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This paper presents the results of a functional-integral approach to the dynamics of a two-state system cou-
pled to a dissipative environment. It is primarily an extended account of results obtained over the last four
years by the authors; while they try to provide some background for orientation, it is emphatically not in-
tended as a comprehensive review of the literature on the subject. Its contents inc1ude (1) an exact and gen-
eral prescription for the reduction, under appropriate circumstances, of the problem of a system tunneling
between two wells in the presence of a dissipative environment to the "spin-boson" problem; (2) the deriva-
tion of an exact formula for the dynamics of the latter problem; (3) the demonstration that there exists a
simple approximation to this exact formula which is controlled, in the sense that we can put explicit bounds
on the errors incurred in it, and that for almost all regions of the parameter space these errors are either
very small in the limit of interest to us (the "slow-tunneling" limit) or can themselves be evaluated with
satisfactory accuracy; (4) use of these results to obtain quantitative expressions for the dynamics of the sys-
tem as a function of the spectral density J(cu) of its coupling to the environment. If J(co) behaves as u' for
frequencies of the order of the tunneling frequency or smaller, the authors find for the "unbiased" case the
following results: For s & 1 the system is localized at zero temperature, and at finite T relaxes incoherently
at a rate proportional to exp —(To/T)' '. For s ~ 2 it undergoes underdamped coherent oscillations for all
relevant temperatures, while for 1 & s & 2 there is a crossover from coherent oscillation to overdamped re-
laxation as T increases. Exact expressions for the oscillation and/or relaxation rates are presented in all
these cases. For the "ohmic" case, s =—1, the qualitative nature of the behavior depends critically on the di-
mensionless coupling strength o. as well as the temperature T: over most of the (a, T) plane (including the
whole region o, ~ 1) the behavior is an incoherent relaxation at a rate proportional to T, but for low T
and 0 & a & 2

the authors predict a combination of damped coherent oscillation and incoherent background

which appears to disagree w'ith the results of all previous approximations. The case of finite bias is also
discussed.
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~&TRODUCTION

The problem of a quantum-mechanical system whose
state is effectively restricted to a two-dimensional Hilbert
space is ubiquitous in physics and chemistry. In the sim-
plest examples, the system simply possesses a degree of
freedom that can take only two values —for example, the
spin projection in the case of a nucleus of spin —,, the
strangeness in the case of a neutral K meson, or the polar-
ization in the case of a photon. We shall call such cases
"intrinsically" two-state systems. A more common situa-
tion is that the system in question actually has a continu-
ous degree of freedom q, for example, a geometrical coor-
dinate, with which is associated a potential energy func-
tion V(q) with two separate minima, as illustrated in Fig.
1. Suppose that the barrier height Vp 1s large compared
to the quantity Fuuo, where coo is of the order of the classi-
cal small-oscillation frequencies co+ and co in either well
separately (m+ and co are assumed to be of the same or-
der of magnitude, but not necessarily identical). Then,
unless the shape of the potential V(q) is very pathologi-
cal, the quantum motion in either well separately will be
semiclassical, and the separation of the first excited state
(of the "isolated*' well) from the ground state will be ap-
proximately Ac@+ (fico ) for the left-hand (right-hand)
well, i.e., of order ficoo (see Fig. 1). If, moreover, the bias
("detuning") E between the ground states in the two wells
is small compared to coo, then we may argue that for
k~T &&ficoo (but k~T/e arbitrary) the system will be ef-
fectively restricted to the two-dimensional Hilbert space

spanned by these two ground states. Although we must,
of course, take into account the possibility of tunneling
between the two wells, a typical matrix element fib, o for
this process is, in the limit considered ( Vp &&@coo), ex-
ponentially small compared to %coo, so that the tunneling
does not mix the states of this "ground" two-dimensional
Hilbert space with the excited states of the system. Ex-
amples of such a situation include some types of chemical
reaction, the motion of defects in some crystalline solids,
and the "two-level systems" believed to be found in many
amorphous materials. It is not necessary that the con-
tinuous degree of freedom q in question be geometrical; a
case in point is the motion of the magnetic flux trapped in
an rf SQUID ring for external flux bias near half a flux
quantum, which is discussed in detail in Leggett (1984a).
(It was, in fact, this example which originally motivated
the present work. ) For brevity we shall refer to cases of
this type, which arise in a system originally described by
an extended coordinate, as "truncated" two-state systems.

There are, of course, also well-known-problems of a
similar type in which the "ground" Hilbert space has di-
mension X greater than two. Apart from the obvious ex-
ample of a particle of spin greater than ~, there are again
many cases in which the "¹tate problem" arises by
truncation of an originally more complicated problem in-
volving one or more extended coordinates. For example,
the rotation of a deuterated-and-tritiated methyl group
(CHDT) in certain types of organic solid possessing a
threefold symmetry axis corresponds under certain cir-
cumstances to a Hilbert space with dimension three. (For
an ordinary CH3 group, the indistinguishability of the
protons leads to complications; see, for example, Hewson,
1982.) A defect in a solid, even if restricted to a single
unit cell, may have four, six, or eight possible equilibrium
positions, and the "ground" Hilbert space will have the
corresponding dimensionality. Finally, perhaps the best-
known example of this type is the case of an electron in a
periodic solid in the tight-binding approximation: the
dimensionality in this case is the number of unit cells in
the crystal. Although we believe it to be very probable
that many of the results we obtain in this paper may be
generalized to these higher-dimensional cases (cf. Schmid,
1983; Bulgadaev, 1984; Fisher and Zwerger, 1985a;

t
pq
I

{a-z= + I)

FIR. 1. A double-weil system in the "two-state" limit.
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Here the o.; (i =1,2, 3) are Pauli matrices, and the basis is
chosen so that the eigenstate of a., with eigenvalue +I
( —1) corresponds to the system's being localized in the
right (left) well. The quantity s is the "detuning" parame-
ter, that is, the difference in the ground-state energies of
the states localized in the two wells in the absence of tun-
neling [note that for co+&co this is not simply the
difference in the values of the potential V(q) at the two
minima; see Sec. II]; we have taken the zero of energy as
the average of the two ground-state energies. The quanti-
ty —,'%ho is the matrix element for tunneling between the
wells, and in the &KB limit is exponentially small com-
pared to mo.

It is clear that the Hamiltonian (1.1) is completely
equivalent to that of a particle of spin —,

' in a magnetic
field H=——cz+M, ox, and can be trivially diagonalized,
with eigenvalues +(E +(A'ho) )'~, by an appropriate ro-
tation of the axis. However, in most cases of practical in-
terest it is not convenient to do this, since the quantity
that is directly susceptible to experimental measurement
is usually the "coordinate" q, and hence in the two-state
approximation o, It is c1ear that the genera1 nature of
the dynamics of o., is sensitive only to the ratio A'ho/E. If
this ratio is small, then the eigenstates of H are nearly
eigenstates of o.

„

i.e., they correspond to states in which
the system is nearly localized in one well or other. If, on
the other hand, A'b, o/s is large, then the eigenstates are ap-
preciably delocalized in q; in particular, for c=O they are
the we11-known even- and odd-parity combinations

1 1
PE + ( 4+PL) 40 + (4R 4L)V2 V2

(1.2)

where gR and 1/L correspond approximately (to order
b,o/coo) to the ground states in the right or left well
separately. The energy splitting Eo —EE is %ho. In this
case the dynamical behavior of 0., shows spectacular os-
cillation effects: in fact, if P(t) is the quantity PR PI, —
where PR(PL ) is the probability of finding the system in
the right (left) well, then if P(0)=+1 we find subse-
quently the behavior

P(t) =coshot, (1.3)

a behavior which displays spectacularly the consequences
of the phase coherence between the amplitudes for being
in the left and right wells, and which has no classical ana-
log. Perhaps the best-known example in which this
behavior can be dil ectly observed is the "strangeness oscil-
lations" of a neutral K-meson beam (see, for example,
Perkins, 1972), a case in which the two-dimensional Hil-

Guinea et a/. , 1985a; Weiss and Grabert, 1985), we shall
not consider them explicitly here but shall confine our at-
tention to the two-state problem.

If for the moment we regard our two-state system as
totally isolated from its environment, then its motion in
the two-dimensional Hilbert space can be completely
described by the simple Hamiltonian

II = —2&~ocrx+ 2 ~oz .I

bert space corresponds to a nongeometrical degree of free-
dom (namely, strangeness). The best-known case in which
oscillations of the form (1.3) occur between spatially
separated potential wells is that of the "inversion reso-
nance" of the NH3 (ammonia) molecule (see, for example,
Feynman et a/. , 1965); however, it is worth noting that in
this case the oscillations are rarely if ever observed direct-
ly, but are inferred from spectroscopic data.

A major motivation for this work is the hope that there
may exist cases where oscillations of the form (1.3) can be
directly observed in a system in which the two states in
question, gL and gR, not only correspond to different
values of an extended coordinate (e.g., the flux in an rf
SQUID; see Leggett, 1984a) but are by some reasonable
criterion macroscopically distinct. Such an experiment, if
feasible, would throw considerable light on the conflict, at
the macro level, between the quantum-mechanical formal-
ism and "common sense" ideas (see Leggett and Garg,
1985).

In many cases of practical interest, including those
relevant to the above goal, the two states in question, gL
and gR, are related to some symmetry operation, and the
Hamiltonian commutes with this operation, at least to a
first approximation. Thus for such cases we have c=O.
Some examples of such cases, with the relevant sym-
metries and effects likely in practice to break them, are
listed in Table I. It should be emphasized that at this
point we are concerned only with effects associated with
c-number (and constant in time') external fields; as we
shall see below, in most cases of practical interest the
fluctuating symmetry breaking due to contact with a
quantum environment is much more important. In fact,
in many cases of practical interest the c-number
symmetry-breaking effects are totally negligible. For this
reason we shall put most emphasis, in this paper, on the
case c.=O, which as we shall see shows the richest variety
of behavior.

Provided that the system can be regarded as totally iso-
lated, so that the Hamiltonian (1.1) is a complete descrip-
tion, then its dynamics is of course a trivial problem (for
any e). But in practice this is virtually never the case; al-
most every real-life two-state system interacts with its en-
vironment, and as we shall see this interaction is often
strong enough to modify the behavior not only quantita-
tively but even qualitatively. The main reason for this is
as follows: in most cases of experimental interest the
principal coupling of the system to its environment is
through a term of the form o,Q, where 0 is some opera-
tor of the environment. A coupling of this form means
that the state of the environment will be sensitive to the
value of o. , or to put it in pictorial and not too accurate
language, that the environment can "observe" the value of
o, (i.e., whether the system is in the right or left well).

'%'e could of course also consider the case of c-number exter-
nal fields that vary in time, but for present purposes there is no
great point in doing so.
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TABLE I. Summary of results for P(t):—(o,(t) ) for bias e=O.

a = ,' x—a~„+,' q.—~,g c.x.+H, (Im. j, I ~.j ),

2C —CO/CoJ(~)=—g 5(co—co )=A co'e
ma~a

Other quantities use

with ihe conditions 6 «co„k&T«Ace, .

Ohmic dissipation:

0&s &1 Localization
exponential relaxation with a rate
~exp[ —(To/T)' '] (Sec. VI.A)

T=0

d below: a=gq()/2mb, A, =h(6/co, ) " '(a&1) .
J{co)=g~e

s =1 (ohmic) o. &1, T=O
a& 1, T+0 or
a&1, aT&6„
(i.e., region to the
right of the curve in Fig. 8)

Localization

Exponential relaxation with a rate
~ T ' (Sec. V.C)

&Q& 1, T&AP' Probably incoherent relaxation (Sec. V.E)

o;=T, all T
I

Exponential decay with a rate mA /2~,
{Toulouse limit) (Sec. V.B)

0&+& ~, eT &6„ Damped oscillations with an

incoherent background (Secs. V.D and V.F)

1&$ &2 Damped oscillations at T =0, with
a crossover to exponential relaxation
at T=T* (Sec. VI.B); for definition of
T* see Eq. (6.42)

Weakly damped oscillations (Sec. VI.B)

For results for v&0, see Sec. VII.

Now we know from the general concepts of the quantum
theory of measurement that if a system is in a linear su-
perposition of states, then any attempt to "observe" which
of the two states it is in leads to the destruction of phase
coherence between them. Since it is precisely this phase
coherence which leads, for example, to the behavior (1.3),
it is plausible that a sufficiently efficient coupling, via o.

„

to the environment will destroy this behavior (Simonius,
1978; Zurek, 1981; Joos and Zeh, 198S). We will indeed
confirm this result, although as we shall see the question
of just when the .coupling is "sufficiently efficient" is
more subtle than one might infer from some of the litera-
ture on this topic.

It may be asked whether we should not also consider
the possibilities of coupling of the environment to the
operators cr„a/ndroo~ (coupling to the unit matrix in the
"ground" two-dimensional space clearly has no effect on
the dynamics). There are indeed some problems where
such a coupling is realistic; for example, in a typical
NMR problem the environment provides fluctuating
fields that are in all directions relative to the static field,
and hence couple to all of o. , o.~, and o, Again, such

couplings may have to be taken into account in the theory
of tunneling in metallic glasses: see Zawadowski and
Zimanyi (198S). However, for most problems involving
extended coordinates, where the tunneling takes place in
the WKB limit, such couplings are negligible. The reason
is that o.~ and oz have only nondiagonal matrix elements
in the o, representation, i.e., they change @~I to gz and
vice versa. Thus any interaction proportional to them
must also be proportional to the overlap of QL and gz in
the real coordinate space, i.e., it must be of the order of
the exponentially small quantity Who. That, of course,
does not mean that such effects are unimportant. Indeed,
it is clear that there may be substantial physical effects
which arise from the effect of the environment on the
overlap of gi and g~. Consider, for example, a defect
trying to tunnel between two equivalent sites in a solid; to
do so it will, in general, have to squeeze between the
"host" atoms. If now the phonons of the lattice conspire
to move these atoms further apart for some small time in-

terval, it will be easier for the defect atom to squeeze
through, and we should expect that the effective tunneling
matrix element is modified (see, for example, Sethna,

Rev. Mod. Phys. , Vol. 59, No. 1, January 1987
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1+ 2 qpoz g Caxa (1.4)

Here b, is the "bare" tunneling matrix element (but see
below), E is the c-number bias, x, p, m, and co are,
respectively, the coordinate, momentum, mass, and fre-
quency of the o.th harmonic oscillator representing the en-
vironment, and qo is a parameter which, in the case of a
system with an extended coordinate, represents the. dis-
tance between the two potential minima (see Fig. 1); for a
system that is "intrinsically" two-state qo is superfluous,
but it is nevertheless convenient to keep it. C is the
strength of coupling of the system to the o.th oscillator.
It will turn out that, for any problem in which a thermal
equilibrium statistical average is taken over the initial
states of the environment and a sum over the final states,
complete information about the effect of the environment
is encapsulated in the single "spectral function" J(co) de-
fined by the expression

J(co)=—g (Ca/moto )5(co coa) . —
a

Thus our problem is completely defined by the parame-

1981,1982, and references therein). However, as we shall
indicate in the next section, this effect can be completely
taken into account, to within terms of order of the ex-
ponentially small ratio b,o/too, by a renormalization of the
c num-ber tunneling matrix element A'hc (and, in certain
circumstances, also of the c-number bias s). Any residual
terms that in effect couple to o. and/or uz are, as shown
there, totally negligible exct„pt under very special and
unusual circumstances.

In the light of the above considerations, it should be
adequate for most purposes to treat the effect of the envi-
ronment on the two-state system entirely by a Hamiltoni-
an in which the coupling is only to o, Moreover, provid- .

ed the coupling to any one environmental degree of free-
dom is sufficiently weak, then arguments similar to that
of Caldeira and Leggett (1983), Appendix C, indicate that
it should be adequate to represent the environment as a
set of harmonic oscillators with a coupling linear in the
oscillator coordinates and/or momenta; by an appropriate
canonical transformation and related tricks, described in
Leggett (1984b), it is possible to ensure that the coupling
is only to the coordinates. Thus we reach the Hamiltoni-
an which has become known in the literature as the
"spin-boson" Hamiltonian:

Hsn ————,A'bo.„+—,'ecr, +g ( 2 macoaxa+pa/2m')

ters E, b„and the function J(m) [the parameter qo enters
only in the combination qoJ(co) and can, if convenient, be
incorporated into the definition of J].

In Sec. II we shall examine the problem of obtaining
the spin-boson Hamiltonian (1.4) and determining its pa-
rameters in the case where the system was originally
described by an extended coordinate. In this case it turns
out that the form of J (to) can be obtained from a
knowledge of the classical equation of motion of the sys-
tem, and moreover that the choice of 5 is not independent
of the high-frequency behavior of J(to). In an "intrinsi-
cally" two-state system the values of the parameters must
be determined from some a priori microscopic knowledge.
One assumption we shall make throughout this paper is
that J(to) is a reasonably smooth function of to, and
moreover that it is of the form co' up to some frequency co,
that is large compared to 6: in fact, all our quantitati. ve
results will be valid to lowest nontrivial order in the ratio
b, /to, (and kT/Ace, and E/~„seebelow). We shall see
in Sec. II that for a truncated" two-state system the
quantity m, enters in a natural way as a cutoff due to the
truncation procedure; in this case it would be inconsistent
not to impose the conditions 6/co, «1, kT/fice, «1,
since when they are not fulfilled the truncation procedure
is itself invalid.

Even with those restrictions, the Hamiltonian (1.4) has
been the subject of innumerable papers in the literature,
which have reached widely differing conclusions about
the dynamics of ihe two-state system described by it,
ranging from totally undamped oscillation through over-
damped (exponential) relaxation to complicated power-
law types of behavior to total localization. What seems
not to have been clearly recognized until recently is that
there is no generic "two-state" behavior, and in particular
that the system dynamics depends crucially both on tem-
perature and on the behavior of the spectral function
J(to) for frequencies (A. Let us suppose in particular,
as above, that for frequencies less than some cutoff
co, ~~5, J(co ) has a simple power-law behavior
J(co)=Aco'. We shall call the case s =1 (which corre-
sponds, for a truncated .system, to a dissipative term
linearly proportional to velocity in the classical equation
of motion) the "ohmic" case, the case s ~ 1 "superohmic, "
and the case 0 & s & 1 "subohmic. " (As we shall see in the
next section, the case s &0 is pathological. ) Thus, for ex-
ample, the case of defect (or electron) tunneling in a solid
with coupling to a (three-dimensional) acoustic phonon
bath, which has been intensively studied in the context of
the polaron problem, is superohmic with s =3 or s =5,

This effect should be carefully distinguished from the
phenomenon discussed, for example, by Teichler and Seeger
(1981) under the name of "phonon-assisted tunneling"; the
latter occurs even in the limit that 5 is taken to be a c number
(see also Sec. VI).

The quantity 6 (which was called 50 in Chakravarty and Leg-
gett, 1984) is already renormalized for higher-frequency effects;
see next section.

4There is of course no intrinsic reason why, even in a truncated
two-state system, the quantity Jo(co) [and hence a fortiori J(co)]
should not have nontrivial structure on a scale coJ small com-
pared to co, . However, provided 6 «coJ, we can always adjust
co, downward until coJ »m, (see Sec. III.C) and thus make the
scale of J(co) automatically ~, ( &&6). What we do not consider
in this paper is the possibility cuq &4 (for which see, for exam-
ple, Garg et al. , 1985).
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depending on the model used (Flynn and Stoneham, 1970;
Teichler and Seeger, 1981; Sethna, 1981, 1982). We note
that although most of the cases discussed to date have in-
volved integral s, the case of nonintegral s is I1ot neces-
sarily totally academic, as systems interacting with "frac-
tal" environments (Mandelbrot, 1983) may well possess
sllcll a folII1 of I ( co ). W11Rt. Wc will find ls tllat tllc
behavior is totally different for the sup erohmic and
subohmic cases, corresponding, crudely speaking, to
weakly damped oscillation in the former and complete lo-
calization at T =0 in the latter. The value 1 of s (corre-
sponding to the "ohmic" case) is therefore a "critical
dimensionality" for this problem, and we shall see that by
varying the strength of the coupling in this case we can
display, in effect, all the possible types of behavior.

The aim of this paper is to explore, as completely as
possible, the dynamics of a two-state system described by
the spin-boson Hamiltonian (1.4), as a function of 6, c.,
and the function J(co), under ttco conditions (1) We. shall
always assume that both 6 and k~T/A' (as well as c/Iri)

are small compared to the characteristic frequency scale
co, of the environment (defined quantitatively below). (2)
We shall be interested in the dynamics at times t which
are *'not too long"; in particular, if there is some charac-
teristic frequency 6, associated with the motion, then we
shall assume that A, t is of order unity Iather than of or-
der of some positive power or logarithm of ~, /h. Times
of the latter order are irrelevant to most of the real-life
experiments that can be performed on such systems. We
shall dcvotc most of ouI' cffoI't to the ohInic case, which
displays the richest variety of behavior as a function of
the parameters; the qualitative behavior in the superohmic
and subohmic cases can be obtained from rather simple
intuitive arguments, and our detailed analysis will con-
firm these results.

The plan of the paper is as follows. In Sec. II we shall
discuss in detail the justification of the spin-boson Hamil-
tonian for a "truncated" system and derive the forIn of
the parameters occurring in it. (Details of the justifica-
tion for an initially asymmetric two-well system are
relegated to Appendix A.) In Sec. III we formulate pre-
cisely the question we wish to ask, and survey a number
of qualitative features of the problem and some associated
methods of solution that have appeared in the literature.
We also discuss in some detail the relationship between
the special case of ohmic dissipation and the much-
discussed Kondo problem. In Sec. IV we eliminate the
environment from the problem and thereby derive a for-
mal expression which is the basis of all our subsequent
analysis; as stated above, this expression involves the envi-
ronment parameters only through the function J(co).
(Some technical details connected with the derivation are
given in Appendix B.) Section V is in a sense the center-
piece of the paper: in it we analyze in detail the dynamics
in the ohmic case with zero bias (E=O), obtaining exact
results in some regions of the parameter space and results
that we believe to be an extremely good approximation
over most of the rest. Much of the detail of the
mathematical arguments used in this section is relegated

to Appendix D. In Sec. VI we apply our general forrnal-
ism to the cases of superohmic and subohmic dissipation
without bias, and in Sec. VII we generalize some of the re-
sults to the case of finite bias. In the conclusion, Sec.
VIII, we summarize our results and comment on their sig-
nificance.

Like so many of the problems discussed in the so-called
theoretical physics literature, the topic of this paper is of
course formally a problem in applied mathematics.
Where the physics comes in is the selection of those
features of the solution which one believes i.t is essential to
get qualitatively and/or quantitatively right, as distinct
from those regarded as of more marginal relevance. In
the present case our main concern is to get a good qualita-
tive, and as far as possible quantitative, account of the
dynamics over the time regime (extending, say, for a few
times 6„)for which it has interesting and potentially ex-
perimentally obserUable structure: in particular, if we be-
lieve the system is going to oscillate, then we would at
least like to predict the behavior over the first one or two
complete cycles as accurately as possible. [This is partic-
ularly iroportant in the context of the problem that origi-
nally motivated this work, that of tests of quantum
Inechanics at the macroscopic level: see Leggett and Garg
(1985).] By contrast, we shall be much less interested in
the behavior at long times, (b,„t&& 1, even if b,„t
~~co, /b, )„tthough froln a different point of view (e.g.,
that of phase transition theory) the latter may be of great
theoretical interest. The technique used in this paper,
whlcl1 may bc described as bI'utc- force analytical, 1s ln
some sense intermediate between purely computational
studies (which are valuable for specific cases but do not
automatically make it easy to see the global picture) and a
renormalization-group type of approach, which may give
valuable information about the asymptotic behavior but
has far more difficulty getting the intermediate-time
dynamics right.

A major underpinning of the results of Secs. V—VII of
this paper is the observation that the form of the exact
formula derived in Sec. IV suggests an approximation to
it, which we christen the "noninteracting-blip approxima-
tion" and which, unlike many of the approximations
made for this problem in the literature, is controlled, i.e.,
such that we can put rigorous bounds on the errors in-
curred by it and, where necessary, evaluate them sys-
tematically. In the case of zero bias (c=O) and ohmic
dissipati. on, we demonstrate rigorously that the errors
vanish, in the limit of interest to us, on the line += —,,
and find explicit bounds on them, and approximations for
them, for 0 & a & —,

' at T =0; we also argue more heuristi-
cally that they vanish for sufficiently lar'ge a and/or T,
and for the superohmic and subohmic cases (i.e., for the
vast bulk of the whole parameter space). For nonzero c
we can justify the approxiInation for a somewhat smaller
region of the parameter space. We want to emphasize
that while the final formulas which follow from the
noninteracting-blip approximation may be obtained in al-
ternative ways (see Sec. VIII), a major advantage of the
RpploRcll used lI1 tllls pRpcl' ls tllat lt Rllows lls to Justify
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this approximation and, where it cannot be justified (as in
the ohmic case with 0&a & —, ), to implement systematic
corrections to it.

To summarize our conclusions briefly, we find that
even the qualitative behavior of the dissipative two-state
system [more specifically, of the quantity P (t) =—(o,(t) ) ]
is critically sensitive to the low-frequency (co & 6)
behavior of the spectral function J(co) defined in Eq.
(1.5). For the "subohmic" case (s & 1) we find that the
system is localized at zero temperature in the well it start-
ed in, and at finite temperatures relaxes incoherently at a
rate proportional to exp —( To /T) ' '. For the "su-
perohmic" case with s ~2 we get coherent underdamped
oscillations at all temperatures small compared to
%co, /k~, while for 1&s &2 there is a crossover from
coherent oscillation to overdamped relaxation as the tem-
perature is increased. In the ohmic case (s =1), where
J(co) =geo, the behavior depends critically on the dimen-
sionless dissipation parameter a:—gqo/2mB as well as on2

T. If we define a quantity 5„to be b, (b, /coo) ~~' ' for
a & 1, and zero for a & 1, then for all regions of the (a, T)
plane for which a.k&T ~~Ah, we get incoherent exponen-
tial relaxation at a rate proportional to '1 '. In the
(very small) region —,

' &a & 1, k&T &A'b„we suspect (but
cannot rigorously prove) that we get incoherent relaxation
at a rate of order 5„'.In the region 0 & a & —,', T =0 we

show rigorously that (cr, (r) ) is, in the limit of interest to
us, a function only of the variable A„t,and moreover that
it can be well approximated for not too long times by a
Mittag-Leffler function, i.e., the sum of a damped ex-
ponential and an incoherent term nonanalytic in the time,
the two terms being in general of comparable importance.
Finally, on the line a= —,

' the behavior is everywhere a
simple exponential relaxation, at a rate ~h /2', . These
results are summarized in Table II.

Brief accounts of the method used, and of some of the
specific results obtained here, have been given elsewhere
(Chakravarty and Leggett, 1984; Fisher and Dorsey, 1985;
Garg, 1985; Dorsey et al. , 1986). However, the bulk of
the material presented in this paper is new.

To conclude this Introduction, we should like to make
a few miscellaneous remarks. First, with the exception of
Sec. II and the related Appendix A, this paper is entirely
devoted to the tuo-state problem described by the stan-
dard spin-boson Hamiltonian (1.4). It is not concerned (at
all) with the problem of tunneling out of a metastable

state into a continuum. Although there may be one or
two special situations in which the two problems to some
extent overlap, for example, in the case of tunneling into a
continuum whose floor is only just below the floor of the
metastable well (see Weiss et al. , 1984), we believe that in
general they are quite different and that it only confuses
the issue to try to handle them together. In particular,
the physical origins of the enhancement of tunneling out
of a metastable state with increasing temperature seem to
us conceptually quite distinct from the temperature-
dependent effects we shall consider in this paper (which
can have either sign).

Second, we emphasize that the problem described by
the so-called "rotating-wave" Hamiltonian widely used in
quantum optics is quite different from ours. To compare
the two, it is convenient to rotate the fictitious "spin"
coordinates around the y axis by m/2: the effect is simply
to exchange cr and o, in (1.4) to change the sign of b..
The rotating-wave Hamiltonian is then obtained by writ-
ing

o„—= —,
' [(o.„+iay)+(.cr„I',oy)]—=(o.+—+o. . ),

(a~+a~ ),

where a,a~ are the standard oscillator creation and an-
nihilation operators, and discarding the "counterrotating"
terms o.+a+ and cr a. The resulting Hamiltonian, which
is essentially equivalent to the Lee model of quantum
field theory, has been studied by many authors, in partic-
ular by Pfeifer (1982), who obtains some interesting exact
results for it and shows that at a certain critical value of
the parameters it undergoes a qualitative change in
behavior, which he associated with a localization transi-
tion superficially similar to the one we shall obtain below
for the spin-boson Hamiltonian. We shall discuss
Pfeifer's conclusions concerning the spin-boson problem
itself in the conclusion; here we want merely to note that
the rotating-wave Hamiltonian differs from the spin-
boson one (1.4) in a number of important respects, in par-
ticular in that the noninteracting ground state (i.e., the
state

~
0) such that o.

~

0) =a
~
0) =O, Va) is always an

eigenstate of the interacting Hamiltonian for arbitrary
coupling strength. For this reason we believe that the re-
sults obtained by Pfeifer (and others) for this Hamiltoni-

TABLE II. Some two-state systems with the corresponding symmetry-breaking effects.

System

Paraelectric impurity
in solid

Chiral molecule
&o —&0 system
SQUID {in external

flux h/4e)

Symmetry

Crystal symmetry

Parity
Charge conjugation
Time reversal

C-number symmetry-
breaking effects

Electric fields

Weak interaction
Presence of matter
Imperfect flux

adjustment
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an, while interesting in their own right, are not obviously
relevant to the qualitatively different spin-boson problem.

Third, we emphasize that when deriving results con-
cerning the temperature dependence of the behavior in
this paper we always implicitly assume that the spectral
density J(co) [Eq. (1.5)] is independent of T. Actually,
there are a number of interesting physical exemplifica-
tions of a two-state or similar system where the environ-
ment cannot be reasonably modeled by a set of linearly
coupled oscillators with temperature-independent parame-
ters. As an example, let us consider the case discussed by
Harris and Stodolsky (1981, 1982) in which a chiral mole-
cule interacts by collisions with other gas molecules.
Since, as they demonstrate, the relevant matrix elements
for interaction of the system with its environment sample
the velocity distribution of the gas molecules, which is
strongly temperature dependent, it is clear that no model
with a temperature-independent J(co) can reproduce the
correct behavior. A second example is the case of rota-
tional tunneling of a methyl group in a solid (see, for ex-
ample, Hewson, 1982), where a transition of the system
must for symmetry reasons necessarily involve absorption
as well as emission of a lattice phonon. Although we
have no rigorous proof, we believe it is very probable that
in each of these cases, and in other similar ones, the effec-
tive Hamiltonian at any given environment temperature
could, by a sufficiently Procrustean maneuver, be cast in
the form (1.4), with, however, J (co) an explicit function of
temperature. To the extent that this is true, all the formal
results of this paper could be taken over verbatim, but of
course, the temperature dependence of the behavior might
well be quite different from what we describe below.

Finally, a note on citation policy. The problem dis-
cussed in this paper has, in effect, been around since the
birth of quantum mechanics, and important contributions
have been made to it by workers with primary fields of
interest as diverse as solid-state physics, chemical physics,
quantum optics, quantum measurement theory, particle
physics, biophysics, and probably yet others; in many
cases, ideas well known in one context have been
discovered afresh in another, often in a language suffi-
ciently different that it is not altogether trivial to make
the connection. In this situation, to trace the exact ances-
try of a particular idea would entail a task equivalent to
the writing of a comprehensive review of the topic—
something which this paper emphatically does not claim
to be. In the present context we take the (probably old-
fashioned) point of view that the primary purpose of cita-
tion is not to allot credit meticulously among one's col-
leagues but to help the reader to understand the paper,
and the references in the text are chosen with this in
mind. However, to help the reader find his or her way
through the literature in this field we have included, in
Appendix F, a list of some recent papers that we hope are
representative of most of the major lines of approach
currently being used; we hope that, by following up the
references cited in these papers, the reader will be able to
trace the ancestry of some of the main themes as far back
as he or she cares to go.

II. DERIVATION OF THE SPIN-BOSON HAMILTONIAN
FOR AN EXTENDED SYSTEM

In this section we shall explain how, starting from a
system described by an extended coordinate q and in-
teracting with its environment, we can reduce ("truncate")
the problem (under appropriate conditions; see below) to
one described by the Hamiltonian (1.4). For the case of a
tunneling defect interacting with phonons in a solid,
where the spectral function J(co) is proportional to cu,
this problem has been examined by Sethna (1981, 1982).
In the case of "ohmic" dissipation [J(co)~co] there are
special difficulties (see below), and a possible formulation
for this case is given in Chakravarty (1982) and Chakra-
varty and Kivelson (1983, 1985). The treatment given
below is similar in spirit but not quite identical to either
of these discussions, and is quite generally applicable. A
more detailed discussion of the technique for the ohmic
case may be found in Dorsey et al. (1986). It should be
strongly emphasized that the results of this section are
only valid (or only obviously so) in the limit 6, kzT/fi,
E/%~~coo [where b, is the "bare" tunneling matrix ele-
ment that will eventually enter the Hamiltonian (1 4)];
this condition is fulfilled for the vast majority of cases of
interest in physics, although there are chemical problems
where it is certainly not met (cf. Garg et al. , 1985).

We shall assume that the original extended system in-
teracting with its environment is adequately described by
the Lagrangian

I. (q, q:Ixj,xj I )= , Mq —V(q—)+—,
' g mj(x 1

—co,'x )

J

—g FJ(q)xj Q I'J (q)/2mj. coJ—. ,

(2.1)

that is, the Lagrangian of a system interacting with a set
of linear harmonic oscillators via an interaction linear in
the oscillator coordinate, plus a "counterterm" [the last
term in Eq. (2.1)). The quantities M and V(q) are the re-
normalized mass and (conservative) potential energy of
the system, which may or may not be identical to these
quantities in the absence of any interaction with the envi-
ronment [see Caldeira and Leggett (1983), Secs. 2 and 3;
Leggett (1984b), Sec. IIB]. Although the Lagrangian (2.1)
is, of course, not the most general possible description of
a system interacting with its environment, we believe that
in the present context it is an adequate 'description of
most, if not all, cases of practical interest. The following

~This condition is appropriate for light or moderate damping;
For very heavy damping the criterion is somewhat different; see

Appendix A.
We assume that the number of oscillators in unit frequency

range is proportional to some large number X and will eventual-

ly let X tend to infinity; then, to preserve the appropriate classi-
cal equation of motion, the individual coupling constants F~(q3
must be proportional to X
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Jo(co)—:—g (CJ /mjcoJ )6(co—coj) .
2 J

(2.3)

considerations may be cited in support of this assertion:
(1) In many cases of interest, such as the case of defect

tunneling in a solid, the form (2.1) follows directly from
microscopic considerations [the presence or absence of the
counterterm is, as discussed in Caldeira and Leggett
(1983, Sec. 2), merely a matter of the convention of choice
for V(q)].

(2) As shown in Leggett (1984b, Sec. IIB), the Lagrang-
ian (2.1), with the special choice FJ(q)=qCJ, is a legiti-
mate way of describing any system whose interaction with
its environment satisfies the three conditions specified
there, namely, (i) small perturbation of any one environ-
mental degree of freedom, (ii) "strict linearity, " (iii) time-
reversal invariance.

(3) In many cases where condition (i) but not condition
(ii) is fulfilled, there are still strong arguments that Eq.
(2.1), with a general FJ(q), is a good description. In par-
ticular, for the important case of a system interacting by a
contact potential with a Fermi sea, the results of Yu and
Anderson (1984) and Chang and Chakravarty (1985)
make it extremely plausible (though they do not in them-
selves prove) that such a description is possible, with

FJ (q) saturating as a function of q in such a way as to en-
sure that the dimensionless dissipation coefficient a (de-
fined below) is always less than unity; very recent work by
Chen (1986) has put this conjecture on an almost rigorous
footing. Again, in the case of an ideal tunnel oxide junc-
tion described by the standard tunneling Hamiltonian
(where the coordinate q corresponds to the phase differ-
ence y across the junction), the work of Eckern et al.
(1984) strongly suggests that, at least in the limit
described by their Eq. (48), a description of the type (2.1)
is legitimate, with two different oscillator baths a and P
and the function FJ(q) =FJ(p) given by cosy/2 is the os-
cillator j is in both a and by sing/2 if it is in bath f3 (see
especially their remarks on p. 6427). There may well be
a few cases where the description (2.1) is not technically
legitimate; however, we believe that even in such cases the
results obtained in this section are not likely to be qualita-
tively misleading.

In the following we shall discuss explicitly the case of
"strictly linear" dissipation, where the coupling coeffi-
cients have the simple form

FJ(q)=qCJ . (2.2)

The extension to a more general form of FJ.(q) is straight-
forward and is indicated at the end of this section. In
case (2.2) we can define a spectral density Jo(co) [dis-
tinguished from the J(co) of Sec. I for a reason that will
shortly become apparent] by the formula

The function Jo(co) may be obtained, in any specific case,
either from a priori knowledge of the microscopic interac-
tions or, as described in Leggett [1984b, Eqs.
(2.12)—(2.14)], from the classical damped equation of
motion. For example, for a system subject to simple
"normal ohmic" dissipation (i.e., where the classical equa-
tion of motion contains a dissipative term of the form
—gq, where g is the classical friction coefficient), we
have Jo(co)=pm for all frequencies co much less than a
characteristic cutoff frequency of the order of the inverse
Drude relaxation time of the environment; for a defect in
a (three-dimensional) solid interacting with acoustic pho-
nons, we have Jo(co)=const co or co (see above) for fre-
quencies well below the Debye frequency; and so on. In
general, the behavior of Jo(co) for frequencies of the order
of, or greater than, the characteristic microscopic fre-
quencies of the environment (Drude, Debye, etc.) may be
complicated, and may not necessarily be inferable in prac-
tice either from microscopic considerations or from the
(experimentally observable) classical motion; however, the
only property we need to postulate for present purposes is
that Jo(co) falls off at least as some negative power of co

in the limit co~ oo. We shall denote the order of magni-
tude of the microscopic characteristic frequency of the
environment in question generically as co, o, it is irrelevant
to the validity of the procedure to be developed below
whether or not co, o is large compared to the (bare) "at-
tempt frequency" coo [that is, the characteristic frequency
of classical motion of a system of mass M in the potential
V(q)], though in most case of practical interest this is in
fact so. It is convenient, moreover, to postulate (though
it is not actually needed for the purposes of this section)
that Jo(co) tends to zero as co~0 at least as some positive
power of ~; note that, together with the restriction placed
above on the co—+Oo behavior, this guarantees that the
"counterterm" [the last term in Eq. (2.1)] is finite.
Models for which the counterterm diverges appear to be
pathological and will not be discussed here. Although it
is not strictly necessary for the purposes of this section,
we shall generally assume that for co &6, the function
J(co) follows a power law and hence can be classified as
ohmic, superohmic, etc.

The crucial feature that we need to exploit in order to
reduce the problem described by the Lagrangian (2.1) to
one described by the spin-boson Hamiltonian (1.4) is the
separation of the frequency scales coo on the one hand and
b„k+T/fi on the other Intuitiv. ely speaking, this means
that we can separate the environmental oscillators broadly
into two classes, which play two quite different roles: the
oscillators of frequency )coo affect the process of transi-
tion through the potential barrier and thereby renormalize
the effective tunneling matrix element, while those of fre-
quency & 6 "detune" the two wells [i.e., in effect give the

As noted in Eckern et al. (1984), no choice of IJ.(y) that
makes it independent of j can reproduce their results, even in
the limit specified. It is also not immediately obvious {though
we believe it is plausible) that a description of the type (2.1) is
possible outside this limit.

It is even irrelevant, formally speaking, whether or not co p is
large compared to the tunneling matrix element 6 that will
emerge from the calculation, though if it is not the reduction
process is trivial.

Rev. Mod. Phys. , Vol. 59, No. 1, January 1987



10 Leggett et al. : The dissipative two-state system

where the partial spectral densities are defined in such a
way that J(co) is negligibly small for co»co, and J'(co)
negligibly small for co «co„'thus J(co) and J'(co) in ef-
fect represent the contribution of the low- and high-
frequency oscillators, respectively. A variety of choices
that satisfy this requirement are possible. For our pur-
poses it is convenient to make the specific choice

J(a) ) =—e 'Jo(co),

J'(co)—:(1—e ')Jo(co) . (2.4)

Note that with the choice (2.4) [as distinct from, say, a
sharp cutoff, J'(co) =8(co—co, )Jo(co)] the high-frequency
component does have some weight at ~~&~„but the
latter tends to zero with co faster than that of J(co) and
hopefully will not play a significant role (see below).

Special caution is necessary if the damping of the clas-
sical motion is very heavy. For example, in the case of
(normal) ohmic dissipation there will then be a charac-
teristic frequency of the classical motion, M~0/g, which
is small compared to co0. In this case it is necessary to
choose ~, to be small compared to this frequency, so we
must require, as a condition for the validity of the trunca-
tion, not merely 6 ~&m0 but the more stringent condition
b &&Mcoo/g. Since, as we shall see below, the quantity b,

However, as we shall see below, in the ohmic or subohmic

case the separation cannot be made quite so simply.
~ Since 6 will be output of the calculation, this is to be done

self-consistently.
An important assumption implicit in this procedure of

"smoothing" the cutoff is that for a given form of Jo(co) it does

not matter precisely how the contribution to the right-hand side

of Eq. (2.3) is allocated between different oscillators j. Thus we

can arbitrarily attribute J'(co) to one set of oscillators and J(co)
to a totally different set. [This avoids having to put back into
the problem at stage II (see below) oscillators that have already
been integrated out at stage I.] The correctness of the assump-

tion can be verified by writing down formal expressions for the

quantities we wish to calculate in functional-integral form and

integrating out all the oscillators: the resulting expressions
manifestly depend only on Jo(co), not on the behavior of the in-

dividual oscillators. Naturally, once one begins to ask questions
of detail about the behavior of the bath in its own right, this

procedure (like many other steps in this paper) may break down.

bias c a random fluctuating component; see Leg get t
(1980), Sec. 5] and thereby tend to destroy the phase
coherence between the corresponding amplitudes QL and

PR. The spin-boson Hamiltonian (1.4) corresponds to an
intermediate stage of the calculation in which the former
effect has been incorporated into the renormalized param-
eters and the latter remains to be taken into account. To
make this picture quantitative we introduce an arbitrary
cutoff frequency co, (not to be confused with the co, o men-
tioned above) such that' 5, kz T/R « co, « coo, and de-
fine

(2.3')

decreases at least as a high power of co, (proportional to
q) for large damping, it is always possible to fulfill this
condition. Similar considerations apply a fovtiovi to the
nonohmic case (see Sec. III.C).

The calculation now proceeds in two stages. In stage I
we consider the "extended" problem described by the La-
grangian (2.1), with I'J(q) =qCJ, but with the full spectral
density Jo(co) [Eq. (2.3)] replaced by its high-frequency
component J'(co) [Eq. (2.4)]. That is, in effect we set the
coupling constants Cz to the low-frequency oscillators
equal to zero. Using this "truncated" coupling, we calcu-
late the partition function Z(P) of the system in the limit
k~ T/fm, =Pfico—, && 1 by the "instanton" technique
(Langer, 1967; Coleman, 1979). After integrating out the
environment variables, we can express Z(P) in the form
(Caldeira and Leggett, 1981, 1983; Chakravarty, 1982)

q (lanai) =q
Z(P)=const j dq j Dq(w)exp —S,ff[q(~)]/A',

q(0) =q

(2.5)

where the effective (Euclidean) action S,rr[q(r)] is given
(see, for example, Feynman, 1972) by

S,rr[q(~)]:—j [ ,'Mq + V—(q)]dr
oo PA

+ —, j dr' j dry(r r')[q(~) ——q(r')]

(2.6)

(2.7)

In the evaluation of the last term in (2.6) it is understood
that q(r) is continued periodically outside the range
0&q &P by the prescription q(~+A'P)=q(r) [see Cal-
deira and Leggett (1983), Sec. 4]. Since in the calculation
of the partition function we are concerned only with
paths that satisfy the condition q (Ph') =q (0), this feature
leads to no complications in the limit /3fico, »1 and does
not have to be explicitly taken into account.

The details of the evaluation of Eq. (2.5) for an arbi-
trary (in general asymmetric) two-well system are given in
Appendix A. Here for pedagogical simplicity we confine
ourselves to the case of a strictly symmetric potential
V(q) = V( —q) and briefly review the results of this calcu-
lation. As usual, the partition function is dominated in
the semiclassical (WKB) limit (which is automatically the
relevant limit here, since we assume Vo»Rcuo) by the
classical paths q,&(r) available in the inverted potential.
If we choose the origin of q so that the potential minima
occur at q =+ —,

'
qo (see Fig. 1), then apart from the trivial

paths q(r)=const=+ —,qo, the only such classical paths

available are those built up of well-separated instantons,

'2Were we to use the instanton technique to calculate off-
diagonal elements of the density matrix, this feature would be

crucial. See Caldeira and I.eggett (1983), Appendix B.
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i.e., those in which the system moves backward and for-
ward at rare intervals between the wells, staying a long
time at + —,qo between these moves. A standard summa-
tion of the contributions of these paths and the small
fluctuations around them, carried out in Appendix A,
then gives the simple result

assuming that 5/cob may be taken as small as we like, it
is clear that by a suitable choice of co, we may make the
dependence on it an arbitrary small correction. To verify
the above statement, consider the behavior of the quantity

(2.10)

Z (P) =cosh(Pfih) /2, (2.8)

where 6 is a quantity characterizing a single isolated in-
stanton:

b, /2—:2 exp —S,t[q (r)]/A' . (2.9)

Weiss et al. (1984) consider the length of a bounce in the
limit of a small bias between the wells which tends to zero, and
find that it diverges logarithmically in this limit (even for the
undamped case). This divergence results entirely from the long
time spent by the system at or near the "far" maximum in the
inverted potential, and in no way implies that the "instanton"
length is divergent. (In fact, in the limit of zero bias the bounce
breaks up into two finite-length instantons separated by an in-

finite "resting time. ")

Here Sd[q(r)] is the effective action taken along the
single-instanton classical path, that is, the path which
minimizes S,rr[q(r)] subject to the boundary conditions
g( —ea )= —go/2, gp(+ co )=+go/2, and 2 is an ap-
propriate prefactor arising from the small fluctuations
around this path in the usual way. It is crucial to the ar-
gument of this section that S,~[q(r)] be finite: note that
for the ohmic and subohmic cases this is so only because
we have replaced Jo(co) by a form J'(co), which has a suf-
ficiently sharp low-frequency cutoff [Eq. (2.4)].

