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This review summarizes recent developments in the theory of spin glasses, as well as pertinent experimental
data. The most characteristic properties of spin glass systems are described, and related phenomena in oth-
er glassy systems (dielectric and orientational glasses) are mentioned. The Edwards-Anderson model of
spin glasses and its treatment within the replica method and mean-field theory are outlined, and concepts
such as "frustration, " "broken replica symmetry,

" "broken ergodicity, " etc., are discussed. The dynamic
approach to describing the spin glass transition is emphasized. Monte Carlo simulations of spin glasses and
the insight gained by them are described. Other topics discussed include site-disorder models, phenomeno-
logical theories for the frozen phase and its excitations, phase diagrams in which spin glass order and fer-
romagnetism or antiferromagnetism compete, the Neel model of superparamagnetism and related ap-
proaches, and possible connections between spin glasses and other topics in the theory of disordered
condensed-matter systems.
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I. INTRODUCTION AND OVERVIEW

Spin glasses are magnetic systems in which the interac-
tions between the magnetic moments are "in conflict"
with each other, due to some frozen-in structural disor-
der. Thus no conventional long-range order (of ferromag-
netic or antiferromagnetic type) can be established.
Nevertheless these systems exhibit a "freezing transition"
to a state with a new kind of "order" in which the spins
are aligned in random directions.

The nature of this new kind of order, and thus its ap-
propriate theoretical description, is still heavily debated,
as well as the character of the freezing transition: is it a
new type of phase transition (Edwards and Anderson,
1975) or failure to establish complete thermal equilibrium
during observation time? The problem of spin ordering in
spin glasses is a problem belonging to the physics of
structurally disordered materials, and does not arise in
more conventional regular systems such as ideal crystals.
Thus a number of challenging theoretical questions im-
mediately emerge.

(i) Usually, the ordered phase is characterized by an or-
der parameter. What is the order parameter for spin
glasses?

(ii) The ordered phase generally has a lower symmetry
than the corresponding disordered phase. Is there a "bro-
ken symmetry" here?

(iii) How does one deal with the statistical mechanics of
a system with a large number of quenched variables
which describe the frozen-in structural disorder?

(iv) As some relaxation times may exceed reasonable
time scales of observation, nonergodicity becomes a seri-
ous practical problem. What is the proper way to gen-
eralize equilibrium statistical mechanics to treat such
slowly relaxing metastable states? Etc.

—g (S; ), exp(ik. R; ) =0 (X~ oo ),
1

(1 2)

where T&Tf. The average ( ), denotes a time average
over an observation time I;,b, much longer than any mi-
croscopic time.

As an accompaniment to spin freezing one observes a
cusp at Tf in the magnetic susceptibility (see Cannella
and Mydosh, 1972) and remanence (Tholence and Tour-

Furthermore the characteristic phenomena observed in
spin glasses, such as the rather sharp "cusp" in the
frequency-dependent susceptibility in low fields, first
found by Cannella and Mydosh (1972), are a fairly univer-
sal feature: the cusp occurs both in the dilute metallic al-
loy CuMn with 0.9% Mn (Fig 1. ; Mulder et al. , 1981)
and in the concentrated insulator Eu~Sr& „S (Fig. 2; Ma-
letta and Felsch, , 1979). Rather than originating in ran-
dom dilution of a crystal, as in these examples, the
quenched™in disorder necessary to produce a spin glass
may also be due to noncrystallinity, e.g., in
CoO Alz03 SiOq (Wenger et aL, 1982). Analogous phe-
nomena are also found in dielectric relaxation measure-
ments on disordered ferroelectrics such as KTaO3 diluted
with Li (Hochli, 1982; Fig. 3), which is interpreted as an
electric dipole glass, or in diluted molecular crystals such
as K(CN)„Brt „(Loidl et al. , 1982), which is interpreted
as a "quadrupolar" or "orientational" glass. Other phe-
nomena exhibit a fairly universal character as well, and
the number of materials now being categorized as spin
glasses is truly abundant.

The physics of spin glasses raises many rather funda-
mental questions, and the phenomena observed are of a
fairly general character —these two facts are probably the
main reasons why this field has become one of the main-
streams of research in condensed-matter physics. There-
fore the present review will not be able to give a complete
survey of the field, but rather is intended as a tutorial in-
troduction to it and a discussion of the most exciting
questions that have come up. Of course, the judgment of
what are the most exciting questions is highly subjective,
and the present review is easily recognizable as a theorist's
selection of topics: problems such as the infinite-range
model (Sherrington and Kirkpatrick, 1975) and the lower
critical dimension of short-range models will be discussed
in detail; not much attention will be paid to effects of de-
viations from random mixing in dilute alloys (see, for ex-
ample, Bouchiat et al. , 1981), change of properties with
heat treatment (Beck, 1978), etc.

We shall now specify more precisely what are the main
characteristic properties of a spin glass and what, it is
generally believed, are the necessary ingredients of a
theoretical model if it is to display such behavior (Sher-
rington, 1983). The moments in a spin glass are observed
to be frozen over macroscopic times at temperatures
below the freezing temperature Tf. However, the direc-
tions of the spins do not pick out any wave vector, so that
(for Ising spins S;= + 1)
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FIG. 1. Real part P of the complex susceptibility P(m) as a function of temperature for sample IIc (CuMn with 0.94 at. /o Mn,
powder). Inset reveals frequency dependence and rounding of the cusp by use of strongly expanded coordinate scales. Measuring fre-
quencies: 0, 1.33 kHz; 0, 234 Hz,' )&, 104 Hz; Q, 2.6 Hz. From Mulder et al. (1981).

nier, 1974; Bouchiat and Monod, 1983) and hysteresis
(Monod et al. , 1979, Prejean et a/. , 1980) below the freez-
ing temperature. This remanent magnetization is found,
for instance, if one cools the spin glass in a field to
T(Tf and then switches the field off. Just above Tf re-
laxation times have a broad spectrum, and as T~Tf+
some of the weight in this spectrum lies at times very
many orders of magnitude larger than any characteristic
microscopic time. The range of correlations in space also
increases as one approaches Tf from above. To see exact-
ly what this means consider, again for Ising spins, the
correlation function {S;SJ), . In a spin glass the sign of
this correlation will be random, so it is convenient to dis-
cuss the square {S;SJ), . This decays to zero, generally

(S;SJ.), ~exp( —
~
R; —RJ ~ //so) . (1.3)

One observes that /so grows as T~TP, showing that

10

exponentially to a first approximation, as the distance

~
R; —R~ ~

increases (to be precise one should average
over many pairs of sites of a given relative separation).
We call the range over which the decay takes place the
spin glass correlation length /so, so, loosely speaking,
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FIG. 2. Real part P' of the complex susceptibility P(co) as a
function of temperature for Eu„Sr~ „S,at m=11.7 Hz and vari-
ous Eu concentrations as indicated in the figure. From Maletta
and Felsch (1979).

FIG. 3. Dielectric susceptibility of Kp 974Lip p26Ta03 as a func-
tion of temperature. Labels stand for the measuring frequen-
cies, arrows for the maximum of the dielectric dispersion step
(49 K) and the stability limit of remanent polarization (56 K).
From Hochli (1982).
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important collective effects are taking place, which
presumably, in turn, give rise to the long relaxation times.
The increase in gsG seems to be less rapid than the growth
of the characteristic times.

For the behavior at the freezing transition, as well as in
the low-temperature phase, it matters whether we consid-
er Ising spins, S;=+1, as done above, or isotropic spin
glasses (XY spins confined to a plane, or three-component
Heisenberg spins). It may also become necessary to con-
sider crossover effects between these different classes of
spin glasses: many real systems are nearly Heisenberg-
like, but a weak anisotropy is present.

It is still a matter of debate whether or not the relaxa-
tion times and spin glass correlation length diverge at Tf,
signifying a phase transition, or just become large and fi-
nite. If there is a phase transition, one can then replace
the time averages in Eq. (1.1) by statistical mechanics
averages and define (Edwards and Anderson, 1975) a spin
glass order parameter

which is nonzero below Tf. Here ( ) T denotes a statisti-
cal mechanics average and [ ]„is a configurational aver-

age over the random interactions. In the simplest approx-
imation, namely, mean-field theory, the spin glass order
parameter is actually more complicated than this because
spin glass ordering is nonunique: there exist a large num-
ber of degenerate thermodynamic states with the same
macroscopic properties but with different microscopic
configurations.

These are separated by infinitely high free-energy bar-
riers in phase space. It is, however, unclear whether real
systems have degenerate thermodynamic states separated
by infinite barriers or whether this is an artifact of mean-
field theory. In any case, the hypersurface describing the
coarse-grained free energy in the space of appropriate
phase-space coordinates exhibits many "valleys" (for a
qualitative description see, for example, Fig. 4 and
Binder, 1980a). In mean-field theory the complete spin

energy

)y(&)
I

ic"'I
phase-space coordinate

FICx. 4. Schematic plot of the coarse-grained free energy of a
spin glass plotted vs a phase-space coordinate which measures
the projection of the considered state on a particular ordered
state. From Binder (1980a).

glass order parameter is a function (actually a probability
distribution) that describes not only ordering within a sin-
gle valley but also how correlated the valleys are with
each other in phase space.

One difficulty of the theory of spin glasses is, of course,
that it is difficult to give a precise meaning to vague but
intuitive pictures like Fig. 4. The total free energy of a
system, considered as a function of some other extensive
variables, must be a simple convex function of these vari-
ables, as general thermodynamic principles tell us, and
hence does not look like Fig. 4. One believes that one
finds such a picture for the coarse-grained free energy
F,s([QJI), defined as a restricted partition function
Z,s—:exp[ —E,s( I QJ [ )/kii T]=Tr exp( A lk—ii T), where
the trace is calculated under the constraints of keeping
fixed the set of phase-space variables [PJ. I that one con-
siders to be the important variables for the considered
problem. In a ferromagnet near the critical point, the im-
portant variables are the long-wavelength Fourier com-
ponents of the magnetization. Thus coarse graining
essentially amounts to integrating out the short-
wavelength magnetization fluctuations. In a spin glass,
however, identification of the important variables [QJ I
which should appear in the coarse-grained free energy is
nontrivial; . hence we shall see that various types of
coarse-grained free energies for spin glasses have in fact
been proposed, and will be discussed.

While we shall find, in our discussion of the mean-field
theory in Sec. IV, that the thermodynamic state in the or-
dered phase is very degenerate, i.e., there are many valleys
in Fig. 4 with exactly the same depth, it is not clear that
this feature also applies to spin glasses with short-range
interactions. In fact, it is conceivable (see, for example,
Moore and Bray, 1985; Fisher and Huse, 1986) that the
ordered phase of an Ising spin glass is only twofold de-
generate (in zero field, there is an up-down symmetry of
the Hamiltonian). But a picture of the type of Fig. 4 is
still expected for the coarse-grained free energy, the only
distinction being that two valleys (corresponding to fully
ordered "monodomain" configurations) are somewhat
deeper than all the other valleys (corresponding to meta-
stable states, which might be viewed as configurations
with large clusters of spins overturned relative to the
monodomain configuration, for instance). In a ferromag-
net or antiferromagnet with no frozen-in disorder, such
configurations are also possible, but they are not separat-
ed by high free-energy barriers from each other and from
the stable states and thus do not play a significant role in
the dynamic behavior of the system.

A nontrivial spin glass model, then, must clearly have
nonperiodic ground states and a complicated configura-
tion space with many "valleys. " To obtain these features
it appears that a model must have a substantial amount of
two ingredients: randomness and frustration The latter.
refers to competition between different terms in the Harn-
iltonian so that no spin configuration simultaneously min-
imizes each term. There have been attempts to model
spin glasses by having one of these ingredients without
the other, but it appears that one must have both together
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in order to describe spin glass behavior. The simplest
model with these features is probably that proposed by
Edwards and Anderson (1975), which we shall discuss ex-
tensively in this review. Note that there are certain other
models (e.g., that of van Hemmen, 1982, 1983) with sub-
stantial randomness and frustration but without the com-
plicated configuration space and slow dynamics of spin
glasses (Choy and Sherrington, 1984; Morgenstern and
van Hemmen, 1985). It is also possible for randomness
and frustration to give states with long-range magnetic
order. This occurs if the amount of randoinness and frus-
tration is rather weak. An example is the Ising ferromag-
net in a small random magnetic field, discussed in Sec.
VI.F.1, for dimension greater than two. The system is
ferromagnetic at low temperatures and not therefore gen-
erally considered to be a spin glass, although it does have
a multivalley structure of configuration space and a very
broad spectrum of relaxation times. Hence randomness
and frustration are necessary but may not be sufficient to
obtain nontrivial spin glass behavior. A further complica-
tion is that, for certain ranges of parameters, the mean-
field theory of spin glasses predicts long-range magnetic
order plus degenerate thermodynamic states separated by
infinite barriers. Such systems are commonly called spin
glasses even though they have long-range order. The
question of what is a spin glass is, therefore, not always
completely clear cut.

The plan of this review is as follows: Section II
discusses the experimental situation. We shall restrict
ourselves to a few rather well-investigated systems (the
reader interested in a more complete account of experi-
mental work may consult Fischer, 1982, 1985).

Section III then contains theoretical considerations of a
more general character and introduces the various
theoretical descriptions. Section IV summarizes our
current understanding of the mean-field theory of the
Edwards-Anderson model (Edwards and Anderson, 1975)
of spin glasses. This area has seen enormous activity in
the last decade, which is understandable since for all
cooperative phenomena a mean-field description is always
a useful point of departure. In contrast to ordinary order-
ing phenomena, where the mean-field description often is
rather trivial, the mean-field theory of spin glasses is ex-
tremely difficult, and it has taken several years to acquire
a reasonable understanding of it. Several new concepts
have emerged, which will be discussed rather thoroughly.

Section V describes the properties of short-range
Edwards-Anderson models, which are still much less well
understood. Much of our knowledge about the behavior
of these models stems from computer simulations, which
will hence be emphasized in this context. It was soon evi-
dent (Binder and Schroder, 1976a, 1976b) that many
features of the short-range model are surprisingly similar
to experimental findings. Thus there is nearly general
agreement that the short-range Edwards-Anderson model
is a reasonable first approximation, as far as the theoreti-
cal description of real spin glasses is concerned. But the
question of in which spatial dimensions this model has a
phase transition at nonzero temperature is still very con-

troversial. %'e shall discuss this interesting question in
detail.

Section VI is then devoted to a brief description of oth-
er approaches to spin glass theory and of problems that
have some bearing on the subject of spin glasses but that
are somewhat outside the main scope of this review.

As will have become evident by now, there are many
questions in the field that are controversial (and there is
not even a complete consensus as to what are the impor-
tant questions). While it is a general strategy of this re-
view to give some room for all major schools of thought
in the field, the final section (Sec. VII) containing the con-
clusions necessarily will be more biased by the authors'
point of view. And, last but not least, the authors must
apologize to many colleagues that they were unable to
mention their work in this review: complete coverage of
the subject would be a very hard task and was not intend-
ed. Additional references are given in earlier reviews
(Binder, 1980a; Rammal and So uletie, 1982; Fischer,
1983c, 1985; Chowdhury and Mookerjee, 1984) and the
articles in van Hemmen and Morgenstern (1983).

II. EXPERIMENTAL RESULTS

In order to perform experiments on spin glasses, it is
first of all necessary to make sure that a given material
does indeed fall into this category and is not just a kind of
(disordered) ferromagnet, antiferromagnet, or ordinary
paramagnet at all temperatures. For several years there
was a running controversy among some experimental
groups whether one should make distinctions between
spin glasses and so-called "mictomagnets" (Mydosh,
1977, 1978; Beck, 1978). The former category was
reserved for dilute magnetic metallic alloys, and more
concentrated or nonmetallic systems were put into the
latter. It is now widely realized, however, that there is no
fundamental distinction between these cases, and hence
we shall consider all these systems as spin glasses. In any
case, this discussion has clarified the question that an ex-
perimentalist must ask (Mydosh, 1978, 1983; Sherrington,
1983): what properties must a system have in order to be
a spin glass? These defining properties are (i) frozen-in
magnetic moments below some freezing temperature T~
and hence a peak in the frequency-dependent susceptibili-
ty (Figs. 1 and 2); (ii) lack of periodic long-range magnetic
order; (iii) Remanence 'and magnetic relaxation on macro-
scopic time scales below Tf when there are changes of the
magnetic field.

Of course, the question of whether moments are frozen
in depends on the time scale of the observation; moreover,
condition (ii) must be somewhat relaxed if one wishes to
consider states with mixed spin glass and ferromagnetic
ordering (see Secs. II.C.3 and II.D). Thus some impre-
cision in such a working definition necessarily remains.

In Sec. II.A a brief characterization of "subclasses" of
the category spin glass will be given, because naturally the
"universality" of spin glass properties is not strictly com-
plete. There are differences depending on whether one
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deals with Ising-type spins or vector spins, and the nature
of the magnetic anisotropy is important.

A. Spin glass systems

Exchange interactions

The "classical" spin glass materials are noble metals
(Au, Ag, Cu, Pt) weakly diluted with transition metal ions,
such as Fe or Mn. The picture one has in mind is then
that the scattering of the conduction electrons at the spins
leads to an indirect exchange interaction (see Fig. 5). This
RKKY interaction (Ruderman and Kittel, 1954; Kasuya,
1956; Yosida, 1957) oscillates strongly with distance R,

cos(2kzR +yo)J(R)=Jo
(kFR )

(2.1)

Here Jo and yo are constants, and kF is the Fermi wave
number of the host metal. Since the distances between
the spins are random, some of the interactions of a con-
sidered spin with other ones will be positive, favoring
parallel alignment, some negative, favoring antiparallel
alignment; thus no spin alignment can be found that is
satisfactory to all exchange bonds. This "frustration" of
some of the bonds (Toulouse, 1977) will appear as the
second basic ingredient, together with the frozen-in disor-
der, of spin glass behavior; this point will be discussed in
more detail in Sec. III.E below.

In the limit where the alloy is very dilute, positive and
negative signs of the exchange in Eq. (2.1) will be equally
likely, and hence one might approximate Eq. (2.1) by
J(R)=+Jol(kFR), where Jo is another constant and
the signs are chosen at random. For such a symmetric
distribution P(J)=P( —J) of bond strengths J; the mag-
netic susceptibility in the entire paramagnetic phase
would be a simple Curie law 7 ~ T '; in addition, due to
the decay of the interaction strength as the minus third
power of distance, the so-called "concentration scaling
laws" (Souletie and Tournier, 1969, 1971) hold.

It is now well established, however, that this picture is
far too idealized. An attempt has recently been made by

Kx (gpz ) S(S+1) g(x)
(2.2)

with the Curie-Weiss temperature 8(x)

9(x)= gJ(R)P„(R) .
3k~

(2.3)

Here N is the total number of atoms per unit volume, and
x is the concentration of magnetic atoms. It is assumed
that the latter have magnetic moment gp~S and spin
quantum number S independent of. concentration and
temperature (while this is certainly true for magnetic mo-

100

u Fe
u Mn

u Mn

t Mn

Morgownik and Mydosh (1983a, 1983b) to infer the actu-
al exchange interaction J(R) for several spin glass sys-
tems from a careful analysis of high-temperature suscep-
tibility data. At least for values of R up to the fifth-
neighbor distance, J(R) is not in agreement with Eq.
(1.2), since the conduction electron polarization around
single Mn impurities [inferred from Cu NMR measure-
ments by Cohen and Slichter (1978)] has a rather different
spatial dependence (see Fig. 6).

The situation is even more complicated as the same
analysis reveals (Morgownik and Mydosh, 1983a, 1983b)
a complicated interplay with atomic short-range order. It
appears that deviations from ideal random mixing occur
in such a manner as to enhance the probability of neigh-
boring distances where J(R) in Fig. 6 is ferromagnetic in
all four systems investigated (CuMn, AuMn, AuFe, PtMn).
For CuMn, this conclusion is also corroborated by earlier
neutron scattering work (Cable et al. , 1982). These devia-
tions from random mixing are very clearly seen in the
complicated concentration dependence in the high-
temperature susceptibility. In fact, in leading orders in
reciprocal temperature, X can be expressed as (see, for ex-
ample, Binder, 1982a)
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FIG. 5. Schematic sketch of magnetic moments randomly di-
luted in a metallic Inatrix, and the resulting RKKY exchange
integral plotted as a function of distance. From Binder (1977a).

inter atomic distance (units of lattice constant)

FIG. 6. Estimated exchange parameters J as a function of dis-
tance for four spin glass systems. The dashed line represents
the RKKY conduction electron polarization around a Mn ion in
Cu, according to Cohen and Slichter (1978). From Morgownik
and Mydosh (1983a).
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ments due to localized electrons, for itinerant electrons
this clearly involves an approximation). The (conditional)
probability P„(R) that a site a distance R apart from a
magnetic ion is also taken by a magnetic ion is simply
P (R)=x, independent of R, in the case of random mix-
ing, and then 6)(x) is simply linear in x. Even rather
small deviations from random mixing produce drastic ef-
fects in the susceptibility, as model calculations (Binder,
1982a) and experiment (Morgownik and Mydosh, 1983a)
reveal. The striking conclusion of Morgownik and My-
dosh (1983a) is that "ferromagnetic clusters are the 'build-

ing blocks' out of which the spin glass state is established,
and they should be considered theoretically. "

The conclusion we want to draw at this point is that,
even for systems considered as "archetypal" spin glasses
(Morgownik and Mydosh, 1983b), the effective magnetic
Hamiltonian is not known precisely. But it is clear that
there will be competition effects between ferromagnetic
bonds and antiferromagnetic ones, as Fig. 6 shows.

In this respect, the situation is qualitatively similar to
that for the nonmetallic spin glass Eu„Sri ~S (Maletta
and Felsch, 1979; Maletta, 1982). The magnetic Eu ions
have S=—,, g =2, and the exchange interactions are fer-
romagnetic between nearest neighbors, antiferromagnetic
between next-nearest neighbors, with JNNN/JNN- ——,',.
superexchange with more distant neighbors is negligibly
small (Bohn et a/. , 1980). As a consequence of this short
range of the exchange forces, they can support a spin
glass state only for concentrations exceeding the next-
nearest-neighbor percolation threshold [xp —0.136, on
the face-centered cubic lattice (Dalton et al. , 1964)]. The
superparamagnetic state for concentrations below this
threshold is also of interest (Eiselt et al. , 1979), since the
view exists in the literature that spin glass behavior is not
essentially different from "rock magnetism" (Wohlfarth,
1977a), i.e., superparamagnetism (Tholence and Tournier,
1974). We shall come back to this problem in Sec. III.G
below.

Due to its well-defined magnetic moments and rather
precisely known exchange parameters, which depend only
weakly on concentration or temperature via lattice expan-
sion (Kobler and Binder, 1980), Eu„Sr, S probably is
the spin glass material for which interactions are best un-
derstood to date. For this reason we emphasize somewhat
experimental results for this material as a prototype for
nonmetallic spin glasses, although this material also has
its problems (effects of ferromagnetic tendency, demag-
netizing effects, and strong dipolar anisotropy are incom-
pletely understood).

Related materials with different values of the ratio
JNNN/JNN are Eu„Sr& Se and Eu Sr& „Te or the
mixed system Eu Sr& „S„Sei „(Westerholt and Bach,
1981b). While in all the systems mentioned'so far disor-
der is produced by random (or at least nearly so) occupa-
tion of crystat sites, there now exist a large number of ma-
terials in which the disorder is due to the amorphous
structure of the material: metallic A1063Gdo37 (Mizogu-
chi et al. , 1977; Malozemoff and Imry, 1981) as well as
the insulating magnetic glasses MnO Alz03. SiO2 (Kline

et al. , 1976) or CoO A1203 Si02 (Krusin-Elbaum et al. ,
1979; Morgownik et al. , 1982). In addition, metallic
glasses such as (Fe„Ni, „)75Pi686A13 (Rao et al. , 1983),
(Fe,Mni „)95P&686A13 (Salamon et al. , 1981), and
(Fe~Mni „)75Pi686A13 (Geohegan and Bhagat, 1981;
Manheimer, Bhagat, Kistler, and Rao, 1982a) are spin
glasses. In these and similar materials, however, detailed
magnetic interactions are not yet known. The fact that,
nevertheless, many physical properties of the spin glass
state are similar supports the point of view that the de-
tails of magnetic interactions are not so important —to get
a spin glass one just needs competition between ferromag-
netic and antiferromagnetic bonds due to some disorder
(see, for example, Binder and Schroder 1976b). On the
other hand, it is not so clear whether disorder together
with purely antiferromagnetic bonds suffices to yield spin
glass, behavior: doped semiconductors such as Si:P,
CdS:In (Kummer et al. , 1978, 1979; Andres et a/. , 1981)
are thought to be modeled by a spin S= —, Heisenberg
Hamiltonian, but with P(J) a distribution of purely anti-
ferromagnetic bonds (Bhatt and Lee, 1981, 1982). In such
systems the susceptibility is monotonically increasing
with decreasing temperature, and no peak, characteristic
of a spin glass, is found. Recent examples of spin glasses
obtained by dilution of, antiferromagnets will be discussed
in Sec. II.D.

2. Anisotropy

While in the Introduction we considered Ising spins
(S =+1), the systems mentioned so far are all described
by vector spins, i.e., a Heisenberg rather than an Ising
model. It turns out, however, that anisotropies in addi-
tion to the exchange may play a crucial role (Walstedt and
Walker, 1981; Morris et a/. , 1986). One anisotropy that
is always present is due to dipolar interactions,

~dip= g [/ti '/ j —3(pi Rij )(/t'j R'ij )/Rij ]'/Rij (2.4)

While the resulting anisotropies do account well for the
behavior observed in Eu Sr& S, both in the very dilute
(superparamagnetic) regime x &xp (Eiselt et al. , 1979)
and in the spin glass regime at higher concentrations
(Binder and Kinzel, 1983a), they are probably less impor-
tant in other systems: there the temperatures of interest
are typically much larger, and at the same time the mag-
netic moments gp&S are much smaller than in
Eu~Sri „S. Using a pseudodipolar anisotropy for CuMn
or AuFe would require a prefactor making A d p orders of
magnitude larger to yield about the observed freezing
temperature (Walstedt and Walker, 1981). Pseudodipolar
interactions may arise in AuFe due to the orbital charac-
ter of the moments, and additional single-ion anisotropy
terms may arise from spin-orbit coupling of Au electrons
(Levy and Fert, 1981). Single-ion anisotropies are of the
form
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A sr
———Dg(S,')

(uniaxial crystals, z direction

being the easy axis), (2.5a)

~andom Dlg(p S )2

(2.5b)
[P;].,=o, [P /, ]-= 3/) AJ

a P

A = —D "g[(S; ) +(&f) +(~,')']

(cubic crystals), (2 5c)

where p; is a random unit vector and D,D',D" are con-
stants. The most interesting anisotropy arising in the me-
tallic spin glasses is due to the interaction introduced by
Dzyaloshinskii (1958) and Moriya (1960), which is due to
spin-orbit scattering of a third atom. Fert and Levy
(1980, 1981) discuss this mechanism in detail and show
that it is particularly important if other impurities with
strong spin-orbit coupling are present in the material (e.g.,
CuMn containing Pd, Fe, Co, or Pt impurities). The re-
sulting effective interaction between a pair of spins at
sites R~, Rz is (the third atom being located at the origin)

sin[kF( I R(
I
+

I
Rz

I + I Rz —Ri
I )+gDM] (Ri Rz)(R&XRz) ~ (S~ XSz)

[I+«~(
I
Ri

I
+

I
Rz

I +
I
Rz —R~

I )]
(2.6)

E~~(q = —X)cos@—
z ICzcos 4, ' (2.7)

where Kg, K2 are phenomenological anisotropy constants
and 8 is the angle by which the spins are rotated from
their frozen metastable directions. When the spins are ro-
tated by 4 =rl, the uniaxial anisotropy energy. —,'Kzcos 8
is the same as for 8=0, while the unidirectional term
%icos@ has changed sign. Evidence for Eq. (2.7) will be
discussed in Sec. II.C.2; the theoretical justification of Eq.
(2.7) will be discussed in Sec. VI.B.

Anisotropies of the type of Eqs. (2.5b) and (2.6) will not
lead to any macroscopic global anisotropy of the system
in the disordered state: on the average no direction is pre-
ferred. The situation is different, of course, if one deals
with uniaxial spin glasses for which Eq. (2.5a) applies,
such as (Ti~ „V„)zO3 (Dumas et tz/. , 1979): there static
susceptibilities X~~,Xz have to be distinguished according
to whether the field is applied parallel or perpendicular to
the easy axis. In the limit where Xz «XII the system may
be approximated by Ising spins. While (Til V„)z03 is
quasimetallic, there exists also an example of an insulat-
ing uniaxial spin glass, namely FezTi03 (Atzmony et a/. ,
1979). This material is a curiosity because it is crystalline
and stoichiometric: the spin glass character results from

Fert and Levy (1980, 1981) also estimate the constants
JDM, yDM, c and find that typically JDM is of the order of
0.1JO, where Jo is the amplitude of the RKII Y interac-
tion, Eq. (2.1). Evidence for the relevance of Eq. (2.6) in
CuMn spin glasses has come from observation that the
hysteresis loop is widened if Au or Pt impurities are add-
ed (Prejean et a/. , 1980) and that the anisotropy field seen
in ESR experiments increases (Okuda and Date, 1969;
Monod and Berthier, 1980).

Due to coupling of the term S~ XSz to the direction of
R~XRz, Eq. (2.6) leads to a macroscopic anisotropy.
There is a remarkable distinction between the macroscop-
ic anisotropies resulting from Eqs. (2.5a) and (2.5b),
which are of uniaxial character, and that resulting from
Eq. (2.6), which is of unidirectional character. In a metal-
lic spin glass, the total macroscopic anisotropy energy
then has the form (Henley et a/. , 1982; Levy et a/. , 1982)

I

the fact that magnetic Fe + ions and nonmagnetic Ti +
ions are randomly distributed over the same types of crys-
tallographic sites in the lattice.

Other examples of anisotropic spin glasses are ZnMn
(Albrecht et a/. , 1982), where the easy axis is the c axis
and the system is Ising-type, and CdMn (Albrecht et a/. ,
1982), an example of an XI'spin glass: due to a negative
sign of the constant D in Eq. (2.5a), the Mn spins prefer
to lie in the basal plane, but no direction in this plane is
then preferred. MgMn, on the other hand, is another ex-
ample of a Heisenberg spin glass (Albrecht et a/. , 1982).

In ZnMn and CdMn the anisotropy is comparable to
the exchange. Albrecht et a/. (1982) attribute their
single-site anisotropies to spin-orbit scattering of the type
considered in the Dzyaloshinskii-Moriya mechanism.
Clearly, just as a microscopic explanation of the exchange
constants on a quantitative level is as yet hardly possible
[Eq. (2.1) together with a free-electron picture for the con-
duction electrons hardly is appropriate; see Fig. 6], one
should not expect in general that the anisotropy can be ac-
counted for reliably by microscopic theories, particularly
since an expression such as Eq. (2.6) involves three pa-
rameters (J»„yDM, and c, in addition to kz).

B. Properties in small magnetic fields

While the random interactions in a spin glass want to
freeze in the spins in random directions, a magnetic field
wants to align them parallel to the field. Thus there is
competition between spin glass order and the Zeeman en-
ergy, and in fact strong enough magnetic fields can de-
stroy the spin glass state entirely. In the following, we
shall consider fields to be "small" if they are believed to
affect a spin glass state not very much (or, in the disor-
dered regime, if their contribution to the nonlinear mag-
netization is small). Thus smallness of the field is here
not understood in an absolute sense. We start with a dis-
cussion of the frequency-dependent susceptibility and
then turn to specific heat, as well as to various measure-
ments that have yielded insight into the dynamics of spin
glasses. Questions associated with hysteresis and
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remanence, the temperature-field "phase diagram, " and
the nonlinear susceptibility near the freezing temperature
will be considered thereafter.

1. Time-dependent susceptibilities

1.0-

0.8-

symbol

X

q(&)

q (500)
q (1000)
q (2000)
data far Gd037AIO ~

C(1—q) (2.8)T —8(l —q)

but treating C and 8 as effective temperature-dependent
parameters rather than true constants. Such a procedure
was tried for both the field-cooled (fc) and the zero-field-
cooled (zfc) "static" susceptibilities in the case of CttMn
by Nagata et al. (1979; Fig. 7), with the result that q van-
ished roughly linearly with temperature at Tf. A similar
procedure was applied earlier by Mizoguchi et al. (1977)
to A1063Csd037 The resulting temperature variation of
the estimated spin glass order parameter is shown in Fig.
8, together with Monte Carlo data for a simple cubic Is-
ing spin glass with symmetric Gaussian distribution of
bond strength between nearest neighbors on the lattice
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FIG. 7. Static susceptibilities of CuMn vs temperature for 1.08
and 2.02 at. % Mn. After zero-field cooling (H & O. OS Oe), ini-
tial susceptibilities (b) and {d) were taken for increasing tem-
perature in a field of H =5.9 Oe. The susceptibilities (a) and {c)
were obtained in the field H =S.9 Oe, which was applied above
Tf before cooling the samples. From Nagata et al. {1979).

Typical data for the zero-field frequency-dependent
susceptibility have already been shown in Figs. 1 and 2.
The susceptibility at very high temperatures follows a
Curie-Weiss law, X=C/(T —0) [cf. Eq. (2.2)], C being
the Curie constant. Even at temperatures T as high as
about 5 Tf the first deviations from Curie-Weiss behavior
occur, both in metallic (Morgownik and Mydosh, 1983;
Rao et al. , 1983) and insulating spin glasses (Kobler and
Binder, 1980); thus on a local scale strong magnetic corre-
lations develop far above the freezing temperature. If one
were to disregard the frequency dependence of the suscep-
tibility cusp in Figs. 1 and 2 (as well as its rounding), one
could extract a spin glass order parameter q from it, ap-
plying the prediction resulting from the infinite-range
model of spin glasses (Sherrington and Kirkpatrick, 1975;
see Sec. IV.A),

0.6-
X

~+X

0.4-

I x

y+ X
+ X

x
+ X

X

++++~ XK. e
2 3 kgT/h, 3

FIG. 8. Spin glass order parameter vs temperature for
Gdo 37A10 63 (from Mizoguchi et al. , 1977) compared to simula-
tions of a 16)&16)&16 Ising spin glass at various observation
times t, measured in Monte Carlo steps per spin (from Binder,
1977a). AJ is the width of the Gaussian distribution of the
simulation, and the experimental k& Tf /AJ is chosen arbitrarily.

[Binder (1977a); in this case 8=0 and C=Kz if Eq.
(2.8) is understood as susceptibility per spin, with
gp~ ——1]. The results of all these investigations are quite
similar. However, one has to be very careful in interpret-
ing these results: the frequency dependence of X'(co) in
Fig. 1, as well as the distinction between fc and zfc sus-
ceptibilities below Tf in Fig. 8, indicate that the establish-
ment of full thermal equilibrium is a delicate matter. One
interpretation that is frequently used (e.g., Elderfield and
Sherrington, 1983a) is the zfc susceptibility measures the
response of only one "valley" in phase space (see Fig. 4),
and thus the order parameter measured would be that of
Eq. (1.1), assuming that during the observation time one
stayed in one valley. On the other hand, it is believed
(Elderfield and Sherrington, 1983a) that "field cooling
corresponds to averaging over all available states, the full
Gibbs average, " and the order resulting from the fc sus-
ceptibility would be that of Eq. (1.4). These identi-
fications, also known as the "folklore mapping
between mean-field theory and experiment, " have to be
viewed with considerable caution, however: Wenger and
Mydosh (1984a) have observed that the fc susceptibility
of the cobalt aluminosilicate spin glass
[(CoO)0 4(AlzO3)0 &(SiO2)0 5] depends on the cooling
rate—which implies that it cannot be the thermal equili-
brium susceptibility. While it is usually said that the
magnetization in the field-cooled state is fully reversible,
slight irreversibilities have recently been found in CuMn
spin glasses by Lundgren Svedlindh, and Beckman (1982,
1983); Lundgren, Nordblad, Svedlindh, and Beckman
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(1983, 1985), and since these authors find that the field-
cooled magnetization slowly changes with time, their con-
clusion (Lundgren, Svedlindh, Nordblad, and Beckman,
1983) is that "the true equilibrium value of the magneti-
zation is difficult to determine accurately. "Moreover it is
found (Lundgren, Svedlindh, Nordblad, and Beckman,
1983) that the zfc susceptibility depends strongly on the
time the sample is kept at constant temperature after
cooling prior to field application. These experiments
show that in zero-field cooling thermodynamic equilibri-
um is not obtained unti1 the time the sample has been
kept at constant temperature exceeds the Inaximum value

of the relaxation time spectrum in equilibrium.
Lundgren et al. (Lundgren, Svedlindh, Nordblad, and
Beckman, 1983) interpret their results in terms of an ef-
fective waiting-time-dependent relaxation time spectrum,
which is cut off at the waiting time itself (as long as it is
smaller than r,„). Since Lundgren et al. (Lundgren,
Svedlindh, Nordblad, and Beckman, 1983) estimate r,„
at T=23 K, the temperature at which the experiments
were performed, as r,„=10 sec (while Tf—26 K for
Cu with 4 at. % Mn), they conclude that "the spin glass
state is a nonequilibrium one, in the thermodynamical
sense. "

In the picture of the spin glass free-energy hypersurface
anticipated in Fig. 4 we can easily understand this
behavior qualitatively by remarking that the coarse-
grained free energy is strongly temperature dependent
near Tf. above Tf all barriers between valleys are very
small and become gradually larger as the temperature is
lowered. In other words, all valleys are very shallow
above Tf, but some of them become very deep as the tem-
perature is lowered. Thus, on cooling, a system may well
find itself at first in a side-minimum halfway between the
bottom of the valley and a saddle point. Then a lot of
rearrangements of clusters of spins may be necessary until
the system can relax from the metastable side-minimum
to the stable valley.

It is not absolutely certain that this behavior proves the
nonequilibrium character of the spin glass state. If states
with spin glass order exist as thermal equilibrium states,
they are certainly highly degenerate (i.e., there are many
order-parameter components). On cooling the system
through its transition temperature one would expect to
find that locally the system would start to form ordered
regions of its various possible order-parameter com-
ponents. As these regions grew, there would be misfit at
their walls (like that at "antiphase domain boundaries" in
ordered alloys or antiferromagnets), and hence the growth
of the domains might be extremely slow. This mecha-
nism to explain the slow relaxation encountered in spin
glasses below Tf was erst dhscussed by Stauffer and
Binder (1978), who showed, simulating a Mattis (1976)
spin glass, that for such a system it wou1d not lead to
slow enough relaxation. Gn the other hand, it is now
known that in systems with larger order-parameter degen-
eracy, kinetics of domain growth is slower (Grest et al. ,
1983; Sadiq and Binder, 1983) than in a system with only
two ordered states; an additional slowing down of domain

growth might be due to domain-wall pinning effects at
strong bonds.

In view of this alternative possible interpretation of
some of the experimental findings, it is important to es-
tablish whether there exists a unique static freezing tem-
perature Tf. Mulder et al. (1981) define a frequency-
dependent freezing temperature Tf(co) from the position
of the susceptibility maximum (see Fig. 1) and conclude

d lnTf(co) =0.0022 (2.9)
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FIG. 9. Inverse freezing temperature Tg '(co) of Eup4Sro 6S
plotted vs logarithm of measurement frequency. Different sym-
bols indicate different measurement techniques. From Ferre
et al. I,'1981).

is independent of concentration for CuMn in the concen-
tration range 0.94&x &6.4 at. % Mn, while Tf itself is
roughly proportional to the concentration. If Eq. (2.9)
held down to co~0, the static freezing temperature would
be zero; however, the frequency dependence of Tf (co) over
the observed frequency range is so weak that it is equally
likely that Tf(co) actually settles down to a static limit.
In fact, "static" measurements of the susceptibility of
CuMn Alo 63Gdo 3'7 spin glasses (Malozemoff and Imry,
1981), where time constants from minutes to 24 hours
were used, did not show any shift of Tf with the time
constant at all. Similarly, in amorphous PrPos5 (Guyot
et al. , 1980) and in Eu04SR06S (Ferre, et al. , 1981) one
finds that Tf(co) seems to settle down towards a constant
value when it is measured over a wide enough frequency
range (Fig. 9). We shall come back to this behavior in
Sec. V.E below. Here we only note that a comparative
discussion of the frequency dependence of Tf in many
spin glasses is given by von Lohneysen (1981), with the
conclusion that "a common law for b, Tfl(Tfb, logco) is
not visible" [for more recent additional data, see Lecomte,
von Lohneysen, and Wassermann (1983)].

Particularly rewarding insight into the dynamics of
spin glasses has recently been gained by experiments
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where both the real and the imaginary parts (X',X") of the
complex susceptibility X(co) have been measured accurate-
ly. Such measurements have been possible for Eup 4Srp 6S
(Rajchenbach and Bontemps, 1983; Paulsen et al. , 1984),
Eup 2Srp 8S (Huser et al. , 1983; see Fig. 10),
(Ho203)p p8(B203)p 92, and (CoO)p q(A1203)p J(Si02)p g

spin glasses (Wenger, 1983). If the magnetization relaxed
with a single relaxation time ~, 7' and 7" could be ex-
pressed in terms of ~ and the static isothermal and adia-
batic susceptibilities XT,Xq as follows (Casimir and du
Pre, 1938):

(2.10a)

1T Xg
X ( co ) =col

1 +co
(2.10b)

X'(~) =Xg+ J [XT(r)—Xg(r)]
max g(r)d in'

min I+6 (2.11)

An implication of Eqs. (2.10) is that a plot of X" vs X'

(with co as a parameter) should yield a semicircle [this is
known as the "Cole-Cole plot" in dielectric relaxation
(Daniel, 1967) and the "Argand diagram" in magnetic re-
laxation]. If the relaxation of the magnetization is

governed by a distribution of relaxation times rather than
a single one, however, these plots are approximately
described by arcs of semicircles. Then Eq. (2.10) is gen-
eralized as (Lundgren et al. , 1981; Huser et al. , 1983;
Wenger, 1983).

X"(co)= f [XT(r)—Xg(r)]~r
min 1+co

(2.12)

where XT(r) and Xs(r) are time-dependent generalizations
of the isothermal and adiabatic susceptibilities, and g(r)
is a suitable distribution function of relaxation times. Of
course, X'(co) and X"(co) obviously can only determine the
product [XT(r)—Xz(r)]g(r), and not the factors of this
product separately. Thus Eq. (2.11) is usually applied to-
gether with the assumption that in the time domain of in-
terest (between minimum and maximum relaxation times)
the r dependence of XT(r) —Xq(r) can be neglected in
comparison with that of g(r) [see, for example, Wenger
(1983)]. An example of the distribution function g(r) re-

sulting in this way for the cobalt aluminosilicate spin
glass is shown in Fig. 11(a), and the temperature depen-
dence of r;„,r,„, and r,„[defi ned from the frequency
where X"(co) is maximal, via r,„=1/co] in Fig. 11(b)
(Wenger, 1983). These data allow several important con-
clusions.

(i) The relaxation time spectrum is very broad, even far
above Tf. As the temperature is lowered, it dramatically
broadens and ultimately extends to the regime of macro-
scopic times at and below Tf.

(ii) The shortest relaxation time r;„ is a microscopic
time, of the order of 10 "—10 ' sec in the cobalt alumi-
nosilicate spin glass.

(iii) Both r;„and r,„rae consistent with Arrhenius-

type laws,

r =rpexp(E„, /k~ T), (2.13)
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where the prefactor 7 p and activation energy E„, have
physically reasonable values (rp-10 " sec, E„,being in
the range between 14 and 30 K).

Such a behavior would be consistent with thermally ac-
tivated processes, involving constant (i.e., temperature-
independent) (free) energy barriers. However, the max-
imum relaxation time ~ „is not consistent with this sim-

ple picture of thermally activated hopping over barriers
(which we shall nevertheless investigate in more detail in
Sec. III.G): if one were to apply Eq. (2.13), a fit to r,„
would work only over rather restricted temperature
ranges, and near Tf unphysically high values of 7p and

E„,would result (e.g. , 10 (rp(10 sec). In the context
of glassy systems, a strong temperature variation such as
that of r,„, is often described by the law attributed to
Vogel (1921) and Fulcher (1925),

Pp 05

b0
DQ Q io00

ip

where Tp is a characteristic temperature introduced in an
ad hoc fashion. In fact, Tholence (1979, 1980) has shown
that the frequency dependence of Tf(co) for a number of
spin glasses is better described by

TFMP|:RATURQ (K)

FIG. 10. Temperature dependence of the dispersion g' (solid
symbols) and absorption P" (open symbols) for Eu02Sro 8S at an
applied field H =0. 1 Oe. Frequencies: ~, 0,co = 10.9 Hz;
~,0,261 Hz; 4,D, 1969 Hz. From Hiiser et al. (1983).

[ Tf(co) Tp] ' ~ 1n(corp), —

which follows from Eq. (2.14), than by

Tf '(co) ~ ln(co7p),

(2.15a)

(2.15b)
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where v is the critical exponent of the correlation length
and z the dynamic exponent. Very large values of z
would be needed to account for the observed behavior. At
ordinary phase transitions, ~ „usually is very small, even
rather close to the transition, and hardly ever reaches the
regime of macroscopic times for the observable tempera-
ture differences (apart from cases where a transition tem-
perature tends to zero, as in a ferromagnet near its per-
colation threshold).

Thus measurements of time-dependent susceptibilities
in principle might yield detailed insight into the dynamics
of freezing. At present, however, the lack of correspond-
ing reliable analytic theories hampers the interpretation of
these experiments, and the rather phenom enological
analysis of Eq. (2.11) (see Fig. 11) affords only a some-
what qualitative description. The same difficulty also ap-
plies to other measurements of dynamic properties, which
are discussed next.

2. Probes of behavior on short time scales: neutron
scattering, Mossbauer effect, nuclear magnetic
resonance, muon relaxation, electron-spin
resonance

l

0.2
1/T (K ')

FIG. 11. (a) The distribution of relaxation times g(r) as a func-
tion of time (10 —10 ' sec) and of temperature (0—20 K). The
solid curves shows several isotemporal and isothermal lines. All
data were obtained from an analysis of P',P" for
(CoO}04(A1203)0 &(Si02)05 in the frequency range from 0.64 Hz
to 30 MHz. (b) Relaxation times as obtained from g" measure-
ments, plotted vs inverse temperature:, maximum relaxation
time; +, average relaxation time; R, minimum relaxation time.
Open circles are deduced from the frequency dependence of
Tf(co) [where P'(co) has its peak] and solid circles are the @SR
measurements of Uemura, Huang, et aI. (1981). From avenger
(1983).

which would follow from Eq. (2.13) (see Sec. III.G). On
the other hand, the temperature To does not coincide
with the phase transition temperature Tf that is used
when data such as those shown in Figs. 7 and 8 are inter-
preted in terms of a static order parameter (or other data
involved in the analysis of the static equation of state of
spin glasses; see Sec. II.C.4).

This behavior of the relaxation times even above T/ (if
a static freezing temperature exists) is clearly rather hard
to understand in terms of a phase transitions picture.
There one would rather expect a standard critical slowing
down (Hohenberg and Halperin, 1977),

Two types of inelastic scattering have been applied to
the study of the dynamics of spin glasses. The standard
type of inelastic scattering experiment measures the cross
section for the scattering of neutrons with wave vector ko
for a momentum transfer K=k —ko, where k is the wave
vector of the outgoing neutrons, and the corresponding
energy transfer fuu=(k —kp)A' /2m~ [where fi is
Planck's constant and m~ the neutron mass]

do. - k S(K)5(co)
dQ dao ko

+ 22
2 F(K) 1

g 2p~~ 1 —exp( hen/k~ T)—
)& ImX(K, co) (2.17)

(gp~) S(K)/F (K)=X(K)

=gexp[iK (r; —rj](S;-SJ)T .

(2.18)

In this expression [see Marshall and Lovesey (1971) for a
derivation], 0 denotes the angle under which the scatter-
ing is observed, S(K) is the static scattering function,
F(K) is the magnetic form factor, and X(K,co) is the
wave-vector-dependent dynamic susceptibility. For
K=O, X(K,co) reduces to the dynamic susceptibility dis-
cussed in the previous subsection.

In principle, Eq. (2.17) contains several kinds of infor-
mation on the system: from the elastic S(K) one infers
the wave-vector-dependent static susceptibility X(K),

,„=rp(1—T//T) ", T~T/, (2.16) Clearly, the elastic part contains information both on
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magnetic short-range order [if there were periodic mag-
netic long-range order, X(K) would also exhibit the asso-
ciated Bragg 5-function singularities] and on a frozen-in
component, if [ ( S; ) T ( S; )T],„ is nonzero. The inelastic
part reflects the dynamic relaxation of the spins. If the
relaxation of magnetization fluctuations with wave vector
K were described by a single relaxation time ~K, we
would have a Lorentzian line shape

A'/r~
ImX(K, co) =fuush(K)

co +(A/rK)
(2.19)

In early work on inelastic neutron scattering in spin
glasses (Scheuer et al. , 1977, 1979) it was in fact attempt-
ed to analyze the data with the help of Eq. (2.19). While
this assumption of a single relaxation time vK is appropri-
ate at temperatures far above freezing, the data show that
it becomes inadequate near the freezing temperature.
There the analysis of the inelastic scattering becomes very
difficult: for small co, one is limited by the finite energy
resolution of the experiment, and relaxation times
exceeding about 10 sec can no longer be resolved. In
addition, the limited scattering intensity (and associated
statistical errors of the data) make a detailed line-shape
analysis difficult. A related systematic difficulty of this
technique is the ambiguity of the separation between elas-
tic and inelastic parts of the scattering. This problem has
been studied in detail for Cu with 8 at. %%uoMnb yMurani
(1978a, 1978b, 1978c), Murani and Tholence (1977), and
Murani and Heidemann (1978). These authors showed
that by changing the energy resolution one changes the
apparent elastic cross section, and hence one indirectly
shows that there is a wide spectrum of relaxation times
present. For that reason it is clear from the outset that
any attempt to extract the Edwards-Anderson order pa-
rameter from neutron scattering is a very delicate matter
(see also the discussion given by Soukoulis et al. , 1978).
We emphasize, however, that neutron scattering is an in-
valuable tool for asserting that ordinary magnetic long-
range order is absent (by the lack of corresponding Bragg
peaks) and for analyzing the ferromagnetic or antifer-
romagnetic short-range order in the material. This appli-
cation is particularly important when one studies phase
diagrams in which spin glass and ferromagnetic orderings
compete, such as those for Eu~Si& „S (Maletta and Con-
vert, 1979; Maletta, 1982). We shall return to this prob-
lem in Sec. II.D. Another application of this type of in-
elastic neutron scattering is the search for spin waves in
the frozen phase of spin glasses. While relaxing or diffus-
ing modes yield a peak of ImX(K, co) at co=0, and such
behavior is also observed in metallic spin glasses for tem-
peratures below freezing (Scheuer et al. , 1979), spin
waves should show up via peaks at +coK&0. So far, no
evidence for spin-wave excitations exists in the typical
metallic spin glasses. In Eu Sr& S for x =0.52, where
one is just near the borderline concentration at which the
system can no longer support ferromagnetic long-range
order, the data of Maletta et al. , (1981) are consistent
with some broad spin-wave peaks at larger values of K.

The dispersion of these spin waves is still nearly quadra-
tic, resembling those occurring in the ferromagnetic phase
at higher concentrations. Thus these spin waves probably
merely reflect the existence of rather pronounced fer-
romagnetic short-range order in the material. These ex-
periments, as well as related ones on Fe Cr~ alloys
(Fincher et al. , 1980; Shapiro et al. , 1981a, 1981b), are
reviewed in more detail by Maletta (1982).

The second type of scattering is the neutron spin-echo
method (Mezei, 1980). This method is somewhat better
suited to the study of spin glass freezing because it yields
directly the so-called intermediate scattering function,

S(K, t) ~ $(S;(t) SJ(0))rexp[iK. (r; —rz)], (2.20)
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FIG. 12. Spin relaxation in CuMn with 5 at. % Mn, at various
temperatures. Data points at times shorter than 10 sec were
directly measured by neutron spin-echo techniques at K =0.093
0
A ' (Mezei and Murani, 1979); those beyond 10 sec were cal-
culated from ac susceptibility results of Tholence (1980). The
lines are guides to the eye only. From Mezei (1981).

over a time domain of roughly 10 ' &t & 10 sec. This
technique has been applied to Cu with 5 at. %%uoMn(Mezei
and Murani, 1979; Mezei, 1981; Murani et aI. , 1981; see
Fig. 12) and to Lao 7Ero 3A12 (Mezei et a/. , 1983; Mezei,
1983). It is clearly recognized that the relaxation is dis-
tinctly slower than exponential and changes rather gradu-
ally with temperature. Near and below the "static" freez-
ing temperature (Tf—27.5 K in this system; see Tholence,
1980) the relaxation is nearly consistent with a logarith-
mic law, S(K,t) cc const —lnt, over some intermediate
range of times. The authors of these experiments inter-
pret their results as clear evidence that the freezing of
spins in spin glasses is a purely dynamical gradual pro-
cess, without any static phase transition. However,
Heffner et al. (1984) argue that the data in Fig. 12 can as
well be fitted to a form S(K,t) ~ const+i ~, where the
exponent /=0. 24 near Tf and /=0. 5 for T&Tf. The
constant in this form is nonzero only for T & Tf and thus
would imply a truly static ordering. Clearly, also, the
data of Fig. 12 are too limited to establish the precise ana-
lytic form by which S(K, t) decays.

The other methods to which we turn now, the
Mossbauer effect, nuclear magnetic resonance (NMR),
electron-spin resonance (ESR), and muon-spin resonance
(pSR), all measure the local spin dynamics, rather than
the global (or long-wavelength) dynamic relaxation acces-
sible by the methods so far discussed. These "local
probes" hence are also sensitive to the varying local envi-
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ronments that the Mossbauer atom, the atom used for
NMR, ESR, or the p+ particle, respectively, may en-
counter. All these techniques involve intrinsic time con-
stants, and relaxation slower than these time constants is
indistinguishable from truly static behavior. In pSR, for
instance, the lifetime of the p+ particle, r& ——2.2. 10 sec
(Uemura and Yamazaki, 1982), limits the time range over
which relaxation can be studied to t(10 sec; in the
Mossbauer effect using Fe (which is useful for AuFe
spin glasses; see Gonser et al. , 1965; Violet and Borg,
1965, 1967; Lauer et al. , 1981), relaxation can only be
studied if it decays for times t (10 sec. So far, howev-
er, little analysis of Mossbauer spectra in terms of the re-
laxation dynamics near the freezing transition has been
attempted [Meyer et al. (1985)j; rather, most experiments
have been directed towards estimating the freezing tem-
perature from the onset of a "peak splitting" in the
Mossbauer spectrum, and towards an understanding of
the spectrum in the "frozen" state. The latter question is
nontrivial, since the resulting distribution of hyperfine
fields seen in this spectrum depends in detail on the local
atomic arrangement around the Fe atoms, and pro-
nounced chemical short-range-order effects occur in these
alloys (Beck, 1978, 1980, 1981, 1983; Dartyge et al. ,

1982).
The Mossbauer effect has been used to trace out phase

diagrams as functions of temperature and concentration,
e.g., for amorphous Fe Ni7s „Si98» (Manns et al. ,

1983).
NMR measurements have been carried out for CuMn

spin glasses by MacLaughlin and Alloul (1976, 1977),
Levitt and Walstedt (1977), and Alloul (1979a, 1979b).
Again, the Larmor frequency corresponding to the ap-
plied fields is of the order of 10 /sec. In the "fast motion
region" (Abragam, 1961) the linewidth of the NMR sig-
nal corresponds to the spin-autocorrelation time

(2.21)

The experiments indicate that ~ rapidly increases as one
approaches the freezing temperature, and there ~ becomes
comparable to the inverse cutoff frequency, which enters
the expression for the linewidth (Abragam, 1961), and
hence Eq. (2.21) no longer applies. These experiments
also show that ~ depends strongly on the applied fields,
which are of the order kOe (as in the Mossbauer effect).
Thus neither of these techniques is suited for studying the
dynamics in small fields near the freezing temperature.
The same limitation applies to ESR measurements, of
course; from ESR linewidth measurements in Cu with
4.25 at. % Mn (Salamon and Herman, 1978; Salamon,
1979) and dilute AgMn (Dahlberg et al. , 1979) one can
conclude that the spin-autocorrelation time increases
strongly above the freezing temperature and that freezing
occurs roughly in the same temperature ranges as mea-
sured by the bulk frequency measurements. However, the
analysis of Salamon (1979) seems to be at variance with
recent ESR work by Hoekstra et al. (1982).

While the information on the dynamics of freezing due

to NMR and ESR linewidth experiments is rather quali-
tative, these techniques are very valuable at temperatures
far below freezing, where all the spins in the sample are
more or less rigidly locked together; observation of reso-
nance modes themselves (rather than their linewidths) as a
function of applied fields yields information on the mac-
roscopic anisotropy of spin glasses (see Sec. II.C.2).

Recent observations of zero-field NMR spectra in
CuMn, AgMn, and AuMn spin glasses (Alloul and Men-
dels, 1985) for low temperatures (T(0.2Tf) yield evi-
dence that the decrease 1n the local magnet1zation

~
(S;)T

~

is proportional to T with increasing tempera-
ture T. This reduction of the local magnetization is
found to agree quantitatively with that observed for the
remanent magnetization (Alloul et al. , 1986). These au-
thors suggest that the dominant low-energy modes have
diffusive character.

The theory of the ESR linewidth at T & Tf has recently
been considered by Barnes (1984) and Levy et al. (1983).
Recent ESR measurements include (LaGd)A12 spin
glasses (Zomack et al. , 1983) and AgMn spin glasses
(Mozurkewich et al , 1984).. It appears that the quantita-
tive analysis of such ESR measurements is a complicated
problem.

More detailed information on the dynamics of spin
freezing has been obtained by muon-spin depolarization
measurements. Three different techniques have been ap-
p11ed.

(i) In transverse-field pSR, one measures the muon-spin
precession in a transverse field. From the damping of the
precession envelope one infers the depolarization rate.
Murnick et al. (1976) observed that in CuMn and AuFe
spin glasses this rate became drastically slower near the
freezing temperature. Similar results were obtained by
Emmerich and Schwink (1981) in CuMn and by Brown
et al. (1981) in AgMn spin glasses.

(ii) In zero-field pSR, one measures the decay positions
by forward and backward counters, and extracts the
muon-spin relaxation function from the time dependence
of the observed asymmetry. This technique was intro-
duced by Uemura et al. (1980) for AuFe and CuMn spin
glasses, and it was found that the relaxation time in-
creases rapidly from about 10 ' sec at T-1.2Tf to
10 sec at T-0.5Tf. Since by pSR one cannot measure
any relaxation slower than 10 sec, this means that at
T & Tf one starts to observe a "static" component whose
weight increases as the temperature is lowered further. In
order to interpret these experiments quantitatively, how-
ever, it is necessary to make model assumptions about the
shape of the muon-spin relaxation function. This prob-
lem is discussed in more detail by Uemura (1980; Uemu-
ra, Huang, et al. , 1981; Uemura, Nishiyama, et al. ,
1981). In any case, the temperature dependence of the
"average" relaxation time fitted to the pSR data is in
reasonable agreement with the relaxation time fitted to
the neutron spin-echo data (Fig. 12; see Fig. 13). This
point is discussed in detail by Heffner and MacI.aughlin
(1984), who suggest that the data imply a power-law de-

cay of the spin-autocorrelation function with time.
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cally over about one-half order of magnitude only, and
their data points have large error bars. Furthermore, near

Tf their exponent g is about —,', and the applied field

might affect the relaxational behavior directly. In our
opinion, the data are again evidence for a broad spectrum
of relaxation times, and hence a nonexponential decay of
the relaxation function, but one should be cautious about
drawing any more definite conclusions.

Emmerich et al. (1985), analyzing zero-field pSR data
on CuMn spin glasses, suggest that the data can only be
explained by the onset of a spatially inhomogeneous local
"static" order parameter ("static" again is meant on the
time scale of the experiment). They also give evidence for
spatial inhomogeneity of relaxation times and suggest that
the formation of small regions of ordered spin starts at
T=1.6Tf. Emmerich et a/. (1985) do not detect any
critical fluctuations near Tf.

3. Specific heat

l I l I l i

lA) 20
T/Ty

FIG. 13. Comparison of correlation times of CuMn, AuFe, and
AgMn spin glasses, as determined by zero-field pSR, to the de-

cay time at which the spin-correlation function measured by
neutron spin echo (Fig. 12) decays to 1/e in CuMn with 5 at. %
Mn. The neutron experiment was performed by Mezei and Mu-
rani (1979), pSR data for AgMn are due to Heffner et al.
(1982). Correlation times and temperatures for different speci-
rnens are scaled by the freezing temperatures in this figure.
From Uemura (1981b).

(iii) In longitudinal-field pSR one proceeds as in zero-
field pSR, but measures the relaxation as a function of
the applied longitudinal field. The idea behind this tech-
nique (Uemura, Huang, et a/. , 1981; Uemura, Nishiyama
et a/. , 1981;Uemura and Yamazaki, 1982) is to study the
competition between the applied field and the "static"
component of the internal (random) field. The field
dependence clearly reveals that relaxation functions ap-
plying a single effective relaxation time are inadequate.
In this spirit, Emmerich et a/. (1983) tried to fit a rec-
tangular spectrum of relaxation times to the zero-field
pSR data on CuMn spin glasses. MacLaughlin et al.
(1983) observe that in AgMn spin glasses far below freez-
ing the relaxation rate observed as a function of field H
can be fitted to a power law, R +—

, and suggest that
this behavior indicates a nonexponential decay of spin
correlations with time t &, /=0. 54+0.05. As a further
support of this interpretation, they relate their results to
recent zero-field NMR data of Alloul et a/. (1983) and
Alloul (1983) for CuMn spin glasses. MacLaughlin et a/.
(1983) claim that "the present data therefore agree quanti-
tatively with the prediction of mean-field dynamic
theories. " However, a glance at their Fig. 1 immediately
reveals that they observe a relaxation rate variation typi-
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FIG. 14. Magnetic contribution of the specific heat of CuMn
spin glasses with 2.79 at. % Mn plotted vs temperature in vari-
ous magnetic fields. From Brodale et al. (1983).

The specific heat of spin glasses exhibits a rather broad
peak at temperatures exceeding the freezing temperature
by about 20%; at T & Tf it varies approximately linearly
with T; in a magnetic field, the specific-heat peak is pro-
gressively rounded. . A few typical examples of this
behavior are shown in Fig. 14 for Cu with 2.79 at. % Mn
(Brodale et a/. , 1983) and in Fig. 15 for Eu„Sr& „S
(Meschede et a/. , 1980). A similar behavior has been seen
in CuMn spin glasses at other concentrations (Zimmer-
mann and Hoare, 1960; avenger and Keesom, 1976; Mar-
tin, 1978, 1979, 1980a; Fogle et a/. , 1978), in AuFe (Mar-
tin, 1980b), in PtMn spin glasses (Nieuwenhuys et a/. ,
1973; Sacli et al. , 1974; Kimishima et al. , 1977; Wasser-
mann, 1982), in amorphous Zr3oCu60Fe~o (Lecomte et a/. ,
1981) and GdA12 (Coey et a/. , 1977), in ThGd spin
glasses (Sereni et a/. , 1979), etc.
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FIG. 15. Specific heat per Eu atom divided by k~T vs temperature T in various apphed ields (units in tesla) for Eu„Sr& „S with
x =0.40 and x =0.54. Insets show the zero-field behavior in a log-log plot. The transition-temperatures Tf (spin glass transition)
and T, (transition to a ferromagnetic phase, occurring for x =0.54) are indicated by arrows. From Meschede et al. (1980). Note that
the upturn of the curves for C/T, seen at very low temperatures, is interpreted as being due to a Schottky term due to magnetically
decoupled small clusters of Eu spins.

Closer inspection shows that the linear variation of the
specific heat does not hold exactly, but rather
CM =ciT+c2T, where c&,cq are constants (Martin,
1979) or CM ~ T ~ (Coey et al. , 1977; Thomson and
Thompson, 1981). The latter law is familiar from Heisen-
berg ferromagnets, and over some temperature ranges it
might also apply to systems containing large ferromagnet-
ic clusters, where spin waves with wavelength not exceed-
ing the cluster size may occur at low temperatures. Thus
this law CM ~ T would be plausible for GdA12 (Coey
et al. , 1977), since for this system pronounced ferromag-
netic short-range order is expected; it is less plausible for
systems such as CuMn and AgMn spin glasses (Thomson
and Tliolilpsoll, 1981),however.

Typical data for CuMn spin glasses at low tempera-
tures are shown in Fig. 16 (Martin, 1979). The data are
cast into a scaling representation suggested by the "con-
centration scaling laws" (Souletie and Tournier, 1969),
which predict

CM(T, x)/x =CM(T/x) .

It is evident that Eq. (2.22) is a rather crude approxima-
tion, even for alloys in the concentration range from
x=10 to 10 [for larger x, it becomes even worse,
and for very small x, Eq. (2.22) breaks down due to the
Kondo effect (for a review see Fischer, 1978)]. Thus we
shall disregard "concentration scaling" in the following.
But it is evident from Fig. 16 that C~ is linear in T over
a rather wide range of temperatures; in any case the phys-
ical origin of the curvature seen at the smallest tempera-
tures is unclear. Even the linear regime raises interesting

questions: should one attribute it to "two-level systems, "
as one does in ordinary glasses (Anderson et al. , 1972)'?
We shall come back to this question at several places later
in this paper.

Another remarkable fact is the lack of any singularity
in the zero-field specific heat at the freezing temperature.
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FIG. 16. Plot of scaled spin glass specific heat against scaled
temperature (the concentration c of Mn atoms is expressed as
an atomic fraction). In order to extract the magnetic contribu-
tion, the specific heat of pure Cu and the nuclear contribution
of the Mn atoms are subtracted. From Martin (1979).
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BM 1

aT' T aa (2.23)

while at first it was suggested that Eq. (2.23) indeed failed
below the freezing temperature (Fogle et al. , 1981), a
more careful analysis revealed that this suggestion was
due to an underestimation of nonlinear effects on the
magnetization near Tf, and that no measurable deviation
from Eq. (2.23) existed (Fogle et al. , 1982; Wenger and
Mydosh, 1982; Gullikson and Schultz, 1982). We shall
return to this question from a theoretical point of view in
Sec. III.B.

While some features of the experimental results are in
surprisingly close agreement with mean-field predictions,
this finding certainly is not: as will be discussed later,
mean-field theory predicts a cusp in the specific heat at
Tf, which is as pronounced as that of the susceptibility.
Of course, the absence of a visible singularity at Tf does
not prove the nonexistence of a phase transition either.

(i) The critical behavior might be subtle (e.g., a large
negative value of the specific-heat exponent, such that the
singular term is not the leading term near Tf).

(ii) The "critical region" for C~ might be so narrow
that the asymptotic critical behavior is not seen. Exam-
ples of such a possibility occur even in diluted ferromag-
nets, like Co„Zni „(CSH&NO6)(C104)z above the percola-
tion threshold (x~=31 at. %%uo )up to x=5Oat. %(Algra
et al. , 1979): no anomaly of C~ is found at the Curie
temperature where the long-range ferromagnetic order
sets in.

Since observation-time dependence has been a crucial
parameter for understanding the behavior of the suscepti-
bility, one may ask whether time-dependent effects are
also seen in specific-heat measurements. So far clear evi-
dence for energy relaxation has only been found to be in-
duced by a relaxing remanent magnetization (Berton
et a/. , 1981). Sereni et al. (1979) use their measured
specific heats of ThGd spin glasses to estimate the mag-
netic entropy difference between the spin glass ground
state and high temperatures, and find that this entropy
difference is only about 70%%uo of its expected value. If this
result were correct, it would indicate a large "frozen-in
entropy, " as in a real glass (for a discussion of the latter,
see Jackie, 1981), and then the specific heat in the frozen
regime must differ from its equilibrium behavior. We
feel, however, that the analysis of Sereni et al. (1979) is
hampered by uncertainties due to the use of (inaccurate)
concentration scaling laws and the subtraction of lattice
contributions at high temperatures; the (smaller) frozen-in
entropy found in CuMn and AuFe spin glasses (Martin,
1980a, 1980b) may suffer from similar problems, and fur-
ther work on this question seems desirable.

A further check on the question of thermal equihbrium
is the validity of the thermodynamic relations between
cross-derivatives of the free energy ("Maxwell relations" ).
Fogle et al. (1981, 1982) studied the Maxwell relation

4. Various other techniques

Due to magnetoelastic couplings, magnetic transitions
are known to lead to anomalies in the sound velocity and
damping (Liithi et al. , 1970). Near the transition, the
magnetic contribution to the change of the sound velocity
is proportional to the magnetic specific heat. This tech-
nique was applied by Hawkins et al. (1976) to Au with 8
at % Fe, by Hawkins et al. (1977) to various AuCr spin
glasses, and by Hawkins et al. (1979) to Cu with 5 at. %%uo
Mn. In no case was a clear anomaly at the freezing tem-
perature observed. While the specific heat typically has a
broad maximum at a temperature of about 30%%uo above
Tf, the change in sound velocity in Cu with 5 at. % Mn
has a minimum at a temperature about 30% below Tf.
Hawkins et al. (1979) nevertheless assume that the sound
velocity change at Tf is singular and obtain from a fit a
specific-heat exponent a= —1.9+0.2. Obviously, this re-
sult would also be consistent with a regular variation
(a= —2). Moreover, the order of magnitude of the ob-
served sound velocity change . is in agreement with
theoretical expectations (Beton and Moore, 1983). The
more interesting effects expected from theoretical treat-
ments (Fischer, 1981a, 1983c; Hertz et al. , 1981; Khura-
na, 1982; Beton and Moore, 1983) to be seen in sound at-
tenuation seem not to have received experimental atten-
tion so far.

Herlach et al. (1983) have studied the phonon thermal
conductivity in amorphous spin glasses (PdCuSi)9OTM]0,
where TM stands for Mn, pe, Co. They found that below
the spin glass transition the conductivity in a field is
slightly larger than without a field. Herlach et al. (1983)
suggest that the phonons are coupled via spin-orbit in-
teraction to magnetic two-level systems, which are
thermally activated by inelastic scattering of the phonons.
A similar interpretation has been given by Ayadi and
Ferre (1983) to their observation that irradiation of cobalt
aluminosilicate spin glasses with near-infrared light
enhances the rate at which the thermo-remanent magneti-
zation relaxes. The therma1 conductivity of some insulat-
ing spin glasses has also been studied by Lecomte, von
Lohneysen, and Zinn (1983) and Arzoumanian et aI.
(1983).

Particular attention has been paid to the e1ectrical resis-
tivity of metallic spin glasses, especially for various
CuMn alloys (e.g., Ford and Mydosh, 1976; Schilling
et al. , 1977) and AuFe alloys (e.g., Ford et al. , 1970;
Schilling et al. , 1974). One typically observes that the
resistivity change (relative to the host metal) varies rough-
ly linearly with temperature near Tf and has a broad
maximum at a temperature T much higher than Tf. At
low temperatures the resistivity change varies proportion-
ally to T'~ (Ford and Mydosh, 1976) or proportionally to
T (Laborde and Radhakrishna, 1973). While the low-
temperature variation of the resistivity has been linked
theoretically to the temperature variation of the spin glass
order parameter (Seiden, 1976) and to elementary excita-
tions in spin glasses (Rivier, 1974; Adkins and Rivier,
1976, 1975; Fischer, 1979), the resistivity maximum is
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linked to an interplay of spin glass properties and the
Kondo effect (Larsen, 1976, 1978; Larsen et aI , .1977;
Fischer, 1981a). Unfortunately, a detailed theory of spin
glass dynamics seems to be required for an interpretation
of the experimental resistivity data, which hence can yield
only rather indirect information on the nature of the spin
glasses.

At standard magnetic transitions the electrical resistivi-
ty has an energylike singularity (Fisher and Langer, 1968;
Binder and Stauffer, 1976a). The lack of a (detectable)
singularity in the specific heat at Tf hence is consistent
with the fact that no anomaly of the electrical resistivity
occurs there either.

Among related transport properties we mention the
Hall resistivity, which has a peak similar to that of the
susceptibility (McAlister and Hurd, 1976, 1978), and the
magnetoresistance (Nigam and Majumdar, 1983). The
latter is found to be nearly temperature independent
below Tf, while it decreases above Tf and is hardly
detectable above T . Again the analysis of the data is
difficult and requires detailed theoretical work (Mooker-
jee, 1980). Finally we mention the thermopower of metal-
lic spin glasses, which is found to have a pronounced
maximum at low temperatures (MacDonald et al. , 1962;
Cooper et al. , 1980). This behavior is explained, at least
qualitatively, in terms of an interplay between spin glass
properties and the Kondo effect (Fischer, 1981a).

While clearly all these phenomena are very interesting
in their own right, their interpretation rests heavily on as-
sumptions about the theory of spin glasses. Since for real
three-dimensional systems the theory of spin glasses is
still in a very rudimentary stage, as will be outlined later,
we feel that it is not yet warranted to consider these phe-
nomena further in the present article.

C. Properties in stronger magnetic fields

While the magnetic field in some of the work discussed
above (NMR, EPR, magnetoresistance, etc.) was an im-

portant parameter, we have not yet studied the change of
spin glass properties with the strength of the field. This
subject will be discussed now. As we shall see below, the
study of the magnetic field dependence of spin glass prop-
erties has many aspects, some of which are crucial to a
proper understanding of both the nature of the "frozen
state" and the "freezing transition. " Hence it is necessary
to describe the experimental findings in greater detail.

Hysteresis and remanence

A striking phenomenon in spin glasses is the observa-
tion of irreversible behavior in the temperature region of
the freezing transition and at lower temperatures. Again
the region in the temperature-field (T H) plane, where the-
onset of irreversibility occurs, depends somewhat on the
time scale of the measurement. This onset of irreversibili-
ty will be discussed in terms of various proposed H-T
phase diagrams in Sec. II.C.3; at this point we shall dis-
cuss only the behavior well below this region.

After switching off the field, one finds a remanent
magnetization that decays so slowly with time that a
nonzero remanence is observed over macroscopic time
scales. This remanent magnetization also depends in a
detailed way on the "magnetic history" of the sample.
The two "magnetic histories" most commonly used in the
experiments are the following (Tholence and Tournier,
1974): to obtain the isothermal remanent magnetization
o.&RM, one cools the sample in zero field to the desired
temperature to be studied; then a field of a chosen
strength is applied for a macroscopic period of time and
switched off again. A few typical examples of the field
dependence of oqRM are shown in Fig. 17, for a metallic
spin glass (Au with 0.5 at. % Fe), a nonmetallic spin glass
(Euo 3Sro 7S; Maletta and Felsch, 1979), and a Monte Car-
lo simulation of a two-dimensional Ising square lattice
with a Gaussian distribution of random nearest-neighbor
bonds (Kinzel, 1979). To obtain the thermo-remanent
magnetization o.TRM, on the other hand, one applies the
field at some initial temperature above Tf and then cools
down the system slowly in constant field to the desired
temperature, at which the field is then switched off.
While o-I~M does not depend on the precise value of the
initial temperature, it does depend on the time t one waits
before measuring oTRM after the field has been switched
off (see, for example, Bouchiat and Monod, 1983); simi-
larly o.

ARM depends on both the time the field is applied
and the time one waits before measuring o.

&RM after the
field has been switched off. Again different results would
be obtained if other "magnetic histories" (paths of con-
stant H/T, etc.) were to be considered. Thus it is some-
what hard to draw general conclusions about the behavior
of the remanent magnetizations in spin glasses. Gne im-
portant observation, however, is that crTRM starts out
linear with the field at small fields, while the field depen-
dence of o.

&RM seems rather to be quadratic. At high
fields both o TRM and otRM tend to the same saturation
value o.„,(T); aq~M approaches it in a monotonic way,
while one always finds a characteristic "overshooting" of
o TRM (Fig. 17). Since for fields exceeding the field
H, ( T, t), where crq&M and a TRM merge, the history depen-
dence and hence irreversible effects are negligible, mea-
surements of the type shown in Fig. 17 are a method of
defining a critical field H, (T, t) for the onset of irreversi-
bility on a time scale t.

Bouchiat and Monod (1983) performed a rather sys-
tematic study of o.

&RM and o.TRM for AgMn spin glasses in
the concentration range from 1% to 24%, while varying
both T and t. They found that their data —plotted in a
scaled form, where o.ARM, o.TRM are normalized with o.»,
and H is normalized with H, (T,t) are fairly indepe—n-
dent of concentration and time, but do depend on the re-
duced temperature T/T~(t). Results for other spin glass
systems (CuMn, AuFe, PtMn, I aAl2Gd, Euo 4Sro 6S, and
the A1203Si02MnO glass) are found to be consistent with
this description.

We turn now to the magnetization in a field. After
zero-field cooling the magnetization M,r, (H) has a
characteristic S-shaped form (i.e., the initial susceptibility
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FIG. 17. (a) Field dependence of the isothermal remanent mag-
netization o.

ARM and of the thermo-remanent magnetization
o.TRM obtained after cooling from an initial temperature larger
than Tf to T =1.2 K in a field H. From Tholence and Tour-
nier (1974). (b) Magnetizations (upper two curves) and
remanent magnetizations o.&RM, aTRM (lower two curves) of
Euo 3Sr07S at T =0.07 K (Maletta and Felsch, 1979). (c) Monte
Carlo results for o.IRM, o.TRM for an Ising square lattice of size
50&50 with periodic boundary conditions, at a temperature
T =6J/4k~ where 5J is the Gaussian distribution of exchange
constants between neighboring spins. IRM (fc) is obtained by
some mixed cooling procedure; see Kinzel (1979) for more de-
tails.

X,r, =[8M,r, (H)/BH]H o is smaller than the susceptibili-
ty reached at an inflection point for nonzero H; see also
Fig. 17(b)). This S-shaped behavior occurs for tempera-
tures below Tf only, and is observed both in metallic spin
glasses (for measurements of CuMn, see Schwink and
Schulze, 1978; Emmerich and Schwink 1979; Knitter and
Kouvel, 1980) and in nonmetallic ones such as Eu„Sr, „S
[Maletta and Felsch, 1979;Fig. 17(b)).

It is now well established, however, that M,r, (H) and
thus P,~, are not observations that yield information on
the thermal equilibrium behavior of spin glasses: rather
one observes a slow increase of both quantities with obser-
vation time t [typically this increase is proportional to
T lnt (Tholence and Tournier, 1974; Guy, 1975, 1977; Fel-
ten et al. , 1978; Knitter and Kouvel, 1980; Chamberlin
et a/. , 1982)]. These time effects are similar to the decay
of the remanent magnetization in time, which will be dis-
cussed in more detail below. The magnetization Mf, (H)
found in field cooling shows only weak time effects
(Beauvillain, Dupas, Renard, and Veillet, 1984; Lundgren
et al. 1982; Lundgren, Svedlindh, and Beckman, 1983;
Lundgren, Svedlindh, Nordblad, and Beckman, 1983;
Wenger and Mydosh, 1984a), and thus some authors have
suggested that this field-cooled magnetization is the true
equilibrium magnetization of a spin glass (Monod and
Bouchiat, 1982; Chamberlin et al. , 1982; Malozemoff and
Imry, 1981). Hence we shall discuss Mr, (H) more closely
in the context of the equation of state of spin glasses near
Tf (see Sec. II.C.3).

While changing the temperature at fixed field leads
only to rather small irreversibility effects, changing the
field at fixed temperature below Tf gives rise to pro-
nounced irreversibility. In particular, if one cycles the
field from positive to negative values and back, one ob-
serves hysteresis phenomena as in ferromagnets. Howev-
er, there exists a wide variation in the shape of the hys-
teresis loops, which also depend on the magnetic history
of the sample. In some cases, such as dilute AuFe, the
loops are rather narrow and flat and antisym metric
around the origin [Fig. 18(a), from Prejean et a/. , 1980].
While in this example the initial state is a field-cooled
one, in CuMn spin glasses one observes loops of this char-
acter if the initial state is a zero-field-cooled one: with a
field-cooled initial state, one often observes displaced hys-
teresis loops [Beck, 1978; Monod et a/. , 1979; Prejean
et a/. , 1980; for an example see Fig. 18(b)]. While in
CuMn spin glasses at high concentrations the loops are
quite smooth, at lower Mn concentrations loops have been
found consisting of sharp steps [Schwink and Schulze,
1978; Monod et a/. , 1979; Prejean et a/. , 1980; for an ex-
ample see Fig. 18(c)]. In the latter case almost the entire
remanence is reversed in a very short time and at a very
sharp value of the field, indicating a sharp, macroscopi-
cally coherent reversal of the magnetization. Thes, e phe-
nomena have been taken by Monod et a/. (1979) as proof
of cooperative behavior among a large number of frozen
spins. Recent theoretical work, in which approximate nu-
merical mean-field calculations of various spin glass
models are performed (Soukoulis et a/. , 1983a, 1983b),
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FIG. 18. (a) Hysteresis behavior of AuFe with 8 at. % Fe cooled from 77 to 4.2 K in a field of 24.2 kOe. From Prejean et al. (1980).
(b) Magnetization of CuMn with 25 at. % Mn vs field after zero-field cooling (H, =0) and after cooling in a field of 12.7 kOe. From
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suggests that ferromagnetic short-range order (due to a
nonzero mean value of the Gaussian distribution of in-
teractions in the model) is essential for having such sharp
magnetization reversals; in any case this behavior is limit-
ed to a small number of spin glass systems only. Particu-
larly complicated behavior may occur in systems where
spin glass and ferromagnetic orderings compete and in
which states with mixed orderings can be produced. An
example of hysteresis loops with more structure, found in¹iwith 21 at. %%uoMn(Senouss i, 1984) isshow n inFig .
18(d).

A particularly interesting feature of this irreversible
behavior in spin glasses is the slow decay of the various
remanent magnetizations with time. Holtzberg et al.
(1977) have suggested [Fig. 19(a)] that the decay law of
any remanent magnetization o.RM is a logarithm, (t) r

—a(T, K) (2.25)

where oo is a constant and the coefficient SRM is called
"magnetic viscosity" (e.g., Guy, 1978). Although recent
work (Prejean and Souletie, 1980; Berton et al. , 1979;
Omari et al. , 1984) confirms that the relaxation of the
saturation value of the remanent magnetization is a func-
tion only of [Tin(t/ro)], data of the type shown in Fig.
19(a) are not a proof for Eq. (2.24): they extend only over
about one decade in time, and the remanent magnetiza-
tion has decreased only very little during this time inter-
val. In fact, measurements of the decay of the remanent
magnetization of Eu04Sr06S over two decades of time
(Ferre et a/. , 1981) show that Eq. (2.24) is not a valid
description over the full time range studied; rather the
data are more consistent with a power law [Fig. 19(b)],

oz (t) =oo—SRMlnt,

a
0.4.-emu'

0
tD

(2.24) where the exponent a (T,H) depends on both temperature
and field. For temperatures not too close to the freezing
temperature the remanent magnetization is proportional
to the temperature and much less than unity, and hence
r ' ' '=exp[ —a( TH)lnt] = 1 a(T H)lnr—, consistent
with the behavior reported above. While Eq. (2.25) was
first suggested from Monte Carlo simulations (Binder and
Schroder, 1976a, 1976b), more careful experimental work
(Ferre er al. , 1981; Chamberlin et al. , 1984; Hoogerbeets
et al. , 1985) has revealed that Eq. (2.25) is only approxi-
mately valid. Chamberlin et al. (1984) pointed out that a
better representation of their data for Ag with 2.6 at. %%uo
Mn is given by a fractional exponential decay,
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1 —n~
cr~ (t) ~ exp[ —const X t l(1 nz )],— (2.26)

2. Torque, transverse susceptibility,
and electron-spin-resonance
measurements

the exponent 1 —nz being about —,
' for T not too close to

Tf [Fig. 19(c)] and even smaller for T closer to Tf ~ It
would be interesting to check whether Eq. (2.26) is valid
for other spin glasses. However, Nordblad et al. (1986)
have presented evidence that Eq. (2.26) reflects only an in-
fluence of the aging process of the spin glass.

Clearly there exists a wealth of experimental data on
the irreversible behavior of spin glasses, which represents
a challenge for theoretical interpretation; hence we shall
come back to this problem at various points in this article
(Secs. III.G, V.B.1, and V.E.4).

I I

8
PQP) s e s

0 2 10

FIG. 19. (a) Isothermal remanent magnetization of AuFe with
8 at. % Fe, plotted vs the logarithm of time. From Holtzberg
et al. (1977). (b) Log-log plot of the saturated thermo-
remanent magnetization o.TRM vs time for Eu04Sr06S at various
temperatures close to Tf ——1.55 K. From Ferre et al. (19g1).
(c) Logarithm of the saturation value of the thermo-remaneni
magnetization of AgMn with 2.6 at. % Mn plotted vs t' " at
four temperatures, for a time range of about 1—10 sec
(Chamberlin et al. , 19g4). Fitted exponents 1 —n are indicated
in the figure.

