-DIMENSIONAL COULOMB GAS

The two-dimensional Coulomb gas model is a statistical
mechanics model defined in terms of a grand partition
function. The particles in the model are Coulomb gas
particles with equal or opposite charge, interacting
through a Coulomb interaction that, in two dimensions,
turns out to be logarithmic. The two-dimensional
Coulomb gas Inodel undergoes a charge-unbinding transi-
tion in a narrow temperature region, in which particles
bound together in neutral pairs unbind. The subject of
the present article will be centered on this charge-
unbinding transition. In a certain limiting case of the
two-dimensional Coulomb gas model, all particles are
bound together in pairs for low enough temperatures, and
the charge-unbinding transition starts at a critical tern-
perature at which the model undergoes a thermodynamic
phase transition, the Kosterlitz- Thouless transition.

The definition of the two-dimensional Coulomb gas
model used in this article is given in Sec. II.A, and an im-
portant distinction between two limiting cases is made,
i.e., the neutral Coulomb gas and the q.on-neutral
Coulomb gas. Section II.B contains heuristic derivations
of the main properties of the neutral and non-neutral
Coulomb gas. A sine-Gordon field theory formulation of
the two-dimensional, Coulomb gas is given in Sec. II.C.
Expansion approaches for obtaining the properties of the
model in a more stringent way are described in Sec. II.D,
while Sec. II.E comments on some fermion analogies.

A. Definitions

(V —A,, ) Vq (r) = —2m5(r) . (2.3)

The length I,, may be interpreted as the Debye screening
length arising from a neutral background of infinitesimal
charges (Minnhagen, 1981a). In some applications for
superfluid-superconducting films, to be discussed later,
the length A,, will play an essential physical role.

With these definitions the interaction energy between
two Coulomb gas charges i and j at positions r; and rj
and with charges s; and s~, respectively, is given by
s;s~ U(

~
r; —rj ~

), with the interaction U defined by

%'e proceed by defining precisely the two-dimensional
Coulomb gas model to be used throughout the present ar-
ticle. It should be noted that some properties do not de-
pend on the precise details, whereas others do, which will
be made clearer as we go along.

In the model a charge is associated with a spatial
charge distribution, f„,(r), identical for all charges. The

linear extension of a charge is given by ro, and f„(r) ful-

fills the single charge normalization condition

fd r f„(r)= 1. The limit ro ——0 is the point-charge limit,

f„o(r)=5(r). In the field theory formulation of the

two-dimensional Coulomb gas (see Sec. II.C) 1'0 plays the
role of an ultraviolet cutoff (Minnhagen et a/. , 1978;
Samuel, 1978). Similarly, it is expedient to include an in-
frared cutoff in the definition of the particle interaction.
This will be implemented by changing the definition of
the interaction given by Eq. (2.1) into V~ (r), with

A Coulomb gas consists of particles with positive or
negative charge of equal magnitude. The charge is denot-
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The interaction' U(r) has the following limiting forms:

U(0)=in(A, , /ro) for A,, /ro »1,
U(r)= —1n(r/A, , ) for ro «r «k, ,

]. —r/A,U(r)- e ' for A,, «r,
r

(2.5a)

(2.5b)

(2.5c)

where = implies the leading term, whereas —implies the
dominating r dependence. The electrostatic self-energy of
a Coulomb gas particle is defined by —,

'
J d r E (r) where

E is the electric field caused by a single Coulomb gas
charge. This self-energy can be expressed as —,U(0), us-

ing standard electrostatics. The single-charge self-energy
diverges in the limit A.,~ co [compare Eq. (2.5a)].

The electrostatic energy associated with a configuration
of N Coulomb gas charges is given by

, gs;sj U(r(J),
EJ

where r;~ =
~
r; —rj ~

and the indices i and j run over all
the Coulomb gas charges.

In the physical realizations of the two-dimensional
Coulomb gas to be discussed later, the Coulomb gas parti-
cles are created as thermal excitations. The creation of
such an excitation will, in addition to the electrostatic
contribution, involve a nonelectrostatic contribution,
which may be associated with the local formation of the
single-charge distribution on the scale of ro. This addi-
tional contribution we shall take to be a constant denoted
by E, . From the point of view of the Coulomb gas
model, this means that the chemical potential of a
Coulomb gas charge, p, is given by

N
z+

N+ N =0 +

N
z

d p'g

exp —g s;s~ U(r;J )/T

(2.10)

where the sum in the exponent runs over all pairs of
charges within a configuration specified by N+ and N
Z is to lowest order in z + given by

( —)

—H~/T .
Here e is the Boltzmann factor for a configuration
of N=N++N charges containing N+ positive (nega-

( —)

tive) charges. T is the temperature in units of s [s has
the dimension of energy; compare the paragraph below
Eq. (2.2)]. The sum is over configurations with all possi-
ble values of N+ and N . The index i is assigned to the
individual charges in a configuration specified by N+ and

, r; is the position of these charges, and, finally, g is a
constant phase-space division. The size of g in the
Coulomb gas model is given by g=cro, where ro is the
linear extension of a charge and e is a constant. Equation
(2.9) completes the definition of the Coulomb gas model.

The thermodynamics of this model may be described in
terms of three independent variables, the temperature T
and the fugacities for positive, z+, and negative, z

p+/T
charges (defined by z+ ——e — ). In terms of these vari-
ables the partition function becomes

p = —[ —, U(0)+E, ] . (2.6) 0 QZ —1+—z +—z +' (2.11)

A further generalization is the case in which the ener-
gies needed to create a positive and a negative Coulomb
gas charge are unequal. This means that the chemical po-
tentials of positive, p+, and negative, p, charges are un-
equal and are given by

where 0 is the (2D) volume. The thermal average nuin-
ber of positive (negative) charges, (N + ), is related to Z

( —)

p + = —[ —,
' U(0)+E,

( )bE],
( —)

(2.7) (N ) =z, ln(Z),a

( ) ( ) (3z
( —)

(2.12)

where 2bE is the difference in creation energy for a posi-
tive and negative Coulomb gas charge.

The discussion in this article will be based on a
Coulomb gas model for which the total energy Ha associ-
ated with a configuration of N + positive (negative)

( —)

charges, N =X++1V, is given by

which to lowest order in z+ becomes
( —)

0(N+ )=—z+ .
(-) 0 (-)

(2.13)

Equation (2.13) has the following intepretation: z + is
( —)

the probability for the process of creating one positive
(negative) charge in a particular phase-space division, and
II/g is the total number of such divisions. This clarifies
the physical meaning of z+ and g. The higher-order

( —)

terms in z + for N + give the corresponding probabili-
( —) ( —)

ties for the processes of creating more than one charge at
a time.

Ha ———, g sgsj U(r,j ) N+ p, + Np- —
lJ

(2.8)

Central to the subject under consideration are the ther-
modynamic properties of this two-dimensional Coulomb
gas in the limit of large A, /ro These, are .contained in the
partition function Z defined by

1 1 ~ ' an/T—7.

a, ,a =0 N+' N-'
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2. Neutral and non-neutral Coulomb gas

The configuration energy H~ can be expressed as

Hz ———,
' g s;sj [U(r;1 ) —U(0) ]

f+J

+ , (N+—N—)'U(0)+NE, +(N+ —N )hE

(2.14)

by use of the identity

—,
' g s;s) ——, (N+—N—) —,

' N—
i+j

(2.15)

[U(r) —U(0)]/T (2.17)

The leading behavior of e( '"' ' ')~ for large r is
(1/r )'~ [compare Eq. (2.5a)]. Thus the expansion in Eq.
(2.17) gives the leading small-z dependence for T & —,'. In
analogy with Eq. (2.13) this small-z contribution is related
to the number of bound pairs with pair separation in the
interval [r,r+dr], (Nb(r) ), i.e.,

Qz(N (r))= 2n.rdre '"' ' ' for T&—
2

(2.18)

An alternate way of defining the neutral Coulomb gas,
which is common in the literature, is to take H& given by
Eq. (2.16) as the definition of the configuration energy
and impose the restriction that two charges cannot be
closer than r0. This would correspond to charges that
were impenetrable disks. The phase-space division is usu-
ally taken to be r0.

The key feature common to all definitions of the neu-
tral two-dimensional Coulomb gas is a logarithmic in-
teraction that is cut off at some small interparticle dis-
tance. This is enough to ensure identical critical proper-
ties at the Kosterlitz-Thouless transition. The critical
properties are universal in this sense. This will be one use
of the term "universal" in the present article. The non-

[compare Eqs. (2.7) and (2.8)]. Since U(r) —U(0)
=—ln( r Irp) for r p « r « k [compare Eqs. (2.5)],
whereas U(0)=in(A, , /r), it follows that non-neutral con-
figurations (i.e., configurations with N+&N ) will cor-
respond to a huge energy in the large A., /rp limit, due to
the term proportional to U(0) in Eq. (2.14) as compared
to the neutral ones (i.e., the ones with N+ N). C——onse-
quently, in the limit A,, /rp &co the the—rmodynamic prop-
erties will be determined by the neutral configurations.
This means that the Coulomb gas model reduces to the
neutral Coulomb gas, for which the energy of a configu-
ration is given by

Hz — —,
' g s;s~l—n(r J Irp) —NT ln(z), (2.16)

i+j
—E /T

where z=e ' [compare Eq. (2.14)] and only neutral
configurations are allowed.

Expanding Z [see Eq. (2.9)] in z gives the lowest-order
term,

critical properties will then be nonuniversal in the sense
that they will depend on the precise definitions, e.g., on
precisely how the logarithmic interaction is cut off at
small distances.

The word universal is sometimes also connected with
the noncritical properties in another sense, i.e., different
physical systems may be well described by the very same
two-dimensional Coulomb gas model. This will be dis-
cussed further in connection with superfluid-supercon-
ducting films. A model of interest in this context is the
Ginzburg-Landau Coulomb gas model, which corre-
sponds to a specific charge distribution f„(r), E„and g

(see Sec. IV.D).
The non-neutral Coulomb gas is obtained in the large-

A., /rp limit provided that p+ —p —A,, (Minnhagen,
1980, 1981a). The properties of this model will be of in-
terest, for example, in connection with superconducting
films (compare Sec. IV.B.1 'and Table III). The non-
neutral Coulomb gas model does not undergo a
Kosterlitz- Thouless transition in the thermodynamic
phase transition sense and consequently does not lead to
any universal critical properties caused by charge unbind-
ing. Nevertheless, charge unbinding is a dominant feature
of the model.

B. Heuristic derivation of basic properties

In this section the basic properties of the neutral and
non-neutral two-dimensional Coulomb gas are described
and motivated through heuristic reasoning. Two
Coulomb gas quantities will be of particular interest
throughout the article. These are the Debye screening
length A, and the dielectric constant Y (precise definitions
of these quantities are given at the beginning of Sec.
II.B.1). The dominant temperature dependencies caused
by charge unbinding will be discussed.

Section II.B.1 describes the charge-unbinding transition
for the neutral two-dimensional Coulomb gas; the most
important results are summarized in Table I. Section
II.B.2 generalizes the result for the Debye screening
length to the case of a non-neutral two-dimensional
Coulomb gas. Finally, Sec. II.B.3 gives a heuristic argu-
ment for the dependence of the screening length on an
external electric field for temperatures below the charge-
unbinding transition in the case of a neutral two-
dimensional Coulomb gas.

1. Neutral Coulomb gas

We begin by giving a characterization of the
Kosterlitz-Thouless transition together with definitions of
the screening length A, and the dielectric constant Y.. The
charge-unbinding picture is introduced. Then we shall
describe and give motivation for the basic features of the
charge-unbinding -transition. Section II.B.1.a contains a
heuristical motivation of a basic equation for the screen-
ing length A, . Section II.B.1.b describes the critical

Rev. Mod. Phys. , Vol. 59, No. 4, October t987
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behaviors of the dielectric constant e and the screening
length A, . The Coulomb gas universal jump is explained
in Sec. II.B.l.c, and, finally, Sec. II.B.l.d describes and
motivates the leading behavior of the free-energy density
in the limit of small fugacity z.

The neutral two-dimensional Coulomb gas undergoes a
Kosterlitz-Thouless transition in the A.,~ao limit for
fixed ro (Berezinskii, 1971; Kosterlitz and Thouless,
1973). Qne way of describing this transition is with the
aid of the linearly screened potential VI (r) T.his is the
potential outside an infinitesimal test charge inserted into
the Coulomb gas. The screening and polarization of this
potential caused by the Coulomb gas charges reflect the
properties of the Coulomb gas per se. To be precise we
shall define VL(r) as the potential per unit test charge
outside an infinitesimal test charge with a Coulomb gas
single-particle charge distribution f„(v). The quantity

VL (r) will be a key quantity in the present article.
The energy needed to separate two infinitesimal test

charges with charges +5t and 5t, resp—ectively, by a dis-
tance r is related to VL (r) by

(5r)' I d'&'f, ,(&')[Vl.(r ) VL( I
r —r'

~
)]

In terms of this separation energy the Kosterlitz-Thouless
transition may be characterized in the following way: For
every fixed fugacity z there exists a critical temperature
T, (z) such that the separation energy between the test
charges falls off exponentially with separation for
T & T, (z), whereas it grows logarithmically with separa-
tion for T & T, (z).

This change in behavior at T, may be given an intuitive
physical interpretation (Kosterlitz and Thouless, 1973):
Below T, all Coulomb gas charges are bound in pairs,
whereas above T, not all charges are bound in pairs. In
other words, as the temperature is raised above T„neu-
tral pairs of particles unbind. As a result there are free
Coulomb gas charges present above T, and these free
charges screen the test-charge interaction, causing an ex-
ponential falloff at large separations. The transition is
quite commonly called the Kosterlitz-Thouless charge-
unbinding transition, in reference to this intuitive physical
interpretation.

It is instructive to establish this charge-unbinding pic-
ture at the level of a Poisson-Boltzmann description. The
potential between the test charges may, within such a
description, be expressed as

2~5t
V 5tVI ——— f„

E

2~6tng
VL, (2.20)

where nF ——nF++nF is the total density of free charges
In terms of Fourier transforms this becomes (a caret
above a function denotes the Fourier transform)

VI. (k) =— f„,(k),+
where

(2.21a)

(2.21b)

It follows [note that f„(k=0)= 1 by definition] that

e-"", A,~~,v' y"

—( I/e)ln(r), A. = oo .

(2.22a)

(2.22b)

l
U(Q) —TS

In(R/ro) —T ln(R /ro)
l 2 2

2E

Within the charge-unbinding- picture, the screening
length I, is related to the presence of free Coulomb gas
charges, whereas the dielectric constant 7 is related to the
polarization due to bound pairs. The leading small-k
dependence for VI is always of the form given by Eq.
(2.21a) and, consequently, the k~0 limit of VL provides
a precise definition of A, and Y. Similarly, Eq. (2.21b) will
be taken as the precise definition of the free-particle den-
sity n~. It may be noted that, since A. and Y. can be de-
fined by the small-k limit of VI, the characterization of
the Kosterlitz-Thouless transition in terms of A, and 7.
does not presume the charge-unbinding interpretation.

A heuristic argument by Kosterlitz and Thouless (1973)
as to why the neutral two-dimensional Coulomb gas
would undergo a phase transition is based on the balance
between the entropy and the electrostatic self-energy asso-
ciated with introducing a single Coulomb gas particle.
Above a certain temperature the increase in entropy wins
out over the electrostatic self-energy, whereas below the
reverse is true. The argument goes as follows: Consider
the free-energy density Fi, for a single Coulomb gas par-
ticle in a medium of bound pairs, in the linut A,,~ oo for
fixed volume Q. It is given by

V 5tVI. ——— f„2~5t
6

2'7TPlg $tp' /T 2&n+ Qp& /T
+

e ' + e

(2.19)

—1 ln(R /ro), (2.23)

+
Here nF is the density of positive (negative) Coulomb
gas charges and Y. is the dielectric constant due to the po-
larization caused by the bound pairs of Coulomb gas
charges. Now, since 5t is infinitesimal, Eq. (2.19) reduces
to

where = denotes the leading term for large R, the medi-
um of bound pairs is taken into account by the dielectric
constant 7, the entropy S is given by In(Q/g), and Q is
assumed to have the linear extension R. Note that the
leading term of the single-particle self-energy is propor-
tional to ln(R/ro) in this case [which follows from the
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definition given in Sec. II.A. 1; compare Eq. (2.5a)]. In
the limit R~ao the free energy to introduce a single
charge is, according to Eq. (2.23), —oo for 4eT & 1 and

+ ca for 4eT &1. This may be interpreted as an indica-
tion that the neutral Coulomb gas would have no free
charges below a critical temperature T, given by
4e( T, ) T, = 1, whereas free charges would be present
above this temperature (Kosterlitz and Thouless, 1973).

The Kosterlitz- Thouless charge-unbinding transition
may, of course, be established by more convincing argu-
ments (as will be described further in Secs. II.B.l.a,
II.B.l.b, II.D.1, and III). Nevertheless, it is interesting to
note that the result 4T,7(T, ) =1 obtained from Eq. (2.23)
remains true for the theoretical treatments so far, at least
for fugacities z smaller than some upper limit z„~ (com-
pare Sec. III.D). One may also note that in the limit
z —+0 one has (eT, )=1 and T, = —,', which reflects the
trivial fact that the density of Coulomb gas charges and
hence polarization vanishes as z goes to zero.

Figure 1 is a sketch of the Kosterlitz-Thouless transi-
tion in the (T,z) plane. The Kosterlitz-Thouless critical
line starts at (T,z)=( —,',0). The critical temperature T,
diminishes with increasing z because 7 increases and
T, = 1/4e. A two-dimensional Coulomb gas with the
fugacity z given as a function of temperature T corre-
sponds to a z(T) trajectory in the (T,z) plane (dashed
curve in Fig. 1). The critical temperature T, for such a
Coulomb gas is given by the crossing point between the
z(T) trajectory and the Kosterlitz-Thouless critical line
(see Fig. 1).

The low-temperature phase does not represent any true
long-range order. This lack of long-range order is linked

1/TK

(b.n(r)hn(0) ) —.

e-"r,
T(Tc

(2.24)

(for a derivation see Sec. III.A).

a. Charge unbinding and free-particle density

The basic feature of the screening length A, can be in-
ferred through a heuristic argument which relates the
screening length A, to the free-particle density n~ in a
self-consistent way (Minnhagen, 1981a; Young and Bohr,
1981).

The screening length A, may be approximately related to
nF by (Minnhagen, 1981a)

/e =2mnF /( .Te), (2.25)

where A,„which is the large-distance cutoff of the particle
interaction introduced in Eq. (2.3), has been included for
generality [Eq. (2.25) incorporates the feature that
V~(k =0)=A,, for nF Oj T——he .interaction between two
Coulomb gas particles, when screened out by the free
Coulomb gas charges at large distances, is given by VL, so
that

to the lack of long-range order for a broken continuous
symmetry in two dimensions (Mermin and Wagner, 1966;
compare the XI'model described in Sec. IV.E). However,
the charge-density correlations for the low-temperature
phase exhibit a "quasi" long-range order in that the
charge-density correlation function (hn(r)hn(0) ) falls
off like a power of I/r (Berezinskii, 1971; Kosterlitz and
Thouless, 1973), i.e.,

2m. (f„,)
U,g(k) =-

gk+A,
(2.26)

for small k. The energy needed to create two free
charges, of opposite sign and far apart, may then be es-
timated to be 2

I p,rf I
where

I v'ff I
T ln(z)+ U ff(0) (2.27)

The density of free charges should, accordingly, be given
by (v'sf= —

I v.rr I )

2 jeff~
nF —e ' (2.28)

FIG. 1. Sketch of the phase diagram in the (T,z) planq for the
neutral two-dimensional Coulomb gas with A,,= 00. The shaded
area is the low-temperature "dipole pair" phase. The unshaded
area is the high-temperature "free particles + dipole pairs"
phase. The two phases are separated by the Kosterlitz-Thouless
phase-transition line 4YT=1 (solid curve). The dashed curve is
a z(T) trajectory characterizing some specific two-dimensional
Coulomb gas. The crossing point between the z(T) trajectory
and the Kosterlitz-Thouless phase-transition line defines the
Kosterlitz-Thouless critical temperature T, for the Coulomb
gas characterized by this z(T) trajectory.

4~z
r —&(r /g)1/ZET

FT
(2.29)

where the factor g(z, T) ~0 accounts for the nonleading
contributions from U,ff(0) (and the difference between g
and ro). In the limit A,,—+ oo, Eq. (2.29) has the solution

where the factor 2 reflects the fact that a free particle can
have either positive or negative charge. From Eq. (2.26) it
follows that U,ff(0)=(1&a)ln(A, /ro). Consequently, Eqs.
(2.26) and (2.28) lead to a self-consistent equation for A,

given by
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(provided 4wzg /ZT & 1 and rp/A, & 1)

~o ' 4' ] /[I —i/(AT i]
for T

ET

1'=0 for T &
47,

(2.30a)

(2.30b)

should also be noted that, for a large but finite A,„there is
no phase transition in the sense that the free energy has a
nonanalytic behavior, although there is a charge-
unbinding transition in the sense that A, has a very rapid
variation.

Thus, according to Eqs. (2.30), the Kosterlitz-Thouless
transition occurs at a temperature T, given by
T, = 1/47( T,+ ) [7(T,+ ) = lim +7( T)]. Furthermore,

Eq. (2.30a) gives an expression for A, in terms of z and T.
This expression has been verified in the limit of small z
for fixed T& —,

'
(Minnhagen et al. , 1978; see Sec. II.D;

Young and Bohr, 1981; see Sec. III.C). Equation (2.30a)
is also in accord with the renormalization equations for
the Kosterlitz-Thouless transition (see Secs. II.D. 1 and
III.C).

Figure 2 illustrates how the density of free charges nI;
vanishes as the Kosterlitz- Thouless transition is ap-
proached [as given by Eqs. (2.25) and (2.29) with

4mzg/TY=const]. The solid curve is for a finite A,, and
the dashed curve is the A,,~ ao limit. The divergence be-
tween the curves comes when A,, =Z~nF/YT (arrows in
the figure). One notes that the k, ~ co limit gives a good
approximation of the finite I,, case for temperatures not
too close to T, . Or to put it differently the singular
behavior for A,,= Oo at T, is masked by the finite A, It

b. Critical behavior of 7 and A.

It is now reasonable to assume further that the leading
temperature dependence for the screening length A, close
to T, comes from the exponent of Eq. (2.30a). In order to
extract this leading temperature dependence one needs to
know how 7(z, T) varies close to T, (for constant z). The
following heuristic argument gives a suggestion
(Minnhagen, 1981a).

I.et us assume that 7(T) may be Taylor expanded
around any T&T, and that the Kosterlitz-Thouless tran-
sition is reAected in some nonanalytic behavior at T, . If
we choose the "renormalized" temperature T=Y,T as the
expansion parameter, then the effect of the bound
Coulomb gas pairs is taken into account, so that Y. as a
function of T might be expected to be better behaved.
Expanding around a temperature To gives

E(T)=Y(To)+E '(To)(T —Tp)

Y "(Tp)
(T—Tp), +O((T Tp) ) . (2.3—1a)

2

Directly from the definition of T one obtains (by expand-
ing Y(T)=[To+(T To)]/[To+(T To)])—

«To)
Y(T)=Y(TQ)+ (T—To) — (T—Tp)

TO TO

+0((T—To)(T—Tp)) . (2.31b)

These two expansions are compatible [with 8 "(Tp)&0]
only if T To- T Tp or if—(T Tp—) T Tp—. The-
second possibility demands that 7. '( To ) = 1/Tp,
7. "(To+)&0, andY. "(To ) &0. The first possibility is con-
sistent with 7(T) having a Taylor expansion around To,
while the second possibility is not. This may be taken as
an indication that the second possibility describes the
behavior at the Kosterlitz-Thouless transition. Thus by
this hand-waving argument one obtains, close to T„

1/4 E(T) =E(T, )(1 e ) v'
~

1 —TIT,
~
),

(()

FIG. 2. Sketch of the rapid temperature variation of the densi-

ty of free charges n~ close to the charge-unbind'ing transition
for a neutral two-dimensional Coulomb gas. The solid curve
represents ln(nF) as a function of YT in the case of a finite A,
The dashed curve is the corresponding A,,= oo case. In the
latter case nF vanishes at YT= 4, i.e., at the Kosterlitz-

Thouless transition. The arrows indicate where k, for the solid
curve is approximately equal to the screening length due to free
charges, i.e., A,, =2mnF/ZT. [The curves are solutions to Eqs.
(2.25) and (2.29).]

T T, 0, (2.32)—
where c & are positive constants. The general behavior

(&)
of 7. for a two-dimensional Coulomb gas with fugacity—E /T
z( T)—e ' is sketched in Fig. 3. Note that
E(T=0)=l because z(T=O)=0 and that Y(T=Qo)=1
because all pairs break in the high-temperature limit.

Equation (2.32) can be more rigorously motivated by
use of renormalization equations for the Kosterlitz-
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I

I

I

Tc

FIG. 3. Sketch of the dielectric constant Y(T) for a neutral
two-dimensional Coulomb gas specified by z ( T)—exp( —E, /T ).
The figure shows the case when Y(T, ) =Y(T,+). Another possi-
bility would be Y(T, ) &Y(T, ).

This means that a quantity like I/[Ts(0)] jumps from a
finite value to zero at T, . This corresponds to a jump of
the superfluid density for a two-dimensional superfluid
from a finite value to zero at the critical temperature
(Nelson and Kosterlitz, 1977; Minnhagen and Warren,
1981; see Sec. IV.C). For T, close enough to ~, renor-
malization equations for the Kosterlitz-Thouless transi-
tion lead to 4T, e(T, )=1. Consequently the size of the

jump for the quantity 1/[? s(0)] at T, is precisely 4 for
this case. This corresponds to the celebrated uniuersal
jump prediction for a two-dimensional superfluid when
described in the Coulomb gas language (Nelson and Kos-
terlitz, 1977; Minnhagen and Warren, 1981; see Sec.
IV.C). However, for a T, further away from —,', there is
some indication that the size of the jump may have a
larger, nonuniversal value (Minnhagen, 1985a, 1985b; see
Sec. III.D).

1 —1/(4? E)

1 T) T
T TQ

(2.33)

Thouless transition (see Sec. III.C). A particularly well-
established result is that, below T, for T, close enough to
—,, one has (Kosterlitz, 1974)

s( T)= s( T)(1—c&+
~

1 —T/T,
~

) with 4Te(T, )=l .

The leading temperature dependence of the exponent in
Eq. (2.30a) follows from Eq. (2.32), i.e.,

d. Free-energy density

The leading z dependence of the free-energy density
may also be inferred by the same type of heuristic argu-
ment as in Sec. II.B.l.a: the density of free charges nF
corresponds to an effective chemical potential p, fr [see
Eqs. (2.27) and (2.28)]. This in turn should correspond to
a part of the free-energy density FF associated with the
free charges. This part of the free-energy density is deter-
mined by

and, accordingly, the leading temperature dependence of
the screening length k, as T, is approached for z( T, )&0,
can be expressed as

const

QT T, — (2.34)

This result was first obtained by Kosterlitz (1974) using
renormalization equations and will be discussed in more
detail in Sec. III.C.

nF ——— FF,
~jeff

which by Eqs. (2.28) and (2.30a) becomes

YT 4mzg2
' 2v

F-
2&f'0

where

(2.37)

(2.38a)

(2.38b)

c. Coulomb gas universal jump

VL (k)= f„,(k) .
k~s(k)

(2.35)

The dielectric response function E(r) may be defined
through the linearly screened potential VL(r), and the
Fourier transforms E(k) and VL(k) are related by [com-
pare Eqs. (2.21)]

A direct expansion of the partition function Z [Eq. (2.10)]
gives, in the limit X,~ ao, the lowest-order z dependence
proportional to z which corresponds to the creation of
neutral pairs [compare Eqs. (2.17) and (2.18)]. This gives
a contribution to the free-energy density I'~, where
I'~ ——const)&z, which may be associated with bound
pairs. Consequently the leading z dependence of the
free-energy density in the limit of small z is given by

Consequently one finds in the k~0 limit that [compare
Eq. (2.21a)]

1 . 1 1
- =lim—

&(0) k o s I+(Ak)

T2

2&K 0
2

2vp
4mzg

Tz' T(
2 2

(2.39a)

1 for T(Tc
0 forT)T,

(2.36)
where

2Tvo= lim v(z) =
z o 4T—1

(2.39b)
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TABLE I. Some basic features of the two-dimensional Coulomb gas for A,,~ 00.

Screening length
1/[1/(2cT) —2)

X=r, T+ Tc
GT

const/Q T —T
A, -roe ', T T.+

T & Tc

See Eq. (2.30a)

See Eq. (2.34)

See Eq. (2.30)

Dielectric constant due to bound pairs

E= (1+c)Q
i

1 —T/T,
i ), T +T,+—

4T,
1

7, = (1—c +~1—T/T
~

), T~T,
4T,

Umversal ]ump

1/[ TE(0)]=0, T +T,+—
1/[Tf(0)] =4, T~ T,

Free-energy density
2T/(4T —1)

T 4~zg T& 2, z —+01

4mro

TZ2 1T & — z~0
2 2 ~

See Eq. (2.32)

See Eq. (2.32)

See Eq. (2.36)

See Eq. (2.36)

See Eq. (2.39)

See Eq. (2.39)

p =n(T 4) for T & —, —

p = ,' n T for T(—,', —
(2.40a)

(2.40b)

where n is the total density of charges. Gne notes that
Eq. (2.40b) is the equation of state for an ideal gas of neu-
tral pairs with density n/2, whereas the nT term on the
right-hand side of Eq. (2.40a) indicates a gas with the
free-particle density n The equ. ation of state given by
Eqs. (2.40) was derived by Hauge and Hemmer (1971) in
the limiting case ro —+0. The limit ro —+0 with z fixed is
equivalent to the limit z~O with ro fixed (Minnhagen
et al. , 1978). In other words, results obtained for the
point-charge model reflect the small-z limit of the models
in which a single charge has a finite extension.

In this section the general features of the two-
dimensional neutral Coulomb gas have been described and
motivated by heuristic reasoning. Some of the most basic
results are summarized in Table I. We shall come back to
these results in Secs. II.D.1, III.C, and III.D.

[Equation (2.39b) follows because lim, oE(z) = 1.] This
result for I' was first deduced by Zittartz (1976) and was
shown more rigorously by Minnhagen et al. (1978; see
Sec. II.D).

The physical interpretation of Eqs. (2.39) is that in the
limit z~O the free charges dominate for T& —,'. This is

also reflected in the equation of state: the pressure is

given by p=T(t)/5Q)ln(z)= I'. From Eq. (2.—37) [with
(p, n) instead of (p,ff, n~)] and Eq. (2.39) it then follows
that

2. Non-neutral Coulomb gas

In this section we generalize the reasoning for the
screening length A, given in Sec. II.B.1.a to the case of a
non-neutral two-dimensional Coulomb gas and describe
the basic features.

For the non-neutral Coulomb gas model the creation
energies of positive and negative charge and unequal and
the average charge density (b,n) =(1/Q)(X+ —X ) is
nonzero. The energy needed to introduce an additional
positive charge into the non-neutral Coulomb gas may be
estimated in the following way (Minnhagen, 1981a).

