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Ultrametricity is a simple topological concept, but its appearance in the language of physicists is recent.
This review provides all the elementary background {from mathematics, taxonomy, and statistical physics)
and surveys the main fields of development (spin glasses, optimization theory). Static and dynamic aspects
are covered. Prom present knowledge, one can already draw some tentative conclusions on the common
causes for the occurrence of ultrametric structures in nature. Some perspectives on unresolved problems in

physics and biology are also presented.
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I. INTRODUCTION

The first mention, to our knowledge, of the word ul-
trametricity in a physics journal is quite recent (Mezard
et al. , 1984a,1984b). The occasion was an investigation
af the mean-field theary of spin glasses, and the discovery
of an ultrametric structure for the distribution of pure
states in configuration space came as a surprise. None of
the authors had previous knowledge of this mathematical
concept, despite its basic simplicity and the fact that it
had been maturing in mathematics since the turn of the
century.

Several times in the past (in the case of relativity, quan-
tum mechanics, and topological defects, to name a few) a
similar surprise has occurred and intrigued physicists and
laymen alike: the observation that mathematical concepts
and tools, useful for the development of physics, had al-
ready been invented and elaborated by mathematicians,
for purely theoretical reasons and without any preconcep-
tion of their possible applications.

The advent of ultrarnetricity in physics is perhaps a rel-
atively minor event, compared to other breakthroughs.
No hard mathematical formalism is involved. But
perhaps for this reason, because the concepts are easy to
visualize and pervasive in many sciences (statistical phys-
ics, optimization theory, biology) (Toulouse, 1984), it is an
amusing story to tell. And some readers, like Monsieur
Jourdain, will acquire a new appreciation of already fami-
liar lore.

Because ultrametricity is a newcomer in physics, this
review gives unusual attention to history and perspectives.
The mathematical background is introduced through its
historical development (Sec. II). Perceptian of the practi-
cal relevance of ultrametric structures emerged first in
taxanomy (Sec. III). Emphasis is given to the theory of
spin glasses, which is an archetype of the physics of frus-
trated disordered systems, and which revealed the impor-
tance of nontrivial ultrametricity. Accordingly, Sec. IV is
our "piece de resistance. " Combinatorial optimization
problems, of which the traveling salesman problem is an
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766 Rammal, TouIouse, and Virasoro: UItrarnetricity for physicists

archetype, and other complex problems in engineering
and biology have energy landscapes that are amenable to
similar analysis (Sec. V). Basic concepts of classification
theory and measurement of deviations from ultrametricity
are presented in Sec. VI. Random walks on regular ul-
trametric spaces and simulated annealing dynamics are
discussed in Sec. VII. Section VIII offers perspectives on
some open biological problems. Finally, in Sec. IX, the
sources for ultrametricity in the natural sciences are surn-
marlzed.

x =—ao+ a ~p + . . +a;p' (mod p'+') for all i .

Actually it can be verified that any integer, positive or
negative, can be represented by a sum g,. Oa;p', with
0 (a; (p —1. But an arbitrary infinite series does not al-
ways represent an integer.

Hensel rea1ized that, with the inclusion of negative ex-
ponents, he could represent not only integers, but also ra-
tional numbers. Thus a rational number can be represent-
ed as a formal sum

II. ULTRAMETRICITY IN MATHEMATICS g a;p' with 0&a; &p —1, a„~0,

A. Definitions

A metric space is a space endowed with a distance. A
distance, in general, obeys the triangular inequality

d(A, C) &d(A, B)+d(B,C),
where A,B,C are any three points of the space.

The ultrametric inequality is a stronger inequality:

d(A, C) (MaxId(A, B),d(B, C) I .

(2.1)

(22)

A distance that satisfies the ultrametric inequality is
called an ultrametric distance. A space endowed with an
ultrametric distance is called an ultrametric space.

9. History

+ g a;p' with 0&a; &p —1,

where the number p and the coefficients a; are natural in-
tegers. Such a sum represents an integer x if

The following historical sketch owes a great deal to the
Abrege d'histoire des mathematiques, written under the
direction of Jean Dieudonne, one of the founders of Bour-
baki (Dieudonne, 1978). Useful insights from Benzecri
(1984) and invaluable guidance from Amice (1975) are
gratefully acknow1edged.

A natural starting point for the present review is the ar-
ticle published in 1897 by Kurt Hensel (1861—1941), in-
troducing the notion of p-adic numbers. This was part of
algebraic number theory. Kronecker (a professor at Ber-
lin, under whom Hensel studied) had published in 1882 a
famous memoir on the foundations of this recently revi-
gorated branch of mathematics. However, Hensel's idea
was so novel and unexpected that it remains in the history
of mathematics as a famous example of work developed
in almost complete isolation. Only fifteen years later did
the situation begin to change, with the introduction of
simple topological notions in the field of p-adic numbers.
This evolution is representative of the invasion of many
branches of mathematics by the language of geometry.
Very Inuch the same trend, perhaps less surprisingly, has
taken place in physics.

I.et us consider the forrnal sums

where r is a relative integer (positive, negative, or zero);
such a representation is unique. The set of all formal
sums is denoted Q~ and is called the field of p-adic num-
bers; it contains Q, the usual field of rational numbers,
but is distinct from it.

At the beginning of the century, the notations of topol-
ogy were spreading and, in 1906, M. Frechet introduced
the general notion of metric space. A metric space E is a
space for which a distance function d (x,y) is defined for
any pair of elements (x,y) belonging to E. The distance
function takes non-negative values and satisfies three
properties (obeyed by the usual Euclidean distance),

(i) d(x,y)=0-- - x =y,
(ii) d(y, x)=d(x,y), (2.3)

(iii ) d (x,z) & d (x,y) +d (y,z);
this last property is the triangular inequality (2.1).

An example of such a distance is the p-adic distance on
the field Q of rational numbers. Given a fixed prime
number p, for any relative integer x, x&0, let

l
x

l ~ =p " where p" is the highest power of p dividing
X.

Let us recall that an absolute value on a field K is a
function g, with non-negative values, such that

(i) y(x) =0-- --x =0,
(ii) y(xy) =p(x)p(y),

(iii) q(x+y)(q(x)+q(y) .

(2.4)

lx+y l, &MaxI lx I, ly l, k

which is a more stringent inequality than (iii) above.
More strikingly,

lx+x lp& lx l~,

One sees by conditions (i) and (ii) that if some absolute
value on Q is such that y(x)=

l
x l~, whenever x is a

nonzero integer, it is uniqu. Then one shows that this y
also satisfies condition (iii): it is called the p-adic absolute
value

l
x l~.

In the case of the classical absolute value

l
x

l
=Max(x, —x), one has

l
x+x

l
& lx l

if x~0,
which constitutes the principle of Archixnedes. With
Hensel's definition of the p-adic absolute value, one has
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which violates the principle of Archimedes. For this
reason, the p-adic absolute value is said to be non-
Archimedean (or ultrametric).

Through the p-adic absolute value
t

x tz, the p-adic
distance dz(x, y) is defined by

d~(x,y)= tx —y t~ .

From the classical absolute value on Q, one gets the
field R of real numbers by completion, which amounts to
creating new "numbers" as limits of Cauchy sequences
that do not have a rational limit. The same construction,
with a concept of Cauchy sequence relative to the p-adic
absolute value,

t
x tz, gives a new complete field, analo-

gous to R, which is precisely the field Q~ of p-adic num-
bers naturally provided by an extension of the p-adic ab-
solute value, namely,

cern systems with a large number of degrees of freedom,
where a natural definition of distance among configura-
tions already exists. One is then dealing with an infinite-
dimensional metric space where a conveniently chosen
sample of points may be organized ultrametrically. As a
direct consequence of Eq. (2.2), such a set must be discon-
nected and sparse. In an ultrametric set, there are no
points intermediate between any pair of points. In Sec.
III.D we shall show that any such ultrametric set can be
characterized quite generally as the final result of a "neu-
tral evolution" process reminiscent of that found in bio-
logical evolution.

III. ULTRAMETR ICITY IN TAXONOMY

A. Hierarchical trees

if xCQ&, x = g a;p', a„&0, then tx tz
——p

As a consequence of Hensel's definition, two rational
numbers are p-adically close if their difference is divisible
by a high power of p. In order to give a feeling for the
peculiarities of the p-adic distance, let us consider an ex-
ample, p =5. Two numbers are 5-adically close if their
difference is divisible by a high power of 5. Thus 6 is
closer to 1 than it is to 7. Equidistant to 1, 11, 16, 21, or
26, 6 is closer to 31 and even closer to 131, closer still to
631. If, for example, one considers the triangle formed by
the three numbers 1,6,7, one observes that it is an isosceles
triangle with 7 equidistant to 1 and 6.

The natural geometrical ordering of p-adic numbers is
not along the real line but on a hierarchical generating
tree, as discussed in later sections. Actually, the coex-
istence of different distances for the same set of objects is
not unfamiliar. For instance, between two human beings,
besides the usual geometrical distance, which measures
spatial separation, one can define a genetic distance
measuring kinship relations.

The pioneer work of Hensel led to considerable
developments in number theory. Coinage of the word ul-
trametric came much later and is due to Mare Krasner
(1912—1985). In a note presented at the French Academy
of Sciences on October 23, 1944, entitled "Nombres
semi-reels et espaces ultrametriques, "he elucidated the to-
pological generality of ultrametric spaces, beyond the
algebraic context in which the notion had appeared (Kras-
ner, 1944).

Thus, as he noticed, in an ultrametric space, every point
inside a ball [that is, every point B such that d(A, B) & r]
is itself at the center of the ball, and the diameter of a ball
is equal to its radius. Each ball is both open and closed,
or "clopen" (Schikhof, 1984). Two balls are either dis-
joint or contained one within the other. In equivalent
terms, the ultrametric inequality (2.2) implies that, in an
ultrametric space, all triangles are either equilateral or
isosceles with a small base (third side shorter than the two
equal ones).

The examples discussed in the following sections con-

Taxonomy is the first field of science where the notion
of ultrametricity appeared, outside mathematics. That
occurred, twenty years after Krasner's note, during the
sixties (Benzecri, 1965,1984; Hartigan, 1967; Jardine
et al. , 1967; Johnson, 1967; Jardine and Sibson, 1971).

Intuitively, the idea is the following (mathematical def-
initions are postponed until Sec. VI). Suppose one has a
collection of objects (living species, for instance) that one
has managed to classify (species within genera, genera
within families, say, or more generally, taxa within taxa
within taxa). The classification can be represented as a
dendrogram, or hierarchy, generally pictured as an invert-
ed tree, where the objects (the leaves of the tree) are
displayed horizontally on the bottom line. Going from
the bottom up, several leaves (species) merge into a branch
(genus); several such branches merge into a higher branch,
etc. [Fig. 1(a)].