In this subsection we review some experiments on low-
temperature properties of spin glasses which elucidate
their anisotropy properties. Already the data on displaced
hysteresis loops in CuMn spin glasses [Fig. 18(b)] show
that the spin system keeps some memory of the cooling
field direction. While originally this unidirectional aniso-
tropy was linked to an inhomogeneous description of the
spin system (Kouvel, 1961), there is now experimental evi-
dence for a macroscopic anisotropy with a triadic charac-
ter (Fert and Hippert, 1982; Hippert and Alloul, 1982; Al-
loul, 1983; Alloul and Hippert, 1983). This experimental
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evidence stems from torque measurements, Ineasurements
of the transverse susceptibility g„and resonance experi-
ments [Fig. 20(a)]. These experiments show that at tem-
peratures far below Tf the spin system undergoes an
essentially rigid rotation, when one exposes it to a sma11
field H oriented in a direction different from the direc-
tion of the remanent magnetization cr~. This behavior
can be described in terms of a simple magnetostatic model
(Saslow, 1980, 1982), in which the free energy of a spin
glass is written as

g;„H is the isotropic part of the magnetization and 7;„
the associated susceptibility [we consider an isotropic spin
glass in the sense that there exists a pviori no preferred
direction —the form of Eq. (2.27) does not depend on the
direction of the cooling field H„which we denote as the
z direction]. For small 0, Eq. (2.7) can be expanded as

E,„;,(0)= —E)+ + —,
' (K(+F2)0

2

F=(M og )—/2X;„MH—+E,„;,(0) . (2.27) =const+ —,
' EO (2.28)

Here M=crz+g;„H is the total magnetization, while i.e., only one effective anisotropy constant K enters.
From Eqs. (2.27) and (2.28) one finds the transverse sus-
ceptibility X, taken along y,

c z
X, =X;„+og(H, +K/og ) (2.29)

which is borne out by measurements (Hippert and Alloul,
1982). Similarly, in the limit o.~ &&X;,~„one predicts
an ESR mode (yo is the gyromagnetic ratio)

co =go(H, +K/o~ ), (2.30)

X

I

NHR coHs

(b)
180' 'l75 ' 170'

0.8 v-

consistent with observation (Monod and Berthier, 1980).
NMR experiments also fit into this picture (Alloul, 1979a,
1979b). Furthermore, the initial torque I „=dE,„;,/
dO=KO, which acts on the system if its magnetization is
rotated by a field applied in the yz plane, yields corre-
sponding results (Fert and Hippert, 1982; Hippert et al. ,
1982). Now the key point of these observations is that
this macroscopic anisotropy energy E,„;,(0), which shows

up in all these experiments, is independent of the magni-
tude of the remanence a. Indeed it remains meaningful
even in a zero-field cooled state, where no remanence ex-
ists, but then instead of Eq. (2.30) (note that now
o.~ &&X;,~ an ESR mode with frequency

co =yo(K/X;„) ' (2.31)

r„,
50 10'

FIG. 20. (a) Geometry of various torque measurements: H& is
the ac field in transverse susceptibility experiments and the
radio-frequency field in NMR or ESR experiments. The
remanent magnetization o. is rotated away from its direction in
the z axis (obtained by orienting the cooling field H, in this
direction) by an angle 0 in the yz plane, when the field is rotated
an angle 0~, with 0=~ for 80 ——m. Then a rotation of the field
in the xz plane yields a rotation of a. by an angle y. The respec-
tive torques acting on the sample are I,I ~. Fram Alloul
(1983). (b) Torque measurements in a CuMn spin glass with 20
at. % Mn at 1.5 K. Both torques 1"„and I ~ measured after a
rotation cr by an angle m. in the yz plane are shown. From Pert
and Hippert (1982).

is predicted and found (Schultz et a/. , 1981).
Thus E and hence E,„;,(0) is an intrinsic property of

the spin glass state. Since in this state the spin configura-
tion minimizes the total free energy, taking into account
both exchange and anisotropic couplings, any rotation of
the spins with respect to the lattice costs some anisotropy
energy. But this energy E,„;,(0) will be the same, what
euer the axis of the rotation is, since the spin glass is glo-
bally isotropic. Therefore the state of the spin glass can-
not be characterized by an anisotropy axis, but rather an
anisotropy triad (Saslow, 1982; theoretical background on
this problem will be presented in Sec. VI.B).

If a rotation of the spin system by an angle I9=m.
around the x axis is induced by rotating the field from z
to —z in the yz plane [Fig. 20(a)], the triadic character of
the anisotropy shows up when we consider further rota-
tions from that state in the yz and xz planes. While for
vector anisotropy the responses for these two cases should
be the same, for triadic anisotropy I ~ =—0 for a rotation of
y in the xz plane, as the total rotation from the original
state is still ~. Indeed the measurements of the reversible
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torque (Fert and Hippert, 1982) show I ~ =0 (and
I z « I'„) for small p [see Fig. 20(b)]. In order to under-
stand what happens at larger y, one needs to study the ir-
reversible torque as well, which is found to depend strong-
ly on the magnitude of the remanent magnetization
(Gyorgy et a/. , 1983).

As will be discussed in Sec. VI.B, the triadic character
of the anisotropy shows up most clearly in the ESR spec-
trum (Henley et a/. , 1982), where (for crz &0) three
modes are predicted, two transverse modes and a longitu-
dinal one. While there is some evidence for the transverse
modes [Monod and Berthier, 1980; Schultz et a/. , 1980,
1981; but see also Hoekstra et al. , 1982 and the early
ESR work reviewed by Beck (1978)], the longitudinal
mode has been detected only very recently (Gullikson
et a/. , 1983).

It is worth mentioning that the triadic character of the
anisotropy shows up in a unidirectional angular depen-
dence [the term —J &cos6) in Eq. (2.7)] rather than in a
uniaxial dependence (the term —E2cos 0), which would
result from a vector anisotropy.

Microscopically, the unidirectional anisotropy is linked
to the existence of Dzyaloshinskii-Moriya interaction (see
Sec. II.A.2). Hence the measurements described here con-
stitute evidence for these interactions. This evidence has
been strengthened by measurements on ternary CuMn
spin glasses, where the third component is a nonmagnetic
impurity, and the anisotropy constant IC is found to be
proportional to the concentration of this third component
(Hippert and Alloul, 1982; Prejean et a/. , 1980). On the
other hand, measurements of g, in an amorphous insulat-
ing spin glass (Velu et a/. , 1981) have also yielded an an-
isotropy constant K independent of the magnitude of crz.
A possible triadic character of the anisotropy in such a
material would require a quite different microscopic ori-
gIn.

3. The temperature-field phase diagram

In the mean-field theory of spin glasses (see Sec. IV) a
discovery of critical lines in the plane spanned by the
variables temperature and magnetic field has prompted a
careful experimental search for analogous phenomena in
real systems. The first of these lines was the so-called
"AT line" (de Almeida and Thouless, 1978), which occurs
in Ising spin glasses with infinite-range random interac-
tions and behaves near the freezing temperature as

varied, it is plausible to associate the onset of irreversibili-
ty on macroscopic time scales with the AT line. In addi-
tion, according to the "projection hypothesis" of Parisi
and Toulouse (1980), one would expect that M(H, T) for
H &H~T(T) is a function of H alone; it has become clear
that this hypothesis cannot be strictly correct (Toulouse
et a/. , 1982), but it is still thought to be a very good ap-
proximation.

For isotropic spin glasses (Heisenberg spins), the situa-
tion is more complicated, since in nonzero field longitudi-
nal and transverse components are no longer equivalent.
Gabay and Toulouse (1981) predicted that the freezing-in
of the transverse components should occur at the "GT-
line, "

HGT(T)/bJ ~ (1—T/Tg )' (2.33)

while the freezing-in of longitudinal components should
occur at the AT line [Eq. (2.32)]. However, more recent
work has shown that the longitudinal components should
also feel the GT line (Cragg et a/. , 1982; Moore and Bray,
1982). Thus the significance of the AT line for isotropic
spin glasses —if it has any significance at all—is that of a
smooth crossover region from "weak irreversibility" to
"strong irreversibility" (Sherrington et a/. , 1983).

Motivated by these predictions, Monod and Bouchiat
(1982) performed a pioneering study of the temperature
dependence of the field-cooled magnetization in Ag with
10.6 at. %%uoM n, assumin g tha t inslo w field-coo1in gexperi-
ments one obtains the equilibrium magnetization M. It is
seen (Fig. 21) that the "susceptibility" M/H at high tem-
peratures roughly follows a Curie law, while at low tem-
peratures it approaches a temperature-independent "pla-
teau" value, which weakly increases with decreasing field.
While the plateau values are well defined, the field H, (T)
where the plateau begins is not, because of the asymptotic
approach to the plateau. Therefore H, (T) can only be
found with considerable error bars (Fig. 21). In the spirit
of the "projection hypothesis, " Monod and Bouchiat
(1982) identified H, (T) with the boundary of the spin
glass phase, the "AT line" HAT [Eq. (2.32)].

Berton et a/. (1982) have studied CuMn spin glasses
with 0.25 at. %%uoMnb y th emagnetocalori ceffec t (i.e., the
variation of the temperature of an adiabatically isolated
substance with external magnetic field), which via a
Maxwell relation yields the temperature derivative of the
magnetizatio~

H~T(T)/b J~ (1 T/Tf)— (2.32)
(2.34)

%'hile the equilibrium state of the spin glass for
H & HAT(T) is thought to be unique (i.e., the free-energy
hypersurface contains a single "valley" ), for H &H&T(J)
one expects that the spin glass can exist in many different
orderings (many "valleys" in phase space; see Fig. 4).
Since in a macroscopic system the transition from one
valley to the next should take a macroscopically large
time, and since one expects that the "topology" of the val-
leys changes in a complicated way when the field M is

C~ is the specific heat at constant magnetic field, SM the
entropy. Here, of course, again the tacit assumption is
made that it is the equilibrium behavior that is measured.
Berton et a/. (1982) find that (dM/dT)H tends to zero at
low temperatures arid has a pronounced minimum above
Tf, the position of which strongly depends on the mag-
netic field (Fig. 22). Rather arbitrarily, Berton et a/.
(1982) define a critical field H, (T) from the inflection
point (at the low-temperature side of the minimum) of the
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FIG. 21. Inverse of the "susceptibility" {H/M) for AgMn with
10.6 at. jo Mn as a function of temperature for various magnet-
ic fields (indicated on each curve in gauss). Data were obtained
by slow cooling in constant applied field. The onset of the "pla-
teau" (marked by arrows) is defined arbitrarily by the point of
the M(T) curve departing by 3%%uo from its low-temperature
value. The resulting boundary of the spin glass phase H, (T) is
shown as an inset. From Monod and Bouchiat {1982).

curves shown in Fig. 22, and associate this with the "AT
line. "

Finally Chamberlin et al. (1982) study several AgMn
spin glasses and use the derivative of the zero-field-cooled
magnetization, dM, t, (H, T)ldT, which can be approxi-
mated near Ty by a succession of several straight-line
portions with different slopes: the loci of intersection
points of these straight hnes yield several critical-field
curves H, ( T), which are discussed as "candidates" for the
AT line by Chamberlin et al. (1982).

While some of these experimental curves H, (T) indeed
bear at least a superficial resemblance to the AT line of
the mean-field treatment, Eq. (2.32), it is interesting to
note that other characteristic fields can be identified that
behave quite differently. An interesting example is the
position T~(H) of the maximum of the field-cooled "sus-
ceptibility" M/H. While in rather strong fields T~(H) is
a curve of similar shape to the AT line (and to the data
discussed above), for small fields the curve Tz(H) bends
backwards to lower temperatures. At least, such behavior
has been established both for CuMn spin glasses and
AlGd with 37 at. % Cxd (Barbara et al. , 1981a). A typi-
cal example is shown in Fig. 23 (Barbara and Malozem-

1800

800 ;
Gd37A16~

400,—

0
15,0 1 5.5

oOi&
16.0

0
~o~

0 000

FIG. 23. Temperature T~(0}of AlGd with 37 at. % Gd where
the field-cooled magnetization has its maximum. From Barbara
and Malozemoff {1983).

off, 1983). This behavior of Tz(H) is not predicted by
mean-field theory, and hence it is not clear that it makes
sense to compare other characteristic fields to mean-field
predictions either. In fact, it has even been speculated
(Binder and Kinzel, 1983b) that the curve Tz(H) might
bend back to zero temperature, Tz(H) ~H as H~O, b
being an associated exponent. However, fitting such a
law to the data shown in Fig. 23 would require the ex-
ponent 6 to be very large, of the order of 100 or so.
Hence it is certainly fair to say that the explanation of
these data is an open question (Binder and Kinzel, 1983b).

We now turn to characteristic fields H, (T, t) defined in
such a way that the time dependence of the observations
is invoked explicitly (Fig. 24). There are various ways to
do this: for instance, one can require that the imaginary
part of the susceptibility J"(co) become vanishingly small;
of course, the resulting curve H, (T,co) must depend dis-
tinctly on the measurement frequency co. Similarly, one
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time scale practically vanishes; as the time constant gets
larger the ~hole curve is displaced towards lower tem-
peratures [Fig. 24(c)]. While on this scale the curves are
still similar to the AT line, a more careful study reveals a
different structure at small fields (Fig. 25; Rajchenbach
and Bontemps, 1983; Paulsen et al. , 1984): the curves
H, (T,co) at H =0 merge with a perpendicular tangent,
while Eq. (2.40) yields a vanishing tangent. It is obvious
that it makes little sense to compare finite-time observa-
tions, which depend on the time in a really crucial
manner, to the AT line, which even in the mean-field. con-
text is meaningful only in the infinite-time limit. Thus
fully dynamical theories have been proposed to account
for these observations (Fischer, 1983b; Binder and Young,
1984); we shall return to these theories in Secs. IV and V.

At this point, we stress only that the experimental dis-
cussion has concentrated on the AT line: although the ex-
perimental systems are more Heisenberg-type than Ising-

type, and hence a GT line rather than an AT line should
be expected, very little experimental evidence for a GT
line has been found. Schulz and Wassermann (1983), in
their study of the H-T diagram of PtMn spin glasses,
find a Tz(H) similar to that of Fig. 23 and suggest that
this line be identified with the GT line; Kett et al. (1982),
in a study of Cd~ ~Mn Te spin glasses, claim that they
can identify both the AT line and the G-T line; in a view

of the actually rather smooth data, however, the identifi-
cation of any critical line seems rather unconvincing.
Perhaps the most convincing evidence for a line similar to
the GT line is offered by Mossbauer experiments in AuFe
spin glasses (Lauer and Keune, 1982; Campbell et al. ,
1983) and torque measurements in CuMn and AgMn spin
glasses (Campbell, De Courtenay, and Fert, 1984).

It seems to us that even if in real three-dimensional sys-
tems the spin glass freezing is a static phase transition,
one should not expect to be able to describe it quantita™
tively by mean-field theory, as is sometimes attempted
(Yeshurun and Sompolinsky, 1982). Rather, scaling con-
cepts beyond mean-field theory are required (e.g.,
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FiCx. 25. Critical magnetic field (raised to the 3 power to check
for the AT behavior) plotted vs temperature for Eup4Slp68.
Measurement frequencies are indicated. From Paulsen et al.
(1984).

Malozemoff et al. , 1983 Barnes et a/. , 1984; Suzuki,
1985). This point will be elaborated in the following sub-
section.

4. Nonlinear susceptibility and the scaled magnetic
equation of state near the freezing transition:
evidence for a phase transition?

In spin glasses higher-order terms in the expansion of
the equation of state in powers of the magnetic field are
particularly interesting: these quantities are more sensi-
tive to spin glass order than the zero-field susceptibility
Xo(T). The next-order term is the nonlinear susceptibility
X„((T),

M/H =Xo( T)—H X+I ( T)+O(H ) (2.35)

First measurements of X„~(T) with ac techniques in the
(Ti& „V„)zO& spin glass (Chikazawa et al. , 1980, 1981),
due to their frequency dependence, are not easily inter-
preted. Hence more attention has been paid to the
pioneering work of Monod and Bouchiat (1982) on the
field-cooled magnetization of AgMn with 10.6% Mn,
which these authors believe to yield the true equilibrium
magnetization. Figure 26(a) show that their data for
M/H are indeed consistent with a quadratic variation in
H, for temperatures above the freezing temperature
Tf 37.4 K. ——As one approaches Tf, the region of this
quadratic variation becomes much smaller. Fitting these
data to Eq. (2.35), Monod and Bouchiat (1982) concluded
that the resulting nonlinear susceptibility was consistent
with a critical divergence at Tf,

X„,( T) [(T —Tf )/Tf ] (2.36)

where y is a critical exponent characteristic of a static
phase transition to a spin glass state. While they estimat-
ed [see Fig. 26(a)] that 1 & y & 2, most other work results
in estimates of 3 & y &4 (Barbara et al. , 1981b, 1982; Ber-
ton et a/. , 1982; Omari et al. , 1983) notable exceptions
are Mn aluminosilicate, for which y = 1 is obtained (Beau-
villain, Dupas, Renard, and Veillet, 1984), AuFe, for
which Chikazawa et al. (1983) suggest a logarithmic
divergence of X„~ only, and Euo &sSro ~2S, for which X„~(T)
is believed to diverge only at zero temperature [Fig.
26(b)]; Kobler et al. , 1984).

Unfortunately, none of these analyses is really convinc-
ing. The trouble is best illustrated by Fig. 26(c), taken
from Chikazawa et al. (1983), where a log-log plot
of X„r(T) vs

~

1 —T/Tf
~

is given:
'

while for
~1 —T!Tf

~

&0.1 the data are nicely consistent with an
exponent y & 3, and consistent with Omari et al. (1983),
who use only that temperature range, one sees that X„I
flattens off when one approaches Tf. Taking any value
of the exponent y from data of this kind seems to us not
to be a very meaningful procedure. It may be that X„I(T)
tends to a logarithm law, as suggested by Chikazawa
et al. (1983), or to a finite constant at Tf, as suggested by
Kobler et al. (1984). On the other hand, it may be that
the rounding of this peak is not of an intrinsic nature, but
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M/~=Xc(T) II(' ' ' X)(T)+.—. . (2.37)

due to sample inhomogeneities on large scales, in which
case the "ideal behavior" may be closer to what is seen for

~

1 —T/Ty
~

)0. 1 (Omari et al. , 1983).
There is, moreover, a difficulty with part of the data

(Barbara et al. , 198lb, 1982), namely, that Eq. (2.35)
seems to fail: one sees no regime of quadratic variation
with H but rather a behavior as

where the exponent a (T) decreases continuously from its
value deep in the paramagnetic phase [a(T)=3] to a
value of about a(T/)=1. 7 at the freezing temperature.
Even if Eq. (2.37) represents the data nicely, it is not a
permissible behavior in the paramagnetic phase for
T~ T~ at all, since the free energy F there must be ana-
lytic in H. Due to the symmetry H-- - —H, only even
powers of H can occur in the Taylor expansion of I', and
hence a(T) =3 for all T& T/. Again, the apparent
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discrepancy between this conclusion and experiment is at-
tributed to sample inhomogeneities (Barbara et al. , 1982).
A further complication is that some of these systems have
a lot of ferromagnetic short-range order, which may
enhance X„E(T) considerably and lead to strong but non-
critical background temperature dependence. In particu-
lar, close to reentrant ferromagnetic phase boundaries,
rather sharp gigantic peaks of X„I(T) must occur, even if
the system remains paramagnetic (Binder, 1982b).

Finally we mention a very recent interesting analysis of
the critical behavior of the AgMn spin glass due to
Bouchiat (1986); the conclusion of this work is that in the
region 10 &1—Tf/T &10 ' one can identify an ex-
ponent y =2.2+0.2, while for temperatures farther away
from Tf there is an apparently larger "effective ex-
ponent" due to corrections to scaling.

Other measurements concern the magnetic field depen-
dence of the susceptibility right at Tf. One of the first
measurements of this type was performed for
(Eu„Sr& „)S, for x =0.15 to x =0.40 (Maletta and
Felsch, 1979; Maletta, 1980); in this experiment the de-

crease of the susceptibility maximum was studied. If
there is Edwards-Anderson order, one can relate the sus-

ceptibility at Tf to the field dependence of the Edwards-
Anderson order parameter q (T,H) (see Sec. IV),

( T H ) 1 y(max)(H) yg(max)(0)f~ (2.38)

As with the standard notation in critical phenomena, one
may associate a critical exponent 6 with this variation
(Binder, 1977a; Chalupa, 1977b),

q(Tf,H) ~(H )'~ (2.39)

In this definition, we have made use of the fact that it is
H that is the field conjugate to q (Harris et al. , 1976; see
also Sec. III.F.l), in contrast to the case of a ferromagnet,
where simply H is the field conjugate to M.

The experimental data [Fig. 27(a)] are indeed compati-
ble with Eq. (2.39) and would imply an exponent 5=4.1.
This estimate, moreover, is in good agreement with nu-
merical simulations [Stauffer and Binder, 1978; Fig.
27(b)]. However, again the situation is not completely
convincing: the data are probably affected by the finite
measurement frequency (or finite "observation time" of
the simulation, respectively). Most measurements of the
field-cooled magnetization at Tf, which is believed to be
the thermal equilibrium magnetization (Malozemoff and
Imry, 1981; Monod and Bouchiat, 1982)—at least the ef-
fects due to time dependence are smaller —have yielded
exponent estimates in the similar range 4 & 5 & 6 (Barbara
et al. 1981b, 1982; Omari et al. 1983; Beauvillain, Du-
pas, Renard, and Veillet, 1984). In contrast, the result
5=1.5 obtained by Mulder et al. (1981) for CuMn with 2
at. % Mn from ac susceptibility measurements seems to
be significantly different, as does the recent work of
Bouchiat (1986) on AgMn spin glasses, which implies a
somewhat smaller value, 6=3.1+0.2.

All these data are indicative of the existence of a static
phase transition at nonzero temperature, ' they do not con-

0.5-

(a)

)O r v v w r e e

5

0.5 2pBlhJ— 50

FIG. 27. (a} Depression of g™x),from ac measurements at
&@=117Hz as a function of applied field (denoted as Bo in the
figure) in Eu Sr~ S, for various concentrations x as shown in
the figure. Straight line on this log-log plot indicates an ex-
ponent 5=4.1. From Maletta (1980). (b) Field dependence of
the Edwards-Anderson order parameter at T&, calculated from
Monte Carlo simulations of a simple cubic Ising model with
nearest-neighbor exchange distributed according to a Gaussian
of width hJ. Data points are based on observations of 2000
Monte Carlo steps/spin. From Stauffer and Binder (1978).

4
2 pH+ 30 a5 T + (2.40)

where p is the magnetic moment per spin, go"' is the

stitute an ultimate proof, however, since either the
analyzed data may still be affected by nonequilibrium ef-
fects, or the observed nonanalytic variation with magnetic
field, Eq. (2.39), is an artifact of probing the response in a
regime of fields where it is highly nonlinear, and. for
much smaller fields Eq. (2.35) might still be valid.

None of these possible criticisms applies to measure-
ments of the magnetic equation of state at temperatures
sufficiently above Tf, like those of Omari et al. (1983).
In this region, time effects are still unimportant, as shown
by all analyses of frequency-dependent susceptibilities (see
Sec. II.B.1). Furthermore, the equation of state is
analyzed in terms of an expansion analogous to Eq. (2.35),
namely,

r 2
M (ni) 1 p~
H 15 T
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zero-field susceptibility of a noninteracting paramagnet,
and the expansion coefficients a &,a3,a5 are obtained from
the fit. (The normalization chosen is such that for a
noninteracting paramagnet a ~

——a 3 ——a 5
—— ——1.) The

advantage of this analysis is that one keeps track of
higher-order nonlinear terms unlike Eqs. (2.35) and (2.37),
and hence one can convince oneself that the range of field
values used in the analysis is appropriate. A very interest-
ing result emerging from this analysis is the prediction

2.25a5~a3 (2.41)

which is particularly strong evidence for a transition, as
one does not need to fit any value for Tf. If Tf is as-
sumed to coincide with the freezing temperature taken
from low-field, low-frequency ac susceptibility measure-
ments, one finds that all the data on the nonlinear part of
the magnetic equation of state, M(T, H)/H —Xo(T), can
be collapsed on a single scaling function [Fig. 28(a)j. As
we shall discuss in later sections in more detail, static
scaling at a spin glass transition can be cast in the form
(Chalupa, 1977b; Suzuki, 1977; see also Binder, 1977a)

suggested by Omari et al. (1983) does not help.
Recent interesting work on this question has been per-

formed by Taniguchi et al. (1985), who study the coeffi-
cients a3 and a5 of the nonlinear susceptibility of the
Fe~oNi7QPd2o spin glass using higher harmonics of an ac
drive field. This allows the use of much smaller'fields,
like those used by Omari et al. (1983). Taniguchi et al.
(1985) obtain y=2. 3+0.2 and 5=5.2+0.5. Note that
Taniguchi et al. (1985) also locate AT and GT lines, but
we are sceptical about the validity of this "folklore map-
ping" between mean-field theory and real systems, as not-
ed above.

Data such as those obtained by Barbara et al. (1981b,
1982), Bouchiat (1986), and Omari et al. (1983) are now
widely taken as evidence that real spin glasses do have a
static phase transition at Tf. A comparison with corre-
sponding simulations and pertinent theoretical predictions
will reveal, however, that this issue is not as yet settled
beyond doubt (Sec. V.E.5).

O. Temperature-concentration phase diagrams

(2.42)

where M is some scaling function. Figure 28(a) thus
presents experimental estimates for this function.

What is surprising, of course, is that such strong evi-
dence for scaling is obtained taking data rather far from
Tf (1.1Tf &T&4Tf), while scaling plots taking data
closer to Tf yield more scatter [Barbara et al. , 1981b,
1982; Beauvillain, Dupas, Renard, and Veillet, 1984; see
Fig. 28(b)]. In our view, the data for the aluminosilicate
spin glass [Fig. 28(b)) could as well be taken as evidence
that in this system scaling does not hold in the tempera-
ture region investigated. The nice scaling of CuMn spin
glasses is also supported by the data taken by Berton
et al. (1982) with the magnetocaloric effect; the possibili-
ty emerges that metallic and nonmetallic spin glasses in
this respect might be different.

A rather convincing demonstration of scaling is also
obtained in the recent work by Bouchiat (1986) on AgMn
spin glasses, where data only in the range
10 &1—Tf/T &10 ' are used, and fields are chosen
such that the nonlinear part of the magnetization is still
relatively small. The exponents obtained are P= 1.0+0. 1,
@=2.2+0.2, and 5=3.1+0.2.

From a theorist's point of view, data much closer to Tf
and taken at smaller field, like those of Gmari et al.
(1983), clearly are desirable. Omari et al. (1983) actually
use a scaling variable slightly different from that used in
Eq. (2.36), namely 1 —Tf /T instead of T/Tf —1, suggest-
ing that the "critical region" is apparently wider. Howev-
er, experience with standard critical phenomena shows
that usually the critical region is limited by singular
correction terms, in which case the change of variables

As we have seen in Sec. II.A, many spin glass systems
are produced by randomly diluting a system that, in the
absence of such dilution, exhibits some more conventional
magnetic long-range order (ferromagnetism or antifer-
romagnetism). Typically this ordinary order will exist
over some range of concentration of the magnetic atoms,
until one reaches some critical concentration, at which the
long-range order breaks down and the spin glass state
takes over. In metallic spin glasses, due to the long range
of the RKKY interactions (see Sec. II.A), the spin glass
exists down to arbitrarily small concentrations of magnet-
ic atoms; e.g., in Pd diluted with Fe one still finds a tran-
sition down to Fe concentrations of 2.2)&10 at. %,
though Tf then is only Tf-0. 19 mK (Peters et al. ,
1984). However, in short-range systems like Eu«Sr& «S
(Maletta and Convert, 1979; Maletta and Felsch, 1979,
1980) there exists another critical concentration x,' at
which spin glass order is no longer possible, and for
x &x,' the system is a "superparamagnet" (see Sec. III.F).
Of course, this is only true at not-too-low temperatures,
where the short-range exchange interactions dominate,
but the long-range dipolar interactions can be neglected:
at low enough temperatures, these dipolar interactions are
responsible for spin glass behavior at arbitrarily small
concentrations, as demonstrated for Eu Sr& „S (Eiselt
et al. , 1979).

The existence of such a critical concentration x,' can
easily be understood in the model where one assumes
nearest-neighbor ferromagnetic exchange and next-
nearest-neighbor antiferromagnetic exchange (Binder
et al. , 1979), which is a reasonable approximation for
Eu„Sr& „S (Bohn et al. , 1980). Then the system of mag-
netic ions for x &x~, the next-nearest-neighbor per-
colation threshold, must break up into an assembly of fi-
nite clusters, which are magnetically decoupled from each
other. As percolation of magnetic interactions is neces-
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sary to carry any type of long-range order, we conclude
NNN

It turns out that the ferromagnetic phase in Eu„Sr& „S
exists at low temperatures for x &x,", while at higher
temperatures the ferromagnetic phase is stable at even
lower concentrations: the spin glass transition line Tz(x)
and the ferromagnetic phase boundary T, (x) meet at a

point (T~,x~) in the T x-plane, with x &x," (Fig, 29).
Thus the ferromagnetic phase boundary is reentrant, and
cooling the system at fixed concentration one observes a
double transition (Fig. 30). Rather than the susceptibility
cusp at a spin glass transition or the saturation of the sus-
ceptibilities at a plateau value (determined by sample
geometry and demagnetization factor) at an ordinary fer-
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FIG. 29. Phase diagraID of systems in which spin glass order
and ferromagnetic order compete. (a) Theoretical phase dia-
gram for a short-range system (Kinzel and Binder, 1981). In
the concentration range x,' &x &x," the ground state of the sys-
tem is a spin glass. The ferromagnetic phase boundary exhibits
a reentrance point (T,x ). The spin glass state exists in the re-
gime bounded by these liries and the line Tf(x). For system
dimensionalities exceeding the lower critical dimensions, a static
phase transition occurs at Tf(x) and hence the point (T,x ) is
a nontrivial multicritical point. For systems below their lower
critical dimension, the spin glass exists as a nonequilibrium state
only; Tf(x) is—at least weakly —time dependent and hence hits
the reentrance point only approximately. (b) Experimental
phase diagrams proposed for Eu„Sr& „S (Maletta and Convert,
1979) and for AuFe with 14%%uo Fe (Crane and Claus, 1981). In
the latter case Tq is the annealing temperature (by varying the
annealing temperature, one varies the chemical short-range or-
der parameters). PM =paramagnetic phase, FM =ferro-
magnetic phase, SG =spin glass phase. (c) Phase diagram of the
Ising spiri glass with infinite-range interaction [the SK model
(Sherrington and Kirkpatrick, 1975)j. Here J and b,J are mean
value and width of the Gaussian interaction (suitably normal-
ized to ensure a sensible thermodynamic limit; see Sec. IV).
Note that the original solution of Sherrington and Kirkpatrick
(1975), yielding a phase diagram with reentrant ferromagnetic
phase boundary, is unstable. The dash-dotted curve denotes the
line where the replica-symmetric solution becomes unstable [it is
just an extension of the AT line, Eq. (2.40), which in this larger
parameter space H/b, J, T/b, J, J/b, J becomes a surface].
From Parisi and Toulouse (1980).

romagnetic transition, one now sees that the susceptibility
saturates and then slightly decreases in the ferromagnetic
region, before it has its strong falloff. Similar behavior
has been observed in crystaHine metals such as AlFe
(Shull et al. , 1976), (PdI &Fez)~ „Mn„(Verbeek et al. ,
1978; Nieuwenhuys et a/. , 1979; Shapiro et al. , 1980),
Fe„Cr& „(Sarkissian, 1981; Shapiro et al. , 1981a, 1981b;
Burke et al. , 1983a,. 1983b, 1983c), (Cr& „Vz )o s4Te
(Ohta, Kurosawa, and Anzai, 1982), or AuFe (Coles
et al. , 1978; Crane and Claus, 1981), in amorphous met-
als such as [Fe„(TM)$ „]$5P$6B6A13 (Yeshurun et al. ,
1981; Salamon et al. , 1981; Geohegan and Bhagat, 1981;
Lynn et al. , 1981; Manheimer, Bhagat, Kistler, and Rao,
1982; Manheimer, Bhagat, and Chen, 1982b), where (TM)
stands for transition metals such as Ni, Mn, or Cr, and ih
insulators such as KMn„Zn~ F4 (Cowley et al. , 1980).

The interpretation of susceptibility measurements such
as those shown in Fig. 30 is, however, not at all obvious.
In particular, in the case of AuFe, where chemical clus-
tering at the considered concentrations is very important,
there is no complete agreement about the phase diagram
in the literature (Carnegie and Claus, 1979; Carnegie
et aI. , 1979; Mydosh et aI., 1979; Crane and Claus, 1980,
1981). Griffith et al. (1985) observe that the susceptibili-
ty of the ferromagnet Pd with 0.4 at. % Fe closely resem-
bles that of a spin glass if the sample is in a cold worked
state', this finding again illustrates that the distinction be-
tween spin glasses with ferromagnetic short-range order
and ferromagnets with disorder may be difficult. Mag-
netic neutron Bragg scattering would be a more convinc-
ing test for the presence of ferromagnetic long-range or-
der -than such susceptibility or magnetization measure-
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ments. At the reentrant ferromagnetic phase boundary
one would expect the Bragg intensities again to vanish. In
Au with 17 at. %%uoFe, howeve r, Muran i (1980) foun da
monotonic increase of integrated Bragg intensities with
decreasing temperatures; this result is hardly consistent
with a reentrant ferromagnetic phase boundary. In
Eu~Sr~ „S for x~ ~x &x,", on the other hand, one finds
no Bragg intensity in the reentrant spin glass region (Ma-
letta et al. , 1982). This is confirmed by a study of spin
dynamics (Shapiro et al. , 1985).

A closer analysis of the neutron data in this material, as
well as in the amorphous metal (Feo 68Mno 3$)7$P]686A13,
shows (Aeppli et al. , 1984) that even in the regime be-
tween the upper and lower critical temperatures T, (x),
for x &x &x,", one does not find any Bragg intensity, al-
though at the critical temperatures the inverse correlation
length a seems to vanish [Figs. 31(a) and 31(b)]. Rather
than finding ~ to be finite again in the ferromagnetic re-
gion (where spontaneous magnetization should occur), one
finds that K remains zero throughout, and that there is no
spontaneous magnetization, at least within resolution lim-
its. The situation is rather subtle, as is shown by model
calculations due to Binder (1982b) analyzing the "nor-
mal" behavior near a reentrant phase boundary: since the
size of ~ is related to the normal distance from the phase
boundary, which in between the two critical temperatures
T,' ', T,'"' cannot become large, ~ must stay rather small
over a broad temperature range [Fig. 31(c)]. While Binder
(1982b) speculated that all that might happen in the ex-
periments would be for the behavior of Figs. 31(c) to be
somewhat smeared out due to finite resolution and sample
heterogeneities, Maletta et al. (1983), Maletta (1983), and
Aeppli et al. (1983, 1984) maintain that the experiments
show the existence of a new type of phase, characterized
by x =0 over a finite range of temperature. We also note
that optical microscope observations reveal ferromagnetic
domains in Eu„Sr& „S for x =0.54 but not for x =0.52
(Dillon et al. , 1984). From elastic light scattering,
Geschwind et al. (1984) infer ferromagnetic correlation
lengths of the order of 10 A in this region.

A recent review of neutron scattering studies from two
reentrant spin glass systems, Eu Sr~ S and Fe& Al„, is
given by Shapiro et al. (1986), with further references.

These experiments may also be relevant to the case of a
mixed-state ferromagnet —spin glass, in which ferromag-
netic long-range order in the z direction would coexist
with frozen-in transverse spin components. Such a state
is in fact found in the mean-field treatment of vector spin
glasses (Gabay and Toulouse, 1981). Aeppli et al. (1983,
1984) and Maletta et al. (1982, 1983) argue, however, that
in short-range systems such a state cannot exist, as the
frozen-in transverse spin components mould act as a ran-
dom field on the ferromagnetic order and hence create an
instability against domain formation (Imry and Ma,
1975). In fact, none of these experiments could be inter-
preted in terms of such a mixed state.

If the mixed spin-glass —ferromagnetic phase did exist,
somewhere in the phase diagram [Figs. 29(a) and 29(b)] an
additional phase boundary would occur. Moreover, the
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FIG. 31. Temperature dependence of inverse correlation length
~ (left-hand scale and lower curve in each frame) and Lorentzi-
an amplitude (right-hand scale and upper curves in each frame):
(a) for Euo. s2Sr0.48S; (b) for (Feo.68Mno. 32)7sp~6B6A13. From Aep-
pli et aI. (1984). (c) Inverse ferromagnetic correlation length
plotted vs temperature, for the phase boundary shown in (a), for
four choices of the parameter (x/x —1}. Arbitrarily the am-
plitude g'0 of the correlation length in the ferromagnetic region
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For x &x one cuts the ferromagnetic phase boundary both at
lower and upper critical points T,'",T,'"'. From Binder (19821).
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proposed phase with infinite correlation length but no
spontaneous magnetization ("frustrated ferromagnet";
Maletta et al. , 1983) needs to be distinguished from the
ordinary ferromagnet (with spontaneous magnetization)
by a phase boundary. Thus the phase diagrams shown in
Fig. 29(b) conceivably could have a much richer structure,
but this question plairily is not yet settled. In any case,
what is established is the existence of a transition out of
some kind of ferromagnetic state to a spin glass, which
gives rise to a number of effects: the drop in the
demagnetization-limited ac susceptibility (Verbeek et al. ,
1978; Maletta and Felsch, 1980; see Fig. 30); vanishing of
spontaneous magnetization in low-field magnetization
measurements (Crane and Claus, 1981); reduction of
spin-wave energies measured by inelastic neutron scatter-
ing (Lynn et al. , 1981; Shapiro et al. , 198lb; Aeppli
et al. , 1982); changes in the hysteretic behavior (Geohe-
gan and Bhagat, 1981); increase in the linewidth for fer-
romagnetic resonance (Bhagat et a/. , 1981);onset of mag-
netic viscosity and history-dependent effects (Yeshurun
and Sompolinsky, 1982; Manheimer, Bhagat, and Chen,
1982a); etc.

So far we have considered systems where a ferromagnet
is mixed with a nonmagnetic component. Of course, it is
of interest to consider other types of random systems as
well, such as diluted antiferromagnets or mixed ferro-
antiferromagnetic systems. All these random systems
also share the possibility of exhj.biting a spin glass phase
somewhere in their phase diagrams.

An example of the mixture of a ferromagnet with an
antiferromagnet is the EuS&Se~ ~ system (Westerholt and
Bach, 1982; Fig. 32) while EuS is a ferromagnet, EuSe
orders antiferromagnetically. It turns out that the two
critical lines of ordering meet at a multicritical point; the
ferromagnetic phase again is reentrant, and the phase in
between the antiferromagnetic phase and the reentrant
ferromagnetic one is interpreted as "myctomagnetic" by

&0„

0

I
I I

FIG. 32. Phase diagram of EuS~Se~ ~. P, paramagnetic phase;
AF, antiferromagnetic phase; I', ferromagnetic phase; M, mic-
tomagnetic phase. From %'esterholt and Bach (1982).

Westerholt and Bach (1982). This term has been used to
describe spin glasses with a large degree of chemical
short-range order (Beck, 1978, 1980). Theoretical work
often predicts in such a phase diagram a region with
mixed ferromagnetic and antiferromagnetic order (Aharo-
ny, 1977); it is not clear whether the experimental evi-
dence can rule this possibility out. Another system in
which ferro- and antiferromagnetic transition lines nearly
meet is GdAg~ „Zn„(Kobler et al. , 1985).

It is now possible to produce mixed compounds of the
type Eu„Sr~ „S&Se~ „(Westerholt and Bach, 1981a,
1981b). For suitable choices of the sulfur concentration y
ferromagnetic order breaks down with a very small Sr
concentration 1 —x [see Figs. 33(a) and 33(b)]; then one
has a very wide range of concentration in which the spin
glass state is stable. Since both EuS and EuSe are basical-
ly described as Heisenberg magnets, with exchange in-
teractions J& between nearest neighbors and J2 between
next-nearest neighbors, where J2/J~ ——0.5 for EuS
(Bohn et al. , 1980) and J2/J&= —1.1 for EuSe (Zinn,
1976), one could say that in varying y one is effectively
varying Jz/J~. Within this approximation the wide range
of stability of the spin glass phase can be explained by
theoretical considerations confirmed by simulations
(Binder et al. , 1979), which predict that x,"~1 at the
multicritical point, where ferro- and antiferromagnetic or-
der compete in the ground state [J2/J& ———1; see Fig.
33(c)]. This theoretical work also predicts that the spin
glass state exists for the case where the undiluted system
orders anti ferromagnetically. Experiments on the
Eu„Sr~ „Se system (Westerholt and Bach, 1985) have
indeed found spin glass behavior for x &0.7, while the
first-order antiferromagnetic transition gets smeared for
x &0.85.

Recently it was found (Fiorani et al. , 1983, 1984) that
the frustrated antiferromagnet ZnCr204 (which has essen-
tially only nearest-neighbor antiferromagnetic interactions
between the Cr ions that occupy the octahedral sites of
the spinel lattice) upon dilution with Ga turns into a spin
glass.

Other examples of spin glasses obtained by dilution of
an antiferromagnetic are Fe~ „MgxC12 (Bertrand et al. ,
1982; Wong et al. , 1985), though in this case it is prob-
ably again due to competition between antiferromagnetic
and ferromagnetic bonds, and Cd& „Mn„Te (Galazka
et al. , 1980).

Finally, we mention systems such as Cuo 6Zr04 Fe,
in which for x &0.05 the Fe ions have no magnetic mo-
ment and the aHoy has a phase transition to a supercon-
ducting state, while for 0.05 &x &0.1 superconductivity is
suppressed and a spin glass state is found (von Lohneysen
et al. , 1983).

E. Orientational glasses
and ferroelectrics vwth glassy
polarization behavior

As we have seen above, spin glass behavior results if
disorder is introduced into magnets with competing in-
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FIG. 33. (a) Phase diagram of Eu„Sr& ~SO 2Seo 8. (b) Phase dia-
gram of Eu„Sr~ „SoqSeo 5. From %'esterholt and Bach (1981b).
(c) Variation of critical concentration x,"between spin glass and
ferromagnet at T =0, as obtained from Monte Carlo simulation
of a classical Heisenberg ferromagnet on the face-centered cubic
lattice, plotted as a function of the ratio of the next-nearest-
neighbor and nearest-neighbor exchange constants. From
Binder et al. (1979). E"(co,T) =h(T)[1+tanh(c ~u )][1—czln(coro)] . (2.43)

teractions. Thus it is immediately plausible to expect that
similar behavior may occur for other ordering phenome-
na, if there is competition between various interactions
and disorder is created, e.g., by random dilution. Candi-
dates for such behavior are orderings associated with
structural transitions as they occur in ferroelectrics or an-
tiferroelectrics, or in molecular crystals. In mixed ferro-
antiferroelectric systems (or diluted ferroelectrics, respec-
tively) the local ordering is due to electric dipoles, and
hence one is talking about "dipolar glasses" (Fischer and
Klein, 1976; Bhattacharya et al. , 1982; Courtens, 1982;
Hochli, 1982; see also Kanzig et al. , 1964). From a
theoretical point of view, the spin representing a magnetic
moment now turns into a "pseudospin" representing the
electric moment; dielectric rather than magnetic suscepti-
bilities need to be considered, while otherwise the situa-
tion is similar to that for magnetic spin glasses. A more
fundamental difference arises when one considers glassy
behavior in mixed molecular crystals, where the orienta-
tional ordering has tensor rather than vector character.
The local order parameter can then be considered as a
quadrupole moment rather than a dipole moment, and
hence one is talking of "quadrupolar glasses" (Sullivan
et al. , 1978; Haase and Saleh, 1981; Sullivan and Esteve,
1981;Haase and Klenin, 1983; Sullivan, 1983).

Possible examples of electric dipole glasses are
Ko 974Lio 026Ta03 (Hochli, 1982; see Fig. 3 for results of
frequency-dependent dielectric susceptibility measure-
ments) and the Rb& (NH4)„H2PO4 system (Courtens,
1982, 1983, 1984a, 1984b; Slak et aI , 1984).. The latter
system has been studied by dielectric susceptibility (Cour-
tens, 1982, 1983, 1984a, 1984b), birefringence (Courtens,
1982), and NMR measurements (Slak et al. , 1984).
%Phile pure RbH2PO4 orders ferroelectrically, NH4HzPO4
orders antiferroelectrically, and mixed crystals exist over
the full range of x (Courtens, 1982). This system, howev-
er, seems to be rather complicated, as can be seen from
the conjectured phase diagram [Courtens, 1982; see Fig.
34(a)], where a mixed phase of unknown character occurs.
The situation may be analogous to that of the EuS„Se]
system discussed in the previous section (Fig. 32). While
at the upper transition temperature at x=0.34 in Fig.
34(a) the birefringence vanishes and the temperature
derivative of the dielectric constant s» has a (rounded)
kink (1 is the tetragonal axis of ferroelectric ordering), the
glass transition at about T~ ——27 K is characterized by a
kink in the real part of E» (and at the same time an imag-
inary part sets in). Recent work on this material has con-
centrated on the low-temperature dynamical properties of
Rbo 65(NH4)0 35H2PO4 (Courtens, 1984a, 1984b; Slak
et a/. , 1984). One finds that the freezing transition is
characterized by a strong broadening of the distribution
of relaxation times. It turns out that the dielectric suscep-
tibility at low temperatures is quantitatively consistent
with the Vogel-Fulcher law (Vogel, 1921; Fulcher, 1925),
Eq. (2.14), if one represents the imaginary part E"(co,T) of
the dielectric susceptibility tensor in the form
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FIG. 34. (a) The remainder of the tetragonal birefringence
5(nr —np) after subtraction of the lattice expansion contribution
for Rbp 66(NH4)Q 34HQPO4 Inset: A tentative phase diagram ex-
hibiting ferroelectric (FE), paraelectric (PE), dipolar glass (SG),
and mixed (M) phases. T is the transition temperature from
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mixed phase, which has considerable antiferromagnetic short-
range order, is unclear. Solid curves in the phase diagram are
second-order transitions, the dashed line represents a first-order
transition. The nature of the special points (indicated by ques-
tion marks) remains to be elucidated. From Courtens (1982).
(b) Scaling function R(u)—:[1+tanh(c~u)]/2 plotted vs u, for
Rbp65(NH4)p35H2PO4. Frequencies co indicated in the figure.
From Courtens (1984b).

~3 Eact ~ (2.44)

where c3 is another constant, and E„t is the activation
energy in the Vogel-Fulcher law, Eq. (2.14), in which one
puts ~—:co '. Figure 34(b) shows that one obtains an ex-
cellent representation of all the data (extending over the
temperature range from 4 to 35 K and the frequency
range indicated); however, the number of adjustable pa-
rameters is rather large.

Measurements of the dipolar glass K& „Li~Ta03 in an
electric field E (Hochli et a/. , 1985) reveal a characteris-
tic line in the T-E plane where irreversible behavior sets

Here c ~,c2 are constants, the tensor h ( T) depends only on
temperature, and the scaling variable u is related to co, T
via

in, similar to the lines in the H-T plane for spin glasses
identified as AT lines (Sec. II.C). In K& „Na„Ta03 a
critical divergence of the nonlinear electric susceptibility
is found (Maglione et a/. , 1986).

Finally we draw attention to dielectric suscepti-
bility measurements on the diluted ferroelectric
(KDP)

& „(ADP)„due to Choo and Kim (1983). The sus-
ceptibility shows a double transition, in striking similarity-
to the Eu Sr& S data shown in Fig. 30. Choo and Kim
(1983) interpret the upper transition as that between
paraelectric and ferroelectric, and the lower one as a
freezing temperature where the domain-wall mobility is
frozen out. A study of crystalline ferroelectrics with
glassy polarization behavior is also present by Burns and
Dacol (1983, 1984).

We turn now to the freezing of orientation order in
molecular crystals. Such behavior may already occur,
even in undiluted molecular crystals, such as hexagonal
ice or solid CO (Suga and Seki, 1974). Here we concen-
trate attention on diluted molecular crystals. In this area,
much work has been directed towards understanding mix-
tures of orthohydrogen and parahydrogen (Ishimoto
et al. , 1973, 1976; Sullivan et al. , 1975, 1978, 1979; Sul-
livan, 1976, 1983; Washburn et aI. , 1980, 1981; Cochran
et a/. , 1980 and the K(CN)& „Br„system (Satija and
Wang, 1978; Rowe et al. , 1979, 1983; Loidl et. al. , 1980,
1981, 1982, 1983, 1984; Michel and Rome, 1980;
Kwiecien et al. , 1981;Bhattacharya et al. , 1982; Garland
et a/. , 1982; De Yoreo et a/. , 1983). Related phenomena
have also been found in (N2)„Ar~ „mixtures (Press
et a/. , 1982). Figure 35 shows the phase diagram of the
latter system and of the orthohydrogen-parahydrogen
mixture (Sullivan et a/. , 1978, Press et a/. , 1982). Figure
36 (Sullivan, 1983) gives a qualitative impression of the
orderings in the orientationally ordered and glasslike
states.

In the case of the (N2)~ „Ar„system, neutron diffrac-
tion has been used (Press et a/. , 1982) to show that for
x =0.28 there is no kind of orientational long-range or-
der, while at the same time the inelastic scattering data
indicate a gradual freezing in of the local orientations.
For the 0-H2/P-H2 mixtures, the evidence for the phase
diagram (Fig 36) main. ly rests on NMR experiments.
These experiments are somewhat difficult to interpret,
and hence there has been a controversy (Sullivan et a/. ,
1978; Cochran et a/. , 1980; Washburn et a/. , 1981) as to
whether a sharp transition to a glasslike state occurs, and
where it is located. But it is clear that at very low tem-
peratures the local orientations of the 0-Hz molecules are
frozen in.

Perhaps the best studied system is the
(KCN)„(KBr)~ „mixed crystal system. Pure KCN un-
dergoe's a transition from the disordered cubic phase to an
orientationally ordered orthorhombic phase (space group
Immm) at 168 K (Matsuo et a/. , 1968), which is weakly
first order. At 83 K there is an order-disorder transition,
in which the (CN) ions order cotnpletely in a kind of an-
tiferroelectric structure (space group Pmmm).

Interestingly, for a weak dilution (x =0.95 or x =0.90,
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FIG. 35. Phase diagrams for solid solutions of o-H2 and p-H2
(upper part) and N2 diluted with Ar (lower part). For large con-
centrations of the orientationally anisotropic component (o-H2
or N2, respectively), the phase diagrams are similar: the orien-
tationally ordered phase has face-centered cubic structure, the
disordered one is hexagonal close packed. The orientational
glass phase (denoted by SG) is indicated in the upper part only.
From Press et al. (1982).

for instance), one finds a qualitatively different behavior
(Rowe et a/ , .1983): only part of the sample transforms
to the same orthorhombic structure as pure KCN does,
while the other part transforms into a monoclinic struc-
ture (space group Cc). For a larger dilution (x =0.80),
only this monoclinic phase is present. These findings are
an example of a long-range order stabilized by the disor-
der in the system, while the same order in the pure system
would be metastable only.

Thus the phase diagram of the mixed (KCN)-(KBr)
system is more complicated than the phase diagrams of
the magnetic systems discussed previously, and probably
it is not yet known in full. There is ample evidence, how-
ever, that a phase with frozen-in random orientational or-
der exists at large dilutions x )0.050 (Loidl et a/. , 1981,
1982, 1983, 1984; Bhattacharya et al. , 1982; lowe et aI,
1979; Satija and Wang, 1978). While in pure KCN the
transition is seen by a strong softening of the elastic con-
stant C44 in the cubic high-temperature phase (Haussuhl,
1973; the softening is only almost complete, since the
transition is weakly of first order), this softening is
suppressed in the strongly diluted systems, as revealed by
Brillouin scattering (Satija and Wang, 1978) and ultrason-
ic measurements (Loidl et a/. , 1980, 1981). The neutron
inelastic scattering data (Rowe et a/. , 1979; Loidl et a/. ,

1983) show that the orientational motions do indeed be-
come frozen in, at least on the time scales accessible by
those measurements, and can be interpreted in terms of
local orientational order very much like the Edwards-
Anderson order of spin glasses (Michel and Rowe, 1980).

Frequency-dependent measurements of elastic constants
(Loidl et a/. , 1982) and of the dielectrics susceptibility
(Bhattacharya et a/. , 1982) show that an Arrhenius-type
behavior of relaxation times produces a slowing down of
ihe motions even above freezing; again the qualitative
similarity with spin glasses or dielectric glasses (Hochli,
1982) is remarkable, since the electric dipole moment at-
tached to the (CN) dumbells freezes in at the same time
as the molecule orientation is frozen, and the system can
at the same time be considered as a "dipole glass" (Bhat-
tacharya et a/. , 1982; this fact is also responsible for the
dielectric susceptibility's being a suitable tool for the
study of this freezing transition). But since static electric
fields have hardly any effect on the results (Bhattacharya
et a/ , 1982), it. is clear that no dielectric interactions
among the dipoles are responsible for the freezing, but
rather interactions among the quadrupoles (such as those
mediated by lattice strains via long-wavelength phonons;
see, for example, Michel et al. , 1978; De Raedt et al. ,
1981). Finally we emphasize that measurements of
thermal conductivity and specific heat (De Yoreo et a/. ,
1983) show a behavior reminiscent of ordinary glasses.

F. Summary of the experimental results

FIG. 36. Comparison of the orientational order for (a) a plane
section of the Pa3 structure of o-H2 and (b) the quadrupolar
glass phase in o-H2/p-H2 mixtures. From Sullivan (1983).

Extensive experimental work over more than a decade
has shown that the phenomena commonly attributed to
spin glasses are fairly universal: a rather sharp peak in
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the low-frequency-dependent susceptibility, which be-
comes progressively rounded with increasing frequency,
and with only rather weak frequency dependence of the
peak temperature; a spectrum of relaxation times that
broadens far above Tf and extends to macroscopic time
scales at and below Tf,' at the same time, equilibrium spin
glass correlations develop above freezing and lead to a
drainatic increase of the static nonlinear susceptibility,
and the magnetization can be brought into a scaled equa-
tion of state very similar to the behavior at ordinary mag-
netic phase transitions. Thus the spin glass combines
some features characteristic of equilibrium phase transi-
tions with some features characteristic of nonequilibrium
systems such as ordinary glasses; despite a great deal of
effort it is not yet completely clear whether all spin
glasses behave qualitatively the same, or whether one
needs different "universality classes" for metallic spin
glasses and nonmetallic ones, Heisenberg versus Ising
spins, etc. While the (unidirectional) anisotropy found in
some metallic spin glasses clearly controls the low-
temperature properties of the system, which then is nearly
rigidly frozen, it is not clear to what extent anisotropy
controls the behavior near the freezing transition. In the
regime of temperatures intermediate between very low
temperatures and freezing, experiment has produced a
wealth of data on hysteresis, remanence, magnetic viscosi-
ty, etc., which must await theoretical explanation.

Much more work is still needed to clarify our under-
standing of phase diagrams in which spin glass and con-
ventional orderings compete, and of related phenomena in
dielectrics and molecular crystals, where analogous phe-
nomena may occur. In the latter systems, the microscopic
interactions that compete with -each other often are less
well understood than in their magnetic counterparts. In
addition, one does not always have a parameter analogous
to the magnetic field in the spin glass at one's disposal,
and hence an experimental study of these systems may be
even more difficult. But there are some indications that
these systems may have properties intermediate between
spin glasses and ordinary structural glasses, and hence
their study may be rewarding.

One general conclusion is that most experimental tech-
niques allow rather indirect conclusions about the nature
of correlations in the glassy state. Hence it is crucial to
combine many experimental techniques for the same sam-
ple, in order to gain a fairly complete picture. Thus far
such an effort has been directed towards relatively few
spin glass systems. While these "model systems" such as
CuMn and EuSr spin glasses are rather nicely under-
stood, the study of other systems may well lead to
surprises.

Since most experimental information on magnetic
correlations and order in spin glasses is rather indirect,
theoretical work is crucial for the analysis of experiments.
Both phenomenological concepts, such as the "Neel
model" of superparamagnetic particles, and the mean-
field theory of the infinite-range model have been used as
a basis for such analysis, and although these concepts are
quite diverse, both of them have had some success. Clear-

ly there is a need for a more detailed theory as well as for
more realistic models; if this goal is attained, a reanalysis
of many experimental data may prove very rewarding.

III. GENERAL THEORETICAL CONCEPTS
AND MODELS

In this section we wish to address first some of the gen-
eral questions encountered in systems with frozen-in dis-
order: Supposing one wishes to perform an average over
this disorder, how is this done? And will the results actu-
ally correspond to experimental observations, which usu-
ally refer to a simple sample only (Sec. III.A)'? Since in a
random system the mean value of a quantity does not al-
ways coincide with its most probable value, it is not obvi-
ous whether one has in a large system a sort of "self-
averaging. " In addition, there are technical difficulties in
carrying out the desired averaging in practice, and the re-
cipe for avoiding those difficulties, which goes under the
heading "replica method, " introduces other problems
(Sec. III.C).

In addition, there is another fundamental problem re-
lated to the nature of averaging when the system may ex-
ist in several equivalent "ordered states" in the thermo-
dynamic limit, because the standard canonical "Gibbs
average" averages over all of them (Sec. III.B). What
may really be needed is to break this ergodicity and re-
strict the average to one "valley" in phase space, for in-
stance. At usual phase transitions, of course, this prob-
lem is handled by restricting the average to one choice of
the possible values that the order parameter can take; in a
spin glass the identification of order parameters is a prob-
lem (Sec. III.F).

Finally we shall be concerned with a survey of models
on which explicit calculations are based. While the
Edwards-Anderson model (Sec. III.D) is still most popu-
lar, there has always been the desire to introduce other
models that are either simpler or more realistic (Sec.
III.E). While it now is commonly accepted that "frustra-
tion" of the interactions is a necessary ingredient of any
model Hamiltonian (Sec. III.F), concepts based on ex-
ploiting the related "gauge invariance" of the Hamiltoni-
an have not led to the desired breakthrough so far.

A complementary approach to statistical mechanics
based on a Hamiltonian is a theoretical description on a
more macroscopic-phenomenological level. Concepts
such as "superparamagnetic clusters" and "two-level sys-
tems" have often been advocated in the context of spin
glasses, and hence we shall briefly review these ideas in
Sec. III.G.

A. Averaging in random systems

Let us suppose we have a system described by some sta-
tistical variables. We denote them by S; (i = 1, . . . , Ã) to
indicate that we are really interested in spins, though the
discussion will be more general than this. Furthermore
the system is assumed to be random, so in addition we
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need to specify the variables {x I, say, describing the ran-
domness. For instance, x; may describe whether or not
there is a spin on site i.

In general the random variables may themselves fluctu-
ate with time; as an example, in a crystal mixed from
magnetic and nonmagnetic species the atoms may diffuse
through the lattice. It is therefore necessary to compare
typical fiuctuation time for the random variable rd;, with
the observation time ~„p. If ~,„p))~d;, the random vari-
ables come to thermal equilibrium and so are averaged
over in a manner similar to the statistical averages; for in-
stance, the free energy of the system becomes

I' = —kii T ln[Z {xI ],„,
Z {x I

= Tr exp[ —A {x,S; I /ks T] .
(S,. I

(3.1)

This is called an annealed average. In practice atomic
diffusion times are huge at the low temperatures where
spin glass behavior occurs in real systems, so this limit is
not applicable. Furthermore simple annealed models,
such as the Ising square lattice with bonds of random sign
in its annealed version (Thorpe and Beeman, 1976), do not
have interesting spin glass properties. In this particular
model, one finds that a spontaneous magnetization ap-
pears at an upper critical temperature and vanishes again
at a lower critical temperature. In the "disordered" phase
at low temperature long-range correlations develop among
the signs of the bonds.

We shall exclusively consider the opposite extreme
'Td' ))7 p from now on. This is called a quenched aUer-

age, in which each of the random variables takes a unique
value as the statistical variables fluctuate (Brout, 1959;
Mazo, 1963). One therefore evaluates the partition func-
tion for a particular configuration of the random variable

Z{x], but we shall show that, unlike Eq. (3.1), the
averaging of Z{x I itself makes no sense. On the other
hand, the unaveraged partition function is very cumber-
some, since one has to specify the values of typically 10
random variables for a macroscopic system. So we need
to perform some sort of average over the probability dis-
tribution p({xJ) for the {xI. The question therefore
arises: what quantities can be averaged?

Loosely speaking, the answer is that one can gerierally
average extensive variables. To see this, we give a simple
intuitive argument due to Brout (1959). Consider a single
very large system and divide it up into a large number of
subsystems such that each subsystem is macroscopic and
clearly contains a different set of random variables. If we
assume the coupling between subsystems is negligible
(normally down by a surface-to-volume ratio, for systems
with short-range interactions), then the value of any ex-
tensive variable (normalized per unit volume or per degree
of freedoin) for the whole system is equal to the average
of the values of this quantity over the subsystems. If the
original system is very big, we can average over a large
number of subsystems and expect that the result of doing
so will differ by only a small amount from the result of
performing a complete average over all choices of {xI.

In other words, choosing the inagnetization per spin M as
an example,

M{x]—[M],„—+0 (for N —+~), (3.2)

k~Tf,„„=— ln[Z],„=[f],„+(bf) /kiiT .X (3.4)

So although ln[Z],„ is well defined, it does not give [f]„
nor the free energy of any sample that occurs with reason-
able probability. Equation (3.4) shows that f,„„)[f],„;
similar inequalities also hold for derivatives of f, such as
susceptibilities, and hence yield upper bounds for the cor-
responding quantities of the quenched system (Falk,
1975).

The fact that f (or equivalently lnZ) must be averaged,
rather than Z, is at the heart of the difficulty in doing
statistical mechanics of random systems. A rather suc-
cessful way of getting around this, known as "the replica
trick, " is discussed in Sec. III.C. Another way to avoid
averaging the logarithm is mentioned in Sec. IV.D. Fi-
nally we mention that one can formally write any
quenched average as an equivalent annealed average, at
the price of .implicitly defining a complicated
temperature-dependent interaction among the variables
(Morita, 1964; Falk, 1976). This formulation can also
serve as a starting point for interesting approximations to
some problems in the statistical mechanics of random sys-
tems (Schwartz, 1985a)

Consider, for a moment, the average magnetization

[M],„=(1/N)g[(S; ) ],„. (3.5)

After configurational averaging, translational invariance
is restored, so each term in the sum in Eq. (3.3) must give
the same result. Consequently one has

for any set {xJ that occurs with reasonable probability.
The same result is expected for any other density of an
extensive quantity. Systems that have this property are
called "self aver-aging. " One large system gives the saine
results for (densities of) extensive quantities as a configu-
rational average. This property, which can be proved for
certain models (van Hemmen and Palmer, 1982; van
Enter and van Hemmen, 1983, 1984), is very important
because the theory, which for convenience performs the
average, can be compared with experiment, which is of
course on a single large sample. Clearly self-averaging is
in accord with experiment because variations between
samples where the random variables have the same statist-
ical properties have never, to our knowledge, been ob-
served.

For finite N the Brout argument leads to a probability
distribution for densities of extensive variables which is
Gaussian and of width N '~, i.e., for the free-energy
density f

P(f) ~ exp{ N(f —[f]—,„)2/2(hf) I . (3.3)

Since Z=exp( %f/k+T) it—is clearly not correct to
average the partition function. In fact, if one does this,
one obtains from Eq. (3.3)
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(3.6)

[(S;)]„=(1/N)g (S; ) (3.7)

for any site i .From Eq. (3.2) we find that, for N~ao
and assuming self-averaging,

these lengths might diverge at different temperatures and
hence give rise to several phase transitions. Of course, for
the Ising spin chain this does not happen; all lengths
gz(T) diverge at T=0 only. If, on the other hand, we
construct the (normalized) extensive quantity

so the summation over sites for a single large sample is
equivalent to a configurational average. Although self-
averaging seems almost obvious, it turns out not to be true
for some of the densities of extensive variables that ap-
pear in the theory of spin glasses, Sec. IV.F. These quan-
tities are extremely sensitive to boundary conditions, and
so the Brout assumption of neglecting the coupling be-
tween subsystems is not valid. However, these quantities,
though essential for a complete understanding of the
theory, are not directly measurable, so self-averaging
should still work in experiments, as observed. Note that
site averaging and configurational averaging, Eq. (3.7),
are no longer equivalent when self-averaging fails. It is
then necessary to perform the sum over sites for a given
sample and then calculate the probability distribution for
this result when many samples are taken.

Even if self-averaging holds for densities of extensive
quantities, there exist other quantities which have a much
more complicated behavior. An example of such quanti-
ties are spin-pair correlation function (McCoy and Wu,
1968; Derrida and Hilhorst, 1981; Kinzel and Binder,
1981; van Hemmen and Morgenstern, 1982; Derrida,
1984). The problem can be most easily understood by
considering the special case of a one-dimensional Ising
chain with random nearest-neighbor bonds J,'.~ between
spins at sites i,j =i + 1. The correlation function between
the spin at the origin and a spin a distance R apart is
found from the transfer matrix method as

R 1 J''
1

( SpSR ) = + tanh
i=0 8

(3 8)

It is clear in this case that the correlation functions are
products of random numbers. Thus for large R they have
log-normal distributions like the partition function. This
means that the probability distribution is concentrated for
large R around the most probable value (SpSR) ~ given
by

( SpSR ) &=exp( [ln(SpSR & ]-)W[ (SpSRr & l (3.9)

[(SpSR )R],„~expIR ln[(tanhJ;;+&/kRT) ],„]R~oo

=exp[ —R/gR(T)] . (3.10)

The existence of many different correlation lengths is ex-
pected for random systems in general; moreover the possi-
bility has been raised (Derrida and Hilhorst, 1981) that

In this example, both (SpSR ) ~ and [(SpS„&],„have an
exponential decay with distance, but the corresponding
correlation lengths are different. More generally, one
may introduce correlation lengths gR(T) for each moment
of (SpSR ) separately,

C(R) =—g (S;S;+R )TN

then for N sufficiently large, C (R ) is self-averaging.
However, the necessary value of N for relative variations
in C (R ) between samples to be small increases exponen-
tially with R for the Ising chain. Consequently a numeri-
cal evaluation of [(SpSR &T ]„on a finite system is diffi-
cult because there will be huge sample-to-sample varia-
tions for large R. Even in higher dimensions one expects
significant relative variations between samples for dis-
tances where the correlation function is small, though the
dependence on R and X is not precisely understood. For
typical cases studied by Monte Carlo and transfer matrix
calculations (Morgenstern and Binder, 1980a, 1980b;
Young, 1983a, 1984; Bhatt and Young, 198Sa; Ogielski,
1985) averages over up to 10 samples seem to yield
reasonable accuracy (for a discussion of this problem see
van Hemmen and Morgenstern, 1982).

A study of distribution functions of spin pair correla-
tion functions (Kinzel and Binder, 1981) is also relevant
for the interpretation of "local measurements" such as the
Mossbauer effect or NMR (often one talks about the dis-
tribution of the static local "effective field" probed by
such an experiment). While some numerical results are
available for specific models (Kinzel and Binder, 1981),
not much is known about the distribution of correlations
in general. Figure 37 shows an example of the probability
distributions of correlations between spins at nearest- and
next-nearest-neighbor distances in a model for Eu„Sr1 „S
at T=O.

B. Ergodicity

An experimentalist performs his measurements over a
certain (finite) amount of time. The rate at which fluc-
tuations occur depends upon the spectrum of relaxation
times trI in the problem. If the observation time r,„z is
much greater than rm, „, the largest relaxation time, then
the system explores alf regions of phase space with the
equilibrium probability: so the time average performed by
the experiment will be equivalent to an average
from equilibrium statistical mechanics (which we shall
call a Gibbs average) where all microscopic states are in-
cluded, weighted with the canonical distribution
exp( —A /kR T)/Z. We shall say that such a system is in
comp/ete equihbrium

fhere are many instances, however, where these two
averages are not the same. "Simple" examples are glasses
like window glass or amorphous Si02, which should, ac-
cording to the Gibbs average, exist as crystalline Si02.
The observed amorphous structure is a metastable state,
whose free energy is higher than the crystalline free ener-
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= 0.3

0
FICi. 37. Probability distribution of the spin pair correlation
function at zero temperature for nearest-neighbor (NN) and
next-nearest-neighbor distance on the fcc lattice, with 30% of
the sites taken by magnetic atoms, ferromagnetic exchange J&

between nearest neighbors, and antiferromagnetic exchange
J2 ——J~/2 between next-nearest neighbors. From Kinzel and
Binder (1981).

gy; this state will in a finite (but huge) time decay into the
crystalline state by nucleating sufficiently large domains
of the crystalline phase, which will then grow and cover
the whole of the material (for theoretical descriptions of
nucleations in general, see Zettlemoyer, 1969; Binder and
Stauffer, 1976b). Clearly, though, the time required to do
this is far larger than the time of any conceivable experi-
ment.

There are also more extreme instances where the relaxa-
tion time, instead of being large but finite, actually
diverges in the thermodynamic limit. This can happen
when a phase transition occurs. For simplicity consider
an Ising magnet, in which the spins can only point up or
down and are coupled ferromagnetically. Below the Curie
temperature a spontaneous magnetization appears and, in
zero field, the system either goes into the state with all
spins pointing up or the state with all spins down, with
equal probability. For short-range systems the free-
energy barrier dd, which has to be overcoroe to make a
system in the down state flip over the up state, is of the
order of the area of the domain wall that crosses the sam-

ple, i.e., proportional to L, " ' where I. is the linear di-
mension of the d-dimensional sample, if the coupling is of
short range. For infinite-range ferromagnetic exchange,
AI' would be proportional to the total volume I, . The
time needed to observe such a Aip is of the order
exp(KI'Ik+T), which is simply the ratio of Boltzmann
factors between the initial state and the state with the

wall. Hence the time to cross the barrier between the two
phases diverges exponentially as N (or L") —+ ao.

We shall say that systems like this, where ~~,„~oo as
N~ao, are nonergodI'c. Systems like window glass, in
which the relaxation times are huge but finite, are effec
tiUely nonergodic on experimental time scales. It may not
be possible to distinguish between these cases experimen-
tally, but it is crucial to understand the difference for the
theory of spin glasses. In the first case we are dealing
with several thermodynamic states (the words pure states,
phases, and ergodic components are also used), which
have the same minimum free energy per spin, f~;„. The
system cannot be converted from one state to another by
nucleating domains of finite size because their radius
tends to infinity when the free-energy difference per spin
between the states tends to zero. Hence the domain size
diverges as X~ao, so the barrier height and relaxation
time also diverge in this limit. Consequently the different
states are stable (for N~ oo ). In the second case we have
a metastable state whose free energy per spin is greater
than f;„and will decay in a finite time to a stable phase
of minimum free energy.

This question of "broken ergodicity" has been discussed
by Palmer (1982). Its importance for spin glasses was em-
phasized earlier by Anderson (1977, 1979).

Usually broken ergodicity arising from phase transi-
tions does not pose severe problems when applying statist-
ical mechanics. Referring to our example of the Ising fer-
romagnet, we know that this system will choose one of
the two states that are related to each other by symmetry
and will be in partial equilibrium with respect to the mi-
croscopic states sampled in this phase. Clearly, to repro-
duce the observed behavior by statistical mechanics, we
need to restrict the microscopic states in the average to
one thermodynamic state or the other. This can con-
veniently be done by applying a symmetry breaking fiel-d
H and letting H~O only after taking the thermodynamic
limit. Since the field weights the up (down) state by
expf+( —)NHm/k~T], where m is the spontaneous mag-
netization per spin, such a field will have the desired ef-
fect.

In spin glasses the problem of broken ergodicity is
more serious. According to mean-field theory (see Sec.
IV), it appears that many thermodynamic states are avail-
able to the system (in the spin glass phase below the tran-
sition temperature TI). Whether this also happens for
realistic models with short-range interactions that have a
transition is not clear at present. The details of these
states will depend on the precise values of the interactions
and so vary from sample to sample. However, they do, as
expected, have the same free energy (van Enter and van
Hemmen, 1984). More precisely, the differences in free
energy per spin are of order N ' and so vanish as
N —+ oo. But unlike the Ising ferromagnet, these states are
not related to each other by a symmetry of the Hamiltoni-
an. Rather they appear because of accidental degeneracy,
which in turn occurs because of randomness and frustra-
tion (see Sec. III.F) in the system. Of course, there may,
in addition, be global symmetries. For instance, an Ising
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spin glass, like the Ising ferromagnet, has the symmetry
of S;~—S; provided no field is applied. Hence for every
state there will be a "time-reversed" state with the sign of
the spin expectation values reversed. Applying a uniform
field (or a completely random staggered field) will destroy
this symmetry and reduce by a factor of 2 the number of
states. There will still be many left, however, because of
accidental degeneracy. Since the site magnetizations are
determined in a very complicated way by the set of in-
teractions in the sample, it is impossible in practice to
project out one particular state, either by a carefully
chosen random staggered field or otherwise. Therefore a
statistical mechanics calculation will inevitably be averag-
ing over many states, and we must look into the conse-
quences of this.

We should emphasize that degenerate thermodynamic
states do occur in the infinite-range model discussed in
detail in Sec. IV. It is, however, not clear whether this is
also true for real three-dimensional systems or whether
instead they have a unique thermodynamic state.

Phase space can be decomposed uniquely into micro-
scopic states associated with different thermodynamic
states [see van Hemmen (1983) and van Enter and van
Hemmen (1984) and references therein]. Let us denote a
particular state by l. It will have a free energy per spin fi
given by

exp( Aft/k&T) =—+exp( E~/k~T)(=—Zt),
A, el

(3.11)

where the sum is over all microscopic states associated
with state l. Since the partition function is a sum over all
microscopic states it follows that

Z =QZt =+exp( Nf I /k~ T), —
l l

(3.12)

and the statistical weight associated with a given thermo-
dynamic state is

1
Pt ———exp( Aft/k~ T) . —

Z
(3.13)

( A )T ———+A~exp( E~/k~ T), —1

ZA
(3.14)

where A~ is the value of 2 in microscopic state A, . Split-

Just because all the fi tend to the same value as N~ co it
does not necessarily mean that all the Pl are equal, be-
cause differences in the ft of order I/N, for instance, can
change Pl by a finite amount. Furthermore the mean
field theory (Sec. IV) deals with an infinite-range model in
which standard nucleation theories (Zettlemoyer, 1969;
Binder and Stauffer, 1976b) do not apply and stable states
(in the sense of infinite lifetime) can occur for f &f;„
even when N~ oo (for a discussion of this fact for Ising
infinite-range ferromagnets and related systems see
Binder, 1973, 1984a, and Penrose and Lebowitz, 1971).
In such a model it is essential to include the weight factor
Pl. Now let us evaluate the Cxibbs average of a partial
quantity 3, say,

ting the sum into a restricted sum for a given phase l, fol-
lowed by a sum over l, gives

(A ),=—g QA, exp( —E,/k, T) Z, .1 1

Z l Zlkel
(3.15)

From Eqs. (3.11) and (3.13) this becomes (Palmer, 1982;
De Dominicis and Young, 1983a)

(A), =gP, (A)',", (3.16)

where (A )T" is the partial equilibrium average of A in
state l and is defined by

( A ) T = Q A~exp( E~/k~—T) .
l tel

(3.17)

Equation (3.16) is the main result of this discussion.
A further complication in applying statistical mechan-

ics to spin glasses, which does not generally occur for fer-
romagnets, is that within each state below the transition
temperature (if there is one), and even for the single state
that exists above any possible transition, there are long
(but finite) relaxation times due to metastable states.
These times can be longer than experimental time scales,
so it is hard to disentangle metastability from true ergodi-
city breaking. In a ferromagnet one would also expect
very close to the critical point a regime in which relaxa-
tion times exceed observation times, due to critical slow-
ing down, but in practice this regime is confined to an
unobservably narrow neighborhood of the critical point.

In these circumstances one might question whether one
can learn from statistical mechanics anything at all about
spin glasses that is relevant to experiment. It is clearly
extremely difficult to reproduce the observed irreversibili-
ty and hysteresis from a microscopic theory. However, it
appears possible experimentally (see Sec. II), by tech-
niques such as field cooling, to obtain reproducible results
independent of the measuring time, as long as it is not too
short. It is certainly plausible that these systems are close
to equilibrium, and if they are below a transition they are
probably in one of the thermodynamic states of near
minimum-free energy. One should therefore calculate
from statistical mechanics the properties of one state and
compare this with experiment. We shall argue that all
macroscopic properties are the same for each state (see
van Enter and van Hemmen, 1984), not only the free ener-

gy, so it does not matter which is chosen. Thus if (A )'T'

actually does not depend on l, Eq. (3.16) even implies
(A )T——(A )T'. Furthermore the results are independent
of the sample (see Sec. III.A). Surprisingly the mean field
theory not only gives this information but also makes pre-
dictions for "overlap functions" (see Sec. IV) involving
two (or more) different states. These are the non seif--
averaging quantities discussed in Sec. III.A. In fact, one
cannot, with the present mean-field theory (Sec. IV), cal-
culate properties of one state without a knowledge of
these overlap functions. Since the free-energy barriers be-
tween the different "valleys" in configuration space, cor-
responding to the different states, are infinitely high in
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the thermodynamic limit, a time average of a system
starting out in such a pure state samples only one particu-
lar "valley" and does not probe properties relating to oth-
er valleys, if the limit of observation time r +ca—is taken
after the thermodynamic limit X~ao. However, if one
takes these two limits, not one after the other, but suitably
combined, it is possible to define "order parameters" that
refer to a sampling of many "valleys" rather than just a
single one (Sompolinsky, 1981a); this point will be dis-

cussed in more detail in the dynamic approach to the
mean-field theory (Sec. IV.D.3).

While Eq. (3.16) shows that the Gibbs average of an ex-

tensive observable is simply an average of this observable
over the various thermodynamic states or "components, "
this is no longer true for the root-mean-square width
b,(A) characterizing the probability of fluctuations (Pal-
mer, 1982). Using Eq. (3.16) for A we obtain

( a'), —(a )',=QP, (W')(() — g~, (W )',"
I

yp [(gz)(l) ((g )(l))2]+[g(1)(g)]2

(3.18)

C~ —— +PId(A ——)T'/BT+b, C,
dT

wc =k, [~("(E)/T]' .
(3.19)

Applying Eq. (3.16) to the energy, we see that b,C van-
ishes if P~ is temperature independent.

While Eqs. (3.18) and (3.19) constitute formal defini-
tions of intercomponent fluctuation contributions (Pal-
mer, 1982), it is an open problem whether these quantities
are extensive. It is, however, possible that AC ~ X as well
as CH, even if E' '= (A )'T' is "sharp" in the thermo-
dynamic limit: the relative spread b.( '(E)/E of E'" must
then be of order N

We turn to a discussion of the free energy itself, em-

phasizing that its canonical value is not simply the com-
ponent average F. Since Nf~ F kz TlnP(, —— —

F=QP&Nft F+TI, ——
1

(3.20)

where the "complexity" I (Palmer, 1982) of the com-
ponent ensemble is

I= k~ +P(lnP( . —
I

(3.21)

This "complexity" can be interpreted as the average addi-
tional information needed to specify a particular state,
given the a priori probabilities P(. One can define an "ef-
fective number" K* of states as

K*=exp(I /k~ ), (3.22)

Thus the canonical mean-square fluctuation is the sum of
the average intracomponent mean-square fluctuation and
the intercomponent variance [b, ' '(A)] defined by Eq.
(3.18). As an example, we mention the specific heat CH,

which lies between unity (K =1 if there is no broken er-
godicity) and the actual number of states K—:g&1
(K'=K if PI =1/K). However, clearly a number of the
order K=exp(const&&N) of states is needed in order for
the complexity I to be extensive. This occurs for the
ground state of degenerate systems such as the +J model
of a spin glass; there is not yet any example of a system
for which one could show that I is extensive at nonzero
temperature as well. Even in mean-field theory X is of
order unity (see Sec. IV.F), so one can neglect the differ-
ence between E and I'.

At this point we are also in a position to comment on
possible violations of "Maxwell relations, " which relate
various derivatives of the free energy to each other. Such
relations hold both for quantities that refer to a single
component l and for quantities referring to the full
canonical Gibbs ensemble. A violation of these relations
is possible only if one compares on one side quantities
referring to a single state, with quantities referring to the
full Gibbs ensemble on the other side. Then intercom-
ponent fluctuation contributions such as those considered
in Eqs. (3.18) and (3.19) might become directly measur-
able in terms of the deviation of the corresponding
Maxwell relation. We shall not elaborate on this possibili-
ty further, however, since any evidence that this case is
experimentally relevant so far is lacking.

One may generalize the above thermodynamic descrip-
tion by allowing weights PI for the various states differ-
ing from the canonical prescription, Eq. (3.13). In princi-
ple, such a different choice might express some "history
dependence" describing the preparation of the system
(Palmer, 1982). In practice, however, there is no clear-cut
theoretical prescription of how to do this. For the freez-
ing transition into a glassy state observed in fluids that
are slowly cooled to low temperature, Jackie (1981) sug-.

gested defining a temperature T* such that the system is
in full thermodynamic equilibrium for T) T' but that
er'godicity is effectively broken for T & T*. Thus at T*
suddenly many distinct states I l I appear, while above T*
all these states are mutually easily accessible from each
other and hence are not distinct: there is just one (meta-
stable) fluid phase. Then P( would have to be evaluated
from Eq. (3.13) at T=T*, while for T& T*, Eq. (3.13)
would not apply for the description of a glassy state. This
assumption is useful, however, only if the full ergodicity
breaking appears at once at T* in a single "bifurcation"
of the valley structure of phase space; for spin glasses one
rather expects a picture of a "bifurcation cascade" going
on as the temperature is lowered (Krey 1977, 1982; Pal-
mer, 1982; Jackie and Kinzel, 1983; Mezard et al. , 1984a,
1984b). We shall return to this problem in the light of
more explicit theoretical calculations later.

C. The replica method

%'e have seen in Sec. III.A that a proper treatment of
systems with quenched disorder involves averaging the
free energy,
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kgTf=[I{xj].,=— (3.23)
Z„:—[Z"{xj ],„:—Tr exp[ —A,rt(n)/k~ T];

Is,~I
(3.26)

Z"{xj = ff Z Ix j = +exp[ —A {x,s; j/k T)
a=1 a=1

n

=exp —ym{x,S, j/k, Z'

a=1

(3.25)

where Za is the partition function of the ath replica. For
positive integer n, it is indeed simple to carry out the
average [ ],„, and one can express the result formally in
terms of an effective Hamiltonian A,ff(n) that no longer
contains any disorder and is translationally invariant,

Obviously, this task is prohibitively difficult, since as a
first step one needs to calculate the free energy
f{xj =lnZ{x j, which depends on the large set {xj
describing the disorder: one would have to do statistical
mechanics with a Hamiltonian that contained infinitely
many parameters in the thermodynamic limit and had no
translational invariance. The final step, averaging over
the set of disorder variables, does not really present any
simplification if the procedure of Eq. (3.23) is taken
literally, since the free energy is "self-averaging" in the
thermodynamic limit, as discussed in Sec. III.A.

Rather than abandoning the idea of averaging over the
disorder, we see a way to make better use of the average
over the disorder variables, such that this average really
simplifies the problem. The average in Eq. (3.23) cannot
be performed directly because the random variables occur
inside a logarithm. If the disorder is weak one could split
A {xj into a nonrandom part A o and a random perturba-
tion 5A {xj, expand in powers of 5A {xj, and average
term by term (e.g., Rudnick, 1980). Spin glasses, howev-
er, are highly random systems, and in many of the stan-
dard models A 0, the nonrandom part, is zero. This tech-
nique is therefore not generally applicable, though even
for spin glasses it is valid at high temperatures and can be
used to generate high-temperature series expansions
(Fisch and Harris, 1977; Ditzian and Kadanoff, 1979;
Reed, 1979a; Rajan and Riseborough, 1983; Palmer and
Bantilan, 1985). At low temperatures and certainly below
a spin glass transition temperature one needs a nonpertur-
bative way of averaging over disorder.

This is the idea behind the replica approach (Kac, 1968;
Edwards, 1970, 1971; Edwards and Anderson, 1975; Lin,
1970; Emery, 1975; Grinstein and Luther, 1976; Jasnow
and Fisher, 1976), which rests on the use of the exact rela-
tion

[lnZ{xj],„=lim —([Z"{xj],„—1)=lim [Z"{xj],„,1 n

n —+0 n n~0 Bn

(3.24)

[remember Z"=exp(n lnZ)=1+n lnZ as n~0]. For
positive integer n, one can express Z"{xj in terms of n

identical replicas of the system,

A,ff(n) is defined in the space of variables {S;j of all n
replicas of the system. While before the averaging in Eq.
(3.25) we have just a sum over the Hamiltonians of the
various replicas, i.e., the replicas do not interact averaging
over the disorder in Eq. (3.26) leads to coupling between
different replicas. To be specific, we consider a random-
bond problem, the sum over i,j running over all sites,

~= ——,
' QJ,,s,"s,—ass,', (3.27)

where the exchange constants JI~ are randomly chosen ac-
cording to a fixed distribution P(J;J). Then Eq. (3.26) be-
comes, for magnetic field H =0, and considering Ising
rather than Heisenberg spins for simplicity,

J.. n

Z„= Tr gdJ&P(JJ)exp QS; S.
Ig&j ( ~ ~ ) kg T (3.28)

From a Taylor expansion of Eq. (3.28) one then finds (see
also Lage, 1977; Sarbach, 1980)

J~c~llfll ( k )A,rf(n)/kgT= —
2 g g k gS; SJ.