First introduce the additional charge uniformly distri-
buted over the two-dimensional volume A. This requires
an overall charging energy given by

I d r U(r) ( b.n ) = U(k =0) ( b, n ) =2wA, , ( b n ) . (2.41)

The next step is to assemble this uniform charge into a
single charge distribution f„(r). In analogy with the neu-

tral Coulomb gas, this involves the self-energy —,
'

U,ff(0)
[compare Eqs. (2.26) and (2.27)]. The nonelectrostatic en-

ergy needed to create a positive (negative) Coulomb gas

particle is E,
( )

b,E= —T ln(z) AE [compare Eq.
(2.7)]. It follows that the total energy required to create a
positive (negative) charge is

p ff ——T ln(z) bE + —,
'

U,ff(0) + 2A,, ( b, n ), (2.42)

and the corresponding density of free positive (negative)
charges is
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+
+ jeff ~T( —)

PZF (2.43) 2nF. (

Equations (2.42) and (2.43) lead (by using the expression
nF (h—n) =4nF+nF to. eliminate AE and A,, (bn)), in
analogy with Eq. (2.29) for the neutral Coulomb gas, to a
self-consistent equation for nF which, in the limit
A, /A, ,~0, may be expressed as (Minnhagen, 1981a)

2 1/2ZT —2 I /2

i
(hn )

i
=nF 1 —(zg), (2.44)

ET

where (bn ) =nF+ nF, —nF n—F—+nF, g=(4~IKT)g,
and g(z, T,bE) takes the nonleading terms of U,rf(0) into
account [compare Eq. (2.29)]. Equation (2.44) describes a
crossover from a low-temperature regime nF-(hn ) to a
high-temperature regime where the dominant contribu-
tion to n~ is generated by charge unbinding. This is illus-
trated in Fig. 4, which is a solution of Eq. (2.44) with con-
stant ( hn ) and zg (solid curve in the figure).

Equations (2.25), (2.42), and (2.43) may also be com-
bined into (Minnhagen, 1981a)

r

FIG. 5. Density of free Coulomb gas charges n~ as a function
of the difference in energy needed to create a positive and a neg-
ative Coulomb gas charge. The two solid curves represent nzi. ,
as a function of AE (26E =the difference in energy needed to
create a positive and a negative Coulomb gas charge}, illustrat-
ing the two cases T& T, and T&T„respectively. The T&T,
case has a "quasi" critical behavior in that the density of free
Coulomb gas charges is almost zero up to a "quasi" critical
AE, .

(hn ) =nFtanh AE
T

2~A ' (hn)

which means that in the limit A,,~ 00

(2.45)
(2.46)

is a necessary condition for a nonzero (b,n). In Fig. 5
the density of free charges is plotted as a function of hE.
Below T, the density of free charges [as determined by
Eqs. (2.25), (2.42), and (2.43)] has a quasicritical behavior
in the sense that nF remains almost zero up to a charac-
teristic AE, where hE, is approximately given by
(Minnhagen, 1981a)

1 —4T
26 I'o

(2.47)

i
i
I
l

l

l

I

This AE, is related to a "quasicritica1" H, I for supercon-
ducting films (Doniach and Huberman, 1979; Minnhagen,
1981a).

For low enough temperatures the positive (negative)

charges will dominate the free energy for (b,n) 0.(&) '

Such a one-component Coulomb gas forms a Wigner lat-
tice for small enough temperatures (Wigner, 1938; Abri-
kosov, 1957). This will be discussed somewhat further in
connection with superconducting films (see Sec. VII.B.2).

3. Neutral Coulomb gas in an electric
field

FIG. 4. The density of free charges nF for a non-neutral two-
dimensional Coulomb gas close to the charge-unbinding transi-
tion. Solid curve represents ln(n~) as a function of YT obtained
from Eq. (2.44) for (hn )&0 and zg constant. The basic feature
is a crossover from a low-temperature region T & 4 with

nF=(bn ) to a high-temperature region T& ~ with

nF»(bn). The dashed curve represents the (hn) =0 case,
i.e., the corresponding result for the neutral two-dimensional
Coulomb gas.

The two-dimensional neutral Coulomb gas has no free
charges below T, for A,,= ac (see Sec. II.B.l.a). However,
pair breaking may be induced below T, by applying a
constant external electric field. This is analogous to ap-
plying a constant current to a superconducting film or to
a finite flow velocity in the case of superfluid films [e.g. ,
compare Eq. (4.62) in Sec. IV.B.2]. The density of free
charges, nz generated by the external electric field 0 can
be estimated by the same type of heuristic reasoning as in
Secs. II.B.l.a and II.B.2.

Rev. Mod. Phys. , Vol. 59, No. 4, October 1987



1012 Petter Minnhagen: The 2D Coulomb gas. . .

The energy needed to create a positive and negative
charge at positions rI and rz, respectively, is given by
[compare Eq. (2.27)]

1
2

~ p,rf(ri, r2) ~=2E, +U,ff(0) —U,ff(riz)+ —(D r2 —D r~).

(2.48)

d 1
U,rf(r i2) = D

dr )2
(2.49a)

or

(2.49b)

If the force acting between the charges, F~2, is repulsive,
then the pair is broken into two free charges. The
minimum energy needed to create a broken pair is hence
determined by the condition E]2——0. Obviously the
minimum energy corresponds to a dipole pair oriented
parallel to the field and the condition

Here we describe how the model of the two-
dimensional Coulomb gas may be transformed into a
sine-Gordon field theory. The advantage of this transfor-
mation is that it makes available to us standard field
theory diagrammatics and renormalization procedures.
This opens up a systematic way of obtaining results for
the two-dimensional Coulomb gas.

First let us examine the precise connection between the
two-dimensional Coulomb gas and the sine-Gordon field
theory. This connection rests on the fact that the parti-
tion function Z for the Coulomb gas can be expressed as
a functional integral over a real field (Frohlich, 1976; Po-
lyakov, 1977; Samuel, 1978). As described in Sec. II.B.1,
the charge-unbinding transition may be characterized in
terms of the screening length A, and the dielectric constant
E. The field theory definitions of these quantities will be
given. In Sec. II.D.1 we then describe how these field
theory definitions may be used to generate systematic ex-
pansions.

The key quantities in the field theory formulation are
correlation functions of the form

P ff— E + p [Ugff(D ) —U rf(0)]+— (2.50)

where in the last step the approximation U,ff(r)
=—( 1&a)ln( r /A, ) was used [compare Eqs. (2.5) and
(2.26)]. The effective chemical potential for creating a
free charge is accordingly

(V )2 ~2 2

f dyexp —f d r

r

(vy) m gf dgexp —f d r

O[p(r)]

and, the density of free charges

p g/TnF~ 8

Using the same estimate as for Eq. (2.49b), i.e.,
Ucff( r)= —( 1 /8 )ln(r/A), giv,es

(2.52)

where p(r) is a real field, O[y] is a functional of this
field, and the integrals are functional integrals with
respect to the field q&(r). The key to the transformation
between the Coulomb gas and the sine-Gordon theory is
the correlation function

)
1/2?Y (2.51)

This means that the density of free charges generated by
an external electric field goes like a power of the field.
The result was first obtained by Ambegaokar et al. (1978)
and Myerson (1978) for the analogous case of superfluid
films.

exp i V2n/T g—s;@(r.; )
m=X —'

C

=exp — g s;s? U( r;~ )
1

2T — '' (2.53)

C. Sine-Gordon formulation

The results for the two-dimensional Coulomb gas given
in Sec. II.B (see Table I) were motivated by intuitive
reasoning. An obvious question is to what extent these re-
sults can be verified by more stringent methods. Some as-
pects of this question will be treated in this section and
the ensuing sections II.D and III.

where the right-hand side is obtained by straightforwardly
performing the functional integrals implied by ( )

C

on the left-hand side. U(r) is given by Eq. (2.4) and @(r)
by

y(r) = f d r'f„(
~

r —r'
~

)y(r') . (2.54)

Inserting the identity given by Eq. (2.53) into the defini-
tion of the partition function Z [see Eq. (2.10)] gives

d 2r
Z = exp Iz+ exp[i''2n. /T y(r)]+z exp[ —iv'2m /T@(r)] I

rn =X—'
C

(2.55)
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where z+ differ from the "true" one-particle fugacity
( —)

[see Eq. (2.10)] by the one-particle electrostatic self-
energy, i.e.,

1
z + ——z + exp U(0)

( —) ( —)

3s= 1 — X(k)

X(0)

1 — X(k)a
Bk

(2.63a)

(2.63b)

=exp[ (E,— b,E)/T] . (2.56)
one regains Eq. (2.21a),

For the neutral Coulomb gas in the limit A., = ao the field
theory expression for Z reduces to

2rrf„,(k)
VL, (k)= for k «0,

E(k +A, )
(2.64)

r

d r
Z = exp 2z cos[&2n /T y(r)]

m=X —'=0
C

(2.57)

Z= f dq&e px—f d rH, G

f dyexp —f d r(Vy) /2
(2.58a)

—E /T
with z=e ' . This means that Z for the neutral
Coulomb gas with A,,= ao may alternatively be expressed
as

which is the definition of E and A, (see Sec. II.B.1). This
means that the key quantities 7. and A, for the characteri-
zation of the charge-unbinding transition are, within the
field theory formulation, defined by Eqs. (2.63a) and
(2.63b), respectively. As a consequence they may be cal-
culated by standard field theory diagrammatics and re-
normalization procedures (as will be discussed somewhat
further in Sec. II.D.1).

Another example of the mapping between the Coulomb
gas and the sine-Gordon formulation is given by the
charge-density correlation function: the point-charge
density for a configuration of N particles is defined by

where
N

b, n (r)=ps;5(r —r;), (2.65)

H,~ ——[V'y(r)] 2z
2

cos[v'2m. /T q)(r)] (2.58b)

is the Hamiltonian density for a sine-Gordon (sG) field
theory. A correlation function within the sine-Gordon
field theory is given by

f dyexp —f d rH, G O[y]
(2.59)

where r; denotes the position of the charge i The p.oint-
charge-density correlation function may be expressed as
(Minnhagen, 1985b)

(b,n (r)b, n (0))

(sin[V 2m/T y(r)]sin[v'2n/T qr(0)] )'4z
g2

f dyexp —fd rH, G +5(r) (cos[V'2m. /Ty(0)])'G . (2.66)

G( ) = (y( )Ip(0) )' (2.60)

It is related to the linearly screened potential VI by (see,
for example, Minnhagen, 1985b)

VI. (r) =2mG(r) . . (2.61)

The Green's function G is related to the one-particle ir-
reducible self-energy X by

f„,(k)
G(k) =

k —X(k)
(2.62)

From Eqs. (2.61) and (2.62), together with the identifica-
tions

where O[p] is some functional of the field y and the su-
perscript sG is introduced in order to distinguish sine-
Gordon correlation functions from the thermal average of
the Coulomb gas ( ) and the correlation functions ( )~
defined by Eq. (2.52).

A sine-Gordan correlation function of special interest
in the present context is the one-particle Green's function
G (r) defined by

Hso=HxG= + p for T))1( V'y) 4m.z
2 gT

(2.67)

In other words, the high-T limit, which for a charged gas
corresponds to a Debye-Hiickel limit, is associated with
the Klein-Gordon limit of the field theory formulation.

D. Expansion approaches

In this section we sketch how some of the results given
in Sec. II.B (see Table I) may be obtained by more sys-
tematic expansions. The sine-Gordan formulation has
turned out to be especially useful in this respect, and we
shall for this reason concentrate the presentation on ex-
pansions within this field theory formulation (Sec. II.D.1).
It is, of course, also possible. to define expansion pro-
cedures directly in the usual statistical mechanical formu-
lation of the two-dimensional Coulomb gas, e.g., various

It may also be noted that the sine-Gordon Hamiltonian
density H,G [Eq. (2.58b)] reduces to a Klein-Gordon
(KG) Hamiltonian density in the high- T limit, i.e.,
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types of cluster expansions. Progress made for the two-
dimensional Coulomb gas using these, from a statistical
mechanical point of view, more conventional methods is
briefly mentioned in Sec. II.D.2.

Sine-Gordon expansion

As described in Sec. II.C, the screening length A, and
the dielectric constant Y. are related to the irreducible
self-energy of the Green's function for the sine-Gordon
theory [compare Eqs. (2.60), (2.61), and (2.63)]. This
means that A, and c can be calculated through systematic
expansions of the irreducible self-energy. This section de-
scribes such an expansion. It also contains a brief
description of what is involved in constructing the
renormalization-group equations for the sine-Gordon
theory.

In order to define an expansion one may split the sine-

Gordon Hamiltonian density into two parts,
H,& ——HO+HI, where

FIG. 6. First-order Feynman diagrams for the sine-Gordon
one-particle Green's function. This sequence of diagrams is
equivalent to one single diagram with a renormalized vertex (see
text).

y(i)(r r~) ~z
e —(~/T)G (o)$(r r~)

gT
(2.70a)

y (l)(k) ~z
~

—(n/T)GO(0) (2.70b)
Tg

By inserting X(" into Eqs. (2.63) and observing that the
leading dependence of 6 (0) for large A, is
6 (0)=(1/2m)ln(A, /ro), one obtains

2 1 /( 1 —1./4T )
PO = g(T)-

T
for T) —,

' (2.71a)

HI (r) = — cos[v'2'�/T g)(r) ]— [q)(y ) ]
2z

2
'(2.68b)

G'( ) = (q ( )y(0) ) (2.69)

By expanding the Green's function 6 in the fugacity z
one obtains a sequence of Feynman diagrams (for details
see, for example, Samuel, 1978). The first-order diagrams
are drawn in Fig. 6. For example, the value of the first
diagram in the sequence is

f G ( ir —r'i )6 (r') .

The expansion of the Green's function G is then defined
in terms of a "bare" Green's function 6 (r) given by
[compare Eq. (2.52)]

(2.71b)

where g(T) accounts for the nonleading contributions
[compare Eq. (2.29)]. This means that Eqs. (2.30) are re-
gained by sine-Gordon diagrammatics in the limit of
small z. By considering higher-order diagrams for the ir-
reducible self-energy it becomes plausible that Eqs. (2.71)
remain correct to all orders; the higher-order terms will
only produce a new g (T) (Minnhagen et al. , 1978).

Using this type of sine-Gordon diagrammatics one can
also show that the free-energy density in the small-z limit
is given by (Minnhagen et al. , 1978)

(2.72a)

The sequence of first-order diagrams is, from a
structural point of view, a sequence of tadpole diagrams.
The sine-Gordon theory has the property that any se-

quence of tadpole diagrams when summed gives a factor
e ' ' ' ' (Coleman, 1975). Thus the sum of all the
first-order diagrams is

dz
e (m'/T)GO(P) P Go r r~ Go ~T'

A general way of stating this property of the sine-Gordon
theory is the following: All tadpole diagrams are taken

—(~/T) G'[O]into account by "renormalizing" z to z=ze
(Coleman, 1975). After such a vertex renormalization
only one first-order diagram remains, as illustrated in Fig.
6.

The irreducible self-energy to first order in z is trivially
obtained by removing the two external G legs from the
renormalized first-order diagram, i.e.,

T2

4m vog

2VO

4mz cp+0
2vo

(2.72b)

2p
T 4mz

(2.72c)
1T

where 2vo ——(1—1/4T) ', co ——1+0(T ), and e2~ are
functions of T, e.g. , e2 ——T /2(1 —2T). At the "special"
temperature Tp

——p/2(2p —1) the pth term is proportion-
al to z Rn(z). These results for the free energy where first
hypothesized by Zittartz (1976) on the basis of scaling ar-
guments. It should also be noted that in the small-z limit
the results obtained from sine-Gordon diagrammatics
given by Eq. (2.72) confirm and extend the heuristically
obtained results given by Eq, (2.39).

The sine-Gordon diagrammatics sketched above are de-
fined in terms of a bare Green's function G [see Eq.
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so that

G= 1 1

2k +
~R

—Xg(k)

(2.73)

and consequently

AitXii(k =0;zest/T, T~&Ag)=A, ,X(k =0;z/T, T&A,, ),
(2.74a)

X~ (k;zii /T, T~,A~ )
dk k=0

X(k;z/T, T, A., ) +(ski ' —1),
dk &R

(2.69)] and a renormalized mass A,
' [see Eq. (2.68)].

However, this does not turn out to be a useful expansion
close to and below the critical line. The g(T) in Eq.
(2.71a) diverges as g(T)-1/(T —,

'
)—when T= —,

' is ap-
proached (Minnhagen et al. , 1978). This means that the
z interval for which the diagrammatic expansion is valid
shrinks to zero at T= ~. Nevertheless it is possible to
construct useful expansions close to the critical line by use
of renormalization-group theory (see, for example, Amit,
1984). For the sine-Gordon theory it turns out that the
logarithmic infinities arising in the diagrammatic expan-
sion at the critical line for r0 —+0 can be absorbed in two
renormalization constants —a wave-function renormaliza-
tion and a coupling-constant renormalization. The corre-
sponding renormalization-group equations can then be
constructed. We shall here only briefly sketch what is in-
volved in such a procedure:

The renormalization procedure may be defined in terms
of two renormalization constants sit and c~, together
with the corresponding renormalized quantities

ZR Z
O'R sR4'& ~RT T '

TR ~sR T& ~R ~~R ~c

Obviously the Green's function G can be expressed as

G= '
&O.(.)O.(0)&",

A,,4m.ZR
2

A+XR(k =0)= exp
Tcli g

' G'(0)
TR

' 2—&R /2TR
C

CR P'0
(2.75a)

d
2 Xg(k;zg/T, T~&k g) =Eg —1=0 . (2.75b)

The first of these equations becomes logarithmically
divergent for rp~0 at the point where the exponent
changes from negative to positive. This logarithmic
divergency may be absorbed into cR by

c~ ——1+ 2 — ln(A, , /rp) .
2TR

(2.76)

zR(l ) = 2—
dt

1
zg(l) .2' (I )

(2.77a)

The corresponding equation for T~(I) (i.e., the equation
to same order in the double expansion in the parameters
zii/T and Tz ——,') can be obtained by considering the
next higher-order diagrams for X. It is given by

d 1 2m
zg(l) .

dl Tg(l) T
(2.77b)

Equations (2.77) are the Kosterlitz renormalization-group
(RG) equations, which were first derived by Kosterlitz
(1974) within the Coulomb gas formulation. They have
been rederived within the sine-Gordon formulation by
Ghta (1978), Wiegman (1978), and Amit et al. (1980).

The procedure sketched above has been carried out to
one order higher in the double expansion in the variables
z~/T and TIi ——,

'
leading to (Amit et al. , 1980)

d
[z~(~)]=

dl

5 2

Tit (I )
(2.78a)

The other renormalization constant, cR, is according to
Eq. (2.75b) equal to 1. To lowest order in zR/T and
T~ ——, this renormalization leads to a differential equa-

tion for zz in the variable I =in(A, , /rp) (see, for example,
Amit, 1984), i.e.,

2 X(k;z~/T, T~, A, ) =0 .
dk

(2.74b)

(2.74c)

1

dl T~(l )

2n.
zest (l )

T2 T2 zii (1) 4—

(2.78b)

The last equation is enforced so as to ensure that the
physical value of sit is given by sit ——Y [compare Eqs.
(2.63) and (2..64)].

The renormalization constants can be defined so as to
make the right-hand sides of Eqs. (2.74a) and (2.74b) fi-
nite, order by order, in a double expansion in the parame-
ters z~/T and Tz ——,

' (Amit et al. , 1980). As an exam-

ple let us consider X to lowest order [Eq. (2.70b)],

It turns out that the values of the coefficients in front of
the third-order terms in Eqs. (2.78) (third order in the
double expansion in the variables zii and Tz ——,') are
nonuniversal, whereas the coefficients in front of the
second-order terms are universal. This means that the
values of the coefficients in front of the third-order terms
depend on the explicit choice of the charge distribution
function f, , whereas the coefficients in front of thefp&

second-order terms are independent of this choice.
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The physical quantity E=Ez(ao) may be obtained by
integrating the equations from /=0 to I=oo starting
from the initial conditions z~(0) =0 and Tg(0) =T [com-
pare Eqs. (2.75b) and (2.76)]. The guaranteed validity of
this calculation for E is by construction restricted to the
parameter range z « I and 0 & 4

—T« 1. The
renormalization-group equations will be discussed in more
detail in Sec. III.

2. Cluster expansions

A more traditional way of constructing expansions for
a statistical mechanical model like the two-dimensional
Coulomb gas is through Mayer cluster expansion tech-
niques (see, for example, Friedman, 1962). Some of the
heuristic results presented in Sec. II.B have also been ob-
tained through these types of expansions. For example,
the equation of state for z~0 [Eqs. (2.40)] was obtained
by Hauge and Hemmer (1971; see also Deutsch and La-
vaud, 1974); the screening length A, [Eq. (2.71a) for T & —,

in the limit z~0 was obtained by Everts and Koch
(1977)]; the Kosterlitz renormalization-group equations
[Eqs. (2.77)] were rederived using Mayer cluster expan-
sion techniques by Heye and Olaussen (1980, 1981). A re-
view of these expansion techniques for the two-
dimensional Coulomb gas is, however, deemed outside the
scope of the present article.

E. Comment on ferrnion analogies

In Sec. II.D we briefly indicated how information on
the Coulomb gas can be obtained by expansion ap-
proaches within the sine-Gordon field theory formulation
and furthermore how this formulation lends itself to
renormalization-group procedures. For completeness it
was mentioned that some results have also been obtained
by expansion procedures directly in the Coulomb gas for-
mulation. For example, the Kosterlitz renormalization-
group equations were originally derived within the
Coulomb gas formulation (Kosterlitz, 1974).

An important fact for the transformation between the
Coulomb gas model and the sine-Gordon formulation
described in Sec. II.C is that it is mathematically exact.
There exist yet other transformations of the two-
dimensional Coulomb gas model which connect it to one-
dimensional fermion models. The existence of such con-
nections is in itself of great interest. The transformations
are, however, not entirely exact (as will be explained fur-
ther below), and because of this they are somewhat less
useful in the present context and will consequently not be
reviewed in this article. At any rate these fermion analo-
gies form a subject by themselves.

One route to establishing a fermion connection is to
start from the Coulomb gas model and transform it into a
Euclidean sine-Cxordon theory as explained in Sec. II.C.
One then performs a Vhck's rotation into a quantum
sine-Gordon theory in (1+1) dimensions (i.e., one space

and one time dimension). This is possible as long as one
ignores the precise cutoff prescriptions. The quantum
sine-Gordon theory in (1+1) dimensions is, order by or-
der, in perturbation theory equivalent to the (1+1)-
dimensional massive Thirring model (Coleman, 1975).
An alternative route for establishing a fermion connection
is to start from a model of a one-dimensional electron gas
called the backward scattering model (Menyhard and So-
lyom, 1973; Luther and Emery, 1974). By using a boson
representation of a fermion field (Luther and Emery,
1974; Luther and Peschel, 1974) and factorizing the
model into two commuting parts, i.e., a charge-density
part and a spin-density part (Luther and Emery, 1974),
one can show (Chui and Lee, 1975) that the spin-density
part is equivalent to the two-dimensional Coulomb gas
mode1. This connection can also be established without
using the boson representation of a fermion (Grinstein
et al. , 1979). The treatment of the cutoff prescriptions in
establishing the fermion-Coulomb gas connections re-
stricts the guaranteed validity of the transformations to
small coupling constants (Grinstein et al. , 1979). In oth-
er words, it is difficult to use the fermion representation
for the purpose of obtaining precise results for the
Coulomb gas model.

I I I. R ENOR MALI2ATION EQUATIONS

The r'enormalization-group equations for the
Kosterlitz-Thouless transition describe the critical proper-
ties close to the phase transition. In Sec. II.D it was
sketched how renormalization-group equations may be
constructed using field theory renormalization pro-
cedures. The present section will be centered on the phys-
ical content of the renormalization-group equations.

As a first step we shall describe in Sec. III.A a more
physical, but less systematic, way of obtaining renormali-
zation equations. It may be characterized as a self-
consistent linear screening reasoning. The Kosterlitz
renormalization-group equations [Eqs. (2.77)] are regained
as a lowest-order approximation of this reasoning (Young,
1978; Minnhagen, 1985b). The self-consistent screening
approximation may be interpreted in terms of a length-
dependent dielectric constant (Kosterlitz and Thouless,
1973; Young, 1978, 1980; Minnhagen, 1985b). This is
described in Sec. III.B. In Sec. III.C the properties and
implications of the Kosterlitz renormalization-group
equations are discussed in some detail. Finally, Sec. III.D
discusses some implications of higher-order terms and
some possible limitations of the conclusions drawn from
the Kosterlitz renormalization-group equations.

A. Linear screening and self-consistent equations

In this section we describe a self-consistent screening
reasoning. This reasoning leads to a set of renormaliza-
tion equations that have a very direct physical interpreta-
tion (Minnhagen, 1985b).
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where n' '(r) is the density of positive (negative) charges.
It turns out that the charge-density correlation function
may be expressed as

22
( ~ ( )~ (0) )

eff
(

—Uerf (r)/T Uerf (r)/T)
2

where U,~~+(r)=U,gr (r) [U,+fr (r)] is the effective in-
teraction between two Coulomb gas charges of equal (op-
posite) sign [defined so that U,rr( ~ ) =0 for A,,& ao ] and

z ff is the effective particle fugacity, z,rf =e '", where

p ff—T ln(z) —C,ff and C,rr is a constant. Equation (3.2)
is an exact equality, provided (hn(r)b, n(0) ) is the point-
charge density (Minnhagen, 1985c). In the sine-Gordon
formulation the quantities Ugff /T, U,ff /T, and C,rf/T
turn into a set of sine-Gordon correlation functions.

Equation (3.2) has a simple physical interpretation:
2z,ff/g may be interpreted as the particle density. Conse-
quently 4z,rf/g is the total density of pairs with large
separation. Half of the pairs have equal (opposite) signs
and contribute to the positive (negative) term of Eq. (3.2).
The energy needed to decrease the pair separation from
infinity to r of a neutral (non-neutral) pair is given by

U ff (7 ) ( + U ff ). Consequently the charge-density
correlation function has an obvious interpretation as the
sum of the effective pair fugacities for pairs with equal
and opposite charges, where the particles within a pair are
separated by a distance r.

To lowest order in charge, U, rr is given by linear-
response theory, i.e., U,~f (r) = U,+~r+ (r) = VI (r) and simi-
larly C,rr= Vi (0)/2. To this order Eq. (3.2) reduces to
(Minnhagen, 1985b)

2

(~ ( )~ (0) )
2Z [Vi(r) —Vr (0)}/T(1 —2Vr (r)/T)

2

(3.3a)

%'ithin a linear-response description the linearly screened
potential VL is related to the dielectric function E(r) by
[compare Eq. (2.35); here, we specialize to the point-
charge limit f„=1]

Vl (k)=
s(k)k

(3.3b)

The dielectric response function E(r) is in turn, within a
linear-response description, related to the charge-density
correlation function through

(3.3c)

This means that Eqs. (3.3a)—(3.3c) constitutes a self-

The starting point for the reasoning is the charge-
density correlation function, which is given by

(bn(r)bn(0))=[(n+(r)n+(0))+(n (r)n (0))]
—[(n+(r)n (0) ) + (n (r)n+(0) ) ]

(3.1)

consistent set of equations for the linearly screened poten-
tial VL. As described in Sec. II.B.1, the key quantities for
characterizing the charge-unbinding transition, i.e., the
screening length A. and the dielectric constant c, may be
defined through the linearly screened potential Vr [com-
pare Eq. (2.21a)].

Equations (3.3) are exact in the limit T mao, —as is ap-
parent because this limit is for constant fugacities
equivalent to the small-charge limit s~0 [compare Eq.
(2.10)]. Equations (3.3) are also exact in the limit of large
r: for T& T, this follows since U,ff+ and U,ff IUst
reduce to the linearly screened potential Vr for large r be-
cause the particle interaction is screened out by free
charges. Note that this argument was used in Sec.
II.B.l.a in connection with Eq. (2.26) and led to
4T, s(T, )=1 at the critical line. For T & T, it follows
from the field-theoretic formulation: we want to show
that

U,gr (r) U+rr+(r)
lim = lim =1 .

r VI. (r) ~ ~ VI (r)

The quantities U,~r /T, U,+rr+ /T, and Vr may be ex-
pressed as sine-Gordon correlation functions [compare,
for example Eq. (2.61)]. From the field theory formula-
tion it follows that a dimensionless ratio of correlation
functions in the limit r/ro~ oo can only be a function of
Y.T for T& T, (see, for example, Minnhagen, 1981a).
Furthermore, YT is constant along a renormalization-
group trajectory for T & T, (compare Sec. III.C). Such a
trajectory flows into z =0 (compare Sec. III.C). For z =0
there is no polarization, consequently U,ff Ueff VL

for z =0 and the assertion follows.
The result that U,ff for large r is given by VL is to

some extent implicit in earlier work. For small T it has
been motivated under the assumption that the leading
contribution to the polarization comes from dipole pairs
with small separations (Nelson, 1978). Close to T, it is
somewhat implicit in the construction of the
renormalization-group equations by Jose et al. .(1977; see
also Nelson, 1983).

One may also note that Eq. (2.24) follows from Eq.
(3.3a), since for T & T, the right-hand side of Eq. (3.3a) is
proportional to

VL (r) —VL (0) —(1/c)ln(r/rP)L L

while for T~ T, it is proportional to Vl (r)-e " (com-
pare Sec. III.B).

B. Length-dependent screening

We shall introduce the length-dependent screening con-
cept by aid of the quantity e =s(k =0), where s is the
Fourier transform of the dielectric function E(r). The
quantity c signals the Kosterlitz-Thouless transition in

that E '( )0 for T~T, (T&T, ) [see Sec. II.B.l.c and

Eq. (2.36)]. For T&T, the quantity e„ is equal to the
dielectric constant 7,, whereas for T & T, it is equal to in-
finity.
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00

1/E =1+ f dr r (b,n(r)b, n(0)) . (3.4)

Directly from the definition [Eq. (3.3c)] it follows that F(r) =F~(r)+F2(r)+F3(r)
1F)(r)=

r&r

(3.10a)

(3.10b)

dip(r) =—Q(b n(r)b n (0) ) /2, (3.5)

since only the charges within a dipole pair are correlated.
Consequently the electric susceptibility Xp, corresponding
to an "independent dipole pair approximation, " is

Xp= d rex r dip r
Q

2T . 0f dr r (An(r)bn(0)) . (3.6)

In terms of this quantity E is given by

1 —2m&p

Consequently E may be interpreted in terms of polariza-
tion due to dipole pairs of all length scales (all sizes of in-
trapair separations). In electrostatics s is related to the
electric susceptibility X by c =1+2mX, and hence 7 is
related to the independent pair susceptibility Xp by

x= Xp

1 —2~70
(3.8)

This expression lends itself to a simple interpretation in
the low-temperature phase. According to the intuitive
charge-unbinding picture, the neutral Coulomb gas con-
sists of dipole pairs in this phase (see Sec. II.B.1). The po-
larizability of a single dipole with separation r, a(r), is
given by a(r) =r /2T. The density of dipoles with intra-
pair separation r, dip(r) is given by

F2(r) = f dr'r'(bn(r')bn(0) ),
F3(r)= f dr'r'1n(r'/r)(bn(r')bn(0)) .

T p

(3.10c)

(3.10d)

2 V ( ) —& (0) /&

(3.11)

Let us now introduce a logarithmic length scale
l =ln(r/ro). the effective pair polarizability may then be
expressed as [compare Eqs. (3.5) and (3.10)]

It is interesting to note that these three contributions to
the intrapair force, the sum of which constitute the total
intrapair force within a linear screening approximation,
may be given simple physical interpretations (Minnhagen,
1985b): F, (r) is caused by the electric field between a di-
pole pair with intrapair separation r polarized by the di-
poles of smaller intrapair separations; Fz(r) is caused by
the dipole field outside a pair with separation r polarized
by the dipoles of larger separations; while F3(r) is caused
by the orientational energy of a dipole with separation r
in the electric field caused by the dipoles of larger intra-
pair separations.

In the low-temperature phase the'screening length A, is
infinite and VL (r) diverges [compare Eq. (2.2la)]. Conse-
quently Eq. (3.3a) reduces to

One notes that Xo&1/2m in the low-temperature phase
and Xo——1/2m in the high-temperature phase.

