Viscous flows in two dimensions
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This review is an expository treatment of the displacement of one fluid by another in a two-dimensional
geometry (a Hele-Shaw cell). The Saffman-Taylor equations modeling this system are discussed. They are
simulated by random-walk techniques and studied by methods from complex analysis. The stability of the
generated patterns (fingers) is studied by a WKB approximation and by complex analytic techniques. The
primary conclusions reached are that (a) the fingers are linearly stable even at the highest velocities, (b) they
are nonlinearly unstable against noise or an external perturbation, the critical amplitude for the noise being
an exponential function of a power of the velocity for high velocities, (c) such exponentials seem to dom-
inate high-velocity behavior, as can be seen from a WKB analysis, and (d) the results of the Saffman-
Taylor equations disagree with experiments, apparently because they leave out film-flow phenomena.

CONTENTS
Introduction 977
I. The Saffman-Taylor Problem. Where Do We Stand? 978
A. Introduction: phenomenology and the basic equations 978
B. Stability analysis (Chuoke et al., 1959) 979
C. The small-surface-tension puzzle 982
II. Random-Walk Models of Hele-Shaw Behavior 983
III. The Hodograph Method 986
A. Complex analytical methods 986
B. Basic equations 986
C. An example 989
D. Finger solution 989
IV. The Conformal Mapping Algorithm 990
A. Introduction 990
B. Conformal method for the problem with surface ten-
sion 991
C. Numerical simulations 992
V. Stability of the Fingers 992
A. Anomalous stability 992
B. Stability analysis in a WKB approximation 993
C. Stability analysis: the complex analytic method 995
D. Structural stability and nonlinear instability 996
Conclusion 997
Acknowledgments 998
References 998
INTRODUCTION

This paper is an expository treatment of recent work on
the stability of hydrodynamic flow patterns in two-
dimensional or almost two-dimensional geometries. The
basic problem is understanding the nature of the instabili-
ties that might arise when a more viscous fluid is dis-
placed by a less viscous one. In addition, one wants to
know how surface tension can restore the stability of non-
trivial flow patterns.
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This paper is intended to be expository. Hence, there is
an emphasis upon those parts of the field that we feel best
qualified to explain, and indeed upon our own work.

In the first section, we describe the physical situation,
restate the description in terms of partial differential
equations, and summarize our state of knowledge about
the solutions to the equations and the physical phenome-
na that arise. The second section relates the viscous-flow
problem to a much-studied theoretical model, diffusion-
limited aggregation (DLA). In these and other two-
dimensional problems one can often make considerable
progress by using calculational methods based upon ana-
lytic functions of complex variables. Section III describes
how these methods can be used to obtain exact solutions
for zero-surface tension, while Sec. IV sets up the inter-
face equations for nonzero-surface tension. Finally, the
fifth section uses complex-variable methods and WKB
analysis to describe the stabilization of fingerlike flow
patterns.

The case we shall consider has the simplest possible
geometry. Following Hele-Shaw (1898), we consider the
displacement of a more viscous fluid by a less viscous one
in the very narrow gap between two parallel plates. If any
fluid mechanics problem is likely to be accessible to
theory and to direct comparison of theory and experiment
it should be this one. The flow is almost two-dimensional
potential flow. The basic partial differential equation is
Laplace’s equation. Despite this apparent simplicity, this
problem has not been fully elucidated to this day. The
basic difficulty involves the prediction of the motion of
the free boundary separating two fluids. For large values
of the surface tension, after a while the less viscous fluid
arranges itself in a simple stable finger. In this review, we
describe the recent theoretical work that shows how the
finger arises and why it is stable.

However, as the surface tension gets smaller—or
equivalently as the fluid velocity increases—the experi-
ments and the simulations increasingly tend to show an
unstable or chaotic pattern for the interface. In some
sense, this instability is the simplest form of fluid “chaos”
or (if you are willing to use the word loosely) ‘“tur-
bulence.” Recent work, reported here, has helped us gain
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a bit of understanding of this chaos. We are beginning to
see how just a bit of surface tension can have a profound
effect upon the evolution of the interface between two
viscous fluids in a Hele-Shaw cell. As we report here, this
“singular perturbation” problem is not completely under-
stood. However, we expect that as it becomes more fully
elucidated one will begin to understand more exactly how
the patterns form in this relatively simple hydrodynamic
system.

One additional motivation for studying this problem is
that there is a long list of other apparently similar prob-
lems involving the motion of free interfaces, including
directional solidification, dendritic formation, electro-
deposition, dielectric breakdown, and ‘“two-dimensional”
flows in porous media. Ideas that are applicable to Hele-
Shaw cells are very likely also to increase our understand-

ing of the mathematics and physics of these other prob-.

lems. In particular, some of the patterns formed in these
other cases might well be understood as examples of other
types of singular perturbations upon one basic, but very
unstable, situation: the zero-surface-tension limit of
viscous flows in a Hele-Shaw cell.

. THE SAFFMAN-TAYLOR PROBLEM.
WHERE DO WE STAND?

A. Introduction: phenomenology
and the basic equations

The formation and evolution of dynamical structures
constitute one of the most exciting areas of nonlinear
phenomenology. Such pattern formation problems are
common in hydrodynamic systems. Perhaps the best
studied ones involve the patterns formed by the interface
between two phases: a solid and a fluid, or two fluids. In
turn, one of the simplest problems of this class is the
Saffman-Taylor (1958) problem in which two fluids move
in the narrow space between two plates. This geometry is
called a Hele-Shaw cell (Hele-Shaw, 1898; see Fig. 1).
When the plate separation b is very small, the problem is
effectively two dimensional. If we call the coordinates
perpendicular to the plates z, and the other two x and y,
we can specify the problem by the two components of the
velocity, v, and v,, the pressure P(x,y), and a two-
component vector ¥(s), which sweeps out the position of
the interface as s is varied.

The basic equations involved are very simple. In each
fluid, the average velocity parallel to the plates is propor-
tional to a local force (Saffman and Taylor, 1958)

v(x,y)=—K;,[VP(x,y)—p;g] . (1.1)

Here i =1,2 labels the different fluids, p; is the density,
and the constant K; is given in terms of the fluid viscosity
u; and the plate spacing b as
2
Ki = b Py
12,

(1.2)
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while g is the component of the gravitational acceleration
parallel to the plates. Equations (1.1) and (1.2) constitute
the Darcy approximation. They are derived in a trivial
way from the Navier-Stokes equation by considering a
parabolic flow profile parallel to the plates with a velocity
that vanishes at both plates. Then v is the average over
the perpendicular direction of the actual velocity.

The remaining equations are easy to write down. As-
sume that the fluids are incompressible, so that the diver-
gence of the velocity vanishes. Then, in each fluid

VP =0. (1.3)

Continuity also implies a boundary condition that, at the
interface, the normal components of the velocity be equal
to each other and to the speed of the interface

‘Vn=—K1(VP1)n=—'K2(VP2)n ) (1.4)

where the gradients are evaluated at the points ¥(s).

One more boundary condition is needed to give the
jump in pressure across the interface. Theorists working
on this problem often choose to take the pressure jump to
be the surface tension T times the curvature x observed in
the xy plane, i.e.,

AP=Tk. (1.5a)

This formula would follow if the classical Gibbs-
Thomson equations for the pressure jump were really
applicable. This, in turn, would be true if the Hele-Shaw
cell was really two dimensional. However, the cell lives in
a three-dimensional world in which there are two radii of
curvature for the surface. The larger one, R, has the
smaller effect upon the pressure drop, while the smaller
one (which is roughly b/2) dominates. Hence Eq. (1.5a)
makes very little experimental sense. Park and Homsy
(1984) suggested an alternative boundary condition that
might better describe a situation in which a fluid that
wets the plates is displaced by one that does not. From an
asymptotic analysis they derived an expression for the
pressure jump that one should use instead of Eq. (1.5a),

2/3
KV

T
P=——
AP=373

+ 7k . (1.5b)

1+43.8
+3.80 :

FIG. 1. Hele-Shaw cell and our coordinate system.
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The first term in Eq. (1.5b), 27 /b, is independent of x
and y, so it does not really affect the motion. The other
two terms act together, producing forces that tend to flat-
ten out the interface.

We shall look at the simplest possible situation. Let the
plates be very long rectangles with width W (Fig. 1). The
second fluid is, say, air, so that we may take it to have a
negligible density and viscosity. Let the first fluid be, say,
water and let the air be pushing it so that it moves with
an average velocity U. The plates are horizontal, so that
gravity does not enter.

The side walls are rigid. This is represented by using a
slip boundary condition, so that at the side walls the nor-
mal component of the velocity vanishes:

(v), =0 . (1.6)

This free slip boundary condition may not be realistic for
the true experimental situation, but it may be an essential-
ly correct approximation for small b, where there is a
boundary layer of width b near the surface over which v
may vary quite rapidly.

Now, in both experiments and simulations, one ob-
serves three different types of motion.