, k=i k' «a»"
k

where J~z" (k) is the kth cumulant of JIJ.

J;;" (1)=[Jij.]av=J

J,',™(2)= [J~J],„—[J;,]„=—(&J;,)',

(3.29)

(3.30a)

(3.30b)

etc. Obviously, in A,fr(n) the terms with k &1 provide
couplings between different replicas of the disordered sys-
tem. Since ~,fr(n) is an effective Hamiltonian of a (ficti-
tious) translationally invariant problem without disorder,
all methods of statistical mechanics for ideal pure systems
can now be applied. One expects that the simplest step
will be a mean-field approximation: there one replaces—
roughly speaking —the terms S; SJ by $; (Sg),
S Sps S~ by S S~(s SJ~), S Spsfs S~sjf by.
S; SPS;r(SJ S&~SJ) ), and so on. The "order parameters"

m. —= (s, ), ~.~=—(s, s,')
(3.31)

q.„=(s, sf'sJ).
have then to be determined self-consistently (we defer a
more thorough discussion of mean-field theory to Sec.
IV).

All these results, Eqs. (3.26)—(3.29), refer to the case of
a positive integer n. The crucial step needed to apply Eq.
(3.24), however, is to continue A,fr(n) analytically to arbi-
trary positive real n. Unfortunately, this "replica trick, "
Eq. (3.24), thus creates two problems. (i) In Eq. (3.24) the
limits n~O and the thermodynamic limit N —+Do are
treated in the reverse order. Since it has been suspected
for some years that this interchange of limits is respon-
sible for some pathological results [such as the negative
entropy of the Sherrington-Kirkpatrick (1975) model],
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844 K. Binder and A. P. Young: Spin glasses

this problem has received much attention (see van Hem
men and Palmer, 1979, 1982, for a discussion). However,
it is now believed that this step does not really create
trouble (see the discussion at the end of Sec. IV.A). (ii)
The analytic continuation of A,rr(n) to real positive n

near n =0 is nonunique. While it is obvious that A,rf(n)
is invariant under permutations of the indices of the repli-
cas, as long as n is a positive integer, it is not obvious that
this symmetry is preserved by the solution when n takes
noninteger values and one takes the limit n —+0. This fact
leads to the idea of "repiica symmetry breaking" (Blan-
din, 1978; de Almeida and Thouless, 1978; Bray and
Moore, 1978, 1979a; Parisi, 1979, 1980a, 1980b, 1980c,
1980d, 1980e; Blandin et ai. , 1980). This approach will
be discussed further below.

In addition to calculating the free energy, one also
needs to know how to evaluate correlation functions with
the replica method. Let us begin with a simple example,
the magnetization per spin

~=[(S,),].„
=[(1/Z{x I)TrS;exp( —A {xI/kriT)],„. (3.32a)

Performing the configurational average is difficult be-
cause the random variables appear in both the numerator
and the denominator. To get around this, multiply

numerator and denominator by (Z{xI
)" ', so

Z" 'TrS;exp( —A {x] /kri T
Z Pl

av
(3.32b)

where ( ) denotes an average over A,rr, i.e.,

(( ))=limTr( )exp[ A,rr(—n)/krrT] .
n~O

(3.32d)

For n —+0 there is no need for a normalizing denominator
in Eq. (3.32d) because Tr exp[ A,rr—(n)/kryo T]~1 in this
limit. If, however, one wishes to discuss the theory for
nonzero n it is necessary to divide by
Trexp[ ~,ff(n)/krrT] Note. that a in Eq. (3.32c) can
be any of the replicas, and the answer must be indepen-
dent of this arbitrary choice, as indeed it is, because
A,rr(n) is invariant under permutation of the replicas.
This was noted above.

Next we relate

If we let n ~0, the denominator is unity, so the random
variables appear only in the numerator and can be aver-
aged over. The numerator involves a trace over n replicas
of the spins, one of these replicas, cr say, being the spins
that appear explicitly in Eq. (3.32b). Hence

(3.32c)

q =[&S;&'r].,=,
I [TrS;exp( —A {xI/k~T)][TrS;exp( —A {xI/kriT)]

Z2 (3.33a)

to averages; with respect to A,rt(n) qis very. important
in spin glass theories and is an obvious choice for an order
parameter in the low-temperature phase. Multiplying
numerator and denominator by Z", letting n~0, and
performing the configurational average, we find that the
numerator again involves n replicas, two of which, a and
P say (obviously a&P), are for the two sets of spins that
appear explicitly in Eq. (3.33a). One therefore finds

q=(S; SP) (a&P) . (3.33b)

Again the answer must be independent of the arbitrary
choice of replicas.

The generalization to arbitrary products of thermal
averages is now obvious. For example, .

[(S,&',].„=(S, 'S, ' S, "}, (3.34a)

where all the replicas a; (i =1,2, . . . , k) are distinct.
This result can be generalized to thermal averages of spins
on different sites. The important point is that for every
thermal average on the Left-hand side there is a distinct re
piica, and the result is independent of the arbitrary choice
of these replicas.

At this point it is convenient to anticipate some of the
results of mean-field theory presented in Sec. IV. In this
theory the q p ——(S; SP) (a&P) emerge naturally as order
paraineters. However, the simple solution of Sherrington

and Kirkpatrick (197S) with all q P equal is actually un-
stable below T, (de Almeida and Thouless, 1978), and one
must "break replica symmetry, " as mentioned above, in
order to find a stable solution. This means that q p de-
pends on the choice of replicas, which seems to contradict
the remark above that (S; SJ~) does not depend on a and
P. The resolution of this apparent paradox is that any
solution which breaks replica symmetry is not unique (De
Dominicis and Young, 1983a) because other equivalent
solutions can be generated by permutations of the repli-
cas. There is no reason to single out any one of these
solutions, and they should all be included in evaluating
spin averages. Thus (S; SJ ) is obtained by averaging q~p
for fixed a and /3, over all distinct solutions. With some
reflection one concludes that this is equivalent to taking a
single solution and averaging over all replicas, i.e.,

1q=hm Xqe
n on(n —1)

(3.33c)

X g &S,"S," . S,")
(g e ~ e g )J

(3.34b)

where the q p are for a particular solution. The analog of
Eq. (3.34a) is

[(S;)T],„=lim [n (n —1) (n —k +1)]
n~0
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D. The Edwards-Anderson model

Clearly, it is a difficult task even in the replica frame-
work formulated in the last section, to start from a realis-
tic microscopic description of a spin glass by considering
actual interactions, anisotropies, etc. (Secs. II.A. 1 and
II.A.2) and to perform the average over a realistic
description of the disorder (site dilution, for instance).
However, the general experience with all kinds of
cooperative phenomena is that it is most helpful to start
out with models providing a sort of coarse-grained
description, which captures the essential points of the
physics in question, but leaves out many of the micro-
scopic details characteristic of a particular material.

It is this spirit which led Edwards and Anderson (1975)
in their pioneering paper to suggest that one may describe
a spin glass by a Hamiltonian of the type of Eq. (3.27),
where spins are put onto the sites of a regular lattice, and
disorder is introduced by a suitable distribution P(J;1 ) of
exchange bonds. The standard choice is the Gaussian
Edwards-Anderson model (Edwards and Anderson, 1975;
see also Sherrington and Southern, 1975),

P(Ji ) = [2m (b.Jgj ) j

Xexp[ —(JJ —JJ ) /2(b, J~ ) ] . (3.35)

In this case, irrespective of the range of this interaction,
all cumulants JJ" (k&3)—:0, and hence A,ff( )/n& kT
takes the particularly simple form [cf. Eq. (3.29); again
we treat the Ising case only]

when one has replica symmetry breaking. The notation
(a~ . . ak) means that one sums only over distinct repli-
cas, and from now on the average ( ) refers to a single
solution.

A detailed physical explanation of replica symmetry
breaking will be deferred until Sec. IV.E, but here we
should like to note that it is connected with broken ergo-
dicity and the existence of many thermodynamic states,
discussed in Sec. III.B. %'e do not know of any instances
in which the stable solution for positive integer n has re-
plica symmetry breaking. It appears only in the continua-
tion n~0. Various other nonperturbative methods have
been suggested for doing the quenched average (De Dom
inicis, 1980; Rudnick, 1980; Sompolinsky and Zippelius,
1981, 1982a; Parisi and Sourlas, 1979; De Dominicis
et al. , 1980; Bray and Moore, 1980b). Whenever the
replica-symmetric solution is correct these alternative ap-
proaches are also fairly straightforward to apply and give
the same results as the replica method. On the other
hand, where the replica solution involves replica symme-
try breaking, complications have arisen in these other ap-
proaches, the resolution of which has only been accom-
plished by resorting back to the replicas (De Dominicis
and Young, 1983a; Houghton et a/. , 1983a, 1983b). An
exception to this is Sompolinsky's (198la) theory of
dynamics, discussed in Sec. IV.D.

—4X

8

gs, s, s,t's,t'.
aP

(3.36)

The Sherrington-Kirkpatrick (SK) model (Sherrington
and Kirkpatrick, 1975) is the infinite-range version of the
Edwards-Anderson model: here one assumes that the
same distribution P(JJ) holds for any pair. of spins ir-
respective of their distance. For this model Eq. (3.35) also
holds, with J,& and AJ,J being independent of distance and
scaling with X as

J,J cc 1/X, b,J,J cc 1/v N (3.37)

to ensure a sensible thermodynamic limit. Regardless of
the form of the distribution, higher cumulants J,J" (k & 3)
are irrelevant in this infinite-range case. For such an
infinite-range model, mean-field theory ough't to be exact:
while the formulation of mean-field theory for an
infinite-range ferromagnet is rather trivial, the formula-
tion of mean-field theory for spin glasses has been —and
still is—a major challenge of theoretical physics (see Sec.
IV). A simple soluble case only arises in the spherical
limit (number of spin components m ~ oo); see Kosterlitz
et al. , 1976.

In the short-range case, it does make sense to also con-
sider distributions P(JJ) different from Eq. (3.35). An
important example is the so-called "+J model" or "frus-
tration model" (Toulouse, 1977),

P( J~, )=p('5(JJ —J)+(1—p) )5(JJ +J), (3.38a)

where the interaction is generally between nearest neigh-
bors only. Here p& denotes the concentration of bonds
+J, and p2 the concentration of bonds —J. Due to resi-
dual ground-state entropy in the case of Eq. (3.38), one
expects rather different physical properties at low tem-
peratures.

We would also like to mention that Ising models with
randomly mixed ferro- and antiferromagnetic bonds were
studied prior to Edwards and Anderson (1975) by Katsura
and Matsubara (1974) and later by other groups (Pekalski
and Oguchi, 1975; Ueno and Oguchi, 1975); but these
groups proposed the occurrence of "glasslike phases"
(Matsubara and Sakata, 1976) or "random-ordered
phases" (Ueno and Oguchi, 1976) only after Edwards and
Anderson (1975). Therefore we shall continue to call
models of this type "Edwards-Anderson" models.

When one wishes to compare predictions of any such
model to experiment, clearly such comparison will at best
be rather qualitative. For instance, in the model every lat-
tice site is occupied with a spin, while in the real system,
if it is produced by dilution (which it usually is), this is
not the case. As a consequence, it is not clear that one

or its diluted version (e.g., Aharony and Binder, 1980),

P(Jfj. )=p$5(Jgj J)+p25(—J,J+J)
(3.38b)
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should associate one spin in the model with a single mag-
netic moment in the real material: rather, one may argue
(e.g., Binder 1977a, 1977b) that a spin of the model might
correspond to a strongly correlated cluster of magnetic
moments in the real material. Such local clusters and
their effects have been considered to be essential by many
experimentalists, and thus the Edwards-Anderson model
has not always been accepted as a reasonable starting
point of the theory. We maintain, however, that it is a
prototype model for the description of cooperative phe-
nomena in strongly disordered magnets with competing
interactions. Of course, it is still a vahd question to ask
"what happens if we change the model?" This question
will be followed up in the next subsection. A comparative
study of various models will in fact help to better identify
the essential ingredients any reasonable model of a spin
glass must have.

E. Site-disorder models

There are three main reasons why one might like to
consider site-disorder models rather than the (bond-
disordered) Edwards-Anderson model introduced in the
previous subsection.

(i) Most real spin glasses (Sec. II) are simple dilution
systems in which a fraction of magnetic atoms is random-
ly replaced by nonmagnetic ones. In such a case, a truly
realistic model must be a site-disorder model.

(ii) Since it turns out that even the mean-field theory
for the Edwards-Anderson model is so difficult (Sec. IV),
it is legitimate to ask whether one may find a still simpler
model which nevertheless contains the essential physics of
a spin glass. It was with this hope in mind that the
Mattis spin glass (Mattis, 1976) and variants thereof were
invented. Although some of these models are indeed
more easily solved, we shall see below that important
features of spin glass behavior are lost.

(iii) Experience with phase transition problems (e.g.,
Fisher 1974a) leads us to ask whether there are different
"universality classes" of spin glasses, and if so, which pa-
rameters classify them. For instance, in the percolation
problem, where one introduces random quenched disorder
in a ferromagnet with noncompeting interactions, one
may do this in two ways: either one randomly removes
the magnetic sites (site percolation) or one removes the
bonds between them (bond percolation) until at the per-
colation threshold long-range magnetic order even in the
ground state breaks down (Stauffer, 1979; Essam, 1980;
Deutscher et al. , 1983). In this case with respect to criti-
cal exponents at the percolation threshold it does not
matter whether one has site or bond disorder: both cases
belong to the same universality class. "Directed percola-
tion" (Deutscher et al. , 1983), on the other hand, belongs
to a different universality class.

%'e now consider these various aspects of spin glass
models.

Mattis-Luttinger models and their
generalizations

The spin glass model of Mattis (1976) is of the form
(3.27), but for the random exchange J;J, instead of Eq.
(3.35) or (3.38), one chooses the form

J~J ——J(R; —RJ )E;eJ. (e; =+1 random), (3.39)

where J(R& —RJ ) is a nonrandom exchange depending on
relative distance between the sites i,j only. Defining a
new set of pseudospins v; by

v;=c;S;,
we transform Eq. (3.27) to

(3.40a)

Co:
i

1 —T/T,
i

M, =Q2/N =gw; e;S('/N cc ( 1 —T /T, )

(3.41a)

(3.41b)

It must be emphasized that X, is the response of M,
with respect to a staggered field H' =He;, rather than
the physical susceptibility. Similarly, g, measures the
range of the pseudospin correlation (r;.rJ ) T rather than
that of the spin correlation, which trivially is (for classical
spins of unit length)

[(S,"S,) z.],„=(~,"r, ),[E,"c.,].„
( T$ 1J )5jJ 5' (3.42a)

Clearly, the standard singularity of the specific heat of
the m-vector model [Eq. (3.41)] is not a desirable property
of any spin glass model; this model is a kind of spin glass
simply because its phase transition does not lead to the
onset of magnetization but rather to an order of the kind
proposed by Edwards and Anderson (1975),

(3.42b)

(3AOb)
J

For zero magnetic field, this is the Hamiltonian of the
rn-vector model without any disorder. Thus information
about the critical behavior of that model (e.g. , Fisher,
1974a) immediately can be inferred: for short-range in-
teractions, the model has a phase transition for all dimen-
sions d ~d~ at a finite critical temperature T, ~0, while
T, =O for d &dl. This lower critical dimensionality is
dt = 1 for m = 1 (Ising spins), while dt ——2 for m )2.
Right at d~, T, =0, as well, except for the case of m =2,
where a phase transition occurs at nonzero T, to a state
without long-range order but with an algebraic decay of
correlation functions (Kosterlitz and Thouless, 1973).
For d & dI we have standard critical behavior described by
exponents a,P,y,v, etc. , which are defined in terms
of the specific heat C, order parameter M, susceptibility
X, and correlation length g (Aha, rony and Imry, 1976,
1977a; Bidaux et al. , 1976),
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= —,(1 q)/—T (3.42d)

in agreement with a relation between g(H =0) and q first
discussed by Fischer (1976). The singular behavior of this
cusp (perpendicular slope for T&T„since fI & —,

' for
d &d„=4) clearly is not in agreement with experiment;
moreover Monte Carlo simulations of dynamic versions
of this model (Bray et al. , 1978; Stauffer and Binder,
1978) show that this mod'el does not exhibit the slow re-
laxation behavior characteristic of spin glasses, in contrast
to simulations of corresponding Edwards-Anderson
models (Binder and Schroder, 1976a, 1976b). It is now
generally agreed that the Mattis model is not a reasonable
model of a spin glass due to the transformation to Fq.
(3.40a) it really is a ferromagnet in disguise, and q in Eq.
(3.42c) simply is a "secondary" order parameter to the
"primary" order parameter M in Eq. (3.41a).

One may consider similar models, however, where the
disorder cannot be "gauged away" completely by the
transformation, Eq. (3.40a). Consider a model for a
quenched magnetic alloy of the form A„B& „,both kinds
of atoms being magnetic, with exchange integrals
J~~,J~ii,Jqii different from each other (Aharony, 1975;
Aharony and Imry, 1976). The Hamiltonian of this
model is again of the form of Eq. (3.27), but now the ex-
change J;z is given by

J,z Jqqx—;—xz+ J„ii[x;(1—x~)+xj(1—x,. )]

+Jgg(1 —x;)(1—xq ), (3.43a)

where x; =1 if the site i is taken by an A atom, x;=0
otherwise. This equation with c; =2x; —1, is transformed
into

JJ = —.
' [J~~+2J~a+Jar+(J~~ —Jaa )(e.+ej )

+(J~~ —2J~a+ Jar)e si] . (3.43b)

For Jzz ——Jiiii ———Jqii ——J and x = —,', Eq. (3.43) thus
reduces to the Mattis model, while in the general case the
disorder in the interactions cannot be removed. But exact
information on this model is not available, and apart from
Monte Carlo simulations (Tatsumi, 1977, 1978a, 1978b) it
has received little attention.

Another site-disorder model that can be solved exactly
was proposed by Luttinger (1976). He assumes Eq. (3.27)
for n =1 (Ising spins), with JJ given by

1J1
=—[Ji +Jqe;ei+ J3(e;+ej )],

e; =+1 random, (3.44)

(3.42c)

Due to the onset of this order parameter q, the standard
susceptibility also has a cusp,

where J&,Jz,J3 are constants, and this interaction is
chosen for any pair of spins irrespective of distance, and
therefore scaled inversely with the number of spins. For
J) ——J3 ——0 this is the mean-field version of the Mattis
model, while otherwise it is the mean-field version of the
above magnetic alloy model, Eq. (3.43), for x = —,'. A
spin glass transition with a cusp of the susceptibility is
found, and although disorder cannot be eliminated, one
can calculate the quenched free energy exactly, so there is
no need for the use of the replica trick.

Extension and variations of such models have been
studied by various authors (Sherrington, 1976; Sher-
rington @nd Fernandez, 1977; Fernandez and Sherrington,
1978; van Hemmen, 1982, 1983; Provost and Vallee, 1983;
van Hemmen et al. , 1983; Choy and Sherrington, 1984).
The model of van Hemmen (1982, 1983) is defined by

J;J =[J +iJ2(g;gj+g~g; )]/N, (3.45)

2. Realistic models

If one wishes to study a nearly realistic model of a me-
tallic spin glass such as Aupe or CuMn, one may choose
a fcc lattice and put classical spins randomly onto this

where Ji and J2 are constants and the Ig;,g; I indepen-
dent, identically distributed random numbers with an
even distribution around zero and variance unity. De-
tailed studies (van Hemmen et al. , 1983) reveal that this
model exhibits both a spin glass phase and a mjxed spin-
glass —ferromagnetic phase. The variation of the specific
heat with temperature is found to be linear at low tem-
peratures. The zero-field susceptibility has a flat plateau
below the freezing temperature. Thus van Hemmen
(1982, 1983) and van Hemmen et al. (1983) proposed that
this mean-field model is a satisfactory alternative to the
SK model. Choy and Sherrington (1984) demonstrate,
however, that this model lacks a great multiplicity of
metastable states, and that its "Glauber dynamics" have
essentially conventional exponential decay to equilibrium
away from the transition temperature, where critical
slowing down occurs normally. Monte Carlo results of
Morgenstern and van Hemmen (1985) confirm these find-
ings and show that the ground state is only twofold de-
generate. Despite having randomness and frustration, the
system actually picks out a Mattis state and therefore
lacks some features (such as a nontrivial ground state)
that are generally considered integral to a true spin glass.
Therefore we have omitted any more quantitative descrip-
tion of the results, as well as of the elegant mathematics
by which they are derived, and rather refer the reader to
the original literature for details. We feel, however, that
the finite- range van Hemme. n model, which does not forin
a Mattis state, would'be a good spin glass model, and it
would be interesting to check whether it has a similar
transition to the one in the Edwards-Anderson model.
We should also note that the van Hemmen model is very
closely related to a model of neutral networks (Hopfield,
1982) that has aroused considerable interest.
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lattice with a prescribed concentration x. One introduces
interactions between the spins by choosing the RKKY in-
teraction, Eq. (2.1), with plausible assumptions for the
constants involved. Systems in which isolated magnetic
moments are suppressed by the Kondo effect but mo-
ments are stabilized by interactions with increasing con-
centration, so-called "Stoner glasses" (Hertz, 1979), will
not be discussed in this review. Sometimes one may also
wish to study the effects of anisotropy, usually assumed
to be either pseudodipolar [Eq. (2.4)] or of the
Dzyaloshinskii-Moriya type [Eq. (2.6)].

Clearly, a detailed investigation of such models is of
great physical interest; in fact, the earliest mean-field ap-
proaches of Marshall (1960), Klein and Brout (1963), and
Klein (1964) attempted to study this model, though the
possibility of a spin glass transition was only realized
(Riess and Klein, 1977) after Edwards and Anderson.
Unfortunately, one can hardly obtain any reliable result
on such a model by analytical methods: systematic ex-
pansion in powers of inverse temperature (Larkin and
Khmelnitskii, 1970) or concentration (Larkin and Khmel-
nitskii, 1970; Matho, 1978, 1979; Owen, 1983) are limited
to a few leading orders. Thus most information on the
physical properties of such systems comes from numerical
simulations (see Sec. VI.C). At this point, we only men-
tion that the concentration expansion (also called "virial
expansion") of any thermodynamic quantity 2 (T,x) can
be cast in the form (e.g., Owen, 1983)

tion to insulating spin glasses such as Eu„Sr1 „S,a model
with competition between a nearest-neighbor ferromag-
netic interaction J1 and an antiferromagnetic next-
nearest-neighbor interaction J2 has been investigated
(Binder et al. , 1979; Kinzel and Binder, 1981). Particu-
larly simple is the Ising case on the square lattice, where
one can analyze the ground state in terms of expansions in
x [obtained through order x (Binder et al. , 1979)) or
1 —x [obtained through order (1—x ]. In this model one
can study the competition between ferromagnetic order
and spin glass behavior and thus address the question of
temperature-concentration phase diagrams.

In this model it is also easy to see how the combined ef-
fects of disorder and competition between interactions can
lead to many local energy minima. For this purpose, it
suffices to consider the ground state of small clusters of
spins (Fig. 38). Depending on the geometrical configura-
tions of the spins, some clusters are rigidly locked togeth-
er [Figs. 38(a) and 38(b)], i.e., they have just a twofold
ground-state degeneracy as in a case of uniform ferromag-
netic interaction, while others [Figs. 38(c)—38(e)] have a
higher ground-state degeneracy. While the cluster of Fig.
38(c) is degenerate between two states (C 1,C2) only for
the particular value J2/J& ————,

'
[in the pure system

(x = 1) the ground state changes from a ferromagnetic to

A (T,x)= g a(T)(x/T )",
n=1

(3.46a)

where a„(T) are expansion coefficients and T' is a re-
duced temperature defined by [cf. Eq. (2.1) where yo ——0]

0 0 0 0 0 0 0
il

0 4E JL 8E 4L 4L

0 0 0 0 0 0 O

0 0 0
0 0 0 0 0 AI 0
0 JE AE AL Alt' 0 0
0 0 0 0 0 0

T*=k&T(kza) /Jos(s+I), (3.46b)

P(JJ) ~expI JJ/2[6J(R; —RJ—)] I

5J(R; —RJ ) cc
i R; —RJ i (3.47)

a being the lattice spacing. If a„(T) were independent of
T, Eq. (3.46) would imply the concentration scaling pro-
posed by Souletie and Tournier (1969, 1971);actual calcu-
lation of the first two nontrivial terms in the virial expan-
sion shows a temperature dependence of a(T) for the sus-
ceptibility in reasonable agreement with experiment.

Concentration scaling would be obtained if the
cos(2k~R) term in Eq. (2.1) led to a random distribution
of bond strengths centered on zero. From this considera-
tion it is clear that it is of interest to consider Edwards-
Anderson models [Eq. (3.27)] in which the distribution of
bond strengths is (Ueno and Okamoto, 1981; Kotliar
et al. , 1983)

01
0 0 0

0 0 0 0

0 0
o
0 0

E1

0 0 0

C1
0 0 0

'i 'r T
0 0 0 0 0

C2
0 0 0

0 0 Ogg 0 O

o
0 0 0 0 0 0

02
0 0 0

0 O O O

0 0 I 0
o ~~&'. Oo
0 0 0 0

E2
0 0 0

0 ops, o o
0 0, 0 0
0 '"'~QLro 0
0 0 0 0 0

E3

where o. is an arbitrarily introduced exponent: for o.=o,
one recovers the SK model, while for cr=d Eq. (3.47) is
an approximation to RKKY interactions. With this
model one can also show for o.~ d/2 that the free energy
is self-averaging (van Enter and van Hemmen, 1983).

As a simple site-disorder model with possible applica-

FICJ. 38. Ground-state configurations of various clusters of
magnetic atoms (solid dots), for a model with ferromagnetic
nearest-neighbor bonds (solid lines) and antiferromagnetic next-
nearest-neighbor bonds (dashed lines). Nonmagnetic atoms are
shown as open circles. For further explanation, see text. From
Binder et aI. (1979).
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(b)
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(c)

(e)
o ( o

0

FIG. 39. Ground-state spin configurations near clusters of non-
magnetic atoms (indicated as open circles) in the XX case
(a)—(d) and Ising case (e), for a model with nearest-neighbor fer-
romagnetic exchange (full bonds) and antiferromagnetic next-
nearest-neighbor exchange (dashed bonds). From Kinzel and
Binder (1981).

a layered antiferromagnetic structure], the cluster of Fig.
38(d) has a sixfold degenerate ground state (configurations
D 1, D2, D3, and overall reversal of the spins) in the
whole range ——, &J2/Ji &0: the ferromagnetic bonds
will align the three spins in the left lower corner of this
cluster parallel to each other, irrespective of the configu-
ration of the remaining spins, which are coupled to this
cluster only by antiferromagnetic bonds. Since it is im-
possible to satisfy the three antiferromagnetic bonds at
the same time, there are three degenerate spin configura-
tions, D 1,D2,D3. This is an example of the "frustra-
tion" effect (Toulouse, 1977), which will be discussed in
more detail in the next subsection.

While for clusters containing up to five spins there is
only the special value J2/J~ ————, where an enhanced de-
generacy occurs, larger clusters exhibit enhanced degen-
eracy for other rational values of the ratio J2/Ji. For in-
stance, the cluster of six spins shown in Fig. 38(e) has a
degenerate groundstate (E 1, E2, and another configura-
tion not shown) for Jz/Ji) ——,', while for J2/Ji & —,

'

there is only one nondegenerate ground state configura-
tion (E3), and for J2/Ji ————,

' all these states are degen-
erate.

Similar considerations apply in the ferromagnetic state
near x = 1: near dilution sites some spins may be aligned
opposite to the direction of the spontaneous magnetiza-
tion [Figs. 39(e)], and degenerate configurations occur as

well (Binder et al. , 1979). Thus the spins bound to the
percolating ferromagnetic cluster produce a state with a
finite ground-state entropy. At the same time, one can
understand qualitatively that ferromagnetic order may
break down before one reaches the percolation threshold
(see Sec. V.C).

It must be emphasized that a somewhat different pic-
ture emerges if one considers continuous spins (XY or
Heisenberg model) rather than the Ising case: then the
spin configurations of clusters containing competing
ferro- and antiferromagnetic bonds become noncollinear
(Villain, 1979a; Kinzel and Binder, 1981). The cluster of
Fig. 38(d) in the XY case has two degenerate states (in ad-
dition to the symmetry of a homogeneous rotation of all
the spins). Near the ferromagnetic state x =1, the situa-
tion is much more complicated: If one considers clusters
of dilution sites [Figs. 39(a)—39(c)], again the ferromag-
netic state is distorted because spins close to the dilution
site are no longer aligned parallel to the magnetization
direction. If one restricted this distortion to the sites
closest to the defect, such as in Figs. 39(a) and 39(b), two
spins would be misaligned by an angle +y, with
cosy= —,

' +Ji/Jz, for Jz/J, & ——,'. This state is twofold
degenerate [Figs. 39(a) and 39(b)]. In reality there will be
a distortion of the long-range magnetization (Dunlop and
Sherrington, 198S), where the deviations y from the fer-
romagnetic axis decay with some inverse power of the dis-
tance from the defect. Due to the interaction of these
spin deviation fields, even the description of the weakly
diluted ferromagnet in the case of competing interactions
is a difficult problem.

In any case it is clear that an isolated defect like that
shown in Figs. 39(a) and 39(b) must lead to two
equivalent states, i.e., it creates a "two-level system. " Ex-
citations in which the system changes from one state of a
two-level system to the other are believed to be very im-
portant for structural glasses and possibly for spin glasses
as well (Anderson et a/. , 1972; W. A. Phillips, 1972). We
shall explore the physical consequences of two-level sys-
tems in more detail in Sec. III.Cs.

For a description of the statistical mechanics of disor-
dered isotropic magnets at low temperatures, one thus
needs a variable [which Villain (1977b) called "chirality"]
distinguishing states like those shown in Figs. 39(a) and
39(b), in addition to the degrees of freedom describing
weak thermal spin misalignments (spin waves). We shall
give a more precise definition of this additional degree of
freedom in' the next section.

It is clear, however, that a description of real systems
such as Eu„Sri „Sr requires the use of three-dimensional
lattices (fcc) and Heisenberg spins. Very little analytic in-
formation exists for this case; systematic high-
temperature series expansions exist through fourth order
only in inverse temperature (Binder et al. , 1979) and thus
clearly are unsatisfactory. As in the case of RKKY spin
glasses, most information on this model relies on Monte
Carlo simulations (Sec. VI.C). The same remark holds for
a similar model on the bcc model proposed to describe
Fei „Al„alloys (Grest, 1980).
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3. Other models: random-energy model,
disordered antiferromagnets, etc.

In this subsection we briefly mention a variety of
models that have been discussed in the context of spin
glasses.

Gross and Mezard (1984) studied a generalization of
the SK model to include p-spin interactions, introduced
by Derrida (1980),

(3.48a)

where the exchange constants J;; . . . ; are drawn froml)12

the distribution

realization of diluted triangular antiferromagnets would
be argon-diluted nitrogen films adsorbed on graphite (Mi-
gone et al. , 1983; Shnidman and Mukamel, 1984).

A rather different model studied recently is a two-
dimensional XY ferromagnet with random Dzyalo-
shinskii-Moriya interaction (Rubinstein et al. , 1983). For
large amounts of randomness, the low-temperature phase
of the XY model is destroyed entirely. For small amounts
of randomness, the behavior with decreasing temperatures
is first paramagnetic, then ferromagnetic, and finally
paramagnetic again via a second, reentrant phase transi-
tion. These phase transitions are driven by an unbinding
of vortices just as in pure XY models (Kosterlitz and
Thouless, 1973). There is no evidence for a spin glass
phase at finite temperature.

P(J;,I . . . ; )=
1/2

~p —1

exp
(J;,;, . . . ; )'

1 2 P ~p
(bJ) p! 4. Phenomenological models

of the Ginzburg-Landau type
(3.48b)

For p ~ Oo this model becomes equivalent to the
random-energy model of Derrida (1980, 1981), whose en-

ergy levels E also satisfy a Gaussian distribution,

P(E) =[2mÃ(AJ) ] ~ exp[ E /2N(b J)—], (3.48c)

and are statistically independent of each other. The sta-
tistical mechanics of this model is easily treated by a
direct calculation (Derrida, 1980, 1981); at the same time
it is a convenient testing ground for concepts such as re-

plica symmetry breaking (Gross and Mezard, 1984).
More details about the properties of this model will be
given in Sec. IV.

Experiments on doped semiconductors, such as In in
CdS (Kummer et al. , 1978; Walstedt et al. , 1979) and Si
doped with P (Andres et al. , 1981), have led to the study
of models such as Eq. (3.27) for both the Ising and the
Heisenberg case in which the interactions are random in
strength but always antiferromagnetic (Bhatt and Rice,
1980; Khanna and Sherrington, 1980; Rosso, 1980; Bhatt
and Lee, 1981, 1982; McLenaghan and Sherrington,
1984). While such models may still exhibit antiferromag-
netic order when the disorder is weak (McLenaghan and
Sherrington, 1984), for stronger disorder antiferromagne-
tism is suppressed. In contrast to early expectations
(Kummer et al. , 1978), there is no evidence of spin glass
behavior for these models. On the other hand, diluted
"frustrated antiferromagnets" (such as the nearest-
neighbor triangular or fcc Ising antiferromagnets) are ex-
pected to have spin glass states, although they too have no
ferromagnetic bonds (De Seze, 1977; Aharony, 1978;
Grest and Gabl, 1979; Villain, 1979a; Aharony and
Binder, 1980; Anderico et a/. , 1982; Fernandez et al. ,
1982; Shnidman and Mukamel, 1984). In the case of a di-
luted classical Heisenberg fcc antiferromagnetic, no clear
evidence of spin glass behavior was obtained; see, howev-
er, Ching and Huber (1981). A discussion of possible ex-
perimental realizations of related models can be found in
Villain (1979a). A possible nonmagnetic experimental

Z= fd{MId{M]d{qIexp( ~[MM, q]/—k&T),

(3.49)

where the symbols d { J indicate functional integration,
and the Ginzburg-Landau-Wilson Hamiltonian, W, is
constructed from the replica method, assuming that
short-wavelength fluctuations of the fields M, M, q can be
averaged over. One defines a local analog of q~p [Eq.
(3.31)] by

q ap, i ~r', k~i, I( 1 5ap)
kl a P (3.50)

where S; k is the component of spin S; in the k direction,
and 5 p is the Kronecker symbol. It is then argued from
symmetry considerations that the phenomenological
Hamiltonian of a spin glass should take the following
form (Chen and Lubensky, 1977):

M =MM+MM+WMq+WM +Wq+ ' ' ', (3.51)

where

For problems in the theory of critical phenomena it is
standard wisdom to start from a Ginzburg-Landau-
Wilson effective Hamiltonian (Stanley, 1971; Fisher,
1974a). It is very natural to attempt such an approach for
spin glasses as well.

The first attack along these lines is due to Harris et ah.
(1976) and Chen and Lubensky (1977), with the motiva
tion of providing renormalization-group expansions (see
Sec. V.A. 1). One starts within the framework of the re-
plica method, i.e., the Hamiltonian Eq. (3.36), which has
to be treated in the limit n —+0. Rather than solving this
problem in the case of infinite-range interactions, which
will be the task considered in Sec. IV, one wants to
develop a continuum theory, in which the partition func-
tion Z is expressed in terms of order-parameter densities
of the magnetization M, staggered magnetization M, and
spin glass order parameter q:
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W~/kpT= —,
' fd r r~+M (r) M (r)+QQVkM( (r) V'kMg (r)

a a kl

+2u, gM (r) M (r) +2v&+[M (r).M (r)] (3.52a)

P -/kpT= —,
' fd"r r-gM (r) M (r)+QQV'kM g(r)VkM ((r)

a a kl

+2u2 gM (r).M (r) +2U2+[M (r).M (r)] (3.52b)

1

fdic yy kl( ) kl( ) yV ImV lm 4 yy kl( )
I

( ) k( )
aP kl klm aPy klm

WMq/k&T=m& fd~rggq~p(r)Mk(r)Mp(r),
aP kl

W- /k~T=m2 fd rggq 'p(r)M k(r)M ~(r) .
aP kl

(3.53a)

(3.53b)

(3.53c)

Here P~ P~ /q 9 } Q 2 U } U2 l8 Lo } F2 are phenomenologi-

cal coefficients. The first three of these may change sign
as a function of temperature,

rM —rM(T Tg) p rM rM~(T + Tg )

rq =rq(T —Tf );
one expects from the microscopic replica Hamiltonian
[such as Eq. (3.36)] that T, ~J (which may be positive or
negative), while Tf ~ hJ. The other coefficients u ~, . . . ,
are assumed to be positive [otherwise one would need to
carry this expansion of Eqs. (3.52) and (3.53) to higher or-
der]. If we consider a lattice, which may be divided into
two sublattices (e.g., simple cubic), then the three-energy
function is invariant under the transformation
[J—+ —J(T, + —T, ),M —+—M]. This symmetry says that
the phase diagram in the plane of variables T/hJ, J!bJ
is symmetric around the line J=0, with a ferromagnetic
phase at sufficiently large positive J and a corresponding
antiferromagnetic phase at sufficiently large negative J.
In between these conventionally ordered phases, we expect
a spin glass phase, at least at high enough dimensionali-
ties d. Because of the above symmetry, it suffices to
study the ordering for J&0 only, considering only the
terms W~+Wq+W~q in the above expansion.

In studying transitions with both ferromagnetic and
spin glass order parameters, one has to allow for the fact
that a nonzero magnetization leads to a nonzero q p. In
an ordered ferromagnetic state, the magnetization in each
replica should be identical. Therefore Chen and Luben-
sky (1977) write Mk =Mek where I ek I is an m-
component unit vector, and decompose q p into parallel
and perpendicular components q( (,qq as follows:

tension of the replica-symmetric theory of Sherrington
and Kirkpatrick (1975; see Sec. IV). For completeness,
we just mention that mean-field theory can be derived
from Eqs. (3.52) and (3.53) simply by considering a spa-
tially uniform state, from which the gradient terms can be
omitted, and the spatial integration simply yields the
volume V,

2, rMM +—(nu,+u, )M HM u, q—((M—4 2

nkvd TV

+(n —1)I ,' rq[(rn ——1)qj. +q() ]

w(n ——2)[(m —1)qq + q ((]I,
(3.56)

where all terms of order q have been omitted and an
external magnetic field added. Equation (3.56) was also
proposed by Suzuki (1977) for the special case of the Ising
spin glass in which m =1 so q& does not exist and q—:q~~.
We defer further discussion of Eq. (3.56) to Sec. IV.

Obviously, the approach outlined here relies heavily on
the replica method and thus shares all its difficulties.
Therefore it is tempting to try to bypass these problems
by constructing a coarse-grained Ginzburg-Landau-
Wilson Hamiltonian of the disordered magnetic system
directly.

The first approach along such lines was the random-
temperature Ginzburg-Landau model of Ma and Rudnick
(1978); instead of Eq. (3.51) they considered the much
simpler functional

~ /k~T= —fd "r rM(r)M(r) M(r)
2

qa~p=[q&(6k& k I)+qll keI](1 —5 p) . (3.55)

In this step, Chen and Lubensky (1977) have ignored the
possibility of replica symmetry breaking. In the mean-
field limit, their treatment hence simply reduces to an ex-

+QV'kM((r)V'kM((r)
kl

+ —,
'

u ~ [M(r) M(r)] (3.57)
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where now the coefficient r~(r) is a random variable.
While Ma and Rudnick (1978) suggested that the model
Eq. (3.57) leads to spin glass order, it now is accepted
(Sherrington, 1980) that Eq. (3.57) can describe only an
impure ferromagnet, and not a spin glass. A generaliza-
tion that may describe spin glass order, however, is

a/k~T= —fd r r~(r)M(r) M(r)
2

+ —u&(r)[M(r) M(r)]

+fd "r'M(r) X(r . r')M—(r')

(3.58)

where X(r—r') is a fixed function of the separation but
not restricted to be ferromagnetic (Sherrington, 1980,
198la, 1981b). If X(r—r') were ferromagnetic, a gradient
expansion of M(r') at r'=r would again yield the Ma-
Rudnick model, Eq. (3.57). However, various macroscop-
ic spin glass models are expected to reduce to Eq. (3.58)
where g(r —r') for some distances is antiferromagnetic.

A related model was proposed by Hertz (1978), for
Heisenberg spins,

F. Spin glass order parameters and correlations,
frustration, and gauge invariance

1. Order parameters

q= lim lim [{S;)T],„0 o&
(3.61a)

In the section on the Mattis spin glass we have seen
that a susceptibility cusp can arise [Eq. (3.42)j at a phase
transition where the order parameter q=[{S;)T],„be-
comes nonzero. We now wish to discuss this, and related
order parameters, in greater detail. Except for the end of
this section we shall discuss Ising spins.

First we note that the canonical Gibbs average must be
evaluated with a field H, which breaks the spin-reversal
symmetry (S;=~ —S; for all i) of the Hamiltonian. This
cauld be a completely random staggered field or a uni-
form field, and is allowed to tend to zero after the ther-
modynamic limit has been taken (see, for example, Young
and Kirkpatrick, 1982; Young and Jain, 1983). As dis-
cussed in Sec. III.B, the symmetry-breaking field does not
necessarily single out one particular state (valley), so the
Gibbs average still includes a weighted sum over valleys
(De Dominicis and Young, 1983a). Hence we define the
statistical mechanics order parameter by

~ /k~T= —,
' fd"r(rMM(r). M(r)+ —,

' u~[M(r) M(r)]

+{[V'k—iQk(r) L]M(r)] )

= lim lim QPt {S;)'T'
8 o&

J RV

(3.61b)

(3.59)

where the components L; of L are the 3 && 3 matrix repre-
sentations of angu1ar momenta which generate rotations
about the three spin axes. The random vectors Qk(r)
describe the situation in which the kind of spin alignment
(locally ferromagnetic or antiferromagnetic) randomly
changes from place to place in the system. For XI' spins
that can be described by a complex scalar magnetization
M(r), a simpler expression is

M /k~T= —, fd"r{rM )M(r)
/ + —,uq [M(r)

f

Because q is the square of a Gibbs average there are
I

"interference terms" of the form PtPt (S;)'T'(S;)'T' in-
volving different valleys, l&l' Howev. er, an experiment
or a computer simulation over a short time measures the
properties of a single valley. We therefore need an order
parameter appropriate for a single valley, for example,

"= 1 g({S,)',")'. (3.62)

It is more convenient to calculate a weighted average of
q' over all valleys, so we define the Edwards-Anderson
(1975) order parameter by

+
~
[V—iQ(r)]M(r)

~ I, (3.60)
qE& ——QPt({S;~'T ) (3.63)

Q(r) being the wave vector of the lowest-energy spin-
density wave into which the spins condense below the or-
dering temperature. Evidently, the spin glass order in
these models is perceived as a generalization of an antifer-
romagnetic structure, in which Q would be nonrandom
and describe the position in reciprocal space where the
magnetic superstructure Bragg peaks occur. The spin
glass order in this model hence is described as a randomly
distorted antiferromagnet. Of course, in the ideal case no
particular value of Q is preferred.

It is not clear, however, whether models of this type
really contain all the essential features of spin glasses,
such as the existence of many equivalent orderings that
are accidentally degenerate, or at least nearly so (Fig. 4).
But, as will be discussed below, they provide a starting
point for gauge theories of spin glasses (Sec. V.A).

av

It seems intuitively plausible that q
' is the same for all

valleys of minimum free energy, so qE~(=q') is the
single-valley order parameter. Stronger arguments that
q

' is the same for all valleys can be given for the
Sherrington-Kirkpatrick model studied in detail in Sec.
IV. For short-range interactions this conclusion seems to
be implied by the work of van Enter and Griffiths (1983).
It is not necessary to introduce a symmetry-breaking field
into the definition, Eq. (3.63), since one expects that qEA
does not depend on the order of limits, H ~0, X~ co.

One would like to be able to calculate qEA using statist-
ical mechanics. It is not obvious how to do this, because
we do not, in practice, know how to calculate a random
field that will project out a single state. However Blandin
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(1978) made the ingenious observation that, although we
do not know how to do this, the system itself knows, and
so we can calculate qE~ by introducing a second copy (or
real replica) of the system in the following way. The two
systems have the same interactions and are coupled by a
term in the Hamiltonian

S~=—HgS, 'S,', (3.64)

qEA= lim lim [(S S; ) T]-
H ~ON

(3.65)

where H is positive, so that the two systems prefer to be
in the same state. In other words, whichever valley sys-
tem 1 is in, it causes a very special "random field" to act
on system 2, so that the latter prefers to be in the same
valley as 1. If we take the limit X~ Oo before H~0, we
expect that the only contribution to the Gibbs average will
be where the two systems are in the same valley. Conse-
quently qEA can also be evaluated from

qE&
——lim lim q(t),t~ ooN~ oo

q = lim lim lim q ( t),
H ~ON ~ oo t~ oo

where

(3.66a)

(3.66b)

q(t) —= [(S;(0)S;(t)), ],„ (3.67)

and the time average ( ), , performed over an observation
time t,b„ is defined by

One may also define q and qE& in terms of dynamics.
As discussed in Sec. III.B, the barriers between valleys
diverge in the thermodynamic limit, so if we take Ã —+ ao

before the time t tends to infinity, the system will stay in
a single valley and one will measure qEA. However, if we
study the infinite-time limit of a finite system, then the
system will move between different valleys in phase space
and the time average will be equivalent to the Gibbs aver-
age, i.e.,

b
(S;(0)S,(t, )S„(t,) ),.= f dt'[S;(t')S, (t'+t, )Sk(t'+t, ) . ] .

tObs
(3.68)

Of course it depends on the type of spin glass model
whether it is necessary to make a distinction between q
and qE&. In the Mattis (1976) model (See Sec. III.D.1),
there are just two ordered states related to each other by
spin-reversal symmetry. When one applies a field, only a
single state remains in the sum in Eq. (3.61b), so q =qE&.
However, this is not true for the Sherrington-Kirkpatrick
model (see Sec. IV). It remains to be seen whether short-
range Edwards-Anderson models have more than two or-
dered states (see Sec. V.E.5).

It is sometimes useful to define an order parameter 5
(Sommers, 1978) that is just the difference between qEA
and q, i.e.,

9EA (3.69)

x,, =a[(s, ),],„yaH, .

Since

A nonzero b, signifies a multivalley structure in phase
space and breakdown of ergodicity. Such a quantity ap-
pears naturally in the dynamical approach to spin glasses
(Sompolinsky, 1981a; Sompolinsky and Zippelius, 1981,
1982a; Horner 1984a, 1984b), where one actually has two
functions q (x) and h(x), while b„defined in Eq. (3.69), is
given by 5:—b(x =0).

For a symmetric bond distribution, and in the limit of
small fields, the uniform susceptibility
X=8[(s;)T],„/BH is equal to the local susceptibility X;;,
where

kttTX=1 —q (H~O, J=O), (3.71)

so we can relate the magnetic susceptibility to the order
parameter. It is interesting to generalize Eq. (3.71) to
time-dependent quantities. Standard linear response
theory (e.g., Forster, 1975; Ma and Mazenko, 1975), taken
in the classical limit, gives

dq(t)
dt

= —kii TX(t) (H~0, J=0), (3.72a)

where X(t) is the usual linear response function and we
have used the result that [(S;(t)SJ(t')) T],„is zero for i &j
with a symmetric bond distribution. Note that X;;(t) is
always related to q(t) by

dq (t)
dt

= —ksTX;;(t) . (3.72b)

Integration gives
t

ks Tf X(t')dt'= 1 q(t) (H ~O,J=—0) . (3.73)

It is useful to discuss Eq. (3.73) in the limits taco,
%~ao. First of all we note that

t
lim lim lim f X(t')dt'=X, (3.74a)

ON~oo taboo

where we have used the fact that

[(s,s ),—(s, ),(s ),].„=0
unless i =j (Fischer, 1976). Since X;; is always related to
q by k&TX;; =1—q, we have

k, Tx=+-'g[(s, s, ),—(s, ),(s, ),]„
=~-'g(1 —[(S,)',].„)=—k, TX,, ;

(3.70a)

(3.70b)

t
lim lim f X(t')dt'= limX(co),

taboo N —+oo co~0
(3.74b)

where 7 is the equilibrium susceptibility evaluated from a
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Gibbs ensemble average and X(co) is the dynamical sus-
ceptibility. Hence when we take t +a—o before N~()(),
Eq. (3.73) gives back Eq. (3.71), while in the opposite or-
der of limits one has

k~TlimX(co) =1—qEA (H —+O,J=0) .
6)~0

From Eqs. (3.69), (3.71), and (3.75) one also has

6=k~ T[X lim—X(co)] (H ~O,J=0) .
co~0

(3.75)

(3.76)

Hence there is a difference between the equilibrium (iso-
thermal) susceptibility X and the zero-frequency limit of
the dynamical susceptibility X(co). This is because X(co)
only probes the response in a single valley, whereas P in-
cludes an extra contribution, b./k~ T, from changes in the
statistical weight of the valleys due to the applied pertur-
bation (De Dominicis and Young, 1983a). Equations
(3.75) and (3.76) also indicate how an experiment could
measure the order parameters qEA and 6, at least in prin-
ciple. Note that Eqs. (3.71), (3.72a), (3.73), (3.75), and
(3.76) are altoays true if one replaces the uniform suscepti-
bility by the local susceptibility.

One sometimes sees in the literature an "anomaly" 6,
defined by k~TX=I —q+6, which would violate the
fluctuation-dissipation theorem in the form Eq. (3.70b), if

I

q(t. , )=X-' g(S, )',

obs

tobs tab.
q(t)dt, (3.77)

where the time average is defined in Eq. (3.68) and q (t) in
Eq. (3.67). In the last equality we have used the time-
translational invariance of time-displaced correlation
functions. If we now define a susceptibility from a time
average of magnetization fluctuations we obtain (Stauffer
and Binder, 1978)

b,&0. However, we shall see in Sec. IV.F that there is no
violation of the fluctuation-dissipation relation, and if one
is referring to bond average quantities (which we are here)
both (3.70a) and (3.70b) are true, so b. defined in this way
is zero. If one is referring to a particular sample, then
one has to be more careful because the i&j terms in Eq.
(3.70a) do not vanish for each sample (see Sec. IV.F).
Hence Eq. (3.70b) is not true without the configurational
average, though (3.70a) would still be valid.

It is also illuminating to consider an order parameter
defined as a time average over a finite but large observa-
tion time t,b, (Binder and Schroder, 1976a, 1976b; Binder,
1977a, 1977b),

k T [1—q(t.b. )]
1

B
(3.78)

q = lim lim lim q(t,b, ),
H ~0 N —+ oo t b, —+ oo

qE& —— lim lim q(t,b, ),
t b, ~oo N —+oo

X= lim lim lim X(t,b, ),0~0 N~oo-tab ~oo

limX(to) = lim lim X(t,b, ) .
Q) —+0 t b

—+oo N~oo

(3.79a)

(3.79b)

(3.79c)

(3.79d)

These equations are analogous to Eqs. (3.66a), (3.66b),
(3.74a), and (3.74b). Hence Eq. (3.78) also leads to Eqs.
(3.71) and (3.75) when we consider different orders of the
limitS t,b, —+ Oo, &—+ oo.

Since many of the calculations use the replica trick, it
is necessary to identify q and qEA within the replica
framework. This question has been a matter of some dis-
cussion (Young, 1981; Sommers, 1982, 1983a, 1983b;
Hertz, 1983a, 1983b; Orland. , 1983; Fischer and Hertz,
1983; De Dominicis and Young, 1983a). When there is
only one thermodynamic state, then q =qEA and one has
a single-order-parameter description. This corresponds to

making use of the fact that [(SJ(t&)Sk(t2)), ]»——0 for
j&k with a symmetric bond distribution, even for t»t2.
Note that the order parameters q and qEA and the suscep-
tibilities X and lim oX(co) can also be obtained from
q(t,») and X(t,b, ), just as they can from q(t) and X(t),
i.e.,

the replica-symmetric solution, where all the order pa-
rameters q p are the same, i.e.,

q =qE& ——q p (replica-symmetric solution) (3.80)

for all a&P. Where there are many states, replica permu-
tation symmetry must be broken, and this will be studied
in detail in Sec. IV, in the context of a particular scheme
(Parisi, 1980b, 1980c, 1980d, 1980e) for the Sherrington-
Kirkpatrick model. We have already noted in Sec. III.C
that in these circumstances the order parameter q is ob-
tained by averaging all q~~, i.e., (De Dominicis and
Young, 1983a),

1q=lim gq p.
n on(n —1)

(3.81)

qFA
——lim limq p .

n —+Oa —+P
(3.82)

Note that q itself does not enter the theory because
S; = 1, a trivial constant (see Sec. III.C).

In a situation with many states, one can clearly define a
large number of other order parameters in addition to q

We have not yet discussed qEA in replica language, but
will show in Sec. IV that it is given by the components of
the matrix q p which are as close as possible to the diago-
nal, i.e., we write symbolically
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and qEA. For example, one might be interested in the
"overlap functions" q', where

it' y(S )(l)(S )(t')

E

(3.83)

P(q) = QPtPt 5(q —q )

aV

(3.84a)

This will play a central role in the mean-field theory,
described in Sec. IV. In terms of replicas, P(q) becomes
(see Sec. IV.E)

These contain information about correlations between the
site magnetizations in different valleys. It is clearly too
cumbersome to study the set of all overlap functions, and
a statistical description is obtained from the probability
distribution (Houghton et al. , 1983a; Parisi, 1983a);

limit, so the bond averaging in Eq. (3.84) is essential and
not just a theorist's convenience. Where we wish to em-
phasize that a quantity depends on the particular bond
distribution we shall write in a subscript J, as in Eq.
(3.86).

Plainly the order parameter in spin glasses is much
more complicated than qEA, at least in mean-field theory.
The existence of many valleys leads to a probability distri-
bution Pz(q), and then lack of self-averaging implies that
the "order parameter" is really the distribution (among
different bond configurations) of the distribution Pz(q).
It is not completely clear whether are more layers of com-
plexity remaining to be unraveled.

Various other order parameters have also been intro-
duced and will now be discussed. An obvious generaliza-
tion of Eq. .(3.61a) is to other local order parameters qk,
defined b'y

P(q) = lim g 5(q —q~&),
1

n on(n —1)
(3.84b) qk ——lim lim [(S;)z.],„, k=3,4, . . . ,

H~o %~00
(3.87)

which takes a rather simpler form in the case of the Parisi
(1980a, 1980b, 1980c, 1980d, 1980e) replica symmetry-
breaking scheme (Sec. IV.E). Clearly the statistical
mechanics order parameter, Eq. (3.81), is just the first
moment of P(q).

It is also possible to define the overlap distribution mi-
croscopically (Young, 1983b, 1985), without direct refer-
ence to thermodynamic states. If one considers two sets
of spins S,S;, i = 1, . . . , N, each with the same interac-
tions but no coupling between them, and define

(3.84c)

which play a role in the mean-field theory of disordered
spin systems with short-range interactions (Sarbach,
1980). [The expression for the qk in replica language is
given in Eq. (3.31).) In addition,

q, = lim lim [ ~
(S; ) T ~ ],„

II

has been discussed (Aharony and Imry, 1976, 1977a;
Young and Kirkpatrick, 1982).

A more interesting quantity, because it does not require
a symmetry brea-king field, is the correlation function
(Morgenstern and Binder, 1980a, 1980b)

where gsG(R, —R, ) =[(S,S, )T],„, (3.88)

(3.84d)

as the probability that the two systems have overlap q ',
then it is straightforward to show (Young, 1985) that

which for short-range interactions depends on the relative
distance R; —RJ. It is sensible to consider the correlation
length psG describing the exponential decay of
gsG(R; —RJ) in the paramagnetic phase (Morgenstern
and Binder, 1980a, 1980b),

lim P~(q)=P(q) .
N~ao

(3.85)
gsG(R; —R ) ~ exp( —

~
R; —RJ ~

/(so),

Pz(q) =QPtPt 5(q —q" )
ll'

(3.86)

varies from sample to sample even in the thermodynamic

Equation (3.84c) has the advantage that it can be used
even for finite systems in which it is not possible to define
the various states since all barriers are finite. In fact, even
for K~ no it is not clear whether the states can be de-
fined in a rigorous manner for the models with infinite-
range interactions discussed in Sec. IV, so it is useful to be
able to define-the order-parameter distribution without
having to do this.

One of the surprising recent developments in the
mean-field theory has been the realization (see Sec. IV.F)
that certain quantities in the theory are not self-averaging
(see Sec. III.A; Mezard et al. , 1984a, 1984b; Young
et al. , 1984). In particular, the overlap distribution of a
single sample

q = lim gsG(R; —R~ ) .(2)
~R- —R ~

~

~00
(3.90)

It is interesting to evaluate gso in terms of averages over
valleys in phase space, discussed in Sec. III.B. One finds

gsG(R —RJ ) = QPt (SSJ ) 'T

l
av

(3.91)

The pure states should satisfy a "clustering property"
(see, for example, Cxriffiths, 1972), which means that all
connected correlation functions, evaluated within a single

~
R; —RJ

~

~ oo . (3.89)

At T, /so diverges, and if q is nonzero below T, there is
correlation between the spins at infinite distance (Binder,
1980a, 1980b), so one may define an order parameter q' '

by
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phase, must vanish when relative distances tend to infini-
ty; in particular,

q' '(t) = lim [(S;(0)S~(0)S;(t)SJ(t)), ],„.
jR, —R j ~oo

(3.99)

so

q"'= lim
jR,.—R,. j

yP (S )(l)($ )(!i
I

2

&S;S, )',"=(S;)',"(S,)',",
jR, —R

RV

(3.92)

(3.93a) lim lim q'"(r)=qE~ .
taboo N —+ oo

(3.100)

It is interesting to ask what happens if one reverses the
limits in Eq. (3.98). With N~co the system stays in a
single valley, so, because of the clustering property of
single-valley averages, one obtains

For an infinite system one can replace Eq. (3.93a) by
T 2

yl, &$, &',"&S,&'„" (3.93b)
av

& [qJ](2) 2 2

because the double sum is dominated by pairs of sites that
are far apart. Hence it follows that

For the infinite-range model all distinct pairs of spins
are equivalent, so the limit of infinite distance in Eqs.
(3.90) and (3.99) may be removed and any distinct pair
{i&j) used to define q' ' and q' '(r) (Kirkpatrick and
Young, 1981). In this case q' ' is related to the energy E
by (Bray and Moore, 1980a)

E:—[(~) ],„/N= —(1—q' ')(4J) /(2k T) .

(3.101)

qJ ——lim lim —g($; ) z.
1 . 2

ON
(3.95)

It is interesting to introduce the spin glass susceptibility
Xso (Chen and Lubensky, 1977; Fisch and Harris, 1977)
by

gso(R; —RJ)=lim g (S; SJ SPS~~) .
on(n —1)

(3.96)

is the statistical mechanics order parameter for a given
bond configuration. The first inequality in Eq. (3.94)
holds as an equality only if there is just a single state. In
other words, when there are many states the clustering
property

lim (S,S,),=($, ),($, ),
jR;—R

j

—+oo

holds for averages within a given state, but not for the full
Gibbs average because of interference terms involving dif
ferent states when one calculates (S; ) T($~ ) r. Further-
more we shall see in Sec. IV.F that lack of self-averaging
always occurs when replica perturbation symmetry is bro-
ken, i.e., when there are many states. Hence the second
inequality in Eq. (3.94) also only becomes an equality
when there is a single state.

In terms of replicas, one can evaluate gsz by a straight-
forward generalization of the argument that led to Eq.
(3.34) and find

Xso ——N 'g[((S;SJ) T —(S; ) r(SJ ) T) ],„, (3.102)

5 (S; ) T
——g ( (S;SJ )T —(S; ) T (Sq )T )5H„(j ) /k~ T,

so, on squaring and averaging, one obtains

(3.103)

( ka T), =&so2

B[H„],„
(3.104)

Furthermore it is straightforward to show (Jayaprakash
et al. , 1977) that q itself is related to the derivative of the
free energy with respect to [H„],„by

which must diverge at the freezing temperature T~, since
the correlation length /so diverges. We shall frequently
be interested in Xso in the paramagnetic phase where, of
course, (S;)T——0. Xso gives the change in q when a
small random staggered field H„(i) is applied. To see
this, note that from linear-response theory we have

In the limit
~
R; —RJ

~

~ oo the clustering property must
hold for the replica Hamiltonian because it is translation-
ally invariant, so

kii T
2

=(1—q)/2 .
a

B[H„],„
(3.105)

q"'= lim g q'.~,
n on(n —1)

(3.97)

q"'= lim hmq"'(r),
N~oo taboo

where

{3.98)

which is just the second moment of the distribution I'(q).
One may also consider generalizations of the order pa-

rameter q' ' to finite times, just as q(t) in Eq. (3.66) is re-
lated to q, namely (Fernandez and Streit, 1982; Mackenzie
and Young, 1982, 1983),

Because of Eqs. (3.104) and (3.105) it is natural to say that
[H„]„is the "field" conjugate to the spin glass order pa-
rameter q and that Ps& is the corresponding response
function. In addition, for a symmetric bond distribution
and to lowest order in the fields only one can replace the
random field by a uniform field through the change
[H, ],„~H . In this symmetric case Xso is related to the
expansion of the free energy in powers of the uniform
magnetic field (Chalupa 1977a; Suzuki, 1977) in the
paramagnetic phase. Writing the expansion of the mag-
netization as (Omari et al. , 1983)
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Q3
Q)

T

2Qg

kT 1S

a) ——1,
which follows from Eq. (3.71) with q =0, while

3 3+SG—2

(3.107)

(3.108)

(Kinzel and Binder, 1984). Comparing Eq. (3.106) with
(2.35) one sees that a1 is simply related to the nonlinear
susceptibility X„~(T) by

3 t

1 2
Xnl( ) XSG

8
1

AT
(3.109)

Thus the nonlinear susceptibility must diverge at Tf if
Xso does. In the general case of a nonsymmetric distribu-
tion, &S;SJ &T no longer vanishes for i &j, and Eqs.
(3.107) and (3.109) are replaced by

a, = I+—+[&S,S, &,].„,1

l+J
(3.110)

which is sensitive to ferromagnetic correlations, if there
are any, and (Chalupa, 1977a)

XJT)=—,( gS, )
(3.111)

where & &T, denotes a cumulant average. Thus X„t(T)
also feels ferromagnetic correlations. However, assuming
that such correlations remain short range ai the spin glass
transition, the singular behavior would still be given by
XsG, defined in Eq. (3.102), where of course one may set
&S; &z. ——0 since the present discussion refers only to the
paramagnetic phase.

As we have noted in Sec. III.A, the correlation function
between a given pair of spins is not self-averaging, and
hence one many consider [&S;SJ&T] with p&2 [cf. Eq.
(3.10)] and corresponding susceptibilities defined, in the
paramagnetic phase, by

XgG=x-'g[~ &S,S, &,
~ ],„, p=1,2, 3, . . . . (3.112)

So far only XsG—:Xso and XsG (Aharony and Binder,
1980) have received practical attention.

We have already discussed the "overlap functions" q
defined in Eq. (3.83). An alternative "projection order pa-
rameter" is g' ', in which the spin projection on a ground
state (PJ~'—:&SJ &T' o) is studied (Binder, 1977a). This
may be considered as the thermal average of a variable,

(3.106)

where the coefficients a~, a3,a5, . . . , are defined to be
unity for noninteracting Ising spins, we have

Again one may define an associated correlation function
g~'(R; —Ri), order parameter g' ', and susceptibility X~~

via the relations

g'„"(R,—R )=&q@ &',"

kg TXg =g & tp; QJ &
'T' jX

EJ

=gyI"y,'"&s,s, &,zx,

(3.114a)

(3.114b)

hm gg'(R; —R~ )
/R; —R

/

~00

= lim kgTXg/X .
N~go

(3.114c)

~"'=[&S,"&,&S,
"

&,].„. (3.117)

In the replica method the order parameter is a second-
rank tensor in spin space as well as in replica space, i.e.,

Alternatively, we may define XI~ by an appropriately stag-
gered field A '=~—M~'g, .P;, taking the response func-
tion

X„=a'fia ~~'," ~'. (3.115)

In a Mattis spin glass, of course, this order parameter g' '

is nothi. ng but the "hidden" order parameter M„+II——g,
etc.; thus Eqs. (3.113)—(3.115) look for a kind of underly-
ing "hidden" long-range order in the Edwards-Anderson
spin glass, the only difference being that one must allow
for many "order-parameter components" g'" representing
the various valleys I &S; &T'I in phase space. The restric-
tive assumption of Eqs. (3.113)—(3.115), however, is that
at finite temperature the valley structure is still deter-
mined by the valley structure at zero temperature.
Indeed, for T =0 we have the "sum rules" (Aharony and
Binder, 1980)

gq~" = &S,S, &'. ..
(3.116)

kg TQXg =g & S SJ & T =0/X
I LJ

i.e., there is no difference between these correlations and
the correlations considered in Eq. (3.88). At least in the
infinite-range model, however, there is evidence that the
valley structure in phase space at finite temperature is un-
related to the valleys at zero temperature (see Sec. VI.E).
An additional disadvantage is that the ground states usu-
ally are not known analytically; thus the practical use of
Eqs. (3.113)—(3.115) has been limited to numerical inves-
tigations.

Here, let us discuss briefly how one can define order
parameters for vector spins. The standard order parame-
ters q and qEA become second-rank tensors q and qE&

kk' kk'

in spin space, where k and k' denote spin components
and, for example,

(3.113) kk' kk'
g =hm gg~p

n on(n —1)
(3.118)
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P{q"k j =lim g Q 5(q"" q"—p ) .
n~o n (n —1) ~~p(k k )

(3.119)

One frequently studies an isotropic spin glass in which all
directions in spin space are equivalent. In this case
second-rank tensors in spin space reduce to a Kronecker
delta function 5ki, , so that, for example,

kk'
qaP ~kk'GAP . (3.120)

In general one defines the spin glass correlation func-
tion gsG(R; —RJ) and spin glass susceptibility +so in
terms of scalar products, i.e.,

where q~p ——(S; ' SP" ), a&P. The probability distri-
bution for the overlap functions now involves all q, so
we write

E = — +V'y, H =7'&A,BA
at

(3.123)

where y is the scalar potential and A the vector potential,
which may be combined into the four-dimensional vector
{A„j={A,ipj. These fields are invariant against the
gauge transformation (note 7„={V, i B/8 t j )

such a trivial disorder, which can be eliminated by simple
local transformations that leave ~ and hence the free en-

ergy invariant, and the more serious disorder, which can-
not be "gauged away. " In fact, Eq. (3.122) may be called
a "gauge transformation" by analogy with the local
transformation that leaves the Hamiltonian of electro-
dynamics invariant: the electromagnetic fields E,H are
(putting the velocity of light equal to unity)

g GS(Ri Rj) [~si Sj ~T]av ~ (3.121a) {Aqj —+{A„j+V„a, (3.124a)

and, in the paramagnetic phase,

x, =~-'g[(s,"sj)',].„, (3.12 lb)

a being any function of space and time. In quantum
mechanical problems. Eq. (3.124a) must be complement-
ed with a transformation of the wave function P, e being
the unit of charge

though, again, one could separate out different Cartesian
components.

To conclude this section, we have seen that the order
parameter in spin glasses is rather complicated, at least in
mean-field theory. These complications, e.g., the fact that
q&qE&, arise from there being many thermodynamic
states with significant statistical weight. Ordering in a
single state, described by qEA, is measurable experimen-
tally. It does not seem feasible experimentally to deter-
mine off-diagonal overlap functions. However, for nu-
merical simulations, which are inevitably on small sam-
ples in which thermodynamic states are not well defined,
it is only the statistical mechanics order parameters, e.g.,
q and q' ', that are precisely defined. It is not clear
whether this many-valley structure also occurs for short-
range systems in three dimensions. If not, then there is
just a single thermodynamic state, and the order parame-
ter is a number describing ordering in this state.

S;~—S;, J;i (j adjacent to i) —+ —Ji . (3.122)

Obviously, if we perform this transformation in the case
of a Mattis model for all negative bonds, the disorder is
completely eliminated. Thus in a more general case of a
disordered material, the need arises to distinguish between

2. Frustration and gauge invariance

The order parameters introduced above are not so use-
ful for elucidating the spin structure in the ground state
itself. For a discussion of ground-state spin configura-
tions the concept of "frustration" (Toulouse, 1977) is par-
ticularly useful. We again consider the random-bond
model, Eq. (3.27), for Ising spins in the absence of mag-
netic fields, with a distribution of bond strengths given by
Eq. (3.38a). One now notes that the Hamiltonian is in-

variant under the local transformation

4f =JAJ3 j
I
J

I

' (3.125a)

or more generally for any closed contour on the lattice
( Jj=+J)

4f=+ J ~'I J
I

(3.125b)

where the product is along all the bonds of the contour.
Disorder is not serious when Pf = + 1, while Pf ———1

when frustration is present. It is then appropriate to con-
sider Pf for the elementary units of the lattice (elementary
triangles on the triangular lattice, elementary squares on
the square lattice, the so-called plaquettes).

Since each bond on the square lattice is shared by two
plaquettes, frustrated plaquettes appear pairwise. If there

(3.124b)

for simplicity here we have chosen units in which the par-
ticle mass and Flanck's quantum are unity. Equations
(3.122) and (3.124) are somewhat similar, if we compare
the spin with the particle field, the factors +1 with the
phase factor e", and the bonds JJ with the vector poten-
tial. Of course, while the gauge group defined by Eq.
(3.124) is the continuous group U(1), Eq. (3.122) involves
the simpler discrete group Z2 only.

In any case, this consideration leads to the concept of
the relevant disorder'-s being gauge invariant. The prob-
lem arises how this "serious" disorder (which is not
present in the Mattis model) can be measured.

One quickly realizes that "serious" (i.e., gauge-invariant
disorder is due to the "frustration effect, " i.e., competi-
tion between interactions that cannot all be satisfied by
any spin configuration. Consider the elementary triangle
of Fig. 40(a), with all bonds negative: there is no way of
choosing the orientations of the spins around the triangle
without "frustrating" at least one bond. This frustration
effect can be expressed by the function Pf
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FIG. 40. (a) Frustrated triangle and its ground state: "unsatis-
fied" bond is denoted as a dashed line. (b) Two fully frustrated
two-dimensional models, suggested by Villain (1977a) and Vil-
lain et al. (1980). From Binder (1980a).

is a lot of frustration in the system, the configuration of
frustrated plaquettes clearly is a complicated network. If
one considers a pair of frustrated plaquettes in an other-
wise unfrustrated background, the extra energy due to
frustration simply is proportional to the length of the
minimal distance between the two plaquettes (the
"string"). The ground state of the square lattice hence is
defined by finding the set of minimal-length strings con-
necting the frustrated plaquettes. Of course, the solution
to this problem is not at all unique: different solutions
correspond to different ground states. Hence this con-
sideration yields a precise construction for the various or-
dered states, at least for the nearest-neighbor +Jmodel in
the square lattice. [For a discussion of frustration in
higher-dimensional lattices, see for instance Fradkin et al.
(1978) and Toulouse (1979).] Unfortunately, there is no
analytic solution to this problem, and hence one can use
this formulation for studying explicit ground-state prop-
erties only by means of numerical algorithms which solve
this string-length optimization problem on a computer
(Rammal et al. , 1979; Bieche et al. , 1980; Barahona
et al. , 1982).

Clearly, there is some similarity of this problem to glo-
bal optimization problems in general, such as the "travel-
ing salesman*' problem: in fact, efforts at numerically
finding ground states, or at least low-lying states, in spin
glasses have led to attractive ideas of how to handle such
optimization problems (Kirk patrick et al. , 1983): this
may be the most important practical application that has
emerged from spin glass research so far.

Since even the ground-state problem of the +Jmodel in
two (as well as in higher) dimensionalities is a very diffi-
cult problem, intractable analytically, it is no surprise that
the statistical mechanics of Ising systems with random
quenched frustration is not very far developed; Though

+J

;-J +j-

+J

-+J

+J

(c)
FIG. 41. Classical ground state of a set of four spins in the XY
model with interactions +7 (thick bonds are antiferromagnetic,
thin bonds are ferromagnetic). (a) Nonfrustrated plaquette; (b)
frustrated plaquette, chirality ~= + 1; (c) frustrated plaquette,
chirality ~= —1.

one can set up the program of calculating the gauge-
invariant correlation functions formally (Fradkin et al. ,
1978), explicit results either are rather qualitative or refer
to simpler limiting cases. Thus we shall not discuss this
work here.

The recognition of the central importance of the frus-
tration effect, allowing a high ground-state degeneracy
and thus creating the many "valleys" in phase space that
are such an essential feature of spin glasses, has promoted
interest in the somewhat simpler problem of Ising systems
with periodically distributed frustration. Two examples
bf such lattices with frustration but without disorder are
shown in Fig. 40(b); such systems exhibit very interesting
and rich behavior, and therefore we shall discuss them
briefly in Sec. VI.E. There is, however, more or less gen-
eral consensus that such systems are rather different from
spin glasses, contrary to the original suggestion that they
may contain spin glass phases as well (Toulouse, 1977).

Rather different behavior occurs when we consider con-
tinuous rather than Ising spins. The situation in this case
has been analyzed by Villain (1977b, 1978) and Fradkin
et al. (1978). Consider. an isolated plaquette on the square
lattice for classical XY spins (Fig. 41), i.e., with spin com-
ponents (cos8;,sin8;) where 8; is the angle with some
quantization direction. For nonfrustrated plaquettes, the
spin arrangement is collinear; however, for frustrated pla-
quettes the spin arrangement is canted, and
8; —8; &

——+m/4. There are two different senses of rota-
tion, and hence Villain (1977b) introduces a variable
called "chirality" w to distinguish them. If one puts a sin-
gle frustrated plaquette in a two-dimensional, nonfrustrat-
ed "sea" at zero temperature, one finds that the spin
direction rotates quasicontinuously along a large loop
around the frustrated plaquette. The total rotation angle
is again +m, and hence the chirality again can be intro-
duced. The picture of the spin configuration is reminis-
cent of the vortices introduced by Kosterlitz and Thouless
(1973) to describe excitations of two-dimensional XY
magnets. Around a vortex, however, the spin rotation is
+2m. The spin configuration around a frustrated pla-
quette thus is a half vortex. This picture leads to a sim-
plified treatment motivated by experience with the pure
XY model: one allows for two types of independent vari-
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ables. Since one has continuous spins, there must be
small-amplitude oscillations (like magnons). Then there
are discrete variables related to the chirality describing
the large spin deviations near frustrated plaquettes. Al-
though the positions of the bonds are frozen, the chirality
is a dynamical variable because the spin configuration
may jump from one state to the degenerate other one,
whereby the sign of r changes [see the simple example in
Figs. 40(b) and 40(c)]. The discrete variables w hence
represent two-level systems of a sort, which are believed
to contribute in an important way to the low-temperature
excitations of spin glasses and window glasses (Anderson
et al. , 1972; Phillips, 1972).

%'hile all these considerations refer to the ideal
nearest-neighbor +Jbond-disorder model, which hardly is
a faithful description of any real material, we immediate-
ly recognize that the same considerations do in fact carry
over to the spin configurations in more realistic site-
disorder models (e.g., Figs. 38 and 39). These considera-
tions also point towards the importance of the parameter
"spin dimensionality I," which was not so evident from
the discussion of the replica method and the Edwards-
Anderson order parameter and related quantities.

The discussion of the low-energy spin configurations of
the m-vector model for spin glasses profitably makes use
of the concept of "topological defects" (Toulouse, 1979;
Julia and Toulouse, 1979; Dzyaloshinskii, 1980). In the
two-dimensional Ising case, the strings emerging from the
frustrated plaquettes can be considered as "half-line de-
fects." While for the two-dimensional Ising case the pla-
quettes can be associated with the sites of the dual lattice,
in three dimensions the plaquettes are associated with
dual links, giving the frustration in d =3 a vector charac-
ter. The configuration of the frustration variable is then a
network of closed loops of links on the dual lattice
(Toulouse, 1977; Fradkin et al. , 1978). In the original lat-
tice, this corresponds to a closed tube of fIustiated pla-
quettes. Since the frustration network acts as a system of
sources or sinks for defects in the spin configuration, the
defects associated with these closed tubes are walls, the
area of which is minimal in the ground state. %'hile for
m =2,d =3 we encounter plaquettes with half-vortices,
as mentioned above, for I =2,d = 3 where the plaquettes
form closed loops we have associated "half-vortex-rings. "
For the Heisenberg model ( m =3), in addition to line and
wall defects, one must consider "textures"; the spin con-
figurations, possibly stabilized in the ground state of
Heisenberg spin glasses, are "half-textures" (Toulouse,
1979). A thorough recent discussion of these defects in
Heisenberg spin glasses can be found in Henley (1984a);
this work is also a useful guide for a corresponding nu-
merical search for such defects in computer simulations
(Henley, 1984b).

A general conclusion due to the concept of gauge in-
variance is the following: since the "serious" disorder is
invariant against the gauge transformation Eq. (3.122),
and it is this disorder that is relevant for true spin glass
behavior, we should also investigate the properties of the
spin system in terms of gauge-invariant properties. Of

course, this point applies only to the disordered phase,
where the symmetry is not yet broken. In fact, both the
correlation functions gsG(R; —R~) [Eq. (3.98)] and the
correlation g~(R; —R~) related to g'"(R; —RJ) of Eq.
(3.114a) as an average over the 1.ground states

g~(R; —RJ)=—gg&'(R; —R )I.

= (S;SJ}T p(S~SJ }T (3.126)

are gauge invariant, and so is the order parameter q. In
contrast, the gauge symmetry is broken if we talk about
one specific ordered state I. The idea that there is an ap-
proximate local gauge invariance, even if the system is
frozen in such a low-temperature configuration in one
valley in phase space is the basic starting point of some
attempts to construct a gauge theory of spin glasses (Dzy-
aloshinskii and Volovik, 1978; see Sec. 6.A).

G. Superparamagnetism and two-level
sYstems

In this section we are concerned with some simple con-
cepts for the description of dynamic phenomena and ir-
reversibility in spin glasses. The first of these concepts is
the idea of ascribing certain effects in spin glasses, like
the frequency-dependent peak of the ac susceptibility, to
"magnetic clusters" or "magnetic clouds" (Tholence and
Tournier, 1974), which are treated like superparamagnetic
particles (Preisach, 1935; Neel, 1949, 195S; Bean and Liv-
ingstone, 1959; Brown, 1963; for a more recent review see
Souletie, 1983). Of course, if in a dilute magnetic alloy
the magnetic atoms were phase-separated from the non-
magnetic ones, there would not be any fundamental
difference between such a material and a rock containing
a random distribution of fine magnetic particles. Since
real spin glass materials often exhibit chemical clustering,
it is also possible that superparamagnetic behavior may
obscure the effects characteristic of true spin glasses.
Disentangling simple superparamagnetism from more
subtle spin glass behavior hence is one motivation for
studying the theory of superparamagnetism in more detail
(Kumar and Dattagupta, 1983; Wenger and Mydosh,
1984b); in addition, some points such as the idea that the
dynamics on large time scales is dominated by thermally
activated processes, are common to most recent theories
on spin glasses. It is clearly an oversimplification to
claim that spin glasses exhibit nothing but rock magne-
tism (Wohlfarth, 1977a, 1979, 1980; Shtrikman and
Wohlfarth, 1981). Although for a number of years the
concepts of superparamagnetism have been very popular
for analyzing experimental data (e.g., Verhelst et al. ,
1975; Bieman et aI , 1978; Rena.rd et al. , 1978; Schwink
et al. , 1978; Meert and Wenger, 1981), the numbers ob-
tained from such fits often have little physical signifi-
cance. This fact is not so surprising, since a spin glass
should only be modeled as a system of interacting super-
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r„=vg 'exp(Kp/kg T), (3.129)

vz being an "attempt frequency. " Now, crudely speak-
ing, for the time-dependent susceptibility X(t) only such
clusters should be included in the response function for
which w& & t Conse.quently, Eq. (3.128) is replaced by

(k~ T/K)ln(v~ t)
X(t)= „ f dpp'P(p) . (3.130)

Hence X(t) will exhibit a peak at a temperature where
(k+T/K)ln(vent) roughly equals the peak position of the
distribution p P(p), which is of the same order as p . If
this temperature of the peak is identified as the time-
dependent freezing temperature Tf(t), then a logarithmic
variation with observation time (or inverse frequency,
respectively) is obtained,

Tf(t) ~(K/kii)(p )' /1n(vent),

Tf '(co) o:const —ln(co/vq) .
(3.131)

Of course, the above plausibility arguments can be put on
a more rigorous mathematical basis by describing the
dynamic response of the assembly of superparamagnetic
particles in terms of a Fokker-Planck-equation descrip-
tion (Brown, 1963; Kumar and Dattagupta, 1983), but the
essential conclusion remains the same. While it often is
possible to adjust the unknown function P(p) such that
Eq. (3.130) reproduces the experimental susceptibility, one
runs into problems interpreting the parameters K,vz.
usually the anisotropy is much too large to be explained
in terms of the physical anisotropies discussed in Sec.
II.A.2, and v~ often it is completely unphysical. Of
course, one may also work with a distribution of barrier
heights not simply related to the distribution P(p) via
Eq. (3.129) [see Souletie (1983)]. In addition, Eq. (3.131)

paramagnetic clusters, which again may be viewed as a re-
normalized Edwards-Anderson model (Binder, 1977a,
1977b, 1980a) and not as a system of independent clusters.
Only in the latter case is a simple treatment possible.

This treatment starts by describing the system in terms
of a distribution function P(p) of the clusters with mag-
netic moment p. In thermal equilibrium the mean mag-
netization of the N, clusters in a magnetic field H is ex-
pressed in terms of the Langevin function W(y) as

M =N, f dp pP(p)W(pH/k~T) . (3.127)

For small field this would lead to a Curie law for the sus-
ceptibility, since W(y)~y/3 for y —+0, and hence

X=N, p, /(3kjiT), p =f dpp P(p) . (3.128)

Now a peak of X is obtained only by assuming that there
may be incomplete thermal equilibrium: due to some an-
isotropy energy E& Kp, w——here K is some constant, the
reorientation of a cluster by the magnetic field may be
"blocked" over the considered time scale. One assumes
that the typical time v& for reorienting a cluster is given
by an Arrhenius forinula,

pk =mkcospktanh(mkH cos+k /kii T), (3.133)

where mk is the magnetic moment of this cluster. Sum-
ming up over all possible cluster configurations and
averaging over the angle yk, one obtains the static equi-
librium susceptibility (Eiselt et a/. , 1979)

X=(1/k&T)ggkmkx "(1—x) ", (3.134)

as an explicit version of Eq. (3.128), which now has no
adjustable parameters (assuming rigid alignment of the
spins within a given cluster). Calculating from the dipo-
lar Hamiltonian, Eq. (2.4), the energy difference Ek be-
tween the two spin configurations where the spins are
aligned parallel with the easy axis, and the saddle-point
spin configuration in between them, one may estimate the
rate Rk of cluster reorientation due to spin-lattice cou-
pling as (Eiselt et al. , 1979)

Rk ——Sk T10"exp( —Ek /king T) (sec ' K '), (3.135)

where the classical formula for the attempt frequency
vz -k&T/Ii at T =1 K was chosen. With these assump-
tions, one may obtain the time-dependent susceptibility

is not really supported experimentally if one considers
Tf(co) over a wide enough frequency scale, as discussed in
Sec. II.B.j. . There are various approximate attempts to
include effects due to interactions among the super-
paramagnetic clusters, which lead from the Arrhenius law
[Eqs. (3.129), (3.131), and (2.15b)] to the Vogel-Fulcher
law [Eqs. (2.14) and (2.15a)], e.g., Shtrikman and
Wohlfarth (1981) and Cyrot (1981); however, our view is
that a satisfactory derivation of this phenomenological re-
lation has yet to be given.

It clearly is a major weakness of this approach that
many rather arbitrary assumptions [such as P(p), K,v~]
need to be made. For a very dilute short-range system
such as Eu„Srl S in the range x (0.1, however, the sit-
uation is different: since magnetic interactions extend to
next-nearest neighbors only, the concept of clusters well
separated from each other is well defined up to the per-
colation threshold [xz ——0. 136 on the fcc lattice
(Shante and Kirkpatrick, 1971)]. Assuming random mix-
ing, one may count the number nx(x) of clusters of con-
figuration k with Sk spins in each of these clusters as

nk(x)=gkx "(1—x) (3.132)

tk being the perimeter of configuration k, i.e., the number
of nonmagnetic atoms that are nearest or next-nearest
neighbors of the magnetic atoms in the cluster, and gk the
multiplicity (i.e., gk counts the number of different orien-
tations that a cluster of given size and shape can have due
to rotations or mirror images in the lattice). In insulating
systems such as Eu„Srl S, it is the dipolar interaction
between spins within the same cluster that is responsible
for the anisotropy. Denoting the angle between the result-
ing easy axis and the magnetic field direction by yak, in
thermal equilibrium the average magnetic moment p~ in
the field direction is
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X(t) without any adjustable parameter whatsoever (Eiselt
et al. , 1979; see also Kotzler and Eiselt, 1979),

X(t) =(1/k&T)ggl mkx (1—x) "[1—exp( R—kt)] .