The partition function (2.8) evidently describes a simple
two-level system with energy splitting AA; moreover, in
the present (symmetric) case, it follows immediately from
the symmetry of the Lagrangian (2.1) [with F~(q)=qC~]
that the two levels must be, respectively, symmetric and
antisymmetric with respect to interchange of the two
wells. Thus the two lowest-lying states correspond pre-
cisely to the Hilbert space and Hamiltonian described by
Eq. (1.1) (with a=0). This completes stage I of the calcu-
lation.

An important point about the above maneuvre is that
in the superohmic case [J(co)-co', s &1], which is the
case predominantly discussed in the literature until re-
cently, the renormalized tunneling parameter 5 is in-
dependent of the arbitrary cuttoff co, to within terms of
relative order (co, /cob) and (b, /cob), m &0, where col, is
a frequency of the order of the inverse "length" of the iso-
lated instanton. The quantity cob may be estimated (for
any s) by an obvious generalization of the techniques used
in Caldeira and Leggett (1983, Sec. 5); in general it is of
the order of the lowest characteristic frequency of classi-
cal motion in the metastable well (provided the shape of
the potential is not pathological). ' Since we are explicitly

as a function of co, in various regions of the variable

~

r —r' ~, where J'(co:co, ) is defined by the second of Eqs.
(2.4). For

~

r —r'
~

&&co, ', and in particular for

~

r—r
~

& cob, the time scale important in the nontrivial
parts of the instanton trajectory, it is clear that the co, -

dependent correction to o., is of order (co, /co, o)'+' rela-
tive to u, itself, where co, o is, as above, the characteristic
frequency scale of the original environment spectrum
Jo(ct)), and s is the power of ~ in Jo(co). In the usual case
co,o )cob, therefore, the correction in this region is at most
of order (co, /co&)'+' (in the opposite case co, o«cob the
simplest prescription is to choose co, such that
co«& «co, «cob, in which case a, itself can be made arbi-
trarily small). Now consider the region
—:t »cob ', where we have to a good approximation (for
almost all of the region) q(r)-=—q(r')=+ —,qo. In this
region, assuming again that co,o&coq (see above for the
opposite case), a, is approximately of the form
r '+ "(1—[co,t/( I+co, t)] '+"). It is clear that the to-
tal contribution of the a, term to S,& [Eq. (2.9)] from this
region is of order qoco,'', while the dependence on co, is
of order qou', ", thus for s & 1 we can make the relative-
correction arbitrarily small. Similar arguments show that
the factors entering the prefactor A in Eq. (2.9) are only
negligibly dependent on co, . We conclude that, as stated
above, in the superohmic case the dependence of the
"bare" tunneling matrix element 5 in the spin-boson
Hamiltonian on the arbitrary cutoff ~, is negligible.

The case of ohmic (s =1) or subohmic dissipation
needs separate consideration. We shall consider for defi-
niteness the ohmic case (for which the quantity coq is of
order coo for weak damping and Mezzo/g for strong damp-
ing; see Caldeira and Leggett, 1983). In this case, while
our arguments about the short-time (

~

r —r'
~

& coq )

behavior are still valid, the long-time interactions intro-
duce a logarithmically divergent dependence on cu, . This
is easily seen by making the approximation q (r)
—= —,qosgnr for r&&cob (we take the center of the in-

stanton trajectory to lie at &=0). The interaction of the
trajectory at large negative times with that at large posi-
tive times gives rise to a term in S,~/A of the form
(&go/27TA)ln(ct)g/co ), where cob is a frequency of the ol-
der of cob and rI is defined as the zero-frequency limit of
Jo (co ) /co. Thus, in this case, b, depends on co, as

gqo2/2mB
co,

' . (For details, see Dorsey et al. , 1986.) If our
calculation is to be consistent, it is clearly necessary that
this apparent dependence of the results on the value of the
arbitrarily chosen parameter co, be canceled at a subse-
quent stage. We shall verify explicitly in Sec. V that this
is indeed the case, at least over the overwhelming bulk of
the relevant parameter space. Similar considerations ob-
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viously apply to the case of subohmic dissipation ( s & 1),
for which 6 is proportional to exp( —constco', ').

Now that we have identified the partition function (2.8)
as describing a two-dimensional Hilbert subspace of the
coupled system. and (high-frequency part of) the environ-

ment, it is convenient to examine the nature of the corre-

sponding eigenfunctions. It is clear, both on intuitive

grounds and by inspection of the form of the path in-

tegral leading to (2.8), that to zeroth order in the ratio
5/co, these must have the form

++(q:{x,j)= [ip (q:{x,j)+%1 (q:{x,. j)], (2.11)
1

2

where j labels the modes of the environment that have
been included in the sum, analogous to the definition of
J'(cu) [Eq. (2.3)], and 'PL(%'~ ) denotes a wave function in
which q is localized in the left-hand (right-hand) well. In
fact, to this order we would expect +L and 4'z to be pre-
cisely the ground-state wave functions of the "universe"
(system plus high-frequency environment) for a damped
harmonic oscillator. with origin located at qp/2 and
—qp/2, respectively. The properties of the reduced sys-
tem density matrix p(q, q') for this wave function are dis-
cussed in some detail in Caldeira and Leggett (1983, Ap-
pendix 8; see also Grabert et al. , 1984); note that the ex-
istence, in the present problem, of the low-frequency cut-
off ~, on the environment spectrum does not affect the
zero-temperature form of p(qq') appreciably, though it
will affect the finite-temperature corrections to it [see
Caldeira and Leggett, 1983, Eq. (B9), and below]. In the
case of "normal" dissipation (as defined in Leggett,
1984b), the width of the ground-state probability distribu-
tion is reduced by the dissipation, and corrections to Eq.
(2.11) should therefore be even smaller than in the un-
damped case. In the (unusual) case of "anomalous" dissi-
pation, the reverse is true. We believe that the corrections
to the wave functions (2.11) are in all cases at most of the
order of 5/co, I, where co,] is the smallest frequency
characteristic of the classical motion in either well
separately (for nonpathological potentials we have
co,i-iob); however, it is adequate for our purpose if they
are merely of order b./co, .

Strictly speaking, the above argument is completely
clear-cut only in the case where the cutoff on the environ-
ment spectrum is sharp, i.e., where the function

(1—e ) in the definition (2.4) of J'(co) is replaced by
8(co—co, ). In this case it is intuitively obvious (since the
individual oscillator states are perturbed only to order
CJ -N by their interaction with the system) that the
next lowest excited states have energies of at least %u, rel-
ative to the states (2.11); this, of course, is the reason why
for /3fico, »1 they do not enter the partition function
(2.8). There is no reason in principle why we should not
use such a sharp cutoff; it would merely make some of
the arguments used above about orders of magnitude a lit-
tle more complicated, and would also be less convenient at
stage II of the calculation. If we prefer to use the more
convenient smoothed cutoff of Eq. (2.4), then we are left
with a finite density of low-frequency oscillators in the

2 J

—g (CJ /mjcoj )5(~ cof)—:J(co)—

=Jo(co)e (2.12)

and 6 given by Eq. (2.9). We emphasize that the cutoff
m, is arbitrary within the limits 6 (&m, (&mb, and that 6
is in general a function of it; even in the superohmic case,
where the correction due to a finite co, /cob can be made
negligibly small relative to 6 itself, it is necessary to keep
this dependence if one wishes to get quantitatively correct
results (see Sec. VI).

What we claim to have done in this section, subject al-

ways to the conditions 5/mb ((1, AT/%cob &(1, is to
have taken a problem involving an extended coordinate q

spectral function J'(co); however, J'(co) tends to zero as
one higher power of co than the original spectrum Jo(co),
i.e., as ~'+', s & O. As we shall verify below (Sec. III), the
effect of the coupling of the component of J'(co), which
has frequency co(A, kT/A to the system is negligible
[i.e., at most of order (6/co, ) ], so it does not invalidate
the conclusions reached above. The effect of the oscilla-
tors with frequency co in the range 6, kT/fi«co &~, is
merely to renormalize 6 and has already automatically
been taken into account in Eq. (2.9).

We are now in a position to proceed to stage II of the
calculation, that is, to take into account the low-frequency
environmental oscillators represented by J(co) in Eq. (2.4).
To do this it is simply necessary to take the matrix ele-
ments of the relevant interaction term [i.e., the fifth term
in (2.1), with F~(q)=qCJ and J(co) replaced by Jo(co)]
within the subspace spanned by the wave functions (2.11).
For Pfm, »1, the condition we are assuming throughout
this section, this procedure is completely adequate, be-
cause (a) the (important) excited states of the stage I
Hamiltonian have, as noted above, excitation energies of
at least Ace, and hence are not appreciably thermally pop-
ulated and (b) the mixing of these excited states with the
states (2.11) by ihe low-frequency (stage II) terms is negli-
gible in the limit co, /cob~0 [Point .(b) is not completely
obvious at first sight and requires some consideration of
the appropriate matrix elements and energy eigenvalues of
the damped-harmonic-oscillator problem. Note however
that even if (b) were false, the only effect would be to
change the detailed behavior of %1 and %z in (2.11)
somewhat in the regions near their maxima, without
changing (appreciably) the long-distance tails of the wave
functions which govern the parameters of the two-state
problem. On this, see below. ]

To project the low-frequency interaction onto the states
(2.11), we note that from the symmetry of the problem
(+L Iq I

+~) i»denticaiiy z«o w»ie (+s. Iq I
+L)»

equal to qp/2 plus a correction of the order of the devia-
tion of +L,%'z from strictly harmonic-oscillator behavior,
i.e., at most of order 5/m, . It is consistent to neglect this
correction, so that we can finally write our two-state
Hamiltonian in the form (1.4), with E=O and F~(q) =qCJ,
the parameters CJ, etc., constrained by the relation
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Z (P:E)=2 cosh —(A' 6 +E )
'~

2
(2.13)

where the quantity b, is given by Eq. (2.9) (with a suitable
redefinition of the instanton trajectory; see Appendix A)
and depends on E only through terms of relative order
E/%cob. In the rest of this paper we shall assume that

which has two degenerate wells, and converted it into a
two st-ate problem of the type described by the Hamiltoni-
an (1.4), with a prescription for obtaining the parameters
of the latter problem which is exact in the above limit.
Has anything been left out in this process? At first sight
one might worry about the following point: It is known
(Crrabert et al. , 1984; Larkin and Ovchinnikov, 1984) that
in the exactly soluble case of the simple damped harmonic
oscillator the tail of the probability density distribution is
extremely sensitive to the lou-frequency modes of the en-
vironment, and that for the problem of tunneling out of a
metastable well into a continuum it is precisely these
modes which give the first temperature-dependent correc-
tions to the zero-temperature tunneling rate. Our pro-
cedure, which treats 6 as a c-number (and hence a fortiori
as temperature independent), seems to have neglected this
phenomenon: is this consistent'? We believe that it is, for
the following reason: If we examine, for example, the for-
mula for the mean-square displacement (and hence the
form of the tail of the probability distribution) for the
simple damped harmonic oscillator as given, for example,
in Caldeira and Leggett [1983, Eq. (B9)], we see that at
zero temperature the contribution of the modes with
co ~ co, is (within logarithmic terms) at most of relative or-
der (co, /orb)'+ for J(o~)-co', while at finite temperature
the correction is of order (kT/ficob )'+'. Since we are as-
suming that we can make both ratios arbitrarily small, it
seems consistent to neglect any correction associated with
this effect (see also below, Sec. VI.B).

To conclude this section we note two obvious generali-
zations to the above results, which were obtained under
the assumptions that (a) V(q) is symmetric (and hence
s=o), (b) FJ(q) in Eq. (2.1) has the simple form qCJ.
Stage I of the case where (a) is violated but (b) is
preserved is discussed explicitly in Appendix A, and as we
should expect we find that the calculation (with co, &~E)
leads to an expression of the form

e/ficob is negligible small (and hence c/Rru, can be made
so) and will therefore treat 6 as a constant that is in-

dependent of c for any given problem.
The generalization to the case where condition (b) is

also violated is fairly obvious provided FJ (q) is smooth
over the harmonic regions of the potential (which is com-
patible with its having a range small compared to qo).
We again obtain Eq. (2.9), but the effective instanton ac-
tion S,~ which appears in the latter equation is now given
by a more complicated expression [see Caldeira and Leg-
gett, 1983, Eqs. (4.35) and (4.36)]:

S„[q(r)]=f ( —,'Mq + V(q)]dr
oo Pfi

+ —,
' f dr' f drZ[q(r)],
—8 ~

f
7 —'T

4' jCO~

(2.14)

(2.15)

where the integral is taken along the classical one-
instanton trajectory. All considerations concerning the
dependence of 4 on the cutoff go through as above, pro-
vided that, in the definition of the "effective" J'(co) (for
this purpose only), the quantity qoCJ is replaced by
F&( & qo) —F&( —& qo). The reason is that while the actual
numerical value of S,~ is sensitive to the whole instanton
trajectory, hence to FJ(q) for all q, the cutoff dependence
is sensitive only to the behavior at long times, for which
we can approximate q by +qo. For the more general case,
see the last paragraph of Appendix A.

With the above generalization, we now proceed to stage
II of the calculation. Since the two lowest stage-I eigen-
states are still approximately linear combinations of
harmonic-oscillator states (but now in general with dif-

1 1ferent parameters) centered on —,qo and ——,qo, respec-
tively, we obtain all the terms in the spin-boson Hamil-
tonian (1.4), where, however, the coupling constant CJ is
replaced, as above, by qo '[Fi( ,' qo) FJ( ——,

'
qo)—],an—d, as

always, only the low-frequency oscillators are taken into
account. Since it is only the combination of parameters
defined by (2.12) which enters the problem of interest to
us, this is equivalent to generalizing the definition of
J(co) to

J(o~)=——"g(m ~ ) 'qo '[F ( —'qo) —F&( —&qo)]'5(~ —~, )e2 j
(2.16)

Note that J(oi) can now in general no longer be simply re-
lated to the parameters of the classical motion (see Cal-
deira and Leggett, 1983, Appendix C) and that, in the
case of short-range coupling to a Fermi bath, if we believe
as suggested above that this can indeed be mimicked by
an oscillator bath with an appropriate choice of FJ(q),
then J(co) cannot be arbitrarily large; in particular, for
the model studied by Yu and Anderson (1984) and Chang
and Chakravarty (1985), it saturates at the value

qo X,marco, where %, is the number of spin species in the
bath.

In addition to the terms written down in Eq. (1.4), stage
II will now in general produce other terms (which van-

ished in the simple case discussed above on grounds of
symmetry). One such term is proportional to
[FJ(—,'qo)+FJ( ——,'qo)]x& times the unit matrix in the
two-dimensional system space: this can clearly be re-
moved by an appropriate redefinition of the environment
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coordinates and is irrelevant to the system dynamics. A
less trivial term is of the form'" cr„g.Cjxj where CJ is
proportional to the quantity (%1

~
FJ(q)

~

%'ii ). This
quantity corresponds, physically, to the effect of the low-
frequency modes of the environment on the actual process
of transmission through the barrier, and is evidently at
most of order of the overlap of the renormalized ground
states, i.e., of order h. It seems natural to try to incorpo-
rate this term into the stage-I renormalization procedure,
and this can be done as follows': We separate each F~(q)
into two functions F, (q) and F21(q) in such a way that
F&J(q) is equal to FJ( —,qo) when q = i qo and FJ( —i qo)
when q = ——,

'
qo, but falls off fast (let us say in a distance

I large compared to the width of the harmonic™oscillator
ground-state probability distribution but small compared
to qo) when q is different from either of these values.
The functiott F21(q) is simply the true FJ(q) minus F~ (q),
and hence by definition tends to zero for q —++ —,qo.
Then we include in stage I also (some) low-frequency os-
cillators, but with the true coupling constant FJ(q) re-
placed by F2J(q). Since Fzi(q) is effectively zero for the
"trivial" parts of the instanton trajectory, it cannot give
rise to any divergences in the expression for S,]', hence 6
is well defined. Finally, at stage II we couple in the low-
frequency oscillators with coupling constant F,i(q),
which at this stage can, of course, be replaced by
Fij(+ —,qo); thus we obtain once again the simple spin-
boson Hamiltonian (1.4), and there are now no nontrivial
extra terms.

To summarize the conclusions of this section. Provid-
ed that the quantities 6, c., and kT/A are small compared
to the smallest characteristic classical frequency cob of the
problem described by the Lagrangian (2.1) (no matter
what the ratio of these quantities to one another), then the
behavior of the system can be adequately calculated from
a standard two-state Hamiltonian of the form (1.4), where
the effective tunneling matri. x element 6 is given by Eq.
(2.9) and the relevant features of the environment are en-

capsulated in the function J(co) defined by Eq. (2.12), or
in the general case by (2.16).

III. THE DISSIPATIVE TWO-STATE SYSTEM:
STATEMENT OF THE PROBLEM
AND QUALITATIVE CONSIDERATIONS

A. Formulatiori of the problem

Having justified the use of the spin-boson Hamiltonian
for realistic problems involving an extended coordinate, in

The Lagrangian (2.1) cannot produce any terms in o.~.
Here the same remarks apply as were made earher concern-

ing the cutoff smoothing procedure. It should be carefully not-
ed that the procedure outlined here would fail if I'»{q) and

I'~~(q) turned out to couple to noncommuting environment
operators [which would, of course, require a Lagrangian more
general than Eq. (2.1)]. This is probably why the results of
Zawadowski and Zimanyi (1985), who treat just such a case, ap-
pear to differ qualitatively from ours.

+ qotT QC x (3.1)

The combination of the parameters entering the last three
terms of (3.1) which is relevant for the system dynamics is
the spectral density

J(co)=—g (C~/m' co~)5(co —co~),
a

(3.2)

where J(co) is characterized by a high-frequency cutoff,
of order co„which we shall generally assume is large
compared to A. It should be emphasized that none of the
formal results to be obtained in the next section depend
on the assumption 6/co, ~& 1; however, the specific forms
of behavior obtained in Secs. V—VII are in general valid
only to lowest nontrivial order in b, /co„kT/fico„E/fico, .
Since our derivation of the Hamiltonian (3.1) for an ex-
tended system in the last section relied on the assumption
that these quantities are small compared to unity, it
would in any case be inconsistent in such cases to relax it
here.

We shall assume throughout this paper without further
explicit remark that the spectrum of oscillator frequencies

is sufficiently dense, and the distribution of masses
m and coupling constants C sufficiently nonpathologi-
cal, that J(co) may be treated as a continuous and fairly
smooth function. This, of course, means that we au-
tomatically exclude from consideration any "recurrence"
phenomena which occur on time scales comparable to, or
greater than, the inverse level spacing of the oscillator
bath. For spin-bosonlike models involving only a single
oscillator mode, such as the Jaynes-Cunimings (1963)
model in quantum optics, such recurrences are known to
be very important (Eberly et al. , 1980), and they may well
also play a role in those problems of chemical physics
where the vibronic degrees of freedom are only few in
number; however, whenever the environment with which
our system interacts is truly macroscopic, any such effects
should be completely negligible on any time scale of prac-
tical interest.

We shall consider explicitly the case in which the
behavior of the original (untruncated) spectral function
Jc(co) [Eq. (2.3)] had a simple power-law form for co (co, ;
cases in which it has nontrivial structure in the frequency
regime 5 «co &~, can be reduced to this case by a pre-
liminary renormalization of the type indicated in Sec.
III.D below. Then, with the choice of cutoff behavior
specified by Eq. (2.4), we have

J(co)=Ae~'e ', A =const . (3.3)

It should be emphasized once again that the (new) "bare"
tunneling frequency b, occurring in (1.4) is in general it-
self a function of the cutoff co, : see Sec. II.

this section we start our consideration of the dynamics of
a. system described by it. For ease of reference we write
out once again the relevant Hamiltonian [Eq. (1.4)]:

FM= —,'fiA—o„+.—,'acr, +g( ,'m—co~ +p /2m )
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The important special case which we refer to as "ohm-
ic" dissipation is obtained by setting s =1, A =q in Eq.
(3.3), where [at least in the case of "strictly linear" dissi-
pation; see Caldeira and Leggett (1983)] the quantity g is
simply the classically measurable friction coefficient of
the extended system. In this case we can form a dimen-
sionless measure of the strength of the system-
environment coupling,

a =—r?qo/2m', (3.4)

J(co)=A, ro'ro,' 'e (3.5)

and the appropriate definition of a dimensionless coupling
constant, analogous to o; in the ohmic case, is then

P, =A, qo/2vrh .— (3 6)

However, in inspecting subsequent formulas it should be
borne in mind that, unlike a in the ohmic case, P, has no
fundamental significance, and the only physically relevant
parameter is the combination p, co, . Recall, incidental-
ly, that 5 is a function of ~, also in the nonohmic case,

which is completely independent of the value of the cutoff
co, . We can therefore treat a and b, /co, as two formally
independent dimensionless parameters describing the
problem; however, if the Hamiltonian (3.1) was actually
obtained from an extended system as described in Sec. II
above, we must remember that, for a given (arbitrary)
choice of cutoff co, satisfying the inequalities
«co, «cub, the quantity 6 itself depends on co, as
(co, /cob); see Dorsey et al. (1986). We should expect,
therefore, that the dependence of all physical results on
~, would cancel out by the end of the calculation, and
this is indeed what we find, at least for the vast bulk of
the parameter space (see Secs. V—VII below).

In the nonohmic case it is clear that the definition of a
dimensionless system-environment coupling constant re-
quires reference to some frequency scale. Purely to avoid
cluttering up the formulas with more symbols at this
stage, we provisionally choose this scale to be co, : thus we
rewrite (3.3) in the form

though for superohmic dissipation (s &1) the effect of
this is less spectacular.

We now turn to the definition of the problem we wish
to solve. Generally speaking, we are not interested in the
environment for its own sake, but only because of its ef-
fect on the dynamics of the system. Thus we should like
to set up the problem by specifying some physically plau-
sible initial conditions on the system and the environ-
ment, and then ask for the expectation values of the sys-
tem variables at some later time, without reference to the
state of the environment. Moreover, although it is in
principle possible to ask questions' about the values of
ox and o~ for the system, in almost all cases of practical
interest (and, in particular, in virtually all "truncated"
two-state systems), it is only rr, which is directly measur-
able, or on which boundary conditions can be imposed in
a realistic experiment; thus it makes sense to restrict our-
selves to initial conditions, and subsequent questions, that
refer to this variable alone. With these restrictions there
are (at least) three different questions we can ask.

(1) Suppose that at all times t & 0 the system is held at
(say) the position q =-+ —,

'
qo (i.e., o.,=+1), and the envi-

ronment is assumed to have come into thermal equilibri-
um with it. [Such a state of affairs could be achieved, for
example, by applying a bias —

~
Vo

~
0( t)o„where—Vo is

very large compared to Ab. .] At time zero the constraint
is released, so that for t & 0 the dynamics is governed by
the Hamiltonian (3.1). What is the subsequent expecta-
tion value of o., as a function of tP Call the answer to
this question P'"(t).

(2) Suppose that at time t = —co the system and envi-
ronment are imagined to be uncoupled, and the environ-
ment to be in its thermal equilibrium state. At some large
negative value of time, to, the system-environment in-
teraction is suddenly switched on, but the system is again
constrained to be in the state o.,=+1 until t =0, when
the constraint is switched off. In the limit to~ —~,
what is the value of (o, ) as a function of r for r &0'?
Call the answer P' '(r).

(3) What is the symmetrized' equilibrium correlation
function

C(t)= —,(Ia, (t),cr, (0)] )~=——,'Z 'Tr exp i t o, ex—p —i—i o, exp( pH)+(t~ —t)—(3.7)

where H is the complete Hamiltonian (3.1) and Z(p) the
partition function Tr(exp —pH)'?

At first sight it seems obvious that P"'(t) must- be
identically equal to P' '(r), on the grounds that in the lim-
it to —+ —ao, procedure (2) would force the state of the en-
vironment to have relaxed, by time zero, to the equilibri-
um explicitly postulated in (1). This is indeed true for
any ergodic environment. However, as is well known, a
finite assembly of X harmonic oscillators is not ergodic,
and the business of taking the limit X~ ao in the present
context may be quite subtle. Fortunately, we can short-

circuit this difficulty by an explicit demonstration (given
in Appendix B.l) that the formal expressions for P"'(t)
and P' '(r) are identical at all positive times. We there-

6Such questions can in fact be asked and answered (in princi-
ple) by a straightforward generalization of the formal technique
of Sec. IV in which the system is allowed to start and/or finish
in the configuration called there a "blip."

~7The quantity (cr,(t)o, (0) )a itself can be related to C(t) via
their Fourier transforms in the standard way, as can the various
response functions and related quantities.
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p~(0) =~+(exp —PH ')m+, H .'=H+ ,' fiho„, —.(3.8a)

p, (0)=~+(exp —13H)m. + . (3.8b)

Because of the lack of commutativity of the various

operators in H, Eqs. (3.8a) and (3.8b) are in general not
identical, and therefore we have in general no obvious
reason to expect P(t) and C(t) to be identical either, even
for the unbiased case. In fact, as pointed out by Guinea
(1985), the behavior of'the low-frequency (co & 5) oscilla-
tors may be quite different in the two cases, and if the
contribution of the effects of these oscillators to the sys-
tem dynamics is important we should therefore not be
surprised if the behavior of the two quantities is qualita-
tively different, in particular at long times. Most previ-
ous work on the spin-boson Hamiltonian has calculated
C(t) or a related quantity, which is the relevant thing to
do if one is interested, for instance, in the neutron-
scattering characteristics of the system. We, by contrast,
shall concentrate mainly on P(t), which is the quantity
directly observed in experiments on "macroscopic quan-
tum coherence" and which is .most directly relevant for
tests of quantum mechanics versus macrorealism (Leggett
and Garg, 1985). However, we shall derive, in the next
section, a formal expression for C(t) as well as P(t), and
show that to the extent that the "noninteracting-blip ap-
proximation" defined there is valid the two expressions
coincide (though see the caveat expressed there).

In the case of C{t) this definition exploits the symmetry
properties of the system for c.=O. For the more general case,
see Sec. IV.

fore no longer need to distinguish between them, and will
henceforth denote them indifferently as P(t). Note that
for au asymmetric system P(t) will in general depend on
which well we start in: we shall from now on denote this
well by convention by o, = + 1, so that by Eq. (3.1) a pos-
itive (negative) value of c. indicates that this well is the un-
stable (stable) one.

The relationship between P(t) and C(t) requires some
thought, even for an unbiased system (E=O). Note first
that since the constraint cr, = + 1 for r & 0 (or the applica-
tion of the strong bias necessary to achieve this) is not a
small perturbation, we cannot in general use linear-
response-function theory to relate the two quantities.
Consider for simplicity the case c=O and define the pro-
jection operators m

——= —,
' (1+o., ). Then it is clear [see Sec.

IV) that both P(t) and C(t) can be defined' as the value
of (cr, (t) ) that is attained when the system-plus-
environment is described at time zero by an appropriate
initial density matrix p(0) and then allowed to evolve free-

ly under the action of the Hamiltonian H, Eq. (3.1)]. The
unnormalized values pz(0), P, (0) appropriate, respective-
ly, to the definitions of P(t) and C(t) are

Before we begin detailed consideration of this problem,
one general point should again be emphasized. We shall
consider the problem as characterized [for any given value
of s in the expression Jo(co)-co'] by four dimensionless
parameters, namely, 5/co„k~T/%co„E/flu„andP, (or
a). Of these, /3, (or a) may take any (positive) value, but
the other three parameters, while arbitrary relative to one
another, will be assumed unless otherwise stated to be
small compared to unity. Now, for any particular set of
parameters we shall find that there is a characteristic time
scale r in the problem (or possibly more than one) which
is in general at least of order of one of 6 ', A/k&T, etc.,
and hence much larger than ~, '. Throughout this paper
we are primarily interested in obtaining the qualitative,
and as far as possible the quantitative, behavior of the
system ouer times of the general order of r. We are not (or
at least not primarily) interested in obtaining the behavior
either for very short times' (e.g., -co, ') or for very long
ones [e.g. , -co,r/b, or co,r, or even r ln(co, r)]: the form-
er case is uninteresting for most practical purposes, and in
the latter the quantity P(t) will generally have already de-
cayed to such small values as to be unobservable in a real-
istic experiment.

We shall now briefly survey a number of qualitative
features of the spin-boson problem, together with the
kinds of approximation they suggest; all of them have in-
dividually received considerable discussion in ihe existing
literature (though not always in quite the language we
use), and we make no claim here to any particular ori-
ginality. Neither are the three following subsections in-
tended as a complete review of existing approaches to the
problem: their only function is as a guide to some of the
features to look out for in a formally comprehensive
treatment of the kind we shall give in Sec. IV. These
three subsections are concerned with the general problem.
By contrast Sec. III.E refers explicitly to the special case
of ohmic dissipation; in it we shall try to give a careful
discussion of one feature of this special case which has
been exploited (sometimes, in our opinion, without ade-
quate caution) in the literature, namely, the analogy to the
much-studied Kondo problem of solid-state physics. In
the course of this discussion we shall return to the ques-
tion of the relationship between P(t) and the various
quantities defined in a linear-response approach. In Sec.
III.F we draw some tentative preliminary conclusions.

B. Weak-damping limit

In the limit where the coupling to the environment is
sufficiently weak we should expect that it is a good ap-

If this behavior really were of interest, it could in any case be

very well approximated by keeping only the first few orders of a
perturbative expansion in h.

For calculations in the general spirit of this subsection, but at
a somewhat more microscopic level, see, for example, Harris
and Silbey, 1983; Waxman, 1985.
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proximation to treat it as a perturbation. Let us explore
the consequences of doing this, starting with the sym-
metric case (a =0).

The problem is exactly analogous to that of the nuclear
magnetic resonance of a particle of spin —,

' in a constant
field A'b, in the x (not z) direction and an environment
that provides fluctuating fields in the z direction only,
and it is therefore possible to write down a set of Bloch
equations for the motion of the expectation value
S —= —,

' A(~):

dS„(S„—S'q)

dt T1

de
dt

=AS, —Sy/T2,

dS,-= —AS@ .
dt

(3.9a)

(3.9b)

(3.9c)

Note that, in contrast to the standard NMR situation,
there is no relaxation term in the equation of motion of
S„because the fluctuating environmental fields are ex-
clusively along the z direction. In Eq. (3.9a) the quantity
S„' is the thermal equilibrium value of S, that is,
—,A'tanh(PA'b, /2). Eliminating S, from Eqs. (3.9b) and
(3.9c) and noticing that P(t) is simply S,(t) apart from a
constant, we find that the former satisfies the equation

P 1 dP
T dt

(3.10)

T&
' ——Tz ' ——(qo/2A')J(h)coth(pA'b, /2) . (3.11)

We should expect, prima facie, that a necessary condi-
tion for the above treatment to make sense would be that
at zero temperature T2 be small compared to A. For

—1

any s in Eq. (3.3) greater than 1, this condition is au-
tomatically fulfilled unless P, is very large [i.e., of order
(co, /b. )' '], a case we consider in Sec. III.D below. Ex-
cluding this possibility, i.e., assuming that p, is of order 1

rather than of order (co, /5), we see that for s )2 the sys-
tem will be underdamped at all temperatures much less
than Ace, /kz and will perform coherent oscillations with
a frequency approximately b. and damping —,

'
T2 '(p),

where T2 ' is given by Eq. (3.11). For 1&s &2 the
behavior at low temperatures is always underdamped, but
as the temperature is raised there is a crossover to over-
damped relaxation at a temperature To given by
T& '(To)=23., i.e.,

that is, the equation of a simple damped harmonic oscilla-
tor. The lifetimes T1 and T2 are determined by processes
in which the system makes a transition between the eigen-
states of o.„,i.e., the odd-parity excited state and the
even-parity ground state [see Eq. (1.2)], with the emission
or absorption of a quantum of the environment. A
straightforward perturbation-theoretic calculation shows
that, to second order in the system-environment coupling,
T1 and T2 are equal, as we should expect intuitively, and
are given by the expression

kg To A——b, (rrP, )

s —1

(3.12)

which is large compared to AA/k~ but small compared to
fun, /kg.

In the ohmic case we would assume prima facie that a
necessary condition for the method of this section to ap-
ply is n &&1. In this case the zero-temperature behavior
is an underdamped oscillation with frequency approxi-
mately 6 and damping (m. /2)ab, ; note that the Q factor
of the oscillation is independent of b, . As the temperature
is raised we get a crossover to overdamped relaxation at
the temperature To(a) given by

kg To(a) =Ah, /a~, (3.13)

'=5 T2 ——6 A/2~akgT . (3.14)

Note that the relaxation rate decreases with increasing
temperature: this may be interpreted as the result of the
increasing efficiency of the environment in destroying the
phase coherence necessary for transitions between wells to
occur (cf. Simonius, 1978; Harris and Stodolsky, 1982).

Finally, we note that for the ohmic case with o. com-
parable to or greater than unity, and a fortiori for the
subohmic case, there is no reason to believe that the ap-
proximation of this section will be valid at any tempera-
ture.

Let us briefly consider the generalization of the above
ideas to the case of nonzero bias (a&0). Defining
E=+(E +A' b, )'~, we 'rotate the "spin" axes by an an-
gle 8=sin '(E/E) so that the first two terms of the Ham-
iltonian in (3.1) commute with the new x component S„.
In this process the fluctuating magnetic field of the envi-
ronment, which is along the original z axis, acquires an x
component proportional to sinO, and its z' component is
reduced by a factor cosO. If we ignore the correlations be-
tween the x' and z' components, the natural generaliza-
tion of Eq. (3.9a) would seem to be

ds ~

dt

2cos 8 (S Seq )X X
1

(3.15a)

de =—S, —Sy /T2,
dt

(3.15b)

ds,
dt

E sin O
3'

2
(3.15c)

where (T', )
'—:(T2) '—= (qo/2A')J(E/A')cothPE/2, and

the equilibrium value S„'qof S ~ is tanh(pE/2). Evidently

If the initial condition corresponds, say, to S„=O,as it does
in our problem, there is also a fast relaxation term (lifetime
—T& ) whose magnitude is, however, very small in this limit.

which, if the method is to be consistent, must be large
compared with A'6/k~. For temperatures much larger
than To the behavior is slow overdamped relaxation, '

P(t) =—exp —t/r with the relaxation rate r ' given by the
expression
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the behavior of P(t), which is proportional to the original
S,(t)(=cosOS, —sinOS„), will now be a superposition of
two terms, one qualitatively similar to that occurring for
the unbiased case, the other a pure exponential relaxation
with time constant TI sec 9. In the limit s/A'b, ~ oo, this
term dominates the behavior, and the relaxation time
tends to infinity, as we should expect since in this limit
the eigenstates of the isolated system are localized in one
well or the other and the environment cannot induce tran-
sitions between them.

Although the above approach has an appealing simpli-
city, its defects become obvious the moment we try to
give it a more rigorous microscopic foundation. For ex-

ample, suppose we try to derive the Bloch equations, in
the case c.=O, by writing the exact operator equation

that all oscillators of frequency greater than co~ adjust in-
stantaneously to the current value of o.

„

that is, that if we
ignore for the moment the oscillators of frequency less
than col(b, ), the two lowest-energy eigenfunctions of the
system-plus-environment are of the form [cf. Eq. (2.11)]

(3.17)

where
~
+ ),

~

—) denote, respectively, the states
o, =+1, g + ) denotes the ground state of the ath oscil-
lator described by the last three terms of (3.1), with cr,
fixed at +1, respectively, and the product runs over all os-
cillators with frequency greater than co&(b, ). Explicitly,
the states

~
g + ) are given by

~ g + ) =exp(+ ,'ih —)
~
0)

=cr&&[hx —A (t)z], ~(t)=qo+C x (t), (3.16) 0 —= (qoC /Am~co )P
(3.18)

iterating it, and decoupling the resultant equation by set-
ting the operator A (t)Pi (t') equal to its expectation value
in the absence of coupling to the system (i.e., for the
"free" environment). After Fourier-transforming the re-
sult, we obtain an equation for the Fourier (or Laplace)
transform of P(t) which in general does not correspond
to the simple equation (3.10), but shows unmistakable ef-
fects coming from environment oscillators which have
frequencies high compared to A. Since these nowhere
appear in the calculation leading to (3.10), it is clear that
something important has been left out. We now turn to a
consideration of the effect of these high-frequency oscilla-
tors from a different angle.

with
~
0) the ground state of the corresponding oscilla-

tor for vanishing coupling, i.e., without the last term in
(3.1). The energy splitting between the even and odd lev-
els (3.17) is entirely due to the term in b, and is easily seen
to have the form A'b, ', where the quantity b, '(coI) is given
by the expression

6'(col ) =6 + (g + ~ g ),
the product running over all oscillators of frequency
greater than co~. The overlap (g + ~ g ) is easily calcu-
lated to be exp( —qoC /4fim~co ), so using the definition
(3.2) of J(co) we find

C. Adiabatic renorrnalization
2

qo J(co)5'(coI ) =b. exp —I d co .
2M

(3.20)

%"e have set up our problem in such a way that the vast
majority of the oscillators that compose the environment
have frequencies that are high {-co,) compared to the
bare tunneling frequency A. This suggests that we should
try, as far as possible, to eliminate these oscillators by an
adiabatic (Born-Oppenheimer) type of approximation.
We now explore the possibility of doing this; we confine
ourselves to the unbiased case and initially consider only
zero temperature.

Let us choose a lower cutoff frequency col(b, ) that is
small compared to the upper cutoff co, and equal to ph,
where p is some number large compared to unity. Then,
in the zeroth-order adiabatic approximation, we assume

See also, for example, Harris and Silbey (1983); %'axman

(1985).
Readers familiar with the chemical physics and/or polaron

literature should be warned that our use of these terms, al-

though very natural in the present context, would when applied
to these areas describe precisely the opposite limit from that to
which they conventionally refer: in the lim. it considered here
the electron would tunnel slowly and (most of) the nuclei would
follow it adiabatically.

Since 6' is less than 5, we may now iterate the procedure
by taking into account oscillators with frequencies in the
range co~(A) & co & co~(A') =pb, ', and so on. —It is clear that
this process will converge to a finite value for the tunnel-
ing matrix element provided that there exists a finite fre-
quency co, such that for all cu & ~, we can satisfy the con-
dition d [Inb, '(co)]/d(In') & 1, i.e.,

2
qo J(co) (1 for all co &m, .

27T'i5 CO

(3.21)

4This is, of course, what is usually called the "diagonal" term
in polaron theory.

If, on the contrary, the structure of J(co) is such that for
all co & 6 the inequality (3.21) is reversed, then in general
the iteration process can be carried on indefinitely and 4'
can be made as small as we choose. The case in which
neither of these conditions is met is more complicated and
will not be discussed here. For the simple form (3.3) of
J(co), the only case in which this can happen is that of
subohmic dissipation with 13, & (b, /co, ), an example of
little practical interest.

In the superohmic and subohmic cases {with the excep-
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tion of the special case just cited), the situation is simple.
In the former the iteration process stops when the renor-
malized tunneling matrix element 6' reaches the value 6
given by

Qo J(co)
b, =b exp —I „dc@

P~ 2'7'

=~Fc[I+0(p~Fc/~. )' '] (3.22)

where we used the form (3.5) of J(co) and the definition
(3.6) of p, . In the limit of interest to us (b, /co, —+0), the
difference between 6 and b,Fc can be ignored. In the
subohmic case, by contrast, we can always iterate to zero,
and the system can undergo no tunneling at zero tempera-
ture, i.e., it effectively localizes in one well or the other.

For the case of ohmic dissipation the situation depends
crucially on the value of a. FOr a & 1 the inequality (3.21)
is always reversed, and the matrix element iterates to zero
as in the subohmic case. This is the localization
phenomenon that was obtained using renormalization
group methods by Chakravarty (1982) and by Bray and
Moore (1982). For a & 1, on the other hand, the iteration
converges to a finite value of 6 given by the self-
consistency condition b.=A[coi(4) ], i.e.,

Z=(pb, /co, ) 6=4(p&/o~, ) (3.24)

Since p is arbitrary apart from being large compared to
unity, this indicates intuitively that the effective coherent
tunneling rate should be of order A(b, /co, )

~' for all a
less than 1 [cf. Emergy and Luther (1974); Hewson and
Newns (1980)].

Before drawing any such conclusion, however, it is
necessary to examine the corrections to the zeroth-order
adiabatic approximation (3.17). If we denote the correc-
tion to the wave function by. 6%+ and denote by 8'+ the
ratio of the squared norm of 5%'+ to that of ++ ', then a
straightforward calculation, which we shall not reproduce
here, shows that the order of magnitude 8' of 8+ is
given by the expression

Vo J(co)
P~ 27' (3.25)

2~Aficionados of the renormalization group will of course
recognize the ensuing argument (and indeed much of this sub-
section) as a layman's version of an analysis that could be made
more elegantly (and perhaps more succinctly) by explicit use of
that technique. In the interests of clarity and general accessibil-
ity, we have deliberately renounced this option.

where AFc is the fully renormalized matrix element given
by 5 times the Franck-Condon factor e

2

AFc=he, I =— Vo J(co)
2

dco =P, I (s —1),
27Ti6 Q7

(3.23)

Vo J(b, ) cothPA'6/2 & 1,2' (3.26)

where 6 is the zero-temperature renormalized matrix ele-
ment. Thus we expect that in the case s )2 coherent os-
cillations persist right up to a temperature of order
fico, /kii, while for 1 &s &2 they disappear at a tempera-
ture of order p, '(A'6/kii)(co, /6)' '. For the ohmic case
with &x&1, if the argument can be consistently applied
and 6 defined, we would expect that the oscillations
disappear at a temperature of order AA/uk~. These con-
clusions agree qualitatively with those obtained in Sec.
III.B, except that the bare tunneling matrix element 6 has

6In the polaron literature these processes are called "diago-
nal" and "nondiagonal, " respectively.

For the superohmic case, 8' is of the order of (b, /co, )

times some function of (co/co, ) and can therefore con-
sistently be neglected in the limit of interest to us (and
there are no difficulties in taking p to be of order unity).
For the subohmic case, if p is taken to be a constant, 8
diverges as some inverse power of b, /co, . However, it is
easy to see that it is possible to adjust p as a running func-
tion of 6 in such a way that the product cog ——pA still
iterates to zero, while at the same time 8'can be made ar™
bitrarily small. Thus the conclusions reached above about
this case are unchanged. The same applies to the case of
ohmic dissipation with o. ~1. However, in the case of
ohmic dissipation with o: ~ 1 this trick is useless, and on
the other hand 8 is of order ap independently of A.
Thus we cannot in general expect to be able to set p to be
of order 1 without serious complications. The tentative
conclusion is that while in the superohmic case 6 can be
reasonably identified as the unique frequency scale for the
problem, this is so for the ohmic case at best only for
small a.

Finally let us consider the generalization to finite tem-
perature. It is now necessary to distinguish between
"coherent" transition processes, in which the degree of ex-
citation of all of the oscillators is unchanged, and "in-
coherent" ones, in which one or more oscillators changes
its quantum number. As is well known in the context of
polaron theory (see, for example, Mahan, 1980), the effect
of temperature on the two processes is quite different: in
the expression (3.20) for the coherent transition amplitude
6' the integrand in the exponent is multiplied by a factor
coth(p~/2), so that b, ' is reduced, while the quantity
6;„,whose square gives the incoherent transition probabil-
ity is given by an expression that is an increasing function
of temperature and is qualitatively equivalent to cutting
off the integral (3.20) at a lower limit k&T/fi rather than

cubi (for kiiT) ficoi). If we take first the question of
coherent tunneling, an argument similar to the one used
above indicates that the criterion (in the present case only
an order-of-magnitude one) for the relevant matrix ele-
ment to iterate to a finite value under adiabatic renormali-
zation is
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been replaced by the zero-temperature renormalized quan-
tity A. Meanwhile, incoherent processes are always possi-
ble, and for the subohmic case and the ohmic case with
a ~ 1 are the only processes that can occur. In the
subohmic case the appropriate transition "matrix ele-
ment" 5;„, depends on temperature as
exp[ —const(flu, /ks T)' '], while for the ohmic case it is
proportional to b, (ks T/Ace, ) (see Bray and Moore,
1982). Were we to assume (dubiously) that when this ma-
trix element was small compared to kz T/fi it could be in-
serted in place of b, in the weak coupling formula (3.14),
we would get an incoherent transition rate proportional to
5;„,/k~T, i.e., to (b, /co, )(k~T/fun, )

While the arguments above concerning coherent tunnel-
ing are relatively clear-cut, those relating to incoherent
processes clearly leave much to be desired. It would obvi-
ously be desirable to have a conceptually clear-cut approx-
imation which at least handles the incoherent processes
consistently. Such an approximation is provided by the
"golden rule" approach that we outline in the next sec-
tion.

D. "Golden rule"

The so-called "golden rule" approach to the spin-boson
problem, which has been widely used in chemical physics
and in related problems, is based on the idea of doing per-
turbation theory in the tunneling matrix element rather
than, as in Sec. III.B, in the system-environment interac-
tion. In fact, one first handles the latter to all orders and
only then considers the tunneling processes.