Higher taxa comprise a larger diversity of species than
lower taxa. When this inclusion relation can be quanti-
fied, i.e., when a positive real number can be associated
with each class, the hierarchy becomes an indexed hierar-
chy [Fig. 1(b)]. In the light of evolution theory, the
natural classification of living species is just a family tree.
Therefore the branching points can, in principle, be or-
dered and dated, and the vertical axis becomes equivalent
to a time axis. Any natural definition of the distance be-
tween two extant species should be proportional to the age
of their closest common ancestor, that is, the time elapsed
since they branched off (hence the time during which

C

~ »»»»» «»««b

(a)

FIG. 1. Hierarchical trees: (a) hierarchy; (b) indexed hierarchy,
a &c &d, b &d.
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divergent evolution has separated the two lineages).
Armed with such a picture, one sees clearly the one-to-

one relation between an indexed hierarchy and an ul-
trametric set. Any three elements of the set, i.e., any
three objects on the bottom line of such a hierarchical
tree, form a triangle that is either isosceles with a small
base or equilateral. Conversely, any ultrametric set can be
displayed as an inverted tree, where the vertical axis re-
veals the ordering of the objects into nested clusters of in-
creasing radius.

B. Classifications and data analysis

A classification is an ordering of objects into groups on
the basis of their relationships. There is an evident hu-
man compulsion toward categorization of any multitude.
Today, this classificatory activity is also called data
analysis (Gordon, 1981;Benzecri, 1984).

The logical starting point for a data analysis is a collec-
tion of N objects and an XXK distance matrix (sym-
metric matrix with vanishing diagonal elements). At this
stage, a discussion of several caveats is useful.

The selection of a good similarity or dissimilarity index
is a major decision. A good choice makes the difference
between a natural order and an artificial system.

A dissimilarity index need not be a proper distance: it
may violate the triangular inequality (2.1). Distances
measured by air fares are a simple case in point: to fly
directly from A to C may be more expensive than to go
from A to 8, then from 8 to C.

All proper classifications do not lead to trees. For in-
stance, the classification of chemical elements leads to the
Mendeleyev table, which is not a tree, though some
grouping into clusters is cogent. See also the comparisons
of multidimensional, tree-fitting, or clustering representa-
tions in proximity analyses of psychological data
(Shepard, 1980).

Tree ordering should not automatically be identified
with true ultrametricity. Consider, for instance, the tele-
typewriter code, which is conveniently displayed as a de-
cision tree (Fig. 2). Starting from the trunk, a left turn
means 0, a right turn means 1. Thus the "address" of the
letter D, for instance, is 01101. One can define an ul-
trametric distance between two addresses as the 2-adic
distance defined in Sec. II, on the 2-adic numbers ob-
tained by reading from right to left the digits of each ad-
dress. But this is an artificial distance, the natural one be-
ing the Hamming distance. The Hamming distance be-
tween two binary numbers is defined as the number of
places in which the digits are different, and it measures
the risk of confusion due to random errors. With respect
to this natural distance, the encoded set of 26 letters is not
at all ultrametric (an ultrametric subset of 4 letters, much
sparser therefore, may be extracted from this five-
dimensional hypercube) .

When the distance matrix satisfies ultrametricity, it fol-
lows that a dendrogram can be unambiguously built. Still
pending is the question of the meaning of branching

FICJ. 2. Decision tree for the teletypewriter code: left=0,
right= 1. Example: D+-+01101.

points. For biological classification, this question has
been settled by evolution theory, in which natural classifi-
cation has become phylogenetic: the branching points are
full-fledged ancestors, to be reconstituted by palaeontolo-
gy. However, for those who hold evolution to be a specu-
lation, the branching points are just formal constructs.
Certainly, an analyst confronted with data that are ul-
trametric, or nearly so, will be strongly tempted to find a
"genetic" cause for this structure. We shall see how far
this metaphor can be used in the case of spin glasses (Sec.
IV).

It is a well-known biological fact that convergent evolu-
tion is a systematist s enemy, because similar morphologi-
cal characteristics can be found in unrelated species
(Lewin, 1985). For instance, dolphins are mammals, not
fish, and the giant and lesser pandas are not the close rela-
tives that their given names could make us believe
(O'Brien et al. , 1985). Improved measurements of dis-
tance are supplied by molecular biology (Zuckerkandl and
Pauling, 1965). Detailed comparison of the sequences
(primary structures) of biomolecules, proteins or nucleic
acids, allows for molecular, as distinct from morphologi-
cal, phylogenetic reconstruction, which is less sensitive to
convergence effects (Kimura, 1983; Ninio, 1983; Volk-
enshtein, 1984) (Fig. 3). An additional superiority of
molecular phylogeny comes from the existence of molecu-
lar clocks (i.e., constancy in time of the rate of change of
a given molecule), for which there is considerable empiri-
cal evidence. Indeed, at the molecular level, the evolution
of a gene is to a large extent a random walk in sequence
space, with a well-defined clock, for instance 5X10
substitutions per nucleotide site per year in the globin
pseudogenes of mammals (Kimura, 1985). A branching
diffusion process in an infinite-dimensional space is a
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FICx. 3. A phylogenetic tree of several vertebrates together with their times of divergence (see the geological time scale at the left) and.
the numbers of amino acid differences between the hemoglobin a chains of each pair of these animals (see the table below the tree).
Note that each comparison of the a hemoglobins involves a total of about 140 amino acid sites, so that, for example, the human and
the carp have accumulated amino acid differences at about half (68/140) of the sites, since they diverged roughly 400 million years
ago. If one uses a statistical method which corrects for superimposed amino acid substitutions, one gets roughly the evolutionary rate
10 per amino acid site per year, from most of the comparisons, suggesting the uniformity (constancy) of the rate of amino acid sub-
stitutions in evolution (from Kimura, 1985).

simple class of an ultrametricity-generating Markov pro-
cess. However, the data for a given biomolecule are never
ideally ultrametric, and this raises the question of recon-
stituting one evolution tree from sometimes ambiguous or
conflicting data (Penny et al. , 1982; Wilson, 1985).

Two very simple procedures for tree construction have
been devised by taxonomists, circa 1950 (Stttrensen, 1948;
Florek et al. , 1951), and later related to ultrametrics.
They are ascending, bottom-to-top, aggregation pro-
cedures. Given a collection of objects with a distance ma-
trix, one begins by aggregating the two closest objects into
one cluster; then one defines the (renormalized) distances
between this cluster and the remaining objects, and more
generally between two clusters.

In one procedure, called single-linkage clustering
(Florek et al. , 1951;Sokal and Sneath, 1963), the distance
between two clusters is the minimum distance between
any member of one cluster and any member of the other.
This procedure, systematically pursued upward, leads to a
unique tree and a unique renormalized distance matrix.

Renormalized distances are smaller than or equal to the
original distances. The renormalized distance matrix is
ultrametric and it is called the subdominant ultrametric.

In the other procedure, called complete-linkage cluster-
ing (S@rensen, 1948), the distance between two clusters is
the maximum instead of the minimum in the above defi-
nition. This procedure need not lead to a unique tree.
Renormalized distances are larger than or equal to the
original distances. The renormalized distance matrices
are ultrametric.

Thus these two procedures provide lower and upper ul-
trametric bounds for a given set of data, and they suggest
natural definitions for degrees of ultrametricity (Sec. VI)
in problems that are not strictly ultrametric. It should be
mentioned that many other techniques are now commonly
used in data analysis, in order to extract information from
all sorts of data, but they fall outside the scope of this re-
view (Shephard, 1980; Gordon, 1981;Benzecri, 1984).

Coming back to Fig. 3, one can obtain a more concrete
feeling for the assertion that ultrametricity means absence
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of intermediates, as stated at the end of Sec. II. Indeed,
naively one might have thought that dog was somewhat
intermediate between rabbit and man, but no, the three
form a closely equilateral triangle. Or that bovine was be-
tween kangaroo and man, but instead these form an isos-
celes triangle with kangaroo equidistant from man and
bovine. q

exp ~ q
cEI3

q Pf (3.8)

is also legitimate (provided q is non-negative) and has
indeed been found relevant, in the proximity analysis of
many psychological data (Shepard, 1980; see also Doolit-
tle, 1985). In this case, the metric inequality for overlaps
1s

C. Distances and overlaps

q ~=—g S; S~, —1&q&1,
i=1

(3.1)

where X is the number of spins; classical spins are unit
magnitude vectors with m components. Obviously,
q

o.a 1 qaP qPa

As far as the definition of ultrametricity is concerned,
overlaps can be used just as well as distances. The ul-
trametric inequality (2.2) becomes

q I')MinIq I', q»I . (3.2)

But what is the metric inequality for overlaps' ?

For Ising spins (m =1), the overlap defined by Eq.
(3.1) and the Hamming distance, defined above, are sim-

ply related by

A distance is a dissimilarity index. An overlap is a
similarity (or proximity) index.

In many problems, the relationship between two objects
is more naturally expressed as an overlap. %'ith spin de-
grees of freedom, the overlap between two spin configura-
tions is conveniently defined as the scalar product in con-
figuration space:

Q. Ultrargetric sets lr} Infinite-dIrYlenslonal

systems

For systems with a large number N of degrees of free-
dom, ultrametricity, exact in the limit X~Oo, is a natur-
al type of organization. The understanding of this fact
came after the analysis of the spin glass model (Mezard
et al. , 1984a, 1984b; Mezard and Virasoro, 1985) that will
be discussed in the next section. However, because we
now understand that some of these results are model in-
dependent and will emerge in other fields, we attempt in
this section to describe the structure common to any ul-
trametric set in an infinite-dimensional space.

We therefore assume an embedding N-dimensional
space (the configuration space), which is itself contained
in R:. the space of X real component vectors. The
natural metric is assumed to be defined on it. Ultrametri-
city is then a property of a conveniently chosen sparse
subset.

A trivial example consists of I vectors (with
M/V X ~0 when X—& oo ) whose components are chosen
by random, equally distributed, independent processes
with finite average U and variance U . Any two vectors
U

' and U
' have overlap:

q =1—2d,
from which a metric inequality for overlaps follows:

(3.3)

(3.4)

E
lim —g u 'u '=(u), if a&b

=u, ifa=b. (3.9)

q =1—2d (3.5)

because d is now a Euclidean distance in X-dimensional
configuration space,

d =—g (S; —SP)
i=1

(3.6)

and thus satisfies the metric inequality (2.1); but the cor-
responding metric inequality for overlaps is not pretty.