Case A. Small U or negative U. (The latter implies
that the water is pushing on the air.) An initial interface,
which perhaps has a few bumps in it, eventually flattens
out and forms a straight boundary between the two fluids.

Case B. Intermediate U. Any initially present bump
grows and forms a stable finger (Fig. 2). The width of the
finger is a multiple, A, of the channel width W and varies
with velocity. Under the stated conditions, in which we
can neglect the second fluid, there is only one dimension-
less parameter1 entering these equations, namely,

T b> T

do= 3 W2 U’ (1.7)
which, therefore, acts as a control parameter. Here U is
the fluid velocity in the region far downstream from the
finger. We call d, the “surface-tension parameter.” The
dépendence of the finger width on dg is an interesting
quantity to predict theoretically. Below, we discuss our
results for this dependence and those of others.

Case C. Large U. Hence the surface-tension parameter
dq is very small. In this domain, several types of time-
dependent behavior may be observed. For the very largest
values of U a kind of chaotic behavior is observed in
which several fingers are formed that may branch and
split (Fig. 3). There is a tendency for the tallest fingers to

ISince there is no agreement on the exact form of the surface-
tension parameter, we shall, for the convenience of the reader,
relate our parameter do to the one used by other workers in the
field. Thus the parameter « used by McLean and Saffman
(1981) is k=doA/(1—A)%. The parameters B,r introduced,
respectively, by Tryggvason and Aref (1983) and DeGregoria
and Schwartz (1986) are =B =d,/(27)%.
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get ahead and leave the smaller ones well behind. Thus
there is essentially a cascade into large length scales,
which saturates when the fingers become of width com-
parable to that of the cell. Even if there is only one finger
in the channel, for these large values of U the finger tends
to wiggle up and down, partially split, and in general to
show quite an unstable behavior.

As we shall see below, the theory suggests that, even for
the largest values of U, if one waits long enough, the sys-
tem will settle down into a single stable finger. The split-
ting observed in simulations and experiment is, according
to the theory, an “artifact” produced by the noise in the
system. However, for very small values of the surface
tension this artifact is almost unavoidable since the noise
required to split the finger is very small indeed. Below,
we shall present evidence that the critical size of a per-

_turbation required to destabilize the finger is a distortion

of a size that is exponentially small, specifically
exp(—const/v/d,). Hence, for very small values of the
surface-tension parameter d, the observed behavior is al-
ways quite noisy.

B. Stability analysis (Chuoke et al., 1959)

The first step is to look at the stability of an almost-flat
interface. Let the flat interface be at a position x (y)=Uzt,
which moves with velocity U relative to the walls. A
small deviation from flatness may be represented by writ-
ing

x(p)=Ut + A (t)cosqy , (1.8a)

where A (t) is considered to be small. If 4 vanished, the
velocity U would be produced by a pressure gradient
— U/(b%/12u). If we add to this zero-order term a term
produced by the deviation from flatness, we find a result
like Eq. (1.8a), namely,

P(x,y)=P (x —Ut)+B(x,t)cosqy .

v

(b%/12u)
For P(x,y) to obey Laplace’s equation B (x,?) must vary
as e? or e ~%. The former is impossible if the pressure is
to remain finite as x — o0. Thus we find

P(x,y)=Py— (x —Ut)+B(t)e cosqy , (1.8b)

_Uu
b%/12u
where P, is constant. The boundary condition at the side
walls then requires the wave vector g to be
27n
- , 1.9
9= (1.9)
where n is a positive integer.
If A is small, Eq. (1.8a) gives the velocity of the inter-
face as

U,=U+A(t)cosqy .

On the other hand, the Darcy equation (1.1) and pressure
equation (1.8b) together imply
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b

FIG. 2. Competition between two bumps leading to the emergence of a single propagating finger, courtesy of Tabeling and Libchaber
(1986). Parts (a), (b), and (c) represent successively later times in the development of the same run.

Rev. Mod. Phys., Vol. 58, No. 4, October 1986



Bensimon et al.: Viscous flows in two dimensions 981

FIG. 2. (Continued).

b2
U,=U + —l—z—lu—qB(t) cosqy
if we neglect terms of order 4% or AB. In this way we
derive two equations for U, and thus get one relationship
between A and B, namely,

b2

121
The final relationship is derived by calculating the
terms in the pressure jump that are proportional to cosgy,
using the fact that pressure in the air is constant. On the

one hand, from Egs. (1.8a) and (1.8b), this part of the
pressure jump is

A(=B(t) (1.10)

U

AP(y)= |———
Y= 0212

A —B [cosqy . (1.11)

On the other hand, Eq. (1.5a) gives the pressure jump as

2
AP()=—Trm—T-9x(y) . (1.12)
dy
Setting this result together with Egs. (1.10) and (1.11) one
finds that A satisfies

. U , | b?

A=4 —Tg? |2
b2/ 1

. 1.13
12 (1.13)

This result is easily interpreted. First of all, notice that
when the quantity in parentheses is positive the flat inter-
face is unstable; when it is negative the interface is stable
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against a disturbance of the given wave number. Since,
according to Eq. (1.9), the minimum value of g is 27/W,
the flat interface will be unstable against some perturba-

.60 ' ~
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0 1 J 1 I 1 ' 1 1 l 1 l
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FIG. 3. Chaotic behavior in a Hele-Shaw cell filled with fluids
of similar viscosities, courtesy of Maher (1985). Time goes from
top to bottom and then from left to right.
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tion whenever the surface-tension parameter defined by
Eq. (1.7) obeys dgy < 1.

Alternatively -expressed, a very long interface will be
unstable against a perturbation of wavelength ! =2m/gq
whenever [ > W\/d—o. Hence for very small surface ten-
sion, the system will be unstable against even very short
wavelength perturbations.

The physical source of this instability lies in the
geometry of the moving interface. Imagine a situation in
which the pressure difference along the length of the
channel is fixed. Then, since the pressure in the air is
constant, the larger gradients in the pressure appear at the
end of the largest fingers of air. Hence these fingers
move faster than the rest. Hence they get further ahead.
The entire system is, in this way, destabilized by the
motion. i

Conversely, the surface tension tends to stabilize and
smooth out the smallest fingers, those with a radius of
curvature less than W1/ d,. These smallest fingers have
at their ends a large pressure drop from across the air-
water interface. Water flows in toward these low-pressure
regions, pushing the smallest fingers backward. Hence
they are smoothed out by the surface tension.

If we use instead of the two-dimensional jump condi-
tion, Eq. (1.5a), the three-dimensional condition, Eq.
(1.5b), the resulting equation for the amplitude is

Uq—%Tq3b2/12,u

=7 74 (1.14)
+0.42gb(T /uU)

Equations (1.13) and (1.14) have qualitatively similar
properties. In both cases something very peculiar hap-
pens when the surface tension goes to zero. Then the
most unstable wavelength becomes shorter and shorter.
In the limit 7—0, the shortest wavelengths are the most
unstable. One suspects that, in this limiting case, the en-
tire physical problem may well be poorly defined.

C. The small-surface-tension puzzle

Let us for a moment ignore the problem of the short-
wavelength instability in the absence of surface tension
and ask about the steady states only. In their classic pa-
per, Saffman and Taylor (1958) found a one-parameter
family of finger-shaped steady-state solutions. These
solutions correspond to different values of A, the ratio of
the finger width to the width of the cell. The finger shape
is described by the formula to be given in Sec. 111,

(1—A)

T,
= In cos 4
m

AW

. (1.15)

X
W

These shapes seemed to be quite similar to those that
were observed experimentally. However, there were two
serious problems. First, in the experiment, a finger of a
well-defined width was observed at each given velocity.
The zero-surface-tension theory could not predict that,
since by varying A one could obtain fingers of any width
at all. Second, from our analysis above, one should expect
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the 7 =0 solutions to be completely unstable, while the
fingers that were observed were quite stable. Both prob-
lems are related to the singular nature of the zero-
surface-tension limit. Another point made by Saffman
and Taylor in their paper was the fact that no fingers
with A less than 5 were seen in the experiment at all, and
they asserted that + was the asymptotic width of the
finger in the dy—0 limit.

The question of “velocity,” or finger width A, selection
was again taken up by McLean and Saffman (1981), who
looked for the steady-state solutions in the presence of a
small but finite surface tension. Numerically solving the
integral equation for the interface, they found a unique
solution for a given value of d,, rather than a one-
parameter family. Their work was further extended by
Vanden-Broeck (1983), who found not just one, but a
discrete set of solutions. However, for all of his solutions,
as dg goes to zero, A goes to one-half.