We first diagonalize the last four terms in the Hamil-
tonian (3.1) for a given value of o,(=+1). To do this, it

is simply necessary to shift each oscillator through a dis-
tance 5 o.„where

1 25 = ——,qoC /I (3.27)

The appropriate unitary operator which transforms to the
basis of the displaced harmonic-oscillator states is

U =exp( ——,
' io,0), (3.28)

L'l—=QQ, 0—:(qoC /A'm co )P (3.29)

+g —,(m co x +p /m ), (3.30)

where o+ ——,(o„+io~).The result (3.30) is, of course,
still exact. Note, moreover, that our formulation of the
problem is unchanged, since the value of o., is not affect-
ed by the transformation generated by U. [In the calcula-
tion of P'"(t) the initial density matrix of the environ-
ment is now simply the Gibbs distribution corresponding
to the last two terms of Eq. (3.30), while for P' '(t) things
are rather more complicated. ]

We now attempt to treat the first term in Eq. (3.30) by
perturbation theory. If' the system starts with o.,=+1
and the environment is in the above Gibbs distribution,
then to second order in 5 the probability p(to) that at
time to it is still in the state o.,=+1 is given by the ex-
press1on

the factor of 2 being incorporated in the definition of 0
for subsequent convenience. The transformed Hamiltoni-

an H '—= UHU is written, apart from a constant,

H'= —,'fih(o+e —'+H.c.)+ ,'co—, ,

to to
1 —p(to)= — J dt f dt'QZo ' exp —ps~ +exp[i[( —s+(s„—s )](t —t')/h]&&

~

(m
~
expiO

~
n)

~

77T n

(3.31)

exp( —ist/A) Q F (t)dt, (3.32)

where m and n label the eigenstates of the environment

Hamiltonian Ho [i.e., the last two terms in (3.30)] and Zo
is the initial environment partition function, g e

Note that Eq. (3.31) depends in general on the sign of c,.
If the integrand of Eq. (3.31) dies away sufficiently fast

as a function of the variable ( r t'), then we can defin—e a
transition probability I per unit time by

2

g ao0 (t) =exp Hot Q~exp—

Writing fl in the form

0 = ig~(a —a+), —

g
—=qoC /(2A'm co )'

(3.34)

tion specified by the density matrix Zo exp —pHO, and
where

F (t)= (exp[i Q (0)]exp[ —iQ (t)] )0 (3.33)

and using a standard result for the harmonic oscillator,
we obtain the result

where the angle brackets denote that the expectation value
is to be evaluated over the thermal equilibrium distribu-

F (t)=exp —g [(X +1)(1—e )+N (1—e )],
where X is the Bose occupation factor. Thus, finally,
using the definition (3.2) of J(co), we can write I in the

27The concept of 6;„,is not very well defined (here, at least).
See Sec. VI. 8See, for example, Mahan (1980), pp. 28S and 273—276.
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form
2

where Q~(t) and

X exp[ —(qo/~A')Qq(t)],

Q2(t) are defined by

~ J(co)Qi(t) =- sinmt dc@,
CO

2
oo lgof dt exp i—Et/fi+ Q&(t)

00

(3.35)

(3.36) P(t) =P( oo )+ [1 P( a—o )]exp t/r—, (3.37)

where P ( m ):——tanhpE/2 and r is I (E)+I ( —s), i.e.,

It should be carefully noted that the initial rate of change
of the quantity P (t) is, because of its definition, twice I,
and that I depends-on the sign of c. If we now assume
that the transitions occur incoherently and impose the
condition of detailed balance, i.e., require that I (E)/
I ( —c, ) =expPc. [this can actually be proved directly from
Eq. (3.35); see Appendix E], then it is plausible to assume
that the correct formula for P(t) at all times is

f dt cos(Et/A')cos[(qo/vrR)Q&(t)]exp —[(qo/vrA')Q2(t)], (3.38)

with the functions Q~(t) and Qz(t) given by Eq. (3.36).
The behavior (3.37) is evidently qualitatively different,

in most cases, from what is predicted by the "weak-
damping" treatment given in Sec. III.B above: we note, in
particular, that for the superohmic case with s )2 it can
never agree with it anywhere in the region of interest
(b, ,kT/A«co, ). In fact, the inadequacy of the assump-
tion of an incoherent decay in this case reveals itself
through the divergence of the integral in Eq. (3.38) at
long times. (For an appropriate treatment see Sec. VI.B.)
Additionally, Eq. (3.37) predicts very bizarre behavior for
the case of ohmic dissipation at zero temperature with no
bias: as we shall see in Sec. V, the right-hand side of Eq.
(3.38) is in this case infinite for a & —,', ~b, /2', for u ex-
actly equal to —,, and zero for o,') —,'. Finally we note that
the above treatment automatically predicts the value
tanhpc, for P(t) in the limit tab oo, whereas physical in-
tuition would say that for finite bias and not too strong
damping P(t) should tend rather to (E/E)tanhpE/2,
where E=(e +A' b,o)'

It is clear that the "golden rule" result rests on two re-
lated assumptions: that the integrand in Eq. (3.31) dies
away sufficiently fast as a function of t —t' to allow us to
extend the limits of integration to infinity, and that the
second-order expression for the transition probability, Eq.
(3.35), may be iterated to produce the decaying exponen-
tial (3.37). In view of the deficiencies noted above, we
need an unambiguous way first to determine where these
conditions are met, and second to extend the calculation
when they are not met. It is, indeed, possible in principle
to use the formalism of this subsection and simply work
to higher order in b, (see Arnold and Holstein, 1981), but
the formulas rapidly become very cumbersome. Since
they must anyway be formally equivalent to the expres-
sions derived in the next section we shall not pursue this
approach any further here.

E. Relation to the Kondo problem

In this subsection we shall discuss the relation between
the two-state system with ohmic dissipation defined by

Eqs. (3.1)—(3.4) and a rather extensively discussed prob-
lem in solid-state physics known as the Kondo problem
(Kondo, 1964). In its simplest form the Kondo problem
is concerned with a single magnetic impurity of spin —,

which interacts via an exchange scattering potential with
a band of free electrons. A simple model that is believed
to capture the essential physics is given by the so-called
Kondo or s-d Hamiltoman

Hz ——QE(k)c k cq +JS.s(0) .
k, o

(3.39)

The operators c k create conduction electrons of wave
vector k and spin index o.=+1. The impurity spin is S,
whereas s(0) denotes the effective spin due to the conduc-
tion electrons at the impurity site r=O. The exchange
constant I is positive for an antiferromagnetic interaction,
which is the usual situation in a real metal.

Compared to the two-state system studied in this work,
which introduces dissipation through a coupling to bo-
sons, the Kondo problem may be thought of as a spin- —,

'

system interacting with a fermionic bath. The relation
between the two problems is included here mainly for two
reasons. First the analogy actually led to the original
understanding of the localization phenomenon in the
ohmic two-state problem (Bray and Moore, 1982; Chakra-
varty, 1982), and it would be interesting to know whether
further insight into the dissipative two-state system may
be obtained from the Kondo model and vice versa.
Second, to the extent that the two models are equivalent,
it would provide an interesting demonstration that rather
than the detailed microscopic structure of the environ-
ment only a few gross features, such as the effective den-
sity of states for low-lying excitations, are relevant in
determining the system's dynamics at sufficiently low
temperature. The notion equivalent will be understood
here in the sense that the thermodynamics and the real-
time dynamics of the spin —, are at least qualitatively the
same in both cases. Since the present work is concerned
mainly with dynamical behavior, we shall try in the fol-
lowing to demonstrate the similarity between the Kondo
problem and the ohmic two-state system on the basis of

Rev. Mod. Phys. , Vol. 59, No. 1, January 1987



Leggett et a/. : The dissipative two-state sYstem

e(k)=EF+fiuz(
i
k

~

—k~) . (3.40)

29This possibility was first pointed out by Cxuinea et al.
(&985b).

More precisely, the system could be called one-half dimen-
sional, since there is only one instead of the usual two Fermi
poInts.

their respective Hamiltonians. However, it should be
stressed from the beginning thai we shall not derive an ex-
act mapping between the two models. In fact it is at
present unclear to what extent —if at all—the arguments
supporting their equivalence which are given below can be
made more rigorous. Instead we shall try to explain the
correspondence in physical terms. The basic idea behind
the relation is to realize that the low-lying excitations of
the electron gas in the Kondo Hamiltonian may be ap-
proximately described by bosons. Thus it will turn out
that the oscillators in the two-state system correspond to
the spin-density excitations in Hz. In particular, the den-
sity of states and coupling of these excitations I'see Eq.
(3.62) belowj are just such that the function J(~) corre-
sponds to ohmic dissipation.

The plan of this section is thus as follows: We shall
first s'how how the equivalence between the two models
may be understood on the basis of their Hamiltonians by
describing the electron gas in the Kondo problem in terms
of its spin- and charge-density excitations. In addition we
shall briefly discuss the relation to the so-called resonance
level model. The ohmic two-state system will be related
to an anisotropic Kondo problem with different ampli-
tudes for spin-flip and nonspin-flip scattering. The same
correspondence is shown to follow from the respective
partition functions. We shall then introduce Anderson's
scaling picture for the thermodynamic properties and in-
dicate some of the results for the Kondo problem ob-
tained from this picture and from the exact solution.
These are used to discuss the behavior of the static sus-
ceptibility and the localization transition in the ohmic
two-state problem as well as its specific heat for T—+0.
Finally an exact result for the dynamics of the Kondo
problem is shown to have nontrivial consequences for the
long-time behavior of the spin-correlation functions.

In order to demonstrate the relation between the two
models we shall first cast the Kondo Hamiltonian (3.39)
into a form appropriate to our purposes. Since the ex-
change interaction is assumed to be pointlike, only s-wave
scattering occurs. Thus, expanding the plane-wave elec-
tron states k in spherical waves around the impurity at
r=0, we find that the only electrons affected are those
with angular momentum quantum numbers I =m =0.
Therefore we may characterize the relevant states simply
by the magnitude k

~

of the wave vector, which reduces
the problem to an essentially one-dimensional one.
Moreover if, as is indeed the case for the long-time and
low-temperature behavior, the dominant excitations are
those in the immediate vicinity of the Fermi surface, we
may linearize the dispersion relation e(k) around the Fer-
mi energy cp- in the -form

Measuring momentum from its reference value kz, we
obtain the free fermion Hamiltonian i'n the form

H o =tv+ g pcp~cpg
PO'

(3.41)

where L is the length of a normalization box, such that
the wave vectors p have values p =2~&/L .n,
n =0, +1,+2, . . . , and the limit L —+co is taken accord-
ing to I. 'g~ ~ j dp/2~. If we adjust the units of J
such that S=—,o. and

s(0)= —, pc o. c ~,1

where o. is the vector of the IX' Pauli matrices o.
z „

the
anisotropic Kondo Hamiltonian takes the form

Hx = AU~ g pc~~cp~+ 0'~ g o'c~c~
PO O

+ {0'+cpc)+0 c gcg),2
{3.43)

with cr+= —,(o.„+io~). Clearly the sign of Jz is ir-
relevant, since a change Jz ~—Jz may be compensated
by a rotatio11 S»S&~—S&, —S& of the impurity spin.
The constants JII and Jz now have dimensions of energy
times length, and therefore the relevant dimensionless
coupling parameters are pJII and pJ& with

p = (2MUF ) (3.44)

as the single spin density of states at the Fermi surface.

where cp creates an electron with spin cr, momentum
k

~

=@+kF, and I =m =0. Since p can never be small-
er than —kz, this Hamiltonian has to be supplemented
with a high-energy cutoff of the order of the bandwidth,
which eliminates wave vectors on a scale beyond kz. As
will be discussed below, this may be done by keeping the
momenta in the free Hamiltonian unrestricted but intro-
ducing a cutoff into the interactio~ term; this cutoff
would then define the energy scale for the coupled prob-
lem. Concerning the interaction term, it will turn out to
be crucial to generalize the isotropic coupling in the origi-
nal model to a case where we have a different exchange
constant JII for the S,s, term and Jz for S„s+S~s~. Al-
though this has no physical realization in the Kondo con-
text, it was originally introduced (Anderson et al. , 1970)
as a calculational tool, since the limit Jz ——0 is exactly
soluble as an independent electron problem, and Jz,
which induces a nontrivial spin dynamics, can then be
treated as a perturbation. In contrast to the genuine Kon-
do problem, where rotational invariance JII ——Jj has al-

ways to be imposed at the end of the calculation, it will
turn out that for the relation to the spin-boson problem it
Is essentIal to keep Jll and Jz as two independent pararne-
ters. To simplify the notation let us introduce localized
Wannier operators for an electron of spin o. at the origin
by

(3.42)
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As mentioned above, both from a formal and from a
physical point of view the Hamiltonian (3.43) makes sense
only if there is a high-energy cutoff that sets the scale.
Usually the Kondo problem is considered as the large
Coulomb repulsion limit of the more general Anderson
model (1961), and this scale is then essentially determined
by the Coulomb interaction in the localized level. More
generally it may be viewed as an effective bandwidth,
which is often taken to be of the order of the Fermi ener-

gy cF. In any case a cutoff in frequency around a given
co, cuts off the momenta k around k, with

k, '=a =UF]~, . (3.45)

p( —k) and ak = o ( —k) (3.48)

obey Bose commutation rules [ak, ak ]=[bk, bk ]=5kk.,
etc., if acting on the ground state of a filled Fermi sea
below p =0. The dynamics of these excitations is deter-
mined by the commutation rules of H o with p(k) and
cr(k), and it is easy to see that using a bosonized form,

II,'=iiiv~ g k(aktak+bk'bk),
k&Q

for the free Hamiltoman leads to the same dynamics as
FH 0. The noninteracting electron gas has thus been re-

placed by its Bose-like charge- and spin-density excita-
tions around the Fermi surface. In the linear spectrum
approximation (3.40) these excitations are completely

Physically a is an atomic length, and m,
' may be thought

of as the time for an electron to pass the local spin. As a
low-energy limit of the Anderson model, the Hamiltonian
(3.43) makes sense only for J~~

——Ji and small coupling

pJ« 1. However, as a mathematical model (3.43) may be
considered in its own right with pJ~~ and pJ& independent
and arbitrarily large. In fact, the formal Hamiltonian
(3.43) has been diagonalized exactly by a modified Bethe
ansatz for any choice of J's, and we shall use some of the
results obtained there later on (for a review of the exact
solution, see Tsvelick and Wiegmann, 1983).

To derive the equivalence between (3.43) and the spin-
boson problem we essentially follow ideas due to Schotte
(1970), who has used bosonization methods to study the
thermodynamics of the Kondo problem (see also Emery
and Luther, 1974). As mentioned in the beginning of this
section, these methods are certainly not rigorous. Their
advantage, however, is that they are relatively simple and
therefore make it easier to understand the relation be-
tween the physics of the two models. Let us introduce
charge- and spin-density operators for the fermions by

p(k)= gc~+k cp, p( —k)=p (k), (3.46)
po'

c7(k) = g ircp+k cp, o.( —k) =crt(k), (3.47)
po'

with k ~0. Then for a semi-infinite band with all the
states p &0 filled, it is straightforward to show that the
operators

1/2

decoupled and constitute two independent Bose fields de-
fined for k & 0 with a linear spectrum

COk =UFk (3 49)

Using gk cr(k)=I. g oc c for unrestricted k sums,
we may express the JI~a., term in the anisotropic Kondo
Hamiltonian (3.43) in terms of the spin-density excita-
tions QI

1/2

(a„+-a„). (3.50)

By contrast, the mixed products c,c, and c,c, that occur
in the spin-Aip scattering term cannot be linearly related
to o(k) and p(k). Thus the nontrivial task is to find a
nonlinear representation of these combinations by the
spin- and charge-density excitations introduced in Eqs.
(3.46)—(3.48). The essential idea is to realize that the ex-
ponential of a particular combination of Bose operators
can be made into an anticommuting Fermi field. Let us
define

( ) y —ak/2

k&0 kI.

' 1/2

(b eicrkx b t iakx—
)

= —j (x) (3.51)

with Bose operators

~k +™k
bk = (3.52)

and an exponential cutoff that eliminates k values large
compared to the inverse microscopic length a '. The
coefficients in Eq. (3.51) have been chosen such that

[j (x),j (y)]= ivrosign(x ——y) fo. r a~0 . (3.53)

Thus, using e e =e e "e("' ) if [A,B] is a c number, we
find that exponentials of j (x) obey the anticommutation
relations

[exp+j (x),exp+j (y)]=0 for x+y . (3.54)

(c~~c~ ) =5&~B(—p)exp( —a ~p ~
),

we obtain

(3.55)

(P (x)g~(x')) = (3.56)

The identical result is obtained by evaluating

Therefore the operators expj (x) behave like a Fermi field

P (x); however, different spin operators o&o' always
commute instead of anticommute. This remains true if
expj (x) is multiplied by an arbitrary constant, and in or-
der to fix the prefactor in the approximate Ferrizi-Bose re-
lation we require that the expectation value
(Q (x)P (x')) for g (x)=L '~ g e~ e'~" in the ground
state of the noninteracting Fermi or Bose system be iden-
tical in both representations. Choosing an exponential
cutoff for the fermion momentum distribution
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(P (x)g (x')) with

g (x)=(2+a) '~ expj (x) (3.57)

with

H Jc= AuF g kakak
k)0

1/2

+
4 '-' -L.
Jg+ [o+exp(g) +o. exp( —g)],4~a +

«k+ak)

in the ground state of the bosons bk . This relation will
be used in the following as a boson representation of fer-
mions. We emphasize, however, that Eq. (3.57) does not
define two genuine Fermi fields, since it does not repro-
duce the correct anticommutation relations for different
splns, and moreover wc have not given a pI'escI'lptlon foI'

multiplying operators of the same spin at one point. Al-
though in certain cases these problems may be eliminated
in a more complicated representation and an exact bosoni-
zation of Fermi fields is possible (see, for instance, Man-
delstam, 1975), we shall make no attempt in this direction
here. Using Eq. (3.57) it is easy to see that the spin-flip
combinations c,c, and c,c, depend again only on the
spin-density excitations ak, whereas the charge-density
field is completely decoupled from the problem. ' In this
simple picture the anisotropic Kondo Hamiltonian (3.43)
thus becomes equivalent to a boson Hamiltonian,

Here we have introduced the high-frequency cutoff also
in the J~

~

o., term. The essential argument why the
behavior of the spin degree of freedom in the Kondo
Hamiltonian (3.43) and its "bosonized" form (3.58) should
be the same at low temperature and in the so-called long-
time limit t ~~~, is based on the following observation
(Schotte, 1970): The dynamics of the Bose operators that

multiply the spin variables in H z generated by

H, =Au~ g ka„a„
k)0

(3.60)

is the same as that of the corresponding Fermi operators
generated by H 0 Eq. (3.41), provided one evaluates every-
thing in their respective noninteracting ground states and
uses the asymptotic form of the bath correlation functions
for t ~~~, '. Thus the equivalence should hold at T =0
or, more generally, in the so-called Fermi liquid regime of
the Kondo problem, where only the very low-lying excita-
tions above the ground state are relevant. As we shall see
in Sec. V, this is in fact the most interesting regime for
the macroscopic quantum coherence problem. The in-

teresting point about the Hamiltonian H Ic [Eq. (3.58)] is
that it can be mapped exactly to an ohmic two-state sys-
tem as defined in Sec. III.A. Indeed, it is straightforward
to show that up to constants the canonical transformation
S 'H zS with

1/2

(3.59)
S=exp( —,

' o,g) (3.61)

1/2

S 'H&S= o.„+ —Au~ o, g e4' "
4m

'
k 0 I (ak+ak)+A'uF g kakak .

k)0
(3.62)

Provided we identify

Jg
4~a

for the coupling constants and oscillator masses. Since
thc sign of JJ is irrelevant, the equivalence may be ex-
pressed in dimensionless terms by

(3.64)

2~RaJ(co)= z co exp
9'o

cok ——UFk, and the particular choice
1/2

C 2 2~fiuF
cx M~

Qm qo c
(3.63)

In fact, this decoupling also shows up in the exact solution of
the Kondo problem; see Tsvelick and Wiegmann, 1983.

Va=
4~fiUF

the Hamiltonian (3.62) is identical to the spin-boson

Hamiltonian H of Eq. (3.1), with

(3.65)

with p=(2m5uF) ' as the density of states. The fact that
the relation between H and H z holds only for a specific
choice of cv and C /Qm does not affect our previous
observation that the only relevant quantity for the spin
dynamics is J(cv). Indeed, the reduced partition function,
as well as the time evolution of o.„depends in any case
only on the dimensionless quantities 5/co„o.', and
k~ T/A „cvhwich through Eqs. (3.64) and (3.65) are
directly related to the relevant parameters in the anisotro-
pic Kondo problem.

%'e have thus arrived at an equivalence between the
ohmic two-state and the anisotropic Kondo problem,
where the oscillators in the spin-boson problem play the
role of the spin-density excitations in the Kondo case.
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S=exp( —,
'

ger, ) =exp —QP~5x~a a (3.66)

The 5x~-a, and thus g has been chosen in such a way
that the operators exp(+g) that are generated from the
tunneling term through

The dimensionless tunneling amplitude b, /co, corresponds
directly to the spin-flip exchange constant pJ& via Eq.
(3.64), which is assumed to be small compared to one in
both models. The coupling constant a, however, related
to pJ~~ by Eq. (3.6S), may take arbitrary values, whereas in
a proper isotropic Kondo problem -pJ~~ and pJ& have to be
equal and small, which means a near 1. The critical cou-
pling o,, =1 separates the corresponding ferromagnetic
Kondo problem pJ~~ &0, i.e., p ~ 1 from the antiferromag-
netic one pJ~~ ~0, i.e., a ~1, which is the interesting and
difficult case.

Before we proceed to a discussion of some of the prop-
erties of the Kondo problem and its consequences for the
dissipative two-state system, let us briefly mention anoth-
er related problem, the so-calIed resonance level model
(Schlottmann, 1982). The Hamiltonian (3.58) arises from
the spin-boson model by the canonical transformation
SM5, which is equivalent to a shift x —&x~+5x~ of
the oscillators, since in the Bose variables S may be writ-
ten as a translation operator,

exp( —,'go.,)o„exp(——,'go, )=a+exp(g)+o' exp( —g')

(3.67)
could be interpreted as the product of two Fermi opera-
tors according to Eq. (3.57). In contrast to the previous
section, where the interaction term (qo/2)cr, g C x in

H was transformed away completely [see Eqs.
(3.27)—(3.30)], this particular choice of g or 5x~ leaves a
residual term linear in the x proportional to 1 —V a,
which becomes the J~~o., term in the Kondo Hamiltoniaq.
The central idea behind the transformation of H to the
resonance level model is now to choose a different shift of
the oscillators, such that the exponential terms multiply-
ing cr+ in Eq. (3.67) may be reinterpreted as Wannier
operators

c =g(x =0)=L '~ pc~ (3.68)

of a single spinless Fermi field, again using Eq. (3.57). In
order to reproduce the anticommutation relations (3.54),
these terms have then to be exp(+g/V2). Compared to
Eq. (3.66) the oscillators have thus to be shifted by
5x' =5x~/V 2, which will leave a residual term linear in
the x~ proportional to V'1/2 —Va. Starting from the
spin-boson Hamiltonian and the particular choice of cou-
pling constants, masses, and oscillator frequencies defined
in Eq. (3.63), we accomplish this by the canonical
transformation

I /2

S' ~u& ' = AUF y kakak+~UF(i —V'2~)o, y e '"
(a/, +ak)

k)0 2'.
AA

2
[cr+exp(g/V'2)+cr exp( —g/V 2)] . (3.69)

The resonance level model arises from this exact rewriting
of H through our identification of

I

(c c) =(2m.a) ' has been subtracted, and with the re-

placement of H0 by a free-fermion Hamiltonian we ar-
rive at the resonance level model,

c =(2+a) exp-—1/2

2
(3.70)

as a localized fermion operator and our interpretation of
the oscillator degrees of freedom ak as the density excita-
tions

HRL ——A'U~ g kckck + V(cr+c +o. c )
k

+ —,
' Uo.,(c c —cct), (3.74)

d(k)= gc~+kc~, d( —k)=d (k),
P

of spinless fermions ck via
' I/2

d( —k) .

(3.71)

(3.72)

where

V= (pfico, )P e

U =(1—V2a)/2p .

(3.75)

(3.76)

with

(ak+ak )=L g d(k) cc~—(c c )

(3.73)

where the fermion ground-state expectation value

This Hamiltonian describes a localized level at the Fermi
energy with occupation —,(I+cr, ) which hybridizes with a
band of spinless fermions and has an additional Coulomb
interaction U. If U =0, i.e., a= —,, this Hamiltonian may
be diagonalized exactly and corresponds to the so-called
Toulouse limit of the antiferromagnetic Kondo problem
(see below and Appendix C). We emphasize again that
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(pJ) ln—2 D
kB1

(3.77)

where D is a high-energy cutoff of the order of the Fermi
energy analogous to the Am, introciuced above. In
0 (pJ)", n )2, one obtains terms like (pJ)"ln" 'D/k~ T,
(pJ)"ln" D/k~T, . . . , etc. , where the coefficient of the
leading logaiithm is always unity. Therefore, although at
high temperatures gp obeys a Curie law —1/T and the
spin is essentially free, this kind of perturbation theory
runs into difficulty at a temperature TJ; of order

kB T~ =D exp
1

pJ
where all the terms are of the same order of magnitude.
Suppose for the moment that one sums the leading loga-
rithms, which give

PJ
4kB T

1 J l

(3.78)

+ less slgMf leant terIns (3.79)

the mapping —at least as we have derived it here —from
the spin-boson model to neither the anisOtIOii Kondo
Hamiltonian (3.43) nor the resonance level model (3.74) is
exact. Nevertheless these models show a similar behavior
for the statics and dynamics of the spin degree of freedom
in a certain range of parameters, as will be discussed
below.

I.et us now discuss some of the basic results known for
the Kondo problem (for a recent review see Anderson,
1984). It is known (Kondo, 1964) that the problem can-
not be treated by simple perturbation theory. To get a
flavor of these difficulties consider, for example, the cal-
culation of the impurity contribution to the static magnet-
ic susceptibility

1 B(o, &

XQ—
2 BC ~ 0

which describes the response to a perturbation —,Eo, In
the Kondo context this is simply an external magnetic
field, whereas in the two-state system c is a bias energy
which makes the minima of the two potential wells in-
equivalent. The expansion in powers of pJ for an isotro-
pic Kondo system leads to

go — 1 —pJ — (pJ) ln, +cq(pJ)
I D' 2

4kB T kBT

Then for the ferromagnetic case J&0 the denominator of
ihe second term cannot vanish, and the summation is
meaningful and does indeed give the essentially correct
behavior. In particular, the Curie law persists down to
zero temperature, thus indicating a degenerate ground
state. On the other hand, for the more realistic antifer-
romagnetic case J~0, the denominator in the second
term diverges at the so-called Kondo temperature T =—T~
defined above, and the summation of the leading loga-
rithms is meaningless. What happens physically in this
case is that the impurity spin is compensated by the con-
duction electron-spin density, and there is a unique singlet
ground state. This leads to a saturation of gp in the limit
T~0, in agreement with experimental observations. The
first, qualitatively correct, understanding of this behavior
came from the work of Anderson, Yuval, and Hamann
(1970) and a complete description of the crossover be-
tween weak and strong coupling has been obtained
through an ingenious numerical solution by %'ilson
(1975). More recently the Kondo problem has been solved
exactly using a modified Bethe ansatz (Andrei, 1980;
Wiegmann, 1980). It is thus now understood how the
qualitative physics changes as T goes through TI; as an
example of a. smooth, yei highly complicated, crossover
between two distinct physical situations. The essential
difficulty in the Kondo problem, which is reflected in the
logarithmically divergent terms in Eq. (3.77), is due to the
fact that the scattering of the conduction electrons off the
impurity is associated with excitations in the electron gas
that have arbitrarily small energies. Since the Fermi sur-
face i.s infinitely sharp at T=0, all energy scales from
zero up to a cutoff of order 6 are present, and, due to the
large phase space for low-energy excitations, perturbation
theory in the number of these excitations becomes impos-
sible. In Wilson's approach the problem of the nonex-
istence of a characteristic scale is treated by renormaliza-
tion group methods. These methods focus on the elec-
tronic degrees of freedom, which are coupled through the
impurity spin. By contrast, the approach of Anderson,
Yuval, and Hamann integrates out the electronic degrees
of freedom anci discusses the resulting reduced path in-
tegral for the imaginary-time history of the spin. Here we
shall follow the latter approach, since it is directly related
to the one used i.n this work. In fact, the calculation for
the system's reduced dynamics given in Sec. IV may be
viewed as a real-time generalization of the methods that
Anderson et al. used for the thermodynamics. Starting
from the anisotropic Kondo Hamiltonian (3.43), they
showed that when the electrons are eliminated, the re-
duced partition function for the spin in an expansion in
the number of spin Aips caused by the Jz term is given by

211
P& dw2„P72„—~, dv2„) ~72 —7; dwl

0 ~ 0 0
exp (2—s) g ( —)'+Jln sin

(J C

m.(~) —r; )

PA'
(3.80)
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with a short-time cutoff ~, =m, which takes into ac-
count that only the asymptotic form of the conduction-
electron Green's function was used to derive this result.
This partition function has been written in a form that
shows that the complete thermodynamics of the spin de-
pends only -on three dimensionless parameters, namely,
Jzp, k&T/%co„and E. The parameter E is related to the
phase shift caused by the J~~o., term and is given by

E=2pJii ——,(pJii ) (3.81)

This equivalence was the first indication that the behavior
of the spin degrees of freedom should be equivalent for
the ohmic two-state and the anisotropic Kondo problem.
In fact, the correspondences between the two models de-
rived from Z agree precisely with those of our heuristic
bosonization approach [Eqs. (3.64) and (3.65)]. As has
been discussed in Sec. II and in a somewhat different way
by Chakravarty and Kivelson (1985), starting from a
physical double-well problem one may derive an effective
spin-boson Hamiltonian through a kind of reduction pro-
cedure (Chakravarty and Kivelson, 1985; Dorsey et al. ,
1986), and the effective tunnel splitting that we have

I

which reduces to F=2pJ~~ in the usual case pJ~~ &&1. As
has been realized by one of us (Chakravarty, 1982) and in-
dependently by Bray and Moore (1982), the reduced parti-
tion function of a spin-boson problem with ohmic dissipa-
tion has again precisely the form of Eq. (3.80), provided
we identify 6/co, with pJ& and

(3.82)

called 6 here is related in a nontrivial manner to the bare
tunnel splitting in the absence of dissipation.

Having discovered the equivalence between the models
again on the basis of their reduced partition functions, let
us now discuss the thermodynamic behavior of the Kondo
spin as deduced from Eq. (3.80), which will then give im-
mediately the behavior for the ohmic two-state system.
The partition function (3.80) may be considered as the
classical grand partition of a one-dimensional "Coulomb"
gas of alternately positively and negatively charged hard
rods of length v, on a circle of circumference Pfi. The
logarithmic term in the exponent of the integrand
represents the interaction between the rods as a function
of their separation along the circle. The parameter
2a =2—E plays the role of the inverse temperature of this
gas and should not be confused with the real physical in-
verse temperature P. The dimensionless quantity pJq/2
corresponds to the effective fugacity of the gas. An alter-
native picture for the same partition function may be ob-
tained by noting that, since the Kondo divergences occur
at small energies, it is the large-separation behavior of the
interaction that captures the essential physics. Thus in-
stead of treating the variables ~; as continuous, subject to
the restriction

~
7; ~J

~
~~„onemay take them to as-

sume values that are integral multiples of ~„in other
words, they form a discrete lattice of spacing ~, If we.

associate an Ising spin +1 with each lattice point, the
places were the original Kondo spin o,(r) flips .corre-
spond to local defects in the Ising system (see Fig. 2). In-
tegrating the logarithmic interaction in Eq. (3.80) twice,
we may write the partition function in the limit P~ oo as

[o.,(~)—o,(~')]Z= g exp ——I dr f dr' ' ' 2nln-
pathso (~) ( r r ) +re P

(3.83)

with 2n being the number of spin flips. In this form it
becomes evident that Z may also be interpreted as the
partition function of a one-dimensional inverse-square Is-
ing model with a short-range ferromagnetic interaction
ln2/pJ& and a long-range piece (i —j) of strength a
(Anderson and Yuval, 1971).

From the statistical-mechanical pictures given above, it
is clear that for any finite temperature there should be no
singularities in the behavior of the spin, since the corre-
sponding classical system is of finite length. It is only at
T =O that a transition as a function of J~~ and Jq can
take place. This is demonstrated very nicely in
Anderson's scaling approach (Anderson et al. , 1970),
which studies how the coupling constants are renormal-
ized if we change the cutoff from v, to v;+dr„i.e., if we

Note that our c is identical with the c introduced by Ander-
son et al. (1970); we have used an overbar to distinguish it from
the bias energy E.

Equation 43.81) gives the complete result for E for a regulari-
zation of the contact interaction such that the one particle phase
shift caused by the J~to; term is given by 6=(m/4}pJI~.

l

carry out a partial integration of high-energy degrees of
freedom such that the partition function remains form in-
variant. This leads to a set of differential equations for
the change in the parameters known as the scaling equa-
tions. The basic idea is that, even if the entire problem
exhibits enormous complexity, at each infinitesimal step
one has a manageable problem. To lowest order in pJ&
these scaling equations are

=(2—s) ~ (pJi) +O(pJj )
d in&

(3.84)

d(S Ji) e
(pJi )+0 (pJi )

d ln7
(3.85)

with ~ as the running value of the cutoff. The behavior of
these equations is best understood from a plot of the hy-
perbolic scaling trajectories in the c,pJ& plane in the. vi-
cinity of E=O shown in Fig. 3. The directions of the ar-
rows are toward increasing ~„and the scaling maps a
problem with a given. r, /Pfi=k&T/fuu, to one of larger
~, /13k' or effectively smaller temperature. If in this pro-
cess the effective pJ& becomes smaller, we move further
away from any divergence difficulties. As can be seen
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cr, (~)
ferromagnetic

Kondo {G.& l) O. l—
antiferromagnetic

Kondo (a& l)

0 O. l 8 = Z(l-a. )

FIG. 3. Scaling trajectories in the Kondo problem in the vicini-
ty of m=0, i.e., 0.= 1, and for sma11

pter

.

b) I 4 4 4 I I 4 4 4 I I I

I I VVV l l I 4V I I I +++ I I I

FICx. 2. Equivalence of the partition functions for the Kondo,
the one-dimensional I/r Ising, and the logarithmic Coulomb
ga.s models. (a) A typical imaginary-time spin-flip trajectory for
the Kondo model. (b) The corresponding spin configuration in
the equivalent 1/r Ising model. I'c) The corresponding distri-
bution of charged rods in the logarithmic Coulomb gas model.

from the figure, for all initial parameters that lie below
the left separatrix, pJ& scales to zero. Thus for the fer-
romagnetic Kondo problem v&0 the effective spin-flip
amplitude vanishes in the limit T~0 and the ground
state is twofold degenerate, with a Curie susceptibility
Xo- I/T down to T =0. According to Eq. (3.82), 7&0
corresponds to a ~ 1 in the spin-boson problem and since
pJ& ——6/e~, this means that for dimensionless friction
o; ~ 1 the effective tunneling amplitude vanishes as T~0
and the partic1e is localized in one of the two wells. More
precisely, an infinitesimal bias induces a nonzero order
parameter (o, )&0 which has a discontinuous jump at
a=1 and reaches its limiting value (o., ) =+1 only as
a—+ oo. On the other hand, if the initial parameters are to
the right of this separatrix, in particular„ if we consider
the interesting antiferromagnetic case c. ~0, i.e., o; ~ 1 in
the spin-boson problem, pJ& will grow under rescaling
and move outside the range of validity of the low-order
scaling equations (3.84) and (3.85). In the picture of a gas
of Aips this gas can then no longer be considered as di-
lute, since its fugacity pJL becomes large. Now al-
though the simple scaling breaks down for c. ~0, it still
gives an indication of what happens in this case. As rnen-

tioned earlier, the antiferromagnetic interaction takes ad-
vantage of the constant density of states at the Fermi en-
ergy to form a bound state, or more properly a resonance,
between the local spin and one built from the free-electron
states. The binding energy of such a state is of the order
of b,F- =fun, exp( —I/p J), which obviously cannot be ob-
tained by perturbation theory. In the anisotropic case the
essential scale on which this nonmagnetic ground state
builds up may be "derived" by dropping (3.84) and using
only the scaling equation (3.85), which reads
d ink=a. d 1nm, in the notation of the spin-boson prob-
lem. Integrating this equation from a high-frequency cut-
off co„where the tunneling amplitude is 5, down to a
low-frequency value that is self-consistently given by the
effective tunneling amplitude 5 itself, we obtain a renor-
malized A„oforder

a/1 —a

, -(1, (3.86)
toe

in agreement with the adiabatic renormalization result
(3.24). Its physical significance in the ohmic two-state
problem may be understood by noting that the bath oscil-
lators with frequencies smaller than A„have a strongly re-
duced effective coupling, since they are not able to follow
completely the motion of the spin (Emery and Luther,
1974). It should be pointed out that the result (3.86) may
break down close to o:=1. However, as will be shown in
Sec. V, it essentially gives the true dynamical scale in the
ohmic two-state problem in the interesting regime a ~ —,

[see Eq. (5.39)]. The characteristic frequency b,„deter-
mines a corresponding temperature be1ow which the
crossover to the strong coupling regime occurs, character-
ized, for instance, by a static susceptibility that no longer
obeys a Curie law but bends over to reach a constant
value at T =0. To obtain a qualitative understanding of
the behavior for k&T«RA, „,Anderson et al. (1970) ar-
gued that the scaling terminates at a strong coupling fixed
point c= 1 (i.e., a= —, in the spin-boson language). Now,
as we have seen above, the special feature of this value of
the coupling is that it corresponds to an exactly soluble
problem, namely, the Toulouse Hamiltonian

The value o,,=1 is the result for the critical coupling in the
limit 6/co, ~0. For finite 6/co„a,will be larger than one.

35As we shall see in Sec. V, this problem arises again in the
corresponding description of the spin s real-time dynamics for
u & 1, in particular, in the regime —. ~ a & 1.

36In fact, the analogy to the 1/r Ising model suggests that 6„
which corresponds to the inverse correlation length in the Ising
model, vanishes as exp( —const/V 1 —a) for a—+1
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FIT=AUF g kckck+ V(o'+c+cT c ),
k

(3.87)

with V =Ah, /2(pRco, ) '~ . This model describes a reso-
nance level of width fih=n. V p= , M—b.„(a=—,

'
) and has

a finite zero-temperature susceptibility Xo——[(m /
4)Iris', , ] . Qualitatively this picture has been confirmed
though Wilson's numerical solution, which gave the com-
plete behavior in the complicated crossover regime, and
later by the exact diagonalization of the problem.

Instead of discussing the Kondo problem further, we
shall in the remainder of this section briefly indicate some
of the consequences for the spin-boson problem which
follow from the analogy. What we have seen so far may
be summarized as follows.

(1) There is a correspondence pJI~6/co, and
2 —F~2a between the anisotropic Kondo and the ohmic
two-state problem, which leads to a localized twofold-
degenerate ground state for a& I similar to the behavior
of a ferromagnetically coupled Kondo spin E. & 0.

(2) In the antiferromagnetic case E ~ 0, i.e., n & 1 we ex-
pect a unique nondegenerate ground state with a finite
zero-temperature static susceptibihty Xo of order (Irth„)
By continuity this should hold in the whole range
0&a & I, which means it is valid in the forrnal anisotro-
pic Kondo problem beyond the Toulouse limit, i.e., for
E, ) I.

(3) For a & 1 the expansion in the number of spin flips
in the partition function does not lead to a dilute gas of
flips for kIIT « fib„,which reflects the basic difficulty
that the exact ground state is orthogonal (Emery and
Luther, 1974) to that for a static spin b, =O. In addition
we mention the following result, which is well known in
the Kondo context.

(4) The spin contribution C; to the specific heat is not
Schottky-like as for an uncoupled two-state system, but
will vanish linearly in temperature as T—+0. This is in
fact a special example of the general result (Fisher and
Zwerger, 1985b), that for a spin-boson model with cou-
pling J(co)-co' for eI~O we have C;(T)-T' for T~O.
It demonstrates again that the fermionic bath in the Kon-
do case is equivalent to an ohmic coupling J(co)-co.
From the Fermi liquid picture of the Kondo problem
(Nozieres, 1974) it is known that

static susceptibility via

Xo= f dco
X"(co)

CO

(3.90)

Let us first discuss the qualitative behavior expected for a
dissipative two-state system. For vanishing coupling,
a=O, the symmetric functioli X"(co)/co consists of two 5
peaks at co=+6 which describe the spin's undamped
coherent oscillations. For finite but small a (the crucial
question is obviously how small a has to be) these peaks
will shift and broaden to give a damped osciHatory
behavior, characterized by a transverse relaxation time T2
in the NMR language of Sec. III.B. In addition there
may be incoherent contributions. If e is increased fur-
ther, the maxima around co=+6, will eventually disap-
pear and the spin will show only a relaxational dynamics.
Such a behavior is expected in the whole region o, & —,,
since from the analogy to the Toulouse Hamiltonian,
where X"(co) may be calculated exactly as (Zwerger, 1985;
Ciuinea, 1985)

X (Q)) 26 1 1 i co
tan

co +4k, cod

1 CO+ ln 1+
CO Q 2

(3.91)

with b, =(vr/4)b, /co„ it follows that already at a= —,
'

(and T =0) all coherence is lost and o, relaxes in-
coherently. Thus for a ) z X"(cg ) /co will be concentrated
around co=0 and its width —which has been called T] '

in the Kondo context (Gotze and Schlottmann, 1974)—
will be of order 6, '. If a approaches 1 from below, this
relaxation slows down dramatically as h„(a)goes to zero
and the peak of X"(co)/co around co=0 becomes increas-
ingly sharp. For a & 1 and T =0, X"(co)/co has a 5 func-
tion contribution at zero frequency that is proportional to
the order parameter (o, )&0, and the spin is no longer er-

godlc.
Since Xo is finite for a & 1, we conclude from Eq. (3.90)

that X"(co) has to vanish in the limit co~0. The way it
does so is determined by an exact relation that has been
proven for the general Anderson model by Shiba (1975),
namely,

C;
lim =const .
T~o Tgp

(3.88) lim =2~So,
X"(~)

co~0 N
(3.92)

This relation should continue to hold in the spin-boson
case; however, the constant obviously has to vanish as
a~O, where C; -aT and Xo~(2A'5)

Since our main interest in this work lies in the dynamic
properties of the spin degrees of freedom, let us discuss
some of those properties, which can be inferred from the
Kondo analogy. The complete linear response and the
equilibrium spin-correlation functions are determined by
the imaginary part of the dynamic susceptibility

X"(co)=(2Iri) ' f dte' '([S,(t),S,(0)])tI, (3.89)

which is a real and odd function of co. It determines the

X"(co)
lim =const
co~0 CO

(3.93)

to hold i6 this case too, whenever o. & I. This belief is
based on the observation that Eq. (3.93) is simply a reflec-
tion of the fact that the system is subject to ohmic dissi-

This relation will hold for the usual Kondo problem (i.e.,
6/cg and 1 cI SIllall) as a 1111—111 of tile AIldelso11 model,
and shows that X"(co) vanishes linearly as co~0. Al-
though its proof is essentially based on a particle number
conservation law, for which no direct analog seems to ex-
ist in our spin-boson problem, we expect the behavior
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pation. Indeed, it is clear that the identical behavior
characterizes a damped harmonic oscillator with a general
frequency-dependent damping g(co) precisely if
lim o g(co) =const. As for the specific-heat relation
(3.88), the factor 2~ in Eq. (3.92), which holds in the limit
cz~l, will be replaced by a constant that vanishes as
a —+0. It is, however, extremely likely that X"(co) does
behave as in Eq. (3.93) in the whole range 0 &a & 1.

The conclusions that may be drawn from these observa-
tion for the long-time dynamics of o., are the following.

(1) Let us assume that we may replace the expectation
value P(t) = (o,(t)), which starts out at P(t =0)=1, i e.,
far from its equilibrium value (cr, )p——0, by its linear-
response approximation P (t) =y(t) (Zwerger, 1983a,
1983b) where the normalized relaxation function is given
by37

2 " X"(co)
y( t) =— de cosset .

o m+o
(3.94)

from g"(~)—co for co~0 we may conclude that
(o.,(t) ) relaxes faster than t in the limit t~ ~.

(2) Alternatively, as discussed in Sec. III.A, P(t) may
be approximated by the symmetrized correlation function

C(t) = —,
' ([cr,(t),o.,] )p

phasized that the problems that have been studied in the
Kondo context are quite different from those in the
present work. Whereas in the Kondo case the interest has
always concentrated mainly on thermodynamic proper-
ties, our main concern here is the dynamical behavior of
the spin at intermediate times, where P(t) has not yet de-
cayed to almost zero. In fact, it may be seen from the La-
place transform equation (4.32) of P(t) that the methods
used below for determining the spin's dynamics are
equivalent to summing up a short-time expansion to in-
finite order. Ii is therefore not too surprising that these
methods may fail in the limit of very long times. From
the point of view of the macroscopic quantum coherence
problem, however, this failure is likely to be irrelevant.
Second it is important to note that P(t) cannot be ob-
tained from any equilibrium correlation function of the
system, since the initial condition o.,=+1 at t =0 corre-
sponds to a large perturbation. Thus no restriction on
P(t) can be derived from a linear-response argument. It
is intuitively very plausible, however, that the normalized
relaxation function y(t) = (cr, (t) ) /(cr, (t =0) ), which de-
scribes the relaxation' of o, after a small deviation
(o,(t =-0) ) «1 from equilibrium has been created by a
small bias

=Re(o, (t)o.,(0) )p . (3.95)
E( t) E(0=) lim e"'0( t), —

g—+0

Its Fourier transform is given by the fluctuation-
dissipation theorem

(3.96)

Then, concentrating on the limit T =0, which will be the
most difficult case to treat from the point of anomalously
slow relaxation, we find that a finite go implies that C(co)
vanishes as co—&0, and thus C(t) has to decay faster than
t in the limit taboo. The more restrictive condition
(3.93), however, leads to

C(co~0) =const
~

co
i +0 (co'+') . (3.97)

This approach can obviously be used only if go is finite,
which also guarantees ergodicity, i.e., y(t) vanishes as t—+ oo.

8This is true even at o.= 2, whereas from an exact calculation

within the Toulouse Hamiltonian both I'(t) (see Sec. V.B and
Appendix C) and y(t) relax exponentially at large times, al-
though they are not identical.

See also the discussion in Secs. V.C and V.D below.