Equations (3.3) and (3.5), between overlap and distance,
are not the only ones conceivable. An exponential rela-
tion such as

(3.7)

However, for vector spins (m )2), the generalized Ham-
ming distance defined by Eqs. (3.1) and (3.3) is not a
proper distance, in general: neither Eq. (2.1) nor Eq. (3.4)
need be satisfied with such definitions. A safer definition
of the distance (Walstedt, 1983; Henley, 1985) is obtained
from

Therefore all triangles are equilateral.
To generate an ultrametric set corresponding to a non-

trivial indexed hierarchy, we imagine a stochastic branch-
ing process acting simultaneously and independently on
each component of the vector. The number of steps in
this process is chosen equal to the number of levels af the
tree. At the kth step the tree has been generated up to the
(k —1)th level. At the end of each branch one then be-
gins a new ramification, for instance in R branches, by
drawing R times each companent of a stochastic vector
y;" with a probability distribution conditioned by the
values af the same camponent of the previously drawn
vectors on that branch (the ancestors) y;" ',y;", . . . ,y .
The stochastic branching process is defined by the proba-
bility distributions,

(3.10)

There are I. such functions, where L, is the number of
levels of the tree (the number of different values taken by
the index of the hierarchy). After the lait, Lth, step a
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large set of vectors with different ancestry have been gen-
erated,

I.(a)
Q 1p ~ ~ ~ y3f (3.11)

with M finite.
In the limit N +Do—this set is ultrametric In. fact, the

overlap between two vectors depends only on their ances-
try and is larger the closer they are in parenthood. A sim-
ple probabilistic calculation shows that the overlap be-
tween vectors having their closest common ancestor at the
JIth level is the following monotonically increasing func-
tion of H:

(3.12)

In this way we prove that any neutral evolution process
acting on a sufficiently large vector space of features
gives rise to an ultrametric set. Remarkably the converse
also holds: given any ultrametric set, defined on an
infinite-dimensional vector space and isotropic, i.e., such
that the statistical properties of the vector components do
not distinguish any particular orientation in the space,
one can construct a stochastic branching process such
that the ultrametric set is an unbiased realization of it

As explained in previous sections, an ultrametric set al-
ways defines an indexed hierarchical tree. The elements
of the set lie at the leaves of the tree, while the branching
intersections are empty. In the theory of evolution, on the
other hand, the intersections correspond to past species.
In order to introduce an "evolutionary process" for an ar-
bitrary ultrametric set, we introduce ancestors as vectors
lying at the branching points and defined as the average
of their lineage. To complete the proof we have to con-
struct the stochastic process that generates the descen-
dants from an ancestor. The assumed isotropy of the set
allows us to sum powers of the components of the vector
to calculate moments of the probability distribution. As-
sumi. ng the necessary regularity and convergence, one can
then reconstruct the probability distribution.

Notice, however, that the correspondence is not one to
one. In particular, the branching stochastic process we
have constructed is essentially embedded in R . This
may be unnatural. For instance, the neutral biological
evolution described in the previous section acts on the
space of biomolecule configurations, which is not R: a
past species is defimtely not the average of its descen-
dants.

We further observe that classifying a set by defining on
it an indexed hierarchy does not amount to a complete
description of the set. The information about the higher
moments of the vector components as well as higher-
order correlations between vectors at fixed distances from
each other is not contained in a simple index. Rather, it
is implicitly contained in the defining equations of the
branching stochastic process, which, on the other hand,
do not know about the ramification characteristics of the
tree. How ramified the foliation is and how homogeneous
the ramification depend on a survival rate of the mutants
that seems to depend crucially on other features. In par-
ticular, we shall see in Sec. IV that the hierarchical tree of
the spin glass systein is far from regular. Therefore we
conclude that a full description of an ultrametric set re-

I

quires knowledge both of the branching process and of
the parameters of the tree.

Another remarkable property of ultrametric sets in
high-dimensional spaces is that every element of the set
defines an ultrametric distance among different com-
ponents of the vectors (Mezard and Virasoro, 1985).
Loosely speaking, the distance between components i and

j measures how far one has to go in the set to find anoth-
er element with the values of the components v;, vj per-
muted. More precisely, one imagines a discretization of
the y variables corresponding to each component. Then
the two sequences

y;y; . - ~ y; at component i,
yj'yj -. - yj at component j,

will coincide from a particular level up. The level of con-
vergence defines the distance. The higher it is, the farther
apart they are. In Sec. VII we sha11 discuss the peculiari-
ties of a random walk in an ultrametric set. If one allows
the elementary steps of the random walk to be distributed
up to a certain d,„, the lack of intermediate points
characteristic of an ultrametric set (Sec. II) forces the sys-
tem to remain in a ball in configuration space of diameter
d,„. In this case one can define a partition of the com-
ponents of the vectors such that the average value of any
integer power of the vector comporients inside each cell is
constrain. ed. Only intracell components can exchange in-
formation. This is reminiscent of the mechanism dis-
cussed in Palmer et al. (1984).

IV. SPIN GLASSES

Spin glasses are important because they provide the
simplest model to analyze, endowed with a type of phase
transition, and hence a type of organization at low tem-
perature, that seems radically different from all previous-
ly known.

The crucial ingredients in these models are disorder and
frustration. By disorder we mean that in the defining
properties of the system (i.e., in the Hainiltonian) there
are an infinite number of parameters, with nontrivial
complexity. One in general assumes that they are the
representative samples of a statistical ensemble, so as to
be able to study many different systems by performing
appropriate ensemble averages. Frustration generally
means that there is competition among conflicting in-
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teractions. As a consequence the system does not find
one accommodation that satisfactorily complies with all
constraints. Paradoxically it finds instead a multitude of
almost satisfactory accommodations, and hence these sys-
tems turn out to be particularly rich in the number of
equilibrium states at low temperature. The description of
the rich topography of the energy surface (free energy at
T+0), in particular, the relative positions of the valleys
in phase space (ultrametricity) and their relative depths, is
the subject of this section.

The reader is directed to the review on spin glasses to
appear in this journal (Binder and Young, 1986) for a
more thorough presentation and references.

A. Mean-field theory

1. The history

Ultrametricity entered physics surreptitiously in 1979
(Parisi, 1980), at a time when phase transitions were habi-
tually explained in terms of the spontaneous breaking of
symmetries. In the context of the mean-field theory of
spin glasses, Parisi was confronted with a Hainiltonian
symmetric under the permutation of n variables. If per-
mutational symmetry means that the n elements are to a
certain extent equal, breaking the symmetry means that
some of them are more equal than the others. In this way
one is destined to end up with a hierarchy. However, as
we shall shortly explain, the n elements are fictitious. In
the end, n had to be continued analytically to zero, and it
took some years to realize that ultrametricity had some-
thing to do with the physics of the problem.

The model to be solved was the Sherrington-
Kirkpatrick- mean-field version of a spin glass (Sher-
rington and Kirkpatrick, 1975). The Hamiltonian is

A = —g J,qS;Sq, (4.1)

where S; is an Ising spin (S;=+1) on each of N sites
(1 & i & N), all of them coupled through a random sym-
metric matrix with elements JJ. that are statistically in-

dependent, Gaussian distributed, and have averages

J,J ——0, J,J ——1/N .

Every set of JJ defines a sample of the system, and one is
interested in the thermodynamics of a typical unbiased
sample, at sufficiently low temperatures. To solve this
problem one has to calculate the average of the free ener-

logZ= lim
Z"—1

n~0 n
(4.3)

For integer n, Z" is simply the partition function of n

identical systems with the same couplings JJ (replicas).
The average over the disorder can now be taken (it is a
Gaussian integral) to obtain a site-permutation-invariant
expression. It is then possible to decouple the N sites.
The trace over the Ising spins becomes trivial, and one
ends up with an integral over n (n —1)/2 variables:

with

J IIdQ.. e""'"
a, b

N

Q,b
———g S; S;, 1&a,b &n, a&b,

i=1

(4.4)

where the use of the saddle-point technique is justified be-
cause X~ oo.

Notice that Q,b&[—1,1]. The system, as defined in
Eq. (4.1), is symmetric under the mapping S;~—S; (time
reversal). The breaking of such symmetry causes the usu-
al type of phase transition, whose effects could be confus-
ing in the investigation of the glassy transition. We shall
therefore always imagine an infinitesimal external field
acting on the system. In that case Q,b E [0,1].

Parisi's ansatz restricts the search for the minimum to
a Q,b invariant under a subgroup of the permutation
group of n elements. If P„ is the group of permutations
of n elements, consider the chain

0

0

0

Io

and so on. For instance, an 8&(8 Q,» matrix invariant
under ( P2) (P4~2 ) Ps&4 is shown in Fig. 4.

The matrix Q,b so generated is parametrized in terms
of a single function x (q) that measures the fraction of re-
plica pairs such that their overlap is less than q. The ana-
lytic continuation of G(Q,») to n =0 can be done, and
the saddle-point equations determine the function x (q).

logZ=log Tr e
f S,. I

but this is difficult.

(4.2) Iz &z &z &z &0 0

0 cy

2. The replica trick 0

Edwards and Anderson (1975) proposed the use of the
following formula:

FIG. 4. Typical example of an 8X8 Parisi matrix Q,b for the
spin glass problem.

Rev. Mod. Phys. , Vol. 58, No. 3, July 1986



Rammal; Toulouse, and Virasoro: Ultrametricity for physicists

The Sherrington-Kirkpatrick (SK) solution correspond-
ed to the choice

x (q) @q qEA ) (4.5)

which is equivalent to the matrix Q,b
——qE~ for a&b (Ed-

wards and Anderson, 1975; Sherrington and Kirkpatrick,
1975). Symmetry among replicas remained unbroken.
The saddle-point equations plus the stability criterion
prove that replica symmetry is broken. In this case, as
usual, one has to sum over all the different saddle-point
matrices Q,b that are obtained by an arbitrary permuta-
tion of the replica indices.

By 1983 the amount of circumstantial evidence in favor
of Parisi's solution was growing. Several tests were suc-
cessfully passed: (i) the entropy was positive, for all tem-
peratures, in contradistinction to the previous attempts;
(ii) numerical simulations agreed with the predictions
from the solution; (iii) the saddle point was proved to be
marginally stable under infinitesimal transformations.

However, a physical interpretation of the solution was
lacking and the mathematical consistency of the analytic
continuation was dubious.

3. The many valleys of a spin glass

The phenomenological characterization of the spin
glass phase comprises the presence of hysteresis cycles,
remanent magnetizations dependent on the past history of
the sample, and long relaxation times. All of these effects
suggest the existence of many stable or at least metastable
equilibrium states. Numerical experiments (Mackenzie
and Young, 1982) are more precise: they show that ergo-
dicity is broken in the SK spin glass.

Breaking of replica symmetry and breaking of ergodici-
ty are logically equivalent. It suffices to imagine two real
replicas (Blandin et al. , 1980) to realize that a nontrivial
x(q) means that with finite probability the two systems
will end up in two different states. In 1983, Parisi derived
in this way a physical interpretation of x (q).