Thus the “degeneracy” of the steady states is lifted by
the effects of the surface tension, which is a singular per-
turbation in this problem [see Bender and Orszag (1978)
for a discussion of singular perturbations]. This
phenomenon, common to a large class of nonlinear prob-
lems arising in physics, was studied by Barenblatt and
Zel’dovich (1972; see also Barenblatt, 1979) in the general
context of similarity solutions to partial differential equa-
tions. (The propagating solution, such as the Saffman-
Taylor finger, may be thought of as a kind of similarity
solution as well.) Barenblatt and Zel’dovich point out
that in cases where singular perturbations are involved,
the search for the similarity solutions leads to nonlinear
eigenvalue problems. These eigenvalues then determine
the scaling, or in case of propagation, the velocity, of the
similarity solution. The existence of a continuous family
of solutions would then correspond to a continuous spec-
trum. More commonly a discrete spectrum is found.
Thus the work of McLean and Saffman and Vanden-
Broeck fit nicely into this general® framework.

2There is reason to believe that some of the other puzzling
“selection” problems will be resolved along the same lines. For
example, recently Pelcé and Pomeau (1986a, 1986b) derived a
nonlinear eigenvalue equation governing the shape and velocity
of a dendrite (in the low-Peclet-number limit of the “two-sided”
model). The work of Barenblatt and Zel’dovich (1972) also
largely anticipated the “microscopic solvability” principle put
forward by Kessler, Koplik, and Levine (1984, 1985a) and Ben-
Jacob and co-workers (1984) to explain the growth velocities in
their models of solidification. See also recent work of Meiron
(1986) and Kessler and Levine (1986a). As this paper was
completed, work by Shraiman, by Hong and Langer, and by
Pomeau and co-workers was reported to us in preprint form. P.
Saffman reported to us verbally on his work. All these authors
have studied time-independent solutions to the Saffman-Taylor
problem in the small-surface-tension limit. They conclude that
the singular perturbation produces a stable finger and that for
small d,, ?»—-;— has a discrete spectrum. The lowest value of

the width has A — + proportional to d3’°.
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The results of McLean and Saffman (1981) and
Vanden-Broeck (1983) produced a theoretical prediction
for the finger-width dependence on the control parameter.
Alas, the stability problem remained unresolved since the
analysis performed by McLean and Saffman found that
the fingers remained unstable even in the presence of sur-
face tension. This was a result contradictory to the exper-
iment and numerical simulations. - Hence the point about
stability remained open.

All of these difficulties arise from the subtlety of the
zero-surface-tension limit, which is singular indeed. In
fact, the short-wavelength instability leads to the appear-
ance of finite-time singularities in the dynamical equa-
tions for a large class of initial conditions, as was shown
by Shraiman and Bensimon (1984) and Sarkar (1984); see
also the work of Meyer (1982) and Howison (1985).

These singularities correspond to - power cusps in the in-

terface. After the appearance of the cusp the calculations
(and probably the solutions) break down. Some of the
time-dependent solutions evolving into such cusps can be
found explicitly (Meyer, 1982; Shraiman and Bensimon,
1984; Howison, 1985). While many initial conditions lead
to cusps, there are also some special initial conditions that
give instead A= steady fingers. These 7 =0 results can
be derived using the conformal mapping method, which
we shall describe in Sec. III.

In the last year, as a result of the experimental studies
of Tabeling and Libchaber (1986) and the theoretical
work of Kessler and Levine (1986a, 1986b), DeGregoria
and Schwartz (1986), and Bensimon (1986), a new under-
standing of the stability problem began to emerge. [See
also the earlier experiments of Aribert (1970), as well as
the more recent work of Maher (1985).] First of all, ex-
perimentally the fingers ‘at high velocity (small dg) are
unstable (a fact that was observed, but for some reason ig-
nored in Saffman and Taylor, 1958). Naively, one can try
to explain this by noting that, for small values of the
surface-tension parameter dj, the unstable wavelength
I =W+/d, is much shorter than the characteristic curva-
ture and width of the finger. Thus on the length scale /
the finger appears to be essentially flat and therefore
should be unstable. If this were indeed the case one
would expect the finger to become unstable at dy~1, that
is, shortly after the “primary” instability, which led to the
appearance of the finger in the first place. Instead, the in-
stability is observed at dy~ 1072 and a different scenario
is required. Kessler and Levine (1985b) suggested that the
interaction of the finger with the rigid walls makes the
finger stable with respect to infinitesimal perturbations
[contrary to the result of McLean and Saffman (1981)].
This was corroborated by the observation by DeGregoria
and Schwartz (1986) that in the numerical simulations the
disturbances generated at the tip decay in amplitude as
they are subvected along the side of the finger. DeGre-
goria and Schwartz (1986) and Bensimon (1986) then pro-
posed that the experimentally observed behavior is due to
a finite-amplitude instability. Furthermore, from numeri-
cal stability analysis and simulations Bensimon found
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that the noise amplitude required for destabilization de-
creases rapidly with dy and is consistent with the expres-
sion

In(noise) ~ —d 5 /2 (1.16)

(see Sec. V.D below). He also found the most unstable
modes, which are in excellent agreement with the experi-
ments of Tabeling and Libchaber (1986).

The physical mechanism involved here appears to be
very similar to the one proposed earlier by Zel’dovich and
co-workers (1980) in connection with the stability of cel-
lular flames. The growth rdte of a disturbance is propor-
tional to the normal velocity of the interface, so that it is
large at the tip and approaches zero toward the side of the
fingers. As the finger moves forward, the disturbance
moves more slowly than the tip, so that it gradually
moves toward less unstable regions. When the instability
becomes weak, even a little surface tension is sufficient to
damp out the disturbance. In Sec. V we shall derive the
result (1.16), using these ideas of Zel’dovich and co-
workers (1980).

Another result that emerged from various theories and
simulations is the dependence of the finger width A on the
surface-tension parameter d, (shown in Fig. 7 below).
While the dependence is similar to that observed in the
experiment, the direct comparison is not satisfactory.
The reason is that the theorists have simplified the prob-
lem by assuming that the pressure jump on the interface
is velocity independent [Eq. (1.5a)], rather than a more
appropriate condition given by Eq. (1.5b). Zocchi, Tabel-
ing, and Libchaber (1986), in very careful experiments,
have demonstrated the importance of the wetting film left
behind a Saffman-Taylor finger on the determination of
the finger width and on its destabilization. They have
shown that the predictions based on the Saffman-Taylor
model, Eq. (1.5a), i.e., on a single control parameter d,
were not compatible with the outcome of the experiments,
which seemed to depend on two control parameters: the
surface-tension parameter d, and the aspect ratio W /b
(see Fig. 4). For nonwetting fluids, however, the
Saffman-Taylor model may be an adequate description of
the experimental situation, although because of the diffi-
culty of working with nonwetting fluids this has not yet
been checked.

1l. RANDOM-WALK MODELS OF HELE-SHAW
BEHAVIOR

The Saffman-Taylor problem involves solving the La-
place equation for the pressure with appropriate boundary
conditions. If one has a random walker moving through
any volume of space, the probability that the walker will
land on a given site P(r) also obeys Laplace’s equation.
This mathematical analogy can be used to set up a con-
ceptual model equivalent to the Hele-Shaw system in
which, instead of fluid flow, one has the motion of ran-
dom walkers. It is closely related to another much-
studied model, diffusion-limited aggregation, and it pro-
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FIG. 4. Finger width A as a function of the control parameter
k{k=[A/(1—A)*]d,} for various aspect ratios W /b. Experi-
mental data courtesy of Zocchi, Tabeling, and Libchaber (1986).
Solid curve, McLean-Saffman numerical result. (a) O0<k<7. ®,
W/b=65 0, W/b=27.5. (b) 0<«k<0.5. ® W/b=112.5;
+, W/b=65;, 0, W/b=27.5.

vides a useful visualization of the Hele-Shaw system. The
DLA analogy may be used to gain insights about the hy-
drodynamic system. Finally, the random-walk picture
may be translated into a quite effective computer model
of the Hele-Shaw flow and provides the foundation for a
Monte-Carlo simulation of the hydrodynamic process.

The DLA model was invented by Witten and Sander
(1981, 1983) to describe aggregation of small particles. In
the variant of the model of particular interest here, there
is a square lattice on which each site is occupied by air
(shown as the black region in Fig. 5) or water (shown as
the white region in Fig. 5). In the DLA picture, the ag-
gregate is the air region; the empty space corresponds to
the high-viscosity fluid. Random walkers are released far
from the aggregate. They move about until they wander
over an air-water bond. As they cross the bond, the air
advances by one unit occupying the last site visited by the
walker. Then the process begins again.

The differential equations are simple. The probability
that a site will be visited obeys the lattice version of
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FIG. 5. Setup for random-walk simulation. . The black region
represents air in the Hele-Shaw cell, and the white region, wa-
ter.. Random walks take place in the white region. Between
every pair of adjacent sites of different colors, there is a bond
(see the inset) that contains a number. The air-water interface
moves according to these numbers. While all random walks ter-
minate at the interface, they may start either from a horizontal
line above the interface, which provides an upward pressure
gradient, or from the interface itself, which rearranges the inter-
face and represents the surface tension.