Thus, at T =0 and for all a& 1, C(t) will asymptotically
behave as —t and no slower-decaying contribution can
occur. Now in the simple noninteracting-blip approxi-
mation of Sec. IV.C we find that P(t) and C(t) are the
same. If this were true generally, the power law t
which is found for this function in Sec. V could not hoM
asymptotically as t~ m. 3"

At this point, however, several comments should be
made. First, and most important, it should be em-

i.e., an adiabatic switching procedure, will have the same
qualitative behavior as the exact P (t). In this case the ar-
gument above indicates that the simple noninteracting-
blip approximation would asymptotically fail only in the
incoherent regime —,

' &a & 1. Contrary to p(t), the long-

time tails in the symmetrized correlation function C(t)
are in a way an artifact of the definition of this function.
As we may see from the fluctuation-dissipation theorem
(3.96), C(t) has a —t long-time tail at T =0 even for a
completely analytic response function X"(co)—co for
u —+0, such as that for a damped harmonic oscillator or at

Thus within a description in terms of linear

response and correlation functions it seems more natural
to work with y(t)

In conclusion, we have shown in this section that there
is an interesting relation between the anisotropic &ondo
and the ohmic two-state problem. This analogy has
several consequences for the static and the long-time
behavior of our spin-boson problem, and in particular it
gave the first indication that coherent oscillations of the
spin may be expected only for a & 1. Indeed, as the rela-
tion to the resonance level model shows, we must have
n & 1/2. Unfortunately the few existing results about the
low-T dynamics of both the anisotropic Kondo and the
resonance level model only cover either t~ ao properties,
as in Eq. (3.92), or the behavior for a ~ —,, where the spin

is essentially relaxing incoherently with a typical time
scale of order 6, ', however complicated the actual
behavior may be in this regime. It would therefore be
quite interesting to investigate to what extent the relation
between the Hamiltonians can be put on a more rigorous
basis and whether the physics described by the forma1 an-
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isotropic Kondo Hamiltonian (3.43) beyond the Toulouse
limit' (E & 1) or the resonance level model (3.74) for U & 0
does in fact eventually become similar to that in the ohm-
ic two-state problem for o. & —,', in the sense that the spin
starts to oscillate, or whether the analogies are strictly
valid only close to a=1 or a= —,', respectively. Recent
work in this direction has been done (Guinea, 1985); how-
ever, many questions are still open.

F. Summary

Collecting together the results of the various ap-
proaches used in this section, one may plausibly make the
following conjectures about the behavior of the dissipative
two-state system as a function of the form of the environ-
ment spectral density J(co):

(1) In the case of superohmic dissipation (s & 1), we ex-
pect that at zero temperature the system will perform
weakly damped coherent oscillations with a renormalized
frequency given by Eq. (3.23) and a damping calculated
from Eq. (3.11) with P= oo, but with b, replaced by b,Fc.
At finite temperatures, for s )2 the situation will be dif-
ferent only in that the damping is now temperature
dependent according to Eq. (3.11). For 1 &s & 2, however,
we shall get a crossover to overdamped behavior at a tem-
perature of order of iris', FC 13, '(co,

/AFAR)'

(2) In the case of subohmic dissipation (s & 1), the sys-
tem is localized at zero temperature provided we are in
the limit b, /co, —+0. At finite temperature we expect in-
coherent relaxation at a rate whose principal temperature
dependence is exp[ const(fico, /—kiiT)' ']. We should ex-
pect that in this case the golden rule formula (3.37) would
always be valid, since it is precisely set up to handle in-
coherent processes.

(3) The case of ohmic dissipation (s =1) is particularly
difficult, For a & 1 the situation is qualitatively similar to
that in the subohmic case, except that the relaxation rate
should now increase as a power of T rather than exponen-
tially. For o," & 1 none of the arguments developed in this
section is entirely convincing, though it is plausible that
for a«1 (but min~, /6 possibly large) the quantity

b, (b, /co, )
' acts as an—effective renormalized

coherent tunneling rate and that in this limit the treat-
ment of Sec. III.B is a fairly good approximation, provid-
ed we replace 6 by 4. For larger coupling the behavior of

' mentioned in Sec. III.l3 indicate a qualitative change
in the zero-temperature dynamics at n= —, and a=1.
This is confirmed in Sec. III.E by the analogy of the ohm-
ic two-state and the Kondo problems. In particular, it
has been shown there that for a) 1 the ground state is lo-
calized (again provided b /co, « 1) and the spin dynamics
is not ergodic. Furthermore, the equivalence between the
case u= —,

' and the Toulouse problem makes it extremely
plausible that for any o.)—,

' coherence is completely des-
troyed by the bath coupling even at T =0, and thus a & —,

is at least a necessary condition for finding oscillatory
behavior. To the extent that P(t) can be qualitatively ap-
proximated by the normalized relaxation function qr(t) we

found that at long times P(t) should decay faster than
t ', whereas the symmetrized correlation function C(t)
will asymptotically behave as —t for all 0&o; & 1 and
T =0. At finite temperature we expect the relaxation to
become incoherent if kz T is large compared to the
characteristic scale A'b, „(a).None of the approaches dis-
cussed so far however gives an indication for the structure
of P(t) at intermediate times in the interesting regime
a & —,

' and small temperatures, in particular where in the
a, T-plane coherence is lost.

Our aim in the rest of the paper is thus to give a
method that covers in a unified way both incoherently re-
laxing and oscillatory regimes for arbitrary J(co) and that
provides precise conditions for their respective ranges of
validity. In particular, for the special case of ohmic dissi-
pation, we shall derive detailed results in essentially the
complete range of parameters and determine explicitly the
conditions necessary for such a system to show coherent
oscillations.

IV. EXACT FORMAL EXPRESSIONS FOR THE
SYSTEM DYNAMICS: THE "NONINTERACTING-BLIP
AP PBOXIMATION"

In this section we shall derive exact formal expressions,
in the form of power series in b., for the quantities P(t)
and C(t), for a system whose Hamiltonian is given by Eq.
(3.1). The formal solution is expressed in terms of the
spectral function J(co) [Eq. (3.2)] and is valid quite in-
dependently of the form of this function; thus, in particu-
lar, the results of Secs. IV.A and IV.B of this section do
not depend on the assumptions b, /co, «1, etc. These re-
sults may well be formally equivalent to some already
written down in the literature, but they are arranged in a
way that is particularly convenient for some approxima-
tions we shall make in later sections. In particular, they
suggest rather naturally a particular form of approxima-
tion, which we call the "noninteracting-blip" approxima-
tion, that will be used rather widely below. We therefore
take time in Sec. IV.C of this section to explain this ap-
proximation and go through the necessary algebra, which
is then applied to specific cases in subsequent sections.

A. Formal expression for FP (t)

Since our environment consists entirely of harmonic os-
cillators, there are any number of different techniques
available for eliminating them from the problem; here we
choose to use the "influence-functional" method of
Feynman and Vernon (1963), and will calculate explicitly
the quantity P' '(t) as defined in Sec. III [the equivalence
of P'"(t) and P' '(t) is demonstrated in Appendix 8]. If
at an initial negative time t =to & 0 a system with coordi-

An alternative derivation of the formula for P' '(t) is given
in Appendix B.2, using a possibly more familiar form of many-
body perturbation theory.
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nate x(t) starts with a value x;, and the environment
starts in a state of thermal equilibrium with respect to its
own Hamiltonian [i.e., in this case the bilinear terms in
the brackets in (3.1)], then the probability p(x/. t) for the

I

system to have arrived at a coordinate xy at a subsequent
time t, irrespective of the state of the environment at this
time [i.e., the element p(x~, x~,t) of the reduced density
matrix] is

p(x, .t)= f Dx(r) f Dy(r')A[x(r)]A*[y(r')]F[x(r)y(r')], (4.1)

where the double path integral runs over all paths x(r),y(r') such that x(to) =y(to) =x;, x(t) =y(t) =xI, A [x(r)] is the
amplitude for the system's following the path x(r) in the absence of the environment (see below), and the quantity
F[x (r),y(r )] is the influence functional. If the physical conditions of the problem are such that we know with certainty
that the system was at position x; not only at time to but for all t &0, then the paths in Eq. (4.1) must be restricted by
the constraints

x(1 ) =x;, r &0; y(r ) =x;, 1 &0. (4.2)

It is essential to note that the condition (4.2) does not mean that we can neglect the contribution to the path integral (4.1)
of the negative-time parts of the paths: As we shall see, the influence functional couples the negative- and positive-time
behavior.

For an environment of harmonic oscillators, the influence functional can be calculated exactly and has the form (Feyn-
man and Vernon, 1963)

t
F[x(r)y(r')]=exp ——f dr f ds[x(r) —y(r)][y(r —s)x(s) —y*(r—s)y(s)],

'o 'o

where the function y(r —s) is given by

(4.3)

y(r —s)—:g(C /2m co ) exp ice.(r s—)+—2 cost@ (r—s)
exp(PA'co ) —1

(4.4)

Using the definition (3.21) of J(co), we can write F equivalently in the form

F[x(r),y(r')]=exp — f dr f ds[ iL&(r —s—)[x(r)—y(r)] [x(s)+y(s)]+L2(r s)[x(r) ——y(r)] [x(s)—y(s)]],
~A '0 '0

(4.&)

where the functions L &,L2 are defined

L &(r—s):— de J(co)since(r —s),
0

L2(r s) = d—co J(co)cosa'(r —s)cothPfi~/2 .
0

(4.6a)

(4.6b)

I

[x(r),y(r)]. Let the states corresponding to [+,+I,
[+,—I, [ —,+I, and [ —,—I (where +=—,'qo, etc.) be
labeled A, B,C,D, respectively. Then the influence func-
tional can be rewritten in the form

One general point that is important to note for future
reference is that the influence functional is always bound-
ed above by unity;"' this can be seen most easily by noting
that the Fourier transform of L2 is always positive, and
hence so is the second term in the curly brackets in Eq.
(4.5).

For the two-state problem the variables x(r),y(r') can
take only the two discrete values + —,

'
qo. Equation (4.1) is

therefore an integral over all possible pairs of paths, each
of which jumps between two states. For our purposes,
however, it is more convenient to visualize it as an in-
tegral over a single path that jumps between four states.
In fact, since in the path integral ~ and ~' as well as x and

y are dummy variables, we can specify the pair of paths
completely by specifying, for each time ~, the pair

4~This is of course a general property of influence functionals
(whether or not arising from a harmonic-oscillator bath), as can
be verified from an obvious Schwarz inequality.

F[g(r),X(r')]
2

q0=exp — f dr f ds[ iL, (r—s)g(r—)X(s)
O O

+L2(~—s)g(r)g(s)],

(4.7)

~h~re g(r):—qo '[x(r) —y(r)] is 0 for states A and D,
+1 for 8, and —1 for C, while g(r')
—:qo [x(r')+y(r')] is 0 for 8 and C, +1 for A, arid
—1 for D. Itisevident that/(r)—=Oforalltimesr&0, so
the lower limit of the integration over r (but not that over
s) can be taken to zero if we wish. Intuitively speaking,
states 2 and D correspond to the diagonal elements of the
reduced density matrix, and states B and C to the off-
diagonal ones: Note that, as indicated by the last (posi-
tive) term in the square brackets in Eq. (4.7), spending
time in the off-diagonal elements always tends to suppress
the weight of the path in question. This is in agreement
with the phenomenological arguments often used in the
context of quantum measurement theory about the de-
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struction of phase coherence by the environment (see, for
example, Simonius, 1978).

Let us now consider the structure of the "bare" ampli-
tudes A [x(~)]. For definiteness we shall, as in Sec. III,
choose our convention for the sign of q so that the state
occupied by the system for t &0 was + —,qo (so that the
four-state path was in state A); moreover, we choose the
zero of energy so that this state has energy +c./2 (where E

may, of course, have either sign). Now, the total bare am-
plitude A [x(r)] for a given (two-state) path may be bro-
ken up into small pieces each of length dt. The amplitude
to stay in the state + —,'qo ( ——,qo) during time dt is
exp[ —i(c,/2')«][expi(s/2A)«], while the amplitude to
switch between the two states (in either direction) is
i (b. /2)dt. Applying these prescriptions to the four-state
path and neglecting terms of order (dt), we see that the
amplitude to stay in the same state is exp[ —iEg(t)«],
while the amplitude to switch states is iA(b, /2)«, where
A, is 0 for A~~ and B~+C, —1 for A~+ and D~+C, and
+ 1 for A~~C and B~~.

Consider now a definite four-state path that starts in
state A at time zero and returns to it at time t, making a

I

total of 2n transitions ("flips" ) along the way. Clearly
any such path will contain a factor ( —I)"(b,/2) "coming
from the 2n flips [it is easily verified that any specific se-
quence starting and terminating at 2, e.g.,
A~B~D~C~A, does indeed have a factor ( —1)" ir-
respective of how many times D is visited]. At any "odd"
flip the system can go either to B or to C, and at any
"even" flip except the last either to 4 or to D. Consider a
particular path for which the mth transition occurs at t
It is convenient to assign to each of the interval

t2j ~ & t & t2j a label gj, which is + 1( —1) if the system
spends the interval in state B (state C), and similarly to
each of the intervals t2j &t &t2j+1 a label gJ, which is

+ I or —1 according to whether the interval is spent in
state A or state D; note that by construction we have
go=2)„=+1.We can now evaluate the influence func-
tional (4.7) for the path in question as a function F„of
the quantities It ], Ig; I, and I2); I. It is convenient to in-
clude in the definition of the F„aswell the factor
exp —is g(t)dt from the asymmetry of the states. Then

0
we can write the probability p (r) for finding the system in
state A at time t in the form of a series in 6:

p(t)=1+ —,
' g ( —1)"b,'"K„(t),

n=1

—(2n —1) 2n 2f «2. f, «2. -i f «iF. (ri t2 ' t2.4i02' ' C. :nin2

(4.8)

(4.9)

Correspondingly, the expression for P(t)—:(o,(t) ) =2j2 (t)—1 is given by

P(t) —= g ( —I)"52"IC„(t),
n ='0

where Ko(t) is 1 by definition.
We now consider the explicit form of I'„.Substituting the expressions

(4.10)

X(~)= y 2)j[&(r—t2„)—e(1 —t2„+])],g(r)—:y gj[&(r—j2j $) —&(~—t2j)],
j=0

in Eq. (4.7), we find that the term bilinear in g(r) produces a factor of the form
2

Vo
xp g Q2( 2j 2j —1)+ g gjgk[Q2(t2j 2k —1)+Q2(t2j —1 2k) Q2( 2j t2k) Q2( 2j —1 t2k —1)]

j j,k
j&k

(4.1 1)

(4.12)

where Q2 is the second integral of L2(t) (see below). The treatment of the imaginary part of the exponent in Eq. (4.7)
calls for some care, because of the special role of the initial period before tl. This part is

n q0 n —1 n2

y PJ'(t2J' t2J —I )+ y y rjkkjXjk
j=1 k=oj=k+l

Xjk =Ql(t2j t2k+1)+Ql(r2j —1 t2k) Ql(~2j r2k) —Qi(&2 —i —~2k

(4.13)

(4.14)

where Q~ is the second integral of L &(t) (see below), and to, we recall, is a large negative time that will eventually be al-
lowed to tend to —Oo.

We may now simplify the expression for K„bysumming over the possible values +1 of the gk(k =1,2, . . . , n —1).
Clearly this summation yields a factor in IC„(t)of the form

n —1 2
q n' g cos g gjXjk (4.15)

k=1 ~ j=k+1
We can also turn the remainder of the expression whose argument is (4.13) into a cosine by exploiting the fact that the
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remaining factor in IC„,i.e., Eq. (4.12), as well as the factor (4.15), is invariant under simultaneous reversal of the signs of
all the gj (j =1, . . . , n). This yields a factor

2
c 9'o

cos Q gj (t2j —t2j, )—— XJ0
J

(4.16)

Collecting all these factors and definitions, and writing Qi(t) and Q2(t) explicitly in terms of J(co), we reach the follow-
ing final expression for P(t):

P(t)= g ( —1)"b.2"IC„(t),
n=o

t '2n t2~.(r)=—2- g f, «2. f «2. 1. f, «1F.(tit2 . t2.414.

(4.17)

(4.18)

F„j„r,g;: eJ=F, jt jF—2jt~, g; IF3jr,g; IF4jt, g;, eI,

F1 —=exp

F2 —=exp

n —1

F.=- H
k=1

2
e'o gS

j=1
2

qO n n

0jPk&,k
k=1 j=k+1
2

Co
cos g gjXjk

j=k+1

(4.20a)

(4.20b)

(4.20c)

2
c 9'o

F4=cos g g (t2' t2' —1) X'0
J =1

(4.20d)

The quantities Sj,Ajk, Xjk occurring in Eq. (4.19) are
functions of the jt I and are defined in terms of the
spectral density J(01) by the expressions

Sj=Q2(t2j —
2j —1) ~

Ajk = Q2(r2j r2k —1)+Q2(t2j —1 r2k)

—Q2(r; —r2k) —Q.(t2, 1
—t" 1),

Xjk = Ql(t2j t2k+1)+Ql(t2j —1 t2k)

—Qi(r2j —t2k) Ql(t2j —1 t2k+1)

(4.2 la)

(4.21c)

where Qi and Q2 are the second integrals of L 1 and L2
from 0 to t, that is, the expressions

where the four factors entering F„aregiven by the ex-
pressions

(4.19)

I

varty and Leggett (1984). Before embarking on a detailed
analysis (in the next three sections) of Eq. (4.17), it is con-
venient to develop a graphical representation of the paths
and some useful terminology, and to examine the signifi-
cance of the various factors (4.20) in F„.

To represent a path, we draw a line that runs along the
x axis when the system is in a "diagonal" state (A or D)
and above and parallel to it when it is in a "nondiagonal"
state (8 or C); see Fig. 4. The label gj(=+1), which dis-
tinguishes 8 from C, is added separately (or we could, if
preferred, reflect the B line in the x axis). We shall refer
to the periods when the Hne is along the x axis as "so-
journs" and the periods when it is above it as "blips";
thus, the "jth blip" is the period t2J 1 & t & t2J, and the
"kth sojourn" is (by convention) the period
t2k&t &t2k+1. With this convention, therefore, the kth
blip precedes the kth sojourn.

It is clear that the various factors in Eq. (4.17) can now
be regarded as "interactions" between the blips, and be-
tween blips and sojourns; in the former case we call an in-
teraction "repulsive" if it tends to decrease Fn, "attrac-
tive" if it increases it. The term Fi [Eq. (4.20a)] is the
self-interaction of the blips: this is always repulsive for
any form of J(co), as can be seen by returning to the origi-
nal influence-functional expression (4.7). The term F2 is
an interaction between different blips which depends on
the relative signs g&, gk. It is not possible in general to

~ J(co)
Qi(t) —= , sin~td~,

CO

Q2(t) = f (1—cosset)coth(p~/2)d01 .
~ J(co)

CO

(4.22a)

(4.22b)
blips jth blip

Note that Qi(t) and Q2(t) are well defined for all r, pro-
vided that, as co tends to zero, J(co) tends to zero, at least
as fast as m", n ~ 0, and is cut off at the higher-frequency
end as described earlier.

Equation (4.17), with the definitions (4.18)—(4.22),
forms the basis of all our subsequent work in this paper.
Note that for v=0 these formulas reduce, apart from
trivial notational differences, to Eqs. (5)—(7) of Chakra-

t2j I t21 2j+ I

sojourns j th sojourn

FIG. 4. Graphical representation of Eq. (4.17}.
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make any statement about the "sign" of this term by it-
self, but it is important to notice that, quite generally, the
expression (g.SJ+ g.k gjgkAJk) is always positive
where both sums go over the same subset of the blips
[again, this follows from Eq. (4.7)]. The term F3
expresses the interference between processes in which the
system goes, say, from B to A to B and from B to D to
B: it appears as an interaction between a given blip and
preUious sojourns only. A case of special interest is the
case j=1+1: if we can neglect the contribution of all
the other Xjk(j)k+2), then this term produces an effec-
tive self-interaction of the form cos[(qo lvrR)Q ~ (t2J.
—r2J. ~)] for the jth blip in the limit that the length of
the (j —l)th sojourn tends to infinity. Finally, the term
E4 not only modulates (for a&0) the contribution of the
self-interaction of the blips, but gives an interaction of all
the blips with the zeroth sojourn (which, we recall, ex-
tends back to the initial time to, which we allow to tend
to —ao ). This term is not usually particularly important
in the unbiased case, but in the case of finite bias (a&0) it
is essential to keep it if one is to get sensible behavior in
the limit t —+ oo,' it is the only term that is sensitive to the
sign of c,, i.e., to whether we started in the upper or the
lower well, and we clearly would expect on intuitive
grounds that P(r) [which, we recall, is defined relative to
the initial state, i.e., as (o.,(t) ) where o,(0)—= + 1] should
behave quite differently in the two cases, in the limit

oo.

B. Expression for C'(i)

We now indicate more briefly how to obtain an expres-
sion similar to Eq.

'

(4.17) for the symmetrized correlation
function

C(t) = Trt [o,(r)cr, (0)+cr,(0)cr, (t)]exp —/3H]2Z

(4.23)

where Z is the partition function, and the operator o.,(&)

is taken in the Heisenberg representation with respect to
the full Hamiltonian H, i.e.,

o,(t)—:exp(iHt/fi)cr, exp( iHt—/A) . (4.24)

We first relate C(t) to the joint probabilities P(cr'cr:t)
defined as follows. Suppose we start at t =0 with the
system-plus-environment in a thermal equilibrium state
(i.e., with a density matrix proportional to exp —PH).
Now suppose that at t =0 the system is observed to have
a value o( =+1) of o„the environment being undisturbed
by the observation. The system is again observed at some
subsequent time t and found to have a value o.' of o, .
The probability for this sequence of events is defined to be
P(cr', o".t). To relate it to C(t) we define, as in Sec. III,
projection operators &+ —=—,(1+o,), and note the identi-

ties m. ++a =—1, m+ —m. =o, It is then obvious that
we have

g o'P(rr', + ~:t)=Tr[&+exp( iHt)(&+——& )exp(iHt)&+exp —f3H]/Z—:(&+o (t)&+ )~ (4.25)

and a similar relation obtained by interchanging the +
and —indices. Subtracting one relation from the other
and using the definition (4.23) of C(t), we find the intui-
tively rather obvious result

C(t) = g oo'P(o'', cr:t) . (4.27)

(where in the first equality we used the cyclic invariance
of the trace). Subtracting the relation for o.= —1 from
that for o.= 1, and writing ~ = 1 —m+, we get

g crier'P(o'', o"t) = —(o, .)+ (&+o,(t)+o, (t)&+ ) (4.26)

I

were in their (independent) thermal equilibrium states. At
time to the coupling was switched on, and thereafter the
system and environment were left alone except that at
t =0 the system was observed to have the value cr, =+ 1.
Strictly speaking, the quantities C"' and C' ' are obvi-
ously identical only if we assume that the behavior of the
coupled system-environment complex is ergodic. We
shall make this assumption, or at least the assumption
O'"=C', ' (which is actually rather weaker; see the dis-
cussion of P"' and P' ' in Sec. III.A). Thus we shall take
C (t) to be given by C' '(t) whenever it is convenient to do
so.

For simplicity we shall discuss explicitly from here on the
case of an unbiased system; the generalization is trivial.
In this case the symmetry implies that C(t) is just the ex-
pectation value of o., at time t, given that at time zero the
system is known to be in the state o.,=+ 1 and that apart
from this we have thermal equilibrium [i.e., the density
matrix of the "universe" is proportional to
n+exp( —PH)m+]. The quantity C(t):C~'~(t) defined in-
this way is clearly analogous to the P"'(t) defined in Sec.
III. It is also possible to define a C' '(t) that is the analog
of P' '(r), as follows: We assume that before some nega-
tive time to, which is eventually allowed to approach—m, the system and environment were uncoupled and

42Here we implicitly assume, in accordance with the usual con-
siderations of quantum measurement theory (see, for example,
d'Espagnat, 1976, Sec. 14.4), that the effect of an "observation"
is to project the density matrix that described the system just
prior to observation onto the manifold corresponding to the ap-
propriate eigenvalue of the observed quantity.

43In cases (if any) where this assumption does not hold, a dis-
cussion of the thermal equilibrium correlation functions is likely
to be of somewhat academic interest anyway, since it is then not
clear how one would prepare the thermal equilibrium state in
real life.
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It is now clear that P(t) and C(t) are just special cases,
defined by the limits t, ~—ao and t, ~G, respectively, of
a more general quantity P(t:t, ) defined as the expectation
value of o., at a time t ~ 0, where the coupling is switched
on in the way described above at a time to which tends to
—Oo and the system is known to have been in the state
o, =+1 for, the period t, &t &0. It is clear that this
quantity has a path-integral representation that is identi-
cal to the one derived in Sec. IV.A for its special case
P(t), except that an arbitrary combination of blips and
sojourns is allowed to occur at any time before t, (while
for t, & t & 0 the path is, of course, in state 3 ). It is very
straightforward to write down explicitly the resulting
power-series expansion in 5, but there is little point in do-
ing so here. We merely note that in general the effect is
not simply to multiply the series for P(t) by a second
power series, since the interaction between blips (and so-
journs) at positive and negative times cannot be factorized
in a simple way. However, we shall see in the next sub-
section (with a proviso) that, to the extent that a certain
simple approximation for power series of the type found
for P(t) is valid, the quantities P(t) and C(t) are in fact
equRl.

C. Noninteracting-blip approximation

Equations (4.17)—(4.22), while exact, are exceedingly
cumbersome. We shall now describe an approximation,
which we call the "noninteracting-blip approximation, "
that simplifies them enormously. This approximation
turns out to be exact (to lowest order in 6/co„etc.) in
some regions of the parameter space and very good in
most of the rest.

The approximation consists in two simple prescrip-
tions:

(1) Set all the factors XJk in Eqs. (4.20c) and (4.20d)
equal to zero for k &j—1, and put XJ 1

Ql(r2J t2J' —1)'
(2) Set all the factors Ajk in Eq. (4 20b) eq.ual to zero.
To motivate these prescriptions, we note that with a

spectral density J(co)-co' (s&1) the functions Qi(t) and
Q2(t) at zero temperature are simply proportional to the
imaginary part and a constant-plus-the-real-part, respec-
tively, of (1 iso, t)' ' T—his remai. ns true of Qi (but not
Q2) at finite temperature. We also note that the length of
a "typical" sojourn occurring in Eq. (4.18) is always at
least of order 6 . This is almost intuitively obvious,
since the typical length of a blip-sojourn pair is of order
t/n, which for the dominant terms in the series (4.17) is
at least of order 6, and since blips tend to be suppressed
relative to sojourns because of the self-interaction term
(4.20a). Consider first the justification of approximation
(1). In the superohmic case s & 1 this is clearly extremely
plausible, since Q1(t) is of order of (at most) some nega-

44The arguments given below are presented in more detail, and
sometimes with more rigor, in the context of specific parameter
regimes in Secs. V and VI and Appendix D.

tive power of co, /4 for typical configurations whenever t
refers to a time difference that includes the length of a so-
journ, while Qi(0) is zero identically. The case s &1 is
slightly more tricky: here we have to argue that the self-
interaction term (4.20a) suppresses long blips to the extent
that the average blip length is of order co,=', rather than
(like the average sojourn length) of order at least 6
Now it is the difference of Qi's that occurs in Xjk, and
this difference is, by the above argument, of order'

co, '(d/dt)(co, t)' 'i z 1-(5/co, )', so the quantity X~k

should again be negligible for j&k + 1 [and by the same
reasoning XJ.J &

should be well approximated by
Qi(t2J —

t2& 1)]. Finally, in the case of ohmic dissipation
Qi(t) tends to a constant in the limit of large co, t, so the
same argument again goes through. Approximation (1)
will be misleading only if either (a) there are strong can-
cellations in the multiple integral (4.18), which means that
terms of relative order (6/co, ) (l &0) have to be taken
into account in the expressions (4.18) for the K„(t)them-
selves or (b) the corrections, though of relative order
(b, /co, ) in each individual K„,add up in the series (4.17)
so as to give a substantial contribution for large t. In case
(b) we should expect important effects only for
t & (co, /6) r (where r is the typical time scale as defined
in Sec. III), a regime not of interest to us. Case (a) can be
discounted in any case for which the integrand of Eq.
(4.18) is positive definite (as it is, for example, for the
ohmic case with a & 2; see Appendix D. l); it appears
exceedingly unlikely to arise, for the unbiased case, in any
regime except possibly the ohmic one with —,

'
& o. & 1 (and

then only dubiously; see Sec. V.E). Thus, with this one
possible exception, it seems very probable that for E=O
approximation (1) is always valid for our purposes. For
the biased case the situation is a little more problematic;
see Sec. VII.

The justification of approximation (2) is not quite so
general. With the same caveats as above, it should hold if
(and only if) the length of a typical sojourn is large
enough, and Q2(t) fall' off fast enough, that all the Q2's
are small compared to 1 for j&k. Now Q2(t) increases,
for ohmic and subohmic dissipation, as a function of t;
hence these conditions are not guaranteed in the general
case. Approximation (2) can, however, be justified in at
least three different cases.

(a) Extreme weak-coupling case: because of the sum
over the Ig~ I, it is clear th'at the effect of the factor F2
[Eq. (4.20b)] is of the order of the square of the coupling
constant P„(ora), whereas the terms kept in the
noninteracting-blip approximation give nontrivial effects
of order I3„.Thus in the limit P„—+0 it is consistent to
make this approx][mation.

(b) Superohmic case: for s & 1 at zero temperature, and
s & 2 at finite temperature, the difference from its asymp-
totic value of quantity Q2(t) is very small for t & 6
which is a lower limit on the typical length of a sojourn.
The asymptotic value merely renormalizes 6; see Sec. VI.
Thus ihe noninteracting-blip approximation is justified in
this case.
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(c) "CJolden-rule" limit: If the function Q2(t) increases
with t, then the factor Fq [Eq. (4.20a)] suppresses long
blips to the extent that a typical bhp is very much shorter
than a typical sojourn. Because it is the differences of the
Q2's that enter the factor F2, it then turns out that this
factor can be set equal to unity with negligible error,
again justifying the approximation. In this case [but not
in cases (a) and (b)] the resulting expression turns out to
coincide with that obtained from the "golden-rule" ap-
proach of Sec. III.D. It turns out that case (c) occurs in
the subohmic case, in the ohmic case for large enough dis-
sipation and/or temperature, and also in the case I ~ s & 2
for high enough temperature.

Thus the noninteracting-blip approximation gives
essentially exact results in three physically quite different

limits. Because most of the rest of the parameter space is
in some sense intermediate between these hmits, it is very
natural to expect that it would give results that are not
qualitatively misleading almost everywhere. %'e shall ver-
ify in subsequent sections that this is so. %'e return in the
Conclusion to a discussion of the physical meaning of this
approximation.

Use of the noninteracting-blip approximation simplifies
the expression for the influence functions F„[Eq.(4.18)]
very drastically and reduces the problem of finding P(f)
to the calculation and inversion of Laplace transforms.
Let us consider the case E=O, for which the situation is
particularly simple (the case of finite bias is discussed in
Sec. VII). The integrand F„ofEq. (4.18) is now given by
the simple product

2 29'0 9'o
Fz(t~ ' ' ' t2 ) = + cos

~ Q~(t'ai —
t2& ~ ) exp —

&
Qz(t2J —t2~ i ),

tT mh'
(4.28)

and hence the expression for P (t), Eq. (4.17), becomes

OO 2' 7f

P(t)= g ( —1)"f, dt,
„ f dt,„,. f, dt, gf(t„t„,), —

@=0 j=1
(4.29)

f(t)=b. cos

r

2
Qo

Q~(t) exp—
mA

2
e'0

Q2(t) (4.30)

The formal similarity of Eq. (4.29) to the partition function of a system of particles in a one-dimensional, fixed volume
suggests that we switch to the analog of an isobaric ensemble. This is done by taking the Laplace transform:

P(A.)= f e 'P(t)dt . (4.31)

A few changes of the orders of integration yield

P(A, )= g ( —1)"f dt f dt) . f dt,„e ' ' '" + f(t2J)
n=0 j=I

( 1 )
If[f( g )]It /gll + 1 [g + (f)g ]

—1

n=0

where f (A, ) is the Laplace transform off ( t)

2 2

f(A, )—:b, f cos Q~(t) exp —At+ Q2(t)0 ~A
I

(4.33)

P(t) = f e~'P(A, )dA,
2mi

f e '[A, +f(A, )] 'dA, , (4.34)

Thus, in principle, f(X) can be calculated for any form of
J(m). The transform can then be inverted to obtain P(t)

gives a complete solution to the dynamics of the unbiased
spin-boson problem within the noninteracting-blip ap-
proximation. [The slight generalization necessary in the
case of finite bias (8&0) is discussed in Sec. VII.] We
note, further, that within this approximation C(t) and
P(t) are identical for co, t »1, since there is now no "in-
teraction" in C(t) between the positive- and negative-time
parts of the path. However, this remark needs to be treat-
ed with some caution: the fact that the interblip interac-
tions are negligible in the calculation of P(t) in a given
parameter regime does not rigorously imply that they are
also negligible for C(t), although it would certainly be
very odd if their effect was dramatic.

where C is the standard Bromwich contour, i.e., any con-
tour from —i ao to +i ~ lying entirely to the right of all
singularities of P(A, ). In cases where explicit inversion is
difficult, it is clear that much can nevertheless be learned
from a study of the singularities of P(A),

Equation (4.34), with the definitions (4.33) and (4.22),

V. OHMIC l3ISSIPATION: UNBIASED CASE

In this section we shall apply the formal results of Sec.
IV to a calculation of the behavior of P(t) for the case of
zero bias (c.=O) an an ohmic form of dissipation, that is,
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with J(co) given by the expression [cf. Eq. (3.3)]

J(co ) =geo exp —co/co, , (5.1)

blip, " is given by

f (t) =cos[(qo/rrA')Q, (t)]exp[ —(qo/ark')Qq(t)]

where co, is an arbitrary cutoff as described in Sec. II. As
above, we define a dimensionless dissipation coefficient n
by

(rrt IPfico, )cosech(~tII3kco, )
=cos[2a tan 't] (1+t')'"

(5.5)a—:qqo/2vrA' . (5.2)

a/( l —a)

c
(5.3)

If, therefore, the whole idea of transforming our original
two-well problem into a two-state problem is to make
sense, we should expect P(t) to be a function of 6 and co,
only in the combination (5.3). If there are any regions of
the parameter space where this is not the case, then we
should expect that the behavior in these regions might be
sensitive to details of the original two-well problem that
are not necessarily reflected in the two-state model. %'ith
these preliminaries we now turn to the detailed form of
P (t) in the unbiased ohmic case.

The characteristic frequencies of the problem, apart from
k&T/A', are the "bare" tunneling frequency b. in the
Hamiltonian (3.1) and the cutoff co„we recall that in
most physically realistic problems, where the two-state
model arises as a result of the (arbitrary) truncation of a
two-well problem, these two parameters are not totally in-
dependent, in the sense that 6 is proportional to a con-
stant times co, (see Sec. II). We reemphasize that in this
paper we are always interested in the limiting behavior of
the system in the limit of a small value of the ratio 6/co„
and moreover that we shall not be interested in the
behavior at very short times ( (co, ') nor at times so long
that P(t) is already negligibly small. Thus our problem is
the behavior, for small 5/~, and "interesting" times, of
the quantity P(t) as a function of the dimensionless dissi-
pation coefficient o; and the temperature T.

Before we embark on the details of the calculation, one
general remark should be made. With the quantity 6 pro-
portional to co„there is only one quantity we can form
with the dimensions of frequency from 5 and co, that is
independent of co„namely,

We note that in the limit P~ Oc the quantity f ( t) may be
written more succinctly as Re(1 it—) . An important
point to notice is that, irrespective of the value of P, f (t)
is positive for all t provided we have 0.(—,. For o'& —,,
on the other hand, f ( t) oscillates in sign.

It is interesting to consider the integral

F(a,P) = f f (t a,P)dt (5.6)

which occurs in the golden rule expression (3.88) (with
E=0). In the limit P~ oo this quantity has rather unusu-
al properties: as may be easily verified from the complex
representation noted above, it is infinite for a( —,, equal
to m/2 for a exactly equal to —,', and zero for a & —,'. At
finite temperature the value of F(a,13) is always finite,
and in the limit Pico, ~~ 1 of interest to us it is given, for
all values of o., by

F ( I3)
~VI r (a )

I (a+ —, )

' 2a —l
mk~ T

(5.7)

Fi = + [f'(b, )]", (5.8a)

f'(b, +b +, )f'(, )

k=1 j=k+I f (bj+ujk)f'(bk+ujk)
(5.8b)

n —l

Note that on the line a= —,', F(a,P) is independent of
temperature and equal to m/2.

To obtain the complete expression for P(t), we substi-
tute Eqs. (5.4) into Eq. (4.20) and set s=O. Incorporating
the simplified F4 for notational simplicity into F3, we
find that the three factors F&,F2,F3 in the influence func-
tion F„(I t; I, I g; I:0) are given by

A. General formulas

F3 ——+ cos 2a g /~X', (5.8c)

From the definitions (4.22), the functions Q, (t) and
Qq(t) are given for the form (5.1) of J(co) by

Here we have introduced the notation b~, sj for the length
of the jth blip and the subsequent sojourn, respectively,
and also defined the quantity

Q((t)=stan 'co, t,

Qz(t) = , rtln(1+co, t )+rtl—n sinh1 2 2 PA' .

7Tt

(5.4a) j—l

u/k =tz~ ) —t2k=sk+ g (b(+sl)
I=k+1

(5.9)

where as usual we have set P=1/k+T. It is convenient
until further notice to measure time in units of ~,
Thus the quantity f(t), Eq. (4.30), which would give the
contribution to the influence function of a totally isolated

451t is convenient to redefine f ( t) at this point so as to omit
the factor 5 that was included in Eq. (4.30).
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(so that uj/ i=—sj i); see Fig. 5 for a pictorial represen-
tation of these quantities. The quantity f'(t) [which
differs from f (t) in Eq. (5.5)] occurring in Eqs. (5.8a) and
(5.8b) is defined by

f'(t)=(1+t ) sinh

2k-I 2k 2k+I
Sk

Ujk

"ik

t. t.2j-I 2j 2j+ I

Sj

[f(t):c—os(2a tan 't) &&f'(t)],
and the quantity Xjk in Eq. (5.8c) is given by

(5.10)

FIG. 5. Definition of the quantities appearing in Eqs.
(5.8)—(5.11).

jk =tan (t2j t2k+1 )+tan (t2j —1 t2k) tan (t2j t2k) tan (t2j —1 t2k+1 )
—I —1 —1

b/sk(bj+sk+2y/k )=tan-'
I[1+yjk(y k+sk)][1+(y k+b, )(yjk+b, +sk)]+sk]

where for subsequent convenience we define the quantity

yJk ~2j —$ ~2k + $ +jk

Note that yj J ] =0, Also recall that to is by convention to be taken equal to —oo, so that we have, for all j,
r

(5.11a)

(5.11b)

Xj,=tan-' bJ

1 +yjo(y. jo+b/)
(5.12)

An alternative representation of the influence functions E„that does not involve an explicit cosine is sometimes help-
ful. Omitting the tedious but straightforward algebra necessary to obtain it, we simply note the result: introducing a
dummy variable q; = + 1 for i =0, 1, . . . , n —1, we have

F„It;,g;:01=2 " g [@It;,g;, q; I ]'
Iq,.=+ r I

(5.13)

~I;,~;,~; I =II-, II [(D,'+ ~.~,~...E,')G,E~g ],g(, )[1+y,o(y, o+b; )+inoki0, b, ] j-
j=1 (1+b,')

where we have used the notation

D /, =[1+yj/, (yj/, +sk)][1+(yj/, +bJ )(yjk+b, +sk)]+sk,

E/k =b/sk(b& +sk+2—y/k ),

I~/
g y/k+bi +bk+sk )g yjk+sk)
g(yjk +bj +sk )g (y,k +bk +&k )

Gg'—= I [1+(yjk+sk)'][1+(yjk+ bi+ bk+sk )'] I

=—1[1+(yj +kbj+s )k][1+(yjk+bk+sk) ]] ' if gj= —gk,

g (t):— cosech
C C

(5.14)

(5.15a)

(5.15b)

(5.15c)

(5.15d)

(5.15e)

When j= 1 the curly bracket in Eq. (5.14) is defined to be
unity. Clearly at zero temperature the factor Mg' is just
unity. The expansion (5, 13) is completely equivalent to
Eqs. (5.8a)—(5.8c), and is more convenient for some pur-
poses, particularly when a takes integral or half-integral
values.

We shall now apply the formulas we have obtained to
calculate P(t) in various regions of the (a, T) plane. The
level of mathematical rigor varies somewhat among the
next five subsections: in Sec. V.B (the line a= —,), where

we claim completely exact results, and in Sec. V.D
( T =0, 0 & a & —,

'
), where the results are claimed to be ex-

act up to a certain point, we have tried to be completely
rigorous; in Sec. V.C, on the other hand (large a and/or
large T), we have proceeded somewhat more intuitively,
although we are confident that the results could if neces-

46In the sense specified there.
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sary be put on a more rigorous footing. In Sec. V.E
( T =0, —, &a & 1) we would have liked, but have so far
failed, to find a rigorous way of doing things; in Sec. V.F,
having observed that the noninteracting-blip approxima-
tion gets things exactly right in Secs. V.B and V.C and at
least qualitatively right in Sec. V.D, we go on to apply it
to the whole of the (a, T) plane without any pretense of
further justification.

B. The line a=—
2

For the special value —, of cx, the integrals in the expres-
sions for the coefficients K„(t)in Eq. (4.18) are products
of polynomial and (at T&0) hyperbolic functions of the
variables t;, and this permits a brute-force evaluation of
P(t) to lowest order in the ratio 5/co, (see below for the
precise meaning of this statement). We start with the case
of zero temperature, so that we can put the quantities g (t)

=t tan 't ——,ln(l+t') . (5.16)

It is clear that in the limit of large t the value of K& is
just (m. /2)t, the first correction being of order lnt. The
case of K2 is slightly less trivial; from the general formu-
la (5.15) (or directly) the integrand lz is, after summation
over the z); and g;,

and M.k in Eq. (5.15) equal to unity.(g)

%'e recall that we are always interested in times large
compared to co, , so that in the dimensionless units. being
used the region of integration over the times t; in Eq.
(4.18) is very large compared to unity. Before embarking
on the general argument we first consider the first three
coefficients K„(t)in Eq. (4.17) for P(t) explicitly. The
first two are trivial: Ko is identically unity and K& is
given by

t'

K, (t)—= f dt, f dt, (l+b', )
' (b, —=t, —t, )

1 1+bz(bz+s 1 )+s ) (b (+s i )(b ) +bz+s ) )+ 1 b ibz-
(1+b ) )(1+hz) (1+s ) )[1+(b(+bz+s( )']

(b(+s()(b(+bz+s))+1+b, bz

[1+(bi+san)'l[l+(bz+ i)']
(5.17)

I,=(l+b', ) '(1+b', ) (5.18)

Further, because of the rapid convergence at large values
of b;, the upper limit of the integrations over the b; can
be taken to infinity, corrections again being at most of or-
der (lnt) . As a result we get Kz(t) = —,

' (~t/2) .
It is now clear how to proceed in the general case.

First, inspection of Eq. (5.14) reveals that there is a class
of terms with the same number of powers of the sj's
[namely, 4n (n —1)] in the numerator and denominator.

where as usual b
&

= t2 —t I, s
&

—= t3 t2 b2: f4 t3, This
expression is to be integrated, according to the usual
prescription (4.18), over the variables t

& t&, or
equivalently over positive values of b],b2, s], and the
fourth variable sz subject to the constraint
b] +s] +b2+s2 ( t.

The crucial point, now, is that the denominators in Eq.
(5.17) always contain at least two more powers of the b's
then the numerators, while the same is not true for s].
Thus, if we wish to obtain from the three integrals over
b&, b2, and s~ something proportional to t, we must keep
only those terms that contain an equal number of powers
(four) of s& in the numerator and the denominator; we
easily verify that any term with fewer than four powers of
s] in the numerator will give at most a contribution of or-
der (lnt) . Moreover, in the terms we keep, the dominant
contribution clearly comes from the region s ] && 1,
b&, b2 (1, so that the denominators in the brackets can be
approximated simply by s]. Consequently I2 reduces to
the simple form

(so that RJ. J z—=s~. ~), we have in this approximation

D,k/Gjg'=«Jk/R, ,k i)', j &k+2
D k/GI'=s (, j =. k+1 .

(5.20)

Thus Eq. (5.19) for F I t;,g;:0) becomes independent of the

g; and is given simply by

F„I t;,g;:OI =F„I t, I

2

Since the integrand of K„is everywhere positive (see
above), these terms will contribute to K„aterm propor-
tional to t". All other terms have at least one less power
of the sj's in the numerator than in the denominator, and
also at least one less power of each bj', hence such terms
can contribute at most a term of order t" '(lnt), and
hence are prima facie negligible for t »1 (but see below).
Thus we keep only the terms with the maximum number
of powers of the sj's in the numerator; this immediately
means that the term in E~k can be dropped for all j,k ex-
cept when j =0+1 (as can the:term in iqog~gzbj for
j&1), and since the sum over the gj can now be taken in-
dependently, the remaining terms E~~ &also drop .out of
the problem entirely, as does the term in qo. Second,
since the important region of integration is now clearly
that of large s~ but small b/( & 1), the 1's and the bj's in
the expressions Gzg can be neglected; the quantity Gzg
then becomes independent of the gj, and if we define

J —1

R/k = g st (j & k+2) (5.19)
I=k+1

Note that since yjj 1=—0, the term Djj &
in Eq (5 14} coIl-

tributes only two powers of sk. to the numerator, not 4 as do the
other Djk. The remaining two powers are supplied by the term

2
gjo.

—= +(1+b,') ', (5.21)
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which is, of course, precisely the result we would have ob-
tained by making the "noninteracting-blip approxima-
tion" from the start. What the above argument has
shown is that the relative correction to each of the IC„(t)
from the terms neglected in this approximation is
rigorously of order, at most, t ' (lnt) in the limit of
large t (where t is measured in units of co, '). Further-
more, the error in the value of K„caused by taking the
limits of integration over the bj s to infinity is again obvi-
ously at most of relative order t ' (lnt) . Thus we reach
the conclusion (restoring the units of time)

(co, t)"K„(t)= —,[1+0(ln co, t/co, t)] t~ oo . (5.22)
nf

If we neglect the correction terms, then the series (4.17)
for P(t) can be trivially summed to yield the strikingly
simple result

P(t) =exp —— t
2 a)c

(5.23)

This result was obtained in Chakravarty and Leggett (1984)
as the a~ 2 limit of the formula for 0 & a & ~ .

It is very tempting, in the light of the above remarks, to
assert that the result (5.23) is exact "in the limit co,~ ao."
However, this statement needs careful definition if it is to
be claimed as rigorously demonstrated by the above argu-
ment. From the fact that the corrections to each K„indi-
vidually are of relative order (roughly) (co, t) ' in the lim-
it t~ao it does not follow that the corrections to the
whole (oscillating) series for P(t) are of the same relative
order. All that we can show rigorously (see below) is that
the corrections to Eq. (5.23) for P(t) are negligible until
this expression has itself fallen to a value of order b, /co, .
It may well be highly plausible that even for times larger
than this the corrections to (5.23) are negligible, but it
would require a separate argument to demonstrate this in
a mathematically rigorous way. We return to this point
at the end of this subsection.