Imagine two real replicas, with large but finite N, in
thermal equilibrium. At regular time intervals At, the
overlap of the spin configurations is measured and from
this data a histogram is constructed with the frequency of
occurrence of the overlap:

T 1 N
Pz(q)= lim lim —g 5 —g S;"'(to+k ht)S '(to+k. bt) q' . —

X T T k
(4.6)

The unusual order of the limits guarantees that the consequences of the ergodic theorem hold. Therefore

Pq(q) = Tr
s(1) s(2)

i ' i

(4.7)

A modified version of the replica trick eliminates the Z denominator:

N

P~(q)= lim Tr Qe ~ ' '5 —g S;"'S ' —qn~O s(a)
i

Q =1,2, . . . , fl (4.8)

The J subindex is there to remind us that the measurement is made on one sample, though only the average over J can be
analytically calculated. To leading order in 1/X, the contributions from all the saddle points dominate the integral. It
follows that

PJ(q)= lim g 5(gi2 —q) .
n-+0 (gI

(4.9)

The different saddle points are obtained by simple permutations in the replica indices. Therefore it is equivalent to con-
sider one matrix g, b and average over all rows and columns (De Dominicis and Young, 1983),

PJ(q) = lim
1 g 5(gb —q) .

n o n(n —1) a, b

a~b

Remembering the definition of x (q), one finally obtains

(4.10)

Pg(q) = (4.11)

4. The topography of the landscape. Ultrametricity

Parisi's simple interpretation of the order parameter turned out to be the key to a greater understanding of the spin
glass phase in the mean-field approximation. The next, rather obvious, step was to calculate the distribution probability
among the configurations. The calculation is a more cumbersome straightforward generalization of the previous one.
Instead of Eq. (4.7), one finds
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PJ(ql 'q2 q3)
g(l } g(2) g(3)

i ' i ' i

—pt~(s('))+~(s(') )+~(s(') )]

(4.12)

and instead of Eq. (4.10)

+J(ql q2 q3) 1™ y ~(Q 5 ql @(Qb q2+(Q q3)n-+0 ll n —1 ll —2 a, b, c
a&b, a&c

b~c

(4.13)

A simple inspection of the matrix Q, l, in Fig. 4 demon-
strates ultrarnetricity. If ql &q2&q3, then a, b are in an
internal block with respect to c, and by construction
q2 ——q3. Ultrametricity is therefore implicit in Parisi s
ansatz. The evidence in its favor is just the evidence in
favor of Parisi's solution.

B. Analysis of an ultrametric set

The alleged ultrametricity of the set of relevant config-
urations of an SK model opens the way for the specific
analysis proposed in Sec. III. We should like to find the
corresponding stochastic branching process and charac-
terize the foliation of the tree. The Parisi function I'(q),
as derived from the saddle-point equations, has its sup-
port in the interval [O, qM,„]with a 6-function contribu-
tion at qM„and a smooth continuous distribution in the
open interval. Et follows that the tree has new branches at
every value of q. It is more convenient to approximate
P(q) by a finite number of weights at discrete values of q.
Then the ramification at each discrete level will always be
in an infinite number of branches. There are weights as-
sociated with each of them. They reflect the Gibbs-
Boltzmann weight of the canonical ensemble. The rela-
tive thickness of a particular branch is related to the sum
of the weights of the configurations. The replica method,
as defined, allows a full description only in these terms,
though in other problems a different weighting may be
more relevant. The microcanonical ensemble measure
would give information on the entropy of each branch,
and the analysis would not be very different from the one
here described. In optimization problems and neural net-
works, the basis of attraction appears as a natural weight.
This case will be discussed in Sec. V.

1. The branching diffusion process

Pursuing the line of analysis of Sec. IV.A we can con-
sider an arbitrary number of replicas and try to calculate
the expectation value,

~ g(1)g(2). . . g(p)~~ ~~ ~~

l l l J'&
i 1

m; ~= lim —gS;(A ) $ (k) (4.16)

where (1/X) g; lS 'S '=q, for all pairs of descen-
dants ( k, =a, k2 b), so that——

(,) (a, ) (a, )
(m; ')"=

k $ —QS; 'S; '. ~ S;"
algal'

(4.17)
Therefore the calculation of Eq. (4.14) would allow us to
know the correlations between an ancestor and its descen-
dants:

(A ) (A, )m;''li
i=1

(4.18)

The calculation of Eq. (4.14) by the replica method is
tedious and complicated. In this review we quote the re-
sult (see Mezard and Virasoro, 1985, for the details). It
can be written in terms of a fundamental kernel
~,,, (y,y'):

where the large angle brackets stand for the Cxibbs-
Boltzmann thermal trace over S; performed on one par-
ticular realization of the J;J, while the overbar indicates
the quenched average over JJ. In general the thermal
average fluctuates with J,J even in the thermodynamic
limit (Mezard et al. , 1984a,1984b; Young et al. , 1984).
However it can be proved that if the average is restricted
to the replica configurations such that all overlaps

NJ y S~(a)S~(b) (4.15)a ~ l

are fixed, then the resulting expectation value is the same
for every sample JJ and therefore equal to its average
("self-averaging"; Mezard and Virasoro, 1985).

We discuss a particular choice of the mutual overlaps,
which is the simplest allowing for a full disentangling of
the structure involved. We choose s among the p replicas
with mutual overlaps q, while one of them is surrounded
by p-s replicas at a larger overlap q'. As indicated in Sec.
III.D we define the ancestor at age q as the state defined
by the unweighted average at each site of the local mag-
netization of an infinite number of configurations, all ly-
ing at overlap q of each other. Then
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(A ),
m; ' 'm; '

1

while the auxiliary function z(q,y) satisfies the nonlinear
equation

with

d3' o,q ~3' ~q 3'

X f ~»»(y. ,y')[mq(y')]~ 'dy' (4.19)

Bz 1 Bz P(q)
Bq 2 By2 x(q)

with initial condition

z(l,y) =thPy .

(4.24)

(4.25)

BH 1 B H Blnz(qy) B~
By B3' By

with the initial condition

(4.21)

lim H» q (y,y') =5(y —y'), q & q'
q~q'

and boundary condition

lim H» q (y,y') = lirn H» q (y,y') =0,
y~+ oo

* y'~+ ce

(4.22)

(4.23)

mq(y) = f H», (y,y')th (py')dy' . (4.20)

The kernel is defined by a diffusionlike equation in a time

q flowing from 1 to 0,

P(q) is determined from the self-consistency condition:

q = f dy ~0 q(0,y)[mq(y)]' . (4.26)

Therefore the solution of the SK model is reduced to
the problem of solving Eqs. (4.21) and (4.24), parametri-
cally as a function of P(q), and then adjusting the latter
so that Eq. (4.26) is satisfied (for solutions near the criti-
cal temperature, see Parisi, 1980; for solutions within an
approximation, see Vannimenus et al. , 1981; and for
solutions near T =0, see Sommers and Dupont, '1984}.

Once the solution has been made explicit, the meaning
of Eq. (4.19) is straightforward. By reconstruction we
derive

1 (A ) (A, )—g 5(m; q —m)5(m; q —m')= f dydy'%0q(0, y)5[m —mq(y)] Hqq(y, y')5[m' —mq(y')]
i=1

dm»(y)
'~0, ( 3 )~,q'(y y )

I (,)= ~

dy

dmq y' q

m (y')=m'

(4.27)

It follows that (i) the probability that the ancestor A» has
magnetization in the range m, m +hm at a site is

l

In this way every configuration defines an ultrametric
structure among the sites as anticipated in Sec. III.D.

dy ~0,»(0,y) I

dmq y q
(4.28) 2. The depth of the valleys and the foliation

of the tree
(ii) the probability that at the same site the descendant A»
has magnetization in the range m', m'+ Am is

' ~q, »'(y~y ) I m, (y')=m™
dmq

m (y}=m

(4.29)

Therefore the knowledge of the function Hq» (y,y')
amounts to the full determination of the stochastic
branching process, which turns out to be Markovian in
this case.

Although low-energy configurations are particular real-
izations of the stochastic branching process, it is not true
in general that every realization is a low-energy configura-
tion. For instance, expectation values that include the J;J
have to be considered, and they restrict the possible con-
figurations.

A clearer picture of the set arises if we discretize the
range of magnetization in a certain number of intervals.
Then the sites can be partitioned into cells (at a scale q)
where the magnetization of the ancestor A» is constant.
Each cell can then be partitioned into subcells (at a scale
q' & q) according to the magnetization of the ancestor Aq .

Every configuration is weighed with the Gibbs-
Boltzmann factor. Therefore the relevant ones are those
with energies obeying

A (5")—A (S' ')=finite .

The leading contribution to the energy goes linearly with
N, is the same for all the relevant configurations, and can
be proved to be self-averaging (Khanin and Sinai, 1979).
The nonleading contributions are not, and they determine
the Gibbs-Boltzmann weight. Most of the results dis-
cussed in this section concern quantities that fluctuate
from sample to sample.

The explicit calculation of PJ(ql, q2, q3) gives the result

P ( q 1 q2 q3 ) z P (q 1 )x (q 1 )5(q 1 q2 )5(q 1 q3 )

+ P(ql )P(q2)~(q 1 q2)5(q2 q3)

+ —,
' P (q2 )P (q3 )8(q2 —q3 )5(q3 q 1 )

+ P(q3)P(ql )~(q3 'ql )5(ql q2)
(4.30)
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= —,
'

[P(qi )5(qi —q2) P(qi )P—(q2) j,
while on the other side, in a fixed sample,

PJ(q i,q2) . PJ(q 1 )PJ(q2 )

= —,
' [P(qi)5(qi —q2) —P(qi »(q2)) .

(4.32)

(4.33)

This shows that the environment of a valley varies consid-
erably from one to another. The sign of the effect reflects
ultrametricity. Notice, however, that Eqs. (4.32) and
(4.33) are zero above the critical temperature [where P(q)
reduces to a 5 function]. This is a hint that the varying
environment is a direct consequence of the Gibbs-
Boltzmann weights. Both quantities (4.32) and (4.33) are
easy to obtain in numerical simulations and can serve as a
valuable gauge for comparing different models. We shall
discuss them further in Sec. V.

There is a more direct way of seeing the variation of
the environment. For instance, one can define

—PA (S;)

w, = g ' e q ——gs, s,-'"
(SI Z

(4.34)

where S ' is a selected configuration. A partition in clus-
ters is thereby introduced. An exact expression (Mezard
et aI. , 1984a, 1984b) has been given for the average num-
ber of clusters with weights Wq falling in the interval W,
8'+d 8':

gr —i —x i@)( 1 Pr) —1+x (q)

I (1—x (q) )I (x (q))
(4.35)

Corresponding formulas can be derived for the average
number of simultaneous occurrences of n clusters. The
explanation of these results required the analysis of the
distribution probability for the energies of configurations
and clusters. A simple scenario emerged (Mezard et al. ,
1986; see also the related paper on the random energy
model, Derrida and Toulouse, 1985).

(i) The energies of the relevant configurations inside a
cluster at scale qM, „are independent, equally distributed
random variables. The average number in the interval E,

For any q, &qM, „(the 5-function region requires some
care) the integrated contributions in the volume 0 & q; & q,
of all four terms are equal. It follows that, among all the
triangles, 4 are equilateral and 4 isosceles. The relatively

large number of equilateral triangles is a noticeable
feature of this kind of ultrametricity.

Integrating Eq. (4.30) over q3, we obtain

P(qi, q2)= —,'P(qi)5(qi —q2)+ —,'P(qi)P(qq) . (4.31)

This equation shows that the distribution of valleys away
from a particular one is conditioned by the fact that this
one lies at a fixed distance from a third. There are two
sources of correlations. Qn one side, the fluctuations with

J,J imply

PJ(ql )PJ(q2) ~J(ql ) +1(q2)

E+dE is

d~t(E) =C e~ dE . (4.36)

The normalization constant C provides a convenient defi-
nition of the Ith cluster energy,

(4.37)

In Parisi (1983) it is proved that the clusters at qM, „can
be identified with the pure states. Then Eq. (4.36) is sim-

ply the usual definition of entropy,

de(E)=e ' 'dE=e ' 'dE (4.38)

and therefore the cluster energy is in fact the free energy
of the corresponding state.