V2P =0. If the walkers are reflected at the side walls,
then on them (VP),=0. Since the probability vanishes
inside the air region, we have on the air-water interface
P(r)=0. Finally, the average “speed” at which a piece of
interface advances is proportional to the probability just
on the “water” side of the interface, which is then propor-
tional to the normal component of VP, i.e.,

v, =(VP), . @.1)

Thus DLA looks like the zero-surface-tension version of
the Saffman-Taylor problem. This analogy was also no-
ticed by Pietronero and Wiesmann (1984) in the context
of dielectric breakdown.

Now comes an interesting fact. Recall that zero-
surface tension produces a highly unstable interface. In
DLA the interface is so unstable as to produce a fractal
structure in which the aggregate forms tiny fingers or
wisps that split and split and split again. This does not
look like any structure produced in a real fluid flow for
which T5£0. (Perhaps it does represent what we would
see if we were to take T to zero.)

Our group at the University of Chicago, and in parallel
Szép, Cserti, and Kertész (1985) in Hungary, carried out
rather similar investigations of how DLA might be
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changed to better reflect fluid flow. There are two major
problems.

(1) Because the walkers arrive one at a time, the surface
motion is jumpy and grainy. Some kind of averaging is
needed to smooth out the noise.

(2) The lack of surface tension produces an unstable in-
terface whenever the air moves into the water.

Chao Tang (1985) showed how to solve problem (1) and
evade problem (2) thereby generating a situation in which
one could confirm the relationship between DLA and the
Saffman-Taylor problem. He smoothed out the behavior
by requiring that no motion occur until some number M
of walkers arrived. When M was large, say, 20 to 100, he
could get a far less noisy situation. To eliminate the in-
stability, problem (2), he investigated situations in which
the air was moving backward, away from the water. (See
also Paterson, 1984.) This change was achieved by allow-
ing the water to advance by one unit whenever M walkers
arrived. When he then compared his result to the exact
steady-state solution of Saffman and Taylor (1958) or to
the exact time-dependent solution of Shraiman and Bensi-
mon (1984), he found an excellent agreement between his
numerical, random-walk-based simulation and the exact
solution.

In parallel the Hungarian group, Szép et al. (1985), and
Kadanoff (1985) suggested a method of improving the
DLA model to include surface tension correctly. The
problem is to get P(r) at the interface to have a value of
the form

P(r)=Ax+B, (2.2)

where A4 will be proportional to the surface tension. The
solution is to allow walkers to leave the air-water inter-
face, walk through the water, and finally stop when they
reenter the water. If one allows the walkers to leave with
a probability of the form of Eq. (2.2), measures the net
flux of walkers through each interface bond, and then
moves the air or water forward whenever that flux is — M
or M, one has the model that was very successfully ap-
plied by Liang (1986) and also essentially the model
developed independently by the Hungarian group. The
curvature is estimated by a method due to Vicsek (1984).
This kind of simulation gives, as it should, a stable flat
interface when do > 1. If one starts from a geometry that
looks like a finger, a stable finger develops in the simula-

tion for d greater than about 0.05 (see Fig. 6). The A vs -

dy plots agree well with previous numerical calculations
(Fig. 7) [McLean (1981), Tryggvason and Aref (1983)],
and the finger shape agrees reasonably well with the ex-
perimental observations of Pitts (1980; see Fig. 8). Ac-
cording to the fundamental theory, the fingers should
remain stable even as dy—0 in a noise-free environment.
However, the theory also predicts that the fingers would
be extremely sensitive to noise for small values of d.
Hence it is not surprising that the simulations, which cer-
tainly must contain a bit of noise, show an instability for
small dy. In the simulations, as d, gets smaller, the
finger first becomes slightly asymmetric [Fig. 9(a)], then
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for smaller d the tip of the finger splits [Fig. 9(b)], and

for the smallest values of d [Fig. 9(c)] a highly branched

and apparently dendritic structure is produced.
Experiments see the asymmetry and the splitting, but

T,

FIG. 6. Evolution of a stable finger. The successively higher
curves represent later stages in the finger development. From
Liang (1986).
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FIG. 7. Finger width A as a function of the control parameter
{k=[A/(1—A)*]dy}: solid curve, McLean-Saffman (1981) nu-
merical result; O, simulations of Bensimon (1986); + , simula-
tions of DeGregoria and Schwartz (1986); [, random-walk
simulations of Liang (1986).

as far as we know no Hele-Shaw experiment in a
Newtonian fluid® has ever shown an apparently fractal
structure like that in Fig. 9(c).

Since the experiments contain noise, it is not surprising
that they show a structure analogous to the simulations of
Figs. 9(a) and 9(b). However, the dendritic structure of
DLA and of the simulations might be a pure artifact of
the details of the model and might not really be expected
to appear in any fluid system. In the end, we must say
that we still do not fully understand what happens in the
Saffman-Taylor problem for very small values of the sur-
face tension. Neither experiment nor the random-walk
simulations can settle this, since they are both too sensi-
tive to noise and small perturbations. Some evidence can
be obtained from more fundamental theory, which is the
subject of the next section.

Il. THE HODOGRAPH METHOD

A. Complex analytical methods

In this section we summarize what is known about the
Saffman-Taylor problem at zero-surface tension. We
shall describe a method, involving analytic functions of
complex variables, which enables one to study the dynam-
ics of the interface evolution in the absence of surface ten-
sion.

3Nittman, Daccord, and Stanley (1985) have indeed seen a
structure roughly like this. However, their comparison with
DLA is somewhat misleading because they have used the wrong
equations for a non-Newtonian fluid and the wrong boundary
conditions for a Newtonian one.
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FIG. 8. Comparison of the finger shape obtained from simula-
tions and experiment. [, random-walk simulation (Liang,
1986); solid curve, Pitt’s (1980) phenomenological scaling hy-
pothesis, which agrees with the experimental data of Saffman
and Taylor (1958).

In Sec. I the Saffman-Taylor problem was formulated
mathematically in terms of a Laplace equation for the
pressure (or velocity potential) with two boundary condi-
tions. As is usual in two-dimensional problems involving
the Laplace equation, one can be helped considerably by
using complex variable techniques (Carrier, Krook, and
Pearson, 1966). The basic idea is to think of the velocity
potential @(x,y) as the real part of a complex field,

D(x,y)=p(x,y)+ip(x,y) . 3.1

The requirement that V’p=0 can be automatically
satisfied simply by requiring that ® be an analytic func-
tion of the complex variable

z=x +iy . (32)

For reasons that will become more obvious later, it is
better to invert the functional dependence and, instead of
describing how @ is determined by z, rather say that the
potential ® defines where we are in space. In symbols,

z=fi(D). (3.3)

The subscript ¢ indicates that the dependence changes in
time. In fact, we shall use the boundary conditions, Egs.
(1.4) and (1.5) to define the time dependence of f.

Equation (3.3) is the central equation in the hodograph-
ic method, widely used in fluid mechanics. For the
Saffman-Taylor problem, the hodograph technique has
been used to obtain a partial solution in the absence of
surface tension (see Secs. III.C and IIL.D below), to do
simulations (as discussed in Sec. IV below), and to discuss
the stability of small-surface-tension solutions (see Sec. V
below).

B. Basic equations

The real velocity potential @(x,y) is defined so that its
gradient is the velocity vector. The corresponding state-
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ment for the complex case is that Equation (3.4) can then be reexpressed to give several use-
ful boundary conditions. Since v, vanishes on the side
walls, y =+ W /2, the imaginary part of ® must be con-
stant on each wall. We denote the velocity downstream

. d
Ve (X,3)—ivy (x,p) = E;‘-‘D(z) . (3.4)

FIG. 9. Some of the unstable modes observed in random-walk simulations, from Liang (1986). Motion is toward the top. (a) At the
onset of instability, the finger becomes asymmetric. (b) At smaller surface tension, beginning of tip splitting. (c) At even smaller sur-
face tensions the finger evolves into a very ramified structure.

Rev. Mod. Phys., Vol. 568, No. 4, October 1986
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FIG. 9. (Continued).

by U. Then, since v, vanishes far downstream, we see
that ®— Uz +const as Re(z)— . When we take the
constant to be real, we see that In®=+UW /2 on the
two walls.

What we have just said can be converted into boundary
conditions upon the unknown function f, of Eq. (3.3), i.e.,
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if Re®— «, then f,(fb)—*%ﬂ—co with ImCy=0 ;

(3.52)

if In®=+UW /2, then Imf,(®)=xW/2. (3.5b)

Finally, at zero-surface tension, the pressure, and hence
the velocity potential, is constant on the interface between
the two fluids. Thus, if we take this constant to be zero,
we can choose ® to be of the form is for s real, on the in-
terface.