It is clear that finite temperatures cannot affect the
above argument (so long as we maintain the condition
pirtco, &&1, of course). The only difference now is that the
expression for @It;,g;, g; I [Eq, (5.14)] is multiplied by a
product of extra single-blip terms g (bj) and a series of ex-
tra blip-interaction factors of the form Mjk' [Eq. (5.15c)].
It is easy to prove [using the convexity upward of
the function ln(sinhz) —lnz] that the function
sinh(x +a +b)sinhx/sinh(x +a)sinh(x +b) is bounded
below by the expression x (x +a +b)/(x +a)(x +b), and
(using the exponential representation of the sinh function)
that it is bounded above by unity. Hence the factor M.k
lies between unity and

(V,;+b, +sk)(Vjk+bk+sk)
(Vjk +bj +sk +bk )(Vjk +sk )

and clearly cannot affect the argument developed above

about the powers of the bj's and s~'s. Furthermore, in the
region of large sj, M k can be simply set equal to unity.(g)

Hence the only effect of finite temperatures for large t is
to multiply each of the factors (1+bj )

' in the integrand
of K„bya factor g(bj). However, we already saw [Eq.
(5.7)] that the integral of the'function g(bj:T)(1+bj )

from zero to infinity, i.e., the function E(cc,/3) for the
special value o;= —,', is actually completely independent of
T for Pfico, ~~1. Hence Eq. (5.23) remains true along the
whole line a = —,

' in the (cc, T) plane with the same accura-
cy as at zero temperature.

At this point we digress to sketch a possible alternative
approach to the dynamics, which is perhaps more elegant,
although it requires even more algebra (which is given, for
the case of zero temperature, in Appendix C). It is based
on the idea that, provided we can neglect terms "of order
co, '," there should be an equivalence between the spin-
boson problem and a class of problems concerning I'ermi
systems (Guinea et al. , 1985b; see also Sec. III.E). For
the special case a= —, we can make the correspondence in
a particularly simple way. In fact, consider the so-called
Toulouse (1969) Hamiltonian

HT= g Ekckck+ Vg (d ck+ckd) (5.24)
k k

Here the operator d (d) represents the creation (destruc-
tion) of a d electron in a localized state which is situated
at exactly the Fermi energy, while ck(ck) creates an elec-
tron in a Bloch state k in this band; spin is neglected and
all energies are measured from the Fermi energy. The
density of conduction-band states p(E) is assumed sym-
metric around the Fermi energy and tends to zero for
large

~

E
~

in a way that for the moment need not be
specified in detail; it is sufficient to know that p(E) is ef-
fectively constant for an energy range large compared to
V. Concerning the system described by the Hamiltonian
(5.24), we can pose the following question, which is pre-
cisely analogous to the one defining P(t) in the spin-
boson problem: Given that at time t = —ao the "environ-
ment" (i.e., the conduction electrons) was in its thermal
equilibrium state, and that for all times t & 0 the "system"
(i.e., the d state) is known to have occupation number
nd ——1, what is the quantity P(t) —=2(nd(t) ) —1 at a later
(positive) time t'? It is straightforward to calculate P(t) as
an infinite series in V (Appendix C). We then compare
this series with the series for P(t) in the spin-boson prob-
lem at cc= —,

' and show that, provided we (a) keep in the
numerators of the expressions only those terms which
give the leading contribution in the limit co, t woo (cf. —
above) and (b) choose the density of states p(E) in the
Toulouse problem to have the specific form

p(E)=poexp —
~

E
~

/fico,' ', (5.25)

A more detailed examination shows that the accuracy of Eq.
(5.23) actually increases with increasing temperature, since the
latter tends to reduce the typical length of a blip (see Sec. V.C).

5OIn Sec. III.E this operator was written o+(o. ). For present
purposes the two representations are completely equivalent.
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then the two series have, term by term, exactly the same
structure and are numerically identical if we make the
correspondences [see Eq. (3.75)]

and contrary to some claims that appear to be at least im-
plicit in the literature we do not believe any such proof
has yet been given.

co, =co', ', b, =2A' 'V(porto, )' (5.26)

P(t) =exp t/r, —r = V po,
2 lT

(5.27)

which agrees precisely with Eq. (5.23).
We now return to the question of the corrections to

P(t) at long times. It should be emphasized that the
correspondence with the Toulouse problem is
(prima facie at least) of no help in determining these,
since to make the correspondence we had to drop terms of
relative order (roughly) (co,t) ' in each K„(t)individual-

ly, and it is precise1y the effect of dropping such terms
that we wish to investigate. We may, however, make a
uery conseruatiue estimate of the shortest times at which
P(t) is liable possibly to deviate from Eq. (5.23), as fol-
lows. Apart from the terms we kept to obtain Eq. (5.23),
namely, those containing as many powers of the sj in the
numerator as in the denominator, the "most dangerous"
terms are those in which one power of one of the sj only
is replaced by a power of one of the b~ [e.g. , the ter. m in
Eq. (5.17) with b2s~ replacing s ~ in the first factor in the
numerator]. Each of these terms can at worst make a
contribution of order ln (co, t)/(co, t/n) relative to the
terms originally kept, ' and there are at most of order n

such terms. Thus the correction 6K„to the value E„'' of
K„given by Eq. (5.22) can at worst be of order
[n (ln co, t)/(co, t)]K„',and the correction to the whole
expression for P(t) can at worst be of order (6/co, ) z e',
where z—= (mb, /2', )t. Thus, to leading order in the
small quantity b, /co„ the correction to P(t) can become
comparable to P(t) itself, if at all, only when the condi-
tion z&ln(co, /5) is satisfied. By this time P(t) is al-
ready at most of order 5/cu„so that we can conclude
that P(t) is indeed correctly given by Eq. (5.23) until that
expression has itself decreased at least to a value of order
6/co, . It is in this sense, only, that we can justify
rigorously the claim that Eq. (5.23) is exact "in the limit
co, ~oo." Of course, it is entirely possible that Eq. (5.23)
is in fact exact to within corrections of relative order
(co, t) ' [or, perhaps (ln co, t)/(co, t)] for all t. However,
while this may we11 be very plausible on physical grounds,
we do not have at the time of writing a rigorous proof,

51The corrections coming from the extension of the integra-
tions over the bj to infinity are of similar order.

Thus, with the choices (5.25) and (5.26), it may be plausi-
bly argued (Guinea et al. , 1985b, though see below) that
the dynamics of the Toulouse problem is identical for
times t »co, ' with that of the spin-boson problem on the
line a= —,'.

A prima facie advantage of this approach is that the
Toulouse problem, being bilinear in the fermion operators,
can be exactly diagonalized, and thus we mould expect the
behavior of P(t) to be given by

C. The limit of high temperatUres
and/or strong dissipation

The argument of this subsection, and implicitly at 1east
some of that of succeeding subsections, is based on the ob-
servation that the characteristic length of the blip-sojourn
pairs that contribute appreciably to K„(t)is of order t/n.
This follows because, while there are effects that tend to
limit the length of the blips (see below), there is nothing
to limit the length of the sojourns. As we see from Eq.
(5.8), the factor F~ in the influence function is indepen-
dent of the sojourn length, and the factors I'2 and I'3 tend
to constant values in the limit that the s~ tend to infinity
for fixed finite bj. Thus, on phase-space grounds alone,
we see that the dominant contribution wi11 come from
pairs of length of order t/n Now, . we recall that we are
interested, not in totally arbitrary times, but in times such
that P(t) shows interesting structure and is not negligibly
small. Suppose, for example, that we guess that as a re-
sult of our calculation we shall find P(t) has an exponen-
tially decay form P(t)-e ' . Then, in the series for
P ( t), the nth term becomes important approximately
when t-n~. Thus we can say that the characteristic
length of a blip-sojourn pair is simp1y of order ~. More
generally, the length will be of order of the shortest
characteristic time (other than co, ) associated with the
series equation (4.17) for P(t). This time must of course
be determined self-consistently, by calculating the series
under the above assumption.

Now, because of the factor F1 in the influence func-
tion, all blips with a length much greater than 13A'/a con-
tribute an exponentially small amount [see Eq. (5.5)]. It is
easy to verify that the factors F2 and F3 cannot cancel
this small factor. Thus, whenever 2aPA/~ is much less
than the typical time scale defined, above, it is prima facie
legitimate, in evaluating Eq. (4.18) for K„(t),to take all
blip lengths negligibly short compared to the sojourn
lengths. Under these conditions the formula simp1ifies
enormously: the factor I'2 is unity, and the X~k becomes
zero except for Xjj 1, which is equa1 to tan 'bj. Thus
the influence function has the simple form

(5.28)

5 This argument could fail if, because of near-exact cancella-
tions or for some other reason, the contribution of these pairs
were anornalously small. This might happen in the regime
T~O, ~ & o.' & 1 (see Sec. V.E); however, there seems no reason

to believe it is likely to happen anywhere else in the (o.', T) plane
for c.=O (in particular, we in effect exclude it rigorously for
o. & 2, T =0 in Appendix D.1, and it seems very probable that

the proof could be generalized to finite T).
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where f ( t) is the function defined by Eq. (5.5) (and we re-
vert to measuring time in units of co, ). This is, of
course, precisely the form postulated in the non-
interacting-blip approximation introduced in Sec. IV.C.
Moreover, since the length of the blip is by hypothesis
limited by the strongly decreasing factor f (b~) to a value
much less than the characteristic length of a blip-sojourn
pair, in doing the integration over bj ——

tz~ —t2~ ~ we can
extend the upper limit of integration to infinity. Then
each blip-sojourn pair (bj. ,sj ) contributes a factor propor-
tional to t2J t21 2—, and since we must of course still take
into account the mutual exclusion of the pairs, the
remaining integrations over the tzz give a series that sums
to a simple exponential formula. Thus we obtain, using
Eqs. (5.6) and (5.7), the simple result (where we restore di-
mensional units for the time)

P(t) =exp t/r, —
'=(b, /co, )F(a,P)

2a —1
Vm. I (a) mkT

2 I (a+ '
) %co,

(5.29)

(5.30)

This is, of course, nothing but the "golden-rule" result
that was written down in Sec. III.D [Eqs. (3.37) and
(3.38)] specialized to the case of ohmic dissipation and
zero bias. We emphasize, however, that we have demon-
strated explicitly (rather than assuming) that the correct
expression P(t) at arbitrary time is obtained by exponen-
tiating the second-order perturbation-theoretic expression
for the transition probability; this point is not entirely
trivial, as we shall see when we come to discuss the case
of finite bias in Sec. VII.

It is instructive to rewrite Eq. (5.30), for a & 1, in terms
of the renormalized tunneling frequency A„defined by
Eq. {5.3) [h, =4(b, /co, )

' ]:

I (a) 6, ~k~T
2 I (a+-,') k&T/A A'6„ (5.31)

We see that ~ depends only on A„and is therefore in-
dependent of the arbitrary truncation cutoff co„asexpect-
ed. For a & 1 the quantity 6, is not defined, but it is easi-
ly checked that Eq. (5.3)) is still independent of co, . We
note that the numerical coefficient (m/v 2)[1 (a)/
1 (a+ —,

'
)] tends to (2a) ' for a~0 and to —,

' V'm. /a for
a~Do, and for a= —, is equal to m. /2. Thus, along the
line a= —,', we recover the exact result of Sec. V.B, while
in the limits a~O and o.~ Oo our results agree, apart pos-
sibly from a-dependent constants in ~ ', with those ob-
tained by other methods (see Secs. III.B and III.C). It is
amusing to note that the temperature dependence of the
relaxation rate given by Eq. (5.30) changes sign at a= —,;
this may be qualitatively understood as indicating that,
for weak damping, thermal noise tends to "observe" the
system and hence inhibit tunneling (cf. Simonius, 1978;
Harris and Stodolsky, 1981, 1982), while for strong damp-
ing it increases the relaxation by providing an extra ac-
tivation mechanism.

Let us now examine the self-consistency of the pro-
cedure used to obtain Eq. (5.29). Our basic assumption
was that the characteristic length of the blips, which is of
order pA'/a, was much smaller than the characteristic
time defined by the series of P (t). Thus, for self-
consistency, Ph'/a must be much less than the ~ defined
by Eq. (5.30). Dropping numerical factors of order unity,
we find that this condition reduces for o; & 1 to the in-
equality

kgT
»~p I ( )

' I/2(1 —a)

aI (a+ —,
'

)
(5.32)

For a «1 we have 1 (a)-a ', and the exponent of the
bracket is nearly —,', while for larger values of a the
dependence of the quantity in large parentheses is rela-
tively weak, except close to o.= 1. Hence, generally speak-
ing, the condition for the results to hold is approximately

ak&T/fi~~6„(a & 1), (5.33)
though this condition is too stringent near a=1. (A
somewhat better —and weaker —criterion is given in Sec.
V.F.) For a & 1, since by hypothesis both b and k&T/A
are small compared to co„the criterion is automatically
fulfilled for any temperature, so that Eq. {5.29) should be
valid everywhere to the right of the line a=1, in agree-
ment (apart from the prefactor) with the results of Bray
and Moore (1982). However, it is important to observe
that they are also valid for the vast bulk of the portion of
the plane to the left of this line, despite the fact that the
physics involved is radically different- in the two extremes.

D. T=0, O(a(—1

We next study the case of zero temperature and o; in
the range between zero and —,

' . Since we should expect, on
rather general grounds, that the deviation from the simple
oscillating behavior of the uncoupled system is an increas-
ing function both of a and of T, this region is the most
promising, in an ohmically dissipative system, for the ob-
servation of oscillations. Thus, for example, in the con-
text of the so-called maeroscopie quantum coherence
phenomenon (Leggett and Garg, 1985) this is the region
of primary interest.

The exact expression for the quantity P(t) is obtained
by inserting Eqs. (5.8a)—(5.8c) into Eqs. (4.17)—(4.19),
with F4 incorporated into I'3 as noted above and the
function f'(t) now simply equal to (1+co, t )

'~ The.
resulting formula is quite complex in appearance: see Ap-
pendix D, Eqs. (Dl)—(D3). Let us, however, imagine for
a moment that we could set, in Eq. (5.8), F2=F3 ——1.
Then we would have, in the expression for the coefficients
K„(t)in the power series (4.17), a multiple integral of the
form

f dt2„f dt2„

dt ] 1 +co~ t2J —tp~
J

(5.34)
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It is evident that for cx ~ —, and co, t ~&1 the major contri-
bution to such an integral will come from regions where
both the blips and the sojourns have lengths very much
greater than co, '. Consequently, provided we have
m, t &~1, it is extremely plausible that in the true expres-
sion [Eq. (D2)] for K„(t)we can make the following ap-
proximations:

(1) Replace everywhere the factor [1+co,(6t) ] by
co, (6t) (where 6t is an interval between any pair of t's).

(2) Replace the quantity Xjk by zero for any pair j, k
other than k =j —1.

(3) Replace the quantity Xj j 1 by 1r/2.
These replacements were made, on intuitive grounds, in

Chakravarty and Leggett (1984) and have also been made,
for the more general case of c, not necessarily zero, in
Cxrabert and Weiss (1985). However, it is by no means
trivial to justify them rigorously for the "interesting"
values of t, which crudely speaking are of order 6„'(see
below). In Appendix D we do in fact justify them
rigorously "in the limit 5/co, —+0" by which we mean the

following: Given any finite value of t in units of the "in-
teresting" time scale b,,ff' ( -b,„',see below), then we can
always find a value of 6/co, such that the error induced
by the above replacements is arbitrarily small, either com-
pared to 1 or compared to the value of P(t) calculated by
making them. We emphasize that the proof is by no
means trivial, that it fails for the case of finite bias (E&0),
and that we have not proved that given some small num-
ber 5 we can find a value of 6/m, that will make the er-
ror introduced smaller than 6 for aII t. However, for
practical purposes the result stated above is quite ade-
quate, since it guarantees that in the limit 5/co, ~O the
behavior of P(t) may be calculated by the above approxi-
mations until its envelope has fallen to a value that tends
to zero in this limit. In the future, when we refer to our
results for P(t) as "exact in the limit b, /co, ~O" we shall
be using the words in the above precisely defined sense.

The expression for P(t) that results from making the
above approximations is

P(t)= g ( —1)"62"IC„(t),
n=0

t t2
IC„(t)=2 "g —f—dt,

„ f dt,„,. f dt, F„(t„t,. t2„:g„g2. g„),
I~.=+1I

2ag gk
(t2j t2k)(t2j —1 t2k —1)F„It;,g I =(cos1ra)" + [cu, (t2j t2j 1)]-

j=1 2j 2k —1 2j —1 2kt .—t t'

Let us introduce the dimensionless time variable

(5.35)

(5.36)

(5.37)

y =A,~ft,

where the effective inverse time scale h, ff is given by

b,, =[I"(1—2a)costa]' " 'b,„[b,„—:h(A/co, )
~' ] .

(5.38)

(5.39)

Note that 6 ff is always of order 5„in particular being equal to b,
„

in the limit a~0 and to (m./2)h„ in the limit a —+ —,

The factor I (1—2tz) is introduced into the definition for subsequent convenience: when it is included, b.,ff is indeed the
true time scale, as we shall verify. It is now evident that P(t) is a function only of the dimensionless variable y, being
given by the expression (Chakravarty and Leggett, 1984).

P (t) =P, (y ) =P„(b,,fft),
where the function P„(y)is defined by the infinite series

(5.40)

P, (y)= g ( —1)"&„(a)y'""
n=0

IC„(a)=—[I (1 —2u)]
1 Zest z2 Pl

X f dz„f"dz„, f dz, Q(z —z, )
J=1

2ag gk

X2 2j 2k 2j —1 2k —1

(g. =+1) k=1j =k+1 ( 2j 2k —1)( 2j —1 2k)

(5.41)

(5.42)

53For co, t (1 it is clear that the corrections to 1 in I'(t) are of order (5/co, ) at most, so this region is of little interest.
~4As in the case n= T, our formal argument does not rigorously exclude the possibility that at even larger times I'(t) has nontrivial

behavior, conceivably even rising again to a magnitude of order 1; however, this possibility seems so remote as to be negligible in prac-
tice.
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K„(a)=I '[2n(1 —a)+1] . (5.43)

The series (5.41) can then be summed by using Hankel's
contour integral representation (Gradshteyn and Ryzhik,
1980, p. 935, 8.315) for the reciprocal of the I" function,
summing over n, and evaluating the resultant integral by
deformation of the contour. Alternatively, the function
P„' '(y) can be evaluated by taking the Laplace transform
explicitly (see Sec. V.F, below) or by recognizing (Grabert
and Weiss, 1985) that when expressed in terms of the
variable ( —y) " ' it is just a known special function,
namely, the Mittag-Leffler function (Erdelyi et al. , 1955,
p. 206). In any event the result is

We want to emphasize that, for a & —,
' and in the limit

b, /co, ~0, the result (5.40) is rigorous: it is not a result of
making the noninteracting-blip approximation or any oth-
er approximation. Thus the problem is reduced, in princi-
ple, to the evaluation of the numbers K„(a)and the sum-
mation of the resultant series.

It is of course entirely conceivable that the function
P„(y)defined by Eq. (5.41) is some simple well-known
function that we have been unable to recognize. Assum-
ing this is not so, we should like to obtain a reasonable ap-
proximation to P„(y)for, at least, the first few cycles: in
particular, for the study of the macroscopic quantum
coherence phenomena and the related question of tests of
quantum mechanics versus macroscopic realism (Leggett
and Garg, 1985), it should be adequate to find an approxi-
mation that is valid to, say, one percent over the first cy-
cle or so. For this purpose, a numerical computation of
the coefficients K„(a)for, say, n & 20 should be quite suf-
ficient. We have not attempted, at the time of writing,
such a numerical computation; instead, we shall investi-
gate how much information about the function P„(y)can
be obtained by analytical means.

Suppose, first, that we decided to ignore the "interblip
correlation" term in Eq. (5.42), that is, to set the factor in
large parentheses equal to one everywhere. Let the result-
ing expression for P„(y)be denoted P„' '(y). It is very
easy to show that the corresponding expression for the
coefficients K„(a),which we denote K '„'(a),is simply

A number of features of Eq. (5.44) should be noted. (1)
The Q factor of the coherent oscillations given by (5.44b)
is completely independent of the time scale b,fr and is
given by cot[m/2(cr/1 —a)]. Hence the system is com-
pletely undamped in the limit a~O and becomes over-
damped at a= —,. (2) If we take the limit a~ —,, we ob-
tain the simple result lt(y) =exp —y, which is identical to
that obtained in Sec. V.B [Eq. (5.23)], since for a= —, we
have y =(m/2)h„t =(re. /2', )t. (3) Not only is g(0) un-

ity, as of course it must be, but (dP/dt), c is zero for
a & —,

' [this follows directly from Eq. (5.41)]. (4) For
t »b, ,~f' and not too small ct, g(y) is dominated by the
"incoherent" part, Eq. (5.44c), which is always negative
and is asymptotically given by

P(y) =m 'sin(2~a)I (2—2a)y (5.45)

Z2J' Z2J $:6J ~ Z2k Z2k —1 =Sk

z2j —1 z2k =ajk ( =~k for J k + 1)

Then the interblip correlation term in question is of the
form

bJbk
2ag gk

1+
ujk(bj. +bk+ujk)

(5.46)

Note that the coefficient of this term vanishes in the
limit a~ —,'. (5) Even for quite small t the incoherent
part can in general be quite comparable to the oscillating
term. For example, for a= —,

' the former actually exceeds
the latter after the first half-cycle.

We now turn to the rather delicate question of the
corrections to the approximation lt(y) for P„(y) intro-
duced by the interblip correlations, that is, the second fac-
tor in the integrand of (5.42). Let us first look at the
question somewhat intuitively. First, because of the sum
over the values +1 of the gj, the difference between P, (y)
and ltj(y) must vanish as a in the limit a —+0. Second,
consider the behavior in the limit o.'~ —,. For this pur-
pose it is convenient to consider a single term (j, k) in the
product in Eq. (5.42), choose specific values of gj and gk,
and set as above

P„' '(y) =P„h(y)+P;„,(y) =g(y), —

7T CX
cos cos

2 1 —A

(5.44a) and multiplies, in the integrand of Eq. (5.42), factors of
-b and bk . Now, in general we would expect a "typ-
ical" length of a blip-sojourn pair to be of order n ', and

CX

+exp —. sin — y . ,2 1 —a (5.44b)

P;„,(y) =-—sin 2&(x
dZ

2

Z2a —1e

z +2z cos2~a+z

(5.44c)

55An alternative, and possibly better, approach might be to re-
fine our numerical calculation of the amplitudes A and fre-
quencies e [see Eqs. (5.47} and Appendix D.3] by including
further-neighbor correlations.

However, the contribution of the "incoherent" part does not
vanish in this limit: it becomes ( —2 ) times the "coherent"

part.
For ca= 4, on the other hand, the effect at this point is quite

small, which shows how sensitive the qualitative behavior is to
u. For completeness we should note that in each case the term
with m =2 in Eq. (5.47b) below nearly cancels the contribution
of I';„,at this particular value of t (one half-cycle); however,
since this term is nearly constant over the first few cycles, it
clearly cannot restore anything like a simple damped oscillation.
58Because there is no sum over independent values +1 of the

combination g, gk, this result is in fact not completely obvious.
It is established rigorously in Appendix D.
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hence a typical value of u&k is at least (j —k —1)n '. On
the other hand, if we were to neglect the correlations, the
principal contribution to the integral, near u= —, where
the factor bk rises steeply for small bk, would come
from blips of length of order (1—2a)n '. Hence the
second term in large parentheses in (5.46) is "typically" of
order [(1—2a) /( j—k —1)] . The nearest-neighbor pairs
need special consideration: in this case the correction to
unity can be large, if. u&k=sI, is small. However, it is
clear that this region will give a negligible contribution if

while for gj = +gk it gives a contribution
smaller by a factor of order (1—2a) than the leading
contribution [which corresponds to setting the quantity in
large parentheses in Eq. (5.46) equal to one]. Thus we
would conjecture (a) that the corrections to P, (p)—:g(y),
that is, to a calculation that completely neglects all inter-
blip correlations, would be of order o.'as o:~0 and of or-
der (1—2a) as o.'~ —, and (b) that corrections to a calcula-
tion that completely takes into account nearest-neighbor
correlations but neglects all others —call the result of such
a calculation P„"'(y)—should be of order a as a —+0 and
of order (1—2a) as a~ —,.

In Appendix 0.2 we confirm these conjectures as re-
gards the a~0 limit by deriving a rigorous upper limit
[Eq. (D34)] to the corrections to each K„from all inter-
blip correlations [hence to the correction to P„' '(y)],
which tends to zero as u in the limit o.—+O. This limit is
not very useful in the present context in the limit o;~ —,',
as it merely implies that E„is bounded above by the ex-
pression (2")K „' ', not that it tends to K „' ' itself. Howev-
er, we have also been able to show (Appendix D.2) that
the corrections to K'„'and hence to P„' '(y) are of order
(1—2a) in the limit a~ —,, and that the corrections from
the non-nearest-neighbor interactions not included in
P„'(y)are of order (1—2e) in the same limit. Finally,
we can make an explicit formal expansion of the K„(a)in
terms of the variables u and y =—1 —20., and show that the
lowest-order correction to the values obtained in the
nearest-neighbor calculation is indeed of order a y . Qf
course, none of these arguments demonstrates that P„(y)(&)

is an accurate approximation to P„(y)for all values of y
however large: the relative error in K„(cz)increases with
n, and hence for large y could be very important [see also
the discussion below of the difference between P„'(y)and
P„' (y)]. However, these arguments do establish that for
any finite value of y it is possible to choose a value of cz

close enough to zero that the corrections to P„"'(y)[or
P„' '(y) =g(y), which coincides with it in this limit] are
negligible; they also make it overwhelmingly plausible
that a similar statement holds with respect to a choice of
a close to —,, and that for times within the first few cy-

5 This is because each introduction of the correction cancels
two terms (b~ and bk ) that would otherwise each give a
factor (1—2a).
60However, the fact that we can obtain a rigorous bound (for

all o. & ~ ) on K„relative to K'„'at all is crucial to the argument

of Appendix D.1.

cles, at least P„' (y) is a very good approximation to P„(y)
for al'1 a in the range 0&a.'& —,.

The expression P„"'(y)for P„(y),which results if we
keep, in the second term in the integrand of Eq. (5.42),
only nearest-neighbor correlations, is calculated in Appen-
dix 0.3, by a transfer matrix method. If we neglect the
problematical constant term discussed there, it has the
strikingly simple structure

(5 47a)

or, equivalently,

(a)=b,, [e (a)]'~'
(5.47b)

How we treat the cosine factors is clearly irrelevant to the
present argument.

where e~(a) are the eigenvalues of the transfer matrix
corresponding to the nearest-neighbor interactions, and

(a) are the corresponding amplitudes. The numerical-
ly computed values of A (a) and e (a) are given in
Table III; we note that in the limit cx —+0 and a—+ —, the
coefficients 3 vanish except for m = 1, while A

&
and

e~(cz) both tend to unity; thus we recover the expression
f(y) in these limits. [It further turns out, upon inspection
of the numbers in the table, that the corrections are of or-
der a and (1—2a), respectively, in accordance with our
conjecture (a) above. ] For intermediate values of tt, the
coefficient A~(u) of the leading term is always close to
unity, while A2 is never greater than about 0.06 and the
higher 2 's are much smaller.

It is clearly intuitively tempting to conjecture that the
result of considering further-neighbor interactions would
be simply to reproduce Eq. (5.47), with, however, the ex-
pressions for A~(a) and A~(a) somewhat modified. At
the time of writing we have been unable either to prove or
to disprove this conjecture, and will just make a few re-
marks in this connection.

(1) Not only is the expression for P(t) given by Eq.
(5.40) an arbitrarily good approximation to its true value
in the limit b, /co, ~0 (as we have seen above), but the ap-
proximate form of (5.40) given by summing only lth-
neighbor interactions is also an arbitrarily good approxi-
mation to the value of P(t) which would be obtained by
keeping only 3th-neighbor interactions in the exact expres-
sion (5.8). '

(2) It is shown at the end of Appendix D.3 that the re-
sult of summing interactions up to /th neighbors in Eq.
(5.41) is to produce an expression of the form (5.47) plus a
polynomial AP' '(t) of order I —1 in t.

(3) Equation (5.47) clearly tends to zero in the limit
t ~ao. From considerations (1)—(3) it follows immedi-
ately that if the lth-neighbor approximation P' '(t) to the
true form of P(t) is guaranteed to be bounded in magni-
tude by unity for all t (and, in particular, in the limit
t~ oo ), then for any finite l the polynomial b,P' '(r) must
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TABLE III. The first two eigenvalues of the transfer matrix ~ and the associated amplitudes.

0.01
0.02
0.1

0.2
0.25
0.3
0.4
0.45
0.495

e~(o, )

1.000 150
1.000 603
1.012
1.039
1.052
1.06
1.06
1.05
1.01

Ai(e)
0.9998
0.9994
0.988
0.962
0.950
0.94
0.94
0.95
0.99

e2(u)

5.274 X 10
2.106X10 '
5.251X10 3

2.180X 10-'
3.500 X 10
5.25 X10-'
1.o5 X10
1.45 X10-'
1.95 X10-'

A2(a}
1.11X 10
4.35 X 10-4
9.13X 10-'
2.83X10 '
3.90X 10-'
48 X10
5.3 X10
40 X10
6.0 X10-'

vanish identically except possibly for its constant term. It
would then follow immediately that the true P(t) is
indeed given by an expression, apart possibly from a con-
stant, of the form (5.47), where the e (a) and. A (u) are
given by calculating them for increasing finite l and tak-
ing the limit I~ao.

Unfortunately, while it follows directly from the uni-
tarity property that the true P(t) must be bounded in
magnitude by unity for all t, it is not at all obvious that
this property is preserved by the approximate forms
P' '(t) for finite I. Thus we cannot exclude the possibility
that the quantity hP' '(t), Eq. (D61), is finite for all finite
I and in the limit l —+~ tends to an infinite oscillating
series, which, in the limit t —+ oo, tends either to a con-
stant of magnitude & 1 or (more probably) to zero.

If our conjecture is correct, we find the final result

(5.48)

where Q{g) is the function given by Eq. {5.44), . C is thc
constant term (if any) of hP' '(t) in the limit l~ m, and
the amplitudes A (o. ) and eigenvalues e (a) can in prin-
ciple be determined to any desired accuracy either by
solving the lth-neighbor eigenvalue problem for increas-
ing integral l or by computing the quantities K„(u)[Eq.
(5.42)] numerically for n (I and using the relation

K„(o.')= g A (a)[e~(a)]"/I [2n(1 —a)+1], n & 1

(5.49)
to fix approximate values for increasing numbers of e
and A~. It is virtualIy certain that the constant C in Eq.
(5.48) vanishes, i.e., that Eq. (5.49) holds also for n =0,
but at the time of writing we have not constructed a total-
ly rigorous proof of this, even within the framework of
our conjecture. We believe that the values of the A~(a)

%"e implicitly assume, of course, that this process converges.
3It seems very probable that such a proof could be constructed

by exploiting the fact that, on all but a set of measure zero of
paths contributing to P(t), the influence functional decreases
continually in the limit t~ oo. Needless to say there are also
various rigorous bounds that we do not bother to write out here,
on C in terms of the coefficients X„;in particular, it is easy to
show that for a —+0, C (if not identically zero) must vanish at
least as fast as a .

and e (a) computed by using the nearest-neighbor ap-
proximation, and tabulated in Appendix D.3, are likely to
be an excellent approximation for most practical pur-
poses; in particular, they are exact to lowest nontrivial or-
der in a and, very probably, also in (1—2a).

The form (5.48) for P(t), if correct, also illustrates that,
unless there are independent reasons for believing other-
wise, it may be dangerous if not altogether wrong to draw
conclusions about the asymptotic behavior of the "true"
P(t) on the basis of the noninteracting-blip approxima-
tion, even after we ignore what might be termed "finite-
co, effects. " By these we mean the effects that cause P (t)
to deviate significantly from the approximation (5.40) and
that, as argued in Appendix D.1, do not come into play
until ultralong times, of order h, ~~ times a positive power
or logarithm of (co, jb,,rf). It is clear that the higher-m
terms dominate Eq. (5.48) (assuming C =0) at time scales
that are not quite so long but are still much longer than
b.,~f'. Further, the asymptotic behavior of Eq. (5.48) is not
of the form t " ', and is in fact extremely complicat-
ed, depending intricately on the m dependence of A~ and
e for large m. All this is perhaps not surprising in view
of the close connections between the two-state problem in
the ohmic case and the Kondo problem (see Sec. III.E)
and the well-known difficulty "all frequency scales are
coupled together in the Kondo problem. " We emphasize
this point here because it is useful to see directly how this
difficulty is reflected in the nonequilibrium time-
dependent behavior, as opposed to the equilibrium ther-
rnodynamic properties, which have been the object of
most existing studies of the Kondo problem.

We finally note the relationship between the con-
clusions obtained here and those of Chakravarty and I.eg-
gett (1984). It is clear that the first two terms in Eq. (24)
of that reference correspond to the term m =1 of Eq.
(5.48), where we can now identify the quantity q(o. ) with
e~(u) —1 and A(a) with A~(a) The correction term
bP(t) of Chakravarty and Leggett (1984) is the sum of
the remaining terms in Eq. (5.48). As noted above, con-
trary to the presumption" of this reference, these terms
dominate the behavior of P(t) at very long times. It
should be emphasized, however, that in the context of
fundamental tests of quantum mechanics [which typically
require o. &0.1 and Aqt &2~/3; see Leggett and Garg
(1985)], these terms are almost totally negligible: in this
context the approximation of keeping only the m =1
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term in Eq. (5.48) should be an excellent one. Note, more-
over, that in that context. the fact that the argument of
this term is AIt rather than A,gt is of little significanc,
since in any realistic case we are likely to have to take the
value of A~ from experiment anyway; it is the dependence
of P(y) on the dimensionless variable y which is all im-
portant (see Leggett and Garg, 1985).

E. T=0, —&a&12

cos[2a tan '(co, t)]f(t)=
(1+to,t )

(5.50)

is not uniformly positive in this region. In fact, as we saw
in Sec. III.C, the integral of f (t) from zero to infinity is
rigorously zero. This makes it extremely difficult to ob-
tain rigorous limits on the contributions of different re-

gions to the integrals K„.However, we can plausibly ar-
gue as follows. First, if we could neglect the interblip
correlations, then the only reason why the expression for
K„is not rigorously zero would be the interblip exclusion,
i.e., the fact that the integral of f (t) will typically be cut
off at a value of t of the order of the (to be determined)
characteristic inverse frequency scale (see the first para-
graph of Sec. V.C). Call this frequency scale 6. Then the
value of the integral over the single-blip length, i.e., the
integral of f(t), will be po. sitive and of order

[
~

costa
~

/(2a —1)]5 'm, -6 'co,

If we could proceed according to the "golden rule" tech-
nique (Sec. III.D), we would therefore have a transition
rate of the order of 6 5 'co, . Since this rate must be
precisely the frequency scale 6, we put 6-6 6
and solve to obtain 6-4„—= b, (A/co, )

' . Thus the
contribution of a single blip of length -A„and its associ-

This is a more explicit version of the argument used in
Chakravarty and Leggett (1984).

Although the region of the parameter space corre-
sponding to —,

' &a&1,kT&A'h(A/co, )
~' (so that we

are not in the limit discussed in Sec. V.C) is a very small
fraction of the whole, it is of considerable conceptual in-
terest, in particular, because it is here that contact is most
easily made with the Kondo problem (see Sec. III.E). Un-
fortunately, it is also the region in which it is most diffi-
cult to evaluate the expression for P(t) with any reliabili-
ty. Here we shall confine ourselves to the case of zero
temperature and give plausible, but not rigorous, argu-
ments for the form of P(t).

The basic problem about the region T =0, —, &a& 1 is
that the one-blip contribution, namely,

ated sojourn to the multiple integral for E„,for t-nA,
(see Sec. V.C) will be —b,„.This argument is of course
far from rigorous, but we shaH see below that within the
noninteracting-blip approximation the behavior of P(t),
though not described by the golden rule (exponential re-
laxation) expression, is nevertheless indeed characterized
by a frequency scale —b,„.

Now consider the effect of interblip interactions. If,
for all time intervals 6t involved, the quantity ~,5t is
&& 1, then all the quantities Xjk in Eq. (5.6) are effectively
zero except for the term j= k+1, which is already in-
cluded in the single-blip contribution [Eq. (5.41)]. More-
over, the factor F2 [Eq. (5.56)] is a product of ratios of
the blip and sojourn lengths, and is independent of cu, in
this limit. Thus, while this factor may affect the detailed
form of P(t), it cannot change its general frequency scale
(cf. case a& —,). What remains, therefore, is to check
whether consideration of short blips and/or sojourns
(5t &co, ') would give a contribution greater than the one
so far considered. Suppose, for example, we consider two
blips and their associated sojourns in a time interval,

In the approximation of no interblip interaction
the contribution has already been taken into account. To
get appreciable effects from the interaction, the inter-
mediate sojourn must itself be of order co,

' in length.
Thus three of the four integrals are confined to a time in-
terval -co, ', and the resulting contributions cannot be
longer than -6, '~, , compared to the noninteracting-
blip contribution, which, from the considerations above, is

Thus the contribution of short blips and/or so-
journs should be negligible.

The conclusion of this (far from rigorous) argument is
that in this regime the result obtained by neglecting all in-
terblip interactions is probably qualitatively correct,
though the detailed form of P (t) will probably be affected
by the interaction terms in F2 [Eq. (5.56)]. In particular,
the frequency scale, in this regime as elsewhere, is simply
b,„=b,(b, /co, )

~' . This is a cause for relief, if true,
since we saw in Sec. II that it is only if the cutoff m,
enters into the formulas precisely in this way that our
conclusions, for a system which actually has an extended
coordinate, are independent of the precise point at which
we truncate to a two-state system.

%'e shall see in the next subsection that the results of
the noninteracting-blip calculation in this regime are a
simple extension of those for cx & —,'. In fact, the expres-
sion for P(t) is formally identical to Eq. (5.44c) [with

fft: note that the factor ( cos tta )I ( 1 —2a ) is always
positive]. Note (a) that P (t) is always positive for
—, &a & 1; (b) that as a~1, P(t) behaves like t " ' for
all t; (c) that if we were to identify P(t) with the correla-
tion function C(t), we would find the static susceptibility
to be infinite for all values of a in this range, despite the
fact that there is no localization. This result, which ap-
pears surprising in view of the fact that for the closely re-
lated problem of the antiferromagnetic Kondo system the
susceptibility is known to be perfectly finite, might induce
a certain scepticism about the validity of the
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noninteracting-blip approximation in this regime, and this
scepticism is strengthened by the fact that an attempt
(Garg, 1984) to extend the "nearest-neighbor" calculation
of the last subsection to the case a & —,

' runs into technical
difficulties that indicate (contrary to the intuitive reason-
ing given above) that short sojourns may after all be play-
ing an important role, so that 5, may not be the only
relevant time scale. In view of these difficulties we must
regard the true behavior of P(t) in the regime T =0,
—, & a & 1 as a currently unresolved problem.

F. Results for the whole parameter space
in the noninteracting-blip approximation

In the foregoing subsections we have shown that the
"noninteracting-blip approximation" gives exact results in

I

the limit akT/fi»b, „aswell as, for arbitrary T, on the
line a= —,. It is also qualitatively very good (at least for
not too long t) at T =0 for all a between 0 and —,', and
may or may not give qualitatively correct behavior for
T=0, 2 &a&1. Since all other regions of the (a, T)
plane are intermediate between these extreme cases, it is
extremely plausible that the approximation may be ap-
plicable to the whole of the parameter space. We shall
now apply the approximation in a unified way, obtaining
along the way as special cases the results already quoted
(and in some cases derived by an alternative method) in
earlier subsections.

In the noninteracting-blip approximation, the expres-
sion for P(t) is quite generally given by Eq. (4.32), with

f (A, )=defined by Eq. (4.33). For the ohmic case, f (A, ) is
given by

f(g) +z J —Aty,
2 sinh(yt)

cos[2a tan '(co, t) ] dt,
(1+co,t )

(5.51)

where

y =~kT/A . (5.52)

2(x
(y /A, )(z i k/co,—),f (A, ) =Re e 'A,

( i~ )2(i '~~~, z ~ sinh[(y/A, )(z i A/c—o, )],
(5.53)dz .

Since we are interested in the behavior of P(t) for times much larger than co, , it suffices to know f(A, ) asymptotically
for

~

k/co,
~

&&l. To find this, we write the temperature-independent factor in f(t) as Re(1 ico, t) —' Then, . after
some elementary manipulations, we get (for real A, )

c

This can now be expanded by standard methods. The leading term in particular, which is mainly what we shall be in-
terested in, is obtained by setting A, /co, to zero in both the integrand and the limit of integration; the resulting integral is
tabulated in Gradshteyn and Ryzhik (1980; formula 3.541.1). The final result is

Q2
f(A, )=

COc

2a —1

cos cx7T+
COc

I (1—2a)I (a+A. /2y)
I (1—a+A, /2y)

—(2—2a) '(y/co, )cos(A/co, )+O(A/co, ) '+ " (S.S4)

Note that this expression is finite in the limits a~ —,,
a—+1, and y~O, etc. It is inconsistent with the spirit of
the noninteracting-blip approximation, however, to retain
the terms of order A,(b, /co, ), and so we shall use the fol-
lowing approximation to f(A, ), which is valid for all
values of a not too close to an integer:

f (&)-~ t(2 /& )'
r(1 —a+a/2y)

l

A, =O:

f (A, )=f(0) I — cot(ma)A, +
2p

(5.56)

P (t) = 1 — cot@a
A

2kT~

It is easy to show that f (0) is identical to r ' defined in
Eq. (5.30), so that

+0
COc

(5.55)
X exp I

—t/[r —A(cot+a)/2kT]] . (5.57)

It is now a simple matter to show that Eq. (5.55), along
with Eqs. (4.32) and (4.33), yields the results obtained in
earlier subsections, as indeed it must. Thus, for a= —,, we
have f (1,) =h, tt, which leads to P (t) =exp( b,fft). —
Similarly, for high enough temperatures, f (A, ) is seen to
vary on a scale set by y, allowing a Taylor expansion near

The terms involving (kTrlh) ' are the first corrections

65Note that we have restored the factor 6 in the definition of
f (t).
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kT mI (a)
(tan~a)l (a+ 1/2)

(5.58)

to the results (5.29) and (5.30), and since they arise from
the second term in the Taylor expansion of f (A, ), we can
obtain a criterion for what constitutes a "high" tempera-
ture simply by demanding that they be small:

1/(2 —2'�)

Im X

This is essentially identical to Eq. (4.32) except near
a = —,': for a = —,', it is satisfied for all temperatures, in ac-
cord with our earlier results.

For zero temperature, Eq. (5.55) must be interpreted by
using Stirling's formula for the gamma function of large
arguments. Doing this, we get

f(A)=b, rr' 'A, '+0[k(b/co, ) ] (T=0) . (5.59)

With this result, P(A, ) is now seen to be the Laplace
transform of the Mittag-Leffler function (Erdelyi et al. ,

1955, Vol. 3, p. 206). The Laplace inversion is very useful
in understanding the behavior of P(t) for nonzero values
of temperature, and so, rather than refer the reader to the
literature, we summarize the salient features of how it is
done.

For a & —,, P(A, ) has three singularities (see Fig. 6): a
branch point at A, =O, and a complex-conjugate pair af
simple poles at

Im X
il

A,o+ ——b,,gexp[+sm/2(1 —a)] . (5.60)

The contributions to the Bromwich contour integral aris-
ing from the poles and the branch cut are easily seen to be
the "coherent" and "incoherent" parts, respectively, of
Eq. (5.44).

For —,
'

& a & 1, the poles given by Eq. (5.60) are not on

the principal A, sheet, and P(t) is given (subject to all the
caveats discussed in Sec. V.E) entirely by the branch-cut
contribution, which is algebraically identical to P;„,(t)
given by Eq. (5.44c).

For a & 1, the leading term in the expansion of f (A, ) is
not the one varying as A, ', but the one linear in A, .
Since, however, we are neglecting all corrections to P(t)
of order (5/co, )' where I is any positive number, we
should write P(A, ) =A, ', which leads to P(t)= 1 for all t.
This is, of course, the localization phenomenon of
Chakravarty (1982) and Bray and Moore (1982).

The real usefulness of Eq. (5.55) lies not in its permit-
ting a clean evaluation of P(t) in the various limiting
cases discussed above, but in the fact that it allows one to
obtain quantitative approximations to P(t) for "interest-
ing" times for intermediate temperature values. This con-
sideration is particularly important in the context of the
macroscopic quantum coherence question, where an
observation/nonobservation of oscillatory behavior mould
be of fundamental significance to our understanding of
quantum mechanics. Vhih this point in rriind, we note
that since there is no "coherent" behavior for cz & —,', even

at T=O, it is very unlikely that there would be any for
T &0. %'e shall restrict ourselves, therefore, to an ex-
amination of P(t) for intermediate temperature values for
CX (

Since the gamma function has no branch points, neither
does P(A, ), and the only singularities it can have are poles,
given by the solutions to the equation

I (~+u)/I (1—a+u) = —(2y/b, ,ff) u, (5.61)

where we have defined u =A, /2y. To solve this equation,
we use a graphical procedure. Figure 7 shows a sketch of
the left-hand side of Eq. (5.61) and the right-hand side for
three temperatures, T], T*, and Tz, with T2& T*&TI.
Note that the poles of the function I (a+ u)/I (1—a+ u)
lie to the left of the zeros, giving it a negative slope for all
Q.

Let us now follow the behavior of the poles of P(A, ) as

(b)
FIG. 6. Singularities of P(k) and the Bromwich contour: (a)
a & ~; (b) 2 &n & 1.

66Vhth the usual proviso that a not be too close to an integer.
67Arguments analogous to those given below support this con-

clusion.
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FIG. 8. Dependence on o. of the temperature T*(a) for cross-
over to incoherence. The inset shows the behavior near a= z .

FIG. 7. Graphical solution of Eq. (5.61) for a & 2 .

the temperature increases. For T =T], there is a real
solution in the range —(m +a) & u & —m +a;
m =1,2, . . . . This remains true as T increases, until
T =T*, at which point the two sides of Eq. (5.61) become
tangential to one another for some value —a & u &0, cor-
responding to a real, negative, double pole of P(A, ). For
T ~ T (a), the double pole breaks up into two simple
poles, one moving toward u = —e, the other toward
u =0.