The length-dependent screening reasoning consists in
focusing on how dipoles of different intrapair separations
contribute to screening (Kosterlitz and Thouless, 1973).
To this end it is expedient to introduce a length-dependent
dielectric constant c., by

with

0a(r)dip(r)d r= — (bn(r)bn(0))d r
4T

z (l)dlT'

2
rp roe

z(l) =z exp 2l — f dr'F(r')
2T

(3.12a)

(3.12b)

2 p=1+ f dr'r' (hn(r')bn(0)) .
T (3.9)

One notes that c., involves all dipoles up to intrapair
separation r and that the quantity c is given by
&m =r =m

The intrapair force for a dipole with separation r is
given by F= (d /dr) U fr (r—) where U, ff is the effec-
tive interaction between a pair of particles with opposite
charge. In the absence of surrounding Coulomb gas
charges, this force is given by Fo 1/r. Within linea——r-
response theory (i.e., to lowest order in the charge of the
particular dipole under consideration) it is given by
F= dVI (r)/dr, w—hich, by aid of Eqs. (3.3b), (3.3c), and
(3.9), may be expressed as (Minnhagen, 1985b)

Ter = ro exp(l) (3.13)

in terms of z(l) and T(l), Eqs. (3.3) reduce to a simple set
of differential equations in the low-temperature phase
(Minnhagen, 1985a, 1985b),

The quantity z(l), which is defined by Eqs. (3.12), will be
referred to as the renormalized fugacity, since this is what
it corresponds to in the renormalization-group language
(compare Sec. II.D.1). As can be seen from Eq. (3.12a),
the physical meaning of z(l) is linked to the polarizability
of pairs with the intrapair separation in the interval
[l,l+dl] Likewise one. may introduce a renormalized
temperature T(l) by
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1

dl T(l)
2z (l)m

T2
(3.14a) r 1

dl 2
—-[z(l)]= 4— dx e "x T 1+—d z(l) ~ „x

2

(3.14b)

The integral in Eq. (3.14b) may by partial integration be
expressed as

f dxe "x T 1+—= Q „„[1/T(1)]
n=0

=1/T(1)+O(z'(1)) . (3.15)

In a double expansion in the parameters z (1) and
1/T(l) 4, E—qs. (3.14) reduce to Kosterlitz
renormalization-group equations [compare Eq. (2.77)].
Thus to lowest order

d
dl T(l)

2z (l)m

T2
(3.16a)

—[z(l)]= [4—1/T(1)] .d z(l)
dl 2

(3.16b)

It may be noted that Eq. (3.16b) follows directly from the
definition of z (1) [Eq. (3.12)], provided the intrapair force
is estimated by I'~ alone [Eq. (3.10b)], i.e., provided only
the polarization due to dipoles with smaller intrapair
separations are included (Young, 1978, 1980).

C. Kosterlitz RG equations

The Kosterlitz renormalization-group equations [Eqs.
(3.16)] may be explicitly solved. In this section we shall
discuss this solution and its implications.

For the purpose of discussing the solution of Kosterlitz
RG equations it is convenient to introduce the renormal-
ized temperature variable t(l) =[1—1/4T(l)] and the re-
normalized fugacity variable y (1)=nz (1)/2T. In terms of
these variables the Kosterlitz RG equations [Eqs. (3.16)]
become

are three distinct regions of initial conditions in the (t,y)
plane. Region I is characterized by C&0 and t &0. A
trajectory in this region ends on the t axis at the point
(t(ao)= —(t; —y; )', y(co)=0}. Region I is separated
from region II by the trajectory C =0 and t(1)= —y(l)
[compare Eq. (3.18)], which ends on the t axis at the point
(t( co ) =O,y( oo )=0). Region II is characterized by y & t
The trajectories in this region go to ( oo, oo ). The separa-
tion between regions II and III is given by the trajectory
C =0 and t (1)=y (1), which starts at (0,0). Region III is
characterized by C&0 and t &0. The trajectories in this
region start as the t axis and go to ( oo, ao ).

The explicit solution to Eqs. (3.17) (see, for example,
Young and Bohr, 1981) is in region I

(t(l),y(l) ) = ( —c coth(p+ 2cl), c/sinh(y+2cl )),

cosh(y) = t;/y;;—
in region II

(t(l),y(l)) =(c cot(y —2cl), c/sin(y —2cl)),

cos(y ) =t; /y;, 0 & p & n;

(3.19a)

(3.19b)

Fi&. 7. Flow diagram for the Kosterlitz RCx equations [Eqs.
(3.17)]. Arrows indicate the flow direction under integration.
There are three distinct regions, denoted by I, II, and III,
separated by the special trajectories y =t and y =—t. The tra-
jectory y = —t corresponds to the critical line (for further ex-
planations see text).

[t(l))=2y (1),

—[y (1)]=2y (1)t(1),
dl

which may be directly integrated to

t (1)—y (1)=C,

(3.17a)

(3.17b)

(3.18)

in region III

(t (l),y (1))= (c coth(y —2cl ),c/sinh(p —2cl )),
(3.19c)

cosh(y) =t; /y;;
and c =(

~
t; y; ~

)' in all three cas—es.
In region I, s is obtained from (t( oo )= (t; y; )'~2—, —

y(~)), i.e.,

where C is a constant. Consequently when integrating
Eqs. (3.17) from a starting value 1; and the initial condi-
tions t; =t(l;) and y;=y(l;), one will obtain a (t(l),y(1))
point that lies on the trajectory given by Eq (3.18) wi.th
C =t; —y;. This is illustrated in Fig. 7. The arrows on
the trajectories in the figure indicate the direction in
which a (t(l),y(l)) point flows with increasing l. There

with

Tc
4c;

KZg

=[4T+4T, [Q(1—T/T, )(rrz; /T, + 1 —T/T, )]

(3.20a)

(3.20b)

Rev. Mod. Phys. , Vof. 59, No. 4, October 1987



1020 Petter Minnhagen: The 2D Coulomb gas. . .

and s; =E(l;). The separation trajectory between regions I
and II corresponds to T = T, and to the critical line (as
will be motivated further below). Consequently, as the
critical line is approached from below, c. behaves as

transition is expected. Consequently, for any trajectory
that comes close enough to the line t =y, the leading can-
tribution to the screening length is given by (Young and
Bohr, 1981)

s„=s,(1—c& +1—T/T, )+O(l —T/T, ) (3.21) (3.26)

with s, =1!4T, and c& 2——+7rz;E; .This is in accord
with the results of Sec. II.B.1 [compare Eqs. (2.23), (2.30),
and (2.32)].

In regions II and 'III it is not meaningful to integrate
Eqs. (3.17) to infinity since y (1) divergence at
1=10 tp/2——c. Furthermore, the guaranteed validity of
the equations is restricted to y (1)« 1. Nevertheless, it is
possible to deduce how the screening length k diverges as
the critical line is approached (Kosterlitz, 1974). The fol-
lowing argumentation is due to Young and Bohr (1981).

First one observes that integrating the equations is the
same as mapping a Coulomb gas specified by (t;,y;, ro)
onto one specified by (t(l),y(l), roe'). All such Coulomb
gases have identical critical properties obtained by in-

tegrating to 1= ao (Wilson, 1971). This means that the
dimensionless quantity A. =A, /roe' can only be a function
of the two dimensionless variables (t(1),y (1)) and that

=e%,(t (l),y(1) ) (3.22)

for all (t(1),y(l)) points along a trajectory, since A, governs
the critical behavior. Equation (3.22) is just the basic
statement of how a correlation length scales under a
renormalization-group transformation (Wilson, 1971).

The idea is now to combine Eqs. (3.19) with Eq. (3.22).
First we impose the restriction 2c(lo l)=y 2—cl «1,—
which means that t(l)=y(l) [see Eqs. (3.19)] or, in other
words, we only consider trajectories that, for some large
enough l, come close to the line t =y. In addition we im--

pose the condition 10 —1 &~1. From Eqs. (3.19) it then
follows that

From Eq. (3.18) it follows that the closer a point is to the
critical line t = —y in regions II and III, the'closer the
corresponding trajectory comes to the line t =y. Conse-
quently, as the critical line is approached, the dominant
contribution to the screening length is given by Eq. (3.26).

Let us first consider the case in which a point y&0 on
the critical line is approached. Equation (3.19b) applied
to this case gives

lo —— — — for u =—~—1, (3.27)
1 1

2c 2y (1—u2)in 2y y

which translated back to the (T,z) variables becomes
(Young and Bohr, 1981)

1 1 —T /(, 2772; )
A.=C exp , Qm. T, /—z; e

T/T, —1
(3.28)

for T +T, . Th—us the screening length diverges as the
critical line is approached from above. This, in turn, may
be taken as an ipso facto verification that the t =y line is
correctly identified as the critical line. One notes that the
form of the divergence (first obtained by Kosterlitz, 1974)
agrees with the result of Sec. II.B.1, which was inferred
from a hand-waving argument for the behavior of the
dielectric constant 7( T) close to T, [compare Eqs.
(2.32)—(2.34)].

As a second case let us consider the approach to the
(t =O,y =0) point on the critical line following a path in
the (t,y) plane for which y « t. Equation (3.19c) applied
to this case gives

(3.23)
ln(2u )lo- for u= —~oo

2y(u —1)'
(3.29)

with strict equalities on the line t =y. Consequently the
additional imposed condition ensures that we are still in-
side the expected validity range of Eqs. (3.19). From Eq.
(3.23) it follows that I=lo —1/[2y (1)] with strict equality
on the special trajectory t(l)=y(l). Inserting this result
into Eq. (3.22) gives

n«(t)k(t(l), y(1) ) (3.24)
ro

with strict equality on the trajectory t(l)=y(l). Conse-
quently, on this trajectory, one has

which translated back to the ( T,z) variables becomes
—2T/14T —1)

C
2T —1

(3.30)

in agreement with the result of Sec. II.B.l.a [compare Eq.
(2.30)] and the sine-Gordon result (compare Sec. II.D. 1

and Eq. (2.71)].
More generally one obtains from Eqs. (3.19) that lo

may be expressed as lo f(u)/2y, with u ——=t/y and f(u)
a continuous function in the interval —1 & u & ao. Hence
the dominant contribution to A, is given by

e ' '"A,(t(1),y(l))=C, (3.25) X=Cef'"' ~, u =t/y (3.31)

where, since the left-hand side of Eq. (3.24) is independent
of l, C is a fixed positive constant. On physical grounds
one expects that e '~ «A, (t,y) is finite and analytic in the
parameter region t&0 and y&0, since the screening
length A. is finite in this region and no additional phase

as the critical line is approached (Young and Bohr, 1981).
The function f ( u) is plotted in Fig. 8.

The singular part of the free energy F, (i.e., the part of
the free energy that contains the nonanalytic behavior
caused by the phase transition) can be obtained along the
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z [where z (l) is defined by Eq. (3.12b)] by

I 0- BFF =
Bz+ BZ gE P

—V (r e~)/T
z2 Q

(3.34a)

/

which below T„since VL ——ao for T & T„reduces to

Ftt ———
z J die 'z (l).2 Q

(3.34b)

—
I 0 I IO u

Suppose that we apply an ad infinitum repeated partial
integration to Eq. {3.34b) such that the e ' part of the
integrand is integrated in each step. In addition we as-
sume that a set of RG equations exists and that they are
of the form

FICx. 8. Plot of the function f(u) appearing in the expression
for the screening length A, [Eq. (3.31)].

z(l)=P, (t(l),z(l)), t(l)=P, (t{l),z(l))

f(u)= .

arccos(u) for —1&u &1,
1 —u2

ln(u ++u —1) for u &1.
u —12

Ftt ——
2 K(t(0),z(0)),4mT

I"
Q

(3.35)

where the P functions can be expanded in powers of t(l)
and z(l). Note that the l = oo limit of the partial integra-
tion does not contribute, since (z( Oo ), t ( ao ) )
=(0, 1 —1/4Ts) for T & T, . It then follows that

same lines as the screening length {Young and Bohr,
1981). In analogy with Eq. (3.22) the dimensionless quan-
tity F, =roe 'F, can only be a function of the dimension-
less variables {t(l),y(l)) and is constant along a RG tra-
jectory (Wilson, 1971). Combining this with Eqs. (3.19)
and repeating the argument leading to Eq. (3.26) gives

F, -e ', which by use of Eq. (3.26) becomes

(3.32)

a'F
Z

Bz+ Bz sE o

2T2
2 U+ (r)/T

g2
d r(e " —1),

(3.33)

This is in agreement with the result for F in Sec. II.B.l.d
[compare Eqs. (2.30a) and (2.38a)]. It means that the
singular part F, may be interpreted as the free energy
caused by unbound Coulomb gas particles (denoted by FF
in Sec. II.B.l.d).

It is also possible to relate the regular part of the free
energy Fz [see Eq. (2.39a) and (2.72c)] to Kosterlitz RG
equations (Young and Bohr, 1981). To this end one may
use the exact relation (Minnhagen, 1985c)

where K is a function that can be expanded in powers of
t(0) and z(0). By this procedure one can calculate K to
leading order in z using Kosterlitz RG equations [Eqs.
(3.17); Young and Bohr, 1981],

4 Tz
g(2T —1)

(3.36)

in perfect agreement with Eq. (2.72c). In the same way
the coefficients in front of the higher-order z terms ob-
tained by using the Kosterlitz RG equations correctly
reproduce the singularities at the temperatures

Tz ——p/2(2p —1) [see Sec. II.B.l.d below Eq. (2.72c);
Young and Bohr, 1981]. Note, however, that the argu-
ment given above presumed T ~ T, [whereas Eqs. (2.72)
were constructed for T & T,]. The above approach may,
however, be extended to T & T, (Young and Bohr, 1981)
without any change in the result for the regular part of
the free energy Fz, i.e., the part of the free energy that
may be associated with bound pairs [compare Eqs. (2.39)].

This ends our survey of the solution and implications
of Kosterlitz renormalization-group equations. In the
next section we shall discuss some possible limitations and
extensions.

D. Limitations and extensions of Kosterlitz
RG equations

where z+ was introduced in Eq. (2.56). U and z,ff
( —)

are the same as in Eq. (3.2). Starting from Eq. (3.33) we
may in analogy with Eqs. (3.3a) approximate F~ for small

One systematic way of improving Kosterlitz
renormalization-group equations is to use field-theoretic
renormalization-group procedures (see, for example,
Amit, 1984). The field theory corresponding to the
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Coulomb gas model is a sine-Gordon theory (compare
Sec. II.C). The systematic procedure presumes the ex-
istence of renormalization-group equations of the form

d (tlt(l))=p, (t~(1),zzt(l)), (zg(l))=p, (tg(I),zrt(l))

where the P functions at the critical line can be obtained,
order by order, in double expansions in the variables
( tIt, zz ) by keeping track of the logarithmic singularities
in a diagrammatic expansion (see Sec. II.D.1). This pro-
cedure has been carried out to one order higher than have
the Kosterlitz RG equations by Amit et al. (1980), result-

ing in Eqs. (2.78). The difference from a practical point
of view between these equations and the Kosterlitz RG
equations is illustrated in Fig. 9, where the critical lines
obtained from the respective equations are plotted. In
this comparison, and in others in this section, we use for
simplicity the initial condition TR(l =0)= T(l =0)=T,
z~(l =0)=z(l =0)=z.

One notes that the two sets of RG- equations given by
Eqs. (3.16) and (2.78), respectively, both suggest that the
critical line is identical to the trajectory defined by
Ta (T)= —,. However, one may also note from the
derivation of Eqs. (2.78) that the P functions are obtained
as double expansions in the variables ( Tg ——,,zg /T) and

that, consequently, the expansions can only a priori be
trusted very close to T =

4 and z =O.
Nevertheless one may argue that the critical properties

obtained from the Kosterlitz RG equations (see Sec.
III.C) have a wider validity in the following way: If a
part of the critical line consists of a RG trajectory that
flows towards small z, then this trajectory will eventually
enter the region where the expansions of the P functions
are valid and hence eventually the region where the Kos-
terlitz RG equations are valid. Consequently the critical
properties derived from Kosterlitz RG equations should

be valid for that part of the critical line which consists of
such a RG trajectory. For example, TE (T)= 4 for all

points on such a part of the critical line. This argument
constitutes the basis for the universal jump prediction [see
Sec. II.B.l.c, Eq. (2.36), and Sec. IV.C].

However, it should be observed that the above argu-
ment leaves open the question of where such a part of the
critical line would start. Figure 9 suggests that it should
start at T =O,z=finite, in which case the whole critical
line would consist of the trajectory ending at T= —,.
Another possibility is that only a part of the critical line
close to T= —, consists of this trajectory, which in such a
case must start at some specific point in the ( T,z) plane
(Minnhagen, 1985a, 1985b).

Another possibility for improving the Kosterlitz RG
equations is provided by the self-consistent linear screen-
ing reasoning described in Sec. III.A. This reasoning
leads to the self-consistent equations (3.3). In the low-
temperature phase these equations reduce to the renormal-
ization equations (3.14) (Minnhagen, 1985a, 1985b),

Gj 1

dl T(l)
2z (l)n

T2
(3.14a)

—[z(l)]= 4—f dx e "x/T(l +x/2)d z(l)
dl 2

(3.14b)

In Fig. 10 the critical line obtained from Eqs. (3.14) is
compared to those obtained from Kosterlitz RG equa-
tions [Eqs. (3.16)] and the next-order RG equations [Eqs.
(2.78)]. One notes that Eqs. (3.14) and (2.78) agree quite
well in that they give very similar corrections to the criti-
cal line obtained from Kosterlitz RG equations [Eqs.
(3.16)].

Figure 11 shows the flow diagram for (T(l),z(l))

0.2-
0.2—

O. l

O. l

O. t 0.2
O. I 0.2

FIG. 9. The Kosterlitz-Thouless phase-transition line in the
{T,z} plane as obtained from the two lowest-. order RG equa-
tions: solid line, lowest-order RG equations [Eqs. (3.16)];
dashed curve, next-order RG equations [Eqs. (2.78)].

FIG. 10. The Kosterlitz-Thouless phase-transition line in the
(T,z) plane obtained by three different approximations: solid
curve, the self-consistent linear screening approximation [Eqs.
(3.14)]; dashed line, lowest-order RG equations [Eqs. (3.16)];
dot-dashed curve, next-order RG equations [Eqs. (2.78)].
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points in the (T,z) plane as obtained from Eqs. (3.14)
(Minnhagen, 1985a, 1985b). The most striking feature is
that the trajectory ending at the point ( —,,0) starts at a
specific point (T,z') [=(0.144,0.054)] in the (T,z)
plane. Consequently this trajectory constitutes only one
part of the critical line. The other part of the critical line,
i.e., the critical line for temperatures lower than T
(dashed line in Fig. 11) is determined by the line consist-
ing of the starting points for all trajectories ending on the
T axis.

In Fig. 12 the quantity 1/( T,E, ) is plotted as a func-
tion of T, where E, =limr T e (T). In the interval

C

T* & T, & ~ the value of this quantity is 4, which corre-
sponds to the universal jump value (compare Table I and
Sec. IV.C). For T, & T* the value obtained from Eqs.
(3.14) is larger and nonuniversal. The behavior of e„(T)
as the critical line is approached from below for constant
z 1s

I

c Tc

20-

IO-

0
0. 10 0.25 T

(T)=e( T, )—const)& QT, —T, (3.37)

in accordance with Eq. (2.32) of Sec. II.B.l.b.
The important point to note is that Eqs. (3.14) imply

that the universal jump prediction breaks down for a
two-dimensional Coulomb gas with a critical tempera-
tures lower than the specific temperature T'.

FICx. 12. The jump of the quantity 1/[e(k =0)T] at the critical
line as obtained from the self-consistent linear screening approx-
imation [Eqs. (3.14)],

1/{T,c, ) for T~T,
1/[e(k =0)T]= '0

The quantity 1/(T, c,, ) is plotted. In the interval T*&T,& 4

the value is given by the universal jump prediction 1/(c, T, )=4.
Below T* the value of the jump is larger and nonuniversal.

0.1

0.1 0.2 0.25

FIG. 11. Flow diagram for (T(l),z(l)) points in the low-
temperature phase corresponding to the self-consistent linear
screening approximation given by Eqs. (3.14): shaded area,
low-temperature phase; solid curves with arrows, (T(l),z(l))
trajectories with constant cT {the arrows indicate the direction
of increasing l); dashed curve, the loci of starting points for tra-
jectories with constant YT. The starting point (T,z*) of the
special trajectory YT= 4 is denoted by an asterisk in the figure.

The trajectory cT= 4 constitutes the critical line for
T &T, & 4. For T, &T* the critical line is given by the
dashed curve, i.e., by the starting points of the trajectories in the
low-temperature phase.

What then could be the physics behind the implied
change of behavior at the point (T*,z*) on the critical
line? One possibility is the following: In the intuitive
charge-unbinding picture, the Kosterlitz-Thouless transi-
tion occurs when the first pair unbinds. This suggests
two distinct possibilities —either the phase transition in-
volves an infinitesimal fraction of the pairs or a finite
fraction. One possible scenario is then that the high-
temperature part of the critical line corresponds to the
first possibility, while the low-temperature part corre-
sponds to the second (Minnhagen and Wallin, 1987). This
would further suggest that the low-temperature part of
the transition is of first order (Caillol and Levesque,
1986).

This ends our survey of some possible extensions of the
Kosterlitz RG- equations.

IV. TWO-DIMENSIONAL SUP ERFLUIDS AND VORTICES

In the preceding sections the properties of the two-
dimensional Coulomb gas have been reviewed in some de-
tail. Here we outline how the two-dimensional Coulomb
gas provides a description of vortex Auctuations for two-
dimensional superfluids.

This subject derives some of its general interest from
the following facts: First, the superfluid state of a two-
dimensional superfluid is destroyed by thermally excited
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vortices (Berezinskii, 1971; Kosterlitz and Thouless,
1972). This means that thermally excited vortices are
strongly reflected in the behavior of a two-dimensional
superfluid for temperatures close to the superfluid transi-
tion. Second, there exist physical realizations of two-
dimensional superfluids accessible to high-precision ex-
periments. Examples are, in the case of a neutral two-
dimensional superfluid, He films on suitable substrates
(see, for example, Bishop and Reppy, 1978, who designed
the first experiment to test the Kosterlitz- Thouless aspect
of the superfluid transition) and, in the case of a charged
superfluid, thin superconducting films (see, for examples,
Beasley et ah. , 1979, who were the first to point out the
experimental possibility of studying the Kosterlitz-
Thouless transition on superconducting films).

The focus of the presentation will be on the effects of
thermally excited vortices close to the superfluid transi-
tion in two dimensions and on how these effects are re-
flected in actual experiments. The presentation will be
rather phenomenological.

Our starting point is an estimate of the energy govern-

ing the thermodynamic fluctuations of a two-dimensional
superAuid. For a neutral superfluid, this is taken to be
the kinetic energy due to the superfluid mass flow (Sec.
IV.A. 1). In the case of a charged superfluid, this kinetic
energy has to be supplemented with modifications due to
the coupling to the electromagnetic field (Sec. IV.B.1). At
finite temperatures the fluctuating superfluid mass flow
will spontaneously form vortex configurations. A
description of these thermal vortex fluctuations leads to a
model that is isomorphic to the two-dimensional
Coulomb gas. This model and the mapping to the
Coulomb gas are spelled out in some detail for He films
(Sec. IV.A.2) and for superconductors (Sec. IV.B.2). The
point is that the results for the two-dimensional Coulomb
gas (as described in Secs. II and III) via these mappings
have direct bearing on the superfluid-superconducting
films. An important example is the Coulomb gas predic-
tion for the superfluid density (Sec. IV.C.).

As a next step the Ginzburg-Landau Coulomb gas
model is introduced (Sec. IV.D.1). This phenomenologi-
cal model leads to the concept of Coulomb gas scaling
(Minnhagen, 1981b). The Coulomb gas scaling relations
offer a particularly direct bridge between theory and ex-
periment (Sec. IV.D.2).

In the case of a regular two-dimensional array of super-
conducting grains, a natural starting description of the
energy governing the thermodynamic fluctuations focuses
on the nearest-neighbor order-parameter phase coupling
between the grains. This leads to XY-type models. The
relation between this type of lattice model and a continu-
um description in terms of the superfluid mass flow is
taken up in Sec. IV.E.

Explicit examples of experimental results reAecting
"static" Coulomb gas properties (as opposed to experi-
mental results reflecting the dynamical aspects of the vor-
tices) will be given in Sec. V. Modifications due to the
dynamical aspects of the vortices will be discussed in Sec.
VI.

A. Neutral superfIuid

We now turn to a simple phenomenological description
of the thermodynamic fluctuations for a neutral super-
fluid.

It is assumed that the superfluid state at each point r
may be characterized by a complex order parameter
g(r) =&p(r)e' ",where p(r) is the superfluid mass densi-
ty ("density" implies "areal density" in the present two-
dimensional context) and the phase 8 is related to the su-
perfluid velocity Us (see, for example, Baym, 1969; For-
ster, 1975) by

vz(r) = VO(r) .
PI

(4.1)

1. Configuration energy

We begin with the assumption that thermodynamic
properties are determined by fluctuations in the superfluid
mass flow and that the energy for these fluctuations is the
kinetic energy associated with the mass flow. This kinetic
energy is taken to be

FIG. 13. Sketch of a superfluid layer. The x3 direction is per-
pendicular to the layer. The thickness of the layer is d. For a
thin enough layer the superflow in the x3 direction can be
neglected and any dependence on the x3 coordinate suppressed.
This reduces the description to that of a two-dimensional super-
fluid sheet (shadowed x3 ——0 plane in the figure). The position
vector on this sheet is denoted by r=(x~, x2).

Here A is Planck's constant divided by 2m, and m' is the
mass of the "boson" causing the superfluidity, i.e., for
He it is the mass of the helium atom and in the case of a

superconductor it is twice the electron mass ( =the mass
of a Cooper pair) (see, for example, Baym, 1969).

A two-dimensional superfluid, from the point of view
of a "real" three-dimensional superfluid layer, implies
that the thickness of the layer is small enough that we
may neglect any superflow in the direction perpendicular
to the layer (see Fig. 13). A criterion is given in connec-
tion with the Ginzburg-Landau description in Sec.
IV.D.1. Physical quantities like, for example, the mass
density p(r) can, from this point of view, be interpreted as
averages over the layer thickness, i.e.,

d/2
p(r) = f dx3p(r, x3),

where p(r, x3) is the three-dimensional mass density (see
Fig. 13).
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Hs —— f d rg (r),
2p

(4.2) f ds V8(r)=2sn. , (4.5)

where g(r) is the mass-current-density field and p is the
mass density of the homogeneous superfluid in the ab-
sence of any superfluid mass flow.

In principle one may imagine that a description in
terms of a "smooth" mass-current field, as is implied by
Eq. (4.2), originates from a microscopic description via a
"coarse-graining" process in which all degrees of freedom
up to some suitable length scale have been taken into ac-
count by some renormalization procedure. The reader is
referred to the article by Halperin (1979) for a discussion
of this point. The attitude taken in this article is that the
Hs given by Eq. (4.2) constitutes a plausible phenomeno-
logical starting point. However, it is conceptually impor-
tant to note that both the quantity p (the "bare" super-
fluid density) and the quantity g (the superfluid mass-
current-density field) used to specify the configuration en-

ergy Ms given by Eq. (4.2) are length-scale dependent.
Thus in order for Hs to be completely interpretable it is
in principle necessary to specify in addition the length
scale involved in defining p and g(r). The fluctuations on
smaller length scales are then absorbed in p, which conse-
quently in general depends on the temperature (Halperin,
1979).

The thermodynamical averages are obtained via the

partition function Z =Tre ~ where T is the tempera-
ture (in units such that the Boltzmann factor is
suppressed). The trace implies a functional integration
over all possible mass-current fields g(r).

The mass current is conveniently separated into longi-
tudinal and transverse parts,

g(r) =g))(r)+g~(r),

which have zero curl and divergence, respectively,

VXg„(r)=0,
V.g~(r) =0 .

(4.3a)

(4.3b)

(4.3c)

g~~(r) =V&b(r), (4.4a)

while the transverse part may be expressed in a scalar
field Was

g„(r)=VXx3W(r), (4.4b)

where x3 is the unit vector perpendicular to the plane of
the two-dimensional superconductor and the r vector is in
the plane of the superfluid (see Fig. 13).

The field W(r) is restricted by the fact that the state of
a superfluid is expressible by a complex order parameter
P(r) =Vp(r)e'@'. This restriction may be approximately
taken into account in the following way: The single-
valuedness of f requires that any line integral around a
closed loop of the gradient of the phase 8(r) be an even
multiple of m.,

Accordingly these mass currents can be written in terms
of potentials. The longitudinal part is the gradient of a
scalar field @,

where s is an integer. Obviously, a nonzero s is consistent
with the single-valuedness of g and the continuity of p(r)
and 8(r) only if f vanishes at one or more points inside
the closed loop. An isolated point where f vanishes may
hence be characterized by an integer s, where s is defined
as the value divided by 2m of the line integral of V8
around any closed loop surrounding this (and only this)
particular /=0 point. By convention the direction of the
line integral is taken to be counterclockwise with respect
to the x3 axis.

An isolated /=0 point with s&0 describes a vortex in
the superfluid, and s is the corresponding vorticity. This
follows since the superfluid velocity Us is proportional to
V8 [see Eq. (4.1)]. Consequently, if I ds V8&0 for a
loop around a /=0 point, then the superfluid mass flow
is circulating around this point in correspondence with
the usual definition of a vortex in a fluid.

The quantized vorticity for a superfluid imposes re-
strictions on the superfluid mass flow. Consider a single
vortex with vorticity s at r=O. The mass-current density

g is related to the superfluid velocity field by
g=p(r)vs(r). If p(r) can be approximated by a constant,
then Eq. (4.5) may, by use of the Stokes theorem, be
directly transformed into a condition for the scalar field
W describing the transverse part of the mass-current den-
sity [compare Eqs. (4.1) and (4.4b)],

V W(r)= 2ns 6(—r) . (4.6)

(4.7)

where f„ is a function that is everywhere finite and thatro

approaches zero for r & ro and is normalized, so
that fd r f„(r)=1. The region r &ro is termed the vor-

tex core region; it is the region where the deviation of p(r)
from a constant value becomes significant. The functions
f„(one for each s) and the relation between f, and p(r)
can be obtained within a Ginzburg-Landau approxima-
tion (Minnhagen and Nylen, 1985a; see Sec. VI.D.1).

Thus, in short, the quantized vorticity for a superfluid
imposes restrictions on the scalar field S' describing the
transverse part of the superfluid mass flow. This restric-
tion is approximately expressed by Eq. (4.7). Consequent-
ly, an arbitrary transverse mass flow can be specified by
giving the positions of the corresponding vortices together
with the respective vorticities and "source" functions f, .

However, the 5 function on the right-hand side implies an
infinite mass flow at the vortex center, which is obviously
unphysical. The fact that the mass flow has to be finite
everywhere means that p(r) has to vanish at the vortex
center, which just reflects the physical significance of the
condition /=0 at the vortex center. This variation of
p(r) close to the vortex center may be approximately tak-
en into account by modifying Eq. (4.6) into
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The longitudinal part of the mass flow can be described
by a scalar field N [Eq. (4.4a)). A convenient choice of
boundary condition is that of 4& constant on the walls of
the superfluid, so that there is no net flow across the
walls. A constant net flow may then be imposed by add-
ing a constant vector to VC& [compare Eq. (4.4a)). With
this boundary condition Hs reduces to

~s —— f d2r g2(r)
2p

f d ~[g(((r)+gj(r)],
2p

(4.8)

(My„, )
nps

or equivalently
r

BF
ps =&

tot goy

(4.9a)

(4.9b)

where 0 is the (two-dimensional) volume. Now, since
—H~ /TI' =TlnZ= —Tln(Tre ), a straightforward calcu-

lation starting from Eqs. (4.2) and (4.9b) gives ps in terms
of correlation functions as (Minnhagen and Warren, 1981)

ps= f d'~[&g~~(r) g~~(0)) —&g.(r) gl(0))],T (4.10)

where & ) denotes the thermodynamical average with
respect to the configuration energy Hs. This definition in
terms of correlation functions, as well as more discussion
on how to define the macroscopic superfluid density, can
be found, for example, in Hohenberg and Martin (1965),
Baym (1969), and Forster (1975).