(ii) The cluster energies inside a higher-order cluster at
scale q are independent, equally distributed random vari-
ables. The average number in the interval E, E+dE is

(4.39)

whose normalization implicitly determines E~, the
higher-order cluster energy.

The picture of the hierarchical tree that emerges from
this analysis shows a certain degree of scale invariance.
Notice, for instance, that all the dependence on q in Eqs.
(4.34)—(4.39) is controlled by x(q). The ramification at
each branching point is similar, with a few dominating
branches accounting for a large piece of the total weight,
while an infinite number shares a small part of it. The
tree is definitely very far from being regular. This ex-
plains the lack of self-averaging. Qne can hardly use sta-
tistical averages over a few dominating contributions. A
different situation is expected when one uses the attrac-
tion basins as weights, because they seem to vary less
strongly than the Gibbs-Boltzmann weight (see Sec. V).

C. Numerical tests

1V

g u;"'u '=u +0(1/VN ) .
i=1

(4.40)

Using the result (Secs. III.D and IV.A) that an ul-
trametric set on an infinite-dimensional space can be seen

Although the derivation of ultrametricity explicitly
uses the Gibbs-Boltzmann weights, the conclusion is valid
with greater generality. In the thermodynamic limit
(N~ oo ) the probability of occurrence of certain triads of
relevant configurations is zero. Even in the paramagnetic
phase, ultrametricity of a trivial kind (all triangles equila-
teral) holds. For infinite temperature it reduces to the
property of orthogonality of randomly chosen vectors (see
Sec. III.D).

To test ultrametricity numerically, it is important to
understand finite volume effects. In the case of randomly
chosen vectors we know that the corrections are of order
I/V %: if u;, u;

' are independent, equally distributed
random variables with average U, then
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TABLE I. Moments of the difference between two sides of the triangles at a fixed value of one of them
[see Eq. (4.41)]. Ising spin glass with infinite range.

N =32
M)2(q3)

N =64 N =32 N =64 N =32
M)3(q3)

N =64

0.5
0.625
0.75
0.875

1.79X 10-'
1.37X 10
3.69X 10-'
2.27 X 10

3.51 X 10-'
2.46 X 10
3.76 X 10
1.68 X 10

7.29 X 10-'
5.01 X 10-'
1.80X 10
9.46 X 10

1.55 X 10-'
1.78 X 10
8.86 X 10-'
2.39X 10-4

3.28 X 10-'
1.72 X 10
1.01 X 10
8.64 X 10

6.11X 10-'
9.48 X 10-'
7.41X10-'
1.77 X 10-'

M» ——&(q~-q3)'&,

M23 & (q2 'q3 ) ~ ~

(4.41)

The results are summarized in Table I. The moment M~2
seems to converge more rapidly to zero than M~3 or M23.

In the second test, ultrametricity was pitted against the
"null" hypothesis that the distribution of qi between zero
and q2 is flat inside the interval allowed by the triangle
inequality. The ratio

as generated by a stochastic branching process, one can
estimate the finite volume correction. If the number of
generations remains bounded when X~ oo, then statisti-
cal techniques show that the correcting terms will again
be of order I /V N with coefficients which now depend on
the overlaps.

The spin glass case is more difficult because the num-
ber of generations is not bounded when X~ oo. Analytic
methods are not available, and one has to rely on Monte
Carlo methods to estimate the corrections (Bhatt and
Young, 1986).

Another obstacle in testing ultrametricity at finite N is
the triangle inequality. Given two sides of a triangle with
lengths a &b, the third side c must fall inside the interval
(b a,b+a) —[see Eq. (2.3)]. In addition, smoothness of
the distribution near the end points makes the final pic-
ture qualitatively similar to that expected from an ap-
proximate version of ultrametricity. One must therefore
rely on the available information on the correction terms
and in particular its X dependence to distinguish between
the two hypotheses.

In Parga et al. (1984), ultrametricity was tested on the
local minima of the energy, with Gibbs-Boltzmann
weights corresponding to a temperature T =0.2 (critical
temperature T, =l) and N =32 and 64. Two different
tests were considered. Given q& &q2&q3, the first one
consisted in the calculation at fixed q3 of the following
moments:

The distribution probability P(q&, q2, q3) could be ob-
tained from the full information on frequencies of oc-
currence of every triplet of configurations. It is con-
venient to consider a particular two-dimensional section
[for instance, by integration over q3—see -Eqs. (4.31),
(5.1), and (5.2)] or projection (Sourlas, 1984). The latter
reference eliminates one degree of freedom of the triplets
by normalizing the sum of the distances,

3di

d(+d2+d3
(4.43)

Then every triplet is represented by a point inside an equi-
lateral triangle, the distances from the sides being the nor-
malized d; . This domain is fully symmetric among the
three configurations, a clear advantage over other choices.
A possible problem could arise if the data to be folded to-
gether had different correction terms in 1/X. The trian-
gle inequality can be easily visualized. Sourlas used this
test on a three-dimensional Ising spin glass. One of the
histograms is shown in Table III. The boundaries are the
limits of the triangular inequalities. There i:s a clear sign
of ultrametricity. However we should point out that the
number of spins is large (16X16&&16), and in the SK
model the same degree of ultrametricity seems to appear
in smaller systems.

Bhatt and Young (1986) have investigated the SK
model through a Monte Carlo simulation. They consider
X =32, 128, and 512, at a temperature T =0.6, and study
the probability distribution of the difference between the
two smaller overlaps when the larger one is fixed at
q =0.5. The results are shown in Fig. 5. We consider
this simulation convincing evidence in favor of ul-
trametricity. The width of the distribution decreases as

, a reasonable rate, given the fact that the tree be-

TABLE II. Comparison between the hypothesis of ultrametri-
city and a null hypothesis (uniform distribution in q&

—q2, at
fixed q3, with q3&q2&q&) [see Eq. (4.42)]. Ising spin glass
with infinite range.

, dqiP(qi, q2 q3)(qi —q2)U=
, dqiP(qi q»'q3)

fo dq't

2, dqi(qi —qz)

(4.42)

was measured at q3 ——2[N/3] and 2[N/6] & q2 & 2[N/3]
(see Table II). An overall convergence to zero is evident,
though the rate seems to vary dramatically with q3.

0.3125
0.375
0.4375
0.500
0.5625
0.625

N =32

1.09
0.87
0.47
0.33
0.34
0.23

N =64

1.06
0.71
0.24
0.23
0.093
0.068
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TABLE III. Density of triangles generated in a Monte Carlo simulation of a (16), J=+1. Ising spin
glass, with nearest-neighbor couplings, for P=0.8 and a small external magnetic field h/J =0.2. The
horizontal axis represents the smallest side of the triangle d;„, while the vertical axis represents the
difference between the two other sides d,„—d;d [distances are scaled according to Eq. (4.43)). Exact
ultrametricity ~ould correspond to zero density, except along the horizontal axis. The dashed lines
represent the triangle inequality constraints. Corresponding figures, obtained for a (12) system, with
the same parameters, show much less ultrametricity (unpublished data from N. Sourlas).

d -d
max mid

0.4

0.3

0.0 0.0 0.0 0.0 0.03 0.04 O.O8

1

0.14
X
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0.0 0.0 0.02 0.04 .0.07 0.13 0.23' 0.5 0.54 0.0

0.0 0.03 0.07 0.13 0.55 'l. 12 1.9 2.9

o.o4 0.33 0.71 1.55 4.9 5.44 44

0.2 0.6 0.8 1.0
d

$1A

o 52

o 128

512

comes continuous in the X—+ oo limit.
The growing consensus around the Parisi solution inev-

itably leads to a lack of motivation for lengthy numerical
calculations. A word of caution is perhaps in order.
Most of the properties we have discussed are implicit in
Parisi s ansatz. Ultrametricity is there and so is the ex-
ponential distribution of energies (they are a consequence
of the property that each row in the Q,b matrix is a per-
mutation of the others). It seems very hard to prove
rigorously that the ansatz is correct. Therefore we must
rely on numerical simulations, perhaps with larger X, to
test this interesting solution effectively.

V. COMPLEX PROBLEMS

00 0.25 0.50

The com.binatorial optimization problems of computer
science, whose archetype is the traveling salesman prob-
lem (TSP), and the frustrated disordered systems of sta-
tistical physics, whose archetype is the spin glass, have
many features in common. The analogy, clearly recog-
nized not long ago (Kirkpatrick, 1981), is best revealed by
the introduction of a temperature, as a new control pa-
rameter of the optimization search.

This analogy can be made operational by examining the
freezing phenomena due to frustration (conflicting con-
straints), and through the efficient use of the method of
simulated annealing, the notion of energy landscape in
configuration space, and the analysis of the distribution
of nearly degenerate local minima.

FIG. 5. Probability distribution of the difference between the
two smaller overlaps (5q =q;d —q;„) for a fixed larger overlap
value q =0.5. The temperature is 0.6. In the X~ oo limit, the
distribution is expected to become a 6 function at the origin
(from Bhatt and Young, 1986).

A. Presentation

The problem of the traveling salesman is simple: Find
the shortest route for visiting 1V points. A table of point-
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to-point distances defines one instance of the TSP. Com-
binatorial optimization in general refers to problems of
minimizing a cost function with a large number of vari-
ables. This has turned into a major field of applied
mathematics and computer science, with the development
of algorithmic complexity theory (Garey and Johnson,
1979; Papadimitriou and Steiglitz, 1982). Besides the
TSP, the problems of matching and of graph partitioning
or coloring are also worth mentioning, among hundreds.

These well-defined, problems, however, are only a subset
of the many optimization problems, often loosely defined,
that may be encountered in engineering and biology and
that are gathered together under the heading of complex
problems. This gets us into computer-aided design and
artificial intelligence, which are fields of practical impor-
tance. We have now to explain how ultrametricity may
be relevant.

First, it has been proved that the method of simulated
annealing (Kirkpatrick et al. , 1983; Cerny, 1985), as
developed for spin glasses, is useful both for combinatori-
al optimization problems, such as the TSP, and for com-
plex problems, such as partitioning, placement, and wir-
ing of electronic circuits.

Thereafter, the similarity with spin glasses instigated
numerical and theoretical analyses of energy landscapes,
including searches for ultrametricity, in traveling sales-
man problems (Kirkpatrick and Toulouse, 1985), graph
partitioning (Kirkpatrick, 1984; Fu and Anderson, 1985),
matching (Bachas, 1985; Mezard and Parisi, 1985), place-
ment (Solla et al. , 1986}, and graph coloring (Bouchaud
and Le Doussal, 1985).

The main practical issue is, can one get help, in solving
a given optimization problem, from a knowledge of the
typical energy landscape in a family of similar problems?
Or, can configuration-space analysis guide us in a choice
of algorithm? There are several related questions: How
common is the occurrence of ultrametric distributions of
local minima? What is a proper weighting for the local
minima? If a problem is ultrametric, what is the physical
significance of this ultrametricity, and what next'? If it is
nearly ultrametric, how is the deviation to be character-
ized? If it is far from ultrametric, what else can be said?
Is there a link between simulated annealing and ul-
trametricity? Is the traditional classification of problems,
according to algorithmic complexity, physically sound?
Only partial answers are available at present, and even
less will be said here. A few basic concepts are presented
merely as background for a field with many ramifica-
tions.