(3.136)

Figure 42 shows that this approach does yield a peak of
X(t) or X(co), in quantitative agreement with experiment
(Eiselt et al. , 1979). but it is obvious that such a peak due
to superparamagnetism of small clusters leads to a much
inore dramatic frequency shift (which, moreover, is nicely
consistent with Arrhenius behavior) and would be charac-
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teristic of any spin glass (see Figs. 1 and 2 and the discus-
sion in Sec. II). In fact, the superparamagnetic state in
very dilute Eu„Sr, «S is distinct from the spin glass
phase in the same material [see Fig. 29(b): TI(co) for the
spin glass phase extrapolates to zero at about xz ].

Even in this nearly trivial description of super-
paramagnetism in very dilute Eu Sr&- S, an inherent
limitation of this approach becomes evident when one
considers the region of very low temperatures, where X(co
exhibits a second peak [Fig. 42(b)]. This peak can be at-
tributed to dipo1ar interactions among different clusters
(Eiselt et al. , 1979); in the theoretical description [Fig.
42(b)] it was included only qualitatively via a mean- ie- ield
treatment on the level of the theory of Klein and Brout
(1963). While in very dilute Eu„Sri „S "single-cluster
superparamagnetism" [peak of X(t) at higher tempera-
ture] and the collective effects (dipolar spin glass behavior
showing up via the peak at lower temperature) are
separate phenomena, because of the short Ange of the ex-
change interaction, superparatnagnetism of strongly
correlated magnetic clusters and spin glass behavior due
to interactions ~mong clusters in other cases cannot be
separated, but occur at the same time in the system on
different length scales.

We now turn to a different way of describing dynamic

p enhenomena in spin glasses in terms of clusters: we con-
sider the frozen state well below the freezing temperature
on short and intermediate time scales. Then fluctuations
are possible where the spin configuration is rearranged by
overturning a cluster of spins relative to its frozen envi-
ronment (Binder, 1977a, 1977b; Stauffer and Binder,
1978; Dasgupta et al. , 1979; Ma, 1980). We may view
this process as a thermally activated hopping over one of
the sma11 barriers in the rugged landscape of the coarse-
grained free energy depicted schematically in Fig. 4. Fig-
ure 43 shows such a small barrier for an Ising glass in
more detail. Both the distance c2—c~ ——c. between the en-

ergy levels and the barrier heights v in between them are
random variables, if one studies these excitations in a
random-bond model. Dasgupta et al. (1979) express the
relaxation of energy, magnetization, and susceptibility in
terms of the probability distribution N(E, U) that energy
differences

~

s
~

between the levels and energy barriers U

0.05
)

0.10
I

0.15 T(K)

energy Jl

~-~g-ct-s t t tt )t )) )) )titt tie

FIG. 42. Dynamic susceptibilities of Eupp5Srp95S plotted vs
temperature as measured (a) and calculated (b). Parameters of
the curves are measuremerit frequency (a) or time (1} up to
which the field is applied. The dash-dotted lines in case (b) give
results for x =0.02S and 0.01; the dotted line gives results for
x =0.0S when all clusters larger than pairs are ignored. The in-
set shows the Arrhenius law for the position of the time-
dependent maximum. From Eiselt et ah. (1979).

phase-space coordinate

FKx. 43. Schematic plot of energy vs a phase-space coordinate
representing various states of a "cluster. " From Binder (j980a),
following Dasgupta et aI. (1979).
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will occur: For instance, one considers an initial distribu-
tion with a finite total magnetization. Suppose that
single-spin flips have brought the system to an energy
minimum. Dasgupta et al. (1979) then concentrate on the
further decay due to the flipping of clusters,

rcpt(t)= cr~+o'(0)t /cc~,

where

(3.137a)

and

crz — dv de m sgnEN (s,u),
0 oo

0
cr'{u) =I ds 2mN(E, u),

(3.137b)

(3.137c)

a~ ———
I [dcr'(v)/du]/o. '(u)

J „ (3.137cl)

dt
P( IS, J, t) = —g W(S;~ S;)P( ISJ ),t)—

Iri these equations, m denotes the spin per cluster aver-
aged over the N(E, u)dE, du clusters. Obviously, for a suit-
able distribution of barrier heights, one obtains coeffi-
cients cc~ &0, and hence this mechanism may account for
the apparent power-law decay of the remanent magnetiza-
tion, seen over some range of times sometimes in experi-
ments [Fig. 19(b)] and simulations (see Sec. V.B). This
treatment also predicts that the exponent a(T,H) in the
phenomenological law Eq. (2.33) is linearly proportional
to temperature.

Of course, it is a difficult task to calculate N(e, u)

analytically. For a square nearest-neighbor Gaussian Is-
ing spin glass, Dasgupta et al (1979) es. timate the leading
contribution of N (E,v) due to clusters containing two
spins only, and find reasonable agreement with corre-
sponding Monte Carlo simulations. We shaH return to
this work and related studies (Takayama and Takase,
1981; Kinzel, 1982a, 1982b; Nemoto et al. , 1982; Taka-
yama et al. , 1982, 1983a, 19831; Morgenstern, 1983a;
Nemoto and Takayama, 1983; Palmer, 1983) in Sec. V.B.

In this context, it is also of interest to consider the re-
laxation due to single spin flips which also becomes very
slow at low temperatures. One starts (Binder and
Schroder, 1976a, 1976b) from the master equation
describing the dynamics of an Ising spin glass,

where P( ISJ I, t) is the probability that the spin configura-
tion lSJ. I occurs at time t and W(S;~ —S;) is a single
spin-flip transition probability per unit time, which—
following Cxlauber (1963) one usually assumes to be

W(S;—& —S;)= exp( 5A—/kz T)

1+exp( 5A—/ktt T)
(3.139)

+ (S;(t)S;(0)

&&t anh[ H"( 0) S( 0) /k~T])T,

where the effective field H (0) is

(3.140a)

(3.140b)

For low temperatures most spins are aligned along their
effective field, and hence one may put (Bray and Moore,
1979c) H {0)S;{0)=H (0). In addition, Eq. (3.140a) is
factorized

(S;(t)S;(0))T ———(S;(t)S;(0)) T 1 —tanh
B

jeff
( S;( t)S;(0) ) z. ——exp t 1 —tanh—

kBT

(3.141)

Here the time r& is the average time between spin flips in
the absence of exchange interactions and fields, and 5A is
the energy change involved in a single spin flip, which is
then calculated from Eq. (3.27). As is well known, the
choice of Eq. (3.139) is rather arbitrary, but at least it sat-
isfies detailed balance with the canonical equilibrium dis-
tribution P, q( I SJ[ ) = ( 1/Z) exp( A!k~ T—) [for a general
discussion of kinetic Ising models see Kawasaki (1972)].
From Eqs. (3.138) and (3.139) one may derive the follow-
ing exact equation of motion for the spin autocorrelation
function (Bray and Moore, 1979c):

d (S;(t)S;(0)) = —(S;(t)S;(0))

+g W( —S;~S;)P(IS~~;, —S; J, t),
(3.138)

Averaging this equation with the distribution of effective
fields P(H, T) yields

jeff
[(S;(t)S;(0)) T],„= J dH P(H, T)exp t 1 —tanh-

dt dt kBT
J

(3.142a)

which for T~O reduces to

[(S;(t)S;{0)) z.]„=—k~ TP(0,0)I dy(1 —tanhy)e
2t

(3.142b)
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C = J dI', (II =E,T)E/[1+ exp(E/kz T) ]()7 0

m2
P(0,0)kgT .

T 06 (3.143)

The physical picture for T—+0 is a dilute gas of indepen-
dently excited spins, similar to a free Fermi gas at low
temperatures, with P(0,0) being the density of states.
Thus the magnetic susceptibility assume's the form of a
Pauli susceptibility (Dasgupta et a/. , 1979),

X=I dEP(sT)2 Il —2/[1+exp(s/k&T)]I
0 BF

~2P(0,0) .

Of course, these considerations about single spins or clus-
ters having two low-lying states separated by a distance c.

have much in common with the concept of "two-level sys-
tems" introduced for glassy systems in general (Anderson
et a/. , 1972; Phillips, 1972). But an important distinction
is that here we consider barrier hopping due to thermal
activation only; in contrast to "window glasses" there is
no evidence that tunneling between the two levels is im-
portant. Thus the dynamic description embodied in Eqs.
(3.137)—(3.142) is reasonable for an Ising spin glass, but
not for a true glass.

So far we have considered motion over single barriers
only. In order to obtain a larger change of state, one must
move over many barriers in the "rugged free-energy
landscape" schematically depicted in Fig. 4. These many
sequential correlated activation steps have recently been
considered by Palmer et a/. (1984). These authors con-
struct a model containing a hierarchy of degrees of free-
dom, from fast to slow. The faster degrees of freedom
successively constrain the slower ones. With some arbi-
trary but plausible assumptions, Palmer et al. construct a
model which instead of Eq. (3.137) yields the
"Kohlrausch law, " Eq. (2.26) (Kohlrausch, 1847). This
function is known to be a fairly accurate description of
viscoelastic relaxation in polymers, dielectric relaxation in
disordered materials [in these contexts it is called the
"Williams-Watts function" (Williams and Watts, 1970)],
etc. Thus although the model of Palmer et a/. (1984)
makes no explicit connection to a more microscopic
model of a spin glass, the apparent universality of this re-
laxation in fact calls for a rather general mechanism as
well. Other theoretical models that also lead to Eq. (2.26)
(Ngai, 1979, 1980; Schlesinger and Montroll, 1984) seem
even less related to spin glasses. An intriguing remark of
Palmer et a/. (1984) is that there may be a connection be-

This result implies that

[(S;(t)S;(0))T],„=const ——,
'

kz TP(0,0)lnt,

i.e., 'the spin autocorrelation follows a logarithmic decay
law. This result is interesting because the coefficient ob-
tained in front of the logarithm is simply related to the
coefficient of the specific heat, which may be written as
(Anderson et a/. , 1972; Dasgupta et a/. , 1979)

tween the Kohlrausch law, Eq. (2.26), and Vogel-Fulcher
type behavior, Eq. (2.14), of the maximum relaxation time
in the system (on this time scale the relaxation is simply
exponential).

While the treatments of Dasgupta et a/. (1979) and
Bray and Moore (1979b) sketched in Eqs. (3.137)—(3.142)
refer explicitly to Ising spin glasses, most real systems are
closer to Heisenberg spin glasses. It is not a priori obvi-
ous, however, that for continuous degrees of freedom such
barrier-hopping mechanisms are similarly important. Ma
(1980) considers clusters of spins in a frozen background
of a quantum Heisenberg model and shows that, due to
the coupling of the spins in the cluster to the environ-
ment, an effective anisotropy for the cluster arises, al-
though the Hamiltonian is strictly isotropic. Ma (1980)
finds qualitatively similar relaxation behavior to that in
the Ising case [Eq. (3.137)].

While this treatment implies the existence of two-level
systems in spin glasses with continuous spins, and corre-
sponding structures have indeed been identified in numer-
ical studies (Reed, 1979a; Walker and Walstedt, 1980;
Grzonka and Moore, 1983, 1984; Henley, 1984b; see Sec.
V.B), we anticipate an important distinction between
Heisenberg spin glasses and "window glasses": for the
latter, it is believed that two-level systems are the ex-
clusive reason for the linear variation of the specific heat
with temperature at low temperatures (Phillips, 1972; An-
derson et a/. , 1972). In Heisenberg spin glasses, numeri-
cal studies (Walker and Walstedt, 1977, 1980) have sug-
gested that the linear specific heat can be explained quan-
titatively by a high density of states of delocalized modes
(i.e., "spin waves" of a sort). Moreover, there should be
other modes of relaxation, which might lead to relaxation
similar to the laws of Eqs. (3.137) and (3.142), but have
nothing to do with two-level systems. Bray and Moore
(1982a) have suggested that local minima occur with a
high density of directions for which the (free) energy sur-
face is essentially flat. Bray and Moore (1982a) suggest
that the system may stay in the vicinity of such a particu-
lar local minimum (which they call a "hole" ) for macro-
scopic times; but they also raise the question of whether
their "hole story" really is the whole story, as far as slow
relaxation in Heisenberg spin glasses is concerned.

IV. MEAN-F IELD THEORY

It was the observation by Cannella and Mydosh (1972)
of a cusp in the ac susceptibility which showed the impor-
tance of cooperative effects in spin glasses and led theor-
ists to the idea that there might be-a sharp phase transi-
tion. The first theoretical paper to predict a phase transi-
tion was that of Adkins and Rivier (1974), though their
idea of a "short-range order parameter" appears to
predict a transition only because the RKKY interaction is
long range, and has not been takeri up subsequently.
Most recent theoretical developments stem from the clas-
sic paper of Edwards and Anderson (1975; see Sec. III.D),
who proposed a simpler model than the RKKY interac-
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tion and investigated its properties within what they
called a mean-field theory. Although some aspects of
their work have to be refined to make a consistent mean-
field theory, as we shall discuss in detail, their basic ideas
have been amply vindicated. Shortly afterwards Sher-
rington and Kirkpatrick (1975) proposed a variant of the
Edwards-Anderson (EA) model in which mean-field
theory should be exact, and most of the subsequent work
in this area has been in finding the exact solution of the
SK model. In this section we shall summarize present
understanding of this model, concentrating on the sim-
plest case of Ising spins. Other models, such as those
with Heisenberg spins, will be discussed relatively briefly
in Sec. IV.H.

(4.1)

where S;=+1 and the sum is over each pair (i,j) once.
The MFT states that the magnetization M is given by the
stable solution of

M =tanh(PJM), (4.2)

where J=QJ, Ji~. This is well known (Stanley, 1971) to
have only a solution with M=0 for T & T, =Jlkz,
whereas two more solutions with M of equal magnitude
and opposite sign occur for T & T, . One can show that
these solutions with nonzero M are stable for T & T, and
that the solution with M =0 is a local maximum of the
free energy. One can allow for more general ordered
states such as antiferromagnets by permitting the local
spin expectation value to depend on site and by calculat-
ing m; (= (S; )T) from

A. Sherrington-Kirkpatrick model
and replica-symmetric solUtion

The mean-field theory (MFT) of ferromagnetism (e.g.,
Stanley, 1971) has the two desirable virtues of a successful
approximation: (a) it is simple; (b) its predictions usually
agree fairly well with experiment. Concerning (a), the
theory is characterized by a single order parameter, the
magnetization per spin M, which is determined from the
solution of a single transcendental equation. As for (b),
one usually finds that for three-dimensional systems the
global features of the phase diagram are reproduced,
though critical behavior close to the transition tempera-
ture is not so well described (Stanley, 1971). Furthermore
MFT is the starting point for better theories (see, for ex-
ample, Ma, 1976) which include fluctuation effects
neglected in MFT. These theories predict that fluctua-
tions destroy the transition completely if the space dimen-
sion d is less than a special value d~, called the lower crit-
ical dimension. In the case of ferromagnetism di ——1 for
Ising spins and dI ——2 for vector spin models with con-
tinuous rotational symmetry of the spins (Stanley, 1971).
Clearly MFT is in serious error if d & di.

For an Ising ferromagnet with no disorder the Hamil-
tonlan is

I;=tanh Pg J~mj. (4.3)

It would obviously be very useful to have a MFT for
spin glasses, and one might ask whether Eq. (4.3) is a
satisfactory MFT for the EA Ising spin glass model (see
Sec. III.D). We shall see in Sec. IV.C that it is not, and
that another term must be included in the argument of
the tanh. However, even if Eq. (4.3) were adequate for
spin glasses, we would still not have a complete theory.
Equation (4.3) actually represents X equations which have
to be solved for a particular set of J;J and then averaged
over the JJ distribution. This is an extremely difficult
task, as we shall see for the corrected equations in Sec.
IV.C. We really need a theory with a small number of
equations that involve the distribution of J,j rather than a
particular realization. The work of the Japanese school
(Matsubara and Sakata, 1976; Veno and Oguchi, 1976),
which came slightly after Edwards and Anderson, starts
with equations similar to (4.3), though at a higher level of
approximation, such as Bethe-Peierls, and then proceeds
to average over the disorder, which needs further approxi-
mations. We shall not discuss the details of this approach
and its subsequent developments (e.g., Katsura, 1976;
Oguchi and Ueno, 1977; Tamaribuchi and Takano, 1978;
Katsura and Fujiki, 1979; Takano, 1980) because, interest-
ing though it is, we feel that it has contributed rather less
to an understanding of spin glasses than the Edwards-
Anderson —Sherrington-Kirkpatrick approach. %"e have
preferred, in this section, to give a fairly thorough and
hopefully pedagogical account of what we feel has been
the "mainstream" area, but this necessarily means that
other interesting approaches are mentioned only briefly or
not at all.

Instead of averaging the local mean-field equations,
(4.3), analytically one can solve them numerically for a
given set of J~ by an iterative method (Soukoulis et al. ,
1983a). This local mean-field approach is not quantita-
tively reliable, because it misses the "reaction field" term
(see Sec. IV.C). However, it is straightforward to imple-
ment and probably gives a reasonably good physical pic-
ture of phenomena taking place on finite time scales
where the system gets .stuck in states that are not neces-
sarily the lowest-energy state.

Since it is not a priori obvious what mean-field theory
should be, Sherrington and Kirkpatrick (1975) made the
following suggestion. The MFT of ferromagnetism,
which is normally an approximation, becomes exact in the
limit of infinite-range interactions (Stanley, 1971) where
every spin couples equally with every other spin. Sher-
rington and Kirkpatrick therefore proposed that the MFT
of spin glasses should be the exact solution of an infinite-
range EA model in which the probability distribution
P(JJ ) is the same for all pairs of spins no matter how far
they are apart. This is clearly an unphysical assumption,
but the infinite-range model of ferromagnetism leads to a
theory that agrees fairly well with experiment, so it seems
sensible to try an analogous approach for spin glasses.
The SK model will be studied in detail in this section.
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g—J,,s,s, —+H, S, ,
&ij & i

(4.4)

where a local field M; has been included, the notation
(i,j ) means include each distinct pair once, and P(JJ ), a
Gaussian distribution,

We shall see that its solution does not have the desired
feature of simplicity, ingredient (a) above, but unfor-
tunately other models either throw away important phys-
ics or are even more complicated. There is also contro-
versy, discussed in Sec. V, as to whether di is greater than
three, or not, for spin glasses, and hence it is disputed
whether or not the model is relevant for describing experi-
ments, ingredient (b). In this section we shall not discuss
these aspects but confine our attention to the properties of
the model itself. We shall see that they are quite novel.

The SK Hamiltonian is the same form as the EA
model, namely

' 1/2

P(J; )=—
z~ exp[ N—(J»" —Jo/N) /2J ]»ij (4.5)

is the same for all pairs of spins, so

[JJla. =Jo/N

fJ~J),„[Jg—&],„=J /N .
(4.6)

In this section the symbol J refers to the standard devia-
tion of the distribution (XN'~ ), whereas elsewhere we
use b,J. The factors of N ' in Eq. (4.6) will be necessary
to get a sensible but nontrivial thermodynamic limit. Cal-
culations indicate that a Gaussian distribution is not
essential, but that for N —+ oo any distribution whose first
two moments are given by Eq. (4.6) and whose higher mo-
ments are bounded will give the same results.

Following Edwards and Anderson, Sherrington and
Kirkpatrick studied their model by means of the replica
trick (Sec. III.C). One starts with Eq. (3.25) for [Z"],„,
which here takes the form

[Z"],„= g J +P(J;, )&J;, exp P g J;; g S; SJ +/3+H; g S,.
~S. =+~I .&ij& . &i j& a=& i a=&

(4.7)

where a=1, . . . , n, denotes a replica. The integral over the J;z is easily computed for the Gaussian distribution, Eq.
(4.5), by completing the square, and gives

[Z"],„= g exp N-' g ,'(pJ)—'gs,S, S/'Sf+/3J, QS, S, +p+H, gs,
(sp —+]I &~j& a p a i a

Noting that (S; ) =1 and dropping some 1/N corrections in the exponent, one rewrites Eq. (4.8) as

( J)2 ' '2 PJo
' '2

[Z"]„=exp[,'(/3J) nN] g e—xp g Qs; SP + g Qs; +P+H; gS;
Is,. =+&I a&p i a i i a

(4.9)

A,X

2
+PA,Xexp(Aa /2)=

The squared terms can be simplified using the Hubbard-Stratonovitch identity
1/2

OO

(4.10)

and one obtains

[Z"],„=exp[ ,' (/3J) nN]f-
a(p 2'

N/3J
PJ dq~p Q dm ~2'

Xexp
N (/3J) p-

a&p

N/3Jo

2 g m +N log TrexpL [q p, m~] (4.1 1)

where

L[q p, m ]=(pJ) g q PS S~+/3+(J m +H)S
a&p a

(4.12)

the trace is now over the n spins S, and we have taken
the field to be uniform for simplicity. Note that there are

n (n —1)/2 independent variables q p with a &P. The di-
agonal component q does not occur [because (S )~=1,
a constant], and we shall define q~p with a & P by making

q a symmetric matrix, i.e., q p
——qp .

If we assume that the limit N —& Oo can be taken before
n~0 (see Sec. III.C), then the integrals in Eq. (4.11) can
be evaluated by steepest descents because the argument of
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Pf—=lim (PJ)
n o 4

1 ——gqp+ —gm1 z PJo 1

n
( p) 2 n

the exponent is proportional to X. From Eqs. (4.11),
(4.12), and (3.24) one then finds that the free energy per
spin f is given by

M =
1&2 f e ' tanh[pH(z)]dz,

and H(z) related to q and m by

H(z)=Jq' z+J M+H .

(4.21)

(4.22)

+—log Tr exp(L)
1

n
(4.13)

where the qap and ma are given self-consistently by the
saddle-point conditions

Bf df
~qap ~ma

or, in other words,

TrS S~expL [q p, m ]
q~I1

——S S~ =lim
n~o Tr expL [q~p, m~]

TrS expL [q~p, m ]m~= S: = lim
n o TrexpL [q p, m ]

(4.14)

(4.1Sa)

(4.15b)

Furtllel'Inole fol Jo ——0, H~0, the susceptjbjljty g js

The notation g~ &~
means sum over all distinct replicas.

From Eq. (4.13) we see that Tr expL must tend to unity as
n~0, to cancel the factor of n ', so the denominators in
Eqs. (4.15) can be neglected. The central problem of this
section will be to find the correct (in a sense discussed
later) solution of Eqs. (4.15).

For future reference we note that for Jo ——0 the energy
per spin U [= —B(Pf)/BP] is given by

—U=lim 1+—g q p +—pm . (4.16)
J' 1 2 H

o2T

H, =H+QJ, , &s, &, .
J

(4.23)

Each factor of JJ & S~ & z is a random variable and,
neglecting correlations between different terms, the cen-
tral limit theorem tells us that the H; have a Gaussian
distribution. Also neglecting correlations between the J,J
and the &SJ &T one finds

[Hi]av=H+ JoM, (4.24)

and assuming further that there are no correlations be-
tween different &SJ & T, so that

[&s & &s, & ].,=M'+(q —M')5,-, , (4.2s )

From Sec. III.C we note that M = [&S;&T],„ is the mag-
netization and q =[&S;&T],„ is nonzero whenever &S; &T
is nonzero, even if the &$;&T are random and have no
preferred sign. Hence spin glass ordering is characterized
by q&0, M =0. From Eqs. (4.20) and (4.21) we see that
H(z) can be interpreted as the local molecular field acting
on a site. Different sites have different fields because of
disorder, and the distribution is Gaussian with mean
JOM+H and variance J q.

These properties of the local molecular field have also
, been obtained without replicas (Southern, 1976; Blandin,
1978; Chalupa, 1978) from the local mean-field equations,
Eq. (4.3), according to which H;, the molecular field on a
site I,, is given by

y=lim —1+—g q p
1 1

-OT n(
(4.17)

one obtains

[H i'1av [H;]av= J'q —. (4.25b)

q g s S1'=q gs
(a, p) a

(4.18)

and using ident'ity (4.10) one more. One finds

Pf = (1—q) ——M
4 2

dz e ' ~ log[2 coshPH(z)]dz
(2~)' '

(4.19)

with q and M self-consistently given by

q =,&2 f e ' tanh [pH(z)]dz, (4.20)

For the rest of this section we set Boltzmann's constant to
unity.

' Edwards and Anderson and Sherrington and Kirkpa-
trick took the replica-symmetric solution with q p

——q,
m =M. One can then evaluate the trace by writing

2

Noting that configurational averaging and site averaging
are normally equivalent (see Sec. III.A), this gives the sta-
tistical properties of the local molecular fields H; derived
above from the replica method. While the present deriva-
tion is intuitively reasonable and has the advantage of
avoiding replicas, it is unfortunately wrong. The local
mean-field equations, Eq. (4.3), are incorrect (see Sec.
IV.C), and would give twice the correct T~. In order to
obtain the right answer for the distribution of H; one
must also make the wrong assumption of statistical in-
dependence of the Jz and the S; and the error in making
it must exactly compensate for the error in assuming the
local mean-field equations. This tells us that we have to
be very careful about neglecting correlation effects in spin
glasses.

It is straightforward to solve Eqs. (4.20) and (4.21) nu-
merically for M and q and also obtain analytic results in
limiting cases. For H =0 the phase diagram is shown in
Fig. 44. The phases are paramagnetic with M =q =0,
ferromagnetic with M&O, q&0, and spin glass with
M =O,q&0. Clearly if M&0 then q must also be
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SG

0.2,

0

l l.25

FIG. 45. Plot of the susceptibility P and specific heat C for the
SK solution of the SK model with Jo——H =0. Note that
Tf ——J. The dashed line is the prediction of the Parisi theory for
X.

FIG. 44. Phase diagram for the SK solution of the infinite-

range SK model. J and Jo are related to the width and mean of
the exchange dhstribution by Eq. (4.6). The phases are paramag-
netic (P), ferromagnetic (F), and spin glass (SEs). Note that for
1 & Jo/J & 1.2S the system goes from paramagnet to ferromag-
net to a "reentrant" spin glass phase as the temperature is
lowered. This reentrant behavior does not occur in the exact
solution of the SK model (see Fig. 49).

X=—(1—q),1

T
J2—U= (1—q ),2T

1 Jf= —T log2 —— ( T g Tf ),4 T

(4.29b)

(4.29c)

(4.29d)

nonzero. Note that for 1(Jo/J(1. 25 the system passes
from a paramagnetic to a ferromagnetic to a "reentrant"
spin glass phase as the temperature is reduced. It seems
curious that at intermediate temperatures, where entropy
plays a role, the system is ferromagnetic, but as T~O one
finds that the more disordered spin glass state actually
has lower energy and so is preferred. In fact the SK cal-
culation does not get the entropy correct at low tempera-
tures (it becomes negative, which is impossible for any
system with a countable number of states), and the exact
solution does not, apparently, have a reentrant spin glass
phase (see Sec. IV.B).

We discuss first the solution of Eqs. (4.19)—(4.22) for
Jo ——H =0 where, of course, M=0. Expanding the in-
tegrand in Eq. (4.19) one finds for small q that

J2C= (T) Tf),2T2
1/2

2 T
q =1— — —+ (T~O),J

(4.29e)

(4.29f)

I.O

where C is the specific heat. The susceptibility and
specific heat are shown in Fig. 45. A cusp is predicted at
Tf both for C and p, but experimentally only a cusp in p
is seen. Figure 46 shows the temperature dependence of q
(labeled qsx in the figure).

Pf=Pf +— I — Q — +—Q + ' ', (426)
1 T 2 Q )p 4

0 4 J2 3 24
, os

where Q =(PJ) q and Pfo ———log2 —13 J /4. This is a
special case of Eq. (3.56) with M =0 and for Ising spins,
so qq does not exist and q—=ql~. The transition occurs
when the coefficient of the quadratic term vanishes, so

0.6

0.4
Tf ——J . (4.27)

Finding the extremal values with respect to q of Eq. (4.26)
and defining

0.2

T Tf8=
Tf

(4.28)
0.2 0.4 0.6 0.8 !.0

one obtains

q =
I
~

I
+ 3 I

~
I

'+
It is also straightforward to show that

FIG. 46. qsK is the spin glass order parameter for the SK solu-
tion of the SK model with Jo ——R =0. qEA is the approximate
result (4.88) for q (1) in the Parisi theory.
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(4.30)

For Jo ——0 but H&0 one finds that M is a nonanalytic
function of H at Tf, and for small H

T +2TfM= 1 —
2 2 + (T&Tf),

3T T Tf

H fH/M= 1 —~ +
Tf 2Tf

(T =Tf) . (4.31)

Hence g„~=—a'~Zaa' diverges at. Tf and for T~Tf
X„)~0 (4.32)

A divergence of X„t is a general feature of spin glass tran-
sitions (see Sec. III.F; Katsura, 1976; Suzuki, 1977). A fi-
nite magnetic field rounds out the cusps in g and C,
though the effect is rather weaker than the rounding of g
observed experimentally.

Since q is the spin glass order parameter and g„~ is
essentially (Sec. III.F) the corresponding susceptibility,
one can define exponents f3 and y by

/
/

/

/

FIG. 47. Sketch of the free energy of the SK solution of the SK
model with Jo ——H =0. Uo is the ground-state energy per spin
{=V2/mJ =0.80J) of the SK solution. The dashed line shows
the analytic continuation of the paramagnetic solution below

Tf, where it lies below the SK solution of the spin glass phase.
The paramagnetic solution must, however, be rejected below Tf
because it is unstable. The SK solution also turns out to be un-
stable below Tf, and the Parisi solution, which is believed to be
exact, has a somewhat higher free energy than the SK value.

g„)~ ( T —Tf ) r ( T~Tf+ ) .,

q cc(Tf —T)~ (T~Tf ) .

(4.33a)

(4.33b)

The mean-field exponent values are therefore

@=1, (4.34a)

(4.34b)

and the cusp in the specific heat shows that the corre-
sponding exponent, a, has the value

(4.34c)

This replica-symmetric solution is fairly simple and in-
tuitively appealing in that a transition to a spin glass
phase, characterized by a single order parameter q, is
predicted at low temperatures. However, there are some
curious features, which we now discuss. Consider
Jo H=0, for which ——M =0, so f is only a function of q.
f is a maximum with respect to q for the "obvious" solu-
tions, q =0, T & Tf, q&0, T & Tf,' furthermore, below

Tf the q =0 solution has a lower free energy than the
spin glass state (see Fig. 47). These results are just the op-
posite of what is expected.

The resolution of this paradox lies in the fact that the
number of variables q~~ is n(n —1)j2, which becomes
negative as n~0. The saddle-point calculation above
makes sense only if the chosen solution is a local
minimum (i.e., locally stable). That is to say, we form the
matrix of second derivatives d fldq hdqrs, evaluated at
the saddle point, and the solution is locally stable if there
are no negative eigenvalues. This is because the X
corrections to the saddle-point result involve Gaussian in-
tegrals about the saddle point which must converge.
However, changing all the q~p's simultaneously will de-
crease the free energy because there are a negative number
of them.

Above Tf the q =0 solution is stable, but below Tf it
is unstable (see Sec. IV.B) and so must be rejected, even

though it has a lower free energy than the spin glass solu-
tion. In fact, below Tf the SK solution with q+0 is also
unstable (Sec. IV.B) and so must be rejected too. This is
why the entropy becomes negative at low temperatures.
The presumed correct solution (Parisi, 1979, 1980a,
1980b, 1980c, 1980d, 1980e) has an even higher free ener-

gy. Because of this, one frequently sees the statement that
the free energy in spin glasses should be maximized. This
is, however, rather misleading because one could have a
situation with a first-order transition when there are two
(or more) stable solutions. The saddle-point method says
very clearly that in this case the solution of minimum free
energy must be taken. Hence the correct statement is that
we are looking for the stable solution of Eqs. (4.15) of
lowest free energy. This has recently been demonstrated
by Mottishaw and Sherrington (1985) for an exactly solv-
able model which has a first-order spin glass transition.
It turns out, however, that local stability may not be
enough for the solution to be truly stable, and there is at
least one problem, discussed in Sec. IV.H.3, in which
there are two locally stable solutions but thermodynamics
forces you to choose the one of higher energy. The one of
lower free energy must be metastable. Thus the problem
of which solution to choose is sometimes not trivial. The
statement that the free energy should be maximized often
works, but should be treated with caution.

While this point of view seems to work, it is not com-
pletely satisfactory. In the saddle-point approach one
really looks for the largest value of the exponent in Eq.
(4.11). Usually this is at an extremum, but here the dom-
inant contribution appears to be at the end points
q p~+ ao. The standard approach is to ignore. these re-
gions. The fact that they seem to dominate is probably
related to the interchange of limits (N~ ca followed by
n —+0 instead of the other way round). For the percola-
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tion problem this has indeed been shown recently by Rud-
nick and Gaspari (1986). If the limits are performed in
the correct order, the q —++ ao regions do not contribute
for the percolation problem (Rudnick and Gaspari, 1986)
and we expect the same to be true in spin glasses.

g(S, SP) = Iim [Z"],„,
n OBA p

2

g(S; SPSJS~ ) = lim [Z"],„.

(4.38)

(4.39)

B. Replica symmetry breaking
and Parisi*s solotion

We now discuss in more detail the instability of the
replica-symmetric solution mentioned above and then dis-
cuss a stable solution that appears to be correct.

First of all it is useful to note that saddle-poirit fluctua-
tions give us values for correlation functions such as the
spin glass susceptibility Xs~, defined by

[z"].,=j
ap

where

1 ——X q'p(/3J) 1

(a, p)

(4.40)

In Eq. (4.39), a, /3, y, and 5 can take any values, except
that a &/3, y & 5. If we include 5 p, Eq. (4.11) becomes

1 j2

/3J dq~p exp( Nn/3—f I q I ),

Xso= y[((s'Sj )T (S ) T(s' )T) ] (4.35)

+—log Trexp(1. Iqj)
1

(4.41)
From the rules in Sec. III.C we express the individual
terms as replica averages in the following way:

[(s;SJ} ]„=lim y (s; s spsp),
n~o n (n —1)

( p)

with

I.Iqj= g [(PJ) q p+b. p]S SP .
a&p

(4.42)

[(S;SJ)T(sf )T(SJ ) 7.],„=lim

x y (s, s, sfsj'),
- (a, p, y)

2 2 =1 1

o n (n —1)(n —2)(n —3)

(4.36)

Using new integration variables uap defined by

u p=q p+(PJ) 5 p, (4.43)

we find that the 6 p no longer appear in I. but occur in-
stead in the quadratic term in Eq. (4.41). The derivatives
in Eqs. (4.38) and (4.39) can now be evaluated and give,
for a&/3, y &5,

(s, s,ps,rs,'),
(a, p, y, 5)

—g(s;S,P)=lim(q p),
n o

(4.44)

the average being over all sets of distinct replicas. In the
thermodynamic limit it follows from the saddle-point cal-
culation in Sec. IV.A that averages on different sites
decouple, so, for the replica-symmetric solution, each ex-
pression in (4.36) is equal to q, and the terms in Eq.
(4.35) cancel. It is therefore necessary to include fluctua-
tions to calculate XsG.

Let us, for simplicity, evaluate Xso with Jo ——0=0, in
which case the I variables can be integrated out. It is
also useful to add to the effective Hamiltonian in the ex-
ponent of Eq. (4.8) a set of fictitious fields 5 p which
couple to g,. S; SP, i.e.,

[z"].„= g exp g g s, s, spsp-( J)'
2X ( ~ ) p

C
Pap=Cap+&Cap ~ (4.46)

where q~p is the saddle-point value (= q in the SK solu-
tion), so from Eqs. (4.35), (4.36), (4.45), and (4 46) we ob-
tain for the SK solution

X, =N hm[(5q.'p) —2(5q.,5q.,)+(5q.,5q„)],n~0

1 g(S; SPS—JSJ ) =lim[N(q pqrs) (/3J) 5 pcs—],
I,J

(4.45)

where 5 p rs is one if the pair (a,P) is the same as the pair
(y, 5) and zero otherwise, and the averages are for the
weight exp( Nn/3f Iq]) with—b, p

——0. Evaluating Eq.
(4.44) by steepest descents gives Eq. (4.15a), while Eq.
(4.45) requires a study of the Gaussian fluctuations about
the saddle point. We define

+X &pcs S,'
a&p i

(4.37) (4.47)

Taking derivatives with respect to 5 p and remembering
that for n —+0 there is no normalizing denominator in the
definition of correlation functions [see Eq. (3.32d)], one
has

where all replicas are different.
Having shown that saddle-point fluctuations determine

Xso, we now evaluate these fluctuations. We expand
fIqI up to second order in the 5q p, obtaining, for any
saddle point,
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Pf{qI=Pf{q']+lim g R ~'r 5q P5qrs+ .
n~o 2n p

y~5

(4.48)

1
xsG= —(pJ) '

A3

where k3 is negative and for T—+ Tf

(4.55)

where f{q'I is the saddle-point free energy, and

(PJ)-'R '=5 —(PJ)'[(S S S S'&

—(s s~&(srs'&],

(4.49)

R ~r =5 grs(PJ) [1—(PJ) ] .

Hence all eigenvalues are equal and given by

(4.50)

the averages being over weight exp(L {q]), Eq. (4.42),
with b,~~——0 and q ~ ——q'~. To perform the Gaussian in-
tegrations over the 5q~p, which come from Eqs. (4.40)
and (4.48), we need to find the n (n —1)/2 eigenvalues of
the quadratic form R ~'r . We see immediately that the
saddle point is sensible only if none of the eigenvalues are
negative. Otherwise the Gaussian integrals (which, as we
have seen, give rise to physically meaningful quantities
such as XsG and also, it turns out, the 1/N corrections to
f) diverge.

It is trivial to calculate the eigenvalues above T, where
1.{qI=0, so R P'rs is diagonal, i:e.,

(4.56)

By contrast A, ~ q, related to spin fluctuations by (Pytte and
Rudnick, 1979)

X, ,' —(PJ)'=X„=—g[(s;S, &' —4(S;S, &(S; & (S, &1,2 3 + i g

+3&s; &'&SJ &']., (4.57)

is positive and given by

~i,z=218I (4.58)

as- T~Tf
Equation (4.56) spells disaster for the SK solution

below Tf because Xsz is then predicted to be negative,
which is clearly impossible from the definition (4.35).

The eigenvalues can be expressed as functions of n, and
one finds that for positive integer n they are all positive.
The instability only shows up when we continue to real n

and let n ~0. There is a critical value n, (8) below which
k3 becomes negative, and for

I
8

I
~0 one can show that

(Kondor, 1983)
A, =(PJ} [1—(PJ) ] .

From Eqs. (4.48) and (4.50) it follows that

(5q p}=(NA, )

& 5q~p5q~, & = & 5q.p5qrs & =o

so, from Eq. (4.47),

(4.51)
(4.59)

1)(PJ) (1—2q+r), (4.60)

de Almeida and Thouless (1978) have found that when
one includes a field or a nonzero mean in the distribution,
A, 3 is positive provided

xsc= ——(pJ)=1 -2 (4.52)

T (T )Tf),T Tf
(4.53)

A, —20+ (4.54)

where 8=(T—Tf )/Tf.
Below Tf, 8~@~ is no longer diagonal. The di-

agonalization has been performed for the replica-
symmetric solution by de Almeida and Thouless (1978),
Pytte and Rudnick (1979), and Bray and Moore (1979a).
They find that there are three distinct eigenvalues A,;,
i =1,2, 3 for general n, but A, ] and A,2 become degenerate
for n~O The comb. ination of fluctuations in Eq. (4.47)
corresponds (Pytte and Rudnick, 1979) to the eigenvector
for A,3, called the "replicon" mode (Bray and Moore,
1979a). Hence XsG is given by

where the last line follows from Tf ——J. Since XsG is re-
lated to X„~ by (3.109), Eq. (4.53) agrees with the expres-
sion for X„~ in Eq. (4.30), obtained directly from thermo-
dynamics. We see that XsG diverges at Tf because X=0,
signaling the onset of an instability. As T~Tf, A, is
given by

where

1
e ' tanh H(z)dz(2~)'" (4.61)

and where H(z) is given by Eq. (4.22). The borderline sit-
uation in which there is an equality in Eq. (4.60) is known
as the Almeida-Thouless (AT) line. With Jo ——0, H&0,
the AT line is shown in Fig. 48 in the II -T plane. In cer-
tain limits it can be calculated analytically with the re-
sults

1/3, ' 2/3
3 H

5Tf~0,
4 J (4.62)

exp( —H /2Jz), T~O .
3 (2m)'

(4.63)

For H =0, Jo&0, the AT line is shown in Fig. 49 as the
boundary between the ferromagnet phase I' and a modi-
fied ferromagnet phase E' (sometimes called a mixed
phase). The properties of this phase, I"', and the
boundary between it and the spin glass phase cannot be
calculated from the SK solution. One needs the Parisi

where 5Tf = Tf TAr(H), Tf is the ze—ro-field transition
temperature, and
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0.2 04 0.6 0,8 I.O

This must involve more than one order parameter, so we
have to break the permutation symmetry of the replicas.

We have very little guidance as to how one should
break this symmetry, and there are infinitely many possi-
ble schemes once we let n~0 (Parisi, 1980a). Some help
is obtained, however, if we note that Eqs. (4.13), (4.16),
and (4.17) have factors of n ', which must be compensat-
ed if a meaningful limit n —+0 is to exist. This is obvious-
ly achieved if we make the replicas "equivalent" to each
other in the sense that all quantities involving a single re-
plica are replica independent. For example,

(4.64a)

FIG. 48. Plot of the Almeida-Thouless {AT) line for the SK
model with Jo ——0. To the right of the line the SK solution with
a single order parameter is correct, while to the left of the line
the Parisi solution is believed exact. The Parisi solution
represents the many-valley structure of phase space and noner-
godic behavior. The AT line, therefore, signals the onset of ir-
reversibility.

solution, to be discussed shortly. Above the AT line the
SK solution is stable and does appear to be the exact solu-
tion.

How can we rectify the instability of the SK solution
below the AT line? The eigenvalues of the paramagnetic
solution, Eq. (4.51), go negative for T & Tf, signifying an
instability. As a result the system breaks the symmetry in
order to make the eigenvalues non-negative. This works
for A, I 2 [Eq. (4.58)], but an instability remains in A, 3 to
second order in

~
8~ (the first-order instability of the

paramagnetic solution having been cured). To stabilize A,3

we must clearly break the symmetry in a different way.

SG

FIG. 49. A plot of the presumed exact phase diagram of the
SK model with 0=0. The P-SG and I'-F boundaries are the
same as in Fig. 44. F' is a ferromagnetic phase with replica
symmetry breaking, i.e., irreversibility {this is often called a
"mixed" phase) and is separated from F {where the SK solution
is exact) by an AT line. The F'-SG phase boundary is vertical
in the Parisi theory, as discussed in the text.

a=1
(4.64b)

for any power k and for any P, y. Although the replicas
are equivalent for a solution that satisfies Eq. (4.64), the
permutation symmetry of the replicas is broken if the q~p
are not all equal. Because the replicas are actually
equivalent, the standard terminology of "replica symme-
try breaking" is rather misleading; "breaking of replica
permutation symmetry" would be more appropriate.
However we shall use the conventional term from now on.

Initially several schemes were proposed (Blandin, 1978;
Bray and Moore, 1978; Blandin et a/. , 1980). However,
the results of Bray and Moore do not satisfy Eq. (4.64b)
and give an infinite free energy, while the solution of
Blandin (1978) and Blandin et al. (1980) is unstable, like
the SK solution. Shortly afterwards Parisi (1979, 1980a,
1980b, 1980c, 1980d, 1980e) proposed a bold generaliza-
tion of Blandin s ideas. His theory predicts many novel
results, satisfies Eq. (4.64), is stable, and agrees well with
numerical results, so it is probably the exact solution of
the SK model.

Parisi's ansatz for the order-parameter matrix q p can
be represented by a tree, shown schematically in Fig. 50.
The circles represent the n replicas, the vertical distance
represents q, and q & is the value of q where the branches
from a and fj meet. There are an infinite number of bi-
furcations of the tree, so all values of q occur between a
minimum value q and a maximum value q „, where
0 &q;„&q,„&1. The matrix itself can be drawn as fol-
lows. Take the n X n matrix (for notation we write
n—:mp) and divide it up into mI XmI blocks along the
diagonal, as shown in Fig. 51. Give a value q(mp) to all
elements except those in a diagonal block. Now- take one
of the m& )&m& diagonal blocks and divide it, along the
diagonal, lllto m2 XI2 blocks. ASSIg11 a vallle g(III I ) to
the elements not in a diagonal block. This procedure is
repeated K times, say, so we have

n=mo)m~)m2) ' ' ' )PB~)1 (4.65)

and corresponding 'order parameters q (m p ),
q(mI), . . . , q(mx). This procedure makes sense for n a
positive integer and K finite. We now assume it can be
analytically continued for n —+0 and K~ Do. Hence
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lim g q p
——f q (x)dx

n orat(n 1)
~ p)

for any power k, so that .

1

X=—1 —f q(x)dx

(4.66)

(4.67a)

J2 }
U = 1 —f q (x)dx +HM

2T . 0

where M is the magnetization per spin

(4.67b)

(4.68a)
FIG. 50. Sketch of the replica symmetry-breaking scheme of
Parisi, which can be represented by a tree. The circles at the
bottom represent the n replicas and the vertical axis measures q
increasing downwards. To find q p one traces back along the
branches of the tree from a and from P until they join. q s is
the value of q at this point. Brarichings occur at all values of q
between a maximum value q,„and a minimum q;„.

0&m; & 1 and, as E—+ao, we can replace m; by a con-
tinuous variable x, obtaining Parisi s order-parameter
function q (x), 0 (x ( 1. In other words, we now have an
infinite number of order parameters. Note that the SK
solution corresponds to the K =0 stage of Parisi's
scheme, or equivalently to assuming that q(x) is indepen-
dent of x. Unless otherwise stated the rest of the discus-
sion in this section wi11 be for J0——0.

It is straightforward to show that

qE~=q(1) . (4.68c)

The free energy is complicated and given for Jo ——0 by
(Parisi, 1980c; Duplantier, 1981)

(PJ) 1

pf = —1 —2q(1)+ f q (x)dx
4 0

f e ' ~ G(O,H+q(0)'~ z)dz,

(4.69)

The statistical mechanics order parameter q, defined by
Eq. (3.61), can be obtained from Eqs. (3.81) and (4.66) and
is given by

1

q =f q(x)dx . (4.68b)

In Sec. IV.C we shall show that the Edwards-Anderson
order parameter qEA, defined by Eq. (3.63), is given by

q, (g)
aG

X

where, for a given q (x), G (x,y) is the solution of the par-
tia1 differential equation

J Bq 8 6 BG
(4.70)

2 Bx Qy Bg

with boundary condition

G( l,y) =log[2 cosh(Py)] . (4.71)

etc.

FIG. 51. Construction of the matrix q p for the Parisi replica
symmetry-breaking scheme. One starts with the n Xn matrix
and for convenience writes n =—mo. This is divided along the di-
agonal into m~)&m~ blocks as shown. Outside the diagonal
blocks, the order parameter is q(mo). Each diagonal block is
then subdivided in a similar way into m2)& mz blocks. Replicas
which are in the same block of m ~ replicas, but different m~
blocks have the order parameter q(m&). This procedure is per-
formed E times, and eventually one lets %~00. The diagonal
elements q are zero.

The extremal value, in the sense discussed at the end of
Sec. IV.A with respect to variation of the function q(x)
has now to be found. Note that when we change q(x) it
is necessary to solve Eq. (4.70) again. The MFT of spin
glasses is hence not very simple, as noted in Sec. IV.A.
To obtain the SK solution one takes q(x) to be indepen-
dent of x, so G(x,y)=log[2cosh(py)] for all x, and
hence Eq. (4.69) reduces to Eq. (4.19). Although the
choice of the q p matrix seems arbitrary, and the analytic
continuation to n =0 is not mathematically rigorous, the
end result, Eqs. (4.69)—(4.71), looks perfectly respectable
and is our first hint that sensible and interesting physics
wi11 emerge.

Equations (4.69)—(4.71) do not give the free energy or a
self-consistent equation for q(x) in closed form. This can
be achieved, but the results will be deferred until Sec.
IV.D, where a different formulation (Sompolinsky, 1981a)
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that leads to essentially the same results will be presented.
The general solution for q (x) is unknown, but it is pos-

sible to obtain q(x) exactly close to Tf. Expanding the
exponential in Eq. (4.13) and performing the trace one ob-
tains the Landau expansion for arbitrary q & as (Bray and
Moore, 1978; Pytte and Rudnick, 1979)

pf =pfo+ lim ——
2

—1 TrQ ——,
' TrQ ——,

' TrQ
n on 4 Tf

and a second derivative gives

q (x)=x/2 or q'(x) =0 . (4.77)

The SK solution corresponds to choosing the second solu-
tion in Eq. (4.77) for all x and gives q(x)=—qsK

——
~

8~
[Eq. (4.29a)]. We now look for another solution. If we
assume that q(x) is continuous (which will turn out not
to be true for Potts models —(see Sec. IV.H.3), the solu-
tion must be of the form

+ & g Q'pQ~r
(a, P, y)

—+, g Q p+O(Q')
(a,P)

(4.72)

q(x)=q(1), 2q(1)=x& &x &1,
q(x)=x/2, xo &x &x, ,

q(x)=q(0), 0&x &xo ——2q(0) .

Substituting Eq. (4.78) into (4.75) gives

(4.78)

where we have set JI =Jo ——0 and Q~p
——(PJ) q p. Note

that if Q &
——Q for all (a,p), this reduces to the SK solu-

tion (4.26). Studying the stability of the SK solution
(Bray and Moore, 1978; Pytte and Rudnick, 1979), one
finds that it is the g Q p term in Eq. (4.72) that makes
A,3 negative. In fact,

(4.73)

[cf. Eq. (4.56)], where —y is the coefficient of the g Q &

term. To obtain q(x) to correct order in
~

0
~

one can
therefore neglect (Parisi, 1980a) the TrQ" and g Q pQ z
terms in Eq. (4.72). This is known as the Parisi approxi-
mation. Actually Parisi (1980a) took y = —, instead of the
value y = —,', for the SK model, but this only changes
some numerical factors in the answer. Taking the Parisi
approximation, working to lowest order in

~

9 ~, and re-
placing sums over replicas by integrals over x, analogous
to Eq. (4.66), one obtains (Parisi, 1980a; Thouless et aI
1980)

and

q(0)[2
~

&
~

—2q(1)+2q(1)'] ——', q(0)'=0 (4.79a)

q(0) =0 (H =0)

and 2
~
8

~
=2q(1)—2q (1), so

q(l)= /9/+O([0/ ) .

(4.80)

(4.81)

The solution given by Eqs. (4.78) and (4.80), and (4.81) is
sketched in Fig. 52. It is also straightforward to include a
small magnetic field H (Parisi, 1980b; Thouless et al. ,
1980). The solution is still of the form (4.78) but now

2/3
3 H

q(0) =— (4.82)

q(1)[2
~

8
~

—2q(1)+2q(1) ]——,q(0) =0 (4.79b)

at x =0 and 1, respectively. From Eq. (4.79) we see that
either q (0)=q (1), which is just the SK solution again, or

Pf =Pfo+ —,
' f dx

i Hi q (x)+ ——,xq (x) so a second "plateau" region appears (see Fig. 52). For

—q(x) f q (y)dy (4.74) q, (x)

Hence one can obtain f as a functional of q(x) within a
Landau expansion. A more general functional, applicable
at all temperatures, will be discussed in Sec. IV.D. Varia-
tion of Eq. (4.74) with respect to q(x) gives (Thouless
et al. , 1980).

2
~

8
~
q(x) —xq'(x) —f q'(y)dy

—2q(x) f q(y)dy + —,q'(x) =0 . (4.75)

As discussed in Sec. IV.A, we seek a solution of Eq. (4.75)
that is locally stable. However, the stability analysis is
complicated and will only be discussed in Sec. IV.G. Dif-
ferentiating Eq. (4.75) with respect to x one finds

]
2

~

8
i

—2xq(x) —2f q(y)dy+2q (x)=0 (4.76)

or

q'(x) =0,

0
1

X(h) X

FIG-. 52. The Parisi solution for q(x) close to T=Tf. The
solid line is for 0=0 and the dashed line is for small H. The
solution is independent of H, in this region of the H-T plane,
except for the appearance of the second plateau. For H =0 one
has q;„=xp——0. The general features of this figure persist at
arbitrary temperatures and fields. There is a "plateau" region
q =q,„ for x &x&, a region X«x &x&, where q(x) increases
monotonically, and, for H&0, a second plateau where q =q;„
for x & xp.
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q(1)=
I
e

I
+ I

e
I

'-
I
e

I
'+o(

I
0

I
'), (4.83)

while Eq. (4.80) seems to be true for all T & Tf (Parisi,
1980b; Sompolinsky, 1981a). As a consequence of Eq.
(4.80) one can show (Sompolinsky, 1981a) that

1 Tf q(x)dx =1— (H =0)
0 Tf

exactly, so, from Eq. (4.67a),

(4.84)

x &xo ——2q (0) the solution is unchanged to the order cal-
culated. When H =H~T, the value on the AT line [see
Eq. (4.62)], q(x) is independent of x, and for H &H~T
orie recovers the SK solution.

To higher order in
I
8

I

one finds (Thouless et al. ,
1980)

that (ii) and (iii) are true close to Tf. There is less evi-
dence to support assertion (iv). From the PaT hypothesis
one sees that q (0) at a given ( H, T) is just qs~ at
(H, T~T(H)), and similarly q(1) is qsK at (HAT(T), T), so
these can easily be calculated. For T~O one finds

'2

q(1)=1——3 T
(4.87)

2 J
As discussed in Parisi (1980c), Thouless et al (1.977),
Bray and Moore (1979b), and Sec. IV.C, the result
1 —q(1) ~T at low T is correct, and the coefficient,
though not known exactly, cannot differ much from that
in Eq. (4.87). In fact, the expansion away from Tf in Eq.
(4.83) can be rewritten, neglecting

I

4.
I

and higher terms,
as

X=—(H =0),1

J (4.85)
'2 3

q(1)=1—2 — +T T
J (4.88)

a constant, below Tf, see Fig. 45. A constant susceptibili-
ty below Tf is similar to many field-cooled magnetization
measurements (see, for example, Fig, 7), and is one of the
striking features of the Parisi solution.

It is interesting to investigate changes in thermodynam-
ic quantities close to the AT line. The magnetization has
only a weak singularity, both M and dM/dT being con-
tinuous, though 8 M/BT is discontinuous (Toulouse
et aL, 1982; Sommers, 1984), so the AT transition is third
order in the Ehrenfest sense. The AT line is characterized
by A,3

——0, so XsG diverges [Eq. (4.55)]. However, in finite
H, XsG, is not directly measurable, the relation (3.109) be-
tween Xso and X» only holding for H~O. We shall see
in the rest of this section that the AT line is most easily
seen in dynamics because it marks the onset of irreversi-
bility.

Although Egs. (4.84) and (4.85) are exact, the function
q(x) is not known exactly except close to Tf. One ap-
proach to getting approximate results at arbitrary-tern-
peratures is to take only a finite number K of subdivisions
of the order-parameter matrix. One finds for example
that the ground-state entropy S(T=0), which is —0.16
in the SK (E =0) solution, rapidly approaches zero for
the K =1 and 2 approximations (Parisi, 1980c). It there-
fore seems that the Parisi theory cures the negative-
entropy problem of the SK solution.

A different approximation has been proposed by Parisi
and Toulouse (1980; see also Vannimenus et al., 1981).
They pointed out that one can obtain the solution for
q(x) and M fairly easily if one makes the following as-
sumptions, known collectively as the PaT hypothesis (or
projection hypothesis), everywhere below the AT line.

(i) M is independent of T (so S is independent of H).
(ii) q(1) is independent of H.
(iii) q(0) is independent of T.
(iv) outside the plateau regions q (x) can be written

which also predicts 1 —q(1) ~ T as T~O, again with
about the right coefficient. Thus Eq. (4.88) should be a
good approximation at all temperatures and is simpler
than the PaT result for q(1), which has to be determined
numerically at intermediate temperatures. Equation
(4.88) is plotted in Fig. 46, where it is labeled qEA. In the
next section we shall show that q (1) is indeed the
Edwards-Anderson order parameter defined in Sec. III.F.I and S can equally be obtained from values on the AT
line. Note that hypothesis (i) predicts a weak discontinui-
ty in BM/BT because the AT lines does not occur exactly
where dM/dT =0 in the SK solution (Vannimenus et al. ,
1981), whereas BM/BT is actually continuous (Sommers,
1984), as noted above. The PaT hypothesis is therefore
not exact, but seems to be a good approximation. From
Eq. (4.86) and knowledge about the AT line one can also
determine (Vannimenus et al. , 1981) the scaling function

f in Eq. (4.86) and the breakpoints xo and x&. In particu-
lar, one finds

lim x&(T)= —,
'

T~O
(4.89)

M
A (T,M, JO) =A (T,M) Jo—' 2

(4.90)

This can, for example, be used to determine the phase
boundary between the "mixed" phase I",where M&0 but
replica symmetry breaking occurs, and the spin glass
phase SG (see Fig. 49). For small M

Finally in this section we discuss the effect of a
nonzero mean Jo of the distribution within the Parisi
theory. ' Toulouse (1980) has noted that thermodynamic
properties can be deduced from the solution with Jo ——0
but nonzero field. His argument is that if A (T,M) is the
thermodynamic potential with Jo ——0, then with a nonzero
mean it becomes simply

q(x) =f(xJ/T), (4.86)
A(T,M)=AD(T)+ —,X 'M + (4.91)

where f is a universal scaling function. Equation (4.85)
shows that (i) is true for H +0, while we have seen abov—e where X is the zero-field susceptibility with Jo ——0.
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Ferromagnetism disappears when the coefficient of M in
A (T,M, J0) vanishes, i.e.,

(4.92)

But X '=J within the Parisi theory for all T(Tf [see
Eq. (4.85)], so the F' SG-phase boundary in Fig. 49 is
vertical, and reentrant spin glass behavior, predicted by
the SK theory, Fig. 44, does not occur.

We shall see later on in this section that the Parisi
theory does appear to be the exact solution of the SK
model and that one can give (Sec. IV.E) a simple, appeal-
ing interpretation of replica symmetry breaking and the
function q (x). Before that, however, we shall discuss two
other approaches, in Secs. IV.C and IV.D, which avoid
the replica trick and will give us a good deal of insight.

C. TAP equations

In this section and the next we discuss two approaches
to a solution of the SK model that have attempted to
avoid the replica, trick.

Replicas appear when one performs the average over
the disorder. Thouless, Anderson, and Palmer (1977) sug-
gested that one defer this average to the end and first of
all write down local mean-field equations for the site
magnetizations for a given set of bonds. The naive guess
is that Eq. (4.3) would be the appropriate set of equations.
However, Thouless, Anderson, and Palmer realized that
an extra term is necessary for spin glasses, even with
infinite-range interactions. This is known as the Onsager
reaction field term (discussed earlier by Brout and Tho-
mas, 1967) and arises physically as follows. The magneti-
zation m; on site i comes from the magnetizations of the
neighbors mJ. However, one should not take exactly mJ
because the contribution to mJ from site i itself should be
removed. In other words, the correct equations are

m;=tanh p g J~mj'+H; (4.93)
J

+—Q I (1+m; )log[ —,
' (1+m; )]

+(1—m;)log[ —,
' (1—m;)]I

g( —m; )(1—m~ )J~~ .
E,J

(4.97)

Taking the variational derivative of Eq. (4.97)
respect to the m; yields the TAP equations.

It is instructive to look at the Hessian matrix formed
from second derivatives of ETAp. Defining

a,,=O'FT„P /am;amj (4.98)

one can evaluate the eigenvalues of A,z. If Eq. (4.97) is to
describe a sensible physical solution, one cannot have any
negative eigenvalues, otherwise, for instance, the I/X
corrections to the free energy diverge (Thouless, Ander-
son, and Palmer, 1977). This leads to the stability condi-
tion (Bray and Moore, 1979b; Owen, 1982)

negligible compared with the expected term g J;Jmj.
However, this is not so because the signs in the expected
term are random, so both it and the reaction field term
are of order unity. Note, however, that for a ferromagnet,
where J;J ~z ' with z the coordination number, the reac-
tion field term is smaller by z ' and is therefore unim-
portant in the long-range limit. The importance of the re-
action field for spin glasses has been further emphasized
by Cyrot (1979). It is reasonable to ask whether any addi-
tional terms are needed. Since other approaches such as
the Bethe-Peierls approximation (Thouless, Anderson, and
Palmer, 1977) and diagrammatic techniques (Thouless,
Anderson, and Palmer, 1977; Sommers, 1978; De Domin-
icis, 1980) yield the TAP equations when applied to the
SK model, it appears that there are no further corrections.
Thouless et al. also pointed out that one can obtain a cor-
responding free-energy functional

1

FTAp ————, g J;~m;m~ gH. ;—m;

where

and

X"=—(1—m )
1

JJ T j

mJ mJ HAJJ JgJ mg

1 —P J (1—2qE&+r))0,

(4 94) where

1
qEA= g mI

(4 95) and

(4.99)

(4.100)

is the local susceptibility of site j. We have added a local
magnetic field H; and taken the long-range limit, where
each interaction JJ is very small, in obtaining Eq. (4.94).
Combining leads to

m;=tanh p g J,jm~ —pg J~J(1 mj )m;+—H;
J J

(4.96)

r= —gm;,1
(4.101)

which must be satisfied by any solution. Note that Eq.
(4.99) is of the same form as the AT condition (4.60) for
the stability of the SK solution. %'e return to this stabili-
ty criterion below.

The TAP solutions can be investigated analytically
close to the transition. Expanding the tanh in Eq. (4.96)
(for II; =0) and working to lowest order in the m; gives

The set of Eqs. (4.96) are called the TAP equations. Since
JIj X one might expect the correction term to be

m; —Pg Jjmj+P m; g JJ ——0(m ) . (4.102)
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Now g. JIJ J——, independent of i, and the eigenvalues of
J,i are known (Mehta, 1967; Thouless, Anderson, and
Palmer, 1977; Edwards and Jones, 1978) to have a semi-
circular distribution with largest eigenvalue 2J. Writing
Eq. (4.102) in terms of the eigenvalues Jq and eigenvec-
tors (i

~

A, ), one has, with m~ ——g,. m; (i
~

A, ),

m~[1 —PJ~+(/3J) ]=0(m ) . (4.103)

The transition occurs when the coefficient of m~ vanishes
for A, =A, ,„, the mode with the largest eigenvalue, 2J.
Hence Tf J in——agreement with replica calculations (Secs.
IV.A and IV.B). Note that Tf would have been overes-
timated by a factor of 2 without the reaction field term,
as discussed in Sec. IV.A.

Results can also be obtained as T~0 by a combination
of numerical and analytic techniques. At T =0 each spin
must lie parallel to the field acting on it, so for H; =0

m; =sgn(H; ),
where

(4.104)

H;=gJ;, m, .
J

(4.105)

Numerically (Thouless, Anderson, and Palmer, 1977;
Palmer and Pond, 1979) one finds that the distribution of
the H;, written p(H), is linear for small fields. Defining

p(H) =
2

ho

one finds from the TAP equations that as T~O
2

T
1 —qE~ —a —,(T~O)J

(4.106)

(4.107)

where u is related to ho by
2

ho

J
a (2 ln2+ 1) ln2
4 3

=—+ +
CX

(4.108)

Xgp,p=—lim X(co) cc T (T~O) .
co~0

(4.109)

This differs from the equilibrium susceptibility X=J
[see Eq. (4.85)) as discussed in Sec. III.F.1 and by Ban-
tilan and Palmer (1981). Wohlfarth (1977b) has pointed
out that Eq. (4.109) violates the third law of thermo-
dynamics because of the Maxwell relation BS/Bh

From Eq. (4.108) one sees that ho has a minimum as a is
varied at a=2(ln2)'~ =1.665, and Thouless, Anderson,
and Palmer have suggested that this is the correct value.
On the other hand, Bray and Moore (1979b) have pro-
posed that the entire spin glass phase below the AT line is
marginally stable (see also below), so that Eq. (4.99) is
satisfied as an equality. This gives 0.=1.810. %'e also
noted in Eq. (4.87) that a= —', within the PaT hypothesis.
It has not been possible to determine numerically which,
if any, of these three estimates for a is correct. The sus-
ceptibility of a single solution is related to qEA by Eq.
(3.75), so

[Nz(H, T)],„exp[Na(H, T)], (4.110)

where a(H, T)=0 at and above the AT line and
a(0,0)=0.20. Above the AT line, averaging the unique
TAP solution over the bonds gives the SK result. Howev-
er, the SK solution cannot be correct below the AT line
because it violates the stability condition (4.99). Bray and
Moore (1980b) have also calculated the number of solu-
tions of a given energy at H =T =0 (see Fig. 54). Their
solution is unstable for E & —0.672J (shown by the
dashed curve), but we shall see in Sec. IV.F that a linear
variation behavior close to the minimum energy is still

=BM/8 T and the fact that M =Xr~pH as H ~0, where
M is the magnetization of a given solution. Since the
Maxwell relations should hold for a single solution as well
as for the full Gibbs average, this must mean that BX/BT
is nonzero at T =0 only for 0 strictly zero. A model in
which this occurs has been given by Sherrington and Fer-
nandez (1977), but we are not aware of any calculations of
XyAp in a field to check that this happens for the SK
model. One finds from Eq. (4.106) that the entropy S
varies at T for T~O, which has been confirmed numeri-
cally (Ma and Payne, 1981; Young and Kirkpatrick,
1982).

We now return to the question of stability of the solu-
tions mentioned above, which has been discussed in some
detail by Bray and Moore (1979b) and Nemoto and
Takayama (1985). Bray and Moore found numerically
that a stable solution exists only for about 10% of bond
configurations with 40 &% & 250, but for those samples
with a stable solution the smallest eigenvalue of the Hes-
sian matrix seemed to extrapolate to zero as N —+ oo. I.a-
beling a mode that diagonalizes the Hessian by A, and de-
fining 5m~ ——g,. (A,

~

i )6m; to be a change in the magneti-
zation in this direction, Nemoto and Takayama (1985)
find that, even where there are no stable TAP solutions,
most bond configurations have a line in the space of the
m; where BF/Bmq =0 for all A, except the mode Ao with
smallest eigenvalue, and they determine the point on this
line where the eigenvalue of A,o goes through zero. A
sketch of the free energy against 5m~ for the cases in

which there is (a) a stable TAP solution, and (b) no stable
solution, is given in Fig. 53. Where there is no solution
Nemoto and Takayama find that g,.(BF/Bm;) at the
point of zero eigenvalue seems to vanish as N~ao.
Hence it appears that for N~ ao the physical TAP solu-
tions (those with no negative eigenvalues) are really saddle
points in the N-dimensional space of the m;. Earlier,
Thouless, Anderson, and Palmer had also argued that the
solution would be a saddle point when the free energy is
considered as a function of a single variable qE~. Note
that, as in the replica calculations [Secs. IV.A and IV.B],
the paramagnetic solution has the lowest free energy but
must be rejected because it is unstable.

We now discuss how many solutions of the TAP equa-
tions there are. Bray and Moore (1980b), De Dominicis
et al. (1980), and Tanaka and Edwards (1980) have
showed that there are an exponentially large number,
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0.&—

0 0.2 0.4
-E/S

0.8

FIG. 54. Average of the logarithm of the number of TAP solu-
tions for H =T =0 as a function of energy, obtained by Bray
and Moore (1980b). The total number of solutions is dominated
by the maximum value of the curve and is given by Eq. (4.110)
with a(0,0)=0.20. Bray and Moore's solution is unstable in the
region shown by the dashed line.

FIG. 53. Here mq is the component of magnetization of the
spins along the eigenvector corresponding to the smallest eigen-
value A,o of the stability matrix 0 FT~p/Bm BMJ. The lines show
the Thouless, Anderson, and Palmer (TAP) free energy as a
function of m~ when it has been minimized with respect to

0

magnetizations along all other eigenvector directions. The
eigenvalue ko, which is just 8 FTAp/Otal g is negative to the left

D

of the stability limit, indicated by a dashed line, and positive to
the right. (a) The case of a stable TAP solution, which is at the
minimum of FTAp. (b) The situation when there is no TAP
solution. As X—+ oo, the minimum in (a) approaches the stabili-

ty limit, and for (b) the value of (BF/Bmq ) at the stability limit

tends to zero. Hence one infers that TAP solutions are margin-
ally stable in the thermodynamic limit. Note that the eigen-
values are calculated from the matrix of second derivatives,
even where one of the first derivatives, BFT~p/Bplg, is nonzero.

The figure is based on Nemoto and Takayama (1985).

state (see Sec. III.B), since different solutions should have
infinite &ee-energy barriers between them, otherwise
thermal fluctuations would mix them together at finite
temperature (Bray and Moore, 1981a). We do not there-
fore use the term metastable states to describe these solu-
tions, but reserve this term for states that decay in a finite
amount of time. Young (1981) pointed out that averages
within a single solution, or state, could give different re-
sults from a full statistical mechanics average and that
this could resolve some of the apparent paradoxes being
discussed at that time, such as the difference between 7
and /TAN noted above. Subsequently De Dominicis and
Young (1983a) showed that by giving a Boltzmann weight
to the solutions and averaging over J,z using the replica
trick one could recover the Parisi solution, discussed in
Sec. IV.B, from the TAP approach. They were also able
to show that the ordering in a single solution, qE~ [see
Eq. (4.100)j, is equal to q(x =1), as noted in Eq. (4.68c).
Other weightings of the solutions are also of interest
(Bray and Moore, 1981a; Bray et al. , 1984).

To conclude this section we emphasize that the TAP
approach has been very valuable, and indeed has very re-
cently provided the basis of a complete solution without
the replica trick (Mezard et al. , 1986a, 1986b).

D. Dynamics

Introduction

correct. Roberts (1981) has shown that the qualitative
features of Fig. 54 persist in a nonzero field.

It is not clear that all these solutions are physical (i.e.,
that they have no negative eigenvalues of Hessian),
though one can show that they are all stable at T =0
(Bray and Moore, 1980b). Nonetheless it seems clear that
there are many physical solutions below the AT line, and
we naturally interpret each of them as a thermodynamic

Considerable progress has been made in understanding
the SK model through its dynamics. Since a Hamiltonian
with Ising spins has no intrinsic dynamics, it is necessary
to introduce this separately through equations of motion
that mimic the effect of coupling the spins to other de-
grees of freedom acting as a heat bath. For discrete Ising
spins, 5; = + I, one most commonly studies the kinetic Is-
ing model of Glauber (1963), in which the probability that
a spin is flipped per unit time is given by Eq. (5.8). This
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type of stochastic dynamics is very conveniently simulat-
ed by Monte Carlo technique (see Sec. V.B). It is, howev-
er, often convenient to relax the length constraints on the
spins and go to a "soft-spin" version (De Dominicis,
1978; Hertz and Klemm, 1979; Sompolinsky and Zip-
pelius, 1981, 1982a; Hertz, 1983a, 1983b), in which each
spin can take any value between —ao and + ao. A suit-
able Hamiltonian is

—pA = —Q S; +—g S; +f3 g J,JS;SJ +pII Q S;,
i i &ij& I

(4.111)

where r and u are parameters that give the single spin
probability distribution, J;J is the usual interaction, and 0
is a magnetic field. The simplest equation of motion is
then (Ma, 1976; Hohenberg and Halperin, 1977)

(Hohenberg and Halperin, 1977). We shall be particularly
interested in the autocorrelation function q (t), defined by

q(&) = [(S;(0)S;(&))T]... (4.113)

r~ Esca & (4.115a)

where we note that the thermal average can be replaced
by an average over a sufficiently long observation time
t,b, [see Eq. (3.67)]. Dynamical scaling says that the de-
cay of q(t) is governed by a characteristic time ~, which
diverges at Tf, i.e., we write

q(r)~r ~q+(r/r), (4.114)

valid in the scaling region t —+ ao, T~Tf-. Here q+ and

q are universal scaling functions for T & Tf and
T & Tf, respectively. Et is conventional to write the time
v as

(4.112)

where ~0 sets the time scale and ri;(r) is a Gaussian ran-
dom noise with variance given by

so

where

(4.115b)

(31,(r)3i, (i') ) =2~, '5,,5(r r') . —

This model is the more convenient when one wishes to use
- many-body perturbation-theory techniques. Discrete

spins are recovered in the limit r~ —oo, u~op with

~

r/u
~

= l. Both discrete and soft-spin models give a
Boltzmann distribution at long times for a finite system
independent of initial spin state.

Apart from the intrinsic interest of dynamics, there is
additional motivation in studying time-dependent phe-
nomena of random systems because the formation ap-
parently allows one to circumvent the replica trick (De
Dominicis, 1978). The equations of motion (4.112) can be
formally integrated from an initial time t; to a final time
tf with a specified initial state S;(t;). This can be con-
verted into a probability distribution for the spins to fol-
low a particular trajectory in phase space S;(r), given the
state at t =t;. For t &t;+~,„, where ~,q is an equilibra-
tion time, the system will have lost the memory of its (ar-
bitrary) initial state and will then sample states with the
Boltzmann distribution. If one lets t; & —oo —(and

rf ~ oo ) the system will therefore be in equilibrium for all
times provided the equi''bration time is finite (Houghton
et al. , 1983a, 1983b). Furthermore the probability distri-
bution for a trajectory in phase space is normalized to un-
ity (without need of a normalizing denominator involving
the interactions) and so can be averaged over the random
variables without replicas. Note that one never needs to
introduce factors of exp( —PA ) to weight the states (from
which comes the need for replicas in statistical mechanics
calculations —see Sec. III.C); the equation of motion au-
tomatically generates states with this probability. Further
discussion of the formalism for dynamics is given in
Bausch et al. (1976).

Near a second-order transition, time-dependent correla-
tion functions take the form predicted by dynamical

lim q(t) =qFA ~
~

5
~

~,
t~ oo

(4.116)

so one requires limx q (x) ccx to cancel the t depen-
dence, and hence

X=p/(zv) . (4.117)

As well as the characteristic time ~ it is useful to define
an "average relaxation time" (Binder, 1977b; Kirkpatrick,
1980; Young, 1983a; Ogielski and Morgenstern, 1985) by

r,„=I q(t)dt, (4.118)

if qEA ——0. The simple modification for qEA&0 is given
by Young (1983a). The divergence of rc moes from the
long time limit, so we can use Eqs. (4.114) and (4.117) and
find (Ogielski, 1985)

avr, ~8 (4.119a)

z„=z —p/v . (4.119b)

The difference between z and z„ is the same as that be-

5 =(T—Tf )/Tf,

/so is the correlation length, which diverges with an ex-
ponent v, and z is the dynamical exponent. Unfortunately
one cannot define a correlation length for an infinite-
range model. However, if one takes a finite-range model
and uses the solution of the SK model as the mean-field
approximation to it, one can define a correlation length
exponent (see Sec. IV.G), with the result that v= —,

' in
MFT. We therefore express the divergence of the relaxa-
tion time by Eq. (4.115) with the understanding that v= —,

for the SK model.
From the expected behavior below Tf, one can obtain

A, , since
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tween the linear and nonlinear relaxation times of the or-
der parameter at a ferromagnetic transition (Racz, 1976).

2. Dynamics above the AT line

In this section we discuss the dynamics of the SK
model above the AT line (see Sec. IV.B). The much more
difficult task of investigating the dynamics below the AT
line will be deferred until the next section.

We start by tasking H =0, so we are approaching tran-
sition temperature at T =Tf from above. The formula-
tion for computing correlation functions in the soft-spin
version has been discussed in detail by Sompolinsky and
Zippelius (1982a) and Sommers and Fischer (1985). If
C„„s(co)is the Fourier transform of the scaling expression
for q(t), one finds from Sommers and Fischer (1985) and
Young (1982)

C„.„s(co)~ —C(co/8 ), (4.120)

where 5 is given by Eq. (4.116), C is given by

( (x) 21/2[( 1+ 2)1/2+ 1]—1/2 (4.121)

with

q+ (x)=e "—(~x )'/ erfc(x '
) (4.123)

00

erfc(y)= e ' dt . (4.124)

Equations (4.122) and (4.115) show that

(4.125)

so zv=2 and hence

z=4. (4.126)

Furthermore the factor of t ' in Eq. (4.122) is con-
sistent with Eq. (4.117) because P=I, v= —,'. Note that
the average relaxation time (4.119) diverges as

r„ccrc

so

zgv 2 0

From Eqs. (4.122) and (4.123) it follows that

~
—t42

q (t) ~ (t~ ~,4~0) .
2@2t3/2

(4.127)

(4.128a)

(4.128b)

The Glauber dynamics of fixed-length Ising spins has
been discussed by Kinzel and Fischer (1977) and Kirkpa-
trick and Sherrington (1978). From their results one can

and a nonuniversa1 constant representing the microscopic
time scale has been absorbed into co. Fourier-
transforming Eq. (4.121), one gets (Sommers and Fischer,
1985; Young, 1982)

q(t) ~ t '/2q+(t&2),

where

also derive Eqs. (4.122) and (4.123), which shows the ex-
pected universality of the scaling function q+(x). The
t ' variation at T =Tf has also been found by Ma and
Rudnick (1978), Hertz and Klemm (1979), and De Do-
minicis (1978). Numerical evidence for it has been given
by Kirkpatrick and Sherrington (1978).

It is Inuch more difficult to determine the dynamical
correlations in a magnetic field as one approaches the AT
line. One still expects the dynamical scaling form

(4.129)

to hold (with I3= 1, v= —,), where now 8 measu'res the dis-
tance from the AT line, 5=[T—T/, T(H)]IT/, T(H).
Surprisingly both the exponent z (Sompolinsky and Zip-
pelius, 1981, 1982a) and the scaling function (Sommers
and Fischer, 1985) are nonuniversal, and vary along the
AT line. In particular z varies from 4 at H =0, T =Tf
to 5.06 as H +oo, T—~O. [Note that v in the notation of
Sompolinsky and Zippelius is P/zv ( =2/z) in our nota-
tion. ] Continuously varying exponents are generally asso-
ciated with a marginal variable in the renormalization-
group sense (Ma, 1976). It would be interesting to know
what is the marginal operator in this case.

One can also determine (Fischer, 1983d) the lines in the
H-T plane where ~„has a fixed value, say tp. The AT
line (4.62) corresponds to to oo, wher——eas for to finite
T(O, to) —T(H, to) ocH as H~O with crossover to AT-
like behavior for larger H. This is similar to results of
computer simulations in two dimensions (Kinzel and
Binder, 1983, 1984; Young, 1983a) and experiment (Bon-
temps et al. , 1983; Paulsen et al. , 1984), but probably by
coincidence (see Sec. V.B). Fischer and Kinzel (1984)
have looked at the dynamical susceptibility near Tf and
determined the form of the crossover from the expected
form ImX(~) ccco at high temperatures to Imp(co) ceca'/2

[consistent with Eq. (4.128a)] at Tf. Fischer (1983d) and
Togashi and Suzuki (1985) have made a mean-field
decoupling of the Glauber equations of motion, incor-
porating fluctuation effects with an Onsager reaction
term as in TAP (see Sec. IV.C). However, this approxi-
mation does not seem to be quite right, and the true
Glauber equations of motion are more complicated (Shas-
try and Young, 1981). In particular, Togashi and Suzuki
find that relaxation times are finite below Tf, whereas
they actually remain infinite (Sompolinsky, 1981a; Som-
polinsky and Zippelius, 1981; 1982a), as discussed in Sec.
IV.D.3.

Of course, a calculation of dynamics also gives static
properties. Furthermore one avoids the replica trick, as
noted in Sec. IV.D. l and can therefore obtain an indepen-
dent derivation of the solution. Sompolinsky and Zip-
pelius (1982a) have carried this out in detail and shown
that in the limit of fixed-length spins one recovers the SK
solution above the AT line. The TAP approach (Sec.
IV.C) also gives the SK result in the region, so we have
two independent replica-free derivations that show that
the SK solution is correct in the region where it is locally
stable. This supports the usual arguments (see Sec. IV.A)
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that the stable solution coming from the replica method
gives the correct physics. T f "X;;(t)dt=1—q(1)+A(x) . (4.132)

q(x)=[{S;(0)S;(r~))T],„(0&x&1) . (4.130)

Note that the Edwards-Anderson order parameter (3.66a)
is given by

qEA =q(1» (4.131a)

and the statistical mechanics order parameter q, Eq.
(3.66b), is

q =q(0) . .(4.13lb)

Sompolinsky also looks at the local dynamical suscepti-
bility X;;(r) (see Sec. III.F.l) and defines a second function
b(x) by

3. Dynamics below the AT line

We have seen that replica, TAP, and dynamics ap-
proaches all give the SK solution above the AT line.
Furthermore the replica and TAP calculations show this
solution to be unstable below the line. As one would ex-
pect, an instability also occurs in dynamics (Sompolinsky
and Zippelius, 1981, 1982a). The kinetic coefficient be-
comes negative, which implies that correlations diverge
exponentially with- time, clearly a nonsensical result.

The replica route has been salvaged by the Parisi solu-
tion (Sec. IV.B), which is stable (Sec. IV.G). The TAP
approach gives the same result {DeDominicis and Young,
1983a), but only by using replicas, which one was trying
to avoid. How can one obtain a stable theory for dynam-
icsP One possibility is to combine dynamics and replicas
(Houghton et al. , 1983a, 1983b), which again reproduces
the Parisi theory for statics. Once more, this is a retro-
grade step because one was trying to avoid replicas by the
dynamical approach (see Sec. IV.D.1). However, Sompo-
linsky (1981a) proposed a very ingenious way of finding a
stable solution entirely within the framework of dynam-
ics, and we shall now discuss this.

Slightly earlier Sompolinsky and Zippelius (1981,
1982a) had argued that infinite relaxation times occur (in
an infinite system) and that as a result the equations are
ill defined. Sompolinsky (1981a) then proceeded to apply
the equations to a large but linite system in which all re-
laxation times must be finite. He found a spectrum of re-
laxation times ~~ that all diverge in the thermodynamic
limit. For a finite system the autocorrelation function
q(t), Eqs. (4.113), varies on these time scales, and the
q(r„) will become order parameters in the theory. One
can fix the label x to lie in the interval from 0 to 1, and
Sompolinsky assumes that x is continuous with v.„&&v.x) x2
if x2 ~xi, i e , that . t.here is a broad continuous spectrum
of time scales. From now on we shall change notation
and write q (r„) as q (x), i.e.,

Note that linear response theory (fluctuation-dissipation
theorem), Eq. (3.72b), gives b.(x)=q(1)—q(x). However,
Sompolinsky s solution differs from this, as we shall dis-
cuss later. Nonetheless the fluctuation dissipation is as-
sumed to be valid at finite time scales, x = 1, so

b, (1)=0 . (4.133)

Self-consistent equations for q(x) and h(x) can then be
established. Let us define (for Jo ——0, which we assume in
the rest of this section)

1

H=FI+Jzo[q(0)]'~ +JI dxz(x)[q'(x)]'~

—PJ f dxb, '(x){M)„,
M =tanhPH,

(4.134)

(4.135)

and the z(x) to be random variables with a symmetric
Gaussian distribution and variance given by

{z(xi)z(x2))=5(xi —x2), (zo) =1 . (4.136)

P J [1—q(1)+{M )]=1, (4.140)

provided b,(x) is not identically zero. If b, (x)=0 one ob-
tains the SK solution, as we shall see. Equation (4.140)
corresponds to the TAP stability condition (4.99) satisfied
as an equality. Hence Eq. (4.140) is evidence for the mar-
ginal stability of the spin glass phase below the AT line
discussed already in Sec. IV.C. Sompolinsky (1981a)
finds that, as H~O, the only dynamically stable solution
has

q(0) =0 . (4.141)

Expanding Eq. (4.137) for small x, one finds XJ =1, just
as in the Parisi solution {4.85). Here X, the equilibrium
susceptibility, is given by TX=1—q(1)+h(0), from Eq.
(4.132)„and the relation X;; =X for H ~0.

Equations (4.137)—(4.139) can be obtained from the
functional

Here and in the rest of this section, the angular brackets
( ) denote an average over the z's, and ( )„ indicates an
average over the z(y) with y &x. The self-consistent
equations are then (Sompolinsky, 1981a; Sommers, 1983a)

(4.137)

b (x)=q (1)—1+(PJ) '[q'(x)] ' {BM/Bz(x) ),
(4.138)

b(0)=q(1)—1+(PJ) '[q(0)] '~ {BM/Bzo) . (4.139)

FI is clearly a local field, made up of contributions z(x),
which are frozen on a time scale r„. Evaluating Eq.
(4.138) as x~1 where 6(x)~0, one finds

( J) ( J) i

pf [(—q())] +g f—dx (s'(x)q(x) + )ag(gcas)s(qlq)~ f dx ()'(x)(()q, )sl
I x

(4.142)
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by differentiating with respect to 5'(x), q'(x), and q(0).
Later we shall see that Eq. (4.142), evaluated at the ex-
tremal values, is actually the free energy, though this is
not obvious from the dynamical derivation. It is, howev-
er, straightforward to see that finding the extreme values
of Eq. (4.142) does not determine q (x) and b, (x) uniquely.
For suppose we replace x by a monotonic function u(x)
such that u (0)=0, u (1)= 1, and let z(x)
~z(u)(du/dx)'~, then all the equations are the same but
with x replaced by u. In other words, if (b, (x),q (x)) is a
solution, one can change x into any monotonic function
of x varying between 0 and 1 as x goes from 0 to 1, and
one has another solution. There is therefore an infinite
family of solutions, which differ by reparametrizations of
the interval (0,1) and which give the same value of f. One
says that the functional f is "gauge invariant. " Although
b,(x) and q(x) depend on choice of "gauge, " b, is unique-
ly determined as a function of q, and the end points q(0),
q (1), b,(0), and 6(1) (=0) are also gauge invariant.