The first correlation function on the right-hand side of
Eq. (4.10) involves only the longitudinal part of the
mass-current field, since the configuration energy Hs
decouples into longitudinal and transverse parts [see Eq.
(4.8)]. The thermal average hence reduces to a functional
integral over g~~, which can be carried out directly,

f d r&g~~(r) g~~(0)) =pT . (4.11)

Likewise, the second correlation function of the right-
hand side of Eq. (4.10) involves only the transverse part of
the mass-current-density field. This may then, in princi-

since the cross term f d r
g~~ gj vanishes by partial in-

tegration. Thus the longitudinal and transverse parts of
the flow separate completely in the absence of a net flow
across the walls.

Vr'e are aiming at a description of how the superfluidity
is destroyed and how this is reflected in various macro-
scopic quantities. A simple way of defining the super-
fluid property within the present description is to consider
the total increase in free energy hF when a total infini-
tesimal constant net flow 5'„,is imposed across the sam-
ple. This kinetic energy must be proportional to (5G.„,),
and it is intuitively clear that the constant of propor-
tionality measures the macroscopic superfluid density ps,
i.e.,

2. Coulomb gas analogy

The analogy between fluctuations in the transverse
mass flow and the Coulomb gas model is based on the fol-
lowing observations: Equation (4.7) for the scalar field W
may be recognized as the Poisson equation for a positive
charge with the charge distribution f„. Consequently the

0

field 8'(r) for a single vortex can be expressed in terms
of the Coulomb gas potential V(r) [defined by Eq. (2.1)]
as

i6
Sp m*

= f d r'f„(r —r') V(r') . (4.12)

An arbitrary transverse mass flow is obtained by adding
the contributions from all vortices, i.e.,

gz(r) =V &&x3 g s; W(r —r;), (4.13)

where r; are the vortex centers, s; are the vorticities, and
the sum i is over all vortices building up the transverse
mass flow. It then also follows that gq(r) can be ex-
pressed as

pie, be calculated by summing over all possible vortex
configurations.

Note that from Eqs. (4.10) and (4.11) it follows that the

p used to specify Hs in Eq. (4.2) can be interpreted as the
macroscopic superfluid density in the absence of vortices.

To sum up the reasoning: The aim is a description of
how the thermal fluctuations in the superfluid mass flow
destroy the superfluidity. The relevant energy for deter-
mining these thermal fluctuations is taken to be the kinet-
ic energy of the superfluid mass flow. It is assumed that
this energy, on some suitable length scale, can be
described by a Hs of the form of Eq. (4.2). The nontrivi-
al part of this description turns out to be the transverse
mass flow, which can be completely specified in terms of
vortex configurations.

It turns out that thermally created vortices with vortici-
ty s =+1 destroy the superfluidity (Berezinskii, 1971;
Kosterlitz and Thouless, 1972). Vortices with higher vor-
ticity ( s

~

& 1) involve a larger thermal energy as com-
pared to the s =+1 vortices (see Sec. IV.D.1). Hence

~

s
~

& 1 vortex fluctuations are much rarer events (Kos-
terlitz, 1974). Furthermore, neutral pairs of vortices with
higher vorticity are much harder bound and are hence not
directly responsible for the destruction of superfluidity
(Kosterlitz and Thouless, 1973). Because of this we shall
further simplify the phenomenological description in the
following by assuming that only s =+1 vortices have to
be included.

The description of thermal fluctuations for the super-
fluid in terms of vortices with vorticity s=+1 is iso-
mophic to the two-dimensional Coulomb gas (Kosterlitz
and Thouless, 1973). This connection is reviewed in the
following section.
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gz(r)=p V)&x3 f d r'~n(r')V(r r—')
Pl

(4.14) particle and f, as the single-particle charge distribution.

The corresponding configuration energy FXs""',

in terms of the Coulomb gas potential V(r) and a
Coulomb gas charge density

hn(r)= $s;f„(r—r;),
l

provided s; is interpreted as the charge of a Coulomb gas

Hs""'= I d r gf(r),trans

2p
(4.16)

can also be expressed in the same quantities by using the
Fourier transforms and the convolution theorem

r ~trans~s =. P
2p m

2

lim (ik&&x2).( —ikXx3) V(k) V( —k)hn(k)bn( —k),k~0
(4.17)

which in real space becomes
'2

~trans fi
m*

= —,
' I d rd r'bn(r)V(r r')bn—(r') . (4.18)

The right-hand side of Eq. (4.18) can be recognized as the
electrostatic energy for a Coulomb gas charge density
bn(r). Equations (4.15) and (4.18) constitute the essence
of the Coulomb gas analogy.

The point of this analogy is that the results for the
two-dimensional Coulomb gas (described in Secs. II and
III) can now be mapped over to predictions for the two-
dimensional superfluid. Table II gives the mapping be-
tween the Coulomb gas model defined in Sec. II.A and
the model of a superfluid (defined in Sec. IV.A. 1). The
main features of the mapping are the following.

The statistical weight of a vortex configuration corre-
sponds to a Coulomb gas configuration. This means that

/TcG ~Trans/T (4.19)

Equations (4.18) and (4.19) give the relation between the
"real'* temperature T for the superfluid and the Coulomb
gas temperature T, i.e.,

2&p m* (4.20)

Vorticity corresponds to charge. The Coulomb gas
model has s =+1. Vortices with vorticity

~

s
~

& 1 are not
taken into account. One argument for neglecting

~

s
~

& 1

vortices is that the pair binding strength is proportional to
s [compare Eqs. (4.15) and (4.18)].

The single-particle charge density f„ is determined by

the variation of the magnitude of the order parameter g
close to the center of a vortex with vorticity

~
s

~

= 1 (see
Sec. IV.D.1). This vortex core region corresponds to the
extension of a single charge.

The creation energy for a vortex corresponds to the
electrostatic self-energy [see Eqs. (2.4), (2.6), and (4.18)].
This self-energy takes into account only the contributions
associated with gz- V8. To these must be added the en-
ergy associated with the variation of the magnitude of the

order parameter g in the vortex core region. This energy
is proportional to p (see Sec. IV.D.1) and, as follows from
Eqs. (4.19) and, (4.20), it maps over to the additional con-
stant energy E, in the Coulomb gas model [see Eq. (2.6)].

The leading term of the electrostatic self-energy for a
Coulomb gas charge in the limit of large A,, is
—,
' U(0)= —,

'
in(A, , /ro) [see Eq. (2.5)]. The corresponding

quantity for the superfluid is —,
' W(0) —,'ln(R/ro) [com-

pare Eq. (4.7)], where R is the linear extension of the su-
perfluid. Consequently, non-neutral configurations are
possible only for a superfluid with finite extension (see
Sec. II.A.2). Vortex fluctuations for.a superfluid with fi-
nite extension are approximately described by the non-
neutral Coulomb gas model (defined in Sec. II.A) provid-
ed A,, is identified with the linear extension R
(Minnhagen, 1981a).

Vortices may also be induced by rotating the'super-
fluid. If the superfluid is rotated by a constant angular
velocity co"x3, then the induced density difference be-
tween vortices with vorticity s =1 and s = —1 is given
(see, for example, Milks, 1967) by

rot~ 0
(An)= (4.21)

g 2 rot
AE= (4.22)

It corresponds to the difference in 'creation energy be-
tween a vortex with vorticity s =1 and s = —1. By mul-

where (b,n ) is the thermal average of the Coulomb gas
charge density [see Eq. (4.15)]. As discussed in connec-
tion with the non-neutral Coulomb gas (Sec. II.B.2) a
nonzero (hn) is possible in the large-A, , limit only if
EE=2m A, (hn ) [see E, q. (2.46), where 2b,E is the differ-
ence in chemical potential between a negative and a posi-
tive charge; see also Eq. (2.7)). The b,E corresponding to
a superfluid follows from Eqs. (2.46), (4.21), and the iden-
tification A., R, i.e.,
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TABLE II. Mapping between the two-dimensional Coulomb gas and the neutral superfluid.

Coulomb gas

Symbol
s =+1

TcG

0/g
0=2D volume

g =phase-space
d1v1S1on

Coulomb gas

Charge of a particle

Charge distribution
of a particle

Coulomb gas temperature

Number of places
available for a particle

Superfluid

Vorticity of a vortex

Restriction on mass flow
close to vortex center;
see Eq. (4.7)

'2

T =T 2'77p
Pl

T is the superfluid
temperature

Number of places
availab1e for a vortex

, where

E,

—H~ /T
e
H~ is given
by Eq. (2.8)

Z given by
Eq. (2.9)

Nonelectrostatic part
of particle self-energy;
see Eq. (2.6)

Screening length
associated with the
background charge;
see Eq. (2.3)

26E=difference in chemical
potential between a
negative and positive
particle; see Eq. (2.7)

Boltzmann factor for a
particle configuration

Partition function for
Coulomb gas

2&p E, =vortex core

energy

R=linear extension of the
superfluid; a finite R
may be approximately
taken into account by R=A, ,

R2m + rot
AE=
co"'=angular velocity.
AE corresponds to the
energy difference between
s =1 and s = —1 vortices for
a rotating superfluid;
see Eqs. (2.46), (4.21), (4.22)

Boltzmann factor for the
corresponding vortex
configuration

Partition function for
superfluid

rot
vortex~

2vrp(fiim *)
R co pz

The phase-space division g for the creation of Coulomb
gas charges carries over to the phase-space division for
vortices. It is assumed that g is of the order of the vortex

tiplying Eq. (4.11) by the conversion factor 2irp(film* )

[see Eq. (4.20)], one finds that this energy is proportional
to %stick"", where Xs is the number of superfluid atoms.
From the point of view of the superfluid, the origin of the
energy difference is the energy associated with the rota-
tion of the superfluuid. This rotation energy is given by
Lco"', where L is the total angular momentum (see, for
example, Wilks, 1967). The energy difference between a
positive and negative vortex is just twice this rotation en-

ergy per vortex (Wilks, 1967). This may be expressed as
2L„,~,„co'", where L„«,„—p(A'/m )R is the angular
momentum of a single vortex. By use of the conversion
factor 2i(rAp/ m) this reduces to

core and proportional to ro as for the Coulomb gas (see
Sec. II.A. l). It should be noted that for the superfluid
this is an additional assumption, albeit intuitively very
plausible.

Hence the complete analogy is expressed by the fact
that the partition function describing vortex fluctuations
for a two-dimensional superfluid can be mapped onto the
one describing the two-dimensional Coulomb gas [defined
by Eq. (2.9)].

B. Superconductor

The simple phenomenological description of thermo-
dynamic fluctuations for the two-dimensional neutral su-
perfluid can, with minor modifications, be extended to a
charged superfluid (Doniach and Hubermann, 1979;
Halperin and Nelson, 1979; Minnhagen, 1981a). Precisely
as for the neutral case, the superfluid state is character-
ized by a complex order parameter g(r)=Vp(r)e'@'.
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However, the "boson" responsible for the superfluidity
now carries a nonzero charge e' in addition to the mass
m*. In the case of a superconductor this corresponds to
the charge and the mass of a Cooper pair, i.e., e*=2e and
m *=2m„where e and m, are the charge and mass of an
electron. The finite charge couples to the electromagnetic
field. Consequently the relation between the superfluid
velocity us and the phase of the order parameter 0 is
modified to [compare Eq. (4.1)]

fl
Vg( )

e A(1 0)
m m c

(4.23)

where A(r, x3) is the transverse gauge vector potential in
the three-dimensional space spanned by x= (r,x3), the su-
perfluid sheet is taken to be the x3 ——0 plane (see Fig. 13),
and c is the velocity of light, Note that the vector A(r, O)

is parallel to the superfluid sheet, since both vs and VO

are parallel to this sheet by assumption. The mass-
current density in the three-dimensional description is
given by

g(r, x3)=g(r)5(x3), (4.24)

where g(r) is the two-dimensional (areal) mass-current
density. For a charged superfluid it is more natural to use
the electric current density j(r) instead of the mass-
current density g(r). They differ by only a trivial factor

(4.25)

1. Configuration energy

In case of a charged superfluid, the configuration ener-

gy Hs corresponding to Eq. (4.2) is given by

In Sec. IV.B.1 we shall use g in order to simplify compar-
ison between the cases of a charged and a neutral super-
fluid. Vortex configurations on a two-dimensional super-
conductor [i.e., two-dimensional in the sense of Eq. (4.24);
the vector potential is, of course, nonzero in the whole
three-dimensional space] have been considered by Pearl
(1964, 1965), corrections for finite thickness by Clem
(1979), vortex magnetic moment by Fetter (1980), and the
precise Coulomb gas connection by Minnhagen and Nylen
(1985a).

Since the description of vortex fluctuations for a two-
dimensional superconductor is entirely analogous to the
case of a neutral superfluid, in the following two subsec-
tions (IV.B.1 and IV.B.2) we shall only indicate the neces-
sary modifications.

B (rx3)
r dx3

By a partial integration and by use of the Maxwell equa-
tion curl(curlA)=(4m. /c)j together with Eq. (4.25), we
can express this magnetic field energy in terms of the
mass flow g on the superfluid sheet, as in Eq. (4.26).

In parallel with the neutral case (Sec. IV.A. 1), the mass
current is conveniently split into longitudinal and trans-
verse parts, which are expressible in terms of the scalar
fields @(r) and W(r), respectively. Equation (4.4a) is un-
changed, while Eq. (4.4b) is modified to

gj (r) =V X x3 &(r)— A(r, O)
m c

(4.27)

because the vector potential A(r, O) is a transverse vector
field in the plane of the superfluid. The scalar field 8'(r)
describes the part of the transverse current associated
with the gradient of the phase of the order parameter
[compare Eq. (4.23)]. The definition of a vortex is unal-
tered, and the single-valuedness of the order parameter
again leads to the restriction on W expressed by Eq. (4.7).

Just as for the neutral case, Hs separates into longitudi-
nal and transverse parts given by Eq. (4.8). In the same
way, the definition of the superfluid mass density ps,
given by Eq. (4.9), again leads to the definition in terms of
correlation functions given by Eq. (4.10).

There is a complete analogy between a finite rotation,
co"'x3, for a neutral superfluid (see Sec. IV.A.2) and an
external magnetic field, B,„x3, for a charged superfluid
(see, for example, Vinen, 1969). The energy associated
with the magnetic field 8,„is given by

as' ———M (4.28)

Jd r[rXg~(r)]= „L,
2cm 2cm

(4.29)

where L is the total angular momentum of the superfluid.
The second equality in Eq. (4.29) follows from Eq. (4.25)
and from the condition @=const on the boundary of the
superfluid sheet [compare Eq. (4.4a)]. Comparing Eqs.
(4.28) and (4.29) with the corresponding rotational energy
i.~"t, in the case of the neutral superfluid (see Sec.
IV.A.2), leads to the correspondence

rot cycl /2 (4.30a)

where M is the total magnetic moment of the superfluid.
The total magnetic moment is given by

M= I d r [r Xj(r)]
2c

d2 g (r) e*A(r, O) g(r)Hs= d +
2p 2m

(4.26)
where co' "is the cyclotron frequency

C Cl
co ~

m c
(4.30b)

The first term on the right-hand side is the kinetic energy
of the mass flow, precisely as for the neutral case. The
second term is a representation of the induced magnetic
field energy

This analogy means that, within a Coulomb gas descrip-
tion of vortices, a perpendicular magnetic field for a
charged superfluid is equivalent to a rotation velocity
co"'=co'""/2 for a corresponding neutral superfluid.
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2. Coulomb gas analogy

Just as for the neutral superfluid, the Coulomb gas
analogy for the charged superfluid is based on the Poisson
equation [Eq. (4.7)] for the scalar field W(r). This equa-
tion corresponds to a single vortex. An arbitrary trans-
verse mass flow is specified by a configuration of vortices.
In analogy with Eq. (4.13), it is given by

g~(r) = V &&x3 ps; W(r —r;)—,A(r, O), (4.3la)I C

where the vector potential A is determined from the
Maxwell equation

where

A= 1

2'

pA' An( k )

m' k+u(k)A

I C
2

(4.32a)

(4.32b)

u (k) is a dimensionless function of k, and u (0)= 1

(Minnhagen and Nylen, 1985a). An is the Fourier
transform of the Coulomb gas charge density [see Eq.
(4.15)]. In the special case f, (r)=5(r) [compare Eqs.
(4.6) and (4.7)], the function u (k) is identically equal to
one (Pearl, 1965). The length A, given by Eq. (4.32b),
may be interpreted as a magnetic penetration depth
(Pearl, 1965), i.e., it gives the scale of penetration of a
magnetic field perpendicular to the superconducting
sheet. It is related to the London penetration depth AL
for a three-dimensional superconductor by A=2AI /d,
where d is the thickness of the "two-dimensional" super-
conductor (Pearl, 1965; see Fig. 13). The transverse part
of the configuration energy Hs [compare Eq. (4.26)] is
given by

gj(r) e*A(r, O) gg(r)

2p 2M C
(4.33)

In analogy with Eq. (4.18), Hs given by Eq. (4.33) can be
expressed as (Minnhagen and Nylen, 1985a)

~trans
S 27Tp

'2

where

= —,
' f d r d r'b n (r)Q(r —r')b n (r'), (4.34)

Q(k)2'17k+A
[k+u(k)A ']

VX[VXA(r,o)]=, g, (r) .I C

From the Fourier transforms of Eqs. (4.7), (4.31a), and
(4.31b) one obtains

can be neglected in comparison with the kinetic mass
flow energy, f d r g (r)/2p [see Eqs. (4.26) and (4.33);
the second term on the right-hand side of these equations
represents the induced magnetic field energy, as explained
below Eq. (4.26)]. Consequently Eq. (4.18) constitutes the
essence of the Coulomb gas analogy also for a charged su-
perfluid in the limit of large A. We shall in the following
restrict the discussion of charged superfluids to this
"large-A case" when the induced magnetic field energy
can be neglected.

As first pointed out by Beasley et al. (1979), thin, "dir-
ty" type-II superconducting films may typically have
magnetic penetration depths of the order of centimeters
and hence of the order of a typical sample size. For this
type of physical realization of a charged superfluid, the
Coulomb gas analogy of vortex fluctuations should apply
(Beasley et al. , 1979). Comparison between experiments
on such superconducting films and the Coulomb gas pre-
diction are discussed in Sec. V.B.

Since the limit of large A essentially reduces the
charged superfluid to the neutral one, the Coulomb gas
analogy given in Table II remains unaltered with two
minor modifications. These modifications are given in
Table III. The first concerns the identification of A,, : the
electrostatic self-energy for a Coulomb gas is given by
—,
' U(0)= —,

'
1n(A,, /ro) [see Eq. (2.5)]. The corresponding

energy for a charged superfluid is given by (Pearl, 1965;
Minnhagen, 1981a)

—,Q(0)= ~

—,
' in(R/ro), R &A

—,
' in(A/ro), R )A,

(4.36)

where 8 is the linear extension of the superconductor.
Thus, in analogy with the neutral case (see Sec. IV.A.2),
the Coulomb gas model approximately describes vortex
fluctuations for the charged "large-A" superfluid provid-
ed I,, is identified with the smaller of A and A. The
second modification concerns an external perpendicular
magnetic field 8„. By analogy with a finite rotation of a
neutral superfluid [see Eqs. (4.30)] one obtains [with the
aid of Eqs. (2.46), (4.21), (4.32b), and the conversion fac-
tor 2np(A/m*) ] the energy difference between a positive
and negative vortex,

2vrp, b E =m, B,„, (4.37a)
fPZ

where

the Coulomb gas potential V(k) =2m. /k and, conse-
quently, Eq. (4.34) reduces to the corresponding equation
for the neutral superfluid [Eq. (4.18)]. In other words, in
the limit of a large magnetic penetration depth A, the in-
duced magnetic energy,

8 (r,x3)f d rdx3

In the limit A= ao, the Fourier transform of the potential
Q given by Eq. (4.35) reduces to the Fourier transform of

2
~cyO

m~=
2mA

(4.37b)
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TABLE III. Mapping between the two-dimensional Coulomb gas and a "large-A" superconductor.
The mapping is given by Table II with the listed modifications.

Coulomb gas

Symbol

Coulomb gas

Screening length

associated with

background charge; see Eq. (2.3)

24E=difference in

chemical potential
between negative and
positive particle;
see Eq. (2.7)

Superconductor

R if A&R
A If A(R

R = linear extension
A =magnetic penetration depth

2+k,B,„AF=
fo

where B,„ is an
external perpendicular
magnetic field;
see Eq. (4.37a)

( hn ) =B,„/yo . (4.38)

Equation (4.38) expresses the fact that the flux per unit
area, B,„,passing through a superconducting film is equal
to the average vorticity per unit area times the flux quan-
tum.

C. Superfluid density and the universal jurnp

The fundamental characteristic of the transition be-
tween the superfluid and normal state is the vanishing of
the macroscopic superfluid density. The superfluid densi-
ty can, as discussed in connection with Eq. (4.10), be ex-
pressed in terms of mass-current correlation functions.
The longitudinal part of this expression can be directly in-
tegrated out [see Eq. (4.11)], leaving only the transverse
part. The transverse part is completely specified by vor-
tex configurations. The vortex-Coulomb gas analogy then
allows one to express the superfluid density as a Coulomb
gas correlation function. By translational invariance one
has

Jd r (gz(r). gz(0) ) = lim (gz(k) gz(k) ),
k~p

(4.39)

which via the convolution theorem applied to Eq. (4.14)
becomes

and where g&0 ——hc/2
~

e
~

is the flux quantum. The quan-
tity m„may be interpreted as the magnetic moment for a
single positive vortex within the Coulomb gas description
(Minnhagen, 198la).

For example, consider the case when A&&R. As dis-
cussed above, the Coulomb gas model in this case approx-
imately describes vortex fluctuations for a "large-A" su-
perconducting film provided A,, is chosen to be of the or-
der of R. From Eq. (4.37b) one then obtains

. m„=R yo/2mA, which correctly reproduces the result for
the magnetic moment of a single vortex on a supercon-
ducting film (Fetter, 1980).

The Coulomb gas charge density corresponding to a
perpendicular external magnetic field can be obtained
from Eq. (4.21) and the rotation analogy given by Eqs.
(4.30),

2

p, lim (ikXx3) ( /kXx3) V(k) V( —k)
m k—+0

X (hn(k)b. n( —k) ) . (4.40)

X lim V(k)(bn(k)bn( —k)) .
k~p

(4.41)

Inserting this result, together with Eqs. (4.11) and (4.20),
into the definition of the superfluid density, Eq. (4.10),
then gives

= lim 1 — (bn(k)bn( —k))V(k)
p TCG

(4.42)

The left-hand side may be recognized as the inverse of the
dielectric constant e =E(k=O), in which e(k=O) is the
Fourier transform of the dielectric function for the
Coulomb gas at k=O [compare Eqs. (3.3c) and (3.4)].
Thus there exists a simple direct relation between the su-
perfluid density and the dielectric constant of the
Coulomb gas (Myerson, 1978; Minnhagen and Warren,
1981),

ps

p
(4.43)

The Coulomb gas quantity 1/(T E ) jumps from a fi-
nite value to zero at the Kosterlitz-Thouless transition
[compare Eq. (2.36) and the paragraph following this
equation]. According to the Kosterlitz renormalization-
group equations, the size of the jump is universal (that is,
temperature and fugacity independent) and equal to 4. As
discussed in Sec. III.D, the result may be expected to hold
provided the fugacity z at the transition is smaller than
some critical value (see Fig. 12). By aid of Eqs. (4.43) and

Since V(k) =2m/k [compare Eq. (2.1)], the result for the
transverse part of Eq. (4.10) is

2

Id r(g~(r) g~(0)) =2m p
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(4.20) one easily translates this universal Coulomb gas
jump into superfluid variables,

Ps
T

2kgm
2

for T~T,

0 for T~T,+,
(4.44)

where

1 1

1+& /cog
(4.46a)

kgTm*
Q)0

hpR
(4.46b)

Note that for co'"=0, Eq. (4.46a) reduces to Eq. (4.43).
For co"'&0 the Coulomb gas analogy predicts that the su-
perfluid density decreases with rotation velocity cu"' and
that, for large velocities compared to a characteristic velo-
city coo", the superfluid density is proportional to (co"')
Equation (4.46b) gives an order-of-magnitude estimate of

where the Boltzmann constant k~ has been reinserted for
completeness. This is the celebrated universal jump pre-
diction for the superfluid density of a two-dimensional
superfluid (Nelson and Kosterlitz, 1977). The important
feature is that the size of the jump of the quantity ps/T
involves only fundamental constants and the mass of the
"boson." For an ideal He film this is just the mass of the
He atom, while for a superconductor it is twice the elec-

tron mass. The prediction has been verified by experi-
ments, as will be discussed in Sec. V.A.

From the Coulomb gas point of view, the fact that the
universal jump is borne out by experiments on superfluid
films can be taken as an ipso facto verification that the
Coulomb gas fugacities corresponding to these experimen-
tal realizations are small enough for the universal jump
prediction to be valid.

We shall now illustrate the Coulomb gas —superfluid
film analogy further by considering how the superfluid
density is modified when a neutral superfluid film is ro-
tated or a perpendicular magnetic field is applied to a su-
perconducting film. As discussed in Secs. IV.A.2 and
IV.B.2, we can model this situation approximately by the
non-neutral Coulomb gas with an appropriate choice of
I,, (compare Tables II and III). Defining the superfluid
density by Eq. (4.9b) leads, in the case of the non-neutral
Coulomb gas, to (Minnhagen, 1981a).

Ps . 1 k'+
lim (4.45)

p min Y. k +~

where k;„—1/R is introduced instead of k=0 because
R, the size of the sample, is the macroscopic length scale
associated with ps. Below T, the screening length A, is
directly related to the charge imbalance ( An ), i.e.,

=2m. (b n ) /KT [compare Eq. (2.21b) and Sec.
II.B.2]. Thus Eq. (4.45), together with Eqs. (4.20) and
(4.21), suggests for the neutral rotating superfluid below

TQ

!
the characteristic rotation velocity mz".

The corresponding T & T, result for the "large-A" su-
perconductor in an external magnetic field is obtained by
using the analogy given by Eqs. (4.30):

I 1

1+8,„/Bo
(4.47a)

kgTA

go[min(R, A )]
(4.47b)

The interpretation is completely analogous to that of Eqs.
(4.46).

More generally, the result from the Coulomb
gas —superfluid analogy for the superfluid density may be
summarized by

Ps 1 1

p e 1+(A,,„p/A, ~)
(4.48)

where A,,„~ is a length of the order of the length scale
probed by a specific experiment for the superfluid, A,z is
the Coulomb gas screening length associated with free
Coulomb gas charges, i.e., A~ =2mnF/KT . [compare
Eq. (2.21b)], and e is a dielectric constant describing the
polarization due to bound pairs [defined by Eq. (2.2la)].
The density of free charges is given by Eq. (2.44), and
Coulomb gas variables are translated into superAuid vari-
ables with the aid of Tables II and III.

D. Ginzburg-Landau Coulomb gas

In Secs. IV.A and IV.B we have reviewed how a simple
phenomenological description of vortex fluctuations for
superfluid films leads to a model that is isomorphic to the
two-dimensional Coulomb gas. However, this
phenomenological description of superfluid films is still
incomplete, in as far as some quantities have been left un-
specified. These quantities are the "bare" superfluid den-
sity p [see Eq. (4.2)], the vortex core function f„(r) [see

Eq. (4.7)], the vortex core energy E, (see Table II), and
the phase-space division g (see Table II). Section IV.D. 1

gives a brief outline of how p, f„,and E, can be obtained

within a Ginzburg-Landau approximation. The resulting
phenomenological description of vortex fluctuations for
superfluid films is referred to as the Ginzburg-Landau
Coulomb gas model. This model leads to certain scaling
relations, referred to as Coulomb gas scaling (Minnhagen,
1981b). Coulomb gas scaling is described in Sec. IV.D.2.

1. Definition

In this section the configuration energy Hs is
phenomenologically connected to a Ginzburg-Landau-
type approximation. The starting point is the Ginzburg-
Landau form of the free energy, AGs, associated with the
order parameter f,
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g2
b, Gs ——fdx ~z( T)

~ @ ~

'+ —
~ g ~

'+
8

8 &c.t

1+
2(m )

i—A + Ae

dx c

2 fI'o

(4.49)

where P is a phenomenological constant greater than zero,
a(T) is a phenomenological function of T that is positive
(negative) for T & T p ( T & T o). T p is the phenomeno-
logical Ginzburg-Landau temperature. The integral is
over all space, x=(r,x3), and d/dx denotes the gradient.
For a review of the Ginzburg-Landau theory see, for ex-
ample, Lifshitz and Pitaevski (1980). The Ginzburg-
Landau approximation consists of estimating the free en-

ergy with the minimum of b,Gs with respect to variations
of p and A, subject to appropriate boundary conditions.

In the absence of currents and magnetic fields the
minimum of b.Gs corresponds to a position-independent
order parameter g given by

0
0 Zo

0
8

FIG. 14. Variation of the superfluid density close to the vortex
center for a vortex with vorticity

~

s
~

= 1 and the single-particle
charge distribution of the corresponding Coulomb gas particle.
The solid curve is the ratio between the superfluid density for a
one™vortex configuration p~{r) and the zero-vortex configuration
po, plotted as a function of the distance r from the vortex center
(in units of the Ginzburg-Landau coherence length g). The
dashed curve is the corresponding single-particle charge distri-
bution f, (r). The length ro is a measure of the linear extension

of the charge distribution (ro is defined in connection with Fig.
1S).

for T (Tco

0 for T &To,
(4.50)

where po is the superfluid mass density. Another impor-
tant quantity within this description is the Ginzburg-
Landau coherence length g,

1

m* &2
~

a(T)
~

(4.51)

This length gives the scale of variation of g (see, for ex-
ample, Lifshitz and Pitaevskii, 1980). Consequently,
from the Ginzburg-Landau point of view, a superfluid be-
comes effectively two diinensional when the thickness of
the superfluid sheet is everywhere much smaller than the
coherence length g.

The object is to use a Ginzburg-Landau-type approxi-
mation for the energies of vortex configurations. Obvi-
ously, the zero-vortex configuration corresponds, within a
Ginzburg-Landau approximation, to the constant order
parameter po given by Eq. (4.50). Furthermore this
Ginzburg-Landau po can be identified with the "bare" su-

perfluid density p, used to specify Hs [see Eqs. (4.2) and
(4.26)]. This is because p in Hs can be interpreted as pre-
cisely the superfluid density in the absence of vortices [see
the paragraph just below Eq. (4.11)].

The energy of a one-vortex- configuration is obtained by
minimizing b,Gs given by Eq. (4.49), subject to the con-
straint of having precisely one vortex. Far from the vor-
tex center the superfluid density corresponding to a single
vortex, pi(r), approaches the constant zero-vortex value

po. The ratio pi(r)/po is plotted in Fig. 14. Note that the
region where pi(r) deviates appreciably from po is given

by the Ginzburg-Landau coherence length g. In other
words, g is a measure of the linear extension of the vortex
core region.

The Ginzburg-Landau energy corresponding to a single
vortex has two distinct contributions (Pearl, 1965). One
part is associated with the gradient of the phase of the or-
der parameter, VO. This is the part accounted for by Hs
[see Eqs. (4.2) and (4.26)]. The second part is associated
with the variation of the magnitude of the order parame-
ter close to the vortex center. For a single vortex at the
origin with vorticity s, this additional part is given by
(Minnhagen and Nylen, 1985a)

'2
p pi(r)

po « ' 1m* 4 Po

po d pi(r)+
2pi(r) dr po

(4.52)

Comparison with Table II identifies the dimensionless in-
tegral of Eq. (4.52) as E, . For a vortex with

~

s
~

= 1, the
constant E, is in the limit A/g'~ao equal to 0.390 (Hu,
1972). In comparison, the corresponding value for a vor-
tex with

~

s
~

=2 is 1.208 (Minnhagen and Nylen, 1985a).
In the Coulomb gas model, 2E, corresponds to the
"threshold energy" of a neutral pair [that is, the smallest
energy needed to create a neutral pair; compare Eq.
(2.14)]. Consequently neutral pairs of vortices with vorti-
city

~

s
~

=2 (and more generally vortices with vorticity
~

s
~

& 1) are very rare compared to pairs of vortices with
vorticity

~

s
~

=1.
The charge distribution f„(r) of a Coulomb gas parti-

cle corresponding to a vortex with vorticity
~

s
~

=1 (see
Table II) is related to the superfluid density for a single
vortex, pi, by (Minnhagen and Nylen, 1985a)
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(4.53)

The single-particle charge distribution f, is plotted in

Fig. 14 together with the superfluid density for a single
vortex pi(r), to which it is related via Eq. (4.53). Also
shown in the figure is the quantity ro, which is a measure
of the linear extension of a Coulomb gas charge corre-
sponding to a single vortex T. he precise definition of ro
is explained below in connection with Eq. (4.55).