B. Configuration-space analysis

Given an optimization problem, one starts with the set
of all possible configurations (all possible routes for a
TSP). With a notion of proximity (similarity, overlap) be-
tween two configurations, this set acquires a topology and
becomes what will be called the configuration space.
Then the cost (energy) function of the problem covers this
configuration space with an energy landscape. If this

landscape presents one global minimum, and no other lo-
cal minimum, the problem is simple, and an iterative im-
provement algorithm (gradient energy descent) will be an
effective search algorithm. At the other extreme is the
problem in which many nearly degenerate local minima
coexist. Note that some seemingly hard problems may be
eventually simplifiable by the choice of a better topology
or by an enlargement of configuration space, which would
destabilize the previous local minima without creating
new ones.

Once the problem is well defined, the first step in the
analysis of configuration space consists in finding the
overlap probability distribution P(q), or pair statistics for
local minima. A choice of weights must be made at this
stage, on which the whole subsequent analysis may be
very dependent. Boltzmann weighting is the natural
choice in statistical mechanics (Sec. IV). Attractor basin
size appears to be a more appropriate weight in the con-
text of content-addressable memories (Sec. VIII). Equal
weight below some energy cutoff has been chosen in
several cases for numerical convenience. The shape of
P(q), as well as its size dependence, is often very instruc-
tive by itself.

Detection of ultrametricity, however, requires triangle
statistics. The probability distribution P(q~, q2, q3) has
been studied numerically for the TSP (Kirkpatrick and
Toulouse, 1985) by considering for a fixed value of the
smallest side the statistics of the comparison of the two
other sides. Since this analysis is similar to that discussed
in Sec. IV.C, it is not repeated here. Rather, we introduce
two other tests, not yet mentioned, which involve a sys-
tematic elimination of one variable in the triangle statis-
tics. The residual information is contained in a unique
function of two variables, which allows for easier visuali-
zation.

(i) Integration over one variable in P(q~, q2, q3),

P(ql 'q2} f P(ql q2 q3}dq3

gives the probability that two sides of a triangle have
lengths (overlaps) q~ and q2. The subtracted pmbability
function

«qi q2} P(ql 'q2} —P(qi »(q2)

vanishes for a homogeneous distribution of points, which
pmvides a convenient null limit. But it vanishes also for
a regular tree, so it is not testing pure ultrametricity. In-
stead, it is serisitive to a combination of ultrametricity
and heterogeneity.

In general, for ultrametric sets, C(q~, qq) will exhibit
some peaking along the diagonal (qq ——qq), but it will also
contain nondiagonal contributions coming from the short
side of isosceles triangles. See Eq. (4.31) for an example.

Comparable data for C(q&, qz} have been obtained nu-
merically for random-distance traveling salesman prob-
lems (Fig. 6), Ising spin glasses (Fig. 7), and Heisenberg
spins on fully frustrated cubic lattices (Kirkpatrick and
Toulouse, 1985; Lallemand et al. , 1985).

(ii) Solla et al. (1986) have looked for a more direct test
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FICx. 6. Subtracted statistics of pairs of bonds for the traveling

salesman problem (N =48). This figure shows the data looking

along the q;J-=q;k axis from the large q end (Kirkpatrick and

Toulouse, 1985). The vertical scale is arbitrary.

of ultrametricity and defined another subtracted distribu™
tion:

1&0

FIG. 8. Subtracted statistics of pairs of bonds for a one-
dimensional placement problem (Solla et al. , 1986). See text for
the difference between these statistics and those of Figs. 6 and
7.

C(ql q2) P(ql q2) P(ql)P(q2)

where P(q„q2) is the probability that the two longer sides
of a triangle have lengths (overlaps) q& and qz, and

P(q) )= f P(q), q2)dq2 (Fig. 8). The advantage of
C(q&, q2) is that it is more directly tuned to ultrametricity
(for an ultrametric set, all positive values of the function
are concentrated on the diagonal). The drawback is that
it gives a positive test on a homogeneous set. So the func-
tions C (q &,qz ) and C(q ~, qz ) do give complementary in-
formation, and there is a price to pay in each case for the
loss of information from the full P(q~, q2, q3).

Several other ultrametricity tests for complex problems
have been, or can be, conceived of, but the most instruc-
tive at this stage appears to be an empirical comparison of
different energy landscapes, using the same test. Section
VI contains a detailed case study, which bears on the rela-
tion between ultrametricity and sparseness, with systemat-
ic use of one test.

C. The significance of ultrametricity

It was mentioned above (Sec. III) that there exists a
trivial kind of ultrametricity, with all triangles equila-
teral. Nontrivial ultrametricity requires an appreciable
weight for isosceles triangles, i.e., an overlap distribution
function P(q) that is not reduced to one 5 function. This
shows that evidence for ultrametricity does not end the
study. Subsequent determination of the relative weights
for isosceles and equilateral triangles may eventually lead
to distinctions among subclasses of ultrametricity.

In any energy landscape, it is possible to define an ul-

trametric distance between two local minima by the
minimal energy barrier separating them. Correlation be-
tween this ultrametric distance and the natural distance
(viz. , number of moves needed to go from one point to
another) may provide a physical explanation for the oc-
currence of ultrametricity. On such a basis, Solla et al.
(1986) have suggested that the simulated annealing algo-
rithm is most efficient for ultrametric problems.

48888-
D. Other landscapes

28888-

28888-~
Ihegg

FIG. 7. Subtracted statistics of pairs of bonds evaluated for a
Sherrington-Kirkpatrick spin glass model with N =24 spins
(Kirkpatrick and Toulouse, 1985). The vertical scale is arbi-

trary. The local minima are similarly weighted in Figs. 6 and 7,
which are thus comparable.

Symmetry-breaking transitions (ferromagnets, etc.) give
energy landscapes with a regular distribution of
equivalent valleys. Spin glasses have drawn attention to
the important case of hierarchical distributions. This cer-
tainly does not exhaust the list of interesting possibilities,
and the ultrametric tree should not hide the forest.
Another case that comes to mind is an energy landscape,
mostly flat, but with a number of excluded islands (as in a
model of immunology, where all antigens would evoke a
response except those corresponding to self). Controlled
modifications of an energy landscape, with feedback from
configuration space to parameter space, are discussed in
Sec. VIII in the context of a model for memory and learn-

1ng.
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VI. DEVIATIONS FROM Ul TRAMETRICITY

The goal of this section is threefold. First, we shall in-
troduce some precise definitions relative to various con-
cepts discussed in this review. Second, the notion of the
subdominant ultrametric d will be introduced and a
simple method for its construction given. A measure of
the deviation from exact ultrametricity is implied from
the definition of d~. The end of this section is devoted
to illustrative examples and to general remarks.

A. Basic definitions

I.et Q be a finite set. A hierarchy H=IIi j 'on Q is a
set of parts of Q, such that (i) QHH, (ii) for every coE Q,
Ico j belongs to H, and (iii) for each pair h HH, h'EH:
h fib'&y —=-h C:Ii' or h'Ch. Here p refers to the stan-
dard notation of the empty set.

An indexed hierarchy on Q is a pair (H,f), where H
denotes a given hierarchy on Q and f is a positive func-
tion, defined on H and satisfying the following condi-
tions.

(i) f(ii) =0 if and only if h is reduced to a single ele-
ment of Q (singleton) and (ii) if h C:Ii', then f(ii) &f(h').
Note that for a given ii, f(h) corresponds to the "level"
of aggregation (Sec. III), where the elements of h have
been aggregated for the first time.

In order to build up a hierarchy on a given set 0, it is
generally useful to introduce a dissimilarity index or ag-
gregation index 5, between the elements of Q. In general,
5 associates with each pair (hi, h2) of parts in Q a posi-
tive real number 5(h»hq) &0 such that 5(hi, hz)
=5(h2, hi). For instance, if Q is a metric space with a
distance d, a large number of aggregation indices can be
defined using d. For a recent survey, see the review paper
of Murtagh (1983). We mention just two examples, previ-
ously discussed in Sec. III.

(a) Single-linkage index 5i, defined as the Hausdorff
distance between two parts hi and hz in Q:

bo(d, 5)= Max
~
d(x,y) —5(x,y)

~

x,y HQ

b, ,(d, 5)= g ~

d (x,y) —5(x,y) ~,
x,yEQ

and more generally (Minkowski distances)
1/a

6 (d, 5) = g ~

d (x,y) —5(x,y)
~

x,yEQ

(6 4)

(6.5)

a & 0 . (6.6)

d(x, x)=0, d(xy)=1 if x&Q;, yEQJ (i&j), and
d(x,y) =a if i =j, 0& a & 1. The general connection be-
tween indexed hierarchies and ultrametrics, which is
clearly visible on the classification trees, was rigorously
proved by Benzecri (1965,1984). This result states that
there is a one-to-one correspondence between indexed
hierarchies and ultrametrics both defined on the same set.
Indeed, associated with each indexed hierarchy (H,f) on
Q is the following ultrametric:

u(x,y) = min If(h)
~

x Eh,y Eh j .
heH

This means that the distance o(x,y) between two elements
x and y in Q is given by the smallest element in H, which
contains both x and y (rule of the closest common ances-
tor). Inversely, each ultrametric o. is associated with one
and only one indexed hierarchy.

The previous equivalence between the set A of indexed
hierarchies and the set 4' of ultrametrics on Q leads to
the natural question of how we find the best hierarchy on
Q. The answer is to optimize 6(d, 5) over the set k of
ultrametrics where 5H k and d is a given metric on Q.
Here b, refers to a measure of adequacy between d and 5.
Such an optimization problem is actually not very well
defined, because of two intrinsic difficulties. The first
originates in the choice of the adequacy measure b, (d, 5)
and the second is that of the unicity of the optimized
hierarchy. Among various proximity measures between
two metrics d and 5, the following are just a few exam-
ples:

5i(hi, h2)=minId(x, y)
~

x Eh i,y Hh2j .

(b) Complete-linkage index 52, defined similarly by

5z(hi, h~)=Maxed(x, y) ~x&hi, y&h2j .

(6.1)

(6.2)
b ( d, 5)= g p (x)p (y) [d (x,y) —5(x,y)]

x,yGQ
(6.7)

More complicated proximity measures are given, for in-
stance, by (Hartigan, 1967)

These indices are actually examples in a large class of
aggregation indices widely used in systematic classifica-
tion. In general, given Q and an aggregation index 5, the
construction of the corresponding hierarchy can be car-
ried out through the search of a sequence of partitions of
Q, starting with the finest partition and ending with the
class Q containing all elements of the set Q. Such an up-
ward hierarchical classification has been described in Sec.
III using the single-linkage index 5&.