In fact, we shall now see that the Sompolinsky theory is

(4.143)

H(x,y)=y+ J f dr{z(r)[q'(r)]'~

PJ—b, '(r)(, M(x,y))„) (4.144)

and

M (x,y) =tanhPH(x, y),
so that Eq. (4.142) can be written

(4.145)

mathematically equivalent to the Parisi theory in the
sense that the Parisi solution corresponds to choosing a
particular gauge. To show this, we follow Elderfield
(1983) and Goltsev (1984a) and define a function G(x,y)
by

6 (x y) = (log[2 coshPH(x y) ]

2 1

pf= —[1—q(1)] +2 J dx 5'( x) q( x) dx+ — I ~ ' G(O, H+q(0)' z())dzo
0 v'2m

(4.146)

By differentiation one can verify that (De Dominicis
et al. , 1982; Elderfield, 1983; Goltsev, 1984a)J,BG, BG

2
~

Qy
(4.147)

where the prime denotes differentiation with respect to x,
and clearly from Eq. (4.143) the boundary condition on
(4.147) is

G( l,y) =log(2coshPy) . (4.148)

Equations (4.146)—(4.148) reduce to the Parisi equa-
tions (4.69)—(4.71) if one sets

dh(q) = —x (4.150)

provided q(x) is monotonic, so the inverse function can
be defined, and we note that b, (q) is uniquely determined.
Since x can be replaced by any monotonic function u (x)
between 0 and 1 with u(0) =0 and u(1) = 1, the
equivalence between the Parisi and Sompolinsky solutions
follows if one can show

(i) q'(x) &0,
(ii) db, /dq is a monotonically decreasing function of q

that lies between —1 and 0.

b, '(x) = —xq'(x) .

In other words, if there is a gauge in the Sompolinsky
theory where the solution satisfies Eq. (4.149), then the
Parisi and Sompolinsky theories are mathematically
equivalent. Now Eq. (4.149) can be written

Part (i) can be shown .(Sommers, 1983a; Elderfield,
1984b), and part (ii) is certainly true within perturbative
calculations around Tf. A rigorous proof of (ii) for arbi-
trary temperatures seems to be lacking, though Elderfield
(1984b) has shown that if (ii) is violated the Sompolinsky
theory would not give a sensible order-parameter distribu-
tion (see Sec. IV.E). There seems, in fact, to be no doubt
that the theories are equivalent.

From this discussion we see that Eq. (4.142) at the ex-
tremal solution is indeed the free energy of the Parisi-
Sompolinsky solution, and furthermore it is written in
closed form. It provides a rather convenient starting
point for calculations in the vicinity of Tf, but unfor-
tunately it does not seem to help one to develop expan-
sions away from T=O.

One can also obtain the Sompolinsky functional (4.142)
by a replica symmetry-breaking scheme (De Dominicis
et al. , 1981), which effectively combines the Sommers
(1978, 1979) and Parisi schemes, without recourse to
dynamics. Dasgupta and Sompolinsky (1983) and Som-
mers et al. (1983) have given heuristic derivations of the
Sompolinsky equations starting from the TAP equations.

Note that qEA [Eq. (4.131a)] agrees with replica calcu-
lations in the manner of Parisi but starting from the TAP
equations (De Dominicis and Young, 1983a), whereas q
[Eq. (4.131b)] differs from the standard interpretation of
the Parisi theory [Eq. (4.68b)].

The central feature of Sompolinsky's theory is the spec-
trum of time scales which diverge in the thermodynamic
limit. It is clearly of interest to check this by numerical
calculations, which can also determine how the relaxation
times vary with X, a piece of information that is not
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given by theory. Mackenzie and Young (1982, 1983) have
carried out Monte Carlo studies of this question. They
calculated q' '(r), defined for the infinite-range model by

(&)= g [(S'(rp )SJ(tp)S ( ip+ i)
iAJ

(4.15 la)

[cf. Eq. (3.99) for the definition applicable to short-range
systems] and found that data for bq' '(r) =q' '(r)
—q' '(pp ) at a fixed temperature below Tf, but for dif-
ferent sizes, all lay on the same curve when plotted as a
function of lnt/in' (see Fig. 55), where r is size depen-
dent and, in fact,

inc o.N" (4.151b)

with x=—, (Fig. 56). Although one cannot be absolutely
certain from the numerical results that this increase of in'
with N' will continue as N~ao, the data do at least
support the idea of nonergodic behavior in the SK model
below the AT line. Figure S6 also shows that relaxation
times remain finite above the AT line as N increases, as
expected from analytic theories. Mackenzie and Young
also showed that results for static quantities such as
q' '[—:q' '( pp )], when extrapolated to N = pp, agreed well
with the predictions of the Parisi theory where the func-
tion q(x) is interpreted in the "replica way" (see Sec.
IV.E), slightly differently from Sompolinsky's dynamical
interpretation. These data are shown in Fig. S7.

So far in this section we have concentrated on dynam-
ics on the time scales that diverge as N —+Oo. Sompolin-
sky and Zippelius (1981, 1982a) have discussed fluctua-
tions on finite time scales and found that q(t) qE~ van-—
ishes with a (nonuniversal) power of t, rather than the
usual exponential decay, because of the marginality condi-
tion (4.140).

We have already noted that the Sompolinsky theory
violates the fluctuation-dissipation theorem on time scales

FICi. 56. 1nv plotted against X' for the SK model, with
several sizes between 16 and 192 at T=0.4J, H =0: The &'s
are for T =0.4J, H =1.2J, which is above the AT line. From
Mackenzie and Young (1982, 1983).

that diverge as N~oo. This has aroused considerable
discussion (Young and Kirkpatrick, 1982; De Dominicis
and Young, 1983a, 1983b; Hertz, 1983a, 1983b; Houghton
et al. , 1983a, 1983b; Sommers, 1983b; Horner, 1984a,
1984b). We argue (Secs. III.F and IV.E) that the
fluctuation-dissipation theorem should actually hold on
all time scales. If this is so, one would like to understand
(a) what processes are being described by the Sompolinsky
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FIG. 57. Data for (q' ')' and qm«plotted against X ' for
the SK model, with T =0.4J, H =0. q ~ is the long-time lim-
it of q ~(t) where

FICx. 55. Aq' '(t)=q' '(t) —q' '(00) plotted against lnt/lm for a
range of sizes for the SK model, with T =0.4J,H =0. The time
7 is when hq ' '( t ) first reaches zero and varies with X as shown
in Fig. 56. From Mackenzie and Young (1982, 1983).

The extrapolation to N = oo agrees well with the predictions of
the Parisi theory, shown by the arrows. Also shown is qsK, the
order parameter in the SK solution. From Mackenzie and
Young (1983).

Rev. Mod. Phys. , Vol. 58, No. 4, October 1986



884 K. Binder and A. P. Young: Spin glasses

q(t) on the long time scales, and (b) how q(t) varies in
equilibrium on these long time scales for a large but finite
system. For point (a), Hertz (1983a, 1983b), Sommers
(1983b), and De Dominicis and Young (1983b) have sug-
gested that the theory may describe a system in which the
initial state is not in equilibrium, but this seems rather
speculative. Suggestions for the correct q(t) in equilibri-
um have been made by Parisi (1983b) and De Dominicis
(1983), of which only the latter satisfies the fluctuation-
dissipation theorem on all time scales. Horner (1984a,
1984b) has proposed that the long time behavior can be
rectified by using an annealed model in which the bonds
are allowed to vary on a frequency Q where Q~O at the
end.

Houghton et al. (1983a, 1983b) have suggested that one
ensure that the system. is in equilibrium by weighting the
spin state at the initial time t; with a Boltzmann factor
and summing over all possible initial states. One is then
forced to introduce replicas, which one was really trying
to avoid by the dynamical approach. Since the thermo-
dynamic limit is taken at the start, fluctuations on the
divergent time scales are not seen in this theory.

To conclude this section, we have seen that the SK
model appears to have a broad spectrum of relaxation
times, which diverge as N —+ oo below the AT line. Fluc-
tuations on these long time scales are observable in a fi-
nite system, though there is some uncertainty about the
correct theoretical description.

E. Physical interpretation of replica
symmetry breaking

From the results of the last two sections we can put to-
gether a simple intuitive picture of the SK model, which
will lead us to an interpretation of replica symmetry
breaking in Parisi's theory.

In Sec. IV.C we learned that there are many solutions
of the TAP equations, even at finite temperature, with a
broad distribution of free energies. Not all the solutions
may be minima (in the sense discussed in Sec. IV.C, i.e.,
there are no negative eigenvalues of the stability matrix);
some are quite possibly saddle points (i.e., there are nega-
tive eigenvalues). Nonetheless it seems that we do have
many minima, since all the solutions are indeed minima
at T=O (Bray and Moore, 1980b). Furthermore these
minima should be separated by barriers that diverge in the
thermodynamic limit (Bray and Moore, 198la), otherwise
thermal fluctuations would mix them together. Hence
each minimum is a different thermodynamic state (see
Sec. III.B) (the words pure state, ergodic component, and
valley are also used to mean the same thing), in which an
infinite system will stay forever if it is initially prepared
in that state. For a finite system, these barriers will be fi-
nite, so it is presumably rare fluctuations over these bar-
riers that give rise to the spectrum of long relaxation
times in Sompolinsky's theory. As N —+oo, the barrier
heights appear to diverge and so do the relaxation times.

For an infinite system it is then necessary to distinguish

(S S )( ) (S )(l)(S )(1)
J R,.—R

(4.153)

while for an infinite-range system the equivalent state-
ment is

lim (S;SJ )'T"—(S; ) T'(S~ ) 'T' ——0 (i &j ) .
N~oo

(4.154)

We shall now see that the Parisi order-parameter func-
tion is related to "overlap functions" between different
states, Eq. (3.83). Let us calculate

q'"'= [(S(,S2, . . . , Sk )T],„, (4.155)

where all sites are different. %'e shall do this two dif-
ferent ways and compare results. First of all, the replica
method gives (see Sec. III.C and De Dominicis and
Young, 1983a)

q'"'= lim g (S(S~(S~S2~ . SkSg) (a&p) .
n on(n —1) a@P

(4.156)

In replica mean-field theory, averages on different sites
decouple (see Secs. IV.A and IV.B), so

n~on n —1
(4.157)

which, according to Eq. (4.66), becomes
1q'"'= J q "(x)dx (4.158)

in the Parisi theory. A change of variables then gives

q(k) qk
dq

(4.159)

since q (x) is monotonic (see the discussion in Sec.
IV.D.3). This is our first result for q'"'. We also evaluat-
ed q' ' as a weighted average over states, i.e.,

(Young, 1981; De Dominicis and Young, 1983a; Sec.
III.B) between averages within a single thermodynamic
state and a full statistical mechanics (Gibbs) average,
which is a weighted sum over all states. Above the AT
line, however, these complications vanish; there is only
one state, and its properties are given by the SK solution.

Below the AT line, fluctuations within a single state de-
cay algebraically rather than exponentially because each
state is only marginally stable (Bray and Moore, 1979b;
Sompolinsky, 1981a; Nemoto and Takayama, 1985; see
also Thouless et al. , 1977). For static properties, margin-
al stability means that the spin glass susceptibility of a
single phase l, 'say, defined by

X' ' =—g ((S;S )'T' —(S; )'T'(S )'T'), (4.152)
t&J

diverges as X~ co (Bray and Moore, 1979b), though less
rapidly than N because of the expected "clustering" prop-
erty of the individual phases (see van Enter and van Hem-
men, 1984, and references therein). This states that for a
model with finite-range interactions
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(!')

I, I'

(4.160)

N= 300

N = 200

N =64

N = 32

lustenn propertylus
'

p t (4.154) and the fact

tional averaging, one can

p (g3

q(k) y p p (qll')k

av

(4.161)

II' y{g3 ){g3( ) (4.162) 0
I

0.2 0.6 O, S

(4.163)

where

'
ation in phases I andis the over ap e w1 b t een site magnetization

'

p
l'. Equation (4 161) trivially reduces to

'"'= f q P(q)dq,

r I' ( ) for the SK model for several sj.zes at
h. AT 1;.. Th. ....l...,.T 04J

consistent with a Gau d ionssian distri u ion
and whose width varies asder parameter qsK, an w

II'P (q) = g PIPI 5(q —q (4.164)
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'

h Boltzmannis the probability t a
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h ll moments of the
'

h E (4.159) shows t at a m
1 h ponding momedistribution P(q) are equal to t e corres
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1I q (x)dx — J q (x)dx (4.166)

Hence XsG~N, so the clustering property (4.153) and
(4.154) does not hold for full thermal averages, only for
averages within a single state.

Next we consider more carefully how many equivalent
replica solutions there are. We have already noted (Sec.
III.C) that the replica Hamiltonian is invariant under per-

We feel, therefore, that the interpretation of replica
symmetry presented here is fairly well vindicated (see also
Sec. IV.F). Horner (1984b, 1986) has investigated P(q)
from the dynamical approach.

To conclude this section we discuss in more detail the
determination of thermodynamic averages as averages
over all equivalent replica solutions (De Dominicis and
Young, 1983a; Sec. III.C). First of all we evaluate XsG us-

ing full statistical mechanics averages [Eq. (4.35)], as op-
posed to Eq. (4.152), which is a restricted average in a sin-

gle state. The different pieces in Eq. (4.35) are related to
replica averages by Eq. (4.36).

It is straightforward to carry this out for the Parisi
theory (Mezard et al. , 1984a, 1984b; Young et al. , 1984),
with the result

mutation of replicas. If &=0, it is also invariant under
the time-reversal operations S; —+ —S; for all i on any
subset of the replicas (De Dominicis and Young, 1983a),
or, in other words,

qap~s~spqap (4.167)

where s =+1. Hence Eq. (4.157) should be replaced by

q'"'= lim — g g (s Epq.p)"
n ~n(n —1) 2" (,

(4.168)

for H=O, which leads to Eq. (4.158) for k even, but
q' '=0 for k odd. This results in a symmetric distribu-
tion P(q), with P(

~ q ~

)=dx/dq ( X —, for normaliza-
tion). The distribution in Fig. 59 has, for convenience,
been symmetrized.

One can then ask, what happens if a small field is ap-
plied. Which of the 2" choices of the e (degenerate for
H=O) gains most energy from this symmetry-breaking
perturbation? The one that gains most will completely
dominate the others for X~ oo. Implicit in Parisi s work
is the assumption that the choice with no negative q ~ s is
the one that wins. In order to check this we expand the
free energy (4.13) (with Jo ——0) in powers of the field, ob-
taining

pF(H)= —pF(0)+li—m —pH g (S )0+ g (S Sp)0+1 (PH)
n~0 n 2 p

(4.169)

where ( )0 is an average for H=O, with a particular
choice of the s~. Since (S )0——0, we must study the last
term in Eq. (4.169), which is

(PH) . 1
llm 1 + g E~epq~p (4.170)

2 ~ 0 n
(

(PH)
1 —j q(x)dx (4.171)

We are not aware of any proof that Eq. (4.171) is the
largest value that (4.170) can have, but we are unable to
find a better choice. One example that we have tried is to
take each of the smallest blocks of replicas (see Sec. IV.B)
and make v~=1 for half the replicas in each block and
c. = —1 for the other half. There is no contribution to

where we define our reference solution q p to have no
negative components. We wish to maximize Eq. (4.170);
comparing with Eq. (4.17), one sees this is equivalent to
finding the solution that maximizes the susceptibility. It
appears that the "obvious" solution is e. =1 for all o. as
taken by Parisi. However, we must be more cautious be-
cause there are a negative number of q p as n ~0, so

limn-' g q p&0
1l ~0 (~ p)

even though q p&0 for all (a,P) [see Eq. (4.66)J. Hence,
for the Parisi choice, E = 1 for all a, (4.170) becomes

the sum in Eq. (4.170) from terms where a,P lie in dif-
ferent blocks because of cancellations. However, the can-
cellation does not occur when a,p are in the same block
because q~ =0&lim pq~p. Noting that q p=q(1) for
a, p in the same smallest block, we obtain with this choice

H
[1—q(1)], (4.172)

(' g~()~()) (4.173)

where S " and S ' are two sets of spins, each with the
same interactions and with no coupling between them.

which is smaller than Eq. (4.171) because q (1) is the larg-
est value of q (x). Hence we believe that the Parisi choice,
all c. =1, is correct, but we are unable to prove it. Note
that since the weight of a given solution is proportional to
exp( —NpF) one needs N(pH) »1 for one solution to
dominate. Our discussion is also for PH «1, and unfor-
tunately one cannot simultaneously satisfy the conditions
1 »pH »N '~ with sizes that are amenable to comput-
er simulation. Hence numerical work has so far been un-
able to resolve this point.

It is also interesting to consider the overlap between the
states of a system at two different fields (Parisi, 1983a) or
temperatures (Sompolinsky, 1985). Let us do this by cal-
culating
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1

q&z ——I q(x)dx (4.175)

which is the usua1 order parameter. One now asks which
subset of these permutations is preferred by the
symmetry-breaking term (4.174), and for this subset what
is the value of q12 where

We apply slightly different magnetic fields H'",H' ',

where H'" —H~ '=AH, but the same temperature. A
similar argument applies for the case of different tem-
peratures. Replicating and carrying through standard
manipulations (see Sec. IV.A), one obtains an expression
similar to (4.11) (with Jo ——0), except that there are 2n re-
plicas and L [Eq. (4.12)] has an extra term,

n 21k

5L = g S — g S, (4.174)
a=1 a=n+1

which breaks the permutation symmetry of the 2n repli-
cas. With AH=0 one can clearly write a Parisi solution
for 2n replicas and apply all possible permutations of
them (De Dominicis and Young, 1983b). Hence, if
AH=0,

PhH . 1
lim 2+ —g (qap+ ques qay qua)
n —+0 n

—,
' (P&H) 1 —J q (x)dx (4.178)

and q12 is given by

qiz=q(0) (4.179)

Another choice (De Dominicis and Young, 1983b) is to
make each of the n &&n blocks q p, ques, q z, and qr a
Parisi solution of replicas [with the diagonal elements of
the "off-diagonal blocks" in Fig. 60 equal to q(1) rather
than zero]. With this choice, Eq. (4.177) is

(4.177)

where a,p run from 1 to n, y, 5 from n +1 to 2n, and di-
agonal elements, q~~, qz~ are zero. The optimal choice
appears to be putting replicas 1, . . . , n and replicas
n+1, . . . , 2n into different blocks at the first level of
subdivision (see Sec. IV.B), which is possible if 2nlm, is
even. This means that all q r are equal to q(0), so Eq.
(4.177) becomes

(4.176)
—,
' (P&FI) [1—q(1)], (4.180)

i.e., q~z is the average of the elements in the off-diagonal
n & n blocks in Fig. 60.

Following the arguments that lead to Eq. (4.170), one
takes the average of exp(5L) up to second order and hence
maximizes the expression

2 f1

which is smaller than (4.178). We believe that Eq. (4.178)
is the best choice, arid so q, z is given by Eq. (4.179), al-
though we are unable to prove it. Equation (4.179) was
first stated by Parisi (1983a). The above arguments are
based on Sompolinsky (1985), who also shows that Eq.
(4.179) holds when the two systems are at slightly dif-
ferent temperatures hT. One needs Pb,H (or PAT)
»N ' to observe Eq. (4.179); in the other limit the
usual result (4.175) is obtained. Since the difference be-
tween Eqs. (4.178) and (4.180) comes from replica symme-
try breaking and is always small, one may need a very
large value of Pb TN' (or PbHN'~ ) to see any devia-
tion from Eq. (4.175).

F. Lack of self-averaging
and ultrametricity

FIG. 60. The 2n &2n order-parameter matrix q~p obtained
when one considers two systems at slightly different- tempera-
tures or fields. Replicas 1, . . . , n refer to system 1, and replicas
n +1 to 2n refer to system 2. The replicas in each of these two
groups can be separately permuted to obtain an equivalent solu-
tion, but except for zero temperature or field difference one can-
not permute replicas from the first group with those in the
second.

We discussed in Sec. III.A the usual argument (Brout,
1959) for self-averaging in random systems. One divides
the large system into subsystems and, provided coupling
between subsystems can be neglected, an average for the
whole system effectively averages over independent sub-
systems with different bond configurations. This partial-
ly performs the configurational average, and the larger
the system the more subsystems it can be divided into, so
the more completely one is carrying out the configura-
tional average. Clearly the argument depends on insensi-
tivity to the boundary conditions at the surface of the
subsystems. However, when a phase transition occurs, the
state of the system can depend crucially on, boundary con-
ditions. Consider an Ising ferromagnet in zero field
below Tf (see, for example, Sec. III.B); the boundary con-
ditions can pick out either the state with M positive or
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the one with M negative because the weights of these
phases are sensitiue to boundary conditions. The weight is
proportional to exp( —NI3f), so even a change in f of or-
der X ' produces a significant change in weight, and
bo'undary conditions alter f by a surface-to-volume ratio
which is bigger than this.

In Secs. III.B and IV.E we discussed the importance of
the weights of the thermodynamic states in spin glass
mean-field. theory. It seems reasonable, then, that quanti-
ties depending on these weights will not be self-averaging,
i.e., different bond configurations will give different re-
sults even for N~oo. We shall see in this section that
this turns out to be true and that neither the weights I'I
nor the overlaps between different states q" are self-
averaging (Mezard et al. , 1984a, 1984b; Young et al. ,
1984). Actually the Brout argument does not apply to an
infinite-range model because this cannot be divided into
subsystems. However, it turns out that quantities expect-
ed to be self-averaging in short-range systems, such as
properties of a single state, are also self-averaging in the
SK model and vice versa. Hence we do not believe that
the infinite-range interactions are responsible for lack of
self-averaging in the SK model; rather it is the existence
of many degenerate states which contribute to the Gibbs
average. It seems to us that this could, in principle, also
occur in short-range systems.

As a first example of lack of self-averaging let us calcu-
late

2

is given by

(bq' ')'= — f q (x)dx — f q'(x)dx
'2

(4.187)

Young et al. (1984) have evaluated (bq' ') for very small
samples and checked that the extrapolation to large X
agrees well with the right-hand side of Eq. (4.187)
evaluated in the Parisi theory (see Fig. 61).

which is nonzero where there is replica symmetry break-
ing, i.e., where there are Inany states.

b,q is nonzero because the distribution Pz(q) is not
self-averaging. A measure of this is the difference
[PJ(q))P~(q2)]„—P(q))P(q2), which has been calculated
by Mezard et al. (1984a, 1984b) and Elderfield (1984a).
They find

[PJ('q l )PJ(q2 ) ] —P (q i )P (q2 )

= —,
' [P(q))5(q) —q2) —P(q) )P(q2)] . (4.186)

Equation (4.185) is recovered as a special case by taking
the first moment of q~ and q2. From the second moment
we find that (hq' '), defined by

(Pq(2))2[(q(2))2](q{2))2

where

2 2=[q~l.,—q *

av av

(4.181)

(4.182)
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q, =N-'g (S, )', (4.183)
—Qq', —= 0.2
J ', 2) T

2T J

is the statistical mechanics order parameter for a single
bond realization. We shall use the subscript I to indicate
quantities that are not configurationally averaged. Using
the rules in Sec. III.C for replica averages, one has

n (n —1 )(n 2)(n —3—) (a, P, y, 6)

0.5-

0.3—

0,2-

—[(5u)'] ', T=o
J QV

0
0 O

where all replicas are different. It is not hard to evaluate
this in the Parisi theory, with the result (Young et al. ,
1984)

Q
1

0,1 0.2

0
0 0

000oo

0.3 0.5

so

(bq) =— f q (x)dx — f q(x)dx
2"

2

[qq],„=— f q(x)dx + —,
' f q (x)dx (4.185a)

(4.185b)

FIG. 61. Data for Aq' ', the standard deviation between sam-
ples of qJ ', multiplied by T/J at T =0.1J and 0.2J, for the SK
model with sizes between N =3 and 17 spins obtained by exact
enumeration of all the states plotted against N ' . The arrows
show predictions from the Parisi theory. Also shown is the
standard deviation of the energy, which seems to be extrapolat-
ing to zero for N~ oo. From Young et al. (1984).
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On the other hand, the energy (Fig. 61), magnetization
(Elderfield, 1984a; Young et al. , 1984), qFA (Mezard
et al. , 1984a, 1984b), and mean-square staggered spin
(Mezard and Parisi, 1984) are self-averaging. It thus ap-
pears that all quantities depending on the properties of a
single state are self-averaging (and furthermore indepen-
dent of state for a given set of bonds). Consequently it is
difficult to think of an experiment that would detect lack
of averaging, though this is very important theoretically.

Although M is self-averaging, the susceptibility Xz is
not (Young et al. , 1984) because the weights change rap-
idly as H is varied, probably on a scale AH -1V ', and
the weights are sample dependent. Hence the operations
of performing the field derivative and taking the thermo-
dynamic limit do not commute (Sompolinsky and Zip-
pelius, 1982a). For each sample, M has fluctuations, as H
is varied, about an envelope curve whose slope bM/bH is
equal to the average susceptibility X (see Fig. 62). Defin-
ing the differential susceptibility XJ by

(4.188a)

Eq. . (3.70b)]. Note that fluctuations in M about the en-
velope curve average to zero either by averaging over
samples for a fixed H or averaging a single sample over a
range of H much longer than % '~ . In other words,

QMJ 1 H+aHf XJ(H)dH =X (4.188d)

f(P) = g 5(P Pt)—
av

(4.189)

Interestingly f ( P) can be calculated in closed form
(Mezard et al. 1984a, 1984b),

where 1 »PbH »X '~ . Young et al. (1984) referred
to Eqs. (4.188b) and (4.188c) as violations of the
fluctuation-dissipation theorem for a single sample. On
reflection it seems preferable to define the fluctuation-
dissipation theorem by Eq. (4.188a), which is always Ualid,
and not by (4.188b) or (4.188c), but this is purely a ques-
tion of semantics.

Let us now discuss more carefully the weights of the
states. One can define the average number of states of
weight between P and P +dP by f(P)dP, where

we have

(4.188b)
(p)

P ( 1 P)'

I (y I )I (1—y 1 )
(4.190)

Calculating the fluctuations in Xq, one finds that the i&j
terms in Eq. (4.188a) contribute even for H~O because
Xso ~ X [see Eq. (4.166)]. Hence one has

where

y1 1 +1 (4.191)

TXJ~1 qg (H ~—0), (4.188c)

though an equality results if both sides are averaged [see

and x, is the breakpoint in the function q(x) (see Fig.
52), so y& is the width of the plateau. Note that

1J Pf (P)dP =1

because gt Pt ——1, and

J P f(P)dP= +PI0
1

(4.193)

The plateau in q (x) gives a delta function of weight y ~ at
q =q(1) in P(q). From Eqs. (4.164) and (4.193) we see
that this is just the weight in the self-overlaps q '( =qEA).
Hence we infer that (Mezard et al. , 1984a, 1984b)

qEA =q(1» (4.194)

FIG. 62. The solid curve is a sketch of the magnetization M
against field H for a single sample of the SK model below Ty.
As N —+Do the curve tends closer and closer to the envelope
curve, shown by the dashed line, though its slope does not tend
to that of the dashed line. The fluctuations in the solid line
away from the envelope curve, which probably take place in a
range of M or H of order N ', are due to rapid changing of
the weights of the thermodynamic states and average to zero
when a configurational average is performed. From Young
et al. (1984).

as already noted in Eq. (4.68c)
Now f f(P)dP diverges as s—+0, so there are an infi-

nite number of states with infinitesimally small weight.
However, there are also a small number with significant
statistical weight because of Eq. (4.193) and the observa-
tion that y1 is finite. Hence a small number of states
dominates the statistical weight. In fact, as y1~1, which
occurs for T~Ty, one state dominates.

It is interesting that Eq. (4.190) is universal, not de-
pending explicitly on T,H but only indirectly on these
quantities through y1. This fact, as well as the domi-
nance of a few states, has now been simply explained by
Derrida and Toulouse (1985) and Mezard et al. (1985a).
These authors noted that Eq. (4.190) follows directly,
without needing replicas, if one assumes that the free en-
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890 K. Binder and A. P. Young: Spin glasses

ergies of the states are independent random variables with
an exponential distribution in the vicinity of the
minimum free energy, i.e., the number with free energy
per spin between f and f+df is p(f)df, where

ments. They find that the distribution depends on q, T,H
only through y(q), and so write it as II~(Y). Hence
II&( Y) and f(P) [Eq. (4.190)] are universal in that they
make no reference to an order-parameter function q(x)
and are consequently the same for the random-energy
model (Derrida, 1980, 1981) and the SK model (Derrida
and Toulouse, 1985; Mezard et al. , 1985a). Figure 63
shows IIQ 7( Y) obtained by Mezard et al. ( 1984b). As
Y—&I, II~(Y) diverges like (1—Y) " because the dom-
inant configurations in this region are those in which one
state dominates and the distribution of weights [Eq.
(4.190)] diverges as (1—P) ~ for P~ 1. Numerical cal-
culations of Parga et al. (1984) are in good agreement
with this.

Mezard et al. (1984a, 1984b) also investigated overlaps
between three states labeled 1, 2, and 3 say. One might
have thought that there would be no particular restriction
on the three possible overlaps q', q, and q '. However,
it turns out that they cannot all be different; either all
three are equal or the two smaller ones are the same.
Such restrictions are characteristic of what is called an
"ultrametric space. " A good review of ultrametricity
may be found in Rammal et al. (1986). The ultrametric
structure follows fairly directly from the fact that there is
a strong analogy between replicas and states [compare, for
instance, Eq. (4.157) with Eq. (4.161)]. The Parisi ansatz
has a treelike structure (see Fig. 50), which, after a
moment's reflection, one can see, gives precisely these re-
strictions on the q p. Hence we infer a treelike structure
of the overlaps between thermodynamic states as well, just
like Fig. 50, except that the ends of the tree on the bottom
line denote states rather than replicas. This implies a
hierarchical structure of "valleys within valleys within
. . . ," which in turn suggests that barriers between states
are larger when the overlap is smaller. It is also tempting
to regard the vertical axis in Fig. 50 as temperature; the
states then undergo successive bifurcations (or division

(4.195)p(f) ~ exp[x (NP(f f, )—]
and f, is the minimum free energy. It does not appear
that any other distribution would give Eq. (4.190), so one
argues that p(f) in the SK model must have the form in
Eq. (4.195) for f near f, . This is also the distribution of
energies in the random-energy model (Derrida, 1980,
1981). Clearly it is most improbable that there will be a
state with f much less than f, . There are an enormous
number with f~&f, (which is why the total number
diverges as noted above), but these have negligible statisti-
cal weight when multiplied by the Boltzmann factor
exp( —NPf), since x~ &1. Hence the states of interest
have free energy very close to f, . Dominance occurs be-
cause of gaps between the free energies of the states in a
given sample.

We are now in a position to determine the "complexi-
ty" I [Eq. (3.21)] of the SK model, which is physically
the extra entropy due to there being many phases. Equa-
tion (3.21) gives

I P PlogPdP
0

(4.196)

(4.197)

TT07(Y)

't 0-

0.5-

where
O.S

from Eq. (4.190), where g is the digamma function. As
T~Tf, I~0, while as T~0, the PaT hypothesis
predicts x~~ —,

' and hence I/k~ ——21og2. Note that I is
the complexity of the whole system (not per spin), so I
gives a negligible X ' correction to the free energy.
Hence the SK model is not very "complex" because of the
dominance of a few states. The PaT prediction that the
coefficient of f in the exponent in Eq. (4.195) should
diverge as T~O seems very surprising to us. Qn physical
grounds we expect it to remain finite, in which case
x, (T) cc T as T~O This wou. ld mean I +0 as T +0- —
(and as T &Ty ), which is p—hysically reasonable and says
that the lowest state completely dominates at low tem-
peratures.

Having understood the distribution of free energies and
weights fairly well, we turn our attention to fluctuations
in the overlaps. Now PJ(q) will consist of a set of delta
functions, a few taking most of the weight, because of the
dominance noted above, but with a large number of very
small weight. Hence fluctuations in PJ(q) will be enor-
mous. A better behaved quantity turns out to be the cu-
mulative probability distribution

1

Yq(q) = f dq'Pq(q'), (4.198)
q

[YJ(q)],„=y(q)—= 1 —x(q) . (4.199)

Mezard et al. (1984a, 1984b) have been able to determine
accurately the distribution of YJ(q) by studying its mo-

FIG. 63. The distribution IIO7(F} obtained by Mezard et al.
(1984b}. The two different curves correspond to different ways
of extracting the distribution from its moments.
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into more parts) as the temperature is lowered. This pic-
ture seems to have been proposed first by Krey (1977),
though in a qualitative way. Note that ultrametricity
must occur for each sample, even though the c'alculations
generally discuss average behavior, because having a net
probability of zero for three different overlaps means that
such a situation can never occur in any sample.

Probably the most amazing aspect of ulrametricity in
the SK model is the division of weight between the oc-
currences of cases of three equal q's and cases in which
only two of the q's are equal. Let us consider all triples
of phases where the largest overlap is fixed, and equal to
q,„, say. From the results of Mezard et al. (1984a,
1984b) one deduces that the probabilities are

12 23 31
q =q =q =qmax

12 23 31
& q =qmax

23 31 12& q =qmax

(prob. —,
' ),

(prob. —,
' ),

(prob. —,
' ),

(4.200)

qmid' qmin & qmax (4.201)

where q;d and q;„are the intermediate and smallest of
the q's. If q,„ is close to unity, the two smaller q's are
forced to be close together, and this can easily be confused
with ultrametricity. Third, the distribution P(q) has a
pronounced peak (see Fig. 59), which means that there
tends to be a lot of weight where the q's are almost equal.
In view of these difficulties we feel it is very helpful to
look at the size dependence of the moments of q;d —q in

for a fixed q,„, not close to unity. Parga et al. (1984)
have studied sizes %=32,64 by working with T=O solu-
tions and a non-Boltzmann weight and found some evi-
dence for ultrametricity. Recently Bhatt and Young
(1986) have looked at sizes up to N=512 at T=0.6T, us-
ing Boltzmann weights. A preliminary finite size scaling
analysis for q~,„=—, gives the first moment of the distri-
bution of qm;d —q;„varying as N ' . Hence there is
some numerical evidence for ultrametricity, but it is rath-
er hard to see convincingly.

One consequence of the ultrametric structure is that for
any value of q one can partition the states into disjoint
clusters such that the overlap of states in a cluster is
greater than or equal to q, and the overlap between any
pair of states in different clusters is less than q (Mezard
et al. , 1984a, 1984b). If we denote the weight of cluster I
by WI, when the division is at a scale q, then

q '=q' &q =q,„(prob. —,') .

The equal partitioning among the four possibilities ap-
pears very trivially in the replica trick, basically from ra-
tios of binomial coefficients C„ in the limit n —&0. It
would be very interesting to understand physically how it
arises.

Three factors make ultrametricity difficult to observe
in numerical simulations. First, the distributions are sig-
nificantly rounded out at sizes that can be studied; see, for
example, Fig. 59 for P(q) Second, . there are triangular
inequalities, for instance,

8't ——g Pt .
1el

(4.202)

It follows (Mezard et a1., 1984a, 1984b) that FJ(q), de-
fined by Eq. (4.198), is given by

I'J(q)= g Wl,
I

(4.203)

and furthermore the distribution of the cluster weights
8'I has the same universal form as Eq. (4.190) but with

y &
replaced by y (q), i.e.,

(4.204)

Once again no reference is made to the order-parameter
function q (x).

Recently, Mezard et al. (1986a, 1986b) have made an
important advance by obtaining a complete solution, in-
cluding the function q(x), without using the replica trick.
We refer the reader to these references for further details.

G. Fluctuations and stability
of the Parisi solution

qpy~a5 qp~ay ~ (4.205)

where a&P, y&5, the q'p refer to saddle-point values,
and 8, given by Eq. (4.28), is negative. Eigenvalues in a
subspace were found by Thouless et al. (1980). Subse-
quently, by a tour de force, De Dominicis and Kondor
(1983) managed to completely diagonalize Eq. (4.205). In-
dependently Goltsev (1983) has also found the eigenvalues
of the R, though some of his results have been criticized
by Kondor and De Dominicis (1983b). There are an in-

At the end of Sec. IV.A we noted that a physically sen-
sible solution must be stable, i.e., have no negative eigen-
values, and we showed in Sec. IV.B that the SK solution
does not satisfy this condition below the AT line. Parisi's
solution was then introduced and shown to give physical-
ly sensible and interesting results. Nonetheless the Parisi
solution must still pass the stability test if it is to be taken
as the exact solution of the SK model.

The problem, then, is to diagonalize R p'y, a matrix of
dimension n(n —1)/2 given by Eq. (4.49), in which the
averages are with a weight exp(L Iq I ), and L Iq I is given
by Eq. (4.42) with b~p=O and q~p equal to the Parisi
solution. Since the matrix q p has a complicated struc-
ture, this is a highly nontrivial task. Some simplification
occurs if one is close to T =Tf, H=O, so the free energy
can be expanded as a functional of the q p [Eq. (4.72)].
Furthermore one can make the Parisi approximation, re-
taining out of the quartic terms in (4.72) only the g~p
term, because this is the one responsible for replica sym-
metry breaking. Expanding Eq. (4.72) away from the sad-
dle point up to second order and comparing with Eq.
(4.48), one straightforwardly obtains, just below Tf (for
H =Jo ——0, which will be assumed in this section),

& p'r =(2& 2qap) ~~p, r—s q~r~ps q~—s~pr—
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finite number of eigenvalues divided into two families,
"replicon" and "longitudinal-anomalous, " and the spec-
trum can be characterized as follows. (i) There are bands
of eigenvalues that are all finite and positive. (ii) There
are bands of eigenvalues that tend arbitrarily close to zero
(an accumulation point). (iii) There are isolated zero
eigenvalues.

A detailed description of the spectrum is given in De
Dominicis and Kondor (1983, 1985a). Note that there are
no negative eigenvalues, so the Almeida-Thouless disease
has been cured.

One would still like to understand whether any prob-
lems arise from zero modes and those with arbitrarily
small eigenvalues, (ii) and (iii) above.

We believe that there are three possible physical origins
for these zero modes.

(a) Each thermodynamic state has directions in which it
is very soft, corresponding to the marginal stability noted
in Secs. IV.C and IV.D. We suspect that these will be of
type (ii) above.

(b) There are degenerate thermodynamic states (see Sec.
IV.E), and hence there are fluctuations that take the sys-
tems from one state to another.

(c) The Parisi free energy is invariant under a
reparametrization of the plateau region x~ &x &1 [i.e.,
x ~u (x) for x

~ &x & 1 with u (x) monotonic and
u (x ~ ) =x ~, u(l) = 1]. Hence there will be zero modes cor-
responding to such a change of "gauge. " These will prob-
ably be of type (iii) above. Note that they have no physi-
cal significance and will drop out of any calculation of
observables.

It is obviously desirable to understand the physical sig-
nificance of the various zero modes. We believe that this
can be achieved by a statistical mechanics calculation of
the spin averages in Eq. (4.36) as well as a calculation of
analogous quantities, but with full statistical mechanics
averages replaced by averages in a single state. For exam-
ple, the first term in Eq. (4.36) would be just

~—1 y ((g g )(1))2

It seems that these single state averages are obtained from
replica averages similar to those in Eq. (4.36), but instead
of averaging overall distinct sets of replicas one constrains
the replicas to be in the same smallest block of the Parisi
matrix (Sompolinsky, 1985). Though we have not seen a
proof of this statement, it seems almost obvious from the
ultrametric structure of the matrix (see Sec. IV.F and Fig.
50). As we shall see below, a calculation of these observ-

able quantities requires the eigenvectors and degeneracies
of the modes as well as the eigenvalues, but these have
also been evaluated (De Dominicis and Kondor, 1984).

Both the full and single-valley averages in Eq. (4.36) are
expected to be infinite because of the zero modes. How-
ever, it is of interest to know which modes contribute.
We expect that those contributing to neither full nor
single-state averages are associated with gauge changes,
case (c), while those contributing to full but not single-
state results are related to fluctuations between states, case
(b). Modes contributing to single-state averages then
describe case (a). De Dominicis and Kondor (1984) have
evaluated the first term in Eq. (4.36) and have shown that
many of the zero modes do disappear from the expres-
sions for full and single-valley averages. Our interpreta-
tion is that these correspond to gauge transformations.
As we discuss further below, De Dominicis and Kondor
show that the full average is more strongly divergent than
the single-valley average, demonstrating that there are
zero modes contributing to the full average but not to
single-state fluctuations. We interpret these as fluctua-
tions between thermodynamic states.

We saw in Sec. IV.D that the Parisi solution corre-
sponds to one choice of gauge in the Sompolinsky formu-
lation. This refers to the saddle-point solution. However,
the correspondence is even stronger because Kondor and
De Dominicis (1983a) have shown that the fluctuation
spectrum is also gauge invariant and hence the same in
the two theories.

One motivation for studying the SK model is to use it
as a starting point for calculating fluctuations in systems
with short-range interactions. The first step is to deter-
mine the Gaussian fluctuations about the mean-field solu-
tion, which are related, as we shall see below, to the eigen-
values and eigenvectors discussed above. Hence it is ap-
propriate to discuss this aspect of short-range systems in a
section otherwise devoted to infinite-range models. The
ultimate objective of the approach is to couple fluctua-
tions together and develop a field theory describing the
spin glass state of finite-range systems. From this one
should be able to determine the critical dimension below
which Parisi-type order disappears (see Sec. V.E). Unfor-
tunately this has not yet been carried out.

Let us therefore discuss the Gaussian fluctuation about
the mean-field theory of a finite-range, Edwards-
Anderson model, as described in Sec. III.D, with Gauss-
ian distribution of bonds. The replica Hamiltonian is
given by Eq. (3.36) with J~=0. Using standard tech-
niques (e.g., Miihlschlegel and Zittartz, 1963), [Z"],„can
be written, apart from a normalization constant, as

[Z"],„=exp[ 4(BJ) nN] I +—dq' pexp —
2 g gq'&(K '); qj&+ +log Trexp(L[q;])

a&p a&p ij
(4.206)

where

1.[q;]=(PJ) g q'yS'; SP,
a&p

(4.207)

A ( k) = g (pb J )eJ
j

A ( k=0)—:(PJ)

(4.208)

(4.209)
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and

X,i ——(Pb Ji) /(/3J)",

so, Fourier transforming, we find

E '(k)=(PJ) [1+ak + ](k—+0),

(4.210)

(4.211)

where a is a constant that depends on the form of EJ,J.
Equation (4.206) is the generalization to short-range in-
teractions of Eq. (4.11). Introducing fields 6'p, which
couple to S; SP as in Eq. (4.37), and following the steps
which led to Eq. (4.45), we find

~ p ) onto 5q p. Equation (4.218) is defined for
a&P, y &5, and it is convenient to symmetrize it by de-
fining gPa, Y5(k) gaP, Y5(k) GaP, 5Y(k) gaP, Y5(k)

second term in Eq. (4.218) represents Gaussian fluctua-
tions that are finite for a short-range system but vanish as
N~ao for the SK model because a in Eq (.4.215) is in-
finite, so k&0 fluctuations are suppressed.

Note that there are zero modes, A&
——0, so G P'r (k)

will diverge as k —+0. The wave-vector-dependent spin
glass susceptibility Xso(k), the Fourier transform of
((SSJ )T—(S )T(S )z'), is given by

(s, sP) = lim (q p),
n~O

(q p) =q'p,

(4.212)

(4.213)

Xso(k)=lim g G P' P(k)1

n 0 n(n —1)
&

where q~p denotes the saddle-point value and the q aver-
ages are with weight exp( Nni3f [q—I ). Here

13f[q I =&ft q'I

+lim g gR P'r (k)5q p(k)5qr5( —k)
pg —+0 2n p

y(5

(4.214)

and R P r (k), is given by

(PJ) RaPr5(k)=(1+ak )5 Pr5
—(PJ) [(S SPSrS )

g G P'r(k)
n(n —l)(n —2)

&

y Gap, y5(k)1

n (n —1)(n —2)(n —3)
~

(4.219)

the summations being over all distinct sets of replicas.
Note that Xso(k=0):—Xso [Eq. (4.35)]. Equation (4.219)
is the generalization to short-range interactions of (4.35)
and (4.36). The corresponding quantity for a single valley
Xs'o(k), discussed above and in Eq. (4.152), is given by

X'"(k)=[limG ' ' ' '(k) —2G ' ' ' '(k)
n —+0

—(S S )(SrS )] (4.215) g a ]a2$ a3a4( k ) ] (4.220)

Gap r5(k) =—g (S SpSJ'SJ')e
l,J

with a &P,y &5 is given by

(4.216)

G r (k)=hm Nq'pqr55i, o+ &5qap5q, 5)
n~O

as k —+0; the spin averages in Eq. (4.215) are evaluated ex-
actly as in Eq. (4.49). Hence R P'r (k) is the same as the
R p'r for the SK model, apart from the extra factor of
uk along the diagonal. In addition we find that

where the a; are distinct replicas in the same smallest
block of the Parisi matrix.

De Dominicis and Kondor (1984) have evaluated
G~p' p(k) just below T. Writing this as G„(k) where x is
defined by q p =q (x), they find, for small k,

k (x «k), (4.221a)

G.(k) k-' (xi»x»k), (4.221b)

k (x 1) (4.221c)

(4.217)
1f G, (k)dx ~ k 'logk, (4.222)

where again the 5q averages are with weight
exp( Nn 13f I q I ) and f I q ]—given by Eq. (4.214). Decom-
posing 5q p into eigenvectors,

~
p) of R, considering the

long-wavelength limit, extracting the most singular part,
and choosing units of length where a in Eq. (4.211) is uni-

ty, one obtains

k ' (small x),
G."'" k- (x 1)

(4.223a)

(4.223b)

where xi is the breakpoint in the Parisi function (Fig. 52).
In a magnetic field, but still below the AT line, De Do-
minicis and Kondor (1984) find

P, 5(k)
P P

1f G„(k)a:k (4.223c)

(4.218)

where the 2& are eigenvalues of the mean-field stability
matrix and (ap

~
p) is the projection of the eigenvector

the ranges x &&k and x& »x »k both now giving the
same k divergence (for k « h ).

Recently De Dominicis and Kondor (1985b) have
evaluated Xso(k), obtaining the remarkably simple result
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(4.224) k ' "' so, in mean-field theory, we have

Unfortunately, the full statistical mechanics average,
Xso(k), is very complicated and has not yet been evaluat-
ed. We may give the following interpretation to results
(4.221)—(4.224). Equations (4.221c) and (4.223b) show
that fluctuations in a single state diverge as k . This
divergence refle:ts the marginal stability of each state, as
noted in Secs. IV.C and IV.D. The full statistical
mechanics average given by Eqs. (4.222) and (4.223c)
diverges more strongly because of large fluctuations be-
tween thermodynamic states. If one were naive one
would be tempted to estimate the lower critical dimension
(see Sec. V.E) by integrating over all k and requiring that
the result be finite (because it is a local quantity). Since
the full average is more divergent than the single-state
average, one might use Eq. (4.222), which would imply
that d~

——3. However, Eq. (4.22la) diverges as k, so
one could also argue that d~=4 (Sompolinsky and Zip-
pelius, 1983). In any case, these arguments are too sim-

ple, and a complete field theory including interactions be-
tween the modes is necessary to determine d~, the lower
critical dimension for Parisi order.

The above results were obtained just below Tf', De
Dominicis and Kondor (198Sa) have noted that they
should be essentially unchanged anywhere below Tf be-
cause they depend mainly on the ultrametric structure
(Sec. IV.F), of the Parisi matrix. In fact, correlation func-
tions at arbitrary temperatures have been found by Som-
polinsky and Zippelius (1983) using the dynamical ap-
proach. Kondor and De Dominicis (1983a) have argued
that these only give the G~@r (k) for certain limiting
choices of the replicas. As an example they argue that
G„(k) is obtained by Sompolinsky and Zippelius only for
x=0, where indeed the two calculations agree. Accord-
ing to the dynamical interpretation of x, the statistical
mechanics average is obtained with x =0, so the stronger
divergence in Eq. (4.221a) is very significant. However,
according to the more widely held interpretation, dis-
cussed in Sec. IV.E, statistical mechanics averages are
given by integrals over x. Goltsev (1984b) has shown how
Sompolinsky and Zippelius's results can be obtained from
the replica method.

Equation (4.218) is very simple above Tf where, as not-
ed in Sec. IV.B, all the A,

&
are equal to 28, so

(4.228)

Note from Eqs. (4.221)—(4.223) that fluctuations diverge
more strongly below Tf, where ordering has occurred,
than at Tf itself.

To. conclude, we believe that the most important results
presented i.n this section are the stability of the Parisi
solution and the results in Eqs. (4.221)—(4.224). It would
be very interesting to check whether the same divergences
occur in the other averages that go into the expressions
for XsG(k) [Eq. (4.219)] and whether any cancellations
occur in forming this linear combination. A full field
theory of interacting fluctuations below Tf is awaited
with great interest.

H. Non-Ising models

In this section we review, relatively briefly, work on
versions of the SK model that do not have Ising spins.
The obvious generalization is to m-component vector
spins; the properties of an isotropic vector spin glass are
discussed in Sec. IV.H. 1, while the effects of anisotropy,
including a magnetic field, are treated in Sec. IV.H.2. Fi-
nally in Sec. IV.H.3 we look at results on some other
mean-field models.

1. Isotropic vector spin glasses in zero field

Let us take the individual statistical variables to be
classical m-component vectors S;, normalized so that

(4.229)

which ensures that Tf is independent of m, with an SK
Hamiltonian,

(4.230)

where the interactions J;j are infinite-range, statistically
independent random variables with a Gaussian distribu-
tion, whose mean and variance are given by Eq. (4.6). (In
this section we shall mainly set II =10——0.) The spin
glass order parameter [Eq. (3.117)] is now a tensor in spin
space,

G ~'r (k)= 5 pcs.20+ k

Fourier transforming Eq. (4.225), one obtains

[(S;S~)T]„~exp(—
~
R; —RJ

~
/gsG)

(4.225)

(4.226)

(4.231)

where k, k' refer to spin components. In terms of replicas
we have

(4.232a)

as
~
R; —RJ ~

—+op where /so ——20. In general one de-
fines an exponent v by (so~0 ' and hence the mean-
field value is

where

kk' (saksPk') (4.232b)
1

V 2 (4.227)

as noted in Sec. IV.D.1. Furthermore at T =Tf,
G~@ ~(k) o: k . This is conventionally written as kk'

=q&kk (4.233)

With H =Jo ——0 one expects that, on the average, the sys-
tem will be isotropic in spin space, so that
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i.e., all directions in spin space are equivalent. In replica
theory the assumption of an isotropic state is usually tak-
en to mean that one searches for a solution of the form

kk'
q ap qap~kk' ~ (4.234)

(4.235)

where I~(x) is a modified Bessel function, I (x) is the
gamma function, and

H(z) =J(qm)'' z . (4.236)

though we see from Eq. (4.232a) that only the sum over
replicas has to be isotropic, not necessarily each replica
pair separately. We shall discuss this again below.

As usual it is fairly straightforward to obtain the
replica-symmetric solution. The order parameter q is
given by the solution of de Almeida et al. (1978),

2

I „[pH(z)]
I (m/2) o I, , [pII(z)]

1981b), consistent with there being only one TAP solution
and hence one phase in this limit.

Turning to the Parisi solution, we find that this is very
similar (Elderfield and Sherrington, 1982b; Gabay et al. ,
1982) to the Ising case (Fig. 52). Just below TI the solu-
tion is

m+2 6f8fx, 0&x &xj ——I +2

q(x)= i8i, x, &x&1
(4.239)

[cf. Eqs. (4.78), (4.80), and (4.81) for the Ising case]. Note
that for m —+ ao, x ~ ~0, so replica symmetry breaking
disappears, as expected from the above discussion. Elder-
field (1982b) has shown that I q(x)dx =1—T/TI and
hence X=J ', a constant, for all T & Tf, just as for the
Ising model [see Eq. (4.85)].

Next we discuss the probability distribution for the
overlaps between states. For a vector spin model this is a
joint distribution PIq I for all m possible overlapsq, and is defined by

For m = 1, Eq. (4.235) reduces to Eq. (4.20), and the result
for m =2, with a different spin normalization, was given
by Kirkpatrick and Sherrington (1978). In the case of
m=3~

I3/2 (x ) /I& ~2 (x ) =coth(x ) —1 /x

where

QPtPt g 5(q"" qti" )—
k, k'

av

(4.240a)

(4.240b)
the familiar Langevin function. In the limit m~ao, Eq.
(4.235) can be solved analytically, with the result (de Al-
meida et al , 1978).

Tq=l-
Tf

For all m one has

Tf ——J,

(4.237)

(4.238)

I,= —a(m) ~8~ (8~0 ),
where 8=(T—TI)/TI and a(m)~0 as m —+oo. Hence
for any finite m the replica-symmetry solution is unsta-
ble, and we shall search for a Parisi-type solution. Clearly
m = oo is special, since the replica-symmetric solution is
stable in the spin glass phase. It appears to be the correct
solution in this limit, and following the standard interpre-
tation of replica symmetry (see Sec. IV.E), we infer that
there is only a single thermodynamic state for m ~~.

Support for this idea comes from a study of the analogs
of the TAP equations (Bray and Moore, 1981b). The
number of solutions is of the form Ns exp[Na(T, m——)]
[cf. Eq. (4.110)],where a~O as m —+ ao (Bray and Moore,

q=O for T ~ TI and q~l as T~O.
de Almeida et al. (1978) also studied the stability of

the replica-symmetric solution along the lines discussed in
Sec. IV.B. For vector spins there are nine eigenvalues
below TI (as opposed to two for the Ising model). Some
eigenvalues of the stability matrix turn out to be negative,
and these have the form

kk' kk" k'k"' k "k"'
q~p + g R~ R p q~p

kit kill
(4.242)

is the overlap between the kth component of spins in state
l with the .k'th component in state l'. It is straightfor-
ward to show (Elderfield and Sherrington, 1984), for in-
stance, along the lines of the derivation of Eq. (4.165),
that PIq" I is given by Eq. (3.119), which, for the Parisi
ansatz q p

——q (x), becomes
kk' kk'

PI q""
I
= I dx +5(q""—q""(x)) . (4.241)

k, k'

With the isotropic solution q"" (x) =q(x)5kk a compar-
ison with Eq. (4.240) shows that all off-diagonal elements
( k&k') of qlt" vanish and all diagonal elements are equal
for all pairs of states l, l'. While it seems clear that each
state separately should be isotropic and that the full aver-
age over all states should also be isotropic, this last re-

kk'
mark is a stronger statement and arises because q~p is
isotropic for every pair of replicas a,p [see Eq. (4.234)],
whereas isotropy only required the sum over all replica
pairs to be proportional to 5kk. (Notice once again the
close analogy between replicas and states. ) We are not
aware of any attempts to look for solutions thai are iso-
tropic when averaged over all states but not for each pair
separately.

Note that with H=O one can rotate all the spins
without any cost in energy. Hence the replica Hamiltoni-
an is invariant under these rotations as well as replica per-
mutations, i.e., for any solution q p we can find
equivalent solutions (see Sompolinsky et al, 1984),
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max(qtt ) (not summed on k),
1

max yqfP
Pg k

(4.243)

where max( ) denotes the maximum value with respect to
rotation of spins in one of the thermodynamic states I or
l'. Note that Q has the advantage of being rotational in-
variant and so does not have to be maximized in this way.
One can equally weIl give a microscopic description in
which qII is replaced by the overlap between spins in two
different systems, analogous to Eq. (3.84c). Hence it
would be useful to calculate the distribution of the quanti-
ties in Eq. (4.243) in a computer simulation to check the
Parisi theory for vector spin glasses.

The theory implicitly assumes that a very small field
would project out the rotations where all overlaps are di-
agonal, and one could presumably construct an argument
for this along the lines of the discussion between Eqs.
(4.167) and (4.172), which is for Ising spins.

Since the Parisi matrix is of the same form as for the
Ising model, features such as lack of self-averaging and
ultrametricity (Sec. IV.F) will also be present for vector
spin glasses.

The relaxational dynamics of infinite-range isotropic
spin glasses have been investigated by Sompolinsky and
Zippelius (1982b). As for Ising spins, fluctuations within
a single state on finite time scales decay with a power of
the time t. The power is nonuniversal in that it depends
on m and T except for m = ao, where it is equal to —,

' for
all T. A ppwer-law, as opposed to an exponential, decay
is characteristic of marginal stability for each thermo-
dynamic state.

Heisenberg spins have intrinsic dynamics from preces-
sion of the spins about their local fields. It is therefore of
interest to see whether this type of dynamics has the same
critical behavior as the relaxational dynamics introduced
in Sec. IV.D. Gotze and Sjogren (1984) have looked at
real Heisenberg dynamics within a mode-coupling ap-
proximation and find the same dynamical exponent, Eq.
(4.126), and scaling function, Eq. (4.123), as obtained ear-
lier for relaxation dynamics in an Ising model. This is
striking because, for ferromagnetic systems, the dynami-
cal behavior of the two models would be very different.
However Gotze and Sjogren (1984) also find exponential
decay of q(t) to qE& as t~ ao below Tf, instead of the
expected marginal stability (see Sec. IV.D.3). It appears

kk"
where R~ is an m)&m rotation matrix for replica o, .
Equation (4.242) is the generalization to vector spins of
Eq. (4.167). The fully isotropic solution implies that there
is always a rotation that will make q p proportional to
5kk. A similar statement holds for the overlaps between
states. Equation (4.241), together with this discussion,
shows that dx/dq is the distribution of any of the follow-
ing quantities:

1/2

Q = g (qtt" )'
m k, k

that a mode-coupling theory is inadequate to describe the
spin glass state. Gotze and Sjogren (1984) claim that "the
spin glass transition is of purely dynamical origin. " We
do not accept this view because, as we have seen, the non-
linear susceptibility, a four-spin correlation function,
diverges, and it seems to us that the divergence in this
static quantity (which goes with a divergent spin glass
correlation length in a finite-range model; see Sec. IV.G)
is what causes singularities in the dynamics. It is interest-
ing to speculate on whether there is also a hidden diver-
gent length in recent mode-coupling theories (Leu-
theusser, 1984; Das et al. , 1985) which state that the con-
ventional glass transition is "purely dynamical. "

To our knowledge the fluctuation spectrum about the
Parisi solution has not been evaluated for vector spins, so
we do not have any information on Gaussian fiuctuations
analogous to Eq. (4.221). However, we anticipate that the
vector spin results will not be very different.

Sompolinsky et al. (1984) have evaluated the exchange
stiffness of a Heisenberg spin glass. They consider a
model with short-range interactions, but evaluate its prop-
erties in mean-field theory [cf. the discussion of Eq.
(4.218)]. The exchange stiffness is related to the energy in
a uniform twist of the spins and is a parameter in the hy-
drodynamic theory discussed in Sec. VI.B. If the system
is constrained to stay in a single thermodynamic state, the
exchange stiffness varies as ( Tf T)~ wher—e @=3. One
expects that p satisfies the Josephson relation p =(d —2)v
with d=8, the dimension below which some exponents
deviate from their mean-field value (Fisher and Sompolin-
sky, 1985). Sompolinsky et al. (1984) have also shown
that the exchange stiffness is zero if one allows the system
to relax to a different thermodynamic state during the
twist (i.e., if one performs a full statistical mechanics
average) .

We have noted several times that the m = ao model is
particularly simple bemuse there is no replica symmetry
breaking. It is also special in having the upper critical di-
mension d„(Sec.VI.A) equal to 8 (Green et al , 1982), as.

opposed to d„=6 for other spin glass models. At present
it is not clear whether this model is completely pathologi-
cal or whether, because of its relative simplicity, it is
worth studying in more detail.

To conclude this section we see that, except for m
isotropic vector spin glasses are rather similar to the Ising
case.

2. Isotropic vector spin glasses in nonzero field
and anisotropic vector spin glasses

There are many ways one can induce anisotropy in an
isotropic vector spin glass state described by Eqs. (4.233)
and {4.234). One of the most interesting, and the one we
discuss first, is the use of a magnetic field.

The Hamiltonian is given by Eq. (4.230), and unless ex-
plicitly stated we shall have zero mean, Jo, in the distri-
bution. Let us define S to be the spin component in the
direction of the field, so that S;, k =2, . . . ,I, comprise
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the perpendicular components S, In the presence of a
field we always have P

(4.244)

whereas the order parameter qz, defined by

5kkq, =[(S; )T(S;" )T],„(k,k'=2, . . . , m), (4.245)

SG F

(m +4) H
J 2(rn +2) J (4.246)

where &Tf= Tf —ToT(H) and Tf is the zero-field freez-
ing temperature. The GT line is sketched in Fig. 64. No-
tice that the shape of the line given by Eq. (4.246) is very
different from the AT hne near Ty [see Eq. (4.62)]. At
temperatures above the GT line, qj ——0 and the transverse
spin glass susceptibility Xso, defined by

(4.247)

diverges as T~ToT(H) like

I
+su T —ToT(H)

(4.248)

f

There is an analogous transition when H=O but Jo&0
(see Fig. 65), from a collinear ferromagnet to a "canted
ferromagnetic state" in which the spins are not all parallel
because qz&0 and M&0. Several experiments have been
interpreted as evidence for the GT line (Lauer and Keune,

FIG. 64. Sketch of the Gabay-Toulouse (GT) line for an
infinite-range vector spin glass. The low-temperature phase has
nonzero transverse spin glass ordering. The Almeida-Thouless
(AT) line, strictly speaking, no longer occurs, but there is a
well-defined crossover region, indicated by the dashed line,
which follows a similar curve.

which represents transverse freezing, may or may not
vanish. The line in the H-T plane where qz becomes
nonzero was first discussed by Gabay and Toulouse
(1981). For H~O the Gabay-Toulouse (GT) line varies
as

2

FIG. 65. Sketch of the phase diagram of an infinite-range vec-
tor spin glass with nonzero mean Jo in the distribution. The
phases are paramagnetic (P), spin glass (SG), ferromagnetic (F),
and a "mixed" phase (F') in which ferromagnetism coexists
with transverse spin glass order. Phases F and F' are separated
by a GT line. The dashed line indicates a crossover region as in
Fig. 64. The F'-SG phase boundary is vertical, just as for the
Ising case shown in Fig. 49.

1982; Campbell et al. , 1983, 1984; Fogle et al. , 1983)
where transverse freezing occurs.

Gabay and Toulouse originally claimed that there was
no replica symmetry breaking just below the GT line, but
this is now known to be incorrect (Cragg et al. , 1982;
Moore and Bray, 1982). Since the field does not couple to
transverse components, the transition of the GT line is
precisely the same as an m —l component isotropic uector
spin glass (Moore and Bray, 1982), so replica symmetry
breaking occurs. Because of this, Fischer (1984) finds
that the dynamical exponent z, which is nonuniversal for
Ising spins and varies along the AT line (see Sec. IV.D.2),
keeps its H=O value of 4 everywhere along the GT line.

Elderfield and Sherrington (1982c) and Gabay et al.
(1982) have investigated the region below the GT line by a
Parisi solution (see Sec. VI.B). They find that just below
the line replica symmetry breaking has only a weak effect
on the longitudinal spin component, in the sense that
q~~(x) is only weakly dependent on x. It is only when

~

8
~

-H, just as for the AT linethat , replica symme-
try breaking of

q~~
is large. We therefore see that a ves-

tige of the AT line remains for vector spins, but instead of
being a sharp line it represents a crossover region below
which "strong irreversibility" occurs in the longitudinal
component.

%'e must emphasize that both the AT line, 5T~ ~ H
where PzT ———', , and the GT line, 5Tf ~H, where

PoT ——2, are expected to have the same exponents for
short-range models at dimension d=6 (Fisher and Som-
polinsky, 1985). For d&6, /AT $=2I(P+y), w—h—ich
gives /=1 in d=6, and $-0.55—0.7 from recent Monte
Carlo simulations (Bhatt and Young, 1985a; Ogielski and
Morgenstern, 1985), as discussed in Sec. V.E.4. This im-
portant result of Fisher and Sompolinsky must now be
taken into account when interpreting experimental data.
In this spirit, doubts may be raised concerning experimen-
tal identifications of lines as "AT lines" or "GT lines, "
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where usually f is compared with the respective mean-
field predictions.

For Ising spins, the zero-field susceptibility is constant
below Tf [see Eq. (4.85)]. Elderfield and Sherrington
(1982c) have shown that the same is true for vector spin
glasses. Hence the PaT hypothesis (see Sec. IV.B) should
be a reasonable approximation, but only below the AT
crossover region, not everywhere below the GT line.

We next consider the case of uniaxial anisotropy, where
the Hamiltonian is

A = —g JIJS;.SJ Dg—(S )
(ij& i

(4.249)

0
J

0.5

0.5

FIG. 66. Sketch of the phase diagram of an infinite-range vec-
tor spin glass model with uniaxial anisotropy D (following
Roberts and Bray, 1982, and Cragg and Sherrington, 1982).

If D & 0, ordering is preferred in the "one" or longitudinal
direction, whereas transverse ordering is favored if D&0.
With Jo ——0 the phase diagram, found by Cragg and Sher-
rington (1982) and Roberts and Bray (1982) within
replica-symmetric theory, is shown in Fig. 66. As well as
a paramagnetic phase P at high temperatures, there is a
transverse phase T, with q~~

——O, qq&0, a longitudinal
phase L, where q~l&O, qq ——0, and a phase in which all
components order, LT. The most interesting feature is
the possibility of two transitions as temperature is
lowered, either P~L —+LT if D~O, or P—+T~LT if
D&0. A precise calculation of the L-L,T and T-LT
phase boundaries requires a Parisi-type solution, which
has been carried out for small D by Elderfield and Sher-
rington (1982a). Experiments on anisotropic spin glass
systems by Albrecht et al. (1982) and Fert et al. (1982)
are consistent with the predictions of Cragg and Sher-
rington (1982) and Roberts and Bray (1982), but unfor-
tunately the values of D do not seem to lie within the
range where the second transition would be seen. Hence
it is interesting that Bray and Viana (1983) and Viana and
Bray (1983) have found related anisotropic models that
have a second transition no matter how large the anisotro-

py is.

The rich behavior expected when there is a magnetic
field as well as uniaxial anisotropy has been discussed by
Elderfield and Sherrington (1983b).

Anisotropies that couple longitudinal and transverse
spin components, such as Dzyaloshinksii-Moriya interac-
tions (Fert and Levy, 1980), have been studied in the
mean-field limit by Kotliar and Sompolinsky (1984),
Sompolinsky et al. (1984), and Goldbart (1985). In par-
ticular, Kotliar and Sompolinsky (1984) showed that the
transition line in a field Tf(H) crosses over from the Is-
ing, AT variation [Eq. (4.62)] for small M to the Heisen-
berg, CxT form in Eq. (4.246) at larger fields. This cross-
over has apparently been seen by de Courtenay et al.
(1984), but again we wish to emphasize that the AT and
GT lines behave differently from the mean-field predic-
tions (Fisher and Sompolinsky, 1985).

Vector spin glasses including magnetic field, anisotro-

py, and nonzero mean ferromagnetic interaction have also
been studied in a semiquantitative manner by Soukoulis
et al. (1983b) by a numerical mean-field approach, solv-
ing iteratively the coupled mean-field equations (without
the reaction field correction) at high temperatures, where
the solution is unique, and gradually lowering the tem-
perature. This approach, which can be worked out both.
for the long-range model and for short-range models, is
not believed to be quantitatively completely reliable, but
may yield a useful qualitative picture. We are not giving
details about this approach, and not even mentioning
many other papers relating to the mean field of spin
glasses, because it is our intention to describe in this sec-
tion only what we think has been the "mainstream" of
research in this area.

3. Other models

This section will discuss work on other infinite-range
models with spin-glass-like features.

Kosterlitz et al. (1976) have studied a "spherical" spin
glass model in which the length constraint S; =1 on each
Ising spin is relaxed to a single overall constraint

g,. S; =K. The infinite-range limit can be solved without
the replica trick and gives identical results to the m = ao

isotropic vector spin glass (de Almeida et al. , 1978); see
Sec. IV.H. 1), at least in zero field. The equivalence ap-
parently does not hold in a field because the vector spin
glass has a CzT line (see Sec. IV.H.2) where freezing of the
transverse components occurs, and the spherical model
presumably does not, because it has no transverse com-
ponents.

We saw in Fig. 52 that the phase diagram of the SK
model does not have a range of values of Jo/J where the
system goes from paramagnet to ferromagnet and finally
to a reentrant spin glass as the temperature is lowered.
Motivated by the large number of systems that apparently
do have a reentrant spin glass phase (e.g. , Nieuwenhuys
et al. , 1979; Aeppli et al. , 1982), Viana and Bray (1985)
have proposed and solved a dilute infinite-range spin glass
that can have a reentrant spin glass transition.
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Virtually all spin glass theory has considered classical
models. However, the quantum Heisenberg model with
infinite-range interactions was investigated by Fischer
(1975), Sherrington and Southern (1975), and in more de-
tail by Bray and Moore (1980c). Although they were un-
able to determine the transition temperature exactly, they
could show that a spin glass transition does occur, even
for S = —,', in contrast to a speculation of Klemm (1979).

We noted in Sec. IV.F that the free energies of the val-

leys in infinite-range spin glasses have an exponential dis-
tribution in the vicinity of the minimum free energy.
Motivated by this result, De Dominicis et al. (1985) have
looked at the dynamics of random levels with such a dis-
tribution. Relaxation to equilibrium follows a stretched
exponential decay, w'hich .is widely observed in glasses
(Jonscher, 1977; Ngai, 1979, 1980) and has also been seen
in spin glasses (Chamberlin et al. , 1984; Hoogerbeets
et al. , 1985).

The SK Hamiltonian in Eq. (4.4) has two-spin interac-
tions. One of the most illuminating advances has been to
generalize this to p-spin couplings (Derrida, 1980, 1981).
The Hamiltonian is then

(4.250)

where the S; are Ising spins, and the sum is over all
groups of p spins in the system. The interactions have a
Gaussian distribution suitably scaled with N and p to ob-
tain a sensible limit as N and p tend to infinity. A sim-
plification occurs for p~ co because the energy levels be-
come independent random variables (Derrida, 1980,
1981), so this is often called the random-energy model.
As a result the free energy can be obtained straightfor-
wardly. There is a transition at

Tf
J = (4 log2) (4.251)

and for T & Tf the free energy is given by the same ex-
pression, Eq. (4.29d), as the SK model in the paramagnet-
ic phase. For T(Tf the free energy is temperature in-
dependent, showing that the entropy vanishes and the sys-
tem is frozen in a ground state everywhere below the tran-
sition, a rather striking result.

Further insight into the low-temperature phase of the
p =ao model has come from the work of Gross and
Mezard (1984). They showed that the order-parameter
function q(x) is given by just the first stage of the Parisi
replica symmetry-breaking scheme. So q(x) is discon-
tinuous, as indicated in Fig. 67. For x larger than the
breakpoint x&, q(x) =1, which shows that the "self-
overlap" of each state is 1. In other words, all the site
magnetizations are +1 and the state is completely frozen,
as noted above. For x &x, one has q(x)=0, showing
that the overlaps between different states are zero. Gross
and Mezard also obtained a replica-free derivation of this
last result by showing that the magnetization of different
TAP solutions (see Sec. IV.C) are uncorrelated. Further-
more the number of states with weight I' is given by Eq.

q(x)
'

FIG. 67. The order-parameter function q (x) for a p-spin
infinite-range spin glass model when p —+no, following Gross
and Mezard (1984). This is just the random-energy model of
Derrida (1980, 1981).

(4.190) (we noted the universality of this result in Sec.
IV.F). Hence, as for the SK model, the total number of
states is infinite, but a few dominate the statistical sum.
The breakpoint is at x ~

——T/Tf, so
1

x x=1—T 'Tf, (4.252)

the same as in the SK model [Eq. (4.84)] and for isotropic
vector spin glasses. Could this be a universal result for
infinite-range spin glass models'7

One might argue that, in a sense, the p = Oo spin glass
has a first-order transition because the self-overlap jumps
discontinuously from 0 to 1 at Tf. However, statistical
mechanics averages involve integrals over x, like Eq.
(4.252), and these are continuous, so thermodynamically
the transition is second order.

The p =op infinite-range spin glass is important be-
cause it is the only model, as far as we are aware, that has
a phase space with many valleys and whose solution can
be expressed very simply at arbitrary temperatures. Der-
rida and Toulouse (1985) have suggested that it may be a
suitable starting point for a replica-free solution of the
SK (p=2) model.

So far we have discussed models in which the Hamil-
tonian is invariant under inversion of the spins, S;~—S;
for all i, if there is no magnetic field. However, there are
systems, such as dilute ortho-hydrogen (Sullivan et al. ,
1984), that do not have this symmetry and are better
described by randomly interacting Potts variables (see
Wu, 1982, for a review of Potts models) a "Pott glass, "or
by quadrupole variables. These models turn out to have
rather surprising behavior (Elderfield and Sherrington,

. 1983a; Erzan and Lage, 1983; Gross et al. , 1985). We
shall discuss briefly the Potts glass state. A Potts model
is characterized by the number of states p available to
each statistical variable. For p=2 it becomes an Ising
model, but for p&2 one loses spin inversion symmetry.
The Potts glass is found to have two transitions (Gross
et al. , 1985). Just below the upper transition Tf &, the or-
der parameter q(x) has only the first stage of the Parisi
symmetry breaking, just as for ihe random-energy model
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discussed above, and the interpretation of the overlaps be-
tween states is the same as was given there. At a lower
transition TI2, the order-parameter function changes to
the form shown in Fig. 68. Physically this means that
each of the thermodynamic states has split into an infinite
number of partially correlated states. For p=3,4 the
transitions are continuous, so, for example, q(x &x&)
goes to zero as T~T~&. However, in the case of p~4 it
is first order in the sense that q (x &x ~ ) jumps discon-
tinuously to zero at Tf~ but, as for the random-energy
model, only second derivatives of the free energy are
discontinuous and there is no latent heat. The free ener-
gies of the Potts glass and paramagnetic states are
sketched in Fig. 69. They are of course equal at Tf $ and
below Tf &

the Potts glass solution has a higher free ener-

gy than the paramagnetic phase. For a small range of
temperatures below Tf &

the paramagnetic state (as well as
the Potts glass state) is locally stable; one would naively
expect it to be the correct solution because it has the
lower free energy (see the discussion at the end of Sec.
IV.A). However, it is thermodynamically impossible to
get from the paramagnetic solution to the Potts glass state
for T ~ Tf t because the free energies are different. Hence
the transition must occur at Tf ~, and there has to be some
sort of "nonperturbative" instability that destroys the
paramagnetic phase below Tf j. Numerical tests of these
striking predictions would be most desirable. Gross et al.
(1985) make similar predictions for quadrupolar glasses.

We conclude this long chapter on infinite-range models
with a couple of problems from outside the spin glass
field but which turn out to have spin-glass-1ike features.
The models of neural networks proposed by Little (1974)
and Hopfield (1982) have recently been studied in detail
by Amit et al. (1985) and Peretto (1984). The long time

TQ

I

FICx. 69. A sketch of the free energy per spin f against tem-
perature for a Potts glass, following Gross et al. (1985}. Solid
lines indicate locally stable solutions, and the dashed curve is
the continuation of the paramagnetic solution into the region
for T & To where it is locally unstable. For To(T (Tf there

1

are two locally stable solutions and, surprisingly, thermodynam-
ics forces us to take the one of higher free energy, as discussed
in the text.

limit of these two models is very similar and related to
the statistical mechanics of an infinite-range Ising spin
glass model, essentially the one proposed by Provost and
Vallee (1983). The memorized configurations are just the
spin states in the various valleys and, remarkably, these
are determined in a simple may by the interactions. We
suspect that analogies between spin glasses and memory
models will be developed further in the future.

Finally Kirkpatrick and Toulouse (1985) have studied a
special traveling salesman problem which, they argue,
may be related to infinite-range spin glass models. They
find evidence for freezing, due to frustration, an overlap
distribution P(q), and an ultrametric structure of config-
uration space.

I. Conclusions for the mean-field theory

q(x)

FIG. 68. Order-parameter function q(x} for a Potts glass: (a}
Tf &T &Tf,' (b) T &Tf . From Gross et al. (1985}.

A simple theoretical picture of the SK model has
emerged. Below the AT line there are many thermo-
dynamic states whose free energy has distribution (4.195).
However, a very small number dominates the statistical
sum, which leads to lack of self-averaging. Since there is
not a unique state with all the statistical weight, one ob-
tains a nontrivial averaged order-parameter function
P(q), which is equal to dxldq of the Parisi theory. The
order parameter in a single thermodynamic state, qEA, is
the largest value of the Parisi function, i.e., q(x= 1).
Sample-to-sample fluctuations in the cumulative probabil-
ity distribution are characterized by the set of functions
II~( Y') and are universal in that they do not depend upon
the form of q(x). The thermodynamic states have a
hierarchical or "ultrametric" structure. One can now
derive the whole theory without replicas. It is, however,
unclear at present whether the novel features of the SK
model, such as lack of self-averaging, ultrametricity, and
an order-parameter distribution, are artifacts of the
infinite-range interaction or whether they would also
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occur for more realistic models, at least in some range of
space dimension d.

V. SHORT-RANGE EDWARDS-ANDERSON MODELS

In this section, we discuss a subject that is in flux, and
it is doubtful whether at this time one can give a coherent
picture of the many conflicting ideas. Consequently we
do not emphasize a particular point of view, and try to
mention most of the work on the subject at least briefly,
as a final judgment cannot yet be given. There is a gen-
eral emphasis, however, on computer simulations; this ap-
proach has seemed to be most useful recently, though it is
also hampered by various problems, which will be dis-
cussed.

A. Renormalization-group approaches

The renormalization group (Fisher, 1974a; Ma, 1976;
Domb and Green, 1977)' has been outstandingly success-
ful in describing the critical behavior of ferromagnetic
systems. It was therefore natural to apply those ideas to
the spin problem to go beyond the Edwards-Anderson
mean-field theory described in Sec. IV. There are two
formalisms that can be used. First of all the momentum-
space approach starts with a "soft-spin" Ginzburg-
Landau-Wilson effective Hamiltonian for long-
wavelength fluctuations. This is described by Eqs.
(3.49)—(3.54) for the spin glass problem (Chen and Luben-
sky, 1977). The technique leads to a systematic expansion
of the exponents in powers of d„—d, where d„, the upper
critical dimension, is equal to six for spin glasses. Ex-
ponents are calculated by studying the system at and
above Tf, so one can avoid the problems of replica sym-
metry breaking (Sec. IV.B) if one is interested only in ex-
ponents, though one does run into this problem in calcula-
tions of the equation of state below Tf '(Pytte and Rud-
nick, 1979). The alternative approach is to work in real
space with fixed-length spins. The main disadvantage to
this is that one normally has to make uncontrolled ap-
proximations, but, on the other hand, one can obtain glo-
bal features of the phase diagram, which is not possible
from momentum-space techniques, and the replica trick is
avoided by rescaling the probability distribution for
the random variables (Lubensky, 1975;

'
Young and

Stinchcombe, 1975). We discuss the application of each
of these techniques in turn to the spin glass problem.

Expansions near six space dimensions

The momentum-space approach was first applied to the
paramagnetic-spin glass transition by Harris et al. (1976).
They studied only the part Eq of the effective Hamiltoni-

The work edited by Domb and Green (1977) contains a good
collection of articles on the renorrnalization group.

an in Eq. (3.51). In ferromagnetic systems the lowest-
order interaction is of fourth order in the fields, and di-
mensional analysis then gives d„=4. However, spin
glasses have the Try term in Eq. (3.53a), and the same
dimensional analysis for a cubic interaction yields d„=6.
To lowest order in a=6 —d, Harris et al. find the correla-
tion exponents are given by

1 5m E,V= +2 12(2m —1)
—771 6

3(2m —1)

(5.1a)

(5.1b)

where m is the spin dimensionality and g and v are de-
fined in Sec. IV.G. Spin glass exponents to first order in

have also been calculated without the replica trick [used
in the derivation of (3.53a)], and the results agree with
Eq. (5.1) (Feigelman and Tsvelik, 1979; Zippelius, 1984).
For d )6, v and g have their mean-field values,
v= —,,q=O [see Eqs. (4.227) and (4.228)]. The thermo-
dynamic exponents, a, I3,y, etc. (see Sec. IV.A), can be ob-
tained from g, v by scaling laws, e.g., y = (2—g )v,
P= —,

' (d —2+g)v, a+2f3+y=2, where- the "hyperscal-
ing" relation involving the dimensionality d is only valid
for d & 6 (see Fisher and Sompolinsky, 1985, for a discus-
sion of this and related points). The e expansion has been
extended to e by Elderfield and McKane (1978) and to e
by Green (1985). For the Ising m= 1, case, Green (1985)
finds

g = —0.3333m+ 1.2593m. +2.5376m,

v ' —2+q = —2c.+9.2778m, +4.2336m

while for the Heisenberg m =3 model

(5.2)

g = —Q.2g+ 7.7333+ 1Q p —7.8127+ 10

g = —1.2m+ 1.164m —1.4735'
(5.3)

Note that Eq. (5.1a) and the scaling law dv=2 —a predict
a & —1, so the temperature derivative of the specific heat
is continuous, consistent with there being no observable
singularity.

Chen and Lubensky (1977) have. investigated competi-
tion between spin glass and ferromagnetic orderings by in-
cluding the F~ and I'M~ terms in the effective Hamiltoni-
an (3.51). In particular, they calculated exponents associ-
ated with the multicritical point where spin glass, fer-
romagnetic, and paramagnetic phases meet (see Fig. 49
for the mean-field phase diagram). Surprisingly, the ex-
ponents are complex for m =2,3 and d & 6, which is com-
pletely unphysical.

This last remark leads us to discuss the significance of
the c, expansion for behavior in any dimension below 6,
especially d=3. Several problems can arise. For in-
stance, some qualitative change in behavior, such as the
occurrence of the lower critical dimension, could occur
between 6 and 3 dimensions. Thus the c, expansion may
give meaningful results for d~&d &d„, but if di &3 it
could not be applied for d=3. Other problems arise be-

Rev. Mod. Phys. , Vol. 58, No. 4, October 1986



902 K. Binder and A. P. Young: Spin glasses

cause the expansion is at best only asymptotic (Brezin
et aI. , 1977; Lipatov, 1977). Typically the coefficient of
c, varies as a K! for large K. If a &0, causing the series
to alternate, one can use Fade-Borel methods (Brezin
et al. , 1977) to sum the series and obtain a finite answer.
On the other hand, if a ~0 the series is not summable.
Even if a &0 one has to work harder to show that the
Fade-Borel sum is the correct answer and does not differ
from the correct result by typically exponentially small
terms (this means showing that the series is uniquely
summable). We shall ignore this last problem and just
discuss here whether the series alternates. Alternation ap-
pears to occur for the Heisenberg case [Eq. (5.3)] but not
for the first few terms of the series [Eq. (5.2)], though it is
possible the alternation may set in at higher orders. A
general study of the alternation of the series, perhaps
along the lines of Houghton et al. (1978) and McKane
(1986) for the related percolation problem, would be high-
ly desirable. The multicritical exponents for m=2, 3 are
obviously unphysical, and it remains to be seen whether
the same is true i.n general for expansions of spin glass
critical exponents (the unphysicality could show up in
non-Borel summability even when the coefficients are
real) or whether this is a special case.

We have noted that d„=6 for spin glasses because of
the q term in the effective Hamiltonian. Higher-order
interactions are irrelevant in the renormalization-group
sense. However, we noted in Sec. IV.D that we could not
forget about one of the quartic terms Q~ii in Eq. (4.72),
below Tf even in mean-field theory, because it is respon-
sible for replica symmetry breaking. Hence the Q"ii is
"dangerously irrelevant" (Fisher, 1974b) in the sense that
its renormalized value tends to zero at long length scales,
but singularities develop in this limit. Fisher and Sompo-
linsky (1985) have shown that the presence of the
dangerous irrelevant value causes exponents involved with
rep1ica symmetry breaking to deviate from their mean-
field values for d & 8. As an example consider the
Almeida-Thouless line (Sec. IV.B) and the Gabay-
Toulouse line (Sec. IV.H), which, for small field H, vary
as oT&xH ", 5TO:M, respectively, where 1t~T ———,

and /AT 2 in mean-fiel——d theory. For 6& d&8, Fisher
and Sompolinsky find fAT 4/(d —2) (see——also Green
et al. , 1983) and fGT 4/(10 d), so——that i—n d =6,
1t&T

——p&T
——b, '=1 where b, =(y+p)/2 is the expected

crossover exponent. The fact that g&T&PGT&h
' in

mean-field theory violates expected scaling properties, but
we see that scaling is restored in d=6. Hence "below
d=6 all scaling laws should be valid, implying that the
critical properties of real spin glasses should be simpler
than in mean-field theory" (Fisher and Sompolinsky,
1985).