The energy of one vortex at the origin differs from the
free energy associated with one vortex because of the en-

tropy contribution S, due to the freedom of placing the
vortex anywhere. This additional contribution to the free
energy is given by —TS. The entropy S can be expressed
as 5 =in(Q/g) where 0 is the total area of the superfluid
sheet and g is the phase-space area associated with one
vortex. It is assumed in the phenomenological description
that the phase-space area g is proportional to the vortex
core region g . Since g is proportional to ro, it follows
that g can be expressed as g =cr o where c is a
temperature-independent constant [compare the definition
of ro given in connection with Eq. (4.55)]. This definition
of g is in accordance with the Coulomb gas model (see
Sec. II.A. 1).

Configurations with more than one vortex can, to good
approximation, be regarded as superpositions of one-
vortex configurations, provided the vortex separation is
large enough compared to the vortex core extension g
(Pearl, 1965). This follows because the current contribu-
tions from vortices are additive [see Eq. (4.13)]. Conse-
quently, if we use a phenomenological Ginzburg-Landau
description as the starting point, then the vortex configu-
rations are described by the Coulomb gas model with
specific Ginzburg-Landau estimates of the Coulomb gas
parameters. This is summarized in Table IV.

The interaction between the vortices in a neutral pair is,
within the Ginzburg-Landau Coulomb gas model [com-
pare Eq. (2.4)], given by

U(r) —U(0) = —fd r'd r "[f„,( I
r —r'

I
) —f„,(r') I

(4.54)

where f„ is given by Eq. (4.53). U(r) —U(0) is plotted in

Fig. 15. For r ~ro the interaction rapidly approaches a
logarithmic asymptote given by

Coulomb gas quantity Ginzburg-Landau quantity

0.390, See Eq. (4.52)
1

p&(r), See Eq. (4.53)
2&rpp

1.12$, See Fig. 15
cl'0, c is a constant

The standard phenom enological assumption in a
Ginzburg-Landau description is that Eq. (4.56) holds
close enough to T, o (see, for example, Lifshitz and Pi-
taevski, 1980).

2. Coulomb gas scaling

The Ginzburg-Landau Coulomb gas model implies the
existence of scaling relations for superfluid films
(Minnhagen, 1981b). Among the relations between quan-
tities characterizing a superfluid film, those which can be
expressed entirely in Coulomb gas quantities should be
identical for all superfluid films describable by the
Ginzburg-Landau Coulomb. gas model. Examples of such
scaling relations are given in the present section.

The point of the Coulomb gas scaling relations is that
they are rather directly open to experimental verification,
as will be shown in Sec. V.

As a first example of a Coulomb gas scaling relation,
let us consider a superconducting film in the absence of
an external magnetic field. This is described by a

cD

I

1

0
-1

TABLE IV. Ginzburg-Landau Coulomb gas. (For definition of
Coulomb gas quantities see Table II.)

U(r) —U(0) =ln
2rp

(4.55) ln(2ro/~ ) ln( r/ )

T—Tcp
a( T) =a'

~ip
(4.56)

where rc ——l. 12$ (Minnhagen and Nylen, 1985a).
The phenomenological Ginzburg-Landau Coulomb gas

description presumes that a function a(T) can be extract-
ed from the experiment [compare Eqs. (4.49) and (4.50)].
In practice the first term in an expansion around T p may
be sufficient, i.e.,

FIG. 1S. The interaction energy between two vortices with vor-
ticities s =1 and s= —1, respectively. The interaction energy
U{r)—U{0) is plotted against ln{r/g), i.e., the logarithm of the
separation between the vortices in units of the Ginzburg-
Landau coherence length g (solid curve). For large r the
U(r) —U(0) curve rapidly approaches a straight line (dashed
line). This line is given by ln(r/2ro). The crossing with the hor-
izontal axis gives ra=1. 12$. The length ro can be regarded as a
measure of the linear extension of the single-particle charge dis-
tribution.
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Ginzburg-Landau Coulomb gas with BE=0 and A,,= Do

(compare Tables II and III). A Coulomb gas quantity can
then only be a function of the variables (g, T ) (compare
Tables II and IV). Consequently a dimensionless
Coulomb gas quantity can only be a function of the di-
mensionless variable T [compare Eqs. (4.20) and
(4.50)], where

T P(m *)
~(T) 2~2 (4.57)

An example of such a dimensionless Coulomb gas quanti-
ty is g nF, where nF is the density of free vortices. Ac-
cording to the Bardeen-Stephen formula, this quantity is
proportional to the flux-flow resistance (Bardeen and
Stephen, 1965), i.e.,

F =Sje„q)O/C, (4.61)

where

1'ex/J'sc ~ (4.62a)

where yo is the flux quantum, c the velocity of light, and
s the vorticity (see, for example, Tinkham, 1975). The
direction of the Lorentz force is opposite for a s=1 vor-
tex from that for a s = —1 vortex. In the Coulomb gas
analogy the Lorentz force acting on the vortices corre-
sponds to an electric field acting on the Coulomb gas par-
ticles (Myerson, 1978; compare Secs. 11.8.2). doing
through the Coulomb gas analogy [which in this case
amounts to comparing Eqs. (4.61), (2.48), (4.19), and

. (4.20)] gives

R =2ngnF, .
R~

(4.58) C
sc = 2'

vok

go~
m* 4m Ag

(4.62b)

where R is the flux-flow resistance and R& is the
normal-state resistance. The relation given by Eq. (4.58)
may alternatively be viewed as an empirical fact (see, for
example, Kim and Stephen, 1969). It then follows that
the resistance ratio R/R~ as a function of T should be
a "universal" (i.e., sample-independent) function of the
variable T for all superconducting films describable by
the Ginzburg-Landau Coulomb gas model (Minnhagen,
1981b). A convenient scaling variable is given by

(4.59a)

which reduces to

X(T)= T
TcO

Tc0 Tc

C

TcO

TC
—1

Tc0

T
—1

(4.59b)

B„=go/(2n.g ) . (4.60)

A constant (two-dimensional) current density j,„, im-
posed across a superconducting film, gives rise to a
Lorentz force E acting on the vortex, i.e.,

when the approximation given by Eq. (4.56) applies
{Minnhagen, 1981b). Experimental evidence for the pre-
diction that the resistance ratio R/R~ is a sample-
independent function of X is discussed in Sec. V.B.1.

Next we consider a superconducting film in an external
perpendicular magnetic field, B,„. The corresponding
Coulomb gas scaling for the resistance can be obtained in
the following way (Minnhagen, 1983a): According to the
non-neutral Coulomb gas (described in Sec. 11.8.2), the di-
mensionless quantity g nF can, in the limit A,c~ cc, only
be a function of the two dimensionless variables T and
g (hn ) [compare Eq. (2.44)]. The difference in density
between positive and negative Coulomb gas charges,
(bn), is related to B,„by Eq. (4.38), i.e., B,„=y (b0)n.
It follows that the resistance ratio R/R~ should be a
"universal" function of the two variables X and B,„/B„,
where X is given by Eqs. (4.59) and the scaling magnetic
field Bsc is given by (Minnhagen, 1983a)

Here D is an external electric field applied to the
Coulomb gas, and j„plays the role of a scaling current.
In other words, an imposed .constant current j,„corre-
sponds to the dimensionless Coulomb gas variable j,„/j„.
This means, for example, that the resistance ratio R/R&
within a Cxinzburg-Landau Coulomb gas description is a
"universal" function of the variables X, B,„/B„, and
j,„/j„(Minnhagen, 1984a).

In the case B,„=O, the density of free vortices, generat-
ed by the imposed current j,„ for temperatures below T„
can be estimated by use of Eqs. (2.51) and (4.62a). In the
limit of small j,„/j„one obtains (Halperin, 1979)

~ y2TCG&
R/R~ -g nF -(Dg)

2s /Xs (X)—Jex/Jsc (4.63a)

which is equivalent to a nonlinear IV characteristic of the
form

(4.63b)

with

2cc

X (X)
(4.63c)

The exponent a (X) characterizing the nonlinear IV
characteristics below T, is another example of a Coulomb
gas scaling function that should be "universal, " provided
the Ginzburg-Landau Coulomb gas description is applic-
able.

For B,„=O (co"'=0) and j,„=O (g,„=O) in the case of
a superconducting (neutral superfluid) film below T„ the
macroscopic superfluid mass density is given by Eq.
{443) i e ps/p= 1/E (X) Thus ps(X)/p{X) is yet
another example of a Coulomb gas scaling function.

The Coulomb gas scaling variables discussed above are
listed in Table V, together with the corresponding vari-
ables for a superconducting film and a neutral superfluid
film.

Rev. Mod. Phys. , VoI. 59, No. 4, October 1987



1036 Petter Minnhagen: The 2D Coulomb gas. . .

TABLE V. Coulomb gas scaling variables.

Coulomb gas
variable

T«~T«
r(') (b,n )

Superconducting
film

X [see Eqs. (4.57) and (4.59)

8,„/8„, Bsc =go/(2m/~)

ggCJ'-~i'. 1-=
4m A

Neutral superfluid
film

rot
~~sc~ ~sc

2m "g
pA

gex/gsc~ gsc
m

E. XY-type models

In this section we discuss the connection between the
phenomenological description of superfluid-supercon-
ducting films outlined in Secs. IV.A and IV.B and two-
di.mensional XY models.

The "standard" classical two-dimensional XY model is
described by the Hamiltonian

Hzr —J g——cos(8; —81),
(ij )

(4.64)

where T is the temperature. For a review of the two-
dimensional classical XI' model, see for example Suzuki
(1979).

The two-dimensional XY model does not exhibit any
true long-range order because the thermodynamic average
(cos8;) is always zero (for T&0). This lack of long-
range order follows from the Mermin-Wagner theorem,
which asserts that a broken continuous symmetry
prevents long-range order in two dimensions (Mermin and
Wagner, 1966). The two-dimensional XI' model does,
however, undergo a Kosterlitz-Thouless transition at a fi-
nite temperature T, from a high-temperature phase
(where the order-parameter correlation function has an
exponential decay) to a low-temperature phase with
"quasi" long-range order (where the order-parameter
correlation has a power-law decay; Berezinskii, 1971;
Kosterlitz and Thouless, 1972).

The two-dimensional XFmodel given by Eq. (4.64) can
be viewed as an approximate microscopic description of a
neutral two-dimensional superfluid (Matsubara and
Matsuba, 1956, 1957; Hohenberg, 1971). This approxi-
mate microscopic description corresponds to associating

i8.
an order parameter QJ

——
~
P~e to each lattice site j

where i and j denote the sites on a two-dimensional
square lattice, the sum is over nearest-neighbor pairs of
lattice points, J is a nearest-neighbor coupling constant,
and 8; is an angle associated with each lattice site. Alter-
natively one may associate a two-dimensional unit vector
with each lattice site, and the interaction then involves the
scalar product between vectors on neighboring sites. Ob-
viously, the ground state corresponds to the situation
when all such vectors point in the same direction. The
statistical mechanics of the XI' model is described by the
partition function

Zx~= Q fd8, /(2~)e

(8;—8, )
Hxp —Jg 1——

(~'j) 2
(4.66)

The constant term in Eq. (4.66) may be absorbed into the
definition of the ground-state energy and the remaining
sum may be approximated by an integral (since

~
8; —81

~
&&1), i.e.,

Hr r- fdr[ V8(r)]—
2

(4.67)

Finally, since we are expecting that the configurations
with small angle differences between neighboring sites are
the important ones, we may safely overlook the fact that
in the XY model the angle 0+2nm. is equivalent to 0 and
let 8 take values on the complete interval [ —ao, coj.
Now suppose that 8(r) [in Eq. (4.67)] is identified with
the phase of the order parameter P for a neutral super-
fluid. It then follows that Hzz is equivalent to Hz given
by Eq. (4.2) with the identification

2

J=p (4.68a)
Pl

since the superfluid mass flow g is given by

g(r) = , V8(r)pA (4.68b)

where the magnitude of the order parameter is fixed and
equal for all lattice points. The phase between neighbor-
ing lattice sites is coupled by the Hamiltonian

g(0 0+0 0) ~

1

m (]~)

which is identical to Eq. (4.64) with the identification
J=(A'/I*)

i
tb

i

We now turn to the connection between the two-
dimensional XY model and vortex fluctuations described
by the two-dimensional Coulomb gas model. One way of
establishing such a connection is the following (Kosterlitz
and Thouless, 1973): XY-model configurations with
small angular differences between neighboring sites, i.e.,

~
8; —8J ~

&&1, are easily excited, One may hence expect
that these are the important configurations for determin-
ing the thermodynamic properties. Provided all other
configurations are neglected, H&r can be approximated
by expanding the cosine in Eq. (4.64),
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[compare Eq. (4.1)]. Consequently a vortex description
similar to that given in Secs. IV.A. 1 and IV.A.2 can be
made. This chain of reasoning for the two-dimensional
XY model thus leads to a description in terms of vortices
an.d a two-dimensional Coulomb gas where the phase
transition for the X1' model corresponds to the charge-
unbinding transition for the Coulomb gas (Kosterlitz and
Thouless, 1972).

The smallest length scale on which a vortex can be de-
fined for the two-dimensional XY model is obviously
given by the lattice spacing. Figure 16 shows a vortex
with vorticity s= 1 on a square lattice with lattice spacing
a. The angle 8; associated with each lattice site is in the
figure given by the angle between the arrows and a fixed
direction.

The energy of a neutral configuration of N vortices de-
fined on the lattice is approximately given by [Kosterlitz
and Thouless, 1973; compare Eq. (2.16)]

H~/(2~J)= —,
' g—sks, ln(rk, /a)+X

k~1
(4.69)

where the sum is over all vortex pairs. A comparison
with Eq. (2.16) shows that, in this "lattice" approximation
of the Coulomb gas, E, is determined by the energy need-
ed to create a neutral vortex pair with the two vortices on
nearest-neighbor sites, which gives E,=~/4 (Kosterlitz
and Thouless, 1973). The phase-space division g for a
vortex on 'tlM lattice 1s given by / =a

Let us now discuss some aspects of the link between the
XY model and the phenomenological type of Coulomb
gas description given in Secs. IV.A. 1, IV.A.2, IV.D.1, and
IV.D.2.

First consider the approximation of the XY Hamiltoni-
an given by Eq. (4.67). The corresponding approximation

of the thermodynamics of the XY model can be improved
by replacing J in Eqs. (4.66) and (4.67) with a "renormal-
ized" Jtt(T). One method of achieving such an improve-
ment is through a minimization of the free energy within
a self-consistent harmonic approximation, which gives
(Lozovik and Akapov, 1981)

Jg(T)=J 1— T
Tc0

(4.70)

2

(5h,„)

or alternatively

Ps
m

(4.71b)

where

(4.71c)

The quantity y is called the helicity modulus, and the re-
lation between y and ps [Eq. (4.71b)] was established by
Fisher et al. (1973). For the X1' model on a square lat-
tice, y is given by (Teitel and Jayaprakash, 1983)

Qy= — (Hx„)— g sin(8; —8J)e~j x
&ij &

with T,o——nJ where n is the number of nearest neighbors.
Jz(T) is related to the "bare" superfluid density p(T) by
Jz(T) =p(T)(R/ni') [compare Eqs. (4.68)].

An infinitesimal constant macroscopic superfluid mass
flow 5g«, is related to an imposed infinitesimal constant
phase gradient [compare Eq. (4.68b)], i.e., if the imposed
constant gradient of the phase 8 is denoted by 5h,„, then
the relation is 5g„,=(ps'/I')5It, „where ps is the mac-
roscopic superfluid density. Consequently the correspon-
dence of Eqs. (4.9) is

nps
(4.71a)

2

(4.72)

where e,j (x) is unit vector pointing from the lattice point
i to the nearest-neighbor point j (pointing in an arbitrary
fixed direction in the plane of the lattice) and ( ) denotes
the thermodynamic average. The universal jump predic-
tion for the helicity modulus of the XY model may be ob-
tained by multiplying Eq. (4.44) by (fi/I*) and using
Eq. (4.7lb), which gives

y(T)
— k T (4.73)

FIG. 16. A configuration for the XFmodel corresponding to a
vortex with vorticity s =1. The figure shows a square lattice
with lattice spacing a (dots). An angle 8; is associated with
each lattice site. This angle is represented as the angle between
the arrows and a fixed direction (horizontal axis in the figure).
The center of the vortex is denoted by a cross.

Figure 17 shows y for the XY model as obtained from
typical Monte Carlo simulations. The crossing between
the y(T) curve and the line y =(2/m)TJ determines the
critical temperatures T, . Since simulations by necessity
are done on finite lattices, y(T) has only a rapid decrease
at T, and not a discontinuous jump to zero. Also plotted
in the figure is the specific-heat peak, which appears at a
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y/J
v/J

1.0-
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0'

I

2
T/'J

Tco

FIG. 17. The helicity modulus and the specific-heat peak for
the XY model on a square lattice, as obtained by Monte Carlo
simulations. Solid dots are from a Monte Carlo simulation of
the helicity modulus y (63&64 lattice, from Minnhagen and
Nylen, 1985b). Dashed line is the exact low-temperature
asymptote y/J=1 —T/T, o, where T,o——4J. Dotted line is
y/J=2T/m. . Crossing between the solid curve through solid
dots and the dotted line defines the Kosterlitz-Thouless tem-
perature T,. Open circles are a Monte Carlo simulation of the
peak in the specific heat C~ (40&&40 lattice, from an investiga-
tion of the specific-heat peak by van Himbergen and Chakra-
varty, 1981). The specific-heat peak occurs above T, and does
not reflect any critical properties.

temperature higher than T, . The specific-heat peak does
not reflect any nonanalytical critical properties, in con-
trast for example to the case of first- and second-order
phase transitions (Kosterlitz, 1974; Berker and Nelson,
1979).

The connection between the XY model and the
Coulomb gas can also be obtained in a more systematic
way through a duality transformation (Jose et a/. , 1977;
Savit, 1978). Such an analysis shows that Eq. (4.70) is ex-
act in the small-temperature limit (Ohta and Jasnow,
1979). In analogy with the model of a superfluid
described in Sec. IV.A. 1, the helicity modulus excluding
vortex fluctuations is given by y=p(T)(A/m*), where
p(T) is the "bare" superfluid density [compare Eq. (4.71b)
and the paragraph just below Eq. (4.11)]. Since the vor-
tices require a finite energy to be excited [see Eq. (4.69)],
it follows that the "bare" helicity modulus is exactly
given by @=J(1—T/T, o) with T,o 4J in the limit ——of
small T (see Fig. 17). Furthermore, this result is indepen-
dent of the length scale on which the vortices are defined.

On the other hand, for temperatures larger than T=O,
the value of' y excluding vortex fluctuations obviously de-
pends in general on the length scale on which the vortices
are defined [see the paragraph just below Eq. (4.2)]. On
each length scale one can consider y (or, more generally,
any thermodynamic average of the XY model that
translates into a thermodynamic average in the Coulomb
gas analogy) as having a "bare" ("full" ) value correspond-
ing to excluding (including) vortex fluctuations. The
"bare" value can be expressed in terms of "bare"
Coulomb gas parameters. The "bare" Coulomb gas pa-

where x=(r,x3), the two-dimensional lattice is in the
x3 0 plane, A,J is related to the vector potential A(x) by
the line integral along the straight line connecting site i
with site j, i.e.,

A,J —— f dr A(x), (4.74b)

the div(A) =0 gauge is chosen, and the induced magnetic
field B is given by 8=curl(A). The partition function
involves fluctuations of the vector potential in addition to
the fluctuations of the phase angles, i.e.,

Z~& ——fd A(x)5(div(A)) Q fdg;/(2w)e

(4.75)

This may be viewed as an approximate model of a granu-
lar superconducting film or a two-dimensional array of
weakly coupled Josephson junctions, provided charging
fluctuations are negligible (Lozovik and Akapov, 1980).
Note that because of the coupling to the electromagnetic
field it is a three-dimensional model. In analogy with the
connection between the "standard" XY model and the
model of a neutral superfluid described in Sec. IV.A, one
may expect that, on a sufficiently large length scale com-
pared to the lattice spacing, this lattice model of a super-
conductor will "renormalize" into the description of a su-
perconducting film given in Sec. IV.B. Likewise one may
expect that on a sufficiently large length scale a
Ginzburg-Landau approximation may be adequate (see
Sec. IV.D).

rameters on different length scales are related through the
renormalization equations of the Coulomb gas model
described in Sec. III.

The basis for the Ginzburg-Landau Coulomb gas
described in Sec. IV.D is that the free energy can be
described by a Ginzburg-Landau approximation in terms
of a complex order parameter g(r) =

~
P(r)

~

e' "[see Eq.
(4.49)]. For such a description to apply to the XI'model,
it is required that the free energy for the XY model ap-
proximately "renormalize" into a Ginzburg-Landau free
energy on some length scale larger than the lattice spac-
ing. An indication of how such a transformation from an
XY model to a G-inzburg-Landau description can be
achieved (using a Hubbard-Stratanovich transformation)
is given by Doniach (1984).

As mentioned above, the "standard" two-dimensional
XI" model [see Eq. (4.64)] can be viewed as an approxi-
mate microscopic description of a neutral two-
dimensional superfluid. A corresponding lattice model
for a two-dimensional charged superfluid is given by (Lo-
zovik and Agapov, 1980)

Hzr —J g cos——(8;—8J —A,z)+ fdx8 ( x) /(8m ),
&~j&

(4.74a)

Rev. Mod. Phys. , Vol. 59, No. 4, October 1987



Petter Minnhagen: The 2D Coulomb gas. . . 1039

V. EXAMPLES OF EXPERIMENTS REFLECTING
STATIC COULOMB GAS PROPERTIES

The aim of this section is to illustrate the connection
between the two-dimensional Coulomb gas described in
the previous sections and experiments on He films and
superconducting films. To this end a few examples from
the large body of experimental work to date are selected
and discussed. They are chosen with the criteria of re-
flecting static Coulomb gas properties as well as possible
(as opposed to experiments where the dynamics of the
vortices is crucial for the interpretation). The choice of
examples is subjective.

The reader interested in a more complete description of
the experimental work is referred to review articles by He-
bard and Fiory (1982), Mooij (1983), and Mooij (1984) in
the case of superconducting films, and Glaberson and
Donelly (1986) and Kotsubo and Williams (1986) in the
case of helium films, which cover at least part of the large
amount of experimental work in this area.

Section V.A treats two special (static) Coulomb gas as-
pects of the superfluid density for He films as measured
by the torsion pendulum experiment devised by Bishop
and Reppy (1978). The first aspect is the size of the jump
of the superfluid density at the superfluid transition (Sec.
V.A. 1), while the second is the Coulomb gas scaling of the
superfluid density (Sec. V.A.2). Section V.B treats a
variety of (static) Coulomb gas aspects of superconduct-
ing films. Section V.B.l deals with the "universal" resis-
tance curve and its connection to the Ginzburg-Landau
Coulomb gas. The nonlinear IV characteristics and the
extracted Coulomb gas dielectric constant are discussed in
Sec. V.B.2. Finally Sec. V.B.3 describes the magnetic
field scaling of the resistance.

A. 4He films

The torsion pendulum experiment devised by Bishop
and Reppy (1978) gives a particularly direct measurement
of the superfluid density and is for this reason chosen to
illustrate the connection to (static) Coulomb gas proper-
ties. This experiment is set up in such a way that the
helium is absorbed on a Mylar substrate. The substrate is
rolled in a jelly roll fashion and this jelly roll is part of the
pendulum. The superfluid part of the helium does not,
however, contribute to the oscillating mass (unless the su-
perflow relative to the substrate is hindered by geornetri-
cal constraints). Thus the frequency of the pendulum is
in principle given by

' 1/2

K/M + K/M pg,M —Qpg 2M

where E is the spring constant and M is the total mass
(including the mass of the helium). Consequently the
period shift of the oscillator, b.P—V'M/K —co ', is pro-
portional to the superfluid density p~. For a detailed
description of the experiment see Bishop and Reppy

(1980). A complete analysis of the experiment also in-
volves the vortex dynamics that cause dissipation. This
will be discussed in Sec. VI.

1. The universal superfluid density jump

3
LJ:2

CL
O

~ ~ ~ ~~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~Ase~~ ~y+

100 200 300 400 500 600

T (mKj

FIG. 18. The period shift AP as a function of temperature T
for six different He- He-mixture films. hP is proportional to
the superfluid density. The straight line corresponds to the
universal jump prediction. The superfluid density drops rapidly
to zero at the crossing between the measured curves and the
straight line, in accordance with the universal jump prediction
(from McQueeney et al. , 1984).

Figure 18 shows the period shift 4P as a function of
the temperature for six different He- He mixture films
obtained by Mcgueeney et al. (1984). The (static)
Coulomb gas prediction is that the quantity 1/TE drops
discontinuously from 4 to 0 at the Kosterlitz-Thouless
transition. 'This in turn is equivalent to the universal
jump prediction for the superfluid density [Nelson and
Kosterlitz, 1977; see Eq. (4.44)]. The solid line in Fig. 18
corresponds to this universal jump prediction. Conse-
quently the period shift should drop discontinuously to
zero at the crossing with the respective period-shift
curves. As seen in the figure, this prediction is realized
rather well in that the period shift in all cases starts to
drop rapidly to zero at these crossings.

The fact that the measured period shift does not drop
discontinuously to zero can be attributed to the diffusive
motion of the vortices, caused by the fact that the experi-
ment is performed at a finite frequency (Ambegaokar
et al. , 1978, 1980); this will be discussed further in Sec.
VI. This effect can be qualitatively inferred without any
detailed dynamical assumptions in the following way
(compare Sec. VI.A. 1): Denote the frequency of the tor-
sion pendulum by co and the diffusion constant for the
vortex motion by g. The length V'g/co is the charac-
teristic length for vortex diffusion, which in turn means
that only vortex pairs with separation much less than
v'P/co will respond adiabatically to the oscillation (Am-
begaokar and Teitel, 1979). This means that the effective
Coulomb gas length scale probed by the experiment is of
the order of A,,„~-V'Pleo. Consequently, from Eq. (4.48)
and the connection given by Eq. (5.1), one infers that bP
should drop continuously to zero with the high-
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temperature tail roughly proportional to (k /iL )F exp
where A,F is the Coulomb gas screening length due to free
vortices.

2. Scaling properties of the superfluid density

The period shifts measured in the torsion pendulum ex-
periment show scaling properties (Agnolet, 1983; Agnolet
et a/. , 1984b). The Coulomb gas scaling ideas discussed
in Sec. IV.D.2 offer a possible explanation of these ob-
served scaling properties (Minnhagen and Nylen, 1985b).
Consequently these scaling properties may be viewed as a
link between the two-dimensional Coulomb gas and the
measurements. The basic assumption invoked in order to
obtain this link is that the vortex fluctuations of the vari-
ous samples are described by the same Coulomb gas
theory.

Figure 19 shows a prototypical measurement. The
solid curve is the measured period shift AP, which is pro-
portional to the superfluid density ps [see connection
given by Eq. (5.1)]. The AP curve is, to a good approxi-
mation, a horizontal line for lower temperatures (dashed
line in Fig. 19). This horizontal line is proportional to the
bare superfluid density p, since the vortices drop out for
low enough temperatures due to their finite excitation en-
ergy. It is further assumed that on some length scale this
constant p describes the bare superfluid density for all
temperatures. This means that the Coulomb gas scaling
variable X reduces to X = T/T„since a constant p corre-
sponds to T,o ac [compa——re Eqs. (4.59)]. The Coulomb
gas dielectric constant is given by the ratio p/p [see E .
(4.43)]. In Fig. 19 this is just the ratio between the hP
values given by the dashed line and the solid curve. The
dotted line in Fig. 19 is the universal jump prediction

[compare Eq. (4.44) and Fig. 18]. The crossing between
this line and the solid curve identifies T, . The Coulomb
gas dielectric constant E (X) obtained in this way for
three different samples is shown in Fig. 20 [the measure-
ments are taken from McQueeney et al. (1984) and Agno-
let et al. (1984a); see Minnhagen and Nylen (1985b) for a
more detailed description]. As is apparent from Fi . 20
he Coulomb gas scaling for s (X) is well obeyed.

om lg.

Coulomb gas scaling may also be invoked to test the
link between the helium films and the XI' model
described in Sec. IV.E (Minnhagen and Nylen, 1985b).
Figure 17 shows a Monte Carlo simulation of the helicity
modulus y, which is proportional to ps [see Eq. (4.71b)].
The &e bare superfluid density p is iri this case temperature
dependent and is, to lowest approximation, proportional
to the dashed line in Fig. 17, while T,o is equal to 4J.
The Coulomb gas dielectric constant is the ratio of the y
values given by the dashed line and the solid curve in Fig.
17. Figure 21 shows a comparison between the E„(X)ob-
tained for the XF model on -a square lattice (solid line)
and that obtained from measurements on helium films
(dashed line—the average of the measurements given in
Fig. 20). The agreement indicates a strong connection be-
tween the vortex fluctuations described by the XY model
and the vortex fluctuations observed for helium films.

The dotted line is a calculation based directly on the
"lattice" Coulomb gas approximation for the XY model
given by Eq. (4.69) and the renormalization equations
[Eqs. (3.14)]. The dotted curve is produced by integratin
th e renormallzatlon equations from the initial length a

~ ~

egra lng

(the lattice constant) and the initial values z; =2e
and T; =c;T,X, where the factor 2 is an entropy factor
reflecting the fact that there are precisely four possible
positions for one particle in a neutral pair with separation

1.3

1.2

I

Tc

~ ~

0.6 1.0

FICi. 19. Construction of an approximate Coulomb gas inter-
pretation. The period shift hP is measured as a function of T.
hP is proportional to the superfluid density. The dotted line
corresponds to the universal jump prediction. The crossing be-
tween the solid curve and the dotted line gives an estimate of
the Kosterhtz- Thouless temperature T, . The dashed horizontal
line is proportional to the bare superfluid density. This corre-
sponds to T,o

——oo and the Coulomb gas scaling - variable
X=T/T, o. The ratio between the values given by the dashed
line and the solid curve gives the Coulomb gas dielectric con-
stant c„.

FlG. 20. The Coulomb gas dielectric constant c„I,'X) extracted
from the torsion pendulum experiment in the way described in
connection with Fig. 19. The solid, dashed, and dotted curves

1

represent three different samples (from Minnhagen and N 1en an yen,
985b, where more details are given; the T, values for the three

samples corresponding to the solid, dashed, and dotted lines are
T, =365, 211, and 165 mK, respectively, and T,o——~ in all
cases; the actual measurements are taken from Mcgueeney
et al. , 1984, and Agnolet et al. , 1984a). The c, {X) extracted
from the three samples are in good agreement. This may be in-
terpreted as an indication of Coulomb gas scaling.
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1. The "universat" resistance curve

1.2

0.5 1.0

FIG. 21. The Coulomb gas dielectric constant c,„(X)extracted
from the XF model on a square lattice (solid curve) and from
helium films (dashed curve=average of the measurements given
in Fig. 20). The agreement indicates a strong connection be-
tween vortex fluctuations for the XF model and helium films.
The dotted curve is based on the "lattice" Coulomb gas approxi-
mation of the XY model together with the Coulomb gas renor-
malization equations (see text).