B. Hierarchies and ultrametrics

Note first that any given partition of the set 0:
0= U, Q; induces a large number of trivial ultrametrics:

where p (x) is a weight function on the elements of Q.
Given a proximity measure b„ there is in general the

possibility of two or more optimal hierarchies. Remark-
ably, a simple though partial solution to this degeneracy
problem is provided by the notion of the subdominant ul-
trametric.

C. Subdominant ultrarnetric

Instead of considering the whole set k of ultrametrics
on Q, one limits the search for 5 to k ~ = I 5& k

~

5 & d j,
which is the set of ultrametrics on Q which are lower
than d [5 is lower than d if 5(x,y) &d (x,y) for all pairs
(x,y)]. The subdominant ultrametric d ~ is defined as the
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upper limit of k ~. This is the maximal element in +
and by definition

d~(x,y)=MaxI5(x, y) ~5m&, 5&d} . (6.8)

This somewhat abstract definition of d ~ becomes clearer
in terms of the associated optimization problem. If
b, (d, 5) denotes a proximity measure, such as b,o, h~, or b,

introduced before, then d is the only solution that real-
izes the minimum of b, (d, 5) (Jardine et al. , 1967; Jardine
and Sibson, 1968; Gower and Ross, 1969). More precise-
ly,

b(d, d ~)=minIb(d5)
~

5~%',5&d} . (6.9)

d ~(x,y)=MaxId(w;, w;+)), 1&i (n —1}, (6.10)

where C„„=I (w~, w2), (w2, w3), . . . , (w„&,w„) } denotes

a b c d e

a 0 05 3 2 1

0 4 3

0 5 1

0 3

In addition to its simplicity and remarkable properties,
the subdominant ultrametric d ~ is actually very easy to
obtain. Usually (Benzecri, 1984), the hierarchy (H,f) is
constructed first and then d is deduced from H. For
the sake of clarity, we shall describe another equivalent
method, giving directly the output d ~ from the input d.
This is the minimal-spanning-tree construction method
(Gordon, 1981; Murtagh, 1983). Because of the transpar-
ent interpretation of this method we shall outline the
basic steps in this construction. The minimal-spanning-
tree (MST) method can be readily described in graph
theoretic terms (Papadimitriou and Steiglitz, 1982). Asso-
ciated with the metric space (Q, d) is a simple, nondirect-
ed graph, with the elements of 0 as vertices. The edge
(x,y) has a length equal to d (x,y). The main step in ob-
taining d ~ is the construction of a minimal spanning tree
on the connected graph so obtained. Recall that the MST
is a tree 2, having the same vertices as Q, but of minimal
total length. Note that 3 is not uniquely defined, and
more than one MST can be constructed on Q. Despite
this nonunicity of A, d as obtained is unique. When
there is an MST on Q, the distance d ~ (x,y) between two
elements x and y in Q is given by

the umque chain in A, between x and y ( w& ——x, w„=y).
This procedure defines in very precise terms the sub-

dominant ultrametric d . A simple method for con-
structing an MST is provided by Kruskal's algorithm
(Papadimitriou and Steiglitz, 1982). An illustrative exam-
ple is shown in Fig. 9 for a set Q of five elements.

D. Examples

As was shown before, given a finite metric space (Q,d),
we can obtain from the subdominant ultrametric d~ a
simple solution of the optimization problem posed in Sec.
IV.B. Furthermore, d can readily provide clear infor-
mation on the degree of ultrametricity of (Q,d). In par-
ticular, d ~ provides an answer to the following question:
how far is d from being an ultrametric? In other words,
what is the "minimal distortion" of d in order to become
an ultrametric? A possible answer is given by the com-
parison of d with d~. A measure of the proximity be-
tween d and d will be given by Ao, h1, or 6, as defined
in Sec. IV.B. Thus a quantitative expression of the rela-
tive distortion will be given, for instance, by

x,y,E'0
(d(x,y) —d~(x,y)) g d(x,y) .

x,y&Q
(6.11)

Here d denotes the input metric on 0, and d is the asso-
ciated subdominant ultrametric. In general, 0&& &1
vanishes if d is already an ultrametric (i.e., d ~ =d) and
provides a quantitative measure of ultrametricity. Small
values of M would indicate that d is not very far from
being an ultrametric and inversely.

Example 1. A simple example where the MST con-
struction is a trivial task is provided by
Q=Ix~,xz, . . . , x„},where Q denotes n points on the
real line, and d(x;,xj )=

~
x; —xj

~

is the usual Euclidean
metric. In the case where x;=i, for instance (1(i (n),
the subdominant ultrametric d ~ reduces to the trivial ul-
trametric d ~(x;,xj. ) = 1: all triangles are equilateral. In
this example, &=1—3/(n+1), and for large n, &—1

in agreement with the simple intuitio~: Euclidean spaces
are far from being ultrametric spaces.

Example 2. A less trivial example is given by the case
where Q is a set of M binary words, taken randomly from
among the 2 possible words, of 8 bits each. The M ele-
ments of Q can also be viewed as M particular Ising spin
configurations of a system of 8 spins. This is a subset of
the 8-dimensional hypercube, and the distance between
two words

a b c d e

a 0 05 1 2

0 1 2

0 2 1

0 2 ---- - ——---——--- 0.5

(u 1& . ) u8)~ U (Ul) ~ UB) ~

8
d(u, U)= g ~u; —U;

~

.

u;E'l0, 1}, U;c I0, 1}

can be defined by the Hamming metric

FIG. 9. An illustrative example of the construction of the sub-
dominant ultrametric d on the metric space (A, d) of five ele-
ments, using the method of the minimal-spanning tree (MST).

It is clear that for M =2, d reduces to the trivial ul-
trametric and &z(x =1)=1 2/8 —1 at large B. Here—
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x =M/2 refers to the filling factor of the hypercube. In
the other limit x «1, at M&3, &ii(x)-8 '~, and
Wii(x) is actually an increasing function of both x and B.
Numerical calculations (Rammal et al. , 1985) show that
&ii(x) assumes the staircase behavior shown in Fig. 10.
Instead of a smooth function, Mii(x) exhibits a series of
stairs and jumps between adjacent plateaus at very precise
values xk of x, 2&k &8/2. Moreover, the values taken
by &ii(x) are quantized and can be labeled by an integer
k. Indeed the stairs are well represented by

&ii(xk) =1 2k/—8 (level of the stair k), (6.12)

xk ——1 k&2

(abscissa of the center of the stair k) . (6.13)

This puzzling behavior of the relative distortion &ii(x)
can be understood with geometrical considerations. In
fact, each of the M words in 0 can be considered as the
center of a k sphere, of volume

k —i

0.8
B=16

1- 2/B

6/B

0,4

0
1 (n (M)

FIG. 10. Steplike behavior of the degree of ultrametricity &&
for M words taken randomly from among the set of 2 8-bit
words. Arrows indicate the centers of stairs (Rammal et al. ,
1985).

i=0

containing all points on the hypercube within a distance
up to k (1 &k &8/2). For large 8 and M, but finite x,
the probability of coverage of the hypercube by M such k
spheres is given by 1 —(1—cok/2 ) —1 —exp( —xcok).
The centers of the stairs correspond to x =xk —1/cok.
The jumps of Wii(x) are due to the competition between
two hierarchies associated with k and k —1, each of
which corresponds to h regular coverage of the hypercube.

Note that for fixed but large 8, &ii(x) approaches zero
as x goes to zero. This means that ultrametricity is actu-
ally a natural property of large spaces. In contrast,
&ii(x) reduces to a step function for 8 strictly infinite.

E. Remarks

and

xk ——1
k

(R —1)'
i=0

(6.14)

k R&ii (xk ) = 1 ——
This means that for increasing R, Wii (x ) increases for
the same value of k.

When compared with triangle statistics, the measure-
ment of the degree of ultrametricity with & suffers actu-
ally from two disadvantages: the chaining effect and sen-
sitivity to fluctuations. Indeed, two points x and y that
are very far from each other for d [i.e., large d (x,y)] will
become very close for d ~ if there is a chain of points be-
tween x and y such that every successive link is very
small in comparison with d(x,y). This is the so-called
chaining effect of the subdominant ultrametric. This ef-
fect is at the origin of the strong sensitivity of & to fluc-
tuations, as can be seen on the jumps shown in Fig. 10.
Triangle statistics, in contrast, do not exhibit such a sensi-
tivity because of their statistical nature. For these
reasons, the measure of W is probably best adapted to
sparse spaces that are nearly ultrametric.

Finally, what can be the use of a degree of ultrametrici-
ty. Clearly, it is open to criticism. One mere number,
like a degree of ultrametricity (or a quantity of informa-
tion or a fractal dimension), may be a very poor charac-
terization of a complex problem. Moreover, there is some
arbitrariness in the definition of &. There are two
answers to this criticism.

First, a degree of ultrametricity can be helpful as a
function of the parameters in a given problem. Its in-
crease or decrease may then be meamngful. The variation
of the entropy with temperature, pressure, magnetic field,
etc. , provides a valuable example. Second, it is plausible

Example- 2 above shows how an ultrametric set can be
generated by a random process, in the sparse limit, where
the collection of selected objects is a very small fraction of
the total number of possible objects.

In the case of the teletype code (Fig. 2), the 26 letters of
the alphabet densely fill the space of 2 =32 binary words
of 5 letters. The deviation from ultrametricity, using the
Hamming distance, is consequently large (upper plateau
of Fig. 10).

It is a useful generalization to consider "words" made
of 8 "letters, " extracted from an alphabet of size R. For
binary words, as above, R =2. For nucleic acids, the re-
pertoire contains four nucleotides, R =4. For proteins,
twenty amino acids, R =20. For spoken words, there are
around forty phonemes, R =40. Increase of R, which is
the ramification number of the decision tree, increases the
number of possible words, which is equal to R . In
biomolecules as in languages, the selected words are very
sparse sets.

The analysis in Sec. VI.D, example 2, generalized to
R & 2, leads to
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that in a number of problems, as is the case for the
mean-field theory of spin glasses, Sec. IV, ultrametricity
will be found to hold in some extreme simplifying limit
(uncorrelated random exchange interactions in the SK
model, neutral selection in evolution theory). At the next
level of analysis, what will appear significant may be the
deviations from ultrametricity (due to correlated interac-
tions, in spin glass theories of learning, or due to conver-
gent evolution in evolution theory). Then the deviation
from ultrametricity may indeed become a measure of the
quantity of relevant information.

FI(G. 11. Regular hierarchical tree with p =4 levels and a fixed
branching ratio E =2. The distance R between two points at
the bottom line is given by the height m, m = 1, . . . ,p of their
closest common ancestor level.

pr(~) e 4(m)/—T (7.1)
Vl l. DYNAMICAL ASP ECTS

In this section, two types of time evolution in an ul-
trametric space are considered. These two extremes do
not exhaust all possible dynamical processes, but they
offer instructive limiting cases. One motivation for the
study of random walks in ultrarnetric spaces (A) comes
from the slow relaxation effects in disordered systems
(glasses, spin glasses, proteins, etc.). In these materials,
there is growing evidence for a hierarchical structure in
configuration space, and the tree is certainly a heterogene-
ous one. Since the topic of dynamics of disordered sys-
tems is much too vast to be covered here, attention is re-
stricted to random walks on homogeneous ultrametric
spaces. These toy models exhibit a variety of anomalous
diffusive behaviors and possibilities of transitions between
them. Thus they add to our knowledge of diffusion on
periodic or fractal lattices. For contrast, the time evolu-
tion during a temperature descent is reviewed (B). The
motivation in this case comes from simulated annealing,
which is an optimization search strategy.