Since Eq. (5.61) varies smoothly with y, one cannot
create or destroy any poles of P(A, ) as the temperature is
varied. This very strongly suggests the following. As the
temperature is increased from zero, the two complex-
conjugate poles given by Eq. (5.60) move toward the nega-
tive real axis, hitting it at T =T, after which they move
along it in opposite directions. As for the branch cut
found at T=O, it breaks up into a series of unevenly
spaced poles on the negative real axis, with a spacing that
grows linearly with temperature on the average. It is also
clear from Fig. 5(a) that, for T & T*, the residues from
the poles on the real axis are all negative, which agrees
with the fact that P;„,(t) is negative at T=O and a & —,

for all values of t. This continues to hold for T ~ T*. In
addition, the contribution to P(t) from the pole nearest
the origin is positive, and from the remaining poles is
negative. Since P(0)=1, it follows that for T & T*(a),
P(t) can vanish only as taboo', i.e., P(t) does not show
oscillatory behavior.

The temperature T'(a) is thus of special interest for

68To see tllat this is trlle eve11 wlle11 f(kl ls approximated by

Eq. (5.55), use the series Eq. (4.32) for P(A, ), and the convolu-
tion theorem to invert it term by term.

the problem of macroscopic quantum coherence, since it
provides an excellent approximation to the temperature
above which coherent oscillations cannot be seen. It is
obtained by requiring that Eq. (5.61) and its first u

derivative hold simultaneously. This leads to the result
1/2(1 —a)

2mkT*(a)/Ah, rr(a) = 1 I (a+u*)
u* 1 (1 —a+u*)

(5.62)

where u * is given by the solution of the equation

u*[tfj(a+u*) —P(1—a+u*)]=1, (5.63)

k*/b, ,rf(a) = —1+a lna+0(a lna) .

Similarly, as a~ —,

(5.64b)

2vrkT*(a)/trtb. ,ff(a) =2+ 8( —, —a)'~ +0 (1—2a),

(5.65a)

The reader may object that this conclusion is based on the
noninteracting-blip approximation. Note, however, that as the
temperature increases, the "self-energy" S~. of a blip [see Eq.
(4.21a)] increases, causing the mean blip length to decrease.
This in turn means that the interblip effects become less and
less important as the temperature increases, and since even at
T=0, as seen in subsection D, they never result in more than a
5% correction to P (t) for interesting values of t, the
noninteracting-blip approximation should be more than ade-
quate for temperatures of the order of T*(a).

where g(z) is the digamma function.
We have solved Eqs. (5.62) and (5.63) numerically; the

results are plotted in Fig. 8. Note that T*(—, ) is nonzero.
The limiting behavior of T*(a) and the position A, "(a) of
the double pole, as o;~0, are given by

[2rrkT /A'h, ff(a)]=2/a+21na '+O(alna), (5.64a)
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VI. NONOHMIC SPECTRAL DENSITIES:
THE UNBIASED CASE

In this section the discussion of Sec. V is extended to
include the behavior of two-state systems with nonohmic
dissipation. As stated in Secs. III we shall concern our-
selves with simple spectral densities of the form

2

J (co) =p, co(co/co)'e (6.1)

for general s&1, where co, is the usual upper cutoff fre-
quency. In addition, we shall focus attention on the un-
biased (E=O) case, leaving the discussion of the biased
two-state system to Sec. VII. We shall be interested in
calculating P(t) using the exact formal power-series ex-

7 For the nonohmic spectra, an arbitrary frequency scale co

must be introduced to define a dimensionless coupling parame-
ter P. We note, however, that co has no fundamenta1 signifi-
cance, since the only physically relevant parameter is the com-
bination P,co '

A,*/b.,ff(a) = —1 —2( —,
' —a)'i +O(1—2a) . (5.65b)

It is clear from Fig. 8 that T*(a) drops very rapidly as
a increases. [It should be kept in mind that h, ff(e) itself
drops quite rapidly with u.] Cxiven currently available
cryogenic technology and SQUIDS, it is very likely that
for an experimental test of macroscopic quantum coher-
ence, very low values of u will be required. It is therefore
useful to explore this region further and to obtain as
much quantitative information about P(t) as possible.
First of all, recall that at T=O, P;„,(t) is of order a. It
requires some algebra to show that, at T =T*, the contri-
bution to P(0) from the double pole differs from unity by
a term of order a, and since P(0) equals unity, this means
that the contribution from the other poles, which we con-
tinue to call P;„,is of order u . To a first approximation,
then, it is reasonable to neglect P;„,(t) altogether. The
remaining contribution to P(t), which we denote by
P„,(t), can clearly be written as the solution of a damped
harmonic oscillator with temperature-dependent frequen-
cy and damping. Since the weak-damping approximation
of Sec. III.B results in precisely such an equation, one
might wonder how well the solutions to Eqs. (3.10) and
(3.11) compare with P„,(t), even after the most glaring
flaw, namely, the lack of frequency renormalization, is
put in by hand. [That is to say, b, is replaced by A,ff
everywhere in Eqs. (3.10) and (3.11).] Figure 2 of Garg
(1985) shows a plot of the real and imaginary parts of the
complex frequency associated with P„,(t) and the ap-
proximation of Sec. III.B (with the frequency renormali-
zation) as a function of T for a =0.05. It is amusing that
while the damping rate is virtually identical for the two
approximations, the true oscillation frequency [which
should be very accurately given by P„,(t)], and, there-
fore, the true Q factor, is higher than that given by the
weak-damping approximation.

A. The subohmic case (0& s&1)

We begin our discussion of the nonohmic spectra by
considering the subohmic case, s ~ 1. As we shall see, it is
in this regime that the noninteracting-blip approximation,
as discussed in Sec. IV.C, can easily be justified. The
reader may find it instructive to compare the ensuing dis-
cussion with that of the a & 1 (or n & 1 for T»a '6„)
ohmic case presented in Sec. V. We show below that, for
the subohmic case, P(t) exhibits overdamped behavior, so
that P(t)=exp( —I t), with a relaxation rate I. This is
completely equivalent to the golden rule result, Eqs. (3.37)
and (3.38).

We should first like to motivate the use of the
noninteracting-blip approximation for the subohmic case.
We start by examining the behavior of the quantities
Q~(t) and Q2(t), which were defined in Sec. III. For con-
venience we repeat these definitions here:

" J(co)
Q ~

(t):—
2

sin&at dc@,
CO

(6.2a)

Q2(t)—:J 2 (1—coscot)cothpfuo/2dco . (6.2b)
" J(co)

67

For J(co) given by (6.1), at long times (~,t &&1) and at
zero temperature, these functions behave as Q~(t)
—(const)p, (re)' ', Q2(t) —(const)p, (cot)' '. Since Qq(t)
~co as t~ ao, the term F~ [Eq. (4.20a)] in the power-
series expansion becomes negligible for long times. Thus
we conclude that configurations with long blips wiH make

pansion that was derived in Sec. IV, Eqs. (4.17)—(4.22).
Explicit results for P(t) are obtained by making a series
of controlled approximations on the exact expression. It
will become apparent that the qualitative behavior of P(t)
(i.e., underdamped versus overdamped) is quite sensitive
to the low-frequency behavior of J (co), as was em-

phasized in Sec. III. In fact, most of the results of this
section are wholly equivalent to the results obtained by
more heuristic methods in Sec. III. What we hope to
show is that a unified framework exists for discussing all
of the different types of behavior. The utility and ubiqui-
ty of the noninteracting-blip approximation will soon be-
come apparent; this approximation was already extensive-

ly applied to the ohmic case in Sec. V.
Before delving into the nature of the approximations of

this section, we should first like to comment on the level
of rigor involved in this section and in Sec. VII. Since the
primary motivation for this work has been the study of
macroscopic quantum coherence, the study of nonohmic
dissipation is of somewhat less importance for our pur-
poses. In addition, ohmic dissipation provides for the
richest possible behavior. For these reasons we shall not
embark on a detailed analysis here, as was done for the
ohmic case in Sec. V and Appendix D. Our goal here is
rather less ambitious —to provide what we believe to be
some rather intuitive approximations to the formal results
of Sec. IV, thereby confirming the heuristic results of Sec.
III in the appropriate limits.
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A+f(A) ' (6.3b)

exponentially small contributions to the sum (4.17); the
important configurations will be those for which the blip
width is small compared to the interblip separation. (We
shall make this statement more precise below. ) Now that
we have argued that the blips form a dilute "gas,"we may
ask whether the interblip interactions may be safely ig-
nored. The interaction terms Azk and X&k defined by Eqs.
{4.21b) and (4.21c) behave roughly as A-8 Q2/Bt and
X-8 Q~/Bt, so that both A and X decay as (cot) "+'
for co, t »1. Since the blips are dilute, and the interac-
tions between blips decay algebraically, the interblip in-
teractions can be ignored. Thus, for s & 1, the
noninteracting-blip approximation is expected to be valid;
we shall examine its self-consistency below.

Within the noninteracting-blip approximation the fol-
lowing expressions for P (t) were derived in Sec. IV:

P(t)= I e 'P(A, )dA, , (6.3a)
2~i

P(t)= g ( —I t)"In .
n=0

At a given time t, the dominant term in this series has
n=I t blip-sojourn pairs, and so the typical length of a
blip and its neighboring sojourn is I '=t/n N. ext, we
observe that

~ f& ~
/f p

=—tt, provides an estimate of the
typical blip width. To see this, recall that the factor
E~ ——exp( —qpg2/re') in Eq. (4.20a) controls the width of
a blip; we expect that the first moment of this function
will provide an estimate of the typical blip width. Aside
from the additional cosine factors,

~ f, ~
Ifp is just the

first moment of F~. Hence the statement that
~ f~ ~

&& 1

is equivalent to I tb «1; the typical blip width must be
much less than the typical distance between blips. If this
condition is met, then we are correct in ignoring the inter-
blip interactions.

A straightforward order-of-magnitude calculation of
f&, using the long-time behavior of Q~ and Q2 from Eq.
(6.2), gives

2

2 2

f (A, ) =—b, J cos Q~(t) exp At — —Q2(t) dt,
oo go Co

f, =o
{p

—I —s) 1 /(I —s)
(6.7)

(6.3c)
so that

~ f& ~

&&1 requires

b, /co «[p (a)lco )' ']' " (6.8)
where the contour C in Eq. (6.3a) is the standard
Bromwich contour. Consider expanding f (A, ) in a power
series about X=0;

with

f (A) =fo+f i A+

fo= lim f(A. ), f)—- lim f(A, ) .
a

o+ x o+ ~~
(6.4)

For s & 1, the expansion for f (A, ) is easily obtained by ex-
panding exp( —A.t) in a power series and integrating term
by term; all of the resulting integrals for the coefficients
f„areconvergent, and we obtain

2 1 —s
9o I {s) co

g, (t) =p, Im(1+E~, t) -'~ 1 —s

2+8 1 —S CO&

(6.9a)

Notice that b, /co, can always be chosen sufficiently small
so that condition (6.8) is satisfied.

Equations (6.5a) and (6.6) are our desired results for
P(t). It remains for us to evaluate (6.5a) for a particular
form of the cutoff function in order to get explicit results
for I . As usual, we choose an exponential cutoff, so that
J(co) is given by Eq. (6.1).

Evaluating Q&(t) and Q2(t) at zero temperature, we
find

1

fp=b. ' J cos
2 2

e'o e'o
Q ~ (t) exp — Q2(t) dt, (6.5a)

2 1 —s

Q2(t) = —p, [1—Re(1+it@,t) '] .Co I (s) co

2+A 1 —s co~

2
oo QofI

———b. t cos Q&(t) exp
0

Qo
Q2(t) dt .

P(t) =exp( —I"t), I =fp . (6.6)

This is identical to the golden rule result, Eq. (3.38), with
a=0.

We should now like to show that the condition

~
f& ~

&& 1 is precisely what is needed for the blips to form
a dilute gas. First, we note that the typical distance be-
tween blips is I '=fp

'. This can be seen by expanding
P(t);

(6.5b)

If we assume for the moment that
~ f& &&1, then P(A)

has a simple pole at fp, performing the La—place inver-
sion then gives

(6.9b)

By substituting these expressions into Eq. (6.5a) and per-
forming the integration exactly, it can be shown that
I =0 at T=O. Thus at zero temperature the particle
remains in the well it started in; this is in accordance with
the adiabatic renormalization. arguments given in Sec.
III.C. At finite temperatures, there is an additional con-
tribution b,g2(t) to Q2(t)

~ T o. This is given by
2

b,g, (t)
Vo

2
Co ( 1 —coscot) [coth( pcs/2) —1]J(co) dc' .

2~% CO

(6.10)

%'e only need to evaluate this function for values of t
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such that t &1/(GP,' " '), since Q2(t)
~ T o cuts off the

integral fo for values of r greater than this. 'In addition,
the [coth(13fico/2) 1—] factor in Eq. (6.10) cuts off the
b,Q2 integral at frequencies of order Acu=k&T. Thus, if
the combination cot —k~ T/fico f3,

'
&& 1, then the

(1—coscot) term in Eq. (6.10) may be safely expanded; the
remaining integral for b,Q2(t) is easily evaluated, ' and we
get

2 ~ 1+s
90

& () kT
Q2 r =P. I (s + 1)g(s + 1)(cot)' . (6.11)

Substituting Eqs. (6.11), (6.9a), and (6.9b) into (6.5a), we
arrive at an expression for I that may be evaluated
asymptotically as P, (Ace/kT)' ' +no.—This evaluation is
carried out using the method of steepest descents; we
quote only the final result, which is

1l2

2(1+~)'I (~)g(1+~)P,

1+s 1
X exp — I (s)

1 —s 2(1+s)g(1+s)

(1—s) l(1+s)

(6.12)

where

B(co,)=exp[P,
~

I (s —1)
~

(co/co, )' '] . (6,13)

Notice that as the temperature goes to zero, I vanishes
with an essential singularity in T. This should be con-
trasted with the results for the ohmic case (s=1), with
a & 1, .where the tunneling rate I vanishes according to a
power law, T ' [see Eq. (5.30)]. In fact, this T
behavior can be obtained from Eq. (6.12) by carefully con-
sidering the limit s —+1

We should like to emphasize that co, (the unphysical
cutoff frequency introduced in truncating the original
double-well problem to the spin-boson form) does not ap-
pear explicitly in Eq. (6.12). All of the cutoff dependence
has been absorbed into the function B(co,). However, re-
call that 6 also depends on ~„sinceit contains the renor-
malizing effects of the high-frequency oscillators. To
lowest order in P, (co/co, )' ', this dependence is given by
b. =b,o[constB '(u, )], where b.o is the level splitting in
the original double well in the absence of a dissipative en-
vironment. Thus the leading dependence of 4 on cu, is
exactly canceled by the co, dependence of the function 8
defined above. Therefore the decay rate is independent of
co, (to leading order) as required.

B. The superohmic case

Ciradshteyn and Ryzhik (1980), p. 360, 3.551.3.
This may be shown by an extension of the argument of Dor-

sey et al. (1986).

We now study the behavior of P(t) for superohmic
spectral densities of the form (6.1) with s & 1. The
analysis again proceeds by employing the formally exact
and completely general expression for P (r), Eqs.
(4.17)—(4.22), derived in Sec. IV. We consider first the
properties of P(t) when T=O, before generalizing to fi-
nite temperatures below. When T=O, Q~(t) and Q2(t),
defined as integrals over the spectral density J(co) in Eq.

I

(4.22), are given by
2

9'o
Q)(t) =A, lm

2~% 1 —
Lcd' t

s —1

(6.14a)

2
9'o 1-Q2(t) =A, 1 —Re

2m% 1 —i ~, t

s —1

(6.14b)

with A„a dimensionless measure of the damping
strength, defined by

2

f de
2 =P, I (s —1)(co, /co)'

In Eq. (6.14b) we have defined Q3(t), the time dependen-t
piece of Q2(t); as an integral over the spectral density it is
given (at T=O) by

d6)
Q3(r) =

2 J(co)coscor .
CO

(6.16)

The important point that distinguishes the superohmic
from the subohmic case, s& 1, is that Qq(t) now ap-
proaches a finite constant as t woo [cf. Eq—. (6.9)]. As a
result, the factor F~ in Eq. (4.20a), which for a blip
of length t contributes a factor proportional to
exp[ —(qo~/~A')Qq(t)], is no longer effective in suppress-
ing the widths of the blips. Thus we do not expect the
blips to form a dilute gas as they did in the subohmic
case. Nevertheless, as we now argue, the noninteracting-
blip approximation as described at the end of Sec. IV can
in fact still be justified.

We first remark that, in the absence of any damping at
all, both the typical blip width and typical sojourn width
will be roughly 6 '. This can be deduced from Eqs.
(4.17) and (4.18) by observing that with no damping the
term in the sum with n blips and n sojourns is
( —1)"(tb,) "/(2n). For a given time t the dominant term
then has n = th blip-sojourn pairs, implying that a typical
time per pair is 6 '. Since blips and sojourns are on
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equal footing (with no damping) on average they will have
the same width. In the presence of superohmic damping
(at T=O), since Q2(t) does not suppress blips appreciably,
we expect that blips and sojourns will still have roughly
the same typical width, given now by a renormalized level
splitting (see below) 5

Since Q& and Q3 [the time-dependent piece of Q2(t);
see Eq. (6.16)] decay to zero as t~00 if b, ' is large
enough, it is possible that the dimensionless quantity

2 2
Vo — , 9o — , 9o J(b.)

(6.17)

may be much less than one. Then the strength of the in-
teractions between blips and sojourns (SJ,AJk, and XJI, )

given in terms of Q& and Q2 in Eq. (4.21), would typical-
ly be small, i.e., of order b. For now we assume that b is
indeed small; this will be checked self-consistently using

, the typical blip and sojourn width that emerges
from the calculation. We now work to linear order in b,
ignoring in F„,Eq. (4.19), all the interactions that contri-
bute to O(b ). When s=O, both F3 and F~ can be re-
placed by one, since the arguments of the cosines are then
proportional to b and only contribute quadratically.
Moreover, since the argument of the exponential in F2 is
odd in the blip indices gj, upon summation over these
(pi=+1) the term linear in b vanishes. Thus to leading
order in 6 only F] contributes, and F„is given by

2
qo~ Q2(t2, —t2, (6.18)

Equation (6.18) is a reasonable approximation to F„for
typical trajectories which have sojourn and blip widths
roughly 5 '. However, it is not of the correct form for
those configurations that have blips much narrower than
the sojourns separating them. Such configurations are
described by the noninteracting-blip approximation in
which F„is given by [see Eq. (4.28)]

2
go

Fig = + cos Ql(ting
—t2J I )

J =1

mation, we now apply it directly to a computation of
P(t).

It was shown in Sec. IV that within the
noninteracting-blip approximation, with F„approximated
as in Eq. (6.19), the Laplace transform of P(t) could be
written in the convenient form [Eq. (4.32)]

P(A, ) =[A,+f (A, )]

with f (A, ) given by

2 2

f(A, =b. f cos Q, (t) exp —A,t+ Q2(t)
oo go e'o

7PA

(6.20)

(6.21)

It is convenient at this stage to absorb the time-
independent piece of Q2(t) into the level splitting A. De-
fining a renormalized level splitting

6=6 exp
Qo

Q2(t = ~)

9o ~ J(co)
2

=6 exp dco
2m.h'

(6.22)

enables us to write f (A, ) in the form

2
go 9'p

Q&(t) exp Q3(t)f (A, ) =b, J dt e 'cos

(6.23)

P(A, )=
A,'+3 '[1+Ah (A, )]

with h(A, ) the Laplace transform of h (t) defined by

(6.24)

Notice that the exponential factor in Eq. (6.22) which re-
lates the renormalized level splitting to b, is precisely of
the Franck-Condon form discussed in Sec. III.C. Since
Q~ and Q3 approach zero as t~ oo, it is clear that f (A, )

has a 1/A, pole [recall that, in the subohmic case, f (A, =O)
was well defined since Q2(t) diverged with time]. If we
pull this pole out front, then P(A, ) from Eq. (6.20) can be
written as

2
9o

)C exp — Q2(t2 —t2.
&

) (6.19)

2 2
9'o 9oh(t)=cos Q&(t) exp Q3(t) —1 . (6.25)

Since Eq. (6.19) has the correct form (by construction) for
configurations with narrow blips (say co, ) and reduces to
Eq. (6.18) for typical blip widths d! ', we expect it to be a
reasonable approximation for all possible configurations
(provided of course that b is small). With this somewhat
heuristic justification for the noninteracting-blip approxi-

To Laplace-invert and determine P(t) it is necessary to
locate the poles of P(A, ). In the absence of damping
( h =0), these poles are entirdy imaginary: A, = +i h.
When damping is present and b is small, we expect on
physical grounds that these two poles will shift slightly
off the imaginary axis, picking up a small negative real
part. Setting the denominator of Eq. (6.24) equal to zero
and looking for roots near +i'6, we find upon iteration

This is clearly similar to the argument used in Sec. V.D and
Appendix D.2 in connection with the differences between P(t)
and P' '(t) in the unbiased ohmic case at zero temperature as
a~O.

A, =+iX[1+Ah (A, )]'~

iA-=+ib, 1+ h(+ih)+
2

(6.26)

Rev. Mod. Phys. , Vof. 59, No. 1, January 1987



Leggett et aI.: The dissipative two-state system

It remains to compute the integral for I
„

Q 2

I,= J dt cos(th)h (t) .
0

(6.28)

Working to lowest order in b, it is tempting to expand
h (t) in Eq. (6.25) in Q &

and Q3 to give h (t)
=(qo/mh')Q3(r). The integration can then be easily per-
formed by using the original definition of Q3(t), Eq.
(6.16). Upon interchanging the time and frequency in-

tegrations, we find
2

I,= J(b.) .
4A

(6.29)

It can be verified explicitly in this case ( T=O) that Eq.
(6.29) gives the correct answer to lowest order in b, by
noting that h (t) can be written as

g0h(t)=Re exp (Q3+iQ~) —1
7TR

n=i

(2A, )" n(s —I)

(6.30)

Inserting this into Eq. (6.28) and performing the integra-
tion demonstrates that the n = 1 term gives (6.29), and
each additional term in the sum contributes to higher or-
ders in b.

Finally we Laplace-invert P(A, ), which has two poles at
A, = —I,+i 5, to obtain the final result for the superohm-
ic case with T=O:

P (t) =cos(b t)exp( —I,t) . (6.31)

This describes underdamped coherent oscillations at a fre-
quency b„Eq.(6.22), and a damping rate I;, Eq. (6.29).
Notice that this result is exactly equivalent to that ob-
tained with the heuristic NMR approach in Sec. III.B, ex-
cept that the renormalized level splitting 6 replaces A.
Although this was anticipated in Sec. III.B, the advantage
of the present approach is that 6 emerges naturally from
the calculation and does not have to be put in by hand.

In the light of Eq. (6.29), the requirement that b be
small [Eq. (6.17)] is equivalent to the inequality

I,/5«1 . (6.32)

Thus the above approach, and hence P(t) in Eq. (6.31), is
only valid when the system is extremely underdamped.
We must now check to see under what conditions this is
in fact the case. Using the definitions of b, and J(co), we
have

I, /b, =A, (h/co, )' '=A, e '(6/co, )' (6.33)

where A„defined in Eq. (6.15), is a dimensionless mea-

To lowest order in b, the real and imaginary parts of A,

are then given by

(6.27a)

(6.27b)

sure of the coupling strength to the environment. Recall
that we are always working in the limit 4 &&co, (which
was necessary to truncate the original double-well prob-
lem into the spin-boson system studied here), so that no
matter hotU large the coupling 2, is the inequality (6.32) is
satisfied. Thus for superohmic spectral densities (s&1),
if the system can be reduced to a two-state description, at
T=O it will always exhibit underdamped coherent oscilla-
tions.

We now discuss brieAy the cancellation of the unphysi-
cal frequency scale co„introduced in truncating the
double-well problem into the two-state system. To do so
we must argue that 6 defined in Eq. (6.22) is in fact in-
dependent of cu, . Notice that 6 is related to 6 by the
Franck-Condon factor over the low-frequency oscillators
[since J(co) defined in (6.1) has an upper cutoff co, ].
Since 5 is in turn related to the unrenormalized level
splitting A0 in the double well by a Franck-Condon factor
over the high-frequency (&co, ) oscillators, the to, does
indeed cancel out.

We now generalize the discussion of superohmic spec-
tral densities (s & 1) to include finite temperature. In this
case it is convenient to treat s & 2 and 1 & s & 2 separately.
For s & 2, Q2(t) still approaches a constant as t~ co, and
the T=O analysis just described goes through with only
minor modifications. On the other hand, for 1 & s & 2,
Q2(t) diverges at long times and more care is needed.

We first consider the case s & 2 and employ the
noninteracting-blip approximation. As in the T=0
analysis, although the blips are not dilute, this approxima-
tion can be justified when the system is extremely under-
damped. We briefly sketch the modification needed to
generalize the zero-temperature discussion. Finite tem-
perature enters the general expressions (4.17)—(4.22) for
P(t) only through the inclusion of the factor
coth(pfuu/2) in the definition of Q2(t),

Qz(t) = f den (1—coscot)coth(pA'co/2) . (6.34)
J(co)

CO

For s & 2, Q2(t = ac ) is finite, and the renormalized level
splitting b, in Eq. (6.22) is generalized to read7

6(/3) —= b, exp — I 2 J(co)coth(pfico/2)
CO

(6.35)
The only other modification necessary is to include the
coth(/3fico/2) factor in Q3(t), the finite-time piece of
Q2(t), defined in Eq. (6.16). With this change the damp-
ing rate I', in Eq. (6.29) is now given by

2

I, (/3) = J(b, )coth[PA'b. (P)/2] .
4A

(6.36)

Since the rest of the T=O analysis goes through un-

changed, the final results for spectral densities with s&2

7~Actually, for consistency we should neglect the difference be-
tween 6(/3) and b, (0), since this is a correction of relative order
{k&T/Ace, }' ', and similar terms have already been dropped in
going from the two-well to the two-state system; see Sec. II.
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is simply

P ( t) =cos[b, (P)t]exp[ —I,(P)t], (6.37)

with b, ( f3) and I,(P) defined above. Thus for s & 2 even
at finite temperature the system exhibits underdamped
coherent oscillations. It is easy to check that when

l, (P) «h(P) for all temperatures less than
~, /k~, implying that this underdamped behavior per-
sists up to the largest temperatures of interest. Once
again Eq. (6.37) confirms the expected behavior for P(t)
discussed in Sec. III.B.

When 1 & s & 2 the generalization to finite temperature
is not so simple, since Q2(t) now diverges with time,

Qi(t)-A, (king T/%co, )(to, t) ', t +oo —. (6.38)

However, at large enough temperatures we expect that the
blip lengths will be sufficiently suppressed by Fi in Eq.
(4.20a) that the blips will once again form a dilute gas.
Under these conditions the analysis of the subohmic case
will apply, and P(t) will exhibit overdamped exponential
relaxation. In particular, f(A, ), which enters into the
noninteracting-blip approximation [Eqs. (6.20) and
(6.21)], has a well-defined series expansion about k =0,

f (~)=fo+~f1+ ' ' ' (6.39)

If
~ fi ~

&&1, the Laplace inversion for P(t) is straight-
forward, giving pure exponential relaxation

P(t)=exp( —I,t),
with a decay rate

I,=f (A, =O)

(6.40)

2

f dt cos Qi(t) exp
0 ~A

Q, (t) . (6.41)

This result is equivalent to Fermi's golden rule [see Sec.
III.D, Eqs. (3.37) and (3.38)] and, as discussed in the
subohmic case, is valid so long as

~ fi ~

&&1. Using the
long-time behavior of Q2(t) in Eq. (6.38), we find that
this requirement is equivalent to

T»T*—=A, 'k 'fico, (b, /co, )
' (1&s &2), (6.42)

XI
& /(2 —&)

3—s 6 Ace

2 S Q) kT
(6.43)

For 1(s(2, the system's behavior crosses over from un-

with b, the renormalized level splitting defined in Eq.
(6.22). Notice that T can satisfy this inequality and still
be much smaller than iriai, /k as required. Finally,
evaluating the integral for I, asymptotically in the limit
kT ((%co„wefind

1/(2 —s)
(2—s)sin(irs /2)

2P, 1 (s —1)sinir(s —1)

derdamped coherent oscillations to overdamped exponen-
tial relaxation as the temperature is raised above T*.
This is analogous to the behavior found for ohmic spec-
tral densities with a & —, (see Secs. V.C and V.F). It is in-

teresting to observe that, as in the ohmic case with u( —,',
in the overdamped regime the relaxation rate is a decreas-
ing function of temperature. As the temperature is raised,
the environment destroys more of the quantum coherence
necessary for tunneling between the two wells, thus reduc-
ing the decay rate.

Finally it is instructive to compare our calculation with
a frequently used method in chemical physics or polaron
theory (cf. Mahan, 1980, p. 528), which is based on a
modified golden rule argument. As discussed in Sec.
III.D, the golden rule approach assumes that the linear
short-time decrease in P(t) may be exponentiated to give
an incoherent exponential relaxation P(t) =exp( —I FGRt)
at all times. The presence of a sufficiently strong envi-
ronment coupling is supposed to completely destroy any
coherence effects. The results obtained above, however,
demonstrate that for a system that can be reduced to a
two-state (or tight-binding) description, when J(c0)-to'
with s&2 the behavior is in fact a damped oscillation at
all relevant temperatures and arbitrarily strong coupling.
The inadequacy, in this case, of a description by an ex-
ponential decay is easily seen from Eq. (6.13), generalized
to finite T. It is only when f(A, =O) is finite that P(t)
relaxes incoherently with the golden rule rate
1„oR=f(A,=O). However, for s&2, f(A, =O) does not
exist, and a 1/k pole has to be separated off, which leads
to the oscillatory structure (6.31) or (6.37). The diver-
gence of the rate f (A, =O) reflects the inadequacy of the
golden rule approach in producing this oscillatory
behavior. It has been common practice (Holstein, 1959)
to circumvent this divergence by subtracting (with, we be-
lieve, no justification) an infinite term ("the diagonal pro-
cesses") from f (A, =O) and by assuming that the system
relaxes exponentially with a modified —and now finite—
golden rule rate

r„G„=Z'f"dt h(t) (6.44)

with h (t) as defined in Eq. (6.25). Comparing this with
our result (6.28) for the damping rate 1, of the oscillation,
we see that, up to a factor of 2, 1 FGR turns out to be the
lowest-order term in a formal expansion of I, in powers
of b.. The modified golden rule rate thus at best only de-
scribes the decay of the envelope of P (t) to lowest order in

Equation (6.44) has been used to obtain the well-known
T law for the diffusion constant in Holstein's small pola-
ron model (Flynn and Stoneham, 1970). By changing the
integration variable t to t +(i/2)AP one finds

2

g 2 d
6 0

d J(co) coscot
0 irh' o aii sinh( pirtco/2)

(6.45)
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2f (2) g2
co sinh (I3fico/2)

(6.46)

which behaves as T ' for small temperatures. In par-
ticular, taking s=5 gives the well-known T law. To ob-
tain the diffusion constant D from the two-state relaxa-
tion rate I, it is crucial to assume that the transfer from
site to site is completely incoherent so that D in a periodic
lattice is simply given by D =I a, 0 being the lattice
constant. However, our results imply that for s~2 this
assumption is inappropriate, since coherence between two
adjacent sites is not destroyed completely on the relevant
time scales.

Expanding in powers of the interaction, it is easy to see
that the linear term (i.e., the "one-phonon process") van-
ishes if s &3. Thus, contrary to I

„

the lowest-order
contribution usually comes from the second-order term
and is given by

to compute the specific behavior for subohmic, ohmic,
and superohmic spectral densities.

A. Noninteracting-bIip approximation

with

—F F2F3F4(g. ) (7.1)

F1——g exp
2

9'o
Q2(t2j —

2, (7.2a)

The noninteracting-blip approximation was introduced
in Sec. IV.C as a means for simplifying the formally exact
expression for P(t), Eqs. (4.17)—(4.22). We use the same
simplifying assumptions here, i.e., points (1) and (2) in
Sec. IV.C., keeping 8&0. Then, within the noninter-
acting-blip approximation, F„in Eq. (4.19) takes the form

VII. THE BiASED CASE

In this section we generalize the discussion of the
behavior of P(t) to include a bias E between the two wells.
As in Sec. VI we shall consider general spectral densities
of the form (6.1). Once again the objective here is to ex-
tract the behavior of P(t) from the formally exact expres-
sion derived in Sec. IV, Eq. (4.20). This section is organ-
ized as follows. In subsection VII.A we generalize the
noninteracting-blip approximation, introduced in Sec.
IV.C, to include a nonzero bias, which reduces the calcu-
lation of P(t) to the performance of Laplace transforms.
By studying the long-time behavior that follows, i.e.,
lim, P(t), we demonstrate that this approximation can-
not be trusted (when a&0) in the underdamped regimes
where the system performs coherent oscillations. The
heuristic justification offered in Sec. VI, in the under-
damped regime when c.=O, is shown to break down in the
presence of a nonzero bias. The noninteracting-blip ap-
proximation nevertheless can still be justified when the
parameters are such that the system exhibits overdamped
exponential relaxation, as it will whenever the bias c is
large enough. A general expression is then derived for
P(t) in the overdamped regime. In Sec. IV.B, this is used

F3.= II cos
j=2

2
qo

Q1(t2j t2j —1 )
~A

(7.2b)

(7.2c)

2
9'o

F4 ——cos g1 Q1(t2 t, ) ——g—gj(t2J t2j, )—
j=l

(7.2d)

n
C

X + cos (t2j —t21 1)'
j=2

(7.3)

Then P(t) in Eq. (4.17) is given by

Notice that c, only enters into the term I"
4.. The sign con-

vention is such that a positive (negative) value of e corre-
sponds to preparing the particle initially in the unstable
(stable) well. In contrast to the unbiased case [Eq. (4.28)],
F„stilldepends on the blip indices gj. However, the sum
over gj. in Eq. (4.18) can now easily be performed, giving

2
9o

2 "g F4(gj)=cos Q1(t2 t1)——(t2 t, — —
~A

OO Pl n

P(t)= g ( —1)"f dt
„ f dt„,. f dt, Q g(t t, )+h(t —t, ) g g(t t, )— —

n=o j=l j=2
(7.4)

with the functions g (t) and h (t) defined by

2

g (t) =b cos(Et/fi)cos Q1(t) exp2 Vo

~A

2
9'o

~ Q2(t)

h (t) =b, sin(Et /A')sin
2

eo
Q1(t) exp

m.fz

2

Q2(t)
9'o

(7.5b)

(7.5a)

For s=3 the integral is proportional to T (see Teichler and
Seeger, 1981),whereas for s & 3 the expansion is divergent.

An incoherent relaxation for s ~ 2 can only. occur if there is a
finite bias that is large compared to the tunneling matrix ele-
ment. See Sec. VII.B below. P(A, ) = [1—h ( j(, )/A, ][A,+g (A, )] (7.6)

The spectral density J(co) enters via Q1(t) and Q2(t),
which are defined in Eq. (4.22). Upon Laplace transform-
ing with respect to time, as in the E=O case [see Eqs.
(4.31) and (4.32)], we obtain the final result for P(A, )

within the noninteracting-blip approximation,
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Here g(A, ) and h (A, ) are, respectively, Laplace transforms
of g(t) and h(t). As e~O, Eq. (7.6) reduces to the un-
biased expression (4.32).

Before computing P(t) for particular spectral densities,
it is useful to examine the long-time behavior of P(t)
within the noninteracting-blip approximation. From this
we can see some of the shortcomings of the approxima-
tion, which occur when e&0. To be specific, we study the
pole of P(A, ) at A, =O, which upon Laplace inversion gives
us directly P(taboo), as all other singularities of P(A, )

have nonzero negative real parts. Since both

when a&0? Recall that for s& 1 we argued that the in-
teractions between blips and sojourns, Xjk and Ajk in Eq.
(4.20), were very weak, and thus it was possible to work to
linear order in these. Doing so we found that F„in Eq.
(4.17) reduced to a form essentially equivalent to the
noninteracting-blip approximation, Eq. (4.28). For the
biased system, however, this is no longer the case. The
difficulty comes in treating F& [Eq. (4.20d)] linearly in

XJo. The 1inear term has the form

and

gp = limg (A, )
A, ~O

hp
—= limh (A, ),

A, ~O

(7.7a)

(7.7b)

2
9'o " . " cg gJX~p sin g gj (tz~ t—2J, )—

j=1 j=1

(7.9)

have well-defined limits (for A,~O with Rek, )0), the pole
at A, =O is a simple one. Hence, upon Laplace inversion
of P(A, ), we have P(t = oo ) = —hp/gp. We show in Ap-
pendix E that, for arbitrary spectral densities J(co), the
ratio hp/gp is in fact equal to tanh(e/2k& T), so that

hpP(t = oo ) = — = —tanh(E/2k' T) . (7.8)

This result demonstrates that as T—+0 the
noninteracting-blip approximation predicts a symmetry
breaking for all spectral densities. That is, an infini-
tesimal bias c. is predicted to localize the particle in one
well. However, for both superohmic spectral densities
(s& 1) and the ohmic spectral density (s= 1) with a & 1,
arguments given in Sec. III.C indicate that the symmetry
is actually not broken. This can also be inferred in a more
rigorous fashion by observing that the, partition function
of the spin-boson Hamiltonian (at T=O), written as a
path integral, is equivalent to the partition function of a
classical one-dimensional Ising model with long-range in-
teractions (see Sec. III.E and Chakravarty, 1982). For
J-co' these interactions fall off as r with o =s+1. It
is known that when o. & 2 the classical Ising model is nev-
er spontaneously magnetized. For o.=2 it is generally be-
lieved to be magnetized only when a&1 (Ruelle, 1969;
Anderson et aI. , 1970). Accepting these conclusions, it is
apparent that, for spectral densities with s& 1 and s=1
with a&1, when T=O and c is small but nonzero, the
noninteracting-blip approximation (which predicts a sym-
metry breaking) gives qualitatively incorrect behavior for
P(t) at long times. This is in marked contrast with the
c=0 results of the previous sections, where the
noninteracting-blip approximation is "qualitatively"
correct, in the sense that the correct value of P(t) is ob-
tained at t~ oo. Perhaps this is not surprising, since it is
precisely in these regimes that (at e=O) the blips do not
actually form a dilute gas.

Recall, however, that in Sec. VI.B (with c,=O) we were
able to justify the noninteracting-blip approximation for
s& 1 at T=O, even though the blips were not in fact di-
lute. Where does the reasoning used here break down

which is entirely nontrivial and gives for F4 something
quite different from the noninteracting-blip approxima-
tion, Eq. (7.2d). Thus we conclude that, for T=O and e
small but nonzero, when the parameters are such that the
unbiased (e=O) system is underdamped, the noninter-
acting-blip approximation gives qualitatively incorrect
long-time behavior for P (t).

The noninteracting-bhp approximation can, however,
still be justified when the system exhibits overdamped re-
laxation (as it always will for large enough bias, see Sec.
VII.B). In particular, suppose that g (A. ) and h (A, ) in Eq.
(7.6) have well-defined expansions about zero,

g(~)=gp+~gi+ '

h (A, ) =hp+Ahi+

(7.10a)

(7.10b)

with

r=go
2

=6 lim I dt e 'cos(et/fi)cos Q~(t)
O

2
qo

)& exp — Qq(t)
mA

(7.11b)

where we have used Eq. (7.8) relating hp/gp to
tanh(e/2k~T). Notice that Eq. (7.11) describes simple
overdamped exponential relaxation of the quantity
P (t) P( ao ). —

It is precisely under the condition g1 «1 that we can
in fact justify the noninteracting-b1ip approximation. To
see this we first remark that, if the typical blip widths are
much smaller than the widths of a typical blip-sojourn
pair (i.e., the blips really form a dilute gas), then, since the
interacting between blips decay to zero at long times, the

with h1,g1 « 1. Then, within the noninteracting-blip ap-
proximation, P(A, ) in Eq. (7.6) can be Laplace inverted to
give

P (t) = —tanh(E/2k~ T)+[1+tanh(E/2k~ T)]e

(7.11a)
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noninteracting-blip approximation should be valid. As in
Sec. VI, the average blip width tb can be estimated by tak-
ing the first moment of g (t) in Eq. (7.5a),

b g1 ~g0 (7.12)

with gi and go defined in Eq. (7.10a). Since g(t} oscil-
lates with a factor cos(et/A), the typical blip width is ex-
pected to decrease with increasing bias. The typical width
of a blip and its neighboring sojourn, on the other hand,
can be obtained by observing that for a given time t the
dominant term in the expansion of e ' in Eq. (7.11a) has

n=g0t powers of g0. Since n is proportiona1 to the num-
ber of blips, a blip-sojourn pair has a typical width
tin =go '. The blips will form a dilute gas when

—1
tb «g0 or

(7.13)

Thus when Eq. (7.13) is satisfied the noninteracting-blip
approximation is expected to be valid, and the system
should exhibit overdamped exponential relaxation as
described by Eq. (7.11).

Before applying the general result (7.11) to specific
spectral densities, it is instructive to compare it to the
Fermi's golden rule result for P(t), Eqs. (3.37) and (3.38).
The results differ only in the convergence factor e ' in

(7.11b), which is absent in the expression for the golden
rule decay rate. For ohmic or subohmic spectral densi-

ties, where Q2(t) diverges with time, this difference is
moot, since the A,~O limit can be taken under the integral

I

2 2

I =b, I dt cos(Et/A)cos Qi(t) exp — Q2(t)
00 9'0 9'0

0 mA mA

sign. For superohmic J(co), on the other hand, the in-
tegral for the golden rule decay rate, Eq. (3.38), is diver-
gent at long times. However, due to the convergence fac-
tor, Eq. (7.11b) still gives a well defined and finite decay
rate [see Eq. (7.23) below]. In addition to yielding finite
decay rates for s& 1, the noninteracting-blip approach
described above has provided us with a simple criterion,
(7.13), for the validity of the result (7.11).

B. Results in the overdamped regime

In this subsection we apply the general result for P(t)
in the overdamped regime [Eq. (7.11)] to specific spectral
densities of the form (6.1); i.e., subohmic (0 & s & 1), ohm-
ic (s= 1), and superohmic (s& 1). For each we use Eq.
(7.13) to deduce under what conditions the noninter-
acting-blip approximation is valid, and compute the cor-
responding overdamped decay rate I .

We consider first subohmic spectral densities, 0 & s & 1.
In this case Qz(t), defined in Eq. (4.22), diverges with
time as p, (cot)' ', so that g (t) in Eq. (7.5a) decays rapidly
as t~ao. Using this fact, it is straightforward to show
that the validity criterion (7.13) is satisfied (at all T and
E) when b, «p,' " ' co. Thus for sufficiently small b, the
noninteracting-blip approximation is valid, and the sys-
tem exhibits overdamped relaxation as described by Eqs.
(7.11). Since Qq(t) diverges algebraically with time, the
limit A, —+0 in Eq. (7.11b) can be taken directly, and the
decay rate is given simply by the integral

(7.14)

Using Eqs. (6.9) and (6.11) for Q, (t) and Q2(t), we can find this integral asymptotically for T, E—+0. For kiiT
«e «P,' ' '(fico) we find

I =I"{T=0)~1+ 2P, I (s+1)g(s+1)[2P,I (s)]
2/s

(7.15a)

with the zero-temperature decay rate given by
1/2

2~[2P, I (s)]' '
I (T=O)=

4G S

(1+s)/2s

exp — [2P,I (s)]' '
1 —s E

(1—s)/s

(7.15b)

2

Qz(t)=a in(i+co, t ) . (7.16)

and with 8 defined in Eq. {6.13). Notice that the zero-
temperature decay rate vanishes with an essential singu-
larity as c,—+0. In the limit T, c—+0 the particle remains
in the well in which it was initially prepared. At finite
temperatures the rate is enhanced by a factor varying as
T1+s

Next we consider the ohmic spectral density (Fisher
and Dorsey, 1985; Grabert and Weiss, 1985). When
T=O, Qq(t) still diverges as t mao, but now only loga-—
rithmically [see Eq. (5.4)],

j

For a & 1 this is fast enough that even when c., T~O, g1
in Eq. (7.10a) is finite and of order (b, /co, ) . Since this is
much less than unity by assumption, the noninteracting-
blip approximation is valid for arbitrary temperatures and
bias. Equation (7.11a) then shows that for a & 1, (o,(t) )
relaxes at long times to —tanh(e/2kiit). If we define a
susceptibility to the external biasing field E,,
Xo———,

' B(o, )/BE, we see that the zero-field susceptibility
obeys a Curie-Weiss law, X0-1/T. Recall from Sec.
III.E that the spin-boson Hamiltonian for ohmic spectral
densities was analogous in many ways to the Kondo prob-
lem; specifically, a & 1 corresponds to the ferromagnetic
Kondo problem, which is known to obey a Curie-Weiss
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law, so the above result is not surprising.
When a & 1, Q2(t) in Eq. (7.16) grows sufficiently slow-

ly with time that g& diverges as T and c.~0. In this case
one can show, by using Eq. (5.4) for Q&(t) and Q2(t) and
asymptotically expanding g (A, ), that the validity criterion
(7.13) gives roughly

e»~, =~(&/~, )

when T=O and (as obtained in Sec. V)

(7.17a)

T Q+cx (7.17b)

Q2
I =

2COc

when c=O. Thus, for sufficiently large bias or tempera-
ture, the system exhibits the overdamped behavior (7.11)
even when a~1. The coherent oscillations present in
P(t) for a & —,

'
and E=T =0 (analyzed in detail in Sec.

V.D) have been completely suppressed.
Let us evaluate the overdamped decay rate for the ohm-

ic rate. With Qi and Qz from Eq. (5.4), we perform the
integration (7.14) asymptotically for kiiT, E « fico, giving
(Fisher and Dorsey, 1985; Grabert and Weiss, 1985)

2irkz T cosh( e/2k& T)
Ac@, I (2a)

with

~ g2 (c,/fuu, )
I (T=O)=—

2 co, I (2a)
(7.20)

2

b, =b exp — f de
2

9o " J(co)
'7' 0 Q)

(7.21)

giving from Eq. (7.5a)

When a & 1 the zero-temperature decay rate vanishes as a
power law for c.—+0, in contrast to the subohmic case.
The finite temperature enhancement to the decay rate
vanes as T .