B. Superconducting films

a relative to the other in the case of a square lattice;
T, =1/4e, =0.19m; is the critical Coulomb gas tempera-
ture corresponding to the XF model on a square lattice.
The initial value e; can be estimated by e; = ( 1

—2wXp) 1 +27TXo where Xo is the polarizability due
to neutral pairs with separation a. The density of such
pairs can be estimated by z; /a and the polarizability of
such a pair is a /(2T) [see discussion below Eq. (3.4)], so
that e;=1+m.z; /(T, X). It is obvious from Fig. 21 that
the "lattice" Coulomb gas approximation given by Eq.
(4.69) combined with the renormalizations equations in
the above fashion does not give a good description of the
e (X) extracted from the Monte Carlo data for the XY
model nor of the e (X) determined from experiments on
helium films. This indicates that the "lattice" Coulomb
gas is a rather crude approximation.

In summary, the situation for the helium films is the
following: The Coulomb gas universal jump prediction
for the superfluid density and the Coulomb gas scaling
seem to be borne out by experiments. The vortex fluctua-
tions described by the XY model appear to be strongly re-
lated to the vortex fluctuations for He films. Qn the oth-
er hand, the "lattice" Coulomb gas model by itself does
not give an adequate description.

8 /R~ ——E(X)Xg /[4e, A, (X)] . (5.2)

Close to the Kosterlitz-Thouless transition the screening
length A, can be approximated by Eq. (3.28), which leads
to

-5--

-10--

According to the Coulomb gas scaling ideas discussed
in Sec. IV.D.2, the resistance ratio R/R& should be a
"universal" (i.e., sample-independent) function of the scal-
ing variable X given by Eq. (4.59b) in the absence of an
external perpendicular magnetic field. Figure 22 shows
that this scaling property is indeed borne out by experi-
ment. The figure demonstrates how data from five dif-
ferent samples collapse onto a single "universal" curve

/
when plotted against the scaling variable X (the figure is
taken from Minnhagen, 1983a, where identification of the
measurements and further details can be found).

The "universal" resistance curve constructed from
available data is given in Fig. 23 (from Minnhagen,
1984b). An obvious question concerning this resistance
curve is to what extent its functional form can be tied to
the theory of the two-dimensional Coulomb gas. A com-
monly used approach is to try to relate the temperature
dependence of the resistance curve to the Kosterlitz renor-
malization equations [Eqs. (3.16)]. This possible relation-
ship was first pointed out by Halperin and Nelson (1979).
The connection is basically the following: From Eqs.
(4.58) and (2.2lb) one obtains a relation between the
Coulomb gas screening length A, and the resistance ratio,
which by use of the definition of X [Eq. (4.59a)] and the
relation 4 T, e, = 1 can be turned into

The Coulomb gas properties are strongly reflected in
experimental data from superconducting films, as will be
shown below. In fact the connection to the (static)
Coulomb gas appears at present to be more firmly estab-
lished for superconducting films than for helium films.

The experiments chosen below to illustrate the connec-
tion between Coulomb gas properties and superconduct-
ing films are measurements of IV (current-voltage)
characteristics.

FIG. 22. The measured resistance ratio R/R~ plotted against
the Coulomb gas scaling variable X=T(T,O

—T, )/[T, (T,O—T)) for five different superconducting films. The measure-
ments are represented by squares, dots, triangles, solid curve,
and dashed curve (from Minnhagen, 1983a, where an identifica-
tion of the measurements are given, together with the values of
T, and T,o and further details). The resistance ratios plotted
against X are apparently well described by a single function.
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tn(R/RN)

-0

FIG. 23. The "universal" resistance curve constructed from
data (solid curve, from Minnhagen, 1984b). The dashed curve is

—c, /+X —I
a fit to the functional form R/R~ ——CoXe ~ using Co
and C~ as free parameters [compare Eq. (5.4a); the dashed
curve corresponds to Co ——1.7 and C& ——4.9]. The agreement is
good, but the physical relevance is questionable. The dotted
curve is a fit to the same functional form but with Cj estimated
ab initio (C~ ——5.3) and Co as a free parameter (Co ——7.5). The
agreement is good in the region where the functional form can
be motivated.

—Q) /+X —1

R/R~ ——CpXe ' for 0&X—1&&1 ~ (5.3)

where Cp and C& are two constants. The constant C~ can
be related to the initial values e;(T, ) and z;(T, ) of the
renorrnalization-group equations at T, [compare Eq.
(3.28)], i.e.,

mE;(T, )

4z;(T, )E,
(5.4)

The dashed curve in Fig. 23 represents an attempt to fit
the experimentally determined resistance curve with the
functional form given by Eq. (5.3) using Cc and C, as fit-
ting parameters. As can be seen in the figure, the tem-
perature dependence of the resistance can be very well
represented by the functional form given by Eq. (5.3).

This sort of agreement between the temperature depen-
dence of the resistance and the functional form deter-
mined from the Kosterlitz RG equations is frequently
taken as an indication that the measured resistance is
indeed caused by vortex fluctuations (e.g., Resnick et al. ,
1981; Abraham et al. , 1982; Voss and Webb, 1982; Fiory
et al. , 1983; Hebard and Fiory, 1983; Kadin et al. , 1983).
However, it has been pointed out that this conclusion may
be too rash (Bancel and Gray, 1981; Minnhagen, 1981b;
Minnhagen, 1983b; Gray et al , 1985). First .of all the
theoretical prediction presumes that 0 & X —1 « 1. Con-
sequently the significance of the agreement outside this
region is questionable. Second, the measured resistance
curve has so little structure that a reasonable fit using the
functional form given by Eq. (5.3) with two or more ad-

justable parameters is almost guaranteed, without any
particular physical significance can be ascribed to it.

One way of making a more severe test of the connec-
tion between the functional form given by Eq. (5.3) for
0 & X —1 « 1 and the resistance curve would be to reduce
the number of free parameters. The dotted line in Fig. 23
represents such an attempt. In this case the constant C]
has been estimated as C~-5.3 by using Eq. (5.4) in the
following way (Minnhagen, 1986): The value s,=l.65 is
determined from experiments (Minnhagen, 1983b). The
value z;(T, ) is then estimated from a Monte Carlo simu-
lation of the Ginzburg-Landau Coulomb gas (Minnhagen
and Weber, 1985; see below). Finally, the requirement
that this be consistent with the renormalization equations
gives s;(T, )=1.39, and C&-5.3 follows. As is apparent
from a comparison of the dotted and solid curves in Fig.
23, the functional form given by Eq. (5.3) agrees well with
the temperature dependence of the resistance in the inter-
val 1.1&X&1.2 when the constant C~-5.3 is given ab
initio and only the parameter cp is varied. This may be
taken as an indication of agreement between theory and
experiment close to the Kosterlitz-Thouless transition, al-
though a firmer conclusion as regards the functional form
given by Eq. (5.3) would require that the constant Cc also
be estimated ab initio.

The obvious weakness of the functional form of R /R~
derived from the Kosterlitz RG equations is that it can
only be motivated for 0 & X —1 « 1, whereas the
overwhelming part of the data is from outside this region.
Furthermore, close enough to X= 1 the theoretical func-
tional form derived from the Kosterlitz RG equations
breaks down in the case of a superconductor, due to the
fact that A,, is finite (compare Fig. 2 and Table III). A
possible way of overcoming this difficulty in the compar-
ison between theory and experiment is to try to obtain the
quantities on the right-hand side of Eq. (5.2) outside the
region 0 & X —1 «1 by.other means. One such means is
to resort to Monte Carlo simulations for the two-
dimensional Coulomb gas.

An example of an attempt in this direction is the fol-
lowing (Minnhagen and Weber, 1985): The Ginzburg-
Landau Coulomb gas (see Sec. IV.D) is transformed into a
nonlocal sine-Gordon theory (see Sec. II.C), letting E,
and c be free parameters (compare Table IV). This nonlo-
cal sine-Gordon theory is discretized into a lattice field
theory, and the Fourier transform of the Green's function
at k=0 [see Eq. (2.60)] is generated by a Monte Carlo
simulation technique. The connection to the resistance in

this case takes the form R/R~ =XG '(k =0)/(4s, )

[compare Eqs. (2.61), (2.64), and (5.2)]. The value of c., is
estimated to be c,=1.6S from experimental data for non-
linear IV characteristics (Minnhagen, 1983b; see Sec.
V.B.2). The free parameter E, in the Monte Carlo simu-
lation is varied in order to obtain the best fit to the experi-
mental 8 /Rz curve (only the portion of the curve X& 1.8
is used, due to limitations in the simulation convergence).
A value E,=0.36, close to the Ginzburg-Landau
Coulomb gas value E, =0.39, has been obtained in this
way (Minnhagen and Weber, 1985). This was interpreted
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as an indication that the "universal" resistance curve ex-
tracted from experiments is closely related to the
Ginzburg-Landau Coulomb gas model (Minnhagen and
Weber, 1985).

As a by-product of this Monte Carlo simulation, the
value c=13 was obtained (compare Table IV). This
value, 'together with the Ginzburg-Landau Coulomb gas
value E,=0.390 (see Table IV) and the experimentally
determined e, =1.65 (Minnhagen, 1983b), gives the initial
value z;(T, )=0.023 used above in order to estimate C~
given by Eq. (5.4).

Thus, in summary, the situation for the "universal"
resistance curve seems to be the following: The
Ginzburg-Landau Coulomb gas prediction, that the ex-
perimental data for the resistance of thin superconducting
films should fall on a single curve when plotted against
the Coulomb gas scaling variable X, appears to be con-
firmed (Minnhagen, 198lb; Resnick et a/. , 1981;
Minnhagen, 1983a, 1983b; Kihmi et a/. , 1984;
Minnhagen, 1984b; Lee, 1985). The functional form of
the resistance predicted by the Kosterlitz RG equations is
consistent with the data (e.g., Bancel and Gray, 1981;
Resnick et al. , 1981; Wolf et al. , 1981; Abraham et al. ,
1982; Voss and Webb, 1982; Fiory et a/. , 1983; Hebard
and Fiory, 1983; Kadin et a/. , 1983; Svistunov et a/. ,
1984), but the physical significance is questionable due to
too many free parameters combined with the fact that
most of the resistance data are from outside the region
where the theoretical prediction can be motivated.
Reducing the number of free parameters to one, as
described above, to some extent overrules this objection
and does give a result that agrees in the region where the
theoretical prediction can be motivated. Hence it may be
taken as an indication of agreement between Coulomb gas
theory and experiment. A stronger connection is indicat-
ed by Monte Carlo simulations which suggest a close rela-
tion between the Ginzburg-Landau Coulomb gas model
and the "universal" resistance curve (Minnhagen and
Weber, 1985).

2. Nonlinear IV characteristics

According to the Coulomb gas model there are no free
vortices present below T, and hence no flux-flow resis-
tance. However, free vortices should, according to the
Coulomb gas model, be generated below T, provided a fi-
nite current j„ is imposed across the superconducting
film. The Coulomb gas prediction for the flux-flow resis-
tance generated below T, in this way is equivalent to a
nonlinear IV characteristic of the form V- (j,„)' ',
where a(X)=1+2E,/[Xe (X)] [see Sec. IV.D.2 in con-
nection with Eqs. (4.63)]. Measurements of this nonlinear
IV characteristic below T, have been performed by Ep-
stein et al. (1981, 1982), Resnick et al. (1981), Abraham
et al. (1982), Fiory et al. (1983), Hebard and Fiory
(1983), Kadin et al. (1983),and Lee (1985).

Precisely at T, the Coulomb gas prediction for the ex-
ponent is a (X'=1)=3 [compare Eq. (4.63c)]. This predic-

tion is borne out by experiments, as has been especially
clearly demonstrated by Hebard and Fiory (1983) and
Fiory et al. (1983) on indium/indium oxide composite
films.

In the experiments by Fiory et al. (1983) it was also
shown that the Coulomb gas interpretation of the non-
linear IV characteristics agreed well with the Coulomb
gas interpretation of measurements of the complex im-
pedance very close to T, . However, further below T,
these two types of measurements diverged (Fiory et al. ,
1983), suggesting that other effects come into play at
lower temperatures, possibly vortex pinning. Deviations
from the pure Coulomb gas interpretation below T, due
to vortex pinning have also been suggested by Lee (1985)
on the basis of experiments of flux-flow resistance in a
perpendicular magnetic field for the same type of
indium/indium oxide samples as used by Fiory et al.
(1983). This type of additional complication must be kept
in mind when trying to interpret experiments by the
Coulomb gas model, as has been emphasized by Gray
et al. (1985). On the other hand, the importance of such
additional complications seems to vary among different
types of samples. In order to test the Coulomb gas pre-
dictions as directly as possible, one obviously needs a sam-
ple for which these additional complications are
suppressed as much as possible. Possible candidates in
this respect are the Hg-Xe alloy films measured by Ep-
stein et al. (1982) and Kadin et ol. (1983). These samples
may, i@so facto, be interpreted by the Coulomb gas model
in a particularly consistent way, including temperatures
extending somewhat below the Kosterlitz-Thouless tem-
perature (Minnhagen, 1983b). In this section these
"favorable" measurements have been chosen in order to
illustrate various aspects of the connection to the
Coulomb gas model.

In Figs. 24(a) and 24(b), results from measurements of
the nonlinear IV characteristics for two Hg-Xe alloy films
are plotted (samples no. 4 and 5 from Kadin et al. , 1983).
The measured exponent a ( T) is plotted as [a ( T) 1]T—
against T [dots in Figs. 24(a) and 24(b), from Minnhagen,
1983b]. According to the Coulomb gas analogy, a(X) is
given by Eq. (4.63c). Provided that a Ginzburg-Landau
approximation is adequate and that X is given by Eq.
(4.59b), one obtains

(5.5)

where T,o is the Ginzburg-Landau temperature and
(T) describes the polarization due to bound vortex

pairs. As is explained in connection with Fig. 3, E (T) is
approximately 1 when T is small enough. Hence one ex-
pects that [a(T)—1]-(T,O T) for lower tem—peratures.
As can be seen in Figs. 24(a) and 24(b), this expectatiom of
a linear temperature dependence is realized in a narrow
temperature region (the solid lines). On the other hand,
for too low temperatures this linearity appears to break
down. Note that according to this Coulomb gas interpre-
tation the crossing between the solid line and the T axis
defines T,o. The dashed line in Figs. 24(a) and 24(b) is
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2T plotted against T. Since a(X)=3 at the Kosterlitz-
Thouless transition, it follows that the crossing between
the dashed line and the measured [a (T) 1—]T points de-
fines the Kosterlitz-Thouless temperature T, .

Taken by itself the Coulomb gas interpretation of the
nonlinear IV characteristics given by figures like 24(a)
and 24(b) is consistent but, of course, hardly compelling.
However, the evidence in favor of this interpretation in-
creases considerably if, when taken together with other

data, it forms part of a consistent picture. As an example
of such a consistency test, Fig. 25 shows the flux-flow
resistance for the sample corresponding to Fig. 24(a) plot-
ted against X=T(T,o T,—)/[T(T, o .T—)] (dots in Fig.
25), with T,o and T, obtained from the Coulomb gas in-
terpretation of the nonlinear IV characteristics. The solid
curve is the "universal" resistance curve extracted from
entirely different types of samples. As can be seen in Fig.
25, the dots fall on the "universal" curve. This means
that for this Hg-Xe alloy sample the Coulomb gas inter-
pretation of the nonlinear IV characteristics below T,
agrees perfectly with the Coulomb gas interpretation of
the flux-flow resistance above T, (Minnhagen, 1983b).

Another possible consistency test is to extract the
Coulomb gas dielectric constant e (X) from Figs. 24(a)
and 24(b). For a given X, e (X) is the ratio between the
solid line and the dots in Figs. 24(a) and 24(b). The re-
sulting E„(X) is plotted in Fig. 26 [dots and crosses refer
to Figs. 24(a) and 24(b), respectively]. According to
Coulomb gas scaling (see Sec. IV.D.2), e (X) should be a
"universal" (i.e., sample-independent) function. As can be
seen in Fig. 26 this Coulomb gas feature of the data is
rather well fulfilled.

An interesting question in this context is to what extent
the functional form of the e (X) extracted from the non-
linear IV characteristics can be tied to the Coulomb gas
model. The solid curve in Fig. 26 is a calculation based
on the Coulomb gas renormalization equations [Eqs.
(3.14); Minnhagen, 1986]. The starting point for this cal-
culation is the Ginzburg-Landau Coulomb gas model (see
Sec. IV.D and Table IV), supplemented with the value
c=13 obtained from the "universal" resistance curve
(Minnhagen and Weber, 1985) and the value s,=l.65 ob-
tained from nonlinear IV characteristics (Minnhagen,

20-
In (R/R. )

0-

10-

3.1 3.5
TG TGo

FICx. 24. The exponent a(T) for the nonlinear IV characteris-
tics. Measurements in (a) and (b) are from two Hg-Xe-alloy
samples (represented by dots, data from Kadin et ah. , 1983; for
details, see Minnhagen, 1983b). The data are plotted as
[a(T)—1]T vs T. For lower temperatures a linear behavior
[a(T) 1]T-T, TOis expected —[solid lines in (a) and (b)].
Crossing between solid line and T axis gives T,o. The dashed
lines are [a(T)—1]T=2T. Crossing between dashed line and
measured values gives T, . [The determined values for T, and
T,o are T, =3.30 K, T,o ——3.88 K for case (a); T, =3.64 K,
T p =3.84 K for case (b).]

-10-

FIG. 25. Example of a consistency test. The resistance ratio
for the same sample as in Fig. 24(a) is plotted against
X=T(T,Q T )I[T (T 0 T)] where T,o and T, are the same
as in Fig. 24(a). The resistance data are represented by dots.
The solid curve is the "universal" resistance curve (from
Minnhagen, 1983b).
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above, the Coulomb gas interpretation appears to be con-
sistent in a temperature region extending somewhat below
T, . An example of evidence in this direction is the agree-
ment between the Coulomb gas interpretations of the non-
linear IV characteristics below T, and the flux-flow resis-
tance above T, (Minnhagen, 1983b). Another is the ap-
parent Coulomb gas scaling of the e„(X) extracted from
experiments (Minnhagen, 1983b).

3. Magnetic field scaling of the resistance

0.5

FIG. 26. The Coulomb gas dielectric constant c (X) extracted
from the data given by Fig. 24. Dots and crosses refer to Figs.
24(a) and 24(b), respectively. The c extracted from the two
samples agree rather well. The solid curve is a calculation based
on the Coulomb gas renormalization equations (see text).

1983b). The renormalization equations are integrated
from /;[=ln(r/2rp)] =0. The initial values are

According to the Coulomb gas model, the resistance ra-
tio R/R~ should (in the limit of a small external current

j,„)be a "universal" (i.e., sample-independent) function of
the two variables X and 8,„/8„,where B,„ is an external
perpendicular magnetic field and B„(=yp/2m. g ) is the
scaling magnetic field [see Sec. IV.D.2 in connection with
Eq. (4.60)]. This Coulomb gas scaling appears to be ful-
filled by experiments (Minnhagen, 1983a, 1984b; Lee,
1985).

Figure 27 gives a direct illustration of the Coulomb gas
scaling (Lee, 1985). The resistance ratios RIR& in the

Zf
(2rp ) E /(4xTCG —)2

C C

and T; =e;T, X, with E, =0.390, g=crp —13rp, and
T, = 1/(4e, )=0.152. The initial value (eT, )=1.39 fol-
lows from the renormalization equations and the condi-
tion T, =0.152. The rest of the e;(T) values may be es-
timated by E; =(1—2m/;) '=1+2nX;, where X;, the po-
larizability due to neutral pairs with separation less than
2rp is assumed to be proportional to the density of such
pairs, which in turn is expected to be proportional to z;
for small densities. This gives the estimate

e(T)=1 +[ e( T) —l][z;(T)/z(T, ) ]

CL

CL

-'10—

-15—

G 0
0

used in the calculation. %'hen comparing this calculated
Coulomb gas e (X) with the experimentally determined

(X) it should be noted that the agreement at X= 1 is
guaranteed [because e, =1.65 used in the calculation was
obtained from the experimental e, (X)]. Nevertheless, as
is apparent from Fig. 26, the agreement between this
Coulomb gas calculation and the measurements is rather
suggestive.

In summary the situation for the connection between
the nonlinear IV characteristics and the Coulomb gas
model seems to be the following: The Coulomb gas pre-
diction a(X=1)=3 at T, is borne out (as is especially
clearly demonstrated by Hebard and Fiory, 1983, and
Fiory et al. , 1983). The Coulomb gas interpretation of
the nonlinear IV characteristics is consistent with the
Coulomb gas interpretation of the complex impedance
close to T, (Fiory et a/. , 1983). However, below T, in-
consistencies in the Coulomb gas interpretation often ap-
pear, possibly connected with vortex pinning effects. For
some samples, like the Hg-Xe alloy samples discussed

I

C

I

2

CO C

C

FIG. 27. Resistance ratio for two indium/indium oxide sam-
ples in a fixed perpendicular magnetic field B„=50mG. The
resistance is plotted against the scaling variable
&=T(T p

—T )If T (T p —T)]. The data for the two samples
are represented by squares and circles. T,o and T, are deter-
mined from the Aslamozov-t. arkin formula and the nonlinear
IV characteristics, respectively (for details see Lee, 1985: U,
Tc =3 122 K-~ Tco=3 298 I, 0, T, =2. '72'7 &~ Tco=2.990 K.).
The scaling fields B„(X)are almost equal for the two samples.
The agreement above T, may be interpreted as a manifestation
of Coulomb gas scaling (from Lee, 1985).
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case of a fixed perpendicular magnetic field B,„=50 mG
for two indium/indium oxide samples are plotted against
the scaling variable X=T(T,—T,o)/f T, (T,o T—)]. The
temperatures T,o and T, are in this case independently
determined from the Aslamozov-Larkin formula (As-
lamozov and Larkin, 1968) and the nonlinear IV charac-
teristics (compare Sec. V.B.2), respectively. The scaling
fields B„(X)are almost equal for the two samples. Con-
sequently the overlap of the data above T, can be inter-
preted as a manifestation of Coulomb gas scaling (Lee,
1985). Below T, this scaling property appears to break
down, possibly due to vortex pinning effects (Lee, 1985).

Figure 28 gives another illustration (Minnhagen,
1984b). The solid curve in the figure represents a mea-
surement taken at a fixed B,„as a function of tempera-
ture (an aluminum/aluminum oxide sample measured by
Masker et al. , 1969). In Fig. 28 the measured resistance
ratio R/R~

~
~ is plotted as a function of the corre-

ex

sponding resistance ratio for B,„=0, i.e., &/&~
~ ~

The four dots represent four samples measured at fixed
temperature as a function of B,„(four indium/indium ox-
ide samples measured by Fiory et al. , 1983). The dots
give the measured values of these samples at the same
value of the scaling variable B,„/B„as the sample
represented by the solid curve. Magnetic field scaling is
obeyed provided the dots fall on the solid curve and is ob-
viously well borne out by the example given in Fig. 28.

The Coulomb gas model leads to the following func-
tional expression for the flux-flow resistance (Minnhagen,
1981a): The density of free Coulomb gas particles for a
non-neutral Coulomb gas is given by Eq. (2.44). By use of

the Coulomb gas analogy this can be translated [compare
Sec. IV.D.2 in connection with Eq. (4.60)] to

—2/Y 1/2

] 2 (5.6)
R~ R~

&ex

&S.

Yl. DYNAMICAL ASPECTS

where ~ and v are functions of X and B,„/B„and v is re-
lated to the Coulomb gas dielectric constant by
v=4sTc+!(4sT 1). H—owever, the functional forms
of the functions ~(X,B,„/B„) and v(X,B,„/B„) are at
present unknown.

Equation (5.6) predicts a crossover from a high-
temperature region where the flux-flow resistance is dom-
inated by thermally created free vortices to a low-
temperature region where the flux-flow resistance is dom-
inated by the vortices corresponding to the external field
(compare Fig. 4, which illustrates this crossover in terms
of the density of free Coulomb gas particles). The cross-
over behavior described by Eq. (5.6) is in qualitative
agreement with measurements (Fiory et al. , 1983;
Minnhagen, 1983a; Kihmi et a/. , 1984; Lee, 1985). How-
ever, a more critical test of Eq. (5.6) by experiments has
so far not been achieved; one difficulty is that the func-
tional forms of a and v are at present unknown.

Thus, in summary, the magnetic field scaling predicted
from the Coulomb gas analogy appears to be borne out by
experiments. The functional form of the flux-flow resis-
tance predicted from the Coulomb gas model is in quali-
tative agreement with experiments, but a critical test of
this functional form by experiments is lacking at present.

0--

CL

C

-10
-15 -10

(n(R/R )

FIG. 28. Example of magnetic field scaling for resistance (from
Minnhagen, 1984b). The solid curve is an aluminum/aluminum
oxide sample measured for B,„=O.37 G. The resistance ratio is
plotted as a function of the corresponding B,„=oresistance ra-
tio. The four dots represent measurements of four
indium/indium oxide samples for the same values of the mag-
netic scaling variable B,„/B„as the solid curve. According to
Coulomb gas scaling, the dots should fall on the solid curve.

In the preceding section, experiments reflecting 'static"
Coulomb gas properties were discussed. This section
deals with modifications of the "static" Coulomb gas
model aimed at a description of experimental results re-
flecting the dynamical aspects of vortices for superfluid-
superconducting films.

The dynamics of the Coulomb gas is introduced by as-
suming that the Coulomb gas charges move according to
a Langevin equation (Sec. VI.A). A central quantity in
the dynamical description is the frequency-dependent
complex dielectric function describing the response of the
Coulomb gas to an external time-dependent electric field.
A heuristic estimate of this complex dielectric function is
given in Sec. VI.A. l. The imaginary part of the complex
dielectric function describes the energy dissipation. This
dissipation constitutes the most direct way in which the
dynamics of the Coulomb gas is reflected in experiments
on superAuid-superconducting films.

A description of vortex dynamics for superfluid films
was developed by Ambegaokar et al. (1978), Ambegaokar
and Teitel (1979), and Ambegaokar et al. (1980). It in-
volves a combination of the length-dependent screening
reasoning (see Sec. III.B), a Langevin equation describing
the dynamics, and Kosterlitz renormalization-group equa-
tions [Eqs. (3.16)]. Some aspects of this description are
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treated in Sec. VI.A.2 within the Coulomb gas formula-
tion. The relation to vortex dynamics (Ambegaokar
et al. , 1978, 1980) is described in Sec. VI.A.3.

Section VI.B illustrates the "dynamical" Coulomb gas
aspects by two experimental examples. The first concerns
the dissipation observed in the torsion pendulum experi-
ment for helium films (Sec. VI.B.1). The "static" aspects
of this experiment were described in Sec. V.A. The
second concerns the observed scaling properties for the
complex dielectric function extracted from a supercon-
ducting film (Sec. VI.B.2).

Section VI.C discusses the connection between
Maxwell's equations in two dimensions and vortex
dynamics (Ambegaokar et al. , 1980).

A. Coulomb gas with dynamics

Dynamics is introduced into the "static" Coulomb gas
model described in Secs. II and III by postulating that a
Coulomb gas charge moves according to the Langevin
equation

ett
cG F,' (t)+g(t),

dt Tca (6.1)

where rj is the position vector of a Coulomb gas particle,
F~ is the effective force acting on it, g is the diffusion
constant for Coulomb gas charges [with dimension
(length) /time], and g is a Gaussian noise obeying

(6.3)

where Re{ ] denotes the real part of { ].
The dielectric function E(co) will be a fundamental

quantity in the description. It is related to the time-
averaged superfluid density ps by [compare Eq. (4.43)]

ps 1=Re .
p e(co)

(6.4)

This relation can be inferred in the following way: First
one observes [see Eq. (6.3)] that

(6.2)

where a and /3 denote the Cartesian components. This
Langevin equation for the Coulomb gas mimics the vor-
tex dynamics for superfluid films (Ambegaokar et al. ,
1978, 1980; see Sec. VI.A.3). The aim is to describe the
situation in which a small time-dependent external elec-
tric field D(t) is acting on the Coulomb gas. The time
dependence of D(t) is taken to be an oscillation with fre-
quency co, i.e., D(t) =D cos(cot).

Linear-response theory can be used, since the aim is a
description valid for small D. Consequently the effective
mean electric field E' (t) acting on the Coulomb gas
charges can be expressed in terms of a complex-valued
frequency-dependent dielectric function e(co) =E~ (co)

+ i E(tee), i.e.,

1 '~ dt E"(t)
E(co) o t~ D (t)

(6.5)

where the time average is taken over a period tz
——2~/co.

The force acting on a vortex for a neutral (charged) super-
fluid is the Magnus (Lorentz) force, which is proportional
to the superfluid mass flow (see Sec. VI.A.3). Thus D(t)
is proportional to an externally imposed mass current

g,„(t) and E' (t) to the resulting average of the total mass
current g„,(t), so that

g ( t) Eeff( t)

g,„(t) D(t)
(6.6)

As discussed in Sec. IV.A. 1, the superAuid density can be
defined by Eqs. (4.9), which in the static case leads to an
expression in terms of mass-current correlation functions
given by Eq. (4.10). This expression can alternatively be
cast into the form (Minnhagen and Warren, 1981)

PS . g tot
lcm

p ge gex
(6.7)

which means that the ratio between the renormalized and
"bare" superfluid density is equal to the ratio of the total
and imposed mass currents in the limit of a small im-

posed mass current. This definition of the superfluid den-
sity carries over to the time-dependent case, which means
that the superfluid density in this case is time dependent
and given by

(6.8)

The time-averaged superfluid density ps is just

p dt
PS= PS t (6.9)

1. Qualitative features of the dielectric function

The Langevin equation for the Coulomb gas charges
[Eq. (6.1)] introduces an additional length into the
description, namely, a characteristic diffusion length
V'Q/co (Ambegaokar et al. , 1978). One may heuristically
obtain approximations for the dielectric function s(co)
describing the dynamics directly from a static description
by focusing on the role played by this diffusion length
(Ambegaokar et al. , 1978).

One version of this type of reasoning is the following:
Let us start from the static result in the form [compare
Eqs. (3.4) and (4.43)]

and Eq. (6.4) now follows from Eqs. (6.5)—(6.9).
In Sec. VI.A. 1 we obtain an expression for E(co) by a

heuristic argument and discuss the qualitative features of
E(co). Section VI.A.2 describes some aspects of the con-
junction between the length-dependent screening reason-
ing and dynamics, while Sec. VI.A.3 makes contact with
vortex dynamics.
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=1+
CG f dr r (bn(r)hn(0)) .

p TcG o
(6.10)

=1+ co f dr r (bn(r)hn(0)), (6.11)
TCG O

where ( ) denotes the thermal average for the static
Coulomb gas. Expressed in terms of the corresponding
Fourier transform [Eq. (4.42)], this in turn suggests that

ps for the dynamical case is approximately given by

As discussed in Sec. III.B, the right-hand side can be in-
tuitively interpreted as describing the polarization caused
by neutral pairs, where r is the separation between the
particles in a pair. Now, let us try to introduce dynamics
into this intuitive picture. Obviously the particles in a
pair with separation r have to move a distance 2~r during
a period if the pair is going to maintain a fixed orienta-
tion with respect to the electric field. This means that
only pairs with separation r «V'P/co will have time to
relax in the electric field. The contribution from such
pairs to the polarization is just the same as for the static
case. On the other hand, pairs with separation
r»v'8/co will not have time to relax in the electric field
and hence will not, when time-averaged over a period,
contribute to the polarization. This suggests that the
time-averaged superfiuid density for the dynamical case is
approximately given by

where I' denotes the principal part. Since X is propor-
tional to co, an explicit expression for ImI1/E(co)j is
readily obtained from Eq. (6.14) by using Re[1/E(co) j
given by Eq. (6.13) as input. The result is

1+(A.„/A., )
Re- (6.15a)

E(~) E 1+(A, /A, )'

Im — = [(A, /A, ) —(X„/A,, ) ]

Xln(A, /A, )[1—(k /X) ] ' . (6.15b)

An appealing feature of this expression is that it describes
the qualitative physics in terms of the interplay between
three length scales, i.e., the screening length A, , the
dynamical length A, , and the range of the "bare" particle
interaction A,

The dominant qualitative physics reflected in the quan-
tity 1/E(co) is determined by the rapid decrease of the
screening length k with increasing temperature due to
charge unbinding (see Sec. II.B). Consequently, on a
qualitative level, the temperature variation of the dielec-
tric constant Y., which describes the polarization due to
bound pairs, can be neglected and Y can be replaced by its
"bare" value E= 1 (see Sec. II.B). Equations (6.15) then
reduce to

1 — (bn{k)bn{ —k)), (6.12)

1 1+C
e(co) 1+Y

' (6.16a)

where A,„is a length of the order of &g/co. This may al-
ternatively, by use of Eq. (4.45), be expressed as

ps 1+(A, /A, , )

1+(k /A)
(6.13)

1 1 1Im. I' dao Re .
e(~) ~ 0 E(co')

2co
2 & 2

(6.14)

which also covers the generalization to the case of a non-
neutral Coulomb gas (Minnhagen, 1981a). The length A,

will be referred to as the dynamical length; it may be in-
terpreted as a measure of the length scale over which the
time average of the charge-density correlations in the
Coulomb gas is destroyed due to the dynamics. The
length A,, is the cutoff length of the "bare" particle in-
teraction [compare Eqs. (2.3) and (2.5)] and A, is the effec-
tive screening length [compare Eqs. (2.21), (2.22), and
(2.25)].