One can also use the dynamical formalism discussed in
Sec. IV.D to investigate critical properties (Zippelius,
1984). In addition to obtaining static exponents without
the replica trick, one can also determine the dynamical
exponent z. The standard picture of "critical slowing
down" (Hohenberg and Halperin, 1977) says that most of

the divergence of the relaxation time comes from a diver-
gent susceptibility, but there may also be a (generally
weaker) singularity in the kinetic coefficient. The Van
Hove theory assumes that the kinetic coefficient is regular
and gives for ferromagnetic systems with relaxational
dynamics z =2—i1. Zippelius (1984) shows that for spin
glasses the Van Hove result for relaxational dynamics is

z =2(2—i1) . (5 4)

In incan-field theory i'd=0, so we recover Eq. (4.126).
Zippelius also shows that there are no corrections to Eq.
(5.4) to first order in e. In fact, the results of recent com-
puter simulations in d=3, which give v=1.4, g= —0.28
(Bhatt and Young, 1985), and zv=6+I (Ogielski and
Morgenstern, 1985), are consistent with Eq. (5.4), so that
corrections to it may be small in any dimension.

Most e-expansion work has been for Ising and Heisen-
berg models, but Goldschmidt (1985) has applied the ap-
proach to Potts spin glasses.

Ueno and Okamato (1981) and Chang and Sak (1984)
have studied spin glasses with a long-range interac-
tion P(JJ) a:exp[ —JJ/2(AJJ) ], where bJ& ccrJ
r,j ——

~
r; —rJ ~. They find that the upper critical dimen-

sion is lowered to d„=3o./2 (for 0&2o —4 &2) and find
that near this dimension there is another stable fixed
point. Ueno and Okamoto (1981) estimate the boundary
(near d =6) between the stability region of this fixed point
and the fixed point characteristic of short-range forces.
They argue that the RKKY interaction which corre-
sponds to o=d can be considered as effectively short
range for d=3. Kotliar et al. (1983) have investigated
this model in detail for d=1. The interesting region,
where transitions occur, is —, &o.& 1; these transitions are
predicted to have mean-field exponents for —,

'
& o & —', and

non-mean-field behavior for —', &o. & 1. Expansions in
o 3 can be obtained, so o = —', plays the role of d„here.
Kotliar et al. (1983) argue that v —+Do as 0~1 and sug-
gest that for o.= 1 a Kosterlitz-Thouless (1973) transition
occurs with no order below Tf [see, however, the discus-
sion in Bhatt and Young (1986) and Sec. V.D]. Conse-
quently o.=1 plays the role of the lower critical dimen-
sion d~. Interestingly, g is predicted to have its naive
value, g=2o.—d, even in the non-mean-field region. Be-
cause of this, Bray et al. (1986) have argued that the
RKKY systems are effectively short range only for
d &di, where di is the lower critical dimension of the
short-range model. In this case, the transition is at finite
temperature. However, in contrast to Ueno and Okamoto
(1981), they argue that RKKY models have different
behavior from short-range systems for d &d~. In this sit-
uation the short-range system has a T=O transition with
a power-law divergence of Xso and g'so as T—&0. Howev-
er, Bray et al. (1986) claim that the corresponding
RKKY model, with o =d, will be at, rather than below its
lower critical dimension, so either the transition is at
T=O, with an exponential divergence as T—+0, or Tf is
finite and the transition is rather similar to that in the
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two-dimensional XF model (Kosterlitz and Thouless,
1973) or to the one-dimensional Ising model with 1/r in-
teraction (Anderson and Yuval, 1971). By contrast,
Chakrabarti and Dasgupta (1986) find that the RKKY
m =3 model acts as if it were well below its lower critical
dimension, but the sizes used in their simulations may be
too small to see the asymptotic behavior.

2. Real-space renormalization

In the real-space approach one works directly on a lat-
tice, with fixed-length spins, usually Ising, though there
are also applications to Heisenberg syst;ems, as we shall
discuss. Unlike the momentum-space technique, dis-
cussed in Sec. V.A. 1, which works best near d =d„, the
real-space method is most simply applied in low dimen-
sions, so there has been a lot of work for d=2, although
0=3 has also been studied.

Different approximation schemes all have to truncate
in some way, the number of interactions generated by the
transformation, usually by considering only a small por-
tion of the lattice. The scheme due to Migdal (1975); see
also Kadanoff, 1976 is one of the simplest, but has proved
very successful when used carefully. It considers only the
nearest-neighbor interaction and can be applied without
difficulty in any dimension, though it appears most suc-
cessful in low dimensions. For random problems one has
to find the transformation for the probability distribution
of the bonds (Lubensky, 1975; Young and Stinchcombe,
1975). In the Edwards-Anderson model the bonds are
statistically independent and remain so after rescaling in
the Migdal approach, though correlations are generated in
more complicated schemes (Southern and Young, 1977).
Hence for Ising spins the transformation has the effect

P(J,q)~P'(J;J), (5.5)

and critical points are located at fixed-point distributions,
i.e., P =P'. Exponents can be found by linearizing the
distribution about its fixed-point form. . The shape of the
distribution may be followed (essentially exactly) by nu-

merical methods (Young and Stinchcombe, 1976; Kirkpa-
trick, 1977; Southern and Young, 1977) or by approximat-
ing the distribution at each stage either by a Gaussian
(Southern and Young, 1977) or a set of delta functions
(Jayaprakash et al. , 1977; Benyoussef and Boccara, 1981,
1982, 1983, 1984). Following the distribution in full, one
finds a transition at Tf =0 for the d=2 square lattice Is-
ing model but a finite Tf on a simple cubic lattice in
d=3. Furthermore in d=3, Tf= ,' Tf" (Southern and-
Young, 1977), where Tf

" z'~ hJ is the mea——n-field tran-
sition temperature, z is the coordination number (6 here),
and hJ is the width of nearest-neighbor bond distribution.
This estimate agrees rather well with recent Monte Carlo
simulations (Bhatt and Young, 1985; Ogielski and Mor-
genstern, 1985) on a +J Ising model and domain-wall en-

ergy calculations (Bray and Moore, 1985b; McMillan,
1985a) for a Gaussian distribution. The correlation
length exponent v (=yT ' where yT is the thermal ex-

ponent) is found to be 2.8 (Southern and Young, 1977) if
one approximates the distribution by a Gaussian. This
agrees fairly well with the result of Bray and Moore
(1984a), who get v=3.3+0.6, but is significantly larger
than the figures found by Bhatt and Young (1985), Ogiel-
ski and Morgenstern (1985), and McMillan (1985a).

Bray and Moore (private communication) used the
Migdal approximation to estimate the exponent v for the
zero-temperature transition in d =2, obtaining good
agreement with their more systematic studies of domain-
wall energies (Bray and Moore, 1984b; see also McMillan,
1984c), where v=3.4+0.1. Furthermore the Migdal ap-
proach is sufficiently simple that they can calculate an ef-
fective exponent v, tt( T) which only reaches its asymptotic
values at rather low temperatures and is significantly
lower than this at higher temperatures, where Monte Car-
lo simulations are feasible. They suggest, very plausibly,
that the smaller values obtained by Young (1983a, 1984)
arid McMillan (1983) by Monte Carlo methods are really
an effective exponent, and that the asymptotic regime,
T~O, was not reached.

Although the Migdal approximation seems to work
fairly well for Ising spin glasses, the approximations made
are not understood, and other approaches, which also
seem reasonable, give quite different results (Kinzel and
Fischer, 1978; Tatsumi, 1978c). One therefore needs in-
dependent calculations to check out the results obtained.

It is also not completely obvious that valid renormali-
zation schemes can be set up without a more detailed
understanding of the low-temperature phase of spin
glasses [remember, for example, that in block transforma-
tions for antiferromagnets particular symmetry-
preserving blocks are required (van Leeuwen, 1975)].

Relatively little has been done for Heisenberg spin
glasses, though Bepyoussef and Boccara (1983) and
Morris et al. (1986) have applied the Migdal approxima-
tion and found Tf 0 in d=3 but ——Tf&0 in d=4.
[Benyoussef and Boccara (1983) actually find Tf =0 for
d=3 with Ising spins too, but we believe this is due to the
truncation made in approximating the distribution at each
stage. There is no doubt that following the full distribu-
tion numerically, as discussed above, one finds Tf&0.]
Anderson and Pond (1978) have approximated the equa-
tions in the Migdal method and obtained d =3 for the
lower critical dimension (see Sec. V.E) of vector spins. As
for the Ising case, we feel that independent calculations
are needed to check the predictions of real-space
renormalization-group calculations for Heisenberg spin
glasses. We shall see i.n Sec. V.E that results from the un-
truncated Migdal equations do agree well with other
methods.

McKay et al. (1982) and McKay and Berker (1984)
have carried out the Migdal renormalization-group
transformation for frustrated but nonrandom Ising sys-
tems on a hierarchical pseudolat tice for which the
transformation is exact. They find a region where the
renormalization-group trajectories are chaotic (i.e., the
fixed points are a "strange attractor" ) and consequently
"at successively longer distances, strong and weak spin
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correlations are encountered in a chaotic sequence. " It is
unclear at present whether this feature persists in a ran-
dom system on a real lattice, but it does not yet appear to
have been seen in numerical simulations.

(e.g., a single spin flip at a randomly selected lattice site).
Usually one then requires that W(X—+X') satisfy the
"detailed balance condition" with the canonical equilibri-
um probability P,q(X),

B. Monte Carlo calculations

1. General considerations

P,q(X) =exp[ A—(X)/k~ T]/Z,
namely,

P,q(X) W(X~X') =P,q(X) W(X'~X) .

(5.6)

(5.7)

As we have seen in previous sections, the theory of spin
glasses is very difficult even in the mean-field limit, and
very little information about the properties of short-range
spin glasses has been established analytically. In this situ-
ation, it is very useful to resort to numerical results pro-
vided by the Monte Carlo computer simulation method.
Thus it is no surprise that shortly after the introduction
of the model of Edwards and Anderson (1975) the first
Monte Carlo studies of it appeared (Binder and Schroder,
1976a, 1976b); we shall see below that, while this ap-
proach yields much valuable insight, there are still many
fundamental questions to be answered, and thus the study
of this model continues to be a challenging problem, to
which much recent activity has been devoted. Since the
Monte Carlo method has yielded useful results also for
the infinite-range model (Sec. IV) and more realistic site-
disorder models (Sec. VI.C), we start here by giving a
brief outline of the foundations of the Monte Carlo
method in statistical mechanics (for more details see
Binder, 1976, 1979, 1984b); this also serves to introduce
some of the basic difficulties by which this approach is
plagued.

In a Monte Carlo simulation one studies a finite lattice
of linear dimensions L i,L2, . . . , Ld in d dimensions; usu-

ally one takes L ~
——I 2 —— ——I-d ——L and periodic

boundary conditions. The Monte Carlo method now aims
at a numerical estimate of canonical Gibbs ensemble aver-
ages for the considered model. While in an exact treat-
ment of an Ising spin glass one would have to calculate
the Boltzmann weight for 2 states (X=L~Lq . L3),
the idea behind the Monte Carlo method is to replace the
exact average over all the states by an approximate one,
where one averages only over a sample of M states, which
are generated by a stochastic process. In principle, there
are many possible ways to generate the configurations
X—:tS&,S2, . . . , S~I of the Ising spins S;=+1. By the
so-called "simple random sampling" one would choose
the various states X included in the sample randomly,
independent of each other, with uniform a priori probabil-
ity. However, since for large N the Boltzmann weight
exp[ —A (X)/k~T] varies over so many orders of magni-
tude, the average over such a sample of states does not
converge for any reasonably small number of states M.
The way round this difficulty is the so-called "importance
sampling" (Metropolis et al. , 1953): rather than choosing
the states X„of the sample independently of each other,
we generate them recursively one from the other by a
chosen transition probability W(X~X'), where the move
X—+X' is only a small local change of the configuration

Equations (5.6) and (5.7) do not specify W(.X~X')
uniquely; but a simple choice of W(X~X') that is fre-
quently used is that of the kinetic Ising model introduced
by Glauber (1963),

W( X—+X') =(—,vo)(1 —tanhI [A (X') —A (X)]/2k' T] ) .

(5.8)

Equation (5.8) involves an arbitrary parameter ~0 setting a
time scale so that W(X~X') acquires the meaning of a
transition probabihty per unit time. In a Monte Carlo
context, this time unit is eliminated by choosing 1 Monte
Carlo step {MCS) per spin as the unit of the Monte Carlo
"time." The reason why it is necessary to take this kinet-
ic point of view at all is that the Monte Carlo process
must be viewed as a numerical realization of a Markow
process, described by the following master equation for
the probability P(X, t) that state X occurs at time t,

d P(X,t)= —g W(X~X')P(X, t)

+ g W(X'~X)P(X', t) .
X'

(5.9)

A = I, dt'A {X,t') . {5.10b)

In this equation, we have already considered that in prac-
tice it is advantageous to omit from the average the first
Mp configurations, which are not yet fully characteristic
of the final equilibrium due to the influence of the initial
condition X&. The associated "time" is tp ——Mp/N in our
convention, and similarly t =M/N. At this point we

[A special case of this description has already been en-
countered in Eq. (3.138).]

Because of the detailed balance condition, Eq. (5.7), the
equilibrium distribution P,q(X) is obviously a stationary
solution [dP(X, t)/dt:—0] of the master equation; in fact,
for finite systems one can show under fairly general con-
ditions, which apply for the models of interest, that Eq.
(5.6) really is the asymptotic distribution of states to
which the process X~—+X2. . . X~ tends in the limit of
large M, irrespective of the arbitrarily chosen initial con-
figuration X&. As a result, we obtain an approximation A
for the Gibbs average (A (X)) T [Eq. (3.14)] which is sim-

ply an arithmetic average over the generated states, or-
equivalently —a time average,

M2= — g a(X„), (5.10a)
V=MO+1
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have to .make contact with our discussion of ergodicity,
Sec. III.B. Although we know that the dynamic model
defined by Eqs. (5.8) and (5.9) [and a choice of the Hamil-
tonian, e.g., Eq. (3.27)] is ergodic, we expect a problem: if
there is a phase transition, we expect in the ordered phase
that the "ergodic time" ~, will increase exponentially with
the size of the system, N. Only if to »~, is the influence
of the initial condition lost, and the time interval which is
averaged over must exceed r, (i.e., t tp—»r, ) in order
that A be a reasonable estimate of the canonical Gibbs
average (A )T.

In principle, these statements apply to any model un-

dergoing a phase transition, including the simple example
of an Ising ferromagnet with uniform nonrandom ex-
change interaction J. Below T, the probability distribu-
tion P,q(X) is sharply peaked at two states, corresponding
to states having a magnetization of about +m» or
—msp, where m, z is the spontaneous magnetization ap-
pearing for N~op. The minimum of P,q(X) in between
these ordered states, for a system with all linear dimen-
sions equal and with periodic boundary conditions, is
dominated by a "mixed-phase" configuration, in which
the system is spilt into two domains separated by two
straight ( d =2) or planar ( d =3) walls. (With free
boundary conditions there would be one wall only, of
course. ) Consequently, the ratio of the probability P,„,
where P~(X) has its maximum, to the probability P~;„
of this mixed-phase state is for periodic boundary condi-
tions of the order of

P,„/P;„&x:exp(2f;„,N' 'i"/k~ T), (5.11)

where f;„, is the interfacial free energy per spin between.
the phases having magnetization +m» (Binder, 1982c).
Since for a single spin-flip kinetic Ising model one can
only pass from +ms& to —m, „by moving through this
minimum, the ergodic time is estimated as

r, ccP,„/P;„o'exp(2f;„,N' ' /k~ T) . (5.12)

where v is the critical exponent of the correlation length g
and z is the dynamic exponent (Hohenberg and Halperin,
1977). Of course, in a finite system, this divergence is
rounded off to a finite value, which from finite size scal-
ing theory (Fisher 1971;Barber, 1983) is estimated as

(5.14)

Thus the N dependence of intrinsic times is always much
weaker than that of r, . This is no longer true, however,
for models with higher spin dimensionality (XF, Heisen-
berg spin, etc.), in which f&„,=0 but the term f;„,N'

This ergodic time for large N is thus well separated from
the spectrum of "intrinsic" relaxation times r possessed
by a (kinetic) Ising ferromagnetic model. Even in the
thermodynamic limit, away from T, all these intrinsic re-
laxation times are finite for a pure (ideal) Ising ferromag-
net; approaching T, the upper bound of this spectrum
r '" diverges,

(5.13)

has to be replaced by constXI N' ~, for d &2, I being
the helicity modulus (Fisher et al. , 1973), and a power-
law divergence of the maximum intrinsic relaxation time
[similar to Eq. (5.14)] occurs at all temperatures T & T, .
These isotropic systems, do not need to pass through the
states related to P;„ in order to explore all their ordered
states: rather the direction of the order parameter may
undergo a sort of rotational diffusion (Stauffer and
Binder, 1978, 1981). The ergodic time r, needed for the
system to reach a state with —m,„after a start from
+m» hence is not given by Eq. (5.14); rather we expect a
power-law relation, lm, ~lnN. Note, however, that here
we have tacitly assumed a finite-range interaction: for an
infinite-range ferromagnet one would have in', ~ N (Grif-
fiths et al. , 1966; Binder, 1973) instead of Eq. (5.12).
Now the enormous size of the ergodic time ~, is not at all
a practical limitation of Monte Carlo studies of Ising fer-
romagnets [apart from the case where one wishes to study
the ratio P,„/P;„ itself to extract information on the
interface free energy f;„, (Binder, 1982c)]. For T & T,
and L » g we may choose times t, tp such that

((tp, t —tp ((7e (5.15)

and then the simulation will basically yield the partial
equilibrium average (A )P [Eq. (3.17)], where the phase
(1) is either the state corresponding to + m» or that cor-
responding to Nl p Which of the two states if chosen is
decided by the initial condition, which has to be chosen
such that it is close to one of these states (this can also be
an ordered state with all spins up or down, respectively).
If one chooses an inappropriate initial condition, e.g., a
disordered spin configuration at T & T„ the lower limit
of the inequality (5.15), r '", must be replaced by the
nonequilibrium time ~„,. This nonequilibrium time is
then determined by the time it takes for the system, which
quickly forms small ordered domains of opposite magnet-
ization, to develop towards a monodomain configuration.
Since characteristic linear dimensions Id of the domain
grow with time according to a power law involving some
exponent a (Lifshitz, 1962),

we roughly estimate ~„, from the condition

ld, (r„,) ~L, r„,ccL'~'=N'~'"'.

(5.16)

(5.17)

For the pure single spin-flip Ising ferromagnet, and thus
the associated Mattis spin glass (Sec. III.E.1), all theories
(e.g., Lifshitz, 1962; Allen and Cahn, 1979; Ohta,
Kawasaki, and Jasnow, 1982) agree that a = —,; but for
other cases, smaller values of the exponent a, and hence
larger r„~, may occur (e.g., Sadiq and Binder, 1983; Sahni
et al. , 1983; Mazenko and Zannetti, 1984). In systems
with quenched randomness, however, domain walls are no
longer expected to be able to diffuse more or less freely:
rather the walls may get pinned in local free-energy mini-
ma created by the disorder. In fact, the free energy of an
interface as a function of interface position may behave
similarly to the free energy qualitatively sketched in Fig.
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4. This domain-wall pinning may lead to a much slower
rate of domain growth. For Ising ferromagnets exposed
to a quenched random magnetic field one expects that
(Grinstein and Fernandez, 1984; Villain, 1984)

ld, (t) ~lnt, (5.18)

in which case one obtains an exponential variation for z„]
instead of Eq. (5.17),

ln&„, ~1.=W'~ (5.19)

In such a situation, simulations cannot satisfy the condi-
tion r„,« to for large X (Stauffer et al. , 1984), and the
choice of an ordered initial state is required to simulate
equilibrium properties at system dirnensionalities d
exceeding the lower critical dimensionality d~ [believed by
most workers in this field at present to be d~ =2, for the
random-field Ising model (e.g., Grinstein and Ma, 1982;
Villain, 1982)]. Conversely, in isotropic systems (XI'and
Heisenberg magnets) the condition t to «—r, is usually
not met, and hence one cannot record m, p but only a sort
of root-mean-square order parameter.

What is the consequence of these considerations for
simulations of spin glass models? If we work with Ising
systems at d & d~, we also expect that there will be an ex-
ponential variation of the ergodic time with system size.
However, its precise form is not known: in the pure Ising
system this variation can be related to the lower critical
dimensionality di as

1 —di /d
ln~, ~X (5.20) .

whether this law also holds for an Ising spin glass is not
known. As a practical proof of ergodic behavior in the
Monte Carlo sampling, one often takes the criterion that a
system reaches the "inverse state" of a state I S; j reached
at earlier time, i.e., the state I

—S; j where all spins are
flipped over respective to the previous one (Morgenstern
and Binder, 1980a; Mackenzie and Young, 1982, 1983;
Ogielski and Morgenstern, 1985). However, in a finite
system with a particular random-bond configuration I Jz j
it is conceivable that it is possible even to go from I S; j to
I
—S; j crossing lower free-energy barriers than would be

needed to reach some other states IS j. Therefore it is
very difficult to establish ergodic behavior for spin glass
simulations.

A second difficulty is that the ordered configurations
of these systems, unlike the case of simple ferromagnets,
are not known explicitly. Only for small two-dimensional
Ising spin glasses, where explicit ground-state configura-
tions have been obtained from numerical transfer matrix
methods (Morgenstern and Binder, 1979, 1980a), can
Monte Carlo simulations be performed where the system
begins in a true ground-state configuration. In other
cases it is hard to distinguish low-lying metastable states
from the true ground state.

The third difficulty is that, just as in real spin glass sys-
tems, the spectrum of the intrinsic relaxation times ~; ob-
viously becomes very broad at temperatures far above the
freezing temperature (if there is one; Binder, 1977b;

Stauffer and Binder, 1978, 1979; Kinzel and Binder, 1983,
1984; McMillan, 1983; Young, 1983a, 1983c, 1984). In
fact, it has even been suggested (Randeria et al. , 1985)
that in random systems the maximum relaxation time
W'" may diverge at the transition temperature of the cor-
responding pure system [this is a dynamic counterpart of
the "Griffiths singularities" (Griffiths, 1969) for static
critical phenomena]. We shall return to this problem in
more detail below. More interesting are the "characteris-
tic time" r and "average relaxation time" ~,„(se eOgiel-
ski, 1985 and Sec. IV.D.1), which diverge at the spin glass
transition. Even for d &di one expects a divergence of
the average relaxation time ~, , as T~O, which has an
Arrhenius form (McMillan, 1983; Morgenstern, 1983a,
1983b) or is even stronger (Kinzel, 1982a, 1982b; Binder
and Kinzel, 1983a, 1983b; Kinzel and Binder, 1983,
1984),

ln~„~ T ", T~O . (5.21)

Here the exponent vz,„has been chosen for a T=O transi-
tion in analogy with Eq. (5.13), but of course it has a dif-
ferent numerical value. Because r '" diverges at the tran-
sition temperature of the pure system, which is well above
the spin glass freezing temperature, it is impossible to
satisfy Eq. (5.15) in the temperature range of interest. In
practice one makes to and t —to larger than some value7.
chosen so that fluctuations on timescales between 7 and'" (which are not included correctly) give negligible er-
ror. Thus even if there is a transition only at T=O, the
relaxation times could become so large over a broad re-
gime of nonzero temperatures that it would be
impossible —or at least very hard —to meet this condition,
namely

7-« to, t —to (5.22)

In such a case one can never rule out the possibility that a
phase transition might occur at a nonzero temperature
distinctly lower than the minimum temperature at which
the simulation still comes close to equilibrium, defined by
v(T;„)=to Conversel. y, any behavior consistent with
Eq. (5.13) but giving an estimate for Tf distinctly lower
than T;„may well be inconclusive, since for T & T;„a
crossover to a different behavior occurs, with a true value
for Tf much lower —or even at T=O. An example which
shows that this warning is not academic has been provid-
ed by Kirkpatrick (1980), who studied the average relaxa-
tion time w, „defined by

~„=J [(S;(0)S;(t))~],„dk (5.23)

for the +J model in three dimensions at temperatures
k+T/J&2. 1 [Fig. 70(a)]. He concluded that there was
probably a transition described by Eq. (5.13), with
k&TI/J=2. 0 and z„v=1. More recent extensive work
performed on a spin glass special-purpose processor
(Ogielski and Morgenstern, 1985) reveals that this con-
clusion definitely was incorrect: data for the same model
in the range 1.3&k&T/J&2. 0 clearly are still in the
disordered phase; they can be fitted to Eq. (5.13), but now
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FICx. 70. Relaxation time ~„of the three-dimensional +J
model, according to Monte Carlo simulations of (a) 30&30X30
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k&Tf/J=1. 22 and z„v=5.6 [Fig. 70(b)]; the data could
also be fitted to lnr cc T '" [i.e., Eq. (5.21)) with
z,„v=3.2 [Fig. 70(c)]. Because of the systematic devia-
tion of the last point (at the lowest temperature), Ogielski
and Morgenstern (1985) strongly favor Eq. (5.13) over Eq.
(5.21). Since Eq. (5.21), if it holds at all, should be an
asymptotic expression for kz T/J —+0 only, a region not
at all probed by the data, we feel sceptical about drawing
very strong conclusions about such fits or misfits.

In any case, the discussion of these intrinsic difficulties
was intended to elucidate the sources of ambiguity in in-
terpretation of the computer experiments. We shall en-
counter such interpretive problems frequently in the fol-
lowing sections, as we did with the experiments on real
materials.

Finally we comment on the method of equilibrating the
system by slow cooling, as done, for example, by Kinzel
and Binder (1983, 1984). The above estimates for the
nonequilibrium time ~„, refer to the case in which the sys-
tem is discontinuously quenched from a distant state
(where the system was in equilibrium), and thus are not
directly app/icable to such a continuous change of state.
There is various evidence that slow cooling is the most ef-
ficient way to come at least close to thermal equilibrium
at low temperatures. Some quantities, like the internal
energy or the magnetization (in a nonzero field) tend to
constant nonzero values as T~O and then show little
temperature variation at low temperatures. Even if the
system falls out of equilibrium during the cooling in that
temperature regime, these quantities are then less affected
by nonequilibrium effects. Cooling rate dependencies of
the energy are identified by Grest et al. (1986); of course,
if the cooling rate is not slow enough, one is hampered by
the same difficulty as in the. slow-cooling iterative mean-
field method (Soukoulis et al. , 1982, 1983a, 1983b),
which was pointed out by Reger et al. (1984): During
cooling the effective free-energy hypersurface develops
more and more structure, and the system stays near that
minimum which develops out of the minimum of the
high-temperature phase (Fig. 71). In general, this state is
a metastable state only, rather than the equilibrium state
which corresponds to the absolute minima of the free en-

ergy. Hence at low temperatures this state is not reached
easily by cooling; rather barrier hopping is again required
and hence equilibrium is obtained only if the cooling is
extremely slow. We feel that this picture applies to the
experimental situation as well: the field-cooled states are
not really in thermal equilibrium as often claimed, but
rather metastable; however, these states correspond to
rather deep valleys of the free-energy surface and have
properties similar to the deepest valleys, and thus are not
easily distinguished experimentally from true equilibrium
states.

2. Two- and three-dimensional Ising
Edwards-Anderson models

The first Monte Carlo work studied Ising Edwards-
Anderson spin glass models (Binder and Schroder, 1976a,
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we restrict ourselves to describing some typical results
and then summarizing the main points; note that proper-
ties at T=O are deferred to Sec. V.C and the question of
the existence of phase transitions is taken up in Sec. V.E.

Figure 72 shows some of the early data for the suscepti-
bility of these models and the specific heat, which is cal-
culated from energy fluctuations via

C/ke (A—— A—)/[N(k~T) ] . (5.24)

T3~ Tc

All these data are based on observation times of the order
of t,b, -2.10 MCS/spin. It is seen that the susceptibility
as calculated from magnetization fluctuations [Eq. (3.78)]
increases with decreasing temperature following the Curie
law, until the freezing temperature Tf(t,b, ) is reached.
For T &Tf(tobs) X decreases again. For the +J model
one finds another Curie-type increase at very low tem-
perature, due to the fact that even in the "frozen" state of
this model the internal effective field acting on the spins,
due to the interaction with their nearest neighbors, some-
times exactly cancels. As a result, these "loose" spins
behave as if they were free. From these early studies,
freezing temperatures were estimated as

k~Tf(t, b, ) =1.3 (+J) model, d =2,
(5.25a)

FKJ. 71. Schematic plot of the evolution of part of the free-
energy "hypersurface" (shown here as a function of one phase-
space variable only) with decreasing temperature. Arrow
denotes deepest minimum. From Reger et al. (1984).

kg Tf(t,b, ) =1.0 (Gaussian model, d =2),
AJ

kgTf(t b, ) = 1.5 (Gaussian model, d =3) . (5.25b)

1976b; Binder, 1977a, 1977b, 1977c) with symmetrical
nearest-neighbor Gaussian interactions on a square lattice.
This model has been studied further by Stauffer and
Binder (1978), Kinzel (1978, 1979, 1982a, 1984), Dasgup-
ta et al. (1979), Morgenstern and Binder (1980a), Takaya-
ma and Takase (1981),Binder (1982b), Binder and Kinzel
(1983a, 1983b), Jackie and Kinzel (1983), Kinzel and
Binder (1983, 1984), Nemoto and Takayama (1983),
Takayama et al. (1983b), and McMillan (1984a).

Similarly, the symmetrical +J square lattice [Eq.
(3.38a)] was simulated by Ono (1976), Bray and Moore
(1977), Kirkpatrick (1977), Sakata et al. (1977), Rapaport
(1978), Morgenstern and Binder (1979, 1980a), Nemoto
et al. (1982), Takayama et al. (1982, 1983a), McMillan
(1983),and Young (1983a).

Higher-dimensional models were studied by Binder and
Stauffer (1976c), Binder (1978), Bray et al. (1978), Rapa-
port (1978), Stauffer and Binder (1979), Kirkpatrick
(1980), Morgenstern and Binder (1980b), Young (1983c,
1984); Binder and Young (1984), Sourlas (1984), Bhatt
and Young (1985), Ogielski (1985), Ogielski and Morgen-
stern (1985). A.symmetric bond distributions were con-
sidered by Sakata et al. (1977), Rapaport (1978), Takase
and Takayama (1981),and Kinzel (1984).

In spite of this widespread activity —and the above list
of authors is certainly incomplete —the properties of these
models still are far from being fully understood. Hence

Here we have added the argument (t,b, ) to these esti-
mates, since it is now established that all these data shown
in Fig. 72 reflect only dynamic freezing, on the con-
sidered time scale (see Sec. V.E). In fact, there are various
indications in these data that equilibrium has not been
fully reached: specific heats calculated from energy fluc-
tuations [Eq. (5.24)] and from the temperature derivative
of the energy [C/kz (d~/dT)/N] disa——gree at low tem-
peratures; the susceptibility calculated from magnetiza-
tion fluctuations [Eq. (3.78)] is much smaller than
X=8m/BH for H +0 at T(Tf(t—,b, ) and hence is not
the equilibrium susceptibility.

While in the +J model the peaks of X and of C occur
at about the same temperature, for this choice of t,b„ for
the Gaussian model the peak of X occurs at a lower tem-
perature than that of C, which furthermore is much
broader. This behavior is qualitatively similar to the ex-
perimental findings, in contrast to the mean-field case
(Sec. IV) in which both X and C have a cusp at Tf. Thus
it was concluded that fluctuation effects characteristic of
short-range spin glasses are important in accounting for
the real systems. This conclusion, of course, is not at all
surprising, since close examination of other phase transi-
tion phenomena in nature has revealed in almost all cases
that mean-field theory is quantitatively inaccurate, and
short-range models provide a better description. Another
feature of Fig. 72(b) is that the susceptibility peak is
quickly rounded off by a rather small field; in contrast
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the specific heat was found to be affected very little by
magnetic field. As we shall see later, the equilibrium
behavior of X is very different from these results, which
are valid only for small observation times: for d=2, X is
a Curie law, since Tf(t,» +ac ) =0, while for —d =3 there

is probably a nonzero Tf(t,b, ~ oo ), but this is distinctly
lower than Eq. (5.25b).

Another quantity of interest because of its use in some
formulations of mean-field theory and because it is acces-
sible experimentally from the interpretation of Mossbauer
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and NMR spectra (Sec. II), at least in principle, is the dis-
tribution of local internal effective fields P(H, rr). Here
the internal field H, rr(i) is defined for the Ising Hamil-
tonian as

and hence it is straightforward to record a histogran1
representing P(H, rr) during the simulation. Figure 73
shows that P(H, rr) resembles a Gaussian at T»T~ but
develops a minimum at T & Tf foI H ff —O rather than a
maximum. For T=O this minimum gets deeper with in-
creasing dimensionality, but must retain a finite nonzero
value P(H,rr=0, T =0) for d & ca in the short-range

case. This value can be approximately related to the slow
(logarithmic) relaxation observed at intermediate time
scales at low temperatures [Eqs. (3.140)—(3.142)] and to
the specific heat and susceptibility at low temperatures
[Eqs. (3.143) and (3.144)].

The distinction between the zero-field susceptibility
(Bm/BH)H o and the same quantity observed from mag-
netization fluctuations [Fig. 72(b)] already indicated ir-
reversible behavior for T & T&(t,s, ). In fact, switching
off a large magnetic field at t=O (so that one starts from
a fully aligned spin configuration), one observes that the
system quickly relaxes to a state with remanent magneti-
zation o.„(Fig. 74). With increasing temperature o.„de-
creases roughly linearly and vanishes at about the freezing
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temperature (Binder and Schroder, 1976a, 1976b). While
in a spin glass a state with a remanent magnetization
clearly should be a metastable state only, it was found to
have about the same energy as a state reached by quench-
ing from an initially random spin configuration. Due to
the transfer matrix calculations (Sec. V.E.2) we now
know, however, that the latter state is also only metasta-
ble, and the true equilibrium states have distinctly lower
energies at the considered temperatures.

A remanent magnetization of similar magnitude [Fig.
75(a)] is also observed in magnetic field cycles, which
again have a qualitative resemblance to some of the exper-
imental data (Fig. 18). The temperature dependence of
the short-time remanent magnetization (Fig. 74) likewise
has its experimental counterparts, and the same is true
with respect to its decay with time on larger time scales
[compare Fig. 75(b) to Fig. 19(b)].

In contrast, on these time scales the +J model behaves
less like experiment, exhibiting a decay of the remanent
magnetization with time according to a 1/u t law (Kirk-
patrick, 1977). While many experimental workers initial-
ly took the nearly logarithmic time behavior of the
remanence as strong evidence in favor of the Neel model
of superparamagnetic clusters (Sec. III.G), these data (Fig.
75) first showed that similar behavior resulted from

Edwards-Anderson models as well. In fact, Kinzel (1978,
1979) showed in subsequent careful work, imitating the
experimental procedures to obtain thermo-remanence and
isothermal remanence (see Sec. II.C.1) in the computer
simulation, that the model reproduces most of the experi-
mental systematics on temperature dependence, field
dependence, and time dependence. An example of this
was already shown in Fig. 17(c) in conjunction with ex-
perimental data [Figs. 17(a) and 17(b)].

Slow time dependence is seen not only in the decay of
the remanent magnetization (Fig. 75), which reflects re-
laxation far from thermal equilibrium, but also in the
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FIG. 74. Time dependence of (a) the remanent magnetization
and (b) energy at short time scales, and (c) the temperature
dependence of the remanent magnetization reached at these
short time scales. From Binder and Schroder (1976a).

FIG. 75. (a) Magnetization process at k~T/AJ =0.7 recorded
in a magnetic field cycle in a two-dimensional Gaussian Ising
square lattice of size 80X 80. From Binder (1977c). (b) I.og-log
plot of the remanent magnetization in zero field vs time. From
Binder and Schroder (1976a).
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self-correlation function [(S;(0)S;(t))T],„of the spins,
which reflects the relaxation of fluctuations in thermal
equilibrium (Fig. 76). Even rough early data [Figs. 76(a)
and 76(b)] indicated a strongly nonexponential decay,
nearly consistent with a logarithmic law, (S;(0)S;(t))T
cc const —lnt, reminiscent of experimental data (Fig. 12),
and consistent with some theoretical expectations [Eqs.
(3.140)—(3.142)]. Of course, this crude work did not suf-
fice to clarify the precise analytic form of the decay law.

Ogielski (1985) has made an extensive pioneering study
of the spin self-correlation function in the three-
dimensional +J model, using the special-purpose comput-
er of ATILT Bell Laboratories. His data [Fig. 76(c)] give
evidence that for ktI T/J & k&T, /J=4 51, th.e Curie tem-
perature of the corresponding unfrustrated nearest-
neighbor Ising ferromagnet, the relaxation function is
nonexponential at late times: the empirical ansatz
[(S;(0)SJ(t)) ]T ~ t "exp[ (t/r—) ] describes the data
well, with temperature-dependent exponents x ( T),y ( T).
For T & T, , y(T) is unity and then decreases and varies
approximately linearly with T for 1.3 & T/J &3.5. For
T/J &1.3, the exponential factor can no longer be ob-
served, due to a dramatic increase of the relaxation time ~
in this formula. Ogielski (1985) interprets his results in
terms of a phase transition occurring at ktITf/J=1. 18.
But even for T & Tf the factor t "' ' still seems to be
there, implying that the self-correlation function may de-
cay to zero. If so there is no spin glass order parameter at
any nonzero temperature. The exponent x ( T) is found to
be —,

' for T & T, , and then decreases and vanishes as
T~D (but with a distinctly larger than linear power of
T). Near Tf the variation of x (T) is completely smooth,
and hence the question could be raised whether this work
really can rule out the existence of the factor
exp[ —(t/~) ] at all temperatures, but r is so astronomi-
cally large at T & Tf that one could not distinguish 1/~
from zero in the fit. We also note that while the relaxa-
tion starts to behave singularly for T & T, , in agreement
with the suggestions of Randeria et al. (1985), their quan-
titative predictions differ from the results of Ogielski
(1985) and probably only dominate for much larger times.
Ogielski's suggestion that for 0& T & Tf one has a phase
with algebraic decay of correlations rather than a nonzero
order parameter can be questioned on the grounds that he
follows the decay of the spin-autocorrelation function
only to values of about —,

' for T &Tf', hence a nonzero
small order parameter cannot yet be ruled out either.

We shall return below to a more detailed discussion of
the relaxation seen in Fig. 76; at this point we only note
that these data imply, at least over intermediate observa-
tion times t,b„ that there is a spin glass order parameter
[cf. Eqs. (3.66), (3.67), and (3.77)]. Figure 77 shows both
q(t,b, ) [Eq. (3.77)] and the order parameter %', which is
the projection of a state onto a ground state [Eq. (3.113)]
for various lattice dimensionalities (Stauffer and Binder,
1979). It is seen that on this (short) time scale of
t,b, ——2000 MCS/spin, both q(t, b, ) and P behave similar-
ly for all dimensionalities: q(t,b, ) and I(t vanish at about
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FIG. 76. (a) Semilog plot of the spin-spin self-correlation func-
tion vs time, for the two-dimensional nearest-neighbor gaussian
Ising spin glass on a square lattice of size 24)&24. (b) Same
data replotted with the time axis, rather than the ordinate axis,
logarithmic. Various temperatures are shown as indicated.
Curves are drawn only to guide the eye. From Binder and
Schroder (1976a). (c) Self-correlation function of the three-
dim. ensional +J model plotted vs time for lattice size 64 and
temperatures (from left to right) T/J =2.5, 2.0, 1.8, 1.7, 1.6,
1.5, 1.45, 1.40, 1.35, and 1.3. Solid curves represent fit of the
data to the formula Ct "exp[ —(t/r 8]; see text. From Ogielski
(1985).
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the same Tf(t,b, ) =db J/(kz), and g &q(t,b, ), in contrast
to the Mattis spin glass (Sec. III.E.1), in which P—=vq
and hence g) q. It is also remarkable that there is little
size dependence of this freezing "transition": in d=2,
lattice sizes from 10 and 160 give roughly identical re-
sults, and in d=3 lattice sizes from 4 to 20 give roughly

FIG. 77. (a) Edwards-Anderson order parameter q(t,b, ) after
an observation time of t,b,

——2000 MCS /spin plotted vs tem-
perature for nearest-neighbor Ising spin glasses with symmetric
Gaussian interaction at various dimensionalities: )&, 160&&160
(d =2); +, 4)&4&C4; +, 20)&20)&20; +, 9"; 0, 6. (b) Order
parameter g plotted vs temperature, for dimensionalities d
ranging from d =2 to 5. From Stauffer and Binder (1979).

the same q (r,b, ), as shown in Fig. 77. As a consequence,
it was concluded that the "transition" seen in this figure
is not a phase transition of the Edwards-Anderson type,
in which a correlation length gsG [Eq. (3.89)] diverges,
and hence one would have appreciable finite size effects.
Rather this "transition" is of mainly kinetic origin, small
clusters of spina becoming so slow in their reorientation
that the spins belonging to them appear to be frozen on
the considered time scale. Growth of correlations would
only be important at lower temperatures and larger time
scales [see Ogielski (1985)]. The more extensive results on
the relaxation time anticipated in Fig. 70 corroborate this

interpretation.
The conclusion hence emerges that one must study the

nature of this dynamic freezing process in more detail.
Pioneering work in this direction has been done by Kinzel
(1982a, 1982b) and Takayama et al. (1982), who analyzed
the behavior of individual spins. The correlation function
(S;(0)S;(r)) ~ of individual spins was fitted to a double-
exponential relaxation, and from this a distribution of re-
laxation times was extracted (Nemoto and Takayama,
1983). It appears that this distribution strongly broadens
as one lowers the temperature, but nothing particular hap-
pens for k&Tf(t,b, =2000)/bJ=1 at the square lattice.
The average relaxation time can be fitted to a Vogel-
Fulcher law, Eq. (2.14), with a temperature To where it
would diverge for d=2 given by To/(k&J)=0. 5 (+J
model) and Tol(k~hJ)=0. 4 (Gaussian model), respec-
tively (Takayama et al. , 1983a, 1983b). These tempera-
tures are far below the "freezing temperatures" quoted
above. An interesting point, which still is not fully under-
stood, is the correlation between these relaxation times
and the pattern of frustrated plaquettes in the model
(Takayama and Takase, 1981; Nemoto et al. , 1982;
Takayama et a/. , 1982).

Particularly illuminating is a study of the distribution
function I'(

~
(S;)

~
) of the local magnetization

~
(S;)

~

obtained from a time average over some specified time
scale (Kinzel, 1982a). As an example, Fig. 78 shows re-
sults for t,b, ——400 MCS/spin. At T/AJ~~1, P((S;))
would be a rather narrow Gaussian centered on (S; ) =0,
since then all relaxation times are much shorter than t,b„
every spin has flipped many times, and the magnetization
at every site has averaged out to nearly zero. As the tem-
perature is lowered, some spins have flipped only a few
times, and hence the distribution broadens. The
phenomenon of freezing then means that a nonzero frac-
tion of spina with

~
(S;)

~

=1 appears, i.e., spins that
have not yet flipped at all during t,b, . As the temperature
is lowered further, this fraction of frozen spins increases
continuously. While near k&Tf(t,b, )/b, J=1.0 the frozen
spins appear in small clusters, well isolated from each
other, as they must be so long as the fraction of frozen
spins is very small, the size of the regions of frozen spins
grows as the temperature is lowered, until at about
k&T/AJ=0. 5 they start to form a percolating network.
Kinzel (1982a) suggests, however, that this percolation
temperature should depend somewhat on the arbitrarily
chosen time scale t,», and hence is not related to any
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physical phase transition phenomenon. %'e shall return to
this problem in Sec. VI.D below.

Most of the Monte Carlo data on relaxation phenomena
presented so far refer to dynamical behavior in zero field.
Figure 79 now presents results for nonzero magnetic
fields, where critical magnetic fields H, (t) in the H-T
plane were estimated (Kinzel and Binder, 1983; Young,
1983a, 1984) in analogy with experimental procedures.
When one slowly cools the system in a constant field H,
the magnetization first increases and then at a tempera-
ture T(H) crosses over to a temperature-independent con-
stant value. The inverse function H,'q(T) of this onset
temperature T{H)of the flat "plate'aus" in Fig. 79{a) de-
fines a static critical field. Dynamic critical fields are
now defined by cooling the model in zero field to the
desired temperature and then applying a field for a given
time period t. The magnetization reached during this
time agrees with the field-cooled magnetization at high
temperature, but distinctly falls below it at low tempera-
tures. From the points where the field-cooled and zero-
field-cooled magnetizations start to deviate from each
other one can now define a dynamic critical field H, (t).

Figure 79(b) shows the outcome of this procedure for
the nearest-neighbor Gaussian Ising spin glass on the
square lattice. The curve T(H) start out for H +0 at the-
point T=0,H =0, reaches a maximum temperature for
H/6 J= 1, and then bends back to lower temperatures for
larger fields. In contrast, the dynamic critical field curves
start out at a maximum temperature [Tf(t)] for H=o
and then decrease monotonically with increasing field.
The shape of these dynamic critical field curves is very
much reminiscent of critical field curves found experi-
mentally (Fig. 24). Since the experimental data have been
interpreted as evidence for the Almeida-Thouless instabil-
ity line, Eq. (2.32), it is interesting to compare the results

H/ Tp

0

FIG. 79. (a) Magnetization of 60~60 Ising square lattices with
nearest-neighbor Gaussian interaction in a magnetic field plot-
ted vs temperature {for two choices of the field as indicated): 0,
field-cooled magnetization; '7, magnetization after a field is ap-
plied for t =600 MCS/spin to the system in a zero-field cooled
state; ~, magnetization after a field is applied for t =6000
MCS/spin. Arrows show how the various critical fields are es-
timated {see text). (b) Critical field curves in the H- T plane, as
found from {a): 0, static critical fields; &, H, {t) for t =600
MCS/spin; Q, t =6000 MCS/spin. Curves are drawn only to
guide the eye. {c) Rescaled dynamic critical fields in the H-T
plane. Solid curve marked AT is the Almeida-Thouless instabil-
ity line. From Kinzel and Binder (1983).
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of the simulation to Eq. (2.32) as well. This is done in

Fig. 79(c), where both temperature and field are rescaled
with the freezing temperature T~(t) (as defined above).
The similarity with the AT line is in fact striking.

It would, however, be completely wrong to count this
coincidence as another success of the mean-field theory of
spin glasses: as will be discussed below (Sec. V.E), the
two-dimensional model has no phase transition at nonzero
temperature, and hence neither onset of replica symmetry
breaking at any line [other than T(H) =Oj nor any other
singular behavior of any kind at a critical line in the H T-

plane. As far as our present understanding of this two-
dimensional case goes, the AT line has no significance for
it whatsoever. Thus the close agreement seen in Fig. 79(c)
is a coincidence. This will be demonstrated using the
more extensive data of Young (1983a) on H, (t) curves in
Sec. V.E. Surprising coincidences of this sort may also
make the interpretation of experimental data even more
difficult.

Similar problems are encountered in an analysis of the
static magnetization process (Fig. 80). Again the raw
data of the simulation [Fig 80. (a)] look strikingly similar
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FIG. 80. (a) Magnetization of 80)&80 Ising square lattices with nearest-neighbor Gaussian interaction plotted vs magnetic field at
various temperatures. From Binder (1982b). (b) Nonlinear part of the magnetization plotted vs (H/T) . From Kinzel and Binder
(1984). (c) Coefficient a3 (T) obtained from fitting a straight line to the initial part of the curves in part (b) plotted vs temperature.
Left part is a log-log plot vs T/AJ (appropriate if a transition occurs at T~ ——0); right part shows the same data as a log-log plot vs
1 —AJ/(AT) (appropriate if a transition occurs at kp T) /hJ =1). 4, data for a 3 (T) which have been obtained from the data of' (a).
From Kinzel and Binder (1984).
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to corresponding experimental plots [Fig. 26(a)]; over a
broad regime of temperatures [but temperatures not close
to T&(t)] the data for the coefficient a3 related to the
nonlinear susceptibility [Eqs. (3.106) and (3.108)) are con-
sistent with a critical divergence at T/(t); conversely, a
log-log plot of a3 vs T does not yield the straight-line
behavior one expects as an asymptotic law for R phase
transition at T=O, a3 ~ T . The curvature seen on the
corresponding log-log plot [Fig. 80(c)] in the present case
does not imply, however, that the concept of a transition
at T=O does not apply to this model: it simply means
that the temperature region where this law holds, which
only is valid asymptotically as T—+0, has not yet been
reached. Fortunately, more extensive Monte Carlo data
(McMillan, 1983; Young, 1983a; Kinzel and Binder, 1984)
and transfer matrix calculations (Sec. V.E.) show more
convincingly that for d =2 the hypothesis of a transition
at T=O applies.

%'e have here emphasized the behavior of the d=2
symmetric Gaussian Edwards-Anderson spin glass for
two reasons: (i) it has a transition a,t T=O only, yet many
of its properties resemble experiment or even mean-field
theory; (ii) it is the model studied most extensively —e.g.,
for its counterpart with 0=3 no such data as shown in
Figs. 79 and 80 are as yet available. %'e shall return to
the most recent work on this model in our discussion of
the problem of the lower critical dimension (Sec. V.E).
Other work on ground-state properties will be brieAy re-
viewed in Scc. V.C. At this point, we only mention very
briefly work on asymmetric +J and Gaussian models by
Sakata et al. (1977), Rapaport (1978), and Kinzel (1984):
all these papers show that with increasing mean value J
of the interaction [Eqs. (3.30a) and (3.35)] the spin glass
state is replaced by ferromagnetic order. Qn the other
hand, these studies are by far too imprecise to propose a
reliable phase diagram, and hence cannot RddI'css

quest-

ionss such as whether the ferromagnetic phase boundary
is reentrant (Fig. 29), whether mixed ferro —spin-glass
states occur, etc.

3. Continuous spin models

Early attempts to study classical Heisenberg spin
glasses for d =3 are due to Binder (1977b) and Ching and
Huber (1977a, 1977b). In the susceptibility (recorded
again from magnetization fluctuations) a peak occurs
around k&T/bJ=0. 3 [Fig. 81(a)], but at this rather low
temperature there are always serious equilibration prob-
lems: the specific heat recorded from energy fluctuations
distinctly exceeds that found from differentiating energy
versus temperature curves [Fig. 81(b)]. This fact already
indicates that the peak of g is simply a nonequilibrium
phenomenon, due to insufficient observation time (which
again was t,b,

——2000 MCS/spin). A further drawback of
this classical model, of course, is that its specific heat at
T~O goes to C/kz ~1, due to the equipartition
theorem; any meaningful comparison of the specific heat
to that of real systems hence is impossible.
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FIG. 81. (a) Susceptibility of the nearest-neighbor classical
Heisenberg spin glass with symmetric Gaussian interaction on
the simple cubic lattice (size 12 ) plotted vs temperature. Bro-
ken curve shows the Curie law. (b) Specific heat of the same
model plotted vs temperature. Dots are from energy fluctua-
tions [Eq. (5.22}], curves from numerical differentiation of the
energy. Results for lattice sizes 4 and 10 are taken from
Ching and Huber (1977a,1977b). From Binder (1977b).

Already in this early work it was concluded that this
model probably has no transition at T&0, because q (tob, )

was decreasing rather steadily with increasing observation
time [Figs. 82(a) and 82(b)], and the system was obviously
not locked in R valley corresponding to a ground state:
the projection order parameter g was always very small.
In an attempt to elucidate questions about lower critical-
dimensionalities, this work then was extended to study
both spin dimensionalities m=2 (XF model) and m=3
(Heisenberg model) for space dimensionalities from d=2
to d=6 (Stauffer and Binder, 1981). For short observa-
tion times (i.e., t,b,

——2000 MCS/spin) results similar to
Fig. 82(b) were obtained for all combinations of (m, d)
studied; when the time dependence of q (t,b, ) was studied,
a decay towards zero was found, even for d &4 where one
does expect a phase transition at finite temperatures [Fig.
83(a)]. However, since a small but systematic increase of
q(t,b, ) with increasing system size was found for d=5,6
(but not for d=2, 3,4), the data do not allow a definite
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FIG. 82. (a) Log-log plot of the order parameter q(t)=g, .m; m;/N, where m; is a time average of S;(t') over the time t', vs t, for a
three-dimensional classical Heisenberg spin glass (lattice size 12 ), with Gaussian bond distribution. Various temperatures are shown.
(b) Temperature dependence of q(t) in this model for three observation times. The projection order parameter t( [average of
S;(0) S;(t) over all lattice sites and the time range of 2000 MCS) is also included. From Binder (1977b).

conclusion whether a nonzero order parameter exists at
these dimensionalities. On the other hand, the absence of
size effects for d =3 suggests that this decay is an intrin-
sic effect. Data for the relaxation time

r,„=J dt'[(S;(0)S;(t') )].„
[see Fig. 83(b)] are consistent with this picture of a transi-
tion at T=O, but with a divergence of ~„at least as
strong as an Arrhenius law. More accurate recent work
(Jain, 1984; Jain and Young, 1986) suggests that for
m =2,d =2 and probably for m =2,d =3 r„does in fact
follow a power law, r,„~T '", with z,„v=5.16+0.18 in
d=2.

Other recent interesting work probing the sensitivity of
the system to changes of boundary conditions has bearing
on the questions of the lower critical dimension and will
be mentioned in Sec. V.E, while computer searches for
"two-level systems" and other defect configurations will
be discussed in the context of ground-state properties in
the next section. Here we turn to the work of Morris and
Bray (1984), who performed simulations for the cases
m =2,d =2 and m =3,d =3, including a uniaxial an-

tropy D, the exchange being in both cases a nearest-
neighbor Gaussian distribution. Longitudinal and trans-
verse order parameters and susceptibilities were calculat-
ed. The freezing transitions were found to be distinctly
time dependent (no equilibrium transitions), but phase di-
agrams plotting TjTf(t), with t =10 MCS, were in
qualitative agreement with mean-field phase diagrams
(Fig. 84): Phases occurred with longitudinal ordering,
transverse ordering, and both orderings simultaneously.

C. Ground-state properties of spin glasses

Since the pioneering work of Toulouse (1977) pointing
out the crucial role that "frustrated plaquettes" (see Sec.
III.F) should have for the ground state of the +J model
[Eq. (3.38)], much work has been devoted to a more quan-
titative understanding of this problem, which we now
briefly summarize.

While the bonds (of the square lattice) are randomly
distributed, there is a nontrivial correlation in the distri-
bution of frustrated plaquettes. If the nonfrustrated pla-
quettes percolate, which happens if the concentration p of
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FIG. 83. (a) Semilog plot of the order parameter q(t) vs obser-
vation time t at various space and spin dimensionalities (the
latter being denoted by n in the figure). Temperatures are quot-
ed in units of hJ/k~. Lattice sizes are 56 (d =12), 15 {d=3),
and 5 (d =5). At very late times (included for d =2) huge
fluctuations from run to run occur, and an irregular behavior
results due to insufficient statistics. (b) Logarithm of the auto-
correlation time of the spins in the three-dimensional classical
Heisenberg spin glass plotted vs inverse temperture. From
Stauffer and Binder (1981).

i.O
M/W

FIG. 84. (a) Phase diagram for an XY spin glass (rn =2) in two
dimensions with uniaxial anisotropy (—DXS; ). The curves

represent the predictions of the mean-field theory, including
corrections due to replica symmetry breaking. Circles and
squares indicate onset of longitudinal (L) and transverse ( T) or-
der, P is the paramagnetic phase. The phase diagram for D &0
follows from the symmetry D~—D,L~T. (b) Same as (a) but
for a three-dimensional Heisenberg spin glass. From Morris
and Bray (1984).

positive bonds exceeds some critical value p„one might
expect the ground state to be ferromagnetic (Domany,
1979). Monte Carlo estimates for the concentration pf at
which ferromagnetic order sets in are 0.85 (Ono, 1976),
0.85—0.90 (Kirkpatrick, 1977), 0.88—0.91 (Vannimenus
et a/. , 1979), 0.9 (Vannimenus and De Seze, 1979), and
0.85 (Jaggi, 1980); estimates obtained from other methods
are pf =0.91 (constructions of ground states "by hand"
due to Vannimenus and Toulouse, 1977), 0.88+0.02
(transfer matrix techniques of Morgenstern and Binder,

1980a), 0.9 or 0.91 (extrapolations of exact series in 1 —p
due to Gabay and Garel, 1978, or Grinstein et a/. , 1978),
0.95 or 0.92 (real-space renormalization-group calcula-
tions due to Jayaprakash et a/. , 1977, or Southern et al. ,
1979). The most accurate estimate probably results from
the generation of ground states via a matching method of
graph theory (Bieche et a/. , 1980), pf=0.855. On the
other hand, p, was estimated as 0.84 (Domany, 1979) and
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0.86+0.02 (Sadiq et al. , 1981). Thus, very roughly,
indeed p, =pf, but the accuracy of all these estimates is
by far too crude to make any statement as to whether
these two numbers should coincide exactly. The situation
is complicated by the fact that it is not so clear what
phase one is entering when one leaves the ferromagnetic
phase: for the symmetric case p = —,', transfer matrix
analysis (Morgenstern and Binder, 1980a); Morgenstern
and Horner, 1982) suggests at T=O a spin glass phase but
wIth qpA =0~ this phase dl ffers fr om a paraD1agnet1c
phase, since the spin glass correlation function gsG(R)
[Eq. (3.88)] decays to zero as a power law rather than ex-
ponentially, and hence /so ——oo [Eq. (3.89)]. However,
neither this numerical work nor other considerations (Mi-
yashita and Suzuki, 1981) can yield reliable quantitative
estimates for the exponent q describing this decay:

[~Soli)T=o]avo:R ~ +"' (+J model, d =2) .
(5.26)

Moreover it is not obvious whether this state persists be-
tween p = —,

' and p =pi. In fact, studying the ground
state by a special polynomial algorithm, Barahona et al.
(1982) suggest a new type of phase for 0.85 &p &0.9 at
the square lattice, which they term the "random antiphase
state": it is made up of ferromagnetic domains separated
by erratic domain walls. If this state exists distinct from
the above state with decaying correlations, it could be a
sort of spin glass similar to the Mattis model, with
nonzero order parameter q. However, the existence of
this phase is disputed by Morgenstern (1982), who sug-
gests, from transfer matrix calculations, that Eq. (5.26)
holds right up to pf. Of course, one would expect that
the ferromagnetic correlation length gF~oo as p~pf,
and thus very large ferromagnetic domains of order gF
are expected near pf. Hence this issue is difficult to settle
numerically.

There has also been some confusion about another tran-
sition at p,

' = I/~2=0. 707. Schuster (1979), using duali-
ty transformations, showed that the pair correlation func-
tion between two frustrated plaquettes undergoes a "pair
dissociation transition" at p,', if one imposes the (artifi-
cial) constraint that all other plaquettes be unfrustrated.

Omitting this unphysical constraint, Kolan and Palmer
(1980) suggested from numerical work that the average
minimal distance between frustrated plaquettes indeed
shows an anomaly at p,', but this was ruled out by later
analytical work (Liebmann and Schuster, 1980).

The transfer matrix calculations (Morgenstern and
Binder, 1980a; the latest, n1ost accurate values are due
to Cheung and McMillan, 1983a) also yielded estimates
for the ground-state energy E(0) and entropy S(0) at
p = —,, namely E (0)/J = —1.4024+0.0012 and
S(0)/ks -0.0701+0.0005. The latter number is in
reasonable agreement with the estimates of Vannimenus
and Toulouse (1977) but distinctly smaller than a Monte
Carlo result [S(0)/ks -0.10] of Kirkpatrick (1977). This
larger value can be interpreted as a dynamic effect, result-
ing in a "frozen-in entropy" or "rest entropy, " a concept

familiar from ordinary glasses (Jackie, 1981). Indeed,
such a "rest entropy" is also found in simulations of the
Gaussian spin glass (Jackie and Kinzel, 1983), for which
S(0)=0. The most recent study of S(0) for the square +J
model yielded S(0)kb =0.08 (Kolan and Palmer, .1982).

Even less is known about the ground-state properties of
the +J model in higher dimensionality [see also Bachas
(1984) for a discussion of why this problem is so diffi-
cult]. Again one expects S(0)&0 (for analytical argu-
ments on this point, see Schwartz, 1985b). Again there is
a similar discrepancy between a transfer matrix estimate
[S(0)/kz-0. 04+0.01; Morgenstern and Binder (1980b)]
and Monte Carlo work [S(0)/ks-0. 062; Kirkpatrick
(1977)j. The ground-state energy was estimated as
E(0)/J = —1.76+0.02 [+J model, Morgenstern and
Binder (1980b)], while in the Gaussian model
E(0)/hJ = —1.7+0.03 (d=3) and E(0)/hJ = —1.31
+0.01 (d=2), which is significantly lower than early
Monte Carlo estimates (Binder and Schroder, 1976a,
1976b; Binder and Stauffer, 1976c) and thus demonstrates
that in these studies the system was trapped in low-lying
metastable states rather than the true ground states.
Cheung and McMillan (1983b) have studied a model with
exchange uniformly distributed between —J and +J and
find that there is a continuous distribution of two-level
states with a finite density at zero energy, yielding a
specific heat varying linearly with temperature. While

q =qEA ——1 for the Gaussian spin glass at T=Q, since the
ground state of any finite system is only doubly degen-
erate for practically every bond configuration I JJ I if the
distribution of bonds is continuous, nothing is as yet
known about the order parameter of the +J model at
T=O for dimensionality d=3 and higher. Grest et al.
(1986) recently studied the cooling rate dependence of the
apparent zero-temperature properties of spin glasses ob-
tained from Monte Carlo methods and showed that
E(0)/J= —1.791 (d=3). They found that for d=3 E(0)
depends on the cooling rate only logarithmically, while
for d=2 there is a power-law dependence.

If one considers the diluted +J model [Eq. (3.38b)j one
gets a paramagnetic phase at T=Q at sufficient dilution
and can study a transition from the disordered phase to
the spin glass phase as the concentration of nonzero bonds
increases (Aharony, 1978; Aharony and Pfeuty, 1979;
Aharony and Binder, 1980). Since the replica method in
which one takes the limit T~O before the limit n —+0
(Aharony, 1978) is inconclusive, having eliminated frus-
tration from the problem (Aharony and Pfeuty, 1979), one
either has to combine the replica method with dual repre-
sentations to make progress (De Dominicis and Stephen,
1978; Fradkin et al. , 1978) or to resort to the extrapola-
tion of exact series expansions in the concentration of
positive and negative bonds pi,p2 (Aharony and Binder,
1980). Only the latter approach has yielded quantitative
results: it is found that Xso diverges when p =pi+p2 ap-
proaches a critical concentration psG. . For p2~0, ps~
agrees with the bond percolation concentration p„while
for finite nonzero p~/p2, psG exceeds p, . This means
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that for p, (p (pso there is an infinite cluster of spins
connected by nearest-neighbor bonds, but the ground state
of this cluster is still paramagnetic (Xso and g'so being fi-
nite). The critical exponent yo describing the divergence

of XSG as XsG ~ (2t2so —p) ' at T=O was estimated to be
around y0-2.7 for d=2, y0-2.0 for d=3, y0-1.4 for
d=4, and y0=1.05 for d=6. As for percolation and the
paramagnet —spin-glass transition driven by temperature,
one expects d=6 to be the upper critical dimension for
this problem, and thus the classical exponent yo ——1

should hold for d)6 (Aharony and Binder, 1980). Of
course, due to the shortness of the series analyzed, the ac-
curacy of the above estimates for yo is rather uncertain.

This method based on calculating Xs~ as a systematic
series in pi and p2 was also applied to the triangular lat-
tice, which has no ferro-antiferromagnetic symmetry. In
fact, the pure triangular antiferromagnet is a "fully frus-
trated" system (see Sec. VI.E); it stays paramagnetic at all
T&0 and exhibits a power-law decay of correlations at
T=O (Stephenson, 1970). Thus it is interesting that even
in the diluted antiferromagnet (pi ——0) a transition was
found at p, =0.42—0.45 (Aharony and Binder, 1980), im-

plying that there is a spin glass phase, although there are
only antiferromagnetic and no ferromagnetic bonds, con-
sistent with suggestions of de Seze (1977) and Crrest and
Cxabl (1979). Figure 85(b) shows the phase diagram at
T=O, Fig. 85(a) part of the diagrams on which this series
extrapolation (Aharony and Binder, 1980) was based.
Since the ground state of the +Jmodel is so degenerate, it
is also very important to investigate the energy barriers
separating the various ground states from each other.
This question was addressed by Morgenstern and Horner
(1982) and Morgenstern (1983a, 1983b) for the two-
dimensional case. They analyzed the groups of spins that
can be flipped in a ground state without energy cost. The
contour around such a group of spins is called a "zero-
energy loop." Part of these are "trivial loops, " surround-
ing only single "loose spins" or small clusters. The con-
centration of these trivial loops decreases rapidly with in-
creasing size of the loop. In addition, there is an irregular
network of large loops, the typical diameter of which is
estimated from transfer matrix calculations as about 13
lattice spacings (Morgenstern, 1983a, 1983b). Due to en-
tropy effects, correlations arise on distances much larger
than this value, and Morgenstern and Horner (1982) sug-
gest that this picture is consistent with a power-law decay
of the correlations [Eq. (5.26)]. Morgenstern (1983a,
1983b) then suggests that the largest energy barriers
separating various ground states ("valleys" in phase space,
Fig. 4) can be understood by analyzing the energy cost of
overturning the spins contained within one nontrivial
loop. Since the minimum energy cost is obtained if we
move a wa11 through the loop, we expect an energy barrier
of the loop diameter itself. This estimate is corroborated
by numerical work (Morgenstern, 1983a, 1983b), which
yields energy barriers of the order of 1SJ. This estimate
is also consistent with some Monte Carlo results on the
temperature dependence of the relaxation time (McMillan,
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FIG. 85. (a) Clusters anlayzed for a study of

XSG g g I 172 QRcXSG
1=0 m=0

on the triangular lattice with concentrations pl, p2 of ferro- and
antiferromagnetic bonds, where c is a cluster, g, is the multipli-
city of a cluster with l bonds, m of which are ferromagnetic,
and ps& is its spin glass susceptibility. Note that only clusters
with I & 3 are shown, and for I =6 only a subset of the possible
diagrams is displayed here. (b) Conjecture for the resulting
phase diagram at T=0, displaying paramagnetic (PM), fer-
romagnetic (F), and spin glass (SG) phases. Note that the point
p& ——1 is special (fully frustrated triangular lattice). Qnly the
line PM-SG has been located quantitatively from the series ex-
trapolation. From Aharony and Binder (1980).
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1983) and with high-temperature series extrapolations
(Reger and Zippelius, 1985); these latter results, however,
seem to disagree with other Monte Carlo results (Young,
1983a), which imply a divergent fvee ene-vgy barrier as
T~O. We shall return briefly to this problem in Sec.
V.E.

Of course, it is a nontrivial matter to relate the energy
barrier between "valleys" at T=O to the free energy-bar-
rier between valleys at T~ 0. One would need to have in-
formation of the configurational entropy associated with
states close to the saddle-point configuration in phase
space (the height of this saddle yields the energy barrier).
A crude estimate of this entropy was attempted by Mor-
genstern (1983a; 1983b). He assumed that the entropy of
the group of spins contained within one nontrivial loop
stays about the same when one introduces a wall such that
one-half of the spins within the loop are overturned (this
configuration should be close to a saddle-point configura-
tion). The entropy then is entirely due to the "trivial"
loops mentioned above. This entropy was also estimated
from exact partition function calculations as
S(0)/ks ——0.0685+0.005 (normalized per spin); multiply-
ing this estimates with a typical loop size of 13&13, Mor-
genstern (1983a, 1983b) estimated the free-energy barrier
as LF= 15J—11.6k& T. An order-of-magnitude estimate
of Tf(t) for short observation times was finally obtained
by putting bF=O, which yielded Tf(t)lk&J=1.3. Al-
though this number is in fair agreement with Eq. (5.25a),
this approach should only be considered as an interesting
qualitative approach towards understanding the tempera-
ture dependence of free-energy barriers in spin glasses. Of
course, a simple linear variation of ~with T still implies
an Arrhenius behavior for Tf(co) [Eq. (2.13)], which is
not consistent with experiment (see Sec. II.B.1).

When we consider the Gaussian spin glass model in-
stead of the +J model, there are no longer any exact de-
generacies between various states (apart from the trivial
one in which all spins are flipped together). The "trivial"
loops of the +J model now have their counterparts in
small clusters of spins which can be overturned with
small energy cost (Fig. 43) rather than E=O. Dasgupta
et al. (1979) studied 20&&20 square lattices to obtain the
distribution of barrier heights for clusters of two and
three spins [Figs. 86(a) and 86(b)]. Using these results in
Eq. (3.137), Dasgupta et al. (1979) studied the depen-
dence of the exponents a appearing in the decay of the
remanent magnetization and energy. The dependence of
these exponents on temperature and magnetic field [Fig.
86(c)] was in reasonable qualitative agreement with direct
Monte Carlo simulations of the corresponding quantities
(Kinzel, 1979).

Ma (1980) suggested that some features of this descrip-
tion could be carried over to the case of Heisenberg spin
glasses (with quantum-mechanical spins, s = —,'); particu-
larly interesting is the fact that for strongly coupled clus-
ters of two or more spins the "frozen-in" background in
the environment of the cluster leads again to a picture like
that in Fig. 43. Thus, even if the Hamiltonian is fully iso-
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FIG. 86. (a) Distribution of barrier heights r of clusters con-
taining two or three spins, respectively, for a gaussian Ising
square lattice of linear dimension I. =20; r denotes the energy
difference between the barrier and the higher of the two energy
minima in Fig. 43. (b) Same as above but for the quantity V(=
energy difference between the barrier and the lower of the two
energy minima in Fig. 43). (c) Exponent a of the power laws

for energy [E(t) —E ( oo ) ~ t s] and remanent magnetization

[crraM~t ",oqaM~t '", for the thermo-remanent case
(TRM) and the isothermal remanent magnetization (IRM),
respectively] plotted vs magnetic field (in umts of hJ) at
T =0.254J using the data of parts (a) and (b) of this figure and
equations such as Eq. (3.137). From Dasgupta et al. (1979).

Rev. Mod. Phys. , Vol. 58, No. 4, October 1986



922 K. Binder and A. P. Young: Spin glasses

tropic, the clusters experience an "effective anisotropy en-

ergy, " which is responsible for the barrier between their
energy minima. However, there are not yet any numerical
studies aimed at checking and substantiating these results.
So far, numerical work has been restricted to a search for
"two-level systems" in the classical limit (S~oo) [see
Reed (1979a) and Henley (1984a, 1984b) for the case of
Heisenberg spins, and Grzonka and Moore (1983, 1984)
for XF spins]. Reed (1979a) studied systems of size 14
by an energy minimization method and suggested that lo-
calized clusters occur (containing about 125 spins) and
may exist in more than one local equilibrium configura-
tion. The similar but much more systematic and exten-
sive study of Henley (1984a, 1984b), using 12 lattices,
also revealed that the size of clusters that are locked to-
gether in rigid rotations is about 100—200 spins. Correla-
tions of local rotation matrices have also been studied and
found to be rather long. With regard to the nature of the
"relative defects" distinguishing the spin configuration of
one local energy minimum from that of another, the pic-
ture still is rather unclear: while disclination lines and
twists are found to exist, domains in which the spins un-
dergo a reflection are probably more important. An in-
teresting finding is that the energy difference

~

e
~

be-
tween two minima is less than AJ in this nearest-neighbor
model, in spite of the large size of the clusters of spins in-
volved. %'e note also that the size of this object is con-
sistent with the number of metastable states estimated
analytically for this model by Bray and Moore (1981b).

The work of Henley (1984a, 1984b) clearly is a pioneer-
ing first step, particularly important due to its implemen-
tation of the idea that defects relative to the O(m)
orthogonal matrix R(r) represent a rotation of one can-
figuration relative to another, which is taken as the "order
parameter" for describing low-temperature configurations
of I-vector spin glasses. An intriguing problem is to re-
late these findings to the results of Bray and Moore
(1982a), who point out that a typical energy minimum in
the (high-dimensional) configuration space has a high
density of directions for which the energy surface is local-
ly flat. This implies for dynamic relaxation phenomena
that the system stays so long in the vicinity of a particular
local minimum that a logarithmic relaxation of q (t,b, ) re-
sults,

kBT
1 —q(t, b ) ~ lnt, b, ,AJ

1 & lnt»s & (k~ T/hJ)

cay q (t,b, ) ~ t,b, ]. If correct, these findings would imply
that localized modes are much more important than hy-
drodynamic excitations (spin waves), which have a much
smaller density of states as A.~O (see Sec. VI.B).

The self-consistency of this picture is established by nu-
merically solving the I.angevin equation for an LY spin
glass in d =2 and d= 3 in order to obtain q (t,b, ) directly.
Figure 87 shows that the time variation of q is indeed
consistent with Eq. (5.27). Furthermore, the numerical
diagonalization of the Hessian matrix for the spin config-
urations that belong to the corresponding local energy
minima yields g(0), and hence the proportionality con-
stant in Eq. (5.27) is in quantitative agreement with the
directly observed q (t», ). Nevertheless, the work of
Grzonka and Moore (1983) implies y(A, ) ~ A,

'~ instead of
the above result, for d=3, using larger lattices and some-
what different numerical techniques. While the exponent
u = —,

' would be consistent with a spin-wave picture,
Grzonka and Moore (1983) argue that only 40%o of the
prefactor in the relation g(A, ) a: A,

' can be accounted for
by spin waves. Grzonka and Moore (1983) also study the
associated eigenvectors and find that for d=2 all states
are localized. As a criterion for localization the "inverse
participation ratio" (IPR) is computed, defined as

2 3 4

(I-q) o
k~T

O.

where the proportionality constant can be estimated from
a harmonic expansion of the energy,

5E= —, g A.(5Sg)

5S~ being the "normal coordinate" and A. the associated
eigenvalue. The density g (A, ) of the eigenvalues is found
to behave as q (A ) o: A, , with a =0 for 4=2 [i.e., g (0)&0]
and a=0.1+0.1 for d=3. The proportionality constant
in Eq. (5.27) is related to g(0) [if g(0) =0, one finds a de-

PEG. 87. Plot of (1—q)/k&T vs lnt for various temperatures
(hJ=—1) in the two- and three-dimensional planar spin glass
with nearest-neighbor Gaussian interaction. Solid curves are
the theoretical prediction based on the numerical analysis of the
density of states g(A, ), as discussed in the text. From Bray and
Moore (1982a).
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IPR= g,.
I
(i

I
A, ) I

for a normalized eigenvector
I

A, );
it is a measure of the number of sites on which the eigen-
vector has a significant amplitude (for extended eigenvec-
tors the IPR is expected to be of order N '). For d=3
one finds a rather sharp transition from extended to local-
ized states at a critical value of A,. The addition of a
small uniform magnetic field or uniaxial anisotropy also
produces localized states at small A, for d=3, together
with a larger reduction in g (A, ) as A,~O.

If barrier hopping did not contribute at all, the relaxa-
tion of the system would be entirely determined by g (A, );
for instance, the autocorrelation of the spins could be
written as

[(S;(0)S;(t))T],„=1 k~T f— g(A, )[1—exp( At—)],
(5.28)

[which leads to Eq. (5.27) if g (0)&0, as stated above]. In
order to examine the importance of barrier-hopping pro-
cesses, Grzonka and Moore (1984) have tried to analyze
the saddle-point configurations separating two distinct lo-
cal minima. So far this ambitious program has only been
carried through for lattice sizes from 4 to 6. Many
low-energy barriers were found, and the change of the
spin configuration to a saddle point is highly localized
(again using the IPR as a localization criterion). Unfor-
tunately the saddle-point search procedures applied by
Grzonka and Moore (1984) are probably biased, and hence
cannot be used to deduce the distribution g (c,, u) discussed
previously for the Ising spin glass. While analytic
theories for XY spin glasses have emphasized, for d=2,
the role of vortices and "half vortices" (Villain, 1977b,
1978, 1980; Jose, 1978a, 1978b, 1979; see Sec. III.F.2), this
aspect of the theory has not received much attention in
numerical work. We also note that Eq. (5.27) seems to
find numerical support (Stauffer and Binder, 1981) for
I-vector spin glasses irrespective of space and spin
dimensionality, although the nature of the defect configu-
rations depends distinctly on both m and d.

Other attempts to understand the nature of low-lying
states in spin glasses are based on studies of "defect ener-
gies" (Reed et al. , 1978) and interface energies (Derrida
and Vannimenus, 1983). Reed et a1 (1978) sta. rted from
a ground state of an Ising spin glass with Gaussian in-
teraction, reversed all the spins in the right part of the
square (cubic or hypercubic) sample, and then let the sys-
tem relax while keeping the spins on both right and left
end lines (planes or hyperplanes) fixed. The energy differ-
ence between the "defect state" so generated and the origi-
nal state is the "defect energy" Ed,r. In the ferromagnetic
state, Ed,r should be of order Ed, r ~N' ', for a sample
containing N spins. Reed et al. (1978) found that for
Gaussian distributions of bonds of width 4J centered at
J, the normalized defect energy Ed,r/N' ', vanished at
about J/AJ=0. 6 for d=2, 0.35 for d=3, and zero for
d=4. Reed et al. (1978) took this as evidence that d=4
is a special dimensionality, i.e., the lower critical dimen-
sionality of Ising spin glasses. However, this conclusion

is at variance with more recent related work (McMillan,
1984b, 1985a, 1985b; Bray and Moore, 1985a) in which a
phenomenological renormalization treatment of the defect
energy is attempted and taken as evidence for a finite
temperature phase transition for d=3. This work and re-
lated work investigating the sensitivity of the system to
boundary conditions (Banavar and Cieplak, 1982a, 1982b,
1984; Cieplak and Banavar, 1983) will be discussed fur-
ther in Sec. V.E.

D. One-dimensional models

One-dimensional models of spin glasses have a direct
experimental application only for rather special uniaxial
substances, in which magnetic interactions are practically
restricted to one lattice direction. When such systems are
diluted suitably, spin-glass-like behavior has in fact been
observed (Tippie and Clark, 1981; Cheikhrouhou er al. ,
1983). The main interest in one-dimensional models,
however, is due to two other facts.

(i) In one dimension one can obtain exact results for a
variety of models. Such exact results include models with
long-range interactions in which finite-temperature phase
transitions occur (Orland er al. , 1981; Kotliar et al. ,
1983) and short-range models with transitions at T=O.
Although nearest-neighbor models in one dimension and
zero field are not frustrated and hence a study of their
static behavior is only of pedagogical interest (one can
perform exact renormalization-group treatments in spite
of the randomness; see Grinstein et a/. , 1976), a rather in-
teresting and nontrivial behavior occurs in nonzero mag-
netic field (see, for example, Derrida et al. , 1978; Chen
and Ma, 1982; Derrida and Hilhorst, 1983; Gardner and
Derrida, 1985). For the +J Ising chain in zero field,
dynamical properties in the framework of a master equa-
tion description [Eqs. (5.8) and (5.9)] can also be found
(e.g. , Bray et al. , 1978; Hentschel, 1980a, 1980b; Reger
and Binder, 1985; Colborne, 1986). For certain Heisen-
berg spin glasses, one can show the nonexistence of meta-
stable states (Kaplan, 1981). The spin glass behavior of
the random anisotropy model can also -be analyzed expli-
citly (Thomas, 1980).

(ii) In one dimension a variety of numerical techniques
can be applied (e.g., Morgenstern et al. , 1978; Puma and
Fernandez, 1978; Kumar and Stein, 1980; Ariosa et al. ,
1982; Reger and Binder, 1985) that are not applicable (or
at least impractical) at higher dimensionality.

We start by briefly discussing the long-range models
(some of which are of the site-disorder type). The Hamil-
tonian studied by Orland et al. (1981) is

A = g J(x;,xJ)S;SJ

with

J(x,y) =J sin(k
I

x y I
)exp( —y I

x y I
)

for y ~&k and spins occurring with concentration p. A
transition is found to occur at T, =2Jp/A;, but the low-
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temperature phase does not have an order of the type
occurring in mean-field theory (Sec. IV); rather the sys-
tem "condenses" into solitonlike structures, which can be
interpreted as clusters of strongly correlated spins.

Kotliar et al. (1983) study the Ising chain with Hamil-
tonian

A = g ( E;JS;SJ ) /(a
~

i —j ~

)

where the c,J. are independent random variables, a is the
lattice spacing, and a phase transition occurs if the ex-
ponent o. lies in the range —, &o.& 1. For —, &o.& —, the
exponents exhibit mean-field behavior, while for o.= —,

the thermodynamic limit of the free energy no longer ex-
ists. For cr & 1, fluctuations destroy any type of ordering,
while for —', & cr & 1 there is Edwards-Anderson-type order
but with nonclassical exponents, as renormalization-group
expansions show. In particular, near o =1 one finds for
the correlation length exponent 1/v= 1.lv'2(1 —o), and
hence v—+ao, a=2 —v~ —ao at this borderline case.
Moore (1986) suggests that the model is replica symmetric
in the non-mean-field region.

Recently Bhatt and Young (1986) have performed
Monte Carlo simulations on this model. Analyzing the
results by finite-size scaling, they find that for o.=0.69 a
spin glass transition occurs, with nonzero order parameter
below Tf. However, for o = —, there is evidence for a fi-
nite Tf with no order at lower temperatures, reminiscent
of the Kosterlitz-Thouless (1973) theory of the two-
dimensional XY model. Note that varying o. is analogous
to varying d in a short-range model, and a rough argu-
ment (Young and Bhatt, 1985) that neglects the exponent

g of the short-range model (see Sec. V.A. 1) gives the
equivalence d =2/(2o —1). Since cr= 1 is the borderline
value beyond which no transition occurs, this relation
predicts the lower critical dimension dI ——2 for short-
range systems. However, the equivalence is not exact, so
one should not take this result too seriously (see Sec. V.E
for a discussion of dt). The results of Bhatt and Young
(1986) could be interpreted as evidence for Kosterlitz-
Thouless behavior in the range 0.75 & o. & 1, but they may
well be affected by corrections to finite-size scaling, so
this interpretation is very speculative. Note that Kotliar
et al. (1983) suggest that Kosterlitz-Thouless behavior
occurs but only for o.=1. Further discussions of models
with long- but not infinite-range interactions are given in
Sec. V.A. 1.

Ariosa et al. (1982) study a model in which spins are at
random positions x; along a chain and interact via ex-
change constants corresponding to a one-dimensiona1 ana-
log of the RKKY interaction,

JJ ——Jocos(a
~
x; —xj ~

)/
~
x; —x& ~

the constant a being chosen arbitrarily as a=7m. . For
%=8,12,16 the partition function and magnetic suscepti-
bility are found exactly for given sets I x; I of the spin po-
sitions (and averages over at least ten configurations I x;]
are taken). From the size dependence of these results,

Ariosa et al. (1982) conclude that the model has a phase
transition with properties similar to the Sherrington-
Kirkpatrick (1975) model. A drawback of the model, as
it stands, is that it does not have a sensible thermodynam-
ic limit for Jo ——0; rather one must require that Jo—+0 as
X~ Oo in a suitable way, which however is not yet known
analytically.

Next we turn to the static behavior of the Ising spin
glass with nearest-neighbor interaction, where it is clear
that a phase transition occurs at T=O only. Chen and
Ma (1982) and Gardner and Derrida (1985) consider a
probability distribution P (J; ) of the nearest-neighbor

EJ
kbonds, which for

~
JJ ~

~0 behaves as P(J~)~
~ J;J ~

and show that at T=O the magnetization in a field is
nonanalytic. It behaves as M =CH'"+ "~'"+3' [see
Gardner and Derrida (1985) for an exact expression for
the constant C]. Qualitatively, this behavior can be un-
derstood as follows: In a weak magnetic field, the mag-
netization is due to the flip of clusters that are delimited
by two weak bonds. The typical distance D between two
bonds weaker than

~
Jo

~

behaves like

~

—(k+ )

The typical magnetization at T=O of a cluster of length
D is VD cc

~
Jo

~

'"+" . Therefore the typical cluster
of length D delimited by two weak bonds flips for a field
H =

~
Jo

~

/v D ~
~
Jo

~

'"+ '~ . The typical magnetiza-
tion per spin of the chain due to the flip of these clusters
is therefore M =D'~ /D ~

~
Jo

~

'"+"~, and hence
M~H' +" ' + '. For the Gaussian distribution, k=O
and hence M ~H'; the + distribution formally corre-
sponds to the limit k —+Do and hence M ~H. There is
also some evidence that this nonuniversal critical behavior
at the T=O transition, which depends on details of the
distribution P(JJ ), also persists for two-dimensional lat-
tices [see Cheung and McMillan (1983a, 1983b)]. In the
J chain where the susceptibility at H —+0 is finite,

singularities occur at a set of finite values of the field,
namely H/J =2/m, wit'h rn integer (Derrida et al. ,
1978; Puma and Fernandez, 1978).