Lastly we turn to superohmic spectral densities, s& I.
For simplicity we discuss only the zero-temperature case.
Since Qz(t) now has a finite limit as t &oo [s—ee Eq.
(6.14)], so that g(t) does not decay to zero, care must be
used in obtaining the asymptotic expansion for g(A, ) [Eq.
(7.10a)]. As in the unbiased analysis of Sec. VI we first
absorb the time-independent piece of Q2(t) into a renor-
malized level splitting 6,

x
I
I (~+i«2 ka» I'. (7.18) g (A, ) =6 i J dt e 'cos(Et/A')cos Qi(t)

0 m.A
For e—&0 this reduces to the unbiased decay rate (5.30).
When klan T « I

e I, Eq. (7.18) gives

7r2
I =I'(T =0) 1+ u(2a —1)(2a—2)(k T/e) +

3

: 2
e'0

X exp Q3(t) (7.22)

(7.19)
with Q3(t) defined in Eq. (6.14b). This can conveniently
be cast in the form

2 2
00 gp 9'0

g (X)=& dt e 'cos(Et/R) cos Q&(t) exp Q3(t) —1
0 g~+ (E/i')i

(7.23)

Since the integrand in Eq. (7.23) now decays to zero as
t —+ ao, to obtain the decay rate I =go we can simply set
A, =O. Using Q&(t) and Q2(t) from Eq. (6.14), we then
find that to lowest order in qo J(rifi)/e the decay rate is
given by

(7.24)

From Eq. (7.23) it is straightforward to demonstrate that
the coefficient of the linear term in g (A, ), g&, is at most of
order (garth/E) . Thus the validity criterion (7.13) requires
that the bias energy c be large compared to AA. When
this is satisfied, the system exhibits overdamped relaxa-
tion as described by Eq. (7.11), with decay rate (7.24).
The coherent oscillations that were present in the un-
biased case (Sec. VI.B) are completely suppressed when E

is large enough. The above result for P(t) is equivalent to
that obtained from the heuristic discussion in Sec. III.B,
except that the renormalized level splitting 6 enters rather
than A.

We believe that the results just obtained for the su-

I

perohmic and a & 1 ohmic cases are correct "in the limit
A'b, /E~O, " in the sense that the absolute corrections to
the form of P(t) given by Eq. (7.11) are of order
(A'b, /E) for all t (Note th.at in the limit t~a& the rela-
tiue corrections are also of this order, since the value of
P(~) predicted by Eq. (7.11), namely, ( —tanhPE/2),
must be corrected to [—(e/E)tanh13E/2] in the weak-
damping case. ) It should, however, be pointed out that
for fairly short times the deuiation of P(t) from unity is
in general not given correctly by Eq. (7.11). In fact, it is
intuitively obvious (see Sec. III.B) that, in a weakly
dainped two-state system with a small but finite value of
iiib, /e, the quantity P(t) will have an oscillatory com-
ponent with a frequency E =(e +Pi b, )

~ and an ampli-
tude of order (A'b, /c. ), and that at times short compared
to the inverse of (qo/2R) J(e/A') this term will actually be
much larger than the correction to unity predicted by Eq.

This statement must, as always, be understood in an asymp-
totic sense; see Sec. V.B.
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(7.11). This term nowhere appears in the analysis of this
subsection. In fact, if we think in terms of the approxi-
rnate eigenstates of the weakly damped system, which are
nearly localized in the lower and upper wells, respectively,
but have a small probability, —(A'b, /E), of overlap into
the "wrong" well, it appears that the method of the
present section takes the overlap into account only to the
extent that it provides a decay mechanism.

VI I I. CONCLUSIONS

This has been a long and no doubt at times tedious pa-
per. For the benefit of those readers, if any there be, who
have struggled through it this far, let us try to summarize
what we think we have achieved.

First, given as always the WKB condition (b,o«coo)
and the condition to be strongly in the quantum limit
(kT «%coo.. see Sec. II for definitions), we bdieve we
have given, in Sec. II and Appendix A, a quite general
and precise prescription for converting the problem of a
system moving between two nearly degenerate potential
wells while interacting dissipatively with its environment
into the standard spin-boson (dissipative two-state) prob-
lem. This prescription works whether or not the potential
has any particular symmetry and whatever the spectrum
of the dissipative interaction, and allows in principle not
merely an order-of-magnitude but an exact calculation of
the parameters of the relevant two-state problem in terms
of those of the extended system (see Dorsey et a/. , 1985).

Second, we have shown (Secs. V and VI) that the quali-
tative behavior of the unbiased dissipative two-state sys-
tern depends quite crucially on the frequency dependence
of the dissipative coupling, J(co). In particular, if J(m)
scales as r~' for frequencies less than, or of order of, the
bare tunneling frequency, then we can distinguish four
different cases. (1) For s & 2 we get weakly damped oscil-
lations at all temperatures. (2) For 1 & s & 2 we get weakly
damped oscillations at zero temperature, but a crossover
to overdamped behavior as the temperature is raised. (3)
For 0 & s & 1 the system is localized at zero temperature:
at finite temperature it relaxes incoherently at a rate pro-
portional to exp —(const T' '). (4) Finally, in the "mar-
ginal" case of ohmic dissipation (s= 1), the behavior de-

pends qualitatively on the dimensionless dissipation pa-
rameter a as well as on T: for a & 1, and also for (rough-
ly) ukT » fib,„,we get incoherent relaxation with a rate
proportional to T; for cx & —, and ukT &AA, we get
oscillations whose Q factor can vary from infinity to zero
depending on the precise position in the (a, T) parameter
space p/us an incoherent background; and for —,

' &u & 1

the behavior is most likely a'n incoherent relaxation with
an a-dependent rate of order 6, '.

Third, we have examined (in Sec. VII) the effect of a fi-
nite bias on the dynamics and shown that, even in those

78Also the "two-state" condition c. &&%coo.

cases where the unbiased system shows coherent oscilla-
tions, a sufficient bias will suppress them. In particular,
this is true for the ohmic and superohmic cases (s & 1)
whenever the bias c is large compared to the renormalized
tunneling frequency b, (or b.„),even at zero temperature,
and the system then relaxes from the upper to the lower
well as one would expect from simple perturbation theory.

Fourth, for the special case of ohmic dissipation and
u & —,, we have been able to obtain (Sec. V and Appendix
D) a number of exact results. In particular, we have been
able to show that "in the limit co,~ ao," in the sense of
that phrase precisely defined in Sec. V, the quantity P(t)
depends only on a and the renormalized tunneling fre-
quency 6„,and is given rigorously by the function defined
by Eq. (5.40). We have carried out an approximate com-
putation taking into account "nearest-neighbor" interac-
tions only, with the results given in Table II, and believe
that for most practical purposes, in particular for study of
the macroscopic quantum coherence phenomenon, the re-
sulting expression for P(t) is an excellent approximation
to its true value. We believe that the basis for the results
just stated is sufficiently firm that the problem of ohmic
dissipation with a & —, can now safely be used, if desired,
as a test-bed for approximate theories, whether analytical
or numerical, of the general two-state problem (cf. Silbey
and Harris, 1984).

A general, and initially unexpected, conclusion from
the work of this paper is that in almost all regions of the
parameter space of the dissipative two-state system the
behavior of P(t) is qualitatively well described by the ap-
proximation (4.34) [with Eq. (4.33)] to the exact expres-
sion (4.10), that is, by what we have called the
"noninteracting-blip approximation. " We believe that
this conclusion holds for "not too long" times in the sense
defined in Sec. III, i.e., for times that, while they can be
long compared to the characteristic time scale v., are small
compared to ~inca, ~: it may or may not hold as well for
even longer times. This is demonstrated rigorously in
Sec. V for the unbiased ohmic case with o.(—,, and we

believe it to be extremely plausible in the more general
case, with, however, two exceptions. (1) The case of
(a & 1) ohmic or superohmic dissipation with a finite but
small bias, 0&v. (b. (or b.„).(2) In the ohmic case, the
very small region of the parameter space specified by
—,
' &o. & 1, kT &AA„. In the first case we are inclined to

suspect that there is a relatively simple modification of
the noninteracting-blip approximation that will give the
physically correct results. The second case is more prob-
lematic and may well display, in the real-time domain, all
the complexities familiar from studies of the thermo-
dynamics of the Kondo problem (see Sec. III.E).

79However, note the remarks in Sec. V.D: if t is large com-
pared to 6, ', even though small compared to 6, 'ln~, /6„the
noninteracting-blip approximation may give a qualitatively in-
correct picture, since the higher terms in Eq. (5.48) overwhelm
the first one.
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One may wonder what is the physics underlying the
noninteracting-blip approximation. As we have
developed it in Sec. IV.C, probably the most natural way
of putting it is that every time the system, as it were,
jumps into an off-diagonal element of the density matrix,
it forgets about the last time it did so; that is, we neglect
the environment-generated correlations between the dif-
ferent episodes in which the system finds itself in a linear
superposition of the two states. This is perhaps not very
appealing from an intuitive point of view. However, in a
very recent report Aslangul et al. (1986) make the il-
luminating observation that it is possible to obtain the ex-
pression for P(t) that follows from the noninteracting-
blip approximation in what at first sight is a quite dif-
ferent way: one first carries out the familiar unitary
transformation (3.28), so that the Hamiltonian is
transformed to Eq. (3.30); next one writes down equations
of motion for the spin components and decouples them by
replacing quantities like e ' '"e' " ' by their expectation
values for the uncoupled oscillators; and finally one
iterates the resulting equation. The final result is just our
Eq. (4.29). The second and third steps in this argument
are clearly parallel to the technique sketched at the end
of Sec. III.B and known in the chemical physics literature
as "relaxation theory, " which assumes in some sense that
the system does not perturb the environment very much;
thus the noninteracting-blip approximation could be re-
garded as equivalent to the assumption that the process of
tunneling (not the system-environment interaction) does
not disturb the environment too strongly [see also
Zwerger (1983a, 1983b)]. While this approach to the
derivation of Eq. (4.29) is perhaps intuitively more ap-
pealing than the functional-integral method used in Sec.
IV, the advantage of the latter is that it allows us to dis-
cuss rather simply the justification for Eq. (4.29) and put
more or less rigorous bounds on the corrections to it—a
goal which, we emphasize, is a major point of this paper.

In comparing the results of this paper with those in the
existing literature, it should be carefully borne in mind
that, while we have indicated how our general formulas
can be used to obtain expressions for the correlation func-
tion C(t) [Eq. (3.7)], the explicit results given in this pa-
per are for the quantity P(t) defined in Sec. III.A. By
contrast, most of the papers in the literature either calcu-
late C(t) or some related linear-response quantity, or
work out formulas for (o.,(t) ) without explicit specifica-
tion of the boundary conditions on the environment at
t=O. Thus we would not necessarily expect the formulas
obtained to be identical (although it would be surprising if
the qualitative features, e.g. , oscillation versus incoherent
relaxation, should turn out to be different according to

We would emphasize, however, that the derivation of Eq.
(4.29) given by Aslangul . et al. (and sketched above) is not
equivalent to "relaxation theory" as that term has been tradi-
tionally understood in the literature (see, for example, Nitzan
and Silbey, 1974), which indeed gives quite different results.

9o J(co) dckco,
477 CO

(8 1)

whereas it remains unbroken when Eq. (8.1) is violated.
This conclusion does not agree with those of this paper
for any value of s: we find that the symmetric is always
broken for s & 1 and never broken for s & 1, while for s = 1

we find that the localization transition occurs at o.= I
rather than the much smaller value a-6/co, which
would follow from Eq. (8.1). Since for realistic chiral

Moreover, as remarked in Sec. IV.C, to the extent that both
P(t) and C(t) can be calculated by the noninteracting-blip ap-
proximation they should be ideritical for co, t &~ 1.

However, for the reasons given in footnote (14) of Cxarg

(1985), we are unable to concur with the claim of Silbey and
Harris (1984) that the conclusions of their simple variational
calculation agree "in almost all details" with those of Charka-
varty and Leggett (1984) (or even with the noninteracting-blip
approximation to the latter).

which quantity is calculated). ' Partly for this reason,
and partly simply owing to shortage of space and time,
we shall not attempt here a detailed comparison with the
work of others (with one exception specified in the next
paragraph). However, we should of course remark that a
number of features of our results for specific regions of
the parameter space have been obtained in the existing
literature, by arguments of the kind sketched in Sec. III or
related ones. What has been lacking is a unified tech-
nique that would give each of these (qualitatively very dif-
ferent) results in that region (and only in that region) of
the parameter space where it is actually valid, while de-
lineating clearly the boundaries between the various re-
gions. This we hope to have supplied in this paper; in ad-
dition, we have filled in a number of regions (e.g., the
subohmic case, the superohmic case with 1&s&2, and
the ohmic case with a & —,

' but not «1), which, at least
until very recently, had received little Or no discussion.

There is one set of results in the literature with which it
is particularly illuminating to compare (some of) the con-
clusions of this paper. In a series of papers, Pfeifer
(1983a, 1983b, and earlier references cited therein) has
considered the problem of a chiral molecule interacting
with the radiation field. If one makes the so-called dipole
approximation, the resulting Hamiltonian is precisely of
the "spin-boson" form; if, moreover, the dipole matrix
element does not vanish (as is the normal case), then the
form of J(co) is what we have called ohmic. At first
sight the results obtained by Pfeifer appear to resemble
ours closely: he finds, like us, that a sufficiently strong
interaction with the environmerit can break the symmetry
and "localize" the system (i.e., give the molecule in ques-
tion a definite chirality). On closer inspection, however,
the resemblance dissolves: if we understand his con-
clusions correctly, Pfeifer finds that at zero temperature
the symmetry is always broken, at least partially, whenev-
er the parameters satisfy the inequality (in our notation)
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I

molecules the quantity a is certainly very small compared
to 1 (but quite possibly large compared to 5/co, ), our
conclusions about the effect of the radiation field on such
systems even within the dipole approximation would be
qualitatively quite different from Pfeifer s. As for his re-
sults on the Hamiltonian obtained by the "rotating-wave"
approximation (see Sec. I), we believe that they are correct
but, for the reasons given in Sec. I, irrelevant to the spin-
boson problem.

As remarked earlier, this paper is essentially about a
problem in applied mathematics, namely, the dynamics of
the model specified by the Hamiltonian (3.1). The ques-
tion of precisely which physical systems found in nature
are well described by this model, and what is the ap-
propriate form of J(co) if they are, is one which there is
no space to discuss here (except in the sense in which it is
treated in Sec. II). A proper discussion would need to
take into account the physics specific to each case and
would probably double the length of this paper. %"e hope,
nevertheless, that (with the caution expressed in the
penultimate paragraph of the Introduction) our results
may help to provide theoretical orientation for work ori
the many two-state systems that occur in solid-state phys-
ics, in chemistry, and elsewhere.

Finally, it is worth noting that the problem we have
studied in this paper is probably the simplest example of a
quantum-mechanical problem that has simultaneously the
features of being in the extreme nonclassical limit (see
Leggett and Garg, 1985) and being extremely sensitive
to dissipation. It is therefore a crucial test-bed for
quantum-mechanical many-body theory and would be im-
portant as a model problem even if it had no experimenta1
realizations.
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tildes on M and V in Eq. (2.1), and where the coupling to
the environment satisfies the constraint

In this appendix we consider a system whose Lagrang-
ian, including its interaction with its environment, is
given by Eq. (2.1), with the special choice I'J.(q)=qC/,
and with a low-frequency cutoff on the environmental
spectrum. That is, the Lagrangian is

l. (q,j:[x/,x/I ) = ,'Mj —V(q—)+—,
' g mj(x 1 co x )— . -
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with the lower cutoff arbitrarily chosen as described in
Sec. II. The important feature of the problem (see Fig. 9)
is that V(q) has two local minima, which occur at points
that, by a suitable choice of the origin of q, we denote
+ —,

'
qo. The quantity [ V( —,

'
qo) —V( ——,

'
qo)] will be

denoted 7.. The (undamped) classical small-oscillation fre-
quencies around these two minima will be called m+ and

, respectively, and the order of magnitude of the actual
lowest characteristic frequency of classical motion will be
denoted co,&, thus, for weak damping, we have
co,~-co+,co, while for strong damping (in the ohmic
case) we have co,&-Mco+/rI, Mco /g, where q is the fric-
tion coefficient (we assume, for notational convenience

83The {exactly soluble) problem of the quantum damped har-
monic oscillator, by contrast, corresponds to the extreme semi-
classical. limit.

84The generalization to other forms of F~(q) introduces no new
features at this stage; see Sec. II.
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only, that co+ and m are of the same order of magni-
tude). The renormalized tunneling frequency, to be calcu-
lated below, will be called 6; it is assumed that by an
appropriate choice of co, we can ensure that
6 &&r~, &&co,], i.e., that the classical one-instanton action
S,~

calculated below is large compared to R.
We shall consider the system described above in the

limit that the quantities A'b„E,and kii T (and E, see below)
are all small compared to fuu, (and hence a fovtiori to
Ac@,~) but may have any magnitude relative to one another.
What we shall show is that under these conditions (a) the
partition function of the system is identical to that of the
"biased" two-level system described by the Hamiltonian
(1.1), with, however, E&Y in general; (b) there is a unique
prescription for calculating, from the Lagrangian (Al),
the parameters of the two-level problem; and (c) to lead-
ing order in the small quantities 6/co„etc., the parame-
ters b„s,and kii T/A' are independent. [The importance
of the last result is that it means that the predictions of a
calculation based on the spin-boson Hamiltonian (1.4) are
in principle accessible to experimental test; see below. j
Although most if not all the ingredients of the calculation
to be undertaken below are by now well known, we are
not aware of any existing reference where it is explicitly
written down, and in view of the importance of obtain-
ing a. firm conceptual basis for the spin-boson Hamiltoni-
an we feel that it is worth giving here.

The partition function Z (P) may be written in terms of
the (unnormalized) system reduced density matrix
p(q, q ':f3) in the form

Z(I3)= f p(q, q:P)dq, (A3)

where p(q, q':P) is defined as

p(q, q':P)—:g f Q dx;%„(q,Ix; I )%„(q',Ix; ] )exp —PE„,

(A4)

in which n labels the energy eigenstates of the whole

85In view of the results of Caldeira and Leggett (1983) and
Leggett (1984b), it is clear that in the case of "normal" dissipa-
tion a sufficient condition for this assumption to hold is the in-
equality Vo &&Am, &, where Vo is a typical barrier height (it is
implicitly assumed here that the barrier shape is not too patho-
logical). Thus the condition may well be fulfilled for a heavily
damped system, even though it was not for the corresponding
undamped one. For the (unusual) case of "anomalous" dissipa-
tion, special care is necessary; see Leggett (1984b), Sec. 3A.

It actually turns out that a sufficient condition for the validi-

ty of the results of this section is c «Ace, ~ (with no restriction
on 7.). The regime A~, &&c &&%co,~, while formally covered by
these results, is, however, not very interesting, since we must
have 6/co, « 1, and so in this regime would have AA/E « I, a
limit in which the spin-boson problem fails to show its full gen-
erality.

We are not even aware of any such complete calculation for
an undamped system for the case in which co+ and cu are dif-
ferent (though see Zinn-Justin, 1983, Sec. 3).

"universe" (system-plus-environment). We express
p(q, q:P) as a path integral and integrate out the environ-
mental degrees of freedom in the standard way (see, for
example, Caldeira and Leggett, 1983, Sec. 4), obtaining
thereby

q(P%) =q
p(q, q:P) = Dq (r)exp S,—rf[q(r)]/fi,

where the effective action S,rr is given by

S ff[q (r)]= f d'r[ ,' M—q '+ V(q)]

(A5)

+ —, f dr f dr'a(r r')—

X [q (r) q(r')—]' (A6)

For q between the two maxima of V;(q) there is of course
another class of paths, in which the system just moves to the
distant maximum. However, it is easy to see that for the impor-
tant values of q the corresponding contribution to p(q, q) is
suppressed by a factor -exp —2S,~/A'-(6/co, ~) relative to that
of the paths described above.

with ~(r—r') given by Eq. (2.7). To make sense of the
last term in Eq. (A6) we need, strictly speaking, to specify
that q(r) is to be continued outside the range p&r(piri
by the prescription q (r+Pfi) =q (r); however, since
a(r —r') falls off as t "+ ~ for t&&co, (see Sec. II),
i.e., faster than t, it is clear that the effect of this con-
dition is negligible for f3fico, » 1, and we shall ignore it in
what follows, assuming that both integrals in the last
term of (A6) can be taken from 0 to PR. Note that in
writing Eq. (A5) we have dropped a multiplicative term
corresponding to Ko(T) of Eq. (4.23) of Caldeira and
Leggett (1983), on the grounds that for PAco, »1 it is
negligibly different from exp —Pg fico~/2, and hence
only shifts the zero of total energy.

We can evaluate p(q, q) in the standard way by finding
the classical paths (or near-classical paths; see below) in
the "inverted" potential V;(q)—= —V(q); those paths give
the exponential factor in p(q, q), and the small fluctua-
tions around them give the prefactor. %'e immediately
note one simplifying feature: p(q, q) is large only near the
local minima + —,'qo of the potential V(q) [maxima of
V;(q) j. In fact, it is appreciable only for

~
q+ —,

'
qo ~

& q,~,
where q,z (q,~ ) is the zero-point uncertainty in position of
a particle of mass M moving in the harmonic potential
which approximates V(q) near + —,qo. Since it follows
from the formula to be derived below for the tunneling
matrix element b, , together with the results of Caldeira
and Leggett (1983, Sec. 5), that within logarithmic correc-
tions the quantity b, /co, i is of order exp —A,qo/q, ~, A, —1,
it is clear that to within corrections of relative order
b, /co, i the potential in the regions that make an appreci-
able contribution to the partition function can be approxi-
mated by its harmonic form. Moreover, for q in one of
these regions and f3fico,i»1, the overwhelming majority
of (near-) classical paths that start from q at "time" zero
and return there at "time" PR are paths in which the sys-
tern starts out in the direction of the nearby maximum
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of V~(q) with just enough kinetic energy to reach it, sits
there and at the other maximum for long periods with oc-
casional transits between them, and finally rolls off so as
to return to q, with finite kinetic energy, at time PA. The
classical action along this type of path (we take q near
+ —,qo for definiteness) differs from that along the related
path for p(qo/2, qo/2) only by the small pieces occurring
near the end point, which for PFuu, »1, b, /co, «1 are
essentially identical to the pieces that would occur were
we to calculate p(q, q) for a single-well harmonic potential
with minimum at —,qo. Furthermore, the prefactor is
identical in the two cases, since the expression that deter-
mines the eigenvalues of the spectrum of small fluctua-
tions (see below) is everywhere identical, in this approxi-
mation, for the paths determining p(q, q) and
p(qo/2, qo/2). Thus we reach the physically rather obvi-
ous conclusion that the ratio p(q, q)/p(qo/2, qo/2) for
those values of q near —,

'
qo which contribute appreciably

to the partition function of the two-well system is identi-
cal, in the limit b, /co, ~

—&0, to the value it would have for
a particle moving, with the relevant damping, in a single
harmonic well centered at —,

'
qo and with the same value of

V"( —,'qo) as the real potential. The form of p(q, q) for a
damped harmonic oscillator may be obtained in any num-
ber of ways, in particular by a path-integral method (see
Caldeira and Leggett, 1983, Appendix B). It is propor-
tional to exp —q /q, z, where q is now measured from the
potential minimum and the zero-point spread q,~ is given
by Eq. (B9) of this reference, with 13~oo. In the limit of
interest to us (Pfico, »1, Pfico,»&1), the definition (A5)
of p(q, q) shows that it is normalized, for the damped os-
cillator, by Ip(q, q)dq =exp —PEo, where Eo is the
ground-state energy of the oscillator-plus-environment
(with the quantity g. fuoj /2 subtracted). Thus, if for the
two-well problem we denote p(qo/2, qo/2) by p+ and

p( —qo/2 —qo/2) by p, then apart from an overall nu-
merical constant we have

z(P)= [(q,~ )p++(q,~)p

Thus from now on it is adequate to consider only those
paths that start and terminate at the local maxima + —,

'
qo

of V;(q).
Let us choose for definiteness the deeper well to be the

one occurring at +qo/2 (i.e., redraw Fig. 9, so that 7. & 0)
and consider the possible paths that start and end there;
for subsequent convenience we consider a general time in-
terval T, not necessarily equal to /3A', between the start
and finish. As usual, the paths are of two types. First,

C+ (T)=const + IM[co++to„+II(co„)]I
n=0

COn —717T/T (A8)

(A quantity C is defined by a similar expression with
co+~co . ) The question of the value of the constant in
Eq. (A8) is somewhat delicate; it is a function of the pre-
cise definition of the functional integrals over q and the
x; in the expression [Eq. (4.12) of Caldeira and Leggett
(1983)] which, after integration out of the x;, led to Eq.
(A5) above. For a set of harmonic oscillators coupled to-
gether by a linear coordinate-coordinate coupling it may
be shown explicitly that there is a unique choice of the
definition, which depends only on the oscillator masses
and not on their frequencies or couplings, that guarantees
that the ground-state wave function is normalized apart
from a factor exp —EOT/A. Thus, with the linear cou-
pling described by Eq. (Al), it follows that we can always
choose the definition so that p(q, q) is normalized for both
the damped harmonic oscillators, i.e., that centered at
+ —,qo and that at ——,qo, apart from a similar T-
dependent factor that will in general be different for the
two oscillators. Equivalently, we can choose the constant
in Eq. (A8) in such a way that for to,&T»1 we have
(apart from a common numerical factor of order unity,
see above)

C+(T)=(q,~) 'exp A+T, —

C (T) =(q~ )exp —A T, (A9)

where C is the corresponding contribution of the small
fluctuations for the oscillator at ——,qo, and A+, A are
defined by

A+ (T) =const + ~ g in[co+ +co„+II(co„)]
n

there is the "trivial" path, q(r) =+qo/2 for all r. If we
choose the zero of energy (for the moment) to lie halfway
between the minima V(qo/2) and V( —qo/2), then from
our definition of the bias c the action along the above
classical path is + —,'YT/A. To calculate the small fluc-
tuations around this path we introduce the quantity
II(to)= —M '[a(co —a(0)], where a(co) is the Fourier
(not Laplace) transform of a(r —r'). II(co) is related to
J'(tv) by Eq. (2.19) of Leggett (1984b); note in particular
that for an ohmic spectrum with low-frequency cutoff co,
we have II(co) =2y

~

to ~, (y=g/2M) for co &&co, . Using
Eq. (B4) of Caldeira and Leggett (1983) or its generaliza-
tion, we see that the contribution of the small fluctuations
around the classical path to p+ is the multiplicative factor

Strictly speaking, in the ensuing arguments q,p should be
everywhere replaced by {p'+') ', where p'+' denotes the probabili-
ty density at +qo j'2 of the appropriate damped harmonic oscil-
lator centered at this point. This differs from q,p by the numer-
ical factor m' . Since q,p will cancel out of the final answer
anyway, we do not write this factor explicitly to avoid cluttering
up the formulas.

co„=nor/T, (A10)

where the constant is such as to guarantee the result (A9).
Evidently Eq. (A10) diverges at the high-frequency end,
and in contrast to the undamped case this divergence is
not eliminated, in the ohmic or superohmic cases, by sub-
tracting of the corresponding expression for a free parti-
cle, until we take account of the high-frequency cutoff on
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J(co) [hence on II(co)]. This simply reflects the fact that
the energy shift of the "universe" ground state due to the
system-oscillator coupling is ultraviolet divergent in these
cases, as can easily be seen from second-order perturba-
tion theory. However, in the present context what is im-
portant is not the absolute values A+ but the difference
6A=—A+ —A . This is given by

00 co++co + II(co)
6A= dm ln

2m
,

co +co +II(co)
(Al 1)

and is ultraviolet convergent for any form of II(co) [recall
that II(co) is, by Eq. (2.19) of Leggett (1984b), always pos-
itive]. For the special case of no dissipation [II(co)—:0]
the quantity 5A is simply (co+ —co )/2, as we should ex-

pect, since it is simply A' times the difference in zero-
point energies of the two oscillators. In the case of ohmic
dissipation with damping constant y=—g/2M, we can
evaluate 6A explicitly for all y. The result is

5A= ,
'

[co+—f(a+) co f—(a )], (A12)

where a+ —y/co+ and f(a) is the function defined
by Eq. (B29) of Caldeira and Leggett (1983). For strong
damping 5A is of order (co+ —co )/2y to within logarith-
mic factors.

Putting together the results of the above few para-
graphs, we see that if we could confine ourselves to the
"trivial" paths discussed there, i.e., if we could neglect
transits between the two wells, then the partition function
would be given by

Z(P) =(q,z )p++(qz )p

=(q q
)exp( —,'YT/A)C+ —(T)+(q~)exp(+ ,'YT/fi)C—(T)

1 1=exp ————A+ T+exp + ———A T (T—:Ph') .2A + 2A (A13)

By a suitable redefinition of the zero of energy we can
reduce this to the form

Z(P) =cosh(PE/2), e=7+fi5—A .. (A14)

Thus the partition function is equivalent to that of a
two-state system in which the states are each localized
within one of the wells: the energy splitting c. is the
difference e in the potential minima plus the difference in
zero-point energies, as we should have expected intuitive-
ly.

We now turn to the second important class of paths,
namely, the "tunneling" paths in which the system moves,
at intervals long compared to m, ] ', from one well to the
other. In the special case of a totally symmetric double
well (E=E=0), the calculation of these paths to the parti-
tion function is straightforward and proceeds in the usual
way (cf., for example, Coleman, 1979; Olive et al. , 1979);
there is a classical path (the so-called instanton) that takes

1 1the system from + —,qo at r= —ao to ——,qo at r=+ oo,
with q(r) appreciably different from these values only for
a time of order co,&', and we simply assume that for
Pfm, i&&1 we can approximate the total path by a se-
quence of such paths and their inverses, calculating the
action on each instanton segment as if it were the only
one in an infinite time range. The fact that we have a
low-frequency cutoff on the environment spectrum
guarantees that the single-instanton action S,] remains fi-
nite, though in the ohmic and subohmic cases S,] has an
important dependence on co, (see Sec. II).

For the general case (E and/or E+0) the situation is

somewhat more complicated. In the first place, for 7&0
there is no classical path that brings the system from rest
at + —,'qo to rest at ——,qo. To deal with this complica-
tion we note that there is nothing particularly sacrosanct
about paths that solve the classical equation of motion;
the only advantage of using them as, as it were, the first
approximation to the physically important paths is that
the contribution of the fluctuations around them has a
particularly simple form. In the present problem there is
no reason why we should not use, as our first approxima-
tion, a "near-classical" path, i.e., one that satisfies the
classical equation of motion for most but not all of the
time. A convenient choice of such a path is given by the
following prescription. Suppose that + —,'qo is the deeper
minimum: then, in the inuerted potential, a system rolling
off the corresponding maximum with zero initial kinetic
energy would reach the lower maximum at ——,'qo with
sufficient energy ( —E) to overshoot it Imagine. , however,
that we add to the lower peak an extra harmonic piece, as
indicated in Fig. 10, equal to

[E——,
' M~' (q + —,

' qo)']@~q —
l q +qo/2

l
),

where bq:—[2( —e)A'/Mco ]'~. Then the system, mov-
ing classically ' in the new potential, would come to rest
exactly at the point —qo/2, and moreover the function
q (r) and its first two derivatives would be finite along the
classical path in question. We take this classical path
[call it q„,i(r)] as the zero-order "near-classical" path for
the actual potential, evaluate the action along it, and con-

In computing the energy shift it is essential to include the ef-
fect of the "counterterm" (the last term) in Eq. (A1).

In the actual calculation of the classical path we m.ust of
course include the nonlocal term in the equation of motion
which arises from the last term in the effective action (A6).
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(A18)

where the quantity ~, which will be subsequently identi-
fied as (2/A' times) the "bare" tunneling matrix element
for the two-state problem, is given by

+ pqo

FIG. 10. Fictitious potential used to construct the "near-
classical" path for c&0.

2DO(ti )

(q pq p)' C+(t, )C (T t, )—
' I/z

g )fc

x+ exp —~cI27'

Here Do(i&) is defined as

(A19)

sider the small fluctuations around it. If we write
q(r) =q„,i(r)+5q (~), where 5q ( —oo ) =5q ( ao ) =0, then
the "fluctuation" term in the action 5S=S,ff[q (~) ]—S,ff[q i(~)] contains as usual a term 5S' ' that is qua-
dratic in 5q (~), but also a term 5S"' hnear in it, which on
using the equation of motion of q„,i(~) takes the form

5S"'= IMco Z„,(ir) 5q(r)8[hq —Z„,( i)r]dr, (A15)

where for brevity we have defined Z„,(~i) ==q„,i(r)+qo/2.
Since 5S' ' has the standard form, bilinear in 5q(r) and
5q(~), we can define the corresponding normalized eigen-
vectors q„(r)and eigenvalues A,

„

in the usual way. Were
it not for the term 5S'"', the small fluctuations [other
than the "zero mode" qo(r) =constdq„,i(r)/d~, for which
see below] would give the standard factor
Do =—+„oA,„'(where Do actually depends in general

on the position of the bounce center; see below). The ef-
fect of the term 5S"' is to multiply this expression by the
extra factor

F=exp g C„A,„'A'
n&0

where C„is given by

C„=(Mco ) J—Z„,&(~) „q(~)9[6q Z&( )r] ~d—.

(A16)

(A17)

Note that the contribution of the projection Co of 5q(~)
on the zero mode gives no contribution to F. In fact, the
total contribution of the zero mode to the functional in-
tegral is the same as it would be if the path q„,&(r) were
truly classical, that is, (B*/2vrA)'~ T where B* is the in-

tegral of twice the kinetic energy along the path [see erra-
tum to Caldeira and Leggett (1983)], and T is the total
time allowed for it.

We must finally take into account the fact that, when
evaluating the complete partition function, we must not
overcount the contribution of the small fluctuations
around the long pieces of the path where q(w) is near-
ly stationary at the values + —,q0. To ensure this we di-
vide the result obtained so far by the quantity
C+(t&)C (T t, ), where C+ (i) was—defined in Eq.
(A8). It is convenient also to multiply and divide by a
factor (q,~q,~ ) and thus to write the total multiplicative
factor associated with a single-instanton event in the
functional integral in the form

D'(& )= + &„(&),
n=I

(A20)

9zNote that it is irrelevant to this conclusion whether 7 is corn-
parable to Ace, or even Ace, ~ (as in realistic cases it might well
be).

where k„are the eigenvalues of the bilinear form
representing the correction to the action from the small
fluctuations around the (near)-classical instanton path for
an instanton centered at time ti (the "zero mode" corre-
sponding to a rigid time translation of the instanton is
omitted in the product); C+(ti) and C (T t, ) are —de-
fined as in Eq. (A8); F is the expression (A16); B* is the
time integral of twice the kinetic energy over the instan-
ton path q„,&(r); and S,i is the action evaluated along this
path. The expression for an "anti-instanton" (classical
path going from ——,qo to + —,

'
qo) is obtained from Eq.

(A19) by the substitution C++~C [the (near)-classical
path is the time-reversed version of the instanton, and
hence S,i,F,B* are unchanged and Do(ti) is changed
only in a trivial way; see below].

A number of features of Eq. (A19) should be noted.
First, it is clear from Eq. (A19) that the quantity in large
parentheses, and hence the whole expression (A19), has
the dimensions of frequency, as it should. Second, al-
though the quantities D0 C+, and C individually de-
pend on the value of t I, it is clear intuitively that the
combination in large parentheses must be independent of
tI, and thus 6 is also independent of the time at which
the instanton occurs. By the same argument, the factor
for an anti-instanton is identical to b. Third, if we com-
pare two forms of potential V(q), one of which gives c.=0
and the other a finite value of E small compared to fuo, i, it
is clear that the difference in the action S,I evaluated
along the (near)-classical path in the two cases can be at
most of order e/%co, &. The other factors in Eq. (A19)
similarly depend on z only to this order. Thus, in the
limit of interest to us (5/co, i, kiiT/fico, ~, E/Ace,

&
all very

small compared to unity), it is consistent to treat 6, E, and
k&T/fi as independent parameters whose relative magni-
tudes can be varied at will by suitable adjustments of the
experimental conditions.
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The actual evaluation of Eq. (A19) for a particular
form of V(q) and of J(cp) may of course be far from
trivial: compare Caldeira and Leggett (1983, Sec. 5 and
Appendix D) and Chang and Chakravarty (1984), where
the analogous calculations are done for the case of tunnel-
ing out of a metastable well. The important point for our
purposes is that b. (a) is in principle defined, by (A19),
uniquely in terms of the parameters of the original two-
well problem, and (b) depends on the low-frequency cutoff
co, . The implications of point (b) are discussed in Sec. II.

The final stage of the calculation of the partition func-
tion Z(P) is now straightforward. We consider all those
paths that start from, say, + —,qo and include n instan-
tons and n anti-instantons. If we choose the zero of ener-

gy to lie at the point

—,
' [V(—,'qp)+ V( ——,'qp)+ —,'A(A++A )],

then a time interval dt spent in the + well (the lower
one) will have associated with it a factor exp( 7/2)dt—/A
from the classical action and, according to Eq. (A9), a
factor (q,z) 'exp( 5A)dt fr—om the harmonic fluetua-

tions around the classical (trivial) path. Thus the total
factor associated with this interval is ( q,~ ) 'exp( c,/
2)dt/A, where e is 7+.fi5A The corresponding factor for
the —qp/2 well is (q,~) 'exp( —E/2)dt/A', According to
Eq. (A19), each instanton or anti-instanton is associated
with a factor (b, /2)(q, ~q,„)'~ . Thus, in the expression
for p+, all the factors of (q,z) ' cancel, as do all the fac-
tors of (q,z) ' except for the last, which is in turn can-
celed by the factor q,~ in the expression (A3) for Z(13). A
similar remark applies to paths that start at and return to
—qp/2. We finally obtain for Z(P)

(A21)

where the coefficients S„(P)are defined by

Sp(P) =2 cosh(PE/2),
(A22)

S„(P)= —,
' [S„(P:c)+S„(P:—e)]—:S„(P:E),n & 0

where

PA n g —1S„(p:s):—2 f dt2„f dt2„) . . f dt&exp g (t,, +, —t,, ) —g (t,,+, t,, +—, )
j=0 j=0

(A23)

( t2„+i =13fi, tp =0). —
It remains for us to show that the series (A21) is identi-

cal to the partition function of a two-level system with
bias E and tunneling matrix element b,h'/2, that is, to the
expression

Z(P)=2cosh —(s +A' b, )'i
2

(A24)

(A25)

derive from it the relation

d S„(f3:e) S„()+S„((
d(Pr ' (A26)

and apply Eq. (A26) to the series (A21), obtaining
2d Z(P:c, ) i (~ 2 2 +2)Z(~)
d (Pfi)

(A27)

Since Z(0) is clearly 2 and (dZ/d13)~ p equally clearly
zero, the unique solution of Eq. (A27) is of the form
(A24). This completes our proof.

We finally add a brief note on the generalization to the
case of a general FJ (q) in the original Lagrangian (2.1). If
the range of the functions E~(q) is large compared to the
zero-point spreads q,~ [which, of course, in the strongly
damped case must themselves be determined self-

To demonstrate this we simply write the recurrence rela-
tion

13fi t'
S„(P:E)= f dt' f dt exp (Ph 2t'+t)—

I

consistently, taking account of the form of F~(q)], then
the generalization is entirely straightforward; in this case
the situation in the harmonic regions (

~ q qp/2
~
(q,z ) is

identical to that discussed above, the only difference be-
ing that CJ is replaced (for the purpose of obtaining the
oscillator characteristics only; see Sec. II) by
(BFJIBq)q +&&2~ . The only effect of the different form
of FJ(q) is then to modify the expressions for the parame-
ters of the two-state system as detailed at the end of Sec.
II.

The case in which F/(q) has a range comparable to, or
shorter than, q,z is more troublesome. In this case the
probability density distribution for the relevant isolated
damped harm'onic oscillator is not in general Gaussian,
and a number of the results we have used above fail. %'e
would regard it as improbable in the extreme that these
differences change the qualitative features of the results
obtained here. At worst they are likely to give us a more
cumbersome expression for the "bare" tunneling matrix
element that enters the two-state problem. At the time of
writing we have not worked out the appropriate theory in
detail.

With one exception: If the damping of the osci11ators at
+ z qo is different, then the expression for 5A [Eq. (Al I) above]
has to be modified, with II(co} replaced by II+(co}[II (co)] in
the numerator (denominator). The quantity 6A may then de-
pend on the high-frequency behavior of the environment, not
Just on its behav101 for QP + Q)c
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APPENDIX B: ALTERNATIVE DERIVATIONS
OF EQS. (4.1) AND (4.17)

1. Relation between P&'&(t) and P&2&(t)

In this part of this appendix we shall show that the
quantities P"'(t) and P' '(r) defined in Sec. III are identi-
cal for a system coupled to a bath of oscillators with arbi-

trary spectral density. We do this by calculating P~ '(t) in
exact analogy with the calculation of P' '(t) in Sec. IV
and showing that we recover Eq. (4.1).

Let us recall that the influence functional
F[x(r),y(r')] used in Sec. IV is a product of single-
oscillator functionals. For each such oscillator, whose
coordinates we denote here by X and Y, this is defined by

F[x y] = f DX f DY f DX dY'dX'fp'(X~, Y ) exp [Sp(X)—So( Y) +S&(X x)—S~ ( Yy)] (81)

Here, So is the action for the oscillator trajectory X(r) in
the absence of interactions, and S& is the action arising
from these interactions; p; is the initial density matrix of
the oscillator at time t0, and it is understood that
Yf ——Xf. The result (4.5) is then true for any to and t,
provided p; is the thermal equilibrium density matrix
[which we denote here by pzh(X;, Y;)] for an oscillator
whose mean position is given by (X ) =0.

The probability p(xf. t) that a system which was at
x =x; at t =0 will be found to have a location xf at a
later time t, given that the environment was in equilibri-
um with the system at t =0, is defined in analogy with

p(xf t) of Eq.. (4.1),

p(xf..t)= f Dx f Dy 3[x]A'[y]F[x,y], (82)

where F is again a product of single-oscillator functionals
such as (81), with the difference that now to=0, and p,.
describes an oscillator in equilibrium under the action of a
steady force —Cx;, so that

where

X =X —XI (86)

S2(x)=
t

x; f [x(r)——,'x;]dr,
Ul CO

and X and X are related by the same shift as in (84). It
follows that

F[x,y] =exp —[S2(x)—S2(y)]F[x,y ] . (88)

2lF[x y]=exp x; f d7 [x (1 ) —y(1 )]L3(1 )

XF I x,yli, =o, (89)

Multiplying the F's for all oscillators, and using Eqs. (3.2)
and (4.6a,) of J(co) and L& in Eq. (4.5) for F, we get for
the full influence functional

with

p;(X;, Y;)=prh(X~, Y ), (83)

" J(co)L3(r)= coscovdco .
CO

(810)

CX;
Y+

Pl CO

It is now straightforward. to show that

Sp(X)+S&(X,x) =So(X)+S&(X,x )+S2(x)

(84) We have explicitly indicated in Eq. (89) that in using
Eq. (4.5) to evaluate the influence functional pertaining to
P"'(t) we are to set to ——0, as opposed to taking to~go
for P' '(t). Note, however, that as a consequence of the
constraints (4.2),

2iF[x,y], „=F[x,y], Oexp x; dr[x(r) —y(r)]L3(r) (811)

where co=0, then the contribution from t0 vanishes in the lim-
it and L 3 (r) =L 3 (r). Therefore,

0 oo

L3(r)= lim f ds f den J(co) sinco(r —s) . (812)
'o F [x,y],, =F[x,y], (813)

It is easy to show that if J(co)/co is integrable near
which proves the equivalence of p(xf. t) and P (xf.t), and
a fortion of P'"(t) and P'i2'(r).

The constant C is the coupling constant C; appearing in Eq.
(2.1) for the oscillator in question.

This condition covers all the spectral densities of interest. In
fact, if it is not satisfied, the problem is "pathological. "
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2. Alternative derivation9s of Eq. (4.17)

It is convenient for the present purpose to write the
Hamiltonian H in the second-quantized notation

H = ——,
'

Ab cr„+—,Ei7, + g fico~(a ~a ~+ —,
'

)

but the environment is any possible state m. A sum over
all possible final states of the environment is denoted by a
sum over m. We now calculate 8', using standard time-
ordered perturbation theory. The method followed here is
discussed in detail by Chang and Chakravarty (1985).
For convenience let us write

1

+TVocrz gfu(aa+aa) r (814)
H=Hp+Hi (816)

—~En

8'„=g
nm

~

G"'„(tf,r;) ~'. (815)

Here E„arethe energy levels of the environment and
Z,

„„

is the partition function. G~i'„'(tf,t; ) is the probabili-
ty amplitude for the transition in which at t; the environ-
ment is in state n and the spin g, and as tf the spin is g

where f~ =(A'/2m~co~)'/ C~. Given this Hamiltonian we
ask the following question: Suppose that at time t; the
spin is definitely known to be in a given state, say &, and
the environment is in its thermal equilibrium state. Then
what is the probability 8', that at time tf & t; the spin is
in the same state t, but with the environment in any other
possible state? 8', is then given by

0 = —,co.,+H, +o,H,

Hr= ——
X

The environment Hamiltonian H, is given by

H, = Q fico {a a + —,
'

)

and the coupling term H, is given by

H, = —,'qogf (a +a ) .