To define the interface more precisely we must deter-
mine a curve for each value of the time ¢. One way of do-
ing this is to define a complex function of two real vari-
ables, s and ¢, i.e., Y(s,t). For each value of ¢, as s sweeps
over its entire range, y(s,t) sweeps over a set of points
z,(s). These points are the complex variables that give the
values of x +iy for all x and y on the interface. This
function y(s,t) is thus the solution to our problem. The
third boundary condition is that, in the case of zero-
surface tension,

—Uw Uw

v(s,t)=f,(is), s€ TR (3.5¢)

Notice that the three boundary conditions, Egs. (3.5),
have defined the physical region of @ to be the strip
uw U

w
" <Y< 5 O<p<oo . (3.6

C=p+iy,
Within this strip, f; must be analytic and its derivative
must be nonzero. These two conditions together ensure
that V2@ =0 in the region filled by water.

One more condition must be fulfilled: the interface
must move with the same velocity as the fluid. Consider
the time dependence of y(s,t). For each value of s,y(s,?)
specifies the value of x +iy for some point on the inter-
face at time ¢. An infinitesimal time interval later, this
same piece of fluid will have moved forward by an
amount (v, +iv,)dt. In this way, we find one term in the
time derivative of y;

g;r(s,t)=vx +ivy . (3.7a)
Using Eq. (3.4), we can rewrite Eq. (3.7a) as
d do | 1 —i
w0 g | T @aer oG
(3.7b)

The total derivative on the left-hand side of Eq. (3.7b)
represents the possibility that, as the front advances, the
value of the parameter s labeling a particular piece of
fluid might change. If it does this at a rate ds/dt, then
we must add to Eq. (3.7b) a term reflecting this change to
obtain

9,y (s,t
8, y(s,1)= —i—sY (&)

IW—%(s’t)asV(s,t) . (3.8)



Bensimon et al.: Viscous flows in two dimensions 989

Equation (3.8) will determine the motion of the inter-
face. At first sight, it does not look as if the derivation of
Eq. (3.8) represents much progress. For one unknown
function, y(s,t), we have traded another, ds/dt. In fact,
however, a considerable advance has been made. We
know that y(s,?) is analytic and has a nonzero derivative
for all values of s in the strip [Eq. (3.5¢)]. This analytici-
ty essentially determines the parametrization of y(s,t). In
turn, the analyticity, plus the condition that ds /dt is real,
fully determines the solution to Eq. (3.8).

There are several different methods for obtaining solu-
tions to Eq. (3.8). The easiest is to eliminate ds/dt by
multiplying by the complex conjugate of d;7 and then
taking the imaginary part of the result, to find

3,y (s5,8)0,y(s5,8)* — 0,7 (s,0)* 3y (s,8) = —2i . (3.9

Equation (3.9), plus the statement that 9,y (s,?) is analytic
and nonzero whenever s lies in the strip [Eq. (3.5¢)],
yields the evolution of the interface.

C. An example

To show what all this means, we develop an example
analogous to the stability analysis of Sec. I.B, but now
specific to the zero-surface-tension case. We shall now
get not just an expansion for small amplitudes, but an ex-
act solution for the interface. To derive this, we replace
the guesses [Eq. (1.8)] about the form of the pressure and
the interface by a corresponding guess for f,(®),

[ @)=Co(t)+D/U +Cy(t)e 9%V, (3.10)

Here the first two terms would give a flat interface, while
the third represents a ‘“correction” with wave vector gq.
The actual interface is given by the curve traced out by ¥
as a function of s, where

y(5,8)=Co(t)+is /U +C(t)e ~5/Y , (3.11)

Notice that the nontrivial dependence upon ® and s is
given in terms of

w=e 9% V=e=5/U (3.12)
Our boundary conditions require that C, be real. Choose
C; to be real also.

To see that Eq. (3.11) is an exact solution, simply dif-
ferentiate and substitute into Eq. (3.9). The result is

(Co+wC1)1—Ci1g0™ ) +(Co+0'C)(1—Ciqw)

=2U. (3.13)

Equation (3.11) will be an exact solution if we can ensure
that Eq. (3.13) is satisfied for all s. This will, in turn, be
true if we can make the coefficients of w/ for j=0,+1
each vanish. The resulting differential equations for C,
and C, are

—j—t(zco—c%q)=2u , (3.14a)
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‘dé;lncl =C0 .
If C;=0 at time zero, it remains zero. Then C, in-
creases linearly in time, Co="U (¢ —t,), and, correspond-
ingly, the interface moves forward with speed U. If, how-
ever, C; starts out positive but small, it will continually
grow larger. The solution will remain acceptable until

(3.14b)

2 i
—7y(s,t)=—[1—¢qC,(¢ 3.14
750 =—1[1-4C1 (0] (3.140)
vanishes at some s. This will happen at some finite time
when C; becomes equal to +¢g~!. At this time the inter-
face acquires a cusp, and after that the evolution is not
defined.

D. Finger solution

There exist a few special solutions that do not go to
cusps. One kind is the family of finger solutions found
by Saffman and Taylor (1958). Here if the finger has a
width AW and the fluid moves with speed U at x = + oo,
then the speed at which the interface advances is U/A.
Thus as Re®— «, we can expect a solution of the form

[ ®@)=Ut/A+®/U +g(®), (3.15a)

where g vanishes rapidly as Re®— + o. In order to con-
struct a finger, we need a singularity as ® goes to the
corners of the strip, which lie at ®=+iUW /2. One guess
is that there is a logarithmic singularity at these points,
i.e., that )

g(®)=aln(1+e~2/U¥) (3.15b)
Given this guess, one finds that
9 i 2mia 1
5;’;/(s,t)= T wo 14 oms 70 (3.16)

Then, a brief calculation based upon Eq. (3.9) shows that
Eq. (3.15a) is indeed a solution if

_Wia_n.
m

a (3.17)
This solution gives the profile described in Eq. (1.15), i.e.,
a single finger with width A.

There are indeed other solutions of the form

m .
fl@)=Ut/y+D/U+ Y a;ln(e V4= 2m/UW)
j=1

(3.18)

with a; real and positive and g; real. These solutions
have m “channels” going off to x— — «, and are thus a
generalization of the original Saffman-Taylor solution
[Eq. (3.15)]. These solutions are singular in the sense that
the interface extends to infinity and the mapping has log-
arithmic singularities on the unit circle. The form of the
steady-state solution given in Eq. (3.15) suggests the fol-
lowing ansatz for the time-dependent solutions:
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ft(¢)=¢/U+C0(t)+ E a; ln[a)—p](t)] )
Jj=1

(3.19)

where o is determined as a function of the complex po-
tential P,

— o —2TP/UW

1) (3.20)

The singularities of this map, p;(), move with time but
are confined outside the physical domain: |p;(#)| > 1.
When one of them hits the circle, a channel going to
x =— oo is formed. We can write down the evolution
equation for these singularities. It turns out, however, to
be more convenient to track the zeros of d4f instead.
They must also lie outside the disk—otherwise the confor-
mality requirement is not satisfied. We have

Il [o—«;(0)]
daf —api Tt .

H [w—pj(t)]

j=1

(3.21)

Proceeding along the lines developed by Shraiman and
Bensimon (1984), and after some algebraic manipulations,
one can obtain the “pole dynamics” equations: a system
of m ordinary differential equations governing the motion
of the critical points of the map, a;(t), of the form

(3.22a)
(3.22b)

d;a;=F;(a,p),
9:pj=Gjla,p) .

Note that, while the p;’s completely determine the a;’s
and vice versa [from Egs. (3.19)—(3.21)], it is more con-
venient to track the evolution of zeros and poles by dif-
ferential equations, since the relation involves high-order
algebraic equations. :

The simplest example is the case in which there is only
one term in the sum in Eq. (3.19):

FAD)=ao()+B/U + g—gln[a)—al(t)] . (3.23)
Equations (3.22) then have the solution
ag(t)=2Ut , (3.24)

a()=1+[a}(0)—1]e—2"U/W |

In this case a cusp does not appear and, instead, the
solution asymptotically approaches the Saffman-Taylor

= steady-state solution.

The existence of a “pole” decomposition is somewhat
surprising, since this is more commonly associated with
integrable systems, such as, the Burgers equation (Calo-
gero, 1975; Choodnovsky, 1977) and the K dV equation
(Kruskal, . 1974; Moser, 1975), although it has been
discovered in a few other systems as well (see Lee and
Chen, 1982; Thual, Frish, and Henon, 1985).

The differential equations [Eqgs. (3.22)] can be solved
explicitly in some cases; otherwise, they can be studied
numerically. It can be shown (Sarkar, 1984; Howison,
1985) that most initial conditions of the form of Eq.
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(3.21) lead to the appearance of 5 power cusps on the in-
terface when one of the zeros of d4f hits the unit disk.
Figure 10 shows an example of the appearance of such a
cusp in the evolution of the initial interface given by
4
f(@)=D/U+F In[W —p;(1)]+Co(1) , (3.25)
1
with p (0)=(3,10i, —9i, — 64 4i).
For most initial conditions, cusps form and, after they
form, the equations seem to stop having solutions.
Physically, one expects the surface tension to prevent
the singularities from appearing. Its effect should become
important when the curvature near the cusp becomes of
the order of the capillary length: W1/d,. It may be pos-
sible to understand this problem using the method of
matched asymptotic expansions (see Bender and Orszag,
1978). However, this has not yet been done.