We now turn to dynamical properties of the Glauber
(1963) Ising chain with random bonds. For the +J
model, the eigenvalues of the Liouville operator of a finite
ring of N spins can be found exactly (Reger and Binder,
1985),

A,„=1 —[tanh(2J/kz T)]cos n +2m. 1 —4
-4

n =0, 1, . . . , N —1, (5.29)

where @=1 if the ring is not frustrated, N= —1 if it is
frustrated. For the +J model, it is then simple to obtain
the time dependence of the remanent magnetization, the
spin-spin autocorrelation function, and the dynamic sus-
ceptibility. For %~ ao the contribution of frustrated
rings is negligible, and one finds for the remanent mag-
netization (Hentschel, 1980a)
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M(t)=M(0)e 'Io(yt), y=tanh(2J/kii T) . (5.30a)

For the autocorrelation function (Bray et al. , 1978),

[&S,(0)S,(i) &,].,=~...—

&& g [tanh(J/k~T)] ~'~I&(yt);
I =—oo

(5.30b)

here Ii denotes modified Bessel functions. The dynamic
susceptibility becomes (Hentschel, 1980a, 1980b)

1 —tanh (J/k&T)X(~)=-
T 1+tanh (J/kii T)

04

02-

10

1SIHG CHAlN

T= 0150~o
0.1-

~T=OA ~~ T-"0.3
~ ~ ~+ ~ ~

I I

10 10' 10 10

X [(1+y—i~)(1—y —ice)] (5.30c) 0

403 -o
4+

the real part of which exhibits a peak at TI (co) given by
A

JTf '(co) =(ln2 —into)/4 . (5.31)
0.2 ~ + ~«~g t

g ~ ~

4
& *0.3

This simple Arrhenius behavior for a chain really is ex-
pected, since the highest energy barrier one can encounter
is 2J.

For the Gaussian model, exact analytical results are no
longer available, but one can obtain eigenvalues and eigen-
vectors of the Liouville operator for small N (%&10;
typically %=7) numerically (Reger and Binder, 1985).
Such results are expected to be useful, since for finite +J'
models the lowest eigenvalue for finite N is the same as
for N~no [Eq. (5.29)]. Moreover X(co) is given by Eq.
(S.30c) is very well approximated by results found for fi-
nite %, for T) —,

' Tf(co). As an example, Fig. 88(a) shows
the decay of the remanent magnetization at low tempera-
tures, obtained from this calculation; the results are more
accurate than corresponding ordinary Monte Carlo data
[Fig. 88(b)j obtained for a chain of %= 1000 spins by Fer-
nandez and Medina (1979). This calculation exhibits the
superposition principle that all curves coincide on a "mas-
ter curve" if one chooses Tint as abscissa [Fig. 89(a)] in
the same way that experimental data do [Fig. 89(b)j. The
lesson to be learned from this comparison is the follow-
ing: the Tint scaling simply tells us that one probes
thermally activated relaxation over a broad distribution of
barrier heights independent of temperature. It has no
bearing on the question of whether static phase transitions
exist (note that Tf 0 in this one-dimensio—nal model).

Colborne (1986) shows that at later times the remanent
magnetization decays as M(t)= —,'exp( v't/~), w being—
some relaxation time.

The dynamic susceptibility [Fig. 90(a)] is also qualita-
tively siniilar to experimental data [Fig. 90(b)]. As in the
experimental procedure, one can define various relaxation
times (Fig. 91) and finds that the spectrum of relaxation
times dramatically broadens as one lowers the tempera-
ture [see Fig. 11 for comparable data on the cobalt-
aluminosilicate spin glass (Wenger, 1983)). However,
while the experiment reveals that the maximum relaxation
time upon cooling increases faster than an Arrhenius law,

0. 1

0.0
1OO 10'

t I

o T 0~i a t TF1.0 t i i I it ~ I
'M

10~ 10~ 10

FIG. 88. (a) Decay of the remanent magnetization of an ensem-
ble of clusters of N =4 spins each in the Gaussian model. Four
temperatures are shown (temperture being measured in units of
AJ). Straight lines indicate a law M(t}=0.320—0.075Tlnt.
From Reger and Binder (1985); (b) Same as (a) but from
dynamic Monte Carlo simulations of a chain of N =1000 spins.
From Fernandez and Medina (1979).

E. What is the lower critical dimension?

As was discussed in Sec. V.A, mean-field theoiy is ex-
pected to be "qualitatively correct" for short-range sys-
tems if the dimensionality d exceeds the upper critical di-
mension d„. "Qualitatively correct" means that critical
exponents (and. other "universal" properties) are predicted
correctly, though nonuniversal properties (such as the lo-
cation of Tf ) are predicted inaccurately. For spin glasses,
d„=6 for most properties, but certain exponents differ

here everything is consistent with simple Arrhenius
behavior. This fact is also true for the frequency depen-
dence of the freezing temperature, which is found to be
b JTf '(co)=0.332—0.2541nco (Reger and Binder, 1985).
It is really a surprise that even "zero-dimensional spin
glasses" (that is, ensembles of clusters containing only a
small number of spins; see also Banavar et a/. , 198S) and
one-dimensional spin glasses have so much qualitative
similarity to real spin glasses. Thus one must study the
deuiations of the frequency dependence of Tf(co) from
simple Arrhenius behavior very carefully and quantita-
tively, to ascertain the collective behavior associated with
spin freezing in three dimensions.
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FIG. 89. (a) Relaxation of the magnetization M(t) of an en-
semble of clusters of N =4 spins each, coupled together by ran-
dom Gaussian bonds, after at T =0 an infinite magnetic field is
switched off, at T/b J=0.4.0.3,0.2, 0. 15 [see Fig. 88{a)]plotted
vs T lnt. From Reger and Binder (1985). (b) Relaxation of the
magnetization M (t) towards equilibrium for CuMn with 5 at %
Mn cooled to the considered temperature in zero field, after ap-
plication of a field H =10 kOe at t =0, plotted vs Tint for
various temperatures, as indicated on the figure (T~-27. 5 K).
From Omari et al. (1984).
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from their mean-field values when d & 8 (Fisher and Som-
polinsky, 1985). one should also note a possible distinc-
tion between behavior at the critical point and in the or-
dered phase: e.g. , Fisher and Huse (1986) argue that
mean-field theory for T & T~ is never correct for short-
range spin glasses. For dimensions between the upper and
lower critical dimensions, d~ &d &d„, mean-field theory
correctly predicts the existence of a finite-temperature
transition, but gives incorrect values for universal proper-
ties. It is not, however, clear to us whether the complicat-
ed spin glass state below T~ obtained in mean-field theory
(Sec. IV), with many "valleys, " breakdown of ergodicity,
etc.), persists for short-range models in this range of
dimensionality. In particular, one cannot, at this stage,
rule out the possibility of another dimension di ( & d„)
such that for dI ~d &d~ there is a finite-temperature
transition where Xso [Eq. (3.102)] diverges but the spin
glass order parameter q' ' [Eq. (3.99)] is zero for T & TI
(Anderson, 1979; Young, 1985). The canonical example
of this behavior is the Kosterlitz-Thouless (1973) transi-

~ ~I

4 +4g
44 ~~~a ~g egg gQx+!~ I .4 Ch a ~4 8$tt eP A+

0 0.5 1.0
TE', MPKRATlJRK {K)

&.5

FIG. 90. (a) Real and imaginary parts of the dynamic suscepti-
bility, g(cu) =g'(m)+i+"(co) for the Gaussian Ising spin glass
with %=4, for a wide range of frequencies. Dotted curve
indicates the Curie law for the static susceptibility. From
Reger and Binder (1985). (b) Same as (a) but for the
(Hoq03)o 08(8203)0 92 spin glass. From Wenger (1983).

tion in the two-dimensional XF ferromagnet. Young
(1985) has pointed out that a finite difference between d~

and dI is not unreasonable because fluctuations about the
mean-field solution diverge more strongly below T~
(when the system orders; see Sec. IV.G) than at T& itself.
Of course, this does not mean that such a difference be-
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10—8

10—6

10-4

fIlOX

enough order —because at infinite temperature the spins
are not correlated, and hence the calculation of the coeffi-
cients is basically a combinational problem (for more de-
tails on the method in general, see Domb and Green,
1974).

In practice it is often convenient to choose
w =tanh J/k~ T as the expansion variable, so that (Fisch
and Harris, 1977, 1981; Cherry and Domb, 1978; Palmer
and Bantilan, 1985)

~max

(5.32a)

1.0 2,0
I

3.0

5 JIT
4.0

l

5.0 60 For more general symmetric distributions one expands in
terms of the moments w~ (Ditzian and Kadanoff, 1979),

FICx. 91. Logarithm of various relaxation times (maximum re-
laxation time ~,„, average relaxation time 7, minimum relaxa-
tion time ~;„) extracted from an analysis of the dynamic sus-
ceptibility J(co) of an ensemble of clusters of N =4 spins each,
coupled together by random bonds with Gaussian distribution.
From Reger and Binder (1985). SG= 1+

,m2, m4, m6

aq
m2, m4, m6, . . .

m = J dJP(J)[tanh(J/k T)]

m~ m4 m6

q F2 N4 $86

(5.32b)

tween dI and dI necessarily occurs —so far this suggestion
is only a speculation. For d &dh the transition is at
Tf ——0. There is a puzzling similarity between some
features of real spin glasses and mean-field theory (Sec.
IV), for which one knows there is a transition at Tf&0,
and between other features of real spin glasses and short-
range one-dimensional models (Sec. V.D), for which one
knows that Tf =0. For a more detailed understanding of
the freezing transition it is therefore necessary to establish
the value of d~. This question has been very controver-
sial. For ising spin glasses the suggestions range from
dl ——2 (Southern and Young, 1977; Anderson and Pond,
1978) to d~ ——4 (Fisch and Harris, 1977). There exist vari-
ous pieces of evidence, due to a variety of approaches; un-
fortunately none of them is completely convincing. We
shall discuss in turn the various methods by which a solu-
tion of this problem has been attempted.

where d is the dimensionality, and q (q &d) and the m's
are positive integers. The coefficients a„(or a~ ~ ~,mpm4m6&

respectively) can be precisely defined (and computed) ei-
ther by formally deriving the linked cluster expansion,
which then is directly averaged term by term (Fisch and
Harris, 1977; Ditzian and Kadanoff, 1979), or by using
the replica Hamiltonian [Eq. (3.29)], which then is ex-
panded in the standard way. Both approaches have been
shown to yield identical results (Ditzian and Kadanoff,
1979), giving another justification for the replica method,
at least for the regime of the disordered phase. Note that
one must not use [(J,J. /kgT) ],„as an expansion variable
for a Gaussian or any other unbounded distribution be-
cause the series has zero radius of convergence. To see
this, it suffices to note that the expansion of

w2 ——[Itanh(JJ/k~T) I ],„
I [(J;, /kg T)'],„]

High-temperature series expansion

For standard phase transitions (without quenched dis-
order) the high-temperature series expansion inethod has
been a very valuable tool (Domb and Green, 1974); for the
three-dimensional Ising model, for instance, the accuracy
of the resulting exponent predictions is competitive with
the best results due to other methods (Nickel, 1981). In
brief, a high-temperature expansion is based on the idea
of using 1/k~T as a small parameter. Thus in thermal
averages the Boltzmann weight can be expanded as

exp( A /kz T)= g ( —1/k~ T—)"A /k!;

what one is left with is the calculation of traces at infinite
temperature in order to obtain the coefficients in the re-
sulting series explicitly. This can be done —at least in low

has zero radius of convergence.
Of course, the method is also applicable to asymmetric

P(JJ); in fact, series for the asymmetric +J model have
been considered by Domb (1976), Rapaport (1977), and
Rajan and Riseborough (1983). Such series have been
used to estimate the region of ferromagnetic or antifer-
romagnetic order in the phase diagrams of these models,
and will not be discussed further here. Neither shall we
discuss any series for site-disorder models (Binder et al. ,
1979).

Fisch and Harris (1977) obtained the coefficients a„up
to an order n,„=10, while Ditzian and Kadanoff (1979)
extended their work to arbitrary symmetrical distribu-
tions, Eq. (5.32b), to the same order; they also obtained an
analogous series for the free energy (up to order
n,„=1 1). All these authors concluded that there was a
spin glass transition for d & 4 (note that the series are for-
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mulated for continuous dimensionality d), but could not
locate any transition for d&4. Fisch and Harris (1977),
concluded that the exponent y of Xsz was y = 1 for d )6,
while y increased monotonically with decreasing d, and

y —+Oo as d~4, which implies that 8=4 is the lower
critical dimension. This claim seemed to receive support
from certain replica symmetry-breaking schemes (Bray
and Moore, 1979c), from transfer-matrix-type calcula-
tions (Morgenstern and Binder, 1979; 8anavar and
Cieplak, 1982a; Cieplak and Banavar, 1983), and from
analysis of fluctuations around the mean-field solution
(Sotnpolinsky and Zippelius, 1983). Thus, for a while

dI ——4 was rather generally accepted; more recent work,
however, has raised serious doubts as to the validity of
this conclusion.

First of all, it was found (Fisch and Harris, 1981; Pal-
mer and Bantilan, 1985) that the original series of Fisch
and Harris (1977) contained some errors; in addition, the
series is very ill-behaved for d &4 and the analysis of it is
not at all clear-cut.

As an example, Fig. 92 presents a graph of Xq~ versus
temperature, according to various Pade approximants cal-
culated from the series by Palmer and Bantilan (1985).
One can see that there is no good consensus among the
various Padh approximants: only the [6,3], [4,5], [5,4] ap-
proximants agree fairly well with each other, with the raw
series, and with the Monte Carlo data, and hence are cred-
ible. Two of these approximants predict no transitions,
however, while the third predicts a transition at
T, /J=0. 89, which is far below all estimates resulting
from recent Monte Carlo work. Surprisingly, the work of
Palmer and Bantilan (1985) seems to imply that the lower
critical dimension depends on dilution; e.g. , for a fraction
of c = —', zero bonds, a transition for d=3 at T, /J =0.8
is found, with y=0.78. However, the contours of es-
timated critical temperatures in the (c,d) plane are so er-
ratic that serious doubts as to the usefulness of this series
analysis must be raised. Probably a much longer series
would be needed for a more definitive analysis. At least
for now, the authors of this review adhere to the prejudice
that dI should not depend on dilution in a continuous
manner, in contrast to the prediction of Palmer and Ban-
tilan (1985).

For the m-vector spin glass, the situation is even more
unsatisfactory: Reed (1978) obtained the coefficients of
XsG up to fifth order in ( J/T) for a Gaussian distribu-
tion and located a transition for 4&d &6, again with the
finding that y gets very large for d~4. However, again
we feel that these series are by far too short to warrant
any reliable conclusion. Furthermore, the expansion in
(J/T) is invalid for a Gaussian distribution, as noted
above.

Very recently, Reger and Zippelius (1985) presented

~This has recently been obtained by Singh and Chakravarty
(1986};see note added in proof.
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FIG. 92. +zan vs T {in units of J}for the three-dimensional +J
model, as predicted by the raw series and by various approxi-
mants. (T„y) is shown for each approximant with a divergence
of ps&, ( —) signifies no divergence. An asterisk signifies that
other poles are in the disk

~

z
~

&z . The crosses are Monte
Carlo data of Young (1984). From Palmer and Bantilan (1985).

aXso(~)
1 so = —LXsG(co =0)

867

XsG(~) =—g [X;,(co)X;k(co)] .1

ijk

(5.33)

So far the analysis of these times has been restricted to
the +J model for d=2, in which case it was found that as
T~O 'rso cx: exp(bE/T), with bE =20J.

2. Exact partition function calculations of small
systems

It was pointed out in Sec. V.B that Monte Carlo data,
based on short observation times of the order of 103

Monte Carlo steps per spin, did not show any qualitative
distinction even between dimensionalities as far apart as
8=2 and d=5. As a matter of fact, it was soon suspect-
ed (Bray and Moore, 1977; Bray et al. , 1978) that one
was observing freezing behavior of purely dynamic origin,
due to the fact that relaxation times start to exceed the
observation time significantly. For d=2, this idea could
be proven by a complementary method that yields direct
estimates of static quantities, unhampered by any obser-
vation time effects. In this method, introduced by Mor-
genstern and Binder (1979, 1980a, 1980b), one calculates
recursively the partition function Z[J~, I for a chosen

high-temperature series expansions for the relaxation
times

~.„=J dr[(S;(r)S,(0))T].,
and rsG defined by
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FIG. 93. Projection order parameter of the Edwards-Anderson
+J model on the square lattice (dashed curves) as compared to
the Mattis model (solid curves), for L )&L lattices. From Mor-
genstern and Binder (1979).

realization of the random bonds I JJ j on a lattice of
linear dimension LXM (d=2) or LXLXM (d=3),
respectively. Choosing free boundaries in the direction
where one has M rows (or planes, respectively), and ap-
plying periodic boundary conditions elsewhere, one has to
keep 2 states (d=2) or 2 ~ states (d=3) at each step of
the recursive calculation. This fact severely limits the lat-
tice sizes that can be treated: the largest systems to have
been studied were L = 18 ( d =2) and L =4 ( d =3), which
implies that the method is mainly useful for two dimen-
sions only. A further difficulty is that in order to approx-
imate the disorder average [ ],„with reasonable accuracy
one must repeat the calculations for at least 30—100 reali-
zations [Jz j of the random-bond configuration. But in
spite of these drawbacks, fairly definitive conclusions
about the absence of Edwards-Anderson order for d=2
did emerge from this approach, which will be discussed in
detail.

In an exact calculation of a finite system without any
external field, there is no spontaneous symmetry breaking,
of course, and thus (S; ) T

—=0. But order parameters can
be estimated nevertheless, if one uses relations such as

~
f(l)

~

=limz k&TXII/X [Eq. (3.114)], in which the
thermodynamic limit is approached in a smooth fashion.
This is shown in Fig. 93, for the Mattis spin glass
(equivalent to an Ising ferromagnet), for which the exact
answer is known: for X—+ao, the system is ordered for
T & T, /J=2. 27, and disordered for T ~ T, . The results
for small lattices converge to the limiting behavior quite
rapidly —apart from the region near T, where the correla-
tion length exceeds L. From the inflection points of these

vs T curves one can locate T, within an accuracy of a
few percent. Of course, we are not advocating this
method for a precise analysis of the critical behavior —the
method only serves to verify that the model has a transi-
tion from disorder to order and to locate roughly where
this happens.

For the Edwards-Anderson +J spin glass the results are
clearly rather different:

~ P ~

decreases with increasing
L at all temperatures, and the inflection points of the
curves shift slowly to lower temperature. These data do
not indicate convergence towards a nonzero order param-
eter, not even in the ground state. Thus Morgenstern and
Binder (1979, 1980a) suggested that a phase transition
occurs for T=O only. For the Gaussian model, on the
other hand, the ground state is perfectly ordered, but
again no order was found at nonzero temperatures.

Of course, one must make sure that this lack of order is
not an artifact of the lattices' being too small. Thus
dynamic Monte Carlo simulations were performed on pre-
cisely the same lattices (same I JJ j), Fig. 94(a). These
simulations did show nonzero q(t), with the usual slight
dependence on observation time; moreover, q(t) agreed
well with results for much larger lattices. Hence these
small lattices do exhibit spin glass ordering in dynamic
observations of finite times. For these times, f (t) is also
much larger than its thermal average. What happens is
that the system gets trapped for a long time in a "valley"
in phase space (Fig. 4). Observing the time dependence of
g (t) and X(t), one sometimes can observe a transition
from one valley to another [see Fig. 94(b)]. These transi-
tions where the system has to jump over a saddle point in
configuration space occur fairly seldom, as the associated
energy barriers are rather high. Therefore for short obser-
vation times one samples properties of a single valley —or
a few valleys only, and hence the ordering tendency of
the system is grossly overestimated.

The most convincing evidence that at d=2 there is no
order comes from an analysis of the correlation function
[(S;SJ)T],„(see Fig. 95). In the Gaussian model, the
data are consistent with an exponential decay at all tem-
peratures T&0, while at T=O one has full order. Here
kg Tf (t = 10 MCS)/5 J= 1.0, and hence even at t = ,

' Tf-
the correlation lengtli is only about 7 lattice spacings,
while at T=Tf it is only about 2—3 lattice spacings.
Due to this smallness of g' at Tf, it is understandable that
there is so little size dependence in the results of the
dynamic Monte Carlo simulations.

The data on the temperature dependence of gsG indicate
that it increases more slowly with decreasing temperature
than in the one-dimensional case, both for the +J model
and for the Gaussian model. This fact indicates that frus-
tration is very effective in reducing the correlation in
these models. The data in Fig. 95 are consistent with a
behavior gsG a: T, with v=2 (Binder and Morgenstern,
1983) as T~O. Of course, for T/bJ&&l (or T/J &&1,
respectively, for the +J model) the correlation length is
certainly comparable to L, or even larger than I., in which
case it can no longer be estimated reliably from this
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method. Therefore the above estimate for v is very uncer-
tain, and this work could not indicate whether v is the
same for the G-aussian and the +J model. Later careful
Monte Carlo work by Young (1983a, 1984) suggested
v=2.75 for the +J model, and the raw data for gsG at
T/J ( 1 are somewhat larger than those shown in Fig. 95.
McMillan (1983) found v=2. 64+0.23 by fitting Monte
Carlo data for the +J model in the temperature range
0.86& T(1.5, in reasonable agreement with his transfer

FIG. 95. (a) Averaged square correlation function of the two-
dimensional Gaussian model plotted vs distance at four tem-
peratures below the "dynamic freezing temperature"
k~Tf(t =10 MCS)/AJ =1.0. (b) Correlation length plotted vs
inverse temperature, for both the Gaussian and the +J model.
The corresponding first term of the high-temperature expansion
() and the one-dimensional Mattis spin glass (Q) are also
shown. From Morgenstern and Binder (1980a).
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matrix calculations, v=2. 59+0.13 (Cheung and McMil-
lan, 1983a, 1983b). However, using a transfer matrix
technique right at T=O, Bray and Moore (1984b) found
v=3.4+0.1 from the rescaling of the effective couplings
with size, starting from an initial Gaussian distribution,
while McMillan (1984c) found v=3.56 from a similar
method but using Monte Carlo data.

In these studies the energy of defect lines was studied
as a function of system size, and v was extracted from fit-
ting the data to Ez,f ~L ' . The discrepancy between
these two types of methods for estimating v may mean
that (i) extrapolations of /so from the range T/J = 1 yield
an effective exponent v,tt significantly smaller than the
asymptotic value reached only for T/J~O and/or (ii) the
exponent of the size dependence of the defect energy
differs from the exponent describing gsG. In fact, these
exponents can be equated by a simple scaling argument
(Bray and Moore, 1984b): suppose the initial distribution
of the exchange has width hJ and we divide the system
into blocks of linear dimension L. If the energy of the ef-
fective couplings between blocks is QJ(L), then the block
correlation length /so diverges as T—&0 according to

bJ(L), Iso 1 hJ

completely uncertain. Later McMillan (1983) extracted
g=0.28+0.04 from his data; but again there was the un-
certainty of extrapolating data from T/J =1 to zero tem-
perature. In two-dimensional periodically frustrated Ising
systems undergoing phase transitions at T=O, one always
finds rj= —, (Wolff and Zittartz, 1983b; see Sec. VI.E).
The possibility that the same value applies to the +J
model, too, has not really been ruled out.

Morgenstern and Binder (1980b) also attempted to
study the correlation function of three-dimensional spin
glasses, as they had in their work in two dimensions (Fig.
95). While they could show that the freezing transition
found in the short Monte Carlo runs [Eq. (5.25b) or
kz T/J = 1.9; see Fig. 70(a)] is a purely dynamic
phenomenon, and the system has a correlation length of
only about two lattice spacings there, this study is certain-
ly not conclusive about the behavior at low temperatures.
At k~T/J= 1.5, the correlation length of the three-
dimensional +J model is already about 4 lattice spacings
(Qgielski and Morgenstern, 1985), and hence the data ob-
tained from 4)&4&&10 lattices are no longer reliable for
kgT/J & 1.5.

3. Monte Carlo evidence

which yields b,J(L) ~b.JL '~'. Thus, if 1/v&0, one has
a transition at T=O, while for 1/v& 0 the system iterates
towards strong coupling and one expects a finite-
temperature transition. This scaling theory will be dis-
cussed further in the next section. Bray and Moore
(1984b) claim that 1/v&0 happens for d=3, but there
their transfer matrix approach is based on extremely
small linear dimensions, 2(L &4, and therefore it is
doubtful whether the data are already in the asymptotic
regime in which Eq. (5.34) applies. For d=2, linear di-
mensions 2&L &12 are used, and thus the analysis is
more credible, but still there is the question whether the
defect energy really measures b J(L): in a system with
frustration and large ground-state degeneracy the signifi-
cance of this defect energy is not completely clear.

Very recently Huse and Morgenstern (1985) have used
the transfer matrix technique to calculate the correlation
length of very long strips of up to 10 spins. This elim-
inates the effect of the free boundaries that are necessarily
present in one direction, but Huse and Morgenstern had
to use strips of width u & 8 lattice spacing in most parts
of their analysis. They concluded that v=4.2+0.5. The
lower bound of this estimate is close to the value of Bray
and Moore (1984b) and McMillan (1984c). However,
there are strong corrections to scaling, so they cannot rule
out the possibility that v is significantly larger than 4.2.

In the two-dimensional +Jmodel there is no order even
at T=O, and one expects a power-law decay of correla-
tions. Morgenstern and Binder (1980a) noted that their
data at the lowest temperature were consistent with an ex-
ponent g =0.4+0.1; but since the lattice sizes were rather
small, and a systematic distortion of the data —due to this
finite size—was expected, the accuracy of this estimate is

Stauffer and Binder (1979) attempted to clarify the
question of the lower critical dimensionality by a com-
parative Monte Carlo study of Gaussian Ising spin glasses
with lattice dimensionalities d=2, d=3, and d=5. In
fact, there is little doubt that a transition occurs for d=5,
and Tf has been located with series methods for the +J
model by Fisch and Harris (1977) and for the Gaussian
model by Ditzian and Kadanoff (1979). The short-
observation-time Monte Carlo data yielded
ksTf(t =2000)/AJ=2 4, in r. easonable agreement with
the series expansion. The specific-heat peak (Fig. 96) was
seen to become somewhat sharper with increasing dimen-
sion (and for d=5 its location could no longer be dis-
tinguished from Tf). However, studies of q(t) for large
observation time t at temperatures T=0.6Tf(t=2000)
failed to give a clear-cut answer as to whether there exists
a stable nonzero Edwards-Anderson order parameter (Fig.
97). For both 0=3 and 8=5 a behavior dq(t)/
d lnt = kz TI' (0,0) [Eq. (3—.142)] was observed for times
up to about 10 MCS/spin. Since this behavior is basical-
ly accounted for by single spin flips in the effective field
due to a "frozen-in" environment, it is clear that one must
go to substantially longer times to make sure that the sys-
tem reaches equilibrium and that one observes the asymp-
totic behavior of q(t) as taboo. For t &10 MCS, data
such as Fig. 97 indicate that the relaxation is even slower
than the initial logarithmic law for all values of d studied;
but due to strong fluctuations in this late time regime one
cannot judge from this work whether q (t~ oo ) is
nonzero. It is clear that a substantially larger statistical
effort is required to obtain meaningful Monte Carlo data
on equilibrium properties of spin glasses. This conclusion
is also supported by work of Medina et al. (1980), who
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demonstrated that an initial slow logarithmic relaxation
of q(t) occurs even in an unfrustrated Mattis-type spin
glass with Gaussian bonds.

We have already mentioned in the previous section that
dI has been estimated from the variation of defect ener-
gies with system size at T=O using transfer matrix calcu-
lations (Bray and Moore, 1984b) and Monte Carlo tech-
niques (McMillan, 1984b, 1984c). The defect energy is
the difference in energies (free energies if one allows for
nonzero temperatures) of the system with periodic and an-
tiperiodic boundary conditions. %'e now discuss the scal-
ing theory of this quantity in more detail. One may de-
fine (see, for example, Banavar and Cieplak, 1982a;
Cieplak and Banavar, 1983; Caflisch et al. , 1985)

0.6
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FIG. 97. Edwards-Anderson order parameter q(t) plotted vs
observation time t for d =3 (a) and d =5 (b). Straight lines
represent Eq. (3.142); solid curves represent the average of 6
runs for a 20 system and 6 runs for a 6 system; dashed curves
represent the average of 13 runs for a 10 system (a) and a 4
system (b); while dash-dotted curves are the output of single
runs. Temperature is quoted in units of hJ/gz. From Stauffer
and Binder (1979}.

(5.35)

y =52' 'I. ' ~, A~op, I.—+(x), (5.36)

where the exponents r and p depend on the dimensionali-

In ferro- or antiferromagnets, the characteristic free-
energy scale of the sensitivity of the system to changes in
boundary conditions is measured by the quantity y . In
"symmetric" spin glasses, the periodic boundary condi-
tions do not yield a lower (or higher) free energy on aver-
age than the antiperiodic ones, so y~ =O. This leaves y~
as the fundamental free-energy scale in the problem; it is
often called an effective coupling J,rf. One expects that
in the equilibrium spin glass phase, if such a phase indeed
exists, y~ varies as an algebraic function of the length L,
and area A, where the boundary conditions are changed
for the spins on the surface with area A, i.e.,

ty only, while the coefficient 5 depends on temperature
and vanishes at Tf (for T & Tf, y should decay ex-
ponentially with L). For a cubic lattice, A =L" ', so

y~ o:L ' where A, ~ d(r —1)+p——r. Following Ander-—
son and Pond (1978), Banavar and Cieplak (1982a), Bray
and Moore (1984b), and McMillan (1984b, 1984c) identi-
fied the lower critical dimensionality by the condition
that the exponent A, ~ vanish, i.e., d~=(p r) Furthe—r-.
more they assumed that for d &dI the correlation length
fsG diverges as T~O like T ', with v=A,

& (Bray and
Moore, 1984b), as discussed in the last section. Banavar
and Cieplak (1982a, 1982b) studied classical Heisenberg
spins with nearest-neighbor exchange on a simple cubic
lattice, varying A from 4&(4 to 12&12, and I. from 4 to
8. Typically the configurational average [ ]„ in Eq.
(5.35) was approximated by an average over 30 samples,
and T=O was chosen such that one had simply to study
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—=A, i
——ln[y~(L, K*)/y~(L', K*)]/ln(L'/L), (5.37b)

where the prime on y~ denotes a derivative with respect
to L. If the transition is at T=O, then the linearized
transformation is K'=b 'K. For T~O, y~ =KTu (L),
on dimensional grounds, where T is a constant (not re-
scaled) and u(L) is some function of L. From Eq.
(5.37b) one immediately sees that u(L) cxL ' in agree-
ment with the discussion following Eq. (5.36). McMillan
used very small L (L,L' & 6) but statistical samples many
orders of magnitude larger than those of Banavar and
Cieplak (1982a). For the two-dimensional Gaussian Ising
spin glass, McMillan (1984c) studied y~(L,K)in the'
range from 0.2 (k&T/hJ (0.7 and extrapolated the data
to zero temperature (K~ oo ). The results imply
y~(L, oo) o:L ', with A. i

——0.281+0.005. This finding
can be interpreted as implying a phase transition at zero

energy rather than free-energy differences. It was found
that the data were consistent with p=3 and r = —,', imply-
ing that y oc A'~ L ~L '. This finding implies that
d =3(dI, in contrast to the results of Anderson and
Pond (1978), who found from Migdal approximations and
additional assumptions that the "effective coupling"
y~ ~ A' L ' ~L for the three-dimensional vector spin
glasses, implying dt ——3. Morris et al. (1986), however,
were able to obtain dI ——4 using Migdal-Kadanoff approx-
imations with no extra assumptions.

While this work is rather suggestive, one might object
that it could contain systematic errors due to the failure
of reaching true ground states in such simulations —it
may be that the exponents r and p are higher for metasta-
ble states than for the true ground states (remember that a
metastable state could be a mixture of two or more
ground states with "walls" in between them). In addition,
the linear dimensions quoted above may be too small for
the asymptotic regime considered in Eq. (5.36). Cieplak
and Banavar (1983) applied this method as well to a two-
dimensional Ising spin glass and found r = —,,p = —,',
which implies y ~L ' again, i.e., no order. Assuming
that p is independent of dimensionality, they concluded
that y ~L'" ', i.e., d~ ——4. Of course, this conclusion
is rather speculative, as p might well be dimensionality
dependent (although this does not seem to happen in the
Heisenberg case).

McMillan (1984b, 1984c, 1985a, 1985b) generalized this
idea by setting up a phenomenological renormalization
method ("domain-wall renormalization group") by the
equation

y„(L,K) =y~(L', K'), K =b J/k~T, L,L'~ oo .

(5.37a)

This is an implicit relation from which K may be calcu-
lated given E. Critical points correspond to fixed points
of this transformation, i.e., E =X'=K*, say. Linearizing
about K* one writes oK'=b '5K, where b =L'/L and
A, , = 1/v, so A, , is given by

temperature, consistent with all other investigations; the
resulting exponent v .(spin glass correlation length

/so ~ T as T~O) would be v= 1/A, i
——3.56+0.06.

In three-dimensional Ising spin glasses, however,
McMillan (1984b) found A. i

———0.306+0.015, and hence
concluded that the system iterates towards strong cou-
pling, i.e., the system should order at low temperatures.
Assuming that the eigenvalue X~ depends linearly on
dimensionality, the lower critical dimensionality is identi-
fied from the condition ki ——0, which yields
d =2.64+0.10. McMillan (1985a) applied this method
for d =3 to finite temperature and concluded that a static
phase transition occurs at ktiTf/EJ =1.0+0.2, with an
exponent v=1.8+0.5. Of course, all these conclusions
rely on the hope that Eq. (5.37), yields essentially correct
results for L as small as L =3—6.

Bray and Moore (1984b, 1985a) carried out an analysis
in essentially the same spirit, but used transfer matrix
methods instead of Monte Carlo methods: this ensured
that true ground-state properties were obtained. For
d=2, they used 2(L (12 and found k&-0.296; they
concluded that v= 1/A, i

——3.4+0.1. Unfortunately for
d =3 only L=2,3,4 was available, which yielded

—0.2, suggesting again a phase transition at finite
temperature. Applying the finite-temperature
phenomenological renormalization, Bray and Moore
(1985a) located this (inverse) transition temperature K
from the point where the effective couplings
KI.(K),Kt. (K) intersect (Fig. 98). KL, (K) is just
(hJ) Ky~(L, K) in our notation, with b J fixed. This
yields K, =AJ/ksT, =1.2+0.1, v=3.3+0 6. However,
even for KL, & K the data for L=3,4 stay so close together
that the sceptical observer may doubt whether for larger
L there remains a true intersection at all. (Related finite-
size scaling analyses have frequently yielded spurious in-
tersections for Kosterlitz-Thouless transitions, for in-
stance. )

McMillan (1985b) also studied Heisenberg spin glasses
with his domain-wall renormalization-group method, for
d =2, 3, and 4, and concluded that A, i

——1.40+0.03 ( d =2),
A& ——0.65+0.08 (d=3), and Ai ——0.16+0.07 (d=4). Thus
he concluded, in agreement with Banavar and Cieplak
(1982a), that there is no transition in the three-
dimensional Heisenberg spin glass; he also suggested that
for d=4 the correct value is probably A,

&
——0; i.e., dt =4.

Morris et al. (1986) have also studied vector spin
glasses using domain-wall renormalization-group and oth-
er approaches. They too found Tf =0 in d=2, 3 and pos-
sibly dt=4. Morris et al. (1986) also estimated how Tf
increases from zero in the presence of anisot'ropy. Even if
the anisotropy comes from Dzyaloshinskii-Moriya or di-
polar interactions, which couple different spin directions,
the transition will still be Ising-type (Bray and Moore,
1982b). Evidence that three is below the lower critical di-
mension of isotropic Heisenberg spin glasses has also been
obtained by finite-temperature Monte Carlo simulations
(Olive et al. , 1986). Thus there is evidence for a large
distinction between the values of di for Ising spin glasses
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FIG. 99. Inverse spin glass susceptibility PsG plotted against
temperature T (in units of J) for the two-dimensional +J model
and several values of h =H/J. Inset shows +so and /so, for
h =0. (0, data from Morgenstern and Binder, 1980a.) Lattice
sizes used are 64 (O) and 128 ()&). From Young (1983a).

FIG. 98. Effective coupling KL, (E) between cells of size L' for
the simple cubic nearest-neighbor Gaussian Ising spin glass, for
1&L &4. 600000 samples for L =2, 30000 for L =3, and
1,600 santpies for L =4 were used, ICI. ——(I ' )I, where
E'= 21n(Z»/Z»), and arrows indicate fixed-spin boundary

conditions on the two free boundaries of the sample, for which
the partition functions Z», Z» are computed exactly. From
Bray and Moore (1984a).

and for Heisenberg spin glasses, in contrast to some
speculative arguments (Villain, 1979b).

A serious drawback of all these studies discussed so far
is the smallness of the lattices studied; in addition, one
may have doubts as to the applicability of the renormali-
zation concepts used. An alternative approach not subject
to this criticism is the direct Monte Carlo simulation of
very large lattices over very large observation times; this
is possible nowadays with the help of powerful vector
processors, as used by Young (1983a, 1983c, 1984; Bhatt
and Young, 1985), or special-purpose computers, as used
by McMillan (1983) and Ogielski and Morgenstern (1985).
Figure 99 shows data for the spin glass susceptibility and
correlation length of the two-dimensional +J model
(Young, 1983a). One can see that Xso (for H=0) clearly
is finite at the apparent freezing temperature of the
Monte Carlo work using small observation times [Eq.
(5.25a)] and the data are consistent with a power-law
divergence at T=O, /so cc: T

The correlation length is consistent with a behavior
gsoccXso. For H&0 one finds that Xso tends to finite
asymptotes for T~0. While Young (1983) originally

suggested that the data were consistent with rough esti-
mates quoted by Binder (1982b), @=4, v=2, a later fit
(Young, 1984) in the temperature regime 1& T/J&2
yielded y=4. 1, v=2.75. From similar data McMillan
(1983) estimated v=2. 64+0.23, and the .exponent
describing the decay of the correlation function at T=O,
g =0.28+0.04; hence y =(2—g), v=4.54. The tempera-
ture regime in this last fit was 0.86& T/J&1. 5. Note
that the exponents estimated from these fits are reason-
ably consistent with each other but significantly smaller
than the estimates due to the domain-wall renormaliza-
tion group quoted above. The reason for this discrepancy
is not yet clear; of course, one may argue that the Monte
Carlo data are not yet in the asymptotic regime of the
zero-temperature transition: in order to have a simple
power-law description, gsoa: T ", XsGec T r, where any
correction terms are neglected, one must have T/J «1.
This regime cannot be reached by the Monte Carlo simu-
lations, since there the relaxation times are by far too
long.

Both Young (1983a) and McMillan (1983) have made
careful studies of the relaxation times of the two-
dimensional +J model. As an example, Fig. 100
shows contours of constant relaxation time
(= f dr[(S;(t)S;(0))],„) in the H-T plane. These
curves have a striking similarity to experimental data on
critical magnetic fields H, (co) (see Fig. 25). We shall turn
to a more detailed analysis of these data in the next sec-
tion. At this point, we note that there is still disagree-
ment concerning the behavior at T=O: while Young
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(1983a, 1984) found that his data could be fit better to a
law involving a divergent free-energy barrier,
in', „ccT '" with z,„v=2, McMillan (1983) found in-
stead in~,„~1/T, i.e., at low enough T one has a simple
Arrhenius-type form with a finite free-energy barrier
bI'" =b E —TbS ( T), r,„ccexp(bF/T). This latter
behavior, originally suggested by Morgenstern (1983a,
1983b), seems to find support in recent high-temperature
series results (Reger and Zippelius, 1985). Another very
interesting finding is the suggestion of McMillan (1983)
that the", noise power spectrum" contributing in the relax-
ation functions decays with frequency f similar to "1/f-
noise, " that is, as 1/f '

Young (1983c, 1984) was the first to present a large-
scale simulation of the three-dimensional +J spin glass.
His data, taken on 64 lattices using observation times of
up to 400000 MCS/spin (10 MCS/spin were dropped
off for equilibrating the system) are restricted to tempera-
tures T/J & 1.55, due to the rapid increase of relaxation
time with decreasing temperature. Unfortunately, the
data cannot distinguish between a transition at zero tem-
perature and a transition with finite T, . This fact is al-
ready obvious from a comparison of his results for +so
with the Fade approximates of Palmer and Bantilan
(1985; Fig. 92). Binder and Young (1984) assumed as a
working hypothesis a zero-temperature transition and
tried to extract estimates of the corresponding exponents
from the Monte Carlo data. As an example, Fig. 101
shows log-log plots of spin glass susceptibility Ps& and
correlation length gsG versus temperature. If T, =O the
data should fall on straight lines, in the asymptotic critical
region of this transition, T/J « 1, if the exponents
y, v& oo. Since the auailable data are not from this re-
gion, but rather satisfy T/J) 1.55, there really is no

FIG. 101. Log-log plot of gsG vs T/J for the d =3 +J Ising
spin glass: &(, the Monte Carlo results of Young (1984); solid
curve, a Pade analysis of the high-temperature series of Palmer
and Bantilan (1985);0, a transfer matrix (TM) calculation (Mor-
genstern and Binder, 1980b), obtained from gE&-811@~ with

gE~ ——6%2. Due to the smallness of the lattice (4X4X10) this
estimate is only considered as a lower bound. An arrow marks
the dynamic freezing temperature Tf(t,b, ) observed by Bray
et a1. (1978) for t,b, ——10 MCS/spin=10 ~p. 0, data from
Omari et al. (1983) for CuMn with 1 at%%uo Mn with the tem-
perature axes scaled by taking J =8.39 K [Our PsG is
(a3+2)/3 in the notation of Omari et al. (1983)]. The "static"
transition temperature of 10.03 K, quoted by these authors, is
also shown. Taking "static" to mean &@=10 Hz and assum-
ing vp 10 ' sec, one could identify this with Tf(tpbg 10 1p)
at this temperature. The inset shows (so against T/J on a log-
log plot for the d =3 Ising model. From Binder and Young
(1984).

reason to expect straight lines. If one assumes that the
corrections to the critical behavior are not very large,
however, one may hope that the critical behavior could be
seen at least roughly for T/J= l. In this spirit, in Fig.
101 a linear extrapolation of the available data to lower
temperatures is attempted, with v=4, y=12. Of course,
it was already noted by Binder and Young (1984) that
"the asymptotic critical region may not yet have been
reached. In this case the effective exponents would in-
crease further as the temperature decreases. "

Ogielski and Morgenstern (1985) studied this problem
further by use of a fast special-purpose computer (Figs.
70 and 102), simulating a lattice of size 32 (and some-
times 64 ) with Monte Carlo runs of up to 8 X 10
MCS/spin. Both the data on the relaxation time (Fig. 70)
and those on the correlation length' (Fig. 102) are con-
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Fig. 80, even some of the two-dimensional Monte Carlo
data exhibit curvature on log-log plots where Tf ——0 is as-
sumed, and can be better fitted using a nonzero Tf as an
additional adjustable parameter, but in this case this is
clearly an artifact of the fit. In fact, Ogielski and Mor-
genstern (1985) support their claims by results for
[(5;S~ )T],„, which tend rapidly to a finite value with in-
creasing

~
R; —R~ ~

at T/J= 1.1. They interpret this as
evidence for a nonzero spin glass order parameter. Relat-
ed to this observation they find a rather distinct change of
behavior between the high-temperature region ( T/J = 1.3)
and "low" temperatures such as T/J=1. 1, where they
find that the lattice flips over coherently and thus behaves
like a well-ordered phase. This observation, in the Tf ——0
hypothesis, could be interpreted by the fact that the corre-
lation length g has grown to a size distinctly larger than
the lattice size L=32 at that temperature. Obviously,
with Monte Carlo methods there is always a difficulty in
principle of distinguishing between such possibilities; one
can expect only a hint of what happens, and not a final
proof.

Further evidence that suggests there may be a phase
transition in the +J model near Tf /J=1.2 comes from
the finite-size scaling study of Bhatt and Young (1985).
They study the probability distribution function PL(q) of
the spin glass order parameter q defined by Eq. (3.84c)
and its moments XsG ——L"(q ) and the ratio
gl ——(3—(q )/(q ) )/2, for sizes L ranging from L=3
to L =20. Now finite-size scaling implies (Binder, 1981)

gL ——g fL ' '( T —Tf )], L~ co, T~T, . (5.38)

1.5

FIG. 102. Temperature dependence of the spin glass correlation
length g'so of the three-dimensional +J model. Top shows a
log-log plot vs T —T„assuming T, = 1.22 (temperature in units
of J); bottom assumes T =0. From Ogielski and Morgenstern
(1985).

sistent with a phase transition at Tf/J = 1.22+0.04, with
exponents v=1.12+0.12, zv=6+1. If one instead as-
sumes Tf ——0, the log-log plot shows pronounced curva-
ture in the analyzed temperature region, 1.3 (k~T/J & 2.
These data thus clearly show that if Tf ——0 then the above
estimates v=4, y=12 underestimate the true exponents
significantly. Ogielski and Morgenstern (1985) conclude
that their evidence clearly favors a transition at the
nonzero Tf quoted above. However, since all the data fit-
ted to simple power laws are rather far off from the tran-
sition (0.1(

~
T/Tf 1~ &0.7), it is not so c—lear whether

the evidence really is conclusive. As has been shown in

Thus plotting gI vs T for various L should yield a
family of curves intersecting in a common point at Tf.
Locating such a point of common intersection enables one
to find Tf without the need of fitting various parameters
simultaneously. This approach works nicely for Ising fer-
romagnets (Binder, 1981) and for the Sherrington-
Kirkpatrick model [Fig. 103(a)]. Of course, due to
corrections to finite-size scaling the various intersection
temperatures do not coincide precisely, but converge
quickly to the exact Tf as the sizes of the systems used
are increased. For T ~ Tf we have gL ~gL ~ for L ~L',
which is an indication of a nonzero order parameter. For
the +J model in d =3, on the other hand, the curves gL
for various L seem to merge at Tf -1.2 and stay together
at lower temperatures rather than truly intersect, at least
within statistical error. In this spirit of Eq. (5.38), all
temp|:ratures T& 1.2 behave as critical points, just as in
the case of Kosterlitz-Thouless (1973) transitions in the
two-dimensional ferromagnetic XF model. In this latter
model, however, v= ao, while in the present case the data
seem to scale with v=1.4 [Fig. 103(c)]. The distribution
PL (q) itself scales at Tf = 1.2 with an exponent
P/v=0. 36. The behavior of Fig. 103(b) could be taken as
evidence that d=3 is the lower critical dimension. Of
course, one may again argue that the sizes L may be too
small to show asymptotic behavior, or that with the
present accuracy it is not yet resolved whether the gL
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FIG. 103. (a) g =(3—(q )/(q ) )/2 vs temperature for the
Sherrington-Kirkpatrick infinite-range model for % =32, 128,
and 512 spins. 0&g &1 and g~O for T & T, =1 as N~oo.
Estimating T, by intersection of pairs of curves gives results
shown. (b) g for the short-range spin glass (d =3). At T =1.2,
g is practically independent of size L (for I =4,6,8,12) and
remains independent of L (L=4,6,8) at T=1.1 and 1.0. (c)
scaling plot for g testing Eq. (5.38) with v=1.4. From Bhatt
and Young (1985a).

curves slightly intersect (implying dt &3) or slightly fail
to merge at T=1.2 and merge only at T~ 0(implyin——g
dt &3). But in any case a safe conclusion is that for
T & 1.2 the correlation length gsG is at least very large, if
not infinite, and so for practical purposes the system
behaves in an ordered fashion for T & 1.2. An interesting
suggestion also is that "the lower critical dimension is
close to three" (Bhatt and Young, 1985). In this context,
it also is amusing to note that a Ty ——1.2 in Fig. 101 prac-
tically coincides with the experimental freezing tempera-
ture shown there.

4. Scaling theory for spin glass
transitions at zero temperature;
and experiments revisited

In this section we briefly discuss the critical behavior
that one expects to observe when one approaches a spin
glass transition with T/=0 (Binder, 1982b; Kinzel and
Binder, 1983, 1984). This approach is appropriate for Is-
ing spin glasses for d =2, and probably in d =3 for isotro-
pic Heisenberg spin glasses. Even for d=3 Ising spin
glasses it has been used as a working hypothesis (Binder
and Young, 1984), and even though in the light of present
evidence it may seem a less likely scenario, this possibility
is not yet rigorously ruled out.

Now static scaling implies for the critical part of the
magnetization of a spin glass in a magnetic field near its
zero-temperature transition

M

HIPPY

2— H-0.03—0 g

05—
~y

~~ ~o

0.05— H0. 3~
V

I I I t i l I

0.05 0.1 0.2 0.5 1,0 2.0 3.0

FIG. 104. Log-log plot of "susceptibility" M(T~O)/{H/hJ)
plotted vs field, for the two-dimensional nearest-neighbor
gaussian spin glass: 0, field-cooled magnetization for

~

dT/dt
~

=2.5X10 hJ/k~ MCS; X, magnetization for
~

dT/dt
~

=6.25 and 1.5X10 'hJ/kz MCS;, experimental
data of Monod and Bouchiat (1982) for AgMn with 10.6 at. %
Mn (see Fig. 21), on arbitrary scales; 4, the magnetization ob-
tained from systems cooled to t =0 without a field. From
Kinzel and Binder (1983).

where P, b, are two exponents. In order to observe
temperature-independent plateaus of M/H as T~O (Fig.
79), one must require that the order parameter exponent
133=0. This result is not unexpected for the Gaussian
model, of course, where the order parameter jumps from
zero to unity as T—+0; for the +J model in two dimen-
sions, however, there is no order even at T=O, and hence
formally P&0 must be kept.

A direct consequence of Eq. (5.39) is that
M ( T~0)/H ~ H ' . The Monte Carlo data are con-
sistent with this behavior (Fig. 104), implying 1/b, =0.28.
If one tries to interpret the experimentally observed pla-
teaus (Fig. 21) in a way similar to that used in Fig. 104,
one finds a rather different result, 1/b, =0.03. This may
well be taken as evidence that dI & 3, in which case the
plateaus should settle at a finite susceptibility
X(T~O)=const as H~O, or that dt ——3 (in which case
one expects 1/b. =O). Another consequence for d=2 is
that the "critical field" curve H,q( T), which separates the
region of plateaus from the region of nonconstant mag-
netization, must behave as H,q(T) ~T, with b, =3.5.
This behavior is also consistent with the data (Fig. 79).
Binder and Kinzel (1983b) suggested that experimental
data such as Fig. 23 could possibly be interpreted
similarly —but a fit then implies a value b.=10 [see Bar-
bara and Malozemoff (1983)],which means either T/ & 0,
or dt =3, as noted already by Binder and Kinzel (1983b).

Next we turn to the direct test of the scaling behavior
implied by Eq. (5.39) (see Fig. 105), which indeed seems
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assumed. For any T~ in the range 0(k~T~/b J(1 a
reasonable scaling fit is obtained, similar to experimental
findings (Fig. 28). This has raised the suspicion (Binder
and Kinzel, 1983b) that the experimental success of scal-
ing (Fig. 28) might also be an artifact of fitting. On the
other hand, there are no experimental data for which a fit
to a zero-temperature scaling theory works as convincing-
ly as in Fig. 105.

Finally, we discuss the nonlinear susceptibility Ps& that
follows from the relations

10 10 1 10 10 10 10

H/h, J

(T/h, J)

to be reasonably fulfilled. It turns out, however, that
these Monte Carlo data of the two-dimensional Ising spin
glass are not really very distinctive between a T=O transi-
tion and a finite-temperature transition: Fig. 106 shows
that nice scaling plots are also obtained (with different
choices of the exponents P, y, of course) if a nonzero T~ is
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FIG. 106. Magnetization data of the two-dimensional Gaussian
Ising spin glass (cf. Fig. 80) in a scaling representation appropri-
ate for finite-temperature transitions, choosing arbitrarily (a)
Tf ——0.44kJ and (b) T~ =6J The respective exponents y, p re-
sulted from least-squares fits. From Kinzel and Binder (1984).

FIG. 105. Nonlinear part of the magnetization, 1 —TM/H, of
the two-dimensional Gaussian Ising spin glass plotted as a func-
tion of field H, scaled by temperature T with 6=3.5. The
data are from the range 0. 1&H/AJ (0.5 and 0.1(T/AJ (1.

b, (H, T) = (H/T)2+0(H/T)4,

03 —3+s+( T,H =0)—2

1n(r/~o) BF(/so)/T go ' /T T (5.40)

The extension of this idea to include a magnetic field is
straightforward, since (so scales as the nonlinear magnet-

and Eq. (5.39). This is +so cc T = T . Using
gsGccgo" cc T ' "'=T r we have the usual scaling
relation between the susceptibility and correlation length
exponents, y=v(2 —g). Note that with the further scal-
ing relation p=(v/2)(d —2+g) the condition that p=0
for the two-dimensional Gaussian model also implies
g =0, i.e., then we simply have 2(b, —1)=y =2v,
v=6 —l =2.5. This value is in reasonable agreement
with the estimates from Monte Carlo and transfer matrix
calculations, but distinctly smaller than the estimate from
the domain-wall renormalization group, v=3.5, discussed
in the previous section. If this last estimate is correct, it
would also imply 6=4.5, and then the exponents used in
Figs. 104 and 105 would have the character of "effective
exponents" only, which would change when one considers
smaller fields and temperatures than those so far avail-
able. In spite of this uncertainty about the values of the
exponents, this static scaling phenomenology of T=O
phase transitions, which also can be derived from real-
space renormalization-group arguments (McMillan,
1984d), seems generally accepted.

More controversial, however, is the extension of this
description to dynamics. Binder and Kinzel (1983b) and
Kinzel and Binder (1984) have suggested that a typical re-
laxation time in the system is controlled by the collective
reorientation of spins in a region the size of which is
given by the correlation length gsG. Near a finite-
temperature transition the various ordered states in which
a correlated region of size /so can exist are mutually ac-
cessible by small-amplitude fluctuations of a coarse-
grained local order parameter, and hence the relaxation
time exhibits "ordinary" critical slowing down,
r (x: go ~ ( T —T/) ", z being a dynamic exponent
(Hohenberg and Halperin, 1977). Near a transition at
T=O, on the other hand, the local spin alignment is
strong, and fluctuations relating the various locally or-
dered states in anisotropic systems are "walls"; nucleating
these walls requires thermal activation, and hence it is
natural to expect that the free-energy barrier hE is also
controlled by /so,
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ization, Eq. (5.39), namely gsG(T, H)=T g(HT ), and
hence 2.0

1n[r(T, H)/ro]=T '"f(HT ~), (5.41) ln (I &)

1.6—
where f is some scaling function. Kinzel and Binder
(1984) have made phenomenological attempts to relate z
again to static exponents and to estimate f, but the validi-

ty of this attempt is rather uncertain. Equation (5.40) is
not generally accepted for T=O transitions: from a real-
space renormalization-group procedure McMillan (1984d)
found that for T~O and d &di the relaxation time fol-
lows simple Arrhenius behavior. Only for d =d~ did he
find 1ngsG ~ T (i.e., v= oo ) and then also
1n(r/ro) 0.-1 ng sG/ T~ T . In Eqs. (5.40) and (5.41)
(which describe the situation d & di ), this Arrhenius
behavior means zv=1. Equation (5.40) has important
consequences for the frequency dependence of the dynam-
ic freezing temperature Tf(co), which from the condition
c01 [Tf(co),H =0]= 1 is predicted to be

'l.2—

0.8-

0.4 I

0.4. 0.5 0.6 0.7
(~)

0.2-
Ti(K )

O.'I5-

O. 'l

08 . 0.9 g~T/J

Tf(~) ~
~

in(~ra)
~

—'~' (5.42)

While the Arrhenius law (zv= 1) would predict a linear
variation in a plot of Tf vs ln(coro), Eq. (5.42) predicts a
nonlinear variation of such a plot, as experimentally ob-
served (Fig. 9). Of course, alternative interpretations of
the observed curvature (Fig. 9) would be the familiar
Vogel-Fulcher law [Eqs. (2.14) and (2.15a)] or a crossover
from Arrhenius behavior to standard critical slowing
down [T~(T—Tf) ] associated with an equilibrium
phase transition. Figure 107 shows that Eq. (5.42) is
compatible with the data of Fig. 9 if one chooses zv=4, a
value consistent with the Monte Carlo simulations
presented by Binder and Young (1984). [The more precise
recent results of Ogielski and Morgenstern (1985), Fig. 70,
are more compatible with Eq. (5.40) with zv=3.2, howev-
er, or with an ordinary critical slowing down with

Tf /J = 1.2, as discussed above. ]
Very recently Feigelman and Ioffe (1985) suggested an

exponential divergence of the maximum relaxation time
of an Ising spin glass at a finite transition temperature,

yacc (T —Tf ) e p[xC(T —Tf )
' ], applying concepts

from localization theory.
A serious difficulty with the interpretation of the fre-

quency dependence of Tf(co) via Eq. (5.42) arises, howev-
er, when one considers the logarithmic derivative defined
in Eq. (2.9), or, equivalently,

1 ~Tf 1

Tf hlogioro zv logip(1/ct)ro)
(5.43)

For RKKY spin glasses this quantity seems to be
nonuniversal, varying from about —,', in NiMn to around

in CuMn, AgMn, and AuMn, as discussed im Sec. II.
With reasonable values of co~0, e.g., co~a-10 ', one
would need zv=20 for CuMn, in serious disagreement
with the above estimates for zv.

The scaling behavior of the relaxation time as .a func-
tion of the magnetic field [Eq. (5.41)] has also been
checked, using the two-dimensional Ising data of Young

«„S~ S
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I
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'to
(b)

I I

10 'IO~(H~)

FIG. 107. (a) Log-log plot of ln~(T, H =0) vs T/J for the
three-dimensional +J Ising spin glass, using Monte Carlo data
of Young (1984). (b) Experimental data on Eu04Sr06S due to
Ferre et al. (1981;see Fig. 9), replotted as [ Tf(co)] vs 1nco.

(1983a) displayed in Fig. 100 and b, =y /2+ 1 = 1

+v(1 —r1/2) with v=2—2.5, g=0.4, i.e., b =2.8 (Fig.
108). The data indeed scale reasonably well. Since Fig.
100 looks qualitatively similar to experimental data (Fig.
25), it is tempting to try a similar scaling with the experi-
rnental data, and this is also tried in Fig. 108, using v=4,
i1 = —1 (this means for the correlation function
[(S;SJ)T],„~exp( —r//so), i.e., a simple exponential de-
cay and no power-law prefactor near T~O) and hence
5=7. There is considerable scatter of the data points
left, however, and thus it is not clear that Eq. (5.41) works
for three-dimensional real systems. This problem was
carefully studied further by Bontemps et al. (1984). They
also studied Tf(H, co) lines for Euo4Sr06S for a larger
range of frequencies, from co=10 Hz to co=10 2 Hz,
and interpreted the data both with Eqs. (5.40) and (5.41)
and with a corresponding dynamic scaling hypothesis ap-
propriate for finite-temperature transitions,

—ZVT Tf ~ ~ T Tf
(5.44)

f Tf

where f is another scaling function. Obviously, if an
equilibrium transition exists, it is Eq. (5.44) by which data
for Tf(H, co) should be analyzed, rather than the tradi-
tional approach to scaling the data as Tf(H co)/Tf(O, cg)
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FIG. 108. Scaling plot of the curves in the H-T plane where
freezing occurs at a fixed frequency co for Euo 4S10 6S [data due
to Paulsen et al. (1984), as presented in Fig. 25]. The inset
shows a similar scaling plot of lines of constant relaxation time-
for the d =2, +J model due to Young (1983a; see Fig. 100).
T(~,H) is the temperature at which the relaxation time reaches
a given value ~ for the chosen field H. From Binder and Young
(1984).
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and taking the resulting curve as an estimate of the
Almeida-Thouless (1978) line (Salamon and Tholence,
1982; Bontemps et al. , 1983). This work, in our opinion,
is a very valuable effort to distinguish experimentally be-
tween the two conflicting views of a zero-temperature
transition and a finite-temperature transition. Unfor-
tunately, the data are consistent with both views: if
Tf =0 then (Bontemps et al. , 1984)

7 p 10 sec& z~= 8.0+0.S, 6= 10.5+2.5

while otherwise

(5.45a)

Tf ——1.5 K, 7.p-2. 10 sec

zv=7. 2+0.S, 6=2.0+0.2 .

The fits are of comparable quality (Fig. 109), but the
value of ~p in the case of Tf ——1,5 K is physically more
reasonable. Bontemps et al. (1984) take this fact as the
main indication that Eq. (5.44) rather than Eq. (5.41) is
valid. If Tf ——0, then y (and hence 6) as well as zv must
be significantly larger than ihe values tentatively suggest-
ed by Binder and Young (1984). While the Monte Carlo
data of Ogielski and Morgenstern (1985) also would imply
a value of (at least) v= 7 if Tf =0, their value of zv would
strongly disagree with Eq. (5.45a). On the other hand, if

aC3N Hz
OO&0'
VVCO
EH~0

FIG. 109. (a) Scaling of field-temperature Tf(H, co) lines for
the case T, =O. The inset shows the low-field points with an
extended scale. A typical experimental error bar is indicated on
a few points. (b) Scaling of the field-temperature lines for the
case T, =1.5 K, with 6=2. From Bontemps et aI. (1984).

Tf&0, their result for zv (zv=6+1) is consistent with
Eq. (5.45b). Furthermore, the data of Bhatt and Young
(1985) w»c»mpiy 1 =3.2, p=0.5, are consistent with
the value of A=(y+/3)/2 in Eq. (5.45b). Ogielski and
Morgenstern (1985) give exponent values from which one
finds 6=1.4; given the uncertainties, this is not incom-
patible with Eq. (5.45b).

It is also interesting to note that several careful studies
of the nonlinear susceptibility on different systems
(Malozemoff et al. , 1982; Omari et al. , 1983; Beauvil-
lain, Chappert, and Renard, 1984; see also the summary
of results in Tholence, 1984) find y fairly close to three.
Therefore critical exponents obtained from Monte Carlo
simulations for both static and dynamic quantities agree
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reasonably well with experiment, if one assumes a finite
Tf. It is rather surprising that highly simplified Ising
models give such a good account of real systems which
are essentially Heisenberg but with some anisotropy,
Dzyaloshinskii-Moriya, dipole-dipole, etc. Isotropic
Heisenberg models probably have Tf =0 in d=3 (Bana-
var and Cieplak, 1982a; McMillan, 1985b; Morris et aI. ,
1986) so (generally weak) anisotropy is probably necessary
to get the apparent finite Tf. We must emphasize, how-
ever, that both simulations and experiment may only be
determining effectiue exponents and that the true Tf may
be lower than the value in the fit, and just conceivably
Tf 0. W——e also note that the Monte Carlo data of Bhatt
and Young (1985) and Qgielski and Morgenstern (1985)
provide a plausible explanation of why the observed freez-
ing lines in the H Tpla-ne [5Tf ~ H ~ for H ~0
(Chamberlin er al. , 1982; Yeshurun et al. , 1982; Bon-
temps et al. , 1983)] give values of P fairly close to what
is predicted for the de Almeida —Thouless (1978) transi-
tion line in mean-field theory, where g&T ———,. The AT
value is only correct for short-range models if d & 8
(Green et al. , 1983; Fisher and Sompolinsky, 1985; see
Sec. V.A. 1), and for 6& d&8 one has /AT

——4/(d —2), so
in 4=6, Qp, T——l=b, '. For d&6, the relation g=h
should remain valid (Fisher and Sompolinsky; 1985; see
also Malozemoff et a/ , 1983), .and the exponents of Bhatt
and Young (1985) and Ogielski and Morgenstern (1985)
give /=0. 54 and 0.71, respectively, which are consistent
with experiment, given the uncertainties. We therefore

'

see that P having roughly the AT value is a coincidence
arising because of cancellation from two completely dif-
ferent mechanisms. Note also that the recent careful
work of Bouchiat (1986) on AgMn spin glasses, in which
data closer to Tf are taken, yielded exponent estimates
y=2.2, P=1.0 significantly different from the numbers
quoted above.

To sum up this section, we see that the zero-
temperature scaling theory does not fit the data as well as
a theory with finite Tf, but this might possibly be due to
the inaccessibility of the asymptotic scaling regime if
Tf ——0.

5. Other approaches and discussion

We have tried to summarize, in the last few subsec-
tions, most of the theoretical work on the lower critical
dimension. In addition, Sec. V.A discussed results from
renormalization group techniques, and Sec. IV.G looked
at fluctuations about mean-field theory. We shall also
refer to approaches based on Anderson localization in Sec.
VI.E.2 and just note here that two such calculations
(Feigelman and Ioffe, 1984, 1985; Hertz, 1985) have ar-
gued for dI ——2. Section VI.A will refer to calculations by
Dzyaloshinskii and Volovik (1978) which predict that
dr ——4 for Heisenberg models with short-range interac-
tions but that dI ——3 if the interactions are RKKY. We
also note that Schuster (1980) has found dan =4 for short-

range vector spin systems by arguments based on
Bogoliubov's inequality.

Since we define di by the lowest dimension in which
Xso diverges at a finite Tf, and since, at Tf,

[(S;S~)T],„~
~
R; R—J ~

'" +"'

a necessary condition for a transition is

d —2+rl(d) )0,

(5.46)

(5.47)

in order that the correlations do not increase with dis-
tance. If one knew q(d) reliably one could presumably es-
timate di by finding where Eq. (5.47) is satisfied as an
equality, but with only three terms in an expansion about
d=6 (Green, 1985) and doubts about the summability of
the series (Sec. V.A. 1) this is not yet feasible. Note that
we do not feel it is necessary to solve the problem of fiuc-
tuations about the Parisi solution below Tf (see Sec. IV.G)
to estimate dI. Knowledge of this tells one whether the
low-temperature phase has the Parisi replica'symmetry-
breaking form but is not necessary, we believe, to estimate
whether or not Tf is finite.

It has already been pointed out at the beginning of this
section that the possibility of a dimension, or even a range
of dimensions (di &d & di ), where there is a phase transi-
tion without spin glass order cannot be ruled out at
present. Feigelman and Ioffe (1984) and Shapir (1984)
had previously suggested there may be an intermediate di-
mension di, where di & di & d„such that a different type
of phase occurs for di &d &di. Shapir (1984) presents a
number of arguments, which we consider too speculative
to be described here, that di ——2,di ——4, and v=1 for
d=3. While the basic idea that each correlated region
has many low-lying states is in common with many other
approaches (e.g., Kinzel and Binder, 1984), the work of
Shapir (1984) relies heavily on the assumption that the ex-
ponents of this "entropy-dominated transition" are identi-
cal to those of some pure model at a different dimen-
sionality d, an assumption for which we do not see much
physical justification.

All approaches are united in predicting a zero-
temperature transition in two-dimensional Ising systems.
Probably /so diverges with a power as T~O, which
~ould imply that d~ & 2, but we agree with Huse and
Morgenstern (1985) in noting that the asymptotic critical
region T~O (or I.—+ Do ) has probably not been reached,
and hence the possibility that gsG diverges faster than any
power of T cannot be totally excluded. This latter
scenario would imply d&

——2.
We have seen that the consensus of many recent experi-

ments, Monte Carlo simulations, real-space renor-
malization-group methods, and domain-wall energy cal-
culations is that the three-dimensional Ising spin glass is
more likely to have a transition with a finite temperature
than a zero-temperature transition. The nature of the
singularity at Tf, as well as the nature of the low-
temperature phase, is not yet well established: none of the
results really probe the asymptotic critical region [very
small values of ( T —T~)/Tf, H, co, or I/I. in the finite-

Rev. Mod. Phys. , Vol. 58, No. 4, October 1986



942 K. Binder and A. P. Young: Spin glasses

size analysis]. In any case the implication of the results is
that d~ is somewhat below 3. The once widely held belief
that dI ——4 now seems improbable for Ising spin glasses.

For isotropic Heisenberg systems, Banavar and Cieplak
(1982a, 1982b), McMillan (1985b), Morris et al. (1986),
and Olive et ai. (1986) have argued that di is greater than
three. In fact it seems probable that di =4 for vector spin
glasses with short-range interactions, though it is suggest-
ed (Dzyaloshinskii and Volovik, 1978; Bray et al. , 1986)
that dI ——3 with RKKY couplings. However, there is
moderate agreement over a wide temperature range be-
tween the effective critical exponents for y, 6, and z„v
observed in experiments, which are generally on Heisen-
berg systems, with those observed in Monte Carlo simula-
tions on Ising models. This may be due to the (relatively
small) amount of anisotropy in these predominantly
Heisenberg systems; but then one has to understand why
the agreement is over such a wide range of temperature
above Tf, instead of only a very narrow region of T —Tf
where crossover from Heisenberg to anisotropic behavior
occurs, as expected if anisotropy is needed to get a transi-
tion.

In this subsection we have discussed the value of di for
the transition in zero field. It is also interesting to ask
about the AT transition line in a magnetic field, which
separates the region of the H-T plane with many states
(see Sec. IV.E) from the region with a single state (two
states in zero field). This line will disappear if the spin
glass has only a single thermodynamic state (at least in
nonzero field). It has been suggested (Bray and Moore,
1984a; McMillan, 1984d) that the critical dimension
where this happens is higher than d~ and perhaps as large
as 6 (Bray and Roberts, 1980; Moore and Bray, 1985). In
fact, Fisher and Huse (1986) propose that the AT line is
aq. artifact of the infinite-range interactions in the SK
model and may not occur for any short-range system.
However, so far this question has been less carefully stud-
ied than the value of d~ in zero field.

It must be emphasized that the gauge transformations
in Eq. (3.122), though formally rather similar to gauge
transformations in quantum electrodynamics (see, for ex-
ample, Sec. III.F.2) and other gauge theories, leads to dif-
ferent predictions because the J,z's are quenched random
variables. In gauge field theories, the gauge variables
analogous to the JJ are statistical variables that can fluc-
tuate, and gauge invariance indicates a great degeneracy
of the states. By contrast, the gauge transformation in
spin glasses relates the partition function and correlation
functions of different systems, but does not directly give
information about the degeneracy of any given system.
Nonetheless, as we shall now see, there have been at-
tempts to reexpress the spin glass problem as a genuine
gauge theory in which both spins and gauge variables may
fluctuate.

Clearly much of the difficulty in the spin glass problem
stems from having quenched disorder as well as frustra-
tion, and one might ask whether the essential physics is
captured by frustration alone. One approach to this prob-
lem, periodic frustrated models, is discussed in Sec. VI.E.
Here, as our first example of a spin glass gauge theory, we
shall discuss another nonrandom frustrated model, an an-
nealed spin glass (Toulouse and Vannimenus, 1980).

Consider a nearest-neighbor model in which J,J ——+1,
say, in suitable units, with equal probability on a d-
dimensional simple cubic lattice. Clearly one has

[4'f ]av t~ij~jkJklJii ]av (6.1)

To ensure that Eq. (6.2) is satisfied, one adds a Lagrange
multiplier to the Hamiltonian, so

where the J's form the four sides of an elementary square
or "plaquette. " In the annealed model one allows the J's
to fluctuate and applies constraint (6.1) on average, in or-
der to imitate a spin glass as closely as possible, so that

(6.2)

—PA,„„=Pg JijS;SJ+Pp g JJJJ, (6.3)

Vl. OTHER THEORETICAL APPROACHES

In this section we discuss a collection of miscellaneous
topics. Our treatment will be less systematic than in Secs.
III—V and confined to general ideas, omitting details and
technicalities.

A. Gauge theories of spin glasses

In Sec. III.F.2 the importance of frustration (Toulouse,
1977) was emphasized. Frustration is a "serious" disor-
der, which is invariant under the "gauge transformation, "
Eq. (3.122) and can be characterized by the frustration
function Pf in Eq. (3.125b) for a system with nearest-
neighbor interactions in which Jj=+J. If Pf — 1 fol
some closed paths in the lattice, then one has frustration
and hence serious disorder. Further discussion of frustra-
tion is given in Toulouse (1977, 1979), Fradkin et al.
(1978), and Sec. III.F.2.

where the last term runs over plaquettes. The partition
function is given by (Toulouse and Vannimenus, 1980)

Z,„„= g g e
I J;.=+1I IS;=+1I

ann (6.4)

where KL is the number of bonds in the system. The
frustration constraint (6.3) is satisfied along a line in the
p-pi phase diagram where p~ is negative. The annealed
spin glass model defined by Eqs. (6.3) and (6.4) is a Z2
lattice gauge theory, studied in the context of lattice field
theories (e.g. , Balian et ai. , 1974), though generally for
positive p~. Note that Eq. (6.3) does indeed describe a
gauge theory because A,„„ is invariant under the gauge
transformation, Eq. (3.122).

In this approach a spin glass transition occurs if the
line in the P-Pp plane where Eq. (6.2} is satisfied crosses a
transition line. However, Monte Carlo simulations show
that this does not happen in d =2,3,4 (Bhanot and
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Creutz, 1980) or d =6 (Aeppli and Bhanot, 1981), and
Aeppli and Bhanot have speculated that the same may be
true in any dimension. Such behavior is different from
quenched models in which there is quite probably a tran-
sition in d =3 (see Sec. V.E) and where beyond reasonable
doubt one occurs in d =6. Physically the difference be-
tween the quenched and this annealed model is that the
latter has correlations between the JJ's and between frus-
trated plaquettes, whereas the J;J's are independent in the
quenched case. Although this difference may appear
slight, it apparently leads to different behavior.

A gauge theory has considerable degeneracy. For -in-

stance, in the Z2 theory described by Eq. (6.3), one can
invert a single spin, S;—+ —S;, in one of the ground states
to obtain another grognd state, provided the bonds J,z
connected to site i also change sign. Such a high degen-
eracy does not exist in spin glasses, where the J;J are
quenched and so cannot relax. Nonetheless it is clear that
substantial degeneracy does occur, so that if we do not in-
vert just a single spin but (thinking now of a Heisenberg
model) gradually invert the spin direction over a large dis-
tance, the expected leading contribution to the energy
change may vanish. Indeed Sompolinsky et al. (1984)
have shown that the equilibrium exchange stiffness of a
Heisenberg spin glass is zero in mean-field theory. This
line of reasoning led Dzyaloshinskii and Volovik (1978)
and Dzyaloshinskii (1980) to propose that on large length
scales a spin glass may behave like a gauge theory, and
they investigate the consequences of this assumption in
some detail for a Heisenberg model. The gauge symmetry
is SO(3), so a non-Abelian gauge theory is set up (Yang
and Mills, 1954). The basic constituents are a spin field
S(r) of unit length and the "density of dislocations" p;(r),
i =x, y, or z. If one computes the energy needed to im-
pose a gradual twist on the S field, then the contribution
with the lowest powers of the gradients (the exchange
stiffness) "can be made equal to zero by an appropriate
rotation of the disclination network" (Dzyaloshinskii and
Volovik, 1978). Hence the energy of a twist of wave vec-
tor q does not vary as q but as higher power of q. Dzy-
aloshinskii and Volovik (1978) argue that for short-range
interactions the energy goes like q, but they obtain a dif-
ferent result, q, for RKKY systems, this being the
Fourier transform of the square of the RKKY interac-
tion, J~ CC

I R; —RJ I
. Standard spin-wave-like argu-

ments predict that the power of q is just the lowest di-
mension that can sustain spin glass order. Hence Dzy-
aloshinskii and Volovik (1980) find that this lower critical
dimension is four for short-range Heisenberg spin glasses
but three for RKKY models. This conclusion is in con-
trast to that of Ueno and Okamoto (1981),who argue that
the RKKY interaction is effectively short range, but is
supported by recent scaling arguments of Bray et al.
(1986). From the gauge theory approach one can obtain
equations of motion whose normal mode spectrum in-
cludes (Dzyaloshinskii and Volovik, 1978) not only hy-
drodynamic spin-wave excitations (Halperin and Saslow,
1977), discussed in the next section, but also "localized

zero-gap degrees of freedom connected with a system of
uniformly distributed disclinations" (Volovik and Dzy-
aloshinskii, 1978). Quenched disorder does not appear ex-
p/icitly in this approach but is there implicitly because
both disorder and frustration are needed to get the degen-
eracy that makes possible an analogy with gauge theories.

A different gauge theory of spin glasses which does in-
clude quenched disorder has been proposed by Hertz
(1978). To see the motivation for his model we consider a
Ginzburg-Landau Hamiltonian for an XI'ferromagnet or
antiferromagnet, i.e.,

(6.5)

where P(x) is a complex field and Q is the wave vector of
the ordered state, so Q=O for a ferromagnet and @&0
for an antiferromagnet. Now a spin glass is a random
mixture of ferromagnetic and antiferromagnetic interac-
tions, so Hertz proposed that this could be represented by
a random choice for Q(x). Since no value of Q is to be
preferred over any other, the distribution of Q depends
only on its space derivatives. One can show that the long-
itudinal components [i.e., those in the Fourier decomposi-
tion where Q(k) ~ k] give rise to trivial Mattis-type disor-
der, which can be gauged away (Heitz, 1978). Defining
the gauge-invariant quantity

F„(x)=. B„Q (x)—B„Q„(x), (6.6)

Hertz takes thc dlstribUtion of Q (x) to bc

P[Q]~exp I f dx QF„„(x,)2f
(6.7)

The parameter f measures the degree of frustration in the
system. If f is small, there is a weak amount of frustra-
tion everywhere. This contrasts with a +J lattice model,
in which there is a small fraction of negative bonds where
the frustration is strong on a small concentration of
squares and zero on the rest. The notation in Eqs. (6.6)
and (6.7) is borrowed from electromagnetism, and indeed
the model is almost the Cxinzburg-Landau model of a su-
perconductor, except that the gauge field (electromagnetic
field) is quenched. Hertz (1978) also shows that the
equivalent Heisenberg model is an SO(3) Yang-Mills
(1954) gauge theory with quenched gauge fields.

Having set up the model, one can apply
renormalization-group techniques (see Sec. V.A. 1), assum-
ing f is small. For d &4, f is a relevant variable (Hertz,
1978), so it changes the critical behavior, but it has not
been possible to determine the new critical properties or
even whether there is a transition. It is unfortunate that
so little is known about what seems to us a very interest-
ing model.
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B. Hydrodynamic theory of spin waves EX[8]= —,
'
p, J ( V8) d r . (6.8)

A hydrodynamic theory (Halperin and Hohenberg,
1969) has been very successful in determining the fre-
quency and damping of spin waves in ferromagnets, anti-
ferromagnets, and other ordered magnetic states with a
colhnear spin structure. One uses symmetry arguments
and conservation laws to determine the form of the low-
frequency long-wavelength excitations, without recourse
to a detailed microscopic analysis. Given the difficulties
with microscopic theories of spin glasses, it is very tempt-
ing to extend the hydrodynamic approach to Heisenberg
spin glasses, which of course form a nonco/linear spin
structure at low temperatures. We first discuss the simple
case of a completely isotropic spin glass, then include a
nonzero magnetization, and finally describe a spin glass
with weak anisotropy, which leads to interesting predic-
tions for torque measurements and ESR frequencies.

The basic ideas of a spin-wave theory of hydrodynam-
ics were first discussed by Halperin and Saslow (1977) and
Andreev (1978). If the system is cooled well below the
freezing temperature Tf, the system will be found in one
of the many valleys or metastable states that all have
equivalent macroscopic properties. At sufficiently low
temperatures, one assumes, the system will not fluctuate
over a barrier to a different valley on the time scale of an
experiment, so one considers only small deviations from
the metastable state. In a large system with isotropic
Heisenberg interactions, there appear to be the same num-
ber of spins pointing to every direction on the unit sphere
(e.g., Walker and Walstedt, 1977), so on average the state
is isotropic in spin space. Starting from a given state, one
obtains another metastable state with the same free energy
by a rotation of the spins. It is important to note the
difference from a collinear spin structure in which a par-
ticular ordered state is specified by the direction of a unit
vector, which needs two parameters. For a spin glass, and
other systems with a noncollinear ground state, one speci-
fies the state by a rigid body rotation away from an arbi-
trarily chosen state, and this requires three parameters.
Alternatively, one can say that the state is characterized
by a triad of three orthonormal vectors. We shall see
that, as a result, there are three spin-wave branches for
spin glasses, as opposed to two =for collinear spin struc-
tures (Halperin and Hohenberg, 1969). Toulouse (1979)
has classified the defect structures that occur when the
"manifold of internal states" is specified by a rigid body
rotation. Henley (1984a, 1984b) has discussed these de-
fect structures further and studied them numerically. We
denote by 8 the magnitude and direction of such a uni-
form rotation. How one defines 8 microscopically is dis-
cussed, for example, by Halperin and Saslow (1977) for
the case of small rotations.

It is of great interest to discuss nonequilibrium states in
which the rotation varies slowly in space. This will in-
crease the rotation free energy, even for an isotropic
Heisenberg system, by an amount assumed to be propor-
tional to (V8) at long wavelengths, i.e.,

BA;' = IA;,bI')„ (6.10)

where I I denotes a Poisson bracket [which is (ih)
times the commutator] and A; denotes one of the vari-
ables. Equation (6.10) can be rewritten

(6.11)

so the problem boils down to finding the Poisson bracket
relations. For a spin glass the relevant one is (Halperin
and Saslow, 1977; Dzyaloshinskii and Volovik, 1980)

I8;(r),MJ(r') J =y5;15(r—r), (6.12)

where y =gpss lh is the hydromagnetic ratio and i,j
denote Cartesian components. The standard relation
IM;(r), MJ(r') J =ye, ;JqMk(r)5(r r') does not —play a role
because M(r) averages to zero in this coarse-grained
description. The second type of term in the equations of
motion is dissipative and arises from coupling to fast
modes not explicitly treated in the hydrodynamic theory.
These give rise to spin-wave damping, which turns out to
be of higher order in the wave vector k than the real part
of the frequency, so we shall. not display these terms ex-
plicitly here.

From Eqs. (6.9)—(6.12) the equations of motion are
found to be

B8 (r)
Bt 5(M~(r) )

(6.13)

BM (r) 5(gy)
Bt 5(8 (r) }

(6.14)

At a wave vector k these equations have solutions at fre-
quencies

6) =+ck (6.15)

We shall see that long-wavelength fluctuations of 8 take
place at low frequencies because the energy cost is small.
In the hydrodynamic approach one must include all slow
modes and therefore ask whether other degrees of free-
dom possess low-energy excitations. For an isotropic
Heisenberg model, fluctuations of the total magnetization
density M(r) will be at low frequency and must be includ-
ed. Note that M and 8 are slow modes for different
reasons: M because it is a conserved quantity, and 8 be-
cause the particular metastable state breaks (locally) rota-
tional invariance of the Hamiltonian. Including both
variables, the change in free energy is given by

&+[8,M]= —, I[X 'M +p, (V8) ]d r, (6.9)

where X is the susceptibility.
The equations of motion have two types of terms. The

first, which describes reversible motion, comes from the
underlying microscopic dynamics and is of the form
(Dzyaloshinskii and Volovik, 1980)
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where

c =y(p, /X)'i (6.16)

corresponding to the positive and negative parts of a spin
wave with one of three possible polarizations a (=x, y, or
z). The additional dissipative terms mentioned above give
damping ~k .

The central assumption in the hydrodynamic approach
is that the long-wavelength deviations from equilibrium
are determined by long-wavelength fluctuations in the
conserved densities, together with other variables needed
to describe degrees of freedom associated with any con-
tinuous broken symmetry of the Hamiltonian. This is
valid provided the frequency of the long-wavelength
mode is small compared with relaxation rates of micro-
scopic degrees of freedom. In a spin glass one expects
(Walker and Walstedt, 1977, 1980) that there will be a
broad range of these rates extending down to very low fre-
quencies, and the question is the size of the coupling be-
tween the hydrodynamic mode, of frequency co, and
short-wavelength modes with relaxation times comparable
to co '. En ordinary glasses phonon damping is larger
than expected from hydrodynamics, due to scattering
from localized excitations (two-level systems) but,
nonetheless, phonon mean free paths are still large com-
pared with the wavelength, and phonon frequencies agree
fairly well with what is expected from elastic constants of
the glass.

Also implicit in the hydrodynamic theory of spin
glasses is the assumption that the spin stiffness constant

p, is norizero. Microscopic calculations at the mean-field
level (Sompolinsky et al. , 1984) do find a nonzero p, at fi-
nite time scales (where the system stays in a single valley),
which is the relevant limit for hydrodynamics, though

p, =0 in a full statistical mechanics calculation where
barrier hopping to other valleys is allowed as the nonuni-
form rotation is applied. By "mean-field level" we refer
here to systems with finite-range interactions at high
enough dimensionalities (d & 6) that critical exponents of
mean-field theory apply. Numerical calculations by Reed
(1979b) and Walstedt (1981) also find a finite p, . Howev-
er, a microscopic calculation by Feigelman and Tsvelik
(1979) gives p, =0, and a vanishing spin stiffness constant
is assumed in the gauge theory approach of Dzyaloshin-
skii and Volovik (1978); see Sec. VI.A.

There have been a number of attempts to derive the
linear spin-wave spectrum from a microscopic calculation
(Ginzburg, 19781; Takayama, 1978; Barnes, 1981a, 1981b,
1981c; Becker, 1982a, 1982b). In principle these give mi-
croscopic expressions for the parameters in the hydro-
dynamic theory, such as p, . However, in practice one has
to make rather uncontrolled approximations in perform-
ing the bond average, so these parameters are hard to
evaluate precisely.