Therefore

(817)

(818)

(819)

G „(tt;)f=(mt e' " ' '' "Te p —x—J V(IIdt nil .
l

(820)

iHot/fi
The operator V(t) = —(A'/2)be ' cr„e

—iHot/A Thus

00 tf tl t
G „(tf,t;)= g —— f, dt, f, dry. f, dt„(mf ~e

n=0
V(t, ) V(t, ) . V(t„)

~

n t ) . (821)

Now, noticing that Hp is diagonal in the spin space, it is possible to write
2l +2j

oo oo 2i —1 f s2J' 1

W, =$ ${—1)'+1 — f dt, f dt f f ds, . f ds
i =0 j=p S E l l

PE

x
Zenv

iHO+S& /A —iHO S& /R, , iHO S&/A' iHO+S&/ii—

WHO+ t1 /R —(HO t1/A' IHO t2. /I —WHO t2) /A'
(ni (e + e ). . . (e 0 Zl e 0+ 2i

)
~

)

where

(822)

E,

Hp+ ——+ —+H, +H, .8 — C

The sum over the intermediate states
~

m ) can be carried out, resulting in
2l +2j

W, = $ $ ( —1)' J — f, dry f dtz; f dsi f, ds2jge "(n
~

.
~

)n,
2i —1 f 2j —1 —PE„

eIlv j =p j =p n

(823)

(824)

This derivation is included mainly because, following the appearance of the paper of Chakravarty and Leggett (1984), a number of
papers by other authors have characterized the functional-integral derivation used in it and here as "very complicated, " or words to
that effect.
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where the integrand is
—pE —pII iH'0+$2J/A' IHp Sp&/A' iHp S& /R iHp+s& /fl)j j

iHp+ i ] /A iHp i& /A 'iHp &2; /& (825)

Here the exponential factors do not commute with each other. We now order the operators on the contour Cs (5 infint-
tesimal), as shown in Fig. 11. Let us also define

21

g(z) =g+(z) = g ( —1) +'[&(z —t ) —&(z —t +))] (826)

when z is measured along segment I (9 is the usual step function), and

2J

g(z) =g (z) = g ( —1)" '[&(z —s„)—&(z —s.+~)] (827)

when z is in segment II. Finally, we set g(z) =0 for z in segment III. For W, we then have
2i +2j

oo oo tf 2j —1$ ( —1)' +J — f dt, f, dt2; f ds& . f, ds2J
Zenv i =O j=O l t

e

f dzg(z) Tr Tc exp i/A—f dz [H, (z)+g(z)H, (z)]
2A 5 Cg

(828)

If we define

Tcexp ——' dz II, z+~ zII, z (829)

then it follows that

oo oo

W, = g g ( —1)'+J
i =0 j=O 2

2i +2j

f dt„f'ds, . . . f ' ds„

where

f dz g(z) exp —f dk f dz g(z)(H, (z) )~, (830)

r

Z~(A(z))q ——iTr Tc exp ——f dz'[H, (z')+A, g(z')H, (z')] A(z) (831)

Using the equation of motion for (a (s))~ it is quite straightforward to evaluate (H, (z))~, the details can be found in
the paper by Chang and Cha}cravarty (}985). The final answer for W, can be written in the form

21 +2J
oo oo t2t- —}~„=gg( —1)+1 — f dt, f dt, f '

i =0 j=O

X f ds, f ds2. . . f, ds2; exp — f dt'[g+(t') g(t')]+, (832—)
l t t

where

tf S~= —f ds f ds'[g+(s)g~(s')K) (s —s')+g (s)g (s')K i (s —s')]
t

tf t tf ds f d gs( )gs(+s)K( s s') —f ds f ds'[g+(s) —g (s)][/+(s') —g (s')]Kg(s —s') .
1 E t

The expressions E
&

and E2 are given by

(833)

2 ~290 ~a —iso (s —s')
K, (s —s') = e

4 2m cpfi
O'O

dco J (cp) [cosco(s —s') —i sinco(s —s') ] (834)
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2 ~290 Ca 1 —iCO (S —5 )
K2(s —s') = ~ e

4 2III co Irt
(

IIII
1)

2
9'0 1

dao J(ctI) [cost@(s,—s') —i since(s —s') ]0 Pkco
(835)

It is not difficult to rewrite y/fi in the form

eo 'f ~, 0+(s) —0 (s)= l dS dS
7TA 2

g+(s')+g (s')

2
L I (s —s')

go 'f ~ g+(s) —g (s) g+(s') —g (s')
ds ds

2 2
L2(s —s'), (836)

where, as defined in Sec. IV,

L I(s —s )—: J(co) slnco(s —s )dco
0

(837)

L2(s —s ) = f J(co) cosy(s —s ) coth(pflco/2)dc' .
0

A moment's reflection will convince the reader that g and X as defined in Sec. IV are nothing but

g+(s) —g (s)
g(s) =

2

(838)

(839)

g+(s)+g (s)
X(s)=

2
(840)

We can therefore write the probability W,
' 2l +2J

oo oo tI 2i —1

W, =g $(—1)'+J — f dt, f dt, . f dt„
i =0 j=0

4

&( f 'ds, f 'ds, . f " 'ds„exp ——'„'f, 'dt'g(t')

2
90 f

&&exp i f dr f, ds [LI(r s)g(r)X(s)+—iL2(r s)g(r)g(s)]—

(841)

The integrals can now easily be ordered according to blips
and sojourns. We finally note that P(t) used in the text is
related to W, (t) by the relation [1+P(t)/2] = 8', (t).

APPENDIX C: MAPPING TO THE TOULOUSE
HAMILTONIAN FOR u=—

FICi. 11. Contour for the evaluation of Eq. (825).

tR
In this appendix we shall sketch how the dynamics of

the spin-boson problem for o.= —, can be directly mapped
onto the dynamics of the Toulouse Hamiltonian
(Toulouse, 1969). The mapping is an approximate one
that relies on neglect of terms "of order co, '" (to be made
more precise later on). Consider then the Toulouse Ham-
iltonian consisting of.spinless fermions which can hybri-
dize with a local "d level" situated at the Fermi energy.
The hybridization matrix element is in general energy
dependent. This energy dependence will be, as usual, tak-
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en to be smooth and insignificant. It will be assumed that
the fermions hybridize with the local level only within a
bandwidth. Explicitly the Toulouse Hamiltonian HT is
given by

r & 0 the system (i.e., the d level) is known to have occu-
pation nd ——1, what is its occupation (nd(t)) at a later
(positive) time t? The quantity discussed in the text is
P(r)=2(nd(t)) —1. Thus

HT = g Ekckck+ Vg (d ck+ckd) . (Cl)
~

6 „(r;nd=1)
~

(C2)

Here ck is the creation operator of the spinless fermions
and d that of the local level. To simplify the arithmetic
we have already assumed V to be energy independent
throughout the bandwidth centered around the Fermi lev-
el, in accord with our assumption of its smooth and insig-
nificant variation.

We wish to solve the following problem: Given that at
time t = —ao the "environment" (i.e., the fermions) was
in its thermal equilibrium state, and that for all times

where E„arethe energy eigenvalues of the environment
and Z,

„„

its partition function. 6 „(r;nq——1) is the
probability amplitude that the environment is originally
in the state n and the occupation of the d level is equal to
one, while at a later time t the environment is in a state m
but nd is still unity. As in Appendix 8.2 it is easy to
show, using the usual time-ordered perturbation theory,
that

OO '2l —1

(ng(t)) = g ( —1)'+' V '+ ' J dti . I dt2l j dsi . I ds2l
1,1' =0

—PHOX — —Tr e g ck, (s2l)
Zenv k 21'

Ck, $21 ]
' '

Ckl S)
1

2l' —1 k'
1

X hack (li)
k,

X ck„,( 2l —i) hack„(&2i)
k2l k2l

(C3)

where
—lckt/A g Eel tlat

ck(t) =e ck, ck(t) =e ck .

In order to carry out further calculations it is convenient to separate out all the time dependences and write

(C4)

( n (r) ) y (
1)l+l'V21+2!'

1,1'=0

'2l —1I dti 1 dt2l I dsi ' ' y ds2i
k' k' - k' k1 k2 k2l

I I
X exp ——[E S2i' —E ~ S2l' —i+ ' ' ' —E, S'i ]exp ——[Sl, &i —. . + ek t2l i —ek t2l]—

k1 g 1

(C6)
pao

k' k' kZ 21' 21' —1 21' —2 k2 k
1 1 I ' 2l —1 2l

env

where Ho is the free-fermion Hamiltonian gk Ei,ckck. The calculation of the trace is standard [see, for example, Fetter
and Walecka (1971),pp. 237—241] and gives rise to pairwise contractions, i.e.,

~k,~k, ~k ~k .CI ~k ~k2 k l ~k
l

env
~ 0 ~ ~ ~=e c c . c +c c c . - ck21' k2l' —1 k2l' —2 k21 k2l' 2l' —1 k2l' —2 k2l

where the only nonzero contractions are

(C7)

pe ~

CJ1G Ck
1 =n (Ek)

1
ckck =

&
——1 n(eki . —

1+
(C9)

See Eq. (3.87); as in Sec. V.B we set L = I for convenience.
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IFkf IEkf
Further analysis requires us to evaluate expressions of the form gk [1—n(Ek)]e and gk n(Ek)e (it is irrelevant
whether t is greater or less than zero). With a given cutoff prescription these are easy to evaluate for any arbitrary tem-
perature. However, our ability to put the resulting expression for (nd(t) ) in the form corresponding to [1+P(t)]/2 of
the spin-boson Hamiltonian depends crucially on keeping terms only of leading order in co, t. For example, consider
T =0. Then with the choice of a smooth cutoff

g [1 n—(Ek)]e " = f p(s)e'"e '[1—n(E)]=
(1 i—co, t)

(C10)

and similarly

( )
iEkt P~g

(1+ice,t)
(Cl 1)

where we have assumed that the density of states p(s) varies insignificantly and can be replaced by its value p(0) at the
Fermi surface taken to be the zero of the energy. With these expressions it can be verified that the resulting expression
for (nd(t) ) cannot be matched exactly to the spin-boson problem unless only terms of the leading order in co, t are kept.
Thus if we are interested only in the long-time limit it is more convenient immediately to take the limit

~

co, t
~

~ oo in
the above expressions and regularize the short-time behavior at the very end. This has the advantage that, apart from the
factors of i, both of the above expressions are equally simple. We show here only the zero-temperature result:

~21 —i 2l —i(nd(t)&=+( —1) +'(Vp~, )
+' f dt~ f "

'dt2t f ds~. . . f ' 'ds2~e" "''''''"'''''
(C12)

l, l'

where

2 (t&, t2t, s~ . sqt) = g ( —1)'+1in[1+ ice, (t; —tz )]+ g ( —1)'+Jin[1 iso, (s—; —sz)]
1 (j l (J

2l 2l'

g ( —I)'+~in[1+ice, (s~ t; )] . —
i =1 j=1

(C13)

Here, as stated above, we have regularized the short-time behavior at the end by replacing +ice, (t; tj ) by I—+iso, (t; —tj ).
Any results that depend on time scales of the order of the cutoff cannot be obtained correctly. It is now a matter of
redefinition to put the above expression in terms of blips and sojourns. The interesting point to note here is that the ex-
pression for (nd(t) ) gives the same result for P(t) as the spin-boson case, but with a= —,

' and b. =(4poco, V ), in com-
plete agreement with the bosonization transcription in Sec. III.E [see Eqs. (3.74) and (3.75)].

APPENDIX D: THE CASE GF OHMIC DISSIPATION FOR T=0, c=O, AND 0(a(—
1. Justification of Eq. (5.40)

The formula for P(t) that follows from Eqs. (4.17)—(4.20) with the insertion of (5.4) in the limit T~O is [cf. Eqs.
(5.35)—(5.37); see Fig. 12 for definitions of the quantities appearing in Eqs. (D3)—(D6) below]

P(t)= g ( —I)"5'"K„(t),
n=0

t t2
E„(t)=—2 " g f dt,

„ f dt,„,. 1 dt, F, It IF, I t, (, IF, It, g, I,
I g,.=+1I

(Dl)

(D2)

E, It ]=—Q (1+5,')-
j=1

[I+(b, +~;)'][I+(bk+~;)'l ' "
E2It~ g~ I

—=

k=1 J =k+1 [1+(bi+bk++ik) ][1+~Jk]
n —1

E It,g;] = Q cos 2u g g~X~k
j=k+1

(D3a)

(D3b)

(D3c)

where we have combined the terms E3 and F4 in Eqs. (4.20c) and (4.20d) for simplicity of notation, where the quantities
bJ and sj denote, respectively, the length of the Jth blip and the Jth sojourn in units of co, , and where the quantity ujk is
defined, as in Sec. V, by

J —1

&Jk =sk+ Q (bl +st ) (D4)
i=k+1
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The quantity Xjk appearing in Eq. (D3c) is given by Eq. (5.10), that is,

b, sk(b, + sk+~~jk)
X,k —=tan —'

2[1 +j jk (5jk +~k ) l [ 1 + (X~k +b )(Xjk +b +&k ) ]+&k

j—1

yj.k=ujk sk= g (b1+~l) .
1=k+1

(D5)

Our purpose here is to demonstrate that "to order m,
'"

(see below) it is adequate to replace F&, F2, and F3 by the
simpler expressions

bounded below by (cos~a)", and, trivially, above by unity.
Theorem (2) follows from the fact that for any set of I gj I

an upper bound on the quantity F2 is clearly given, fron1
Eq. (4.7), by the expression

F) ——g bj
j=l

(D7a) n (k)
Q exp +go/re% f dr f ds lLz(r s)—

(b, +u;k)(bk+u, k)
2ag g~

F'=—
k=1 j =k+1 (bj+ k+ujk)uJ'k

(D7b)

El —1

F3 —= + cos77cx —= (cos7tcx )
k=0

(D7c)

Vfe start by proving, for 0 (0.(—,, two general
theorems that are essential to the subsequent derivation:
(1) The influence functional (when summed over the

t g& I ) is never negative; (2) F2 is bounded above by the ex-
pression +k &

[f(a)(bk+sk)/sk)], where f(a. ) is fi-
nite and independent of n These. two theorems are not
too easy to extract directly from Eqs. (D 1)—(D7), but they
follow very simply if we go back to the original formula
(4.7) for the influence functional and note that for the
ohmic case we have

2gco, (r —s)
L)(r s)= 2

— )0,
[1~su, (r—s) ]

1 —co, (r —s)2 2

L2(r s) =rico, —
[1+co,(r —s) ]

(D8b)

2k-I 2k 2k+I
s

t t2J- I 2J 2j+ I

FIG. 12. Definitions of the quantities occurring in Eqs.
(D3)—(D6) (this is Fig. 5, repeated here for convenience).

Theorem (1) now follows from the fact that an upper lim-
it on the contribution to the (magnitude of the) phase of
the influence functional from the interaction of a given
blip with all succeeding sojourns (which is just
2a g". k+, g~Xjk ) is given by the expression

(qo/~Pi) f dt f dt'L)(t')=~(z . (D9)

Thus the factor F3, Eq. (D3c), is not only positive but is

(k)
where the notation f indicates that s runs over the kth
blip and ~ runs from t2k+1 to infinity. This expression
may in turn be verified to be bounded above by

]gk, [f(a)(bk+sk)/sk], where f (a) can, for exam-

ple, be chosen to be 2 e
The next step in the argument may be easier to follow

if we temporarily assume that F'&Fz is an upper bound on
F1F2. In that case it follows at once that an upper bound
on IC„(t) is given by (secma)" times the value of X„(t)
that would be obtained from the replacements (D7). As
we have seen in Sec. V, the latter is equal to

"(h,fft) "" 'I' '[2n (1 —n)+1] times a dimension-
less factor, arising from the interblip interactions, which
is rigorously bounded above, for all a( —,, by 2". It is

clear, therefore, that for any finite value v of the time
measured in units of b,,~~, we can neglect all terms in the
series (Dl) for P(t) that correspond to values of n much
larger than v " 'sec7ra. This result (which could, of
course, be formulated quite rigorously) is crucial to our
proof (to prove the same result with time measured in
units of the "bare" inverse frequency 6 ' would, of
course, be trivial, but totally uninformative).

In fact, we have been unable to prove that F1F2 is an
upper bound on F1F2. However, the conclusion of the
last paragraph still follows, with a minor modification,
from theorem 2 above, since this guarantees us that F2 is
bounded above by a constant which, apart from the nu-
merical factor 2 e in R (a), is the same as that shown
below [Eq. (D34)] to occur in the bound for r„(a),i.e., for
F2. Since F1 clearly is. bounded above by F1, the only
difference is that v " 'sec~a in the argument of the last
paragraph is multiplied by the n-independent constant
2 e . The general conclusion is clearly not affected.

The proof of the legitimacy of the replacements (D7)
now proceeds in three stages. In the first stage we put an
upper bound on the contribution to the coefficients IC„(t)
of "short" blip-sojourn pairs, that is, those with length of
order ~, ' or loess. To be specific, let us consider the con-
tribution of paths containing m pairs of blips and im-
mediately subsequent sojourns (b~, sI ) such that
b~+s~ (p. %'e rearrange the integrand F1,F2,F3 into
three new factors 61,62~63 as
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n

G =—rI'('+b') O' ll'ZJ ' "ll'o' 2
J k j &k k I =k+1

6 = +"(1+5 ) +"+"Z ' +"cos 2a g" g X,
J k j&k k I =k+ 1

(D10a)

(D lob)

G =-n'rr"Z, "n"
j k k

cos 2A g ggXk(
I=k+1

cos 2a g" kXkt
I=k+1

(D10c)

where the single prime denotes a product or sum over
pairs with bI+sI (p and the double prime the comple-
mentary product or sum, and ZJk is the quantity in
square brackets in Eq. (D3b). Note that in the definition
of G3, Eq. (D10c), there is no restriction j & k.

The factor Gl is clearly bounded above by unity. Gz is
(nearly) the integrand of K„(t);see below. Consider
now the factor G3, which expresses the interactions be-
tween the "short" and "long" blips. Since each of the
cosine factors is bounded below by costa and above by
unity, the product of quotients is clearly bounded above
by (sec~a)" . Now consider the double product of
ZJk' . Clearly we have

[1+(bq +ujk ) ], [1+(bk +u~k ) ]
[1+(b,+bk+ujk)'] [1+&J'k]

1+(b +u k)'J Jk (Dl 1)
1.+uJk

2pujk +p(1+
1+uJk

where the last step follows from the observation that bj is

by construction not greater than p. Consider this expres-
sion for fixed j and variable k, recalling that the pair j is
by construction "short" and the pair k "long. " Quite
generally, the above expression is bounded above by
(1+2p+p ), so the values of k that are the nearest long
pairs to j give a factor in the product at most (1+@).
All other values of k correspond to ujk )

~ ljk ~ p, where

ljk is the ordinal number, counting long pairs only, of the
kth blip relative to the jth: Note that l can have either
sign. Thus we have for such cases ZJk &(1+

~ Ijk ~

') .
A parallel argument, with ujk in Eq. (Dll) replaced by
(bk+u~k), can obviously be constructed for ZJk . Thus
we have

g"Z ' &(1+@) Q" (1+ ~lk
~

')
k k

& [C(1+p)(n —m)]" (D12)
where the last inequality follows from the facts that
ln(1+x) &x and that there cannot be more than n —m
long blips either to the right or to the left of the jth. In
Eq. (D12), C is a calculable numerical constant of order
unity, which is independent of n and rn. Since the contri-
bution corresponding to each j in the product in G [Eq.
(D10c)] is bounded above in this way, we have

G3 & [C(1+p)(n —m)] sec" rfcz=G3'" . (D13)

Consider now the contribution 5K„"(p) to K„(t),
which arises from the region R of phase space corre-
sponding to I blip-sojourn pairs of length &p. From
Eq. (D13) and the fact that G~ & 1, we have

R
5K„'~(p)& G3

'" dt2„.. dt)G2 . (D14)

The quantity 62 is clearly everywhere positive. If it were
not for the slightly different cosine factor, it would be
just the integrand in the expression for K„(t);more-
over, for any given configuration of the I "short" pairs,
the region of integration over the n —m "long" ones is
contained in the region of integration for K„(t).Since
the cosine factor must always lie between cos~o. and 1,
any error arising from this has already been taken into ac-
count by the factor sec" (ma) in G3'". Thus it is clear
that the integral over R is bounded above by the phase
space available for the m short pairs, which is in turn less
than C" ( —,

'
p co, ), times the value of K„~(t)(here we

took into account that p is the blip length in unity of
u, '). Hence, using the upper bound on K„(r)already
obtained, namely,

sec" (ma) ~ Q 2 " (Q,frr) " ~ ' 1- [2(n —m)(1 —e)+ 1]Q 2"

we find that the total error 5K„'"incurred in K„(t)by neglecting corifigurations with any blip-sojourn pair shorter than p
is bounded by the inequality

2m

5K„' (t:p) & b, " g C"y (p) (b,,rrt) '" '~' '(n —m)" 1 '[2(n —m)(1 —a)+1),
m =I toe

(D15)

This limit is by no means the best we can get on this factor, but it has the virtue of simplicity.
Arising from the fact that in the integrand (D10b) the blip and sojourns that are nearest neighbors are not necessarily contiguous,

whereas in the expression for K„{t)they always are.
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where for conciseness we have defined the quantities

V V )=—2 -'"V[«1+V)]"
b,, =(2'i secma)'i"

(D16a)

(D16b)

Using the obvious upper bounds C" & n /I!,
( n —m) &n, I '[2(n —m)(1 —a)+ 1]& 1, we find

5IC„'"(t:p)(b. "(b,,rrt) "" '[(exp', ) —1], (D17)

()+4~)g2
( )

b, cos~a
n, —=n

(Q t)1—cx:—constn" +" '~ y(p) cos~a(co, t) (D18)

where the constant is of order unity and remains finite in
the limit a~ —,'. In the expression for the error in P (t),
the factor 6 "is of course canceled [cf. Eq. (Dl)].

It is clear that for fixed values of n, p, (b,,rrt), and
a( & ~ ), Eq. (D17) (or rather this times b, ") can be made
as small as we please by choosing 5/m, small enough.
Moreover, we already know that for fixed A,fft we can
neglect, in the expression for P(t), values of n large com-
pared to (6, rtr)(s ce~ a)', so that it follows that for
fixed p and b,,rrt (and fixed a & —,

'
), the corrections to P(t)

from blip-sojourn pairs shorter than p can be made negli-
gibly small by a suitably small value of 6/co, . Note that
it does not follow from the above argument that for fixed
6/co, the corrections tend to zero in the limit ~,.t~ ao,
attractive as this conjecture may be, it would need further
work to demonstrate it. This concludes the first step of
the argument.

The next stage consists in showing that, for the remain-
ing region of the phase space (all blip-sojourn pairs larger
than p) we can (a) approximate the complicated factors
cos[2a g". k+& g,X~k I for each k by the simpler factors
cos(2aXk k+~), and (b) neglect the 1 by comparison with
the bj's, etc., in the expression I'2, except for nearest-
neighbor pairs of blips. Taking the second point first, we
see that for j & k + 1 the quantity ujk [Eq. (D4)] is always
greater than p for the relevant paths, and hence the error
in the quantity Zzk [Eq. (Dl1)] induced by dropping the
1's is easily shown to be less than 2p times the value so
obtained, as is the error in Z~k'. Consequently the rela-
tive error in the factor F2 [Eq. (D3b)] induced by drop-
ping the 1's for all except nearest-neighbor pairs of blips
is less than [exp(2an p ) —1].

Similarly, for the cosine terms, we have, using the obvi-
ous inequality

~

cos(x +y) —cosx
~

& V'2y, the result

cos2a g gJXJ —cos2aXk k+) & 2V 2a g Xjk
j=k+1 j=k+2

(D19)

Now it is straightforward to demonstrate, from Eq. (D5),
the inequality Xzk & 2yjk' & 2p ' for j)k +2, and hence
the absolute error in the kth cosine term induced by drop-
ping all the Xjk for j)1 +2, relative to the value so ob-

tained, is bounded above by 2V2a(inn)p 'sec~a. It
follows that the error in I'"3, relative to the value as
obtained, is bounded above by the expression
exp[2V 2a(n 1nn) sec(ma)p ']—l. It is clear that by tak-
ing p large enough compared to 1 this error may be made
as small as we please for any n and any o. & —,'.

The final step consists in showing that in addition to
the above approximations we may (a) drop the 1's in F&,'

(b) drop the 1's in the nearest-neighbor terms in F2
(which are the only ones in which they survive); (c) set all
the quantities cos(2aXk k+&) equal to costa. The argu-
ment proceeds in two stages, in parallel with that given
above, except that to justify it we need (a) to show that
the contribution of paths with short blips ( &p ') is
negligible; (b) show the same for short sojourns; and (c)
combine both results. In view of the fact that the factor

(1+bz ) Zz z'+'~"' is less than 2 for any choice of the gj,
the contribution M'„'~(p) from (for example) configura-
tions having rn blips shorter than p to K„is bounded by
an expression similar to (D15):

5K„' ' &2 C" (ptco, ') sec" (~a)X„(t). (D20)

The argument proceeds as above, and we find a result
identical to (D17) except that the factors y(p) and b, /co,
are replaced by 2p' and A(t/co, )'~, respectively, and
there is an extra factor of 2". Since for o. & —,

' the quantity
b, /(A, r~, ) can be made as small as we please by a suit-
able choice of b,/~„the rest of the argument leading to
the neglect of short blips goes through as in the blip-
plus-sojourn case. Again, similarly to this case, we can
obviously show that, in the region of phase space where
no blips are shorter than p, the relative error in the quan-
tity I' ] induced by neglecting the 1 is at most
[exp(nap ) —1], etc. ; moreover, the cosine factors are
bounded in this region below by cos~a and above by uni-

ty.
Finally, we get rid of the short sojourns in a completely

similar way, using again the fact that the factor

(1+bj ) 'Z~ '+'~~+' is always less than 2, and bound the
error incurred by dropping the 1 in the nearest-neighbor
factors for the region corresponding to no short sojourns,
exactly as in the blip-plus-sojourn calculation. The out-
come of all this is as follows. Given any finite value of
h, rrt, and any value of a less than —,', b, /co, can always be

chosen small enough that we can find a dimensionless
number p that will enable us to make as small as we

please both (a) the error incurred by neglecting all paths
with any blips or sojourns of length less than p [which is
in general of order (b/co, )rpr, y, y' &0, when this quanti-

ty is small; see, for example, Eq. (D17)], and (b) the error
incurred in making the approximations (D7) for all other
paths, which is of order p ', v & 0 [see the estimates
above and below Eq. (D19)]. However, since the ap-
propriate choice of p is clearly proportional to a positive
power, less than 1 and less than y/y', of co, /6, it is clear
from the formula for the integral obtained by the substi-
tutions (D7) that extending the integral (with substituted
integrand) back again to cover "short" blips and sojourns
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will give a further relative correction which, once again,
can be made as small as we please as we take 6/co, to
zero. Thus the final conclusion is that, for any given
value of b,,ttt and a( & 2 ), it is possible to find a value of
b, /co, such that the error (absolute or relative' ) incurred
in P(t) in simply making the replacements (D7) and con-
tinuing to carry out the integrals over all the phase space
can be made less than any specified number. %"e reem-
phasize that it is in this sense, and in this sense only, that
we claim to have established rigorously that Eq. (5.40) is
exact "in the limit 6/co, ~0."

Finally, it should be carefully noted that the above
proof relies heavily not only on the fact that cos~a is fi-
nite and positive (which is, of course, always true for
a & —, ), but also on the fact that the influence function it-
self is everywhere positive. It therefore fails not only for
a~ —,

' but also (in generalized form), even for a& —,', in
the case of a finite bias E whenever t exceeds vr( —,—a)c
The generalization is therefore only of any interest in the
case of a very small bias, e«(1 —2a)b, ,tt, and even in
that case will not necessarily give the long-time behaviof
correctly (see Sec. VII). Of course, it is conceivable that a
much more generally valid proof of the legitimacy of
neglecting the difference between Eqs. (D3) and (D7)

could be found; at the time of writing we have not investi-
gated this question.

r„(a)=E„(a)/E:'„'(a), (D21)

where K „' ' is the value obtained by neglecting the inter-
blip factor, namely, 1/I [Zn(1 —a)+1] [see Eq. (5.43)].
We shall show that (i) K„(a)—K „' '(a) =O(a ) as a —+0;
(ii) 1 & r„(a)& [R (a)]" ', where R (a) is a finite n-

independent number, for all values of a in the interval

(0, —,
'

); (iii) r„(a)—1 vanishes as (1—2a) as a~ —,', and

further that corrections to this result that arise from non-
nearest-neighbor interblip correlations vanish as (1—2a)
in the same limit. Unfortunately, we do not have a single
argument for all three properties, but the separate argu-
ments are all relatively straightforward.

Equation (5.42) for IC„(a)may be written as

2. Bounds and other relations
for the coefficients K„{a}

In this part of this appendix we shall establish the vari-
ous properties of the coefficients IC„that were referred to
in the discussion of interblip correlations in Sec. V.D. It
is convenient to introduce the ratio

1 z2n z2 n

K„(a)=[I(1—2a)] "f dz
„ f dz „,. f dz, Q (z —z ) A„Iz

j=l
where the interblip correlation factor A„is given by

n —1 n

A„[z ] =2 " g + + [Pjk[z„,]]
Ig,.=+11 k =1 j=k+1

Pjv, Iz~ I =(b, +tt v )(bk+ttv )/[&jr (b, +bk+tt~v )],
and where in analogy to the definitions above we have defined

j—1

b& =z2j z2j» sj =z—2j+) —zpj& Qjk=—z2j ] zpk=sk+ g (bt+st) .
I =k+1

(D22)

(D23)

(D25)

It is useful to transform the nested integral in Eq. (D22) as follows. Consider the function of the variable z obtained
by replacing the upper limit of the zq„ integral in Eq. (D22) by z, and Laplace-transform the resulting function with
respect to z. A few changes of the orders of integration, as in Sec. IV.C, enable one to see that the Laplace transform is
proportional to a simple power of the transform variable, which is easily inverted. Finally setting z = 1, we get

r„(a)=[I"(1—2a)] "f db& f ds& . . f db„f ds„exp —g (sj+bj) Q bj A„,
j=1 j=1

where A„continues to be formally defined by Eqs. (D23)—(D25).
To establish property (i) above, we simply expand Eq. (D23) in powers of a:

(D26)

A„=2-" g + Q Il+2 pj's„im,,+2 '1'P,„+. . I.
Ig. =+1I k =1 j=k+1

(D27)

The desired result follows when we note that the sum of
gjgk over all values of the g's vanishes, so that A„differs

The statement about relative error clearly needs slight refor-
mulation when P(t) is very close to a zero. The nature of the
reformulation is obvious from the above argument and will not
be spelt out here.

I

from unity by a term of order a .
With regard to property (ii), the lower bound for r„fol-

lows when we view the sum on the g's in Eq. (D23) as an
arithmetic mean of 2" quantities. This is bounded below
by the geometric mean, which clearly equals unity, as
does the resulting lower bound for the integral in Eq.
(D26).
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ty

Since

To obtain the upper bound on r„,we define the quanti- value (unity) in this limit, its behavior in the limit s~ —+0
is very different from that of Hk itself, with the result
that, in the bound, short sojourns and short blips are
equally important. To overcome this difficulty, we return
to Eq. (D29) and use the inequality (1+y) & 1+y for
n (—, and y & 0 to write

Pjk = 1 + I bi bk /[ gJk ( b~ +bk +gJk ) ] I

we have

n —1

A„&+H„'
k=1

(D29)

(D30)

p2a~ )+ Jbbk
u.k(b +bk+ u.k )

2'
bj bk&1+

ujk (b~ +bk )

2a

(D37)

We now note that if we define Y~ =—bj+sj, we have

(bI+up, )/(b, +bk+u;k) ((FJ+ujk)/(Yj+bk+up, ),
which implies

j=l j=k+1

bjbk

u,k(b, +bk)
(D38)

so that

j=k+1

( Yj+up, )(bk+ ujk )

(I;+bk+u, k)u, k
(D32)

The product on the right is so constructed that each term
in it contains two factors (one each in the numerator and
denominator), which cancel against two factors in the
succeeding term in the product. Thus we get

bk+sk Fn+u„k+1 bk+sk
Hk &

sk Yn +bk+ u~ k+. 1 sk

Combining Eqs. (D26), (D30), and (D33), we find

r„(a)& [R (a)]"

where

(D34)

' 2'
R(a)= f f e '+ ' — dsdb

. I (1—2a) sb

I'(1 —2a) I (2—2cz)

I (2—4a)
(D35)

2 I [2n(1 —a)+1] (D36)

It is easy to see why R (a) does not approach unity as
o,'—+ —,

' . As argued in Sec. V.D, we expect the contribution
to the integral to come entirely from the region bj~0 for
all j. Although the bound (D33) reduces to the correct

This factor tends to 1+2a+O(a2) in the limit +~0, and
to 2 in the limit a~ —,. Thus, as stated in I.eggett and

Garg (1985), we have a rigorous bound on the corrections
to P(t) from interblip correlations:

We can thus write the upper bound on the deviation of
the ratio r„from unity as a sum of corrections from vari-
ous collections of the interblip interactions. It is not diffi-
cult to show that the corrections from a single nearest-
neighbor term are of order (1—2a). The only other terms
of the same order arise from sets of an arbitrary number
of contiguous nearest-neighbor corrections and are au-
tomatically included in P'"(t). One can also show that
the corrections from a single second- or further-neighbor
term are of order (1—2a), and it is obvious that the in-
clusion of any other terms (whether or not they arise from
nearest neighbors) cannot lower the order. As stated in
Sec. V.D, we have therefore proved that the corrections to
P' '(t) vanish as (1—2a) in the limit o.~—,, and the
corrections to P'"(t) vanish as (1—2a) .

3. Transfer matrix treatment of interblip effects

In the first part of this appendix we have provided a
rigorous justification for the approximations
(5.40)—(5.42). The resulting formulas are still much too
intractable, but we have seen that if we make the further
approximation of neglecting the interblip effects, they
simplify enormously, and the final answer P~ ~(t) [Eq.
(5.44)] is quite compact. Having examined, in the second
part of this appendix, the precise extent to which this
second approximation is valid, we now turn to the ques-
tion of quantitatively estimating the errors involved in
making it. To do this we argue, as in Sec. V.D, that the
nearest-neighbor correlations are of primary importance,
and so we shall for the moment neglect all others. In oth-
er words, we approximate the coefficients K„(a)in Eq.
(5.41) by K'„"(a),where

1 z2 Pg

K'„"(a)=[I(1—2a)] "f dz2„.. f dz( Q (z2J. z2/ ))—
j=1

n —1 Z2k +2
—Z2k Z2k + 1

—Z2k —1
2&44+i

+)) k ( (Z2k+2 —Z2k 1)(Z2k+1 —Z2k)
(D39)
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As in Sec. V.D, we denote the resulting approximation to P (t) by P'"(t).
If we now work in units such that b.,ff= 1, and Laplace-transform P'"(t) with respect to time, we get (using a notation

like that of Sec. V.F),

(D40)

(D41)

where PJk is defined in Eq. (D24). Note that we have already performed the integral on s„.[It is clear that r„"'is the ap-
proximation to r„ofEq. (D26) obtained by keeping only nearest-neighbor terms. ]

It is now apparent that if we define a transfer operator E via the relation

&[q (bi, kl) j Wb2 g2)

1 oo oo=
2r(1 —2~),~„fo ~g +, ~ 2 (b&+s&)(b2+s&) 2ag)$2

&i(bi+»+&i)

a generalized inner product go y for any two functions
g(b, g) and y(b, g) by

goy=[21(1 —2a)] 'g f dbe b g(b, g)y(b, g),

It is now obvious that the sum in Eq. (D40) can be re-
placed by another sum of functions of A, , each one of
which is associated with an eigenfunction of K. If we de-
fine

(D43) (a)=(uou ) /e (D48)

and the unit function

u(b, g)=1,
then the coefficients r„'"can be written as

r„'(a)=uo(K" 'u), n ~2 .

(D44)

(D45)

EU~(a) =e~(a)u (a) . (D46)

We choose the eigenfunctions to be normalized
(v~ou =1), and label them so that e, &e2)e3, . . . If
we assume that the Um's span the even subspace of K, ' '

we can write

r„"'(a)=Q e~ '(uou ) (D47)

' 'The operator EC clearly possesses odd eigenfunctions as well,
which we never need to find, since their projection on u van-
ishes.

Note that uou =1, so that if we define K to be the iden-
tity operator, this equation holds for n = 1 as well.

Let us now define a function y(b, g) to be euen if
qr(b, +)=qr(b, —), and odd if y(b, +)= y(b, —). —It is
easy to see that the subspaces of even and odd functions
are invariant under IC, i.e., the action of K on an even
(odd) function yields another even (odd) function. Since u

is even, we can replace E by its restriction to the even
subspace. The resulting operator is clearly symmetric.
(Our numerical work, discussed below, strongly indicates
that it is also positive definite, which is to be expected on
physical grounds. ) Let us denote its eigenvectors and
eigenvalues by Um and em, so that

then P ' "(1,) can be written as

P'"(k)=A, ' 1 —gA + gA (A, +e k ')
'm

(D49)

P"'(r)= gA (a)g(A r)+C, (D50)

=b,,fr[e (n)]' '

C=l —QA (D52)

[The function g(y), which is the Mittag-Leffler function
apart from a factor y " ', is defined in Eq. (5.44).]

The constant C in Eq. (D50) is a nuisance, since it im-
plies that P(t)~0 as t~ co. On physical grounds this is
very unlikely, and, indeed, our numerical work shows that
C does vanish to the accuracy of our calculations (a little
better than 1%). We do not have a rigorous demonstra-
tion of this, however, and a'proof (or disproof) would be
welcome. For the rest of this appendix, we shall assume
that C vanishes.

We have evaluated the first few eigenvalues and eigen-
vectors of IC numerically for several values of a. In Table
III of the text we show e~(a) and A~(o. ) for, m =1,2.
(Details of our numerical work are given below. ) In each

It remains to invert this equation to obtain P"'(t). The
first term obviously leads to a constant. The second term
is seen by comparison with Eq's. (4.32) and (5.59) to be a
sum of functions of exactly the same form as P' '(t), i.e.,
effectively Mittag-Leffler functions [see Eq. (5.44)], the
only difference being that there is a separate frequency as-
sociated with each function. The full form of P"'(t) is
thus seen to be (with b,,rf restored)
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case the m =2 corrections amount to no more than a few
percent. We do not show the values of e and A for
m & 2 because the 2 's are always smaller than A2 by at
least an order of magnitude, and so their contribution to
P'"(t) is utterly negligible for "reasonable" times that are
not so long that P(t) is negligibly small. Note that the
numbers in the table are consistent with the requirement
that corrections to P' )(r) vanish as a and (1—2a) in the
limits a~0 and a—+ —,, respectively. In the first limit it
is possible to do just a little better. Perturbation theory
shows that

e, (a) =1+(—,
' ~' —5la'+O(a'),

which is consistent with the numerical results.
We show below that it is possible to treat further-

neighbor interactions similarly and that when this is done
the structure of Eq. (D50) continues to be valid except
that the Am and e are modified and C is replaced by a
polynomial in Amt. Since we have not attempted a nu-
merical evaluation of these quantities when second- or
further-neighbor interactions are included, we describe
here our numerical calculations for the nearest-neighbor
interactions, i.e., for the entries in Table III. We convert
the integral eigenvalue equation (D46) into a matrix equa-
tion by approximating the b integral using a Gauss-
Laguerre quadrature. [This is a Gaussian quadrature
based on the associated Laguerre polynomials, which are
orthonormal with the inner product (D43). For a general

discussion of Gaussian quadrature formulas based on an
arbitrary system of orthonormal polynomials see Stoer
and Bulirsch (1980) or Davis and Rabinowitz (1975).]
The s integral appearing in the definition (D42) of K is
evaluated by breaking it into two parts, from 0 to a suit-
able chosen value so, and from so to ~, and the two parts
are approximated by a Gauss-Jacobi and yet another
Gauss-I. aguerre quadrature, respectively. The nodes and
weights for all these quadratures are evaluated by using
the efficient algorithm of Golub and Welsch (1969). By
varying the number of quadrature points we estimate that
the entries in Table III are accurate to better than a per-
cent for all values of a, except those for e2 and Az, which
may be off the mark by a few percent for the larger e
values.

We finally note that it is straightforward to generalize
the above formalism to take into account interactions up
to 1th neighbors. (Nearest neighbors correspond to l = 1. )

Using an obvious generalization of the notation, the coef-
ficient r„'"(a) is given by an equation identical to Eq.
(D41), except that the second product in the integrand is
replaced by

(D54)

where jo ——max(n, k+l). The required generalization of
the transfer operator is given by

(D55)
1 e

b 1+'1 I +1 2ag)g
&[v(p . p )]=0(p p )= F 1

dp dp . II(PJ )
21 1 —2n a

where' stands for the triple of variables Ib~ ,s/, pit, and. f dpi denotes an integral from 0 to oo with respect to bj and

sl, and a sum on gj. The inner product (D43) is generalized to

rl '(a) —(bs. . . b& 1 1 —11
[2I (1—2a)]' j=1 k=1 j=k+1

The factor rl '(a) has been inserted here to ensure that the relation

u&u =1

(D56)

(D57)

continues to hold, where u is the generalized unit function.
It is now plain that if we can find a complete set of eigenvectors U'" and eigenvalues e' ' of K, we can write in analogy

with Eqs. (D48)—(D52)

A'"(a)=Q( '((2)[e'"]'())'"ou)

P(r) = g a(')q(a(')r)+aP("(r),
m=1

g(l) g [ (1)( )](/(2 —2a)

(D58)

(D59)

(D60)

where hP( )(t) is a finite polynomial of the form

I —1

b, P'"(r)= g ( —1)" E IC' 'g(e'")"A'" —(b, r)'""
n=0

(D61)

We discuss briefly in Sec. V.E the question of whether or not the function bP("(t) vanishes identically.
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APPENDIX E: ASYMPTOTIC BEHAVIOR OF P(t} IN THE NONINTERACTING-BLIP APPROXIMATION

In this appendix we show that, within the noninteracting-blip approximation, P(t) approaches —tanh(E/2k&T) as
t~ oo, regardless of the spectral density J(to). From Sec. VII, Eq. (7.6), we have that within this approximation

P(t = ao ) = —hp/gp,

where gp and hp, defined in Eq. (7.7), are given by

oo eo
2

f dt cos(Et/fi) cos Q)(t) exp
oo

2
e'o„Q,(t)

(El)

(E2)

2 2
qo qo

hp —— dt sin(st/A) sin Q)(t) exp — Q2(t)—oo m.h' ~A
(E3)

It is convenient to introduce a function of G(t),

G (t) —= [Q2(t)+t'Q)(t)]
9'o

2

f dc' [(1 costp—t) coth(pirited/2)+i sintot],
9p ~ J(to)
'7' o Q7

(E4)

(E5)

Using Eq. (E5), we can express gp in (E2) as an integral
over G (t) and

i Et/R[ —G(t) + G(t —i'')]-oo

So= —oo

Since G(t) is analytic in the strip —ipse'&Imt &0 [from
Eq. (E4)], the integration contour in the second integral in
Eq. (E6) can be shifted, giving

gp —— (1+e '),Ih p,
4

with the definition

(E7)

where the second line follows directly from the definitions
of Q) and Qz in Eq. (4.22). One can verify from Eq. (E4)
that G (t) satisfies the relations

I

sidered (quantum optics, chemical physics, polaron
theory, etc.). To help the reader gain some idea of the
variety of applications of this problem, and the many dif-
ferent lines of approach to it that have been explored, we
list below in no particular order a few papers, mostly re-
cent ones, that are both of interest in their own right and
give useful references to various areas of the literature,
with some indication of the principal emphasis of each.
Note that not all of these papers restrict themselves to the
limit t5, /to, ~0 studied in this paper. We also give a few
references on related topics, in particular, some relevant
to Sec. II and Appendix A of this paper. We emphasize
that the papers cited are often not the first, historically, to
develop the approach in question, but earlier work can be
traced through them.

1. The two-state system —thermodynamics

I = f dtexp[ist/R G(t)] . —

The same analysis for h o gives

Ih
hp —— (1—e ~'),

so that

P(t = oo )
—= —hp/gp ———tanh(E/2kit T) .

(E9)

(E10)

Carmeli, B., and D. Chandler, 1985, J. Chem. Phys. 82,
3400 (variational and computational approaches).

Jongeward, G. A., and P. G. Wolynes, 1983, J. Chem.
Phys. 79, 3517 (path-integral methods).

Spohn, H. , and R. Diimcke, 1985, J. Stat. Phys. 41, 389
(rigorous results).

2. The two-state system —dynamics

APPENDIX F: SOME LEADS INTO THE LITERATURE
OF THE TWO-STATE PROBLEM AND RELATED TOPICS

The number of papers in the literature on the thermo-
dynamics and dynamics of a system described by the
Hamiltonian (1.4), or minor variants of it, certainly runs
into many hundreds and probably thousands. Within this
vast literature different "citation traditions" have grown
up, depending on the context in which the problem is con-

Aslangul, C., N. Pottier, and D. Saint-James, 1986, J.
Phys. (Paris), 47, 1657 (generalized relaxation theory).

Beck, R., W. Gotze, and P. Prelovsek, 1979, Phys. Rev.
A 20, 1140 (mode-coupling approach to ohmic case, but
with t5, /tp, ~&1).

Becker, K. W. , and J. Keller, 1986, Z. Phys. B 62, 477
(methods from metal physics).

Behrman, E. C., G. A. Jongeward, and P. G. Wolynes,
1983, J. Chem. Phys. 79, 6277 (path-integral methods).
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Behrman, E. C., G. A. Jongeward, and P. G. Wolynes,
1985, J. Chem. Phys. 83, 668 (variational and computa-
tional methods).

Bialek, W. S., 1983, Ph.D. thesis, University of Califor-
nia, Berkeley (biophysical applications).

de Raedt, B., and H. de Raedt, 1984, Phys. Rev. 8 29,
5325 (computational).

Harris, R. A. , and L. Stodolsky, 1981, J. Chem. Phys.
74, 2145 (Bloch equations, weak coupling approach).

Maleev, S. V., 1980, Zh. Eksp. Teor. Fiz. 79, 1995 [Sov.
Phys. JETP 52, 1008 (1980)] (diagrammatic techniques).

Silbey, R. A., and R. A. Harris, 1984, J. Chem. Phys.
80, 2615 (ohmic case, variational methods).

Wagner, M., 1985, J. Phys. A 18, 1915 (phonon-assisted
transport).

3. Related topics

Chandler, D., and P. G. Wolynes, 1981,J. Chem. Phys.
74, 4078 (path-integral methods for general problem of
quantum system in condensed phase).

Graham, R., and M. Hohnerbach, 1984, Z. Phys. 8 57,
233 (approximation schemes for single-mode model).

Hanggi, P., 1986, J. Stat. Phys. 42, 105 (tunneling out
of metastable well —review).

Joos, E., and H. D. Zeh, 1985, Z. Phys. 8 59, 223
(quantum measurement theory).

Kagan, Yu. , and N. V. Prokof'ev, 1986, Pis'ma Zh.
Eksp. Tear. Fiz. 43, 434 [JETP Lett. 43, 558 (1986)] (gen-
eral considerations on tonneling and coherence in the
presence of dissipation).

Klinger, M. I., 1983, Phys. Rep. 94, 183 (quantum dif-
fusion in solids).

Schmid, A. , 1986, Ann. Phys. (N.Y.), in press (many-
dimensional WKB problem; cf. H. J. de Vega, B. L. Ger-
vais, and B.Sakita, 1979, Phys. Rev. D 19, 604).

Zinn-Justin, J., 1983, Nucl. Phys. B 218, 333 (instanton
methods).
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