The superfluid density is related to the dielectric func-
tion by Eq. (6.4), so that Eq. (6.13) is really an expression
for ReI1/E(co) j. Consequently the imaginary part of the
same response function, i.e., ImI 1/E(co) j, can be obtained
by the Kramers-Kronig relation

1 4( Y —C)ln( Y')

E(~) ~(1—Y') (6.16b)

where Y=(A,„/X) and C=(A,„/A, , ) .
A qualitative estimate of the actual temperature depen-

dence can be obtained by approximating the rapid tem-
perature variation of A, with the Coulomb gas estimate
[see Eqs. (2.29) and (2.30)],

(A, /ro) = Iconst/[1 —(A, /A, , ) ] j (6.17)

where X=T /T, is the Coulomb gas temperature
variable [compare Eq. (4.59a)]. The dynamical length A,

can for this purpose be taken to be a temperature-
independent constant.

Let us first consider the case in which the "bare" parti-
cle interaction is logarithmic to arbitrarily large distances,
i.e., A,, = ~ [compare Eq. (2.5)]. This case is described by
Eq. (6.16) with C=O. The basic features given by Eqs.
(6.16) for this case are that ReI1/e(co) j drops from its T,
value to zero with increasing Y; whereas —ImI 1/e(co) j is
a positive function that goes to zero for Y~o and has a
maximum for Y=1, i.e., has a maximum for the tem-
perature for which the screening length A, is equal to the
dynamical length I,„. [For lower (higher) temperatures
the screening length A, rapidly becomes much larger
(smaller) than A.„; compare Eq. (6.17)]. One notes that
within the approximation given by Eqs. (6.16) the position
of this maximum is precisely where Re[1/s(co)j has
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sumptions and focuses on the interplay between the three
large length scales involved, i.e., A, , A, , and. A, Conse-
quently, the features obtained may be expected to be the
true qualitative ones, which should be qualitatively in-
dependent of more detailed model assumptions.

In Sec. IV.A.2 a more "canonical" version of the
dynamics is outlined. This description is due to Am-
begaokar et al. (1978, 1980) and Ambegaokar and Teitel
(1979) and covers the A,,= oo case for a neutral Coulomb
gas. It involves more explicit dynamical assumptions, but
as expected the qualitative features obtained agree well
with the description given above.

Another version of the dynamical theory has been given
by Shenoy (1985a, 1985b). This description starts from a
microscopic model of a square array of coupled Josephson
junctions. Again, on a qualitative 1eve1, the result ob-
tained agrees with the A,,= oo case for the neutral
Coulomb gas given above.

The k, &ao case for a neutral Coulomb gas has been
considered by Kotsubo and Williams (1984, 1986) and
Wang and Lu (1986). These authors study the very spe-
cial model of a Coulomb gas confined on a spherical sur-
face with radius W. The radius W plays the role of the
cutoff A,, for the "bare" particle interaction. With this
obvious identification the qualitative features obtained
agree well with the description given in the present sec-
tion.

2. Length-dependent screening and dynamics

This section describes a reasoning that more directly
combines the length-dependent screening idea (Sec. III.B)
and the Langevin equation (6.1), the object being to obtain
an approximation for the dielectric constant s(co). The
reasoning is due to Ambegaokar et al. (1978, 1980) and
Ambegaokar and Teitel (1979). It concerns the case of a
neutral Coulomb gas with an infinite range for the "bare"
particle interaction, i.e., k, = ao.

The reasoning is based on the intuitive picture that the
Coulomb gas consists of a mixture of free charges and
neutral bound pairs of charges. In accordance with this
picture, it is assumed that the motion of a free charge is
only weakly correlated with the motion of other individu-
al charges. In contrast, the motion of one of the charges
of a neutral bound pair is strongly correlated with the
motion of the other member of the pair. The free charges
and the bound pairs will then give two additive contribu-
tions to the complex electric susceptibility, X(co), so that
[compare Eqs. (3.6)—(3.8)]

e(co)=1+2~X(co)=1+.2~X~(co)+ 2~7'(co), (6.18)

where sJ is the charge of the free particle. From the
Langevin equation (6.1) and the linear-response result
[Eq. (6.3)] one then obtains

gnFD e i—mt

Im
coT &(~)

(6.20)

(6.21)

The polarization is just the sum over the dipole vectors,
which within a linear-response description is given by Eq.
(6.20). This result can be expressed in terms of an electric
susceptibility Xo(co), which corresponds to the "indepen-
dent dipole approximation" discussed in Sec. III.B, i.e.,

2~XO(co) = 1 —I /E(co),

where

(6.22)

Xo(co)D(co)= —pe(rj. (co) ) for D(co)~0 .J J (6.23)

Here (rj(co)) is given by

dt
( r (co) ) = f e'"'(r (t) ) (6.24)

tp

and similarly for D(t), so that D(co) =D in the present
case. Combining Eqs. (6.20)—(6.23) gives

E(n) ) = I +2rrio /co, (6.25a)

where

nF8
CT=

TcG (6.25b)

and cr can be thought of as a conductivity. Thus, in sum-

mary, the reasoning for the free charges leads to a contri-
bution to the electric susceptibility given by (Ambegaokar
et al. , 1978)

inF8
Xp(co) =

AT
(6.26)

We now turn to the contribution from the bound neu-
tral pairs. The electric susceptibility Xo(co) can be ex-
pressed as [compare Eqs. (6.22)—(6.24)]

where n~ is the density of free charges and ( ) denotes
the average. One can always fictitiously divide the free
charges into dipole pairs. The sum of the dipole vectors
in such a division is given by

Feff Eeffs (6.19)

where the subscript F (B) denotes free (bound) charges.
The effective force FJ acting on a free particle is ap-

proximately given by the mean electric field E' because
the free-particle motion is only weakly correlated to other
individual particles, i.e.,

or [compare Eqs. (6.18) and (6.22)]

B(r, (co) )
Xg ( co ) = g $J. BE' (co)

(6.27)

(6.28)
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x ——
0 0

B(r;)
BD

and [compare Eq. (6.21)]

In the static case this reduces to

(6.29)

(6.33)

An argument by Ambegaokar and Teitel (1979) based
on the Langevin equation [Eq. (6.1)] shows that the func-
tion g (r, co) can be approximated by

g(r, co) =
$72

Q + J BEeffj Eeff=0
where A, is a dynamical length scale given by (compare
Sec. VI.A. 1)

B(r;, )
BEeff

dip
(~j) Eeff 0

(6.30)

Let us introduce the length-dependent screening reasoning
(compare Sec. III.B) through a static length-dependent
electric susceptibility Xii (r) defined by [compare Eq.
(6.30)]

(6.34)

The main steps in this argument are the following.
Consider the expression for the static charge-density

correlation function given by Eq. (3.3a). For r &A, this
reduces to

22
(bn (r)hn (0))= —

z expI [VL (r) —VL (0)]/T I (6.35)

5(r' —r;~) .

Eeff p

(6.31)

Xii(r, co)= f d r'8(r —r')—
Q

The intuitive picture is that (B/Br)X&(r) gives the contri-
bution to the electric susceptibility from all dipole pairs
with separation r between the particles within a pair. If
there are free charges present, then the particle interaction
is screened out, so that the largest dipole pairs in the in-
tuitive picture would have a separation of the order of the
screening length A, . Consequently the contribution from
the bound pairs to the electric susceptibility can, in the
static case, using this intuitive picture, be estimated by
Xg(&).

Next we consider how this picture is modified by the
dynamics. The contribution to Xii(co) can again be con-
sidered to be built up by contributions from the individual
pairs (as is apparent by comparing Eqs. (6.28) and (6.30)].
Consequently the length-dependent electric susceptibility
can be generalized to the dynamical situation by [compare
Eq. (6.31)]

dr(t) 2g
co Fd;p(t)+my,

dt
(6.36a)

which is the Langevin equation for a neutral pair with the
dipole vector r [compare Eq. (6.1)],

(il (t)il~(t')) =4@"o p(t —t') (6.36b)

describes the corresponding Gaussian noise il [compare
Eq. (6.2)], and

F,"(t)= — 8(r, t)
dr

(6.36c)

is the effective force acting between the two particles in a
neutral pair, expressed in terms of a potential P(r, t).
Within a linear-response description the potential P'(r, t)
is conveniently split into a zero-order and a first-order
contribution in the external electric field, i.e.,

because [1—exp[ 2VL (r)/—T ] J is approximately equal
to 1 for r &A, . Vt(0) —Vt(r) is the work needed to
separate two charges of opposite sign by a distance r, and
(d/dr)VL (r) is the attractive effective force acting be-
tween them. An external field contributes an additional
amount of work —E' r, where r is the dipole vector as-
sociated with the pair. This corresponds to an additional
repulsive force E' between the particles [compare Eq.
(2.48)]. The Langevin equation for a dipole vector is ob-
tained by combining the Langevin equations for the two
particles in the pair. This gives

B(r;,(co) )
X Q,tt &(r' —r;J),BE' (co) E.«p

&ij &

(6.32a) F(r, t) = Pp(r)+ 8'i(r, t) . (6.36d)

The zero-order contribution P'p(r) is just the static result
which we may rewrite as P'p(r) = VL, (0)—VL, (r), (6.36e)

r
Xg(r, co) = dr'g(r', co) , Xg(r'), —(6.32b)

0 Br'

where the function g(r', t0) is introduced to express the
difference between the static and dynamical cases. The
function g(r', co) can be interpreted as expressing the
modification from the static to the dynamical situation of
the contribution to the electric susceptibility from pairs
with intraparticle separation r '.

whereas the first-order contribution P'i(r, t) is given by

P, (r, t) = —E'"(t).r . (6.36f)

As discussed in Sec. III.B, the charge-density correla-
tion function can be interpreted in terms of the density of
dipole pairs with separation r. This dipole density wi11 be
denoted by I (r, t). In the static case I is given by [com-
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pare Eq. (3.5)]
X~(r,~)=g(r, ~) Xii(r),

8
(6.43)

I o(r) =dip(r) = —Q(hn(r)b, n (0) ) /2
—V(r)rTco (6.37a)

and the generalization to the case of a small tiine-
dependent external electric field is given by

I (r, t) = —Q(bn (r, t)b n(0, 0) ) /2

=I 0(r) +I,(r, t), (6.37b)

a2+2@,I (r, r) .
Br

(6.38)

To linear order in the external field this becomes [com-
pare Eqs. (6.36d)—(6.36f) and (6.37)]

where I ] is linear in the external field.
A Fokker-Planck equation for the dipole pair distribu-

tion I (r, r) corresponding to the I.angevin equation (6.36)
is given by (Ambegaokar and Teitel, 1979; Teitel, 1981)

r

I (r, r) = I (r, r) g (r, r)
a 2g a a

so that the g(r, co) introduced by the ansatz is the same as
was defined in Eq. (6.32). Consequently, by introducing
the ansatz (6.42) into the Fokker-Planck equation (6.39),
one obtains a differential equation for the function g(r, co)
defined by Eq. (6.32b). This differential equation is given
by (Ambegaokar and Teitel, 1979)

2 0
3

r" a„zg+" 3 Tcc a„~o

r 0 Scar r 8
Tca a ~o 2y g+ Tca a„~o=0 '

(6.44)

Close to the Kosterlitz-Thouless temperature T, this
equation can be further simplified by using the approxi-
mation [compare Eqs. (6.36e), (3.10), and (3.21)]

r 8 . r 8 1

T r - T r s(T, )T,cG a o cG a o CG co

2y a a—icol i(r, co) = cG
~ I o(r) g i(r, co)

+ 1,(r,~) Vo(r)
a
Br

82
+2@ I i(r,co),

Br

where [compare Eq. (6.24)]

dt1,(r, co) = I,(r, t)e' '
0

P'(r, co) = I i(r, t)e'l G)f

0

(6.39a)

(6.39b)

(provided T, is not too small; see Sec. III.D), and with
this simplification Eq. (6.45) can be solved subject to the
appropriate boundary conditions, g (r, co =0)= 1 and
g(r, co=ao)=0. The solution is to good approximation
given by Eqs. (6.33) and (6.34) (Ambegaokar and Teitel,
1979).

The general form of g(r, co) given by Eq. (6.33) was
suggested by Ambegaokar et al. (1978) on intuitive
grounds. The intuitive physics implied by Eqs. (6.33) and
(6.34) is that only dipole pairs with a pair separation less
than k contribute to the electric susceptibility, because
only such pairs have time to relax in the time-dependent
electric field. This interpretation is apparent from the ap-
proximate equality (Ambegaokar et al. , 1980)

Eeff( ) r (6.39c) (6.46)

rI'(r, t) =—g (rj (t) )5(r—r~j (t) ),1

Q
&~j&

(6.40)

Since I (r, t) is the distribution of dipole pairs, one has
the obvious relation combined with Eq. (6.32b). Consequently the real part of

the electric susceptibility due to bound pairs can be es-
timated by (Ambegaokar et al. , 1978, 1980)

and it follows that [compare Eq. (6.32a)] ReIXii(co)I =X~(A,„) for A,„&A,&A,, =op . (6.47)

a[r'I i(r', co)]
Xg(r, a))= J d r'5(r r')—

ar ' aE'"(~)
Likewise the imaginary part of g can, in the expression
for Xii, be approximated by [compare Eq. (6.32b)]

Introducing the ansatz

I i(r, co) =E' (co)rl 0(r)g(r, co)/T

(6.41)

(6.42)

2 2 ar
1m Ig(r, co) I = = 5(r —A,„),~4+ ' (6.48)

into Eq. (6.41) gives [compare Eqs. (3.S), (3.6), and
(6.37a)]

provided aX&(r)/aln(r) is slowly varying. Accordingly
the imaginary part of Xii(co) can be estimated by (Am-
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begaokar et al. , 1978, 1980)

~ r3Xf3(r)
lmIy, (m) ] =— for X„&X & X, = ~ .

4 Bln r r=3.„,
(6.49)

The complex dielectric constant E(co) [see Eq. (6.18)) can
now be obtained by adding the contributions from the free
and bound pairs given by Eqs. (6.26), (6.47), and (649).
This is the main result of the reasoning by Ambegaokar
et al. , (1978, 1980) and Ambegaokar and Teitel (1979).

The qualitative content of the resulting e(to) is the same
as the alternative one described in Sec. VI.A. 1. An appli-
cation to the torsion pendulum experiment is described in
Sec. IV.B.1.

3. Relation to vortex dynamics

In the description given above, the dynamics was intro-
duced ad ho@ into the Coulomb gas by postulating the
Langevin equation (6.1). The object of this dynamical
Coulomb gas model is to describe vortex fluctuations for
superfluid-superconducting films. The Langevin equation
(6.1) is consequently dictated by the requirement of being
the Coulomb gas analogy of vortex dynamics (Ambegao-
kar et al. , 1978, 1980).

In this section we briefly motivate the Langevin equa-
tion (6.1) from vortex dynamics. A more complete dis-
cussion of vortex dynamics in the context of superfluid
films can be found in Ambegaokar et al. (1980) and
Trugman and Doniach (1982).

Consider the case of a single vortex on a superfluid film
with position r(t) and vorticity s. An imposed superfluid
mass flow g,„gives rise to a force F acting on it, as given
by (see Vinen, 1961, and Nozieres and Vinen, 1966)

2n A dr(t)F=s
m* dtSex —p XX3, (6.50)

where x3 is the unit vector perpendicular to the superfluid
film. For a superconductor, this is the Lorentz force,
which in the rest frame of the vortex reduces to [compare
Eqs. (4.25}and (4.61)]

2m'
(g Xx3) =spp( j.„xx3)m* (6.51)

For a neutral superfluid, F, given by Eq. (6.50) is usually
referred to as the Magnus force.

A vortex moving relative to the substrate will experi-
ence additional forces. These are called the drag forces
F~ and may be assumed to be of the form (see Vinen,
1961)

dr , dr
FD ——p —b —b'sx3 X

. dt dt
(6.52)

where b and b' are two constants. In case of a supercon-
ductor, there is often in addition the vortex pinning force
F~ (see, for example, Huebner, 1979). The pinning force

will, however, be neglected in the present description. As
mentioned in Sec. V.B.2, flux pinning in many practical
cases appears to limit the applicability of the Coulomb
gas description of vortex fluctuations for temperatures
lower than T, .

A vortex has no inertia and consequently its motion is
determined by the condition that the total force acting on
it is equal to zero. Within the present description this
means that

F+Fg) ——0 (6.53)

with F and FD given by Eqs. (6.50) and (6.52), respective-
ly. The corresponding equation of motion is given by

dr s2~
gexXx3+ ~gex+'9 ~dt m*T

where

(6.54a)

T b

p (2mh'/m* b') +b—
1 (2M/m *—b')2~%/m

p (2M/m" b') +b—

(6.54b)

(6.54c)

and g is the Langevin Gaussian noise term obeying Eq.
(6.2) (Ambegaokar et al. , 1980).

For superconductors, the typical case for which the
Coulomb gas analogy of vortex fluctuations should apply
is that of thin "dirty" type-II superconducting films
(Beasley et al. , 1979; see Sec. IV.B). In this case the Cg,„
term is very small compared to the first term on the
right-hand side of Eq. (6.45a) and can be safely discarded
(see, for example, Huebner, 1979). Consequently the
equation of motion for a single vortex in this case reduces
to

dr sg 0+g,
T

(6.55)

Feff sm eff(r) X ~x (6.56)

where g' (r) is the superfluid mass current felt by the
vortex. The essence of the Coulomb gas analogy is that
the force acting on a vortex can also be expressed as the
"bare" force (i.e., the force in the absence of other vor-
tices) plus the sum of the forces exerted on it by the other
vortices (see Secs. IV.A and IV.B). Consequently, for the
case considered, Eq. (6.1) is the Coulomb gas analogy of
the Langevin equation for vortices where F~ (t) is the
sum of the "bare" force sJD(t) and the forces exerted on
the Coulomb gas charge j by all the other Coulomb gas
charges. Note that in this case no additional restriction is
imposed on the Coulomb gas analogy of vortex fluctua-
tions by the vortex dynamics. For example, the dynami-

where TCG=T/[2mp(A/m ) ] is the Coulomb gas tem-
perature [see Eq. (4.20)] and D=m "g,„Xx3/(Rp) is the
external electric field in the Coulomb gas analogy [com-
pare Eq. (4.62) and Table IV]. The force acting on the
vortex is modified by the presence of other vortices and is
given by
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cal Coulomb gas description given in Sec. IV.A. 1 should
also apply to the vortex fluctuations of a thin supercon-
ducting type-II film in a perpendicular magnetic field,
i.e., the non-neutral Coulomb gas case. Such a case is
described in Sec. VI.B.2.

In the case of a neutral superfluid, the Cg,„term in Eq.
(6.54) is a priori present. However, as is clear from Sec.
VI.A.2, the dielectric constant E(co) only involves infor-
mation on the sum g. sJ(rj(t)), which for a neutral
Coulomb gas (that is, one with an equal number of posi-
tive and negative charges) can be divided into pairs of
particles, g. sJ (r J ) = g(,"&

(r;J ) [compare Eq. (6.21)].
The equation of motion for r,z(t) involves only the effec-
tive force acting between the charges in the pair [compare
Eqs. (6.36)]. The vortex analogy of this force is the force
acting between two vortices with opposite vorticities. Ob-
viously the Pg,„ term does not contribute to this force.
As discussed above, the presence of other vortices changes

g„ to g' (r). Thus, to the extent that the spatial varia-
tion of g' can be neglected, the contribution arising from
the g g,„term in Eq. (6.54a) can be discarded as far as the
dielectric constant s(co) is concerned. In this sense the
dynamical Coulomb gas model described in Sec. VI.A
also applies to the neutral superfluid in a situation where
there is no net vorticity (i.e., where there are equal num-
bers of vortices with vorticities s =1 and —1); Ambegao-
kar et al. , 1978, 1980).

The equation of motion given by Eq. (6.54) is valid in
the rest frame of the substrate (Ambegaokar et al. , 1978,
1980). The torsion pendulum experiment for He involves
a moving substrate (see Secs. V.A and VI.B.1). A
transformation to the laboratory frame is hence needed.
However, the dielectric constant s(co) is a Galilean invari-
ant quantity (Teitel, 1981). Consequently the dynamical
Coulomb gas described in Sec. VI.A also covers this situa-
tion (Ambegaokar et al. , 1978, 1980).

B. Experimental examples

The aim of this section is to illustrate the connection
between the "dynamical" version of the two-dimensional
Coulomb gas described in Sec. VI.A and experiments re-
flecting the "dynamical" aspects of vortex Auctuations
for He films and superconducting films. Just as in Sec.
V, dealing with experiments reflecting the "static" prop-
erties of vortex fluctuations, only a few examples out of
the large body of work existing are selected and discussed.
Again a subjective choice has been made with the cri-
terion of illustrating the Coulomb gas aspects as clearly as
possible.

The reader interested in a more complete description of
the experimental work reflecting "dynamical" aspects is
referred to review articles by Hebard and Fiory (1982) in
the case of superconducting films and Glaberson and
Donelly (1986) in the case of helium films.

Section VI.B.1 contains a discussion of the "dynami-
cal" aspects of the torsion pendulum experiment for He
films. Same "static" aspects af this experiment were con-

sidered in Sec. V.A. The complex dielectric constant s(co)
and its scaling properties measured for superconducting
films in a perpendicular magnetic field are the subject of
Sec. VI.B.2.

1. The torsion pendulum experiment for 4He

The basic principle of the pendulum experiment for
He films, devised by Bishop and Reppy (1978), was

sketched in Sec. V.A.
The dynamics involved in the experiment is related to

the Coulomb gas dielectric constant e(co) in the following
way: Let X(t) denote the amplitude of the pendulum.
The pendulum is driven at its resonance frequency co, so
that X(t)=XoReIe '"'I. This pendulum dissipates ener-

gy, and this dissipation can be inferred by considering the
case when the driving force suddenly ceases. The pendu-
lum then becomes damped and X ( t) changes to
X(t)=Xoe r'ReIe ' '], where y is the relaxation con-
stant. The equation of motion becomes (compare Sec.
V.A)

(ico+y) M — Xo+XXo=0 i
Qp

c.(co)
(6.57)

E
M —Qp/E(co )

1/2
E
M

1+ Re I 1/E(co) I2M
(6.58a)

1 K
Im

Zco M —Qp/s(co)
1/2

ImI 1/E(co)] . (6.58b)

From Eq. (6.58a) one obtains the period shift AP caused
by the superfIuidity,

&ps
ReI 1/E(co)] = (6.59)

where pz is the time-averaged superfluid density [compare
Eqs. (5.1), (6.4), and (6.9)] and P =2m.V'M/IC is the
period in the absence of superfluidity. The relaxation
constant y is simply related to the friction force I'f
experienced by the pendulum through If=—2yMcgXosin(cot) [compare Eq. (6.57)). The friction
work during a period is consequently given by 2mycoMXO,
whereas the energy stored in the pendulum is EXO/2.
The dissipation in the experiment is measured by the
quality factor Q, which may be defined as
2m g ' = (dissipated energy per cycle)/(stored energy).
For the pendulum this means that [compare Eq. (6.58b)]

where K is the spring constant and M is the total oscillat-
ing mass including the helium. For y/co ~& 1 and
Qp/M && 1, the solution is

'
]./2
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b, Q '=2yV'M/K = — ImI I/e(co) },M
(6.60)
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FIG. 31. Example of results obtained from the torsion pendu-
lum experiment for He adsorbed on a Mylar substrate (from
Agnolet, 1983): 0, the measured period shift AP; o, the mea-
sured change in the inverse quality factor bg '. The dashed
straight line represents a rough estimate of the dielectric con-
stant c (see text). The dashed curve is obtained from the
Coulomb gas prediction given by Eqs. (6.15) with one adjustable
parameter (see text). It coincides with the solid curve on the
high-temperature side of the peak. The two solid curves are fits
to the Coulomb gas description by Ambegaokar et al. (1978,
1980) and Ambegaokar and Teitel (1979), which together in-
volve six adjustable parameters (from Agnolet, 1983; see text).

where AQ ' is the change in Q
' caused by the super-

fluidity. This change can be extracted from the experi-
ment. Consequently, since the "bare" superfluid density p
appears, to a good approximation, to be temperature in-
dependent for He films, the torsion pendulum experi-
ment should in a particularly direct way measure the tem-
perature dependence of the real and imaginary parts for
the Coulomb gas response function I/e(co).

A thorough account of the torsion pendulum experi-
ment for He films for the case when the He is adsorbed
on a Mylar substrate has been given by Agnolet (1983).
Figure 31 shows a typical set of data obtained from such
an experiment (Agnolet, 1983).

A comparison with Fig. 29 immediately suggests that a
qualitative explanation of the measurements is given by
vortex unbinding, as described by the dynamical version
of the Coulomb gas model presented in Sec. VI.A. 1. The
general shape of the b,P/P data and the EQ ' data corre-
sponds very well with the Coulomb gas quantities
ReI 1/E(ro) } and —ImI 1/E(co) }, respectively. One notes
that the dissipation peak is very close to the temperature
where b,P/P has half its T, value, as predicted by the ap-
proximate theory described in Sec. VI.A. 1 ( T,=514 mK
is determined as described in Sec. V.A. 1; compare Fig.
19).

A more quantitative test of the approximate description
provided by Eqs. (6.15) is represented by the d'ashed curve
in Fig. 31. This test is constructed in the following way:

Re[1/e(ro)} is determined as the ratio AP(T)/bP(0)
(compare Sec. V.A.2). The length A,, is assumed to be in-
finite and the A, /A, is determined from the functional
form of Ret 1/e(co) } given by Eq. (6.15a). The dielectric
function Y. is determined from the dashed straight line in
Fig 3. 1, which just represents a linear extrapolation from
temperatures somewhat below T„providing a slight im-
provement of the rough estimate 7=1 used in Fig. 29.
ImI1/e(co)} is then obtained for each temperature from
Eq. (6.15b) using E and A,„/A, as input.

Finally the scale factor EQ '/[ —Imt I/e(co)}] in Eq.
(6.60) is determined by adjusting the calculated
—1m[1/e(co)} to the measured peak height of b,Q
The agreement between the Coulomb gas description
given by Eqs. (6.15) and the measured EQ ' is striking,
especially considering that only one adjustable parameter
is involved, i.e., the scale factor. In the temperature inter-
val from the b, Q

' peak and upwards, the agreement is
excellent (the dashed curve coincides with the solid curve
in Fig. 31 for temperatures above the peak). This interval
is also very insensitive to the rough estimate of 7, . The
small deviation on the low-temperature side down to T,
can be explained within the Coulomb gas description as
being caused by a too crude estimate of Y. The observed
finite b,Q

' below T, can be explained within the
Coulomb gas model by a finite A,, (see Fig. 30). Conse-
quently the Coulomb gas model gives a good qualitative
account of the observed features for hP/P and AQ '. In
addition Eqs. (6.15) give a surprisingly good quantitative
account of the measurements.

The solid curves in Fig. 31 are fits to the theory by
Ambegaokar et al. (1978, 1980) and Ambegaokar and
Teitel (1979), which was described in Sec. VI.A.2 (from
Agnolet, 1983). The details of the fitting procedure can
be found in Bishop and Reppy (1980) and Teitel (1981).
The functional dependencies are obtained from Kosterlitz
equations [Eqs. (3.16)]. The procedure involves six ad-
justable parameters, viue of which are contained in the
theory and one added ad hoc in order to account for the
finite b,Q below T, . As seen in Fig. 31, this gives an
excellent fit to the measurements. However, some caution
may be advisable when assessing the significance of this
agreement. The approximate theory described in Sec.
VI.A.2 is a priori only expected to give a qualitatiUe ac-
count of the "dynamical" Coulomb gas model. Six free
parameters in a qualitatively correct theory can certainly
provide a very good fit, even if the details of the theory
are quite oversimplified. The significance of the agree-
ment has then to be judged according to the physical
plausibility of the obtained fitting parameters. As pointed
out by Agnolet (1983), the plausibility of the fitting pa-
rameters differs for various He films. This suggests that
the theory is, in fact, somewhat oversimplified, in spite of
the good agreement. At any rate, the version of the
"dynamical" Coulomb gas theory by Ambegaokar et al. ,
(1978, 1980) and Ambegaokar and Teitel (1979) (outlined
in Sec. V.A.2) gives a convincing qualitative account of
the experimental results.

In summary, the two versions of the "dynamical"
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Coulomb gas model given in Secs. VI.A. 1 and VI.A.2
both strongly support the interpretation of the AP/P data
and the EQ ' data for the torsion pendulum experiment
for He films on Mylar substrates in terms of vortex un-
binding.

2. The Coulomb gas dielectric function
for superconducting films

The Coulomb gas dielectric function e(co) for supercon-
ducting films can be rather directly extracted from an ex-
periment devised by Hebard and Fiory (1980). In this ex-
periment the superconduction film is placed between a
driver coil and a receiver coil. The driver coil produces
an electric field E(t) acting on the film. A current j„,(t)
is induced on the film and the induction produced by this
current on the receiver coil is measured. From this mea-
surement one obtains the complex impedance Z(co) de-
fined by

quently related to B,„ in a simple way [compare Eqs.
(2.21b), (2.44), and (4.38)],

2~( hn ) 2~Bex

~ TcG ~ TcG (6.64)

The "dynamical" version of the Coulomb gas model given
in Sec. VI.A. 1 provides an approximate description. Con-
sequently e(co) is approximately given by Eqs. (6.15) with
(A, /1, ) -B,„/co, since A,„-v'Pleo [see below Eq. (6.12)].
The explicit expressions for Re{e(co)j and Im{e(co)j, as
obtained from Eqs. (6.15) for this special case, are

(1—CB,„/co )[1—(CB,„/co )' j
Re{E(co) j =e

(1—gB,„/co) +[2gB,„ln(CB,„/co)/m. co]

(6.65a)
and

[2gB,„ln(gB,„/co)/neo][l —(tt."B,„/co) ]
Im {e(co ) j =E

(1—CB,„/co) + [2KB,„ln(gB,„/co)/vrco]

E(~)=Z(~)j«t(~) . (6.61)

In the absence of vortices, the relation between the electric
field and the current can be obtained from the Josephson
relation (Josephson, 1962) b, V =fib, O/e* relating the volt-
age drop 4V between two points to the corresponding
difference in the order-pa'rameter phase b,8. This leads to
the relation [Halperin and Nelson, 1979; compare Eqs.
(4.23) and (4.25)]

E(co)= &coLk J(co), — (6.62a)

(6.62b)

is the sheet kinetic inductance. The presence of vortices
modifies the current to j«,(co) =j(co)/e(co), which follows
from Eq. (6.6) since E' (co)=D(co)/E(co) by definition.
Consequently the measured complex impedance is directly
related to the Coulomb gas dielectric constant by

Z(co) = idol. ke(co) .— (6.63)

Figure 32 shows the result of such an experimental
determination of the Coulomb gas dielectric constant e(co)
(from Fiory and Hebard, 1982). A thin granular alumi-
num film was used and the data were taken as a function
of a perpendicular magnetic field B,„at a constant tem-
perature somewhat below the experimentally determined
Kosterlitz-Thouless temperature. The eight solid curves
in Fig. 32 represent the real and imaginary parts of E(co)
for four different frequencies spanning an interval of
three orders of magnitude from 2 to 2000 (kHz). The
dielectric constant E(co) is plotted in the figure as a func-
tion of 8,„/m.