It is of interest to search for the linear spin-wave spec-
trum by numerical methods bemuse this could check the
assumptions of the hydrodynamic theory. Unfortunately,
calculations of the excitation spectrum about a metastable

and two transverse branches,

co+ yH +0 ( k——)

co =Dk

where

(6.18)

(6.19)

D =yp, /+H . (6.20)

This result assumes that the magnetization responds re-
versibly to the field, so that, at equilibrium, M=XH.
However, depending on the preparation of the sample,
one might have a nonzero remanent magnetization crz, so
that at short times where the system responds reversibly
one has

(6.21)

for H small. If cr~ is parallel to H one finds that the fre-
quencies cot and co+ are unchanged, but co becomes finite
as k —+0 and

co =go'g/7 . (6.22)

We have assumed that X and p, are isotropic, even where

cd and H are nonzero. This seems reasonable provided
the field and magnetization are not too big, but it is
straightforward to generalize these results to allow for an-
isotropic susceptibility and spin stiffness tensors (Fischer,
1980; Saslow, 1980, 1981;Schultz et al. , 1980).

All real spin glass systems have some anisotropy, and it
is of great interest to see how this affects the long-

state for the Edwards-Anderson model (Ching et al. ,
1977, 1981), a model with RKKY interactions appropri-
ate for CuMn (Walker and Walstedt, 1977, 1980), and a
model of Eu„Srj „S (Ching et al. , 1980; Krey, 1980,
1981, 1982) have failed to detect the spin-wave modes.
(We shall refer again to these computations in Sec. VI.C).
Similarly, neutron scattering experiments (e.g., Fincher
et al. , 1980) have failed to detect spin waves in the spin
glass regime. This may be bemuse the excitations are
only sharp at much longer wavelengths than can be
probed by neutron scattering and numerical simulation or,
perhaps, because the excitations carry very little weight in
the structure factor. Clearly, more work needs to be done
to understand the dynamic structure factor of an isotropic
spin glass. %'e shall see below that the k =0 mode has a
nonzero frequency in the presence of anisotropy, and this
has been seen in resonance experiments. We also note
that a linear spin-wave spectrum is also predicted for a
planar spin glass (Edwards and Anderson, 1976), and this
has been found numerically (Huber et al. , 1979; Huber
and Ching, 1980).

Next we discuss how the spin-wave frequencies are al-
tered by a magnetic field H (Andreev, 1978; Fischer,
1980; Saslow, 1980, 1981; Schultz et al. , 1980; see also
Halperin and Saslow, 1977). The threefold degeneracy of
the modes given by Eq. (6.15) is broken, and one has a
longitudinal branch of unchanged frequency,

co~ =ck
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wavelength spin-wave frequencies. We shall discuss only
anisotropy which, on average, does not prefer any spin
direction (see the discussion in Sec. II.A.2). In metallic
spin glasses the most important mechanism seems to be
Dzyaloshinskii-Moriya (DM) anisotropy (Fert and Levy,
1980, 1981). Dipole-dipole interactions occur in both in-
sulating and metallic systems.

In the presence of anisotropy the free energy hI in Eq.
(6.9) now has terms depending on 8 as well as its gra-
dients. Since a rotation by 2~ brings back the same state,
we can write the anisotropy energy as a function of cosO.
Expanding up to second order one has

E,„;,(8)= —KicosO ——,Kzcos 8

(see also Secs. II.A.2 and II.C.2), which defines the aniso-
tropy coefficients K~ and Kq. Henley et a/. (1982) and
Levy et a/ (1982.) have shown that DM anisotropy gives

K2 ——0, i.e., the anisotropy is unidirectional. Other types
of anisotropy give both K& and K2 nonzero (Henley
et a/. , 1982). Because of the assumed isotropy of the spin
glass state, the energy depends only on the magnitude of
the rotation, not on the direction of the rotation axis.
There is evidence (Hippert et a/. , 1982) that K, is the
dominant term in metallic spin glasses. Note that a rota-
tion by m. changes the energy if K»0. This can occur
only in a noncollinear spin system because if all the spins
are parallel a rotation by ~ is equivalent to an inversion,
which costs no energy in the absence of a magnetic field.

Hydrodynamic theories including anisotropy have been
developed by Andreev (1978), Saslow (1980, 1981, 1982),
Schultz et a/. (1980), and, in greatest detail, by Henley
et a/. (1982). Let us follow Henley et a/. and attempt to
explain a typical experiment in which the system is cooled
below the freezing temperature in a field H, and gets
trapped in a metastable state. The field may then be
changed to H, so that the remanent magnetization o.z is
not, in general, parallel to either H or H, . Changing the
field from H, will rotate the system away from its meta-
stable state, which will cost some anisotropy energy. We
assume that this energy is isotropic (i.e., depends only on

~

8
~
), even when cr~ is nonzero, provided that during

cooling a.~ H, is much smaller than the exchange energy.
It is further assumed that the state of the system is
described by a rigid rotation of the original metastable
state, which should be a good approximation if the ex-
change energy is larger than the anisotropy of field ener-

gy. However, we shall see below that this assumption
seems to break down for large 0.

Including the effect of the magnetic field and allowing
only for uniform values of (9 and M, the free energy can
be written [see Eq. (2.27)]

after cooling (which is parallel to H, ) by the equilibrium
rotation angle 80 in the plane between M, and H(see Fig.
110). If the angle between H and H, is OH, then minimi-
zation of Eq. (6.24) with respect to 8 and M gives (for
Kz ——0, which we assume from now on)

Mp ——XH+ o.g,
sinOo (H——zH/H ~ )sin(OH —80),

(6.25)

(6.26)

co~ =QH]

co /y =+ , (H —K~—)+—,
' [(H+H~)'+4H f]'~'

(6.27)

(6.28.)

(Saslow, 1981; Henley et a/. , 1982). The special case of
Hz ——0 was derived earlier by Andreev (1978). Schultz
et a/. (1980) obtained Eq. (6.28) [but not (6.27)] with
Hz ——0 from a vector model, which differs from the triad
model discussed here in having only two (instead of three)
modes. Figure (111) plots the frequencies against H for
the case of Hz ——0. Note that with Hz ——0 and H~O
one has

where Hz ——o.z/X, H& ——(K, /X)', and Mo is the equili-
brium magnetization. Note that we are assuming the
temperature to be sufficiently low that the irreversible
change of the remanent magnetization (see Sec. II.C.1)
can be neglected.

Equations of motion can be set up along the lines dis-
cussed above. One finds (Henley et a/. , 1982) that for
general values of the angles Op and OH the longitudinal
and transverse modes are coupled, and frequencies are
given by solutions of a cubic equation. However, the
longitudinal and transverse modes decouple when o.z is
parallel (or antiparallel) to H, or oz is zero. The case o~
parallel to H occurs when M is parallel to H, and the
resonance frequencies are (at k =0)

b,F [O,M] = (M —o.g ) —M H+E,„;,(8), (6.24)
2X

where the susceptibility 7 is assumed to be isotropic, and
E,„;,(8), the anisotropy energy, is given by Eq. (6.23).
Note that o.z is not an independent parameter, but is ob-
tained by reversibly rotating the remanent magnetization

FIG. 110. H, is the direction of the cooling field, and H, the
applied field, is at an angle OH to this. The remanent magneti-
zation a~ is at an angle Oo to H, and the equilibrium magneti-
zation is shown by Mo.
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FIG. 111. A plot of the three resonance modes as a function of
H for zero remanence.

co+/y =H ) + —,H . (6.29)

The variation with H in Eq. (6.29) has been convincingly
seen for co+ by Schultz et al. (1980; see also Monod and
Berthier, 1980). Schultz et al. also found the co mode.
The longitudinal mode is difficult to see because it is in-
dependent of H, and the experiment is performed by
scanning H at fixed resonant frequency. However, with
80&0 the longitudinal and transverse modes are coupled,
so there is "level repulsion" where the modes cross as H is
varied; this has been seen by Gullikson et al. (1983).
However, Gullikson et al. (1983) found that the triad
model breaks down for large rotations, presumably be-
cause the spins no longer rotate rigidly. Numerical simu-
lations by Morgan-Pond (1983) also found that the triad
model works well for small anisotropy and breaks down
when the anisotropy becomes large.

To conclude, the triad model with unidirectional aniso-
tropy coming from DM interactions explains fairly well
the resonant frequencies observed in metallic spin glasses
for small rotation angles, but seems to break down for
large rotations.

(Walker and Walstedt, 1977, 1'980, 1983; Ching and
Huber, 1978; Walstedt and Walker, 1981, 1982; Walstedt,
1981, 1982, 1983), as a prototype of metallic spin glasses,
and for a diluted classical Heisenberg system with com-
peting ferro- and antiferromagnetic interactions which
models Eu Sr& „S and related materials (Binder et al. ,
1979; Krey, 1980, 1981, 1982; Kinzel and Binder, 1981;
Binder and Kinzel, 1983a). Comparatively little work has
been devoted to other materials, such as Fe-Al alloys
(Grest, 1980) or materials with Dzyaloshinskii-Moriya an-
isotropies (Morgan-Pond, 1981, 1983; Dasgupta and Yao,
1984).

Walker and Walstedt (1977, 1980) and Krey (1980,
1981, 1982) focused attention on the low-temperature ex-
citations in these systems. They first tried to find a
ground state, or low-lying excited state, applying Monte
Carlo methods that treat the Heisenberg spins as classical
unit vectors. Walker and Walstedt (1977, 1980) used sys-
tems of no more than 96, 172, and 324 spins, and linear-
ized the quasiclassical equations of motion for the spins,
which were then numerically diagonalized to find the ex-
citation spectrum. They found a rather high density of
low-lying modes, which —appropriately quantized —gave
a good account of the specific heat experimentally ob-
served (Wenger and Keesom, 1975) in Cu with 0.88% Mn
(Fig. 112). Note that this specific heat at low tempera-
tures cannot be obtained from direct Monte Carlo simula-
tion of the classical Heisenberg spin glass as done by
Ching and Huber (1978)—there Clkz(T~O)~1 since
the system is classical.

0.88 /. Mn IN Cu-

o '
EXPERIMENT

5.0—

4.0—
O
E

3.0—
E

2.0—

C. Simulations of realistic models

While enormous effort has been devoted to understand-
ing both the infinite-range Sherrington-Kirkpatrick (1975)
model (Sec. IV) and the nearest-neighbor Edwards-
Anderson (1975) model (Sec. V), neither of these models
should be compared to experimental data quantitatively.
Since a study of the short-range Edwards-Anderson
model relies heavily on Monte Carlo simulations (Secs.
V.B—V.E), it is tempting to apply this technique to more
realistic models of real materials as well. So far this has
been attempted for a classical RKKY model of CuMn

0
0

FIG. 112. Plot of experimental specific-heat data, taken from

avenger and Keesom (1975) and model calculations for CuMn
with 0.88% Mn, where the spin-wave frequencies u, for 172
spins interacting via the Ruderman-Kittel interaction, Eq. (2.1),

. with Jo ——1.02&&10 ergcm and kp the value known for bulk
Cu, are obtained numerically, and C is obtained as a tempera-
ture derivative of QA'co;/[exp( Ace; /k&T) 1].—Points mar—ked
as augmented spectral density represent results with an ad hoc
correction for finite size. From Walker and Walstedt (1980).
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Krey (1980, 1981, 1982) used ground states of the clas-
sical Heisenberg model of Eu Sr& S obtained by Binder
et al. (1979), with a lattice size of 16 fcc unit cells. By
applying a continued fraction algorithm utilizing typical-
ly 42 moments of the eigenfrequency spectrum, which are
calculated exactly for these ground states, Krey could ob-
tain both the density of states and the dynamic structure
factor P"(Q,E) [Krey, 1982; see Fig. 113(a)]. The peaks
seen represent a remnant of the ferromagnetic magnons,
still seen at large Q because there is ferromagnetic short-
range order in the spin glass in this system; at small Q
there is just a central peak. These results agree qualita-
tively, but not quantitatively, with inelastic neutron
scattering experiments (Maletta et ai., 1981). It is not
clear whether this discrepancy reflects finite-temperature
effects or nonlinearities (all this work is based on linear-
ized equations of motion) or inadequacy of the model
Hamiltonian for Eu„Sr& S. In any case, the success of
the fit to the specific heat (Fig. 112), which also accounts
for its magnetic field dependence [Wosnitza et al. , 1986;
see Fig. 113(b)], indicates that most of the density of low-

lying states in real spin glasses is due to such linear (oscil-
latory) excitations and not due to two-level systems, as is
thought to be the case for ordinary glasses (Phillips, 1972;
Anderson et al. , 1972).

Recently it has become possible to study the thermal
properties of RKKY spin glasses by Monte Carlo simula-
tion of samples containing typically 500 or 960 spins
(Walstedt and Walker, 1981, 1982; Walstedt, 1983; Walk-
er and Walstedt, 1983). Interestingly, no spin glass transi-
tion is found if one works with purely isotropic exchange,
even for very short observation times of t,b, ——5 Q 10
MCS/spin: the time-dependent Edwards-Anderson order
parameter q(tpb, )=0 down to the lowest temperatures
(Fig. 114). However, a transition is found if a pseudodi-
polar anisotropy is added. When one chooses the strength
of this anisotropy such that the freezing temperature seen
in the simulation fits the experimental one, the anisotropy
seems by far too large. When one studies Tf as a func-
tion of sample size in the range from 500 to 4928 spins, it
shows a pronounced size effect. Particularly for small
values of D, Tf distinctly increases with size. Thus it
was not clear whether the behavior seen in Fig. 114 sur-
vives in the thermodynamic limit. However, more exten-
sive recent simulations of Chakrabarti and Dasgupta
(1986) imply that the transition temperature is zero if
there is no anisotropy.

Experimentally, there is no evidence that the amount of
anisotropy has a strong effect on the location of Tf (one
can vary the anisotropy of CuMn experimentally by add-
ing Au impurities via the Dzyaloshinskii-Moriya
mechanism —see, for example, Prejean et al. , 1980). This
problem calls for further study. Walstedt and Walker
(1982) have also studied the onset of transverse spin glass
order in finite magnetic fields (Fig. 115). The transition
to transverse ordering seems to remain sharp in the pres-
ence of a field, a fact that is qualitatively consistent with
the mean-field predictions (Sec. IV).

Walstedt (1983) has also started an investigation of the
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FICx. 113. (a) Dynamic structure factor P"(Q,E) for inelastic
neutron scattering under wave vector Q and energy transfer E
at T =0 K, for Eup 4Srp 6S for Q vectors in the (1,1,0) direction
(Brillouiu zone boundary is normalized at Q =1). JNN ——0.22
K, JNNN ———0. 11 K. Dashed curves denote results including
the dipolar interaction; solid curves include exchange interac-
tions only. (b) Log-log plot of the specific heat of Eu054Sro 46S
vs temperature for various magnetic fields. Solid curves are
theoretical predictions, based on numerical data on the density
of states obtained in the same way as P"(Q,E) in (a). From
Wosnitza et al. (1986).
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mutual projections of the various ground states of this
model into each other, and discusses the energy barriers
separating these minima. He finds that there are states
related to each other by a change of spin orientation in a
small "defect" region. This work clearly constitutes an
interesting and promising first step towards the investiga-
tion of phase-space topology for a realistic model of a
spin glass.

We now turn briefly to the simulation studies of the
Eu„Sr& „S model (Binder et a/. , 1979; Binder and
Kinzel, 1983a). Figure 116 shows that the model can ac-
count quantitatively, for the quick decrease of the fer-
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FIG. 115. The transverse Edwards-Anderson order parameter
qT(t,b, ) for the RKKY model of CuMn spin glasses with 0.9
at. % Mn plotted against reduced temperature T* for several
choices of the magnetic field (for notation, see Fig. 114). The
sample contains 960 spins, and the strength of the pseudodipo-
lar anisotropy is D =0.01. From Walstedt and Walker (1982).

FIG. 114. Edwards-Anderson order parameter q(t,b, ) for the
RKKY model of CuMn spin glasses with 0.9 at. % Mn plotted
against reduced temperature T* for several choices of the
strength D of a pseudodipolar anisotropy AT* =k~ Ta j
2V2JOS{S+1), where a is the fcc lattice constant]. Inset
shows a typical time evolution of q. From Walstedt and Walker
(1981).
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FIG. 116. Ferromagnetic critical temperature plotted vs con-
centration for Eu„Sr~ „S (Maletta and Felsch, 1979) as com-
pared to Monte Carlo results for a diluted classical Heisenberg
fcc ferromagnet with nearest (JNN) and next-nearest (J~NN) ex-
change, JNNN ———

z JNN. From Binder et aI. (1979).

romagnetic transition temperature T, (x) with increasing
SR content. For x &0.5, however, where the experiment
(Maletta and Felsch, 1979) shows a spin glass phase, the
simulation (using isotropic exchange only) does not show
a stable spin glass order down to the lowest temperatures.
Adding the dipolar anisotropy between nearest and next
nearest neighbors does stabilize the spin glass order
(Binder and Kinzel, 1983), but q diminishes with tem-
perature in a much too gradual fashion. Clearly, a simu-
lation including the untruncated dipolar interaction would
be very desirable, but such a simulation has not yet been
done.

Although it is clear from the present discussion that
simulations of realistic models of spin glasses are some-
what limited, because even the fastest present-day com-
puters do not allow simulations of much larger systems or
larger observation times, work along similar lines clearly
promises to be fruitful in the future when more powerful
machines will have become available.

Finally we mention a first attempt at a "realistic"
simulation of the dielectric glass Rb~ „(ND4)„DzPO4, in
which a molecular dynamics study of a (two-dimensional)
model involving 8741 atoms was tried (Parlinski and
Grimm, 1986). Using interaction parameters such that
the ferroelectric and antiferroelectric order of RbDzPO4
and ND4Dz04 was reproduced, Parlinski and Grimm did
indeed find in the mixed crystals a glassy phase with
many local minima into which the system was locked, for
0.22 &x &0.75. The scattering function was obtained in
qualitative agreement with experiment.

D. Spin glass transition as a percolation problem

When confronted with a difficult problem, such as the
nature of spin glass freezing, it is natural to ask whether
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Jol(k~R)'= kg T, (6.30)

where Jo and k~ are as in Eq. (2.1). As the temperature
is lowered, R increases, so eventually these spheres per-
colate, forming an infinite cluster. Spins in the infinite
cluster do not fluctuate and so do not contribute to the
susceptibility. Hence one obtains the usual result
kz TX= 1 —q, where q is now the fraction of spins in the
infinite cluster. This leads to a cusp in X at the percola-
tion threshold. Further discussion of the results is given
in Smith (1974, 1975), Mookerjee and Chowdhury (1983),
and Chowdhury and Mookerjee (1983).

The idea is appealingly simple but unfortunately has
several defects. First, the RKKY interaction does noi
really fall off fast enough to justify the sharp division into
rigidly coupled and completely uncoupled spins. There
are a large number of spin pairs for which JJ =k& T and
which are therefore partially correlated. Second, and
most seriously, the treatment neglects frustration, which
gives cancellations and hence the possibility of weak
correlations even if the interactions are much larger than
kg T.

Abrikosov and Moukhin (1978) and Abrikosov (1978,
1980) have pointed out that the first criticism does not
apply if the mean free path is much smaller than the typi-
cal spin separation, which can be achieved by adding non-
magnetic impurities. In this case only the interactions be-
tween a spin and its one or two nearest neighbors are im-
portant, and these can range over many decades depend-
ing on separation. However, frustration is still neglected.

It seems to us that frustration must feature in any satis-
factory spin glass theory. For instance, the percolation
model predicts that the lower critical dimension is dI ——1,
whereas spin glasses have larger values than this (see Sec.
V.E).

Cyrot (1981) has proposed a modified percolation
model in which there are blocks of rigidly coupled spins,
whose size, which diverges at Tf, allows for the frustra-
tion effect. However, the separation into noninteracting
blocks does not seem very realistic. It is more natural, in
our opinion, to replace this block size by the spin glass
correlation length /so, which, incidentally, diverges at Tf
with an exponent quite different from that of the percola-
tion correlation length.

To conclude, we have argued that frustration and per-
colation are very different, so that percolation models of
spin glasses are inadequate.

insight can be gained from parallels with familiar and
well understood concepts. One such proposal, due to
Smith (1974, 1975), is that the spin glass problem is very
similar to percolation (for a review, see Stauffer, 1979; Es-
sam, 1980). Smith considered an RKKY interaction,
given by Eq. (2.1) and made the approximation that two
spins, at sites i and j, will be rigidly coupled if

~ JJ ~
& k+T and completely uncorrelated if

~ JJ
~

&k&T.
Hence spins are locked to a spin at site i if they lie within
a sphere, centered at i, of radius R given by

E. Periodic frustrated systems

As discussed earlier, the necessary ingredients for a
spin glass appear to be randomness and frustration. How-
ever, disorder greatly complicates the problem, and Vil-
lain (1977a) suggested that one might obtain a reasonable
spin glass model with frustration but no disorder. This
can be achieved by making the frustration function Pf,
defined in Eq. (3.125b), periodic. In this section we shall
discuss systems in which all interactions have the same
magnitude, so called "pure frustration models, " because
the concept of frustration is simplest in this case. In-
teresting examples are "fully frustrated" (FF) models,
where one frustrates al/ elementary polygons or "pla-
quettes" on the lattice (e.g., squares for square and simple
cubic lattices; triangles for triangular and face-centered
cubic lattices). Triangular plaquettes are frustrated by
negative interactions. Other lattices can be fully frustrat-
ed by a periodic array of positive and negative bonds.
This is illustrated in Fig. 117 for the square lattice. We
shall see in this section that FF and other periodic frus-
trated models have interesting properties but are rather
different from spin glasses.

First of all we discuss Ising models in d =2. The anti-
ferromagnetic nearest-neighbor model on a triangular lat-
tice is the longest studied FF model. Wannier (1950)
showed that T, =0 and computed the ground-state entro-

py per spin, which is finite. There is a critical point at
zero temperature where correlations fall off with distance
r, as r ", where q= —,

'
(Stephenson, 1967).

Villain (1977a) seems to have been the first to discuss
the FF square lattice shown in Fig. 117. He was able to
show that the Ising model has T, =0 and that the
ground-state entropy per spin is finite. Subsequently

FIG. 117. Part of a fully frustrated square lattice. The double
lines represent negative interactions, and the single lines
represent positive interactions of the same magnitude.
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Southern et al. (1980) mapped this model into an 8-vertex
model and, as a result, Forgacs (1980) demonstrated that
correlations at T =0 decay as r '~, just as for the tri-
angular antiferromagnet. The same value of r)= —,

' has
also been found for other models with, T, =0 (Wolff and
Zittartz, 1983a, 1983b) and seems to be universal for all
periodic two-dimensional Ising-type systems where T, =0
and the ground-state entropy per spin is finite. Note that
one obtains a different exponent, g = —,, if T, is finite.

A variety of periodically frustrated d =2 Ising models
has been studied by Wolff and Zittartz (1982, 1983b, and
references therein). They find that there is no simple con-
nection between the occurrence of a transition at finite
temperature and the occurrence of a finite ground-state
entropy per spin. All combinations, transition or no tran-
sition, presence or absence of ground-state entropy, are
possible. In all cases studied with a finite T, the ordered
state was ferromagnetic or antiferromagnetic, never a spin
glass.

This last conclusion was also reached by Andre et al.
(1979). They considered a number of periodically frus-
trated Ising models on a square lattice. One of these is a
generalization of the FF square lattice model in Fig. 117,
in which the negative interactions J' are stronger than the
remaining positive couplings J, i.e., J' & —J. In the
ground state the J' bonds are all satisfied but the J bonds
may or may not be frustrated. Consider a vertical string
of spins connected by J bonds in between two antifer-
romagnetically ordered strings (see Fig. 118). The states
where the antiferromagnetic strings are in phase and out
of phase have the same energy. One might therefore ex-

0+

0

FIG-. 118. Same as for Fig. 117, but now the negative bonds are
larger in magnitude than the positive ones, so the spins along
the double lines have antiferromagnetic order in all ground
states. The circled symbols show spin directions in a ground
state. Although there are ground states with different antifer-
romagnetic chains out of phase, virtually all ground states have
these chains in phase as shown.

pect the ground state to have no long-range order. How-
ever, this is not so because there are just two states of the
even string if the antiferromagnetic strings are out of
phase, but there are of order a states when the antifer-
romagnetic strings are in phase, where I. is the size of the
lattice in the vertical direction and a turns out to be
[(3+v 5)/2]'~. Hence virtually all ground states have
the vertical strings in phase (see Fig. 118),and one can de-
fine a staggered magnetization on the antiferromagnetic
strings that is saturated, i.e., tends to unity as T~O. The
staggered magnetization on the remaining spins, i.e., those
on the ferromagnetic vertical strings, is nonzero, but it is
not saturated (Andre et al. , 1979). The ground-state en-
tropy per spin is finite, because of the degeneracy on the
ferromagnetic strings, and the transition is at a finite tem-
perature. Note that the long-range order in the ground
state is an entropy effect. The energy to create out-of-
phase aritiferromagnetic strings is zero, but the entropy
lost diverges in the thermodynamic limit. The relative
statistical weight of two states is exp( hF/k~T—), where
AI' is the free-energy difference. This can of course be
written as exp(b.S b, U/kz T),—where b,S and hU are the
entropy and energy differences. The free energy to create
a vertical domain wall in this model has been calculated
at finite temperature by Derrida et al. (1978) and is
nonzero for 0& T & T, .

We now go on to discuss periodic frustrated Ising
models in three dimensions. The face-centered cubic lat-
tice is fully frustrated by making all interactions negative.
This model has a ground-state degeneracy of order
exp(aN' ) (Danielian, 1964), and most of these ground
states are nonperiodic, which makes an analogy with spin
glasses rather tempting. However, at finite temperature
this degeneracy is removed, and a simple periodic struc-
ture (Slawny, 1979; Mackenzie and Young, 1981) has the
lowest free energy Analogou. s behavior in a two-
dimensional model has been found by Villain et al.
(1980). As they point out, thermal fluctuations remove
the degeneracy and so tend to make the system more or-
dered. For the fcc: model the transition to the paramag-
netic state is first order (Phani et al. , 1980; Liu et al. ,
1982; Polgreen, 1984; Styer, 1985), which is also very un-
like spin glasses. However, the free energies per spin of
the stable and metastable phases are very similar, so if the
system were rapidly quenched to a metastable state it
would take a very long time to reach equilibrium. The
dynamics of this model may therefore have some similari-
ty with spin glasses and would be worth investigating.
Adding dilution also apparently changes the transition
from first to second order (Grest and Gabl, 1979).

The FF simple cubic lattice can be obtained by periodi-
cally continuing the arrangement of positive and negative
bonds shown in Fig. 119. There are of order exp(aN ~

)

ground states (Villain, 1977a; Kirkpatrick, 1981; Chui
et al. , 1982) obtained from each other by turning over
chains of spins. Apart from inversion of all the spins, 12
of these have the periodicity of an elementary cube. The
energy barrier between ground states is finite. This is in
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FIG. 119. Construction of a fully frustrated simple cubic lat-
tice. The double lines represent negative interactions.

contrast to the fcc antiferromagnet, in which different
ground states are obtained by turning over planes of spins
(Danielian, 1964) and the energy barrier between them
diverges in the thermodynamic limit. Because there is
only a finite energy barrier to overturning the chains at
T =0, it is widely assumed (e.g., Villain, 1977a) that spins
on these chains are disordered as T~O. This may well be
so, but we emphasize that it is really necessary to com-
pute free-energy barriers at a finite temperature to be sure
of this result. In addition to free chains there is an infi-
nite network of rigidly coupled spins, so T, is finite. The
region near T, has been studied by Blankschtein et al.
(1984) using Ginzburg-Landau and renormalization-group
approaches. They find that the order parameter is four
dimensional and that there are 8 possible ordered states
(apart from total spin reversal) just below T, . No stable
fixed point is found within an E expansion which is inter-
preted as a fluctuation-driven first-order transition. The
8 ordered states just below T, are incompatible with the
12 simple periodic ground states noted above. Monte
Carlo simulations (Kirkpatrick, 1981; Diep et al. , 1985;
Grest, 1985) show a large specific-heat peak at the transi-
tion temperature where T, =1.35 in units of the nearest-
neighbor interactions. Both Kirkpatrick (1981) and Diep
et al. (1985) interpret their data as evidence for a
second-order transition, in contrast to the results of
Blankschtein et al. (1984), though Grest (1985), who uses
larger sizes, suggests that a very weak first-order transi-
tion is more likely. Diep et al. (1985) also argue that
there is a second transition, below T„at which the or-
dered state changes to one of the 12 simple periodic
ground states.

Fully frustrated models in higher dimensions have been
studied by Derrida et al. (1979) and Alexander and
Pincus (1980).

%'hat can we learn from the study of periodic frustrat-
ed Ising models? The main result is that, although many
of the models have nonperiodic ground states, the state at

finite temperature is always a simple periodic magnetic
structure. No spin glass phases are observed. However,
as we have noted above, there can be long-lived non-
periodic metastable states, so the dynamics of these
models may be more spin-glass-like than the statics.
There also seems to be rather little universality: for ex-
ample, FF models on different lattices seem to have rath-
er different properties (e.g., Villain, 1977a). Particularly
in two dimensions, fluctuations may drive T, to zero.
However, the precise criterion for T, to be finite is not
fully clear. It is unrelated to the existence or nonexistence
of a finite entropy per spin (Wolff and Zittartz, 1982,
1983b). Presumably one has to show that the free energy
of an interface between two of the assumed broken sym-
metry states at finite temperature diverges in the thermo-
dynamic limit. The assumed broken symmetry states
must, of course, have the same free energy. This calcula-
tion is generally rather difficult. A study of the ground
states is easier but may be insufficient.

Although periodic frustrated models are different from
spin glasses, one can make them into spin glasses by add-
ing disorder. This has been investigated by Cxrest and
Gabl (1979) for the triangular and fcc antiferromagnets,
by Anderico et al. (1982) for the triangular lattice, and by
Kirkpatrick (1981) for the FF simple cubic lattice.

Periodically frustrated models with vector spins have
also been studied. One of the most interesting is the FF
XY (planar) model on a square lattice. It is easy to see
that the ground state of a single frustrated square is dou-
bly degenerate (see Fig. 120) apart from overall rotations
(Villain, 1977a, 1977b). One can therefore assign an
Ising-type variable or "chirality" to each frustrated
square. Chiralities have a logarithmic interaction like the
vortices that play a prominent role in the Kosterlitz-
Thouless (1973) theory of the pure two-dimensional XY
model. At T =0 the chiralities form a regular antifer-
romagnetic array, which suggests that there may be an Is-
ing transition in this system at finite temperatures (Vil-
lain, 1977b; Fradkin et al. , 1978). This has been seen in
Monte Carlo simulations by Teitel and Jayaprakash
(1983), who also note that the model is relevant for the
understanding of two-dimensional arrays of coupled
Josephson junctions.

In his pioneering papers Villain (1977a, 1977b) studied
XY and Heisenberg models on a variety of lattices. One

FIG. 120. The two ground states of a single frustrated square
with XY (planar) spins that are unrelated by an overall rotation
of the spins. The double line represents a negative interaction.
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that is particularly important and has been further stud-
ied is the Heisenberg fcc antiferromagnet. Apart from in-
terest motivated by spin glasses, this is also a good model
for real fcc antiferromagnets if one includes second-
neighbor coupling. The nearest-neighbor model has a
high ground-state degeneracy like its Ising counterpart,

'

and, as a result, Villain (1977a) and Alexander and Pincus
(1980) suggested there would be no order at finite tem-
perature. However, as we have noted above, the degenera-
cy is removed at finite temperatures, and indeed Fernan-
dez et al. (1983) find evidence for a second-order transi-
tion at finite T, from Monte Carlo simulations. They
also see that T, =0 for a sufficiently dilute system, con-
sistent with currently expected behavior for a d = 3
Heisenberg spin glass (see Sec. V). Giebultowicz and Far-
dyna (1985) have shown that with a small amount of anti-
ferromagnetic second-neighbor coupling, which is a
model for type-III antiferromagnets, the transition be-
comes first order.

As for Ising systems, there is a lack of universality
among periodic frustrated vector spin models. They are
interesting in their own right, but seem to be rather dif-
ferent from spin glasses.

F. Relations between spin glasses and other topics
in the theory of disordered systems

1. Systems with random
fields and random anisotropies

If there are random fields or random anisotropies, then
even systems with uniform interactions possess the two
ingredients of randomness and frustration that are neces-
sary for spin glass behavior. It is therefore useful to com-
pare such systems with conventional spin glasses.

The Hamiltonian of a simple random-field model with
Ising spins is given by

(6.31)

HR

FIG. 121. Sketch of the mean-field phase diagram for the
random-field Ising model. .Here H& is the strength of the ran-
dom field. The different phases are paramagnetic (P) and fer-
romagnetic (F).

small random field for dimension d less than 2. This ar-
gument has been refined since then, and there is now a
rigorous proof of order in the ground state for weak ran-
dom fields in d =3 (Imbrie, 1984). It therefore seems
probable that the lower critical dimension d~ is 2 and the
phase diagram in Fig. 121 should be qualitatively correct
for d)2.

Competition between the exchange and random-field
terms in Eq. (6.31) gives'rise to many minima in phase
space. These are somewhat easier to categorize than for
spin glasses and comprise domains such that spins within
a domain are parallel. Cooling in the random field traps
domains, and one does not observe the expected long-
range order experimentally (Birgeneau et al. , 1984).
However, cooling below the phase boundary in zero field
gives a ferromagnetic state (Belanger et al. , 1985). Hence
there is a difference between field cooling and zero-field
cooling as in spin glasses. The dynamics of trapped
domains has been studied theoretically (Villain, 1984;
Grinstein and Fernandez, 1984; Pytte and Fernandez,
1985). Both this behavior and the properties in the vicini-
ty of the transition temperature (Young and Nauenberg,

where the JJ are nonrandom, positive interactions, typi-
cally between nearest neighbor's, and the fields H; are in-
dependent random variables with mean and variance
given by

[Hi ],„=0, [Hr~]av =HR (6.32)

The phase diagram is sketched in Fig. j.21. There is a
transition line separating a ferromagnetic phase I' from a
"paramagnetic" phase P. Actually the P phase has spin
glass order, since q =[(S;)T]„&0, induced by the ran-
dom fields. Nonetheless, it seems appropriate to call this
phase paramagnetic and use the term spin glass in situa-
tions where a nonzero q arises from cooperatiue effects.

In a pioneering paper, Imry and Ma (1975) gave a sim-
ple argument showing that for Ising spins the ground
state, fully aligned if H~ ——0, breaks up into domains, so
there is no average magnetization, in the presence of a

FIG. 122. Sketch of a proposed phase diagram for d ~4 for
the random anisotropy model whose Hamiltonian is given by
Eq. (6.33). 6 is proportional to the variance of the components
of the random vectors a;. The different phases are paramagnet-
ic (P), ferromagnetic (E), and spin glass (SG).
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1985, Ogielski and Huse, 1986) may need further clarifi-
cation.

En some respects the random-field problem is somewhat
simpler than spin glasses. For example, the order param-
eter is just the magnetization, which is much less compli-
cated than for spin glasses. Furthermore, the simple
Imry-Ma (1975) argument appears to give the lower criti-
cal dimension correctly. Unfortunately, there does not
seem to be an analogous argument for spin glasses.

Systems with random anisotropy are often described by
the random-axis model of Harris et al. (1973). One needs
vector spins with m components (m & 2), and the Hamil-
tonian is given by

(6.33)

where the a; are vectors whose components are indepen-
dent random variables with a Gaussian distribution.
Physically the model gives each spin an easy axis whose
direction is random. Arguments along the lines of Imry
and Ma (1975), as well as microscopic calculations (Pel-
covits et al. , 1978), predict that there is no ferromagne-
tism in d &4. However, it has been suggested (Pelcovits
et al. , 1978; Ginzburg, 1981; Goldschmidt, 1983) that a
spin glass phase may occur, and a phase diagram similar
to Fig. 122 has been proposed for d ~4. These calcula-
tions rely mainly on results for m = co for which a
replica-symmetric theory is possible. However, it appears
that replica symmetry breaking is needed for finite m
(Goldschmidt, 1984; Khurana et al. , 1984). Recently it
has been shown by Sompolinsky and Fisher (1985) and
Bray and Moore (1985b) that the m = oo limit is very spe-
cial, in that the spin glass transition occurs even for a sin-
gle site. Hence it is unclear at present when the random-
axis model has a spin glass state. Even in cases where the
random-axis model does not have an equilibrium spin
glass phase, we expect that, like random-field systems, it
will exhibit spin-glass-like characteristics in dynamics
(slowly decaying metastable states, remanent magnetiza-
tion, etc.).

2. Anderson localization

In this section we shall not attempt a review of Ander-
son localization per se, but only mention its relation to
spin glasses. A general review of localization can be
found in Lee and Ramakrishnan (1985).

One of the earliest theoretical papers on the spin glass
problem (Anderson, 1970) asked the question "what is the
real nature of the difference between these materials and
others which exhibit ferromagnetic or other kinds of
long-range ordering?" For a pure ferromagnetic system,
the exchange matrix JJ has eigenvalues Jq, characterized
by a wave vector q, and eigenvectors that are "extended"
in the sense of Anderson (1958). That is to say, that have
an amplitude of order X ' at each of the % lattice
sites. According to mean-field theory, a transition occurs
when g;;J~» ——1 where 7;; is the noninteracting local sus-

ceptibility and J,„ is the largest eigenvalue. A fer-
romagnetic system has a maximum J(q) at q=0. In a
random system one can still formally diagonalize the ex-
change matrix to get eigenvalues J~, but now some or all
of the eigenvectors may be "localized" (Anderson, 1958),
i.e., some may have an amplitude of order unity on a fi-
nite number of sites and zero elsewhere. Anderson (1970)
suggested that the real difference between spin glass and
ferromagnetic systems is that the former have only local-
ized eigen vectors. Although mean-field theory still
predicts ordering when g;;J»=1, this is now qualita-
tively wrong because a small cluster of spins cannot un-
dergo a sharp transition. If all states are localized, it ap-
pears that no transition into any mode can occur; this was
in agreement with experiments at that time (Anderson,
1970). Even if there are some extended states, these will
be in the middle of the band, so Anderson (1970) suggest-'
ed that they may not order either, because nonlinear cou-
plings to the localized modes would reduce the effective

Xi) ~

Hertz et al. (1979) developed these ideas further. By
going beyond mean-field theory and using the self-
consistent spherical (Hartree) approximation, they showed
explicitly that ordering does not occur into a localized
mode. However, a transition to the first extended state at
the "mobility edge" can occur and is interpreted as the
spin glass transition. Hertz et al. (1979) also argued that
the density of states of the inverse susceptibility matrix is
finite at the mobility edge and that, as a result, spin glass
order below Tf will not occur for an isotropic vector spin
model in any dimension because of fluctuations associated
with Goldstone modes.

However, Bray and Moore (1982c) noted that even
above Tf one should work in the basis of eigenstates of
the susceptibility matrix Xij rather than the exchange
matrix Jj. These are different because of nonlinear cou-
plings between spin fluctuations diagonal in the JJ basis.
The transition temperature is where an eigenvalue of the
inverse susceptibility matrix first vanishes. If Tf is
nonzero, Bray and Moore (1982c) show that the corre-
sponding eigenvector must be extended, in agreement with
Anderson (1970) and Hertz et al. (1979). However, they
also prove that the density of states vanishes at zero
eigenvalue, which casts doubts on the conjecture of Hertz
et al. (1979) that Goldstone modes destroy order in vector
spin models for any dimension. The elements of X;J are
not only random, but also correlated up to distances
where spins are correlated, i.e., g'so, which diverges at Tf.
Thus there is an analogy between spin glasses and an
unusual localization problem in which correlations be-
tween the random elements extend over large distances.
This analogy can be made precise for an m-component
vector model in the limit that m~ oo (Bray and Moore,
1982c). We therefore feel it is unlikely that traditional
folklore on the standard (uncorrelated) localization prob-
lem can give correct values for critical exponents or criti-
cal dimensions of the spin glass problem.

The effect of nonlinear interactions between spin fluc-
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tuations diagonal in the J;J basis has been discussed in the
renormalization-group framework by Hertz (1985), who
gives arguments for a phase transition in dimension
d &2. A rather similar "hierarchical" picture has been
given by Feigelman and Ioffe (1984), who make the in-
teresting prediction that there are two critical dimensions
for spin glasses, in addition to the upper critical dimen-
sion d„. For d ~4, there is a phase transition with con-
densation into a delocalized mode. However, for
2&d &4 there is a phase transition "into a strongly
nonergodic state" at a finite temperature, but "this transi-
tion does not have anything in common with macroscopic
condensation into one delocalized mode and it is not
governed by any scaling laws. " The nonlinear susceptibil-
ity "can be approximated with equal success by any
power functions with exponents in the range 4.75—5."

Although the localized modes near the band edge can-
not undergo a sharp transition, they will be frozen over
very long times once the temperature is weH below their
mean-field transition temperature. Hertz (1983c) has
developed a theory for spin glass dynamics along these
lines, allowing for the possibility that a mode about to
freeze out in the mean-field approximation may strongly
overlap with an already condensed mode, in which case
freezing is suppressed. Relaxation times are found to
vary as ex p[ contsl(T —Tf )

" '] in d dimensions where v
is the correlation length exponent of the localization prob-
lem. This theory gives a very plausible description of the
initial stages of freezing at temperatures still some way
above Tf, where frozen spins do indeed form isolated
clusters (Kinzel, 1982a). However, it is not clear to us
that the approximations Hertz (1983c) makes are ade-
quate to describe the strong coupling between modes
which occur close to Tf. The localized modes that freeze
out at highest temperatures may be concrete realizations
of the "clusters" discussed by Tholence and Tournier
(1974; see also Soukoulis and Levin, 1977).

There have also been treatments of the SK model (see
Sec. IV) which use the basis in which the J;J matrix is di-
agonal (Thouless et al. , 1977; Sompolinsky, 1981b; Das-
gupta and Sompolinsky, 1983; Ueno, 1983a, 1983b). A
number of differences from short-range models are found.
All the eigenvectors are extended, because the interactions
are infinite range, and furthermore, for T) Tf, the sus-
ceptibility matrix is diagonal in the representation that di-
agonalizes J;J. However, below Tf the system does not
order with a finite amplitude into any of these modes, be-
cause of strong coupling between them (Sompolinsky,
1981b; Dasgupta and Sompolinsky, 1983). Rather each
mode orders an infinitesimal amount.

One of the difficulties with spin glasses, at least in
mean-field theory, is that one does not know how to form
a symmetry-breaking field that projects out a single ther-
modynamic state. One interesting attempt to do this was
by Bray (1982), who solved the SK model (see Sec. IV) in
the high-temperature phase, including a magnetic field
proportional to the eigenvector with the largest eigenvalue
of the interaction matrix. The effect was to strongly

suppress but not remove the Almeida-Thouless instability,
which signals the appearance of many thermodynamic
states as discussed in Sec. IV.E.

Localization concepts have also proven useful for a
characterization of excited states of vector spin glasses at
low temperatures: extended excited states are spin-wave-
like, but due to the randomness of the couplings there are
also many localized excited states (see Secs. V and VI.C
for more details).

So far we have discussed attempts to understand spin
glasses from our knowledge of the localization problem.
Proceeding in the opposite direction, an analogy has been
made (Davies et al. , 1982) between spin glasses and the
problem of highly localized electrons interacting via the
Coulomb potential (Efros and Shklovskii, 1975; Efros,
1976).

This system, known as an "electron glass, " maps onto
an Ising model in a random field with antiferromagnetic
interactions varying as r ' and with conserved total spin.
At T =0 there is a "Coulomb gap"; the density of states
vanishes at the Fermi energy, somewhat reminiscent of
the vanishing of the internal field distribution P(II), at
H=0, in the SK model [see Eq. (4.106)]. On cooling
from high temperatures Monte Carlo simulations reveal
spin-glass-like freezing (Davies et al. , 1982). At present
there is no convincing evidence as to whether or not this
occurs via a sharp transition or gradual freezing. Since a
random field is present, the transition, if it occurs, would
be analogous to the transition on the AT line (see Sec.
IV.B) rather than the conventional zero-field spin glass
transition. The AT line is most easily characterized by a
divergent spin glass correlation length and relaxation
times. It is more complicated to define an order parame-
ter, because the symmetry is broken by the random fields.
However, N 'Xso, where +so is given by Eq. (4.35), is fi-
nite below the AT hne and zero above it, so it could serve
as an order parameter. Alternatively, one could use

which is a little easier to compute.
Aharony and Imry (1977b) used spin glass analogies in

an approach to the noninteracting localization problem.
They noted that the Green's function related to the con-
ductivity in the localization problem is somewhat analo-
gous to the spin glass susceptibility Xst-. Hence, they ar-
gued, one should set up a Ginzburg-Landau Hamiltonian
for localization with spin-glass-like variables q p. The
fundamental work on localization by Wegner (1979) pro-
ceeded along similar lines but recognized a crucial sym-
metry that had not been noted before. In fact, one sees
from Wegner (1979) that the analogy with spin glasses is
not very strong. The symmetries of the problems are dif-
ferent, since the tensor order parameter in the localization
problem involves diagonal elements in replica space,
whereas only off-diagonal components occur in spin glass
theories, and there is no replica symmetry breaking for lo-
calization. This reinforces our remark above that the crit-
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ical behavior of the two problems is quite different. How-
ever, we believe that some qualitative understanding of
spin glasses can be obtained from our knowledge of the
localization problem.

3. "Ordinary" glasses

The idea that spin glasses have important features in
common with "ordinary" glasses like window glass, vitre-
ous silica, or other amorphous materials is a very old one,
and has been responsible for giving spin glasses their
name. Despite the technological importance of these "or-
dinary" glasses, there has been rdatively httle theoretical
work on them, in contrast to the case of spin glasses. In
fact, the theory of "ordinary" glasses still may suffer
from the lack of a commonly accepted simplified model
analogous to the Edwards-Anderson model of spin
glasses. Thus we shall have to discuss various concepts of
rather different nature here.

Now it is doubtful what can be gained by relating spin
glasses, systems that are still incompletely understood, to
ordinary glasses, system that are even less well under-
stood. Hence we aim at presenting a rather superficial
and qualitative discussion only, emphasizing those prop-
erties for which common features are established experi-
mentally, and briefly summarize the theoretical concepts,
emphasizing these aspects of the theory on which spin
glass theory has had a stimulating influence. Thorough
general reviews are to be found in Doremus (1973), Ziman
(1979), Zallen (1983), and Ja,ckle (1986).

There is again an enormous diversity of amorphous
materials —a few example are covalently bonded glasses
like vitreous silica, the structure of which is modeled by a
"continuous random network" of bonds (Zachariasen,
1932); metallic glasses bonded by isotropic pair potentials,
whose structure is thought of as a dense random packing
of spheres; and amorphous polymers, whose structure is
conceived of as an arrangement of interpenetrating
random-walk-like coils, strongly entangled with each oth-
er. In spite of the diversity in chemical nature, bonding,
and geometric structure, one finds again certain rather
universal properties —particularly the anomalous behavior
of low-energy excitations (see, for example, Phillips, 1981,
and von Lohneysen, 1981, for reviews), and the
anomalous relaxation when one approaches the glass tran-
sition from the fluid side (see, for example, Ramakrish-
nan, 1983; similarities and differences between relaxations
in spin glasses and ordinary glasses are also discussed by
Ngai and Wright, 1984).

The anomalous low-energy excitations show up in a
"linear" behavior of the specific heat for T&1 K ob-
served for one or two decades in temperature (actually
often a law C cc T" with x =1.2—1.3 is a more accurate
description; see, for example, Zeller and Pohl, 1971), rath-
er than the Debye behavior C~ T that one expects due
to phonons in insulators. So, additional low-lying excita-
tions in an amorphous structure must be present. They

also show up in the thermal conductivity E, which
behaves as E ~ T" with 1.8 &y & 2 instead of E ~ T as in
crystals, and in the ultrasound absorption and dispersion
(Hunklinger and Arnold, 1976).

Anderson et al. (1972) and Phillips (1972) showed that
a convincing explanation of all these anomalies was possi-
ble if one assumed a distribution of asymmetric double-
well potentials in the amorphous solid; the two levels
differ in energy by c, and are separated by a potential bar-
rier V. The low-energy excitation then is the tunneling
motion of the considered degree of freedom in this poten-
tial well. Although there is now ample evidence that this
description of a glass at low temperatures in terms of
two-level systems is correct, and that the excitations. are
indeed quantum-mechanical tunneling modes and not
classical thermally activated barrier hopping, an identifi-
cation of the tunneling degree of freedom in terms of mi-
croscopic structural variables is still lacking. There is,
moreover, no description in terms of a more basic Hamil-
tonian from which one could derive any properties enter-
ing this model of two-level systems. The problem of
which entity these two-level systems are is rather hard,
since one is searching for a rather rare degree of freedom
(e.g., at T =1 K, of the order of 10 such two-level sys-
tems per atom are excited).

The general theoretical description of the topologically
disordered glassy state is also a challenging problem (Kle-
man and Sadoc, 1979; Rivier, 1979, 1983; Nelson, 1983a,
1983b; Sethna, 1983; Kleinert, 1984; Nelson and Widom,
1984; Sachdev and Nelson, 1984). Rivier (1979, 1983)
focuses on the "odd lines, " i.e., closed lines threading
through the odd rings in the random network. The num-
ber of these odd lines, their entanglement structure, etc.
are invariant under distortions of the network that do not
break any bonds. This invariance is expressed in terms of
a gauge theory, qualitatively similar to what is done for
spin glasses (Sec. VI.A). Nelson (198a, 1983b) aims rather
at an understanding of the structure of metallic glasses,
considering the idealized situation (also studied by simula-
tions, e.g., Nagel et a/. , 1981, Steinhardt et a/. , 1981,
1983) of identical particles (actual metallic glasses are
formed from two species of atoms having distinctly dif-
ferent size, e.g, Fe and 8, in the right concentration re-
gime). The ground state of just four identical particles
that interact with isotropic pair potentials is clearly a per-
fect tetrahedron, with particles at the vertices. Nelson
(1983a, 1983b) considers the problem of filling space with
such tetrahedra. However, five perfect tetrahedra
wrapped around a common bond must leave a gap, with a
dihedral angle of about 7.4'. The atom near the gap is
"frustrated" because it cannot simultaneously sit in the
minima provided by the pair potentials of its near neigh-
bors. Because of this frustration, which is reminiscent of
the frustration in spin glasses (Sec. III.F), there is no regu-
lar lattice of perfect tetrahedra filling ordinary three-
dimensional space. Closed-packed lattices contain octahe-
dra as well as tetrahedra; the octahedra are necessary for
the periodic structure, though they do not minimize the
energy locally.
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Recent computer simulations on supercooled fluids
(Steinhardt et al. , 1981, 1983) have shown the relevance
of such packing considerations by giving evidence for ex-
tended icosahedral correlations (20 tetrahedra combine,
with only slight distortions, to form a regular thirteen-
particle icosahedron). Now a perfect packing of tetrahe-
dra would be possible if space were not flat but curved.
Of course, it is not admissible physically to have a model
with curved space, and so one removes the average curva-
ture by putting into the structure an appropriate number
of disclination lines. If these disclination lines were ar-
ranged periodically —which would correspond to a period-
ic arrangement of frustration —one would arrive at the
so-called Frank-Kasper phases (Frank and Kasper, 1958,
1959). Thus a disordered network of disclination lines is
the proposed model for the structure of the metallic glass.
The slow relaxation near the glass transition is attributed
to entanglement of these defect lines. Nelson and Widom
(1984), as well as Sethna (1983), who takes a related con-
tinuum elasticity approach, propose an effective free-
energy functional in terms of an order parameter (which
would be uniform and nonzero if the glass had a Frank-
Kasper-type regular structure) that has SO(4) symmetry
From this Sachdev and Nelson (1984) derive an explicit
expression for the structure factor of (nonatomic) metallic
glasses, which is in reasonable agreement with experimen-
tal data for amorphous cobalt.

We next turn to theories on the glass transition. Al-
though in practice its location and some physical proper-
ties of the glass phase depend on the cooling velocity, it is
much debated whether there is an underlying equilibrium
phase transition to the glassy state. Such a transition
would be reached in the hypothetical case when nu-
cleation of the crystal from the metastable undercooled
liquid could be turned off, and so one could let the cool-
ing velocity approach zero.

A phenomenological treatment of the thermodynamics
of the glass transition and the glassy state, which is ap-
plicable even if there is no equilibrium transition, has
been proposed by Jackie (1981). He assumes that at the
glass transition temperature T~ the change of relevant
time scales is so abrupt that for T ~ T~ the thermo-
dynamic variables of interest essentially have the metasta-
ble equilibrium values of the supercooled fluids, while for
T & T~ all slow variables (describing structural relaxation
of the glass, etc.) are essentially quenched in, and so the
glass is locked into one particular configuration (apart
from vibrations; see also Edwards, 1976). With this as-
sumption, the rest entropy of the glass at T =0 can be re-
lated to properties at the glass transition temperature T~
itself. This treatment implies a discontinuous jump of the
specific heat at T~, roughly consistent with experimental
observation.

The first microscopic theory yielding an equilibrium
glass transition was proposed for polymers by Gibbs and
DiMarzio (1958). They considered a lattice model in
which random walks of X steps were put onto the lattice,
as well as empty sites, and allowed for both a bending en-

ergy (where a walk makes an angle at the lattice) and a

van der Waals bond between neighboring occupied seg-
ments. From a mean-field-type calculation they found a
temperature T~ at which the configurational entropy
would turn negative. They interpreted this behavior as an
indication that at T~ a second-order equilibrium phase
transition to the glass state occurs, which in this treat-
ment appears as a state of zero configurational entropy.
In this treatment, the (experimentally established) rest en-
tropy would be a phenomenon of purely kinetic origin,
not intrinsically related to the equilibrium glass transi-
tion. The theory of Gibbs and DiMarzio (1958) explicitly
bears out the so-called "Kauzmann paradox" (Kauzmann,
1948): if one extrapolates the metastable phase from the
region above the glass transition smoothly to low tem-
peratures (i.e., without involving an equilibrium transi-
tion), absurd results such as negative entropies are ob-
tained.

While in the theory of Gibbs and DiMarzio (1958) the
glass transition appears as a second-order transition, the
free-volume theory (Cohen and Turnbull, 1959; Cohen
and Grest, 1979, 1981, 1982; Grest and Cohen, 1980,
1982) implies a first-order equilibrium phase transition
underlying the glass transition. The free-volume model
(Cohen and Turnbull, 1959) makes a number of
phenomenological assumptions: (i) It is possible to associ-
ate a local volume U with each molecule. (ii) When U

exceeds a critical value U„ the excess U —U, contributes to
the free volume. (iii) Molecular transport occurs only
when voids having a volume greater than some critical
value U* form by the redistribution of the free volume.
(iv) No local free energy is required for free-volume redis-
tribution. Therefore the statistics of liquidlike cells be-
comes a problem analogous to the percolation problem: a
liquidlike cell is in a liquidlike cluster only if it has z
neighbors that are also liquidlike (Cohen and Grest,
1979). In order to have a glass, the liquidlike clusters
must be well separated from each other, while in the
fluid, they form an infinite percolating net. In the purely

geometric percolation problem the transition between
these two states is of second order, but inclusion of a suit-
able free energy f ( U) depending on the cell volume makes
this equilibrium transition underlying the glass transition
a first-order transition. Hence the transition from the
glass to the fluid is something like the "condensation" of
free volume. Although a percolation threshold is not
reached, the size distribution of liquidlike cells (the only
kind that support diffusion) is responsible for a relaxation
proportional to exp[ (t/~)&], where ~—is some relaxation
time and g some exponent. This behavior is consistent
with appropriate experiments, according to the discussion
given by Cohen and Grest (1981, 1982). Although this
approach clearly is very phenomenological, it has had re-
markable success in "fitting" a variety of experimental
data, including the dramatic increase in viscosity of the
supercooled liquid as it approaches the glass transition
[typically the viscosity follows the Vogel-Fulcher law
(Vogel, 1921; Fulcher, 1925) for a broad range of tem-
peratures, but deviates from it very close to TI]. Dynam-
ic Monte Carlo simulations of glass transitions in dense
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polymer states (de la Batie et al. , 1984) might also be in-
terpreted by this theory.

However, in spite of this, there is no agreement that
this approach is a reasonable framework, and very dif-
ferent ideas are also discussed in the literature. For exam-
ple, Chui, Williams, and Frisch (1982) draw a parallel be-
tween the glass transition and the roughening transition
of grain boundaries. Thorpe (1983) and Phillips and
Thorpe (1985) relate the glass transition not to ordinary
("scalar" ) percolation but to "vector percolation" (at the
threshold for vector percolation, the elastic restoring force
of a lattice vanishes). Phillips (1979, 1981, 1983) has in-
troduced concepts such as "constraint couriting argu-
ments" to explain whether a material should have a glass
transition. Then there are a number of proposals that
glass transitions can occur as singularities appearing in ki-
netic quantities only (Bengtzelius et al. , 1984; Fredrick-
son and Andersen, 1984; Leutheusser, 1984; Das ei al. ,
1985; Leutheusser and Yip, 1985; Edwards and Vilgis,
1986). Static quantities at this transition remain regular.
For example, Edwards and Vilgis (1986) suggest that the
diffusion constant of a system of hard rods in solution
vanishes according to a power law when a critical concen-
tration is reached (while a Vogel-Fulcher-type regime ex-
ists as a precursor effect). Closer to real glasses are the
theories of Leutheusser (1984) and Leutheusser and Yip
(1985), who study the kinetic theory of hard spheres, and
of Das et al. (1985), who start from hydrodynamic equa-
tions and find a transition where the viscosity diverges as
a power law.

The idea that glass transitions might be purely kinetic
has a certain attractiveness; however, when one applies
similar concepts to spin glasses (Cxotze and Sjogren, 1984)
one arrives at variants of dynamic mean-field theories.
There, the transition shows up in the divergence of a stat-
ic quantity as well, the nonlinear susceptibility. Thus it is
conceivable that in the above theories there is a corre-
sponding appropriate static quantity, which would also
show the transition, has not been looked at yet. Accord-
ing to the ideas of Nelson (1983a, 1983b) and Steinhardt
et al. (1981, 1983), one would need a quantity related to
the quasi-icosahedral order of Frank-Kasper phases in the
same way as the Edwards-Anderson order parameter is
related to the uniform magnetization. We emphasize that
our comments on this point obviously are rather specula-
tive, and both lack of space and lack of expertise prevent
us from giving a more careful assessment of the merits of
the various approaches to the glass transition.

Vll. CONCLUSIONS: TO WHAT EXTENT
ARE SPIN GLASSES NOW UNDERSTOOD'P

The freezing phenomena observed in spin glasses have
proven difficult to understand despite an enormous num-
ber of papers on the subject, many of which we have been
unable to mention in this review.

One of the problems is that phase space has a compli-
cated landscape of valleys. Barriers between valleys grow

as the temperature is reduced, so eventually the system
behaves nonergodically, being trapped in a single valley.
for the duration of an experiment. one may ask, what is
the generalization of statistical mechanics that describes
this situation? Unfortunately, little progress has been
made in applying nonequilibrium statistical mechanics to
spin glasses, so, to our knowledge, there is no detailed
theory of slowly relaxing metastable states, for example.
In mean-field theory, discussed in Sec. IV, the situation is
a little better. Barriers diverge i.n the thermodynamic lim-
it, and one can calculate the properties of a single thermo-
dynamic state (otherwise called "phase, " "thermodynamic
state, " "pure state, " or "ergodic component") of a given
free energy. For example, the spin glass order parameter
for a state of minimum free energy is given in the Parisi
theory by q(x =1). Such quantities are of interest be-
cause one might hope to prepare the system in a state of
near-minimum free energy by slow cooling. However,
there does not appear to be a satisfactory theory, even at
the mean-field level, which can describe relaxation follow-
ing a change, for example, in the magnetic field. Note
also that it is not clear to what extent mean-field theory is
relevant to the real world.

Ariother difficulty is that we are dealing with a random
system for which some averaging over the disorder should
be performed. This is particularly troublesome for spin
glasses where, at least in mean-field theory, certain quan-
tities of interest do not have the usual self-averaging
property (see Secs. III.A and IV.F). Averaging is usually
carried out by means of the replica trick (see Sec. III.C),
which rather obscures the physics. However, very recent-
ly considerable progress has been made on deriving the
mean-field theory without replicas (Mezard et al. , 1986a,
1986b) (see Sec. IV.F), so we finally seem to be entering
the "post-replica" age;

In fact, the mean-field theory, by which we denote the
exact solution of - the Sherrington-Kirkpatrick (1975)
model, is now rather well understood. Parisi's solution
seems to be exact, and its physical significance, in terms
of the many-valley structure of phase space, is firmly es-
tablished (see Sec. IV.E).

The question of order parameters has aroused a lot of
discussion, so we now summarize what we think is the
current position within mean field theory In -general, or-.
der parameters are a set of quantities that describe how
the low-temperature ordered state differs from the high-
temperature disordered state, where, by definition, all or-
der parameters are zero. For the mean-field theory of
spin glasses one has to specify whether the term "low-
temperature ordered state" refers to a single thermo-
dynamic state or to the set of states in the statistical sum
In the former case the order parameter is very simple.
Ordering in a single state of minimum free energy is
described by the Edwards-Anderson order parameter qEA,
Eq. (3.63), which is given by q (x = 1) in the Parisi theory.
It is the same for all states of minimum free energy and
for all bond configurations. On the other hand, the order
parameters describing the set of all phases in the statisti-
cal sum are much more complicated because (a) one has
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to include overlaps between different states (see Sec. IV.E)
and (b) these overlaps are not self-averaging (see Sec.
IV.F). Hence one defines an overlap distribution for a
single bond configuration Pz(q), given by Eq. (3.86), and
the order parameter is then the distribution among dif-
ferent bond configurations of this distribution. A more
convenient description has been given by Mezard et al.
(1984a, 1984b) in terms of the set of distributions II~( Y),
where 7 is an abbreviation for

1

Yz(q) =f Pq(q)dq, (7.1)

y denotes y (q), which is the average of Y, i.e.,
y(q)=[YJ(q)],„, and II„(Y) is the probability among dif-
ferent bond configurations of obtaining a given value for
7' at the q value where the average of Y is y. The set of
functions II~( Y) together with a knowledge of y(q) [or
equivalently, the average distribution P(q)] form the or-
der parameter. This is a useful formulation because the
functions II~( Y) are smooth and are universal in that they
do not depend upon the order-parameter function q (x).

The above discussion of order parameters is for mean-
field theory. As mentioned below, there may be only a
single thermodynamic state, for real systems in three di-
mensions, in which case the order parameter would be
just a single number describing the ordering in this state.

Another topic on which we wish to comment is the
question of broken symmetry in spin glasses. In zero
magnetic field the system is invariant under inversion of
the spins. The spin glass state where (S;)T&0 breaks
this symmetry. The symmetry tells us that for every ther-
modynamic state there is another one of the same free en-

ergy with spins inverted. In mean-. field theory we know
that there are additional states, unrelated by symmetry,
with virtually the same free energy. We call this
phenomenon "ergodicity breaking. " In addition, there is a
transition in a finite field for Ising spins, at least in
mean-field theory. This Almeida-Thouless (AT) line has
no symmetry breaking associated with it because spin in-
version symmetry is broken in any nonzero field. Hence
ergodicity breaking, but not symmetry breaking, occurs
ori the AT line. In this sense one could say that it is a
"purer" spin glass phenomenon than the zero-field transi-
tion, which additionally has the standard feature of sym-
metry breaking. Vector spin glasses in a uniform field
have a Gabay-Toulouse (GT) line at which symmetry
breaking in the trarisverse directions take place. An AT-
like transition without symmetry breaking would prob-
ably occur for a vector spin glass in a random staggered
field that pointed with equal probability in all directions.

If mean-field theory is well understood, less is known
about the behavior of systems with short-range interac-
tions. It is clear that spin glass freezing involves strong
cooperative effects, and both the spin glass correlation
length /so and the relaxation times grow as T~Tf+.
Whether they diverge at or near the apparent freezing
temperature is still not 100% clear. The most recent nu-
merical calculations on models with Ising spins (Bhatt

and Young, 1985; Bray and Moore, 1985a; McMillan,
1985a; Ogielski and Morgenstern, 1985) find reasonably
good evidence for a transition (where /so diverges) at a fi-
nite temperature in dimension d =. 3. They are consistent
with the lower critical dimension dt (see Sec. V.E), being
between 2 and 3. However, because of difficulties in
working with very large systems in the temperature region
of interest, we feel there is still a faint possibility that
Tf =0 111 d =3. If one assumes Tf ls flIllte, one can ob-
tain rough estimates for critical exponents by fitting the
data (most of which are far above Tf) to the expected
power-law form. For static exponents, Bhatt and Young
(1985) obtain

y=3.2, P=0.5, v=1.4, (7.2)

while for dynamics the most accurate estimate is due to
Ogielski (1985) who found

(7.3)

By contrast to these findings for the Ising model, all
approaches for isotropic Heisenberg models (see Banavar
and Cieplak, 1982a, 1982b; McMillan, 1985b; Morris
et al. , 1986; Olive et al. , 1986) find Tf 0and proba——bly
di ——4. Furthermore, simulations for site-disorder Heisen-
berg models with RKKY interactions suggest Tf ——0 in
d =3 if there is no anisotropy (Walstedt and Walker,
1981, 1982; Chakrabarti and Dasgupta, 1986). Bray et al.
(1986) have proposed that Heisenberg systems with
RKKY interactions behave differently from short-range
models and are at, rather than below, the lower critical di-
mension, though this is still compatible with Tf ——0.

Although orie would think that the RKKY Heisenberg
model is most closely related to real systems, there are a
number of experiments on different systems that find a
nonzero Tf and, for the exponents, even quote numbers
close to the above Ising values, Eqs. (7.2) and (7.3). For
y, see, for example, Ornari et al. (1983), Beauvillain, Du-
pas, et al. (1984), Beauvillain, Chappert, et al. (1984), and
Barbara and Malozemoff (1983). For 5, which is
(P+y)/2 according to scaling, see, for example, Bon-
temps et al. (1984) and Hamida and Williamson (1985).
For zv, see Bontemps et al. (1984) and Hamida arid Wil-
liamson (1985). It is not clear whether one should con-
clude that the critical properties of real spin glasses above

Tf agree rather well with the numerical results on Ising
models: first of all, the accuracy of the numbers quoted
above is very uncertain —even if it is correct that a transi-
tion at Tf &0 exists, it is not established that the critical
region is wide enough for the above fits to be meaningful
[remember that a few years ago it was claimed zv=1
(Kirkpatrick, 1980)]. Second, a similar reservation must
be made about the experiments quoted —most of the data
are really outside of the region one would identify as the
critical region for traditional phase transitions. In fact, a
recent attempt to measure exponents closer to Tf has re-
sulted in rather different values, e.g. , y=2. 2 (Bouchiat,
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1986). Third, most experimental systems have a predom-
inantly isotropic exchange interaction with relatively
weak anisotropy, and current theories indimte Tf ——0 for
a completely isotropic system. If this is so, the anisotro-

py, though generally weak, must be playing an important
role; one should expect that the freezing temperature is
affected if the anisotropy is changed by addition of suit-
able impurities. Moreover, a crossover should take place
between Heisenberg behavior well away from Tf and Is-
ing behavior close to Tf. To our knowledge, there is no
experimental evidence for this. A complete theory for
T & Tf, involving both RKKY interactions and anisotro-

py, mould be very desirable.
Let us suppose it is correct that Tf is finite in d =3 for

Ising spin glasses or Heisenberg spin glasses with aniso-
tropy. Then one would have to ask whether the low-
temperature state is similar to that of mean-field theory,
where there is (a) spin glass ordering and (b) a complicat-
ed ordered state in which several thermodynamic states
contribute to the statistical sum, so I'(q) is nontrivial. It
has been suggested (Bhatt and Young, 1985; Ogielski,
1985) that there might be no ordering in the low-

temperature state, but that correlations decay to zero with
a power of the distance. More recently Fisher and Huse
(1986) have argued that there is spin glass order, and
correlations approach this finite limit at large distances
with a power-law decay. This also appears to be compati-
ble with the numerical data of Bhatt and Young (1985)
and Ogielski (1985). Arguments have been given that
there is only one thermodynamic state in d =3 (McMil-
lan, 1984d; Moore and Bray, 1985; Fisher and Huse,
1986). Moore and Bray (1985) have proposed that this
occurs even for all d &6, while Fisher and Huse (1986)
suggest that any short-range model has only one thermo-
dynamic state. Interestingly, if there is just one state in
d =3, then real spin glasses are simp/er in some respects
than mean-field theory. This conclusion is also corro-
borated by scaling and renormalization-group arguments
for the critical behavior (Fisher and Sompolinsky, 1985).
If there is only a single thermodynamic state, and hence a
trivial P(q), there is no AT line in a magnetic field, be-
cause this separates a region of the mean-field phase dia-
gram with many states from the region with a single
state. Hence the best experimental test of whether a
mean-field description of the low-temperature phase is
correct would be to look for an AT line. The clearest sig-
nature of this would be divergent relaxation times in a
field. We feel that experiments done so far which identify
characteristic lines in the H-T plane as AT lines (or GT
lines) are not definitive because they do not show convinc-
ingly that the relaxation times actually diverge. Further-
more, AT and GT lines would (if they both existed) have
a similar shape at low fields (Fisher and Sompolinsky,
1985) for d & 6, in contrast to mean-field theory. If there
is only a single thermodynamic state, and therefore
mean-field theory is wrong below Tf, what is the correct
description? A first step towards answering this question
has been taken by Fisher and Huse (1986), but more work
is clearly needed.

Progress has been made in understanding some proper-
ties of spin glasses well below the observed Tf where, in-
dependent of whether at Tf an equilibrium transition
occurs, the system is trapped in a metastable state.
The triad model (e.g. , Henley et al. , 1982) involving
Dzyaloshinskii-Moriya (DM) anisotropy (Fert and Levy,
1980, 1981; Levy et al. , 1982) seems to explain ESR
(Schultz et al. , 1980; Gullikson et al. , 1983) and torque
measurements (e.g., Hippert et al. , 1982) fairly well. The
DM anisotropy may also account for displaced hysteresis
loops (Prejean et al. , 1980). However, the assumption of
rigid spin rotations made in the triad model appears to
break down when the spins are rotated by a large angle
away from their original directions.

Of course, there is still the problem of understanding
the dynamic response of spin glasses well below Tf after
changes of the magnetic field. Although some features of
the behavior are reproduced qualitatively by Monte Carlo
simulations (e.g., Binder, 1977a, 1977b, 1977c; Kinzel,
1979; Kinzel and Binder, 1983), a more quantitative
understanding clearly is lacking. Particularly interesting
is the observation of "stretched exponential demy"
( oc exp[ (t/~—) ], with y & 1) of the remanent magnetiza-
tion (e.g., Chamberlin et a/. , 1984). There are several "ex-
planations" of such a law, but it is not obvious which of
them, if any, is the correct one for real spin glasses. It
should also be remarked that the recent simulations of
Ogielski (1985) find that a decay of this type also occurs
in the spin-autocorrelation function even well above Tf,
and that this stretched exponential decay is familiar from
relaxation in "ordinary" glasses.

It is interesting to ask whether there are other analogies
between spin glasses and real glasses (see Sec. VI.F.3). So
far the analogy does not seem to have been pushed much
beyond the fairly obvious facts that both systems have de-

generacy and slowly relaxing metastable states. It would
be very interesting to establish whether there is a charac-
teristic length in the glass problem, too, analogous to the
spin glass correlation length, which grows as the glass
temperature is approached from above. On the other
hand, features that seem similar when superficially ob-
served may not have the same origin: while for glasses
there is agreement that the (nearly) linear temperature
variations of the specific heat are due to two-level sys-
tems, for spin glasses a linear specific heat is accounted
for by linear (oscillatory) spin excitations. While a glass
obviously has well-defined long-wavelength acoustic pho-
tons, it is not so clear that magnon-type excitations be-
come undamped in spin glasses in the long-wavelength
limit.

Relatively little is known when we leave the canonical
spin glasses and consider systems where ferromagnetic
and spin glass orderings compete: are there phases with
both types of ordering simultaneously present? Are there
additional types of phases (random domain states, or fer-
romagnets with power-law decay of correlations, etc.)?
The behavior near reentrant ferromagnetic phase
boundaries needs further experimental clarification, as
well as corresponding theoretical work. For example,
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what are the necessary ingredients of a model if it is to
have a reentrant phase boundary? Another class of sys-
tems that deserves careful further study is that of the qua-
drupolar glasses; again the question of similarities and
differences with spin glasses comes up.

For the future we anticipate that more experimental
work will be carried out to clarify the form of the slow re-
laxation, both above and below Tf, as well as to better
characterize the critical singularities near T~. On the
theoretical side, we expect a continuation of numerical
calculations to further elucidate the nature of spin glass
freezing in three dimensions. A breakthrough in analytic
approaches for d =3 would be highly desirable, in order
to clarify our understanding of lower critical dimensions,
universality classes for spin glasses, etc.; unfortunately it
is not clear from which direction such a breakthrough is
likely to come. Since thorough numerical studies of two-
dimensional models have been undertaken, and these have
Tf ——0, but still a very interesting dynamical freezing, it
would be interesting if one could find real two-
dimensional systems experimentally.

Finally, we expect that insight gained from spin glasses
will continue to be fruitfully applied to other diverse areas
of science, such as neural networks (Little, 1974; Hop-
field, 1982), models for evolution (Anderson, 1983), and
optimization problems (Kirkpatrick et al. , 1983).¹teadded in proof. Since the main text of this article
was completed, the enormous activity in this field has
continued. In this note, we do not attempt to fully cover
all this very recent material; rather we mention briefly
only a number of papers which we feel are particularly
relevant to the topics discussed in the main text.

Experimental work addressing the question of whether
there occurs an equilibrium phase transition has been
presented by Beauvillain et al. (1986), Courtenay et al.
(1986) and by Vincent et al. (1986). Beauvillain et al.
(1986) analyze the equation of state above Tf in a mag-
netic field for the amorphous manganese aluminosilicate
(which has Tf ——2.95 K) and the amorphous manganese
fluorophosphate spin glass (which has Tf ——2.80 K).
While the exponent y is about 3.5 for both materials, the
scaling fit yields p = 1.4+0. 1 for the former and
p=0. 8+0.1 for the latter system. Vincent et al. (1986)
analyze the dynamic susceptibility of the
CdCr2~0 85In2~0 &5S4 spin glass in a way completely
analogous to the work by Bontemps et al. (1984, 1986)
described at length in the main text. They obtain rather
similar conclusions: the data can be fitted either with
T, =0 or with T, = 16.7 K; but in the former case a very
large exponent (zv= 11) in the formula of Binder and
Young (1984) would be needed, and a somewhat unphysi-
cal prefactor. On the other hand, with T, = 16.7 K an ex-
ponent zv=6. 9+0.9 results, similar to Bontemps et al.
(1984, 1986) and to the simulations of Ogidski (1985).
Hence, these experiments are also in favor of a finite-
temperature transition, but questions about the precise
values of the critical exponents remain, see, e.g., Levy and
Ogielski (1986) and Souletie and Tholence (1985, 1986).
Particularly interesting in this context is the work of

Courtenay et al. (1986) who study the effect on critical
exponents, of changes in the anisotropy.

Additional experimental work is devoted to a study of
the anomalous slow relaxation of spin glasses below Tf
[e.g., Nordblad, Lundgren, and Sandlund (1986); Nord-
blad et al. (1986); Reim et al. (1986); Ocio, Alba, and
Hammann (1985); Ocio, Bouchiat, and Monod (1985,
1986); Alba et al. (1986); Ferre et ai (1.986); Carre et al.
(1986); Tholence et al. (1986)]. For example, Ocio et al.
(1985a) and Alba et al. (1986) study the temporal scaling
behavior of the aging behavior in CsNiFeF6 spin glasses
and in AgMn 2.6%. In both cases they find that the time
decay of the thermoremanent magnetization can be ac-
counted for by a phenomenological theory of the aging of
amorphous polymers due to Struik (1978), for a wide
range of both waiting times and observation times. The
data are very similar to related experiments of Hooger-
beets et al. (1985, 1986) and Nordblad, Lundgren, and
Sandlund (1986); Nordblad et al. (1986); but the analysis
and interpretation is somewhat different. Unlike the
polymer case, the "master curves" resulting from the
present approach distinctly depend on temperature.
These "master curves" can be represented by products of
a power law with a stretched exponential; moreover, this
behavior is consistent with analyses of the magnetic noise
spectrum in spin glasses (Ocio et al., 1986). An interest-
ing analysis of the magnetic noise in Euo ~Sr06S is given
by Reim et al. (1986); the authors suggest that their data
show the validity of the fluctuation-dissipation theorem
both above and below Tf. The power law decay of the
noise spectrum is again related to the stretched exponen-
tial form of the decay of the remanent magnetization in
this material (Ferre et al. , 1986). We consider the proper
explanation of these stretched exponential decay laws (see
also Continentino and Malozemoff, 1985; Campbell,
1986) as an interesting challenge for future theoretical
work.

Aeppli et al. (1986) find from neutron scattering stud-
ies of Euo q4Sro 46S that not only the remanent magnetiza-
tion but also the magnetic short-range order on length
scales less than 75 A depend on the cooling history of the
system. This implies that also on a rather small scale the
system can be frozen on several distinct "valleys. " Final-
ly, we draw attention to recent measurements of the com-
plete temperature-concentration phase diagrams of quad-
rupolar glasses (Elschner et al. , 1985), and to a recent re-
view of experimental work on spin glasses emphasizing
materials containing rare earths (Maletta and Zinn, 1986).

Turning now to the theory, we emphasize that recent
studies (Singh and Chakravarty, 1986; Ogielski, 1986;
Morgenstern, 1986; Reger and Zippelius, 1986) have con-
tinued to find evidence for a finite transition temperature
for Ising systems in three dimensions, while a novel type
of Monte Carlo simulation which greatly reduces the re-
laxation times in comparison to standard methods
strengthens the evidence that in two dimensions the tran-
sition is at T =0, with xsG 0- T (Swendsen and Wang,
1986). Singh and Chakravarty (1986) have greatly extend-
ed the high-temperature series for the +J model in three
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and four dimensions and find results in good agreement
with Monte Carlo simulations of Bhatt and Young
(1985a) and Ogielski and Morgenstern (1985). Ogielski
(1986) studied for the +J model the domain-wall free-
energy distribution [see also Caflisch et al. (1985b) for a
discussion of the scaling behavior of the domain-wall free
energy], while Morgenstern (1986) investigated the model
with Gaussian bonds by a transfer matrix technique. The
critical temperatures and exponents found by these two
approaches agree reasonably well with the earlier Monte
Carlo data.

Statics and dynamics of the three-dimensional +J
model are studied by Reger and Zippelius (1986) with
high-temperature series expansions. Although these series
are rather short, they obtain the phase diagram with a
paramagnetic phase, a ferromagnetic phase, and a spin
glass phase. By studying the moments of the frequency-
dependent order parameter susceptibility they find that
dynamic scaling holds at the spin glass transition where
the relaxation time diverges with a power law and the ex-
ponent is similar to that given by Ogielski (1985). The
multicritical points seem to lie on the Nishimori (1980,
1981, 1986) line where the energy is nonsingular, and
which is given, in general, by the equation
I'(Jtj)/I'( —J~j)=exp(2JJ/k&T). This behavior is rather
similar to the infinite-range model (Georges et a/. , 1985).
Furthermore, the rather curious fixed point on the
ferromagnetic-paramagnetic phase boundary found for
the two-dimensional Ising problem by Southern and
Young (1977) and McMillan (1984c) also lies very close to
the Nishimori line in the more accurate work of McMil-
lan (1984c). The physical significance of the Nishimori
line and its relation to the multicritical point needs fur-
ther clarification.

In this review, we have not discussed reentrant spin
glass behavior very much. Many experimental systems
undergo the sequence of phases paramagnet-ferromagnet-
spin glass for a range of concentration but this behavior is
difficult to reproduce theoretically and does not occur in
mean-field theory (Sec. IV) either for Ising or Heisenberg
systems. Recently, Saslow and Parker (1986) have investi-
gated this problem for an XP spin glass on the square lat-
tice by solving iteratively the local mean-field equations.
They find the magnetization initially increases on lower-
ing the temperature, but then decreases due to freezing of
the transverse spin components. Clearly, more work still
needs to be done on understanding the basic mechanism
for reentrant behavior, which also needs to be studied
more extensively by experiment (for recent work see, e.g.,
Mirabeau et al. , 1986 and Campbell et al. , 1986).

When this review was written, available numerical re-
sults (e.g., Olive et al. , 1986; Jain and Young, 1986;
Morris et al. , 1986; Banavar and Cieplak, 1982a, 1982b;
Cieplak and Banavar, 1984; McMillan, 1985b) suggested
that isotropic vector spin glasses are very different from
Ising systems and do not have a transition in d =2 or
d =3. However, Kawamura and Tanemura (1985) have
found evidence for a transition in Villain s (1977a) chirali-
ty variables in a two-dimensional XF spin glass by Monte

Carlo methods. They do, however, agree with earlier
Monte Carlo work that there is no Edwards-Anderson or-
der. While there is some doubt whether the results at the
lowest temperatures were fully equilibrated, this interest-
ing result suggests that more remains to be understood
about isotropic vector systems in two and three dimen-
sions, Kawamura and Tanemura (1985) suggest that their
results could possibly account for spin glass behavior in
the quasi-two-dimensional system Rb2Mn~ ~ ~Cr~ C14
(Katsumata et al. 1984).

Derrida et al. (1986) present a method by which one-
dimensional random models can be constructed which are
exactly soluble at a particular temperature, and review
other exact results on random systems in one dimension.
Colborne (1986b) shows that the remanent magnetization
in the one-dimensional Gaussian spin glass decays as
M(t) ~ exp[ —(t/r)' ] where r is a relaxation time.

Athanasiu et aL (1986) show that the ultrametric struc-
ture of spin glass states is invariant under redefinitions of
the metric (i.e., if the distance between states is measured
not by the order-parameter overlap but by the overlap of
other quantities, such as, coarse-grained magnetization,
energy density, etc.).

Thouless (1986) extends the solution of an Ising spin
glass on the Cayley tree obtained by Bowman and Levin
(1982) to a now zero magnetic field, and shows that an
AT line occurs. It should, however, be emphasized that
frustration occurs on a Cayley tree because of competition
between the bonds and the boundary conditions on the
surface where a finite fraction of the spins lie. This, is dif-
ferent from the way it occurs in a conventional lattice
where one has closed loops of bonds. It is therefore still
unclear whether an AT line would occur for a short-range
system in some large (but finite) dimensions. While Fish-
er and Huse (1986), on the basis of droplet-model-type ar-
guments, have suggested an AT line only occurs in the
infinite-range model, their reasoning is criticized by Vil-
lain (1986), who shows that this result sensitively depends
on assumptions about the hierarchical nesting of droplets
inside of droplets. In addition, Bray and Moore (1986)
extend the scaling considerations mentioned in Sec. V to
develop a detailed one-parameter-scaling theory of the or-
dered phase of spin glasses in low dimension, which also
addresses this problem. In terms of the exponent y,
which describes the growth of the characteristic coupling
with length scale L at zero temperature, J(L) cc JL~, the
condition for the absence of an AT line is y [d/2 (see also
McMillan, 1984d)]. Their theory implies that the Parisi
overlap function P(q) is trivially a 5 function, and that
orie has a nonzero order parameter for T ~ Tf, while at
the same time the connected correlation function
[(SOS+ )T],„—[(S~ )T.],„has a power-law decay with
distance R, and the magnetic equation of state responds
in a singular fashion to the field H, m„„s~h
While y is estimated as y=0.2 for d =3, not much is
known on y for higher dimensions. Another interesting
prediction of Bray and Moore (1986) is that there is an ef-
fective dynamic AT line, describing the fact that observa-
tion time t,b, and relaxation time become comparable
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(similar in spirit to the discussion in Sec. V.E but adapted
to a situation with d &di); this line is given by the equa-
tion

(H/T ) cc[ln(rob, /to)] { ~ ~(1—T/T, )r+~,

where to is a microscopic time and g describes how free-
energy barriers scale with length (EI' ~L ~). The question
is still open, however, to identify the range of dimen-
sionalities for which this one-parameter-scaling theory
holds.

Apart from this work which mostly addresses the
short-range spin glasses, there have also been considerable
recent efforts to extend mean-field theory to other cases:
quadrupolar glasses (Kanter and Sompolinsky, 1986;
Goldbart and Sherrington, 1985); quantum problems
(Nishimori et al. , 1986; Usadei et al. , 1983; Brieskorn
and Usadel, 1986; Ishii and Yamarnoto, 1985; Usadel,
1986), etc. Also systems with random anisotropy axes
find increasing attention (e.g., Jagannathan et al. , 1986,
Fischer and Zippelius, 1985, 1986). However, the exten-
sion of concepts of spin glass research to optimization
problems and to brain modeling is probably the field
growing most quickly, as is evidenced by the papers col-
lected in van Hemmen and Morgenstern (1986).
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