IV. THE CONFORMAL MAPPING ALGORITHM

A. Introduction

There are several different ways of studying the fluid
flow that results when the surface tension is not zero.
Some of them have already been mentioned. Section II
outlined the application of random-walk techniques to
this problem. Tryggvason and Aref (1983, 1986) have ap-
plied a method in which the interface is described as a
vortex sheet, thereby constructing a set of very appealing
simulations of time development. A slightly different
boundary integral method was employed by DeGregoria
and Schwartz (1986) in their simulations of interface evo-
lution. Both groups found that apparently stable fingers
are generated, at least for the not-too-small values of d,,
for which their calculations are accurate. Their fingers,
in turn, look very much like the fingers that are obtained
from a direct solution of the steady-state problem as set
up by McLean and Saffman (1981).

1.0~ =
0.0 15
- 4 9
1.0~ -
20 -
- 1 1 ! i i 1 1 | 1
3'OO.O 04 0.8 1.2 16

FIG. 10. Generation of a finite-time cusp in the evolution of an
arbitrary initial interface in the absence of surface tension.
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Ini this section we shall describe yet another method.
This one is based upon the conformal mapping approach
of Shraiman and Bensimon (1984) and was used in the
simulations carried out by Bensimon (1986). Similar
ideas were used by Menikoff and Zemach (1983) in simu-
lating motion of interfaces. Our motivation for this par-
ticular focus is that this method seems particularly well
suited to the study of the limit of small-surface tensions
where the behavior remains a bit of a puzzle.

B. Conformal method for the problem
with surface tension

In Sec. 111, the hodograph technique was used to derive
the equation of motion of the interface. In this section we
shall rederive this equation in the presence of surface ten-
sion (dy=£0) and from a slightly different approach. The
velocity potential ¢ obeys

V2p=0 (4.1a)
and the boundary conditions on the interface,
= %K (4.1b)
and
ﬁ-an:ﬁ—aal;— , (4.10)

where ¥ is the interface between the two fluids, « its cur-
vature, and 1i a direction normal to the interface. Instead
of including boundary conditions at the side walls, we as-
sume here a periodicity under y—y -+ W. This corre-
sponds physically to a cylindrical Hele-Shaw cell such as
the one-used by Aribert (1970).

Equations (4.1) determine the evolution of the interface:
the Laplace equation with the Dirichlet boundary condi-
tion on y, Eq. (4.1b), completely determines the flow
field; then, the value of the normal velocity (the normal
gradient of @) at the boundary determines the velocity of
the interface, Eq. (4.1c). We have to solve a Stefan, or,
moving-boundary-value problem. The two-dimension-
ality of the problem greatly simplifies the task by allow-
ing the use of the conformal mapping technique.

The idea, which is standard in all textbooks on complex
variables, e.g:, Carrier, Krook, and Pearson (1966), is
based on the Riemann mapping theorem. This theorem
ensures the existence of a conformal map from the com-
plicated, but simply connected, domain enclosed by the
interface ¥ into a standard domain, the interior of the
unit disk. Within the disk the Dirichlet problem for the
potential ¢, Egs. (4.1a) and (4.1b), can be readily solved.
That solution then enables us to rewrite Eq. (4.1c) as an
evolution equation for the mapping. As in Sec. III, we in-
troduce the complex potential P(z)=e(x,y)+¢P(x,y)
(with z=x +iy). We then conformally map the domain
of interest, i.e., the space occupied by the driven fluid,
into the unit disk (|w| <1): z=f,(w) (see Fig. 11).
Since the interface y between the two fluids is the image
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w- plane

z-plane

FIG. 11. Conformal map from the unit disk to the space occu-
pied by the driven fluid.

of the unit circle ( | @ | =1) under the map f;(w);
y(t,8)=f(e¥), 4.2)

specifying the mapping f;(w), at a given time ¢, is identi-
cal to specifying the interface, y(t,s), together with its pa-
rametrization s.

In the unit disk, the solution of the Dirichlet problem is
standard. One has to find the function analytic inside the
unit disk, ®(w), of which the real part on the
boundary, w=e®, is specified: @(s)=(Tb%/12u)x(s),
where «(s), the local curvature of y(z,s), is

3f /3sf
m—2l L
|9/ |
The solution is known to be given by the Poisson integral
formula. That formula states that the function analytic

for |w| <1, g(w)=g(w)+ih(w), for which the real part
on the unit disk g (s) can be written as

k(s)=—1I (4.3)

g(s)=ao+ i (ape™+aye™™) (4.4a)
n=0
must be
glw)=A{glw)=ap+2 I, a,0". (4.4b)

n=0

Here, we interpret 4{g} as an integral operator applied to
a real-valued function g (s) defined on the unit circle, giv-
ing a complex-valued function g(w) analytic within that
circle.

This approach can be directly applied to the determina-
tion of the potential. First we deal with the trivial case in
which we have a flat interface and the curvature vanishes.
In this case the potential is ®=Uz, while the mapping

. that takes one from the unit disk |w| <1 onto the strip

x>0, —W/2<y<W/2is z=—(W/27)lnw. Hence, in
this example,

o(0)=—Wing . 4.5)

2

The singularity of ® at =0 is simply a reflection of the
X —> oo behavior of the problem. This behavior and this
singularity will persist even in the presence of a nontrivial
interface. Thus we can say that ®(w)+(UW /27)lnw
must be analytic for |w| <1, and must have the value
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given by Eq. (4.1b) on the circle. We use Eq. (4.4) to con-
clude that
uw Th?
P(w)=——1 —A .
(@) 2y D0+ 12 {r}(w)

Following the notation of the theorem we use the nota-
tion K(w) for A {«x}(w) and hence get an expression for the
complex potential, which is

U
D(w)=— Y Inew + 120 Kw) . (4.6)
A comparison between Egs. (3.20) and (4.6) will show that
the  used here will reduce to the @ of Sec. III as T—0.
However, the s’s of the two sections are different. As
T —0, the s of this section is —27/UW times the s of the
preceding section. o
Now, the normal velocity of the interface, given by Eq.
(4.1c), is (-V)p, where fi is a unit vector normal to the
interface. This vector can be rewritten in complex nota-
tion as

3, f @3,f
18 |@duf |
Here and in the rest of this section, w is specified to lie on

the unit circle. Given n one can calculate the normal
component of the gradient as

n =n,+in, =i (4.7a)

(A-V)p=n,0,9+n,0,p
=nxax‘p_nyax¢

=Re(nd,P)=Re

3,®
n awz
Re(0d,®)

——. (4.7b)
| @3uf |

Notice that Eq. (4.1c) only specifies the normal velocity
of the interface. Of course there is no physical signifi-
cance to a tangential velocity, which simply corresponds
to a reparametrization of the interface.

However, the analyticity of the mapping function f(w)
fixes a particular “analytic,” parametrization ‘“gauge.”
This parametrization has to be maintained for all ¢z. For
that purpose, it is sufficient to make the time derivative
of the map, 9,f, analytic inside the unit disk. To achieve
this, as in Eq. (3.8), we add to the right-hand side of Eq.
(4.6) an appropriate tangential velocity component,

3, f=n({@-V)p+inC’

Re(wdw®) .

c 4.
|wdaf [2 @8

=w0,f

Here C and C’ are real functions of w. To make the
right-hand side of Eq. (4.9) analytic, the function C has to
be the harmonic conjugate of the first term in the large
parentheses: Re(wd,®)/ | wd,f |2 In other words, the
terms in the large parentheses have to represent the func-
tion analytic in |w| <1, the real part of which on
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|w | =1 is specified. We have seen previously that this is
achieved by the Poisson integral formula as expressed in
Eq. (4.4). Therefore, the use of Egs. (4.4) and (4.6) upon
Eq. (4.8) yields the desired evolution equation for the in-
terface:

Af _ 0B fA 1—(d W/27T)Re[2w8,,,k'(m)] Uw '
ot | 0d,f | 27
4.9)

C. Numerical simulations

If we know f,(w) for a given value of ¢, we can obtain
the entire right-hand side of Eq. (4.9) and thus find d,f.
This enables us to set up a numerical algorithm for simu-
lating the evolution of y(s,#). This algorithm is rather ef-
ficient. One measure of its quality is the number of
operations needed per time step. In this case, if one fits
the interface at N points and thus retains N coefficients
in a Fourier series like Eq. (4.4), then the computer code
requires O (N InN) operations per time step. (Most of the
time is spent in computing Fourier series, using a fast
Fourier transform algorithm.)