From the point of view of Coulomb gas theory, the ex-
perimentally determined e(co) shown in Fig. 32 corre-
sponds to a non-neutral Coulomb gas at a fixed tempera-
ture T below T, . The screening length is conse-

where C is a constant proportional to the diffusion con-
stant g.

A striking consequence of the Coulomb gas description
is the prediction that the dielectric constant should be a
function only of the variable B,„/co [compare Eqs.
(6.65)]. This scaling relation for E(co) is of the same type
as the scaling relations discussed in Sec. IV.D.2. It fol-
lows since the dimensionless quantity e(co) can at most be
a function of the two dimensionless variables T and
A. /A, „. Consequently the existence of this scaling relation
may be expected to be rather independent of the explicit
model assumptions.

As can be seen from Fig. 32, the predicted B„/~ scal-
ing is borne out to an impressively high degree for
Im{c,(co) j (Fiory and Hebard, 1982). It is borne out to a
somewhat lesser degree for Re{a(co)j, and this deviation
from scaling could be attributed to vortex pinning (Fiory
and Hebard, 1982).

A more quantitative test of the approximate description
provided by Eqs. (6.65) is represented by the dashed
curves in Fig. 32. As can be seen in the figure, the
theoretical Im{e(co) j curve agrees very well with the mea-
sured four Im{e(co)j curves. In fact this agreement is
quite impressive, considering that Eq. (6.65b) contains
only one free parameter, i.e., the constant g, and that the
agreement involves five orders of magnitude in B,„/co,
three orders of magnitude in Im{E(co)j, and three orders
of magnitude in co.

The constant 8 can be approximately related to the
Cxinzburg-Landau coherence length g in the following
way: Eq. (6.64) and the relation (A„/A)= PB,,„/c,o

. (which is the definition of g ), together with the approxi-
mations A. =v'g/co and eT = ,', give 8=8mB/q&o. —
The diffusion constant is related to the vortex mobility by
p=g/k~T, and p is, related to the Ginzburg-Landau
coherence length g' by the Bardeen-Stephen relation (Bar-
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deen and Stephen, 1965), p=(pe*) /(2' na'&) where o'~
is the normal-state conductivity. By this sequence of rela-
tions one finds that the theoretical ImIe(co) j curve given
in Fig. 32 corresponds to /=20 (A), which is indeed a
physically rather plausible magnitude of the Ginzburg-
Landau coherence length for a granular aluminum film
well below T, .

The theoretical ReIe(co)j curve is obtained from Eq.
(6.65a) with the same value of g as the ImIE(co) j curves.
Consequently the theoretical ReIc(co) j curve involves no
adjustable parameter. Comparison with the four mea-
sured Re I e(co) j curves in Fig. 32 shows that the theoreti-
cal curve predicted from Coulomb gas theory appears to
have the correct magnitude and functional form.

In summary, the dielectric constant e(co) measured for
superconducting films appears to agree very well with the
Coulomb gas model predictions. In particular, the B,„/co
scaling for Im[E(co) j is borne out to a high degree (Fiory
and Hebard, 1982) and the approximate functional form
of ImIc(co) j predicted from the Coulomb gas model
agrees very well with the measurements.

C. Vortex dynamics and Maxwell's equations

There exists an interesting analogy between Maxwell's
equations for the two-dimensional Coulomb gas and vor-
tex renormalization of third-sound propagation for heli-
um films (Ambegaokar et al. , 1980). This analogy will be
reviewed in two steps. First, the analogy between a two-
dimensional membrane with vortices in the displacement
field and Maxwell's equations is described (Sec. VI.C.1).
Then it is explained how this model of a two-dimensional
membrane can be viewed as a simple model for He films,
and the qualitative Coulomb gas predictions for the third
sound are discussed (Sec. VI.C.2).

Maxwell's equations and a two-dimensional
membrane

In this section we consider the model specified by the
Hamiltonian

H~= I d r —' (r, t) + [VP(r, t)j—
2 Bt 2

(6.66)

10

which can be interpreted as the Hamiltonian for a two-
dimensional membrane with displacement field qr(r, t),
mass density o., and tension r. The Euler-Lagrange equa-
tion for this model is the usual wave equation

1 8 p
2 2

——Vy,
cp Bt

(6.67)

10 where co "t/blois ——a charac. teristic velocity. If P is a
"smooth" field, the dispersion relation for waves is

I

0.1 M =Cpk (6.68)

0.01—

0.1

10 8
I

10
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iO 6

a, /~(oa)

0.01

FICr. 32. The dielectric constant c(co) for a superconducting
film (from Fiory and Hebard, 1982). The measurements shown
are for a granular aluminum film with normal-state resistance
R~ ——4130 (Ohms per square) taken as a function of an external
perpendicular magnetic field B,„at a fixed temperature T = 1.2
(K) we11 below the experimentally determined Kosterlitz-
Thouless temperature. The eight solid curves represent the real
and imaginary parts of c(co) plotted as functions of B„/co for
four different frequencies, 2, 25, 200, and 2000 kHz; respective-
ly, as indicated in the figure. The two dashed curves are the
Coulomb gas predictions given by Eqs. (6.65) involving one ad-
justable parameter (see text).

where cp is the wave velocity and k the absolute value of
the wave vector.

The object is to describe how the dispersion relation
(6.68) is modified when the field y contains vortex singu-
larities of the same type as discussed in Sec. IV.A. The
field y may in this case be expressed as the sum of two
parts, p=qrz +ps, where p~ is a "smooth" field and ps
contains the vortex singularities. In analogy with Eq.
(4.5), a vortex singularity is defined as a point around
which the line integral f ds Vy is +2m. These vortex
singularities can, as discussed in Sec. IV.A. 1, be specified
in terms of a scalar potential 8' [compare Eqs. (4.4b) and
(4.6)j.

Vps =V )& x3 W(r, t),
where

V W(r, t)= —+2ms';5(r —r;) (6.69b)

and r;(t) (s;=+1) denotes the position (vorticity) of vor-
tex i. The vortex positions are assumed to be functions of
time. From Eqs. (6.69) the explicit form of the field ys
may be obtained,
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ps ——g s;arctan
X2 —X2

iX) —X)
(6.70)

and the current density jc(r, t) is associated with the
Coulomb gas charges by

(6.72)

wliele r =(x i,x2 ).
Precisely as in Sec. IV.A.2 the vortices can be interpret-

ed as Coulomb gas charges. The Coulomb gas charge
density b, n (r, t) is in the present case given by

b, n(r, t)= gs;5(r —r;),

where the last one follows directly from the definition
(6.74b). Equations (6.75) may be recognized as Maxwell's
equations with E and B identified as the electric and
magnetic fields, respectively. Since all spatial dependen-
cies are in two-dimensional space spanned by r=(xi, x2),
Eqs. (6.75) are equivalent to Maxwell's equations for line
charges along the x3 axis. The formal analogy between
vortices and Maxwell's equations in two dimensions was
pointed out by Ambegaokar et al. (1980). The version
described here is mainly due to Cote and Griffin (1986).

The solutions of Maxwell's equations are, of course,
well known. For an isotropic system there are two possi-
ble wave modes. The one of interest in the present con-
text is associated with the transverse part of E and is
given by [compare Eqs. (6.75a) and (6.75c)]

The total field q& obeys a set of differential equations
that can be straightforwardly inferred (Cote and Griffin,
1986). The first is the Euler-Lagrange equation (6.67),
which may be cast into the form

k —
2 E (k,io) E (k,a))=0,

co
(6.76)

where E (k, co) is the transverse part of the dielectric
response function defined by

2

VX(VyXx3)= —x3V y= —
2 2yxi.

cp Bt
(6.73a) E (k, co) =E,„(k,co)/s~(k, co) (6.77)

The second is Eq. (6.69), which may be rewritten as

V.(VyXx3) x3 (V&&Vy)=2mhn(r) . (6.73b)

The third can be directly inferred from Eqs. (6.69), (6.70),
and the definition (6.72), i.e., (Cote and Griffin, 1986),

and E,„ is the transverse part of a small external electric
field. In the small-k limit, c, (k, co) reduces to E(co), where
E(co) corresponds to the Coulomb gas dielectric constant
introduced in Sec. VI.A. The dispersion relation (6.76)
gives the modification of Eq. (6.68), caused by vortices, in
terms of a Coulomb gas dielectric response function. In
the limit of small k this modification can be expressed as
follows: The wave velocity is renormalized [for
ImI e(co) j ((ReI E(co) j ] to

which may be recast into the form c =

co�/&Re

[E(co) j (6.78a)

a - - aVX —yx3 ———x3X V
Bt Bt

(Vq&&&x3)+2mjc .
Bt

(6.73c)

and the wave becomes damped. This damping can be ex-
pressed in terms of the quality factor Q [defined in con-
nection with Eq. (6.60)], which is proportional to the ratio
between the real and imaginary parts of the frequency,
1.e.,

This set of equations can be expressed in terms of two
coupled vector fields E and B defined by

21m I co j Im I E(co) j
Re Ice j Re I E(co) j

(6.78b)

E=Vcp Xx3,

1 Bcp
X3 .

cp Bt

(6.74a)

(6.74b)

VXE= — 8,1

cp Bt

V.K =2~En,

VX&= &+ jc,1 8 2m.
Cp Bt Cp

(6.75a)

(6.75b)

(6.75c)

In terms of these fields, Eqs. (6.73a)—(6.73c) turn into,
respectively,

where the last equality holds in the small
ImIE(co) j/Re[8(co) j limit.

The second possible wave mode is just the plasmon os-
cillation defined by E (k, co) =0, where e is the longitudi-
nal part of the dielectric response function.

In order to form a complete description, we need also
to specify a dynamical equation for the vortices. In the
next section we describe how the present model supple-
mented with the Langevin equation (6.1) turns into a sim-
ple model of third-sound propagation for He films.

2. 4Me films and third sound

and

V.8=0, (6.75d)

The helium atoms are attracted to the substrate by van
der Waal's interaction. A simple model of a helium film
is obtained by assuming that the total energy of the film
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Y(r, t) =—[d (r, t) —dc]
2

(6.80)

where K is a constant (and Y is measured relative to the
equilibrium potential).

The potential Y gives rise to a force density —VY(r)
acting on the helium, and this force is coupled to the su-
perfluid mass current by

a
g(r, t) = VY(r, t) = —KV [d (r, t)—dp) .—

at
(6.81)

This is just Newton's second law for the helium mass ele-
ment at r, since the motion of the normal part of the fluid
relative to the substrate can be completely neglected in
comparison with the superfluid part.

Let us represent g by a scalar field y, so that

is the sum of the kinetic energy due to the superfluid
mass current [see Eq. (4.8)] and the potential energy Y
due to the substrate interaction, i.e.,

2

IIH, f——d r ' +Y{r,t) (6.79)
2p

Since the van der Waal's attraction depends only on the
distance from the substrate surface, it can be assumed
that Y depends only on the thickness of the film, d(r, r).
Consequently, to lowest order in the deviation from the
average thickness do, the potential Y is given by

These results are due to Ambegaokar et al. (1980).
The Coulomb gas dielectric constant E(ro) was dis-

cussed in Secs. VI.A. 1 and VI.A.2. Its predominant
feature is that the real and imaginary parts of s(co) in-
crease rapidly as the Coulomb gas temperature T is
raised above the Kosterlitz-Thouless temperature T,
This is a consequence of the rapidly decreasing screening
length A, due to charge unbinding [compare Eqs.
(6.15)—(6.17)]. The Coulomb gas temperature is propor-
tional to T/p, where T is the real temperature and p is
the "bare" areal superfluid density [see Eq. (4.20)]. For a
fixed temperature the "bare" areal superfluid density
("real" density times film thickness) is expected to be at
least roughly proportional to the film thickness do. Con-
sequently T increases with decreasing film thickness
for fixed T. For the third-sound predictions given by
Eqs. (6.78), this means that the Kosterlitz-Thouless tran-
sition should be reflected in a rapid decrease in the sound
velocity and the quality factor Q with decreasing do.
This qualitative prediction is borne out by experiment
(Rudnick, 1978). Figure 33 gives an illustration for heli-
um adsorbed on an A1203 powder with powder size of 1

pm (From Kotsubo and Williams, 1986). From the point

(a)

g(r, t) =Vy(r, t) .

It then follows from Eq. (6.81) that

8
p(r, t) = K[d(r, t) —dc]—

Bt

(6.82)

(6.83)
400

T l.37K

(up to an arbitrary function of
sorbed into the definition of q&).

Harniltonian HH, can be written

dz„[Vm{r &)]'+
2p 2K

time, which can be ab-
Consequently the model
[compare Eq. (6.79)]

r 2

(r,r), (6.84)
i)t

XX
x
x x

which may be recognized as the Hamiltonian for the
two-dimensional membrane discussed in Sec. VI.C.1 with
the identifications r= I/p and cr = 1/K [see Eq. (6.66)].

The inclusion of vortices in the two-dimensional mem-
brane model described in Sec. VI.C.1 corresponds precise-
ly to vortices in the superfluid mass current g [compare
Eqs. (4.4b), (4.5), (6.69), and (6.82)], and the electric field
E corresponds, up to a constant factor, to the electric
field in the superfluid —Coulomb gas analogy [compare
Eq. (6.55)]. In addition, the vortices in the superfluid
obey the Langevin equation (6.1) (see Sec. VI.B.3).

Thus all the results from the preceding section apply to
this simple description of helium films. The wave mode
given by Eq. (6.76) corresponds in the helium case to a
surface wave called third sound. The main result for
third sound obtained from the present simple model is the
renormalization of the sound velocity and the damping
due to vortices given by Eqs. (6.78), where e(co) is the
Coulomb gas dielectric constant discussed in Sec. VI.A.

cD l000-

~Pxx
x

x
x

XX

0
2.0

I

3.0
I

4.0

FICx. 33. Measured Q value {a}and velocity c3 {b) for third-
sound propagation as a function of helium film thickness do in
the case of He adsorbed on an A1203 powder of powder size 1

pm (from Kotsubo and Williams, 1986}. The Coulomb gas pre-
diction is that the Q value and the velocity c3 should rapidly de-
crease with decreasing thickness do at the Kosterlitz-Thouless
transition. These predictions are in accord with the data.
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of view of the Coulomb gas model, this corresponds to
the finite-i, ,-case, which should give a somewhat broader
transition than the A,,= oo case (Kotsubo and Williams,
1986; see Sec. VI.A. 1).

A more realistic description of third-sound propagation
for helium films involves thermal gradients (because the
wave is not isothermal) and mass transport through the
helium vapor above the film (Bergman, 1969, 1971). The
inclusion of vortices in the description of third sound is
due to Ambegaokar et al. (1980). A thorough discussion
of vortices in connection with third sound has been given
by Teitel (1982).

By starting from a more detailed description of third
sound it is also possible to test the universal jump predic-
tion by Nelson and Kosterlitz (1977) given by Eq. (4.44),
and good agreement with this prediction has been found
(Rudnick, 1978; see also Bishop and Reppy, 1980).

dimensional Bose fluid (Rasolt et al. , 1984; Weichman
et al. , 1986).

One interesting extension of the torsion pendulum ex-
periment for He adsorbed on Mylar substrates, from the
Coulomb gas point of view, is to perform the experiment
in a rotating frame (Adams and Glaberson, 1986). As
discussed in Sec. IV.A.2, a rotating frame with rotation
velocity m' ' corresponds to a non-neutral Coulomb gas
with (,b,n ) =co"'m*/(vrh) [see Eq. (4.21)]. The proper-
ties of the "dynamical" Coulomb gas, as given 'by Eqs.
(244) and (6.15b), do indeed provide a qualitative ex-
planation of the observed co"' dependence of the b, Q
data. Adams and Glaberson (1986), on the other hand,
have proposed an alternative explanation of their b, Q
data in terms of a diverging diffusion constant g.

2. Thermal conductance

Vll. MISCELLANEOUS COMMENTS

In the preceding sections the two-dimensional Coulomb
gas per se and its connection to vortex fluctuations for
superfluid-superconducting films have been described in
some detail. The object has been to provide a useful per-
spective on the subject of vortex Auctuations. The pur-
pose of this section is to broaden somewhat, by miscel-
laneous comments, the admittedly rather narrow perspec-
tive presented so far.

A. 4He films

1. Variants of the torsion pendulum experiment

The torsion pendulum experiment with He adsorbed
on porous Vycor glass gives result somewhat different
from the Mylar substrate case described in Sec. VI.B.1
(Berthold et al. , 1977; Smith et al. , 1978; Bishop et ai. ,
1981; Crooker et al. , 1983): the b,P transition is broader
and no hQ ' dissipation is observed.

It has been pointed out by Kotsubo and Williams (1984,
1986) that the finite size of the Vycor grains —from the
Coulomb gas point of view —implies a Coulomb gas with
a finite A,„where A,, is related to the grain size. As is ob-
vious from Fig. 30, such a finite A,, indeed accounts for
the observed broader AP transition and a nonobservable
EQ '. Kotsubo and Williams (1986) have made a sys-
tematic study of the transition from He adsorbed in
A1203 packed powders with decreasing powder size, using
third-sound techniques, and the results to some extent
support this qualitative Coulomb gas explanation.

Other possible explanations of the Vycor glass case in-
volve vortex-pinning effects (Browne and Doniach, 1982;
Yu, 1982) or indeed no vortices at all (Crooker et al. ,
1982; Reppy, 1984). In this latter case the transition for
low coverages should correspond to that of a dilute three-

The thermal conductance for a He film should also,
owing to the presence of vortices, reflect Coulomb gas
properties. Ambegaokar et al. (1980) have shown that
the thermal conductance, when expressed in the
Couloumb gas analogy, should be inversely proportional
to the density of free Coulomb gas charges nF. Teitel
(1982) gives a detailed discussion. Since the thermal con-
ductance is inversely proportional to the density of free
Coulomb gas charges, it should reflect the Kosterlitz-
Thouless transition through a rapid decrease with increas-
ing Coulomb gas temperature T —Tlp. This predic-
tion is in good agreement with measurements (Agnolet
et al. , 1981; Maps and Hallock, 1981; Finotello and
Gasparini, 1985). The nF dependence on an external elec-
tric field D (compare Secs. II.B.3 and V.B.2) can also be
extracted from measurements of the thermal conductance
and is in accord with the Coulomb gas predictions (Joseph
and Gasparini, 1982; Maps and Hallock, 1982).

B. Supereondueting films

1. Thermoelectric vortex effect

A thermoelectric vortex effect for thin superconducting
films has been observed by Lee et al. (1985) close to the
experimentally determined Kosterlitz- Thouless transition.
An explanation in terms of a vortex model involving a
somewhat ad hoc vortex-relaxation process has been pro-
posed by Garland and VanHarlingen (1985). The plausi-
bility of this model has, however, been questioned by
Gray (1986), who proposes a different edge vortex ex-
planation.

From the point of view of the Coulomb gas analogy
discussed in this article, it is interesting to note that the
thermoelectric experiment by Lee et al. (1985) has a
direct Coulomb gas interpretation and that the Coulomb
gas model by itself does provide a possible qualitative ex-
planation without any added ad hoe assumptions.

The experiment (Lee et al. , 1985) may be described as
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Thouless transition at X= 1 in the case n,„&&( hns ),
which corresponds to the typical experimental situation.
The characteristic feature is the peak structure of (En' )
just above X =1, which arises because (b,ng ) is propor-
tional to 8 ln(n~)/BX.

The condition given by Eq. (7.6) translated into the su-
perconductor variables becomes [compare Eqs. (4.38),
(4.58), (4.62), and (6.51)]

2~A Bin(R/R&)AB=
e dT jtot+ ~T ~ (7.8)

2. Vortex lattice

where 6B is the magnetic field difference generated by
the temperature gradient VT and the current density j„„,
R/R~ is the resistance ratio, A is the magnetic penetra-
tion length, and c the velocity of light. Thus the basic re-
sult from the Coulomb gas analogy is that the generated
magnetic field difference is, to lowest order, proportional
to the product of the current density and the temperature
gradient, and the dominant temperature dependence is
proportional to the temperature derivative of the loga-
rithm of the resistance ratio. These qualitative results ap-
pear to be borne out by the data (Lee er al. , 1985; Lee,
1985).

where ( An ) is the charge density. For a superconducting
film this corresponds to the limiting case A
«8,„/yo «g (Conen and Schmid, 1974). The area of
a single triangle is (V3/4)a in the triangular lattice
where a is the lattice constant, so that (4n ) =4/(V3a )

and consequently

ps=(2V 3a')-' . (7.10)

The energy of a single dislocation, corresponding to a
Burger s vector of one lattice spacing, is in the continuuIn
elasticity theory (see, for example, Kosterlitz and Thou-
less, 1973) given by

pSa 2

Ed;, —— ln(Q/a ),
8m

(7.11)

where Q is the total area of the Wigner lattice. The free
energy for a single dislocation is, in analogy with Eq.
(2.23), given by (Kosterlitz and Thouless, 1973)

following: The Wigner lattice for two-dimensional
Coulomb gas charges is incompressible (due to the loga-
rithmic particle interaction) and the shear modulus at
zero temperature p is given by (the Coulomb gas charge
is unity in our unit system)

(7.9)

The vortices generated on a type-II superconducting
film by an external perpendicular magnetic field will, for
low enough temperatures, form a triangular lattice (Abri-
kosov, 1957). In the Coulomb gas analogy this corre-
sponds to the formation of a Wigner lattice by two-
dimensional Coulomb gas charges of equal sign in a uni-
form compensating background charge. In case of He
films the situation corresponds to the formation of a vor-
tex lattice by the vortices associated with a finite rotation
velocity, as is expressed by the analogy described in Sec.
IV.B.2 [see Eq. (4.30)].

The typical situation for a "dirty" type-II supercon-
ducting film is that the vortex lattice is pinned up to the
melting temperature T~, which occurs below the
Kosterlitz-Thouless temperature T, . This Ineans that the
melting should be reflected in a sudden increase of dissi-
pation, since above the melting temperature T~ most of
the vortices are free to move. In the experiment by He-
bard and Fiory (1980), which, as described in Sec. VI.B.2,
measures the Coulomb gas dielectric constant E(m), the
dissipation is proportional to the imaginary part of s(co).
A sudden increase of the imaginary part of E(co), in the
limit of small co, was observed by Fiory and Hebard
(1982) at a temperature below the experimentally deter-
mined Kosterlitz-Thouless temperature and was interpret-
ed as being caused by the melting of the vortex lattice in
the way described above. Similar observations have been
made by Martinoli et al. (1982), who gave the same quali-
tative explanation.

The melting of the two-dimensional vortex lattice has
been considered by Huberman and Doniach (1979) and in
more detail by Fisher (1980). Its basic features are the

Sa2 —T in(Q/a ) .
Sa

(7.12)

In analogy with Eq. (2.23), the shear modulus in the pres-
ence of dislocations, pz, may then be expected to vanish
due to thermally created free dislocations for T~ T~,
where

S 2p a
M 8~

(7.13)

This estimate of the melting temperature for a two-
dimensional lattice is due to Kosterlitz and Thouless
(1973) and the specialization to the Wigner lattice for
two-dimensional Coulomb gas charges to Huberman and
Doniach (1979) and Fisher (1980).

The description of the thermally created dislocations
turns out to be analogous to that of v'ortices, and a possi-
ble mechanism for the melting is unbinding of dislocation
pairs (Kosterlitz and Thouless, 1973).

Provided this is the mechanism of the melting, then the
estimate of the melting temperature given in Eq. (7.13)
can be improved in two ways: First, the small-wavelength
fluctuations should be included, which changes p =p (0)
to p (T~ ) &p (0) (Fisher, 1980). Second, the polariza-
tion due to dislocation pairs has to be included; it can be
described by a dielectric constant Yd;, & 1 analogous to c
describing polarization due to vortex pairs. The relation
between the Kosterlitz-Thouless temperature T, and the
melting temperature T~ can hence be estimated as [com-
pare Eqs. (2.23) and (7.13)]
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TcG gTcG

with the constant 3 given by

(7.14a) the BCS energy gap h(T). For a "dirty" type-II super-
conducting film, this relation can be expressed (see, for
example, Tinkham, 1975) as

4m'V 3 p, (0) Ed,,(TM+)
(7.14b) gp RNe2 2

A= 24 5( T)tanh
b,(T) (7.16)

where c is the Coulomb gas dielectric constant and Yd;, is
the corresponding constant for dislocations. Fisher (1980)
obtained the estimate 0.4&@ (TM )/[p (0)Ed;,(T~ ))
&0.75. An estimate of the real melting temperature TM
can then be obtained from the approximate temperature
dependence given by Eq. (4.59),

RN

Rc
m b ( T)tanh[ b ( T)/2T]

8T, e.,

where RN is the normal-state sheet resistance of the film.
Combining Eq. (7.16) with the relations quoted so far in
this section gives

T, T,pA

T,o
—(1 A) T,— (7.15)

5.78 Tcp —1
c Tc

(7.17)

If the melting is due to dislocation unbinding, then, ac-
cording to the two-dimensional melting theory by Halpe-
rin, Nelson, and Young (Halpern and Nelson, 1978; Nel-
son and Halperin, 1979; Young, 1979), 'the melting is into
a hexatic phase with long-range angular correlation,
which subsequently melts into a disordered phase by an
analogous disclination unbinding transition. On the other
hand, substrate interactions like vortex pinning can
change the transition into a first-order transition, in
which case the estimate of the melting temperature TM
given by Eq. (7.15) turns into an upper bound.

The actual situation for the vortex lattice in the case of
"dirty" type-II superconducting films appears to be the
following: The melting occurs at a temperature TM con-
sistent with Eq. (7.15) (Fiory and Hebard, 1982; Hebard
and Fiory, 1982; Martinoli et al. , 1982). Pinning effects
on the melting transition appear to be pronounced (Mar-
tinoli et al. , 1982).

C RN1+0.173c,cTo Rc
(7.18)

This relation is in qualitative agreement with the experi-
mental result for "dirty" type-II superconducting films
(Beasley et al. , 1979; Epstein et al. , 1982; Kadin et al. ,
1983).

where R, =Pi/e corresponds to a sheet resistance of
R, =4.11 (kQ/m ) and the last approximate equality is
obtained from the relation b, (T)=3.06T,O(1 —T/T, o)'
valid close to the BCS temperature T,p. Thus this chain
of relations leads to a simple approximate relation be-
tween the Kosterlitz-Thouless temperature T„ the mean-
field temperature T,p, and the normal-state sheet resis-
tance Rz given by (Beasley et al. , 1979; Lozovik and
Akapov, 1981;Epstein et a/. , 1982)

3. Connection to BCS theory

As described in Sec. II.B.1, the Kosterlitz-Thouless
temperature for the two-dimensional Coulomb gas is
given by

TCG 1

4c,

The Coulomb gas temperature is related to the real tem-
perature by

2

TCG T 27Tp I
[see Eq. (4.20) and Table II]. The perpendicular magnetic
penetration depth A is, within a Czinzburg-Landau
description, related to the superfluid mass density [see Eq.
(4.32b)] by

1A= 2'
2

m*c 1

e p

Provided that the BCS theory is applicable, the perpendic-
ular penetration depth A can also be expressed in terms of

VIII. FINAL REMARKS

The scope of the present article has been the two-
dimensional Coulomb gas and its connection to vortex
fluctuations for superfluid-superconducting films. The
subject has been limited to the case when the superfluid
on some length scale can be described in terms of a
phenomenological Ginzburg-Landau-type theory with
vortices (see Sec. IV.D). This means that all the physics
associated with smaller length scales is hidden in the
phenomenological parameters.

For example, coupled arrays of Josephson junctions and
granular superconducting films involve interesting prob-
lems associated with the array structure, which are not
discussed in the present article. For a review of such
problems see, for example, Doniach (1984), Lobb (1984),
and Mooij (1984). This area of study may involve ques-
tions about the relation between the properties of a single
junction and the phenomenological parameters entering
on a Ginzburg-Landau level of description, or the effects
of disorder in the case of granular superconducting films.
One interesting aspect of the subject is the effect of zero-
point-charge fluctuations, across the junctions or between
the superconducting grains, on the Kosterlitz-Thouless
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transition and the possibility of a reentrant behavior [for a
review, see, for example, Doniach, j.984; more recently
Jacobs et al. (1984) suggest a first-order reentrant
behavior].

Another aspect of this topic is the interplay between
the array structure and the vortices imposed by a perpen-
dicular external magnetic field (for a review, see Lobb,
1984). This forms an entire subject by itself outside the
scope of the present article.

The relation to the phenomenological description re-
viewed in the present article is that on some length scale
g, larger than the scale of the array structure, one may ex-
pect that the phenomenological description applies as
long as 8„«yo/g~ (compare Sec. IV.E).

Considerable progress has been made in developing a
theory of vortex fluctuations for superconducting films
over the last ten years, and the present stage is that the
two-dimensional Coulomb gas provides a convincing
qualitative explanation of many experimental observa-
tions for superconducting films and He films.

Nevertheless many open questions remain, and from
this point of view the subject is still in some respects at an
early stage. For example, the properties of the two-
dimensional Coulomb gas in itself are not as yet known
with great precision, except for the critical properties pre-
cisely at the Kosterlitz-Thouless transition. Neither is the
detailed connection yet known between the microscopic
level of description for He films, superconducting films,
and two-dimensional arrays of Josephson junctions, on
the one hand, and the Ginzburg-Landau level of descrip-
tion (which forms a convenient starting point for the
Coulomb gas analogy) on the other.

Much experimental work so far has been designed to
test directly the critical properties at the Kosterlitz-
Thouless transition. However, as discussed, such tests
may not be as conclusive as one would like for the follow-
ing reasons: Experiments are by necessity performed on
finite samples, which strictly speaking have no true criti-
cal properties. From a practical point of view this means
that the critical properties for temperatures too close to
the critical temperature are masked by finite length scales,
either of the sample size or, as may be the case for super-
conducting films, of the perpendicular magnetic penetra-
tion length A. On the other hand, for temperatures too
far from the critical temperature one is outside the critical
region. Hence the possibility that the critical behavior de-
rived from the renormalization-group equations applies
only to a very small temperature window has to be con-
sidered. Second, the explicit functional forms obtained
from the renormalization-group equations usually involve
many free parameters in relation to the structure of the
data, so that the significance even of a very good fit to the
data is somewhat uncertain.

Consequently it is probably fair to state that the func-
tional forms derived from the renormalization-group
equations provide a qualitative, but not necessarily a true
quantitative, explanation of the experiments so far.

On a more phenomenological level, the Coulomb gas
scaling relations have provided an alternative way of es-

tablishing the connection between experiments and
theory. These scaling relations seem to be well obeyed by
experiments. However, the degree of validity of these
various scaling relations has not yet been carefully investi-
gated through systematic experiments. For example, one
such possibility of a systematic investigation for super-
conductors would be to perform a series of experiments
on samples that, outside a small temperature interval
around the Kosterlitz-Thouless temperature, are manifest-
ly well described by standard Ginzburg-Landau theory.

In summary, vortex unbinding is reflected in many ex-
periments on superconducting films, two-dimensional ar-
rays of Josephson junctions, and He films. However, the
extent to which the theoretical description, in terms of the
two-dimensional Coulomb gas and the renormalization-
group equations for the Kosterlitz-Thouless transition,
provides a true quantitative explanation of the experi-
ments is as yet largely unknown. In view of this, the sub-
ject may be expected to remain an experimental and
theoretical challenge for some time to come.
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