The time needed to move a distance m apart is unaffected
by smaller steps:

b,(m)/T (7.2)

and the walker's displacement (R(t)) is given implicitly
in terms of the barrier height function b,(m). Two exam-
ples will serve as illustrations (Ogielski and Stein, 1985;
Paladin et al. , 1985).

(a) If 6(m) is linear in m, h(m) =b,m, then Eq. (7.2)
implies

(7.3)

which is an anomalously slow diffusion law. Normal dif-
fusion, in Euclidean spaces of any dimensionality, has the
following asymptotic behavior:

(7.4)

Slow anomalous diffusion is commonly found on self-
similar lattices (Alexander and Orbach, 1982; Rammal
and Toulouse, 1983),

A. Random walks in ultrametriG spaces ( g2(t) ) rZ/2 (7.5)

A walker, restricted to steps of a given length, does not
diffuse in an ultrametric space, because he rema, ins always
within the same distance from his starting point (Mezard
et al. , 1984b). This localization effect is a direct conse-
quence of the ultrametric inequality; it is just another ex-
pression of the absence of intermediates.

Greater richness of behaviors, however, obtains if one
allows for variable-range hopping.

where d and d are, respectively, the fractal and spectral
dimensions; d (d (d, where d is the embedding Euclide-
an space dimension. For a Euclidean lattice, d =d =d,
hence Eq. (7.4). Our ultrametric space has an infinite
fractal dimension, hence Eq. (7.3).

Another quantity of interest is the probability of return
to the origin Po(t), which can be easily estimated from
the inverse of the number of points accessible within time
t From Eq. (7..3),

1. The pure model
p (t) I(

—R(~) t —(T//). ) )nK (7.6)

The simplest formulation of the problem assumes a
regular hierarchical tree with p levels and a fixed branch-
ing ratio X (Fig. 11). The total number of points is
N =K&. The distance R between two points is taken to
be equal to the height m, m =I, . . . ,p, of their closest
common ancestor level.

Temperature-assisted hopping is assumed, with poten-
tial barriers b, (m) which are increasing functions of the
level m. The probability 8'(m) of jumping over a barrier
of level m is thus taken as

to be compared with the general expression for self-
similar lattices,

(7.7)

Identification gives

d="I~, (7.8)

showing that the spectral dimension is temperature depen-
dent. As a consequence, a transition from compact to
noncompact diffusion occurs at T =b, lnK. Indeed (Ram-
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mal and Toulouse, 1983), for d & 2, the mean number of
distinct visited points S (t) varies as

and

p (t) t —TlnK/(T1nK+5) (7.16)
S(t)- (7.9)

whereas, for d &2, S(t) is linear in t. Such a transition,
as a function of temperature, has been observed numeri-
cally by Blumen et a1. (1985).

(b) Another interesting case corresponds to the choice
b,(m)=b, lnm. These barriers increase less rapidly as a
function of distance, and the diffusion is expected to be
faster than above. Indeed, Eq. (7.2) leads to

(7.10)

Equality of the exponents in Eqs. (7.15) and (7.16) is a
consequence of d =d = 1.

These expressions are only valid for T & 6/lnK.
Indeed, it is clear that fast anomalous diffusion cannot
possibly occur in this model (Teitel and Domany, 1985).
For T & 6/lnK, normal diffusion sets in. Similar results
are obtained with randomly placed barriers (Alexander
et al. , 1981),and thus the regular hierarchical structure is
not really a crucial feature.

p (t) —11nK)tr/~ (7.11)

which is a Kohlrausch (Frauenfelder, 1984), or stretched
exponential, law. Both fractal and spectral dimensions
are infinite. Convergence for the sum of the probabilities
(7.1) limits the temperature variations to 0& T &b,. A
new transition, from slow to fast anomalous behavior, ap-
pears at T=b, /2. It corresponds to entry into a Levy
flight regime.

3. Other hierarchical models

Very fast anomalous diffusion, (R (t) ) t, -is ob-
served in turbulent flows. A hierarchical model (more
complex than those given above) in which the ancestor
levels of the hierarchy also represent physical states, has
been solved and shown to encompass the possibility of
describing fast diffusion (Grossmann et al. , 1985).

B. Simulated annealing

2. A mixed model

R=E (7.12)

The effective jump probability over a barrier of level I is

brett( ) d( m )/T. —1

R
(7.13)

which includes an entropy contribution coming from the
constraint of step-by-step, one-dimensional motion.
Hence

e h,(m)/T. R

entailing, for b, (m ) =b m,

(7.14)

The first-studied model for ultrametric diffusion
(Huberman and Kerszberg, 1985) is actually a diffusion
model of mixed nature, because it contains a finite-
dimensional (one-dimensional, in fact) character. The dis-
tribution of potential barriers is represented in Fig. 12, as-
suming b(m) =6m and IC =2.

Because of the one-dimensional character, the relation
between R and m is now

A random walk is a blind way of exploring a space.
This fact is aggravated for diffusion in an ultrametric
space, because trapping in potential wells slows down the
search.

The method of simulated annealing (Kirkpatrick et al
1983) obviates this effect, which plagues conventional iso-
thermal Monte Carlo methods, by making a temperature
descent, whereby major decisions are made first, at higher
temperatures, and minor decisions later, at lower tempera-
tures.

This temperature control thus inverts, in a way, the
evolution process of a random walk, which wastes a lot of
time in relatively minor decisions before addressing more
important ones.

Vill. SOME OTHER OPEN PROBLEMS

Recently, the concept of ultrametricity has made its ap-
pearance in other problems of biological interest, which
are briefly described here.

( R ( t ) ) t T 1nK/1 T lnK +61 (7.15)
A. Neural networks

I I I I

FIG. 12. Hierarchical array of barriers for a mixed model of
diffusion. Particles diffuse from box to neighboring box, which
gives a one-dimensional character to the random walk.

Longstanding interest in neural networks originated
with the modeling of brain functions and with the design
of computing devices. A neural network, with the stan-
dard neuronal dynamics, can be associated with an energy
landscape, provided the connections (synapses) are sym-
metric. It was stressed by Hopfield (1982) that an energy
landscape provides the simplest model for a content-
addressable memory. The valleys are the stored memory
patterns, and retrieval occurs by gradient dynamics. Suit-
able learning rules allow for adaptive energy landscapes.
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Much subsequent work has been concerned with the
maximal storage capacity, assuming random uncorrelated
input patterns. %'ithin the mean-field framework, it is
possible to obtain a detailed theory (Amit et al. , 1985)
that interpolates between the limits of the standard fer-
romagnet and the pure spin glass. This is a step forward
in statistical mechanics, because it shows the possibility of
describing analytically a very complex behavior of meta-
stable states, and it fills a gap between the usual
symmetry-breaking transitions in the manner of Landau
and the replica-symmetry-breaking transitions in the
manner of Parisi (Sec. IV).

However, with these assumptions, the model does not
provide the memory with a hierarchical structure, though
this would clearly be desirable for categorization pur-
poses. Two suggestions, which are in fact complementa-
ry, have been advanced recently for obtaining an ul-
trametric content-addressable memory. One approach
starts from a spin-glass-like energy landscape and intro-
duces strong learning constraints, so that the tree of con-
figurations is pruned by selective learning, in a way that
preserves its ultrametricity (Kirkpatrick and Toulouse,
1985; Toulouse et a/. , 1986). The other approach intro-
duces hierarchical categorization at the encoding level,
with a layered perceptual architecture (Parga and
Virasoro, 1985; Virasoro, 1986).

B. Protein freezing and folding

Proteins are strings of amino acids. A typical example
is myoglobin, which has 153 monomer units (Frauenfeld-
er, 1984). The secondary and tertiary structures of biolog-
ical proteins show remarkable variations with tempera-
ture. Meanwhile the covalent linear sequence, or primary
structure, is rigid and acts like a quenched disorder,
which suggests an analogy with spin glasses. Below phy-
siological temperatures, there is mounting evidence for a
freezing transition into a hierarchy of conformational
states and substates, with several tiers (Ansari et al. ,
1985; Stein, 1985). Note the remarkable appearance of ul-
trametricity at two levels in protein theory, and for two
distinct reasons: (i) in protein configuration space, be-
cause of a presumably hierarchical energy landscape (Sec.
IV), (ii) in protein sequence space, because of a stochastic
branching process, due to a largely neutral evolution (Sec.
III).

At a higher level of protein organization, the folding
transition, which is a capital issue in molecular biology
(Wetlaufer, 1984), is an open challenge, at the horizon of
optimization theory (Secs. V and VII).

C. Evolutive biotechnolog Y

The close analogy between simulated annealing and bio-
logical evolution (at the morphological level), as optimiza-
tion processes (Kirkpatrick et al. , 1983), has led to the

suggestion that "simulated evolution" may be an efficient
practical means of producing proteins with desired prop-
erties. In this analogy, the mutation rate plays the role of
temperature. Accelerated evolution is obtained by control
of the mutation rate as well as by rapid selective scanning,
instead of the slow mechanism of survival of the fittest
(Anderson, 1985; Eigen, 1985a, l985b).

IX. CONCLUSIONS

At the end of this survey, covering instances from
physics and biology, some conclusions can be drawn as to
the reasons for the occurrence of ultrametricity in the
natural sciences.

Ultrametricity emerges as a consequence of randomness
and of the laws of large numbers. Two distinct typical
situations have been identified. The simplest is a purely
stochastic branching process in a large space (e.g., the
neutral evolution of pseudogenes). The second concerns
the valley structure, i.e., the energy landscape, -of disor-
dered frustrated systems (spin glasses and many optimiza-
tion problems).

In the case of evolution, both aspects, random walk and
optimization, are almost always intermingled. The rela-
tive proportions vary according to the characteristics con-
sidered, from the molecular to the morphological level.

In the cas'e of spin glasses, ultrametricity holds both in
the high-temperature (paramagnetic) phase and in the
low-temperature (spin glass) phase. In the paramagnetic
phase, the coupling energy is smaller than the thermal
motion, and the ultrametricity is a trivial one, with all tri-
angles equilateral on average, in the thermodynamic limit.
Below the spin glass transition, ergodicity breaking sets in
and reveals a hierarchical tree of valleys; ultrametricity is
preserved, albeit with a changed, richer content, since it
contains information on the energy landscape due to the
couplings. In the absence of a magnetic field, the spin
glass transition breaks ultrametricity, inasmuch as time-
reversal invariance is then spontaneously broken. If the
paramagnetic ultrametricity went unnoticed earlier, it is
because it stood in the shadow of the more conspicuous
effects associated with the usual symmetry-breaking
phase transitions.

As nontrivial ultrametricity is detectable by third-order
statistics but invisible at second order, so may subtler
structures be concealed by third-order statistics and re-
vealed at higher orders.
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