The algorithm was checked against known results in
the asymptotic regime (f— o). A typical outcome of
such a simulation fits well the finger shape obtained by
the phenomenological scaling hypcthesis of Pitts (1980)
[see Figs. 8 and 12(b)]. The dependence of the finger
width on the McLean-Saffman surface-tension parameter
k is shown in Fig. 7 and agrees with their numerical re-
sults for the steady-state interface. In the absence of sur-
face tension, the time evolution of the interface was in
complete agreement with the exact time-dependent solu-
tion. It developed finite-time singularities [see Figs. 10
and 12(a)]. In its presence, one observes two regimes.
One is at low velocities (dy> 10~2), for which an initial
arbitrary interface evolves into the corresponding
McLean-Saffman steady-state propagating finger [Fig.
12(b)]. The other is at high velocities (dy < 10~2), for
which the finger is unstable and shows wobbling and tip
splitting [Fig. 12(c)]. This is in qualitative agreement
with recent numerical and experimental work (Tabeling
and Libchaber, 1986; Park and Homsy, 1985; Liang,
1986; DeGregoria and Schwartz, 1986). In Sec. V we
shall use this algorithm to study the linear and nonlinear
stability of the propagating finger.

V. STABILITY OF THE FINGERS

A. Anomalous stability

In Sec. I.C we discussed the difficulties associated with
the stability analysis of the finger solutions. A naive ar-
gument given there suggested that since the capillary
length W1/d, is—for small dy—small compared to the
characteristic curvature of the finger, one might expect
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FIG. 12. Time evolution of an interface, from Bensimon (1986).
Here the cell width W is set equal to 27. The fluid moves to the
right and successive interfaces are superposed on the same pic-
ture. (a) Evolution of an arbitrary initial interface without sur-
face tension. (b) Evolution of the same initial interface as in (a),
but in the presence of surface tension (dy=0.01). (c) Tip split-
ting in the evolution of an interface at low surface tension
(do=0.01).

the finger to be unstable just like the flat surface. This is,
of course, at odds with experimental observations as well
as numerical simulations. On the other hand, the direct
linear stability analyses of Kessler and Levine (1986a,
1986b) and Bensimon (1986), carried out numerically,
have shown the fingers to be stable to infinitesimal per-
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turbation for all values of d,. Kessler and Levine (1985b)
suggested that the stability is due to.the interaction with
the walls of the cell.

A particularly illuminating observation was made by
Tabeling and Libchaber (1986), who studied the behavior
of the perturbed fingers in the real Hele-Shaw cell, and by
DeGregoria and Schwartz (1986), who simulated the evo-
lution of the fingers numerically. This observation was
that the localized disturbance of the interface drifts along
the finger onto its side, whereupon it slowly disappears.

The stabilization is thus due to the fact that the distur-
bance is expelled from the region of instability and does
not have “enough time” to grow. This provides a valu-
able physical insight.*

As pointed out to us by Pelce, the physical mechanism
involved is exactly the one proposed by Zel’dovich and
co-workers (1980) to explain the stabilization of cellular
flames. Below, we shall apply their ideas to the
Saffman-Taylor problem. To verify the results obtained
by the heuristic (and approximate) argument, we shall
later in this section present the results of a more direct
study of stability carried out by Bensimon (1986) using
the complex analytic method outlined in Sec. IIIL.

B. Stability analysis in a WKB approximation

In this section we apply the ideas of Zel’dovich and co-
workers (1980) to the Saffman-Taylor problem.> Consid-
er a finger moving uniformly with velocity U/A. Use as
coordinates to describe this finger 6, which is the angle
between the normal to the interface and the x axis, and 7,
the path length along the interface measured from the tip.
On this interface superpose a small disturbance with am-
plitude 4 and wave vector g localized in some region
described by 7 or 6. The amplitude is the height of the
distortion measured perpendicular to the interface. For
the localization idea to make any sense, the wavelength
21 /q must be very small in comparison to the typical di-
mension of the finger, W/A. When this condition is
satisfied we can consider 4, g, and 7 each to be functions
of time ¢, or equivalently of 8. (See Fig. 13.)

If we neglect the small effect of the disturbance, the
velocity of the fluid normal to the surface is given by

V= ~gcos@ . (5.1a)

A
In the laboratory frame the velocity parallel to the in-
terface is proportional to the gradient of the potential

4A similar mechanism was proposed by Landau and Lifshitz
(1959) to explain the nonlinear instability occurring in Poiseuille
flow.

5A related WKB scheme was used by Langer (1986) to obtain
solutions for a model of solidification in the presence of surface
tension, a singular perturbation.
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FIG. 13. Stretching and quenching of an initial localized per-
turbation of the finger.

along the interface, (3,4)7. In the fixed frame of the
finger there is an additional term, the component of UX
parallel to the surface. We find that the component of
the fluid velocity parallel to the surface is

2
UfzgsinG—ia,.K . (5.1b)
120

A
Assume that the disturbance propagates backward
along the finger with the speed U,. As it propagates it is
stretched because U, varies in space. This stretching
makes the wave vector change in time by

d
—Ing=-5, 5.2
2 nd (5.2)
where the stretching factor S is given by
d
=—U,. 5.3)
dr 7 (

The amplitude of the disturbance is also changed by the
stretching. As the disturbance becomes wider it must be
lower. Hence we get one term in d; In4 which is just —.S.
Another term in the equation of motion for A4 is that
given in Eq. (1.13), in which

2
lv” 52 ,

—75.. 9

A4 _
=4 121

A

Note that we use here the normal component of the velo-
city in determining the growth rate of the instability.
When we put both effects together, we find

d TH? ,
—1InAd = _—— -5 . 5.4
i n q |V, 12,uq S (5.4)

Quadratures of these equations of motion can be ob-
tained rather directly. Start from Egs. (5.2) and (5.3) and
use the fact that dr=dt(dr/dt)=dtU, to integrate and
find that

Here C is a constant of integration. Since U, goes to zero
at the tip, the wavelength goes to zero there. As
xX——ow, U, becomes U/A so the wavelength ap-
proaches a constant at the base of the finger. Next we
combine Egs. (5.2) and (5.5) with the statement
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dt dr
A= a6
1
= Ux do,
to obtain

d q Tb2 2
—(In4 —Ing)= — .
40 (In nq) Ux Y, 120 q (5.6)

A solution can now be found by integrating with respect
to 6. We replace g by U, making use of Eq. (5.5), and
find

A(B)= , 5.
(6) U.0) e (5.7
where the integral I is
% C Th? C?
1(6,,6h)= — — — 5.8
(01,00)= [, O gac [~ o 02 (5.8)

Equation (5.7) tells us about the amplification of the
amplitude A4 as the disturbance moves backward along
the finger from 6, to 6. We shall be interested in estimat-
ing this amplification in the limit of small d, i.e., small-
surface tension 7. Notice that the integrand in Eq. (5.8)
is fully defined once we specify the shape of the finger.
That specification gives 7(0) and, hence, k=d6/dr as
functions of 6. From Egs. (5.1) we then know U, and v,,.
The integral can then, in principle, be done.

We are interested in understanding large amplifications.
The largest possible amplification of A times U, will
occur if 6y and 8, are chosen to make the growth factor in
the large parentheses of Eq. (5.8) exactly zero. The
second term in the large parentheses is proportional to T
and hence is usually small. However, as 6 goes to zero
the tangential velocity U, also goes to zero. We estimate
U, from the first term in Eq. (5.1b) and find that the
large parentheses in Eq. (5.8) vanish for small 6 when 0 is
equal to
Th2C? 172

— (5.9
12u(U /1)

=

As 0 approaches 7/2, v, goes to zero, and the stability
factor can once again vanish, even though T is small.
This vanishing occurs at

6\=m/2—65 . (5.10)

The major contribution to the integral [Eq. (5.8)] occurs
very near 6, where the factor of 1/U?2 produces a very
large result. In this region, the disturbance is moving
slowly, so that it has sufficient time to be amplified con-
siderably. The result is that the integral takes on the
value

2C

I ~——
(61,60) 30pk0(U /A)

(5.11)

Here kg is the value of the curvature near the tip. From
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the Saffman-Taylor A=+ solution, we have ko=2m/W.
We then find

/2 1

3 vd,

All along we have tacitly assumed that the amplitude
of the distortion remains small compared to the charac-
teristic length W of the finger. If the initial disturbance
is weak enough, its amplitude is guaranteed to remain
bounded and small by Eq. (5.11). However, larger distur-
bances, those leading to A, ~ W, are dangerous and
‘may cause an instability. This suggests an estimate for
the threshold of the finite-amplitude instability:

1(6,,00)= 2— (5.12)

—0.94d 5172

A, ~We (5.13)

Here we neglect the subleading corrections given by the
U, factors in Eq. (5.7).

The physical mechanism described above provides an
explanation for the result of the linear stability analysis.
It also provides an estimate for the order of magnitude
(and d, dependence) of the threshold of the finite-
amplitude instability.

The main limitation of the method used in this section
is the need to assume that the length scale of the distor-
tion is small compared to the local radius of curvature, so
that the result for the stability of flat interfaces could be
used. This restricts its applicability to the study of
short-wavelength, localized distortions. Thus the analysis
of this section does not replace the direct stability
analysis, which will be discussed next.

C. Stability analysis: the complex analytic method

The complex method can be directly used to study the
stability of a steadily propagating finger. The method is
directly analogous to that used in Sec. I.B. Assume that
the conformal map describing the moving interface is

filo)=f%w)+A4,(w) . (5.14)

Here f%w) is the steady-state finger solution, which then
depends upon dj, and A4,(w) is a small time-dependent
deviation from this solution. Since f,(w) is analytic in-
side the unit disk, we may assume
fo(a))= E fnwn s
n=0 (5.15)
Aw)=7 4,0e".
n=0
The stability analysis is performed by expanding Eq.
(4.9) and keeping terms of first order in 4.
Since fO is a steady-state solution, the result is an equa-
tion of the form

D=3 My [fO1A,(0+ M, 01 43(0)

n=1

(5.16)
Notice that the matrices M and M’ depend upon the
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presumed steady-state solution f°. The k =0 term in Eq.
(5.16) gives 9,4,=0, thus yielding a marginal mode that
corresponds to the translation of the finger. The fact that
it decouples from the rest is quite convenient and is an
advantage of the method.

The solution to the linear stability problem can now be
clearly seen. Consider M and M’ in Eq. (5.16) to be ma-
trices. Form the supermatrix

M M’]

M= MI* M*

(5.17)

If that matrix has an eigenvalue E, then A4,(¢) is exponen-
tial in ¢, e®’. Stability then requires that the real part of
the eigenvalue be negative, so that any deviation from the
finger solution would vanish as t— .

Once the matrix elements are written down, the eigen-
values can be calculated numerically. Bensimon (1986)
expanded f° in a power series in dy and then used that
expansion to calculate M and M’ to first order in d,.
The eigenspectrum for dy=0.05 is shown in Fig. 14. No-
tice the continuum of symmetric modes ( 4,, real) and an-
tisymmetric modes (A4, imaginary) with a negative real
eigenvalue preceded by a discrete set of asymmetric
modes with complex eigenvalues (their number increases
as dy—0). The eigenvalues all have negative real parts
for values of dy down to 1073, so that the interface ap-
pears to be linearly stable. This is in agreement with the
heuristic argument described in Sec. V.B. This stability
result, as well as the eigenvalue spectrum, is also in agree-
ment with previous results of Kessler and Levine (1985b).
It disagrees with the results of McLean and Saffman
(1981), where instability was predicted. However, Sarkar
has argued that the instability prediction might be wrong
because of neglected terms of order d,, while Levine sug-
gested that the number of mesh points was not sufficient
to ensure accuracy. It appears to us that the results of
Kessler and Levine (1985b) and Bensimon (1986) are the
most reliable.

4 I 1 I T I 1 I T I 1
- « .
2L ®
N R
(0] = X+ o L o +X o + * —
»
B P
-2 ¥ ]
» « u
-4 | 2 | i | T 1 1 \
-20 -16 -2 -8 -4 0

FIG. 14. Eigenspectrum at dy=0.05, for various truncations of
Eq. (5.16): +, N=130; 0, N=100; X, N =80. Notice the
discrete spectrum of asymmetric modes (complex eigenvalues)
and the continuum of symmetric and antisymmetric modes
(negative real eigenvalues). From Bensimon (1986).
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D. Structural stability and nonlinear instability

We have seen that the finger is destabilized due to the
existence of a finite-amplitude instability. Its proximity
shows up as a sensitivity of the eigenspectrum of the
linearized problem. Bensimon (1986) argued that there is
a relation between the structural stability of the linearized
problem and the nonlinear instability of the full problem.

One may study the dependence of the critical amplitude
for destabilization on dy by looking at the appearance of
unstable modes in response to a random distortion of the
interface [letting the f,, in Eq. (5.15) contain a random
term], an instability arising at a typical perturbation
strength v, that depends upon d,. For example, we can
obtain a fit with a form

ve~dy’* exp(—Bd5 '),

with B~1.3. This particular form for the fit was suggest-
ed by the argument of Sec. V.B [Eq. (5.13)]. However,
one should not necessarily expect full agreement between

(5.18)

—

— e w— —
i

—
—_

v, and the 4, of Eq. (5.13). They are different quantities,
although they are probably asymptotically equal. Other
fits are possible—for example, v, ~exp(—ydg?), with
B~0.61 and y=0.72. They all exhibit a singular
behavior as dy—0.

When the noise in f° is larger than v,, unstable modes
arise. The most unstable modes are shown in Fig. 15:
There are two asymmetric oscillatory modes, which we
call the “hump” and “tip-wobbling” modes, and a sym-
metric nonoscillatory one that correspond to a change in
the width A of the finger. These modes have apparently
been observed in numerical simulations [Fig. 9(a); Liang,
1986] and in experiments (Tabeling and Libchaber, 1986).

The conjecture that the structural stability of the spec-
tral problem is related to a finite-amplitude instability
was verified numerically with the help of the algorithm
based on the conformal mapping technique described in
Sec. IV. This was done by studying the threshold of the
instability at a given value of d as a function of the am-
plitude of an initial random analytic perturbation of the

FIG. 15. The three least stable modes of the k:% finger (dashed line, unperturbed finger). (a) Symmetric nonoscillatory mode,
which may be responsible for the experimentally and numerically observed fingers of width A < —;— (b) Asymmetric “hump” mode. (c)
Asymmetric “tip-wobbling” mode. (d) Asymmetric “hump” mode observed in an experiment [courtesy of Tabeling and Libchaber
(1986)].
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FIG. 15. (Continued).

interface. Figure 16 compares the results of the structural
stability analysis and the numerical simulations. This
comparison confirms the existence of a finite-amplitude
instability whose threshold depends singularly on d,, pos-
sibly of the form predicted by Eq. (5.13).

CONCLUSION

Although the problem of the stability of the A=+
Saffman-Taylor finger seems to be understood from dif-
ferent theoretical, numerical, and experimental ap-
proaches, one major question remains as yet unanswered.
That is the question of selection, which is common to
many related problems (solidification, dendritic growth,
etc.). We do not yet understand the physical mechanisms
at work behind the selection of one particular state out of
a continuous—or discrete—family of possible solutions.
Noise probably plays an important role via some destabili-
zation scheme similar to that discussed in Sec. V.

Another (related?) scenario is that of dynamical selec-
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FIG. 16. Critical noise amplitude v, necessary to drive the sys-
tem unstable as a function of the surface-tension parameter d.
Notice that the vertical scale is logarithmic (we plot —Inv, vs
dy): +, results of the structural stability analysis; solid curve,
best fit of the form v,=exp(—yds#?) with B=0.61 and
y=0.72; dashed curve, best fit of the form
v, ~dd? exp(—ad&l/z) with a=1.3; O, results of the numeri-
cal simulations, which seemed to be more sensitive to noise by a
constant factor. From Bensimon (1986).
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tion. All possible solutions are linearly stable, but the
selected one has a larger basin of attraction, thereby at-
tracting all physically accessible initial states. Such a
scenario is known to occur in one-dimensional, nonlinear
diffusion equations (Kolmogorov et al., 1937; Fisher,
1937; Aronson and Weinberger, 1978) and in a class of
nonlinear first-order partial differential equations (Shrai-
man and Bensimon, 1985). Clearly an understanding of
the transient regime where surface tension is dynamically
important—preventing the formation of a cusp—is need-
ed.

Despite these unanswered questions, many of the major
aspects of viscous flows in Hele-Shaw cells are now
reasonably well understood. We know that in a noise-free
environment a single stable finger will eventually arise
whenever the surface tension is nonzero. We understand
that a small-surface tension is a singular perturbation that
produces results qualitatively different from the inte-
grable but unstable behavior at zero-surface tension. The
instability of fingers against small amounts of noise at
low-surface tensions is semiquantitatively understood.
Calculations have been done that show in detail the role
of the singular perturbation in producing the selected pat-
tern. The discrepancy between theory and experiment in
the observed values of the finger width AW as a function
of the surface-tension parameter d, is apparently a result
of the wetting of the glass plates.

One might expect this complex of ideas, and especially
the idea of a singular perturbation, to be an important
part of our understanding of other free interface prob-
lems. Rapid progress is being achieved in describing
directional solidification, electrodeposition, and so forth.
In the next few years considerable progress is to be ex-
pected in these problems of dynamical pattern formation.
In fact, it might be that several features of these problems
will emerge as the result of different kinds of singular
perturbations upon the basic zero-tension Saffman-Taylor
problem.
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FIG. 15. (Continued).



FIG. 2. Competition between two bumps leading to the emergence of a single propagating finger, courtesy of Tabeling and Libchaber
(1986). Parts (a), (b), and (c) represent successively later times in the development of the same run.
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